

Étude et réalisation d'un spectromètre intégré à transformée de Fourier : SWIFTS

Composant SWIFTS Gabor

Thèse

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ DE GRENOBLE spécialité « Astrophysique et milieux dilués »

Présentation et soutenance publique par

Jérôme Ferrand

le 12 novembre 2010

Thèse dirigée par Etienne le Coarer

SWIFTS : Stationary Wave Integrated Fourier Transform Spectrometer

Maquette d'un SWIFTS 400-1000 nm

Soutenance de thèse de Jérôme Ferrand

Vendredi 12 Novembre 2010

Notions préliminaires

Présentation de SWIFTS

Modélisation et caractérisation

Utilisation possible des SWIFTS

Conclusion et perspectives

Notions préliminaires

Présentation de SWIFTS

Modélisation et caractérisation

Utilisation possible des SWIFTS

Conclusion et perspectives

Soutenance de thèse de Jérôme Ferrand

Vendredi 12 Novembre 2010

Source : flickr

Sources ponctuelles isolées

Interférences de deux sources ponctuelles

Interférences moyennées temporellement

Notions préliminaires : une utilisation originale des interférences par Gabriel Lippmann

n_{max} λ_{orange} = 650 nm $\lambda_{vert} = 540 \text{ nm}$

n_{min}

4

Photo couleur sur plaque de Lippmann (fin du XIX^{ème} siècle)

Vue d'artiste du profil d'indice dans l'épaisseur de la plaque photo

OPD

Notions préliminaires : une utilisation originale des interférences par Gabriel Lippmann

OPD

Vue microscopique d'une coupe d'une plaque photographique de Lippmann :

Un miroir de mercure est mis en contact avec le côté droit de l'émulsion, on peut voir l'interférogramme.

En première approximation, l'équation de l'interférogrammme est :

 $I_m(\delta L) = TF[B(\sigma)]$

5

Spectre

Notions préliminaires

Présentation de SWIFTS

Modélisation et caractérisation

Utilisation possible des SWIFTS

Conclusion et perspectives

de z', l'amplitude décroit exponentiellement avec x'

SWIFTS mode Lippmann

SWIFTS mode Gabor

Lumière blanche

Deux brevets :

E. le Coarer et P. Benech. Interferential spectroscopy detector and camera, Brevet WO2006064134, 2006.

E. le Coarer, P. Benech, P. Kern, G. Lerondel, S. Blaize, et A. Morand. Spectrographie à onde contrapropagative, Brevet FR2889587, 2007.

Présentation de SWIFTS : le sous-échantillonnage

Vendredi 12 Novembre 2010

Deux solutions sont possible pour pallier le problème du souséchantillonnage :

- le Multiplex spatial:

plusieurs guides d'onde sont utilisés en parallèle, et ce, de manière à ce que chaque ligne de détecteurs associée au guide « voit » une partie différente de l'interférogramme.

- le Multiplex temporal multiplex:

un guide d'onde unique est utilisé et l'utilisation d'un variateur de différence de chemin optique (OPD) permet de balayer l'interférogramme.

Composant 1

- Résolution
- Bande spectrale
- Etendue optique
- Résistance du concept :
 - Stabilité en température
 - Réflexions internes
 - Positionnement des points d'échantillonnage
 - Inhomogénéités
 - ...

Besoin de moyens de caractérisation

Soutenance de thèse de Jérôme Ferrand

Vendredi 12 Novembre 2010

SWIFTS Gabor vu en coupe

Soutenance de thèse de Jérôme Ferrand

Vendredi 12 Novembre 2010

L'optimum d'efficacité correspond au cas où les N plots diffusent chacun 2/(N+2) de l'énergie couplée dans le guide.

Dans ce cas :

- 13% de l'énergie traverse le composant
- 13% de l'énergie n'interfère pas de manière constructive et forme un fond continu de forme hyperbolique
- 74% de l'énergie interfère de manière constructive dans l'interférogramme

Données expérimentales

Trois types de problèmes :

Problèmes de calibration	Solutions associées
Efficacité des plots et photométrie	Injection unilatérale ou méthode OCT
Calibrations en longueur d'onde	Source large bande + monochromateur
Position des plots	TF en fonction de la longueur d'onde

Monochromateur

Source large bande

21)

Trois types de problèmes :

Problèmes de mise en œuvre	Solutions associées
Sous-échantillonnage	Variateur d'OPD
Acquisition	Microscope

Système double de visualisation

Variateur d'OPD

Soutenance de thèse de Jérôme Ferrand

Trois types de problèmes :

Problèmes expérimentaux	Solutions associées
Fluctuations thermiques	Isolation des fibres + contrôle
Réflexions parasites	Séparateur de flux sans réflexions

Séparateur de flux sans réflexions

Données expérimentales

Balayage en longueur d'onde :

On observe une forte variation de la longueur d'onde apparente à cause de l'effet de moiré lié au sous-échantillonnage.

