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I- INTRODUCTION 

As long as there is the need for disposal of household waste there will be the need to understand the 

phenomena taking place at the other end i.e. a landfill or incinerators. The understanding of landfill 

technology is of great importance because of its ever changing state, whether physical, chemical or 

hydrological. Despite the increasing rates of recycling and reuse, population and economic growth will 

still render landfill as necessary component of solid waste management. Landfills can either be 

technically engineered structure or an open dump as the case may be in less developed countries, but 

the burial of domestic waste has been practiced since ages and remains one of the most common 

processes of disposal. In the context of our proposed research topic there is a need to elaborate various 

aspects concerning municipal solid waste, its typical composition, characteristics and behaviour 

concerning its disposal at landfill sites. 

I-1 TYPES OF SOLID WASTES 

According to the regulatory legislation, solid waste is classified according to their origin and their 

toxicity. The type of storage structure depends on the nature and characteristics of waste. The current 

regulations distinguish three broad classes of waste:  

 

1) Hazardous Waste: According to European Directive No. 2002-540 of April 18, 2002 on 

classification of wastes, is the type of waste which displays one or more of the following properties: 

Explosive, oxidizing, easily flammable, flammable, irritant, harmful, carcinogenic, corrosive, 

infectious, mutagenic, toxic for reproduction substances and chemical compounds which on contact 

with water, air or an acid, emit toxic gas or highly toxic substances and chemical compounds which, 

after disposal, may yield by any means another substance, e.g. the leachate which might possess any 

eco-toxic characteristics listed above.  

The directive of January 19, 2006 amending the directive of September 9, 1997 concerns storage of 

household or similar waste without distinguishing household waste and assimilated waste, and only 

defines non-hazardous waste. 

 

2) Non-hazardous waste: is defined in the directive of January 19, 2006 amending the directive of 

September 9, 1997 as any waste not defined as hazardous by No. 2002-540 of 18 April 2002. The non-

hazardous waste is divided into two categories according to predictable behaviour under storage 

conditions and alternative disposal:  
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 Category D: Waste whose behaviour within the storage evolves and leads to the production 

of leachate and biogas. This category includes household garbage, bulky items of domestic 

origin with fermentable components as green waste. This type of waste is not considered 

ultimate refuse because their pollution intensity can further be reduced. 

 Category E: waste whose behaviour in storage is indolent and the degradation capacity is 

low. This category presents a moderate pollutant nature and includes waste plastics and 

scrap metals, glass, ash and slag.  

 

3) Inert waste: is defined by European Directive 1999/31/EC of April 26, 1999, as undergoing "no 

change physical, chemical or biological” in time. Inert waste does not decompose, burn and have no 

physical or chemical reaction. It is not biodegradable and do not deteriorate. Furthermore materials 

with which come into contact with them are not likely to cause environmental pollution or harm to the 

human health. The total leachate production, content of waste pollutant and the eco-toxicity of the 

leachate should be negligible and, especially, should not affect the quality of surface water and / or 

groundwater. This class mainly incorporates mineral waste or similar to natural unpolluted substrate.  

 

The French law on waste disposal and recovery materials July 13, 1992 prohibits the storage of raw 

waste that can not be considered as ultimate waste or stabilized. This prohibition is effective in France 

since 1 July 2002. A waste is considered as the ultimate refuse whether treated or not if it is not likely 

to be treated in technical and economic conditions of the moment. Considering the present economic 

state, the waste is considered as stable when its liquid permeability and leaching fraction has been 

reduced. 

I-1.1 Municipal Solid Waste 

Municipal Solid Waste (MSW) is the type of the waste which includes primarily household waste with 

sometimes the addition of ordinary commercial waste containing either solids or semi solids. 

According to IFEN (2006) each year 31 million tons of domestic waste is generated in France with a 

generation rate of 457 kg/capita/year. In Figure I-1 the generation trends for member countries of the 

economic cooperation organisation are presented including the expected generation rate for the year 

2020, where as Table I-1 details the MSW waste composition according to the income level. 
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Figure I-1 : Municipal solid waste generation trends around the world (OECD, 2004). 

 

Table I-1: MSW composition for different income levels (Tchobanoglous et al., 2003) 

Waste Component 

(% MH) 

Countries Income 

High Medium Low 

Organic 

Food Waste 6-30 20-65 40-85 

Paper/Cardboard 20-45 8-30 1-10 

Plastics 2-8 2-6 1-5 

Textile 2-6 2-10 1-5 

Rubber & leather 0-2 1-4 1-5 

Wood & yard waste 10-20 1-10 1-5 

Misc organic waste < 1 < 1 < 1 

Inorganic 

Glass 4-12 1-10 1-10 

Tin cans 2-8 1-5 1-5 

Aluminium 0-1 1-5 1-3 

Other metals 1-4 1-5 1-5 

Dirt, ash etc. 0-10 1-30 1-40 
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I-1.2 Multi-Criterion Municipal Solid Waste Composition 

If the solid waste is considered as a material demonstrating the properties of a geological material, it is 

certainly important to explain its environmental impacts in reference to its disposal as it concerns the 

geotechnical experts as well as the field operators.  

 

Household waste is a mixture of particles each of which is differently classified from organic to 

granular and inert to putrescibles. Because of the heterogeneous nature of the waste mass there is 

always uncertainty for the parameters determined for the whole mass as it comprises many elements 

each unique in its nature. But together the technical experts, engineers and researchers work in 

collaboration to unite these all aspects in a manner to formulize in general the whole mass. The aim of 

the study always is to estimate the waste mechanical characteristics in correlation with the 

composition of waste which is modified because of change in the bio-chemical properties resulting in 

change of the mechanical properties. Depending upon the composition of the specific waste material 

the mechanical characteristics may differ from those of typical soils and may require special 

geotechnical consideration. Relating the changes in its chemical and biological form to the mechanical 

properties can be done through some laws of mechanics which has not yet been well established. 

There are models proposed by researchers which take into account these various aspects of biological, 

chemical and mechanical properties but their authenticity is still to be acknowledged. 

 

Numerous approaches to characterize the waste components exist, which mainly depend upon the type 

of study under discussion. In terms of biochemical classification of the waste it is subdivided into two 

classes, namely organic and inorganic components as shown in Table I-1. Furthermore these 

components can be sub- classified as Aran (2001) proposed the classification of organic waste on the 

function of their degradation activity, with the following subdivision: 

 

Readily Degradable waste: This class includes the kitchen and garden waste (fruits, vegetables, 

animal waste) etc. 

Normally degradable waste: In this class sludge and fatty waste is considered 

Slow degradable waste: Paper, cardboard and wood is included in this class. 

 

In Figure I-2 the waste composition for the developed countries is presented in comparison with the 

composition of major cities in the less developed countries of Asia. 
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Figure I-2 : Comparison of waste composition (UNESCAP, 2002). 
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Different types of particles are present in a solid waste mass, classified (Landva & Clark, 1990, 

Kölsch, 1995) according to their geo-mechanical properties. Grisolia et al. (1995) proposed their 

classification as under: 

 

Class A: Inert stable materials (rigid) are regrouped in this class whose composition do not vary over 

the course of time and have high resistance to deformation. These materials are considered to have 

mechanical behaviour similar to soils. This category includes different soil materials as well as 

aggregates and debris, glass, ceramics, metal, plastics and wood. 

  

Class B: Highly deformable materials include those materials which tend to go under instantaneous 

compression under the application of load and some of them continue to deform over the period of 

time under the applied load but on the contrary their degradation is a very slow process. Within this 

class the waste materials are further subdivided into 

 crushable/breakable 

 compressible/bendable/deformable 

The overall influence of these materials on the waste body is generally dependent upon their size, pre-

treatment (shredding) and the load applied. 

 

Class C: Biodegradable, which change in volume or change from solid to liquid or gas phase on 

decomposition. This class of waste materials comprises mainly of kitchen and garden waste. Their 

decomposition highly affects the material structure of the landfill over the long run as their 

degradation reduces the total volume of solids, increasing the over all density and generates by 

products such as leachate and biogas. This classification for various regions of the world is presented 

in Figure I-3. 

 

Figure I-3 : Ternary diagram of waste classification as presented by Grisolia et al. (1995). 
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Some classification systems e.g. as proposed by Langer (2005) separate different components as 

follows: 

 Material groups (papers, plastics, metals) 

 Mechanical properties of material groups (shear, tensile and compressive strength) 

With further subdivision according to  

 shape 

 Reinforcing components 

 Compressible components (high & low) 

 Incompressible components 

 Size of the components 

 Degradation potential within the material groups 

I-1.3 Four Stage Bacterial Decomposition of MSW 

Bacteria decompose landfill waste in four phases and the composition of the gas produced changes 

with each of the four phases of decomposition. Landfills often accept waste over a long period of time, 

so the waste in a landfill may be undergoing several stages of decomposition at once. This means that 

older waste in one section of the landfill might be in a different phase of decomposition than more 

recently buried waste in another section (Figure I-4, I-5).  

 

Figure I-4 : Chemical processes occurring during the four stages of decomposition (Marshal, 

2007). 

Stage I: During the first phase of decomposition, aerobic bacteria consume oxygen while breaking 

down the long molecular chains of complex carbohydrates, proteins, and lipids that comprise organic 

waste. The primary by-product of the process is carbon dioxide. Nitrogen content is high at the 

beginning of this phase, but declines as the landfill moves through the four stages. Stage I continues 

until available oxygen is depleted. Decomposition during the stage I can last for days or months, 

depending on how much oxygen is present when the waste is disposed of in the landfill. Oxygen levels 

vary according to factors such as how loose or compressed the waste was when it was buried. 
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Stage II: Stage II decomposition starts after the oxygen in the landfill has been used up. Using an 

anaerobic process, bacteria convert compounds created by aerobic bacteria into acetic, lactic, and 

formic acids and alcohols such as methanol and ethanol. As the acids mix with the moisture present in 

the land-fill, they cause certain nutrients to dissolve, like nitrogen and phosphorus. The gaseous by-

products of these processes are carbon dioxide and hydrogen. 

 

 

Figure I-5 : The degradation process of the organic matter (William 2005).  

Stage III: Stage III decomposition starts when certain kinds of anaerobic bacteria consume the 

organic acids produced in stage II and form acetate, an organic acid. This process causes the landfill to 

become a more neutral environment in which methane producing bacteria begin to establish 

themselves. Methane and acid producing bacteria have a symbiotic, or mutually beneficial, 

relationship. Acid-producing bacteria create compounds for the methanogenic bacteria to consume. 
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Methanogenic bacteria consume the carbon dioxide and acetate, too much of which would be toxic to 

the acid producing bacteria. 

 

Stage IV: Stage IV decomposition begins when both the composition and production rates of landfill 

gas remain relatively constant. Gas is produced at a stable rate in stage IV, typically for about 20 

years; however, gas will continue to be emitted for 50 or more years after the waste is placed in the 

landfill. Gas production might last longer, for example, if greater amounts of organics are present in 

the waste, such as at a landfill receiving higher than average amounts of domestic animal waste. 

 

*Time scale variable for different stages of biodegradation. 

Figure I-6 : Gas production trends for all four phases of decomposition (William, 1998). 

Landfill gas typically has methane concentrations around 50%. Advanced waste treatment 

technologies can produce biogas with 55-75%CH4 (Figure I-6). Landfill gas production results from 

chemical reactions and microbes acting upon the waste as the putrescibles begin to break down in 

landfill. Due to the constant production of landfill gas, pressure increases within the landfill provoke 

its release into the atmosphere. Such emissions lead to important environmental, security and hygiene 

problems in the landfill. Landfill gas production must be managed to control the discharge of 

potentially dangerous gases into the atmosphere. Venting and/or gas collection systems must be 

installed to control and monitor the gas production in the landfill. All new landfills must be assessed 

for the viability of energy recovery from the gas production. 

 

Initially these gases were vented and burned to avoid nuisance to the surrounding atmosphere but then 

more economical and productive solution in the form of energy production gave rise to installation of 
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piping system within the waste body to collect and use biogas for energy generation. And now there 

are a number of landfill sites capable of managing its energy requirement from the generation of 

biogas. 

I-1.4 Effects of Degradation on Biochemical Properties of MSW 

Though not well defined and understood, the bio-chemical aspects of a solid waste are very important 

to understand its behaviour in a landfill. These bio-chemical properties are interconnected with the 

mechanical and hydrological properties in such a way that ignoring them for the sake of future 

predictions alone lead to misinterpretation of the situation. To see the nature of these impacts some 

observations need to be carried out at site and determination of certain parameters needs to be done in 

the laboratory to homogenise these parameters for their scope of work. Most important factors with 

respect to biological and chemical reactions are the temperature and moisture content. Rates of 

biodegradation and chemical reaction depend on factors such as waste composition, moisture content, 

leachate mobility and temperature. When the solid wastes are placed in the landfills the following 

biological, chemical and physical events occur simultaneously:  

 Biological decay of organic materials (aerobic/anaerobic) with evolution of gases and 

leachate (chemical oxidation of waste materials) 

 Leaching of organic and inorganic materials by water and movement of leachate through the 

fill 

 Movement of dissolved materials by concentration gradient and osmosis, Movement of 

liquids caused by differential heads 

 Escape of gases 

 Differential settlements caused by consolidation of materials into voids 

I-1.4.1 Composition 

For the evaluation of landfill management, information regarding the composition of solid waste is 

very important. Considering only the bio-chemical properties of the domestic waste and the reactions 

taking place inside the waste body, the state of decomposition can be defined. Biochemical parameters 

such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total oxygen demand 

(TOD), total organic carbon (TOC) and volatile organic compounds (VOC) are analysed to determine 

the decomposition phase. Another theoretical method is to use organic carbon content (OCC) of waste 

components (IPCC, 2006). However these experiments do not reflect the biodegradability in the 

anaerobic conditions. In contrast to these experiments the biochemical methane potential (BMP) test is 
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an experiment that examines the gas production and the waste degradation under the optimal anaerobic 

condition.  

I-1.4.2 Temperature & pH 

Temperature plays an important role in degradation of a waste body. The rate of methane generation 

can be increased, up to 100 times, when the temperature raises from 20 to 40 ºC (Christensen et al, 

1989). Moreover, in a deep landfill with a moderate water flux, landfill temperature of 30 to 45 ºC can 

be expected for temperate climates. The heat is a result of aerobic decomposition process that can 

result in a temperature rise within the landfill environment. 

 

The optimum pH range for microbial activity is generally between 6 and 8. pH values available for the 

aerobic degradation of solid waste are near neutral values. Nakasaki et al. (1993) determined an 

optimum pH range of 7–8 while testing the pH dependency of active microorganisms in the 

composting process. Cossu et al. (2003), in the column study, determined the pH 6 for anaerobic 

landfill leachate, while it was almost 7.5 for an aerobic landfill reactor. The pH of the waste body and 

leachate significantly influences the chemical and biological processes. An acidic pH increases the 

solubility of many constituents, decreases adsorption, and increase the ion exchange between the 

leachate and organic matter. During the initial stages of anaerobic decomposition, organic acids are 

formed and result in an acidic pH. Furthermore the pH should rise as the acids are converted to 

methane. 

 

The optimum pH range for anaerobic reaction is 6.7 to 7.5. Within the optimum pH range, 

methanogens grow at high rate leading to maximum methane production. The rate of methane 

production is seriously limited when the pH level is lower than 6 or higher than 8 (Barlaz et al, 1987) 

which affects the activity of the sulphate reducing bacteria as well. The presence of industrial wastes, 

alkalinity and groundwater infiltration may affect the pH level in a landfill.  

I-1.4.3 Leachate 

Leachate may be defined as a liquid that has percolated through solid waste and has extracted 

dissolved or/and suspended materials from it. In most of the landfills leachate is composed of 

decomposition related produced liquid and liquid entered from external source (rainfall, groundwater). 

According to Kjeldsen et al. (2002) a landfill that receives a mixture of municipal, commercial, and 

mixed industrial waste, but excludes significant amounts of concentrated specific chemical waste, 

landfill leachate may be characterized as a water-based solution of four groups of contaminants ; 

dissolved organic matter (alcohols, acids, aldehydes, short chain sugars etc.), inorganic macro 
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components (common cations and anions including sulphate, chloride, Iron, aluminium, zinc and 

ammonium), heavy metals (Pb, Ni, Cu, Hg), and organic compounds such as halogenated organics, 

(PCBs, dioxins, etc.) and the organic compounds of sulphate. The physical appearance of leachate 

when it emerges from a typical landfill site is a strong-odour brown or black cloudy liquid. The smell 

is acidic and offensive and may be very pervasive because of hydrogen, nitrogen and sulphur rich 

organic species. 

 

Only a decade ago effluent from the landfill was considered useless, nuisance and problematic in 

proper landfill operations but as soon as its importance in relation to biodegradation and further 

stabilisation of landfill was explored, its utilisation has become state of the art technique in any landfill 

operation management. Moreover with the development of the bioreactors leachate recirculation and 

constituent or concentration modification has yet opened new doors to landfill management strategies. 

None the less profound study of leachate is a tool to understand hydrological parameters of the waste 

body, where its piping system serves both the purposes of circulation/re-injection and settlement 

measurements. 

 

 

Figure I-7 : Leachate flow rate for different waste component categories (A, B, C and D) as a 

function of time (Farquhar, 1989). 

http://en.wikipedia.org/wiki/Halogen
http://en.wikipedia.org/wiki/Polychlorinated_biphenyl
http://en.wikipedia.org/wiki/Polychlorinated_dibenzodioxins
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In Figure I-7 leachate flow rate is shown as a function of landfill progression as suggested by Farquhar 

(1989). The component compositions are presented as ranges of percent wet weight of refuse. 

Category A consists of readily biodegradable food and garden wastes which produce high 

concentrations of organic matter (as BOD or TOC) and total nitrogen (TN) in the leachate. Category B 

is also organic but contains fewer biodegradables than A. It includes primarily paper with much 

smaller amounts of wood and rubber. Because of reduced biodegradability, these components yield 

organics to the leachate at concentrations much lower than for Category A but for much longer times 

measured in years. Category C includes metallic wastes composed mainly of iron, aluminium, and 

zinc. In time, these and other metals appear in the leachate and do so for many years because of slow 

rates of release. Category D includes non-metallic inorganic components such as glass, soil, and salts. 

I-1.4.4 Biogas  

Another yet important biological/chemical parameter is the production of biogas during the 

decomposition. Biogas generally refers to a gas produced by the anaerobic digestion or fermentation 

of organic matter present in a municipal solid waste, biodegradable waste or any other biodegradable 

feedstock, under anaerobic conditions. Biogas is comprised primarily of methane and carbon dioxide. 

Landfill gas is produced from organic waste dumped in landfill. The principal gaseous products 

resulting from the bacterial decomposition of the waste are methane, nitrogen, carbon dioxide, 

hydrogen and hydrogen sulphide. Around 100-200 m3 (with theoretical values going up to 400 m3) 

biogas is produced per ton of MSW in the methanogenic phase. In Table I-2 typical composition of the 

biogas components as found in the conventional landfills is presented. 

 

Table I-2: Typical composition of gases in landfills (Tchobanoglous et al., 1995). 

Component Percent by volume 

Methane 45-60 

Carbon dioxide 40-60 

Nitrogen 2-5 

Oxygen 0.1-1 

Ammonia 0.1-1 

Carbon mono-oxide 0-0.2 

Non methane organic compounds 0.01-0.6 

Hydrogen 0-0.2 

Sulphides 0-1 
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I-2 LANDFILLS 

According to legislative regulations in France regarding landfilling several classes of landfills are 

defined in terms of waste stored: 

 Class I: for special industrial waste or hazardous. For non-biodegradable waste  

 Class II: for non-hazardous household waste and treated industrial waste. 

 Class III: for inert waste. 

The present study concerns the municipal solid waste of class II. 

 

Landfills or Sanitary landfills are disposal sites for non-hazardous solid wastes spread in layers, 

compacted to the smallest practical volume, and covered by material applied at the end of each 

operating day (Figure I-8). Whereas secure chemical landfills are disposal sites for hazardous waste, 

selected and designed to minimize the chance of release of hazardous substances into the environment. 

  

 

Figure I-8 : Landfill components (RUNCO, 2007).  

It can be noted in Figure I-9 that even at the present time landfilling is one of the dominant methods of 

waste disposal in comparison to the incineration. 
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Figure I-9 : General trends of waste management in European countries and comparison of 

waste management techniques implemented in OECD member countries with those followed in 

non OECD countries. (OECD, 2002). 

I-2.1 Landfill Construction and Operation 

Landfills are properly designed and constructed structures according to the regional or national 

directives. Primarily the construction of any landfill is studied as a viable solution in accordance with 

specific requirements; such as location, capacity and stability. The cost and nuisances are also of great 

importance regarding the landfill construction. Landfill management strategy defines certain waste 

laying practices followed at landfills, for different cell heights, daily covers and the lining systems to 

integrate into the system in a manner to; use as small area as possible, exploit it to its maximum 

capacity and reduce as much adverse affects to the surrounding environment as possible. 
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The construction and the sequence of operation in a sanitary landfill are mainly based on the 

topography of the land. They also depend on the source of the covering material and the depth of the 

water table. There are two different ways to construct a sanitary landfill: the trench method and the 

area method (Jaramillo J., 1993). 

 

The trench or ditch method: is used in flat regions and consists of periodically digging trenches two 

or three meters depth with an excavator or tracked dozers. It should be noted that there have been 

trenches dug up to seven meters depth. The soil taken out is stockpiled for later use as covering 

material for a subsequent trench. Wastes are placed in the trench, and then they are spread, compacted 

and covered with soil. Ditch excavation requires favourable conditions regarding water table depth and 

adequate soil. Lands with a high water table or very close to the surface are not suitable because 

groundwater would be contaminated. Rocky soil is not adequate since excavation is very difficult.  

 

The area method: In flat areas where pits or trenches cannot be dug, refuse can be deposited directly 

on top of the original soil, elevating the level a few meters. Cover soil should be brought in or 

extracted from the surface layer. In both cases, the first cells are constructed with a smooth gradient to 

prevent slides and create stability as the landfill rises. (Figure I-10) 

 

 

Figure I-10 : Construction of landfill cell according to area method (French landfill site). 
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This method can be used for filling natural depressions or abandoned quarries a few meters depth. The 

cover material is dug from the slopes or from a nearby place to avoid increased transportation costs. 

The unloading operation and construction of the cells should be done from the bottom up. The cells of 

the landfill are supported on the natural gradient of the land, the incoming refuse is spread and 

compacted at the base of the slope and covered daily with a layer of 0.10 m to 0.20 m of soil. The 

operation continues along the terrain maintaining a smooth gradient of about 30 degrees on the slope 

and 1 to 2 degrees on the surface. 

 

I-2.1.1 Waste Compaction and Pre-Consolidation 

At a given time only some portion of the landfill is used for construction of the waste layers, this is 

termed as waste cell. The waste is placed on the daily basis in layers, each compacted to a certain 

degree and covered with soil which is termed as a daily cover. This process is repeated till a 

predefined height is reached, namely, the cell height. At the end of the cell construction it is covered 

with a lining system comprising of geosynthetic membranes, clays and pipes for gas recovery and 

leachate recirculation. The compaction effort is applied keeping in mind the objective of bringing the 

loose waste layers in dense form so that 

 Landfill capacity is increased 

 Later settlements are reduced 

 Shear resistance is increased 

 Internal combustion possibility is reduced 

 Hydraulic conductivity is reduced 

 

The act of compacting waste in place should be viewed as a construction effort. The goal of this effort 

is to construct the highest-density cell volume in the safest possible manner. For most landfills, a small 

fleet of vehicles is required to manage the working face and ensure that compaction is performed 

properly. Tractor-type vehicles are useful for spreading waste in thin layers over the working face and 

for providing a secondary compaction prior to direct compaction. Track loaders are occasionally used 

on area fills to load and deposit earth materials such as gravel or daily cover soil. Wheel loaders, 

though not used for waste handling, are useful of cleanup tasks and for keeping the working face tidy. 

These materials are usually loaded onto articulated trucks for hauling to the working face or wherever 

the material is needed. Wheel tractor scrapers are best at performing cover operations, pushing soil 

cover deposited at the toe of the working face up and over the exposed waste at the end of the working 

day (Figure I-11). All this work is performed so that the waste compactors can effectively and 

efficiently perform their task. 
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Waste compactors both spread and compact deposited waste. They operate at relatively high operating 

speeds and torques. The minimum preferred operating weight for landfill compactors is over 45,000 

lbs. Several factors besides equipment weight affect the results of compaction. First, waste should be 

spread out in thin layers by the tracked dozers prior to direct compaction by the waste compactors. 

These equipments shred of the waste components, triturate and restructure them resulting in the voids 

reduction of the layer. 

 

A certain minimum number of passes with the compactor is required to achieve maximum density. 

This number is usually 3 - 4 passes, with a full pass being defined as rolling over and backing down 

from the working face. After 4 - 5 passes, no more significant densification can usually be obtained, 

and further compactor operations are not economical (Figure I-12). The final result depends on the 

type of the equipment and the number of passes applied to the layer thickness of the waste layer but as 

well the moisture content of the waste. 

 

 

Figure I-11 : Spreading and compaction vehicle (Sheep foot roller). 

As a matter of fact the compaction effort has many empirical rules such as mixing of big and small 

elements, mixing dry waste with the humid and the rough and hard elements with the soft and slack. 

Application of any/all of these combinations of waste compaction depends on the opinion of the 

landfill operator. The effectiveness of the compaction is generally evaluated from the density of the 

compacted layers; however it remains relative as a function of the landfill specificity (waste 

composition, layer thickness). Figure I-12 describes the interrelation of number of passes and the layer 

thickness with the density achieved. However it should be kept in mind that compaction effort is 

difficult to quantify as a part of the compaction effort goes wasted as there is some reversible 

deformation of the waste layer due to the elastic components such as; plastics and paper. Nevertheless 

the importance of compaction is twofold as it increases the landfill capacity as well as reduces the post 

construction settlement of the waste mass. 
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Figure I-12 : Effect of number of passes and the layer thickness over the layer density (Oweis et 

al., 1990). 

In the waste cell construction, each layer initially compacted undergoes further compression due to 

overload of layer placed and compacted on top. It is observed that waste layers without compaction 

reach a maximum density of 0.9 Mg/m3 at the end of operation whereas the maximum density of 

compacted layers may reach around 1.3 Mg/m3 (Figure I-13). 

 

 

Figure I-13 : Comparison of improved waste density as a function of compaction effort and 

surcharge due to layers on top. 
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I-2.1.2 Bottom Lining System 

The general structure of landfill consists of a lateral and basal lining system, a drainage system for 

leachate and gas (and a leachate re-circulation system in some cases), a top cover and the waste body. 

As the waste body is the largest structural element of a landfill, changes to its biological, physical and 

mechanical properties have important impact on the remaining elements. The fact that the waste is a 

“live” element subjected to constant load and that it is not fully stabilised after years, emphasises the 

need for knowing and controlling its behaviour. 

 

The regulations for the confinement of the waste in France has the main objective to control any 

transfers between the waste and the environment (atmosphere, soil, water), including inputs and 

outputs of water from the site and ensure effective drainage of leachate to avoid percolation in the 

soil. The barriers differ depending on the class and the nature of waste. For example, in the case of 

hazardous waste, there should be practically zero percolation while in the case of degradable waste, a 

minimum percolation should be ensured to allow degradation of waste. The durability of the 

confinement system must be ensured for decades, depending on the evolution of waste. The directive 

of September 9, 1997 as amended specifies the components of lining facilities for storage of non-

hazardous waste (Class II). Figure I-14 shows a scheme of the structural elements of a landfill lining 

system with terms employed in the Landfill Directive and Guidance defined by Environment Agency 

(2002). 

 

Regarding the bottom and slope lining systems of landfills, two security levels are established:  

Active barrier: it ensures the hydraulic autonomy of the waste body for drainage and leachate 

collection, and avoids the stress of passive barrier. It consists of a complex combination of 

geosynthetic (geomembrane, geotextile) and natural materials (drainage layer, soil). 

Passive barrier: it must ensure long-term prevention of soil, surface and groundwater from the 

pollution of waste and leachate. At the bottom of waste body, this lining may comprise of the natural 

or artificial geological material; reconstituted and / or treated. 

For non-hazardous waste: one meter of clay layer with a permeability less than 10-9 m / s overlying 

five meters of silt layer with a permeability less than 10-6 m / s. 

For hazardous waste: five meters of clay layer with a permeability less than 10-9 m / s (Figure I-14). 
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Figure I-14 : French environment legislation authority recommendation for landfill bottom liner 

system as a function of type of waste. 

A key product that can replace partially the clay layer is the geosynthetic bentonite (GSB) respecting a 

minimum thickness of the overall active barrier of 0.5 m (Regulatory Authority, France). The GSB is 

composed of a layer of bentonite between two geotextiles and has a thickness of about one 

centimetre. To compare different configurations of passive barriers, it is possible to define the mass 

flow (mass emitted per unit time) for each configuration. Another method is to determine the balance 

equation that describes mass transfer of particles dissolved in water and calculate their effect on 

groundwater resources. 

 

It is important to note that these two levels of security are complementary. The security barrier allows 
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active barrier would not work during long term, drainage layers can clog over time. Geomembranes 

are aging and may have breaks of various kinds. The passive barrier is sought in this case, at least in 

the long term, but at a time when the leachate will be less noxious (most of the pollution load has been 

treated). To verify the hydraulic performance of the bottom and side linings of the landfill, the 

technical guidance of November 1997 of the Ministry of Planning and Environment relating to 

landfills and related wastes recommends at least one point of permeability measurement per hectare, 
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however, due to heterogeneity it is necessary to intelligently place the permeability probes. On the 

same location measurement must be performed every meter from 0 to 5 m. 

I-2.1.3 Cover System (Cap Liner) 

Once the operation is completed at the landfill, the cover layer is installed at the top of the waste body. 

Primarily the landfill cap cover barrier enables (ADEME BRGM, 2001): 

 Waste containment 

 Regulation of inflow of water 

 Limiting the gas escape into atmosphere 

 Enhance the mechanical stability of the landfill  

 Integrate the landfill as a landscape environment 

 

The constraints taken into account to define the characteristics of cover system to fill these functions 

are numerous: 

 The nature of waste (biodegradation potential, compressibility, characteristic pollutant, 

radioactive) 

The geometry of the cover layer (slope, thickness) 

 The configuration of the site (pit, embankment) 

 The availability of the material 

 The conditions of the site development and the future of the site 

 Climatic conditions (precipitation, evapotranspiration, erosion, frost, drought) 

 

The analysis of features and required performances of a final cover led to advocate five layers; each of 

which ensures at least one function: (from top to bottom) 

 Surface layer: allows site integration with its natural environment, reduces the effects of 

fluctuating temperatures and humidity and protects the cover system from erosion. 

 Protection layer: protects the layer of low permeability against the intrusion of animals or 

plants and climate cycles (freeze-thaw, wetting-drought) 

 Drainage layer: collects rainwater which is not evacuated by surface runoff, reduces the 

hydraulic gradient on the low permeability layer, increases the stability of the cover system 

by reducing the pore pressure 

 Low permeability layer: prevents or limits the water infiltration into the waste body and 

prevents the rise in gas content 

 Support layer immediately on top of the waste: ensures a consistent level base, stable for the 

cover system. 
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Different types of cover systems 

 Two main concepts of cover liners are recommended depending on the nature of degradable or non-

degradable waste underneath.  

 

Non-biodegradable waste: The regulations require, as part of the implementation of a landfill for 

non-degradable waste (inert waste or Class E) to implement an impervious cover liner. Any transport 

phenomenon between the waste and the outside environment is minimized.  

 

In practice, a waterproof cover type is composed of a geomembrane or equivalent (with a permeability 

less than or equal to 10-11 m / s, or thickness > 1.5 mm), on top a clay layer of thickness greater than or 

equal to one meter and permeability less than or equal to 10-9 m / s. This layer acts on an interface 

layer with the layer of waste. Often a geotextile is used as a protection layer to avoid any puncture or 

possible penetration in the geomembrane. Rainwater seeped into the cover system is drained by a 

drainage layer of permeability greater than or equal to 10-4 m / s placed over the impervious barrier 

cover (Figure I-15). 

 

Degradable waste: La degradable or treated waste (category D) requires a minimum moisture content 

and only the controlled infiltration is allowed. Two types of cover system can be implemented for this 

type of waste (Figure I-15): 

 

Cover layer (semi-impervious): It is composed of altered natural materials and compacted soil of at 

least one meter and a maximum permeability of 10-6 m / s. A drainage layer allows higher limit 

infiltration water. Another lower layer can drain the biogas. The drainage layers are generally 

composed of granular material or geo-composite drainage. Impervious cover itself, similar to the one 

presented in the case of non-degradable waste, plus a piping system for the recirculation of fluids to 

promote biological activity and thus the degradation of waste. 
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Figure I-15 : Types of cover lining systems in reference with the waste landfilled. 
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I-2.2 Post-Construction Behaviour  

Completed sanitary landfills generally require maintenance because of uneven settlement or stability 

concerns. Maintenance consists primarily regarding the surface; to maintain good drainage and filling 

in small depressions to prevent water ponding and subsequent groundwater pollution. Completed 

landfills have been used for recreational purposes such as parks, play grounds or golf courses, parking 

and storage areas, botanical gardens are other final uses. Because of the differential settlement and gas 

escape from landfill, construction of buildings on landfills should be avoided. Data of physical 

composition is important for the equipment operation and facilities at landfills as well as for assessing 

the feasibility of resources and energy recovery. In all cases, when operation is completed, it is being 

monitored for: 

 The ground water quality 

 Leachate analysis 

 Biogas analysis 

 Mechanical instability, subsidence, cracking, erosion and settlement 

 

Large scale instrumentation can be implemented to monitor the behaviour of the cover system over the 

course of time, including the monitoring of subsidence, temperature, and pore pressure. These post 

operation controls change with time depending on the age of storage and the frequency and network of 

measurements tend to decrease with age because the waste becomes less and less pollutant reducing 

the risk of pollution of the surroundings.  

 

Figure I-16 : Cross-sections of possible stability and deformation concerns in a landfill 

(Jessberger, 1993). 
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Jessberger (1993) outlined briefly how to assess the amount of deformation in a landfill and whether 

unacceptable cracking will develop as a result. Design of landfill involves consideration of numerous 

stability concerns as delineated in Figure I-16, such as slope failure due to inadequate bearing capacity 

(#2 and #3 in Figure I-16) vertical and/or lateral movements (#8 and #10 in Figure I-16) and 

differential settlement (#9 in Figure I-16). Differential settlement can cause surface maintenance 

problems and damage the integrity of the landfill cover, allowing excessive infiltration of surface 

water, accelerated local settlement, increased leachate generation and high concentrations of landfill 

gas to escape causing odour nuisance or breach of consent conditions. 

 

The knowledge generated by a better assessment of waste settlement over time should allow a better 

estimate of stresses and deformation induced in the barrier system, drainage is a basis for the design of 

modern landfill facilities for its dual function; sealing (which prevents the dispersion of leachate) and 

drainage (which allows the sewage effluent liquids and gases produced by decomposition. Waste 

compresses due to increase in effective stress (primary settlement) and due to mass loss from 

biodegradation (secondary settlement). Estimation of settlement is important mainly for the purposes 

of calculating internal settlement of buried pipelines (leachate and gas collection and liquid 

distribution pipes), as well as to calculate landfill capacity and post-closure settlement estimations. 

Secondary settlement of MSW is important from the viewpoint of cover stability and end-use of the 

landfill site. The stability of landfilled waste is related to the shear strength of the material and for both 

the static and dynamic slope stability evaluation shear strength of MSW is required.  

I-3 WASTE TREATMENT MODES RELATED TO 

LANDFILLING 

Ever since the need for larger landfill sites drew attention of the engineers, maximum material 

recovery gained importance in the solid waste management and now together with recycling it is one 

of the most important steps in the solid waste management strategy. It is pertinent from the term of 

pre-treatment that there is change in the physical and/or chemical properties of the solid waste due to 

application of various processes. Pre-treatment of the waste is either carried out at source which is 

termed as sorting, or it is done once the waste has reached the landfill site where it is mechanically 

biologically treated to reduce the load of waste. Numerous options are available for mechanical and 

biological treatment ranging from switching their arrangement to skipping one type of pre-treatment 

altogether.   
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I-3.1 Mechanical Biological Pre-treatment (MBP) 

Mechanical biological pre-treatment is defined as the processing or conversion of waste from human 

settlements with biologically degradable components by the use of the combination of mechanical and 

other physical processes (for example, cutting or crushing, sorting) with biological processes (aerobic 

“rotting”, anaerobic fermentation). MBP is a term referring to a number of processes that further treat 

residual waste before disposal (Figure I-17). 

  

Figure I-17 : Mechanical Biological Pretreatment plan. 
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The aim of MBP is to minimise the environmental impacts of ultimate disposal and to improve some 

gain value from the waste through the recovery of metals etc.and, in some cases, energy. It aims to 

reduce the mass and the volume of the waste and a lower environmental impact of the waste after its 

deposition, i.e. low emissions of landfill gas, small amounts of leachate, and a reduced settlement of 

the landfill body. Furthermore, MBP includes the separation of useful waste components for industrial 

reuse, such as metals and plastics as well as refuse derived fuel (RDF). 

I-3.1.1 Control of Waste Input and Pre-treatment before Disposal 

The first step in the waste control strategy is to minimize the amount of waste to be landfilled; this can 

be achieved by waste avoidance, separate collection activities and recycling, incineration and 

mechanical biological pre-treatment of residual municipal solid waste (Figure I-18).  

 

Figure I-18 : General concept of municipal solid waste management (Stegmann R., 2005). 

Regarding its properties, waste can be divided into different fractions, fractions of high calorific value, 

mineral fraction or a fraction rich in organic matter. Some of these fractions have reutilization 

potential. MBP can be used within a waste management concept as a single process or in combination 

with thermal pre-treatment. Significant reductions in the remaining emissions in terms of loads and 

concentrations are achievable after the MBP. 



 31 

The mechanical pre-treatment (MPT) step includes the removal of contaminants and components, 

which impede the technological process. Reusable material is separated. The whole waste is 

fractionated into two or more fractions defined by material qualities, which are then handled 

specifically. The whole waste is fractionated into two or more fractions defined by material qualities. 

Mechanical treatment consists mainly of screening and shredding devices. Specialities of residual 

waste are partly considered, but there is a good potential for further improvements. Most plants aim to 

separate the components with high calorific value, as plastics, paper, timber, and composites, for 

energy recovery.  

 

The biological pre-treatment (BPT) step relies on aerobic rotting, anaerobic fermentation or combined 

processes. At present all the existing landfills are anaerobic landfills, and research suggests that 

aerobic practices should be introduced to accelerate the decomposition processes within the landfill to 

attain early stabilization. The biological pre-treatments which mainly involves the aerobic pre-

treatments include; composting or aerobisation. Aerobic systems in widespread use comprise of 

windrows with or without aeration, containers or boxes, drums, or tunnels. Anaerobic pre-treatment 

includes anaerobic digestion for biogas production for energy recovery and reduction in odour. 

I-3.1.2 Potential Advantages of MBP  

Mechanical Pre-treatment (MPT): Even with a successful sorting at resource scheme in place there 

are some recyclable materials in the residual waste, which could be captured at the mechanical 

treatment stage. MBP reduces the volume of residual waste and therefore the landfill space, thus 

reducing the cost to the local authority of disposal. Moreover potential hazardous waste contaminants 

of the waste stream, such as batteries, solvents, paints, fluorescent light bulbs etc, will not reach 

municipal landfill sites due to the sorting.  

 

Biological Pre-treatment (BPT): It reduces the biodegradability of the waste, thus reducing the 

methane and leachate production once the residue is landfilled. Stabilisation of the waste reduces side-

effects at the landfill such as odour, dust and windblown paper and plastics. The plants tend to be 

modular. They are made up of small units which can be added to or taken away as waste streams or 

volumes change. These plants can be built on a small scale, which would not drag waste in from a 

large surrounding area.  
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Table I-3: Comparison of different pre-treatment option focusing on the related advantages and 

disadvantages. 

Scenario Description Advantages Disadvantages 

1 BPT of raw waste (no MPT) - Organic matter (OM) 

stabilisation 

- Simple processes 

- No resource 

recovery 

2 BPT (without MPT) + Thermal pre-

treatment (TPT)  before landfilling 

- Thermal Stabilisation - Incinerator 

required 

3 MBP with sorting of recyclables - OM stabilisation 

- Material recovery 

- No heat energy 

recovery 

4 MBP with high calorific value sorting and 

TPT resulting in rich OM with low 

calorific value for landfilling 

- OM stabilisation 

- Heat energy recovery 

- Incinerator 

required 

- No material 

recovery 

5 MBP with TPT, sorting high calorific 

value fraction and recyclables resulting in 

low calorific value fraction rich in OM for 

landfilling 

- OM stabilisation 

- Heat energy recovery 

- Material recovery 

- Incinerator 

required 

 

6 MBP with sorting of recyclables and OM. 

BPT of OM with TPT before incineration 

reducing moisture content and 

homogenising the material plus reduction 

of waste quantity for incineration 

- Material recovery 

- Heat energy recovery 

- Only residue from 

incinerator to be 

landfilled 

- Incinerator 

required 

 

 

Lorber et al. (2001) compared the biochemical properties of untreated waste to those of treated waste 

(Table I-4) and to the treated waste of age 2 years. It can be noted that these biochemical properties 

improve considerably for the treated waste and the biochemical methane potential of the treated waste 

reduced to 17.6 %, the BMP of the treated waste after 2 years was not available. 
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Table I-4: Comparison of biochemical characteristics of untreated and treated waste (Lorber et 

al., 2001), with biochemical terms defined in § I-1.4.1. 

Analysis Units Un-treated 

waste 

Treated 

waste 

Treated 

waste (2 yr) 

Oxygen 

consumption 

mg O2/g MS 55.8 6.6 1.9 

TOC %MS 31.2 18.9 11.7 

VOC %MS 52.1 33.0 22.0 

BMP Nl/kg MS 200 35.2 - 

 

Stegmann (2005) studied the parameters of chemical oxygen demand, total nitrogen and biogas 

generation for the treated and untreated waste and showed that 90% reduction was possible if the pre-

treatment was adopted (Table I-5). 

 

Table I-5: Comparison of biochemical parameters as measured by Stegmann, 2005 (with 

biochemical terms defined in § I-1.4.1). 

Analysis Units Un-treated waste Treated waste %Reduction 

COD mg O2/kg MS 25,000-40,000 1000-3000 90% 

TN mg / kg MS 1500-3000 150-300 90% 

Biogas 

generation 

Nl / kg MS 150-200 0-20 90% 

 

Laboratory studies carried out by Cossu et al. (2003) in 1 m waste columns of 18 cm diameter 

suggested similar results as presented in table I-6. 

 

Table I-6: Comparison of biochemical parameters (Cossu et al., 2003), with biochemical terms 

defined in § I-1.4.1. 

Analysis Units Un-treated waste Treated waste 

Start End Start End 

BOD mg / l 50,000 20,000 30,000 1300 

COD mg / l 20,000 10,000 3000 300 

NH4+ mg / l 900 400 2000 50 
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I-3.2 In Situ Aerobic Treatment 

The aerobisation can stop the emissions from landfills and waste storage areas and eliminate potential 

pollution by biodegradable compounds. It is mainly applied to sites contaminated by landfills. The 

realization of an in situ aeration measure, especially on existing landfills without base liner, aims at the 

stabilization of biodegradable organics through degradation and degradation of nitrogen compounds 

within the landfill body. For this purpose, air is injected into the landfill body via aeration wells. 

Depending on the aeration rate and its duration a gradual aerobisation of the landfill body can be 

realized (Ritzkowski et al. 2005). 

I-3.2.1 Fundamentals and Objectives of Aerobic Stabilisation 

The aerobisation is the process of active introduction of air inside a landfill in a manner to target the 

processing of biogenic organic matter with the oxygen present in air. The air is introduced into the 

waste mass by suction from wells specially installed at the base of the landfill. The further distribution 

within the landfill body is realized by means of convection and diffusion processes. There is a uniform 

suction throughout the whole deposit and the organic matter is gradually degraded, starting from the 

outside to inside of the waste mass. By applying a combined aeration – extraction operation the air 

supply and distribution effect can even be increased. The extracted off-gas is collected by means of a 

gas collection system and discharged into the atmosphere after a final treatment (Figure I-19). 

 

Recent scientific investigations have shown that aerobic in situ stabilisation measures can help achieve 

sustained improvement of the emission and settlement behaviour of landfills when the process 

technology is adapted to the conditions of the landfill body and operated in a qualified manner 

(Ritzkowski et al. (2005), Heyer et al. (2005)). This objective can be achieved through the low 

pressure aeration which has been applied for several years now on landfills and old deposits. This 

process is applied in large landfills which have a significant deposition thickness and are equipped 

with a bottom sealing. Over-suction methods for aeration may also be used, provided that the landfill 

body meets certain boundary conditions (e.g. less tickness of landfill body). The aerobisation helps 

obtain the following effects:  

 

 accelerating the degradation of pollutants and elimination of methane emissions; 

 shortening the period of monitoring of abandoned landfills and storage areas;  

 reduced pollution potential and water pollution from leaching within the discharges;  
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Figure I-19 : Comparison of two in-situ aeration processes. 
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controlled manner in corresponding gas wells. Aeration is implemented using low pressures and is 

continuously adjusted to the oxygen demand, so that the stabilisation operation is constantly optimised 

(Heyer et al., 2005). 

I-3 .2.1.2 Over Suction Method 

As far as the over-suction methods are concerned, the effect of aerobisation is achieved through the 

suction operation including drawing-in of the atmospheric oxygen over the surface of the landfill 

and/or through passive aeration wells. In general, this is implementable only at sites with emission 

relevant deposition thicknesses of < 10 m because otherwise the oxygen supply and thus aerobisation 

may not be guaranteed (Heyer et al., 2001). 
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I-3.2.2 Processes and Effects of Aerobic Stabilisation 

Under average landfill conditions, in situ aeration operation is intended for a period of 3 to 6 years. 

Basically, aeration includes the following processes: 

 A changeover for the waste medium from anaerobic to aerobic conditions takes place, which 

results in an accelerated degradation of the biologically active waste components. 

 At the end of stabilisation, organic compounds consist of only persistent or non-degradable 

organic compounds with a very low gas formation potential. 

 

As a result of the accelerated biodegradation processes, the change in settlement course is also 

anticipated. 

I-3 .2.2.1 Effects on the Water Path 

Aerobic degradation of organic compounds releases the gas (carbon dioxide) and there is an 

accelerated decrease of the COD parameters and nitrogen (TKN or NH4-N) can be observed in the 

leachate path as a result of aeration. In comparison with the strictly anaerobic conditions, the aftercare 

periods for the leachate emission path are reduced by at least several decades when applying in situ 

aeration. 

I-3 .2.2.2 Effects on the Gas Path 

The accelerated carbon degradation and discharge leads to an increased carbon dioxide formation rate. 

Prevention or reduction of the methane content in waste air through reduced gas production at old 

landfills at the end of the stable methane phase results in a lower explosion risk and fewer costs with 

regard to long-term waste air treatment. The carbon conversion and discharge may serve as the 

measure of intensity and of the acceleration of the biodegradation processes and can be determined 

through the mass balance in connection with the waste air consistency. 

I-3.2.3 Future Applications of Aerobisation 

I-3 .2.3.1 Processes 

In situ aeration changes the principle processes inside the landfill body which are fundamentally 

different from those occurring in the conventional anaerobic landfills. The oxygen level and the 

temperature dynamic are the main parameters controlling these processes. The questions are; how and 

to what extent these parameters influence biodegradation processes and how they might be controlled 

in order to optimise the aeration process. 



 37 

I-3 .2.3.2 Stabilisation Criteria 

To define the stabilisation criteria the endpoint of in situ landfill aeration is crucial, respecting the 

planning and calculation of these measures. Again parameters to be applied and what values to be 

reached (either on a case to case decision or for landfill aeration in general) is questionable. Certain 

stabilisation criteria might be defined for aeration to contribute towards the landfill sustainability as 

landfill aeration is one of the existing tools for the accelerated and controlled reduction of the 

remaining emission potential of landfills. 

I-3 .2.3.3 GHG Emissions and CO2 Emission Trading 

This aspect covers two main parts, firstly the question of relevance (How much green house gasses 

GHG are actually emitted from old landfills and what is the proportion related to the global GHG 

production?) and then the question of a possible re-financing in future for the in situ aeration projects 

through the emission trading market. The answer to the first question is pertinent as the landfills 

contribute significantly towards the GHG-gases emissions while the second one mainly depends on 

legal and statistical requirements. For instance in situ aeration projects are not included in the CO2 

emission trading but their insertion and a reliable method for the calculation of the emission savings 

should be developed and implemented. 

