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Abstract 

 

Non-photochemical quenching (NPQ) is the process by which plants exposed to high 

light conditions dissipate the potentially harmful excess energy as heat. It is thought to 

involve conformational changes in the light-harvesting complexes of photosystem II 

(LHCII). The work reported here involves an investigation of LHCII from various 

perspectives, describing energy transfer between the pigments bound as well as the role 

of the protein in NPQ. 

The 510 nm band in the 77K absorption spectra of LHCII trimers belongs to one of the 

luteins (lutein 2) in each monomer. The red-shift of this band may be caused by specific 

interaction(s) between the monomers during their association into trimers. The presence 

of the red-shifted lutein 2 in the unusual Lhcb3-Lhcb5 trimers from antisense Lhcb2 

Arabidopsis plants is consistent with this interpretation. This lutein was found to be 

efficient in transferring energy to chlorophyll a. Analysis of the spectroscopic features 

of spinach thylakoids before and after de-epoxidation suggests the occurrence of a 

conformational change in the light-harvesting antenna, resulting in the remaining 

violaxanthin becoming more strongly involved in energy transfer to the PSII core. 

The quenching mechanism in LHCII was investigated. LHCII immobilised in a gel 

matrix showed quenching without protein aggregation, the transition to the quenched 

state involving a conformational change in which the neoxanthin and lutein 1 domains 

were affected. By monitoring the twisting of the neoxanthin molecule detected by 

resonance Raman spectroscopy, the same conformational change that accompanies the 

formation of the quenched state in vitro was observed in vivo upon NPQ induction. 

Transient absorption spectroscopy applied to purified LHCII in the quenched state 

showed the pathway for energy dissipation, involving energy transfer from chlorophyll 

a to the S1 excited state of lutein 1, which then decays to its ground state, dissipating 

the energy as heat. 
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1.1 Introduction 

Photosynthesis is the process by which green plants, algae and some species of bacteria 

utilize light energy to synthesise organic compounds. The process of photosynthesis can 

be either oxygenic or anoxygenic. The difference between these two processes is tha,t in 

the former water is oxidised and oxygen is released and in the latter water is not 

oxidised and no production of oxygen takes place.  

In higher plants, photosynthesis is an oxygenic process where light energy is used to 

convert the simple molecules, water (H2O) and carbon-dioxide (CO2) into complex 

organic sugars, releasing oxygen (O2) as a by-product. The process may be basically 

described by the following chemical reaction: 

6H2O + 6CO2  +  light energy → C6H12O6 + 6O2 

The energy of the light is absorbed by the photosynthetic pigments (chlorophylls and 

carotenoids) and converted into chemical energy (adenosine triphosphate, ATP) and the 

reducing equivalents (in the form of reduced nicotinamide adenine dinucleotide 

phosphate, NADPH), which are subsequently used in the synthesis of carbohydrates 

from carbon dioxide in Calvin-Benson cycle. 

 

1.2 Two phases of photosynthesis: the ‘light’ and ‘dark’ reactions  

Chlorophyll and carotenoid molecules are bound to numerous multi-subunit pigment- 

protein complexes that are specifically organised to maximise the efficiency of light 

capture and the transfer of energy to the electron transport chain. The vast majority of 

these pigments function to harvest light energy and increase the effective surface area 

for light absorption. Photons of light excite the pigment molecules of the light-

harvesting complexes (LHC) into a higher singlet excited state, this excitation energy 

being further directed to the reaction centres of the two photosystems: photosystem I 

(PSI) and photosystem II (PSII). The excitation energy is used in the reaction centres to 

produce a charge separation resulting in the release of the electrons which are passed 

along a series of electron carriers as seen in Figure 1. 
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Figure 1. The Z-scheme for linear electron transport in the thylakoid membrane: Mn=manganese cluster; 
Z= tyrosine Z; P680=PSII reaction centre special pair chlorophyll; P680*=excited singlet state of special 
pair (primary donor); Pheo=pheophytin (primary acceptor)=QA

-=plastoquinone A; QB=plastoquinone B; 
PQ= pastoquinone pool; Cyt bf=cytochrome b6f complex; PC=plastocyanin; P700=PSI reaction centre 
special pair chlorophyll; P700*=excited singlet state of special pair (primary donor); A0=primary acceptor 
chlorophyll; A1=secondary acceptor phylloquinone; Fx=iron sulphur cluster; FAFB=iron sulphur cluster; 
Fdx=ferredoxin (Berg et al., 2002). 

 

Higher plants transfer electrons from H2O to ferredoxin, the latter being able to reduce 

NADP+ to NADPH due to its oxidation-reduction potential of approximately –0.42 V. 

At the same time, protons are transferred across the thylakoid membrane from the 

stroma to the lumen, creating a proton motive force, which is employed by the ATP-

synthase complex to drive ATP synthesis. In the ‘dark’ reactions that occur in the 

chloroplast stroma ATP and NADPH produced during the ‘light’ reactions are used to 

assimilate CO2 into carbohydrates. 

 

1.2.1 The electron transport chain in higher plants 

The excitation energy absorbed by the LHC antenna is funnelled to the reaction centres 

(RCs) of both photosystems (PSI and PSII), where it is used to produce a charge 

separation reaction between a special chlorophyll molecule (P680 in PSII and P700 in 

PSI) and an acceptor molecule (see also Figure 1). An electron is transferred to QA via a 

molecule of pheophytin (Pheo), forming the highly oxidised species, P680+. The 

electron on QA is transferred further to a molecule of plastoquinone bound to the QB site 

which, after accepting a second electron, becomes protonated and is then released as 
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plastoquinol.  Electrons from plastoquinol are then transferred via the cytochrome b6f 

(cyt b6f) complex to a mobile electron carrier called plastocyanin (PC). A second charge 

separation event within the reaction centre of PSI liberates a second electron, which is 

passed along a series of carriers to the terminal electron acceptor ferredoxin (Fdx). Fdx 

is used by ferredoxin NADP reductase (FNR) to reduce NADP+ to NADPH. The linear 

electron transport chain is completed by the reduction of the P680 special pair in PSII, 

via the oxidation of H2O to O2. Translocation of protons across the thylakoid membrane 

occurs concomitantly with the transport of electrons from water to NADP+. A pH 

gradient is formed by the release of protons into the thylakoid lumen through water 

splitting in the oxygen-evolving complex of PSII, the oxidation of plastoquinol to 

plastoquinone (PQ) by the cyt b6f complex and the uptake of protons in the reduction of 

plastoquinone and NADP. 

 

1.3 Photosynthetic apparatus 

Photosynthesis in higher plants is carried out by leaves. Within the leaf, the apparatus of 

photosynthesis is located in chloroplasts, a specialised organelle, consisting of three 

membranes, two forming a smooth outer envelope, which surround the elaborately 

folded inner membrane known as the thylakoid (Figure 2). The surrounding aqueous 

phase called the stroma is a dense protein gel located between the outer membrane and 

the thylakoids and contains the enzymes that catalyse the ‘dark’ reactions. The 

thylakoid membrane is a continuous double membrane system, which is differentiated 

into stacked (appressed) and unstacked (non-appressed) regions, and which 

accommodates all the light harvesting proteins and the electron transport chain. 
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Figure 2 Thin section electron micrograph of a chloroplast. The internal membrane is divided into grana 
and stroma thylakoids. Stromal thylakoids are indicated between 2 white arrowheads (Mustárdy & Garab, 
2003). 

 

The thylakoid consists of a continuous membrane organised into a 3 dimensional 

network with an interior aqueous phase, known as the lumen. The generally accepted 

model was proposed by Paolillo (1970), and later confirmed by Brangeon & Mustárdy 

(1979). The model depicts the thylakoid membranes with multiple right-handed helices 

of stroma lamellae wrapped around cylindrical grana forming a contiguous system. An 

updated version of this model was recently proposed (Figure 3), based upon electron 

micrographs from serial sections of grana-stroma assemblies (Mustardy & Garab, 

2003).  

 

 

Figure 3. Freeze-fractured chloroplast (a) when the fracture plane is parallel with the granum thylakoid, 
arrowheads showing stroma thylakoid junctions, which are arranged in a circular fashion surrounding the 
granum membrane; 3-D computer model of the granum constructed from electron micrographs of full 
serial sectioning of a granum–stroma assembly (b). 
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The functional justification of the thylakoid architecture is the lateral heterogeneity of 

the appressed and non-appressed regions within the thylakoid membrane, where the 

protein compostion varies considerably. Photosystem I and ATPase dominate the 

unstacked regions of the membrane whilst the majority of Photosystem II is located in 

the grana stacks. The abundance of LHCII in the grana has led to suggestions that these 

antennae complexes play a vital role in the lateral organisation of the thylakoid. 

 

1.4 Photosynthetic pigments  

 
1.4.1 Chlorophylls 

Chlorophylls a and b are the major light harvesting pigments found in the 

photosynthetic antenna. Chlorophylls are molecules which have a magnesium (Mg) 

atom as its central atom, forming a chlorin ring (Figure 4).  

 

 

Figure 4. Molecular structure of chlorophyll pigments. The difference between the two chlorophyll forms 
is within the side chain (R) of the 7th carbon atom (Scheer, 2003). 

 

 Chlorophylls are planar, with a large conjugated π-system, the only difference 

between chlorophyll a and chlorophyll b being the extra C=O group in case of 

chlorophyll b. The differences between the absorption spectra of these 2 molecules 

(Figure 5) are large: the red-most absorption band in the absorption spectrum (also 

known as the Qy band) of chlorophyll a is located at ~662 nm, whereas the red most 

absorption band for chlorophyll b is located at ~642 nm; and the so-called Soret band 

(in the blue region of the spectrum) for chlorophyll a is situated at ~430 nm and at 460 

nm for chlorophyll b. The difference in the absorption spectra of the chlorophyll a and 

chlorophyll b increases the absorption cross-section of the chlorophyll a-chlorophyll b 
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containing complexes. All the chlorophylls present in the thylakoid membrane are 

bound by proteins, which provide a specific local environment, resulting in red shifts of 

the absorption spectra, further increasing the absorption cross-section. 

 

 
Figure 5. Room temperature absorption spectra of chlorophyll a (magenta) and chlorophyll b (blue) 
molecules in acetone (Berg et al., 2002). 

 

1.4.2 Carotenoids 

Carotenoids are molecules containing extended conjugated double bond systems and 

cyclic ring structures, most commonly C40. They are derived from isoprenoid precursors 

and are divided into two groups, the carotenes (cyclic hydrocarbons) and xanthophylls 

(oxygenated derivatives of the carotenes). Lycopene, a red pigment, is synthesised from 

geranylgeranyl pyrophosphate and the remainder of the carotenoid biosynthesis 

pathway follows 2 branchesleading to α xanthophylls and β xanthophylls (Figure 6). 

 Carotenoids are involved in light harvesting, absorbing light of different 

wavelengths to that of chlorophyll, and passing the energy on to chlorophyll. A major 

function of carotenoids is in photoprotection, removing chlorophyll triplet states, 

quenching singlet oxygen species and dissipating chlorophyll singlet states under excess 

light conditions. The role of carotenoids in photoprotection will be discussed in detail in 

section 1.7.1. 
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Figure 6. The carotenoid biosynthetic pathway in higher plants. Key enzymes are in capitals, Arabidopsis 
mutants that led to their identification in italics: LCY-e=lycopene ε-cyclase (lut2); LCY-b=lycopene β-
cyclase; Chy1/Chy2=β-carotene hydroxylase; ZEP=zeaxanthin epoxidase; VDE=violaxanthin de-
epoxidase; NXS=neoxanthin synthase; CYP97a3 (lut5)=β-ring hydroxylase activity; CYP97c1 (lut1)=ε-
ring hydroxylase activity (Fiore et al., 2006).    
 
1.5 The protein complexes of the thylakoid membrane 
 
1.5.1 Photosystem I 

Photosystem I (PSI) is a large, multi subunit protein complex, which comprises a 

reaction centre core and peripheral antenna. It is located in the non-appressed stromal 

lamellae regions of the thylakoid membrane (Dekker & Boekema, 2005) where it 

catalyses the light-induced oxido-reduction of plastocyanin and ferredoxin (Jensen et 

al., 2003). The 3-D crystal structure of higher plant Pisum sativum (pea) PSI at 4.4 Å  

shows 12 core subunits and 4 different light harvesting proteins (LHCI), assembled 

together in a half-moon shape on one side of the core (Ben-Shem et al., 2003). The 

complex binds 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones, and consists of 

45 transmembrane helices (Ben-Shem et al., 2003). The structure of plant PSI is shown 

in Figure 8. The large subunits PsaA and PsaB comprise the catalytic core and bind the 

majority of the chlorophylls, including the P700 special pair, which forms the primary 
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electron donor. Light absorption causes charge separation, the P700 transfers an 

electron to the electron acceptor A0 (a chlorophyll a molecule). The electron then passes 

to A1 (a phylloquinone) and then through 3 iron-sulphur centres (FX, FA and FB), to 

ferredoxin on the stromal side of the membrane (Jordan et al., 2001). The electron 

reduces ferredoxin, which binds in a pocket on the stromal side of PsaA and is 

surrounded by PsaC, PsaD and PsaE. Oxidised P700+ is reduced by an electron from 

plastocyanin on the lumenal side of PSI. 

 

 

Figure 8. Structural model of the plant photosystem I. View from the stromal side of the thylakoid 
membrane (a) and view from the LHCI side (b). Lhca antenna proteins are shown in green, PSI core 
proteins (PsaA and PsaB) in grey and the minor subunits in red (Ben-Shem et al., 2003). 

 

Four light-harvesting proteins (Lhca1-4) form LHCI and they are arranged as two 

dimers (LHCI-730 and LHCI-680) that bind asymmetrically to the RC, via associations 

between a number of different subunits (Ben-Shem et al., 2003). The LHCI-730 dimer 

(named after the 77K fluorescence emission maximum) is formed by association of the 

Lhca1 and Lhca4 polypeptides, while Lhca2 and Lhca3 form the LHCI-680 dimer 

(Klimmek et al., 2005). Together, these dimers bind 56 chlorophyll molecules. The red 

shifted fluorescence emission spectrum of PSI is caused by a few so-called ‘red’ 

chlorophylls, which have an energy level lower than the RC. The antenna serves to 

capture light and funnel it to the PSI core. The amount of LHCI bound to the PSI core 

was shown to vary with environmental conditions (Bailey et al., 2001). PSI is also the 

binding site for phosphorylated LHCII following the state 1 to state 2 transition, 

described in section 1.8.2 (Lunde et al., 2000). 
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1.5.2 Cytocrome b6f 

The cytochrome b6f (cyt b6f) connects the two photosystems in linear electron flow and 

is located in both granal and stromal regions of the membrane (Dekker & Boekema, 

2005). It functions as a plastoquinol-plastocyanin oxidoreductase, simultaneously 

translocating protons into the lumen (for review, see Cape et al., 2006). The complex is 

dimeric, consisting of 4 large (cytochrom b6, cytochrom f, Rieske iron-sulfur, and 

subunit IV) and 4 smaller (PetG, PetM, PetL and PetN) polypeptide subunits (Widger et 

al., 1984; Kurisu et al., 2003). The cyt b6f monomer is composed of 13 transmembrane 

helices and binds four haem molecules (Kurisu et al., 2003), one chlorophyll a (Pierre et 

al., 1997) and one β-carotene (Zhang et al., 1999). The ferredoxin NADP reductase 

(FNR) binds to the cyt b6f complex, providing the means for cyclic electron transport 

around PSI (Joliot et al., 2004; Munekage et al., 2004). 

 

1.5.3 ATP-synthase complex 

The plant ATP-synthase complex is a large macromolecular multisubunit enzyme of 

approximately 600 kDa that is responsible for the generation of ATP, utilising the 

proton gradient created by electron transport. ATP is formed from adenosine di-

phosphate (ADP) and inorganic phosphate (Pi). The complex is formed by the 

association of nine polypeptides organised in the CF1 and CF0 main subunits (for 

review, see Groth & Pohl, 2001). The CF1 subunit is found on the stromal surface of the 

thylakoid membrane, where it is associated with the CF0 intrinsic membrane subunit. 

CF1 is water soluble and CF0 is hydrophobic (Mc Carty et al., 2000). CF1 is the largest, 

contains the active site and consists in 5 different polypetides in a stoichiometry of 

α3β3γδε (Abrahams et al., 1994; Groth & Pohl, 2001). CF0 is formed from 4 subunits (I-

IV), and its function is to use a proton driving force to rotate the γ subunit of CF1 (Junge 

et al., 1997), a process that is a key part of the ATP synthase mechanism (Noji et al., 

1997). Muller et al. (2000) showed by atomic force microscopy that the 4 subunits are 

present in a 1:1:14:1 stoichiometry. 

 

1.5.4 Photosystem II 

Photosystem II (PSII) is a multisubunit protein-cofactor complex found abundantly in 

the appressed (granal) regions of the thylakoid membrane, having a water-plastoquinone 

oxidoreductase function (Hankamer et al., 1997; Barber, 1998). PSII contains a reaction 
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centre (RC), which together with inner antenna constitutes the PSII core complex, the 

proteins of the oxygen-evolving complex (OEC), and those of the peripheral light-

harvesting antenna. The structure of the PSII core complex of the cyanobacterium 

Synechococcus elongatus has been resolved using X-ray crystallography to a 2.5Å 

resolution (Zouni et al., 2001). Situated at the heart of PSII, the RC incorporates the 

chloroplast encoded D1 and D2 polypeptides (products of psbA and psbD genes, 

respectively), which form a heterodimer. The dimer contains 35 chlorophyll a, 11 β-

carotene molecules and 14 lipid molecules namely 6 MGDG, 4 DGDG, 3 SQDG and 1 

PG (Loll et al., 2005). Each of the D1 and D2 subunits contains five membrane 

spanning helices, which each have N-termini on the stromal side of the membrane. The 

D1 and D2 subunits are homologues of the L and M subunits of the purple bacterial RC 

(Deisenhofer et al., 1985; Rhee et al., 1998). The cofactors involved in charge 

separation and electron transport bind to the RC’s dimeric core, and include the primary 

electron donor P680 reaction centre chlorophyll (probably PD1), PD2, ChlD1, ChlD2, 

ChlZD1, ChlZD2 chlorophylls, two pheophytins (PheoD1 and PheoD2), the secondary 

electron acceptors plastoquinones QA and QB (situated close to pheophytins), two β-

carotenes and finally a non-haem iron molecule situated between the plastoquinones 

molecules. The RC also contains cytochrome b559 (situated at the periphery), which 

consists of two subunits (9kDa and 4kDa) encoded by the chloroplast psbE and psbF 

genes, respectively. These polypeptides ligate a single haem group. The function of 

cytochrome b559 still remains unproven but it is thought to have a role in the protection 

of the RC against photodamage (Whitmarsh & Pakrasi, 1996; Stewart & Brudvig., 

1998).  
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Figure 7. Structural organisation of the Photosystem II core complex. View perpendicular to the 
membrane plane, showing the minor lumenal exposed subunits (top). Helices are represented as cylinders 
with D1 in yellow; D2 in orange; CP47 in red; CP43 in green; cyt b559 in red; PsbL, PsbM, and PsbT in 
medium blue; and PsbH, PsbI, PsbJ, PsbK, PsbX, PsbZ, and PsbN in gray. The extrinsic proteins are 
PsbO in blue, PsbU in magenta, and PsbV in cyan. Chlorophylls of the D1/D2 reaction center are light 
green, pheophytins are blue, chlorophylls of the antenna complexes are dark green, β-carotenes are in 
orange, hemes are in red, nonheme Fe is red, QA and QB are purple. The oxygen-evolving center (OEC) is 
shown as the red (oxygen atoms), magenta (Mn ions), and cyan (Ca2+) balls. View vertical from the 
membrane plane (bottom). Coloring is the same as for the top view (Ferreira et al., 2004).  

 
Several other small subunits are present in the PSII dimer, the roles of most of them also 

being unclear. It is thought that PsbL, PsbM, and PsbT are involved in dimer formation 

and that PsbJ, PsbK, PsbN and PsbZ might facilitate the carotenoid binding since they 

are located close to β-carotene molecules (Ferreira et al., 2004). Cross-linking 

experiments (Tomo et al., 1993; Shi et al., 1999; Zouni et al., 2001) have located the 
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low molecular weight PsbI and PsbX proteins close to the reaction centre D2 and 

cytochrome b559 proteins, perhaps having a role in stabilising the peripheral ChlZD1 and 

ChlZD2 chlorophylls (Ferreira et al., 2004). 

The D1 and D2 proteins bind the inner antenna proteins, CP43 and CP47, products of 

the psbC (CP43) and psbB (CP47) genes binding 14 and 16 chlorophyll a molecules, 

respectively. These pigments form two layers close to the stromal and lumenal sides of 

the membrane. This is consistent with the observation by Barry et al. (1994) that the 

majority of conserved histidines, known to coordinate the Mg atoms in the chlorophyll 

molecules, are located towards the stromal and lumenal parts of the proteins. CP43 and 

CP47 are also thought to bind β-carotene and lutein (Bassi, 1996), although structural 

data can not confirm the latter (Zouni et al., 2001; Kamiya & Shen 2003). The 2.5 Å 

structure of CP47, from Zouni et al. (2001) reveals 6 membrane spanning helices as 

predicted by the topology of both CP43 and CP47 (Rhee et al., 1998). The 

transmembrane α-helices form a trimer of dimers. CP47 and CP43 function not only as 

light harvesters, but also to transfer excitation energy from the peripheral antenna to the 

RC, via the ChlZD1 and ChlZD2 chlorophylls (Fereira et al., 2004).  

 

On the lumenal side of the PSII complex close to the D1 subunit are located the 

extrinsic proteins, PsbO, PsbP and PsbQ (Zouni et al., 2001), which form a ‘cap’ over 

the OEC (De Las Rivas et al., 2004). The OEC splits water into molecular oxygen, 

electrons and protons. The extrinsic proteins have a structural role, keeping the 

peripheral antenna at an appropriate distance from OEC (Boekema et al., 2000b), but 

their main role is in oxygen evolution. The Mn and Ca ions seen in the cyanobacterial 

PSII structure form a cuban-like Mn4CaO3 cluster that plays a catalytic role in the water 

splitting (Ferreira et al., 2004). The PsbO subunit is critical for stabilising the Mn 

cluster (Ono & Inoue, 1984) and has been suggested to form a hydrophilic “pore” 

connecting the OEC with the lumenal surface (Ferriera et al., 2004). PsbO attaches to 

the PSII core via the large extrinsic loops of CP43 and CP47 (Bricker & Frankel, 2002). 

The catalytic cycle of water oxidation involves five intermediate oxidation states, S0 to 

S4, each transition driven by a photon of light (Kok et al., 1970; Goussias, 2002). Each 

of four incoming photons results in a charge separation event, removing 4 electrons 

from the Mn cluster, with concurrent de-protonation of 2 water molecules, resulting in 
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liberation of one O2 for each completed cycle.  

 

1.5.4.1 The peripheral light-harvesting antenna of Photosystem II 

Peripheral light-harvesting complexes of PSII collect and transfer the light energy 

towards the PSII core. The peripheral light-harvesting antenna of plant PSII comprises 

multiple pigment binding proteins, which together with the LHCI complexes are 

encoded by members of the Lhc gene family (Jansson, 1994). The proteins can be 

divided into two groups – the major antenna complex known as LHCIIb (encoded by 

the Lhcb1, Lhcb2 and Lhcb3 genes) and the 3 minor antenna complexes CP29 (encoded 

by the Lhcb4 genes), CP26 (encoded by the Lhcb5 gene) and CP24 (encoded by the 

Lhcb6 gene) (Jansson, 1994). The most abundant complex, the trimeric LHCIIb binds 

more than 50% of the PSII chlorophylls, while the minor monomeric complexes bind 

altogether approximately 20% (Peter & Thornber, 1991). All complexes bind 

chlorophyll a and chlorophyll b and also xanthophylls. The complexes increase the 

capacity of PSII for light capture, the minor antenna forming a link between the PSII 

core and the LHCII outer antenna. This function of the light-harvesting antenna is 

subject to regulation by a number of processes including state transitions and non-

photochemical quenching, both discussed in more detail below.  

 

1.5.4.1.1 LHCII 

Early biochemical analyses showed that trimeric LHCIIb (often called just LHCII) has a 

molecular weight of 72 kDa and a chlorophyll a/b ratio of 1.33 and that each monomer 

binds 3.5 xanthophylls, comprising 2 molecules of lutein, 1 of neoxanthin and 0.5 of 

violaxanthin (Peter and Thornber, 1991). The Lhcb1, Lhcb2 and Lhcb3 polypeptides are 

organised in either homo or hetero-trimers (Jansson, 1994; Jansson, 1999). Only Lhcb1 

is able to form homotrimers and it is also present in all heterotrimeric forms such as 

Lhcb1(2)/ Lhcb2, Lhcb1(2)/ Lhcb3 and Lhcb1/Lhcb2/Lhcb3 (Jackowski et al., 2001). The 

first structural information about the monomeric subunit came from studies of Burgi et 

al. (1987), in which it was suggested from hydropathy analysis that each subunit 

consists of 3 transmembrane helices. The first structural model of trimeric LHCII 

obtained at 6 Å resolution by electron crystallography of 2-D crystals confirmed the 

presence of 3 transmembrane helices and indicated 15 chlorophylls in each subunit 

(Kuhlbrandt & Wang, 1991). Later, the structure was refined by the same method 
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(Kuhlbrandt et al., 1994) to a 3.4 Å resolution, revealing the interaction between two of 

the 3 membrane-spanning α-helices. Additionally, a short helix was observed, located at 

the interface between the membrane and the lumen. In the centre of the complex there is 

evidence of 2 xanthophylls and 12 chlorophylls. In this model, chlorophyll a and 

chlorophyll b cannot be distinguished, but their positions were inferred from 

consideration of energy transfer efficiencies. The 3-D structures of the LHCII from 

spinach at 2.72 Å resolution (Liu et al., 2004), and pea at 2.5 Å (Standfuss et al., 2005) 

provide much more detail about the protein and pigments. The spinach structure 

confirmed the early biochemical results where it was suggested that each monomeric 

LHCII binds 13-15 chlorophyll a and chlorophyll b molecules (Peter & Thornber, 1991) 

and 3-4 xanthophylls (Ruban et al., 1999). The structure is depicted in Figure 9.  

 

 

Figure 9. Structural model of the LHCII obtained by X-ray crystallography (a). Side view of monomer 
showing the pigments: lutein (yellow), neoxanthin (orange), violaxanthin (purple), chlorophyll a (green), 
chlorophyll b (blue) (b). Pigment pattern in an LHCII monomer at the stromal and lumenal sides, 
respectively, displaying the strongly coupled chlorophyll clusters shown by green ovals (a610-a611-a612, 
a602-a603 and a613-a614) (c,d). Top view of LHCII trimer (e) ,(Liu et al., 2004). 

 

It was therefore established that each monomer binds 8 molecules of chlorophyll a, 6 

chlorophyll b, 2 all-trans luteins forming a cross-brace, 1 molecule of 9-cis neoxanthin 

present in a highly selective binding site and 1 all-trans violaxanthin at the monomer-

monomer interface. The chlorophylls are located at specific binding sites for either 

chlorophyll a or chlorophyll b molecules, with no sites available for both (Liu et al., 



Chapter One 
General introduction 

 

 16 
  

2004).  The chlorophylls are organised into 2 layers within the membrane, one layer (8 

chlorophylls) close to the stroma and the other one (6 chlorophylls) near the lumen. In 

the trimer, chlorophylls on the stromal side form two rings, the inner one thought to be 

involved in energy transfer between monomers (Gradinaru et al., 1998), and the outer 

one thought to provide broad absorption of light energy and be involved in energy 

transfer to the RC (Liu et al., 2004).  The lumenal side chlorophylls are suggested to 

function upstream of the stromal chlorophylls (Liu et al., 2004). There are three clusters 

of strongly coupled chlorophyll a molecules, to which fast energy transfer from 

chlorophyll b can occur (Figure 9): the a610-a611-a612 trimer and the a602- a603 and 

a613-a614 dimers (Novoderezhkin et al., 2005). The a610-a611-a612 cluster is located 

at the outer side of the LHCII trimer, providing a good connection with other subunits 

of PSII. This cluster, together with the adjacent lutein (lut 620) forms the terminal 

emitter domain, which is proposed as the possible energy quenching site in LHCII 

(Wentworth et al., 2003; Pascal et al., 2005) - see below. 

 

The structural model again confirmed the presence of the three transmembrane helices 

(A-C), and the α-helix along the lateral plane of the membrane (D), but also revealed a 

new, short amphipathic helix (E) inclined to the membrane plane by 300. In the native 

membrane, LHCII is arranged as a trimer (Figure 9e), and the trimerisation region was 

found to cover both the N-terminal and C-terminal domains, the stromal end of helix B 

and some residues of helix C. A phosphatidylglycerol (PG) molecule appears to 

stabilise the trimer in the crystal structure (Liu et al., 2004; Standfuss et al., 2005), in 

agreement with previous reports (Remy et al., 1982; Nussberger et al., 1993) that this 

lipid is essential for stability of the trimer, its hydrolysis with phospholipase A2 

resulting in the monomerisation of the complex (Remy et al., 1982). The lipid 

digalactosyl diacylglycerol (DGDG) mediates the interaction between adjacent trimers 

through van der Waals contacts (Nussberger et al., 1993; Liu et al., 2004). 

