
HAL Id: tel-00554668
https://theses.hal.science/tel-00554668

Submitted on 11 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of high performance hardware
architectures for multimedia applications

Shafqat Khan

To cite this version:
Shafqat Khan. Development of high performance hardware architectures for multimedia applications.
Micro and nanotechnologies/Microelectronics. Université Rennes 1, 2010. English. �NNT : �. �tel-
00554668�

https://theses.hal.science/tel-00554668
https://hal.archives-ouvertes.fr

No d'ordre : 4179 ANNÉE 2010

THÈSE / UNIVERSITÉ DE RENNES 1, FRANCE
sous le sceau de l'Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L'UNIVERSITÉ DE RENNES 1

Mention : Traitement du Signal et Télécommunications

Ecole doctorale Matisse

présentée par

Shafqat KHAN
préparée à l'unité de recherche UMR6074 INRIA/IRISA

Institut de recherche en informatique et Systèmes aléatoires - CAIRN
École Nationale Supérieure des Sciences Appliquées et de Technologie

Développement

d'architectures matérielles

hautes performances

pour les applications

multimédia

Development of high

performance hardware

architectures for

multimedia applications

Thèse soutenue à Lannion (France)
le Mercredi 29 Septembre 2010

devant le jury composé de :

Patrice QUINTON
Professeur des Universités
Université de Rennes 1 / président

Michel AUGUIN
Directeur de recherche CNRS
Université de Nice Sophia Antipolis / rapporteur

Christophe JÉGO
Maître de conférences
Télécom Bretagne / rapporteur

Philippe COUSSY
Maître de conférences
Université de Bretagne Sud / examinateur

Emmanuel CASSEAU
Professeur des Universités
Université de Rennes 1 / directeur de thèse

Daniel MÉNARD
Maître de conférences
Université de Rennes 1 / co-directeur de thèse

Résumé

Les besoins en puissance de calcul des processeurs sont en constante augmentation en

raison de l’importance croissante des applications multimédia dans la vie courante. Ces

applications requièrent de nombreux calculs avec des données de faible précision générale-

ment issues des pixels. Le moyen le plus efficace pour exploiter le parallélisme de données

de ces applications est le parallélisme dit de sous-mots (SWP pour subword parallelism).

Les opérations sont effectuées en parallèle sur des données de faible précision regroupées

ce qui permet d’utiliser au mieux les ressources disponibles dimensionnées pour traiter

des mots. Dans cette thèse, la conception de différents opérateurs SWP pour les ap-

plications multimédia est proposée. Une bonne adéquation entre largeur des sous-mots

et largeur des données manipulées permet une meilleure utilisation des ressources et

conduit ainsi à améliorer l’efficacité de l’exécution de l’application sur le processeur.

Les opérateurs arithmétiques de base développés sont ensuite utilisés dans un opérateur

SWP reconfigurable. Ce dernier peut être configuré pour effectuer diverses opérations

multimédia avec différentes largeurs de données. L’opérateur reconfigurable peut être

utilisé comme unité spécialisée ou comme co-processeur dans un processeur multimé-

dia afin d’en améliorer les performances. La vitesse interne des différentes unités de

traitement est également améliorée en représentant les nombres en système redondant

plutôt qu’en système binaire. Le système redondant permet entre autre d’augmenter

la vitesse des opérations arithmétiques en évitant une propagation de retenue couteuse

lors d’opérations d’addition. Les résultats obtenus montrent l’intérêt en terme de per-

formances d’utiliser des opérateurs SWP lors de l’exécution d’applications multimédia.

Mots clés : applications multimédia, conception d’opérateurs VLSI, parallélisme dit de

sous-mots (SWP : subword parallelism).

i

Abstract

The computational requirements of the processors are increasing tremendously with

the increase in the complexity of applications. Among these applications, multimedia

represents the class of applications which requires lot of computations on low precision

pixels. These applications include motion estimation, discrete cosine transform, image

filtering etc. The processing requirements of multimedia applications can be fulfilled by

performing parallel computations on input pixel data. Subword parallelism (SWP) is

one of the best options to exploit data level parallelism that exist in the applications. In

SWP, rather than wasting the word oriented data path, parallel operations are executed

on packed subwords. SWP increases the performance of the processor especially for

multimedia applications with low precision pixel data. Coordination between pixel sizes

in multimedia applications and subword sizes in SWP operators further increases the

performance through a better resource utilization. In this thesis, reconfigurable SWP

arithmetic operators are proposed for multimedia applications. In the proposed basic

SWP operators, parallelism is obtained by using multimedia oriented subword sizes (8,

10, 12 or 16-bit) rather than classical subword sizes (8, 16 or 32-bit etc.). Compared to

classical SWP operators, the multimedia SWP operator utilizes the available resources

more efficiently when working on different video applications. SWP arithmetic operators

are then used to design reconfigurable operators for multimedia applications. In the

proposed reconfigurable operators, reconfiguration is provided at both the data size level

and the operation level without any reconfiguration time overheads. These operators

can perform a variety of basis as well as multimedia operations on different size pixel

data. These operators can be used as co-processors to enhance the performance for

multimedia applications. Along with parallelism, the internal computational speed of

the different arithmetic units is improved by introducing the redundant number system

in the SWP architectures. Redundant number system provides a carry propagation free

addition which ultimately increases the speed of different arithmetic operations. The

performance of SWP operators are verified on different multimedia kernels.

Key words : multimedia applications, VLSI design of operators, subword parallelism

(SWP : subword parallelism).

ii

Acknowledgements

I wish to acknowledge and thank all those people who supported me during my PhD

work. It would not have been possible to complete this PhD thesis without the help and

support of kind people around me.

First of all i would like to express my sincere gratitude to my advisor Prof. Dr. Em-

manuel Casseau for his continuous support throughout my PhD work. I am extremely

indebted for his time, suggestions and remarks that have always been constructive and

productive. He guided me to approach the research problems and analyze the results

in a logical way. It has been an honour for me to work with him. I would also like to

thank Dr. Daniel Menard for all his help and support as my co-advisor. His constructive

feedback and comments at various stages have been significantly useful in shaping the

thesis up to the completion.

I take this opportunity to express my special gratitude towards all the member of

IRISA/CAIRN Lab, Lannion France [22] who made my stay an outstanding experi-

ence. It is the moment of great pride for me that i have completed my PhD in this

prestigious Lab. I would like to thanks the head of Lab, Prof. Dr. Olivier Sentieys for

his generous help and kind attitude in the hour of need. I am also grateful to Dr. Arnaud

Tisserand for his help on redundant number systems and reading the manuscript of our

article in IJISCE’10 [51].

I am equally thankful to all the members of the jury who evaluated this work: Michel

Auguin (Director of research CNRS, LEAT, Nice France), Christophe Jego (Assistant

Professor at Telecom Bretagne, Brest France), Patrice Quinton (Director of ENS Cachan

antenne de Bretagne France) and Philippe Coussy (Assistant Professor at LESTER

Lorient France).

I also thank my fellow PhD students Tuong, Pasha, Manh, Jamal, Umer, Jullien, Re-

naud, Vingh, Naeem, Vivik, Karthick, Robin, Antoine, Cécile, Mahtab, and Hai-Nam

for making a very good research and working environment in the Lab. I still regret for

not being able to mention all those i met during my PhD.

Finally i would like to thank all my family members. I am forever indebted to my parents

for their deep hearted prayers and never ending support. Their love and prayers helped

me remain focused during my studies. The encouragement and support from my wife

is always a source of inspiration and energy for me. This PhD thesis and our stay in

France will always be memorable for us because our three kids (Maryam, Mubashir and

Mudassir) are also born during this period.

iii

Contents

Acknowledgements iii

List of Figures ix

List of Tables xii

Abbreviations xiv

Résumé étendu 1

0.1 Le parallélisme pour améliorer les performances 1

0.1.1 Le parallélisme au niveau des instructions 2

0.1.2 Le parallélisme au niveau des données 2

0.2 Parallelisme de sous-mots (subword paralelism (SWP)) 3

0.2.1 Utilisation du concept SWP . 4

0.2.2 Concept SWP et applications multimédia 6

0.2.3 Extensions multimédia dans les microprocesseurs à usage général 6

0.3 Besoins associés au concept SWP . 7

0.3.1 Opérateurs SWP . 7

0.3.2 Transferts de données entre les unités de traitement et la mémoire 8

0.3.3 Disponibilité de données de faible précision 9

0.4 Largeurs des sous-mots dans les architectures SWP 9

0.4.1 Parallélisme versus largeur des sous-mots 9

0.4.2 Largeurs des sous-mots supportées 10

0.4.3 Adéquation entre largeur des données et largeur des sous-mots . . 10

0.4.4 Largeur de sous-mots conventionnelles 11

0.4.5 Largeurs de sous-mots orientées multimédia 11

0.4.6 Largeur des mots avec les opérateurs SWP 13

0.5 Contributions et organisation du mémoire de thèse 13

0.5.1 Organisation de la thèse . 16

1 Subword Parallelism SWP in operator design 20

1.1 Parallelism for performance enhancement 21

1.1.1 Instruction level parallelism . 21

1.1.2 Data level parallelism . 22

1.2 Multimedia Processing . 24

iv

Contents v

1.3 Subword parallelism SWP . 25

1.3.1 Utilization of data level parallelism in SWP 26

1.3.2 SWP in multimedia application 28

1.3.3 Multimedia extension in general purpose microprocessors 29

1.3.4 SWP building block IPs . 31

1.4 SWP requirements . 32

1.4.1 SWP operators . 32

1.4.2 Data transfer between processing units and memory 33

1.4.3 Availability of low precision data 34

1.5 SWP instruction set . 34

1.5.1 Parallel ADD and SUB instruction 34

1.5.2 SWP instructions to avoid overflow in MAX-2 35

1.5.3 MIX instruction in MAX-2 . 37

1.5.4 PERMUTE instruction in MAX-2 39

1.5.5 Memory instructions . 40

1.5.6 Assembly code with and without SWP instructions 40

1.6 Subwords sizes in SWP architectures . 41

1.6.1 Parallelism Vs subword size . 41

1.6.2 Support for multiple subword sizes 41

1.6.3 Coordination between data and subword size 42

1.6.4 Classical subword sizes . 42

1.6.5 Multimedia subword sizes . 43

1.7 Word size in SWP operators . 44

1.8 Limitations of SWP . 47

1.9 Contributions and Organization of this Thesis 48

1.9.1 Organization of thesis . 51

1.10 Conclusions . 54

2 Design of SWP basic operators 55

2.1 SWP operator design . 56

2.1.1 Complexity of SWP operators . 56

2.2 Add operator . 57

2.2.1 Classical SWP adder . 58

2.2.2 Multimedia SWP adder . 62

2.3 Multiply operator . 65

2.3.1 Classical SWP multiplier . 67

2.3.2 Multimedia SWP multiplier . 69

2.3.2.1 Dedicated PP generation units 71

2.3.2.2 Generalize PP generation unit for SWP multimedia mul-
tiplier . 71

2.3.2.3 Addition of partial products for SWP multimedia multi-
plier . 75

2.3.2.4 Comparison of simple and SWP multimedia multiplier . 76

2.3.3 Analysis of SWP multipliers . 76

2.4 MAC operator . 80

2.4.1 Classical SWP MAC . 80

2.4.2 Multimedia SWP MAC . 81

Contents vi

2.5 Conclusions . 82

3 SWP in multimedia operations 83

3.1 Multimedia arithmetic operations . 84

3.1.1 Sum of absolute values of difference SAD 84

3.2 Determination of absolute value of difference |a - b| 86

3.2.1 Absolute value of difference : Method 1 86

3.2.1.1 SWP Absolute value of difference : Method 1 88

3.2.2 Absolute value of difference : Method 2 89

3.2.2.1 SWP Absolute value of difference : Method 2 91

3.2.3 Absolute value of difference : Method 3 92

3.2.3.1 SWP Absolute value of difference : Method 3 92

3.2.4 Comparison of SWP Absolute value of difference operators 93

3.3 SWP SAD operator . 94

3.3.1 Comparison of simple and SWP SAD operator 96

3.4 Sum of products (SOP) . 97

3.4.1 SWP sum of products . 99

3.4.2 Comparison of simple and SWP sum of products operator 101

3.5 Sum of additions/subtractions . 102

3.5.1 SWP sum of additions/subtractions 103

3.5.2 Comparison of simple and SWP
∑

(a ± b) operators 105

3.6 Conclusions . 106

4 Reconfigurable SWP operator for multimedia processing 107

4.1 Reconfigurable architectures . 108

4.1.1 Reconfiguration at interconnection level 108

4.1.2 Reconfiguration at operator’s level 109

4.1.3 Reconfigurability using SWP . 109

4.2 SWP Reconfigurable multimedia operator 110

4.2.1 Architecture of SWP Reconfigurable operator 110

4.2.2 Connectivity of reconfigurable operator with other operators . . . 111

4.2.3 Building blocks of reconfigurable operator 113

4.3 Basic SWP arithmetic units . 113

4.3.1 SWP ADD and SUB units . 114

4.3.2 SWP Absolute signed . 115

4.3.3 SWP multiplier unit . 116

4.3.4 SWP |a − b| unsigned . 118

4.3.5 Accumulator unit . 118

4.4 Subword alignment and interconnection units 118

4.4.1 Bit conversion units . 119

4.4.2 SWP subword adders units . 120

4.4.3 Multiplexer units . 121

4.5 Complex multimedia operations . 121

4.5.1 SWP
∑

(a × b) operation . 122

4.5.2 SWP
∑

(|a − b|) operation . 123

4.5.3 SWP
∑

(a + b) signed operation 124

4.5.4 Other complex operations . 125

Contents vii

4.6 Synthesis results . 126

4.6.1 Statistical power analysis . 128

4.7 Performance on multimedia applications 130

4.8 Conclusion . 131

5 SWP using redundant representation 132

5.1 Number systems . 133

5.1.1 Binary number system . 133

5.1.2 Redundant number system . 134

5.2 Addition using BS number system . 136

5.2.1 Addition tables for BS numbers . 136

5.2.1.1 Addition table using direct method 137

5.2.1.2 Addition table using internal barrow 139

5.2.2 Addition of intermediate sum and carry digits 139

5.3 Logic cell for BS digits addition . 140

5.3.1 Adder using BS logic cell . 143

5.3.2 Comparison of BS adder with other adder types 143

5.4 Conversions between CB and BS numbers 145

5.4.1 Conversions from CB to BS . 146

5.4.2 Conversions from BS to CB representation 148

5.5 Multiplication using BS number system 150

5.5.1 Comparison of CB and BS multiplier 152

5.6 FSM based variable length BS adder . 153

5.6.1 FSM controller . 154

5.7 SWP using BS representation . 157

5.7.1 SWP adder using BS representation 158

5.7.1.1 Comparison of SWP BS adder with SWP CB adder . . . 159

5.7.1.2 Comparison of simple and SWP BS adder 160

5.7.2 SWP multiplier using BS representation 160

5.7.2.1 Comparison of SWP BS multiplier with SWP CB multiplier161

5.7.2.2 Comparison of simple and SWP BS multiplier 162

5.8 SWP SAD using BS representation . 162

5.9 SWP BS conversions . 164

5.9.1 SWP CB to BS conversion . 165

5.9.2 SWP BS to CB conversion . 165

5.10 High speed reconfigurable multimedia operator 166

5.10.1 Architecture of the operator . 167

5.10.2 Sum of products using reconfigurable operator 168

5.10.3 Synthesis results . 170

5.10.3.1 Power analysis . 171

5.11 Conclusions . 173

6 Motion estimation using SWP operators 174

6.1 Motion estimation . 175

6.2 Search algorithms in motion estimation 177

6.2.1 Full search algorithm . 177

6.2.2 Three step search algorithm . 178

Contents viii

6.2.3 Diamond search algorithm . 179

6.3 Cost functions . 180

6.3.1 Sum of absolute value difference SAD 180

6.4 Motion estimation using SWP operators 182

6.4.1 RAMs for search area image and current block 183

6.4.2 RAM reading units . 183

6.4.3 SWP SAD computation unit . 184

6.4.4 SAD comparator unit . 185

6.4.5 State machine controller . 186

6.5 SWP ME using Full search algorithm . 189

6.5.1 Search time . 190

6.5.2 Synthesis results . 191

6.5.3 Comparison of simple and SWP ME operator 193

6.6 SWP ME using Diamond search algorithm 195

6.6.1 Search time . 197

6.6.2 Synthesis results . 198

6.6.3 Comparison of simple and SWP ME operator 199

6.7 Comparison of FS and DS SWP ME operators 200

6.8 SWP ME IP core . 201

6.9 Conclusions . 203

7 Conclusion and Perspectives 205

7.1 Conclusion . 205

7.2 Future perspectives . 207

Bibliography 209

Personal Publications 209

List of Figures

1 Principe de l’additionneur SWP . 3

2 Implémentation de la boucle sur un processeur sans SWP 4

3 Implémentation de la boucle sur un processeur avec SWP 5

4 Opérateur SWP . 8

5 Utilisation de données 12 bits avec des sous-mots de largeur 16 bits 12

6 Utilisation de données 12 bits avec des sous-mots de largeur 12 bits 12

7 Block diagram of ROMA processor . 14

1.1 Architecture of SIMD processor . 23

1.2 Parallel subword ADD instruction . 26

1.3 Loop implementation on processor without SWP 27

1.4 Loop implementation on processor with SWP 28

1.5 Block diagram of SWP operator . 32

1.6 Parallel addition and subtraction in MAX-2 35

1.7 SAD operation using SWP instructions 36

1.8 Finding of greater subwords values . 36

1.9 Different subword arrangements using Mix instruction 37

1.10 Two dimension DCT transform . 38

1.11 Matrix transpose using Mix instruction 38

1.12 Different permutations of subwords . 39

1.13 Classical subword sizes in SWP . 43

1.14 Multimedia oriented subword sizes in SWP 44

1.15 Utilization of different word length processors for different multimedia
oriented subword sizes . 46

1.16 Block diagram of ROMA processor . 49

2.1 Ripple carry adder using FA . 58

2.2 SWP Enabled Adder Architecture . 59

2.3 SWP adder architecture using group CLA 60

2.4 Word and subword sizes supported by multimedia SWP adder 62

2.5 SWP multimedia adder architecture . 63

2.6 swp multimedia adder using group CLA 64

2.7 PPs generation using array of AND gates 65

2.8 Booth recoding of multiplier bits . 66

2.9 Block diagram of vector multiplication . 67

2.10 SWP multiplication . 67

2.11 Arrangement of partial products for different subword sizes 70

2.12 SWP partial product generation using dedicated units 71

ix

List of Figures x

2.13 Valid bits of PP0 for different subword sizes 72

2.14 Arrangement of PPs for 8-bit data size . 75

2.15 Area of SWP multipliers . 79

2.16 CP of SWP multipliers . 79

2.17 Power consumption of SWP MULTs . 79

3.1 Sum of absolute difference operator . 85

3.2 Absolute value of difference unit . 87

3.3 SWP Absolute value of difference operator 88

3.4 Comparison and inversion of smaller input 90

3.5 Absolute difference unit . 92

3.6 Comparison of SWP absolute difference operators 93

3.7 SWP sum of absolute value difference SAD 94

3.8 SWP subword adder unit for SWP SAD operator 95

3.9 Pipelined architecture of sum of products operator 98

3.10 SWP sum of product operator . 99

3.11 SWP subword adder unit for SWP SOP operator 100

3.12 Sum of addition/subtraction operator . 102

3.13 SWP sum of addition/subtraction operator 103

3.14 Arrangement of over flow bits for different subword sizes 104

3.15 SWP subword adder unit for SWP
∑

(a ± b) operator 105

4.1 Reconfiguration at interconnection level 108

4.2 SWP reconfigurable multimedia operator 111

4.3 Inputs and outputs of SWP reconfigurable operator 112

4.4 SWP (a ± b) operation using reconfigurable operator 114

4.5 SWP absolute operation for signed subwords 115

4.6 SWP product subword MSB and LSB part extractor 117

4.7 SWP multiplication using reconfigurable operator 117

4.8 Expansion of unsigned subwords . 119

4.9 Computation of SWP
∑

(a × b) using reconfigurable multimedia operator 122

4.10 Computation of SWP
∑

|a − b| using reconfigurable multimedia operator 123

4.11 Computation of SWP
∑

(a + b) using reconfigurable multimedia operator 124

4.12 Synthesis at different clock periods . 127

4.13 Statistical power estimation . 128

4.14 Power consumption of SWP operations . 129

5.1 Block diagram of BS number addition . 136

5.2 Addition of BS numbers using addition Table 5.1 140

5.3 Addition of BS numbers using addition Table 5.2 140

5.4 Logic cell for BS digits addition . 142

5.5 Comparison of CB and BS adders . 144

5.6 Conversion between CB and BS numbers 145

5.7 Conversion from BS to CB representation 148

5.8 BS to CB conversion . 149

5.9 Multiplication using BS number system 151

5.10 FSM based BS adder . 154

5.11 State diagram of adder . 155

List of Figures xi

5.12 SWP BS ADD architecture . 158

5.13 SWP adder for 8-digit subwords . 159

5.14 SWP BS SAD unit . 163

5.15 SWP BS |a − b| unit . 164

5.16 SWP CB to BS conversion . 165

5.17 SWP BS to CB conversion . 166

5.18 Reconfigurable multimedia operator . 168

5.19 Sum of product computation using high speed reconfigurable operator . . 169

5.20 Comparison of SWP operators using CB and BS representations 171

5.21 Power consumption of operations . 172

6.1 Block matching in motion estimation algorithm 175

6.2 Three step search algorithm . 178

6.3 Diamond search algorithm . 179

6.4 SWP SAD unit . 181

6.5 SWP motion estimation (ME) operator 183

6.6 Block diagram of SWP SAD unit . 184

6.7 Block diagram of comparator unit . 185

6.8 State machine controller block . 186

6.9 Sequence of operations in the SWP ME operator 188

6.10 Pixel values of search area image and current block 190

6.11 8-bit motion estimation operator . 193

6.12 Comparison of five 8-bit ME operators and SWP ME operator using FS . 195

6.13 SWP ME operator using the diamond search algorithm 196

6.14 Number of cycles required by FS and DS algorithms to find the best match197

6.15 Comparison of five 8-bit ME operators and SWP ME operator using DS . 199

6.16 Comparison of SWP ME operator using different search algorithm 200

6.17 Soft embedded processor . 202

List of Tables

1.1 TMS320C64x+ SWP instruction set . 30

1.2 Data sizes which can be manipulated by different DSPs offering SWP
capabilities for arithmetic operations . 31

1.3 utilization of SWP operator for classical and multimedia subword sizes . . 45

2.1 Internal control bits for different subword sizes 59

2.2 Synthesis of classical SWP adders . 61

2.3 Internal control bits combinations for SWP multimedia adder 63

2.4 Results of multimedia SWP adders . 64

2.5 PP generation using Booth recoding . 66

2.6 Results of classical SWP multiplier . 68

2.7 Results of multimedia SWP Multiplier . 76

2.8 Configurations of word and subwords sizes 77

2.9 Synthesis results for SWP multipliers . 78

2.10 Results of classical SWP MAC . 81

2.11 Results of multimedia SWP MAC . 82

3.1 Method 1: Synthesis results of absolute difference operator 89

3.2 Method 2: Synthesis results of absolute difference operator 91

3.3 Method 3: Synthesis results of absolute difference operator 93

3.4 Synthesis results of SAD operator . 96

3.5 Synthesis results of sum of products operator 101

3.6 Synthesis results of
∑

(a ± b) operator . 105

4.1 Synthesis on ASIC technologies . 126

4.2 Percentage reduction in number of cycles 130

5.1 Addition table for the BS numbers . 137

5.2 Addition table for the BS numbers using internal barrow 139

5.3 Synthesis results of BS adders . 143

5.4 Synthesis results of CB to BS digit converters 147

5.5 BS to CB conversion rules . 148

5.6 Synthesis results of BS to CB converter 149

5.7 Comparison of CB and BS multipliers . 152

5.8 Synthesis results of FSM based BS adders 156

5.9 Synthesis results of simple and SWP BS adder 160

5.10 Synthesis results of simple and SWP BS multiplier 162

xii

List of Tables xiii

6.1 Cycles required by the SWP ME operator to find the best match using
FS algorithm . 191

6.2 Synthesis of SWP ME operator using FS algorithm 192

6.3 Synthesis of SWP ME operator using DS algorithm 198

Abbreviations

ASIC Application Specific Integrated Circuit

AVX Advanced Vector eXtensions

BS Barrow Save

CP Critical Path

CLK CLocK

CLB Configurable Logic Block

CLA Carry Look Ahead

CSA Carry Save Adder

CB Conventional Binary

DC Design Compiler

DSP Digital Signal eProcessing

DLP Data Level Parallelism

DS Diamond Search

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

FPGA Field Programmable Gate Array

FSM Finit State Machine

FA Full Adder

FS Full Search

GPP General Purpose Processor

HA Half Adder

ILP Instruction Level Parallelism

IP Intellectual Property

LSB Least Significant Multiple Bit

LDSP Large Diamond Search Pattern

xiv

Abbreviations xv

ME Motion Estimation

MSB Most Significant Bit

MV Motion Vector

MAC Multiply and ACcumulate

MMX Matrix Math eXtension

MAX Multimedia Acceleration eXtension

MIMD Multiple Instruction Multiple Data

MAD Mean value of Absolute Difference

PE Processing Element

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTL Register Transfer Level

RCA Ripple Carry Adder

SWP Sub Word Parallelism

SAD Sum of Absolute value Difference

SOP Sum Of Products

SOC System On Chip

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

SSE Stream SIMD eXtension

SDSP Small Diamond Search Pattern

TSS Three Step Search

TI Texas Instruments

VIS Visual Instruction Set

UMC United Microelectronics Corporation

Dedicated to my kids Maryam, Mubashir and Mudassir

xvi

Résumé étendu

Les besoins en puissance de calcul des processeurs sont en constante augmentation en rai-

son de l’importance croissante des applications multimédias. Ces applications requièrent

de nombreux calculs avec des données de faible précision (pixels). Un des moyens pos-

sibles pour répondre aux exigences de calcul des applications multimédias est d’utiliser

pleinement les ressources disponibles du processeur. La plupart des processeurs fonc-

tionnent avec des mots de données de grande largeur alors que dans les applications

multimédia les calculs sont effectués sur des données de petite largeur. Aussi, avec

des processeurs conventionnels, l’utilisation maximale des ressources (opérateurs, reg-

istres et autres éléments d’interconnexion) n’est pas possible lorsque les données sont

de type multimédia. Pour améliorer les performances, une solution consiste à effectuer

des calculs sur plusieurs données de faible précision en parallèle tout en conservant un

chemin de données axé sur le mot processeur. Cela peut être possible en utilisant le con-

cept de parallélisme dit subword (SWP : subword parallelism) [30] [31] [48]. En SWP,

les opérations sont effectuées en parallèle sur des données de faible précision (subwords

pour sous-mots) regroupées afin de ne pas gaspiller les ressources dimensionnées pour

des mots. Une bonne adéquation entre les données manipulées et les dimensions des

sous-mots est nécessaire pour utiliser efficacement les ressources disponibles.

0.1 Le parallélisme pour améliorer les performances

Les performances d’un processeur peuvent être mesurées à partir de la quantité de temps

et les ressources nécessaires pour exécuter une tâche particulière. Si le processeur peut

accomplir la tâche en un minimum de temps avec un minimum de ressources matérielles,

alors ses performances seront élevées. Cependant, en pratique, il y a habituellement un

compromis entre la vitesse et les ressources nécessaires. Le principe pour augmenter la

vitesse du processeur est d’utiliser le parallélisme qui existe à différents niveaux [36, 39,

40]. Le parallélisme est une des techniques les plus anciennes et efficaces pour augmenter

les performances d’un système informatique. Pour exploiter pleinement le parallélisme,

des unités de traitement parallèles sont nécessaires pour effectuer des opérations en

1

Résumé étendu 2

parallèle. Ces unités de traitement parallèles permettent d’augmenter la vitesse mais

la surface des unités augmente en conséquence. Le parallélisme peut être appliqué à

différents niveaux. Les niveaux les plus importants sont le parallélisme d’instructions et

le parallélisme au niveau des données.

0.1.1 Le parallélisme au niveau des instructions

Le parallélisme au niveau des instructions (ILP: Instruction Level Parallelism) est une

mesure de nombre d’instructions dans un programme qui peuvent être exécutées simul-

tanément. Toutefois, en raison des dépendances de données et de contrôle, il n’est pas

toujours facile d’exécuter les instructions en parallèle. Il existe plusieurs techniques

pour exploiter l’ILP. Ces techniques comprennent entre autre l’exécution spéculative, la

prédiction de branchement, le pipeline d’instruction, etc.

0.1.2 Le parallélisme au niveau des données

Le parallélisme au niveau des données tire partie du parallélisme intrinsèque qui existe

dans le calcul des données et qui peut généralement être appliqué chaque fois que les

calculs sont réguliers et répétitifs. La principale condition du parallélisme de données est

que les données doivent toujours être disponibles pour les calculs. Le processeur alloue

des portions de données à différentes unités de traitement pour effectuer les calculs.

Ce faisant, les calculs sont effectués en parallèle et les tâches sont accomplies en moins

de temps. Il existe plusieurs architectures pour exploiter le parallélisme au niveau des

données: SIMD (single instruction multiple data), MIMD (multiple instruction multiple

data), etc.

Le moyen le plus efficace pour exploiter le parallélisme de données est le parallélisme

subword (SWP : subword parallelism) [48, 59, 60]. Le principe permet d’augmenter les

performances du processeur via le traitement en parallèle d’éléments de données. Le

SWP est parfois appelé small SIMD [30]. Au lieu d’utiliser plusieurs unités de traite-

ment distinctes, plusieurs opérations identiques sont effectuées en même temps sur un

opérateur SWP. Un opérateur SWP effectue les mêmes opérations sur des éléments de

données regroupés dans les registres d’entrée. En général, un opérateur SWP peut ma-

nipuler plusieurs largeurs d’élément de données (sous-mots). Ainsi, les ressources du

processeur peuvent être utilisées plus efficacement lorsque la largeur des données ma-

nipulées est inférieure à la largeur des mots processeur. Ainsi le concept SWP peut être

utilisé pour augmenter les performances des processeurs pour de nombreuses applica-

tions, notamment pour les applications multimédias.

Résumé étendu 3

0.2 Parallelisme de sous-mots (subword paralelism (SWP))

Avec le concept SWP, des calculs parallèles sont effectués sur des données de faible

précision qui sont regroupées dans des registres dont la largeur est celle d’un mot [30] [48].

Ces données de faible précision sont des éléments appelés subwords (sous-mots). Dans

le chemin de données, les unités de calcul effectuent plusieurs calculs sur plusieurs sous-

mots regroupés. L’exécutions en parallèle est initiée par une seule instruction. Le nombre

de sous-mots qui peuvent être regroupés dépend de la largeur de sous-mots sélectionnée.

Une utilisation efficace des ressources du processeur, comme les opérateurs, les registres

et les éléments d’interconnexion, est favorisée par le concept SWP. Les unités de calcul

sont conçues pour mettre en oeuvre le concept SWP. La Figure 1 présente l’exemple

de l’additionneur SWP (additionneur 64 bits ici). Cet additionneur est similaire à un

additionneur classique qui accepte deux opérantes de 64 bits et qui produit un résultat

sur 64 bits. En bloquant la propagation des retenues aux frontières des sous-mots,

plusieurs additions de faible précision peuvent être effectuées.

ABCD

+

63 48

LSBMSB

EFGH

A + EB + FC + GD + H

47 32 31 16 15 0

Figure 1: Principe de l’additionneur SWP

Ainsi, dans la Figure 1, quatre additions 16 bits sont effectuées en bloquant la propaga-

tion de la retenue des bits 15 à 16, 31 à 32 et 47 à 48. Les quatre additions sont effectuées

simultanément sur des sous-mots de largeur 16 bits regroupés dans des registres de 64

bits. Cet additionneur prend en charge uniquement des sous-mots de largeur 16 bits.

Plusieurs largeurs de sous-mots peuvent être cependant prises en compte. L’accélération

du processeur dépend du nombre de sous-mots traités simultanément. Avec des données

16 bits, la vitesse de l’additionneur SWP présenté Figure 1 est quatre fois plus rapide a

priori que celle d’un additionneur classique 64 bits. En pratique, la vitesse réelle d’un

processeur SWP est généralement inférieure en raison d’un surcout dû à la mise en oeu-

vre du principe SWP, comme l’arrangement et les alignements des sous-mots avant les

calculs.

Résumé étendu 4

0.2.1 Utilisation du concept SWP

Le concept SWP utilise le parallélisme au niveau des données. Généralement, lors de

calculs parallèles, un morceau de code est exécuté à plusieurs reprises sur des données

différentes. Prenons l’exemple de code qui suit en langage de haut niveau d’une boucle

qui exécute le même calcul (addition) 100 fois. ’A’, ’B’ et ’C’ sont trois tableaux qui

peuvent stocker 100 éléments chacun. Chaque élément du tableau a une largeur de 16

bits. Les tableaux ’A’ et ’B’ contiennent les éléments d’entrée. Le tableau ’C’ est utilisé

pour stocker le résultat.

short A[100], B[100], C[100];

int i;

for (i = 0; i < 100, i++)

C[i] = A [i] + B[i];

end for

Supposons que la machine sur laquelle ce code doit être exécuté est un processeur 64

bits (64 bits pour le chemin de données et les opérateurs, etc.). Si le processeur n’est

pas de type SWP, il effectuera 100 additions en instanciant un opérateur 64-bit ADD

100 fois. Au cours de chaque itération, les données d’entrée 16 bits des valeurs A [i] et

B [i] sont stockées dans deux registres internes 64 bit X et Y (avec extension de signe si

nécessaire). Puis l’opérateur 64-bit ADD est utilisé pour calculer l’addition des valeurs

contenues dans les registres X et Y. Enfin le résultat sur 64 bits (16 bits utiles) est stocké

dans le registre Z. Le processus au cours de chaque itération est illustré Figure 2.

16 bits48 bits 16 bits48 bits

Register X

64-bit Adder

A[i]B[i]

A[i] + B[i]
Without SWP

64-bit

Register Y

64-bit

16 bits48 bits

64-bit Register ZC[i]

16 bits48 bits

Unutilized register width Unutilized register width

Unutilized operator width

Unutilized register width

Figure 2: Implémentation de la boucle sur un processeur sans SWP

Comme illustré Figure 2, en raison de la faible précision des données d’entrée, les registres

et l’opérateur ne sont pas pleinement utilisés. Au cours de chaque itération, au lieu

Résumé étendu 5

d’utiliser toute la largeur de 64 bits, seulement une largeur de 16 bits est réellement

utilisée pour les deux registres et l’opérateur ADD. Cela se traduirait par une sous-

utilisation du chemin de données du processeur et de l’unité de calcul.

Considérons maintenant que le processeur intègre le concept SWP. L’algorithme corre-

spondant à la boucle considérée précédemment est ré-écrit comme indiqué ci-dessous:

short A[100], B[100], C[100];

int i;

for (i = 0; i < 100, i+4)

Packing of four 16-bit data from array A in Register X;

Packing of four 16-bit data from array B in Register Y;

Addition of X and Y using SWP enabled ADD operator;

Store the four 16-bit results in register C;

end loop;

Au cours de chaque itération, quatre données d’entrée 16 bits du tableau A sont re-

groupées dans le registre X et quatre données d’entrée 16 bits du tableau B sont re-

groupées dans le registre Y. L’opération d’addition est appliquée sur les registres X et

Y, ce qui signifie que cette opération est appliquée simultanément sur quatre opérandes

de 16 bits. Lors de chaque calcul, quatre résultats 16 bits sont stockés dans le registre

Z. Le schéma correspondant à cette architecture est illustré par la Figure 3.

16 bits16 bits16 bits16 bits 16 bits16 bits16 bits16 bits

16 bits 16 bits16 bits16 bits

Register X

64-bit

A[i]A[i + 1]A[i + 2]A[i + 3]B[i]B[i + 1]B[i + 2]B[i + 3]

A[i] + B[i]A[i + 1] + B[i + 1]A[i + 2] + B[i + 2]A[i + 3] + B[i + 3]

C[i]C[i + 1]C[i + 2]C[i + 3]

16 bits16 bits16 bits16 bits

64-bit

Adder

SWP

Register Z

64-bit

Register Y

64-bit

Figure 3: Implémentation de la boucle sur un processeur avec SWP

Comme illustré Figure 3, le taux d’utilisation du processeur est augmenté. Ainsi, au

lieu de 100 instanciations de l’opérateur 64-bit ADD, seulement 25 instanciations de

l’opérateur SWP 64-bit ADD sont nécessaires. Les registres et les éléments d’interconnexion

Résumé étendu 6

sont également pleinement utilisés pour bénéficier au mieux du concept SWP. La rapid-

ité du calcul est alors presque multipliée par quatre. En pratique, le regroupement et

l’arrangement des sous-mots occupent du temps, ce qui entrâıne une accélération légère-

ment inférieure à 4.

0.2.2 Concept SWP et applications multimédia

Les applications multimédia font appel en général à des calculs intensifs sur des données

de faible précision, les pixels étant codés sur 8, 10, 12 ou encore parfois 16 bits. Différents

algorithmes multimédia tels que l’estimation de mouvement, la transformée en cosinus

discrète (DCT), la transformée en ondelettes discrète (DWT), etc. effectuent des calculs

sur des données de largeurs différentes [7, 55]. La taille des pixels est très faible par rap-

port à la largeur des mots processeur. En effet, la plupart des processeurs sont optimisés

pour effectuer des opérations sur des largeurs de mots de données qui valent 32 bits ou 64

bits voire 128 bits. Exécuter des applications multimédia sur de tels processeurs conduit

à une sous-utilisation des ressources. Cette sous-utilisation des ressources du processeur

peut être réduite en profitant du concept SWP lors de la conception du processeur.

Le concept SWP est une solution efficace pour accélérer les traitements multimédia car

les algorithmes mis en oeuvre présentent un fort parallélisme de données avec des données

de faible précision [30] [48]. Les pixels sont regroupés dans des registres de largeur égale

à la largeur des mots et les calculs sont donc effectués en parallèle sur plusieurs pixels

simultanément. Le taux de parallélisme obtenu dépend de la taille des pixels. Plus la

taille des pixels est faible, plus grand sera le taux de parallélisme. Une bonne adéquation

entre la taille des pixels et la largeur des sous-mots est évidement nécessaire pour avoir

le meilleur taux d’utilisation des ressources possible.

0.2.3 Extensions multimédia dans les microprocesseurs à usage général

En raison de l’importance des applications multimédia tant par leur utilisation que par

leur complexité grandissante, les processeurs à usage général (GPP) sont amenés à ef-

fectuer quantité de traitements multimédia. Pour améliorer les performances des GPP

pour les applications multimédia, la plupart des GPP ont inclus un jeu d’instructions

SWP en tant qu’extensions multimédia de leurs architectures [59] [60] [23] [83]. Ces ex-

tensions SWP permettent aux GPP d’utiliser plus efficacement leurs ressources matérielles

lorsque que des données de faible précision sont utilisées. Les jeux d’instructions SWP

de divers GPP bien connus sont:

Résumé étendu 7

• Matrix math extensions (MMX) et Stream SIMD d’Intel.

• AltiVec de Motorola PowerPC.

• Multimedia acceleration extensions MAX-1 et MAX-2 de PA-RISC.

• 3DNow! extension d’AMD architecture.

• Visual instruction set (VIS) d’UltraSPARC.

• MIPS digital media extensions (MDMX) de SGI MIPS.

• MVI de DEC Alpha.

En 2007, AMD a proposé un nouveau jeu d’instructions SWP (170 instructions) appelé

SSE5 pour ISA x86-64. En 2008, Intel annonçait le développement d’AVX (Advanced

Vector Extensions) avec 16 nouveaux registres SIMD 256 bits. Cet ensemble supporte

également les opérations SIMD avec 3 opérandes. En 2009, AMD annonçait qu’elle sup-

primera le SSE5 et utilisera AVX, mais certaines instructions SSE5 perdureront dans le

cadre de deux nouvelles extensions SWP appelées XOP et FMA4. Par ailleurs, plusieurs

processeurs de traitement du signal récent (DSP) et processeurs multimédia supportent

également le principe SWP pour améliorer les performances. Parmis les DSP avec des

fonctions SWP figurent le TigerSHARC de Analog Devices, le TMS320C64x de Texas

Instruments, etc.

0.3 Besoins associés au concept SWP

Les processeurs SWP permettent le traitement parallèle de données de faible préci-

sion et permettent d’accrôıtre les performances globales du processeur. Lors de la con-

ception d’un processeur SWP, plusieurs conditions doivent être remplies pour pouvoir

effectuer les traitements correctement. Ces besoins comprennent évidement la disponi-

bilité d’opérateurs SWP, un jeu d’instructions SWP, des procédures d’alignement et de

regroupement des sous-mots, etc.

0.3.1 Opérateurs SWP

La conception d’un processeur SWP nécessite d’avoir à disposition des opérateurs SWP.

Ces opérateurs effectuent des opérations parallèles sur des sous-mots regroupés [20, 28,

56]. Le nombre et la largeur des sous-mots pris en charge par l’opérateur SWP dépend

des besoins. De ces besoins découle la largeur des différents sous-mots ainsi que la largeur

des mots. Le schéma de principe d’un opérateur SWP est illustré Figure 4.

Résumé étendu 8

SWP
Operator

A B

OutputSWPctrl

Figure 4: Opérateur SWP

Les entrées de l’opérateur SWP sont les opérandes A, B et les signaux de contrôle

SWP (SWPctrl). Les entrées A et B contiennent les sous-mots regroupés. La largeur

des sous-mots est sélectionnée à l’aide des signaux de contrôle SWP. L’opérateur SWP

effectue des opérations sur plusieurs données en parallèle. Par exemple, si la largeur

des sous-mots sélectionnée est 8 bits, alors l’opérateur SWP considère chaque vecteur

d’entrée comme une combinaison de sous-mots de largeur 8 bits. Les opérations sont

donc effectuées en parallèle avec des sous-mots de 8 bits. La sortie de l’opérateur SWP (le

résultat) est également sous la forme de sous-mots regroupés. Selon le type d’opération,

les largeurs des sous-mots en entrée et en sortie peuvent être différentes. Par exemple,

avec l’opération multiplication, la largeur des sous-mots en sortie est le double de celle

des sous-mots en entrée.

La complexité d’un opérateur SWP est généralement plus élevée que celle d’un opéra-

teur classique car un opérateur SWP supporte des opérations en parallèle pour plusieurs

largeurs de sous-mots alors qu’un opérateur classique effectue des opérations sur des don-

nées d’une seule largeur. Aussi, les opérateurs SWP requièrent des signaux de contrôle

pour la sélection de la largeur de sous-mots. La complexité interne d’un opérateur SWP

dépend du nombre et de la largeur des sous-mots. Moins il y a de largeurs différentes

à supporter, plus l’opérateur sera simple. De même, s’il y a une relation mathématique

(multiple) entre les différentes largeurs de sous-mots supportés, l’opérateur sera plus

simple (pour plus de détails, voir le paragraphe 0.4).

0.3.2 Transferts de données entre les unités de traitement et la mé-

moire

Les transferts de données entre le processeur et la mémoire jouent un rôle très important

dans la détermination de la vitesse globale d’un processeur. Comme illustré Figure 2,

avec un processeur classique, un seul élément du tableau de données 16 bits est transféré

en utilisant l’instruction load et store. Pour la même application, avec un processeur

SWP, quatre éléments du tableau de données 16 bits sont transférés (Figure 3). Par

Résumé étendu 9

conséquent, lors de chaque transaction mémoire d’un processeur SWP, plus d’un élément

de données est transféré en utilisant une seule instruction load et store. Cela conduit

à une utilisation plus efficace de l’unité de mémoire. En pratique, les processeurs SWP

doivent être en mesure de supporter à la fois des transferts de données de type mots et

de type sous-mots. Par exemple, l’instruction MOVD permet de transférer 32 bits de

données regroupées de la mémoire aux registres MMX et l’instruction MOVQ permet

de transférer 64 bits de données regroupées.

0.3.3 Disponibilité de données de faible précision

La disponibilité de données de faible précision est partie intégrante du concept SWP.

Si des données de faible précision ne sont pas disponibles, ce concept n’a pas d’intérêt.

Généralement, dans des applications multimédia, une grande quantité de données de

faible précision (pixels) est présente [10, 58]. Par conséquent, le concept SWP peut

s’avérer très utile pour ces applications. A titre d’exemple, la technique SWP fonc-

tionne efficacement pour les algorithmes d’estimation de mouvement vidéo, car ce type

d’algorithmes doit être appliqué sur des millions de pixels [55, 77]. Toutefois, la technique

SWP n’est pas utile pour les applications qui sont non parallèles par nature. L’exécution

de ces applications sur des architectures SWP n’apportera pas d’amélioration des per-

formances globales.

0.4 Largeurs des sous-mots dans les architectures SWP

Le sous-mot est une unité de moindre précision des données contenues dans un mot. En

SWP, plusieurs sous-mots sont regroupés dans un registre de largeur égale à la largeur

des mots, puis le traitement du mot entier est réalisé [98]. Dans un mot, les sous-

mots peuvent être de largeurs différentes mais, dans le but de réduire la complexité, les

sous-mots sont généralement de même largeur pour un calcul donné.

0.4.1 Parallélisme versus largeur des sous-mots

Le degré de parallélisme dans les architectures SWP dépend de la largeur des sous-mots.

Plus la largeur des sous-mots est faible, plus élevé est le parallélisme. En général, le choix

de la largeur des sous-mots résulte d’un compromis entre le parallélisme et la précision

des données. Par exemple, une largeur de sous-mots de 8 bits peut s’avérer trop faible

en terme de précision, alors que, lorsque l’on utilise un processeur 64 bits, une largeur

Résumé étendu 10

de sous-mots de 32 bits ne permet pas un parallélisme suffisant car on a alors seulement

un parallélisme de deux opérations par instruction.

0.4.2 Largeurs des sous-mots supportées

En fonction des besoins, un processeur SWP peut supporter plus d’une largeur de sous-

mots. Plus le nombre de sous-mots pris en charge est grand, plus grande est la complexité

du processeur. Si la largeur des données en entrée correspond exactement à celle d’un

des sous-mots, le rendement du processeur sera alors élevé. La largeur des sous-mots

est sélectionnée à l’aide de signaux de contrôle. Ainsi, si la largeur des mots processeur

est 32 bits alors la largeur des sous-mots peut être, par exemple, 8 bits, 10 bits, 12 bits

et 16 bits. Une instruction permet alors d’effectuer des opérations sur quatre sous-mots

de 8 bits ou sur trois sous-mots de 10 bits ou sur deux sous-mots de 12 bits ou sur deux

sous-mots de 16 bits en parallèle ou sur un mot de 32 bits. En fonction de la valeur des

signaux de contrôle SWP, l’opérateur SWP est configuré pour effectuer des opérations

sur la largeur de sous-mots correspondante.

0.4.3 Adéquation entre largeur des données et largeur des sous-mots

Les performances d’un processeur SWP dépendent fortement de l’adéquation entre la

largeur des données d’entrée et les largeurs de sous-mots supportées. Si la largeur des

données est la même que la largeur des sous-mots, l’efficacité sera élevée. Une dif-

férence entre le largeur des données d’entrée et de la largeur sous-mots conduit à une

sous-utilisation des ressources processeur. Le choix de la largeur des sous-mots dans les

architectures SWP dépend en grande partie des applications pour lesquelles elles sont

conçues. Dans le cas des processeurs à usage général (GPP), les calculs sont effectués

pour une variété d’applications. Il n’est pas possible de prévoir exactement la largeur

des données pour lesquelles le processeur doit fonctionner. Par conséquent, la largeur

des sous-mots des opérateurs SWP dans les GPP n’est pas destinée à une catégorie par-

ticulière d’applications. A l’inverse, dans le cas de processeurs qui traitent d’applications

spécifiques comme le multimédia par exemple, l’adéquation entre la largeur des données

et la largeur des sous-mots peut être augmentée. En multimédia, de nombreux calculs

sont exécutées sur des données de type pixels. Par conséquent, la largeur des sous-mots

dans les processeurs multimédia doit être en adéquation, entre autre, avec les tailles des

pixels. Un processeur multimédia hautes performances doit pouvoir supporter des sous-

mots de toutes les tailles de pixels possibles. Dans le cadre de cette thèse, les largeurs des

sous-mots sont caractérisées en deux catégories: Classical subword sizes et Multimedia

Résumé étendu 11

subword sizes (largeurs de sous-mots conventionnelles et largeurs de sous-mots orientées

multimédia).

0.4.4 Largeur de sous-mots conventionnelles

Dans le cas des processeurs SWP existants [20, 28, 56, 57], un choix classique pour

les largeurs des sous-mots est généralement 8, 16, 32 bits, etc. La raison de ce choix

de largeurs est qu’il conduit à des opérateurs SWP moins complexes car la largeur d’un

sous-mot donné est un multiple de la largeur du sous-mot de taille inférieure (8 × 2 = 16,

16 × 2 = 32 et ainsi de suite). La complexité des opérateurs SWP est également moindre

lorsque la largeur des sous-mots suit une relation arithmétique uniforme avec la largeur

des mots processeur (8 × 8 = 64, 16 × 4 = 64, 32 × 2 = 64 etc.). Les processeurs SWP

qui sont basés sur des largeurs de sous-mots conventionnelles sont adaptés aux applica-

tions pour lesquelles la largeur des données d’entrée est basée sur l’octet. Toutefois, dans

le cas d’applications multimédia, les tailles de pixels/données sont 8, 10, 12 ou parfois 16

bits et ne sont donc pas en adéquation avec les largeurs de sous-mots conventionnelles.

Par conséquent, les opérateurs conventionnels SWP existants n’autorisent pas une pleine

utilisation des ressources du processeur lorsque des applications multimédia sont con-

sidérées. A titre d’exemple, prenons en compte les applications multimédia liées aux

images médicales. La taille des pixels est alors généralement de 12 bits. Supposons que

ces applications sont exécutées sur un processeur SWP qui supporte les largeurs de sous-

mots conventionnelles (8, 16, 32-bit, etc.). La largeur de sous-mots la plus appropriée

disponible est donc 16 bits. Cependant, effectuer des calculs sur des pixels codés sur 12

bits avec des sous-mots de 16 bits conduit à une sous-utilisation des ressources du pro-

cesseur tels que les registres, les unités de calcul, le chemin de données etc. Pour chaque

ressource, les 4 derniers bits de poids fort ne sont pas nécessaires. Cette sous-utilisation

des ressources du processeur est illustrée Figure 5 pour un processeur 64 bits.

Comme illustré Figure 5, en raison de la non disponibilité de sous-mots de largeur 12

bits, près de 25 % (16/64 = 0,25) des ressources du processeur ne sont pas utilisées .

L’efficacité globale du processeur SWP est donc diminuée.

0.4.5 Largeurs de sous-mots orientées multimédia

Les largeurs de sous-mots orientées multimédia sont les largeurs qui sont en adéquation

avec les tailles des pixels dans les applications multimédia modernes. Ces tailles sont

habituellement 8, 10, 12 ou 16 bits. Les processeurs SWP conçus pour les applications

multimédia doivent donc supporter des largeurs de sous-mots en correspondance. Les

Résumé étendu 12

16 bits16 bits16 bits16 bits

Register 1

64-bit adder

SWP classical

Register 2

124124124124

16 bits16 bits16 bits16 bits

Register 3

Pixel data

Unutilized

124124124124

16 bits16 bits16 bits16 bits

124124124124

124124124124

Figure 5: Utilisation de données 12 bits avec des sous-mots de largeur 16 bits

largeurs de sous-mots orientées multimédia (8, 10, 12 et 16 bits) ne sont pas des multi-

ples entre elles et ne permettent pas d’avoir une relation arithmétique uniforme avec la

largeur des mots processeur. Il en résulte une augmentation de la complexité de mise

en oeuvre, mais au profit de l’efficacité de l’exécution de l’application sur le processeur.

Par exemple, l’exemple précédent de calculs effectués sur des pixels codés sur 12 bits

peut être exécuté sur un processeur SWP 64 bits qui supporte les largeurs de sous-mots

orientées multimédia (8, 10, 12 et 16-bit) comme illustré Figure 6.

Register 1

64-bit adder
SWP multimedia

Register 2

Register 3

Pixel data

Unutilized

12 bit12 bit12 bit12 bit12 bit

121212124 12

12 bit12 bit12 bit12 bit12 bit

121212124 12

12 bit12 bit12 bit12 bit12 bit

121212124 12

121212124 12

Figure 6: Utilisation de données 12 bits avec des sous-mots de largeur 12 bits

En raison de l’utilisation de largeurs de sous-mots orientées multimédia, les ressources

sont utilisées de manière plus efficace. Les opérations sont effectuées sur cinq pixels 12

bits en parallèle. Avec l’opérateur SWP conventionnel, les opérations sont effectuées sur

seulement quatre pixels 12 bits en parallèle. Par rapport au processeur SWP conven-

tionnel, la sous-utilisation des ressources du processeur a été réduite de 25% à 6% (4 /

64 = 0,0625).

Résumé étendu 13

0.4.6 Largeur des mots avec les opérateurs SWP

En plus des largeurs des sous-mots, l’efficacité d’utilisation des ressources d’un opérateur

SWP dépend aussi de la largeur des mots. La largeur des mots est choisie de manière à

maximiser l’utilisation des ressources disponibles sachant qu’il y a plusieurs largeurs de

sous-mots. Avec des largeurs de sous-mots conventionnelles (8, 16, 32-bit), il est facile de

sélectionner la largeur des mots pour l’opérateur: il s’agit du plus petit commun multiple

(PPCM) entre toutes les largeurs prises en charge. Les largeurs de mots appropriées sont

donc 32-bit ou 64-bit etc. En utilisant ces largeurs de mots, l’utilisation de l’opérateur

SWP sera maximale si les données d’entrée correspondent bien aux largeurs des sous-

mots. Toutefois, avec des largeurs de sous-mots orientées multimédia, le PPCM entre

toutes les largeurs de sous-mots n’est pas une option réaliste. Par exemple avec les

largeurs de sous-mots 8, 10, 12 et 16 bits, le PPCM vaut 240 bits. Concevoir un circuit

avec un chemin de données de 240 bits est trop couteux. Par conséquent, la largeur des

mots doit être choisie autrement en cherchant à maximiser l’utilisation du processeur.

Dans le cadre de cette thèse, pour la conception d’opérateurs SWP multimédia, nous

avons choisi une longueur de mots de 40 bits. Cette valeur a été choisie en raison du bon

compromis efficacité/complexité qu’elle procure. Ce choix sera justifié plus tard dans ce

mémoire.

0.5 Contributions et organisation du mémoire de thèse

Le contexte de cette thèse repose sur le projet ROMA [29]. ROMA est synonyme de

Reconfigurable Operators for Multimedia Applications. Ce projet a été lancé dans le

cadre du programme ANR (Agence Nationale de la Recherche) Architectures du Futur

(ANR-06-ARFU6-004-01)(2007-2010). Les partenaires du projet ROMA sont: l’IRISA

1, le CEA LIST 2, le LIRMM 3 et Thomson R&D France 4. Dans les applications

multimédia, le traitement de l’image est le défi majeur auquel les systèmes embarqués

doivent faire face. Il s’agit de réaliser des calculs intensifs tout en répondant à des exi-

gences en terme de puissance consommée. Des traitements de l’image au niveau pixel,

comme le filtrage, la détection de bords, la corrélation au niveau pixel ou au niveau bloc,

l’estimation de mouvement, etc. doivent être accélérés. Pour atteindre ces objectifs, le

projet ROMA propose de développer un processeur reconfigurable, présentant une den-

sité silicium élevée et une bonne efficacité énergétique, capable d’adapter sa structure aux

1Institut de Recherche en Informatique et Systèmes Aléatoires: http://www.irisa.fr/
2Laboratoire d’Intégration des Systèmes et des Technologies : http://www-list.cea.fr/
3Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier :

http://www.lirmm.fr/
4Thomson Research & Development, France http://www.thomson.net

http://www.irisa.fr/
http://www-list.cea.fr/
http://www.lirmm.fr/
http://www.thomson.net

Résumé étendu 14

calculs qui peuvent être accélérés et/ou présentant un intérêt au niveau énergétique. Au

contraire des précédentes tentatives de conception de processeurs reconfigurables, qui ont

conduit à l’utilisation de réseaux d’interconnexions complexes entre opérateurs, le projet

ROMA vise à concevoir une architecture pipeline à base d’opérateurs reconfigurables de

granularité moyenne [29]. La Figure 7 présente l’architecture générale du processeur

ROMA. Le processeur est principalement composé de blocs mémoire, d’opérateurs con-

figurables, d’un réseau d’interconnexions entre blocs mémoire et opérateurs, d’un réseau

d’interconnexions entre opérateurs, et d’un processeur de contrôle.

Figure 7: Block diagram of ROMA processor

Un bloc DMA sert d’interface pour accéder aux données provenant/à destination de

l’extérieur du processeur, données alors stockées dans les blocs mémoires. Les opérateurs

sont configurés pour effectuer un calcul donné via un code opération (op-code) délivré par

le processeur de contrôle. Les flux de données sont également gérées par le processeur de

contrôle. Un traitement est typiquement organisé de la manière suivante. Les données

d’entrées stockées dans les blocs mémoire sont fournie à l’opérateur qui effectue les

traitements sur ces données. Une fois les traitements effectués, le résultat peut être

alors stocké dans un bloc mémoire ou envoyé à un autre opérateur.

Dans le cadre du projet ROMA, l’équipe lannionaise du laboratoire CAIRN de l’IRISA

est impliqué dans le développement des opérateurs arithmétiques reconfigurables de ce

processeur multimédia. Comme expliqué précédemment dans ce chapitre, le concept

SWP peut être utilisé dans l’architecture des opérateurs pour améliorer les performances.

Résumé étendu 15

C’est dans ce contexte que s’inscrit directement cette thèse: concevoir des opérateurs

multimédia reconfigurables hautes performances, intégrant le concept SWP. De nom-

breux opérateurs arithmétiques SWP ont été proposés dans la littérature. Cependant,

les opérateurs proposés opèrent sur des largeurs de sous-mots conventionnelles ce qui

aboutit à une sous-utilisation des ressources du processeur lorsque des applications mul-

timédia sont exécutées sur ces opérateurs. Dans cette thèse, la conception de différents

opérateurs SWP pour les applications multimédia est proposée. Une bonne adéquation

entre largeur des sous-mots et largeur des données manipulées permet une meilleure util-

isation des ressources disponibles et conduit ainsi à améliorer l’efficacité de l’exécution de

l’application sur le processeur. Ces opérateurs arithmétiques de base sont ensuite utilisés

dans un opérateur SWP reconfigurable. Ce dernier peut être configuré pour effectuer di-

verses opérations multimédia avec différentes largeurs de données sans surcout temporel

de reconfiguration. La vitesse interne des différentes unités de traitement est égale-

ment améliorée en représentant les nombres en système redondant plutôt qu’en système

binaire. Le système redondant permet entre autre d’augmenter la vitesse des opéra-

tions arithmétiques en évitant une propagation de retenue couteuse lors d’opérations

d’addition. Une architecture matérielle pour l’estimation de mouvement est également

développée sur la base des opérateurs SWP proposés. Les résultats montrent l’intérêt

en terme de performances d’utiliser des opérateurs SWP lorsque lors de l’exécution

d’applications multimédia. Les contributions faites au cours de ce travail de thèse sont

données ci-dessous.

• SWP for multimedia operator design [52]: Le but est d’introduire la concep-

tion d’opérateurs arithmétiques de base intégrant le concept SWP. Différents algo-

rithmes sont utilisés pour la conception des opérateurs de base comme l’addition,

la soustraction, la multiplication et le produit-accumulation. Les algorithmes qui

requièrent un minimum de ressources sont analysés. Les largeurs de sous-mots con-

ventionnelles et orientées multimédia sont considérées. Les surcouts d’intégration

du concept SWP sont analysés.

• SWP multimedia operator design [53]: L’objectif est de mettre en évidence

la sous-utilisation des ressources du processeur SWP lorsqu’il n’y a pas une bonne

adéquation entre largeur de sous-mots et largeur des données manipulées. Dif-

férentes architectures d’unités arithmétiques pour les applications multimédia sont

proposées en vue d’améliorer les performances globale du processeur. L’efficacité

de ces architectures est évaluée sur différentes technologies cibles.

