

Transition superfluide et potentiels géométriques dans le gaz de Bose bidimensionnel

Marc Cheneau

soutenance de thèse de doctorat de l'université Pierre et Marie Curie

3 juillet 2009

Phases fortement corrélées dans les gaz dilués

Importance des interactions renforcées...

Nature 415 (2002)

• Potentiels optiques

- ✓ Transition superfluide / isolant de Mott Greiner et al. (2002)
- ✓ Gaz de Tonks-Girardeau Kinoshita et al. (2004), Paredes et al. (2004)

également : micro-pièges sur puce pièges « habillés »

• Résonances de Feshbach

✓ Transition BEC-BCS

Bartenstein et al. (2004), Bourdel et al. (2004), Regal et al. (2004), Zwierlein et al. (2004)

Plan de l'exposé

I. Point critique du gaz de Bose 2D

II. Nouveau montage expérimental

III. Potentiels géométriques en optique quantique

I. Le point critiquedu gaz de Bose bidimensionnel

Ordre à longue portée dans le gaz de Bose 2D

système homogène et infini

• Gaz parfait

gaz de Bose bidimensionnel

- ✓ Pas de condensation de Bose-Einstein (T \neq 0)
- ✓ Ordre à courte portée : $g^{(1)}(\vec{r}) = \langle \hat{\Psi}^{\dagger}(\vec{r}) \hat{\Psi}(0) \rangle$ décroît exponentiellement

Ordre à longue portée dans le gaz de Bose 2D

système homogène et infini

• Gaz parfait

gaz de Bose dimensionnel

- ✓ Pas de condensation de Bose-Einstein (T \neq 0)
- ✓ Ordre à courte portée : $g^{(1)}(\vec{r}) = \langle \hat{\Psi}^{\dagger}(\vec{r}) \hat{\Psi}(0) \rangle$ décroît exponentiellement

• Gaz en interaction

✓ Pas de condensation de Bose-Einstein (T \neq 0)

✓ Transition de phase :

- haute température \rightarrow ordre à courte portée
- basse température \rightarrow ordre partiel à longue portée : $g^{(1)}(\vec{r})$ décroît algébriquement

Berezinskii (1971) Kosterlitz & Thouless (1972, 1973)

• Gaz parfait

- ✓ Condensation de Bose-Einstein à T≠0
 - dans une boîte de côté L : $N_c^{id} \sim -(L^2/\lambda^2) \ln(\lambda^2/L^2)$
 - dans un piège harmonique : $N_{\rm c}^{\rm id} \sim (k_{\rm B}T/\hbar\omega_{\perp})^2$

gaz de Bose bidimensionnel

• Gaz parfait

- ✓ Condensation de Bose-Einstein à T≠0
 - dans une boîte de côté L : $N_{\rm c}^{\rm id} \sim -(L^2/\lambda^2) \ln(\lambda^2/L^2)$
 - dans un piège harmonique : $N_{\rm c}^{\rm id} \sim (k_{\rm B}T/\hbar\omega_{\perp})^2$

• Gaz en interaction

- ✓ Fraction condensée finie dans la phase superfluide
 - dans une boîte de côté L : $g^{(1)}(r) \sim r^{-\alpha}$

 $g^{(1)}(L) \sim L^{-\alpha} \leftarrow \begin{array}{c} \text{fraction} \\ \text{condensée} \end{array}$

Bramwell & Holdsworth (1994)

gaz de Bose bidimensionnel

• Gaz parfait

- ✓ Condensation de Bose-Einstein à T≠0
 - dans une boîte de côté L : $N_{\rm c}^{\rm id} \sim -(L^2/\lambda^2) \ln(\lambda^2/L^2)$
 - dans un piège harmonique : $N_{\rm c}^{\rm id} \sim (k_{\scriptscriptstyle \rm B}T/\hbar\omega_{\perp})^2$

• Gaz en interaction

- ✓ Fraction condensée finie dans la phase superfluide
 - dans une boîte de côté L : $g^{(1)}(r) \sim r^{-\alpha}$

 $g^{(1)}(L) \sim L^{-\alpha} \leftarrow \begin{array}{c} \text{fraction} \\ \text{condensée} \end{array}$

« une caractéristique de la transition BKT »

Bramwell & Holdsworth (1994)

