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Abstract

In this thesis manuscript, the main objective is to study the wireless networks where
the node terminals are equipped with multiple antennas. Rising topics such as self-
optimizing networks, green communications and distributed algorithms have been ap-
proached mainly from a theoretical perspective. To this aim, we have used a diversified
spectrum of tools from Game Theory, Information Theory, Random Matrix Theory and
Learning Theory in Games.

We start our analysis with the study of the power allocation problem in distributed
networks. The transmitters are assumed to be autonomous and capable of allocat-
ing their powers to optimize their Shannon achievable rates. A non-cooperative game
theoretical framework is used to investigate the solution to this problem. Distributed
algorithms which converge towards the optimal solution, i.e. the Nash equilibrium, have
been proposed. Two different approaches have been applied: iterative algorithms based
on the best-response correspondence and reinforcement learning algorithms.

Another major issue is related to the energy-efficiency aspect of the communication.
In order to achieve high transmission rates, the power consumption is also high. In
networks where the power consumption is the bottleneck, the Shannon achievable rate
is no longer suitable performance metric. This is why we have also addressed the problem
of optimizing an energy-efficiency function.
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Résumé

Dans ce manuscrit de thèse, lobjectif principal est d’étudier les réseaux sans fil dans
lesquels les nuds terminaux sont équipés de plusieurs antennes. Plusieurs thèmes d’actualité,
tels que les réseaux intelligents auto-optimisants, les communications dites green ou
vertes et algorithmes distribués sont abordés. Dans ce but, nous utilisons une gamme
diversifiée d’outils de la théorie des jeux, théorie de l’information, théorie des matrices
aléatoires et théorie de l’apprentissage.

Nous commençons notre analyse par l’étude du problème d’allocation de puissance
dans les réseaux MIMO distribués. Les émetteurs sont censés être autonomes et capables
de gérer leurs puissances afin d’optimiser leur taux de Shannon atteignables. Le cadre des
jeux non-coopératifs est utilisé pour étudier la solution de ce problème. Des algorithmes
itératifs qui convergent vers la solution optimale donnée par léquilibre de Nash sont
proposés. Deux approches différentes sont appliquées: des algorithmes basés sur les
meilleures réponses et des algorithmes dapprentissage par renforcement.

Un autre problème majeur dans les réseaux sans fil est lié à la question de l’efficacité
énergétique. Afin d’atteindre des débits de transmission élevés, la consommation d’énergie
est également élevée. Dans les réseaux où la consommation d’énergie est une question cri-
tique, le débit de Shannon atteignable n’est plus une métrique de performance adaptée.
C’est pourquoi nous abordons également le problème de l’optimisation d’une fonction
d’efficacité énergétique.
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Chapter 1

Introduction

This manuscript is focused on resource allocation problems in MIMO wireless networks
which emerge in a communication context that is aiming towards intelligent or self-
optimizing networks capable of operating in an energy-efficient or green regime.

1.1 Background and Motivation

Although game theory and information theory have both been extensively developed in
the past sixty years, starting with the seminal contributions of J. von Neumann and
O. Morgenstern [1], J. Nash [2] and C. E. Shannon [3], only recently the connections
and interactions between the two theories started to be highlighted and exploited at
a significant scale. However, the first application of game theoretical tools to reliable
communications dates back to Mandelbrot’s PhD dissertation [4] in 1952 and later in [5]
and [6] where the communication between a transmitter and a receiver was modeled as
a two player zero-sum game with a mutual information payoff function. The transmitter
plays against a malicious nature that chooses the worst channel distribution in the sense
of the mutual information. It turns out that the non-cooperative solution of this game
is identical to the maximin worst-case capacity assuming that the transmitter has no
knowledge about the channel conditions (noise and channel gains statistics).

The recent surge of interest in applying game theoretical tools to communications
was due to the development of wireless communications. In this context, multiple trans-
mitter and receiver devices share the same communication environment. Thus, the
competition for public resources (such as frequency bands, time slots, space, transmit
power or energy) naturally arises. These resources can be, a priori, optimized by a
central authority. However, the centralized approach presents several inconveniences:
i) it is unrealistic in an environment where multiple concurrent service providers exist;
ii) the joint optimization problem over all the network parameters is, generally, a very
complex non-convex optimization problem, involving high computational cost; iii) it
is not scalable, i.e., a slight change in the network topology may lead to a much more
complex or even intractable optimization problem; iv) it involves an important signaling
cost when the network owner feedbacks the optimal allocation policies to each network

13



CHAPTER 1. Introduction

user; v) the centralized solution is not necessarily fair w.r.t. the quality of service (QoS)
provided to the users; vi) in the context of autonomous and rational users, if the QoS of
a user is unsatisfactory, it may deviate from the centralized allocation policy which may
result in a very inefficient network operating point. For these reasons, a distributed so-
lution may be desirable although its centralized counterpart is generally better from the
overall network performance perspective. In distributed environments, the competition
for resources gives rise to interactive situations. Game theory seems to be the suitable
mathematical framework to study such interactive situations.

In this context, one of our main objectives is to study non-cooperative resource
allocation games in multiple-input multiple-output (MIMO) wireless communication
networks. The motivation behind the choice of MIMO channels is two-fold: i) MIMO
channels model a variety of real-world communication channels; ii) they provide an ele-
gant mathematical framework (i.e., the compact matrix notation). To be more precise,
the agents or game players are autonomous transmitter devices. These devices are ca-
pable of sensing the environment and to decide their individual actions, i.e., their own
power allocation (PA) policies. Assuming they are rational and selfish devices, the action
chosen are the ones maximizing their individual payoffs, i.e., their Shannon transmission
rates. There are a lot of reasons why this type of payoffs has been often considered in the
literature. Here, we will mention only the most important ones. First, Shannon trans-
mission rates characterize the performance limits of a communication system and allow
us to study distributed networks where good coding schemes are implemented. Second,
the direct relationship between the achievable transmission rate of a user and his signal-
to-interference plus noise ratio (SINR) allows us to optimize performance metrics like
the SINR or related quantities of the same type (e.g., the carrier-to-interference ratio).
Third, from a mathematical perspective, Shannon rates have many desirable properties
(e.g., concavity properties), which allow one to conduct thorough performance analyses.
Therefore they provide useful insights and concepts that are exploitable for a practical
design of decentralized networks.

However, during the past decade, energy consumption has become an increasingly
important issue in wireless networks. For instance, in the current cellular networks,
the mobile terminals are equipped with relatively large screens, required to offer more
and more functionalities and they need to operate at higher transmission rates for a
longer period of time. Furthermore, in sensor networks where changing the batteries of
devices is highly impractical or, in some cases, even impossible, the power consumption
becomes a critical issue. In these scenarios, optimizing the Shannon achievable rates
without considering the cost incurred is no longer a suitable performance metric. In
order to take into account the consumed transmit power to achieve these rates, a new
energy-efficient metric has been proposed in the literature [7] [8]. This metric, which
we will also investigate in our scenario of MIMO networks, measures the number of bits
that can be reliably conveyed through the channel per units of energy consumed.

From a practical point of view, the computation of the solution concepts of both,
the Shannon rate-efficient or energy-efficient power allocation problems, often involves
the implementation of complex algorithms at the transmitter level, a high amount of
signaling among the transmitters, transmitter rationality assumption. In this context,
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1.2. Non-cooperative Game Theoretical Concepts

we will study learning algorithms which can be used to model adaptive decision making
of the devices. They are low complexity algorithms that can be implemented with no
rationality assumption. The devices choose their action based on a simple feed-back
from the environment (i.e., scores for their choices). It turns out that, in the long term,
they can improve their performance while operating in an unknown environment and
converge to desirable network operating points.

The present manuscript is organized in three parts corresponding to the three main
chapters.

We start by analyzing the multi-user Shannon-rate efficient power allocation problem
in Chapter 2. This problem is formulated as a non-cooperative game. The existence
and multiplicity of the Nash equilibrium (NE) solution will be investigated for two
different network models. The multiple access channel (MAC) [9], [10], where multiple
transmitters send their messages to a common receiver is studied in Section 2.1. The
interference relay channel (IRC) [11], [12], which consists of an interference channel
[13] (where several transmitter-receiver pairs coexist in a common environment creating
mutual interference) and several relaying nodes that can be used by the transmitters to
improve the performance of their communications will be studied in Section 2.2. We also
evaluate the performance obtained at the NE operating points via numerical simulations
and water-filling or best-response based iterative algorithms.

Optimizing the Shannon achievable rate is not always the best policy, especially in
networks where the terminal devices are equipped with batteries of limited capacity.
This is why, in Chapter 3, we study an energy-efficiency metric that takes into account
both, the achievable transmission rates and the consumed power to achieve these rates.
Because of the difficulties encountered, the energy-efficient power allocation problem
is studied only for the single-user MIMO channel. The multi-user scenario is left as a
useful extension of this work. One of the main difficulties encountered lies in the fact
that the outage probability optimization in slow fading MIMO channels is still an open
problem [14].

Finally, in Chapter 4, we consider learning algorithms. These algorithms are shown
to provide an alternative way for the users to converge to some desirable operating points,
such as the Nash equilibrium of the games in Chapter 2 or the optimal power allocation
that optimizes the outage probability or energy-efficiency metric given in Chapter 3.
They are simple adaptive algorithms that require little knowledge of the environment
and no rationality assumptions.

In Chapter 5, we conclude our analysis with several remarks and open issues.

1.2 Non-cooperative Game Theoretical Concepts

We will briefly review hereunder some basic game-theoretical concepts which will be used
throughout the manuscript. By definition, game theory is the mathematical framework
dedicated to the study of interactive situations among decision makers or agents. We
will consider the rationality assumption of the game players in the sense that a player
chooses its best strategy to maximize the benefit [1]. The mathematical characterization
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of a strategic form game is given by the following definition.

Definition 1.2.1 A strategic form game is a triplet G = (K, {Ak}k∈K, {uk}k∈K), where
K = {1, . . . ,K} represents the set of players, Ak represents the set of strategies or
actions that player k ∈ K can take and uk : ×`∈KA` → R represents the benefit or payoff
function of user k which is a measure of its satisfaction.

In the case of non-cooperative games, in which the players act in a selfish and indepen-
dent manner, the Nash equilibrium (NE) introduced in [2] represents a solution concept
of the game. The NE has been extensively studied in resource allocation problems be-
cause it is a very important concept to network designers. It represents an operating
point which is, both, predictable and robust to unilateral deviations (which is realis-
tic considering the fact that the players are assumed to be non-cooperative and act in
an isolated manner). This means that once the system is operating in this state, no
user has any incentive to deviate because it will lose in terms of its own benefit. The
mathematical definition of the NE is as follows:

Definition 1.2.2 A strategy profile (aNE
1 , . . . , aNE

K ) ∈ ×`∈KA` is a Nash equilibrium
if for all k ∈ K and for all a′k ∈ Ak, uk(a

NE
k , aNE

−k ) ≥ uk(a
′
k, a

NE
−k ), where a−k =

(a1, . . . , ak−1, ak+1, . . . , aK) denotes the set of the other players’ actions.

Based on the game structure, the topological properties of the strategy sets and the
payoff functions, the main issues to be solved are: i) existence of an NE; ii) multiplicity
of the NE; iii) design distributed algorithms that allow the users to converge to a NE state
using only local knowledge of the environment; iv) determine the network performance of
the NE. Concerning the design of distributed algorithms the NE has another appealing
feature. As we will see in Chapter 4, the NE can be observed as the outcome of simple
iterative adapting rules, i.e., learning algorithms. What is remarkable is that these
iterative algorithms necessitate very little knowledge from the environment. In particular
they don’t require neither the knowledge of the game structure nor the players rationality
assumption.

In general, the NE performance is suboptimal with respect to the overall network
performance, which can be measured for example by the sum of individual user payoffs

u(a) =
∑

k∈K
uk(ak, a−k). Moreover, it is not a fair state with respect to the users’ payoffs

in general. Desirable operating points that cope with these issues are the so-called
Pareto-optimal states. A state of the system is Pareto-optimal if there is no other state
that wouldn’t be preferred by all the network users.

Definition 1.2.3 Let a and a′ be two different strategy profiles in ×`∈KA`. Then, if

∀k ∈ K, uk(ak, a−k) ≥ uk(a′k, a′−k), (1.1)

with strict inequality for at least one player, the strategy a is Pareto-superior to a′. If
there exists no other strategy that is Pareto-superior to a strategy profile aPO then aPO

is Pareto-optimal.
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1.2. Non-cooperative Game Theoretical Concepts

However, a Pareto-optimal state is not necessarily a stable state in a selfish non-
cooperative user environment. Furthermore the Pareto-optimal solution is rather a
centralized type solution because global network information is needed to compute these
states of the system.

There exist different techniques that can be used to improve the performance of the
NE. In general, they involve the interference of a centralized authority or some kind
of user cooperation. There is always a trade-off between the performance obtained at
the equilibrium state of the network and the signaling cost it involves. A more detailed
study of the non-cooperative game theoretic concepts can be found in the specialized
literature [15], [16]. For a thorough analysis on the methodologies for analyzing NE in
wireless games in general, the reader is referred to [17] and [18].

An important class of games are potential games introduced in [19].

Definition 1.2.4 A strategic form game G = (K, {Ak}k∈K, {uk}k∈K) is an exact po-
tential game if there exists a potential function V : A → R+ such that, for all k ∈ K
and every a, a′ ∈ A

uk(ak, a−k)− uk(a′k, a−k) = V (ak, a−k)− V (a′k, a−k). (1.2)

This definition translates the fact that all users have the same incentives in changing
their actions which leads the system from state a to state a′. For example, congestion
or routing games are potential games. Following [19], the local maxima of the potential
function are NE points of the game. Thus, every potential game has at least one NE.
Furthermore, in finite games, the iterative best-response type algorithms converge to
one of the NE states (see the finite improvement path (FIP) property in [19]) depending
on the initial point.

In order to tackle the existence and uniqueness issues for Nash equilibria, we will
often exploit the properties of concave games and the results of Rosen [20]. These results
are stated here below and are valid for the case where the actions of players are vectors.

Theorem 1.2.5 [20] Let G = (K, {Ak}k∈K, {uk}k∈K) be a game where K = {1, ...,K}
is the set of players, A1, ...,AK the corresponding sets of strategies and u1, ..., uk the
utilities of the different players. If the following three conditions are satisfied: (i) each
uk is continuous in the all the strategies aj ∈ Aj , ∀j ∈ K; (ii) each uk is concave in
ak ∈ Ak; (iii) A1, ...,AK are compact and convex sets; then G has at least one NE.

Theorem 1.2.6 [20] Consider the K-player concave game of Theorem D.1.5. If the
following (diagonally strict concavity) condition is met: for all k ∈ K and for all
(a′k, a

′′
k) ∈ A2

k such that there exists at least one index j ∈ K for which a′j 6= a′′j ,
K∑

k=1

(a′′k − a′k)T
[
∇akuk(a′k, a′−k)−∇akuk(a′′k, a′′−k)

]
> 0; then the uniqueness of the NE

is insured.

These theorems prove to be particularly useful in Shannon rate-efficient power allocation
problems where the users’ payoffs are generally concave w.r.t. the transmit power.

17



CHAPTER 1. Introduction

Other non-cooperative game solutions that generalize the concept of pure strategy
NE are: the mixed strategy NE and the correlated equilibrium. A mixed strategy
for user k is a probability distribution over its own action set Ak. Let ∆(Ak) denote
the set of probability measures over the set Ak. The mixed NE is defined similarly
to pure-strategy NE by replacing the pure strategies with the mixed strategies. The
existence of the mixed NE has been proven in [2] for all discrete games. If the action
spaces are discrete finite sets, then p

k
∈ ∆(Ak) denotes the probability vector such

that pk,j represents the probability that user k chooses a certain action a
(j)
k ∈ Ak and∑

a
(j)
k ∈Ak

pk,j = 1.

We also define the concept of correlated equilibrium [21] which can be viewed as the
NE of a game where the players receive some private signaling or playing recommenda-
tion from a common referee or mediator. The mathematical definition is as follows:

Definition 1.2.7 A joint probability distribution q ∈ ∆(A) is a correlated equilibrium

if for all k ∈ K and all a
(j)
k , a

(i)
k ∈ Ak

∑

a∈A:ak=a
(j)
k

qa

[
uk(a

(j)
k , a−k)− uk(a(i)

k , a−k)
]
≥ 0, (1.3)

where qa denotes the probability associated to the action profile a ∈ A.

At the CE, User k has no incentive in deviating from the mediator’s recommandation

to play a
(j)
k ∈ Ak knowing that all the other players follow as well the mediator’s

recommendation (a−k). Notice that the set of mixed NE is included in the set of CE
by considering independent p.d.f’s. Similarly, the set of pure strategy NE is included
in the set of mixed strategy NE by considering degenerate probability distributions (i.e.
pk,j ∈ {0, 1}) over the action sets of users.

1.3 Publications

The research work conducted during the three years of the thesis has lead to several
publications. The papers are classified hereunder in function of the related topics.

Shannon-Rate Efficient Non-Cooperative Power Allocation Games
The contributions on the non-cooperative power allocation games for the fast fading

MIMO multiple access channel have been published in four journal papers, among
which two of them are mathematics journals, and one conference paper:

• E. V. Belmega, S. Lasaulce, M. Debbah, M. Jungers, and J. Dumont, “Power allo-
cation games in wireless networks of multi-antenna terminals”, Springer Telecom-
munications Systems Journal, DOI: 10.1007/s11235-010-9305-3, May 2010.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “Power allocation games for MIMO
multiple access channels with coordination”, IEEE Trans. on Wireless Commu-
nications, vol. 8, no. 6, pp. 3182–3192, Jun. 2009.
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1.3. Publications

• E. V. Belmega, M. Jungers, and S. Lasaulce, “A generalization of a trace inequality
for positive definite matrices”, The Australian Journal of Mathematical Analysis
and Applications (AJMAA), to appear, 2010.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “A trace inequality for positive defi-
nite matrices”, Journal of Inequalities in Pure and Applied Mathematics (JIPAM),
vol. 10, no. 1, pp. 1-4, 2009.

• E. V. Belmega, S. Lasaulce, and M. Debbah “Power Control in Distributed Mul-
tiple Access Channels with Coordination”, IEEE/ACM Proc. of the Intl. Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
and Workshops (WIOPT), Berlin, Germany, 1–8 Apr. 2008.

The study of the power allocation problem for the static parallel multiple access
channel , formulated as a non-cooperative routing game, resulted in two conference
papers:

• S. Medina Perlaza, E. V. Belmega, S. Lasaulce, and M. Debbah, “On the base
station selection and base station sharing in self-configuring networks”, Interna-
tional Conference on Performance Evaluation Methodologies and Tools (VALUE-
TOOLS), Pisa, Italy, invited paper, Oct. 2009.

• E. V. Belmega and S. Lasaulce, “Information theoretic congestion games in het-
erogeneous wireless networks”, Game Theory for Analysis and Optimization of
Computer Systems (GAMECOMP), Grenoble, France, invited talk, May 2008.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “Decentralized handovers in cellular
networks with cognitive terminals”, in the IEEE Proc. of the 3rd International
Symposium on Communications, Control and Signal Processing (ISCCSP), St Ju-
lians, Malta, invited paper, 12–14 Mar. 2008.

The non-cooperative power allocation game for the static parallel interference
relay channel has been investigated in one journal paper, currently under review, and
four conference papers:

• E. V. Belmega, B. Djeumou, and S. Lasaulce, “Power allocation games in interfer-
ence relay channels: Existence analysis of Nash equilibria”, EURASIP Journal on
Wireless Communications and Networking (JWCN), accepted for publication,
Nov. 2010.

• E. V. Belmega, B. Djeumou, and S. Lasaulce “Resource allocation games in in-
terference relay channels”, IEEE Intl. Conference on Game Theory for Networks
(Gamenets), Istanbul, Turkey, invited paper, May 2009.

• E. V. Belmega, B. Djeumou, and S. Lasaulce “What happens when cognitive
terminals compete for a relay node?”, IEEE Intl. Conference on Acoustics, Speech
and Signal Processing (ICASSP), Taipei, Taiwan, 1–4 Apr. 2009.
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• E. V. Belmega, B. Djeumou, and S. Lasaulce “Jeux d’allocation de puissance pour
les canaux à interférence à relais”, GRETSI, Dijon, France, Sep. 2009.

• B. Djeumou, E. V. Belmega, and S. Lasaulce, “Régions de taux atteignables pour
le canal à interférence à relais”, GRETSI, Dijon, France, Sep. 2009.

The state of the art with respect to this topic is to be published in the following
book chapter:

• E. V. Belmega, S. Lasaulce, and M. Debbah, “Shannon rate efficient power al-
location games”, Game Theory for Wireless Communications and Networking,
Auerbach Publications, Taylor and Francis Group, CRC Press, accepted for
publication, 2009.

Energy-Efficient Communications
The power allocation problem, in the sense of maximizing an energy-efficient perfor-

mance metric, i.e., the number of bits that can be reliably transmitted over the channel
per unit of consumed energy, has been investigated in the single-user MIMO chan-
nel . The main results are presented in one submitted journal paper and three conference
papers:

• E. V. Belmega, and S. Lasaulce, “Energy-efficient precoding for multiple-antenna
terminals”, IEEE Trans. on Signal Processing, accepted for publication, Sep.
2010.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “A survey on energy-efficient com-
munications”, IEEE Intl. Symp. on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC 2010), Istanbul, Turkey, Sep. 2010.

• E. V. Belmega, and S. Lasaulce, “An information-theoretic look at MIMO energy-
efficient communications”, International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS), Pisa, Italy, Oct. 2009.

• E. V. Belmega, S. Lasaulce, M. Debbah, and A. Hjørungnes “A new energy effi-
ciency function for quasi-static MIMO channels”, International Wireless Commu-
nications and Mobile Computing Conference (IWCMC), Leipzig, Germany, invited
paper, Jun. 2009.

Learning Algorithms
The study of learning algorithms, that enable the transmitters to converge to desir-

able network states with little knowledge on the communication environment and under
no rationality assumptions, has lead to two conference papers:

• E. V. Belmega, H. Tembine, and S. Lasaulce, “Learning to precode in outage
minimization games over MIMO interference channels”, IEEE Asilomar Conf. on
Signals, Systems, and Computers, Pacific Grove, CA, USA, invited paper, Nov.
2010.
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• E. V. Belmega, S. Lasaulce, M. Debbah, and A. Hjørungnes, “Learning Distributed
Power Allocation Policies in MIMO Channels”, European Signal Processing Con-
ference (EUSIPCO), Aalborg, Denmark, invited paper, Aug. 2010.

This manuscript represents a summary guide to the main contributions published in
the aforementioned papers. The most relevant papers have been added in the Appendix
sections. They will be used as references to the missing analysis details and mathematical
proofs.

Other contributions which will not be discussed in this manuscript have been ob-
tained and/or published in two journal papers, one book chapter and three conference
papers:

• E. Altman, Y. Hayel, and E. V. Belmega, “Modelling competition between Hawks
and Doves in a dynamic framework”, Special Issue on Evolutionary Games: Dy-
namic Games and Applications, Birkhauser-Springer, to be submitted, Jan.
2011.

• E. V. Belmega, B. Djeumou, and S. Lasaulce, “Gaussian broadcast channels with
an orthogonal and bidirectionnal cooperation link”, EURASIP J. on Wireless
Communications and Networking (JWCN), pp.1–16, doi:10.1155/2008/341726, 2008.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “Capacity of cooperative chan-
nels: three terminals case study”, Cooperative Wireless Communication, ISBN
142006469X, Auerbach Publications, Taylor and Francis Group, CRC Press, Oct.
2008.

• P. Mertikopoulos, E. V. Belmega, A. L. Moustakas, and S. Lasaulce, “Dynamic
Power Allocation Games in Parallel Multiple Access Channels”, Valuetools 2011,
Paris, France, submitted, arXiv:1011.5610v1, Nov. 2010.

• B. Djeumou, E. V. Belmega, and S. Lasaulce, “Recombinaison de signaux décodés
et transférés pour le canal à relais à division fréquentielle”, Actes du GRETSI,
Troyes, France, 1–4 Sep. 2007.

• E. V. Belmega, B. Djeumou, and S. Lasaulce, “Performance analysis for the AF-
based frequency division cooperative broadcast channel”, in the IEEE Proceed-
ings of the Signal Processing Advances in Wireless Communications conference
(SPAWC), Helsinki, Finland, 1–5 Jun. 2007.
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Chapter 2

Shannon-Rate Efficient
Non-cooperative Power
Allocation Games

In this chapter, our objective is to study distributed or self-optimizing wireless networks.
In such networks the transmitter terminals are able to manage their own resources with
little or, ideally, no intervention from a central authority. The transmitters are assumed
to be rational, selfish and capable of allocating their own power allocation policies to
maximize their communications’ performance. The performance of a communication is
measured in terms of achievable transmission rates. The mutual interference created by
the transmitters sharing the same communication environment induces an interaction
among the transmitters. This interaction is studied using a non-cooperative game the-
oretical framework. Unless otherwise specified, the components of the non-cooperative
game can be identified as follows. The players are the transmitter devices. The payoff
functions are their achievable transmission rates. The action sets are their precoding
schemes.

Three different steps can be identified in our approach. First, we study the one-shot
non-cooperative game where the users have perfect knowledge of the game structure.
We investigate the existence and multiplicity of the Nash equilibrium solution concept.
Several issues arise. The perfect knowledge of the structure of the game at the trans-
mitter level is often unrealistic. Furthermore, in general, closed-form expressions of
the NE points are not available. Moreover, if more than one such state exist, there is
no reason to assume that rational transmitters should expect the same outcome of the
game. In this situation, the network may operate at a non-equilibrium state. To cope
with these issues, one possible solution is to consider iterative algorithms. Therefore, as
a following step in our approach, we investigate iterative algorithms based on the best-
response correspondences. As we will see, these algorithms are identical to the iterative
water-filling algorithms. Furthermore, they can allow the users to converge to one of
the NE of the one-shot game. These algorithms are distributed in the sense that they
require less information about the structure of the game. Another drawback of the NE
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concept is the fact that it is generally an inefficient operating point (w.r.t. the overall
network performance but also the individual users’ performance), thus, as a last step,
we also discuss the Stackelberg formulation [22] to improve the performance of the NE
point. This will involve a certain cost in terms of centralized signaling from the system
authority.

The Shannon-rate efficient non-cooperative power allocation game is studied for two
basic network models: the multiple access channels (MAC) and the interference relay
channels (IRC). Before stating our main contributions, we will discuss hereunder several
important assumptions and differences between these two network models. In terms of
channel coherence time, three cases can be distinguished. The channel gains can be: i)
deterministic constants, i.e., static links; ii) random variables independently changing
with every channel use, i.e., fast fading links; iii) random variables fixed for the whole
transmission duration, i.e., slow fading links. In the third case, the Shannon achievable
rates are strictly equal to zero [14] [23]. Thus, to study the power allocation game, one
has to consider a different metric to measure the users’ satisfaction. For example, as we
will see in Chapter 3, one could consider a performance metric depending on the outage
probability [24]. However, this is out of the scope here and will not be considered in
this chapter. For the MAC channel, we will briefly discuss the static links case and then
focus on the more challenging case of fast fading links. From an information-theoretical
point of view, the analysis of the IRC is much more difficult, this is why only the static
case will be considered. For the same reason, the general multiple-input multiple-output
(MIMO) channel will be studied only for the MAC. Whereas for the IRC, we will restrict
our attention to the parallel sub-channels case. Another inherent difference between the
two network models consists in the decoding technique. For the MAC, the receiver has
to decode all the messages from the transmitters and, thus, is assumed to know the
code-books used by all the transmitters. In this situation, two decoding techniques can
be used: i) single user decoding (SUD), i.e., the transmitters’ messages are decoded
simultaneously (when decoding one transmitter’s message, the other transmitters’ sig-
nals are considered as additive noise); ii) successive interference cancellation (SIC), i.e.,
the message of the transmitters are decoded sequentially (when decoding one transmit-
ter’s message, the previous decoded messages are taken into account to reduce the level
of interference). For the IRC, each decoder only knows the code-books employed by
its own transmitter. Therefore, the SIC technique, even though appealing in terms of
transmission rate, will not be studied.

2.1 The MIMO Multiple Access Channel

In this section, we consider the multiple access channel (MAC) consisting of several
transmitter nodes and a common destination. The receiver node decodes the incoming
messages from all the transmitters. We assume that the terminals are equipped with
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multiple antennas. The received base-band signal can be written as:

Y (τ) =
K∑

k=1

Hk(τ)Xk(τ) + Z(τ) (2.1)

where Xk(τ) is the nt,k-dimensional column vector of symbols transmitted by user k
at time τ , Hk ∈ Cnr×nt,k is the channel matrix of user k and Z(τ) is a nr-dimensional
complex white Gaussian noise distributed as N (0, σ2Inr), assuming a number of nt,k
antennas at the transmitter k ∈ {1, . . . ,K} and nr antennas at the common receiver.
For the sake of clarity we will omit the time index τ from our notations.

The transmitters are assumed to use good codes in the sense of their Shannon achiev-
able rates. Also, we assume coherent communications, i.e., the receiver has perfect
channel state information and decodes perfectly all its intended messages. Two dif-
ferent decoding techniques will be studied: single user decoding (SUD) and successive
interference cancellation (SIC). The SIC decoding technique involves the existence of a
coordination signal representing the decoding order at the receiver. The coordination
signal is assumed to be perfectly known at the transmitter side. If the coordination sig-
nal is generated by the receiver, its distribution can be optimized but it induces a certain
cost in terms of downlink signaling. On the other hand, if the coordination signal comes
from an external source, e.g., an FM transmitter, the transmitter nodes can acquire
the coordination signal for free in terms of downlink signaling. However this generally
involves a certain sub-optimality in terms of uplink rate. In both cases, the coordination
signal will be represented by a random variable denoted by S ∈ S , {1, ...,K!}. In a
real wireless system, the frequency with which the realizations would be drawn would be
roughly proportional to the reciprocal of the channel coherence time (i.e., 1/Tcoh). Note
that the proposed coordination mechanism is suboptimal because it does not depend on
the realizations of the channel matrices. We will see that the corresponding performance
loss is in fact very small.

In what follows, first we will briefly review the static case and then proceed with the
more challenging case of fast fading links.

2.1.1 Static Links

In this section, the channel gains are assumed to be deterministic constants.
Let us start the analysis with a toy example: the two user single-input single-output

(SISO) MAC as in [25]. This example gives useful insights on the general case because it
can be solved in closed-form. When SUD is assumed, transmitting at full power strictly
dominates all the other strategies. Thus, the unique NE corresponds to the state where
all the transmitters saturate their powers. This is a very inefficient operating point
because of the high interference level. One way to reduce the interference is to consider
SIC decoding. The decoding order is dictated by flipping an unfair coin (Bernoulli
random variable of parameter q ∈ [0, 1]). The existence and uniqueness of the NE
solution can be proved using Theorems D.1.5 and Theorem D.1.6. It turns out that,
for any value of q ∈ [0, 1], the performance of the system at the NE achieves the sum-
capacity of the SISO MAC channel. In conclusion, the receiver node can choose a certain
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operating point on the Pareto-optimal frontier by tuning the parameter q. Another
way to combat multi-user interference was proposed in [26]. The authors introduced a
pricing function as a penalty for the interference the users create in the network. In the
remaining of this section, we will focus on the general MIMO MAC.

Single user decoding

We assume that the receiver applies a SUD scheme. The strategy of User k consists in
choosing the input covariance matrix, Qk = E[xkx

H
k ] in the set:

ASUD
k = {Q ∈ Cnt,k×nt,k : Q � 0,Tr(Q) ≤ P k}, (2.2)

to maximize its achievable rate:

µSUD
k (Qk,Q−k) = log2

∣∣∣∣∣∣
Inr + ρHkQkH

H
k + ρ

K∑

` 6=k
H`Q`H

H
`

∣∣∣∣∣∣
− log2

∣∣∣∣∣∣
Inr + ρ

∑

` 6=k
H`Q`H

H
`

∣∣∣∣∣∣
,

(2.3)
where ρ = 1

σ2 . The existence of the NE follows from Theorem D.1.5. As opposed
to the SISO case, the NE is not unique in general. Sufficient conditions that ensure

the uniqueness of the NE are: i) rank(HHH) =
K∑

k=1

nt,k where H = [H1, . . . ,HK ]; ii)

K∑

k=1

nt,k ≤ nr + K. The proof follows from [27] (see Appendix A.2, Appendix A.3) by

considering that the static links case corresponds to a single realization of the fast fading
links case.

The users converge to one of the Nash equilibrium points by applying an iterative
algorithm based on the best-response correspondences:

BRk(Q−k) = arg max
Qk∈Qk

µk(Qk,Q−k). (2.4)

The best-response correspondence of User k is identical to the well known single-user
water-filling solution given in [28]. Using the following algorithm, the users converge to
one of the NE points in a distributed manner:

• Initialization: for all ` ∈ K,Q[1]
` ← P `

nt,`
Int,` and k ← 1

• At iteration step t > 1, only User k updates its covariance matrix:

Q
[t]
k ← BRk

(
Q

[t−1]
−k

)
, Q

[t]
−k ← Q

[t−1]
−k . If k = K then k ← 1, else k ← k + 1.

• Repeat the previous step (t← t+ 1) until convergence is reached.

The players sequentially update their covariance matrices in a certain specified order
(e.g., round-robin order). In [28], this algorithm was proven to converge to a point
maximizing the sum-capacity of the MIMO Gaussian MAC channel from any initial
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point. However, because of the interference terms, the sum-capacity of the Gaussian
MIMO MAC is not achieved at the NE point, similarly to the SISO case.

Parallel MAC
Before moving on to the SIC decoding scheme, we discuss another special, but inter-
esting, particular case: the parallel MAC. The channel matrices are square diagonal
matrices where ∀k ∈ K, nr = nt,k = B and Hk = diag(hk,1, . . . , hk,B). This model
describes for example the uplink communication of a multi-cellular wireless network
studied in [29], [30] (see Appendix A.5). The network is composed of K mobile termi-
nals (MT) and B base-stations (BS) operating in orthogonal frequency bands. In this
case, the user action sets are reduced to vector sets instead of matrix sets (i.e., the users
choose their power allocation policies among the available frequencies).

What is interesting about this case is that two different power allocation games can
be defined. The difference lies in the choice of the users’ action sets: i) the users share
their available powers among the BS (i.e., Soft-Handover or BS Sharing Game); ii) the
users are restricted to transmit to a single BS, (i.e., Hard-Handover or BS Selection
Game).

For the BS Sharing Game, all the results discussed in the MIMO case apply here. As
we have argued in the general MIMO case, the NE is not unique in general. The sufficient
conditions ensuring the uniqueness of the NE simply become: i) rank(HHH) = K × B
; ii) K × B ≤ K + B. However, these conditions are very restrictive and are met only
in some particular cases: a) K = 1 and B ≥ 1 the problem is reduced to a simple
optimization solved by water-filling; b) K ≥ 1 and B = 1 where the dominant strategy
for every user is to transmit with full power at the unique BS available; c) K = 2 and
B = 2 which is somehow more complicated. Recently, we have proved in [31] that the
NE is unique with probability one for any K ≥ 1 and B ≥ 1.

For the BS Selection Game, none of the previous results can be applied. The action
sets are not compact and convex sets but discrete sets. Therefore, we cannot use the
properties of concave games. The discrete power allocation problem is studied from
a routing game theoretical perspective. The game is proven to be an exact potential
one where the potential function is the network achievable sum-rate. This implies di-
rectly the existence of at least one pure-strategy NE. Based on elements of non-oriented
graph theory, the exact number of equilibrium points is provided. Also, an iterative
algorithm based on the best-response correspondences is shown to converge to one of
the NE. The proof is based on random walks and directed-graph theory. The algorithm
is fully distributed since it requires only local channel state information and the overall
interference plus noise power.

When comparing the performance in terms of network sum-rate of the two games,
a remarkable observation was made. Assuming K ≥ B, the performance of the BS
Selection Game is superior to BS Sharing Game. This characterizes a Braess-type para-
dox, i.e., increasing the possible choices of players results in a degeneration of the global
network performance.
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Successive Interference Cancellation

In what follows, we assume that SIC decoding scheme is applied at the receiver. The
strategy of User k, consists in choosing the best vector of precoding matrices Qk =(
Q

(1)
k ,Q

(2)
k , ...,Q

(K!)
k

)
where Q

(s)
k = E

[
X

(s)
k X

(s),H
k

]
, for s ∈ S. For clarity sake, we

introduce a notation which will be used to replace the realization s of the coordination
signal with no loss of generality. We denote by PK the set of all possible permutations
of K elements, such that π ∈ Pk denotes a certain decoding order for the K users and
π(k) denotes the rank of user k ∈ K and π−1 ∈ PK denotes the inverse permutation
(i.e. π−1(π(k)) = k) such that π−1(r) denotes the index of the user that is decoded with
rank r ∈ K. We denote by pπ ∈ [0, 1] the probability that the receiver implements the

decoding order π ∈ PK , which means that
∑

π∈PK
pπ = 1. In the static case, pπ represents

the fraction of time when the receiver applies the decoding order π. The vector of

precoding matrices can be denoted by Qk =
(
Q

(π)
k

)
π∈PK

. The payoff function of User

k is given by:

µSIC
k (Qk,Q−k) =

∑

π∈PK
pπR

(π)
k (Q

(π)
k ,Q

(π)
−k) (2.5)

where

R
(π)
k (Q

(π)
k ,Q

(π)
−k) = log2
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Inr + ρHkQ

(π)
k HH
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∑
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(π)
` HH
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log2
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` HH

`
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(2.6)

where K(π)
k = {` ∈ K|π(`) ≥ π(k)} represents the subset of users that will be decoded

after User k in the decoding order π. An important point to mention here is the power
constraint under which the utilities are maximized. Indeed, three different power allo-
cation games can be defined in function of the power constraint:

• Spatial power allocation (SPA) game

ASIC,SPA
k =

{
Qk =

(
Q

(π)
k

)
π∈PK

| ∀π ∈ PK ,Q(π)
k � 0, Tr(Q

(π)
k ) ≤ ntP k

}
. (2.7)

Here, the users are restricted to uniformly allocate their powers over time (inde-
pendently from the decoding order).

• Temporal power allocation (TPA) game

ASIC,TPA
k =

{
Qk =

(
α
(π)
k PkInt

)
π∈PK

| ∀π ∈ PK , α(π)
k ≥ 0,

∑

ϑ∈PK

pϑα
(ϑ)
k ≤ 1

}
.

(2.8)
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Here, the users are restricted to uniformly allocate their powers over their transmit
antennas.

• Space-time power allocation (STPA) game

ASIC,STPA
k =

{
Qk =

(
Q

(π)
k

)
π∈PK

| ∀π ∈ PK ,Q(π)
k � 0,

∑

ϑ∈PK

pϑTr(Q
(ϑ)
k ) ≤ ntP k

}
.

(2.9)

This is a generalization of the previous cases where the users are free to allocate
their powers in time and over the transmit antennas.

The analysis of the NE follows the same lines as the fast fading MIMO MAC studied
in [32] and [27]. The existence of the NE is ensured based on the properties of concave
games. For the particular cases of the SPA and TPA games, the NE is proved to be
unique [32](see Appendix A.1). This is no longer true for the space-time power allocation
game [27] (see Appendix A.2). The sufficient conditions ensuring the uniqueness of the
NE are: i) ∀, k ∈ K, rank(HH

k Hk) = nt,k; ii) n2
t,k ≤ n2

r + 1. In order to determine
the covariance matrices at the NE point, we can again apply an iterative water-filling
algorithm similar to the SUD case. Convergence results for a sequential updating rule
can be found in [33].

2.1.2 Fast Fading Links

Similarly to Section 2.1.1, we start by summarizing the two-player SISO case in [34].
Assuming SUD scheme at the receiver, the authors of [34] proved the existence and
uniqueness of the NE point. What is interesting is that at the NE point, only the user
with the strongest channel will transmit while the other remains silent. The interference
is completely cancelled. Furthermore, as opposed to the static links case, the system
sum-rate at the NE achieves the sum-capacity point of the achievable rate region. For
the SIC decoding, the authors propose a scheme where the decoding order depends on
the fading coefficients. The NE is proved to exist and to be unique. However, only the
two corner points of the achievable rate region can be achieved. In order to achieve the
other Pareto-optimal points, the authors propose a repeated game formulation.

Now, we will focus on the general fast fading MIMO case we have analyzed in [27]
(see Appendix A.2) and [32] (see Appendix A.1). In [32], only the special cases of
TPA and SPA games were investigated assuming SIC decoding. In [27], both decoding
techniques were considered (i.e., SUD and SIC decoding). When SIC was assumed, the
general STPA game was studied.

In order to take into account the effects of antenna correlation, we will assume the
channel matrices to be structured according to the unitary-independent-unitary model
introduced in [35]:

∀k ∈ {1, ...,K}, Hk = VkH̃kWk, (2.10)

where Vk and Wk are deterministic unitary matrices that allow one to take into con-
sideration the correlation effects at the receiver and transmitters, respectively. The
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channel matrix H̃k is an nr × nt,k random matrix whose entries are zero-mean in-
dependent complex Gaussian variables with an arbitrary variance profile, such that

E|H̃k(`, c)|2 =
σ2
k(`,c)
nt,k

. The Kronecker propagation model, for which the channel trans-

fer matrices factorizes as Hk = R
1/2
k ΘkT

1/2
k , is a special case of the UIU model. The

variance profile is separable i.e., σ2
k(`, c) =

d
(T )
k (`)d

(R)
k (c)

nt
, Vk = URk

, Wk = UTk with
Θk is a random matrix with zero-mean i.i.d. entries. The matrices Tk, Rk represent

the transmitter and receiver antenna correlation matrices such that d
(T)
k (`), d

(R)
k (c) are

their associated eigenvalues and UTk , URk
are their associated eigenvectors matrices.

It turns out that, for both decoding techniques, the existence of a unique NE can
be proved. When determining the NE state, the main difficulty is that there are no
closed-form expressions of the ergodic rates and the optimal power allocation policies.
Indeed, the optimal eigenvalues of the transmit covariance matrices are not easy to find.
They might be found using extensive numerical techniques. Our approach consists of
approximating these ergodic rates to obtain expressions that are easier to interpret and
to optimize. In order to do this, two extra assumptions will be made: i) Vk = V,∀k ∈
K, which means that the receive antenna correlation matrices Rk (Kronecker model)
decompose to the same eigenvector basis V; ii) nt,k = nt, i.e., the transmitters have
the same number of antennas. Our approach consists in two steps. First, we determine
the optimal eigenvectors. Then, based on this result, we will approximate the different
transmission rates by their large-system (i.e., nr →∞, nt →∞, nr

nt
→ β) deterministic

equivalents. We will also exploit the results provided in [35] for the single-user MIMO
channels to obtain the optimal eigenvalues of the covariance matrices. The corresponding
approximates can be found to be accurate even for relatively small numbers of antennas
(see e.g., [36][37] for more details).

Single User Decoding

When the SUD is assumed at the receiver, each user has to choose the best precoding
matrix Qk = E

[
XkX

H
k

]
, in the sense of his payoff function:

uSUD
k (Q1,Q2) = E log

∣∣∣∣∣∣
Inr + ρHkQkH

H
k + ρ

∑

`6=k
H`Q`H

H
`

∣∣∣∣∣∣
− E log

∣∣∣∣∣∣
Inr + ρ

∑

` 6=k
H`Q`H

H
`

∣∣∣∣∣∣
(2.11)

The strategy set of user k is given in (2.2).

Theorem 2.1.1 The space power allocation game described by:

GSUD =
(
K,
{
ASUD
k

}
k∈K ,

{
uSUD
k

}
k∈K

)
, where the payoff functions uSUD

k (Qk,Q−k) are

given by (2.11) has a unique pure-strategy Nash equilibrium.

The proof of the existence of a NE is based on the properties of concave games in [20].
Proving the diagonal strict concavity condition of Rosen [20] is sufficient to ensure the
uniqueness of the NE point (see Appendix A.2 and Appendix A.3). However, extending
Theorem D.1.6 is not trivial and the proof is given in Appendix A.2.
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In order to find the optimum covariance matrices, we proceeded in the same way as
described in [38]. First we determine the optimum eigenvectors and then the optimum
eigenvalues by approximating the payoff functions under the large system assumption.

Since we have assumed Vk = V, we can exploit the results in [35] [39] for single-user
MIMO channels, assuming the asymptotic regime in terms of the number of antennas:
nr →∞, nt →∞, nr

nt
→ β. It turns out, that there is no loss of optimality by choosing

the covariance matrices Qk = WkPkW
H
k , where Wk is the same unitary matrix as in

(2.10) and Pk is the diagonal matrix containing the eigenvalues of Qk. Although this
result is easy to obtain, it is instrumental in our context for two reasons. First, the
search of the optimum precoding matrices boils down to the search of the eigenvalues
of these matrices. Second, as the optimum eigenvectors are known, available results
in random matrix theory can be applied to find an accurate approximation of these
eigenvalues [35] [39]. The corresponding approximated payoff for user k is:

ũSUD
k (Pk,P−k) =

1

nr

K∑

k=1

nt∑

j=1

log2(1 +KρPk(j)γk(j))+

1

nr

nr∑

i=1

log2


1 +

1

Knt

K∑

k=1

nt∑

j=1

σk(i, j)δk(j)


−

1

nr

K∑

k=1

nt∑

j=1

γk(j)δk(j) log2 e−

1

nr

∑

` 6=k

nt∑

j=1

log2(1 + (K − 1)ρP`(j)φ`(j))−

1

nr

nr∑

i=1

log2


1 +

1

(K − 1)nt

∑

`6=k

nt∑

j=1

σ`(i, j)ψ`(j)


+

1
nr

∑

6̀=k

nr∑

j=1

φ`(j)ψ`(j) log2 e

(2.12)

where the parameters γk(j) and δk(j) ∀j ∈ {1, . . . , nt}, k ∈ {1, 2} are solution of the
system:





∀j ∈ {1, . . . , nt}, k ∈ K :

γk(j) =
1

Knt

nr∑

i=1

σk(i, j)

1 + 1
Knt

K∑

`=1

nt∑

m=1

σ`(i,m)δ`(m)

δk(j) =
KρPk(j)

1 +KρPk(j)γk(j)

(2.13)
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and φ`(j), ψ`(j), ∀j ∈ {1, . . . , nt} are the unique solutions of the following system:





∀j ∈ {1, . . . , nt}, ` ∈ K \ {k} :

φ`(j) =
1

(K − 1)nt

nr∑

i=1

σ`(i, j)

1 + 1
(K−1)nt

∑

r 6=k

nt∑

m=1

σr(i,m)ψr(m)

ψ`(j) =
(K − 1)ρP`(j)

1 + (K − 1)ρP`(j)φ`(j)
.

(2.14)

The optimal eigenvalues are given by the water-filling solutions:

PNE
k (j) =

[
1

nrλk ln 2
− 1

Kργk(j)

]+

, (2.15)

where λk ≥ 0 is the Lagrangian multiplier tuned in order to meet the power constraint:
nt∑

j=1

[
1

nrλk ln 2
− 1

Kργk(j)

]+

= ntP k. Notice that, in order to solve the system of equa-

tions given above, we can use the same iterative power allocation algorithm as the one
described in [38]. The transmitters are assumed to have perfect knowledge of all the
channels’ distributions. As for the efficiency of the NE point, the SUD decoding tech-
nique is sub-optimal w.r.t. the centralized case and the sum-capacity is not reached at
the NE similarly to the static MIMO MAC channel.

An important remark has to be made. The analysis of the NE (i.e., existence and
uniqueness issues) has been analysed in the finite setting (exact game). The determina-
tion of the NE is performed using numerical methods (required to implement water-filling
type algorithms) and the approximated utilities in the asymptotic regime. This is mo-
tivated by the fact that the ergodic rates are very difficult to be numerically optimized.
Furthermore, it turns out that the large system approximations of ergodic rates have
the same properties as their exact counterparts, as shown recently by [40]. However, the
analysis of the NE for the approximated game is an interesting issue which is left as an
extension of this work.

Another rising issue could be the characterization of the correlated equilibria of the
game. The results in [41] can be applied here directly, since GSUD is an exact potential
game with a strict concave potential function, i.e., the achievable network sum-rate.
The author of [41] proved that for strict concave potential games, the CE is unique and
consists in playing with probability one the unique pure NE.

Successive Interference Cancellation

As we have mentioned in Section 2.1.1, three different power allocation games can be
defined in function of the action sets: SPA, TPA and the joint STPA, for which the
action sets are given by (2.7),(2.8) and (2.9), respectively. In the remaining of this
section, we will only focus on the general STPA game. The results for the special cases

32



2.1. The MIMO Multiple Access Channel

follow directly. The main difference with the static case, consists in the payoff function
of users which are given by the ergodic achievable rates:

uSIC
k (Qk,Q−k) =

∑

π∈PK
pπR

(π)
k (Q

(π)
k ,Q

(π)
−k) (2.16)

where

R
(π)
k (Q

(π)
k ,Q

(π)
−k) = E log2

∣∣∣∣∣∣∣
Inr + ρHkQ

(π)
k HH

k + ρ
∑

`∈K(π)
k

H`Q
(π)
` HH

`

∣∣∣∣∣∣∣
−

E log2

∣∣∣∣∣∣∣
Inr + ρ

∑

`∈K(π)
k

H`Q
(π)
` HH

`

∣∣∣∣∣∣∣

(2.17)

with the same notation as in Sec. 2.1.1 As opposed to the static case, for the fast fading
one the uniqueness is guaranteed for the general joint space-time power allocation game.
The obtained results are stated in the following theorem.

Theorem 2.1.2 The joint space-time power allocation game described by: GSIC =(
K,
{
ASIC,STPA
k

}
k∈K

,
{
uSIC
k

}
k∈K

)
, where the payoff functions uSIC

k (Qk,Q−k) are given

by (2.16), has a unique pure-strategy Nash equilibrium.

The proof is similar to the SUD case and exploits the extended results of Rosen [20] and
is given in Appendix A.2. The difficulty here lies in proving a matrix trace inequality
(see Appendix A.2 and Appendix A.3). This inequality is instrumental in proving that
the diagonal strict concavity condition holds. Its proof is given in [42] for K = 2 and in
[43] for arbitrary K ≥ 2 (see Appendix A.4).

In order to find the optimal covariance matrices we proceed in the same way as

described in Section 2.1.2. The optimal eigenvectors of the covariance matrix Q
(π)
k are

given by U
Q

(π)
k

= Wk. And, the optimal eigenvalues, P
(π)
k , can be found using the large-

system assumptions. The approximated payoff for User k is ũSIC
k ({P(π)

k }k∈K,π∈PK ) =
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∑

π∈PK
pπR̃

(π)
k (P

(π)
k ,P

(π)
−k) where

R̃
(π)
k (P

(π)
k ,P

(π)
−k) =

1

nr

∑

`∈K(π)
k ∪{k}

nt∑

j=1

log2

(
1 + (N

(π)
k + 1)ρP

(π)
` (j)γ

(π)
` (j)

)
+

1

nr

nr∑

i=1

log2


1 +

1

(N
(π)
k + 1)nt

∑

`∈K(π)
k ∪{k}

nt∑

j=1

σ`(i, j)δ
(π)
` (j)


−

1

nr

∑

`∈K(π)
k ∪{k}

nt∑

j=1

γ
(π)
` (j)δ

(π)
` (j) log2 e−

1

nr

∑

`∈K(π)
k

nt∑

j=1

log2

(
1 +N

(π)
k ρP

(π)
` (j)φ

(π)
` (j)

)
−

1

nr

nr∑

i=1

log2


1 +

1

N
(π)
k nt

∑

`∈K(π)
k

nt∑

j=1

σ`(i, j)ψ
(π)
` (j)


+

1
nr

∑

`∈K(π)
k

nr∑

j=1

φ
(π)
` (j)ψ

(π)
` (j) log2 e

(2.18)

where N
(π)
k = |K(π)

k | and the parameters γ
(π)
k (j) and δ

(π)
k (j) ∀j ∈ {1, . . . , nt}, k ∈ K,

π ∈ PK are the solutions of:





∀j ∈ {1, . . . , nt}, ` ∈ K(π)
k ∪ {k} :

γ
(π)
` (j) =

1

(N
(π)
k + 1)nt

nr∑

i=1

σ`(i, j)

1 + 1

(N
(π)
k +1)nt

∑

r∈K(π)
k ∪{k}

nt∑

m=1

σr(i,m)δ(π)
r (m)

δ
(π)
` (j) =

(N
(π)
k + 1)ρP

(π)
` (j)

1 + (N
(π)
k + 1)ρP

(π)
` (j)γ

(π)
` (j)

,

(2.19)

and φ
(π)
` (j), ψ

(π)
` (j), ∀j ∈ {1, . . . , nt} and π ∈ PK are the unique solutions of the

following system:





∀j ∈ {1, . . . , nt}, ` ∈ K(π)
k :

φ
(π)
` (j) =

1

N
(π)
k nt

nr∑

i=1

σ`(i, j)

1 + 1

N
(π)
k nt

∑

r∈K(π)
k

nt∑

m=1

σr(i,m)ψ(π)
r (m)

ψ
(π)
` (j) =

N
(π)
k ρP

π)
` (j)

1 +N
(π)
k ρP

(π)
` (j)φ

(π)
` (j)

.

(2.20)
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The corresponding water-filling solution is:

P
(π),NE
k (j) =

[
1

nrλk ln 2
− 1

N
(π)
k ργ

(π)
k (j)

]+

, (2.21)

where λk ≥ 0 is the Lagrangian multiplier tuned in order to meet the power constraint:

∑

π∈PK

nt∑

j=1

pπ

[
1

nrλk ln 2
− 1

N
(π)
k ργ

(π)
k (j)

]+

= ntP k.

In order to measure the efficiency of the decentralized network w.r.t. its centralized
counterpart, we introduce the following quantity:

SRE =
RNE

sum

Csum
≤ 1, (2.22)

where SRE stands for sum-rate efficiency; the quantity RNE
sum represents the sum-rate of

the decentralized network at the Nash equilibrium, which is achieved for certain choices
of coding and decoding strategies; the quantity Csum corresponds to the sum-capacity
of the centralized network, which is reached only if the optimum coding and decoding
schemes are known. Note that this is the case for the MAC but not for other channels
like the interference channel. Obviously, the efficiency measure we introduce here is
strongly connected to the price of anarchy introduced in [44] (PoA). The SRE measures
the gap between the sum-rate at the NE and the network sum-rate obtained with the
optimal decoding technique, whereas the PoA does not consider the optimal decoding
technique. In our context, information theory provides us with fundamental physical
limits on the social welfare (network sum-capacity) while in general no such upper bound
is available.

We have proved that, both, in the low and high SNR regimes the SRE tends to one.
This means that, in the extreme SNR regimes, the sum-capacity of the fast fading MAC
is achieved at the NE point, in spite of the sub-optimal coordination mechanism applied
at the receiver. For non-extreme SNR regimes, a closed-form expression of the SRE
cannot be found. Numerical simulations have been provided to asses this optimality
gap. When SIC is assumed, for the three power allocation games (TPA, SPA, STPA),
the sum-rate efficiency at the NE is close to one. Quite surprisingly, the NE of the
STPA game performs a little worse than its purely spatial counterpart. This highlights
another Braess-type paradox as in Section 2.1.1 (see [27] in Appendix A.2).

2.2 The Parallel Interference Relay Channel

In this section, we study a different network model, the parallel interference relay chan-
nel. The Shannon-rate efficient power allocation game fr the interference channel has
been extensively studied in the literature: [45] [46] for SISO frequency selective chan-
nels, [47] [48] for the static parallel interference channel and [49] [50] [51] [52] [53] for the
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static MIMO channels. The difference in our work is that we allow the transmitters to
exploit the existence of some relaying nodes to improve the communication performance.

As opposed to the previous section, we will focus here only on the particular case of
static parallel IRC [54] (see Appendix A.6).

The system under investigation is composed of two source nodes S1, S2, transmitting
their private messages to their respective destination nodes D1, D2. To this end, each
source can exploit Q non-overlapping frequency bands (the notation (q) will be used to
refer to band q ∈ {1, . . . , Q}) which are assumed to be of normalized bandwidth. The

signals transmitted by S1 and S2 in band (q), denoted by X
(q)
1 and X

(q)
2 respectively,

are assumed to be independent and power constrained:

∀k ∈ {1, 2},
Q∑

q=1

E|X(q)
k |2 ≤ P k. (2.23)

For k ∈ K , {1, 2}, we denote by θ
(q)
k the fraction of power that is used by Sk for

transmitting in band (q) that is, E|X(q)
k |2 = θ

(q)
k P k. Therefore, the set of possible power

allocation policies for User k can be defined as:

Ak =



θk ∈ [0, 1]Q

∣∣∣∣∣∣

Q∑

q=1

θ
(q)
k ≤ 1



 (2.24)

Additionally, we assume that there exists a multi-band relay R. With these nota-
tions, the signals received by D1, D2, and R in band (q) express as:





Y
(q)

1 = h
(q)
11 X

(q)
1 + h

(q)
21 X

(q)
2 + h

(q)
r1 X

(q)
r + Z

(q)
1

Y
(q)

2 = h
(q)
12 X

(q)
1 + h

(q)
22 X

(q)
2 + h

(q)
r2 X

(q)
r + Z

(q)
2

Y
(q)
r = h

(q)
1r X

(q)
1 + h

(q)
2r X

(q)
2 + Z

(q)
r

(2.25)

where Z
(q)
k ∼ N (0, N

(q)
k ), k ∈ {1, 2, r}, represents the Gaussian complex noise on band

(q) and, for all (k, `) ∈ K2, h
(q)
k` is the channel gain between Sk and D`, h(q)

kr is the

channel gain between Sk and R, h
(q)
rk is the channel gain between R and Dk in band (q).

The channel gains are considered to be static. Concerning channel state information
(CSI), we will always assume coherent communications for each transmitter-receiver
pair (Sk,Dk) whereas, at the transmitters, the information assumptions will be context-
depending. The single-user decoding (SUD) will always be assumed at D1 and D2.

At the relay, the implemented reception scheme will depend on the protocol assumed.

The expressions of the signals transmitted by the relay, X
(q)
r , q ∈ {1, ..., Q}, will also

depend on the relay protocol and will therefore also be explained in the corresponding

sections. So far, we have not mentioned any power constraint on the signals X
(q)
r . We

also assume that the relay implements a fixed power allocation policy between the Q

available bands (E|X(q)
r |2 = P

(q)
r , q ∈ {1, ..., Q}). As in [12][11][55], the relay is assumed

to operate in the full-duplex mode.
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In what follows, we investigate the existence of an NE solution for the non-cooperative
power allocation game where the transmitters are assisted by several relaying nodes. We
analyse three different games depending on the relaying protocol assumed, which can be:
estimate-and-forward (EF), decode-and-forward (DF) or amplify-and-forward. In gen-
eral, the multiplicity of the NE points is an intractable problem. However, in the special
case of fixed amplification gain AF protocol, we completely characterize the number of
NE and prove the convergence of the best-response based iterative algorithm.

2.2.1 Decode-and-Forward (DF) Protocol

We start with the decode-and-forward protocol. The basic idea behind this protocol is
as follows. From each message intended for the destination, the source builds a coarse
and a fine message. With these two messages, the source superposes two codewords.
The rates associated with these codewords (or messages) are such that the relay can
reliably decode both of them while the destination can only decode the coarse message.
After decoding this message, the destination can subtract the corresponding signal and
try to decode the fine message. To help the destination to do so, the relay cooperates
with the source by sending some information about the fine message. Mathematically,
this translates as follows. The signal transmitted by Sk in band (q) is structured as

X
(q)
k = X

(q)
k,0 +

√
τ
(q)
k

ν
(q)
k

θ
(q)
k Pk

P
(q)
r

X
(q)
r,k where: the signals X

(q)
k,0 and Xr,k are independent and

precisely correspond to the coarse and fine messages respectively; the parameter ν
(q)
k

represents the fraction of transmit power the relay allocates to user i, hence we have

ν
(q)
1 +ν

(q)
2 ≤ 1; the parameter τ

(q)
k represents the fraction of transmit power Sk allocates

to the cooperation signal (conveying the fine message). The transmitted signal by the

relay R writes as: X
(q)
r = X

(q)
r,1 + X

(q)
r,2 . From [11], and for a given allocation policy

θk =
(
θ

(1)
k , ..., θ

(Q)
k

)
, the source-destination pair (Sk,Dk) achieves the transmission rate

Q∑

q=1

R
(q),DF
k where





R
(q),DF
1 = min

{
R

(q),DF
1,1 , R

(q),DF
1,2

}

R
(q),DF
2 = min

{
R

(q),DF
2,1 , R

(q),DF
2,2

} , (2.26)

37



CHAPTER 2. Shannon-Rate Efficient Non-cooperative Power Allocation Games





R
(q),DF
1,1 = C

( ∣∣∣h(q)1r

∣∣∣2τ (q)1 θ
(q)
1 P1∣∣∣h(q)2r

∣∣∣2τ (q)2 θ
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r
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)
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τ
(q)
2 θ

(q)
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)
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,(2.27)

and (ν(q), τ
(q)
1 , τ

(q)
2 ) is a given triple of parameters in [0, 1]3, τ

(q)
1 + τ

(q)
2 ≤ 1 and C(x) ,

log2(1 + x) denotes the capacity function for complex signals.

The achievable transmission rate of User k is given by:

µDF
k (θk, θ−k) =

Q∑

q=1

R
(q),DF
k (θ

(q)
k , θ

(q)
−k). (2.28)

The one-shot game is defined by the triplet GDF =
(
K, {Ak}k∈K ,

{
µDF
k

}
k∈K

)
. Although

this setup might seem to be demanding in terms of CSI at the source nodes, it turns out
that the equilibria predicted in such a framework can be effectively observed in more
realistic frameworks where each player observes the strategy played by the other players
and reacts accordingly by maximizing his payoff iteratively.

The existence theorem for the DF protocol is given hereunder.

Theorem 2.2.1 If the channel gains satisfy the condition Re(h(q)
kk h

(q)∗
rk ) ≥ 0, for all

k ∈ K and q ∈ {1, . . . , Q} the game defined by GDF =
(
K, {Ak}k∈K ,

{
µDF
k

}
k∈K

)
has

always at least one pure-strategy NE.

This theorem shows that for the pathloss channel model, where hk` > 0, (k, `) ∈
{1, 2, r}2, there always exists an equilibrium. As a consequence, if some relays are
added in the network, the transmitters will adapt their PA policies accordingly and,
whatever the locations of the relays, an equilibrium will be observed. This is a nice
property for the system under investigation. As the PA game with DF is concave it is
tempting to try to verify whether the sufficient condition for uniqueness of [20] is met
here. It turns out that the diagonally strict concavity condition of [20] is not trivial
to be checked. Additionally, it is possible that the game has several equilibria as it is
proven to be the case for the AF protocol.

In a context of decentralized networks, each source Sk has to optimize the parameter
τk in order to maximize its transmission rate Rk. In the rate region above, one can
observe that this choice is not independent of the choice of the other source. Therefore,
each source finds its optimal strategy by optimizing its rate w.r.t. τ∗k (τ`). In order
to do that, each source has to make some assumptions on the value τ` used by the
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2.2. The Parallel Interference Relay Channel

other source. This is precisely a non-cooperative game where each player makes some
assumptions on the other player’s behaviour and maximizes its own payoff. Interestingly,
we see that, even in the single-band case, the DF protocol introduces a power allocation
game through the parameter τk representing the cooperation degree between the source
Sk and relay. For more details on the game induced by the cooperation degrees the
reader is referred to [56].