• Reconfigurable SWP Operator for Multimedia Processing [50]: La con-

ception d’un opérateur SWP reconfigurable pour des applications multimédia est

Résumé étendu 16

présentée. Cet opérateur peut être utilisé pour effectuer diverses opérations multi-

média sur différentes largeurs de données. La reconfiguration est réalisée au niveau

des opérations exécutées et au niveau de la largeur des sous-mots. Les surcouts de

configuration sont réduits en vue d’obtenir de bonnes performance.

• Reconfigurable Operator Based Multimedia Embedded Processor [69]:

L’objectif est de présenter un processeur multimédia reconfigurable pour lequel les

couts d’interconnexion sont réduits. En effet, la plupart des processeurs reconfig-

urables souffre généralement d’un temps de reconfiguration non négligeable, d’un

cout d’interconnexion élevé et ne répond pas aux contraintes de faible puissance

consommée. La conception d’un processeur reconfigurable, à base d’opérateurs

reconfigurables de granularité moyenne, conçu pour les applications multimédias

est présentée. L’architecture est flexible et évolutive. Les opérateurs peuvent être

configurés en terme de la fonction qu’ils implémentent et de la largeur des données

manipulées.

• High speed reconfigurable SWP operator for multimedia processing us-

ing redundant data representation [51]: Le but est de concevoir un opéra-

teur SWP reconfigurable dédié aux applications multimédia en utilisant le système

redondant pour représenter les nombres. Le concept SWP permet d’améliorer

l’efficacité des traitements en considérant plusieurs données en parallèle. Par

ailleurs, la vitesse des différentes unités arithmétiques est augmentée en évitant

une propagation de retenue couteuse dans l’opération d’addition en utilisant le

système redondant plutôt que le système binaire pour représenter les nombres.

Ces deux avantages sont combinés dans l’opérateur reconfigurable proposé.

0.5.1 Organisation de la thèse

Le travail présenté dans cette thèse est divisé en sept chapitres. Un aperçu des chapitres

est donné ci-dessous.

Chapitre 1 - Mise en oeuvre du concept SWP dans la conception d’opérateurs

(Subword Parallelism SWP in operator design):

Ce chapitre a été rédigé avec l’intention de présenter au lecteur les termes et concepts

utilisés dans les chapitres suivants de la thèse. Le chapitre commence par décrire le

concept de parallélisme pour l’amélioration des performances. Les différents niveaux

auxquels le parallélisme peut être appliqué sont examinés. Le parallélisme dans le cadre

du traitement multimédia est également expliqué. Un aperçu des différentes architectures

Résumé étendu 17

disponibles pour le traitement des applications multimédia est donné. Le parallélisme

de sous-mots (SWP pour Sub-Word Parallelism) est l’une des techniques utilisée afin

d’exploiter le parallélisme au niveau des données présent dans différentes applications.

Les avantages de l’utilisation du concept SWP pour améliorer les performances des

processeurs lorsque l’on travaille sur les applications multimédia sont donnés. Différents

processeurs à usage général (GPP) qui contiennent des instructions SWP sont également

présentés. Les besoins relatifs à l’intégration du concept SWP dans l’architecture d’un

processeur sont développés. Ces besoins consistent en la disponibilité d’opérateurs et

d’instructions SWP et le fait d’avoir à manipuler des données de faible précision. Pour

clarifier le concept, quelques instructions SWP et leurs fonctionnalités sont expliquées

à l’aide d’exemples. Les performances du processeur SWP dépendent du choix de la

largeur des sous-mots. L’effet d’une utilisation de sous-mots de largeurs conventionnelles

ou de largeurs orientées multimédia sur l’efficacité des ressources du processeur est mis

en évidence. Une bonne adéquation entre largeur des sous-mots et largeur des données

manipulées permet d’améliorer les performances du processeur. La largeur de mots des

opérateurs SWP est sélectionnée sur la base d’un bon compromis efficacité/complexité

de ressources mises en oeuvre. Quelques limitations des processeurs SWP sont également

données.

Chapitre 2 - Conception d’opérateurs SWP de base (SWP basic operators

design):

Le contenu de ce chapitre est basé sur nos publications [52] et [53]. L’objectif de ce

chapitre est la conception d’opérateurs arithmétiques SWP de base qui permettent

d’effectuer des calculs élémentaires sur différentes données en parallèle. Ces opérateurs

sont destinés à être ensuite utilisés dans un processeur de traitement d’applications mul-

timédia afin d’en améliorer les performances. Les opérateurs concernés sont l’addition,

la soustraction, la multiplication et le produit-accumulation. Ces opérateurs SWP sont

conçus pour des largeurs de sous-mots conventionnelles et orientées multimédia et leurs

performances sont comparées. Dans le cas des opérateurs SWP avec des largeurs de sous-

mots conventionnelles, moins de ressources sont nécessaires en raison des relations arith-

métiques uniformes entre largeur du mot et largeurs des sous-mots. Toutefois, l’efficacité

des opérateurs avec des largeurs de sous-mots orientées multimédia sont meilleures. Pour

chaque opération élémentaire, le concept SWP est appliqué sur différents algorithmes

afin d’identifier l’algorithme qui conduit à une augmentation minimale des ressources.

Comparée aux autres opérations de base, l’opération de multiplication requiert clas-

siquement beaucoup de ressources matérielles. C’est également le cas lorsque le concept

SWP est utilisé. Toutefois, un multiplieur SWP particulièrement efficace est proposé.

Son architecture est basée sur le multiplieur SWP proposé dans [56] pour des largeurs

de sous-mots conventionnelles. Les performances du multiplieur dédié aux données de

Résumé étendu 18

type multimédia sont analysées pour différentes largeurs de mots et de sous-mots. La

surface, le chemin critique et la puissance consommées sont comparés.

Chapitre 3 - Le concept SWP dans les opérations multimédia (SWP in mul-

timedia operations):

Dans ce chapitre, les différentes opérations nécessaires aux applications multimédias

sont intégrées en utilisant les opérateurs arithmétiques SWP de base du chapitre 2. Ces

opérations multimédia comprennent la somme de valeurs absolues de différences (SAD)

utilisée pour l’estimation de mouvement, la somme de produits (SOP) utilisée pour la

transformée en cosinus discrète (DCT). D’autres opérations d’usage général comme la

somme d’additions / de soustractions (SWP
∑

(a± b)) sont également intégrées en util-

isant des opérateurs SWP. L’opérateur SWP qui réalise la valeur absolue de différences

|a - b| utilisée dans l’opérateur SAD est intégré pour différents algorithmes. Pour chaque

opérateur décrit dans ce chapitre, les performance sont analysées ainsi que les couts ad-

ditionnels consécutifs à la mise en oeuvre du concept SWP sur des données de largeurs

orientées multimédia.

Chapitre 4 - Opérateur SWP reconfigurable pour applications multimédia

(Reconfigurable SWP operator for multimedia processing):

Le contenu de ce chapitre est basé sur nos publications [50] et [69]. Dans ce chapitre,

un opérateur SWP reconfigurable dédié aux applications multimédia est proposé. Cet

opérateur élimine le besoin d’un temps de reconfiguration et autorise une reconfiguration

au niveau des opérations exécutées et au niveau de la largeur des données manipulées.

Un grande variété d’opérations multimédia peut être effectuée sur des données de dif-

férentes largeurs. L’exécution d’une opération donnée est réalisée via des signaux de con-

trôle qui permettent de sélectionner la largeur de sous-mots appropriée et d’activer les

unités nécessaires à cette opération. Les unités arithmétiques utilisées dans l’opérateur

reconfigurable intègrent le concept SWP. L’opérateur reconfigurable est synthétisé sur

différentes technologies cibles et les résultats sont analysés. Comparé à un opérateur

traditionnel SWP utilisé dans différents circuits DSP, l’opérateur reconfigurable proposé

exécute plusieurs opérations multimédia en moins de cycles. Cet opérateur peut être

utilisé comme unité spécialisée ou comme co-processeur dans un processeur multimédia

afin d’en améliorer les performances.

Chapitre 5 - Opérateur SWP et représentation redondante (SWP using re-

dundant representation):

Résumé étendu 19

Le contenu de ce chapitre est basé sur notre publication [51]. Le concept SWP permet

d’augmenter les performances d’un opérateur en traitant en parallèle plusieurs données.

Toutefois, la vitesse interne des différentes unités de traitement est aussi un facteur im-

portant. La vitesse interne des unités arithmétiques peut être augmentée en évitant une

propagation de retenue couteuse dans les opérations d’addition si le système redondant

plutôt que le système binaire est utilisé pour représenter les nombres. Avec le système

redondant, les nombres sont représentés par des chiffres plutôt que par des bits. Chaque

nombre peut être représenté par différentes combinaisons de chiffres redondants. Cette

redondance dans la représentation du nombre aide à la réalisation d’additions très rapi-

des sans propagation de retenue lourde en temps. Le concept SWP et la représentation

des nombres en système redondant sont combinés dans ce chapitre pour la conception

d’un opérateur reconfigurable pour applications multimédia. Les opérateurs arithmé-

tiques proposés conduisent à une bonne utilisation des ressources via le concept SWP

et à une grande vitesse de traitement grâce à l’utilisation du système redondant. Le

surcout dû à l’utilisation du système redondant est analysé pour différentes technologies

cibles.

Chapitre 6 - Estimation de mouvements à base d’opérateurs SWP (Motion

estimation using SWP operators):

L’estimation de mouvement (ME) est couramment utilisée dans les applications multi-

média pour l’opération dite de compression vidéo. Avec l’algorithme d’estimation de

mouvement, le bloc courant qui doit être transmis est comparé avec les différents blocs

d’une trame de référence et la meilleure correspondance est recherchée. Cette opération

requiert beaucoup de calculs sur des données de faible précision (les données d’entrée

sont des pixels) et le concept SWP présente donc un grand intérêt. L’algorithme ME est

intégré en utilisant des opérateurs SWP permettant de considérer différentes tailles de

pixels. Le processus de comparaison de blocs à l’aide de l’opérateur SWP nécessite moins

de temps qu’une exécution sur des opérateurs classiques. Au cours de ces expériences,

différents algorithmes de recherche sont utilisés, à savoir la recherche exhaustive et la

recherche en diamants. Plusieurs tailles d’images de références (48x48, 32x32, 16x16) et

tailles de blocs (16x16, 8x8) sont considérées.

Chapitre 7 - Conclusions:

Un résumé des points importants développés dans les différents chapitres de cette thèse

est donné. Les travaux réalisés sont rappelés et plusieurs perspectives de travail sont

proposées.

Chapter 1

Subword Parallelism SWP in

operator design

The computational requirements of the processors are constantly increasing due to the

fast growing needs of multimedia applications. These applications are computationally

hungry with low precision pixel data. One of the possible ways to meet the computa-

tional requirements of multimedia applications is to fully utilize the available resources

of the processor. Most of the processors work on words of data where as in multimedia

applications the computations are performed on small size pixel data. Therefore with

the word oriented conventional processors, maximum utilization of resources (operators,

registers and other interconnection elements) is not possible for multimedia data. To

improve the performance, the processor needs to perform parallel computations on low

precision pixel data without wasting the word oriented datapath. This can be possible

using subword parallelism (SWP) [30] [31] [48]. In SWP, parallel operations are per-

formed on low precision packed data rather than wasting the word size resources. For

this purpose SWP enable hardware units are required in processor design. These units

perform parallel operations on low precision data items called subwords. Greater the co-

ordination between pixel data and subword sizes, higher will be the resource utilization

which ultimately increases the performance. In this chapter SWP technique is explained

to increase the performance of processor through data level parallelism.

This chapter is organized as follows: Section 1.1 gives an overview of need for paral-

lelism and describes different levels at which the parallelism can be exploited. Section

1.2 presents different processing methods available for the execution of multimedia ap-

plications. Section 1.3 explains the use of subword parallelism (SWP) to enhance the

performance of processor for multimedia applications. Section 1.4 describes different

requirements for using SWP in processor design. Section 1.6 explains the significance of

20

Chapter 1. Subword Parallelism SWP in operator design 21

using different subword sizes in SWP processor design. Section 1.7 describes the effects

of using different word sizes in the designing of SWP operators. Section 1.9 gives the

contributions of this thesis and it also gives the brief summary of work which will be

presented in next chapters of this thesis. Finally the chapter is concluded in Section

1.10.

1.1 Parallelism for performance enhancement

The performance of processor can be measured by the amount of time and resources re-

quired to perform any particular task. If the processor accomplishes the task in minimum

time with minimum hardware resources then its performance will be high. However in

practice there is usually a trade off between speed and resource requirement. One of the

method to increase the speed of processor is to utilize the parallelism that exists at dif-

ferent levels [36, 39, 40]. Parallelism is one of the oldest and most important techniques

to increase the performance of computing system. To fully exploit the parallelism, the

parallel processing units are required which can perform parallel operations on input

data. These parallel processing units ultimately increases the speed but the area also

increases accordingly. Based upon the requirements, the parallelism can be applied at

different levels. Main levels at which parallelism can be applied are instruction level

parallelism and data level parallelism.

1.1.1 Instruction level parallelism

Instruction level parallelism ILP is a measure of how many instructions in a program can

be executed simultaneously. The goal of compiler and processor is to identify and take

the advantage of ILP as much as possible by executing them in parallel. Due to data

and control dependencies it is not always easy to execute the instructions in parallel.

There are several techniques used to exploit ILP.

Out of order execution : In this technique, the parallelism at instruction

level is achieved by executing the instructions out of order. If the data required

by one instruction is produced by another instruction then these two instructions

can not be executed in parallel. To overcome this dependency, instructions are

executed out of order. By doing so those instructions are executed first which do

not have any dependencies. In this way the maximum instructions can be executed

in parallel.

Chapter 1. Subword Parallelism SWP in operator design 22

Register renaming : Register renaming is one of the techniques to increase the

ILP. If two or more instructions try to use the same registers then these instructions

can not be executed in parallel. To resolve this dependency the registers are

renamed temporarily so that the instructions can be executed in parallel.

Speculative execution : In the speculative execution the instructions are

executed without being sure that execution of these instructions will be required

or not. If the speculation comes out to be true then the processor continue the

execution of successive instructions. However if the speculation comes out to be

wrong then the program counter will jump back to original location.

Branch prediction : Branch prediction is used to resolve the control dependen-

cies and increase the ILP. In this technique, branch instruction is predicted and

the execution of instructions is done on the basis of this prediction. Latter when

the branch is actually resolved, if the prediction comes out to be true then the

execution continues otherwise the program counter will jump back.

Instruction pipelining : Instruction pipelining is also used to increase the ILP.

Several instructions are executed in parallel in different pipeline stages. Execution

of multiple instructions can be partially overlapped.

1.1.2 Data level parallelism

In data level parallelism, same computations are performed on several data elements

simultaneously. Data level parallelism takes advantage of the intrinsic parallelism that

exists in the computation of data and generally can be applied whenever there are

regular, repetitive computations. The main requirement of data level parallelism is that

excessive amount of data should always be available for computation. The processor

allocates some portions of data to different processing units for computations. By doing

so, parallel computations are performed and the tasks are completed in less time. There

are several ways to exploit data level parallelism. Some of them are given below.

Single instruction multiple data (SIMD) : SIMD is one of the most pop-

ular architecture to exploit the data level parallelism. In SIMD processors, the

operation specified in a single instruction is applied on multiple data elements and

executed by multiple operators at the same time. Therefore single instruction is

required to perform parallel operations on data elements.

An overview of SIMD processor architecture is shown in Figure 1.1. The control

unit broadcast the input instruction to all the processing elements (PEs) simul-

taneously. All the PEs performs same computations on different data elements.

Chapter 1. Subword Parallelism SWP in operator design 23

.

Interconnection network

.

Control

Unit

Data0 Data1 Data2 Data3 Datan

Instruction

PE0 PE1 PE2 PE3 PEn

M1M0 M2 M3 Mn

Figure 1.1: Architecture of SIMD processor

The speed-up of SIMD processor is determined by the number of data elements

which can be processed in parallel. Greater the number of PEs higher will be the

parallelism. SIMD processor requires the availability of multiple PEs and their

interconnection network in the underlying hardware architecture.

Multiple instruction multiple data (MIMD) : In MIMD architecture, mul-

tiple processing elements simultaneously execute different instructions on different

data. The control unit allocates different instructions to different PEs. The PEs

performs required operations on input data and gives the results. This type of

architecture is used when the heterogeneous operations are required on different

data elements. The MIMD architectures are more complicated compared to SIMD

processors, as the control unit has to allocate different instructions to different

PEs. These PEs perform the tasks in different times, therefore the additional con-

trol signals are required to maintain the synchronism between PEs. Based on the

availability of hardware resources, both SIMD and MIMD architecture can also

utilize ILP that exist in the application.

The most efficient way to exploit data level parallelism is subword parallelism (SWP)

[48, 59, 60]. It increases the performance of processor through parallel processing of

data items. SWP is some time called as small SIMD [30]. In SWP instead of using

separate PEs, multiple operations are performed using a single SWP enabled operator.

This operator performs same operations on the data elements which are packed in in-

put registers. Based upon input data sizes, these operators can perform operations on

different size data elements. Using SWP, the processor resources are fully utilized even

though the input data size is less than word size of processor. SWP can be utilizes to

increase the performance of processors for many applications especially for multimedia

applications. In multimedia application excessive amount of pixel data is usually avail-

able for computation. Therefore the data level parallelism can be exploited to perform

Chapter 1. Subword Parallelism SWP in operator design 24

parallel computations on these pixel data. In SWP there is a trade off between number

of operations which can be executed in parallel and the execution time of application.

Larger the number of parallel operations by SWP operator, lesser will be the execution

time.

1.2 Multimedia Processing

Multimedia processing involves the processing of digital video, image, graphics etc. In

multimedia applications the computations are performed on low precision pixel data.

These applications are very computation hungry and require lot of processing. To ex-

ecute these applications, dedicated processors are required which can perform the mul-

timedia oriented computations very efficiently on pixel data [73] [80]. In the beginning,

general purpose processors (GPP) were not designed specifically for multimedia appli-

cations. However with the passage of time these applications become so ubiquitous

that most of time GPP has to deal with some sort of multimedia processing. On av-

erage almost 90% of GPP clock cycles are spend to execute multimedia data. Due to

these growing trends, GPP has also included many features which supports multimedia

processing. These extra features increase the performance of GPP when working on

multimedia applications. The well establish architectures available for the processing of

multimedia applications are given below.

• Super scalar processor A super scalar architecture is a uniprocessor that can

execute two or more scalar operations in parallel [84]. Super scalar architecture

is used in most general-purpose processors. This architecture exploits instruction-

level parallelism (ILP). The dependence between the instructions is either handled

statically or dynamically [38]. The static approach relies on the compiler to pack

independent instructions (from an execution schedule) and the hardware to execute

them in parallel. In the dynamic approach, the instruction schedule is done dy-

namically and dependencies are tracked by the hardware. The static super scalar

architecture is more likely to suit a multimedia processor. This approach has been

used in many DSPs. A more general limitation of super scalar processors is the

limits of ILP available in the application.

• Multiprocessor Multiprocessor architecture can be used for the processing of

multimedia applications. At the higher level multimedia processing can be seen

as single-program-multiple-data (SPMD). In SPMD one procedure is generally

applied to a large data set. For example, the motion estimation procedure in

MPEG encoder is applied to all macro blocks in a frame. This forms a parallel

Chapter 1. Subword Parallelism SWP in operator design 25

execution schedule. Thus multiprocessing can be used for the parallel processing

of different algorithms in multimedia applications.

• Vector processor Vector architectures are cost effective solution for applica-

tions with high data level parallelism. They were originally designed for scientific

applications, such as weather forecasting and physics simulations. Multimedia ap-

plication also matches the data parallel nature of these applications. Therefore

the vector processors can also be used for multimedia processing. In multimedia

application excessive amount of data level parallelism is available and the vector

processor exploit this parallelism very efficiently.

Vector processor can be implemented in two possible ways. The first way to imple-

ment vector processor is based on having one or relatively few pipelined functional

units. Vector elements are processed in a pipelined fashion. These processors are

called pipelined vector processors. In the second way the vector processor is imple-

mented by replicating the functional units and achieves parallelism by processing

all elements of the vector at the same time. When processing all the vectors in

parallel, the interconnection network is also required between the functional units.

In order to fulfill the data requirements of all the functional units, multiple paths

from memory to processor are required. These type of processors are called parallel

vector processors. SWP is also a form of vector processing which utilizes data level

parallelism [30, 59]. In the next section SWP technique will be discuss in detail.

1.3 Subword parallelism SWP

In SWP, parallel computations are performed on low precision data elements which are

packed in word size registers [30] [48]. These low precision data elements are called

subwords. As a result of SWP, the same data path and computation units perform

more than one computation on multiple subwords packed in word size registers. Par-

allel executions on packed subwords are initiated by single instruction. The number of

subwords which can be packed in word size register depends upon the selected subword

size. Operations on packed subwords make efficient use of the processor resources like

operators, registers and interconnection elements etc. To perform operations on packed

subwords, computation units are required which contain SWP capability. Figure 1.2

shows an example of adder with SWP capability. This adder is similar to conventional

adder which accepts two 64 bits numbers and produce 64 bit sum. By blocking the

carry chain at subword boundaries we can perform multiple low precision additions on

subword data.

Chapter 1. Subword Parallelism SWP in operator design 26

ABCD

+

63 48

LSBMSB

EFGH

A + EB + FC + GD + H

47 32 31 16 15 0

Figure 1.2: Parallel subword ADD instruction

In Figure 1.2, four 16-bit additions are performed by blocking the propagation of carry

from bit 15 to 16, from bit 31 to 32 and from bit 47 to 48. These four additions are

performed simultaneously on 16-bit subwords packed in 64-bit word registers. This

adder supports only 16-bit subword size. Based on the requirements SWP operator can

be implemented which supports multiple subword sizes. The speed-up attained by SWP

processor depends on the number of subwords which are processed simultaneously. On

16-bit data, the speed of SWP adder shown in Figure 1.2 is four times faster than the

conventional 64-bit adder. The actual speed-up of SWP processor is usually less due to

the SWP overheads like subword arrangement and alignments before the computations.

1.3.1 Utilization of data level parallelism in SWP

SWP utilizes data level parallelism of application. Generally in data parallel computa-

tion one piece of code is executed several times for different data. In some cases the

input data for each iteration is available in advance where as in some other cases input

data for next iterations is calculated by previous iterations. Let us consider the following

high level language loop which executes the same computation (addition) 100 times. A,

B and C are three arrays that can store 100 elements each. Each element of array is of

16-bit data width. Arrays ’A’ and ’B’ contain input data elements. Array ’C’ is used to

store the result.

short A[100], B[100], C[100];

int i;

for (i = 0; i < 100, i++)

C[i] = A [i] + B[i];

end for

Let us assume that the machine on which this code is to be executed is 64-bit processor

(64-bit data path and operators etc.). As the processor do not contain SWP capability

therefore it will perform 100 add operations by instantiating 64-bit ADD operator 100

Chapter 1. Subword Parallelism SWP in operator design 27

times. During each iteration, 16-bit input data values A[i] and B[i] are stored in two

internal 64-bit registers X and Y. Then 64-bit ADD operator is used to compute the

addition of 16-bit values stored in registers X and Y. Finally 16-bit result is stored in

register Z. The process during each iteration is shown in Figure 1.3.

16 bits48 bits 16 bits48 bits

Register X

64-bit Adder

A[i]B[i]

A[i] + B[i]
Without SWP

64-bit

Register Y

64-bit

16 bits48 bits

64-bit Register ZC[i]

16 bits48 bits

Unutilized register width Unutilized register width

Unutilized operator width

Unutilized register width

Figure 1.3: Loop implementation on processor without SWP

As shown in Figure 1.3, due to small precision of input data, the registers and operator

data width are not fully utilized. During each iteration instead of utilizing full width

of 64 bits, only 16-bit data width is utilized for both registers and ADD operator.

This would result in the under utilization of processor datapath and computation units.

Now let us consider that this processor contain SWP capability and can perform the

computation on subwords packed in processor registers. The algorithm for above loop

on SWP capable processor is shown below:

short A[100], B[100], C[100];

int i;

for (i = 0; i < 100, i+4)

Packing of four 16-bit data from array A in Register X;

Packing of four 16-bit data from array B in Register Y;

Addition of X and Y using SWP enabled ADD operator;

Store the four 16-bit results in register C;

end loop;

During each iteration on SWP capable processor, four 16-bit input data values from

array A are packed in register X and four 16-bit input data values from array B are

packed in register Y. ADD operation is the applied on register X and Y which means

that operation is applied simultaneously on four 16-bit data values from each input array.

Chapter 1. Subword Parallelism SWP in operator design 28

In each computation, four 16-bit results are stored in register Z. The block diagram of

this architecture is shown in Figure 1.4.

16 bits16 bits16 bits16 bits 16 bits16 bits16 bits16 bits

16 bits 16 bits16 bits16 bits

Register X

64-bit

A[i]A[i + 1]A[i + 2]A[i + 3]B[i]B[i + 1]B[i + 2]B[i + 3]

A[i] + B[i]A[i + 1] + B[i + 1]A[i + 2] + B[i + 2]A[i + 3] + B[i + 3]

C[i]C[i + 1]C[i + 2]C[i + 3]

16 bits16 bits16 bits16 bits

64-bit

Adder

SWP

Register Z

64-bit

Register Y

64-bit

Figure 1.4: Loop implementation on processor with SWP

As shown in Figure 1.4 the utilization of processor has been increased. Instead of

100 instantiations of 64-bit ADD operator, SWP capable processor requires only 25

instantiations of SWP 64-bit ADD operator. With SWP operator, the registers and

other interconnection elements are also utilized to maximum extend. Therefore by the

use of SWP, the speed of processor is almost increased by four times. The packing and

arrangement of subwords also consumes some time, which results in actual speed-up

that is slightly less than 4. Before any computation the subwords are packed in word

size registers and are arranged in required order. If the compiler is friendly with SWP

architectures, these SWP overheads can be reduced. The speed-up in SWP architecture

occurred because of parallel computations on packed subwords.

1.3.2 SWP in multimedia application

Multimedia applications are normally computationally intensive with low precision pixel

data such as 8, 10, 12 or sometimes 16 bits. Different multimedia algorithms like motion

estimation, discrete cosine transform (DCT), discrete wavelet transform (DWT) etc.

perform extensive computations on pixels of different sizes [7, 55]. The size of pixel

data is very small compared to the word size of processor. Most of the processors are

optimized to perform operations on words of data which are 32-bit or 64-bit or 128-

bit etc. wide. Executing multimedia applications on word oriented processors results

in under utilization of processor’s resources. Based on pixel size only few percentage of

hardware resources are consumed in each clock cycle. This under utilization of processor

Chapter 1. Subword Parallelism SWP in operator design 29

resources can be minimized by introducing SWP capability in the processor design which

needs to perform on multimedia applications.

SWP is an efficient and flexible solution for accelerating multimedia processing because

the algorithms exhibit a great deal of data parallelism on lower precision data [30] [48].

Due to the availability of excessive pixel data, multimedia applications are inherently

suitable for SWP architectures. Using SWP, low precision pixels are packed in word size

registers and parallel computations are performed on multiple pixels simultaneously.

By doing this, processor can achieve more parallelism rather than wasting the word

size datapath and register sizes. This will increase the overall efficiency of processor

when working on multimedia applications. The amount of parallelism achieved depends

upon the size of pixel data. Smaller the pixel size, higher will be the parallelism. The

coordination between pixel size and subword size of SWP processor also increases the

resource utilization of processor.

1.3.3 Multimedia extension in general purpose microprocessors

Due to the huge growth in multimedia applications, excessive amount of multimedia

processing is also required in general purpose processors (GPP) as well. To enhance

the performance of GPP for multimedia applications, most of the GPP have included

SWP instruction set as multimedia extensions to their architectures [59] [60] [23] [83].

These SWP extensions allow GPP to utilize word size hardware resources to maximum

extend even when it is not processing high precision data. When executing multimedia

applications in GPP, the extended SWP instructions sets are used to operate on subwords

(pixels) in parallel way. The SWP instruction set extensions in various well known GPPs

include:

• Matrix math extensions (MMX) and Stream SIMD in Intel.

• AltiVec in Motorola PowerPC .

• Multimedia acceleration extensions MAX-1 and MAX-2 in PA-RISC.

• 3DNow! extension in AMD architecture.

• Visual instruction set (VIS) in UltraSPARC.

• MIPS digital media extensions (MDMX) in SGI MIPS.

• MVI in DEC Alpha.

Chapter 1. Subword Parallelism SWP in operator design 30

In 2007, AMD proposes new SWP instruction set (170 instructions) called SSE5 to x86-

64 ISA. In 2008 Intel announces the development of AVX (Advanced Vector eXtensions)

with 16 new 256-bit SIMD registers. It also supports SIMD operations with 3 operands.

In 2009, AMD announces that it will discard SSE5 and use AVX, but some SSE5 instruc-

tions will survive as part of two new SWP extensions called XOP and FMA4. Several

recent digital signal processors (DSP) and multimedia processors also support SWP for

performance enhancements. DSP with SWP capability include tigerSHARC from Ana-

log Devices [42], TMS320C64x from Texas Instruments [41] etc. Media processors which

are specially designed for multimedia rather than general purpose processing also include

SWP which provides low overhead parallelism.

Instructions bin1 bin2 bout k Tlat Tth

ADD4 8 8 8 4 1 1
ADD2 16 16 16 2 1 1
ADD 32 32 32 1 1 1

MPY4 8 8 16 4 4 1
MPY2 16 16 32 2 4 1
MPY2IR 16 32 32 2 4 1
MPYx 16 16 32 1 1 1
MPYxI 16 32 48 1 4 1
MPYxIR 16 32 32 1 4 1
MPY32 32 32 32 1 4 1

Table 1.1: TMS320C64x+ SWP instruction set

To illustrate the different SWP instructions available in recent DSP, the TMS320C64x+

instruction set has been analyzed. The different instructions available for addition and

multiplication are summarized in Table 1.1. The terms bin1, bin2 represent respectively

the input word-length and bout corresponds to the operation output word-length. The

instruction latency is expressed through Tlat and the instruction throughput Tth is equal

to 1 cycle for each instruction. This means that a new instruction can be started on the

operator (functional unit) at each cycle. For the addition, three instructions manipu-

lating different word-lengths are available. One, two or three additions can be executed

on respectively 32, 16 or 8-bit data. For the multiplication, seven instructions manipu-

lating different word-lengths are available. For some instructions (MPY2IR, MPYxIR), the

multiplication output word-length is lower than the word-length required to store the

multiplication results. Thus, some bits of the multiplication result are eliminated. The

suffix R indicates that the rounding mode is used for the cast of the operator output

data. Two instructions (MPYxI, MPYxIR) manipulate the same input word-length but the

results are stored on 48 or 32 bits. In the first case, two registers are needed to store

Chapter 1. Subword Parallelism SWP in operator design 31

the multiplication output and in the second case only one register is needed but some

output bits have to be eliminated. In this last case, the following operations using this

result take less time.

To reduce the code execution time, some recent fixed point processors exploit the data-

level parallelism by providing SWP capabilities [70, 71]. An operator (multiplier, adder,

shifter) of N word length is split to execute k operations in parallel on sub-word of N/k

word-length. This technique can accelerate the code execution time up to a factor k .

Thus, these processors can manipulate a wide diversity of data types as shown in Table

1.2 for several recent DSPs [71].

Processor Data Types (bits)

TMS320C64x (T.I.) [41] 8, 16, 32, 40, 64

TigerSHARC (A.D.) [42] 8, 16, 32, 64

SP5, UniPhy (3DSP) [1] 8, 16, 24, 32, 48

CEVA-X1620 (CEVA) [43] 8, 16, 32, 40

ZSP500 (LSI Logic) [100] 16, 32, 40, 64

Table 1.2: Data sizes which can be manipulated by different DSPs offering SWP
capabilities for arithmetic operations

In [26], SWP technique has been used to implement a CDMA (code-division multiple

access) synchronization loop in the TigerSharc DSP [42]. The SWP capabilities offer

the opportunity to achieve an average 6.6 MAC per cycle with two MAC units.

1.3.4 SWP building block IPs

Most of the modern synthesis tools contain SWP or SIMD building block IPs in their

libraries. Based on the requirements, these IPs can be used in any hardware architecture

design. For instance in Synopsys Design Compiler [87], different functions are available

to implement SWP arithmetic IPs. The DWF dp simd add functions implement a con-

figurable SIMD adder [88]. It allow to either add arguments ’a’ and ’b’ as full-width

vectors (for example, one 32-bit addition) or to add smaller partitions of ’a’ and ’b’ us-

ing multiple parallel adders (for example, two 16-bit additions or four 8-bit additions).

Similarly DWF dp simd mult functions implement a configurable SIMD multiplier. The

instantiation of DWF dp simd add and DWF dp simd mult building block IPs is given

below.

sum <= DWF dp simd add(a, b, no confs, conf);

product <= DWF dp simd mult(a, b, no confs, conf);

Chapter 1. Subword Parallelism SWP in operator design 32

Where a and b are two input operands. Argument no confs specifies the number of

possible configurations. Argument conf dynamically selects one configuration. Config-

uration with parameter conf has 2conf partitions of size {width/2conf}. Where width is

the size of input operands. If the width of input operand is 32-bit and conf argument

is selected as 2 then DWF dp simd add and DWF dp simd mult function implements

32-bit SWP adder and multiplier respectively with subword size of 8-bit. Operators with

other classical subword sizes can be implemented by selecting different values of input

arguments. However these classical SWP IPs are more generic and have less efficiency

compared to dedicated SWP operators designed for multimedia applications with pixel

oriented subword sizes.

1.4 SWP requirements

SWP processors gives parallel processing of low precision data and increase the overall

performance of processor. When SWP capability is introduced in processor’s design

then there are several requirements which need to be fulfill for its smooth processing.

These requirements includes SWP enabled operators, SWP instruction set, subwords

alignment and regrouping procedures, subword data movement between memory and

processing units etc.

1.4.1 SWP operators

For designing a processor with SWP capability, the basic requirement is SWP enable

computational operators. These operators perform parallel operations on packed sub-

words [20, 28, 56]. The number and size of subwords supported by SWP operator

depends upon the requirement. Based on the requirements, SWP operators perform

computations on different subword sizes as well as on word size data. The block dia-

gram of SWP operator is shown in Figure 1.5.

SWP
Operator

A B

OutputSWPctrl

Figure 1.5: Block diagram of SWP operator

Chapter 1. Subword Parallelism SWP in operator design 33

The inputs to SWP operator are operands A, B and SWP control signals (SWPctrl).

Inputs A and B contains packed subwords. The subword size in SWP operator is selected

with the help of SWP control signals (SWPctrl). Based upon selected subword size, SWP

operator perform parallel operations on subword size data. For instance if the selected

subword size is 8-bit, then SWP operator considers each input vector as the combination

of 8-bit subword sizes. Parallel operations are performed on 8-bit subword sizes and the

results are obtained corresponding to each subword computation. The output of SWP

operator is also in the form of packed subwords. Based on the operation type, the

size of input and output subword sizes can be different. For instance in multiplication

operation, the size of output subword sizes are doubled than the input subword sizes.

The complexity of SWP operator is usually higher than simple operator because SWP

operator supports parallel operations on different subword size data. Where as the simple

operator perform operations on word size data only. SWP operators requires additional

control signal for subword size selection. These control signals directs the SWP operator

about the size of subwords packed in the input data vector. The internal complexity of

SWP operator depends upon the number and size of supported subword sizes. Smaller

the number of supported subword sizes lesser will be the complexity. If the supported

subword sizes have uniform relationship with word size of operator then the complexity

of SWP operator will be less (for details see section 1.6).

1.4.2 Data transfer between processing units and memory

Transfer of data between processor and memory plays very important role in determin-

ing the overall speed of a processor. As shown in Figure 1.3, a processor without SWP

capability requires only one 16-bit array element to be transferred by using a load and

store instruction. However for the same application, a SWP enable processor requires

four 16-bit array elements to be transferred (Figure 1.4). Therefore during each memory

transaction of a SWP capable processor, more than one data element needs to be trans-

ferred using a single load and store instruction. This would result in a more efficient

use of the memory unit as well. For efficient use of SWP, the data and address lines be-

tween memory and processing units should be able to support both word and subwords

data transfer. Multimedia extensions in GPPs contain different instruction to transfer

packed data between memory and processing units. For instance the MOVD instruction

transfer 32-bit of packed data from memory to MMX registers and vice versa. Similarly

MOVQ instruction transfer 64-bit of packed data in MMX multimedia extension.

Chapter 1. Subword Parallelism SWP in operator design 34

1.4.3 Availability of low precision data

Another requirement of SWP processor is the availability of low precision data. If

the low precision data is not available then the parallel processing of subwords cannot

increase the overall performance of processor. Usually in multimedia applications there

is an excessive amount of low precision pixel data available [10, 58]. Therefore the

SWP is very useful for multimedia applications. As an example, SWP technique works

very efficiently for video motion estimation algorithm because this algorithm has to be

applied on millions of pixels which are stored as low precision data [55, 77]. However

SWP technique is not useful for the applications which are either not parallel in nature

or which do not contain excessive amount of data level parallelism. Executing these

applications on SWP architectures will not make any substantial effect on the overall

performance enhancement.

1.5 SWP instruction set

In addition to other requirements, processors that uses SWP capability also need ex-

tended instruction set in order to cope with subwords of data. These extended instruction

set invokes the parallel computations on subwords and also the supporting operations

needed by SWP [23, 59, 60, 83]. These operations include alignment of data before or

after certain parallel operations, arrangement and regrouping of subwords within the

registers for parallel computation, contraction of data to smaller data width, expansion

of data to larger data width, the ability to move multiple subwords between processor

registers and memory etc [31]. In extended instruction sets, new primitives are also

introduced in order to fulfill the needs while operating on subwords of data. For in-

stance MAX-2 is an extension to 64-bit PA-RISC microprocessor. MAX-2 uses 16-bit

subword size data [59, 60]. By using MAX-2 extended instructions, four parallel 16-bit

operations can be performed by PA-RISC microprocessor. MAX-2 extension includes

different instructions to perform parallel operations on subwords.

1.5.1 Parallel ADD and SUB instruction

MAX-2 uses hadd and hsub instructions for parallel addition and subtraction of sub-

words respectively [59]. These instructions perform parallel operations on subwords and

store the results in resultant subwords. Addition and subtraction using hadd and hsub

instructions is shown in Figure 1.6.

Chapter 1. Subword Parallelism SWP in operator design 35

a1 a0a2a3

b1 b0b2b3

a1 + b1

a1 − b1

a2 + b2

a2 − b2

a3 + b3

a3 − b3

hadd R1, R2, R3

R1

R2

hsub R1, R2, R3

a0 + b0

a0 − b0

Figure 1.6: Parallel addition and subtraction in MAX-2

Before using hadd and hsub instructions, one has to make sure that no overflow will

occur and the result of addition and subtraction should not exceed the subword size.

1.5.2 SWP instructions to avoid overflow in MAX-2

Overflow occurs when the result of any operation on subwords can not be represented

by allocated number of bits in resultant subword. This situation happens mostly in

SWP arithmetic operations. To avoid this overflow MAX-2 uses saturation arithmetics

instructions [59]. These instructions includes:

hadd, us (A, B, C);

hsub, us (A, B, C);

hadd, ss (A, B, C);

hadd, ss (A, B, C);

For instance hsub, us (A, B, C) instruction is used to compute the difference of unsigned

subwords stored in two input registers A and B. However if the resultant difference is

negative then it is clipped to zero. Saturation arithmetics instructions are helpful to

compute different operations required in multimedia applications as well.

SAD operation using SWP instructions Sum of absolute value of difference

(SAD) is one of the most frequently used operation in multimedia applications

[94, 101]. It is used in motion estimation algorithm for block matching. SAD

operation is given by Equation 1.1.

SAD =
N−1
∑

i=0

|ai − bi| (1.1)

SAD is applied on pixel data packed in input registers. It can be performed in

MAX-2 using saturation arithmetic SWP instructions. This process is shown in

Figure 1.7.

Chapter 1. Subword Parallelism SWP in operator design 36

95

50 4719135

hsub,us R1, R2, R3

R1

R2

hsub,us R2, R1, R4

R3

R4

hadd R3, R4, R5
R5

30 115 10

60

0

60

0

161

161

65

0

65

0

37

37

Figure 1.7: SAD operation using SWP instructions

The unsigned pixels from current frame and reference frame are stored in two reg-

isters R1 and R2. Each of these registers contains four pixels. The difference of

two pixels can be positive or negative number. hsub,us(R1, R2, R3) instruction

gives only the positive difference between the corresponding subwords. If the dif-

ference between the subwords is negative, it is clipped to zero. By using hsub,us

instruction two times with operand switched, the absolute value of difference be-

tween the subwords can be obtained. These absolute values of difference are then

added using hadd(R3, R4, R5) to obtain final values in one register. The packed

subwords are then added to obtained SAD value.

Greater number finding using SWP instructions In certain applications it

is often required to find greater of two input numbers. In SWP, the operations are

performed on subwords therefore it is necessary to find the larger value for each

subword compared to the corresponding subword in other operand. For this pur-

pose, multiple relational operators are required which are equal to the number of

subwords packed in the input registers. However using saturation arithmetic SWP

instructions, this operation can be performed easily on subwords. The process is

shown with the help of example in Figure 1.8.

95

50 4719135

hsub,us R1, R2, R3

R1

R2

hadd R3, R2, R3

R3

R3

30 115 10

60

95

0

191

65

115

0

47

Figure 1.8: Finding of greater subwords values

In the first step, the subwords of register R2 are subtracted from register R1

using hsub,us(R1, R2, R3) SWP instruction. If the result of any of the subword

subtraction is negative the resultant subword in register R3 will be zero. In the

second step, the subwords of register R3 are added to R2 using hadd(R3, R2, R3)

Chapter 1. Subword Parallelism SWP in operator design 37

SWP instruction. Finally the register R3 will contain those subwords whose values

are greater than corresponding subwords values in other input register.

1.5.3 MIX instruction in MAX-2

Mix instruction is introduced in MAX-2 for the regrouping of subwords which is usually

required in different SWP computations [59]. Mix instruction takes the subwords from

two input registers and interleaves the alternative subwords in the resultant register [85].

Some of the arrangements and regrouping of subwords that are commonly needed in a

SWP capable processor are shown in Figure 1.9.

Mixh.L

Mixh.R

Mixw.L

Mixw.R

LSBMSB

Register A

Register B

A3 A2 A1 A0

B3 B2 B1 B0

A3 B3 A1 B1

A2 B2 A0 B0

A3 A2 B3 B2

A1 A0 B1 B0

Figure 1.9: Different subword arrangements using Mix instruction

’A’ and ’B’ are two input registers which contain four subwords each. In the first

rearrangement, subwords from input registers are combined in resultant registers by

interleaving the alternate subwords starting from LSB using Mixh,L instruction. In

the second rearrangement same type of regrouping is done starting from MSB using

Mixh,R instruction. These two arrangements are useful when we need to perform certain

operations on even or odd subwords of certain registers. However some times certain

operations need to be performed on successive subwords or on word size data. For

this purpose Mixw,L and Mixw,R instructions are used. Mixw,L instruction takes the

alternate pairs of subwords from two input registers starting from LSB and combined

them in resultant register. Similarly the Mixw,R instruction performs the same job

starting from MSB.

Matrix transpose using MIX instruction Mix instruction is helpful in per-

forming matrix transpose [59] which is required in discrete cosine transform (DCT)

and in other video applications as well. Transpose operation is used when certain

operation needs to be applied first on rows and then on columns of (n × n) image.

Instead of applying operation on rows and then on columns, it is easy to apply

Chapter 1. Subword Parallelism SWP in operator design 38

operation on rows followed by the transpose operation and then again apply the

operation on rows [3]. This will simplify the computation process. Transpose op-

eration used in the computation of two dimensional DCT transform (2-D DCT) is

shown in Figure 1.10.

(n × n)
image

2-D DCT
image(row wise)

1-D DCT
(row wise)

1-D DCT Transpose

Figure 1.10: Two dimension DCT transform

Therefore the transform operation reduces the complexity of two dimensional DCT

operation by performing the same operation twice. In SWP processors, transpose

operation can be performed using few Mix instructions. For the transpose of (n

× n) matrix only nlog(n) Mix instructions are required. The transpose of (4 × 4)

matrix using Mix instructions is shown in Figure 1.11.

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

r1

r2

r3

r4

11 21 13 23

12 22 14 24

31 41 33 43

32 42 34 44

t1

t2

r1

r2

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

r1

r2

r3

r4

mixh,l r1, r2, t1

mixh,r r1, r2, t2

mixh,l r3, r4, r1

mixh,r r3, r4, r2

mixw,r t1, r1, r3

mixw,l t1, r1, r1

mixw,r t2, r2, r4

mixw,t t2, r2, r2

Figure 1.11: Matrix transpose using Mix instruction

r1, r2, r3 and r4 are input registers. Each register contain four packed subword-

s/pixels. t1 and t2 are the temporary registers used to store the intermediate

results. Each Mix instruction takes the subwords of two registers mix them and

gives results in output register. In the first step the subwords of registers r1, r2,

r3 and r4 are mixed using four Mix instructions and the results are stored in reg-

isters t1, t2, r1 and r2. In the second step the subwords of registers t1, t2, r1 and

r2 are mixed using four Mix instructions. At the output we get the transpose of

input matrix. For (4 × 4) matrix it requires eight Mix instructions to transpose.

Without using Mix instruction this task needs more than 20 instructions.

Chapter 1. Subword Parallelism SWP in operator design 39

1.5.4 PERMUTE instruction in MAX-2

Permute instruction gives the different permutations of subwords stored in the input

register [59] [60]. Permute instruction is helpful when the arrangement of subwords

needs to be changed within the register for certain computation. Some of the different

subwords permutations which can be obtained using Permute instructions are given in

Figure 1.12.

Permutation 4A2A0A1A3

Permutation 3A1A1A1A3

Permutation 2A3A2A1A0

Permutation 1A0A0A0A0

LSBMSB

Register AA0A1A2A3

Figure 1.12: Different permutations of subwords

In permutation 1, subword A0 is replicated in resultant register. This permutation is

useful when A0 is a single scaler which needs to perform certain operations with multiple

subwords packed in a register. Therefore using the Permute instruction multiple copies

of subword are obtained in single register and then the required operations are performed

in parallel. In permutation 2, the order of subwords is reversed. This permutation is

useful when switching from big-endian to little-endian format or vice versa is required.

Permute instruction also allows to replicate any specific subword for specific number of

times. For instance in permutation 3, the subword A1 is replicated three times. Similarly,

Permutation 4 provides the rearrangement of subwords in particular order.

In addition to these instructions, there are several other instructions which are used to

support operations on packed subwords in different processors with multimedia exten-

sions. For example in MMX [60], unpack instruction is used to expand smaller subwords

to larger data width (8-bit to 16-bit subwords, 16-bit to 32-bit subwords etc.). Similarly

pack instruction is use for contraction of subwords to smaller data width. Other most

commonly used instructions in multimedia extension sets are PshL, PshR (parallel shift

left and right), Pcmp (parallel subword compare), Padd (parallel addition) and Psub

(parallel subtraction) etc.

Chapter 1. Subword Parallelism SWP in operator design 40

1.5.5 Memory instructions

As in SWP, computations are performed on packed subwords therefore it is necessary

to load/store multiple subwords from/to the memory [60]. In multimedia applications,

usually the pixels are stored in the memory in a symmetrical manner. Therefore the

memory can be accessed in a predictable way which will help to reduce the cache misses.

A single load instruction in SWP processor loads multiple packed subwords in the in-

ternal register of the processor. This will reduce the number of instructions required

to load the data in the processor. Without SWP single load instruction bring single

data item in the processor. Similarly the store instruction in SWP processor also stores

multiple subwords in the memory. Therefore in multimedia applications, SWP help to

use the memory more efficiently.

1.5.6 Assembly code with and without SWP instructions

To see the effect of using SWP instructions, we can execute the array addition algorithm

(explained in Section 1.3) by using simple and SWP instructions. Without SWP capa-

bilities, the assembly language instructions for GPP to execute the computations shown

in Figure 1.3 are given below:

01. ldi 99, Ri; Initialize counter to 99

02. Loop:lds,ma 1(Raddrx),Rx; Load one 16-bit number in register Rx

03. lds,ma 1(Raddry),Ry; Load one 16-bit number in register Ry

04. add Rx, Ry, Rz; ADD operator without SWP

05. addibf,<-1, Ri, loop; Decrement counter

As shown above, 64-bit ADD operator is instantiated 100 times to perform required

computations on a processor without SWP capability. Now let us perform the same

computations on SWP processor (Figure 1.4) using SWP instruction set. SWP instruc-

tions required to perform these computations are given below.

01. ldi 24, Ri; Initialize counter to 24

02. Loop:ldds,ma 4(Raddrx),Rx; Load four 16-bit numbers in register Rx

03. ldds,ma 4(Raddry), Ry; Load four 16-bit numbers in register Ry

04. hadd Rx, Ry, Rz; ADD operator with SWP capability

Chapter 1. Subword Parallelism SWP in operator design 41

05. addibf,<-1, Ri, loop; Decrement counter

Using SWP load instructions (ldds,ma), four 16-bit data items are loaded in the internal

registers simultaneously. In the next step add operation is also performed simultaneously

on four packed subwords using SWP ADD operator. Due to the use of SWP, only 25

instantiations of SWP ADD operator are required.

1.6 Subwords sizes in SWP architectures

Subword is a lower precision unit of data contained within a word. In SWP, multiple

subwords are packed into a word size register and then the processing of whole word is

done [98]. The subwords in a single word can be of different sizes but in order to reduce

the complexity usually subwords are of same size.

1.6.1 Parallelism Vs subword size

The degree of parallelism in SWP architectures depends on the size of subword. Smaller

the subword size higher will be the parallelism. In general the selection of subword size

is a trade off between parallelism and data precision. For instance in a processor of word

size 64-bits, subword size of 8-bit do not give sufficient precision and on the contrary

subword size of 32-bits do not give sufficient parallelism as it gives parallelism of two

operations per subword instruction only. Hence the best choice left for subword size

is 16-bit. Therefore any data element which is less than 16-bit is either zero padded

(unsigned) or sign extended (signed) to 16-bit before the computation.

1.6.2 Support for multiple subword sizes

Based upon the requirements, SWP processor can support more than one subword size.

Greater the number of supported subword sizes, higher will be the complexity of SWP

processor. If the input data size accurately matches with one of the supported subword

size then the efficiency of SWP processor will be high. Depending upon the input

data size, the required subword size is selected with the help of SWP control signals.

These control signals directs the SWP operators to perform operations on one particular

subword size. If the word size of processor is 32 bits then some useful subword sizes are

8 bits, 10 bits, 12 bits and 16 bits. Hence an instruction operates on either four 8-

bit subwords or three 10-bit subwords or two 12-bit subwords or two 16-bit subwords in

Chapter 1. Subword Parallelism SWP in operator design 42

parallel or on one 32-bit word obviously. The SWP control signals corresponding to each

subword size will be different. For 8, 10, 12 and 16-bit subword sizes the corresponding

control signals SW8, SW10, SW12 and SW16 can be used. These control signals selects

one of the subword size. When any of these control signal is active, the SWP operator

reconfigure itself to perform operations on corresponding subword size.

1.6.3 Coordination between data and subword size

The performance of SWP processor highly depends upon the coordination between in-

put data size and the supported subword size. If the data size is same as subword size

then the efficiency of SWP processor will be high. Difference in data and subword sizes

results in the under utilization of processor resources. The selection of subword size in

SWP architectures highly depends on the applications for which they are designed. In

general purpose processors (GPPs), computations are performed for variety of applica-

tions. Hence it is not possible to exactly predict the size of data on which the processor

has to operate. Therefore the subword sizes of SWP operators in GPP are not meant

for any particular class of applications. However in the processors which deal with spe-

cific type of applications like multimedia etc., the coordination between data sizes and

subword sizes can be increased. In multimedia applications extensive computations are

performed on pixel data. Therefore the subword sizes in multimedia processors should

be in coordination with pixel sizes. For high performance, multimedia processor should

contain the subword support for all the possible pixel sizes. Based on the scope of this

thesis, the subword sizes can be categorize as Classical subword sizes and Multimedia

subword sizes.

1.6.4 Classical subword sizes

In the existing SWP capable processors [20, 28, 56, 57], the classical choices for subword

sizes are usually 8, 16, 32 bits etc.(power of 2). The reason behind the selection of these

subword sizes being the less complexity of SWP operators, especially when subword

sizes are multiple of the smallest subword size (8 × 2 = 16, 16 × 2 = 32 and so on).

The complexity of classical SWP operators is also less because most of the times the

supported subword sizes have uniform arithmetic relation with word size of processor

(8 × 8 = 64, 16 × 4 = 64, 32 × 2 = 64 etc.). The SWP processors which are based

on classical subword sizes are suitable for general purpose applications in which the

input data sizes are byte oriented. However for any particular class of applications,

these subword sizes results in under utilization of processor resources. For instance

in most modern multimedia applications, pixel/data sizes are 8, 10, 12 or sometimes

Chapter 1. Subword Parallelism SWP in operator design 43

16 bits which are not in coordination with classical subword sizes. Therefore existing

classical SWP operators do not give full utilization of processor resources when working

on multimedia applications. As an example consider certain multimedia applications

related to medical images. In these images the pixel size is usually 12-bit. Let us assume

that these applications are executed on a SWP processor that supports only classical

subword sizes (8, 16, 32-bit etc.). The most appropriate available classical subword

size for these applications is 16-bit. However performing computations on 12-bit pixels

using subword size of 16-bit results in the under utilization processor resources such

as registers, computational units, datapath etc. For each subword computation the

resources corresponding to last 4 bits (16 - 12 = 4) will not be utilized. This under

utilization of processor resources is shown in Figure 1.13 for 64-bit processor.

16 bits16 bits16 bits16 bits

Register 1

64-bit adder

SWP classical

Register 2

124124124124

16 bits16 bits16 bits16 bits

Register 3

Pixel data

Unutilized

124124124124

16 bits16 bits16 bits16 bits

124124124124

124124124124

Figure 1.13: Classical subword sizes in SWP

As shown in Figure 1.13, due to non availability of 12-bit subword size in the SWP

processor’s architecture, almost 25% (16/64 = 0.25) of processor resources have not been

utilized. This would result in the overall decrease in the efficiency of SWP processor.

1.6.5 Multimedia subword sizes

Multimedia oriented subword sizes are those sizes which are in coordination with pixel

sizes in modern multimedia applications. Pixel data in multimedia applications are

usually 8, 10, 12 or 16 bits. In SWP processors which are designed for multimedia ap-

plications, supported subword sizes should also be in coordination with pixel data. The

efficiency of SWP processor can be increased for multimedia applications if the SWP

operators are designed based on multimedia oriented subword sizes rather than classical

subword sizes. The multimedia subword sizes (8, 10, 12 and 16bits) do not have any uni-

form arithmetic relationship with the word size of processor resulting in the increase of

implementation complexities but at the same time these operators increases the speedup

Chapter 1. Subword Parallelism SWP in operator design 44

of processor especially for multimedia applications. For instance, the multimedia com-

putations example shown in Figure 1.13 can be executed on a SWP processor which

supports multimedia oriented subword sizes (8, 10, 12 and 16-bit) rather than classical

subword sizes as shown in Figure 1.14.

Register 1

64-bit adder
SWP multimedia

Register 2

Register 3

Pixel data

Unutilized

12 bit12 bit12 bit12 bit12 bit

121212124 12

12 bit12 bit12 bit12 bit12 bit

121212124 12

12 bit12 bit12 bit12 bit12 bit

121212124 12

121212124 12

Figure 1.14: Multimedia oriented subword sizes in SWP

As shown in Figure 1.14, due to the use of multimedia oriented subword sizes, the

resources corresponding to each packed subword are fully utilized. Parallel operations

are performed on five 12-bit pixels simultaneously. Where as in classical SWP operator

due to the under utilization of resources, parallel operations are performed on four

12-bit pixels only. Compared to the classical SWP processor, the under utilization of

processor’s resources has been reduced from 25% to 6% (4/64 = 0.0625).

1.7 Word size in SWP operators

Along with subword sizes, the resource utilization in SWP operator also depends on

the word size. The word size is chosen in such a way to increase the utilization of

available resources when working on different subword sizes. In classical subword sizes

(8, 16, 32-bit), it is easy to select the word size of operator as the least common multiple

(LCM) of all the supported subword sizes. For classical subword sizes (8, 16, 32-bit), the

appropriate word sizes are 32-bit or 64-bit etc. By using these word sizes, the utilization

of SWP operator will be maximum when operating on different classical subword sizes.

However in case of multimedia oriented subword sizes, the LCM of all the supported

subword sizes is not a feasible option for word size. For instance for multimedia oriented

subword sizes (8, 10, 12, 16-bit), the LCM comes out to be 240-bit. Which is not

practical for multimedia processors. Therefore the word size for multimedia oriented

Chapter 1. Subword Parallelism SWP in operator design 45

SWP operator is selected in such a way to maximize the utilization of processor when

working on different pixel sizes.

In this thesis, for the designing of multimedia SWP operators we have chosen word length

of 40-bit. This 40-bit is chosen because it gives good efficiency/complexity trade off and

ensures better resource utilization with different multimedia oriented pixel sizes. The

utilization ratio of classical and multimedia SWP operator when working on different

pixel sizes is shown in Table 1.3.

Classical SWP Operator Multimedia SWP Operator
(Word size = 32-bit) (Word size = 40-bit)

(Subword size = 8, 16-bit) (Subword size = 8, 10, 12, 16-bit)
Operations Utilization(%) Operations Utilization(%)

a(8) OP b(8) 4 100 5 100
a(10) OP b(10) 2 62 4 100
a(12) OP b(12) 2 75 3 90
a(16) OP b(16) 2 100 2 80
a(32) OP b(32) 1 100 1 80
a(40) OP b(40) 0 X 1 100

Table 1.3: utilization of SWP operator for classical and multimedia subword sizes

As shown in Table 1.3, the word length of classical SWP operator is chosen as 32-

bit and it can support subword sizes of 8, 16 and 32 bits. On the other hand the

word size of multimedia SWP operator is 40-bit and it can support multimedia oriented

subword sizes of 8, 10, 12, 16 bits. The utilization ratio shows the percentage of SWP

operator resources utilized to perform certain arithmetic operation on specified pixel

sizes. Higher the utilization ratio, better will be the performance of SWP operator.

When the pixel size is 8-bit, the utilization of both classical and multimedia operator

is maximum (100%). When the pixel size is 10-bit, the utilization ratio of multimedia

SWP operator is 100% because it utilizes all its data width. However the utilization ratio

of classical SWP operator is only 62% for 10-bit pixel sizes. This decrease in utilization

ratio occurs because the classical SWP operator uses 16-bit subword sizes to operate on

10-bit pixel sizes. Due to this reason, the number of parallel operations performed by

SWP multimedia operator on 10-bit pixels are also more (4 operations) than classical

SWP operator (2 operations). Similarly for other pixel sizes the utilization ratio and

number of parallel operations for both classical and multimedia SWP operator are shown

in Table 1.3. On average when working on multimedia pixel sizes, the utilization ratio

and the number of parallel operations performed by SWP multimedia operator are more

compared to classical SWP operator. The reason being the appropriate selection of

word and subword sizes in SWP multimedia operator. SWP multimedia operator uses

subword sizes which are in coordination with pixel data sizes in multimedia applications.

Moreover the word size of SWP multimedia operator gives good efficiency/complexity

Chapter 1. Subword Parallelism SWP in operator design 46

trade off when working on different pixel sizes. Figure 1.15 shows the utilization of

different word length operators for different multimedia oriented subword sizes.

16 32 40 64
0

20

40

60

80

100

U
til

iz
at

io
n

fo
r

8−
bi

t s
ub

w
or

ds
 (

%
)

Word size (bits)
16 32 40 64

0

20

40

60

80

100

U
til

iz
at

io
n

fo
r

10
−

bi
t s

ub
w

or
ds

 (
%

)

Word size (bits)

16 32 40 64
0

20

40

60

80

100

U
til

iz
at

io
n

fo
r

12
−

bi
t s

ub
w

or
ds

 (
%

)

Word size (bits)
16 32 40 64

0

20

40

60

80

100

A
ve

ra
ge

 u
til

iz
at

io
n

(%
)

Word size (bits)

Figure 1.15: Utilization of different word length processors for different multimedia
oriented subword sizes

As shown in Figure 1.15, for 8-bit subword size, the utilization on all 16, 32, 40 and

64-bit machines are same (100%). For 10-bit subword size, the utilization of 16, 32, 40

and 64-bit processors are 63%, 94%, 100% and 94% respectively. Similarly for 12-bit

subword size, the utilization of 16, 32, 40 and 64-bit processors are 75%, 75%, 90% and

94% respectively. On average for most commonly used multimedia pixel sizes (8, 10 and

12-bit) the percentage utilization of 40-bit word size processor is greater than other word

sizes. For 16, 32, 40 and 64-bit word processor, the average utilization for multimedia

oriented subword sizes are 79%, 90%, 97% and 96% respectively. The other reason for

the selection of 40-bit word size is that it gives maximum utilization (100%) for most

of the pixel sizes which are used frequently in multimedia applications. SWP Processor

with 32-bit and 64-bit word size gives 100% utilization only when pixel size is 8-bit. On

the other hand, the SWP processor with 40-bit word size gives 100% utilization for 8-bit

and 10-bit pixel sizes.