Dans les expériences, la transition superfluide apparaît comme intermédiaire entre la condensation de Bose-Einstein et la transition BKT

Gaz ultra-froids quasi-2D

• Potentiel de confinement

- ✓ Confinement axial : $V_z(z) = \frac{M}{2}\omega_z^2 z^2$
- ✓ Dynamique axiale gelée si $\hbar \omega_z \gg k_{\rm B}T$, μ

Gaz ultra-froids quasi-2D

• Potentiel de confinement

- ✓ Confinement axial : $V_z(z) = \frac{M}{2}\omega_z^2 z^2$
- ✓ Dynamique axiale gelée si $\hbar \omega_z \gg k_{\rm B}T$, μ

• Interactions à 2D

✓ Potentiel de contact → énergie d'interaction : $\frac{1}{2}\kappa \int dx dy n^2(x, y)$

 $\checkmark \ \ell_z \gg a_s \rightarrow \text{collisions 3D}: \ \kappa = \hbar^2 \tilde{\kappa} / M , \quad \tilde{\kappa} = \sqrt{8\pi} \ a_s / \ell_z$

Gaz ultra-froids quasi-2D

• Potentiel de confinement

- ✓ Confinement axial : $V_z(z) = \frac{M}{2}\omega_z^2 z^2$
- ✓ Dynamique axiale gelée si $\hbar \omega_z \gg k_{\rm B}T$, μ

• Interactions à 2D

✓ Potentiel de contact → énergie d'interaction : $\frac{1}{2}\kappa \int dx dy n^2(x, y)$

 $\checkmark \ell_z \gg a_s \rightarrow \text{collisions 3D}: \kappa = \hbar^2 \tilde{\kappa} / M$, $\tilde{\kappa} = \sqrt{8\pi} a_s / \ell_z$

divergences UV coupure en énergie universalité ?

gaz de Bose bidimensionnel

Gaz ultra-froids quasi-2D

• Potentiel de confinement

- ✓ Confinement axial : $V_z(z) = \frac{M}{2}\omega_z^2 z^2$
- ✓ Dynamique axiale gelée si $\hbar \omega_z \gg k_{\rm B}T$, μ

• Interactions à 2D

- ✓ Potentiel de contact → énergie d'interaction : $\frac{1}{2}\kappa \int dx dy n^2(x, y)$
- $\checkmark \ell_z \gg a_s \rightarrow \text{collisions 3D}: \kappa = \hbar^2 \tilde{\kappa} / M$, $\tilde{\kappa} = \sqrt{8\pi} a_s / \ell_z$

• Point critique

✓ Simulations Monte-Carlo « classiques » : $n_c \lambda^2 = \ln(380/\tilde{\kappa})$ Prokof'ev, Ruebenacker & Svistunov (2001)

Préparation et observation d'un gaz quasi-2D

• Piège mixte

gaz de Bose

- ✓ Confinement transverse : piège magnétique $\omega_x/2\pi = 11 \text{ Hz}, \ \omega_y/2\pi = 130 \text{ Hz}$
- ✓ Confinement axial : réseau optique ID $\omega_z/2\pi = 3,6 \text{ kHz} \leftrightarrow 170 \text{ nK}$
- Deux plans indépendants dans le régime 2D
 - ✓ ~ 10⁵ atomes par plan $\leftrightarrow \mu = 1,7 \, \text{kHz}$
 - ✓ Température variée entre 0 et 150 nK

 $\checkmark \tilde{\kappa} = 0, 13 \rightarrow n_c \lambda^2 = \ln(380/\tilde{\kappa}) = 8, 0$

Préparation et observation d'un gaz quasi-2D

• Piège mixte

gaz de Bose bidimensionnel

- ✓ Confinement transverse : piège magnétique $\omega_x/2\pi = 11 \text{ Hz}, \ \omega_y/2\pi = 130 \text{ Hz}$
- ✓ Confinement axial : réseau optique ID $\omega_z/2\pi = 3,6 \text{ kHz} \leftrightarrow 170 \text{ nK}$
- Deux plans indépendants dans le régime 2D
 - ✓ ~ 10⁵ atomes par plan $\leftrightarrow \mu = 1,7 \text{ kHz}$
 - ✓ Température variée entre 0 et 150 nK
 - $\checkmark \tilde{\kappa} = 0, 13 \rightarrow n_c \lambda^2 = \ln(380/\tilde{\kappa}) = 8, 0$
- Imagerie après temps de vol
 - ✓ Interférences entre les deux nuages
 - ✓ Profil de densité : $n(x, z, \tau) \propto \int dy \ n(x, y, z, \tau)$