I-3.3 Bioreactor Landfills 

In contrast to the traditional landfill approach, the bioreactor landfill operates to rapidly transform and 

degrade the organic components of the waste mass. This goal is accomplished through the liquid and 

gas injection into the system (Figure I-20). 

 

Figure I-20 : Interdependent biochemical and physical processes in a bioreactor landfill 

(Gawande, 2008). 
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I-3.3.1 Anaerobic Bioreactor Landfill 

Anaerobic conditions develop naturally in nearly all landfills without any intervention. The waste 

mass in typical MSW landfills contains between 10 and 25 percent water. To optimize anaerobic 

degradation, moisture conditions at or near field capacity, or about 85 to 185 percent moisture are 

required and thus increased through injection. In an anaerobic bioreactor landfill leachate is re-

circulated, however the biodegradation occurs in the absence of oxygen (Figure I-21).  

 

The amount of leachate produced at many sites is insufficient to achieve optimal moisture conditions 

in the waste, therefore, additional sources of moisture such as sewage sludge, storm water, and other 

non-hazardous liquid wastes are used. Without air, methanogenic bacteria are promoted to accelerate 

waste degradation. As moisture content of the waste approaches optimal levels, the rate of waste 

degradation increases, this in turn leads to an increase in the amount of landfill gas produced. An 

increase in the density of the waste is also observed during the process. The rate of gas production in 

an anaerobic bioreactor can be twice as high as a normal landfill, but the duration of gas production is 

significantly shorter. The by-products of anaerobic degradation are methane (CH4) that can be used as 

an alternative energy source and CO2.  

 

 

Figure I-21 : Anaerobic Bioreactor (Waste Management, 2000). 
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I-3.3.2 Hybrid (Aerobic-Anaerobic) Bioreactor Landfill 

The hybrid bioreactor landfill accelerates the process of biodegradation by employing a sequential 

aerobic-anaerobic treatment to rapidly stabilize the waste mass through attainment of degradation in 

the upper layers and collect gas from the lower layers of the waste mass. The waste is first degraded 

under aerobic conditions followed by anaerobic conditions. Aerobic conditions usually occur in the 

newly placed waste in the upper sections of the landfill, while anaerobic conditions occur in the lower 

sections (Figure I-22) resulting in methane production.  

 

The principle advantage of the hybrid approach is that it combines the operational simplicity of the 

anaerobic process with the treatment efficiency of the aerobic process, with the added benefits of an 

expanded potential for destruction of volatile organic compounds (VOCs), hazardous air pollutants 

(HAPs) and non-methane organic compounds (NMOCs) in the waste mass. 

 

 

Figure I-22 : Hybrid bioreactor landfill (Waste Management, 2000). 

Aerobic bioreactor landfills: Another option for the aerobic bioreactor landfill works on the principle 

of leachate removal from the bottom layer, piped to liquid storage tanks and re-circulated into the 

landfill in controlled manner with simultaneous air injection into the waste mass using vertical or 

horizontal wells to promote aerobic activity and accelerate biological stabilization (Figure I-23). A 

vacuum can also be applied to the waste mass to pull air in through a permeable cap. The degradation 
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of waste occurs under conditions similar to compost operations thus no methane is generated in this 

type of landfill.  

 

The byproducts of aerobic degradation are carbon dioxide (CO2) and water (H2O). One drawback of 

the aerobic bioreactors is the increased potential for landfill fires. To avoid such hazards monitoring 

and controlling the temperature, moisture content and oxygen level within the landfill must be done 

constantly. Due to the higher level of operations management and higher moisture requirement aerobic 

reactors are more expensive to implement. 

 

Figure I-23 : Aerobic Bioreactor (Waste Management, 2000). 

I-3.3.3 Potential Advantages of the Bioreactor Landfill 

 Accelerated decomposition and biological stabilization. 

 Lower waste toxicity and mobility due to both aerobic and anaerobic conditions. 

 Reduced leachate treatment and disposal cost. 

 15-30% increase in landfill space due to increased density of the waste mass. 

 Increased landfill gas generation, which can be used for energy generation. 

 Reduced post closure management. 
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I-4 STATUS OF MSW MANAGEMENT IN PAKISTAN  

The discussion relating to the municipal solid waste of Pakistan is produced here with the objective to 

relate the present research study with the possible future field application in Pakistan. According to the 

NCS (Pakistan) the waste generation rate Pakistan in 1992 was 47,290 tons per day with a growth rate 

of 2.61% per annum. Presently it is estimated that 77,021 tons per day waste is generated in Pakistan 

with no separation of hospital, hazardous and industrial waste before disposal. A few exceptions for 

hospital incinerators in working condition though exist, but open burning and open disposal are much 

in practice.  

 

 

Figure I-24 : Waste collection and disposal in Karachi (Pakistan) (IGES, 2005). 

I-4.1 Disposal Trend in Pakistan 

Keeping in view that only 50-69% of the waste generated is collected, there is a huge potential in 

recycling and involvement of the private sector which, unfortunately, is being overlooked for the 

moment. The separation practices are well established and a quantity of certain wastes such as; bottles, 

papers, glass and metal is considerably reduced in the waste stream. PEPA (Pakistan Environmental 

Protection Agency) and provincial EPA’s work for the implementation of Pakistan Environmental 

Protection Act 1997, whereas the Town Municipal Authorities are responsible for waste collection, 

transportation and disposal. Unfortunately none of the cities in Pakistan has a proper solid waste 

management system starting from collection of waste to the disposal point. Even in the big cities, 

where this system exists, due to lack of collection and transport facilities and huge population density 

it still is impossible to cater for all the waste generated.  
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I-4.2 MSW Composition in Pakistan 

In general the composition of MSW in Pakistan comprises of more than 50% of organic waste and due 

to local level recycling activities lesser percentage of paper, glass and metal is present in the waste. Per 

capita generation rate varies from 0.29 kg/day to 0.62 kg/day depending on the type of municipal area, 

while in France an average per capita generation rate 1 kg/day. In Table I-7 typical composition of 

MSW of Pakistan is presented in comparison with the waste composition of France. 

  

Table I-7: MSW composition for France and Pakistan. 

Waste Component France (ADEME, 2002) Pakistan (EPMC, 1996) 

Organic 29 59 

Paper/cardboard 25 5 

Plastics 11 5 

Textiles/Sanitary textiles 6 5 

Glass 13 1 

Metals 4 0 

Miscellaneous 12 25 

 

It should be noted here that this difference of composition especially due to high percent of organic 

components may need the characterisation of MSW of Pakistan separately. On the other hand the 

lower percentage of recyclable may have significant effects on the mechanical behaviour of MSW in 

landfills which will need their analyses through modification in the already defined parameters of 

determination and protocols as detailed in the present study. 

I-4.3 Context and Objectives of the Present Study 

According to a World Bank report, Pakistan has responded to its environmental problems by 

developing laws, establishing Government agencies and accepting technical assistance from donors, 

including the World Bank. Despite this, the response remains fragmented and environmental 

institutions, laws, and other initiatives do not solve the whole problem. Environmental legislation is 

still not well developed in Pakistan, especially in comparison to the developed world. For example, 

there are no national quality standards for MSW. 

Keeping in mind the present state of the municipal solid waste management in Pakistan, the study 

presented here has been formulated in such a way that once this report is finalised it could be used as a 

reference to start different research projects in Pakistan. At the present time it is aimed to accumulate 

the possible experimental and analytical expertises in the field of MSW management which would in 
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turn serve as a baseline for the improvement in state of affairs of MSW characterisation back in 

Pakistan. 

 

This brief introduction of the status of MSW management in Pakistan has been provided here with the 

objective to prepare a line of action for the future endeavours for the betterment of the living standard 

of the common people in Pakistan. Right now it is envisaged that this study will help develop a data 

base for the characterisation of the MSW as well as the techniques of landfilling at site starting from 

the barrier systems to the overall environmental safety concerning the settlement and stability issues. 
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II- PHYSICAL MECHANICAL AND HYDROLOGICAL 

PROPERTIES OF MUNICIPAL SOLID WASTE 

Municipal Solid Waste (MSW) is a porous medium, consisting of all three phases; solids, liquids and 

gases, with heterogeneous properties. It seemed very important to define the concerned 

physical/mechanical properties of the medium before discussing in detail the research work carried out 

by other authors available in the literature and analysing in detail the experimental data of the present 

study. In the present chapter a review of the physical, mechanical and hydrological properties is 

presented including some biochemical notation which are related to the biodegradation of the MSW 

without discussing in detail the later as some of these phenomena are important in relation with the 

mechanical properties of compression and settlement of the medium as well as the fluid flow in the 

medium. 

II-1 PRESENTATION OF THE MUNICIPAL SOLID WASTE 

MEDIUM 

Municipal solid waste is any non-hazardous, solid waste from a combination of domestic, commercial 

and industrial sources. This can include food and garden waste, rubble and timber. Industrial waste is 

specific to industry or industrial processes. The municipal solid waste medium is a unique porous 

medium which comprises of a number of constituents, each one different in its physical, chemical and 

mechanical properties. This complexity is even more prominent with respect to its mechanical 

characteristics due to the presence of organic constituents which undergo the biodegradation over a 

period of time changing the structure of the medium and its mechanical/ hydrological behaviour.  

 

The composition of the municipal solid waste placed in a landfill is difficult to define and depends on 

a variety of factors such as: 

 Origin of the waste (domestic, industrial, hazardous etc.) 

 Regulations of the landfilling agency 

 Period of the year 

 Any municipality or national environmental agency laws 

 Landfilling techniques/management (including any prior pre-treatments) 
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In general the composition of waste is characterised on the basis of its grain size distribution and the 

percentage of all the constituents. These constituents for the percent calculation of the composition of 

municipal solid waste vary depending on the concerned regulatory authority. Most frequently 

characterised constituents include organic, inert, glass, metal, paper, plastic and metal but there can 

also be wood/garden trimming, cardboard, construction material, textile and rubber. 

 

In Table II-1 the waste analysis protocol as defined by USEPA and other developed countries is 

detailed. In France the determination of the composition is carried out by MODECOM according to 

the French environmental agency ADEME legislation. It has thirteen primary categories and the 

composition can be defined up to thirty three categories including the sub classes of the composition. 

 

Table II- 1: Waste analysis protocol (USEPA, 2008) 

Waste Analysis 

Protocol primary 

category 

Solid Waste 

Analysis Protocol 

primary category 

Description 

Paper Paper Recyclable paper, as newspaper and cardboard, non-

recyclable paper, as milk containers and waxed paper 

Diapers and 

sanitary 

Disposable nappies, feminine hygiene products and 

paper towels 

Plastics Plastic Both recyclable and non-recyclable plastics 

Organic Putrescibles Kitchen/food waste, green waste, other organic waste 

such as food processing waste 

Metal Ferrous metal Metal products predominately made from steel 

Non ferrous metal Other metal, such as aluminium, copper, lead 

Glass Glass Recyclable glass, such as bottles and jars, and other 

products including glass, televisions and computer 

monitors 

Construction and 

demolition 

Rubble Concrete, rocks, plasterboard and ceramics 

Timber Timber lengths, furniture, sawdust 

Other Textile Clothing, carpet 

Rubber Tyres, foam mattresses 

Potentially 

hazardous 

Potentially 

hazardous 

Material with potentially toxic or eco-toxic properties 

or properties requiring special disposal techniques 

(includes sewage sludge, paint, medical waste, 

solvents, asbestos and oil) 
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For the purpose of the multidimensional study of the hydro-mechanical behaviour of the waste, the 

composition of the waste can help understand numerous aspects of the medium such as: 

 Organic constituent proportion is important in the study of the mechanical behaviour of the 

waste with respect to the settlement phenomenon. 

 Deformable materials like paper, cardboard and textile which undergo the mechanical 

compaction and plastics influence the stability and strength parameters of the waste as well as 

the permeability parameters of the medium. 

 

The information on waste composition can help develop waste minimisation policies, target waste 

minimisation programmes and improve recycling schemes. As an example, local authorities can use 

waste composition information to target reuse or recycling schemes for materials that make up a large 

part of the waste stream in their area. Within the unit volume of the waste material, the medium can be 

divided into four categories: gas, liquid and solids further subdividing the solids into organic and inert 

material. 

II-2 PHYSICAL PARAMETERS 

Household waste is a particulate material, heterogeneous in composition and thus in properties but its 

mechanical behaviour is always attempted to be quantified on the basis of soil mechanics. 

Compression, consolidation, shear strength and hydraulic conductivity are studied making use of laws 

applicable to soils with little or no modification. Following properties are discussed in a broader 

spectrum of geotechnical characteristics of a MSW: 

 Unit weight 

 Moisture content 

 Permeability 

 Settlement behaviour 

 Shear strength 

 

Due to large range of data, inconsistency in components is sometimes seen, thus it is most important to 

note the boundary conditions with each parameter presented.  
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II - 2.1 Leachate 

II- 2.1.1 Liquid Density 

The density intervenes in calculations of fluid flows as in the determination of liquid volume present 

in the sample (mass flow, measured by weighing, or volume). In the present study the liquid density is 

denoted as L. The liquid phase is mainly consists of water but contains other dissolved compounds as 

well. There are very few data in the literature concerning measurement of the leachate density. 

Vigneron (2005) measured the leachate density ranging between 1.013 and 1.016 Mg/m3. In the 

absence of precise measurements, the density L = 1 Mg/m3 identical to that of pure water is (exact 

value with 4°C) retained. That produces an error of about 1% compared to the measurements carried 

out by Vigneron (2005). 

II- 2.1.2 Dynamic Viscosity 

The dynamic viscosity of the liquid phase, denoted as L in the present study, is used in the flow rates 

calculations. The dissolved organic mass contained in the leachate can modify the value of dynamic 

viscosity. In the absence of any data relating to the leachate viscosity in the literature, this viscosity is 

considered equal to that of water. 

 

 

Figure II- 1: Dynamic viscosity of leachate as a function of temperature. 

The effect of temperature on the viscosity of the liquids requires corrections to be applied for the 

temperature change in laboratory measurements. In a recent study in the laboratory (LTHE) a number 
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of leachate samples of different composition and ages were analysed for the dynamic viscosity of the 

liquid medium of the waste as a function of temperature which confirms this relationship. The results 

suggested higher values of dynamic viscosity in comparison with the dynamic viscosity of water as 

shown in Figure II-1. 

II - 2.2 Biogas 

The parameters of the gas phase are complex to define and even more to determine experimentally, 

this is the probable reason that very few parameters of gas phase are cited in the literature. The gas 

phase of the municipal solid waste mainly consists of methane (CH4) and carbon dioxide (CO2), 

termed as biogas, with varying percentage over the course of time depending on the phase of 

biodegradation. 

  

There are many other molecules present in the gas phase with the character more or less like the 

pollutant, like H2S (hydrogen sulphide) NH3 (ammonia), the N2O (nitrogen peroxide), VOC (Volatile 

Organic compound). Lornage (2006) studied the presence of VOC in biogas, their origin and their 

toxicity. Biogas also contains toxic compounds type BTEX (benzene, Toluene, Methylbenzene, 

Xylene). Manoukian (2008) studied the quantification of these BTEX in biogas and in particular 

showed that the stage of methanogenesis is preceded by a key emission of BTEX. The concerned 

parameters of gas phase such as gas density ρG and dynamic viscosity G of the gas are the parameters 

which evolve with the course of time.  

II- 2.2.1 Gas Density 

In site temperature and pressure range is small enough to apply the law of perfect gases for the 

determination of the density of the biogas. The law of perfect gases applied to the mixture of chemical 

components makes it possible to obtain the density of biogas according to the temperature, the 

pressure and the molar fractions. Either for a mixture of
molar

i
x or 

G

imolar

i

n

n
x  of CO2 and at a 

temperature T, the average density is given by: 

RT

MP
molar

GG

G
               

PG is generally taken at the atmospheric pressure, determined with the molar fractions; 

MG
molar is the molar mass of the gas 

R is the constant of perfect gases.  
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II- 2.2.2 Dynamic Viscosity 

The viscosity of biogas, noted G, can be calculated from the viscosities of pure gases comprising the 

mixture, their mass fraction and the temperature. For a mixture with 40°C of 50% carbon dioxide and 

50% methane (in molar fraction), average dynamic viscosity G is approximately 14.10-6 Pa.s 

(Townsend et al, 2005). 

II - 2.3 Solids Density 

Since the municipal solid waste is composed of various solid constituents where each constituent has 

its own dry density, the dry density of the whole medium is not equivalent to the dry density of all the 

solids. The density of the solid constituents is thus defined as the sum of the dry density of all the 

constituents 





i Si

i

S






1
 where

S

Si

i

M

m
   

μi is the percent mass of the constituent „i‟ 

msi is the dry weight of the constituent „i‟ 

Ms is the dry weight of the solid mass 

Si

Si

Si

V

m
 corresponds to the dry density of the constituent „i‟ 

Very few data regarding the solids density (ρs) is available in the literature e.g. Zornberg et al. (1999) 

give a values of 2.3 Mg/m3 for the solids density of the waste sample without mentioning the method 

of determination of the parameter. They only state that the solids density is measured from the 

composition of the waste sample however it is worth mentioning that for each constituent even if the 

moisture content is known for that constituent determination of the solid density is an approximation 

as the saturation of that constituent is unknown.  

II-3 STATE PARAMETERS 

After defining the medium of municipal solid waste as a whole on the basis of three phases, solid, 

liquid and gas, now the solid phase of the municipal solid waste is classified on the basis of the types 

of elements present therein. This classification (Figure II-2) is presented in reference with the fluid 

flow through the medium and is different from the previous classification. 

 

 Elements of the organic matter with the voids filled with water in micro pores. These elements 

are deformable under mechanical compression and are evolutionary in time due to 
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degradation. This category included waste of kitchen, green waste, papers and paperboards 

and textiles. These elements are compared with a matrix of fine elements is. A suggestion 

regarding the size of the elements constituting this matrix was made following the 

experimental measurements carried out in cell of laboratory by Stoltz (2009).  

 Plastic elements (plastic fibres) are represented in the form of sheets. These elements are 

regarded as inert in time but deformable under mechanical compression. 

 Contrary to the plastics, the textiles do not behave like impervious barriers (although they 

interact as reinforcement fibres).  

 Inert elements (inorganic/non degradable), considered as non deformable with compression. 

This category includes wood, glass, metal. 

 

Figure II- 2:  Waste medium distinguishing the liquid and gas phase within the solid 

phase. 

II - 3.1 Definitions of various Densities associated with MSW  

For the physical properties of the municipal solid waste two parameters are of basic importance and 

need to be defined prior to any further discussion. They are namely the solid content and the moisture 

content of the medium. In Figure II-3 the unit volume of the waste material is detailed with the 

mathematical notations which will further be used frequently in the present study. 
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Figure II- 3:  Description of different phases for the unit volume of MSW. 

Unit weight of municipal solid waste is influenced by waste composition, cover between different 

layers and compaction effort. Composition specially the organic content plays an important role in 

defining the unit weight since decomposition governing the gas and leachate production affects the 

unit weight. Because the densities of solid waste vary markedly with geographic locations, season of 

the year and length of time in storage so the selection of the typical values with most appropriate 

assumptions for its component percent should be done carefully.  

 

The overall density of the waste can be estimated by summation of all the densities of its components. 

Mass of the solid waste can be calculated separately for each component and accumulation of all 

densities is a better estimation of the density of the waste as a whole. 
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where 

ρsi = density of single component 

Vsi = volume of respective component 

 

Waste particles undergo significant changes in density as the overburden stress is increased this is in 

contrast to some conventional theories of soil mechanics, in which soil particles are assumed to be 
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incompressible. Normally the values of 0.8 to 1.0 Mg/m3 are used for unit weight of MSW however it 

may be an under estimation of relatively dry landfills as well as for degraded waste it might be greater 

than 1.5 Mg/m
3
 or sometimes exceeds 2.0 Mg/m

3
. 

 

This dry density is defined with respect to the dry state; it thus depends on the measurement of the 

moisture content
S

L

SS

LL

M

M

V

V
w 





.

.
. 

 d is calculated by the equation:
MS

d

w


1


  

where wMS is the gravimetric moisture content . In addition to these densities the density of leachate 

and the gas density as defined in previous section are used. The leachate density L is defined by the 

equation
L

L

L

V

M
  while the gas density can be calculated making use of the formula

G

G

G

V

M
  . 

Finally the saturated density (sat) of the medium is defined by the following equation: 

T

LVS

sat

V

VM 





 

II - 3.2 Definitions of Moisture Content in reference with the Waste Mass 

Moisture content of the municipal solid waste depends upon the initial waste composition, 

environmental conditions, biological decomposition rates as well as operating procedure and leachate 

collection system capacity performance. Moisture content is observed to increase with increase in 

organic component. It is one of the most important parameters of the solid waste since it directly 

affects a waste‟s mechanical, chemical and hydrological properties. Because of its influence on all 

aspects its relative determination for one factor alone can be confusing. If it is considered in context 

with the shear strength of a waste body it is not possible to neglect its affect on the slope stability, 

likewise its affect on biodegradation is inter-related with settlement or the affect of change in 

hydraulic conductivity on leachate circulation and gas extraction.  

The moisture content of the medium is defined either on the basis of total wet mass of the medium 

where it is denoted as %MH, or it is calculated on the basis of the total solid mass of the medium where 

it is denoted as %MS. In literature both terms are used frequently however within the scope of the 

present study the moisture content is defined on the dry mass basis. The moisture content of solid 

waste is usually expressed as the mass of the liquid per unit mass of the wet or dry material. In both 

cases it is expressed as a percentage of weight.  
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wMS (%) = ML/MS 

Where; ML = mass of the liquid in the sample 

 MS = dry mass of sample  

 Moisture content present in the waste an be divided into two type; 

 Free moisture (within the voids) 

 Constitutive moisture content (which makes a part of the solid matrix) in the micro porosity 

 

For the determination of moisture content of the waste drying in the oven can eliminate the free water 

but drying the constitutive moisture is not a function of heating in the oven rather it depends on the 

degradation, compression and other interrelated phenomena. The gravimetric moisture content (w0) is 

the ratio of mass of water to the mass of solids
S

L

M

M
w 

0
, where ML is the mass of water and MS is 

the dry mass of the material likewise the initial moisture content can be determined 

through

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 100

0

0

S

ST

M

MM
w where MTO is the initial total mass of the material. 

 

 Gravimetric moisture content as a ratio of mass of water to the dry solid mass wMS expressed 

in percent mass %MS  

S

L

MS

M

M
w 

 

 Gravimetric moisture content as a ratio of mass of water to the total solid mass wMH expressed 

in percent mass %MH  

T

L

MH

M

M
w 

 

These two ratios are interrelated through the following equation 

MH

MH

MS

w

w
w




1
 

In the present study, it is the gravimetric moisture content wMS which will be used for all analyses 

however to avoid huge notations it will be denoted as „w‟ hereafter. 

Moisture Content at Field Capacity 

The concept of moisture content at “field capacity” is usually employed in the field of waste; it 

represents the quantity of maximum water that waste can retain. This concept seems easy to conceive 

and well defined but the misconception lies with its representativeness keeping in view that its 

measurement is far from being simple. In reality, the field capacity of a waste column is not 
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characterized by a single value but by a profile which depends on the moisture retention properties of 

each layer (increasingly compressed towards the bottom of the column) and especially on the variation 

of the capillary pressure on the overall length of the column. 

II - 3.3 Definition of Porosity and Corresponding Volumetric Content 

Parameters 

In literature, the measurement of the porosity of solid waste sample is employed without defining the 

term “porosity”. Different types of porosities are mentioned from drainage porosity to effective 

porosity and field capacity without giving reference to the total porosity which results in a percent 

error of 1% for drainage porosity to an error of 50% when it is the effective (open) porosity which is 

measured, hence no comparison of measured values is possible. Here these parameters are defined so 

as to develop their comprehension in reference with the present study (Figure II-4). 

II- 3.3.1 Total Porosity 

Total porosity of the medium is defined as the volume of voids (VV) in the total volume (VT) of the 

medium (expressed as a percent).  

T

V

V

V
n   

Another volumetric parameter is the void ratio (e) which is the ratio of volume of voids (VV) to the 

volume of solids (VS) and it is expressed as a decimal. 

S

V

V

V
e   

Both of these parameters are interrelated as expressed below: 

n

n
e




1
 

The parameter of void ratio is used in the analyses in the soil mechanics where the solids volume is 

constant. This is not the case when the municipal solid waste is concerned as the biodegradation 

affects the volume of solids which changes in time (reduction in VS), therefore, the parameter of void 

ratio is not considered plausible for the present study. 

 

On the other hand porosity is dependent upon the grain size distribution of the material as well as their 

arrangement in the given volume so that the material with the spread around the average will decrease 

the porosity and a skewed average will result in increased porosity. Similarly the shredding of 

municipal solid waste changes the porosity of the material to a lower value or the compaction results 
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in the decreased porosity. Likewise the volumetric solid content (θS) can also be used for the purpose 

of hydro-mechanical analysis of the medium as defined by the equation 
T

S

S

V

V
 . This parameter is 

of interest since the compaction of the solid mass does not necessarily result in decrease in porosity as 

the loss of mass due to biodegradation at the same time results in the increase in porosity. It is relative 

to porosity through 1
S

n  . 

 

The quantity of degradable solid (Sd), differs from that non degradable (Snd). These two parameters 

can be evaluated if the biochemical methane potential (BMP) of the sample is known. In Figure II-4 

these parameters are detailed with reference to the volume of the waste medium. 

 

Figure II- 4: Phase definition on volumetric bases VT of the waste. 

II- 3.3.2 Volumetric Liquid Content  

Volumetric water content (θL) is defined as the ratio of the volume of liquid (VL) present in the pores to 

the total volume of the medium. 
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This parameter can indirectly be calculated from the gravimetric moisture content using the following 

equation: 
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II- 3.3.3 Volumetric Gas Content 

Volumetric gas content is the ratio of the voids filled with gas (VG) to the total volume of the 

medium
T

G

G

V

V
  

Hereafter this parameter will be termed as the gas porosity. Together these two volumetric contents 

result in the total porosity of the medium n
V

V

V

VV

T

V

T

GL

GL



  . 

II- 3.3.4 Degree of Saturation 

The two mathematical terms used frequently in the models of non saturated permeability are the 

degree of liquid and gas saturation. The degree of liquid saturation (SL) is the ratio of pores filled with 

liquids (VL) to the total volume of the voids (VV) 

nV

V
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Likewise the degree of gas saturation (SG) is defined as the ratio of pores filled with gas (VG) to the 

total volume of voids (VV) 
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The sum of these two saturation degrees is expressed as 1



n

SS
GL

GL


. 

II- 3.3.5 Interrelation of the State Parameters 

The state parameters, as interrelated to each other, allow the calculation of all the parameters from a 

few measurements. Direct measurement of all of these parameters is not necessary to obtain their 

values. In general following three parameters are sufficient to determine all the others: 

 Dry density (ρd) of the sample or the humid density, ρd 

 Moisture content (w) of the sample 

 Total porosity (n) of the sample 
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II-4 MECHANICAL PARAMETERS 

II - 4.1 Settlement 

With respect to time the settlement may be broadly divided into 3 phases; instantaneous, primary and 

secondary settlement. While instantaneous and primary settlements are not a function of time and 

secondary settlement is dependent upon time. Prediction of long term settlement behaviour is 

important for a successful future development of the site. Prediction of settlement rate is more 

important than the total settlement. With a total settlement range of 25% to 50% of the initial waste 

height, more than half is attributed to secondary settlement. 

Primary Settlement: It is load induced instantaneous consolidation in landfill compared to the 

consolidation settlement of fine grained soils. Many researchers have investigated its characteristics 

Jessberger et al. (1993), Beaven et al. (1995). In general it is dependent upon composition, age and the 

compaction effort applied to the waste. The compressibility of the waste is characterised by the 

coefficient of primary compression C*R which is derived from the one dimensional consolidation 

theory of the pre-consolidated soil. The equation of C*
R is

C

R
C

H

H

'

'

*

0

log






where H0 is the height of 

the sample for the pre-consolidation pressure, ΔH is the primary settlement for the unidirectional 

compression stress σ’ (Figure II-5) assuming that there are no lateral strains and σ‟c = Pre-

consolidation stress.  

 

Figure II- 5: Primary settlement with the application of a unidirectional vertical load. 

The parameter of settlement utilised for the calculation of other hydro-mechanical parameters are; 

σ 

H0 

ΔH 
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 (MLC being the leachate drained out during the test) 

Secondary Settlement: Long term settlement of a landfill is referred to as the secondary settlement 

which is assumed to be independent of the load but is dependent upon time and biodegradation effects. 

For the post operation settlement it is not the primary settlement which is important since it is almost 

completely incorporated before landfill closure, but is the component of secondary settlement which 

play an important role throughout the life time of a waste body. 

 

 

Figure II- 6: The typical time–settlement data for a landfill under vertical stress 

(Grisolia et al., 1995). 
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The long term settlement prediction is carried out using one dimensional consolidation theory of soils, 

with the coefficient of secondary compression C which in turn depends on other parameters namely 

time of construction of the waste body, initial degree of compression, recirculation of leachate and 

other bio-chemical factors yet to be correlated with the phenomenon of time dependent settlement. 

According to the Buisman (1936) the secondary settlement can be calculated 

as

p
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t
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H
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0





where ΔHS is the secondary settlement and tp is the time at the end of primary 

settlement (Figure II-6). 

II - 4.2 Shear Strength Parameters 

Shear strength is one of the two important mechanical parameters of the waste, other being the 

compression, studied for last two decades. The laws of soil mechanics are applied to the waste with a 

little or no modification. In case of shear behaviour the same approach of soil shear strength is 

followed. The difference between the two is that for the soils it is only non-linear but for the waste it is 

time dependent as well. However the Coulomb‟s theory and that of Mohr‟s are most commonly used. 

For a unit area with normal effective stress σ‟, shear strength is expressed in terms of friction angle 

and cohesion as; 

τ = c + σ‟ tan υ 

where cohesion “c” is the binding force between the fine particles of soils and “υ” the friction angle is 

the friction between the particles.  

 

Cohesion is considered to be stress-independent while the friction is stress-dependent. However for the 

waste the term of apparent cohesion is applied which is related to the capillary forces. A critical 

combination of normal and shear stresses results in failure of a plane and failure planes joined together 

through a curve define a Coulomb failure envelope. A straight line along the curve for approximation 

known as Mohr-Coulomb rupture line is also used. The effective stresses concept proposed by 

Terzaghi is often used concerning the fracture and deformation behaviour of soils as; 

'tan'''
max

  c  

where u  ' , u is the pore water pressure 

 

However for the waste (with larger particle size and heterogeneous nature), Kölsh (1995) explained 

the shear behaviour of the waste with the concept of tensile resistance that is caused by the fibrous 

particles interlocking various materials when shear stresses are mobilised. This tensile strength adds 

up to the Coulomb‟s equation as a percentage of both the angle of tensile strength and fibre cohesion. 

These physico-mechanical parameters are discussed in detail in Chapter VI. 



 

 

62 

II-5 FLUID TRANSPORT PARAMETERS 

Previously the physical properties and the state parameters of the MSW are defined and discussed; 

now the fluid flow within this porous medium is discussed. To the present date the fluid flow in the 

MSW has not been studied in detail and less is known about the water and gas permeability of the 

municipal solid waste especially in unsaturated state. As there exist different phases in a waste 

medium i.e. solid, liquid and gas, with fluid phase consisting of liquid and gas both, there is a dire 

need to analyze this dual phase of the porous medium. Any fluid transport taking place in the medium 

is affected by these two phases which in turn is influenced by the presence of moisture content and the 

deformation of the waste column layers due to compression. 

 

Moreover in a landfill, the biogas generated due to the degradation of the organic matter is collected at 

the top of the waste cell but the leachate produced during the process as well as any rain water 

percolated in the mass is collected at the bottom of the waste body under the effect of gravity. In 

bioreactor landfills the leachate is re-circulated generating a fluid flow through the medium and the 

flow rate of biogas and leachate are affected by the intrinsic permeability of the medium and the 

degree of saturation of both phases.  

II - 5.1 Definition of Fluid Transport Parameters 

II- 5.1.1 Darcy’s Law for Saturated and Unsaturated Conditions 

Darcy‟s law describes the fluids flow in a porous medium. Darcy's law is a simple proportional 

relationship between the instantaneous discharge rate through a porous medium, the viscosity of the 

fluid and the pressure drop over a given distance for a given cross-sectional area. It is expressed as 

follows; 
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Where 
dL

dH is the hydraulic gradient; 

K is the hydraulic conductivity 

V is the filtration rate (m/s) 

A is the filtration area (m2)  

H is the hydraulic head 
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And two different hydraulic and pneumatic heads exist as 
g

P
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ρfluid is the unit weight of fluid 

Darcy‟s law is applicable to a Reynolds number up to 10 with the following assumptions; 

 This law is applicable for flows caused only by the frictional forces between the fluids and the 

particles surface considering the inertial forces to be negligible. 

 The fluids are considered to be inert with respect to the porous medium through which they 

percolate thus there is no chemical or physical change involved during the flow. 

 For small filtrations, V2/2g is considered negligible for liquids, thus the following relationship 

remains z
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And for the gases because of their small densities, the effect of gravity and corresponding pneumatic 

head Z = 0, the equation reduces to; 
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p
d is the average pore diameter and η is the dynamic viscosity of the fluid. 

The coefficient of permeability primarily depends on the size of pores which in turn is dependent on 

the distribution of particle sizes, shape and soil structure. Permeability is a function of void ratio and 

determination of coefficient of permeability is carried out in laboratory through „constant head‟ 

permeability test for coarse grained soils and „falling head‟ permeability test for the fine grained soils. 

The same is applicable for the solid waste with no major modification.  

II- 5.1.2 Intrinsic Permeability (at Saturation) 

In saturated state the coefficient of intrinsic permeability denoted as ki is defined by 
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kfluid depends upon the dynamic viscosity and the unit weight of the fluid. The parameter ki is a 

hydrodynamic characteristic of the porous medium and is independent of the nature of the fluid 

flowing through it. Thus for saturated state the Darcy‟s law becomes; 

For liquids
dL

dHg
kv

L

L

L

i





 

For gases
dL

dHg
kv

G

G

G

i





 



 

 

64 

Both the dynamic viscosity ηfluid and the density ρfluid depend on the temperature which needs to be 

measured to calculate these parameters. Generally in geotechnical engineering, only the coefficient 

termed as hydraulic conductivity is determined, denoted as Kw, because the fluid considered is always 

water. Kw is used for a standard temperature of 20°C and expressed in m/s. The correlation between Kw 

and ki is described as
i

w

w
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II- 5.1.3 Fluid Permeability (Unsaturated State) 

For unsaturated state of the porous medium, there exist two permeabilities, one for the liquids with a 

coefficient of permeability for liquids and the other for the gases with a permeability coefficient for 

gas with relationships defined as under; 
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In applications, relative permeability is often represented as a function of water saturation, however 

due to capillary hysteresis one often resorts to one function or curve measured under drainage and one 

measured under imbibitions. As the flow of each phase is inhibited by the presence of the other 

phases, the sum of relative permeabilities over all phases is always less than 1. The following 

expressions define the relative permeabilities of liquids and gases respectively with respect to the 

intrinsic permeability;  
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krL and krG are non-dimensional parameters. For saturated conditions, SL = 1 or SG = 1 so the relative 

coefficients of permeability krL or krG are equal to one as well, thus intrinsic permeability ki can be 

determined with kG (1) = kL (1) = ki. 

 

For a compressible medium, with porosity „n‟, Figure II-7 describes the diminishing porosity with the 

modification of its relative permeability curve for example in the case of municipal solid waste. 

However as indicated earlier, the sum of liquid and gas permeability in unsaturated condition does not 

result in intrinsic permeability (krL + krG < 1) as the flow in a unsaturated state of any porous medium 

has two flow phases i.e. for liquids and for gases which occurs in different flow paths. This is why the 

relative permeability curve for liquid and gas is not symmetrical and it can be noticed in the Figure II-
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7 that relative permeability of the gas is more important than that of the liquid. Furthermore the 

existing residual liquid and gas saturations (SrL and SrG) will be discussed in detail in chapter IV within 

the scope of double porosity. 

 

 Figure II- 7: Relative permeability trends for soil as discussed by Warrick (2001). 

The determination of ki which is an intrinsic parameter of the porous structure of the medium, which 

implies that the same value must be found whether by a permeability test performed with water 

(saturating the medium) or a permeability test through gas (saturating the medium) due to the presence 

of these residual saturations becomes complicated because the certainty of the saturated condition is 

not always obvious. 

II - 5.2 Previous Research on Fluid Transport Parameters 

In this section traditional unsaturated flow laws in porous medium are reviewed and discussed 

according to their application in conventional landfills. Any relation between the settlement and liquid 

and gas flow in the bioreactor landfill needs to be explored. The present section deals with the study of 

the flows of liquids and gas in the porous media of solid waste. In the literature the study of fluid 

flows in waste material is fewer in number and lacks information (in particular the measurements of 

permeability of water and gas in unsaturated conditions, there is almost no data available in the 

literature). 

 

Waste is a poly-phase porous medium containing two fluid phases: a liquid and a gas phase. The 

transfers of fluids are thus of diphase nature. These transports are influenced by the moisture of the 

medium but also by the deformation of the various compressed layers (settlement). The origin of the 

flows in waste can be described briefly as: biogas which is a product of the biological breakdown and 

which is collected by difference in pressure at the top of the waste column, and the leachate resulting 

from precipitation and the product of waste degradation, which percolates towards the bottom of the 



 

 

66 

waste column under the effect of gravity. The management of a landfill site as a bioreactor leads to the 

recirculation of the leachate within the solid mass of waste and there is a di-phase flow in the reverse 

direction (upwards). The porous space in which the fluids run are significantly tiny voids and the rates 

of flow of biogas and the leachate, thus are entirely conditioned by the intrinsic permeability of the 

medium and the degree of saturation of each one of these phases. The description of this settlement - 

flow of liquid - flow of gas interaction is essential in the case of a management as a bioreactor mode. 

II- 5.2.1 Permeability/Hydraulic Conductivity Measurements 

Hydraulic conductivity of saturated soils is measured through „rigid-wall or flexible-wall‟ 

permeameters in the laboratory. For the wastes in general the same Darcy‟s law is applicable without 

any modification. According to Beaven et al. (1995) flow through saturated domestic waste is 

reasonably characterized by Darcy‟s Law. But the hydraulic conductivity of domestic waste depends 

upon density which in turn depends upon the vertical stress to which it is subjected. And again 

degradation of waste reduces particle size increasing its density affecting the hydraulic conductivity. 

Moreover there is a difference of vertical and horizontal conductivity because of the layered structure 

of the domestic waste in landfills. Liquid flow in unsaturated waste needs further research as well as 

the double porosity flow models. 

 

Powrie et al. (2000) performed experiments for the quantification of relationship between; 

 Drainable porosity and vertical stress 

 Hydraulic conductivity and vertical stress 

and concluded; 

 Wastes approach saturation even if they are free to drain under gravity. 

 Hydraulic conductivity of different waste types (processed, unprocessed and household) 

have insignificant differences in comparisons with order of magnitude change in hydraulic 

conductivity that results from waste compression. 

 Hydraulic conductivity of the waste is governed by maximum equivalent vertical stress to 

which waste has been subjected (unloading doesn‟t have any influence), however, stress 

history/density of waste must be considered while assessing hydrological and geological 

properties (Figure II-8). 

 Layered structure of waste has anisotropy of hydraulic conductivity, where degree of 

anisotropy increases with increasing stress. 
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Figure II- 8: Reduction in hydraulic conductivity with increasing effective stress (Powrie 

et al., 2000). 

Durmusoglu et al. (2005) studied the permeability of typical solid waste sample in two different scale 

devices (small & large). They used conventional consolidometers of ASTM D2435 specification for 

smaller scale study with a water tight body and base for submerging the waste sample. While for the 

larger samples they made use of a consolidometer with an internal diameter of 71.12 cm with a height 

of 55.88 cm. The results are in conformity with the other ongoing and already done research (Table II-

2), however, they had a large scale of variation and they did not offer any conclusion. 

  

Table II- 2: Published permeability values for MSW samples (Durmusoglu et al., 2005)  

 

Permeability decreases with increase in hydraulic gradient, but larger values were measured in small 

scale device which may be due to sensitivity to boundary or generation of paths within the specimen 

(Figure II-9). The authors suggested that there might be no linear relationship between permeability 

(Durmusoglu et al. 2005) 

(m/s) 
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and moisture content conditions and the only conclusion is that higher the waste density, lower will be 

the permeability. 

 

Figure II- 9: The values of permeability for MSW samples at field capacity (saturated 

and drained under the effect of gravity) tested under different densities and hydraulic 

gradients in (a) small-scale device; (b) large-scale device (Durmusoglu et al., 2005). 

II- 5.2.2 Effects of Degradation on Physical Parameters of MSW 

For a realistic comparison, the geotechnical properties are studied for both conditions of the waste 

(fresh and degraded) and the parameters are modified likewise. For a fresh waste density is less than 

that for a degraded waste as the mass decomposition results in reduction in volume and emission of 

gases gives rise to formation of voids leading to compressibility of the waste as a whole, making it 
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denser. Watson et al. (2007) investigated the change in structure of biodegradable waste. The main 

purpose of the study was to develop the techniques for non-invasive investigation of the anaerobic 

degradation of MSW. As all the “undisturbed” samplings involve disturbance thus new techniques 

have been explored and tested to propose future modification in the field testing options. To better 

understand the structure of the waste and distribution of liquid, gas and solid phase within the medium, 

X-ray computed tomography (CT scanning) could be an attractive non-invasive method of structure 

visualisation. The authors have performed test on a degrading waste with installation of the CT 

scanners within the reactors, they suggest that it may be a promising technique for future to study the 

structural change in the MSW. 

 

Figure II-10 shows voids present after degradation in one of the reactors; some of the void areas are 

quite large (up to about 5cm3). Some of the larger voids match areas visible in the pre-degradation 

scans (samples were dry for the initial scan, high proportion of gas-filled void than seen in the 

saturated waste shown in figure) but whether these voids were never filled with water or if gas 

produced by the degrading waste has become trapped, displacing water during the course of the 

experiment is unclear. Similar features are seen in the scans of reactors 1 and 3 but the void volumes 

are significantly smaller in reactor 3, as would be expected with the much smaller particle size. 

 

Figure II- 10: 3D image of reactor 2 showing only objects with CT number between 200 

and 900, corresponding to bone and other dense materials. The uniform grey area 

represents the plane at the centre of the midpoint piezometer port to provide absolute 

location (Watson, et al., 2007) Figure ‘a’ is related to the scan prior to degradation while 

‘b’ shows the scan after 2 months of degradation. 

Figure II-11 shows that gas is present mainly in discrete major pockets which are reasonably evenly 

distributed through the sample (the sample has a more or less uniform void ratio and density even 

though it is a heterogeneous material). This scan image might suggest that relatively large gas pockets 

may play a major role in gas transport. The CT scanning data shows presence of dry voids, probably 
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created by gas production of the waste during degradation; it is visible that relatively large gas pockets 

play a role in gas transport, although further investigations are needed to identify the mechanism 

(Figure II-11). 

 

Figure II- 11: 3D image of reactor 2 after degradation showing only objects with CT 

number less than -500, corresponding to gas-filled voids. The uniform grey area 

represents the plane of the centre of the midpoint piezometer port to provide absolute 

location (Watson et al., 2007). 

II- 5.2.3 Anisotropy of Permeability in Relation with MSW 

 

 Figure II- 12: Compression of plastic components in the horizontal direction during the 

compaction of synthetic waste (Langer, 2005). 
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In practice, the municipal solid waste is placed in layers at site with plastic components being placed 

at horizontal orientation. This results in an isotropy of permeability in horizontal and vertical direction 

with vertical permeability having much smaller values due to the fact that the fluid needs to move 

laterally before going down vertically every time it encounters an impermeable plastic component. 

This provision is observed in the photos (Figure II-12) as observed during the compression behaviour 

studied for the synthetic waste comprising mainly of plastics, textiles and papers (Langer, 2005). 

II - 5.3 Flow Models for Saturated and Unsaturated Porous Media 

As the settlement is a characteristic to observe the evolution of physical as well as bio-mechanical 

parameters of the waste, laws governing the flow of liquids or gases are studied to characterize the 

permeability with respect to settlement to better understand the evolution of MSW. Certain authors 

like Powrie et al. (2000) proposed a law of reduction in the saturated hydraulic permeability as a 

function of the applied pressure but this is an empirical law because it makes no use of the structural 

parameters of the waste. 

II- 5.3.1 Laws of Intrinsic Permeability 

II - 5.3.1.1 Carman-Kozeny Model 

Poiseuille‟s equation for laminar flow was further developed by Carman-Kozeny as capillary tube 

model to predict the flow rates through porous passages, filters etc. In this model the porous medium 

is represented as a bunch of cylindrical capillaries of different radii. The capillaries may be tortuous 

but their radii remain invariable along their extent. This excludes hysteresis related to different 

locations of the menisci in the same capillary. It is expressed as follows:  
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Here vP is the rate of flow in interstitial spaces, ΔH is the difference of pressure at the entrance and the 

exit points of the tube, η is the viscosity, dp is the hydraulic diameter of the tube and Le is the tube 

length which could be different from the thickness of the medium and caters for the medium 

tortuousity. The hydraulic diameter can further be expressed as a function of capillary tube as; 

dp = 4x (volume of voids/ internal surface) = 
n

n

S
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4 with Ss being the specific surface of the 

material defined with respect to the volume of solids i.e.
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From this relationship Darcy‟s law of filtration becomes 
L

Hk
v

KC 



 

kkc is the Carman-Kozeny‟s intrinsic permeability 

L is the thickness of the porous medium, η is the viscosity. 

The interstitial speed of fluid „vP‟ and the filtration rate „v‟ are inter-related through 
n

v

L

L
v

e

P
 . 

This relationship is based on the Dupuit-Forchheimer hypothesis, according to which the interstitial 

flow speed is correlated to filtration rate through porosity. However the ratio Le/L is introduced by 

Carman and is commonly known as tortuosity (τ) with a value close to 5 for soils. Finally the 

coefficient of intrinsic permeability proposed by Carman-Kozeny is expressed 

as
2
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2
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

. However τ and Ss can not be measured directly. 

II - 5.3.1.2 Application of Carman-Kozeny’s Model to the Gas Permeability 

For a gas flow in an unsaturated medium, the gas uses the pores available for gas movement. The 

medium can be defined to have two parts: one made up of the solid and the liquid, and the other 

corresponding to the gas flow. The formula of Carman- Kozeny can be used by replacing porosity „n‟ 

by porosity with the gas θG 
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 . The assumption of immobile water like the solid 

depends on several factors like the absolute pressure of gas, the capillary pressure etc. Nevertheless 

this assumption is considered within the framework of this study. 

II- 5.3.2 Relative Permeability Models 

For the models of relative permeability, the structure of the porous medium is defined with a given 

porosity and a given intrinsic permeability ki. The gas and water permeability is determined according 

to the degree of saturation of liquid (with SL + SG = 1). In addition to that it is the coefficient of relative 

permeability kr for the liquid or gas is calculated as needed on the case to case basis making use of 

relationship 

for liquids 
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Models of relative permeability with reference to pore size and saturation degree are discussed in 

detail in the thesis report of Stoltz (2009). 
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II- 5.3.3 Application of Permeability Models to MSW Landfills 

Within the scope of permeability measurement, information available in the literature seems 

insufficient and incomplete with reference to the MSW. Moreover data on saturated hydraulic 

conductivity are only available with measurement performed with the help of piezometer in 

unsaturated conditions considering the capillary action. The liquid and gas flow are then characterized 

with the help of two coefficients of permeability one for each phase within unsaturated conditions, 

neglecting on one hand the effect of intrinsic permeability coefficient of the medium and the degree of 

saturation of both phases on the other. 

 

Furthermore the research with the objective of modelling the permeability within the domain of 

municipal solid waste is rare. Arigala et al. (1995) proposed a model for saturated state with only two 

permeability aspects in consideration, horizontal and vertical permeability without any focus on 

unsaturated conditions. Durmusoglu et al. (2005) proposed a settlement model with fluids circulation 

taking into account the intrinsic permeability at unsaturated state. They have made use of Carman-

Kozeny‟s model for intrinsic permeability and the model of Brooks et al. (1964) governing the laws of 

unsaturated permeability as follows: 
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And Se = 1 for 
d

hh   

Se is the effective degree of saturation 

w is the sample moisture content 

SrL is the degree of relative liquid saturation 

SsL is the saturated degree of liquid saturation 

And hd is the air entry suction for the samples and h is the pressure head. However they noted that 

their study was not calibrated for waste materials.  