 

Biochemical studies suggest that LHCII has four carotenoid binding sites, 2 for lutein 

(L1 and L2) bound tightly within the complex, a neoxanthin binding site (N1) and one 

site on the periphery of the complex, where violaxanthin is bound only loosely (V1) 

(Ruban et al., 1999). The high resolution crystal structure confirmed the biochemical 

results. Lutein had previously been found to be essential for correct in vitro folding and 
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stability LHCII (Plumley & Schmidt, 1987; Croce et al., 1999; Phillip et al., 2002) and 

was also suggested to be involved in non-photochemical quenching (see section 1.8.2) 

(Lokstein et al., 2002). The neoxanthin molecule is present in a chlorophyll b rich 

region close to helix C, a site which was previously shown to be selective for 

neoxanthin, although this pigment is not essential for protein folding (Croce et al., 

1999). Neoxanthin is suggested to have a role in protection of the chlorophyll against 

photodamage (Standfuss et al., 2005). Thus, lutein and neoxanthin appear to be 

involved in both light harvesting and photoprotection (Kühlbrandt et al., 1994). 

Violaxanthin has a role in non-photochemical quenching (Demmig-Adams, 1990) via 

the xanthophyll cycle (discussed in detail in section 1.7.2) but its role in light harvesting 

is unclear (discussed in Chapter 3). 

 

1.5.4.1.2 CP29 (Lhcb4) 

CP29 is the largest of the minor light-harvesting proteins, containing approximately 257 

amino acids, giving a molecular weight of approximately 29 kDa (Peter & Thornber, 

1991; Bassi, 1996). It is always present in its monomeric form and is the product of the 

Lhcb4 genes (Jansson et al., 1994). Three Lhcb4 genes exist in Arabidopsis, two 

(Lhcb4.1 and Lhcb4.2) have similar expression levels but the third (Lhcb4.3) appears to 

be expressed at a low level (Jansson et al., 1999). CP29 binds 8 chlorophyll molecules, 

6 chlorophyll a and 2 chlorophyll b (Sandona et al., 1998; Bassi et al., 1999), and 

approximately 3 carotenoids: one lutein molecule, 0.77 neoxanthin and 1.54 

violaxanthin (Peter & Thornber, 1991). This ratio of carotenoid binding is disputed, and 

for example, in vitro reconstitution of recombinant CP29 produced in Escherichia coli 

showed that only 1 lutein and 1 violaxanthin are bound to the complex (Bassi et al., 

1999). However, Ruban et al. (1999) showed that there are two populations of 

violaxanthin that are bound differently to the complexes, one tightly bound, unavailable 

for de-epoxidation, and one loosely bound, which can be de-epoxidised. In contrast, 

studies using site directed mutagenesis of pigment binding sites again suggested only 2 

carotenoid binding sites in CP29, one binding lutein and the other site occupied by 

either violaxanthin or neoxanthin (Bassi et al., 1999). In addition to its role in light 

harvesting and energy transfer, CP29 is proposed to have a regulatory function. Lhcb4 

has been shown to bind dicyclohexylcarbodiimide (DCCD), indicating that the protein 

may be protonated, and indeed a putative protonation site has been located on the 
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lumenal loop (Pesaresi et al., 1997). These results together with the evidence of the 

enrichment in violaxanthin (compared to LHCII) have lead to a suggested role for CP29 

in non-photochemical quenching. Additionally, Lhcb4 is phosphorylated in the N-

terminal domain under some photoinhibitory conditions (Bergantino et al., 1995). 

 

1.5.4.1.3 CP26 (Lhcb5) 

The minor antenna protein Lhcb5 is a 26 kDa protein consisting of 247 amino acids, 

which binds pigments to form the CP26 complex (Peter & Thornber, 1991, Bassi, 

1996). The protein binds 9 chlorophyll molecules, 6 chlorophyll a and 3 chlorophyll b, 

and contains three binding sites specific for chlorophyll b (Croce et al., 2002). Peter & 

Thornber (1991) found that CP26 binds also 1 neoxanthin, 2 luteins and 0.5 

violaxanthin. In a later study, Ruban et al. (1999) reported 7-8 molecules of chlorophyll 

a and 3 of chlorophyll b as well as one molecule each of the three carotenoids lutein, 

neoxanthin and violaxanthin, consistent with the results of Wehner et al. (2006). These 

results contrast with those found in reconstitution studies carried out by Sandona et al. 

(1998), which suggest only 2 binding sites exist in CP26, L1 (occupied by lutein) and 

L2 (occupied by violaxanthin). It is proposed that the L2 violaxanthin plays a key role 

in non-photochemical quenching (NPQ) (Dall’Osto et al., 2005). Of the three minor 

complexes, Lhcb5 shares the most sequence homology with Lhcb1 (Jansson et al., 

1999), and it has been shown to form trimers together with Lhcb3, substituting for 

LHCII trimers in antisense plants lacking Lhcb1 and Lhcb2 (Ruban et al., 2003).   

 

1.5.4.1.4 CP24 (Lhcb6) 

Lhcb6 is the smallest of the Lhcb proteins and contains 210 amino acids, having a 

molecular mass of 24 kDa (Morishige et al., 1990). Lhcb6 is thought to bind 5 

chlorophyll a together with 5 chlorophyll b molecules (Peter & Thornber, 1991; Pagano 

et al., 1998) to form CP24, thus, having the lowest chlorophyll a/b ratio of all the 

antenna complexes. It is also thought to bind lutein and violaxathin but possibly not 

neoxanthin (Bassi et al., 1993, Ruban et al., 1999). Reconstitution studies also suggest 

that neoxanthin is absent from the complex, the L1 and L2 sites being occupied by 

lutein and violaxanthin respectively (Sandona et al., 1998; Wehmer et al., 2006). As is 

the case for CP29, there is evidence that CP24 has regulatory and structural roles. Plants 

expressing an Lhcb6 antisense gene and knock-out Lhcb6 mutants that are both depleted 
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in the CP24 complex show partial inhibition of NPQ and disruption of the macro-

organisation of the PSII-LHCII supercomplexes (Kovacs et al., 2006, see section 1.6). 

 

1.5.4.1.5 Other LHC-related proteins 

In addition to the light-harvesting complexes of the two photosystems, there are also 

numerous ‘LHC-like’ proteins, which share some sequence homology with LHC 

proteins (Grimm et al., 1989; Jansson et al., 2000). These include the one-helix proteins 

(OHP), the two-helix stress enhanced proteins (SEP), the three-helix early light induced 

proteins (ELIP) and the four-helix PsbS protein. The PsbS protein is essential for the 

rapidly relaxing component of NPQ (see section 1.8.2) (Li et al., 2000), and has been 

found to bind zeaxanthin in vitro (Aspinall O’Dea et al., 2002). In early studies Peter & 

Thornber (1991) found a small 13 kDa protein in barley thylakoids; it was present very 

close to the free-pigment band in a native deriphat-PAGE gel, it had a high violaxanthin 

content and it was called ‘LHCIIe’. 

 

1.6 Macro-organisation of the photosystem II 

Details of the macro-organisation of PSII and its associated light-harvesting antenna 

were first revealed by electron microscopy (EM) and single particle analysis of mildly 

solubilised PSII-enriched particles from spinach (Boekema et al., 1995). A rectangular-

shaped PSII supercomplex was seen, which was suggested to be a dimer formed from 2 

PSII cores (C), along with two tightly bound LHCII trimers (S), two CP29, and two 

CP26 monomers per PSII core. This supercomplex was referred to a C2S2 and was 

found to lack the Lhcb3 containing trimer and the Lhcb6 gene product. A following 

study on partially solubilised membranes (gentle isolation of PSII particles by gel 

filtration chromatography) located all three minor complexes and revealed the existence 

of one more pair of LHCII trimers in the supercomplex, symmetrically associated with 

each PSII monomer. This new supercomplex was called C2S2M2 complex, indicating 

the presence of two moderately bound LHCII trimers (M) in addition to the core 

complexes and strongly bound trimers. 
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Figure 10. Top view of the spinach C2S2M2 supercomplex (Dekker & Boekema, 2005). “S” and “M” 
refer to strongly and moderately bound LHCII, respectively. “L” indicates the loosely bound trimer, 
found only in spinach. The central part indicates the protein backbone in the membrane-intrinsic part of 
the PSII core complex (calculated from the structure of the PSII core complex from S. vulcanus). Also 
shown the minor complexes CP29, CP26 and CP24. “X” denotes a possible small peripheral subunit 
according to fitting and a comparison of slightly different types of supercomplexes (Boekema et al., 
1999). 

 

More detailed analysis revealed a third type of LHCII binding, denoted as loosely 

bound (L) complexes (Boekema et al., 1999) (Figure 10). No supercomplexes were 

observed with six LHCII trimers bound (C2S2M2L2), and the frequency of five bound 

trimers (C2S2M2L supercomplex) was extremely low.  

In solubilised grana membranes from spinach, large associations of mainly C2S2M 

LHCII/PSII supercomplexes were observed organised into 2-D semi-crystalline arrays 

(Boekema et al., 2000). Analysis of pairs of membranes with large-spaced crystalline 

macrodomains indicated that PSII complexes in one layer face only LHCII complexes 

in the other layer (Boekema et al., 2000a), suggesting that the organisation of the 

supercomplex membranes is also optimised for energy transfer between layers (Dekker 

& Boekema, 2005). Dekker et al. (1999) showed the presence of oligomeric 

associations of 7 LHCII trimers, which they suggested represent the native structure in 

the LHCII-only domains.  

Interestingly in Arabidopsis a larger unit cell is observed that has a composition of 

C2S2M2 (Figure 11c). The semi-crystalline fragments are highly ordered (Yakushevska 

et al., 2001) and after alignment and averaging of 450 crystal fragments, a unit cell was 

revealed (indicated within the rectangular shape) (Figure 11a). A density map shows the 
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likely positions of LHCII S and M trimers (indicated in yellow) and the minor 

complexes, CP29, CP26 and CP24 (indicated in green) (Figure 11b), modelled from the 

map of the isolated complex (Figure 11c) (Yakushevska et al., 2001).  

  

 

Figure 11. EM images of grana fragments from Arabidopsis showing PSII-LHCII macrostructure 
(Yakushevska et al., 2001). Sum of 450 aligned crystal fragments; the unit cell is indicated by the 
rectangular shape (a). Image of (a) showing the S and M trimers (yellow) and CP29, CP26 and CP24 
(green). C2S2M2 supercomplex (c).  

 

Evidence for the location of the minor, monomeric light-harvesting proteins came from 

cross-linking studies and studies on various antisense plants. Cross-linking studies 

revealed CP29 to be in close contact with CP47 on one side of the supercomplex and 

CP26 to be located close to CP43 on the other side (Harrer et al., 1998, Hankamer et al., 

1997). Analysis of antisense plants lacking CP26 revealed this complex to be located on 

the periphery of the supercomplex, and the position of CP29 was identified by 

elimination (Yakushevska et al., 2003). CP24 (Lhcb6) was located close to CP29 after 

analysis of antisense plants lacking Lhcb4 (CP29), results which also showed a decrease 

in the level of Lhcb6 protein (Andersson et al., 2003). Recently, studies of the knockout 

mutant lacking Lhcb6 confirmed the location of CP24 and established its role in binding 

the M trimer to the supercomplex (Kovacs et al., 2006). CP29 is thought to be unique 

and it is essential for the formation of supercomplexes, since in its absence no 

supercomplexes are isolated following membrane solubilisation (Yakushevska et al., 

2003). In the absence of CP26, supercomplexes are still formed, although the thylakoid 

membranes are more easily solubilised and the resulting supercomplexes less stable 

(Yakushevska et al., 2003). Supercomplexes isolated from Arabidopsis plants lacking 

the major light-harvesting protein LHCII (antisense asLhcb2) are almost identical in 

structure to those isolated from wild type plants (Ruban et al., 2003). Synthesis of both 
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Lhcb1 and Lhcb2 in these plants is abolished, and the expression of the minor antenna 

protein Lhcb5 (CP26) greatly increases, although levels of all other Lhcb proteins 

remain the same. The extra Lhcb5 protein appears to replace Lhcb1 and Lhcb2 by 

forming trimers with Lhcb3, binding at both the S and M binding sites. The plants also 

show the same extent of grana stacking as the wild type and similar photosynthetic 

characteristics, although non-photochemical quenching is reduced (Andersson et al., 

2003). This evidence that the major light-harvesting protein can be functionally and 

structurally replaced by a different protein underlines the importance of the 

supermolecular organization of PSII and LHCII in light-harvesting and electron 

transport (Ruban et al., 2003). 

 

1.7 Photoprotection in higher plants 

Exposure of plants to conditions of excess light intensity increases the rate of formation 

of excited states, increasing the probability of triplet-state excitation of chlorophylls 

within the antenna. Triplet chlorophyll can transfer energy to the ground state of O2 to 

generate singlet oxygen (1O2), which can in turn lead to irreparable damage to pigments, 

proteins and lipids, a process known as photoinhibition. As a result, plants have evolved 

both biochemical and physiological responses to excess light that enable optimisation of 

photosynthesis and continued growth. Mechanisms that reduce the amount of light 

absorbed include movement of the leaves and chloroplasts away from the light and 

reduction in the size of the PSII antenna (Horton et al., 2001). At the thylakoid level, the 

dynamic regulation of light-harvesting efficiency is required in order to balance the 

absorption and utilisation of light energy and prevent photo-oxidative damage. Thus, 

under excess light conditions, protective non-photochemical mechanisms quench the 

excited state of the chlorophyll molecules and dissipate excess excitation energy as heat, 

therefore reducing the population of triplet states. 

 

1.7.1 The role of carotenoids in photoprotection 

Carotenoids fulfil numerous important functions in higher plants. They play at least four 

different roles: accessory pigments in light harvesting, absorbing the light in the region 

of the electromagnetic spectrum where the chlorophyll absorption is poor; triplet 

chlorophyll and singlet oxygen scavenging; excess energy dissipation; and structure 

stabilisation/assembly. As mentioned above, photo-oxidative damage of the thylakoid 
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membrane and its components is caused by the formation of highly reactive 3Chl and 
1O2 species. Carotenoids quench both 

3Chl and 1O2 species by energy transfer to form 

the triplet state of the carotenoid (3Car) (Krinsky et al., 1971), followed by the non-

destructive thermal dissipation of the triplet energy (Mathis 1969, Mathis et al., 1979, 

Cogdell & Frank, 1987). This photoprotective process appears to be universal in 

chlorophyll-based photosynthetic organisms. In higher plants, photoprotective roles 

have been described for β-carotene (two molecules providing photoprotection of the 

PSII RC chlorophylls (Telfer et al., 1994)), lutein (Kuhlbrandt et al., 1994; Pogson et 

al., 1998; Niyogi et al., 2001), and neoxanthin (Lockstein et al., 2002; Dall’Osto et al., 

2007). 

 

These roles of carotenoids rely upon their specific chemical structures and electronic 

properties. Energy level diagrams for carotenoids consist of at least two singlet excited 

states denoted 21Ag (S1) and 1
1Bu (S2) according to their symmetry (Figure 12). 

 

 

Figure 12. The general energy level scheme of carotenoids. S0 ground state, S1, S2,…Sn excited electronic 
states. S* denotes an intermediate excited state. 

 

Although direct transition from the ground state (S0) to the first excited state (S1) is 

forbidden (because of symmetry properties), there can be transition from S0 to the S2 

excited state. The S0 to S2 transition is followed by internal conversion between S2 and 

S1 and subsequent return to the ground state by dissipation of energy as heat or by 
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resonance energy transfer to chlorophyll molecules (Cogdell & Frank, 1987; Ricci et al., 

1996). Differences in the extent of the conjugated double bond system affects the 

carotenoid S2 and S1 energies, with a lowering of the singlet excited state energies in 

carotenoids with longer conjugated double bonding systems. It has been suggested that 

the longer the conjugated double bond system the more reactive the carotenoid becomes 

to 1O2 (Edge & Truscott, 1999). The differences in the structure of each carotenoid also 

determine other physical properties such as polarity (Ruban et al., 1993a). 

 

1.7.2 Xanthophyll cycle carotenoids 

The xanthophyll cycle (XC) was first characterised by Yamamoto et al. (1962) as the 

reversible two-step de-epoxidation of violaxanthin to zeaxanthin via an intermediate 

molecule called antheraxanthin.  The XC is organised across the thylakoid membrane 

with the de-epoxidation reaction (violaxanthin to zeaxanthin) lumenally located, whilst 

the epoxidation reaction (zeaxanthin to violaxanthin) occurs on the stromal side of the 

membrane (Yamamoto, 1999). Violaxanthin de-epoxidation occurs in the light and is 

catalysed by the nuclear encoded enzyme violaxanthin de-epoxidase (VDE). 

 

 

Figure 13. The xanthophyll cycle in higher plants. See text for details. 

 
VDE was purified from spinach using a combination of gel filtration and anion 

chromatography (Arvidsson et al., 1996) and from lettuce using lipid-affinity 

precipitation with monogalactosyldiacylglyceride (MGDG) (Rockholm & Yamamoto, 

1996). The enzymes from both species have an apparent molecular weights of 

approximately 43 kDa on SDS-PAGE.  VDE activity is controlled by the lumenal pH of 
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the thylakoid, with maximum activity between pH 4.8 – 5.2, whilst being completely 

inactive above pH 6.3 (Eskling et al., 1997). Additionally, the enzyme requires the 

presence of ascorbate (Neubauer & Yamamoto, 1994) and the thylakoid lipid MGDG 

for maximal activity. The XC is completed by a reaction catalysed by the nuclear- 

encoded enzyme zeaxanthin epoxidase (ZE). While this enzyme has not been purified 

directly, cDNA encoding ZE has been extracted from tomato and pepper and the 

enzyme successfully synthesised in Escherichia coli (Bouvier et al., 1996; Burbridge et 

al., 1997). ZE has similar behaviour as VDE, displaying a strong pH dependency, but 

with optimum activity occurring around pH 7.0 – 7.5 (Siefermann & Yamamoto, 1975). 

Additional components are required for the reaction including molecular oxygen 

(Takeguchi & Yamamoto, 1968) and the cofactors NADPH (Siefermann & Yamamoto, 

1975) and FAD (Büch et al., 1995), together with the presence of ferredoxin or 

‘ferredoxin’ like reductants (Yamamoto, 1999). 

 

As mentioned previously, the XC carotenoids are not freely located within the thylakoid 

membranes, but are specifically bound to the light harvesting complexes, mainly at the 

V1 site (Thayer & Bjorkmann, 1992; Lee & Thornber, 1995; Ruban et al., 1999; Ruban 

et al., 2002a). However, other studies suggest that some part of the pool is free in the 

lipid phase under certain conditions (Havaux & Tardy, 1997; Morosinotto et al., 2002), 

although this suggestion is refuted by Johnson et al. (2007). Most of the violaxanthin 

molecules are bound to the antenna complexes at readily accessible sites. However, not 

all of the violaxanthin pool can be converted into zeaxanthin (Ruban et al., 1999). The 

maximum de-epoxidation state (defined as DES=A+Z/A+Z+V, where A, Z, V are the 

content of antheraxanthin, zeaxanthin and violaxanthin, respectively) is typically around 

60%, although much higher values (up to 90%) are found in some plant species, 

especially under stress conditions (Demmig-Adams & Adams, 1992). 

 

The level of zeaxanthin formed from the light induced de-epoxidation of violaxanthin 

has been shown to have a strong correlation with NPQ (Demmig-Adams, 1990). More 

details about the role of the XC in NPQ will be presented in section 1.8.4. 

 

Additionally, the XC appears to have a number of other important roles. In particular, 

there is evidence that under high light stress zeaxanthin has a role in protection against 
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the peroxidation and degradation of thylakoid lipids (Havaux et al. 1991). Studies of the 

npq1 mutant of Arabidopsis, which is unable to convert violaxanthin to zeaxanthin, 

show that whilst the rate of photosynthesis is unaffected in the mutant, the plants have 

increased lipid peroxidation, pigment loss and photoinhibition (Havaux & Niyogi, 

1999). Overexpression of the chyB gene encoding the β-carotene hydroxylase enzyme 

(a component of the zeaxanthin biosynthetic pathway) in Arabidopsis, results in a 

specific two fold increase in the size of the xanthophyll cycle pool (Davison et al., 

2002). These plants possess an increased tolerance to excess light conditions, showing a 

reduction in lipid peroxidation, along with decreased leaf necrosis and anthocyanin 

levels (Johnson et al., 2007). Such evidence highlights a strong link between zeaxanthin 

and the protection of thylakoid lipids from photodegradation. Finally, the presence of 

zeaxanthin reduces the fluidity of the membrane and protects against heat-induced 

increases in lipid bilayer permeability (Gruszecki & Strzalka, 1991; Havaux et al., 

1996). These observations suggest that a third role of the XC is to regulate membrane 

stability. 

 

1.8 Chlorophyll fluorescence and non-photochemical quenching (NPQ) 

 

1.8.1 Chlorophyll fluorescence 

Upon absorption of a photon of light energy, electrons (present in the conjugated π-

system) of chlorophyll molecules are promoted from the S0 ground state to a higher 

energy level, followed by rapid decay to the first excited singlet state S1. Electrons at S1 

will decay eventually back to the ground state (S0) by: re-emission as fluorescence (kF); 

transfer of energy to a low or non-fluorescent chlorophyll molecule situated in the 

vicinity (kT); utilisation of energy in photochemistry (kP); and by dissipation of the 

energy through non-irradiative process as heat (kD). In solution, up to 30% of the light 

absorbed by chlorophyll is emitted as fluorescence, but under physiological conditions, 

this is around 3% (Krause & Weis, 1991). The quantum yield of fluorescence (ΦF) of 

any single chlorophyll (or a group of molecules) is givin by the energy remaining after 

competition with all the above processes according to the following equation:  
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A decrease of the fluorescence yield occurs in two ways: firstly, through photochemical 

quenching of chlorophyll fluorescence (qP), caused by an increase in kP, as a result of 

photosynthetic electron transport; and secondly, an increase in the qN ( non-

photochemical quenching or NPQ) due to an increase in kT or kD. Since the fluorescence 

yield of PSI at room temperature is much lower than PSII, the observed changes in 

fluorescence result only from effects of these processes on PSII.   

 

Separation of the photochemical and non-photochemical components of chlorophyll 

fluorescence quenching is achieved using two techniques. The first is described by 

Krause et al. (1982), who blocked qP using 3-(3,4-dichlorophenyl)-1,1-dimethylurea 

(DCMU), which inhibits electron transport from QA to QB in PSII. The second method 

uses a strong light pulse to saturate PSII photochemistry and is called the ‘light 

doubling’ technique (Bradbury & Baker, 1981). The use of modulated fluorescence, 

which allows continuous visualisation of the fluorescence yield during application of 

the saturating pulses, enabled qP and qN to be directly probed (Quick & Horton, 1984). 

This approach is the basis of PAM (Pulse-Amplitude-Modulation) fluorimetry 

(Schreiber, 1984). Using a range of inhibitors and monitoring the relaxation of NPQ in 

the dark following illumination, Horton & Hague (1988) classified NPQ as being made 

up from 3 components: qE (the rapid relaxing phase), qT (slowly relaxing phase) and qI 

(very slow relaxing phase), each of which represents regulation of light-harvesting. The 

resolution of qP and these components is the aim of chlorophyll fluorescence quenching 

analysis (Figure 13). When a dark adapted sample such as leaf is illuminated with a 

measuring beam of low intensity, a minimum level of fluorescence is reached (F0), at 

which point all RCs are open and photochemistry is operating at maximum efficiency. 

When actinic light (AL) is applied, a fast fluorescence increase is observed due to the 

progressive closing of the PSII RCs. When all RCs are closed and photochemistry is at 

minimum (high light conditions), the maximum fluorescence level is achieved (Fm). 

From this point fluorescence starts to decline due to the increase in photochemical 

quenching that begins as the rate of photosynthesis accelerates, and the slow induction 

of non-photochemical quenching. 
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Figure 13. A typical fluorescence trace used for quenching analysis. F0 is the minimum and Fm maximum 
fluorescence. Fm’ represents maximum fluorescence in light and Fs the steady state fluorescence in light. 
Fm’’ is the maximum fluorescence during dark relaxation. AL=actinic light; qP=photochemical 
quenching; qE=energy dependent quenching; qT=state transition; qI=photoinhibition components of NPQ 
(Muller et al., 2001). 

 

The quantum yield of PSII is calculated during the actinic light illumination as the ratio 

(Fm’-Fs)/Fm’, where Fm’ is the maximum fluorescence in the light and Fs the steady state 

fluorescence in light. It provides information on the proportion of the light used in 

photochemical processes. qP is given by (Fm’-Fs)/Fm’-F0, where F0 is the fluorescence 

level in dark (Figure 13). NPQ is usually calculated as (Fm-Fm’)/Fm’. 

 

1.8.2 Non-photochemical quenching of chlorophyll fluorescence 

 

Energy dependent quenching – qE 

qE is the largest component of NPQ and is caused by the formation of a proton gradient 

during illumination (Briantais et al., 1979). The formation of qE is rapid and it has a 

relaxation half-time in the dark of approximately 30-60 seconds (Horton & Hague, 

1988). qE is usually estimated  as Fm/Fm’-Fm/Fm’’, where Fm’’ is the maximum 

fluorescence after about 10 min of dark relaxation (as shown in Figure 13). 

Papageorgiou & Govindjee (1968) first described the participation of non-

photochemical components in the second wave of fluorescence quenching in Chlorella 

pyrenoidosa. The dependence of qE on the rate of the photosynthetic electron transport 

was ruled out. Chlorophyll fluorescence quenching was also shown to be unrelated to 

photochemistry by Murata & Sugahara (1969) who described it as arising from a high 

energy state of photophosphorylation that may influence in some way the state of 
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chlorophyll a molecules in the chloroplasts, and as a result decrease the fluorescence 

yield. Fluorescence quenching was further investigated by Wraight & Crofts (1970), 

who found that this ‘energy-dependent’ quenching was sensitive to uncouplers, 

suggesting its dependence on the ∆pH. They proposed that chlorophyll fluorescence 

quenching occurs by an increase in the rate of non-radiative dissipation of the 

chlorophyll excited singlet state via thermal degradation. These results were 

corroborated by Briantais et al., (1979) who found a linear correlation between intra-

thylakoid proton gradient and level of chlorophyll fluorescence in broken pea 

protoplasts, firmly establishing the link between the energy dependent chlorophyll 

fluorescence quenching (called qE) and the ∆pH formed during photosynthesis. 

Furthermore, Krause (1973) found that the influx of protons into the lumen is 

accompanied by efflux of Mg cations and is associated with changes in the thylakoid 

membrane structure that were proposed to be responsible for the appearance of an 

absorption band around 535 nm. It was suggested that these membrane changes were 

directly responsible for changes in fluorescence.  

Krause and Behrend (1986) first established that elimination of the rapidly 

relaxing component of NPQ led to an increase in photoinhibition, proposing that qE had 

a physiological function. Horton & Hague (1988) similarly found that in isolated 

chloroplasts photoinhibition is inversely proportional to the level of qE present. It was 

proposed that qE prevents build-up of reduced QA in high light conditions, thereby 

preventing photoinhibition. This notion was also based upon the observation that, as the 

light intensity increases and the PSII quantum yield decreases, the level of qP remained 

high and QA remains oxidised (Weis & Berry, 1987; Genty et al., 1989). This showed 

that the decrease in quantum yield was not due to feedback from reduced components of 

the photosynthetic electron transport system, but due to an increase in dissipation of the 

energy absorbed by the antenna that was reflected in NPQ. Together, the above data 

firmly established qE as a regulatory mechanism that provides photoprotection.  

A second effect of the formation of the ∆pH that is important in qE is the 

activation of the xanthophyll cycle, detailed in section 1.7.2. The conversion of 

violaxanthin to zeaxanthin correlates with the level of qE in numerous plants under 

different conditions (Demmig-Adams, 1990) and in isolated chloroplasts (Gilmore & 

Yamamoto, 1992). Inhibition of VDE using dithiothreitol results in inhibition of qE 

(Bilger et al., 1989; Adams et al., 1990). Study of NPQ mutants provided important 
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insights into the mechanisms of qE. Npq1 mutants of Arabidopsis, unable to convert 

violaxanthin to zeaxanthin, showed greatly reduced qE, and induction of qE in the npq2 

mutant, which constitutively accumulates zeaxanthin, was faster than in wild type plants 

(Niyogi et al., 1998).  

Spectroscopic studies of isolated thylakoids and leaves showed that high light 

induction of qE correlates with two separate absorbance changes. One absorbance 

change at 505 nm is a result of the conversion of violaxanthin to zeaxanthin 

(Yamamoto, 1972), and this change is a quantitative measure of the de-epoxidation 

reaction (Siefermann & Yamamoto, 1974). The second absorbance change, frequently 

referred to as a light scattering change, has a maximum at 530-540 nm and is designated 

∆A535. It is dependent on ∆pH and the presence of zeaxanthin (Bilger et al., 1989). 

∆A535 is correlated with qE in both leaves and chloroplasts, (Noctor et al., 1993; Ruban 

et al., 1993b) and absent in mutants lacking qE (Li et al., 2000a). As discussed above, 

∆A535 was initially thought to be a light scattering change resulting from a ∆pH-

dependent conformational change in the thylakoid membrane (Heber, 1969; Krause, 

1973) possibly associated with aggregation of LHCII (Ruban et al., 1993b). However, 

further studies showed that it is, at least in part, a “real” absorbance change, reflecting a 

change in the electronic absorption of zeaxanthin. This is a complex change, resulting 

from the “activation” of zeaxanthin molecules by some type of modification of their 

local environment (Ruban et al., 2002b), possibly head-to-tail aggregation (Polivka et 

al., 2002). An absorption spectral shift giving rise to a similar ∆A535 has been 

reproduced in vitro upon association between isolated PsbS and zeaxanthin, suggesting 

that this interaction may be crucial for the functioning of zeaxanthin in NPQ (Aspinall 

O’Dea et al., 2002). 