Cohérence de phase et vortex révélés

• Caractérisation de l'ordre à longue portée

Polkovnikov, Altman & Demler (2006)

$$C(L_x) = \frac{1}{2L_x} \int_{-L_x}^{L_x} \mathrm{d}x \ c(x) \exp(i\varphi(x)) \quad \rightarrow \quad \langle |C(L_x)|^2 \rangle \propto L_x^{-2\alpha}$$

✓ Ordre à courte portée : $\alpha = 1/2$

✓ Ordre partiel à longue portée : $\alpha = 1/n_s \lambda^2 < 1/4$

 $n(x, z, \tau) \propto 1 + c(x) \cos(Mzd/\hbar\tau + \varphi(x))$

Cohérence de phase et vortex révélés

• Caractérisation de l'ordre à longue portée

Polkovnikov, Altman & Demler (2006)

$$C(L_x) = \frac{1}{2L_x} \int_{-L_x}^{L_x} \mathrm{d}x \ c(x) \exp(i\varphi(x)) \quad \rightarrow \quad \langle |C(L_x)|^2 \rangle \propto L_x^{-2\alpha}$$

✓ Ordre à courte portée : $\alpha = 1/2$

✓ Ordre partiel à longue portée : $\alpha = 1/n_s \lambda^2 < 1/4$

Cohérence de phase et vortex révélés

• Caractérisation de l'ordre à longue portée

Polkovnikov, Altman & Demler (2006)

$$C(L_x) = \frac{1}{2L_x} \int_{-L_x}^{L_x} \mathrm{d}x \ c(x) \exp(i\varphi(x)) \quad \rightarrow \quad \langle |C(L_x)|^2 \rangle \propto L_x^{-2\alpha}$$

- ✓ Ordre à courte portée : $\alpha = 1/2$
- ✓ Ordre partiel à longue portée : $\alpha = 1/n_s \lambda^2 < 1/4$

• Dénombrement des vortex

 ✓ Les vortex apparaissent comme des dislocations dans le profil d'interférence

Mise en évidence de la transition

Hadzibabic et al., Nature 441, 1118 (2006)

vortex

cohérence

gaz de Bose bidimensionnel

Mise en évidence de la transition

Hadzibabic et al., Nature 441, 1118 (2006)

La transition observée correspond au mécanisme BKT

cohérence

gaz de Bose bidimensionnel

Localisation du point critique

Krüger et al., PRL 99, 040402 (2007)

Au point critique apparaissent simultanément...

• des interférences

• une structure bimodale

ajustement des ailes par une gaussienne → température effective

Prédictions théoriques et modélisation

Hadzibabic et al., NJP 10, 045006 (2008)

• Simulations Monte-Carlo quantiques 3D

Holzmann & Krauth (2008)

- ✓ Confirme le rôle crucial du mécanisme BKT
- ✓ Indique un biais dans la mesure de la température : $T_{eff} < T_{réelle}$

gaz de Bose bidimensionnel

Prédictions théoriques et modélisation

Hadzibabic et al., NJP **10**, 045006 (2008)

• Simulations Monte-Carlo quantiques 3D

Holzmann & Krauth (2008)

- ✓ Confirme le rôle crucial du mécanisme BKT
- ✓ Indique un biais dans la mesure de la température : $T_{eff} < T_{réelle}$
- Modèle simple jusqu'au point critique
 - ✓ Profil de densité 3D du gaz normal :
 - x-y semi-classique
 - z quantique
 - interactions en champ moyen

✓ Point critique : $n_c \lambda^2 = \ln(380/\tilde{\kappa})$ au centre du nuage

voir également : Holzmann, Chevallier & Krauth (2008)

aucun paramètre ajustable

gaz de Bose bidimensionnel

Prédictions théoriques et modélisation

Hadzibabic et al., NJP **10**, 045006 (2008)

• Simulations Monte-Carlo quantiques 3D

Holzmann & Krauth (2008)