2.2.2 Estimate-and-Forward (EF) Protocol

The quality of the links from the sources to the relay represents the bottleneck of the
DF protocol. In some situations, the presence of the relays may even degrade the
transmission performance. For example, if the relay is situated far away from the sources
such that the destinations are in better reception condition. We will now consider a
protocol that always improves the performance of the transmission, the estimate-and-
forward. The principle of the EF protocol for the standard relay channel is that the
relay sends an approximated version of its observed signal to the receiver. In our setup,
we have two different receivers. The relay can either create a single quantized version
of its observation, common to both receivers, or two quantized versions, one for each
destination (see [57]). Here, we consider that the relay uses two resolution levels to
compress its observation signal, each of these levels being adapted to the considered
destination; we call the corresponding version of the EF protocol, “bi-level compression
EF”. We make the same assumptions as in Section 2.2.1 concerning the reception schemes
and PA policies at the relays: we assume that each node R, D1 and D2 implements
single-user decoding and the PA policy at each relay i.e., ν =

(
ν(1), ..., ν(Q)

)
is fixed.

The payoff for User k ∈ K can be expressed as follows

µEF
k (θk, θ−k) =

Q∑

q=1

R
(q),EF
k (2.29)

where

R
(q),EF
1 = C
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N
(q)
wz,1 =

(∣∣∣h(q)11

∣∣∣2θ(q)1 P1+
∣∣∣h(q)21
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ν(q) ∈ [0, 1], A(q) = |h(q)
1r |2θ

(q)
1 P1+|h(q)

2r |2θ
(q)
2 P2+N

(q)
r , A

(q)
1 = h

(q)
11 h

(q),∗
1r θ

(q)
1 P1+h

(q)
21 h

(q),∗
2r θ

(q)
2 P2

and A
(q)
2 = h

(q)
12 h

(q),∗
1r θ

(q)
1 P1 + h

(q)
22 h

(q),∗
2r θ

(q)
2 P2. What is interesting with this EF protocol

is that, here again, one can prove that the payoff function is concave for every user. This
is the purpose of the following theorem.

Theorem 2.2.2 The game defined by GEF =
(
K, {Ak}k∈K ,

{
µEF
k

}
k∈K

)
has always at

least one pure-strategy NE.

The proof is similar to the proof of Theorem 2.2.1. To be able to apply Theorem D.1.5
of Rosen, we have to prove that the payoff µEF

k is concave w.r.t. θk. The problem is less

simple than for DF because the compression noise N
(q)
wz,k which appears in the denomi-

nator of the capacity function in Eq. (2.30) depends on the strategy θk of transmitter
k. It turns out that it is still possible to prove the desired result as shown in Appendix
A.6.

2.2.3 Amplify-and-Forward (AF) Protocol

In this section, we assume that the the relay implements an analog amplifier which
does not introduce any delay on the relayed signal. The signal transmitted by the relay
writes as Xr = arYr where ar corresponds to the relay amplification gain. We call the
corresponding protocol the zero-delay scalar amplify-and-forward (ZDSAF). One of the
nice features of the ZDSAF protocol is that relays are very easy to be deployed since
they can be used without any change on the existing (non-cooperative) communication

system. The amplification gain for the relay on band (q) will be denoted by a
(q)
r . Here,

we consider that the amplification gain is such that the relay exploits all the available
power on each band. The achievable transmission rate is given by

µAF
k (θk, θ−k) =

Q∑

q=1

R
(q),AF
k (θ

(q)
k , θ

(q)
−k) (2.32)

where R
(q),AF
k is the rate user k obtains by using band (q) when the ZDSAF protocol is

used by the relay R.

∀k ∈ K, R(q),AF
k = C
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where a
(q)
r = ã

(q)
r (θ

(q)
1 , θ

(q)
2 ) ,

√
Pr∣∣∣h(q)1r

∣∣∣2P1+
∣∣∣h(q)2r

∣∣∣2P2+Nr
and ρ

(q)
k = Pk

N
(q)
k

. Without loss

of generality and for the sake of clarity we will assume in Sec. 2.2.3 that ∀(k, q) ∈
{1, 2, r}×{1, . . . , Q}, N (q)

k = N , P
(q)
r = P r and we introduce the quantities ρk = Pk

N . In
this setup the following existence theorem can be proven.
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Theorem 2.2.3 If one of the following conditions is met: i)
∣∣∣a(q)
r h
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rk

∣∣∣�
∣∣∣h(q)
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∣∣∣ (i.e., the direct links Sk−Dk are negligible and the communication

is possible only through the relay node), ii)
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(i.e., the links R−Dk are negligible), iii) a
(q)
r = A

(q)
r ∈

[0, ã
(q)
r (1, 1)] (i.e., the amplification gain is constant), there exists at least one pure-

strategy NE in the PA game GAF =
(
K, {Ak}k∈K ,

{
µAF
k

}
k∈K

)
.

The proof is similar to the proof of Theorem 2.2.1. The sufficient conditions ensure

the concavity of the function R
(q),AF
k w.r.t. θ

(q)
k . Notice that, under the last two condi-

tions, the analysis is very similar to that of a parallel IC for which the existence of the
NE is always guaranteed [47] [48].

We have seen that, under certain sufficient conditions on the channel gains, the
existence of the NE point is ensured for all three protocols investigated. The multiplicity
and the convergence of best-response algorithms is not trivial in general. However, in
[54] (see Appendix A.6), we have thoroughly studied a particular case of the AF protocol:

Q = 2 and constant amplification factors ∀q ∈ {1, 2}, a(q)
r = A

(q)
r ∈ [0, ãr(1, 1)]. It turns

out that, for this particular case, a complete characterization of the number of NE can be
made based on the best-response function analysis. The best-response correspondences
are piece-wise affine functions thus the network can have either one, two, three or an
infinity number of NE. Based on the “Cournot duopoly” [58], the iterative algorithm
based on the best-response functions is guaranteed to converge to one of the NE points.

In Appendix A.6, we prove that, using a time-sharing technique, the existence of an
NE can always be ensured irrespective of the relaying protocol or channel gains. The
basic idea is that, assuming that the transmitters could be coordinated, the achievable
rates become concave by using time-sharing techniques.

A strong motivation for studying IRCs is to be able to introduce relays in a network
with non-coordinated and interfering pairs of terminals. For example, relays could be
introduced by an operator aiming at improving the performance of the communications
of his customers. In such a scenario, the operator acts as a player and more precisely
as a game leader in the sense of Stackelberg [22]. In this context, the game leader is
the operator/engineer/relay who chooses the parameters of the relays. The followers are
the adaptive/cognitive transmitters that adapt their PA policy to what they observe.
In the preceding sections we have mentioned some of these parameters: the location of
each relay; the amplification gain of each relay in the case of AF; while in the case of DF
and EF, the power allocation policy between the two cooperative signals at each relay
i.e., the parameter ν(q). Therefore, the relay can be thought as a player minimizing
its own payoff. This payoff can be either the individual payoff of a given transmitter
(picture one WiFi subscriber wanting to increase his downlink throughput by locating his
cellular phone somewhere in his apartment while his neighbour can also exploit the same
spectral resources) or the network sum-rate (in the case of an operator). The Stackelberg
formulation was studied through numerical simulations for the particular case of Q = 2
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and K = 2. Several interesting observations were made. For the ZDSAF with constant
amplification gain, it is not necessarily optimal to saturate the relay transmit power.
For the general ZDSAF, the optimal relay node position w.r.t the system sum-rate lies
exactly on the segment between Sk and Dk of the better receiver. This is due to the
fact that the selfish behaviour of the users leads to an operating point where there is no
or little interference. Assuming the DF and EF protocols, the optimal power allocation
policy at the relay is to allocates all its available power to the better receiver.

2.3 Conclusion and Open Issues

In this chapter, we have studied the non-cooperative power allocation games in wireless
networks where the transmitters chose their best power allocation policies that maximize
their Shannon achievable rates. Two different network models were investigated: the
MIMO multiple access channel and the parallel interference relay channel.

Our contributions can be summarized as follows:

• The MIMO MAC channel.

– We have extended the results in [20] to the case where the action sets of users
are matrix sets instead of vector sets.

– Based on this, we have investigated the existence and uniqueness of the NE
state in the one-shot game. The existence of at least one NE is guaranteed.
For the static links case, the NE is not generally unique and sufficient condi-
tions ensuring the uniqueness were provided. For the fast fading links case,
the NE is proven to be unique.

– For the fast-fading case, determining the NE point it is not trivial because
the ergodic achievable rates have no closed-form expressions. First, we have
determined the optimal eigenvectors. Then, we have used tools from ran-
dom matrix theory to approximate the ergodic rates with their deterministic
equivalents. At last, we propose an iterative water-filling type algorithm that
converges to the optimal eigenvalues.

– The power allocation game was analysed for two decoding techniques: SUD
and SIC. The SUD decoding is easier to implement but it turns out to be
inefficient w.r.t. achievable network sum-rate. For the SIC decoding we have
proposed a sub-optimal coordination signal which dictates the decoding order
at the receiver. This signal has to be known at the transmitter side and, thus,
it involves a certain signaling cost.

– To asses the network performance at the NE point, we have introduced the
sum-rate efficiency. This measure translates the gap between the achievable
sum-rate at the NE point and the sum-capacity of the fast-fading MIMO
MAC. In the high and low SNR regimes, assuming SIC decoding, this gap
tends to zero. For arbitrary SNR, this gap was evaluated through numerical
simulations. It turns out that, assuming SIC decoding, the performance gap

42



2.3. Conclusion and Open Issues

is very small, even if the coordination signal doesn’t depend on the fading
coefficients. As we have predicted, SUD decoding is less efficient. An inter-
esting Braess paradox was highlighted: if the users are restricted to allocate
their power uniformly in time (and irrespective of the coordination signal)
the sum-rate at the NE point is greater than the general case.

– An interesting particular channel model is the static parallel MAC assum-
ing SUD decoding. This case was studied from a routing game perspective.
Two different games were investigated: i) the transmitters share their powers
among the available sub-channels; ii) the transmitters are restricted to chose
a single sub-channel. The first game is a particular case of the general concave
game discussed so far. The second game, is a discrete game where the actions
sets of users are finite discrete sets. Since the results of the concave games
cannot be applied here, existence, multiplicity of the NE and convergence of
fully distributed iterative algorithms were proved using the exact potential
property of the game.

• The parallel IRC

– The power allocation game was studied for three different relaying proto-
cols: Decode-and-Forward (DF), Estimate-and-Forward (EF) and Amplify-
and-Forward (AF).

– Sufficient conditions ensuring the existence of at least one NE were provided
for DF and AF. In the EF case, the existence of a NE is always guaranteed.

– Based on a time-sharing technique, the existence of the NE can always be
guaranteed irrespective of the relaying protocol. However, this involves a
certain level of coordination among the transmitters.

– Analyzing the multiplicity of the NE is not trivial. For the particular case
of AF with constant amplification gain, the complete analysis characterizing
the number of NE points in function of the channel parameters was provided.
Furthermore, based on the “Cournot duopoly”, the iterative best-response
algorithms was proven to converge to one of the NE points.

– Numerical simulations were used to evaluate the performance at the NE.
When comparing the three relaying protocols w.r.t. the achievable sum-rate,
similar observations as the classic relay channel were made: DF is optimal if
the relay is close to the sources (very good source-relays links), while EF is
optimal if the relay is close to the destinations (very good relays-destinations
links). Several Stackelberg formulations, where the system owner tunes the
parameters of the relays (i.e., spatial location, amplification factor for AF,
power allocation for DF and EF) have been evaluated using numerical simu-
lations.

Several open issues and interesting extensions are given hereunder:
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• The MIMO MAC: An interesting extension would be to study the case of imperfect
channel knowledge at the receiver. Also, an interesting open issue is to determine
the optimal eigenvectors and eigenalues of the covariance matrices when the con-
straint Vk = V for all k ∈ K is relaxed. In this sense, recent advances on random
matrix theory in [59] can be used. An interesting open issue is to mathematically
prove the convergence of the iterative water-filling algorithms proposed.

• The parallel IRC: An extension to this work is to consider more efficient coding-
decoding schemes and relaying protocols such as those of [60] and related works.
It is also important to fully determine the number or the topology of the set
of Nash equilibria and derive convergent iterative distributed power allocation
algorithms. We have also seen that additional power allocation problems come into
play, and need to be considered, in a general non-cooperative game: to allocate
transmit power between different bands at the sources (AF,DF,EF); to choose
the cooperation degrees at the sources (DF); to allocate the power between the
cooperation signals at the relay (EF and DF); to allocate the transmit power over
time.

In this chapter, we considered that the transmitters allocate their powers to maxi-
mize their Shannon achievable rates with no consideration on the power consumption.
The power consumption has a direct impact on the battery life of devices. There are
applications (e.g., sensor networks) where the battery life of the devices plays a crucial
role and maximizing the transmission rate is no longer of primary importance. For this
kind of applications, a different performance measure has to be considered. In Chapter
3, we will study the energy-efficiency metric which measures the number of bits that
can be reliably conveyed through the channel per unit of energy consumed.

Another important consideration regards the iterative water-filling type algorithms.
There are several rising issues. First of all, it involves rationality of the users and perfect
knowledge of their own payoff functions or the best-response correspondences. Also, it
generally requires perfect global channel state (for the static case) or distribution (for
the fast fading case) information at the transmitter level. Moreover, it involves a lot
of signaling among users. At each iteration, the user updating its choice has to send
this information to all the other users. All these assumptions can be regarded as being
unrealistic in many applications. One possible solution is provided by the learning theory
in games which will be introduced in Chapter 4.
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Chapter 3

Energy-efficient Communications

In the previous chapter, the performance of the communication was measured in terms
of achievable transmission rates. The cost of the communication, i.e., the transmit power
used to achieve the corresponding transmission rate, has not been taken into account.
In cellular or sensor networks, where the mobiles or sensor terminals are equipped with
batteries of limited capacity, maximizing the battery life is more important than the
transmission rate maximization. Therefore, this cost has to be taken into consideration.
In this chapter, we will consider a different information-theoretic performance metric,
i.e., an energy-efficiency measure. This measure is defined as the ratio between the
benefit of the transmission (i.e., number of reliable transmitted bits per channel use)
and the transmission cost (i.e., transmit power).

As we have discussed in Chapter 1, the energy-efficiency power allocation problem
has been studied from two different perspectives: an information theoretic and a prag-
matic approach. The research on this topic has been focused on two main approaches:
a pragmatic approach based on practical modulations, coding-decoding schemes, elec-
tronics (see [8], [61], [62], [63]), and an information theoretical approach based on the
capacity per unit cost introduced in [7]. A detailed discussion reviewing the relevant lit-
erature on the two approaches is given in [64] (see Appendix B.1). Most of this research
is centered on networks composed of single antenna terminals. It is well known that, for
a point-to-point communication, using multiple antenna terminals [65][66][14] in full di-
versity mode (i.e., all the transmit antennas are used to send the same information over
the channel) allows one to decrease the transmit power while ensuring a fixed quality of
transmission (e.g., the bit error rate). Therefore, we will investigate the energy-efficient
power allocation policy in MIMO channels. Also, in what follows, we will focus only on
the power allocation problem from an information theoretical point of view, similarly
to the previous chapter. An important assumption is that only the transmit power at
the output of the RF circuits (or the transmit power for reliable data) is considered.
Even if this assumption is unrealistic, it allows us to characterize the upper bound of
the performance that can be achieved in practice.

Our initial objective was to study the non-cooperative power allocation game for
the MIMO multiple access channel, as described in Section 2.1. The difference is that
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the players, the transmitters, chose their best input covariance matrices to maximize
their energy-efficiency function instead of the Shannon transmission rates. However, the
problem turned out to be very difficult. Because of this, we were restricted to study
only the particular case of the single-user MIMO channel (see Appendix B.2). Notice
that under this assumption, the game is reduced to an optimization problem which will
prove to be generally intractable.

We consider a point-to-point communication with multiple antenna terminals. The
signal at the receiver is modelled by:

Y (τ) = H(τ)X(τ) + z(τ), (3.1)

where H is the nr × nt channel transfer matrix and nt ( nr) the number of transmit
( receive) antennas. The vector X is the nt-dimensional column vector of transmit-
ted symbols and z is an nr-dimensional complex white Gaussian noise distributed as
N (0, σ2Inr). We denote by Q = E[XXH ] the input covariance matrix. The correspond-
ing total power constraint is Tr(Q) ≤ P .

The matrix H is assumed to be perfectly known at the receiver (coherent commu-
nication assumption) whereas only the statistics of H are available at the transmitter.
Three cases will be studied depending on the channel coherence time: i) the static links;
ii) fast fading links; iii) slow fading links. For the first two cases, the benefit of the
transmission will be measured in terms of achievable transmission rate. For slow fading
channels, as we have argued in Chapter 2, this is no longer a suitable performance mea-
sure and a different function based on the outage probability will be considered. We will
see that, in the first two cases, the solution is trivial and corresponds to the transmitters
remaining silent. However, this is no longer the case for slow fading channels. In this
case, the solution to the optimization problem is provided only for the particular case of
MISO (the receiver is equipped with a single antenna). For the MIMO case, the optimal
solution is conjectured and validated through numerical simulations.

3.1 Static Links

By definition, in the static links case, the frequency at which the channel matrix varies
is strictly zero. In other words, H is a constant matrix. In this particular context, both
the transmitter and receiver are assumed to know this matrix. We are exactly in the
same framework as [14]. Thus, for a given precoding scheme Q, the transmitter can send
reliably to the receiver log2

∣∣Inr + ρHQHH
∣∣ bits per channel use (bpcu) with ρ = 1

σ2 .
Let us define the energy-efficiency of this communication by:

Gstatic(Q) =
log2

∣∣Inr + ρHQHH
∣∣

Tr(Q)
. (3.2)

The energy-efficiency Gstatic(Q) corresponds to an achievable rate per unit cost for
the MIMO channel as defined in [7] under the assumption that the input alphabet
does not contain any zero-cost symbols (i.e., silence at the transmitter does not convey
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information). It turns out that the result obtained in [7] for the single-input single-
output channel extends to the MIMO channel.

Proposition 3.1.1 The energy-efficiency of a MIMO communication over a static chan-
nel, measured by Gstatic, is maximized when Q = 0 and this maximum is

G∗static =
1

ln 2

Tr(HHH)

ntσ2
. (3.3)

The proof can be found in [67] in Appendix B.2. We see that, for static MIMO channels,
the energy-efficiency defined in Eq. (3.2) is maximized by transmitting at very low
powers. This kind of scenario occurs for example, when deploying sensors in the ocean
to measure a temperature field (which varies very slowly). In some applications however,
the rate obtained by using such a scheme can be insufficient. In this case, the benefit to
cost ratio can turn out to be an irrelevant measure and other performance metrics have
to be considered (e.g., minimize the transmit power under a rate constraint).

3.2 Fast Fading Links

In this section, the frequency with which the channel matrix varies is the reciprocal of
the symbol duration (X(τ) being a symbol). This means that it can be different for
each channel use. Therefore, the channel varies over a transmitted codeword (or packet)
and, more precisely, each codeword sees as many channel realizations as the number of
symbols per codeword. In this framework, let us define energy-efficiency by:

Gfast(Q) =
EH

[
log2

∣∣Inr + ρHQHH
∣∣]

Tr(Q)
. (3.4)

The proof in Section 3.1 can be applied for any channel realization and thus the trivial
solution is obtained irrespective of the channel distribution.

Proposition 3.2.1 The energy-efficiency of a MIMO communication over a fast fading
channel, measured by Gfast, is maximized when Q = 0 and this maximum is

G∗fast =
1

ln 2

Tr(E
[
HHH

]
)

ntσ2
. (3.5)

We see that, for fast fading MIMO channels, maximizing energy-efficiency also amounts
to transmitting at low power. Interestingly, in slow fading MIMO channels, where outage
events are unavoidable, we will see that the answer can be different.

Before studying the slow fading channel, we make the following remark w.r.t. the
non-cooperative power allocation game for the MIMO multiple access channel. For
any decoding technique (single user decoding or successive interference cancellation, see
Chapter 2), the trivial solution Qk = 0 represents a strictly dominating strategy for
transmitter k. Thus, at the energy-efficient NE point, none of the transmitters will send
any information.
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3.3 Slow Fading Links

In this section, the channel remains constant over a codeword and varies from block
to block. As a consequence, the Shannon achievable rate is equal to zero. A suitable
performance metric that measures the benefit of the transmission in slow-fading channels
is the probability of an outage for a given transmission rate target R given in [24]. This
metric allows one to quantify the probability that the rate target R is not reached by
using a good channel coding scheme and is defined as follows:

Pout(Q, R) = Pr
[
log2

∣∣Inr + ρHQHH
∣∣ < R

]
. (3.6)

For the sake of simplicity, we will restrict our attention to the case where the entries
of H are i.i.d. zero-mean unit-variance complex Gaussian random variables. In terms
of information assumptions, here again, it can be checked that only the second-order
statistics of H are required to optimize the precoding matrix Q. In this framework, we
propose to define the energy-efficiency as follows:

Γ(Q, R) =
R[1− Pout(Q, R)]

Tr(Q)
. (3.7)

In other words, the energy-efficiency or goodput-to-power ratio (GPR) is defined as the
ratio between the expected throughput (see [68],[69] for details) and the average transmit
power. The expected throughput can be seen as the average system throughput over
many transmissions. In contrast with static and fast fading channels, energy-efficiency
is not necessarily maximized at low transmit powers. Thus, a non-trivial solution may
exist to the optimization of GPR. In the remaining of this section, we study both,
the determination of the optimal covariance matrix maximizing the GPR and the quasi-
concavity property of the GPR. The latter issue is not only useful to study the maximum
of the GPR but is also an attractive property in the multi-user scenario. For example,
by considering MIMO multiple access channels with SUD at the receiver, the distributed
power allocation game where the transmitters’ utilities are their GPR is guaranteed to
have a pure Nash equilibrium (see Debreu-Fan-Glicksberg theorem in [15]).

Finding the optimal covariance matrix is not trivial. Indeed, even the outage proba-
bility minimization problem w.r.t. Q is still an open problem [14], [70], [71]. The result
is conjectured as follows.

Conjecture 3.3.1 There exists a power threshold P 0 such that:

• if P ≤ P 0 then Q∗ ∈ arg min
Q
Pout(Q, R) ⇒ Q∗ ∈ arg max

Q
Γ(Q, R);

• if P > P 0 then Γ(Q, R) has a unique maximum in Q∗ = p∗
nt

Int where p∗ ≤ P .

This conjecture states that, if the available transmit power is less than a threshold,
maximizing the GPR is equivalent to minimizing the outage probability. If it is above
the threshold, the uniform power allocation is optimal. However using all the available
power is generally suboptimal in terms of energy-efficiency. Regarding the optimization
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problem associated with (3.7) several comments are in order. First, there is no loss of
optimality by restricting the search for optimal precoding matrices to diagonal matrices:
for any eigenvalue decomposition Q = UDUH with U unitary and D = Diag(p) with
p = (p1, . . . , pnt), both the outage and trace are invariant w.r.t. the choice of U. The
energy-efficiency can be written as:

Γ(D, R) =
R[1− Pout(D, R)]

nt∑

i=1

pi

. (3.8)

Second, the GPR is generally not quasi-concave w.r.t. D. In [67] Appendix B.2, we
give a counter-exemple for which the GPR is proven not to be quasi-concave. Third,
the conjecture was validated using Monte-Carlo numerical simulations for the 2×2 case
where both the transmitter and receiver are equipped with two antennas. Fourth, the
conjecture 3.3.1 was rigorously solved for MISO channels where the receiver is equipped
with a single antenna (see [67] Appendix B.2 for details).

Proposition 3.3.2 For all ` ∈ {1, ..., nt−1}, let c` be the unique solution of the equation

(in x) Pr

[
1
`+1

`+1∑

i=1

|Xi|2 ≤ x
]
− Pr

[
1
`

∑̀

i=1

|Xi|2 ≤ x
]

= 0 where Xi are i.i.d. zero-mean

Gaussian random variables with unit variance. By convention c0 = +∞, cnt = 0. Let

νnt be the unique solution of the equation (in y) ynt

(nt−1)!−
nt−1∑

i=0

yi

i!
= 0. Then the optimum

precoding matrices have the following form:

D∗ =

∣∣∣∣∣∣

P
` Diag(e`) if P ∈

[
c

c`−1
, cc`

)

min
{
σ2(2R−1)

νnt
, Pnt

}
Int if P ≥ c

cnt−1

(3.9)

where c = σ2(2R − 1) and e` ∈ S`.

Similarly to the optimal precoding scheme for the outage probability minimization [71],
the solution maximizing the GPR consists in sharing the available power uniformly
among a subset of ` ≤ nt antennas. As i.i.d entries are assumed for H, the choice
of these antennas does not matter. What matters is the number of antennas selected,
which depends on the available transmit power P : the higher the transmit power, the
higher the number of used antennas. The difference between the outage probability
minimization and GPR maximization problems appears when the transmit power is
greater than the threshold c

cnt−1
. In this regime, saturating the power constraint is

suboptimal for the GPR optimization. The conjecture 3.3.1 has also been solved for the
SIMO channel where the transmitter is equipped with a single antenna, and also for the
MIMO channel assuming the extreme SNR regimes (low and high SNR regimes).

A special case of interest is the case of uniform power allocation (UPA): D = p
nt

Int

where p ∈ [0, P ] and ΓUPA(p,R) , Γ
(
p
nt

Int , R
)

. One of the reasons for studying this
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case is the famous conjecture of Telatar in [14]. This conjecture states that, depending
on the channel parameters and target rate (i.e., σ2, R), the power allocation (PA) policy
minimizing the outage probability is to spread all the available power uniformly over a
subset of `∗ ∈ {1, . . . , nt} antennas. If this can be proved, then it is straightforward to
show that the covariance matrix D∗ that maximizes the GPR is p∗

`∗Diag(e`∗), where e`∗ ∈
V`∗1. Thus, D∗ has the same structure as the covariance matrix minimizing the outage
probability except that using all the available power is not necessarily optimal, p∗ ∈
[0, P ]. In conclusion, solving Conjecture 3.3.1 reduces to solving Telatar’s conjecture
and also the UPA case.

The main difficulty in studying the outage probability and/or the energy-efficiency
function is the fact that the probability distribution function of the mutual information
is generally intractable. In the literature, the outage probability is often studied by as-
suming an UPA policy over all the antennas and also using the Gaussian approximation
of the p.d.f. of the mutual information. This approximation is valid in the asymptotic
regime of large number of antennas. However, simulations show that it also quite ac-
curate for reasonable small MIMO systems [72], [73] (for e.g., assuming four-antenna
terminals, the approximation is very good and assuming eight-antenna terminals, the
error is negligible).

Under the UPA policy assumption, the GPR ΓUPA(p,R) is conjectured to be quasi-
concave w.r.t. p.

Conjecture 3.3.3 Assume that D = p
nt

Int. Then ΓUPA(p,R) is quasi-concave w.r.t.

p ∈
[
0, P

]
.

This conjecture was proved for the special cases of MISO and SIMO. Furthermore,
it was proved for the general MIMO case assuming the large system approach for three
cases: nt < +∞ and nr → +∞; nt → +∞ and nr < +∞; nt → +∞, nr → +∞
with lim

ni→+∞,i∈{t,r}
nr
nt

= β < +∞. Numerical simulations were provided to validate the

conjecture for finite number of antennas. Furthermore, the numerical simulations show
that the optimal value of the energy-efficiency function is increasing with the number of
antennas.

3.4 Conclusion and Open Issues

In this chapter, we have analysed the energy-efficiency power allocation problem for the
single-user MIMO channel. For the static and fast fading links, the solution is proved to
be trivial. In order to be energy-efficient, the transmitter sends data at fading transmit
power which imply fading data rates. For the slow fading links, the optimization problem
is more difficult and the solution is proven to be non-trivial in general. The contributions
are as follows:

1The set V` =

{
v ∈ {0, 1}nt |

nt∑
i=1

vi = `

}
represents the set of nt-dimensional vectors containing `

ones and nt − ` zeros, for all ` ∈ {1, . . . , nt}.
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• We conjecture the result for the general problem and solve it for special cases:
in the high and low SNR regimes and in n the particular cases where one of the
terminals is equipped with a single antenna (MISO and SIMO channels).

• An interesting case of study is the uniform power allocation case where the energy-
efficiency function is conjectured to be quasi-concave with respect to the transmit
power and it has been proved to be quasi-concave using the large system assump-
tion.

For the static and fast fading cases, the energy-efficiency function seems to be a non-
suitable performance metric. The trivial solution that maximizes the energy-efficiency
function can be explained by the fact that the circuitry energy consumption is not taken
into account. An important extension would be to consider the circuitry power as well.
In this case, if the transmitter remains silent, it won’t be at zero-cost and the trivial
solution will no longer be optimal. Also, having multiple antennas at the terminals may
turn out to be suboptimal w.r.t. the single-antenna case. Another way to avoid the
trivial solution is to consider minimal QoS constraints (e.g., minimal data-rates).

The fact that the solution is no longer trivial for the slow fading case can be explained
by the fact that the benefit of the transmission is inherently different. For the static and
fast-fading channels the transmission is constrained to be asymptotically reliable (with
zero-error probability). This constraint turns out to be too stringent and energy-efficient
communication is not possible at non-zero transmit powers. For the static channel, there
is an optimal trade-off between the outage probability and the transmit rate that allows
energy-efficient communication at non-zero transmit powers.

Many open problems are introduced by the proposed performance metric, here we
just mention some of them:

• First of all, the conjecture of the optimal precoding schemes for general MIMO
channels needs to be proven.

• The quasi-concavity of the goodput-to-power ratio when uniform power allocation
is assumed remains to be proven in the finite setting.

• A more general channel model should be considered. We have considered i.i.d.
channel matrices but considering non zero-mean matrices with arbitrary correla-
tion profiles appears to be a challenging problem for the goodput-to-power ratio.

• The connection between the proposed metric and the diversity-multiplexing trade-
off at high SNR has not been explored.

• Only single-user channels have been considered. Clearly, multi-user MIMO chan-
nels such as multiple access or interference channels should be considered. The
problem of distributed multi-user channels and the non-cooperative power alloca-
tion game. is an interesting issue. In this respect, only one result is mentioned
here: the existence of a pure Nash equilibrium in distributed MIMO multiple
access channels assuming uniform power allocation transmit policy.
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The main difficulty lies in the fact that the optimization problem of the outage
probability is still an open problem. We have seen that to solve the general problem it
suffices to prove Telatar’s conjecture and the uniform power allocation case. Optimizing
the outage probability is a difficult problem even from a numerical point of view. This
is why, in the following chapter, we will see whether, using simple learning algorithms,
the transmitter may converge to the solution maximizing the outage probability.
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Chapter 4

Learning Algorithms in Resource
Allocation Games

In Chapter 2, we have studied one-shot non-cooperative power allocation games where
the transmitters choose their optimal power allocation policy to maximize their achiev-
able rates. Computing the Nash equilibria required rationality at the transmitter level
and perfect knowledge of the game structure. Furthermore, player rationality was as-
sumed to be common knowledge. The iterative best-response algorithms which allowed
the transmitters to compute the equilibria were as well very demanding in terms of
knowledge assumptions and computational capabilities.

In this chapter, we study an alternative way of explaining how the players may
converge to an equilibrium point of the one-shot game. This alternative is offered by
the theory of learning in games [74]. Learning algorithms are long-run processes in
which players, with less restrictive knowledge and assumptions, try to optimize their
payoffs relying on simple updating rules. We will mainly study a reinforcement learning
algorithm similar to [75]. In this framework, the users are simple automata capable of
choosing their actions from a finite set of actions. Their choices are based on past results
and feed-back from the environment. Thus, they can improve their performance over
time while operating in an almost unknown environment.

Two different scenarios are considered. First, we study a similar power allocation
game to the one described in Section 2.1.2. The difference consists in the action sets
of players which are discrete and finite sets. Because of this difference, the analysis
conducted in Section 2.1.2 is no longer valid. Therefore, we must analyse the Nash
equilibrium for the one-shot non-cooperative game. Then, we will see that, using simple
adaptive rules, the players converge to one of the Nash equilibrium points. Second,
we focus on the slow fading MIMO channel in Section 3.3. We see that the optimal
precoding matrix optimizing the outage probability can be computed applying a similar
reinforcement algorithm.
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4.1 Dynamical Systems and Stochastic Approximation

Before analysing the aforementioned scenarios, we will discuss the basic mathematical
tools used to analyse the asymptotic behaviour of the learning algorithms: dynamical
systems and stochastic approximation algorithms.

Dynamical systems are mathematical formalizations used to capture the evolution
in time of systems. In general, they consist of three components:

• System state, x(t), representing the parameters which characterizes the system at
time t;

• State space, U , representing all the possible states of the system;

• State transition function Φ : U× [0,+∞)→ U , which is a flow defining the change
in the system state from one moment to the other (i.e., Φτ (x0) = x translates the
fact that the system is in state x at time t = τ starting from x0 at t = 0). If
this function is differentiable, then it can be characterized by the solution of an
autonomous ordinary differential equation (ODE):

dx

dt
= v(x(t)), (4.1)

where v(x(t)) is the vector field describing the speed of evolution of the system
state and which does not depend explicitly on time. The existence of a uniqueness
solution of this ODE, for any initial state x0 ∈ U is ensured if the vector field is
Lipschitz continuous, i.e., there exists a constant L > 0 such that, for all x, y:
‖v(x)− v(y)‖ ≤ L‖x− y‖.

In this chapter, we will be interested in characterizing the asymptotic behaviour of
the dynamical system. To this aim, we define the following notions: stationary states,
stable states, asymptotically stable states.

Definition 4.1.1 A system state x̃ ∈ U such that v(x̃) = 0 is called a stationary state
or equilibrium state. The equilibrium states correspond to fixed points of the flow:
Φt(x̃) = x̃.

However, the equilibrium regime of dynamical systems does not necessarily consist of
isolated points and can consist of a whole subspace of U (e.g. cycles, periodic orbits).
The general concept is that of invariant set which is defined here below.

Definition 4.1.2 Let W be a sub-space of U . W is called an invariant (respectively
positive invariant) set, if, for all t ∈ R (respectively in R+), Φt(W) ⊆ W. It is said to
be “internally chain transitive” if, for any x, y ∈ W and any ε > 0, T > 0, there exists

n ≥ 1 and x[0] = x, x[1], . . . , x[n] = y in W such that the trajectory in (4.1), initiated

at x[m] meets with the ε-neighbourhood of x[m+1] for 0 ≤ m ≤ n after a time ≥ T .
Furthermore, if x = y, the set is said to be “internally chain recurrent”.
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The stability issue of the equilibrium regime answers to questions such as: If the
system is moved away from an equilibrium state, will the system return to this equilib-
rium? Can a small deviation, which slightly moves the system away from an equilibrium
state, have important consequences and be amplified in time?

Definition 4.1.3 An equilibrium point x̃ is stable in the sense of Lyapunov if, for any
ε > 0, it exists η > 0 such that, for all y ∈ U verifying ‖y− x̃‖ ≤ η, then ‖Φt(y)− x̃‖ ≤ ε
for all t > 0.

Definition 4.1.4 An equilibrium point x̃, is asymptotically stable in the sense of Lya-
punov if it is stable in the sense of Lyapunov and, for any y ∈ U sufficiently close to x̃,
lim

t→+∞
Φt(y) = x̃.

Sufficient conditions that ensures the stability or asymptotic stability are given in the
following theorem.

Theorem 4.1.5 If x̃ is an equilibrium point and if exists a differentiable function V :
U → R+ with continuous derivative such that: V (x̃) = 0, V (y) > 0 for all y 6= x̃ and
dV
dt ≤ 0 (i.e., V is decreasing along all trajectories). Then, x̃ is stable in the sense

of Lyapunov. If dV
dt < 0 for all y 6= x̃, then x̃ is asymptotically stable in the sense of

Lyapunov. Furthermore, if V (x) goes to infinity when x approaches infinity, then all
trajectories tend to x̃. In this case, x̃ is called globally asymptotically stable state.

For further details on dynamical systems and their associated asymptotic behavior,
the reader is referred to [76][77][78].

The stochastic approximation theory is used to study discrete-time stochastic pro-
cesses that can be written as:

X [n+1] = X [n] + γ[n+1]
(
f(X [n]) + Z [n+1]

)
(4.2)

where X [n] is a vector in an Euclidean space which is updated based on a noisy ob-
servation, f(·) is a deterministic vector field and Z [n+1] is a random noise. The idea
is to approximate X [n] with a certain continuous-time interpolation process, e.g., the
following piecewise linear function given by:

X̂(t) = X [n] + t−τ [n]
τ [n+1]−τ [n] (X

[n+1] −X [n]), if t ∈ [τ [n], τ [n+1]), (4.3)

where τ [0] = 0 and τ [n] =
n∑

m=0

γ[m] (i.e., the parameter that covers the time axis).

In the asymptotic regime, i.e., n→ +∞, and under certain conditions on the quan-
tization step γ[n], on the vector field f(·) and on the noise process Z [n], this interpolated
process follows the solution of the deterministic ODE:

dx

dt
= f(x(t)). (4.4)
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Therefore, using the stochastic approximation approach, the study of the iterative pro-
cessX [n] amounts to the study of the deterministic continuous-time ODE in (4.4). Notice
that the discrete process described by (4.2) can be viewed as a noisy Euler scheme for
numerically approximating the trajectory of the ODE in (4.4).

Two different approaches can be distinguished as a function of the step size: i)
variable step-size (γ[n] changes at each iteration); ii) constant step-size (γ[n] = ε,∀n).
For the case where the step size is variable, the main convergence result is given in
[79] and a clear proof is presented in [80]. The author of [79] proved the almost sure
convergence (convergence with probability one) in the asymptotic regime (n → +∞)
under the following conditions:

[H1] The learning steps satisfy:




γ[n] ≥ 0,∀n
lim

n→+∞
γ[n] = 0

lim
n→+∞

n∑

m=0

γ[m] = +∞

lim
n→+∞

n∑

m=0

(
γ[m]

)2
< +∞.

(4.5)

The parameters
{
γ[n]
}

correspond to the quantization steps and, thus, small values
are desirable to suppress the quantization errors. Too small values however imply
a long convergence time of the algorithm. In conclusion, relative large values of
γ[n] are desirable at the initial steps (n = 1, 2, ...) but, as n grows large, γ[n]

should become very small. Since the discrete process will be approximated by the

continuous-time ODE, the discrete steps must cover the entire time axis,
∑

n≥0

γ[n] =

+∞. The errors introduced by the noise must also be asymptotically suppressed.

The condition
∑

n≥0

(
γ[n]
)2

< +∞ is necessary to this purpose.

[H2] The vector field f(·) is Lipschitz continuous.

[H3] The discrete process remains bounded with probability one, i.e., supn ‖X [n]‖ <
+∞.

[H4] The noise sequence
{
Z [n]

}
is a Martingale difference sequence such that with

probability one E
[
Z [n+1]

∣∣∣Z [m],m ≤ n
]

= 0.

[H5] The noise sequence
{
Z [n]

}
is square integrable, i.e., E

[∥∥∥Z [n+1]
∥∥∥

2 ∣∣∣Z [m],m ≤ n
]
<

+∞. This condition, together with
∑

n≥0

(
γ[n]
)2

< +∞, asymptotically suppresses

the overall contribution of the noise. Thus, the discrete process converges asymp-
totically to the mean behaviour given by the deterministic ODE (4.4).
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Before stating the main results, we define Xs(t), s ≤ t as the trajectory that starts
at time s > 0 in the point X̂(s):

{
dXs

dt (t) = f(Xs(t))

Xs(s) = X̂(s)
(4.6)

Also, Xs(t), s ≥ t is the trajectory that ends at time s > 0 in the point X̂(s) defined as:

{
dXs
dt (t) = f(Xs(t))

Xs(s) = X̂(s)
(4.7)

The following convergence results for stochastic approximation are due to Benäım [79].

Theorem 4.1.6 [79] Assuming that the hypothesis [H1]-[H5] are met, we have that,
for all T > 0:





Pr

[
lim

s→+∞
sup

t∈[s,s+T ]
‖X̂(t)−Xs(t)‖ = 0

]
= 1

Pr

[
lim

s→+∞
sup

t∈[s−T,s]
‖X̂(t)−Xs(t)‖ = 0

]
= 1.

(4.8)

Furthermore, the discrete process {X [n]} in (4.2) converges almost surely, when n →
+∞, to a (possibly path dependent) compact connected internally chain transitive set of
the ODE (4.4).

Intuitively this means that, in the asymptotic regime (i.e., n → +∞), the inter-
polation process converges almost surely to the solution of the deterministic ODE in
(4.4).

For the constant-step size case, γ[n] = γ for all n, only weak convergence results (con-
vergence in distribution) can be proved in the asymptotic regime (γ → 0 and n→ +∞)
[81]. The corresponding theorems can be found in [81]. The sufficient conditions en-
suring the weak convergence are less restrictive than the conditions ensuring the almost
sure convergence. Thus, if the conditions [H2]-[H5] are satisfied the weak convergence
is guaranteed. For a more detailed discussion, the reader is referred to the specialized
books [80], [81].

In conclusion, the asymptotic study of the iterative process X [n] is reduced to the
asymptotical study of the ordinal differential equation (4.4).

4.2 The Fast Fading MIMO Multiple Access Channel

In this section, we study the power allocation game in fast fading MIMO multiple access
channels, similarly to Section 2.1.2. We will restrict our attention to the case where
single user decoding is used at the receiver side. The same notations will be used in
this section. However, the power allocation game we study here differs from the game
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in Section 2.1.2 in two respects. First, the action sets of the players are discrete and
finite sets, as opposed to the convex and compact set of positive semi-definite matrices
of constrained trace. Second, the channel matrices are restricted to live in compact
sets of bounded support: |Hk(i, j)| ≤ hmax < +∞ (no other constraints are made on
the channel matrices). The analysis of the Nash equilibrium for the discrete game is
completely different than in Section 2.1.2. For example, the existence of a pure strategy
Nash equilibrium is generally not guaranteed for this type of games. Also, the concavity
property of the payoff functions and the results in [20] cannot be used here. We propose
the following action set for user k which is a simple quantized version of ASUD

k in (2.2):

Dk =

{
P k
`

Diag(e`)

∣∣∣∣∣` ∈ {1, . . . , nt}, e` ∈ {0, 1}
nt ,

nt∑

i=1

e`(i) = `

}
. (4.9)

Notice that Dk represents the set of diagonal matrices consisting in uniformly spreading
the available power over a subset of ` ∈ {1, . . . , nt} eigen-modes. The components of

the game are GSUD
D =

(
K,
{
uSUD
k

}
k∈K , {Dk}k∈K

)
where the payoff function is given by

the achievable ergodic rate in (2.11). As discussed in Section 2.1.2, the discrete game
is an exact potential game. The potential function is given by the achievable system
sum-rate:

V (Q1, . . . ,QK) = E log2

∣∣∣∣∣Inr + ρ
K∑

k=1

HkQkH
H
k

∣∣∣∣∣ . (4.10)

Thus, the game GSUD
D has at least one pure-strategy Nash equilibrium. However, the

uniqueness property of the NE is lost in general. In [82] (see Appendix C.1), we prove
that for full-rank channels the NE is unique whereas for unit-rank channels all the
strategy profiles are NE points. Knowing that the game is an exact potential game,
by the Finite Improvement Property [19], the iterative algorithms based on the best-
response dynamics converge to one of the possible pure strategy NE depending on the
starting point.

In the remaining of this section, we will study a reinforcement learning algorithm
similarly to [75]. As opposed to the best-response type algorithm, the users are no
longer rational devices but simple automata that know only their own action sets. They
start at a completely naive state choosing randomly their action (following the uniform
distribution over the action sets, for example). After the play, each users obtains a
certain feed-back from the nature (e.g., the realization of a random variable, the value
of its own payoff). Based only on this value, each user applies a simple updating rule on
its own discrete probability distribution or mixed strategy over its action set. It turns
out that, in the long-run, the updating rules converge to some desirable system states.
It is important to notice that the transmitters don’t even need to know the structure
of the game or that a game is played at all. The price to pay for the lack of knowledge
and rationality will be reflected in the longer convergence time.

Let us index the possible actions that User k can take as follows: Dk = {D(1)
k , . . . ,D

(Mk)
k }

with Mk = Card(Dk) (i.e., the cardinality of Dk). At step n > 0 of the iterative process,

User k randomly chooses a certain action Q
[n]
k ∈ Dk based on the probability distribu-
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tion p
[n−1]
k from the previous iteration. As a consequence, it obtains the realization of a

random variable, which is, in our case, the normalized instantaneous mutual information

µ
[n]
k =

µk

(
Q

[n]
k ,Q

[n]
−k
)

Imax
∈ [0, 1] such that:

µk(Qk,Q−k) = log2

∣∣∣∣∣∣
Inr + ρHkQkH

H
k + ρ

K∑

` 6=k
H`Q`H

H
`

∣∣∣∣∣∣
− log2

∣∣∣∣∣∣
Inr + ρ

∑

` 6=k
H`Q`H

H
`

∣∣∣∣∣∣

and Imax is the maximum value of the mutual information. Under the assumption that
the channel takes values in a compact set we have Imax < +∞. Based on this feed-back,
User k updates its own probability distribution as follows:

p
[n]
k,jk

= p
[n−1]
k,jk

− γ[n]µ
[n]
k p

[n−1]
k,jk

+ γ[n]µ
[n]
k 1(

Q
[n]
k =D

(jk)

k

) (4.11)

where 0 < γ[n] < 1 is the step-size and p
[n]
k,jk

represents the probability that user k

chooses D
(jk)
k at iteration n. Notice that the assumption on the channel matrices w.r.t.

their bounded support is required for the normalization of the mutual information. In
order to make sure that the discrete probability distribution in (4.11) is well defined, the

random payoff must be bounded as follows 0 ≤ µ[n]
k ≤ 1. An intuition behind this simple

reinforcement algorithm is that the frequency with which an action is played depends
on its score (i.e., the payoff obtained by playing this action) such that the actions which
perform well are increased in probability.

In order to study the asymptotic behaviour and convergence properties of the discrete
stochastic process in (4.11), the objective is to prove that it can be approximated with
the solution of the following deterministic ODE:

dpk,jk
dt

= pk,jk

Mk∑

ik=1

pk,ik [hk,jk(p−k)− hk,ik(p−k)], (4.12)

where
hk,jk(p−k) =

∑

i−k

u
(SUD)
k

(
D

(jk)
k , D

(i−k)
−k

)∏

`6=k
p`,i`

The idea is to apply the stochastic approximation results and, in particular, to check
whether Theorem 4.1.6 applies or not in our context. To this aim, we have to verify
that the conditions [H2]-[H5] in Section 4.1 are satisfied. The vector field of the ODE
in (4.12) is f(p) =

{
fk,jk(p)

}
k∈K,jk∈{1,...,Mk} with:

fk,jk(p) = pk,jk

Mk∑

ik=1

pk,ik [hk,jk(p−k)− hk,ik(p−k)],

where p represents the concatenation vector of the discrete probability distributions of
all the players. It is easy to see that f(p) is a class C1 vector field (i.e., differentiable with
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continuous partial derivatives). This implies that f(p) is Lipschitz continuous ([H2]).

Since p ∈
∏

k

∆(Dk), the condition [H3] is straight forward. The noise process is given

by:

Z
[n]
k,jk

= −µ[n]
k p

[n−1]
k,jk

+ µ
[n]
k 1(

Q
[n]
k =D

(jk)

k

) − fk,jk(p[n−1])

We can observe that
{
p[n], (Q[n−1], µ[n−1])

}
n

is a Markov process where Q[n−1] = {Q[n−1]
k }k∈K

and µ[n−1] = {µ[n−1]
k }k∈K. Also, for time invariant distributions p[n−1] = p, the sequence

(Q[n], s[n])n is an i.i.d. sequence which implies that condition [H4] is met. Also, con-

dition [H5] can be verified easily since p[n−1] ∈
∏

k

∆(Dk) and µ
[n]
k ∈ [0, 1]. Therefore,

depending on the choice of the step-size (either constant or verifying [H1]) the almost
sure or weak convergence are guaranteed.

Therefore, in order to study the stochastic process p
[n]
k,jk

, we can focus on the study
of the deterministic ODE that captures its average behaviour. Notice that the ODE
(4.12) is similarly to the replicator dynamics [83]. The mixed and pure-strategy NE are
rest points of this kind of dynamics. However, all the pure-strategy profiles, even those
which are not NE are also rest points. Moreover, the border of the domain where the
vector of probability distributions p lives is an invariant set. Using the fact that the
game is an exact potential game the pure-strategy NE points can be proved to be stable
in the sense of Lyapunov.

Numerical simulations.

We consider the following scenario: K = 2, nr = nt = 2, the entries of the channel
matrices are drawn independently following a truncated complex Gaussian distribution,
i.e., |Hk(i, j)| ≤ hmax = 1 and ρ = 10 dB, P 1 = P 2 = 1 W. The actions the users can

take are: D
(1)
k = P kdiag(0, 1), D

(2)
k = Pdiag(1, 0), D

(3)
k = P

2 diag(1, 1). The beam-
forming strategies are identical in terms of payoff and the users can be considered as

having only two strategies: beam-forming (BF) (either D
(1)
k or D

(2)
k ) and uniform power

allocation (UPA) (D
(3)
k ). The payoff matrix for user 1 is given by its ergodic achievable

rate:

ER1 =

(
2.6643 1.9271
3.0699 2.2146

)

and since the example is symmetric we have ER2 = ERT
1 . The elements of these

matrices correspond to the payoffs of the two users in the following situations: ERk(1, 1)
when both players choose BF; ERk(1, 2) when User k chooses BF while the opponent
plays UPA; ERk(2, 1) when User k chooses UPA while the opponent plays BF; ERk(2, 2)
when both players choose UPA. In this case, we observe that the unique NE consists in
playing the uniform power allocation by both users.

We apply the reinforcement algorithm considering Imax = 8.7846 bpcu (i.e., the
maximum single-user instantaneous mutual information under the assumption that
hmax = 1). In Fig. 4.1, we plot the expected payoff depending on the probability
distribution over the action sets at every iteration for User 1 in Fig. 4.1(a) and for
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(a) User 1.

(b) User 2.

Figure 4.1: Expected payoff vs. iteration number for K = 2 users.

User 2 in Fig. 4.1(b) assuming P 1 = P 2 = 5 W. We observe that the users converge to
the Nash equilibrium after approximatively 1.3× 104 iterations while, by using a best-
response algorithm, the convergence is almost instantaneous (only 2 or 3 iterations).
However, in the latter case, the rationality of the players and the perfect knowledge of
the game structure are required.

4.3 The Slow Fading MIMO Channel

We will now study the single-user slow fading MIMO channel, under the same assump-
tions as in Section 3.3. As we have already discussed, when slow fading is assumed, the
mutual information is a random variable, varying from block to block, and thus it is not
possible to guarantee that it is above a certain threshold. In this case, the achievable
transmit rate in the sense of Shannon is zero. A more suitable performance metric is the
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probability of an outage for a given transmission rate target [24]. This metric allows one
to quantify the probability that the rate target is not reached by using a good channel
coding scheme and is defined as follows:

Pout(Q, R) = Pr [µ(Q) < R] . (4.13)

Here, µ(Q) denotes the instantaneous mutual information:

µ(Q) = log2

∣∣Inr + ρHQHH
∣∣ . (4.14)

The idea is to implement a reinforcement algorithm that allows the transmitter to
compute its best precoding matrix minimizing the outage probability. We start with
the same simple action set given in Section 4.2:

D =

{
P

`
Diag(e`)

∣∣∣∣∣` ∈ {1, . . . , nt}, e` ∈ {0, 1}
nt ,

nt∑

i=1

e`(i) = `

}
. (4.15)

The choice of this set is motivated by two reasons: i) for Rayleigh fading, the optimal
covariance matrix is diagonal; ii) Telatar [14] conjectured that the optimal covariance
matrix is to uniformly allocate the power on a subset of antennas.

We assume that the only feed-back the transmitter receives at iteration n is an
ACK/NACK bit denoted s[n], i.e., the realization of the following random variable:
S = 0 if µ(Q) ≤ R otherwise S = 1. Therefore, if an outage occurs at time n the
receiver feed-backs s[n] = 0, otherwise s[n] = 1. Notice that the random variable S
follows a Bernoulli distribution of parameter q = 1 − Pout(Q, R). Its expected value
is equal to 1 − Pout(Q, R) and, therefore, if the instantaneous payoff is s[n], then its
expected payoff is exactly the success probability: 1− Pout(Q, R).

Based only on s[n], the user applies a simple updating rule over its own probability
distribution over the action space. Let us index the elements of D = {D(1), . . . ,D(M)}
with M = Card(D) (i.e., the cardinality of D). We want to find out whether using a
simple reinforcement learning algorithm will allow us to solve the open problem:

umax = max
j∈{1,...,M}

u(D(j)), (4.16)

where u(D(j)) = 1−Pout(D
(j), R) represents the success probability. At step n > 0 of

the iterative process, the transmitter randomly chooses a certain action Q[n] ∈ D based
on the probability distribution p[n−1] from the previous iteration. As a consequence, it

obtains the realization of a random variable, which is, in our case, s[n]. Based on this
value, the transmitter updates its own probability distribution as follows:

p
[n]
j = p

[n−1]
j − γ[n]s[n]p

[n−1]
j + γ[n]s[n]1(Q[n]=D(j)) (4.17)

where 0 < γ[n] < 1 is a step size and p
[n]
j represents the probability that the transmitter

choses D(j) at iteration n. Notice that, as opposed to the previous section (Sec. 4.2),
no assumptions on the channel matrix have to be made since s[n] ∈ {0, 1}.
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The sequence p[n] can be approximated in the asymptotic regime with the solution
of the following ODE:

dpj
dt

= pj

[
u(D(j))−

M∑

i=1

piu(D(i))

]
, (4.18)

for all j ∈ {1, . . . ,M}.
Similarly to the previous section, the conditions [H2]-[H5] can be proven to be

satisfied. First, we observe that the vector field f(p), with the components given by

fj(p) = pj

[
u(D(j))−

M∑

i=1

piu(D(i))

]
for all j ∈ {1, . . . ,M}, is a class C1 function. This

implies that f(p) is Lipschitz continuous and [H2] is met. Since the updated process

corresponds to the discrete probability distribution, p[n] ∈ ∆(D), it is always bounded
([H3]). The noise here is given by:

Z
[n]
j = −s[n]p

[n−1]
j + s[n]1(Q[n]=D(j)) − fj(p

[n−1])

Here as well, by construction, we have that
{
p[n], (Q[n−1], s[n−1])

}
n

is a Markov process

and for a time invariant distribution p[n−1] = p (Q[n−1], s[n−1])n is an i.i.d. sequence,
which implies that condition [H4] is met. Also, condition [H5] can be easily verified.

We can observe that only the corner points of the simplex ∆(D) (i.e., the pure-
actions) are stationary states of this ODE. It turns out that, the only stable states are
solutions to the optimization problem in (4.16).

Numerical simulations.
Consider the simple case of i.i.d. channel matrix of complex standard Gaussian

entries, nt = nr = 2, R = 1 bpcu, P = 0.1 W, ρ = 10 dB. In this case, the user can
choose between beam-forming and the uniform power allocation: D(1) = Pdiag(0, 1),

D(2) = Pdiag(1, 0), D(3) = P
2 diag(1, 1). The success probability is given by u(D(1)) =

u(D(2)) = 0.7359, u(D(3)) = 0.8841. Notice that, the positions of the active antennas
do not matter and only the number of active modes has an influence on the success

probability. In Fig. 4.2, we trace the expected payoff

M∑

j=1

p
[n]
j u(D(j)) in function of

the iterations. We assume γ[n] = γ = 0.01 (constant step-size) and observe that the
optimal solution is reached after 2554 iterations. However, the performance of the
algorithm depends on the choice of the learning parameter: the larger γ, the smaller the
convergence time. The problem with large steps is that the algorithm may converge to
a corner of the simplex which is not a maximizer of the success probability. In Tab. 4.1,
the same scenario is investigated. Here, we summarize the results of the reinforcement
algorithm obtained after 1000 experiments in terms of average number of iterations
and convergence to the maximum point. We observe that there is a trade-off between
the convergence time and the convergence to the optimal point. This trade-off can be
controlled by tuning the learning step-size γ.
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Figure 4.2: Average payoff vs. number of iterations.

Table 4.1: Trade-off between the convergence time and the convergence to the optimal
point

γ Time [nb. iterations] Convergence to optimum [%]

0.001 3755 100

0.1 261 71

0.5 27 45

0.9 9 39
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4.4 Conclusion and Open Issues

In this chapter, we have investigated reinforcement learning algorithms that allow the
transmitters to converge to desirable network states: NE or other system operating
points. These algorithms have several appealing features. They are completely dis-
tributed, adaptive and low complexity algorithms in which the users update the prob-
abilities of choosing their actions based on a certain feed-back from the environment.
The updating rule does not require any other knowledge on the environment (e.g., the
network topology, channel state information) nor any assumption on users’ rationality.
However, all these benefits come at the cost of large convergence time. Moreover, the
algorithms are stochastic in nature and only asymptotic convergence in probability can
be ensured. In practice, this translates the fact that a very careful choice of the learn-
ing step-size has to be made to ensure a good performance. We have seen that there
is a trade-off between the probability (frequency) of convergence and the convergence
time. These problems are due to the inherent properties of reinforcement learning and
replicator dynamics. Reinforcement learning algorithms allow the users to converge to
the solutions of the ODE describing the replicator dynamics. All the pure-strategies,
even those which are not optimal, are stationary points of this dynamics. This is one
of the reasons for the numerical methods to fail in converging to the optimal points.
One possibility to overcome these issues, is to consider other learning techniques such
as Boltzman-Gibbs learning and Q learning [84].

In order to relax the constraint on the channel matrices in Sec. 4.2, the projected dy-
namics and stochastic algorithms [81] [80] dedicated to processes constrained to bounded
sets can be applied. In Sec. 4.3, we have seen that learning algorithms can be used to
numerically compute the optimal precoding matrix minimizing the outage probability
for the single-user MIMO channel. This analysis can be extended to the energy-efficiency
problem defined in Section 3.3. Furthermore, another interesting extension is to study
the general case of multi-user scenario of MIMO multiple-access channels. At last, a
rising issue is to evaluate the performance gap between the continuous case studied in
the previous chapters ( Chapter 2 and Chapter 3) and the discrete case studied in this
chapter. Notice that for the standard Rayleigh channel there is no gap of optimality
between the two approaches. However, for general channel models the problem is not
trivial and a deep mathematical analysis is required.
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Chapter 5

Conclusion and Perspectives

In this manuscript, our primary objective was to study decentralized wireless networks
in which the terminal nodes are equipped with multiple antennas. Rising topics, such as
self-optimizing networks, green communications and distributed algorithms have been
approached mainly from a theoretical perspective. To this aim, we have used a diversified
spectrum of tools from Game Theory, Information Theory, Random Matrix Theory and
Learning Theory. Although there is still a large gap to be filled in order to make these
studies relevant from a real-world point of view, their importance lies in the fact that
they represent the limits of performance that can be achieved in practice.

We started our analysis with the study of the power allocation problem in dis-
tributed networks. The transmitters were assumed to be autonomous and capable of
allocating their powers to optimize their Shannon achievable rates. A non-cooperative
game theoretical framework was used to investigate the solution to this problem. Itera-
tive algorithms based on the best-response functions were implemented to compute the
Nash equilibrium solutions. Two different models were considered: the MIMO multiple
access channel and the SISO parallel interference relay channel.

The first model was characterized by the fact that a more complex decoding tech-
nique could be implemented at the receiver: the successive interference cancellation. We
have seen that, using a simple coordination signal dictating the decoding order at the
receiver, the system sum-rate at the Nash equilibrium is fairly close to the centralized
network solution. Furthermore, the distribution of this public signal can be manipulated
in a centralized way to control the network operating point. Assuming fast fading links,
random matrix theory was used to determine the Nash equilibrium point. An interesting
particular case is the case of static parallel MAC, which was studied from a routing game
perspective. Several Braess paradoxes have also been highlighted. The second model
was characterized by the presence of the supplementary relaying nodes. These nodes
could have been exploited by the transmitters to improve their network performance.
Three different relaying protocols were investigated and their performance compared
via numerical simulations: amplify-and-forward, decode-and-forward and estimate-and-
forward. The parameters of the relaying nodes can be manipulated by the owner of the
system to control the operating point of the network. Several interesting open issues
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arose: the study of the general game involving all the freedom degrees of the transmit-
ters, the multiplicity of the Nash equilibria, the Stackelberg formulation.

Several major issues appear in the one-shot non-cooperative games and with the
iterative best-response algorithms. First, the transmitters are assumed to be strictly
rational devices. Second, the information needed at the transmitter side with respect
to his own payoff function and channel state or statistics is often unavailable in realistic
scenarios. Third, the best-response based iterations involve an arguable large amount
of network signaling. Fourth, proving the convergence of these algorithms is generally a
difficult problem.

The learning theory in games appears to be a candidate solution to all these issues.
We have seen that using simple updating rules (e.g., reinforcement learning), each user
converges to one of the Nash equilibria of the initial game even though, in this framework,
the users are no longer rational devices but simple automata. Furthermore, the only
needed knowledge of the environment is a feed-back (e.g., the payoff value) that scores
the choices of the users. It turned out that, based on this feedback, the users adapt
and learn in time their optimal strategies. However, these algorithms are stochastic in
nature and only probabilistic convergence can be guaranteed. Also, the convergence in
practice involves a relatively long time.

Another major issue that has been considered is related to the energy-efficiency
aspect of the communication. Indeed, in order to achieve high transmission rates, the
used power has to be high as well. In networks where the power consumption is the
bottleneck, the Shannon achievable rate is no longer suitable performance metric. This
is why we have addressed the problem of optimizing an energy-efficiency function. This
performance metric translates the average number of bits that can be conveyed through
the channel per unit of energy consumed. Because of the encountered difficulties, our
work was limited to the MIMO single-user channel. From an information-theoretic
perspective, if no error probability is tolerated at the receiver, then energy-efficient
transmission is not possible at non-zero transmit power and non-zero data rate. However,
assuming a fixed transmission rate, if a certain error probability is tolerated, then energy-
efficient communication is possible at a non-zero transmit power.

For the slow fading MIMO case, the general problem of finding the optimal precoding
matrix optimizing the proposed goodput-to-power ratio is still an open issue. We have
seen that it amounts to solving the particular case of uniform power allocation over
the antennas, and to proving Telatar’s conjecture [14]. However, finding the optimal
precoding matrix minimizing the outage probability turned out to be a challenging issue.
As we have seen, learning theory provides effective numerical algorithms to compute
this optimal solution. Also, once that the aforementioned conjectures are solved, an
important extension of our work would be the study of the multi-user scenario (e.g., the
multiple access channel or the interference channel) from the energy-efficient perspective.
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CHAPTER A. Publications on Shannon-Rate Efficient Non-Cooperative Power Allocation
Games

A.1 IEEE-TWC-2009

E. V. Belmega, S. Lasaulce, and M. Debbah, “Power allocation games
for MIMO multiple access channels with coordination”, IEEE Trans.
on Wireless Communications, vol. 8, no. 6, pp. 3182–3192, Jun. 2009.
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Power Allocation Games for
MIMO Multiple Access Channels with Coordination

Elena-Veronica Belmega, Student Member, IEEE, Samson Lasaulce, Member, IEEE,
and Merouane Debbah, Senior Member, IEEE

Abstract—A game theoretic approach is used to derive the op-
timal decentralized power allocation (PA) in fast fading multiple
access channels where the transmitters and receiver are equipped
with multiple antennas. The players (the mobile terminals) are
free to choose their PA in order to maximize their individual
transmission rates (in particular they can ignore some specified
centralized policies). A simple coordination mechanism between
users is introduced. The nature and influence of this mechanism
is studied in detail. The coordination signal indicates to the users
the order in which the receiver applies successive interference
cancellation and the frequency at which this order is used. Two
different games are investigated: the users can either adapt
their temporal PA to their decoding rank at the receiver or
optimize their spatial PA between their transmit antennas. For
both games a thorough analysis of the existence, uniqueness and
sum-rate efficiency of the network Nash equilibrium is conducted.
Analytical and simulation results are provided to assess the
gap between the decentralized network performance and its
equivalent virtual multiple input multiple output system, which
is shown to be zero in some cases and relatively small in general.

Index Terms—Game theory, large systems, MAC, MIMO, Nash
equilibrium, power allocation games, random matrix theory.

