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chapter 1

INTRODUCTION

The subject is presented. The state of the art at the beginning of
the thesis is summarized and the contributions of this PhD work
are detailed.

1.1 Blood flow, red blood cells and vesicles

Blood flow has since centuries attracted the attention of scientists. Blood
is a non homogeneous material, formed mainly by a fluid (the plasma) and
red blood cells (RBCs). These cells can deform under flow and undergo
complicated dynamics, conferring to the blood amazing and nontrivial flow
properties.

A description based on a continuum model has first been attempted
by Poiseuille in the middle of 19th century, leading to the well-known re-
lationship between flux, pressure drop and geometry in a circular duct
that bears his name. In the 1930’s Fåhræus and Linqvist found deviations
from Poiseuille’s law [FL31]: while flowing blood through thin tubes, the
blood viscosity derived from the flow rate at a given driving pressure using
Poiseuille’s law decreased with decreasing diameter of the tubes. This effect
has been later explained as being a consequence of the radial displacement
(towards the center) of RBCs [PSG96] within the tubes.

Later in the 1970s, clear experimental evidence has been given to the
peculiar microscopic dynamics of red blood cells, the so-called tank-treading
motion [FSLSS78]. This motion takes place in a shear flow and consists
of a stationary RBC shape associated to a tangential movement of the
membrane. This ingredient could solve issues in the interpretation of the
blood flow properties [PSG96] and is peculiar to particles surrounded by a
membrane.

Nowadays, although many features of blood flow are understood, many
questions remain unanswered. These questions are linked on one side to
the fundamental understanding of the underlying physics (why RBCs move
in the radial direction, which is transverse to the flow? How does their
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1. Introduction

deformation affect the flow?), and on the other to the biological relevance
of physiological conditions (what is the role of the glycocalyx layer on the
vessel walls? Do RBCs have an active role in vascular morphogenesis?).
This thesis deals with the first set of problems, those that are more related
to physics, and in particular fluid mechanics and the interactions between
fluids and other structures (as the RBC membrane and the vessel walls).

In order to grasp the fundamentals of blood flow and link them to the
microscopic properties of the RBCs, we consider a model system consisting
in a suspension of vesicles in a fluid. Vesicles are fluid drops delimited
by a lipid bilayer, similar to the one surrounding living cells (but without
membrane proteins and other biological structures).

From a mechanical point of view, a suspension of vesicles is a complex

fluid : that is, it belongs to the class of polymer melts, emulsions, foams,
particle suspensions. . . This gives to vesicle suspensions both a fundamental
interest and the possibility to compare with many other systems, ‘similar’
in some aspects, that have been studied since long [Ein06, Ein11, Tay32,
Wei47, CN61].

This thesis deals both with the dynamics of vesicles immersed in a fluid
and with the flow properties of the suspension, i.e. the rheology.
The long-term goal is to contribute to the knowledge of blood flow, and
the short-term goal is the understanding of the fundamental mechanisms
underlying the dynamics of vesicles and their link to rheology.
The method employed is the one of numerical simulations, carried out in
two dimensions. The choice of dimension two (instead of the more realistic
three) is motivated by the great geometrical simplifications that one gets
by dropping one dimension, allowing for a deeper understanding of the
underlying physics. In addition, this will allow us to explore a wide range
of parameters, a task that become quite prohibitive in three dimensions.

1.2 Contributions of this work

The state of the art

At the beginning of this thesis (2007) the dynamics of vesicles had been
studied analytically, numerically and experimentally since several years.
More precisely, a rough analytical model was proposed in 1982 [KS82].
This model was incorporating a quasi-inextensible membrane, but vesicles
were treated as undeformable liquid ellipsoids. Nevertheless, this model
was able to reproduce tank-treading motion. Only in 1996 deformations
were taken into account, and this was done through numerical simulations
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1.2. Contributions of this work

[KWSL96]. Soon after, experiments on the deformation of vesicles un-
der flow started [dHBvdE+97]. From that moment, many studies investi-
gated the dynamical behavior of a vesicle under flow: analytical calculations
[Oll97, Sei99], experiments [ALV02, VMP04, KS05, MVA+06], and simula-
tions [CM99b, BM02, BRS+04, NG04]. Only in 2006 a precise analytical
theory, able to implement deformations, has been developed [Mis06].

In 2007, the dynamics of a single vesicle was being refined, with a new
type of motion discovered only one year before [Mis06]. The corresponding
parameter space was not extensively explored (and even its dimension was
under debate [KFM09]) and two-dimensional effects were not separated
from the three-dimensional ones. The rheology of a dilute suspension of
vesicles was only partially understood [DM07] and experimental data were
lacking. The interactions between vesicles were not studied.

During my thesis, the number of investigations on the dynamics and
rheology of suspensions of vesicles carried out in our and other institutions
sensibly increased. Theory has been improved [VG07, DBP+07, LTV08,
DVM08, DVM09], becoming more and more quantitative. Experiments
measured the dynamics of vesicles [CKPM08, DKSS09, DKS09, VCM+09]
and the rheology of dilute and semi-dilute suspensions [KSS08, VMP+08].
Several new numerical approaches have been developed [Low09, VGZB09,
RVB10, KL10, STL+10], simulations focused in particular on the behavior
in microchannels [KRC+08, RVB10] and on interactions between vesicles
[MNG09].

Contributions of the present work

This work brings several contributions to the knowledge of vesicle suspen-
sions, both to dynamics and rheology. They are detailed in the following
paragraphs, together with the context in which they are situated.

The behavior of a dilute suspension of vesicles (i.e. a suspension in
which interactions between vesicles are disregarded) has been analyzed in
detail, and all the relevant parameters have been widely examined. The
contributions to this topic can be summarized around two points:

3



1. Introduction

Characterization and interpretation of the rheology of a dilute

suspension

An exhaustive study of the rheology of a dilute suspension of vesicles has
been carried out. Although the basic behaviors had already been published
[DM07, KSS08, VMP+08], the results were nontrivial and not completely
understood. The study of all the parameters contributing to the dynamics
in a simple situation (a single vesicle in an unbounded linear shear flow)
and the comparison with similar systems (drops and rigid rods) allowed to
give a clear interpretation of the link between the microscopic dynamics
and the overall rheological behavior. In particular, the peculiar role in both
dynamics and rheology of the vesicle membrane has been elucidated. This
topic is treated in chapter 6. This work gave rise to a publication in Journal

of Fluid Mechanics [GBM10].

Tumbling without viscosity contrast

The dynamics of vesicles has been studied most of the time close to the
spherical limit, or at moderate deflation: no results concerning the dynam-
ical or rheological behavior of highly deflated vesicles were available. In a
joint work with Prof. G. Biros (applied mathematician at Georgia Tech,
USA), we carried out simulations of extremely deflated vesicles. We could
find a surprising result, i.e. the presence of a rigid body motion (tumbling)
in a region of the parameter space where it was not expected (that is, when
the fluids inside and outside the vesicle have the same viscosity). This sub-
ject is presented in section 6.7, where an interpretation has also been given.
The first results are published in Esaim: Proceedings [GSK+09].

After the study of the behavior of a dilute suspension, the analysis moved
towards more complex situations: we considered a suspension of vesicles in
a flow with a nonlinear profile (Poiseuille flow, which is parabolic) and in a
confined device (a Taylor-Couette cell, composed by two coaxial cylinders
that shear the fluid in the gap between them), that creates a flow with
curved flow lines, as described in the following paragraphs.

Interactions in Poiseuille flow

A collaboration with H. Selmi (applied mathematician at Ecole Polytech-

nique de Tunisie, Tunisia) made possible the precise simulation of suspen-
sions containing few tens of vesicles, thanks to the implementation of a fast
solver based on the fast multipole method. We studied the behavior of an
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1.3. Organization of the work

array of vesicles lying on the centreline of a parabolic velocity profile, in
order to mimic red blood cells in a capillary. Hydrodynamic interactions
are very strong and generate the formation of clusters, characterized by a
nonuniform distribution of vesicle positions. This has led us to the discov-
ery of the existence of a maximal vesicle number in the cluster, above which
one or few vesicles detach from the remaining ones, bringing to important
spatial reorganization. This work is presented in chapter 7. The first re-
sults are accepted for publication in Discrete and Continuous Dynamical

Systems - Series B.

Behavior in a curved flow

The analysis of the motion of a vesicle in a velocity field with curved flow
lines revealed an amazing behavior: vesicles migrate perpendicularly to the
flow, in the direction of concavity of the flow lines. This behavior is found to
be common to many other entities, as drops and elastic polymers. Despite
its observation dates back to thirty years ago, no explanation was suggested.
The analysis revealed the proportionality of the migration velocity to a
rheological quantity, the first normal stress difference. An explanation of
the phenomenon has been proposed, and it may apply to other deformable
particles.
The analysis continued with the study of a microscopic Couette device
containing several vesicles. Vesicles organize in very ordered structures
despite the extremely low volume fraction. The explanation given here relies
on the mechanism for inward migration discussed above and hydrodynamic
interactions. This topic is presented in chapter 8. An article has been
submitted to Physical Review Letters.

1.3 Organization of the work

The contents of this work are organized as follows.
In chapter 3 we introduce complex fluids, in particular those that are

closely related to vesicles and red blood cells, together with the basic con-
cepts that one needs to characterize the flow properties of a fluid (i.e. rhe-

ology).
Chapter 4 is dedicated to the description of the model for vesicles; the

constitutive equation for the membrane is introduced, together with the
evolution equation for the fluid. A short overview of the basic dynamics of
a vesicle under flow is given. The applicability of the model of vesicles to
red blood cells is also discussed.
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1. Introduction

The numerical methods, used to obtain all the results presented here-
after, are detailed in chapter 5. This chapter contains three sections, each
one dedicated to a different numerical code.

Chapter 6 contains an extensive description of the dynamics and the
rheology of a dilute suspension of vesicles in a simple flow. This dense
chapter presents all the fundamental behaviors and gives interpretations
for them. It provides the tools that will be necessary to investigate more
complex situations.

Chapter 7 is dedicated to the analysis of the behavior of sets of vesicles
in a Poiseuille flow. Interactions between vesicles play here a nontrivial role
that affects deeply the dynamics of the system.

Chapter 8 investigates the behavior of vesicles in a flow with curved flow
lines. Results are presented for the peculiar dynamics of a single vesicle in
this kind of flow, and for the more complex case of a collection of vesicles
in a bounded system (Taylor-Couette cell).

Chapter 9 briefly summarizes the results obtained in this work and
presents a series of perspectives.

Appendix A derives the expressions used for the computation of the
rheological quantities all along this work.

In appendix B it is shown how a very simple system (a filament tumbling
in a shear flow) happens to be of great help in the interpretation of the
rheology of a suspension of vesicles.

Appendix C shows some fundamental concepts of fluid mechanics that
can help the understanding of the dynamics of deformable particles in a
curved flow.

Appendix D details the derivation of a formula for the rheological quan-
tities in a Taylor-Couette cell.

Finally, in Appendix E the fast multipole method (FMM), used to sen-
sibly decrease the computing time of a part of the simulations, is presented.
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chapter 2

INTRODUCTION EN FRANÇAIS

Le sujet est présenté. L’état de l’art au début de de la thèse est
résumé et les contributions apportées par ce travail sont détaillées.

2.1 Ecoulement sanguin, globules rouges et

vésicules

L’écoulement sanguin a attiré l’attention des chercheurs scientifiques depuis
des siècles. Le sang est un materiau non homogène, formé principalement
par un fluide (le plasma) et des globules rouges. Ces cellules peuvent se
déformer sous l’effet de l’écoulement et montrer des dynamiques complexes,
donnant au sang des propriétés d’écoulement très particulières.

Une description basée sur un modèle continu a été proposée par Poiseuille
au milieu du 19ème siècle, conduisant à la relation bien connue qui porte son
nom entre le flux, le saut de pression et la géométrie dans un tube circulaire.
Dans les années 1930, Fåhræus et Linqvist ont observé des déviations à la
loi de Poiseuille [FL31]: en faisant écouler du sang à travers des capillaires
fins, la viscosité derivée du flux et du saut de pression diminuait à mesure
que diminuait le diamètre du capillaire. Cet effet sera par la suite expliqué
comme étant une conséquence du déplacement radial (vers le centre) des
globules rouges à l’intérieur des capillaires [PSG96].

Plus tard, dans les années 1970, une preuve expérimentale claire de
la dynamique particulière des globules rouges, appellée tank-treading (‘che-
nille de char’ en anglais) a été apportée [FSLSS78]. Ce mouvement, typique
des particules dotées d’une membrane, survient dans un écoulement de ci-
saillement et consiste en une forme stationnaire du globule, associée à un
mouvement tangentiel de la membrane. Cette découverte majeure a permis
de résoudre des questions dans l’interprétation des propriétés d’écoulement
du sang [PSG96].

Aujourd’hui, bien que plusieurs caractéristiques de l’écoulement du sang
soient comprises, beaucoup de questions demeurent sans réponse. Ces
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2. Introduction en Français

questions sont, d’un côté, liées à la compréhension fondamentale de la
physique sous-jacente (pourquoi les globules rouges se déplacent-ils radiale-
ment, perpendiculairement à l’écoulement imposé? Comment leur déforma-
tion influence-t-elle l’écoulement?), et de l’autre à l’interprétation biologique
des conditions physiologiques (quel est le rôle de la couche de glycocalyx sur
les parois des capillaires? Est-ce que les globules rouges ont un rôle actif
dans la morphogenèse vasculaire?).
Cette thèse s’occupe de la première catégorie de problèmes, ceux qui sont
le plus liés à la physique, et en particulier à la mécanique des fluides et à
l’interaction entre fluide et structures (telles que les membranes des globules
ou les parois des vaisseaux).

Pour saisir les mécanismes fondamentaux de l’écoulement du sang et
les relier aux propriétés microscopiques des globules rouges, on considère
un système modèle constitué d’une suspension de vésicules dans un fluide.
Les vésicules sont des gouttes liquides délimitées par une double couche
lipidique, similaire à celle qui délimite les cellules vivantes (mais sans les
protéines de membrane ou autres structures biologiques).

D’un point de vue mécanique, une suspension de vésicules est un flu-

ide complexe, c’est à dire, elle appartient à la classe des polymères fondus,
émulsions, mousses, suspensions de particules, . . . Ceci donne aux suspen-
sions de vésicules à la fois un interêt fondamental et la possibilité d’être
comparées avec d’autres systèmes, ‘similaires’ en certains aspects, qui ont
fait l’objet d’études depuis longtemps [Ein06, Ein11, Tay32, Wei47, CN61].

Cette thèse s’occupe à la fois de la dynamique de vésicules immergées
dans un fluide et des propriétés d’écoulement de la suspension, c. à d. la
rhéologie.
L’objectif à long terme est de contribuer à la connaissance de l’écoulement
sanguin, et l’objectif à court terme est la compréhension des mécanismes
fondamentaux sous-jacents à la dynamique des vésicules et de leur lien à la
rhéologie.
La méthode utilisée est la simulation numérique, menée en deux dimen-
sions. Le choix de la dimension deux (à la place de la plus réaliste trois)
est motivé par les grandes simplifications géométriques que l’on obtient en
abandonnant une dimension, permettant une meilleure compréhension de
la physique sous-jacente.
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2.2. Contributions de ce travail

2.2 Contributions de ce travail

L’état de l’art

Au debut de cette thèse (2007) la dynamique des vésicules avait été étudiée
analytiquement, numériquement et expérimentalement depuis plusieurs an-
nées. Plus précisement, un modèle analytique simplifié a été proposé en
1982 [KS82]. Ce modèle incorporait une membrane quasi-inextensible, mais
les vésicules étaient traitées comme des ellipsoïdes liquides indéformables.
Néanmoins, ce modèle a été capable de reproduire le mouvement de tank-
treading. C’est seulement en 1996 que les déformations ont été prises en
compte, et ceci grâce à des simulations numériques [KWSL96]. Peu après,
les expériences de déformation sous écoulement ont débuté [dHBvdE+97].
Depuis, plusieurs études ont été consacrées au comportement dynamique
d’une vésicule sous écoulement: calculs analytiques [Oll97, Sei99], expéri-
ences [ALV02, VMP04, KS05, MVA+06] et simulations [CM99b, BM02,
BRS+04, NG04]. Mais c’est seulement en 2006 qu’une théorie analytique
précise, capable de prendre en compte les déformations, a été développée
[Mis06].

En 2007, la description de la dynamique d’une vésicule était en train
d’être affinée, avec un nouveau type de mouvement découvert seulement une
année auparavant [Mis06]. L’espace des paramètres correspondant n’était
pas exploré de manière systématique (et même sa dimension était en dé-
bat [KBM09]) et les effets bidimensionnels n’étaient pas séparés des effets
tridimensionnels. La rhéologie d’une suspension diluée de vésicules était
comprise seulement en partie [DM07] et des mesures expérimentales man-
quaient. Les interactions entre vésicules n’étaient pas étudiées.

Pendant ma thèse, le nombre d’études sur la dynamique et sur la rhéolo-
gie de suspensions de vésicules, menées dans notre laboratoire ou ailleurs, a
augmenté fortement. La théorie a été améliorée [VG07, DBP+07, LTV08,
DVM08, DVM09], devenant de plus en plus quantitative. Des expéri-
ences ont mesuré la dynamique de vésicules [CKPM08, DKSS09, DKS09,
VCM+09] et la rhéologie de suspensions diluées et semi-diluées [KSS08,
VMP+08]. Plusieurs nouvelles approches numériques ont été développées
[Low09, VGZB09, RVB10, KL10, STL+10], se focalisant sur le comporte-
ment en microcanaux [KRC+08, RVB10] et sur les interactions entre vési-
cules [MNG09].

9



2. Introduction en Français

Contributions du travail présenté

Ce travail apporte plusieurs contributions à la connaissance des suspensions
de vésicules, à la fois pour la dynamique et pour la rhéologie. Elles sont
détaillées dans les paragraphes suivants, ainsi que les contextes dans lequels
elles se situent.

Le comportement d’une suspension diluée de vésicules (c. à d. une
suspension dans laquelle les interactions entre vésicules sont négligées) a
été étudié en détail, et tous les paramètres relevants ont été analysés. Les
contributions à ce sujet peuvent être résumées autour de deux points :

Caractérisation et interprétation de la rhéologie d’une

suspension diluée

Une étude approfondie de la rhéologie d’une suspension diluée de vésicu-
les a été menée. Bien que les comportements fondamentaux aient déjà été
publiés [DM07, KSS08, VMP+08], les résultats étaient complexes et pas
complètement interprétés. L’étude de tous les paramètres qui contribuent
à la dynamique dans une situation simple (une vésicule dans un écoulement
de cisaillement linéaire non borné) et la comparaison avec des systèmes sim-
ilaires (gouttes et fibres rigides) a permis de donner une interprétation claire
du lien entre la dynamique miscroscopique et le comportement rhéologique
du système. En particulier, le rôle précis de la membrane de la vésicule à
la fois dans la dynamique et dans la rhéologie a été élucidé. Ce sujet est
traité dans le chapitre 6. Ce travail a donné lieu à une publication dans le
Journal of Fluid Mechanics [GBM10].

Tumbling sans contraste de viscosité

La dynamique des vésicules a été étudiée la plupart du temps dans une con-
figuration proche de la limite sphérique, ou à dégonflement modéré : aucun
résultat sur la dynamique ou sur la rhéologie d’une suspension de vésicules
hautement dégonflées n’était disponible. Dans un travail en collaboration
avec le professeur G. Biros (mathématicien appliqué à Georgia Tech, USA),
on a réalisé des simulations numériques de vésicules hautement dégonflées.
On a ainsi mis en évidence un résultat surprenant, la présence d’un mouve-
ment de corps rigide, tumbling, (‘mouvement de bascule’ en anglais) dans
une région de l’espace des paramètres où il n’était pas attendu (c. à d. quand
les fluides à l’intérieur et à l’extérieur de la vésicule ont la même viscosité).
Ce sujet est présenté dans la section 6.7, où une interprétation a été aussi
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donnée. Les premiers résultats ont été publiés dans Esaim: Proceedings

[GSK+09].

Après l’étude du comportement d’une suspension diluée en cisaillement
linéaire, l’analyse s’est portée sur des situations plus complexes: on a con-
sideré une suspension de vésicules dans un écoulement avec un profil non
linéaire (écoulement de Poiseuille, qui est parabolique) puis dans un système
confiné (cellule de Taylor-Couette, composée de deux cylindres coaxiaux qui
cisaillent le fluide contenu dans l’interstice entre eux), qui crée un écoule-
ment avec des lignes courbes, comme décrit dans les paragraphes suivants
:

Interactions dans un écoulement de Poiseuille

Une collaboration avec H. Selmi (mathématicien appliqué à l’Ecole Poly-

technique de Tunisie, Tunisie) a rendu possible la simulation de suspen-
sions contenant plusieurs dizaines de vésicules, grâce à l’implémentantion
d’un solveur rapide basé sur la méthode multipolaire rapide. On a étudié
le comportement d’un ensemble unidimensionnel de vésicules sur l’axe d’un
écoulement de Poiseuille, dans le but d’imiter les globules rouges dans les
capillaires. Les interactions hydrodynamiques sont très fortes et génèrent la
formation de paquets, caractérisés par une distribution non uniforme des po-
sitions des vésicules. Ceci nous a amené à la découverte de l’existence d’un
nombre maximal de vésicules par paquet, au dessus duquel une ou plusieurs
vésicules se détachent des autres, générant une réorganisation spatiale con-
séquente. Ce travail est présenté dans le chapitre 7. Les premier résultats
sont acceptés pour publication dans Discrete and Continuous Dynamical

Systems - Series B.

Comportement dans un écoulement courbe

L’analyse du mouvement d’une vésicule dans un champ de vitesse pos-
sédant des lignes d’écoulement courbes a dévoilé un comportement par-
ticulièrement intéressant : les vésicules se déplacent perpendiculairement
à l’écoulement (migrent), dans la direction de la concavité des lignes d’
écoulement. Ce comportement a été aussi observé pour plusieurs autres
entités, comme gouttes et polymères élastiques. Bien que ce phénomène
ait été observé il y a trente ans, aucune explication n’avait été suggérée.
L’analyse a révelé que la vitesse de migration est proportionnelle à une pro-
priété rhéologique, qui est la première différence des contraintes normales.
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2. Introduction en Français

Une explication de ce phénomène a été proposée, qui pourrait s’appliquer
à d’autres particules déformables.
L’étude s’est ensuite orientée vers un dispositif de Couette microscopique
contenant plusieurs vésicules. Les vésicules s’organisent en structures haute-
ment ordonnées malgré la très faible concentration. L’explication donnée
ici repose sur le mécanisme de migration vers l’intérieur discuté ci-dessus et
sur les interactions hydrodynamiques. Ce sujet est présenté dans le chapitre
8. Un article a été soumis à Physical Review Letters.

2.3 Organisation du travail

Les contenus de ce travail sont organisés ainsi.
Dans le chapitre 3 on introduit les fluides complexes, en particulier ceux

qui sont proches des suspensions de vésicules et globules rouges, avec les con-
cepts de base dont on a besoin pour caractériser les propriétés d’écoulement
d’un fluide (c. à d. la rhéologie).

Le chapitre 4 est dédié à la description du modèle pour les vésicules
; l’équation constitutive de la membrane est introduite avec l’équation
d’évolution pour le fluide. Un résumé sur les dynamiques de base d’une
vésicule sous écoulement est présenté. L’applicabilité du modèle ‘vésicule’
aux globules rouges est discutée.

Les méthodes numériques utilisées pour obtenir tous les résultats présen-
tés par la suite sont détaillées dans le chapitre 5. Ce chapitre contient trois
sections, chacune dédiée à un code numérique différent.

Le chapitre 6 contient une description détaillée de la dynamique et de la
rhéologie d’une suspension diluée de vésicules dans un écoulement simple.
Ce chapitre particulièrement dense présente tous les comportements fonda-
mentaux et en donne des interprétations. Il fournit les outils nécessaires
pour étudier des situations plus complexes.

Le chapitre 7 est dédié à l’analyse du comportement d’ensembles de
vésicules dans un écoulement de Poiseuille. Les interactions entre vésicules
jouent ici un rôle complexe qui influence profondément la dynamique du
système.

Le chapitre 8 examine le comportement de vésicules dans un écoulement
courbe. Des résultats sont présentés pour la dynamique complexe d’une
vésicule dans ce type d’écoulement, et pour le cas encore plus riche d’un
ensemble de vésicules dans un système borné (dispositif de Taylor-Couette).

Le chapitre 10 résume brièvement les résultats obtenus dans ce travail
et présente une série de perspectives.

L’annexe A contient les dérivations des expressions utilisées pour le cal-
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cul des grandeurs rhéologiques tout le long de ce travail.
Dans l’annexe B on montre comment un système très simple (une fibre

qui bascule dans un écoulement de cisaillement) peut être d’une grande aide
pour l’interprétation de la rhéologie d’une suspension de vésicules.

L’annexe C montre des concepts fondamentaux de la dynamique des
fluides qui peuvent aider à la compréhension de la dynamique de particules
déformables dans un écoulement courbe.

L’annexe D détaille la dérivation d’une formule pour les grandeurs rhéologiques
dans la cellule de Taylor-Couette.

Pour finir, dans l’annexe E, la méthode multipolaire rapide (FMM),
utilisée pour diminuer sensiblement le temps de calcul, est présentée.
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chapter 3

COMPLEX FLUIDS

Complex fluids are defined and several examples are given. Rhe-
ology is introduced, the meaning of effective viscosity and normal
stress difference and their link with the stress tensor are explained.

Les fluides complexes sont définis et plusieurs exemples donnés. La
rhéologie est introduite, la signification de la viscosité effective et
de la différence des contraintes normales et leur lien avec le tenseur
des contraintes sont expliqués.

The first images that usually come to the mind when thinking to fluid
mechanics are the ones connected to the flow properties of water and air:
airplane design, dam engineering, waves in the ocean, tornadoes. . . Air and
water belong to the class of the simple fluids (also called Newtonian), in
contrast to another category, the so-called complex fluids, among which
are found: polymer melts (plastic), foams, gels, biological liquids (blood,
saliva), many food products (mayonnaise, mustard, ice cream) and then
lava, mud, corn starch, . . . What do blood and mud have in common? The
answer is, the presence of mesoscopic structures: red blood cells for blood
and mineral particles for mud, in a suspension of ‘simple’ fluid (plasma
and water, respectively). A simple fluid lacks these mesoscopic structures,
and is formed by single molecules. Properties of simple fluids have been
studied since long and the motion equation, the Navier-Stokes equation, is
known since two centuries. Its most complicated consequence, turbulence,
that is highly nonlinear, is from many points of view quite well understood
nowadays (despite the lack of analytical solutions) [YO86].

On the other side, for nearly any complex fluid the governing equation is
still unknown! This is due to the complex interplay between the macroscopic
scale of the flow and the mesoscale structures, that does not allow for a
simple continuum description.
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3. Complex fluids

3.1 Particles in suspension

As stated in the previous paragraph, complex fluids are materials composed
by a fluid phase and some mesoscopic structures (i.e. structures at a scale
intermediate between the molecular size and the macroscopic size of the
system) dispersed in the fluid. In this section some kind of complex fluids
are briefly described, the focus is on those that are related to vesicles and
red blood cells.

Rigid spheres

One of the simplest complex fluids is a simple fluid suspending rigid spher-
ical particles. The particles cannot deform, but can move in the fluid and
interact with each other through hydrodynamical forces. Suspensions of
rigid particles are found for example in paint, molten glass and smoke. The
simplest way to model these systems is to assume that the particles are
spherical. The flow properties of a dilute suspension of rigid spheres have
first been studied by Einstein [Ein06, Ein11], who quantified the increase
in the viscosity of the suspension due to the particles.

Figure 3.1: A suspension of rigid spheres (≈ 2µm in diameter) used to
model glasses [NEPW07].

Polymers

Polymer is a very generic word used to identify molecules that present them-
selves in the form of long chains. All plastics are composed by polymers,
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3.1. Particles in suspension

DNA is a polymer too. The flow properties of a polymer melt are impor-
tant for the production of synthetic materials (plastic, fabrics), so they have
been widely studied during the last century, and they still are an active area
of industrial research. In the last decades, the dynamics of DNA molecules
in a fluid has received a lot of attention in relation to the increasing genetic
studies in the medical sector [DZ79].

Due to the very large amount of materials that belong to this class,
polymers can show very different conformations and confer the fluid differ-
ent dynamical properties. For example, some polymers are very soft, have
a rest shape that looks like a wool ball (coil state) that can be deformed
(stretched) by the flow of the fluid in which they lay. Some others are stiff
and do not deform under flow.