 

McDougall et al. (2007) proposed a bio-hydro-mechanical model for prediction of settlements making 

use of Richards‟s formula for unsaturated transport phenomenon and used the Van Genuchten (1980) 

equation for retention curves, but they have not considered the gas flow in their model. This is why to 

address this incomplete information and to propose a newer technique; an apparatus named 

“oedopermeameter” was conceived and designed at LTHE laboratory, in order to measure the gas 

permeability in unsaturated conditions. 

 

The description of the complex permeability according to the depth is illustrated in Figure II-13. To 

characterize the capacity fluids transport in a waste column, it is necessary to define a law giving the 
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evolution of the intrinsic permeability according to the depth (Stoltz, 2009). Keeping in mind that the 

deeper a sample is in the waste column, the more it will undergo the settlement because of constraint 

imposed by the overlying column of waste. Porosity decreases thus according to the depth. The 

evolution of the intrinsic permeability with porosity must thus be characterized. Then for a given level 

(and thus for a given porosity), one needs the laws of relative permeability krL (SL) and krG (SG). To 

discuss the permeability of a waste column, profiles of the permeability will be considered for the 

whole length of the waste column. The decrease in intrinsic permeability as a function of depth of the 

waste column is illustrated in Figure II-13 where it is defined for a saturated state waste sample. It is 

worth noticing that the flow paths are influenced by the voids thus porosity, hence it is the function of 

permeability with respect to porosity which will further be discussed in detail. 

 

 

Figure II- 13:  Evolution of intrinsic permeability as a function of waste column depth 

(Stoltz, 2009). 
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II-6 OEDOPERMEAMETER, HYDRO-MECHANICAL 

PARAMETERS’ MEASUREMENT AND THE PRINCIPLE 

APPLIED 

Liner systems, daily covers as wall as gas and leachate collection systems are installed in the landfill 

facilities which necessitate the assessment of hydraulic characteristics. Weight density and moisture 

content relationship affects the hydraulic conductivity from case to case basis. Compacted fine grained 

soils are widely used in the liners and covers for the waste containment structures, their primary 

purpose is to minimize flow, hence low hydraulic conductivity is most concerned. Hydraulic 

conductivity is the coefficient of proportionality in the Darcy‟s law. Civil engineers traditionally call 

„K‟ the coefficient of permeability while soil scientists refer to it as the hydraulic conductivity. 

Hydraulic conductivity is one of the hydraulic properties of the soils. More specifically, the hydraulic 

conductivity determines the ability of the soil fluid to flow through the soil matrix system under a 

specified hydraulic gradient.  

 

The present section discusses in detail the traditional laws of flow in porous media, saturated and 

unsaturated, and their applications to the domestic landfill sites are presented. In the present study 

hydro-mechanical parameters of settlement and liquid flow are analyzed simultaneously keeping in 

view the following objectives: 

 Verification of the hydro-mechanical model initially proposed and presented by Stoltz (2009). 

 To propose various directions for future analyses mainly focusing on the bioreactor landfills‟ 

optimization. 

 

The hydro-mechanical analyses in the present study were performed in the laboratory LTHE in a 

device named „oedopermeameter” specially designed and conceived for these analyses. The principle 

of oedopermeameter consists of compacting a waste sample at various compression loads with 

permeability measurements done at each compression load. 

II - 6.1 Apparatus Description 

The oedopermeameter cell consists of a stainless steel cylinder with two porous plates, one at each end 

of the cylinder. The cell has a diameter of 27 cm and an effective height of 29 cm (which is the initial 

height of the sample) with total height of more than 32 cm. The porous plates have pores of 5 mm 

diameter at a spacing of 1 cm centre to centre. In order to minimize any solids transport along with the 

leachate, a geo-synthetic membrane having square openings of 1 mm width is placed between the 
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porous plates and the waste sample. Two opening in the outer cover of the cylinder at both ends 

facilitate the placement of pressure sensors as well as the gas entrance and the leachate collection 

(Figure II-14). The top cover plate is equipped with the piston which connects the pneumatic loading 

system with the support structure. This support structure is capable of supporting a force up to 12kN 

equivalent to a compression stress of 300 kPa. 

 

Figure II- 14: Schematic diagram of the Oedopermeameter. 

II- 6.1.1 Complimentary Equipment 

These materials consist of a number of sensors attached to the oedopermeameter (Figure II-15) 

 A force sensor (25 kN capacity) 

 A displacement sensor (15 mm course) 

 A flow meter for nitrogen with a minimum limit of 5 l / min. This flow meter is converted 

from massflow into volumetric flow at standard temperature (273 K) and pressure (101.32 

kPa). 

 Two pressure sensors, one at each end of the cell with a range between -6.6 to +6.6 kPa. 

 An atmospheric pressure sensor 

 A mercury thermometer (0-35°C) for ambient temperature measurement applied for dynamic 

viscosity correction 

 An oven (727 liters) is available for the moisture content determination of the samples at the 

end of each test series in order to interpret the porosity of the sample. 
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Figure II- 15: Oedopermeameter connected with complimentary equipment. 

II- 6.1.2 Sample Preparation 

In the waste sample, there are number of components which are different in size shape and nature. To 

have a representative sample it is important that each component is present in the same proportion as 

at site. However due to size limitation of the laboratory equipment those waste samples are used which 

either are initially shredded when placed in landfill or are shredded or sieved (6 cm) in the laboratory 

prior to testing. In this manner a ratio of 6 between the largest sample component and the diameter of 

the cell is obtained. The waste already shredded at site made it possible to use a major portion of the 

waste as retrieved from site with the exception of some plastic or metal parts which were cut smaller. 

II - 6.2 Physical and State Parameters 

II- 6.2.1 Volumetric Moisture Content 

A waste sample with known initial mass MT is placed in the oedopermeameter. The known volume of 

the sample VT allows the calculation of the initial unit weight of the sample (ρ = MT/VT). At the end of 

the test the whole sample is put into the oven and dried at 80°C until the stabilization of the weight of 
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the sample is attained, this permits the determination of total dry mass as well as the moisture content 

of the sample. The volumetric moisture content of the sample is determined through w

L

d

L




  . 

II- 6.2.2 Gas Porosity Measurement through Pycnometer (gas saturation) 

This procedure consists of connecting a known volume under pressure (Vr) with the volume of the gas 

voids to be determined. Once the equilibrium is attained, law of perfect gases is applied to determine 

the volume of gas voids. In Figure II-16, Vr is the volume of the reservoir and VG is the volume of gas 

voids in the waste sample in oedopermeameter which is to be determined. Within the 

oedopermeameter, the total voids volume is not only that in the waste sample but also the volume 

corresponding to the pores volume in the porous plates and of that volume which is present at the top 

and bottom of the porous plates, referred to as the volume of chambers (Vc). Figure II-16 demonstrates 

different stages of the measurement as follows:  

 

Initial State: the two volumes Vr and VG are connected to achieve a thermal equilibrium while 

maintaining the atmospheric pressure for the two volumes. 

 

1
st
 Stage: with the valve connecting the volume Vr and VG at closed position, the reservoir volume Vr 

is put under a known pressure as 
atm

PPp 
11

where p1 is the relative pressure and P1 is the absolute 

pressure.  

 

2
nd

 Stage: with the connecting valve between the two volumes at open position and all the exit points 

closed, the relative pressure at equilibrium is measured as 
atm

PPp 
22

. 
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Figure II- 16: Steps for gas porosity measurement. 
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It is notable that the equilibrium pressure p2 is not attained simultaneously but it is rather a 

stabilization process of pressure between the two volumes. When the valve is turned to open position, 

there is a decrease in pressure of the reservoir p1 probably due to dynamic effects and then the pressure 

gradually increases until a stabilized value is achieved over a period of 30 seconds giving the desired 

equilibrium pressure p2. The data acquisition is set at an interval of 1 second so as to have a number of 

values to determine an average for the equilibrium pressure. 

 

From the Boyle-Mariotte equation )()()(
21 cGratmratm

VVVpPVpP  which is written 

as )(
21 cGrr

VVVpVp  with respect to relative pressures. 

The volume of gas voids is determined as )(
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V  . The gas used for the determination 

of porosity is Nitrogen N2. The reservoir volume Vr is influenced by p1 and VG. With a high ratio of 

cG

r
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 a small pressure variation is observed but in the inverse case of small ratio of 

cG

r

VV
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
 the 

equilibrium is attained at a pressure close to the atmospheric pressure. As the pressure sensor has a 

limit of 6 kPa, the volume of the reservoir is selected close to 5600 cm3 which gives a value around 

0.6 for 
cG

r

VV

V


ratio.  

Through the pycnometer method, the porosity of the gas 
T

G

G

V

V
 is measured and knowing the 

volumetric moisture content θL, the total porosity 
GL

n   can be calculated. The precision of the 

gas porosity measurement was verified through the measurement of settlement of the sample at 

various compression loadings. With only the known initial volume of voids further change in volume 

due to settlement and resulting change in total porosity corresponding to that compression loading was 

determined and compared against the measured porosity values. This comparison is discussed in 

section III-7. 

II- 6.2.3 Total Porosity Measurement 

Total porosity is the total voids present in the waste sample as well as the voids present within the 

elements on a microscopic scale. This measurement is performed through the saturation of the sample 

with known initial moisture content. However due to the presence/formation of bubbles it may lead to 

an underestimation of the total porosity which may not be negligible. Contrary to this traditional 

method of total porosity measurement, a new protocol of porosity measurement through pycnometer 

with gas saturation as defined by Stoltz (2009) was applied. The method of measurement of total 

porosity through pycnometer can be performed with gas or water and the results are comparable for 
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these two methods but they give higher values of porosity when compared with the values obtained 

through traditional measurement method. These procedures of measurement are still not cited in 

literature. 

Importance of porosity measurement in hydro-bio-mechanical analyses of MSW: The 

measurement of the total porosity makes part of the overall determination of the solids density. It 

makes possible the determination of many other physical parameters as well as helping in providing a 

base for the application of laws of fluids flow. 

II- 6.2.4 Conclusions on Total Porosity Measurement 

Measurement of the total porosity is of interest because; 

 This parameter is indispensible for the determination of constitutive solids density ρS as well 

as other parameters of the state. 
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 If the model of double porosity is considered applicable for the domestic waste (fine matrices 

for micro porosity and preferential paths/macro pores), then the total porosity is the sum of 

these two porosities and determination of one of them along with the total porosity would lead 

to the determination of the other.  

 

It is mentioned in the thesis report of Stoltz (2009) that the determination of total porosity through 

water saturation is better than the method of total porosity determination through gas. However there 

is only a difference of 1% between the values determined through these two methods with those 

determined through gas on the inferior side. Moreover it is worth mentioning that if the measurement 

of porosity is carried out in a waste column which is „saturated‟ with leachate, then the presence of gas 

bubbles within the waste column would render the liquid porosity values to be smaller than it actually 

is. 

II - 6.3 Gas Permeability Measurement 

There are two possible methods of measurement of gas permeability in the oedopermeameter cell. One 

of the methods is the „Permanent flow method‟ and the other is „transitory flow method‟ or method of 

differential pressure (Figure II-17). The gas used for the measurement is Nitrogen N2. Though the 

experiments performed can be termed as short term experiments without the phenomenon of 

biodegradation but air was not used as fluid due to following reasons; Presence of the humidity within 

the compressed air can modify the value of dynamic viscosity. Nitrogen is used as a fluid when it 

comes to the experimentation of waste materials on long term basis, therefore, the experiments of 
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short term duration performed with Nitrogen make it possible to compare these both types of 

experiments. The density of Nitrogen N2 is ρN2 = 1.25 kg/m3 and the dynamic viscosity of N2 is η = 

16x 10
-6

 Pa.S (Weast, 1981) at normal temperature (273 K) and pressure (101.32 kPa). 

II- 6.3.1 Permanent Flow Method 

Darcy‟s law which is generally applied for liquids is modified to be used for the measurement of 

permeability with gas. Due to the change in density of the gas with the change in pressure, the law of 

conservation of mass can not be applied but as the mass flow rate (qm) remains constant the 

relationship is modified to obtain the following equation; 
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qV is volumetric flow rate 

A is sample cross-section 

L is the length of the sample 

Pe is pressure at entrance 

PS is pressure at exit 

 

Figure II- 17: Apparatus arrangement for gas permeability measurement for permanent 

and transitory flow methods. 
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The pressures used in the equation are absolute pressures with the flow direction taken from entrance 

to exit. Considering the difference of pressure at entrance and exit as very small (inferior to 1 kPa) and 

the variation in densities at both ends to be negligible, the above equation reduces to 

L

ppk
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q
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2


. 

The pressures ps and pe are the relative pressures with reference to the atmospheric pressure. 

Stabilization of pressure is attained before the measurement of these pressures at entrance and exit and 

a series of measurement is carried out for different flow rates and differential pressures keeping in 

view the limit of pressure sensor to be 5 l/min. Moreover an entrance pressure higher than 4 kPa may 

cause the expulsion of leachate from the sample, thus it is maintained around 2 kPa for all the 

measurements. 

II- 6.3.2 Transitory Flow Method  

The limitation of entrance pressure of 2 kPa makes it impossible to measure the permeability of any 

sample which is highly compressed and has high moisture content with the help of constant flow 

regime. Therefore these measurements are performed with another technique of variable flow regime 

termed as „transitory flow method‟. It applies the same principle and system of measurement as that of 

total porosity with the reservoir. In this method nitrogen is left to flow and fill the reservoir and the 

sample in a manner that the pressure in reservoir is within the range of 2 kPa. The nitrogen feed is then 

cut (t = 0) and the decrease in pressure is measured as a function of time [p1 (t)]. Assuming that the 

density of nitrogen to be independent of the pressure, the Darcy‟s law is applied taking into account 

the time and pressure relation as follows; 
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Vr is volume of the reservoir 

L is the length of the waste sample 

A is cross-section of the sample 

PS is the absolute pressure at exit (equals the partial pressure of N2 in air ~ 80 kPa) 

and P1 (t) is the absolute pressure of N2 in the reservoir. 

 

During the measurement of gas permeability through constant flow regime, pressures are measured at 

the entrance and exit points of the cell and any pressure drop due to porous plates is considered to be 

negligible. Likewise for variable pressure method, any pressure losses between the reservoir and the 

sample due to connecting tubes are not considered due to the fact that the flow rates during these 

measurements are very small. 
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II - 6.4 Permeability Measurement with Water at Saturated Condition 

In literature the method applied most frequently for the permeability measurement is through water at 

saturated condition. But this method of measurement is complicated as the complete saturation of the 

sample is necessary, but any such protocol is not cited in the literature. Stoltz (2009) used the 

following protocol as standard for the measurement of permeability with water at saturated condition; 

 Initially the sample is washed with CO2 with a volume which is six to seven times the volume 

of the sample to remove any gases and air bubbles. 

 Then the sample is saturated with water having an upstream pressure head (< 1 cm above the 

upstream surface of the sample). 

 A series of compression stresses is applied with measurements of water permeability carried 

out at each stage of compression stress. 

 

Since the measurements were completed within 12 hrs, the biodegradation effects were neglected. The 

temperature of water was measured at the upstream and downstream points of the sample to apply any 

corrections for the dynamic viscosity if needed. 

II- 6.4.1 At Constant Head 

For this method of measurement two water tanks at constant height are added to the conventional 

apparatus of the oedopermeameter (Figure II-18). The flow rate is measured with the help of a 

weighing balance connected with the digital acquisition. The difference of water level HL 

corresponds to the difference in pressure head which is measured through the piezometer at the 

upstream and downstream level. In the above arrangement HL was equal to 80 cm. The hydraulic 

permeability is measured through Darcy‟s law 
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kL is the liquid permeability, A is the cross-section of the sample and L is the sample length 

 

The temperature of water at the upstream and downstream is noted for any leachate viscosity 

corrections. Even though leachate and water have definitely different chemical characteristics and the 

probably do not have the same viscosity. But due to unavailability of leachate viscosity values in 

literature, the viscosity of the leachate was taken equal to that of water. 
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Figure II- 18: Measurement of permeability with water at constant pressure (Stoltz, 

2009). 

II- 6.4.2 At Variable Head with Back Pressure 

For a sample initially saturated with water, hydraulic permeability at variable head with backpressure 

was measured according to the protocol shown in Figure II-19. The hydraulic permeability is 

determined through Darcy‟s law at variable head as follows 
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A is the sample cross-section 

a is the cross section of the tube 

L is the length of the sample 

 

For apparatus arrangement for this case  0 tH
L

 is equal to 50 cm. A back pressure of 50 kPa was 

decided to be sufficient for the dissolution of air bubbles, after a number of back pressures were tried. 

This minimum back pressure was fixed because of the certainty of maintaining saturated state of the 

sample. 
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Figure II- 19: Permeability measurement with water at back pressure (Stoltz, 2009). 

II- 6.4.3 Head Losses within the Apparatus 

For the hydraulic permeability measurement at constant head, the piezometer measurements are taken 

at the upstream and downstream level of the sample so any corrections for head losses are considered 

as negligible. However for the measurements performed for variable head method, the calculation for 

head losses is complicated. The head losses within the tubular system at voids was determined and it 

was noted that if the intrinsic permeability of the waste sample is greater than 2x10 -11 m2. Then for a 

given fluid circulation speed the head losses due to tubular system is higher than that produced by the 

waste sample. Thus for any waste sample with an intrinsic permeability smaller than 2x10-12 m2, the 

measurements of hydraulic permeability with back pressure can be carried out with the head losses 

deducted from the total values. 
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III- GAS - PERMEABILITY TESTS IN OEDOPERMEAMETER  

III-1 LABORATORY SCALE PERMEABILITY ANALYSES 

All the tests discussed in this Chapter are short-term tests i.e. the experiments of compression-

permeability were never prolonged over more than one week. The phenomenon of biological 

degradation of waste was not considered for the measurement analyses. Regarding the tests, several 

wastes were tested. First waste (Waste „B‟) was used within the framework of verification of the 

model of double porosity proposed by Stoltz (2009). Within this waste type, called B, some samples 

belonging to CICLADE (test bioreactor cells at LTHE) were also analysed for the effects of re-

circulation of leachate on hydrological parameters. These tests made it possible to validate the double 

porosity model, the results corresponding to the waste „B‟, are discussed in Chapter IV. Another 

campaign, followed these preliminary tests, on the waste of tests cells (waste „C‟) built under the 

supervision of Véolia Environment, to analyse various landfilling techniques; such as Bioreactor or 

MBP waste cells.  

 

 

Figure III- 1: Apparatus arrangement for gas permeability measurement. 



 

 

89 

III - 1.1 Tests Program for a Fresh Waste 

The tests of total porosity and permeability were carried out on the waste samples extracted from a 

French landfill site operated by Véolia Environment. This waste was initially shredded at site before 

its placement in the waste cells to a size of 40 mm. The composition according to MODECOM 

criterion of waste characterization is shown in Figure III-2. For the purpose of experimentation the 

waste was divided into following categories; 

 Waste samples retrieved from the big waste containers brought to the laboratory from the 

landfill one and a half year ago. These containers are closed cover bins with two small holes at 

their side for the ease of biogas escape from the bin. 

 Waste samples taken out from the lab scale „Bioreactor Cells CICLADE‟ where they were put 

during Sept 2007 for the purpose of the study of settlement behaviour with leachate 

recirculation with a recirculation rate of 17 lit/day for a period of 500 days. 

 

The comparison of BMP values of both these types of samples suggest that the samples which belong 

to the bioreactor cell CICLADE are the waste samples in the phase IV of biodegradation and are 

highly methanogenised samples.  

 

Figure III- 2: Composition of waste samples used for compression-permeability tests (waste „B‟). 

The series of experiments carried out on these waste samples can be classified as under: 

 Series of compression-gas permeability tests at various initial moisture content 

 Series of tests for compression-total porosity analysis 
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Table III- 1: Composition of Waste Samples (B1-B9). 

Waste constituent % wet mass % dry mass 

Paper/cardboard 13.3 17.0 

Plastics 9.5 13.2 

Metal 0.4 0.7 

Glass 5.4 9.8 

Textiles 2.1 2.7 

Wood 5.6 8.2 

Food/Fines 58.1 39.0 

Miscellaneous 5.6 9.4 

III - 1.2 Sample Preparation 

To achieve the objective of different initial moisture content for every series of compression-

permeability test, the samples were prepared according to the following procedure 

 To obtain low initial moisture content, samples (B6, B7) were dried at 35°C during 7 days in 

the oven. 

 To obtain medium moisture content range, samples (B4, B5) were air dried for 7 days in 

rectangular containers with large surface areas. 

 To obtain moisture content higher than the natural moisture content of the samples at storage, 

water was added with the help of sprinkler while overturning the samples with hands a 

number of times and left for imbibitions for 48 hours. The samples were then taken out from 

the container pressing with hands to remove any access water before filling the 

oedopermeameter cell. 

 

The waste „B‟ being the shredded waste, simplified the process of sample preparation regarding the 

separation of bigger particles however some plastic or metallic components were removed now and 

then. The samples were placed in the oedopermeameter with hands in layers of 2 to 2.5 kg with 

compaction effort applied to each layer (4 to 6 layers) with the help of compaction rod of mass 8 kg 

and a free fall of 70 cm which produces a compaction effort of 5.5 kN. 30 blows were applied over all 

the cross-section of the sample as an average compaction effort for each layer. All the tests were 

carried out as series of one experiment with the same sequence of compression loading for all the 

series of compression-permeability tests which is as follows; 20 kPa, 40 kPa, 80 kPa, 140 kPa and 200 

kPa. All of these compression loads were maintained during a period of time ranging from 24 hours to 

96 hours. 
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Table III- 2: Waste samples of compression-permeability tests. 

Test 

No 

Notation Initial Gravimetric 

Moisture Content 

„w‟ (%MS) 

Observations 

1 B1 80 Natural moisture content, air dried during 7 days 

2 B2 94 Natural moisture content, air dried during 7 days 

3 B3 116 Natural moisture content (Field capacity) 

4 B4 55 B3 oven dried at 35°C during 7 days 

5 B5 6 B4, oven dried at 35°C during 7 days 

6 B6 50 Initially at natural moisture content, oven dried at 35°C 

during 7 days 

7 B7 275 to144 Water injection for 48 hrs, excess water drained before 

compression 

8 B8 66 Waste sample retrieved from bioreactor cell at natural 

moisture content 

9 B9 24 Oven dried at 45°C during 7 days 

 

For each compression loading following measurements were obtained: 

 Settlement measurement from the vertical displacement sensor 

 Gas permeability measurement 

 Leachate collection and determination of its mass 

 

Other measurements performed during various stages of the test are as follows; 

 Initial mass (MT0) and initial volume (VT0) to obtain initial bulk density of the samples.  

 Dry mass (MS) obtained at the end of each series through drying the whole sample in the oven 

at 80°C until the stabilization of the mass to calculate the initial dry density of the sample and 

the initial gravimetric moisture content. 

 Before starting the compression loading sequence one measurement of the gas porosity (θG) is 

carried out through pycnometer in order to calculate the total porosity of the sample.  

 For next compression loads during the experiment, the rest of the parameters are calculated 

making use of the settlement measurement (ΔH) and any leachate collected (MLC). 

Remark: Initial bulk density is not fixed to any desired value but the oedopermeameter cell was filled 

in a manner to achieve the maximum height of the cell i.e. ~29 cm. 
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Figure III- 3: Two stages for the determination of gas porosity (θG) with the help of 

oedopermeameter and pycnometer. 

III - 1.3 Analysis of Compressibility 

All the waste samples are supposed to be collected from different locations and due to heterogeneous 

nature of municipal solid waste; they are all different in density.  In Graph III-1 the dry density of all 
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the samples of waste B at 20 kPa compression stress are plotted against their initial moisture content 

and it can be observed that for the moisture content increasing up to 66% there is a direct effect on the 

dry density of the sample however, after that limit any further increase in moisture content does not 

increase the dry density of the sample.  
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Graph III- 1: Dry density of various samples at 20 kPa compression stress as a function of 

respective initial gravimetric moisture content for the waste „B‟. 

 The same relation is studied in Graph III-2, but this time the dry density is plotted against the 

compression stress of 20 kPa with its increase due to the compression stages for the compression stress 

of 200 kPa in order to observe any contrary observations as made in Graph III-1. The compression 

stress of 200 kPa is the maximum compression limit maintained during all the compression- 

permeability tests carried out and it is worth noting that the same trend exists for the compression 

stress of 200 kPa. 
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Graph III- 2: Dry density at 20 kPa and 200 kPa as a function of initial moisture content for the 

compression-gas permeability experiments carried out for the Waste „B‟. 

There is some similarity with the proctor tests that: if the proctor test is carried out for the MSW 

samples as it is done for the soils, it may be interesting to develop any correlation. But in that case the 

same sample is compacted at various moisture contents whereas in the present study each sample was 

different and thus can only compared on the basis of its initial moisture content and respective dry 

density at the same compaction effort. 

 

In Graph III-2 the effect of initial moisture content on the dry density of the sample is similar to that in 

Graph III-1 and it can be noticed that up to the range of 66% and 80% of the initial moisture content 

the sample becomes more and more dense after which there is no direct effect on the dry density of the 

sample for example for the sample with moisture content 116% the dry density is smaller than the 

sample with the moisture content of 144%. From this analysis it can be suggested that the optimum 

moisture content for MSW as in the case of soils helps attain better compaction of the sample. 

 

Moreover it can be noticed that the dry density of the sample with least moisture content is smaller 

than other samples with higher moisture content which is in accordance with the proposition of 

presence of optimum moisture content-dry density relation but to define any moisture content to be the 

optimum moisture content is still not possible with these experiments and a detailed study of any such 

relation might be interesting with a goal to propose such a relation if exists. 
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Determination of Coefficient of Primary Compression: A pre-consolidation stress is needed to 

analyze the sample compressibility with reference to the primary compression coefficient C*
R. This 

pre-consolidation stress corresponds to the compaction effort applied during the placement of the 

waste at site. As for the soils it is well known that the soils initially consolidated do not go under 

further consolidation until the compression stress greater than initial consolidation stress is applied, the 

same law is assumed to stand true for the case of MSW. To determine this consolidation stress for this 

study, all the pre-consolidation stresses were calculated for each compression-gas permeability test 

from the graphs plotted for settlement (ΔH/H) as a function of log (σ). On the graph the slope of the 

line gives the value of C*
R. The line extended back to x coordinate at „x=0‟ gives the value of σ’c 

(Figure III-4). From this graph horizontal bisector tangents is taken as the pre-consolidation pressure 

(σ’C). The equation used for the calculation of C*
R is 

C

R

P

C
'

*

0

log








 where H0 is the height of 

the sample for the pre-consolidation pressure. 

 

Figure III- 4: Determination of pre-consolidation stress. 

ΔHP is the primary settlement for each compression loading σ’ and measured at the end of each 

loading stage ranging from 24 hrs to 72 hrs. Graph III-3 represents the calculation of the pre-

consolidation compression stress for all the samples while in Graph III-4 the calculated C*
R for all the 

samples of MSW „B‟ is presented. The intersection of the line on the x-axis (x0) is used to calculate the 

corresponding pre-consolidation stress for the respective experiment. An average value of C*
R = 0.31 

is calculated from the given data. The pre-consolidation (σ’c) stress is further used to plot the graph for 

the analysis of effect of initial moisture content on the pre-consolidation stress (Graph III-7). 
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Graph III- 3: Determination of pre-consolidation compression stress for all the samples of waste 

„B‟. 
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Graph III- 4: Determination of coefficient of primary compression. 

With an objective of defining a relation between various physical parameters of the state of MSW and 

C*
R, different relationships are studied in each of the graphs below; 
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Graph III- 5: Coefficient of primary compression C
*
R as a function of initial gravimetric 

moisture content for the compression-gas permeability experiments carried out in the 

oedopermeameter (waste „B‟). 

In Graph III-5 the calculated value of C*
R for each sample is plotted against the initial moisture content 

of the sample, however any direct relation between the two parameters is not quite visible.  
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Graph III- 6: Coefficient of primary compression C
*
R as a function of initial dry density at the 

pre-consolidation compression stress of respective waste sample for the compression-gas 

permeability tests carried out in oedopermeameter cell (Waste „B‟). 
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The correlation of coefficient of primary compression and initial moisture content is affected also by 

the initial dry density, therefore, in Graph III-6 C*
R is plotted against ρd at the pre-consolidation stress 

(σc) in order to define any distinguishable relation. It may be said that for a range of initial moisture 

content between 6% and 66% higher compaction of the sample is achieved and that a sample which is 

most dense at pre-consolidation stress is the sample which is least compressible. However due to the 

limited number of experiments and complex nature of municipal solid waste, it is quite difficult to 

reach any conclusion regarding the definition of a correlation between coefficient of primary 

compression C*
R and the initial dry density ρd. As a matter of fact ρd not only depends on the porosity 

but also on the value of solids density ρS which could be different for all the samples.  

 

Finally in order to analyze the correlation of density under the calculated pre-consolidation stress (σ’c) 

and the initial moisture content Graph III-7 is presented. It is interesting to note here that the effect of 

initial moisture content on the dry density at pre-consolidation stress is more prominent than the 

relation already observed in Graph III-1 where a correlation between the initial moisture content and 

the initial dry density at 20 kPa compression stress was analyzed. It can be noted that there is a direct 

effect of the initial moisture content on the dry density of the sample for a given pre-consolidation 

pressure and that this initial moisture content is probably the equilibrium moisture content of the waste 

sample. 
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Graph III- 7: Dry density of all the samples (B1-B9) of the Waste „B‟ at calculated pre-

consolidation stress (σ’c) as a function of their initial moisture content. 

From the Graph III-7 it can be deduced that up to the range of 66% of the initial moisture content the 

dry density increases with the increase in the moisture content (with the exception of sample B4) after 
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which the presence of additional water has an inverse effect on the compression of the sample. This 

relation may also stand true for the model of double porosity with a distinct effect of two porosities 

(micro and macro porosity of the sample) and will be discussed later in chapter IV in detail. 

III - 1.4 Determination of Constitutive Solid Density 

III- 1.4.1 Average Solid Density 

Different methods of calculation of constitutive density have been discussed in detail in chapter II. 

Within the framework of this study the solid density of a given sample of municipal solid waste with 

the known dry density was determined through the measurement of total porosity with pycnometer; 













n

d
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1


  

Measurements of solid density were carried out for two samples of waste „B‟. One of the 

measurements was carried out for the waste sample retrieved from the waste container while the other 

was carried out for the waste sample taken from the bioreactor cell „CICLADE‟. It enabled the 

comparison of three different values of the same type of municipal solid waste with the third value of 

solid density being the one quoted by Stoltz (2009). The average value for the solid density for the 

waste sample of the bioreactor cell „CICLADE‟ was measured to be 1.95 Mg/m3 and the average value 

for the waste retrieved from the container was determined to be 1.81 Mg/m3. Finally the value of solid 

density for the same waste tested one and a half year ago was quoted as 1.62 Mg/m3. 

 

The increase in the solid density over one and a half year is quite evident as the waste stored in the 

waste container has undergone degradation with the organic mass reducing into biogas and leachate; 

resulting in the disappearance of the organic components lighter than the mineral ones. The 

degradation leaves behind the materials which are less degradable like paper cardboard and inert like 

glass and metal. All these materials have higher constituent density as compared to the constitutive 

density of the waste thus increasing the amount of the latter. The same reason is applicable for the 

waste retrieved from the bioreactor, with the possible justification of more completed biodegradation 

related to the recirculation of the leachate for still higher solid density. 

III- 1.4.2 Determination of Solid Density from the Waste Composition 

For the calculation of solid density from the composition of the MSW, dry density of all constituent is 

summed to obtain the average solid density of the sample; 
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m
  for each constituent and the average solid density is calculated using the following equation 
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Where msi is the dry weight of the constituent „i‟, Ms is the dry weight of the whole sample and 

si

si

si

V

m
  corresponds to the dry density of the constituent „i‟. 

Table III-3 gives details of the calculation of solid density for the waste „B‟. The parameters of ρdSi and 

ρsatSi are taken from the Beaven and Powrie (1995) and Landva and Clark (1990). These values are not 

all calculated but estimated as well. In addition to that these values are calculated taking account of the 

open porosity „nSi‟ with a dry density „ρdSi‟ however metal, plastics or glass are considered to have no 

open porosity. For the calculation of average density from the composition of the waste following 

hypotheses are made; Categories of combustibles, putrescibles and fines were considered to have the 

same values of densities by the authors and for the category of miscellaneous or inert materials, they 

used the dry density of 2.6 Mg/m3.
Si

  is calculated taking into account the following 

equation:
Si

dSi

Si

n
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  whereas nSi is calculated from the equation 
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Table III- 3: Various constituents‟ parameters for the determination of 
Si

  (waste „B‟). 

Waste 

constituent 

μSi 

(%MS) 

ρdSi 

(Mg/m3) 

ρsatSi 

(Mg/m3) 

nSi 

(%) 

ρSi 

(Mg/m3) 

Paper/cardboard 17.0 0.4 1.2 80 2.0 

Plastics 13.2 1.0 1.0 0 1.0 

Metal 0.7 6.0 6.0 0 6.0 

Glass 9.8 2.9 2.9 0 2.9 

Textiles 2.7 0.3 0.6 30 0.43 

Wood 8.2 1.0 1.2 20 1.25 

Food/Fines 39.0 1.0 1.2 20 1.25 

Miscellaneous 9.4 2.6 2.6 0 2.6 

 

The value of average solid density calculated from the waste composition results in 1.372 Mg/m3. The 

value obtained from the pycnometer was 1.81 Mg/m3. The following observations are made: 

 The values given by Beaven et al. (1995) and Landva et al. (1990) are in reference with the 

30% of textile porosity and 20% wood and putrescibles, only if a higher porosity value was 
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considered for these components it would have resulted in higher value of constitutive solid 

density. 

 Kazimoglu et al. (2005) have determined a value of solid density ρS = 1.33 Mg/m
3
 while 

making use of the data provided by Landva et al. (1990). This method is only appreciable if 

the precise composition of the waste sample is known. 

  

At this time of research some detailed analysis of solid density is needed for better understanding of 

the subject. 

III - 1.5 Analysis of Equilibrium Moisture Content 

Leachate Drainage under Compression 

Since the waste „B‟ used for the compression-gas permeability experiments had high initial moisture 

content so whenever at a compression stage some leachate was drained, it was collected and weighed. 

This reduction in moisture content when plotted as a function of dry density is expressed as moisture 

content of equilibrium. The drainage results in the decrease in moisture content as a function of 

compression stress and increase in the dry density of the sample (Graph III-8).  

 

The samples which were less humid, did not drain any leachate, even for the higher stages of 

compression stress, whereas, the samples with less initial moisture content (lower than the equilibrium 

moisture content) drained the leachate for the stages of compression approaching the limits i.e. 140 

kPa or 200 kPa. In Graph III-8 only sample B7 with an initial moisture content of 166% drained 

leachate right from the beginning of the sample compaction during its placement in the 

oedopermeameter. This leachate content was deduced from the calculated initial gravimetric moisture 

content (144%). It is worth mentioning that this is the same sample which was initially sprinkled with 

water to attain high initial moisture content. As marked on Graph III-8 this sample was left to drain for 

48 hrs before the start of compression-gas permeability test which brought down the moisture content 

to 144%. Sample B3 drained leachate for the compression stress stages of 140 kPa and 200 kPa which 

has initial moisture content of 116%. Other samples, though, having initial moisture content 

approximately 94% and 80% did not drain any leachate at any stage of compression which emphasizes 

that the equilibrium moisture content of the waste „B‟ might be higher than the normal expected range, 

around 100% of the dry mass (Ms).  
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Graph III- 8: Change in the gravimetric moisture content of the waste samples as a function of 

applied compression stresses (Waste „B‟). 
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Graph III- 9: Volumetric water content of the waste samples as a function of applied 

compression stress (Waste „B‟). 
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The evolution of moisture content of the sample throughout the experiment can be studied as a 

function of volumetric moisture content 
S

d

L
w




q  and the decrease in the moisture content of the 

sample does not actually result in the decrease in the volumetric moisture content of the sample along 

the compression process as it can be seen in Graph III-9. In fact for the samples which do not loose 

water during the compression stages, the volumetric moisture content increases with the increase in 

settlement since the total volume of the sample is decreasing; however no linear relation is observed 

between the two as noted in Graph III-9 for sample B3 and B7. 

 

Nevertheless the volumetric moisture content when plotted as a function of dry density gives the 

precise point of the start of leachate drainage from the sample as shown in Graph III-10. This 

phenomenon is more complex than any simple or direct relation between the dry density and the 

volumetric moisture content of the sample. The curve of sample B7 emphasizes on the presence of 

hysteresis for equilibrium moisture content. There may be the reason of different pore occupation of 

water for the same dry density of different samples which plays an important role in defining the 

equilibrium moisture content. Or may be the initial moisture content of the sample has an effect on 

equilibrium volumetric moisture content of the sample which needs to be analyzed in detail. 
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Graph III- 10: Evolution of volumetric moisture content as a function of dry density. 
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III - 1.6 Analysis of Gas Permeability Tests 

During the compression-gas permeability tests, measurement of gas permeability was carried out at 

each compression stage and the change in gas permeability is analyzed as a function of gas porosity. 

For a given porosity there is a decrease in gas permeability for increasing gravimetric moisture content 

to the increase in the volumetric moisture content at the same time. Various parameters of the state can 

be used to analyze the gas permeability values such as dry density, porosity or the degree of saturation. 

 Dry density (ρd) the porosity (n) and the gravimetric moisture content are the parameters 

which take into account any change in the gas permeability but on the other hand they not 

explicitly represent the change in volumetric moisture content which takes place in all 

unsaturated samples. 

 The degree of gas saturation 
nV

V
S

G

V

G

G

q
 represents the pores available for the gas within 

the void volume. For a sample with SG =1 (a dry sample) for a given sample porosity n, 

application of compression load decreases its total porosity n and thus its gas permeability 

while the degree of gas saturation is constant at 1. 

 Volumetric gas content 
T

G

G

V

V
q represents the pores available for gas within the total 

volume of the sample. According to Darcy‟s Law 
L

K
S

q 
 the permeability is directly 

proportional to the sample length and inversely proportional to the surface area of the sample. 

This ratio takes account of the total volume of the sample therefore the volumetric moisture 

content θG is a characteristic state parameter of the gas permeability. 

 

Graph III-11 presents all the gas permeability values measured for the waste „B‟. In a general 

overview it can be noticed that all the graph lines are clustered together except for the sample B5 and 

B9 which are the dry samples with moisture content of 6% and 24% respectively. For these samples 

initial drying was carried out in order to decrease their natural moisture content before the placement 

in the oedopermeameter. 

 

This cluster of lines highlights the fact that whichever the method of reduction of porosity either 

through increase in moisture content or by the decrease in total porosity through compression, the 

values of gas permeability obtained are in the same scale of variation depending mainly on the gas 

porosity θG. In Figure II-7 typical curves of relative permeability as a function of degree of saturation 

(SL and SG with SL +SG = 1) are shown for a sample with a given porosity. In Graph III-11 the gas 

permeability values are presented as a function of volumetric gas content, however due to the fact that 
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for one sample the decrease in permeability is a function of decrease in the total porosity during 

compression, for all the samples, this graph can not be directly compared with the Figure II-7 where 

the relative permeability trends for soils are plotted as a function gas and liquid saturation. 
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Graph III- 11: Evolution of gas permeability as a function of gas porosity for compression-gas 

permeability tests of waste „B‟. 

For a given total porosity „n‟ for the compressed samples the decrease in degree of gas saturation SG 

through the increase in initial moisture content  „w0‟ produces a decrease in the gas permeability over a 

larger scale. For less compressed samples, the decrease in the degree of gas saturation (from 80% to 

35%) has a lesser effect over the decrease in the gas permeability (from 4x10-10 m2 to 5x10-11 m2). For 

given initial moisture content the effect of compression is twofold 

 Decrease in the total porosity 

 Increase in the volumetric moisture content 

 

These two effects result in the decrease in gas permeability. The more the volumetric moisture content 

present in a given sample, more it will occupy the free macro pores thus reducing the passage of gas 

through the medium. In Graph III-12 it can be observed that the volumetric moisture content of sample 

„B7‟ remained constant, however, it was still in such a high range that its effect on gas permeability is 

noticeable. 
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Graph III- 12: Evolution of gas permeability as a function of volumetric moisture content for 

compression-gas permeability tests of waste „B‟. 

III - 1.7 Analysis of Different Hydrological Parameters 

The evolution of the total porosity, the volumetric moisture content and the volumetric gas content 

under a compression stress is a key issue for leachate and biogas flows. In an attempt to interrelate 

these parameters, the evolution of the gravimetric moisture content w, total porosity n, the volumetric 

moisture content θL and the volumetric gas content θG as a function of compression stress for the 

samples „B6‟ and „B7‟ is presented on Graph III-13 (the total porosity is the sum of the volumetric 

moisture content and the volumetric gas content). It should be kept in mind that the gravimetric 

moisture content for sample „B7‟ is almost three times higher than the moisture content of sample 

„B6‟. 

 

The total porosity, for both the samples in the same range, decreases similarly with increasing stress 

which confirms that these samples have a very similar structure. For σ’ between 0 and 200 kPa, 

approximately 15 % of the total porosity is lost. This variation should generate a drastic change in the 

hydraulic properties of the waste material. No liquid is drained out of the sample „B6‟ thus, its 

volumetric moisture content increases during the test. On the other hand, sample B7 loses the leachate 

during compression and the gravimetric moisture content is observed to be decreasing. it can be 

observed that the volumetric moisture content of sample „B7‟ remains almost constant after the 

compression stage of 100 kPa upto 200 kPa. This sample appears to be close to its maximum water 
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storage capacity. Furthermore it can be noted that at higher compression stages, the volumetric 

moisture content and the volumetric gas content of sample „B6‟ are almost equal. On the other hand, 

for the same compression stages, the volumetric gas content of sample „B7‟ is significantly lower 

because of its very high volumetric moisture content. 
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Graph III- 13: Comparison of evolution of various parameters of sample B6 and B7 as a 

function of compression stress. 
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III-2 TEST PROGRAM FOR AN OLD WASTE 

III - 2.1 Presentation of the Cells 

The part of the study is based primarily on the analysis of hydrological characteristics of 4 test cells 

constructed under the project ELIA (Lornage, 2006). The conventional storage/landfill methodology 

of Municipal Solid Waste (MSW) has been compared to two "new" processes of storage: Bioreactor 

Landfill and Mechanical and Biological Pre-treatment (MBP) before landfilling. The imperative to 

compare the behaviour of waste under the three different processes required the use of a waste product 

from the same deposit at the beginning of the study, the duration of the test was almost 5 years.. 

 

Four test cells were constructed namely C1, C2, C3 and C4 with the same volume (Figure III-5). The 

height of the cells is 4 m with a cross-section of 2.5 m x 2.5 m. The placement of waste was carried 

out with leachate drainage layers at the bottom of the cell. Settlement probes were installed in the 

waste as well as the gas collection pipes (Figure III-6) for the determination of amount and 

characteristics of the biogas collected throughout the period of the study. One of the four cells was 

dedicated to the conventional MSW “C2” another cell “C1”was reserved for study of the MSW as a 

bioreactor test cell and the remaining two cells “C3” and “C4” received MSW after the mechanical 

and biological pre-treatment. 

 

 

Figure III- 5: Study Cells of ELIA before and after the placement of cover compost. 

Active processes within the waste are relatively complex and multi-phase, it is important to monitor as 

many parameters in the liquid phase (leachate) as in the gas phase (biogas) and where possible directly 

in the solid matrix. Information collected through the monitoring of gas emissions and liquid drainage 

is essential for understanding the bio-physical and chemical processes taking place in waste. For the 
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present study, mechanical preparation of the waste (coarse grinding) was done before storage. Then 

recirculation of leachate was carried out, more or less intensively as a function of production rate of 

leachate. 

 

Figure III- 6: Schematic diagram of the test cell with different systems of devices in place 

(Lornage, 2006). 

III- 2.1.1 Experimental Variations 

To achieve the objective of experimental study in the best possible way, it was necessary to choose the 

parameters and characteristics for each of the three types of test cells, in a manner so as to ensure the 

best match with actual site conditions, taking into account the specificities and constraints related to 

pilots cells and to conduct experiments. 

III- 2.1.1.1 Conventional Waste Cell “C2” 

In the conventional cell, the waste was buried "as received". Once the desired height of the waste 

column was achieved, the waste was covered with a final cover made of low permeable clay. 
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III - 2.1.1.2 Bioreactor Waste Cell “C1” 

The methodology of the bioreactor landfill is based on the principle of providing the micro-organisms 

responsible (in particular by leachate recirculation) for the degradation of the waste an environmental 

condition which is optimal for their development. 

 

The preparation (mechanical, biological) of waste before landfilling is possible, like wise it is possible 

to change the moisture content of solid waste by adding water or recirculation of leachate and playing 

on the content of different inhibiting nutrients or compound elements or treating leachate prior to 

reinjection. The degree of sophistication in processing, which defines the composition and stability of 

final waste to be buried, is directly related to the regulatory force and the fixed cost of processing 

generated. The main objective of shredding is to increase the storage capacity of landfills. The size 

reduction due to the coarse grinding of the waste allow better contact between microorganisms, 

nutrients and organic matter as well as the increase of specific surface area of waste (Barlaz et al., 

1990). As part of the mechanical treatment its particularity is to treat all the mass without separation of 

waste before landfilling, while the aerobic modality was chosen for the biological treatment.  

III - 2.1.1.3 Pre-treated Waste Cells “C3 & C4”  

The Mechanical and Biological Pre-treatment (MBP) of the waste before burial can be of many forms 

depending on the objectives of stabilization, opportunities for recyclable materials and of course on 

the type of waste. The mechanical preparation of the waste is almost always a combination crushing / 

screening which materializes at least two size fractions (sometimes 3 or 4). The fine fraction destined 

to be stabilized may undergo either an aerobic biological treatment, or anaerobic, moreover the 

combination of both is also possible. To test two scenarios, corresponding to two degrees of stability 

of waste in landfill, biological treatment was performed for 12 weeks before the burial of half of the 

treated waste (Test cell C3). For the second part of the waste the biological treatment continued for 

another 13 weeks (total 25 weeks of pre-treatment) prior to its placement in the pilot cell (Test cell 4). 

Figure III-7 shows the chronology of various important phases of placement of waste in all four test 

cells. 

 



 

 

111 

 

Figure III- 7: Waste preparation procedure for all four experimental cells ELIA. 

III- 2.1.2 Municipal Solid Waste under Study 

The MSW used for the study came from a compost sorting plant located at Auquemesnil near Dieppe 

(Seine Maritime). Approximately 60 tons of waste from the collection of communities across the 

region was collected on August 27, 2003. After homogenization, 500 kg of waste was collected for 

characterization of type MODECOM. At the same time, 10 tons were levied for the filling of test cell 

representing the conventional household waste (C2), the rest of the lot had to undergo mechanical 

processing. There it was divided into two parts, first part filling the bioreactor test cell (C1) and 

second part for the biological pre-treatment through aeration in windrows. After 12 weeks of 

treatment, half of the waste in windrow was used to fill the cell (C3) while the other half was used to 

rebuild a windrow of smaller size for further pre-treatment. The final waste, aged 25 weeks, was used 

to fill the (C4) cell (Table III-4). 
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Table III- 4: Preparation of the waste placed in the four test cells of ELIA. 

Waste Cell Raw Waste Mechanical 

pre-treatment 

Leachate 

recycling 

Biological pre-

treatment 

Extended 

biological pre-

treatment 

C1  Х Х   

C2 Х     

C3  Х  Х  

C4  Х  Х Х 

III - 2.1.2.1 Un-treated Waste 

The composition of the waste and its size distribution (in %MH) calculated from 500 kg of waste 

sample is given in Figure III-8 (Table III-5). The initial gravimetric moisture content (w0) of the waste 

was 39 %MS. The gravimetric moisture content is the ratio of mass of water to the mass of 

solids
S

L

M

M
w 

0
, where ML is the mass of water in the sample and MS is the dry mass of the sample. 

The fraction (54.7%) of organic waste studied was composed of 54% kitchen and garden waste while 

46% accounted for papers / cardboards. 

 

 

Figure III- 8: Composition of raw waste material prior to placement in the test cells. 
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Table III- 5: Composition of Waste Samples (C1-C4). 