Balayage en OPD:

On observe un déplacement des franges qui vaut la moitié de la variation d'OPD.

De la lumière des plots i - 1 et i + 1 est détectée par le pixel i, ce qui provoque un phénomène de diaphonie.

Limitation du phénomène de diaphonie grâce au filtrage angulaire effectué par le pixel

Le crosstalk

Soutenance de thèse de Jérôme Ferrand

Matrice T : E/S gauche = T x E/S droite

fig. a : interférogramme
 pour une longueur d'onde
 quelconque ;

– fig. b : interférogramme pour *l = 806, 145 nm;*

- fig. c : interférogramme
pour l = 806, 592 nm;

- fig. d : interférogramme
pour l = 806, 926 nm;

fig. e : interférogramme
 pour *l = 132 = 806, 968 nm.*

Vendredi 12 Novembre 2010

L'effet de Bragg est fortement atténué lorsque les plots ne sont pas placés de manière périodique

Résultats expérimentaux : source monochromatique

Notions préliminaires

Présentation de SWIFTS

Modélisation et caractérisation

Utilisation possible des SWIFTS

Conclusion et perspectives

Soutenance de thèse de Jérôme Ferrand

Vendredi 12 Novembre 2010

Paramètres clés de concept instrumentaux basés sur SWIFTS :

- Résolution spectrale et bande spectrale
- SNR et/ou NESR et/ou Dynamique
- Stabilité et précision absolue
- Taux d'acquisition

Limitations d'un FTS en optique intégrée :

- \Rightarrow étendue optique limitée
- ⇒ SNR limité dicté par un optimum entre la bande passante et la résolution

Comparaison avec MIPAS : Michelson Interferometer for Passive Atmospheric Sounding

Bandes de travail de MIPAS	А	AB	В	С	D
Bande spectrale (cm-1)	685-970	1020-1170	1215-1500	1570-1750	1820-2410
Temps d'acquisition (s)	0,005	0,005	0,010	0,010	0,005
SNR d'une image	811	789	2228	1038	302
NESR (nW/cm ² ·sr.cm ⁻¹⁾	2084	3656	4500	12300	32100

Transmission :

MIPAS	SWIFTS
Deux détecteurs : 1	Capteur d'un seul côté : 0,4
Interférogramme bi-dimenssionnel : 0,7	Polarisation : 0,5
Optique du FTS : 0.8	Facteur de couplage monomode : 0,80
Séparateur de flux : 0,9	Efficacité d'un SWIFTS : 0,74
Transmission totale : 0,5	Transmission totale : 0,12

Notions préliminaires

Présentation de SWIFTS

Modélisation et caractérisation

Utilisation possible des SWIFTS

Conclusion et perspectives

Bilan :

Modélisation précise et réaliste (Prédiction du phénomène de Bragg) Banc de caractérisation opérationnel Premiers résultats encourageants

A faire :

Tester les composants avec variateur d'OPD intégrés et collés sur un CCD Obtenir un spectre « complexe »

Pistes de travail :

Amélioration de la calibration et surtout la réduction de données Envisager l'association AWG-SWIFTS pour améliorer le SNR Utilisation en interférométrie N télescopes (Kern et le Coarer 2009) Application de SWIFTS à l'astrophysique

Dans l'immédiat :

Master 2 sciences sociales à l'ENS de Lyon (spécialité administration des institutions de recherche) + Mi-temps au LAOG sur le projet SWIFTS

Demande de qualification pour Maître de conférence

Après :

Enseignant-chercheur ou cadre administratif

Étude et réalisation d'un spectromètre intégré à transformée de Fourier : SWIFTS

Composant SWIFTS Gabor

Thèse

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ DE GRENOBLE spécialité « Astrophysique et milieux dilués »

Présentation et soutenance publique par

Jérôme Ferrand

le 12 novembre 2010

Thèse dirigée par Etienne le Coarer