A suspension of polymers can have astonishing behaviors under flow
that differ completely from the behavior of simple fluids. Examples are the
rod climbing and the die swell effects, illustrated in figure 3.2. When a rod
immersed in a polymeric fluid is rotated around its axis at high speed, the
fluid is attracted towards the centre and ‘climbs’ the rod, while a Newtonian
fluid would be projected towards the container walls. The same kind of fluid
shows a huge increase in the section when coming out from a pipe, while a
simple fluid would decrease (or slightly increase, depending on the velocity
[BAH87]) its section, as water from a tap. These effects are both determined
by positive normal stress difference, a quantity that will be introduced in
the next section.

Drops

Drops are the simplest deformable particles that can be thought of in sus-
pension in a fluid: a drop of another fluid. Drops (or bubbles) too have vast
industrial applications, from the control of evaporation in nuclear reactors
to production of alimentary emulsions such as mayonnaise. From a physical
point of view, they are characterized by surface tension, a force that arises
from negative interaction energy between the molecules of the fluid forming
the drop. As a consequence, surface tension opposes (weakly) the increase
in the surface area. Since this force drives the drops towards coalescence
(i.e. the formation of bigger drops), sometimes the emulsions are stabilized
with ‘surfactants’, substances that accumulate at the surfaces of the drops
and create an energy barrier against coalescence (this is for example the role
of the lecithin contained in the yolk in mayonnaise, which is an emulsion of
oil and vinegar). A suspension of drops can behave very differently from a
suspension of rigid particles: if the suspending fluid is sheared, the drops
deform and can eventually burst (split in smaller drops). When they pass
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3. Complex fluids

Figure 3.2: Examples of surprising flow behavior of a polymer melt. Left:
rod climbing effect: when the rod immersed in the fluid is rotated around
its axis at high speed, the polymer melt ‘climbs’ the rod. Right: die

swell : the free surface of a polymer melt at the outlet of a pipe is diver-
gent. Images extracted from http://www.irc.leeds.ac.uk/mupp/flowSolve/
and http://www.mie.utoronto.ca/labs/rheology/ respectively.

close one to an other, they deform. All these behaviors influence the flow
properties of the suspension.

Red blood cells

The blood flow has been at the centre of the attention of scientists since the
19th century (Poiseuille derived his famous equation for the flux of a Newto-
nian fluid in a pipe in 1838 with the aim of explaining blood circulation in
capillaries). Blood is constituted by a simple fluid, the plasma, for around
55% of its volume. The remaining 45% is composed by red blood cells
(RBCs), and white blood cells and platelets occupy together less than 1%.
This is why the blood flow is mainly affected by plasma and red blood cells,
and the other components can be neglected when attempting a mechanical
modeling. Red blood cells have a biconcave shape whose diameter is around
8µm and are filled by a dense suspension of hæmoglobin, a Newtonian fluid
which is about seven times more viscous than water at physiological tem-
perature, and responsible of oxygen delivery and carbon dioxide capture.
The membrane of red blood cells is composed by a lipid bilayer (as all
human cells), below which an elastic cytoskeleton is fixed, as sketched in
figure 3.5. The membrane embeds different kinds of proteins, that perform
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3.1. Particles in suspension

Figure 3.3: A suspension of oil drops in water stabilized with a surfactant
to avoid coalescence [Pal00]).

Figure 3.4: Red blood cells in vitro.

different tasks ranging from ion and molecule transport to intracellular sig-
naling reception. The cytoskeleton, that has among others the function of
preserving the cell integrity, is composed by filaments of a protein (spec-
trin) forming a two-dimensional network. The lipid bilayer is in the liquid
state, resists strongly surface dilatation and opposes surface bending, while
the cytoskeleton has elastic properties (it allows deformations but exerts
a restoring force towards the original shape of the membrane). When red
blood cells are formed in the bone marrow, they expel their nucleus, loosing
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3. Complex fluids

Figure 3.5: Sketch of the red blood cell membrane. The lipid bilayer is
grayed, and the membrane proteins are in color, the green filaments are the
actin network forming the cytoskeleton.

in this way a big part of their inner volume. This is why they are deflated in
the typical biconcave shape. Red blood cells are highly deformable exactly
because they don’t have a nucleus. This characteristic allows the cells to
pass through tiny capillaries that are even three-four times smaller than
their rest diameter. A red blood cell under flow exhibits a highly nontrivial
behavior: several dynamics are possible, depending on the details of the
velocity field and the viscosity of the outer fluid, as it will be discussed at
the end of chapter 4 [Bit86, AV08].

Capsules

Capsules are drops surrounded by elastic membranes, as rubber balloons
filled with water. Their size can be comparable to blood cells, and are used
in the medical sector for drug delivery or for cell therapy [LdGdSVG+07].
Capsules are also used to model red blood cells, since the elastic membrane
mimics the cytoskeleton. The membrane resists in-plane shear (meaning
that a restoring force is generated whenever a shear force is applied in the
membrane plane) and weakly surface dilatation. In the models, often no
resistance to bending is considered. Capsules can show several dynamical
regimes, similar to red blood cells.

20



3.1. Particles in suspension

Figure 3.6: Polymeric microcapsules for medical use [LdGdSVG+07].

Figure 3.7: Giant Unilamellar vesicles produced by electroformation
[ASM+92].

Vesicles

Vesicles are liquid drops surrounded by a phospholipidic bilayer. Vesicles of
∼ 1µm are used by living cells to transport nutrients and other substances.
Artificial vesicles of ∼ 10µm, named giant unilamellar vesicles (due to their
size and to the single bilayer membrane that delimits them) are commonly
used to model living cells, especially the ones, as red blood cells, that do not
have a nucleus. The membrane has similar properties to the membrane of
red blood cells, resisting strongly surface dilatation and opposing bending,
but they don’t have the elasticity arising from the cytoskeleton. Their
properties are detailed in chapter 4.
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3. Complex fluids

3.2 The study of complex fluids: rheology

Simple incompressible fluids are characterized by two material parameters:
their density ρ and their viscosity µ. The density affects the inertia of the
motion, while the viscosity is at the origin of the viscous force, that con-
veys momentum between adjacent fluid elements having different velocities.
Complex fluids can in general also display another kind of behavior: elas-

ticity. The elastic behavior arises from the deformation of the mesoscopic
structures contained in the fluid, that tend to relax to their equilibrium
configuration. A typical example are polymer suspensions. Polymers can
be thought to in this context, at least in a very crude approximation, as
rubber bands stretched by the flow. When the intensity of the velocity gra-
dient (called shear rate1 ) varies, the stretched polymers change their length
bringing with them the surrounding fluid. Elasticity may also arise from
the interactions of non-deformable particles, as is the case of a suspension
of rigid spheres, but in this case the microscopic picture is less trivial. So,
in general a complex fluid can be defined viscoelastic.

Since the deformations of the mesoscopic structures depend on the in-
tensity of the flow, the flow patterns depend on this microscopic parameter:
deformation. Complex fluids show then a new kind of dependence on the
intensity of the flow compared to simple fluids, that is not related to the
appearance of turbulence at higher velocities. This dependence can cause
a decrease (increase) of the viscosity of a complex fluid when the velocity
gradient of the flow is increased: this behavior is known as shear thinning

(shear thickening). Common examples of shear thinning fluids are paint (it
is desirable for the paint on one side to be easy to be applied and on the
other to stop flowing once spread), nail polish, ketchup. Shear thickening
fluids are less common, but find anyway applications in different fields. An
example is the coaxial self-locking car differential (when an axis starts to
rotate much faster that the other, the shear thickening fluid placed among
them stops the relative motion, while allowing for small velocity differences).

Complex fluids can also show thixotropy2: a viscosity decrease over time

1The simplest flow that can be thought of is a uniform field of constant velocity,
of the kind u(x) = U êx, where U is a constant. This flow corresponds to a uniform
translation of the system (the vesicle) in the x direction, and cannot deform it. So the
minimal ingredient to influence the vesicle dynamics is shear, i.e. nonzero gradient of
the velocity field. The simplest flow showing a nonzero gradient is a linear shear flow:
u(x) = γ̇yêx. This velocity field has parallel flow lines and the pressure is constant
everywhere, and will be used later in this section to introduce the flow properties of
some fluids.

2From Greek: thixis, touch and -tropy, from tropos, changeable: ‘changeable with
touch’.
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3.2. The study of complex fluids: rheology

at constant shear. Thixotropy is due to a structural change of the suspended
phase, for instance the destruction (by the shear) of particle aggregates. A
typical example is blood, in which red blood cells form aggregates (called
rouleaux ) when left at rest, which are destroyed if the blood is put under
flow. Also some clays are thixotropic, and in case of an earthquake or other
ground movements they can lead to apparent ‘soil liquefaction’.

The study of the flow properties is called rheology (from the Greek rheo,
‘stream’, and -logos, ‘one who deals with’). Typical analysis methods are
measurements of the viscosity and of the elastic properties. The viscosity
can be obtained via the simultaneous measurement of the force necessary
to shear a sample of fluid and the shear rate itself. Elastic properties are
typically retrieved via the phase difference between an oscillating driving
force and the oscillating velocity of the sample.

Rheology as determination of the stress tensor

From a more formal point of view, rheology is the study of the components of
the stress tensor describing a material. In fact, the stress tensor represents
the response of the system to external forces, and contains thus all the
information for the description of the motion.

The stress tensor σ is defined as the force density f acting on a surface,
defined by its normal n, of a small material element:

σij ≡ finj (3.1)

The rheological quantities are functions of the components, or of combina-
tions of components, of the stress tensor. A more precise definition of some
rheological quantities is needed in order to set this link. In the following
we focus on a system consisting of a fluid (either Newtonian or complex)
between two parallel and infinite plates, separated by a distance L, one of
which moves tangentially with respect to the other with a velocity U , as
sketched in figure 3.8. The force surface density needed to maintain the
motion of the plate is F . The definition of the rheological measures will be
done using the macroscopic quantities (L, U , F ).
For a Newtonian fluid they can be equivalently defined for an infinitesi-
mally small fluid element, using the microscopic counterparts of this triad
(its size, the velocities of its surfaces and the forces applied to the surfaces
themselves). The two definitions are equivalent due to the homogeneity of
the fluid.
For a complex fluid instead, this scale invariance is lost due to the presence
of structures at the mesoscale, that sets also a lower limit (through their

23



3. Complex fluids

size Ls) for a microscopic definition.
The conventional choice is then to define the rheological quantities in the
macroscopic limit L ≫ Ls in which these quantities do not depend any
more on the precise choice of L.

x

y

L

U, F

v

Figure 3.8: Schematic of the system used to define the rheological quantities.

Effective viscosity. The viscosity (denoted η) refers to the relation be-
tween shear forces and velocity gradient for a Newtonian fluid. Although
its value is uniform in most situations3, it is a microscopic quantity defined
everywhere in the fluid. Taken a fluid element and oriented the y axis in
the direction of the shear, the shear forces are represented by σxy and the
velocity gradient is ∂yvx. The viscosity is defined as η = σxy/∂yvx. In the
considered macroscopic setup, this definition is equivalent to

η =
F

U/L
(for a Newtonian fluid) (3.2)

that is the volume average of the microscopic (uniform) quantity.
We define then the effective viscosity as:

ηeff =
F

U/L
(for any fluid) (3.3)

Obviously for a Newtonian fluid ηeff = η, but the fact that the details
of the flow are disregarded allows for the application of this definition to
any material that can flow between the two considered plates (i.e. to all
complex fluids). The effective viscosity represents the link between stress

and strain, or equivalently force (F ) and deformation (U/L, the velocity
gradient). Since in our system the force is along the x axis and acts on a

3Spatial variations of the viscosity can be generated for instance by a temperature
gradient.
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surface normal to y, F represents the volume average of the xy component
of the stress tensor, F = 〈σxy〉, so

ηeff =
〈σxy〉
γ̇

(3.4)

γ̇ being the velocity gradient, i.e. the shear rate.

Normal stress differences. A fluid element can be subject to three inde-
pendent normal stresses, one along each axis direction (x, y or z): these are
the components σxx, σyy and σzz. So these three quantities represent how
much a fluid element is compressed (or stretched) in a certain direction. The
vast majority of liquids are incompressible (and also gases are well described
by this assumption in many situations), meaning that they can deform but
their volume cannot change. This implies that a fluid element does not
deform when subject to an isotropic pressure (σxx = σyy = σzz). In other
words, the diagonal components of the stress tensor are defined modulo a
constant, that is the same for all the three. So the relevant quantities to be
measured are not the diagonal components alone, but their differences. It
is conventional to define first normal stress difference N1 ≡ σxx − σyy and
second normal stress difference N2 ≡ σyy − σzz. Obviously in dimension
two only a normal stress difference exists, and will be denoted in the rest
of this work by N . For a Newtonian fluid, the volume average on the whole
system of N1 and N2 are zero4, while for the majority of complex fluids
〈N1〉 > 0 and 〈N2〉 . 05. The study of a very simple system (a rigid rod
in a linear shear flow) is enlightening to understand the origin of normal
stress differences in a complex fluid and in general of all the components of
the stress tensor. This is proposed in Appendix B.

Other stress components. The stress tensor of a Newtonian fluid is sym-
metric: σij = σji. The symmetry of σ can be shown to hold also for a mix-
ture of Newtonian fluids containing surfaces of discontinuity of the stress
tensor (the proof only requires the conservation of linear and angular mo-
menta). This case includes all suspensions of liquid particles, in particular
vesicles and red blood cells, and is then sufficient for our problem.

As a consequence of the symmetry of the stress tensor, the knowledge
of the effective viscosity (∼ σxy) and of the normal stress difference (∼
σxx − σyy) is enough to determine the full tensor in dimension two.

4It is indeed possible to find situations in which 〈N1〉 6= 0 or 〈N2〉 6= 0 for a Newtonian
fluid, as a divergent channel whose walls move at different velocities.

5The symbols 〈〉 denote a volume average.
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In chapter 6 these two rheological quantities will be examined in detail,
quantifying the behavior of all the relevant stress components and their
link to the parameters governing the microscopic dynamics of a vesicle.

For most materials the stress tensor is symmetric6. More generally, an
antisymmetric component can be induced in the stress tensor through an
external field generating couples on the suspended particles (as for particles
with a nonzero electric dipole in an electric field) [Bat70]. The link between
the antisymmetry of σ and the torque done on the particles is detailed in
Appendix A.

6Some examples of non-symmetric stress tensor exist, for instance the one derived
for a diffuse interface model for vesicle suspensions [JM08b].
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chapter 4

THE MODEL FOR VESICLES

The model used for vesicles, dating back to Canham (1970) and
Helfrich (1973), is described. The coupling of the membrane with
the surrounding fluid is presented and a basic description of the
dynamics of a vesicle in a linear shear flow is given.

Le modèle utilisé pour les vésicules, dû à Canham(1970) et Helfrich
(1973) est décrit. Le couplage de la membrane avec le fluide en-
vironnant est présenté et une description simple de la dynamique
d’une vésicule dans un cisaillement linéaire est donnée.

4.1 Vesicles as a minimal energy

configuration

Vesicles, also called liposomes, are closed phospholipidic bilayers. The bi-
layer is the main component of the membrane of living cells, and is formed
by two layers of phospholipids, long organic molecules that have two long
fatty acid chains and a polar group at an end. Since the fatty chains are
not polar while the phosphate group is polar, when phospholipids are in a
water solution (which is polar) they organize spontaneously in structures
where the lipid chains are not in contact with water (figure 4.1). In fact,
this kind of configuration minimizes the surface energy that arises from the
interaction between polar and non-polar molecules.

The structures that are formed faster, due to the low number of mole-
cules needed, are micelles, which are closed lipid monolayers with no water
molecules in the inside. Micelles do not constitute a deep minimum in
the energy landscape of the system, since phospholipids occupy a roughly
cylindrical volume, while in a micelle a conical shape would be needed to
prevent water molecules from penetrating and getting in contact with the
fatty acids.
On the other side, the formation of plane bilayer patches is energetically
disfavoured due to the free edges exposed to water.
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4. The model for vesicles

Figure 4.1: Left: three different possibilities of minimization of surface
energy of an aqueous solution of phospholipids: liposomes (or vesicles),
micelles, and plane bilayer patch. Right: schematic of the structure of a
vesicle.

In this sense, the constitution of closed double layers surrounding a water
domain (vesicles) is a deeper minimum in the energy of the system. This is
why vesicles form spontaneously in a water solution and are stable. Topo-
logical changes (division, fusion or pore formation) are possible but rare,
since related to processes that are energetically disadvantaged. For this
reason in this work they are disregarded.

The physical properties of the membrane can be deduced from the basic
chemistry of the phospholipids: (i) since the phospholipidic molecules do
not bind with each other, the membrane is fluid1: every molecule is free to
move on the surface; (ii) due to the high interaction energy between the fatty
chains and the water molecules on one side, and to van der Waals repulsion
between neighbors on the other, the phospholipids stay close to each other at
an approximately constant density: the membrane is then inextensible; (iii)
since the bilayer has a finite thickness and the displacement of phospholipids
from a monolayer to the other is rare, bending the monolayer has an energy
cost (this can be traced back to the inextensibility of the two monolayers
on a closed surface): so the membrane has a nonzero bending energy.

The fluid contained inside the vesicle is an aqueous solution (this is
required for the stability of the membrane, as discussed in the previous

1 More precisely, the membrane can also be in a solid (gel) phase, below a critical
temperature. The biological conditions to which we refer (human red cells in blood flow)
correspond to a fluid membrane, and this is also the usual phase in experiments on the
dynamics of vesicles.
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paragraph), that is incompressible. Moreover, the membrane is semiperme-
able to water molecules, but not to bigger ones, as sugars: as a consequence
of these two facts, osmotic pressure ensures the conservation of the inner
volume.

The bilayer is about 4nm thick, while the linear dimension of a vesicle
is much larger. We are typically interested in giant unilamellar vesicles,
whose linear dimension is of the order of 10÷ 100µm, comparable to living
cells. This big separation in length scales (4 orders of magnitude) will allow
us to approximate the membrane as a two-dimensional surface.

We can then summarize the properties of a vesicle as follows:

• it has a constant volume due to the incompressibility of the enclosed
fluid and to osmotic pressure;

• the membrane is inextensible, due to the uniform density of phospho-
lipids;

• the membrane possesses a bending energy, due to its finite thickness.

• the normal component of the velocity of the membrane is equal to
that of the adjacent fluid (i.e. the membrane is impermeable), due to
the osmotic pressure.

4.2 The model for the curvature

Now that we have described the vesicle as an object with precise physi-
cal properties, we can formalize it in a mathematical model. We model
then the vesicle as an infinitely thin closed membrane separating two fluids.
The membrane is: inextensible (that is, the local surface of the vesicle is
conserved), endowed with bending energy and impermeable.

In order to characterize the curvature of a surface in three dimensions,
we need to introduce the notion of principal curvatures. Given a surface
embedded in three dimensions, at every point we can define a vector nor-
mal to the surface. Every plane containing this vector cuts the surface in
a (plane) curve. Rotating the cutting plane around the direction of the
normal, different curvatures of the plane curve are obtained. The principal
curvatures, denoted (c1, c2), are defined as the minimal and maximal values
assumed by this curvature while varying the cutting plane (see figure 4.2).
The curvature itself is defined as the inverse of the radius of the osculating
circle, that is the circle that fits the best to the curve in the neighborhood
of the considered point. In general, a surface embedded in dimension D
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4. The model for vesicles

Figure 4.2: Planes defining the principal curvatures of a surface embedded
in three dimensions.

has dimension D − 1 and the same number of principal curvatures ci, in
particular we have only one if we are in dimension two.

One of the simplest mathematical formulations that takes into account
the bending energy of a surface is to assume that bending costs locally an
energy [Can70, Hel73]

e =
κ

2
c2 + κGk (4.1)

where

c =
D−1
∑

i=1

ci k =
D−1
∏

i=1

ci (4.2)

are respectively the mean and Gauss curvatures and κ and κG the bending
moduli corresponding to the two curvatures. Note that in general equation
(4.1) should be expressed in the form e = κ

2
(c − c0)

2 + κGk, where c0 is
the spontaneous curvature of the membrane. We consider only symmetric
bilayers and c0 is disregard2. This energy density has to be integrated over
the whole membrane to obtain the total energy E =

∮

γ
e ds, where γ de-

notes the position of the membrane.

2In two dimensions the spontaneous curvature c0 plays no role, since its contribution
to the energy is a constant. This can be easily seen with a short computation:
∮

γ
(c− c0)

2ds =
∮

γ
c2ds+ c2

0

∮

γ
ds+ c0

∮

γ
c ds. The second term is explicitly a constant,

and the third can be rewritten using the definition of the curvature (available only in
two dimensions) c ≡ dθ/ds, with θ the orientation of the curve, giving c0

∮

γ
dθ which is

a constant too.
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4.2. The model for the curvature

Figure 4.3: Equilibrium shapes in the absence of flow for three-dimensional
vesicles (the axis of rotational symmetry is vertical) as a function of the re-
duced volume [SBL91]. From left to right: stomatocytes, oblates, prolates.

As stated in the previous section, we are not interested in topological
changes. The Gauss-Bonnet theorem states that the integral over a closed
surface of the Gauss curvature k only depends on the topology of the sur-
face, i.e. it is constant at fixed topology: we can then neglect this term.
For a phospholipidic membrane, κ ≈ 10−19J [DKS90, LLW01].

Equilibrium shapes: importance of the reduced volume

This minimal model allows to compute the equilibrium shapes of the vesicles
in the absence of flow. We define a parameter, the reduced volume ν, that
takes into account the ratio between the surface and the volume of a vesicle.
This quantity is a constant of the motion due to the incompressibility of
the internal fluid and to the inextensibility of the surface. ν is defined as
the ratio between the volume V of the vesicle and the volume of a sphere
of same surface A:

ν =
V

4
3
π
(

A
4π

) 3

2

(4.3)

As a consequence, ν can range from 0 (totally deflated vesicle) to 1 (sphere).
The minimization of the total bending energy E (respecting the con-

straints of constant enclosed volume and constant area) yields the equilib-
rium shapes. It turns out that for this simple curvature model all the shapes
are axisymmetric, and can then be conveniently represented via their sec-
tion as a function of the reduced volume. This is reported in figure 4.3.
In this figure we see that there are three different families of shapes: if we
consider a sphere (ν = 1) and deflate it progressively, we first find prolate

shapes, which are elongated around the rotation axis, which is vertical in
the figure (cigar-like shapes). If we swell below ν ≈ 0.65, the minimal equi-
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4. The model for vesicles

librium shape is oblate, or discocyte. This kind of shape is the biconcave one
assumed by red blood cells. Below ν ≈ 0.59 there is a transition towards
stomatocyte, the vesicle folds on itself and forms a pocket.

In two dimensions a parameter equivalent to the reduced volume is de-
fined: it is the reduced area α, which is the surface area A of the vesicle
divided by the area of a circle having the same perimeter p:

α =
A

π [p/2π]2
(4.4)

It must be specified that in two dimensions there is no difference between
prolates and oblates, and stomatocytes do not constitute a configuration of
minimal energy.

Moreover, minimizing the curvature to obtain the equilibrium shapes
corresponds to neglecting Brownian motion for the membrane. This as-
sumption is justified by the dimensions of the vesicles, which are much
larger than the amplitude of Brownian fluctuations3 [Sei04].

4.3 Hydrodynamical model

The membrane force

Hitherto we have considered vesicles at rest. Under flow, we observe a large
number of nontrivial behaviors, a part of which is the subject of this work.

In order to study the dynamics of a suspension of vesicles we have to
introduce the hydrodynamic equations and determine the membrane force
from the membrane bending energy (4.1) and the physical constraints.

Let us start from the latter. The membrane is inextensible, i.e. a surface
element cannot be dilated or compressed. In the previous paragraph only
the conservation of a single parameter, the reduced volume ν, has been
imposed: this corresponds to the conservation of the total surface area and
is a sufficient condition when the vesicle is at rest (as for an incompressible
fluid at rest is sufficient to impose the conservation of the total volume
to guarantee its incompressibility). But if the vesicle moves and deforms
under the action of the velocity field of the surrounding fluid, we have to
take care of the conservation of the local surface area. This can be fulfilled
through the introduction of a Lagrange multiplier field ζ defined on the
surface. This field can be seen as a tension that adjusts locally to preserve

3For a vesicle with a diameter ∼ 10µm, membrane fluctuations can be estimated to
be smaller that 1µm.
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4.3. Hydrodynamical model

the local surface area4. The membrane energy is then the sum of bending
and inextensibility contributions and thus becomes:

E =
κ

2

∮

γ

c2ds+

∮

γ

ζds (4.5)

The force corresponding to this energy, and representing the force necessary
to bend the membrane respecting the inextensibility constraint, is obtained
through the functional derivative of E:

fmem = − 1√
g

δE

δr
(4.6)

where δr is a small displacement of a given point of the membrane and g is
the determinant of the metric tensor defining the parametrization used to
describe the vesicle surface [Sei99]. The precise form of this force depends
on the dimension of the physical space. In three dimensions, it reads [Sei99]:

fmem = κ

[

∆sc+ c

(

1

2
c2 − 2k

)]

n+ ζcn+∇sζ in 3D (4.7)

where n is the unitary outward normal vector and ∆s is the Laplace-
Beltrami operator (i.e. the projection of the Laplacian on the surface).
In dimension two this expression becomes [BM02]:

fmem = κ

(

∂2c

∂s2
+

1

2
c3
)

n+ ζcn+
∂ζ

∂s
t in 2D (4.8)

where s is the curvilinear coordinate on the membrane and t is the unitary
tangent vector in the direction of increasing s.

The equation for the fluids

In the previous paragraph the expression of the membrane force has been
determined. Now the evolution equation for the fluids in the interior and in
the exterior of the vesicle has to be considered and coupled with this force
and with the various boundary conditions (at the membrane and at the
external boundary, if any). From basic fluid mechanics, we know that the
equation for the conservation of the momentum can be written as (Cauchy
equation):

ρ
Du

Dt
= ∇ · σ (4.9)

4 The tension field is the equivalent of the pressure, that adjusts locally to preserve
the local volume in the bulk.
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4. The model for vesicles

where ρ is the density of the fluid, u is the velocity and σ the stress tensor,
defined in equation (3.1) and representing the forces exerted on the surface
of a fluid element by its surroundings. D/Dt ≡ d/dt + u · ∇ represents
the total derivative, i.e. the time derivative computed with respect to a
reference that moves with the fluid element. In equation (4.9) the term
ρDu/Dt represents the inertia of the fluid.
The equation of conservation of mass reads

dρ

dt
+∇ · (ρu) = 0 (4.10)

and reduces to
∇ · u = 0 (4.11)

if the density is constant in time and uniform in space, as it is generally the
case for fluids, provided that the velocity is small compared to the sound
speed, a well verified condition in practice.
If the fluid is Newtonian5, the expression for the stress tensor is

σij = −pδij + η (∂iuj + ∂jui) (4.12)

η is the viscosity and p the pressure. As stated at the beginning of the
chapter, vesicles are stable in a water solution, so we are mostly interested
in studying their behavior in a Newtonian fluid. If we combine (4.9), (4.11)
and (4.12), we obtain the Navier-Stokes equation:

ρ
Du

Dt
= −∇p+ η∇2u (4.13)

that describes the motion of a Newtonian and incompressible fluid.

Coupling the fluid equation to the membrane force

After obtaining the evolution equation for the fluid and the expression for
the membrane force, their coupling is needed in order to determine the
evolution equation of the system.
The equation for the fluid applies to the domain occupied by the fluid
outside the vesicle and to the domain occupied by the fluid inside. These
two fluids can have different material properties, in particular they can have
different viscosities.

5Newtonian fluids are defined through equation (4.12). They are usually the molec-
ular fluids, that do not present structures at a scale between the molecular one and the
macroscopic one. Water is the best example of a Newtonian fluid, but also air, ethanol,
honey, glycerol.
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4.3. Hydrodynamical model

Figure 4.4: The fluid domains and the boundaries of a fluid containing a
vesicle.

The membrane force is located at the boundary between these two fluids,
then it plays the role of a boundary condition for the stress of the two fluids.

The conservation of mass coupled to the impermeability of the mem-
brane implies that the normal component of the velocity of the two fluids
in vicinity of the membrane is equal to the normal velocity of the membrane
itself. Moreover, we assume that both fluids adhere to the membrane (this
is called assumption of no-slip boundary conditions), so that the tangen-
tial velocity field is equal to the tangential velocity of the membrane itself.
These two conditions guarantee the continuity of the velocity field across
the membrane.