Chapter 1. Subword Parallelism SWP in operator design 47

1.8 Limitations of SWP

SWP increases the performance of processors through parallel processing of subwords.

The SWP processor increases the resource utilization of processor when working on low

precision pixel data of multimedia applications. However there are certain limitations

of SWP architectures. Most of these limitations are highlighted when the applications

which are not inherently parallel are executed on SWP architectures. Some of the

limitations are given below.

• Scalability Scalability of SWP processor is complex task compared to conven-

tional processor which operates on words of data. In SWP processors, arithmetic

operators are designed in such a way to operate on subwords of different sizes. De-

signing of these SWP operators is complex compared to simple operators. There-

fore the simple scalability of SWP processor is not possible. To scale up the SWP

processor or to increase the number of supported subword sizes, different process-

ing units needs to be designed at subword level.

• Optimization of SWP instruction set SWP processors used specialized in-

struction sets to enhance the performance for low precision pixel data. Some-

times these instructions change the order of the subwords or combine the subwords

packed in different registers in required order. These type of instructions are spe-

cific to SWP processing. The compiler of general purpose processor requires more

efforts to optimize the SWP instructions compared to the conventional instruc-

tions. To attain the maximum advantage of SWP, the compiler of GPP should be

friendly with SWP instruction set.

• SWP overheads The overheads of including SWP capability in processor’s ar-

chitecture is the management and alignment of subwords. Before performing the

computation, the subwords are arranged within the registers. Sometimes the sub-

words are either expanded or contracted for alignment purposes. Due to these

overheads, the SWP architectures normally require more resources compared to

simple designs. However the speed enhancement achieved through the parallel

processing of subwords undermines the effects of these overheads.

• Memory Misalignment SWP processor performs computations on subwords of

data. For parallel processing, multiple subwords are accessed from memory. In the

memory the data is usually stored as words of data at each location. To access

any particular subword it is necessary to address the whole word in the memory. If

the subword data is properly aligned at each memory location then in one memory

reference multiple subwords can be accessed. For this purpose the subword data

needs to be aligned in the memory.

Chapter 1. Subword Parallelism SWP in operator design 48

The advantages of using SWP in multimedia applications is much more compared to the

its overheads. Due to this reason most of the processors which have to deal with multi-

media applications incorporate SWP capability. Different synthesis tools like Synopsys,

Altera etc. also contain SWP operators in their libraries. These operators perform par-

allel operations on subwords. However most of these operators are based on classical

subword sizes.

1.9 Contributions and Organization of this Thesis

The context of this thesis is based upon the ROMA project [29]. ROMA stands for Re-

configurable Operators for Multimedia Applications. This project was started under the

Architectures du Futur(ANR-06-ARFU6-004-01) program of ANR (Agence Nationale

de la Recherche). In multimedia applications, image processing is the major challenge

embedded systems have to face. It is computationally intensive with power require-

ments to meet. Image processing at pixel level, like image filtering, edge detection,

pixel correlation or at block level such as motion estimation have to be accelerated. To

achieve these objectives, the ROMA project proposes to develop a reconfigurable pro-

cessor, exhibiting high silicon density and power efficiency, able to adapt its computing

structure to computation patterns that can be speed-up and/or power efficient. On the

contrary of previous attempts to design reconfigurable processors, which have focused on

the definition of complex interconnection network between simple operators, the ROMA

project aims to design a pipeline-based low-power coarse grain reconfigurable operators

to avoid traditional overhead, in reconfigurable devices, related to the interconnection

network [29]. Due to the requirement of expertise in various design fields, a consortium

was formed to work on different parts of ROMA project. This consortium includes four

well known research Labs of France: IRISA 1, CEA LIST 2, LIRMM 3 and Thomson

R&D France 4. An overview of different blocks of the ROMA processor are shown in

the Figure 1.16. The main parts of the processors are a set of reconfigurable opera-

tors, memory banks, interconnect between memory banks and operators, interconnect

between operators, and a control processor. A DMA is used to access external data

through the memory banks.

In this processor, the data flow and instruction flow to different units are managed

using control modules. The data for the computations is provided to the different arith-

metic operators using the memory banks. Depending on the instruction operation code

1Institut de Recherche en Informatique et Systemes Aleatoires: http://www.irisa.fr/
2Laboratoire d’Intégration des Systèmes et des Technologies : http://www-list.cea.fr/
3Laboratoire d’Informatique de Robotique et de Microelectronique de Montpellier :

http://www.lirmm.fr/
4Thomson Research & Development, France http://www.thomson.net

http://www.irisa.fr/
http://www-list.cea.fr/
http://www.lirmm.fr/
http://www.thomson.net

Chapter 1. Subword Parallelism SWP in operator design 49

Figure 1.16: Block diagram of ROMA processor

(op-code), the control units generate activation signals for the required units. After

performing the computations, the results are stored back in the memory banks or are

propagated to another configurable operator. Instead of using complex interconnection

network, the reconfigurability is provided inside the different operator’s architecture.

Under the umbrella of the ROMA project, IRISA/CAIRN lab is involved in the de-

velopment of the reconfigurable arithmetic operators for the multimedia processor. As

explained in this chapter, SWP capability can be introduced in the architecture of the

operators to improve the performance. It is the context of this thesis. Numerous SWP

arithmetic operators have been proposed in literature to perform parallel computations.

However all these operators works on classical subword sizes which results in the under

utilization of processor resources for multimedia applications. In this thesis, the design

of different multimedia SWP operators are proposed using subword sizes which are in

coordination with pixel sizes in multimedia applications. Due to this coordination, the

processor utilizes the available resources more efficiently. Which ultimately increases

the overall performance of the processor. Proposed SWP basic arithmetic operators

are then used to design reconfigurable SWP operator for multimedia applications. This

operator can be reconfigured to perform variety of multimedia operations on different

pixel size data without any reconfiguration time overheads. Along with parallelism, the

internal speed of different processing units is also improved by using SWP technique

on redundant number system rather than binary number system. Redundant number

system increases the speed of different arithmetic operations through carry propagation

Chapter 1. Subword Parallelism SWP in operator design 50

free addition property. Hardware architecture for motion estimation algorithm is devel-

oped using the proposed multimedia SWP operators. Results shows that due to the use

of multimedia oriented SWP operators, the performance of processor is increased when

working on multimedia applications. Contributions which are made during this thesis

work are given below.

• SWP for multimedia operator design [52]: The purpose is to introduce SWP

capabilities in the design of basic arithmetic operators. Different algorithms are

used for the designing of basic operators like ADD, SUB, MULT and MAC. Algo-

rithm which requires minimum resources for SWP capability are analyzed. Both

classical and multimedia oriented subword sizes are considered. The overheads for

incorporating SWP in operator design are analyzed.

• SWP multimedia operator design [53]: The aim is to highlight the non coor-

dination between classical subword sizes and the pixel sizes in modern multimedia

applications. Due to this non coordination, the under utilization of processor re-

sources occurs when working on pixel data. Architectures of different multimedia

oriented basic arithmetic units are proposed to enhance the overall performance

of processor. The efficiency of these operators are evaluated on different target

technologies.

• Reconfigurable SWP Operator for Multimedia Processing [50]: The goal

is to implement reconfigurable multimedia SWP operator. This operator can be

used to perform variety of multimedia operations on different size pixel data. Re-

configurability is provided at both operation level and the data size level. Recon-

figuration overheads are reduced to ensures better performance. Due to parallel

processing of pixel data, the proposed operator can perform different multimedia

operations in less time compared to other operators.

• Reconfigurable Operator Based Multimedia Embedded Processor [69]:

The objective is to limit the interconnection overheads in the design of reconfig-

urable multimedia processor. Previous reconfigurable processors suffer from re-

configuration overheads and do not meet low power constraints. The design of a

reconfigurable processor based on a coarse-grain granularity tailored for multime-

dia applications is presented. The architecture is flexible and scalable. Coarse-

grain operators can be optimized in term of the function they implement, the data

word-length and the parallelism speed-up.

• High speed reconfigurable SWP operator for multimedia processing us-

ing redundant data representation [51]: The purpose is to design SWP recon-

figurable multimedia operator using redundant data representation. Multimedia

Chapter 1. Subword Parallelism SWP in operator design 51

oriented SWP increase the performance through parallel processing of subwords.

Where as the internal speed of different arithmetic units are increased through

carry propagation free addition on redundant data representation rather than bi-

nary data representation. The advantages of both parallelism and high speed

arithmetic operations are combined in proposed reconfigurable operator design.

The power consumed by reconfigurable operator while performing different mul-

timedia operations are also analyzed. The overheads corresponding to the use of

redundant number system are compared with the overheads of operators based on

binary number system.

1.9.1 Organization of thesis

The work presented in this thesis is divided into seven chapters. Here is an outline of

chapters.

Chapter 1 - Subword Parallelism SWP in operator design:

The chapter is written with an intent to initiate the terms and concepts to the reader

which are used in the subsequent parts of this thesis. The chapter starts by describing

the concept of parallelism for the performance enhancement. Different levels at which

the parallelism can be applied are explored in detail. Parallelism in the context of mul-

timedia processing is also explained. An overview of different architectures which are

available for the processing of multimedia applications is given. Subword parallelism

(SWP) is one of the techniques which are used to exploit data level parallelism that ex-

ist in different applications. Advantages of using SWP for enhancing the performance of

processor when working on multimedia applications are given in detail. Different general

purpose processors (GPP) which contain SWP extended instruction set for multimedia

processing are also given. The basic requirements for incorporating SWP capability in

the architecture of processor are elaborated in detail. These requirements include SWP

operators, SWP instruction set, availability of low precision data etc. To clarify the

concept, few SWP instructions and their functionality are explained with the help of ex-

amples. Selection of subword sizes plays vital role in the performance of SWP processor.

The effect of using classical and multimedia oriented subword sizes on the resource uti-

lization of processor is highlighted. Higher coordination between pixel sizes and subword

sizes increases the performance of processor. Word size of SWP operators are selected

on the basis of efficiency/ complexity trade off and ensure better resource utilization.

Few limitations of SWP processors are also given. At the end the contributions and the

Chapter 1. Subword Parallelism SWP in operator design 52

organization of this thesis are given.

Chapter 2 - SWP basic operators design:

The contents of this chapter are based on our publication [52] and [53]. The objective

of this chapter is to design basic arithmetic SWP operators which can perform par-

allel computations on different size pixel data. These operators can then be used in

any processor to enhance the performance for multimedia applications. Different SWP

arithmetic operators which are designed in this chapter includes ADD, SUB, MULT and

MAC. These SWP operators are designed for both classical and multimedia oriented

subword sizes and their performances are compared. Classical subword sizes requires

less resources compared to multimedia oriented subword sizes due to uniform arithmetic

relation between word and subword sizes. However the performance of SWP multimedia

operators is better due to high resource utilization. SWP technique is applied on dif-

ferent algorithms which are used to design arithmetic operators. For each operator, the

algorithm which requires minimum resource increase to upgrade it with SWP capability

is highlighted. Compared to other basic operators, the multiplication operation con-

sumes lot of hardware resources. Introducing SWP capability in multiplication operator

also requires more resources. However in this chapter multimedia oriented SWP multi-

plier is proposed which consumes less resources for SWP capability. Its architecture is

based upon SWP multiplier [56] proposed for classical subword sizes. The performance

of multimedia oriented SWP multiplier is analyzed by implementing it for different word

and subword sizes. The area, critical path and power analysis is performed. The SWP

basic arithmetic operators designed in this chapter are then used in the designing of

multimedia operator.

Chapter 3 - SWP in multimedia operations:

In this chapter, different operations which are required in the multimedia applications

are implemented using SWP basic arithmetic operators explained in Chapter 2. These

multimedia operations include sum of absolute value difference (SAD) for motion esti-

mation, sum of product (SOP) for discrete cosine transform (DCT) etc. Other general

purpose operations like sum of additions/subtractions (SWP
∑

(a ± b)) are also imple-

mented using SWP operators. SWP absolute difference unit |a - b| used in SAD operator

is implemented using different algorithms. These algorithms are then compared on SWP

platform before using in SAD operator. SWP SAD operator performs the motion es-

timation computations in less time compared to conventional word oriented operator.

Similarly the performances of other SWP multimedia operators are also compared. The

overheads for incorporating pixel oriented SWP capability in multimedia operators are

Chapter 1. Subword Parallelism SWP in operator design 53

also analyzed. In all these operators, hardware resources are fully utilized due to better

coordination between pixels and subword sizes which ultimately increases the perfor-

mance of processor.

Chapter 4 - Reconfigurable SWP operator for multimedia processing:

The contents of this chapter are based on our publication [50] and [69]. In this chapter

reconfigurable multimedia operator is proposed. This operator eliminates the need of

reconfiguration time and provides the reconfigurability at both operation level and data

size level. Variety of multimedia operations can be performed on different size pixel

data. The inputs to reconfigurable operator consist of word size vectors which contain

packed subwords. To perform any particular operation, the control unit selects the ap-

propriate subword size and activates the units which need to perform computations.

Arithmetic units which are used in reconfigurable operator contain multimedia oriented

SWP capability. These units perform operations on packed subwords in parallel. The

activated units reconfigure itself for different pixel size data using SWP control signals.

Proposed reconfigurable operator is synthesized on different technologies and the results

are analyzed. Compared to the conventional SWP operator used in different DSP chips,

the proposed reconfigurable operator performs different multimedia operations in less

number of cycles. This operator can be used as dedicated unit or co processor in any

multimedia processor to enhance the performance.

Chapter 5 - SWP using redundant representation:

The contents of this chapter are based on our publication [51]. SWP increases the per-

formance through parallel processing of data. However the internal speed of different

processing units also plays very important role in the overall efficiency of processor. The

internal speed of arithmetic units can be increased by using carry propagation free ad-

dition on redundant number system rather than binary number system. In redundant

system, numbers are represented by digits rather than bits. Each number can be repre-

sented by different combinations of redundant digits. This redundancy in representing

the number help to realize high speed carry propagation free addition. Therefore to

achieve parallelism along with high speed operations, multimedia oriented SWP capa-

bility is introduced in redundant number system for the first time. These arithmetic

operators provide high resource utilization through multimedia SWP and high speed

though the use of redundant number systems. The overheads of high speed SWP oper-

ators are analyzed on different target technologies. Reconfigurable SWP operator using

Chapter 1. Subword Parallelism SWP in operator design 54

the redundant number system is proposed for performing different multimedia opera-

tions.

Chapter 6 - Motion estimation using SWP operators:

Motion estimation (ME) is most commonly used operation for video compression in mul-

timedia applications. In ME algorithm the current block which needs to be transmitted

is compared with different blocks in reference frame and the best match is searched.

The block matching process requires lot of computations on pixel data. Conventional

operators consume excessive time to find the best match in ME algorithm. To analyze

the performance of proposed SWP operators, ME algorithm is implemented using SWP

operators on different pixel size data. SWP operators perform parallel computations on

pixel data and accomplish the block matching process in less time compared to conven-

tional operators. During these experiments, different search algorithms are used which

includes full search and diamond search algorithms. ME algorithm is applied on variety

of Search area image sizes (48×48, 32×32, 16×16) and block sizes (16×16, 8×8). Results

show that SWP operator can perform ME computations more efficiently compared to

conventional operators.

Chapter 7 - Conclusions:

A brief summary of the important points developed in different chapters of this thesis

is given. We first look back and summarize what we have achieved, and we then look

ahead to outline what can be accomplished next.

1.10 Conclusions

This chapter elaborates the need of SWP to increase the performance of processor for

multimedia applications. Different parameters which effect the performance of SWP pro-

cessor are discussed in detail. Although SWP has already been used in many processor

designs, but due to the use of classical subword sizes the maximum utilization of pro-

cessor resources cannot be achieved when working on modern multimedia applications.

To overcome this non coordination, multimedia oriented subword sizes are introduced

in SWP architectures. These subword sizes are in coordination with pixel sizes and

increases the performance of processors. In the next chapter the SWP basic operators

are designed using classical as well as multimedia oriented subword sizes.

Chapter 2

Design of SWP basic operators

For designing SWP processor, the basic requirement is SWP arithmetic operators to

execute parallel operations on subwords. These operators perform the same operation

on all the subwords packed in a word size input registers. The size of subword data

is specified by SWP control signals. Based on the requirements, SWP operator can

support multiple subword sizes. The complexity of SWP operator depends upon the

number and the size of subwords supported by the operator. In this chapter we will

discuss the designing of SWP basic operators in detail. The contents of this chapter are

based on our publications [52] and [53].

The rest of this chapter is organized as follows: Section 2.1 gives an overview of SWP op-

erator design. Section 2.2 describes the designing of SWP ADD operator using classical

and multimedia oriented subword sizes. SWP ADD operators using different algorithms

are then compared with their simple versions. Section 2.3 explains some of the algorithms

which can be used in the designing of multiplication operator. The architecture of SWP

multiply operator using classical subword sizes are described in detail. The overheads

for using SWP capability in multiplier architecture are also discussed. This section also

explain the architecture of SWP multiplier using multimedia oriented subword sizes.

Different steps like generation of partial products, addition of partial products etc. are

discussed in detail. Finally the analysis of SWP multimedia multipliers is presented

using different word and subword sizes. Section 2.4 describe the implementation of

SWP MAC operator using classical and multimedia oriented subword sizes. The area

and speed overheads for using SWP in operator design are also discussed. Finally the

chapter is concluded in Section 2.5.

55

Chapter 2. Design of SWP basic operators 56

2.1 SWP operator design

For performing any computation in SWP processor, SWP enable basic arithmetic oper-

ators are required which include add, subtract and multiply. Other application specific

operator units like multiply and accumulate unit (MAC), sum of absolute difference

(SAD) etc. can be added to specialize the processor to a specific domain like mul-

timedia. By SWP enable operator we mean the operator which can perform parallel

operation on subwords packed into word size registers. SWP enable operators are de-

signed in such a way that they can operate on data of different subword sizes and also

on data of word size depending upon the requirement.

2.1.1 Complexity of SWP operators

SWP enable operators are more flexible compared to simple operators so it is obvious

that most of the time their implementation requires more resources compared to their

simple versions. However in this chapter, efforts are made to design SWP enable opera-

tors with minimum resource increase. The complexity of SWP operators depends upon

two main factors.

• Number of supported subword sizes The complexity of SWP operator in-

creases with the increase in the number of subword sizes supported by the operator.

For each subword size, SWP operator has dedicated control logics which increases

with the increase in the number of subword sizes. For instance, the complexity

of SWP operator which supports four subword sizes will be high compared to the

SWP operator which supports only two subword sizes. Greater the number of

supported subword sizes, higher will be the flexibility of the operator. The SWP

operator with multiple subword sizes is more robust as it gives better performance

for different data sizes.

• Subword size The complexity of SWP operator also depends upon the subword

sizes supported by SWP operator. If the word size of the operator is multiple of

subword sizes then the complexity of SWP operator will be less. For instance in

64-bit processor, some of the subword sizes are 4, 8, 16, 32-bit. The boundaries

of these subword sizes overlaps with each other which reduces the overall control

logics required to manage different subwords. In this work, these subword sizes

are called classical subword sizes as explained in section 1.6.5 of Chapter 1. How-

ever if the word size of the operator is not a multiple of subword sizes then the

complexity of SWP operator will be high. This occurs when we want to design

the SWP operators for any particular class of applications like multimedia etc.

Chapter 2. Design of SWP basic operators 57

In multimedia applications, the efficiency of SWP operator will be high when the

supporting subword sizes are in coordination with pixel sizes. Pixel sizes in multi-

media applications are 8, 10, 12 or sometimes 16-bit. By using these subword sizes

the SWP operators utilizes the available resources more efficiently when working

on multimedia applications. However due to non uniformity in subword sizes, the

complexity of SWP operator also increases. These subword sizes are termed as

multimedia subword sizes. In this chapter SWP operators are designed using both

classical and multimedia oriented subword sizes.

Since the introduction of SWP in processor’s designs, work has been done on the im-

plementation of SWP enable operators which help to increase the performance of SWP

processors. In most of these works the operator’s architectures are based upon low pre-

cision classical data sizes (8, 16, 32-bit etc.) rather than multimedia oriented pixel sizes

(8, 10, 12 or 16-bit). These operators improve the performance of SWP processors to

some extent. In [28] SWP enabled adders is proposed that introduces SWP capability

by breaking the carry chain of carry look ahead adder using carry propagate and carry

generate signals. In [56] an efficient architecture for SWP enabled multiplier is proposed.

This multiplier implements SWP capability with the minimum increase in area resources

and critical path. It uses simple AND operation for generation of partial products and

then arrange them efficiently for each subword size. In [19] variable precision multiplier

is proposed for FPGA platform. It uses minimum FPGA resources for implementing

variable precision multiplier. In [20] a 64-bit fixed point vector multiply and accumulate

(MAC) unit is proposed which supports multiple precision (one 64x64, two 32x32, four

16x16 or eight 8x8) operations. Its design is based on shared segmentation method.

However all these SWP operators are designed using classical subword sizes (8, 16, 32-

bit etc.) which results in the under utilization of processor resources for multimedia

applications.

In the next sections classical as well as multimedia SWP enable basic operators are

designed and their performance are compared with their simple versions. Simple and

SWP versions of each operator is implemented using different algorithms. Both classical

and multimedia oriented word sizes and subword sizes are considered. In multimedia

oriented SWP operators, subword sizes of 8, 10, 12 and 16 bits are chosen based on data

sizes of current multimedia applications.

2.2 Add operator

Adder is one of the basic operators which is required in every processor design. It

is used to add signed as well as unsigned binary numbers. The signed and unsigned

Chapter 2. Design of SWP basic operators 58

addition process is same except in signed number addition, the unequal vectors are sign

extended before the addition. The adders are used in the implementation of several

other arithmetic operators like subtraction, multiplication etc. Therefore the efficient

implementation of addition algorithm improves the performance of other arithmetic

operations as well. Different adder architectures have been proposed to increase the

performance of addition process. These adders include ripple carry adder RCA, carry

look ahead (CLA), group CLA, carry save adder (CSA) etc. The basic units which are

used in all these architectures are full adder (FA) and half adder (HA). FA is used to add

two input bits and a carry bit from previous bit location. Where as the HA is used to

add two bits only. These basic units are used at each bit location in adder architectures.

The use of FAs in RCA is shown in Figure 2.1.

FAFAFAFAFAFA

C0C1C2C3C4C5

Cin

Cout

S0S1S3S4S5 S2

a0b0a1b1a2b2a3b3a4b4a5b5

.

Figure 2.1: Ripple carry adder using FA

SWP increases the flexibility of adder by allowing the same operator to be used for

different data length operations. Simple ADD operator performs the addition of two

input vectors where as the SWP adder performs addition of several subwords packed

in a word size register. There are several ways to introduce the SWP in basic ADD

architectures using classical and multimedia oriented subword sizes.

2.2.1 Classical SWP adder

SWP technique can easily be applied to conventional adder architectures. Figure 2.2

shows a 16-bit adder with SWP capability. This adder is similar to a conventional adder

which accepts two 16 bits numbers and produce 16 bit sum and 1 bit carry.

By blocking/unblocking of the carry chains that propagate the carry, addition of sub-

words of different sizes such as 4, 8, 12 or 16 can be obtained. For example by blocking

the carry to propagate from bit 3 to bit 4, from bit 7 to bit 8 and from bit 11 to 12, the

Chapter 2. Design of SWP basic operators 59

4 bit
ADD

4 bits4 bits

carry out

4 bit
ADD

4 bits4 bits

4 bits

carry

4 bit
ADD

4 bits4 bits

4 bits4 bits

AND carry ADD
4 bit

4 bits4 bits

carry incarry

Operand 1 (16 bits)Operand 2 (16 bits)

ANDAND

4 bits

Output (16 bits)

Ctrl2 Ctrl1 Ctrl0

Figure 2.2: SWP Enabled Adder Architecture

adder is able to perform four 4-bit additions simultaneously. According to the require-

ment any other combinations of adder sizes can be obtained. The blocking or unblocking

of carries at various bit location is performed using subword control signals (SWPctrl).

These external subword control signals are used to generate the internal control bits

(Ctrl0, Ctrl1 . . .) which blocks the carry propagation at required bit locations. The in-

ternal control bit combinations used in the experiments for obtaining adders of different

subword sizes are shown in the table 2.1.

Ctrl2 Ctrl1 Ctrl0
Operations

(bit) (bit) (bit)

0 0 0 Four 4-bit Adders

1 0 1 Two 8-bit Adders

1 1 1 One 16-bit Adder

Table 2.1: Internal control bits for different subword sizes

The four 4-bit adders in figure 2.2 can be of any type such as ripple carry adder RCA,

carry look ahead adder CLA, Group CLA etc. In RCA addition at any bit location waits

for carry to be propagated from the previous bit location. In CLA carry inputs for all

bit locations are calculated prior to the addition. In CLA carry logic gets complicated

with the increase in word length. Therefore in order to reduce the complexity, CLA is

implemented in groups of 4-bits [97]. The SWP adder using group CLA adders is shown

in Figure 2.3.

As shown in Figure 2.3, group/block size of 4-bit is used in the implementation of SWP

16-bit Group CLA adder architecture. The boundaries of 4, 8, 16-bit subword sizes are

synchronize with 4-bit block size. To reduce the carry propagation time, the carry for

Chapter 2. Design of SWP basic operators 60

4-bit
Group carry

Generator

4-bit
Group carry

Generator

4-bit
Group carry

Generator

Group carry

Generator

Group carry

Generator

Ctrl0Ctrl1Ctrl2

G0−7P0−7G0−11P0−11

G0−3P0−3G4−7P4−7P8−11 G8−11

A[3..0]B[3..0]A[7..4]B[7..4]B[11..8] A[11..8]

ANDANDAND

4-bit
ADD

4-bit
ADD

4-bit
ADD

4-bit
ADD

4-bit
ADD

4-bit
ADD

4-bit
ADD

01011 0

Sum[3..0]Sum[7..4]Sum[11..8]Sum[15..12]

A[3..0]

B[3..0]

A[7..4]

B[7..4]

A[11..8]

B[11..8]

A[15..12]

B[15..12]B[15..12]

A[15..12] A[11..8]

B[11..8]

A[7..4]

B[7..4]

cin

0
cin

1
cin

1
cin

1
cin

0
cin

0
cin

0

Figure 2.3: SWP adder architecture using group CLA

next block is generated using 4-bit group carry generator units. These units generate the

input carries for each addition block. The addition of blocks between subword boundaries

are performed in parallel with carry generation logic. The 4-bit ADD blocks generate

the sum for both ’0’ and ’1’ input carries. Based on the outcome of corresponding carry

generator unit and the selected subword size, the final sum of each block is selected using

multiplexers. The select lines for the multiplexers are generated by ANDing the control

signals (Ctrl0, Ctrl1, Ctrl2) corresponding to the selected subword sizes with the output

of 4-bit group carry generator units. Due to the use of CLA carry generation logic, the

addition blocks do not wait for the propagated carry. The speed of SWP 16-bit Group

CLA adder is more than SWP 16-bit RCA due to the reduction in carry rippling effect.

Chapter 2. Design of SWP basic operators 61

The complexity of SWP 16-bit Group CLA is less than SWP 16-bit CLA because of the

implementation of carry generation logic in groups of 4 bits rather than whole word.

In order to analyze the area and speed, simple and SWP enabled adders are synthesized

to ASIC standard cell HCMOS9GP 130nm (CORE9GPLL 4.1 low leakage standard cell

library from ST Microelectronics) and 90nm (fsd0t-a standard performance low voltage

threshold cell library from UMC) technology using Synopsys [87] Design Vision and to

FPGA (Xilinx Virtex II) using Mentor Graphics [34] Precision RTL tool. Table 2.2

shows the comparison of simple and classical SWP enable adder while using RCA, CLA

and group CLA types of adders.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP
Gates

Nand CP
Gates

CP
CLBs

Gates (ns)
X CP

Gates (ns)
X CP CLBs

(ns)
X CP

(norm) (norm) (norm)

16-bit Ripple Carry Adder (RCA)

Simple 118 1.07 1 114 3.20 1 34 12.9 1

SWP 123 1.05 1.02 122 3.05 1.01 30 13.8 0.94

Overhead 4 % -2 % 2 % 7 % -5 % 2 % -12 % 7 % 6 %

16-bit Carry Look Ahead (CLA) Adder

Simple 168 0.65 0.87 175 1.41 0.68 33 12.1 0.91

SWP 218 0.87 1.51 238 1.54 1.01 44 8.85 0.89

Overhead 30 % 34 % 74 % 36 % 9 % 49 % 33 % -27 % -3 %

16-bit Group Carry Look Ahead (CLA) adder

Simple 153 0.92 1.12 149 1.87 0.76 32 8.82 0.64

SWP 165 0.86 1.13 165 2.07 0.94 29 8.75 0.58

Overhead 8 % -7 % 1 % 11 % 11 % 23 % -9 % -1 % -10 %

Table 2.2: Synthesis of classical SWP adders

The SWP adder in these experiments is able to perform either four 4-bit additions or

two 8-bit additions or one 16-bit addition simultaneously (Table 2.1). On the other hand

simple adder is able to perform only one 16-bit addition. This adder can be used for the

addition of signed as well as unsigned numbers. Area (in terms of 2 input NAND gates

or CLBs) and critical path (CP) for each type of implementation are shown. In SWP

designs, the CP is the longest path between input and output irrespective of the selected

subword size. Usually this path is obtained when performing the operation on subwords

of highest available size (in this case 16-bit). Positive overhead indicates the additional

resources (area or CP) required in terms of percentage of simple design resources to

implement SWP capability. Negative overhead indicates that SWP designs require less

area or CP. SWP designs with smallest area cost or smallest CP are shown in bold.

Chapter 2. Design of SWP basic operators 62

On ASIC platform SWP 16-bit RCA gives good results in terms of area. However from

CP point of view, SWP 16-bit Group CLA and SWP 16-bit CLA gives good results on

90nm and 130nm technology respectively. On FPGA platform SWP 16-bit Group CLA

shows good results in term of both area and CP. In order to find the overall efficiency

of each design, the product of total NAND gates (or CLBs) consumed and CP is also

calculated. This product is normalized based on 16-bit simple RCA results. A smaller

value of this product term indicates a high efficiency of the design and vice versa. The

SWP design with the highest efficiency on each target technology is shown in bold.

Efficiency of the SWP enabled 16-bit Group CLA adder shows that it gives good results

on 130nm ASIC as well as on FPGA. In fact group CLA reduces the carry calculation

logic by considering the groups of 4-bits only compared to conventional CLA one. On

90nm ASIC, SWP enabled RCA gives the best efficiency but due to the inherent carry

rippling characteristics of RCA its CP is high compared to other SWP designs.

2.2.2 Multimedia SWP adder

Instead of classical subword sizes multimedia oriented SWP adder supports different

subword sizes that are related to multimedia applications. Word and subword sizes

which are supported by multimedia SWP operator are shown in Figure 2.4.

23 . . . 1631 . . . 2439 . . . 32 15 . . . 8 7 . . . 0

16-bit subwords

12-bit subwords

8-bit subwords

10-bit subwords9 . . . 019 . . . 1029 . . . 2039 . . . 30

11 . . . 023 . . . 1235 . . . 24

15 . . . 031 . . . 16

39 . . . 0 40-bit word

Figure 2.4: Word and subword sizes supported by multimedia SWP adder

Multimedia SWP operator supports 8, 10, 12 and 16-bit subword sizes. Based upon the

available pixel sizes, the subword size is selected with the help of SWP control signals.

Word size of 40-bit is chosen because it gives good efficiency/complexity trade off and

ensures better resource utilization with different multimedia oriented pixel sizes. Simple

40-bit and SWP enable adders are implemented using the same methodology explain

in previous subsection. This SWP adder can be used in any processor that has to deal

with multimedia applications. Simple 40-bit adder can add two 40-bit signed/unsigned

numbers. SWP enable 40-bit adder can be used to perform either five 8-bit additions

or four 10-bit additions or three 12-bit additions or two 16-bit additions or one 40-bit

addition of signed/unsigned numbers.

Chapter 2. Design of SWP basic operators 63

AND
8 bits
ADD

Ctrl0

AND
2 bits
ADD

Ctrl1

AND
2 bits
ADD

Ctrl2

AND ADD

Ctrl3

4 bits
AND

4 bits
ADD

Ctrl4

AND
4 bits
ADD

Ctrl5

AND
6 bits
ADD

Ctrl6

AND
2 bits
ADD

Ctrl7

AND
4 bits
ADD

Ctrl8

AND
4 bits
ADD

8 bits2 bits2 bits4 bits4 bits4 bits6 bits2 bits4 bits4 bits8 bits2 bits2 bits4 bits4 bits4 bits6 bits2 bits4 bits4 bits

8 bits2 bits2 bits4 bits4 bits4 bits6 bits2 bits4 bits4 bits

Operand 1 (40 bits)Operand 2 (40 bits)

Output (40 bits)

carrycarry
out in

Figure 2.5: SWP multimedia adder architecture

Figure 2.5 shows the architecture of SWP multimedia adder architecture. Based on

the requirements, the adder blocks between subwords control logics can be of any type.

Corresponding to each selected subword size, the internal control bits Ctrl0 to Ctrl8

either block or unblock the carry transmission at various bit locations. The bit values

of these control signals corresponding to each selected subword size are shown in Table

2.3.

Ctrl8 Ctrl7 Ctrl6 Ctrl5 Ctrl4 Ctrl3 Ctrl2 Ctrl1 Ctrl0 Operations
(bit) (bit) (bit) (bit) (bit) (bit) (bit) (bit) (bit)

1 0 1 0 1 0 1 1 0 Five 8-bit Adders
1 1 0 1 0 1 1 0 1 Four 10-bit Adders
0 1 1 0 1 1 0 1 1 Three 12-bit Adders
1 0 1 1 1 0 1 1 1 Two 16-bit Adders
0 1 1 1 1 1 1 1 1 One 40-bit Adder

Table 2.3: Internal control bits combinations for SWP multimedia adder

Based on the results of SWP 16-bit adders (section 2.2.1), RCA and Group CLA algo-

rithms are used in the implementation of multimedia oriented SWP adder. SWP 40-bit

RCA and SWP 40-bit group CLA can be optimized for area and speed respectively. The

architecture of SWP 40-bit group CLA is shown in Figure 2.6.

As shown in Figure 2.6, the input carries for addition blocks are generated by group

carry generator units. The multimedia oriented subword sizes (8, 10, 12 and 16-bit) are

not exact multiple of word size (40-bit). Therefore the complexity of SWP multimedia

operator is high compared to SWP classical operator. Instead of using constant 4-bit

carry generators, the bit width of carry generation units are synchronize with the addi-

tion block sizes between the subword boundaries. For 8-bit subword size, the subword

boundaries lies at bit location 7, 15, 23, 31 and 39. Similarly for other subword sizes

Chapter 2. Design of SWP basic operators 64

Sum[0..7]Sum[9..8]Sum[11..10]Sum[15..12]Sum[19..16]Sum[23..20]Sum[29..24]Sum[31..30]Sum[39..36] Sum[35..32]

01 01 0101 01 01010101

2-bit

ADD

2-bit

ADD

2-bit

ADD

2-bit

ADD
4-bit

ADD

4-bit

ADD

4-bit

ADD

4-bit

ADD

4-bit

ADD

4-bit

ADD

6-bit

ADD
6-bit

ADD
2-bit

ADD
2-bit

ADD

4-bit

ADD

4-bit

ADD

4-bit

ADD

4-bit

ADD
8-bit

ADD

cin
0

cin
0

cin
1

cin
0

cin
0

cin
0

cin
0

cin
0

cin
0

cin
0

cin
0

cin
1

cin
1

cin
1

cin
1

cin
1

cin
1

cin
1

cin
1

A[7..0]A[9..8]

B[9..8]

A[9..8]

B[9..8]

A[-do-]

B[39..36]B[39..36]

A[-do-] A[-do-]

B[35..32]B[35..32]

A[-do-] A[-do-]

B[31..30]B[31..30]

A[-do-] A[-do-]

B[29..24]B[29..24]

A[-do-] A[-do-]

B[23..20]B[23..20]

A[-do-] A[-do-]

B[19..16]B[19..16]

A[-do-] A[-do-]

B[15..12]B[15..12]

A[-do-] A[-do-]

B[11..10]B[11..10]

A[-do-]

AND AND ANDANDANDANDANDANDAND

ctrl0ctrl1ctrl2ctrl3ctrl4ctrl5ctrl6ctrl7ctrl8

A[7..4]B[7..4]A[9..8]B[9..8]A[35..32]B[35..32] A[31..30]B[31..30] A[29..24]B[29..24] A[23..20]B[23..20] A[19..16]B[19..16] A[15..12]B[15..12] A[11..10]B[11..10] A[3..0]B[3..0]

4-bit
Group carry

Generator

4-bit
Group carry

Generator

2-bit
Group carry

Generator

2-bit
Group carry

Generator

4-bit
Group carry

Generator

4-bit
Group carry

Generator

4-bit
Group carry

Generator

6-bit
Group carry

Generator

2-bit
Group carry

Generator

4-bit
Group carry

Generator

Group carry

Generator

Group carry

Generator

Group carry

Generator

Group carry

Generator

Group carry

Generator

Group carry

Generator

Group carry

Generator

Group carry

Generator

Group carry

Generator

G0−3G7−4G9−8G11−10G15−12G19−16G23−20G29−24G31−30G35−32Pdo
Pdo Pdo Pdo

Pdo Pdo Pdo
Pdo Pdo

G0−7
G0−9

G0−11

G0−15
G0−19

G0−23
G0−29

G0−31

Figure 2.6: swp multimedia adder using group CLA

the subword boundaries lies at corresponding bit locations. Due to this synchronization,

the size of carry generation blocks ranges between 2 to 6 bits. This variable group size

reduces the complexity of overall SWP 40-bit group CLA adder.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP
Gates

Nand CP
Gates

CP
CLBs

Gates (ns)
X CP

Gates (ns)
X CP CLBs

(ns)
X CP

(norm) (norm) (norm)

40-bit Ripple Carry Adder (RCA)

Simple 291 2.69 1 281 8.10 1 82 25.2 1

SWP 345 4.31 1.90 347 10.1 1.54 78 27.6 1.04

Overhead 19 % 60 % 90 % 23 % 25 % 54 % -5 % 10 % 4 %

40-bit Group Carry Look Ahead (CLA) adder

Simple 372 2.31 1.10 372 4.11 0.67 74 15.7 0.56

SWP 444 1.92 1.09 463 4.52 0.92 81 15.2 0.60

Overhead 19 % -17 % -1 % 24 % 10 % 37 % 9 % -3 % 7 %

Table 2.4: Results of multimedia SWP adders

Table 2.4 shows the area and CP results of SWP multimedia ADD operator. Compared

to the 16-bit adder in subsection 2.2.1, the area and CP overheads are high. The reason

for this increase is that the SWP 40-bit adder can support more subwords sizes (8, 10,

12, 16-bit) of multimedia nature compared to the SWP 16-bit adder which supports less

number of classical subword sizes (4 and 8). Again the Group CLA SWP adder gives

higher efficiency on all target technologies compared to the SWP RCA adder. Gate

count of the SWP RCA is less but high CP reduces its overall efficiency.

Chapter 2. Design of SWP basic operators 65

2.3 Multiply operator

Multiplication is the mathematical operation of scaling one number by another. It is one

of the basic operations in elementary arithmetics. Binary multiplier operator is used to

multiply two input binary numbers. The input binary numbers are called multiplicand

and multiplier and they can be signed or unsigned numbers. The main steps in the

multiplication process are generation of partial products (PPs) and addition of PPs

[37, 54]. There are several methods for the generation of PPs but using array of AND

gates and Booth recoding are most famous methods.

Array of AND gates for PPs generation

The simplest way of generating PPs is by ANDing each bit of the multiplicand

with all the bits of the multiplier. ANDing with ’1’ generate the same multiplier

bit and ANDing with ’0’ bit generate ’0’ PP bit. In this method numbers of partial

products are equal to the number of bits in multiplier. The generation of PPs using

array of AND gates is shown in Figure 2.7.

0

11

1

0

0 0 0

0 11 1

Multiplicand

Multiplier
10

1

1

1

10

1

1

0

Figure 2.7: PPs generation using array of AND gates

As shown in Figure 2.7, the complexity of this method is very less. For the mul-

tiplication of signed 2’s complement numbers, the 2’s complement of last partial

product needs to be taken before the addition of PPs. Moreover the PP vectors

are either sign extended (signed multiplication) or zero padded (unsigned multi-

plication) before the addition. To simplify the procedure of sign extension or zero

padding, the most significant bit (MSB) of each partial product is inverted and

binary 1 is added at each MSB location. These binary 1s can be combined in one

correction vector which is added to partial products.

Chapter 2. Design of SWP basic operators 66

Booth recoding for PPs generation In Booth recoding instead of considering

single bit of multiplier, two bits are considered each time for the generation of PP

which reduces the number of PPs to half. This algorithm uses string properties

for the recoding of multiplier bit vector. From left to right each pair is observed

for string property along with the higher order bit of the previous pair. Based

on the bit combinations, each pair is recoded to either -2, -1, 0, 1 or 2. For least

significant pair, the initial bit is considered as ’0’. The recoding of bit pairs is

shown in Figure 2.8.

1011000110 0

LSBMSB

+2 -2 +1 -1 +1

Input binary bits

Recoded outputs

Figure 2.8: Booth recoding of multiplier bits

Based on recoded output values, PPs are generated either by simple copying of

multiplicand bits (when recoded output is +1) or by left shifting of multiplicand

bits (when recoded output is +2) or by taking 2’s complement of multiplicand

bits (when recoded output is -1) or by left shifting after taking 2’s complement of

multiplicand bits (when recoded output is -2). Due to the recoding process the

number of PPs are reduced to half. The Booth recoding process and corresponding

PP generation is shown in Table 2.5.

X2i+1 X2i X2i−1 Recoded Generated partial product

0 0 0 0 Copy all zeros

0 0 1 +1 Copy multiplicand bits

0 1 0 +1 Copy multiplicand bits

0 1 1 +2 Shift left by one

1 0 0 -2 2ś complement and then shift left

1 0 1 -1 2ś complement and then copy

1 1 0 -1 2ś complement and then copy

1 1 1 0 Copy all 0’s

Table 2.5: PP generation using Booth recoding

After the generation of PPs by any of the above methods, they are added using adder

trees. Efficient addition of PPs increases the overall performance of multiplication op-

eration. This process is shown in Figure 2.9.

Chapter 2. Design of SWP basic operators 67

Multiplicand Multiplier

Partial product generation

Partial product addition tree

output

.

Figure 2.9: Block diagram of vector multiplication

Simple multiplier performs the multiplication of two input numbers where as SWP multi-

plier performs the parallel multiplication of subwords packed in word size input registers.

The complexity of SWP multiplier depends upon the number and sizes of subwords.

2.3.1 Classical SWP multiplier

A SWP enabled multiplier can perform a simultaneous multiplication of subwords packed

in a word. Figure 2.10 shows the example of a classical SWP enabled multiplication in

which the 16-bit inputs are each portioned into four 4-bit subwords. The four pairs of

subwords are multiplied to produce four 8-bit product subwords, which can be concate-

nated to produce a 32-bit result.

A2A3 A0A1A =

B2B3 B0B1B =

P2 = A2.B2P3 = A3.B3 P0 = A0.B0P1 = A1.B1Product =

8-bits8-bits8-bits8-bits

4-bits4-bits4-bits 4-bits

16-bits

32-bits

Figure 2.10: SWP multiplication

In SWP multiplier the computations are performed while taking into account different

size subwords. The PPs in SWP multiplier can be generated either by array of AND gates

or Booth recoding method. The PPs are generated corresponding to selected subword

size. The PP bits generated for one subword size may not be valid for other subword size.

Chapter 2. Design of SWP basic operators 68

Due to the different arrangement of subwords, the simple method of array of AND gates

for the generation of PPs is efficient compared to the other more complicated methods.

After generation of PPs, inversion of MSBs and computations of correction vectors

corresponding to selected subword size are calculated based on signed or unsigned mul-

tiplication. In SWP multiplier as there are several parallel multiplications therefore the

correction vectors are computed separately for each multiplication block. The generated

PPs are added either by using compression trees and final carry propagate adder or

we can allow the synthesis tool to implement any optimized adder. However in SWP

multipliers care must be taken to isolate the product of subword blocks from each other.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP
Gates

Nand CP
Gates

CP
CLBs

Gates (ns)
X CP

Gates (ns)
X CP CLBs

(ns)
X CP

(norm) (norm) (norm)

16-bit Multiplier

Simple 2500 2.46 1 1801 6.21 1 188 16.0 1

SWP 4400 2.63 1.88 3040 6.28 1.71 381 16.5 2.09

Overhead 76 % 7 % 88 % 69 % 1 % 71 % 103 % 3 % 109 %

16-bit Booth Multiplier

Simple 1748 3.81 1.08 1540 8.46 1.16 195 21.7 1.41

SWP 2950 4.03 1.93 2363 8.26 1.75 296 22.7 2.23

Overhead 69 % 6 % 79 % 53 % -2 % 50 % 52 % 5 % 59 %

16-bit Schulte Multiplier

SWP 2485 2.83 1.14 1751 6.88 1.08 220 16.7 1.22

Overhead
-1 % 15 % 14 % -3 % 11 % 8 % 17 % 4 % 22 %

@ Mult

Table 2.6: Results of classical SWP multiplier

Table 2.6 shows the area and CP results of simple and classical SWP enabled 16-bit

multipliers. The product term Gates x CP is normalized based on the simple 16-bit

Multiplier results. In these experiments SWP enable multipliers can perform either

four 4-bit multiplications or two eight bit multiplications or one 16-bit multiplication

simultaneously. Simple multiplier can perform only one 16-bit multiplication. Both 16-

bit Multiplier and 16-bit Schulte Multiplier can be used for the multiplication of signed as

well as unsigned numbers. 16-bit Booth Multiplier can be used for the multiplication of

signed numbers only. In 16-bit Multiplier PPs are generated by simple AND operations

of multiplier and multiplicand bits. In 16-bit Booth Multiplier, PPs are generated by

using booth recoding scheme. In both 16-bit Multiplier and 16-bit Booth Multiplier, SWP

capability is incorporated by implementing the multiplier in blocks of subword size and

finally concatenating the output of each block. Logic is shared between blocks during

Chapter 2. Design of SWP basic operators 69

logic synthesis. The 16-bit Schulte Multiplier is efficient implementations of SWP enable

multiplier for multimedia applications and was proposed in [56]. Schulte multiplier

also generates PPs by simple AND operation but it does not require detection and

suppression of carries across subword boundaries (for more details on Schulte multiplier

see [56]). These three multiplier architectures have been chosen for their good matching

with SWP technique. In all the multipliers, instead of implementing compression trees

the synthesis tool is allowed to do the optimized addition of PPs. Results show that

the area overhead for implementing SWP capability in multipliers is more than 50%

except for SWP Schulte multiplier which gives similar area compared to simple version

of 16-bit Multiplier. In fact Schulte multiplier is dedicated to SWP and takes benefits

from conveniently compatible subword sizes. For word length of 16-bit, it is designed to

perform parallel multiplications on four 4 x 4, two 8 x 8 and one 16 x 16. Due to high

compatibility of subword sizes (4 and 8-bit) with word size (16-bit), it is convenient to

obtained and arrange PPs corresponding to each subword size [56]. On both ASIC and

FPGA platforms, SWP Schulte multiplier gives good results in terms of area. For all the

SWP designs, increase in CP is small compared to their simple versions. On both ASIC

and FPGA platforms, SWP 16-bit Multiplier gives good results in terms of CP but CP

of Schulte multiplier is also not too far from it. Efficiency of Schulte multiplier compared

to other multipliers indicates that it is the most efficient classical SWP multiplier design.

2.3.2 Multimedia SWP multiplier

Multimedia SWP multiplier supports the subword sizes which are in coordination with

pixel sizes in multimedia applications. Simple and a SWP enabled version of a 40-

bit multiplier are implemented which are able to perform signed as well as unsigned

multiplications. SWP multimedia multiplier can perform either five 8-bit multiplications

or four 10-bit multiplications or three 12-bit multiplications or two 16-bit multiplications

or obviously one 40-bit multiplication. In the simple version, PPs are generated by

ANDing of multiplicand bits with each multiplier bit. In the SWP version PPs are

generated by ANDing the multiplier bits with only those bits of multiplicand which

corresponds to the selected subword size. Basically the PPs are generated like the 16-bit

Schulte multiplier explained previously. However in the 16-bit Schulte multiplier the

selected subword sizes (4 and 8) are conveniently compatible with the word size (16-bit).

In the SWP 40-bit multiplier, the increased numbers of multimedia oriented subword

sizes (8, 10, 12 and 16) are not so easily compatible with the operator word size (40-bit).

Due to different arrangements of PPs matrix, usually the PPs bits generated for the

multiplication of one subword size data is not valid for other subword size data. For

instance the arrangement of PPs bits for the subword size of 8-bit are different from the

Chapter 2. Design of SWP basic operators 70

8 x 8

8 x 8

8 x 8

8 x 8

23 . . . 1631 . . . 2439 . . . 32

31 . . . 16 15 . . . 047 . . . 3263 . . . 4879 . . . 64

15 . . . 8 7 . . . 0

8 x 8

Subword size = 8-bit

23 . . . 1631 . . . 2439 . . . 32 15 . . . 8 7 . . . 0
X

10 x 10

10 x 10

10 x 10

10 x 10

10 x 10

19 . . . 039 . . . 2059 . . . 4079 . . . 60

Subword size = 10-bit

19 . . . 10 9 . . . 029 . . . 2039 . . . 30

19 . . . 10 9 . . . 029 . . . 2039 . . . 30

X

12 x 12

12 x 12

12 x 12

23 . . . 047 . . . 2471 . . . 48

Subword size = 12-bit

23 . . . 12 11 . . . 035 . . . 24

23 . . . 12 11 . . . 035 . . . 24
X

16 x 16

16 x 16

31 . . . 063 . . . 32

Subword size = 16-bit

15 . . . 031 . . . 16

15 . . . 031 . . . 16
X

Figure 2.11: Arrangement of partial products for different subword sizes

arrangement of PPs bit for subword size of 10-bits. In SWP multimedia multiplier, PPs

are generated for each bit of multiplier vector. However for each selected subword size

only those PP bits are generated which are required. The portion of PPs corresponding

to each selected subword sizes are shown in Figure 2.11.

As shown in Figure 2.11, the PPs corresponding to different selection of subword size are

different. The unused PP bits are 0. For instance in case of 8-bit subword size, five (8x8)

partial product arrays are used. Similarly for other subword sizes the corresponding size

PP arrays are used.

Chapter 2. Design of SWP basic operators 71

2.3.2.1 Dedicated PP generation units

In SWP multimedia multiplier, the simplest way to generate PPs is to generate PPs

vector separately for each subword size. By using this approach, the dedicated hardware

units are required for the generation of PPs for each subword size. Based upon the

selected subword size, the PPs output of corresponding unit is used. This process is

shown in Figure 2.12.

multiplicand multiplier

Partial products

generation for

8-bit subwords

Partial products

generation for

10-bit subwords

Partial products

generation for

12-bit subwords

Partial products

generation for

16-bit subwords

Partial products

generation for

40-bit word

Multiplexer

Partial products for SWP multiplier

SWPctrl

Figure 2.12: SWP partial product generation using dedicated units

The drawback of using the architecture shown in Figure 2.12 is that large amount of

hardware resources are required. The reason being that dedicated PP generation units

are used for each subword size. The number of these units will be equal to the number of

subword sizes supported by the SWP multiplier. To overcome this draw back of excessive

hardware resource requirements, SWP multiplier is designed in such a way that same

PP generation hardware can be used for different selection of subword size. By using

this approach, the hardware used for the generation of PPs for 8-bit subword size is also

used for the generation of PPs for 10, 12, 16 or 40-bit subword sizes. For this purpose

generalize partial product generation unit is required.

2.3.2.2 Generalize PP generation unit for SWP multimedia multiplier

Generalize PP generation unit generate partial products for different selection of subword

sizes. Based upon the selected subword size the input multiplicand vector is updated

before the generation of partial product. This updated multiplicand vector is then used

instead of normal multiplicand vector for the generation of PPs. In this way the PP

Chapter 2. Design of SWP basic operators 72

generation hardware remains same for different selection of subword sizes. For instance

in case of 8-bit subword size, the first eight PPs (PP0 . . . PP7) requires multiplicand

vector bits ranging from 0 to 7. Therefore for the generation of these PPs, the update

in multiplicand vector is done in such a ways that multiplicand bits (40 . . . 8) are made

0. Similarly for the next eight PPs (PP8 . . . PP15) only multiplicand bits (8 to 15) are

required. Therefore the updated vector contains only these bits and rest of the bits are

made 0. In the same way the multiplicand vector is updated for other PPs also. After

this updating, the PPs are generated by simple AND operation irrespective of selected

subword size. Using this method same PP generation hardware is used for different

selection of subword sizes. This result in the reduction of hardware resources of SWP

multimedia multiplier.

In our implementation of SWP multimedia multiplier, the generated PPs bits remain

valid for each selected subword size multiplication. For this purpose the PPs matrix

is divided into two parts. First part contains those bits of PPs which remains same

irrespective of different subword size selection and are generated by direct ANDing of

multiplier bits with multiplicand bits. Second part contains those PPs bits whose values

changes for different selection of subword sizes and are generated indirectly by ANDing

multiplier bits with modified multiplicand vector. Modified multiplicand vector changes

its bit values corresponding to each selected subword size and hence the PPs bits updates

automatically for each selected subword size.

Let us consider the generation of PP0 which is the partial product corresponding to bit

location 0 of multiplier vector. Bits of PP0 which remains valid for different selection of

subword sizes are shown by filled boxes in Figure 2.13. Unfilled boxes represent ’0’s.

0123456789101112131415161718192021222324252627282930313233343536373839Bit Location

Subword size

8-bit

Subword size

10-bit

Subword size

12-bit

Subword size

16-bit

40-bit

multiplication

Figure 2.13: Valid bits of PP0 for different subword sizes

As shown in the Figure 2.13, PP0(7 . . . 0) bits remains same irrespective of subword

size selection. Therefore these PP bits are generated directly by ANDing multiplicand

(7 . . . 0) bits with the 0th bit of multiplier vector.

PP0 (7 . . . 0) = multiplicand(7 . . . 0) . multiplier(0);

Chapter 2. Design of SWP basic operators 73

However the rest of the bits PP0(39 . . . 8) changes their values corresponding to dif-

ferent subword size selection. These variable bits of PP0 are generated indirectly by

four modified multiplicand vectors (mod vec 8, mod vec 8 10, mod vec 8 10 12 and

mod vec 8 10 12 16). Modified vectors bit values changes corresponding to each se-

lected subword size. SW8, SW10, SW12 and SW16 are each one bit SWP control signals.

The control signal corresponding to selected subword size will be ’1’ and the rest are ’0’.

For 8-bit selected subword size, SW8 control signal will be ’1’ and SW10, SW12, SW16

are ’0’. To illustrate the the generation of PPs, let us consider the generation of bits for

partial product PP0 using the modified multiplicand vectors. For this purpose first of

all the bit values of four modified multiplicand vectors are obtained using multiplicand

vector and SWP control signals as given below.

mod vec 8 = multiplicand . (SW8);

mod vec 8 10 = multiplicand . (SW8 + SW10);

mod vec 8 10 12 = multiplicand . (SW8 + SW10 + SW12);

mod vec 8 10 12 16 = multiplicand . (SW8 + SW10 + SW12 + SW16);

For different selection of subword sizes, the values of these modified multiplicand vectors

are different. The bit values of modified multiplicand vectors for different selection of

subword sizes are given below.

When selected subword size = 8-bit :

SW8 = 1; SW10 = 0; SW12 = 0; SW16 = 0;

mod vec 8 (9 . . . 8) = 0;

mod vec 8 10(11 . . . 10) = 0;

mod vec 8 10 12 (15 . . . 12) = 0;

mod vec 8 10 12 16 (39 . . . 16) = 0;

When selected subword size = 10-bit :

SW8 = 0; SW10 = 1; SW12 = 0; SW16 = 0;

mod vec 8 (9 . . . 8) = multiplicand (9 . . . 8);

mod vec 8 10(11 . . . 10)= 0;

mod vec 8 10 12 (15 . . . 12) = 0;

mod vec 8 10 12 16 (39 . . . 16)= 0;

When selected subword size = 12-bit :

Chapter 2. Design of SWP basic operators 74

SW8 = 0; SW10 = 0; SW12 = 1; SW16 = 0;

mod vec 8 (9 . . . 8) = multiplicand (9 . . . 8);

mod vec 8 10(11 . . . 10) = multiplicand (11 . . . 10);

mod vec 8 10 12 (15 . . . 12) = 0;

mod vec 8 10 12 16 (39 . . . 16) = 0;

When selected subword size = 16-bit :

SW8 = 0; SW10 = 0; SW12 = 0; SW16 = 1;

mod vec 8 (9 . . . 8) = multiplicand (9 . . . 8);

mod vec 8 10(11 . . . 10) = multiplicand (11 . . . 10);

mod vec 8 10 12 (15 . . . 12) = multiplicand (15 . . . 12);

mod vec 8 10 12 16 (39 . . . 16) = 0;

For word size multiplication :

SW8 = 0; SW10 = 0; SW12 = 0; SW16 = 0;

mod vec 8 (9 . . . 8) = multiplicand (9 . . . 8);

mod vec 8 10(11 . . . 10) = multiplicand (11 . . . 10);

mod vec 8-10 12 (15 . . . 12) = multiplicand (15 . . . 12);

mod vec 8 10 12 16 (39 . . . 16) = multiplicand (39 . . . 16);

By using modified multiplicand vectors, the generation of partial products is automat-

ically adopted for selected subword size. Therefore at this point, PPs are generated

irrespective of selected subword sizes. Using modified multiplicand vectors, bits of PP0

for different subword sizes are generated using following equations.

PP0 (7 . . . 0) = multiplicand(7 . . . 0) . multiplier(0);

PP0 (9 . . . 8) = mod vec 8 (9 . . . 8) . multiplier(0);

PP0 (11 . . . 10) = mod vec 8 10 (11 . . . 10) . multiplier(0);

PP0 (15 . . . 12) = mod vec 8 10 12 (15 . . . 12) . multiplier(0);

PP0 (39 . . . 16) = mod vec 8 10 12 16(39 . . . 16) . multiplier(0);

Similarly for the generation of other PPs, modified multiplicand vectors are used ac-

cordingly. Therefore PPs bits are generated for different subword sizes using the same

PPs generation hardware. Bit inversions and addition of correction vectors are done

based upon the selected multiplication type (signed/unsigned) and the subword size.

The arrangement of PPs for an unsigned multiplication with a subword size of 8-bits is

shown in figure 2.14.

Chapter 2. Design of SWP basic operators 75

P15 . . . P0P31 . . . P16P47 . . . P32P63 . . . P48P79 . . . P64

A39 . . . A32 A31 . . . A24 A23 . . . A16 A15 . . . A8 A7 . . . A0

B39 . . . B32 B31 . . . B24 B23 . . . B16 B15 . . . B8 B7 . . . B0

Figure 2.14: Arrangement of PPs for 8-bit data size

Unfilled circles represent unused (0’s) PP bits whereas filled circles represent used PP bits

for a subword size of 8-bits. Each block of filled circles represents one 8x8 multiplication

block. In the case of a signed multiplication, to avoid the sign extension, the MSBs of

the filled portion of each PP are inverted and 1’s are added at bit location 8, 24, 40, 56

and 72 as correction vector. As in a signed multiplication, the last PP is 2’s complement

so in order to obtain the 2’s complement, bits of last PPs of each multiplication block

are inverted and ’1s’ are added at LSB of each block. Addition of PPs and correction

vector is done using optimized adders of the synthesis tool. PPs for other subword sizes

(10, 12, 16 or 40) are arranged in a same fashion. However the location of sign extension

inversion bits, correction vector bits and the PPs whose 2’s complement needs to be

taken are different for different subword sizes. In the case of a subword size of 12, the

last four PPs are all filled with zeros (unused). Similarly, for a subword size of 16, the

last eight PPs are all filled with zeros.