- ✓ Confirme le rôle crucial du mécanisme BKT
- ✓ Indique un biais dans la mesure de la température : $T_{eff} < T_{réelle}$
- Modèle simple jusqu'au point critique
 - ✓ Profil de densité 3D du gaz normal :
 - x-y semi-classique
 - z quantique
 - interactions en champ moyen

✓ Point critique : $n_c \lambda^2 = \ln(380/\tilde{\kappa})$ au centre du nuage

voir également : Holzmann, Chevallier & Krauth (2008)

• Expériences similaires au NIST

Cladé et al. (2009)

- ✓ Constante de couplage plus faible : $\tilde{\kappa} = 0,02$
- ✓ Observations de trois phases distinctes

voir également : Bisset et al. (2009)

II. Nouveau montage expérimental

Vue d'ensemble

• Principe du montage

- ✓ PMO chargé à partir d'une vapeur ambiante
- ✓ Transport magnétique du PMO vers la cellule en verre
- ✓ Condensation dans un piège TOP $\omega_{\perp}/2\pi = 35 \,\text{Hz}$, $\omega_z/2\pi = 100 \,\text{Hz}$

50 cm

Vue d'ensemble

• Principe du montage

- ✓ PMO chargé à partir d'une vapeur ambiante
- ✓ Transport magnétique du PMO vers la cellule en verre
- ✓ Condensation dans un piège TOP $\omega_{\perp}/2\pi = 35 \,\text{Hz}$, $\omega_z/2\pi = 100 \,\text{Hz}$

 \rightarrow

Vue d'ensemble

• Principe du montage

- ✓ PMO chargé à partir d'une vapeur ambiante
- ✓ Transport magnétique du PMO vers la cellule en verre
- ✓ Condensation dans un piège TOP $\omega_{\perp}/2\pi = 35 \,\text{Hz}$, $\omega_z/2\pi = 100 \,\text{Hz}$

Réalisé en grande partie dans les ateliers de l'ENS et du LKB

Vue d'ensemble

Réalisé en grande partie dans

les ateliers de l'ENS et du LKB

• Principe du montage

- ✓ PMO chargé à partir d'une vapeur ambiante
- ✓ Transport magnétique du PMO vers la cellule en verre
- ✓ Condensation dans un piège TOP $\omega_{\perp}/2\pi = 35 \,\text{Hz}$, $\omega_z/2\pi = 100 \,\text{Hz}$

- ✓ Confinement transverse : piège magnétique
- ✓ Confinement axial : image optique d'une lame de phase

- ✓ Confinement transverse : piège magnétique
- ✓ Confinement axial : image optique d'une lame de phase

simple puits

- ✓ Confinement transverse : piège magnétique
- ✓ Confinement axial : image optique d'une lame de phase

- ✓ Confinement transverse : piège magnétique
- ✓ Confinement axial : image optique d'une lame de phase

- ✓ Confinement transverse : piège magnétique
- ✓ Confinement axial : image optique d'une lame de phase

double puits

confinement : $V_{\perp}(x, y) + V_{z}(z)$ état initial : $\psi_{0}(\vec{r})$

confinement : $V_{\perp}(x, y) + V_{z}(z)$ expansion : $\psi(\vec{r}, t)$

nouveau

montage

• Invariance d'échelle dans l'expansion

✓ Si le potentiel d'interaction vérifie la loi d'échelle : $U(\lambda \vec{r}) = \lambda^{-2} U(\vec{r})$,

alors l'expansion est donnée par : $n(\vec{r}, t) \simeq \lambda^{-2}(t) n_0(\vec{r}/\lambda(t))$

✓ Condition vérifiée par le potentiel de contact $\delta^{2D}(\vec{r})$

Kagan, Surkov & Shlyapnikov (1996) Pitaevskii & Rosch (1997) Werner & Castin (2006) fraction superfluide ET thermique

Werner & Castin (2006)

nouveau

montage

• Invariance d'échelle dans l'expansion

 ✓ Si le potentiel d'interaction vérifie la loi d'échelle : U(λ r̄) = λ⁻² U(r̄) , alors l'expansion est donnée par : n(r̄, t) ≃ λ⁻²(t) n₀(r̄/λ(t))
 ✓ Condition vérifiée par le potentiel de contact δ^{2D}(r̄)
 Kagan, Surkov & Shlyapnikov (1996)
 Pitaevskii & Rosch (1997)