 

The PsbS protein has an essential role in qE. The npq4 mutant, which is 

deficient in PsbS, was found to be deficient in the qE component of NPQ (Li et al., 

2000a). Some NPQ still occurs in this mutant but is very slow in both formation and 

relaxation. The absorption changes associated with ∆A535 are also slower and smaller in 

amplitude, but interestingly, the change is blue shifted to around 520 nm suggesting a 

defect in zeaxanthin activation. Based on these observations, it was suggested that PsbS 

may act to promote conformational changes within LHCII to bring about NPQ in vivo 

(Horton et al., 2000; Horton & Ruban, 2005). A number of site directed mutations of 
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PsbS have been investigated. Most important were those in which mutation of certain 

lumen-facing glutamate residues resulted in inhibition of qE (Li et al., 2002c; Li et al., 

2004). It was suggested that protonation of these residues is a key event in the ∆pH-

dependent induction of qE, consistent with DCCD binding to this protein (Ruban et al., 

1992; Dominici et al., 2002). PsbS over-expressor plants have also been created, and 

these plants exhibit a larger amplitude of qE that found in wild type (Li et al., 2002b). 

Although this was used as evidence for a direct role of PsbS in NPQ, providing the 

binding site for zeaxanthin, it was subsequently shown that the stimulatory effect of 

PsbS is independent of the presence of zeaxanthin (Crouchman et al., 2006). Therefore, 

at present the mode of action is unclear.  In fact there is still uncertainty about where 

this protein is located: some reports indicate it is associated with either LHCII (Kim et 

al., 1994) or the PSII core (Funk et al., 1995; Donminici et al., 2002; Bergantino et al., 

2003); and others even suggest high mobility within the thylakoid membrane (Neild et 

al., 2000; Yakushevska et al., 2001; Teandro et al., 2007).  

 

Quenching related to state transitions – qT 

The qT component of NPQ, which relaxes with a half time of around 5-10 minutes is a 

small proportion (15-20%) of the maximum quenching, although under very low light it 

is the major component (Horton & Hague, 1988; Walters & Horton, 1993). It was 

assigned to the state 1 to state 2 transition. The state transition is a process by which an 

imbalance in the rates of excitation of PSII and PSI is removed. It involves the 

reversible phosphorylation of LHCII in PSII complexes, resulting in LHCII migration 

from PSII to PSI. State transitions are important only at low light intensities and they 

are inhibited in high light (Aro et al., 1993). Consistent with this, qT does not make a 

significant contribution to quenching in high light conditions (Walters & Horton, 1991). 

However, qT can be difficult to measure from chlorophyll fluorescence alone since it 

overlaps with slower components of qE (Walters & Horton, 1991), as well as with the 

dark-induced inactivation of certain electron transport reactions (Schansker et al., 2006). 

 

Photoinhibitory, irreversible quenching – qI  

The NPQ component that relaxes over a longer period, of greater than 10-20 minutes, is 

known as qI. The slowly reversible qI may be sustained for several hours, but 

interestingly some of it is rapidly reversed on addition of nigericin (Ruban & Horton, 
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1995). A part of qI is thought to reflect photoinhibition of PSII reaction centres, but 

mostly it is unrelated to PSII RC activity and is thought to reflect a sustained quenching 

of the antenna (Lee et al., 1990; Gilmore & Bjorkman, 1994; Horton et al., 1996). It is 

suggested that qI originates from a structural change caused by illumination (similar to 

qE), but one that is stable in the dark for a longer period of time than the change 

required for qE (Ruban & Horton, 1995). qI has been correlated with the persistence of 

zeaxanthin, which is only slowly epoxidised in darkness (Demmig et al., 1987; Jahns & 

Miehe, 1996). Dall'Osto et al. (2005) suggested that some of this zeaxanthin is bound to 

the CP26 complexes and therefore proposed these minor antenna complexes are the 

sites for qI.  

 

1.8.3 The site of qE 

qE has been suggested to take place both in the RC and the light harvesting antenna. 

Weis & Berry (1987) and later Krieger et al. (1992) observed that the quantum yield of 

PSII was correlated with the amount of qE and proposed that quenching occurs due to 

the increased population of QA
-, which facilitates non-radiative recombination via a 

back reaction with P680+, suggesting that the quencher was the PSII RC itself. The back 

reaction would be promoted by a low pH-induced Ca2+ release from the OEC (Krieger & 

Weis, 1993).  Even though there are results suggesting that such an NPQ process is 

present in RCs (Finazzi et al., 2004), most evidence indicates that, under physiological 

conditions, the qE component of NPQ occurs within the antenna (Horton & Ruban, 

1992; Ruban & Horton, 1995; Wentworth et al., 2000).  Some of this evidence is as 

follows:  

a) the qE inhibitor DCCD (Ruban et al., 1992) has been shown to bind antenna 

polypeptides (Walters et al., 1994; Ruban et al., 1998a), although it should be noted that 

recent evidence shows that DCCD also binds to PsbS protein (Dominici et al., 2002);  

b) the XC carotenoids are also associated with the peripheral light harvesting antennae, 

(Peter & Thornber, 1991; Ruban et al., 1999); 

c) heat emission kinetics measured directly using laser-induced optoacustic spectroscopy 

show completion within 1.4 µs (Mullineaux et al., 1994), significantly faster than the QA- 

and P680+ recombination reaction (~120 µs);  

d) in vitro quenching in isolated antenna complexes reproduces many features of qE 

observed in leaves and chloroplasts, such as the kinetics of fluorescence change, the 
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enhancement by zeaxanthin, and the absorbance changes accompanying the in vivo 

quenching process (Ruban & Horton, 1992; Wentworth et al., 2000; Wentworth et al., 

2001);  

e) preferential quenching of excitation energy within the antenna complexes has been 

observed by analysis of PSII fluorescence at 77K (Ruban & Horton, 1995) and, following 

the induction of qE, the fluorescence emission spectrum of PSII resembled that of 

partially aggregated LHCII, with an enhanced band at 700 nm.   

Although these data strongly suggests that the light-harvesting antenna is the site for qE, 

the RC could be involved under certain physiological conditions, for example, under 

conditions of high ∆pH or when antenna quenching is inhibited or slowed down.  

 

1.8.4 The mechanism of qE 

Two types of mechanisms have been proposed to account for quenching in the antenna. 

In part these arose as a result of experiments conducted in order to elucidate the exact 

role of zeaxanthin, a key player in the NPQ process. The first is so-called the direct 

quenching mechanism, where zeaxanthin is proposed to be the direct quencher by 

accepting the excitation energy from the chlorophyll excited state. In the second, the 

indirect quenching mechanism, zeaxanthin is postulated to act as an allosteric regulator 

of a quenching process that is an intrinsic property of the antenna complexes. 

 

The strong correlation between qE and the formation of zeaxanthin (Demmis-Adams 

1989; Demmig-Adams, 1990) gave rise to the simple idea that zeaxanthin is the direct 

quencher. The obligatory requirement for the pH gradient was explained by it activating 

the zeaxanthin binding site within PSII light-harvesting antenna (Gilmore et al., 1995). 

A theory for how quenching could be switched on by the de-epoxidation of violaxanthin 

was first put forward by Owens (1994). This was later described as the so-called 

“molecular gear shift model” (Frank et al., 1994). As mentioned previously (see section 

1.7.1) a carotenoid molecule displays at least 2 excited states namely S1 and S2. Direct 

transition from the ground state S0 to S1 is symmetry forbidden, but S2 to S1 transfer is 

possible and is employed by carotenoids as a means of energy transfer to chlorophylls. 

The S1 energy level of carotenoids relative to the chlorophyll a Qy band can be 

calculated/approximated using the energy gap law (Frank et al., 1994), and crucially it 

depends upon the length of the conjugated double bond chain of the molecule. The 
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conversion of violaxanthin to zeaxanthin means the removal of 2 epoxy groups, thereby 

increasing the number of conjugated double bonds from 9 to 11. The molecular gear 

shift model suggests that because the zeaxanthin S1 state is lower than the chlorophyll a 

Qy band, it can act as a quencher by accepting energy from the first excited state of 

chlorophyll and then dissipating this energy as heat upon its re-conversion to the ground 

state. Since the violaxanthin S1 state was found to be significantly higher than the 

chlorophyll a, it would be more likely that this pigment acts as a light harvester than as 

quencher. In this way this model proposes that violaxanthin which predominates in the 

low light conditions would act as an accessory pigment, whilst in high light conditions, 

its conversion to zeaxanthin would enable dissipation of the excess energy.  

Although the results of Phillip et al. (1996), which show a relationship between 

the increase in the conjugated double bond chain and the pH induced quenching in 

LHCII in vitro provide support for the molecular gear shift model. However, it was 

subsequently shown that this relationship was more likely due to differences in 

carotenoid configuration rather than in S1 excited state energy level (Ruban et al., 

1998b, see below). Furthermore, transient absorption (Polivka et al., 1999) and 

fluorescence (Frank et al., 2000) spectroscopy measurements allowed the direct 

measurement of the violaxanthin and zexanthin energy levels. These measurements 

show that the S1 states of both xanthophylls were far lower than those calculated before, 

both lying below the level of chlorophyll a Qy band, so undermining the basic tenet of 

this hypothesis. In vitro studies using low temperature fluorescence spectroscopy have 

accurately measured the S1 energy levels of the xanthophyll cycle carotenoids (Josue & 

Frank, 2002). The results obtained are similar with those previously reported (Frank et 

al., 1994), but it has been suggested that low temperature may cause a change in the 

protein that would create a significant distortion of the carotenoid (Josue & Frank, 

2002).  

In the artificial conjugated dyad model system, direct proof was obtained that 

energy dissipation may occur by energy transfer from a porphyrin ring to the S1 state of 

a carotenoid, coupled with an internal charge transfer state (Berera et al., 2006).  In this 

study, it was shown that the addition to the conjugated double bond chain of the 

carotenoid of only one double bond turns the carotenoid from a non-quencher into a 

powerful quencher. 
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1.8.4.1 The carotenoid radical cation model 

As an alternative to singlet-singlet energy transfer, it has been proposed instead that 

electron transfer between carotenoids and chlorophylls could be a mechanism for 

chlorophyll fluorescence quenching. Carotenoid cation radicals have been transiently 

observed after photoexcitation of bacterial light harvesting complexes (Frank & 

Brudvig, 2004) and most significantly also in measurements performed on thylakoid 

membranes (Holt et al., 2005). A new version of a direct quenching model was 

proposed (Figure 14). In this model, the protonation-induced formation of a 

zeaxanthin/PsbS complex, leads to the quenching of the major light harvesting antenna 

chlorophylls directly (Figure 14a). Effective energy transfer from chlorophyll to 

carotenoids is possible if the excited state of the carotenoid is lower than the lowest 

excited state of the chlorophyll (Qy band). This carotenoid excited state was found by 

transient absorption measurements performed on isolated thylakoids, where a 

carotenoid excited state was detected (either S1 or S*), which was theoretically of a 

lower energy than the Qy band (Ma et al., 2003). The authors then suggested that 

quenching can occur via energy transfer from chlorophyll to a carotenoid (zeaxanthin) 

or alternatively via formation of a chlorophyll xanthophyll heterodimer. The qE-

dependent changes were observed only when zexanthin and PsbS were present and 

therefore the signal was suggested to arise from zeaxanthin that is bound to PsbS (Holt 

et al., 2004). 

 

Figure 14. The PsbS-zeaxanthin model for non-photochemical quenching (a) (Holt et al., 2004). The 
hypothesis for the zeaxanthin cation formation and the dissipation of energy by charge recombination (b) 
(Holt et al., 2005). 
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Application of transient absorption spectroscopy showed the appearance of an qE-

related absorption band in the near-IR region, indicating the formation of a carotenoid 

cation. The signal, which appears only in chloroplasts showing qE and containing 

zeaxanthin (Holt et al., 2005), was interpreted as arising from a chlorophyll-zeaxanthin 

(Chl-zea) heterodimer formed when qE is induced (Figure 14b). The heterodimer 

quenches the bulk of chlorophylls (Chlbulk) via the formation of a charge separated 

ground state Chl.- plus Zea.+, which decay further to the ground state by charge 

recombination. Consistent with this model, it was calculated that zeaxanthin has the 

lowest ionization potential of the xanthophyll cycle carotenoids (Dreuw et al., 2003). A 

carotenoid (zeaxanthin mainly) radical cation was also found in transient absorption 

studies of the isolated minor light-harvesting complexes that bind zeaxanthin, and 

therefore it was proposed that these complexes may be the site of qE in vivo (Avenson 

et al., 2007). 

 

1.8.4.2 The allosteric model 

The LHCII aggregation model of qE was first proposed by Horton et al. (1991) as an 

alternative to the direct quenching model. The authors proposed that qE arises from 

∆pH induced aggregation of the LHCII, which causes a conformational change in each 

LHCII sub-unit that modifies the environment of the complex, resulting in the 

appearance of a dissipative state. Early studies on isolated chloroplasts in absence or in 

presence of zeaxanthin showed that a different ∆pH is required for the formation of the 

qE state (Rees et al., 1989; Noctor et al., 1991). Most importantly, qE was observed in 

isolated chloroplasts (Rees et al., 1989; Noctor et al., 1991) that do not contain 

zeaxanthin. These results indicate that this carotenoids is not the quencher itself, rather 

it has an indirect role, lowering the ∆pH necessary for qE. The initial model, which has 

been updated (Horton et al., 2000; Horton et al., 2005) describes 4 LHCII states, 

depending on the de-epoxidation state of the xanthophyll cycle and the lumenal pH 

(Figure 15).  
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Figure 16. The LHCII model for NPQ. LHCII is represented in green; violaxanthin in yellow; 
zeaxanthin, red; orange arrows indicate energy dissipation; H denotes protonation; (Horton et al., 2000; 
Horton et al., 2005). 

 

State I represents the unquenched, light harvesting state where violaxanthin is bound to 

the complex and the pH difference between the stroma and the lumen is minimal. State 

III is the protonated state binding only violaxanthin and forms a weakly quenching 

complex. State II represents the light activated state of the LHCII, unprotonated but 

partially quenched, with zeaxanthin bound. Finally, state IV represents the maximally 

quenched state when both protonation and zeaxanthin binding to LHCII occur. In 

isolated LHCII, quenching occurs when protein is in the aggregated form, induced by 

the removal of the detergent (Ruban et al., 1991) or by addition of Mg ions (Arntzen & 

Ditto, 1976), and this was suggested to be a molecular basis for NPQ. Several lines of 

evidence support this idea:  

a) violaxanthin prevents and zeaxanthin induces both the in vitro quenching and the 

aggregation of the complexes (Ruban et al., 1991);  

b) the band at 700 nm in fluorescence emission spectra has been found in both quenched 

LHCII and leaves where qE was present (Ruban et al., 1991; Horton et al., 1996);  

c) the aggregated minus trimeric associated difference in the absorption spectrum is very 

similar to the qE light minus dark difference spectrum (Ruban & Horton, 1992);  

d) qE inhibitors and enhancers have similar effects on quenching in LHCII (Horton & 

Ruban, 1992; Ruban et al., 2001).   

 

Evidence was found that the opposing effects of violaxanthin and zeaxanthin in qE 

could arise from difference in their structures rather than in their excited energy levels 
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(as suggested by the molecular gear shift model). Ruban et al. (1998b) found that the 

ability to induce quenching is not dependent on the number of conjugated double bonds. 

Auroxanthin, an isomer of violaxanthin with only 7 double bonds was found to 

stimulate quenching in the isolated LHCII with even greater efficiency than zeaxanthin. 

This observation is explained by the structural similarity between auroxanthin and 

zeaxanthin – in both, the head groups are in the same plane with respect to the double 

bond chain, but they are twisted in violaxanthin. The head group configuration was 

therefore proposed to control the interaction of the molecules with LHCII (Horton et al., 

1999). This observation is in contradiction to the direct quenching model of qE, but in 

complete agreement with the indirect model. 

In vitro quenching is a property of all of the PSII light harvesting complexes. In 

fact, the minor complexes produce higher levels of quenching and quench more rapidly 

than does the major trimer LHCII (Ruban et al., 1996; Wentworth et al., 2001). Hence, 

it was suggested that quenching is a property of the whole antenna, rather than of one 

particular complex (Horton et al., 1996). Important insights into this question were 

found following the investigation of various Lhc mutants. These mutants were obtained 

by expression of anti-sense Lhcb genes and t-DNA insertions in Lhcb genes. The first 

antisense mutant lines were lacking CP29 or CP26, but neither was NPQ deficient, 

showing only a 30% and 10% reduction, respectively. The CP29-defficient mutant has 

found to have an unstable macro-organisation, no PSII-LHCII supercomplexes being 

found, and there is a slight decrease in stability of the supercomplexes in the CP26-

defficient mutant (Yakushevska et al., 2003). An antisense Lhcb2 line was also 

constructed (Andersson et al., 2003) resulting in plants lacking both the Lhcb1 and 

Lhcb2 gene products (the major constituents of the trimeric LHCII). This mutant again 

shows only a 30% qE reduction, but, as discussed above (see section 1.5.4.1.3) 

replacement of Lhcb1 and Lhcb2 proteins with Lhcb5 preserved the macro-organisation 

of the PSII (Ruban et al., 2003). The most marked change in NPQ occurs in the 

antisense and knock-out CP24 (Lhcb6) plants, which show a 60% reduction of qE 

(Kovacs et al., 2006). Here, the PSII macro-organisation is drastically altered with the 

elimination of the C2S2M2 supercomplexes, due to the absence of CP24 and the M-

trimer. These results together confirm that no single Lhcb protein is the unique site of 

qE and suggest the importance of the macro-structure of the LHCII antenna system for 

maximal NPQ in vivo (Horton et al., 2005; Kovacs et al., 2006). 
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 Spectroscopic analysis of quenched LHCII gives rise to suggestions about the 

mechanism of quenching. Wentworth et al. (2001) emphasise the importance of the 

terminal emitter domain (consisting in Chl a611, Chl a612, Chl b608 and lutein 1), and 

suggest that a conformational change could create a quenching interaction between the 

chlorophylls and lutein. The crystal structure model of LHCII of Liu et al. (2004) 

allowed the first detailed insights into how quenching may occur. Spectroscopic 

analysis performed on these crystals by Pascal et al. (2005) showed that they are in a 

highly quenching state. The lifetimes measured with the fluorescence lifetime imaging 

technique (FLIM) were found to be 0.89 ns for crystals compared to 4.2 ns for the 

isolated trimers. The fluorescence emission spectra revealed a characteristic 680 nm 

band along with a maximum situated at around 700 nm, identical to previous results on 

quenched aggregated LHCII. Resonance Raman analysis showed changes in the 

pigment interactions when comparing crystal and trimers; the neoxanthin molecule in 

each monomer in the crystal is twisted relative to its state in the trimer. Also changes in 

the chlorophyll b region were found, indicating an extra hydrogen bond between a 

formyl group of a chlorophyll b with a water molecule in the crystal (Pascal et al., 

2005). These observations provided conclusive proof that a conformational change 

occurs in LHCII upon transition to the quenched state. According to the orientation of 

the pigments in the crystal structure, several possible quenching sites were proposed 

(Pascal et al., 2005): 

- terminal emitter domain  consisting in chlorophylls: Chl a611, Chl a612, Chl 

b608 and  lutein 1 (lut 620); Figure 16a 

- neoxanthin domain: neoxanthin (neo), lutein 2 (lut 621), Chl b606 and Chl b607; 

Figure 16b 

- xanthophyll cycle binding domain (V1):violaxanthin (Xanc), Chl a611 and Chl 

a601; Figure 16c 
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Figure 16. Possible quenching sites in the LHCII crystal structure. The Lutein 1 terminal emitter domain 
(a), the Lutein 2-neoxanthin-chlb domain (b) and the XC binding site (c) (Pascal et al., 2005). 
 

In a subsequent examination of the crystal structure, the different configuration of lutein 

1 and lutein 2 is highlighted; it was suggested that rotation the lutein 1 molecule relative 

to the Chl a611 and Chl a612 molecules could be the conformational change creating 

the quencher (Yan et al., 2007).  

 

1.9 Project outline 

 

The overall aim of the work presented in this thesis is to investigate using different 

spectroscopic and biochemical approaches the dynamics of LHCII and the energy 

transfer from xanthophylls to chlorophylls in vitro and in vivo. 

The work is divided in 4 chapters as follows: 
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Chapter 3 

- Estimation of the energy transfer from xanthophylls to chlorophyll a in LHCII 

using 2nd derivative and curve fitting analysis; 

- Exploration of the origin and the role of lutein 2 band in absorption and 

fluorescence excitation spectra; 

- Analysis of the thylakoid membrane before and after the conversion of the 

violaxanthin to zeaxanthin by absorption and fluorescence excitation 

spectroscopy; 

- Investigation of the isolated complexes and thylakoid membranes from antisense 

Lhcb2 Arabidopsis plants.  

 

Chapter 4 

- Development and spectral properties of a solid-state gel system where 

quenching can be induced without protein aggregation. 

 

Chapter 5 

- Resonance Raman studies of the LHCII complexes in different quenching states 

and of chloroplasts and leaves after qE induction. 

 

Chapter 6 

- Transient absorption spectroscopy on LHCII in different quenching states. 
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2.1 General laboratory chemicals 

 

Chemicals and reagent used for carrying out the experiments were obtained from Sigma 

unless stated otherwise. 

 

2.2 Plant material 

 

Spinach leaves were purchased fresh from a local supermarket and stored at 4ºC in the 

dark until required for use. Arabidopsis thaliana, cv Columbia, npq4-1 mutant, Lhcb2 

antisense aslhcb2-12 line and PsbS overexpressing (L17) lines were grown for 10-12 

weeks in Conviron controlled environment growth rooms with an 8 hour photoperiod at 

a light intensity of 200 µmol quanta m-2 s-1 and a day/night temperature of 22/18 0C in a 

mixture M3 soil and perlite with a ratio not higher than 2:1. 

 

2.3 Sample preparation 

 

2.3.1 Preparation of intact chloroplasts 

Intact chloroplasts were prepared by homogenizing fresh Arabidopsis leaf tissue in ice-

cold grinding medium (450 mM sorbitol, 20mM Tricine, 10mM EDTA, 10mM 

NaHCO3, and 0.1% BSA at pH 8.4) with a Polytron (Kinematica GmbH), applying 3-4 

short bursts at full power. The homogenate was then filtered on ice through four layers 

of muslin followed by two layers of muslin and one layer of cotton wool. The filtrate 

was centrifuged for 30 s at 4000 g (MSE Mistral, 6L). The chloroplast-enriched pellet 

was washed and resuspended in the resuspending medium (330 mM sorbitol, 20 mM 

Tricine, 5 mM MgCl2 and 2.5 mM EDTA, pH 7.6). The resuspended sample was 

applied to a 2 cm Percoll cushion mixed with double osmotic strength resuspension 

medium, and centrifuged for 10 minutes at 3500 x g. The pellet was then resuspended 

with a small volume of resuspension medium and kept on ice until used. 

  

2.3.2 Preparation of thylakoid membranes 

Stacked thylakoids were prepared by homogenizing fresh dark adapted Arabidopsis 

leaves in ice-cold grinding medium (330 mM sorbitol, 5 mM MgCl2, 10 mM Na4P2O7, 

pH 6.5, 2 mM D-iso-ascorbate) with a polytron. The homogenate was then filtered 

through four layers of muslin followed by two layers of muslin and one layer of cotton 
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wool. The filtrate was centrifuged for 10 min at 4000 x g, and the chloroplast-enriched 

pellet was resuspended in wash buffer (330 mM sorbitol, 10 mM MES, pH 6.5), 

followed by a further 10 minutes centrifugation at 4000 x g. The pellet was then 

resuspended in 5 mM MgCl2 for 30 s to lyse any remaining intact chloroplasts, followed 

by an equal volume of medium containing 660 mM sorbitol, 20 mM KCl, 2 mM EDTA, 

and 100 mM HEPES, pH 6.5 medium. After further centrifugation, thylakoids were 

resuspended in 20 mM Bis-Tris (pH 6.5), 5 mM MgCl2. Unstacked thylakoids were 

preparing using the same protocol and but removing MgCl2 from the media. 

 

2.3.3 PSII membrane preparation (BBYs) 

Preparation of PSII particles preparations was carried out using the method of Berthold 

et al. (1981). Approximately 80g of fresh leaves (spinach) with the midrib removed 

were homogenised in 300 ml of slushy grinding medium (330 mM sorbitol, 10 mM 

Na4P 2O7x10H2O, 5 mM MgCl2, 2 mM sodium D-iso-ascorbate, pH 6.5) with 2-3 short 

bursts from a polytron. The homogenate was initially filtered through 2 layers of muslin 

followed by 8 layers of muslin surrounding a central layer of highly absorbent cotton 

wool. The sample was then centrifuged at 4000 x g for 5 minutes, the supernatant 

discarded and the pellet resuspended in washing medium (330 mM sorbitol, 10 mM 

MES, pH 6.5) before centrifugation for 7.5 minutes at 4000 g. The resulting pellet was 

resuspended in 30 ml of resuspension medium (330 mM sorbitol, 5 mM MgCl2, 40 mM 

MES, pH 6.5) and osmotically shocked by the addition of 50 ml of breaking medium (5 

mM MgCl2, pH 7.6). The osmotic potential was restored after 30 seconds by the 

addition of 50 ml of a double osmotic strength medium (660 M sorbitol, 5 mM MgCl2, 

40 mM MES, pH 7.6). The thylakoids were then centrifuged for 10 minutes at 4000 x g 

and the pellet resuspended in stacking medium (5 mM MgCl2, 15 mM NaCl, 2 mM 

MES, pH 6.3). A 0.5 ml aliquot was used for chlorophyll determination (see section 

2.5), and the rest of the sample was resuspended to a final chlorophyll concentration of 

3 mg/ml in stacking medium. The sample was left on ice in the dark without stirring for 

a minimum period of 45 minutes to promote membrane stacking. Following this, the 

sample was then diluted with half its volume of 10 % (v/v) Triton X-100 in stacking 

medium to give a final detergent concentration of 3.33 % (v/v). The sample was then 

incubated on ice for 30 minutes with occasional gentle inversions to help membrane 

digestion. After this step, the digestion was stopped by dilution of the detergent with the 

addition of at least 6 ml of stacking medium.  The sample was then centrifuged -*for 30 
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minutes at 30000 x g (4 °C) in a Beckman J2 centrifuge using a J2-21 rotor. The pellet 

was resuspended in particle wash medium (2 mM EDTA, pH 7.5) and again centrifuged 

as in the previous step (30000 x g, 30 minutes at 4 °C). The supernatant was discarded 

and the final pellet resuspended in deionised water. Samples were used as required or 

frozen in liquid nitrogen and stored at –80 °C.   

 

2.3.4 LHCII isolation 

 

Non denaturing IEF (iso elecrtic focusing) 

IEF was carried out using a Multiphor II Electrophoresis system (Pharmacia) following 

the method of Bassi et al. (1991) as modified by Ruban et al. (1994b). A slurry of 

volume 100 ml containing 4% Ultradex (Amersham Biosciences), 2% ampholine carrier 

ampholites (pH 3.5–5.0), 1% glycine and 0.06% n-dodecyl β-D-maltoside was prepared. 

Electrode strips were soaked in 2 % (w/v) ampholine solution (pH range 3.5-5.0), 

excess solution was removed with tissue and the strips placed at each end of the 24.5 by 

11.0-cm gel tray. The slurry was poured into the gel tray and, after carefully removing 

air bubbles, the tray was placed on a balance, 70 cm below a small fan for 

approximately 2 hours in order to evaporate 30g of water. The anode and cathode strips 

were prepared by soaking the strip in either anode solution (5.6 % (v/v) H3PO4) or 

cathode solution (1 M NaOH). The excess solution was removed with a tissue and the 

strips were carefully placed at either end of the gel on top of the electrod strips. A 0.1 % 

(v/v) solution of Triton X-100 was applied to the surface of the Multiphor II cooling 

plate to improve heat transfer from the gel tray. The gel tray was then placed on the 

cooling plate and the electrodes connected to the electrode strips. Pre-focusing of the gel 

was carried out at ~8 W (13 mA, 600 V) for 1-2 hours. Freshly prepared PSII particles, 

with a total chlorophyll concentration of 2.5mg/ml, were resuspended in 1 ml of 

deionised water. 0.5 ml of 3% n-dodecyl β-D-maltoside was added on ice and the 

sample incubatied with occasional stirring for 30 minutes. The sample was centrifuged 

at 35000 x g, and the supernatant was applied 2 cm from the cathode of the pre-cooled 

and pre-focused gel using a sample applicator (10 by 2 cm). After sample application 

the gel was allowed to equilibrate for 3 minutes before the start of focusing. The 

focusing procedure was carried out for 18 h (overnight) at a constant power of 8W at 4 

°C. The initial and final current values were normally ~15 and 5 mA, respectively. Each 
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green band corresponding to the different light harvesting complexes was carefully 

collected using a spatula. The samples were eluted using a minimum volume of a 

solution containing 100 mM HEPES (pH 7.6) and 0.01% n-dodecyl β-D-maltoside 

using a plastic Pasteur pipette. The samples were then loaded onto a desalting column to 

remove the ampholine, using a desalting buffer (25 mM HEPES and 0.01-0.03 % (w/v) 

n-dodecyl β-D-maltoside as required). 

 Sucrose gradient separation 

Further purification (removing monomers and free pigments) of LHCII was carried out 

by sucrose density gradient centrifugation. Seven step exponential sucrose gradients 

from 0.15 to 1.0 M sucrose were used.. Two 60 ml sucrose stock solutions of 0.1 M and 

1.5 M in 20 mM HEPES buffer containing 20 mM n-dodecyl β-D-maltoside (pH 8.0) 

were prepared for a total of six tubes. 1.5 ml of 0.1 M sucrose was pipetted into each of 

the six tubes (9 ml total).  Subsequently, 9 ml of the 1.5 M stock solution was added to 

the 0.1 M stock and mixed. Again, a total of 9 ml of the latter stock are added to the 

tubes. This process was repeated six times to form the gradient. 200 to 500 µl of sample 

are loaded onto each tube and centrifuged at 200 000 x g in a SW41 rotor for 18 h at 

4°C. 