It is then possible to write the evolution equation for the system starting
from (4.13) and adding the membrane force as follows:

ρ(x)
Du

Dt
= −∇p(x) + η(x)∇2u(x) + fmem(x) δ(x− xmem) (4.14)

where x is the position vector, ρ(x) and η(x) are the material properties of
the inner and outer fluids (ρ(x) = ρin in Vin and so on, see figure 4.4 for
the domain labels) and δ(x−xmem) is a Dirac Delta function that identifies
the position xmem of the membrane and fmem is given by equation (4.8).

The dimensionless numbers of the problem

It is useful to write equation (4.14) in a nondimensional form. To do so,
the physical quantities are divided by some reference values of relevance in
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the problem. We introduce nondimensional quantities as follows:

û =
u

U
(4.15)

x̂ =
x

R0

(4.16)

t̂ =
tU

R0

= tγ̇ (4.17)

p̂ =
p− p∞

ηoutU/R0

=
p− p∞

ηoutγ̇
(4.18)

ζ̂ = κR2
0ζ (4.19)

ĉ = cR0 (4.20)

ŝ = s/R0 (4.21)

f̂ =
R2

0

κ
f (4.22)

δ̂ = δR0 (4.23)

where U is a typical velocity (i.e. the velocity of the vesicle), R0 a typical
length (i.e. the radius of the vesicle) p∞ a reference value for pressure6 and
γ̇ ≡ U/R0 is the shear rate, representing the typical velocity gradient in the
system7. If we substitute these quantities in the equation of motion (4.14),
we obtain the dimensionless form:

Re
Dû

Dt̂
= −∇̂p̂(x̂) +

η(x̂)

ηout
∇̂2û(x̂) + C−1

a f̂memδ̂(x̂− x̂mem) (4.24)

where the following dimensionless numbers appear:

• the Reynolds number Re that represents the relative importance of
inertial and viscous effects

Re =
ρUR0

ηout
(4.25)

6The pressure is a Lagrange multiplier that enforces the incompressibility of the
fluid. As a consequence, it doesn’t have an intrinsic physical scale, on the contrary it
acts on the same scale of the other forces of the problem in order to ensure the fluid
incompressibility. This is why it has been made nondimensional using the other force of
relevance in the problem, i.e. the viscous force.

7 The tension term in the membrane force depends on a Lagrange multiplier: ζ. As
stated above for the pressure term, the terms associated to the respect of a constraint
are made nondimensional via the other scales in the problem: here we have used the
bending force.
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4.3. Hydrodynamical model

• the viscosity contrast λ, defined as the ratio between the viscosity of
the fluid contained in the vesicle and the viscosity of the outer fluid:

λ =
ηin
ηout

(4.26)

This number arises from the viscosity term: in the outer fluid the
value of η(x)/ηout is unity, while inside the vesicle it is λ.

• the capillary number Ca, defined as the ratio between the time scale
of relaxation of the curvature τc = η0R

3
0/κ and the time scale of the

flow τf = γ̇−1, giving:

Ca =
τc
τf

=
ηoutγ̇R

3
0

κ
(4.27)

At the beginning of this chapter a dimensionless number has already
been introduced:

• the reduced volume (equation 4.3) that compares the volume and the
surface of the vesicle, or its two-dimensional equivalent, the reduced

area (equation 4.4).

The value of the Reynolds number for a flow around a vesicle can be es-
timated via the material and geometrical parameters. For water they are:
ρ = 103Kg/m3, ηout = 10−3Pa · s; the typical size of a vesicle is 10−5m
and a typical velocity in the available experimental data 10−4 ÷ 10−3m/s,
so Re ≈ 10−3 ÷ 10−2. It follows that the inertial term can safely be dis-
regarded: we will consider in the following that Re = 0. We are left with
three dimensionless parameters (ν, Ca, λ) that completely determine the dy-
namics of a vesicle in a linear shear flow8. The variation of these parameters
generates a rich dynamics and triggers dynamical transitions. This will be
the subject of chapter 6, dedicated to the dynamics and rheology of a single
vesicle in a linear shear flow. A short summary is presented in the next
section.

With the assumption of vanishing Reynolds number, the equation of
motion (4.14) for a suspension of vesicles becomes:

−∇p(x) + η(x)∇2u(x) + fmem(x) δ(x− xmem) = 0 (4.28)

This equation expresses the force balance: the inertial term being negligible,
the forces acting on a fluid element sum up to zero.

8The limitation of this statement to a linear shear flow is due to the fact that only
the velocity gradient γ̇ enters tis set of dimensionless numbers.
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The equation above can be restated together with the boundary condi-
tions as follows:

−∇p+ ηin∇2u = 0 in Vin (4.29)

−∇p+ ηout∇2u = 0 in Vout (4.30)

(σout − σin) · n = fmem on A (4.31)

u = U∞ on ∂V (4.32)

∇ · u = 0 in V (4.33)

where U∞ is an imposed flow on the outer boundary of the system and
the subscripts in and out refer to the inner and outer fluids respectively
(see figure 4.4). Depending on the method used to solve the evolution
equations, the membrane force term can be kept as a boundary condition
or be reformulated as a volume force localized around the membrane.

4.4 Basic dynamics in linear shear

A vesicle immersed in a linear shear flow can show several dynamics depend-
ing on the values of the three dimensionless numbers introduced in the pre-
vious section (ν, Ca, λ) [KS82, KWSL96, BRS+04, KS05, LTV08, KFM09].
The parameter to which the dynamics is more sensitive is the viscosity
contrast λ: in fact, if λ is below a critical value λc (that depends itself
on ν and Ca), the vesicle shape and orientation do not change with time,
but the membrane moves around it at constant speed, as the tread of a
tank: it is the tank-treading motion, first observed on red blood cells in
1978 [FSLSS78] (figure 4.6 A and B ). In this motion, the internal fluid is
advected by the membrane and is thus sheared. Upon increase of λ (but
below λc), the inclination angle decreases and approaches zero for λ → λc.
If λ > λc the resulting motion is a quasi-rigid tumbling, as a rigid body
would do in shear flow (figure 4.6 C and D). In tumbling, the vesicle is
weakly deformed and the interior weakly sheared. The value of λc is an
increasing function of the reduced volume, corresponding to the fact that
it is easier to cause tumbling of an elongated vesicle compared to a more
rounded one.

This dynamical transition can be interpreted by looking in more detail
to the structure of the imposed linear shear flow: it is, in fact, a linear
superposition of a rigid rotation and an elongational field along the ±π/4
directions, as sketched in figure 4.5. From a tensorial point of view, this can
be seen as the decomposition of the tensor of the velocity gradients ∂ivj in
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4.4. Basic dynamics in linear shear

Figure 4.5: Decomposition of the linear shear flow in pure rotation and pure
elongation.

its symmetric and antisymmetric parts:




0 γ̇ 0
0 0 0
0 0 0



 =






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0 γ̇
2

0
γ̇
2

0 0
0 0 0



+





0 γ̇
2

0
− γ̇

2
0 0

0 0 0







 (4.34)

The symmetric part represents the pure elongational flow, while the anti-
symmetric part represents the pure rotation. The dynamical transition is
then a direct consequence of the two components of the shear flow: when
the vesicle is soft enough to be sheared (λ < λc), the elongational compo-
nent ‘attracts’ the vesicle towards its elongation direction and the torque
applied by the rotational component of the flow can be transmitted to the
vesicle through internal shear (tank-treading). On the other side, if λ > λc,
the vesicle is too stiff to be sheared by the applied flow, then the torque is
transmitted to the vesicle in the form of a quasi-rigid rotation (tumbling).
In this case, the action of the elongational component is a modulation of
the angular velocity of the vesicle, which is higher when its motion is in
the same direction of the elongational flow lines and lower when it is in the
opposite direction.

The tank-treading to tumbling transition is associated with a critical
point, and as a consequence the dynamics is arbitrarily slowed down for
λ→ λc.

In two dimensions this is the complete picture of the possible dynam-
ics for the vesicle, as it will be extensively discussed in chapter 6 [BM03,
BRS+04, NG04, KS05, MVA+06]. In three dimensions, the higher number
of degrees of freedom allows for more dynamical regimes. In particular,
above a critical value of the capillary number Ca, a third regime is present
between tank treading and tumbling: close to the transition on the tum-
bling side, the vesicle dynamics is slow enough to allow relaxation of the
shape in the third dimension, making the main section of the vesicle in the
shear plane more rounded and then more prone to tank-treading. At this
moment tank-treading starts to take place, the vesicle orients more in the
direction of the elongational component of the shear, it is then stretched
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4. The model for vesicles

Figure 4.6: Time sequences of tank-treading and tumbling vesicles (A and
B, respectively) and red blood cells (C and D, respectively): the two main
regimes that characterize vesicle – and RBC – dynamics [AV08].

and becomes thus more prone to tumbling. As a result, the vesicle shows a
motion which is composed by a periodic alternation of portions of tumbling
and tank-treading. This regime is called vacillating-breathing or swinging

and has been discovered only very recently [Mis06, KS06, DKS09]. Another
regime is the so-called kayaking or spinning, in which the vesicle tumbles
but with a main axis that preceeds around the vorticity direction (i.e. the
direction normal to the shear plane) [LTV08].

The parameter space in three dimensions has not yet completely been
explored, so the existence of other regimes is possible. Moreover, in other
types of flow the vesicle can show different dynamics. For instance, in
Poiseuille (parabolic) flow, a vesicle can assume a ‘parachute’ shape, or an
asymmetric ‘slipper’ shape [SB69, VMP04, Poz05, KBM09], both in two
and three dimensions. Vesicles in a Poiseuille flow will be presented in
chapter 7.

4.5 Vesicles to model red blood cells in two

dimensions

The present work is concerned with numerical simulations of vesicles in
dimension two, it is then important to discuss the relationship between
vesicles (the model) and red blood cells (the biological counterpart) in the
particular two-dimensional case.

As stated in section 3.1, the membrane of a red blood cell is submitted,
as vesicles, to the constraint of local inextensibility but in addition also to
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the elastic restoring force arising from the deformation of the cytoskeleton,
that vesicles lack. In three dimensions, these two elements can coexist
and both influence the dynamics. But in dimension two the effect of the
cytoskeleton, i.e. membrane elasticity, is suppressed by the inextensibility
of the membrane, that fixes the distance between neighboring membrane
patches.

To be more precise, an effect of the cytoskeleton in two dimensions ex-
ists if the rest configuration is non-circular. In fact, the cytoskeleton has
the mechanical effect of exerting on the membrane an elastic force towards
the unstressed configuration. If this configuration is circular, the elastic
restoring force does not depend on the membrane patch. But if the rest
configuration has a different shape, every membrane patch keeps memory its
original curvature, so elastic forces vary from patch to patch. A consequence
of the non circular rest configuration is an oscillation of the inclination angle
around its average value in the tank-treading regime (observed experimen-
tally for RBCs [AV08]), due to the movement of the membrane around the
fixed shape of the particle. In tumbling, the membrane tank-treading is
minimal and the effects of elastic forces are then negligible.

In conclusion, in two dimensions the differences between vesicles and
red blood cells are reduced to a minimum, due to the inextensibility of the
membrane.
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chapter 5

THE NUMERICAL METHODS

The boundary integral and the phase field methods to compute
the dynamics of vesicles are described. The numerical codes used
in this work have been implemented by T. Biben, in our institu-
tion, for the single vesicle case. I adapted these codes to the case
of multiple vesicles and interfaced the boundary integral code to
a fast multipolar solver developed by H. Selmi, and parallelized
it on multiple computing cores using the library OpenMP. The
boundary Integral code developed by G. Biros is also introduced
and compared to ours.

La méthode des intégrales de frontière et la méthode du champ de
phase pour calculer la dynamique de vésicules sont décrites. Les
codes numériques utilisés dans ce travail ont été dévéloppés par T.
Biben au sein de notre Laboratoire pour le cas d’une seule vésicule.
J’ai adapté ces codes au cas de plusieurs vésicules et aussi inter-
facé le code intégral à un solveur basé sur la méthode multipolaire
rapide développée par H. Selmi. J’ai parallélisé cette méthode sur
plusieurs cœurs de calcul à l’aide de la bibliothèque OpenMP. Le
code intégral développé par G. Biros est aussi présenté et comparé
aux deux codes précédents.

5.1 A moving interface problem

An ensemble of vesicles suspended in a fluid defines several fluid domains,
corresponding to the interior of each vesicle and to the suspending medium.
Then the dynamical evolution of the system can be seen as the evolution of
the fluid domains, connected one to the other through appropriate bound-
ary conditions. While the solution of the fluid motion in a single domain
with known boundary conditions is quite simple due to the simplicity of
the governing equation (the Stokes equation in our case), the problem is
more complicated when the domains are connected one to the other and
the boundary conditions themselves (position of the boundary and forces
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exerted) depend on the evolution of the system: this is a moving interface

problem.
From a numerical point of view, moving interfaces are a challenge. The

main difficulty arises from the fact that every fluid domain, and then the do-
main where the solution has to be computed, changes its shape and position
with time. This forces in principle to redistribute the ensemble of discretiza-
tion points (mesh) from a time step to another, or to encode somehow in
the equations the variations in the domains.

There are several techniques to deal numerically with a moving interface,
but they can be regrouped in two general families: (i) the interface tracking

methods and (ii) the diffuse interface methods.
In the interface tracking methods, the interface is tracked directly via a
set of discretization points that lie on the interface itself. These points
have then to be displaced with the interface during time evolution. This
displacement has to be performed in such a way that the distribution of
the points continues to represent conveniently the interface, i.e. avoiding
the accumulation of points in some areas and big separations between them
elsewhere. In fact, these factors usually cause big numerical errors on the
computation of the dynamics. Methods that belong to this family are for
instance the Boundary Element (or Boundary Integral) Method (BEM /
BIM) and the Immersed Boundary Method [Pes02].
The other family of methods to solve moving interface problems is composed
by the diffuse interface methods. In these methods, the interface is not
tracked directly, on the contrary its position is encoded in an auxiliary field,
that assumes a certain value on the location of the interface. The advantage
of this technique, which is apparently counterintuitive, is the possibility to
use a mesh that does not depend on the position of the interface and thus
does not change in time. To this family belong the Phase Field method
(PF) and the Level Set method.

We use two different numerical methods to run simulations of vesicles
immersed in an external fluid: Boundary Integral and Phase Field methods.
The main difference between these two is that with BIM only the membrane
of the vesicles is discretized (all the mesh points lie on the interface), while
in PF the equations are solved in the bulk. We describe both of them in the
following paragraphs.

5.2 Boundary Integral Method

The main idea of this method is to solve Stokes equations by means of
the Green’s function technique. The use of this method yields the velocity
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of the membrane, needed for the time evolution of the suspended entities,
as a function of integrals over the various boundaries present in the con-
sidered fluid domain. For a single vesicle in an unbounded shear flow the
only boundary is that of the membrane of the vesicle [Poz92, Poz01]. The
computation reduces from a two-dimensional problem (fluid domain) to a
one-dimensional problem (the vesicle boundary). This is done, however,
at a certain price, non locality: the motion of a given point of the surface
of the suspended entity depends on the dynamics of the points which are
located elsewhere. The numerical solution of these equations is achieved
by a discretization of the vesicle surface, which is a line in two dimen-
sions. Note that this method can only be used to solve linear equations
(as Stokes equations) and needs an update of the mesh during the time
evolution due to the deformation of the boundaries of the fluid domains
[RA78, KWSL96, CM99a]. Moreover, in two dimensions, the constraint of
local length incompressibility on the vesicle membrane preserves the dis-
tance between neighboring points of the discretization, so the mesh update
can be performed with a simple Lagrangian advection.

The equation for the velocity of a point belonging to the membrane
(denoted x0 hereafter) is [Poz93, KPS94]:

u(x0) =
2

1 + λ
u∞(x0) +

1

2πηout(1 + λ)

∮

γ

G(x− x0) · f(x)ds(x)

+
2(1− λ)

π(1 + λ)

∮

γ

u(x) ·T(x− x0) · n(x)ds(x) (5.1)

where

Gij(x− x0) = −δij ln |x− x0|+
(x− x0)i(x− x0)j

|x− x0|2
(5.2)

Tijk(x− x0) = −4
(x− x0)i(x− x0)j(x− x0)k

|x− x0|4
(5.3)

are the Green’s functions of the problem (Gij refers to the so-called single
layer contribution, while Tijk accounts for the the double layer1 contribu-
tion), u∞ represents the imposed flow, γ is the vesicle contour and f the
membrane force, given by equation (4.8):

f = −κ
[

d2c

ds2
+

1

2
c3
]

n+ ζcn+
dζ

ds
t

1The names singe layer and double layer come from electrostatics: if fi is thought
of as an electric charge and u as an elctric dipole (i.e. a distribution of opposite charges
on two close layers), the integrals containing G and T represent the electric potential
generated by these distributions.
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5. The numerical methods

For numerical reasons, the numerical scheme which is implemented in
the code does not use ζ directly2, but rather a tension-like parameter, in-
troduced as a penalty:

f = −κ
[

d2c

ds2
+

1

2
c3
]

n+ T [(ℓl − ℓl0)τ l + (ℓr − ℓr0)τ r] (5.4)

where (ℓl − ℓl0) and (ℓr − ℓr0) are the differences between the actual dis-
tances of a discretization point of the membrane to its left and right neigh-
bors and their initial values. τ l and τ r are the unit vectors pointing from
the considered point to the corresponding neighbors. This tension term
accounts for both the tangential and normal components of the membrane
incompressibility force which enters via the Lagrange multiplier ζ in (4.8).
We can introduce a dimensionless number associated with T , defined as
CT = ηoutγ̇/(r0T ). The elastic constant T is taken quite large, so that the
corresponding force is large enough to fulfill quasi conservation of the lo-
cal length at the time scale imposed by the action of physical forces. This
means that the elastic dynamics can be considered as an effective implemen-
tation of quasi instantaneous local membrane incompressibility, [CKM03]
(in practice, taking T ≈ 104, when the other relevant parameters are of or-
der 1, is sufficient to reach the convergence of this scheme). More precisely
if Ca is of order one, then CT should be chosen small enough (typically 10−4

or smaller).
The large separation of time scales between the overall dynamics of the
vesicle and the local dynamics of the membrane obliges to choose a small
time step. An advantage of the use of the penalization method is that we
do not need to solve numerically for a Lagrange multiplier, which should
be obtained implicitly from the condition that the surface divergence of the
velocity field must vanish (membrane incompressibility).

The membrane velocity is computed by evaluating the right hand side
of (5.1): we prescribe an initial vesicle shape as well as an initial velocity
on the membrane, so that the right hand side of (5.1) can be evaluated at
initial time. The time integration is carried out by means of an explicit
Euler scheme, in which the velocity appearing on the right hand side of
(5.1) is taken to be the one computed at the previous time step. Each point
on the membrane is displaced by a quantity u∆t, where ∆t is the time step
and u is the membrane velocity, and this yields the new configuration, and
so on.

2The simultaneous determination of the velocities of the discretization points x0 and
of the Lagrange multipliers ζ(x0) is challenging from a numerical point of view, and leads
to severe instabilities.
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5.2. Boundary Integral Method

As discussed in chapter 3, the rheological properties correspond to in-
tegrals of the stress tensor extended over the whole volume of the system.
Within the framework of BIM, it is highly desirable to avoid volume inte-
grals, that would require a specific volume mesh (since the dynamics of the
system is completely determined via surface integrals). It is indeed possi-
ble to express volume integrals through surface integrals, by using Gauss’
theorem. In the case of the integration of the stress tensor, the use of this
theorem is nontrivial due to the discontinuities of σ across the membrane of
the vesicles, as shown in chapter 4. The calculation, based on the approach
of Batchelor [Bat70] (that has been adapted to liquid particles by Kennedy
et al. [KPS94]) is detailed in Appendix A. This allows us to determine the
contribution of the vesicles to the rheology of the system via integrals over
the vesicle membrane itself.
The expression used to compute the components of the stress tensor of the
composite fluid (solvent + vesicles) reads:

< σij >=
1

S

[

ηout

∫

S

(∂iuj + ∂jui) dA

+

∮

γ

[xjfi + ηout(λ− 1) (niuj + njui)] ds

] (5.5)

where S denotes the bulk of the system and γ the contour of the vesicle. The
first term, which is the average velocity gradient in the system, represents
the stress contribution due to the imposed flow [SCB68, Bat70, FA70], while
the second term accounts for the presence of the vesicle. The discussion of
rheology will thus focus on the latter contribution only.

Numerical implementation and convergence test

BI method is very accurate and thus allows for precise quantitative results.
We have studied the numerical convergence of the code upon decreasing the
time step and increasing the number of discretization points.
For this test, we consider the simple physical situation of a single vesicle in
an unbounded shear flow, that is the case analyzed in detail in chapter 6.
We compute both the dynamics and the rheology, in particular we study the
inclination angle of the vesicle with respect to the flow lines, the effective
viscosity and the normal stress difference.
The method of discretization is described in [CKM03]. It turned out that
the convergence with respect to the time step is quite fast, while the con-
vergence with respect to the spatial discretization n is slower: we focused
then our attention on the latter. We ran four series of simulations, with
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5. The numerical methods

n ∈ {60, 80, 120, 240}. For every series we chose a time step for which we
can consider that the time convergence is attained: (simulations with a
time step three times smaller were giving the same results within an error
of 10−5). For this convergence test we consider a vesicle with a reduced
area α = 0.9 and a capillary number Ca = 1.

We have analyzed the behavior of the critical viscosity ratio λc beyond
which the vesicle undergoes a tumbling transition. It is in general quite
difficult to locate with a good enough accuracy a bifurcation point. The
results are shown in figure 5.1. The same quantity is also computed for n
= 480 (in that case we only focus on the critical value λc, in that we do not
compute the whole curves as in figure 5.1 due to the rather large computing
time). In figure 5.2 we report λc for different values of n. In order to check
the convergence by extrapolation to n = ∞, we plot λc as a function of 1/n.
It is appealing to fit the data with a parabola (see figure 5.2). Taking a
test function y = ax2 + d (we have omitted the linear term since the figure
conveys the impression of a quite small slope at the origin) it is found that
the discrepancy between the extrapolated value at n → ∞ (d = 5.50) and
the one found by the most refined simulation ran (n = 240, λc = 5.55) is
about 1%: so we can consider that our discretization is close enough to
convergence to be able to discuss the results at a quantitative level. The
time step for n=240 is ∆t = 3 · 10−5. The perimeter is conserved within
a relative error of 10−3, and the surface of 10−6. Cpu time on a desktop
processor is of the order of hours or days – depending on the parameter
values.

5.3 Phase Field Method

This technique is traced back to van der Waals [vdW79] and has been
widely used in the context of critical phenomena [HH77]. The method has
then been used for non equilibrium pattern-forming solidification problems
[PF90, WSW+93, WBM93, Kob93]. It was first introduced for vesicles
and membranes in [BM02, BM03, BKM05]. This method is based on the
introduction of an auxiliary field, namely the phase field, which assumes
two constant values inside and outside the vesicle (in our case −1 and +1
respectively), and undergoes a continuous, albeit stiff enough, variation
between these values across the membrane position.

Unlike the van der Waals and phase transition problems where the phase
field represents a physical quantity (e.g. density), for the vesicle system it
can, at first sight, be viewed as a color-like function that delimits the interior
of the vesicle from the exterior. Recently a thermodynamical formulation
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Figure 5.1: Boundary Integral Method: numerical convergence upon in-
creasing n. (a) stationary inclination angle Ψ, measured counterclockwise
from the positive x semiaxis (when a stationary solution exists; this is the
tank-treading regime), (b) the reduced viscosity [η], and (c) the normal
stress difference N as a function of the viscosity ratio λ. The reduced area
is α = 0.9 and the capillary number Ca = 1.0. Rheological measurements
of (b) and (c) have been averaged over a period in the tumbling regime.
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Figure 5.2: Boundary Integral Method: numerical convergence of the pa-
rameter λc as a function of 1/n. n ∈ {60, 80, 120, 240, 480}. The line repre-
sents the fit of the results by the function y = ax2 + d. The value found for
the intersection with the y axis is d = 5.50, representing the extrapolation
for n→ ∞.
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5. The numerical methods

of the phase field for membrane dynamics has been proposed, although
the notion of thermodynamics associated with a membrane position is a
priori not easy to imagine [JM07, JM08a, JM08b]. Here we shall adopt the
alternative of a color-like function.

The phase field (PF) behaves as a tanh(r/ǫ) profile (where r is the
position variable across the membrane). We refer thus to the phase field
as a diffuse interface model, since the boundary region is endowed with
a certain thickness ǫ, which is not of atomic size (otherwise the problem
would be too stiff and could not be handled numerically within a reasonable
time), but rather it is required to remain small enough in comparison with
the vesicle size and the local radius of curvature. Thus, the thickness of
the interface is artificial and does not reflect the physical thickness of the
bilayer, since here the phase field is used only for interface tracking. This
results in some conceptual and numerical difficulties, the most serious one
being the need to extrapolate the results in the limit of vanishing interface
thickness [BRS+04]. This extrapolation is not always obvious, since the
dynamics is sensitive to the value of the interface thickness.

The PF method is a field approach, i.e. the evolution equations are
solved everywhere in the bulk regardless of the position of the membrane.
The presence of the vesicle in the considered domain is expressed explicitly
only in the initial condition. The popularity of the PF approach is due to
its various virtues: (i) the possibility to run simulations for any kind of
constitutive equation for the ambient fluid (not only linear as is required
by the BI method), (ii) the absence of direct tracking of the interface,
thanks to which remeshing problems and others due to singularities over
the boundaries are avoided and (iii) simulating several vesicles requires only
a change in the initial conditions.

Let us recall the model equations initially reported in [BM02, BM03].
The Stokes equations are coupled with an evolution equation for the phase
field ϕ. The latter is derived from a phenomenological free energy (which
has the form of a Ginzburg-Landau energy known for phase transition phe-
nomena) having a double well and a wall-like contribution. In addition, the
bending force and the inextensibility condition of the membrane (which is
a proper problem to vesicles) have to be defined everywhere in the bulk,
like the phase-field itself. This is detailed in [BRS+04].
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5.3. Phase Field Method

The evolution equations of the PF model read:

∂u

∂t
= ∇ ·

[

η(ϕ)(∇u+∇uT )
]

−∇p+ f (5.6)

∂ϕ

∂t
= −u · ∇ϕ+ ǫϕ

[

−δF
δϕ

+ cǫ2|∇ϕ|
]

(5.7)

∂ζ

∂t
= −u · ∇ζ + T∇s · u (5.8)

where n = ∇ϕ/|∇ϕ| is the normal to the iso-ϕ lines, c = −∇ · n is the
curvature, η(ϕ) = ηout(1 + ϕ)/2 + ηin(1 − ϕ)/2 is the position-dependent
viscosity (this parametrization allows to account for a viscosity contrast
between the interior and exterior of the vesicle), p is the pressure, and f

represents the force on the membrane,

f =

[

−κ
[

c3

2
+∇2

sc

]

n+ ζcn+ (t · ∇ζ)t
]

δinterface(r) (5.9)

and

F =

∫

S

dA

[

1

4
(1− ϕ2)2 +

ǫ2

2
|∇ϕ|2

]

(5.10)

is the free energy functional intrinsic to the phase field model. Note that the
membrane force is nothing but expression (4.8) written in the phase field
spirit. δinterface(r) = |∇ϕ|/2 localizes the force action around the membrane
of the vesicle (the interface of the PF) and is a diffuse version of the Dirac
function. ∇s ·u is the surface divergence of the velocity field, T is similar to
the tension-like parameter introduced in (5.4), and has to be large enough
in order to enforce the local incompressibility of the membrane, and finally
t denotes the tangent vector to the iso-ϕ contours.

In (5.7) the term cǫ2|∇ϕ| has been added in order to suppress the sur-
face tension effect arising from the Laplacian ∇2ϕ (that stems from the
functional derivative of |∇ϕ|2) in the free energy. In fact this term, being
a positive contribution to interface energy, acts to reduce the extent of the
interface as a surface tension would do. This trick has been introduced by
[FCHMRP99], and adopted later for vesicles by [BM03]. Note that this
effect can also be suppressed directly from the energy [JM08a], an advan-
tage which may prove useful when using a weak formulation for solving the
equations by means of a finite element technique.

The time evolution is implemented after discretizing the space operators
by Fourier transforms [Bib05]. This requires periodic boundary conditions.
As a consequence, the system simulated is more appropriately an infinite
periodic system, with an infinite number of vesicles. To avoid the effect
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5. The numerical methods

of interaction between the vesicle and its images, we run simulations at
a low volume fraction φ ≈ 2%, corresponding to a squared box whose
side is approximately six times the linear dimension of the vesicle. The
discretization domain is a squared grid of size 200 × 200. The number of
points lying in the membrane region (the so-called diffuse interface) is equal
roughly to 160.