2.3.2.3 Addition of partial products for SWP multimedia multiplier

The generated PPs are added using adder trees. At each level of tree, the adders add the

partial products in parallel. For each subword size the product subwords are represented

by twice number of bits. For 8-bit subword size, each product subword consists of 16

bits. These 16 bits are enough to represent the product of two 8-bit subwords hence no

overflow will occur. Similarly for other subword sizes, the product subwords have twice

data lengths. For word size multiplication of 40-bits the product consists of 80 bits.

Chapter 2. Design of SWP basic operators 76

2.3.2.4 Comparison of simple and SWP multimedia multiplier

SWP multimedia multiplier performs several subword multiplications in parallel. On

the other hand simple 40-bit multiplier can perform multiplication of two 40-bit num-

bers and generate 80-bit product. Therefore it is obvious that due to SWP controls,

SWP multimedia multiplier will require more resources compared to simple multiplier.

However by using the efficient schemes for partial product generation and addition, the

overheads of SWP multipliers can be reduced.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP
Gates

Nand CP
Gates

CP
CLBs

Gates (ns)
X CP

Gates (ns)
X CP CLBs

(ns)
X CP

(norm) (norm) (norm)

Simple 14518 6.07 1 10532 14.0 1 917 19.7 1

SWP 15099 7.38 1.26 11081 15.0 1.13 1505 21.4 1.78

Overhead 4 % 22 % 26 % 5 % 7 % 13 % 64 % 9 % 78 %

Table 2.7: Results of multimedia SWP Multiplier

Table 2.7 shows the area and CP results of simple and multimedia SWP enable 40-bit

multipliers. Due to the efficient technique for the generation and arrangement of PPs

corresponding to each subword size, the area and CP overheads are less. Area and

CP overheads of SWP multimedia 40-bit Multiplier are little more than the area and

CP overheads of the 16-bit classical Schulte Multiplier (Table 2.6). However this small

increase in overheads is of less importance when considering the fact that the SWP 40-bit

multimedia Multiplier can support five different multimedia oriented subword sizes (8,

10, 12, 16 and 40) compared to the 16-bit classical Schulte Multiplier which can support

only three different subword sizes (4, 8 and 16). SWP overhead in term of efficiency

(gate x CP) shows very good results on ASIC platforms. For an ASIC implementation,

the SWP multimedia multiplier requires only 5% more area compared to simple one. CP

increase is 22% and 7% on 90nm and 130nm ASIC technologies respectively. In a FPGA

implementation the resources are CLBs rather than standard cells [44, 74]. Therefore

an area overhead of 64% on a FPGA platform represents the increase in CLBs rather

than chip area precisely.

2.3.3 Analysis of SWP multipliers

Keeping in view the complexity of multipliers (compared to other basic arithmetic op-

erators), SWP multimedia multipliers (signed/unsigned) with different configurations of

word lengths (WL) and subword sizes are implemented in order to analyze the increase in

Chapter 2. Design of SWP basic operators 77

area, CP and power consumption for each configuration. For these experiments, WL and

subword sizes are selected that pertains to multimedia applications. These SWP multi-

pliers can perform both signed as well as unsigned multiplications and are designed in the

same way as the 40-bit SWP multiplier explained in section 2.3.2. Different data length

multiplication operations which can be performed by SWP multipliers corresponding to

each configuration are shown in table 2.8.

Config. Word Supported (Sub)Words
No. Length size operations

1

16

(Two 8 x 8) or (One 16 x 16)

2 (Two 8 x 8) or (One 10 x 10) or (One 16 x 16)

3 (Two 8 x 8) or (One 12 x 12) or (One 16 x 16)

4
24

(Three 8 x 8) or (Two 10 x 10) or (One 24 x 24)

5 (Three 8 x 8) or (Two 12 x 12) or (One 24 x 24)

6
30

(Three 8 x 8) or (Two 12 x 12) or (One 30 x 30)

7 (Three 10 x 10) or (Two 12 x 12) or (One 30 x 30)

8
32

(Four 8 x 8) or (Three 10 x 10) or (Two 12 x 12) or (One 32 x 32)

9 (Four 8 x 8) or (Three 10 x 10) or (Two 16 x 16) or (One 32 x 32)

10

36

(Four 8 x 8) or (Three 10 x 10) or (One 36 x 36)

11 (Four 8 x 8) or (Three 12 x12) or (One 36 x 36)

12 (Four 8 x 8) or (Three 10 x 10) or (Two 16 x 16) or (One 36 x 36)

13 (Four 8 x 8) or (Three 12 x 12) or (Two 16 x 16) or (One 36 x 36)

14

40

(Five 8 x 8) or (Four 10 x 10) or (Three 12 x 12) or (One 40 x 40)

15
(Five 8 x 8) or (Four 10 x 10) or (Three 12 x 12) or (Two 16 x 16)

or (One 40 x 40)

Table 2.8: Configurations of word and subwords sizes

Each SWP multiplier can perform multiplication operation on WL as well as on subword

length data. For instance the SWP multiplier shown in the configuration 2 can perform

either two 8-bit multiplications or one 10-bit multiplication or one 16-bit multiplication.

For each WL different number and sizes of subwords are selected for implementation.

Within the group of SWP multipliers with same WL, the operations on subwords sup-

ported by one configuration can be supported by other configuration. For instance

configuration 3 (two 8 x 8, one 12 x 12 and one 16 x 16) can also perform the operations

on subword data lengths offered by configuration 2 (two 8 x 8, one 10 x 10 and one 16 x

16). However for this purpose the user has to expand the 10-bits inputs to 12-bits (sign

extension for signed multiplication or zero padding for unsigned multiplication) and ar-

range the input subwords data in accordance with the configuration being used. On

the contrary configuration 2 cannot perform operation on the subwords sizes offered by

configuration 3 because a 12-bit multiplication cannot be performed on 10-bit operator.

Same is the case for other configuration groups.

Chapter 2. Design of SWP basic operators 78

Word
Supported 90nm CMOS 130nm CMOS FPGA

Conf.
(WL)

Subword ASIC ASIC VirtexII
No.

(bits)
sizes Nand CP Gates Power Nand CP Gates Power CLB CP CLBs

(bits) Gates (ns) X CP (mW) Gates (ns) X CP (mW) (ns) X CP

1

16

8 2320 2.55 5916 4.9 1666 6.89 11479 8.55 173 16.2 2802

2 8, 10 2432 2.77 6737 4.2 1787 6.67 11919 7.18 211 16.6 3503

3 8, 12 2439 2.86 6976 4.5 1794 6.76 12127 7.72 203 16.5 3350

4
24

8, 10 5378 3.99 21297 9.9 3966 9.97 39541 15.4 499 17.4 8683

5 8, 12 5386 4.13 22244 10.1 3938 9.12 35915 16.4 478 17.3 8269

6
30

8, 10 8349 5.40 45085 15.5 6094 11.9 72519 22.3 795 18.9 15026

7 10, 12 8340 5.13 42784 16.5 6092 11.6 70667 23.6 779 18.9 14723

8
32

8, 10, 12 9651 5.72 55204 14.3 7095 13.7 97202 20.0 944 19.9 18786

9 8, 10, 16 9630 5.59 53832 15.6 7033 12.9 90726 21.8 925 19.9 18408

10

36

8, 10 12182 5.76 70168 20.5 8787 13.4 117746 30.9 1184 20.2 23917

11 8, 12 12156 6.30 76583 21.5 8728 14.3 124810 32.4 1151 20.1 23135

12 8, 10, 16 12256 6.17 75620 17.6 8884 13.9 123488 25.5 1190 20.2 24038

13 8, 12, 16 12211 6.17 75342 18.5 8812 14.0 123368 27.0 1171 20.1 23537

14
40

8, 10, 12 14918 6.84 102039 21.5 10930 16.2 177066 30.2 1492 20.5 30586

15 8,10,12,16 15099 7.38 111431 17.9 11082 15.0 166230 24.6 1505 21.4 32207

Table 2.9: Synthesis results for SWP multipliers

Table 2.9 shows the area, CP and the power consumption results of the SWP multipliers

with table 2.8 configurations. Area, CP and power consumption are mainly dependent

upon the WL. However within the same WL group, slight increase or decrease in area,

CP and power consumption occurs due to the variation in the number and the size of

the supported subwords. As the WL increases, the area, CP and power consumption on

both ASIC and FPGA platform increases accordingly. Results show that area, CP and

power consumption varies slightly for different configurations having the same WL but

different subword sizes. The phenomenon can be seen in every group. Let us take the

group with WL of 24-bits which consists of configuration 4 and 5. In this group, area

increases slightly from 5378 to 5386 nand gates, CP also increases slightly from 3.96ns

to 4.13ns and power consumption increases from 9.9 to 10.1mwatt on 90nm technology.

The reason being that within most of the groups, the number of available multiplication

operations remains same. For instance in the group with WL of 24-bits, configuration 4

can perform six operations (three 8-bit operations or two 10-bit operations or one 16-bit

operation) and configuration 5 can also perform six operations (three 8-bit operations or

two 12-bit operations or one 16-bit operation). However there are some groups in which

different configurations supports different number of operations but even then area, CP

and power consumption does not vary tremendously within the group. Furthermore

within the same WL group, the area, the CP and the power consumption do not varies

largely with the increase or decrease of number of subword sizes supported by SWP

multiplier. This can be seen in configuration group with WL of 40-bit. In this group,

configuration 14 supports three subword sizes (8, 10 and 12) and configuration 15 support

Chapter 2. Design of SWP basic operators 79

four subword sizes (8, 10, 12 and 16). However there is only a small difference in area

and CP of these two configurations on all the target technologies. The main reason is

that the SWP control logic is small compared to the multiplication’s dedicated logic.

Within each group, the configuration with higher efficiency (gate x CP) is shown in bold

letters.

Figure 2.15: Area of SWP multipliers

Figure 2.16: CP of SWP multipliers

Figure 2.17: Power consumption of SWP MULTs

Chapter 2. Design of SWP basic operators 80

Figure 2.15 shows the increase in area of the SWP multipliers for the different configu-

rations. Figure 2.16 shows the increase in CP for the same set of configurations. Figure

2.17 shows the increase in the power. As said before, graphs show that within each WL

group, area, CP and power consumption change slightly with the variation in number or

sizes of subwords selected. However moving from one WL group to next, area increases

more rapidly compared to CP and power consumption as shown by the slope of the

curves.

2.4 MAC operator

The multiply accumulate (MAC) unit represents one of the most frequently used block

in multimedia and digital signal processing applications. The multiplier in a MAC is

used to multiply two N-bit numbers and generate a 2N-bit result. The adder is used to

add the result of the multiplier with a 2N-bit addend [2, 27, 64].

2.4.1 Classical SWP MAC

The generation of the PPs for classical SWP MACs can be done either by AND op-

erations or booth recoding or with the Schulte algorithm. Instead of using one extra

adder for the accumulation purpose, the addition of the PPs and addend are combined.

Optimization of the adder is done by the synthesis tool. The SWP enable MAC in these

experiments is capable of performing either four 4-bit multiplications and four 8-bit ad-

ditions or two 8-bit multiplications and two 16 bit additions or one 16-bit multiplication

and one 32 bit addition. On the other hand simple MAC is capable of performing one

16-bit multiplication and one 32-bit addition.

Table 2.10 shows the area and CP results. Product term (gates x CP) is normalized

based on the simple MAC results. Both MAC and MAC using Schulte Multiplier are

able to perform MAC operation on signed as well as unsigned numbers. MAC using

Booth Recoding is able to perform MAC operation on signed numbers only. Multiplier

in MAC generates PPs by AND operations. On an ASIC platform the area overhead for

implementing SWP capability is more than 80% except for the Schulte MAC in which

the area overhead is almost zero on both 90nm and 130nm technologies. On the contrary,

CP overhead is less than 10% except for Schulte MAC in which CP overhead is 27% and

15% on 90nm and 130nm technologies respectively. On the FPGA platform the CLB

overhead of the Schulte MAC is also less compared to the other implementations. On

ASIC platforms, the classical SWP Schulte MAC gives good results in terms of area and

the SWP MAC gives good results in terms of CP. On FPGA platform, the SWP Schulte

Chapter 2. Design of SWP basic operators 81

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP
Gates

Nand CP
Gates

CP
CLBs

Gates (ns)
X CP

Gates (ns)
X CP CLBs

(ns)
X CP

(norm) (norm) (norm)

MAC

Simple 2733 2.51 1 1919 6.42 1 187 15.5 1

SWP 5261 2.70 2.07 3760 6.84 2.09 435 16.4 2.46

Overhead 92 % 8 % 107 % 96 % 7 % 109 % 133 % 6 % 146 %

MAC (Booth)

Simple 2010 4.06 1.19 1718 8.81 1.23 211 23.5 1.71

SWP 3625 4.38 2.31 3090 8.68 2.18 353 24.5 2.98

Overhead 80 % 8 % 94 % 80 % -1 % 77 % 67 % 4 % 74 %

MAC (Schulte)

SWP 2684 3.19 1.25 1927 7.38 1.15 218 16.0 1.2

Overhead
-2 % 27 % 25 % 1 % 15 % 15 % 17 % 3 % 20 %

@ MAC

Table 2.10: Results of classical SWP MAC

MAC gives good results in terms of both area and CP. Overall area and CP overhead

of the MAC operation have been increased compared to the 16-bit multiplier explained

in the section 2.3.1. This increase occurs because of the addition of the 2N-bit addend

which also requires SWP capability. Efficiency shows that the 16-bit classical Schulte

based MAC is still the best SWP MAC architecture for classical subword sizes.

2.4.2 Multimedia SWP MAC

Multimedia oriented 40-bit simple and SWP enable MAC operators are also implemented

using the simple and SWP 40-bit multipliers explained in Section 2.3.2. These MACs are

able to operate on signed as well as unsigned numbers. The simple version of the 40-bit

MAC can perform one 40-bit multiplication and one 80-bit addition. The SWP version

of the 40-bit MAC can perform either five 8-bit multiplications and five 16-bit additions

or four 10-bit multiplications and four 20-bit additions or three 12-bit multiplications

and three 24-bit additions or two 16-bit multiplications and two 32-bit additions or one

40-bit multiplication and one 80-bit addition.

Table 2.11 shows the area and CP results of simple and SWP enable multimedia 40-

bit MACs. On an ASIC platform, maximum area overhead for implementing SWP

capability is 3% only. This occurs because of the use of an efficient SWP multiplier

which generates PPs efficiently (see table 2.7). Maximum CP overhead on an ASIC

platform is 23%. On a FPGA platform, CLBs and CP overheads are 61% and 12%

Chapter 2. Design of SWP basic operators 82

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP
Gates

Nand CP
Gates

CP
CLBs

Gates (ns)
X CP

Gates (ns)
X CP CLBs

(ns)
X CP

(norm) (norm) (norm)

Simple 15163 6.14 1 10967 14.3 1 958 19.7 1

SWP 15573 7.55 1.26 11289 16.7 1.20 1543 22.0 1.8

Overhead 3 % 23 % 26 % 3 % 17 % 20 % 61 % 12 % 80 %

Table 2.11: Results of multimedia SWP MAC

respectively. Due to the use of CLBs as implementation resources [74], these overheads

values are not in full coordination with ASIC overheads. This shows that ASIC resources

(standard cells) well suit SWP designs rather than FPGA resources (CLBs).

2.5 Conclusions

This chapter describes the designing of SWP basic operators using classical as well as

multimedia oriented subword sizes. Coordination between pixel sizes of multimedia ap-

plications and subword sizes in SWP operators can increase the efficiency of multimedia

processors through better resource utilizations. As there exist no uniform arithmetic

relationship between pixel sizes and processor word sizes therefore sometimes the imple-

mentation overheads of multimedia oriented SWP operators are little higher compared

to classical SWP operators. But at the same time the extents to which these multime-

dia SWP operators increase the efficiency of overall processor easily undermine these

small overheads. When used in any multimedia processor, these SWP operators provide

speedup along with flexibility for multimedia applications. In the next chapter we will

discuss the architectures of more complex operators which are required in multimedia

applications. These operations include sum of absolute value difference operator, sum

of product etc.

Chapter 3

SWP in multimedia operations

In Chapter 2 we have presented that how the SWP capability can be introduced in the

architecture of basic operators like ADD, SUB, MULT, MAC etc. The overheads for

incorporating classical and multimedia oriented SWP in basic operator design are also

discussed. This chapter explores the implementation of different operations which are

most commonly used in modern multimedia applications. The simple as well as SWP

versions of these operations are implemented using the basic blocks presented in Chapter

2. Multimedia oriented SWP capabilities are introduced in different operator’s designs.

The operator blocks presented in this chapter will further be used for the implementation

of reconfigurable multimedia operator design.

The rest of this chapter is organized as follows: Section 3.1 gives the brief overview of

different operations which are required in multimedia applications. It also explain the

requirement of sum of absolute values of differences (SAD) operation and its utility in

multimedia applications. Section 3.2 presents different methods for the computation of

absolute value of difference operation. Multimedia oriented SWP capability is also intro-

duced in these methods. Section 3.3 describes simple as well as SWP SAD architectures

and their comparisons are also presented. Section 3.4 describes the implementation of

sum of product (SOP) operation and its utilization in multimedia applications. Simple

and SWP versions of SOP operator are also presented along with their comparisons.

Section 3.5 describes simple and SWP sum of additions/subtractions operation which is

commonly used arithmetic operation. Finally we conclude the chapter in Section Section

3.6.

83

Chapter 3. SWP in multimedia operations 84

3.1 Multimedia arithmetic operations

In addition to basic arithmetic operators, customized operators are also required in

multimedia processor design. Efficient implementation of these customize operators

increases the performance of overall processor when working on different multimedia

applications [6]. Most of the times the implementation of these multimedia operations

involve the efficient utilization of SWP basic arithmetic operators. These customized

multimedia operations include:

• Sum of absolute values of differences SAD is one of the most commonly used

operation in multimedia applications (image/video compression). SAD is used for

block matching in motion estimation algorithm.

• Sum of products SOP is used in different transform like discrete cosine trans-

form DCT, discrete wavelet transform DWT etc. This operator involves the mul-

tiplication and the subsequent accumulation of products.

• Sum of additions/subtractions is used in the accumulation of sums or differ-

ences between pixels. Due to the generic nature of this operation, it is used in

most of the multimedia applications.

In the next sections we will discuss the implementation of each of these multimedia

operators in details. Multimedia SWP capability is introduced in the design of these

operators to increase the parallelism which ultimately improves the performance of pro-

cessor.

3.1.1 Sum of absolute values of difference SAD

SAD is most commonly used operation in motion estimation algorithms. SAD operator

computes the sum of absolute values of differences between current frame pixels and

reference frame pixels. For any particular block size, the absolute values of differences

are accumulated to obtain final SAD value. SAD value indicates the resemblance between

current frame block and reference frame block. Smaller SAD value corresponds to high

resemblance between the blocks. In block matching, SAD values are calculated for

different blocks in search window and the block with minimum SAD is selected as best

possible match of current block. In any multimedia processor, SAD computations are

used very frequently. Therefore the implementation of optimized SAD unit plays very

important role in the overall performance of processor. SAD computations are given by

Equation 3.1

Chapter 3. SWP in multimedia operations 85

SAD =
N−1
∑

i=0

|ai − bi| (3.1)

Where N is the number of pixels in block. SAD operation can be divided into two main

blocks; determination of absolute value of difference |a - b| and the accumulation of

absolute values. The pipelined architecture of SAD operator is shown in Figure 3.1.

a

b
|a − b|

A

C

C

U

M

U

L

A

T

O

R

SAD output

CLK

CLK

CLK

Absolute

difference

Figure 3.1: Sum of absolute difference operator

’a’ and ’b’ are the input pixels. |a - b| unit computes absolute value of difference between

current pixels and reference pixels. These differences are accumulated recursively using

Accumulator unit, until the SAD for whole block is obtained. The input and output

data sizes of SAD operator depend upon the size of pixels and the size of blocks as well.

For 8-bit pixel sizes, both inputs ’a’ and ’b’ are 8-bit unsigned numbers. The block size

determines the data width at the output of SAD operator. If the block size is (16× 16),

it implies that there will be accumulation of 256 absolute values. To add 256 values, 8

extra bits (28 = 256) are required in the worst case to avoid any overflow. Therefore for

a block size of (16 × 16) the data width at the output of SAD operator should be equal

to (input pixel size + 8) bits. However the output data width of SAD operator can be

reduced at the cost of some precision loss.

Determination of absolute values of difference |a - b| plays very important role in the

overall SAD architecture. Efficient implementation of this unit ensures the better per-

formance of overall SAD operator. In the following section we will discuss few methods

for the implementation of |a - b| unit. Multimedia oriented SWP capability will also be

introduce in |a - b| unit.

Chapter 3. SWP in multimedia operations 86

3.2 Determination of absolute value of difference |a - b|

|a - b| unit computes the absolute value of difference between two pixels. Pixels are

usually stored as unsigned binary numbers therefore this operation is applied on un-

signed data. |a - b| is computationally intensive operation because of the involvement

of absolute value operation. Direct implementation of absolute value operation requires

lot of hardware resources. Several methods have been proposed to implement the |a - b|

operation without directly implementing the absolute value hardware [93, 94, 101, 102].

These methods tries to avoid the absolute operation by implementing it using other less

expensive hardware resources like adders, subtractors etc. Indirect implementation of |a

- b| unit increases the performance of overall SAD unit. Few of these methods for the

computation of absolute difference value are discussed here and their performances are

analyzed. These methods were proposed for single pixel values, however we will intro-

duce multimedia oriented SWP capability in the computation of |a - b| operation. Using

SWP capability several absolute difference values are calculated in parallel. Latter SWP

|a - b| unit with high efficiency will be used in SWP SAD operator design.

3.2.1 Absolute value of difference : Method 1

This method was proposed in [93] for the computation of |a - b| on unsigned pixels. In

this method |a - b| operation is computed using addition and inversion operations. This

method is based on following Equations 3.2 and 3.3.

|a − b| = (a + b) + 1 if a > b (3.2)

|a − b| = (a + b) + 0 if a ≤ b (3.3)

Where ’a’ and ’b’ are input pixel values. b and (a + b) are bit inverted version or

1’s complement of b and (a + b) respectively. Equations 3.2 and 3.3 can be proved

mathematically. The hardware realization of these equations for input pixel size of 8-bit

is shown in Figure 3.2.

The eight bits of input pixel ’a’ are represented by (a0 . . . a7) and the eight bits of input

pixel ’b’ are represented by (b0 . . . b7). In the first step bits of pixel ’b’ are inverted using

eight single bit inverters. Then 8-bit Adder is used to add ’a’ and ’b’ vectors. The output

of this adder are sum bits (s0 . . . s7) and the carry bit. The next operation is defined

by the status of generated carry bit.

Chapter 3. SWP in multimedia operations 87

a0b0b1b2b3b4b5b6b7 a1a2a3a4a5a6a7

8− bit

s0s1s2
s3s4s5s6s7

XORXORXORXORXORXORXORXOR

HAHAHAHAHAHAHAHA

out0out1out2out3out4out5out6out7

Carry

Adder

Figure 3.2: Absolute value of difference unit

• Generated carry is ’0’ If the carry bit is ’0’ it implies that (a ≤ b). It can be

proved mathematically using following equations.

b > a

-a + b > 0

2n - 1 - a + b > 2n - 1

a + b > 2n - 1

a + b ≥ 2n

The last step is possible because we are dealing with natural, non-fractional, num-

bers. The maximum value of (a + b) is 2 × (2n - 1) = 2n+1 − 2. This is a (n + 1)

bit number. The most-significant bit, with weight 2n, is computed as the carry-out

of the n-bit addition. Thus checking whether a + b ≥ 2n means checking whether

the addition of the bit inverted ’a’ and the operand ’b’ produces a ’carry’ out [102].

Thus if the carry bit is ’0’ it implies that (a ≤ b). Hence the implementation of |a

- b| is done using Equation 3.3. The carry bit is inverted to ’1’ and is used to take

1’s complement of sum bits (s0 . . . s7). This 1’s complement operation is realized

in hardware using exclusive-OR (XOR) gates.

• Generated carry is ’1’ If the carry bit is ’1’ it implies that (a > b). So the

implementation of |a - b| is done using Equation 3.2. The carry bit is inverted to

’0’ and is given at input of each XOR gate. When one of the input of XOR gate is

’0’, it will simply transfer the second input at the output. Due to this property of

XOR gate, the sum bits (s0 . . . s7) are obtained at the output of XOR gate array

without any inversion.

Chapter 3. SWP in multimedia operations 88

In both cases generated carry bit is added to the output of XOR gate array. As carry

is a single bit value which is added to 8 bits, therefore half adders (HA) are used to

perform this addition. At LSB the output of XOR gate is added to carry bit and out0

bit is generated. At rest of the bit locations output of XORs gates are added to the carry

generated by the HA at previous bit location to generate outputs (out1 . . . out7). This

method implements the absolute difference |a - b| operation using inverters, addition

block, array of XOR gates and array of HAs.

3.2.1.1 SWP Absolute value of difference : Method 1

SWP absolute value difference SWP |a - b| operator is used to compute multiple |a -

b| operations in parallel. The inputs to SWP |a - b| operator are two input vectors

which contain pixels from current block and reference block. SWPctrl signals are used to

indicate the size of selected subwords. Based upon the selected subword size, the SWP

|a - b| operator determines the boundaries of pixels packed in input vectors. The block

diagram of SWP |a - b| operator is shown in Figure 3.3.

a

b

SWP

Absolute value of difference

operator
SWP|a − b|

40

40

40

SWPctrl

Figure 3.3: SWP Absolute value of difference operator

The implementation of SWP |a - b| operator is based on the method explained in previous

section 3.2.1 for the computation of |a - b| on 8-bit pixels. SWP |a - b| operator supports

multimedia oriented subword sizes of 8, 10, 12, 16-bit. The input vectors ’a’ and ’b’ which

contain the packed pixels are of 40-bit data length. This word size of 40-bit is used as it

gives good efficiency trade off with different multimedia oriented pixel sizes. Based upon

the selected subword size, SWP |a - b| operator can perform either five |a(8bit) - b(8bit)|

or four |a(10bit) - b(10bit)| or three |a(12bit) - b(12bit)| or two |a(16bit) - b(16bit)| or

one |a(40bit) - b(40bit)| operations simultaneously. When the selected subword size is

8-bit, each 40-bit input vector is considered as five 8-bit packed pixels. Absolute value of

difference operation is applied simultaneously on all five packed pixels. At the output five

8-bit absolute values of differences are obtained which are also packed in 40-bit register.

Due to the subtraction operation no overflow occurs. Therefore 8 bits are sufficient to

store the results of |a - b| operation on each subword. Similarly for other subword sizes

absolute values of differences are obtained corresponding to selected subword size.

Chapter 3. SWP in multimedia operations 89

To analyze the performance of absolute difference operators, the comparison of simple

and SWP |a - b| operators are done on different target technologies. Simple |a - b|

operator can perform only one |a(40-bit) - b(40-bit)| operation. Where as the SWP |a -

b| operator can perform multiple parallel operations on subwords of different sizes. Using

this method, the synthesis results of implementing simple and SWP |a - b| operation on

both ASIC and FPGA platforms are shown in Table 3.1.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP Gates Nand CP Gates
CLB

CP CLBs

Gates (ns) X CP Gates (ns) X CP (ns) X CP

Simple 1582 4.2 6644 1602 8.8 14098 211 14.4 3038

SWP 2072 4.4 9117 1971 9.4 18527 245 14.9 3651

Overhead 31 % 5 % 37 % 23 % 7 % 31 % 16 % 3 % 20 %

Table 3.1: Method 1: Synthesis results of absolute difference operator

As shown in table 3.1, the SWP |a - b| operator consumes more resources compared to

simple |a - b| operator. This increase in resources occurs because SWP |a - b| operator

performs multiple parallel operations compared to simple |a - b| operator which can

perform only one operation. On 90nm ASIC technology SWP |a - b| consumes 31% and

5% more area and CP compared to simple |a - b| operator. Similarly on 130nm ASIC

technology, SWP |a - b| consumes 23% and 7% more area and CP compared to simple |a

- b| operator. On FPGA platform, SWP |a - b| consumes almost 16% and 3% more area

and CP compared to simple version. The product term (gates x CP) is normalized to

simple |a - b| operator. Compared to (a - b) operator, |a - b| operator consumes almost

30% to 40% more area and 40% to 50% more CP on different target technologies.

3.2.2 Absolute value of difference : Method 2

This method [102] also implements the absolute operation using indirect method. The

main steps in the computation of |a - b| operation are following.

• Find smaller operand In the first step smallest of two input operand is de-

termined. There are several ways to find the smaller operand. However in this

method the CLA carry generation logic is used to find the smaller number.

• Invert the smaller operand In the second step the smaller of two operands is

inverted. This inversion can be done by bit inversion. As the bit inversion is not

exactly equal to the inversion of number. Therefore to nullify the unwanted effects

of bit inversion, correction vector is used.

Chapter 3. SWP in multimedia operations 90

• Addition In the third step the greater operand is added to the inverted version of

smaller operand. The correction vector produced in the second step is also added

to the sum. This addition can be done by using any optimized adder.

Using these three steps, the absolute value of difference operation |a - b| can be realized

in hardware without the direct implementation of absolute operation. This process uses

comparator, inverter and adder units for the implementation of |a - b|. The first two steps

of comparison and inversion can be combined and implemented using the architecture

shown in Figure 3.4.

Carry

Generator

XOR

XOR b-out

a-out

a(7 . . . 0)

b(7 . . . 0)

Carry

Figure 3.4: Comparison and inversion of smaller input

’a’ and ’b’ are two 8-bit input numbers. To determine smaller input, CLA carry gener-

ator circuitry is used because it can calculate the output carry efficiently. CLA carry

generator block do not calculate the carry output by actually adding two input numbers.

It only determines whether the carry will be generated or not when ’b’ and bit inverted

version of ’a’ are added. Based on the value of carry output the smaller of two numbers

can be determined.

• When generated carry is ’1’ If the generated carry is ’1’, it implies that b >

a. So in this case smaller input ’a’ is inverted. This inversion is done using XOR

gate arrays. In the Figure 3.4, each XOR block contain the array of two input

XOR gates. The number of gates in this array is equal to the number of bits in

each input. One array of XOR gates is connected to input ’a’. In this array, one

of the input of each XOR gate is connected to generated carry signal. The other

array of XOR gates is connected to input ’b’. In this aray, one of the input of

each XOR gate is connected to carry signal. When the generated carry is ’1’, the

XOR gate array corresponding to input ’a’ will generate inverted version of ’a’ at

output (a-out). As carry is ’1’, therefore XOR gate array corresponding to input

’b’ will generate the same signal ’b’ at the output (b-out).

• When generated carry is ’0’ When the generated carry is ’0’, the whole phe-

nomenon will be reversed. If the carry generated is ’0’, it implies a > b. So smaller

input ’b’ will be inverted. In this case the XOR gate array corresponding to input

Chapter 3. SWP in multimedia operations 91

’a’ will generate same output. Where as the XOR gate array corresponding to

input ’b’ will generate inverted version of ’b’ at output.

In the final step a-out and b-out vectors are added along with correction vector. Cor-

rection vector is required because the bit inversion performed in the second step is not

exactly equal to the negation of number. The bit inversion of any number ’X’ is given

by Equation 3.4.

X = 2n − 1 − X (3.4)

In order to make bit inverted version (X) equal to the negation of number (-X), the (-2n

+ 1) term must be added to the right hand side of Equation 3.4. This is done with the

help of correction vector. In practice correction vector is calculated for whole block of

image and added once only.

3.2.2.1 SWP Absolute value of difference : Method 2

Using the method shown in Figure 3.4, SWP version of |a - b| is also implemented.

Instead of using single value, the absolute values of differences are determined for all the

packed subwords. The subword boundaries are defined by SWP control signals. These

signals direct the SWP |a - b| unit about the size of pixels (8 or 10 or 12 or 16-bit)

packed in the 40-bit input registers. Based on selected subword size, multiple |a - b|

operations are performed in parallel by SWP |a - b| operator. The synthesis results of

implementing simple and SWP |a - b| operation on both ASIC and FPGA platforms are

shown in Table 3.2.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP Gates Nand CP Gates
CLB

CP CLBs

Gates (ns) X CP Gates (ns) X CP (ns) X CP

Simple 1710 3.20 5472 1967 7.5 14753 220 12.9 2838

SWP 2231 3.46 7719 2301 8.2 18868 264 14.1 3722

Overhead 30 % 8 % 41 % 17 % 9 % 28 % 20 % 9.3 % 31 %

Table 3.2: Method 2: Synthesis results of absolute difference operator

As SWP |a - b| operator perform multiple operations, therefore it requires more resources

compared to the simple |a - b| operator. The increase in resources also occurs because

SWP operator performs operations on packed subwords which require arrangement and

alignment before the computation.

Chapter 3. SWP in multimedia operations 92

3.2.3 Absolute value of difference : Method 3

This method is based on the calculation of absolute value of difference using comparator

and subtractor units. In this method both (a - b) and (b - a) are computed in parallel

with comparator. Based on the outcome of comparator, either (a - b) or (b - a) is

selected as output. (a - b) is selected as output when (b < a) and (b - a) is selected

as output when (a < b). The comparison of two input numbers can be done either by

CLA carry generation method explained in previous section 3.2.2 or the synthesis tool

can be allowed to implement any efficient comparison scheme available in the library.

The block diagram of |a - b| using this method is shown in Figure 3.5.

(a − b)

(a > b)

a

b

8

8 (b − a)

(True/False)

True

False

8
|a − b|

Figure 3.5: Absolute difference unit

As shown in the Figure 3.5, this method is very simple. The output of subtractors is

selected with the help of 2 to 1 multiplexer.

3.2.3.1 SWP Absolute value of difference : Method 3

Multimedia oriented SWP capability can be introduced in the architecture of |a - b| unit

shown in Figure 3.5. For this purpose absolute difference is calculated for each subword

in the input registers. The comparator unit compares the corresponding subwords in

input registers. The absolute difference output for each subword is selected based on the

output of comparator units. Table 3.3 shows the synthesis results on ASIC and FPGA

platform for the implementation of simple and SWP |a - b|.

Although SWP |a - b| operator requires more resources compared to simple |a - b| but

due to parallel operations on multiple subwords, the overall performance of SWP |a - b|

operator is better than simple |a - b| operator. Moreover the SWP |a - b| operator can

support five different subword sizes (8, 10, 12, 16 and 40-bit). Where as the simple |a -

b| operator can perform operations on 40-bit data only.

Chapter 3. SWP in multimedia operations 93

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP Gates Nand CP Gates
CLB

CP CLBs

Gates (ns) X CP Gates (ns) X CP (ns) X CP

Simple 1313 3.87 5081 1012 8.8 8906 168 13.6 2285

SWP 1602 4.34 6952 1326 9.6 12730 229 15.2 3481

Overhead 22 % 12 % 37 % 31 % 9 % 43 % 36 % 11 % 52 %

Table 3.3: Method 3: Synthesis results of absolute difference operator

3.2.4 Comparison of SWP Absolute value of difference operators

Comparison of all the three implementations of SWP |a - b| are done in order to select

the best possible operator for further use in multimedia operator design. Figure 3.6

shows the area and critical path (CP) comparisons of three implementations of SWP |a

- b| operator explained so for.

90nm 130nm FPGA
0

500

1000

1500

2000

2500

A
re

a
(N

an
d

ga
te

s)

90nm 130nm FPGA
0

2

4

6

8

10

12

14

16

C
rit

ic
al

 P
at

h
(n

s)

Technology

90nm 130nm FPGA
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

(G
at

es
 X

 C
P

)

SWP |a−b| operator using method 1
SWP |a−b| operator using method 2
SWP |a−b| operator using method 3

Figure 3.6: Comparison of SWP absolute difference operators

As shown in Figure 3.6, each method consumes different area and CP for the imple-

mentation of SWP |a - b| operator. This variation in area and CP corresponds to the

different methods of implementation. On each target technology, Method 3 gives min-

imum area and Method 2 gives minimum CP. Method 2 gives minimum CP because it

uses CLA carry generation scheme for the determination of smaller operand. However

due to the use of CLA carry logic area increases accordingly. Method 3 consumes min-

imum area as it uses optimized comparator operator from the library of synthesis tool.

Chapter 3. SWP in multimedia operations 94

On all the target technologies the efficiency (gates x CP) of Method 3 is better than

other methods. Based on area and CP constraints, any of these operators can be use for

the computation of SWP absolute difference. However due to the better efficiency, we

will use Method 3 for SWP absolute difference implementation in multimedia operator

design.

3.3 SWP SAD operator

SWP |a - b| units explained in the previous section can be used to design SWP SAD

operator. This operator performs parallel operations on pixels from current frame and

reference frame and generates the SAD value. The level of parallelism depends upon

the selected subword size. For different subword sizes, SWP SAD operator perform

operations on multiple pixels in each cycle and compute the overall SAD value of block

in less time compared to simple SAD operator. In SWP SAD design multimedia oriented

subword sizes (8, 10, 12 and 16 bits) are considered rather than classical subword sizes

(8, 16, 32 bits etc.). For 8-bit subword size SWP SAD unit perform SAD operations

on five pixels in each clock cycle. Therefore the overall SAD operation of each block

is almost five times faster than simple SAD unit which perform only one operation in

each clock cycle. Overall speed up of SWP operator is not exactly equal to five times

because some cycles are also required for arrangement and alignments of subwords. The

pipelined architecture of the proposed SWP SAD operator is shown in Figure 3.7.

a

b

40

40
|a − b|

40

A

C

C

U

M

U

L

A

T

O

R

40

(unsigned)

SWP40 40

17 17

40

40

SWP

subwords

adder

SWPctrl SW Pctrl

CLK

CLK

CLKCLK

output

Figure 3.7: SWP sum of absolute value difference SAD

As shown in Figure 3.7, the inputs to SWP SAD operator are two 40-bit input vectors

and SWP control signals (SWPctrl). The output is a 40-bit SAD value. SWP SAD

operator consists of three main units.

• SWP |a - b| unit : This unit computes the absolute values of differences on

packed subwords. In this design, the architecture of SWP |a - b| unit explained

Chapter 3. SWP in multimedia operations 95

in Section 3.2.3 (Method 3) is used as it gives better overall efficiency (gates x

CP) compared to other methods. However based on the required timing and area

constraints, the SWP |a - b| architectures explained in Section 3.2.1 and 3.2.2 can

also be used. The output of SWP |a - b| unit is in the form of packed subwords

within 40-bit word register. These packed subwords are given to SWP subword

adder unit.

• SWP subword adder unit : Based upon selected subword size (SWPctrl), SWP

subword adder unit perform the addition of subwords packed in 40-bit register. The

output of SWP subword adder unit is a single value. For 8-bit subword size SWP

subword adder unit performs the addition of five 8-bit packed subwords. Similarly

for other subword sizes the packed subwords are added to get single value at the

output. The architecture of SWP subword adder unit is shown in Figure 3.8.

W (7 . . . 0)
W (15 . . . 8)

W (23 . . . 16)

Multiplexer

Output

W (31 . . . 24)
W (39 . . . 32)

+

W (9 . . . 0)

W (19 . . . 10)

W (29 . . . 20)

W (39 . . . 30)

+

W (11 . . . 0)

W (23 . . . 12)

W (35 . . . 24)

+
W (15 . . . 0)

W (31 . . . 16)
+

17

SWPctrl

Subwords
8-bit

Subwords
10-bit

40

W (39 . . . 0)

Subwords
12-bit

Subwords
16-bit

17 17

1717

Figure 3.8: SWP subword adder unit for SWP SAD operator

The bit width at the output of SWP subword adder unit should be selected in

such a way that overflow should not occur for any selected subword size. This

can be ensured if the output bit width of SWP subword adder unit is selected

on the basis of largest subword size (16-bit). This will ensure that no overflow

will occur for smaller subword sizes as well. In case of 16-bit subword size, the

input to SWP subword adder unit are two 16-bit |a - b| values packed in one

register. SWP subword adder unit adds these 16-bit |a - b| values and generate

17-bit value. Therefore the maximum bit-width requirement at the output of SWP

subword adder unit is 17 bits. For other smaller subword sizes (8, 10 and 12 bits),

the output bit-width requirements of SWP subword adder unit is less than 17 bits.

When the output of any addition block in SWP subword adder unit is less than 17

Chapter 3. SWP in multimedia operations 96

bits, it is zero padded before giving it to multiplexer unit. The multiplexer selects

the output on the basis of selected subword size (SWPctrl). The 17-bit output of

SWP subword adder unit is given to accumulator unit

• Accumulator unit : Accumulator unit is used to accumulate recursively the

17-bit output generated by SWP subword adder unit in each clock cycle. As the

accumulation is done in each clock cycle therefore the bit growth will also occur

at the output of accumulator. The output of accumulator is 40-bit wide which

results in a 23 guard bits (40 - 17 = 23) to avoid any overflow. Therefore when

the maximum subword size of 16-bit is selected then the operator can perform

the accumulation of at least 223 values without any overflow. For other smaller

subword sizes the number of values which can be accumulated without any overflow

increases further.

3.3.1 Comparison of simple and SWP SAD operator

The comparison of simple and SWP operators explained above can be done on the basis

of computation time and hardware resources. Computation time is the time required

to compute the SAD of whole block of image. For (16x16) image block with pixel size

of 8 bits, SWP SAD unit requires 55 cycles to compute SAD value of whole block. On

the other hand simple SAD operator requires 259 cycles to compute the SAD value of

(16x16) blocks. Therefore by using SWP SAD operator the numbers of cycles have been

reduced by almost 80%. Maximum parallelism is achieved for smallest subword size of

8-bit. For other subword sizes, the number of cycles required for the computation of

SAD increases accordingly.

The cost for parallelism is the increase in hardware resources of SWP SAD unit. However

due to the efficient design these SWP overheads are very less compared to the speed-up

achieved by SWP. Table 3.4 shows the synthesis results of simple and SWP SAD units

on different target technologies.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP Gates Nand CP Gates
CLB

CP CLBs

Gates (ns) X CP Gates (ns) X CP (ns) X CP

Simple 3197 4.1 13107 4049 9.2 37250 204 14.7 2999

SWP 4368 4.4 19219 5128 9.7 49742 262 15.3 4009

Overhead 37 % 7 % 47 % 27 % 6 % 34 % 28 % 5 % 34 %

Table 3.4: Synthesis results of SAD operator

Chapter 3. SWP in multimedia operations 97

As shown in Table 3.4, SWP SAD operator requires more area and CP resources com-

pared to simple SAD operator. The main reason for this increase is that SWP SAD

operator performs parallel operations compared to simple operator. On 90nm ASIC,

130nm ASIC and FPGA platforms, SWP SAD operator consumes 37%, 27% and 28%

more area compared to simple SAD operator. The major contribution for this area in-

crease is SWP subword adder unit. This unit consumes almost 20% to 25% area of SWP

SAD operator. The registers and other glue logic corresponding to SWP subword adder

unit also consumes some area. This unit is not required in simple SAD operator. On all

target technologies the CP overheads of SWP SAD operator are less than 10%.

3.4 Sum of products (SOP)

The sum of products (SOP) operation is most commonly used in multimedia applica-

tions. SOP operation is given by Equation 5.9

dot product =

N−1
∑

i=0

(ai × bi) (3.5)

Discrete cosine transform (DCT) is one of the most familiar algorithms which utilize

SOP operation. DCT is used in multimedia applications for video compression. DCT

shifts the image from time domain to frequency domain. In DCT, product of pixel values

and coefficients are accumulated to get values of image components in frequency domain

[12, 63]. The most general form of DCT is given by Equation 3.6.

X(K) = α(k)
N−1
∑

n=0

u(n)
cos(2n + 1)

2N
Kπ (3.6)

Where

α(0) =
√

1

N

α(k) =
√

2

N
1 ≤ k ≤ N-1

Where u(n) is the input signal and X(K) is the transformed output. As shown in the

Equation 3.6, the DCT is a computationally complex operation. Different algorithms

have been proposed [3], [9], [7], [12] to reduce the complexity of DCT. But the computa-

tions of SOP terms remain there in all the algorithms. Efficient implementation of SOP

Chapter 3. SWP in multimedia operations 98

increases the performance of processor for multimedia applications. The SOP opera-

tion involve both multiplication and accumulation operations. Multiplication requires

lot of hardware resources compared to addition. Therefore it is obvious that hardware

resources required for SOP operator will be higher than SAD operator. The pipelined

architecture of simple SOP operator is shown in Figure 3.9.

a

b

40

40 (a× b)

(signed)

80

A

C

C

U

M

U

L

A

T

O

R

80

(unsigned)
80 80

80

80

sig/unsig
CLK

CLK CLK

Output

Figure 3.9: Pipelined architecture of sum of products operator

’a’ and ’b’ are two 40-bit inputs. sig/unsig is a single bit input control signal for the

selection of signed or unsigned operations. The process of SOP can be divided into two

main blocks.

• Multiplication : In the first pipelined stage the (a × b) unit computes the

product of two 40-bit numbers ’a’ and ’b’ and generate 80-bit product. This mul-

tiplication can be done by using any of the algorithms like Booth recoding, array

of AND gates etc. (explained in Section 2.3 of Chapter 2). In the implementation

of SOP operator, we have used an array of AND gates for the generation of partial

products. This method can be used for the multiplication of signed as well as

unsigned numbers. On the other hand methods like Booth recoding are dedicated

for the multiplication of signed 2’s complement binary numbers only. Compared

to other complex methods, multiplication using array of AND gates is simple and

can easy be extended to SWP architectures. Based upon the input control signal

sig/unsig, the multiplication is performed on either signed 2’s complement numbers

or on unsigned numbers.

• Accumulation : In the next pipeline stage the product generated by (a × b)

unit is accumulated recursively by using Accumulator unit. The data width at the

output of an Accumulator unit can be increased based upon the requirement of

number of values to be accumulated.

Chapter 3. SWP in multimedia operations 99

3.4.1 SWP sum of products

The SWP SOP operator performs parallel operations on the subwords packed in input

registers. In SWP SOP operator multimedia oriented subword sizes of 8, 10, 12 and

16-bits are considered rather than classical subword size. These subword sizes are in

coordination with pixel sizes in most multimedia applications. The pipelined architecture

of SWP SOP operator is shown in Figure 3.10.

a

b

40

40

(a× b)

(signed)

40

A

C
C
U
M

U

L
A
T

O

R

40

(unsigned)

SWP80 80

33 33

40

40

SWP

subwords
adder

Sig/unsig

SWPctrl
SWPctrl

CLK

CLK

CLKCLK

product

Output

Figure 3.10: SWP sum of product operator

The inputs to SWP SOP operator are two 40-bit vectors and control signals SWPctrl

and sig/unsig. The 40-bit input vectors contain packed subwords. Each 40-bit input

vector contain either five 8-bit subwords or four 10-bit subwords or three 12-bit subwords

or two 16-bit subwords. SWPctrl signals are used to select subword size as per the

requirements. To differentiate between signed and unsigned operations sig/unsig control

signal is used. This control signal indicates whether the packed subwords are signed 2’s

complement numbers or unsigned numbers. The main blocks in the architecture of SWP

SOP operator are given below.

• SWP (a × b) : It is used to multiply the subwords packed in the input registers.

The internal architecture of this unit is based upon the SWP multimedia multiplier

operator explained in Section 2.3.2 of Chapter 2. This SWP multiplier is selected

because it requires minimum hardware resources to incorporate multimedia ori-

ented SWP capability. The design of SWP (a × b) is based on SWP multiplier

prposed in [56]. However the SWP multiplier used in our SWP SOP operator

supports multimedia oriented subword sizes rather than classical subword sizes. It

gives better performance when working on different pixel sizes. Based upon the

selected subword size (SWPctrl) and number format (sig/unsig), the signed or un-

signed multiplication is performed on packed subwords. This unit generate 80-bit

product at the output. The 80-bit output contains product subwords. Due to the

Chapter 3. SWP in multimedia operations 100

multiplication operation, the size of each product subword is double than the size

of corresponding input subword. For 8-bit subword size, each product subword

consists of 16-bit. Similarly for 10-bit subword size, each product subword is 20-

bit wide and so on. The product subwords are given to SWP product subwords

adder unit.

• SWP product subwords adder : This unit performs the addition of packed

product subwords. This addition is done in the same manner as explained in Sec-

tion 3.3 for SAD operation. However in SWP SOP operator, the inputs to SWP

product subwords adder unit are product subwords (16, 20, 24, 32-bit) rather than

simple subwords (8, 10, 12, 16-bit). Therefore the number of bits required to rep-

resent the output of SWP product subwords adder unit also increases accordingly.

The additions performed by SWP product subwords adder unit corresponding to

different selection of subword size are shown in Figure 3.11.

W (15 . . . 0)
W (31 . . . 16)

W (47 . . . 32)

W (63 . . . 48)
W (79 . . . 64)

+

W (19 . . . 0)

W (39 . . . 20)

W (59 . . . 40)

W (79 . . . 60)

+

W (23 . . . 0)

W (47 . . . 24)

W (71 . . . 48)

+
W (31 . . . 0)

W (63 . . . 32)
+

Subwords

Multiplexer

Output

33

SWPctrl

16-bit

W (79 . . . 0)

80

Product
Subwords

20-bit

Product
Subwords

24-bit

Product
Subwords

32-bit

Product

33 33

3333

Figure 3.11: SWP subword adder unit for SWP SOP operator

To ensure the addition of product subwords without any overflow, data size at the

output of SWP product subwords adder unit is selected on the basis of maximum

product subword size. Maximum product subword size is 32-bit which is gener-

ated when two 16-bit subwords are multiplied. As shown in Figure 3.11, when the

selected subword size is 16-bit the 80-bit product register contains two 32-bit prod-

uct subwords. These 32-bit subwords are added by SWP product subwords adder

unit to generate 33-bit output without any overflow. For other smaller subword

sizes, the bit width requirements at the output of SWP product subwords adder

unit are less. For 8, 10, 12-bit subword sizes, the output bit width requirements

of SWP product subwords adder unit are 17, 21, 25 bits respectively. By using

Chapter 3. SWP in multimedia operations 101

bit width corresponding to maximum size subword, the probability of bit overflow

for all the smaller subwords is also avoided. On the basis of selected subword size

(SWPctrl), the multiplexer selects the output of SWP product subwords adder unit.

In the next stage, the 33-bit output of SWP product subwords adder unit is given

to Accumulator unit.

• Accumulator : This unit accumulates the 33-bit outputs from SWP product

subwords adder units recursively in each clock cycle. As the input to accumulator

is always single value rather than packed subwords, therefore SWP capability is

not required in Accumulator design. The output of the accumulator is 40-bit

value. When the maximum subword size (16-bit) is selected the accumulator can

accumulates (27 = 128) values without any overflow. For other smaller subword

sizes the number of values which can be accumulated increases further.

3.4.2 Comparison of simple and SWP sum of products operator

For different block sizes, SWP SOP unit computes the sum of products in less time

compared to simple SOP operator. This decrease in time occurs because SWP SOP

operator performs multiple parallel operations in each clock cycle. For (16x16) image

size, the SWP SOP operator requires 80%, 74%, 65% and 49% less cycles to compute sum

of products when the pixel sizes are 8, 10, 12 and 16-bit respectively. This decrease in

cycles occutr because SWP SOP operator fully utilize the data path, registers, operating

units etc. even though it is working on low precision pixel data.

Due to the multiple parallel operations, the hardware requirements of SWP SOP opera-

tor is usually higher than simple SOP operator. However the efforts are made to increase

the parallelism along with minimum resource increase. Table 3.5 shows the synthesis

results of simple and multimedia oriented SWP SOP operators.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP Gates Nand CP Gates
CLB

CP CLBs

Gates (ns) X CP Gates (ns) X CP (ns) X CP

Simple 17220 6.1 105042 13847 14.1 195243 1031 19.9 20517

SWP 20665 7.2 148788 16061 17.3 277855 1903 21.7 41295

Overhead 20 % 18 % 42 % 16 % 23 % 41 % 85 % 9 % 95 %

Table 3.5: Synthesis results of sum of products operator

SWP SOP operator consumes more resources compared to SWP SAD operator because

of the involvement of multiplication operation. Multiplication is more costly operation

compared to absolute difference or addition operation. However due to the use of efficient

Chapter 3. SWP in multimedia operations 102

methods for partial product generation and addition in SWP multiplier unit, the area

and CP overheads of SWP SOP operator are not much higher than simple SOP operator.

On ASIC platform, the area and CP overheads are between 15% to 25% only. These

overheads also include the area and CP consumed by SWP product subwords adder unit

and corresponding interconnection cost. On FPGA platform, due to the use of CLBs

rather than gates, area and CP overheads are 85% and 9% respectively.

3.5 Sum of additions/subtractions

This operation is required in the situation when the recursive accumulation of pixels

sum or difference is needed in certain computations like DCT, discrete wavelet transform

(DWT), finite impulse response (FIR) filters, infinite impulse response filters (IIR) filters

etc. The sum of addition/subtraction operation is given by Equation 3.7.

Sum of addition/subtraction =
N−1
∑

i=0

(ai ± bi) (3.7)

The hardware architecture for sum of additions/subtractions unit is shown in Figure

3.12.

a

b

40

40 (a± b)

(signed)

41

A

C

C

U

M

U

L

A

T

O

R

41

(unsigned) 41 41

41

41

add/sub

CLK

CLK

CLK

output

Figure 3.12: Sum of addition/subtraction operator

’a’ and ’b’ are two 40-bit input numbers (signed/unsigned). The input control signal

add/sub is used to select addition or subtraction operation. Based upon selected oper-

ation, (a ± b) unit either performs addition or subtraction. From the hardware point

of view, the subtraction process is almost similar to addition process. In subtraction

process, the 2’s complement of the operand which needs to be subtracted is taken before

the addition. To avoid any overflow, the output of (a ± b) unit is represented by 41

bits. Due to the allocation of one extra bit, overflow can not occur even though when

Chapter 3. SWP in multimedia operations 103

both inputs ’a’ and ’b’ gets maximum values. The output of (a± b) unit is accumulated

recursively by using Accumulator unit. In each clock cycle, the sum of additions or

subtractions is obtained at the output of operator.

3.5.1 SWP sum of additions/subtractions

By using multimedia oriented SWP in
∑

(a ± b) architecture we can perform the same

operation on multiple subwords in parallel. By doing so all the operator’s resources

are fully utilized even though the size of pixels is less than the word size of operator.

Keeping in view the utility of
∑

(a ± b) operation, SWP version of this operator is also

designed. The architecture of SWP
∑

(a ± b) operator is shown in Figure 3.13.

a

b

40

40

(a± b)

(signed)

40

A

C

C

U

M

U

L

A

T

O

R

40

(unsigned)

SWP45 45

17 17

40

40

SWP

subwords

adderSWPctrl

SW Pctrl

add/sub

CLK

CLK

CLKCLK

Output

Figure 3.13: SWP sum of addition/subtraction operator

’a’ and ’b’ are two 40-bit input vectors which contain packed subwords. SWP
∑

(a± b)

mainly consists of three main units.

• SWP (a ± b) : This unit is used to compute sum or difference of subwords

packed in two input registers. This unit can perform either five {a(8bit)±b(8bit)} or

four {a(10bit)±b(10bit)} or three {a(12bit)±b(12bit)} or two {a(16bit)±b(16bit)}

or one {a(40bit) ± b(40bit)} operations. Its architecture is based on SWP adders

explained in section 2.2 of Chapter 2. Based upon the design constraints, the

adders/subtractors between the subword control logic can be of any type. In SWP

(a ± b) unit, optamized adder/subtractor from library are used between control

logic. There are two external control signals to this unit which are SWPctrl and

add/sub signals. SWPctrl signals are used for subword size selection and add/sub

control signal is used to select the desire operation. In case of addition or sub-

traction, overflow of result is avoided by using one extra bit. However in SWP

Chapter 3. SWP in multimedia operations 104

operator, one extra bit is allocated to each resultant subword to avoid any over-

flow. Therefore the number of the overflow bits is equal to the number of subwords

packed in the register. For different subword sizes the numbers of subwords packed

in word size registers are different. Therefore the number of overflow bits require-

ment will be different for different subword sizes. The arrangement of overflow bits

corresponding to different subword sizes is shown in Figure 3.14.

7 . . . 0816 . . . 925 . . . 1834 . . . 2743 . . . 36 17263544

Overflow

bit
Overflow

bit

Overflow

bit

Overflow

bit

Overflow

bit

9 . . . 020 . . . 1131 . . . 2242 . . . 33 2132 1043

Overflow

bit
Overflow

bit

Overflow

bit

Overflow

bit

11 . . . 024 . . . 1337 . . . 26 2538 12

Overflow

bit

Overflow

bit

Overflow

bit

15 . . . 032 . . . 1733 16

Overflow

bit
Overflow

bit

(a) Subword size = 8-bit

(b) Subword size = 10-bit

(c) Subword size = 12-bit

(d) Subword size = 16-bit

Figure 3.14: Arrangement of over flow bits for different subword sizes

Maximum number of subwords are packed in word size register when the selected

subword size is minimum. In this case five subwords (maximum number of sub-

words) are packed in 40-bit register when the selected subword size is 8-bit (min-

imum subword size). Therefore five overflow bits are required for 8-bit subword

size. For other subword sizes the number of overflow bits required are less. For

10, 12 and 16-bit subword sizes four, three, two overflow bits are required respec-

tively. Due to these overflow bits, the output of SWP(a ± b) unit consists of 45

bits instead of 40 bits. The 45-bit output of SWP (a ± b) unit is selected based

upon the smallest subword size. The output of SWP(a ± b) unit is given to SWP

subwords adder unit.

• SWP subwords adder : This unit adds the packed subwords and generates

single value at the output. As the output of SWP(a ± b) unit consist of 45 bits.

Therefore each subword is represented by (selected subword size + 1) bits. The

addition of these subwords using SWP subwords adder unit is shown in Figure

3.15.

As shown in Figure 3.15, to avoid any overflow, 18 bits are allocated at the output

of SWP subwords adder unit. These bits are selected on the basis of maximum

subword size of 16-bit. The 18-bit output of SWP subwords adder unit is given to

Accumulator unit.

Chapter 3. SWP in multimedia operations 105

W (8 . . . 0)
W (17 . . . 9)

W (26 . . . 18)

W (35 . . . 27)
W (44 . . . 36)

+

W (10 . . . 0)

W (21 . . . 11)

W (32 . . . 22)

W (43 . . . 33)

+

W (12 . . . 0)

W (25 . . . 13)

W (38 . . . 26)

+
W (16 . . . 0)

W (33 . . . 17)
+

Subwords

Multiplexer

Output

18

SWPctrl

8-bit with

W (44 . . . 0)

45

overflow

bits

Subwords

10-bit with

overflow

bits

Subwords

12-bit with

overflow

bits

Subwords

16-bit with

overflow

bits

1818

18 18

Figure 3.15: SWP subword adder unit for SWP
∑

(a ± b) operator

• Accumulator : This unit performs the recursive accumulation of 18-bit data

in each clock cycle. The output of accumulator consists of 40 bits. For maximum

subword size of 16-bit, Accumulator unit can perform at least 222 accumulations

without any overflow.

3.5.2 Comparison of simple and SWP
∑

(a ± b) operators

Due to parallelism, SWP
∑

(a ± b) operator performs more operations compared to

simple
∑

(a ± b) operator. The actual speed up achieved will depend upon selected

subword size. Smaller the subword size, higher will be the parallelism. Table 3.6 shows

the synthesis results of simple and SWP
∑

(a± b) on both ASIC and FPGA platforms.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP Gates Nand CP Gates
CLB

CP CLBs

Gates (ns) X CP Gates (ns) X CP (ns) X CP

Simple 2370 2.45 5807 2789 5.95 16595 204 14.1 2876

SWP 3697 2.79 10315 3963 6.84 27107 291 15.2 4423

Overhead 56 % 14 % 78 % 42 % 15 % 63 % 43 % 8 % 54 %

Table 3.6: Synthesis results of
∑

(a ± b) operator

In SWP
∑

(a±b) operator, resources are consumed by SWP (a ± b) unit, SWP subwords

adder unit, Accumulator unit and interconnection network. These units consume almost

24%, 27%, 9% and 40% area respectively. Table 3.6 shows the area and CP overheads of

Chapter 3. SWP in multimedia operations 106

SWP operator. Although the SWP
∑

(a±b) operator consume more resources compared

to simple
∑

(a±b) operator but its efficiency is much better compared to simple operator

due to the parallel processing of subwords.