Waste constituent %MH 

Plastics 13.9 

Metal 2.6 

Glass 10.8 

Textiles 7.1 

Food/Fines 29.5 

Paper & Cardboard 25.2 

Miscellaneous 10.9 

III - 2.1.2.2 Mechanical Treatment 

The mass composition of the waste after mechanical treatment remains the same (the moisture loss by 

evaporation during grinding is negligible) and only its size distribution changes. Initially the waste 

fraction above 100 mm was 54% by wet mass of waste while the fraction 20-100 mm was 27%. After 

the shredding the fraction > 100 mm reduced to 27% whereas the fraction 20-100 mm increased to 

40%, therefore, the waste fraction < 20 mm accounted for 33% after the shredding. The actual initial 

dry and wet densities were respectively equal to 0.34 and 0.47 t/m3. 

III - 2.1.2.3 Biological Treatment (C3 & C4) 

A total of 37.46 tons of waste charges (± 20 kg), having undergone mechanical pre-treatment, was 

arranged in windrows 21 m long, 6 m wide and 2 m high. The initial moisture content(%MT), too low 

to ensure optimal conditions for development of biological activity, was increased from 39% to 93% 

by the addition of 385 L.t-1. The initial wet density in the windrows was estimated to be 0.2 t/m3.  The 

windrow was turned and moistened once in the 10th week of treatment with 120 L/t1 added. At the 12th 

week of treatment, 11.30 tons (± 10 kg) were placed in the cell “C3”. On this occasion, the remaining 

waste was reconstituted in another windrow with the length of about 7 m, 6 m wide and 3.5 m height. 

The biological treatment was then continued for 13 weeks with controlled ventilation significantly 

reduced in order to simulate a period of maturation. After 25 weeks of biological treatment, 10.66 tons 

(± 10 kg) of waste were buried in the cell “C4”. In total water was added two times (at the start and at 

week 10) with the total addition of 505 L/t1. The wet and dry densities were initially 0.43 and 0.59 

t/m3 respectively. 

III-2.1.2.4 Sample Retrieval at the end of Test Period 

For the purpose of hydrological analysis of the waste buried in the test cells for the last 6 years, a total 

of 300 kg of waste was brought to the LTHE laboratory in July 2009 for the permeability tests. From 
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each cell three samples were excavated from three different depths. In addition to that one sample 

comprising of all three depths termed as „mixed‟ was also collected. The details of all the samples are 

given in Table III-6. The moisture content for each sample depth prior to compression-gas 

permeability test determined by ECOGEOS is noted as the in situ moisture content „w0
is‟ while the 

initial moisture content (deduced at the end of the compression-gas permeability tests in LTHE, 

Laboratory) is termed as „w0‟. Furthermore the average dry density, assessed for the global cell,  is 

used as the in-situ value 
is

d
  for the comparison with the densities achieved in the oedopermeameter. 

 

Table III- 6: Details of samples collected from “ELIA” test cells. 

Waste 

Cell 

Sample Depth Av. Dry 

Density 

(
is

d
 ) 

Gravimetric 

Moisture 

Content (w0
is) % 

Initial Gravimetric 

Moisture Content (w0) 

%: reception LTHE 

(„natural moisture 

content) 

C1 70 cm below the soil cover 0.711 72.4 77.0 

Middle of the cell height 94.3 

50 cm above the drainage layer 96.8 

C2 70 cm below the soil cover 0.713 86.2 92.5 

Middle of the cell height 102.0 

50 cm above the drainage layer 140.0 

C3 70 cm below the soil cover 0.738 79.4 75.2 

Middle of the cell height 90.3 

50 cm above the drainage layer 90.4 

C4 70 cm below the soil cover 0.689 59.5 67.1 

Middle of the cell height 62.6 

50 cm above the drainage layer 75.7 

III - 2.2 Sample Preparation 

For each series of compression-gas permeability test, the samples were prepared according to the 

following procedure (Figure III-9): 

 First test was performed for the samples with the initial moisture content as received from site, 

close to w0
is. 

 For the second series of test measurement, sample removed from the first test was dried at 

35°C in the oven and/or in air over a period of 2 or 3 days to reduce its moisture content. 



 

 

115 

 Third test was performed in the same manner as the second test with a further drying of the 

same sample in the oven at 35°C for another 2 to 3 days. (Table III-7) 

 For each type of sample (C1 to C4), the initial wet mass of the waste is the same for three 

series of compression-gas permeability tests (before alteration of the gravimetric moisture 

contents). 

 

 

Figure III- 9: Schematic diagram for the oedopermeameter tests. 
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Table III- 7: Various observations regarding sample preparation. 

Test 

No 

Notation Initial 

moisture 

content w0 

(%) 

Observations 

1 C1- 1 77.0 Sample at natural moisture content 

2 C1- 2 30.1 Sample C1- 1, oven dried at 35°C during 3 days 

3 C1- 3 15.6 Sample C1- 2, oven dried at 35°C during 3 additional days  

4 C2- 1 92.5 Sample at natural moisture content 

5 C2- 2 48.0 Sample C2- 1, oven dried at 35 °C during 2 days 

6 C2- 3 26.1 Sample C2- 2, oven dried at 35 °C during 2 additional days 

7 C3- 1 75.2 Sample at natural moisture content 

8 C3- 2 26.6 Sample C3- 1, oven dried at 35°C during 3 days 

9 C3- 3 13.7 Sample C3- 2, oven dried at 35 °C during 2 additional days and 

further air dried during 3 days 

10 C4- 1 67.1 Sample at natural moisture content 

11 C4- 2 45.4 Sample C4- 1, air dried at 25°C during 5 days 

12 C4- 3 24.2 Sample C4- 2, oven dried at 35°C during 2 additional days 

 

The compaction protocol follows the same procedure as used earlier for the fresh waste (§ III-1.2). 

Since the waste samples were not received shredded, bigger particles needed to be removed however 

some plastic or textile components were cut with the help of scissors to maintain the proportion of all 

the components. All the measurements were carried out in the series of one experiment with the same 

sequence of compression stresses (σ) for compression-permeability tests which is as follows: 0 kPa, 40 

kPa, 80 kPa, 140 kPa and 200 kPa. All of these compression stresses were maintained during a period 

of time ranging from 4 hours to 72 hours. 

For each compression stress, following measurements were obtained (Figure III-9): 

 Settlement measurement from the vertical displacement sensor (ΔH) 

 Gas permeability measurement 

 Leachate loss and corresponding mass 

III - 2.3 Analysis of Compressibility 

All the samples were put under same sequence of compression stress with a varying time for each 

stage (ranging from 4 to 72 hrs). Initial dry density of the samples achieved was different for some 
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samples due to difference in initial moisture content. These values are detailed in Table III-8. Below in 

Graph III-14 to Graph III-17 the relative settlement over the whole period of compression is plotted as 

a function of time to observe the correlation of initial moisture content and the relative settlement 

achieved. 

 

Table III- 8: Measured values of initial moisture content, initial wet and dry density, pre-

consolidation stresses, and coefficient of primary compression for samples ELIA. 

Sample ρ0 (g/cm3) w0 (%) ρd0 (g/cm3) σ’c (kPa) C*R 

C1-1 0.96 77.0 0.542 11.1 0.20 

C1-2 0.70 30.1 0.540 22.9 0.36 

C1-3 0.63 15.6 0.542 06.5 0.17 

C2-1 0.72 92.5 0.375 11.4 0.31 

C2-2 0.56 48.0 0.379 10.1 0.33 

C2-3 0.48 26.1 0.383 03.3 0.22 

C3-1 0.89 75.2 0.510 10.1 0.24 

C3-2 0.66 26.6 0.520 07.1 0.15 

C3-3 0.59 13.7 0.520 10.0 0.20 

C4-1 0.83 67.1 0.496 05.3 0.22 

C4-2 0.72 45.4 0.496 09.3 0.24 

C4-3 0.62 24.2 0.496 12.8 0.26 
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Graph III- 14: Settlement graph of sample „C1‟ for three different initial moisture contents for 

compression-gas permeability test. 

 

Graph III- 15: Settlement graph of sample „C2‟ for three different initial moisture contents for 

compression-gas permeability test. 
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Graph III- 16: Settlement graph of sample „C3‟ for three different initial moisture contents for 

compression-gas permeability test. 

 

Graph III- 17: Settlement graph of sample „C4‟ for three different initial moisture contents for 

compression-gas permeability test. 
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Determination of Coefficient of Primary Compression 
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Figure III- 10: Determination of pre-consolidation stress (σ‟c) and the coefficient of primary 

compression (C*R). 

To determine the coefficient of primary compression for the present study, all the pre-consolidation 

stresses were calculated for each compression-gas permeability test from the graphs plotted for 

settlement (ΔH/H0) and log (σ). On the same graph the slope of the line gives the value of C*R. The 

line extended back to x coordinate at „x=0‟ gives the value of σ’c (Figure III-10). 
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Graph III- 18: Compression of the samples as a function of various compression stages during 

the compression-gas permeability tests. 
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It can be noted in Table III-8 that the pre-consolidation stress (σ’c) is generally less than 12 kPa, which 

in comparison with the samples of the fresh waste tested for waste „B‟ is in the lower limit. The 

average value for pre-consolidation calculated for the latter was 16.6 kPa whereas the average σ’c for 

test cells ELIA is 9.9 kPa. The initial dry density for different samples is around 0.5 t/m3 except for the 

sample C2 corresponding to the raw waste which is more difficult to compact due to coarse elements. 

The values of the coefficient of primary compression (C*R) are in the range of values determined by 

Olivier (2003) however the raw waste sample appears to be more compressible. 
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Graph III- 19: Comparison of coefficient of primary compression (C
*
R) of different samples as a 

function of initial gravimetric moisture content (w0) and treatment (C1 to C4). 

III-2.4 Comparison of the In-situ Density with the Density attained in 

Oedopermeameter 

All the waste samples tested were the mixture of samples coming from different depth and due to 

heterogeneous nature of MSW, they are all different in density. In Graph III-20 the evolution of dry 

density (ρis) during the compression-permeability of all four samples is plotted against the in-situ 

density of the waste. The in-situ density (ρis) is plotted on the same graph corresponding to the mean 

compression stress in the test cell [at mid depth of the cell z = 2 m, σ´= ρ.z = (1+w0).ρ
is

d.z]. 

 

It can be noted in Graph III-20 that the compaction effort applied while the placement of sample in 

oedopermeameter does not suffice to reproduce the same field density. In the case of sample C2 it is 
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not attained even at 200 kPa compression stress, however for the sample C4 it is achieved at 80 kPa. It 

seems clearly easier to compact the pre-treated waste (C4) than the raw waste (C2). The values of 

permeability for this material correspond to the high limit of permeability monitoring of the 

oedopermeameter device. 
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Graph III- 20: Evolution in dry density (ρd) of samples (C1-C4) at natural moisture content (w0) 

as a function of compression stress (σ) during the compression-permeability test in comparison 

with the in-situ density (
is

d
 ). 

Influence of the Initial Moisture Content and Waste Treatment on the Dry 

Density 

The relation between the initial moisture content (w0) and the change in the dry density with increasing 

compression stress is studied in Graph III-21, the dry density (ρd) is plotted against the compression 
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stress (σ’) of 40 kPa and 200 kPa in order to observe any possible direct influence. The compression 

stress of 200 kPa is the maximum compression limit maintained during all the compression- 

Permeability tests carried out. 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

77,0 30,1 15,6 92,5 48,0 26,1 75,2 26,6 13,7 67,1 45,4 24,2

C1-1 C1-2 C1-3 C2-1 C2-2 C2-3 C3-1 C3-2 C3-3 C4-1 C4-2 C4-3

Initial gravimetric moisture content (%MS)

D
ry

 d
e

n
s

it
y

 (
M

g
/c

m
3
)

Dry density at the

compression

stress 200 kPa

Dry density at the

compression

stress 40 kPa

 

Graph III- 21: Change in dry density (ρd) between the compression stress of 40 kPa and 200 kPa 

as a function of initial moisture content (w0) and waste treatment (C1 to C4). 

In Graph III-21 no direct relation is observed, which is plausible keeping in view that all four samples 

belong to different test cells and more importantly all these samples, before their placement in the test 

cells, have undergone different treatment processes affecting their bio-hydro-mechanical properties. 

III-2.5 Analysis of Equilibrium Moisture Content 

Leachate Drainage under Compression 

When the waste samples used for the compression-gas permeability experiments had high initial 

moisture content so whenever at a compression stage some leachate was squeezed out, it was collected 

and weighed. This reduction in moisture content when presented as a function of compression is noted 

with a moisture content at that stage termed here as the moisture content of equilibrium. This drainage 

as a function of compression stress results in the decrease in the gravimetric moisture content and 

increase in the dry density of the sample (Graph III-22).  



 

 

124 

The samples which were less humid, did not drain any leachate, even for the higher stages of 

compression stress, whereas, the samples with higher initial moisture content (however lower than the 

equilibrium moisture content i.e. field capacity) drained the leachate for higher stages of compression 

stress i.e. 140 kPa or 200 kPa: C1, C2 and C3 were subjected to the drainage of leachate under high 

compression stress when they were at their natural gravimetric moisture content unlike C4 which 

exhibited a lower natural moisture content. In Graph III-22 sample C1-1 and sample C2-1 with an 

initial moisture content of 77.0% and 92.5% respectively drained leachate starting from the 

compression stage of 40 kPa during the test. Sample C3-1 drained leachate for the compression stages 

of 140 kPa and 200 kPa which had initial moisture content of 75.2%. Other sample, though, having 

initial moisture content around 67.0% did not drain any leachate at any stage of compression which 

emphasizes that the equilibrium moisture content of the waste might be higher than the normal 

expected range, around 90% of the dry mass (Ms).  

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 50 100 150 200 250

Compression Stress  (kPa)

M
o

is
tu

re
 C

o
n

te
n

t 
(%

 M
S
)

C1-1 (77.0%)

C1-2 (30.1%)

C1-3 (15.6%)

C2-1 (92.5%)

C2-2 (48.0%)

C2-3 (26.1%)

C3-1 (75.2%)

C3-2 (26.6%)

C3-3 (13.7%)

C4-1 (67.1%)

C4-2 (45.4%)

C4-3 (24.2%)

 

Graph III- 22: Change in gravimetric moisture content during the compression-gas permeability 

tests. 

The evolution of water content of the sample throughout the experiment can be studied as a function 

of volumetric moisture content 
s

d

L
w




q  and the decrease in the gravimetric moisture content of the 

sample does not actually result in the decrease in the volumetric moisture content of the sample along 

the compression process as it can be seen in Graph III-23. As a matter of fact the volumetric moisture 

content increases with the increase in settlement however no linear relation is observed between the 

two as observed in Graph III-23 for sample C1-1, C2-1 and C3-1. There is a maximum value of 
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volumetric liquid content θL which is around 0.5 for all the sample types, C1 to C4. A limit on θL 

seems more relevant than the limit on gravimetric moisture content w considered in Graph III-22. 
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Graph III- 23: Volumetric moisture content as a function of dry density for the compression-gas 

permeability tests. 

Table III- 9: Details of different parameters measured and calculated during the compression-

gas permeability tests. 

Sample Moisture 

content 

(%MS) 

Solid 

density 

(ρs) 

Compression stress 

40 kPa 200 kPa 

n (%) θG (%) kG (m2) n (%) θG (%) kG (m2) 

C1 76.8 2.14 0.70 0.24 8.6E-10 0.65 0.16 4.8E-11 

30.0 0.74 0.56 5.6E-10 0.63 0.38 4.2E-10 

15.5 0.70 0.61 4.3E-10 0.66 0.55 3.5E-10 

C2 92.5 2.02 0.76 0.34 4.6E-10 0.67 0.21 3.3E-11 

47.9 0.79 0.57 3.9E-10 0.71 0.39 2.4E-10 

26.1 0.75 0.62 4.9E-10 0.69 0.52 2.5E-10 

C3 75.2 2.12 0.73 0.29 2.7E-11 0.67 0.16 1.2E-11 

26.6 0.72 0.57 4.1E-11 0.68 0.51 2.5E-11 

13.7 0.73 0.64 6.1E-11 0.68 0.58 1.9E-10 

C4 67.1 2.14 0.71 0.43 2.9E-11 0.64 0.13 1.4E-11 

45.4 0.73 0.46 3.9E-10 0.67 0.34 1.3E-10 

24.2 0.73 0.59 9.5E-10 0.66 0.49 2.2E-10 
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III-2.6 Analysis of Gas Permeability Tests 

The measurement of gas permeability was carried out at each compression stage of the compression-

gas permeability tests, and the change in gas permeability is analyzed as a function of gas porosity. 

Various parameters of the state can be used to analyze the gas permeability values starting from dry 

density, porosity to the degree of saturation parameter. 

 

Graph III-24 presents all the gas permeability values measured for the waste samples (C1-C4) 

separately, with the measured values detailed in Table III-9, while in Graph III-25 all these samples 

are put together in one graph to observe the presence of any possible correlation between these 

different samples. These samples can be compared to the Graph III-11 obtained for the fresh waste. 
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Graph III- 24: Effect of gas porosity over the change in the range of gas permeability for all 

samples (C1-C4) with different initial moisture content. 

In a general overview of Graph III-25 it can be noticed that all the curves are clustered together except 

for the sample C3-1, C3-2, C4-1 which have the initial moisture content of 75.2% and 26.6% and 



 

 

127 

67.1% respectively. These samples were retrieved from the test cells with mechanically biologically 

pre-treated waste. That is to say that the samples have not only high percentage of smaller components 

but they are more stabilized samples than the other two mixed samples (C1 and C2). 
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Graph III- 25: Evolution of gas permeability as a function of gas porosity during compression-

gas permeability. 

The cluster of lines highlights the fact that whichever the method of reduction of porosity either 

through increase in water content or by the decrease in total porosity through compression, the values 

of gas permeability obtained are in the same scale of variation. For a given total porosity „n‟ for the 

compressed samples (Table III-9), the decrease in degree of gas saturation (SG) through the increase in 

initial moisture content „w0‟ produces a decrease in the gas permeability. This can be related to the 

decrease in the porous structure at the macro scale rather than on micro scale of the sample. The 

double effect of compression and increased moisture content produces larger decrease in gas 

permeability as for comparison between the sample C2-1 (w = 92.5%) and sample C2-3 (w = 13.7%) 

the decrease in the gas permeability due to compression is more for sample C2-1 which has an initial 

moisture content almost six times higher than the sample C2-3. 
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Graph III- 26: Evolution of gas permeability as a function of dry density during compression-

gas permeability. 

In Graph III-26 change in gas permeability is studied as a function of dry density of the sample. It can 

be noted that samples with high initial moisture content go under a change in gas permeability on a 

larger scale than for the samples where the initial moisture content is smaller, even if the dry density 

varies on a larger scale. 

III-2.7 Comparison of Hydro-Mechanical Parameters determined through 

Oedopermeameter  

The present study has helped in highlighting the bio-hydro-mechanical phenomena which all together 

influence the behaviour of MSW in the landfills. Below the parameters studied in the present study are 

presented in comparison in order to better comprehend their interaction. 

III-2.7.1 Coefficient of Primary Compression C*R  

An important mechanical parameter of MSW analyzed in the present study is the coefficient of 

primary compression C*
R. The coefficient of primary compression is defined by the 

relation

PC
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Within the framework of research study, Stoltz (2009) determined the coefficient of primary 

compression of two different types of MSW, one being the fresh MSW while the other one was the 

MSW extracted from an old landfill. The average coefficient of primary compression calculated for 

the fresh MSW was C*
R = 0.318, while this value for the old MSW was equal to 0.395.  

 

The value of coefficient of primary compression calculated in the present study for the fresh waste is 

0.308 while the average value, for all four test cells of the old waste type, range between 0.15 and 0.33 

as detailed in Table III-8. The comparison between these values suggests that the values obtained in 

the present study are comparable with the earlier values cited keeping in view the difference of age of 

the waste. A large difference is observed in the values calculated in the present study for old waste but 

it should be kept in mind that these samples belong to four different cells where the waste was placed 

either initially untreated or mechanically biologically treated. 

III-2.7.2 Comparison of Solids Density ρS 

The parameter of solids density ρS is a characteristic and intrinsic parameter of the waste. This 

physical parameter itself is affected by the composition and the phase of biodegradation of the MSW. 

Moreover different methods can be used for its determination out of which the method of 

determination of ρS through the composition of waste is most frequently used in the literature. 

However the determination of ρS through pycnometer was defined and applied by Stoltz in his thesis 

report (2009) and it was shown that this method is more accurate than the analytical method of 

determination of solids density ρS, related to the proportion of each component and their own solid 

density.  

 

The solids density ρS for a fresh MSW as calculated by Stoltz (2009) through pycnometer resulted in 

1.65 Mg/m3, whereas the solids density for 8 different samples retrieved from the old landfill site 

values range between 1.95 Mg/m3 and 2.15 Mg/m3. Factors affecting these values such as depth, age 

and state of biodegradation need to be kept in mind while comparing these different values obtained 

for different landfills. The higher value of solids density in comparison with the fresh waste could be 

attributed to the loss of organic mass due to degradation which originally exhibits lower of ρS. The 

values determined through the pycnometer in the present study for the fresh waste was equal to 1.81 

Mg/m3 while its calculation through the waste composition resulted in a value of 1.372 Mg/m3. The 

solids density values for the old waste are presented in Table III-9 which range between 2.02 Mg/m3 

and 2.14 Mg/m3. All these values of solids density of the old waste samples remain in the same range 

when compared with the solids density of fresh waste emphasizing the fact of stabilized organic 

matter. 
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III-2.7.3 Comparison of Gas Permeability θG 

In Graph III-27 the values of gas permeability θG as determined for the fresh waste in the present study 

are presented in comparison with the average values of gas permeability determined by Stoltz (2009) 

for the fresh waste. The fact that the procedure of tests for the two studies was different from one 

another should be kept in mind: The tests performed by Stoltz (2009) followed the subsequent 

humidification of the initial sample while the series of tests carried out in the present study were dried 

in the oven at 35°C most of the times. However the waste composition was very much similar with the 

same proportion of organic material so it could be said that similar waste is analysed for both studies. 

These gas permeability values determined for the waste „B‟ are still comparable with the gas porosity 

θG in the same range (70% to 30%) with those determined by Stoltz (2009).  
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Graph III- 27: Gas permeability (kG) for waste „B‟ as a function of gas porosity (θG) in 

comparison with the values obtained by Stoltz (2009). 
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Graph III- 28: Gas permeability (kG) of test cells ELIA as a function of gas porosity (θG) in 

comparison with the values obtained by Stoltz (2009). 

It can be noted in Graph III-28 that the samples of test cells ELIA have a gas permeability range lower 

than the other samples of waste „B‟ as presented in Graph III-27 with the earlier study carried out by 

Stoltz (2009) which is also related to the initial moisture content. These values of the gas permeability 

are higher than the values observed for the fresh waste (Graph III-11). The structure of the two kinds 

of waste is of course different but it is difficult to find a definite explanation for the difference of 

permeability scale observed between the two waste materials. 

 

From the discussion above it can be concluded that the present study makes quite a noticeable 

contribution to the multidisciplinary analysis of the hydro-mechanical parameters of the MSW with an 

objective to better understand this complex medium. In future any study in relevance with the present 

work done will absolutely help in verifying and confirming the global bio-hydro-mechanical models 

suggested for studying the MSW. 
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IV- APPLICATION OF DOUBLE POROSITY MODEL TO 

LABORATORY EXPERIMENTS 

IV-1 MODEL OF DOUBLE POROSITY 

In literature multi porosities or double porosities are studied in association with many other parameters 

which are used interchangeably regarding their different notational terms for example open porosity or 

effective porosity, or free water or adsorbed water micro pores and macro pores etc. Some 

hydrological parameters like capillary water or adsorbed water are associated with double porosity 

without any clear linkage. From the data already available from the recent research work by Stoltz 

(2009) and the experimental results obtained under the scope of present study discussed in the 

previous section of this chapter the double porosity model initially proposed by Stoltz (2009) is 

established in a way to propose a state of the art model for the study of hydrological parameters of the 

municipal solid waste. 

In the model the critical point at the boundary of micro and macro porosity is defined and introduced 

in reference with the macro porosity for the first time since it has not been studied and defined earlier 

in the context under study. Likewise a proposition concerning the intrinsic permeability is also put 

forward here for future detailed analysis. 

Various research data already available in the literature and the present study helps in the verification 

of the presence of double porosity in porous medium of the waste body. This concept of the double 

porosity is based on the supposition that the porous structure of MSW consists of a matrix of bigger 

particles separated through the interstitial spaces (macro pores) while within these matrices there is 

still another fine matrix of micro pores. Furthermore it is supposed that there exists a discontinuity 

within the distribution of the macro and micro pores. The details of hypotheses and definitions of 

various parameters as explained within the framework of research study of Stoltz (2009) are 

reproduced here for reference and subsequent modification are delineated whenever deemed 

necessary. In the present chapter the applications of this model in the bio-hydro-mechanics are 

described and an interpretation of the experimental results of the previous section is presented. 

IV - 1.1 Other Models available in the Literature 

Certain authors consider the water contained in the micro pores of the aggregates as integrated into the 

“solid” but in the present model, solid phase is distinguished from liquid phase. Though the water of 

micro porosity is regarded as immobile during the compression application or hydraulic gradient, but 
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the exchange between the water of micro porosity and the water of the macro porosity is considered 

possible [the above experimental description of Beaven et al. (2003)]. Moreover, measurements of 

moisture content by drying in the drying oven take into account the water included in the aggregates.  

IV- 1.1.1 Tracer Tests, Beaven et al. (2003) 

Beaven et al. (2003) have presented the experimental results of the tracer test with lithium as the tracer 

injected in the compressed waste samples in a permanent fluid flow re-circulation where lithium 

concentration at exit point is measured.  

 

Figure IV- 1: Tracer test, diffusion of Lithium within the fine matrix of the waste sample 

(Beaven et al., 2003).  

They have observed that at the beginning high concentration of lithium is measured at exit due to its 

rapid flow out of the sample along with leachate flow but even after 90 days of the tracer injection 

some residual lithium was still present in the leachate collected from the sample. They prove the 

presence of double porosity and have suggested a double porosity model to analyze the results (Figure 

IV-1). This model is based on the hypothesis that the water present in the micro pore structure of the 

medium is immobile. 

IV- 1.1.2 Water Saturation Experiments, Capelo et al. (2007) 

Capelo et al. (2007) presented the test results of infiltration experiments carried out on a waste 

column, 3 m high with 60 cm diameter. The flow was kept constant and any change in the moisture 

content of the sample was measured with the help of neutron probe. They have observed that after 120 

minutes of continuous precipitation, the volumetric liquid content of the complete column increased 

without saturated volumetric liquid content for upper layers which increases afterwards (Figure IV-2). 
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Figure IV- 2: Profile of volumetric liquid content with gradual increase in the layers 

underneath suggesting the presence of preferential paths (Capelo et al., 2007). 

According to classical soil mechanics theory of water infiltration, water initially progressively 

saturates the upper layers before percolating further towards the bottom layers which was not the case 

here and hence suggests the presence of preferential paths for liquid flow around the fine matrices of 

micro pores. These preferential paths are the connected macro pores which allow the quick passage of 

liquids downwards before it fills the micro pores which it does afterwards as observed from these 

experimental data showing increased volumetric liquid content of upper layers. 

IV - 1.2 Definition of the State Parameters for the Double Porosity Model 

IV- 1.2.1 Waste Structure 

The porous medium of the waste is composed of different elements of diverse nature. Within this 

random assembly of various elements two types of porosities can be distinguished: the porosity of the 

elements of waste and porosity around these elements. If a ruffled sheet of paper is considered, in 

contact with water, the micro pores of this sheet of paper will soak. Now, if one considers the 

assembly of several sheets of paper of the same type, confined in order to form an aggregate and if this 

aggregate is saturated, the water located in the micro pores of the sheets and water located around will 

not have the same behaviours when the sample is subjected to a compression or a hydraulic head 

gradient. Schematic diagram of the medium as shown in Figure IV-3 makes it possible to visualize the 

medium. 
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Figure IV- 3: Presentation of the components in the waste medium. 

Considering all the aggregates which constitute waste, it is improbable that the micro pores of these 

aggregates are of the same type (size, form, etc). Characterizing a distribution of size of pores for each 

aggregate being impossible, two types of porosities are defined: 

 A micro porosity located in the fine matrix constituting the aggregates, in major organic part 

of the waste 

 A macro porosity located around the aggregates of waste 

The multiple states of water present in micro porosity (hygroscopic water, adsorbed water etc) are not 

distinguished. The water located in the macro porosity is subjected to the capillary forces and to the 

gravitational forces.  

IV- 1.2.2 Properties of Micro Porosity 

The pores of micro porosity for waste „B‟ will be arbitrarily supposed to be smaller than 40 μm and 

this internal micro porosity within the aggregates is supposed to be badly connected. The water 

contained in this micro porosity is supposed to be immobile during compression, under hydraulic 

gradient, and at the application of a suction pressure. 

With regard to deformation, it was discussed in Chapter II-4.1 that the fact that part of deformation 

could be due to the compression of the micro porosity of the organic matrix. However, from the 

experimental results it is noted that the compression of the micro porosity of this micro-porous matrix 

is negligible compared to the compression of the macro porosity. This observation will be discussed 

later in detail. 
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With regard to the liquid flows in saturated conditions, the experiments in laboratory cell can justify 

the assumption that the water contained in micro porosity is regarded as motionless. The laws of flow 

in porous media described in Chapter III-5.3 (Kozeny - Carman and Van Genuchten - Mualem) were 

rewritten by Stoltz (2009) so as to distinguish the porosity mobilized during a flow (the macro 

porosity) and the one not mobilized (micro porosity). This modification of the laws according to the 

parameters of state of the model is detailed below and applied to the present study in order to verify 

the proposition of presence of double porosity. 

IV- 1.2.3 Properties of the Macro Porosity 

Since the micro pores are assumed to be smaller than 40 μm, the pores of the macro porosity will be 

arbitrarily considered bigger than 40 μm. This porosity is assumed to be well connected and 

compressible. The liquid flow is considered to be mainly passing through the macro porosity. The 

water contained in this macro porosity can be regarded as free. It will be mobile as well during an 

experiment of compression just as under the effect of a hydraulic gradient. 

 

Figure IV- 4: Distribution of micro and macro porosity in contrast with drainage 

porosity and field capacity within the total porosity. 

In the literature, the concept of “drainage porosity” is mentioned. This porosity, for a sample saturated 

with water, corresponds to the volume of the pores emptied by drainage under the force of gravity. The 

macro porosity is not the drainage porosity. It can be noticed in Figure IV-4 and Figure IV-5 that for 

the moisture content at field capacity or rather the state volumetric moisture content, there remains 

some water with meniscuses retained by capillarity within the pores of the macro porosity. The macro 

porosity is thus higher than the drainage porosity. 
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Figure IV- 5: Comparison of saturated moisture content and moisture content at field 

capacity. 

IV - 1.3 Definition of the State Parameters of Macro and Micro Porosity 

IV- 1.3.1 Fundamental Parameters 

As specified in Chapter II, only three state parameters are sufficient to determine all the other 

structural parameters: 

 density ρ of the sample 

 porosity n 

 moisture content w 

For the double porosity model, wmicro is used to determine all the other parameters. Moreover, the 

evolution under compression of all the parameters of state of the model with double porosity can be 

given according to the settlement ΔH. 

Characteristic state: A characteristic state is the state for which micro porosity is saturated with 

water along with the macro porosity which is dry: 
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IV- 1.3.2 Moisture Contents - Porosities - Degrees of Saturation 

In the model, it is supposed that there exists a volume of micro pores noted 
micro

V
V and a volume of 

macro pores denoted as
macro

V
V . 

These volumes 
micro

V
V and 

macro

V
V make it possible to define: 

 a content (mass) of micro pores, denoted as wmicro corresponding to the volume of micro 

pores 
micro

V
V compared on the basis of the dry mass of sample MS : 

S

micro

V

L

micro

M

Vw



. It is 

expressed in %MS percent dry mass. wmicro corresponds to the moisture content when the 

whole of the volume of the micro pores is filled with water.  

 a content (mass) of macro pores, denoted as wmacro and corresponding to the volume of 

macro pores 
macro

V
V compared on the basis of the dry mass of sample MS : 

S

macro

V

L

macro

M

Vw



. 

It is expressed in %MS percent dry mass. wmacro is the complementary to wmicro, the sum of 

wmicro and wmacro corresponding to the maximum moisture content (at saturation) of the 

sample 
macromicro

sat
www   

 wmicro is not equal to the moisture content „w‟ of the sample (but it is comparable). If w < 

wmicro, micro porosity is not saturated with water and if w > wmicro, it is extremely probable 

that the micro porosity is saturated with water. 

 When considering the micro porosity and the macro porosity, it is the volume of pores 

divided by a total considered volume. In the model of double porosity, an assumption is 

made a propos the constant volume of the micro pores of micro porosity, in particular under 

compression. This results in considering wmicro as a constant. However, under compression, 

total volume varies, which induces a variation of

T

micro

V

V

V
. In practice, the wmicro term will be 

largely used to characterize micro porosity, because it can be easily understood, although it 

is not strictly the porosity. 

The situation becomes complex, as presented in Figure IV-6 when w > wmicro but the micro porosity is 

not saturated with water. Since this case can not be verified, this case is simplified by assuming that w 

≥ wmicro which implies that micro porosity is saturated with water. 
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Figure IV- 6 : Comparison of the gravimetric moisture content with the moisture 

content of micro and macro phase. 

From volumes of micro pores 
micro

V
V and macro pores

macro

V
V  two porosities are defined: 

 a micro porosity: 

T

micro

Vmicro

V

V
n  . 

 a macro porosity: 

T

macro

Vmacro

V

V
n  . 

The sum of micro porosity nmicro and macro porosity nmacro corresponds to the total porosity, i.e. 

macromicro
nnn  . 

Along with the porosity the degrees of saturation are defined as follows: 

 a degree of saturation Smicro for the micro pores as 
n

n
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V
S
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 a degree of saturation for the macro pores Smacro as 
n

n

V

V
S

macro

V

macro

Vmacro
 . 

In the same way, the sum of Smicro and Smacro is equal to 1, 1



n

nn
SS

macromicro

macromicro
 

IV- 1.3.3 Relation between the Physical State Parameters 

The state parameters of the model of double porosity can be expressed with reference to other 

parameters. First of all the expression of
micro

n according to
micro

w : 

micro

L

Smicro

L

dmicro
w

n
wn







 )1( 
  

Macro porosity  nmacro is deduced from the total porosity n: 

micro

L

d

S

dSmicro

L

dmicromacro
wwnnnn 















 

IV- 1.3.4 Determination of the Residual Degree of Saturation SrL 

In the law of capillary pressure of Van Genuchten (1980) and in the laws of relative permeability of 

Van Genuchten - Mualem, the degree of residual saturation SrL as well as the effective degree of liquid 

saturation SeL is defined as; 

rL

rLL

eL

S

SS
S






1
 

These two terms separate the two different sections: the first within which the water is motionless 

(residual saturation) and the second within which the water is mobile (effective saturation). The model 

of double porosity proposed by Stoltz (2009) identifies the residual degree of saturation SrL with 

respect to the degree of saturation of S
micro

 micro pores such that 

micro

micro

L

eL

S

SS
S






1
. 

The effective degree of saturation corresponds thus to the degree of liquid saturation of the macro 

porosity (Figure IV-7). It can be expressed in the following various ways as shown below 
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micro
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
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
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
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Figure IV- 7: Definition of various effective saturations with respect to the model of 

double porosity. 

For the gas phase, the effective degree of gas saturation is deducted from the effective degree of liquid 

saturation, as:  
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At the characteristic state when micro porosity is saturated with liquid (
micro

ww  ) then: 

1
eG

S  and 0
eL

S  

If  w < wmicro then: 

SeG > 1 and  SeL < 0. 

IV- 1.3.5 Gas Permeability 

If the results obtained with the oedopermeameter for the gas permeability are considered not to be 

influenced by water present in the micro pores then the measurements of gas permeability make it 

possible to estimate wmicro. By considering a sample for given moisture content w undergoing a gas 

permeability test two cases are distinguished (Figure IV-8): 

 When SL < Smicro: micro porosity is not entirely saturated. In this case, a measurement of the 

gas permeability gives a value close to the intrinsic permeability ki. 

 When SL ≥ Smicro: micro porosity is saturated liquid and the gas permeability decreases with 

the increase in moisture content. 

It is worth noting that the only saturation which influences the gas permeability is the one beyond 

saturation of micro porosity. The part of the degree of liquid saturation is defined on the basis of the 

characteristic state (saturation of micro porosity) with reference to the effective degree of saturation 

as
micro

micro

L

eL

S

SS
S






1
.  

 

Figure IV- 8: Relative gas permeability trend as a function of degree of saturation for a 

dual phase medium. 
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The intrinsic permeability of material can thus be measured with gas if SeL ≤ 0. The unsaturated gas 

permeability can be expressed in two manners: 

 According to the law of Carman- Kozeny simplified by expressing it according to the gas 

porosity for the gas flow when w > wmicro it is
2

3

)1(
G

G

KC
Ck






 . 

 According to the law of Van Genuchten - Mualem, with the above stated degree of effective 

saturation, as
micro

micro

L

eL

S

SS
S






1
. 

IV-2 INTERPRETATION OF MEASUREMENTS OF GAS 

PERMEABILITY 

IV - 2.1 Determination of the Parameter ‘wmicro’ 

This is the „one‟ major parameter which needs to be determined for the whole analysis and 

interpretation of the measured gas permeability values for the verification of the model initially 

proposed by Stoltz (2009). This parameter actually separates the two porosities of the medium, the 

micro porosity from the macro porosity, in terms of the volumes of the micro pores
micro

V
V within the 

fine matrix, 

S

micro

V

L

micro

M

V
w  . 

IV- 2.1.1 From the Composition of the Waste 

In the same manner as the constitutive density S of waste „B‟ was determined from its composition 

(Chapter II), wmicro can also be estimated from the same composition. The micro pores content wmicro is 

supposed to correspond to the saturated moisture content of all the components.  

In Table IV-1 the values of dSi, ni and wsati determined by Beaven et al. (1995) and Landva et al. 

(1990) are used for the calculations of wmicro. From the physical characteristics of each component „i‟ 

(dry density di and porosity ni), the saturated moisture content wsati, of each one of these components 

is calculated as 

di

L

isati
nw




  
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Table IV-1: Calculation of saturated moisture content of each component of the waste 

‘B’ for the determination of ‘w
micro

’ 

Waste 

constituent 

μSi 

(%MS) 

ρdSi 

(Mg/m3) 

nSi 

(%) 

wsati 

(%) 

wi
micro 

(%) 

Paper/carton 17.0 0.4 80 200 34 

Plastics 13.2 1.0 0 0 0 

Metal 0.7 6.0 0 0 0 

Glass 9.8 2.9 0 0 0 

Textiles 2.7 0.3 30 100 2.7 

Wood 8.2 1.0 20 20 1.64 

Food/Fines 39.0 1.0 20 20 7.8 

Miscellaneous 9.4 2.6 0 0 0 

 

The content of micro pores, (wi
micro) for each component „i‟ is calculated according to their percentile 

proportion (
s

si

i

m

m
 ) with the following equation: 

isati

micro

i
ww 

 

The content of micro pores wmicro of the complete sample is calculated by summation of all the 

contents of micro pores of each component wi
micro with the equation: 














i

i

i

micro

i

i

i

i

isati

micro

ww

w




 with 1
i

i
 

From the above values, the value of 
MS

micro
% 46.14  w  is calculated. It should be noted that certain 

fractions do not have micro porosity such as plastics, metals, glass. The content of micro pores is 

mainly due to paper/paperboards and putrescibles (of which major part is contained in the category 

“fines”). 
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IV- 2.1.2 From all the Measurements of Gas Permeability 

For the estimate of the content of micro pores wmicro to be more precise, all the gas permeability values 

obtained from the tests of compression-gas permeability carried out in the oedopermeameter on waste 

„B‟ were considered (section III-1.6). These tests can be characterized as having decreasing total 

porosity with constant total moisture content through out the length of compression stages (except 

where it drains during the compression stage). 
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Graph IV- 1: Gas permeability as a function of gas porosity for Waste ‘B’ presented 

along the values determined by Stoltz (2009) for the same waste (Sample B0). 

In Graph IV-1, only G and kG are presented while the same gas permeability measurements are plotted 

in Graph IV-2 as a function of total porosity „n‟. Meanwhile it is important to remember that almost all 

of the test series were performed on different samples of the waste „B‟. If two values of porosities 

obtained in experiments fell on two limits of anyone of the porosities quoted above, an interpolation 

(linear between the porosity and the logarithm of the permeability) needed to be carried out in such a 

way to determine the parameters n, w, L, G, kG for the total porosities 77.5%, 75.0%, 72.5%, and 

70.0% so that the values of gas permeability kG fall in the range of same total porosity n. 
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Graph IV- 2: Change in gas permeability as a function of total porosity of the sample 

during the compression-gas permeability tests Waste ‘B’. 

For these values of porosities (77.5%, 75.0%, 72.5%, and 70.0%), the gas permeability according to 

the gravimetric liquid content w are plotted in Graph IV-3. To standardize the graph for a comparison 

between the various levels of porosity, it is plotted against the ratio krG =
maxG

G

k

k
. kGmax corresponds to 

the maximum gas permeability obtained for a given level of porosity (for example 70.0%). 
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Graph IV- 3: Evolution of relative gas permeability krG as a function of gravimetric 

liquid content w for a given total porosity of the waste sample for Waste ‘B’. 
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It can be noted in Graph IV-3 that the relative gas permeability kG/kGmax for the gravimetric moisture 

content w < 95% remains close to the value of 1. Once this moisture content „w‟ exceeds 95%, the 

relative gas permeability krG decreases with the increase in the gravimetric moisture content w. This is 

why this gravimetric moisture content is considered as wmicro hereafter and the analysis of micro 

porosity is carried out with this value of wmicro. 

IV - 2.2 Application of Double Porosity Model to the Gas Permeability 

Tests 

The results obtained from the hydro-mechanical experiments in the oedopermeameter for the waste 

„B‟ and waste „C‟ are analyzed with the proposed double porosity model (Stoltz, 2009). 

The gas permeability results have been presented keeping in mind the following hypotheses: 

 Gas transport takes place strictly in the macro porosity thus any saturation or non saturation 

of the micro porosity of the medium has no influence over the gas permeability. 

 Gas permeability values are corrected and used afterwards for the saturated micro porosity. 

w* corresponds to the corrected moisture content such that; 

 For w < wmicro (when the macro porosity is smaller than the gas content nmacro < θG), w* = 

wmicro thus θ*
G = nmacro = n - ρd.w

micro 

 For w > wmicro (when the macro porosity 
G

macro
n  ), it is supposed that the micro porosity 

is saturated and that w* = w and θ*
G = θG 
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Graph IV- 4: Correction of gas permeability values measured from the compression-gas 

permeability tests for sample B4. 
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Table IV-2: Calculation of parameters of micro porosity for sample B4. 

Compression 

stage (kPa) 

w 

(%MS) 

ρd 

(Mg/m3) 

n (%) θL (%) θG (%) n
macro

 

(%) 

θ*G 

(%) 

kG (m
2
) 

20 0.55 0.376 0.791 0.205 0.586 0.453 0.453 3.9 10-11 

40 0.55 0.425 0.764 0.233 0.531 0.381 0.381 2.4 10-11 

80 0.55 0.486 0.730 0.266 0.464 0.293 0.293 1.3 10-11 

140 0.55 0.537 0.702 0.294 0.408 0.219 0.219 6.8 10-12 

200 0.55 0.573 0.682 0.313 0.369 0.166 0.166 3.8 10-12 

 

In Table IV-2 the calculation of corrected values of sample B4 are detailed to portrait the calculation 

carried out for all the samples of waste „B‟. In Graph IV-5 these corrected values of volumetric gas 

content are plotted as a function of gas permeability along with the measured values of gas porosity 

for sample B4.  
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Graph IV- 5: Gas permeability (kG) measurements plotted against the corrected gas 

porosity (θ*G) for Waste ‘B’. 
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It can easily be observed that all the gas permeability curves which were sparsely located in the Graph 

IV-1, where it was plotted with calculated gas porosity, are now regrouped together within the same 

range of gas porosity. It can be stated the micro porosity is not concerned with the gas flow. 

Furthermore it can be stated that the gas permeability is mainly dependent upon the macro pores 

within the gas porosity. 

IV - 2.3 Gas Permeability Modelling 

Power Law 

In Graph IV-6 the values of corrected gas porosity are plotted against the values of gas permeability 

according to the empirical power law. The proposed law suggests: 

b*

G

*

GG
)θ(a)θ(k   

It can be observed in the Graph IV-6 that there is a linear relationship between the two parameters as: 

3.39  b  and 8.98-  a log  or 
9

100.1


a  

Such that 
39.3*9

)(100.1
GG

k 


  with R2=0.82 

Even though till the present time there is no theoretical explanation available for this behaviour but it 

is interesting to note the linear behaviour of both the parameters according to the power law and any 

further experimentation and consequent analysis may reveal some explicable correlation. 
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Graph IV- 6: Application of power law to the gas permeability values of waste ‘B’. 
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Graph IV- 7: Evolution of gas permeability as a function of corrected gas content of the 

samples as determined from the power law (waste ‘B’). 

IV - 2.4 Intrinsic Permeability Modelling 

Carman - kozeny law: To determine the probable relation of the intrinsic permeability with the 

micro porosity of the waste sample „B‟ all the experimental values determined for the waste are 

considered such that: 

w ≤ wmicro (non-saturated micro porosity)  

thus θ*
G = nmacro and kG = ki 

Carman - Kozeny model, which is a function of macro porosity (responsible for the gas flow) is 

defined as: 

2

3

2
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For the permeability measurements carried out in the oedopermeameter neither tortuosity , nor 

specific surface Ss is measured thus the Carman - Kozeny equation is simplified by considering that 

these two terms remain constant with compression. Thus 
2

3

)1(
macro

macro

i

n

n
Ck


 where C is taken as a 

constant
2

11

s
S

C


 . Plotting the values of intrinsic permeability values of the waste samples as a 
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function of macro porosity (Graph VI-8) the value of constant C = 1.53E-10 m2 is determined with R2 = 

0.588 so that  
2
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y = 1,53E-10x
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1,0E-14

1,0E-13

1,0E-12

1,0E-11

1,0E-10

0 0,1 0,2 0,3 0,4 0,5

nmacro
3
/(1-nmacro)

2

in
tr

in
s

ic
 p

e
rm

e
a

b
il

it
y

 k
i 
(m

2
)

 

Graph IV- 8: Intrinsic permeability as a function of macro porosity of the waste samples 

(B). 

Power Law: As applied earlier to determine the relationship between the gas permeability (kG) and 

the volumetric gas content (θG), same power function is applied to the macro porosity of the medium 

such as: 

b

macromacroi
nank )()(   

All the calculated values of the intrinsic gas permeability measurements for the waste „B‟ plotted as a 

function of macro porosity (Graph IV-9), suggest the following relationship: 

2.19  b  and 9.6-  a log  or 
10

1051.2


a such that; 

19.210
1051.2

macroi
nk


  with R2 = 0.96 
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Graph IV- 9: Application of power law to analyse the correlation of macro porosity and 

the gad porosity of the waste samples (waste ‘B’). 

Finally the two laws, power law and Carman –Kozeny law are plotted on the same graph with the 

experimental values determined during the present study to observe the best fit out of these two laws 

(Graph IV-10) and it is observed that the power law describes better the determined values of intrinsic 

values. 
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Graph IV- 10: Experimental data along with the power law and the Carman Kozeny law 

(Waste ‘B’). 
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IV - 2.5 Relative Gas Permeability Modelling 

For the present modelling, the model of Van Genuchten – Mualem is used. This law is written as 

mm

eLeL

i

G

rG
SS

k

k
k

2/1
)1()1( 


and is formulated with respect to the total porosity. The model is 

rewritten in accordance with the assumptions that the residual degree of saturation SrL corresponds to 

the degree of micro saturation Smicro for the characteristic state (saturation of micro porosity). For the 

experiments carried out for waste „B‟, the total porosity values used for the determination of wmicro 

(70.0%, 72.5%, 75.0%, and 77.5%) provided with a set of values of w,  θG and kG and thus 

n
S

L

L


 and 

n
S

G

G


 are calculated such that the effective degree of saturation is: 

 For the samples where w < wmicro, SeL = 0 

 For sample with w > wmicro, 
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krG is calculated with the equation 
i

G

rG

k

k
k   supposing that the intrinsic permeability ki corresponds 

to the moisture content inferior to the moisture content of the micro pores i.e. wmicro. Graph IV-10 is 

presented with the calculated values of relative gas permeability as a function of effective saturation. 
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Graph IV- 11: Graph of relative gas permeability values as a function of effective 

saturation. 
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From the Graph IV-11 any probable modelling of the experimental data of the present study seems to 

be delicate as all the values are scattered. In the present case it would be reasonable to contend only 

with calculated values of the relative gas permeability
i

G

rG

k

k
k   for the calculation of kG and ki, which 

have been presented in § IV-2.3 and IV-2.4 with the power law (i.e. 
39.3*9

)(100.1
GG

k 


  and 

19.210
1051.2

macroi
nk


 ). 