The effective viscosity is computed by integrating the stress tensor over
the sides of the simulation box:

ηeff =
1

2Lγ̇

∫

∂S

σxydl =
1

2Lγ̇

∫

∂S

ηout(∂xuy + ∂yux)dl (5.11)

where ∂S represents the boundary of the simulation box of side L (the two
sides parallel to the gradient of the imposed shear flow do not contribute
to the result due to periodic boundary conditions.) The above contribution
contains both the effect of the imposed flow and the induced contribution
due to the presence of the vesicle.

5.4 Comparison between the numerical

methods

The results obtained by the two numerical methods are compared in figure
5.3. It is seen that the two methods show the same qualitative behavior.
However, the PF method is sensitive to the numerical value of the interface
width ǫ, and is expected to provide less precise results, unless a very refined
mesh is used. If the mesh is not fine enough the PF method shows a
significant quantitative deviation from BI results. However, if a larger mesh
size is allowed for the BI method, then the BI and PF methods agree even
quantitatively, as shown in figure 5.3. In order to achieve a high enough
precision an extrapolation of the PF results to ǫ → 0 is needed. Due to
the extrapolation, this method predicts a slightly negative inclination angle
close to the transition; this should be regarded as a numerical artifact.
Note, however, that small negative angles are predicted analytically in three
dimensions [LTV08, DBP+07], but no support is known in two dimensions.
In addition, the presence of a bifurcation makes the task even more serious
numerically, since physical properties undergo an intrinsic rapid change in
the vicinity of the bifurcation point. As a consequence, the computation
of the effective viscosity, figure 5.3(b), in the bifurcation region is hardly
accessible, and could not so far been determined with a high enough degree
of confidence.
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5.5. Alternative Boundary Integral implementation

5.5 Alternative Boundary Integral

implementation

In section 6.7 and chapter 8 a boundary integral code written by G. Biros
(Georgia Institute of Technology, Atlanta, USA) and collaborators will be
used. It is described in detail in [VGZB09]. The motivations of this choice
rely on the high precision of this implementation in the computation of the
dynamics of a vesicle suspension, and the low number of points necessary
in order to discretize rigid boundaries (in fact, in section 6.7 we will study
the behavior of highly deflated vesicles and in chapter 8 we will study the
behavior of a suspension of vesicles in a bounded geometry, a Taylor-Couette
cell).

The code by Biros et al. has high accuracy both in space and time.
The latter is due to the high-order scheme (2nd or 3rd) used to implement
the time evolution, while the precision in space computation is due to the
spectral accuracy (i.e. the use of Fourier transforms) to compute derivatives
on the surface of the vesicle (we remind that the membrane force contains
a fourth derivative, whose precise numerical calculation is challenging).

Moreover, Biros and collaborators implemented contribution to the mem-
brane force arising from inextensibility (see equation 4.8) directly with La-
grange multipliers: this enables to simulate a perfectly circular vesicle. On
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Figure 5.3: Comparison between boundary integral (BI) at two different
resolutions, N = 60 and N = 240, and phase field (PF) results (200× 200
grid) extrapolated to ǫ→ 0.
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the contrary, the code written by Biben et al. is based on an effective imple-
mentation of this force through a penalization method, that would oblige
to set the penalty parameter T to infinity in order to preserve the local
surface area when approaching the circular shape3 (see equation 5.4).
On the contrary, Biros and collaborators succeeded to remove the singu-
larity present in the tension force. Their code is then able to simulate a
perfectly circular vesicle.

Convergence tests have been performed passing from n = 32 to n = 64
discretization points on the membrane and from time steps of order 10−2

to 10−3. The results are very satisfactory using the values n = 64 and
∆t = 10−3: the perimeter and area of the vesicles are conserved within 1h
(1% for the most deformed vesicles, i.e. α ≈ 0.3). In our experience, the
precise conservation of these two quantities is necessary and sufficient to
guarantee the convergence of dynamical and rheological measurements.

We compared this code to the boundary integral detailed in section
5.2, written by T. Biben in our institution. The comparison is reported
in figure 5.4. The two codes show a very good agreement in the range
0.4 ≤ α ≤ 0.95, although small discrepancies are visible in the rheological
quantities, especially normal stress difference, for low values of α. The
lower limit of the range used for the comparison is dictated by the fact that
around α ≈ 0.3 there is no stationary solution of motion (and simulations
become challenging), while the upper limit α = 0.95 is determined by the
long computing time of the code of Biben et al. in the vicinity of α = 1
(due to the mentioned singularity in the membrane force).

3 For a circular vesicle the elongational component of the flow (see digram 4.5) is
perpendicular to the membrane both at the elongation and compression directions. As
a consequence, the tension forces, which are tangent to the membrane, should approach
infinity to guarantee a vanishing deformation. This is exactly what happens for an
inextensible straight rope, fixed at the two extremities, in the middle of which a normal
force acts.
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chapter 6

DILUTE SUSPENSION OF VESICLES

The dynamics of a single vesicle in a linear shear flow and the
rheology of a dilute suspension of vesicles are analyzed in detail.
While the basic dynamics (tank-treading and tumbling) was al-
ready known at the beginning of my thesis, the rheological behav-
ior was still unclear. My work clarifies the subtle links between the
microscopic dynamics of the vesicle and the macroscopic behavior
of the suspension. The influence of the membrane on rheology is
discussed, and its effects are differentiated from the effects due to
the bulk of the vesicle. Moreover, low reduced areas are investi-
gated, a case in which the vesicle is highly biconcave. In this case,
tumbling is found for a viscosity contrast λ = 1, a fact that was
not expected.

La dynamique d’une vésicule dans un écoulement de cisaillement
linéaire et la rhéologie d’une suspension diluée de vésicules sont
analysées en détail. Contrairement à la dynamique de base (tank-
treading et tumbling), qui était déjà connue au début de ma thèse,
le comportement rhéologique n’était pas encore clair. Mon tra-
vail clarifie les liens subtils entre la dynamique microscopique de
la vésicule et le comportement macroscopique de la suspension.
L’influence de la membrane sur la rhéologie est discutée, et ses ef-
fets clairement différenciés des effets dus au volume de la vésicule.
De plus, des faibles surfaces réduites sont considerées, un cas dans
lequel la vésicule est hautement biconcave. Dans ce cas, le mouve-
ment de tumbling est trouvé pour un contraste de viscosité λ = 1,
un fait qui n’était pas attendu.

The main goal of this chapter is to build a solid understanding of the
fundamental phenomena linking rheology to microscopic dynamics. We
devote then our study to the most simple situation: a single two-dimensional
vesicle immersed in an unbounded linear shear flow (figure 6.1). Starting
from the isolated vesicle problem, it is possible to extrapolate the rheological
results to dilute suspensions, i.e. to a finite concentration, albeit neglecting

57



6. Dilute suspension of vesicles

Figure 6.1: Left: The imposed linear shear flow and the coordinate system.
Right: A tank-treading vesicle in linear shear flow with a reduced area of
α = 0.7, a viscosity ratio of λ = 3 and a capillary number Ca = 1. The
dots represent a typical mesh (only half of the grid points are shown), the
tangential arrows the velocity field and the outward arrows the force exerted
by the fluid on the membrane.

hydrodynamical interactions. This is done following Batchelor approach
[Bat70], as detailed in Appendix A.

The rheological quantities of interest are the effective viscosity of the
solution

ηeff ≡ 〈σxy〉
γ̇

(6.1)

and the normal stress difference

N ≡ 〈σxx〉 − 〈σyy〉
γ̇

(6.2)

where σ is the stress tensor of the suspension – which depends on the
still-unknown vesicle conformation – and 〈 〉 denotes volume average. These
quantities provide information on the viscous and the non-Newtonian be-
havior of the fluid, as showed in chapter 3.

It is convenient to subtract the contribution due to the imposed flow
and normalize the result by an appropriate factor, which includes the vol-
ume fraction φ of the suspended entities, following [Bat70]. The imposed
linear shear flow trivially yields 〈σxy〉 = η0γ̇ and N = 0, so we have the
nondimensional reduced quantities:

[η] ≡ 〈σxy〉 − η0γ̇

η0γ̇φ
(6.3)

and

[N ] ≡ 〈σxx〉 − 〈σyy〉
η0γ̇φ

(6.4)
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which will be called respectively intrinsic viscosity and intrinsic normal

stress difference.

The vesicle contribution to the suspension stress is linear in the volume
fraction, which expresses the fact that the effects of the vesicles sum up
linearly in the absence of hydrodynamic interaction. This kind of approach
is expected to provide quantitative results for small enough concentrations
(typically ≤ 5%, in reference to the experimental validity of Einstein’s result
for a suspension of spherical rigid particles, see [Lar99]), since, otherwise,
we expect that the hydrodynamic interactions can no longer be neglected.

While the volume fraction of the suspension only plays a trivial role in
the dilute regime, the non-trivial control parameters are associated to the
dynamics of the vesicle itself: the viscosity ratio, λ = η1/η0, the capillary
number Ca = η0γ̇R

3
0/κ, which expresses the intensity of the flow compared

to the bending forces on the membrane, and the reduced area α of the
vesicle. Figures 6.2 and 6.3 show the steady angle in the tank-treading
regime, the intrinsic viscosity and the intrinsic normal stress difference. A
strong dependence of the intrinsic viscosity on λ (varied in the interval
[0.1, 200]) is observed. At low λ the vesicle motion is of tank-treading type,
while at large λ the vesicle tumbles. The minimal suspension viscosity is
obtained at the critical value λc corresponding to the bifurcation from tank-
treading to tumbling. A detailed discussion of these behaviors is provided in
6.1, while in section 6.2 the normal stress difference is analysed. Although
we shall mainly consider the λ dependence, the two other parameters α and
Ca play a role as well. We show in figures 6.2 and 6.3 the influence of α,
by considering values ranging from α = 0.70, quite elongated vesicles, to
α = 0.95 for nearly circular shapes (see figure 6.4). We can see that the
influence of α is only quantitative, the qualitative behavior is preserved.
Section 6.3 provides a detailed analysis of rheology in the tumbling regime.
The influence of Ca will be discussed in section 6.4. In section 6.5 a detailed
comparison with drops is drawn. Section 6.6 is devoted to the comparison to
three dimensional results, both analytical and experimental, while section
6.7 analyzes in detail the behavior of a suspension formed by highly deflated
vesicles.

It is important at this point to stress that these results have been ob-
tained using the BI method for two dimensional vesicles. As a consequence,
in principle, these results have to be compared to two dimensional theo-
ries1. In this context, it is interesting to remark that the intrinsic sus-

1An analytical solution for the velocity field in two dimensions has been provided
recently by [FLSG08]. We have used this solution and attempted to derive the effective
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Figure 6.2: Dynamics and rheology of a suspension of vesicles for reduced
area α ∈ {0.70, 0.90, 0.95} and a capillary number Ca = 1.0. The graphs
represent: (a) the stationary inclination angle Ψ (when a stationary solution
exists), (b) the intrinsic viscosity [η] and (c) the normal stress difference N
as a function of the viscosity ratio λ.

pension viscosity of quasi-circular vesicles (α = 0.95) approaches the value
2.0 in the two extreme limits, λ → 0 and λ → ∞ as shown in figures
6.2(b) and 6.3(b). The three dimensional analogue approaches the value
2.5 [DM07, DBP+07] for quasi-spherical vesicles. These two values turn
out to be equal to the Einstein coefficients in two and three dimensions,
representing the effective viscosity of a dilute suspension of rigid circles
or spheres [Ein06, Ein11, BBBC81, Bra84] respectively. The fact that the
effective viscosity of rigid particles quantitatively depends on the spatial
dimensions is also manifested by a vesicle suspension. This observation al-
lows us to attempt a quantitative comparison between the results of two
and three dimensions thanks to a simple rescaling of the data (section 6.6).

viscosity. However, the result shows a significant difference with the expected intrinsic
viscosity in the circular limit (which is equal to 2). Therefore, we suspect that there
is either an error in the velocity field provided in [FLSG08] or that the paper suffers
from some typing mistakes. The time did not allow me to rederive the velocity field
analytically.
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Figure 6.3: Dynamics and rheology of a suspension of vesicles for different
reduced areas α and capillary numbers Ca. The three graphs represent:
(a) the stationary inclination angle Ψ (when a stationary solution exists),
(b) the intrinsic viscosity [η] and (c) the normal stress difference N as a
function of the viscosity ratio λ.
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Figure 6.4: Stationary shapes of vesicles for different reduced areas α and
a capillary number Ca = 1.0. For more elongated vesicles (smaller α)
the tumbling to tank-treading transition occurs for smaller values of the
viscosity ratio λ.
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6.1 The effective viscosity

The effective viscosity of a suspension of vesicles has a complex behavior,
strongly dependent on the microscopic dynamics. When plotted as a func-
tion of the viscosity ratio, figures 6.2(b) and 6.3(b), [η] shows a nonlinear
and non monotonic behavior. We shall first consider the two limiting cases
λ → 0 (small internal rigidity) and λ → ∞ (high internal rigidity). As
already pointed out, the intrinsic viscosity approaches the value of the Ein-
stein coefficient in two dimensions, 2.0, in both limits, provided that the
shape is quasi circular (α=0.95). For λ→ 0 this result is not quite surpris-
ing. Indeed, at low values of λ the vesicle performs tank-treading motion,
and if its shape is close to a circular one (α=0.95) its motion is close to
that of a rigid rotation of a circle. The limit λ→ ∞ is somehow less trivial
at first sight. The vesicle undergoes a periodic tumbling motion and thus
changes periodically its orientation. However, for a quasi circular shape,
a tumbling motion is quite close to a tank-treading motion (a circle is a
degenerate limit where tank-treading and tumbling coincide [RBM04]). In
conclusion, the fact that [η] approaches the value 2 in both limits (large
and small λ) seems to have the same origin.

The limiting values of the effective viscosity (i.e. at λ = 0,∞) depend on
the reduced area α. For λ = 0 [η] decreases upon decreasing α. This effect
is not trivial, since the cross section of the vesicles in the flow, which may
be considered as an indicator of flow resistance, does not vary noticeably
(actually it even increases slightly, figure 6.4). The key point to explain
this effect is that upon reducing α the vesicle has a more elongated shape,
a fact which reduces the deformation of the flow lines, and thus lowers
dissipation. At large λ this effect is reversed, figure 6.2(b). That is to say
the elongation of vesicles (due to a decrease of α) leads to an increase of
[η]. This means that the disturbance of the flow lines, and hence the effect
on dissipation, due to the tumbling vesicle on the imposed velocity field is
stronger and stronger. A detailed analysis of the intrinsic viscosity in the
tumbling regime is provided in section 6.3.

It is interesting to note that the same behavior is obtained analytically
in three dimensions: the intrinsic viscosity decreases with ∆, the excess area
from a sphere – increasing ∆ is equivalent to reducing the reduced volume
– in the λ → 0 limit (where it lies below the Einstein value), whereas it
increases for λ → ∞, where [η] exceeds slightly the Einstein value [DM07,
DVM08].

In the tank-treading regime [η] is a decreasing function of λ. The reason
is as follows: by increasing λ the inclination angle with respect to the flow
decreases, and thus the vesicle opposes less resistance to the flow (see figures
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Figure 6.5: Inclination angle as a function of time for vesicles with different
λ. α = 0.90, Ca = 1.0.

6.3(a), 6.3(b) and 6.4). A detailed analysis of this phenomenon is given in
section 6.5.

Let us provide further physical explanations to the above results. We
have seen that after the transition to tumbling the effective viscosity (aver-
aged over a period) increases with λ (see figure 6.3(b)). The key ingredient
is that, on average, in the tumbling regime the vesicle scans a larger cross
section against the flow, and this results in an enhanced resistance to flow
compared to tank-treading. In addition, despite the existence of a bifurca-
tion, [η] is continuous at the TT-TB point and exhibits a minimum. The
vesicle spends, close to the transition point, and on the TB side, most of
its time aligned with the flow, and makes a rotation by an angle close to
π in a small time interval. This is visible in figure 6.5 where we show the
inclination angle as a function of time with parameters chosen both close
to the tumbling bifurcation point (λ = 5.60, λc = 5.55) and far away from
this point (λ = 10.0). The continuous decrease of the relative time spent in
the flow-aligned position is the main reason why [η] increases continuously
upon increasing λ in the vicinity of the bifurcation point, i.e. for λ ≃ λc.
As λ increases beyond λc, the TB frequency increases towards the value of
a rigid ellipse (figure 6.6), which can be computed analytically [KS82]:

ωR =
γ̇

π

(

a

b
+
b

a

)−1

(6.5)

where a and b are the lengths of the small and large axes of the ellipse. For
an ellipse with a reduced area α = 0.90 and for a shear rate γ̇ = 1.0 we have
ω ∼= 0.138, which is very close to the value found here for a nearly rigid
(λ = 200) vesicle with the same reduced area α = 0.90 and at a capillary
number Ca = 1.0 (see figure 6.6).
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Figure 6.6: Tumbling frequency ω for vesicles with α = 0.9 and Ca = 1.0
as a function of λ. The results (obtained from BI) have been extrapolated
to the limit n→ ∞. The thick horizontal segment on the the extreme right
represents the TB frequency for a rigid ellipse having the same α.

More recently, an analytical expression for the intrinsic viscosity in three
dimensions in the TB regime has been reported [VMP+08]. This expres-
sion is valid at small enough Ca where the assumption of a shape-preserving
solution is expected to make sense. The analytical expression agrees qual-
itatively well with the full numerical calculation (figures 6.3 and 6.16), in
that it shows a square root singularity at the TT-TB point (on the TB
side). To be more precise, a fit of the intrinsic viscosity in the tumbling
regime close to the transition with the function [η] = ηc + a(λ− λc)

b gives
an exponent b ≈ 0.4, which, although slightly different from the theoretical
prediction in three dimensions (it is 0.5), is still consistent with a vertical
tangent for λ = λc.

It is worthwhile to mention that some features of the three dimen-
sional analytical work are not captured by the present simulations, how-
ever. Indeed, in three dimensions the cusp singularity exhibited by [η] at
low enough Ca is smeared out at large enough Ca [DBP+07]. In contrast,
in the present simulation the cusp is preserved even at high enough Ca. We
believe that this behavior is linked with the fact that in three dimensions
a third dynamical regime, called vacillating-breathing (or swinging) is ob-
served [Mis06, DBP+07, KS06], while in the two-dimensional case there is
no support to its existence, at least as long as thermal fluctuations are not
taken into account, see [MSNG09]. As a consequence, the inclination angle
does not show a square root singularity at the tumbling threshold, in con-
trast with the present two dimensional simulations where this singularity
survives. We believe that the cusp exhibited by [η] is directly linked with
the behavior of the inclination angle.
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A first conclusion that can be drawn is that, besides the VB mode, the
dynamics and rheology of a vesicle in two dimensions are qualitatively sim-
ilar to their three-dimensional analogues. The presence of the VB mode in
three dimensions suppresses the cusp singularity in the behavior of the effec-
tive viscosity at large enough Ca but does not affect the overall qualitative
behavior. These results support the fact that two dimensional simulations
are capable of capturing several essential physical properties. When these
simulations fail to explain a given feature found in three dimensions (the
only situation encountered so far is the suppression of the cusp singularity)
it has even been possible to provide a basic reason, and thus to provide to
the two dimensional work a robust status.

6.2 The normal stress difference

We have analysed the behavior of the normal stress difference N , and linked
it to the vesicle dynamics (figure 6.3). N decreases during tank-treading
upon increasing the viscosity ratio. At the critical point N vanishes and
remains zero in the tumbling regime, figure 6.2(c). The positivity of the
normal stress difference at an inclination angle 0 < Ψ < π/4 is due to the
resistance of the vesicle to the elongation imposed by the shear flow (the
elongational quadrant of the shear flow is [0; π/2], modulo π). N = 0 at
the transition between tumbling and tank-treading, where a tank-treading
vesicle has its main axis parallel to the flow. This is explained through the
fact that for Ψ = 0 the vesicle is at the boundary between the compression
and the elongation of the shear flow (figure 4.5), and is then not stretched.
During the tumbling regime, N = 0 once averaged over a period due to the
restored circular symmetry.

This whole topic is detailed in Appendix B for a rigid filament, which
looks to be a very simple model able to offer a clear insight on the origin of
stress components in complex fluids.

6.3 Instantaneous stress in the tumbling

regime

In the previous sections when referring to vesicles in the tumbling regime
we have only presented rheological quantities that have been averaged over
a period. We would like to analyse the time dependence of stress, from
which we may extract the analogues of effective viscosity (that may be
called instantaneous viscosity) and normal stress difference. It must be
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Figure 6.7: Tumbling of a vesicle in a linear shear flow. λ = 8, α = 0.9 and
Ca = 1.0. Snapshots are taken at irregular time intervals for illustrative
purposes.

stressed that, from a theoretical point of view, the way this quantity is
defined is similar to the classical definition of the effective viscosity, by
using the Batchelor formula (5.5). Thus this definition is not ambiguous,
and can be called instantaneous viscosity. Of course, one has to keep in
mind that in traditional rheological experiments only an average over time
would make sense, due to the uncorrelated dynamics of the vesicles (in the
dilute regime) in the sample. Nevertheless, measuring the instantaneous
variation of the stress tensor due to a single vesicle can be performed without
ambiguity. Moreover, the notion of instantaneous stress is not only of a
fundamental interest, but is also experimentally measurable with the advent
of microfluidic devices and NEMS (nanoelectromechanical sytems). These
devices are nowdays capable of measurements with high time resolution on
fluid samples with a volume smaller than a microliter [BCMS02, WO07].
Sensing the disturbance of the stress by the presence of a vesicle seems to
lie within the precision of experiments. However, the measure would not
necessarily reflect the value of an average stress, since the probe sees the
medium as a continuum. Nonetheless, the presence of a vesicle will disturb
the medium, and should have an affect. This question should deserve an
analysis under close scrutiny in the future. Our main objective is basically
to draw attention on the fact that measurement on such small scales may
become quite feasible in the near future. The question addressed here may
help triggering future experimental research along this direction.

Figure 6.7 shows snapshots of a tumbling vesicle and figure 6.8 the time
dependence of its inclination angle, intrinsic viscosity and normal stress
difference. The capillary number is set to Ca = 1, but we have to keep in
mind that all the features discussed in the following are also exhibited at
Ca = 10. The behavior of both effective viscosity and normal stress differ-
ence is highly nonlinear and exhibits maxima and minima. This feature,
found here numerically, was also briefly reported analytically in three di-
mensions [DM07]. A surprising feature is that the effective viscosity exhibits
two minima within each tumbling period. A convenient representation that
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Figure 6.8: Dynamical and rheological quantities in the tumbling regime:
(a) inclination angle Ψ, (b) intrinsic viscosity [η] and (c) normal stress
difference N as a function of time. α = 0.9, λ = 8 and Ca = 1.0.

lends itself to a simple interpretation of the results is to plot these quan-
tities as functions of the inclination angle, rather than time, as shown in
figure 6.9. Note that the vesicle orientation is defined modulo π (and not
2π), owing to central symmetry. Here we see clearly that the two max-
ima of dissipation occur at the inclination of ±π/4. Let us recall that a
linear shear flow can be written as a superposition of pure rotational and
elongational components (as shown in section 4.4); elongation is oriented
at ±π/4 [RBM04] with respect to the imposed flow direction, as sketched
in figure 4.5. Only the elongational component (which corresponds to the
symmetric part of the shear flow) generates dissipation, while the pure rota-
tion corresponds to rigid-body rotations, which do not involve dissipation.
The occurrence of two maxima at the orientation ±π/4 is due to the maxi-
mal strain efficiency in these directions of the dissipative component of the
imposed flow on the vesicle. It must be stressed that these maxima are
not due to the deformation of the vesicle itself, since they survive even for
nearly rigid vesicles (λ = 200).

The viscosity is minimal when the vesicle aligns with the flow (Ψ = 0),
a somehow trivial effect in the light of the previous discussions. Perhaps,
the most astonishing and quite counterintuitive effect is the appearance of
a minimum of the viscosity for the vertical position (i.e. Ψ = ±π/2): our
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Figure 6.9: Rheological quantities in the tumbling regime: (a) intrinsic
viscosity [η] and (b) normal stress difference N as a function of the instan-
taneous inclination angle Ψ. α = 0.9 and λ = 8. Data are shown between
Ψ = 0 and Ψ = π, in order to stress that the occurrence of two maxima
is not related to the obvious symmetry of the rotation of the vesicle by an
angle π.

understanding of this result is that the stream lines of the rotational and
elongational components of the flow field are parallel to each other (see
figure 4.5), so the competition between the tendency to rotate and strain
the vesicle is reduced to a minimum.

The interpretation of the normal stress difference in the periodic regime
looks at first sight nontrivial. It turns out that a rigid unidimensional
filament in a linear shear flow shows an astonishingly similar rheological
behavior, with two maxima and two minima at the same angular positions
for both effective viscosity and normal stress difference [TS04]. The com-
putation relative to a rigid rod is detailed in Appendix B. This is a strong
argument in favor of the fact that in the tumbling regime, where the vesicle
is weakly deformable, the fundamental ingredient to understand rheology
is simply its resistance to deformation.

6.4 Dependence on shear rate

We have analysed the behavior of a vesicle suspension upon increasing the
shear rate γ̇. Two series of simulations have been performed, with capillary
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numbers Ca = 1.0 and Ca = 10.0. Vesicles with different reduced area have
been considered: α ∈ {0.70, 0.90, 0.95}. The results are reported in figure
6.3. It can be seen that the sensitivity on the shear rate depends on the
reduced area of the vesicle: in the cases α ∈ {0.90, 0.95} there seems to be no
significant dependence upon variation of this parameter. Contrariwise, for
smaller α, α = 0.70, both dynamics and rheology show significant variations
due to shear rate (or to Ca). It is found that upon increasing Ca the
transition boundary between tank-treading and tumbling is shifted towards
higher values of λ. This effect is traced back to the increase of deformability
of the vesicle for significantly deflated vesicles (α = 0.70), a fact which is
quite invisible for weaker deflation (i.e. for nearly circular shapes), owing
to membrane inextensibility (figures 6.10 and 6.11). In addition, a decrease
in [η] is observed in the tumbling regime.

A vesicle suspension can show then a shear thinning behavior if vesicles
are sufficiently deflated. In addition, if their viscosity ratio is close to the
critical value λc, a dynamical transition can occur upon variation of the
capillary number Ca, affecting even more the effective viscosity: this is
shown in figure 6.12. This complex rheological behavior (shear thinning
triggered by deflation and dynamical transition) contrasts with the case
of emulsions, which always show shear thinning [KPS94, Pal00]. Drops
always deform upon increasing the applied shear but they do not undergo
dynamical transitions (except for the possible burst).

λ=0.1 λ=1 λ=2 λ=3 λ=4

Figure 6.10: Stationary contours of tank-treading vesicles (α = 0.7) at
Ca = 10.0 (solid line) compared with the corresponding ones at Ca = 1.0
(dashed line) for different values of the viscosity ratio λ (for λ = 4.0 and
Ca = 1.0 there is no tank-treading solution).

Note that the normal stress difference N is normalized in the present
work with the factor η0γ̇. This contrasts with the conventional notation
(used for emulsions, polymer solutions, and so on) N/η0γ̇

2. It can be
checked that the latter is not dimensionless, and its use in literature is
dictated by the fact that for a large variety of suspensions of deformable
objects N ∼ γ̇2. The quadratic behavior is due to the presence in these
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Figure 6.11: Contours of a tumbling vesicle (α = 0.7 and λ = 20.0) at
Ca = 10.0 (solid line) compared with the corresponding ones at Ca = 1.0
(dashed line) for different values of the inclination angle Ψ.
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Figure 6.12: Dynamics and rheology of a vesicle with α = 0.7, λ = 4.0
as a function of the capillary number Ca. (a) stationary inclination angle
Ψ, (b) intrinsic viscosity [η] (showing shear thinning) and (c) normal stress
difference N .

systems of an internal (or intrinsic) time scale which depends on γ̇. This
time scale corresponds to the deformation (elongation) of the suspended
entities, which is proportional to γ̇. For vesicles, due to the inextensibil-
ity of the membrane, there is a weak dependence of the shape on γ̇ (see
figure 6.10), and the vesicle elongation quickly attains a saturation regime.
Thus, we view the absence of an intrinsic time scale proportional to γ̇ (see
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[Lar99], 418-419), to be the source for the linear behavior of N with γ̇ (see
also [DM07] for analytic derivation in the small deformation limit).

6.5 Comparison with drops

Since a vesicle is a droplet enclosed in a phospholipidic membrane, a com-
parison with emulsion rheology will provide valuable information on the role
of the membrane. Drops and vesicles are distinctly different systems: (i)
drop interface is governed by tension, which resists area increase, while the
vesicle membrane is controlled by resistance to bending, (ii) the drop can
change its area, while a vesicle is subject to local membrane inextensibility.
The latter property is the most serious ingredient to be emphasized in what
follows.