3.6 Conclusions

In this chapter different operations which are most commonly required in multimedia

applications are discussed. Simple and SWP version of each of these operators are de-

signed and the comparisons are made on different target technologies. Most of the time

SWP operators require more resources compared to the simple operators. However the

efficiency of SWP operators is higher because they can process multiple data items in

each clock cycle. By using multimedia oriented SWP capability, we can increase the ef-

ficiency of operator many times at the cost of only small increase in hardware resources.

This efficiency increase depends upon the selected subword size. Smaller subword sizes

offer more parallelism compared to larger subword sizes. Keeping in view the perfor-

mance of SWP operators, the small area and CP overheads are of less importance. Based

upon the SWP operators discussed so for, the architecture of reconfigurable multimedia

operator will be discussed in next chapter. This operator can perform different basic as

well as multimedia operations on multiple subword size data.

Chapter 4

Reconfigurable SWP operator for

multimedia processing

For performance enhancement, reconfigurable processors have to overcome the overheads

of reconfigurations such as complexity of interconnection network and reconfiguration

time. In the processors dealing with multimedia applications these overheads can be

reduced by providing the reconfigurability inside the processing units rather than at

interconnection level. Due to low precision data nature of multimedia applications,

reconfiguration at operator level also provides additional speedup through parallel ex-

ecution of low precision data. In this chapter pipelined architecture of reconfigurable

coarse grain subword parallel (SWP) operator is presented for multimedia applications.

This operator not only eliminates the need of reconfiguration time but also provide the

reconfigurability at both data size level (different pixel data sizes) and at operation level

(different multimedia oriented operations). This ensures the better utilization of proces-

sor resources and reduces the reconfiguration overheads significantly. The contents of

this chapter are based on our publications [50] and [69].

The rest of this chapter is organized as follows: Section 4.1 gives the brief overview

of reconfigurations at different levels in the processor’s design and their overheads. In

section 4.2, pipelined architecture of coarse grain reconfigurable SWP operator is pre-

sented. In section 4.3, architectures of all the basic SWP units which are used in the

construction of reconfigurable operator are described. In section 4.4 different units for

the arrangement and alignment of subwords and the interconnection units which are

used in reconfigurable SWP operator are presented. Section 4.5, elaborates different

multimedia operations which can be performed using reconfigurable SWP operator. In

section 4.6, synthesis results of implementing proposed reconfigurable operator on both

ASIC and FPGA platforms are summarized. Section 4.7 contains the discussion on the

107

Chapter 4. Reconfigurable SWP operator for multimedia processing 108

performance of our reconfigurable operator compared to operators in state of the art

DSP chips. Finally we conclude the chapter in section 4.8.

4.1 Reconfigurable architectures

Reconfiguration is one of the most efficient ways to increase the efficiency of processor.

In the reconfiguration process, the processor adopt itself dynamically for the new set

of tasks [5], [106], [86]. Using reconfigurable processors, several tasks can be performed

on the same hardware merely by changing its configuration. Reconfigurable computing

is intended to fill the gap between hardware and software, achieving potentially much

higher performance than software, while maintaining a higher level of flexibility than

hardware [18]. There are several levels at which the reconfiguration can be done during

the processing.

4.1.1 Reconfiguration at interconnection level

Multimedia applications are normally computationally intensive with low precision pixel

data such as 8, 10, 12 or sometimes 16-bits. Traditional reconfiguration at intercon-

nection level [21], [81], [92] tries to increase the flexibility and efficiency of processor

through the reconfiguration of interconnection network at bit level for new set of ap-

plications without concentrating on the internal reconfigurability of different processing

units. Thus, for each new application, interconnection network reconfigures itself and

processing units remain almost idle during reconfiguration process [4], [79], [96]. An

overview of reconfiguration at this level is shown in Figure 4.1.

Reconfigurable interconnection network

Processing

element

Processing

element

Processing

element.

Processing

element

Processing

element

Processing

element
.

Figure 4.1: Reconfiguration at interconnection level

Chapter 4. Reconfigurable SWP operator for multimedia processing 109

This lack of focus on the internal reconfiguration of processing units for new set of

data and applications results in the under utilization of processor’s resources such as

arithmetic operators, datapath, registers etc. Due to low precision data in multimedia

applications, these traditional reconfiguration methods increase the complexity of inter-

connection network and do not effectively contribute too much to speed up the overall

processor efficiency.

4.1.2 Reconfiguration at operator’s level

In this chapter, coarse grain reconfigurable pipelined operator is proposed for multimedia

applications. This operator increases the resource utilization through reconfiguration at

both data size selection level (subword size) and at operation level. Reconfigurations

at operator’s level not only reduce the complexity of interconnection network but also

increase the utilization of processor resources for multimedia applications. The operator

can be reconfigured to operate on different data sizes through the use of subword par-

allelism (SWP). In SWP low precision pixel data (subwords) are packed into word size

registers and the same operation is performed in parallel on all the packed subwords.

This parallel execution of subwords increases the utilization of processor resources and

thus improves the efficiency [30, 98]. Compared to existing methods [20, 28, 56], multi-

media oriented pixel data sizes are considered rather than conventional data sizes.

4.1.3 Reconfigurability using SWP

SWP techniques has been carried out on the basic arithmetic operators (ADD, SUB,

MULT etc.) to increase the performances of processors. These basic SWP operators

perform parallel operations on subwords which are conveniently compatible with the

word size of processor. By doing this, processor can achieve more parallelism rather

than wasting the word size datapath and register sizes when operating on low precision

data [16, 26]. Subwords can be of any size depending upon the application data. Con-

ventionally the word size of processor is multiple of subword sizes which helps to reduce

the complexity of SWP operators. For instance, some of the conventional subword sizes

for 64-bit processors are 8, 16 and 32 bits.

These conventional subword sizes increase the performance of general purpose processors

due to the availability of data which is either of one byte length or some multiple of byte

length. Several basic SWP operators have already been proposed. In [28], SWP adder

operator is proposed which performs addition of conventional subword size data. In

[56] [19] [11] [20] efficient SWP enabled multiplier and MAC operators are presented for

different platforms. All these basic SWP operators are designed for conventional subword

Chapter 4. Reconfigurable SWP operator for multimedia processing 110

sizes. However in multimedia applications, the input data (pixels) for computations is

8, 10, 12 or sometimes 16-bits. These multimedia data sizes are not in coordination

with existing processor’s subword sizes resulting in the under utilization of processor

resources.

4.2 SWP Reconfigurable multimedia operator

In the proposed reconfigurable SWP operator, multimedia oriented subword sizes are

considered rather than conventional subword sizes. This operator can be reconfigured

to operate on variety of multimedia oriented subword data sizes. Unlike a normal re-

configurable processor, no reconfiguration time is required for reconfiguring the operator

to new subword size operation. At operation level the operator can be reconfigured to

perform variety of multimedia oriented arithmetic operations on subword data. These

operations include addition, subtraction, multiplication, absolute value, sum of absolute

difference (SAD), sum of product etc. Without even increasing the complexity of in-

terconnection network, reconfiguration is provided at both data size level and operation

level. This reconfigurable operator can be used as a processing unit in any multimedia

based pipelined processor. In this chapter, architecture of this reconfigurable opera-

tor is proposed and its performance is analyzed by implementing it on different target

technologies.

4.2.1 Architecture of SWP Reconfigurable operator

To perform parallel computations on low precision multimedia oriented pixel data, a

40-bit reconfigurable operator has been designed. The architecture of this operator is

shown in figure 4.2.

Reconfigurable SWP operator can perform operations on word size operands (40-bits) as

well as on subwords (8 or 10 or 12 or 16-bits) packed in word size registers. Word size of

40-bits is chosen because it gives good efficiency/complexity trade off and ensures better

resource utilization with different multimedia oriented pixel sizes. Control bits used to

select the subword size are communicated to all the units which contain SWP capabilities.

To clarify the schematic, these control bits are not shown in Figure 4.2. When selected

subword size is 8-bits then each input is considered as five 8-bit subwords packed in a

40-bit word. Hence on each 8-bit configuration, the SWP operator performs five same

8-bit basic operations in parallel. Basic operations are addition, subtraction, absolute

value and multiplication. For subword size of 10-bits, the SWP operator performs four

10-bit operations in parallel, and three 12-bit operations or two 16-bit operations for

Chapter 4. Reconfigurable SWP operator for multimedia processing 111

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subword

(signed/

SWP
subword
Adder

SWP
subword

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subword

MSBs

Extractor

(unsigned)

33

33

33

40

11

10

01

00
40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

LSBs
&

Figure 4.2: SWP reconfigurable multimedia operator

subword sizes of 12-bits or 16-bits respectively. In other words, the operator can be

configured for both the computation it executes and the size of data. Based on the

requirements, reconfigurable SWP operator can perform operations on signed as well as

unsigned data formats and gives the results in required format. Based on the selected

operation the output of reconfigurable operator can be in the form of subwords or single

accumulated value.

4.2.2 Connectivity of reconfigurable operator with other operators

In SWP reconfigurable operator, the length of input and output data vectors is limited

to word length (40-bits) to ensure better connectivity with other processor’s operators.

The input and output ports of SWP reconfigurable operator are shown in Figure 4.3.

Chapter 4. Reconfigurable SWP operator for multimedia processing 112

SWP Reconfigurable

Multimedia

Operator

ai bi

OP-code SWPctrl

Output

40-bit 40-bit

40-bit

Figure 4.3: Inputs and outputs of SWP reconfigurable operator

As shown in Figure 4.3, the inputs and output of SWP reconfigurable operator consists

of following signals.

• Input vectors ai and bi These are two 40-bit input vectors which contains the

data to be processed. Based on selected subword size, the SWP reconfigurable

operator considers each input vector as either five 8-bit pixels or four 10-bit pixels

or three 12-bit pixels or two 16-bit pixels.

• Operation code (Op-code) The OP-code contains the information about the

operation which needs to be performed on input data. The control unit activates

different arithmetic and interconnection units in accordance with selected OP-code

to perform required operation.

• Subword control signals (SWPctrl) These signals are used to select subword

size in SWP reconfigurable operator. Based upon SWPctrl signals, the arithmetic

operations are performed on either 8, 10, 12 or 16-bit subword sizes.

• Output vector The output of SWP reconfigurable operator consists of 40-bit vec-

tor which contains resultant subwords. However if the result of certain operations

requires more than word data length then it can be obtained at output in multiple

clock cycles.

To increase the operating frequency and throughput, the three stage pipelined architec-

ture is used in the implementation of SWP reconfigurable operator. SWP operator gives

high precision results with either no or minimum number of bit loss while performing

different multimedia operations. For the operations which involve the recursive accu-

mulation of results, overflow due to bit growth is avoided by allocating guard bits in

accordance with 40-bit word length.

Chapter 4. Reconfigurable SWP operator for multimedia processing 113

4.2.3 Building blocks of reconfigurable operator

The primary blocks for SWP reconfigurable operator consists of SWP arithmetic units.

However for subword arrangement and alignment purpose, additional units are also re-

quired in the architecture of SWP reconfigurable operator. This reconfigurable operator

is designed to perform basic as well as complex multimedia operations. Therefore to se-

lect appropriate inputs for different arithmetic units, interconnection elements are also

required. Mainly the reconfigurable SWP operator consists of following building blocks.

• SWP basic arithmetic units

• MSBs and LSBs extraction units

• Accumulator unit

• Bit conversion units

• SWP subword adders units

• Multiplexer units

These units are connected in such a way that variety of multimedia oriented basic and

complex SWP operations can be performed such as SAD for motion estimation algo-

rithm, sum of products for DCT algorithm etc. SWP reconfigurable operator is designed

in such a way that for performing any particular computation only the required blocks

are activated by controller. This will reduce the unwanted switching activity at the

ports, which ultimately reduce the overall power consumption of the operator.

4.3 Basic SWP arithmetic units

Basic SWP arithmetic units are the main processing elements in reconfigurable operator

design. SWP capability is incorporated in these units with the minimum increase in area

and speed overheads. These units can perform basic arithmetic operations on input data

of different subword sizes and formats (signed/unsigned). These operations include SWP

(a± b) signed, SWP (abs) signed, SWP (a× b) signed/unsigned, SWP |a− b| unsigned,

SWP (a + b) unsigned. Word size 40-bit operations can also be performed by basic SWP

arithmetic units. For complex multimedia operation combination of different basic SWP

arithmetic units are used along with other glue logic.

Chapter 4. Reconfigurable SWP operator for multimedia processing 114

4.3.1 SWP ADD and SUB units

SWP (a±b) signed operator is used to perform addition or subtraction of signed subword

data. Addition or subtraction operation is selected with the input control signal. Sub-

traction is same as addition except in subtraction two’s complement of operand which

needs to be subtracted is taken before addition. Its architecture is based upon the SWP

multimedia adder operator explained in section 2.2.2 of chapter 2. Based upon the se-

lected subword size, internal carry control bits at different subword boundaries are made

either ’0’ (breaking carry chain) or ’1’ (continuing carry chain). The adders between the

carry control logic can be ripple carry adder RCA or carry look ahead adder CLA or

Group CLA or carry save adder CSA etc. However for SWP designs group CLA gives

better results compared to other adders. Most modern synthesis tools contain highly

optimized adders which are used to meet design constraints. In our implementation,

instead of implementing adder at gate level, efficient adders available in the library are

used between the control logic and their results are found to be almost similar to Group

CLA adders in SWP architectures. For subword size of 8-bits, SWP (a±b) unit performs

five addition or subtraction operations. The output of each subword operation requires

one extra bit to avoid any overflow resulting in an overall vector length of 45-bits inter-

nally. In case the reconfigurable operator is used for addition or subtraction operations

only then 40-bit result can be obtained at the output by throwing away one bit from

each resultant subwords obtained from SWP (a ± b) unit. The computation of SWP

(a ± b) and its routing to operator’s output is highlighted in Figure 4.4.

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subword

(signed/

SWP
subword
Adder

SWP
subword

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subword

MSBs

Extractor

(unsigned)

33

33

33

40

11

10

01

00
40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

LSBs
&

Figure 4.4: SWP (a ± b) operation using reconfigurable operator

Chapter 4. Reconfigurable SWP operator for multimedia processing 115

The 45-bit output of SWP (a ± b) unit is reduced to 40-bit using SWP 45 to 40-bit

converter unit (see section 4.4.1). By using the appropriate control signals, the 4 to 1

multiplexer passes the resultant 40-bit vector to the output of operator. The lossless

results can also be obtained at output at the cost of minor decrease in parallelism. For

this purpose input pixels are bit extended and higher order subword size is selected for

performing computations on lower size pixel data (e.g operations on 8-bit pixels using 10-

bit subword size operator) to avoid any overflow. To preserve the accuracy of operations

involving the accumulation of results, lossless 45-bit results from SWP (a ± b) unit are

used inside the reconfigurable operator.

4.3.2 SWP Absolute signed

SWP Absolute signed unit is used to perform the absolute operation on signed subword

data. The absolute operation gives the magnitude of signed number. If the number is

positive then the absolute operation gives the same input as output. However, if the

number is negative then the absolute operation gives the positive magnitude of the num-

ber at the output. In 2’s complement numbers, the MSB of the number has negative

weight. Therefore the operation performed by SWP Absolute signed unit depends upon

the value of MSB of each subword. If the MSB of the subword is ’1’ then two’s comple-

ment of corresponding subword is taken. However if the MSB of subword is ’0’ then the

absolute operator will generate the same input at the output. This process is shown in

Figure 4.5 for subword size of 8-bit.

38 . . . 32 30 . . . 24 22 . . . 16 14 . . . 8 6 . . . 0MSBMSBMSBMSBMSB

If

MSB =

’1’

Take 2’s
complement

of subword

7 . . . 0

Yes

No

If

MSB =

’1’

Take 2’s
complement

of subword

15 . . . 8

Yes

No

If

MSB =

’1’

Take 2’s
complement

of subword

23 . . . 16

Yes

No

If

MSB =

’1’

Take 2’s
complement

of subword

Do not

complement
take 2’s

31 . . . 24

Yes

No

If

MSB =

’1’

Take 2’s
complement

of subword

39 . . . 32

Yes

No

40-bit

40-bit

Do not

complement
take 2’s

Do not

complement
take 2’s

Do not

complement
take 2’s

Do not

complement
take 2’s

Figure 4.5: SWP absolute operation for signed subwords

The input and output subword data sizes of SWP Absolute signed unit are same. The

resultant subwords from SWP Absolute signed unit can be used internally or it can be

obtained directly at the output of reconfigurable operator.

Chapter 4. Reconfigurable SWP operator for multimedia processing 116

4.3.3 SWP multiplier unit

SWP (a × b) signed/unsigned unit is used to perform SWP multiplication of signed as

well as unsigned data. The detail architecture for the generation and addition of partial

products (PPs) for this unit has already been explained in Section 2.3.2 (Multimedia

SWP multiplier) of Chapter 2. The implementation of SWP multiplier unit is based upon

an extension of SWP multiplier proposed in [56]. Compared to other SWP multipliers

which are based on algorithms like Booth recoding etc., SWP multiplier proposed in

[56] gives good efficiency as it does not require any detection and suppression of carries

at subword boundaries. The SWP multiplier proposed in [56] supports only classical

subword sizes (8, 16 and 32-bits etc.). However in our implementation of SWP multiplier

for reconfigurable operator, the multimedia oriented subword sizes of 8, 10, 12 and

16-bits are considered which do not have any uniform arithmetic relation with word

size (40-bit) of SWP operator. To reduce the hardware, PPs for different selection

of subword sizes are generated using generalized PP generation unit. Bit inversions

and addition of correction vectors are done based upon the selected multiplication type

(signed/unsigned) and the subword size. On ASIC technology, compared to simple

multiplier, the area and critical path overhead for incorporating multimedia oriented

SWP capability in multiplier architecture is approximately 5% and 14% respectively.

• SWP MSBs and LSBs extraction unit : Like the inputs, the output data of

all the basic SWP units can be represented by subwords packed in 40-bit registers

except for SWP (a × b) unit whose output consists of subwords packed in 80-bit

register. The packed subwords in 40-bit register can be obtained at the output of

reconfigurable operator through the use of appropriate control bits. However the

packed subwords in 80-bit register from SWP (a × b) unit can not be obtained at

output at one time because output data length is limited to 40-bits. To overcome

this limitation, 80-bit product is divided into 40-bit MSBs and LSBs parts. This

function is performed by SWP product subword MSB & LSB extractor unit. Based

upon the selected subword size this unit extracts MSBs and LSBs parts of 80-bit

product subwords. For 8-bit subword size, this process is shown in Figure 4.6.

For subword size of 8-bits, SWP product subword extractor unit extracts (71 . . . 64,

55 . . . 48, 39 . . . 32, 23 . . . 16, 7 . . . 0) and (79 . . . 72, 63 . . . 56, 47 . . . 40, 31 . . . 24,

15 . . . 8) 40-bit parts of product. Based on the requirement one of these parts

is selected using multiplexer unit. Hence the complete product is obtained at the

output of reconfigurable operator in the form of subword LSBs and MSBs in suc-

cessive clock cycles. For other subword sizes the extraction of MSBs and LSBs

parts are done accordingly. The SWP product subword MSB & LSB extractor unit

is also useful when performing computations on fixed point numbers. Based on the

Chapter 4. Reconfigurable SWP operator for multimedia processing 117

31 . . . 16 15 . . . 047 . . . 3263 . . . 4879 . . . 64

SWP

Product Subword

MSBs

Extractor

LSBs&

LSB Part

80-bit

MSB Part

79 . . . 72 63 . . . 56 47 . . . 40 31 . . . 24 15 . . . 8 71 . . . 64 55 . . . 48 39 . . . 32 23 . . . 16 7 . . . 0

40-bit 40-bit

Figure 4.6: SWP product subword MSB and LSB part extractor

requirements, only MSB part of resultant subwords can be retained which would

result in the reduction of precision. Similarly for high precision results in fixed

point algorithms, LSB part of resultant subwords can be retained.

The arithmetic and interconnection units of SWP reconfigurable operator which are used

to obtain the product subwords at the output are highlighted in Figure 4.7.

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subword

(signed/

SWP
subword
Adder

SWP
subword

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subword

MSBs

Extractor

(unsigned)

33

33

33

40

11

10

01

00
40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

LSBs
&

Figure 4.7: SWP multiplication using reconfigurable operator

As shown in Figure 4.7, the control unit activates all the highlighted units to perform

multiplication operation. The 2 to 1 multiplexer unit at the output of SWP product

subword MSBs & LSB extractor unit is used to select either LSBs or MSBs part of

product subwords. This 40-bit part is then routed to the output by using ’00’ control

Chapter 4. Reconfigurable SWP operator for multimedia processing 118

signals for 4 to 1 multiplexer unit. Therefore in successive clock cycles, whole 80-bit

product subwords are obtained at the output of reconfigurable operator.

4.3.4 SWP |a − b| unsigned

SWP |a− b| unsigned unit is used to perform absolute difference of unsigned subwords.

This unit is required because usually the pixels are stored as unsigned data. The basic

architecture of this unit is based upon the SWP absolute difference unit explained in

Section 3.2.3 of chapter 3 (Method 3). To avoid the absolute operation, this unit either

calculates a−b (when a > b) or b−a (when b > a). One other reason to avoid the absolute

operation is that the result of (a− b) can be either positive or negative and in unsigned

format it is not possible to represent negative number. Therefore SWP |a− b| unsigned

operation is obtained without actually implementing absolute calculation hardware. Due

to subtraction operation bit overflow is not possible hence 40-bits are sufficient enough

to store the subwords of any size. Similarly SWP (a+b) unsigned unit is used to perform

the addition of unsigned subwords. To avoid any internal overflow 45-bits are allocated

to store resultant subwords from SWP (a + b) unsigned unit.

4.3.5 Accumulator unit

This unit is used to accumulates recursively the outputs generated by basic arithmetic

operators. Before giving to accumulator unit, the subwords are added by using SWP

subword adder units. The input to accumulator unit is 33-bit number and the output of

the accumulator is 40-bit number. The output is fed back for the recursive accumulation

in each clock cycle. The number of values which can be accumulated without any

precision loss depends upon the selected subword size. Smaller the subword size, higher

will be accumulations without any precision loss.

4.4 Subword alignment and interconnection units

In addition to basic SWP arithmetic units, SWP reconfigurable operator also requires

certain units for subword arrangements and alignments. These units arrange the sub-

words in proper order so that the desire computations can be performed in parallel.

In order to share the arithmetic units for different multimedia operations, different in-

terconnection units are used. These units include multiplexer units, register units etc.

The controller generates appropriate control signals to activate the required units cor-

responding to each operation.

Chapter 4. Reconfigurable SWP operator for multimedia processing 119

4.4.1 Bit conversion units

When working on subwords of data, it is required to align the subwords in the reg-

isters before any computation. For this purpose Bit conversion units are used in the

architecture of SWP reconfigurable operator. These units either extend or contract the

subwords packed in the registers. There are two types of bit conversion units which are

used in SWP reconfigurable operator.

• SWP 40 to 45-bit converter : This unit expand the 40-bit input vector to 45-

bit. It aligns the 40-bit output of SWP |a− b| unsigned unit with 45-bit output of

SWP (a+b) unsigned unit. In this conversion each subword is expanded by one bit.

As the input subwords are unsigned numbers, therefore each subword is expanded

by ’0’ bit. If the subwords are signed 2’s complement numbers then the MSB of

each subword is bit extended instead of ’0’ padding. The number of expanded bits

depends upon the number of subwords packed in the input register. For different

selection of subword sizes, there are different numbers of subwords packed in the

register. The process of subwords expansion for 8-bit unsigned subwords is shown

in Figure 4.8.

15 . . . 8 7 . . . 023 . . . 1631 . . . 2439 . . . 32

SWP

40− bit to

Converter

(Unsigned)

39 . . . 32 31 . . . 24 23 . . . 16 15 . . . 8 7 . . . 0’0’ ’0’ ’0’ ’0’ ’0’

9-bit9-bit 9-bit9-bit9-bit

45-bit

45− bit

8-bit

40-bit

8-bit8-bit 8-bit8-bit

Figure 4.8: Expansion of unsigned subwords

As shown in Figure 4.8, for 8-bit subword size the 40-bit vector is expanded to 45-

bit vector. The arrangement of expanded bits will be different for different selection

of subword sizes. For 8, 10, 12 and 16-bit subwords, the number of expanded bits

are 5, 4, 3 and 2 bits respectively. As the subword size increases the number of

expanded bits reduces but the output vector length remains 45-bit. The unused

bits are set to ’0’.

• SWP 45 to 40-bit converter : This unit contracts the 45-bit input vector

to 40-bit vector. Each subword within the input register is contracted by one bit.

This contraction is required because the output of SWP reconfigurable operator

Chapter 4. Reconfigurable SWP operator for multimedia processing 120

is 40-bit. Contraction from 45-bit to 40-bit is only required when the output of

basic arithmetic units are directly required at the output. As a result of this

contraction, there is a slight loss of precision. However this contraction is not

required for the operations which perform the accumulation of results generated

by basic arithmetic units. Therefore no precision will be lost for accumulation

based operations. These operations include
∑

(a ± b),
∑

(a × b),
∑

|a − b| etc.

4.4.2 SWP subword adders units

The inputs to SWP subword adder unit are resultant subwords from different basic

SWP arithmetic units. Based upon the selected subword size, the SWP subword adder

unit separates the Nsa subwords xi packed in the input register and then performs the

addition of these subwords. The expression of the SWP subword adder output zsa is

equal to

zsa =

Nsa−1
∑

i=0

xi (4.1)

For alignment purpose before the addition, SWP subword adder unit performs either sign

extension (signed subwords) or zero padding (unsigned subwords) of subwords depending

upon the selected data format. The output of SWP subword adder unit consists of 33-

bit. This 33-bit data length is selected based upon the worst case of 16-bit subword size

for
∑

(a× b) operation with no bit loss (For details see Section 4.5.1 of Chapter 3). For

other subword sizes and operations, the data length requirements at the output of SWP

subword adder units are less. There are three SWP subword adders units used in SWP

reconfigurable operator design.

• 45-bit SWP subword adder (unsigned) The input to this unit is 45-bit vector

which contain unsigned packed subwords. These unsigned subwords are added and

extended by zero padding to 33-bit output.

• 45-bit SWP subword adder (signed) The input to this unit is 45-bit vector

which contain signed packed subwords. These signed subwords are added and bit

extended to 33-bit output.

• 80-bit SWP subword adder (signed) This unit is used to add the product

subwords generated by (a × b) unit. The input of this unit is 80-bit vector which

contain product subwords. These subwords are added to generate 33-bit output.

Chapter 4. Reconfigurable SWP operator for multimedia processing 121

4.4.3 Multiplexer units

Multiplexers are used to provide appropriate data to basic SWP arithmetic units. Based

upon the operation need to be performed, controller unit generates appropriate control

(ctrl) signals for the multiplexers and enable signals for registers. There are three types

of multiplexer units which are used in SWP reconfigurable operator design.

• Two to one Multiplexer

• Three to one Multiplexer

• Four to one Multiplexer

As shown in Figure 4.2, three units of 2 to 1 multiplexers , one unit of 3 to 1 multiplexer

and one unit of 4 to 1 multiplexer are used. For performing any particular operation

if the output of certain multiplexer unit is not required, it is disabled to reduce the

switching activity.

4.5 Complex multimedia operations

For certain multimedia applications more complex operations are required. For instance

the operation required in the computation of SAD is given by

SAD =
N−1
∑

i=0

|ai − bi| (4.2)

Similarly the multiplication-accumulation or dot product operation required in the com-

putation of discrete cosine transform DCT algorithm is given by

DOTP =
N−1
∑

i=0

(ai × bi) (4.3)

Rather than subwords which sometimes provide loss of bit, these operations produce

lossless single accumulated value at the output of reconfigurable operator. When the

accumulated value is small, it is either bit extended or zero padded to output data

size of 40-bits. To perform these complex operations SWP subword adder units and

accumulator unit are used in addition to basic SWP arithmetic units. As an example,

consider the computation of SWP
∑

(a × b), SWP
∑

|a − b| and SWP
∑

(a + b) with

8-bit subword size using SWP reconfigurable operator shown in Figure 4.2.

Chapter 4. Reconfigurable SWP operator for multimedia processing 122

4.5.1 SWP
∑

(a × b) operation

Sum of product
∑

(a × b) operation can be performed on different subword size data

using SWP reconfigurable multimedia operator shown in Figure 4.2. To perform
∑

(a×b)

operation, the controller unit generates signals to activate the required units. All the

remaining units are disable to reduce the switching activity. The arithmetic units and

other blocks which are activated to perform
∑

(a × b) computations are highlighted in

Figure 4.9.

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subword

(signed/

SWP
subword
Adder

SWP
subword

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subword

MSBs

Extractor

(unsigned)

33

33

33

40

11

10

01

00
40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

LSBs
&

Figure 4.9: Computation of SWP
∑

(a× b) using reconfigurable multimedia operator

The control unit generate appropriate signals for the selection of subword size and mul-

tiplication type (signed/ unsigned). In the beginning, SWP (a× b) unit produces 80-bit

product value. This product value is used as input to a SWP subword adder unit. For

8-bit selected subword size, SWP subword adder unit considers the 80-bit input as five

16-bit subword products (without loss of bit) and adds them to generate a 33-bit value.

This 33-bit value from SWP subword adder unit is obtained at the output of 3 to 1

multiplexer unit using ’01’ select line signals. These select line signals are generated by

controller unit for 3 to 1 multiplexer. At each clock cycle the accumulator accumulates

33-bit value with the previous values to generate 40-bit
∑

(a × b) term. This 40-bit
∑

(a × b) term can be obtained at the output of the reconfigurable operator through 4

Chapter 4. Reconfigurable SWP operator for multimedia processing 123

to 1 multiplexer unit. The control unit generate ’10’ select line signals for this multi-

plexer unit. As the inputs to accumulator are single values instead of packed subwords,

therefore SWP capability is not required for the accumulator unit implementation.

4.5.2 SWP
∑

(|a − b|) operation

SAD is commonly used operation in multimedia applications. SWP reconfigurable op-

erator can be used to perform SAD operation. The arithmetic units and other hardware

units which are activated for performing SAD computations are shown in Figure 4.10.

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subword

(signed/

SWP
subword
Adder

SWP
subword

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subword

MSBs

Extractor

(unsigned)

33

33

33

40

11

10

01

00
40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

LSBs
&

Figure 4.10: Computation of SWP
∑

|a−b| using reconfigurable multimedia operator

The highlighted units are activated by the controller for the computation of SAD. SWP

|a − b| unit produces the absolute difference for each packed subword. If the selected

subword size is 8-bit, then the 40-bit output of SWP |a − b| unit contains five 8-bit

absolute value subwords. For alignment purpose, this 40-bit output is expanded to 45-

bit using 40 to 45 bit converter. This conversion aligns the subwords with the other

input (from SWP (a + b) unit) of 45-bit multiplexer. The output of multiplexer is given

to SWP subword adder unit in the next pipeline stage. SWP subword adder unit adds

the subwords and generate 33-bit output. For 8-bit subword size, the actual requirement

at the output of SWP subword adder unit is only 11 bits (addition of five 8-bit numbers).

Remaining bits (33 - 11 = 22 bits) are all 0’s and will be used as guard bits in next pipeline

Chapter 4. Reconfigurable SWP operator for multimedia processing 124

stage. The 33-bit output from SWP subword adder unit is given to 3 to 1 multiplexer

unit. The controller generates ’00’ for the select lines of this multiplexer. The output

of 3 to 1 multiplexer is given to Accumulator unit for recursive accumulation. For final

selection, the accumulated output is given to 4 to 1 multiplexer unit. Controller selects

the input corresponding to select line ’10’ as multiplexer output. As a result final SAD

value is obtained at the output of this multiplexer. Effectively, for 8-bit subword size we

can perform at least 232 accumulations of absolute differences without any overflow.

4.5.3 SWP
∑

(a + b) signed operation

∑

(a + b) operation is usually required to accumulate the pixel values in multimedia ap-

plications. In SWP reconfigurable operator, this operation can be performed on signed

as well as on unsigned data. The arithmetic and interconnections units which are ac-

tivated to perform SWP
∑

(a + b) operation on signed data are highlighted in Figure

4.11.

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subword

(signed/

SWP
subword
Adder

SWP
subword

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subword

MSBs

Extractor

(unsigned)

33

33

33

40

11

10

01

00
40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

LSBs
&

Figure 4.11: Computation of SWP
∑

(a+b) using reconfigurable multimedia operator

SWP (a ± b) unit is used to add the subwords packed in word size input registers.

The controller unit generates the appropriate signals for the selection of subword size.

To perform the addition operation, the ’add’ signal is made ’1’ by control unit. For

performing subtraction operation this ’add’ signal is made ’0’ by controller. The output

Chapter 4. Reconfigurable SWP operator for multimedia processing 125

of SWP (a ± b) unit consists of 45-bit. These 45 bits are allocated instead of 40 bits

to avoid any overflow. For 8-bit subword size, 45 bits at the output of SWP (a ± b)

unit contains five 9-bit (subword bits (8) + overflow bit (1) = 9-bit) subwords. These

45 bits are then given to 2 to 1 multiplexer unit. The control unit generate ’0’ control

signal for this multiplexer to obtain the result of SWP (a + b) operation at the output

of MUX. In the next pipelined stage, the 45-bit output is given to SWP subword adder

(signed) unit. This unit adds the packed subwords and generates 33-bit result. This

33-bit sum is obtained at the output of 3 to 1 multiplexer using ’10’ control signals at

select lines. In the next pipelined stage, the recursive accumulation of 33-bit results is

done using Accumulator unit. The 40-bit output from the Accumulator unit is obtained

at the output of 4 to 1 multiplexer unit using ’10’ control signals for the select lines.

4.5.4 Other complex operations

In addition to basic arithmetic computations, SWP reconfigurable multimedia operator

can perform variety of operations on pixel data. The results of these operations can be

obtained at the output of operator using appropriate control signals. The complex SWP

operations which can be performed using this reconfigurable operator are listed below:

•
∑

(a × b) signed

•
∑

(a × b) unsigned

•
∑

|a − b| signed

•
∑

|a − b| unsigned

•
∑

|a + b| signed

•
∑

(a + b) signed

•
∑

(a + b) unsigned

•
∑

(a − b) signed

For performing any these operations, the arithmetic operators, register units, multiplexer

units and other datapath units are enabled by control unit. The control unit activates

only those units which are required to perform certain operations in desire computation.

Based upon the requirements, any combination of above mentioned operations can also

be obtained such as

•
∑

(a × b) +
∑

|a − b| signed

Chapter 4. Reconfigurable SWP operator for multimedia processing 126

•
∑

|a + b| +
∑

|a − b| signed

•
∑

|a × b| +
∑

(a + b) unsigned

• etc.

For the complex operations which involve the accumulation of results generated by basic

units, the output word-length depends upon the number of values needed to be accumu-

lated. In the worst case when performing
∑

(a × b) operation on 16-bit subwords, the

output of the SWP (a × b) unit consists of two 32-bit subwords. As the accumulator is

40-bit wide, the extra eight bits are used as guard bits to avoid any overflow. Therefore

the reconfigurable operator can perform at least 256 (28) accumulations of worst data

length product terms. For other operations and smaller subword data sizes, the numbers

of guard bits are greater and thus the number of accumulations which can be performed

increases further without any overflow. For example in
∑

(a × b) operation on 8-bit

pixel sizes, the product subwords are 16-bit wide therefore the reconfigurable operator

can perform (224) accumulations without any bit loss.

4.6 Synthesis results

To analyze the area, speed and power consumption, overall reconfigurable operator de-

sign is synthesized to ASIC standard cell 130nm and 90nm technology using Synopsys

Design Compiler and to FPGA (Xilinx Virtex II) using Mentor Graphics Precision RTL

tool. The area, speed and power consumption have been measured. Table 4.1 shows the

results obtained for the two ASIC technologies.

Technology Clock NAND Power Gates × CP
(CMOS) period(ns) Gates (mW) × Power

90 nm 6.0 29980 6.63 1192604

130 nm 10.0 31126 6.93 2157031

Table 4.1: Synthesis on ASIC technologies

To analyze the overall efficiency, product of gates, clock period (CP) and consumed

power is also computed. Smaller value of this product term indicates higher efficiency.

In order to get the best possible clock frequency for reconfigurable operator, synthesis

are performed for different clock periods on each ASIC technology as shown in figure

4.12.

Chapter 4. Reconfigurable SWP operator for multimedia processing 127

0 5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

6

Clock(ns)

(C
lo

ck
 X

 G
at

es
 X

 P
ow

er
)

90nm ASIC Technology
130nm ASIC Technology

Figure 4.12: Synthesis at different clock periods

As shown in Figure 4.12, on 130nm ASIC technology, the product of gates, clock period

and consumed power decreases with the increase in the clock period. After 10ns, the

product term remains almost constant. Therefore on 130nm technology, clock period of

10ns gives good trade off between the efficiency and frequency of reconfigurable operator.

On 90nm ASIC technology, the decrease in the product term is not very even with clock

frequency. However the maximum efficiency (minimum product term) is obtained at the

clock period of 6ns.

Table 4.1 shows the synthesis results for those clock frequencies which give highest ef-

ficiency (minimum gate×CP×power) on each target technology while meeting all the

design constraints. However as per the requirements of processor, the reconfigurable

operator can be used up to the minimum clock period of 3ns. On 90nm technology,

despite of using lower clock period (6ns), the area consumed and power consumption are

less compared to 130nm technology. After the analysis, it is found that the unit which

consumes maximum design resources is the SWP multiplier. Although the multiplier

architecture is based on [56] which is known to be much more efficient for SWP imple-

mentation than conventional multiplier architectures, it consumes almost 51% of total

area and 40% of total power. The blocks like signed arithmetic basic units, unsigned

arithmetic basic units and subword adder units consumes respectively 11%, 10%, 12%

of total area and 12%, 20%, 12% of total power. Each of the remaning design blocks like

bit conversion units, MSB and LSB extractor units, accumulator units and multiplexer

units consumes almost less than 2% of total area and power. On the FPGA Virtex II

Chapter 4. Reconfigurable SWP operator for multimedia processing 128

platform, 2800 CLBs are required and the critical path is equal to 17.4 ns. Actually

area and speed overheads for implementing SWP capability are less on ASIC technology

compared to FPGA technology. The reason is that in FPGA implementation resources

are CLBs rather than gates as in ASIC. Therefore ASIC resources better suit the SWP

designs.

4.6.1 Statistical power analysis

The power consumed by the reconfigurable operator will be different while performing

different multimedia operations. This occurs because while performing any particular

operation, only those units are enabled which are required to perform certain computa-

tions. All the remaining units are disabled to reduce the switching activity. Statistical

power estimation is carried out to find out the power consumed by SWP reconfigurable

operator while performing different operations on input data. This process is shown in

Figure 4.13.

Synthesis Simulation
Power

Estimation

Gate level
design SAIF file

RTL design

Figure 4.13: Statistical power estimation

Statistical power estimation gives accurate power consumption compared to the proba-

bilistic power estimation. In the probabilistic power estimation, the power consumption

is estimated on the basis of probability of switching activity at the nodes. Where as

in statistical method the switching activity at each node is monitored while performing

actual operations on test vectors. As shown in the Figure 4.13, the process of statistical

power estimation can be divided into three main steps.

• Step 1 : Generation of gate level net-list In the first step gate level net-list

is generated from RTL design file. This can be done by using any synthesis tool.

In our experiments we have used Design Compiler tool from Synopsys for this

purpose. The Design Compiler generates the gate level net list by using the gate

components from its library.

• Step 2 : Generation of switching activity file (SAIF) In the second step, the

switching activity file is generated by using the simulation tool. In our experiments

we have used ModelSim simulation tool for this purpose. The gate level net list

generated in the first step is given as input to ModelSim. The special libraries

provided by Synopsys are also linked with simulator so that the simulator can

recognize the gate level components used by Synopsys tool. Then the simulations

Chapter 4. Reconfigurable SWP operator for multimedia processing 129

are performed using different test vectors and the switching activity of all the

nodes at gate level are monitored and stored in a switching activity file (SAIF). In

our experiments, the switching activity files corresponding to different operations

performed by SWP reconfigurable operator on random vectors are generated and

stored. These SAIF files are then used to estimate the power consumed by SWP

reconfigurable operator while performing different multimedia operations.

• Step 3 : Estimation of Power In this step the switching activity file (SAIF)

generated in Step 2 is given to Design Compiler tool for the estimation of statistical

power. The Design Compiler tool estimates the power on the basis of switching

activity at each node while performing different operations.

The percentage power consumed by SWP operator to perform different SWP operations

on 130nm ASIC technology is shown in the Figure 4.14. To make the comparison

fair, input data vectors and subword size remains same in the calculation of power for

all operations. Subword size of 8-bits and clock period of 10ns are used during these

experiments.

0

20

40

60

80

100

120

SWP Operations

%
ag

e
of

 r
ef

er
en

ce
 p

ow
er

Σ(a x b) Σa − b Σ(a − b) Σ(a + b) (a x b) a − b (a − b) (a + b)

Figure 4.14: Power consumption of SWP operations

In Figure 4.14, power consumed by SWP multiplier operation is taken as reference

(100%). All other operations consume some percentage of reference power. The power

consumed by each operation depends upon the number and the type of units which

are activated to perform certain computations. The computations which involve the

multiplication of subwords consume more power compared to other operations. Obvi-

ously the power consumed by the complex operations which involve the accumulation

Chapter 4. Reconfigurable SWP operator for multimedia processing 130

is more compared to the operations which involve only basic SWP arithmetic units.

Additional power is mainly due to subword adder units. Maximum power consumed by

reconfigurable operator is 110% of reference power when performing
∑

(a×b) operation.

4.7 Performance on multimedia applications

Proposed reconfigurable operator can be used in any pipelined processor to enhance

the performance especially for multimedia applications. At present time, reconfigurable

operator has been synthesized, and performance assessment can be given at the oper-

ator level. The SAD kernel used in motion estimation and DCT kernel used in video

compression algorithms are good candidates at this granularity level. For comparison,

state-of-the-art Texas Instruments (TI) TMS320C64x DSP architecture is used. The

processing unit of the TI DSP is made up of two clusters. Each cluster consists of four

functional units along with one multiplier and two arithmetic and logic units. This

architecture provides SWP capabilities based on 8, 16 and 32 bit data. For a fair com-

parison, one reconfigurable operator is considered for our processor and one cluster is

considered for the TI DSP. For 16-bit pixels, the number of cycles Ncycles required to

compute the SAD applied to 16 by 16 image blocks is 128 for both implementations.

Ncycles is 60 and 64 for our operator and TI DSP based solution respectively when 8-bit

pixels are considered. For 10 and 12 bit pixels, the granularity in term of data size of our

operator allows the number of cycles to be reduced. Ncycles required to compute SAD of

16 by 16 image blocks are reduced by 50% and 25% for 10 and 12 bit pixels respectively.

Similarly for the computation of DCT of 16 by 16 image block, Ncycles are reduced by

52% and 33% when considering the pixel sizes of 10 and 12 bits respectively. This occurs

because of the better utilization of datapath and arithmetic units in our reconfigurable

SWP operator for multimedia applications. Compared to each cluster of the DSP chip,

the percentage reduction in number of cycles (Ncycles) of our reconfigurable operator

on different multimedia kernels (SAD, DCT and discrete wavelet transform DWT [72])

when applied on a (16x16) image size is shown in Table 4.2.

Pixel size (bits)
8 10 12 16

%age reduction for SAD 0% 50% 25% 0%

%age reduction for DCT 0% 52% 33% 0%

%age reduction for DWT 0% 58% 38% 0%

Table 4.2: Percentage reduction in number of cycles

Chapter 4. Reconfigurable SWP operator for multimedia processing 131

In addition to computation cycles shown in Table 4.2, TI DSP also requires loop control

cycles when performing different multimedia operations. However these loop control

cycles are not considered. With our reconfigurable operator, no extra control cycle

is required. In practice, processing is spread on two clusters with TI DSP so Ncycles

is divided by two. In our case, as per the requirements several reconfigurable SWP

operators can be used in the processor’s design to further increase the efficiency through

parallel processing.

4.8 Conclusion

Reconfigurability at data size level and at operation level in the arithmetic operator

design improves the performance of processors for several multimedia and DSP applica-

tions. By introducing reconfigurability at this level, the complexity of interconnection

network is reduced to high extent. The operator can reconfigure itself to perform dif-

ferent multimedia operations on different data sizes without any need of reconfiguration

time. Support of subword sizes that are in coordination with pixel sizes in multimedia

applications further enhance the performance though better resource utilization. When

used in any multimedia processor, this reconfigurable operator provides speedup along

with flexibility for multimedia applications.

Chapter 5

SWP using redundant

representation

In the previous chapters the designing of different multimedia operators have been dis-

cussed. These operators are designed by using multimedia oriented subword parallelism

(SWP) capability on binary number system. Although the binary number system is

widely used number system but as far as the designing of arithmetic operators is con-

cerned, it has speed limitations. The speed of binary based operators cannot be increased

beyond certain limits. The reason for this speed limitation is the carry propagation in the

binary based addition operation which subsequently effects other operations as well. To

overcome this limitation and to increase the speed of different arithmetic units, operators

are designed using redundant number system. Redundant number system ensures the

carry propagation free addition which increases the speed of different arithmetic units.

In this chapter different basic and multimedia operators are designed using redundant

number system and their performances are compared with the binary operators. To

enhance the performance of processor for multimedia applications, SWP is also used on

redundant numbers for the designing of different operators. In SWP redundant oper-

ators, multimedia oriented subword sizes are considered rather than classical subword

sizes. The contents of this chapter are based on our publication [51].

The rest of this chapter is organized as follows: Section 5.1 gives the overview of bi-

nary and redundant number system. The limitations of binary binary adders are also

discussed. Section 5.2 describes the process of carry propagation free addition using

redundant number system. Section 5.3 presents the architecture of logic cell used in

the addition of redundant numbers. Redundant adders based on this logic cell are also

compared with binary adders. Section 5.4 describes the procedure for the conversions

between redundant and binary number system. The hardware resources required for

132

Chapter 5. SWP using redundant representation 133

this process are also explained. Section 5.5 explain the multiplication of numbers using

redundant number system. The comparison of redundant multiplier is done with binary

multipliers to highlight the speed effects. Section 5.6 present the architecture of redun-

dant adder using different resources. The use of each resource is controlled by using

finite state machine (FSM) controller. Section 5.7 describe the implementation of re-

dundant operators using multimedia oriented SWP capability and their performance are

compared with SWP binary operators. Section 5.9 presents the use of SWP in different

number conversion units. In Section 5.8, the architecture of a borrow save SWP SAD

unit and its advantages over a conventional binary SWP SAD unit are also explained.

The pipelined architecture of a coarse grain reconfigurable SWP operator using a redun-

dant representation is presented in Section 5.10. The synthesis results of the proposed

reconfigurable operator for multimedia processing and its performance compared to the

state of the art DSP chips are also presented. Finally we conclude the chapter in Section

Section 5.11.

5.1 Number systems

Number system provides the set of symbols by which the numerical value of number

can be represented. There are different systems available to represent the numbers such

as binary number system, octal number system, decimal number system, hexadecimal

number system, redundant number system etc. These number systems have their own

advantages in particular domain. For instance the decimal or base 10 number system

is used in our calculations because of its ease in interpretation. On the other hand

modern computer architectures are based upon binary number system due to the ease

of computations using computer hardware. In the processor design, the efficiency of

different arithmetic operators is highly based on the number system used. The internal

architecture of operator designed for two different number systems will be different. In

this section we will discuss the significance of binary and redundant number system

in the context of addition operation. Addition is directly or indirectly used in almost

all the arithmetic operations. Therefore any number system which gives the efficient

implementation of addition process ultimately ensures the high performance of almost

all the arithmetic operations.

5.1.1 Binary number system

In binary number system, the value of the number is represented using bits. In radix-2

each bit can take either 0 or 1 value. By using the combination of bits the value of

any number can be represented. For instance decimal number 56 can be represented in

Chapter 5. SWP using redundant representation 134

binary format with 111000 bits combination. Due to the simplicity of bit representation,

the arithmetic operators like addition, subtraction, multiplication etc. are designed in

hardware using binary number system. These operators give better efficiency while using

minimum hardware resources. However there are certain limitations of conventional

binary based arithmetic operators due to which the speed of these operators cannot

increase beyond certain limits. Latter in this chapter we will use CB for conventional

binary representation.

In conventional binary (CB) adders, the propagation of carry at any stage of addition is

the major limitation to increase the speed of adder or subtractor. The carry signal has to

propagate from least significant bit (LSB) to most significant (MSB). Therefore the delay

due to carry propagation increases with the increase in input vector length. Different

adder architecture based upon CB number system has been proposed to increase the

speed of addition while limiting carry propagation to minimum level. These adders

include carry look ahead adder (CLA), conditional sum adder (CSA) etc. These adder

scheme tries to reduce the propagation of carry through different methods [97]. However

in all these CB adders the propagation of carry remains there up to some extent at any

stage of addition. For instance in CLA the computation of carry for each location is

based upon the bit values at all the previous bit locations. Therefore to perform the

addition at any bit location the adder has to wait for the computation of carry. This

delay due to carry logic circuitry increases with the increase of vector length. Similarly

in conditional sum adder, to break up the carry chain the input vectors to be added are

divided into small blocks of 4 or 8 bits etc. These blocks are added in parallel for ’0’ as

well as for ’1’ carry input. Based upon the actual carry output of each block, the final

sum of next block is selected. So the carry chain has been broken but still the delay

due to carry chain within the blocks remains exist. Therefore it can be concluded that

in the adder using CB number system, it is impossible to totally eliminate the effect of

carry propagation. However the carry propagation can be reduced to some extent using

different techniques.

5.1.2 Redundant number system

To overcome carry propagation problem in the adder architectures, we have to switch

to another number system which is called redundant number system. Redundant or

barrow save number system allows to perform the addition with maximum one digit

carry propagation irrespective of size of input vectors. Latter in this paper we will use

BS for borrow save or redundant number system. In barrow save (BS) number system,

the numbers are represented by digits rather than bits. In conventional radix-r number

system each digit can take r possible values ranging from 0 to r-1. For instance in radix-2

Chapter 5. SWP using redundant representation 135

binary number system each bit can take one of the two possible values that are either 0

or 1. Similarly for radix-10 decimal number system each digit can take any value from

range 0 to 9. However in radix-r BS number system each digit can take more than r

values. One of the most famous BS number system is signed digit number system [8].

In signed digit BS system each digit can take either positive or negative digit values.

In radix-r signed digit BS number system each digit D can take values from the range

given in Equation 5.1.

− a ≤ D ≤ +a where ⌈
r − 1

2
⌉ ≤ a ≤ r − 1 (5.1)

By using different values of r, the digit set for radix-r sign digit BS numbers can be

obtained. For instance in radix-2 BS representation [25, 37], numbers are represented

using digits from the digit set {−1, 0, 1}. Digit -1 is denoted by 1 in this chapter. Each

number is represented by the combination of any of these digits. For example {1}
−CB

can be represented by digit combinations {01}
−BS or {11̄}

−BS . The numerical value of

any number x in BS representation can be calculated using Equation 5.2.

n−1
∑

i=0

xi × 2i where xi ∈ {−1, 0, 1} (5.2)

Using the BS representation, some numbers have several representations; this is a re-

dundant number system. For instance the number 9, denoted by {1001}
−CB in CB,

has several BS representations: {1011̄}
−BS and {111̄1̄}

−BS and {1001}
−BS . This re-

dundancy in representing the same number using different combinations of signed digits

provides ground for carry propagation free addition [45]. Using BS number system the

addition of digits at any rank depends upon the input digits at the same rank and the

input digits at the one previous rank only. Therefore addition of two numbers can be

performed in constant time irrespective of size of vectors to be added [46, 95]. As the

addition is involve in almost all the arithmetic operations like subtraction, multiplica-

tion, division etc. Therefore using carry propagation free adders, high speed arithmetic

operations can be performed. Redundant number system is different from residue num-

ber system which is commonly used in cryptography algorithms. In residue number

system, the input numbers are broken into smaller numbers. These smaller factors of

bigger numbers are then used in arithmetic operations to increase the speed. Operat-

ing on smaller number reduce the propagation of carries to certain extend. Whereas

in redundant number systems focus is made to eliminate the complete propagation of

carry.

Chapter 5. SWP using redundant representation 136

5.2 Addition using BS number system

To overcome the delay due to the carry logic, a carry propagation free addition algorithm

is used in our proposed multimedia operator. Carry propagation free adders perform

the addition on data represented in the BS format rather than the CB format. In BS

numbers system, the addition is done in two steps. In the first step the input vectors are

added to generate intermediate sum si ∈ {−1, 0, 1} and intermediate carry ci ∈ {−1, 0, 1}

signals. These intermediate sum and carry signals are arranged as {si, 2ci} that is carry

left shifted by one rank. In the second step si and ci−1 are added to generate final sum

zi ∈ {−1, 0, 1}. The intermediate sum and the carry signals are generated in such a way

that the final addition of si and ci−1 do not generate any carry. This process is shown

in Figure 5.1 for the addition of 8-digit BS numbers.

yixi+1yi+1

sum
Final

sum and carry

Intermediate

generation

sum and carry

Intermediate

generation

sum and carry

Intermediate

generation

sum and carry

Intermediate

generation

sum and carry

Intermediate

generation

sum and carry

Intermediate

generation

sum and carry

Intermediate

generation

sum
Final

sum
Final

sum
Final

sum
Final

sum
Final

sum
Final

xi+2yi+2xi+3yi+3xi+4yi+4xi+5yi+5xi+6yi+6xi+7yi+7

si+1ci+1 cisi+2ci+2si+3ci+3si+4ci+4si+5ci+5si+6ci+6ci+7 si+7

zi+6 zi+5 zi+4 zi+1zi+2zi+3zi+8
zi+7

xi

si

zi

sum and carry

Intermediate

generation

Figure 5.1: Block diagram of BS number addition

At any rank i, the intermediate sum si and intermediate carry ci signals are generated

based upon the input BS digit values at rank i and at the neighbouring lower order rank

i-1. As shown in Figure 5.1 the intermediate sum and carry generator at all the ranks

works in parallel without waiting for any carry from previous location. The final adders

also operate in parallel without the generation or propagation of carry. The intermediate

sum and carry signals are generated with the help of addition tables.

5.2.1 Addition tables for BS numbers

An operation is defined by the table which contains all the possible combinations of

inputs and the corresponding outputs. For CB numbers the truth table of full adder

is a typical example of addition table for the addition of two input bits and a carry

bit. However in BS adders inputs are digits rather than bits. So the addition table

is constructed to generate intermediate sum si and carry ci digits corresponding to

different combinations of input digits. There are several addition table available for BS

digit addition [90] [89] [46] but we will discuss only two to highlight their importance.

Chapter 5. SWP using redundant representation 137

5.2.1.1 Addition table using direct method

Let xi and yi be the two digits which needs to be added. xi−1 and yi−1 are the two

input digits at next lower rank position i-1. si and ci are the intermediate sum and

carry signals generated at rank i respectively. Table 5.1 shows the addition table for

intermediate sum and carry signals generated against different input digit values.

Type
xi yi (xi−1 , yi−1) ci si

(digit) (digit) (digits) (digit) (digit)
1 1 1 Dont care 1 0

2
1 0 Both are non negative 1 1̄
0 1 Otherwise 0 1

3 0 0 Dont care
0 0

4
1 1̄

Dont care
1̄ 1

5
0 1̄ Both are non negative 0 1̄
1̄ 0 Otherwise 1̄ 1

6 1̄ 1̄ Dont care 1̄ 0

Table 5.1: Addition table for the BS numbers

All possible combinations of input digits are covered in Table 5.1. Intermediate signals

are generated in such a way that both si and carry ci−1 signals can never be 1 or 1̄ at

the same time. When one of intermediate signal si or ci−1 is 1 then the options left for

other intermediate signal are either 0 or 1̄. Similarly when one of intermediate signal si

or ci−1 is 1̄ then the options left for other intermediate signal are either 0 or 1. If the

intermediate sum and carry signals are generated on this principle then the addition of

si and ci−1 in the second step never generates carry and hence no propagation occurs. In

fact the realization of this principle is possible only by using BS number system in which

the same number can be represented by different combinations of digits. So whenever

there is the violation of above principle, the redundancy property is used to represent the

same number by some other combination of digits which fulfils the principle. Latter in

this discussion we will call this principle as principle of carry propagation free addition.

Table 5.1 uses the same principle and ensures no generation of carry. The intermediate

sum si and carry ci signals are generated on the basis of xi and yi inputs. However when

there is the probability of violation of principle of carry propagation free addition then

the input digits at next lower rank xi−1 and yi−1 are also taken into account for the

determination of intermediate sum si and carry ci signals. On this basis the input digit

combinations in Table 5.1 can be divided in six different types.

• Type 1, 3, 4, 6 : In all these types the digit value of input signals xi and

yi are such there is no probability of violation of principle of carry propagation

free addition because si is equal to ’0’. Therefore in these types, the intermediate

Chapter 5. SWP using redundant representation 138

output signals {ci, si} are generated without taking into account the input digit

values at next lower rank (xi−1 and yi−1).

• Type 2 : In Type 2, one of input digit xi or yi is 1 and other is 0. In this

case there is the danger of violation of principle of carry propagation free addition

because si is equal to ’1’. Therefore to avoid this danger the input digit values

xi−1 and yi−1 at next lower rank are also taken into account for the generation

of intermediate sum si and carry ci digits. The input digits at xi−1 and yi−1 are

analyzed to determine whether the carry will be generated at (i-1) rank or not. If

there is a possibility of carry generation at (i-1) rank then we will use redundancy

to represent the intermediate sum (si) and carry (ci) digits so that the carry

propagation free addition can be obtained. As in BS numbers system 1 can be

represented either by digits {01}
−BS or by {11̄}

−BS . When there is a possibility

of positive carry (digit 1) generation at rank (i-1) then the intermediate output

signals (ci, si) takes values (1, 1̄). Positive carry at (i-1) rank will be generated if

both x(i-1) and y(i-1) are 1 or one of them is 1 and other is 0. When there is

a possibility of negative carry (1̄) generation at rank (i-1) then the intermediate

output signals (ci, si) takes values (0, 1). Negative carry at (i-1) rank will be

generated if both x(i-1) and y(i-1) are 1̄ or one of them is 1̄ and other is 0. If there

is no possibility of carry generation at rank (i-1) then intermediate output signals

(ci, si) can take either values (1, 1̄) or (0, 1).

• Type 5 : The input digits in this type are almost of same nature as Type 2 except

that the values of input digits are different in both types. In this type one of input

digit xi or yi is 1̄ and other is 0. So there is also a danger of violation of principle

of carry propagation free addition because si is equal to 1̄. To avoid this danger

the input digits value at the next lower rank (xi−1 and yi−1) are also taken into

account for the generation of intermediate sum (si) and carry (ci) digits. When

there is a possibility of positive carry (digit 1) generation at rank (i-1) then the

intermediate output signals (ci, si) takes values (0, 1̄). When there is a possibility

of negative carry (1̄) generation at rank (i-1) then the intermediate output signals

(ci, si) takes values (1̄, 1). If there is no possibility of carry generation at rank (i-1)

then intermediate output signals (ci, si) can take either values (0, 1̄) or (1̄, 1).

Therefore using BS number system, the intermediate sum and carry signal (ci, si) de-

pends only on the inputs xi, yi and xi−1, yi−1 digit values. The intermediate sum and

carry signals at each rank can be generated in parallel.

Chapter 5. SWP using redundant representation 139

5.2.1.2 Addition table using internal barrow

This is the another type of addition table used for the addition of BS numbers [90]. The

end objectives of this addition table are also same, that is to perform carry propaga-

tion free addition. In this addition table internal barrow signal is generated before the

generation of intermediate sum and carry as shown in Table 5.2.