I. INTRODUCTION

WE consider a special case of decentralized or dis-
tributed wireless networks, the decentralized multiple

access channel (MAC). In this context, the MAC consists
of a network of several mobile stations (MS) and one base
station (BS). In the present work, the network is said to be
decentralized in the sense that each user can choose freely his
power allocation (PA) policy in order to selfishly maximize a
certain individual performance criterion. This means that, even
if the BS broadcasts some specified policies, every (possibly
cognitive) user is free to ignore the policy intended for him if
the latter does not maximize his performance criterion.

The problem of decentralized PA in wireless networks is
not new and has been properly formalized for the first time in
[2], [3]. Interestingly, this problem can be formulated quite
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naturally as a non-cooperative game with different perfor-
mance criteria (utilities) such as the carrier-to-interference
ratio [4], aggregate throughput [5] or energy efficiency [6],
[7]. In this paper, we assume that the users want to maxi-
mize information-theoretic utilities and more precisely their
Shannon transmission rates. Many reasons why this kind of
utilities is often considered are provided in the literature
related to the problem under investigation (some references
are provided further). Here we will just mention three of them.
First, Shannon transmission rates allow one to characterize the
performance limits of a communication system and study the
behavior of (selfish) users in a network where good coding
schemes are implemented. As there is a direct relationship
between the achievable transmission rate of a user and his
signal-to-interference plus noise ratio (SINR), they also allow
one to optimize performance metrics like the SINR or related
quantities of the same type (e.g., the carrier-to-interference
ratio).

From the mathematical point of view, Shannon rates have
many desirable properties (e.g., concavity properties), which
allows one to conduct deep performance analyses. Therefore
they provide useful insights and concepts that are exploitable
for a practical design of decentralized networks. Indeed, the
point of view adopted here is close to the one proposed
by the authors of [8] for DSL (digital subscriber lines)
systems, which are modeled as a parallel interference channel;
[9] for the single input single output (SISO) and single
input multiple output (SIMO) fast fading MACs with global
CSIR and global CSIT (Channel State Information at the
Receiver/Transmitters); [10] for MIMO (Multiple Input Mul-
tiple Output) MACs with global CSIR, channel distribution
information at the transmitters (global CDIT) and single-user
decoding (SUD) at the receivers; [11], [12] for Gaussian
MIMO interference channels with global CSIR and local CSIT
and, by definition of the conventional interference channel
[13], SUD at the receivers. Note that reference [14] where
the authors considered Gaussian MIMO MACs with neither
CSIT nor CDIT differs from our approach and that of [8],
[9], [10], [11], [12] because in [14] the MIMO MAC is seen
as a two-player zero-sum game where the first player is the
group of transmitters and the second player is the set of MIMO
sub-channels. In the list of the aforementioned references, [9]
seems to be the closest work to ours. However, our approach
differs from [9] on several technical key points. First of all, not
only the BS but also the MSs can be equipped with multiple
antennas. This is an important technical difference since the
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power control problem of [9] becomes a PA problem for
which the precoding matrix of each user has to be determined.
Also the issues regarding the existence and uniqueness of the
network equilibrium are more complicated to be dealt with, as
it will be seen. Specifically, random matrix theory will be ex-
ploited to determine the optimum eigenvalues of the precoding
matrices. In [9], several assumptions made, especially the one
involving the knowledge of all the instantaneous channels at
each MS can be argued in some contexts. One of our objectives
is to decrease the amount of signaling needed from the BS.
This is why we assume that the BS can only send to the users
sufficient training signals for them to know the statistics of
the different channels and a simple and common coordination
signal. The underlying coordination mechanism is simple
because it consists in periodically sending the realization of
a K!-state random signal, where K is the number of active
users. As it will be seen in detail, such a mechanism is
mandatory because, in contrast with [10], we assume here
successive interference cancellation (SIC) at the BS. Thus each
user needs to know his decoding rank in order to adapt his
PA policy to maximize the transmission rate. The coordination
signal precisely indicates to all the users the decoding order
employed by the receiver. Therefore the proposed formulation
can be seen from two different standpoints. If the distribution
of the coordination signal is fixed, then the addressed problem
can be regarded as a non-cooperative game where the BS is
imposed to follow the realizations of the random coordination
signal. In this case the respective signal can be generated by
any device (and not necessarily by the BS), in order to select
the decoding order. On the other hand, if the distribution of
the coordination signal can be optimized, the problem can
be addressed as a Stackelberg game. Here the BS is the
game leader and chooses his best mixed strategy (namely a
distribution over the possible decoding orders) in order to
maximize a certain utility, which will be chosen to be the
network uplink sum-rate.

In the described framework, one of our objectives is to know
how well a non-cooperative but weakly coordinated system
performs in terms of overall sum-rate w.r.t. its centralized
counterpart (by “centralized” we mean that the users are
imposed to follow the BS PA policies) when SIC is used at the
BS. In this setting, several interesting questions arise. When
the users’ utility functions are chosen to be their individual
transmission rates, is there a Nash equilibrium (NE) in the
corresponding game and is it unique? What is the optimum
way for a selfish user to allocate (spatially or temporally) his
transmit power? How to choose the coordination signal that
maximizes the network sum-rate? What is the performance
loss of the decentralized network w.r.t. the equivalent virtual
MIMO network?

This paper is structured as follows. After presenting the
system model (Sec. II), we study in detail two PA games.
In the first case (Sec. III), each MS is imposed to share his
power uniformly between his transmit antennas but can freely
allocate his power over time. In the second case (Sec. IV), we
assume that the temporal PA is uniform and thus our objective
is to derive the best spatial PA scheme. For each of these
frameworks the existence, uniqueness, determination and sum-
rate efficiency of the NE is investigated. Numerical results are

provided in Sec. V to illustrate our theoretical analysis and
in particular to better assess the sum-rate efficiency of the
different games considered. We conclude the paper by several
remarks and possible extensions of our work in Sec. VI.

II. SYSTEM MODEL

Throughout the paper v, M, (.)T and (.)H will stand for
vector, matrix, transpose and transpose conjugate, respectively.
For simplicity and without loss of generality, we will assume
a MAC with K = 2 users. Note that the type of multiple
access technique assumed corresponds to the one considered
in the standard definition of the Gaussian MAC by [15],[16]:
all transmitters send at once and at different rates over the
entire bandwidth. In this (information theoretic) context, very
long codewords can be used and the receiver is not limited in
terms of complexity. Thus the codewords of the different trans-
mitters can be decoded jointly using a maximum likelihood
decoding procedure (see [16] for more details). Interestingly,
the transmission rates of the capacity region corresponding
to the coding-decoding procedure just mentioned, can also be
achieved, as discussed in [16], by using perfect SIC at the
receiver. In this paper we also adopt this decoding scheme,
which means that not only the different channel matrices are
perfectly known to the receiver but also that the codewords
of all the users are decoded reliably. The case of imperfect
CSIR and error propagation in the SIC procedure is thus
seen as a useful extension of this paper. Since we assume
SIC at the BS and that the users want to maximize their
individual transmission rates, it is necessary for them to know
the decoding order used by the BS. This is why we assume
the existence of a source broadcasting a discrete coordination
signal to all the terminals in presence. If this source is the
BS itself, this induces a certain cost in terms of downlink
signaling but the distribution of the coordination signal can
then be optimized. On the other hand, if the coordination
signal comes from an external source, e.g., an FM transmitter,
the MSs can acquire their coordination signal for free in
terms of downlink signaling. However this generally involves
a certain sub-optimality in terms of uplink rate. Analyzing this
kind of tradeoffs is precisely one of the goals of this paper.
In both cases, the coordination signal will be represented by
a Bernouilli random variable denoted with S ∈ S. Since we
study the 2−user MAC, S = {1, 2} is a binary alphabet and
S is distributed as Pr[S = 1] = p, Pr[S = 2] = 1 − p � p.
Without loss of generality we assume that when the realization
of S is 1, user 1 is decoded in the second place and therefore
sees no multiple access interference; in a real wireless system
the frequency at which the realizations would be drawn is
roughly proportional to the reciprocal of the channel coherence
time (Tcoh). Note that the proposed coordination mechanism
is suboptimal in the sense that the coordination signal does not
depend on the realizations of the channel matrices. We will
see that the corresponding performance loss is in fact very
small.

We will further consider that each MS is equipped with nt

antennas whereas the BS has nr antennas. In our analysis, the
flat fading channel matrices of the different links vary from
symbol vector to symbol vector. We assume that the receiver
knows all the channel matrices whereas the transmitters have
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only access to the statistics of the different channels. At this
point, the authors would like to re-emphasize their point of
view:

• On the one hand, we think that in some contexts our
approach can be interesting in terms of signaling cost.
We have seen that S lies in a K!−element alphabet and
the realizations are drawn approximatively at 1

Tcoh
[Hz],

therefore the coordination mechanism requires at most
log2(K!)

Tcoh
bps from the BS and 0 bps if it is built from an

external source. Another source of signaling cost is the
acquisition of the knowledge of the statistics of the uplink
channels at the MSs. For example, in the context of
coherent communications where the BS regularly sends
some data to the MSs and channel reciprocity assumption
is valid (e.g., in time division duplex systems) the corre-
sponding cost can be reasonable. In general, this cost will
have to be compared to the cost of the centralized system
where the BS has to send accurate enough quantized
versions of the (possibly large) precoding matrices at a
certain frequency.

• On the other hand, even if our approach is not interesting
in terms of signaling, it can be very useful in contexts
where terminals are autonomous and may have some
selfish reasons to deviate from the centralized policies.
In such scenarios, the concept of network equilibrium is
of high importance.

The equivalent baseband signal received by the BS can be
written as:

y(s)(τ) =

K∑

k=1

Hk(τ)x
(s)
k (τ) + z(s)(τ), (1)

where x(s)
k (τ) is the nt-dimensional column vector of symbols

transmitted by user k at time τ for the realization s ∈ S
of the coordination signal, Hk(τ) ∈ Cnr×nt is the channel
matrix (stationary and ergodic process) of user k and z(s)(τ) is
an nr-dimensional complex white Gaussian noise distributed
as N (0, σ2Inr); for sake of clarity we will omit the time
index τ from our notations. As [17] we assume that, for
each s ∈ S, the data streams of user k are multiplexed in
the eigen-directions of the matrix Q

(s)
k = E

[
x
(s)
k x

(s),H
k

]
�

V
(s)
k P

(s)
k V

(s),H
k . Finding the optimal eigen-values P

(s)
k and

coordinate systems V
(s)
k that maximize the transmission rate

of user k is one of the main issues we will solve in the next two
sections. In order to take into account the antenna correlation
effects at the transmitters and receiver, we assume the different
channel matrices to be structured according to the Kronecker
propagation model [18] with common receive correlation [19]:

∀k ∈ {1, ...,K}, Hk = R
1
2ΘkT

1
2

k (2)

where R is the receive antenna correlation matrix, Tk is
the transmit antenna correlation matrix for user k and Θk

is an nr ×nt matrix whose entries are zero-mean independent
and identically distributed complex Gaussian random variables
with variance 1

nt
. The motivation for assuming a channel

model with common receive correlation is twofold. First,
there exist some situations where this MIMO MAC model
is realistic, the most simple situation being the case of no

receive correlation i.e., R = I (see e.g., [20]). Although
it is not explicitly stated in [19] the second feature of this
model is that the overall channel matrix H = [H1...HK ] can
also be factorized as a Kronecker model, which will allow us
to re-exploit existing results from the random matrix theory
literature. Therefore the case where the overall channel matrix
is not separable can be seen as a possible extension of this
paper that can be dealt with by using the results in [21].

In this paper we study in detail two special but useful cases
of decentralized PA problems. In the first case (Game 1), we
assume (for instance because of practical technical/complexity
constraints) that each user is imposed to share his power
uniformly between his transmit antennas but can freely al-
locate his power over time; this problem will be referred to
as temporal PA game (Sec. III). In the second case (Game 2),
for every realization of the coordination signal, each user is
assumed to transmit with the same total power (denoted by
Pk) but can freely share it between his antennas; this problem
will be referred to as spatial PA game (Sec. IV). For both
games the strategy of user k ∈ {1, 2} consists in choosing the
distribution of x(s)

k , for each s ∈ S in order to maximize his
utility function which is given by:

uk(Q
(1)
1 ,Q

(2)
1 ,Q

(1)
2 ,Q

(2)
2 ) =

2∑

s=1

Pr[S = s]R
(s)
k (Q

(s)
1 ,Q

(s)
2 )

(3)
where

R
(s)
k (Q

(s)
1 ,Q

(s)
2 )

=

∣∣∣∣∣∣∣

E log |I+ ηHkQ
(s)
k HH

k | if k = s

E log |I+ η
∑2

k=1 HkQ
(s)
k HH

k |
−E log |I+ ηH−kQ

(s)
−kH

H
−k| if k �= s

(4)

with η � 1
σ2 and the usual notation for −k, which stands

for the other user than k. Note that we implicitly assume
Gaussian codebooks for the two users since this choice is
optimum in terms of their individual Shannon transmission
rates (see e.g., [22]). This is why the strategy of a user
boils down to choosing the best pair of covariance matrices
(Q

(1)
k ,Q

(2)
k ). The corresponding maximization is performed

under the following transmit power constraint for each MS:
Tr

(∑2
s=1 Pr[S = s]Q

(s)
k

)
≤ ntPk. The main difference

between Games 1 and 2 relies precisely on how this general
power constraint is specialized. In Game 1, the precoding
matrices are imposed to have the following structure: ∀k ∈
{1, 2}, ∀s ∈ {1, 2},Q(s)

k = α
(s)
k PkInt , which amounts to

rewriting the total power constraint as follows

2∑

s=1

Pr[S = s]α
(s)
k ≤ 1. (5)

On the other hand, in Game 2, the power constraint expresses
as

∀k ∈ {1, 2}, ∀s ∈ {1, 2},Tr(Q(s)
k ) ≤ ntPk. (6)

In both game frameworks, an important issue for a wireless
network designer/owner is to know whether by leaving the
users decide their PA by themselves, the network is going
to operate at a given and predictable state. This precisely
corresponds to the notion of a network equilibrium, a state



BELMEGA et al.: POWER ALLOCATION GAMES FOR MIMO MULTIPLE ACCESS CHANNELS WITH COORDINATION 3185

from which no user has interest to deviate. The main issue is to
know if there exists an equilibrium point, whether it is unique,
how to determine the corresponding strategies and characterize
the efficiency of this equilibrium in terms of network sum-rate.

III. TEMPORAL POWER ALLOCATION GAME

As mentioned above, in the temporal power allocation
(TPA) game, the strategy of user k ∈ {1, 2} merely consists
in choosing the best pair (α

(1)
k , α

(2)
k ). Since each transmis-

sion rate is a concave and non-decreasing function of the
α
(s)
k ’s, each user will saturate the power constraint (5) i.e.,∑2
s=1 Pr[S = s]α

(s)
k = 1, which leads to optimizing a

single parameter α
(1)
k or α

(2)
k . From now on, for sake of

clarity we will use the notations α
(1)
1 = α1, α

(2)
2 = α2.

Indeed, it is easy to verify that the power constraints are
characterized completely, for the first user by α

(2)
1 = 1−pα1

1−p

with α1 ∈ ATPA
1 �

[
0, 1p

]
, and for the second user by

α
(1)
2 = 1−(1−p)α2

p with α2 ∈ ATPA
2 �

[
0, 1

1−p

]
. Thus

the strategy of user k ∈ {1, 2} consists in choosing the
best fraction αk from the action set ATPA

k . Our main goal
is to investigate if there exists an NE and determine the
corresponding profile of strategies (αNE

1 , αNE
2 ). It turns out

that the issues of the existence and uniqueness of an NE can
be properly dealt with by applying Theorems 1 and 2 of [23] in
our context. For making this paper sufficiently self-contained,
we review here these two theorems (Theorem 2 is given for the
2−user case for simplicity and because it is sufficient under
our assumptions).

Theorem 1: [23] Let G = (K, {Ak}k∈K, {uk}k∈K) be a
game where K = {1, ...,K} is the set of players, A1, ...,AK

the corresponding sets of strategies and u1, ..., uk the utilities
of the different players. If the following three conditions are
satisfied: (i) each uk is continuous in the vector of strategies
(a1, ..., aK) ∈ ∏K

k=1 Ak; (ii) each uk is concave in ak ∈ Ak;
(iii) A1, ...,AK are compact and convex sets; then G has at
least one NE.

Theorem 2: [23] Consider the K-player concave game
of Theorem 1 with K = 2. If the following (di-
agonally strict concavity) condition is met: for all
(a′1, a

′′
1 ) ∈ A2

1 and (a′2, a
′′
2 ) ∈ A2

2 such that (a′1, a
′
2) �=

(a′′1 , a
′′
2), (a

′′
1 − a′1)

[
∂u1

∂a1
(a′1, a

′
2) − ∂u1

∂a1
(a′′1 , a

′′
2 )
]

+ (a′′2 −
a′2)

[
∂u2

∂a2
(a′1, a

′
2) − ∂u2

∂a2
(a′′1 , a

′′
2 )
]
> 0; then the uniqueness of

the NE is insured.
At this point we can state the first main result of this paper,
which is provided in the following theorem. For sake of clarity
we will also use the notations: pk � p if k = 1 or pk � p if
k = 2.

Theorem 3 (Existence and uniqueness of an NE in Game 1):
the temporal PA game described by: the set of players
K = {1, 2}; the sets of actions ATPA

k =
[
0, 1

pk

]
and utilities

uk(αk, α−k) = pR
(1)
k (αk, α−k) + pR

(2)
k (αk, α−k), where the

rates R
(s)
k follow from Eq. (4) has a unique NE.

Proof:
Existence of an NE. It is guaranteed by the geometrical and

topological properties of the utility functions and the strategy

sets of the users (over which the maximization is performed).
Indeed, we can apply [23] in our matrix case. Without loss
of generality, let us consider user 1. The utility of user 1
comprises two terms corresponding to the two coordination
signal realizations: u1(α1, α2) = pR

(1)
1 (·, ·) + pR

(2)
1 (·, ·).

Using the fact that d2

dt2 log |X + tYYH | =
−Tr

[
YH(X+ tYYH)−1YYH(X+ tYYH)−1Y

]
it is

easy to verify that ∂2R
(1)
1

∂α2
1

(α1, α2) = −ETr[BBH ] < 0

and ∂2R
(2)
1

∂α2
1

(α1, α2) = −ETr[CCH ] < 0 where

B = ρ1H
H
1 (I + ρ1α1H1H

H
1 )−1H1, C =

p
pρ1H

H
1

(
I+ ρ1

1−pα1

p H1H
H
1 + ρ2α2H2H

H
2

)−1

H1 and
ρ1 = ηP1, ρ2 = ηP2 correspond to the signal-to-noise ratios
of the users. Thus for every user k, the utility uk is strictly
concave w.r.t. to αk. Also it is continuous in (α1, α2) over
the convex and compact strategy sets ATPA

k . Therefore the
existence of at least one NE is guaranteed. Interestingly, we
observe that for a fixed game rule, which is the value of
the parameter p, there will always be an equilibrium. The
users adapt their strategies to the rule of the game in order to
optimize their individual transmission rates.

Uniqueness of the NE. We always apply [23] in our matrix
case (see Appendix A) and prove that the diagonally strict
concavity condition is actually met. The key of the proof is
the following Lemma which is proven in Appendix B.

Lemma 1: Let A′, A′′, B′ and B′′ be Hermitian and
non-negative matrices such that either A′ �= A′′ or B′ �=
B′′. Assume that the classical matrix order � is total
for each of the pairs of matrices (A′,A′′) and (B′,B′′)
i.e., either A′ � A′′ (resp. B′ � B′′) or A′′ � A′

(resp. B′′ � B′). Then we have Tr(M + N) ≥ 0 with
M = (A′′ − A′)

[
(I+A′)−1 − (I+A′′)−1

]
, N = (B′′ −

B′)
[
(I+B′ +A′)−1 − (I+B′′ +A′′)−1

]
.

It can be shown (see Appendix A for more details) that the
diagonally strict concavity condition writes in our setup as
pT (1) + pT (2) > 0 where ∀s ∈ {1, 2}, T (s) is defined
by T (s) = Tr(M(s) + N(s)) where the matrices M(s),
N(s) have exactly the same structure as M, N in the above
Lemma. For example, if we consider two pairs of parameters
(α′

1,α
′′
1 ) ∈

(
ATPA

1

)2
and (α′

2,α
′′
2 ) ∈

(
ATPA

2

)2
such that either

α′
1 �= α′′

1 or α′
2 �= α′′

2 as in Theorem 2, T (1) can be obtained
by using the following matrices A′ = ρ1α

′
1H1H

H
1 , A′′ =

ρ1α
′′
1H1H

H
1 , B′ = ρ2

1−pα′
2

p H2H
H
2 , B′′ = ρ2

1−pα′′
2

p H2H
H
2 .

The term T (2) has a similar form as T (1) thus, applying
Lemma 1 twice and considering the special structure of the
four matrices (A′, A′′, B′, B′′), one can prove that the term
pT (1)+pT (2) is strictly positive. Therefore the unconditional
uniqueness of the NE is guaranteed.

Determination of the NE. In order to determine the selfish
PA of the users at the NE, we now exploit the large system
approach derived in [24] for single-user fading MIMO chan-
nels. This will lead us to simple approximations of the utility
functions which are much easier to optimize. From now on, we
assume the asymptotic regime in terms of the number of an-
tennas: nt −→ ∞, nr −→ ∞, and lim

nt→∞,nr→∞
nt

nr
= c < ∞.

In this asymptotic regime, references [24], [25], [26] provide
an equivalent of the ergodic capacity of single-user MIMO
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channels, which corresponds exactly to the situation seen
by user 1 (resp. 2) when S = 1 (resp. S = 2); this
gives directly the approximation of the rates R

(1)
1 and R

(2)
2 ;

see Eq. (4). From Eq. (4) we also see that the rates R
(2)
1

and R
(1)
2 correspond to the difference between the sum-rate

of the equivalent Knt × nr virtual MIMO system and an
nt × nr single-user MIMO system, therefore the results of
[24], [25], [26] can also be applied directly. The corresponding
approximates can then be easily checked to be:

R̃
(1)
1 (α1, α2) =

nt∑

i=1

log2

[
1 + ηα1P1d

(T)
1 (i)γ1

]

+

nr∑

j=1

log2

[
1 + ηd(R)(j)δ1

]

−ntηγ1δ1 log2 e

R̃
(1)
2 (α1, α2) =

nt∑

i=1

log2

[
1 + 2ηα1P1d

(T)
2 (i)γ2

]

+

nt∑

i=1

log2

[
1 + 2η

1 − pα2

p
P2d

(T)
2 (i)γ2

]

+

nr∑

j=1

log2

[
1 + 2ηd(R)(j)δ2

]

−4ntηγ2δ2 log2 e − R̃
(1)
1 (α1, α2).

(7)
where ∀k ∈ {1, 2}, d(T)

k (i), i ∈ {1, ..., nt} are the eigen-
values of the transmit correlation matrices Tk (see Eq. (2)),
d(R)(j), j ∈ {1, ..., nr} , are the eigenvalues of the receive
correlation matrix R and the parameters γi, δj are the unique
solutions of the following systems of 2−degree equations:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ1 =
1

nt

nr∑

j=1

d(R)(j)

1 + ηd(R)(j)δ1

δ1 =
1

nt

nt∑

i=1

α1P1d
(T)
1 (i)

1 + ηα1P1d
(T)
1 (i)γ1

(8)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ2 =
1

2nt

nr∑

j=1

d(R)(j)

1 + 2ηd(R)(j)δ2

δ2 =
1

2nt

[
nt∑

i=1

α1P1d
(T)
1 (i)

1 + 2ηα1P1d
(T)
1 (i)γ2

+

nt∑

i=1

1−pα2

p P2d
(T)
2 (i)

1 + 2η 1−pα2

p P2d
(T)
2 (i)γ2

]
.

(9)

The approximate functions R̃
(2)
1 (·, ·) and R̃

(2)
2 (·) can be

obtained in a similar way and the approximated utility of
user k ∈ {1, 2} follows: ũk(α1, α2) = pR̃

(1)
k (α1, α2) +

pR̃
(2)
k (α1, α2) . Now, in order to solve the constrained

optimization problem, we introduce the Lagrange multipli-
ers (λ11, λ12, λ21, λ22) ∈ [0,+∞)4 and define for k ∈
{1, 2} the function Lk(α1, α2, λk1, λk2) = −ũk(α1, α2) +

λk1

(
αk − 1

pk

)
− λk2αk. The Kuhn-Tucker optimality condi-

tions follow. Therefore, the optimum selfish PAs, (αNE
1 , αNE

2 ),
can be obtained by using a fixed-point method and an it-
erative algorithm, following the same idea as in [10] for
non-coordinated MIMO MACs with single-user decoding. At
this point we have to make an important technical comment.

Our proof for the existence and uniqueness of the NE holds
for the exact game. For the approximated game, we need
the approximated utilities to have the same properties as
their exact counterparts. It turns out that the large system
approximation of the ergodic mutual information can be shown
to have the desired properties [27]. In particular, the results of
[27] show that the approximated utilities are strictly concave
and that if the iterative PA algorithm converges, it converges
towards the global maximum.

Sum-rate efficiency of the NE. Now, let us focus on
the sum-rate of the decentralized network and compare it
with the optimal sum-rate of its centralized counterpart.
The centralized network sum-rate, denoted by R

(C)
sum, is

by definition obtained by jointly maximizing the sum-rate
over all the pairs of power fractions (α1, α2) ∈ [0, 1]2:
R(C)

sum � max
(α1,α2)

u1(α1, α2) + u2(α1, α2). Knowing that log |·|
is a concave function, one can easily verify that the max-
imum is obtained for (α∗

1, α
∗
2) = (1, 1) and that R

(C)
sum =

E log
∣∣I+ ρ1H1H

H
1 + ρ2H2H

H
2

∣∣. As the optimum precoding
matrices are proportional to the identity matrix, it can be
checked that the network sum-rate at the NE (denoted by
RNE

sum) is equal to the centralized network sum-rate for p = 0

and p = 1: RNE
sum(0) = RNE

sum(1) = R
(C)
sum. Indeed, let us

consider that p = 1. In this case, user 1 is always decoded
in the second place (Pr[S = 1] = 1). This means that
there is no temporal power allocation game here and each
user always allocates all of his available power for the case
where S = 1: (αNE

1 , αNE
2 ) = (1, 0). Replacing in Eq. (4) the

corresponding correlation matrices: Q(1)
1 = Int , Q

(1)
2 = Int

and Q
(2)
1 = Ont (the square zero matrix), Q(2)

2 = Ont we
obtain that RNE

sum(1) = R
(C)
sum.

In the high SNR regime, where η → ∞, we obtain
from (8),(9) that ηδ1 → 1

γ1
, ηδ2 → 1

2γ2
and thus γ1

and γ2 are the unique solutions of the following equations:
1
nt

∑nr

j=1
d(R)(j)

γ1+d(R)(j)
= 1, 1

2nt

∑nr

j=1
d(R)(j)

γ2+d(R)(j)
= 1. The

approximated utilities become:

R̃
(1)
1 (α1, α2) =

nt∑

i=1

log2

[
1 + ηα1P1d

(T)
1 (i)γ1

]

+

nr∑

j=1

log2

[
1 +

d(R)(j)

γ1

]
− nt log2 e

R̃
(1)
2 (α1, α2) =

nt∑

i=1

log2

[
1 + 2ηα1P1d

(T)
1 (i)γ2

]

+

nt∑

i=1

log2

[
1 + 2η

1 − pα2

p
P2d

(T)
2 (i)γ2

]

+

nr∑

j=1

log2

[
1 +

d(R)(j)

γ2

]

−2nt log2 e − R̃
(1)
1 (α1, α2).

(10)
By setting the derivatives of ũ1(·, ·) w.r.t. α1 and ũ2(·, ·) w.r.t.
α2 to zero, we obtain that, for each user, the PA at the NE
is the uniform PA (αNE

1 , αNE
2 ) = (1, 1), regardless of the

distribution of the coordination signal p ∈ [0, 1]. Therefore,
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at the equilibrium, we have that

RNE
sum(p) = pR

(1)
1 (αNE

1 , αNE
2 ) + pR

(2)
1 (αNE

1 , αNE
2 )

+pR
(1)
2 (αNE

1 , αNE
2 ) + pR

(2)
2 (αNE

1 , αNE
2 )

= pE log |I+ ρ1H1H
H
1 |

+pE log |I+ ρ1H1H
H
1 + ρ2H2H

H
2 |

−pE log |I+ ρ2H2H
H
2 |

+pE log |I+ ρ1H1H
H
1 + ρ2H2H

H
2 |

−pE log |I+ ρ1H1H
H
1 |

+pE log |I+ ρ2H2H
H
2 |

= R(C)
sum. (11)

Knowing that the uniform spatial PA is optimal in the high
SNR regime [17], [10], the centralized network sum-rate coin-
cides with the sum-capacity of the centralized MAC channel,
R

(C)
sum = Csum.
In the low SNR regime, where η → 0, we obtain from (8),

(9) that ηδ1 → 0, ηδ2 → 0 and thus γ1 = 1
nt

∑nr

j=1 d
(R)(j),

γ2 = 1
2nt

∑nr

j=1 d
(R)(j) . Approximating ln(1 + x) ≈ x for

x << 1, the achievable rates become:

R̃
(1)
1 (α1) =

ηP1α1

nt

nr∑

j=1

d(R)(j)

nt∑

i=1

d
(T)
1 (i) log2 e

R̃
(1)
2 (α1, α2) =

ηP2

nt

1 − pα2

p

nr∑

j=1

d(R)(j)

nt∑

i=1

d
(T)
1 (i) log2 e

.

(12)
We see that the utilities ũk(α1, α2) =
1
nt
ηPk

∑nr

j=1 d
(R)(j)

∑nt

i=1 d
(T)
k (i) log2 e converge

and the network sum-rate at the NE coincides
here again with the centralized network sum-
rate: R

(C)
sum = 1

nt

∑nr

j=1 d
(R)(j)

(
ηP1

∑nt

i=1 d
(T)
1 (i)

+ηP2

∑nt

i=1 d
(T)
2 (i)

)
log2 e. In this case also, the price

of anarchy [28] is minimal for any distribution of the
coordination signal.

To sum up we have seen that there is no loss of optimality
in terms of sum-rate by decentralizing the PA procedure
in at least four special cases: 1) p = 0; 2) p = 1; 3)
when η → ∞ for any p ∈ [0, 1]; 4) when η → 0 for
any p ∈ [0, 1]. Additionally, in case 3), since there is no
loss by imposing the spatially uniform PA [17], [10], the
centralized (and cooperative) MAC sum-capacity is achieved.
If we further assume that there is no correlation among
the transmit antennas, Tk = I, the uniform spatial PA is
optimal [17] for any η. Thus, the centralized sum-rate is
always identical to the sum-capacity of the centralized MAC
channel, R(C)

sum = Csum. This means that if the BS chooses
to use a completely unfair SIC-based decoding scheme, the
selfish behavior of the users will always lead to achieving the
centralized sum-capacity. This result is in agreement with [9],
where the authors have proposed a water-filling game for the
fast fading SISO MAC (assuming perfect CSIT and CSIR) and
shown that the equilibrium sum-rate is equal to the maximum
sum-rate point of the capacity region. However, as opposed
to the SISO MAC with the proposed coordination mechanism
[1], the decentralized MIMO MAC with coordination does
not achieve the sum-rate of the equivalent virtual MIMO

network for any value of p and for an arbitrary noise level
at the BS. In particular, the fair choice p = 1

2 is not optimal.
We will quantify the corresponding performance gap through
simulation results. Furthermore, in the low and high SNR
regimes, the centralized sum-capacity is also achieved for
any value of p. The consequence of these results is that any
binary coordination signal can be used without loss of global
optimality.

IV. SPATIAL POWER ALLOCATION GAME

In this section, we assume that the users are free to share
their transmit power between their antennas but for each
realization of the coordination signal the transmit power is
constrained by Eq. (6). In other words we assume that the users
cannot distribute their power over time: they cannot decide the
amount of power they dedicate to a given realization of the
coordination signal. As a consequence of this power constraint
(Eq. (6)), the two precoding matrices that each user needs to
choose can be optimized independently and each of them does
not depend on p. Consider for example user 1. Its objective
is to maximize its own payoff (Eq. (3)):

max
Q

(1)
1 ,Q

(2)
1

u1(Q
(s)
1 ,Q

(s)
2 )

= max
Q

(1)
1 ,Q

(2)
1

{
pR

(1)
1 (Q

(1)
1 ) + (1 − p)R

(2)
1 (Q

(2)
1 ,Q

(2)
2 )

}

= p max
Q

(1)
1

R
(1)
1 (Q

(1)
1 ) + (1 − p) max

Q
(2)
1

R
(2)
1 (Q

(2)
1 ,Q

(2)
2 ),

(13)
where the last inequality follows directly form the power
constraint (Eq. (6)). The strategy set of user k in the spatial
PA (SPA) game is:

ASPA
k =

{
Qk = (Q

(1)
k ,Q

(2)
k ) |Q(1)

k � 0,Q
(1)
k = Q

(1)H
k ,

Tr(Q
(1)
k ) ≤ ntPk, Q

(2)
k � 0,Q

(2)
k = Q

(2)H
k ,Tr(Q

(2)
k ) ≤ ntPk

}
.

(14)

Theorem 4 (Existence and uniqueness of an NE in Game 2):
The SPA game defined by the set of players K = {1, 2}, the
strategy sets A(SPA)

k and utilities uk(αk, α−k) given by Eq.
(3), has a unique NE.

Proof: The main feature of the game under the aforemen-
tioned power constraint is that there exists a unique NE in each
sub-game defined by the realization of the coordination signal.
The proof is much simpler than that of the time PA problem
since the use of Rosen’s Theorem [23] is not required. Without
loss of generality assume that S = 1. Whatever the strategy of
user 2, user 1 sees no interference. Therefore he can choose
Q

(1)
1 independently of user 2. Because R

(1)
1 (Q

(1)
1 ,Q

(1)
2 ) is a

strictly concave function to be maximized over a convex set,
there is a unique optimum strategy for user 1. As we assume
a game with complete information and rational users, user
2 knows the utility of user 1 and thus the precoding matrix
he will choose. The same concavity argument can be used for
R

(1)
2 (Q

(1)
1 ,Q

(1)
2 ) and therefore guarantees that user 2 employs

a unique precoding matrix.
Determination of the NE. In order to find the optimum

covariance matrices, we proceed in the same way as described
in [10]. First we focus on the optimum eigenvectors and then
we determine the optimum eigenvalues by approximating the



3188 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 6, JUNE 2009

utility functions under the large system assumption. In order to
determine the optimum eigenvectors, the proof in [20] can be
applied in our context to assert that there is no loss of optimal-
ity by restricting the search for the optimum covariance matrix
when imposing the structure Q

(s)
k = UkP

(s)
k UH

k , where Uk

is a unitary matrix coming from the spectral decomposition of
transmit correlation matrix Tk = UkDkU

H
k defined in Eq. (2)

and the diagonal matrix P
(s)
k = Diag(P (s)

k (1), ..., P
(s)
k (nt))

represents the powers user k allocates to the different eigen-
vectors. As a consequence, we can exploit once again the
results of [24], [25], [26] assuming the asymptotic regime in
terms of the number of antennas. The new approximated rates
are:

R̃
(1)
1 (P

(1)
1 ) =

nt∑

i=1

log2

[
1 + ηP

(1)
1 (i)d

(T)
1 (i)γ1

]

+

nr∑

j=1

log2

[
1 + ηd(R)(j)δ1

]

−ntηγ1δ1 log2 e

R̃
(1)
2 (P

(1)
1 ,P

(1)
2 ) =

2∑

�=1

nt∑

i=1

log2

[
1 + 2ηP

(1)
� (i)d

(T)
� (i)γ2

]

+

nr∑

j=1

log2

[
1 + 2ηd(R)(j)δ2

]

−4ntηγ2δ2 log2 e − R̃
(1)
1 (P

(1)
1 )

(15)
where ∀k ∈ {1, 2}, d(T)

k (i), i ∈ {1, ..., nt} are always the
eigenvalues of the transmit correlation matrices Tk, d(R)(j),
j ∈ {1, ..., nr} , are the eigenvalues of the receive correlation
matrix R and the parameters γi, δj are the unique solutions
of the following systems of equations:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ1 =
1

nt

nr∑

j=1

d(R)(j)

1 + ηd(R)(j)δ1

δ1 =
1

nt

nt∑

i=1

P
(1)
1 (i)d

(T)
1 (i)

1 + ηP
(1)
1 (i)d

(T)
1 (i)γ1

(16)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ2 =
1

2nt

nr∑

j=1

d(R)(j)

1 + 2ηd(R)(j)δ2

δ2 =
1

2nt

2∑

�=1

nt∑

i=1

P
(1)
� (i)d

(T)
� (i)

1 + 2ηP
(1)
� (i)d

(T)
� (i)γ2

.

(17)

Then, optimizing the approximated rates R̃
(1)
k (·) w.r.t.

P
(1)
k (i) leads to the following water-filling equations:

∀k ∈ {1, 2}, P
(1),NE
k (i) =

[
1

ln 2λ
(1)
k

− 1

ηd
(T)
k (i)γk

]+

(18)

where λ
(1)
k ≥ 0, k ∈ {1, 2}, are the Lagrangian multipliers

tuned in order to meet the power constraints given in (6):∑nt

i=1 P
(1),NE
k (i) = ntPk. We use the same iterative PA

algorithm as the one described in [10]. Under the large systems
assumption, in this game also, the approximated utilities have
the same properties as the exact utilities.

Sum-rate efficiency of the NE. Unlike the temporal PA game,
we have not assumed a particular structure for the precoding
matrices and thus the centralized solution coincides with the
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Fig. 1. Temporal PA game. Achievable network sum-rate versus p for P1 =
1, P2 = 10, nr = nt = 4, η = 5 dB. The sum-capacity of fading MIMO
MACs is reached for both unfair SIC decoding schemes (p∗1 = 0 and p∗2 = 1)
and is very close to this upper bound for any distribution of the coordination
signal, ∀p ∈ (0, 1).

sum-capacity of the virtual MIMO network, R(C)
sum = Csum.

Another important point to notice here is that the equilibrium
precoding matrices do not depend on p. This considerably
simplifies the BS’s choice for the sum-rate optimal value for p.
Indeed, as we have already mentioned, the precoding matrices
do no depend on p and therefore the sum-rate Rsum(p) is
merely a linear function of p: RNE

sum(p) = ap+ b where

a = E log |I+ ηH1Q
(1),NE
1 HH

1 + ηH2Q
(1),NE
2 HH

2 |
−E log |I+ ηH1Q

(2),NE
1 HH

1 + ηH2Q
(2),NE
2 HH

2 |
b = E log |I+ ηH1Q

(2),NE
1 HH

1 + ηH2Q
(2),NE
2 HH

2 |.
(19)

Depending on the sign of a, if the BS wants to maximize the
sum-rate, it will choose either p = 0 or p = 1. If it wants a fair
game it will choose p = 1

2 and accept a certain loss of global
optimality. Note that even for p ∈ {0, 1} the sum-capacity
is not reached in general: this is because the matrix Q

(1),NE
1

(resp. Q(2),NE
2 ) does not coincide with the first (resp. second)

component of the pair of precoding matrices that maximizes
the (strictly concave) network sum-rate. However, as we did
for the temporal PA game, in the low and high SNR regimes
one can show that the decentralized MIMO MAC has the same
performance (w.r.t. the sum-rate) as its equivalent Knt × nr

virtual MIMO network.

V. SIMULATION EXAMPLES

All the results will be provided by assuming the asymptotic
regime in the numbers of antennas. We know, from many
contributions (see e.g., [10], [27], [29], [30]) that large-system
approximates of ergodic rates are accurate even for relatively
small systems. We also assume that R = I.

For the TPA problem, we look at the case where there
is no transmit correlation, Tk = I. We have seen that the
performance of decentralized MAC depends on the rule of
the game i.e., the value of p. This is exactly what Fig. 1
depicts for the following scenario: P1 = 1, P2 = 10, η = 5
dB, nt = nr = 4. First, we see that the MAC sum-rate
is a convex function of p and the maximum of RNE

sum(p) is
reached for p ∈ {0, 1}. In these points, which correspond
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Fig. 2. Temporal PA game. MAC sum-rate versus the transmit power P for
P1 = P , P2 = 10P , nr = nt = 4, η = 5 dB. Comparison between the fair
SIC decoding scheme (p = 1

2
), the unfair SIC scheme (p = 0), and SUD

decoding scheme.

to the most unfair decoding schemes (either user 1 or 2 is
always decoded first) the centralized sum-capacity of the MAC
is achieved. One important observation to be made is that the
minimum and maximum only differ by about 1%. Many other
simulations have confirmed this observation. This shows that
whatever the value of p, the gap between the sum-rate of a
decentralized MIMO MAC with selfish users and the sum-
capacity of the equivalent cooperative MAC (virtual MIMO
network) is in fact very small. Now, we want to evaluate
the benefits brought by using a SIC instead of single-user
decoding [10]. For the scenario where P1 = P , P2 = 10P
with P ∈ [0, 20], nr = nt = 4 and η = 5 dB, Fig. 2 shows
the achievable network sum-rate at the NE versus the available
power at the first transmitter P . For the SUD scheme, the users
are decoded simultaneously at the receiver. In this case both
users see all the interference coming from the others. We see
that the SIC scheme performs much better than the proposed
SUD scheme, regardless of the distribution of the coordination
signal: this comparison makes sense especially for the point
p = 1

2 since both decoding schemes are fair.
From now on, we consider the SPA problem. In this case

we assume an exponential correlation profile for Tk such that
Tk(i, j) = t

|i−j|
k (note that Tr(Tk) = nt), where 0 ≤ tk ≤ 1

is the corresponding correlation coefficient [31], [32]. We
already know that the sum-rate is a linear function of p
and therefore is maximized when either p = 0 or p = 1.
It turns out that this slope has a small value. Furthermore,
it has been observed to be even 0 for a symmetric MAC,
i.e., P1 = P2 and t1 = t2. These observations have been
confirmed by many simulations. In Fig. 3 we have plotted
the sum-rate achieved by varying p for the scenario: P1 = 5,
P2 = 50, η = 3 dB, nt = nr = 4, t1 = 0.4, t2 = 0.3.
Even in this scenario, which was thought to be a bad case
in terms of sub-optimality, the sum-rate is not far from the
sum-capacity of the centralized MAC. For the same scenario,
we have plotted in Fig. 4 the achievable rate region and
compared it to that obtained with SUD. We observe that in
large MIMO MAC channels, the capacity region comprises a
full cooperation segment (approximately) just like SISO MAC
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Fig. 3. Spatial PA game. MAC sum-rate versus p for P1 = 5, P2 = 50,
nr = nt = 4, η = 3 dB, t1 = 0.4, t2 = 0.3. The achievable network
sum-rate of fading MIMO MACs is linear w.r.t. p ∈ [0, 1] and is very close
to the centralized upper bound. The optimal distribution obtained with the
Stackelberg game is p∗ = 0.
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Fig. 4. Spatial PA game. Achievable rate region for P1 = 5, P2 = 50,
nr = nt = 4, η = 3 dB, t1 = 0.4, t2 = 0.3. By varying p allows to move
along a segment close to the centralized sum-capacity, similar to the SISO
MAC channels.

channels. The coordination signal allows one to move along an
almost straight line, corresponding to a relatively large range
of rates.

VI. CONCLUSION

We have provided complete proofs for the existence and
uniqueness of an NE in fast fading MIMO MACs with CSIR
and CDIT where the transmission rate is chosen as user utility.
By exploiting random matrix theory, we have also provided the
corresponding optimum selfish PA policies. We have seen that
the BS can, through a single parameter (i.e., p ∈ [0, 1], which
represents the distribution of the coordination signal), force
the system to operate at many different points that correspond
to a relatively large range of achievable transmission rate
pairs. We know, from [1], [9] that for Gaussian MACs with
single antenna terminals, this set of rate pairs corresponds
to the full cooperation segment of the centralized MAC.
Said otherwise a decentralized Gaussian SISO MAC with
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coordination achieves the same rate pairs as a MAC with
full cooperation or virtual MIMO system. The goal here was
to know to what extent this key result is valid for fading
MAC with multi-antenna terminals. It turns out this is almost
true in the MIMO setting. In the cases of interest, where the
power is optimally allocated either over space or time, the
performance gap is relatively small even though the proposed
coordination mechanism was a priori sub-optimal since it
does take into account the channel realizations (known to the
receiver). Interestingly in large MIMO MACs, the capacity
region comprises a full cooperation segment just like SISO
MACs. The coordination signal precisely allows one to move
along the corresponding (almost) straight line. This shows the
relevance of large systems in decentralized networks since
they allow to determine the capacity region of certain systems
whereas it is unknown in the finite setting. Furthermore, they
induce an averaging effect, which makes the users’ behavior
predictable. Indeed, in large MIMO MACs the knowledge of
the CSIT does not improve the performance w.r.t. the case with
CDIT. To conclude we review some extensions of this work
which we have suggested throughout it. It would be interesting
to study the case of the decentralized space-time PA, which,
in particular, would require the generalization of Lemma 1
to arbitrary positive matrices and exploitation of some results
in [21]. A second useful extension would be to evaluate the
impact of a non-perfect SIC on the PA problem. At last, we
will mention that it would be useful to evaluate analytically
or bounding the price of anarchy of the NE, which would
require to find a bounding technique different from that used
for non-atomic games [34], [35], [36].

APPENDIX A

We want to prove that the diagonally strict concavity
condition is met for the time PA problem i.e., for all (α′

1,α
′′
1 ) ∈(

ATPA
1

)2
and (α′

2,α
′′
2 ) ∈

(
ATPA

2

)2
such that either α′

1 �= α′′
1

or α′
2 �= α′′

2 we want to prove that:

C = (α′′
1 − α′

1)
[
∂R1

∂α1
(α′

1, α
′
2) − ∂R1

∂α1
(α′′

1 , α
′′
2 )
]

+(α′′
2 − α′

2)
[
∂R2

∂α2
(α′

1, α
′
2) − ∂R2

∂α2
(α′′

1 , α
′′
2 )
]
> 0.

(20)
We can write C = pT (1) + pT (2) where for all s ∈ {1, 2}:

T (s) = (α′′
1 − α′

1)

[
∂R

(s)
1

∂α1
(α′

1, α
′
2) − ∂R

(s)
1

∂α1
(α′′

1 , α
′′
2 )

]

+(α′′
2 − α′

2)

[
∂R

(s)
2

∂α2
(α′

1, α
′
2) − ∂R

(s)
2

∂α2
(α′′

1 , α
′′
2 )

]

(21)
By expanding T (1) we have

T (1)

= (α′′
1 − α′

1)ETr
{
[(I+ ρ1α

′
1H1H

H
1 )−1

−(I+ ρ1α
′
1H1H

H
1 )−1]ρ1H1H

H
1

}

+(α′′
2 − α′

2)ETr
{
(I+ ρ1α

′
1H1H

H
1

+
1−pα′

2

p ρ2H2H
H
2 )−1ρ2

−p
p H2H

H
2

− (I+ ρ1α
′′
1H1H

H
1 +

1−pα′′
2

p ρ2H2H
H
2 )−1ρ2

−p
p H2H

H
2

}

= ETr
{
(A′′ − A′)[(I+A′)−1 − (I+A′′)−1]

+(B′′ − B′)[(I +B′ +A′)−1 − (I+B′′ +A′′)−1]
}
,
(22)

where A′ = ρ1α
′
1H1H

H
1 , A′′ = ρ1α

′′
1H1H

H
1 , B′ =

ρ2
1−pα′

2

p H2H
H
2 , B′′ = ρ2

1−pα′′
2

p H2H
H
2 . We observe that the

matrices A′, A′′, B′ and B′′ verify the assumptions of Lemma
1. First, they are Hermitian and non-negative. Second, as they
write as A′ = a′H1H

H
1 , A′′ = a′′H1H

H
1 , B′ = b′H2H

H
2

and B′′ = b′′H2H
H
2 , we also see that the matrix order � is

total for each of the pairs of matrices (A′,A′′) and (B′,B′′).
This directly follows from the fact that the scalar order ≥
is total, which implies that either a′′ ≥ a′ or a′′ ≤ a′ and
either b′′ ≥ b′ or b′′ ≤ b′. By considering the particular
structure of the four matrices and applying Lemma 1, it is
straightforward to see that the term T (1) is strictly positive,
T (1) > 0. In a similar way we can prove that T (2) > 0 and
thus the diagonally strict concavity condition is met: C > 0.

APPENDIX B

Proving Lemma 1 amounts to showing that

T = Tr
{
(A − B)(B−1 − A−1)

+(C − D)[(B+D)−1 − (A+C)−1]
}

> 0

where the matrices A = I + A′′, B = I + A′, C = B′′

and D = B′ have been introduced for more clarity. Since the
matrix order � is total for A and B, and C and D it suffices
to prove that T > 0 for the four following cases: (1) A � B
and C � D; (2) A � B and C � D; (3) A � B and C � D;
(4) A � B and C � D.

Case (1): A � B and C � D. To prove the desired result
in this case we use the following lemma.

Lemma 2: If M is a Hermitian and non-negative (M =
MH � 0) and N is non-negative (N � 0) but not necessarily
Hermitian, then Tr(MN) ≥ 0.

Proof: We write Tr(MN) = Tr(M1/2NM1/2) ≥ 0. We
have used the fact that M is a Hermitian non-negative matrix
to write M = M1/2M1/2. Knowing that N is a non-negative
matrix one can easily check that M1/2NM1/2 is also a non-
negative matrix and thus the trace (sum of the non-negative
eigenvalues) is non-negative.
The quantity T writes as T = Tr(M1N1)+Tr(M2N2) where
M1 = A − B, N1 = B−1 − A−1, M2 = C − D and N2 =
(B + D)−1 − (A + C)−1. Clearly these four matrices are
Hermitian. Since by assumption M1 � 0 and M2 � 0 we
only need to verify that N1 � 0 and N2 � 0 to be able to
apply Lemma 2 to T . The matrix N1 is non-negative because
for any pair of invertible matrices (X,Y): X � Y ⇔ Y−1 �
X−1 (see e.g., [33]). The same result applies to N2 since by
assumption A +C � B +D. Using lemma 2 concludes the
proof.

Case (3): A � B and C � D. To treat this case we first
prove the following auxiliary Lemma.

Lemma 3: Let X and Y be two distinct, Hermitian and
positive matrices of size n: X = XH � 0, Y = YH � 0 and
X �= Y. Then Tr[(X − Y)(Y−1 − X−1)] ≥ 0.

Proof: It is easy to see that Tr[(X−Y)(Y−1 −X−1)] =
Tr[Z + Z−1 − 2I], with the Hermitian and positive ma-
trix Z � X

1
2Y−1X

1
2 and thus we further have Tr[(X −

Y)(Y−1 − X−1)] =

n∑

i=1

(λZ(i) − 1)2

λZ(i)
≥ 0 where the matrix
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ΛZ = Diag(λZ(1), ..., λZ(n)) corresponds to the spectral
decomposition of .
By applying this lemma to T we have that:

T = Tr
{
(A − B)(B−1 − A−1)

+[(C+A) − (B+D)][(B +D)−1 − (A+C)−1]
−(A − B)[(B+D)−1 − (A+C)−1]

}

≥ Tr
{
(A − B)(B−1 − A−1)

−(A − B)[(B+D)−1 − (A+C)−1]
}
.

(23)
We know that C � D then C + A � D + A and
also that (C + A)−1 � (D + A)−1. Using the fact that
A � B and also Lemma 2 we have that Tr[(A − B)(C +
A)−1] ≥ Tr[(A−B)(D+A)−1] and the trace becomes lower
bounded as T ≥ Tr

{
(A − B)(B−1 − A−1) − (A − B)[(B

+D)−1 − (A+D)−1]
}
. Now, we are going to prove that this

lower bound, say TLB , is positive:

TLB

= Tr
{
(A−B)(B−1 −A−1)

− [(A+D)− (B+D)]
[
(B+D)−1 − (A+D)−1

]}

= Tr
{
(Ã− B̃)(B̃−1 − Ã−1)

−
[
(Ã+ I)− (B̃+ I)

] [
(B̃+ I)−1 − (Ã+ I)−1

]}

(24)
where we have made the following change of variables:

A = D1/2ÃD1/2, B = D1/2B̃D1/2 such that Ã =
D−1/2AD−1/2 = ÃH � 0 and B̃ = D−1/2BD−1/2 =
B̃H � 0. By applying the Woodbury formula (Ã + I)−1 =
Ã−1−Ã−1(Ã+I)−1 and (B̃+I)−1 = B̃−1−B̃−1(B̃+I)−1,
the lower bound T (1)

LB rewrites as:

TLB = Tr
{
(Ã− B̃)

[
B̃−1 − Ã−1 − B̃−1 + B̃−1(B̃+ I)−1

+Ã−1 − Ã−1(Ã+ I)−1
]}

= Tr
{
ÃB̃−1(B̃+ I)−1 + B̃Ã−1(Ã+ I)−1

−(Ã+ I)−1 − (B̃+ I)−1
}
.

(25)
Let us denote the ordered eigenvalues of the two matrices
Ã and B̃ as λÃ(1) ≤ λÃ(2) ≤ . . . ≤ λÃ(n) and λB̃(1) ≤
λB̃(2) ≤ . . . ≤ λB̃(n). From [37] we know that for two matri-
ces X and Y of size n, Tr(XY) ≥ ∑n

i=1 λX(i)λY (n−i+1),
which implies directly that Tr(XY−1) ≥ ∑n

i=1
λX (i)
λY (i) , where

λX(i) and λY (i) are the ordered eigenvalues (in the previously
specified order) of the corresponding matrices. Applying this
result we find that
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Tr
[
ÃB̃−1(I+ B̃)−1

]
≥

n∑

i=1

λÃ(i)

λB̃(i)(1 + λB̃(i))
,

Tr
[
B̃Ã−1(I+ Ã)−1

]
≥

n∑

i=1

λB̃(i)

λÃ(i)(1 + λÃ(i))
,

(26)
and finally obtain that:

TLB ≥
n∑

i=1

[λÃ(i) − λB̃(i)]
2[1 + λÃ(i) + λB̃(i)]

λÃ(i)λB̃(i)[1 + λÃ(i)][1 + λB̃(i)]
≥ 0.

(27)
To conclude the global proof one can easily check that Case

(2) (resp. Case (4)) can be readily proved from the proof of
Case (1) (resp. Case (3)) by interchanging the role of A and
B and C and D.

REFERENCES

[1] E. V. Belmega, S. Lasaulce, and M. Debbah, “Power control in distributed
multiple access channels with coordination,” in Proc. Intl. Symp. on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
and Workshops (WiOpt), Berlin, Germany, pp. 1–8, Apr. 2008.

[2] S. A. Grandhi, R. Vijayan, and D. J. Goodman, “Distributed algorithm for
power control in cellular radio systems,” in Proc. Annual Allerton Conf.
on Comm. Control and Computing, Monticello, Illinois, USA, Sept. 1992.

[3] S. A. Grandhi, R. Vijayan, and D. J. Goodman, “Distributed power
control in cellular radio systems,” IEEE Trans. Commun., vol. 42, no.
234, pp. 226–228, Feb./Mar./Apr. 1994.

[4] H. Ji and C.-Y. Huang, “Non-cooperative uplink power control in cellular
radio systems,” Wireless Networks, vol. 4, no. 3, pp. 233–240, Mar. 1998.

[5] S.-J. Oh, T. L. Olsen, and K. M. Wasserman, “Distributed power control
and spreading gain allocation in CDMA data networks,” in IEEE Proc.
Conf. of Computer and Comm. Societies (INFOCOM), Tel Aviv, Israel,
vol. 2, pp. 379–385, Mar. 2000.

[6] D. J. Goodman and N. B. Mandayam, “Power control for wireless data,”
IEEE Personal Commun., vol. 7, no. 2, pp. 48–54, 2000.

[7] F. Meshkati, M. Chiang, H. V. Poor, and S. C. Schwartz, “A game-
theoretic approach to energy-efficient power control in multi-carrier
CDMA systems,” IEEE J. Select. Areas Commun., vol. 24, no. 6,
pp. 1115–1129, June 2006.

[8] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser power control
for digital subscriber lines,” IEEE J. Select. Areas Commun., vol. 20, no.
5, pp. 1105–1115, June 2002.

[9] L. Lai and H. El Gamal, “The water-filling game in fading multiple-access
channels,” IEEE Trans. Inform. Theory, vol. 54, no. 5, pp. 2110–2122,
May 2008.

[10] S. Lasaulce, A. Suarez, M. Debbah, and L. Cottatellucci, “Power
allocation game for fading MIMO multiple access channels with antenna
correlation,” in ACM Proc. Intl Conf. on Game Theory in Comm.
Networks (Gamecomm), Nantes, France, pp. 1–9, Oct. 2007.

[11] G. Arslan, M. F. Demirkol, and Y. Song, “Equilibrium efficiency im-
provement in MIMO interference systems: a decentralized stream control
approach,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2984–2993,
Aug. 2007.

[12] G. Scutari, D. P. Palomar, and S. Barbarossa, “Competitive design of
multiuser MIMO systems based on game theory: a unified view,” IEEE
J. Select. Areas Commun., vol. 26, no. 7, pp. 1089–1103, Sept. 2008.

[13] A. Carleial, “Interference channels,” IEEE Trans. Inform. Theory, vol.
24, no. 1, pp. 60–70, 1978.

[14] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Uniform power
allocation in MIMO channels: a game theoretic approach,” IEEE Trans.
Inform. Theory, vol. 49, no. 7, pp. 1707–1727, July 2003.

[15] A. D. Wyner, “Recent results in Shannon theory,” IEEE Trans. Inform.
Theory, vol. 20, no. 1, pp. 2–10, Jan. 1974.

[16] T. Cover, “Some advances in broadcast channels,” in Advances in
Communication Systems, vol. 4. Academic Press, 1975.

[17] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecommun., vol. 10, no. 6, pp. 585–596, 1999.

[18] D. S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading
correlation and its effects on the capacity of multielement antenna
systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 502–513, Mar. 2000.

[19] E. Riegler and G. Taricco, “On the ergodic capacity region of the
separately correlated Rician fading multiple access MIMO channel,”
in Proc. IEEE Global Telecomm. Conf. (Globecom), Nantes, France,
pp. 1535–1539, Nov. 2007.

[20] A. Soysal and S. Ulukus, “Optimality of beamforming in fading MIMO
multiple access channels,” IEEE Trans. Commun., in press.

[21] V. L. Girko, Theory of Stochastic Canonical Equations. Kluwer Aca-
demic Publishers, vol. 1, 2001.

[22] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[23] J. Rosen, “Existence and uniqueness of equilibrium points for concave
n-person games,” Econometrica, vol. 33, pp. 520–534, 1965.

[24] A. Tulino and S. Verdu, “Random matrices and wireless communi-
cations,” Foundations and Trends in Communication and Information
Theory, NOW, The Essence of Knowledge, 2004.

[25] J. W. Sylverstein and Z. D. Bai, “On the empirical distribution of eigen-
values of a class of large dimensional random matrices,” J. Multivariate
Analysis, vol. 54, no. 2, pp. 175–192, 1995.

[26] A. Tulino and S. Verdu, “Impact of antenna correlation on the capacity
of multi-antenna channels,” IEEE Trans. Inform. Theory, vol. 51, no. 7,
pp. 2491–2509, July 2005.



3192 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 6, JUNE 2009

[27] J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton, and J. Najim,
“On the capacity achieving covariance matrix of Rician MIMO chan-
nels: an asymptotic approach,” IEEE Trans. Inform. Theory, revised,
http://arxiv.org/abs/0710.4051, Oct. 2007.

[28] C. H. Papadimitriou, “Algorithms, games, and the Internet,” in ACM
Proc. Annual Symposium on Theory of Computing, Crete, Grece, July
2001.

[29] E. Biglieri, G. Taricco, and A. Tulino, “How far is infinity? Using
asymptotic analyses in multiple-antennas systems,” in Proc. Intl. Sym-
posium on Software Testing and Analysis (ISSTA), Rome, Italy, vol. 1,
pp. 1–6, July 2002.

[30] J. Dumont, P. Loubaton, and S. Lasaulce, “On the capacity achieving
transmit covariance matrices of MIMO correlated Rician channels: a
large system approach,” in IEEE Proc. Globecom Technical Conf., San
Francisco, CA, USA, Nov./Dec. 2006.

[31] M. Chiani, M. Z. Win, and A. Zanella, “On the capacity of spatially
correlated MIMO Rayleiggh-Fading channels,” IEEE Trans. Inform.
Theory, vol. 49, no. 10, pp. 2363–2371, July 2003.

[32] A. Skupch, D. Seethaler, and F. Hlawatsch, “Free probability based
capacity calculation for MIMO channels with transmit or receive cor-
relation,” in Proc. Intl. Conf. on Wireless Networks, Comm. and Mobile
Computing, New York, USA, June 2005.

[33] R. A. Horn and C. R. Johnson, Topics in Matrix Anlysis. Cambridge
University Press, 2007.

[34] T. Roughgarden, “The price of anarchy is independent of the network
topology,”J. Computer and System Sciences, vol. 67, no. 2, pp. 341–364,
2003.

[35] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses, “On the inefficiency
of equilibria in congestion games,” in Proc. 11th Conf. on Integer Pro-
gramming and Combinatorial Optimization (IPCO’05), Berlin, Germany,
June 2005.
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Abstract We consider wireless networks that can be mod-
eled by multiple access channels in which all the termi-
nals are equipped with multiple antennas. The propagation
model used to account for the effects of transmit and receive
antenna correlations is the unitary-invariant-unitary model,
which is one of the most general models available in the
literature. In this context, we introduce and analyze two
resource allocation games. In both games, the mobile sta-
tions selfishly choose their power allocation policies in or-
der to maximize their individual uplink transmission rates;
in particular they can ignore some specified centralized poli-
cies. In the first game considered, the base station imple-
ments successive interference cancellation (SIC) and each
mobile station chooses his best space-time power allocation
scheme; here, a coordination mechanism is used to indicate
to the users the order in which the receiver applies SIC. In
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the second framework, the base station is assumed to im-
plement single-user decoding. For these two games a thor-
ough analysis of the Nash equilibrium is provided: the exis-
tence and uniqueness issues are addressed; the correspond-
ing power allocation policies are determined by exploiting
random matrix theory; the sum-rate efficiency of the equi-
librium is studied analytically in the low and high signal-
to-noise ratio regimes and by simulations in more typical
scenarios. Simulations show that, in particular, the sum-rate
efficiency is high for the type of systems investigated and the
performance loss due to the use of the proposed suboptimum
coordination mechanism is very small.

Keywords MIMO · MAC · Non-cooperative games ·
Nash equilibrium · Power allocation · Price of anarchy ·
Random matrix theory

1 Introduction

In this paper, we consider the uplink of a decentralized net-
work of several mobile stations (MS) and one base station
(BS). This type of network is commonly referred to as the
decentralized multiple access channel (MAC). The network
is said to be decentralized in the sense that each user can
freely choose his power allocation (PA) policy in order to
selfishly maximize a certain individual performance crite-
rion, which is called utility or payoff. This means that, even
if the BS broadcasts some specified policies, every user is
free to ignore the policy intended for him if the latter does
not maximize his performance criterion.