A first difference between vesicle and drop rheology can be obtained by
comparing the analytical expressions derived for three-dimensional spherical
drops [Tay32, FA70] and quasi-spherical vesicles in the tank-treading regime
[Mis06, DM07]:

η

η0
= 1 +

5

2
φ

(

1− 3

5(λ+ 1)

)

for drops (6.6)

η

η0
= 1 +

5

2
φ

(

1− ∆

40π
(23λ+ 32)

)

for vesicles (6.7)

where ∆, a small parameter in (6.7), is the excess area from a sphere, re-
lated to the reduced volume ν – the three dimensional analogue of α – via
∆ = 4π(ν−2/3−1). We recall here that ν = [V/(4π/3)]/[A/(4π)]3/2 where V
is the volume and A the area of the membrane, and A = r20(4π+∆). While
expression (6.6) is an increasing function of λ, i.e. the effective viscosity
increases with the internal viscosity of the drop, (6.7) is on the contrary
a decreasing function of λ for tank-treading vesicles. This shows that the
phospholipid membrane has a significant effect on the rheology of the sus-
pension. Note that 6.6 is obtained by assuming that the drop is spherical.
Of course under shear flow the drop will always deform, but the overall be-
havior of the viscosity predicted by Taylor remains essentially the same –on
the proviso that the deformation is small enough – (see [FA70, KPS94]).
Therefore it is reasonable to compare 6.6 with 6.7 which is obtained for a
small deformation relative to a sphere (for a sphere a vesicle behaves as a
rigid particle due to membrane incompressibility).

An exhaustive analysis of drop dynamics and rheology can be found in
[KPS94], here we shall exploit our own simulations in order to present a
clear comparison, focusing on the dependence on the viscosity ratio λ. For

71



6. Dilute suspension of vesicles

this purpose, we have found it more convenient to use the PF model. In-
deed, this method delivers directly the velocity field in the whole numerical
domain. The analysis of this field will allow us to shed light on the inter-
pretation of the rheological results. Note that the bulk velocity field can be
computed within the boundary integral method as well, but this requires
some additional numerical treatments.

We define the drop capillary number as Caγ = η0γ̇R/γ, where γ is the
surface tension of the drop, and R is its radius of the equivalent circle. We
fix the value of the surface tension of a drop in such a way that the drop
shape remains as close as possible to that of the vesicle with reduced area
α = 0.9 (figure 6.14). The estimated value of the surface tension which
fulfills this requirement yields Caγ = 0.3. On the other hand, it has to be
kept in mind that drops tend to become more circular upon an increase of
λ (figure 6.15). The behavior of the intrinsic viscosity as a function of the
viscosity ratio λ for a suspension of vesicles and for an emulsion are quite
different (figure 6.13). A comparison of the two behaviors in the range
of λ where both the vesicle and the drop exhibit a stationary shape (i.e.
within the tank-treading regime of the vesicles; we consider a low capillary
number so that drops maintain their integrity), reveals the the same trend
difference of (6.6) and (6.7): the intrinsic viscosity increases for emulsions
while it decreases for vesicle suspensions upon increasing λ. A key point
in order to understand this difference lies in the inspection of the velocity
fields around the suspended entities (figure 6.14).

For a two dimensional vesicle, the conservation of the local length of the
membrane leads to the constraint of uniform velocity around the membrane
itself, while the absence of this constraint for drops allows for a non-uniform
velocity.

For a vesicle, the perturbation to the velocity field is enhanced further
when it occupies a larger section in the direction of the velocity gradient,
that is when the orientation angle ψ is large. Since ψ is a decreasing function
of λ, figure 6.13(a), dissipation is also a decreasing function of λ and conse-
quently the effective viscosity too. This explains the decline of the viscosity
in the tank-treading regime, figure 6.3(b). Note also that this effect should
be more pronounced for more elongated vesicles (smaller reduced area α),
because with the same variation of λ the decline of the tank-treading angle
(figure 6.3(a)) and of the cross-section of the vesicle in the direction of the
gradient of the imposed flow (figure 6.4) are higher. This simple physical
interpretation agrees well with the numerical results, which reveal stronger
variations of the intrinsic viscosity for smaller α (figure 6.3(b)).

The situation with drops is quite different. Note that both the drop and
vesicle orientation angles decrease with λ (see figure 6.13). Nevertheless, in
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Figure 6.13: Comparison between drop and vesicle suspensions: (a) incli-
nation angle Ψ in the stationary regimes and (b) intrinsic viscosity [η] of
a suspension of vesicles (data and guideline) and of a suspension of drops.
The data refer to a vesicle of a reduced area α = 0.9 and to a drop in a flow
having a capillary number Caγ = 0.3.

the former case the viscosity increases with λ while the opposite is found
in the latter case. A close inspection of both the velocity field and the
precise deformation of the drop will be essential to clarify this difference.
The viscosity ratio plays a central role and, unlike vesicles (characterized by
membrane inextensibility), no constraint is directly imposed on the velocity
field by the drop surface. For a drop, increasing internal viscosity means
decreasing its deformability. The consequences are two-fold: (i) the drop
assumes a more circular shape (and thus, unlike vesicles, the cross-section
in the direction of the flow gradient does not vary noticeably, as it can be
appreciated in figure 6.15(a)) and (ii) the perturbations caused by a drop
on the imposed flow, which are not limited by any surface incompressibility
condition, leads to ample enough velocity gradients (and thus to increase
of dissipation) close to the surface. This simple argument highlights the
central role played by the membrane of the vesicle: not only is the membrane
responsible for the various complex dynamics of the vesicle, but also it
induces a peculiar rheological behavior. Finally, let us mention that in the

73



6. Dilute suspension of vesicles

Figure 6.14: This figure shows a drop (left, capillary number Caγ = 0.3)
and a vesicle (right, reduced area α = 0.9, capillary number Ca = 1.0)) and
their corresponding velocity fields (we have focused the attention on the
central region of the simulation box).

Figure 6.15: Steady contours of (a) drops and (b) vesicles. For the drops
the capillary number is Caγ = 0.3 and the viscosity ratio 1 ≤ λ ≤ 15
(increasing in the sense of the arrow). For the vesicles the capillary number
is Ca = 1.0 and the viscosity ratio 1 ≤ λ ≤ 7 (increasing in the sense of the
arrow). Snapshots from the PF method.

analytical theory to leading order, it is the incompressibility condition for
the membrane that controls rheology, and not the bending energy [DM07].
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Figure 6.16: Three dimensional theory (∆ = 0.25) from [DBP+07] com-
pared with rescaled two dimensional results of the present work (α = 0.95).
Intrinsic viscosity [η] as a function of the viscosity ratio λ.

6.6 Comparison with three dimensional

theory and experiments

While the present study is focused to two dimensions, it may be worthwhile
to attempt a comparison of our results with the available three dimensional
analytical theory and with experiments. It must be remembered that be-
fore comparing two and three dimensional intrinsic viscosities a preliminary
rescaling has to be performed, as dictated by the different values of the
Einstein coefficients in two and three dimensions (i.e. we shall attempt the
comparison after multiplying two dimensional data of the intrinsic viscos-
ity by a factor 2.5/2). In addition, we have to convert a reduced volume
ν (corresponding to three dimensions) into a reduced area α (defined in
two dimensions). Since a two dimensional vesicle corresponds to a transla-
tionally invariant form in the direction perpendicular to the shear plane, a
natural choice is to consider the maximum section in the shear plane for the
three dimensional vesicle, compute the corresponding reduced area of this
section, and then compare it to α. Once the above preliminary rescaling
and conversion are made, we compare the results with those obtained an-
alytically by [DBP+07], see figure 6.16. We focus on the analytical results
with ∆ = 0.25 (i.e. ν ∼= 0.97 – the value is chosen close to that of a sphere
so that the analytical theory is expected to be quantitative), and Ca = 1.0.
Using the conversion rule discussed above, we find ν = 0.97 ↔ α = 0.95.
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Figure 6.17: Intrinsic viscosity [η] as a function of the viscosity ratio λ. Ex-
perimental values and a three dimensional theory from [VMP+08] compared
to the present work.

The quantitative agreement between two dimensional numerical data and
three dimensional analytical results is quite satisfactory. It is interesting to
note how the numerical results for Ca = 1.0 compare surprisingly well with
the analytical ones at Ca = 10−2. This can be traced back to the fact that
the presence of the VB mode in three dimensions can be suppressed for
Ca = 10−2 and this has the effect of improving the agreement between two
and three dimensions. Note that since for such values of α the results are
found to be quite insensitive to Ca (figure 6.3), taking a smaller value of Ca

has as a main effect the suppression of the VB mode and not insignificant
alteration of other quantities.

The comparison with experiments [VMP+08] reported in figure 6.17 is
somehow difficult, due to vesicle polydispersity (0.9 ≤ ν ≤ 1.0), and to
finite volume concentration (3% ≤ φ ≤ 12%) of the samples. If we take
α = 0.90 we find the corresponding three dimensional reduced volume to be
ν = 0.94 (a value close to the average experimental one). We also rescale
our values of the intrinsic viscosity, as explained above. The agreement is
partially satisfactory.

6.7 Highly deflated vesicles

In this section the influence of the reduced area α on the dynamics and
rheology is discussed. Among the three parameters (α,Ca, λ) that govern
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the dynamics of a vesicle in a shear flow, this is the hardest to be scanned
extensively. This is because α affects the geometry of the vesicle: both
highly circular and highly deflated vesicles are a challenge for numerical
simulations, as discussed hereafter.
In order to deal efficiently with this problem, we use an accurate numerical
code written by G. Biros et al. [VGZB09] and described in section 5.5.

Two reasons motivate the choice of this Boundary Integral implementa-
tion for the extensive analysis of the parameter α, from 1 to the lowest at-
tainable. The first one is the ability of this code to simulate nearly spherical
(and spherical) vesicles. The second is the spectral accuracy in the compu-
tation of surface derivatives. In fact, when considering extreme values of
deformation, where the vesicle has such a biconcave shape that approaches
self-intersection (see figure 6.18), precision in the derivative computation is
crucial2. The circular limit, although not very interesting by itself, is im-
portant to check the accuracy of the results, since exact analytical solutions
exist for the dynamics and rheology of non-interacting disks, as reported in
detail in Appendix A [CZM68, BBBC81, Bra84].

In this section we restrict ourself to the case of a vesicle having the
same viscosity η of the embedding fluid: λ = 1. Being interested on the
dependence upon the reduced area α, we fix the capillary number Ca for all
the simulations presented in this chapter. We set Ca = 0.1. The choice of
this value is complimentary to the choices of the previous section, where we
investigated in detail Ca = 1 and Ca = 10. At Ca = 0.1 membrane bending
energy dominates over the forces due to the flow (Ca ≪ 1).
We have scanned values of α in the interval α ∈ [0.3; 1.00]. In the in-
terval α ∈ [0.32; 1.00] vesicles show tank-treading (see figure 6.18), while
below α = 0.32 the vesicle tumbles. In the following paragraphs we detail
the dynamics and rheology of tank-treading vesicles and we document the
occurrence of tumbling for vesicles with a viscosity contrast λ = 1.

0.32 0.35 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.00

Figure 6.18: Tank-treading vesicle shapes with different reduced areas α
under linear shear flow at Ca = 0.1. The value of the reduced area α is
reported below the corresponding shape.

2We remind that the being force contains the second derivative of the curvature of
the membrane, i.e. a fourth derivative, whose numerical computation is challenging.
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6. Dilute suspension of vesicles

Dynamics: inclination angle, tank-treading velocity

and bending energy

In figure 6.18 we report the equilibrium shapes corresponding to tank-
treading vesicles in the interval 0.32 ≤ α ≤ 1. In order to characterize
the dynamics of the vesicle, we measure the inclination angle of the sta-
tionary shape, the tank-treading velocity of the membrane and the bending
energy associated with its shape.

In figure 6.19(a) we plot the inclination angle Ψ (measured from the di-
rection of the imposed flow) of a tank-treading vesicle. The angle tends to
Ψ = π/4 for a vesicle having a circular shape (see figure 6.18), as expected
analytically [KS82], and numerically[KWSL96, BBM04] and as already seen
in chapter 6. The surprising result is that the inclination angle goes to zero
for a finite reduced area αc = 0.32. A viscosity contrast bigger than one
(i.e. viscosity inside the vesicle bigger than the one of the suspending fluid)
is needed for larger α in order to achieve flow alignment. No stationary so-
lution is stable below this limit, and then tank-treading cannot be observed
below the critical value of the reduced area αc: here tumbling takes place.

In figure 6.19(b) we plot the tank-treading velocity of the membrane,
i.e. the velocity at which the membrane moves around the stationary shape
of the vesicle. Since the membrane is inextensible, the magnitude of this
velocity must be the same on all the points of the membrane (in two di-
mensions). Its value decreases for a smaller reduced area of the vesicle.
This is expected due to the fact that with decreasing α the vesicle aligns
further with the flow and the torque due to the imposed flow is transferred
more to inclination than to tank-treading. For a circular vesicle we obtain
the tank-treading velocity vtt = 0.502 γ̇ in very good agreement with the
predicted value γ̇/2 (see Appendix A, section A.4).

In figure 6.19(c) we plot the total bending energy of the membrane
according to (4.1): not surprisingly it increases with the deflation of the
vesicle, since the curvature becomes locally higher.
We can compare the results with the value Ec

B for a circle of radius one (i.e.
c = 1):

Ec
B = κ

∫ 2π

0

c2

2
dφ = κπ (6.8)

and the numerical result obtained for a circular vesicle is Ec
B = 3.138κ.
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Figure 6.19: Inclination angle Ψ, tank-treading velocity vtt and bending
energy EB of tank-treading vesicles as a function of the reduced area α.

Rheology: effective viscosity and normal stress

difference

The rheological quantities that are investigated are the effective shear vis-
cosity ηeff of the suspension and the normal stress difference N . We con-
sider the intrinsic effective viscosity and the intrinsic normal stress difference
defined in (6.3) and (6.4). Their computation is carried out using equation
(5.5), simplified by the fact that λ = 1. In figure 6.20(b) we represent the
intrinsic viscosity, which is maximal for a circular vesicle and decreases for
smaller reduced area. This can be explained as follows: the local incom-
pressibility of the membrane ensures, in two dimensions, the uniformity of
the velocity along the vesicle contour. So a deflated vesicle, having a smaller
cross-section in the shear flow (see figure 6.18), imposes on it smaller con-
straints, thus resulting in a decrease of dissipation in the embedding fluid.
This is the same mechanism already explained in chapter 6 for vesicles with
the same reduced area but different viscosity contrast λ.

In the circular limit the intrinsic viscosity coincides with the Einstein
coefficient [Ein06, Ein11], representing the intrinsic viscosity of a suspen-
sion of non-interacting rigid spheres (or disks in the two-dimensional case).
The Einstein coefficient is recovered within an error of 10−4, that is we ob-
tain [η] = 1.9999 when the analytical result in two dimensions is [η] = 2
[BBBC81, Bra84] (instead of 2.5 in three dimensions, as computed in Ap-
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Figure 6.20: Inclination angle Ψ, intrinsic viscosity [η] and normal stress
difference [N ] of a dilute suspension of vesicles as a function of the reduces
area α.

pendix A). Note that a circular vesicle, be it fluid inside or not, behaves
exactly as a solid particle, since the enclosed fluid undergoes a global solid-
like rotation enforced by the vesicle membrane (i.e. this does not hold for
a drop).

In figure 6.20(c) we plot the normal stress difference as a function of
the reduced area. This rheological observable, normally linked to the elon-
gation of elastic objects, is related here to the orientation of the vesicle in
the flow. For a circle (α = 1) the analytical solution is [N ] = 0, while
numerically we find [N ] = 0.0245, providing the order of magnitude of nu-
merical uncertainties on this quantity. We recover this value, [N ] ≈ 0 even
at the opposite limit, α = αc. This can be interpreted using a model of
unidimensional filament, detailed in Appendix B. Since we obtain [N ] = 0
at α = αc (where the vesicle fully aligns with the flow) and at α = 1 (where
the vesicle is circular), [N ] must exhibit an extremum, as shown in figure
6.20(c). This extremum can be expected to be a maximum cosidering the
simple case of a rigid filament in a shear flow, as presented in Appendix B.
The precise value of α at which the maximum should be expected (α = 0.50
in the simulations) is, at present, not yet completely understood.
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6.7. Highly deflated vesicles

Tumbling without viscosity contrast

Simulations have been carried out down to a reduced area α = 0.3. Be-
low the critical value λc at which the vesicle reaches flow alignment, the
vesicle is found to tumble. This fact had not been predicted before3. The
nearly self-intersection of the membrane at such an high deflation makes nu-
merical simulations particularly challenging. The required space and time
discretization are much finer than those required for tank-treading (the
mesh is four times denser and the time step one hundred times smaller),
and the dynamics very slow close to this critical point. For this reason we
could not scan extensively this regime, and we report here only an example
for α = 0.3. The contours of the tumbling vesicle are reported in figure
6.21 and the inclination angle as a function of time in figure 6.22. From
a physical point of view, the existence of tumbling of a vesicle that does
not exhibit viscosity contrast can be explained by looking at the origin of
tank-treading. The shear flow exerts a torque on a body immersed in the
flow. A vesicle can assume a stationary shape (tank-treading regime) if
the torque can be transmitted to the internal fluid, that rotates despite
the shape does not change in time. But if this does not occur, the vesicle
tumbles. The most often considered cause of impossibility to tank-tread is
a high internal viscosity, for which the imposed flow does not succeed in
shearing the internal fluid. But another cause can be found in the shape
of the vesicle: if it is extremely deflated, the internal fluid should undergo
an extremely high shear in the biconcave region in order to allow for tank-
treading. This internal shear generates a torque on the membrane, above
a certain threshold of which the membrane, and thus the vesicle, starts to
tumble. A whole set of simulations close to the tumbling transition would
be necessary to quantify this tumbling criterion.

3In [FLSG08] a theoretical curve for vesicles in dimension two for λ = 1 has actually
been traced. A transition to tumbling was found for α ≈ 0.7 independently of the value
of Ca. This value is by far not correct. This is thought to be due to the low order of
series expansion (2nd order) of this calculation, which should then only be valid very
close to the circular shape, α ≈ 1.
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6. Dilute suspension of vesicles

Figure 6.21: Contours of a tumbling vesicle at different inclination angles
Ψ ∈ {0, 3π/4, π/2, π/4} (α = 0.3, λ = 1, Ca = 0.1).
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Figure 6.22: Inclination angle Ψ of a tumbling vesicle as a function of time
t (α = 0.3, λ = 1, Ca = 0.1).
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chapter 7

VESICLES IN A POISEUILLE FLOW

Results on unidimensional sets of vesicles in a Poiseuille flow are
presented. This situation models the behavior of ensembles of red
blood cells in capillaries. It is found that vesicle sets assume a
nontrivial spatial organization entirely due to hydrodynamical in-
teractions. Moreover, the existence of a maximal number of vesi-
cles per set is revealed. To my knowledge, no result on this setup
exists in the literature. The Fast Multipole Method (FMM), im-
plemented by H. Selmi (Ecole Polytechnique de Tunisie, Tunisia)
in our collaboration, is presented and used to considerably reduce
the computational cost.

Des résultats sur une file de vésicules sont présentés. Cette situa-
tion modélise le comportement d’ensembles de globules rouges dans
les capillaires. On trouve que les ensembles de vésicules prennent
une organisation spatiale complexe entièrement due aux interac-
tions hydrodynamiques. De plus, l’existence d’un nombre maximal
de vésicules par ensemble est mis en évidence. A ma connaissance,
il n’y a pas dans la littérature de résultats concernant un tel sys-
tème. La méthode multipolaire rapide (FMM), implémentée par
H. Selmi (Ecole Polytechnique de Tunisie, Tunisie) dans le cadre
d’une collaboration avec nous, est présentée et utilisée pour réduire
sensiblement le coût des calculs.

7.1 Introduction

In this chapter we discuss simulations of a series of vesicles in a Poiseuille
(parabolic) flow in two dimensions. We consider sets of vesicles aligned
along the symmetry axis (x) of the flow, and we restrict ourselves to the
case of viscosity ratio λ = 1. The interest of this configuration is to emulate
the behavior of red blood cells in thin capillaries. In our simulations we
do not consider walls bounding the fluid domain. Their presence is only
modeled via the imposed flow, which is parabolic.

83



7. Vesicles in a Poiseuille flow

The numerical code used is the Boundary Integral descibed in section 5.2.
Since our simulations involve a large number of vesicles, we have coupled
the code with a fast algorithm (the Fast Multipole Method) to compute the
integrals appearing in the boundary integral formulation.

7.2 The physical system

We consider sets of vesicles aligned along the symmetry axis of a Poiseuille
flow, given by

u(y) = ay2êx (7.1)

The local shear rate is

γ̇ =
dux(y)

dy
= 2ay (7.2)

We define the capillary number Ca using the mean value of the shear rate
at the vesicle scale (y = R0/2):

Ca =
ηγ̇R3

0

κ
=
ηaR4

0

κ
(7.3)

The two parameters (Ca, α) determine the dynamics of a single vesicle in a
Poiseuille flow, (the viscosity ratio is fixed to λ = 1).

The behavior of a single vesicle in a Poiseuille flow has already been at
the centre of detailed studies, both in bounded and unbounded geometries
[NG05, CKPM08, KRC+08, KBM09]. The simple study of equilibrium po-
sitions and the corresponding vesicle shapes in an unbounded geometry is
already a complex task, and has been carried out very recently. In particu-
lar, it emerged [CKPM08, KRC+08, DVM09] that vesicles in general tend
to migrate towards the centreline of a parabolic flow, but for sufficiently
small Ca and α, vesicles may reach a stationary position before reaching
the center [KBM09].
Other studies focused on the effect of mutual interactions between vesicles
in a highly confined geometry, assuming periodic boundary conditions on
the inlet and outlet of a short capillary [MNG09], or under the hypothesis
of equally spaced vesicles [Poz05].

The study of the dynamics of a dense suspension of vesicles in this flow
would be a huge piece of work in the general case. We focus then on the re-
gion of the parameter space where a single vesicle migrates to the centreline
of the imposed flow: we choose α = 0.7 and Ca = 10. We initialize the vesi-
cles at the centreline, in order to avoid the transient dynamics corresponding
to the migration towards it. This allows us to reduce the complexity of the

84



7.3. The fast Multipole Method

system, since a richer dynamics is expected to occur when either the vesicles
are not initialized at the centreline or when α and Ca do not correspond
to a stable position in the centre of the flow in the single vesicle problem.
Although it would be feasible from the numerical point of view, the physical
interpretation would need an ample investigation of the parameter space of
the multivesicle problem.

7.3 The fast Multipole Method

We use the Boundary Integral method (BIM) detailed in section 5.2 to com-
pute the evolution of the vesicles. This kind of algorithm is intrinsically of
order O(N2), where N is the number of discretization points in the system.
In fact, the numerical calculation of the integrals on the surfaces of the
vesicles produces a linear system whose solution consumes the majority of
the CPU time. A phase of mathematical handling of the matrix containing
the physical data of the problem, generated at each time step, allows us
to apply the Fast Multipole Method (FMM) [GR87, GR88, Nis02, GD06].
The matrix resulting from BIM is dense and thus difficult to manipulate.
A decomposition of the Green’s function of the Stokes problem by using
the Green’s function of the Laplacian operator, as well as variable separa-
tion in the Laplacian, enable us to circumvent the problem. Indeed, the
action of the Green’s function of Stokes problem on the force field is given
according to the Laplacian Green’s function and its derivative. The ma-
trix arrangement in this well defined form allows us to apply the adequate
fast multipolar formulas; indeed FMM is an approximation technique of the
matrix-vector product which allows to perform this calculation with opti-
mal efficiency. The use of FMM lowers the computational complexity from
O(N2) to O(N), allowing then for a huge gain in terms of CPU time and
memory allocation.
The direct solution of the considered system has until today allowed the pre-
cise calculation of dynamics and rheology of one vesicle, but this method is
too expensive to be applied to concentrated suspension of vesicles. In this
context, FMM offers the possibility to simulate suspensions which count
some tens, or even hundreds, of vesicles using a single CPU.
FMM is detailed in Appendix E.
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Figure 7.1: Convergence test: distance between two vesicles in the case
n = 2 as a function of the inverse of the number of discretization points per
vesicle Nv.

7.4 Numerical tests

In this section we study the convergence of the code and we analyze the
computing time, with special reference to the linear scaling of the FMM
with respect to the number of discretization points of the system.

Convergence test

The convergence of the code has been tested. For this purpose, we consider
a case with two vesicles, the parameter checked is the distance between the
centers of the two vesicles when the system has reached a stationary state.
The number of discretization points used is Nv ∈ {60, 120, 240} per vesicle,
and the results are shown in figure 7.1 where the distance is plotted as a
function of 1/Nv. A linear fit of the results conveys the idea that already
with Nv = 120 the error is of the order 2 ÷ 3%, and two times smaller for
Nv = 240. We consider the first result satisfactory and we proceed to more
extensive simulations using Nv = 120 discretization points per vesicle. The
time step used is dt = 1 · 10−4.

Computing times

The CPU time of the code has been studied. Simulations have been run
for 105 time steps, which is the order of magnitude of the time needed to
obtain the equilibrium state for the case with two vesicles. The results are
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Figure 7.2: CPU time in seconds as a function of the number of discretiza-
tion points NT for 105 time steps. The dots correspond to simulations with
2, 4, 8, 12, 16, 20 vesicles having 120 points each and using a multipolar de-
velopment order of 3 and 4. The dashed line shows the linear rescaling of
the computing time with respect to NT , that is retrieved upon the change
in the order of the multipolar development.

shown in figure 7.2. Different levels in the recursive decomposition of the
computation domain are used for the evaluation of the multipolar moments
(see Appendix E): a low level is more convenient for smaller system, while
for bigger ones the use of an higher level allows to reach shorter computing
times. The linearity of the FMM algorithm with respect to the number of
discretization points is retrieved when considering the combination of the
lowest computing times among all orders.

7.5 One dimensional vesicle sets

We run simulations for different number of vesicles: the interval 1 ≤ n ≤ 10
is extensively studied, moreover few simulations are run with an higher
number of vesicles, as it will be detailed in the following. Vesicles are ini-
tialized as ellipses elongated in the direction of the velocity gradient (y axis)
and the initial spatial separation between them is chosen to be small. The
variation of the initial separation, at least below a certain threshold, does
not affect the final (equilibrium) state, which can be thus considered as a
stable solution with respect to this parameter. The value of this threshold
decreases with the increase of the number of vesicles contained in the set.
In particular, for n ≤ 6, a relative distance between vesicle centers equal
to four times their average radius is already small enough to let the vesi-
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x

y

Figure 7.3: The imposed Poiseuille flow. To compare with experiments in
a microchannel, the flow should be considered to have the same parabolic
profile, but being convex instead of concave, i.e. from the right to the left.

cles approach each other. On the other hand, for n ≥ 7, this distance is
too big and leads to the separation of the set in the course of time. We
have decreased the relative distance between vesicles down to a distance
between membranes of around 0.5 vesicle radii. The resulting configura-
tions are shown in figure 7.4, the imposed flow in figure 7.3. Simulations
for n ≤ 10 vesicles have been carried out up to the equilibrium state of
the system. For bigger ensembles it is found that vesicles detach from the
cluster, and simulations have been run up to a reasonable computing time
(that is already of several weeks on three CPUs for the biggest sets).

A quantity of interest is the distance between consecutive vesicles as a
function of the number of vesicles composing the set. The bigger the number
of vesicles in the ensemble is, the more inhomogeneous is the distribution,
with a higher density on the rear of the sets (i.e. right side of figure 7.4).
This inhomogeneity is not trivial and arises from the complex hydrodynamic
interactions between vesicles: the flow pattern established between each pair
of consecutive vesicles determines the relative distance at equilibrium.

The relative distances between vesicles are represented in figure 7.5.
Here it is shown that the distance between neighboring vesicles increases at
the front of the set (that is, on the left in figure 7.4) upon increasing n. For
bigger ensembles of vesicles it is eventually found that the leading vesicles
detach from the bunch.