Inputs Internal barrows Outputs
xi yi bi+1 bi ci+1 si

(digit) (digit) (digit) (digit) (digit) (digit)
1̄ 1̄ 1̄ 1̄ 0 1̄
1̄ 1̄ 1̄ 0 0 0
1̄ 0 1̄ 1̄ 0 0
1̄ 0 1̄ 0 1 1̄
0 0 0 1̄ 0 1̄
0 0 0 0 0 0
1 1̄ 1̄ 1̄ 1 1̄
1 1̄ 1̄ 0 1 0
1 0 0 1̄ 0 0
1 0 0 0 1 1̄
1 1 0 1̄ 1 1̄
1 1 0 0 1 0

Table 5.2: Addition table for the BS numbers using internal barrow

In Table 5.2, intermediate sum (si) and carry (ci) signals are generated in such a way

that the intermediate sum (si) signal is restricted to {0, 1̄} digits and intermediate carry

(ci) signal is restricted to {0, 1}. This restriction is equivalent to the condition in the

previous addition table (section 5.2.1.1) that si and ci−1 can never be both 1 or 1̄ at

the same time. Due to this restriction, no carry will be generated when the addition

of intermediate sum and carry is done. In this addition table intermediate sum and

carry signals are obtained in two steps. In the first step barrow signal is generated. The

barrow signal at (i+1) rank depends upon the input digit values at ith rank. Barrow

signal bi+1 is generated on the basis of xi, yi and bi signals. Similarly the intermediate

sum si and carry ci+1 are also generated on the basis of xi, yi and bi signals. The

advantage of using this addition table is that single bit value can be used internally to

represent intermediate sum and carry signals as the intermediate sum and carry signal

are restricted to 0, 1̄ and 0, 1 digits respectively.

5.2.2 Addition of intermediate sum and carry digits

Using any of the addition tables discussed in sections 5.2.1.1 and 5.2.1.2, the intermediate

sum (si) and carry (ci) digits can be generated. After the generation, the intermediate

sum (si) and carry (ci) digits vectors are arranged in two rows. This arrangement is

Chapter 5. SWP using redundant representation 140

done in such a way that carry signal ci is left shifted by one rank resulting in {2ci, si}.

After this arrangement the intermediate sum (si) and carry (ci−1) are added at each

rank to obtain final sum vector. If intermediate sum (si) and carry (ci) are generated

using any of the addition tables shown in Table 5.1 and Table 5.2 then no carry will

be generated in this final addition process. The addition of BS numbers using addition

Table 5.1 is shown in Figure 5.2.

1̄10001̄1̄1

1̄01̄11101x =

y = = 8481

= 46015

1̄10001̄1̄1

1̄01̄11101

01̄ 111̄010

1̄0 00101̄1

sum =

carry =

01̄ 111̄010

1̄0 00101̄1Intermediate

Intermediate

101̄11̄111̄1Sum = = 54496001̄11̄111̄

Figure 5.2: Addition of BS numbers using addition Table 5.1

The addition of same BS numbers can be performed using addition Table 5.2. This

addition is shown in Figure 5.3.

1̄10001̄1̄1

1̄01̄11101x =

y = = 8481

= 46015

1̄10001̄1̄1

1̄01̄11101

01̄ 001̄001̄

01 001101

sum =

carry =

01̄ 001̄001̄

01 001101Intermediate

Intermediate

101̄11̄111̄1Sum = = 54496001̄11̄111̄

01̄01̄001̄1̄Barrow = 01̄01̄001̄1̄

Figure 5.3: Addition of BS numbers using addition Table 5.2

As shown in Figure 5.2 and 5.3, in both cases no carry is generated in the addition of

intermediate sum and carry vectors. Although the values of intermediate sum and carry

digits are different for two addition tables but the final sum is same. Like the generation

of intermediate sum and carries, the addition of si and ci−1 can also be done in parallel

at all ranks. Therefore by using BS adder scheme we can perform parallel addition at

all the ranks without any propagation of carry.

5.3 Logic cell for BS digits addition

The addition process explained in Section 5.2 can be realized in hardware using logic

cell for BS digit addition. This logic cell operates in the same manner as the full adder

cell works in CB number system. The inputs to full adder are two input bits at rank i

Chapter 5. SWP using redundant representation 141

and carry bit from previous rank i-1. The full adder generates sum and output carry. In

the logic cell for BS numbers, the inputs are two input digits which needs to be added

[89]. Internally the logic cell at any rank uses digits from the one lower order rank only.

The output of the logic cell is the final sum digit. For the addition of two BS numbers,

separate logic cell is used at each rank. The architecture of logic cell for BS addition

depends upon two main factors.

• Addition table : The basic architecture of any addition logic cell is based upon

the addition table used. In case of BS addition there are many addition tables

available [90] [89] [46]. Although these addition tables generate same final sum

but the architecture of logic cells based upon these addition tables are different.

Each of these addition cells takes different hardware resources. The logic cell

explain in this section for the addition of two BS digits is based upon the addition

table shown in Table 5.1.

• Binary encoding of BS digits : The architecture of logic cell also depends

upon the encoding scheme used to represent digits in bit format. Radix-2 BS digit

set consists of {1̄, 0, 1} digits. In binary based computers architectures, only bits

0 and 1 are understandable. Therefore before performing certain operations, we

have to encode BS digits in bits. Each digit in the set {1̄, 0, 1} is encoded by two

bits that are most significant bit (MSB) and least significant bit (LSB). For the

encoding of BS digit xi, the encoded MSB and LSB binary bits are represented

by xi+ and xi− respectively. One possible way of encoding digit set {1̄, 0, 1} in

binary bits is {10, 00, 11}. Other encodings of digits in binary bits are also possible.

However we will use this encoding scheme in the logic cell explained here.

Figure 5.4 shows the logic cell for the addition of BS digits [89]. The inputs of the logic

cell consists of BS digits xi and yi. The BS digit xi is represented in bit encoded form

as xi+ and xi−. Similarly the input BS digit yi is represented in bit encoded form as

yi+ and yi−. Bits xi+ and yi+ are inverted versions of bits xi+ and yi+ respectively.

The signals pi and ui are internal signals generated by the logic cell at each rank and

are utilized by the logic cell at the next higher rank. For instance pi−1 and ui−1 are the

signals generated by logic cell at rank i-1 and are utilized by logic cell at rank i. These

internal signals are different from the conventional carry signal in binary addition which

ripples through out the whole input vector. The output of logic cell is the sum digit zi

at rank i. This sum digit is encoded in bit form as zi+ and zi−. Equations corresponding

to different signals used in the architecture of logic cell are given below.

xid = xi+ + xi−

Chapter 5. SWP using redundant representation 142

xi+
xi+ xi− yi+

yi+ yi−

pi

pi

ui

ui

zi+ zi+ zi−

pi−1

pi−1

ui−1

ui−1

xid
yid

ti

Figure 5.4: Logic cell for BS digits addition

yid = yi+ + yi−

pi = xi . yi

ui = xid . yid . pi−1 + xid . yid . pi−1 + xi+ . yid + xid . yi+

ti = xid . yid . pi−1 + xid . yid . pi−1 + xid . yid . pi−1 + xid . yid . pi−1

zi+ = ti . ui−i

zi− = ti . ui−i

The logic cell shown in Figure 5.4 consists of 13 OR/NOR gates. The output generated

by this logic cell depends only on the two input digits and the internal signals generated

by the logic cell at next lower rank. Therefore by using BS logic cell addition of digits

at each rank is done in constant time. As the addition of the digits at all the ranks is

performed in parallel therefore the complete addition of BS numbers is also obtained in

constant time irrespective of word length. However this speed does not come without

any cost. The complexity of logic cell shown in Figure 5.4 is more than full adder cell

used in CB number system. Due to this complexity the implementation area of BS

logic cell is more than CB full adder cell. Moreover the encoding of BS digits in bit

format requires more number of bits than the CB representation. This increase in bits

ultimately increases the implementation area and other hardware resources. Therefore

the carry propagation free addition using BS representation is obtained at the cost of

Chapter 5. SWP using redundant representation 143

increase in some hardware. But the speed of processing units plays such a vital role in

the overall performance that most of the times these overheads are acceptable.

5.3.1 Adder using BS logic cell

Logic cell shown in Figure 5.4 is used to implement BS adders of different data sizes.

The inputs to the BS adder are the two BS numbers which needs to be added. The

adder length of 40, 64 and 128-digit are selected for implementation. The output of each

BS adder is the sum vector of corresponding digit length. After the implementation, the

area, critical path (CP) and power consumption of three different size BS adders will be

analyzed.

Data
90nm CMOS 130nm CMOS FPGA

width
ASIC ASIC VirtexII

(digits)
Nand CP Power Gates X CP Nand CP Power Gates X CP

CLBs
CP CLBs

Gates (ns) (mW) X Power Gates (ns) (mW) X Power (ns) X CP

40 589 0.26 1.5 230 689 0.67 2.4 1108 98 6.2 608
64 949 0.26 2.3 568 1113 0.67 4.0 2983 158 6.2 980
128 1910 0.26 4.7 2334 2244 0.67 8.1 12178 318 6.2 1972

Table 5.3: Synthesis results of BS adders

Table 5.3 shows the synthesis results of the BS adders on different target technologies.

As the length of input vectors increases from 40-digit to 128-digit the area of BS adder

also increases accordingly. The reason for this increase is obvious that for larger width

adders more BS logic cells are required and hence more area will be consumed. The

probabilistic power consumption of BS adders on two ASIC technologies also increases

with the increase of data width. This increase in power is related to the number of gates.

Therefore as the number of gates increases the power consumption also increases. The

most interesting part of these synthesis results are the critical path (CP) of different

width adders. On all target technologies, the CP remains same irrespective of the width

of input vectors. For instance on 90nm ASIC technology, the CP remains 0.26ns for 40-

digit, 64-digit and 128-digit adder. Similarly on other technologies the CP also remains

constant. The CP remains constant even the length of adder is further increased. The

reason for this constant CP is the use of BS logic cell which perform the addition in

constant time irrespective of the size of input vectors.

5.3.2 Comparison of BS adder with other adder types

To elaborate the advantages of using BS adders, the performance of BS adder is compared

with other conventional binary (CB) adders. There are different types of CB adders

Chapter 5. SWP using redundant representation 144

available but only three adders are selected to compare with BS adder. These CB adders

are ripple carry adder (RCA), Group carry look ahead adder (CLA) and the adder using

the synthesis tool [97]. RCA and Group CLA are most familiar type of adders in CB

number system. Group CLA implements CLA in the groups of 8-bit to reduce the carry

logic complexity. The adder using the synthesis tool is the optimized CB adder available

in the library of synthesis tool. Based upon the requirement synthesis tool uses these

adders to meet the design constraints. In this comparison, CB and BS adders are used

to add input vectors of 40 bits/digits. In the 40-digit BS adder, logic cell shown in

Figure 5.4 is used for addition. Figure 5.5 shows the area, CP and power comparison of

BS adder with CB adders.

90nm 130nm FPGA
0

100

200

300

400

500

600

700

A
re

a
(N

an
d

ga
te

s
/ C

LB
s)

90nm 130nm
0

0.5

1

1.5

2

2.5

P
ow

er
 (

m
W

)

90nm 130nm
0

2000

4000

6000

8000

10000

(G
at

es
 x

 C
P

 x
 P

ow
er

)

90nm 130nm FPGA
0

5

10

15

20

25

30

C
rit

ic
al

 P
at

h
(n

s)

Ripple carry adder RCA
Group carry look ahead adder
Adder using synthesis tool
Adder using redundant representation

Figure 5.5: Comparison of CB and BS adders

As shown in Figure 5.5, the CP of BS adder is much less compared to the CB adders. On

90nm ASIC technology, the CP of BS adder is only 10%, 11% and 9% of the CP consumed

by CB adders RCA, group CLA and synthesis tool adder respectively. On 130nm ASIC

technology, the CP of BS adder is only 8%, 11% and 10% of the CP consumed by CB

adders RCA, group CLA and synthesis tool adder respectively. On FPGA technology

the resources are CLBs rather than gates so results are not in full coordination. However

on FPGA the BS adder consumes almost 25%, 39% and 78% of CP consumed by CB

adders RCA, group CLA and synthesis tool adder respectively. This reduction in CP

Chapter 5. SWP using redundant representation 145

occurs due to the use of BS number system which performs addition in constant time.

The decrease in CP due to the use of BS number system is even more prominent if we

increase the size of adder. The reason being that CP of BS adder remains constant

irrespective of input vector size but the CP of CB adders increases with the increase of

input vector sizes.

The area consumed by BS adder is more compared to the area of CB adders. On ASIC

technologies, the BS adder consumes almost 60%, 20% and 75% more area compared

to RCA, Group CLA and synthesis tool CB adders respectively. There are two reasons

for this area increase. The first one is the complexity of BS logic cell which is more

than CB full adder cell. The second reason is the binary encoding of digits which uses

twice number of bits compared to conventional binary numbers. The probabilistic power

consumption of each adder is in accordance with number of gates utilized. The total

efficiency of adder on ASIC technologies can be computed by taking the product of

gates, CP and power consumption. Smaller value of this product term indicates high

efficiency. On 90nm ASIC technology, the product term of BS adder is 69%, 86% and

58% less than the product terms of binary RCA, Group CLA and synthesis tool adder

respectively. Similarly on 130nm ASIC technology, the product term of BS adder is 74%,

88% and 38% less than the product terms of binary RCA, Group CLA and synthesis

tool adder respectively. This increase in the efficiency of BS adder occurs because of the

reduction in CP. After analyzing these results, it is found that BS adders perform high

speed additions at the cost of some area and power increase. Moreover the CP of BS

adders are constant irrespective of vector lengths.

5.4 Conversions between CB and BS numbers

In most of the processors the standard format for representing the data is a CB number

system. Therefore to perform operations on BS numbers we have to convert the input

binary numbers into BS numbers before starting the computations. After required com-

putations the results in BS format are converted back to CB representation [75, 105].

This process is shown in Figure 5.6.

Binary

system
CB to BS
conversion

Computations

on BS
to CBBS

conversion
numbers

Binary

system
bits digits digits bits

Figure 5.6: Conversion between CB and BS numbers

Chapter 5. SWP using redundant representation 146

In practice once input CB data is converted to BS format, multiple required operations

are performed on BS data before converting back to CB representation.

5.4.1 Conversions from CB to BS

In this conversion CB numbers are converted to BS representation. Each bit of CB

number is converted to corresponding digit from digit set {1̄, 0, 1}. The CB number can

be converted to several different BS numbers which represents the same CB number.

Based upon the requirements, any of the BS number can be used for onward BS compu-

tations. In CB number system there are basically two types of number formats that are

unsigned CB numbers and Signed 2’s complement CB numbers. As in these two types,

bits have different weights so the conversion strategy for signed and unsigned numbers

will be different.

• Conversion from unsigned CB to BS number : In unsigned CB numbers

each bit has positive weight and the value of unsigned CB number is given by

Equation 5.3.

n−1
∑

i=0

xi × 2i where xi ∈ {0, 1} (5.3)

The simplest way to convert unsigned CB number to equivalent BS number is to

simply convert each bit to a digit of same value. CB bit 0 is converted to digit 0

and CB bit 1 is converted to digit 1. For unsigned CB numbers no computation

is required to convert them to the equivalent BS representation as both have the

same value. As there is no negative weight bit location in unsigned number so no 1̄

will appear in corresponding BS number. The value of converted BS digit number

is given by equation 5.4.

n−1
∑

i=0

xi × 2i where xi ∈ {1̄, 0, 1} (5.4)

The conversion describe above is one possible conversion from unsigned CB number

to BS number. However other conversions can also be possible which involve 1̄

digits as well. But for unsigned numbers the combined weights of all 1̄ digits are

always less than the combined weights of all 1 digits. This will ensure that the net

value of BS number is always positive.

• Conversion from signed 2’s complement CB to BS number : In signed 2’s

complement CB numbers, the MSB has negative weight. The value of CB number

Chapter 5. SWP using redundant representation 147

represented in 2’s complement format can be positive or negative. If MSB is 1 then

the value will be negative otherwise if MSB is 0 then the value will be positive.

The value of signed CB number is given by Equation 5.5.

− xn−1 × 2n−1 +
n−2
∑

i=0

xi × 2i where xi ∈ {0, 1} (5.5)

Due to the negative weight of MSB the conversion process will be different from

unsigned numbers. If the MSB of signed 2’s complement CB number has bit value

of 1 then it is converted to digit value 1̄ in BS number. However if the MSB

of signed 2’s complement CB number has bit value 0 then it remains digit value

0 in BS number. The conversion for rest of the bits {(MSB - 1) . . . 0} is same

as unsigned numbers that is CB bits 1 and 0 are converted to BS digits 1 and

0 respectively. In this conversion method 1̄ digit can appear only at the most

significant position in BS number depending on the value of number. However

based upon the requirements, the conversion can also be done in such a way that

multiple 1̄ digits appear through out the BS number.

Like the BS addition, this conversion process is independent of vector length and can be

performed in constant time. The conversion form CB (signed/unsigned) to BS number

system is implemented on different target technologies using the methods explained

above. This converter performs the conversion of signed as well as unsigned CB numbers

to BS digits. The results are shown in table 5.4.

Data
90nm CMOS 130nm CMOS FPGA

width
ASIC ASIC VirtexII

(bits)
Nand CP Power Gates X CP Nand CP Power Gates X CP

CLBs
CP CLBs

Gates (ns) (mW) X Power Gates (ns) (mW) X Power (ns) X CP

40 3 0.03 0.003 0.0003 3 0.12 0.008 0.0029 1 5.1 5.1
64 3 0.03 0.003 0.0003 3 0.12 0.008 0.0029 1 5.1 5.1
128 3 0.03 0.003 0.0003 3 0.12 0.008 0.0029 1 5.1 5.1

Table 5.4: Synthesis results of CB to BS digit converters

As shown in Table 5.4, the conversion process is implemented for different size vectors.

The area, CP and power consumption of CB to BS converter remains same for all

the vector sizes. The small area, CP, power consumed by the CB to BS conversion

corresponds to conversion of signed CB numbers to BS numbers. For unsigned CB

numbers, the area, CP, power requirement is almost zero as there is no need of checking

MSB and binary 0s and 1s becomes digits 0s and 1s in BS numbers. The results show

that CB to BS conversion consumes almost negligible resources.

Chapter 5. SWP using redundant representation 148

5.4.2 Conversions from BS to CB representation

After performing high speed computations on BS numbers, they are converted back to

CB numbers using BS to CB converter [75, 99, 105]. Conversion from BS to CB number

is more complex compared to the conversion from CB to BS. BS to CB conversion is

done in two steps. In the first step positive and negative weight binary numbers are

constructed directly from BS number. Positive weight binary number is constructed

from all the positive digits in BS number and the location of 1̄ and 0 digits are filled

with 0 bits. Similarly the negative weight binary number is constructed from all the

negative digits in BS number and the location of 1 and 0 digits are filled with 0 bits. In

the second step the negative weight binary number is subtracted from positive weight

binary number. The value of resulting binary number is the equivalent to the value of

BS number. This process is shown in Figure 5.7.

in

1̄111̄1

BS

001̄1212 =

Positive Digit Number

Negetive Digit Number

01101 0001

10010 0010

= 360

= 148

10110 0010 = 212

representation

Number

in

CB representation

Number

Figure 5.7: Conversion from BS to CB representation

An n-digit BS number can take values in the range of {−(2n − 1) . . . + (2n − 1)}. For

instance 8-digit BS number can take values ranging from 255 to -255. In CB number

system -255 cannot be represented using 8 bits. Therefore in order to avoid any overflow

(n+1) bits can be used to represent equivalent CB number.

Another conversion method [91] is based upon the direct conversion from BS to CB

numbers. In this method the truth table (shown in Table 5.5) is constructed for all the

possible combinations and the output CB bits are generated accordingly.

Digits Binary encoded Carry input Binary output Carry output
xi xi+ xi− ci bi ci+1

0 0 0 1 1 1
0 0 0 0 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1̄ 1 1 1 0 1
1̄ 1 1 0 1 1

Table 5.5: BS to CB conversion rules

Chapter 5. SWP using redundant representation 149

xi is the input BS digit which needs to be converted. xi+ and xi− are the bit encoded

versions of input BS digit. ci is the carry input at rank i. The truth table defines the

CB bit output bi and carry output ci+1 for each combination of input BS digit xi and

carry input ci. The carry output generated at rank i is used as input for conversion at

rank i+1. Therefore at each rank the equivalent bit value is determined on the basis of

input BS digit and carry input. From the truth table in Table 5.5, the logic equations

for the conversion of BS to CB numbers are given in Equations 5.6 and 5.7.

bi = xi− XOR ci (5.6)

ci+1 = xi+ + xi− . ci Where c0 = 0 (5.7)

As an example let us consider the conversion from BS to CB number using the logic

equations shown above. The conversion from BS to CB number using this method is

shown in Figure 5.8.

01110000

1̄01̄11101x =

c =

=179

0

BS number

110011010b = = 179

CB number

Figure 5.8: BS to CB conversion

As shown in the Figure 5.8 at each digit rank, the output consists of equivalent CB bit

and the generated carry bit. This carry bit is used as input to find the equivalent bit

value for the next rank digit. The advantage of using this method is that the binary bits

are obtained directly from BS digits. BS to CB conversion explained above has been

implemented on different target technologies for three different vector lengths. BS to CB

converter is implemented for vector length of 40-digit, 64-digit and 128-digit. The area,

CP and power consumption on different target technologies are shown in Table 5.6.

Data
90nm CMOS 130nm CMOS FPGA

width
ASIC ASIC VirtexII

(digits)
Nand CP Power Gates X CP Nand CP Power Gates X CP

CLBs
CP CLBs

Gates (ns) (mW) X Power Gates (ns) (mW) X Power (ns) X CP

40 418 2.8 0.7 819 301 6.8 1.3 2661 21 8.0 168
64 664 4.4 1.1 3214 477 10.8 2.1 10818 33 9.0 297
128 1320 8.7 2.2 25265 946 21.4 4.3 87051 65 11.7 761

Table 5.6: Synthesis results of BS to CB converter

Chapter 5. SWP using redundant representation 150

As shown in Table 5.6, the area, CP and power consumption of BS to CB converter

increases with the increase of input vector length. The resources consumed by BS

to CB converter are more compared to the CB to BS converter. The reason being

the difference in the complexity of two processes. However these conversions are only

required at the input and outputs of BS computations. In the beginning once converted

to BS number system, numerous high speed computations are performed on BS digits as

per the requirements. Then at the end the resultant BS digits are converted back to CB

bits. Therefore the high speed attained due to multiple operations on BS data is much

more compared to the resources consumed by these converters at input and output.

5.5 Multiplication using BS number system

Multiplication is one of the most important operation which is used in most of the appli-

cations. Multiplication involves the addition of partial products which can be performed

with high speed using carry propagation free adders. This will increase the overall speed

of multiplication process. The multiplication process using the BS number system con-

sists of four main steps.

• Conversion from CB to BS representation In this step both input binary

vectors multiplicand and multiplier are converted to BS digit vectors using the

method explained in Section 5.4. Both inputs, multiplier and multiplicand can be

unsigned or signed 2’s complement numbers. After conversion the vectors are in

BS representation and consist of digits rather than bits.

• Generation of partial products In this step the partial products are generated

using BS digit vectors. Corresponding to each digit of multiplier vector partial

product vector is generated. Based on the digit set {1̄, 0, 1} three types of partial

product vectors are possible. If the multiplier digit is 1̄ the the partial product

vector is the inversion of multiplicand digit vector. Inversion of digit vector means

1s are converted to 1̄s and 1̄s are converted to 1s and 0s remains same. If the

multiplier digit is 0 then the corresponding partial product vector consists of all 0

digits. If the multiplier digit is 1 then the partial product vector is the copy of mul-

tiplicand digit vector. The generation of partial product using BS digits is simpler

compared to the CB numbers. In the multiplication of CB numbers, the genera-

tion of partial products for signed and unsigned numbers is slightly different. For

signed multiplication, 2’s complement of last partial product is taken. Moreover

in CB multiplication each partial product is either zero padded (unsigned multi-

plication) or sign extended (signed multiplication) before the addition. However

Chapter 5. SWP using redundant representation 151

in BS number system the distinguish between signed and unsigned input vectors

is done only at the time of CB to BS digit conversion. After conversion, the par-

tial products for all the BS digits are generated in the same manner without any

zero padding or sign extension. This reduces the complexity of partial product

generation process.

• Addition of partial products In this step, the generated partial products are

added using high speed carry propagation free adders explained in Section 5.2.

This addition is done using adder trees. The addition of partial product at each

level is done in parallel. This addition is completed in constant time irrespective

of the size of the partial product. Due to this fast addition of partial products the

overall speed of multiplication also increases.

• Conversion from BS to CB In this step the output of BS multiplier is converted

back to CB representation using the method explained in Section 5.4.

The multiplication process explained above is shown with the help of an example in

Figure 5.9.

multiplicand =

multiplier = = 33

= 179

1̄10001̄1̄1

1̄01̄11101

11 01̄1̄1̄01̄

00 000000

1̄01̄11101

00 000000

00 000000

11 01̄1̄1̄01̄

11 01̄1̄1̄01̄

1̄01̄11101

101̄11̄111̄Product = = 5907001̄11̄111̄

Figure 5.9: Multiplication using BS number system

Figure 5.9 shows the multiplication of two 8-digit numbers using BS data representation.

Eight partial products are generated corresponding to each digit of multiplier vector.

These eight partial products are arranged in such a way that each successive partial

product is left shift by one digit rank. In the next step these partial products are added

using BS adder tree. As there are eight partial products so there are log2(8) = 3 levels of

addition. Within each level all the additions are performed in parallel in constant time.

After three level of addition the product is obtained which is in BS digit form. Based

on the requirement, this product can be converted back to CB representation. The data

length of product in CB form will be 16 bits.

Chapter 5. SWP using redundant representation 152

5.5.1 Comparison of CB and BS multiplier

Comparison of BS multiplier explained in this section is done with CB multiplier. For

this comparison 40-bit/digit length is selected. CB multiplier takes two 40-bit vectors

as input and generates 80-bit result. In CB multiplier partial products are generated

by ANDing each multiplier bit with all the bits of multiplicand vector. The addition

of partial products is done using tree of binary adders. On the other hand the BS

multiplier takes two 40-digit numbers as input and generate 80-digit product. Table

5.7 shows the synthesis results of CB and BS multiplier when implemented on different

target technologies.

Number

90nm CMOS 130nm CMOS FPGA

system

ASIC ASIC VirtexII

Nand CP Power
Gates X

Nand CP Power
Gates X

CLBs
CP CLB

Gates (ns) (mW)
CP X

Gates (ns) (mW)
CP X

(ns) X CP
Power Power

CB 14518 6.1 17.2 1523229 10532 14.0 23.3 3435538 917 19.7 18065
BS 31268 2.5 37.0 2892290 26330 5.5 58.2 8428233 1862 11.9 22158

Table 5.7: Comparison of CB and BS multipliers

As shown in Table 5.7, the CP of 40-digit BS multiplier is less than the CP of 40-bit

CB multiplier. The reason being that BS multiplier uses high speed adder tree to add

the partial products. On the other hand CB multiplier uses binary adder tress whose

CP increases with the increase of vector length. On ASIC technology, the CP of BS

multiplier is almost 60% less than the CP of CB multiplier. On FPGA platform, the

CP of BS multiplier is almost 40% less than the CP of CB multiplier. Due to this

reduction in CP, the BS multiplier performs multiplications in less time compared to

CB multiplier. The overhead for this high speed is the increase in area and power

consumption. On all target technologies, the CB multiplier consumes almost 50% of the

area and power consumed by BS multiplier. Due to the increase in the area and the

power of BS multiplier, the product term (area×CP×power) of CB multiplier is 53%

and 41% of BS multiplier on 90nm and 130nm ASIC technologies respectively. The

increase in gate count in BS multiplier occurs because the logic cell for the addition of

BS digits is more complex compared to binary full adder cell. Also due to the encoding

of each digit by two bits, the number of bits increases which ultimately increases the

area. But due to high speed requirements in different applications, these overheads have

less importance. Moreover the CP of CB multiplier is greater, therefore to obtained the

same throughput as BS multiplier, we need two or three CB multiplier units in parallel

which increases the area accordingly.

Chapter 5. SWP using redundant representation 153

5.6 FSM based variable length BS adder

Based on the requirements, the hardware resources can be shared in the designing of

operators. In these operators same hardware resources are used multiple times and

the operations are performed with minimum design resources while meeting the timing

constraints. The number and type of resources is determined by the area and timing

constraints. If the area constraints are flexible then more number of resources can be

used to accomplish the task in less time. Similarly if the timing constraints are not very

strict then less number of resources can be used to perform the task.

In this section the BS adders are designed using different resource sets. Different re-

sources which are required to perform addition operation using BS representation are

CB to BS digit converter, BS adder and BS to CB converter. Multiple units of each these

resources can be used in the design. Data size of each of these resources also depends

upon the design constraints. Larger size units usually consume more area compared

to the smaller units. Some times larger size units are beneficial in the sense that they

complete the task in less time compared to the multiple usage of the small size unit.

However it depends upon the actual design constraints which determine the size and the

number of units required. Finite state machine (FSM) controller is used to control the

sequence of operations performed by these units. This controller enables each resource at

appropriate time. After the completion of the task the resource is disabled. Depending

on the requirement controller can activate the resources more than one time.

The BS adder explained in this section can be used as different size adder. This adder

is designed with minimum resources so that the implementation area can be minimized.

It utilizes the available resources and produces the sum at the output. This adder can

perform addition on 8, 10, 12, 16 and 32-bit data. Therefore the same adder is used as

either one 8-bit adder or one 10-bit adder or one 12-bit adder or one 16-bit adder or

one 32-bit adder. The input consists of two 32-bit CB numbers and data size control

signal. The data size control signal directs the operator about the size of adder required.

For instance data size signal directs the operator that one 8-bit adder is required or one

10-bit adder is required etc. When this adder is used as 8-bit adder the input bits from

(7 . . . 0) are used only. The rest of the bits (31 . . . 8) in 32-bit input vectors are ignored.

However when the adder is used as 32-bit adder then the whole 32 bits of input vectors

are used. Figure 5.10 shows the hardware resources required to perform these additions.

As shown in Figure 5.10, the resource set consist of different units. These units are

utilized to obtain the BS adders of different sizes. FSM controller controls the operation

of different units. The details of resources used in this design are given below.

Chapter 5. SWP using redundant representation 154

Input 1

32-bit CB number
Input 2

32-bit CB number data size

Finit state machine (FSM) controller

32-bit CB to BS

digit converter

(2 Units)

8-digit

BS adder

(1 Unit)

9-digit BS to CB

converter

(2 Units)

Resources

8, 10, 12, 32-bit adder

Output

33-bit CB number

Figure 5.10: FSM based BS adder

• 32-bit CB to BS digit converter Two units of 32-bit CB to BS digit converter

are used in this adder design. These units are used to convert input CB numbers to

BS numbers. The input to each of these units is 32-bit CB numbers. The output

of these units consists of 32-digit BS numbers. This resource consumes very small

area irrespective of input vector length. Therefore instead of using it for small size

data it is used for maximum data size of 32-bit.

• 8-digit BS adder One unit of 8-digit BS adder is used. This unit is used to add

two 8-digit BS numbers and generates 9-digit result. One extra digit is used to

avoid any overflow. This unit uses carry propagation free addition on BS digits.

For the addition of larger vectors (10, 12, 16 and 32-digits), this unit is used

multiple times.

• 9-digit BS to CB converter One unit of 9-digit BS to CB converter is used.

This unit is used to convert the BS digits into CB bits. It takes 9 digits as input

and generates 9-bits. As the output of 8-digit BS adder are 9 digits therefore the

size of BS to CB converter is also chosen as 9-digit.

5.6.1 FSM controller

The functions of different units used in the design of this adder are controlled with the

help of FSM controller. It controls all the operations and activates the units which are

Chapter 5. SWP using redundant representation 155

required at in particular states. Depending on the data size control bits, the FSM con-

troller activates the units corresponding to the size of the adder required. The sequence

of operations performed for different size adders are shown in Figure 5.11.

Yes

No

Yes

No

Reset

32-bit CB to BS conversions (31. . . 0)

A (7 . . . 0) + B(7. . . 0) Addition of eight BS digits

BS to CB conversion (7 . . . 0)
&

A (15 . . . 8) + B(15. . . 8) Addition of eight BS digits

If

data size = 8-bit

BS to CB conversion (15 . . . 8)
&

A (23 . . . 16) + B(23. . . 16) Addition of eight BS digits

If
data size =
10 or 12 or

16-bit

BS to CB conversion (23 . . . 16)
&

A (31 . . . 24) + B(31. . . 24) Addition of eight BS digits

BS to CB conversion (31 . . . 24)

Adder output

S3

S1

S2

S0

S4

S5

S0

S6

Figure 5.11: State diagram of adder

As shown in Figure 5.11, the finite state machine (FSM) controller for the adder consists

of different states. In each state certain units are enabled which needs to perform

operations. The controller starts with state S0 and activates the 32-bit CB to BS digit

converter units. These units convert input CB bits to BS digits. After this conversion

controller enters in state S1 and activates 8-digit BS adder unit. This unit adds the 8

digits inputs ranging from (7 . . . 0). The output is the 9-digit sum. In the next state S2

the 9-digit BS to CB converter unit is activated. This unit converts 9-digit data from

BS adder to CB format. In state S2 the unit 8-digit BS adder is free and data for this

unit is also available for computation. So 8-digit BS adder unit is also activated in state

S2 to add 8-digits ranging from (15 . . . 8). After state S2, the controller checks data size

Chapter 5. SWP using redundant representation 156

control signal about the size of the adder required. If the 8-bit adder is required then

the controller gives the 9-bit sum at output and goes into initial state S0 to wait for next

operation. However if the size of the adder required is greater than 8-bit then controller

enters into state S3. In the state S3 both 8-digit BS adder unit and 9-digit BS to CB

converter unit are activated in parallel. 8-digit BS adder unit performs the addition of

input digits ranging from (23 . . . 16) and the 9-digit BS to CB converter unit performs

the conversion of digits ranging from (15 . . . 8). After state S3 the data size control

signal is checked to determine whether the required size of addition has been performed

or not. If the required size of adder is either 10, 12 or 16-bit then the controller gives

the sum bits at output and goes into initial state S0. However if the size of the adder

required is more than 16-bit then this process is repeated in states S4 and S5. After

state S5 the sum of two 32-bits is obtained at the output.

The advantage of using this adder is that addition of different size data is performed using

only one adder unit of 8-digit size. Depending upon the requirement, the resource set of

adder can be increased which will reduce the addition time. However the implementation

area increases with the increase of resources. These adders are synthesized to different

target technologies. Table 5.8 shows the synthesis results of FSM based adder with

different resource sets.

Res.
90nm CMOS 130nm CMOS FPGA

Set
ASIC ASIC VirtexII

Nand CP Power
Eff.

Nand CP Power
Eff. CLBs

CP
Eff.

Gates (ns) (mW) Gates (ns) (mW) (ns)
RS1 1495 0.90 0.88 8288 1726 2.62 1.5 47482 88 4.4 2710
RS2 2316 1.07 1.14 14125 2632 2.88 1.98 75044 121 12.2 7381

Table 5.8: Synthesis results of FSM based BS adders

Resource set RS1 in Table 5.8 consist of one 32-bit CB to BS digit converter, one 8-digit

BS adder and one 9-digit BS to CB converter. The area, CP and power consumption

of complete adder using these resources are shown in Table 5.8. The number of cycles

required to add two numbers depends upon the size of numbers needs to be added. For

instance if this adder is used to add two 8-bit numbers using resource set RS1 then it

requires 4 clock cycles. Similarly for the addition of 32-bit numbers it requires 7 clock

cycles. Now if we increase the resources by little amount then the number of cycles

required to obtain the sum decreases accordingly. For this purpose, in resource set RS2

instead of 9-digit BS to CB converter, we use 32-digit BS to CB converter unit. The

FSM controller will activate the units in accordance with new resources. Due to this

small increase in resources the number of cycles required to compute the sum of 32-bit

numbers have been reduced from 7 to 5 clock cycles. However as we increase the resources

the implementation area, CP and power consumption also increases accordingly. On

Chapter 5. SWP using redundant representation 157

different target technologies, the efficiency of adder using resource sets RS1 and RS2

are also shown. This efficiency is computed by taking the product of area, power, CP

and cycles required to add two 32-bit numbers. Smaller value of this product indicates

high efficiency. On all technologies, RS1 has high efficiency because of less area, CP and

power consumption. However the adder using resource set RS2 consumes less cycles to

compute the addition of two numbers. Based upon the implementation constraints any

number and size of units can be used to meet the performance requirements.

5.7 SWP using BS representation

In the previous chapters, the design of a SWP based multimedia operator is described.

The performance of the operator was improved through the use of SWP on multimedia

oriented pixel sizes without focusing on the internal speed of the different processing

units (ADD, SUB, MULT etc.). These operators use SWP on CB data which has the

inherited carry propagation feature at any stage of the arithmetic operation resulting

in an overall limited speed for the different multimedia operations. In this section, we

emphasize on the designing of a multimedia operators which not only uses multimedia

oriented subword sizes to increase the resource utilization but also increases the speed

of the different processing units through the use of BS number system. The carry

propagation free addition property of BS number systems increases the speed of the

different basic operations which ultimately increases the speed of multimedia operations

like SAD, DCT etc. To our best knowledge, it is the first time redundant number system

is applied to SWP design.

To increase the parallelism as well as the speed of processing unit, SWP capability is

introduced in the operator’s design that are working on BS data representation. By doing

so the operator performs parallel computations on subwords which are represented in BS

data format. In the designing of SWP BS operators, multimedia oriented subword sizes

(8, 10, 12 and 16-bit) are considered rather than classical subword sizes (8, 16 and 32-bit

etc.). These multimedia oriented subword sizes are in coordination with pixel sizes in

modern multimedia applications. Due to this coordination the utilization of processor

resources increases. The word size of 40-bit is chosen because it gives good efficiency for

different multimedia pixel sizes.

Chapter 5. SWP using redundant representation 158

5.7.1 SWP adder using BS representation

The most commonly used operations in multimedia applications are addition, subtrac-

tion, absolute value, multiplication, SAD
∑

(a− b) for motion estimation, sum of prod-

ucts
∑

(a×b) for discrete cosine transform DCT etc. Almost all these operations require

addition/subtraction at some stage of their internal computation. Therefore efficient

adder scheme can increase the overall performance of all the arithmetic units in the

multimedia operator.

1̄10001̄1̄1

1̄01̄11101

AND
8 digit
ADD

Ctrl-SWP

AND
2 digit
ADD

Ctrl-SWP

AND
2 digit
ADD

Ctrl-SWP

AND ADD

Ctrl-SWP

4 digit
AND

4 digit
ADD

Ctrl-SWP

AND
4 digit
ADD

Ctrl-SWP

AND
6 digit
ADD

Ctrl-SWP

AND
2 digit
ADD

Ctrl-SWP

4 digit
ADD

Ctrl-SWP

AND
4digit
ADD

digits
224446244

Output (40 digits)

carrycarry

8
digitsdigitsdigitsdigitsdigitsdigitsdigits digits digits

inout

Operand 1 (40 digits)Operand 2 (40 digits)
8224446244

digitsdigitsdigitsdigitsdigitsdigitsdigitsdigitsdigitsdigits
8224446244

digitsdigitsdigitsdigitsdigitsdigitsdigitsdigitsdigitsdigits

01̄ 111̄010

001̄11̄111̄1

1̄0 00101̄1

A =

B =

S =

C =

Sum =

= 179

= 33

= 212

digitdigit
Ai Bi (Ai−1,Bi−1)

1
1 0
0 1
0 0
1 1̄

1̄ 1̄
1̄ 0
0 1̄

1

1̄ 1

Dont care

Otherwise

Dont care

Dont care

Otherwise

Dont care

Ci

digit digit
Si

0

1 1̄
0 1

0 0

1̄ 0

1̄ 1

0 1̄

1
Both non negative

Both non negative

lower order digits

Figure 5.12: SWP BS ADD architecture

The SWP BS adder is used to perform the SWP addition of subword data in the BS

representation. The SWP BS adder can perform either five 8-digit additions or four

10-digit additions or three 12-digit additions or two 16-digit additions or one 40-digit

addition. The input to SWP BS adder consists of two 40-digit vectors and SWP control

signal (SWPctrl). The SWPctrl indicate the operator about the size of subword digits

which are packed in the input vectors. Along with parallelism, the speed of addition is

increased by adding the numbers using BS adders. The architecture of SWP BS adder is

based upon the breaking of adder chain at subword boundaries. Based upon the selected

subword size, the adder chain at subword boundaries are either break or continued as

shown in Figure 5.12.

Chapter 5. SWP using redundant representation 159

To increase the speed of the addition, carry propagation free adders are used on BS data

between the control logics. There are several ways to add BS digits [45, 89] without

propagation of the carry (see section 5.2.1). In our SWP BS adder, the addition of BS

digits is performed using the addition Table 5.1. Using BS adders, the propagation of the

carry is avoided and a parallel addition can be performed in a constant time irrespective

of the word length of the vectors to be added.

• Overflow control digits in SWP BS adder To avoid any overflow, one extra

digit must be allocated to each resultant subword. The total number of extra digits

required to prevent the overflow for different selection of subword sizes depends

upon the maximum number of subword sizes which can be packed in word size

register. In our case maximum number of five 8-digit subwords can be packed in

word size register of 40-digit. Therefore five extra digits are required which can

avoid the overflow for all the selected subword sizes. Allocation of extra digits for

subword size of 8-digit is shown in 5.13.

23 . . . 1631 . . . 2439 . . . 32 15 . . . 8 7 . . . 0

23 . . . 1631 . . . 2439 . . . 32 15 . . . 8 7 . . . 0

+

x =

Y =

23 . . . 1631 . . . 2439 . . . 32 15 . . . 8 7 . . . 0

Extra
digit

Extra
digit

Extra
digit

Extra
digit

Extra
digit

Sum =

Figure 5.13: SWP adder for 8-digit subwords

Hence the addition of two 8-digit subwords results in 9-digits. Due to these extra

digits the complete output of SWP redundant adder consists of 45 digits. For other

subword sizes, the extra digits are allocated at their respective subword boundaries.

5.7.1.1 Comparison of SWP BS adder with SWP CB adder

Without considering the BS conversions, the critical path (CP) of the SWP adder on the

BS representation is less compared to the CP of a SWP adder on CB data of same word

and subword sizes (multimedia oriented). Compared to a CB SWP adder, the CP of the

BS SWP adder is almost 51% less for 8-bit subwords up to 85% less for 16-bit subwords.

Although the BS conversions also consume some critical path but its value is very small

compared to the CP saved while performing several arithmetic operations. The area and

dynamic power overhead for this high speed are only 29% and 16% respectively.

Chapter 5. SWP using redundant representation 160

5.7.1.2 Comparison of simple and SWP BS adder

To analyze the performance, both simple and SWP BS adder are synthesized to different

target technologies. Simple 40-digit BS adder can perform the addition of 40-digit

BS numbers. Where as SWP BS adder can perform multiple parallel add operations

based upon selected subword size. Due to this parallelism extra hardware resources are

required. Table 5.9 shows the synthesis results of simple and SWP BS adder.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP Power Gates X CP Nand CP Power Gates X CP
CLBs

CP CLBs

Gates (ns) (mW) X Power Gates (ns) (mW) X Power (ns) X CP

Simple 589 0.26 1.5 230 689 0.66 2.4 1091 98 6.2 608
SWP 645 0.3 1.5 290 730 0.7 2.6 1329 112 6.2 694
Overhead 10% 15% 0% 26% 6% 6% 8% 22% 14% 0% 14%

Table 5.9: Synthesis results of simple and SWP BS adder

As shown in table 5.9, the area and CP of SWP BS adder is slightly more than simple

40-digit adder. On ASIC technology, SWP BS adder requires almost 10% and 15%

more area and CP respectively compared to the simple 40-digit BS adder. On FPGA

technology, SWP BS adder requires 14% more area compared to simple 40-digit BS

adder. The power consumption of simple and SWP design on both ASIC technologies is

almost same. The (area×CP×power) product term of SWP BS adder is 26% and 22%

more than simple 40-digit adder on 90nm, 130nm ASIC technologies respectively. This

small increase in the resources occurs due to the parallelism provided by SWP adder.

5.7.2 SWP multiplier using BS representation

Multiplier is one of the most important basic processing unit in the design of any arith-

metic operator. SWP BS multiplier can perform several multiplications in parallel on

BS data representation. Use of SWP will increase the parallelism and the operations

on BS data will increase the speed of multiplication process. In SWP BS multiplier,

the multiplication of BS digit subwords are performed in the same manner describe in

Section 5.5. Partial products are generated for each digit of multiplier vector. However

for each selected subword size only those partial product digits are generated which are

required.

• Partial product generation unit for SWP BS multiplier : The architecture

of partial product generation unit for SWP BS multiplier is based upon the partial

product generation hardware for SWP binary multiplier explained in Section 2.3.2

Chapter 5. SWP using redundant representation 161

of Chapter 2. However in SWP BS multiplier the digits are used instead of bits

which results in the simplicity of PP generation as well. In SWP BS multiplier,

partial product generation unit generate partial products for different selection of

subword sizes. The arrangement of subwords within the input registers is different

for different subword sizes. Therefore the arrangement of partial product blocks

will also be different corresponding to the different selection of subword sizes. Be-

fore the generation of each partial product, the multiplicand vector is updated in

accordance with selected subword size. For different selection of subword sizes,

the multiplicand vector gets different values. This updated multiplicand vector is

then used to generate partial products. The partial product generation hardware

remains same irrespective of selected subword size. Therefore instead of using ded-

icated partial product generation hardware for each subword size, the same partial

product generation hardware is used for different subword sizes. The distinction

between signed and unsigned subwords is made at the time of the CB to BS con-

version therefore no sign extension, zero padding or correction vector is required

for signed/unsigned PPs.

• Addition of partial products for SWP BS multiplier : The generated partial

products are added using high speed BS adder trees. At each level of tree, these

adders add the partial products in parallel. For each subword size the product

subwords are represented by twice number of digits. For 8-digit subword size, each

product subword consists of 16 digits. These 16 digits are enough to represent

the product of two 8-digit subwords hence no overflow will occur. Similarly for

other subword sizes, the product subwords have twice data lengths. For word size

multiplication of 40-digits the product consists of 80 digits.

5.7.2.1 Comparison of SWP BS multiplier with SWP CB multiplier

Due to the use of high speed BS adders, the SWP BS multiplier computes the product

of subwords in less time compared to SWP CB multiplier. Compared to the SWP CB

multiplier of same word and subword sizes, the SWP BS multiplier computes the product

in 40% less time (for 8-bit subwords) up to 51% less time (for 16-bit subwords). The

area and dynamic power overhead for this high speed are 40% and 49% respectively.

This area increase occurs because the binary encoding of each BS digit requires at least

two bits which ultimately increases the overall area of SWP BS multiplier.

Chapter 5. SWP using redundant representation 162

5.7.2.2 Comparison of simple and SWP BS multiplier

SWP BS multiplier performs several subword multiplications in parallel. On the other

hand simple BS 40-digit multiplier can perform multiplication of two 40-digit numbers

and generate 80-digit product. Therefore it is obvious that due to SWP controls, SWP

BS multiplier will require more resources compared to simple BS multiplier. However by

using the efficient schemes for partial product generation and addition, the overheads of

SWP multipliers can be reduced. Simple as well as SWP BS multipliers are synthesized

on different target technologies and the results are shown in Table 5.10.

90nm CMOS 130nm CMOS FPGA
ASIC ASIC VirtexII

Nand CP Power Gates X CP Nand CP Power Gates X CP
CLBs

CP CLBs

Gates (ns) (mW) X Power Gates (ns) (mW) X Power (ns) X CP

Simple 31268 2.5 37.0 2892290 26330 5.5 58.2 8428233 1862 11.9 22158
SWP 31517 3.2 38.3 3862723 26361 7.4 59.8 11665270 2418 13.4 31434
Overhead 1% 28% 4% 34% 1% 35% 3% 38% 30% 13% 42%

Table 5.10: Synthesis results of simple and SWP BS multiplier

As shown in the Table 5.10, SWP BS multipliers requires little more resources compared

to simple 40-digit BS multiplier. On 90nm ASIC technologies, SWP BS multiplier

requires almost 1%, 28% and 4% more area, CP and power respectively. On 130nm

ASIC technologies, SWP BS multiplier requires almost 1%, 35% and 3% more area, CP

and power respectively. Similarly on FPGA technology, SWP BS multiplier requires 30%

and 13% more area and CP respectively. The (area×CP×power) product term of SWP

BS multiplier is 34%, 38% and 42% more than simple BS multiplier on 90nm, 130nm

ASIC and on FPGA technologies respectively. The small increase in resources for SWP

BS multiplier occurs because SWP multiplier supports more parallel operations.

5.8 SWP SAD using BS representation

Sum of absolute value differences (SAD) is one of the most commonly used operation in

video applications for motion estimation etc. SAD operation is used in this section to

explain that how computations are handled in our multimedia operator using the basic

arithmetic units explained so for. SAD operation is given by Equation 5.8.

SAD =
N−1
∑

i=0

|ai − bi| (5.8)

Chapter 5. SWP using redundant representation 163

As the SAD operation is normally applied to low precision pixel data in multimedia ap-

plications, therefore subword parallelism SWP can enhance the performance of a SAD

unit. In one computation round, rather than calculating single SAD computation, SWP

allow to compute SAD computations on multiple pixels data. The main functions in the

calculation of the SAD are finding of the absolute values of the difference and their ac-

cumulation. Both these functions involve the addition/subtraction process. To improve

the speed of SWP SAD operator, carry propagation free BS adders are used instead of

binary adder. These BS adders perform the addition in constant time irrespective of

word length. Therefore, the use of both SWP along with BS adders increases throughput

and speed of SAD operator. A pipelined architecture of the SWP SAD operator using

BS representation is shown in Figure 5.14.

ai

bi

bits

|a − b|

(unsigned)

SWP

CB

(unsigned)

BSto

Converter

bits

digits

digits

BS

40

40

40

40

40

digits
Subword

(unsigned)

SWP

Adder

digits
BS

40 40

digits

A

C

C

U

M

U

L

A

T

O

R

40

bits

SAD
Output

40

digits

B

S

40 digits

CB

(unsigned)

BSto

Converter

BS CBto

Converter

Figure 5.14: SWP BS SAD unit

A dedicated control signal, not shown in Figure 5.14 is used to select the subword size

for the SWP units. After converting numbers from CB to BS representation, a SWP

BS |a − b| unsigned unit is used to compute the absolute value of the difference of

the packed subwords in the BS format. To achieve maximum advantages of the carry

propagation free addition, this unit implements the absolute value operation using SWP

BS adders/subtractors. The SWP BS |a − b| unsigned unit either calculates a − b

(when a > b) or b − a (when b > a) on BS subword data. Therefore in order to get

more advantage (high-speed) of carry propagation free addition/subtraction, SWP BS

|a− b| unsigned operation is implemented using BS subtractors instead of implementing

absolute value calculation directly as shown in figure 5.15.

Due to subtraction operation overflow is not possible hence 40 digits are sufficient to

store the resultant subwords from the SWP BS |a − b| unsigned unit. The comparator

unit (SWP (a > b)) generate boolean values equal to the number of selected subwords

packed in word size input registers. The maximum values are generated when selected

subword size is minimum. For 8-bit subword size, five boolean values (maximum) are

generated as there are five packed subwords. For other larger subword sizes less number

Chapter 5. SWP using redundant representation 164

ai
(a − b)

(unsigned)
Subtractor

BS

40

SWP

(a > b)
SWPctrl

SWP

bi

(b − a)

(unsigned)
Subtractor

BS

SWP

(True/False)

True

False

digits

40
digits

40
digits

40
digits

SWP |a − b|
40

digits

5

Figure 5.15: SWP BS |a − b| unit

of comparator outputs are used. The output of SWP BS |a − b| unit is in the form

of packed subwords. The SWP BS subword adder unit adds the subwords packed in

one register to obtain a single value. Based upon the selected subword size, the SWP

BS subword adder unit separates the subwords packed in its input register and then

performs the addition of these subwords using a BS adder.

To obtain the SAD value in the BS format, the output of the SWP subword BS adder unit

is accumulated recursively using the BS accumulator. All these units (|a − b|, subword

adder and accumulator) involve additions/subtraction of subwords which are performed

on BS digits rather than CB bits which increases the speed of the overall SWP SAD

operation. Finally the BS SAD output is converted to its CB representation using BS to

CB Converter unit. Due to the use of fast BS adders, the BS pipelined SWP SAD unit

can operate at 50% faster frequency (for 8-bit subwords) upto 70% faster frequency (for

16-bit subwords) compared to a CB SWP SAD unit. The area and power overheads of

this speed enhancement are only 31% and 30% respectively.

5.9 SWP BS conversions

Conversion units are required at the input and output of SWP operator. At the input

these conversion units convert CB bits to BS digits so that the arithmetic operations can

be performed on BS data format. At the output the BS data is converted back to CB

format. As in SWP arithmetic operators, the operations are performed on subwords,

therefore the multimedia oriented SWP capability is also required in the conversion

units. SWP conversion units perform parallel conversions on all the subwords which

are packed in input registers. These conversions are based on the methods explained

in section 5.4. Due to parallel conversions on multiple subwords, SWP conversion units

require slightly more resources compared to simple conversion units.

Chapter 5. SWP using redundant representation 165

5.9.1 SWP CB to BS conversion

SWP CB to BS conversion unit is used to convert the CB subword bits into BS subword

digits. Based upon the selected subword size, the conversion is performed on 8, 10, 12

or 16-bit subwords. For different subword sizes there are different numbers subwords

packed in the word size register. Therefore the number and the location of MSB’s of

packed subwords will be different for different subword sizes. For 8-bit subword size,

there are five MSBs, as there are five 8-bit subwords in 40-bit register. The conversion

of signed CB subwords to BS subwords using SWP CB to BS conversion unit is shown

in Figure 5.16.

38 . . . 32 30 . . . 24 22 . . . 16 14 . . . 8 6 . . . 0MSBMSBMSBMSBMSB

7 . . . 015 . . . 823 . . . 1631 . . . 2439 . . . 32

(40-bit)

(40-digit)

Convert
1-bit to 1-digit

0-bit to 0-digit

Convert
1-bit to 1-digit

0-bit to 0-digit

Convert
1-bit to 1-digit

0-bit to 0-digit

Convert
1-bit to 1-digit

0-bit to 0-digit

Convert
1-bit to 1-digit

0-bit to 0-digit

8-digit 8-digit 8-digit 8-digit 8-digit

8-bit 8-bit 8-bit 8-bit 8-bit

BS representation

CB representation

Figure 5.16: SWP CB to BS conversion

As shown in figure 5.16, except the MSB of each subword the remaining bits of all

the subwords gets the same value in BS representation. The MSB of each subword is

monitored for ’0’ or 1 conversion. For other subword sizes, the subword bits are converted

to digits accordingly.

5.9.2 SWP BS to CB conversion

SWP BS to CB conversion unit is used to convert the BS subword digits to CB subword

bits. The input to SWP BS to CB conversion unit is 40-digit vector. Which contain

either five 8-digit subwords or four 10-digit subwords or three 12-digit subwords or two

16-digit subwords or one 40-digit word. Based on selected subword size, SWP BS to CB

conversion unit converts the packed subwords from BS to CB format. For subword size

of 8-bit, this parallel conversion process is shown in Figure 5.17.

As shown in figure 5.17, each subword is converted to positive and negative weight binary

numbers. For each subword size, the negative weight number is subtracted from positive

Chapter 5. SWP using redundant representation 166

7 . . . 0

(40-digit)

(40-bit)

8-bit

8-digit

CB representation

BS representation

7 . . . 0

Positive weight

Negative weight

15 . . . 8

8-bit

8-digit

15 . . . 8

Positive weight

Negative weight

23 . . . 16

8-bit

8-digit

23 . . . 16

Positive weight

Negative weight

31 . . . 24

8-bit

8-digit

31 . . . 24

Positive weight

Negative weight

39 . . . 32

8-bit

8-digit

39 . . . 32

Positive weight

Negative weight

Figure 5.17: SWP BS to CB conversion

weight number to get subwords in CB format. For other subword sizes, the conversion

is applied on corresponding subword sizes.

Depending on the output of operator, either simple (for single value) or SWP (for packed

subwords) BS to CB converter unit is required at the output of arithmetic operator. The

overhead of this conversion is very small compared to the overall computations performed

by the operator. For instance, in the SWP reconfigurable multimedia operator explained

in Section 5.10, the SWP BS to CB converter unit only consumes 3%, 6% and 4% of

total area, CP and dynamic power respectively.

5.10 High speed reconfigurable multimedia operator

For better performance and efficiency, high-speed reconfigurable computation units are

required in processor design. However the reconfiguration overheads like interconnection

cost and reconfiguration time reduce the benefits of reconfigurable processors. At the

same time within the arithmetic operators, the speed of operations on binary data cannot

be increased beyond certain limits because of the inherited carry propagation at any

stage of the addition. In this section to address reconfiguration and computation time

issues, a high-speed reconfigurable operator is proposed for multimedia applications.

This operator provides reconfigurability at both the operation level (different multimedia

oriented operations) and at the data size level (different pixel data sizes) through the use

of multimedia oriented subword parallelism (SWP). Reconfiguration at this level does

not increase the complexity of the interconnection network as well as no reconfiguration

time is required. For better resource utilization, multimedia oriented subword sizes (8,

10, 12 or 16 bits) are considered rather than existing conventional subword sizes (8, 16

and 32 bits etc.)[11, 19, 20, 28, 56]. To increase the speed of different processing units,

arithmetic operations are performed using a redundant or borrow save representation

rather than the conventional binary (CB) representation. The BS representation allows

Chapter 5. SWP using redundant representation 167

to use a carry propagation free addition in the arithmetic units. Compared to CB

adders, carry propagation free adders increase the overall speed of the reconfigurable

operator when performing different multimedia operations like sum of absolute value

difference SAD, discrete cosine transform DCT etc. Moreover the SWP overheads when

performing on BS data are less compared to CB data. For multimedia applications,

this operator ensures reconfigurability with high resource utilization along with high-

speed operations. The proposed multimedia operator can be used as a dedicated core

(co-processor) to speedup multimedia processing [107]. For multimedia applications, the

main processor transfers control to co-processor which will perform the computations on

pixel data more efficiently compared to conventional computational operators.

5.10.1 Architecture of the operator

Our reconfigurable multimedia operator can perform different basic and complex multi-

media operations on data of different sizes (8, 10, 12, 16, 40 bits). Maximum parallelism

with high resource utilization is attained through the use of SWP with these multimedia

oriented subword sizes. Along with parallelism high-speed multimedia operations are

performed through the use of BS representation. Efficient results are obtained for three

stage pipelined architecture of this operator and is shown in Figure 5.18. This operator

is made up of the basic units which we have presented above.

Control bits used to select the subword size are communicated to all the units which

contain SWP capabilities. To clarify the schematic, these control bits are not shown

in Figure 5.18. Through the use of this control word, this multimedia operator can be

configured for both the computation it executes and the size of the data. In the beginning

all the input data vectors are converted from CB to BS representation so that all the

arithmetic computations can be performed in BS. The reconfigurable SWP operator can

perform operations on signed as well as unsigned data values and gives the results in

the required format. Based on the selected operation, the output of the reconfigurable

operator can be in the form of a subwords or single accumulated value. After performing

computations on BS values, the output is converted back to CB representation. As

different operations produce different data length outputs, therefore different data length

simple and SWP BS to CB converter are used in the operator design. Like the inputs,

the output data of all the basic SWP units can be represented by subwords packed

in 40-bit registers except for SWP BS (a × b) unit whose output consists of subwords

packed in a 80-digit register. These 80 digits can be further converted to 80 bits using

BS to CB converter. As the output data length is limited to 40 bits, therefore the 80-bit

product is divided into 40-bit MSB and LSB parts using SWP product subwords LSB

and MSB extractor unit. Hence the complete product is obtained at the output of the

Chapter 5. SWP using redundant representation 168

80D

45D

SWP

SWP

40digit

to

BS
|a − b|

(unsigned)

SWP
BS

(a − b)

(signed)

SWP
BS

(a + b)

(signed/

unsigned)

SWP
BS

(a × b)

(signed/

unsigned)

45digit

01

10

SWP

CB

(sign/

unsign)

to

BS

00

40D

40D

80D

40B

00

40B

BS

to

CB
(80 bits)

(80 digits)

0

1

SWP

subwords

Adder

BS

and
MSBs

SWP
Product

Subwords

LSBs

Extractor

A

C
C
U
M

U
L
A
T
O
R

SWP

subwords

Adder

BS

BS

to

CB
(40 bits)

(45 digits)

SWP

0

1
40B

40B

80B80D

10

01

40D

33D

33D

40B

output

40D

B

S

45D

45D

Legend :

D stands for BS digits
B stands for CB bits

45D

bi

40B

SWP

CB

(sign/

unsign)

to

BS
ai

40B

BS

to

CB
(40 B)

(40 D)

0

1

Figure 5.18: Reconfigurable multimedia operator

reconfigurable operator in the form of subwords LSBs and MSBs in two successive clock

cycles.