To the best of the authors’ knowledge, the problem of de-
centralized PA in wireless networks has been properly for-
malized for the first time in [1, 2]. Interestingly, this prob-
lem can be formulated quite naturally as a non-cooperative
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game with different performance criteria (utilities) such as
the carrier-to-interference ratio [3], aggregate throughput [4]
or energy efficiency [5, 6]. In this paper, we assume that
the users want to maximize information-theoretic utilities
and more precisely their Shannon transmission rates. In-
deed, the point of view adopted here is close to the one
proposed by the authors of [7] for DSL (digital subscriber
lines) systems, which are modeled as a parallel interference
channel; [8] for the single input single output (SISO) and
single input multiple output (SIMO) fast fading MACs with
global CSIR and global CSIT (Channel State Information
at the Receiver/Transmitters); [9] for MIMO (Multiple In-
put Multiple Output) MACs with global CSIR, channel dis-
tribution information at the transmitters (global CDIT) and
single-user decoding (SUD) at the receivers; [10, 11] for
Gaussian MIMO interference channels with global CSIR
and local CSIT and, by definition of the conventional in-
terference channel [12], SUD at the receivers. Note that ref-
erence [13] where the authors considered Gaussian MIMO
MACs with neither CSIT nor CDIT differs from our ap-
proach and that of [7–11] because in [13] the MIMO MAC
is seen as a two-player zero-sum game where the first player
is the group of transmitters and the second player is the set
of MIMO sub-channels. The closest works to the work pre-
sented here are [9] and [14]. Although this paper is in part
based on these works, it still provides significant contribu-
tions w.r.t. to them, as explained below.

In [9], the authors consider MIMO multiple access chan-
nels and assume SUD at the BS; the authors formulate the
PA problem into a team game in which each user chooses
his PA to maximize the network sum-rate. In [14], the same
type of decentralized networks is considered but SIC is as-
sumed at the BS. As each user needs to know his decoding
rank in order to adapt his PA policy to maximize his indi-
vidual transmission rate, a coordination mechanism has to
be introduced: the coordination signal precisely indicates to
all the users the decoding order used by the receiver. The
present paper differs from these two contributions on at least
four important technical points: (i) when SUD is assumed,
the PA game is not formulated as a team game but as a non-
cooperative one; (ii) we exploit several proof techniques that
are different from [9]; (iii) while [9] and [14] assume a Kro-
necker propagation model with common receive correlation
we assume here a more general model, the unitary-invariant-
unitary (UIU) propagation model introduced by [21], for
which the users can have different receive antenna correla-
tion profiles. This is useful in practice since, for instance, it
allows one to study propagation scenarios where some users
can be in line of sight with the BS (the receive antenna are
strongly correlated) whereas other users can be surrounded
by many obstacles, which can strongly decorrelate the re-
ceive antennas for these users; (iv) while the authors of [14]
restricted their attention to either a purely spatial PA prob-

lem or a purely temporal PA problem, we tackle here the
general space-time PA problem.

In this context, our main objective is to study the equilib-
rium of two power allocation games associated with the two
types of decoding schemes aforementioned (namely SIC and
SUD). The motivation for this is that the existence of an
equilibrium allows network designers to predict, with a cer-
tain degree of stability, the effective operating state(s) of the
network. Clearly, in our context, uniqueness is a desirable
feature of the equilibrium. As it will be seen, it is possi-
ble to prove the existence in both games under investigation.
Uniqueness is proven in the case of SUD while it is con-
jectured for the case of SIC. In order to establish the cor-
responding results, the paper is structured as follows. Af-
ter presenting the general system model in Sect. 2, we ana-
lyze in detail the space-time PA game when SIC and a cor-
responding coordination mechanism are assumed (Sect. 3).
For this game, the existence and uniqueness of the NE are
proven and the equilibrium is determined by exploiting ran-
dom matrix theory when the numbers of antennas are suf-
ficiently large. Its sum-rate efficiency is also analyzed. In
Sect. 4, we analyze the case of SUD since this decoding
scheme, although suboptimal in terms of performance (even
in the case of a network with single-antenna terminals), has
some features that can be found desirable in some contexts:
the receiver complexity is low, there is no need for a coor-
dination signal, there is no propagation error since the data
flows are decoded in parallel and not successively and also it
is intrinsically fair. To analyze the case of the SUD-based PA
game, we will follow the same steps as in Sect. 3 and we will
see that, the equilibrium analysis can be deduced, to a large
extent, from the SIC case. Numerical results are provided
in Sect. 5 to illustrate our theoretical analysis and to better
assess the sum-rate efficiency of the considered games. Sec-
tion 6 corresponds to the conclusion.

2 System model

We assume a MAC with arbitrary number of users, K ≥ 2.
Regarding the original definition of the MAC by [15] and
[16], the system under consideration has two common fea-
tures: all transmitters send at once and at different rates over
the entire bandwidth, and the transmitters are using good
codes in the sense of the Shannon rate. Our system differs
from [15, 16] in the sense that multiple antennas are consid-
ered at the terminal nodes, channels vary over time and the
BS does not dictate the PA policies to the MSs. Also, we as-
sume the existence of coordination signal which is perfectly
known to all the terminals. If the coordination signal is gen-
erated by the BS itself, this induces a certain cost in terms of
downlink signaling but the distribution of the coordination
signal can then be optimized. On the other hand, if the coor-
dination signal comes from an external source, e.g., an FM
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transmitter, the MSs can acquire their coordination signal
for free in terms of downlink signaling. However this gener-
ally involves a certain sub-optimality in terms of uplink rate.
In both cases, the coordination signal will be represented by
a random variable denoted by S ∈ S . Since we study the K-
user MAC, S = {0,1, . . . ,K!} is a K!+1-element alphabet.
When the realization is in {1, . . . ,K!} , the BS applies SIC
with a certain decoding order (game 1). When S = 0 the BS
always applies SUD (game 2), where all users are decoded
simultaneously (no interference cancellation). In a real wire-
less system the frequency at which the realizations would
be drawn would be roughly proportional to the reciprocal
of the channel coherence time (i.e., 1/Tcoh). Note that the
proposed coordination mechanism is suboptimal because it
does not depend on the realizations of the channel matrices.
We will see that the corresponding performance loss is in
fact very small.

We will further consider that each mobile station is
equipped with nt antennas whereas the base station has
nr antennas (thus we assume the same number of trans-
mitting antennas for all the users). In our analysis, the flat
fading channel matrices of the different links vary from
symbol vector (or space-time codeword) to symbol vector.
We assume that the receiver knows all the channel matri-
ces (CSIR) whereas each transmitter has only access to the
statistics of the different channels (CDIT). The equivalent
baseband signal received by the base station can be written
as:

Y (s)(τ ) =
K∑

k=1

H k(τ )X
(s)
k (τ ) + Z(s)(τ ), (1)

where X
(s)
k (τ ) is the nt -dimensional column vector of sym-

bols transmitted by user k at time τ for the realization s ∈ S
of the coordination signal, Hk(τ ) ∈ Cnr×nt is the channel
matrix (stationary and ergodic process) of user k and Z(s)(τ )

is a nr -dimensional complex white Gaussian noise distrib-
uted as N (0, σ 2Inr ). For the sake of clarity we will omit the
time index τ from our notations.

In order to take into account the antenna correlation ef-
fects at the transmitters and receiver, we will assume the
different channel matrices to be structured according to the
unitary-independent-unitary model introduced in [21]:

∀k ∈ {1, . . . ,K}, Hk = VkH̃kWk, (2)

where Vk and Wk are deterministic unitary matrices that al-
low one to take into consideration the correlation effects at
the receiver and transmitter. Also H̃k is an nr × nt matrix
whose entries are zero-mean independent complex Gaussian
random variables with an arbitrary profile of variances,
such that E|H̃k(i, j)|2 = σk(i,j)

nt
. The Kronecker propagation

model for which the channel transfer matrices factorizes as

Hk = R1/2
k �̃kT1/2

k is a special case of the UIU model where
the profile of variances is separable i.e., E|H̃k(i, j)|2 =
d

(R)
k (i)d

(T)
k (j)

nt
, with for each k: �k is a random matrix with

zero-mean i.i.d. entries, Tk is the transmit antenna corre-
lation matrix, Rk is the receive antenna correlation matrix,
{d(T)

k (j)}j∈{1,...,nt } and {d(R)
k (i)}i∈{1,...,nr } are their associ-

ated eigenvalues. In this paper we will consider that Vk = V
for all users. The reason for assuming this will be made
clearer a little further. In spite of this simplification, we will
still be able to deal with some useful scenarios where the
users see different propagation conditions in terms of receive
antenna correlation.

3 Successive interference cancellation

When SIC is assumed at the BS, the strategy of user k ∈
{1,2, . . . ,K}, consists in choosing the best vector of pre-
coding matrices Qk = (Q(1)

k ,Q(2)
k , . . . ,Q(K!)

k ) where Q(s)
k =

E[X(s)
k X

(s),H
k ], for s ∈ S , in the sense of his utility function.

For clarity sake, we will introduce another notation which
will be used in the remaining of this section to replace the
realization s of the coordination signal. We denote by PK

the set of all possible permutations of K elements, such that
π ∈ Pk denotes a certain decoding order for the K users
and π(k) denotes the rank of user k ∈ K and π−1 ∈ PK

denotes the inverse permutation (i.e. π−1(π(k)) = k) such
that π−1(r) denotes the index of the user that is decoded
with rank r ∈ K. We denote by pπ ∈ [0,1] the probability
that the receiver implements the decoding order π ∈ PK ,
which means that

∑
π∈PK

pπ = 1. At last note that there
is a one-to-one mapping between the set of realizations of
the coordination signal S and the set of permutations PK ,
i.e. ξ : S → Pk such that ξ(·) is a bijective function. This
is the reason why the index s can be replaced with the in-
dex π without introducing any ambiguity or loss of gener-
ality. The vector of precoding matrices can be denoted by
Q = (Q(π)

k )π∈PK
and the utility function can be written as:

uSIC
k (Qk,Q−k) =

∑

π∈PK

pπR
(π)
k (Q(π)

k ,Q(π)
−k ), (3)

where

R
(π)
k (Q(π)

k ,Q(π)
−k )

= E log2

∣∣∣∣∣I + ρHkQ(π)
k HH

k + ρ
∑

�∈K(π)
k

H�Q(π)
� HH

�

∣∣∣∣∣

− E log2

∣∣∣∣∣I + ρ
∑

�∈K(π)
k

H�Q(π)
� HH

�

∣∣∣∣∣ (4)
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with ρ = 1
σ 2 and K(π)

k = {� ∈ K|π(�) ≥ π(k)} represents,
for a given decoding order π , the subset of users that will
be decoded after user k. Also, we use the standard notation
−k , which stands for the other players than k. An important
point to mention here is the power constraint under which
the utilities are maximized. Indeed for user k ∈ {1, . . . ,K},
the strategy set is defined as follows:

ASIC
k =

{
Qk = (Q(π)

k )π∈PK
| ∀π ∈ PK,Q(π)

k � 0,

∑

π∈PK

pπ Tr(Q(π)
k ) ≤ ntP k

}
. (5)

In order to tackle the existence and uniqueness issues for
Nash equilibria in the general space-time PA game, we ex-
ploit and extend the results from Rosen [17], which we will
briefly state here below in order to make this paper suffi-
ciently self-contained.

Theorem 1 [17] Let G = (K, {Ak}k∈K, {uk}k∈K) be a game
where K = {1, . . . ,K} is the set of players,
A1, . . . ,AK the corresponding sets of strategies and u1, . . . , uk

the utilities of the different players. If the following three
conditions are satisfied: (i) each uk is continuous in the all
the strategies aj ∈ Aj ,∀j ∈ K; (ii) each uk is concave in
ak ∈ Ak ; (iii) A1, . . . ,AK are compact and convex sets;
then G has at least one NE.

Theorem 2 [17] Consider the K-player concave game of
Theorem 1. If the following (diagonally strict concavity)
condition is met: for all k ∈ K and for all (a′

k, a
′′
k) ∈ A2

k such
that there exists at least one index j ∈ K for which a′

j 	= a′′
j ,

∑K
k=1(a

′′
k − a′

k)
T [∇ak

uk(a
′
k, a

′−k) − ∇ak
uk(a

′′
k , a

′′−k)] > 0;
then the uniqueness of the NE is insured.

In the space-time power allocation game under investiga-
tion, the obtained results are stated in the following theorem.

Theorem 3 (Existence of an NE) The joint space-time
power allocation game described by: the set of players
k ∈ {1,2}; the sets of actions ASIC

k and the utility functions
uSIC

k (Qk,Q−k) given in (3), has a Nash equilibrium.

Proof It is quite easy to prove that the strategy sets ASIC
k

are convex and compact sets and that the utility functions
uSIC

k (Qk,Q−k) are concave w.r.t. Qk and continuous w.r.t.
to (Qk,Q−k) and by Theorem 1 at least one Nash equilib-
rium exists. For more details, the reader is referred to Ap-
pendix A. �

Theorem 4 (Sufficient condition for uniqueness) If the fol-
lowing condition is met

∑

π∈PK

K∑

k=1

Tr{(Q(π)′′
k − Q(π)′

k )(∇
Q

(π)
k

uSIC
k (Q′

k,Q′−k)

− ∇
Q

(π)
k

uSIC
k (Q′′

k ,Q′′−k))} > 0 (6)

for all Q′
k = (Q(π)′

k )π∈PK
,Q′′

k = (Q(π)′′
k )π∈PK

∈ ASIC
k such

that (Q′
1, . . . ,Q′

K) 	= (Q′′
1, . . . ,Q′′

K), then the Nash equilib-
rium in the power allocation game of Theorem 3 is unique.

This theorem corresponds to the matrix generalization of
the diagonally strict concavity (DSC) condition of [17] and
is proven in Appendix B. To know whether this condition
is verified or not in the MIMO MAC one needs to re-write
it in a more exploitable manner. It can be checked that C
expresses as C = ∑

π∈PK
pπTπ where for each π ∈ PK , Tπ

is given by:

Tπ =
K∑

k=1

Tr{(Q(π)′′
k − Q(π)′

k )[∇
Q

(π)
k

R
(π)
k (Q(π)′

k ,Q(π)′
−k )

− ∇
Q

(π)
k

R
(π)
k (Q(π)′′

k ,Q(π)′′
−k )]}

= E
K∑

r=1

Tr

{
ρHπ−1(r)(Q

(π)′′
π−1(r)

− Q(π)′
π−1(r)

)HH
π−1(r)

×
[(

I + ρHπ−1(r)Q
(π)′
π−1(r)

HH
π−1(r)

+ ρ

K∑

s=r+1

Hπ−1(s)Q
(π)′
π−1(s)

HH
π−1(s)

)−1

−
(

I + ρHπ−1(r)Q
(π)′′
π−1(r)

HH
π−1(r)

+ ρ

K∑

s=r+1

Hπ−1(s)Q
(π)′′
π−1(s)

HH
π−1(s)

)−1]}

= E
K∑

r=1

Tr(A(π)′′
r − A(π)′

r )

[(
I +

K∑

s=r

A(π)′
r

)−1

−
(

I +
K∑

s=r

A(π)′′
r

)−1]
, (7)

where A(π)′
r =ρHπ−1(r)Q

(π)′
π−1(r)

HH
π−1(r)

, A(π)′′
r =ρHπ−1(r) ×

Q(π)′′
π−1(r)

HH
π−1(r)

and the users have been ordered using their
decoding rank rather than their index.
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Theorem 5 (A sufficient condition for DSC) If for any pos-
itive definite matrices Ai , Bi , Ai 	= Bi , i ∈ {1, . . . ,K} we
have that

K∑

i=1

Tr

{
(Ai − Bi )

[(
i∑

j=1

Bj

)−1

−
(

i∑

j=1

Aj

)−1]}
> 0,

(8)

then the DSC condition is met: C > 0.

It turns out that the trace inequality (9) always holds for
any K et for any positive matrices.

Lemma 1 Trace inequality For any positive definite matri-
ces Ai , Bi , Ai 	= Bi , i ∈ {1, . . . ,K} we have that

K∑

i=1

Tr

{
(Ai − Bi )

[(
i∑

j=1

Bj

)−1

−
(

i∑

j=1

Aj

)−1]}
> 0.

(9)

The proof can be found in [27], for K = 2, and in [28]
for arbitrary K ≥ 2.

Determination of the Nash equilibrium. In order to find
the optimal covariance matrices, we proceed in the same
way as described in [9]. First we will focus on the optimal
eigenvectors and then we will determine the optimal eigen-
values by approximating the utility functions under the large
system assumption.

Theorem 6 (Optimal eigenvectors) For all k ∈ K, Qk ∈
ASIC

k there is no loss of optimality by imposing the struc-

ture Qk = (Qk
(π))π∈PK

, Q(π)
k = WkPk

(π)Wk
H , in the sense

that:

max
Qk∈ASIC

k

uSIC
k (Qk,Q−k) = max

Qk∈SSIC
k

uSIC
k (Qk,Q−k),

where SSIC
k = {Qk = (Qk

(π))π∈Pk
∈ ASIC

k |Q(π)
k =

WkP(π)
k WH

k }, s ∈ S , model from (2) and P(s)
k =

Diag(P
(π)
k (1), . . . ,P

(π)
k (nt )).

The detailed proof of this result is given in Appendix C. This
result, although easy to obtain, it is instrumental in our con-
text for two reasons. First, the search of the optimum pre-
coding matrices boils down to the search of the eigenval-
ues of these matrices. Second, as the optimum eigenvectors
are known, available results in random matrix theory can be
exploited to find an accurate approximation of these eigen-
values. Indeed, the eigenvalues are not easy to find in the
finite setting. They might be found using numerical tech-
niques based on extensive search. Here, our approach con-
sists in approximating the utilities in order to obtain expres-
sions which are not only easier to interpret but also easier to

be optimized w.r.t. the eigenvalues of the precoding matri-
ces. The key idea is to approximate the different transmis-
sion rates by their large-system equivalent in the regime of
large number of antennas. The corresponding approximates
can be found to be accurate even for relatively small number
of antennas (see e.g., [18, 19] for more details).

Since we have assumed Vk = V, we can exploit the re-
sults in [20, 21] for single-user MIMO channels, assuming
the asymptotic regime in terms of the number of antennas:
nr → ∞, nt → ∞, nr

nt
→ β . The corresponding approxi-

mated utility for user k is:

ũSIC
k ({P(π)

k }k∈K,π∈PK
) =

∑

π∈PK

pπR̃
(π)
k (P(π)

k ,P(π)
−k ), (10)

where

R̃
(π)
k (P(π)

k ,P(π)
−k )

= 1

nr

∑

�∈K(π)
k ∪{k}

nt∑

j=1

log2(1 + (N
(π)
k + 1)

× ρP
(π)
� (j)γ

(π)
� (j))

+ 1

nr

nr∑

i=1

log2

(
1 + 1

(N
(π)
k + 1)nt

×
∑

�∈K(π)
k ∪{k}

nt∑

j=1

σ�(i, j)δ
(π)
� (j)

)

− 1

nr

∑

�∈K(π)
k ∪{k}

nt∑

j=1

γ
(π)
� (j)δ

(π)
� (j) log2 e

− 1

nr

∑

�∈K(π)
k

nt∑

j=1

log2(1 + N
(π)
k ρP

(π)
� (j)φ

(π)
� (j))

− 1

nr

nr∑

i=1

log2

(
1 + 1

N
(π)
k nt

∑

�∈K(π)
k

nt∑

j=1

σ�(i, j)ψ
(π)
� (j)

)

+ 1

nr

∑

�∈K(π)
k

nr∑

j=1

φ
(π)
� (j)ψ

(π)
� (j) log2 e, (11)

where N
(π)
k = |K(π)

k | and the parameters γ
(π)
k (j) and

δ
(π)
k (j) ∀j ∈ {1, . . . , nt }, k ∈ K, π ∈ PK are the solutions

of:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀j ∈ {1, . . . , nt }, � ∈ K(π)
k ∪ {k} :

γ
(π)
� (j) = 1

(N
(π)
k +1)nt

∑nr

i=1
σ�(i,j)

1+ 1

(N
(π)
k

+1)nt

∑
r∈K(π)

k
∪{k}

∑nt
m=1σr (i,m)δ

(π)
r (m)

δ
(π)
� (j) = (N

(π)
k +1)ρP

(π)
� (j)

1+(N
(π)
k +1)ρP

(π)
� (j)γ

(π)
� (j)

,
(12)
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and φ
(π)
� (j), ψ

(π)
� (j), ∀j ∈ {1, . . . , nt } and π ∈ PK are the

unique solutions of the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀j ∈ {1, . . . , nt }, � ∈ K(π)
k :

φ
(π)
� (j) = 1

N
(π)
k nt

∑nr

i=1
σ�(i,j)

1+ 1

N
(π)
k

nt

∑
r∈K(π)

k

∑nt
m=1 σr (i,m)ψ

(π)
r (m)

ψ
(π)
� (j) = N

(π)
k ρP

π)
� (j)

1+N
(π)
k ρP

(π)
� (j)φ

(π)
� (j)

.

(13)

The corresponding water-filling solution is:

P
(π),NE
k (j) =

[
1

ln 2nrλk

− 1

N
(π)
k ργ

(π)
k (j)

]+
, (14)

where λk ≥ 0 is the Lagrangian multiplier tuned in order to
meet the power constraint:

∑

π∈PK

nt∑

j=1

pπ

[
1

ln 2nrλk

− 1

N
(π)
k ργ

(π)
k (j)

]+
= ntP k.

Note that to solve the system of equations given above, we
can use the same iterative power allocation algorithm as the
one described in [9].

At this point, an important point has to be mentioned. The
existence and uniqueness issues have be analyzed in the fi-
nite setting (exact game) whereas the determination of the
NE is performed in the asymptotic regime (approximated
game). It turns out that large system approximates of er-
godic transmission rates have the same properties as their
exact counterparts, as shown recently by [23], which there-
fore ensures the existence and uniqueness of the NE in the
approximated game.

Nash Equilibrium efficiency. In order to measure the ef-
ficiency of the decentralized network w.r.t. its centralized
counterpart we introduce the following quantity:

SRE = RNE
sum

Csum
≤ 1, (15)

where SRE stands for sum-rate efficiency; the quantity RNE
sum

represents the sum-rate of the decentralized network at the
Nash equilibrium, which is achieved for certain choices
of coding and decoding strategies; the quantity Csum cor-
responds to the sum-capacity of the centralized network,
which is reached only if the optimum coding and decoding
schemes are known. Note that this is the case for the MAC
but not for other channels like the interference channel. Ob-
viously, the efficiency measure we introduce here is strongly
connected to the price of anarchy [24] (POA). The difference
between SRE and POA is subtle. In our context, information
theory provides us with fundamental physical limits on the
social welfare (network sum-capacity) while in general no
such upper bound is available. In our case, the sum-capacity

is given by:

Csum = max
(�1,...,�K)∈A(C)

E log

∣∣∣∣∣I + ρ

K∑

k=1

Hk�kHH
k

∣∣∣∣∣, (16)

with

A(C) = {(�1, . . . ,�K)|∀k ∈ K,�k � 0,

�k = �H
k ,Tr(�k) ≤ ntP k}. (17)

In general, it is not easy to find a closed-form expression of
the SRE. This is why we will respectively analyze the SRE
in the regimes of high and low signal-to-noise ratio (SNR),
and for intermediate regimes simulations will complete our
analysis. It turns out that the SRE tends to 1 in the two men-
tioned extreme regimes, which is the purpose of what fol-
lows.

In the high SNR regime, where ρ → ∞, we observe from
(12) that δ

(π)
� (j) → 1

γ
(π)
� (j)

. Under this condition, it is easy

to check that by setting the derivatives of Lk w.r.t. P
(s)
k (j)

to zero, we obtain that the power allocation policy at the NE
is the uniform power allocation P(π),NE

k = P kI, regardless
the realization of the coordination signal S. Furthermore, in
the high SNR regime, the sum-capacity is achieved by the
uniform power allocation. Thus, we obtain that the gap be-
tween the NE achievable sum-rate and the sum-capacity is
optimal, SRE = 1 for any distribution of S.

In the low SNR regime, where ρ → 0, from (12) we ob-
tain that δ

(π)
� (j) → 0 and that γ

(π)
� (j) =

1
(N

(π)
k +1)nt

∑nr

i=1 σ�(i, j). By approximating ln(1 + x) ≈ x

when x � 1, the power allocations policies at the NE are
the solutions of the following linear programs:

max
{P (π)

k (j)}1≤j≤nt

nt∑

j=1

{
∑

pπ∈PK

πP
(π)
k (j)

nr∑

i=1

σ1(i, j)

}

s.t.
nt∑

j=1

∑

π∈PK

P
(π)
k (j) ≤ P knt ,

(18)

given by:

∑

π∈PK

pπP
(π),NE
k (j)

=
∣∣∣∣∣
ntP k if j = arg max1≤m≤nt

∑nr

i=1 σk(i,m)

0 otherwise.
(19)

The optimal power allocation that achieves the sum-capacity
is equal to the equilibrium power allocation, P∗

k =
∑

π∈PK
pπP(π),NE

k (j) Thus, the achievable sum-rate at the
NE is equal to the centralized upper bound and thus SRE = 1
for any distribution of S. In conclusion, when either the low
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or high SNR regime is assumed, the sum-capacity of the fast
fading MAC is achieved at the NE although a sub-optimum
coordination mechanism is assumed and also regardless of
the distribution of the coordination channel.

4 Single user decoding

In this section the coordination signal is deterministic
(namely Pr[S = s] = δ(s), δ being the Kronecker sym-
bol) and therefore the amount of downlink signalling the
BS needs in order to indicate to the MSs that it is us-
ing SUD can be made arbitrary small (by letting the fre-
quency at which the realizations of the coordination signal
are drawn tend to zero). In this framework, each user has
to optimize only one precoding matrix. Indeed, the strategy
of user k ∈ K, consists in choosing the best precoding ma-
trix Q(0)

k = E[X(0)
k X

(0)H
k ], in the sense of his utility function

obtained with SUD:

uSUD
k (Q(0)

k ,Q(0)
−k)

= E log

∣∣∣∣∣I + ρHkQ(0)
k HH

k + ρ
∑

�	=k

H�Q(0)
� HH

�

∣∣∣∣∣

− E log

∣∣∣∣∣I + ρ
∑

�	=k

H�Q(0)
� HH

�

∣∣∣∣∣. (20)

. The strategy set of user k becomes

ASUD
k = {Q(0)

k � 0,Q(0)
k = Q(0),H

k ,Tr(Q(0)
k ) ≤ ntP k}. (21)

It turns out that the equilibrium analysis in the game with
SUD can be, to a large extent, deduced from the game with
SIC. For this reason, we will not detail the corresponding
proofs. The existence and uniqueness issues are given in the
following theorem.

Theorem 7 (Existence and uniqueness of an NE) The space
power allocation game described by: the set of players
k ∈ K; the sets of actions ASUD

k and the payoff functions

uSUD
k (Q(0)

k ,Q(0)
−k) given in (20), has a unique Nash equilib-

rium.

To prove the existence of a Nash equilibrium we also ex-
ploit Theorem 1 and the four necessary conditions on the
utility functions and strategy sets can be verified using the
same tools as described in Appendix A.

Uniqueness of the Nash equilibrium. Here we can spe-
cialize Theorem 4, which is the matrix extension of Theo-
rem 2. When the strategies sets are not sets of pairs of ma-
trices but only sets of matrices, the diagonally strict con-
cavity condition in (6) can be written as follows. For all

Q(0)′
k ,Q(0)′′

k ∈ ASUD
k such that (Q(0)′

1 , . . . ,Q(0)′
K ) 	= (Q(0)′′

1 ,

. . . ,Q(0)′′
K ):

C =
K∑

k=1

Tr{(Q(0)′′
k − Q(0)′

k )[∇
Q

(0)
k

u1(Q
(0)′
k ,Q(0)′

k )

− ∇
Q

(0)
k

u1(Q
(0)′′
k ,Q(0)′′

k )]}. (22)

Now we can evaluate C and obtain that:

C =
K∑

k=1

Tr

{
[ρHk(Q

(0)′
k − Q(0)′′

k )HH
k ]

×
[(

I + ρ

K∑

�=1

H�Q(0)′′
� HH

�

)−1

−
(

I + ρ

K∑

�=1

H�Q(0)′
� HH

�

)−1]}

= Tr{(A′ − A′′)[(A′′)−1 − (A′)−1]}, (23)

which is strictly positive for all A′ 	= A′′, A′ � 0, A′′ � 0
after [27] applied when K = 1. This result can be applied
here since we have

A′ = I + ρ

K∑

�=1

H�Q(0)′
� HH

� ,

A′′ = I + ρ

K∑

�=1

H�Q(0)′′
� HH

� .

Determination of the Nash equilibrium. As for the opti-
mal eigenvectors of the covariance matrices, we follow the
same lines as in Appendix C. In this case also there is
no loss of optimality by choosing the covariance matrices
Q(0)

k = WkP(0)
k WH

k , where Wk is the same unitary matrix as
in (2) and Pk is the diagonal matrix containing the eigenval-
ues of Q(0)

k .
Here also we further exploit the asymptotic results for the

MIMO channel given in [20, 21]. The approximated utility
for user k is:

ũSUD
k (P(0)

k ,P(0)
−k)

= 1

nr

K∑

k=1

nt∑

j=1

log2(1 + KρP
(0)
k (j)γk(j))

+ 1

nr

nr∑

i=1

log2

(
1 + 1

Knt

K∑

k=1

nt∑

j=1

σk(i, j)δk(j)

)

− 1

nr

K∑

k=1

nt∑

j=1

γk(j)δk(j) log2 e
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− 1

nr

∑

�	=k

nt∑

j=1

log2(1 + (K − 1)ρP
(0)
� (j)φ�(j))

− 1

nr

nr∑

i=1

log2

(
1 + 1

(K − 1)nt

∑

�	=k

nt∑

j=1

σ�(i, j)ψ�(j)

)

+ 1

nr

∑

� 	=k

nr∑

j=1

φ�(j)ψ�(j) log2 e, (24)

where the parameters γk(j) and δk(j) ∀j ∈ {1, . . . , nt }, k ∈
{1,2} are solution of:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀j ∈ {1, . . . , nt }, k ∈ K :
γk(j) = 1

Knt

∑nr

i=1
σk(i,j)

1+ 1
Knt

∑K
�=1

∑nt
m=1 σ�(i,m)δ�(m)

δk(j) = KρP
(0)
k (j)

1+KρP
(0)
k (j)γk(j)

(25)

and φ�(j), ψ�(j), ∀j ∈ {1, . . . , nt } are the unique solutions
of the following system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀j ∈ {1, . . . , nt }, � ∈ K \ {k} :
φ�(j) = 1

(K−1)nt

∑nr

i=1
σ�(i,j)

1+ 1
(K−1)nt

∑
r 	=k

∑nt
m=1 σr (i,m)ψr (m)

ψ�(j) = (K−1)ρP
(0)
� (j)

1+(K−1)ρP
(0)
� (j)φ�(j)

.

(26)

The corresponding water-filling solution is:

P
(0),NE
k (j) =

[
1

ln 2nrλk

− 1

Kργk(j)

]+
, (27)

where λk ≥ 0 is the Lagrangian multiplier tuned in order to
meet the power constraint:

nt∑

j=1

[
1

ln 2nrλk

− 1

Kργk(j)

]+
= ntP k.

In what the efficiency of the NE point is concerned, we al-
ready know that the SUD decoding technique is sub-optimal
in the centralized case (SUD does allow the network to op-
erate at an arbitrary point of the centralized MAC capacity
region) and it is impossible to reach the sum-capacity Csum

even if the high and low SNR regime are assumed.

5 Simulation results

In what follows, we assume the regime of large numbers of
antennas. From [9, 20, 21], we know that the approximates
of the ergodic achievable rates in the asymptotic regime
are accurate even for relatively small number of antennas.
For the channel matrices, we assume the Kronecker model
Hk = R1/2

k �kT1/2
k mentioned in Sect. 2, where the receive

Fig. 1 Fair SIC (joint
space-time power allocation) vs.
SUD decoding. Achievable
network sum-rate versus the
available transmit power P for
p = 1

2 , nr = nt = 10,
r = [0.5,0.2], t = [0.5,0.2],
ρ = 3 dB. The fair SIC performs
much closer to the sum-capacity
upper bound than SUD
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Fig. 2 SIC decoding,
comparison between the joint
space-time PA and the two
special cases: the space PA and
temporal PA. Sum-rate
efficiency versus the distribution
of the coordination signal
p ∈ [0,1] for nr = nt = 10,
r = [0.3,0], t = [0.5,0.2],
ρ = 4 dB, P1 = 5, P2 = 50. The
spatial PA outperforms the joint
space-time PA (Braess paradox)

and transmit correlation matrices Rk , Tk follow an expo-
nential profile characterized by the correlation coefficients
(see e.g., [25, 26]) r = [r1, r2] and t = [t1, t2] such that
Rk(i, j) = r

|i−j |
k , Tk(i, j) = t

|i−j |
k . By assuming that the re-

ceive antenna is a uniform linear array (ULA) and knowing
that, when the dimensions of Toeplitz matrices increase they
can be approximated by circular matrices we obtain that all
the receive correlation matrices Rk can be diagonalized in
the same vector basis (i.e., the Fourier basis). Thus the con-
sidered model is included in the UIU model that we studied
where Vk = V.

Fair SIC decoding versus SUD decoding. First we com-
pare the results of the general space-time PA game consid-
ered in Sect. 3, where SIC decoding is used at the receiver,
and the game described in Sect. 4, where SUD decoding is
used. Figure 1 depicts the achievable sum-rate at the equi-
librium as a function of the transmit power P1 = P2 = P ,
for the scenario nr = nt = 10, r = [0.5,0.2], t = [0.5,0.2],
ρ = 3 dB. In order to have a fair comparison we assume that
p = 1

2 (on average each user is decoded second half of the
time when SIC is assumed). We observe that, even in this
scenario, which was thought to be a bad one in terms of sub-
optimality, the sum-rate obtained with the first game is very
close to the sum-capacity upper bound. Also, the sum-rate

reached when the BS uses SUD is clearly much lower than
the sum-rate obtained by using SIC.

SIC decoding, comparison between the joint space-time
PA and the special cases of spatial PA and temporal PA.
Now we want to compare the results of the general space-
time PA with the two particular cases that were studied in
[14]: the spatial PA, where the users are forced to allocate
their power uniformly over time (regardless of their decod-
ing rank) but are free to allocate their power over the trans-
mit antennas; the temporal PA, where the users are forced to
allocate their power uniformly over their antennas but they
can adjust their power as a function of the decoding rank at
the receiver. Figure 2 represents the sum-rate efficiency as
a function of the coordination signal distribution parameter
p ∈ [0,1] when nr = nt = 10, r = [0.3,0], t = [0.5,0.2],
ρ = 4 dB, P1 = 5, P2 = 50. We observe that the three types
of power allocation policies perform very close to the upper
bound. What is most interesting is the fact that the perfor-
mance of the network at the equilibrium is better by using
a purely spatial PA instead of the most general space-time
PA. This has been confirmed by many other simulations and
illustrates a Braess paradox: although the sets of strategies
for the space-time case include those of the purely spatial
case, the performance obtained at the NE are not better in
the space-time case.
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Fig. 3 SIC decoding, space PA.
The achievable rate region at the
NE versus the distribution of the
coordination signal p ∈ [0,1]
for nr = nt = 10, r = [0.4,0.2],
t = [0.6,0.3], ρ = 3 dB, P1 = 5,
P2 = 50. Varying p allows to
move along a segment close to
the sum-capacity, similar to
SISO MAC

SIC decoding, spatial PA, achievable rate region. In
Fig. 3, we observe that the rate region achieved at the NE of
the space PA as a function of the distribution of the coordi-
nation signal p for the scenario nr = nt = 10, r = [0.4,0.2],
t = [0.6,0.3], ρ = 3 dB, P1 = 5, P2 = 50. It is quite remark-
able that in large MIMO MACs, the capacity region com-
prises a full cooperation segment just like the SISO MACs.
The coordination signal precisely allows one to move along
the corresponding line. This shows the relevance of large
systems in decentralized networks since they allow to de-
termine the capacity region of certain systems whereas it
is unknown in the finite setting. Furthermore, they induce
an averaging effect, which makes the users’ behavior pre-
dictable.

6 Conclusions

Interestingly, the existence and uniqueness of the Nash equi-
librium can be proven in multiple access channels with
multi-antenna terminals for a general propagation channel
model (namely the unitary-invariant-unitary model) and the
most general case of space-time power allocation schemes.
In particular, the uniqueness proof requires a matrix gener-
alization of the second theorem of Rosen [17] and proving
a trace inequality [28]. For all the types of power allocation
policies (purely temporal PA, purely spatial PA, space-time

PA), the sum-rate efficiency of the decentralized network is
close to one when SIC is assumed and the network is co-
ordinated by the proposed suboptimum coordination mech-
anism. Quite surprisingly, the space-time power allocation
performs a little worse than its purely spatial counterpart,
which puts in evidence a Braess paradox in the types of
wireless networks under consideration. One of the interest-
ing extensions of this work would be to analyze the impact
of a non-perfect SIC on the PA problem. Indeed, the effect
of propagation errors could then be assessed (which does not
exist with SUD).

Appendix A

A.1 Concavity of the utility functions uSIC
k

Let us focus on user k ∈ K. We want to prove that
uSIC

k (Qk,Q−k) is concave w.r.t. Qk ∈ ASIC
1 . We observe

that the term R
(π)
k (Q(π)

k ,Q(π)
−k ) in (3) depends only on Q(π)

k

and Q(π)
−k and not on the covariance matrices Q(τ )

k , Q(τ )
−k for

any other possible decoding rule τ ∈ PK \ {π}. Thus, in
order to prove that uSIC

k (Qk,Qk) is strictly concave w.r.t. to

Qk = (Q(π)
k )π∈PK

, it suffices to prove that R
(π)
k (Q(π)

k ,Q(π)
−k )

is concave w.r.t. Q(π)
k for all π ∈ PK .

To this end, we study the concavity of the function

f (λ) = R
(π)
k (λQ(π)′

k + (1 −λ)Q(π)′′
k ) over the interval [0,1]
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for any pair of matrices (Q(π)′
k ,Q(π)′′

k ). The second deriva-
tive of f is equal to:

∂2f

∂λ2
(λ) = −ETr

[
ρ2HH

k

(
I + ρHkQ(π)′′

k HH
k

+ ρλHk�Q(π)
k HH

k

+ ρ
∑

�∈K(π)
k

H�Q(π)
� HH

�

)−1

Hk�Q(π)
k

× HH
k

(
I + ρHkQ(π)′′

k HH
k

+ ρλHk�Q(π)
k HH

k

+ ρ
∑

�∈K(π)
k

H�Q(π)
� HH

�

)−1

Hk�Q(π)
k

]

= −ETr[A�Q(π)
k A�Q(π)

k ],

with

A = ρ2HH
k

(
I + ρHkQ(π)′′

k HH
k

+ ρλHk�Q(π)
k HH

k + ρ
∑

�∈K(π)
k

H�Q(π)
� HH

�

)−1

Hk,

which can be proven to be a Hermitian positive definite ma-

trix, �Q(π)
k = Q(π)′

k − Q(π)′′
k also a Hermitian matrix, and

ρ = 1
σ 2 .

∂2f

∂λ2
(λ) = −ETr[A1/2�Q(π)

k A1/2A1/2�Q(π)
k A1/2]

= −ETr[BBH ] < 0,

with B = A1/2�Q(π)
k A1/2.

A.2 Continuity of the utility functions uSIC
k

Considering the Leibniz formula, the determinant of a ma-
trix can be expressed as a weighted sum of products of its
entries. Knowing that the product and the sum of contin-
uous functions are continuous, we conclude that the deter-
minant function is continuous. Also, it is well known that
the logarithmic function is a continuous function. Thus, for
any π ∈ PK , the function R

(π)
k (Q(π)

k ,Q(π)
−k ) is nothing else

but the composition of two continuous functions which is
also continuous w.r.t. (Q(π)

k ,Q(π)
−k ). This suffices to prove

that uSIC
k (Qk,Q−k) is continuous w.r.t. (Qk,Q−k).

A.3 Convexity of the strategy sets ASIC
k

In order to prove that the set ASIC
k is convex, we need to

verify that, for any two matrices (Q′
k,Q′′

k) ∈ ASIC
k × ASIC

k ,
we have:

αQ′
1 + (1 − α)Q′′

1 ∈ ASIC
k ,

for all α ≥ 0.
For any Q′

k,Q′′
k ∈ A(SIC)

k , the matrices Q(π)
k are Her-

mitian which implies that αQ(π)′
k + (1 − α)Q(π)′′

k are also
Hermitian matrices, for all π ∈ PK .

Furthermore, for any Q′
k,Q′′

k ∈ ASIC
k , we have that

Q(π)′
k , Q(π)′′

k are non-negative matrices which implies that

αQ(π)′
k + (1 − α)Q(π)′′

k are also non-negative matrices, for
all π ∈ PK .

Finally, knowing that the trace is a linear application we
have that:

∑

π∈Pk

pπ Tr(αQ(π)′
k + (1 − α)Q(π)′′

k )

= α
∑

π∈Pk

pπ Tr(Q(π)′
k ) + (1 − α)

∑

π∈Pk

pπ Tr(Q(π)′
k )

≤ αntP k + (1 − α)ntP k

= ntP k.

Thus αQ′
k + (1 − α)Q′′

k ∈ ASIC
k and the set is convex.

A.4 Compactness of the strategy sets ASIC
k

To prove that the strategy sets are compact sets we use the
fact that, in finite dimension spaces, a closed and bounded
set is compact.

First let us prove that ASIC
k is a closed set. We define the

function g : ASIC
k −→ [0, ntP k], with

f (Qk) =
∑

π∈PK

pπ Tr(Q(π)
k ).

We see that g(·) is a continuous function and that its im-
age is a compact and thus closed set. Knowing that the con-
tinuous inverse image of a closed set is closed, we conclude
that ASIC

k is closed.
Now we want to prove that the set ASIC

k is a bounded

set. We associate to the tuple of matrices (Q(π)
k )π∈PK

the

following norm ‖Qk‖ =
√∑

π∈PK
‖Q(π)

k ‖2
2 where ‖.‖2 is

the spectral norm of a matrix.

‖Q(π)
k ‖2 =

√
max{λQ(π)H

k Q(π)
k

(i)}ni=1.
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Since for all Qk ∈ ASIC
k , Q(π)

k is a non-negative, Hermitian
matrix we have that:

max{λQ(π)
k

(i)}ni=1 ≤ T r(Q(π)
k ) ≤ ∞,

and thus:

‖Q(π)
k ‖2 =

√
max{λQ(π)2

k

(i)}ni=1

=
√

max{λQ(π)
k

(i)2}ni=1 ≤ ∞.

In conclusion the associated norm ‖Qk‖ ≤ ∞.

Appendix B

We suppose that there exist two different equilibrium strat-
egy profiles: (Q̃k, Q̃−k) ∈ ASIC

k × ASIC
−k and (Q̂k, Q̂−k) ∈

ASIC
k × ASIC

−k , such that (Q̃k, Q̃−k) 	= (Q̂k, Q̂−k). Then the
condition given in the theorem, C > 0 is met for the par-
ticular choice of (Q′

k,Q′−k) = (Q̃k, Q̃−k) and (Q′′
k ,Q′′−k) =

(Q̂k, Q̂−k).
By the definition of the Nash Equilibrium, the strategies

Q̃k , k ∈ K, are the solutions of the following maximization
problems:

max
Qk∈ASIC

k

uk(Qk, Q̃−k).

Thus, Q̃k satisfy the following Kuhn-Tucker optimality
conditions:

(1) Q̃k ∈ ASIC
k , which means that:

⎧
⎨

⎩
Q̃(π)

k = (Q̃(π)
k )H � 0, ∀π ∈ PK

∑
π∈PK

pπ Tr(Q̃(π)
k ) ≤ ntP k,

(2) There exist λ̃k ≥ 0, and the following Hermitian non-
negative matrices of rank 1, �̃

(π)
k , for all π ∈ PK , such

that:
⎧
⎨

⎩
λ̃k[∑π∈PK

pπ Tr(Q̃(π)
k ) − ntP k] = 0

Tr(�̃(π)
k Q̃(π)

k ) = 0, ∀π ∈ PK,

(3)
⎧
⎨

⎩

∀π ∈ PK :
∇Q(π)

k

uk(Q̃k, Q̃−k) = pπ λ̃kI − �̃
(π)
k .

Having assumed that (Q̂k, Q̂−k) is also a Nash Equi-
librium, Q̂k , with k ∈ K are the solution of:

max
Qk∈ASIC

k

uk(Qk, Q̂−k),

and thus Q̂k satisfy the following Kuhn-Tucker optimal-
ity conditions:

(4) Q̂k ∈ ASIC
k , which means that:

⎧
⎨

⎩
Q̂(π)

k = (Q̂(π)
k )H � 0, ∀π ∈ PK

∑
π∈PK

pπ Tr(Q̂(π)
k ) ≤ ntP k,

(5) There exist λ̂k ≥ 0, k ∈ K and the following non-
negative, Hermitian matrices of rank 1, �̂

(π)
k , for all

π ∈ PK such that:

{
λ̂k[∑π∈PK

pπ Tr(Q̂(π)
k ) − ntP k] = 0

Tr(�̂(π)
k Q̂(π)

k ) = 0, ∀π ∈ PK,

(6)

⎧
⎨

⎩

∀π ∈ PK :
∇Q(π)

k

uk(Q̂k, Q̂−k) = pπ λ̂kI − �̂
(π)
k .

Using the third and the sixth optimality conditions, the
condition given in (6) becomes:

C =
∑

π∈PK

K∑

k=1

{pπ λ̃kTr(Q̂(π)
k ) + pπ λ̂kTr(Q̃(π)

k )

− pπ λ̃kTr(Q̃(π)
k ) − pπ λ̂kTr(Q̂(π)

k )

− Tr(Q̂(π)
k �̃

(π)
k ) − Tr(Q̃(π)

k �̂
(π)
k )

+ Tr(Q̃(π)
k �̃

(π)
k ) + Tr(Q̂(π)

k �̂
(π)
k )}

≤
K∑

k=1

{
λ̃k

[
∑

π∈PK

pπTr(Q̂(π)
k ) − ntP k

]

+ λ̂k

[
∑

π∈PK

pπTr(Q̃(π)
k ) − ntP k

]}

≤ 0.

From the other four K-T conditions, we obtain that all the
terms on the right are negative and thus C ≤ 0. But this con-
tradicts the diagonally strict concavity condition and so the
Nash Equilibrium is unique.

Appendix C

We want to prove that there is no optimality loss when re-
stricting the search for the optimal covariance matrices to
Qk ∈ ASIC

k such that Q(π)
k = WkP(π)

k WH
k , for all π ∈ PK .
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Let us consider user k ∈ K. We have that:

arg max
Qk∈ASIC

k

uk(Qk,Q−k)

= arg max
Qk∈ASIC

k

{
∑

π∈PK

pπE log2

∣∣∣∣∣I + ρHkQ(π)
k HH

k

+ ρ
∑

�∈K(π)
k

H�Q(π)
� HH

�

∣∣∣∣∣

}

= arg max
Qk∈ASIC

k

{
∑

π∈PK

pπE

× log2

∣∣∣∣∣I + ρVH̃kWH
k Q(π)

k WkH̃H
k VH

+ ρ
∑

�∈K(π)
k

VH̃�WH
� Q(π)

� W�H̃H
� VH

∣∣∣∣∣

}

= arg max
Qk∈ASIC

k

{
∑

π∈PK

pπE

× log2

∣∣∣∣∣I + ρH̃kWH
k Q(π)

k WkH̃H
k

+ ρ
∑

�∈K(π)
k

H̃�WH
� Q(π)

� W�H̃H
�

∣∣∣∣∣

}

= arg max
Qk∈ASIC

k

{
∑

π∈K(π)
k

E log2

∣∣∣∣∣I + ρH̃kX(π)
k H̃H

k

+ ρ
∑

�∈K(π)
k

H̃�WH
� Q(π)

� W�H̃H
�

∣∣∣∣∣

}
, (28)

where we denoted with X(π)
k � WH

k Q(π)
k Wk . Knowing that

the utility function is concave w.r.t. the new defined matrices
X(π)

k , and the channel matrix Hk has independent entries,
we can directly apply the results given in [22] to prove that
annulling the non-diagonal entries of X(π)

k can only increase
the values of the functions

E log2

∣∣∣∣∣I + ρH̃kX(π)
k H̃H

k + ρ
∑

�∈K(π)
k

H̃�WH
� Q(π)

� W�H̃H
�

∣∣∣∣∣.

In conclusion the optimal matrices X(π)
k are diagonal, that

we will denote with P(π)
k . The spectral decomposition of the

optimal covariance matrices are: Q(π)
k = WkP(π)

k WH
k .
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Successive Interference Cancelation

The proof of the uniqueness of the Nash equilibrium in Section 3 [27] (see Appendix
A.2), on page 3 (SIC) should be read as follows:

“This theorem corresponds to the matrix generalization of the diagonally strict con-
cavity (DSC) condition of [17] and is proven in Appendix B. To know whether this
condition is verified or not in the MIMO MAC one needs to re-write it in a more ex-
ploitable manner. It can be checked that C expresses as C =

∑

π∈PK
pπTπ where for each

π ∈ PK , Tπ is given by:

Tπ =
K∑

k=1

Tr
{(

Q
(π)′′

k −Q
(π)′

k

) [
∇
Q

(π)
k

R
(π)
k (Q

(π)′

k ,Q
(π)′

−k )−∇
Q

(π)
k

R
(π)
k (Q

(π)′′

k ,Q
(π)′′

−k )
]}

= E
K∑

r=1

Tr
{
ρHπ−1(r)(Q

(π)′′

π−1(r)
−Q

(π)′

π−1(r)
)HH

π−1(r)



(

I + ρHπ−1(r)Q
(π)′

π−1(r)
HH
π−1(r) + ρ

K∑

s=r+1

Hπ−1(s)Q
(π)′

π−1(s)
HH
π−1(s)

)−1

−
(

I + ρHπ−1(r)Q
(π)′′

π−1(r)
HH
π−1(r) + ρ

K∑

s=r+1

Hπ−1(s)Q
(π)′′

π−1(s)
HH
π−1(s)

)−1






= E
K∑

r=1

Tr
(
A(π)′′
r −A(π)′

r

)


(

I +
K∑

s=r

A(π)′
s

)−1

−
(

I +
K∑

s=r

A(π)′′
s

)−1



, E [Fπ(H)]
(A.1)

where A
(π)′
r = ρHπ−1(r)Q

(π)′

π−1(r)
HH
π−1(r), A

(π)′′
r = ρHπ−1(r)Q

(π)′′

π−1(r)
HH
π−1(r) and the users

have been ordered using their decoding rank rather than their index. Notice that since
the expectation operator is linear we can switch between the trace and expectation.

Let us denote by H = [H1, . . . ,HK ], Q′ = (Q′k)k∈K, , Q′′ = (Q′′k)k∈K, Q(π)′ =(
Q

(π)′

k

)
k∈K

, , Q(π)′′ =
(
Q

(π)′′

k

)
k∈K

, A′ =
(
A

(π)′

k

)
π∈PK ,k∈K

, A′′ =
(
A

(π)′′

k

)
π∈PK ,k∈K

.

In order to prove that the DSC condition holds we have to prove that for all Q′ 6= Q′′

we have C > 0.

Let us give a very useful result.

Lemma 1 For any positive definite matrices A1, B1, and any positive semi-definite
matrices Ai, Bi, i ∈ {2, . . . ,K}, we have that

K∑

i=1

Tr



(Ai −Bi)






i∑

j=1

Bj



−1

−




i∑

j=1

Aj



−1



 ≥ 0 (A.2)

where the equality holds if and only if Aj = Bj for all j ∈ {1, . . . ,K}
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The proof can be found in [42], for K = 2, and in [43] for arbitrary K ≥ 2. Using
this result, we can prove that for any channel realization, any Q′,Q′′ and any π ∈ PK :

Fπ(H) = Tr
(
A(π)′′
r −A(π)′

r

)


(

I +

K∑

s=r

A(π)′
s

)−1

−
(

I +

K∑

s=r

A(π)′′
s

)−1

 ≥ 0 (A.3)

implying that Tπ ≥ 0 and that C ≥ 0. Let us consider now two arbitrary covariance
matrices such that Q′ 6= Q′′. This means that there is at least one decoding order
ϑ ∈ PK such that Q(ϑ)′ 6= Q(ϑ)′′ . We will prove that Tϑ > 0 which will imply the desired
result C > 0.

Remark: Assuming that rank(HH
k Hk) = nt, for all k ∈ K, and nt ≤ nr + 1, then

Q′ 6= Q′′ implies that A′ 6= A′′. This means that for any channel realization we have
Fϑ(H) > 0 which implies directly Tϑ > 0 and C > 0.

For the general proof, let us define the following sets:

AH(Q(ϑ)′ ,Q(ϑ)′′) =
{

H ∈ DH |∀k ∈ K : Hk(Qk
(ϑ)′ −Qk

(ϑ)′′)HH
k = 0

}

ÃH(Q(ϑ)′ ,Q(ϑ)′′) =
{

H ∈ DH |∃k ∈ K : Hk(Q
(ϑ)′

k −Q
(ϑ)′′

k )HH
k 6= 0

} (A.4)

We know that:

Tϑ = E[Fϑ(H)]

=

∫

DH
Fϑ(H)L(H)dH

=

∫

AH(Q(ϑ)′ ,Q(ϑ)′′ )
Fϑ(H)L(H)dH +

∫

ÃH(Q(ϑ)′ ,Q(ϑ)′′ )
Fϑ(H)L(H)dH

=

∫

ÃH(Q(ϑ)′ ,Q(ϑ)′′ )
Fϑ(H)L(H)dH

(A.5)

where L(H) > 0 stands for the p.d.f. of H ∈ DH ≡ Cnr×Knt . The second equality
follows since DH = AH(Q(ϑ)′ ,Q(ϑ)′′) ∪ ÃH(Q(ϑ)′ ,Q(ϑ)′′). The third equality follows
since for all H ∈ AH(Q(ϑ)′ ,Q(ϑ)′′) we have that Fϑ(H) = 0 from Lemma A.2. We
know that for all H ∈ ÃH(Q(ϑ)′ ,Q(ϑ)′′) we have that Fϑ(H) > 0. It suffices to prove
that ÃH(Q(ϑ)′ ,Q(ϑ)′′) is a subset of non-zero Lebesgue measure to imply that Tϑ > 0
and thus that C > 0. It turns out that we can prove the existence of a compact set
UH ⊆ ÃH(Q(ϑ)′ ,Q(ϑ)′′) for arbitrary Q(ϑ)′ 6= Q(ϑ)′′ . Thus, we have the desired result
C > 0.”

Single User Decoding

The proof of uniqueness of the Nash equilibrium in Section 4 [27] (see Appendix A.2)
on page 12 should be read as follows:

“Uniqueness of the Nash equilibrium. Here we can specialize Theorem 4, which is the
matrix extension of Theorem 2. When the strategies sets are not sets of pairs of matrices
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but only sets of matrices, the diagonally strict concavity condition in (6) can be written

as follows. For all Q
(0)′

k ,Q
(0)′′

k ∈ ASUD
k such that (Q

(0)′
1 , . . . ,Q

(0)′

K ) 6= (Q
(0)′′
1 , . . . ,Q

(0)′′

K ):

C =

K∑

k=1

Tr
{

(Q
(0)′′

k −Q
(0)′

k )
[
∇
Q

(0)
k

u1(Q
(0)′

k ,Q
(0)′

k )−∇
Q

(0)
k

u1(Q
(0)′′

k ,Q
(0)′′

k )
]}

.

(A.6)
Now we can evaluate C and obtain that:

C = E
K∑

k=1

Tr




[
ρHk(Q

(0)′

k −Q
(0)′′

k )HH
k

]


(

I + ρ
K∑

`=1

H`Q
(0)′′

` HH
`

)−1

−
(

I + ρ
K∑

`=1

H`Q
(0)′

` HH
`

)−1






= ETr{(B′ −B
′′
)[(B

′′
)−1 − (B

′
)−1]},

= E[F0(H)]

(A.7)

which is positive for any B
′

= I +

K∑

`=1

H`Q
(0)′HH

` , B
′′

= I +

K∑

`=1

H`Q
(0)′′HH

` from (A.2)

for K = 2. We need to prove that for any (Q
(0)′
1 , . . . ,Q

(0)′

K ) 6= (Q
(0)′′
1 , . . . ,Q

(0)′′

K ) we have
C > 0.

Remark: Assuming that rank(HHH) = Knt and Knt ≤ nr + K, then Q′ 6= Q′′

implies that B′ 6= B′′. This means that for any channel realization we have F0(H) > 0
which implies directly that C > 0.

For the general proof, we define the following sets:

BH(Q(0)′ ,Q(0)′′) =
{

H ∈ DH |
∑K

k=1 Hk(Qk
(0)′ −Qk

(0)′′)HH
k = 0

}

B̃H(Q(0)′ ,Q(0)′′) =
{

H ∈ DH |
∑K

k=1 Hk(Qk
(0)′ −Qk

(0)′′)HH
k 6= 0

} (A.8)

We know that:

C = E[F0(H)]

=

∫

DH
F0(H)L(H)dH

=

∫

BH(Q(0)′ ,Q(0)′′ )
F0(H)L(H)dH +

∫

B̃H(Q(0)′ ,Q(0)′′ )
F0(H)L(H)dH

=

∫

B̃H(Q(0)′ ,Q(0)′′ )
F0(H)L(H)dH

(A.9)

The second equality follows since DH = BH(Q(0)′ ,Q(0)′′) ∪ B̃H(Q(0)′ ,Q(0)′′). The
third equality follows because F0(H) = 0 for all H ∈ BH(Q(0)′ ,Q(0)′′) from Lemma 1.
We also know that F0(H) > 0 for all H ∈ B̃H(Q(0)′ ,Q(0)′′). It suffices to prove that
B̃H(Q(0)′ ,Q(0)′′) is a subset of non-zero Lebesgue measure to imply that C > 0. Here as
well, the existence of the compact set can be proved (similarly to the proof for the SIC
decoding technique). ”
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)−1
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)−1
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1. INTRODUCTION

Trace inequalities are useful in many areas such as the multiple input multiple output (MIMO)
systems in control theory and communications. The trace inequality derived in this paper is used
to prove the sufficient condition that guarantees the uniqueness of a Nash equilibrium in certain
MIMO communications games with K ≥ 1 players (see [2] for details). To be more specific,
the diagonally strict concavity condition of Rosen [3] is proven to be satisfied in the scenario of
[2]. The trace inequality under discussion has already been proven in two special cases: in [4]
for K = 1 and in [1] for K = 2. In what follows, we will provide the proof for the general case
where K ≥ 1 is arbitrary.

Theorem 1.1. Let K be a strictly positive integer, A1, B1 be any positive definite matrices and
∀k ∈ {2, . . . , K}, Ak, Bk be any positive semidefinite matrices. Then

(1.1) TK , Tr





K∑

k=1

(Ak −Bk)



(

k∑

`=1

B`

)−1

−
(

k∑

`=1

A`

)−1




 ≥ 0,

where Tr(·) denotes the matrix trace operator.

2. AUXILIARY RESULTS

In order to prove Theorem 1.1, we will use the following auxiliary results.

Lemma 2.1. [1] Let A, B be two positive definite matrices and C, D be two positive semidefi-
nite matrices and X a Hermitian matrix. Then

(2.1) Tr
{
XA−1XB−1

}
− Tr

{
X(A+C)−1X(B+D)−1

}
≥ 0.

The proof can be found in [1].

Lemma 2.2. Let A, B be two positive definite matrices, C, D, two positive semi-definite ma-
trices. Then

(2.2) Tr {(A−B)(B+D)−1(C−D)(A+C)−1} =
Tr {(C−D)(B+D)−1(A−B)(A+C)−1} ∈ R.

Proof. To prove this result, let us define E as follows:

(2.3) E = Tr
{
(C−D)

[
(B+D)−1 − (A+C)−1

]}

We observe that E can be written in two different ways:

(2.4)
E = Tr {(C−D)(B+D)−1[A+C−B−D](A+C)−1}

= Tr {(C−D)(B+D)−1(C−D)(A+C)−1}+
Tr {(C−D)(B+D)−1(A−B)(A+C)−1} ,

and

(2.5)
E = Tr {(C−D)(A+C)−1[A+C−B−D](B+D)−1}

= Tr {(C−D)(A+C)−1(C−D)(B+D)−1}+
Tr {(C−D)(A+C)−1(A−B)(B+D)−1} .

Using this fact and the commutative property of the trace of a matrix product, the desired result
follows directly. The only thing left to be proven is that E is real. To this end, if we denote by
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M = (C−D)(B+D)−1(A−B)(A+C)−1, we observe that MH = (A+C)−1(A−B)(B+
D)−1(C−D). Therefore, we obtain that Tr(MH) = Tr(M) and also Tr(M) ∈ R.

3. PROOF OF THEOREM 1.1

Define, for all k ≥ 1, Xk =
k∑

i=1

Ai and Yk =
k∑

i=1

Bi. Notice that Xk and Yk are positive

definite matrices. We observe that TK can be re-written recursively as follows:

(3.1)





T1 = Tr
{
(A1 −B1)Y

−1
1 (A1 −B1)X

−1
1

}

TK = TK−1 + Tr
{
(AK −BK)Y

−1
K (AK −BK)X

−1
K

}
+

Tr
{
(AK −BK)Y

−1
K (XK−1 −YK−1)X

−1
K

}

We proceed in two steps. First, we find a lower bound for TK and then we prove that this bound
is positive.

We start by proving that, for all K ≥ 1:
(3.2)

TK ≥
1

2

K∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1

2
Tr
{
(XK −YK)Y

−1
K (XK −YK)X

−1
K

}

To this end we proceed by induction on K. For all K ≥ 1, define the proposition:
(3.3)

PK : TK ≥
1

2

K∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+
1

2
Tr
{
(XK −YK)Y

−1
K (XK −YK)X

−1
K

}
.

It is easy to check that, for K = 1, P1 is true:
(3.4)
T1 = Tr

{
(A1 −B1)Y

−1
1 (A1 −B1)X

−1
1

}

= 1
2
Tr
{
(A1 −B1)Y

−1
1 (A1 −B1)X

−1
1

}
+ 1

2
Tr
{
(X1 −Y1)Y

−1
1 (X1 −Y1)X

−1
1

}
.

Now, let us assume that PK−1 is true and prove that PK is also true. We have that:

(3.5)
TK−1 ≥ 1

2

K−1∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr
{
(XK−1 −YK−1)Y

−1
K−1(XK−1 −YK−1)X

−1
K−1

}
.

From (3.5) and the recursive formula (3.1), we further obtain:
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(3.6)

TK ≥ 1
2

K−1∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr
{
(XK−1 −YK−1)Y

−1
K−1(XK−1 −YK−1)X

−1
K−1

}
+

Tr
{
(AK −BK)Y

−1
K (AK −BK)X

−1
K

}
+ Tr

{
(AK −BK)Y

−1
K (XK−1 −YK−1)X

−1
K

}

(a)

≥ 1
2

K−1∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr
{
(XK−1 −YK−1)Y

−1
K (XK−1 −YK−1)X

−1
K

}
+

Tr
{
(AK −BK)Y

−1
K (AK −BK)X

−1
K

}
+ Tr

{
(AK −BK)Y

−1
K (XK−1 −YK−1)X

−1
K

}

(b)
= 1

2

K−1∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr
{
(XK−1 −YK−1)Y

−1
K (XK−1 −YK−1)X

−1
K

}
+

Tr
{
(AK −BK)Y

−1
K (AK −BK)X

−1
K

}
+ 1

2
Tr
{
(AK −BK)Y

−1
K (XK−1 −YK−1)X

−1
K

}
+

1
2
Tr
{
(XK−1 −YK−1)Y

−1
K (AK −BK)X

−1
K

}

= 1
2

K∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr
{
(XK−1 −YK−1)Y

−1
K (XK−1 −YK−1)X

−1
K

}
+

1
2
Tr
{
(AK −BK)Y

−1
K (AK −BK)X

−1
K

}
+ 1

2
Tr
{
(AK −BK)Y

−1
K (XK−1 −YK−1)X

−1
K

}
+

1
2
Tr
{
(XK−1 −YK−1)Y

−1
K (AK −BK)X

−1
K

}

= 1
2

K∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1
2
Tr
{
(XK−1 +AK −YK−1 −BK)Y

−1
K (XK−1 +AK −YK−1 −BK)X

−1
K

}

(c)
= 1

2

K∑

i=1

Tr
{
(Ai −Bi)Y

−1
i (Ai −Bi)X

−1
i

}
+

1

2
Tr
{
(XK −YK)Y

−1
K (XK −YK)X

−1
K

}
.