In figure 7.6 we represent the velocity of the vesicle sets at equilibrium
(all the vesicles in the set move at the same speed). In the following we
will always refer to the velocity difference between the imposed flow (com-
puted at the centreline of the parabolic profile, which is zero in our case)
and the vesicle sets. This allows to compare the results to what would be
experimentally observed in a capillary (where the velocity is nonzero at the
centreline) and corresponds to look to the velocity of the sets from the right
to the left in figure 7.4. The velocity is found to be a decreasing function
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7.5. One dimensional vesicle sets

Figure 7.4: Stationary contours of vesicle sets in a Poiseuille flow (n ∈
[1 : 10]). α = 0.7, Ca = 10: for these parameter values, sets are not stable
for n > 10.
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Figure 7.5: Distances between neighboring vesicles as a function of the
number of vesicles composing the set. Vesicles are numbered from left to
right referring to figure 7.4. The general trend is an increase of relative
distances upon increase of the number of vesicles in the set.
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Figure 7.6: Velocity of the vesicle sets as a function of the number of vesicles
composing the set (defined as difference between the velocity of the imposed
flow at the centreline and the velocity of the sets).
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7.5. One dimensional vesicle sets

Figure 7.7: Contours for a set with eleven vesicles. The left box contains
the first vesicle, that has detached from the others, while in right box the
contour of the ten vesicles that remained regrouped. The dotted shapes
represent the shapes of a single vesicle and of a set containing ten vesicles
from the beginning, respectively (from figure 7.4).

of the number of vesicles in the set. This result is not surprising: vesicles
are passively advected by the flow, so being regrouped decreases the drag
per vesicle and then the speed.

The whole picture changes when considering ensembles of vesicles of
size n ≥ 11. In fact, sets are found to be unstable above this threshold,
and they divide in smaller clusters. In the case studied, this happens in
the form of detachment of vesicles from the set, up to the biggest stable
configuration, which is n = 10 in our case. We detail here the behavior for
n = 11. In figure 7.7 the contours are reported for n = 11. The ten vesicles
that remain together organize with the same spatial configuration assumed
by a set containing initially only ten vesicles. This does not look surprising,
since interactions are not expected when the distance between the bunch
and the detached becomes large.

It is interesting to note that even at big distances the velocities of both
the detached vesicle and the bunch are remarkably lower than then the ve-
locities of the single vesicle and of the set of ten, respectively. For instance,
the configuration reported in figure 7.7 corresponds to a distance between
the single vesicle and the bunch of around 100 vesicle radii, and the two
velocities corresponding to this configuration are 10.0 and 6.45 (in units of
R0γ̇), to be compared with 10.3 and 7.7 (data from figure 7.6). This is
thought to be due to the long interaction distance in two dimensions.

For n > 11 it is found that the leading vesicles detach one at a time
from the set, giving rise to an interesting transient dynamics: the first
vesicle detaches, followed soon after by the second; they form a doublet,
whose speed is lower than the one of a single vesicle. So, when the third
vesicles detaches, it joins them to form a triplet, and so on. This dynamics is
represented in the graph of figure 7.8, where we represent the inter-distance
between the first seven vesicles of a set that initially counts 15 vesicles.

A more exhaustive analysis of this subject is needed. In particular, it
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Figure 7.8: Distances between neighboring vesicles for a set with n = 15
vesicles as a function of time (measured in units of γ̇−1. The graph shows
the successive detachment of vesicles from the set (the system did not reach
an equilibrium state before the end of the simulation).

will be interesting to determine the influence of parameters like the reduced
area and the capillary number on the formation of clusters.

An element that deserves more attention is the role of the boundaries:
in fact, they are known to reduce the interaction distances between par-
ticles in a flow [DCLR05]. Nevertheless, the formation of clusters should
be determined by the interactions between neighboring vesicles, and not to
long-distance interactions.

The mechanism of cluster breaking intrigues from the point of view of
a biological interpretation: it might be seen as a self-regulating mechanism
to avoid the formation of big clusters, a fact that might prove useful for red
blood cell circulation and oxygen exchange. This is at present a speculation
that requires further studies before reaching a more conclusive answer.

92



chapter 8

VESICLES IN A CURVED FLOW

The motion of vesicles in a curved flow (either an unbounded vor-
tex or a Couette flow) is analyzed. Vesicles are found to migrate
inwards. This is contrary to what is usually observed, i.e. migra-
tion towards low shear rate regions (which are in the outer part of
the considered flows). The result is explained via the coupling of
flow curvature and normal stress difference and is believed to be
applicable to a vast majority of particle suspensions. The analysis
of multiple vesicles in a Couette device reveals self-organization in
a rim closer to the inner cylinder, resulting from a subtle interac-
tion among vesicles.

Le mouvement de vésicules dans un écoulement courbe (vortex
non borné ou écoulement de Couette) est analysé. On trouve que
les vésicules migrent vers l’intérieur. Ceci est le contraire de ce
qui est souvent observé, c. à d. une migration vers des zones de
faible cisaillement (qui se trouvent vers l’extérieur dans les écoule-
ments considérés). Le résultat est expliqué par le couplage de la
courbure des lignes d’écoulement avec la différence des contraintes
normales, ce qu’on peut supposer être un résultat généralisable à
la majorité des suspensions de particules. L’analyse du comporte-
ment de plusieurs vésicules dans un dispositif de Couette montre
une auto-organisation des vésicules-mêmes sur un anneau proche
du cylindre interne, qui résulte d’une subtile interaction entre les
vésicules.

8.1 Cross-streamline migration

In this chapter we deal with the problem of the motion of particles across the
streamlines of the imposed flow: this phenomenon is called cross-streamline

migration. We focus on the case of an imposed flow with curved flow lines.
A single rigid particle immersed in a Newtonian fluid at vanishing Rey-

nolds number Re cannot migrate in the direction transverse to the flow lines
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[BG72]. On the contrary, deformable particles have the ability to migrate
across the streamlines, even at Re = 0, with the proviso that a certain
symmetry is broken, such as centro-symmetry in linear shear flow. Sym-
metries may be broken due to the presence of walls, gradient in shear rate
(e.g. Poiseuille flow) [UNH93, MT00, CKPM08, KRC+08, KBM09], or the
presence of flow line curvature (e.g. cylindrical Couette flow). A prominent
example of lateral migration in Poiseuille flow is blood flow in which the
cross-streamline migration of red blood cells can result in ample collapse
of blood viscosity, reducing thus blood flow resistance in microvasculature
(the Fåhræus-Lindqvist effect).

Cross-streamline migration induces an inhomogeneous distribution of
the suspended entities and creates thus a microstructure. Microstructures
spontaneously arise in many complex fluids, and may have a dramatic im-
pact on rheology [CRB+02]. Cross-streamline migration is then an essential
factor in different domains, such as industrial polymer processing [Wu79],
DNA sorting [SLZ74], drop dynamics [CL79], as well as in biology.

A common belief is that deformable particles have the tendency to mi-
grate towards regions of low shear rates [UBL07, SSRP07, KRC+08, DB08,
HV10]. In some circumstances, however, the opposite is predicted (the case
of drops in a certain range of viscosity contrast between the internal an ex-
ternal fluids [CL79]). There seems to be no clear general answer regarding
the determination of the migration direction.

We carry out simulations with vesicles both in an unbounded vortex
and in a Taylor-Couette cell. The latter realistic geometry is motivated by
the fact that the Taylor-Couette system is widely used as a basic device for
the study of rheology of complex fluids, while the more abstract one, the
unbounded vortex, will allow the identification of the role of flow lines cur-
vature excluding any migration due to the bounding walls. In fact, the lift
produced by the boundaries is a long range effect that is non-negligible even
at the centre of the cell [Oll97, CMC+08, KCMP09], and is thus difficult to
discern from the effects due to flow line curvature [CL81, HJ06].

8.2 Unbounded vortex

In this section we present numerical simulations of single vesicles in an un-
bounded vortex. Although all the results involve vesicles, the interpretation
given seems to be of general validity. This is why we dedicate a short para-
graph to the discussion of their application to other systems, typically drop
suspensions.
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8.2. Unbounded vortex

Vesicles

We first consider the idealized situation of an unbounded flow in order to
exclude any migration due to bounding walls: this allows us to identify the
role of flow lines curvature. The straining component of this unbounded
flow is of the Taylor-Couette type: it is an irrotational vortex, expressed
in cylindrical coordinates (r, θ, z) by vθ(r) = a/r, vr = vz = 0, a being a
constant. In fact, for a Couette flow vθ(r) = a/r + br; we drop here the
term br, which corresponds to a rigid body rotation and does not affect the
shear rate.

It will be seen that vesicle inward migration, or the lack thereof, depends
on its dynamical regime (tank-treading vesicles migrate inwards, while tum-
bling ones do not).

Numerical simulations are carried out using the Boundary Integral code
detailed in section 5.2 [GBM10]. We consider a single two-dimensional
vesicle immersed in a Newtonian fluid. Vesicles are initialized at a distance
of 10R0 from the origin, where R0 =

√

A/π, A being the vesicle surface.
The length unit is chosen to be R0 in our simulations. The dimensionless
numbers that enter the problem are the reduced vesicle area α, the viscosity
contrast λ and the capillary number Ca = η0γ̇R

3
0/κ. In the simulations

both α and λ are varied. The value of Ca depends on the radial position,
while a is fixed to a value a = −10 (the dependence of vesicle dynamics
on this parameter is weak [GBM10]). We have performed three sets of
simulations for different α ∈ {0.7; 0.8; 0.9}. For every set the range λ ∈
[1, 10] is explored, a range that covers both tank-treading and tumbling
regimes [KS82, BRS+04, GBM10].

Typical simulation results are shown in figure 8.2. Tank-treading vesi-
cles migrate towards the center, while tumbling ones show a negligibly small
outward migration. Migration strength is found to depend on reduced area

r

ϑ
v

0

ϑr

Figure 8.1: Sketch of the imposed velocity field vθ ∼ 1/r: left: the velocity
profile; right: the streamlines.
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8. Vesicles in a curved flow

Figure 8.2: Trajectory and contour of a tank-treading vesicle (α = 0.7, λ =
1) migrating towards high shear regions (left) and of a tumbling vesicle (α =
0.7, λ = 4) showing no significant radial migration (after 13 revolutions and
8 tumbling periods, right).

and viscosity contrast in a non trivial way. In figure 8.4 we report the
migration velocity vmig for different vesicles at fixed initial radial position
r = 10R0. Analogous results are obtained for any distance 3 ≤ r/R0 ≤ 10.
In the left panel, the migration velocity is shown as a function of the two
independent dimensionless parameters explored in our simulations, namely
(α, λ).

The data do not seem to show a simple trend. For example, the curves
in figure 8.4 (left) for migration velocities obtained for different vesicles
intersect at some viscosity contrast. This points to the absence of a simple
law in this parameter space. We have thus attempted to rationalize these
results by evoking basic physical facts that distinguish a simple fluid from a
complex one. A particular property of complex fluids is the manifestation of
normal stress difference. We have thus represented the data (figure 8.4b),
in terms of the normal stress difference N measured in the local (x, y)
coordinate system (see figure 8.3 for notations).

We recall that the normal stress difference is defined as N = σxx − σyy,
where σ is the stress tensor of the suspension, computed using equation
(5.5) following [Bat70, KPS94] with respect to (x, y) as sketched in figure
8.3, and corresponding to the directions of (eθ,−er) for the centre of mass
of the vesicle. The local shear rate in the irrotational vortex is γ̇ = −2a/r2.

Interestingly enough we observe in figure 8.4 (right) that the data closely
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imposed flow line

membrane forcex

y

Figure 8.3: Force distribution on vesicle membrane and local coordinate
system used for the calculation of N (α = 0.7, λ = 1).
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Figure 8.4: Inward migration velocity normalized by R0γ̇ as a function of λ
(left) and N (right) for different α at fixed radial position r = 10R0. Every
point corresponds to the (λ,N) pair on the abscissae.

97



8. Vesicles in a curved flow

2 4 6 8 10
r / r

0

0

0.02

0.04

0.06
vm

ig
/N

r 0γ

α=0.7
α=0.8
α=0.9

0 0.2 0.4 0.6
1 / (r/r

0
-1)

Figure 8.5: Inward migration velocities divided by NR0γ̇ as a function of r
(left) and 1/(r/R0 − 1) (right) for different α. Every point corresponds to
the (λ,N) pair on the abscissae.

collapse on a single master curve, showing that the dynamics does not de-
pend on the control parameters (α, λ) independently, but rather on their
combination embedded in the function N(α, λ). Figure 8.4 (right) shows,
moreover, that vmig/R0γ̇ is simply proportional to N . This result holds for
all the radial positions explored so far, 3 ≤ r/R0 ≤ 10: data collapse is
manifested within an error of 10% (or less), and the results are represented
with a universal straight line passing through the origin. The small discrep-
ancies are believed to be due to the details of the flow around vesicles with
different shapes and orientations.
To gain further insight we have examined the migration velocity as a func-
tion of the curvature of the flow. Figure 8.5 (left) shows vmig/NR0γ̇ as a
function of the radial position. This dependence on r is nonlinear. Express-
ing the results with the help of an appropriate rescaling (figure 8.5, right)
reveals that vmig/Nr0γ̇ is a simple linear function of C0 ≡ 1/(r/R0 − 1).
Note that C0 is approximately the flow curvature on the innermost part of
the vesicle, which is also the highest among the flow lines passing through
the vesicle. The relevance of the innermost flow line, which has the highest
shear gradient among the streamlines passing through the vesicle, is con-
sidered to be due to membrane incompressibility, that propagates stresses
along the membrane. From the above results we infer the following scaling
relation for migration

vmig ∼ R0γ̇C0N (8.1)
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8.2. Unbounded vortex

This is a central result: a macroscopic measure of N (which may be a very
complex function of various parameters) directly leads to the determination
of the (microscopic) migration velocity. The relevance of normal stress
difference for the migration of particles was already pointed out in [SL91],
although in the case of migration due to the presence of a wall in a parallel
flow.

One might ask why should migration in a curved flow be dictated by
normal stress difference at all. To answer this question, one may consider
the composite fluid and denote its spatial and temporal averaged stress by
σ (very much like the definition of the classical stress, as used in equation
(5.5)). Let us assume stationary, circular motion, enjoying symmetry with
respect to the angle θ. Using momentum conservation in polar coordinates
one can show that [BAH87] (the calculation and the arguments are detailed
in Appendix C):

∂σrr
∂r

=
1

r

[

−ρv2θ +N
]

(8.2)

where ρ is the fluid density, N = σθθ − σrr and 1/r the flow line curva-
ture. −ρv2θ/r is the inertia term, absent in our case. If N 6= 0, a radial
stress gradient takes place. It results in an inward force pushing the fluid
towards the center if N > 0: the force sign can be easily deduced by the
comparison with the inertia term, which is always directed outwards. No
such simple result holds in flows which do not exhibit flow line curvature.
This result shows that the coupling between the normal stress difference
and the curvature is the direct motor for inward motion. This is in agree-
ment with equation (8.1), that has been derived directly from simulations
of a suspension of vesicles, without making any ad hoc assumption.

Moreover, we have performed simulations in a parallel flow having the
same velocity profile as the irrotational vortex – i.e. vx(y) = 1/y in cartesian
coordinates (x, y). Contrarily to the vortex flow, vesicles show in this case
migration towards regions of low shear rate, despite the fact that N > 0.
This points to the nontrivial fact that inward migration in the vortex (and
also in the Couette set-up) is due to the curvature of the flow lines rather
than to a shear gradient.

Tank-treading vesicles show positive normal stresses (see figures 6.2 and
6.3) and they migrate inwards. In the tumbling regime, we have found
N ≃ 0 (averaged over a tumbling period), and a negligibly small migration.
Moreover, N vanishes for tank-treading vesicles when approaching the tran-
sition to tumbling or when the shape is close to a sphere (as described in
sections 6.2 and 6.7) [DM07, GBM10]. This is consistent with the fact that
vmig → 0 with increasing λ or α (figure 8.4).
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8. Vesicles in a curved flow

Drops and other particles

In view of the generality of the arguments presented for migration, it is nat-
ural to attempt a generalization to other types of complex fluids. For exam-
ple, experimental measurements of migration are known for soft entities in
Taylor-Couette and cone-plate rheometers: drops [CL79, CL81, HJ06] and
polymers in dilute suspensions [Bru84, AMB02] either migrate towards the
center (cone-plate) or adopt an equilibrium position that lies between the
gap centreline and the inner cylinder (Taylor-Couette), which corresponds
to high shear rate regions. Because drops, polymers, and vesicles have quite
different properties, their similar behavior with respect to migration sup-
ports our conjecture that the basic mechanisms governing migration are
independent of the mechanical details of the suspended entity and depend
only on the flow curvature and N , as it is the case for a suspension of
polymers (the Weissenberg, or rod-climbing, effect [Wei47]).

8.3 Couette flow

Having identified the basic ingredient for migration of a single vesicle in
a curved flow, we switch now to the more realistic situation of a Taylor-
Couette cell, formed by two coaxial cylinders (circles in two dimensions)
rotating at different angular velocities in order to generate shear in the
region between them, which is occupied by the fluid.
In the following we first explore the case of a cell containing a single vesicle,
and we pass then to the more complex case of a suspension composed by
several vesicles.

The numerical code used in this section is a Boundary Integral written
by Biros et al. [RVB10] and already used in section 6.7 for a single vesicle.

In the following we define the geometry and give the relative values.
The velocity field in a Taylor-Couette cell is tangential and of the form

uθ(r) =
a

r
+ br (8.3)

where the two coefficients a and b depend on the geometry of the cell and
on the angular velocities of the walls:

a =
R2

iR
2
o(ωi − ωo)

R2
o −R2

i

b =
R2

oωo −R2
iωi

R2
o −R2

i

(8.4)

with R denoting the radii of the walls, ω the angular velocities and the
subscripts i and o refer to the internal and to the external walls, respectively.

100



8.3. Couette flow

In this geometry, it is possible to compute the effective viscosity of the
fluid in the gap between the two cylinders, that is related to the shear
stress σrθ. The derivation of such expression is based on the conservation
of angular momentum within the two cylinders, and on the assumption of
a linear relation between stress and strain, as is the case for a Newtonian
fluid1. The derivation is detailed in Appendix D. We obtain:

ηeff =
Ri

4π(ωi − ωo)

[

1

R2
i

− 1

R2
o

] ∮

Γi

fθ(r)dr (8.5)

where Γi is the surface of the internal cylinder and fθ(r) the tangential
component of the force exerted by this boundary to shear the fluid. This
expression is valid for any value of the two cylinder radii Ri and Ro. The
reduced effective viscosity is retrieved from the effective viscosity by using
equation (6.3).

The radii are set to Ri = 10R0 and Ro = 20R0 (if not differently speci-
fied), r0 being the mean radius of a vesicle as already defined in the previous
section. The angular velocities are set to ωi = 1 and ωo = 0, measured in
units of the inverse of the relaxation time of the curvature of the membrane.

Vesicles are chosen with different reduced area α, between 0.5 and 0.95.
For simplicity, we set the viscosity contrast λ to unity.

In the code, the vesicles are discretized with 64 points and the bound-
aries with 1/10th of the corresponding density. The time step is 10−2. The
space and time discretization chosen allow for a conservation of the vesicle
area within 10−4 and local perimeter within 10−3.

Single vesicle

First, we focus on the more academic case of a single vesicle in a Taylor-
Couette cell, that will constitute a precious step for the understanding of
the dynamics of a collection of cells in the same geometry.
We run several simulations with different reduced areas, 0.5 ≤ α ≤ 0.95
and we measure both the rheology of the suspension while observing the
dynamics of the system. For every value of α we run two simulations,
initializing the vesicle either close to the external wall or close to the internal
one. The goal of this procedure is to check whether the vesicles, that are
expected to show cross-streamline migration as discussed in section 8.2,
exhibit a single equilibrium position or not.

1 This should not be regarded as an unjustified hypothesis: the effective viscosity
is defined as the viscosity of a Newtonian fluid that corresponds to the measured stress
and strain (see section 3.2).
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Figure 8.6: The intrinsic viscosity in a Taylor-Couette cell with a single
vesicle (red and blue lines, for two different geometries as indicated). The
data relative to an unbounded linear shear flow are represented via the
dashed line (from figure 6.20).

The first interesting result is that all vesicles, regardless of their reduced
area or starting position, migrate to the same radial position which is lo-
cated between the inner cylinder (r = 10) and the flow centreline (r = 15)
at r ≃ 14.32 (figure 8.7, left). This indicates that the force driving inward
migration (due to the normal stress difference as discussed in section 8.2)
rescales with α as does the lift force due to the walls [BBM04].

The intrinsic viscosity of the suspension is reported in figure 8.6, where
we compare it to the same quantity measured in section 6.7 (in that case,
the flow lines were straight and the system unbounded). A quantitative
difference exists between the two curves. This difference can be due to the
confinement and to the curvature of the flow lines that also produces a non-
homogeneous shear rate. In the limit of a wide gap (|Ro−Ri| ≫ R0) and of
negligible curvature of the flow lines (|Ro−Ri| ≪ Ri), the effective viscosity
computed in a Taylor-Couette cell must coincide with the one computed in
the unbounded case. It is then interesting to quantify these inequalities by
finding the smallest geometry that allows to retrieve the macroscopic values.
After several tests, varying both the gap3 (i.e. |Ro − Ri|) and Ri between

2If the two curvature radii would tend to infinity, the equilibrium position would be
the centre of the channel.

3While varying the size of the system, the angular velocity of the inner cylinder is
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8.3. Couette flow

10R0 and 200R0, we could determine that the minimal size necessary to
recover a reasonable agreement with the macroscopic rheology is Ri ≈ 50,
Ro ≈ 100. The intrinsic viscosity computed for this geometry is reported
in figure 8.6.

Although in this geometry the effective viscosity is in quantitative agree-
ment with the macroscopic limit, in which the flow curvature is negligible,
the dynamics is still affected. In fact, the equilibrium position of the vesi-
cles is req ≈ 70.5R0, instead of the gap centreline rcentre = 75 that would
be retrieved in the case of vanishing curvature of the flow lines.

Multiple vesicles

Having identified the basic phenomena causing the migration of a single
vesicle in a Taylor-Couette cell, we are now in a position to address the
question of the impact of these features on the organization of a collection of
vesicles. We have first addressed the problem of a dilute enough suspension.
We ran simulations for low volume fraction φ ≈ 1% and φ ≈ 2% with
Ri = 10R0, Ro = 20R0. The number of vesicles corresponding to these
two volume fractions is 4 and 7, respectively. The vesicles, that are chosen
to have a swelling ratio α = 0.9, are initialized in a random configuration.
Despite the very low volume fraction, vesicles organize in an ordered phase:
they migrate to the same flow line selected as equilibrium radial position
by a single vesicle in the same geometry, and here they organize themselves
in a rim by keeping the same interdistance (figure 8.7, right). The variation
of the initial configuration doesn’t seem to have any influence on the final
equilibrium state. The organization in a rim which has the same radius as
that dictated by the final position of a single vesicle is not obvious: indeed,
the fact that the vesicles select the same interdistance is a clear indication
for their significant mutual interactions, and despite this effect the terminal
position does not seem to be affected.

For a better understanding, we have analyzed the behaviour of the flow
lines. A single vesicle creates two vortices (figure 8.7, left). The size of the
vortices is, in our geometry, of about a quarter of the circumference: we
thus expect vesicles to interact significantly when their number M reaches
4. This is confirmed by our simulations that show disorder for M < 4 and
order for M ≥ 4. For M ≥ 4 vesicles keep order because deviations would
cause restoring forces due to vortex interactions. For all explored volume
fractions we found persistence of order, as in figure 8.7 (right).

adapted in order to have a constant mean shear in the gap.
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8. Vesicles in a curved flow

Figure 8.7: Equilibrium configurations in a Taylor-Couette device for a
single vesicle (left) and several vesicles (right, volume fraction ≈ 2%). The
lines represent the induced flow. On the right, spontaneous organization in
is due to inward migration and vortex interaction.
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chapter 9

CONCLUSIONS AND PERSPECTIVES

The main findings of this thesis are summarized and some perspec-
tives outlined. The transposition of the results to red blood cells
is discussed.

Concluding remarks

In this thesis an analysis of different dynamical and rheological behaviors of
a suspension of vesicles by means of two-dimensional numerical simulations
is presented.

The contributions concern the dynamics of a single vesicle in linear and
curved shear flow, the rheology of a dilute suspension of vesicles and the
self-organization of sets of vesicles both in an unbounded Poiseuille flow
and in a Couette device.

Three major results have followed:

• The rheology of a dilute suspension of vesicles has been detailed and
understood; the role played by the membrane has been differentiated
from the effects due to the bulk of the vesicle.

• The cross-streamline dynamics of a vesicle immersed in a curved flow
has been linked to the normal stress difference that the vesicle itself
creates. The mechanism that has been unveiled is supposed to be
quite general and thus transferable to other deformable particles, like
drops, capsules, polymers.

• An intricate mechanism of self-organization in Poiseuille flow has been
observed, by which vesicles organize in sets of finite size, respecting a
maximum number of vesicles per set.

Two-dimensional simulations have shown their strength offering a simple
method to understand the fundamental physical behaviors.
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Perspectives

The present work opens a set of perspectives:

• the effect of interactions on rheology – While the present work de-
tails the rheological properties of a suspension of vesicles neglecting
hydrodynamical interactions, considering the full dynamics of several
vesicles and retrieving the rheology is still an open issue.

• effect of boundaries on vesicles in Poiseuille flow – The complex dy-
namics in an unbounded Poiseuille flow revealed by the present work
could be affected by the presence of boundaries close to the vesicles,
that is also the physiological condition for red blood cells.

• the simulation of red blood cells in two dimensions by including the

elasticity due to the cytoskeleton – The effect of the cytoskeleton is
nevertheless believed to be minor, due to the very small difference
between vesicles and red blood cells in two dimensions.

• Phase transitions in microscopic Couette flow – The present work
brings evidence of the self-organization of vesicles at the microscale:
an ordered phase is found even at very low concentration. This study
needs to be continued in order to understand the dependence of the
ordered state upon the dynamical parameters of the system.

Contributions transposable to RBCs

As already stated in section 4.5, vesicles and red blood cells are extremely
similar in dimension two. The results listed above are contributions to
vesicle dynamics and rheology, and a significant part of this work can be
transposed to red blood cells, in particular:

• rheology of a dilute suspension, behavior in a curved flow and in a
microscopic Couette device: the role played by the elasticity of the
membrane of red blood cells is a slight modification of some dynamical
regimes, in particular tank-treading, but the main results are believed
to remain unaltered. Probably a renormalization of the bending rigid-
ity of the vesicle is enough to account for the contribution arising from
the elasticity.

• spatial organization in Poiseuille flow: in this case the membrane does
not tank-tread and so the elasticity arising from the cytoskeleton is
thought to play a very minor role, and results should remain unaltered.
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chapter 10

CONCLUSIONS ET PERSPECTIVES

Ce chapitre résume les principaux apports de cette thèse et propose
quelques perspectives. La transposition des résultats aux globules
rouges est discutée.

Remarques conclusives

Dans cette thèse une analyse des différents comportements dynamiques et
rhéologiques d’une suspension de vésicules est présentée, et effectuée grâce
à des simulations numériques à deux dimensions.

Les contributions concernent la dynamique d’une vésicule dans des écoule-
ments de cisaillement linéaires et courbes, la rhéologie d’une suspension
diluée de vésicules et l’auto-organisation d’ensembles de vésicules à la fois
dans un écoulement de Poiseuille non borné et dans une cellule de Taylor-
Couette.

Trois résultats majeurs ont suivi :

• la rhéologie d’une suspension diluée de vésicules a été détaillée et
comprise. Le rôle joué par la membrane a été différencié des effets
dus au volume de la vésicule ;

• la dynamique de migration d’une vésicule à travers les lignes d’un
écoulement courbe a été reliée à la différence des contraintes normales
que la vésicule elle-même génère. Il a été argumenté que le mécanisme
mis en évidence est général et donc applicable à d’autres particules
déformables, comme des gouttes, capsules, polymères ;

• un mécanisme complexe d’auto-organisation en écoulement de Poiseuille
a été observé, selon lequel les vésicules s’organisent en paquets de taille
finie, en respectant un nombre maximum de vésicules par paquet.

Les simulations à deux dimensions ont démontré leur puissance en of-
frant une méthode simple pour comprendre les comportements physiques
fondamentaux.
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Perspectives

Le travail présenté ouvre un certain nombre de perspectives :

• effet des interactions sur la rhéologie – Ce travail détaille les propriétés
rhéologiques d’une suspension de vésicules en négligeant les interac-
tions hydrodynamiques. La dynamique complète d’une suspension,
qui prendrait en compte ces interactions, est encore une question ou-
verte ;

• effet des parois sur les vésicules dans un écoulement de Poiseuille –
La dynamique complexe dans un écoulement de Poiseuille non borné
illustrée par ce travail pourrait être affectée par la présence de parois
proches des vésicules, présence qui est aussi la condition physiologique
des globules rouges ;

• simulations de globules rouges à deux dimensions en incluant l’élasticité

due au cytosquelette – Du fait de la faible différence entre vésicules et
globules rouges à deux dimensions, l’effet du cytosquelette est estimé
être mineur ;

• transitions de phase dans un écoulement de Couette microscopique –
Ce travail montre l’auto-organisation des vésicules à la microéchelle :
un état ordonné est observé même à très faible concentration. Cette
étude demande d’être poursuivie pour comprendre la dépendance de
cet état ordonné aux paramètres dynamiques du système.