IV - 2.6 Conclusions regarding the Model of Double Porosity and 

Permeability Modelling 

The analysis of gas permeability tests for waste „B‟ confirms the presence of micro porosity which is 

calculated for the waste „B‟ as equal to wmicro = 95%. The application of the double porosity model as 

proposed by Stoltz (2009) have helped present the gas permeability as a function of the corrected gas 

porosity θ*
G. With the help of these corrected gas porosity measurements plotted along the gas 

permeability measurements, presence of a spindle is observed (Graph IV-5) which suggests the 

attainment of same gas permeability values through application of various available processes whether 

it is the increase in the compression of the sample or/and the increase in the moisture content of the 

medium. This spindle in turn helps in modelling the gas permeability in such a way that there is 

unique relationship which exists for these gas permeability values and the corrected gas porosity 

values of the medium. From the analysis of the present study this unique relationship is proved to be 

the power law. 

Similarly according to the hypotheses of double porosity model, the measured value of gas 

permeability for the case when w ≤ wmicro makes it possible to evaluate the intrinsic permeability ki of 

the medium. This value of intrinsic permeability value has been modelled through two different laws 

as a function of macro porosity nmacro of the medium. One of the laws is an adaptation of Carman-

Kozeny‟s law of double porosity while the other is the power law. The application of these two laws 

for MSW in landfills would eventually help the landfill operators to predict the permeabilities 

(intrinsic and gas permeability) within the waste body. 
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V- MUNICIPAL SOLID WASTE SETTLEMENT BEHAVIOUR 

With respect to time the settlement may be broadly divided into 3 phases; instantaneous, primary and 

secondary settlement. While instantaneous and primary settlements are not a function of time and 

secondary settlement is dependent upon time. Prediction of long term settlement behaviour is 

important for a successful future development of the site. Prediction of settlement rate is more 

important than the total settlement. With a total settlement range of 25% to 50% of the initial waste 

height, more than half is attributed to secondary settlement Wall and Zeiss (1995). Since settlement is 

one of the major constraints to the re-use of any landfill it is important to predict settlements 

accurately to be in a good position for the landfill site development, operation and closure. 

Furthermore a proper design of gas and leachate collection system requires an accurate prediction of 

settlement. 

 

Five mechanisms governing the secondary settlement of MSW have long been defined as mechanical, 

ravelling, physicochemical change, biochemical decay, and interaction among these mechanisms. As 

ravelling is the process in which after load application, waste particles bend, crush, and relocate 

themselves to better accommodate the new stress situation forming the mechanical deformation. Also, 

due to the wide range of waste particle sizes, small particles will tend to move into the voids of larger 

ones, causing additional settlement especially during compaction. It is usually difficult to distinguish 

ravelling from other mechanisms. Physicochemical changes (such as corrosion, oxidation, and 

combustion) and biochemical decay causes a decrease in waste mass, leading to additional vertical 

deformations. Last but not the least, interactions between these mechanisms may cause further 

subsidence, such as when methane and heat are released from decay support combustion, or when 

consolidation triggers ravelling. The mechanism governing the settlement discussed by researchers: 

 

 Physical compression due to bending, pressing reorientation and crushing 

 Ravelling settlement due to migration of particles 

 Consolidation phenomenon and viscous behaviour 

 Decomposition settlement due to organic components 

 Collapse of components due to corrosion, oxidation and degradation of inorganic components 
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V-1 STAGES OF SETTLEMENT 

Three main stages of settlement have been identified, namely, initial compression, primary 

compression, and secondary compression. In literature initial settlement and primary settlement are 

sometimes considered different phenomena but in the framework of the present study an overall 

primary settlement is considered since it is not realistic at this scale to distinguish them promptly.  

 

Initial settlement, which is virtually instantaneous, is defined as settlement that occurs directly when 

an external load is applied to a landfill. It is generally associated with the immediate compaction of 

void space and particles due to the compaction effort and the superimposed load.  

 

Primary settlement is consolidation generally due to the dissipation of pore water and gas from the 

void space. In general, it is considered to occur within 30 days after the placement of the final layer. 

However, there are indications that dissipation processes may not be responsible for primary 

settlements in MSW landfills. First, waste in municipal landfills is seldom saturated, because 

traditional management practices prohibit the entry of water in the landfill. Second, the permeability of 

waste has been characterized in the same order of magnitude as sand and gravel or less for fresh waste; 

therefore, no pore water pressure should develop, because liquid can readily escape from the landfill 

mass. In some cases, however, gas pressure is generated due to the initial degradation of the waste. 

The load induced instantaneous consolidation in landfill is compared to the consolidation settlement of 

fine grained soils. Many researchers have investigated its comparison e.g. Jessberger et al. (1993), 

Beaven et al. (1995). In general it is dependent upon composition and age of waste and the compaction 

effort. The compressibility of the waste is characterised by coefficient of primary compression CR 

which is derived from the one dimensional consolidation theory of the pre-consolidated waste. 

 

Secondary settlement is due to creep of the waste skeleton and biological decay. In general, 

settlement due to secondary compression accounts for 30 to 40 % of the total landfill settlement, and 

occurs over many years after closure at a continuously decreasing rate, depending on stabilizing 

process within the landfill. Long term settlement of a landfill is referred to as the secondary settlement 

which is assumed to be independent of the load but is dependent upon time and biodegradation effects. 

One dimensional consolidation theory of soils is used for the settlement with the coefficient of 

secondary compression C which in turn depends on other parameters such as the time of 

construction of the waste column, initial degree of compression, recirculation of leachate if any and 

other bio-chemical factors yet to be correlated with the phenomenon of time dependent settlement. For 

the post operation settlement it is not the primary settlement which is important since it is almost 

completely incorporated before landfill closure, but it is the component of secondary settlement which 
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play an important role throughout the life time of a waste body. On average, settlement of about 15 to 

20 % of original landfill thickness is expected due to waste decomposition. 

V - 1.1 Settlement Rates 

The rate of landfill settlement depends primarily on the waste composition, operational practices, and 

factors affecting biodegradation of landfill waste, particularly moisture content. While settlement rates 

usually decrease with time, such rates may increase at a later stage as a landfill undergoes active 

biological activity. Several factors affect the magnitude and rate of settlement as described in Table V-

1. 

 

Table V- 1: Factors affecting magnitude and rate of MSW settlement. 

Factors Observations 

Initial void ratio of 

the waste 

Larger initial densities (associated with greater compaction) reduce both the 

ultimate settlement as well as the rates of primary and secondary 

settlement. 

Waste 

composition 

Waste compressibility increases as the amount of biodegradable material 

increases. 

Applied stress and 

stress history 

Some mechanisms affecting settlement (creep and pressure dissipation) are 

affected by the ratio of load increase. 

Environmental 

conditions 

Waste exposed to favourable decomposition conditions usually exhibits an 

increase in secondary compressibility behaviour as opposed to waste 

exposed to unfavourable decomposition conditions. 

 

V - 1.2 Settlement Analyses Available in Literature 

The prediction of long term settlement is done making use of one dimensional consolidation theory of 

soils, with coefficient of secondary compression Cαε which in turn depend on other parameters namely 

time of construction of the waste body, initial degree of compression, recirculation of leachate and 

other bio-chemical factors yet to be correlated with the phenomenon of time dependent settlement. The 

factors affecting secondary settlement are well known to an environmental engineer, what is uncertain 

is their inter-dependency. Initially different models have been developed and applied based upon laws 

of mathematics, mechanics or biochemistry, they all work fairly well within a framework of 

hypotheses and implications but each one of them has its limits to which its workability is defined and 
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there is always a need to move one step further in assessing the waste behaviour with respect to the 

settlement. 

V- 1.2.1 Compressibility & Stiffness 

For saturated soils it is usually assumed that the particles and pore fluid are incompressible and any 

change in overall volume results from the rearrangement of the soil skeleton. However this assumption 

of incompressibility for domestic waste is not appropriate. Likewise soil deformation due to 

dissipation of pore water pressure is termed as consolidation and continued deformation at constant 

effective stress is known as secondary compression or creep. Creep is a function of logarithm of time 

and it is applied in mathematical models to predict long term settlement of solid waste which might 

not be satisfactory since there are biological as well as chemical factors involved in degradation thus 

settlement of a domestic waste. So there is a need to correlate settlement to degradation and chemical 

reactions within the waste in a model. Similarly low stiffness of household waste material results in 

the movement of a barrier into the waste until equilibrium conditions are established. Landfill barriers 

are a necessity we cannot avoid, their interaction with the waste confirms the structural integrity and 

hence performance. The assessment of this interaction between the waste body and barrier system 

requires the in situ stress information.  

 

Dixon et al. (1999) used the pressure meter to measure horizontal stress, lateral stiffness of the waste 

and their time dependent variation. The authors performed the self boring pressure meter tests to 

determine a relationship between the applied pressure and deformation of the material as well as to 

obtain in situ stress conditions and the deformation properties. In the cylindrical device gas pressure 

produces outward expansion and radial deformation of the waste along with the applied pressure is 

used to develop a relation for in-situ conditions and deformation properties of the waste. Radial 

expansions against applied pressures are logged and plotted as loading curves to report strength and 

stiffness parameters (shear modulus, shear strength) making use of the coefficient of lateral earth 

pressure K0. 

 

Tests were performed on various depths and ages of the waste. Unloading and reloading confirmed the 

strain hardening effect in the waste while no clear relationship between lateral and vertical stress was 

obtained, nevertheless a general trend of higher K0 in the upper layers of the waste column could be 

assigned. A pronounced relationship between shear modulus and the depth of fresh water was 

observed that might be a product of additional compaction of the capping layer resulting in higher 

density and stiffness of upper layers. Likely increase in shear modulus (G) with increasing pressure 

and lateral stress was noticed. Though a reasonable agreement of values was obtained at laboratory 

scale and at field, however, the authors suggested that the in-situ measurement of the stiffness 
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parameter is the most appropriate approach. Finally they recommended a numerical model 

development for assessment of a range of barrier system performance.  

 

Gotteland et al. (2001) carried out an experimental study on MSW landfill at Montech France to 

determine compressibility, shear strength parameters and settlements. In situ unit weight was 

measured and compression-shear box tests were performed to determine CR and confirm c (cohesion) 

and υ (angle of internal friction). However no conclusions were made to the models exploited for the 

determination of secondary settlement. 

V- 1.2.2 Study of Settlement Data of MSW 

Deformation measurements are performed at site during and after the construction of landfill to 

estimate the future settlements. There are different measurement techniques available for the 

instrumental follow-up ranging from surface settlement measurements to a three dimensional laser 

study of deformation.  

 

Kavazanjian et al. (1999) performed oedometer tests to evaluate different components of 

compression, immediate compression and the mechanical component of delayed volumetric 

compression. Both the immediate and the delayed compression were studied and the immediate 

response was found be following the behaviour of a soil with a mean value of an average modified 

compression index, Cc = 0.185 (with a range 0.121 to 0.247). They used the average modified 

coefficient of recompression (CR = 0.012) to characterise the relationship of immediate volumetric 

compression and the normal stress during reloading where the range was from 0.003 to 0.017. 

Likewise they used modified coefficient of secondary compression (C) for the relationship between 

mechanical component of the delayed volumetric compression and elapsed time.  A mean value of 

0.0035 was used to characterise the relationship for a range of C from 0.01 to 0.0000066, though the 

laboratory rates of secondary compression were less than those back calculated from the field data.  

 

Coumoulos et al. (1999) examined and proposed alternation curves of vertical strain rates to predict 

long term settlement. The basic assumption of the study was the long term settlement under self 

weight which can be approximated by a straight line when plotted against logarithm of time (Figure V-

1). According to authors observations „a landfill which is constructed rapidly, has higher settlement 

rate than the one with longer period of construction‟. Settlement slope and vertical strain is expressed 

as; 











1

log/
t

tCHH


 (slope of the curve) 

With t and t1 being elapsed time on secondary settlement curve after closure. 
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Figure V- 1: Time settlement curves of similar waste columns with different construction 

periods (Coumoulos et al., 1999). 

The authors made use of the above equation as an attenuation equation (Figure V-2) to explain the 

behaviour of solid waste at already monitored sites to propose C. This analysis was carried out with 

a range of values of C and the plotted settlement data confirmed the attenuation affect of vertical 

strain rate with time; however no data other than construction history were available which could be of 

help for long term settlement behaviour. As the accuracy of predicting attenuation of vertical strain 

rate depended upon the accuracy with which C was determined, (which in turn is accurate when both 

time settlement data and date of closure is available) it was found that most of the data close to 

attenuation curve corresponded with C = 0.07.  

 

The authors compared the value of C for the waste to those of soils. Since there was no available 

data to date of C values for soil under self weight they performed consolidation of thin water clay 

slurry of (CL) under unified soil classification system with LL of 43 and PL 21 for 99% of fines. It 

was observed that C was close to or higher than 0.02 (Figure V-3) and that for denser slurries would 

further report higher values. 
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Figure V- 2: Attenuation graph as proposed by Coumoulos et al. (1999). 

 

 

Figure V- 3: Settlement for soils under self weight (Coumoulos et al., 1999). 

 

Table V- 2: Geotechnical data of the slurries (Coumoulos et al., 1999). 

Test Initial dry unit weight 

(t/m3) 

Dry unit weight at the end of the test 

(t/m3) 

C 

 

4A 0.048 0.43 0.017 

4C 0.124 0.54 0.028 
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Typical values of coefficient of secondary compression for soils under surcharge by different authors 

e.g. Lambe (1951) as follows were quoted and data for slurries under self weight is summarised in 

Table V-2. 

 Normally consolidated clays  C = 0.005 to 0.02 

 Organic soils    C= 0.03 or higher 

 

Ivanova et al. (2003) carried out a prototype settlement study at laboratory scale and investigated 

various physical and chemical properties of the solid waste which play part in the settlement but they 

were unable to properly propose reliable results for their findings related to secondary settlement in the 

MSW. They identified the waste composition utilised for test purpose, calculated the total carbon (TC) 

and total nitrogen (TN) and determined the calorific values. They performed biochemical methane 

potential test (BMP) and concluded that the sample with 10% sludge increased the waste 

decomposition as witnessed through anaerobic methanogenic condition, waste degradation and gas 

production. 

 

Figure V- 4: Schematic diagram of consolidating anaerobic reactor (Ivanova et al., 2003). 

Consolidating anaerobic reactors (CAR) were used to study settlement (Figure V-4), which were, 

however inadequately compacted. Settlement prediction graphs were analysed (Figure V-5) but due to 

the new study en route in CARs the authors suggested more investigation rather than drawing any 

conclusions. They cited the relative importance of various components still to be explored. 
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Figure V- 5: Settlement as studied in consolidating anaerobic reactor (Ivanova et al., 2003). 

Ivanova et al. (2005) over a period of two years studied a sample of MSW in a way to provide with a 

quantitative understanding of the influence of waste composition, density, depth, microbial activity 

and gas production rate on the rate of secondary settlement under constant load. Details of change in 

chemical composition of leachate were continually recorded to ensure the waste degradation. Samples 

were obtained from site and put into CARs with a maximum particle size of 40 mm under two 

different constant loads; 50 and 150 kPa. 10% V/V of sludge was added and leachate was regularly 

collected and examined, whereas gas was vented and its volumetric calculations were done. Data 

revealed that gas production can be divided into 3 phases (refer biodegradation stages in chapter I-

1.3); 

 Day 8-33 : Acetogenic (VFA main product) 

 Day 33-150 : Accelerated methanogenic 

 Day 150-428 : Decelerated methanogenic 

 

Methane accounted for 58% of volume within the total gas production. The authors measured the 

settlement for a period of 428 days (Figure V-6) with following features; 

 For initial settlement stage sewage sludge was added and a constant load was applied. 

 At day 33 completion of primary settlement was assumed (but there was lack of adequate 

compression) 

 Rates for secondary settlement were higher than primary consolidation for both the cells with 

different load which is an indication of effects related to bio-degradation. 
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Figure V- 6: Observed total and secondary settlement. (Ivanova et al., 2005). 

Olivier et al. (2003) performed the laboratory one-dimensional compression tests on municipal solid 

waste sample in a fully instrumented oedometer box of a 1 m3. The authors reported consolidation data 

for short-term (stress-dependent) and long-term (time-dependent) settlements. The derived 

compression ratios and coefficient of earth pressure at rest were correlated. The oedometer box (Figure 

V-7) used had a rigid square cell of size 1 m x 0.98 m with leachate and biogas drainage systems. The 

waste sample was subjected to a vertical compression (up to 130 kPa). Leachate was removed from the 

bottom and re-circulated from the top of the waste sample (once to twice a week). Biogas was 

collected in a discharge-meter, or a biogas analyser with continuous data acquisition. Degradable 

waste and inert waste were mixed in 55/45 ratio, shredded and placed in layers. Each layer was 

compacted to a vertical stress of 40 kPa. Recirculation system and cap cover was placed on top of the 

sample. 

 

Figure V- 7:  Schematic diagram of the compression cell (Olivier et al., 2003). 

Considering in detail the physical conditions of the waste; moisture content at the beginning was 

calculated to study the behaviour of the waste with leachate recirculation. Table V-3 summarises the 

parameters monitored during the test. Analyses of primary and secondary settlements were done 
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assuming the primary compression as an instant process and that it ended after passing some time at 

the end of gradual loading (loaded up to 130 kPa). This assumption of time limit was strengthened by 

the secondary settlement analysis. Constant cycling of unloading and reloading was followed for 

purpose of recirculation of leachate. 

 

Table V- 3: Description of monitored data (Olivier et al., 2003) 

 

For the secondary settlement, one dimensional consolidation theory is used to predict the long term 

changes, commonly referred to as „Sowers Model‟. The modified form of coefficient of secondary 

compression C*
 as proposed by Olivier et al. (2003), (in contrast to Sowers (1973) proposed 

coefficient of secondary compression C) tends to reach a constant value after a period of time which 

seems more realistic as the biodegradation and settlement tends to diminish, even though this time 

period needs to be analysed further in future. The coefficient of secondary compression at various 

times for the start of secondary settlement (t1) was used and a period of 2 months was found to be an 

appropriate estimate for the stabilization of C*
 (Figure V-8). 

 

Figure V- 8: Evolution of coefficient of secondary compression with time (Olivier et al., 2003). 
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Olivier et al. (2007) presented a study of a long term settlement with intensive recirculation of 

leachate which generated increased settlement rates at and after the recirculation period as presented in 

Figure V-9. 

 

Figure V- 9: Increased rate of settlement at the recirculation period for the long term settlement 

laboratory tests (Olivier et al., 2007). 

Carrubba et al. (2003) conducted a study of compressibility and permeability of pre-treated waste. 

The authors made use of a mixture of mechanical biological pretreated waste (MBP) with either 

incinerator sludge or civil depuration plant to analyse the settlement phenomenon. Their experimental 

study shows that compressibility is more than twice of incinerator slag (S10) than for the sludge (F10), 

while addition of sludge further increases the compressibility (Figure V-10). Long term compression 

tests were performed for the sample (S 10) and four phases of secondary compression were identified 

with a unique value of coefficient of secondary compression   











t
C

c log



 as shown in 

Figure V-11. 

 Phase 1 : C = 3 considered to be effective for 3-4 hrs 

 Phase 2 : C = 1.7 with a duration of  100 hrs 

 Phase 3 : C = 2.3 

 Phase 4 : C = 5 
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 The values of coefficient of secondary compression determined from the short term compression tests 

were in the range of 2. 

Remark: Definition of the coefficient of secondary compression (C)c is not the same as 

conventional C. 

 

Figure V- 10: Comparison between long term settlements for the two mixtures (S10 and F10) of 

MBP waste with slag and sludge (Carrubba et al., 2003). 

 

Figure V- 11: Long-term settlements for the mixture S10 during fermentation under a constant 

stress with calculation of four coefficients of secondary compression (Carrubba et al., 2003). 



 171 

Moreover they performed drained oedometer tests under a vertical stress of 100 kPa and found out that 

the biological degradation causes the coefficient of permeability to reduce almost an order of 

magnitude. The probable explanation might be the reduction of voids in the mechanically biologically 

treated solid waste. 

V- 1.2.3 In-situ Experimentation of Vertical Deformation 

Bauer et al. (2005) performed a study to measure vertical deformation inside landfill. According to 

their study horizontal movements have approximately 75% of settlement values while stating that 

horizontal settlements are caused by slope geometry and landfill topography. For the purpose of study 

a ditch in the landfill was excavated and the piping system for leachate and gas collection was placed 

while from the excavated material, samples were retrieved for laboratory study. Classification of waste 

was done to evaluate mechanical properties and the composition was determined to estimate slope 

stability. Similarly biochemical analyses were carried out for modelling of the biochemical reactions. 

Determination of vertical deformation was done through hydrostatic profile measurement and 

deformation of ditch wall was recorded through measuring bolts in walls and surface slopes. These 

pipes served for the measurement of gas amount, composition, relative humidity and temperature. 

Hydrostatic profile measurement was carried making use of piping system utilised for settlement 

measurement of leachate collecting pipes.  

 

Figure V- 12: Seasonal settlement, precipitation and leachate discharge in different pipes (Bauer 

et al., 2005). 

Settlement data showed velocity of settlement which was not constant for a period of one year (Figure 

V-12) the reason could be temperature precipitation and water content within waste body. It is worth 

noticing here that the Figure V-12 is plotted on time scale (t) rather than a log t scale, however, no 

Discharge 

pipe 26 

Discharge 

pipe 27 
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relation between horizontal deformation and settlement could be found. In the compression test 

addition of water resulted in increased settlement velocity which may have chemical and/or physical 

reasons (Figure V-13) but no further conclusions were made as the influence of water on the behaviour 

of a waste mass is still insufficiently investigated. 

 

 

Figure V- 13: Influence of water on the settlement velocity in compression test, over all 

settlement in figure A and average settlement per day in figure B (Bauer et al., 2005). 

Olivier et al. (2005), in complement to other field survey techniques, conducted ground-based 3D 

laser scanning on a French landfill site proposing a new method of surface modelling for landfill 

applications. Three out of six waste cells at the landfill were scanned with 3D laser machine and data 

were interpreted for 2D and 3D applications. 3D application was shown to be useful for the 

observation of altitude variation within a test zone (Figure V-14) while 2D profiles could help 

highlight the presence of superficial slip features along lateral slopes. When high resolution is required 

A 

B 
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the principle of 3D laser could be of benefit over other settlement surveying equipments 

(inclinometers, buried plates etc) and its point density and ease of implementation are its good assets.  

 

 

Figure V- 14: Representation of the average altitude of test zone discretised into 2m x 2m 

elementary grids (Olivier et al., 2005). 

By comparison to conventional surveying, the application of the scanner technique in landfills could 

improve the assessment of cell capacity before and during filling operation as well as the surveillance 

of covered cells at the post-capping period. A continuous representation of surface settlements with 

the help of 3D laser scanner (Figure V-15) could be a promising technique to better understand the 

localised hydro-biophysical and mechanical interactions between waste and structures. 

 

Figure V- 15: Comparison between the settlement measures through conventional survey and 

3D laser scanner on waste surface altitudes along a selected section of the landfill (Olivier et al., 

2005).  

Scanner 

measurement 
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V-2 PREDICTION AND MODELLING OF SETTLEMENT 

The control and the prediction of settlement of waste has become very technical with whole share of 

the follow-up of the modern municipal solid waste due to increasing rationalization of the 

management of domestic and assimilated wastes. The follow-up and the analysis of these settlements 

are placed simultaneously in step of a sedentary and economic nature. In addition, research in progress 

shows that the compressibility of waste with many regards is an indicator of the evolution of the state 

of material, complementary to the series of hydrological and biochemical measurements.  

 

In the present study, a state of knowledge on the modelling of settlement is drawn in particular the 

presentation of new version of the Incremental Settlement Prediction Model (ISPM) originally 

proposed by Olivier (2003) which makes it possible to directly follow-up the MSW in the direction of 

a better anticipation of long-term settlement. Taking into consideration the recent progress in the field 

of the measurement of settlement and of their long-term prediction, the calculation of limit of 

construction (authorized by legislative bodies) deserves to be addressed in a more systematic way. 

With the help of rigorous procedures of evaluation, it would be possible indeed to take into account 

post construction settlement by anticipation (by mentioning limits of size after settlement). 

V - 2.1 Importance of Settlement Monitoring 

The understanding of mechanisms governing municipal solid waste settlement w and the development 

of means to accurately predict the rate and magnitude of settlement have become essential elements in 

the design and operation of landfills (Figure V-16).  

 

Figure V- 16: Typical landfill scheme, implementation of waste layer by layer and vertical 

column. 
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hi 
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The performance of any structure built on a landfill will depend, to a great extent, on the ability to 

predict the anticipated settlement. Moreover, prediction of settlement contributes to the determination 

of the useful lifespan of the landfill and assists in the design of its components, such as cover and liner 

systems. The occurrence of differential settlements is even more critical than total settlement and is 

inevitable due primarily to the non homogeneity of solid wastes. Differential settlements eventually 

result in problems such as water ponding on the cover system and accumulation of water on the 

drainage layer, hence increasing the rate of water infiltration into the waste and leachate formation. 

The implementation of a landfill consists in placing waste layer by layer (thickness hi for layer i) till 

the landfill is full (maximum height of waste Hn reached), the waste mass is then confined by a cap 

cover of thickness hc (clay or geosynthetic). 

V - 2.2 Logarithmic Laws in Soil Mechanics  

V- 2.2.1 Primary Settlement 

Once the phenomenon of dissipation of interstitial pore water pressures in the case of the fine grained 

soils in 1925 was described, Terzaghi (1943) proposed the following formulation connecting the 

primary consolidation of the soils to the variations of effective stress (Figure V-17). 
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Where CR and Cc represent the coefficient of primary compression and the primary compression index, 

eo initial void ratio of a soil sample of height ho subjected to an initial stress of σ’0 and Δσ’ as the 

increase in stress resulting from the application of surcharge. This is only true for a sample of 

normally consolidated soil, not having undergone previously any effective stress higher than σ’0. If σ’pc 

is the pre-consolidation stress of waste, then it is a condition such as 
''

0 pc
  . On the other hand, 

over-consolidated soil (i.e. having undergone a pre-consolidation higher than the current effective 
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  ), eq. [A] becomes:  

[B]    
'

0

''

0

0

log.


 




S

p
C

h

h
  

 



 176 

 

Figure V- 17: Illustration of the primary consolidation according to the Terzaghi theory (1943). 

Lastly, in the general case of a pre-consolidated soil sample under an effective stress 
'

pc
 while 

subjected to an increment of stress (Δσ) such as: 
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  and
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  , following equation 

is obtained:  
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The coefficients of primary recompression CS and primary compression CR are considered as intrinsic 

parameters of the material, independent of the state of stress. It is not the case of the modulus of 

oedometric deformation, well-known in soil mechanics, which satisfies the equation:  
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For a normally consolidated soil, Eoed varies with the stress at a constant value of CR, combining Eq. 
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V- 2.2.2 Secondary Settlement 

The laboratory tests and the site observations reported by Buisman (1936) and Taylor (1942) showed 

the effect of time on the compressibility of the fine grained soils. Buisman (1936) in particular 

highlighted that the settlement of clays and the peats increased linearly with the logarithm of time 

under constant conditions of effective stress and proposed the following law for secondary settlement: 
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where  

 h1 = the thickness of the soil layer at time t1 (also called t100 in soil mechanics) corresponding 

to the end of the primary settlement (total dissipation of interstitial overpressures), 

 e1 = void ratio at the beginning of the linear portion of the curve of void ratio according to the 

logarithm of time, 

 finally C and C = coefficient and the intrinsic coefficient of secondary compression.  

For practical reasons (due to the difficulty to access the value of h1 under stress) hereafter h1 is 

considered as h0.  

 

C is regarded as an intrinsic parameter such that it is independent of the load applied (Leonards and 

Girault, 1961). Moreover, Mesri and Choi (1985) noted that the ratio
R

CC


varies little for one type 

of given soil (0.05  0.01 for organic clays). From the equations [C] and [F], the formulation 

suggested by Garlanger (1972) through addition of primary and secondary settlement is determined: 
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Considering other formulations of primary and secondary settlement proposed like Koppejan (1948) 

where secondary settlement is dependent on the level of loading, the model however is based on the 

theory of Buisman (1936) which supposes that once the primary consolidation is completed, 

settlement varies linearly as a function of logarithm of time. For t < t1 (end of the primary 

consolidation), settlement follows the theory of the consolidation suggested by Terzaghi. Beyond t1, 

the settlement law is written as:    
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Here it is worth mentioning that the research tasks on the creep of the clays undertaken from Bjerrum 

(1973) to Leroueil (1985) showed the reduction of void ratio related to creep which involves an 

increase in the pressure of apparent pre-consolidation whose consequence is such that in the event of 

additional loading, an old clay will behave like an over-consolidated clay. Similarly if the increase in 

load remains weak, instantaneous compression will be limited to a weak elastic compression.    
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V - 2.3 Modelling Landfill Settlement 

The prediction and modelling of settlement processes in landfills are predominantly empirical and 

usually based on measured laboratory and field parameters. There is a lack of one workable theory that 

accounts for all factors influencing the settlement of waste in landfills. The initial settlement phase is 

rarely modelled except in the case of foundation design. In this context Eq. 1 applied for partially 

saturated fine-grained soils and coarse grained soils with large permeability, is used for a landfill that 

has a relatively large permeability and that experiences a visible immediate compression when 

surcharged.  
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where, 

Es = waste modulus of elasticity, kPa 

q = increment of overburden pressure at the mid-level of the layer, kPa 

H0 = initial thickness of the layer under consideration, m 

wi = initial settlement, m 

 

Several models developed to estimate MSW settlement are based on conventional geotechnical theory. 

Terzaghi’s theory simulates primary and secondary compression processes for various materials by 

describing the deformation resulting from consolidation mechanisms. For waste body, it is more a 

compaction mechanism rather than a consolidation phenomenon with general form of the equation: 
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Where, its first term is related to the primary and the second to secondary settlement.  

w = settlement due to primary and secondary consolidation, m; 

Hi = thickness of waste layer under consideration after initial compression, m; 

Cc = coefficient of primary compression; slope of e-log p curve; 

e0 = void ratio after initial compression, m3/m3; 

σ0 = existing overburden stress at mid level of layer, KN/m2; 

σ = overburden at mid level of layer, KN/m2; 

Hp = thickness of waste body after primary consolidation, m; 

Cα = coefficient of secondary settlement; slope of e-log t curve; 

ep = void ratio after primary consolidation, m3/m3; 

t = time, t  tp, days; 

tp = time for primary consolidation to occur, days (usually 30). 
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The complexity of solid waste matrices, the simplicity of the mathematics involved, and the number of 

case histories that are linked to the conventional techniques are often cited to justify the use of the 

theory. Although ranges of the consolidation parameters are readily available in the literature, care 

must be taken when extrapolating results. Actual waste compressibility may differ considerably from 

values available in the literature. Because it is difficult to reliably predict the initial void ratio of waste, 

Eq. 2 has been written in different forms to avoid the need to estimate this particular parameter.  

 

Rao et al. (1977) used plots of relative layer thickness vs. the applied stress in order to predict 

settlement. A major advantage of this approach is to consider a relative height-vertical stress curve 

which eliminates the estimation of the initial height of a certain layer. Settlement is estimated using 

Eq.3. 
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w = settlement due to load application (), m; 

H0 = existing thickness of waste layer under consideration, m; 

Cs = coefficient of compression; slope of relative height-log p curve; 

H0/Hi = relative height corresponding to existing overburden pressure (hi for surcharge σ0), 

m/m; 

σ0 = existing overburden stress, KN/m2; 

σ = increment of stress, KN/m2; 

 

Remark: The contribution of biodegradation to long-term settlement can account for a large portion 

of the total settlement. In this regard recent efforts reported mathematical expressions incorporating 

the effect of decay on settlement (Gourc et al., 2010). The basic assumption underlying these 

expressions is that the amount of settlement is directly proportional to the amount of solids solubilised. 

Because solubilisation of organic materials is generally expressed in terms of first-order kinetics, the 

settlement due to biodegradation is also expressed in terms of first-order kinetics. 

V- 2.3.1 Complex Settlement Models for Landfills 

Settlement models with a background of derivation based on knowledge of soil mechanics are most 

practical for civil and geotechnical engineers. Not only they are simple in their mathematical form but 

also their parameters determination is kept simple and practical. For example in case of the models 

discussed below much consideration is given to the number of unknown parameters and the ease with 

which they could be determined in the field so as to keep the model handy for people working at site. 

And this is one of the reasons why ISPM model developed by LTHE (LIRIGM) is getting appreciation 
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around the world. The workability of any simple modelling methodology is such that it produces 

reasonable results with limited data available from the landfill history. In the context of prediction of 

settlement various models are proposed and developed by the researchers which are sometimes applied 

solely or in combination with other models. At broader scale these models can be classified as; 

 Mathematical model 

 Mechanical model 

 Biological model 

 

In the near past different models have been proposed for the prediction of settlement in the landfills 

which follow certain laws. In all the models one technique is common that is to stick to one type of 

law either a mathematical or mechanical approach. But for sometime now a need to overlap different 

approaches has been considered much important since waste is a heterogeneous material and it does 

not strictly follow one law towards its behaviour in the landfills. Different combinations of the 

individual models include mechanical & mathematical model, Bio-mechanical model or Hydro-bio-

mechanical model. 

 

McDougall et al. (2001) discussed in detail a three component model namely hydraulic, 

biodegradation and mechanical models (HBM) with its implementation in numerical technique of 

finite element method. In their study they have used an unsaturated flow model for the hydraulic input 

because of the fact that it correlates moisture content and flow to infiltration and absorptive capacity as 

well as it develops rate of discharge from leachate exit points. For the biological model anaerobic 

digestion process is used where quantities of fatty acids and methanogenic biomass are incorporated to 

determine mass loss. However within the mechanical model there are three components to be handled;  

 load induced compression using elastic-plasticity,  

 creep settlements under incremental load by an equivalent time method 

 and finally biodegradation induced settlement essentially a plastic deformation is catered 

through depletion of solid organic fraction and current stress state. 

 

But only for the last factor to be realistically incorporated into the model a density dependent phase 

relation of waste was considered. Keeping in view the diverse structure of waste an extended phase 

description was proposed with organic and inorganic fractions to provide with a framework for 

interpretation of volume effects due to biodegradation. The model was tested on Lyndhust sanitary 

landfill but variations in moisture content in the waste has random nature which was failed to be 

recognised by the model and hence the associated absorptive capacity as well. Finally their proposal to 

use a finite element model depends upon the cell lifting history and its corresponding load to envisage 

more properly the expected settlement upon simulation of filling phase. 
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McDougall et al. (2005) worked on the HBM model with their previous work to develop a finite 

element model with three components incorporating simultaneously different parameters responsible 

for settlement in a landfill (Figure V-18). The point emphasized in their biodegradation induced 

effects is the rate limitation of decomposition which is a time dependent process however constrained 

by a maximum rate.  

 

Figure V- 18: Schematic diagram with the components of the HBM model (McDougall et al., 

2005). 

They formulised the interpretation of mechanical consequences of decomposition by developing a 

relationship between two volumetric state variables (Figure V-19), the void phase volume and the 

solid phase volume as dVv = ΛdVs 

Λ = void change parameter induced by the decomposition. 

 

The simulation comprised of two parts, firstly it was run without biodegradation effects and afterwards 

with the biodegradation effects. Since the interest of the study was to see the relative and qualitative 

behaviour, the absolute decomposition rates are not considered to be the substantial output of the 

analysis. However an increase in the leachate retention was observed which could be a false case as 

less organic matter should have a lower leachate holding capacity. Or may be there is need to modify 

the Van Genuchten parameters in the hydraulic input!!! Moreover the data received for leachate 

discharge was not coinciding with the retained moisture content within the simulation process so more 

investigations are needed to be done. 
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Figure V- 19: Reference values for decomposition induced void change parameter Λ and 

associated volumetric and mechanical conditions. (McDougall et al., 2005). 

Furthermore the diagram showing simulation of settlement in different column heights is very much 

the same for each point and is uniform over all the time period of simulation (Figure V-20) which 

implies that there is constant decrease till 500 days as well as end of filling stage and finally at day 

1500 it is almost the same tendency. In the end it is suggested that the use of MBP waste may produce 

better results along with the upgradation of the conventional modelling of moisture retention to 

interpret leachate retention.  

 

Figure V- 20: Settlement of selective nodal locations by McDougall et al. (2005). 

Parker et al. (1999) presented a model for a waste degradation combining two numerical models 

initially proposed by El-Fadel (1996) and Young (1989). A three stage degradation process with four 

components coexisting in aqueous phase is modelled (Figure V-21) with assumed rate of degradation 



 183 

reaction to be determined by the catalytic activity. Law of conservation of mass with respect to carbon 

is applied and the model constantly calculates the acid concentration of the liquid phase. According to 

the authors the model can successfully simulate both the cessation and the acceleration of degradation 

process. The proposed model has various stages catering for different aspects such as; 

 Catalytic actions through defined constitutive catalytic equations for each type of biomass; 

Lytic, Acidogenic and Methanogenic 

 Maintains carbon balance for all stages of chemical changes from solid through aqueous to 

acidic. 

 For each carbon balance there is a stoichiometric correspondence to mass. 

 Incremental change of carbon concentrations of all carbon components are converted into 

mass concentrations.  

 And a forward time step calculation for the compensation of any drift to simulate degradation 

with the course of time.  

 

 

Figure V- 21: Three stage model scheme as proposed by Parker et al. (1999). 

The mass balance is generated with incremental change in carbon concentration and subsequent 

conversion to mass concentration to simulate the degradation with respect to time. The results suggest 

the model may readily be adapted to other proposed concepts of kinetic and chemical reactions; 

however, the hydraulic aspect of the model still needs to be developed to cater for the modelling of 

water components of the process. Moreover it is stated that such a model will never be accurate to 

simulate precisely the degradation process but may provide with a base for the design of physical test 

procedures and data interpretations. 
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V- 2.3.2 Sowers Model (1973) and its Variations 

Sowers (1973) was one of the first to propose a transposition of the laws of behaviour of the 

compressible soils to the waste. This transposition was limited to the unidirectional conditions which 

corresponded to the conditions of deposit in column (with negligible lateral strain) of a waste 

sufficiently far from the edges of the waste cell. A conventional soil mechanics approach was adopted 

to predict waste settlement without coupling any hydrological conditions, since waste is rarely 

saturated at the time of its placement at site. Even though the physical phenomena concerned are very 

different yet the application of the compressibility laws of the soils is quite relevant to soils and waste.  

 

The Sowers (1973) method of settlement prediction remains most widely used model in the literature 

with simple formulation and lesser number of parameters to be introduced. Moreover, its coefficients 

can be deduced from the observation of a column of waste for one period with an objective of a 

longer-term prediction. The facility to use Sowers model guaranteed him a broad diffusion in the circle 

of engineering and design departments specialized in environmental geotechnics due to correct 

calibrations in a certain number of simple cases. Nevertheless this model suffers from three handicaps 

of quite importance: 

 

 absence of standardization of its parameters of time, which makes any comparative approach 

difficult; 

 unsatisfactory calibration in the case of columns of waste of complex history (rest period, late 

expansion), even impossible in the event of delayed topographic follow-up; 

 parameter of non-intrinsic compression C since secondary compression is considered 

generally only starting from the end of construction of the waste column.    

 

Sowers model breaks up the waste settlement as: 

 an instantaneous phase: regarded as pseudo-elastic, it intervenes at the application of a 

surcharge (new layer of waste or cover); 

 a primary phase: resulting mainly from the mechanical actions, its duration is considered less 

than 3 months (more commonly one month); 

 a secondary phase:  Resultant of the decomposition of the organic matter, it is supposed to last 

for about thirty years.  

 

Sowers (1973) proposed to take the definite oedometric model of soils and to apply it directly to the 

column of waste, comparing column to an instantaneously built single layer. An important and 

questionable assumption of the Sowers Model is that the primary and secondary settlement are 
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expressed by extrapolating the laws suggested by Terzaghi (1943) and Buisman (1936), replacing the 

thickness of a layer h0 by the column height H(tc).  

V - 2.3.2.1 Primary Settlement  

Primary settlement is expressed in terms of relative compression (Figure V-22) as given in the 

following form:   
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Figure V- 22: Typical landfill waste column construction. 

Relative compression depends on the initial stress (σ'0), the effective surcharge applied (Δσ’). Due to 

the lack of pore water pressure, effective stresses (σ') are equal to total stress (σ) and the simplified 
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  expressed for the soils according to the initial void ratio e0 is used.  

 

Table V- 4: Summary of the coefficient of primary compression CR (Olivier, 2003).  

Location  Type  

of waste  

Coefficient CR  

Range  Average  

Sample of 21 sites  Variable  0.13 – 0.47  0.26  

Arnouville (France)  MSW  0.20  0.20  

Sample of 10 sites  Variable  0.05 – 0.26  0.14  

Landfills USA  Unknown  0.15 – 0.26   

Unknown  MSW 0.24 – 0.30  0.27  

 

The coefficient x: (CC = x.e0) with x = 0.15 for a waste low in organic matter and x = 0.55 for a waste 

rich in organic matter is considered. The richer the material is in organic matter, the more it is thus 

supposed to be compressible, although the degradation of the organic matter does not intervene in the 

Href 

hc Cap cover 
w 
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primary compression considered as instantaneous. Fasset et al. (1994) suggested that the value of CR 

decreases with increasing stress σ’0. In the case of application of significant loads, it even suggests 

adopting a linear model by segments, which amounts for considering several values of CR. 

V - 2.3.2.2 Secondary Settlement  

Secondary settlement is defined as:  
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initial total porosity of waste with an assumption of linear variation of C with initial porosity. A 

spindle was proposed by Sowers (1973) with an aim of determining the values of the coefficients of 

primary and secondary compression (Figure V-23). Utilizing only one parameter (void ratio) is 

excessively difficult to characterise the waste; this method thus remains inapplicable. The literature 

provides a certain number of values of the secondary coefficient of total compression Cε for the 

waste. These values are in general obtained from back-analysis of settlement measured on the surface 

of waste column and are seldom specified in the literature so that the values of Cαε published must be 

considered with much precaution. Moreover the lack of information related to the studied sites 

(composition of waste, height of storage, construction phases) makes these data un-exploitable.   

 

 

Figure V- 23: Index of primary (Cc) and secondary compression (C) for domestic waste 

according to the initial void ratio e0 – Spindle of Sowers taken again by Cartier and Baldit 

(1983).  
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An evolution of the model of Sowers was proposed by Bjarngard and Edgers (1990), characterized by 

the introduction of 2 coefficients of secondary compression. One dimension compression tests were 

carried out to evaluate load and time dependant characteristics of the waste. Data was collected from 

24 landfill sites and the relationship drawn with parameters of settlement being calculated by back 

analysis. For smaller time spans linear curves were observed but for large time periods much greater 

slopes were observed. The authors pointed out the absence of „s‟ shape of curve indicative of primary 

consolidation however it might be due to incomplete saturation. 

 

 

Figure V- 24: Idealised time-settlement curve as suggested by Bjarngard et al. (1990). 

In Figure V-24 compression as a three phase process is presented as suggested by Bjarngard et al. 

(1990). With initial rapid compression and loss of voids some settlement is observed with another 

slope of delayed compression where the mechanical interaction is the dominating phenomenon with 

Cαmin = 0.019. The authors suggested the added effect of decomposition at the last staged to the 

logarithmic compression rate giving Cαmax > 0.125. However, it could be shown (Olivier, 2003) that 

such evolution does nothing but artificially compensates for the error generated by not taking into 

account the history of construction. From this point of view, ISPM model allows, starting from a 

single C*
αε  coefficient, to correctly take into account the evolution of the settlement of the column of 

waste according to the parameter of time, and it could be considered as a significant improvement vis-

à-vis the Sowers model.  

 

In addition to all, the presentation of Sowers model in the literature remains vague with regards to the 

definition of the parameters of time (tref) and heights of waste (Href). A rewriting of the model 
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following the notations used in the model proposed by LTHE (LIRIGM) is utilized hereafter with the 

objective of clarifying each parameter of the model (Olivier, 2003):  
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Where H(tc) represents the height of the column of waste at the end of the construction with tc elapsed 

time for overall construction of the landfill, t0 origin of time and t1 the origin of secondary 

compression. The values of the parameters of time t0 and t1 are clarified in Table V-5. 

  

Table V- 5: Values for time parameters of the model of Sowers (1973) as taken from Olivier 

(2003) 

Time parameters   Frequently used approach   Academic approach   

Origin of time (t0)  

 

t0  = tc  

 

t0  < tc  

tc / 2 or ¾ tc   

Origin of secondary 

compression  

(t1)  

tc  + 125 days  

tc  + 1 month  

tc  + 1, 2, 3 months  

No example in the literature   

but logically t1  = tc   

 

Two practical approaches are possible, with regards to the time of end of construction (tc) either as the 

origin of time or as origin of secondary compression. In the majority of the cases, both these terms (t0, 

t1) are taken equal to (tc, tc + 1 month), and this will be retained in the present numerical applications 

of Sowers model (except mentioned otherwise). Later the drift of this coefficient compared to the 

intrinsic coefficient of secondary compression will be discussed according to the origin of selected 

time and secondary settlement. In Section V-4 the comparison between ISPM model and Sowers 

model using relationship [K] and [L] will be carried out in detail. 

V-3 INCREMENTAL SETTLEMENT PREDICTION MODEL 

(ISPM)  

Morris and Woods (1990) developed a data-processing program (SETT 87) on the basis of equation of 

Sowers in FORTRAN allowing the calculation of the primary and secondary settlement components 

by summation of compression of the individual layers. Although this algorithm proceeds in its step as 
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incremental model ISPM developed hereafter, but it does not remain the same since the history of 

construction is not taken into account in the expression of the secondary settlement of the various 

layers. In addition, the determination of the coefficient of secondary compression is not considered by 

back analysis starting from site data. Its value is fixed arbitrarily by the operator or starting from the 

void ratio, parameter systematically ignored for a material such as waste.   

 

In addition, Bouazza and Pump (1997) presented a software (FILLS) developed by engineering AGC 

Woodward-Clyde (Australia). Based on a square grid from 30 to 100 m side to side, this program in 

Visual BASIC made it possible to obtain a layer by layer projection to the scale of cell to cell, at the 

landfill site. The results (in the shape of 2 files) include the evolution of the vertical stresses, 

compression, porosity and the density over the course of time. More broadly, the storage capacity and 

the construction phase of the site are estimated on the basis of estimated tonnage. As previously, this 

algorithm works on the basis of global solution identical to that of Sowers and does not allow the user 

to determine the value of the coefficient of secondary compression by back analysis at the end of one 

period of topographic follow-up; initial Con the contrary is preset by the user. Lastly, it does not 

make it possible to model the vertical expansion of an old waste column.   

 

According to a different approach, Bleiker et al. (1995) suggested an evolution of the model of Gibson 

and Lo (1961) according to an approach of superimposing the deformations layer by layer. Van 

Meerten et al. (1995) proposed a complex model of settlement based on the forced theory of the single 

cell volume. The model integrates well the time of construction of waste column but the construction 

is implicitly supposed to be linear in the absence of layer construction history. Similarly the increasing 

load is considered for the whole column in the absence of real construction details. In its ultimate 

version Van Meerten et al. (1997) suggested a detailed history of material should be taken into account 

but this model including three parameters of compressibility and two parameters of height (virtual 

height of uncompressed waste in the course of construction and height at the end of the construction) 

adds a scale factor to determine the initial rate of deformation of the column which is not practical.   

 

To finish with this short historical retrospective, it should be recalled that this idea of simulation of 

construction of column of waste in elementary layers (with objective of taking into account the history 

of material) was also suggested by Green and Jamnejad (1997). The filling of a column of waste is 

carried out typically over a period of several months to several years where the waste is set up by 

successive layers compacted and sometimes separated by periodic covers. A deposit of waste thus 

consists of sub layers of waste of different age and history. The mechanical behaviour of the whole of 

the deposit thus is considered according to the behaviour of each sub layer.  
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V - 3.1 Conception of a New Model (LTHE) 

Settlements are generally measured on the cap cover and the models of prediction are applied 

conventionally on column of waste using formula [K] and [L] in place of [A] and [F], without taking 

into account the history of construction. This corresponds to a coarse simplification whose influence 

was never quantified. In this context Incremental Settlement Prediction Model (ISPM) was introduced 

by Gourc et al. (1999) before being developed by Thomas (2000) and Olivier (2003). Based on the 

placement of elementary layers of waste leading to the formation of total height of the waste (column), 

this algorithm integrates behaviour in primary and secondary settlement of each elementary layer 

constituting the column. With the placement of each layer intrinsic parameters of behaviour are 

affected and the respective layer behaviour is studied individually according to the evolution of the 

surcharge and time.  