 

For monomer preparation, the trimeric LHCII was treated with phospholipase A2 from 

bee venom for 48 h at room temperature in the presence of 20 mM CaCl2 in a sterilized 

eppendorf tube at a chlorophyll concentration of 500 µmol/ml. Immediately after the 

treatment, the sample was applied onto a seven-step exponential sucrose gradient as 

described above. After centrifugation, the monomer band was located at approximately 

0.25 M sucrose with a yield of 60%. The remaining LHCII trimers were located at 

around 0.45 M sucrose. The monomeric LHCII were loaded onto a desalting column as 

for the trimers onto a desalting column, and then either immediately frozen in liquid N2 

or used for analysis. 

Quenched LHCII were obtained by incubation with ~50mg of SM-2 Absorbent 

(Bio-Rad) in a 1 cm (optical path length) cuvette, allowing fine control over the extent 

of quenching by simultaneous fluorescence measurements with a Walz PAM1000 

fluorimeter. Samples were taken from the cuvette at different levels of quenching. 
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2.4 De-epoxidation procedure 

 

De-epoxidation experiments were carried out using a modification of the method 

described by Rees et al. (1992). Spinach leaves were floated on water at ~20 °C with 

their cut petioles under water and light treated with 200µE m-2 s-1 for ~2 hours under an 

atmosphere of 98% N2, 2% O2. A ~10 min equilibration period was allowed before and 

after treatment. The same procedure was applied to Arabidopsis col-0 plants. 8-9 weeks 

old plants were taken from their pots, the soil gently removed and the plants immersed 

immediately in water. Plants were light treated for ~ 2 hours as for spinach leaves.  

 

2.5 Determination of the chlorophyll concentration 

 

The chlorophyll concentration of the samples was measured using the method of Porra 

et al. (1989).  Pigments were extracted with 80 % (v/v) acetone and centrifuged at 3000 

g for 3 minutes to remove debris. Sample absorption was measured at 663 nm (A663), 

645 nm (A645) and 470 nm (A470) using a Beckman DU650 spectrophotometer. 

Chlorophyll concentration and chlorophyll a/b ratio were estimated using the following 

equations:  

 

[ ] ( ) ( )645663 A 2.69 - A 12.7   Chl =a     

[ ] ( ) ( )663645 A 4.68 - A 22.9   Chl =b     

[ ] ( ) ( )663645 A 8.02 - A 20.2  Chl Total =    

[ ]
[ ]b

a
a/b

 Chl

 Chl
  Ratio  Chl =      

 

 

 

 

2.6 Determination of pigment composition (HPLC) 

 

The pigment composition of leaves and thylakoid membranes was determined using 

high performance liquid chromatography (HPLC). All solvents used were HPLC grade. 

For pigment extraction thylakoid membranes were mixed with 0.5 ml 100% acetone. 

The debris was pelleted by centrifugation for 5 minutes at 3000 g in a microfuge. 
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Samples were loaded into glass vials, which were sealed with caps containing PTFE 

(polytetrafluoroethylene) septa. A Dionex HPLC instrument in combination with a 

LiChroCART RP-18 column (Merck, Darmstadt, Germany) was used. Two solvents 

were used: Solvent A (87% Acetonitrile, 10% Methanol, 3 mM Tris pH 8.0) and 

Solvent B (80% Methanol, 20% Hexane) at 1 ml/min flow rate with the following run 

profile: 

    0 – 18 minutes: 100% Solvent A 

    18 – 25 minutes: 0% to 100% Solvent B 

    25 – 36 minutes: 100% Solvent B 

    36 – 38 minutes: 100% to 0% Solvent B 

    38 – 46 minutes: 100% Solvent A 

Spectra were recording between 280 and 750 nm using a Dionex PDA-100 photodiode 

array detector. Data analysis was carried out using Chromeleon Version 6.50 software 

(Dionex). Each individual peak was integrated and the area recorded at the optimum 

wavelength. Conversion factors allowing the calculation of pigment concentration from 

the integrated peak area were determined by calibration with pure pigments.  

 

2.7 Spectroscopy 

 

Low temperature absorption and fluorescence measurements were carried out using an 

OptistatDNLN-2 cooled bath cryostat (Oxford Instruments). The samples were diluted in 

a medium containing 80% glycerol (w/v), 20 mM HEPES buffer at pH 7.8, and 0.03% 

n-dodecyl β-D-maltoside for isolated complexes. The chlorophyll concentration for 

absorption measurements was 1-4 µmol Chl/ml, and for the fluorescence emission and 

fluorescence excitation measurements was 1 µmol Chl/ml. Measurements were 

performed using polymethyl methacrylate 1 cm (optical path length) cuvettes. The 

temperature of the sample was monitored with a thermocouple sensor (Comark) 

immersed directly into the sample. 

 

2.7.1 Absorption  

Absorption measurements were carried out using a Cary 500 UV-visible NIR 

spectrophotometer (Varian) modified to accept the cryostat when required. The spectra 

were recorded from 350-700 nm with a 2 nm slit width. The spectral resolution was 1 
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nm with a signal-to-noise ratio of 10000. The single spectral beam mode was employed 

to focus the measuring beam on the sample only, and to obtain the maximum light 

output. The spectra were corrected for the cuvette and buffer medium using Gramms/32 

software (Galactic Industries Corporation). 

 

2.7.2 Fluorescence  

 

Low temperature 

Fluorescence emission and excitation spectra were recorded using a SPEX FluoroLog 

FL3-22 spectrofluorimeter (SPEX Industries Inc.). The excitation light was provided 

from a Xenon light source. For fluorescence emission measurements the excitation was 

set at 435 nm with a 5 nm spectral bandwidth. The fluorescence spectral resolution was 

1 nm. For fluorescence excitation measurements fluorescence was detected at 685 nm 

with a 5 nm spectral bandwidth. The excitation spectral resolution was 1 nm. The 

spectra were automatically corrected for the spectral distribution of the exciting light 

during data acquisition. For the LHCII samples immobilised in gel or gelatine, low 

temperature fluorescence emission spectra were measured using a holder consisting of 

two flat, round pieces of glass (14 mm diameter) sealed with a metal ring. The samples 

were immersed in liquid nitrogen in a purpose-build cryostat during data acquisition. 

Broad band excitation of 50 µE m2 s-1 centred on 435 nm was provided by a Wotan 

tungsten halogen 150 W lamp defined by Corning filters (4-46 and 5-57) with heat-

absorbing glass. Fluorescence was detected by a 1024-channel silicon photodiode 

detector (Model 1455), via a Jarrell-Ash Monospec 27 monochromator, and analysed by 

a PARC 1461 multichannel analyser (EG&G Instru. Corp., Princeton Appl. Res., 

Princeton, USA) using EG&G OMA-Vision-PDA software. This gave a resolution of 

0.3 nm and a signal to noise ratio 10000:1 (Ruban et al., 1991). Data analysis was 

carried out using Gramms/32 software (Galactic Industries Corporation). 

  

Room temperature 

Room temperature chlorophyll fluorescence quenching analysis of detached leaves and 

isolated chloroplasts was carried out using a Walz PAM 101 fluorimeter (see section 5.2 

for details). ). For the NPQ induction, chloroplasts were treated with 1500 µmol m-2 s-1 

light for approximately 5 minutes. 100 µM methylviologen was added as electron 
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acceptor for the chloroplast measurements. The fluorescence intensity of the LHCII-gel 

system was monitored with a Walz PAM 1000 fluorimeter. 

Fluorescence images of gels were acquired with a FluorCam 690M from PSI (Photon 

System Instruments) after 1min exposure time. The scale of fluorescence intensity was 

colour-coded from the blue (low fluorescence) to the red (high fluorescence). 

 

2.7.3 CD  

Circular dichroism spectra were recorded between 400 and 750 nm at room temperature 

in a J810 (Jasco) dichrograph using a band pass of 3 nm and a resolution of 1 nm. The 

chlorophyll content was adjusted to 20 µg/ml and spectra were recorded in a glass 

cuvette with a 1 cm optical path length. For gel samples a home made sample holder 

was used. Temperature was maintained by an attached PFD425S Peltier system. 

 

2.7.4 Resonance Raman  

Low temperature resonance Raman spectra were obtained in a liquid nitrogen flow 

cryostat (Air liquid, Paris, France) using a Jobin-Yvon U1000 Raman 

spectrophotometer equipped with a liquid nitrogen-cooled charge-coupled device 

(CCD) detector (Spectrum One, Jobin-Yvon, Paris, France) as described by Ruban et al. 

(2001). Intact chloroplasts and isolated LHCII samples were frozen on glass plates and 

a grazing incidence was used in order to prevent re-absorption of the Raman photons by 

the sample (Robert & Lutz 1986). For leaf measurements a home made sample holder 

was used. After the induction of NPQ the samples were immediately frozen in liquid 

nitrogen to conserve the quenching state. Excitation at 488.0 nm was provided by 

Coherent Argon (Innova 100) laser. Laser power was maintained at about 20mW, with 

less than 2mW penetrating the sample (Robert & Lutz 1986). Typical spectral resolution 

at 1000 cm-1 was 8 cm-1. 

 

2.7.5 Transient absorption 

Time-resolved transient absorption spectroscopy was carried out at the Vrije 

Universiteit (VU) Amsterdam, with the assistance of Rudi Berera. LHCII isolated from 

dark adapted spinach leaves and in different quenched oligomeric states (see section 

2.3.4 for preparation) were subject to transient absorption measurements (see Chapter 6 

for details). 
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3.1 Introduction 

Photosynthetic light-harvesting antennae of green plants bind two types of pigments: 

chlorophylls and carotenoids. Xanthophylls are a specific class of oxygenated 

carotenoids that are present in the photosynthetic apparatus of higher plants, associated 

with the light-harvesting complexes of the chloroplasts membranes (Yamamoto & 

Bassi, 1996). Five types of xanthophylls are present in the light-harvesting antenna: 

lutein, neoxanthin, violaxanthin, zeaxanthin and antheraxanthin (the latter three are 

interconverted in the so-called xanthophyll cycle).  

The crystal structure of the major light-harvesting complex of PSII from spinach 

has shown that each monomer of the trimeric complex binds 14 chlorophylls (8 

chlorophyll a and 6 chlorophyll b) and 4 xanthophylls: 1 neoxanthin, 2 luteins and 1 

violaxanthin (Liu et al., 2004). When isolated in detergent micelles the complex is 

present in its trimeric form, the pigment composition of this preparation being similar to 

that of the crystal, except the content of violaxanthin, which varies between 0.1 and 1 

per monomer depending of the isolation procedure (Sandona et al., 1998; Ruban et al., 

1999), showing that this xanthophyll is only loosely bound to the complex. 

Energy transfer in LHCII has been widely studied by transient absorption 

spectroscopy (Gradinaru et al., 2000; Croce at al., 2001), time resolved fluorescence 

spectroscopy (Ide et al., 1987; Du et al., 1994), photon echo spectroscopy (Salverda et 

al., 2003) and other spectroscopic techniques. Energy transfer from carotenoids and 

chlorophyll b to chlorophyll a is very efficient (van Amerongen & van Grondelle, 

2001). Using the crystal structure (Liu et al., 2004), van Grondelle & Novoderezhkin 

(2006) recently analysed numerous spectroscopic data by modified Redfield theory. 

They propose a precise assignment of the energy transfer pathways, leading to a 

visualization of the excitation dynamics in this complex. However, the model based on 

the modified Redfield relaxation theory applied to the limited set of data is not unique. 

In the case of LHCII the fit of the linear spectra can produce more than 30 models, 

which can reproduce quantitatively the absorption and LD spectra, but not the time-

scales and the kinetics of the transient absorption measurements. Only after including in 

the model the 650 and 662 nm excitation kinetics, the model can be used to specify the 

site energies (van Grondelle & Novoderezhkin, 2006). 

The aim of the work described in this chapter was to investigate energy transfer 

to chlorophylls from the different xanthophylls in the thylakoid membrane. This was 



Chapter 3 
Spectral characteristics and energy transfer properties of LHCII-bound xanthophylls 

 

 53 

carried out firstly by investigation of purified LHCII trimers in which only neoxanthin 

and lutein were bound, and secondly by study of intact thylakoid membranes in which 

the extent of de-epoxidation of xanthophyll cycle carotenoids was different. The 

experimental approach was to analyse absorption and fluorescence excitation spectra 

recorded at 77K, applying second derivative and curve fitting analysis. Comparing these 

spectra allows an estimation of the efficiency of energy transfer from xanthophylls to 

chlorophyll a. The experiments were also designed to provide more information about 

the 510 nm absorption band, which arises from lutein 2 (Ruban et al., 2000). Finally, 

thylakoid membranes and isolated complexes from the antisense asLhcb2 plants, which 

lack the main light-harvesting complexes, were investigated using the same 

spectroscopic techniques. 

 

3.2 Results 

3.2.1 Analysis of the xanthophylls to chlorophyll a energy transfer in purified LHCII 

trimers 

LHCII was prepared from unstacked thylakoids isolated from Arabidopsis thaliana wild 

type. Detergent (n-dodecyl β-D-maltoside) solubilised thylakoids were fractioned by 

IEF (see 2.3.4 for details) and the dark green band LHCII was collected (Figure 1a). 

This preparation contains mostly trimers but is contaminated with monomers and some 

traces of minor complexes (Ruban et al., 1999). Furthermore, the occupancy of the V1 

site by violaxanthin is variable and on average about 0.2 (Ruban et al., 1999). For the 

analysis of the absorption spectrum it is essential to have pure LHCII trimers with a 

defined and uniform xanthophyll composition. Therefore, to improve purification and to 

remove completely violaxanthin, monomers and minor complexes (Ruban et al., 1999), 

the IEF preparation was loaded on a sucrose gradient (Figure 1b) and the purified 

LHCII trimers harvested. This preparation was then investigated by low temperature 

measurements: fluorescence (emission and excitation) and absorption. 
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Figure 1. Isolation and purification of LHCII. (a) Iso electric focusing gel of isolated solubilised 
thylakoid showing the position of the chlorophyll containing complexes(b). Sucrose gradient 
centrifugation profile of the LHCII band from IEF showing the free pigment, monomer and trimer bands. 

 

Figure 2 shows the absorption spectra of LHCII recorded at room temperature (a) and at 

77K (b) along with their second derivatives. For clarity the 2nd derivatives are presented 

inverted. 

 

Figure 2. Absorption spectra of  purified LHCII trimers. Room temperature (a) and 77K (b) absorption 
spectra of LHCII trimers (black) and the inverted 2nd derivatives (red). Samples were prepared as shown 
in Figure 1. 
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At room temperature the spectrum displays a number of bands and is rather complex in 

the Soret region because the absorption bands from both chlorophylls and xanthophylls 

are overlapping. The room temperature spectrum shows in the Qy region the typical 

chlorophyll a absorption bands at around 669 and 672 nm, and the chlorophyll b 

absorption at 641 nm (Figure 2a). In the Soret region the spectrum exhibits bands 

arising from both chlorophylls and carotenoids molecules: a 485 nm carotenoid band, a 

chlorophyll b band at 474 nm and chlorophyll a bands at around 437 nm and 413 nm. 

The spectral resolution was improved by decreasing the temperature to 77K, when more 

fine structure appears (Figure 2b). Also, more information about the position of the 

bands in the spectrum was provided by the calculation of the 2nd derivative. At low 

temperature, new bands can be seen: 510, 495 and 486 nm carotenoid bands, which 

replace the 485 nm band seen in the room temperature spectrum, along with the bands 

arising at 457, 465 (chlorophyll b), and 433 nm (chlorophyll a). In the red region of the 

spectrum, additional bands are present from chlorophyll b at around 650 and from 

chlorophyll a at 662 nm. 

 

Figure 3 shows the absorption spectrum of a carotenoid (β-carotene) in tetrahydrofuran 

(THF) and the inverted second derivative. Second derivative spectrum clearly shows 

that the carotenoid spectrum contains three electronic transition, namely 0-0, 0-1 and 0-

2 transitions. The electronic transition of the xanthophylls present in the trimeric and 

monomeric LHCII were identified by Ruban et al. (2000) using a combination of ultra-

low-temperature absorption, circular dichroism and resonance Raman spectroscopies. It 

was found that 0-0, 0-1 and 0-2 electronic transition for neoxanthin and lutein in 

monomers are situated at 486, 457, 403 nm and 495, 466, 437 nm, respectively. Using 

selective excitation lines for resonance Raman spectra the band at 510 nm in the low 

temperature absorption spectrum of trimers has been shown to arise from one of the 

lutein molecules (lutein 2), which is distorted in this complex, according to the analysis 

of the resonance Raman spectra in the ν4 region (Ruban et al., 2001). Note that this 

distortion is accompanied by a red shift in its 0-0 transition, from 495 to 510 nm. The 0-

1 and 0-2 transition for lut2 were found to be situated at around 476 nm (0-1) and 445 

nm (0-2). According to these assignments for all the xanthophylls present in LHCII 

trimer, the 0-0 absorption transition does not significantly overlap the absorption 

transition of any chlorophyll. Therefore, this band provides information about the 
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absorption for each individual carotenoid. The following data analysis in this section 

only focuses on the investigation of the xanthophyll 0-0 transition. 

 

Figure 3. Absorption spectrum of β-carotene in tetrahydrofuran (THF) (black trace) and the inverted 
second derivative showing the 0-0, 0-1 and 0-2 electronic transitions (red).    

 
Figure 4 shows the comparison between the 2nd derivative of the 77K absorption 

spectrum in the Soret region for the LHCII trimers and a preparation of monomerised 

LHCII (see 2.3.4 for details). It can be seen that there is an additional band in the 

trimeric preparation, situated at 510 nm, which was assigned to an absorption transition 

(0-0) of one of the two luteins (lutein 2) present in the preparation (see also above). This 

510 nm band has small amplitude in the 2nd derivative compared to the other lutein 

(lut1) band at 495 nm and for this reason it was at first considered to be a minor band, 

possibly from contaminating violaxanthin, (Peterman et al., 1997). Since the preparation 

used here contains no violaxanthin, this can not be the case. Another possible 

explanation for the difference in the amplitudes might be a difference in their extinction 

coefficients. Alternatively, the 0-0 absorption transition of the lut2 may be broader, 

much broader than either lut1 or the neoxanthin band (486 nm), as suggested by Ruban 

et al. (2001). This latter possibility was investingated further. 
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Figure 4. Inverted 2nd derivatives calculated for 77K absorption spectra for LHCII trimers (red) and 
monomers (black). Spectra were normalised to the chlorophyll a band at 440 nm. The bands are labelled 
for the 0-0 and 0-1 transitions according to Ruban et al 2000. 
 
It can be proven that the amplitude of a 2nd derivative band is reciprocal to its width. 

This proof was achieved by calculation of the 2nd derivative of a Gaussian contour. 

Firstly, the first derivative of the Gaussian function was calculated and then the 

derivative calculation was applied to the result. 
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Second derivative: 
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In the above equation a, b, c are constants, a representing the amplitude of the Gaussian 

peak, b the position of the centre of the peak and c is related to the width (FWHM) by 

the equation: ccFWHM ⋅≈⋅= 35.22ln22 . Hence, in the 2nd derivative calculation 

the amplitude (a) is inversely proportional to the width and it can be concluded that 

when the width is larger the amplitude will be smaller. This conclusion was confirmed 

by calculating the 2nd derivative for two Gaussian bands (one band having FWHM twice 

larger than the other one, Figure 5) and comparing their amplitudes. The amplitude of 



Chapter 3 
Spectral characteristics and energy transfer properties of LHCII-bound xanthophylls 

 

 59 

the 2nd derivative (calculated using Gramms/32 software) was found to be 

approximately 3 times smaller for the broader band (FWHM=2x). 

 

Figure 5. Gaussian bands (solid) and inverted 2nd derivative (short dash) with x2 difference in FWHM 
(red and black). The Gaussians were normalised to their maxima. Both 2nd derivatives were multiplied by 
a factor of (-75). 

 

Applying this rationale to the 2nd derivative of the LHCII absorption spectrum, it would 

be predicted that the estimated width of the 510 nm band would be 2-3 times larger for 

lutein 2. An estimation of the band widths from the 2nd derivative of the absorption 

spectrum of the trimeric preparation presented in Figure 4 (red trace) showed that lutein 

2 band has a width of 18 nm, lutein 1 10 nm and neoxanthin 11 nm, which is consistent 

with the results presented above. 

 

In order to investigate this further, a curve fitting procedure was used. Using 

Gramms/32 software (Galactic Industries Corporation) absorption (1-T) spectra 

recorded for LHCII trimers at 77K were fitted with a mixture Gaussian and Lorentzian 

contours. The numbers of the peaks, each corresponding to the absorption transition of a 

population of the pigments present in the samples, and their width for the fitting 

analysis were taken from the 2nd derivative spectrum. Twelve peaks with an average 

Wavelength (nm)

420 440 460 480

In
te

ns
ity

, r
el

.

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

x (- 75) 

FWHM=x 

FWHM=2x 



Chapter 3 
Spectral characteristics and energy transfer properties of LHCII-bound xanthophylls 

 

 60 

width of 10 nm were used for the first iteration of the fitting procedure. After several 

iterations another 2 peaks were added in order to obtain the best fit. During the fitting, 

the positions of the peaks were checked not to be in disagreement with either their 

position in the 2nd derivative or the results reported in the literature. The results of the 

fitting are presented in Figure 6, where it can be seen that there is a good fit to the 

recorded spectrum. The xanthophyll peaks are depicted in blue, dark-green and dark-

yellow for neoxanthin, lut1 and lut2, respectively. Because the peaks have different 

widths a comparison of the amplitude is not appropriate, instead the area under each 

band was calculated. Calculation of the area revealed a ratio 1:1.35:0.85. From these 

results it can be concluded that the lut2 band is not minor, but it has an absorption area 

comparable to the other xanthophylls.  

 

Figure 6. Curve fitting applied on the LHCII trimer 1-T spectrum. The 0-0 and 0-1 xanthophyll 
absorption transitions are depicted in blue for neoxanthin, dark-green for lut1 and dark-yellow for lut2. 
The 0-2 transitions could not be resolved by the fitting probably being part of the chlorophyll peaks.   
 

The quantum yield of energy transfer can be estimated by comparing the absorption (1-

T) with the fluorescence excitation spectrum (Gruszedski et al., 1999). The comparison 

was made with the 1-T (where T is transmittance) not with the absorption since the 
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absorbance is a logarithmic function and it can not be compared with the excitation 

which is a linear function. Figure 7 shows the 2nd derivatives of these spectra 

normalized to the chlorophyll a band (440 nm), making the assumption that the 

efficiency of the energy transfer between chlorophyll a molecules is 100%. The 

coefficient of energy transfer (k) for a given pigment can be calculated as the ratio 

between the amplitude of band estimated from the 2nd derivative excitation spectrum 

and the amplitude of the same band in the 2nd derivative of 1-T spectrum, knowing that 

the excitation is a convolution of 1-T with the energy transfer coefficients: 

( ) ( )( ) i

n

i

in kTE ∑
=

−=
1

1 λλ  

 If the bands in the spectrum have different widths, then the ratio between the areas of 

the bands is calculated.  

 
Figure 7. Inverted 2nd derivatives for 77 K fluorescence excitation (pink) and 1-T (blue) spectra of an 
LHCII trimer (trimers2 in Table1). For the estimation of the coefficient of energy transfer the traces were 
normalised to the 440 nm chlorophyll a band. Spectra were baseline (gray line) corrected. Dashed lines 
represent the limits taken for the aproximation of the areas: red for chlorophyll b band, green for 
neoxanthin orange for lutein 1 and black for lutein 2. The areas were estimated using (integration 
function) Gramms/32 software (Galactic Industries Corporation). 

 
Table 1 presents the estimation of energy transfer efficiencies determined from 4 

different preparations of LHCII trimers. The results presented were obtained by 
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calculation using only the 0-0 absorption band of the xanthophylls. However, in the case 

of the energy transfer coefficient for chlorophyll b band at 471 nm, there is a 

contribution from the lutein 2 0-1 transition at 476 nm (Ruban et al., 2000). This 

contribution was not taken in account in the calculation. 

 
 

k (%) 
 trimers1 trimers2 trimers3 trimers4 Mean±SEM 

Chlb 
(471 nm) 

99 95 100 88 96 ± 2.23 

Neo 85 98 81  83 85 ± 2.96 
Lut1 93 86 100 92 93 ± 2.72 
Lut2 85 80 89 61 79 ± 5.36 
 

Table 1. Estimation of the coefficients of energy transfer (k) from chlorophyll b and xanthophylls to 
chlorophyll a for different LHCII trimeric (trimers 1-4) preparations, and the mean value and SEM. Data 
were obtained by measurement of the areas of apppropriate bands in the second derivative spectra shown 
in Figure 7. 
 

3.2.2 Analysis of xanthophylls to chlorophylls energy transfer in thylakoids. 

Having established a method to measure the efficiency of energy transfer between 

xanthophylls and chlorophyll a in isolated LHCII, an attempt was made to apply the 

same procedure to more complex systems like thylakoid membranes. Then, it could be 

possible to study the properties of xanthophyll cycle carotenoids, violaxanthin and 

zeaxanthin. For this, unstacked thylakoids membranes (see section 2.3.2 for details) 

from Arabidopsis and spinach were isolated from both the dark-adapted state 

(containing only violaxanthin) and after light treatment designed to induce violaxanthin 

de-epoxidation (see 2.4 for details). HPLC analysis confirmed the complete absence of 

zeaxanthin in the dark-adapted Arabidopsis samples. There were trace amounts of 

antheraxanthin present in both preparations. In dark-adapted spinach samples the levels 

of these two xanthophylls (zeaxanthin and antheraxanthin) were slightly higher, but 

nevertheless the de-epoxidation state (DES) was still of less than 4%. In contrast, in the 

light treated sample a large part of the violaxanthin was converted to zeaxanthin and 

antheraxanthin (Figure 8, Table 2). The DES was approximately 50% and 65% in 

Arabidopsis and spinach respectively.  
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Figure 8. HPLC traces for Arabidopsis thylakoids before (black trace) and after light treatment (red 
trace). The traces show the absorption at 446 nm as a function of elution time 

 

Pigment content (% of total pigments) 
Pigments Lut Anth Zea Neo Vio β-car Chl b Chl a a / b DES 
Arabidops

is dark 
12.36 0.07  0 4.04 2.73 8.13 17.9 54.9 3.09 1.29 

Arabidops

is light 
12.42 0.4 1.11 4.05 1.13 8.17 18 54.7 3.04 49.71 

Spinach 
dark 

9.33 0.37 0.15 4.36 6.74 7.16 17.8 54.08 3.04 3.65 

Spinach 
light 

9.15 0.69 3.67 4.25 1.87 7.62 17.53 55.22 3.15 64.36 

 
Table 2. Pigment analysis of thylakoids before and after light treatment. The data represent the pigment 
content for the samples with the highest DES of each type of plant; 5 replicate samples were analysed for 
Arabidopsis and 3 for spinach. 

 

Immediately after isolation the thylkoids were frozen, ready for analysis by 77K 

absorption and fluorescence excitation measurements, so that epoxidation of zeaxanthin 

back to violaxanthin was prevented. Figure 9 shows the differences between the 

excitation (a) and 1-T (b) spectra in the Soret region before and after de-epoxidation. It 

can be seen that changes occurs in this region in both excitation and 1-T spectra after 

de-epoxidation, but they were more pronounced in the excitation spectra (Figure 9a). 

This difference between excitation and 1-T spectra might indicate a change in the 

efficiency of the energy transfer from xanthophylls to chlorophylls in these two states.   
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Figure 9. 77K fluorescence excitation (a) and 1-T (b) spectra of thylakoids isolated from Arabidopsis 
dark- adapted (red traces) and light-treated (black traces) leaves. No normalisation was performed since 
the same chlorophyll concentration was used for both excitation and absorption measurements. 
 
Figure 10 shows the inverted second derivatives calculated for Arabidopsis and spinach 

thylakoids before and after de-epoxidation. However, accurate estimation of the 

amplitudes/areas of bands needed to determine the efficiency of energy transfer from 

xanthophylls to chlorophyll was found to be impossible. The complexity of the spectra 

is caused by both the abundance of the pigments present in the thylakoid membrane 

(much more than in isolated LHCII), and the contribution of more than one pigment to 

some bands (these bands overlapping with each other). It is noticeable that the 2nd 

derivative is less resolved for light-treated samples, particularly in the blue region 

between 480-520 nm, in both excitation and 1-T. This may arise from the presence of 

the new carotenoids antheraxanthin and zeaxanthin, formed as a result of the de-

epoxidation of violaxanthin. Another interesting feature is the fact that the 2nd derivative 

is less resolved for the spinach thylakoids, possibly because of the higher DES present 

in spinach samples (see Table 2) or due to some unknown differences in the antenna 

composition and stoichiometries and/or different scattering artefacts (Figure 9b). 

Wavelength (nm)

400 420 440 460 480 500 520 540

F
lu

or
es

ce
nc

e,
 r

el
.

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

400 420 440 460 480 500 520 540

A
bs

or
pt

io
n,

 r
el

.

0.0

0.2

0.4

0.6

0.8

1.0
a b 



Chapter 3 
Spectral characteristics and energy transfer properties of LHCII-bound xanthophylls 

 

 65 

 

Figure 10. Inverted 2nd derivatives of the excitation and 1-T spectra for Arabidopsis (a) and spinach (b) 
thylakoids. Top: blue (1-T) and red (fluorescence excitation) for light-treated thylakoids. Bottom: dark-
green (1-T) and dark-pink (fluorescence excitation) for dark-adapted thylakoids.  