In addition to basic arithmetic operations (signed/unsigned), the reconfigurable oper-

ator can perform multimedia operations like SAD for motion estimation, dot prod-

uct for DCT,
∑

(a + b) signed/unsigned,
∑

(a − b) signed/unsigned etc. Based upon

the requirements, any combination of these operations can also be obtained such as
∑

(a × b) +
∑

(a + b) etc. Rather than subwords which sometimes provide loss of bit,

these operations produce lossless single accumulated value at the output of the recon-

figurable operator. If the accumulated value from the SWP BS accumulator is small, it

is zero padded to 40 digits.

5.10.2 Sum of products using reconfigurable operator

As an example, consider the computation of the multiplication-accumulation used for

dot product is given by Equation 5.9.

Chapter 5. SWP using redundant representation 169

dot product =
N−1
∑

i=0

(ai × bi) (5.9)

80D

45D

SWP

SWP

40digit

to

BS
|a − b|

(unsigned)

SWP
BS

(a − b)

(signed)

SWP
BS

(a + b)

(signed/

unsigned)

SWP
BS

(a × b)

(signed/

unsigned)

45digit

01

10

SWP

CB

(sign/

unsign)

to

BS

00

40D

40D

80D

40B

00

40B

BS

to

CB
(80 bits)

(80 digits)

0

1

SWP

subwords

Adder

BS

and
MSBs

SWP
Product

Subwords

LSBs

Extractor

A

C
C
U
M

U
L
A
T
O
R

SWP

subwords

Adder

BS

BS

to

CB
(40 bits)

(45 digits)

SWP

0

1
40B

40B

80B80D

10

01

40D

33D

33D

40B

output

40D

B

S

45D

45D

Legend :

D stands for BS digits
B stands for CB bits

45D

bi

40B

SWP

CB

(sign/

unsign)

to

BS
ai

40B

BS

to

CB
(40 B)

(40 D)

0

1

Figure 5.19: Sum of product computation using high speed reconfigurable operator

The computation of sum of product using high speed SWP reconfigurable operator is

shown in Figure 5.19. The inputs are two 40-bit values and the selected subword size

which is assumed to be 8 bits for this case. Hence each input vector contains five 8-bit

packed subwords. First of all the input CB values are converted to their corresponding BS

representation using SWP CB to BS units. Then the SWP BS (a×b) unit produces a 80-

digit product value in the form of five 16-digit product subwords. These packed product

subwords are added together using the SWP subword BS adder unit and generate a

33-digit value. This 33-digit data length is selected based upon the worst case of 16-bit

subword size for
∑

(a × b) operation with no digit loss. For other subword sizes and

operations, the data length requirements at the output of the SWP subword BS adder

units are less. At each clock cycle the BS accumulator accumulates the 33-digit value

with the previous values to generate a 40-digit
∑

(a×b) term at the output. The input to

the BS accumulator is a 33-digit value and the output of the BS accumulator is a 40-digit

Chapter 5. SWP using redundant representation 170

accumulated value resulting in extra seven digits. These extra seven digits are used as

guard digits to avoid overflow. For other operations and smaller subword data sizes, the

numbers of guard digits are greater and thus the number of accumulations which can be

performed increases further. At the output, 40-digit sum of product value is converted

to binary representation using BS to CB unit. Similarly other multimedia operations

can be performed by SWP reconfigurable BS operator by activating the required units.

5.10.3 Synthesis results

For the analysis of the area, speed and power consumption, the overall SWP recon-

figurable BS operator has been synthesized to ASIC standard cell 130nm and 90nm

technologies using Synopsys Design Compiler. The area, speed and power consumption

have been obtained for both target technologies.

In order to get the best possible clock frequency for the reconfigurable operator, synthesis

were performed for different clock periods on each ASIC technology and the results are

considered for those clock frequencies which give a high efficiency (smallest product of

gates, clock period and consumed dynamic power). On both target technologies, due to

the use of the carry propagation free adder, the clock frequencies that give maximum

efficiency are higher compared to the same SWP multimedia operator using the CB

representation (clock periods are 6ns on 90nm ASIC technology and 10ns on 130nm ASIC

technology). The maximum design resources are consumed by the SWP BS multiplier

which consumes almost 50% to 65% of total area and 55% to 60% of total power on

different target technologies. Due to this reason we were able to increase the flexibility

of the reconfigurable operator by adding other arithmetic operators without increasing

the area to a larger extent. As a result the operator can perform variety of multimedia

operations depending upon the requirements.

Figure 5.20 shows the comparison of the area, clock period and dynamic power of the

SWP multimedia operators when using CB and BS representations. On all target tech-

nologies, the clock frequency of the SWP operator using BS representation increases due

to the use of high-speed BS arithmetic units. The area overhead for this high-speed is

mainly due to the redundant arithmetic units, conversion units and additional glue logics

used in BS operators. The area of CB operator is less than BS operator. However to

achieve the throughput of BS operator, multiple CB operators are required in parallel.

Which ultimatly increases the area accordingly. Therefore to target the high throughput

constraints, the area requirements of parallel CB operators are more compared to the

BS operator. The probabilistic dynamic power overheads of BS operator correspond to

the increase in the number of gates. On both ASIC technologies, the energy (power×

Chapter 5. SWP using redundant representation 171

90nm 130nm FPGA
0

2

4

6
x 10

4

A
re

a
(N

an
d

ga
te

s
/ C

LB
s)

90nm 130nm FPGA
0

5

10

15

20

C
lo

ck
 P

er
io

d
(n

s)

90nm 130nm
0

5

10

15

P
ow

er
 (

m
W

)

90nm 130nm
0

20

40

60

80

E
ne

rg
y

=
 P

ow
er

 x
 C

P

90nm 130nm FPGA
0

1

2

3

4
x 10

5

(G
at

es
 x

 C
P

)

90nm 130nm
0

1

2

3

4
x 10

6

(G
at

es
 x

 C
P

 x
 P

ow
er

)

SWP Operator using CB representation
SWP Operator using BS representation

Figure 5.20: Comparison of SWP operators using CB and BS representations

clock period) requirements of SWP CB and SWP BS operators are almost same with

the minor difference of less than 5%. With almost same energy consumption, the overall

speed of SWP BS operator is almost 33% and 40% faster than SWP CB operator on

90nm and 130nm ASIC technologies respectively. On different target technologies, the

(gates×CP) product of both CB and BS operators are almost same. With the same

(gates×CP) product value, the BS operator provides high speed operations at the cost

of some area increase. On both ASIC technologies, the product of area, clock period

and dynamic power of both CB and BS SWP operators are also compared. The value of

this product term is more for SWP operator using BS representation because it requires

more area and consumes more power.

5.10.3.1 Power analysis

To perform any particular multimedia operation, only the required units are enabled. All

the remaining units are disabled to reduce the switching activity. On the 130nm ASIC

technology, the percentage of total power consumed by the SWP reconfigurable BS

operator (with 8-bit selected subword size and clock period of 6ns) to perform different

SWP operations is shown in the Figure 5.21. During these experiments, statistical power

Chapter 5. SWP using redundant representation 172

is estimated by monitoring the switching activity on each node while performing different

operations on random test vectors.

0

20

40

60

80

100

120

SWP Operations

%
ag

e
of

 r
ef

er
en

ce
 p

ow
er

Σ (a + b) a − b (a + b) (a − b) (a x b) Σ (a − b) Σ (a x b) Σa − b

Figure 5.21: Power consumption of operations

We assume reference power (100%) is consumed by the more complex basic operator i.e

the multiplier (a × b). All the SWP operations consume some percentage of reference

power based upon the power consumption of the arithmetic units needed to be enabled

for a particular operation. Obviously the power consumed by the complex operations

which involve the accumulation is slightly larger compared to the operations which

involve basic SWP arithmetic units. Additional power is mainly due to subword adder

units. Maximum power consumed by the reconfigurable operator is 104% of the reference

power when performing
∑

(a × b) operation.

Compared to the SWP reconfigurable operator using binary representation (Figure 4.14

in Chapter 4), the reconfigurable BS operator consumes more power. This increase in

power corresponds to increase gate count in BS architectures. Due to the difference in

the internal architectures of processing units, the percentage power consumed by differ-

ent operations in CB and BS reconfigurable operators is different. The percentage of

reference power consumed by addition, subtraction and absolute difference based opera-

tions (a ± b, |a - b|,
∑

(a±b),
∑

|a−b| etc.) is different in both BS and CB operators. In

CB operator, these operations consume almost 40% to 50% of reference power. Whereas

in BS operator these operations consume almost 20% to 30% of reference power. This

small variation occur mainly because of the internal architecture of arithmetic units in

both operators and also because of the fact that reference power in both operators are

Chapter 5. SWP using redundant representation 173

different. As the BS multiplier consumes more power therefore the percentage of power

consumed by other operations is only few percent of reference power.

On average, the area overhead due to the use of BS number system in different units

like ADD, SUB, MULT, absolute value of difference etc. is between 40% to 50%. Extra

area is required due to the increase in the number of registers required for BS operator.

Compared to the CB operator, the BS operator requires almost twice number of registers

as each digit is represented by two bits. However the corresponding speed increase

for basic SWP BS units varies between 60% to 80%. Due to these high-speed basic

arithmetic units, the computation time of multimedia operations is also reduced by the

same percentage when operating on different pixel sizes.

5.11 Conclusions

Efficient reconfiguration along with high-speed arithmetic units improves the perfor-

mance of processors for several multimedia applications. The benefits of both paral-

lelism and high-speed computation can be combined in the operator design by using

multimedia oriented SWP on BS representation. In SWP, supported subword sizes that

are in coordination with the pixel size of multimedia applications can further improves

the performance through better resource utilization. Our work in this chapter shows

that the speed of almost all the SWP arithmetic units used in the operator design can

be improved by using the barrow save representation rather than conventional binary

representation. The cost for this speed enhancement is the increase in area and power

consumption. Due to this increase the overall product of area, CP and power also in-

creases accordingly. However the speed of the processing units plays such an important

role in modern multimedia applications that these overheads can be tolerated to some

extend.

Chapter 6

Motion estimation using SWP

operators

In the previous chapters different multimedia oriented SWP operators have been de-

scribed. These operators perform operations on pixel data and increase the efficiency

of processor through a better resource utilization. In this chapter the SWP operating

units are used to design the dedicated hardware architecture for motion estimation al-

gorithm. Motion estimation is selected because of its computational complexity and its

importance in almost all the video compression standards. Instead of using classical

subword sizes, multimedia oriented pixel sizes are used in our SWP motion estimation

operator. The performance of SWP operators is analyzed by using it with different

search algorithms of motion estimation.

The rest of this chapter is organized as follows: Section 6.1 gives the brief overview of

motion estimation algorithms used in video compression. Section 6.2 presents different

search algorithms which are used to find the best match in motion estimation. Section

6.3 describes the cost functions which are used to compare the blocks in the motion

estimation algorithm. Section 6.4 presents the implementation of motion estimation

using SWP operators. Each block of the SWP ME operator is described in detail.

Section 6.5 and Section 6.6 describe the working of the SWP ME operator when using

full search and diamond search algorithms respectively. Different hardware requirements

and search time requirements are also discussed in detail. Section 6.7 elaborates the

comparison of the SWP ME operator when using different search algorithms. Section

6.8 describes the use of SWP ME operator as co-processor IP using MicroBlaze soft

processor core environment. Finally we conclude the chapter in Section 6.9.

174

Chapter 6. Motion estimation using SWP operators 175

6.1 Motion estimation

To efficiently utilize the video channel bandwidth, video compression is one of the most

powerful technique. In video compression, temporal redundancies between the frames are

removed and minimum possible information is sent on the channel for the transmission

of video images. To remove these temporal redundancies motion estimation is one of the

most efficient tool [62, 103]. Now a days motion estimation is used in most of the video

compression algorithms. In motion estimation, candidate block in the current frame

which needs to be transmitted is compared with different blocks in the reference frame

and best match is searched. Instead of transmitting whole block, the difference between

the candidate block in the current frame and best match block in the reference frame

is transmitted [33, 47]. The location of the best match block in the reference frame is

measured in terms of motion vector. At the receiving end motion vector indicates the

location of best matched block in the reference frame. This process is called motion

estimation which allows to transmit the video information using very small amount of

data transfer [68].

Block matching is the most popular motion estimation technique. It works on the blocks

of image rather than on individual pixels. The process of block matching used for motion

estimation is shown in Figure 6.1.

Reference frame Current frame

Search area image

Current block

Best match block

Motion vector

Figure 6.1: Block matching in motion estimation algorithm

As shown in Figure 6.1, current block is the candidate block in current frame which

needs to be transmitted. Current block is compared with the blocks in reference frame

using search algorithm. Search algorithm gives best match block that gives minimum

cost function output in comparison process. When best match block is found its location

is represented by motion vector. Different terminologies which are related to the motion

estimation and are used frequently in this chapter are given below.

• Current frame : It refers to the current video frame which needs to be trans-

mitted through video channel. For instance PAL and SECAM system recommends

the frame rate of 25 frames per second.

Chapter 6. Motion estimation using SWP operators 176

• Current block : It refers to the block in current frame whose best match needs

to be found using motion estimation algorithm. The dimension of current block

is measured in terms of number of pixels. Based on the requirements the current

block can be of any size like (16×16), (8×8) etc. The block size highly effects the

performance of motion estimation algorithm.

• Reference frame : It refers to the previous frame in which the best match

for current block is searched. Reference frame is not always fixed through out

the communication. Reference frame is updated after certain period of time to

increase its resemblance with the current frame. Greater the resemblance between

current frame and reference frame, easier will be for search algorithm to find the

best match.

• Search area image : In order to reduce the search time, the best match for

current block is searched only in a particular window of reference frame and not

in the whole reference frame. This window is called as search area image. Based

on the requirements this search area image can be of any size. For instance for

(16×16) current block the search area can be (48×48) or (64×64) etc.

• Block base address : It refers to the address of particular block in search

area image. Base address of a block indicates the address of top left pixel of the

block. For instance in (48×48) search area image there are numerous (16×16)

blocks which are indicated by their base addresses.

• Motion vector : When the block matching algorithm is applied and the best

match for the current block is found in the reference frame then its location is

indicated by motion vector (MV). MV indicates both horizontal and vertical coor-

dinates of matched block in search area image. The center of search area window

is considered to have zero MV coordinates. MV usually gives the coordinates of

top left corner of matched block.

The overall performance of motion estimation algorithm depends on two main factors:

• Search algorithm

• Cost function

Efficiency of both these units has enormous impact on the overall performance of motion

estimation process [13, 17]. In the next sections we will explore different available search

algorithms and cost functions and their efficiency and accuracy is analyzed. After the

analysis, appropriate search algorithms and cost functions are chosen for the hardware

implementation of motion estimation using our SWP multimedia operators.

Chapter 6. Motion estimation using SWP operators 177

6.2 Search algorithms in motion estimation

The search algorithm for finding best match plays vital role in the efficiency and accuracy

of motion estimation [33, 66]. Search algorithm tries to find best possible match of

current block in the reference frame with minimum possible resources and time. There

are different algorithms available for finding best match in motion estimation. Some of

these algorithms are given below:

• Full search algorithm

• Three step search algorithm

• Diamond search algorithm

6.2.1 Full search algorithm

Full search (FS) is the most accurate search algorithm which finds the match of current

block in reference frame with high level of precision [65, 67, 78]. In FS the current block

is compared with all the possible blocks in search area of reference frame. The number

of possible blocks in search area depends upon the size of block and the size of search

area image as well. For instance if the block size is (16x16) and search area image size

is (48x48), then the number of possible (16x16) candidate blocks in (48x48) search area

are given by Equation 6.1.

(p + 1)2 = (32 + 1)2 = 1089 (6.1)

Where

p = Search area image size − Current block size = 48 − 16 = 32

So in FS, each (16x16) current block has to compare with 1089 blocks in (48x48) search

area window to find the best match. Although the FS algorithm gives very accurate

match but due to the large number of comparisons it requires exhaustive computations

which consumes lot of time. Compared to other search algorithms, the complexity of

FS is less because the search pattern is always known in advance. In most other search

algorithms, the search pattern depends upon the outcome of previous comparisons. The

computations in FS are independent of any previous results. Therefore these computa-

tions can be performed in parallel to increase the speed. High speed can be achieved by

exploiting the parallelism at both pixel level using SWP and at block level using multiple

comparison units.

Chapter 6. Motion estimation using SWP operators 178

6.2.2 Three step search algorithm

To reduce the search time, three step search (TSS) algorithm compares only few blocks

of search area image with the current block [49, 61]. In TSS algorithm, search process

starts with nine search points centered around the zero motion vector (MV) point. Each

of these search points are separated from next point by four pixel locations. The cost

function (sum of absolute difference SAD or mean value of absolute difference MAD

etc.) is calculated at each search point. For each calculation of cost function the top left

corner of current block is coincide with the search point under consideration. The value

of cost function indicates the difference between two blocks. Smaller the cost function

value, lesser will be the difference between two blocks and vice versa. Out of the nine

search points, the search point with minimum difference will be the center point for

second search step. In the second search step, search pattern consists of nine search

points centered around the minimum difference point of first step. These search points

are separated from each other by two pixel locations. The cost function is calculated at

each search point and the search point with minimum difference will be considered as the

center point for next search step. Similarly in the third search step the cost function is

calculated at nine search points separated by one pixel location and centered around the

minimum difference point of second step. In this search step the point with minimum

difference is considered as best match point. The coordinates of best match point are

the required MV coordinates which are transmitted. The search steps of TSS are shown

in Figure 6.2.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

First step

Second step

Third step

Figure 6.2: Three step search algorithm

In TSS the number of search points are very less compared to FS algorithm. Therefore

the TSS algorithms finds MV in less time compared to FS. However the accuracy of TSS

is less compared to FS because the search is carried out at few points rather than at all

the points in search area image. For larger search area the number of search steps in

Chapter 6. Motion estimation using SWP operators 179

TSS can be increased to increase the accuracy of search process [76]. The complexity of

TSS is higher than FS because the center point for next search pattern is based on the

minimum search point in previous step. Where as in FS search pattern is always fixed.

6.2.3 Diamond search algorithm

To increase the accuracy of search process, diamond search (DS) was proposed [108].

The search patterns in DS are selected in such a way that the search process should not

be trapped in wrong directions. In DS there are two types of search patterns that are

large diamond search pattern (LDSP) and small diamond search pattern (SDSP). LDSP

consists of nine search points and SDSP consists of five search points. Both LDSP and

SDSP are in the shape of diamond. Search process starts with LDSP centered around

the zero MV. Cost function is calculated at all the nine search points of LDSP. The

search point with the minimum difference (smaller value of cost function) determines

the location of center point of the search pattern in the next step. If the minimum

difference comes at any point other than the center point of LDSP then in the next step

the search patterns remains LDSP. This process continues until the minimum difference

comes at the center point of LDSP. When the minimum difference point comes at center

of LDSP then the search pattern is switched from LDSP to SDSP centered around the

minimum difference point. In SDSP cost function is calculated at all the five search

points and the coordinates of search point with minimum difference value is considered

as final MV. The search pattern for DS is shown in figure 6.3.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

First step

Second step

Third step

Fourth step

Figure 6.3: Diamond search algorithm

The number of search points in DS are less compared to FS. Therefore DS requires

less time to find MV compared to FS. The accuracy of DS is higher than TSS but

less than FS. The accuracy of DS algorithm is high because of the use of two different

diamond shape search patterns (LDSP and SDSP). The number of iterations of LDSP

Chapter 6. Motion estimation using SWP operators 180

are determined at run time and totally depends on the features of current block and

search area image. In the final step SDSP is used to narrow down the focus for more

accurate MV determination. Unlike the FS and TSS, the time required to find MV using

DS algorithm is not fixed. The search time in DS depends upon the number of iteration

of LDSP. Search time will be smaller if the minimum difference point comes quickly at

the center of LDSP and vice versa. The complexity of DS is high compared to FSS and

TSS because of different search patterns used and also because of unknown number of

iterations of LDSP.

6.3 Cost functions

A Cost function is used to compare and estimates the difference between current block

and the blocks in the search area image. Smaller value return by the cost function in-

dicates the high similarity between the blocks and vice versa. There are different cost

functions available to estimate the differences between the blocks. These cost functions

are based on different mathematical functions which tries to find the differences as ac-

curately as possible [15]. Some of the cost functions are Sum of absolute value difference

(SAD), Mean absolute value difference (MAD), sum of absolute transformed differences

(SATD) [82] etc. However in our SWP operator for motion estimation, we will use SAD

as cost function due its simplicity and efficiency.

6.3.1 Sum of absolute value difference SAD

SAD is the most commonly used cost function in motion estimation because of its sim-

plicity. The mathematical expression for the computation of SAD on image blocks is

given by Equation 6.2.

SAD =
M−1
∑

i=0

N−1
∑

j=0

|In(k + i, l + j) − In−1(k + i + u, l + j + v)| (6.2)

Where M and N represents the horizontal and the vertical size of block respectively. For

instance the value of both M and N is 16 for the block size of (16×16). The current

block is compared with the block in search area window whose location is represented by

(u,v). In(k+i, l+j) is a pixel at (k+i, l+j) in the current frame and In−1(k+i+u, l+j+v)

is a pixel at location(k+i+u, l+j+v) in the reference frame. In SAD, the comparison of

blocks is based upon the values of pixels in both current block and reference image block.

SAD operator computes the absolute values of differences between the corresponding

Chapter 6. Motion estimation using SWP operators 181

blocks. The computation of absolute value of difference at any pixel location depends

only on the pixels at that particular location in both blocks. Due to the non dependence

of computation, the absolute value of difference computations can be made in parallel

inside the blocks using subword parallelism SWP. Absolute values are then added to give

the overall difference between two blocks. The pipelined architecture of the SWP SAD

unit which will be used in our SWP motion estimation operator is shown in Figure 6.4.

a

b

40

40

|a − b|

24

A

C

C

U

M

U

L

A

T

O

R

24

(unsigned)

SWP40 40

17 17

24

24

SWP

subwords

adder

SW Pctrl
SW Pctrl

CLK

CLK

CLKCLK

Figure 6.4: SWP SAD unit

The detail of each building block of SWP SAD unit shown in Figure 6.4 have already

been given in Section 3.3 of Chapter 3. SWP SAD operator perform computations on

pixels which are packed in the word size (40-bit) input registers. Instead of working on a

single pixel, SWP SAD unit operates on all the packed pixels in parallel using subword

parallelism. Smaller the size of the selected subword higher will be the parallelism. For

SAD calculation on block size of (16x16), the SWP SAD operator requires approximately

52 clock cycles for subword size of 8-bit. In each clock cycle instead of working on single

pixel SWP SAD unit perform computations on five 8-bit pixels in parallel.

The output of SWP SAD unit consist of 24 bits. These 24 bits are selected based upon

the maximum current block and subword sizes used. In our SWP motion estimation

operator, we have considered maximum block size of (16×16) and maximum subword

size of 16-bit. For 16-bit subword size, SWP |a - b| unit performs absolute difference

computations on two 16-bit pixels in parallel in each clock cycle. The packed absolute

difference values are then added using SWP subwords adder unit and generate 17-bit

result. These 17-bit results are accumulated recursively by the accumulator. Without

SWP, SAD computations on (16×16) block require the accumulation of 256 absolute

difference values. But due to the use of SWP the number of these accumulations are

reduced by the degree of parallelism. For maximum subword size of 16-bit, the accumu-

lations are reduced by the factor of 2 (256/2 = 128). For other smaller subword sizes

Chapter 6. Motion estimation using SWP operators 182

these accumulations reduces further due to more parallelism. To add 128 values, accu-

mulator requires 7 guard bits (27 = 128) to avoid any overflow. Therefore for maximum

subword and block sizes, the total number of bits required at the output of accumulator

is 24 bits (17 + 7 = 24). These bits are sufficient to represent the SAD values of other

smaller subword sizes (8, 10, 12-bit) and also for other smaller block sizes. However

based upon the requirements, bit width at the output of SWP SAD unit can further be

increased when more larger block sizes are considered.

6.4 Motion estimation using SWP operators

SWP ME operator is design to perform the motion estimation computation for different

multimedia oriented pixel sizes. This operator increases the performance of processor

through better resource utilization. SWP ME operator can operate on 8, 10, 12 or 16-bit

pixel sizes. These pixel sizes are chosen based upon the modern multimedia applications.

Different SWP units used in the design of SWP ME operator performs the computations

on pixels packed in 40-bit word size registers. The word size of 40-bit is chosen as it gives

the better efficiency trade off with different multimedia oriented pixel sizes. The inputs

to SWP ME operator are current block from current frame and the search area image

from reference frame. The current block and search area image are stored in input

random access memories (RAMs). SWP SAD is used as cost function to determine

the match between the current block and the blocks in search area image. SWP ME

operator gives motion vector and global minimum SAD value as the output. The SWP

Ctrl is used to select the subword size based on the size of input pixels. The selected

subword size is communicated to different units which utilizes SWP capabilities. Two

search algorithms (full search and diamond search) are used to analyze the performance

of proposed SWP ME operator. These search algorithms are chosen based upon their

accuracy and computational requirements. The block diagram of SWP ME operator is

shown in Figure 6.5.

As shown in figure 6.5, there are different blocks which contributes to the overall com-

putations of motion estimation algorithm. The internal architecture of each block is

pipelined to increase the speed of ME operation. Clock (CLK) signal and synchronous

reset (Reset) signal is communicated to all the required blocks. In the next subsections

the functionality of each block is explained.

Chapter 6. Motion estimation using SWP operators 183

Read current block enable

SWP

operator

SAD

read

(40

search

RAM

area

(40 from

RAMcurrent

RAM

search

image

area

RAM

current

block

Read search area image enable

Base address for next block

CLKReset

Comparator

40

RAM
Address

Data
40-bits

RAM
Address

Data
40-bit

Global
Minimum

SAD

Motion
Vector

pixels

bits/CLK) from

image

bits/CLK)

block

SWP
Ctrl

40

CLKReset SWP
Ctrl

CLKReset SWP
Ctrl

machine

CLKReset SWP
Ctrl CLKReset

comparator

24SAD

A

C
C
U
M

U
L
A
T
O
R

SWP

|a − b|

(unsigned)

Five 8-bit pixels or

Four 10-bit pixels or

Three 12-bit pixels or

Two 16-bit pixels

Block
SAD

40

24

40

40

17

24

Five 8-bit pixels or

Four 10-bit pixels or

Three 12-bit pixels or

Two 16-bit pixels

state

controller

SWP

subwords

adder

CLK CLK CLK CLK

SAD
enable enable

Initialize for next matching

Initialize
for next
SAD
block

SWP

read pixelsSWP

SWP

Figure 6.5: SWP motion estimation (ME) operator

6.4.1 RAMs for search area image and current block

The input to SWP ME operator are pixels from search area image and pixels from

current blocks. These pixels are stored in two input RAMs that are RAM search area

image and RAM current block. Based upon the requirements both RAMs can be of any

appropriate size. For instance some of the appropriate sizes which are commonly used in

video standards are (48×48) for search area image and (16×16) for current block. The

output port of each RAM has data width of 40 bits. The output from RAMs consists

of pixels packed in 40-bit word length. Based on the selected subword size, the 40-bit

output data from each RAM consist of either five 8-bit pixels or four 10-bit pixels or

three 12-bit pixels or two 16-bit pixels. The input to each RAM is the RAM address from

where the data is required to be read. The data in the RAM at the location mentioned

by RAM address is loaded on the output port.

6.4.2 RAM reading units

RAM reading units are used to read the pixel data stored in search area and current

block RAMs. RAM reading units generates the input addresses for the RAMs. The

Chapter 6. Motion estimation using SWP operators 184

controller unit enables or disable RAM read units based on the requirements. In each

clock cycle reading unit generate the address of next pixels required for computation.

For instance for subword size of 8-bit, five pixels (40 bits) are read from RAM in each

clock cycle. So the RAM reading unit generates RAM address with the increment of five

pixels in each clock cycle. These five pixels from search area RAM and current block

RAMs are given to SAD computation unit in each clock cycle. Once activated, the RAM

read units are enabled until all the pixels from the required blocks are read. For (16×16)

block size and (48×48) search area size, each RAM read units read 256 pixels for SAD

computations on the blocks. For current block RAM, the entire (16×16) RAM is read

for the SAD computations of (16×16) blocks. However for search area RAM, the reading

unit requires the base address of next (16×16) block to be read for SAD computation.

Starting from the base address, the reading unit for search area image generate the

addresses for (16×16) block. As the 40-bit output of RAMs contains different number

of pixels for different subword sizes (five 8-bit pixels, four 10-bit pixels, three 12-bit

pixels and two 16-bit pixels). Therefore for different subword sizes, the reading units

requires different number of cycles to read (16×16) pixel blocks. For 8-bit subword size,

maximum number of pixels (five pixels) are read in each clock cycle hence it requires

minimum number of clock cycle to read entire (16×16) block. For other subword sizes

the number of cycles required to read (16×16) block increases corresponding to the

number of pixels read in one clock cycle.

6.4.3 SWP SAD computation unit

SWP SAD computation unit is used to compute SAD on pixel data. The inputs to this

unit are CLK, Reset, SWP ctrl (SWP control signal), SAD enable, Initialize for next

block SAD and two 40-bit vectors. The input and output signals of SWP SAD unit are

shown in Figure 6.6.

SWP

Operator

40

40

CLKReset SWP
Ctrl

24SAD

SAD
enable

Pixels from current block

Pixels from search area image SAD output

Initialize for next block SAD

Figure 6.6: Block diagram of SWP SAD unit

The controller unit enables the SWP SAD unit when the SAD computations are required

on pixels. In each clock cycle the 40-bit vectors from current block RAM and search

area RAM are given to SWP SAD unit. These 40-bit vectors contain the packed pixels.

Chapter 6. Motion estimation using SWP operators 185

SWP ctrl signal directs the SWP SAD unit about the size of pixels stored in input 40-

bit vectors. SWP SAD unit computes the SAD (
∑

|a − b|) on the pixels packed in its

input vectors. The partial SAD values are accumulated until all the pixels in the input

blocks are finished. The pipelined architecture of SWP SAD unit is shown in Figure 6.4.

The block size in ME determines the number of pixels on which SAD computations are

applied. For instance for (16×16) block size, the SWP SAD unit computes the SAD on

(16×16) current block and (16×16) block taken from search area image. Before each

(16×16) SAD computation, the controller directs the SWP SAD unit to get ready for

new SAD computation by sending Initialize for next block SAD signal. On receiving

this signal the SWP SAD unit clears all the data in its pipelined registers and get ready

for new SAD computation on new (16×16) blocks. As the input 40-bit vectors contain

different number of pixels for different selected subword sizes. Therefore the number of

cycles required to compute the SAD of (16×16) blocks also depends upon the selected

subword size. The minimum cycles are required when selected subword size is 8-bit and

the maximum cycles are required when selected subword size is 16-bit.

6.4.4 SAD comparator unit

SWP SAD unit computes the SAD on current block and the block in the search area

window indexed by the base address. After required number of clock cycles SWP SAD

unit gives the SAD value of complete block. This SAD output value is compared with

the previously obtained minimum SAD value using SAD comparator unit. The inputs

to this unit are Current SAD value, Initialize for next matching, Comparator enable,

CLK and Reset. The block diagram of SAD comparator unit is shown in Figure 6.7.

SAD

Comparator

Global minimum SAD

Motion vector

CLKReset

Comparator

Current

enable

SAD value

Initialize for next matching

Figure 6.7: Block diagram of comparator unit

After the comparison, if the current SAD value is less than previously obtained minimum

SAD value then the minimum SAD value is updated by assigning current SAD value

to minimum SAD value. However if the minimum SAD value is less than current SAD

value then the minimum SAD value remains the same. The comparator unit is enabled

by the controller after each computation of SAD on particular block size. For instance

for (16×16) block size the comparator unit is activated after each computation of SAD

on (16×16) blocks. The minimum SAD value is stored internally after each comparison.

Chapter 6. Motion estimation using SWP operators 186

After the required number of comparisons which is determined by search algorithm, the

comparator unit gives the global minimum SAD value. The location of block in search

area image corresponding to the global minimum SAD value is indicated by motion vec-

tor. For block size of (16×16) and search area size of (48×48), the FS algorithm requires

1089 comparisons before giving global minimum SAD value. Other search algorithms

like TSS and DS etc. computes less number of SAD values and ultimately requires less

number of comparisons. The controller send Initialize for next matching signal to SAD

comparator before the start of block matching for new current block. On receiving this

signal, SAD comparator unit initializes the minimum SAD value register internally for

the next block matching. Normally the initial value of this register is set at maximum

which is then compared with actual current SAD values.

6.4.5 State machine controller

Controller unit generate different control signals for different modules in ME operator.

It enables, disable or initialize the modules at the appropriate time. The controller

unit is implemented using synchronous finite state machine (FSM). The state machine

performs the transition between the states on clock edge only. In each state, controller

generates enable signals for different units which need to be active to perform particular

operations. After the completion of certain operations, the controller unit generates

signals to initialize the unit for next operation. The control signals generated by FSM

controller are shown in Figure 6.8.

Read current block enable

Read search area image enable

Base address for next block

CLKReset

Comparator enable

SWP
Ctrl

MachineState

Controller

SAD enable

Initialize for next block SAD

Initialize for next matching

Figure 6.8: State machine controller block

As shown in the Figure 6.8, the FSM controller generates following control signals.

• Read current block enable : When this signal is activated it enables the

reading of pixels from current block RAM. This signal remains active until the

entire current block is read and the pixels are provided to SAD computation unit

in successive clock cycles. When the read operation is over the controller disable

the Read current block enable signal and the reading process is finished.

Chapter 6. Motion estimation using SWP operators 187

• Read search area image block enable : When this signal is activated, the

pixels are read from search area image at the particular location indicated by the

base address. This control signal is active in synchronize with Read current block

enable signal so that the pixels from both current block and search area blocks are

available for the computations at the same time. When all the pixels from search

area block are read successfully then the controller disable the Read search area

image block enable signal.

• Base address for next block : Depending on the search algorithm, the con-

troller generates the base address of next block to be read from search area image.

For instance in full search algorithm all the possible blocks in search area image

are compared with the current block. Therefore after each computation of SAD

on the blocks, the controller generates base address of next block in search area in

the increment of one pixel location. This process continues until the entire search

area image is scanned in both horizontal and vertical directions. For other search

algorithm, the controller generates the base address in accordance with the search

pattern used.

• SAD enable : This control signal enables the SWP SAD unit. When the

pixels are ready for SAD computations, the controller activates the SWP SAD

unit using SAD enable signal. During the entire computations of SAD on any

particular block, this control signal remains active. When the SAD computations

for the block are finished, controller disable the SAD enable signal.

• Initialize for next block SAD : This control signal is sent by the controller

to SWP SAD unit before the start of new SAD computations. On receiving this

signal, the SWP SAD unit initializes all its internal registers to zero value and get

ready for the next SAD computations. Without this initialization, the unwanted

values in the internal registers of SWP SAD unit can result in incorrect SAD value.

• Comparator enable : This control signal enables the comparator unit. After

the SAD computation on each block, the controller activates the comparator unit

to compare the current SAD value with the previously obtained minimum SAD

value.

• Initialize for next matching : This control signal is sent by the controller

to SAD comparator unit before the start of comparisons for new current block.

On receiving this control signal, SAD comparator unit initializes the internal reg-

ister which is used to store the temporary minimum SAD value. Without this

initialization the first SAD value of the new current block is compared with the

minimum SAD value corresponding to previous current block. Which would result

in incorrect global minimum SAD value and motion vector.

Chapter 6. Motion estimation using SWP operators 188

The controller activates different units of SWP ME operator in appropriate sequence.

The controller makes sure that input data should be ready before the activation of any

particular arithmetic unit. The sequence in which the controller activates different units

is shown in the Figure 6.9. The controller remains in the same state for required number

of clock cycles until the activated unit finished its task. Whenever the transition between

the states is required it is done at the positive edge of the clock.

Read pixels from

current block RAM and

SWP SAD
computations

Pixels

in the block

finished

SAD
Comparison

Does

all the blocks

finished

Motion vector and
Global minimum SAD

Update the

base address

Yes

No

Yes

No

End

search area image RAM

Start

Figure 6.9: Sequence of operations in the SWP ME operator

As shown in Figure 6.9, after the start the controller activates the read RAMs units.

Then the SWP SAD unit is activated to perform computation on the pixels. In each

clock cycle based upon the selected subword size, the read unit reads particular number

of pixels and SWP SAD unit performs computations on these pixels. This process

continues until all the pixels in the block are finished. The number of cycle required

for this operation depends upon the block size and the selected subword size. For block

size of (16×16) and subword size of 8-bit, this loop is repeated 52 times (256/5 ≈ 52).

In practice the clock cycles due to initial pipeline latency, control cycles and subword

alignments are also required. After the completion of SAD computations on the block,

the comparator unit is activated which compares the SAD values for minimum SAD.

Chapter 6. Motion estimation using SWP operators 189

This sequence of operations continues with new base addresses until the best match of

current block is found in search area image. The exact number of times this sequence

is repeated depends upon the search algorithm. For instance in full search with block

size of (16×16) and search area image of (48×48), this sequence is repeated 1089 times.

After this the motion vector is given at the output ports of SWP ME operator.

6.5 SWP ME using Full search algorithm

The performance of SWP ME operator explained in Section (Section 6.4) can be ana-

lyzed by using it with different search algorithms. In this section the SWP ME operator

is applied to find the motion vectors while using full search (FS) algorithm. FS algo-

rithm provides good platform for analyzing the SWP ME operator’s performance. FS

algorithm requires exhaustive computations and gives highly accurate match of current

block in the search area image. Due to the high computational requirements of FS, par-

allel architecture of different arithmetic and data transfer units of SWP ME provides

sufficient speedup. During these experiments, motion estimation is applied on differ-

ent pixel sizes through the selection of different subword sizes (8, 10, 12 and 16-bit).

Current block size and search area image size plays very important role in the overall

efficiency of motion estimation algorithm. These parameters determines the number of

computations required for SAD computations and ultimately for overall motion vector

determination. Different current block sizes of (16×16), (8×8) and search area image

sizes of (48×48), (32×32) and (16×16) are considered during these experiments. SWP

ME operator find the best match of current block in search area image of different sizes.

The search time required to find best match and the hardware resource requirements

corresponding to different block sizes and search area sizes are analyzed. Complexity

of search algorithm determines the overall complexity of block matching in motion esti-

mation. The complexity of FS is less which results in the simplicity of controller design

that controls different operations. The impact of search algorithm complexity on the

overall resource requirements in our SWP ME operator will also be analyzed.

Using our SWP ME operator, the FS algorithm is applied on famous Lena image. First

of all the Lena image is reduced to the search area image size using MATLAB 1 and is

used as search area image. In order to find the accuracy, random block of current block

size is cropped from the Lena image and is used as current block. For this case the

minimum SAD value corresponding to best match block will be zero. The pixel values

corresponding to search area (48×48) and current block (16×16) are shown in Figure

6.10.

1Matrix laboratory : http://www.mathworks.com/

http://www.mathworks.com/

Chapter 6. Motion estimation using SWP operators 190

159,156,154,161,172,137,095,104,106,107,118,126,130,130,130,133,133,132,133,133,130,131,131,132,131,129,128,128,125,111,123,155,154,154,154,153,154,159,212,176,107,121,121,122,123,125,125,115

156,156,155,165,166,133,093,103,104,105,117,124,128,130,130,131,132,132,131,131,131,130,132,132,130,129,127,128,126,115,110,145,160,160,159,155,153,149,181,215,131,112,121,122,125,131,092,046

157,158,162,165,161,133,092,103,104,105,116,123,128,128,129,130,130,130,131,126,126,127,128,131,130,127,126,127,126,118,108,137,161,161,159,156,154,151,151,208,190,111,120,122,131,091,045,050

159,163,166,162,161,132,090,102,103,104,116,122,125,126,127,128,129,129,128,123,121,120,120,126,128,127,127,126,125,118,111,132,153,158,157,155,156,153,144,169,224,150,109,127,089,045,052,049

161,165,151,158,163,132,089,101,103,105,117,123,125,126,128,127,129,128,134,139,152,163,156,143,124,123,128,126,124,117,110,129,146,152,154,153,152,147,142,142,202,208,123,084,043,053,052,046

166,153,128,161,166,133,085,097,101,106,116,121,124,126,127,132,131,130,141,149,163,175,181,190,181,140,118,122,120,113,107,130,146,147,152,148,145,143,140,139,157,230,145,038,050,051,048,047

169,118,110,164,166,131,080,094,099,102,111,117,121,124,127,118,121,128,132,138,152,170,181,188,195,196,157,110,111,110,104,131,151,144,141,146,143,143,142,143,148,167,068,044,051,049,049,048

148,087,113,165,166,129,081,096,100,102,111,117,121,124,117,112,120,124,132,135,145,167,185,186,191,200,211,194,105,100,100,131,156,145,107,135,147,144,143,146,148,065,042,051,048,050,059,109

109,084,114,163,166,128,083,096,100,102,111,118,122,117,110,117,116,124,135,140,143,163,175,189,204,205,206,219,174,085,092,129,156,150,082,095,148,144,143,152,094,042,052,049,049,060,109,150

089,088,113,161,166,129,082,096,100,102,111,117,123,110,113,115,122,134,139,138,135,159,188,198,199,201,204,207,216,169,080,127,156,151,084,054,123,142,144,125,044,052,051,050,049,096,147,160

090,087,112,160,165,130,081,093,099,102,110,120,131,104,112,118,130,137,134,126,154,185,188,190,197,202,203,204,207,222,134,114,155,152,088,031,093,179,170,066,046,054,051,047,073,142,155,161

091,090,110,160,166,129,077,092,099,101,106,136,132,103,114,123,127,128,125,158,175,177,183,190,191,195,199,201,204,210,196,122,154,150,075,088,186,217,220,077,047,050,049,057,132,154,160,157

098,096,113,160,169,132,081,095,102,103,107,151,123,101,113,121,123,125,150,162,172,178,181,178,184,192,197,190,195,201,205,184,150,146,150,199,208,205,218,086,046,047,044,100,155,158,156,155

100,097,117,162,174,136,082,095,100,100,102,161,127,103,110,118,125,144,144,155,169,170,171,175,177,183,183,184,191,190,187,189,176,192,205,203,202,206,209,065,047,045,073,144,158,158,156,154

097,095,115,164,175,136,083,096,099,099,101,170,146,111,107,121,139,137,146,149,159,167,170,172,167,172,178,184,179,173,174,187,197,200,199,202,191,183,165,045,047,051,121,156,161,158,157,157

096,094,118,165,173,138,083,096,097,098,098,174,159,124,111,134,130,139,139,146,152,156,154,156,163,167,170,165,163,175,189,194,195,197,203,207,163,161,106,042,047,085,151,158,157,157,157,156

098,098,122,166,175,139,080,094,098,098,095,184,170,136,119,125,134,131,135,141,132,109,124,130,122,117,093,136,179,195,194,193,200,206,199,155,111,159,059,045,052,125,157,159,156,155,155,154

101,099,124,166,175,140,080,094,099,099,091,173,175,130,116,129,128,130,135,126,108,079,088,093,078,051,088,168,193,192,191,198,196,163,110,118,155,082,044,047,076,149,162,160,158,155,154,153

106,100,120,165,173,141,080,093,098,098,094,139,193,141,123,124,124,128,114,086,064,055,074,079,069,110,177,186,181,182,192,160,109,123,162,171,079,045,050,048,113,159,165,162,159,156,155,153

107,099,114,165,176,142,079,091,097,098,104,105,187,154,119,124,126,111,078,066,065,059,056,066,103,165,189,178,174,183,195,142,087,125,149,066,045,054,046,066,130,164,164,163,161,159,156,153

105,098,110,163,176,143,079,093,099,099,109,104,177,140,114,124,107,067,053,069,069,070,042,097,145,183,171,170,176,196,203,183,072,100,105,040,057,054,044,095,143,161,163,162,162,160,158,153

104,097,109,163,176,144,083,095,102,101,115,112,146,127,124,101,059,058,053,055,073,068,096,170,166,180,163,165,188,200,208,205,093,068,108,049,060,050,053,127,158,154,152,153,156,157,155,153

101,095,108,164,177,144,083,096,103,103,113,119,117,127,118,065,058,061,054,058,057,083,156,179,175,152,159,176,185,196,205,215,119,052,110,057,059,047,078,145,162,161,161,153,147,145,146,148

101,098,107,163,179,145,083,096,102,101,111,141,102,105,082,071,065,057,051,058,066,146,183,170,135,113,102,144,175,192,186,139,091,049,112,065,056,049,105,152,159,157,158,156,154,153,146,137

098,091,100,164,179,146,082,094,099,096,145,152,105,065,077,081,057,056,061,043,114,189,177,080,055,089,086,122,160,193,098,075,058,049,112,070,050,055,129,157,155,154,154,154,153,151,142,135

099,087,095,164,182,147,087,102,097,092,158,111,064,064,079,096,047,054,041,071,165,183,131,098,095,160,146,116,160,177,101,123,057,049,115,077,046,075,146,157,152,153,153,150,145,138,141,160

099,082,089,163,184,152,089,104,118,125,084,063,097,060,089,109,054,044,046,130,181,121,138,155,147,153,156,130,152,197,148,115,078,050,116,077,044,100,152,154,151,151,149,144,136,162,187,190

086,073,083,162,183,151,087,107,126,097,066,095,080,046,077,086,081,038,084,176,106,110,142,165,177,176,160,137,144,202,160,135,092,051,111,076,047,123,157,153,150,148,145,135,163,197,193,195

077,066,079,161,178,149,088,113,108,093,077,098,070,045,054,076,113,046,139,136,058,118,138,156,172,171,152,132,136,198,160,137,080,051,102,087,061,144,159,152,148,145,139,145,192,195,202,204

079,063,072,160,178,150,089,117,095,089,080,104,077,043,068,101,065,090,152,053,070,114,134,148,157,162,140,126,129,192,159,129,060,056,089,100,082,154,154,151,149,145,135,175,196,202,207,206

080,067,088,162,178,153,090,103,087,082,080,098,099,060,059,071,066,158,089,041,084,115,131,144,151,157,144,120,120,170,153,104,047,062,075,112,112,157,152,149,147,142,143,191,201,207,208,208

075,068,104,163,177,155,084,109,086,078,065,087,110,089,062,120,137,101,048,053,089,118,131,140,146,154,152,153,184,184,142,069,052,070,063,120,136,155,150,148,146,139,151,198,207,207,209,210

063,063,103,165,179,155,092,111,080,065,071,086,090,095,126,162,108,054,052,058,079,112,131,138,138,126,133,137,157,148,114,047,059,072,056,124,147,154,149,147,145,137,156,207,209,209,211,212

056,061,107,167,181,157,099,110,076,057,090,101,090,109,157,144,072,047,053,060,069,097,122,132,142,125,120,137,149,138,071,045,059,074,059,129,154,154,151,148,145,135,165,214,211,212,211,209

050,060,108,161,181,154,090,098,073,057,096,117,102,111,153,100,048,053,053,059,061,073,103,125,138,139,138,143,149,108,044,053,060,079,063,131,156,155,153,150,145,129,169,219,214,212,209,211

045,060,113,161,180,153,085,080,068,055,083,096,116,121,105,051,054,055,051,052,057,061,064,098,126,143,161,169,153,066,049,056,065,085,069,132,153,152,152,150,142,126,179,219,213,213,205,172

048,047,098,160,177,155,111,074,064,055,080,101,098,124,115,076,056,058,052,049,056,057,075,103,122,137,153,158,163,117,065,047,067,088,077,130,123,124,130,138,136,125,195,212,212,187,094,057

105,066,069,151,175,160,106,053,063,072,073,097,103,101,119,108,066,056,052,051,055,056,086,125,130,139,141,151,184,203,188,112,059,080,075,132,137,127,115,105,105,109,192,212,188,091,061,083

138,126,069,149,176,165,112,042,064,074,067,073,074,095,131,106,089,054,055,056,058,073,082,122,133,140,142,158,176,186,201,215,143,059,070,138,147,142,136,124,116,125,203,211,109,074,097,093

088,161,081,149,180,164,090,044,052,063,061,059,075,089,119,113,103,055,055,054,056,092,080,127,136,140,145,155,167,179,192,206,220,101,057,141,146,142,139,132,128,169,218,181,088,100,101,100

061,162,080,147,182,164,083,046,044,080,059,052,060,090,110,119,112,060,058,051,065,105,086,131,136,138,143,151,162,174,188,203,219,174,060,147,146,141,135,124,167,211,216,137,092,107,096,101

052,160,087,145,180,162,078,043,052,071,057,049,055,070,120,112,096,076,068,050,091,116,093,134,139,136,139,147,158,169,185,200,211,207,097,147,144,139,134,125,192,217,194,112,101,099,099,092

046,151,098,142,181,165,084,045,056,055,056,052,061,073,102,099,076,056,058,056,112,107,106,140,141,137,137,145,153,163,179,196,207,216,150,133,141,144,139,134,162,211,167,102,092,094,096,092

038,145,110,137,180,163,090,046,050,057,059,048,056,095,075,081,072,045,043,079,119,086,125,140,142,139,136,142,149,159,172,190,205,217,179,083,094,107,120,145,150,209,128,083,087,096,097,076

064,150,129,135,180,161,084,046,051,053,060,049,049,074,117,083,043,041,056,109,090,095,137,139,141,142,137,138,145,154,165,182,200,212,200,101,094,071,046,136,194,174,070,077,095,089,098,064

092,154,139,136,182,161,075,047,052,051,065,062,058,063,097,075,042,043,074,084,088,127,136,139,141,144,141,139,141,149,160,174,192,207,215,123,100,095,073,146,169,080,067,094,079,098,093,065

062,137,153,137,184,157,059,049,059,057,064,086,069,068,093,071,041,056,086,108,126,129,133,137,140,144,145,143,142,147,156,169,185,200,216,149,090,109,112,116,099,083,089,081,083,114,076,055

046,133,184,142,183,148,053,052,064,069,071,083,083,067,068,078,059,091,117,124,127,129,133,136,138,142,145,147,148,149,156,165,178,194,209,180,089,108,123,118,118,093,085,081,117,092,053,075

102,111,117,123,110,113,115,122,134,139,138,135,159,188,198,199
102,110,120,131,104,112,118,130,137,134,126,154,185,188,190,197
101,106,136,132,103,114,123,127,128,125,158,175,177,183,190,191
103,107,151,123,101,113,121,123,125,150,162,172,178,181,178,184
100,102,161,127,103,110,118,125,144,144,155,169,170,171,175,177
099,101,170,146,111,107,121,139,137,146,149,159,167,170,172,167
098,098,174,159,124,111,134,130,139,139,146,152,156,154,156,163
098,095,184,170,136,119,125,134,131,135,141,132,109,124,130,122
099,091,173,175,130,116,129,128,130,135,126,108,079,088,093,078
098,094,139,193,141,123,124,124,128,114,086,064,055,074,079,069
098,104,105,187,154,119,124,126,111,078,066,065,059,056,066,103
099,109,104,177,140,114,124,107,067,053,069,069,070,042,097,145
101,115,112,146,127,124,101,059,058,053,055,073,068,096,170,166
103,113,119,117,127,118,065,058,061,054,058,057,083,156,179,175
101,111,141,102,105,082,071,065,057,051,058,066,146,183,170,135
096,145,152,105,065,077,081,057,056,061,043,114,189,177,080,055

(lena

current

values of (48x48)Pixel imageareasearch image)

blockvalues of (16x16)Pixel

Figure 6.10: Pixel values of search area image and current block

Both search area image and current block are given as input to SWP ME operator. The

performance parameters like search times, chip area, critical path and power consump-

tion are analyzed. The comparison of SWP ME is done with simple ME architecture to

highlight the advantages of using multimedia oriented SWP in ME design.

6.5.1 Search time

Search time (ST) is the total number of clock cycles required to find best match in search

area. In FS algorithm, the current block is compared with each and every possible block

in the search area image. Therefore the search time will be high compared to other

search algorithms. In SWP ME operator the search time also depends upon the selected

subword size. For smaller subword sizes, the search time is less. In case of smaller

subword sizes, more number of pixels are packed in word size registers and hence more

parallel SAD operations can be performed. For 8-bit subword size five 8-bit parallel SAD

operations can be performed. Where as for 16-bit subword size only two 16-bit SAD

operations can be performed in parallel using SWP ME operator. Due to this increased

parallelism for smaller subwords, the overall search time decreases. For other greater

subword sizes the search time increases accordingly.

Chapter 6. Motion estimation using SWP operators 191

Simulations are performed to find the time required by the SWP ME operator to find

the best match using FS algorithm. ModelSim tool [34] is used as simulation tool. These

simulations are performed for different selection of subword sizes, current block sizes and

search area image sizes. The number of cycles required by the SWP ME operator to

find the best match are shown in Table 6.1.

Search area Current block Subword size Cycles required for
image size image size (bits) block matching

(48x48) (16x16)

8 77320
10 77320
12 112168
16 147016

(32x32) (16x16)

8 20519
10 20519
12 29767
16 39015

(16x16) (8x8)

8 1863
10 1863
12 2511
16 3159

Table 6.1: Cycles required by the SWP ME operator to find the best match using FS
algorithm

These cycles include pixel load cycles, SAD computation cycles, comparison cycles, con-

trol cycles etc. For all current blocks and search area sizes, the number of cycles required

for smaller subword sizes are less compared to the number of cycles required for larger

subword sizes. For all the subword sizes, the search time of SWP ME operator have

been reduced compared to the simple ME operator. For current block size of (16x16)

and search area size of (48x48), the simple ME operator requires 316070 cycles to find

best match using FS algorithm. When the selected subword size is 8-bit or 10-bit, SWP

ME operator requires almost 76% less cycles compared to simple ME operator. For

12-bit and 16-bit subword sizes, the SWP ME operator requires almost 65% and 53%

less cycles respectively. This reduction in cycles occurs due to the parallel processing of

packed pixels using SWP. For each set of block sizes, the number of cycles required for 8-

bit and 10-bit subword sizes are same. The reason being that due to the selected current

block size, the SWP SAD operator requires almost same number of cycles to process

one row of pixels. However for other selection of current block sizes, 8-bit subword size

will requires less number of cycles.

6.5.2 Synthesis results

To analyze the area, speed and power, SWP ME operator shown in Figure 6.5 is syn-

thesized to ASIC technology (130nm and 90nm) and to FPGA (Xilinx Virtex II). The

Chapter 6. Motion estimation using SWP operators 192

controller unit in SWP ME enables or disables different units corresponding to the FS

algorithm. Synthesis is performed while considering different block sizes and search area

images. In order to precisely analyze the effect of block size and search area image size

on the SWP ME operator, external RAMs used to store current block and search area

images (shown in Figure 6.5) are not considered in synthesis process. As the area and

other resources consumed by these RAMs increases with the increase of image size which

can over shadow the effect of actual resource increase by SWP ME operator with the

increase of block size or search area image size. The primary effect due to the change in

block size or search area image size is the increase or decrease in the number of cycles

required to find the best match (Section 6.5.1). Obviously when the search area image

or current block size increases the SWP ME operator has to perform more computations

so the search time increases accordingly. However the small change in the area, critical

path (CP) and power consumption also occurs due the change in block sizes and search

area image sizes. Table 6.2 shows the synthesis results of SWP ME operator for different

block sizes and search area image sizes using full search algorithm.

90nm CMOS 130nm CMOS FPGA
Search Current ASIC ASIC VirtexII
area block Nand CP Power Nand CP Power

CLBs
CP

Gates (ns) (mW) Gates (ns) (mW) (ns)

(48x48) (16x16) 5890 3.57 1.97 5765 5.82 2.2 1637 11.2
(32x32) (16x16) 5734 3.56 1.92 5628 5.79 2.1 1593 10.7
(16x16) (8x8) 5492 3.56 1.8 5387 5.8 2.1 1527 10.4

Table 6.2: Synthesis of SWP ME operator using FS algorithm

Each unit in the SWP ME operator consumes certain amount of resources. The maxi-

mum resources are consumed by the SWP SAD unit. SWP SAD unit almost consumes

64% of total area. Other units like RAM reading, comparator and controller almost

consumes 11%, 9% and 12% of total area respectively. Compared to other units, the CP

of the SWP SAD unit is more and the overall CP of SWP ME operator is mainly due

to the SWP SAD unit.

As the search area image or current block size decreases, the area, CP and power either

remains same or decreases slightly (less than 10%) on both ASIC and FPGA platforms.

For performing ME computations on different block sizes, the internal architecture of

SWP SAD unit remains same which constitute major portion of the SWP ME operator

(64% of total area). Therefore, most of the design resources consumed by SWP ME op-

erator remains same irrespective of block sizes. The slight decrease in resources occurs

because for the smaller block sizes and search area sizes the controller has to load less

number of blocks of smaller size for SAD computations. However there is not a substan-

tial decrease in area, CP and power consumption due to the decrease in block sizes. Due

Chapter 6. Motion estimation using SWP operators 193

to the internal pipelining of different units used in SWP ME, the CP does not change too

much with the increase of block size or search area image size. On ASIC technologies,

the small variations in power consumption for different block sizes are mainly related

to the small increase in the number of gates. To analyze the total effect of block sizes

and search area sizes, we have to take into account the search time corresponding to

different block sizes. The search time reduces with the decrease in either search area,

current block or subword size.

6.5.3 Comparison of simple and SWP ME operator

To analyze the advantages of using SWP in ME operator design, the performance of SWP

ME operator is compared with simple ME operator. Simple ME operator uses operating

units of fixed size like 8-bit or 16-bit etc. It can perform operations on specified pixel size

for which it is designed. For instance simple 8-bit ME operator can perform operations

on pixels of 8-bit size only. Any multimedia application with pixel sizes smaller than

8-bit can also be executed on simple 8-bit ME operator. But for this purpose the pixels

have to be extended to 8-bit before being processed. However the pixel sizes greater

than 8-bit cannot be processed on simple 8-bit ME operator. More over simple 8-bit ME

operator operates on only one 8-bit pixel in each clock cycle. The architecture of simple

8-bit ME operator is shown in Figure 6.11.

Read current block enable

8 − bit

Operator

SAD

Reading

(8

search

RAM

area

Reading

(8 from

RAMcurrent

RAM

Search

image

Area

RAM

Current

Block

Read search area image enable

Base address for next block

CLKReset

Comparator

8

RAM
Address

Data
8-bits

RAM
Address

Data
8-bit

Global
Minimum

SAD

Motion
Vector

pixels

bits/CLK) from

image

Pixels

bits/CLK)

block

8

CLKReset

CLKReset

Machine

CLKReset CLKReset

Comparator

16SAD

State

Controller

SAD
enable enable

Initialize for next matching

Initialize
for next
SAD
block

A

C
C
U
M

U
L
A
T
O
R

|a − b|

(8-bit)

One 8-bit pixel

from search area
image

Block
SAD

8

16

8

8

16

CLK CLK CLK

One 8-bit pixel

from current
block

(FS)

Figure 6.11: 8-bit motion estimation operator

Chapter 6. Motion estimation using SWP operators 194

As shown in Figure 6.11, simple 8-bit ME operator reads one 8-bit pixel from current

block and search area image in each clock cycle. These 8-bit pixels are given to 8-bit

SAD unit which computes absolute value of difference and forward it for accumulation.

This process continues until the whole block is finished. For (16×16) block size this

process is repeated 256 times as there are 256 pixels in (16×16) block. As there are

numerous (16×16) blocks in search area image so this SAD calculation is repeated for

each block. In (48×48) search area there are 1089 (16×16) blocks which needs to be

compared in FS algorithm. Therefore the SAD computation of block is repeated 1089

times.

On the other hand SWP ME operator can perform on multimedia oriented pixel sizes

(8, 10, 12 and 16-bit) through different selection of subword sizes. When subword size

of 8-bit is selected, the SWP ME operator performs on five 8-bit pixels in parallel.

Similarly for 10, 12 and 16-bit subwords, SWP ME operator perform parallel operations

on four 10-bit, three 12-bit or two 16-bit pixels respectively. For comparison purpose

the performance of five simple 8-bit ME operators (shown in Figure 6.11) are compared

with SWP ME operator. Five simple 8-bit ME operators are chosen because SWP ME

operator can also performs on five 8-bit pixels in parallel when the selected subword

size is 8-bit. Although our SWP ME operator can perform on 10, 12 and 16-bit pixel

sizes as well but for this comparison we take its capability to perform on 8-bit pixels

only. During this comparison the current block size of (16×16) and search area size of

(48×48) is used. FS is used as search algorithm. Figure 6.12 shows the area , CP, power

and efficiency comparison of five simple 8-bit ME operators with SWP ME operator.