The present study contributes to; 

 Modelling of a newer version of the construction sequences  

 Parametric study and application to case histories using this new version. 

 

Figure V- 25: Illustration of the waste column division in elementary layers. 

V - 3.2 Specific Definitions of ISPM Model 

V- 3.2.1 Elementary Layer of Waste  

The term „elementary‟ layer or „sub layer‟ for a layer of thickness hi  (generally ranging between 50 

cm and 2 m) is used to represent the thickness of waste set up and compacted in only one operation at 

the time of construction of a waste column. The intermediate covers possibly inserted between the 

elementary layers of waste are not dissociated. The subdivision of elementary layers makes it possible 

to distinguish the behaviour of waste according to its particular characteristics (age, surcharge and 
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possibly nature). The parameters relating to the thickness of the layers vary according to the surcharge 

and time.     

V- 3.2.2 Waste Column  

„Column‟ is the waste height Hn of a column of n „elementary‟ layers of thickness hi. 

V- 3.2.3 Time and Sequences of Construction of Waste Column  

The origin of time (t = 0) coincides, for each waste type, with the date of beginning of construction of 

the column (i.e. placement of the first waste). An origin of time for every layer is also taken into 

account as i  which is the time of construction of a layer i (Figure V-26) of index i and  ri  to the time 

of construction likely to intervene at the end of the construction of layer i, i = 0 at the beginning of 

the construction of layer, ti  corresponds to the time of construction of a column made up of i layers. 

Lastly, tc is the time necessary for the construction of a complete column (waste + cover). Moreover 

tm
0 is the time corresponding to first measurement of settlement of the landfill cap cover (tm

0
 > tc) and 

likewise tm
ult is the time corresponding to the ultimate measurement of settlement on site Figure V-26. 

 

Figure V- 26:  Illustration of the differential application of the model of Sowers in the event of 

delayed follow-up. 

V- 3.2.4 Settlement  

Settlement is supposed to be vertical (uni-directional), therefore in conditions of zero lateral strain. 

The settlement of an „elementary‟ layer of initial thickness (hi) is termed as hi corresponding to the 
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compared to the initial thickness (hi0) is obtained after placement and compaction of the considered 

layer. The components of primary and secondary surface settlement of a „column‟ of waste are termed 

as 
p

n
w  and

s

n
w . w is termed as the post construction surface settlement measured from the start of 

placement of the final cover (tc) and w is the surface settlement measured at a delayed time with 

reference to the end of construction.    

V- 3.2.5 Deformation  

The comparison of the data of compression for different thicknesses of waste leads to treat the data in 

the form of relative strain where deformation ε is the vertical strain of a waste layer brought back to its 

height of reference. For an elementary layer, this height of reference corresponds to the initial 

thickness of waste h0 (after compaction). In the case of a waste column, the height H(tc) at the end of 

the construction is considered, generally after the placement of the final cover (or exceptionally before 

that time).  

V - 3.3 Assumptions of ISPM Model  

The extension of the application of the settlement models (rigorously applicable to site sample or by 

analogy to an elementary waste layer) to multi-metric columns comprises of a certain number of 

difficulties generally not cited in the literature. Settlement model of Terzaghi will be clarified here but 

others are beyond the scope of the present study. Comparing a column of waste to a superposition of n 

horizontal layers, ISPM model functions on the following general assumptions: 

V- 3.3.1 Geometry of Storage  

 The column of waste is supposed to be located away from the slope of waste cell and it has a 

small height compared to its width so that horizontal strains can be neglected. 

V- 3.3.2 Waste Material  

 The initial heights h0 and the initial unit weight 0 after the placement of waste (compaction 

included) are identical for each layer. 

 Waste is supposed to be unsaturated at any moment so that the effective stresses σ' are 

equivalent to the total stresses σ and thus the coefficient of consolidation Cv does not need to 

be considered. 
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 Moreover degradation leads to a loss of total mass (fluid included) and is not taken into 

account over the period of study while waste density is considered constant over the course of 

time. 

V- 3.3.3 Compaction 

 The compaction is supposed to affect only the top layers of waste because of the rapid lateral 

spreading of the compaction energy with depth. 

 The pre-consolidation stress of waste resulting from the compaction is supposed to be 

identical for all the layers of waste (σci = σc = constant). It is considered close to 40 kPa for the 

current sheep foot rollers (Olivier, 2003). The confirmation of this estimate deserves a 

thorough study. Consequently the compressive strain of the waste layer under vertical stress σ 

≤ σc is considered negligible. 

 Immediate settlement during spreading and compaction of the waste (immediately after 

disposal) is not taken into account in the modelling of settlement. Initial unit weight 0 is 

measured after compaction.  

V- 3.3.4 Soil and Cover Liner 

 In the case of sites partially in excavation, the foundation soils supporting the waste column 

are over-consolidated because of the loss of weight of the excavated ground practically not 

prone to compression as long as the surcharge coming from waste remains lower than the 

excavated weight. In the present study, the settlement of the foundation soil, unless otherwise 

specified, will always be regarded as negligible. 

 Although the intermediate/daily covers can represent up to 20 to 25 % of the total stored mass 

(in particular in the United States, much less in France), it is undoubtedly erroneous to 

imagine sandwich soil layers between the layers of waste. On the contrary, the clayey soil 

covers tend to migrate within waste and may mislead to distinguish them from latter (Morris 

and Wood, 1990). For this reason, these layers of soil are not considered in ISPM modelling. 

On the other hand, the quantity of soil added to waste (except cap cover) is incorporated for a 

qualitative account at the stage of the analysis of the compressibility of the material.  

 The final cover of unit weight c and thickness hc is supposed to be incompressible at any 

moment.  

 

In the context of present study, the vertical compressive stresses σ are considered positive (as in soil 

mechanics) just as settlements (Δh, w) towards bottom, similarly the deformations in contraction or the 

reductions in void ratio e are considered positive.  
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V - 3.4 Fundamental Equations of ISPM Model for an Elementary Layer i 

The research study carried out by Olivier (2003) suggests maintaining the interpretation of two phases 

in settlement from his own results of research project. In the present study the compression known as 

„instantaneous‟ will not be considered since it is not possible to dissociate it from the primary phase of 

settlement. It will be thus regarded as included in primary settlement, (the initial thickness h0 and unit 

weight 0 of an elementary layer of waste both being defined after compaction).  Excluding the initial 

phase of spreading and compaction of waste, the history of an elementary layer includes 2 phases:   

 A phase of compression under the actual weight of the overlying elementary layers during 

which primary settlement and secondary settlement are superimposed; 

 a phase of compression known as „post-construction settlement‟ at constant load (with the 

variations of mass relating to the biological breakdown being excluded as well as the 

evolution of the water content) during which only secondary settlement takes place. 

V- 3.4.1 Primary Settlement  

Primary settlement results from the mechanical actions related to the application of a surcharge. The 

response time of material cannot be allocated to dissipations of pore water pressures in the case of 

waste because it is seldom saturated. On the other hand, it can be due mainly to the significant 

rearrangements of the materials structure and the compressibility of the different solid elements. The 

time of primary settlement is considered very short, such as: 

 in the case of the construction of a waste column of municipal solid waste, the primary 

settlement of a layer of waste is supposed to be completed at the end of construction of the 

layer (time i); 

 in the case of laboratory tests on waste samples with thickness of one meter, the end of 

primary settlement is taken as the offset of the curve  h = f(t). Time t1 corresponds to the end 

of primary settlement and varies over a time period of few minutes to few hours after the 

application of the last load application however additional research is needed to clarify this 

supposition.   

 

The primary settlement of the layer i is described as presented in the theory of Terzaghi developed in 

soil mechanics as follows (total stresses):   
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Over consolidated waste is supposed to be insensitive of the surcharge (no compression) and C*
R 

represents the „intrinsic‟ coefficient of primary compression of the waste (different from the Sowers 

coefficient CR, Eq.[K]) directly deduced from the equation of a column of waste. Stress σi corresponds 

the pressure applied to the top of layer i (on a horizontal face) and corresponds to the weight of the 

overlying layers of waste column (and the final cover).  

V- 3.4.2 Secondary Settlement  

Secondary settlement is supposed to be independent of load and varies over the course of time. The 

secondary settlement, of the layer i, is written according to the law of Buisman (1936):  
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Where C*
αε represents the „intrinsic‟ coefficient of “secondary compression” (creep) of waste, c the 

time of secondary settlement status and  is the time since the beginning of the construction of the 

layer i (whose origin coincides consequently with the beginning of the construction of layer i). This 

equation differs from the Sowers equation [L] 

V - 3.5 General Formulation of Model ISPM: Modelling of Surface 

Settlement 

V- 3.5.1 Expression of the Primary Settlement of a Waste Column 

This part of the modelling was not altered in the ISPM model, as suggested by Olivier (2003). 

Considering primary settlement independent of stress application mode during the waste placement 

but only on the compressive stress it can be stated that the placement of waste can be carried out in a 

regular way or by phases: when waste reaches the height H(tc) and the cap cover is built, the end value 

of primary settlement is supposed to be identical whatever the way of loading. Compacted waste will 

behave, if identical with a soil, as an „over consolidated‟ material as long as the pre-consolidation 

stress (σc) resulting from the compaction remains higher than the stress transmitted by the column of 

waste above it. Or it will compress as a material „normally consolidated‟ and its density will thus 

increase with the depth under the effect of primary settlement.  

 

Considering the history of step by step filling, at the time of the placement of the first elementary 

layer, it is supposed to be pre-consolidated due to the compaction effort. When the second layer is 

placed on top of the first, it induces a vertical stress corresponding to its actual weight and so on for 

the following layers. From a level of stress higher than the pre-consolidation stress c, the application 
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of the additional layers increases the primary settlement of the normally consolidated layers. Thus, the 

placement of layer i, starts a new phase of primary settlement for layers 1, 2…, ic -1, index ic 

corresponds to the first pre-consolidated layer. The same applies to the placement of the layers i + 1 to 

n and final cover.  Quantitatively, the vertical stress acting on layer i at the end of the construction (n 

layers) corresponds to the actual weight of the overlying strata and cover:  

[P]    cci
hhin  

00
)(   

Where 
cc

h (noted as q hereafter) represents the vertical stress induced by the actual weight of the 

cover. Taking into account the pre-consolidation stress c induced by the compaction, the elementary 

layers undergoing a vertical stress  < c are supposed to be over consolidated and their primary 

settlement is considered zero. On the other hand, the layers undergoing a vertical stress  > c are 

supposed normally consolidated. Primary settlement thus relates to the layers of index i where i > c 

such that for equation [P], the layers satisfying the inequality  
0
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
 with simplicity, the critical point of over consolidation 

concerns the layer ic, it is supposed that layer ic is over consolidated, this approximation generates a 

weak error for an elementary thickness where h is very small in comparison to Hn. Thus 0
p

i
h ,   i  

 [ iC…, n ]. The expressions of  
p

i
h   for i < ic are illustrated in Figure V-27.  

 

Figure V- 27: Expressions of primary settlement for elementary layers 1 to n (ISPM Olivier, 

2003).   
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If it is considered that the intrinsic coefficients of primary compression are identical for each layer of 

waste, the expression of the primary settlement (
p

n
w ) of the complete column while summing  

p

i
h   

for i varying of 1 to ic – 1, is obtained:   
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V- 3.5.2 Secondary Settlement Expression for a Column of Waste  

To assess the settlement of the multi-layer waste column, modelling of the construction history is 

required. The modelling of settlement prediction for the present study starts from this section in 

comparison with the former version of ISPM as developed by Olivier (2003) to the newer one as 

ISPM 1.1. The fundamental equation modified under the present study is; 

c

s
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C

h

h
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

log.
*

0




 (Eq. [O]) 

From the equation [R], the values from ti and tc, corresponding respectively to the end of construction 

of the layer i and the end of construction of the complete column (cover included) are deduced Figure 

V-28. 
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







1

1

1

1
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where j is the time of construction of layer j 

rj is the rest period between the end of construction of layer j and the start of construction of layer j + 

1. Absolute time (t) originates from the time of beginning of construction of the column of waste. 

Expressing the same parameter according to time  (considered from the beginning of construction to 

the last layer), the operating times (j) and the rest periods (rj) for each of the sub-layers, rj is the rest 

period between the placement of the layers j and j+1 (rj ≠ 0 only for the discontinuity between two 

successive layers) with the assumption of constant thickness (h0) for every layer. Figure V-28 presents 

the overall construction of the landfill, ti the time corresponding to the end of construction of layer i 

and t’i corresponds to the beginning of the construction of layer i+1. 

 



 198 

 

Figure V- 28: Sequence of construction of the overall landfill. 

V- 3.5.3 Scheme of Construction 

Figure V-28 focuses on the construction of the median column height of the waste, with the 

assumption that the column under study is situated far from the edge of landfill. By expressing the 

fundamental equation of secondary settlement [O] according to absolute time t, the expression for the 

secondary settlement of layers 1 to n is obtained as shown in Figure V-29. For the median column: 
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t'i-1 : initial time of construction layer i with t'i-1 = ti-1 + i-1 
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Figure V- 29: Sequence of construction of the median column height. 
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Secondary settlement for the layer i (median column) is defined as:  
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and 
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The present study consisted of modifying the calculation methodology of secondary settlement by 

taking into account the construction phases. Afterwards a parametric study with the new settlement 

algorithm is carried out and this new version of the ISPM model is named as „ISPM 1.1‟, moreover 

this version is compared for reliable results against the older version „ISPM 1.0‟ (Olivier, 2003). The 

varying parameters for the construction are presented in Table V-6 (thickness proportional with time) 

 

Table V- 6: Details of waste layer construction ISPM 1.1 

Waste layer Thickness Time of construction 
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V- 3.5.4 Case of Constant Lift Rate for Waste Column Construction  

Provided that the speed of rise of the waste column does not fluctuate and in the tangible absence of 

information on the history of construction, an average operating time per layer ( = tn/ n) can be 

considered (Figure V-30) in the place of the operating times τi and the rest periods τri, simplifying thus 

significantly the expression of the equation [U].  

 

Figure V- 30: Median Column rise with reference to the time of construction. 
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V-4 APPLICATION OF THE MODEL FOR A DIRECT 

EVALUATION OF SETTLEMENT  

The objective of the present parametric study was to evaluate the post construction settlement w(t). 

V - 4.1 Definition of the Surface Settlement   

As explained previously, the primary compression of a column of waste (wp) is supposed to be 

completed at time tc. Consequently, post-construction settlement w(t) when t > tc (measured using 

reference marker at surface) can be compared to an exclusively secondary compression for  
c

tt    
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In addition, the height of the column of waste (cap cover excluded) is equivalent to:  
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Figure V- 31: Measurement of settlement at a delayed period of follow-up at site at time tm
0
. 

Lastly, the post-construction deformation ε(t) of average height of the column is calculated by 

determining the settlement measured at the surface w(t) for the total height of waste Hn (cover 

excluded) at time tc  (and sometimes at time tn): 
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If for an unspecified reason the topographic follow-up is delayed for time (t) after the cover 

placement, the compression measured on the surface is not equivalent to post-construction settlement 

w(t). Supposing that the first topographic measurement of surface is carried out at time 
cm

tt 
0

, where 

m
t refers to an unspecified intermediate measurement, measured settlement is then equivalent to:  
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V - 4.2 Influence of Different Parameters of the Study  

 The durations of construction i of each layer are seldom known in detail by the landfill operators. In 

practice, the researcher must reconstitute the history of construction as precisely as possible, while 

making use of:  

 intermediate plans of construction;  

 stored flows of waste (periodic tonnages);  

 evolution of the surface of construction of the waste column in activity in the course of time.  

 

If somehow the reconstitution of construction history is not possible, ISPM model can be applied by 

supposing a rise of waste column at constant speed (i =  = constant and tc = n + c). Additionally the 

settlement is dependent on the value of 
*


C . It still remains difficult to correlate the values of C*

αε 

with the composition of the waste stored and its modification during/after construction. It is mainly 

due to the difference in conditions of construction (nature and intensity of compaction) and in landfill 

storage (moisture content of waste, heat flux, biogas drainage, etc.) 

V- 4.2.1 Influence of Waste Column Height 

In this section the variation of the settlement Δw (Equation [Z]) corresponding to the settlement after 

construction is considered in detail (i.e. after closure of the landfill, time t = tc). Objective of the study 

is to observe the influence of total height of waste on the deformation of the waste column after the 

construction. For this purpose the time of construction of waste column is fixed (Figure V-32), with 

varying heights of the waste column. 



 204 

 

Figure V- 32: Varying the height of waste column for a given constant time of construction 

The curves obtained show the influence of column height while keeping the other parameters constant. 

It can be observed in Graph V-1 that change in height of a waste column affects the relative settlement 

which is a direct relation, 
)(

cn
tH

w that is to say more the column is high more will be the 

settlement since initial part of the secondary settlement is more significant. 
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Graph V- 1: Evolution of deformation as a function of the waste column height (tc = 24 months). 
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V- 4.2.2 Influence of Column Height for a Constant Lift Rate 

To observe the variation in the settlement for a constant lift rate, theoretical cases of waste column 

were studied with varying heights and construction time so as to achieve a constant lift rate, i.e. H/tc = 

1 m/month as presented in Figure V-33.  

 

Figure V- 33: Construction history of a waste column with a constant lift rate. 

The results as plotted in Graph V-2 show that the relative settlement decreases when the height of the 

column increases for the same lift rate. Hence for the same lift rate the waste column smallest in height 

will have the biggest amount of settlement than the tallest waste column. This explains the effect of 

quick construction of the waste column as each layer is placed without giving the precedent layer 

enough time to settle so the overall settlement component will be small. 
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Graph V- 2: Influence of column height on post construction settlement for a constant lift rate. 
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V- 4.2.3 Influence of Time of Waste Column Construction  

To analyse the effect of time of construction on the settlement behaviour the column height was fixed 

and time of construction was varied. Graph V-3 plotted for settlement as a function of column height 

clearly shows that faster the construction time faster will be the secondary settlement. And thus it will 

have a secondary settlement which will be more influential than the part of the settlement already 

occurred during the construction phase. The similar results observed in Graph V-3 strengthen the 

earlier findings in Graph V-2. 
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Graph V- 3: Evolution of deformation Δw/Hn(tc) as function of tc, (H=24m) 

V- 4.2.4 Influence of c (origin of time for secondary compression) 

Since this parameter was modified from the one used in the older version of ISPM model a large range 

of the stated time parameter (starting from one day to six months) was studied so as to reach a 

conclusion about its best suited value for modelling. A number of cases were theoretically calculated 

with varying waste column heights and time of construction and plotted against c so as to see 

percentile variation of the parameter. 
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Graph V- 4: Influence of c on settlement ratio for c = 1 month at the end of construction. 

While going through this parametric study it was noted that secondary settlement was independent of 

the chosen value of c and it was then proved analytically, as shown in Graph V-4. Its effect on the 

back analysis was then proved to be linked to the virtual height of the waste column nh0 rather than 

any other parameter involved in waste settlement modelling (Graph V-5) leading to the conclusion that 

it was only the first part of the secondary settlement which is dependent on c. 
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Graph V- 5: Influence of c on the ratio of post construction deformation (t). 
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V-5 APPLICATION OF ISPM MODEL BY BACK ANALYSIS 

FOR AN EVALUATION OF C*
 

Though C*
  (Eq. [S]) in the present time remains difficult to be fixed for a prediction of the 

settlement w of a waste column and consequently it is proposed here to use case histories where 

settlement is recorded by monitoring and to deduce C*
 by back analysis. The application of ISPM 

model by back-analysis consists in determining the values of C*
 starting from data of settlement 

w(tm) drawn from measurements on the landfill cap cover. In the case of the modern MSW, the 

majority of other parameters of the law of settlement relationship can be calculated starting from 

information available with the landfill operators and by fixing certain parameters (having a limited 

influence) such as C*
 and c by approximation (Table V-7). 

 

Table V- 7: Synthesis of the parameters of ISPM model and mode of determination. 

Category Parameter Symbol Unit Mode of 

determination 

Geometrical 

parameters  

number of layers  n  -  Approximated  

initial thickness of a layer  
0

h  m  Back-analysis  

height of waste at time tc  )(
cn

tH  m  Landfill operator  

Parameters of 

time  

Period of construction  
i

  month  Landfill operator  

durations of stop of construction  
ri

  month  Landfill operator  

total operating time  
c

t  month  Landfill operator  

time of measurement  ult

mmm
ttt ,,

0

 
month  Geometer  

Parameters 

relating to the 

loading of 

waste  

initial unit weight of waste  
0

  kN/m3  Back-analysis 

average unit weight of waste (tc)  
)(

_

c
t  kN/m3  Landfill operator  

compaction stress  
c

  kPa  Supposed (  40 

kPa)  

surcharge due to the cover  q  kPa  Landfill operator  

Parameters 

relating to the 

compressibility 

of waste  

 coefficient of primary compression  *

R
C

 
-  Measured(0.15– 

0.20)  

coefficient of secondary compression  *


C  -  Back-analysis  

post-construction settlement   )(
m

tw  m  Geometer  
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V - 5.1 Case Study of Different Sites for Linear Construction 

The back analysis is based on settlement monitored during the period (end of construction tc) until 

time tm
ult. For every settlement value C*

 is evaluated by back analysis (Figure V-34): generally for 

(tm
ult –tc) higher than 9 months C*

 value is stabilized and can be used as a long term value of C*
. 

This method is applied here for some well-documented case histories (Table V-8).  

 

Figure V- 34: Illustration of the prediction of settlement by back analysis (ISPM model, Olivier, 

2003).  

Table V- 8: Description of different case histories considered in the back calculation. 

Parameters Sites 

 Collier Road Montreal Novellara Yolo county 

tc (months) 188.67 73.87 21.97 6.1 

H (m) 15.2 

 

78.92 9.04 13.06 

CR 0.2 0.2 0.2 0.2 

γ0 (Kn/m3 ) 6 8 7 8 

τc (months) 1 1 1 1 

Settlement measurement for a 

period > closure period 

(tm
ult – tc) 

 Value of C*




step n° 1 

step n° 2 

 

 

(A) 

Prediction of settlement 

beyond the time of the last 

settlement measure, tm
ult
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*
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C
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Knowing the values of settlement and the construction history of the column of waste, it is possible to 

determine the value of C*
 making use of the equation [W]. Generally, the height of the column  

 
c

tHn  at the end of the construction and the corresponding average unit weight change  )(

_

c
t   are 

estimated starting from the total data resulting from the geometer (thickness of waste and volume of 

storage) and from the landfill operator (tonnage of waste) at time tc (or sometimes tn). It could be 

shown that a variation of the number of layers have no effect on modelling, in condition that nh0 

satisfies the equation [W] and that n makes it possible to model in a realistic way the rise of column. 

In addition, supposing the conservation of the mass of the matter during the period of construction, the 

following equation can be deduced:  

[AA]    00

_

)().( nhtHt
cnc

   

Ultimately, back analysis consists of solving a system made up of 3 equations [W], [X] and [AA] 

together these equations make it possible to determine the 3 parameters h0, γ0 and C*
αε. By 

combination of the preceding system with the equation [X], the expression from the coefficient of 

intrinsic secondary compression according to the deformation  at time t can be deduced:  

[AB]    
)](1)[()(

))((
)(

*

*

ttYtY

XCnt
tC

c

R









  
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Graph V- 6: Effect of time on the evolution of settlement as analysed through Model ISPM 1.1. 

Normally the first topographic measure on the cap cover after the closure of the landfill (t = tc) is 

generally postponed where t = tm
0 is time for the first measurement and t = tm

ult is the ultimate 

measurement. 
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Graph V- 7: Evolution of C* as a function of time. 

For each value of surface settlement w(tm) (tm
0 ≤ tm  

ult

m
t  ) (Graph V-7), the resolution of the 

preceding system provides a value of C*
 (

ult

m
t ) as presented in Graph V-8. The treated cases showed 

that C*
 generally tended towards a stabilized value at the end of a time t sufficiently large, which 

confirms the intrinsic character of the parameter C*
 obtained. If  

0

m

ult

m
tt    is sufficiently large, one 

thus obtains a stable value of C*
 allowing extrapolation to predict long-term settlement by extending 

the experimental curve of settlement.  

 

Remaining problem is the influence of time c corresponding to the beginning of the secondary 

settlement in the relationship [U]. In the Graph V-7, c is assumed to be equal to 1 month while in 

Graph V-8 and Graph V-9, the influence of c on the ultimate value of C*
 (

ult

m
t ) is presented. 
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Graph V- 9: Relative evolution of C* as function of c. 

In Graph V-8 final values of C*
 are shown against a range of values of c which helped consider 

certain value for C*
 from experimental point of view as the ratio between different c plotted in 

Graph V-9 which showed the convergence of these measured values such that the suggest the intrinsic 

characteristic of the parameters C*
. Furthermore this value of τc was determined physically from the 
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laboratory experiments which further justified the view point of considering C*
 as an intrinsic 

coefficient. 

 

V - 5.2 ISPM Application on 2 Phases Construction for the Evaluation of CR 

and C
*
  

In general, the follow-up of settlement is carried out by means of surface reference marks installed at 

the end of the construction phase (once cap cover is placed). Consequently, the topographic follow-up 

includes exclusively the measurement of secondary settlement, primary settlement being completed at 

the time of the survey of reference (with 
0

m
t as in the section V-4.3). Nevertheless, a reactivation of 

primary settlement is possible in the case of extensions (or vertical reload) of waste columns or in the 

case of rehabilitation of old landfills including the construction of various works (earth fills, light 

constructions, roads, etc). In practice, primary settlement made the object of few terrain surveys 

[Watts and Charles (1990), Coumoulos et al. (1999), Yuen (1999), Bowders et al. (2000)] and their 

interpretation often was not satisfactory. Similar research was undertaken by LIRIGM on 3 French 

sites (Torcy, Lapouyade and Chatuzange) by means of internal instrumentations (monitoring of the 

settlement at the interface between two phases, Figure V-35). 

 

 

Figure V- 35: Schematic diagram of construction in 2 phases separated by one rest period.  

Phase 1: 

layers 1 to k 

 

 

 

 

Phase 2 :  

layers k+1 to n 

 

 

 

 

 

 

 

Hn(tn) 

Hk(tk) 

(tk) 

(tn) 

(tk +rk) 

w(tm)phase 1 w(tm)phase 2 

Inserted plate with floating stem 

Surface plate 

Phase 1 : Lower column Phase 2: Lower and upper column 
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V- 5.2.1 ISPM Settlement Modelling for a 2 Phase Construction (Cell ‘B’-

Chatuzange 

The formulation of model ISPM is kept broad so as to allow the modelling of a landfill in 2 phases. 

The present application concerns cell „B‟ at Chatuzange landfill site (Figure V-36) with the storage of 

waste in 2 distinct phases (phase 1: placement of layers from 1 to k; phase 2: placement of layers from 

k+1 to n) separated by one rest period of τrk duration as considered in the example of Graph V-11.   

 

Figure V- 36: Plan of Chatuzange landfill site. 

The originality of this example holds in the fact that it is possible to solve independently the system 

formed by the equations [W] [X] and [AA] during the intermediate period of rest (and the settlement 

monitoring at the surface of the lower column by surface instrumentation), during and after the phase 

of refill (phase 2) for internal follow-up. The values of C*
αεPhase2 can be compared with the values of 
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C*
αεPhase1 with an aim of confirming the assumption of the independence of C*

αε with respect to the 

surcharge. The coefficient of primary compression C*
R can in addition be given with the provision of 

not stopping the topographic follow-up during construction of the second phase.  

 

Provided an instrumentation of surface is laid out at the top of the waste column on the cap cover of 

the landfill (with the vertical reference marks) after the end of construction (phase 2), the values C*
αε 

relative to the complete column (layers 1 to n) can finally be evaluated. Both settlement of the lower 

column (layer 1 to k) and the upper column (layer k+1 to n) are monitored. In this specific case it is 

possible to plot the settlement of the lower column for the phase 1 and phase 2 (Graph V-10). The 

settlement during the phase 1 is exclusively secondary settlement whereas the settlement during the 

phase 2 is the combination of a primary settlement and a secondary settlement in continuation of the 

phase 1. The part of the settlement due to overloading can be subtracted, using the primary settlement 

relationship [N]. An assumed value of C*
R = 0.13 is considered for the calculations.  
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Graph V- 10: Influence of surcharge over secondary settlement of the lower column for a given 

value of C*R (0.13). 

In Graph V-11 these results are plotted. In the second step by back analysis it is possible to assess C*
αε 

from the diagram of secondary settlement as in the previous section. It is specifically worth noticing 

that value of C*
αε is becoming constant independent of the surcharge. It is a key point since it is 

demonstrated in this example that the parameter C*
αε should be considered an intrinsic characteristic of 

the waste material which is independent of the waste column construction sequence. 
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Graph V- 11: Influence of c on C*  for C*R (0.13), the case of marker 12 Chatuzange landfill 

site. 

V- 5.2.2 ISPM Settlement Modelling for a 2 Phase Construction (Cell ‘C’-

Chatuzange 

This application is related to the two phase construction for the cell „C‟ at Chatuzange landfill. 

Different experimentations have been carried out on this cell ranging from sample extractions through 

drill-holes to the monitoring of biogas, humidity measurements by neutron technique and 

measurement of density through geophysical technique (Descloitres et al. 2008). This cell has been 

filled in two stages, the first one between June to September 1998 and 2000, and the second one 

between 2005 and 2006 for the upper layer (4 m thick). Waste deposits are covered using a 

geosynthetic clay liner and 1 m of silty-soil. Data received from the scanner is integrated at regular 

periods for the determination of compressibility. In addition to that, sample extractions are carried out 

intermittently to study the evolution of waste material with regard to degradation phase, moisture 

content, leachate and gas generation as well as shear strength parameters. 

 

A number of topographic markers were placed at the end of construction phase I (t1) which were  

removed after placement of new layers (t2), a final cap cover was build after the end of phase II (t3) 

(Figure V-37) and the monitoring of the cell was started with the 3D laser scanner. Terrain survey for 

this objective was undertaken by LTHE on Chatuzange landfill by means of internal instrumentations 

and regular scanning surveys. Four markers at the former horizontal positions are being selected for 



 217 

present study, the topographic follow-up includes exclusively the measurement of the secondary 

settlement. Nevertheless, a reactivation of primary settlement is induced in the case of vertical 

expansion of cell or in the case of rehabilitation of old landfills including the construction of various 

works (earth fills, light constructions, roads, etc). From the data available for a series of markers 

installed for the laser scanner markers (5, 6, 12, 14) located at different topographic locations, are 

selected for settlement prediction through the ISPM model (Figure V-39). 

  

 

Figure V- 37: Construction of waste column in two phases for Cell 'C' of chatuzange landfill site. 

 

Table V- 9: Calculation of the compressibility coefficient through ISPM model (parameters of 

Figure V-32) 

PHASE I 

Markers t1 

(months) 

H1 

(m) 

t2-t1 

(months) 

wI 

(m) 

H2 

(m) 

C* 

5 19.15 22.52 65.18 2.79 19.73 0.114 

6 20.11 23.93 65.18 3.23 20.70 0.113 

12 16.26 19.16 65.18 3.40 15.76 0.160 

14 20.11 27.28 65.18 3.55 23.73 0.108 
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The successive steps of the calculations are summarised as below; 

 

Phase I: Monitoring of settlement obtained by topographic plates located at the top of the first phase 

waste body between t1 end of construction and t2 start of the construction of phase II. It is possible by 

back analysis, taking into account the layer by layer construction, to calculate the value of 

compressibility coefficient C*
 from the settlement values (Figure V-34 & Table V-9). 

 

Phase II: This phase corresponds to the vertical expansion of the landfill cell „C‟ (surcharge ∆H). 

There is some primary settlement. The primary coefficient of compression C*
R is estimated from the 

measurements on other cells which resulted in a value 0.14. C*
 is assumed to be the same for every 

marker taken from the phase I i.e. C*
 (II) = C*

 (I).  

 

 

Figure V- 38: Laser Scanning; 3D settlement map after 6 months (t4-t3) from the beginning of 

Phase II 

Settlement

Scale
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Figure V- 39: Laser Scanning; Settlement map after 18 months from the beginning of Phase II 

Table V- 10: Settlement prediction through ISPM model in comparison with the measured 

values (parameters of the Figure V-32). 

PHASE II 

Markers C* t3-t2 

(months) 

H3 

(m) 

∆H* 

(m) 

t4-t3 

(months) 

wII 

exp. (m) 

wII 

pred. (m) 

5 0.114 12 22.35 4.89 18 0.45 0.44 

6 0.113 12 23.37 4.71 18 0.50 0.45 

12 0.160 12 19.10 6.18 18 0.55 0.60 

14 0.108 12 25.94 3.91 18 0.55 0.48 

*[H3 -H2+(wp(t3)-wp(t2))+(ws(t3)-ws(t2))] 

 

Table V-10 shows settlements obtained during the beginning of phase II (t4-t3 = 18 months), wII exp. 

are in correspondence to wII predict. determined using the ISPM model. As it can been seen that a 4% 

to 15% of error is produced from the prediction model which is quite a reasonable difference keeping 

in view the history of cell construction where first phase was constructed over longer period in 

contrast to the construction in second phase. Considering the good agreement between the 

experimental values of wII and the predicted wII values, ISPM model is further used for the prediction 

of settlement for 30 years, with results presented in Graph V-12.  
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Graph V- 12:  Settlement prediction through ISPM model for 30 years. 

V-6 COMPARISON OF ISPM MODEL WITH THE SOWERS 

MODEL  

The settlement model of Sowers (1973) remains most commonly used for the long-term prediction of 

settlement of domestic and assimilated waste. It rises directly from the application of the 

unidirectional theory of the soils to columns of multi-metric waste. In this model, the evolution of 

secondary settlement according to time depends on a coefficient of secondary compression C known 

as „global‟ generally given starting from measurements of settlement of surface realized in period of 

post-construction.   

 

Previously it was suggested in the literature that this coefficient C is not „intrinsic‟ for waste since it  

depends in particular on the time of construction and the height of the column. Now in this chapter we 

will compare the post-construction deformation (or relative settlement) Sowers with ISPM, as well as the 

„global‟ coefficient of secondary compression C with the „intrinsic‟ coefficient C*
 from the ISPM 

model. Post-construction secondary settlement is expressed in the form:  

 ISPM model:  

[1]   
)(

)()(

)(

)(

0 c

s

n

p

n

c

s

n

s

n
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twwnh
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


  

 Sowers Global model:   
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The assumptions adopted for the model of Sowers are: 

 Origin of time t = 0: beginning of construction of the column of waste (same for ISPM);  

 t0  = tc  (time of construction) though for certain authors, the definition of t0  is different;  

 Origin of secondary settlement   t1  = tc  + x (months), with x variable from one author to 

another. In the present report we use x = 1 month. 

 

It is understood that the formula of Sowers, being the subject of divergences on the level of the 

parameters t0 and t1, the value of C varies for the same case according to assumptions of the authors, 

which makes the comparisons even more difficult.  

V - 6.1 Assessment of the Coefficient of Secondary Compression (C)Sowers 

for constant (C*)ISPM 

From hereafter, except stated otherwise, ISPM model is regarded as model of reference. This is to say 

that the behaviour in settlement is considered to be correctly modelled by ISPM model with intrinsic 

coefficient C*
 considered as independent of time and the height of the waste column. The value of 

(C)sowers is searched such that it gives at the same time (tm) the same value of settlement. Equating the 

expressions [1] and [2] this time for tm,:  
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C is correlated to C*
 value. 

 

To facilitate the demonstration, 4 examples of the Table V-11 are analysed where the variable 

parameters are the height of the column of waste (virtual height nh0 = 12, 24, 48 m), the time of 

construction (tc = 24 and 48 months) and the speed of virtual construction (nh0 / tc). 

 

For clarity, the columns of waste considered previously will be characterized moreover by:  

 a rise of construction at constant speed  i  =  tn / n  

 the absence of rest period of construction  ri  = 0  

 instantaneously placement of the final cover  tc  = tn  
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Table V- 11: Parameters for theoretical cases under consideration. 

Characteristics Units A1 A2 B1 B2 

Initial virtual height (h0) m 1 1 1 1 

Number of column layers 

 

Layer 24 24 48 48 

 

Time of construction 

(tc = tn) 

month 12 24 24 48 

Lift rate (nh0  / tn) m/month 2 1 2 1 

 

  

So as to allow numerical applications, the following parameters will be fixed once for all: 

C*R = 0.20  = 8 kN/m 3  q = γchc 18 kPa  c = 40 kPa   and C*
αε = 0.08.   

 

Taking into account the previous assumptions, the influence of the three following parameters on the 

value of the coefficient (C)Sowers is illustrated: 

 

 the time of construction of the column (tc)  

 the virtual height of the column (nh0)  

 the origin of secondary compression (t1) 

 

It is worth noticing that this coefficient is wrongly considered as a geo-mechanical characteristic of the 

waste material by all the users of this model of settlement prediction. In the following application the 

variation of (C)Sowers due to the variation of the parameters described above is displayed. 

V- 6.1.1 Influence of Time of Construction (tc) (Cases A1 & A2) 

 



 223 

 

Graph V- 13: Evolution of Settlement as function of time (ISPM 1.1) with constant C* (0.08).  
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Graph V- 14:  Coefficient of secondary compression calculated by the method of Sowers with the 

calculated values of settlement by ISPM as presented in Graph V-13. 

In Graph V-13 numerical values used for the assessment of (C)Sowers show the evolution of the waste 

column settlement corresponding to two different construction times tc with a constant value of C*
 = 

0.08. From Eq. [3] it is possible by back analysis to deduce the corresponding value, whereas 

(C*
)ISPM remains constant (Graph V-13). On the other hand (C)Sowers value is significantly different 

from (C*
)ISPM value =0.08. For every value of tm-tc it is possible to evaluate a different (C)Sowers. In 

(C*)ISPM = 0.08 
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Graph V-14 it can be observed that there is a significant variation for the parameter (C)Sowers with the 

change in duration of construction and with the time. 

V- 6.1.2 Influence of Waste Column Height (Cases A2 and B1) 

Graph V-15 shows the evolution of settlement using the ISPM model for C*
 = 0.08 and two different 

column heights. Graph V-16 represents the evolution of both Cαε for model of Sowers as a function of 

t -tc for both cases corresponding at two different heights for the same lift rate (equivalent with tc  = 24 

and 48 months) and it is observed that the coefficient C varies with the course of time.  
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Graph V- 15: Evolution of settlement as function of waste column height (ISPM Model) with 

constant C* (0.08). 

The value of time tm used for the calibration influences the value of C of the law of Sowers. A law 

with constant C will not correctly translate the behaviour of waste in secondary settlement since:  

 in all the cases, the secondary settlement modelled by the formula of Sowers begins at t = tc + 

x months whereas it begins at the end of the placement of the 1st layer of waste in the case of  

ISPM model and that wISPM  starts when the moment the construction of the waste column is 

finished (t = tc).  

 (C)sowers is stabilized roughly with a constant value only at the end of a rather long time.  

 

The two laws being distinct, it is not astonishing to obtain different coefficients of secondary 

settlement but it is better not to confuse them.    
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Graph V- 16: Coefficient of secondary compression calculated by the method of Sowers using 

the values of settlement by ISPM (C* = 0.08). 

V- 6.1.3 Influence of Lift Rate (Cases B1 & B2) 

This time the columns B1 and B2, both characterized by a speed of virtual elevation (nh0 / tc) of 1 

m/month are considered. Once again different values of C are obtained for both the models and it is 

noted that the gap between  
m

tC


and (C*
)ISPM decreases systematically when tc decreases. The 

fact that   
m

tC


 is a function of thickness (nh0) testifies owing to the fact that, in the case of the 

ISPM model, relative post-construction settlements are not proportional to the height of waste.   

 

(C*)ISPM = 0.08 
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Graph V- 17: Evolution of settlement as function of time. 
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Graph V- 18: Coefficient of secondary compression calculated by the method of Sowers with the 

values of settlement by ISPM (C* = 0.08). 

V- 6.1.4 Influence of Time for Start of Settlement (t1) 

 The selection of the conventional parameters of time in a model such as that proposed by Sowers 

(1973) has a considerable importance, although this point was almost systematically overlooked in the 

conventional applications. Sowers (1973) did not specify at which moment of the life of the column of 

(C*)ISPM = 0.08 



 227 

waste this origin is applicable. With the exception of very rare authors [(Watts and Charles, 1990) and 

(Sanchez-Alciturri et al., 1993a)], all considered in fact the model of Sowers on the basis of a time 

origin at the end of the construction of column (t0 = tc). A specific study on the influence of this 

parameter was carried out but taking into account its limited interest, this point is not discussed here. 

Here t0  = tc is supposed with varied origin of time of secondary compression (t1) so as to illustrate the 

sensitivity of the Sowers model with respect to the concerned time parameter.  

V - 6.2 Comparison ISPM – Sowers Model: Site Studies  

In section V-4.4 (Cαε)Sowers was calculated from theoretical values of settlement determined using the 

ISPM model. In the present case, settlement data is obtained from the available measurement in the 

case histories and then (Cαε)Sowers and (Cαε)ISPM are both determined by back analysis. 

V- 6.2.1 Principle of the Back Analysis for Case Studies 

(C*αε)ISPM and (Cαε)Sowers are given for a time tm starting from the experimental value of relative 

compression
)(

)(

c

m

tH

tw
 , by applying the formulae explained earlier. Very often there is no settlement 

measurement immediately at the end of operation. 

 

The first topographic measurement of surface takes place at the time 
0

m
t  delayed by Δt after the end of 

construction (tc).  )(tC
m

*


, this coefficient is determined by back-analysis for t = tm as explained in 

last section. For the model of Sowers, following equation is applied:  
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Below the comparative study, starting from models ISPM and Sowers for three real sites with two 

French sites (Montech and Lapouyade) which were monitored by LTHE(LIRIGM) and a foreign site ( 

Montreal) is presented, for which data were available (Table V-12). These sites have the advantage of 

presenting columns of waste of different heights and age (for different cells). The Sowers models of 

prediction of the compression does not take into account the specificity of the material waste, 

characterized by its consolidation state (partial over consolidation) and its history (age growing with 

the depth). The ultimate values of the settlement are used to deduce the values of (C)Sowers and 
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(C*)ISPM  in Graph V-19 and Graph V-20 the ratio of these coefficients is plotted against (tc) and Hn 

(tc). 

  

Table V- 12: Characteristic parameters of different cells from the case histories. 

Site Hn(tc) tc tm
0 tm ult (C*) 

ISPM 

(C) 

Sowers 

Montech 18.52 3.93 14.93 54.42 0.08 0.086 

19.83 8.23 17.83 62.77 0.11 0.1485 

20.76 10.63 21.50 33.86 0.09 0.084 

21.03 10.97 28.47 84.87 0.089 0.0914 

21.46 11.07 28.09 43.43 0.083 0.083 

21.76 13.93 30.03 58.89 0.091 0.092 

21.86 17.00 54.67 96.30 0.098 0.1173 

22.32 23.83 70.30 61.27 0.10 0.08 

Montreal 76.00 36.05 108.57 33.01 0.193 0.4873 

78.73 60.86 181.66 33.01 0.181 0.3883 

80.01 60.90 242.47 33.01 0.1414 0.2512 

95.55 73.07 242.47 33.01 0.179 0.2145 

109.73 85.23 303.37 33.01 0.167 0.2577 

Lapouyade 9.89 10.82 23.41 14.49 0.0876 0.0674 

11.44 11.70 25.74 14.49 0.1707 0.1599 

11.65 13.41 28.80 14.49 0.1424 0.1351 

13.22 15.88 31.10 14.49 0.1449 0.1191 

13.61 25.84 34.32 14.49 0.1094 0.0752 

13.62 26.24 37.31 14.49 0.1116 0.0829 

14.23 36.62 41.13 14.49 0.1052 0.0584 

15.33 36.89 43.92 14.49 0.1266 0.0791 
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Graph V- 19: Evolution of ratio Csow/ C* as function of time. 

This variation of ratio of both coefficients of secondary compression shows the dependency of the 

coefficient of secondary compression of Sowers model on the parameters of time and the waste 

column height suggesting that this parameter is not the intrinsic parameter of the waste medium. 
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Graph V- 20: Evolution of ratio Csow/C* as function of final height of waste column Hn(to) 
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V- 6.2.2 Conclusion and Perspective of Practical Application of ISPM Model 

According to the level of advancement of the project considered, following aspects regarding the 

update of existing model of settlement prediction ISPM are of interest:  

 

 at the stage of the preliminary draft by the prediction of the total settlement of the column 

of waste, with the objective of estimating the storage capacity of the waste cell and the 

effective control of the construction phases   )()()( twtwtw
s

n

p

nn
  

 

 in post-construction phase  by the prediction of the settlement of surface (w) taken as 

starting from the placement of the cover, with the objective of the evaluation of settlement for 

later time period  )()()()()(
c

s

n

s

ncnn
twtwtwtwtw    since primary settlement has 

diminished at the end of the construction.  

 

If a cell at the stage of the preliminary layer construction or in post-construction is considered, the 

application of ISPM model concentrates initially on the determination of the coefficient of secondary 

compression  C*
αε  which can be carried out according to one of the following two approaches: 

  

 by direct analysis: on the basis of pre-gauged or supposed coefficient of compression (only 

approach applicable to the stage of the preliminary construction phase or the case of non 

instrumented waste columns). New progress is needed for research of assumed value of 

coefficient of compressibility C*
 which is further dependent on the type of waste.  

 

 by back analysis: after calibration of C*
 from a topographic campaign starting from one 

year to a few years (approach privileged for the modern MSW). The systematic use of the 

ISPM model on case histories would allow to get a correlation between the type of waste and 

a value of C*
. 

 

The application of ISPM model requires a relatively precise knowledge of the history of construction. 

This condition can prove to be problematic in the case of old or orphan sites, but this difficulty 

disappears in modern MSW. Today the ultimate stage of development of ISPM model is launched 

with prospect for the application of this model by means of software and abacuses. This objective 

represents an asset for the landfill operators because with the help of the preliminary evaluation of 

some operating parameters (flow, composition, implemented and hydrous management of waste) it 
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should be possible to evaluate the storage capacity of the cells (on the basis of excavation campaigns 

available) and the anticipation on the construction phases of the sites would be an easy task. 

 

 The ISPM model proves the importance of the fact that the parameter C*
αε has a dominating 

influence. 

 The range of variation of the coefficient C*
αε tends to be rather reduced  

 The influence of the initial unit weight of waste (γ0) is not very significant: it can be shown 

that a fluctuation of 50 % in its value (0.8 T/m 3   50 %) induce a maximum prediction error 

of 2.5 %, all being equal in addition. However compressibility of waste is of course 

significantly dependent on the waste density. 

 The influence of the value of h0 (fixed by default at 1 m) is moderate as taking into account a 

thickness h0 equal to 50 cm induces an increase in )(t  with height at 4.5 %. 

 Finally height of the column can be deduced with the help of nh0  and C*
αε. 
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VI- MUNICIPAL SOLID WASTE SHEAR STRENGTH  

VI-1 SHEAR STRENGTH-APPLICATION TO SITE 

STABILITY 

Shear strength in reference to soil is used to describe the maximum strength of soil when significant 

plastic deformation or yielding occurs due to an applied shear stress. There is no definitive "shear 

strength" of a soil as it depends on a number of factors affecting the soil at any given time and frame 

of reference, in particular the rate at which the shearing occurs. Factors affecting the shear strength of 

soils are: 

 Soil composition (basic soil material): Mineralogy, grain size distribution, shape of particles, 

pore fluid type and content, ions on grain and in pore fluid. 

 State (initial): Define by the initial void ratio, effective normal stress and shear stress (stress 

history). State can be describe by terms such as: loose, dense, over-consolidated, normally 

consolidated, stiff, soft, contractive, dilative, etc. 

 Structure: Refers to the arrangement of particles within the soil mass; the manner the particles 

are packed or distributed. Features such as layers, joints, fissures, slicken sides, voids, pockets, 

cementation, etc, are part of the structure. Structure of soils is described by terms such as: 

undisturbed, disturbed, remoulded, compacted, cemented; flocculent, honey-combed, single-

grained; flocculated, deflocculated; stratified, layered, laminated; isotropic and anisotropic. 