 

Since analysis of the 2nd derivatives was not possible, a different approach was 

attempted. The changes in the spectra shown in Figure 9 following the de-epoxidation 

procedure are clearly seen when a difference light-treated minus dark-adapted spectrum 

was calculated. Figure 11a shows the difference associated spectra for fluorescence 

excitation and 1-T for spinach thylakoids. The green trace has the features expected of a 

1-T (absorption) difference spectrum zeaxanthin minus violaxanthin. The spectrum has 

three positive bands situated at around 508, 474 and 445 nm (from zeaxanthin 

formation) and three negative at around 488, 455 and 428 nm (from violaxanthin 

disappearance). This is consistent with the room temperature difference spectra light-

treated minus dark-adapted measured on plants grown under intermittent light (Pfündel, 

1993) and with the 4K difference spectrum, except that the latter revealed more fine 

structure, with the negative bands mentioned above showing a doublet structure (Ruban 

et al., 2001). The most surprising observation was that the 1-T and excitation 

differences do not have the same shape, as would be expected. The excitation difference 

(black trace) shows two pronounced minima at around 440 and 465 nm with a small gap 

around 500 nm. The same features were again reported by Pfündel (1993). These 

minima correspond to maxima in the 1-T difference spectrum. Three positive bands are 

present in the excitation difference at around 424, 455 and 489 nm, along with a weak 

one at around 508 nm and two shoulders at 474 nm and 445 nm. It is important to note 

that the bands corresponding to violaxanthin (489, 455 and 424 nm) are positive and not 
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negative as would be expected when the difference zeaxanthin minus violaxanthin is 

taken. This suggests that after de-epoxidation the remaining violaxanthin population in 

the light-adapted state is more involved in energy transfer than the total violaxanthin 

pool in the dark-adapted sample.  

 

Figure 11. Difference spectra of spinach (a) and Arabidopsis (b) thylakoids. Fluorescence excitation light 
minus dark (black trace), 1-T light minus dark (green trace). Red trace is the difference black minus green 
trace. 
 

These unexpected features were further revealed after subtracting of the green spectrum 

from the black one. The ‘double’ difference depicted in red in Figure 10a shows the 

features which are likely to arise from the non-de-epoxidised violaxanthin population, 

which becomes more active in energy transfer after the illumination. The difference 

between the excitation and 1-T difference can therefore be explained by the changes 

that occur when violaxanthin is converted to zeaxanthin; these may create a 

destabilising effect on the complexes or result in a change in pigment conformation that 

might lead to alteration in the efficiency of energy transfer from the remaining 

violaxanthin to chlorophyll. 

 

Similar results were obtained when the same analysis were applied on the Arabidopsis 

thylakoids after de-epoxidation was induced (see above, Figure 11b). The excitation 

difference was on largely the same as for spinach, only to a lesser extent, because of the 

lower DES in Arabidopsis. Hence, the ‘double’ difference was not so well-resolved, 

with shoulders at around 507, 473 and 424 nm, but it similarly resembled the non-de-

epoxidised violaxanthin pool as in spinach.  
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3.2.3 Investigation of spectral properties and energy transfer in plants lacking LHCII 

Low temperature absorption and fluorescence steady-state spectroscopy were further 

used to analyse lhcb2 antisense Arabidopsis (asLhcb2) plants. These plants were 

constructed by introducing a region of the lhcb2.1 gene into the plant genome in the 

antisense orientation, resulting in the absence not only of the Lhcb2 but also of the 

Lhcb1 polypeptides (Andersson et al., 2003). Western blot analysis of PSII membrane 

preparation from wild-type (wt) and asLhcb2 plants showed that Lhcb1 is completely 

absent and the amount of Lhcb2 is less than 5% of that found in wild type (Ruban et al., 

2003). Remarkably, it has been found that in the absence of the major LHCII 

polypeptides, new types of trimers are formed from greatly increased amounts of Lhcb5, 

this polypeptide being found only in the monomeric minor CP26 complex in wild type 

plants (Ruban et al., 2003). Biochemical analysis has subsequently shown the presence 

of 2 new types of trimers in the antisence plants, one homotrimer of Lhcb5 and one 

heterotrimer of Lhcb5 and Lhcb3 (Ruban et al., 2006). The proportion of these trimers 

was calculated to be 65% homotrimers and 35% heterotrimers, homotrimers being less 

stable than the heterotrimers (Ruban et al., 2006).  

 

An important question is whether the efficiency of energy transfer was different in these 

new types of light-harvesting trimers. To investigate this, thylakoid membranes were 

isolated from asLhcb2 and wt Arabidopsis plants and absorption spectra were recorded 

at 77K (Figure 12a). 

 

Figure 12. 77K absorption spectra (a) and the inverted 2nd derivatives in the red region (b) of the 
thylakoids from wt (black) and asLhcb2 (red) plants. Normalisation was made at 700 nm. 
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In the Soret region, the spectra are very similar, with a slight increase in the carotenoid 

band at around 493 nm in the antisense thylakoids. This might be caused by the 

difference in the carotenoid content, which was found to be higher in the antisense 

plants thylakoids (Ruban et al., 2006). In the red chlorophyll region, the major change 

in the spectra was in the chlorophyll b band at 650 nm. In order to resolve the complex 

structure present in the absorption spectra, 2nd derivatives of the spectra were calculated 

(Figure 12b). The 2nd derivative spectrum of the antisense thylakoids clearly showed the 

reduction in the absorption of the chlorophyll b, along with the decrease in the 

chlorophyll a bands at 661 nm and 670 nm. The drop in absorption in the chlorophyll b 

was caused by the absence of the major LHCII, which was reported to have a well 

defined absorption at around 650 nm caused by the extra chlorophyll b present in the 

complexes (Bassi, 1996). Another feature revealed in the 2nd derivatives was that the 

major band at 675 nm in the wild type was shifted (by about 3 nm) in the antisense 

thylakoids. There was also an increase in the relative absorption of the band at around 

683 nm, which can be explained by the 50% increase in the expression of PSII core 

proteins (Andersson et al., 2003), CP43 having an absorption transition in this region 

(de Weerd et al., 2002). 

 

Figure 13 shows the 77K fluorescence emission spectra of wt (black) and asLhcb2 (red) 

thylakoids and the calculated difference wt minus asLhcb2 (blue). There was a small 

difference in the PSI fluorescence emission, whereas major changes appeared in the 

PSII fluorescence region (670-700 nm) caused mainly by the absence of the major 

LHCII. The reduced amount of the LHCII polypeptides reduces the energy transferred 

to the reaction centre of PSII and consequently the intensity of PSII fluorescence 

emission is decreased.  Hence, the wild type minus asLhcb2 difference spectrum had a 

maximum at 685 nm and shoulders at around 693 and 699 nm, features that have been 

attributed to LHCII (Ruban & Horton, 1992). 
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Figure 13. 77K fluorescence emission spectra of wt (black), asLhcb2 (red) thylakoids and the difference 
wt minus asLhcb2 (blue). The spectra were normalised at 750 nm. 
 

Using a combination of isoelectric focusing (IEF) and chromatographic techniques 

(FPLC) the trimers from asLhcb2 thylakoids were purified (this was kindly carried out 

by Sveta Solovieva). The isolated trimers were then analysed by low temperature 

absorption spectroscopy. Figure 14 presents the red region of the absorption spectrum of 

trimers (a) and monomers (b) isolated from wt and asLhcb2 plants. As seen in the 

absorption spectra of the thylakoids, the 650 nm region where chlorophyll b absorbs is 

less pronounced in the antisense timers. Estimation of the area of the 650 nm band 

(from the 2nd derivative) gave a ratio of 1:0.87:0.53 for wt trimers, Lhcb5/Lhcb3 trimers 

and Lhcb5 trimers. This is consistent with the trimers being formed by either 3 Lhcb5 

monomers or by 2 Lhcb5 and one Lhcb3 (Ruban et al., 2006). It is known that the wt 

monomer binds 6 chlorophyll b molecules (Liu et al., 2004), Lhcb5 only 3 (Bassi, 1996) 

and Lhcb3 monomer 6 (Caffarri et al., 2004). Hence, a wt trimer will bind 18 

chlorophyll b, a trimer built from 2 Lhcb5 and one Lhcb3 15 chlorophyll b, and an 

Lhcb5 trimer 9 chlorophyll b giving a 1:0.83:0.5 ratio, similar to the ratio obtained from 

the area calculation. 
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Figure 14. 77K absorption spectra of trimers and monomers: (a) red region for trimers from wt (black) 
and from asLhcb2 plants; Lhcb5/Lhcb3 are shown in pink and Lhcb5 in red. (b) red region for wt (black) 
and antisense Lhcb5 monomers (red). 

 

In contrast with that of the trimers, in the spectrum of Lhcb5 monomers from the wt and 

antisense plants the 650 nm band is practically missing, and there is an increase in the 

band around 640 nm arising from absorption by another chlorophyll b population. The 

difference between the monomer Lhcb5 (red trace, Figure 14b) and trimer Lhcb5 (red 

trace, Figure 14a) consists of an enhancement of the band absorbing at 650 nm, which 

suggests the presence of the extra chlorophyll b, present only when the monomers are 

organised in trimeric structures (Bassi, 1996).  

 

The Soret region of the spectrum of Lhcb5 trimer (red trace, Figure 15a) resembles that 

of the wt trimers (black trace, Figure 15a), but there were minor differences around 486 

and 495 nm regions that indicated a change in the absorption of neoxanthin and lutein 1, 

which have absorption transitions at these wavelengths (Ruban et al., 2000). Indeed, the 

2nd derivative spectra revealed a small drop in the neoxanthin band (486 nm), with a 

slight increase in the lutein 1 band (495 nm) for the antisense Lhcb5 trimers (red trace, 

Figure 15b). The lutein 2 band at 510 nm, which was thought to be characteristic for the 

major trimeric LHCII (Ruban et al., 2000) was seen in the spectra of these trimers (and 

was also found in the thylakoids spectra). The 510 nm band was not present on the 

spectrum of the Lhcb5 monomers, only a broad 495 nm band being present (blue trace, 

Figure 15b). It is suggested that this lutein might be involved in the stability of the 

trimer, trimerisation changing the conformation of the lutein, resulting in a red 
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absorption, shifted in comparison to the lut1. A similar conclusion was reached from the 

analysis of the lut2 band in LHCII (see section 3.2.1 above). Studies of both the native 

wild type CP26 complex and one reconstituted from Lhcb5 polypeptide have suggested 

that violaxanthin or neoxanthin bind to the L2 site (Croce at al., 2002), which is 

inconsistent with the evidence presented here that lutein is bound at this site. 

 

Figure 15. 77K absorption spectra in the Soret region. (a) wt trimers (black), antisense Lhcb5 trimers 
(red) and Lhcb5 monomers (blue). (b) Associated inverted 2nd derivatives for the spectra presented in (a). 
 

In order to investigate the energy transfer in the antisense plants the PSII fluorescence 

excitation spectra (emission was set at 685 nm) of the thylakoid membranes were 

recorded and compared to the 1-T spectrum.  

 

Figure 16. 77K fluorescence excitation and 1-T spectra. (a) wt thylakoids, excitation measured at 685 nm 
(black) and 1-T spectra (red); asLhcb2 thylakoids, excitation measured at 685 nm (pink) and 1-T (blue). 
(b) the inverted 2nd derivatives of the excitation spectra wt thylakoids (red) and aLhcb2 thylakoids (pink).  
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Figure 16 shows this comparison between the fluorescence excitation spectra and 1-T 

for thylakoids from wt (red and black traces) and asLhcb2 (pink and blue traces) plants. 

It can be seen that the excitation spectra for the antisense thylakoids followed closely 

the 1-T spectra, even better than for wt thylakoids. Thus, it can be concluded that there 

was no major alteration in the energy transfer from the antenna pigments of the asLhcb2 

plants to the PSII reaction centre. Second derivatives calculated for the excitation 

spectra depicted a slightly increased contribution of xanthophylls neoxanthin (485 nm) 

and lut1 (495 nm) in asLhcb2 (pink trace, Figure 15b) as compared to the wt thylakoids 

(red trace, Figure 16b). The chlorophyll b profile at around 471 nm was slightly reduced 

and no detectable differences were seen in the chlorophyll a bands (439 and 410 nm). 

The 510 nm band was also found in the excitation spectrum suggesting an efficient 

involvement of lutein 2 in energy transfer. Energy transfer from lutein 2 appears to be 

more efficient in the antisense plants judging from the relative areas under 510 nm band 

which showed a 20% increase in asLhcb2 compared to the wt thylakoids. 

 

3.3 Discussion 

In the first part of the chapter the spectral features of LHCII-bound xanthophylls were 

investigated. There has been considerable debate about the origin the 510 nm band, 

which appears as a low amplitude band in the absorption (1-T) spectrum of LHCII 

trimers. This band was originally assigned to the LHCII bound xanthophyll 

violaxanthin, because the amount of violaxanthin was significantly reduced compared to 

that of the other xanthophylls in trimeric preparations (Peterman et al., 1997), but it has 

been demonstrated (Ruban et al., 2000) and confirmed (Caffari et al., 2001) that the 

band can be assigned to one of the two luteins. The different absorption spectrum of 

these luteins can be explained by the fact that one of them undergoes a conformational 

change (twisting) during the trimerization process (Ruban et al., 2001). Indeed close 

examination of the crystal structure of the LHCII trimer reveals the different 

configurations of lutein 1 and lutein 2 (Yan et al., 2007).  

Analysis of the absorption spectrum of LHCII trimers first involved calculation 

of the 2nd derivative, which showed the presence of the lutein 1, lutein 2 and neoxanthin 

bands. The amplitudes of these bands were different. Calculation of the second 

derivative of a Gaussian contour showed that the amplitude in the second derivative is 

inversely proportional to the width, meaning that the amplitude of the second derivative 
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is smaller for broader bands. Thus, the second derivative analysis showed that although 

the lutein 2 band was small in the second derivative, it is also broad (the width was 

almost twice that of lutein 1 and neoxanthin) suggesting that the area under this band 

could be approximately the same as for lutein 1 and neoxanthin. By fitting the 

absorption spectrum with Gaussian and Lorentzian contours having the width (FWHM) 

and position obtained from the second derivative spectra to the absorption spectrum, it 

was indeed proven that the areas of the absorption bands of lutein 1, lutein 2 and 

neoxanthin were almost identical.   

With this information about the absorption spectrum it was then possible to 

determine the efficiency of energy transfer from each xanthophyll to chlorophyll a. 

Second derivatives of the fluorescence excitation spectrum and the 1-T spectrum were 

compared. It was found that all three xanthophylls transferred energy with high 

efficiency, around 80-90 %. These estimated efficiencies of the energy transfer were 

higher than those found by Gruszedski et al. (1999) studying monolayers of light 

harvesting complexes from Secale cereale (rye), where they found 97% efficiency for 

chlorophyll b, 85% for neoxanthin, but only 62% for lutein 1 and 54% for 

violaxanthin/lutein 2, assuming then that the band at 510 nm band came from 

violaxanthin. However, the high overall efficiencies of xanthophyll energy transfer to 

chlorophyll are in good agreement with those found by Connelly et al. (1997) using 

time-resolved femtosecond transient absorption measurements and with those published 

by Holt et al. (2003) from measurements of fluorescence upconversion. It should be 

noted that these latter results were obtained at room temperature where it is possible that 

the energy transfer may be more favourable than at 77 K. 

The same methodology was applied to thylakoid membranes. However, the 

complexity of the spectrum prevented similar quantification of the bands from 

individual xanthophylls in the second derivative. Instead other analytical approaches 

were used, which were found to be useful in understanding the changes that occurs 

during the de-epoxidation of the antenna complexes. Here, very interesting results were 

obtained by comparing the de-epoxidation dependent difference excitation and 1-T 

spectra. Whereas the 1-T spectrum displayed the typical zeaxanthin-minus-violaxanthin 

features, the excitation spectra had several additional bands. These bands probably arose 

from violaxanthin, suggesting that the pool of this xanthophyll which was not de-

epoxidised transferred energy to the PSII core complexes more efficiently. This 
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population of violaxanthin active in transferring energy may be one which was tightly 

bound to the minor antenna complex CP29, and therefore not readily de-epoxidised 

(Ruban et al., 1994; Ruban et al., 1999).  

Studies of the antisense plants asLhcb2 have showed the plasticity of the light- 

harvesting antenna, where, even when the major LHCII polypeptides are missing the 

minor complexes tend to organize in trimeric structures. The new population of trimers 

in these plants has specific features which were thought to belong only to native major 

LHCII: the red shifted 510 nm band of lutein 2 and an extra chlorophyll b. Therefore, it 

can be proposed that there is a similar environment in these Lhcb5-containing trimers as 

in the major LHCII trimer. Recently, from the crystal structure of LHCII from 

cucumber at 2.66 Å, it was found that the lutein 2 molecule shows a left-handed twist 

along the polyene chain from the lumenal side to the stromal side as compared to lutein 

1 (Yan et al., 2007). The end ring of lutein 2 is situated in a cavity formed by the 

chlorine ring and phytyl tail of chl a602 in vicinity of the indole ring of Trp46 and chl 

a603 from the adjacent monomer. These exert steric constraints, which may twist the 

lutein molecule upon trimerisation (Yan et al., 2007). Previously, the results from 

resonance Raman spectroscopy indicated the presence of one distorted lutein molecule 

in trimeric LHCII (Ruban et al., 2001). This was suggested to be lutein 2, since lutein 1 

in the crystal structure is located at the periphery of the complex and therefore unlikely 

to be affected by trimerisation. 

 

3.4 Conclusions 

The red-shifted 510 nm band is not a minor component of the absorption spectrum of 

LHCII trimers isolated from Arabidopsis plants, but it arises from lutein 2, its 

charactertistics being consistent with a xanthophyll composition of equal amounts of 

lutein 1, lutein 2 and neoxanthin. Lutein 2 is involved in energy transfer to chlorophyll a 

with a ~79% efficiency. The red shifted lutein 2 is found in the Lhcb5-containing 

trimers from asLhcb2 plants, which lack the Lhcb1 and Lhcb2 polypeptides of the 

major LHCII, supporting the hypothesis that it arises from specific events resulting from 

trimerisation. Studies of the thylakoids isolated from spinach leaves, before and after 

de-epoxidation suggest a conformational change in the PSII antenna which leads to an 

involvement of the remaining violaxanthin in energy transfer to the PSII core 

complexes.
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4.1 Introduction 

Light harvesting in plants is a controlled process, well-integrated into the light phase of 

photosynthesis. Along with the collection of light energy essential for photosynthetic 

processes, the light-harvesting complexes of photosystem II (LHCII) carry out a vital 

photoprotective function. Under conditions of excess illumination LHCII undergoes a 

transition into an inefficient, photoprotective mode, in order to dissipate the potentially 

harmful excess absorbed light energy (Ruban & Horton, 1995; Horton et al., 1996; 

Pascal et al., 2005). The excess absorbed energy is thereby efficiently dissipated as heat. 

This process has been quantified by chlorophyll fluorescence measurements in the form 

of a calculation of the non-photochemical quenching component, NPQ (Muller et al., 

2001). The quenching state is a response to the acidification of the thylakoid lumen, 

which signals saturation in the light energy conversion capacity of the photosynthetic 

membrane (Horton et al., 1991; Horton & Ruban, 1992).  

The mechanism of NPQ has not yet been determined, although several 

hypotheses have been put forward (Holt et al., 2005; Standfuss et al., 2005; Horton et 

al., 2005). Spectroscopic and structural analysis (Pascal et al., 2005; Yan et al., 2007) 

has suggested that NPQ involves changes in configuration of certain pigments, resulting 

from a protein conformational change. A wide range of evidence has indicated that one 

or more proteins of the PSII light-harvesting antenna are involved. Early experiments on 

the major antenna trimeric complex, LHCII, suggested that a dissipative, low 

fluorescent state strongly resembling the in vivo NPQ state, could be achieved by means 

of exposure of isolated complexes to a low-detergent medium (Ruban et al., 1997; 

Ruban et al., 1999). These conditions induced gradual and pronounced aggregation of 

LHCII (Ruban & Horton, 1992). However, it has been argued that this aggregation 

process causes atypical interactions between exposed pigments on LHCII trimers, 

resulting in artefactual chlorophyll fluorescence quenching (Standfuss et al., 2005). 

Alternatively, it has also been suggested that the quenching originates from a small 

population of (unusual) complexes in the preparation, which are always in the quenched 

state, connectivity brought by aggregation being the only factor which triggers 

fluorescence quenching (Barzda et al., 2001).  Recently, the finding that LHCII crystals 

for which the structure has been published at 2.72Å (Liu et al., 2004) have significantly 

reduced chlorophyll fluorescence lifetimes allowed detailed proposals for the location of 

the quenching pigment species and provided evidence for conformational change in 

individual LHCII subunits, by comparison of solubilised and crystallised LHCII.  
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However, although artefactual pigment interactions between neighbouring complexes in 

the crystals was ruled out, the possibility of non-physiological protein-protein 

interactions giving rise to the changes in pigment configuration and resultant quenching 

can not be discounted. Furthermore, crystals are clearly not suitable for many of the 

experimental approaches that are needed to unravel the NPQ mechanism: crystals can 

not be prepared quickly or reliably in large amounts or under a range of conditions. 

Also, such a condensed system as a crystal is not suitable for many spectroscopic 

analyses and the dynamics and regulation of the any conformational change can not be 

easily studied in these systems. Hence, there is an urgent need to develop a new 

approach to study the quenching mechanism in LHCII, which excludes protein-protein 

interactions and yet is amenable to a range of spectroscopic analyses.   

 

4.2 Results 

LHCII incorporated into polyacrylamide or gelatine gels were analysed based upon the 

proposition that a dilute solution of protein (OD of the samples was ~0.1, which 

corresponds to a concentration of ~1 µg chl/ml) in detergent would thereby be 

immobilised, and could not form aggregates. LHCII trimers were diluted in a solution 

containing 20mM HEPES buffer at pH 7.8, and 0.03% n-dodecyl β-D-maltoside. The 

sample was mixed with a solution of Acrylamide/Bisacrylamide (37.1:1 ratio), then 

polymerised with 0.05% APS (ammonium persulphate) and 0.03% TEMED for 

approximately 20 minutes using a BIORADTM mini-protein system, with a 1mm gel 

thickness. Trials were made with different gel concentration in order to find the most 

suitable environment for the protein, since there may be harmful effects from the 

polyacrylamide itself and from local heating during the polymerization. Upon 

increasing the concentration of the polyacrylamide a drop in absorption in the blue 

region at around 472 and 486 nm was observed (Figure 1). Also, a decrease in the red 

region of the spectrum occurred at around 675 nm. All of these suggested that 

chlorophylls and carotenoids were affected by the polyacrylamide gel. Alternative 

explanations may be that the higher concentration of the gel had a disturbing, 

destabilizing effect on the protein or that scattering effects lead to the distortion of the 

spectrum. Finally, a 6% concentration was chosen for the investigation, because no 

effect was seen in the absorption spectrum of the LHCII-gel (red trace), the spectrum 

being very similar to that of the solubilised LHCII (black trace). 
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Gelatine gels were also used for some measurements. Gelatine with a 6.6% final 

concentration was dissolved in the same buffer as for the polyacrylamide gels by 

heating up to 50-600C. When the temperature fell back to 25-300C the LHCII trimers 

and 0.03% β-DM were added and left it for approximately 30 minutes at 40C until the 

gel was set. However, the gelatine gels were not stable and manipulation of the gels was 

difficult to do at room temperature without damaging the sample. Therefore, all 

subsequent experiments were carried out only on the polyacrylamide gels. 
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Figure 1. Absorption spectra of LHCII trimers in gel containing 15% polyacrylamide (dark-green), 10% 
(blue), 6% (red) and in solution (black) for comparison. 

 

Strips of set 6% polyacrylamide gels (1 by 1.2 cm) were used to investigate the 

properties and dynamics of the new system. LHCII-gels were highly fluorescent, but 

after 6 hours of incubation in detergent-free buffer the fluorescence level of the sample 

was decreased about 10 times (Figure 2). 

             

Figure 2. FluorCam image of LHCII-gel before (right) and after 6 hours incubation in detergent-free 
buffer (left). The fluorescence intensity is colour-coded from blue (low values) to red (high values). 
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The fluorescence level of the control LHCII-gel, incubated in detergent, was stable for 

several hours, showing only a ~10% decline (black trace, Figure 3). For the LHCII-gel 

in detergent-free buffer, quenching developed rapidly after an initial lag period, 

reaching a maximum level in approximately 1 hour with a half time of quenching of 

~40 minutes (red trace, Figure 3). Most importantly, the quenching was almost 

completely reversed when the quenched LHCII-gel was immersed in buffer containing 

detergent (red trace, Figure 3). The increase in fluorescence was completed in about 2 

hours, with a half time of approximately 45 minutes.    

 

Figure 3. Quenching and recovery of LHCII-gels. Control LHCII-gel in buffer with 0.03% β-DM 
detergent (black); 1 hour incubation in detergent-free buffer (↓), followed by recovery in detergent buffer 
(↑) (red). Fluorescence was measured with a Waltz PAM1000 fluorimeter. 
 

It should be pointed out that the extent of quenching observed in the LHCII-gel was 

very large. This drop in the fluorescence (~90%) had previously been associated with 

the formation of very large LHCII aggregates (Mullet & Arntzen, 1980; Ruban & 

Horton, 1992) and it is highly unlikely that such aggregates could be formed when the 

complexes are immobilized in the pores of the gel.  

In order to obtain direct evidence of the state of aggregation of the low-

fluorescent sample, LHCII-gels were placed on a polyacrylamide gel electrophoresis 

system in the stacking gel area and run for approximately 60 minutes. The stacking gel 

was composed of 0.375 M Tris pH 7.8, 0.05% APS, 0.03% TEMED, and 4% 

polyacryamide. The running gel had the same composition except that the 

Time (h)

0 1 2 3 4 5 6

F
lu

or
es

ce
nc

e 
(a

.u
.)

0.0

0.2

0.4

0.6

0.8

1.0

(-)detergent 

(+)detergent 
detergent 

control 



Chapter 4 
Investigation of quenching in LHCII incorporated into a gel matrix 

 80 

polyacrylamide concentration was 6%. The gels were run at 100V for 1 hour in a 

reservoir buffer containing 0.375M Tris, 0.15 mM glycine and 0.005% deriphat 

detergent at pH 7.8. Figure 4 displays the results of electrophoresis of LHCII-gels in 3 

different quenching states (qtr1, qtr2, qtr3) at the beginning of the experiment, at an 

intermediate step after 30 minutes incubation and after 60 minutes of incubation. Also 

shown are LHCII aggregates (a), timers (tr) and monomers (m) set in the gel.  

 

 

Figure 4. Non-denaturating gel electrophoresis of the LHCII-gel: a=aggregates in gel; tr=unquenched 
LHCII-gel (trimers); m=unquenched LHCII-gel (monomers); qtr1=quenched LHCII-gel with kd=0.2 
(~17% fluorescence decrease); qtr2=quenched LHCII-gel with kd=2 (~67% decrease); qtr3=quenched 
LHCII-gel with kd=9 (~90% decrease). Vertical arrow represents the direction of the migration. 

 

Quenched LHCII-gels were obtained by incubation in detergent-free buffer allowing a 

slow diffusion of the detergent from the gel, until reaching the kd stated in the legend of 

Figure 4. Aggregates of LHCII were obtained by incubation of the trimers with 50mg of 

SM-2 Absorbent (Bio-Rad) allowing a 10-times decrease in the fluorescence intensity 

(~90% decrease), before setting into the gel. Fluorescence quenching was described as 

kd (quenching strength), which is numerically equivalent to the in vivo NPQ parameter, 

and calculated using the equation following: 

quenched

quenchedunquenched

d
F

FF
k

−
= , 

 where Funquenched  is the fluorescence intensity at time 0 in isolated LHCII trimers or in 

the LHCII-gel after polymerisation, and Fquenched is the fluorescence intensity at different 
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times after induction of quenching. It is clear that for all LHCII-gels, the complex 

moved out of the gel into the running gel area. In contrast, LHCII aggregates remained 

in the stacking gel area. 

The complex that moved in the gel appeared as a mixture of LHCII monomers 

(m) and trimers (t), as can be seen from the positions of the complexes that were run 

separately (Figure 4). The quenching conditions appear to have had a slight 

destabilising effect on the trimer, which can be seen from the relative increase in the 

ratio of monomer to trimer bands in the more highly quenched LHCII-gels (qtr2 and 

qtr3) compared to the mostly unquenched LHCII-gel (qtr1) and the unquenched LHCII-

gel (tr). The fact that the quenched LHCII was present in the running gel in the 

trimeric/monomeric state not in a higher oligomeric state, suggests that there was no 

aggregation involved in the establishment of the quenched state in the gel. Rather, it 

points towards a conformational transition within individual LHCII trimers. 

To understand the changes in pigment properties, which accompany the 

formation of the quenched state of LHCII, room temperature absorption spectra of 

unquenched LHCII-gel (black trace), quenched LHCII-gel (red) and recovered LHCII-

gel (blue) were measured and analysed (Figure 5). 

 

Figure 5. Absorption spectra of LHCII-gels. (a) Room temperature absorption spectra in the Qy region: 
unquenched LHCII-gel (black); quenched LHCII-gel (red); recovered LHCII-gel (blue). Also shown the 
spectra of LHCII aggregates (pink) and of the heat-treated trimers (green). Spectra were normalised to the 
maximum and are presented offset for clarity. (b) Difference absorption spectra: quenched LHCII-gel 
minus recovered LHCII-gel (red), aggregates minus trimers (pink), heat-treated minus trimers (green). 
Normalisation was performed at 620 nm before difference was taken. 