> Les régularisations du potentiel de contact à 2D ont-elle une importance pratique ?

nouveau montage

X

Expansion dans le plan d'un gaz 2D

nouveau montage

Expansion dans le plan d'un gaz 2D

III. Potentiels géométriques en optique quantique

géométriques Champs de jauge artificiels pour atomes neutres

• Gaz d'électrons 2D dans un champ magnétique

$$H = rac{1}{2M} (ec{p} - qec{A})^2$$
 , $ec{
abla} \wedge ec{A} = ec{B}$

- ✓ Nombreux phénomènes associés : effet Hall quantique (fractionnaire)
- ✓ Hamiltonien analogue pour des atomes neutres ?

Champs de jauge artificiels pour atomes neutres

• Gaz d'électrons 2D dans un champ magnétique

$$H = rac{1}{2M} (ec{p} - qec{A})^2$$
 , $ec{
abla} \wedge ec{A} = ec{B}$

✓ Nombreux phénomènes associés : effet Hall quantique (fractionnaire)

✓ Hamiltonien analogue pour des atomes neutres ?

potentiels géométriques

- Atomes dans un piège en rotation
 - $H = \frac{1}{2M} (\vec{p} \vec{A})^2 + \frac{1}{2} M (\omega_{\perp}^2 \Omega^2) \vec{r}^2 , \quad \vec{A} = M \vec{\Omega} \wedge \vec{r}$
 - ✓ Champ magnétique artificiel : $\vec{B} = 2M \vec{\Omega}$
 - \checkmark Force de Coriolis \leftrightarrow Force de Lorentz

Champs de jauge artificiels pour atomes neutres

• Gaz d'électrons 2D dans un champ magnétique

$$H = rac{1}{2M} (ec{p} - qec{A})^2 \;, \quad ec{
abla} \; \wedge ec{A} = ec{B}$$

✓ Nombreux phénomènes associés : effet Hall quantique (fractionnaire)

✓ Hamiltonien analogue pour des atomes neutres ?

potentiels géométriques

• Atomes dans un piège en rotation

 $H = \frac{1}{2M} (\vec{p} - \vec{A})^2 + \frac{1}{2} M (\omega_{\perp}^2 - \Omega^2) \vec{r}^2 , \quad \vec{A} = M \vec{\Omega} \wedge \vec{r}$

✓ Champ magnétique artificiel : $\vec{B} = 2M \vec{\Omega}$

 \checkmark Force de Coriolis \leftrightarrow Force de Lorentz

Avec interactions répulsives : réseau de vortex

CBE en rotation

supraconducteur

Abo-Shaeer et al. (2001)

Essmann & Träuble (1967)

potentiels géométriques

- ✓ États propres internes dépendent de la position : $|m(\vec{r})\rangle$, $\varepsilon_m(\vec{r})$
- ✓ Exemple : atome dans un champ magnétique non-uniforme

potentiels géométriques

- ✓ États propres internes dépendent de la position : $|m(\vec{r})\rangle$, $\varepsilon_m(\vec{r})$
- ✓ Exemple : atome dans un champ magnétique non-uniforme

• Suivi adiabatique de l'état interne

- ✓ Description du système : $|\Psi(\vec{r})\rangle = \sum_{m} \psi_{m}(\vec{r}) |m(\vec{r})\rangle$
- Atome polarisé dans un état $|n\rangle$
- \checkmark Pas de transitions $|n\rangle \rightarrow |m \neq n\rangle$

- ✓ États propres internes dépendent de la position : $|m(\vec{r})\rangle$, $\varepsilon_m(\vec{r})$
- ✓ Exemple : atome dans un champ magnétique non-uniforme

• Suivi adiabatique de l'état interne

- ✓ Description du système : $|\Psi(\vec{r})\rangle = \sum_{m} \psi_{m}(\vec{r}) |m(\vec{r})\rangle$
- ✓ Atome polarisé dans un état $|n\rangle$
- ✓ Pas de transitions $|n\rangle \rightarrow |m \neq n\rangle$

• Hamiltonien effectif

potentiels géométriques

 $H(\vec{r}) = \frac{1}{2M} \left(\vec{p} - \vec{A}(\vec{r}) \right)^2 + \varepsilon_n(\vec{r}) + U(\vec{r})$