 Loading conditions: Effective stress path i.e., drained, and un-drained; and type of loading, 

i.e., magnitude, rate (static, dynamic), and time history (monotonic, cyclic)). 

 

The drained strength is the strength of the soil when pore water pressures, generated during the course 

of shearing the soil, are able to rapidly dissipate. It also applies where no pore water exists in the soil 

(the soil is dry). It is commonly defined using Mohr-Coulomb theory and termed as "Coulomb’s 

equation" by Terzaghi (1942) combined with the principle of effective stress. 

Drained strength is defined as: τ = σ' tan(υ') + c' 

Where σ' =(σ - u), known as the principle of effective stress; 

σ is the total stress applied normal to the shear plane; 

u is the pore water pressure acting on the same plane; 

υ' = the effective angle of shearing resistance. (Formerly termed 'angle of internal friction' after 

Coulomb friction) 

 

http://en.wikipedia.org/wiki/Soil
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The coefficient of friction μ is equal to tan (υ), which is proportional to the normal force on a plane but 

independent of its area and c' = apparent cohesion which allows the soil to possess some shear strength 

in the absence of confining stress, or even under tensile stress. Commonly it is referred to as 

temporary negative pore water pressure (suction) that dissipates over time. When shear tests are 

conducted on an over-consolidated or dense soil, and peak strengths are plotted on a stress stain plot, it 

appears that cohesion exists as the y-intercept is non-zero. However, what is being plotted is not "true" 

cohesion, but it is actually due to interlock of particles in the case of sands and inter-particle attractive 

forces in the case of clays. 

VI-1.1 Analogy of Soils‟ Shear Strength and MSW 

In soil mechanics shear strength and compressibility of most saturated soils are governed by effective 

stress σ’ which is calculated by subtracting pore water pressure uw from the total stresses. Whereas the 

behaviour of unsaturated soils depends upon two stress parameters (σ-ua) and (ua-uw) where σ is the 

total stress, ua is the pore air pressure and uw is pore water pressure which may be more comparable to 

a gassing waste than the saturated soils. 

  

Various researches have tried to analyse the shear strength of MSW both in-situ and at laboratory. 

Determination of shear strength properties for MSW is difficult due to the heterogeneity of disposed 

wastes, the difficulty in obtaining and testing representative samples, time-varying properties, and 

strain incompatibility between the MSW and underlying materials (Eid et al., 2000). Even an 

approximate evaluation of slope stability for municipal landfills may be useful despite limited or 

missing data regarding geometry, leachate pressure, solid waste material shear strength, and/or 

subsurface soil information. 

 

Generally the shear strength is determined through three methods: in-situ testing, laboratory 

experiments and back calculations from failure and observation of slopes. Within the laboratory 

testing methods, direst shear test, triaxial tests and simple shear tests are applied for the analysis of 

shear strength parameters. The problem with these testing methods is that the specimens tested are the 

disturbed samples and they often need appropriation before their placement in the apparatus. Due the 

fact that often slope stability problems arise during the post closure period of the landfill, shear 

strength assessment is significant in the mechanical characterisation of the MSW.  Below is a brief 

study of the research work available in literature. 
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VI-1.2 Stability Analysis available in Literature 

The stability parameters influence the landfill slope design. A slope is geotechnically stable if it does 

not physically collapse. The long-term stability may need to be checked especially if significant rise in 

leachate level and seepage are occurring like in some old abandoned refuse fills. Stability problems 

often are the consequence of excess water percolation in the landfills. Shallow surface ravelling type 

of failures is also likely to penetrate into the waste below the cover, especially in areas of emerging 

seepage. The excess water results in saturation of the waste mass changing the unit weight of the waste 

body, the excess pore water pressure is created which in turn affects the slope stability. Similarly the 

water saturation of the voids volume may cause the gas pressure and interact with the gas flow. Due to 

the ever changing nature of the waste medium different deformation and settlement behaviour are 

observed at site, however most stability analyses have shown that the slopes are the most critical areas 

(Bauer et al., 2007). The instability of the slope may be caused due to the following reasons: 

 Any change in the slope profile due to the decomposition of waste. 

 An increase in the moisture content which may cause the reduction of resistance. 

 Progressive decrease of shear strength due to leaching or creep. 

 Any vibrations or liquefaction effects. 

 

Major slope failures can occur due to natural or landfill management problems and the assessment of 

waste mass stability is a critical step in reducing the risk to the landfill operators and the general 

public. The stability analyses rely on site specific simple estimates of the unit weight of waste and the 

pore pressure conditions and use shear strength envelopes of the municipal waste already available in 

the literature or obtained through the shear tests. The objective of the present study is to evaluate the 

potential use of very simple stability analyses which can be used to study the potential for slumps and 

slides within the waste mass and which may represent a significant constraint on construction and 

development of the landfill. The issue of slope stability is critical for the safety of the landfill operators 

and the people living near the base slopes of the landfill but for the protection of investments involved 

in the equipment to collect the biogas for energy recovery and prevention of large remediation costs. 

BISHOP Simplified Method of Stability Analysis 

The method of slices and the finite element method are the most frequently used methods for 

estimating the stability of slopes. Although the potential failure parts of a slope can be obtained by 

means of a finite element analysis the determination of a suitable measure and a set of rules from a 

finite element analysis to estimate the stability of slopes need to be further studied. The Factor of 

Safety is a measure of the confidence that collapse will not occur. Method of slices is very simple and 
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a quantitative index for stability (factor of safety). The stability analysis for such cases is performed 

following the method of finite slope analysis. 

  

Hypotheses of BISHOP’s model are: 

 Shear strength along the failure is uniformly distributed 

 Failure plane is an arc of the circle 

 The interslice forces including pore water pressure are assumed to be horizontal:  

0
i

Y  i (in Figure VI-1) 

 Effective normal stress is determined by summation of all forcing acting perpendicular to the 

surface = 0 

 

 

Figure VI- 1: Forcing acting on the sliding surface (BISHOP‟s simplified model). 

In Figure VI-1, Wi is the weight of the slice i  

with Ni = normal component of Wi acting perpendicular to the sliding surface; 

Ui is the force integrating the pore water at the bottom of the slice and ρ is the density of the material.  



i

i
b

cos
arc length of the slice. 

Considering one slice as indicated in Figure VI-1, vertical equilibrium for all the effective stresses is 

calculated using the following equation 
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Equation (2) is used for effective stress analysis 

Equilibrium of moments is calculated as follows 
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The value of factor of safety is then calculated through iterations. 

VI-1.3 Shear Strength Parameters and Stability Analyses in Literature 

Knowledge of shear strength of MSW is required for the design and probable failure planes in the 

landfills. When considering the long term stability of the landfill, the impact of degradation on the 

shear strength of the MSW is of importance. Landva and Clark (1990) observed the decrease in shear 

strength parameters for the specimens left in the containers for one year with the friction angle value 

of 9° in comparison with the shear strength of fresh waste (friction angle 24° to 42°) with a cohesion 

between 10 to 23 kPa. Shear strength of a soil is conventionally described by Mohr-Coulomb failure 

envelope. But there are reasons that the characterization of shear strength of domestic waste through 

cohesion and internal friction may not be appropriate such as; behaviour of waste components at the 

application of normal stresses and reinforcing effect of sheet like components (plastics, textiles) within 

the waste as described by Kölsch (1995) according to which there has to be no shear strength at zero 

normal stress. 
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Likewise the strength of MSW is calculated as a soil like material and the shear behaviour is analysed 

on the basis of peak shear strength or residual shear strength of the material. In the presence of fibre 

like components (plastics, textile), which have a reinforcing effect on the behaviour of MSW, the 

shear behaviour of the waste results in ductile shear response as opposed to the residual shear 

resistance of the material. In this case no peak stress is observed and the shear stress tends to increase 

even at 40% of the shear strain during the tests (Gotteland et al., 1995 and Machado et al. 2007) as 

shown in Figure VI-2. 

 

Figure VI- 2: Effect of fibre components on the shear strength parameters of the waste (axial 

strain on x-axis) (Machado et al., 2007). 

Gabr and Valero (1995) tested 15-30-years old waste specimens in direct shear tests. These 

specimens exhibited continued strength gain at horizontal displacements well in excess of 10% of the 

specimen's diameter. As a consequence, no peak strength was detected. Therefore, the authors 

evaluated the values of c' and υ' at strain of 5 and 10%, respectively and suggested that the friction 

angle increases as a function of increasing horizontal displacement while cohesion remains essentially 

constant. They however stated that a wide variation in the measured friction angles could result from 

the inconsistent choice of a horizontal displacement magnitude for data reduction. 

 

Gotteland et al. (1995) Determination of mechanical properties at site: Gotteland et al., 

(1995) performed geotechnical investigations to summarize stability parameters for a French landfill. 

Pressure meter tests were carried out to characterise the waste resistance and the values found were 

comparable to those obtained by other authors. Keeping in view the heterogeneous nature of the waste 

in-situ determination of the density is difficult and the authors suggest their study could be considered 

realistic with a degree of uncertainty between 10 to 20%. 

 

Large scale shear box tests were performed, however, even after a displacement of 35% maximum 

shear strength was not attained. Shear section of (1 x 1 m2) with a height of 35 cm was tested (Figure 
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VI-3) under a confining stress of 100 kPa with a maximum shear stress of 100 kPa (Figure VI-4). Both 

remoulded and undisturbed samples were tested. There was not much to be recommended but it 

provided an insight to waste mechanics so far developed. 

 

 

Figure VI- 3: Large scale in-situ direct shear box (Gotteland et al., 1995). 

 

 

Figure VI- 4: Shear test results (Gotteland et al. 1995). 

Kölsch (1995) Bearing model: Kölsch (1995) worked in detail for the development of a bearing 

model for wastes in general, making use of conventional laws and superimposing new parameters of 

tensile forces such as fibre cohesion and internal tensile forces. The author conducted a number of 

tension tests, shear box tests and slope stability analyses to come up with a formulation and possible 

modelling of the bearing behaviour of wastes. In the proposed model fibrous materials (e.g. plastics) 
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are supposed to incorporate tensile forces and transmit the same out of the deformation zone. Tensile 

forces depending upon the normal stresses and friction in the shear plane together make up the total 

shearing resistance (Figure VI-5). The author explained the shear behaviour of the waste with the 

concept of tensile resistance that is caused by the fibrous particles interlocking various materials when 

shear stresses are mobilised. This tensile strength adds up to the Coulomb’s equation as a percentage 

of both the angle of tensile strength and fibre cohesion as follows; 

 tantan
***

 Zc  

where Δz = fibre cohesion 

tanδ = angle of tensile forces 

 

 

Figure VI- 5: Shearing behaviour of waste sample with the interaction of frictional and tensile 

forces (Kölsch, 1995). 

The total shearing resistance is composed of the friction in the shear plane and tensile forces in the 

fibres. But the relationship between total shearing stress and normal stress is a nonlinear discontinuous 

one whereas for the frictional resistance and normal stress it is a linear correlation described by the 

angle of internal friction υ.  Table VI-1 summarises different stages of the shear strength in the waste 

as a function of shear displacement. According to the author the triaxial test and the direct shear test do 

not describe the behaviour of a waste the best, and the bearing behaviour of the wastes is affected by 

Friction+Decreasing 
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the various processes causing the frictional and shear forces to be changing all the time so these two 

components were analysed separately through direct shear test and tension test respectively. 

 

New tension test equipment was developed to study tensile forces of the waste within four different 

wastes with respect to their composition and age or treatment applied namely fresh, residual, rotten 

and site excavated sample. Sample box of a size (3 x 1 x 1.5) m3 was filled in 20-30 cm thick layers 

and pulled with a maximum normal stress of 50 t/m2. In the absence of shear box results, the results of 

the tensile test indicate elastic-plastic deformation behaviour.  

Table VI- 1: Bearing model description as proposed by Kölsch, 1995. 

Displacement 

Stage 

Dominating 

force 

Description 

I Friction Only the frictional forces arise in the beginning of 

deformation. 

II Friction + 

Tension 

Increase in deformation produces more stresses in the fibres 

increasing the tensile force. 

III Friction + 

decreasing 

tension 

When the tensile strength is exceeded, tearing or slipping is 

produced reaching the maximum shear stress level. 

IV Friction Further deformation results in reduction of shear stress down to 

friction only. 

 

Table VI- 2: Summary of shear tests (Kölsch, 1995). 

Sample Age 

(years) 

Description Density 

(t/m3) 

Moisture 

content 

% 

Internal angle 

of tensile forces 

δ 

(°) 

FRESH New Un-treated & without 

separation of organic 

components. 

0.58-0.72 44 15>°<35 

RESIDUAL New Un-treated with separation of 

organic material. 

0.54-0.72 32 35 

ROTTED 1.5 Aerobic pre-treatment 0.89-1.01 32 15-18 

SITE 5  Urban waste excavated from 

landfill. 

1.04-1.1 32 <15 
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Tensile strength is considered to be independent of waste density in contrast to the shear strength. The 

maximum tensile stress was 230 kN/m2 for normal stress 284 kN/m2. The angle of tensile strength 

determined through the tension test was termed as δ instead of υ and the values of υ as stated in other 

research studies were used in addition to the internal angle of tensile stress δ. The measured shear 

strength values are presented in Figure VI-6. It can be noted that the samples ‘Residual’ (without 

organic matter) have high cohesion values accompanying high internal angle of tensile forces (δ) or 

‘fibres cohesion’; the fibre cohesion depends on the angle between the fibres direction and the sliding 

surface. 

 

Figure VI- 6: Results of tension tests-relation between fibre cohesion and normal load (Kölsch, 

1995). 

For the slope failure calculations Kölsch (1995) used available values of angle of internal friction in 

literature and the calculation were conducted on the sliding figures with two plane sliding surfaces. A 

number of simplifications in the calculations were made such as; 

 No influence of the angle between fibres directions and sliding surface for active tensile 

forces. 

 No tensile forces were considered in the deep sliding surfaces. 

 An equal occurrence of maximum tensile and frictional forces was considered. 

 Over the reduction of frictional forces by 50% there may be non equal occurrence of different 

bearing effects. 
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Figure VI- 7: Slope failure calculations from material characteristic values for fresh and rotted 

waste samples (Kölsch, 1995). 

With all these simplifications the results are more critical as otherwise higher stability is observed with 

exact calculations. For all these figures waste height of 30 m was used for the calculation with angle of 

slope varying from 30° to 90°. Figure VI-7 describes the material values and the plane surface used for 

calculations; both angle of internal friction υ and angle of tensile forces δ were summed up to obtain 

one value (υsum). Table VI-3 summarises the different proportions of the sliding figures with reference 

to Figure VI-8. 

 

Table VI- 3: Slope failure calculations-proportion of sliding figures (Kölsch, 1995) 

Figure Distance between bottom 

and crossover (a) 

Inclination of deep sliding 

surface (b) 

Inclination of upper 

sliding surface (c) 

1 20 10 43 

2 40 9 64 

3 50 21 61 

 

Fresh Rotted 

Φ 15° 22° 

δ 35° 15° 

c 15 18 

γ 9.5 15.5 

(c in kN/m2) 
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same υ, c, γ 

δ = 0° 
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Figure VI- 8: Slope failure calculations for different sliding figures with material values of fresh 

waste (Kölsch, 1995). 

Figure VI-8 shows the slope failure calculations on the three sliding surfaces with material values of 

fresh waste. The slopes show stability for almost all the sliding figures and slope angles and no 

considerable influence of slope angle is observed. The most unfavourable case is observed to be the 

sliding figure 3 because the upper sliding surface is extremely short where the high tensile forces are 

effective. Similarly for sliding figure 1 with short deep surface and long steep upper surface, high 

stability values are observed. However due to restriction of tensile forces by a tensile strength as 

explained in the model, extrapolation of the mechanical values for higher normal loads is not 

recommended by the author. The author concluded 

 The change in mechanical properties of the waste while undergoing decomposition results in 

lower stabilities for the sliding figures with dominating tensile forces as  the internal angle of 

tensile forces δ decreases (but the internal angle of friction increases) for an older waste in 

comparison with a fresh one. 

 There is a restriction of a tensile force in the bearing model so much higher normal stresses 

were not incorporated for the calculations. Stability was found for 90° slope inclination with a 

waste height of almost 15 m (Figure VI-8). 

 For the steep upper sliding surface, high portion of active fibre cohesion generates stability up 

to the extent that production of failure was literally impossible during the onsite previous 

testing.  

 Since the results of these calculations were comparable to those already observed, the author 

suggested that the use of this proposed model would be safe. 
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Kölsch et al. (2005) Stability application to a slope failure case history: When at site the 

failure has already taken place and researchers and geotechnical experts develop the probable scenario 

leading to that failure, this forensic study is referred to as the back analysis of the stability. Kölsch et 

al. (2005) performed a forensic analysis for a dumpsite disaster in Indonesia to check the German 

advanced calculation model against stability of the landfills. The landfill site was constructed in a 

narrow valley which was suitable according to the hydrological point of view. Subsoil consisted of 

rock covered with a clay material with worked as a natural barrier. However the condition of the 

compacting machines posed the question that whether they were in use or not. The natural landscape 

showed a slope of 5 to 10% in the bottom of the dump site. 

 

The collapse occurred, after a heavy rainfall which lasted 3 days, like an avalanche killing 147 people 

but landfill fires hindered the rescue work for weeks. Observations showed a fairly good 

mineralization and fibres and foils which are considered reinforcements. Upper waste layers were 

saturated with water which showed that it could hold water back for quite sometime, therefore, shear 

strength was unlikely to be significantly affected by water pressure. But because of high internal 

strength the surface between subsoil and waste body becomes critical shear plane. However the 

geometry of site does not allow this displacement since its outer edge acts as a funnel. There were 

reports of landfill burns which lasted for months. With these details stability calculations were done 

using the German technical recommendations. The calculation method considers the reinforcement 

effect, which is generated by tensile forces in fibres and foils. Tensile stress and normal stress are 

related by a linear function with an internal angle of tensile stress (δ ) as described earlier by Kölsch 

(1995). 

 

The shape of the sliding figure corresponds to the situation found at site. Hundreds of alternative 

sliding figures were calculated, particularly those forming shear planes through the waste. Simulation 

which best suits the scenario is when landfill fire destroys reinforcement particles in upper layers 

bringing stability down to 1.0 (Figure VI -10). It was assumed that all tension based components of 

shear resistance (Tensile angle δ and cohesion c) had reduced to zero. The shear resistance which is 

drawn on the bottom of each slice shows clearly the impact of fire at slice 2 and 3 in the upper end of 

the sliding figure in Figure VI-9 which has disappeared in Figure VI-10 and only the resistance due to 

friction is left. 
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Figure VI- 9: Calculations of the slope stability in the presence of tensile forces acting within the 

unburned waste body 1:η = factor of safety „F‟ (Kölsch et al., 2005).  

 

 

Figure VI- 10: Calculations of slope stability considering the case of burnt waste within the 

waste body 1: η = factor of safety „F‟ (Kölsch et al., 2005).  

slice 2 

slice 3 
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The calculations indicate that pore water pressure inside the subsoil were more important for the 

collapse which could have been avoided simply with proper construction and operation of the site. In 

contrast for a situation with proper drainage and no fire overall stability reaches a value of 1.63 

(Figure VI-11). Regarding construction it is important to ensure proper drainage whereas soft soil no 

matter if a natural deposit or a technical barrier needs protection. Last but not the least is to avoid 

landfill fires. 

 

 

Figure VI- 11: Calculation of slope stability suggesting a stable slope with 1:η =FOS > 1.5 (if 

proper construction procedure was followed) proposed by Kölsch et al., 2005. 

Milanov et al. (1997) Phicometer test and back analysis of slope failure: Milanov et al. 

(1997) studied in detail a slope failure in a waste fill where apparently fire fighting caused the 

collapse. Landfill failure caused mixing of leachate into fresh water stream which resulted into 

pollution of waterworks at the downstream localities. The accident took place when a fire broke out in 

the landfill body. Their findings regarding the scenario were quite thought provoking such as; 

 The waste was tipped and not spread as it should have been. 

 There was no incorporation of effluent management techniques. 

 The apparent factor of safety (volume ~slope angle) was close to 1.0 which was already weak. 

 

For waste shearing characteristics it was shredded and tipped without compaction so there was no 

possibility of interlocking between the particles. In situ tests with phicometer were performed which 

involves application of radial pressure for the teeth of the probe to penetrate the waste; then a tensile 
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force is applied at controlled speed at the surface of the ground. The strength mobilised under stress σ 

gives the shear strength as τ = T/S. The principle of the phicometer and the subsequent determination 

of shear strength parameters are shown in Figure VI-12. But for such less rigidity it was useless to rely 

on the results, as values of C and υ (υ = 17° and c = 0 kPa) did not permit existence of slope of 50° 

thus it could be stated that it was under-estimated.  

 

 

Figure VI- 12: Principle of the shear apparatus with typical graph of shear stress and shear 

strain (Milanov et al., 1997). 

The shear strength values were assumed while considering that fact that a minimum of cohesion is 

necessary for the stability of the waste body. Table VI-4 gives different combinations of shear strength 

parameters for a factor of safety of one, assuming; 

 Height of the slope = 10 m 

 Inclination of the slope = 50° 

 Density of the waste = 0.65 t/m3 

 No pore water pressure. 

The calculations of factor of safety were carried out using stand-up abacuses with the limit analysis of 

Druker and Prager criterion for soils. 

 

Table VI- 4: Friction angle and cohesion for FS = 1 (Milanov et al., 1997). 

Friction angle υ (°) Cohesion c (kPa) 

30 2.5 

35 1.7 

40 1.0 

45 0.4 

 

Considering the values quoted by other authors e.g. Jessberger et al. 1993 shear strength with cohesion 

of 1.7 and 1.0 kPa were assumed to be the most probable values. To estimate the absorption capacity 



 

 

250 

average pressure of 32.5 kPa was used resulting in 115% by dry weight taking into account a linear 

distribution between 0 and 90 kPa. With original water content assumed at 40% of the dry weight and 

increase in unit weight with spraying of 50% brings the density from 0.65 t/m
3
 to 1.0 t/m

3
 which is 

alone sufficient to lead to rupture (with a reduced factor of safety of 0.65 and 0.7); this condition 

corresponds to the site situation where abundant water was used to put out the fire (Table VI-5). 

 

Table VI- 5: Decrease of factor of safety after the increase of the density due to water absorption 

(Milanov et al. 1997). 

Factor of safety Friction angle (°) Cohesion (kPa) Density (t/m3) 

0.65 35 1.7 1.0 

0.7 40 1.0 1.0 

 

The principle reasons of failure include water absorption (spraying of huge amounts during fire 

fighting) and subsequent development of pore water pressure. Since water absorption increases unit 

weight thus reducing factor of safety of the slope and the infiltration in the non compacted waste 

reaching the bottom generated pore water pressure in saturated zone (assuming the hydraulic 

conductivity = 10-4 m/s to 10-5 as quoted by Beaven et al. 1995) and hydrodynamic pressure due to 

flow at bottom at clayey subsoil. Above complications though less common can have serious 

consequences if not promptly and properly managed and the authors suggested that well defined 

protocol precautions and safety measures can help eliminate these complications. 

 

Reuter et al. (1995) Slope stability calculation following triaxial tests: Reuter et al. (1995) 

performed triaxial tests on the waste samples obtained from Hanover central landfill (Figure VI-13) to 

determine tension-related shear parameter for the stability analysis. For stability purposes a model 

(1:50) was constructed to be tested in the centrifuge and the results showed no break but an occurrence 

of number of distortions in the vertical direction. This distortion behaviour was then confirmed with 

the help of the waste samples of three different ages (aM = 20 years, zM = 1-3 years and uM = 7-10 

years) in triaxial tests (Figure VI-14) and the distortion-dependent parameter of shear stress as 

calculated in the laboratory was used for the assessment of static stability. Since the investigations did 

not produce any failure the shear parameters were denoted as the theoretical or apparent parameters 

i.e. C* or υ*. 
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Figure VI- 13: Different sections of landfill studied for the slope stability through distortion 

analysis (Reuter et al., 1995). 
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Figure VI- 14: Angle of internal friction as determined through triaxial tests (σ3 = 300 kPa) of 

different wastes (aM, uM and zM) having different ages (Reuter et al., 1995). 

Observing the results of triaxial tests the authors stated that considerable degree of stability was 

observed but it mobilised after the major linear strains had developed. Moreover the rise in internal 

angle of friction can be observed with increasing linear strain. In contrast to the observed angle of 

internal friction the calculated values indicated cohesion component of shear strength but due to high 

degree of scattered results any uniform trend in cohesion with increasing linear strain was not possible 

to identify. The incline failure calculations were performed using BISHOP process with other support 

programs. Table VI-6 details these calculated results. 

 

Table VI- 6: Calculated values for 15-20 years old untreated waste (Reuter et al., 1995) 

Rate of distortion (%) Bulk unit weight (kN/m3) Cal υ* (°) Cal c* (kN/m2) 

5 15 16.92 15.77 

10 15 24.85 31.54 

15 15 30.56 51.15 
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Moreover there is a contrasting data for angle of friction and cohesion and it appears that the 

identification of any uniform trend in cohesion with increasing linear strain might have not been 

possible because of the scattered investigations. However no failure was observed (FOS = 1.6) even 

with the high values of distortion so there may be no stability risk attributing to distortions (Figure VI-

15). 

 

 

Figure VI- 15: Distribution of distortion in cross-section G-G as calculated by Reuter et al., 

1995.  

Eid et al. (2000) Shear strength from field and laboratory tests: Eid et al. (2000) studied the 

shear strength parameters cited by various researchers. The authors assumed the Mohr-Coulomb 

strength criterion to be applicable because of the fact that the shear resistance of MSW increased with 

increasing normal stress. Using regression analysis of the data the shear strength of MSW was defined 

by a narrow band with an effective stress friction angle, υ', of approximately 35°, and the cohesion, c', 

that ranges from 0 to 50 kPa. Based on the literature study and back-calculation of field case histories, 

they proposed an average c' of 25 kPa and υ' of 35°, for the design of municipal solid waste 

containment facilities, which is slightly higher than other published combinations. The lower and 

upper bounds shown in Figure VI-16 could represent the shear strength of MSW that contains more 

soil, sludge, and/or other soil-like materials and plastics, respectively. The authors did not state clearly 

about the mechanisms that yield high shear strength in MSW, but the interconnection of the plastics 

and other materials is assumed to be a probable contributing factor. 
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Figure VI- 16: Values of cohesion (c) and friction angle (υ) of the retro analyses from slope 

failures of waste (Eid et al., 2000). 

Eid et al. (2000) indicated that strain incompatibility and progressive failure can occur between MSW 

and underlying materials and lead to a reduction in mobilized shear strength and failure. The failure 

studied was found to be a translational failure. Native soils on the bottom and sides of the ravine were 

not excavated prior to waste placement, thus the mobilisation of post peak shear strength in the brown 

native soil was suggested to be the primary reason for failure. 

 

Kavazanjian et al. (1999) Shear strength envelope: Kavazanjian et al. (1999) performed a 

number of laboratory tests regarding shear strength analysis of the waste. They performed a series of 

direct shear and direct simple shear tests and determined a trend of higher strength towards higher 

percentage of refuse material. Their testing programme was scheduled such that a number of 

parameters were interrelated and on non dependency of one parameter they cut short the experiments. 

Direct shear tests were performed to assess deformation response, evaluate shear data and compare 

results with those of any other landfill. Two samples were reconstituted with two different unit 

weights (70% and 90% of the estimates in situ unit weight) but the results indicate that the 
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reconstitution of samples leads to the field conditions provided the normal stress in enough to 

compress the sample. Direct simple shear tests (DSS) were performed with monotonic and cyclic 

loading to evaluate characteristics of waste, stress-strain properties and to provide with the field 

specific data for subsequent use in deformation and stability analyses. Each DSS test included three to 

five stages of strained controlled cyclic loading with each stage consisting of 25 cycles. The hysteresis 

loop for cyclic loading did not degrade with increasing cycles at constant strain due to the reason of 

volumetric compression and strain hardening (Figure VI-17). 

 

 

Figure VI- 17: Trend of normalised shear stress as a function of shear strain (Kavazanjian Jr. et 

al., 1999). 

Two interpretations were used for the Mohr circles, firstly based on the assumption that the shear 

strength is anisotropic and the shear failure occurs on a weak horizontal plane due to structure of the 

waste and secondly on the assumption that the shear failure occurs on the plane within the test 

specimen with the largest principle stress ratio. This interpretation was done with cam-clay theory 

using a K0 = 0.6. Figure VI-18 explains both these interpretations of the Mohr circle. The results 

concluded that shear strength on non-horizontal planes may be significantly greater than the shear 

strength on the horizontal plane (the plane of waste placement). And finally they state that the solid 

waste mainly remains elastic with little modulus reduction and damping in the cyclic tests.  
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Figure VI- 18: Mohr-coulomb stress envelope, different approaches (Kavazanjian et al., 1999). 

The lower bound failure envelope is based on the results of fully saturated MSW samples. The lower 

bound failure envelope is frictional whereas for effective normal stresses less than 30 kPa, the bilinear 

failure envelope becomes cohesive. This difference in the two failure envelopes may be caused by the 

fact that the bilinear failure envelope is based on the back-analyses of landfill failures keeping in view 

that the MSW was not saturated. It is, therefore, likely that the ‘cohesive’ portion of the bilinear failure 

envelope includes some effect of apparent cohesion associated with negative pore water pressures in 

the MSW under conditions of partial saturation. Furthermore the calculation were carried out with 

reference to their earlier study of the shear strength parameters Kavazanjian et al. (1995) as presented 

in Figure VI-19 with c = 24 kPa and υ = 0° for normal stress upto 30 kPa and c = 0 and υ = 33 for 

normal stress beyond 30 kPa. 

 

c = 29.9 kPa υ = 59° 

Interpretation 2: upper 

bound 

c = 16.3 kPa υ = 33° 

Interpretation 2: lower 

bound 

c = 0 kPa  υ = 30° 

Interpretation 1 

horizontal shear plane 
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Figure VI- 19: Values of shear strength parameters from shear tests in laboratory (Kavazanjian 

et al., 1995).  

Mahler et al. (2003) Shear strength of MBP waste: Mahler et al. (2003) studied the shear 

resistance of MBP waste. The MBP process consisted of a sequence of: 

 separation of the largest pieces visible in the waste; 

 mechanical treatment with minimisation and homogenisation of the mass with input of 

water/sewage water;  

 static biological degradation, enabled by mounting mechanically the windrows, to ensure 

continuous aeration (in this step the wetting of the material is monitored, as well as the gas 

production and temperature at different levels and points) 

 sieving the material after it is inert. 

 

Table VI- 7: Summary of shear strength parameters determined in the shear box as a function 

of increasing shear displacement (Mahler et al., 2003). 

Parameters Horizontal displacements (mm) 

10 20 30 40 

υ (°) 21.48 30.7 35.45 35.45 

c (kPa) 2.5 3.0 3.5 4.0 

τ (kPa) 43.66 60.77 72.49 84.5 

 

Values for the parameters of c and υ are summarised in Table VI-7, they show the increasing tendency 

with increase in normal stress. It is worth noticing in Figure VI-20 that unlike conventional MSW the 
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mechanically biologically pretreated waste did not displayed a ductile behaviour of shear strength as 

the samples attained the peak shear stress. 

 

  

Figure VI- 20: Influence of normal stress on the shear behaviour of the MBP waste (Mahler et 

al., 2003). 

Fucale et al. (2007) Influence of fibre component on shear strength of MBP waste: Fucale 

et al. (2007) studied the effect of fibre component on the shear strength of the MBP waste. Different 

samples were testes in the large scale direct shear box (300 mm x 300 mm) including MPB waste at 

natural composition, samples with 10% of fibre composition and samples with 20% of fibre 

components (Figure VI-20). The values determined for these different samples are detailed in Table 

VI-8. 

 

Table VI- 8: Shear strength parameters as determined by Fucale et al. (2007). 

 

 

The MBP waste was sieved to < 8 mm to use the as basic matrix and the reinforcing elements were 

added to the basic matrix in two percents (10% and 20%) by weight termed as compound matrix 1 and 

compound matrix 2 respectively. The results showed that the higher proportion of reinforcing elements 

reduced the stiffness of the material and the reinforced samples did not reach the peak strength over 

the range of tested displacement. It is in confirmation with the previous research e.g. Kölsch (1995) 

Grisolia et al. (1995) and Zekkos (2005). The increase in mobilised strength with increasing strain is 
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though to be due to the low stiffness of the plastic and paper material of the reinforcing component. 

This finding is strengthened by the observed low values of stiffness with increased proportion of the 

reinforcing components. 

 

 

Figure VI- 21: Influence of fibres component on the shear strength parameters of the waste 

(Fucale et al., 2007). 

 

Caicedo et al. (2002 and 2007) In-Situ analysis of MSW shear strength: Laboratory tests are 

generally controlled method of testing and manageable than large-scale in-situ tests or back-

calculation, but the latter comprises a large amount of sample material, which increases the 

representativeness of the results. For the purpose of in-situ tests not only the boundary conditions have 

to be known, but they also have to be set appropriately for examination of the waste material. 

 

Caicedo et al. (2002 and 2007) performed large scale in-situ and laboratory shear tests, as well as 

phicometer tests. The shear box used in-situ was specifically designed for the purpose and the waste 

specimens were carved to scale to test in the box (Figure VI-22). Triaxial shear tests were also 

performed in the laboratory, however, the upper values were obtained with the fresh waste and 

corresponded to the measurements obtained with the direct shear tests. The effect of the stage of 

decomposition of the organic fraction of the MSW in Dona Juana on the shear strength or the waste 

was visible. 
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Figure VI- 22: In-Situ direct shear test. (Caicedo et al., 2007). 

The comparison of all the shear strength parameters as determined through different test procedures is 

summarised in Figure VI-23. The results suggested higher shear strength envelope (Figure VI-24) for 

in-situ direct shear tests, however these tests highlight the importance of site specific testing of the 

shear strength. The slope stability calculations were performed using the method of Bishop for circular 

surfaces and Janbu for non-circular.  

 

 

Figure VI- 23: Summary of shear strength results obtained for Dona Juana MSW using 

different methodologies (Caicedo et al., 2007). 
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Figure VI- 24: In-situ shear strength parameters as determined by caicedo et al. (2007). 

 

 

Figure VI- 25: Longitudinal section of Zona II with details of construction periods.  

The safety factor decreased consistently due to the constant increase in the gas pressure inside the 

landfill. For the case of circular surface failure a decrease in safety factor from 1.31 to 1.27 was 

observed. The decrease in the safety factor was more pronounced when the process of recirculation of 

leachate through the vertical wells was simulated. The non-circular failure surface presents a more 

critical behaviour with respect to the circular one. In this case the safety factors for the last two months 

are 1.2 and 1.16 respectively. When the recirculation of leachate is simulated the safety factor 

decreases to 1.2 and 0.99 indicating the collapse of the slope. In the collapse and avalanche of the solid 

waste of Zona II of Doña Juana sanitary landfill several factors combined to generate the effect but 

mainly the pore pressure was responsible for the instability of the landfill.  
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VI-2 SHEAR TEST MATERIALS AND METHODS 

Large Direct shear box of size 300 mm x 300 mm is used for the shear tests, it includes the following; 

 A box of 300 mm x300 mm which may contain up to a thickness of 180 mm of the test 

material. The box includes two half boxes, lower half box has a height of 100 mm which is the 

mobile section and the other immobile half is 80 mm thick (Figure VI-26). The sliding of 

upper half over the lower in a horizontal plane gives the relative movement Δl. To maintain 

the hydro-static equilibrium, two plates are placed on top and bottom of the boxes. 

 A hydraulic motor mobilizes tangential shear force F and allows a maximum speed of v = 

t
l


 = 5.99 mm / min. The shear rate during a test is kept constant (e.g. 1mm/min). 

 A force sensor is installed between the two hydraulic arms of the direct shear machine to 

measure the shear strength. 

 The rigid vertical loading plate is equipped with a sensor for displacement of shear axis to 

measure the vertical displacement. 

 A horizontal sensor located at the edge of the box measures the horizontal displacement Δl of 

the box. The lower half box due to a horizontal effort can travel up to 60 mm. 

 

In the shear box test the two blocks slide over each other. This sliding mobilizes a tangential 

resistance. Since the plane of sliding is basically at the separation of the two halves, the rupture plane 

is actually induced on the sample. During the shear, the surface area under Fn changes, however it is 

assumed that there is uniform stress distribution on the sliding plane i.e.  

Normal stress = σ’ = Fn/S  

Tangential stress = τ = F/S 

where S is the surface area of the sample 
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Figure VI- 26: Schematic diagram of direct shear box. 

The shear box tests are short term laboratory experiments and no degradation effects are considered 

during the test. Though simple to realise, however there are various possibilities of changing the 

parameters to analyse their influence on the shear strength parameters as detailed in section VI-2.2. 

VI-2.1 Shear Box Measurements 

Data acquisition software transfers the following set of data in tabular form which are automatically 

stored to the computer and are readily available for further analysis (Figure VI-27). 

 Vertical Force (Fn) 

 Horizontal Force (F) 

 Vertical Displacement (ΔV) 

 Horizontal Displacement (Δl) 

 

The rupture can either be characterised by the appearance of a peak point on the stress displacement 

graph or by the consistent shear level attained. This corresponding stress is termed as residual shear 

strength. Unlike soils, strain hardening behaviour is systematically observed for waste which can be 

considered as a ductile material and therefore no peak or residual stress is observed (Figure VI-28). 

The results in the present study are analysed at the limit defined by the maximum horizontal 

displacement reached at the end of test (normally 11% deformation). 
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Figure VI- 27: Shear box apparatus along with complementary equipment (LTHE). 
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Figure VI- 28: Determination of τmax for shear displacement of Δl/l0 = 11%. 

A number of experiments, each time with a different normal stress, give a series of normal stress σ’ 

and residual shear strength (limiting stress) τmax values. Plotting these τmax against σ’ on abscise with 

same scale gives the values for the parameters of Coulomb’s equation with υ as the slope of the line 

and ‘c’ as the vertical intercept (Figure VI-29). 
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Figure VI- 29: Determination of shear strength values (cohesion c and friction angle υ) from the 

graph of normal stress and shear stress (test sample LMD-0, § VI-3.2.5). 

VI-2.2 Methods: Variable Parameters 

Shear strength of MSW depends on many factors such as waste composition, type and age, moisture 

content and leachate management and compaction level and the type of cover systems. Direct shear 

test is a simple yet valuable tool for evaluating the geo-mechanical properties of the municipal solid 

waste. There is a wide range of effective stress shear strength values available in the literature which 

are used both for the static and seismic stability analysis, however the present study is aimed at 

analysing the slope stability of the landfills due to any future modifications planned for the landfills. 

 

Shear tests were carried out for different conditions of the waste extracted from number of French 

landfill sites. Keeping in view the size of the shear box the waste excavated from the landfill sites 

sometimes needed to be restructured for; 

 better representation of waste composition as retrieved from the site. 

 to avoid inappropriate waste particle sizes in the shear box. 

 

For this purpose bigger particles, which in general happened to be plastics/textiles, baby dippers and 

cardboards, were removed and shredded with scissors to reduce to a size not greater than one third of 

the length of the box. They were then mixed with the waste again to obtain a composition 

representative as received from the site. The series of shear tests were carried out with different normal 
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stress on the waste composition obtained from landfill sites as well as the waste further sieved or 

shredded to either reduce to waste size passing a sieve of 20 mm or reducing the size of the whole 

sample by shredding (< 50 mm) and finally the waste samples with additional water. 

VI-2.2.1 Effect of Waste Composition 

In the context of studying the waste behaviour with reference to shear strength at landfill, the waste 

with initial composition as extracted was subjected to direct shear test. The effect of different waste 

composition was studied through the variation of waste samples excavated from different location of 

the landfills. 

VI-2.2.2 Effect of Normal Stress 

The normal stress is kept constant for one test but it varies for a number of tests to analyse the shear 

strength variation with respect to density change keeping in view the depth of the waste sample as well 

as the overload resulting from the vertical expansion of waste cells. The general trend for the waste 

behaviour under shear stress is considered to be the same as soil thus change of normal stress for the 

same composition was done to analyse the shear strength evolution with respect to depth. 

Pre-consolidation Stress: Prior to shearing all the samples were pre-compacted at a constant stress σ’. 

In case of over consolidation σ’pc > σ’ was used for pre-consolidation. The sample is placed in the box 

either at natural moisture content or at additional moisture content. The pre-consolidation of the 

samples includes: 

For normally consolidated samples (σ’): duration of pre-consolidation = 2 – 4 hrs 

For over consolidated samples (σ’pc): duration of pre-consolidation = 4 – 16 hrs 

VI-2.2.3 Effect of Density 

The effect of density change is related to the rheological behaviour of waste similar to that of soils 

where it has either contracting or dilating effect. With the increase in stress work hardening in the 

sample is observed i.e. less amount of shear accompanied with the depression of sample which 

increases the sample density. But due to the over consolidation the waste tends to expand during the 

shear, known as dilation for soils, sometimes this increase in volume is restricted by the confining 

pressure. 

Determination of density: The volume of the waste material (v) is measured both at start and end of 

the test and knowing the total weight of the waste sample placed in the box, the global wet density of 

the sample ρh is obtained at the initial step of the test as ρhi and at the end of the test as ρhf. Finally 

with the determined moisture content w the dry density is calculated for both initial and final state. 
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 . ρdi and ρdf are included in the table of shear strength values comparison for all the 

tests. 

VI-2.2.4 Effect of Moisture Content 

The series of tests was divided into samples with initial moisture content and samples with 

experimental moisture content where additional water was added to analyse the change in behaviour of 

the waste samples.  

Determination of moisture content: At the end of each experiment, a sample of waste was weighed 

and put in the over for the moisture content determination. Though this is an approximate method for 

the determination of the sample moisture content but due to limitation in waste quantity for every 

composition and the assumption that moisture content differs a little for little difference of depth, 

determination of moisture content was compromised. The sample for the determination of moisture 

content was taken at the shear band level. Even though it is one of the most important parameters of 

the waste, there is no defined protocol for the determination of moisture content. Due to these 

difficulties a uniform protocol was adopted for all the samples during this research study, i.e. drying at 

80°C in an oven for a period necessary until the stabilisation of the weight. 

VI-2.2.5 Effect of Shear Rate 

To analyse the effect of shear rate on change of geotechnical parameters some series of tests were 

carried out with a shear rate other than the one usually maintained. With generally adopted shear rate 

to be 1 mm/min, other slower or faster shear rate were used for comparison, with 0.5 mm/min for the 

slower shear rate and 3 mm/min or 5 mm/min for the faster rates. Moreover the change of shear rate 

was combined with the modification of moisture content to observe the effect of these two parameters 

in parallel. 
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VI-3 SHEAR BEHAVIOUR OF SAMPLES RETRIEVED FROM 

SITES 

VI-3.1 Landfill Site „B‟ 

The details related to the composition and other state parameters have already been established in 

chapter III under the section related to hydrological analysis. The analysis of compressibility tests 

(carried out at the same time) for the waste in chapter III resulted in the range of coefficient of primary 

compression C*
R = 0.21 to 0.39. The samples from the same landfill were also analysed for the shear 

behaviour and their results are discussed here. 

VI-3.1.1 Shear Tests Results and Discussion 

Following series of shear tests were performed on the samples of waste ‘B’ 

 Samples with initial moisture content, sheared at normally consolidated stress. 

 Samples saturated with water and left for 48 hours, sheared at normally consolidated stress. 

Normal confining stresses of 50 kPa, 75 kPa, 100 kPa and 200 kPa.  

 Samples saturated (during 48 hours) and sheared while initially consolidated at 200 kPa. 

Description of the samples of waste ‘B’ is detailed in Table VI-9. 

 

Table VI- 9: Description of samples of waste „B‟ for direct shear tests.  

Sample w σ’pc (kPa) Shear rate 

B0 Natural moisture content σ’ 1 mm/min 

B1 Saturated σ’ 1 mm/min 

B2 Saturated 200 1 mm /min 

5 mm /min 

 

Influence of saturation: It can be noted in Graph VI-1 that as an indirect effect of saturation is the 

increase of the density of the samples consequently the increase in shear strength with the increase in 

normal stress is observed for both types of samples as shown in Table VI-10. On the other hand the 

cohesion of the saturated samples resulted in higher values than the samples at natural moisture 

content. The internal angle of friction however is observed to be reduced for the saturated samples. 
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Graph VI- 1: Comparison of samples at initial moisture content (B0) with saturated samples 

(B1) normally consolidated for waste „B‟. 

 

Table VI- 10: Comparison of samples at natural moisture content (B0) and samples with 

saturated moisture content (B1) both normally consolidated. 

Sample B0 B1 

’pc (kPa) 50 75 100 50 100 200 

’(kPa) 50 75 100 50 100 200 

ρdi (Mg/m3) 0.36 0.36 0.49 0.56 0.55 0.57 

ρdf (Mg/m3) 0.41 0.43 0.57 0.57 0.57 0.56 

w (%) 110.5 - 85.0 102.1 - 97.7 

 

% Deformation 11% 11% 

c (kPa) 0 20.4 

υ 28.2 21.8 

 

Influence of over consolidation: The shear strength for the samples saturated and consolidated at 200 

kPa is observed to increase more that the samples initially normally consolidated. On the one hand this 

pre-consolidation stress increases the density of the sample but on the other hand it results in 

evacuation of more liquid from the sample, thus reducing the moisture content of the sample as it can 

be noted in the Table VI-11. The increase in cohesion of the samples may be attributed to this 
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reduction in moisture content, but the internal angle of friction seems to have no significant effect of 

the pre-consolidation stress as it remains in the same range as for the samples normally consolidated or 

the samples at initial moisture content. This parameter is more difficult to characterise and is 

influenced by many other physical and mechanical parameters of the waste in parallel. 

Influence of pre-consolidation: For the samples tested at normal consolidation stress of 50 and 100 

kPa; over-consolidation increases the shear strength values however for the sample with σ’pc = σ’ = 

200 kPa the difference between sample B1 and B2 remains difficult to explain.  
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Graph VI- 2: Comparison of saturated samples consolidated at 200 kPa (B2) with initially 

normally consolidated samples (B1) for shear rate = 1 mm/min. 

Table VI- 11: Comparison of saturated samples normally consolidated (B1) and the samples pre-

consolidated at 200 kPa (B2) sheared at 1 mm/min and 5 mm/min.  

Sample B1 (1 mm/min) B2 (1 mm/min) B2 (5 mm/min) 

’pc (kPa) 50 100 200 200 200 200 200 200 200 

 ‘(kPa) 50 100 200 50 100 200 50 100 200 

ρdi (Mg/m3) 0.56 0.55 0.57 0.69 0.65 0.64 0.63 0.58 0.63 

ρdf (Mg/m3) 0.57 0.57 0.56 0.67 0.65 0.66 0.61 0.58 0.66 

w (%) 102.1 - 97.7 85.2 - - 98.4 - 90.5 

 

% Deformation 11% 11% 11% 

c (kPa) 20.4 40.4 50.5 

υ 21.8 22.3 16.1 
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Graph VI- 3: Comparison of samples B2 tested at displacement rate of 1 mm/min and 5 

mm/min. 

Influence of Displacement rate: There is slight influence of the dry density of the samples with lower 

values for sample B2. At σ’ = 200 kPa the influence of shear rate with a decrease of shear strength 

with increasing normal stress could be linked to development of over pressures in the material. For the 

samples which were saturated and sheared at the displacement rate of 5 mm/min it is observed in the 

Graph VI-3 that they tend to approach the residual shear strength at the axial strain of 11%. But at the 

same time the two critical parameters of additional water and displacement rate increase the cohesion 

of the samples (Table VI-11) while the internal friction angle is reduced for high displacement rate. 
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VI-3.2 Landfill Site „LM‟ 

Municipal solid waste degrades over time however the relation of decomposition phase with the shear 

strength is yet to be developed that whether it decreases, increases or remains the same. More data is 

on shear strength is needed to analyse this relation and this is the whole different approach to be 

considered. A detailed sample extraction campaign was carried out on a French landfill ‘LM’ with the 

objective to analyse shear strength parameters of the old waste body. In addition to the sample 

extraction, penetrometer tests were also performed to estimate the strength parameters in terms of 

resistance. In Figure VI-30 the plan of the site marked with location and mode of extraction of samples 

is presented. 

 

 

Figure VI- 30: Landfill site „LM‟ with sample retrieval details. 