 

The absorption spectrum of the quenched LHCII-gel was slightly red shifted in the 

chlorophyll Qy region around 680 nm (shown by the arrow) compared to the 
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unquenched LHCII-gel. This shift was reversed in the gel in which quenching had also 

been reversed (blue trace). In contrast, a strong blue shift of the Qy region of the 

spectrum was seen in a heat-treated sample (green trace, Figure 5a). The heat-treated 

sample was obtained by heating LHCII trimers (in solution) above 600C, when 

unfolding of the helical secondary structure of the protein upon denaturation occurs 

(Wentworth et al., 2003 Hence, the pigment changes associated with the transition to 

the quenching mode were different from those that occurred during the complex 

denaturation. This can clearly be observed in the difference spectra, quenched LHCII-

gel minus recovered LHCII-gel (red), compared to heat-treated minus control trimers 

(green) (Figure 5b). A spectrum of aggregated LHCII was measured and the difference 

spectrum aggregates minus trimeric LHCII was also calculated (pink trace). This latter 

difference spectrum was similar to the quenching-associated difference spectrum 

calculated for LHCII-gels (red trace). The distinct feature of both difference spectra was 

the appearance of a positive band in the chlorophyll a region at 681nm for quenched 

LHCII-gel, with a 3 nm red shift to 684 nm for the aggregates. In contrast, the heat-

treated minus trimers spectrum is completely different, displaying only 2 bands in the 

chlorophyll a region at around 680 nm (negative) and 662 nm (positive). The difference 

spectrum indicated that the absorption changes associated with the quenching in the gel 

(red trace, Figure 5b) were more pronounced in chlorophyll a regions at 681 nm, 662 

nm (positive) and 670 nm (negative), than in chlorophyll b regions, 645 nm (positive) 

and 652 nm (negative). 

The spectrum of the aggregates exhibited a pronounced ‘tail’ in the Qy region 

above 700 nm as a result of light scattering, a typical feature of the room temperature 

absorption spectra of highly scattered aggregates (pink trace, Figure 5a; dark-yellow & 

pink trace, Figure 6). In contrast, the absorption spectrum of the quenched LHCII-gel 

(red trace, Figure 6) has a very small ‘tail’, consistent with the absence of aggregation, 

or, if aggregation had occured, the aggregates formed were very small (such an 

association of few trimers). Therefore, the quenching in the gel can not be caused only 

by aggregation: although the same drop in fluorescence was achieved in the gels as in 

large aggregates, the gel spectrum did not display the red ‘tail’ indicative of aggregate 

formation. 
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Figure 6.  Room temperature absorption spectra of different samples in the red Qy region: unquenched 
LHCII-gel (black), quenched LHCII-gel with kd=9 (red); medium aggregates with kd=3 (dark-yellow); 
large aggregates with kd=9 (pink). Spectra were normalized to the maximum amplitude, except the 
quenched LHCII-gel spectrum, which is presented without normalization. 

 

 

Figure 7. Room temperature absorption spectra of LHCII in the blue region. (a) unquenched LHCII-gel 
(black trace), quenched LHCII-gel (red); recovered LHCII-gel (blue). Spectra were normalised at the 440 
nm band. (b) Difference absorption spectra: quenched LHCII-gel minus unquenched LHCII-gel (red); 
aggregates minus trimers (black). Spectra were normalised in the Qy region (680 nm) before the 
differences were taken. 

 
In the blue region, quenching was associated with changes arising in both 

chlorophyll and carotenoid populations (Figure 7a). A slight blue shift of the 
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chlorophyll a band at around 439 nm (indicated by the arrow) was found in the 

spectrum of quenched LHCII-gel (red trace) in comparison to the one for unquenched 

LHCII-gel (black trace), this shift being reversed after recovery (blue trace). The 

spectrum of aggregates displayed a drastic drop in absorption in the chlorophyll and 

carotenoid regions (pink trace). 

Difference spectra aggregates minus trimers and quenched LHCII-gel minus 

unquenched LHCII-gel showed similar changes (Figure 7b). A strong negative band 

was found from chlorophyll a at 439 nm and in the carotenoid region at 487 nm, with a 

small positive broad maximum at 512 nm for the gel difference spectrum. In addition, in 

the difference spectrum for aggregates, an extra band at 475 nm from chlorophyll b was 

found, the broad positive maximum above 500 nm being situated at ~510 nm. 

As it can be seen in Figure 4, a slight monomerisation occurred in the gels 

following the transition to the quenched state, the size of the monomer band appearing 

to be proportional to the degree of quenching (kd). It is possible that monomerisation of 

LHCII timers in the gel could complicate the room temperature absorption data shown 

in Figure 5 and 7. Therefore, to investigate if the monomerisation had contributed to the 

induced changes in absorption, the experiments were repeated using monomeric LHCII 

prepared by phospholipase treatment (see section 2.3.4 for details). In order to increase 

the accuracy the absorption spectra, they, were recorded at 77K and several differences 

spectra, quenched minus recovered, were taken. Figure 8 shows these difference spectra 

for LHCII monomers in a gel with kd of 0.3 (~25% fluorescence decrease), 2.5 (~69% 

decrease) and 10 (~91% decrease). 
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Figure 8. 77K difference absorption spectra, quenched LHCII-gel minus recovered LHCII-gel using 
LHCII monomers. The quenched LHCII-gels had the following quenching strength: kd=0.3 (black), 
kd=2.5 (blue), kd=10 (red). 

 

All the major absorption changes were found to be similar to those observed for the 

trimeric LHCII incorporated in the gel. A negative band arising from chlorophyll a at 

around 438-439 nm, and a negative carotenoid band at 486-487 nm were present. In the 

Qy region chlorophyll b negative bands were found at 650-652 nm and 670 nm, with 

positive bands from chlorophyll a at 658-662 and 681 nm bands. It was found that the 

spectral structure was dependent upon the amount of quenching. Even at the lowest 

level of quenching, the 681 nm feature emerged (black trace) and this grew in intensity 

as the level of quenching increased, along with the other bands, until, at the highest 

level of quenching, the 681 nm feature collapsed, and a negative band at 678 nm 

appeared (red trace). In the blue region the negative band from carotenoid at 486 nm 

grew in the same way, and it was shifted towards 494 nm in the sample with the highest 

kd. Also, the carotenoid band situated at around 512 nm in the trimeric preparations was 

present in the monomeric sample displaying the highest kd. It is interesting to notice that 

this band was absent in the samples with a low degree of quenching, then as the 

quenching increases, it was situated at around 525 nm, being blue shifted to 512 nm 

after further increase in the quenching strength. Previously it has been suggested that 

there was no change in the structure of the absorption spectrum upon formation of the 
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quenched state of LHCII – rather it was proposed that the observed changes arose from 

light scattering artefacts (Naqvi et al., 1999). However, using the LHCII-gel, the 

absorption changes are very clearly displayed and conclusively establish the occurrence 

of specific pigment alterations upon formation of the quenched state of LHCII.  

It was similarly important to measure the 77K fluorescence emission spectra in 

order to investigate the origin of the unusual long wavelength band at around 700 nm, 

which is characteristic of the quenched state of LHCII aggregates (Ruban & Horton, 

1992; Mullineaux et al., 1993; Vasiliev et al., 1997).  
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Figure 9. 77K fluorescence emission spectra (435 nm excitation): unquenched LHCII-gel (black); 
quenched LHCII-gel with kd=1 (~67% fluorescence decrease, cyan); kd=5 (~80% decrease, pink); kd=12 
(~92% decrease, blue); kd=23 (96% decrease, red). Also shown is the spectrum of the heat-treated sample 
(green). Spectra were normalised to 680 nm band and are displayed offset for clarity.  

 

Figure 9 shows a number of fluorescence emission spectra recorded for LHCII-

gels with a range of quenching strengths. A gradual broadening of the 681 nm band for 

the first 2 quenched samples took place. Then, when the quenching strength increased, 

the appearance and the development of the 700 nm was associated with a decrease in 

the amplitude of the 680 nm band along with an enhancement of the vibronic satellite 

contribution at around 740 nm and 770 nm. All these features have been shown in the 

77K fluorescence spectrum of LHCII aggregates (Ruban et al., 1999). In contrast to 

these changes, denaturation of LHCII lead to a blue shift of the chlorophyll a 

fluorescence and the appearance of the chlorophyll b fluorescence band at around 655 

nm, indicative of the uncoupling of chlorophyll b from chlorophyll a (green trace). 
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Therefore, it can be concluded that the 700 nm band neither originates from a damaged 

and partially denatured complex nor is a result trimer-trimer interactions. 

 

 

Figure 10. Relative amplitude (top) and maximum peak position (bottom) of 77K fluorescence emission 
spectra for different quenching states shown in Figure 9. 

 

The relative amplitude and maximum position of the fluorescence emission was 

linearly proportional to the quenching strength, kd (Figure 10). The progressive shift in 

peak position suggests that the development of the quencher is a gradual process, rather 

than an on/off switch between two LHCII states. Most likely, this shift involves 

transitions within a group of pigments. 

Alterations in pigment configurations and interactions during transition into the 

quenched state were further explored using circular dichroism (CD) spectroscopy. 

Figure 11 shows CD spectra for unquenched LHCII-gel (black trace), quenched LHCII-

gel (red trace), recovered LHCII-gel (blue) and heat-treated trimers (green). The most 

affected regions in the spectrum of quenched LHCII-gel were around 440 and 680 nm, 

suggesting that there occurred specific changes in the pigments showing optical activity 

in those regions. The CD spectrum of unquenched LHCII-gels (black trace), showed in 
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the red region the main negative bands situated at 650 and 680 nm, with a positive band 

at 667 nm. Also a weak shoulder was present at ~640 nm. 

 

Figure 11. Circular dichroism spectra of LHCII-gels: unquenched LHCII-gel (black); quenched LHCII-
gel (red); recovered LHCII-gel (blue) and heat-treated trimers (green). Arrows indicate the most affected 
regions of the spectrum. Spectra are normalised to their maximum and presented as offset. 
 

In the blue region the CD spectrum revealed the main excitonic bands at 424 and 438 

nm (positive), two characteristic negative peaks at 472 and 491 nm, along with a 

shoulder at around 460 nm. The CD spectrum of the unquenched LHCII-gel was very 

similar to those published for solubilised trimers (Ruban et al., 1997; Lambrev et al., 

2007), indicating that the complexes present in gel are in a native condition without any 

change in the excitonic interactions between pigments. When quenching was induced 

the CD spectrum changed (red trace). In the red region the ratio of the bands situated at 

650 and 680 nm (650/680) increased. In the blue region there was an enhancement of 

the bands peaking at 438 nm, the 460 nm shoulder became more pronounced and the 

ratio 472/491 increased. It should be noted that after the recovery (blue trace) these 

features were no longer present and the spectrum was similar to that of trimers. Thus, 

the processes which occurred during quenching were completely reversible. Thermal 

denaturation of LHCII led to a strong decrease in the CD spectrum (green trace) and 

elimination of its excitonic features (Wentworth et al., 2003), again showing that no 

denaturation occurred in the gel sample.  
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Figure 12 shows the difference spectra associated with quenching in gel and in 

aggregates. 

 

Figure 12. Difference CD spectra quenched LHCII-gel minus unquenched LHCII-gel (black) and 
aggregates minus trimers (pink). Spectra were normalised to 700 nm before difference was taken. 

 

Both spectra displayed a strong negative band at 437 nm and a shoulder at around 451 

nm which was more pronounced in the difference spectrum of the aggregates. In the 

chlorophyll b Soret and carotenoid regions a group of bands was present: a positive 

band at 471 nm in the gel difference spectrum, present only as a shoulder in the 

aggregates difference; a negative band at around 480 nm only in the gel difference; a 

positive band at 486 nm in the difference spectrum of the aggregates, slightly (3nm) red 

shifted in the gel difference; and also a positive band at around 504 nm in both spectra. 

There were also similarities between the difference spectra in the red region, with the 

main positive maxima at 678 nm. The negative band at 662 nm (chlorophyll a) and the 

group of smaller bands in the chlorophyll b region around 650 nm were observed, these 

being more pronounced in the aggregates difference.  

Apart from the spectroscopic analysis presented above, the LHCII-gel was found 

to be suitable for exploration of other important features of the quenching process. The 

cross-linker glutaraldehyde (GA), which reacts with amino groups of lysyl residues and 

the amino termini, was used to test the involvement of a protein conformation change. 
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The blue and dark-green traces in Figure 13 show the quenching and recovery 

behaviour of the LHCII-gel after GA treatment. Pre-incubation for 5-10 minutes of the 

LHCII trimers with GA before setting the gel gave rise to a reduction of the maximum 

level of quenching after incubation in the detergent-free medium and also a reduction in 

recovery (dark-green trace). Furthermore, incubation of the pre-quenched LHCII-gel in 

a detergent medium containing GA (blue trace) showed much less recovery compared to 

the control sample (black dotted trace). These results suggest that the structure of LHCII 

undergoes conformational changes during the transitions between the unquenched and 

the quenched states. 

   

Figure 13. Effect of glutaraldehyde on quenching in the LHCII-gel. 2.5% Glutaraldehyde pre-treatment 
of LHCII followed by incorporation in gel, quenching in detergent-free buffer (↓) and recovery in 
detergent buffer (↑) (dark-green); quenching (↓) followed by recovery in 2.5% glutaraldehyde and 
detergent buffer (↑) (blue). Also shown is a LHCII-gel incubated for 1 hour in detergent- free buffer (↓) 
followed by recovery in detergent buffer (↑) (dotted trace) as showed in Figure 3.   

 

4.3 Discussion 

The discovery that fluorescence quenching can be induced in LHCII immobilised in a 

solid state gel is an important advance in our understanding of the processes that occur 

when the antenna changes from an efficient light-harvesting state to a dissipative state. 

Firstly, strengthening the evidence obtained from the study of LHCII crystals it is 

becoming increasingly clear that quenching does not require interactions between 

complexes. Rather, it appears to be a process occurring within individual LHCII 

subunits. Furthermore, the LHCII-gel provides a new experimental system, free from 
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the various optical artefacts that occur in aggregated states. The spectral analysis of the 

gels yielded for the first time information about the character of the changes in 

absorption and CD spectra of pigments associated with the transition to the quenching 

state.  

The results presented in this chapter unambiguously showed that florescence quenching 

in the LHCII trimers is not artefactual, and is not caused by the aggregation or by a 

partial denaturation of the protein. Analysis of the absorption spectra in the Qy region 

clearly showed that the quenched LHCII-gels did not display the red ‘tail’ typical of 

aggregated samples (having the same magnitude of quenching). This ‘tail’ is present in 

the spectra of aggregates and is due to the light scattering that occurs when complexes 

are found in large associates. When detergent micelles were not present in the proteins 

immobilised in gel, it seems that the gel matrix has a restrictive effect, not allowing 

protein interaction. Furthermore, when ran in an electrophoresis gel, the LHCII in the 

quenched LHCII-gels have the same mobility as those in the unquenched LHCII-gel, 

although there was an increase in the fraction of monomers relative to trimers in 

proportion to the degree of quenching. This suggests that there was a destabilising effect 

during gel formation that separated the trimeric complexes into its monomeric subunits. 

Aggregates of LHCII showed no electrophoretic mobility, indicating that in the 

quenched LHCII-gels no aggregates were present. This is in agreement with the recent 

results of Tang et al. (2007) using heat stress induced aggregates of LHCII in vivo, 

where they showed that the aggregates remained in the stacking area of the 

electrophoresis gel.  

Studies of the 77K fluorescence emission spectra of the quenched LHCII-gels showed 

the presence of the typical 700 nm emission that is associated with the quenching 

induced by aggregation (Ruban & Horton, 1992). Since there was no evidence of 

aggregation in the quenched gel, it is concluded that the 700 nm band in fluorescence 

emission spectrum is a typical fingerprint of the quencher, independent of the presence 

or absence of the aggregation. 

The cross-linker glutaraldehyde (GA) was used to test the involvement of a 

conformational change during the transition to the quenched state. Pre-treatment of the 

LHCII with GA inhibited both the formation of fluorescence quenching and the 

subsequent recovery. Furthermore, GA inhibited the reversal of quenching when it was 

added to the quenched gel. These results provide good evidence that a conformational 

change occurred in the protein during the transitions between the unquenched and 
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quenched states. Hence, the treatment with GA ‘froze’ the protein conformation, the 

result being much less quenching and recovery. 

  

4.4 Conclusions 

The work presented in this chapter have conclusively demonstrated that the 

photoprotective switch in the function of photosystem II antenna of higher plants 

occurred in individual protein subunits without protein interaction. Thus, a new system 

has been described which allowed studies of light harvesting complexes in different 

quenching states without protein aggregation, suitable for different experimental 

techniques and allowing studies in a range of conditions. Of course, it could not be 

excluded that aggregation in the gel was completely absent. New techniques such as 

freeze-fracture electron microscopy, atomic force microscopy and chlorophyll 

fluorescence annihilation experiments could be used in the future to further explore this 

issue. 
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5.1 Introduction 

Resonance Raman spectroscopy has been used for determining the chemical identity, 

molecular conformation and state of interactions of pigment molecules in all types of 

photosynthetic organisms: purple and green bacteria (Robert, 1996; Robert, 1999), 

brown algae (Pascal et al., 1998) and the light harvesting proteins of higher plants (Lutz 

et al., 1977; Ruban et al., 1995; Ruban et al., 2001; Robert et al., 2004). 

The Raman effect is the phenomenon of a change in light frequency when it is 

scattered by a molecule, and it may only happen if there is energy exchange between the 

molecule and the photon (Robert, 1999). When a photon of light collides with a 

polyatomic molecule the major part of the re-emitted or scattered light has the same 

energy (wavelength) as the incident light (green arrow, Figure 1) and the molecule 

returns to its ground state, as depicted in the energy level diagram in Figure 1.  

 

 

Figure 1. Principle of Raman spectroscopy (after Robert et al., 2004). 

 

After the collision the molecule can be moved to a higher vibrational energy level, when 

the emitted photon will be of lower energy (shifted towards longer wavelength-red 

arrow), a process called Stokes’ Raman. Anti-Stokes’ Raman is also possible when the 

molecule starts at a higher vibrational level than that after the collision, the emitted 

photon then being of higher energy (shifted towards shorter wavelength-blue arrow). 
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Because the change in the energy of the photon corresponds with a change in the 

vibrational energy of the molecule, measuring the wavelength shift of the scattered light 

gives information about the vibrational energy levels of the molecule involved (Robert 

et al., 2004). A Raman spectrum is a plot of the intensity of Raman scattered radiation 

as a function of its frequency difference from the incident radiation (usually in units of 

wavenumbers, cm-1). This difference is called the Raman shift. 

  In resonance Raman spectroscopy, the energy of the incoming photons used to 

produce the Raman effect is adjusted such that it coincides with an electronic transition 

of the molecule. The result is that the probability of scattering dramatically increases, 

leading to a ~ 106 fold increase in the Raman signal – this is the resonance effect. 

Therefore, resonance Raman spectroscopy is a highly selective technique, enabling 

studies not only of the different pigment molecules in complex media (e.g. different 

xanthophylls in chloroplasts membranes), but also the same molecule in different 

environments (e.g. neoxanthin in quenched and unquenched LHCII trimers as will be 

described in this chapter).  

 

Figure 2.  Resonance Raman spectra of neoxanthin (red), a 9-cis, and lutein (black), an all-trans 
carotenoid in pyridine. Excitation was at 501.6 nm. The arrows indicate the characteristic band in the 
neoxanthin spectrum. 

 

The resonance Raman spectra of carotenoid molecules have 4 main groups of 

intense bands, namely ν1, ν2, ν3, and ν4 as shown in Figure 2. These bands provide 

information on the conformation and configuration of the molecule. In the results 

reported in the early 1970s by Rimai et al. (1973) from a model derived from an infinite 

polyenic chain, these groups of bands were assigned. The ν1 mode at ~ 1530 cm
-1 was 



Chapter 5 
In vitro and in vivo investigation of LHCII by resonance Raman spectroscopy 

 

 96 

attributed to the stretching modes of the conjugated C=C bonds, and its frequency is 

therefore sensitive to both the conjugated chain length and the molecular configuration 

(trans or cis) of the carotenoid. Thus, in Figure 2 a downshift of the ν1 band is observed 

for lutein relative to neoxanthin, as the latter carotenoid has one less conjugated double 

bond (9 instead of 10) and also exhibits a cis configuration at position 9 of the chain. 

The ν2 region is situated at 1120-1200 cm
-1 and corresponds to a mixture of C=C and C-

C bond stretching modes with C-H bending modes, the arrows in Figure 2 showing 

characteristic frequencies present in the ν2 region of the neoxanthin spectrum that are 

probably due to the 9-cis conformation (Ruban et al., 2001). The ν3 region is situated at 

~1000 cm-1 and corresponds to stretching modes of C-CH3 bonds between the main-

chain and the side methyl carbon. Finally, the ν4 band at ~950 cm
-1 results from out-of-

plane C-H wagging modes. As these modes are formally uncoupled from the electronic 

transitions of a perfectly-planar carotenoid, the intensity of the ν4 band depends of the 

distortion from planarity of the molecule (Robert et al., 2004).  

Application of the resonance Raman technique to the light harvesting complexes 

of higher plants gave valuable information about identification, conformation and 

dynamics of the pigments within these complexes. Using of combination of ultra-low-

temperature absorption, circular dichroism and resonance Raman spectroscopies, Ruban 

et al. (2000) were able to identify the major electronic transitions and the configurations 

of all of the xanthophylls in both trimeric and monomeric LHCII. It was found that 0-0, 

0-1 and 0-2 electronic transitions for neoxanthin and lutein in monomers are situated at 

486, 457, 403 nm and 495, 466, 437 nm respectively. Using selective excitation lines 

for resonance Raman spectra the band at 510 nm in the low temperature absorption 

spectrum of trimers has been shown to arise from one of the lutein molecules which is 

distorted in this complex, according to the analysis of the Raman spectra in the ν4 region 

(Ruban et al., 2001). This distortion is accompanied by a red shift in its 0-0 transition, 

from 495 to 510 nm. Moreover, application of the resonance Raman technique to the 

thylakoid membrane led to identification of the absorption transitions of the xanthophyll 

cycle carotenoids, violaxanthin and zeaxanthin. Zeaxanthin was found to have a broad 

0-0 transition situated around 503-511 nm, whereas two populations of violaxanthin 

were identified, the major one absorbing at 488 nm with a minor contribution at 497 nm 

(Ruban et al., 2001). 
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Resonance Raman spectroscopy was also applied to investigate the changes that 

occur when aggregation is induced in LHCII. When the excitation is set to a value 

where mainly carotenoid molecules are excited, which also coincides with an absorption 

difference between the aggregated and trimeric LHCII (488 nm), the ν4 region of the 

aggregated spectrum exhibits a different structure (Ruban et al., 1995). Aggregation 

induced an increase in band structure for ν4 - specifically in the ratio between the main 

bands situated at around 951 and 963 cm-1, the 951 cm-1 band being more intense in the 

aggregates than in the trimers. These changes have been attributed to a carotenoid 

population which is affected by the oligomerization process, and becomes twisted in the 

aggregates (Ruban et al., 1995). Later this carotenoid was identified as neoxanthin 

(Ruban et al., 2001). In the higher frequency region of the spectrum of the aggregates 

obtained with a 441.6 nm excitation line, (when contribution from chlorophyll a and 

chlorophyll b can be observed), a 1639 cm-1 band (attributed to a chlorophyll b carbonyl 

stretching mode) was found, a feature not present in the trimeric samples. This band is 

absent when the chlorophyll a pigments were excited (413.1 nm), where a 1672 cm-1 

band attributed to a keto carbonyl group involved in intermolecular interactions is 

present. It was then concluded that the aggregation induces the formation of an H-bond 

to a formyl group of a chlorophyll b molecule and to a keto group of a chlorophyll a 

molecule (Ruban et al., 1995).  

Recently, similarities were reported between the resonance Raman spectra of 

LHCII aggregates and LHCII crystals (Pascal et al., 2005), for which the 2.72 Å 

structure has been determined (Liu et al., 2004). Fluorescence analysis showed that the 

crystals are in a highly quenched state (Pascal et al., 2005). Resonance Raman spectra 

indicated that the quenched structure of the LHCII in crystals significantly differs from 

that of the unquenched, solubilised protein and it is similar to the one present when the 

protein is present in the aggregated form (Robert et al., 2004). In particular, in the 

crystallised LHCII, the bound carotenoid neoxanthin exhibits a distorted configuration 

which is not present in the solubilised protein. When excitation was set at 488 nm which 

is specific for neoxanthin, an increase in the intensity of the ν4 region was observed with 

an enhancement in the Raman band at around 953 cm-1. This clearly indicates a 

deviation of this molecule from a planar structure (Pascal et al., 2005). The increase in 

the crystal was more pronounced than the one reported for the aggregates (Ruban et al., 

1995). Also, similar to the findings for the aggregated forms, differences in the 
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chlorophyll b molecules are found in crystals, spectral changes showing that at least one 

chlorophyll b in the crystal becomes involved in a hydrogen bond, whereas the trimeric 

forms is free from this interaction (Pascal et al., 2005).  

It is well-known that, when trimeric LHCII complexes are isolated from the 

thylakoid membranes they display a high fluorescence yield, indicating a very low rate 

of energy dissipation. The excited state lifetime was found to be around 4ns (Moya et 

al., 2001). When trimers form aggregates the fluorescence is highly quenched, having 

lifetimes between 0.2 and 1.5 ns (Mullineaux et al., 1993; Moya et al., 2001). Using 

FLIM (fluorescence lifetime imaging microscopy) the lifetime of the LHCII crystals 

mentioned above was measured, showing an average fluorescence lifetime of 0.89 ns 

(Pascal et al., 2005). Thus, the LHCII crystal was in a quenched state. 

These measurements of LHCII aggregates and crystals proved that LHCII may 

exist in different conformational states, each state having different capacities for energy 

dissipation. Hence, it was suggested that changes in conformation of LHCII regulate the 

switch between energy utilisation and energy dissipation underlying the process of NPQ 

(Horton et al., 1991; Horton et al., 1996; Pascal et al., 2005). However, there was no 

direct proof that the proposed conformational changes occur in vivo, when NPQ is 

induced. From the studies discussed above it was concluded that the changes in the 

intensity of the resonance Raman band situated at around 953 cm-1 are correlated with 

the fluorescence lifetimes. Consequently, this twist can be considered as a ‘quenching 

fingerprint’. Because resonance Raman spectroscopy is a highly selective technique that 

can be applied to chloroplasts membranes and leaves in their natural state of NPQ, it 

could provide information about the existence of quenching-associated conformational 

changes in vivo and hence give new insights into the process. 

The aim of the work presented in this chapter was to investigate by resonance 

Raman spectroscopy isolated LHCII complexes in different quenching states (e.g. 

different fluorescence intensities), and chloroplasts and leaves with different NPQ 

levels. Investigating the changes in the configuration of the LHCII-bound carotenoid 

neoxanthin, via the resonance Raman spectra of intact chloroplasts and whole leaves 

should provide evidence for, or against the conformational change hypothesis for NPQ, 

as well as indicating the extent of these changes.  

 

 



Chapter 5 
In vitro and in vivo investigation of LHCII by resonance Raman spectroscopy 

 

 99 

5.2 Results 

LHCII trimers were prepared from dark-adapted spinach leaves after solubilisation of 

PSII-enriched particles with n-dodecyl β-D-maltoside and IEF fractioning (see section 

2.3.4). Previous studies using isolated LHCII have provided important information into 

the possible mechanism of energy dissipation. LHCII can be isolated from the thylakoid 

membrane in detergent micelles and manipulated to display large differences in 

fluorescence yield, by formation of oligomers of trimers. In order to investigate the 

changes that occur in the neoxanthin Raman signal, and how they correlate with the 

extent of quenching, isolated LHCII trimers and 5 quenched oligomeric samples were 

obtained, covering up to a 10-times decrease in the fluorescence intensity. To obtain 

these samples, trimeric LHCII was incubated in a 2 ml cuvette in the presence of n-

dodecyl β-D-maltoside. Biobeads were added in order to gradually remove the 

detergent, the degree of quenching being monitored by fluorescence measurements. The 

quenched samples, each having a different fluorescence intensity (kd, see Figure 3 

legend) were immediately frozen in liquid nitrogen to conserve their state of quenching 

state. 77K resonance Raman spectra with 488 nm excitation were then recorded for each 

sample. Figure 3a shows the ν4 region for these samples, with two major bands, one at 

around 952-953 cm-1 and the second one at 964 cm-1. It can be seen that there was a 

progressive increase in the intensity of the band situated at 953 cm-1 as quenching grew 

larger. This showed that the neoxanthin Raman signal was affected by the 

oligomerisation-induced quenching; the structure of the neoxanthin was altered, 

becoming more distorted, the twisting of the molecule reducing its planarity and the 

out-of-plane modes becoming more coupled with the electronic transition. A plot of the 

intensity at the band situated at 953 cm-1 relative to the intensity of the 964 cm-1 band as 

a function of the percentage change in the fluorescence intensity, showed a linear 

relationship between them (Figure 3b). 
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Figure 3. (a) ν4 region of Raman spectra for LHCII trimer (red) and different quenched states (green-
kd=0.5; cyan- kd=1; brown- kd=2; pink- kd=5; blue- kd=9). Excitation was set at 488 nm. (b) Relationship 
between the change in Raman intensity at 953 cm-1 relative to that at 964 cm-1 (obtained from (a) and 
fluorescence quenching expressed as a percentage change in the fluorescence. The error bars represents 
the amplitude of the noise for each spectrum. Normalization was made at 964 cm-1. 
  

In order to determine if the same changes occur in vivo when NPQ is induced, 

intact chloroplasts were isolated from wild type (wt) Arabidopsis thaliana plants. The 

resonance Raman spectra were recorded for the samples with and without NPQ. NPQ 

was induced by illuminating dark-adapted chloroplasts with strong white light (1500 

µmol m-2 s-1) for about 5 minutes (Figure 4). Saturating light pulses were used at 

approximately 60 seconds intervals to assay the development of NPQ. In order to 

generate maximum ∆pH and NPQ 0.1mM methyl viologen was added as artificial 

electron acceptor. Figure 4 shows the fluorescence traces recorded for chloroplasts 

prepared from wt and L17 PsbS overexpressor plants which have higher NPQ levels. 
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Figure 4. Selected fluorescence traces for quenching analysis for wt (a) and L17 (b) chloroplast 
preparations. ML=measuring light beam; SP=saturated pulse (blue ↑) (3000 µmol m-2 s-1); AL=actinic 
light; light intensity was 1500 µmol m-2 s-1. 