Contributions transposables aux globules rouges

Comme cela a déjà été dit en section 4.5, les vésicules et les globules rouges
à deux dimensions sont très similaires. Les résultats ci-dessus sont des
contributions à la dynamique et à la rhéologie des vésicules, et une par-
tie significative de ce travail peut être transposé aux globules rouges, en
particulier :

• rhéologie d’une suspension diluée, comportement dans un écoulement

courbe et dans une cellule de Couette microscopique – l’élasticité de
la membrane des globules rouges modifie faiblement les régimes dy-
namiques, en particulier le tank-treading, mais les résultats principaux
sont estimés devoir rester inchangés. Une renormalisation du module
de courbure de la membrane est probablement suffisante pour prendre
en considération la contribution due à l’élasticité ;
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• organisation spatiale dans un écoulement de Poiseuille – dans ce cas
la membrane ne présente pas de tank-treading, donc l’élasticité du cy-
tosquelette est estimée devoir jouer un rôle négligeable, et les résultats
ne devraient pas en dépendre.
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appendix a

THE STRESS TENSOR OF A DILUTE SUSPENSION OF

PARTICLES

A detailed derivation of the mean stress tensor of a suspension of
particles following Batchelor approach [Bat70] is presented. At-
tention is payed to singularities that this formulation introduces
on the particle surfaces. An expression for a suspension of liquid
particles (as drops, capsules, vesicles) is derived. These results are
illustrated by computing analytically the effective viscosity of a
dilute suspension of rigid disks in two dimensions (i.e. the two-
dimensional Einstein coefficient).

On présente un calcul détaillé pour obtenir la moyenne du tenseur
des contraintes d’une suspension de vésicules en suivant l’approche
de Batchelor [Bat70]. Une grande attention est prêtée aux singular-
itées que cette formulation introduit sur les surfaces des particules.
Une expression pour une suspension de particules liquides (comme
des gouttes, capsules, vésicules) est déduite. Les résultats sont
illustrés en calculant analytiquement la viscosité effective d’une
suspension diluée de disques rigides en deux dimensions (c. à d. le
coefficient d’Einstein à deux dimensions).

In this Appendix we derive the expression of the mean stress tensor of
a suspension.
We first consider the general case of a suspension of particles whose stress
tensor is unknown. Then we specify the calculation for the case where the
particles are liquid drops with arbitrary forces at the interface, so that the
expression is valid for systems like droplets, vesicles, capsules.
A special care is taken for inspecting the role of the interface between the
particle and the embedding fluid: in fact on this surface we can have dis-
continuities and singularities that have to be taken properly into account.
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A. The stress tensor of a dilute suspension of particles

Vout
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∂V

n

n
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+

Figure A.1: The domains and their boundaries. The system is composed
by the embedding fluid, the interior of the suspended particle and the sepa-
ration surface. We define Vout the volume occupied by the embedding fluid,
Vin the volume occupied by the suspended particle (gray in the figure) and
A the interface between them. The whole system is delimited by a boundary
∂V , the inner volume of the particle by A− (dashed line inside the particle)
and the outer volume by A+ (dashed line outside the particle) and ∂V . The
normal vectors n to the boundaries are chosen to point outwards.

A.1 Mean stress tensor for a particle

suspension

We consider a model suspension which contains a single particle embedded
in a Newtonian fluid. Even though the Stokes approximation is usually
valid at the scale of the particle, we proceed in total generality and we do
not make at this stage any simplification coming from the small Reynolds
number limit Re→ 0.
The stress tensor is defined as:

σij = finj (A.1)

where f is the (surface) force density exerted on the surface of a fluid element
and n the normal vector in the considered direction.
With this definition, ∇ · σ = ∂jσij represents the volume density of forces.
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A.1. Mean stress tensor for a particle suspension

The mean stress tensor of the suspension is defined via the volume average:

〈σij〉 ≡
1

V

∫

V

σijdV (A.2)

=
1

V

∫

Vout

σijdV +
1

V

∫

V−Vout

σijdV (A.3)

where V is the total volume of the system, Vout denotes the volume occupied
by the suspending fluid and V − Vout its complementary.
We can pass from bulk to surface integrals, exploiting the following identity:

∂k(xjσik) = δkjσik + xj∂kσik (A.4)

from which
σij = ∂k(xjσik)− xj∂kσik (A.5)

then:

〈σij〉 =
1

V

[∫

Vout

σijdV +

∫

V−Vout

σijdV

]

(A.6)

=
1

V

[∫

Vout

σijdV +

∫

V−Vout

∂k(xjσik)dV −
∫

V−Vout

xj∂kσikdV

]

(A.7)

The last two terms are volume integrals extended to the region of the system
complementary to the region occupied by the fluid, which means that the
region V − Vout = Vin + A contains all possible complications coming from
the interface between the fluid and the suspended particle. A priori this
surface can contain a discontinuity in the stress tensor, due to the presence
of surface forces. This means that, if one wants to apply the divergence
theorem to the second integral of (A.7), one has to consider derivatives in
the sense of distributions, i.e. to take into account terms coming from the
derivative of a discontinuity.
It is worth noting that no singularity is present in the definition of the
mean stress tensor as a volume integral (A.2), but the use of identity (A.4)
introduces derivatives and then singularities, since the stress tensor is at
most discontinuous in the integration domain.
Then,

∫

V−Vout

∂k(xjσik)dV =

∫

A+

xjσiknkdA+

∫

V−Vout

δinterface xj∆(σik)nkdV

(A.8)
The function δinterface is a Dirac delta function which represents all the
possible surfaces of discontinuity enclosed in the volume (V − Vout), and
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A. The stress tensor of a dilute suspension of particles

∆(σik) the stress tensor jump across these interfaces (positive if the external
stress is larger than the internal one, due to the sign of the normal vector,
that points outwards). If one assumes that the only discontinuity surface
is the particle surface A, equation (A.7) becomes:

〈σij〉 =
1

V

[∫

Vout

σijdV +

∫

A+

xjσiknkdA+

∫

A

xj∆(σik)dA

−
∫

V−Vout

xj∂kσikdV

] (A.9)

where the stress tensor in the second integral is taken outside the surface
of the particle. Then the singularity present in the last integral (which
contains the surface of discontinuity A) exactly cancels out with the jump
∆(σ) considered in the surface integral: this is coherent with the fact that
no singularity is present in the very first formulation

∫

V
σijdV : they arise

only from the introduction of derivatives. We obtain then the simplified
result:

〈σij〉 =
1

V

[∫

Vout

σijdV +

∫

A+

xjσiknkdA−
∫

Vin

xj∂kσikdV

]

(A.10)

where the second integral is computed using the stress tensor outside the
surface of the particle and the last integral does not contain the surface of
discontinuity A.

The stress tensor in the particle and on its surface (V −Vout) is a priori

unknown, while in the fluid (Vout) its expression reads:

σF
ij = −pδij + ηout (∂iuj + ∂jui) (A.11)

where ηout is the viscosity of the embedding fluid.
We can write then:

〈σij〉 =
1

V

[∫

Vout

σF
ijdV +

∫

A

xjσ
F
iknkdA−

∫

Vin

xj∂kσikdV

]

(A.12)

For computational convenience we can extend the anisotropic term of the
first integral to the whole volume V of the system, subtracting then the
contribution coming from the volume of the particle:

∫

Vout

σF
ijdV =

∫

Vout

[−pδij + ηout(∂iuj + ∂jui)]dV

=

∫

Vout

−pδijdV + ηout

∫

V

(∂iuj + ∂jui) dV

− ηout

∫

V−Vout

(∂iuj + ∂jui) dV

(A.13)
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A.1. Mean stress tensor for a particle suspension

The last integral is computed on V − Vout, which means the particle and
its surface. The integrand is at most discontinuous on the interface, since
the velocity field is continuous (due to no-slip boundary conditions). It is
then not singular on A, so there is no contribution arising directly from this
surface. Then the only contribution of this integral comes from the bulk
(Vin), and can be expressed through a surface integral:

∫

Vout

σF
ijdV =

∫

Vout

−pδijdV + ηout

∫

V

(∂iuj + ∂jui) dV

− ηout

∫

A

(niuj + njui) dA

(A.14)

So, equation (A.12) becomes:

〈σij〉 =
1

V

{

∫

Vout

−pδijdV + ηout

∫

V

(∂iuj + ∂jui) dV

+

∫

A

[

xjσ
F
iknk − ηout (niuj + njui)

]

dA

−
∫

Vin

xj∂kσikdV
}

(A.15)

This is the result obtained by Batchelor in 1970 [Bat70]. We can interpret
the terms in the following way:

• the first term is an isotropic contribution, the mean pressure of the
embedding fluid;

• the second term is the mean velocity gradient of the suspension, mul-
tiplied by the viscosity of the embedding fluid. It can be interpreted
as the stress that would exist in the absence of the particle and with
the same average velocity gradient;

• the third term represents the contributions coming from the forces
acting on the surface of the particle and from the velocity field inside
the particle, expressed as a surface integral;

• the last term represents the integral over the particle of the body
forces (fbody = ∇ · σ). However, body forces will not be considered.
In addition, inertia is not accounted for (Stokes limit), so that this
term can be ignored.

This result can be expressed in a slightly different form with the conver-
sion of the volume integral of the velocity gradient into a surface integral.
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A. The stress tensor of a dilute suspension of particles

This is done by splitting the integral into the two domains of continuity of
the velocity gradient and by using the divergence theorem:

∫

V

(∂iuj + ∂jui) dV =

∫

Vin

(∂iuj + ∂jui) dV +

∫

Vout

(∂iuj + ∂jui) dV

=

∫

A−

(niuj + njui) dA−
∫

A+

(niuj + njui) dA+

∫

∂V

(niuj + njui) dA

=

∫

∂V

(niuj + njui) dA

(A.16)

where the last simplification is possible due to the continuity of the velocity
u across the interface A (assumption of no-slip conditions).
These few lines show that if the velocity is imposed to the suspension
through the external boundaries, the mean velocity gradient of the system
is the one of the imposed flow.

So equation (A.15) can be rewritten as

〈σij〉 =
1

V

{

∫

Vout

−pδijdV + ηout

∫

∂V

(niuj + njui) dA

+

∫

A

[

xjσ
F
iknk − ηout (niuj + njui)

]

dA

−
∫

Vin

xj∂kσikdV
}

(A.17)

A.2 Suspension of liquid particles

We consider now the determination of the mean stress tensor of a suspension
formed by a Newtonian fluid containing drops of another Newtonian fluid.
The calculation is general enough to be valid for any kind of forces exerted at
the surface of the drops, like surface tension, bending or elastic forces. The
following discussion is then valid for drops, vesicles, capsules and any other
system that can be described as a liquid drop and some interfacial force. A
difference in the viscosities of the internal and external fluids (ηin and ηout,
respectively) is taken into account through the parameter λ = ηin/ηout, the
viscosity contrast.

By proceeding as done in section A.1, we express the mean stress tensor
through an integral extended over the whole volume. Contrarily to section
A.1, the stress tensor is known in this case not only in the outer volume
Vout occupied by the suspending fluid, but also in the internal volume of
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A.2. Suspension of liquid particles

the drop Vin. This symmetry allows us to derive two equivalent expressions
for the mean stress tensor, applying respectively the divergence theorem to
compute: (i) the integral over the internal volume Vin and (ii) the integral
over the external one Vout. Finally, the combination of these two formulas
will allow us to express 〈σij〉 as a function of the interfacial forces and
the viscosity contrast. In the two following subsections we derive the two
equivalent expressions for the mean stress tensor of the suspension.

The inner region

We apply here, as in section A.1, the divergence theorem to the region
occupied by the particle: it is then possible to take advantage of a part
of the computations already done in that section, whose validity is general
(in fact, no hypotheses were done on the nature of the stress tensor of the
particle). We restart from (A.12):

〈σij〉 =
1

V

[∫

Vout

σout
ij dV +

∫

A+

xjσ
out
ik nkdA−

∫

Vin

xj∂kσ
in
ikdV

]

(A.18)

where Vin represents the internal volume of the drop (excluding the mem-
brane), Vout the external one (excluding the membrane too), A+ the external
side of the membrane and σ

in,σout the stress tensor of the inner and outer
fluids. We reformulate now the integral over Vout of the stress tensor ap-
pearing in (A.18), by adding and subtracting the integration over Vin and
writing explicitly its expression:

∫

Vout

σout
ij dV =

∫

Vout

−pδijdV +

∫

V

η(x) (∂iuj + ∂jui) dV

−
∫

V−Vout

η(x) (∂iuj + ∂jui) dV

(A.19)

The symbol η(x) represents the local viscosity: η(x) ≡ ηin inside the drop
and η(x) ≡ ηout outside. It is worth noting that we extend the external
stress tensor to Vin using the value of the internal one σ

in, while in section
A.1 the external stress tensor has been extended to Vin using σ

out (the real
stress tensor of the particle being unknown). This passage is at the origin
of the differences that will arise hereafter.

On the surface A, σ can be at maximum discontinuous (due to the
interfacial forces and the viscosity contrast), then the last integral of (A.19)
does not contain contributions coming from the membrane. Then, it is
possible to substitute the integration over (V − Vout) with one over Vin and
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A. The stress tensor of a dilute suspension of particles

(A.19) becomes:
∫

Vout

σF
ijdV =

∫

Vout

−pδijdV +

∫

V

η(x) (∂iuj + ∂jui) dV

− ηin

∫

Vin

(∂iuj + ∂jui) dV

(A.20)

The last integral can now be computed by means of the divergence theorem:
∫

Vout

σF
ijdV =

∫

Vout

−pδijdV +

∫

V

η(x) (∂iuj + ∂jui) dV

− ηin

∫

A

(niuj + njui) dA

(A.21)

Substituting this expression in equation (A.18), we obtain:

〈σij〉 =
1

V

[

∫

Vout

−pδijdV +

∫

V

η(x) (∂iuj + ∂jui) dV

− ηin

∫

A

(niuj + njui) dA+

∫

A+

xjσ
out
ik nkdA

−
∫

Vin

xj∂kσ
in
ikdV

]

(A.22)

that is the first expression for the average stress tensor of the suspension
mentioned at the beginning of this section A.2.

The outer region

We repeat now the same calculation, but exchanging the role of internal
and external fluids (i.e. we apply the divergence theorem to compute the
integral over the external volume). The calculations are analogous to those
used to retrieve equation (A.22), but the use of the divergence theorem
for the stress tensor in the outer fluid will cause the appearance of surface
integrals extended to the outer boundary ∂V . Then for clarity we restart
from the very beginning, the definition of 〈σij〉, as in section A.1:

〈σij〉 ≡
1

V

∫

V

σijdV (A.23)

=
1

V

∫

Vin

σijdV +
1

V

∫

V−Vin

σijdV (A.24)

=
1

V

∫

Vin

σijdV +
1

V

∫

V−Vin

[∂k(xjσik)− xj∂kσik] dV (A.25)

120



A.2. Suspension of liquid particles

Now we analyze in detail the first term of the second integral:

∫

V−Vin

∂k(xjσik)dV =

=

∫

∂(V−Vin)

xjσiknkdA+

∫

V−Vin

δinterfacexj∆(σik)nkdV (A.26)

= −
∫

A−

xjσiknkdA+

∫

∂V

xjσiknkdA+

∫

A

xj∆(σik)nkdA (A.27)

where it has been taken into account that on the surface A the normal
vector n points into the integration domain (giving a minus sign), then
equation (A.25) becomes:

〈σij〉 =
1

V

[∫

Vin

σijdV −
∫

A−

xjσiknkdA+

∫

∂V

xjσiknkdA

+

∫

A

xj∆(σik)nkdA−
∫

V−Vin

xj∂kσikdV

] (A.28)

The integral of the stress discontinuity on A cancels out with the singularity
present in the last term, which is extended to the external volume Vout and
the surface A. Then,

〈σij〉 =
1

V

[∫

Vin

σin
ij dV −

∫

A−

xjσ
in
iknkdA+

∫

∂V

xjσ
out
ik nkdA

−
∫

Vout

xj∂kσ
out
ik dV

] (A.29)

which is the equivalent of (A.18) but computed applying the divergence
theorem at the outer region Vout.
Following the same technique applied above (equation A.19), we re-write
the volume integral over Vin as:

∫

Vin

σin
ij dV =

∫

Vin

−pδijdV +

∫

V

η(x) (∂iuj + ∂jui) dV

−
∫

V−Vin

η(x) (∂iuj + ∂jui) dV

=

∫

Vin

−pδijdV +

∫

V

η(x) (∂iuj + ∂jui) dV

− ηout

∫

Vout

(∂iuj + ∂jui) dV

(A.30)
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The last integral can be computed by means of the divergence theorem, so
equation (A.30) becomes:
∫

Vin

σin
ij dV =

∫

Vin

−pδijdV +

∫

V

η(x) (∂iuj + ∂jui) dV

+ ηout

∫

A+

(niuj + njui) dA− ηout

∫

∂V

(niuj + njui) dA

(A.31)

(remind that the normal vector n on the drop surface A points in the
integration domain, as sketched in figure A.1).
Substituting expression (A.31) in equation (A.29) we obtain:

〈σij〉 =
1

V

[ ∫

Vin

−pδijdV +

∫

V

η(x) (∂iuj + ∂jui) dV

+ ηout

∫

A

(niuj + njui) dA−
∫

A−

xjσ
in
iknkdA

− ηout

∫

∂V

(niuj + njui) dA+

∫

∂V

xjσ
out
ik nkdA

−
∫

Vout

xj∂kσ
out
ik dV

]

(A.32)

that is the second equivalent expression for the average value of the stress
tensor of the suspension, the first one being (A.22).

Summing up the two results

We have now two equations, (A.22) and (A.32), which express the mean
stress tensor. With the aim of recovering a compact formulation, we sum
now these two results and divide by two:

〈σij〉 =
1

2V

[ ∫

Vin+Vout

−pδijdV + 2

∫

V

η(x) (∂iuj + ∂jui) dV

− ηout(λ− 1)

∫

A

(niuj + njui) dA+

∫

A

xjf
mem
i dA

−
∫

Vin+Vout

xj∂kσikdV − ηout

∫

∂V

(niuj + njui) dA

+

∫

∂V

xjσ
out
ik nkdA

]

(A.33)

where fmem = [σ · n]A+ − [σ · n]A−

is the membrane force, corresponding to
the jump in the stress tensor across the membrane.
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Now several terms can be re-written:
∫

Vin+Vout

−pδijdV =

∫

V

−pδijdV (A.34)

since the integration over the membrane does not contribute. For the same
reason and remembering the definition of λ
∫

V

η(x) (∂iuj + ∂jui) dV

=ηin

∫

Vin

(∂iuj + ∂jui) dV + ηout

∫

Vout

(∂iuj + ∂jui) dV

=ηin

∫

A

(niuj + njui) dA− ηout

∫

A

(niuj + njui) dA

+ ηout

∫

∂V

(niuj + njui) dA

=ηout(λ− 1)

∫

A

(niuj + njui) dA+ ηout

∫

∂V

(niuj + njui) dA

(A.35)

Using (A.34) and (A.35), equation (A.33) becomes, after the recombination
of few terms:

〈σij〉 =
1

2V

[ ∫

V

−pδijdV + ηout(λ− 1)

∫

A

(niuj + njui) dA

+

∫

A

xjf
mem
i dA−

∫

Vin+Vout

xj∂kσikdV

+ ηout

∫

∂V

(niuj + njui) dA+

∫

∂V

xjσ
out
ik nkdA

]

(A.36)

In the Stokes limit ∇ · σ = 0 in the fluids, then the fourth integral is zero.
The last term contains the forces on the external boundary. Integrating the
identity (A.4) over the volume V we obtain

∫

V

∂k(xjσik)dV =

∫

V

σijdV +

∫

V

xj∂kσikdV (A.37)

and by means of the divergence theorem, taking care of the singularities,
we can re-write the previous equality as:
∫

∂V

xjσ
out
ik nkdA+

∫

A

xj∆(σik)nkdA =

∫

V

σijdV +

∫

A

xj∆(σik)nkdA (A.38)

where in the first integral σ ≡ σ
out since we are in the outer fluid. The

expression becomes
∫

∂V

xjσ
out
ik nkdA =

∫

V

σijdV = V 〈σij〉 (A.39)
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A. The stress tensor of a dilute suspension of particles

which gives us an expression1 equivalent to the last integral of (A.36), that
becomes then:

〈σij〉 =
1

V

[

∫

V

−pδijdV + ηout

∫

∂V

(niuj + njui) dA

+ ηout(λ− 1)

∫

A

(niuj + njui) dA+

∫

A

xjf
mem
i dA

]

(A.40)

This formula is very useful: the contributions to the rheology of the
imposed flow and of the suspended drop are clearly separated, except for
the mean pressure term. The interpretation of the terms is the following:

• the first term is the mean pressure of the suspension;

• the second represents the mean shear gradient of the flow. If the flow
is imposed on the boundaries, this term, that is determined by the
velocity on the external boundaries ∂V , represents the mean stress of
the imposed flow;

• the third term adds a stress contribution if the internal viscosity is
different from the external one (λ 6= 1). To gain a deeper insight
on the origin of this term, it is useful to look at the surface integral
as deriving from a volume integral of the stress tensor of the fluid
constituting the drop;

• the fourth term represents the contribution to the mean stress tensor
of the forces exerted on the surface of the drop.

Shortcut

There is a shortcut for the derivation of the mean stress tensor for a suspen-
sion of liquid particles (equation A.40). The calculations are much shorter,
but the physical interpretation of the calculation itself is less evident. For
simplicity, we drop from the beginning all the terms which are zero in the
Stokes limit, i.e. every term containing ∇ · σ.
Restarting from Batchelor result, equation (A.15):

〈σij〉 =
1

V

[ ∫

Vout

−pδijdV + ηout

∫

V

(∂iuj + ∂jui) dV

+

∫

A

[

xjσ
out
ik nk − ηout (niuj + njui)

]

dA

] (A.41)

1The last equivalence of equation (A.39) states that we can measure the mean stress
tensor of a suspension by measuring the forces on the boundaries of the system, as usually
done experimentally.
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A.3. Loss of symmetry of the mean stress tensor

Adding and subtracting the equivalent of the surface term of the previous
equation, but computed with σ

in and ηin, (A.41) becomes (remembering
that ηin = ληout):

〈σij〉 =
1

V

[ ∫

Vout

−pδijdV + ηout

∫

V

(∂iuj + ∂jui) dV

+

∫

A

[

xj
(

σout
ik nk − σin

iknk

)

+ ηout(λ− 1) (niuj + njui)
]

dA

+

∫

A

[

xjσ
in
iknk − ηin (niuj + njui)

]

dA

]

(A.42)

The last integral is equivalent to the integral of the pressure inside the drop,
as can be easily shown:

∫

A

[

xjσ
in
iknk − ηin (niuj + njui)

]

dA =

=

∫

Vin

[

∂k(xjσ
in
ik )− ηin (∂iuj + ∂jui)

]

dV (A.43)

=

∫

Vin

[

∂k(xjσ
in
ik )− σin

ij − pδij
]

dV (A.44)

=

∫

Vin

[

xj∂kσ
in
ik − pδij

]

dV (A.45)

=

∫

Vin

−pδijdV (A.46)

So, substituting this expression in equation (A.42), we obtain:

〈σij〉 =
1

V

[ ∫

V

−pδijdV + ηout

∫

V

(∂iuj + ∂jui) dV

+

∫

A

[xjfi + ηout(λ− 1) (niuj + njui)] dA

] (A.47)

which is the result reported by Kennedy et al. in [KPS94].
Equation (A.47) is equivalent to equation (A.40), thanks to equation

(A.16).

A.3 Loss of symmetry of the mean stress

tensor

The various expressions derived above for the mean stress tensor of a sus-
pension ((A.15), (A.17), (A.40), (A.47)), are not symmetric, contrarily to
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A. The stress tensor of a dilute suspension of particles

the one of the suspending Newtonian fluid. The terms that are not explic-
itly symmetric are the force term on the interface of the suspended particles
and the volume integral of the divergence of the stress tensor, that is zero
in the Stokes limit.

Let us consider equation (A.17) (for the other expressions, the calcula-
tions are analogous), then we extract the non-symmetric part of the mean
stress tensor by multiplying it by the totally antisymmetric Levi-Civita
tensor ǫ:

ǫijk 〈σjk〉 = ǫijk

∫

A

[xkσjlnl] dA− ǫijk

∫

Vin

xk∂lσjldV (A.48)

since all the other terms are explicitly symmetric and then vanish when
multiplied by ǫ.
The total torque L which acts on a particle in the suspension is defied as

Li ≡ ǫijk

∫

Vin+A

xjfkdV (A.49)

= ǫijk

∫

Vin+A

xj∂lσkldV (A.50)

= ǫijk

∫

Vin+A

[∂l(xjσkl)− σkj] dV (A.51)

where f is the volume density of force and in the last passage the identity
(A.4) has been used. Newton’s second law states that:

∂jσkj = ρak ⇒ σkj = ρakxj (A.52)

ρ being the mass density.
Then combining the two equations (A.52) we obtain:

σkj = xjρak = xj∂lσkl (A.53)

Then we can write the total torque as:

Li = ǫijk

∫

Vin+A

[∂l(xjσkl)− xj∂lσkl] dV (A.54)

= ǫijk

[∫

A

xjσklnldA−
∫

Vin

xj∂lσkldV

]

(A.55)

where in the last passage we used the same considerations on the singular-
ities adopted for equation (A.7). Using the antisymmetry properties of ǫ,
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A.4. Two-dimensional Einstein coefficient

we recover an alternative form:

Li = ǫijk

[∫

A

xjσklnldA−
∫

Vin

xj∂lσkldV

]

(A.56)

= −ǫikj
[∫

A

xjσklnldA−
∫

Vin

xj∂lσkldV

]

(A.57)

= −ǫijk
[∫

A

xkσjlnldA−
∫

Vin

xk∂lσjldV

]

(A.58)

where in the last passage we only exchanged the dummy subscripts j ↔ k.
We can recognize in this term the non-symmetric part of the mean stress
tensor (A.48), up to a minus sign: then we can say that the non-symmetric
part of the mean stress tensor is due to the torque with which the particle
acts on the suspending fluid:

Li = −ǫijk 〈σjk〉 (A.59)

We can draw the conclusion that the non-symmetric part of the stress tensor
of the suspension is due to the torque that the suspended particle exerts on
the fluid. This torque can be due to an external field, as for particles with
a nonzero electric dipole in an electric field.

A.4 Two-dimensional Einstein coefficient

In this section we exploit equation (A.15) to compute the effective viscosity
of a two-dimensional dilute suspension of rigid disks immersed in a linear
shear flow of a Newtonian fluid. We start from considering a single circular
particle immersed in an infinite fluid. We consider the limit of vanishing
Reynolds number Re→ 0, so that the evolution equation in the fluid is the
Stokes equation:

∇ · σF = 0 (A.60)

where σF
ij = −pδij + η(∂iuj + ∂jui) is the stress tensor of the fluid.

The velocity field u around a circular particle embedded in a linear shear
flow of shear rate γ̇ can be computed analytically in the Stokes regime. We
use polar coordinates (r, θ) centered on the center of the particle to follow
the geometry of the system.

As boundary conditions of the problem, we require linear shear flow at
infinity and no-slip conditions on the surface of the particle, which is con-
sidered a fixed (non-rotating2) disk of unit radius. Here below the boundary

2The results will be extended to a freely-rotating particle.
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A. The stress tensor of a dilute suspension of particles

conditions that we require, expressed in polar coordinates:

ur(r = ∞, θ) =
γ̇

2
r sin 2θ

uθ(r = ∞, θ) = − γ̇
2
r(1− cos 2θ)

ur(r = 1, θ) = 0

uθ(r = 1, θ) = 0

(A.61)

The following set of ur, uθ, p is a solution of the problem satisfying the above
boundary conditions:

ur(r, θ) = γ̇

[

r

2
− 1

r
+

1

2r3

]

sin 2θ

uθ(r, θ) = γ̇

[(

r

2
− 1

2r3

)

cos 2θ −
(

r

2
− 1

2r

)]

p(r, θ) = −γ̇ 2

r2
sin 2θ

(A.62)

In addition, removing the term − γ̇
2r

from the expression of uθ gives the
solution for the problem where the particle is freely rotating, which is the
appropriate assumption to describe a suspension of free particles. In this
case, the appropriate boundary conditions at the surface of the particle are:

ur(r = 1, θ) = 0

∂uθ
∂θ

(r = 1, θ) = 0
(A.63)

The first condition expresses the impermeability of the particle and the
second one its rigid motion.