The inequality (a) follows by applying Lemma 2.1 to the second term on the right and also
by considering that XK = XK−1+AK and YK = YK−1+BK . The equality (b) follows from
Lemma 2.2.
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A TRACE INEQUALITY 5

The last step of the proof of Theorem 1.1 reduces to showing that the term on the right side
of the equality (c) is positive. This can be easily checked by observing that all the terms of the
form Tr {XB−1XA−1}, with X a Hermitian matrix, A and B two positive definite matrices,
can be re-written as Tr(NNH) ≥ 0 with N = A−1/2XB−1/2. Thus, for all K ≥ 1, TK ≥ 0 and
the desired result has been proven.
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ABSTRACT
We model the interaction of several radio devices aiming to
obtain wireless connectivity by using a set of base stations
(BS) as a non-cooperative game. Each radio device aims to
maximize its own spectral efficiency (SE) in two different
scenarios: First, we let each player to use a unique BS (BS
selection) and second, we let them to simultaneously use
several BSs (BS Sharing). In both cases, we show that the
resulting game is an exact potential game. We found that
the BS selection game posses multiple Nash equilibria (NE)
while the BS sharing game posses a unique one. We provide
fully decentralized algorithms which always converge to a
NE in both games. We analyze the price of anarchy and
the price of stability for the case of BS selection. Finally,
we observed that depending on the number of transmitters,
the BS selection technique might provide a better global
performance (network spectral efficiency) than BS sharing,
which suggests the existence of a Braess type paradox.

General Terms
Game Theory, Potential Games, Base Station Selection, Base
Station Sharing, Self-Configuring Networks, Braess Para-
dox.

1. INTRODUCTION
In this paper, we consider the case where several radio

devices aim to obtain wireless connectivity by using several
base stations (BS). Here, each device must strategically de-
termine the set of BSs to use, as well as the corresponding
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power level allocated to each BS to maximize its own spec-
tral efficiency in bps/Hz. In this context, we consider two
different scenarios. First, we let each player to use a unique
BS (BS selection) and second, we let them to simultaneously
use several BSs (BS Sharing).

Note that if only one BS is considered, our model simplifies
to a multiple access channel (MAC). Here, when all trans-
mitters access the BS using the same carrier, each device
uses its maximum transmit power. When, the BS is acces-
sible through out several carriers, each transmitter uses a
water-filling power allocation (PA) considering the observed
multiple access interference as background noise at each car-
rier [29]. In the first case, such solution is Pareto optimal,
if and only if the sum of the achieved Shannon rates lies in
the convex hulk of the capacity region of the corresponding
MAC [10]. Generally, this condition may require certain co-
ordination between the transmitters, which can be achieved
by using pricing methods [1]. Conversely, in the second case,
the solution is always Pareto optimal [29]. In a more general
context, when there exists several BSs and regardless of the
performance metric, the model remains being a subject of
intensive research [3], [4], [12], [11], [24], [28].

Up to the knowledge of the authors, the state of art of
the BS sharing and BS selection scenarios is described by
the following contributions: [18], [3], [4], [24]. In [18], the
BS selection problem is investigated by considering that each
node is characterized by a fixed single user spectral efficiency.
Here, the authors showed that based on the scheme of expo-
nential learning, players converge to an evolutionarily stable
equilibrium. Additionally, the authors showed that the price
of anarchy of such a game is unaffected by disparities in the
nodes’ characteristics. In [24], the authors studied the BS se-
lection scenario assuming that the transmitters aim to min-
imize their transmit power level required to achieve a target
signal to interference plus noise ratio (SINR). Here, the in-
teraction between the radio devices is modeled as an atomic
and non-atomic potential game [19] to study the existence,
uniqueness and efficiency of the NE. Other contributions us-
ing potential games for radio resource allocation are [23, 27,



16, 8, 9]. In [4], the non-atomic extension of the BS selection
game and the atomic extension of the BS sharing game are
investigated. Therein, the performance metric is the Shan-
non rate and channel realizations are considered identical
for all transmitters. Regardless of the possibly unrealistic
assumption, the authors of [4] identified the existence of at
least one NE in the non-atomic BS selection game and the
existence of a unique equilibrium in the atomic BS sharing
game. In [3], the authors study the BS selection and shar-
ing scenarios when the number of receivers is equal to the
number of transmitters and the performance metric is their
overall SINR, i.e., the sum of the SINRs obtained at each
BS. In this context, it is showed that when all players ob-
served the same channel realization (as in [4]), restricting
each player to choose only one BS produces a socially opti-
mal NE. Conversely, when the players are left free to share
their powers among several BSs, their utilities are strongly
decreased. This effect is known as the Braess Paradox in the
frame of congestion games [6].
In this paper, we tackle the BS selection and BS Shar-

ing scenarios by modeling them as potential games. Con-
trary to previous works [24], we consider as performance
metric the spectral efficiency of each player and we let the
channel realization for each transmitter to be independently
drawn from a given probability distribution. In the former
case, we study both the atomic and non-atomic extensions
of the game. In the atomic case, we show the existence
of multiple NE and we use the best response dynamics to
provide fully distributed algorithms to achieve a NE. This
algorithm is proved to converge independently of the chan-
nel realization and the bandwidth allocated to each BS. We
measure the price of anarchy of this solution and we ob-
served that the performance of the fully decentralized solu-
tion (self-configured network) is close to that one obtained
when there exists a central controller (optimally configured
networks). In the non-atomic extension, we provide the op-
timal fractions of transmitter which must join each BS de-
pending on their available bandwidths. Regarding, the BS
sharing game, we show the existence of a unique NE. As in
the previous case, we provide a fully decentralized algorithm
which allows achieving a NE with probability one. Finally,
we compare both scenarios and identify that BS selection
performs better than BS sharing when there exists almost
the same number or more transmitters than BSs. As iden-
tified in [3], this observation constitutes a Braess type para-
dox, which implies that increasing the space of strategies of
each player, i.e., the number of BSs each player can use, ends
up degenerating the global performance of the network.

2. SYSTEM MODEL
Notation: In the sequel, matrices, vectors and scalars are

respectively denoted by boldface upper case symbols, bold-
face lower case symbols, and italic lower case symbols. The
transpose and Hermitian transpose of a vector x (matrix
X) is denoted by xT and xH (resp. XT and XH). The
sets of natural and real numbers are denoted by N and R,
respectively. Finite sets of natural numbers are denoted by
calligraphic upper case letters. Given two sets denoted by
A and B, their Cartesian product is denoted by A×B. The
cardinality of set A is denoted by |A|. The S-dimensional

vectors es, for all s ∈ {1, . . . , S} and S ∈ N, denotes a vec-
tor with zeros in all its entries except the s-th entry which
is unitary. The operator [x]+, with x ∈ R, represents the
operation max(0, x).

Consider a set K = {1, . . . ,K} of transmitters and a set of
S = {1, . . . , S} receivers, e.g., base stations (BS) or access
points (AP). Each transmitter can access the network by
using a (non-empty) set of BSs. Each BS operates in a spe-
cific frequency band and we neglect any type of interference
due to the adjacent bands (adjacent channel interference).
We denote the bandwidth associated with BS s ∈ S by Bs

and the total network bandwidth by B =
PS

s=1 Bs. Each
transmitter sends private messages only to its corresponding
BSs and it does not exist any kind of information exchange
between transmitters neither before nor during the whole
transmission. Both transmitters and BSs are equipped with
single antennas. Transmitter k ∈ K is able to simultaneously
transmit to all the BSs subject to a power constraint,

∀k ∈ K,
SX

s=1

pk,s 6 pk,max, (1)

where pk,s and pk,max respectively denote the transmit power
dedicated to BS s by transmitter k and its maximum to-
tal transmit power. Without any loss of generality, we as-
sume that all transmitters are limited by the same maximum
transmit power level, i.e., ∀k ∈ K, pk,max = pmax.

For all (k, s) ∈ K × S, we denote the channel coefficients
between transmitter k and BS s by hk,s. Each channel co-
efficient hk,s is a realization of a circularly symmetric com-
plex Gaussian random variable h with zero mean and unit
variance. We consider a slow fading channel, so that all
channel realizations remain constant during the transmis-
sion time. The baseband received signals sampled at sym-
bol rate at BS s, denoted by ys, can be written as a vector
y = (y1, . . . , yS)

T , such that

∀s ∈ S, ys = hsx
T
s +w. (2)

Here, for all (k, s) ∈ K × S, the K-dimensional vector hs =
(h1,s, . . . , hK,s). TheK-dimensional vector xs = (x1,s, . . . , xK,s),
and xk,s represents the symbol sent by transmitter k to BS
s. The power allocation vector of transmitter k is the vector
(pk,1, . . . , pk,S), and pk,s = E

ˆ
xk,sx

∗
k,s

˜
represents the power

transmitted toward BS s by player k. The S-dimensional
vector w = (w1, . . . , wS), with ws ∼ N

`
0, σ2

s

´
represents

the noise at the receivers. Here, σ2
s = N0 Bs, where N0

denotes the noise spectral density.
The SINR of transmitter k at BS s is denoted by γk,s and
∀(k, s) ∈ K × S,

γk,s =
pk,sgk,s
ζk,s

, (3)

where, ζk,s = σ2
s +

X

j∈K\k
pj,sgj,s represents the noise plus

multiple access interference (MAI) undergone by player k at
BS s and gk,s = |hk,s|2 represents the channel gains. We
denote by Ks the set of transmitters using the BS s. Then,
we define two different scenarios depending on the conditions
over the sets Ks for all s ∈ S. In the first scenario, named
BS selection, each transmitter uses a unique BS. Thus, for
all s ∈ S, the sets Ks such that |Ks| > 0 form a partition
of the set K, i.e., ∀(j, k) ∈ S2 and j 6= k, Kj ∩ Kk = ∅



and K1 ∪ . . . ∪ KS = K. In the second scenario, named BS
Selection, a given transmitter is allowed to simultaneously
use several BSs. Thus, for all s ∈ S, the sets Ks form a cover
of the set K, i.e., ∀s ∈ S, Ks ⊆ K. In the following two
sections, we study both scenarios. Later, we compare their
performance by simulation results.

3. BASE STATION SELECTION GAMES
Assume that each transmitter can be modeled as a ra-

tional selfish player and that such an assumption is com-
mon knowledge among all players. Then, the BS selection
scenario can be modeled by a non-cooperative game G1 de-
scribed by the tuple (K, (Pk)k∈K , (uk)k∈K). Here, the set
of transmitters K is the set of players. The strategy of a
given player k ∈ K is its PA scheme, i.e., the S-dimensional
PA vector pk = (pk,1, . . . , pk,S) ∈ Pk, where Pk is the set
of all actions of player k (strategy set). Since each player
only transmits to a unique BS, its strategy set is defined as
a finite set Pk,

Pk = {pk es : pk ∈ [0, pmax] , ∀s ∈ S, es = (es,1, . . . , es,S)

and ∀r ∈ S \ s, es,r = 0, and es,s = 1} . (4)

Then, a strategy profile of the game is a super vector

p = (p1, . . . ,pK) ∈ P,

where P is a finite set obtained from the Cartesian product
of the strategy sets Pk, for all k ∈ K, i.e., P = P1× . . .×PK .
Let us denote by p−k any vector in the finite set P−k =
P1 × . . . × Pk−1 × Pk+1 × . . . × PK . For a given k ∈ K,
the vector denoted by p−k represents the strategies adopted
by all the players other than player k. The utility function
for player k, is defined as uk : P → R+ and measures the
satisfaction of player k with respect to its chosen strategy
[21]. In this study, we define the utility function for all play-
ers as their spectral efficiency, i.e., the ratio between their
Shannon transmission rate and the available bandwidth B:

uk(pk,p−k, ) =
X

s∈S

Bs

B
log2 (1 + γk,s) , (5)

where γk,s is given by (Eq. 3) and p ∈ P.
In the sequel, we consider a finite number of transmitters

(players) such that each player is concerned with the strat-
egy (BS selection and transmit power allocation) adopted by
all the other players due to mutual interference. We name
this model: atomic BS selection game. In the second part,
we consider a high number of players such that each of them
is indifferent to the strategy adopted by every single player.
In this case, each player is rather concerned with the frac-
tion of players adopting the same strategy. We name this
model non-atomic BS selection games.

3.1 Atomic BS Selection Games
In the atomic extension of the BS selection game G1, our

interest is to find a strategy profile p∗ ∈ P such that no
player is interested in changing its own strategy. Once the
network configuration p∗ is reached, any unilateral devia-
tion of a given player decreases its own utility. A network
configuration p∗ is known as a Nash equilibrium [20].

Definition 1 (Nash Equilibrium). In the strategic game
G1, a strategy profile p ∈ P is an NE if it satisfies, for all
k ∈ K and for all p′

k ∈ Pk, that

uk(pk,p−k) > uk(p
′
k,p−k). (6)

In the following, we analyze the existence, multiplicity and
determination of such strategy profiles.

3.1.1 Existence of at least one NE
Our first step toward identifying the strategy profiles lead-

ing to a NE is to prove that there exists at least one NE for
any specific number of transmitters and BSs regardless of
the channel realizations. There exist several methodologies
for proving this [15]. In our case, we first show that the
game G1 is a potential game (PG).

Definition 2 (Exact Potential Game). Any strate-
gic game G defined by the tuple

`
K, (Pk)k∈K , (uk)k∈K

´
is an

exact potential game (PG) if there exists a function φ (p)
for all p ∈ P such that for all players k ∈ K and for all
p′
k ∈ Pk, it holds that

uk(pk,p−k)− uk(p
′
k,p−k) = φ(p)− φ(p′), (7)

where p′ =
`
p1, . . . ,pk−1,p

′
k,pk+1, . . . ,pK

´
.

Def. 2 together with Eq. (5) allow us to write the following
proposition:

Proposition 3. The strategic game G1 is an exact po-
tential game with potential function

φ(p) =
X

s∈S

Bs

B
log2

 

σ2
s +

KX

k=1

pk,sgk,s

!

. (8)

Since the BS selection game G1 is a PG (Prop. 3), the
following proposition (Prop. 4) is an immediate consequence
of Corollary 2.2 in [19].

Proposition 4 (Existence of the NE). The BS se-
lection game G1 always has at least one NE in pure strategies.

3.1.2 Multiplicity of the NE
Once we have ensured the existence of at least one NE,

we determine whether there exists a unique NE or several
NE. As a first step, we show that rational players always
transmit at the maximum power level pmax:

Proposition 5. In the BS selection game G1, all players
will always transmit at the maximum power independently
of the channel chosen to transmit.

Proof. The utility function of player k ∈ K transmitting

to a given BS s ∈ S is uk(pkes,p−k) = log2

“

1 +
pkgk,s

ζk,s

”

.

Then, since the logarithmic function is an increasing func-
tion, we have that ∀(k, s) ∈ K × S, and ∀pk ∈ [0, pmax],
uk(pkes,p−k) = log2(1+

pkgk,s

ζk,s
) 6 uk(pmaxes,p−k) = log2(1+

pmaxgk,s

ζk,s
). Hence, rational players will always use their max-

imum transmit power level.

Prop. 5 shows that the strategy set in (4) can be re-defined
as follows

Pk = {pmax es : ∀s ∈ S, es = (es,1, . . . , es,S)

and ∀r ∈ S \ s, es,r = 0, and es,s = 1} . (9)



The re-definition of the strategy sets Pk in Eq. (4) allows us
to study the multiplicity of the NE by using basic elements of
graph theory. First, let us index the elements of the strategy
set P by using the set I =

˘
1, . . . , SK

¯
such that they are

ordered following the index i ∈ I. Denote by p(i) the i-th
element of the strategy set P. Let us write each vector p(i)

with i ∈ I, as a vector p(i) =
“

p
(i)
1 , . . . ,p

(i)
K

”

, where for all

j ∈ K, p(i)
j ∈ Pj . Second, consider that each of the strategy

profiles p(i) with i ∈ I is represented by a vertex vi in a
given non-directed graph G. Each vertex is adjacent to the
K(S−1) vertices representing the strategy profiles obtained
by letting only one player to change its own strategy. Let
us denote by Vi the set of indices of the adjacent vertices of
vertex vi. More precisely, the graph G can be defined by the
tuple G = (V,A), where the set V = {v1, . . . , vSK} contains
the SK possible strategy profiles of the game and A is a
symmetric matrix (adjacency matrix of G) with dimensions
SK × SK and entries defined as follows ∀(i, j) ∈ I2 and
i 6= j,

ai,j = aj,i =


1 if i ∈ Vj
0 otherwise ,

(10)

and ai,i = 0 for all i ∈ I. In the non-directed graph G,
we define the distance between vertices vi and vj , for all
(i, j) ∈ I2 as the length of the shortest path between vi and
vj . Considering the structure of G, a more precise definition
can be formulated for the shortest path,

Definition 6. [Shortest Path] The distance (shortest path)
between vertices vi and vj, with (i, j) ∈ I2 in a given non-
directed graph G = (V, A), denoted by di,j(G) ∈ N is:

di,j(G) = dj,i(G) =
KX

k=1

1n

p
(i)
k

6=p
(j)
k

o. (11)

Note that the non-directed graph G satisfies the property:
∀(i, j) ∈ I2, with i 6= j, 1 6 di,j(G) 6 K. Thus, for a
specific number S of BSs and K transmitters, the maximum
number of NE which can be observed is obtained as follows:

Proposition 7. In a given BS selection game G1 where
the condition

∀(i, j) ∈ I, with i 6= j, φ
“

p(i)
”

6= φ
“

p(j)
”

(12)

always holds, the maximum number of NE which can be ob-
served is SK−1.

Proof. Assume that a given strategy profile p(i) (vertex
vi) with i ∈ I is a NE (Prop. 4). Then, given the condition
(12) it follows that none of the vertices in the set Vi is a
NE. Hence, two NE vertices must be separated by a min-
imum distance two in the non-directed graph G = (V,A).
Thus, we obtain the maximum number of NE by calculat-
ing the maximum number of vertices mutually separated
by minimum distance two in G. Given any two vertices
vi and vj , for all (i, j) ∈ I2 with i 6= j we have that
di,j(G) > 1. Then, the vertex vi and all the vertices vj

such that j ∈ Ji,k =
n

n ∈ I \ {i} : p(n)
k 6= p

(i)
k

o

, for any

k ∈ K, are separated by minimum distance di,j(G) > 2.
Then, for any (i, k) ∈ I × K, the set Ji,k has cardinal-
ity |Ji,k| = SK−1 − 1. Then, the total number of points

p(1)p(2)

p(3)

p(4)

p(5)

p(6)

p(7)

p(8)

p(1)p(2)

p(3)

p(4)

p(5)

p(6)

p(7)

p(8)

(a) (b)

Figure 1: (a) Non-oriented graph and (b) oriented
graph representing the BS Selection game with K =
3, S = 2, under the condition φ(p(2)) > φ(p(6)) >
φ(p(1)) > φ(p(5)) > φ(p(4)) > φ(p(7)) > φ(p(8)) > φ(p(3)).
Total number of vertices: SK = 8, number of neigh-
bors per vertex: K(S − 1) = 3. Maximum Number
of NE: SK−1 = 4. Number of NE: 2 (red vertices in
(b)).

mutually separated by minimum distance 2 (including the
reference vertex vi) is |Ji,k| + 1 = SK−1, which completes
the proof.

3.1.3 Determination of the NE
To evaluate the number of NE of the game G1 for a specific

set of channel gains, we use an oriented graph Ĝ =
“

V, Â
”

,

where the adjacency matrix Â is a non-symmetric square
matrix whose entries are ∀(i, j) ∈ I2 and i 6= j,

âi,j =

(

1 if i ∈ Vj and φ
“

p(j)
”

> φ
“

p(i)
”

0 otherwise ,
(13)

and ai,i = 0 for all i ∈ I.
In the graph Ĝ, we say that a given vertex vi is adjacent

to vertex vj , if and only if φ(pi) > φ(pj) and dij(G) =

1. Note that the condition for adjacency in Ĝ represents
the rationality assumption of players: A player changes its
strategy if the new strategy brings a higher utility function,
i.e., increases the potential function. In Fig. 1, we show an
example of the non-directed G and oriented Ĝ graphs for
the case where K = 3 and S = 2.

From the definition of the matrix Â, we have that a neces-
sary and sufficient condition for a vertex vi to represent a NE
strategy profile is to have a null out-degree: deg+(vi) = 0
(sink vertex), in the oriented graph Ĝ. Hence, obtaining the
number of NE in the game G1 boils down to identifying all
the sinks in the oriented graph Ĝ. For doing so, it suffices
to identify the indices of the rows of matrix Â containing
only zeros. If the i-th row of matrix Â is a null vector,
then the strategy profile p(i) is a NE. However, building
the matrix Â requires complete CSI, since it is necessary to
determine whether φ(p(i)) > φ(p(j)), φ(p(i)) = φ(p(j)) or
φ(p(i)) < φ(p(j)) for all i ∈ I and j ∈ Vi.

To determine a strategy profile leading to a NE, in a dis-
tributed fashion with a less restrictive CSI at each radio
device, we introduce the following definition:

Definition 8 (Random Walks). A walk through an
oriented graph Ĝ is an ordered list of vertices vi1 , . . . , viN
such that vertex vin+1 is adjacent to vertex vin , with in ∈ I
for all n ∈ {1, . . . , N}, and N 6 SK . We say that a walk



is random if given a vertex vin , the vertex vin+1 is chosen
randomly from the set Vin .

From Def. 8, we have the following result:

Proposition 9. Any random walk in the oriented graph
Ĝ ends in a vertex representing a NE.

Proof. Each step of the walk, i.e. the transition from
vertex vin to vin+1 , can be interpreted as changing from

one strategy profile p(in), in ∈ I to another strategy profile
p(in+1), in+1 ∈ Vin such that φ(p(in)) < φ(p(in+1)). Since
there exists a finite number of vertices in the graph, it turns
out that any sequence φ(p(i1)) < φ(p(i2)) < . . . < φ(p(iN )),
with in ∈ I for all n ∈ {1, . . . , N}, is finite, i.e., N 6 SK .
Moreover, the walk is ended if and only if the vertex vN does
not have any adjacent node, i.e., vertex vN is a sink vertex.
From the definition of the adjacency matrix Â in Eq. (13)
it follows that any sink vertex represents a NE (Def. 1).
Thus, any random walk in the oriented graph Ĝ ends in a
NE. This completes the proof.

In practical terms, to perform a walk through the oriented
graph Ĝ implies imposing certain rules on each transmit-
ter of a given self-configuring network: (a) A given player
changes its strategy if and only if the potential function can
be strictly increased. (b) Two or more players do not change
their strategy simultaneously. (c) All players have the same
chances to update their strategies. The first condition de-
rives from the fact that each player aims to maximize its
own utility function. The second condition is to ensure that
each step in the random walk is equivalent to going from a
given vertex to one of its adjacent vertices. The third con-
dition is to ensure a random walk, i.e., to ensure that each
step is done with the same probability to any of the adja-
cent vertices. The last two conditions might require certain
synchronization system among the transmitters.

Algorithm 1 Base Station Selection Algorithm

Require: ∀k ∈ K,
MAI Vector: ζk(0) =

`
ζk,1(0), . . . , ζk,S(0)

´

Channel Realizations: gk = (gk,1, . . . , gk,S), ∀k ∈ K
t← 0.
repeat

t← t+ 1
for k = 1 to K do

s← argmax
i∈S

log2 (pmaxgk,s + ξk,s(t− 1))

pk(t)← pmaxes

ζk(t)← ζk(t− 1) + (pk(t)− pk(t− 1)) gT
k

until p(t) = p(t− 1)

Note that if the algorithm is implemented in a distributed
way, each player k ∈ K requires the knowledge of two pa-
rameters. First, the MAI level at each BS, i.e., the vector

ζ = (ζ1, . . . , ζS), where ζs = σ2
s +

X

k∈K
pk,sgk,s and which is

common to all the players. Second, the channel realization
with respect to each BS, i.e., the vector gk = (gk,1, . . . , gk,S).
Each element of the vector ζ is obtained by feedback from
the corresponding BS at a frequency higher than the recip-
rocal of the channel coherence time. Each element of the
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each step one player is randomly chosen to update
its strategy. All the sequences are obtained using
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vector gk must be estimated by transmitter k using channel
estimation techniques, e.g., combining channel reciprocity
and training sequences in a two-way link. An important re-
mark regarding the proposed algorithm is that the NE where
a given walk ends, mainly depends on the starting vertex in
the graph Ĝ and the order we let each player to update its
strategy. Thus, if each player is randomly chosen for up-
dating at a given point of time, it is not possible to predict
the NE where a walk ends. Hence, this might lead us to
the situation where the convergence point is a non-optimal
NE regarding a global metric, e.g., the network spectral ef-
ficiency. We analyze the optimality issues in Sec. 3.3. In
Fig. 2 we show a walk through the directed graph Ĝ of a
given BS selection game with K = 5 and S = 2 and a given
set of channel realizations. The potential obtained at each

possible strategy profile p(i), i.e., φ
“

p(i)
”

with i ∈ I is plot-

ted in Fig. 3 as a function of their index i. In Fig. 2, it can
be seen how different walks end in different NE.

3.2 Non-Atomic Base Station Selection Games
In the non-atomic BS selection game, we consider that

there exists a large number of players, such that players
are indifferent to the strategy adopted by any single player.
Each player is rather concerned with simultaneous devia-
tions of fractions of the total number of players. Let us
denote by xs the fraction of players transmitting to BS s,
and assume that

∀s ∈ Sk, xs = |Ks|
K

SX

i=1

xi = 1.
(14)

We denote the ratio between the available total bandwidth
B and the total number of transmitters K by α = B

K
. Thus,
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the ratio between the available bandwidth at BS s and K,
denoted by αs = Bs

K
, satisfies

PS
s=1 αs = α. Using, these

notations, the potential function φ can be written as follows

φ(p) =
X

s∈S

Bs

B
log2

 

σ2
s +

KX

k=1

pk,sgk,s

!

=
X

s∈S

Bs

B
log2

 

σ2
s + pmax

X

k∈Ks

gk,s

!

=
X

s∈S

Bs

B
log2

0

B
B
@
KN0 αs + pmax

|Ks|
K
|{z}

xs

K

|Ks|
X

k∈Ks

gk,s

1

C
C
A

=
X

s∈S

Bs

B
log2

 

N0 αs + (xspmax)
1

|Ks|
X

k∈Ks

gk,s

!

+
X

s∈S

Bs

B
log2(K) (15)

Note that the term
X

s∈S

Bs

B
log2(K) does not depend on

the strategy of the players. Thus, following Lemma 2.7 in
[19], the function

φ̃(p) =
X

s∈S

Bs

B
log2

 

N0 αs + (xspmax)
1

|Ks|
X

k∈Ks

gk,s

!

(16)
can be considered as another exact potential function of the
BS selection game G1. Now, we assume that the number
of players grows toward infinity at the same rate that the
bandwidth available at each BS, i.e.,

• B −→∞ and K −→∞,

• lim
B,K→∞

B

K
= α <∞, and

• ∀s ∈ S, lim
Bs,K→∞

Bs

K
= αs <∞.

From a practical point of view, when the number of trans-
mitters grows toward infinity while the total bandwidth or
number of BSs remain constant, the MAI becomes a dom-
inant parameter and thus, independently of the strategy
adopted by each player, their own utility function tends to
zero. Thus, no quality of service can be guaranteed, for in-
stance, in terms of minimum transmission rates. For avoid-
ing such a situation, we have considered that the number of
players grows to infinity at the same rate as the total band-
width. This ensures that the utility function of each player
does not tend to zero when the load (number of transmitters
per BS) of the network is increased. Under these conditions,
it holds that for all s ∈ S, |Ks| → ∞, and thus:

1

|Ks|
X

k∈Ks

gk,s →
Z ∞

−∞
λdFg(λ) = Ω, (17)

where Fg is the cumulative probability function associated
with the probability density function fg of the random vari-
able g (channel gains) described in Sec. 2: dFg(λ) = f(λ)dλ.

This result allows us to write the function φ as a function
of the fractions x1, . . . , xS ,

φ̃(x1, . . . , xS) =
X

s∈S

αs

α
log2 (N0 αs + xspmaxΩ) , (18)

and thus, finding a set of fractions such that no player is
interested to modify, i.e. a NE in the non-atomic extension
of the game G1 boils down to solve the following optimization
problem (OP) [26],
8

>>><

>>>:

max
x1,...,xS∈R+

X

s∈S

αs

α
log2 (N0 αs + xspmaxΩ) ,

s.t.

SX

i=1

xi = 1 and ∀i ∈ S, xi > 0,
(19)

which has a unique solution of the form

∀s ∈ S, xs =
Bs

B
. (20)

In Fig. 4, we show the fractions xs, with s ∈ S, obtained by
Monte-Carlo simulations and using Eq. (20) for a network
with S = 6 BSs and K = 100 transmitters. Therein, it
becomes evident that Eq. (20) is a precise estimation of the
outcome of the non-atomic BS selection game. Note that if
all the BSs are allocated with the same bandwidth Bs = B

S

∀s ∈ S, the fraction of players at each BS is identical, i.e.,
∀s ∈ S, xs = 1

S
. This result is a generalization of the one

in [4], where similar fractions were obtained for the case
where each BS is allocated with the same bandwidth and
players observe the same channel gains, i.e., ∀(k, s) ∈ K×S,
gk,s = 1.

3.3 Efficiency of the Nash Equilibria
Here, we evaluate the performance of the network when

a completely decentralized stable configuration is achieved
(Nash equilibrium) and the performance when there exists a
central controller that dictates a configuration which max-
imizes a given global metric. In this study, we consider as
global metric, the sum of the utilities of each player, i.e.,
the network spectral efficiency. To carry out such a study
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we consider two metrics known in the game theory jargon
as price of anarchy and price of stability [14]. We formally
define such parameters as follows:

Definition 10. In the strategic game
`
K, (Pk)k∈K , (uk)k∈K

´
,

denote the set of NE strategy profiles by P∗ ⊆ P. Then, the
price of anarchy (PoA) and the price of stability (PoS) are
the ratios,

PoA =

max
p∈P

KX

k=1

uk(p)

min
p∈P∗

KX

k=1

uk(p)

, (21)

and

PoS =

max
p∈P

KX

k=1

uk(p)

max
p∈P∗

KX

k=1

uk(p)

, (22)

respectively.

The discrete nature of the strategy set of the players makes
obtaining a closed-form expression for both the PoA and
PoS, a very difficult task. Thus, we evaluate both PoA and
PoS using Monte-Carlo simulations. For instance, in Fig 5,
we respectively plot the PoA and PoS for a network with
S ∈ {2, 3} BSs, and K ∈ {1, . . . , 9} players. Therein, we ob-
serve that the loss due to decentralization is minimum since
PoA −→ 1, when the number of players increase. Simi-
larly to the PoA, the PoS is also close to unity but different
from the PoA. This implies that effectively, the case where
several NE are observed, takes place often. As a conclud-
ing remark regarding the efficiency of NE, we state that
the self-configuring nature of the network does not imply a
significant loss of optimality, i.e., if the network were cen-

tralized by enforcing signaling protocols between all trans-
mitters and the different BSs, the gain in network spectral
efficiency will not justify the increment of signaling traffic
due to the feedback of the optimal strategies.

3.4 Equilibrium in Mixed Strategies
For any player k ∈ K, let the vector qk = (qk,1, . . . , qk,S)

represent a discrete probability distribution over the set of
pure strategies Pk. Here, qk,s represents the probability of
player k transmitting to BS s. The mixed-strategy space of
player k is the standard simplex Qk:

Qk = {(qk,1, . . . , qk,s) ∈ RS :
SX

s=1

qk,s = 1,

and ∀s ∈ S, qk,s > 0}, (23)

and the space of mixed-strategies is Q = Q1 × . . . × QK .
Let s = (s1, . . . , sK) be a vector in the discrete set SK .
Let us also index each element of the set SK with the set
˘
1, . . . , SK

¯
such that elements are ordered following the

index i ∈ {1, . . . , SK}. Denote by s(i) =
“

s
(i)
1 , . . . , s

(i)
K

”

, the

i-th element of such a set SK . Denote by p
(i)
−k, the vector

p
(i)
−k =

“

p
(i)
1 , . . . ,p

(i)
k−1,p

(i)
k+1, . . . ,p

(i)
K

”

,

where for all j ∈ K, p(i)
j = pmaxes

(i)
j

∈ Pj . In the mixed-

strategy extension of the BS selection game G1, the utility
function Uk(q), with q = (q1, . . . , qK) ∈ Q, is defined as the
expected value of the corresponding pure strategy utilities
with respect to the probability distributions qk for all k ∈ K,
i.e.

Uk(qk, q−k) =
SK
X

i=1

KY

k=1

q
k,s

(i)
k

uk(p
(i)
k ,p

(i)
−k). (24)

Following Lemma 2.10 in [19], and since, the game G1 is an
exact PG (Prop. 3), we claim the existence of a potential
function in the mixed-strategy extension of G1. We denote
such a potential by φ̄(q),

φ̄(q) =
SK
X

i=1

KY

k=1

q
k,s

(i)
k

φ(p(i)), (25)

where q ∈ Q. From [20], we know that there always exists a
NE in mixed strategies for the game G1. Thus the following
OP must have at least one solution,
8

>>>>>>><

>>>>>>>:

max
(qk,s)∀(k,s)∈K×S

SK
X

i=1

KY

k=1

q
k,s

(i)
k

φ(p(i))

s.t. ∀k ∈ K,
SX

s=1

qs,k = 1,

∀(k, s) ∈ K × S, qs,k > 0.

(26)

However, the solution to the OP (26) might not be neces-
sarily a fully mixed strategy, i.e., a vector qk with more
than one entry different from zero. Indeed, depending on
the channel realizations, it is possible that no NE in fully
mixed strategies is observed, i.e.,

∃(k, s) ∈ K × S : ∀q ∈ Q, Uk(es, q−k) > Uk(qk, q−k).
(27)
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For instance, consider the case when there exist two players
and two BSs, i.e., K = 2, and S = 2. Then, we obtain that
if there exists a pair (k, s) ∈ K × S, such that

gk,−s

gk,s
6 σ2

−s

σ2
s + pmaxg−k,s

, (28)

the condition (27) always holds and thus, it does not exist
a NE in fully mixed strategies. Here, we denote by −s and
−k the element other than s and k, in the binary sets S
and K, respectively. Note that the non-existence of a NE in
fully mixed strategies does not mean that it does not exist
a NE in mixed strategies [20]. The existence of at least one
NE in pure strategies has been proved (Prop. 4) and a pure
strategy NE is also a (degenerated) mixed strategy NE.
There exists several algorithms to iteratively solve the OP

(26). Those algorithms are known in the domain of machine
learning theory as linear reward inaction and linear reward
penalty [25]. Several applications of those algorithms are
presented in [27, 22, 17]. Contrary to the algorithms pre-
sented in this paper, linear reward inaction and penalty al-
gorithms requires to set up some parameters to refine the
convergence speed and the accuracy of the obtained prob-
ability distributions [25]. These parameters depend on the
channel realizations, which means that at each coherence
time such parameters must be re-adjusted by training.

4. BASE STATION SHARING GAMES
In this section, we consider the case where each player

can be associated with several BSs. Here, each player not
only selects its set of BSs but also the specific power level
to transmit to each of its BSs. We define this interaction
as a strategic game denoted by G2 = (K, (Pk)k∈K , (uk)k∈K),
where the set K remains being the indices of each player as
in the previous section, P represents the space of strategies,

where P = P1 × . . .PK and for all k ∈ K

Pk =
n

(pk,1, . . . , pk,S) ∈ RS : ∀s ∈ S, pk,s > 0,

and
X

s∈S
pk,s 6 pmax

)

.

The utility function remains being the spectral efficiency of
each player as defined by Eq. (5).

4.1 Existence and Uniqueness of the NE
To study the NE of the BS Sharing game G2, we first

introduce the following proposition:

Proposition 11. The BS sharing game G2 is an exact
potential game with potential function φ(p) given by Eq. (8)
for all p ∈ P.

Prop. 11 leads us to the following result:

Proposition 12. In the strategic game G2 the strategy
profile p∗ = (p∗

1, . . . ,p
∗
K), with p∗

k =
`
p∗k,1, . . . , p

∗
k,S

´
, where

for all (k, s) ∈ K × S,

p∗k,s =

»
Bs

B βk
− ζk,s

gk,s

–+

, (29)

is the unique NE of the game. The constant βk for each

player k is set to satisfy the condition
SX

s=1

pk,s = pmax and

ζk,s represents the noise plus MAI overcome by player k at
BS s.

Proof. To prove the existence of at least one NE, we
use the fact that the BS sharing game G2 is a PG (Prop.
11). Then, following Corollary 2.2 in [19], the existence of
at least one NE is ensured. Thus, proving the uniqueness of
the NE ends up being equivalent to prove that the OP:

max
p∈P

X

s∈S

Bs

B
log2

 

σ2
s +

X

j∈Ss

pj,sgj,s

!

(30)

posses a unique solution. Indeed, since the potential func-
tion φ is strictly concave on P and P is a simplex, and thus
convex, the Karush-Khun-Tucker (KKT) conditions are nec-
essary and sufficient conditions of optimality. Hence, we
write:
8

>>>><

>>>>:

∀(k, s) ∈ K × S, Bs
B

“
gk,s

pk,sgk,s+ζk,s

”

− βk + νk = 0

∀k ∈ K, βk

 
SX

s=1

pk,s − pmax

!

= 0

∀(k, s) ∈ K × S, νkpk,s = 0,

(31)

The solution to the system of equations (31) is known to
be unique and achieved by using the water-filling algorithm
[10]. Such a solution is given by expression Eq. (29) where

βk is uniquely determined to satisfy the condition
SX

s=1

pk,s =

pmax, for all k ∈ K. This ends up the proof.

4.2 Determination of the NE
The NE of the BS sharing game G2 is fully determined

by Eq. (29). Here, we study a decentralized algorithm such
that the NE in Prop. 12 can be achieved by players in
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a decentralized fashion. First, consider that the strategy
space P is obtained from the Cartesian product of the closed
convex sets Pk, for all k ∈ K. Second, note that the solution
to the OP

max
x∈Pk

φ
`
p1, . . . ,pk−1,x,pk+1, . . . ,pK

´
(32)

for all k ∈ K and for all p−k ∈ P−k is unique and can be
determined by using the water-filling algorithm [10]. Thus,
the OP (30) can be solved iteratively by using a non-linear
Gauss-Seidel method. Denote by pk(t) the solution to pk at
iteration t, where t ∈ N and pk(t+ 1) is given by

argmaxφ
`
p1(t+ 1), ...,pk−1(t+ 1),pk(t),pk+1(t), ...,pK(t)

´
.

Then, following Prop. 2.7.1 in [5], the convergence of the
sequence {pk(t)}t∈{1,...,N} for N >> 0 is ensured. Based on
this result, we introduce the algorithm Alg. 2 for the BS
sharing game:

Algorithm 2 Base Station Sharing Algorithm

Require: ∀k ∈ K,
MAI Vector: ζk(0) =

`
ζk,1(0), . . . , ζk,S(0)

´

Channel Realizations: gk = (gk,1, . . . , gk,S), ∀k ∈ K
t← 0.
repeat

t← t+ 1
for k = 1 to K do

pk(t)← argmax
pk∈Pk

X

s∈S

Bs

B
log2 (pk,sgk,s + ξk,s(t− 1))

ζk(t)← ζk(t− 1) + (pk(t)− pk(t− 1)) gT
k

until p(t) = p(t− 1)

In Fig. 6 we show the convergence to the maximum of the
potential function φ using Alg. 2 for the case of a network
with K = 6 transmitters and S = 3 BSs. Therein, we show
both a round Robin and random updates. In both cases, the
convergence is achieved in very few iterations.

5. PERFORMANCE ANALYSIS
In this section, we use algorithms Alg. 1 and Alg. 2 to

compare the global performance of the network when BS
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selection and BS sharing are used. We choose the network
spectral efficiency as the global performance metric, i.e., the
sum of the utilities of all players. In fig. 7, we plot the
network spectral efficiency for a network with S ∈ {2, 4, 8}
BSs and K ∈ {2, . . . , 60} transmitters assuming an SNR
of 10 dB for each player. We observe that when K < S
the BS sharing technique performs better than BS selection.
However, when K > S, the performance of the BS selection
is strongly superior to BS sharing. For a large number of
transmitters both techniques perform similarly.

Note that the strategy space of each player is bigger in the
BS sharing scenario. Thus, one can think that a better per-
formance is always obtained by using BS sharing than using
BS selection. Paradoxically, we have found that on the con-
trary, for nearly fully and fully loaded networks i.e., K ≃ S
and K > S, increasing the space of strategies of each player
produces a global loss of performance. A similar paradox is
observed in congestion games where adding extra capacity
to the network ends up reducing the overall performance [6].
A similar paradox to the one presented in this work is also
observed in [3, 7, 13, 2].

6. CONCLUDING REMARKS
We have investigated the BS selection and BS sharing sce-

narios in the context of self-configuring networks using a
non-cooperative model focusing on the spectral efficiency of
each transmitter. We have proved the existence of at least
one NE in both cases. In the BS sharing game a unique
NE is observed, whereas BS selection games might exhibit
several. We have provided fully decentralized algorithms
such that players can calculate their NE strategy based on
local information and the MAI observed at each BS. We
have observed that no significant gain would be achieved by
introducing a central controller in the case of BS selection.
The self-configured network performs almost identical to the



optimally configured network.
Finally, we have identified that depending on the number

of transmitters BS selection might perform better than BS
sharing. This result implies a Braess type paradox, where
increasing the strategy space of each players produces a de-
generation of the global network spectral efficiency.

7. ACKNOWLEDGMENTS
This work was partially supported by Alcatel-Lucent within

the Alcatel-Lucent Chair in Flexible Radio at SUPELEC.

8. REFERENCES
[1] T. Alpcan, T. Basar, R. Srikant, and E. Altman.

CDMA uplink power control as a noncooperative
game. 40th IEEE Conf. on Decision and Control,
2001.

[2] E. Altman, T. Jimenez, N. Vicuna, and R. Marquez.
Coordination games over collision channels. 6th Intl
Symp. on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks - WiOPT, April 2008.

[3] E. Altman, V. Kumar, and H. Kameda. A Braess type
paradox in power control over interference channels.
Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks - WiOPT, Apr. 2008.

[4] E. Belmega, S. Lasaulce, and M. Debbah.
Decentralized handovers in cellular networks with
cognitive terminals. 3rd Intl. Symp. on
Communications, Control and Signal Processing -
ISCCSP, March 2008.

[5] D. P. Bertsekas. Nonlinear programming. Athena
Scientific, 1995.
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Power Allocation Games in Interference Relay
Channels: Existence Analysis of Nash Equilibria

Elena Veronica Belmega, Brice Djeumou, and Samson Lasaulce

Abstract—We consider a network composed of two interfering
point-to-point links where the two transmitters can exploit one
common relay node to improve their individual transmission rate.
Communications are assumed to be multi-band and transmitters
are assumed to selfishly allocate their resources to optimize
their individual transmission rate. The main objective of this
paper is to show that this conflicting situation (modeled by a
non-cooperative game) has some stable outcomes, namely Nash
equilibria. This result is proved for three different types of
relaying protocols: decode-and-forward, estimate-and-forward,
and amplify-and-forward. We provide additional results on the
problems of uniqueness, efficiency of the equilibrium, and con-
vergence of a best-response based dynamics to the equilibrium.
These issues are analyzed in a special case of the amplify-and-
forward protocol and illustrated by simulations in general.

Index Terms—Cognitive radio, game theory, interference chan-
nel, interference relay channel, Nash equilibrium, power alloca-
tion games, relay channel.

I. INTRODUCTION

A possible way to improve the performance in terms of
range, transmission rate or quality of a network composed
of mutual interfering independent source-destination links, is
to add some relaying nodes in the network. This approach
can be relevant in both wired and wireless networks. For
example, it can be desirable and even necessary to improve
the performance of the (wired) link between the digital sub-
scriber line (DSL) access multiplexors (or central office) and
customers’ facilities and/or the (wireless) links between some
access points and their respective receivers (personal com-
puters, laptops, etc). The mentioned scenarios give a strong
motivation for studying the following system composed of two
transmitters communicating with their respective receivers and
which can use a relay node. The channel model used to analyze
this type of network has been called the interference relay
channel (IRC) in [3][4] where the authors introduce a channel
with two transmitters, two receivers, and one relay, all of them
operating in the same frequency band. The main contribution
of [3][4] is to derive achievable transmission rate regions for
Gaussian IRCs assuming that the relay is implementing the
decode-and-forward protocol (DF) and dirty paper coding.

In this paper, we consider multi-band interference relay
channels and three different types of protocols at the re-

The material in this paper has been presented in part at the IEEE Intl.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan,
April 2009 [1] and the ICST/IEEE Intl. Conf. on Game Theory for Networks
(GAMENETS), Istanbul, Turkey, May 2009 [2].

E. V. Belmega, B. Djeumou, and S. Lasaulce are with LSS (joint lab of
CNRS, Supélec, Paris 11), Supélec, Plateau du Moulon, 91192 Gif-sur-Yvette,
France, {belmega,djeumou,lasaulce}@lss.supelec.fr.

lay, namely DF, estimate-and-forward (EF), and amplify-and-
forward (AF). One of our main objectives is to study the cor-
responding power allocation (PA) problems at the transmitters.
To this end, we proceed in two main steps. First, we provide
achievable transmission rates for single-band Gaussian IRCs
when DF, EF, and AF are respectively assumed. Second, we
use these results to analyze the properties of the transmission
rates for the multi-band case. In the multi-band case, we
assume that the transmitters are decision makers that can freely
choose their own resource allocation policies while selfishly
maximizing their transmission rates. This resource allocation
problem can be modeled as a static non-cooperative game.
The closest works concerning the game-theoretic approach
we adopt here seem to be [5][6][7][8] and [9][10][11]. In [5]
[6], the authors study the frequency selective and the parallel
interference channels and provide sufficient conditions on the
channel gains that ensure the existence and uniqueness of the
Nash equilibrium (NE) and convergence of iterative water-
filling algorithms. These conditions have been further refined
in [7]. In [9], a traffic game in parallel relay networks is con-
sidered where each source chooses its power allocation policy
to minimize a certain cost function. The price of anarchy [12]
is analyzed in such a scenario. In [10], a quite similar analysis
is conducted for multi-hop networks. In [11], the authors
consider a special case of the Gaussian IRC where there
are no direct links between the sources and destinations and
there are two dedicated relays (one for each source-destination
pair) implementing DF. The power allocation game consists
in sharing the user’s power between the source and relay
transmission. The existence, uniqueness of, and convergence
to a NE issues are addressed. In the present paper however,
we mainly focus on the existence issue of an NE in the
games under study, which is already a non-trivial problem. The
uniqueness, efficiency, and the design of convergent distributed
power allocation algorithms are studied only in a special case
and the generalization is left as very useful extension of the
present paper.

This paper is structured as follows. Sec. II describes the
system model and assumptions in multi-band IRCs. Sec. III
provides achievable transmission rates for single-band IRCs.
These rates are exploited further in multi-band IRCs (as users’
utility functions) analyzed in Sec. IV where the existence
issue of NE in the non-cooperative power allocation game is
studied. Three relaying protocols are considered: DF, EF, and
AF. Sec. IV provides additional results on uniqueness of NE
and convergence to NE for the AF protocol. Sec. V illustrates
simulations highlighting the importance of optimally locating
the relay and the efficiency of the possible NE. We conclude
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with summarizing remarks and possible extensions in Sec. VI.

II. SYSTEM MODEL

The system under investigation is represented in Fig. 1. It
is composed of two source nodes S1, S2 (also called trans-
mitters), transmitting their private messages to their respective
destination nodes D1, D2 (also called receivers). To this end,
each source can exploit Q non-overlapping frequency bands
(the notation (q) will be used to refer to band q ∈ {1, . . . , Q})
which are assumed to be of unit bandwidth. The signals
transmitted by S1 and S2 in band (q), denoted by X

(q)
1 and

X
(q)
2 , respectively, are assumed to be independent and power

constrained:

∀i ∈ {1, 2},

Q∑

q=1

E|X(q)
i |2 ≤ Pi. (1)

For i ∈ {1, 2}, we denote by θ
(q)
i the fraction of power that

is used by Si for transmitting in band (q) that is, E|X (q)
i |2 =

θ
(q)
i Pi. Additionally, we assume that there exists a multi-band

relay R. With these notations, the signals received by D1, D2,
and R in band (q) express as:




Y
(q)
1 = h

(q)
11 X

(q)
1 + h

(q)
21 X

(q)
2 + h

(q)
r1 X

(q)
r + Z

(q)
1

Y
(q)
2 = h

(q)
12 X

(q)
1 + h

(q)
22 X

(q)
2 + h

(q)
r2 X

(q)
r + Z

(q)
2

Y
(q)
r = h

(q)
1r X

(q)
1 + h

(q)
2r X

(q)
2 + Z

(q)
r

(2)

where Z
(q)
i ∼ N (0, N

(q)
i ), i ∈ {1, 2, r}, represents the Gaus-

sian complex noise on band (q) and, for all (i, j) ∈ {1, 2}2,
h

(q)
ij is the channel gain between Si and Dj and h

(q)
ir is the

channel gain between Si and R in band (q). The channel gains
are considered to be static. In wireless networks, this would
amount, for instance, to considering a realistic situation where
only large scale propagation effects can be taken into account
by the transmitters to optimize their rates. The proposed
approach can be applied to other types of channel models.
Concerning channel state information (CSI), we will always
assume coherent communications for each transmitter-receiver
pair (Si, Di) whereas, at the transmitters, the information as-
sumptions will be context dependent. The single-user decoding
(SUD) will always be assumed at D1 and D2. This is a realistic
assumption in a framework where devices communicate in an
a priori uncoordinated manner. At the relay, the implemented
reception scheme will depend on the protocol assumed. The
expressions of the signals transmitted by the relay, X

(q)
r , q ∈

{1, ..., Q}, depend on the relay protocol assumed and will
therefore also be explained in the corresponding sections. So
far, we have not mentioned any power constraint on the signals
X

(q)
r . Note that the signal model (2) is sufficiently general

for addressing two important scenarios. If one imposes an
overall power constraint

∑Q
q=1 E|X(q)

r |2 ≤ Pr, multi-carrier
IRCs with a single relay can be studied. On the other hand,
if one imposes E|X(q)

r |2 ≤ P
(q)
r , q ∈ {1, ..., Q}, multi-band

IRCs where a relay is available on each band (the relays
are not necessarily co-located) can be studied. In this paper,
for simplicity reasons and as a first step towards solving
the general problem (where both source and relaying nodes

optimize their PA policies) we will assume that the relay
implements a fixed power allocation policy between the Q

available bands (E|X(q)
r |2 = P

(q)
r , q ∈ {1, ..., Q}).

To conclude this section, we will mention and justify one
additional assumption. As in [4][3][13], the relay will be
assumed to operate in the full-duplex mode. Mathematically,
it is known from [14] that the achievability proofs for the
full-duplex case can be almost directly applied the half-duplex
case. But this is not our main motivation. Our main motivation
is that, in some communication scenarios, the full-duplex
assumption is realistic (see e.g., [1] where the transmit and
receive radio-frequency parts are not co-located) and even
more suited. In the scenario of DSL systems mentioned in Sec.
I, the relay is connected to the source and destination through
wired links. This allows the implementation of full-duplex
repeaters, amplifiers, or digital relays. The same comment can
be applied to optical communications.

Notational conventions
The capacity function for complex signals is denoted by

C(x) , log2(1 + x); for all a ∈ [0, 1], the quantity a stands
for a = 1 − a; the notation −i means that −i = 1 if i = 2
and −i = 2 if i = 1; for all complex numbers c ∈ C, c∗,
|c|, Re(c) and Im(c) denote the complex conjugate, modulus
and the real and imaginary parts respectively.

III. ACHIEVABLE TRANSMISSION RATES FOR

SINGLE-BAND IRCS

This section provides preliminary results regarding the
achievable rate regions for the IRCs assuming DF, EF, and
AF protocols. They are necessary to express transmission rates
in the multi-band case. Thus, we do not aim at improving
available rate regions for IRCs as in [13] and related works
[15][16][17]. In the latter references, the authors consider
some special cases of the discrete IRC and derive rate re-
gions based on the DF protocol and different coding-decoding
schemes. In what follows, we make some suboptimal choices
for the used coding-decoding schemes and relaying protocols
which are motivated by a decentralized framework where each
destination does not know the codebook used by the other
destination. This approach, facilitates the deployment of relays
since the receivers do not need to be modified. In particular,
this explains why we do not exploit techniques like rate-
splitting or successive interference cancellation. As we assume
single-band IRCs, we have that Q = 1. For the sake of clarity,
we omit the superscript (1) from the different quantities used
e.g., X

(1)
i becomes in this section Xi.

A. Transmission rates for the DF protocol

One of the purposes of this section is to state a corollary
from [3]. Indeed, the given result corresponds to the special
case of the rate region derived in [3] where each source sends
to its respective destination a private message only (and not
both public and private messages as in [3]). The reason for
providing this region here is threefold: it is necessary for the
multi-band case, it is used in the simulation part to establish
a comparison between the different relaying protocols under
consideration in this paper, and it makes the paper sufficiently
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self-contained. The principle of the DF protocol is detailed in
[14] and we give here only the main idea behind it. Consider a
Gaussian relay channel where the source-relay link has a better
quality than the source-destination link. From each message
intended for the destination, the source builds a coarse and a
fine message. With these two messages, the source superposes
two codewords. The rates associated with these codewords (or
messages) are such that the relay can reliably decode both
of them while the destination can only decode the coarse
message. After decoding this message, the destination can
subtract the corresponding signal and try to decode the fine
message. To help the destination to do so, the relay cooperates
with the source by sending some information about the fine
message. Mathematically, this translates as follows. The signal

transmitted by Si is structured as Xi = Xi0 +
√

τi

νi

Pi

Pr
Xri.

The signals Xi0 and Xri are independent and correspond to
the coarse and fine messages respectively; the parameter νi

represents the fraction of transmit power the relay allocates to
user i, hence we have ν1 +ν2 ≤ 1; the parameter τi represents
the fraction of transmit power Si allocates to the cooperation
signal (conveying the fine message). Therefore, we have the
following result.

Corollary 3.1 ([3]): When DF is assumed, the region in (3)
is achievable; for i ∈ {1, 2}, where j = −i, (ν1, ν2) ∈ [0, 1]2

s.t. ν1 + ν2 ≤ 1 and (τ1, τ2) ∈ [0, 1]2, τ1 + τ2 ≤ 1.
In a context of decentralized networks, each source Si

has to optimize the parameter τi in order to maximize its
transmission rate Ri. In the rate region above, one can observe
that this choice is not independent of the choice of the other
source. Therefore, each source finds its optimal strategy by
optimizing its rate w.r.t. τ∗

i (τj). In order to do that, each source
has to make some assumptions on the value τj used by the
other source. This is precisely a non-cooperative game where
each player makes some assumptions on the other player’s
behavior and maximizes its own utility. Interestingly, we see
that, even in the single-band case, the DF protocol introduces a
power allocation game through the parameter τi representing
the cooperation degree between the source Si and relay. In
this paper, for obvious reasons of space, we will restrict our
attention to the case where the cooperation degrees are fixed.
In other words, in the multi-band scenario, the transmitter
strategy will consist in choosing only the power allocation
policy over the available bands. For more details on the game
induced by the cooperation degrees the reader is referred to
[2].

B. Transmission rates for the EF protocol

Here, we consider a second main class of relaying proto-
cols, namely the estimate-and-forward protocol. A well-known
property of the EF protocol for the relay channel [14] is that it
always improves the performance of the receiver w.r.t. the case
without relay (in contrast with DF protocols which can degrade
the performance of the point-to-point link). The principle of
the EF protocol for the standard relay channel is that the
relay sends an approximated version of its observation signal
to the receiver. More precisely, from an information-theoretic
point of view [14], the relay compresses its observation in

the Wyner-Ziv manner [18], i.e., knowing that the destination
also receives a direct signal from the source that is correlated
with the signal to be compressed. The compression rate is
precisely tuned by taking into account this correlation degree
and the quality of the relay-destination link. In our setup,
we have two different receivers. The relay can either create
a single quantized version of its observation, common to both
receivers, or two quantized versions, one adapted for each
destination. We have chosen the second type of quantization
which we call the “bi-level compression EF”. We note the
work by [19] where the authors consider a different channel,
namely a separated two-way relay channel, and exploit a
similar idea, namely using two quantization levels at the relay.
In the scheme used here, each receiver decodes independently
its own message, which is less demanding than a joint de-
coding scheme in terms of information assumptions. As we
have already mentioned, the relay implements the Wyner-Ziv
compression and superposition coding similarly to a broadcast
channel. The difference with the broadcast channel is that each
destination also receives the two direct signals from the source
nodes. The rate region which can be obtained by using such
a coding scheme is given by the following theorem proved in
Appendix A.

Theorem 3.2: For the Gaussian IRC with private messages
and bi-level compression EF protocol, any rate pair (R1, R2)
is achievable where

1) if C

( |hr1|2ν2Pr

|h11|2P1 + |h21|2P2 + |hr1|2ν1Pr + N1

)

≥

C

( |hr2|2ν2Pr

|h22|2P2 + |h12|2P1 + |hr2|2ν1Pr + N2

)

, we have

the rates in (4), (5) subject to the constraints






N
(1)
wz ≥ (|h11|2P1+|h21|2P2+N1)A−A2

1

|hr1|2ν1Pr

N
(2)
wz ≥ (|h22|2P2+|h12|2P1+|hr2|2ν1Pr+N2)A−A2

2

|hr2|2ν2Pr
,

2) else, if C

( |hr2|2ν1Pr

|h22|2P2 + |h12|2P1 + |hr2|2ν2Pr + N2

)

≥

C

( |hr1|2ν1Pr

|h11|2P1 + |h21|2P1 + |hr1|2ν2Pr + N1

)

, we have the

rates in (6), (7) subject to the constraints






N
(1)
wz ≥ (|h11|2P1+|h21|2P2+|hr1|2ν2Pr+N1)A−A2

1

|hr1|2ν1Pr

N
(2)
wz ≥ (|h22|2P2+|h12|2P1+N2)A−A2

2

|hr2|2ν2Pr
,

3) else the rates are given by (8), (9) subject to the
constraints






N
(1)
wz ≥ (|h11|2P1+|h21|2P2+|hr1|2ν2Pr+N1)A−A2

1

|hr1|2ν1Pr

N
(2)
wz ≥ (|h22|2P2+|h12|2P1+|hr2|2ν1Pr+N2)A−A2

2

|hr2|2ν2Pr
,

with N
(i)
wz representing the quantization noise corresponding

to receiver i, (ν1, ν2) ∈ [0, 1]2, ν1 + ν2 ≤ 1, the relay PA, A =

|h1r|2P1+ |h2r|2P2+Nr, A1 = 2Re(h11h
∗
1r)P1+2Re(h21h

∗
2r)P2

and A2 = 2Re(h12h
∗
1r)P1 + 2Re(h22h

∗
2r)P2.

The three scenarios emphasized in this theorem correspond
to the following situations: 1) D1 has the better link (in
the sense of the theorem) and can decode both the relay
message intended for D2 and its own message; 2) this scenario
is the dual of scenario 1); 3) in this latter scenario, each
destination node sees the cooperation signal intended for the
other destination node as interference.
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Ri ≤ min

{
C

( |hir|2τiPi

|hjr|2τjPj + Nr

)
, C

(
|hii|2Pi + |hri|2νiPr + 2Re(hiih

∗
ri)

√
τiPiνiPr

|hji|2Pj + |hri|2νjPr + 2Re(hjih∗
ri)
√

τjPjνjPr + Ni

)}
(3)

R1 ≤ C




|h11|2P1

N1 +
|h21|2P2

(

Nr+N
(1)
wz

)

|h2r |2P2+Nr+N
(1)
wz

+
|h1r|2P1

Nr + N
(1)
wz + |h2r|2P2N1

|h21|2P2+N1


 , (4)

R2 ≤ C




|h22|2P2

N2 + |hr2|2ν1Pr +
|h12|2P1

(

Nr+N
(2)
wz

)

|h1r |2P1+Nr+N
(2)
wz

+
|h2r|2P2

Nr + N
(2)
wz + |h1r |2P1(|hr2|2ν1Pr+N2)

|h12|2P1+|hr2|2ν1Pr+N2


 , (5)

R1 ≤ C




|h11|2P1

N1 + |hr1|2ν2Pr +
|h21|2P2

(

Nr+N
(1)
wz

)

|h2r |2P2+Nr+N
(1)
wz

+
|h1r|2P1

Nr + N
(1)
wz + |h2r|2P2(|hr1|2ν2Pr+N1)

|h21|2P2+|hr1|2ν2Pr+N1


 , (6)

R2 ≤ C




|h22|2P2

N2 +
|h12|2P1

(

Nr+N
(2)
wz

)

|h1r|2P1+Nr+N
(2)
wz

+
|h2r|2P2

Nr + N
(2)
wz + |h1r|2P1N2

|h12|2P1+N2


 , (7)

R1 ≤ C




|h11|2P1

N1 + |hr1|2ν2Pr +
|h21|2P2

(

Nr+N
(1)
wz

)

|h2r |2P2+Nr+N
(1)
wz

+
|h1r|2P1

Nr + N
(1)
wz + |h2r|2P2(|hr1|2ν2Pr+N1)

|h21|2P2+|hr1|2ν2Pr+N1


 , (8)

R2 ≤ C




|h22|2P2

N2 + |hr2|2ν1Pr +
|h12|2P1

(

Nr+N
(2)
wz

)

|h1r |2P1+Nr+N
(2)
wz

+
|h2r|2P2

Nr + N
(2)
wz + |h1r|2P1(|hr2|2ν1Pr+N2)

|h12|2P1+|hr2|2ν1Pr+N2


 , (9)

C. Transmission rates for the AF protocol

In this section, the relay is assumed to implement an analog
amplifier which does not introduce any delay on the relayed
signal. The main features of AF-type protocols are well-known
by now (e.g., such relays are generally cheap, involve low
complexity relay transceivers, and generally induce negligible
processing delays in contrast with DF and EF-type relaying
protocols). The relay merely sends Xr = arYr where ar

corresponds to the relay amplification factor/gain. We call
the corresponding protocol the zero-delay scalar amplify-and-
forward (ZDSAF). The type of assumptions we make here fits
well to the setting of DSL or optical communication networks.
In wireless networks, the assumed protocol can be seen as
an approximation of a scenario with a relay equipped with
a power amplifier only. The following theorem provides a
region of transmission rates that can be achieved when the
transmitters send private messages to their respective receivers,
the relay implements the ZDSAF protocol and the receivers
implement single-user decoding. The considered framework is
attractive in the sense that an AF-based relay can be added to
the network without changing the receivers.