 

Figure 5 shows the resonance Raman spectra in the ν4 region of chloroplasts 

isolated from wt (a) and L17 (b), with (red trace) and without (black trace) NPQ. The 

Raman spectra displayed two distinct bands at around 953 cm-1 and 964 cm-1. In the 

presence of NPQ, there was an enhancement of the 953 cm-1 band relative to 964 cm-1. 

The proportional increase of the 953 cm-1 was 5-7 % for wt and 8-9% for overexpressor 

chloroplasts. This increase in the 953 cm-1 band was similar to that found in samples of 

quenched LHCII (Figure 1a; Ruban et al., 2000; Pascal et al., 2005). 

 

 
Figure 5.  The ν4 region of the Raman spectra of isolated chloroplasts from Arabidopsis wt (a) and L17 
(b) plants. Spectrum after illumination (+NPQ, red spectra) and before illumination (-NPQ, black spectra) 
are displayed. Normalisation was performed at 964 cm-1 band. Each spectrum represents an average of 25 
individual spectra. Excitation was at 488 nm. 



Chapter 5 
In vitro and in vivo investigation of LHCII by resonance Raman spectroscopy 

 

 102 

In order to compare the observed quenching-associated differences in the spectra 

for chloroplasts and isolated LHCII, the quenched-minus-unquenched difference spectra 

were calculated for each. Figure 6 shows the difference spectrum associated with 

quenching in LHCII (black) and wt chloroplasts (red), after normalisation was made in 

the ν3 region. The spectrum calculated for chloroplasts clearly exhibited the same 

features as the difference taken for LHCII, with three characteristic bands at around 

953, 958 and 965 cm-1. 

 

 

Figure 6. Quenching-associated difference resonance Raman spectra for LHCII (black) and wt 
chloroplasts (red). Spectra were obtained by calculating quenched-minus-unquenched difference after 
normalization in the ν3 band (at 1003cm

-1). Spectra are presented as offset. 

 

These similarities observed in the difference spectra strongly suggest that the same 

twisting of neoxanthin occurs in both isolated chloroplast when NPQ is induced and in 

the quencxhed state of LHCII. 

The resonance Raman spectra of leaves from L17, the npq4 mutant with much 

reduced NPQ, and wt leaves are presented in Figure 7, along with the fluorescence 

traces recorded during NPQ induction.  It should be emphasized that the samples 

described as without NPQ were not dark-adapted, but samples after illumination 

followed by a period of dark relaxation (about 5 minutes). During this period the ∆pH 

which is formed upon illumination collapses, allowing the relaxation of the major 

component (qE) of NPQ while more long-lived forms (such as qI) will remain. 

Illumination can also cause de-epoxidation of violaxanthin to zeaxanthin in the 
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thylakoid membrane, which could potentially interfere with the resonance Raman 

measurement. The experimental design ensured that the changes in the Raman spectra 

were associated with qE, not with the qI component of NPQ, and also did not arise from 

changes in the level of zeaxanthin: firstly, no epoxidation of zeaxanthin or reversal of qI 

occur during the 5 minute dark relaxation period (Ruban & Horton 1995; Ruban et al., 

2002); and secondly, measurement of the npq4 mutant showed that although the same 

level of violaxanthin de-epoxidation and qI formation occurred as the wt and L17 

mutant (Kiss A., personal communication), the amplitudes of the Raman change was 

much less, in line with the much reduced levels of qE (see below). 

The differences in qE in the three plant types were compared to the change in the 

relative intensity of the 953 cm-1 Raman band. For the spectra presented in Figure 5 and 

Figure 7 (right panel) an average of the individual spectra (see figure legends) has been 

calculated in order to increase the signal to noise ratio. It can be seen that the magnitude 

of the change in Raman signal was greatly reduced in the npq4 mutant, in which the 

reversible component of NPQ is almost absent. Conversely, in the L17 leaves, both the 

Raman signal and qE were larger. 
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Figure 7. Chlorophyll fluorescence traces (left panel) and the corresponding resonance Raman spectra in 
ν4 region (right panel) for wt (a), npq4 (b) and L17 (c) leaves. Light intensity was 1500 µmol m

-2 s-1. 
Right panel shows spectrum after illumination (+qE, red) and following dark relaxation (-qE, black). 
Spectra are averages of 31, 22, 13 (+qE) and 28, 16, 21 (-qE) repetitions for wt, npq4 and L17 
respectively. Normalisation was made at 964 cm-1. Excitation was at 488 nm. 
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Figure 8 shows the extent of the relative enhancement of the 953 cm-1 band as a 

function of the magnitude of NPQ for chloroplasts isolated from wt and L17 plants and 

for wt, npq4, and L17 leaves. Clearly, there was a positive correlation between the 

extent of the change in Raman signal and the amplitude of qE, the dark-reversible 

component of NPQ. The calculated maximum change in the samples from the L17 

plants was approximately 8 %. It is concluded that the formation of qE was associated 

with a change in configuration of the LHCII-bound carotenoid neoxanthin, identical to 

that associated with quenching of the isolated complex. This, therefore, suggests that at 

least a part of qE observed in vivo was due to a conformational change in LHCII.  

 

Figure 8.  Extent of NPQ compared to the relative change in Raman intensity at 953 cm-1. Data were 
obtained from chloroplasts (chl) isolated from wild type (wt) and L17 plants, and leaves of wild type (wt), 
npq4 and L 17 plants.  Data are the means of separate replicated samples with 25 spectra recorded for 
each sample. The number of separate samples were 17 (wt chl), 8 (L17 chl), 3 (npq4 leaf), 4 (wt leaf) and 
3 (L17 leaf). Error bars are ±SEM.  Line shown is the best fit (95% confidence by t-test). 

In order to validate this conclusion at a more quantitative level, it was important to 

determine the size of the relative change in Raman intensity that would be expected in 

vivo, if all of the qE observed was due to the LHCII conformational change. Therefore, 

the relationship between the relative amplitude of the 953 cm-1 band and the extent of 

fluorescence quenching for the LHCII samples in different quenched state was 

determined (Figure 9). Note that these are the same data as plotted in Figure 3b, but here 
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quenching has been plotted as the kd parameter, numerically equivalent to the measure 

of qE used in Figure 8. The results from this estimation were compared with the size of 

the changes found in chloroplasts and leaves (see Figure 8) in order to discover whether 

the two sets of data (in vitro and in vivo) were consistent with each other.  

 

Figure 9. Relative change in Raman intensity at 953 cm-1 as a function of the extent of fluorescence 
quenching, kd. The parameter kd was calculated as (F(unquenched) – F(quenched)) / F(quenched) - where 
Funquenched is the fluorescence intensity at the time 0 before addition of biobeads and Fquenched is the 
fluorescence intensity at different incubation times. Vertical lines correspond to the estimated level of 
quenching of LHCII in vivo: in dark-adapted chloroplasts (cyan line) and for maximum NPQ (dark-green 
line), based on the data in Figure 3a, 5a and 8. ∆, between the two dotted horizontal lines, is the estimated 
range for the change in the resonance Raman signal of neoxanthin in vivo, which would be associated 
with the formation of qE. 

 

It can be seen that the relative amplitude of the 953 cm-1 band was strongly nonlinear 

with increasingly smaltler changes in intensity when kd reached higher values. 

Comparing the in vivo spectrum of the wt Arabidopsis chloroplasts in the unquenched 

state (Figure 5a, black trace) with the spectrum for isolated LHCII trimers (Figure 3a, 

red trace) it seems that LHCII present in the chloroplasts membranes was already in a 

partially quenched state (judging from the relative change in intensity of the 953/964 

cm-1 bands ). Thus, the state of the LHCII in chloroplasts corresponded to a kd of around 

1.5-2.0 (indicated by the cyan vertical line in Figure 9). Therefore, the change in kd 

arising from qE, which is about 2.5 (Figure 8) would start from a kd of 1.5-2.0 and 

would reach a maximum of 4.0 to 4.5 (dark-green vertical line Figure 9). Hence, the 

predicted increase in intensity of the 953 cm-1 neoxanthin band in vivo, was about 0.12, 
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the difference between the two horizontal dotted lines (∆). Therefore, an increase of 

about 20% in the relative intensity of the 953 cm-1 band was predicted in vivo in order to 

account for the change in kd arising from NPQ formation. 

 In isolated LHCII neoxanthin has the major contribution to the resonance Raman 

signal at 953 cm-1. Lutein also contributed to the signal but only to a small extent. This 

would not be the case in isolated chloroplasts. Thus, although almost all of the 

neoxanthin in thylakoid membranes is bound to LHCII trimers (Bassi et al., 1993; 

Morosinotto et al., 2002), even when the excitation is chosen to selectively excite 

neoxanthin molecules, the Raman spectrum obtained will also contain contributions 

from other carotenoids present in the membrane (β-carotene, violaxanthin, zeaxanthin 

and lutein). The contribution of neoxanthin to the in vivo spectrum can be quantified 

because only this carotenoid is in a 9-cis conformation and it thus exhibits fingerprint 

Raman bands over the whole spectral range (Ruban et al., 2000).  

 The following procedure was used to estimate how much of the 953 cm-1 

resonance Raman signal was due to neoxanthin. Firstly, curve-fitting of the ν1 band of 

the resonance Raman spectrum of chloroplasts excited in the neoxanthin region (488 

nm) was performed (Figure 10). In a previous study, Ruban et al. (2001) reported that 

the ν1 region of spectra of thylakoids containing either violaxanthin or enriched in 

zeaxanthin could be fitted using the spectra of isolated carotenoids. The fit was verified 

by an alternative approach based upon the calculation of the difference zeaxanthin 

minus violaxanthin spectra. The position of υ1 varies with the number of conjugated 

C=C’s of the carotenoid as well as the presence of cis-trans isomerisations. Therfore the 

position of υ1 is different for each of the carotenoids present in the membrane. 

Therefore, the υ1 region is the most appropriate one for estimating the neoxanthin 

contribution. Individual contours corresponding to the isolated xanthophylls, 

violaxanthin, neoxanthin, lutein, β-carotene and zeaxanthin (in pyridine) were used for 

the fit. The fitting procedure was performed using Sigmaplot software. Only the 

amplitudes of the individual carotenoid peaks were varied, until the fit matched the 

chloroplasts υ1 spectrum. The υ1 regions of β-carotene and zeaxanthin are almost 

identical and therefore were added together (Ruban et al., 2001). The neoxanthin 

contribution to the ν1 region of the chloroplast spectrum was found to be about 35%, 

with contributions of ~50% from violaxanthin, ~8% from lutein and ~7% from 

zeaxanthin/β-carotene (Figure 10).  
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Figure 10. Curve fitting of the ν1 band of the Raman spectrum of chloroplasts (black). Excitation was set 
at 488.0 nm. Individual contours correspond to isolated xanthophylls in pyridine: zeaxanthin/β-carotene 
(blue), lutein (dark-yellow), neoxanthin (red) and violaxanthin (pink). The curve fitting procedure was 
described in the text.   

 

However, the contribution of neoxanthin to the ν4 region will be different to its 

contribution to the ν1 region since each xanthophyll has different ν4/ν1 ratio. The ν4/ν1 

ratios were calculated from the spectra of the isolated carotenoids and found to be 0.12 

for neoxanthin, 0.03 for violaxanthin, 0.07 for lutein, 0.06 for zeaxanthin and 0.02 for β-

carotene. Therefore, the neoxanthin contribution to the ν4 band was obtained by 

corrections using these ν4/ν1 ratios according to: 
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where ki is the fraction of the area of each xanthophyll in the ν1 band of the resonance 

Raman spectrum of chloroplasts. Since the ν1 spectrum for zeaxanthin and β-carotene 

are identical, but their ν4 spectra are different, there are two values for the ν4/ν1 ratio of 

(zeaxanthin + β-carotene) and consequently for the estimated neoxanthin contribution to 

ν4. Thus the contribution of neoxanthin to the ν4 was calculated to be between 63 % and 

66%. Similar, the contribution to ν4 were estimated to be 22% and 23% for 
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violaxanthin, 8% and 8.6% for lutein, and 7% and 2.4% for zeaxanthin/β-carotene. 

Using the calculated estimate of the contribution of neoxanthin in the ν4 region of 65%, 

the predicted change in intensity of the 953 cm-1 band associated with NPQ in vivo was 

corrected to give a value of 13 %. This value for the estimated change matched quite 

closely the 8 % change observed in vivo (Figure 5a), given the under-estimation due to 

the lutein contribution to the ν4 region in LHCII spectrum. Although, the antenna 

complexes in the thylakoid membrane are not present simply as mixtures of LHCII and 

the same aggregates as in vitro can not be formed, it is highly significant that the 

predicted change in the resonance Raman signal from the in vitro curve (Figure 9) was 

found to be consistent with the one seen in vivo. Thus, it can be concluded not only that 

the quenching mechanism occurs in isolated LHCII as for NPQ in vivo, but that the 

magnitude of the change in LHCII conformation indicated that the amplitude of the 

change in Raman signal is sufficiently large to account for the majority of the in vivo 

quenching. 

 

5.3 Discussion 

 

The results presented in this chapter provide clear evidence that the qE process in vivo is 

caused by a conformational change that occurs in the major light-harvesting complex 

and that this conformational change results in an increase in energy dissipation. qE is 

induced and regulated by the ∆pH and the de-epoxidation state of the xanthophyll cycle 

carotenoids in a process modulated by the PsbS protein (Horton et al., 2005). The 

LHCII conformational change was previously reported to occur in vitro in LHCII 

aggregates (Horton et al., 1996) and in its crystallised form (Pascal et al., 2005), leading 

to a change in the configuration of the pigments bound to the complex. However, no 

experimental proof was provided that this occurs in vivo, or that it is correlated with the 

major component of NPQ. Using LHCII in different quenching states, as well as 

chloroplasts and leaves with different qE, it is shown here that the extent of the changes 

in the resonance Raman signal in vivo is consistent with the in vitro changes.  

 The twist in the neoxanthin configuration that gives rise to an altered Raman 

signal at 953 cm-1 indicates that LHCII can be present in different conformations, each 

conformation having different capacities of energy dissipation. Neoxanthin is present in 

a locus enriched in chlorophyll b (Liu et al., 2004) and it was shown to have strong 
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electronic interaction with these molecules (Croce et al., 1999). Changes in the 

chlorophyll b region are also present in the resonance Raman spectra of the quenched 

forms as compared to trimers (Ruban et al., 1995; Pascal et al., 2005). As discussed by 

Pascal et al. (2005), the Chl b606/Chl b607 dimer is close to neoxanthin and is a 

potential site of energy quenching in LHCII along with the site where the Chl a611/Chl 

a612 pair, lutein 620 and Chl a610 are present.  

Although it can not be excluded that other quenching processes may contribute 

to qE to some extent, such as the quenching reported to occur in the minor complexes 

CP24, CP26 and CP29 (Morosinotto et al., 2002) or quenching via formation of 

carotenoid radicals (Holt et al., 2005), the data presented here show that the LHCII 

conformation change mechanism can account completely for the in vivo process of 

energy dissipation both qualitatively and quantitatively. The data presented also provide 

new insights into the structure, function and dynamics of the PSII light-harvesting 

antenna. It is well known that the incorporation of the LHCII trimer into the thylakoid 

membrane creates a macro-organisation that is necessary for efficient light collection 

and light energy transfer to the reaction centres. It also seems that LHCII in the 

thylakoid membrane is in a slightly quenched state in the dark, but at a level where there 

is a negligible effect on the quantum yield of photosynthesis. From this state, only small 

structural changes may be required in order to give rise to the large changes in energy 

dissipation needed for photoprotection. Thus, it seems that, when integrated into the 

membrane, LHCII is finely poised not only for carrying out its role of light-harvesting, 

but also for its regulatory role in the dissipation of excess energy.  

 

5.4 Conclusions 

 

The results presented in this chapter provide new evidence that the change in 

configuration of neoxanthin and the formation of NPQ both arise from the light-

induced, ∆pH-dependent conformational change in LHCII. Moreover, because the 

NPQ-related change in neoxanthin configuration appears to be identical to that observed 

when fluorescence quenching is induced in isolated LHCII, it is further concluded that 

NPQ arises from the same quenching mechanism. 
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6.1 Introduction 

Under conditions of excess illumination the PSII light-harvesting antenna is switched 

into a photoprotective mode in order to dissipate the harmful excitation energy, a 

process known as non-photochemical quenching of chlorophyll fluorescence (NPQ) 

(Horton et al., 1996; Pascal et al., 2005). Despite the fact that the process of energy 

dissipation has been well-documented in recent years (Horton et al., 1996; Demmig-

Adams & Adams, 1996; Niyogi, 1999; Horton et al., 2005; Pascal et al., 2005; Holt et 

al., 2005) the underlying molecular mechanism is still under debate. A principal role in 

the process of NPQ is played by the xanthophylls, in particular the xanthophyll cycle 

carotenoids (Frank et al., 1994; Demmig-Adams & Adams, 1996). It has been proposed 

that the conversion of violaxanthin (a 9 double bond carotenoid) into zeaxanthin (an 11 

double bond carotenoid), which occurs when plants are exposed to strong light 

intensities, changes the carotenoid molecule from a non quencher into a quencher of the 

chlorophyll excited state. In this case the quenching occurs either via energy transfer 

(Berera et al., 2006; Ma et al., 2003), or through a charge transfer state (Holt et al., 

2005). Alternatively it was proposed that zeaxanthin has mainly a structural role 

(Horton et al., 1994; Robert et al., 2004) in the creation of the quenched structure, acting 

as an allosteric activator of quenching (Horton et al., 1991). Recent studies of the 

quenching mechanism in LHCII crystals used for structural determination give new 

insights into the quenching process (Pascal et al., 2005), highlighting the possible 

significance of specific chlorophyll-xanthophyll domains within the complex. These 

studies suggested that the process involves changes in configuration of certain 

pigments, resulting from a protein conformational change. Experiments conducted on 

LHCII aggregates show that the in vitro quenching state resembles the in vivo NPQ 

state (Horton et al., 1991; Horton et al., 1996), providing a model system for 

understanding the mechanism underlying NPQ.  

In order to determine the mechanism of quenching, it is necessary to track 

completely the pathway of excitation energy transfer in a quenched sample of LHCII 

and compare it to an unquenched sample. Recently, Berera et al. (2006) reported an 

investigation of artificial light-harvesting dyads, in which chlorophyll-like molecules 

are quenched by the optically forbidden, low-lying S1 state of carotenoids. A low 

transient concentration of the latter molecular species is detected using transient 

absorption spectroscopy. The objective of the work described in this chapter is to apply 
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this methodology to determine whether similar carotenoid excited states are involved in 

the quenching in aggregated LHCII.  

Transient absorption or ‘pump-probe’ spectroscopy is a method which allows 

the monitoring of the dynamics of extremely fast events in real time. The principle of a 

transient absorption experiment is rather simple. An intense pulse, the so-called pump 

pulse, is used to excite the molecules in the sample. Then the second, probe pulse passes 

through the sample and the intensity of the probe is monitored as a function of the time 

delay with respect to the pump pulse. Practically, one spectrum is recorded at several 

delay times between the pump and the probe, and then each spectrum is subtracted from 

that recorded when the pump pulse was absent. As the absorption spectrum of the 

sample is a signature of the molecules present in the sample, modifications in the 

absorption of the sample after the pump pulse, reflect pump-pulse-induced changes in 

the sample. By recording these absorption changes, the transfer of excitations between 

the different species present in the sample can be monitored. The detected signal in the 

transient absorption measurement is the change in absorption, ∆A (λ,t). The absorbance 

or optical density (O.D.) of a sample is defined as: 

( ) ( )
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where I0(λ) is the intensity of the incident light which hits the sample, I(λ )is the 

intensity of the light transmitted through the preparation and λ is the wavelength of 

light. Now, the difference in absorption at time t after the start of the pump-induced 

events is given by the formula: 
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where I(λ,t)on and I(λ,t)off denote the intensities of the transmitted light with and without 

the pump pulse, respectively. 

 In a pump-probe experiment different signals can be observed. Figure 1 shows a 

schematic outline of the contributions to the transient absorption signal. When a 

chromophore is promoted to an excited state by absorption of the pump pulse, is loses 

its ground state absorption and a negative signal is observed, a process called 

photobleaching (PB). The pump pulse may create either new species with a different 

absorption spectrum (e.g. oxidised/reduced forms) or simply molecules in an excited 
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state which show excited state absorption (ESA) i.e. in the excited state, the 

chromophore may absorb more photons from the probe pulse and consequently go to a 

higher excited level. These 2 processes have a positive contribution (enhancement) to 

the absorption signal.  The probe pulse may also stimulate a molecule in an excited state 

to decay back to the ground state by emitting photons, a process called stimulated 

emission (SE). SE gives rise to an apparent additional bleaching signal and its spectrum 

is similar to a fluorescence spectrum. 

 

 

Figure 1 Schematic representation of the possible contributions to a transient absorption signal. 
PB=photobleaching (from ground state (g) to an excited state (e1)); SE=stimulated emission (from e1 to 
g); ESA= excited state absorption (from e1 to e2, e3 …) 

 
 A schematic outline of the transient absorption (pump-probe) apparatus used to 

perform the measurements presented in this chapter is shown in Figure 2. Briefly, 

femtosecond laser pulses were obtained from a titanium:sapphire oscillator-regenerative 

amplifier (Coherent MIRA seed and RegA 9050) working at a repetition rate of 40 kHz, 

which provided initial pulses of ~50 fs at 800 nm (FWHM 30 nm). The laser beam was 

split into two parts: one was focused on a BBO (β -barium borate) crystal to generate a 

white light continuum (the probe beam); and the other was used to pump an optical 

parametric amplifier (OPA 9850, Coherent) to obtain the pump beam at 675 nm (~100 

fs). The delay between the two beams was achieved by taking advantage of the speed of 

light: knowing the finite light speed (3x108 m/s), and using a translation stage to vary 

the distance that the probe beam travels with respect to the pump beam, a variable delay 
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was induced between the probe and the pump pulses. For instance, a 3 mm difference in 

distance travelled introduced a 1 ps time delay between the pulses. The polarization 

between the pump and probe beams was set at magic angle (54.70) with respect to the 

probe beam. The instrument response function was fitted to a Gaussian of 120 fs 

(FWHM). 

An excited singlet state may also decay as a result of a process called singlet-

singlet annihilation. Annihilation occurs when two excitons arise in the same pigment 

molecule and it is therefore dependent on the excitation pulse intensity, being present 

mainly at high excitation intensities. For this reason, to avoid this unwanted 

phenomenon, the pump intensity used was reduced to ~10 nJ. However, even at this low 

intensity annihilation may occur and this had to be taken into account in the analysis of 

the data.  

 

 
Figure 2. Schematic outline of a transient absorption setup. The pump pulse is used to excite the sample 
and the induced absorption changes are monitored with the white probe pulse, which is delayed in time. 
BS=beam splitter; TS=translation stage; M-mirror; BBO= β-BaB2O4 crystal used to generate white light; 
L=lenses. 
 
 A typical time-resolved experiment consists of collecting thousands of spectra 

(see Appendix for an example of transient difference absorption traces). In order to 

select only a small part of the information and to be able to interpret the dynamics and 
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kinetics of the experiment, data were analyzed by making use of global analysis 

techniques (van Stokkum et al., 2004). In this approach, data are described by a number 

of compartments with specific spectral properties. For example at time zero the 

excitation is situated in compartment 1. This compartment decays into compartment 2 

with a rate constant k1 (i.e. compartment 2 is populated with rate k1), which decays with 

a rate constant k2 into compartment 3, which populates compartment 4 with rate k3 

(Figure 3a). The number of compartments is increased until the addition of a new 

component does not lead to an improvement of the quality of the fit, finally obtaining 

for each compartment a rate constant and a spectrum. The obtained spectra are called 

Evolution-Associated Difference Spectra (EADS) and they represent in general a 

mixture of molecular states. For this reason in order to obtain the spectra of the 

corresponding pure molecular species (Species-Associated Difference Spectra, or 

SADS), a target analysis is also applied to the data whereby a specific kinetic scheme is 

applied (van Stokkum et al., 2004). At this stage the sequential model is branched in 

such a way as to reflect the true photophysics and/or photochemistry of the system. For 

example, considere the reaction scheme represented in Figure 3b: an initial excited state 

A can decay into two different states B and C with the rates kB and kC; the C state then, 

decays into D with the rate kD; and both states B and D are relatively long-lived within 

the timescale of the measurement. When the measurement is performed, changes in the 

absorption spectrum of the system will occur reflecting the presence of these different 

states. Considering now the spectral evolution of the whole system, represented in 

Figure 3a, an attempt is made to fit the data to a number of events, in a way that (1) 

gives rise to (2), then to (3) and finally to (4). Upon excitation, the majority of the 

absorption difference (1) will be due to the formation of A, but a small proportion of A 

will have decayed into B and/or C. In (2), depending on the varying rate constants kB 

and kC, there will be a certain proportion of each, while a small amount of A will still 

remain. In addition, some of C may already have decayed in D on this timescale. In (3) 

depending on the constant kD part of C will still be present and a very small part of A, 

the major component being D. Finally, in (4) it will be mainly D, with a small part of C 

and probably nothing of A. 
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Figure 3. Schematic representation of global (a) and target (b) analysis models for a four-compartment 

system. 

 

 The aim of the work presented in this chapter is to explore the mechanisms of 

excited energy dissipation by using femtosecond transient absorption spectroscopy 

applied to LHCII in different quenching states. This work was carried out in the 

laboratory of Professor Rienk van Grondelle (VU University of Amsterdam), in 

collaboration with R. Berera and J. T. M. Kennis. Data analysis was carried out by I. 

van Stokkum.  

 

6.2 Results 

LHCII trimers were prepared from dark-adapted spinach leaves. PSII-enriched 

membranes (BBY particles) were solubilised with n-dodecyl β-D-maltoside (see section 

2.3.4 for details) and fractioned by IEF. The dark-green band, which contains mainly 

LHCII trimers was collected and for a further purification was loaded onto a sucrose 

gradient, as described in 3.2.1 section. To obtain the quenched samples, trimeric LHCII 

was incubated in a 2 ml cuvette in the presence of n-dodecyl β-D-maltoside and 

biobeads were added in order to gradually remove the detergent. The quenching state 

was monitored by fluorescence measurements, and expressed as kd 

(
quenched

quenchedunquenched

d
F

FF
k

−
= ; where Funquenched is the fluorescence intensity at the time 0 

before addition of biobeads and Fquenched is the fluorescence intensity at different 

incubation times). The quenched aggregates and trimeric LHCII were then subject to 

transient absorption measurements. 
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 Figure 4 shows the results of global analysis (EADS) of the data for the three 

samples used: trimeric LHCII, quenched aggregates with kd=2 and quenched aggregates 

with kd=9 (see also the raw data in Appendix where the transient difference absorption 

traces for the three samples recorded at 45 wavelengths are presented). Four 

components were needed to fit the data for all samples. The first one (black trace) 

appeared at time zero after correction for coherent artefacts and displayed the same 

features for all samples: bleaching of the chlorophyll Qy region at 677 nm, bleaching of 

the chlorophyll Qx region at about 620 nm superimposed with a chlorophyll excited 

state absorption; and below 600 nm, a positive signal originating from chlorophyll 

excited state absorption. This spectrum decayed in 975 fs for trimers, 1 ps for the 

sample with kd=2 and 550 fs for sample kd=9, to the second (red) trace which showed a 

drop in the chlorophyll Qy bleach and a small drop in the excited state absorption below 

600 nm. Also, in the carotenoid ground state absorption region (below 530 nm) it 

appeared that the drop in amplitude was slightly bigger than in the region situated at 

higher wavelengths, suggesting that a carotenoid ground state might have been 

depopulated at this stage. This spectrum decayed in 21.7 ps for trimeric sample, in 26.6 

ps for the sample having kd=2 and in 18.3 ps for sample with kd=9 to the third 

component (blue trace). This third set of spectra showed further bleaching in the 

chlorophyll Qy region with an overall small decrease of the chlorophyll excited state 

absorption present in all the samples. The region below 530 nm showed a slight 

decrease at this stage but, interestingly, for the quenched samples in the region situated 

between 530 and 600 nm the signal seemed to have the same amplitude, suggesting that 

the decay of the chlorophyll excited state absorption was compensated by the rise of 

another species, possibly a carotenoid excited state. For the trimeric samples the next 

evolution (blue to dark-cyan) took place in 505 ps and was characterised by a drop in 

the chlorophyll Qy region and a decrease of the chlorophyll excited state absorption. In 

the region below 530 nm the spectrum displayed a typical carotenoid triplet state 

superimposed with the chlorophyll excited state absorption, indicating that this last 

spectrum was a mixture of long-living (unquenched) singlet chlorophyll and carotenoids 

triplet. In the samples with an intermediate degree of quenching (kd=2) the blue to dark-

cyan evolution took place in 285 ps and was characterised by a drop in the chlorophyll 

Qy region and a decrease of the chlorophyll excited state absorption. As for the trimeric 

sample this spectrum was a mixture of carotenoid triplet and long living singlet 
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chlorophyll. The same evolution for the sample with highest quenching degree took 

place in 138 ps. For this sample the chlorophyll Qy bleach had disappeared, the 

spectrum being almost flat except a small part in the carotenoid triplet region (around 

510 nm), suggesting that the triplet population was very small in this case. 