We want to determine now the effective viscosity of the solution con-
taining a rigid and freely-rotating disk. The average of the xy component
of the stress tensor of the imposed linear shear flow will be denoted σshear

xy ,
whose value is:

σshear
xy = η(∂xv

shear
y + ∂yv

shear
x ) = ηγ̇ (A.64)

The mean xy component of the stress tensor of the suspension (i.e. the
whole system) will be denoted σxy. By definition we have:

ηeff ≡ η
〈σxy〉

〈σshear
xy 〉 (A.65)

and the contribution due to the particle:

〈σpart
xy 〉 ≡ 〈σxy〉 − 〈σshear

xy 〉 (A.66)

128



A.4. Two-dimensional Einstein coefficient

entailing that
〈σxy〉 = 〈σshear

xy 〉+ 〈σpart
xy 〉 (A.67)

thus

ηeff = η
〈σxy〉
ηγ̇

= η
ηγ̇ + 〈σpart

xy 〉
ηγ̇

= η

[

1 +
〈σpart

xy 〉
ηγ̇

]

(A.68)

In this expression we identify clearly the contribution to the effective vis-
cosity due to the imposed flow and the one due to the presence of the
particle.

Once the velocity field is known, we can compute the effective viscosity.
Recalling equation (A.17) and specifying it for the xy component of the
stress tensor σ gives:

〈σxy〉 =
1

V

{

∫

∂V

η (nxuy + nyux) dA

+

∫

A+

[yσxknk − η (nxuy + nyux)] dA
}

(A.69)

As already discussed, the first term represents the imposed shear flow. We
identify the second integral with 〈σpart

xy 〉:

〈σpart
xy =

1

V

∫

A

[

yσF
xknk − η (nxuy + nyux)

]

dA (A.70)

Using the solutions presented above for a non-rotating or freely-rotating
circular particle, the integral can be calculated analytically. We obtain the
results:

〈σpart
xy 〉 = 1

V
3πηγ̇ for a non-rotating particle (A.71)

〈σpart
xy 〉 = 1

V
2πηγ̇ for a freely rotating particle (A.72)

The prefactor 1
V

can be interpreted as the number concentration of parti-
cles, then π

V
can be seen as the volume (or area, in 2D) fraction of particles

(π is the area of a disk having a unit radius).
Thus, in the framework of a linear theory where interactions between par-
ticles are neglected, we can infer a rheological law valid for small concen-
trations:

ηeff = η [1 + 3φ] (A.73)

for a non-rotating particle, and:

ηeff = η [1 + 2φ] (A.74)
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A. The stress tensor of a dilute suspension of particles

for a freely rotating particle.
The latter extends to the two-dimensional case Einstein’s famous result
ηeff = η

[

1 + 5
2
φ
]

valid for a suspension of rigid spheres in three dimen-
sions [Ein06, Ein11], while the former becomes in three dimensions ηeff =
η [1 + 4φ].

130



appendix b

RHEOLOGY OF A TUMBLING FILAMENT

The rheology of a suspension of non-interacting rigid filaments is
studied analytically. This very simple system offers a deep insight
on the rheology of tumbling particles (including vesicles) in dilute
suspensions. The basic ideas have been first suggested in [TS04].

On étudie analytiquement la rhéologie d’une suspension de fibres
rigides sans considérer les interactions entre elles. Ce système
très simple permet d’éclairer la rhéologie de suspensions diluées
de particules faisant un mouvement de bascule (y compris les
vésicules). Les idées de base ont été suggérées dans [TS04].

We consider a one dimensional rigid filament immersed in a two di-
mensional linear shear flow of a Newtonian fluid in the Stokes regime. We
further suppose that the inertia of the filament can be neglected. The ini-
tial orientation angle θ0 of the filament with respect to the flow lines is
θ0 ≤ π/2, as in figure B.1.

The rigidity of the filament implies that it has to rotate with a uniform
angular velocity. The rotational component of the shear flow is a rigid
rotation, so this constraint does not need to be imposed explicitly in our
case.

If the filament is infinitely extensible, it cannot generate any force on
the fluid and each material point of the filament is advected following the
flow line on which it initially lies, and the filament will initially undergo
a compression (for π/2 ≤ θ ≤ π) and finally an unbounded extension (for
0 ≤ θ ≤ π/2).

If the filament is inextensible, it acts back on the fluid in such a way
to preserve its length. The force generated will oppose compression and
extension, and will then be oriented in the direction of the filament. When
π/2 ≤ θ ≤ π, the filament has to resist compression, so the force exerted
by it will be outward. On the contrary, when π/2 ≤ θ ≤ π, the filament
has to resist extension, so the force exerted by it will be inward.

These very few and simple ingredients are enough to understand quali-
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x

y

�

f

f

v

Figure B.1: A rigid and inextensible filament in a linear shear flow. f
denotes the forces done by the filament on the fluid. The dashed line is the
contour used to compute the stress contribution of the filament in section
B.1. The arrows on the contour represent a rough approximation of the
force distribution due to the presence of the filament.

tatively and quantitatively the rheology of a dilute suspension of rigid fila-
ments. In the two following sections we give both an intuitive explanation
and a precise computation of the behavior of the effective viscosity and the
normal stress difference.

B.1 Qualitative interpretation

In order to compute the contribution of the filament to the stress (repre-
sented by the stress tensor) we consider a squared box that contains the
filament. We can estimate the contribution of the filament by considering
the force density due to the filament on the contour of the box. We make
the rough assumption that this force density is uniform on each side of the
box, and has the same direction and sign of the force f acting on the closest
half of filament. The stress tensor is then proportional to this force:

σij ∼ −finj (B.1)

where the minus sign is due to the fact that the stress tensor represents
the force surface density applied on a fluid element, and f represents the
force exerted by the fluid element (to which the filament belongs) on the
neighboring fluid. Now we integrate the components of the stress tensor
on the contour of the box: a simple evaluation of the sign and the rela-
tive magnitude of the components of the stress tensor1 provides the angle

1This evaluation is simply done by looking at the sine and cosine of the angle that
the filament forms with the flow.
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B.2. Rigorous argument

dependence of the intrinsic viscosity η ∼ 〈σxy〉 and intrinsic normal stress
difference N ∼ 〈σxx − σyy〉. The results are summarized in tables B.1 and
B.2 for θ ∈ [0, π] in which the angle θ is defined (remember that the system
has a central symmetry).

π/2 < θ < π σxy > 0 [η] > 0
θ = π/2 σxy = 0 [η] = 0
0 < θ < π/2 σxy > 0 [η] > 0
θ = 0 σxy = 0 [η] = 0

Table B.1: Signs of the xy component of the stress tensor and value of the
intrinsic viscosity as a function of the inclination angle of the filament.

3π/4 < θ < π σxx < 0, σyy < 0 |σxx| > |σyy| [N ] < 0
π/2 < θ < 3π/4 σxx < 0, σyy < 0 |σxx| < |σyy| [N ] > 0
π/4 < θ < π/2 σxx > 0, σyy > 0 |σxx| < |σyy| [N ] < 0
0 < θ < π/4 σxx > 0, σyy > 0 |σxx| > |σyy| [N ] > 0

Table B.2: Signs of the normal components of the stress tensor and value of
the intrinsic normal stress difference as a function of the inclination angle
of the filament.

The intrinsic viscosity is always non-negative because so is σxy, due to
the simultaneous change in sign of f and of the projection direction on the
x axis for θ = π/2. It exhibits then two minima coinciding with its zeros
and two maxima can be deduced from the hypothesis of continuity of [η]
with respect to θ.
The intrinsic normal stress difference is positive or negative depending on
the relative magnitudes of the normal stress components, that are directly
linked to the projection of the force vector on the x and y axes, that’s why
[N ] changes sign at θ = π/4 and θ = 3π/4.

B.2 Rigorous argument

To compute quantitatively the contribution of the filament to the effective
viscosity and normal stress difference of the suspension we use Batchelor
formula that allows to compute this quantity via an integral on the surface
of the particle [Bat70]:

〈σij〉 =
1

V

[

∫ +L/2

−L/2

[−fixj] dl − η

∫ +L/2

−L/2

[niuj + njui] dl

]

(B.2)

133



B. Rheology of a tumbling filament

where f is the force density with which the filament acts on the fluid, V the
volume of the system and n is the normal to the surface of the filament.
The second integral vanishes for a quasi one-dimensional filament, since at
every point there are two contributions with same velocity but opposite
normal vector.

The force density can be evaluated assuming it to be equal to the Stokes
drag (i.e. proportional to the velocity gradient) [RBM04]. Since the force
opposes elongation, we consider the velocity component in the θ direction.
Under the assumption of passive filament we can then compute this force

vr =
γ̇

2
r sin(2θ)r̂ ⇒ f = −η γ̇

2
sin(2θ)r̂ (B.3)

To compute the effective viscosity, equation (B.2) becomes, passing from
l to the radial coordinate r

〈σxy〉 =
ηγ̇

V

∫ L/2

0

sin(θ) cos(θ)r sin(2θ)dr (B.4)

=
ηγ̇

2V
sin(2θ) sin(2θ)

L2

8
(B.5)

=
ηγ̇L2

16V
sin2(2θ) (B.6)

We can compute then the contribution of the filament to the effective vis-
cosity, i.e. the intrinsic viscosity [η] = 〈σxy〉/ηγ̇φ. φ is the volume fraction
occupied by the filament in the suspension and it is zero if the system is
unbounded and contains only one filament. We perform a linear extrapola-
tion to finite concentration, as done in Appendix A. The volume (surface
in two dimensions) occupied by the filament is A = ǫL2, being ǫ < 1 its
aspect ratio. Then φ = A/V = ǫL2/V , and we have

[η] =
1

16ǫ
sin2(2θ) (B.7)

The function sin2(2θ) is always non-negative and has two maxima and two
minima (which are also zeros) in the interval [0, π], in agreement with the
qualitative argument of the previous paragraph.

To compute the normal stress difference, equation (B.2) becomes, pass-
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ing from l to the radial coordinate r

〈σxx − σyy〉 =
ηγ̇

V

∫ L/2

0

[

cos2(θ)− sin2(θ)
]

r sin(2θ)dr (B.8)

=
ηγ̇

V
cos(2θ) sin(2θ)

L2

8
(B.9)

=
ηγ̇L2

16V
sin(4θ) (B.10)

We can compute then the intrinsic normal stress difference [N ] = 〈σxx −
σyy〉/ηγ̇φ: we have

[N ] =
1

16ǫ
sin(4θ) (B.11)

The function sin(4θ) has a period of π/2 and then exhibits two maxima,
two minima and four zeros in the interval [0, π], agreeing with what seen in
the previous paragraph.

Finally, it is enlightening to remark that the angular dependence of
both the intrinsic viscosity and the normal stress difference of a suspension
of filaments is the same as found analytically for vesicles in three dimensions
[DM07]. Moreover, also the numerical results presented in section 6.2, figure
6.9, confirm this behavior. This shows as during its tumbling motion a
vesicle is, from a rheological point of view, very similar to a rigid filament.

135





appendix c

MIGRATION DRIVEN BY NORMAL STRESS

DIFFERENCE

It is shown how the normal stress difference in a fluid undergoing
circular motion generates a force on the fluid itself. Forces due to
normal stresses are at the origin of non-Newtonian effects as the
Weissenberg effect. This derivation does not make any assumption
on the constitutive equation of the fluid. An intuitive argument is
given to explain the migration of deformable particles in a curved
flow of a Newtonian fluid.

On montre comme la différence des contraintes normales dans un
fluide en mouvement circulaire génère une force sur le fluide-même.
Les forces dues aux contraintes normales sont à l’origine d’effets
non newtoniens comme l’effet Weissenberg. Cette dérivation ne
fait aucune hypothèse sur l’équation constitutive du fluide. Un ar-
gument intuitif est utilisé pour expliquer la migration de particules
déformables dans un écoulement courbe d’un fluide newtonien.

We consider Cauchy’s equation of motion valid for any continuous medium,
solid or fluid:

∂

∂t
[ρv] +∇ · [ρvv] = ∇ · σ + ρg (C.1)

where ρ is the density of the material, σ its stress tensor, v the velocity
field, g the volume forces, such as gravity, acting on the fluid.

We consider now the case of a fluid of uniform density undergoing a
steady circular motion. We assume that no body force g is acting on the
fluid. Remembering that the divergence of a tensor T in polar coordinates
(r, θ) is

∇ · T =
1

r

(

∂

∂r
(rTrr) +

∂

∂θ
Tθr − Tθθ,

∂

∂r
(rTrθ) +

∂

∂θ
Tθθ − Tθr

)

(C.2)
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the radial component of Cauchy’s motion equation reads

∂

∂t
[ρv] +

1

r
ρ

[

∂

∂r
(rv2r) +

∂

∂θ
vθvr − v2θ

]

=
1

r

[

∂

∂r
(rσrr) +

∂

∂θ
σθr − σθθ

]

(C.3)
This expression can be simplified using the assumptions of steady (∂v/∂t =
0) and circular (vr = 0, ∂ · /∂θ = 0) flow:

− 1

r
ρv2r =

1

r

[

σrr + r
∂σrr
∂r

− σθθ

]

(C.4)

We define now the normal stress difference as N = σθθ−σrr (the component
with the positive sign is commonly chosen to be the one in the flow direction,
θ in our case), then equation (C.4) becomes

∂σrr
∂r

=
1

r

[

−ρv2θ +N
]

(C.5)

The first term on the right hand side represents the inertia of the fluid.
This term is never positive (−ρv2θ/r ≤ 0), then from (C.5) it contributes
to a radial decrease of the normal stress σrr. So, if we integrate it on the
surface of a fluid element, it will account for a net outward contribution. In
the same way, if the normal stress difference N is positive, it will generate
a net inward contribution.

If a Newtonian fluid is considered, N = 0 everywhere and no inward
force is present. If a non-Newtonian fluid is taken instead (with positive
N), a centripetal force is generated in the fluid. Due to its incompressibility,
it cannot migrate towards the centre1. On the other hand, a small drop of
a complex fluid inserted in a Newtonian matrix would be the only part of
the system experiencing an inward force, so it would start to move towards
the centre. This shows as in general a positive normal stress difference is a
motor for inward movement of fluids.

1This is indeed the case if the fluid has a free surface, as shown in figure 3.2.
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THE COMPUTATION OF EFFECTIVE VISCOSITY IN A

COUETTE CELL

An expression for the computation of the effective viscosity in a
Taylor-Couette cell is derived. This formula, based on the con-
servation of angular momentum in the cell, allows to compute the
effective viscosity by measuring the torque done by either of the
cylinders on the fluid sample.

On dérive une expression pour le calcul de la viscosité effective
dans un dispositif de Taylor-Couette. Cette formule, basée sur la
conservation du moment angulaire dans le dispositif, permet de
calculer la viscosité effective en mesurant le couple exercé par les
cylindres sur l’échantillon de fluide.

A Taylor-Couette cell is an experimental apparatus used to shear fluid
samples. It consists of two coaxial cylinders, one of which (at least) has a
nonzero angular velocity around the axis, and imposes thus a torque on the
fluid sample contained in the gap between the two cylinders.

In experiments, technological solutions as lubricated lids often allow to
neglect the forces exerted between the fluid and the two plane surfaces
delimiting the gap volume in the axial direction. Moreover, in our two-
dimensional numerical simulations the fluid is only delimited by the two
cylindrical (circular) surfaces. We shall then consider in the following a
two-dimensional situation. We recall that the effective viscosity is defined
as the viscosity that would be measured if the fluid sample were Newtonian
(see section 3.2). This is why in the computations we will pretend that the
fluid in the device is Newtonian, even if this is not the case in general.

The conservation of the angular momentum applied to the fluid sample
implies that the torque M (which is a scalar in two dimensions) made by
the surface forces on the inner cylinder is equal in value, but opposite in
sign, to the torque made by the surface forces f(θ) on the outer cylinder:

M =

∮

γ1

R1fθ(θ)dθ = −
∮

γ2

R2fθ(θ)dθ (D.1)

139



D. The computation of effective viscosity in a Couette cell

More precisely, the conservation of the angular momentum applied to a

R1

R
2

τe
θ

rΩ

Figure D.1: Schematic of a section of the Taylor-Couette cell. The dashed
line represent an arbitrary circular line in the fluid sample.

fluid region delimited on one side by the inner cylinder and on the other
by an arbitrary circle of radius r in the gap (R1 < r < R2, see figure D.1)
implies that the torque M is equal to the torque done by the shear force
τ(r)êθ ≡ σθr(r) · êr on the circle of radius r:

M = 2πr2τ(r) (D.2)

that leads to an expression for τ :

τ(r) =
M

2πr2
(D.3)

For a Newtonian fluid, the shear rate γ̇ does not depend on the angular
position θ, but only on r: γ̇ = γ̇(r). It can be defined as

γ̇(r) = −rdω
dr

(D.4)

where ω is the angular velocity in the fluid sample. This formula takes in
account the fact that a rigid rotation (uniform angular velocity) does not
contribute to shear. From equation (D.4) we can express the difference in
angular velocity of the boundaries, denoted Ω, as an integral of the shear
rate:

Ω ≡ ω(R1)− ω(R2) =

∫ R1

R2

− γ̇(r)
r
dr (D.5)

This integral can be computed by means of a change of variable from r to
τ using equation (D.3), that gives us:

r =

√

M

2π
τ−

1

2 dr = −1

2

√

M

2π
τ−

3

2dτ (D.6)
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So equation (D.5) becomes:

Ω =
1

2

∫ τ(R1)

τ(R2)

γ̇(τ)

τ
dτ (D.7)

For a Newtonian fluid, the shear stress τ is linked to the shear rate γ̇ through
the viscosity η:

γ̇(τ) =
τ

η
(D.8)

that substituted in equation (D.7) leads to a trivial integral and then to

Ω =
1

2η
[τ(R1)− τ(R2)] (D.9)

Substituting in equation (D.9) the expression (D.3) and solving it for η, we
obtain the wanted relationship between viscosity (that should be regarded
in general as effective viscosity), stress and strain:

ηeff =
M

4πΩ

[

1

R2
1

− 1

R2
2

]

(D.10)

where the torque M can be evaluated via either expression in (D.1). It is
important to remark that in the derivation of this formula the assumption
of narrow gap (i.e. |R2−R1| ≪ R1) has not been used, and then expression
(D.10) is valid for any value of (R1, R2).

The correct definition of the shear rate and application of the formulas
for the derivation of the effective viscosity is particularly important for the
study of yield stress materials (these materials do not flow below a critical
value of the shear stress, so in a Taylor-Couette cell it might happen that
a part of the sample is sheared, while the rest does not deform at all). For
this reason, discussions on this topic can be found in the literature about
this kind of materials, as in [ELP08].
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appendix e

THE FAST MULTIPOLE METHOD

The fast multipole method is detailed and the formulas upon which
it is based are introduced. This work is due to H. Selmi, applied
mathematician at Ecole Polytechnique de Tunisie (Tunisia), with
whom we have closely collaborated.

On détaille la méthode multipolaire rapide et les formules sur
lesquelles elle est basée. Ce travail est dû à H. Selmi, mathémati-
cien appliqué à l’Ecole Polytechnique de Tunisie (Tunisie), avec
lequel nous avons collaboré étroitement.

The Fast Multipole Method (FMM) is a technique to compute efficiently
the product between a matrix and a vector. If the dimension of the vector
is N and the matrix is square, the matrix-vector product is classically a
N2 problem, in the sense that the number of operation needed to make the
computation is proportional to N2. Then, if N is big, the computing time
is large and so is the required memory.
The matrix produced by the boundary integral method (BIM) can be large
and is dense, so its storage and direct manipulation become difficult tasks.
The aim of FMM is the evaluation of far-field interactions. This problem is
not trivial since the kernels involved vanish only asymptotically for r → ∞,
r being the distance between two points of the system.
In fact the Green function of the Stokes problem may be written as the
Laplacian kernel and its derivatives:

G(x− x0) = Gl(x− x0)1+
(x− x0)⊗ (x− x0)

|x− x0|2
(E.1)

where
Gl(x− x0) = − ln |x− x0| (E.2)

The effect of the second part of the kernel on a given force field f can be
written as:

(x− x0)⊗ (x− x0)

|x− x0|2
f(x) = −∇xGl(x− x0) < f(x) · (x− x0) > (E.3)
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E. The Fast Multipole Method

The elements of the matrix are not stored, thanks to the use of a formula
that expresses the velocity in terms of multipole moments, which are com-
puted browsing a tree defined by recursive decomposition of the domain.
Notice that the computation of those moments are based on the variable
separation of the Laplacian kernel Gl and given by the following lemma.
In the following we use complex analysis in order to simplify the notation,
even though we are interested only in the real part. With the representa-
tion of the point x(x, y) by the complex number z, we have Gl(x − x0) =
ℜ(Gl(z − z0)).

Lemma 1. For every z, z0 and zc1 complex numbers such that |zc1 −z| <
|zc1 − z0|, and a given scalar force field q(z), we have the following equality:

q(z)Gl(z − z0) = −q(z) ln(z0 − zc1) +
∞
∑

k=0

ak
(z0 − zc1)

k
(E.4)

where

ak =
q(z)(z − zc1)

k

k
(E.5)

Proof. The intercalation of the complex number zc1 in the Green function
Gl gives:

q(z) ln(z − z0) = q(z) ln(z0 − zc1)− q(z) ln(1− z − zc1
z0 − zc1

) (E.6)

finally we use the following expansion:

ln(1− u) =
∞
∑

k=0

uk

k
for |u| < 1 (E.7)

E.1 Multipole expansion

The use of the previous lemma allows to compute at a point z0 the velocity
U due to the hydrodynamical forces of the points (zi)1≤i≤N , on which acts a
scalar field qi, i = 1...N , and verifying |zc1 − zi| < |zc1 − z0| for all i = 1...N .
The calculation gives directly

U(z0) = Q ln(z0 − zc1) +
∞
∑

k=1

ak
(z0 − zc1)

k
(E.8)
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where

Q =
N
∑

i=1

−qi and ak =
N
∑

i=1

qi(zi − zc1)
k

k
(E.9)

Note that the terms of the series above (equation (E.8)) separate into a
product of a coefficient depending on the source point alone (ak depends
on qi(zi − zc1)) and a function depending on the evaluation point alone,
namely (z0 − zc1)

−k. By using the formula (E.8), we store only the effect of
the matrix on the force field by approximating the matrix-vector product
via the truncation at an order p << N of the series given in equations
(E.4) and (E.8), and compress by regrouping the surface elements. This
implies a regrouping of the lines and the columns outside a certain band,
whose width is determined by the dept of the tree. We finally arrive to an
allocation space O(NLogN) instead of O(N2).
In order to attain an even more efficient computation, we can proceed to a
further expansion of equation (E.4), as shown in the following

Lemma 2. For every complex numbers zc1 , z0 and zc2 such that |z0 −
zc2| < |zc1 − zc2|, we have the following equality:

1

(z0 − zc1)
k
=

∞
∑

l=0

bl(z0 − zc2)
l (E.10)

where

bl =
(−1)k

(l+k−1

k−1

)

(zc1 − zc2)
k+l

(E.11)

Proof. In a similar way as done for the previous lemma, we intercalate zc2
in the left hand side of (E.10), and we obtain the equality:

1

(z0 − zc1)
k
=

1

(zc1 − zc2)
k

1

(
z0−zc2
zc1−zc2

− 1)k
(E.12)

By using the following expansion

1

(1− u)k
=

∞
∑

l=0

(l+k−1

k−1

)

ul for k ≥ 1 (E.13)

we obtain directly the result.

E.2 Local expansion

Suppose that we have to measure the effect of the hydrodynamical forces on
a point z0 and that the information about the effect of the source points are
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calculated and stored on a certain point zc1 . Then, under the hypothesis
|z0 − zc2| < |zc1 − zc2|, the multipole expansion (E.8) converges inside a
circle C2 of a certain radius r containing the target point z0 and centered
at zc2 . So we have:

U(z0) =
∞
∑

l=0

bl(z0 − zc2)
l (E.14)

where

b0 = a0 ln(−(zc1 − zc2)) +
∞
∑

k=1

ak
(zc1 − zc2)

k
(−1)k (E.15)

and

bl = − a0
l · (zc1 − zc2)

l
+

1

(zc1 − zc2)
l

∞
∑

k=1

ak
(zc1 − zc2)

k

(l+k−1

k−1

)

(−1)k (E.16)

The series is truncated to the same order p used for the multipole ex-
pansion. In comparison with the previous section we have factorized the
series as a product of two coefficients, one depending on a given point z0
where the effect is to be calculated, and the other depending on zc where
the moment is to be evaluated. In some sense the operation consists now
in regrouping elementary charges (in the electrostatics language) to build
a multipole moment in a certain area. A set of charges at distant point is
also regarded now as a multipole moment. The resulting interaction is thus
between multipoles.

Using the previous formulas, we need to store only the local moments
that summarize the whole information resulting from all the far field inter-
actions calculated based on equality (E.10). Indeed, these quantities are
converted, condensed and regrouped in only one local moment. That is to
say we do not have to store the multipole moments. The storage of the
local moment, that uses only a memory space about O(N) (see figure E.1),
is largely sufficient to obtain a good approximation of the matrix-vector
product.
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E.2. Local expansion

Figure E.1: Representation of the matrix storage by blocks using a tree of
depth 4.
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Abstract

The dynamics and the rheology of a suspension of vesicles (a model for red blood cells) in the
limit of small Reynolds number are studied by means of two-dimensional numerical simulations, based
on the boundary integral and phase field methods. The focus is on the link between the microscopic
dynamics of the particles and the overall behavior of the suspension (i.e. rheology).

A dilute suspension of vesicles in a linear shear flow is analyzed in detail and the influence of
theparameters governing the dynamics of a single vesicle is extensively described. The nontrivial
behavior of the rheological quantities (effective viscosity and normal stress difference) is explained
and the role of the membrane of the vesicle detailed.

The influence of the curvature of the flow lines on the dynamics of the vesicles is investigated for
the first time, and consistent inward migration is reported. The suggested interpretation, based on the
coupling between the curvature of the flow and the rheological properties of the suspension, remains
valid for the flow of the majority of complex fluids, like emulsions and polymer suspensions, and is
thus expected to have an impact in other fields. Moreover, the behavior of a suspension of vesicles
in a microscopic Taylor-Couette cell is investigated, and a transition to ordered states is reported at
very low volume fraction. This phenomenon has been explained with interactions between vortices.

The behavior of sets of vesicles in a parabolic flow, a setup that mimics red blood cells in the
microvasculature, is presented. Vesicles submitted to sole hydrodynamical interactions are found to
form aggregates of finite size, a fact that may prove of physiological interest.

Finally, the transposition to red blood cells of the results above is discussed.

Résumé

On étudie la dynamique et la rhéologie d’une suspension de vésicules (un modèle pour les globules
rouges) dans la limite de faibles nombres de Reynolds en utilisant des simulations numériques basées
sur les méthodes des intégrales de frontière et du champ de phase.

L’attention est portée sur le lien entre la dynamique microscopique des particules et le comporte-
ment d’ensemble de la suspension (c. à d. la rhéologie). Une suspension diluée de vésicules dans un
écoulement de cisaillement linéaire est analysée et l’influence des paramètres qui en gouvernent la
dynamique est décrite en détail. On explique le comportement complexe des grandeurs rhéologiques
(viscosité effective et différence des contraintes normales) et on détaille le rôle de la membrane de la
vésicule.

On examine l’influence de la courbure des lignes d’écoulement sur la dynamique des vésicules, et
on reporte une migration non négligeable dans la direction de concavité. L’interprétation donnée reste
valable pour la plupart des fluides complexes, comme les émulsions et les suspensions de polymères.
De plus, le comportement d’une suspension de vésicules dans un dispositif de Taylor-Couette micro-
scopique a été élucidé, et une transition vers des états ordonnés à été mise en évidence à des fractions
volumiques très faibles. Ce phénomène a été expliqué à travers interactions entre vortex.

On étudie aussi le comportement d’ensembles de vésicules dans un écoulement parabolique, une
situation rencontrée par les globules rouges dans les capillaires sanguins. Les vésicules, soumises
aux seules forces hydrodynamiques, forment des agrégats de taille finie, un fait qui pourrait être
d’importance physiologique.

La transposition des résultats ci-dessus aux globules rouges est discutée.
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