Theorem 3.3 (Transmission rate region for the IRC with ZDSAF):
Let Ri, i ∈ {1, 2}, be the transmission rate for the source
node Si. When ZDSAF is assumed the following region is
achievable:

∀i ∈ {1, 2}, RAF
i ≤ C

(
|ar hirhri+hii|2ρi

|ar hjrhri+hji|2ρj
Nj
Ni

+a2
r|hri|2 Nr

Ni
+1

)
(10)

where ρi = Pi

Ni
, j = −i, and ar is the relay amplification

gain.
The proof of this result is standard [20] and will therefore

be omitted. Only two points are worth being mentioned. First,
the proposed region is achieved by using Gaussian codebooks.
Second, the choice of the value of the amplification gain ar is
not always straightforward. In the vast majority of the papers
available in the literature, ar is chosen in order to saturate
the power constraint at the relay (E|Xr|2 = Pr) that is:

ar = ar ,
√

Pr

E|Yr|2 =
√

Pr

|h1r|2P1+|h2r|2P2+Nr
. However, as

mentioned in some works [21][22][23][24], this choice can
be sub-optimal in the sense of certain performance criteria.
The intuitive reason for this is that the AF protocol not only
amplifies the useful signal but also the received noise. This
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effect can be negligible in certain scenarios for the standard
relay channel but can be significant for the IRC. Indeed, even
if the noise at the relay is negligible, the interference term
for user i (i.e., the term hjrXj , j = −i) can be influential.
In order to assess the importance of choosing amplification
factor ar adequately (i.e., to maximize the transmission rate
of a given user or the network sum-rate) we derive its best
value. The proposed derivation differs from [21][23] because,
here, we consider a different system (an IRC instead of a
relay channel with no direct link), a specific relaying function
(linear relaying functions instead of arbitrary functions) and
a different performance metric (individual transmission rate
and sum-rate instead of raw bit error rate [21] and mutual
information [23]). Our problem is also different from [24]
since we do not consider the optimal clipping threshold in
the sense of the end-to-end distortion for frequency division
relay channels. At last, the main difference with [22] is that,
for the relay channel, the authors discuss the choice of the
optimal amplification gain in terms of transmission rate for
a vector AF protocol having a delay of at least one symbol
duration; here we focus on a scalar AF protocol with no delay
and a different system namely the IRC. In this setup, we have
found an analytical expression for the best ar in the sense of
Ri(ar) for a given user i ∈ {1, 2}. We have also noticed that
the ar maximizing the network sum-rate has to be computed
numerically in general. The corresponding analytical result is
stated in the following theorem.

Theorem 3.4: [Optimal amplification gain for the
ZDSAF in the IRC] The transmission rate of user i, Ri(ar),
as a function of ar ∈ [0, ar] can have several critical points
which are the real solutions, denoted by c

(1)
r,i and c

(2)
r,i , to the

following second degree equation:

a2
r

[
|mi|2Re(piq

∗
i ) − (|pi|2 + si)Re(min

∗
i )
]
+

ar

[
|mi|2(|qi|2 + 1) − |ni|2(|pi|2 + si)

]
+

(|qi|2 + 1)Re(min
∗
i ) − |ni|2Re(piq

∗
i ) = 0

(11)

where mi = hirhri
√

ρi, ni = hii
√

ρi, pi = hjrhri
√

ρj ,
qi = hji

√
ρj , si = |hri|2, i ∈ {1, 2} and j = −i. Thus,

depending on the channel parameters, the optimal amplifica-
tion gain a∗

r = arg max
ar∈[0,ar]

Ri(ar) takes one value in the set

a∗
r ∈ {0, ar, c

(1)
r,i , c

(2)
r,i }. If, additionally, the channel gains are

reals then the two critical points write as: c
(1)
r,i = − ni

mi
and

c
(2)
r,i = − miq

2
i +mi−piqini

miqipi−p2
i ni−nisi

.
The proof of this result is provided in Appendix B. Of course,
in practice, if the receive signal-to-noise plus interference ratio
(viewed from a given user) at the relay is low, choosing the
amplification factor ar adequately does not solve the problem.
It is well known that in real systems, a more efficient way
to combat noise is to implement error correcting codes. This
is one of the reasons why DF is also an important relaying
protocol, especially for digital relay transceivers for which AF
cannot be implemented in its standard form (see e.g., [24] for
more details).

D. Time-Sharing

In terms of achievable Shannon rates, distributed channels
differ from their centralized counterpart. Indeed, rate regions

are not necessarily convex since the time-sharing argument
can be invalid (if no synchronization is possible). Similarly,
depending on the channel gains, the achievable rate for a
given transmitter can be non-concave with respect to its power
allocation policy. This happens if the transmitters cannot be
coordinated (distributed channels).

Assuming that the users can be coordinated, we discuss here
a standard time-sharing procedure similarly to the approach
in [25] for the frequency-division relay channel. More specifi-
cally, we assume that user 1 decides to transmit only during a
fraction α1 of the time using the power P1

α1
and user 2 transmits

only with a fraction α2 percent of the time using the power
P2

α2
.
The achievable rate-region with coordinated time-sharing,

irrespective of the relay protocol, is:

∀i ∈ {1, 2}, RTS
i ≤ αiβjRi

(
Pi

αi
, 0

)
+ αiβjRi

(
Pi

αi
,
Pj

αj

)
,

(12)
where j = −i, (αi, αj)

2 ∈ [0, 1]2, (βi, βj)
2 ∈ [0, 1]2

such that β1α2 = β2α1. The rate Ri

(
Pi

αi
, 0
)

represents the
achievable rate of user i (depends on the relay protocol and
was provided in the previous subsections) when user j doesn’t
transmit and user i transmits with power Pi

αi
, Ri

(
Pi

αi
,

Pj

αj

)
is

the achievable rate when user i transmits with power Pi

αi
and

user j transmits with power Pj

αj
. In order to achieve this rate

region, the users have to be coordinated. This means that they
have to know at each instant if the other user is transmitting
or not. User i also has to know the parameters αi and αj . The
parameter βj ∈ [0, 1] represents the fraction of time when
user j interferes with user i. Considering the time when both
users transmit with non-zero power, we obtain the condition:
β1α2 = β2α1.

IV. POWER ALLOCATION GAMES IN MULTI-BAND IRCS

AND NASH EQUILIBRIUM ANALYSIS

In the previous section, we have considered the system
model presented in Sec. II for Q = 1. Here, we consider multi-
band IRCs for which Q ≥ 2. As communications interfere on
each band, choosing the power allocation policy at a given
transmitter is not a simple optimization problem. Indeed, this
choice depends on what the other transmitter does. Each
transmitter is assumed to optimize its transmission rate in a
selfish manner by allocating its transmit power Pi between
Q sub-channels and knowing that the other transmitters want
to do the same. This interaction can be modeled as a strate-
gic form non-cooperative game, G = (K, (Ai)i∈K, (ui)i∈K),
where: (i) the players of the game are the two information
sources or transmitters and K = {1, 2} is used to refer
to the set of players; (ii) the strategy of transmitter i con-
sists in choosing θi = (θ

(1)
i , . . . , θ

(Q)
i ) in its strategy set

Ai =

{
θi ∈ [0, 1]Q

∣∣∣∣∣

Q∑

q=1

θ
(q)
i ≤ 1

}
where θ

(q)
i represents the

fraction of power used in band (q); (iii) ui(·) is the utility
function of user i ∈ {1, 2} or its achievable rate depending
on the relaying protocol. From now on, we will call state
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of the network the (concatenated) vector of power fractions
that the transmitters allocate to the IRCs i.e., θ = (θ1, θ2).
An important issue is to determine whether there exist some
outcomes to this conflicting situation. A natural solution con-
cept in non-cooperative games is the Nash equilibrium [26]. In
distributed networks, the existence of a stable operating state
of the system is a desirable feature. In this respect, the NE is
a stable state from which the users do not have any incentive
to unilaterally deviate (otherwise they would lose in terms of
utility). The mathematical definition is the following.

Definition 4.1: [Nash equilibrium] The state (θ∗
i , θ

∗
−i) is a

pure NE of the strategic form game G if ∀i ∈ K, ∀θ′
i ∈

Ai, ui(θ
∗
i , θ

∗
−i) ≥ ui(θ

′
i, θ

∗
−i).

In this section, we mainly focus on the problem of existence
of such a solution, which is the first step towards equilibria
characterization in IRCs. The problems of equilibrium unique-
ness, selection, convergence, and efficiency are therefore left
as natural extensions of the work reported here.

A. Equilibrium existence analysis for the DF protocol

As explained in Sec. III-A the signals transmitted by S1

and S2 in band (q) have the following form: X
(q)
i = X

(q)
i,0 +√

τ
(q)
i

ν
(q)
i

θ
(q)
i Pi

P
(q)
r

X
(q)
r,i where the signals X

(q)
i,0 and X

(q)
r,i are Gaus-

sian and independent. At the relay R, the transmitted signal
writes as: X

(q)
r = X

(q)
r,1 + X

(q)
r,2 . For a given allocation policy

θi =
(
θ
(1)
i , ..., θ

(Q)
i

)
, the source-destination pair (Si, Di)

achieves the transmission rate
∑Q

q=1 R
(q),DF
i where





R
(q),DF
1 = min

{
R

(q),DF
1,1 , R

(q),DF
1,2

}

R
(q),DF
2 = min

{
R

(q),DF
2,1 , R

(q),DF
2,2

} , (13)

and R
(q),DF
1,1 , R

(q),DF
1,2 ,R(q),DF

2,1 ,R(q),DF
2,2 are given in (14) and

(ν(q), τ
(q)
1 , τ

(q)
2 ) is a given triple of parameters in [0, 1]

3, τ
(q)
1 +

τ
(q)
2 ≤ 1.

The achievable transmission rate of user i is given by:

uDF
i (θi, θ−i) =

Q∑

q=1

R
(q),DF
i (θ

(q)
i , θ

(q)
−i ). (15)

We suppose that the game is played once (one-shot or static
game), the users are rational (each selfish player does what
is best for itself), rationality is common knowledge, and the
game is with complete information that is, every player knows
the triplet GDF = (K, (Ai)i∈K, (uDF

i )i∈K). Although this
setup might seem to be demanding in terms of CSI at the
source nodes, it turns out that the equilibria predicted in such
a framework can be effectively observed in more realistic
frameworks where one player observes the strategy played by
the other player and reacts accordingly by maximizing his
utility, the other player observes this and updates its strategy
and so on. We will come back to this later on. The existence
theorem for the DF protocol is given hereunder.

Theorem 4.2: [Existence of an NE for the DF protocol]
If the channel gains satisfy the condition Re(h

(q)
ii h

(q)∗
ri ) ≥ 0,

for all i ∈ {1, 2} and q ∈ {1, . . . , Q} the game defined by

GDF = (K, (Ai)i∈K, (uDF
i (θi, θ−i))i∈K) with K = {1, 2} and

Ai =

{
θi ∈ [0, 1]Q

∣∣∣∣∣

Q∑

q=1

θ
(q)
i ≤ 1

}
, has always at least one

pure NE.
Proof: The proof is based on Theorem 1 of [27]. The

latter theorem states that in a game with a finite number of
players, if for every player 1) the strategy set is convex and
compact, 2) its utility is continuous in the vector of strategies
and 3) concave in its own strategy, then the existence of at
least one pure NE is guaranteed. In our setup checking that
conditions 1) and 2) are met is straightforward. The condition
Re(h

(q)
ii h

(q)∗
ri ) ≥ 0 is a sufficient condition that ensures

the concavity of RDF
i,2 w.r.t. θ

(q)
i . The intuition behind this

condition is that the superposition of the two signals carrying
useful information for user i (i.e., signal from Si and R) has to
be constructive w.r.t. the amplitude of the resulting signal. As
the sum of concave functions is a concave function, the min
of two concave functions is a concave function (see [28] for
more details on operations preserving concavity), and R

(q)
i,j is

a concave function of θi, it follows that 3) is also met, which
concludes the proof.

Theorem indicates, in particular, that for the pathloss model
where the channel gains are positive real scalars (i.e., hij > 0,
(i, j) ∈ {1, 2, r}2) there always exists an equilibrium. As
a consequence, if some relays are added in the network,
the transmitters will adapt their PA policies accordingly and,
whatever the locations of the relays, an equilibrium will
be observed. This is a nice property for the system under
investigation. As the PA game with DF is concave it is
tempting to try to verify whether the sufficient condition for
uniqueness of [27] is met here. It turns out that the diagonally
strict concavity condition of [27] is not trivial to be checked.
Additionally, it is possible that the game has several equilibria
as it is proven to be the case for the AF protocol.

B. Equilibrium existence analysis for the EF protocol

In this section, we make the same assumptions as in Sec.
IV-A concerning the reception schemes and PA policies at the
relays: we assume that each node R, D1 and D2 implements
single-user decoding and the PA policy at each relay i.e., ν =(
ν(1), ..., ν(Q)

)
is fixed. Each relay now implements the EF

protocol. Under this assumption, the utility for user i ∈ {1, 2}
can be expressed as follows

uEF
i (θi, θ−i) =

Q∑

q=1

R
(q),EF
i (16)

where R
(q),EF
i are given in (17) ν(q) ∈ [0, 1],

A(q) = |h(q)
1r |2θ(q)

1 P1 + |h(q)
2r |2θ(q)

2 P2 + N
(q)
r ,

A
(q)
1 = h

(q)
11 h

(q),∗
1r θ

(q)
1 P1 + h

(q)
21 h

(q),∗
2r θ

(q)
2 P2 and

A
(q)
2 = h

(q)
12 h

(q),∗
1r θ

(q)
1 P1 + h

(q)
22 h

(q),∗
2r θ

(q)
2 P2. What is

interesting with this EF protocol is that, here again, one can
prove that the utility is concave for every user. This is the
purpose of the following theorem.

Theorem 4.3: [Existence of an NE for the bi-level
compression EF protocol] The game defined by GEF =
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R
(q),DF
1,1 = C

(
∣

∣

∣
h
(q)
1r

∣

∣

∣

2
τ
(q)
1 θ

(q)
1 P1

∣

∣

∣
h
(q)
2r

∣

∣

∣

2
τ
(q)
2 θ

(q)
2 P2+N

(q)
r

)

R
(q),DF
2,1 = C

(
∣

∣

∣
h
(q)
2r

∣

∣

∣

2
τ
(q)
2 θ

(q)
2 P2

∣

∣

∣
h
(q)
1r

∣

∣

∣

2
τ
(q)
1 θ

(q)
1 P1+N

(q)
r

)

R
(q),DF
1,2 = C

(
∣

∣

∣
h
(q)
11

∣

∣

∣

2
θ
(q)
1 P1+

∣

∣

∣
h
(q)
r1

∣

∣

∣

2
ν(q)P (q)

r +2Re
(

h
(q)
11 h

(q),∗
r1

)

√

τ
(q)
1 θ

(q)
1 P1ν(q)P

(q)
r

∣

∣

∣
h
(q)
21

∣

∣

∣

2
θ
(q)
2 P2+

∣

∣

∣
h
(q)
r1

∣

∣

∣

2
ν(q)P

(q)
r +2Re

(

h
(q)
21 h

(q),∗
r1

)

√

τ
(q)
2 θ

(q)
2 P2ν(q)P

(q)
r +N

(q)
1

)

R
(q),DF
2,2 = C

(
∣

∣

∣
h
(q)
22

∣

∣

∣

2
θ
(q)
2 P2+

∣

∣

∣
h
(q)
r2

∣

∣

∣

2
ν(q)P (q)

r +2Re
(

h
(q)
22 h

(q),∗
r2

)

√

τ
(q)
2 θ

(q)
2 P2ν(q)P

(q)
r

∣

∣

∣
h
(q)
12

∣

∣

∣

2
θ
(q)
1 P1+

∣

∣

∣
h
(q)
r2

∣

∣

∣

2
ν(q)P

(q)
r +2Re

(

h
(q)
12 h

(q),∗
r2

)

√

τ
(q)
1 θ

(q)
1 P1ν(q)P

(q)
r +N

(q)
2

)
,

(14)





R
(q),EF
1 = C



(

∣

∣

∣
h
(q)
2r

∣

∣

∣

2
θ
(q)
2 P2+N(q)

r +N
(q)
wz,1

)

∣

∣

∣
h
(q)
11

∣

∣

∣

2
θ
(q)
1 P1+

(

∣

∣

∣
h
(q)
21

∣

∣

∣

2
θ
(q)
2 P2+

∣

∣

∣
h
(q)
r1

∣

∣

∣

2
ν(q)P (q)

r +N
(q)
1

)

∣

∣

∣
h
(q)
1r

∣

∣

∣

2
θ
(q)
1 P1

(

N
(q)
r +N

(q)
wz,1

)(

|h(q)
21 |2θ

(q)
2 P2+|h(q)

r1 |2ν(q)P
(q)
r +N

(q)
1

)

+|h(q)
2r |2θ

(q)
2 P2

(

|h(q)
r1 |2ν(q)P

(q)
r +N

(q)
1

)




R
(q),EF
2 = C



(

|h1r |2θ
(q)
1 P1+N(q)

r +N
(q)
wz,2

)
∣

∣

∣
h
(q)
22

∣

∣

∣

2
θ
(q)
2 P2+

(

∣

∣

∣
h
(q)
12

∣

∣

∣

2
θ
(q)
1 P1+

∣

∣

∣
h
(q)
r2

∣

∣

∣

2
ν(q)P (q)

r +N
(q)
2

)

∣

∣

∣
h
(q)
2r

∣

∣

∣

2
θ
(q)
2 P2

(

N
(q)
r +N

(q)
wz,2

)

(

∣

∣

∣
h
(q)
12

∣

∣

∣

2
θ
(q)
1 P1+

∣

∣

∣
h
(q)
r2

∣

∣

∣

2
ν(q)P

(q)
r +N

(q)
2

)

+
∣

∣

∣
h
(q)
1r

∣

∣

∣

2
θ
(q)
1 P1

(

∣

∣

∣
h
(q)
r2

∣

∣

∣

2
ν(q)P

(q)
r +N

(q)
2

)




, (17)





N
(q)
wz,1 =

(

∣

∣

∣
h
(q)
11

∣

∣

∣

2
θ
(q)
1 P1+

∣

∣

∣
h
(q)
21

∣

∣

∣

2
θ
(q)
2 P2+

∣

∣

∣
h
(q)
r1

∣

∣

∣

2
ν(q)P (q)

r +N
(q)
1

)

A(q)−
∣

∣

∣
A

(q)
1

∣

∣

∣

2

∣

∣

∣
h
(q)
r1

∣

∣

∣

2
ν(q)P

(q)
r

N
(q)
wz,2 =

(

∣

∣

∣
h
(q)
22

∣

∣

∣

2
θ
(q)
2 P2+

∣

∣

∣
h
(q)
12

∣

∣

∣

2
θ
(q)
1 P1+

∣

∣

∣
h
(q)
r2

∣

∣

∣

2
ν(q)P (q)

r +N
(q)
2

)

A(q)−
∣

∣

∣
A

(q)
2

∣

∣

∣

2

∣

∣

∣
h
(q)
r2

∣

∣

∣

2
ν(q)P

(q)
r

(18)

(K, (Ai)i∈K, (uEF
i (θi, θ−i))i∈K) with K = {1, 2} and Ai ={

θi ∈ [0, 1]Q

∣∣∣∣∣

Q∑

q=1

θ
(q)
i ≤ 1

}
, has always at least one pure

NE.
The proof is similar to the proof of Theorem IV-A. To be able
to apply Theorem 1 of Rosen [27], we have to prove that the
utility uEF

i is concave w.r.t. θi. The problem is less simple than
for DF because the compression noise N

(q)
wz,i which appears in

the denominator of the capacity function in Eq. (17) depends
on the strategy θi of transmitter i. It turns out that it is still
possible to prove the desired result as shown in Appendix C.

C. Equilibrium analysis for the AF protocol

Here, we assume that the relay implements the ZDSAF
protocol, which has already been described in Sec. III-C.
One of the nice features of the (analog) ZDSAF protocol is
that relays are very easy to be deployed since they can be
used without any change on the existing (non-cooperative)
communication system. The amplification factor/gain for the
relay on band (q) will be denoted by a

(q)
r . Here, we consider

the most common choice for the amplification factor that it,
the one that exploits all the transmit power available on each
band. The achievable transmission rate is given by

uAF
i (θi, θ−i) =

Q∑

q=1

R
(q),AF
i (θ

(q)
i , θ

(q)
−i ) (19)

where R
(q),AF
i is the rate user i obtains by using band (q)

when the ZDSAF protocol is used by the relay R. After Sec.
III-C the latter quantity is:

R
(q),AF
i = C









∣

∣

∣
a
(q)
r h

(q)
ir h

(q)
ri + h

(q)
ii

∣

∣

∣

2

θ
(q)
i ρi

∣

∣

∣
a
(q)
r h

(q)
jr h

(q)
ri + h

(q)
ji

∣

∣

∣

2

ρjθ
(q)
j

N
(q)
j

N
(q)
i

+
(

a
(q)
r

)2 ∣
∣

∣
h
(q)
ri

∣

∣

∣

2
N

(q)
r

N
(q)
i

+ 1









(20)

where a
(q)
r = ã

(q)
r (θ

(q)
1 , θ

(q)
2 ) ,

√
Pr

∣

∣

∣
h
(q)
1r

∣

∣

∣

2
P1+

∣

∣

∣
h
(q)
2r

∣

∣

∣

2
P2+Nr

and ρ
(q)
i = Pi

N
(q)
i

. Without loss of generality and for the

sake of clarity we will assume in Sec. IV-C that ∀(i, q) ∈
{1, 2, r}×{1, . . . , Q}, N

(q)
i = N , P

(q)
r = Pr and we introduce

the quantities ρi = Pi

N . In this setup the following existence
theorem can be proven.

Theorem 4.4: [Existence of an NE for ZDSAF] If any of
the following conditions are met: i)

∣∣∣a(q)
r h

(q)
ir h

(q)
ri

∣∣∣ �
∣∣∣h(q)

ii

∣∣∣
and

∣∣∣a(q)
r h

(q)
jr h

(q)
ri

∣∣∣ �
∣∣∣h(q)

ji

∣∣∣ (negligible direct links), ii)∣∣∣h(q)
ii

∣∣∣�
∣∣∣a(q)

r h
(q)
ir h

(q)
ri

∣∣∣ and∣∣∣h(q)
ji

∣∣∣ �
∣∣∣a(q)

r h
(q)
jr

∣∣∣min
{

1,
∣∣∣h(q)

ri

∣∣∣
}

(negligible relay links),

iii) a
(q)
r = A

(q)
r ∈ [0, ã

(q)
r (1, 1)] (constant amplification gain),

there exists at least one pure NE in the PA game GAF.
The proof is similar to the proof of Theorem IV-A. The

sufficient conditions ensure the concavity of the function
R

(q),AF
i w.r.t. θ

(q)
i . For the first case i) where the direct links

between the sources and destinations are negligible (e.g., in the
wired DSL setting these links are missing and the transmission
is only possible using the relay nodes), the achievable rates are
given ∀i ∈ {1, 2}, in (21) and it can be proven that R

(q),AF
i

is concave w.r.t. θ
(q)
i . The other two cases are easier to prove
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R
(q),AF
i = C




∣

∣

∣ h
(q)
ir h

(q)
ri

∣

∣

∣

2
θ
(q)
i ρiρr

Nr
Ni

∣

∣

∣h
(q)
ri

∣

∣

∣

2
θ
(q)
i ρi+

(

∣

∣

∣h
(q)
rj

∣

∣

∣

2
θ
(q)
j ρj

Nj
Ni

+ Nr
Ni

)(

∣

∣

∣h
(q)
ri

∣

∣

∣

2
ρr

Nr
Ni

+1

)


 (21)

since the amplification gain is either constant or not taken into
account and the rate R

(q),AF
i is a composition of a logarithmic

function and a linear function of θ
(q)
i and thus concave.

The determination of NE and the convergence issue to one
of the NE are far from being trivial in this case. For example,
potential games [29] and supermodular games [30] are known
to have attractive convergence properties. It can be checked
that, the PA game under investigation is neither a potential
nor a supermodular game in general. To be more precise, it is
a potential game for a set of channel gains which corresponds
to a scenario with probability zero (e.g., the parallel multiple
access channel). The authors of [31] studied supermodular
games for the interference channel with K = 2, Q = 3,
assuming that only one band is shared by the users (IC) while
the other bands are private (one interference-free band for
each user). Therefore, each user allocates its power between
two bands. Their strategies are designed such that the game
has strategic complementarities. However, as stated in [31],
this design trick does not work for more than two players or
if the users can access more than two frequency bands. In
conclusion, general convergence results seem to require more
advanced tools and further investigations.

Special case study
As we have just mentioned, the unique-
ness/convergence/efficiency analysis of NE for the DF
and EF protocols requires a separate work to be treated
properly. However, it is possible to obtain relatively easy
some interesting results in a special case of the AF protocol.
The reason for analyzing this special case is threefold: a) it
corresponds to a possible scenario in wired communication
networks; b) it allows us to introduce some game-theoretic
concepts that can be used to treat more general cases and
possibly the DF and EF protocols; c) it allows us to have
more insights on the problem with a more general choice
for a

(q)
r . The special case under investigation is as follows:

Q = 2 and ∀q ∈ {1, 2}, a
(q)
r = A

(q)
r ∈ [0, ãr(1, 1)] are

constant w.r.t. θ. We observe that the strategy set of user
i are scalar spaces θi ∈ [0, 1] because we can consider
θ
(1)
i = θi and θ

(2)
i = θi. For the sake of clarity, we denote

by hij = h
(1)
ij and gij = h

(2)
ij . Note that the case a

(q)
r = A

(q)
r

can also be seen as an interference channel for which
there is an additional degree of freedom on each band. The
choice Q = 2 is totally relevant in scenarios where the
spectrum is divided in two bands, one shared band where
communications interfere and one protected band where they
do not (see e.g., [32]). The choice a

(q)
r = const. has the

advantage of being mathematically simple and allows us to
initialize the uniqueness/convergence analysis. Moreover, it
corresponds to a suitable model for an analog repeater in
the linear regime in wired networks or, more generally, to
a power amplifier for which neither automatic gain control

is available nor received power estimation mechanism. By
making these two assumptions, it is possible to determine
exactly the number of Nash equilibria through the notion of
best response (BR) functions. The BR of player i to player
j is defined by BRi(θj) = argmax

θi

ui(θi, θj). In general, it

is a correspondence but in our case it is just a function. The
equilibrium points are the intersection points of the BRs of
the two players. In this case, using the Lagrangian functions
to impose the power constraint, it can be checked that:

BRi(θj) =

∣∣∣∣∣∣

Fi(θj) if 0 < Fi(θj) < 1
1 if Fi(θj) ≥ 1
0 otherwise

(22)

where j = −i, Fi(θj) , − cij

cii
θj + di

cii
is an affine

function of θj for (i, j) ∈ {(1, 2), (2, 1)}, cii =

2|A(1)
r hrihir +hii|2|A(2)

r grigir + gii|2ρi; cij = |A(1)
r hrihir +

hii|2|A(2)
r grigjr + gji|2ρj + |A(1)

r hrihjr + hji|2|A(2)
r grigir +

gii|2ρj ; di = |A(1)
r hrihir + hii|2[|A(2)

r grigir + gii|2ρi +

|A(2)
r grigjr + gji|2ρj + A

(2)
r |gri|2 + 1] − |A(2)

r grigir +

gii|2(A(1)
r |hri|2 + 1). By studying the intersection points

between BR1 and BR2, one can prove the following theorem
(the proof is provided in Appendix D).

Theorem 4.5 (Number of Nash equilibria for ZDSAF):
For the game GAF with fixed amplification gains at the
relays, (i.e., ∂ar

∂θ
(q)
i

= 0), there can be a unique NE, two NE,

three NE or an infinite number of NE, depending on the
channel parameters (i.e., hij , gij , ρi, A

(q)
r , (i, j) ∈ {1, 2, r}2,

q ∈ {1, 2}.
Notice that, if Ar = 0, we obtain the complete char-

acterization of the NE set for the two-users two-channels
parallel interference channel. In the proof in Appendix D,
we give explicit expressions of the possible NE in function
of the system parameters (i.e., the amplification gain Ar and
the channel gains). If the channel gains are the realizations
of continuous random variables, it is easy to prove that
the probability of observing the necessary conditions on the
channel gains for having two NEs or an infinite number of
NEs is zero. Said otherwise, considering the pathloss model
and arbitrary nodes positioning, there will be, with probability
one, either one or three NE, depending on the channel gains.
When the channel gains are such that the NE is unique, the
unique NE can be shown to be:

θNE = θ∗ =

(
c22d1 − c12d2

c11c22 − c12c21
,

c11d2 − c21d1

c11c22 − c12c21

)
. (23)

When there are three NE, it seems a priori impossible to
predict the NE that will be effectively observed in the one-shot
game. In fact, in practice, in a context of adaptive/cognitive
transmitters (note that what can be adapted is also the PA
policy chosen by the designer/owner of the transmitter), it
is possible to predict the equilibrium of the network. First,
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in general, there is no reason why the sources should start
transmitting at the same time. Thus, one transmitter, say i, will
be alone and using a certain PA policy. The transmitter coming
after, namely S−i, will sense/measure/probe its environment
and play its BR to what it observes. As a consequence, user
i will move to a new policy, maximizing its utility to what
transmitter −i has played and so on. The key question is:
does this procedure converge? This procedure is guaranteed
to converge to one of the NE and a detailed discussion about
the asymptotic stability of the NE can be found in Appendix
D. The arguments for proving this have been used for the first
time in [33] where the “Cournot duopoly” was introduced. In
[33], the BRs of each player is purely affine, which leads in
this case to a unique equilibrium. The corresponding iterative
procedure is called the Cournot tâtonnement process in [34].
In the case with three NE, the effectively observed NE can be
predicted by knowing the initial network state that is, the PA
policy played by the first transmitting player (see Sec. V). To
implement such an iterative procedure, it can be checked [1]
that the transmitters need to know less network parameters
than in the original game where the amplification factor
saturates the constraint. In fact, the needed parameters can be
acquired by realistic sensing/probing techniques or feedback
mechanisms based on standard estimation procedures. As a
comment, note that in the (modern) literature of decentralized
or distributed communications networks where the optimal PA
policy of a transmitter is to water-fill, the mentioned iterative
procedure is called iterative water-filling.

D. Equilibrium analysis for the Time-Sharing scheme

In the previous subsections, we have given sufficient con-
ditions that ensure the existence of the Nash equilibrium.
Our approach is based on the concave games studied in [27]
and consists in finding the sufficient conditions that ensure
the concavity of the transmission achievable rates. We have
seen that, assuming ZDSAF or DF relaying protocols, the
achievable rates are not necessarily concave.

Assuming that the transmitters can be coordinated, and by
using the time-sharing scheme similarly to Subsec. III-D, the
achievable transmission rate of user i is given by:

uTS
i (θi, θ−i) =

Q∑

q=1

R
(q),TS
i (θ

(q)
i , θ

(q)
−i ) (24)

where R
(q),TS
i is the rate user i obtains by using band (q) and

time-sharing technique. After Sec. III-D the latter quantity is:

∀i ∈ {1, 2}, R
(q),TS
i = α

(q)
i βj

(q)
R

(q)
i

(
θ
(q)
i Pi

αi
, 0

)
+

α
(q)
i β

(q)
j R

(q)
i

(
θ
(q)
i Pi

αi
,

θ
(q)
j Pj

αj

) , (25)

where j = −i, (α
(q)
i , α

(q)
j ) ∈ [0, 1]2, (β

(q)
i , β

(q)
j ) ∈ [0, 1]2

such that β
(q)
1 α

(q)
2 = β

(q)
2 α

(q)
1 . These parameters are fixed

and chosen such that the achievable rates are maximized.

The rates R
(q)
i

(
θ
(q)
i Pi

αi
, 0

)
, R

(q)
i

(
θ
(q)
i Pi

αi
,

θ
(q)
j Pj

αj

)
represent

the achievable rates in band (q) when time-sharing is used.

These rates depend on the relaying protocol and are given by
Eq. (13) for DF and by Eq. (20) for ZDSAF. Notice that, when
EF is assumed, the rates are always concave irrespective of the
channel gains and time-sharing techniques do not change the
achievable rate-region.

Theorem 4.6: [Existence of an NE for TS] There always
exists at least one pure NE in the PA game GTS, regardless of
the used relaying scheme and the values of the channel gains.

If the users are coordinated (i.e., each user is aware of the
moments where the other user is transmitting or not) then
their achievable rates R

(q),TS
i are always concave w.r.t. θ

(q)
i .

This implies directly that [27], irrespective of the relaying
technique and of the channel gains, the existence of an NE
will be guaranteed.

In the particular case where either P
(q)
r = 0 or h

(q)
ir = 0,

for all q ∈ {1, . . . , Q} and i ∈ {1, 2}, the parallel IRC
reduces to the parallel interference channel [6]. The time-
sharing scheme is useless since the achievable rates are already
concave and αi = 1, βi = 1 are optimal. Therefore, Theorem
4.6 guarantees the existence of the NE in this case and is
consistent with the known results in [6].

V. SIMULATION RESULTS

Single-band IRCs: AF vs DF vs EF. Here, we assume Q = 1

and a path loss exponent of 2 that is, |hij | =
(

dij

d0

)− γ
2

for

(i, j) ∈ {1, 2, r}2 where d0 = 5 m is a reference distance
and γ = 2 is the path loss exponent. The nodes S1, S2, D1,
D2 are assumed to be located in a plane. The positions of the
nodes will be indicated on each figure and are characterized
by the distance between them which are chosen as follows:
d′11 = 11.5 m, d′

22 = 10 m, d′
12 = 11 m and d′

21 = 14 m.
As for the relay, to avoid any divergence for the path loss in
dij = 0, we assume that it is located a hight ε = 0.1 m from
this plane i.e., the relay location is given by the (xr, yr, zr)

where zr is fixed and equals 0.1 m; thus dij =
√

d′2ij + ε2 for
i = r or j = r and i 6= j. The noise levels at the receiver nodes
are assumed to be normalized (N1 = N2 = Nr = 1). In terms
of transmit power we analyze two cases: a symmetric case
where P1 = P2 = 10 (normalized power) and an asymmetric
one where P1 = 3 and P2 = 10. The relay transmit power is
fixed: Pr = 10. For the symmetric scenario, Fig. 2 represents
the regions of the plane

(
xr

d0
, yr

d0

)
∈ [−4, +4] × [−3, +4]

(corresponding to the possible relay positions) where a certain
protocol performs better than the two others in terms of
system sum-rate. These regions are in agreement with what is
generally observed for the standard relay channel. This type
of information is useful, for example, when the relay has to
be located in specific places because of different practical
constraints and one has to choose the best protocol. Fig. 3
allows one to better quantify the differences in terms of sum-
rate between the AF, DF and bi-level EF protocols since it
represents the sum-rate versus xr for a given yr = 0.5d0. The
discontinuity observed stems from the fact that for the bi-level
EF protocol there is a frontier delineating the scenarios where
one receiver is better than the other and can therefore suppress
the interference of the relay (as explained in Sec. III-B).
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Number of Nash equilibria for the AF protocol. First, we
show that in the PA game with ZDSAF, one can have three
possible Nash equilibria. For a given typical scenario com-
posed of an IC in parallel with an IRC (Q = 2) and ρ1 = 1,
ρ2 = 3, ρr = 2 and the channel gains (g11, g12, g21, g22)
= (2.76, 5.64, −3.55, −1.61), (h11, h12, h21, h22) =
(14.15, 3.4, 0, 1.38) and (h1r, h2r, hr1, hr2) =
(−3.1, 2.22, −3.12, 1.16), we plot the best response functions
in Fig. 4. We see that there are three intersection points and
therefore three Nash equilibria. As explained in Sec. IV-C, the
effectively observed NE in a one-shot game is not predictable
without any additional assumptions. However, the Cournot
tatônnement procedure converges towards a given NE which
can be predicted from the sole knowledge of the starting point
of the game, namely θ0

1 or θ0
2 .

Stackelberg formulation. We have mentioned that a strong
motivation for studying IRCs is to be able to introduce
relays in a network with non-coordinated and interfering
pairs of terminals. For example, relays could be introduced
by an operator aiming at improving the performance of the
communications of his customers. In such a scenario, the
operator acts as a player and more precisely as a game leader
in the sense of [35]. In [35], the author introduced what is
called nowadays a Stackelberg game. This type of hierarchical
games comprises one leader which plays in the first step of
the game and several players (the followers) which observe
the leader’s strategy and choose their actions accordingly. In
our context, the game leader is the operator/engineer /relay
who chooses the parameters of the relays. The followers
are the adaptive/cognitive transmitters that adapt their PA
policy to what they observe. In the preceding sections we
have mentioned some of these parameters: the location of
each relay; in the case of AF, the amplification gain of each
relay; in the case of DF and EF, the power allocation policy
between the two cooperative signals at each relay i.e., the
parameter ν(q). Therefore, the relay can be thought of as a
player who maximizes its own utility. This utility can be either
the individual utility of a given transmitter (picture one WiFi
subscriber wanting to increase his downlink throughput by
locating his cellular phone somewhere in his apartment while
his neighbor can also exploit the same spectral resources)
or the network sum-rate (in the case of an operator). In the
latter case, the operator possesses some degrees of freedom
to improve the efficiency of the equilibrium. In the remaining
part of this section, we focus on the Stackelberg formulation
where the strategy of the leader is respectively the relay
amplification factor, position and power allocation between the
cooperative signals. The system considered is composed of an
IRC in parallel with an interference channel (IC) [36]. All the
simulations provided are obtained by applying the Cournot
tatônnement procedure. The simulation setup is as follows.
The source and destination nodes are located in fixed locations
in the region [−L, L]2 of a plane, with L = 10 m, such that
the relative distances between the nodes are: d11 = 6.52m,
d12 = 8.32m, d21 = 6.64m, d22 = 6.73m. We assume a path
loss model for the channel gains |gij |, |hij |. For the path loss

model we take |hij | =
(

dij

d0

)− γ(1)

2

and |gij | =
(

dij

d0

)− γ(2)

2

for (i, j) ∈ {1, 2, r}2 where d0 = 1 m is a reference distance.
The relay is at ε = 0.5 m from the plane. We will also assume
that N

(1)
i = N

(2)
i = Ni, i ∈ {1, 2}, N

(1)
r will be denoted by

Nr and also P
(1)
r = Pr, A

(1)
r = Ar, a

(1)
r = ar, ã

(1)
r = ar,

ν(1) = ν.

Optimal relay amplification gain for the AF protocol. First
we consider the ZDSAF relaying scheme assuming a fixed
amplification gain ar = Ar (Sec. IV-C). We want to analyze
the influence of the value of the amplification factor, Ar ∈
[0, ãr(1, 1)], on the achievable network sum-rate at the NE.
This is what Fig. 5 shows for the following scenario: ε =
0.5 m, P1 = 20 dBm, P2 = 23 dBm, Pr = 22 dBm, N1 =
10 dBm, N2 = 9 dBm, Nr = 7 dBm, γ(1) = γ(2) = 2. We
observe that the optimal value is A∗

r = 0.05 and is not equal to
the one saturating the relay power constraint ãr(1, 1) = 0.17.
This result illustrates for the sum-rate what we have proved
analytically for the individual rate of a given user (see Sec.
III-C). Note that the gap between the optimal choice for ar

and the choice saturating the power constraint is not that large
and in fact other simulation results have shown is is generally
of this order and even smaller typically.

Optimal relay location for the AF protocol. Now, we con-
sider the ZDSAF when the full power regime is assumed at the
relay, ar = ãr(θ1, θ2) (Sec. IV-C) and study the relay location
problem. Fig. 6 represents the achievable network sum-rate as
a function of the relay position (xR, yR) ∈ [−L, L]2 for the
scenario: P1 = 20 dBm, P2 = 17 dBm, Pr = 22 dBm,
N1 = 10 dBm, N2 = 9 dBm, Nr = 7 dBm, γ(1) = 2.5 and
γ(2) = 2. We observe that there are two local maximum that
actually correspond to the points that maximize the individual
achievable rates. Many simulation results have confirmed
that, when the source nodes are sufficiently far away from
each other, maximizing the individual rate of either user at
the NE amounts to locating the relay on one of the the
segment between Si and Di. This interesting and quite generic
observation can be explained as follows. For this purpose,
consider Fig. 6 which is a temperature image representing the
values of θ1 and θ2 for different relay positions in [−L, L]2.
The region where (θ1, θ2) = (1, 0) (resp. (θ1, θ2) = (0, 1)) is
the region around S1 (resp. S2). We see that the intersection
between these regions corresponds to a small area. This quite
general observation shows that the selfish behavior of the
transmitters leads to self-regulating the interference in the
network. Said otherwise, a selfish transmitter will not use at
all a far away relay but leaves it to the other transmitter. Thus,
when one transmitter uses the relay, it is often alone and sees
no interference. In these conditions, by considering the path
loss effects it can be proved that the optimal relay position is
on the segment between the considered source and destination
nodes. This also explains why the position that maximizes the
network sum-rate lies also on one of the segments from Si to
Di.

Optimal relay power allocation at the relay for DF and EF.
For the DF protocol, we fix the cooperation degrees τ1 = 0
and τ2 = 0. In Fig. 7, we plot the achievable sum-rate at the
equilibrium as a function of the relay power allocation policy
is ν ∈ [0, 1] (with the convention ν = ν(1)) for the scenario:
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xR = 0 m, yR = 0 m, P1 = 22 dBm, P2 = 17 dBm,
Pr = 23 dBm, N1 = 7 dBm, N2 = 9 dBm, Nr = 0 dBm,
γ(1) = 2.5 and γ(2) = 2. We observe that, for both protocols,
the optimal power allocation ν∗ = 1, meaning that the relay
allocates all its available power to the better receiver, D1. In
this case, the relay is in very good conditions and can therefore
reliably decode the source messages. This explains why DF
outperforms EF which is in agreement with the observations
we have made in Sec. III. We have observed that, in general,
the network sum-rate is not concave w.r.t. ν ∈ [0, 1] and that
the optimal power allocation lies on the borders ν∗ ∈ {0, 1}
for both relaying protocols. In Fig. 7, we also see that the fair
PA policy that is, ν = 1

2 can lead to a relatively significant
performance loss.

VI. CONCLUSION

The complete study of PA games in IRCs is a wide problem
and we do not claim to fully characterize it here. One of the
main objectives in this paper has been to know whether there
exist some stable outcomes to the conflicting situation where
two transmitters selfishly allocate their power between dif-
ferent sub-channels in multi-band interference relay channels
in order to maximize their individual transmission rate. Our
approach has been to consider transmission rates achievable
in a decentralized framework where relays can be deployed
with minor or even with no changes for the already existing
receivers. For the three types of protocols considered, we have
proved that the utility of the transmitters is a concave function
of the individual strategy, which ensures the existence of Nash
equilibria in the power allocation game after Rosen [27]. In a
special case of the AF protocol, we have fully characterized the
number of NE and the convergence problem of Cournot-type
or iterative water-filling procedures to an NE. Although we
have limited the scope of the paper, we have seen that studying
IRCs deeply requires further investigations. Many interesting
questions which can be considered as natural extensions of this
work have arisen. Considering more efficient coding-decoding
schemes and relaying protocols such as those of [15] and
related works, is it possible to prove that the utilities are still
concave functions? For these schemes and those considered in
this paper, it is also important to fully determine the number
of Nash equilibria and derive convergent iterative distributed
power allocation algorithms. We have also seen that several
power allocation games come into play and need to be studied
when considering DF, EF and AF-type protocols: for allocating
transmit power between the different bands at the sources, for
choosing the cooperation degree at the sources, for allocating
the power between the cooperation signals at the relay, for
allocating the transmit power over time. Furthermore, a new
agent can come into play (the relay) and several Stackelberg
formulations can be used to improve the efficiency of the
equilibria.
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APPENDIX A
PROOF OF THEOREM 3.2 (ACHIEVABLE TRANSMISSION

RATES FOR IRCS WITH THE EF PROTOCOL)

In order to prove that the transmission rate region of
Theorem 3.2 is achievable for Gaussian IRCs, we use a
quite common approach [20] for proving coding theorems:
we first prove that it is achievable for discrete input discrete
output channels and obtain the Gaussian case from standard
quantization and continuity arguments [20], and a proper
choice of coding auxiliary variables.

Definitions and notations
We denote by A

(n)
ε (X) the weakly ε-typical set for the

random variable X . If X is a discrete variable, X ∈ X , then
‖X‖ denotes the cardinality of the finite set X . We use xn to
indicate the vector (x1, x2, . . . , xn).

Definition A.1: A two-user discrete memoryless interfer-
ence relay channel (DMIRC) without feedback consists of
three input alphabets X1, X2 and Xr, and three out-
put alphabets Y1, Y2 and Yr, and a probability tran-
sition function that satisfies p (yn

1 , yn
2 , yn

r | xn
1 , xn

2 , xn
r ) =

n∏

k=1

p (y1,k, y2,k, yr,k | x1,k, x2,k, xr,k) for some n ∈ N∗.

Definition A.2: A
(
2nR1 , 2nR2 , n

)
-code for the DMIRC

with private messages consists of two sets of integers W1 ={
1, ..., 2nR1

}
and W2 =

{
1, ..., 2nR2

}
, two encoders: fi :

Wi → X n
i ,, a set of relay functions {fr,k}n

k=1 such that
xr,k = fr,k (yr,1, yr,2, ..., yr,k−1) , 1 ≤ k ≤ n and two
decoding functions gi : Yn

i → Wi, i ∈ {1, 2}. The source
node Si intends to transmit Wi, the private message, to the
receiver node Di.

Definition A.3: The average probability of error is
defined as the probability that the decoded message
pair differs from the transmitted message pair; that is,
P

(n)
e = Pr [g1 (Y n

1 ) 6= W1 or g2 (Y n
2 ) 6= W2 | (W1, W2) ] ,

where (W1, W2) is assumed to be uniformly distributed over
W1 × W2. We also define the the average probability of error
for each receiver as P

(n)
ei = Pr [gi (Y n

i ) 6= Wi | Wi] . We

have 0 ≤ max
{

P
(n)
e1 , P

(n)
e2

}
≤ P

(n)
e ≤ P

(n)
e1 + P

(n)
e2 . Hence

P
(n)
e → 0 implies that both P

(n)
e1 → 0 and P

(n)
e2 → 0, and

conversely.
Definition A.4: A rate pair (R1, R2) is said to be achiev-

able for the IRC if there exists a sequence of
(
2nR1 , 2nR2 , n

)

codes with P
(n)
e → 0 as n → ∞.

Overview of coding strategy
At the end of the block k, the relay constructs two estimations
ŷn

r1(k) and ŷn
r2(k) of its observation yn

r (i) that intends to
transmit to the receivers D1 and D2 to help them resolve the
uncertainty on w1,k and w2,k respectively at the end of the
block k + 1.

Details of the coding strategy
Codebook generation

i Generate 2nRi i.i.d. codewords xn
i (wi) ∼∏n

k=1 p (xi,k), where wi ∈
{
1, . . . , 2nRi

}
,

i ∈ {1, 2}.
ii Generate 2nR

(1)
0 i.i.d. codewords un

1 ∼∏n
k=1 p (u1,k). Label these un

1 (s1),
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s1 ∈
{
1, . . . , 2nR

(1)
0

}
.

iii Generate 2nR
(2)
0 i.i.d. codewords un

2 ∼∏n
k=1 p (u2,k). Label these un

2 (s2),

s1 ∈
{
1, . . . , 2nR

(2)
0

}
.

iv For each pair (un
1 (s1), u

n
2 (s2)), choose a sequence

xn
r where xn

r ∼ p (xn
r |un

1 (s1), u
n
2 (s2)) =∏n

k=1 p (xr,k|u1,k(s1), u2,k(s2)).
v For each un

1 (s1), generate 2nR̂1 conditionally
i.i.d. codewords ŷn

r1 ∼ ∏n
k=1 p (ŷr1k|u1,k(s1)) and

label them ŷn
r1(z1|s1), z1 ∈

{
1, . . . , 2nR̂1

}
. For

each pair (u1, ŷr1) ∈ U1 × Ŷr1, the conditional
probability p(ŷr1|u1) is defined as p(ŷr1|u1) =

∑

x1,x2,y1,y2,yr

p (x1) p (x2) p (y1, y2, yr|x1, x2, xr) p (ŷr1|yr, u1).

vi For each un
2 (s2), generate 2nR̂2 conditionally

i.i.d. codewords ŷn
r2 ∼ ∏n

k=1 p (ŷr2k|u2,k(s2))

and label them ŷn
r2(z2|s2), z2 ∈

{
1, 2nR̂2

}
. For

each triplet (u2, ŷr1) ∈ U2 × Ŷr1, the conditional
probability p(ŷr2|u2) is defined as p(ŷr2|u2) =∑

x1,x2,y1,y2,yr

p (x1) p (x2) p (y1, y2, yr|x1, x2) p (ŷr2|yr, u2).

vii Randomly partition the message set{
1, 2, . . . , 2nR̂1

}
into 2nR

(1)
0 sets{

S
(1)
1 , S

(1)
2 , . . . , S

(1)

2nR
(1)
0

}
by independently and

uniformly assigning each message in
{

1, . . . , 2nR̂1

}

to an index in
{

1, . . . , 2nR
(1)
0

}
.

viii Also, randomly partition the message
set

{
1, 2, . . . , 2nR̂2

}
into 2nR

(2)
0 sets{

S
(2)
1 , S

(2)
2 , . . . , S

(2)

2nR
(2)
0

}
by independently and

uniformly assigning each message in
{

1, . . . , 2nR̂2

}

to an index in
{

1, . . . , 2nR
(2)
0

}
.

Encoding procedure Let w1,k and w2,k be the messages
to be send in block k. S1 and S2 respectively transmit
the codewords xn

1 (w1,k) and xn
2 (w2,k). We assume that

(un
1 (s1,k−1), ŷ

n
r1(z1,k−1|s1,k−1), y

n
r (k − 1)) ∈ A

(n)
ε and

z1,k−1 ∈ S
(1)
s1,k and also that

(un
2 (s2,k−1), ŷ

n
r2(z2,k−1|s2,k−1), y

n
r (k − 1)) ∈ A

(n)
ε with

z2,k−1 ∈ S
(2)
s2,k . Then the relay transmits the codeword

xn
r (s1,k, s2,k).
Decoding procedure In what follows, we will only detail

the decoding procedure at the receiver node D1 (at D2 the
decoding is analogous). At the end of block k:

i The receiver node D1 estimates ŝ1,k = s1 if and
only if there exists a unique sequence un

1 (s1) that is
jointly typical with yn

1 (k). We have s1 = s1,k with
arbitrarily low probability of error if n is sufficiently
large and R

(1)
0 < I(U1; Y1).

ii Next, the receiver node D1 constructs a set
L1 (yn

1 (k − 1)) of indexes z1 such that
(un

1 (ŝ1,k−1) , ŷn
r1 (z1|ŝ1,k−1) , yn

1 (k − 1)) ∈ A
(n)
ε .

D1 estimates ẑ1,k−1 by doing the intersection of

sets L1 (yn
1 (k − 1)) and S

(1)
ŝ1,k

. Similarly to [14,
Theorem 6] and using [14, Lemma 3], one can
show that ẑ1,k−1 = z1,k−1 with arbitrarily low
probability of error if n is sufficiently large and
R̂1 < I(Ŷr1; Y1|U1) + R

(1)
0 .

iii Using ŷn
r1(ẑ1,k−1|ŝ1,k−1) and yn

1 (k−1), the receiver
node D1 finally estimates the message ŵ1,k−1 = w1

if and only if there exists a unique codeword xn
1 (w1)

such that
(xn

1 (w1), u
n
1 (ŝ1,k−1), y

n
1 (i −

1), ŷn
r1(ẑ1,k−1|ŝ1,k−1)) ∈ A

(n)
ε . One can show

that w1 = w1,k−1 with arbitrarily low probability of
error if n is sufficiently large and

R1 < I
(
X1; Y1, Ŷr1 | U1

)
. (26)

iv At the end of the block k, the relay looks
for the suitable estimation of its observation that
it intends to transmit to the receiver node D1

by estimating ẑ1,k. It estimates ẑ1,k = z1 if
there exists a sequence ŷn

r (z1|s1,k) such that
(un

1 (s1,k), ŷn
r1(z1|s1,k), yn

r (k)) ∈ A
(n)
ε . There exists

a such sequence if n is sufficiently large and R̂1 >
I(Ŷr1; Yr|U1).

From i, ii, iii we further obtain

I(Ŷr1; Yr|U1, Y1) < I(U1; Y1). (27)

The achievability proof for the second receiver node follows
in a similar manner. Therefore, we have completed the proof.

From the discrete case to the Gaussian case
As mentioned in the beginning of this section, obtaining
achievable transmission rates for Gaussian IRCs from those
for discrete IRCs is an easy task. Indeed, the latter consists
in using Gaussian codebooks everywhere and choosing the
coding auxiliary variables properly namely choosing U1, U2,
Ŷr,1, and Ŷr,2. The coding auxiliary variables U1 and U2 are
chosen to be independent and distributed as U1 ∼ N (0, ν1Pr)
and U2 ∼ N (0, ν2Pr). The corresponding codewords un

1 and
un

2 convey the messages resulting from the compression of Yr.
The auxiliary variables Ŷr,1, Ŷr,2 write as Ŷr,1 = Yr + Z

(1)
wz

and Ŷr,2 = Yr + Z
(2)
wz where the compression noises Z

(1)
wz ∼

N (0, N
(1)
wz ) and Z

(2)
wz ∼ N (0, N

(2)
wz ) are independent. At last,

the relay transmits the signal Xr = U1 + U2 as in the case
of a broadcast channel except that, here, each destination also
receives two direct signals from the source nodes. By making
these choices of random variables we obtain the desired rate
region.

APPENDIX B
PROOF OF THEOREM 3.4 (OPTIMAL AMPLIFICATION GAIN

FOR ZDSAF IN IRCS)

Using the notations given in Theorem 3.4 and also the
signal-to-noise plus interference ratio in the capacity function
of Eq. (10) the rate Ri can be written as:

Ri(ar) = C

( |miar + ni|2
|piar + qi|2 + sia2

r + 1

)
.
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R
′
i(ar) =

a2
r

[

|mi|2Re(piq
∗
i )− (|pi|2 + si)Re(min

∗
i )
]

+ ar

[

|mi|2(|qi|2 + 1)− |ni|2(|pi|2 + si)
]

+ (|qi|2 + 1)Re(min
∗
i )− |ni|2Re(piq

∗
i )

[|piar + qi|2 + sia2
r + 1][|miar + ni|2 + |piar + qi|2 + sia2

r + 1]
.

(28)

We observe that Ri(0) = C
(

|ni|2
|qi|2+1

)
and that we have an

horizontal asymptote

Ri,∞ , lim
ar→∞

R1(ar) = C

( |mi|2
|pi|2 + si

)
. Also the first

derivative w.r.t. ar isar is given in (28)
The explicit solution, a∗

r depends on the channel parameters
and is given here below. We denote by ∆ the discriminant of
the nominator in the previous equation. If ∆ < 0, then in
function of the sign of |mi|2Re(piq

∗
i )−(|pi|2 +si)Re(min

∗
i ),

the function Ri(ar) is either decreasing and a∗
r = 0 or

increasing and a∗
r = ar. Let us now focus on the case where

∆ ≥ 0.

1) If |mi|2Re(piq
∗
i ) − (|pi|2 + si)Re(min

∗
i ) ≥ 0 then

a) if c
(1)
r,i ≤ 0 and c

(2)
r,i ≤ 0 then a∗

r = ar;

b) if c
(1)
r,i > 0 and c

(2)
r,i ≤ 0 then

i) if ar ≥ c
(1)
r,i then a∗

r = 0;

ii) if ar < c
(1)
r,i then

• if Ri(0) ≥ Ri(ar) then a∗
r = 0 else a∗

r = ar;

c) if c
(1)
r,i ≤ 0 and c

(2)
r,i > 0 then the analysis is similar

to the previous case and a∗
r ∈ {0, ar} depending

on a
(2)
r this time;

d) if c
(1)
r,i > 0 and c

(2)
r,i > 0

i) if c
(1)
r,i < c

(2)
r,i

A) if ar ≤ c
(1)
r,i then a∗

r = ar;

B) if c
(1)
r,i < ar ≤ c

(2)
r,i then a∗

r = c
(1)
r,i ;

C) if ar > c
(2)
r,i then

• if Ri(c
(1)
r,i ) ≥ R1(ar) then a∗

r = c
(1)
r,i else

a∗
r = ar;

ii) if c
(1)
r,i > c

(2)
r,i then the analysis is similar to the

previous case, exchanging the roles of c
(1)
r,i and

c
(2)
r,i ;

iii) if c
(1)
r,i = c

(2)
r,i then a∗

r = ar.

2) If |mi|2Re(piq
∗
i ) − (|pi|2 + si)Re(min

∗
i ) < 0 then

the analysis follows in the same lines and a∗
r ∈

{0, ar, c
(1)
r,i , c

(2)
r,i }.

APPENDIX C
PROOF OF THEOREM 4.3 (EXISTENCE OF AN NE FOR THE

BI-LEVEL COMPRESSION EF PROTOCOL)

We want to prove that for each user R
(q)
i is concave w.r.t.

θ
(q)
i . Consider w.l.o.g. the case of user 1. The general case of

complex channel gains is considered. We analyze the second
derivative of R

(q)
1 given in Eq. (17). For the sake of clarity we

denote by Ñ
(q)
1 = |hr1|2ν(q)P

(q)
r +N

(q)
1 , Γ0 = |hr1|2ν(q)P

(q)
r

and Γ1 = |h21|2θ(q)
2 P2 + Ñ

(q)
1 . After some manipulations

we obtain the following relation: d2R
(q)
1

d(θ
(q)
1 )2

= M1 − M2 with

Mk = NMk

DMk
, k ∈ {1, 2} where (for the sake of clarity we have

denoted h
(q)
ij by hij):NM1, NM2, DM1, DM2 are defined

by (29),(30).
We observe that the terms Λk ≥ 0, k ∈ {2, . . . , 7}. Also

we can easily see from Eq. (29) that M2 ≥ 0, DM1 ≥ 0.
Thus if we prove that NM1 ≤ 0 the concavity of R

(q)
1 will

be guaranteed. In this purpose we plug the expressions of Λ5,
Λ6, Λ7, Λ8 into Eq. (29) and obtain that NM1 = NNM1

DNM1
with

NNM1, DNM1 given in (31), (32).
Therefore we obtain the desired result NM1 ≤ 0 and thus

M1 ≥ 0, which implies that d2R
(q)
1

d
(

θ
(q)
1

)2 ≤ 0, whatever the

channel parameters.

APPENDIX D
PROOF OF THEOREM 4.5 (NUMBER OF NASH EQUILIBRIA

FOR ZDSAF)

Before discussing these situations in detail, let us first
observe that the two functions Fi(θj) are decreasing w.r.t. θj

and also Fi(0) = di

cii
, Fi(θ

o
j ) = 0 where θo

j = di

cij
.

In this section, we will investigate the NE of the game and
also their asymptotical stability of each NE point. A sufficient
and necessary condition that guarantees the asymptotic stabil-
ity of a certain NE point is related to the relative slopes of the
best-response functions and is given by [37] [38]:

∣∣∣∣
dBR1

dθ2

dBR2

dθ1

∣∣∣∣ < 1 (33)

in an open neighborhood of the NE point. We denote by
V(θ1, θ2) an open neighborhood of (θ1, θ2) ∈ [0, 1]2.

1) If d1 ≤ 0 and d2 ≤ 0, then the BR are constants
BRi(θj) = 0 and thus the NE is unique (θNE

1 , θNE
2 ) =

(0, 0), for all cii ≥ 0, cji ≥ 0. The condition (33) is met

since
∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for (θ1, θ2) ∈ V(0, 0) and thus
the NE is asymptotically stable.

2) If d1 ≤ 0 and d2 > 0, then it can be checked that the
NE is unique, for all cii ≥ 0, cji ≥ 0: θNE

1 = 0 and

θNE
2 =

∣∣∣∣
d2

c22
, if d2 < c22,

1 , otherwise.

It can be checked that
∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for (θ1, θ2) ∈
V(θNE

1 , θNE
2 ) and the NE is asymptotically stable.

3) If d1 > 0 and d2 ≤ 0, then, similarly to the previous
item, we have a unique NE, for all cii ≥ 0, cji ≥ 0:
θNE
2 = 0 and

θNE
1 =

∣∣∣∣
d1

c11
, if d1 < c11,

1 , otherwise.

Here as well we have
∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for (θ1, θ2) ∈
V(θNE

1 , θNE
2 ) and the NE is asymptotically stable.

4) If d1 > 0 and d2 > 0, we have to take into consideration
the parameters cii ≥ 0, cji ≥ 0.
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NM1 = 2
( |h11|2P1

2|h1r |2−Λ2
2P1

2)|h11|2θ
(q)
1 P1

Γ0 Λ5
+ 2 Λ8 |h11|2P1

Γ0 Λ5
−

2

(
Λ8 |h11|2θ

(q)
1 P1

Γ0
+ Λ6 |h11|2 P1 + |h1r|2 Γ1 P1

)
Λ8 Γ1

Λ5
2Γ0

+2 Λ7 Λ8
2Γ1

2

Γ0
2Λ5

3 − 2
Λ7 (|h11|2P1

2|h1r |2−Λ2
2P1

2)Γ1

Λ5
2Γ0

,

NM2 =

[(
Λ8 |h11|2θ

(q)
1 P1

Γ0
+ Λ6 |h11|2 P1 + |h1r|2 Γ1 P1

)
1

Λ5
− Λ7 Λ8 Γ1

Λ5
2Γ0

]2
,

DM1 = 1 + Λ7

Λ5
,

DM2 = DM2
1 ,

(29)





Λ1 = 2Re(h11h
∗
1rh

∗
21h2r),

Λ2 = |h11h
∗
1r| ,

Λ3 = A(q)

Λ4 = |h11|2 θ
(q)
1 P1 + Γ1,

Λ5 =
(
N

(q)
r + N

(q)
wz,1

)
Γ1 + |h2r|2 θ

(q)
2 P2Ñ

(q)
1 ,

Λ6 = |h2r|2 θ
(q)
2 P2 + N

(q)
r + N

(q)
wz,1,

Λ7 = Λ6 |h11|2 θ
(q)
1 P1 + Γ1 |h1r|2 θ

(q)
1 P1,

Λ8 = |h11|2 P1Λ3 + |h1r|2 P1Λ4 − 2Λ2
2θ

(q)
1 P 2

1 − Λ1θ
(q)
2 P1P2.

(30)

NNM1 = 2P 2
1 Γ0

[
P 2

2

(
θ
(q)
2

)2

|h21|4 |h1r|2 + P 2
2

(
θ
(q)
2

)2

|h21|2 |h11|2 |h2r|2 +

(
Ñ

(q)
1

)2

|h1r|2 + 2 P2 Ñ
(q)
1 θ

(q)
2 |h21|2 |h1r|2

]

(
|h21|2 θ

(q)
2 P2 + Γ0 + Ñ

(q)
1

)(
θ
(q)
2 P2 N

(q)
r |h21|2 + |h2r|2 θ

(q)
2 P2 Ñ

(q)
1 + N

(q)
r Ñ

(q)
1

)
(
|h1rh21 − h11h2r|2 θ

(q)
2 P2 + |h1r|2 Ñ

(q)
1 + |h11|2 N

(q)
r

)

≥ 0

. (31)

DNM1 = − |h11h2r − h21h1r|2 θ
(q)
1 P1θ

(q)
2 P2Ñ

(q)
1 − |h21|2 |h1r|2 θ

(q)
1 P1θ

(q)
2 P2Ñ

(q)
1 − |h11|2 θ

(q)
1 P1N

(q)
r Ñ

(q)
1 −

|h21|2 |h2r|2
(
θ
(q)
2

)2

P 2
2 Ñ

(q)
1 − 2 |h21|2 θ

(q)
2 P2N

(q)
r Ñ

(q)
1 − |h21|4

(
θ
(q)
2

)2

P 2
2 N

(q)
r −

|h21h1r − h11h2r|2 |h21|2 θ
(q)
1 P1

(
θ
(q)
2

)2

P 2
2 − |h1r|2 θ

(q)
1 P1

(
Ñ

(q)
1

)2

− |h2r|2 θ
(q)
2 P2

(
Ñ

(q)
1

)2

−
(
Ñ

(q)
1

)2

N
(q)
r − |h21|2 θ

(q)
2 P2N

(q)
r Γ0 − N

(q)
r Γ0Ñ

(q)
1 − |h2r|2 θ

(q)
2 P2Ñ

(q)
1 Γ0−

|h11|2 |h21|2 θ
(q)
1 P1θ

(q)
2 P2N

(q)
r

≤ 0

. (32)

a) If F1(1) ≥ 1 and F2(1) ≥ 1, then we have
d1 ≥ c12 + c11 and d2 ≥ c21 + c22. In this case
the BR are constants i.e., BRi(θj) = 1 and thus
the NE is unique (θNE

1 , θNE
2 ) = (1, 1). We have∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for (θ1, θ2) ∈ V(1, 1) and the
NE is asymptotically stable.

b) If F1(1) ≥ 1 and F2(1) < 1, then we have d1 ≥
c12 + c11 and d2 < c21 + c22. Here also the NE is
unique and θNE

1 = 1 and

θNE
2 =

∣∣∣∣
d2−c21

α22
, if d2 > c22,

0 , otherwise.