As shown in Figure 6.12, on average five simple 8-bit ME operators consumes almost

twice area compared to single SWP ME operator. SWP ME operator consumes less area

due to the efficient utilization of operating units and data path. For instance instead

of five memory accesses the SWP ME operator requires only single memory access to

read five 8-bit pixels. Same is the case for other units as well. The CP of both SWP

ME operator (for 8-bit subword size) and simple 8-bit ME operator are almost the same

as internally both are working on 8-bit data size. The CP of the SWP ME operator is

slightly more because of SWP overheads related to subwords. The power consumption

of five simple 8-bit ME operators is more compared to the SWP ME operator because of

high gate count. (Area × CP) and (Area × CP × power) products of SWP ME operator

are less than five simple 8-bit ME operators. On 90nm and 130nm ASIC technologies,

(Area × CP × power) product term is 71% and 69% less than five simple 8-bit ME

operators respectively. On FPGA platform, the (CLBs × CP) product of SWP ME is

almost 38% less than five simple 8-bit ME operators.

Chapter 6. Motion estimation using SWP operators 195

90nm 130nm FPGA
0

5000

10000

15000

A
re

a
(N

an
d

ga
te

s
/ C

LB
s)

90nm 130nm FPGA
0

2

4

6

C
P

 (
ns

)

90nm 130nm
0

2

4

6

P
ow

er
 (

m
W

)

90nm 130nm FPGA
0

1

2

3
x 10

4

(A
re

a
x

C
P

)

90nm 130nm
0

5

10

15
x 10

4

(A
re

a
x

C
P

 x
 P

ow
er

)

Five 8−bit motion estimation operators using FS
SWP motion estimation operator using FS

Figure 6.12: Comparison of five 8-bit ME operators and SWP ME operator using FS

The number of cycles required to find best the match using five simple 8-bit ME operators

is almost 15% less than SWP ME operator. The reason being that SWP ME operator

has to handle other pixel sizes (10, 12 and 16-bit) as well. Therefore some cycles are

consumed on the alignment and arrangement of subwords corresponding to different

pixel sizes. On the other hand simple 8-bit ME operator is a dedicated unit which

cannot perform on other multimedia oriented pixel sizes. Overall performance results

shows that compared to simple operators SWP ME operator provides flexibility as well

as the efficiency in the computations of motion estimation.

6.6 SWP ME using Diamond search algorithm

In this section SWP ME operator explained in section 6.4 is used to find the motion

vector using diamond search (DS) algorithm. As explained earlier DS algorithm gives

the best match in less time compared to full search algorithm. However the accuracy of

DS algorithm is less compared to FS algorithm. As far as the architecture of SWP ME

operator for DS algorithm is concerned it is slightly different from SWP ME operator

for FS algorithm. In FS algorithm, the base address of next block in search area image is

always known in prior. Therefore controller does not wait for any input to decide about

next base address. Where as in SWP ME operator for DS algorithm, the next block

Chapter 6. Motion estimation using SWP operators 196

in search area image which needs to be compared with current block depends on the

outcome of previous comparison. The previous comparison decides whether the search

pattern remains in LDSP or shifted to SDSP. Therefore after each iteration of LDSP, the

comparator unit has to declare the minimum SAD point in LDSP and is intimated to

control unit. On the basis of the output of comparator, control unit decides to remains

in LDSP or jump to SDSP. Hence the control unit generates the base address of next

block in search area accordingly. Therefore in DS algorithm controller has to do more

job compared to FS algorithm. The block diagram of SWP ME operator using DS search

algorithm is shown in Figure 6.13.

Read current block enable

SWP

operator

SAD

read

(40

search

RAM

area

(40 from

RAMcurrent

Read search area image enable

Base address for next block

CLKReset

Comparator

40

Global
Minimum

SAD

Motion
Vector

pixels

bits/CLK) from

image

bits/CLK)

block

SWP
Ctrl

40

CLKReset SWP
Ctrl

CLKReset SWP
Ctrl

machine

CLKReset SWP
Ctrl CLKReset

comparator

24SAD

state

controller

SAD
enable enable

Initialize for next matching

Initialize
for next
SAD
block

SWP

read pixelsSWP

SWP Minimum SAD diamond point

(DS)

Figure 6.13: SWP ME operator using the diamond search algorithm

As shown in Figure 6.13, the SAD comparator unit finds out the minimum SAD point of

the diamond and send its coordinates to controller. The controller checks whether the

minimum SAD point is located at the center of diamond or not. If it is located at the

center of diamond then the controller jumps to SDSP and generates the base addresses

of next blocks accordingly. However if the minimum SAD point is not located at the

center of diamond then the controller remains in LDSP and generate the base addresses

of next blocks. Due to these extra tasks, the controller unit of SWP ME operator for DS

algorithm is complex compared to FS algorithm. The other units like RAM for current

block and search area image, RAM read units, SWP SAD operator and SAD comparator

etc. operates in the same manner as it was for FS algorithm.

Chapter 6. Motion estimation using SWP operators 197

6.6.1 Search time

In DS algorithm search time (ST) required to find the match of current block in search

area image is less compared to FS algorithm. In FS algorithm the search time is always

fixed because the current block has to compare with all the blocks in search area image.

Where as in DS algorithm search time is not always fixed and it varies for different

search area images and current blocks. In these experiments the Lena image whose

pixel values are shown in Figure 6.10 are used as search area image. SWP ME operator

using DS algorithm is applied to find the best match of current block. Different sizes

of current blocks and search area images are used in these experiments. Simulations

are performed to find the search time required by SWP ME operator when using DS as

search algorithm. The comparison of search time corresponding to the different selection

of subword sizes while using FS and DS algorithms is shown in Figure 6.14.

8 10 12 16
0

5

10

15
x 10

4

Search area(48x48), Current block(16x16)

8 10 12 16
0

1

2

3

4
x 10

4

N
um

be
r

of
 c

yc
le

s
re

qu
ird

 fo
r

bl
oc

k
m

at
ch

in
g

Search area(32x32), Current block(16x16)

Full search algorithm
Diamond search algorithm

8 10 12 16
0

1000

2000

3000

4000

Subword / Pixel size (bits)

Search area(16x16), Current block(8x8)

Figure 6.14: Number of cycles required by FS and DS algorithms to find the best
match

For different subword sizes, the search time of DS algorithm is less compared to FS

algorithm when applied on the same search area image and current block. In these

experiments the results shows that to find the best match, DS algorithm almost requires

90% to 95% less time compared to FS algorithm using SWP ME operator. However

this reduction in search time occurs at the cost of accuracy. For all block sizes, 8-bit

subword size requires less search time compared to other larger subword sizes because it

offers more parallelism. Cycles for 8-bit subword size and 10-bit subword size are same

Chapter 6. Motion estimation using SWP operators 198

because for the specified current block sizes both subword sizes requires same number

of cycles. For the same size search area image and current block, if the pixel values are

changed then the search time of FS algorithm remains same but for DS algorithm the

search time varies in accordance with required search steps.

6.6.2 Synthesis results

To analyze the area, CP and power consumption, SWP ME operator for DS algorithm is

synthesize on both ASIC and FPGA platforms. During this synthesis different current

block sizes and search area image sizes are considered. The synthesis results of SWP

ME operator for DS algorithm is shown in table 6.3.

90nm CMOS 130nm CMOS FPGA
Search Current ASIC ASIC VirtexII
area block Nand CP Power Nand CP Power

CLBs
CP

Gates (ns) (mW) Gates (ns) (mW) (ns)

(48x48) (16x16) 7157 3.56 2.4 7009 5.82 2.7 2057 11.0
(32x32) (16x16) 6980 3.56 2.3 6844 5.79 2.6 2018 10.3
(16x16) (8x8) 6763 3.56 2.25 6624 5.79 2.5 1948 10.1

Table 6.3: Synthesis of SWP ME operator using DS algorithm

For all pairs of current block and search area sizes, the area of SWP ME operator using

DS algorithm is higher than the area of SWP ME operator using FS algorithm. On

average the area increase from FS to DS algorithm is approximately 20%. This increase

in area corresponds to the extra complexity of the controller in the SWP ME operator

when using the DS algorithm. Due to this increase in area, power consumption also

increases by small amount. The CP is based on the pipelined architecture of SWP

arithmetic units which remains same for both FS and DS SWP ME operators. With

the decrease of the current block and search area sizes, the gate area, CP and consumed

power decrease slightly in the same manner as it was for FS SWP ME operator. On

average, moving from search area image of (48x48) and current block size of (16x16)

to search area image of (16x16) and current block size of (8x8), there is only 5% to

7% decrease in area. This decrease in area corresponds to the smaller block sizes and

smaller search area image sizes. The CP for different current blocks and search area

pairs remains almost same due to the internal pipelined architectures of the different

processing units. As there is a only small variation in the number of gates for different

pairs, so power consumption also varies slightly accordingly.

Chapter 6. Motion estimation using SWP operators 199

6.6.3 Comparison of simple and SWP ME operator

Like FS, comparison is also made between SWP ME and five simple 8-bit ME opera-

tors when using DS algorithm. Figure 6.15 shows the area , CP, power and efficiency

comparisons.

90nm 130nm FPGA
0

5000

10000

15000

A
re

a
(N

an
d

ga
te

s
/ C

LB
s)

90nm 130nm FPGA
0

2

4

6

C
P

 (
ns

)

90nm 130nm
0

2

4

6

8

P
ow

er
 (

m
W

)

90nm 130nm FPGA
0

1

2

3

4
x 10

4

(A
re

a
x

C
P

)

90nm 130nm
0

1

2

3
x 10

5

(A
re

a
x

C
P

 x
 P

ow
er

)

Five 8−bit motion estimation operators using DS
SWP motion estimation operator using DS

Figure 6.15: Comparison of five 8-bit ME operators and SWP ME operator using DS

As shown in Figure 6.15, compared to FS algorithm the area of both simple and SWP ME

operator increases slightly due to the use of DS algorithm. On all target technologies, the

SWP ME operator only consumes almost 50% of the area consumed by five simple 8-bit

ME operators. The reduction in area occurs because of the efficient use of resources. The

CP of the SWP ME operator (for 8-bit subword size) is slightly more than simple 8-bit

ME operator due to the arrangement and alignment of subwords corresponding to SWP

architectures. Due to the high gate count and power consumption of five simple 8-bit ME

operators, the (Area × CP × power) product of SWP ME operator is almost 70% less

on both ASIC technologies. On FPGA platform, the (Area × CP) product of SWP ME

operator is almost 40% less than five simple 8-bit ME operators. The architecture of the

SWP ME operator is slightly complicated compared to replication of simple operators.

However at the same time the SWP operator provides a better resource utilization and

flexibility through parallel operations on different size pixel data.

Chapter 6. Motion estimation using SWP operators 200

6.7 Comparison of FS and DS SWP ME operators

In this section the performance of the SWP ME operator is compared when using two

different search algorithms. The use of different search algorithms like FS and DS do

not make any major difference in the hardware requirements of the SWP ME operator

because internally almost the same operating units are used irrespective of the search

algorithm. The only difference lies in controller part which generates and activates the

units according to different search algorithm. However the search time corresponding

to different search algorithms can make major difference in the overall efficiency of ME

computations using SWP ME operator. Figure 6.16 shows the area, CP, power and

overall efficiency comparison of SWP ME operator when using FS and DS algorithm.

For this comparison current block size of (16×16) and search area image size of (48×48)

are used.

90nm 130nm FPGA
0

5000

10000

A
re

a
(G

at
es

 /
C

LB
s)

90nm 130nm FPGA
0

5

10

15
C

P
 (

ns
)

90nm 130nm
0

1

2

3

P
ow

er
 (

m
W

)

90nm 130nm FPGA
0

2

4

6
x 10

4

(A
re

a
x

C
P

)

90nm 130nm FPGA
0

1

2

3
x 10

9

(A
re

a
x

C
P

 x
 S

T
)

90nm 130nm
0

5

10

15
x 10

4

(A
re

a
x

C
P

 x
 P

ow
er

)

90nm 130nm
0

2

4

6
x 10

9

(A
 x

 C
P

 x
 P

 x
 S

T
)

SWP ME operator using FS algorithm
SWP ME operator using DS algorithm

Figure 6.16: Comparison of SWP ME operator using different search algorithm

As shown in Figure 6.16, the area of the SWP ME operator using the DS algorithm is

slightly more than the SWP ME operator using the FS algorithm. This small increase

in area is due to the extra control logic required in DS to decide about the diamond

switching and finding the base address of the next block. CP of the SWP ME operator

when using FS and DS are almost same because of using same internal operators for

Chapter 6. Motion estimation using SWP operators 201

ME calculations. The power consumption increases slightly when we move from FS

algorithm to DS algorithm due to the small increase in gate count. Hence there is not a

very tremendous difference between the area, CP and power consumption of SWP ME

operator when using FS and DS algorithms. On both ASIC and FPGA technologies,

the product of area and CP for FS algorithm is 15% to 20% less than DS algorithms.

In order to analyze the combined effect of hardware resources, the product of area, CP

and power is plotted for both FS and DS algorithms. On both ASIC technologies this

product is almost 20% to 30% less when using FS algorithm.

The search time (ST) of the FS and DS algorithms makes major difference in determining

the overall efficiency of the motion estimation. This difference in search time (ST) can

be highlighted by analyzing the (area×CP×search time) and (area×CP×power×search

time) product terms corresponding to the FS and DS algorithms while using SWP ME

operator. These product terms gives the over all efficiency of the motion estimation

process when working on different search algorithms. A smaller value of these product

terms indicates a high efficiency. product terms of FS algorithm are much larger than DS

algorithm. The main reason being the large number of clock cycles required to find best

match in FS algorithm. product terms of SWP ME operator when using DS algorithm

are almost 90% to 95% less than FS algorithm 2. In most of the practical video standards

due to high search time requirements of FS algorithm, it is not mostly used. However

as far the accuracy of the motion estimation is concern the FS algorithm always has an

edge over other search algorithms.

6.8 SWP ME IP core

To analyze the performance, the proposed SWP ME operator is used as IP core in

embedded processor environment. For this purpose, the Xilinx Embedded Development

Kit (EDK) [24] is used that enables us to design a complete custom embedded processor

system for implementation in a Xilinx FPGA device. Under the umbrella of EDK,

the hardware portion of embedded processor is designed using Xilinx Platform Studio

(XPS) and the software applications developed in C/C++ language are created and

verified using Software Development Kit (SDK). In our implementation, we have targeted

XC3SD1800A FPGA device from Spartan-3A DSP family. MicroBlaze [104] is used as

a processor type which is a 32-bit RISC Harvard architecture soft processor core with

a rich instruction set optimized for embedded applications. With the MicroBlaze soft

processor, we have complete flexibility to select the combination of peripheral, memory

and interface features that will give us the exact system we need on a single FPGA

2High value is also due to the size (48×48) see Figure 6.14

Chapter 6. Motion estimation using SWP operators 202

device. By using MicroBlaze, the soft embedded processor core environment created for

our implementation is shown in Figure 6.17.

XPS gpio

LEDs 8Bit

XPS gpio

Push Buttons

XPS gpio

RS232 Uart

XPS gpio

DIP Switches

IPIC

MicroBlaze

IP core
SWP ME

Local memory

PLB (Processor Local Bus)

(16KB)

Figure 6.17: Soft embedded processor

In the soft processor configuration, based on the requirements different peripherals and

memory elements are selected using XPS. Local memory of 16KB is selected for Mi-

croBlaze. However for larger applications, the processor can use double data rate syn-

chronous dynamic random access (DDR-SDR) memory available on Spartan-3A DSP

board which is hard wired to FPGA device. All the peripherals communicate with

MicroBlaze using high speed processor local bus (PLB). The general purpose inputs

and output (XPS gpio) devices like LEDs, DIP switches, push buttons, Universal asyn-

chronous receiver and transmitter (UART) etc. are connected on PLB. The functionality

of all these peripherals are controlled by MicroBlaze processor. LEDs on the board are

used to monitor the status of certain output ports. The inputs to certain hardware

modules can be provided through DIP switches or push buttons. UART is used to

transmit and receive the data to/from the output terminal using RS-232 port. The

custom IP core (SWP ME operator) is integrated to MicroBlaze processor using IPIC

(intellectual property interconnect) signals. These signals provides the interface which

are much easier to work with when compared to operating on the PLB protocols directly.

The software applications for underlying hardware platform are developed in C/C++

language using SDK tool. These application contains input data which is used by dif-

ferent peripherals and processor’s elements. When the software application is executed

on hardware platform, the input pixels from reference and current frames are provided

to SWP ME IP through MicroBlaze. The MicroBlaze processor receives the input pix-

els using RS232 UART peripheral. The pixel data is then forwarded to SWP ME IP

core for efficient computation of motion estimation algorithm. Based upon the pixel

Chapter 6. Motion estimation using SWP operators 203

sizes in multimedia application, the subword size is selected by DIP switches which are

connected directly to the inputs of the SWP ME IP core. After performing the com-

putations, SWP ME IP core gives the motion vector coordinates to MicroBlaze which

directs them to output terminal using RS232 UART.

Due to the use of multimedia oriented SWP, the MicroBlaze processor along with SWP

ME co-processor perform the motion estimation computations in less time compared

to conventional operators. The actual speed-up depends upon the size of pixels in

multimedia application under consideration. Results shows that for different block sizes,

the proposed SWP co-processor provides the practical speed-up of 4.7, 3.6, 2.7 and 1.8

when the input pixel sizes are of 8, 10, 12 and 16-bit respectively. The practical speed-up

for different subword sizes are slightly less than theoretical speed-up (5, 4, 3 and 2 for

8, 10, 12 and 16-bit pixel sizes respectively) due to different SWP overheads. These

overheads includes packing/unpacking of pixels in word size registers, arrangement and

alignment of subwords before and after certain computations etc. However even with

these small overheads, SWP operator gives better speed-up compared to conventional

operators. For FS and DS algorithms, the SWP ME IP core along with communication

interface requires 1878 and 2197 CLBs respectively. Due to the efficient utilization of

hardware resources, the proposed IP core can be used in any multimedia processor to

enhance the performance.

6.9 Conclusions

This chapter presented the implementation of motion estimation algorithms using SWP

operators. The proposed SWP motion estimation operator operates on multimedia ori-

ented pixel sizes using different selections of subword sizes. The SWP ME operator

utilizes the data level parallelism and increase the performance through parallel pro-

cessing of pixels. Performance of SWP ME operator is analyzed on two different search

algorithms that are full search and diamond search algorithms. Parallel architecture of

SWP ME operator is used to carry out the intensive computations of highly accurate

full search algorithm. On the other hand SWP ME operator is also employed to perform

motion estimation using diamond search algorithm which is well known for its efficiency

and accuracy. The performance of SWP ME operator on these two search algorithms

are compared and their advantages and drawbacks are highlighted. Despite the search

algorithm, the performance of SWP ME operator is also evaluated for different selections

of current block sizes as well as search area images. The size of these two parameters

plays a vital role in motion estimation algorithms. The effect of increase and decrease in

the block sizes on the overall performance of SWP ME operator is discussed in detail.

Chapter 6. Motion estimation using SWP operators 204

After the analysis it is found that compared to simple motion estimation operator, SWP

ME operator gives high efficiency through parallel processing as well as the flexibility

by operating on different pixel sizes of multimedia nature.

Chapter 7

Conclusion and Perspectives

7.1 Conclusion

This thesis describes the implementation of reconfigurable arithmetic operators for mul-

timedia applications. The performances of these operators are improved by exploiting

the data level parallelism that exist in multimedia applications. As explained in Chap-

ter 1, subword parallelism (SWP) is used to perform parallel operations on subwords

which are packed in word size registers. Smaller the subword size higher will be the

parallelism. The overheads for incorporating SWP capability include subwords align-

ment and arrangement before the computations. Compared to the SWP advantages

these overheads are small but are to be taken into account. Classical use of subword

sizes in SWP results in the under utilization of processor resources when working on

multimedia applications. In this thesis reconfigurable arithmetic operators are proposed

which are based upon multimedia oriented subword sizes. These subword sizes are in

coordination with pixel sizes in multimedia applications. Due to this coordination, the

processor utilizes the available resources more efficiently.

In the beginning of this thesis, SWP capability is introduced in the architectures of

basic arithmetic units. For comparison purpose, these operators are designed using

both classical and multimedia oriented subword sizes. The overheads for incorporating

SWP capability in the operator’s design are analyzed in Chapter 2. Due to the non

uniform nature of pixel sizes, the complexity of multimedia SWP operators are little

more compared to classical SWP operators. However due to the efficient utilization of the

resources, the performance of multimedia oriented SWP operators is much higher when

working on different video applications. In Chapter 3, proposed SWP basic operators

are used to design different application specific operators which are commonly required

in the multimedia domain. These operations include sum of absolute difference (SAD)

205

Chapter 7. Conclusion and Perspectives 206

for motion estimation, sum of product (SOP) for different transforms etc. Based upon

the selected subword size, these dedicated SWP operators execute parallel operations on

multiple pixels.

In Chapter 4, the pipelined architecture of the reconfigurable SWP operator is presented.

In conventional reconfigurable processors, the interconnection network reconfigures itself

for new set of application without focusing on the internal architectures of the operating

units. The proposed operator can reconfigure itself at both operation level and data

size level without any reconfiguration time overheads. Using this operator, variety of

multimedia operations can be performed on different sizes of pixel data. To perform

any operation, the control unit activates only those SWP units which need to perform

certain computations on input pixel data. This will reduce the overall power consump-

tion of the operator when performing different multimedia operations. Performance of

the reconfigurable operator is analyzed on different target technologies. The proposed

reconfigurable operator can be used in any processor to enhance the performance for

multimedia applications.

SWP increases the performance of the processor through parallel processing of data;

however the internal computation speed of different arithmetic units also plays an im-

portant role in the overall performance of the processor. To increase the speed as well

as the parallelism in different operations, for the first time multimedia oriented SWP

capability is introduced in arithmetic operators using redundant number system. This

number system provides a carry propagation free addition of input vectors. In redundant

number system, the addition of numbers is performed in constant time irrespective of

input data length. As the addition process is used in almost all the arithmetic operations

(MULT, SUB, MAC etc.), therefore any speed enhancement in the addition algorithm

results in the overall increase in the speed of different operations. In redundant system,

the numbers are represented by digits rather than bits which causes some increase in

area. However the speed-up attained at the cost of this small increase in area is of

vital interest. By using SWP on redundant number system, parallelism as well as the

high speed computations are obtained in arithmetic operator’s design. These high speed

SWP arithmetic operators are then used to design reconfigurable operator for multi-

media applications. This operator can perform different multimedia operations at high

speed compared to binary SWP operator. In Chapter 5, the performance comparison of

binary and redundant SWP operator is also presented.

Motion estimation is one of the most commonly used algorithm in multimedia appli-

cations. Based upon its computational intensity, SWP operators are used to design a

dedicated hardware architecture for the computation of motion estimation in Chapter 6.

The SWP motion estimation operator performs block matching on different multimedia

Chapter 7. Conclusion and Perspectives 207

oriented pixel sizes. The performance of this operator is analyze on different search

algorithms (full search, diamond search) using different block sizes. Due to the paral-

lel computations, the SWP ME operator performs computations much more efficiently

compared to simple operators. The actual speed-up attained depends upon the sub-

word/pixel sizes. The overheads for this performance enhancement are also highlighted

in Chapter 6. Results shows that multimedia oriented SWP capability in the arithmetic

operators increases the overall efficiency of the processor to a larger extent.

7.2 Future perspectives

This work opens various directions of research in multimedia processing. Some of them

are discussed below.

This thesis focuses on the development of operators for multimedia processing. However

the design of compiler which can further improve the performance of the application that

is executed on the processor is out of the scope of this thesis. In future, work can be

done to design the compiler which provides friendly environment for multimedia oriented

SWP operators. The compiler must be able to parallelize the data to maximum extend.

The arrangement and alignment overheads of the SWP operator can be distributed at

compiler level as well. To improve the performance, the compiler of the SWP processor

contains the intelligence to manage the subwords to maximum extent before giving them

to the processing units. By using multiple SWP operators, the compiler can optimize

the performance using both instruction level and data level parallelism. By doing so

compiler can issue multiple instructions for parallel computations on the data using

SWP operators.

The reconfigurable operators proposed in Chapter 4 and Chapter 5 can be extended

to perform other required operations on low precision data. However it will depend

upon the type of applications for which the operator needs to be designed. The SWP

motion estimation block presented in Chapter 6 can be extended to design dedicated co-

processors for other multimedia computations. These co-processors perform the required

operation more efficiently by using parallel processing on input data. In the co-processors

environment, the scheduling of appropriate tasks to the processors plays an important

role. The algorithms for the scheduling and allocation [14, 32, 35] of tasks to the SWP

co-processors needs to be explored to further enhance the performance.

Work can be done to improve the interface between memory and SWP operators so

that the required data should be available in minimum clock cycles. For this purpose

the arrangement and alignment of subwords in the memory needs to be focused. For

Chapter 7. Conclusion and Perspectives 208

the performance enhancement, the memory structure and the data link between the

processing units and the memory should support the transaction of multiple subwords

in a single memory reference. The data must also be addressable at the subword-level

(for example to perform delay operation as in a FIR filter). For this purpose, work can

be done to provide efficient interface between SWP operators and memory.

In this thesis, beside binary SWP operators the SWP technique is also introduced on

the redundant number system which gives very promising results. This idea can further

be extended by designing operators using the combination of SWP and other efficient

number systems. The subword sizes can also be tailored according to data sizes in

targeted applications.

Personal Publications

[1] S. Khan, E. Casseau and D. Menard. “Reconfigurable SWP Operator for Multi-

media Processing”, In Proceedings of the International Conference on Application-

specific Systems, Architectures and Processors(ASAP’09), Pages 199-202, Boston,

USA, 2009.

[2] S. Khan, E. Casseau and D. Menard. “SWP for multimedia operator design”, In

Proceedings of the 2nd Colloque Nationale of GDR SoC-SIP, Paris, France, 2008.

[3] S. Khan, E. Casseau and D. Menard, “SWP multimedia operator design”, In Pro-

ceeding of 5th international sciences of electronics, technologies of information and

telecommunications conference (SETIT), Hammamet, Tunisia, March 2009.

[4] D. Menard, E. Casseau, S. Khan, O. Sentieys, S. Chevobbe, S. Guyetant and

R. David. “Reconfigurable Operator Based Multimedia Embedded Processor”, In

Proceedings of the International Workshop on Applied Reconfigurable Computing:

Architectures, Tools and Applications (ARC’09), Pages 39-49, Karlsruhe, Germany,

2009.

[5] S. Khan, E. Casseau and D. Menard. “High speed reconfigurable SWP operator

for multimedia processing using redundant data representation”, In International

journal of information science and computer engineering, Vol. 1, No. 1 Pages 45-52,

Australia, 2010.

[6] E. Casseau, S. Khan and B. Le Gal, “Multimode architecture design”, In Proceeding

of Design and Architectures for Signal and Image Processing Workshop (DASIP’07),

Grenoble, France November 2007.

[7] B. Le Gal, E. Casseau and S. Khan, “HLS Design Flow for Multimode IP Gener-

ation Under Multiple Constraints”, In Proceeding of 14th IEEE International Con-

ference on Electronics, Circuits and Systems (ICECS’07), Marrakech, Morocco,

December 2007.

209

Bibliography

[1] 3DSP. SP-5 Fixed-point Signal Processor Core. 3DSP Corporation, Irvine, Calif,

USA, July 1999.

[2] A. Abdelgawad and M. Bayoumi. High Speed and Area-Efficient Multiply Accu-

mulate (MAC) Unit for Digital Signal Processing Applications. In Proceedings of

the IEEE International Symposium on Circuits and Systems ISCAS, pages 3199–

3202, May 2007.

[3] L. V. Agostini, I. S. Silva, and S. Bampi. Pipelined fast 2D DCT architecture for

JPEG image compression. In Proceedings of the 14th Symposium on Integrated

Circuits and Systems Design, pages 226–231, Pirenopolis, 2001.

[4] H. Amano. A Survey on Dynamically Reconfigurable Processors. In Institute of

Electronics, Information and Communication Engineers (IEICE) Transactions on

Communications, pages 3179–3187, 2006.

[5] H. Amano, Y. Hasegawa, S. Tsutsumi, T. Nakamura, T. Nishimura, V. Tan-

bunheng, A. Parimala, T. Sano, and M. Kato. MuCCRA chips: Configurable

Dynamically-Reconfigurable Processors. In Proceedings of the IEEE Asian Solid-

State Circuits Conference (ASSCC’07), pages 384–387, 2007.

[6] N. B. Amor, Y. L. Moullec, J. P. Diguet, J. L. Philippe, and M. Abid. Design of a

Multimedia Processor Based on Metrics Computation. In Advances in Engineering

Software, volume 36, pages 448–458, 2005.

[7] A. B. Attitalah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, and P. Marchegay.

Implementation of Loeffler Algorithm on Stratix DSP compared to Classical FPGA

Solutions. In Proceedings of the International Symposium on Communications,

Control and Signal Processing (SCCSP), Morocco, 2006.

[8] A. Avizienis. Signed-Digit Number Representations for Fast Parallel Arithmetic.

IRE Transactions on Electronic Computers, 10:389–400, 1961. Reprinted in

E. Swartzlander (ed.), Computer arithmetic, vol.II, IEEE Computer Society Press,

1990.

210

Bibliography 211

[9] M. Bousselmi, M. S. Bouhlel, N. Masmoudi, and L. Kamoun. New parallel ar-

chitecture of the DCT and its inverse for image compression. In Proceedings of

the the 7th IEEE International Conference on Electronics, Circuits and Systems

(ICECS), volume 1, pages 345–348, 2000.

[10] C. Brunelli, F. Garzia, and J. Nurmi. A coarse-grain reconfigurable architecture for

multimedia applications featuring subword computation capabilities. In Proceed-

ings of the Journal of real-time image processing, volume 3, pages 21–32, March

2008.

[11] C. Brunelli, P. Salmela, J. Takala, and J. Nurmi. A Flexible Multiplier for Media

Processing. In Proceedings of the IEEE workshop on Design and Implementation,

pages 70–74, Nov 2005.

[12] K. Bukhari, G. Kuzmanov, and S. Vassiliadis. DCT and IDCT Implementations

on Different FPGA Technologies. In Computer Engineering Lab, Delft University

of Technology, Netherlands.

[13] A. M. Campos, F. J. B. Merelo, M. A. M. Peirot’, and J. A. C. Esteve. Integer-

pixel motion estimation H.264/AVC accelerator architecture with optimal memory

management. In Proceedings of the International Journal of microprocessors and

microsystems, pages 68–78, 2008.

[14] E. Casseau, S. Khan, and B. Le Gal. Multimode architecture design. In Pro-

ceeding of Design and Architectures for Signal and Image Processing Workshop

(DASIP’07), Grenoble, France, November 2007.

[15] S. Chatterjee and A. Chakrabarti. Parallel Hardware Design for Motion Estima-

tion. In Proceedings of the International Journal of Recent Trends in Engineering,

volume 1, pages 653–657, May 2009.

[16] M. O. Cheema and O. Hammami. Customized SIMD Unit Synthesis for System on

Programmable Chip - A Foundation for HW/SW Partitioning with Vectorization.

In Proceedings of the IEEE Design Automation conference, pages 54–60, Jan 2006.

[17] J. Choi, N. Togawa, M. Yanagisawa, and T. Ohtsuki. VLSI Architecture for a Flex-

ible Motion Estimation with Parameters. In Proceedings of the 15th International

Conference on VLSI Design (VLSID.02), 2002.

[18] K. Compton and S. Hauck. Reconfigurable Computing: A Survey of Systems

and Software. In Proceedings of the ACM Computing Surveys, volume 34, page

171Ű210, June 2002.

Bibliography 212

[19] P. Corsonellol, S. Perri, M. A. Iachinol, and G. Cocorullo. Variable Precision Arith-

metic Circuits for FPGA Based Multimedia Processors. In IEEE Transactions on

very large scale integration (VLSI) systems, volume 12, September 2004.

[20] A. Danysh and D. Tan. Architecture and Implementation of a Vector/SIMD

Multiply-Accumulate Unit. In Proceedings of the IEEE Computer Society, vol-

ume 54, pages 284–293, March 2005.

[21] R. David, D. Chillet, S. Pillement, and O. Sentieys. DART A Dynamically Re-

configurable Architecture dealing with Next Generation Telecommunications Con-

straints. In Proceedings of the Reconfigurable Architecture Workshop (RAW 02),

April 2002.

[22] IRISA (Institut de Recherche en Informatique et Systèmes Aléatoires). [online]

available: https://www.irisa.fr.

[23] K. Diefendorff. Altivec extension to powerpc accelerates media processing. In

Proceedings of the IEEE Micro, March 2000.

[24] Xilinx Embedded Development Kit (EDK). [online]. available:

http://www.xilinx.com/ise/embedded/edk docs.html.

[25] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann, 2003.

[26] D. Esftathiou, J. Fridman, and Z. Zvonar. Recent developments in enabling tech-

nologies for the software defined radio. In Proceedings of the IEEE Communication

Magazine, pages 112–117, August 1999.

[27] A. A. Farooqui and V. G. Oklobdzija. General data-path organization of a MAC

unit for VLSI implementation of DSP processors. In Proceedings of the IEEE

International Symposium on Circuits and Systems ISCAS’98, volume 2, pages

260–263, 1998.

[28] A. A. Farooqui, V. G. Oklobdzija, and F. Chechrazi. 64-Bit Media Adder. In Pro-

ceedings of the IEEE International Symposium on Circuits and Systems, Orlando,

May 1999.

[29] ROMA (Reconfigurable Operators for Multimedia Architectures) Project. [online]

available: https://roma.irisa.fr.

[30] J. Fridman. Sub-Word Parallelism in Digital Signal Processing. In IEEE signal

processing magazine, pages 27–35, March 2000.

[31] J. Fridman. Data alignment for sub-word parallelism in DSP. In Proceedings of

the IEEE workshop on signal processing systems, pages 251–260, March 2002.

Bibliography 213

[32] B. Le Gal, E. Casseau, and S. Khan. HLS Design Flow for Multimode IP Gener-

ation Under Multiple Constraints. In Proceeding of the 14th IEEE International

Conference on Electronics, Circuits and Systems (ICECS’07), Marrakech, Mo-

rocco, December 2007.

[33] M. Ghanbari. The cross search algorithm for motion estimation. In Proceedings

of the IEEE Transaction Communication, volume COM-38, pages 950–953, July

1990.

[34] Mentor Graphics. [online]. available: www.mentor.com.

[35] R. Gupta and F. Brewer. High Level Synthesis: A Retrospective. In High-Level

Synthesis from Algorithm to Digital Circuit, Editted by P. Coussy and A. Moraw-

iec, Published by Springers, pages 13–28, 2008.

[36] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau. SPARK: A Parallelizing Approach

to the High-Level Synthesis of Digital Circuits. Springer; 1st edition, May 2004.

[37] A. Guyot, Y. Herreros, and J. M. Muller. JANUS, an On-line Multiplier/Divider

for Manipulating Large Numbers. In Proceedings of the 9th IEEE Symposium on

Computer Arithmetic, pages 106–111, 1989.

[38] J. L. Hennessy and D. A. Patterson. Computer a quantitative approach architec-

ture. In 3rd Edition. Morgan Kaufmann.

[39] H. C. Hunter and J. H. Moreno. A new look at exploiting data parallelism in

embedded systems. In Proceedings of international conference on Compilers, ar-

chitecture and synthesis for embedded systems, pages 159–169, 2003.

[40] IEEE Std 1666-2005 IEEE Standard SystemC Language Reference Manual. [on-

line]. available: http://www.systemc.org. March 2006.

[41] Texas Instruments Incorporated. TMS320C64x Technical Overview. Texas Instru-

ments, Dallas, Tex, USA, February 2000.

[42] Analog Device Incorporation. TigerSHARC Hardware Specification. Analog De-

vice, December 1999.

[43] CEVA Incorporation. CEVA-X1620 Datasheet. CEVA, San Jose, Calif, USA,

2004.

[44] 2008 Update Overview International Technology Roadmap for Semiconductors.

[online]. available: www.itrs.net/links/2008itrs/update/2008 update.pdf.

Bibliography 214

[45] G. Jaberipur and B. Parhami. Constant-time addition with hybrid-redundant

numbers: Theory and implementations. In Proceedings of the Integration, the

VLSI Journal, volume 41, pages 49–64, 2008.

[46] G. Jaberipur, B. Parhami, and M. Ghodsi. An efficient universal addition scheme

for all hybrid-redundant representations with weighted bit-set encoding. In Pro-

ceedings of the The Journal of VLSI Signal Processing, volume 42, pages 149–158,

2006.

[47] J. R. Jain and A. K. Jain. Displacement measurement and its application in inter-

frame image coding. In Proceedings of the IEEE Transaction on Communications,

volume COM-29, pages 1799–1808, December 1981.

[48] M. D. Jennings and T. M. Conte. Subword extensions for video processing on

mobile systems. In Proceedings of the IEEE Concurrency, volume 6, pages 13–16,

July-Sept 1998.

[49] X. Jing and L. P. Chau. An Efficient three-step search algorithm for block motion

estimation. In Proceedings of the IEEE Transactions on multimedia, volume 6,

pages 435–438, 2004.

[50] S. Khan, E. Casseau, and D. Menard. Reconfigurable SWP operator for multi-

media processing. In Proceedings of the International Conference on Application-

specific Systems, Architectures and Processors(ASAP’09), pages 199–202, Boston,

USA, 2009.

[51] S. Khan, E. Casseau, and D. Menard. High speed reconfigurable SWP operator for

multimedia processing using redundant data representation. In Proceedings of the

International journal of information science and computer engineering, volume 1,

pages 45–52, Australia, 2010.

[52] S. Khan, E. Casseau, and D. Menard. SWP for multimedia operator design. In

Proceedings of the 2nd Colloque Nationale of GDR SoC-SIP, Paris, France, June

2008.

[53] S. Khan, E. Casseau, and D. Menard. SWP multimedia operator design. In Pro-

ceedings of the Proceeding of 5th international sciences of electronics, technologies

of information and telecommunications conference (SETIT), Hammamet, Tunisia,

March 2009.

[54] P. Kitsos, G. Theodoridis, and O. Koufopavlou. An efficient reconfigurable multi-

plier architecture for Galois field. In Proceedings of the Microelectronics Journal,

pages 975–980, 2003.

Bibliography 215

[55] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro. Motion compensated

interframe coding for video conferencing. In Proceedings of the Nat. Telecommu-

nication Conference, pages 5.3.1–5.3.5, New Orleans, Nov 1981.

[56] S. Krithivasan and M. J. Schulte. Multiplier Architectures for Media Processing.

In Proceedings of the Thirty seventh Asilomar Conference on signals, systems and

computers, volume 2, pages 2193–2197, 2003.

[57] S. Krithivasan, M. J. Schulte, and J. Glossner. A subworld-parallel multiplication

and sum-of-squares unit. In Proceedings of the IEEE computer society annual

symposium on VLSI, pages 273–274, Feb 2004.

[58] M. Lanuzza, S. Perri, P. Corsonello, and M. Margala. A New Reconfigurable

Coarse-Grain Architecture for Multimedia Applications. In Proceedings of the

Second NASA/ESA Conference on Adaptive Hardware and Systems AHS, pages

119–126, 2007.

[59] R. B. Lee. Subword Parallelism with MAX-2. In IEEE Computer Society, vol-

ume 16, pages 51–59, August 1996.

[60] R. B. Lee. Multimedia extensions for general-purpose processors. In IEEE Work-

shop on Signal Processing Systems SIPS - Design and Implementation, pages 9–23,

Nov 1997.

[61] R. Li, B. Zeng, and M. L. Liou. A new three step search algorithm for block motion

estimation. In Proceedings of the IEEE Transaction on Circuits and Systems for

Video Technology, volume 4, pages 438–442, August 1994.

[62] T. Li, S. Li, and C. Shen. A novel configurable motion estimation architecture for

high-efficiency MPEG-4/H.264 encoding. In Proceedings of Asia and South Pacific

Design Automation Conference, pages 1264–1267, 2005.

[63] Z. Li, S. Peng, H. Ma, and Q. Wang. A Reconfigurable DCT Architecture for

Multimedia Applications. In Proceedings of the Congress on Image and Signal

Processing, pages 360–364, 2008.

[64] Y. Liao and D. B. Roberts. A high-performance and low-power 32-bit multiply-

accumulate unit with single-instruction-multiple-data (SIMD) feature. In Proceed-

ings of the IEEE Journal of solid-state circuits, pages 926–931, July 2002.

[65] Y-C. Lin and S-C. Tai. Fast full-search block-matching algorithm for motion

compensated video compression. In Proceedings of the International Conference

on Pattern Recognition (ICPR ’96), pages 914–921, 1996.

Bibliography 216

[66] L. K. Liu and E. Feig. A block based gradient descent search algorithm for block

motion estimation in video coding. In IEEE Transaction on Circuits and Systems

for Video Technology, volume 6, pages 419–422, August 1996.

[67] H. Loukil, A. B. Atitallah, F. Ghozzi, M. A. Ben Ayed, and N. Masmoudi. A

Pipelined FSBM Hardware Architecture for HTDV-H.26x. In Proceedings of the

International journal of electrical and electronics engineering, pages 128–135, 2008.

[68] R. Meagher, M. Sushmitha, M. E. Rizkalla, P. Salama, and M. E. Sharkawy. VHDL

Design for Real Time Motion Estimation Video Applications. In Proceedings of

the Journal of Signal Processing Systems, pages 339–348, Dec 2008.

[69] D. Menard, E. Casseau, S. Khan, O. Sentieys, S. Chevobbe, S. Guyetant, and

R. David. Reconfigurable Operator Based Multimedia Embedded Processor. In

Proceedings of the International Workshop on Reconfigurable Computing: Archi-

tectures, Tools and Applications, pages 39–49, Karlsruhe, Germany, 2009.

[70] D. Menard and O. Sentieys. DSP Code Generation with Optimized Data-Word

Length Selection. In Proceedings of 8th International Workshop on Software and

Compilers for Embedded Systems (SCOPES’04), Amsterdam, Netherlands, Sep

2004.

[71] Daniel Menard, Daniel Chillet, and Olivier Sentieys. Floating-to-Fixed-Point Con-

version for Digital Signal Processors. In EURASIP Journal on Applied Signal

Processing, pages 1–19, Hindawi Publishing Corporation, 2006.

[72] M. Nagabushanam, C. P. Raj, and S. Ramachandran. Design and implementation

of parallel and pipelined distributive arithmetic based discrete wavelet transform

IP core. In Proceedings of the European Journal of Scientific Research, volume 35,

pages 378–392, 2009.

[73] J. Oliver, V. Akella, and F. Chong. Efficient orchestration of sub-word parallelism

in media processors. In Proceedings of the sixteenth annual ACM symposium on

Parallelism in algorithms and architectures, pages 225–234, 2004.

[74] Coregen [Online]. [online]. available: www.xilinx.com/ipcenter/coregen/.

[75] D. S. Phatak, T. Goff, and I. Koren. Constant-Time Addition and Simultaneous

Format Conversion Based on Redundant Binary Representations. In Proceedings

of the IEEE Transactions on computers, volume 50, pages 1267–1278, 2001.

[76] L. M. Po and W. C. Ma. A novel four-step search algorithm for fast block motion

estimation. In IEEE Transaction on Circuits and Systems for Video Technology,

volume 6, pages 313–317, June 1996.

Bibliography 217

[77] A. Puri, H. M. Hang, and D. L. Schilling. An efficient block matching algorithm for

motion compensated coding. In Proceedings of the IEEE International Conference

Acoustic, Speech and Signal Processing, pages 1063–1066, 1987.

[78] N. Roma and L. Sousa. A New Efficient VLSI Architecture for Full Search Block

Matching Motion Estimation. In Proceedings of the Eleventh international confer-

ence on very large scale integration of systems on chip, volume 218, pages 253–264,

2001.

[79] Y. Saito, T. Sano, M. Kato, V. Tunbunheng, Y. Yasuda, and H. Amano. A

Real Chip Evaluation of MuCCRA-3: A Low Power Dycamically Reconfigurable

Processor Array. In Proceedings of the International Conference on Engineering

of Reconfigurable Systems and Algorithms (ERSA’09), pages 283–286, 2009.

[80] R. Sangireddy and A. K. Somani. On-Chip Adaptive Circuits for Fast Media

Processing. In Proceedings of the IEEE transactions on circuits and systems, vol-

ume 53, pages 946–950, 2006.

[81] T. Sano, Y. Saito, and H. Amano. Configuration with Self-Configured Datapath:

A High Speed Configuration Method for Dynamically Reconfigurable Processors.

In Proceedings of the International Conference on Engineering of Reconfigurable

Systems and Algorithms (ERSA’09), pages 112–118, July 2009.

[82] M. G. Sarwer, L. M. Po, and Q. M. J. Wu. Fast sum of absolute transformed

difference based 4 x 4 intra-mode decision of H.264/AVC video coding standard.

In Journal of Signal Processing: Image Communication, volume 23, pages 571–580,

2008.

[83] M. S. Schmookler, M. Putrino, C. Roth, M. Sharma, A. Mather, J. Tyler, H. V.

Nguyen, M. N. Pham, and J. Lent. A low-power, high-speed implementation of

a PowerPC TM microprocessor vector extension. In Proceedings of 14th IEEE

Symposium on Computer Arithmetic, pages 12–19, 2002.

[84] J. P. Shen and M. H. Lipasti. Modern processor design fundamentals of superscalar

processors. In Edition 1. McGraw-Hill Science/Engineering/Math, 2002.

[85] Z. J. Shi. Subword Permutations with MIX Instructions. In Proceedings of 39th

Asilomar Conference on Signals, Systems and Computers, pages 1637–1641, Nov

2005.

[86] I. Skliarova and A. B. Ferrari. Design and implementation of reconfigurable proces-

sor for problems of combinatorial computations. In Proceedings of the Euromicro

Symposium on Digital Systems Design, pages 112–119, June 2001.

Bibliography 218

[87] Synopsys. [online]. available: www.synopsys.com.

[88] Synopsys. [online]. available: www.synopsys.com/dw/doc.php/doc/dwf/.

[89] N. Takagi, H. Yasuura, and S. Yajima. High-Speed VLSI Multiplication Algorithm

with a Redundant Binary Addition Tree. In IEEE Transactions on Computers,

volume C-34, pages 789–796, 1985.

[90] M. Thornton. A signed binary addition circuit based on an alternative class of

addition tables. In Proceedings of the Computer and Electrical Engineering, vol-

ume 29, pages 303–315, 2003.

[91] M. Thornton. The conversion algorithm and implementation between carry-save

and binary sign-digit representations. In Proceedings of the Asian Journal of in-

formation technology, volume 10, pages 901–906, 2005.

[92] V. M. Tuan, N. Katsura, H. Matsutani, and H. Amano. Evaluation of a mul-

ticore reconfigurable architecture with variable core sizes. In Proceedings of the

Proceedings of the International Parallel and Distributed Processing Symposium

(IPDPS’09), pages 1–8, July 2009.

[93] J. Vanne, E. Aho, T. D. Hämäläinen, and K. Kuusilinna. A High-Performance Sum

of Absolute Difference Implementation for Motion Estimation. In IEEE transaction

on circuits and systems for video technology, volume 16, July 2006.

[94] S. Vassiliadis, E. A. Hakkennes, J. S. S. M. Wong, and G. G. Pechanek. The

sum-absolute-difference motion estimation accelerator. In Proceedings of the 24th

Euromicro Conference, volume 2, pages 559–566, 1998.

[95] A. K. Verma and P. Ienne. Improved use of the carry-save representation for

the synthesis of complex arithmetic circuits. In Proceedings of the International

conference on computer aided design ICCAD’04, pages 791–798, 2004.

[96] M. Vorbach and R. Becker. Reconfigurable processor architectures for mobile

phones. In Proceedings of the International Parallel and Distributed Processing

Symposium IPDPS, pages 6–12, April 2003.

[97] J. Wakerly. Digital Design. In 3rd Edition, Upper Saddle River, NJ, 2000. Prentice

Hall.

[98] A. Wang and A. Chandrakasan. A 180-mV subthreshold FFT processor using a

minimum energy design methodology. In Proceedings of the Solid-State Circuits,

IEEE Journal, volume 40, pages 310–319, January 2005.

Bibliography 219

[99] G. Wang. The conversion algorithm and implementation between carry-save and

binary sign-digit representation. In Proceedings of the Asian journal of information

technology, pages 901–906, 2005.

[100] S. Wichman and N. Goel. The Second Generation ZSP DSP. LSI Logic Corpora-

tion, Milpitas, Calif, USA, 2002.

[101] S. Wong, B. Stougie, and S. Cotofana. Alternatives in FPGA-based SAD Im-

plementations. In Proceedings of the IEEE international conference on field-

programmable technology (FPT), pages 449–452, Hong Kong, 2002.

[102] S. Wong, S. Vassiliadis, and S. Cotofana. A Sum of Absolute Differences Imple-

mentation in FPGA hardware. In Proceedings of the 28th Euromicro Conference

on Multimedia and Communications, pages 183–188, July 2002.

[103] B. F. Wu and T. L. Yu. Efficient hierarchical motion estimation algorithm and its

VLSI architecture. In Proceedings of the IEEE Transactions on very large scale

integration (VLSI) systems, volume 16, pages 1385–1398, October 2008.

[104] S. Xu and H. Pollitt-Smith. A multi-microblaze based soc system: From systemc

modeling to fpga prototyping. In Proceedings of the 19th IEEE/IFIP International

Symposium on Rapid System Prototyping, pages 121–127, 2008.

[105] S. M. Yen, C. S. Laih, C. H. Chen, and J. Y. Lee. An efficient redundant-binary

number to binary number converter. In Proceedings of the IEEE Journal of Solid-

State Circuits (JSSC), volume 27, pages 109–112, 2002.

[106] S. Yeo, T. Roh, and J. Kim. High Energy Efficient Reconfigurable Processor for

Mobile Multimedia. In Proceedings of the International Conference on Circuits

and Systems for Communications (ISSCC’08), pages 618–622, June 2008.

[107] X. Zhang and X. Shen. A Power-Efficient Floating-Point Co-processor Design. In

Proceedings of the International Conference on Computer Science and Software

Engineering, pages 75–78, 2008.

[108] S. Zhu and K. K. Ma. A new diamond search algorithm for fast block matching

motion estimation. In Proceedings of the IEEE Transaction on Image Processing,

volume 9, pages 287–290, Feb. 2000.

Titre. Développement d’architectures matérielles hautes performances pour les applica-
tions multimédia

Résumé. Les besoins en puissance de calcul des processeurs sont en constante augmen-
tation en raison de l’augmentation croissante de la complexité des applications. Les ap-
plications multimédia requièrent de nombreux calculs avec des données de faible précision
généralement issues des pixels. Un moyen efficace pour exploiter le parallélisme de données
de ces applications est le parallélisme dit de sous-mots (subword parallelism (SWP)). Les
opérations sont effectuées en parallèle sur des données de faible précision regroupées ce
qui permet d’utiliser au mieux les ressources disponibles dimensionnées pour traiter des
mots. Dans cette thèse, la conception de différents opérateurs SWP pour les applications
multimédia est proposée. Des opérateurs arithmétiques de base sont d’abord développés
puis utilisés dans un opérateur SWP reconfigurable. Ce dernier peut être configuré pour
effectuer diverses opérations multimédia avec différentes largeurs de données. L’opérateur
reconfigurable peut être utilisé comme unité spécialisée ou comme co-processeur dans un
processeur multimédia afin d’en améliorer les performances. Les résultats obtenus mon-
trent l’intérêt d’utiliser des opérateurs SWP lors de l’exécution d’applications multimédia.

Title. Development of high performance hardware architectures for multimedia appli-
cations

Abstract. The computational requirements of the processors are increasing tremendously
with the increase in the complexity of applications. Among these applications, multimedia
represents the class of applications which requires lot of computations on low precision pix-
els. Subword parallelism (SWP) is one of the best options to exploit data level parallelism
that exist in the applications. In SWP, rather than wasting the word oriented data path,
parallel operations are executed on packed subwords. SWP increases the performance of
the processor especially for multimedia applications with low precision pixel data. In this
thesis, reconfigurable SWP arithmetic operators are proposed for multimedia applications.
SWP arithmetic operators are then used to design reconfigurable operators for multime-
dia applications. These operators can perform a variety of basis as well as multimedia
operations on different size pixel data. These operators can be used as co-processors to
enhance the performance for multimedia applications. The performance of SWP operators
are verified on different multimedia kernels.

	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Résumé étendu
	0.1 Le parallélisme pour améliorer les performances
	0.1.1 Le parallélisme au niveau des instructions
	0.1.2 Le parallélisme au niveau des données

	0.2 Parallelisme de sous-mots (subword paralelism (SWP))
	0.2.1 Utilisation du concept SWP
	0.2.2 Concept SWP et applications multimédia
	0.2.3 Extensions multimédia dans les microprocesseurs à usage général

	0.3 Besoins associés au concept SWP
	0.3.1 Opérateurs SWP
	0.3.2 Transferts de données entre les unités de traitement et la mémoire
	0.3.3 Disponibilité de données de faible précision

	0.4 Largeurs des sous-mots dans les architectures SWP
	0.4.1 Parallélisme versus largeur des sous-mots
	0.4.2 Largeurs des sous-mots supportées
	0.4.3 Adéquation entre largeur des données et largeur des sous-mots
	0.4.4 Largeur de sous-mots conventionnelles
	0.4.5 Largeurs de sous-mots orientées multimédia
	0.4.6 Largeur des mots avec les opérateurs SWP

	0.5 Contributions et organisation du mémoire de thèse
	0.5.1 Organisation de la thèse

	1 Subword Parallelism SWP in operator design
	1.1 Parallelism for performance enhancement
	1.1.1 Instruction level parallelism
	1.1.2 Data level parallelism

	1.2 Multimedia Processing
	1.3 Subword parallelism SWP
	1.3.1 Utilization of data level parallelism in SWP
	1.3.2 SWP in multimedia application
	1.3.3 Multimedia extension in general purpose microprocessors
	1.3.4 SWP building block IPs

	1.4 SWP requirements
	1.4.1 SWP operators
	1.4.2 Data transfer between processing units and memory
	1.4.3 Availability of low precision data

	1.5 SWP instruction set
	1.5.1 Parallel ADD and SUB instruction
	1.5.2 SWP instructions to avoid overflow in MAX-2
	1.5.3 MIX instruction in MAX-2
	1.5.4 PERMUTE instruction in MAX-2
	1.5.5 Memory instructions
	1.5.6 Assembly code with and without SWP instructions

	1.6 Subwords sizes in SWP architectures
	1.6.1 Parallelism Vs subword size
	1.6.2 Support for multiple subword sizes
	1.6.3 Coordination between data and subword size
	1.6.4 Classical subword sizes
	1.6.5 Multimedia subword sizes

	1.7 Word size in SWP operators
	1.8 Limitations of SWP
	1.9 Contributions and Organization of this Thesis
	1.9.1 Organization of thesis

	1.10 Conclusions

	2 Design of SWP basic operators
	2.1 SWP operator design
	2.1.1 Complexity of SWP operators

	2.2 Add operator
	2.2.1 Classical SWP adder
	2.2.2 Multimedia SWP adder

	2.3 Multiply operator
	2.3.1 Classical SWP multiplier
	2.3.2 Multimedia SWP multiplier
	2.3.2.1 Dedicated PP generation units
	2.3.2.2 Generalize PP generation unit for SWP multimedia multiplier
	2.3.2.3 Addition of partial products for SWP multimedia multiplier
	2.3.2.4 Comparison of simple and SWP multimedia multiplier

	2.3.3 Analysis of SWP multipliers

	2.4 MAC operator
	2.4.1 Classical SWP MAC
	2.4.2 Multimedia SWP MAC

	2.5 Conclusions

	3 SWP in multimedia operations
	3.1 Multimedia arithmetic operations
	3.1.1 Sum of absolute values of difference SAD

	3.2 Determination of absolute value of difference |a - b|
	3.2.1 Absolute value of difference : Method 1
	3.2.1.1 SWP Absolute value of difference : Method 1

	3.2.2 Absolute value of difference : Method 2
	3.2.2.1 SWP Absolute value of difference : Method 2

	3.2.3 Absolute value of difference : Method 3
	3.2.3.1 SWP Absolute value of difference : Method 3

	3.2.4 Comparison of SWP Absolute value of difference operators

	3.3 SWP SAD operator
	3.3.1 Comparison of simple and SWP SAD operator

	3.4 Sum of products (SOP)
	3.4.1 SWP sum of products
	3.4.2 Comparison of simple and SWP sum of products operator

	3.5 Sum of additions/subtractions
	3.5.1 SWP sum of additions/subtractions
	3.5.2 Comparison of simple and SWP (a b) operators

	3.6 Conclusions

	4 Reconfigurable SWP operator for multimedia processing
	4.1 Reconfigurable architectures
	4.1.1 Reconfiguration at interconnection level
	4.1.2 Reconfiguration at operator's level
	4.1.3 Reconfigurability using SWP

	4.2 SWP Reconfigurable multimedia operator
	4.2.1 Architecture of SWP Reconfigurable operator
	4.2.2 Connectivity of reconfigurable operator with other operators
	4.2.3 Building blocks of reconfigurable operator

	4.3 Basic SWP arithmetic units
	4.3.1 SWP ADD and SUB units
	4.3.2 SWP Absolute signed
	4.3.3 SWP multiplier unit
	4.3.4 SWP |a - b| unsigned
	4.3.5 Accumulator unit

	4.4 Subword alignment and interconnection units
	4.4.1 Bit conversion units
	4.4.2 SWP subword adders units
	4.4.3 Multiplexer units

	4.5 Complex multimedia operations
	4.5.1 SWP (a b) operation
	4.5.2 SWP (|a - b|) operation
	4.5.3 SWP (a + b) signed operation
	4.5.4 Other complex operations

	4.6 Synthesis results
	4.6.1 Statistical power analysis

	4.7 Performance on multimedia applications
	4.8 Conclusion

	5 SWP using redundant representation
	5.1 Number systems
	5.1.1 Binary number system
	5.1.2 Redundant number system

	5.2 Addition using BS number system
	5.2.1 Addition tables for BS numbers
	5.2.1.1 Addition table using direct method
	5.2.1.2 Addition table using internal barrow

	5.2.2 Addition of intermediate sum and carry digits

	5.3 Logic cell for BS digits addition
	5.3.1 Adder using BS logic cell
	5.3.2 Comparison of BS adder with other adder types

	5.4 Conversions between CB and BS numbers
	5.4.1 Conversions from CB to BS
	5.4.2 Conversions from BS to CB representation

	5.5 Multiplication using BS number system
	5.5.1 Comparison of CB and BS multiplier

	5.6 FSM based variable length BS adder
	5.6.1 FSM controller

	5.7 SWP using BS representation
	5.7.1 SWP adder using BS representation
	5.7.1.1 Comparison of SWP BS adder with SWP CB adder
	5.7.1.2 Comparison of simple and SWP BS adder

	5.7.2 SWP multiplier using BS representation
	5.7.2.1 Comparison of SWP BS multiplier with SWP CB multiplier
	5.7.2.2 Comparison of simple and SWP BS multiplier

	5.8 SWP SAD using BS representation
	5.9 SWP BS conversions
	5.9.1 SWP CB to BS conversion
	5.9.2 SWP BS to CB conversion

	5.10 High speed reconfigurable multimedia operator
	5.10.1 Architecture of the operator
	5.10.2 Sum of products using reconfigurable operator
	5.10.3 Synthesis results
	5.10.3.1 Power analysis

	5.11 Conclusions

	6 Motion estimation using SWP operators
	6.1 Motion estimation
	6.2 Search algorithms in motion estimation
	6.2.1 Full search algorithm
	6.2.2 Three step search algorithm
	6.2.3 Diamond search algorithm

	6.3 Cost functions
	6.3.1 Sum of absolute value difference SAD

	6.4 Motion estimation using SWP operators
	6.4.1 RAMs for search area image and current block
	6.4.2 RAM reading units
	6.4.3 SWP SAD computation unit
	6.4.4 SAD comparator unit
	6.4.5 State machine controller

	6.5 SWP ME using Full search algorithm
	6.5.1 Search time
	6.5.2 Synthesis results
	6.5.3 Comparison of simple and SWP ME operator

	6.6 SWP ME using Diamond search algorithm
	6.6.1 Search time
	6.6.2 Synthesis results
	6.6.3 Comparison of simple and SWP ME operator

	6.7 Comparison of FS and DS SWP ME operators
	6.8 SWP ME IP core
	6.9 Conclusions

	7 Conclusion and Perspectives
	7.1 Conclusion
	7.2 Future perspectives

	Bibliography
	 Personal Publications