 

 

Figure 4.  EADS for the trimeric (a), kd=2 (b) and kd=9 (c) LHCII. Dark-cyan trace presented as ‘inf’ 
refers to a component which does not decay on the timescale of the experiment (i.e. 20 ns). 

a 

b 

c 
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 Figure 5 shows the results obtained for the first 3 EADS (black, red and blue 

spectra, Figure 4) after normalisation in the Qy region. The rationale for normalization 

in this region was the following: assuming the carotenoid contribution to the spectrum 

in the Qy region (~680 nm) to be negligible, normalization in this region was expected 

to give a similar contribution to the spectrum from the chlorophyll bleach and 

chlorophyll excited state absorption, so that any spectral change (differences in 

amplitudes) could be assigned to a different species. For all three samples, in the region 

situated below 510 nm, there was a decrease in the amplitude from the black to the blue 

trace, the decrease being more pronounced as the samples are more quenched. This 

region corresponds to the carotenoid S0→S2 transition, thus suggesting that a 

depopulation of the carotenoid ground state absorption occured during the quenching 

process. In the region between 510 and 590 nm (region of excited state absorption from 

carotenoid S1 state) there was an increase in the amplitude of the spectra from black to 

blue, this increase becoming more pronounced as the degree of quenching increased. 

The results obtained from the global analysis of the data along with the normalised 

EADS suggest the involvement of a carotenoid excited state during the quenching 

process. 
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Figure 5.  EADS after normalisation in the chlorophyll Qy region (see text for detailed explanation). The 
traces are the same as presented in Figure 4. The noise present is due to the overlapping of the windows 
when were added together.  
 

In order to identify the spectrum of the quenching state, target analysis was 

applied to the data. The kinetic model applied for analysis of the samples is depicted in 

a 

c 

b 
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Figure 6 and consists of 6 compartments. The model is not unique, presented here is the 

one which gave the best fit of the data. Four pools of chlorophylls are needed in order to 

take account of the heterogeneity of the sample: Chl 1, Chl 2, Chl 3 and Chl. Chl 4 pool 

represents the unquenched chlorophylls present in the trimeric unquenched state and in 

the sample with kd=2.  

 

 

Figure 6. The kinetic model used to fit the data. For the sample with kd=9 the Chl 4 pool (unquenched 
chlorophylls) was not considered. For further details see the text. 
 

The excitation at time zero resides in the Chl1 compartment, and is distributed into the 

three compartments Chl 2, Chl 3 and Chl 4 (in about 1 ps) with rate constants k1, k2 and 

k3 respectively. In the fitting process k1, k2 and k3 were allowed to vary, to reflect the 

change in quenching and annihilation in the various samples upon aggregation. Chl 2 

and Chl 3 are quenched via the quenching state Q (quencher) with a rate constant kq. 

Both Chl 2 (fast) and Chl 3 (slow) contain an annihilation channel to account for the 

multi-exponential character of singlet-singlet annihilation that may occur (rate constants 

k4 and k5 respectively). Both compartments also populate the long-living triplet state 

with a rate constant k7 corresponding to a very small yield. Chl 4 represents unquenched 

chlorophyll, which is present in the unquenched and mildly quenched (kd=2) samples, 

but not in the highly quenched (kd=9) sample. Chl 4 populates the long-living triplet 

state with rate constant k7 and decays to the ground state with rate constant k8. Rate 
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constant k8 is also present from Chl2 and Chl3, but has been omitted from the scheme, 

for clarity. The rate constants that were obtained from the data-fitting process are shown 

in Table 1.  

 

              trimers              Kd=2              Kd=9 
k1 (15.87ps)-1 (8.54ps)-1 (2.39ps)-1 
k2 (17.85ps)-1 (3.74ps)-1 (1.3ps)-1 
k3 (2.87ps) -1 (4.38ps)-1 (51.8ps) -1 
k4 (25ps) -1 (25ps) -1 (25ps) -1 
k5 (400ps) -1 (400ps) -1 (400ps) -1 
kq (770ps) -1 (670ps) -1 (217ps) -1 
k6 (8ps) -1 (8ps) -1 (8ps) -1 
k7 (10ns) -1 (10ns) -1 (10ns) -1 
k8 (10ns) -1 (10ns) -1 (10ns) -1 

 
Table 1 Rate constants obtained from the kinetic model in Figure 6 for the three samples. Estimated error 
in the rate constants k1, k2, k3, and kq is about 10%, the other rate constants were fixed. 
 
 

Figure 7 shows the kinetic traces at different wavelengths for each of the samples and 

their corresponding fits obtained from the kinetic model described above.  

 
Figure 7 Transient absorption traces. ∆A=absorption changes; X=axis is linear from -10 to 10 and 
logarithmic thereafter. The black curves represent the fit using the model depicted in Figure 6. Green 
represents 1ps phase due to chlorophyll excited state relaxation; red=chlorophyll excited state decay; 
cyan=development of the carotenoid triplet state; blue=absorption changes due to the quencher Q.  
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At 677 nm, the traces show an initial bleach of the chlorophyll ground state absorption. 

This bleach relaxed(green trace) as chlorophyll excited state decayed (red line) to its 

ground state. As expected, the decay of the chlorophyll excited state was faster as the 

degree of quenching increases. The traces at 489 nm, situated in the region where the 

ground state of the carotenoid bleaches, and at 537 nm, corresponding to carotenoid 

excited state absorption, were very similar for the trimer. In contrast, for the quenched 

samples the traces at these two wavelengths differed significantly. This difference was 

accounted for in the model by the presence of the chlorophyll excited state decay 

contributing to the trace at 489 nm on the 10-20 ps timescale, but which is not present in 

the 537 nm traces. A comparison between the chlorophyll excited state decays reflected 

in the traces at 677 nm and 537 nm shows a slower decay for the latter, indicating that, 

simultaneously with the chlorophyll excited state decay, another species is transiently 

populated. This species has the excited state absorption in this region and is likely to be 

a carotenoid S1 state- its appearance and decay are shown by the blue trace in Figure 7. 

The same feature is present in the samples with an intermediate degree of quenching in 

the traces at 537 nm but the amplitude of this absorption change is much lower. Its 

contribution is negligible in the unquenched trimeric sample. In order to verify the 

importance of including this feature in the model, for the samples with kd=9, the 489 nm 

and 537 nm traces were fitted without including quenching via the carotenoid excited 

state (Figure 8). It can be clearly seen that the quality of the fitting was reduced 

significantly when the quenching via a carotenoid excited sate was not taken into 

account in the model. 

 

 



Chapter 6 
Transient absorption measurements on LHCII in different quenching states 

 

 125 

 

Figure 8 Selected kinetic traces at 489 and 537 nm for the sample having kd=9. The corresponding fit was 
obtained by applying a kinetic model without quenching via a carotenoid excited state. 
  

In order to investigate whether quenching occurs via energy transfer and/or a 

charge-separated state (Holt et al., 2005), extensive probing of the 900-1000 nm region 

was made. Figure 9 shows selected kinetic traces in the near-IR region (963 nm) for the 

quenched sample. The fit of the data was obtained from a model consisting of three 

lifetimes: a ~100 fs component to account for ultrafast relaxation, a ~12 ps component 

to account for singlet-singlet annihilation of chlorophyll excited states and a 160 ps 

component which corresponds to the lifetime of the chlorophyll excited state. The signal 

in this region was flat and followed the same dynamics as the chlorophyll excited state 

absorption, revealing no changes that could be assigned to the presence of a carotenoid 

radical formed during the quenching process. 
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Figure 9 Selected kinetic traces in the near-IR (963 nm) region for the quenched sample (see text for 
details). 

  

From these results it can be concluded that the chlorophyll fluorescence quenching in 

the quenched LHCII samples occurs via a carotenoid excited state. 

 Taking into account that the samples used contain only traces of violaxanthin 

and no zeaxanthin or antheraxanthin (see also 3.2.1 for detailed information), the only 

possible candidates to which the absorption changes can be assigned are neoxanthin and 

lutein. In order to identify which of these two carotenoids was involved, species 

associated spectra (SADS) for the sample with kd=9 were obtained according to the 

model presented in Figure 6. Figure 10 shows the SADS of the 5 compartments of the 

model. The dark-green spectrum represents the first (Chl 1) pool of chlorophyll and the 

dark-yellow spectrum represents the Chl 2 and Chl 3 pools (the latter two are identical 

and represented by one spectrum). The cyan spectrum corresponds to the long-living 

carotenoid triplet state and the red spectrum is that of the quenching state, Q. 
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Figure 10. SADS for the sample with kd=9 after target analysis model depicted in Figure 6. Dark-green 
spectrum represents the Chl 1 (chlorophyll) compartment, dark-yellow spectrum Chl 2 and Chl 3. Cyan 
spectrum represents the carotenoid triplet and the spectrum of the quencher is represented in red. By 
vertical line is shown the bleaching of the carotenoid triplet and of the quencher. 
 

It can be seen that the bleach of the carotenoid triplet and the bleach of the quencher 

both peak at ~495 nm (negative peaks indicated by vertical line, Figure 10), which is 

known to belong to lutein 1 (Lampoura et al 2002). Thus, it may be concluded that 

lutein 1 is likely to be the quencher. 

 

6.3 Conclusions 

Time-resolved absorption spectroscopy was applied to LHCII in different quenching 

states. The results of the measurements showed that in the aggregated samples a 

carotenoid excited state was populated concomitant with the decay of the chlorophyll 

excited state, indicating energy transfer from chlorophylls to carotenoid. This excited 

state was identified as a low-lying S1 state of the LHCII-bound carotenoid lutein 1. The 

spectral evolution in the carotenoid absorption region showed the same features as those 

observed before by Berera et al. (2006) in artificial carotenoid-phthalocyanine dyads, in 

which it was demonstrated that quenching occurs via the population of this carotenoid 

excited (S1) state. 
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7.1 Introduction 

Photosynthesis in plants is an efficient process, collecting light energy even in 

extremely low light conditions and transferring this energy towards the reaction centres 

of the two photosystems, where primary photochemistry takes place. However, this 

process is also regulated when the incoming light energy is above that which can be 

used in electron transport (high light conditions), the light-harvesting antenna is able to 

switch into a photoprotective mode, dissipating the excess energy as heat. This 

dissipative process is known as non-photochemical quenching of chlorophyll 

fluorescence (NPQ). In higher plants the major component of NPQ is qE (feed-back de-

excitation or energy dependent quenching) and this is dependent upon the formation of 

a ∆pH across the thylakoid membrane (Briantais et al., 1979). qE is facilitated by the 

de-epoxidation of violaxanthin to zeaxanthin during the xanthophyll cycle (Demmig-

Adams, 1990) and additionally a crucial role has been shown to be played by the PsbS 

protein, since elimination of the protein results in a drastic reduction in qE (Li et al., 

2000). Carotenoids have been found to play a vital role in photoprotection of the 

photosynthetic apparatus, by quenching chlorophyll triplets as well as scavenging 

harmful singlet oxygen. They are also involved in the mechanism of NPQ especially via 

the xanthophyll cycle. The mechanism of how the xanthophyll cycle zeaxanthin is 

involved in NPQ in not completely resolved and zeaxanthin may have either a direct or 

an indirect role in NPQ. Lutein is also proposed to have a role in NPQ (Lockstein et al., 

2002).  

Presented in this thesis is a detailed analysis of LHCII in vitro and in vivo using 

different spectroscopic approaches, in order to give a better understanding of the energy 

transfer between its bound pigments. Although several hypotheses have been proposed, 

the precise mechanism of excess energy dissipation has not been conclusively 

determined. New results presented in this thesis provide a step forward in the 

understanding of this non-photochemical mechanism(s). 

 

7.2 Efficiency of energy transfer from xanthophylls to chlorophylls 

Chapter 3 of this thesis presented a new approach to determine the contribution in the 

77K absorption spectrum of lutein 2. This lutein molecule in trimeric LHCII has a red-

shifted absorption (510 nm) compared to lutein 1 (495 nm). The absorption feature 

situated at around 510 nm was originally thought to arise from the xanthophyll 

violaxanthin. Peterman et al. (1997) reported the 4K absorption spectra of the 
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monomeric and trimeric LHCII, along with their calculated second derivative. It was 

found that during the monomerisation process the 510 nm transition disappeared. As 

pigment analysis by HPLC indicated that violaxanthin was (a) present in 

substoichiometric amounts in the trimer (thus potentially explaining the low intensity of 

the band) and (b) completely lost upon monomerisation, the authors concluded that this 

band arose from violaxanthin. However, using the highly selective resonance Raman 

technique it was found that the band could in fact be attributed to one of the luteins 

(lutein 2), this molecule being found in a twisted conformation in the trimer (Ruban et 

al., 2000). This twist was followed by analysing the ν4 region of the spectrum where 

enhanced modes can be observed when excitation was set at 501, or at 514 nm (exciting 

mainly the lutein 2 molecules). Upon monomerisation some of the Raman modes are 

not observed, suggesting relaxation of this twisting. It was suggested that the new 

modes present in the resonance Raman spectrum of trimers may be induced by 

conformational changes in each monomer upon trimerisation (Ruban et al., 2000). In a 

later study (Ruban et al., 2001) it was suggested that the difference in the amplitude of 

the 495 nm band (lutein 1) and the 510 nm (lutein 2) may arise from a smaller 

extinction coefficient of the latter pigment, but the authors also stated that a more likely 

explanation was the observation that the 510 nm band is at least 70% broader than the 

one at 495 nm.  

This hypothesis was tested in Chapter 3. A mathematical calculation of the 

second derivative performed on a Gaussian function showed that the amplitude of the 

second derivative was smaller for broader bands. Curve-fitting analysis performed on 

the absorption spectrum of LHCII trimer, showed that the 510 nm band was not a minor 

component of the spectrum, but had almost the same contribution as the 495 nm band. 

Interestingly, the red-shifted lutein was found in the newly-synthesised trimers of the 

antisense asLhcb2 Arabidopsis plants, which lack the Lhcb1 and Lhcb2 proteins of 

LHCII. These Lhcb5- and Lhcb3-containing trimers apparantly provide the same 

environment for lutein 2 (lut2) as in the major LHCII in the wild type. The origin of the 

red-shift may be new interaction between pigments during the trimerisation process. It 

can be proposed in this case that trimerisation creates an intermonomer lutein 2-Chl 

a603 (the closest pigment) associate (Figure 1a). Lutein 2 and Chl a603 are in van der 

Waals contact (3.35 Å) in the newly created associate and that could red-shift the lutein 

absorption band.  
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Figure 1. Lutein 2 – Chl a603 locus. Red is lutein 2 and green Chl a603 (a). Inset Chl a603 with all 5 
polar oxygen-containing groups (red) facing lutein 2; (b) Lutein 2 (red) and violaxanthin (brown) binding 
sites. Highly conserved aromatic residues are indicated and highlighted in blue (Liu et al., 2004). 
 

Shown in the inset to Figure 1a are the oxygens from the Chl a603, which faces the 

head group of the lutein molecule. The oxygens can exert a strong polarising field, 

leading to an increase in the xanthophyll dipole moment, which was indeed found to be 

large (Palacios et al., 2003), and consequently induce the shift of the lutein absorption. 

An alternative explanation for the red-shift may be found in the lutein environment on 

the monomer of the trimeric LHCII. There are 7 closely located aromatic residues 

(W46, W71, W97, F189, F192, F195, and H78) that have delocalised π -electron 

systems and these may affect the excited state energy level of lutein 2 and consequently 

red shift its absorption (Figure 1b). 

The energy transfer efficiency from xanthophylls to chlorophyll a was estimated 

by comparing the absorption and excitation spectra. It was found that xanthophylls 

exhibited an efficiency of energy transfer of 80-90 %, consistent with previous data (van 

Amerongen & van Grondelle, 2001). 

Comparative studies of the absorption and fluorescence excitation of the wild 

type and asLhcb2 thylakoids revealed that there were no major alterations in 

xanthophylls to chlorophyll energy transfer. However, the 510 nm (lutein 2) band, 

exhibited a slight increase of the amplitude in the fluorescence excitation spectra, 

indicating that lutein 2 has higher energy transfer efficiency in the antisense plants. 

Because of the instability of the trimers isolated from the antisense plants, an exact 

estimation of energy transfer efficiencies for all of the xanthophylls was not possible, 

and estimation of these coefficients from the thylakoid spectra was impossible because 

of the complexity of the spectra. 

a b 
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Thylakoid membranes containing only violaxanthin or enriched in zeaxanthin 

were studied. Comparison of the absorption and fluorescence excitation spectra 

suggested that a conformational change in the antenna may occur as a result of the high-

light treatment and the appearance of zeaxanthin. The light minus dark 1-T difference 

spectrum was a typical zeaxanthin minus violaxanthin spectrum, but, surprisingly, the 

excitation difference spectrum was differently structured. The difference between these 

two spectra could be explained by a change in the energy transfer coefficients of some 

pigments present in the thylakoid membrane after the light treatment. Upon illumination 

no differences in the chlorophyll a, chlorophyll b, neoxanthin, or lutein content were 

observed. Hence, the changes must have arisen because of the change in the xanthophyll 

cycle content and possible from a resulting conformational change in the antenna 

proteins. The double difference spectrum calculated by substracting the 1-T difference 

spectrum from the excitation difference spectrum, resembled a violaxanthin spectrum, 

suggesting that a population of the violaxanthin pool (which is not de-epoxidised) may 

become involved in energy transfer to the PSII cores after light treatment. It was shown 

that violaxanthin molecules are relatively strongly bound to the light-harvesting 

antenna, and therefore not all of the violaxanthin pool is easily accessible to the VDE 

enzyme for de-epoxidation (Ruban et al., 1994; Ruban et al., 1999). Violaxanthin was 

shown to bind tightly to CP29 (Ruban et al., 1999) and therefore a proportion of the 

above mentioned changes may be associated with this xanthophyll pool. It can be 

suggested that, during the illumination, changes occurred in the thylakoid membrane 

that triggered the movement of the CP29 complexes in the vicinity of the PSII cores 

(Figure 2), simultaneously with a conformational change in the protein, giving 

violaxanthin a more favourable position to transfer energy to the PSII cores. 

Alternatively, a conformational change in the LHCII domain following de-epoxidation 

may have co-operatively altered all of the V1 sites, so changing the configuration of the 

remaining violaxanthin, enhancing its ability to transfer energy to PSII.  
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Figure 2. Possible mechanism of CP29 relocation caused by de-epoxidation within PSII macrostructure. 
The double headed red arrows indicated the possible CP29 relocation towards the PSII supercomplexes 
 

7.3 Quenching without protein aggregation involves a conformational switch in 

LHCII subunits 

Spectroscopic and biochemical analysis of isolated LHCII complexes incorporated in a 

solid gel system were performed during the transition to a photoprotective (low 

fluorescence) state (Chapter 4). These results strengthen the evidence that quenching 

does not require protein-protein interaction, but, instead, is caused by a conformational 

change within the monomeric (or trimeric) subunits of the complexes. Several lines of 

evidence indicated that quenching occured in the absence of aggregation in this system. 

Firstly, analysis of room temperature absorption spectra revealed the absence of the 

typical red ‘tail’ associated with the presence of large aggregates. Secondly, LHCII in 

the gel system, present in a variety of quenched and unquenched states, was completely 

mobile when ran in an electrophoresis gel, mirroring the behaviour of 

trimers/monomers rather than aggregates.  

The occurrence of a conformational change in the protein during the transition to 

this low fluorescence state was also investigated in the gel system. The cross-linker 
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glutaraldehyde affected both the transition to the quenched state (when the detergent 

was diluted from the complex) and the relaxation from this state (when detergent was 

added). This suggested again that the protein underwent a conformational change during 

the transition to the photoprotective state, the cross-linker effectively “freezing” the 

complex in one conformation or the other. The absorption and CD changes, together 

with the twisted configuration that LHCII-bound neoxanthin exhibited in the quenched 

LHCII (Ruban et al., 1995; Pascal et al., 2005), indicated an involvement of this 

xanthophyll binding site in the conformational switch to the quenched state. This 

suggestion is consistent with the strong excitonic structure in the quenched LHCII state 

in the chlorophyll b region (Ruban et al., 1997), which could be explained by the 

formation of a stable rigid dimer of b606 and b607 potentiated by two water molecules 

(Pascal et al., 2005, see Figure 3). Chlorophyll a604 is located in very close contact 

with the cis- ‘leg‘ of the neoxanthin molecule and thus could also be involved in the 

dynamics of this domain in LHCII. The observed changes in absorption and CD in the 

region (around 662 nm) where this chlorophyll peaks (van Grondelle & Novoderezhkin, 

2006), indicated that this chlorophyll was affected during the establishment of the 

quenching state. 

 

 

Figure 3. Possible sites of quenching in LHCII: neoxanthin and lutein 1 domain. Chlorophyll a are shown 
in purple, chlorophyll b in orange, neoxanthin in yellow, lutein 1 in red and the polypeptide bones in 
green (Liu et al., 2004). 
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Other changes were observed in the chlorophyll a pigments in both Soret and Qy region 

of the absorption spectrum, which indicate that the terminal emitter domain consisting 

in the chlorophylls a610, a611 and a612 was also affected during the transition to the 

quenched state. These changes, which were correlated with the alteration in the CD 

spectrum indicate that another domain was involved in the quenching-associated 

dynamics. Even during the very first stages of quenching, there was a change in the 

absorption spectrum (681 nm), attributed to the chlorophylls within the terminal emitter 

domain. Further quenching was followed by an enhancement and then a decrease of this 

feature, overtaken by a strong drop in oscillator strength of this group of pigments and a 

decrease in the corresponding CD feature (678 nm). As the quenching state became 

stronger, the absorption change in the carotenoid region became broader and more 

complex, indicating the involvement of lutein 1 in the process. It had previously been 

suggested that this domain is the likely site of quenching (Wentworth et al., 2003; 

Pascal et al., 2005) due to chlorophyll a-chlorophyll a and/or chlorophyll a-lutein 1 

interaction. The data indicated that the transition into the quenching mode was 

progressive and gradual. Previously, it had been assumed that LHCII switched between 

just two states, and that the extent of quenching is determined by the proportion of the 

LHCII population in each state. However, here evidence was obtained that the 

formation of the quencher evolved through a number of different conformational states 

of LHCII.  

 

7.4 In vivo detection of a light-induced conformational change of LHCII  

 It had been suggested from studies on aggregates of LHCII (Horton & Ruban, 1992), 

LHCII crystals (Pascal et al., 2005) and here the aggregation-free LHCII-gel that, 

during the transition to the dissipative state, LHCII undergoes a conformational change. 

This change appears to be an intrinsic feature of each LHCII (sub)unit, which results in 

a modification of pigment orientation, leading to formation of a quenching centre and 

hence an increase in energy dissipation. Many features of the quenching in aggregated 

state of LHCII resemble the NPQ process in vivo (Horton et al., 1996), but there was no 

experimental proof that this conformational state occurred in vivo. 

Chapter 5 describes how the highly selective resonance Raman technique 

revealed a light-induced conformational change in vivo in chloroplasts and leaves after 

NPQ induction. This conformational change was monitored by a twisting of the LHCII-

bound neoxanthin molecule, and it was found that the extent of the change in the Raman 
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signal was correlated with the amount of NPQ, when compared to the in vitro model 

system (LHCII aggregation). The predicted value of the Raman change associated with 

qE in vivo, was very similar to that observed in vitro, consistent with the hypothesis that 

quenching occurs through the same mechanism in each case.  

 

7.5 Identification of the quencher in LHCII present in dissipative state 

Femtosecond transient absorption spectroscopy performed on LHCII in a highly 

dissipative state showed that a carotenoid S1 excited state was populated on the same 

timescale as the chlorophyll excited state decay (Chapter 6). This carotenoid was 

identified as lutein 1. Thus, it can be suggested that the conformational change detected 

by resonance Raman spectroscopy opens up a pathway for energy dissipation within 

LHCII whereby chlorophyll(s) a transfers energy to a low-lying S1 excited state of 

lutein 1. Although a mechanism in which lutein 1 excited state acts as the chlorophyll 

fluorescence quencher can completely account for qE in vivo, other processes could be 

involved, but perhaps only to a relatively small extent. One of these processes may 

involve formation of a zeaxanthin cation. Transient absorption spectroscopy of isolated 

thylakoids suggest that the mechanism of qE is the energy transfer from the chlorophyll 

excited state to zeaxanthin followed by the formation of a zeaxanthin radical cation (Ma 

et al., 2003; Holt et al., 2005). It has been suggested that the zeaxanthin cation radical is 

preferentially formed in the CP29, CP26, CP24 minor complexes, which are hence the 

main sites of qE (Avenson et al., 2007). 

 

7.6 How does the conformational change give rise to quenching? 

The results described in this thesis add considerably to the evidence for the dynamic 

nature of the light-harvesting antenna in which conformational changes control the 

properties of the bound pigments. Recently, based on the crystal structure of the 

cucumber LHCII at 2.66 Å it was hypothesized how a conformational change involving 

lutein 1 might take place (Yan et al., 2007). LHCII crystals of different age show a 

decrease of the crystal unit cell as a result of dehydration. The dehydration of the 

crystals is accompanied by a shift of the maximum fluorescence emission peak from 

680 nm to 700 nm (Yan et al., 2007), the feature associated with the quenched state, not 

only in LHCII crystals but also in LHCII aggregates (Ruban et al., 1991), in the LHCII-

gel system (see Chapter 4) and even in vivo (Tang et al., 2007; Horton et al., 1996). The 

extent of quenching of chlorophyll fluorescence correlates with crystal age, the older 
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crystals being more quenched and their fluorescence maximum more red-shifted. It was 

then concluded that dehydration, which could mimic the effect of ∆pH formation across 

the thylakoid membrane, induces a conformational change within the LHCII crystal. 

This conformational change would result in a rotation of the lutein 1 molecule towards 

the Chl a612-Chl a611 dimer to form a hetero-trimer of pigments, lutein 1 becoming 

more twisted than lutein 2 (as found in the highly quenched crystals). The identification 

of lutein 1 as the quencher is entirely consistent with this model. 

  However, it is interestingly that in the resonance Raman measurements the 

predicted twist of the lutein 1 was not found when comparing quenched and 

unquenched samples (Pascal et al., 2005). There are enhanced modes in the ν4 region of 

the Raman spectrum when the excitation (496, 501 and 514 nm) is set to selectively 

excite the lutein molecules, but these modes have been assigned to the other lutein 

(lutein 2) present in LHCII (Ruban et al., 2000; Ruban et al., 2001). This molecule is 

distorted during the trimerisaton process (associated with the 510 nm band discussed 

above). In the quenching process only neoxanthin exhibits a clear twisting as compare 

to free trimers and it can be suggested that the lutein 1 molecule perhaps needs only a 

very small (undetectable) change in its configuration to become the quencher. This 

change could result from a possible electrostatic effect created by the twisting of 

neoxanthin, causing lutein 1 to move closer to the terminal emitter chlorophylls a610, 

a611 and a612. Such transmission of conformational “information” from the neoxanthin 

domain to the quenching domain is depicted in Figure 4. The resulting small 

modification in the configuration of the lutein 1 then allows its S1 state to accept energy 

from the chlorophyll Qy state and then decays to its ground state dissipating the energy 

as heat. 
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Figure 4. Model for mechanism of NPQ, showing the quenching site with the pigments involved. Lutein 
1 (magenta) present in the vicinity of the terminal emitter domain consisting in Chl a610 (blue), Chl a611 
(yellow) and Chl a612 (red). Green arrows indicate the possible movement of the lutein 1 towards 
chlorophylls. Also shown neoxanthin (orange) twisting (black arrow). In gray are depicted the other 
chlorophylls and the polypeptides residues present in LHCII monomer (Liu et al., 2004). 

 

In the future it should be possible to further determine the molecular details of 

the conformational change in LHCII. At present, only the changes in the configuration 

of some pigments have been identified, and there is no understanding of how the protein 

changes conformation. Furthermore, how these changes are triggered by the ∆pH, how 

they are regulated by the xanthophyll cycle, and how these events are dependent upon 

PsbS remain unknown.  

 

7.7 Prospects for future research 

Isolated light-harvesting complexes are a good model for study NPQ process; as shown 

in this thesis the results from the in vitro studies were consistent with the in vivo 

measurements. It is now clear that insights into the molecular mechanism(s) of the 

conformational change that occur in the light-harvesting antenna would be revealed by 

further studies of the isolated complexes for which fine detailed structures and functions 

can be determined.  
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The exact role of the xanthophylls in the control of energy dissipation may be 

revealed by detailed characterization of the isolated complexes with different carotenoid 

content. These complexes may be isolated by mild solubilisation techniques (FPLC, 

sucrose gradient centrifugation) from the available mutants (npq1, npq2, lut1, lut2, or 

double/triple mutants of these) and/or antisense plants, followed by in vitro 

oligomerisation and analysis of the systems in different dissipative states. Also, 

isolation by mild detergent solubilisation of the intact oligomeric LHC antenna would 

provide a new system for studying quenching mechanism in vitro, where the proteins 

are present in an environment which resembles more closely their natural one. The role 

of the PsbS protein may be further investigated by following the isolation of the LHCII 

with and without PsbS, via oligomers prepared from the npq4 mutant and L17 

overexpressor plants. In parallel all these complexes mentioned above can be further 

studied by immobilisation in the newly developed gel system. 

 The nature of the chlorophyll fluorescence quencher in LHCII and in vivo has to 

be further studied, for example, to determine whether there is more than one mechanism 

involved. This study should include investigations of different isolated complexes (as 

suggested above) and intact systems such as chloroplast membranes or whole leaves 

using the spectroscopic techniques used here (transient absorption, resonance Raman, 

CD, steady-state fluorescence etc). 

. 
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Transient difference absorption traces at 45 wavelengths (indicated by the ordinate 

label) of the trimers (kd=0). Time axis is linear from -1 to 1 ps and logarithmic 

thereafter. The dashed lines represent the fit using the model depicted in Figure 6, 

section 6.2. Insets depict residuals. 
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Transient difference absorption traces at 45 wavelengths (indicated by the ordinate 

label) of the sample with kd=2. Time axis is linear from -1 to 1 ps and logarithmic 

thereafter. The dashed lines represent the fit using the model depicted in Figure 6, 

section 6.2. Insets depict residuals. 
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Transient difference absorption traces at 45 wavelengths (indicated by the ordinate 

label) of the sample with kd=9. Time axis is linear from -1 to 1 ps and logarithmic 

thereafter. The dashed lines represent the fit using the model depicted in Figure 6, 

section 6.2. Insets depict residuals. 
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