Similarly, we have
∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for (θ1, θ2) ∈
V(θNE

1 , θNE
2 ) and the NE is asymptotically stable.

c) If F1(1) < 1 and F2(1) ≥ 1, then we have d1 <
c12 + c11 and d2 ≥ c21 + c22. Here also the NE is

unique and θNE
2 = 1 and

θNE
1 =

∣∣∣∣
d1−c12

c11
, if d1 > c11,

0 , otherwise.

Here as well we have
∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for

(θ1, θ2) ∈ V(θNE
1 , θNE

2 ) and the NE is asymptoti-
cally stable.

d) If F1(1) < 1 and F2(1) < 1, then we’ll have d1 <
c12 + c11 and d2 < c21 + c22. This case is the
most demanding one and will be treated in detail
separately.

At this point an important observation is in order. The
discussed scenarios, for which we have determined the unique
NE, have a simple geometric interpretation. If the intersec-
tion point (θ∗1 , θ

∗
2) is such that either θ∗1 ∈ R \ [0, 1] or

θ∗2 ∈ R \ [0, 1] then the NE is unique and differs from this
point ((θNE

1 , θNE
2 ) 6= (θ∗1 , θ∗2)). The case 4.(d) corresponds
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to the case where the intersection point (θ∗1 , θ∗2) ∈ [0, 1]2 is
an NE point. Now we are interested in finding whether this
intersection point is the unique NE or there are more than one
NE. If 0 < d1 < c11 + c12 and 0 < d2 < c22 + c21 we have
the following situations:

1) If c11c22 = c21c12, then the curves described by θi =
Fi(θj) are parallel.

a) If d1 = d2, then the curves are superposed. In this
special case we have an infinity of NE that can be
characterized by (θNE

1 , θNE
2 ) ∈ T where:

T =
{
(θ1, θ2) ∈ [0, 1]2

∣∣θ1 = F1(θ
NE
2 )

}
.

In this case we have an infinity of NE such that∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 1 for (θ1, θ2) ∈ V(θNE
1 , θNE

2 ) and
the NEs are not stable states. This can be easily
understood since a small deviation from a certain
NE drives the users to a new NE point. Thus, the
users don’t return to the initial state.

b) If d1 6= d2, then the two lines are only parallel.
In this case it can be checked that the NE is
unique and also asymptotically stable since again∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for (θ1, θ2) ∈ V(θNE
1 , θNE

2 ).
In order to explicit the exact relation of the NE,
one has to consider all scenarios in function of
the sign of the following four relations Fi(0) − 1
and θo

j − 1, i ∈ {1, 2}. We will explicit only one
of them. Let us assume that Fi(0) − 1 < 0 and
θo

j < 0 which means that d1 < min{c12,
c12c21

c22
}

and d2 < min{c21, c22}. Here we have two sub-
cases:
• If d1

c12
< d2

c22
, then the NE is characterized by

θNE
1 = 0 and θNE

2 = d2

c22
.

• If d1

c12
> d2

c22
, then the NE is characterized by

θNE
1 = d1c22

c12c21
and θNE

2 = 0.
2) Consider c11c22 6= c21c12. Here we have to consider

all cases in function of the sign of the four relations
Fi(0) − 1 and θo

j − 1, i ∈ {1, 2}. We will focus on
only one of them. Let us assume that Fi(0) − 1 < 0
and θo

j − 1 < 0 and thus d1 < min{c12, c11} and d2 <
min{c21, c22}. Here we have four sub-cases:

• If d2

c22
< d1

c12
and d1

c11
> d2

c21
, then the NE is unique:

θNE
1 = θ∗1 and θNE

2 = θ∗2 . Also we have that∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ < 1 for (θ1, θ2) ∈ V(θ∗1 , θ
∗
2) and the

NE is asymptotically stable.
• If d2

c22
> d1

c12
and d1

c11
< d2

c21
, then there are three

different NE:
(θNE

1 , θNE
2 ) ∈ {(θ∗1 , θ

∗
2), (0, d2

c22
), ( d1

c11
, 0)}, the inter-

section point and two other NE’s on the border. The
intersection point is unstable since

∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ > 1

for (θ1, θ2) ∈ V(θ∗1 , θ
∗
2) but the other two NE’s are

asymptotically stable since
∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for

(θ1, θ2) ∈ V(0, d2

c22
) and (θ1, θ2) ∈ V( d1

c11
, 0).

• If d2

c22
= d1

c12
and d1

c11
< d2

c21
, then there are only

two different NE: (θNE
1 , θNE

2 ) ∈ {(0, d2

c22
), ( d1

c11
, 0)}.

In this case both of NEs are on the border, one

of which represents the intersection point of the
BR’s. It turns out that the intersection point is
not a stable NE because

∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ > 1 for

(θ1, θ2) ∈ V(0, d2

c22
). However, the other NE is

asymptotically stable since
∣∣∣dBR1

dθ2

dBR2

dθ1

∣∣∣ = 0 for

(θ1, θ2) ∈ V( d1

c11
, 0).

• If d2

c22
> d1

c12
and d1

c11
= d2

c21
, then there are two NE:

(θNE
1 , θNE

2 ) ∈ {( d1

c11
, 0), (0, d2

c22
)}. Here the analysis

of the stability of the two NE’s is similar to the
previous case.

In conclusion, the number of NE states depends on the
geometrical properties of the best-response functions. Three
different cases can be identified: 1) when the lines θi = Fi(θj)
are superposed the game has an infinity of NE which are not
stable; 2) when the lines have a unique intersection point that
lies outside of the borders [0, 1] × [0, 1], the NE is unique
and asymptotically stable; 3) when the lines have a unique
intersection point (θ∗1 , θ

∗
2) that lies inside [0, 1] × [0, 1], there

can be one, two or three different NE among which one is
identical to this intersection point. In the case where the the NE
is unique, it is also asymptotically stable. When the game has
two or three NE, the intersection point (θ∗1 , θ

∗
2) is an unstable

equilibrium while the other/others are asymptotically stable.
The best-response algorithm converges to one of the NE points
depending on the initial state of the system.
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Fig. 1. System model: a Q-band interference channel with a relay; q is the
band index and q ∈ {1, ...,Q}.

Fig. 2. For different relay positions in the plane
(

xr
d0

, yr
d0

)

∈ [−4,+4] ×
[−3,+4], the figure indicates the regions where one relaying protocol (AF,
DF or bi-level EF) dominates the two others in terms of network sum-rate.
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ε = 0.5m, P1 = 20dBm, P2 = 23dBm, Pr = 22dBm, N1 = 10dBm,
N2 = 9dBm, Nr = 7dBm, γ(1) = γ(2) = 2. The optimal amplification
gain A∗
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Abstract—In this paper, we review the literature on physical
layer energy-efficient communications. The most relevant and
recent works are mainly centered around two frameworks: the
pragmatic and the information theoretical approaches. Both of
them aim at finding the best transmit and/or receive policies
which maximize the number of bits that can be reliably conveyed
over the channel per unit of energy consumed. Taking into
account both approaches, the analysis starts with the single user
SISO (single-input single-output) channel, and is then extended
to the MIMO (multiple-input multiple-output) and multi-us er
scenarios.

I. I NTRODUCTION

During the past decade, energy consumption has become
an increasingly important issue in wireless networks. For
instance, in the current cellular networks, the mobile terminals
are equipped with relatively large screens, required to offer
more and more functionalities and they need to operate at
higher transmission rates for a longer period of time. At the
fixed infrastructure level of these networks, the number of
base stations has increased dramatically implying important
energy costs. According to [2], these costs are expected to be
multiplied by a factor of six within the decade 2002–2012.
However, significant progress has been made in the art of
designing wireless transmitters and receivers. This includes
antennas and electronic circuits technology, signal processing
algorithms, channel coding techniques and network protocols.
The arising question is: Will technological progress be fast
enough to control and decrease the energy consumption at
the terminal and the network infrastructure sides? Answering
such a question is a difficult task and only partial answers can
be provided. For this purpose, different communication and
information theoretical tools will be used. An important tool
and one of the technological breakthroughs in communications
is the MIMO concept (i.e., systems composed of multiple
antenna terminals) [3][4][5]. It is well known that, for a point-
to-point communication, using multiple antenna terminalsin
full diversity mode (i.e., all the transmmit antennas are used
to send the same information over the channel) allows one to
decrease the transmit power while ensuring a fixed quality of
transmission (e.g., the bit error rate).

In this paper, we overview the literature on energy-efficient
communications w.r.t. the number of bits that can be reliably
conveyed over the channel per unit of energy consumed.
The research on this topic has been focused on two main
approaches: a pragmatic approach based on practical modula-
tions, coding-decoding schemes, electronics and an informa-

tion theoretical approach. In Tab. I, we have summarized the
general assumptions for both approaches. The systems under
investigation consist either of single or multiple antennater-
minals. The multi-carrier scenario is a special case of MIMO
channel which can be solved in closed-form in the pragmatic
approach and, thus, will be considered separately. Regarding
the channel coherence time, in the pragmatic approach, the
quasi-static channel is considered assuming perfect channel
state information at the transmitters (CSIT). The transmitter
can adjust its power as a function of the channel state. In the
second scenario three types of channels are considered: a) the
static channel with perfect CSIT; b) the fast fading channel; c)
the slow fading channel. For b) and c) only the statistics of the
channel are required at the transmitter. In all scenarios, perfect
channel state information is needed at the decoder. The main
focus of this paper is the energy-efficiency power allocation
(PA) problem although different degrees of freedom are also
briefly reviewed. In most of the dedicated literature, only the
transmit power at the output of the RF circuits (or the transmit
power for reliable data) is considered. Even if this assumption
may not be realistic, it allows one to characterize the upper
bound on the maximum performance that can be achieved
in practice. However, we will also review some works that
have taken into account the consumed circuitry energy which
may have a critical impact on the system energy-efficiency.
Furthermore, only the single-user setting is investigatedin the
information theoretical approach, whereas for the pragmatic
approach the multi-user scenario is also considered.

TABLE I
SYSTEM MODEL AND ASSUMPTIONS FOR THE TWO ENERGY-EFFICIENT APPROACHES

Pragmatic approach Information theoret-
ical approach

Dimensionality
SISO SISO
Multi-carrier -
MIMO MIMO

Number of users
Single-user Single-user
Multi-user -

Coherence time
Static channels,
CSIT

Quasi-static, CSIT Fast fading, CDIT
Slow fading, CDIT

Consumed power
RF signal power RF signal power
RF signal plus cir-
cuitry power

-

A. Notations

We define hereafter some general notations and acronyms
that will be used throughout the paper. LetR denote the



transmit rate,γ the received SNR for the single user case
or SINR for the multi-user case,p ∈ (0, P ] denote the
transmit power which is constrained byP , h the channel
gain,σ2 the noise variance (the noise is assumed Gaussian).
For the MIMO system we denote bynt, nr the number
of available antennas at the transmitter and receiver,H the
nr ×nt channel matrix,hj the j − th column ofH, the input
covariance matrix isQ = Udiag(p1, . . . , pnt)U

H whereU
is a unitary matrix, andp = (p1, . . . , pnt) is the vector of
the corresponding eigenvalues. The average power constraint
is Tr(Q) =

∑nt

j=1 pj ≤ P . The noise correlation matrix is
Σz = σ2I, unless otherwise specified.

Acronym Definition
SISO single-input single-output
MIMO multiple-input multiple-output
CSIT channel state information at the transmitter
CDIT channel distribution information at the transmitter
PA power allocation
RF radio frequency
SNR signal-to-noise ratio
SINR signal-to-interference plus noise ratio
CDMA code division multiple access
BER bit error rate
FSK frequency shift keying
bpcu bits per channel use
NE Nash equilibrium
OFDMA orthogonal frequency-division multiple access
STBC space-time block coding
AWGN additive white Gaussian noise
UPA uniform power allocation

B. A Generic Efficiency Function

The efficiency of a system can be defined in general as the
ratio between what the system delivers to what it consumes.
For example, we can define the efficiency function as:

E(x) =
f(x)

g(x)
, (1)

wherex ∈ [0, X] denotes the resource constrained byX , f(·)
the benefit function such thatf(0) = 0 and g(·) is the cost
of the resource. We assume also thatg(0) = 0, which means
that the cost in standby mode (no transmission) is zero. The
problem ofefficient resource allocationis to find the optimal
x∗ maximizing E(x). Assuming a linear cost,g(x) = λx
whereλ > 0 represents the unit cost, then it is sufficient to
study the function:

Ẽ(x) =
f(x)

x
(2)

Depending on the shape off(x), two types of energy-
efficiency functions can be distinguished:

Type I: f(x) is an increasing S-shaped function. In [6], the
authors show that, under this hypothesis, the efficiencyẼ(x)
is quasi-concave w.r.t.x. The optimal solution is unique and
non-trivial x∗ > 0 and is given byx∗ = min{X, x̃} wherex̃
is the solution of the equation:

xf ′(x) − f(x) = 0. (3)

The solutionx̃ has a neat geometrical interpretation. It is the
intersection point between the curvey = f(x) and the tangent
that passes through the origin(0, 0). For example, iff(x) =
e−a3/x with a3 > 0, the optimal solution isx∗ = min{X, a3}.
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Fig. 1. Type I energy-efficiency vs. received SNRγ.

Type II: f(x) is an increasing concave function. In this case,
the optimal solution is trivialx∗ → 0. For example, for a
logarithmic benefit function,f(x) = a1 log(1 + a2x) with
a1 > 0 anda2 > 0 it can be shown that the energy-efficiency
function is convex and decreasing w.r.t.x. Thus, the optimal
solution is trivialx∗ → 0. Intuitively speaking, if increasing
the resource consumption results in a marginal increase of
benefit, then the most efficient solution is not to consume the
resource at all.

II. PRAGMATIC APPROACH

We will first study the pragmatic approach, starting with the
simplest case of single antenna systems.

A. SISO

In [7][8], the authors study the uplink of aK-user CDMA
Gaussian channel. A non-cooperative power control game is
formulated where the transmitters tune their powers in order
to maximize their individual performance in terms of energy-
efficiency. The chosen performance metric for the single user
case is defined as:

G(p,R) =
LRf(γ)

Mp
, (4)

whereL represents the information bits,M the packet size
(M > L after the channel coding). Also,f(γ) = (1−BER)M

represents the probability of correct packet reception andBER
denotes the bit error rate. In general,f(γ) is an S-shaped
function. The energy-efficiency is a Type I function and a non-
trivial solutionγ∗ > 0 exists for the optimization off(γ)γ . This
is illustrated in Fig. 1 forR = 1 bpcu (bits per channel use),
M = L = 80 and a non-coherent FSK modulation [8]. The
optimal transmit policy corresponds to the power achievingthe
optimal SNRγ∗ while satisfying the power constraint. This
result is shown to extend to the multi-user scenario where, at
the Nash equilibrium (NE) state (see e.g., [9][10]), the optimal
transmit policy for any user is the minimal power that allows
it to achieve the optimal SINR equal toγ∗ (independently of
the user identity).

In [11], the authors showed that the performance obtained at
the NE is inefficient. In order to obtain a Pareto improvement
of the non-cooperative power control game, different methods
have been proposed such as: pricing techniques [11], hierarchy
among users with either successive interference cancellation



at the receiver or using the Stackelberg formulation [12] [13],
repeated games framework [14].

Several extensions of [8] have been proposed by consider-
ing: The influence of other supplementary degrees of freedom
on the system energy-efficiency, such as the transmit constel-
lation size [15], transmission rate [16], [20], the coefficients
of the receive filter [18], [22], [21]; multi-hop systems and
introducing the circuitry consumed power [22], [23]; non-
linear receivers [17]. For more details the reader is referred
also to [19].

In [24], the non-cooperative power control game is studied
in a frequency-selective environment for the uplink of an
impulse-radio ultrawideband system. In this case, the problem
is more challenging than single path because of the self-
interference in addition to multiple access interference and
every user achieves a different SINR at the output of its Rake
receiver. The authors of [23] study the energy-efficiency non-
cooperative power control game in large networks. The nodes
are assumed to form clusters to send the local signal at distant
receivers. In this scenario, the NE is characterized assuming
that the players are the clusters that choose their average
transmit power to maximize the energy-efficiency.

B. Multi-carrier

The authors in [25] have extended the analysis in [8] to the
study of the PA problem in multi-carrier CDMA systems. The
transmitter can send independent data flows over a number of
D ≥ 2 orthogonal carriers. The energy-efficiency utility writes
as:

G(p,R) =
RL

M

D∑

d=1

f(γd)

D∑

d=1

pd

, (5)

where p = (p1, . . . , pD), pd ≥ 0, represents the power
allocated to thed-th carrier andγd is the receive SNR on
the d-th carrier. The authors prove that the optimal PA policy
is to use only the best carrier (w.r.t. the channel gain) and to
transmit over this carrier with a power that achieves an SNR
equal toγ∗. The result is extended to the multi-user case.

A different energy-efficiency function has been studied in
[28][29] for multi-carrier frequency-selective OFDMA chan-
nels. This function is defined by the ratio of the throughput
and the total power (transmit plus circuitry consumption).The
throughput is the transmission rate depending on the SNR gap
factor.

C. MIMO

The multi-carrier case can be seen as a particular MIMO
channel wherenr = nt = D and H is a diagonal matrix.
Now we will focus on the general MIMO case. The major
difficulty in extending this pragmatic approach to the general
MIMO case is that the output SNR will be strongly related to
the encoding-decoding schemes implemented.

In [18], the authors study the SIMO (single-input multiple-
output) case where the receiver is equipped with several

antennas. The users tune the MMSE receiver coefficients
(in this case matrices instead of vectors) and their transmit
powers. A large system comparison between the MMSE filter,
the matched filter and the decorrelator is also provided. In
this case, since the transmitter is equipped with one antenna
the problem remains essentially a power control problem.
In [27], the framework in [26], is extended to multiuser
MIMO wireless systems where each terminal can tune its
transmit power, beamforming vector and receiver in order
to maximize its own utility. Hence, the transmit covariance
matrix is restricted to be a unit rank matrix.

In [30], the authors studied the two extreme cases w.r.t. the
tradeoff between the diversity and multiplexing gains brought
by MIMO systems: (a) the full multiplexing mode, where the
transmitter sends independent data flows over its antennas;(b)
the full diversity mode, where the transmitter sends the same
information over its antennas.

In case (a), the transmit covariance matrix is diagonalQ =
diag(p) and the efficiency function has the same expression
as (5) by replacingD with nt. Here,γi is the output SINR
of the matched filter receiver for thei-th component of the

transmitted signal:γi = pih
H
i

(
Σz +

∑
j6=i pjhjh

H
j

)−1

hi.
The authors proved a similar result as in [25] for the single user
case. When independent information is sent over the transmit
antennas and assuming a matched filter receiver, the optimal
PA policy is beamforming in the direction that requires the
minimal power to achieve the target SINRγ∗:

p∗i =

∣∣∣∣∣
min

{
P , γ∗

hH
k Σ−1

z hk

}
, if i = k,

0, otherwise,
(6)

where k = argmaxj∈{1,...,nt} h
H
j Σ−1

z hj is the index of
the best channel andΣz is a general positive definite noise
covariance matrix. This result was extended to any linear
receiver [30].

In case (b), the transmit covariance matrix is a unit rank
matrixQ = vvH wherevi =

√
pi for all i ∈ {1, . . . , nt}. The

received SNR at the output of the matched filter (or the MRC
receiver) is:

γMRC =

nt∑

i=1

nt∑

j=1

√
pi

√
pjh

H
i Σ−1

z hj. (7)

The energy-efficiency function to be maximized isG(p,R) =
RL
M

f(γMRC)∑nt
i=1 pi

, under the power constraint
∑nt

i=1 pi ≤ P . The
problem is more difficult here and a closed-form solution can
be obtained only for a particular case wherenr = nt = n,
H = diag(h11, . . . , hnn) and Σz = diag(σ2

1 , . . . , σ
2
n). No-

tice that this is the dual case of the one studied in [25]
(where the transmitter sends independent information over
the parallel sub-channels). The optimal solution corresponds
to choosing only the link with the best output SNR ( i.e.,
k = argmaxj∈{1,...,n}

|hjj |2
σ2
j

) and to transmit with a power
that achievesγ∗. Notice that the same solution was obtained
in [25].



There are several works that have studied the energy-
efficiency in MIMO channels assuming space-time codes.
In [31], the authors evaluate the improvement obtained by
using multiple antenna terminals and implementing Alamouti
diversity schemes. Assuming a fixed transmission rate and the
BPSK input modulation, the MIMO system outperforms the
SISO in terms of energy-efficiency if only the transmit power
consumption is taken into account. When the circuitry energy
consumption is also taken into account, this conclusion is
no longer true. However, if the input constellation size can
be optimized, the MIMO system can outperform the SISO
system, in spite of the higer circuitry energy consumption.
The authors consider also the scenario where the nodes of
the network are single antenna terminals that can cooperate
among each-other to form a virtual MIMO system. It turns
out that, applying MIMO coding/decoding techniques reduces
both, the total consumed energy and the total delay, even if
the costs of the local exchange information among the nodes
is accounted for. The STBC cooperative transmission is also
addressed in [32] for sensor networks. The authors propose the
low-energy adaptive clustering hierarcy (LEACH) framework
to improve the energy-efficiency. In [35][36], the multi-level
clustering techniques allowing far-off nodes to communicate
to the base station are investigated. Other energy-efficient
scheduling mechanisms are reviewed in [33]. In [34], the
authors derive an adaptive MIMO approach where the trans-
mitter adapts its modulation and rate and chooses either space-
division multiplexing, space-time coding or single-antenna
transmission. The authors show that this adaptive technique
can improve the energy-efficiency up to30% compared to
non-adaptive systems.

III. I NFORMATION THEORETICAL APPROACH

We will now overview the information theoretical approach.
One of the first papers addressing energy-efficient commu-
nications from this point of view is [37] where the author
determines the capacity per unit cost for various versions of
the photon counting channel. In [38], the author studies the
discrete memoryless channel where a costb[·] is assigned to
each symbol of the input alphabet. The maximum number of
bits that can be transmitted reliably through the channel per
unit cost is characterized as follows. Two different scenarios
were considered depending on whether the input alphabet,X ,
contains or not a zero cost symbol:b[x0] = 0 (e.g., the silence
conveys information).

Assuming that there is no zero cost symbol, the capacity
per unit cost is:

C̃ = sup
β>0

C(β)

β
= sup

β>0

supX,E[b[X]]≤β I(X;Y )

β
(8)

whereC(β) = supq(X),E[b[X]]≤β I(X ;Y ) represents the ca-
pacity of an input-constrained memoryless stationary channel.

If the input alphabet contains a zero cost symbol,b[x0] = 0,
the capacity per unit-cost per unit cost is:

C̃ = sup
x∈X\{x0}

D(qY |X=x‖qY |X=x0
)

b[x]
. (9)
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Fig. 2. Type II energy-efficiency vs. transmit powerp.

Notice that the capacity per unit cost is easier to compute
since the optimization is not done over the input probability
ditributions q(x) but over the symbols of the input alphabet.
Furthermore, the divergence between two distributions,D(·‖·),
is easier to compute than the mutual information,I(·; ·) [43].

In [44], the authors consider the discrete memoryless chan-
nel with binary inputs where the0 is a zero cost symbol.
As opposed to [38] where the cost constraint is imposed on
each symbol, in [44] the codeword is cost-constrained. In this
case, it is not possible to guarantee an asymptotically small
error probability and, thus, the Shannon capacity is zero. The
capacity per unit energy is defined as the maximum rate, in
bits per unit of energy consumed, that can be transmitted
over the channel such that the maximum likelihood random
coding error exponent is positive. Based on this notion, the
authors of [45] define the capacity under a similar finite energy
constraint as the maximum total number of bits that can be
transmitted with a positive error exponent. Then they analyse
the connections between this notion and the capacity per unit
energy in [44]. In [46], the authors apply the results in [38],
[44] to the wide-sense stationary and uncorrelated scattering
(WSSUS) channel.

In the remaining part of the paper, we consider the con-
tinuous channels and assume that the input alphabet does not
contain zero cost symbols unless otherwise specified.

A. SISO

We start with the static SISO AWGN channel. Following
[38], the achievable rate per unit cost is:

Γ(p) =
1

2p
log2

(
1 +

p|h|2
σ2

)
(10)

Notice thatΓ(p) is a Type II efficiency function. This can also
be seen in Fig. 2 where we plotΓ(p) for the scenario where
ρ = 10 dB, h = 1. In this case, the capacity per unit cost
is achieved whenp∗ → 0 and given byΓ∗ → 1

2
|h|2
σ2 log2 e.

Therefore, in order to be energy-efficient in the sense of the
capacity per unit cost, the transmitter has to send information
with very low power which implies low data rates. This solu-
tion may be realistic in sensor networks but is not acceptable
in most common scenarios where minimum communication
rates are required. For fast fading channels a similar result is
proved in [41].



The case of slow fading channels is considered in [30] [41].
In this case, the Shannon achievable rate is equal to zero. Thus,
a different information theoretical energy-efficiency function
is proposed:

Γ(p,R) =
R[1− Pout(p,R)]

p
, (11)

wherePout(p,R) = Pr
[
log2

(
1 + p|h|2

σ2

)
< R

]
is the outage

probability. The numerator,R[1−Pout(p,R)], can be seen as
the long-term expected throughput. Assuming Rayleigh fading,
the closed-form expression of the outage probability is given
by Pout(p,R) = 1−exp{−σ2(eR−1)

p }. In this case,Γ(p,R) is
a Type I energy-efficiency function and a non-trivial solution
exists and is given by:p∗ = min{σ2(eR −1), P}. We observe
that this result is very similar to the one obtained in Sec. II
where the pragmatic energy-efficiency function is considered.
This can be explained by the fact that, as opposed to the
static and fast fading cases, in slow fading channels, thereare
outage events (i.e., non-zero error probablility) which imply
the existence of an non trivial tradeoff between the throughput
and power consumption.

A very similar notion with the capacity per unit cost is the
minimum energy-per-bit. This notion is defined in [39] for the
discrete-time AWGN relay channel. By considering the relay
power equal to zero the minimum energy-per-bit becomes:

εb = lim
p→0

2p

log2

(
1 + p|h|2

σ2

) = 2σ2

|h|2 log2 e

We obeserve that the minimum energy-per-bit is the inverse
of the capacity per unit cost. In [40], the authors study the
AWGN relay channel in the presence of circularly symmetric
fast fading. They consider different relaying protocols and
provide lower bounds on the minimum energy-per-bit.

B. MIMO

In [41], the authors investigated the case of MIMO channels
assuming that the channel matrixH is a nr × nt random
matrix with i.i.d. standard Gaussian entries. It turns out that
for static and fast fading channels, the optimal energy-efficient
solution is similar to the SISO case. More precisely, the
optimal covariance matrix maximizing the achievable rate per
unit cost goes to zeroQ∗ → 0. The capacity per unit cost for
the static channel isΓ∗ → 1

ln 2
Tr(HHH )

σ2 . The result is extended
to fast fading channels.

For the slow fading MIMO channel the problem is much
more difficult. In contrast to the static and fast fading cases, the
results obtained for the single-antenna case are not necessarily
extendable to MIMO channels. In this case, even the optimal
solution that minimizes the outage probability is still an open
issue. This is due to the fact that the mutual information is a
random variable that has an intractable probability distribution,
and no closed-form expressions are available for the outage
probability. Telatar conjectured in [5] that the optimal transmit
policy is to spread all the available power,P , uniformly over
a subset of` antennas wherè = `(R, σ2) is a function
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of the system parameters. This famous conjecture has been
proved for the particular cases:nr = 1, nt = 2 in [47] and
nr = 1, nt ≥ 2 in [48]. Relying on [48], the authors of
[49] have found the optimal covariance matrix maximizing the
energy-efficiency for the case wherenr = 1, nt ≥ 2. They also
conjectured the solution for the general MIMO case. It turns
out that the cojectured solution has the exact same stuctureas
the one minimizing the outage probability. The difference is
that, when optimizing the energy-efficiency function, it isnot
always optimal to use all the available power.

A particular case of interest is the case of UPA transmit
policy whereQ = p

nt
I. In [49], the authors conjecture that

the energy-efficiency is a quasi-concave function w.r.t.p and
that a non-trivial solution existsp∗ > 0. This is illustrated
numerically in Fig. 3 for the scenario:nr = nt = n ∈
{1, 2, 4, 8}, ρ = 10 dB, R = 1 bpcu. We observe that the
optimal energy-efficiency value is increasing with the system
size and, thus, having several transmit antennas improves the
energy-efficiency of the system.

The quasi-concavity property w.r.t. the transmit powerp is
important for example in the multi-user scenario. It allows
one to prove the existence of NE states for non-cooperative
energy-efficient games (see [9]).

In [42], the authors study the tradeoff between the minimum
energy-per-bit and the spectral efficiency for wide-band MIMO
channels assuming that the input alphabet contains a zero cost
symbol and the UPA transmit policy.

IV. CONCLUSIONS

In this paper, we overviewed the literature on energy-
efficient communications. The current research is focused on
maximizing the number of bits per Joule that can be reliably
conveyed through the channel. From an information theoretical
point of view, the optimal transmit power allocation policyis
trivial for the static and fast fading channels. When slow fading
is assumed, a non-trivial solution exists and using mutiple-
antennas terminals improves the system energy-efficiency.
However, these conclusions do not hold necessarily in practical
scenarios where the circuitry energy is also considered.
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Abstract—The problem of energy-efficient precoding is inves-
tigated when the terminals in the system are equipped with
multiple antennas. Considering static and fast-fading multiple-
input multiple-output (MIMO) channels, the energy-efficiency is
defined as the transmission rate to power ratio and shown to be
maximized at low transmit power. The most interesting case is the
one of slow fading MIMO channels. For this type of channels, the
optimal precoding scheme is generally not trivial. Furthermore,
using all the available transmit power is not always optimalin
the sense of energy-efficiency (which, in this case, corresponds to
the communication-theoretic definition of the goodput-to-power
(GPR) ratio). Finding the optimal precoding matrices is shown
to be a new open problem and is solved in several special cases:
1. when there is only one receive antenna; 2. in the low or high
signal-to-noise ratio regime; 3. when uniform power allocation
and the regime of large numbers of antennas are assumed. A
complete numerical analysis is provided to illustrate the derived
results and stated conjectures. In particular, the impact of the
number of antennas on the energy-efficiency is assessed and
shown to be significant.

Index Terms—Energy-efficiency, MIMO systems, outage prob-
ability, power allocation, precoding.

I. I NTRODUCTION

In many areas, like finance, economics or physics, a com-
mon way of assessing the performance of a system is to con-
sider the ratio of what the system delivers to what it consumes.
In communication theory, transmit power and transmission rate
are respectively two common measures of the cost and benefit
of a transmission. Therefore, the ratio transmission rate (say in
bit/s) to transmit power (in J/s) appears to be a natural energy-
efficiency measure of a communication system. An important
question is then: what is the maximum amount of information
(in bits) that can be conveyed per Joule consumed? As reported
in [1], one of the first papers addressing this issue is [2] where
the author determines the capacity per unit cost for various
versions of the photon counting channel. As shown in [1], the
normalized1 capacity per unit cost for the well-known additive
white Gaussian channel modelY = X + Z is maximized for

Gaussian inputs and is given bylimP→0
log2(1+ P

σ2 )
P = 1

σ2 ln 2 ,
where E|X |2 = P and Z ∼ CN (0, σ2). Here, the main
message of communication theory to engineers is that energy-
efficiency is maximized by operating at low transmit power
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Supélec, Paris 11), Supélec, Plateau du Moulon, 91192 Gif-sur-Yvette, France,
{belmega,lasaulce}@lss.supelec.fr

1In [1] the capacity per unit cost is in bit/s per Joule and not in bit/J, which
amounts to normalize by a quantity in Hz.

and therefore at low transmission rates. However, this answer
holds for static and single input single output (SISO) channels
and it is legitimate to ask: what is the answer for multiple-
input multiple-output (MIMO) channels? In fact, as shown
in this paper, the case of slow fading MIMO channels is
especially relevant to be considered. Roughly speaking, the
main reason for this is that, in contrast to static and fast fading
channels, in slow fading channels there are outage events
which imply the existence of an optimum tradeoff between
the number of successfully transmitted bits or blocks (called
goodput in [3] and [4]) and power consumption. Intuitively,
this can be explained by saying that increasing transmit power
too much may result in a marginal increase in terms of quality
or effective transmission rate.

First, let us consider SISO slow fading or quasi-static chan-
nels. The most relevant works related to the problem under
investigation essentially fall into two classes corresponding
to two different approaches. The first approach, which is the
one adopted by Verdú in [1] and has already been mentioned,
is an information-theoretic approach aiming at evaluatingthe
capacity per unit cost or the minimum energy per bit (see e.g.,
[5], [6], [7], [8]). In [1], two different cases were investigated
depending on whether the input alphabet contains or not a
zero cost or free symbol. In this paper, only the case where
the input alphabet does not contain a zero-cost symbol will
be discussed (i.e., the silence at the transmitter side doesnot
convey information). The second approach, introduced in [9] is
more pragmatic than the previous one. In [9] and subsequent
works [4], [10], the authors define the energy-efficiency of
a SISO communication asu(p) = Rf(η)

p where R is the
effective transmission data rate in bits,η the signal-to-noise-
plus-interference ratio (SINR) andf is a benefit function (e.g.,
the success probability of the transmission) which dependson
the chosen coding and modulation schemes. To the authors’
knowledge, in all works using this approach ([9], [4], [10],
[11], [12], [13], etc.), the same (pragmatic) choice is made
for f : f(x) = (1 − e−αx)N , whereα is a constant andN
the block length in symbols. Interestingly, the two mentioned
approaches can be linked by making an appropriate choice for
f . Indeed, iff is chosen to be the complementary of the outage
probability, one obtains a counterpart of the capacity per
unit cost for slow fading channels and gives an information-
theoretic interpretation to the initial definition of [9]. To our
knowledge, the resulting performance metric has not been
considered so far in the literature. This specific metric, which
we call goodput-to-power ratio (GPR), will be considered in
this paper. Moreover, we consider MIMO channels where
the transmitter and receiver are informed of the channel
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distribution information (CDI) and channel state information
(CSI) respectively. To conclude the discussion on the relevant
literature, we note that some authors addressed the problem
of energy-efficiency in MIMO communications but they did
not consider the proposed energy-efficiency measure based on
the outage probability. In this respect, the most relevant works
seem to be [15], [16] and [17]. In [15], the authors adopt a
pragmatic approach consisting in choosing a certain coding-
modulation scheme in order to reach a given target data rate
while minimizing the consumed energy. In [16], the authors
study the tradeoff between the minimum energy-per-bit versus
spectral efficiency for several MIMO channel models in the
wide-band regime assuming a zero cost symbol in the input
alphabet and unform power allocation over all the antennas.In
[17], the authors consider a similar pragmatic approach to the
one in [4], [10] and study a multi-user MIMO channel where
the transmitters are constrained to using beamforming power
allocation strategies.

This paper is structured as follows. In Sec. II, assumptions
on the signal model are provided. In Sec. III, the proposed
energy-efficiency measure is defined for static and fast-fading
MIMO channels. As the case of slow fading channels is non-
trivial, it will be discussed separately in Sec. IV. In Sec.
IV, the problem of energy-efficient precoding is discussed
for general MIMO slow fading channels and solved for the
multiple input single output (MISO) case, whereas in Sec.
V asymptotic regimes (in terms of the number of antennas
and SNR) are assumed. In Sec. VI, simulations illustrating
the derived results and stated conjectures are provided. Sec.
VII provides concluding remarks and open issues.

II. GENERAL SYSTEM MODEL

We consider a point-to-point communication with multiple
antenna terminals. The signal at the receiver is modeled by:

y(τ) = H(τ)x(τ) + z(τ), (1)

where H is the nr × nt channel transfer matrix andnt

(resp.nr) the number of transmit (resp. receive) antennas.
The entries ofH are i.i.d. zero-mean unit-variance com-
plex Gaussian random variables. The vectorx is the nt-
dimensional column vector of transmitted symbols andz is an
nr-dimensional complex white Gaussian noise distributed as
N (0, σ2I). In this paper, the problem of allocating the transmit
power between the available transmit antennas is considered.
We will denote byQ = E[xxH ] the input covariance matrix
(called the precoding matrix), which translates the chosen
power allocation (PA) policy. The corresponding total power
constraint is

Tr(Q) ≤ P . (2)

At last, the time indexτ will be removed for the sake of clarity.
In fact, depending on the rate at whichH varies withτ , three
dominant classes of channel models can be distinguished:

1) the class of static channels;
2) the class of fast fading channels;
3) the class of slow fading channels.

The matrix H is assumed to be perfectly known at the
receiver (coherent communication assumption) whereas only

the statistics ofH are available at the transmitter. The first
two classes of channels are considered in Sec. III and the last
one is treated in detail in Sec. IV and V.

III. E NERGY-EFFICIENT COMMUNICATIONS OVER STATIC

AND FAST FADING MIMO CHANNELS

A. Case of static channels

Here the frequency at which the channel matrix varies is
strictly zero that is,H is a constant matrix. In this particular
context, both the transmitter and receiver are assumed to know
this matrix. We are exactly in the same framework as [18].
Thus, for a given precoding schemeQ, the transmitter can
send reliably to the receiverlog2

∣∣Inr + ρHQHH
∣∣ bits per

channel use (bpcu) withρ = 1
σ2 . Then, let us define the

energy-efficiency of this communication by:

Gstatic(Q) =
log2

∣∣Inr + ρHQHH
∣∣

Tr(Q)
. (3)

The energy-efficiencyGstatic(Q) corresponds to an achiev-
able rate per unit cost for the MIMO channel as defined
in [1]. Assuming that the cost of the transmitted symbolx,
denoted byb[x], is the consumed energyb[x] = ‖x‖2 =
Tr(xxH), the capacity per unit cost defined in [1] is:C̃slow ,

sup
x,E[b[x]]≤P

I(x; y)

E[b[x]]
. The supremum is taken over the p.d.f. ofx

such that the average transmit power is limitedE[b[x]] ≤ P .
It is easy to check that:

C̃slow = sup
Q,Tr(Q)≤P

1

Tr(Q)
sup

x,E(xxH)=Q

I(x; y)

= sup
Q,Tr(Q)≤P

Gstatic(Q).
(4)

The second equality follows from [18] where Telatar proved
that the mutual information for the MIMO static channel is
maximized using Gaussian random codes. In other words,
finding the optimal precoding matrix which maximizes the
energy-efficiency function corresponds to finding the capacity
per unit cost of the MIMO channel where the cost of a symbol
is the necessary power consumed to be transmitted. The
question is then whether the strategy “transmit at low power”
(and therefore at a low transmission rate) to maximize energy-
efficiency, which is optimal for SISO channels, also applies
to MIMO channels. The answer is given by the following
proposition, which is proved in Appendix A.

Proposition 3.1 (Static MIMO channels): The energy-
efficiency of a MIMO communication over a static channel,
measured byGstatic, is maximized whenQ = 0 and this
maximum is

G∗
static =

1

ln 2

Tr(HHH)

ntσ2
. (5)

Therefore, we see that, for static MIMO channels, the
energy-efficiency defined in Eq. (3) is maximized by trans-
mitting at a very low power. This kind of scenario occurs for
example, when deploying sensors in the ocean to measure a
temperature field (which varies very slowly). In some appli-
cations however, the rate obtained by using such a scheme



3

can be not sufficient. In this case, considering the benefit to
cost ratio can turn out to be irrelevant, meaning that other
performance metrics have to be considered (e.g., minimize the
transmit power under a rate constraint).

B. Case of fast fading channels

In this section, the frequency with which the channel matrix
varies is the reciprocal of the symbol duration (x(τ) being
a symbol). This means that it can be different for each
channel use. Therefore, the channel varies over a transmitted
codeword (or packet) and, more precisely, each codeword sees
as many channel realizations as the number of symbols per
codeword. Because of the corresponding self-averaging effect,
the following transmission rate (also called EMI for ergodic
mutual information) can be achieved on each transmitted
codeword by using the precoding strategyQ :

Rfast(Q) = EH

[
log2

∣∣Inr + ρHQHH
∣∣] . (6)

Interestingly, Rfast(Q) can be maximized w.r.t.Q by
knowing only the statistics ofH that is, E

[
HHH

]
, under

the standard assumption that the entries ofH are complex
Gaussian random variables. In practice, this means that only
the knowledge of the path loss, power-delay profile, antenna
correlation profile, etc is required at the transmitter to max-
imize the transmission rate. At the receiver however, the
instantaneous knowledge ofH is required. In this framework,
let us define energy-efficiency by:

Gfast(Q) =
EH

[
log2

∣∣Inr + ρHQHH
∣∣]

Tr(Q)
. (7)

By defining g
i

as the i-th column of the matrix
√
ρHU,

i ∈ {1, . . . , nt}, U and {pi}nt

i=1 an eigenvector matrix and
the corresponding eigenvalues ofQ respectively, and also by
rewriting Gfast(Q) as

Gfast(Q) = EH




log2

∣∣∣∣∣Inr +

nt∑

i=1

pigig
H
i

∣∣∣∣∣
nt∑

i=1

pi



, (8)

it is possible to apply the proof of Prop. 3.1 for each realization
of the channel matrix. This leads to the following result.

Proposition 3.2 (Fast fading MIMO channels):The
energy-efficiency of a MIMO communication over a fast
fading channel, measured byGfast, is maximized when
Q = 0 and this maximum is

G∗
fast =

1

ln 2

Tr(E
[
HHH

]
)

ntσ2
. (9)

We see that, for fast fading MIMO channels, maximizing
energy-efficiency also amounts to transmitting at low power.
Interestingly, in slow fading MIMO channels, where outage
events are unavoidable, we have found that the answer can be
different. This is precisely what is shown in the remaining of
this paper.

IV. SLOW FADING MIMO CHANNELS: FROM THE

GENERAL CASE TO SPECIAL CASES

A. General MIMO channels

In this section and the remaining of this paper, the frequency
with which the channel matrix varies is the reciprocal of
the block/codeword/frame/packet/time-slot duration that is, the
channel remains constant over a codeword and varies from
block to block. As a consequence, when the channel matrix
remains constant over a certain block duration much smaller
than the channel coherence time, the averaging effect we have
mentioned for fast fading MIMO channels does not occur
here. Therefore, one has to communicate at rates smaller than
the ergodic capacity (maximum of the EMI). The maximum
EMI is therefore a rate upper bound for slow fading MIMO
channels and only a fraction of it can be achieved (see [27]
for more information about the famous diversity-multiplexing
tradeoff). In fact, since the mutual information is a random
variable, varying from block to block, it is not possible (in
general) to guarantee at100 % that it is above a certain
threshold. A suited performance metric to study slow-fading
channels [14] is the probability of an outage for a given
transmission rate targetR. This metric allows one to quantify
the probability that the rate targetR is not reached by using
a good channel coding scheme and is defined as follows:

Pout(Q, R) = Pr
[
log2

∣∣Inr + ρHQHH
∣∣ < R

]
. (10)

In terms of information assumptions, here again, it can be
checked that only the second-order statistics ofH are required
to optimize the precoding matrixQ (and therefore the power
allocation policy over its eigenvalues). In this framework, we
propose to define the energy-efficiency as follows:

Γ(Q, R) =
R[1 − Pout(Q, R)]

Tr(Q)
. (11)

In other words, the energy-efficiency or goodput-to-power
ratio is defined as the ratio between the expected throughput
(see [3],[20] for details) and the average consumed transmit
power. The expected throughput can be seen as the average
system throughput over many transmissions. In contrast with
static and fast fading channels, energy-efficiency is not nec-
essarily maximized at low transmit powers. This is what the
following proposition indicates.

Proposition 4.1 (Slow fading MIMO channels): The
goodput-to-power ratioΓ(Q, R) is maximized, in general,
for Q 6= 0.
The proof of this result is given in Appendix B. Now, a
natural issue to be considered is the determination of the
matrix (or matrices) maximizing the goodput-to-power ratio
(GPR) in slow fading MIMO channels. It turns out that the
corresponding optimization problem is not trivial. Indeed, even
the outage probability minimization problem w.r.t.Q (which
is a priori simpler) is still an open problem [18], [21], [22].
This is why we only provide here a conjecture on the solution
maximizing the GPR.

Conjecture 4.2 (Optimal precoding matrices): There exists
a power thresholdP 0 such that:
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• if P ≤ P 0 then Q∗ ∈ argmin
Q

Pout(Q, R) ⇒ Q∗ ∈
argmax

Q
Γ(Q, R);

• if P > P 0 thenΓ(Q, R) has a unique maximum inQ∗ =
p∗

nt
Int wherep∗ ≤ P .

This conjecture has been validated for all the special cases
solved in this paper. One of the main messages of this
conjecture is that, if the available transmit power is less than a
threshold, maximizing the GPR is equivalent to minimizing the
outage probability. If it is above the threshold, uniform power
allocation is optimal and using all the available power is gener-
ally suboptimal in terms of energy-efficiency. Concerning the
optimization problem associated with (11) several comments
are in order. First, there is no loss of optimality by restricting
the search for optimal precoding matrices to diagonal matrices:
for any eigenvalue decompositionQ = UDUH with U
unitary andD = Diag(p) with p = (p1, . . . , pnt), both the
outage and trace are invariant w.r.t. the choice ofU and the
energy-efficiency can be written as:

Γ(D, R) =
R[1 − Pout(D, R)]

nt∑

i=1

pi

. (12)

Second, the GPR is generally not concave w.r.t.D. In
Sec. IV-B, which is dedicated to MISO systems, a counter-
example where it is not quasi-concave (and thus not concave)
is provided.

Uniform Power Allocation policy
An interesting special case is the one of uniform power allo-

cation (UPA):D = p
nt
Int wherep ∈ [0, P ] andΓUPA(p,R) ,

Γ
(

p
nt
Int , R

)
.

One of the reasons for studying this case is that the famous
conjecture of Telatar given in [18]. This conjecture states
that, depending on the channel parameters and target rate
(i.e., σ2, R), the power allocation (PA) policy minimizing
the outage probability is to spread all the available power
uniformly over a subset of̀∗ ∈ {1, . . . , nt} antennas. If this
can be proved, then it is straightforward to show that the
covariance matrixD∗ that maximizes the proposed energy-
efficiency function isp∗

`∗ Diag(e`∗), wheree`∗ ∈ S`∗ 2. Thus,
D∗ has the same structure as the covariance matrix minimizing
the outage probability except that using all the available power
is not necessarily optimal,p∗ ∈ [0, P ]. In conclusion, solving
Conjecture 4.2 reduces to solving Telatar’s conjecture andalso
the UPA case.

The main difficulty in studying the outage probability or/and
the energy-efficiency function is the fact that the probability
distribution function of the mutual information is generally
intractable. In the literature, the outage probability is often
studied by assuming a UPA policy over all the antennas
and also using the Gaussian approximation of the p.d.f. of
the mutual information. This approximation is valid in the
asymptotic regime of large number of antennas. However,

2We denote byS` =
{
v ∈ {0, 1}nt |∑nt

i=1 vi = `
}

the set ofnt dimen-
sional vectors containing̀ ones andnt − ` zeros, for all` ∈ {1, . . . , nt}.

Is D∗ known? Is ΓUPA(p) quasi-concave? Is p∗ known?

General MIMO Conjecture Conjecture Conjecture
MISO Yes Yes Yes
1 × 1 Yes Yes Yes

Large MIMO Conjecture Yes Yes
Low SNR Yes Yes Yes
High SNR Yes Yes Conjecture

TABLE I
SUMMARY OF PROVED RESULTS AND OPEN PROBLEMS

simulations show that it also quite accurate for reasonable
small MIMO systems [23], [24].

Under the UPA policy assumption, the GPRΓUPA(p,R)
is conjectured to be quasi-concave w.r.t.p. Quasi-concavity
is not only useful to study the maximum of the GPR but
is also an attractive property in some scenarios such as the
distributed multiuser channels. For example, by considering
MIMO multiple access channels with single-user decoding at
the receiver, the corresponding distributed power allocation
game where the transmitters’ utility functions are their GPR
is guaranteed to have a pure Nash equilibrium after Debreu-
Fan-Glicksberg theorem [25].

Before stating the conjecture describing the behavior of
the energy-efficiency function when the UPA policy is as-
sumed, we study the limits whenp → 0 and p →
+∞. First, let us prove thatlim

p→0
ΓUPA(p,R) = 0. Observe

that lim
p→0

Pout

(
p

nt
Int , R

)
= 1 and thus the limit is not

trivial to prove. The result can be proven by consider-
ing the equivalent1 + ρp

nt
Tr(HHH) of the determinant∣∣∣Inr +

ρp
nt
HHH

∣∣∣ whenσ → +∞. As the entries of the matrix
H are i.i.d. complex Gaussian random variables, the quantity

Tr(HHH) =

nt∑

i=1

nr∑

j=1

|hij |2 is a 2nrnt Chi-square distributed

random variable. ThusΓUPA(p,R) can be approximated by:

Γ̂UPA(p,R) = R exp
(
− d

p

) nrnt−1∑

k=0

dk

k!

1

pk+1
with d = nt(2

R−

1)σ2. It is easy to see that this approximate tends to zero when
p → 0. Second, note that the limit lim

p→+∞
ΓUPA(p,R) = 0.

This is easier to check sincelim
p→+∞

Pout

(
p

nt
I, R

)
= 0.

Conjecture 4.3 (UPA and quasi-concavity of the GPR):
Assume thatD = p

nt
Int . ThenΓUPA(p,R) is quasi-concave

w.r.t. p ∈
[
0, P

]
.

Table IV-A distinguishes between what has been proven in this
paper and the conjectures which remain to be proven.

B. MISO channels

In this section, the receiver is assumed to use a single
antenna that is,nr = 1, while the transmitter can have an
arbitrary number of antennas,nt ≥ 1. The channel transfer
matrix becomes a row vectorh = (h1, ..., hnt). Without loss
of optimality, the precoding matrix is assumed to be diagonal
and is denoted byD = Diag(p) with pT = (p1, ..., pnt).
Throughout this section, the rate targetR and noise level
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σ2 are fixed and the auxiliary quantityc is defined by:
c = σ2(2R − 1). By exploiting the existing results on the
outage probability minimization problem for MISO channels
[22], the following proposition can be proved (Appendix C).

Proposition 4.4 (Optimum precoding matrices for MISO channels):
For all ` ∈ {1, ..., nt − 1}, let c` be the unique

solution of the equation (inx) Pr

[
1

`+1

`+1∑

i=1

|Xi|2 ≤ x

]
−

Pr

[
1
`

∑̀

i=1

|Xi|2 ≤ x

]
= 0 where Xi are i.i.d. zero-mean

Gaussian random variables with unit variance. By convention
c0 = +∞, cnt = 0. Let νnt be the unique solution of the

equation (in y) ynt

(nt−1)! −
nt−1∑

i=0

yi

i!
= 0. Then the optimum

precoding matrices have the following form:

D∗ =

∣∣∣∣∣∣

P
` Diag(e`) if P ∈

[
c

c`−1
, c
c`

)

min
{

σ2(2R−1)
νnt

, P
nt

}
I if P ≥ c

cnt−1

(13)

wherec = σ2(2R − 1) and e` ∈ S`.
Similarly to the optimal precoding scheme for the outage
probability minimization, the solution maximizing the GPR
consists in allocating the available transmit power uniformly
between only a subset̀ ≤ nt antennas. As i.i.d entries are
assumed forH, the choice of these antennas does not matter.
What matters is the number of antennas selected (denoted
by `), which depends on the available transmit powerP :
the higher the transmit power, the higher the number of
used antennas. The difference between the outage probability
minimization and GPR maximization problems appears when
the transmit power is greater than the thresholdccnt−1

. In this
regime, saturating the power constraint is suboptimal for the
GPR optimization. The corresponding sub-optimality becomes
more and more severe as the noise level is low; simulations
(Sec. VI) will help us to quantify this gap.

Unless otherwise specified, we will assume from now on
that UPA is used at the transmitter. This assumption is, in
particular, useful to study the regime where the available trans-
mit power is sufficiently high (as conjectured in Proposition
4.1). Under this assumption, our goal is to prove that the
GPR is quasi-concave w.r.t.p ∈ [0, P ] with D = p

nt
Int and

determine the (unique) solutionp∗ which maximizes the GPR.
Note that the quasi-concavity property w.r.t.p is not always
available for MISO systems (and thus is not always available
for general MIMO channels). In Appendix D, a counter-
example proving that in the case wherenr = 1 andnt = 2
(two input single output channel, TISO) the energy-efficiency
ΓTISO

(
Diag(p), R

)
is not quasi-concave w.r.t.p = (p1, p2) is

provided.
Proposition 4.5 (UPA and quasi-concavity (MISO channels)):

Assume the UPA,Q = p
nt
Int , thenΓ(p,R) is quasi-concave

w.r.t. p ∈
[
0, P

]
and has a unique maximum point in

p∗ = min
{

(2R−1)ntσ
2

νnt
, P
}

whereνnt is the solution (w.r.t.
y) of:

ynt

(nt − 1)!
−

nt−1∑

i=0

yi

i!
= 0. (14)

Proof: Since the entries ofh are complex Gaussian

random variables, the sum
nt∑

k=1

|hk|2 is a 2nt− Chi-square

distributed random variable, which implies that:

ΓMISO(p,R) =
R
{
1 − Pr[log2

(
1 + ρp

nt
hHh

)
< R]

}

p

=

R

{
1 − Pr

[
nt∑

i=1

|hi|2 <
d

p

]}

p

= R × e−
d
p

nt−1∑

i=0

di

pi+1

1

i!
,

(15)
with d = cnt = (2R − 1)ntσ

2. The second order derivative of

the goodputR

[
e−

d
p

nt−1∑

i=0

(
d

p

)i
1

i!

]
w.r.t. p is

R
[

dnt

pnt+3
1
nt!

e−d/p(d − (nt + 1)p)
]
. Clearly, the goodput is a

sigmoidal function and has a unique inflection point inp0 =
d

nt+1 . Therefore, the functionΓMISO(p,R) is quasi-concave

[26] and has a unique maximum inp∗ = min
{

d
νnt

, P
}

where

νnt is the root of the first order derivative ofΓMISO(p,R) that
is, the solution of (14).
The SIMO case (nt = 1, nr ≥ 2) follows directly since
|I+ ρphhH | = 1 + ρphHh.

To conclude this section, we consider the most simple case
of MISO channels namely the SISO case (nt = 1, nr = 1).
We have readily that:

ΓSISO(p,R) =
e−

c
p

p
. (16)

To the authors’ knowledge, in all the works using the energy-
efficiency definition of [4] for SISO channels, the only choice
of energy-efficiency function made is based on the empirical
approximation of the block error rate which is(1−e−x)M

x , M
being the block length andx the operating SINR. Interestingly,
the function given by (16) exhibits another possible choice.
It can be checked that the functione−

c
p is sigmoidal and

thereforeΓSISO is quasi-concave w.r.t.p [26]. The first order
derivative ofΓSISO is

∂ΓSISO

∂p
= R

(c − p)e−
c
p

p3
. (17)

The GPR is therefore maximized in a unique point which
p∗ = c = σ2(2R−1). To make the bridge between this solution
and the one derived in [4] for the power control problem
over multiple access channels, the optimal power level can
be rewritten as:

p∗ = min

{
σ2

E|h|2 (2
R − 1), P

}
(18)

where E|h|2 = 1 in our case. In [4], instantaneous CSI
knowledge at the transmitters is assumed while here only
the statistics are assumed to be known at the transmitter.
Therefore, the power control interpretation of (18) in a wireless
scenario is that the power is adapted to the path loss (slow
power control) and not to fast fading (fast power control).
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V. SLOW FADING MIMO CHANNELS IN ASYMPTOTIC

REGIMES

In this section, we first consider the GPR for the case where
the size of the MIMO system is finite assuming the low/high
SNR operating regime. Then, we consider the UPA policy and
prove that Conjecture 4.3 claiming thatΓUPA(p,R) is quasi-
concave w.r.t.p (which has been proven for MISO, SIMO, and
SISO channels) is also valid in the asymptotic regimes where
either at least one dimension of the system (nt, nr) is large
but the SNR is finite. Here again, the theory of large random
matrices is successfully applied since it allows one to prove
some results which are not available yet in the finite case (see
e.g., [19], [28] for other successful examples).

A. Extreme SNR regimes

Here, all the channel parameters (nt, nr, andP in particu-
lar) are fixed. The low (resp. high) SNR regime is defined by
σ2 → +∞ (resp.σ2 → 0). In both cases, we will consider
the GPR and the optimal power allocation problem.

1) Low SNR regime:Let us consider the general power allo-
cation problem whereD = Diag(p) with p = (p1, . . . , pnt). In
[22], the authors extended the results obtained in the low and
high SNR regimes for the MISO channel to the MIMO case.
In the low SNR regime, the authors of [22] proved that the
outage probabilityPout(Diag(p), R) is a Schur-concave (see
[29] for details) function w.r.t.p. This implies directly that
beamforming power allocation policy maximizes the outage
probability. These results can be used (see Appendix E) to
prove the following proposition:

Proposition 5.1 (Low SNR regime): Whenσ2 → +∞, the
energy-efficiency functionΓ(Diag(p), R) is Schur-concave
w.r.t. p and maximized by a beamforming power allocation
policy D∗ = PDiag(e1).

2) High SNR regime:Now, let us consider the high SNR
regime. It turns out that the UPA policy maximizes the energy-
efficiency function. In this case also, the proof of the following
proposition is based on the results in [22] (see Appendix E).

Proposition 5.2 (High SNR regime): Whenσ2 → 0, the
energy-efficiency functionΓ(Diag(p), R) is Schur-convex w.r.t.
p and maximized by an uniform power allocation policyD∗ =
p∗

nt
Int with p∗ ∈ (0, P ]. Furthermore, the limit whenp → 0

such that p
σ2 → ξ is Γ

(
p
nt
Int , R

)
→ +∞ which implies that

p∗ → 0.
In other words, in the high SNR regime, the optimal

structure of the covariance matrix is obtained by uniformly
spreading the power over all the antennas,D∗ = p∗

nt
Int the

same structure which minimizes the outage probability in
this case. Nevertheless, in contrast to the outage probability
optimization problem, in order to be energy-efficient it is not
optimal to use all the available powerP but to transmit with
zero power.

B. Large MIMO channels

The results we have obtained can be summarized in the
following proposition.

Proposition 5.3 (Quasi-concavity for large MIMO systems):
If the system operates in one of the following asymptotic
regimes:

(a) nt < +∞ andnr → +∞;
(b) nt → +∞ andnr < +∞;
(c) nt → +∞, nr → +∞ with

lim
ni→+∞,i∈{t,r}

nr

nt
= β < +∞,

thenΓUPA(p,R) is quasi-concave w.r.t.p ∈ [0, P ].
Proof: Here we prove each of the three statements made

above and provide comments on each of them at the same
time.

Regime (a):nt < +∞ and nr → ∞. The idea of the
proof is to consider a large system equivalent of the function
ΓUPA(p,R). This equivalent is denoted bŷΓa

UPA(p,R) and is
based on the Gaussian approximation of the mutual informa-
tion log2

∣∣∣I+ ρp
nt
HHH

∣∣∣ (see e.g., [30]). The goal is to prove

that the numerator of̂Γa
UPA(p,R) is a sigmoidal function w.r.t.

p which implies that̂Γa
UPA(p,R) is a quasi-concave function

[26]. In the considered asymptotic regime, we know from [30]
that:

log2

∣∣∣∣I+
ρp

nt
HHH

∣∣∣∣ → N
(
nt log2

(
1 +

nr

nt
ρp

)
,
nt

nr
log2(e)

)
.

(19)
A large system equivalent of the numerator ofΓUPA(p,R),
which is denoted byN̂a(p,R), follows:

N̂a(p,R) = RQ



R − nt log2

(
1 + nr

nt
ρp
)

√
nt

nr
log2(e)


 (20)

whereQ(x) = 1√
2π

∫ +∞
x

exp
(
− t2

2

)
dt. Denote the argument

of Q in (20) byαa. The second order derivative of̂Na(p,R)
w.r.t. p

∂2N̂a(p,R)

∂p2
=

1√
2π

[
αa(p)(α

′
a(p))

2 − α′′
a(p)

]
exp

(
−αa(p)

2

2

)
.

(21)
ThereforeN̂a(p,R) has a unique inflection point

p̃a =
nt

nrρ

{
2

[
1
nt

(
R− 1

nt

(
nt log2(e)

nr

)3/2
)]

− 1

}
. (22)

Clearly, for each equivalent ofΓUPA(p,R), the numerator has
a unique inflection point and is sigmoidal, which concludes
the proof. In fact, in the considered asymptotic regime we
have a stronger result sincelim

nr→+∞
p̃a = 0, which implies

that N̂a(p,R) is concave and thereforêΓa
UPA(p,R) is max-

imized in p∗a = 0 as in the case of static MIMO channels.
This translates the well-known channel hardening effect [30].
However, in contrast to the static case, the energy-efficiency
becomes infinite here sinceΓUPA(p,R) → 1

p with p∗a → 0.
Regime (b):nt → +∞ and nr < +∞. To prove the

corresponding result the same reasoning as in (a) is applied.
From [30] we know that:

log2

∣∣∣∣I+
ρp

nt
HHH

∣∣∣∣→ N
(
nr log2(1 + ρp),

(√
nr

nt
log2(e)

ρp

1 + ρp

)2
)
.

(23)
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A large system equivalent of the numerator ofΓUPA(p,R) is
N̂b(p,R) = RQ (αb(p)) with

αb(p) =

√
nt

nr
log2(e)

1 + ρp

ρp
[R − nr log2(1 + ρp)]. (24)

The numerator function̂Nb(p,R) can be checked to have a
unique inflection point given by:

p̃b = σ2
(
2

R
nr − 1

)
(25)

and is sigmoidal, which concludes the proof. We see that the
inflection point does not vanish this time (withnt here) and
therefore the function̂Nb(p,R) is quasi-concave but not con-
cave in general. From [26], we know that the optimal solution
p∗b represents the point where the tangent that passes through
the origin intersects the S-shaped functionRQ (αb(p)). As
nt grows large, the functionQ (αb(p)) becomes a Heavyside
step function since∀p ≤ p̃b, limnt→+∞ Q (αb(p)) = 0
and ∀p ≥ p̃b, limnt→+∞ Q (αb(p)) = 1. This means that
the optimal powerp∗b that maximizes the energy-efficiency

approaches̃pb as nt grows large,p∗b → σ2
(
2

R
nr − 1

)
. The

optimal energy-efficiency tends toN̂b(p
∗
b ,R)

p∗
b

→ 1

2σ2

(
2

R
nr −1

)

whennt → +∞.
Regime (c):nt → +∞, nr → ∞. Here we always apply the

same reasoning but exploit the results derived in [31]. From
[31], we have that:

log2

∣∣∣∣I+
ρp

nt
HHH

∣∣∣∣ → N
(
ntµI , σ

2
I

)
(26)

whereµI = β log2(1+ ρp(1− γ))− γ+ log2(1+ ρp(β− γ)),

σ2
I = − log2

(
1 − γ2

β

)
,

γ = 1
2

(
1 + β + 1

ρp −
√
(1 + β + 1

ρp )
2 − 4β

)
. It can

be checked that(α′
c(p))

2αc(p) − α′′
c (p) = 0 has a

unique solution whereαc(p) = R−ntµI (p)
σI (p)

. We obtain

α′
c(p) =

ntµIσ
′
I−ntµ

′
IσI−Rσ′

I

σ2
I

and

α′′
c (p) =

(ntµIσ
′′
I −ntµ

′′
I σI−Rσ′′

I )σ2
I−2σIσ

′
I (ntµIσ

′
I−ntµ

′
IσI−Rσ′

I )

σ4
I

.