✓ Potentiel vecteur : $\vec{A}(\vec{r}) = i\hbar \langle n | \vec{\nabla} n \rangle$ (charge effective q = 1)

✓ Potentiel scalaire : $U(\vec{r}) = \frac{\hbar^2}{2M} \sum_{m \neq n} |\langle m | \vec{\nabla} n \rangle|^2$

- ✓ États propres internes dépendent de la position : $|m(\vec{r})\rangle$, $\varepsilon_m(\vec{r})$
- ✓ Exemple : atome dans un champ magnétique non-uniforme

• Suivi adiabatique de l'état interne

- ✓ Description du système : $|\Psi(\vec{r})\rangle = \sum_{m} \psi_{m}(\vec{r}) |m(\vec{r})\rangle$
- ✓ Atome polarisé dans un état $|n\rangle$
- ✓ Pas de transitions $|n\rangle \rightarrow |m \neq n\rangle$
- Hamiltonien effectif

potentiels

géométriques

 $H(\vec{r}) = \frac{1}{2M} \left(\vec{p} - \vec{A}(\vec{r}) \right)^2 + \varepsilon_n(\vec{r}) + U(\vec{r})$

✓ Potentiel vecteur : $\vec{A}(\vec{r}) = i\hbar \langle n | \vec{\nabla} n \rangle$ (charge effective q = 1)

✓ Potentiel scalaire : $U(\vec{r}) = \frac{\hbar^2}{2M} \sum_{m \neq n} |\langle m | \vec{\nabla} n \rangle|^2$

- Réalisation en optique quantique ?
- Mécanisme en jeu ?
- Génération de vortex ?

Réalisation possible en optique quantique

• Le système

potentiels géométriques

- ✓ Transition en Λ
- ✓ Excitation Raman résonante
- ✓ Faisceaux contra-propageants et décalés

Juzeliūnas et al. (2006)

Réalisation possible en optique quantique

• Le système

potentiels

géométriques

- ✓ Transition en Λ
- ✓ Excitation Raman résonante
- ✓ Faisceaux contra-propageants et décalés

Juzeliūnas et al. (2006)

• Potentiels géométriques

- ✓ État interne (état noir) : $|n(\vec{r})\rangle \propto \kappa_+(\vec{r}) |g_-\rangle \kappa_-(\vec{r}) |g_+\rangle$
- ✓ Potentiel vecteur → champ magnétique : $\vec{B}(x) = (2\hbar k b/w^2) G(x) \vec{u}_z$
- ✓ Potentiel scalaire : $W(x) \simeq (\hbar^2 k^2 / 2M) G(x)$

faisceaux gaussiens : $G(x) = 1/\cosh^2(2xb/w^2)$

Interprétation de la force de Lorentz (y)

Cheneau et al., EPL 83, 60001 (2008)

Force de Lorentz : $\vec{F} = \vec{v} \wedge \vec{B}$

potentiels géométriques

- Atome en mouvement selon x
 - ✓ Force de Lorentz : $F_y = -v_x B_z$
 - ✓ Transfert d'impulsion :

$$\Delta p_y = -\int_{t_1}^{t_2} B_z v_x \, \mathrm{d}t = -\int_{x_1}^{x_2} B_z(x) \, \mathrm{d}x$$
$$\simeq -2\hbar k$$

Interprétation de la force de Lorentz (y)

Cheneau et al., EPL 83, 60001 (2008)

Force de Lorentz : $\vec{F} = \vec{v} \wedge \vec{B}$

potentiels géométriques

- Atome en mouvement selon x
 - ✓ Force de Lorentz : $F_y = -v_x B_z$
 - ✓ Transfert d'impulsion :

$$\Delta p_y = -\int_{t_1}^{t_2} B_z v_x \, \mathrm{d}t = -\int_{x_1}^{x_2} B_z(x) \, \mathrm{d}x$$
$$\simeq -2\hbar k$$

Interprétation de la force de Lorentz (y)

Cheneau et al., EPL 83, 60001 (2008)

potentiels

géométriques

- Atome en mouvement selon x
 - ✓ Force de Lorentz : $F_y = -v_x B_z$
 - ✓ Transfert d'impulsion :

$$\Delta p_y = -\int_{t_1}^{t_2} B_z v_x \, \mathrm{d}t = -\int_{x_1}^{x_2} B_z(x) \, \mathrm{d}x$$
$$\simeq -2\hbar k$$