VI-3.2.1 Sample Retrieval 

The detail of sample collection procedure is as under: 

 2 samples were collected with the help of shovel tractor. One sample was excavated from the 

dike of the downstream slope (age of waste 17 years), while the other sample was collected 

from the crest of the downstream slope (age of the waste 13 years). 
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 50 samples were excavated with the drilling equipment at 11 points; with two to eleven 

samples retrieved at each drilling point at different depths (Figure VI-30). 

 

Remark: The samples extracted with the drill are classified as the disturbed samples as the drilling not 

only shreds the particles but also crushes and thus results in change in the composition and grain size 

distribution of the samples. During the sample preparation it was observed that the samples excavated 

with the drill had high percentage of fine particles and for that reason all the samples were dried in full 

once the shear tests series were completed and the composition of the samples were determined only 

to confirm the initial supposition. 

 

 

Figure VI- 31: Samples retrieved through shovel and boring. 

The shear tests series were carried out on the two different types of sample retrieval processes 

separately due to following reasons 

 To observe the effect of sampling procedure in the first place. 

 Due to the grinding effect of the drill, mixing of these samples would have altered the 

physical properties of the excavated samples by large due to combining two types of disturbed 

samples. 

However mixing of the same type of samples did not pose the problem as all the samples went through 

the similar sample retrieval effects. 

VI-3.2.2 Drilled Samples 

For the samples retrieved through drilling, initial moisture content was determined for all the samples, 

and according to the moisture content profile three zones were identified according to the moisture 

content as shown in Figure VI-32.  
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Figure VI- 32: Identification of different moisture zones at landfill site „LM‟. 

Due to small quantities of samples retrieved from landfill it was not possible to use a single sample for 

one shear box test, therefore, mixing of different samples was required. Different approaches were 

analysed with respect to different influential parameters of shear strength such as geographical 

location, moisture content and age of the samples (Figure VI-32, VI-33).  

 

Figure VI- 33: Three range of moisture content for drilled samples LM-1, LM-2 and LM-3.  

Finally the regrouping of the sample on the basis of their same range of moisture content was adopted 

for the present study as this regrouping of samples was observed to be more pragmatic because of 

huge differences in level of moisture content rather than regrouping the samples according to their age 
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or location at site. The samples belonging to these three ranges were further mixed together in such a 

way that three combinations of samples were achieved with the same moisture content range as 

follows: 

 One sample (LM-1) was prepared through mixing of samples with initial moisture content in 

the range of > 60 %MS and the average age of 17 years. 

 One sample (LM-2) was prepared through mixing of samples with the initial moisture content 

in the range of 72 – 108 %MS and the average age of 20 years. 

 One sample (LM-3) was prepared through mixing of samples with initial moisture content 

above 127 %MS and an average age of 13 years. 

 

Once the samples were tested in shear box for the determination of strength parameters; they were 

dried in the oven at 80°C until the weight stabilisation. After drying these samples, they were sorted 

according to the waste composition classification to analyse the influence of composition. The 

compositions of these samples are presented in Figure VI-34, VI-35 and VI-36. 

 

Figure VI- 34: Composition of sample LM-1. 

 

Figure VI- 35: Composition of sample LM-2. 
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Figure VI- 36: Composition of sample LM-3. 

VI-3.2.3 Shear Tests Results and Discussion 

Influence of waste composition, age and depth: All the drilled samples have the same trend of shear 

strength parameters for different normal stresses. Even though the difference in the moisture content of 

the samples LM-1 and LM3 is around 20% still the cohesion is nearly the same. Similarly the internal 

angle of friction for both the samples is in the same range of 30-34°, even though for sample LM-2 the 

shear strength parameters have lower values than the other two combinations. This may be linked with 

the lesser percentage of fine particles as well as the presence of high percentage of metallic and plastic 

components (Table VI-10) and consequently high cohesion is observed. 
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Graph VI- 4: Stress Displacement comparison between all three drilled samples different range 

of moisture content (LM-1, LM-2 and LM-3). 
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Table VI- 12: Comparison of shear strength parameters for three drilled samples (LM-1, LM-2, 

LM-3). 

’pc (kPa) 50  100 200 50  100 200 50  100 200 

Sample LM-1 LM-2 LM-3 

Depth (m) 0-8.9  1.35-10  0-12.1  

Age of waste(yr) 17 20 13 

’ (kPa) 50  100 200 50  100 200 50  100 200 

ρdi (Mg/m3) 0.63 0.76 0.89 0.68 0.76 0.94 0.76 0.80 0.84 

ρdf (Mg/m3) 0.65 0.77 0.91 0.68 0.79 0.96 0.78 0.82 0.87 

w (%) 62.34 52.23 51.51 77.78 66.67 52.09 78.57 73.79 67.25 

 

% Deformation 11% 11% 11% 

c (kPa)   6.4 16.5 7.0 

υ 34.2 27.0 30.7 

 

VI-3.2.4 Excavated Samples 

The two samples excavated from the slope of the site were tested for their shear strength parameters as 

follows: 

 Both the samples were tested in the shear box at their initial moisture content and their initial 

state without any modification to their composition. 

 In second series of test, the samples were shredded in the laboratory and then the shear box 

tests were performed. For the samples retrieved from the top of the slope (LM-C) shredding 

was carried out in the laboratory in two steps to obtain < 50 mm and the shear box tests were 

performed. 

 These samples were humidified with additional moisture and tested in the shear box to analyse 

the influence of additional moisture. Moreover the displacement rate was altered to observe its 

influence over the shear strength parameters. 

 From the tested samples, representative samples of weight 500 to 1000 g were taken to 

analyse their moisture content at the end of the shear test. 

 

These series of tests were carried out with the aim to find relevance between the different physical 

parameters, the effect of composition and the grain size of the waste samples with the combination of 

moisture content of the samples (Table VI-13). 
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Table VI- 13: Detailed description of the excavated samples from Landfill „LM‟, prepared for 

the direct shear tests.  

Sample Notation Description 

LMC-0 Initial sample as retrieved from site at in-situ moisture content. 

LMC-1 Sample LMC-0 shredded to particle size < 5 cm. 

LMC-2 Sample LMC-1 saturated for 48 hrs and drained before placement in the 

shear box. 

LMD-0 Initial sample as retrieved from site at in-situ moisture content. 

LMD-1 Sample LMD-0 shredded to a particle size < 5 cm. 

LMD-2 Sample LMD-1 saturated during 48 hrs and drained before placement in 

shear box. 

 

 

 

Figure VI- 37: Waste composition of sample LMC. 

 

 

Figure VI- 38: Waste composition of sample LMD. 
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VI-3.2.5 Shear Tests Results and Discussion 

Comparison of samples LMC and LMD: It is noted that the composition of the samples is very 

similar with the same percentage of fines, plastics and paper (Figure VI-33, VI-34). The same 

composition of waste resulted in same range of density for all the samples in the shear box. Even 

though the size of the plastic or paper component in both the samples can not possibly be the same still 

it can be noted in Table VI-14 that both the samples have the same range of cohesion and the friction 

angle. In Graph VI-5 the shear test results for both the excavated samples at natural moisture content is 

presented. 
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Graph VI- 5: Comparison of shear behaviour of the excavated waste samples „LMC-0‟ and 

„LMD-0‟ normally consolidated. 
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Table VI- 14: Comparison of shear strength parameters of the excavated waste samples „LMC-

0‟ and „LMD-0‟ normally consolidated. 

Sample LMD-0 LMC-0 

Depth (m) 1-1.5  1-1.5  

Age of waste(yr) 17 13 

’pc (kPa) 50  100 200 50  100 200 

’ (kPa) 50  100 200 50  100 200 

ρdi (Mg/m3) 0.46 0.56 0.68 0.49 0.54 0.67 

ρdf (Mg/m3) 0.47 0.58 0.68 0.52 0.56 0.68 

w (%) 117.39  92.31 66.67 92.31  112.77 85.19 

 

%Deformation 11% 

c (kPa) 8.5 8.1 

υ 29.9 27.5 
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Graph VI- 6: Comparison of shear strength for the two shredded samples (LMC-1) and (LMD-

1). 

Individual comparison of different parameters for both samples LMC and LMD: Once 

the comparison of the two samples is presented, both the samples LMC and LMD are analysed 

hereafter for different parameters individually. 
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Influence of shredded particles: For the second series of tests the samples LMC-0 and LMD-0 were 

shredded in the laboratory to the particle size < 50 mm and tested while normally consolidated. The 

change in the shear strength parameters for the two samples (LMC-0 and LMC-1) and (LMD-0 and 

LMD-1) due to the change in particle size through shredding is observed in Graphs VI-7 and Graph 

VI-8. It can be noted that the cohesion of the samples increase with the decrease in the particle size 

with the consequential reduction in the friction angle.  

 

It can be noted that the shredding mainly affects the immediate compression of the samples Graph VI-

7 and that the initial samples have the shear strength of primarily frictional nature which is due to the 

nature of old waste however this effect is reduced for the shredded samples which have a more 

pronounced cohesion (Table VI-15). The other reason is the increased density of the shredded samples 

which influenced positively for the cohesion of the samples but the influence of shredding is not 

significant. 
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Graph VI- 7: Comparison of shear behaviour of excavated samples (LMC-0) with the shredded 

samples (LMC-1). 
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Table VI- 15: Comparison of shear strength parameters of excavated samples (LMC-0) with the 

shredded samples (LMC-1). 

Sample LMC-0 LMC-1 (Shredded) 

Depth (m) 1-1.5  

Age of waste(yr) 13 

’OC (kPa) 50  100 200 50  100 200 

’ (kPa) 50  100 200 50  100 200 

ρdi (Mg/m3) 0.49 0.54 0.67 0.53 0.65 0.69 

ρdf (Mg/m3) 0.52 0.56 0.68 0.57 0.66 0.71 

w (%) 92.31  112.77 85.19 78.02 - - 

 

%Deformation 11% 11% 

c (kPa) 8.1 10.4 

υ 27.5 24.6 

 

These results were confirmed with the same series of tests performed on the other excavated sample 

LMD (from the slope of the embankment) and are presented below. First of all the samples at natural 

moisture content as retrieved from the landfill were tested in shear box and then the samples were 

shredded and tested in the shear box. 
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Graph VI- 8: Comparison of shear behaviour of excavated samples (LMD-0) with the shredded 

samples (LMD-1). 



 

 

283 

Table VI- 16: Comparison of shear strength parameters of excavated samples (LMD-0) with 

shredded samples (LMD-1). 

Sample LMD-0 LMD-1 (Shredded) 

Depth (m) 1-1.5 

Age of waste(yr) 17 

’OC (kPa) 50  100 200 50  100 200 

’ (kPa) 50  100 200 50  100 200 

ρdi (Mg/m3) 0.46 0.56 0.68 0.52 0.57 0.69 

ρdf (Mg/m3) 0.47 0.58 0.68 0.54 0.60 0.69 

w (%) 117.39  92.31 66.67 81.82 79.21 79.21 

 

%Deformation 11% 11% 

c (kPa) 8.5 13.8 

υ 29.9 29.7 

 

 

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40

Horizontal displacement (mm)

S
h

e
a
r 

S
tr

e
s
s
 (

k
P

a
)

Normal Stress 200 kPa (LMC-1)

Normal Stress 200 kPa (1mm/m)

Normal Stress 200 kPa (3mm/m)

LMC-2

3 mm/min

LMC-1 

1 mm/min

LMC-2

1 mm/min

 

Graph VI- 9: Comparison of shear behaviour of sample “LMC-2” (shredded saturated and over 

consolidated at 200 kPa) sheared at 1mm/min and the sample sheared at 3mm/min with the 

sample LMC-1 which was normally consolidated. 
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Table VI- 17: Comparison of shear strength parameters for shredded saturated sample (LMC-2) 

initially over consolidated at 200 kPa and sheared at two displacement rates (1 mm/min and 3 

mm/min). 

Sample LMC-2 (1 mm/min) LMC-2 (3 mm/min) 

Depth (m) 1-1.5  

Age of waste(yr) 13 

’OC (kPa) 200 200 200 200 200 200 

’ (kPa) 50  100 200  50 100 200 

ρdi (Mg/m3) 0.78 0.77 0.77 0.65 0.65 0.64 

ρdf (Mg/m3) 0.77 0.77 0.80 0.63 0.65 0.66 

w (%) 92 - - 119.3 - - 

 

%Deformation 11% 11% 

c (kPa) 46.7 49.5 

υ 10.1 6.3 
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Graph VI- 10: Comparison of shear behaviour of the waste sample “LMD-2” at shear rate 1 

mm/min and shear rate of 5 mm/min. 

Influence of displacement rate: The samples were saturated and consolidated at 200 kPa before 

testing in the direct shear box. The comparison between three samples LMC-1, LMC-2 sheared at 1 
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mm/min and LMC-3 sheared at 3 mm/min is presented in Graph VI-8. It can be noted in Table VI-17 

the increased shear rate reduced the frictional effect of the particles which was already reduced due to 

saturation. This reduction in shear strength values could be linked to a probable generation of over 

pressures in the samples at high displacement rate. 

 

It is worth noticing from all the shear strength parameters of sample LMC that the cohesion of the 

samples increased constantly from lowest for the initial samples to highest value for the samples 

which were shredded, saturated and sheared at the displacement rate of 3 mm/min. On the other hand 

the sample LMD followed the same pattern of shear strength parameters except for the displacement 

rate where the cohesion decreased for 3 mm/min as presented in Table VI-18. 

 

Table VI- 18: Comparison of shear strength parameters of shredded saturated sample “LMD-2” 

initially over consolidated sheared at 1 mm/min with the sample sheared at 5 mm/min. 

Sample LMD-2 (1 mm/min) LMD-2 (5 mm/min) 

Depth (m) 1-1.5  

Age of waste(yr) 17 

’OC (kPa) 200 200 200 200 200 200 

’ (kPa) 50  100 200 50  100 200 

ρdi (Mg/m3) 0.66 0.67 0.67 0.67 0.66 0.69 

ρdf (Mg/m3) 0.64 0.66 0.68 0.66 0.66 0.71 

w (%) 84.5 - - 83.15 - - 

 

%Deformation 11% 11% 

c (kPa) 45.38 37.625 

υ 22.56 22.10 

 

 

Even though these shear test results have largely contributed to the already available data, however 

research is needed to be carried out with the approach of studying the relation of three phase (Solid, 

liquid and gas) degradation with the effective stresses. 
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VI-3.3 Landfill Site „N‟ 

Established in a small valley, concerned section of French landfill site (N) represents a maximum 

surface of 9.3 ha   (93 000 m 2). This section spreads out in its central part of an inferior coast ranging 

between + 131 and + 133 m NGL to a coastal projection of + 184 m for a maximum height of 50 m   

(Figure VI-39).  Starting in 2001, the exploitation of section of the landfill was programmed before 

this study roughly up to 2010, for a flow of waste stored near 270 000 tons / year (except in 2007: 325 

000 tons). Composed of household refuse (~60 %), non-hazardous industrial waste and residues of 

cleaning, waste is placed and compressed by means of a compactor Caterpillar 836 sheep foot roller 

(45 tons) in the shape of fine layers consolidated by intermediate cover layers of ten meters 

approximately. The landfill site is covered by a geo-synthetic membrane and a layer of drainage 

material to evacuate the leachate, which is protected by a geo-grid against altering the drainage layer 

by waste. Household waste is discharged without any treatment on site. The biogas production due to 

anaerobic processes is responsible for the odours, which are recovered by networks of pipes and sent 

up to flares to be burned. 

 

Site maintenance: The landfill site terrain is surrounded by a circle of pipes for spraying chemicals to 

minimize odours. This site will produce biogas for thirty years, time necessary for the decomposition 

of household waste. During this period, drains, wells, sumps, flares, ponds of water, leachate and other 

management techniques required for the recovery and treatment of leachate and gas will be checked 

and maintained permanently.  

 

Water treatment: Regarding water treatment, there exist two systems at the landfill site: one for 

rainwater before they reach the waste, other for the leachate, resulting from the fermentation of waste. 

 

 The rainwater is collected in a basin and after checks for contaminations is released. 

 The leachate is pumped to another pond, where they are oxidized and treated with products 

that destroy odours and evacuated to a treatment plant. 
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Figure VI- 39: Landfill site profile (waste height with respect to NGL).  

VI-3.3.1 Context of the Study 

The installation of domestic waste has become increasingly a technical task in which there is a 

complex interaction of natural materials (clay, sand), artificial materials (geosynthetic membranes) and 

waste whose behaviour is variable at the same time with respect to time and space.  These works 

require a rigorous analysis, in particular with regard to the control of settlement which pose 

environmental (deformation of the covers under the effect of the relative settlements, waste structures 

deformation, leakage of biogas and leachate) and economic problems at the same time (estimation of 

the storage capacity, optimization of the waste installation process). 

 



 

 

288 

The objectives of the study have two dimension, firstly any future installation at site and secondly the 

possibility of modification of waste stabilisation after its placement at site. It is worth mentioning here 

that since the commencement of placement works, no treatment of waste prior to installation was 

carried out as a principle procedure except the compaction. Moreover the waste was neither sorted for 

recyclables not shredded.  

 

Vertical expansion: Sine the landfill site is one of the largest available approved sites in the region; it 

takes the waste from all four corners of the region. One of the major concerns of the site manager is to 

envisage further installation of waste at already existing waste cells. For this purpose future 

predictions of settlement of the existing waste column as well as the settlement predictions with 

additional waste columns needed to be carried out to confirm the waste behaviour for long period of 

time (approximately 30 years). Further the stability issue is important for the waste cells at the borders 

of landfill which include the slope edges of the cells. In the present study, the settlement analysis is not 

considered however a stability analysis is carried out for the site, detailed in section VI-4, 

incorporating the results obtained from the shear tests. 

 

 

Figure VI- 40: Drilling operation at site.  
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VI-3.3.2 Sample Retrieval through Drilling 

For the purpose of carrying out the laboratory tests, waste from different locations of the landfill site 

was drilled and brought to the laboratory by the maintenance team working at site. The sampling 

campaign was performed during spring 2008. Various drills were carried out at different locations and 

depths of the waste to collect a number of samples differing in age and composition. The drilling was 

done using a drill core which does not damage, during the process, the elements of waste by grinding 

them. Column drilling was divided into eight sections (two for each depth range) with moisture 

content and density determination performed for each section at every 5 or 6 m. Moreover all the 

waste was weighed to have a density profile for that section of the waste. Moreover sorting of waste 

was carried out with three meshes of size > 50 mm, 20-50 mm and <20 mm as well as sorting of the 

following components; 

 Kitchen waste 

 Garden trimmings, wood 

 Paper, carton and composites 

 Textiles and sanitary textiles 

 Plastics, metals, glass and inert 

 

Figure VI- 41: Location of drilled samples N3 and N6. 
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Moisture content for each component type was determined at site while moisture content of fines was 

determined in the laboratory. For each section, some forty kilos of waste was brought to the laboratory 

for testing purpose. In Figure VI-45 the location of drill holes is marked as 3 and 6 for Sample N3 and 

N6 respectively. Waste samples were collected at different locations out of which only two waste 

column of different depths were used for shear strength characteristic determination, while others were 

used for permeability profile determination and hydraulic conductivity tests performed in LTHE 

laboratory by other research colleagues. For the ease of denomination, these two drills will be referred 

to as N3 and N6. 

 

 

Figure VI- 42: Waste extraction at landfill site „N‟. 

VI-3.3.3 Determination of In-situ Unit Weight  

Following the drilling process an average dry density was calculated at site for various sections of the 

drills of different thickness. An average of 1.15 Mg/m3 was obtained (Table VI-19). For the purpose of 

simulations of various sections of the waste column, to be as representative as possible for the site 

conditions, the average density for the corresponding section was used. 

 

Table VI- 19: Densities of the samples of waste determined from drillings according to the depth 

considered.    

Drilling  N3  N6  Average  

0 -  7 m  0.84  -  0.84  

7 -  14 m  1.06  1.25  1.15 

14 -  23 m  1.24  1.26  1.25 

23 -  33 m  1.14  1.19  1.65 

Average  1.07  1.23  1.15  
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Figure VI- 43: Collection of waste from the drilling process for the in-situ density calculation. 

VI-3.3.4 Drilled Samples N3 

From the figures of the drilling operation, it can be noticed that the waste is an old waste and further 

the grain size distribution is inclined towards fine particles. The percentage composition on the basis 

of dry weight is presented in Figure VI-44. 

 

 

Figure VI- 44: Composition of Waste of drilled samples N3. 

The calculated average moisture content of the waste was 25% (Table VI-20), while the range of the 

age of the waste was determined as from 2001 to 2007, the age of the waste in drill N3 with respect to 
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depth is shown in Figure VI-45. The overall density for the waste column of 33 m deep was calculated 

at site to be 1.02 Mg/m3. 

 

Table VI- 20: In-situ values of physical characteristics for drilled samples N3. 

Drill Sample N3-1 N3-2 Average 

Depth 0-7 m 23-33 m 0-33 m 

Density 0.84 1.24 1.04 

Humidity 27% 23% 25% 

Age of Waste 1-2 7 1-7 
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Figure VI- 45: Age of waste as a function of depth for drilled samples N3. 

VI-3.3.5 Drilled Samples N6 

For the samples received from drill N6, composition of the waste was similar to that of drill N3 with 

fines making almost fifty percent of the whole waste composition. The moisture content was 

calculated to be 27.5% with a humid density of 1.2 Mg/m3, while the age of the waste was determined 

to be 2003 for the given depth. The data regarding the sample in-situ moisture content and density 

with reference to depth of the waste column is presented in Table VI-21, the age of the waste as a 

function of depth is presented in Figure VI-46 whereas the percentage composition of drill N6 is 

presented in Figure VI-47. 

 



 

 

293 

Table VI- 21: In-situ values of physical characteristics for Drill Sample N6. 

Drill Sample N6-1 N6-2 Average 

Depth 12.3-17 m 22-32.7 m 12.3-32.7 m 

Density 1.26 1.19 1.22 

Humidity 28% 27% 27.5% 

Age of Waste 5 5 5 
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Figure VI- 46: Age of waste as function of depth for drilled samples N6. 

 

 

Figure VI- 47: Percentage composition by dry weight of Drill Sample N6. 
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VI-3.3.6 Shear Test Results and Discussion 

In Table VI-22 tests descriptions are summarised with the sample notations and the following series of 

shear tests were performed: 

 Initially the unprocessed waste was tested at different normal stresses.  

 Second series of tests was carried out on the waste of fine composition i.e. passing 20 mm. 

For this purpose the waste of initial composition (N3-1 + N3-2 and samples of two different 

depths of drill N6) was sieved manually to separate the particles bigger than 20 mm and the 

fine composition of both the samples was mixed. 

 Third series of tests was performed on the waste composed of fines particles with additional 

moisture content. 

 The same fines composition with additional moisture content was tested at slow displacement 

rate to complete the test series. 

 

Table VI- 22: Description of samples tested for the shear strength for waste „N‟.  

Sample Description 

N3-1 Sample retrieved from 0-7 m, tested at natural moisture content. 

N3-2 Sample retrieved from 23-33 m, tested at natural moisture content.  

N3-3 Sample prepared through mixing the composition of N3-1 and N3-2 passing 

sieve < 20 mm with additional moisture content. 

N3-4 Sample N3-3 with additional moisture content (higher than N3-3) 

N6-1 Sample retrieved from Drill N6 (depth 22-32.7 m), tested at natural moisture 

content. 

N6-2 Sample prepared through mixing the samples from two different depths of 

N6 passing sieve < 20 mm. 

N6-3 Sample N6-2 with higher moisture content. 

 

Initially the direct shear tests were carried out on waste samples as collected on site. For the 

determination of τmax the shear stress at 11% deformation (Table VI-23) was considered in all cases but 

no peak of shear stress is observed at this level. Graph VI-12 presents the set of curves for the three 

types of samples and the three levels of stresses.  
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Graph VI- 11: Comparison of shear strength of samples at initial grain size and composition 

(N3-1 and N3-2) with the sample after sieving  < 20 mm (N3-3) normally consolidated at a 

displacement rate of 1 mm/min. 

 

Table VI- 23: Details of the shear strength parameters of the tests for initial samples N3-1, 

sample N3-2 and N3-3. 

Sample N3-1 N3-2 N3-3 

Depth (m) 0-7  23-33  0-33  

Age of waste (yr) 1-2 7 1-7 

% < 20mm 46 .45 45 .05 100 

’pc (kPa) 50  100 200 50 100 200 65 120 200 

’ (kPa) 50  100 200 50 100 200 65 120 200 

ρdi (Mg/m3) 0.65 0.75 0.75 0.68 0.71 0.81 - - - 

ρdf (Mg/m3) 0.68 0.78 0.82 0.69 0.77 0.88 0.75 0.82 0.93 

w (%) 25.2  25.6 25.1 21.9 22.1 22.1 36.7 36.2 36.0 

 

%deformation 11% 11% 11% 

c (kPa) 10.0 3.9 0 

υ 33.2 33.0 38.9 
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Influence of Sieving: Samples (N3-1 and N3-2) were then passed through the sieve < 20 mm to 

separate the fines particles and additional water was added to this fraction of fines and tested for the 

shear strength (N3-3) of samples comprising only of fine particles. The same series of tests were 

performed for the sieved composition of drill samples ‘N6’. In general it is expected that the removal 

of the fibrous components reduces the frictional component of the shear strength of the waste body but 

these results suggest otherwise. The cohesion for the tests samples, comprising of fines only, reduced 

to zero but on the other hand the friction increased. It should be noted on the same time that these test 

samples were tested with additional moisture which is supposed to be another negatively influencing 

parameters in terms of the shear strength of the material. 

 

Including the fibrous particles or testing the composition comprising only of fines does not change the 

shear strength parameters significantly which is due to the fact that fibrous material tend to orient in 

the horizontal direction. The results derived for sample N6-1 show the increase in friction angle with 

increasing consolidation stress (Table VI-24). This behaviour could be justified by the increasing test 

densities (ρdf) with normal stresses for normally consolidated samples. 
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Graph VI- 12: Comparison graph for stress displacement curve of sample N6-1 with initial 

composition, and the sample N6-2 (fines passing < 20 mm). 
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Graph VI- 13: Comparison of sample comprising of fines ( < 20 mm) at natural moisture content 

N6-2 with the samples comprising of fines at saturated moisture content N6-3. 

 

Table VI- 24: Shear strength parameters for the initial samples at natural moisture content         

( N6-1), the samples comprising of fines (< 20 mm) at natural moisture content N6-2 and the 

samples at higher moisture content (N6-3) at the same displacement rate 1 mm/min. 

Sample N6-1 N6-2 N6-3 

Depth (m) 22-32.7 12.3-32.7 12.3-32.7 

Age of waste (yr) 5 5 5 

% < 20 mm 47.4 100 100 

’pc (kPa) 150 200 300 150 200 300 150 200 300 

’ (kPa) 150 200 300 150 200 300 150 200 300 

ρdi (Mg/m3) 0.63 0.68 0.71 0.79 0.85 0.97 - - - 

ρdf (Mg/m3) 0.69 0.75 0.80 0.88 0.96 0.99 0.73 0.76 0.83 

w (%) 35.13 - - 30.43 - - 52.7 52.7 44.0 

 

%Deformation 11% 11% 11% 

c (kPa) 4.8 36.0 0 

υ 31.4 32.3 37.0 
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Influence of displacement rate: The fines composition (N3-3) was further tested with more moisture 

added to the samples at two different displacement rates (N3-4). The samples were normally 

consolidated and tested at usual speed of 1 mm/min and at slower speed of 0.5 mm/min. The shear 

strength parameters do not vary significantly however it is noted that the slower displacement rate 

slightly increased the density of the samples during the test in comparison with the samples tested at 1 

mm/min Table VI-25). 
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Graph VI- 14: Comparison of stress-displacement trends for sample N3-4 for two different 

displacement rates (1 mm/min and 0.5 mm/min) 

Between the two displacement rates of 1 mm/min and 0.5 mm/min, no significant difference is 

observed due to the low value of displacement rates. 
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Table VI- 25: Details of the parameters of the shear tests for samples with enhanced moisture 

content at 1 mm/min and at 0.5 mm/min displacement rate. 

Sample N3-4 (1 mm/min) N3-4 (0.5 mm/min) 

Depth (m) 0-33 0-33 

Age of waste(yr) 1-7 1-7 

% < 20mm 100 100 

’pc (kPa) 50 100 200 50 100 200 

’ (kPa) 50 100 200 50 100 200 

ρdi (Mg/m3) 0.77 0.81 0.84 0.75 0.79 0.87 

ρdf (Mg/m3) 0.78 0.82 0.86 0.85 0.84 0.90 

w (%) 69.3 66.4 66.8 66.7 69.2 65.0 

 

%deformation 11% 11% 

c (kPa) 16.3 14.7 

υ 28.9 29.4 

 

 

Analysing all the tests series N3 and N6 it is interesting to note that even though the parameter 

modification were the same as for the other two landfill sites ‘B’ and ‘LM’ but the shear strength 

results do not follow the same behaviour. For the two sites tested ‘B’ and ‘LM’ cohesion increased 

under the effect of shredding but for landfill ‘N’ sieving the samples for the purpose of testing only the 

fine composition reduced the cohesion of the samples. Moreover addition of moisture increased the 

cohesion which is probably due to the reason that the initial moisture content was probably lower than 

the field capacity of the waste samples and it played a positive role in improving the shear strength of 

the samples however the friction was subsequently reduced. 

VI-3.4 Synthesis of Shear Strength Test Results 

The shear tests results from the present study are plotted with other values available in literature in 

comparison with the proposed range of shear strength parameters by Singh and Murphy (1990). 

It can be noted that the shear strength parameters determined in the present study are mainly in the 

range of high frictional component and lower cohesion. This is mainly due to the fact that the samples 

tested contained considerable percentage of the fibrous components. On the same time other series of 

the tests performed included saturated samples which reduced the cohesion of the samples. The 

increased displacement rate has the similar effect on the shear strength parameters.  
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Figure VI- 48: Effective shear strength parameters of test data from the present study (adapted 

from Singh and Murphy, 1990). 

 

These data presented in Figure VI-48 are subdivided into other figures according to the parametric 

variation adopted for the present study and are detailed underneath. 

 

Effect of size reduction: Comparison of samples tested at natural composition and the samples 

reduced in size to obtain the composition < 50 mm is presented in Graph VI-15. It was expected that 

the smaller fibrous elements would result in the decrease of tensile friction and thus an increase in 

cohesion however these results are not as flagrant as it was assumed to be an obvious result. 
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Graph VI- 15: Effect of size reduction on all the shear strength values determined in the present 

study. 

Effect of saturation: For the comparison of samples at natural moisture content and saturated state, 

one thing needs to be kept in mind while observing these results and it is the fact that most of the 

samples tested at saturated conditions had undergone other parametric variation as well. Such as the 

difference in the sample N3-1 and N3-4 is that not only N3-4 is saturated but it is the sample prepared 

by mixing two samples of a composition < 20 mm the same is true for the samples LMC-2 and LMD-

2 which are the samples prepared by size reduction to the composition < 50 mm. An increase in 

cohesion is observed for the saturated samples with consequent decrease in friction angle however one 

of the values (sample N6-1 and N6-3) show different behaviour. 
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Graph VI- 16: Effect of saturation on shear strength values of all the samples of the present 

study. 

Effect of displacement rate: All the saturated samples were tested at two different displacement rate 

considering 1mm/min as a consistent protocol displacement rate other displacement rates of 

0.5mm/min, 3 mm/min and 5 mm/min were adopted to observe their influence. It can be noted in 

Graph VI-17 that the samples tested at a faster displacement rate have a reduced friction angle and 

increased cohesion. 
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Graph VI- 17: Effect of displacement rate (Δl/Δt) on the shear strength values for all the samples 

of the present study. 
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VI-3.5 Influence of Anisotropic Behaviour on Slope Stability 

Due to anisotropy of MSW, shear strength is assumed minimum for the horizontal slip surface. The 

values of shear strength obtained in the present study are used here to analyse the slope stability 

according to the Bishop’s Simplified Stability Method. As shown in Figure VI-49 for the given height 

of 20 m of waste column and γ = 12 kN/m3 the stability is analysed with limiting factor of safety at 1 

and cohesion as a ratio of c’/γH is plotted against tanυ’.  

 

Figure VI- 49: Stability analysis for horizontal slip surface using the limit safety factor. 
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Graph VI- 18: Shear strength values of the present study with data of other researchers on the 

Bishop‟s simplified number chart. 
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These limiting factors of safety for three different slope angles at 30°, 50° and 70° are plotted in Graph 

VI-18 along with the data. It can be noted that almost all the shear strength values determined in the 

present study are stable for a slope of β = 30° with some of the values at limit and overall high shear 

strength values observed for the most of the data showing stable values for an angle of slope at 50° 

and even 70°. However future research on the shear strength of municipal solid waste should include 

more laboratory testing and back analyses of landfill failures to further refine the MSW shear strength 

parameters proposed herein. 

VI-4 SPECIFIC STABILITY DESIGN FOR LANDFILL SITE 

„N‟ 

From the present study on shear strength parameters, it was found out that, initially the geotechnical 

characteristics of waste are improved in a significant way by the contribution of the fibres which play 

a role of reinforcement of structure in a manner similar to that of the reinforced soils. Thus in case of 

high initial deformation, a high cohesion of fibres sometimes [up to 140 kPa according to Duchêne et 

al., (1998)] is mobilized which has the advantage of stopping the phenomenon (stabilizing properties). 

Three sections of the landfill were initially considered as shown in Figure VI-49 but to simplify the 

task only section 3 was considered in stability calculations for both drilled samples N3 and N6. 

VI-4.1 Slope stability analysis – application to the vertical expansion of a 

landfill site 

The slope stability analysis for the landfills is performed to verify that the idealized configuration has 

an adequate factor of safety against failure under static loading conditions. Solid waste placed within a 

landfill will have a gravitational weight component that may cause an internal stability problem. A 

rotational stability failure within the waste itself is a possibility depending on the strength, height, 

surface grading, and level of leachate within the waste body.  

 

Sine the landfill site is one of the largest available approved sites in the region; it takes the waste from 

all four corners of the region. One of the major concerns of the site manager is to envisage further 

installation of waste at already existing waste cells. For this purpose future predictions of stability of 

the existing waste column as well as the stability analyses with additional waste columns needed to be 

carried out to confirm the waste behaviour for any possible stability concerns. Further the stability 

issue is important for the waste cells at the borders of landfill which include the slope edges of the 

cells.  
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Figure VI- 50: Different probable sections for stability analysis. 

Keeping in view the vertical expansion of the landfill, four different case scenarios of waste structure 

were investigated against the stability of section 3 for landfill ‘N’ (Figure VI-50) with two 

distinguished cases of stability analyses incorporating the presence of fresh waste column over the old 

waste. These cases are termed as: 

 Case 1: Present height of the waste column at site with a thickness range between 18 to 50 m. 

 Case 2: Present height of the waste with a rise in the leachate level (5 m).  

 Case 3: Vertical expansion with fresh waste with a thickness range of 10 to 32 m. 

 Case 4: Rise of the leachate level of 5 m thickness (with exceptional conditions of leachate 

accumulated in base uncorrected parameters used in extreme conditions). 

 

Section 1 

 

Section 2 

 

Section 3 
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Figure VI- 51: Profile of Landfill section 3 without vertical expansion (A) and with the vertical 

expansion (B). 
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VI-4.2 Parameters of Stability 

VI-4.2.1 Shear Strength Parameters 

In the present study of stability design, the data for shear strength as determined in the previous study 

and detailed in § VI-3.3.6 was considered for the four case scenarios discussed above. The waste 

present at site is termed as ‘old waste’ in comparison with the fresh waste to be placed in the case of 

vertical expansion and the shear strength values determined earlier are used without any modification 

to analyse the probable worst case scenario. It is worth mentioning here that the waste samples 

retrieved from the site for shear test were analysed with modified parameters such as increased 

moisture content, and absence of fibrous particles which helped in considering the concerned values 

for change in shear strength. All variations in shear strength values for the four case scenarios are 

detailed in Table VI-26.  

 

Accidental rise of the leachate level: Considering an event of temporary dysfunction of the leachate 

pumping system, the incidence of the formation of leachate level saturated at a 5 m height within the 

bottom of the waste column is analysed through TALREN software for any potentially dangerous 

condition. Moreover to carry out the analysis for the worst conditions, the waste at the bottom of the 

waste column was defined having smaller shear strength parameters as compared to the upper section 

for fresh waste (c = 30 and 33 kPa) Table VI-26.  

 

Table VI- 26: Geotechnical parameters of landfill components used in the analyses (Refer § VI-

3.3.6). 

Layer Cohesion (kPa) Friction (°) Unit weight (kN/m3) 

Fresh waste (Drilled 

Sample N3 & N6) 

30 25 12.5 

Old waste (Drilled 

sample N3) 

- with leachate layer 

10 

 

30 14.0 

4 

Old waste (drilled 

sample N6) 

- with leachate layer 

5 

 

33 14.0 

2 

Inert waste 7.5 28 18.0 
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These properties of resistance are attested besides by the tensile behaviour of fibrous waste in 

configuration of slope, which led the preceding authors to propose higher values of shear strength 

characteristics. Nevertheless the results of Jones et al. (1997) which after having carried out a  

significant work of back analyses from site as well as laboratory tests suggested rupture characteristics 

appreciably weaker, namely a cohesion of 12 kPa and an friction angle close to 29°. 

Taking into consideration:  

 The nature of the waste stored at site with strongly reinforced fibrous material, cloths, plastics 

and textile (Figure VI-44, VI-46) 

 The strength of the compaction applied (compactor > 45 T) which supports the 

interconnection of the fibrous elements of waste 

 And low moisture content of waste  which consequently appears not to reach saturation under 

the effect of further surcharge 

VI-4.2.2 Calculation of Factor of Safety 

The state of stability of the slope is determined by the calculation of factor of safety according to the 

method of Bishop. This factor corresponds to the total resistant forces (being opposed to sliding) and 

the sum of the driving forces which can generate the slide on a circular rough surface. Calculations are 

carried out for many surface geometries having potential of acceptable kinematic rupture which make 

it possible to deduce the minimum factor of safety F characterizing this state of stability.   

If F < 1, the slope is instable,  

If F > 1, the slope is stable.  

In practice and for this type of waste body, a minimum factor of 1.5 is necessary for long-term 

stability, and temporarily to 1.3 for exceptional conditions (for example; higher leachate levels 

resulting from a breakdown of the pumping system or earthquake). Reinforcements (cover liners and 

geosynthetics in bottom of waste column) are generally considered stable, therefore, no stability 

coefficient is being used in the following calculations. With Talren software, calculations of stability 

were carried out in two-dimensions and following parameters were used:  

 geometry of slope (slope, height, intermediate embankment, etc…) 

 geometry of various layers of the slope  

 mechanical characteristics of constitutive materials of various layers of the slope and the base  

 conditions of pore water pressure and/or dynamic stresses in the slope if necessary.  

 

Generally the failure surface is taken as circular or sometimes a combination of straight and circular 

surfaces. The failure surface passing through the weak material is more likely to be critical. 

Calculations were done for various radii of circular failure surfaces covering a wider area of the 

landfill slopes. The factor of safety of landfill slopes is determined by assuming various positions and 
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shapes of the failure surfaces. The forces acting on the landfill waste include: Self weight and Pore 

pressures. The calculated factor of safety using the methods of slices and assuming the circular failure 

surfaces for all of the above cited cases are summarised in Table VI-27. 

VI-4.3 Summary of Results 

On the basis of assumption described above, numerous simulations with the limiting states of stability 

were carried out (Table VI-27) according to the section 3 since it was more critical section among the 

two sections considered while taking into account:  

 the slope at 40% downstream  

 the possible presence of leachate at 5 m height in bottom of waste column 

 

Table VI- 27: Factors of safety determined from the stability analyses of the four case scenarios 

at section 3 of the landfill „N‟. 

Stability scenario 

Section 3 

Sample F 

Case 1 N3 2.20 

N6 1.89  

Case 2 

Leachate 

N3 1.67 

N6 1.35 

Case 3 

Vertical expansion 

N3 2.20 

N6 1.89 

Case 4 

Vertical expansion+ 

Leachate 

N3 1.67 

N6 1.35 

 

These results from the simulations for section 3 corresponding to drilled samples N6 (sliding circles 

and associated factor of safety) are presented below in Figure VI-51, VI-52, VI-53 and VI-54. 

VI-4.4 Stability Design Discussion  

Within the scope of the results presented in Tables VI-27, following observations are made:  

 It is interesting to note that for the present study of stability analysis, the factor of safety 

determined for the section 3 remains the same both for the present waste column height and 

the vertical expansion (ranging between 10 to 30 m) that emphasises on no change in the slip 
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line position of the waste body. However it should be kept in mind that the shear strength of 

the fresh waste to be placed at the time of vertical expansion is assumed to have high shear 

strength than the old waste already present as site (Table VI-26). 

 In present conditions of storage (without leachate at the bottom) the average factor of safety 

calculated for both drilled samples N3 and N6 is clearly higher than 1.5.   

 In exceptional conditions (with 5 m thick leachate at the bottom) the factor of safety reduces 

to 1.67 for drilled sample N3 but is 1.35 for the drilled sample N6 which is the critical 

condition of the slope stability. But it should be kept in mind that the cohesion of 2 kPa was 

used for the calculation as determined from the shear tests. 

 

Leachate control in the bottom of the waste column: Concerning the stability of the slope 

downstream, most significant factor lies with the maintenance of favourable hydro-physical conditions 

in the long run. From this point of view, the experiments show that with the help of an effective 

drainage of the leachate, the present slope of waste on the site can remain stable even under strong 

slope conditions. As the majority of slope failures of waste observed all over the world arise from the 

formation and the rise in leachate levels in the solid mass of waste.   

 

Consequently, throughout the maintenance period of the site, it is important to control the leachate 

levels and to pump regularly in order to ensure the maintenance of waste above the water table. In 

addition to that, to be able to react quickly in the event of blockade or filling of the drain and/or 

sudden arrival of great quantities of leachate (significant storm, leakage at surface) in the bottom of the 

waste column, it is important to set up a series of mixed wells being able to receive the equipment of 

mobile pumps (or equipped permanently). Lastly, any measurement making it possible to limit the fire 

hazard within the solid mass of waste must be prioritised and in the event of proven internal 

combustion, it is important not to inject great quantities of water as there is the risk of internal pore 

pressures and loss of mechanical resistance.  

 

 

Figure VI- 52: Stability analysis of Case 1 for sample N6 with a calculated factor of safety = 1.89. 

Scale 5m 
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Figure VI- 53: Stability analysis Case 2 for drilled sample N6 with a calculated factor of safety = 

1.35. 

 

 

Figure VI- 54: Stability analysis of Case 3 for sample N6 with a calculated factor of safety = 1.89. 

 

Scale 5m 

Scale 5m 
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Figure VI- 55: Stability analysis of Case 4 for sample N6 with a calculated factor of safety = 1.35. 

 

Scale 5m 



 313 

Conclusions and Perspectives 

Conclusions 

The present research study has made it possible to underline different hydro-mechanical aspects of 

municipal solid waste in correlation and thus the need to study them in conjunction in order to better 

understand the various phenomena in landfills. The comprehension of these interrelated phenomena is 

indispensable for the management of conventional landfills in general and the modern landfills in 

particular. 

 

Within the scope of the present study following hydro-mechanical parameters were studied which 

made it possible to propose the characterisation of MSW. 

 

Compressibility: Theoretical and actual site cases were analysed to propose a modified version of 

ISPM settlement prediction model. 

 

 The parameter of time of origin necessary for the start of secondary settlement τc is suggested 

to be fixed at 1 month. 

 C* ISPM can be assumed intrinsic and its scale of variation is small in relation to the 

exploitation history of the landfills. 

 C Sowers was determined as “not intrinsic” contrary to ISPM. 

 

Shear Strength: Shear strength values were determined through large scale direct shear box and 

applied to site stability design. 

 

 Complex testing program included samples retrieved from different sites and different 

techniques. 

 c and φ values obtained, are in a higher range in comparison with the soil. 

 

Gas Permeability/Structural Parameters: Permeability tests on different wastes were performed to 

validate of the double porosity model hypothesis. 

 

 C*
R showed small variation in its values for different types of waste samples, analysed during 

previous as well as present study. Higher values of calculated C*
R in laboratory show the 

difficulty of achieving the comparable compaction vis-à-vis the in-situ measurements. 
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 The comparison of the parameter of solid density ρS suggests its relevance with the state of 

degradation of the waste. It can be stated that this parameter is a good indicator of 

degradation. 

 A characteristic state of moisture content wmicro is defined corresponding to the saturation of 

the micro porosity of the medium. 

 It is suggested that the moisture content w < wmicro does not influence gas transfer (concept of 

double porosity). 

 

Perspective of the present study on getting back to Pakistan 

As detailed in the general introduction of the status of MSW management in Pakistan, the present 

study will serve as a reference document to start numerous research projects. At present time 

following projects are envisaged: 

 

 To launch a MSW research laboratory. 

 

 To develop a data base for Pakistan MSW characterisation efforts to date. 

 

 To develop some public awareness campaigns regarding MSW management. 

 

 To collaborate with the universities of international standings for future research possibilities. 

 

 To propose the improvement techniques to the present environmental safety at landfill sites. 

 

 To suggest the implementation and amelioration techniques for the barrier systems. 
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Nomenclature 

Index G represents the gas phase and the index L represents the liquid phase. 

 

A Sample cross section m2 

BOD Biochemical oxygen demand mg/l 

BMP Biochemical methane potential Nl/kg MS 

COD Chemical oxygen demand mg/l 

NH4+ Ammonia production mg/l 

 Empirical parameter of Van Genuchten model - 

c Cohesion kPa 

Cc Coefficient of primary compression - 

Cs Coefficient of primary recompression - 

*

R
C  Intrinsic coefficient of primary compression (ISPM model) - 


*

C  Intrinsic coefficient of secondary compression (ISPM model) - 

dp Pore diameter m 

e Void ratio - 

ε Strain - 

 Van Genuchten – Mualem coefficient - 

H Settlement m 

HP Primary settlement m 

HS, Secondary settlement m 

G,L Gas/Liquid dynamic viscosity kg/(m x s) 

Kw Hydraulic conductivity m/s 

kG,L Gas/Liquid permeability m2 

ki Intrinsic permeability m2 

krG,L Gas/liquid relative permeability - 

kKC Permeability (carman-Kozeny model) m2 

ML Mass of liquid phase kg 

MS Mass of solid phase kg 

MT Total mass of the sample kg 

m Van Genuchten – Mualem model parameter - 

n Total porosity % 

nmicro Micro porosity % 



 331 

nmacro Macro porosity % 

pc Capillary pressure kPa 

pcp Back pressure kPa 

PG,L Absolute pressure for Gas/Liquid phase kPa 

pG Relative gas pressure (with respect to atmospheric pressure) kPa 

pL Relative liquid pressure (with respect to absolute gas pressure) kPa 

G Gas porosity % 

*

G
  Corrected gas porosity % 

L Volumetric liquid content % 

S Volumetric solid content % 

q Flow rate m/s 

 Density Mg/m3 

s Solids density Mg/m3 

d Dry density Mg/m3 

di Dry density of constituent i Mg/m3 

G,L Gas/Liquid density Mg/m3 

sat Saturated density Mg/m3 

SeL Effective degree of liquid saturation % 

SG,L Degree of gas/liquid saturation % 

Ss Specific surface m-1 

Smacro Macro saturation % 

Smicro Micro saturation % 

 Effective stress kPa 

PC Pre-consolidation stress kPa 

σ’c Consolidation stress kPa 

T Temperature °C ou °K 

TN Total nitrogen mg/kg MS 

t Time s 

tfp Time at the end of primary settlement s 

 Tortuosity - 

τ Origin of time for waste column layer history (ISPM) months 

τmax Maximum shear stress kPa  

vP Water speed in pores kPa 

i Percent constituent i (with respect to MS of the sample) %MS 

v Speed m/s 

VG,L Gas/Liquid volume m3 

VS Solid volume m3 
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VT Total volume of the sample m3 

VV Voids volume m3 

macro

V
V  Volume of macro voids m

3
 

micro

V
V  Volume of micro voids m3 

υ Angle of internal friction ° 

w Settlement at the top of waste column m 

wMH Moisture content as a ratio of wet mass %MH 

wMS ou w Moisture content as a ratio of dry mass %MS 

wsat Saturated moisture content %MS 

wmacro Macro pore moisture content %MS 

wmicro Micro pore moisture content %MS 

molaire

i
x  Molar fraction of constituent ‘i’ - 

ζ Angle of tensile forces ° 

Perfect gas constant R = 8.31 J/(mol x K) 

Acceleration due to gravity g = 10 m/s2 (g = 9.81 m/s2) 
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