- Interaction atome-photons
 - $\checkmark \text{ État interne : } |n(\vec{r})\rangle \propto \kappa_{+}(\vec{r}) |g_{-}\rangle \kappa_{-}(\vec{r}) |g_{+}\rangle \rightarrow x_{1} : \kappa_{+} \gg \kappa_{-} \rightarrow |n\rangle \simeq |g_{-}\rangle$ $x_{2} : \kappa_{+} \ll \kappa_{-} \rightarrow |n\rangle \simeq |g_{+}\rangle$

✓ Le passage de g_- à g_+ est dû à un processus d'absorption / émission stimulée

✓ Transfert d'impulsion : $-2\hbar k$

Peut-on réellement observer des vortex ?

Peut-on réellement observer des vortex ?

Problème : vitesse divergente au cœur d'un vortex...

Peut-on réellement observer des vortex ?

Problème : vitesse divergente au cœur d'un vortex...

L'approximation adiabatique est-elle cohérente ?

État fondamental du système

Günter et al., PRA 79, 011604(R), (2009)

• Recherche de l'état fondamental

- ✓ Gaz d'atomes à 3 niveaux en interaction (une seule longueur de diffusion)
- ✓ Couplage Raman avec faisceaux gaussiens (configuration adaptée à la structure hyperfine)
- ✓ Durée de vie finie du niveau excité
- ✓ Résolution numérique des 3 équations de Gross-Pitaevskii couplées

État fondamental du système

Günter et al., PRA 79, 011604(R), (2009)

• Recherche de l'état fondamental

- ✓ Gaz d'atomes à 3 niveaux en interaction (une seule longueur de diffusion)
- ✓ Couplage Raman avec faisceaux gaussiens (configuration adaptée à la structure hyperfine)
- ✓ Durée de vie finie du niveau excité
- ✓ Résolution numérique des 3 équations de Gross-Pitaevskii couplées

- L'état interne correspond bien à l'état noir
- L'état fondamental contient bien un réseau de vortex

Simulation !

Conclusion et perspectives

Transition vers la superfluidité dans le gaz 2D

- Le mécanisme BKT est bien présent dans la transition superfluide
 - ✓ Observation des propriétés caractéristiques : cohérence de phase, prolifération de vortex
 - \checkmark Localisation du point critique
- Modélisation des interactions par un potentiel de contact validée pour l'expansion bidimensionnelle
 - ✓ Observation de l'invariance d'échelle de l'expansion 2D

Transition vers la superfluidité dans le gaz 2D

- Le mécanisme BKT est bien présent dans la transition superfluide
 - ✓ Observation des propriétés caractéristiques : cohérence de phase, prolifération de vortex
 - \checkmark Localisation du point critique
- Modélisation des interactions par un potentiel de contact validée pour l'expansion bidimensionnelle
 - ✓ Observation de l'invariance d'échelle de l'expansion 2D
 - Étude quantitative de la région critique : équation d'état ?
 - ✓ Région particulièrement large dans la transition BKT : $\Delta T \sim T_c$
 - ✓ Les études théoriques existantes semblent limitées à $\tilde{\kappa} < 0, 1$
 - ✓ Apport essentiel des expériences !

Potentiels géométriques en optique quantique

- Mécanismes à l'œuvre dans une vision semi-classique
 - ✓ Lien avec les forces radiatives
- Hypothèse de suivi adiabatique validée
 - ✓ L'état fondamental contient bien un réseau de vortex
- Proposition de réalisation expérimentale incluant la structure hyperfine

Potentiels géométriques en optique quantique

- Mécanismes à l'œuvre dans une vision semi-classique
 - ✓ Lien avec les forces radiatives
- Hypothèse de suivi adiabatique validée
 - ✓ L'état fondamental contient bien un réseau de vortex
- Proposition de réalisation expérimentale incluant la structure hyperfine

• Mise en œuvre expérimentale

- ✓ Jamais encore réalisée !
- ✓ Quel est le champ magnétique « maximal » que l'on peut ainsi générer ?

L'équipe « gaz de Bose 2D »

Sabine Stock

Baptiste Battelier

Steffen Patrick Rath

Tarik Yefsah

Rémi Desbuquois

Zoran Hadzibabic

Peter Krüger

Kenneth Günter

Jean Dalibard