We observe that, in the equation(α′
c(p))

2αc(p)− α′′
c (p) = 0,

there are terms inn3
t , n2

t , nt and constant terms w.r.t.nt.
Whennt becomes sufficiently large the first order terms can
be neglected, which implies that the solution is given by
µI(p) = 0. It can be shown thatµI(0) = 0 and thatµI is
an increasing function w.r.t.p which implies that the unique
solution is p̃c = 0. Similarly to regime (a) we obtain the
trivial solution p∗c = 0.

VI. N UMERICAL RESULTS

In this section, we present several simulations that illustrate
our analytical results and verify the two conjectures stated.
Since closed-form expressions of the outage probability are
not available in general, Monte Carlo simulations will be
implemented. The exception is the MISO channel for which
the optimal energy-efficiency can be computed numerically (as
we have seen in Sec. IV-B) without the need of Monte Carlo
simulations.

UPA, the quasi-concavity property and the large MIMO
channels.

Let us consider the case of UPA. In Fig. 1, we plot
the GPRΓUPA (p,R) as a function of the transmit power
p ∈ [0, P ] W for an MIMO channel wherenr = nt = n
with n ∈ {1, 2, 4, 8} and ρ = 10 dB, R = 1 bpcu,P = 1
W. First, note that the energy-efficiency for UPA is a quasi-
concave function w.r.t.p, illustrating Conjecture 4.3. Second,
we observe that the optimal powerp∗ maximizing the energy-
efficiency function is decreasing and approaching zero as the
number of antennas increases and also thatΓUPA (p∗, R) is
increasing withn. In Fig. 2, this dependence of the optimal
energy-efficiency and the number of antennasn is depicted
explicitly for the same scenario. These observations are in
accordance with the asymptotic analysis in subsection V-B
for Regime (c).

Similar simulation results were obtained for the case where
nt is fixed andnr is increasing, thus illustrating the asymptotic
analysis in subsection V-B for Regime (a).

In Fig. 3, we plot the energy-efficiencyΓUPA (p,R) as
a function of the transmit powerp ∈ [0, P ] W for MIMO
channel such thatnr = 2, nt ∈ {1, 2, 4, 8} and ρ = 10 dB,
R = 1 bpcu,P = 1 W. The difference w.r.t. the previous
case, is that the optimal powerp∗ does not go to zero when
nt increases. This figure illustrates the results obtained for
Regime (b) in section V-B where the optimal power allocation

p∗b → 2
R
nr −1
ρ = 0.0414 W and the optimal energy-efficiency

Γ∗
UPA → ρ

2(2
R
nr −1)

= 12, 07 bit/Joule whennt → +∞.

UPA and the finite MISO channel
In Fig. 4, we illustrate Proposition 4.4 fornt = 4. We trace

the cases where the transmitter uses an optimal UPA over only
a subset of̀ ∈ {1, 2, 3, 4} antennas forρ = 10 dB, R = 3
bpcu. We observe that: i) ifP ≤ c

c1
then the beamforming

PA is the generally optimal structure withD∗ = P Diag(e1);
ii) if P ∈

[
c
c1

c
c2

)
then using UPA over three antennas is

the generally optimal structure withD∗ = P/2 Diag(e2);
iii) if P ∈

[
c
c2

c
c3

)
then using UPA over three antennas is

generally optimal withD∗ = P/3 Diag(e3); iv) if P ≥ c
c4

then the UPA over all the antennas is optimal withD∗ =
1
4 min

{
4∗c
ν4

, P
}

I4. The saturated regime illustrates the fact
that it is not always optimal to use all the available power after
a certain threshold.

UPA and the finite MIMO channel
Fig. 5 represents the success probability,1 − Pout(D, R),

in function of the power constraintP for nt = nr = 2,
R = 1 bpcu,ρ = 3 dB. Since the optimal PA that maximizes
the success probability is unknown (unlike the MISO case)
we use Monte-Carlo simulations and exhaustive search to
compare the optimal PA with the UPA and the beamforming
PA. We observe that the result is in accordance with Telatar’s
conjecture. There exists a thresholdδ = 0.16 W such that
if P ≤ δ, the beamforming PA is optimal and otherwise the
UPA is optimal. Of course, using all the available power is
always optimal when maximizing the success probability. The
objective is to check whether Conjecture 4.2 is verified in this
particular case. To this purpose, Fig. 6 represents the energy-
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efficiency function for the same scenario. We observe that for
the exact thresholdδ = 0.16 W, we obtain that ifP ≤ δ
the beamforming PA using all the available power is optimal.
If P > δ the UPA is optimal. Here, similarly to the MISO
case, we observe a saturated regime which means that after a
certain point it is not optimal w.r.t. energy-efficiency to use up
all the available transmit power. In conclusion, our conjecture
has been verified in this simulation.

Note that for the beamforming PA case we have explicit
relations for both the outage probability and the energy-
efficiency (it is easy to check that the MIMO with beam-
forming PA reduces to the SIMO case) and thus Monte-Carlo
simulations have not been used.

VII. C ONCLUSION

In this paper, we propose a definition of energy-efficiency
metric which is the extension of the work in [1] to static
MIMO channels. Furthermore, our definition bridges the gap
between the notion of capacity per unit cost [1] and the
empirical approach of [4] in the case of slow fading channels.
In static and fast fading channels, the energy-efficiency is
maximized at low transmit power and the corresponding rates
are also small. On the the other hand, the case of slow fading
channel is not trivial and exhibits several open problems. It
is conjectured that solving the (still open) problem of outage
minimization is sufficient to solve the problem of determining
energy-efficient precoding schemes. This conjecture is vali-
dated by several special cases such as the MISO case and
asymptotic cases. Many open problems are introduced by the
proposed performance metric, here we just mention some of
them:

• First of all, the conjecture of the optimal precoding
schemes for general MIMO channels needs to be proven.

• The quasi-concavity of the goodput-to-power ratio when
uniform power allocation is assumed remains to be
proven in the finite setting.

• A more general channel model should be considered. We
have considered i.i.d. channel matrices but considering
non zero-mean matrices with arbitrary correlation profiles
appears to be a challenging problem for the goodput-to-
power ratio.

• The connection between the proposed metric and the
diversity-multiplexing tradeoff at high SNR has not been
explored.

• Only single-user channels have been considered. Clearly,
multi-user MIMO channels such as multiple access or
interference channels should be considered.

• The case of distributed multi-user channels become more
and more important for applications (unlicensed bands,
decentralized cellular networks, etc.). Only one result is
mentioned in this paper: the existence of a pure Nash
equilibrium in distributed MIMO multiple access chan-
nels assuming uniform power allocation transmit policy.
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Fig. 1. Energy-efficiency (GPR) vs. transmit powerp ∈ [0, 1] W for MIMO channels
wherenr = nt = n ∈ {1, 2, 4, 8}, UPA D = p

nt
Int , ρ = 10 dB, R = 1 bpcu.

Observe that the energy-efficiency is a quasi-concave function w.r.t.p. The optimal point
p∗ is decreasing andΓUPA (p∗, R) is increasing withn.
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{1, 2, 4, 8}, UPA, D = p

nt
Int , ρ = 10 dB, R = 1 bpcu andP = 1 W. Observe

thatΓUPA (p∗, R) is increasing withn.

APPENDIX A
PROOF OFPROPOSITION3.1

As Q is a positive semi-definite Hermitian matrix, it can
always be spectrally decomposed asQ = UDUH whereD =
Diag(p1, . . . , pnt) is a diagonal matrix representing a given PA
policy andU a unitary matrix. Our goal is to prove that, for
everyU, Gstatic is maximized whenD = Diag(0, 0, ..., 0).
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Fig. 3. Energy-efficiency vs. transmit powerp ∈ [0, 1] W for MIMO nr = 2,
nt ∈ {1, 2, 4, 8}, UPA D = p
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Int , ρ = 10 dB, R = 1 bpcu. Observe that

the energy-efficiency is a quasi-concave function w.r.t.p. The optimal pointp∗ is not
decreasing withn but almost constant.
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Fig. 4. Optimal energy-efficiency vs. constraint power for MISOnt = 4, nr = 1,
UPA over a subset of̀ ∈ {1, 2, 3, 4} antennas,ρ = 10 dB,R = 3 bpcu. We illustrate
the results of Proposition 4.4. IfP ≤ c

c1
is low enough, the beamforming PA with full

power is optimal. IfP ≥ c
c2

is high enough, the UPA is optimal but not with full

power necessarily
(
p∗ = min{ c

ν4
, P}

)
which explains the saturated regime.
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Fig. 5. Success probability vs. power constraintP , comparison between beamforming
PA, UPA and General PA for MIMOnt = nr = 2, R = 1 bpcu,ρ = 3 dB. We
observe that Telatar’s conjecture is validated. There is a threshold,δ = 0.16 W, below
which (P ≤ δ) the beamforming PA is optimal and above it, UPA is optimal.

To this end we rewriteGstatic as

Gstatic(U Diag(p1, . . . , pnt) U
H) =

log2

∣∣∣∣∣Inr +

nt∑

i=1

pigig
H
i

∣∣∣∣∣
nt∑

i=1

pi

,

(27)
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Fig. 6. Optimal energy-efficiency vs. power constraintP , comparison between
beamforming PA, UPA and General PA for MIMOnt = nr = 2, R = 1 bpcu,ρ = 3
dB. We observe that our Conjecture 4.2 is validated. For the exact sameδ = 0.16
W, we have that forP ≤ δ the beamforming PA structure optimal and above it, UPA
structure is optimal.

where g
i

represents theith column of thenr × nt matrix
G =

√
ρHU and proceed by induction onnt ≥ 1.

First, we introduce an auxiliary quantity (whose role will
be made clear a little further)

E(nt)(p1, . . . , pnt) , Tr

(
Inr +

nt∑

i=1

pig
i
gH

i

)−1 ( nt∑

i=1

pig
i
gH

i

)

− log2

∣∣∣∣∣Inr +

nr∑

i=1

pig
i
gH

i

∣∣∣∣∣.

(28)

and prove by induction that it is negative that is,
∀(p1, . . . , pnt) ∈ Rnt

+ , E(nt)(p1, . . . , pnt) ≤ 0.
For nt = 1, we have E(1)(p1) =

Tr
[
(Inr + p1g1g

H
1
)−1p1g1g

H
1

]
− log2

∣∣∣Inr + p1g1g
H
1

∣∣∣.
The first order derivative ofE(1)(p1) w.r.t. p1 is:

∂E(1)

∂p1
= −p1[g

H
1
(Inr + p1g1g

H
1
)−1g

1
]2 ≤ 0 (29)

and thusE(1)(p1) ≤ E(1)(0) = 0.
Now, we assume thatE(nt−1)(p) ≤ 0 and want to prove

that E(nt)(p, pnt) ≤ 0, wherep = (p1, . . . , pnt−1). It turns
out that:

∂E(nt)

∂pnt

= −
nt∑

j=1

pj

∣∣∣∣∣∣
gH
j

(
Inr +

nt∑

i=1

pigig
H
i

)−1

g
nt

∣∣∣∣∣∣

2

≤ 0,

(30)
and therefore E(nt)(p1, . . . , pnt−1, pnt) ≤
E(nt)(p1, . . . , pnt−1, 0) = E(nt−1)(p1, . . . , pnt−1) ≤ 0.

As a second step of the proof, we want to prove by induction
on nt ≥ 1 that

argmax
p,pnt

G
(nt)
static(p, pnt) = 0. (31)

For nt = 1 we haveG
(1)
static(p1) =

log2 |Inr+p1g
1
gH

1
|

p1
=

log2(1+p1g
H

1
g
1
)

p1
which reaches its maximum inp1 = 0.

Now, we assume thatargmax
p

G
(nt−1)
static (p) = 0 and want to

prove thatarg max
(p,pnt)

G
(nt)
static(p, pnt) = 0.

Let k = arg min
i∈{1,...,nt}

Tr





Inr +

nt∑

j=1

pjgjg
H
j




−1

g
i
gH
i


.

By calculating the first order derivative ofG(nt)
static w.r.t. pk

one obtains that:

∂G
(nt)
static

∂pk
=

N
(

nt∑

i=1

pi

)2 , (32)

with

N =

(
nt∑

i=1

pi

)
Tr





Inr +

nt∑

j=1

pjgjg
H
j




−1

g
k
gH
k




− log2

∣∣∣∣∣Inr +

nt∑

i=1

pigig
H
i

∣∣∣∣∣
(33)
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and thus∂G
(nt)
static

∂pk
≤ E(nt)(p1, . . . , pnt)

(
∑nt

i=1 pi)
2 ≤ 0 and p∗k = 0 for

all p1, . . . , pk−1, pk+1, . . . , pnt . We obtain that
F (nt)(p1, . . . , pk−1, 0, pk+1, . . . , pnt)
= F (nt−1)(p1, . . . , pk−1, pk+1, . . . , pnt), which is maxi-

mized when(p1, . . . , pk−1, pk+1, . . . , pnt) = 0 by assumption.
We therefore have thatQ∗ = U0UH = 0 is the solution
that maximizes the functionGstatic(Q). At last, to find the
maximum reached byGstatic one just needs to consider the
the equivalent of thelog2

∣∣Inr + ρHQHH
∣∣ aroundQ = 0

log2
∣∣Inr + ρHQHH

∣∣ ∼ ρ

nt
Tr(HHH) (34)

and takesQ = q
nt
Int with q → 0.

APPENDIX B
PROOF OFPROPOSITION4.1

The proof has two parts. First, we start by proving that if
the optimal solution is different than the uniform spatial power
allocationP∗ 6= p

nt
Int with p ∈

[
0, P

]
then the solution is

not trivial P∗ 6= 0. We proceed by reductio ad absurdum.
We assume that the optimal solution is trivialP∗ = 0. This
means that when fixing(p2, . . . , pnt) = (0, . . . , 0) the optimal
p1 ∈ [0, P ] that maximizes the energy-efficiency function is
p∗1 = 0. The energy-efficiency function becomes:

Γ(Diag(p1, 0, . . . , 0), R) = R
1− Pr

[
log2(1 + ρp1‖h1‖2) < R

]

p1
(35)

whereh1 represents the first column of the channel matrixH.
Knowing that the elements inh1 are i.i.d.h1j ∼ CN (0, 1)
for all j ∈ {1, . . . , nr} we have that|h1j |2 ∼ expon(1).

The random variable‖h1‖2 =

nr∑

j=1

|h1j |2 is the sum ofnr

i.i.d. exponential random variables of parameterλ = 1 and
thus follows an2nr chi-square distribution (or annr Erlang
distribution) whose c.d.f. is known and given byς(x) =

1 − exp(−x)

nr−1∑

k=0

xk

k!
. We can explicitly calculate the outage

probability and obtain the energy-efficiency function:

Γ(Diag(p1, 0, . . . , 0), R) = R exp

(
− c

p1

) nr−1∑

k=0

ck

k!

1

pk+1
1

(36)
where c = 2R−1

ρ > 0. It is easy to check that
lim
p1→0

Γ(p1, R) = 0, lim
p1→∞

Γ(p1, R) = 0. By evaluating the

first derivative w.r.t.p1, it is easy to check that the maximum
is achieved forp∗1 = c

νnr
≥ 0 whereνnr is the unique positive

solution of the following equation (iny):

1

(nr − 1)!
ynr −

nr−1∑

k=0

yk

k!
= 0. (37)

Considering the power constraint the optimal transmission
power isp∗1 = min{ 2R−1

νnrρ
, P}, which contradicts the hypothe-

sis and thus if the optimal solution is different than the uniform
spatial power allocation then the solution is not trivialP∗ 6= 0.

APPENDIX C
PROOF PROPOSITION4.4

Let pT = (p1, ..., pnt) be the vector of powers allocated
to the different antennasi ∈ {1, ..., nt} and thusD =

Diag(p). Define the two sets:C(x) =

{
p ≥ 0,

nt∑

i=1

pi ≤ x

}

and∆(x) =

{
p ≥ 0,

nt∑

i=1

pi = x

}
. Using these notations, they

key observation to be made is the following:

sup
p∈C(P)

ΓMISO(D, R)
(a)
= R sup

p∈C(P )

1 − PMISO
out (D, R)
nt∑

i=1

pi

(b)
= R sup

x∈[0,P ]

sup
p∈∆(x)

1 − PMISO
out (D, R)

x

(c)
= R sup

x∈[0,P ]

g
(
c
x

)

x

(38)

wherePMISO
out = Pr

[
log

(
1 + ρ

nt∑

i=1

pi|hi|2
)

≤ R

]
: (a) trans-

lates the definition of the GPR; (b) follows from the prop-
erty sup{A ∪ B} = sup{sup{A}, sup{B}} for two setsA
and B, applied to our context; in (c) the functiong(z) ={
g`(z), ifz ∈

[
c

c`−1
, c
c`

)
is a piecewise continuous function

whereg`(z) = 1−Pr

[
1
`

nt∑

i=1

|hi|2 ≤ z

]
for z ∈

[
c

c`−1
, c
c`

)
and

` ∈ {1, . . . , nt}. The functiong(z) corresponds to the solution
of the minimization problem of the outage probability [22].

Now, we study the functiong`. By calculating the first order
derivative of 1xg`

(
c
x

)
w.r.t. x we obtain:

d

dx

{
1

x
g`

( c
x

)}
=

e−
`c
x

x2


 1

(` − 1)!

(
`c

x

)`

−
`−1∑

j=0

1

j!

(
`c

x

)j

 .

(39)
Thus the function1

xg
(
c
x

)
is increasing forx ∈ (0, x`) and

decreasing onx ∈ (x`,∞). The maximum point is reached
in x` = `c

y`
where y` is the unique positive solution of the

equationφ`(y) = 0 where

φ`(y) =
1

(` − 1)!
y` −

`−1∑

i=0

1

i!
yi. (40)

We have thatφ(0) = −1 < 0 and

φ`(`) = 1
(`−1)!`

` −
`−1∑

i=0

1

i!
`i

=

`−1∑

i=0

` − i − 1

i!
`i

> 0.

(41)

This implies thaty` ≤ ` and thusx` ≥ c. Sincecnt−1 ≥ 1
we also havex` ≥ c

cnt−1
for all ` ∈ {1, . . . , nt − 1}.

Therefore, all the functions1xg`
(
c
x

)
are increasing on the

intervals
(
0, c

cnt−1

)
. Moreover, on the interval

(
c

cnt−1
,∞
)

,
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they are increasing on
(

c
cnt−1

, x`

]
and decreasing on[x`,∞).

Proposition 4.4 follows directly.

APPENDIX D
COUNTER-EXAMPLE, TISO

Consider the particular case wherent = 2 and nr = 1.
From Proposition 4.4, it follows that for a power constraint
P < c

c1
the beamforming power allocation policy max-

imizes the energy-efficiency andΓTISO(Diag(P , 0), R) =

ΓTISO(Diag(0, P ), R) > ΓTISO
(

Diag
(

P
2 ,

P
2

)
, R
)

. The

function ΓTISO(Diag(p1, p2), R) with (p1, p2) ∈ P2 ,
{(p1, p2) ∈ R2

+ | p1 + p2 ≤ P} denotes the energy-efficiency
function. We want to prove thatΓTISO(Diag(p1, p2), R) is not
quasi-concave w.r.t.(p1, p2) ∈ P2. This amounts to finding
a level γ ≥ 0 such that the corresponding upper-level set
Uγ =

{
(p1, p2) ∈ P2 | ΓTISO(Diag(p1, p2), R) ≥ γ

}
is not a

convex set (see [32] for a detailed analysis on quasi-concave
functions). Consider an arbitrary0 < q < min

{
P , c

c1

}

such thatΓTISO(Diag(q, 0), R) = ΓTISO(Diag(0, q), R) <
ΓTISO

(
Diag

(
q
2 ,

q
2

)
, R
)
. It turns out that all upper-level sets

Uγq with γq , ΓTISO(Diag(q, 0), R) are not convex sets. This
follows directly from the fact that(q, 0), (0, q) ∈ Uγq but(
q
2 ,

q
2

)
/∈ Uγq sinceΓTISO

(
Diag

(
q
2 ,

q
2

)
, R
)
< γq.

APPENDIX E
EXTREME SNR CASES, GPR

In [22], the authors proved that in the low SNR regime
the outage probabilityPout(p,R) is Schur-concave w.r.t.p.
This means that for any vectorsp, q such that p � q
then Pout(p,R) ≤ Pout(q,R). The operator� denotes the
majorization operator which will be briefly described (see [29]
for details). For any two vectorsp, q ∈ Rnt

+ , p majorizesq (de-

noted byp � q) if
m∑

k=1

pk ≥
m∑

k=1

qk, for all m ∈ {1, . . . , nt−1}

and
nt∑

k=1

pk =

nt∑

k=1

qk. This operator induces only a partial

ordering. The Schur-convexity and≺ operator can be defined
in an analogous way. Also, an important observation to be
made is that the beamforming vector majorizes any other
vector, whereas the uniform vector is majorized by any other
vector (provided the sum of all elements of the vectors is
equal). Otherwise stated,xe1 � p � x

nt
1 for any vectorp

such that
nt∑

i=1

pi = x and1 = (1, 1, . . . , 1) ande1 ∈ S1.

It is straightforward to see that ifPout(Diag(p), R) is
Schur-concave w.r.t.p then 1 − Pout(Diag(p), R) is Schur-
convex w.r.t.p. Since the majorization operator implies the
sum of all elements of the ordered vectors to be identical,
Γ(Diag(p), R) =

1−Pout(Diag(p),R)
nt∑

i=1

pi

will also be Schur-convex

w.r.t. p and thus is maximized by a beamforming vector. Using
the same notations as in Appendix C we obtain:

sup
p∈C(P)

Γ(Diag(p), R)

= sup
x∈[0,P ]

1

x
sup

p∈∆(x)

[1− Pout(Diag(p), R)]

(a)
= sup

x∈[0,P ]

1

x
[1− Pr[log(1 + xρhH

1 h1) ≤ R],

= sup
x∈[0,P ]

1

x

{
1− Pr

[
1

nr

nr∑

j=1

|h1j |2 ≤ c

nrx

]}
,

(b)
= sup

x∈[0,P ]

gnr

(
c

nrx

)

x
,

(42)

where (a) follows by considering beamforming power allo-
cation policy on the first transmit antenna (with no generality
loss) and replacingp = xe1 with e1 = (1, 0, . . . , 0) and h1

denoting the first column of the channel matrix; in (c) we make
use the definition in Appendix C for the function1xgnr

(
c

nrx

)

which has a unique optimal point inmin
{

c
ynr

, P
}

, with ynr

the unique solution ofΦnr (y) = 0. Since σ2 → 0 then
c → +∞ and thus the optimal power allocation isp∗ = Pe1.

Similarly, for the high SNR case we have:

sup
p∈C(P )

Γ(Diag(p), R) = sup
x∈[0,P ]

1

x
sup

p∈∆(x)

[1 − Pout(Diag(p), R)]

= sup
x∈[0,P ]

1

x

[
1 − Pout

(
Diag

(
x

nt

(1, . . . , 1)

)
, R

)]
.

(43)

We have used the results in [22], where the UPA was proven
to minimize the outage probability.

Let us now consider the limit of the energy-efficiency
function whenp → 0, σ2 → 0 such that p

σ2 → ξ with ξ a

positive finite constant. We obtain that1−Pout

(
x
nt
Int , R

)
→

Pr
[∣∣∣Inr +

ξ
nt
HHH

∣∣∣
]

> 0 which implies directly that

Γ
(

x
nt
Int , R

)
→ +∞.

REFERENCES
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ABSTRACT
In this paper1, we study the discrete power allocation game
for the fast fading multiple-input multiple-output multiple
access channel. Each player or transmitter chooses its own
transmit power policy from a certain finite set to optimize its
individual transmission rate. First, we prove the existence
of at least one pure strategy Nash equilibrium. Then, we in-
vestigate two learning algorithms that allow the players to
converge to either one of the NE states or to the set of corre-
lated equilibria. At last, we compare the performance of the
considered discrete game with the continuous game in [7].

1. INTRODUCTION

Game theory appears to be a suitable framework to analyze
self-optimizing wireless networks. The transmitters, based
on their knowledge on the environment and cognitive capa-
bilities, allocate their own resources to optimize their indi-
vidual performance with very little or no intervention from a
central authority.

Game theoretical tools have recently been used to study
the power allocation problem in networks with multiple an-
tenna terminals. In [1],[2],[3],[4],[5], the authors studies the
MIMO slow fading interference channel, in [6] the MIMO
cognitive radio channel, and in [7] the multiple access chan-
nel. The main drawback of these approaches is the fact that
the action sets (or possible choices) of the transmitters are the
convex cones of positive semi-definite matrices. In practice,
this is an unrealistic assumption and discrete finite action
sets should be considered. Another raising issue is related
to the iterative water-filling type algorithms that converge to
the games’ Nash equilibria (NE) states. In order to apply
these algorithms, the transmitters are assumed to be strictly
rational players that perfectly know the structure of the game
(at least their own payoff functions) and the strategies played
by the others in the past.

An alternative way of explaining how the players may
converge to an NE is the theory of learning [14]. Learn-
ing algorithms are long-run processes in which players, with
very little knowledge and rationality constraints, try to opti-
mize their benefits. In [8], the authors propose two stochas-
tic learning algorithms that converge to the pure strategy NE
and to mixed strategy NE of the energy efficiency game in
a single-input single-output (SISO) interference channel. In
[10], the multiple access point wireless network is investi-
gated where a large number of users can learn the correlated

1This work was supported by the Research Council of Norway and the
French Ministry of Foreign Affairs through the AURORA project entitled
“Communications under Uncertain Topologies”.

equilibrium of the game. A similar scenario is studied in
[12]. In [9], learning algorithms are proposed in a wireless
network where users compete dynamically for the available
spectrum. In [11], the authors study learning algorithms in
cellular networks where the links are modeled as collision
channels. An adaptive algorithm was proposed in [1] for the
MIMO interference channel. The proposed algorithm allows
the users to converge to a Stackelberg equilibrium by learn-
ing the ranks of their own covariance matrices that maximize
the system sum-rate.

In this paper, we study the power allocation game in fast
fading multiple-input multiple-output (MIMO) multiple ac-
cess channels (MAC), similarly to [7]. We assume that the
action sets of the transmitters are discrete finite sets and con-
sist in uniformly spreading their powers over a subset of an-
tennas. Assuming the single user decoding scheme at the
receiver, we show that the proposed game is a potential one
and the existence of a pure strategy Nash equilibrium (NE)
follows directly. However, the uniqueness of the NE cannot
be ensured in general and, thus, several iterative algorithms
that converge to one of the NE states are studied. A best-
response type algorithm is compared with a reinforcement
learning algorithm in terms of system performance, required
information, and cognitive capabilities of players. To im-
prove the system performance, we consider a second learn-
ing algorithm based on regret matching that converges to the
set of correlated equilibria (CE).

We begin our analysis by describing the system model in
Sec. 2 and introducing some basic game theoretical concepts.
Then, in Sec. 3, we analyze the Nash equilibria of the power
allocation game. First, we review the setting of [7] in Subsec.
3.1 and then, study the discrete game in Subsec. 3.2. In
Sec. 4, we study two learning algorithms: One that allows
the users to converge to one of the NE (see Subsec. 4.1) and
another that allows the users to converge to the set of CE (see
Subsec. 4.2). We analyze the performance of the different
scenarios via numerical simulations in Sec. 5 and conclude
with several remarks in Sec. 6.

2. SYSTEM MODEL

We consider a multiple access channel (MAC) composed of
an arbitrary number of mobile stations (MS) K ≥ 2 and a
single base station (BS). We further assume that each mobile
station is equipped with nt antennas whereas the base station
has nr antennas. We assume the fast fading model where the
receiver has perfect knowledge of the channel matrices. The
knowledge required at the transmitters depends on the differ-
ent scenarios and will be defined accordingly. The equivalent
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baseband signal received at the base station is:

Y =
K

∑
k=1

HkXk +Z, (1)

where the time index has been ignored and X k is the nt -
dimensional column vector of symbols transmitted by user
k, Hk ∈ Cnr×nt is the channel matrix (stationary and ergodic
process) of user k and Z is a nr-dimensional complex white
Gaussian noise distributed as N (0,σ 2Inr).

In order to take into account the antenna correlation ef-
fects at the transmitters and receiver, we will assume the
different channel matrices to be structured according to the
unitary-independent-unitary model introduced in [23], ∀k ∈
K , Hk =VkH̃kWk, where K = {1, ...,K}, Vk andWk are
deterministic unitary matrices. Also H̃k is an nr ×nt matrix
whose entries are zero-mean independent complex Gaussian
random variables with an arbitrary profile of variances, such
that E|H̃k(i, j)|2 = σk(i, j)

nt
. Note that the Kronecker propa-

gation model ( where the channel matrices are of the form

Hk = R
1/2
k Θ̃kT

1/2
k ) is a special case of the UIU model. The

BS is assumed to use a simple single user decoding (SUD)
technique. The achievable ergodic rate of user k ∈ K is
given by:

uk(Qk,Q−k) = E[ik(Qk,Q−k)], (2)

where ik(Qk,Q−k) denotes the instantaneous mutual infor-
mation

ik(Qk,Q−k) = log2

∣∣∣∣∣Inr +ρHkQkH
H
k +ρ ∑̀

6=k

H`Q`H
H
`

∣∣∣∣∣−

log2

∣∣∣∣∣Inr +ρ ∑̀
6=k

H`Q`H
H
`

∣∣∣∣∣ .

(3)
In this paper, we study the power allocation game where the
players are autonomous non-cooperative devices that choose
their power allocation policies, Qk, to maximize their own
transmission rates, uk(Qk,Q−k).

2.1 Non-Cooperative Game Framework

In what follows, we briefly define some basic game theoreti-
cal concepts ( see e.g. [13] for details) and standard notations
that will be used throughout the paper. A normal-form game
is defined as the triplet G = (K ,{Ak}k∈K ,{uk}k∈K ) where
K is the set of players ( the K transmitters), Ak represents
the set of actions ( discrete or continuous) that player k can
take ( different power allocation policies), and uk : A → R+

is the payoff function of user k that depends on his own
choice but also the choices of the others ( the ergodic achiev-
able rate in (2)) where A = ×k∈K Ak represents the overall
action space. We denote by a ∈ A a strategy profile and by
a−k the strategies of all the players except k.

The Nash equilibrium has been introduced in [15] and
appears to be the natural solution in non-cooperative games.
The mathematical definition of a pure-strategy NE is given
by:

Definition 1 A strategy profile a∗ ∈A is a Nash equilibrium
for the game G = (K ,{Ak}k∈K ,{uk}k∈K ) if for all k ∈ K
and all ak ∈ Ak: uk(a∗k ,a

∗
−k) ≥ uk(ak,a∗−k).

This definition translates the fact that the NE is a stable state
from which no user has any incentive to deviate unilaterally.
A mixed strategy for user k is a probability distribution over
its own action set Ak. Let ∆(Ak) denote the set of probabil-
ity distributions over the set Ak. The mixed NE is defined
similarly to pure-strategy NE by replacing the pure strate-
gies with the mixed strategies. The existence of NE has been
proven in [15] for all discrete games. If the action spaces
are discrete finite sets, then p

k
∈ ∆(Ak) denotes the probabil-

ity vector such that pk, j represents the probability that user k

chooses a certain action a( j)
k ∈ Ak and ∑

a( j)
k ∈Ak

pk, j = 1.

We also define the concept of correlated equilibrium [16]
which can be viewed as the NE of a game where the players
receive some private signaling or playing recommendation
from a common referee or mediator. The mathematical defi-
nition is as follows:

Definition 2 A joint probability distribution q ∈ ∆(A ) is a

correlated equilibrium if for all k ∈ K and all a( j)
k ,a(i)

k ∈Ak

∑
a∈A :ak=a( j)

k

qa

[

uk(a
( j)
k ,a−k)−uk(a

(i)
k ,a−k)

]

≥ 0, (4)

where qa denotes the probability associated to the action pro-
file a ∈ A .

At the CE, User k has no incentive in deviating from the me-

diator’s recommandation to play a( j)
k ∈ Ak knowing that all

the other players follow as well the mediator’s recommenda-
tion (a−k). Notice that the set of mixed NE is included in the
set of CE by considering independent p.d.f’s. Similarly, the
set of pure strategy NE is included in the set of mixed strat-
egy NE by considering degenerate p.d.f.’s (i.e. pk, j ∈ {0,1})
over the action sets of users.

3. NON-COOPERATIVE POWER ALLOCATION
GAME

In this section, we analyse the NE of the power allocation
game in fast fading MIMO MAC. First, we briefly review
the case where the action sets of the users are continuous
[7]. Then, we focus our attention on the practical case where
the action sets of the users are discrete and finite. In this
section, the players are assumed to be strictly rational trans-
mit devices. Based on the available information, the trans-
mitters choose the power allocation policy maximizing their
own transmission rates. Furthermore, rationality is assumed
to be common knowledge.

3.1 Compact and Convex Action Sets

We consider the same scenario as [7]. The transmit-
ters are assumed to know only the statistics of the chan-
nels. The non-cooperative normal-form game is denoted by
GC = (K ,{Ck}k∈K ,{uk}k∈K ). Each mobile station k ∈ K
chooses its own input transmit covariance matrix Qk ∈ Ck
to maximize its own achievable ergodic rate defined in (2).
The action set of player k ∈K is the convex cone of positive
semi-definite matrices:
Ck =

{

Qk ∈ Cnt×nt |Qk � 0,Tr(Qk) ≤ Pk
}

. In [7], the au-
thors proved the existence and uniqueness of NE using The-
orems 1 and 2 in [17]. We provide here an alternative proof
based on the notion of potential games [18].
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Definition 3 A normal form game G =
(K ,{Ak}k∈K ,{uk}k∈K ) is a potential game if there
exists a potential function P : A → R+ such that, for all
k ∈ K and every a,b ∈ A

uk(ak,a−k)−uk(bk,a−k) = P(ak,a−k)−P(bk,a−k). (5)

Following [18], the local maxima of the potential function
are the NE of the game. Thus, every potential game has at
least one NE. For the game GC, the system achievable sum-
rate:

R(Q1, . . . ,QK) = E log2

∣∣∣∣∣I+ρ
K

∑
k=1

HkQkH
H
k

∣∣∣∣∣ , (6)

is a potential function. It can be checked that R(Q) is strictly
concave w.r.t. (Q1, . . . ,QK). Thus, it has a unique global
maximizer which corresponds to the unique NE of the game.
Furthermore, based on the finite improvement path (FIP)
property [18], the iterative water-filling type algorithm in [7]
converges to the unique NE. In [19], the author proves that
for strict concave potential games, the CE is unique and con-
sists in playing with one probability the unique pure NE. So
the CE reduces to the unique NE of the game.

There are several drawbacks of this distributed power al-
location framework: i) The action sets of users are assumed
to be compact and convex sets ( unrealistic in practical sce-
narios); ii) In order to implement the iterative water-filling
algorithm, the transmitters need to know the global channel
distribution information and to observe, at every iteration,
the strategies chosen by the other players ( very demanding
in terms of information assumptions and signaling cost).

3.2 Finite Action Sets

Let us now consider the scenario where the action sets of
users are discrete finite sets. The discrete game is very simi-
lar to GC and is denoted by GD = (K ,{Dk}k∈K ,{uk}k∈K ).
The action set of user k is a simple quantized version of Ck:

Dk =

{
Pk

`
Diag(e`)

∣∣∣∣∣` ∈ {1, . . . ,nt},e` ∈ {0,1}nt ,
nt

∑
i=1

e`(i) = `

}
.

(7)
Dk represents the set of diagonal matrices that consists in
allocating uniform power over only a subset of ` eigenmodes.
Note that the discrete game GD remains a potential game with
the same potential function in (6). Thus, the existence of at
least one pure NE is guaranteed. However, the uniqueness
property of the NE is lost in general.

We consider hereunder two particular scenarios that il-
lustrate the extreme cases where either all strategy profiles in
D = ×kDk are NE or where the NE is unique.

3.2.1 Completely Correlated Antennas

Let us assume the Kronecker model where the transmit an-
tennas and receive antennas are completely correlated, i.e.,
for all k, Rk = Jnr and Tk = Jnt . The matrix Jn is a n× n
matrix with all entries equal to one. In this case, the potential
function is constant and independent of the users’ covariance
matrices:

R(Q1, . . . ,QK) = E log2

∣

∣

∣

∣

∣

Inr +ρP
K

∑
k=1

nr

∑
i=1

nt

∑
j=1

|hk(i, j)|2Jnr

∣

∣

∣

∣

∣

.

(8)

This means that all the possible action profiles in
(Q1, . . . ,QK) ∈ D are potential maximizers and thus NE of
GD.

3.2.2 Independent Antennas

Now, we consider the other extreme case where the anten-
nas at the terminals are completely uncorrelated, i.e., for
all k, Rk = Inr and Tk = Int . In other words, Hk is a
random matrix with i.i.d. complex Gaussian entries. Let
us recall that in the continuous setting derived in Subsec.
3.1, if Hk are i.i.d. matrices, then the NE policy for all
users is spread their powers uniformly over all the anten-

nas: ∀k,Q(UPA)
k = Pk

nt
Int . In the continuous case, the poten-

tial function is strictly concave. Thus, for that any user k the

strategy Q
(UPA)
k strictly dominates all the other strategies in

Ck. From the fact that Dk ⊂ Ck, the strategy Q
(UPA)
k strictly

dominates all the other strategies in Dk also. In conclusion,
the NE is unique and corresponds to the same solution as
in the continuous game. Note that this is a very particular
case and occurs only because the NE profile in the continu-

ous case, (Q
(UPA)
1 , . . . ,Q

(UPA)
K ) ∈ C = ×kCk happens to be

also in the discrete set D .
We see that, when quantizing the action sets of players,

the uniqueness of the NE is no longer guaranteed. This raises
an important issue when playing the one-shot game. There
is a priori no explanation for users to expect the same equi-
librium point. Because of this, their actions may not even
correspond to an NE at all. A possible way to cope with this
problem is to consider distributed iterative algorithms that
converge to one of the NE points. Let us consider the iterative
algorithm based on the best-response functions (similarly to
[7]). Knowing that GD is a potential game, by the FIP prop-
erty, the users converge to one of the possible NE depend-
ing on the starting point. At each iteration, only one of the
players updates his action by choosing its best action w.r.t.
its own payoff. For exemple, at iteration t user k chooses

Q[t]
k = arg max

Qk∈Dk

uk

(

Qk,Q
[t−1]
−k

)

, while the other users don’t

do anything andQ[t]
−k =Q

[t−1]
−k . Notice that user k is supposed

to know the previous actions of the other players Q[t−1]
k . This

involves a high amount of signaling between players. At the
end of each iteration, the user that updated its choice needs
to send it to all the other users. Furthermore, the users are
assumed to be strictly rational and need to know the struc-
ture of the game and their own payoff in order to compute
the best-response functions.

4. LEARNING ALGORITHMS

In this section, we discuss a different class of iterative al-
gorithms that converge to the equilibrium points of the dis-
crete game GD described in Subsec. 3.2. As opposed to the
best-response algorithm, the users are no longer rational de-
vices but simple automata that know only their own action
sets. They start at a completely naive state choosing ran-
domly their action (following the uniform distribution over
their own action sets for exemple). After the play, each users
obtains a certain feedback from the nature (e.g., the real-
ization of a random variable, the value of its own payoff).
Based only on this value, each user applies a simple updating
rule of its mixed strategy. It turns out that, in the long-run,
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the updating rules converge to some desirable system states
(NE, CE). Note that the rationality assumption is no longer
needed. The transmitters don’t even need to know the struc-
ture of the game or even that a game is played at all. The
price to pay will be reflected in slower convergence time.

4.1 A Reinforcement Learning Algorithm

We consider a stochastic learning algorithm similar to [20].

Let us index the elements of DK = {D
(1)
k , . . . ,D

(mk)
k } with

mk = Card(Dk) (i.e., the cardinal of Dk). At step t > 0 of the
iterative process, User k randomly chooses a certain action

Q
[t]
k ∈Dk based on the probability distribution p[t−1]

k from the
previous iteration. As a consequence, it obtains the realiza-
tion of a random variable, which is, in our case, the normal-

ized instantaneous mutual information i[t]k =
ĩk

(

Q
[t]
k ,Q

[t]
−k

)

Imax
∈

[0,1]. Where ĩk(·, ·) is a finite approximation of the mutual
information ik(·, ·) such that:

ĩk(·, ·) =

{

ik(·, ·) , if ik(·, ·) ≤ Imax
Imax , otherwise , (9)

where Imax is chosen such that the expectation of ĩk(·, ·) ap-
proximates the expected mutual information and thus de-
pends on the system’s parameters (nr,nt ,ρ). Based on this
value, User k updates its own probability distribution as fol-
lows:

p[t]
k, j =

{
p[t−1]

k, j −bi[t]k p[t−1]
k, j , if Q

[t]
k 6=D

( j)
k ,

p[t−1]
k, j +bi[t]k (1− p[t−1]

k, j ), if Q
[t]
k =D

( j)
k ,

(10)

where 0 < b < 1 is a step size and p[t]
k, j represents the proba-

bility that user k choses D( j)
k at iteration t. Using well known

results in weak convergence of random processes [20], the
sequence will converge, when b → 0 to the solution of a de-
terministic ordinary differential equation (ODE). Similarly
to [21], it can be checked that the potential function in (6) is
a Lyapunov function for this ODE. This means that the sta-
tionary stable points of the ODE correspond to the maxima
of the potential and, thus, to the pure strategy NE of GD. In
conclusion, when t →+∞, the updating rule (10) converge to
one of the pure strategy NE. This means that the users learn
their own NE strategies knowing only the realization of their
mutual information and using a simple updating rule.

4.2 Learning Correlated Equilibria

In general, the performance at the NE for discrete games de-
pends on the quantized choice of the action sets of users. In
order to improve the users’ performance, we study a different
learning algorithm which allows them to converge towards a
correlated equilibrium.

We consider the modified regret matching algorithm in-
troduced in [22] which allows the players to converge to the
set of correlated equilibria. Each user needs only the knowl-
edge of its own payoff values received over the time.

At iteration t, User k choses randomly an action Q
[t]
k fol-

lowing the distribution p[t−1]
k and obtains the value of its pay-

off u[t]
k = uk(Q

[t]
k ,Q

[t]
−k). Without loss of generality, assume

Q
[t−1]
k =D

( j)
k . The play probabilities are updated as follows:





p[t]
k,i =

(
1− δ

tγ

)
min

{
1
µ M[t−1]

k ( j, i), 1
mk−1

}
+ δ

tγ
1

mk
, for i 6= j,

p[t]
k, j = 1− ∑

i6= j

p[t]
k,i,

(11)
where 0 < δ < 1, 0 < γ < 1/4, µ > 0 a sufficiently large
parameter that ensures the probabilities are well defined. We

observe that User k needs to know not only u[t]
k but also all

the past values of its payoff
{

u[τ]
k

}

τ<t
. The basic idea is that

if at time t a player plays action D
( j)
k then the probability

that at time t +1 the player chooses a different action D
(i)
k is

proportional to the regret for not having chosen action D
(i)
k

instead of D( j)
k . The regret is measured as an approximation

of the increase in average payoff ( if any) resulting if User k

had chosen action D
(i)
k in all the past when D

( j)
k was chosen

and is denoted by M[t]
k ( j, i):

M[t]
k ( j, i) =


1

t ∑
τ≤t,Q[τ]

k =D
(i)
k

p[τ ]
k, j

p[τ ]
k,i

u[τ ]
k −

1
t ∑

τ≤t,Q[τ]
k =D

( j)
k

u[τ ]
k




+

.

(12)
It turns out (see [22]) that the empirical distribution of

play up to t denoted by zt ∈ ∆(D)

zt(Q1, . . . ,QK)=
1
t

Card{τ ≤ t : (Q[τ ]
1 , . . . ,Q

[τ ]
K )= (Q1, . . . ,QK)},

(13)
for all (Q1, . . . ,QK) ∈D converges almost surely as t →+∞
to the set of correlated equilibria.

There are several differences with the learning algorithm
we discussed in Subsec. 4.1. Here, the learning process is
no longer stochastic and the feedback each user gets at iter-

ation t is the value of the deterministic payoff u[t]
k = uk(·, ·)

instead of ik(·, ·). The consequence is that the convergence
is faster but the nature has to feedback not only the instan-
taneous mutual information but the ergodic achievable rate.
Also, the updating rule for User k at iteration t depends on

the whole history of received payoff values
{

u[τ]
k

}

τ≤t
and

not only on the current iteration u[t]
k .

5. SIMULATION RESULTS

In what follows, we evaluate the gap between the results ob-
tained at the equilibrium point of GC in Subsec. 3.1 and
GD in Subsec. 3.2. We also analyze the performance of
the two learning algorithms. We consider the following sce-
nario: Two users (K = 2), nr = nt = 2, the Kronecker chan-
nel model where the transmit and receive correlation follow
the exponential profile (i.e. Rk(i, j) = r|i− j|

k and Tk = t |i− j|
k )

characterized by the coefficients r1 = 0.7, r2 = 0.5, t1 = 0.2,
t2 = 0.4, and σ 2 = 1 W.

First, we consider the discrete game in Subsec. 3.2. In
Fig. 1, we plot the expected payoff depending on the prob-
ability distribution over the action sets at every iteration for
User 1 in Fig. 1(a) and for User 2 in Fig. 1(b) assuming
P1 = P2 = 5 W. We assume here that the stochastic reinforce-
ment algorithm in Subsec. 4.1 is applied by both users in
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(b) User 2.

Figure 1: Expected payoff vs. iteration number for K = 2 users.
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Figure 2: The achievable sum-rate at the NE. Compact action sets game vs. discrete
action sets game. There is an optimality loss due to the quantization of the users’ action
sets.

order to learn their NE strategies. We observe that the users
converge after approximatively 8 ·104 iterations. By using a
based response algorithm the convergence is almost instan-
taneous ( only 2 or 3 iterations). However, the rationality
assumption and perfect knowledge of the game structure for
each player are required.

At last, we compare the performance of the overall sys-
tem in terms of achievable sum-rate of the two games dis-
cussed in Sec. 3 as function of P ∈ {0, . . . ,10} W, assuming
P1 = P2 = P. In Fig. 2, we plot the achievable sum-rate
obtained at the NE with the iterative water-filling type algo-
rithm proposed in [7] for GC. Also, we plot the achievable
sum-rate obtained at the NE point of GD to which the users
applying the learning algorithm in Subsec. 4.1 converge. We
observe that there is a performance loss due to the quantiza-
tion of the action sets of users. The discrete action sets Dk
can be further refined and the results of the algorithms im-
proved. However this will result in a higher complexity and
computational costs.

6. CONCLUSIONS

We study the discrete non-cooperative power allocation game
in MIMO MAC systems. In the long-run, the transmitters can
learn their optimal subset of active antennas. The players are
not assumed to be rational but automata which apply simple
updating rules on the p.d.f.’s over their possible power alloca-
tion policies. We evaluate the performance gap between the
convergence NE state of the learning procedure and the NE
of the analogous game with rational players and assuming
compact and convex action sets.
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CHAPTER D. Résumé

D.1 Introduction

Le présent manuscrit est axé sur les problèmes d’allocation des ressources dans les
réseaux sans fil MIMO. Ces problèmes émergent dans un contexte de communication
dans lequel les réseaux intelligents sont capables de fonctionner avec un régime à haut
rendement énergétique.

D.1.1 Contexte et Motivation

Bien que la théorie des jeux et la théorie de l’information ont été largement développées
durant les dernières soixante années, à commencer par les contributions séminales de
J. von Neumann et O. Morgenstern [1], J. Nash [2] et CE Shannon [3], ce n’est que
récemment que les connexions et les interactions entre ces deux théories ont commencé
être mises en évidence et exploitées à grande échelle. Toutefois, la première application
des outils de la théorie des jeux aux communications fiables remonte à la thèse de
doctorat de Mandelbrot [4], en 1952, et plus tard dans [5] et [6] où la communication
entre un émetteur et le récepteur est modélisée par un jeu à deux joueurs et à somme
nulle avec une fonction de paiement donnée par l’information mutuelle. L’émetteur
joue contre une nature malveillante qui choisit la pire distribution du canal au sens de
l’information mutuelle. Il s’avère que la solution de ce jeu non-coopératif est identique
à la capacité maximin dans le pire des cas en supposant que l’émetteur n’a pas de
connaissances sur les paramètres du canal (statistiques du bruit et des gains du canal).

Le récent regain d’intérêt dans l’application des outils de la théorie des jeux pour
les communications est dû au développement des communications sans fil. Dans ce
contexte, les multiples dispositifs, émetteurs et récepteurs, partagent le même environ-
nement de communication. Ainsi, une compétition pour les ressources publiques (tels
que les bandes de fréquences, les intervalles de temps, l’espace, la puissance d’émission ou
l’énergie) apparâıt naturellement. Ces ressources peuvent être, à priori, optimisées par
une autorité centrale. Toutefois, l’approche centralisée présente plusieurs inconvénients:
i) elle n’est pas réaliste dans un environnement partagé par de multiples prestataires
de services ou opérateurs; ii) le problème d’optimisation conjoint par rapport à tous les
paramètres du réseau est généralement un problème d’optimisation non-convexe et très
complexe, impliquant des coûts de calcul élevés; iii) elle n’est pas échelonnable, c’est
à dire, un léger changement dans la topologie du réseau peut conduire à un problème
d’optimisation très complexe, voire intraitable, iv) elle implique un coût important en
terme de signalisation, si le propriétaire du réseau doit envoyer les politiques optimales
d’allocation de ressources à chaque utilisateur du réseau; v) la solution centralisée n’est
pas nécessairement équitable par rapport à la qualité de service fournie à ses utilisateurs;
vi) dans le contexte des utilisateurs autonomes et rationnels, lorsque la qualité de service
d’un utilisateur n’est pas satisfaisante, l’utilisateur peut refuser la politique d’allocation
centralisée, ce qui peut altérer le fonctionnement du réseau. Pour ces raisons, une solu-
tion distribuée peut être souhaitable, bien que la solution centralisée est généralement
préférable du point de vue de la performance globale du réseau. Dans les environnements
distribués, la compétition pour les ressources donne lieu à des situations interactives. La
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théorie des jeux fournit un cadre mathématique approprié à l’étude des tels situations.
Dans ce contexte, l’un de nos principaux objectifs est d’étudier les jeux non-coopératifs

d’allocation de ressources dans les réseaux de communication MIMO (avec plusieurs
entrées et sorties) sans fil. La motivation du choix des canaux MIMO est double: i) les
canaux MIMO peuvent être utilisés pour modéliser beaucoup de canaux de communi-
cation réalistes; ii) ces canaux offrent un cadre mathématique élégant (voir la notation
compacte avec des matrices). Pour être plus précis, les agents ou joueurs sont les dis-
positifs autonomes d’émission. Ces dispositifs sont capables de détecter l’environnement
et de décider leurs actions individuelles, à savoir, leur propre politique d’allocation de
puissance. En supposant que ce sont des dispositifs rationnels et égöıstes, les actions
choisies sont celles qui maximisent les benefices individuels, à savoir, leur débits de trans-
mission de Shannon. Il y a beaucoup de raisons pour lesquelles ce type de paiement a
été souvent considéré dans le littérature. Ici, nous ne citerons que les plus impor-
tantes. Tout d’abord, les taux de transmission de Shannon caractérisent les limites de
performance d’un système de communication et nous permettent d’étudier des réseaux
distribués où de bonnes méthodes de codage sont mises en œuvre. Deuxièmement, la
relation directe entre le taux de transmission possible d’un utilisateur et son rapport
signal-à interférence-plus-bruit (RSIB) nous permet d’optimiser des mesures de perfor-
mances comme le RSIB ou les quantités relatives de même type (par exemple, le rapport
porteuse-à-interférence ). Troisièmement, du point de vue des mathématiques, les taux
de Shannon ont de nombreuses propriétés intéressantes (par exemple, les propriétés
de concavité), qui permettent d’effectuer des analyses complètes de performance. Par
conséquent, elles fournissent des idées utiles et des concepts qui sont exploitables pour
une conception pratique des réseaux décentralisés.

Toutefois, au cours de la dernière décennie, la consommation d’énergie est devenue
un enjeu de plus en plus important dans les réseaux sans fil. Par exemple, dans les les
réseaux cellulaires, les terminaux mobiles sont équipés d’écrans de taille relativement
importante, exigés d’offrir des fonctionnalités de plus en plus complexes et aussi de
fonctionner à des vitesses de transmission plus élevées pendant une plus longue durée.
En outre, dans les réseaux de capteurs où le changement de batteries de dispositifs est
très peu pratique ou, dans certains cas, voire impossible, la consommation d’énergie
devient un enjeu crucial. Dans ces scénarios, l’optimisation des taux de Shannon sans
tenir compte des coûts encourus n’est plus une métrique de performance convenable.
Afin de tenir compte de la puissance consommée pour atteindre ces taux, une nouvelle
mesure d’efficacité énergétique a été proposé dans la littérature [7] [8]. Cette métrique,
que nous allons également étudier dans notre scénario de réseaux MIMO, mesure le
nombre de bits qui peuvent être transmis d’une manière fiable à travers le canal par
unité d’énergie consommée.

D’un point de vue pratique, le calcul des solutions des deux problèmes mentionnés
ci-dessus, le problème d’allocation de puissance au sens du taux de Shannon ou de
l’efficacité énergétique, implique souvent la mise en œuvre des algorithmes complexes
au niveau de l’émetteur, une signalisation importante entre les émetteurs, l’ hypothèse
de la rationalité des émetteurs. Dans ce contexte, nous allons étudier les algorithmes
d’apprentissage qui peuvent être utilisés pour modéliser la prise de décision adaptative
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des dispositifs. Ce sont des algorithmes de faible complexité qui peuvent être mis en
œuvre sans l’hypothèse de rationalité. Les dispositifs choisissent leur actions basées sur
un simple feed-back de l’environnement ( qui mesure la satisfaction de leur choix). Il
s’avère que, dans le long terme, ils peuvent améliorer leurs performances tout en fonc-
tionnant dans un environnement inconnu et converger vers des points de fonctionnement
souhaitable des réseaux.

Le présent manuscrit est organisé en trois parties principales.

Nous commençons dans la section D.2 par l’analyse du problème d’allocation de puis-
sance dans un cadre où de multiples utilisateurs cherchent à maximiser leurs propres
débits de transmission (voir la section D.2). Ce problème est formulé comme un jeu non
coopératif. L’existence et la multiplicité de la solution d’équilibre de Nash (EN) sera
étudiée pour deux modèles de réseaux différents. Nous étudierons le canal à d’accès mul-
tiple (CAM) [9], [10], où plusieurs émetteurs envoient leurs messages vers un récepteur
commun. Ensuite viendra l’étude du canal à interférence à relais (CIR) [11], [12], qui se
compose d’un canal à interférence [13] (où plusieurs paires émetteur-récepteur coexistent
dans le même environnement générant de l’interférence mutuelle) et plusieurs nœuds de
relais qui peuvent être utilisés par les émetteurs afin d’améliorer la performance de leurs
communications. Nous évaluerons également les performances obtenues aux points de
fonctionnement EN via des simulations numériques et des algorithmes itératifs dits de
water-filling ou de meilleure réponses.

Optimiser le débit atteignable de Shannon n’est pas toujours la meilleure politique,
en particulier dans les réseaux où les terminaux sont équipés de batteries de capacité
limitée. C’est pourquoi, dans la section D.3, nous étudierons une nouvelle métriques
d’efficacité énergétique qui tient compte à la fois, du débit de transmission atteignable
et de la puissance consommée pour atteindre cet débit. En raison des difficultés ren-
contrées, le problème d’allocation de puissance au sens de l’efficacité énergétique est
étudiée uniquement pour le canal MIMO mono-utilisateur. Le scénario multi-utilisateur
sera considéré comme une extension utile de ce travail. L’une des principales difficultés
rencontrée réside dans le fait que l’optimisation de la probabilité de coupure pour les
canaux MIMO à faible évanouissement est encore un problème ouvert [14].

Enfin, dans la section D.4, nous considérerons des algorithmes d’apprentissage.
Ces algorithmes illustrent une autre façon pour les utilisateurs de converger vers cer-
tains points de fonctionnement souhaitable, comme l’équilibre de Nash des jeux non-
coopératifs (Sec. D.2) et le point qui optimise la probabilité de coupure ou la métriques
d’efficacité énergétique (Sec. D.3). Ces algorithmes peu complexes et adaptatifs ne
nécessitent que peu de connaissance sur l’environnement et aucune hypothèse de ratio-
nalité.

Dans la section D.5, nous conclurons notre analyse par quelques remarques et ques-
tions ouvertes.

D.1.2 Élements de Théorie des Jeux Non-coopératifs

Nous passerons brièvement en revue ci-dessous quelques concepts de base de la théorie
des jeux non-coopératifs qui seront utilisés tout au long de ce manuscrit. Par définition,
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la théorie des jeux est le cadre mathématique dédié à l’étude des situations interactives
entre des décideurs ou des agents autonomes. Nous allons considérer l’hypothèse de la
rationalité des joueurs dans le sens où un joueur choisit sa meilleure stratégie pour max-
imiser son bénéfice [1]. La caractérisation mathématique d’un jeu sous forme stratégique
est donné par la définition suivante.

Définition D.1.1 Un jeu sous forme stratégique est un triplet G = (K, {Ak}k∈K, {uk}k∈K),
où K = {1, . . . ,K} représente l’ensemble de joueurs, Ak représente l’ensemble des
stratégies ou des actions que le joueur k ∈ K peut prendre et fk : ×`∈KA` → R représente
le bénéfice ou la fonction de paiement de l’utilisateur k, qui est une mesure de sa satis-
faction.

Dans le cas des jeux non-coopératifs, dans lequel les joueurs agissent de manière
égöıste et indépendante, l’équilibre de Nash (EN), introduit en [2] représente un concept
de solution du jeu. Le EN a été largement étudié dans les problèmes d’allocation des
ressources parce que c’est un concept très important pour les concepteurs de réseaux.
Il représente un point de fonctionnement qui est, à la fois, prévisible et robuste aux
déviations unilatérales (ce qui est réaliste compte tenu du fait que les joueurs sont
supposés être non-coopératifs et agir de manière isolée). Cela signifie qu’une fois que le
système fonctionne dans cet état, aucun utilisateur n’a intérêt à changer de stratégie car
il va perdre en terme de bénéfice. La définition mathématique du EN est comme suit:

Définition D.1.2 Un profil de stratégies (aNE
1 , . . . , aNE

K ) ∈ ×`∈KA` est un équilibre
de Nash si pour tout k ∈ K et pour tout a′−k ∈ ×`6=kA` nous avons uk(a

NE
k aNE

−k ) ≥
uk(a

NE
k , a′−k), où a−k = (a1, . . . , ak−1, ak+1, . . . , aK) désigne l’ensemble des actions des

autres joueurs.

En fonction de la structure du jeu, des propriétés topologiques des ensembles de
stratégies et des fonctions de paiement, les principales questions à résoudre sont les
suivantes: i) l’existence d’au moins un EN; ii) la multiplicité des EN; iii) la conception
d’algorithmes distribués qui permettent aux utilisateurs de converger vers un état EN
en utilisant uniquement les connaissances locales de l’environnement; iv) de déterminer
la performance du réseau dans les états d’équilibre. En ce qui concerne la conception
d’algorithmes distribués, le EN possède une autre caractéristique séduisante. Comme
nous le verrons dans la section D.4, il représente le résultat d’une simple adaptation
itérative des actions, c’est à dire, des algorithmes d’apprentissage. Ce qui est remar-
quable, c’est que ces algorithmes itératifs nécessitent très peu de connaissances sur
l’environnement. En particulier, ils ne nécessitent ni la connaissance de la structure du
jeu ni même l’hypothèse de la rationalité des joueurs.

En général, la performance au EN n’est pas optimale par rapport à la performance
globale du réseau, qui peut être mesurée par exemple par la somme de gains de chaque

utilisateur u(a) =
∑

k∈K
uk(ak, a−k). En outre, ce n’est pas un état équitable à l’égard

des performances individuelles des utilisateurs. Les points de fonctionnement qui nous
intéressent sont donc les états dits Pareto-optimales. Un état du système est Pareto-
optimale si aucun utilisateur ne préfère un état.
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Définition D.1.3 Soit a et a′ deux profils de stratégies différents en ×`∈KA`. Ensuite,
si

∀k ∈ K, uk(ak, a−k) ≥ uk(a′k, a′−k), (D.1)

avec l’inégalité stricte pour au moins un joueur, la stratégie a est Pareto-supérieure à a′.
S’il n’existe pas d’autre stratégies qui soient Pareto-supérieures à un profil de stratégies
de aPO, alors aPO est Pareto-optimale.

Toutefois, un état Pareto-optimale n’est pas nécessairement un état stable pour un
environnement dans lequel multiples utilisateur non-coopératifs et égöıstes coexistent.
En outre, la solution Pareto-optimale est plutôt une solution de type centralisé, car
l’information globale sur les canaux du réseau est nécessaire pour calculer ces états.

Il existe différentes techniques qui peuvent être utilisées pour améliorer les per-
formances du EN. En général, ces techniques impliquent l’intervention d’une autorité
centralisée ou une sorte de coopération au niveau des utilisateurs. Il y a toujours un
compromis entre les performances obtenues à l’état d’équilibre du réseau et le coût de
signalisation que cela implique. Une étude plus détaillée des concepts théoriques des
jeux non-coopératifs peut être trouvée dans la littérature spécialisée [15], [16]. Pour
une analyse approfondie sur les méthodes d’analyse du EN dans les réseaux sans fil en
général, le lecteur est renvoyé à [17] et [18].

Une classe importante de jeux sont les jeux de potentiel qui ont été introduits dans
[19].

Définition D.1.4 Un jeu sous forme stratégique G = (K, {Ak}k∈K, {uk}k∈K) est un jeu
de potentiel exact s’il existe une fonction de potentiel V : A → R+ de telle sorte que,
pour tous les k ∈ K et tous les a, a′ ∈ A

uk(ak, a−k)− uk(a′k, a−k) = V (ak, a−k)− V (a′k, a−k). (D.2)

Cette définition traduit le fait que tous les utilisateurs ont les mêmes incitations à
changer leurs actions, conduisant le système de l’état a à l’état a′. Par exemple, les jeux
de congestion ou les jeux de routage sont des exemples des jeux de potentiel. À la suite
de [19], les maxima locaux de la fonction de potentiel sont des points de EN du jeu.
Ainsi, le jeu de potentiel a au moins un EN en stratégies pures. En outre, dans les jeux
finis, l’algorithme itératif basé sur les fonctions des meilleures réponse converge vers l’un
des états EN (voir la propriété du chemin d’amélioration finie dans [19]) en fonction du
point de depart.

Pour faire face aux questions de l’existence et l’unicité des équilibres de Nash, nous
exploiterons souvent les propriétés des jeux concaves et les résultats de Rosen [20]. Ces
résultats sont indiqués ci-dessous et sont valables pour le cas où les actions des joueurs
sont des vecteurs.

Théorème D.1.5 [20] Soit G = (K, {Ak}k∈K, {uk}k∈K), un jeu sous forme stratégique.
Si les trois conditions suivantes sont remplies: (i) chaque uk est continue par rapport
au profil de stratégies aj ∈ Aj ,∀j ∈ K; (ii) chaque uk est concave en ak ∈ Ak; (iii)
A1, ...,AK sont des ensembles compacts et convexes; alors G a au moins un EN.
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Théorème D.1.6 [20] Considérons le jeu concave à K-joueurs du Théorème D.1.5.
Si la condition suivante (la concavité diagonale stricte) est remplie: pour tous les k ∈
K et tous (a′k, a

′′
k) ∈ A2

k tel qu’il existe au moins un indice j ∈ K pour lequel a′j 6=

a′′j ,
K∑

k=1

(a′′k − a′k)T
[
∇akuk(a′k, a′−k)−∇akuk(a′′k, a′′−k)

]
> 0; alors l’unicité de la NE est

assurée.

Ces théorèmes se révélent particulièrement utiles dans les jeux non-coopératifs d’allocation
de puissance au sens de l’efficacité du débit de transmission Shannon où les fonctions
de paiement des utilisateurs sont généralement concaves par rapport à la puissance
d’émission.

D’autres concepts de solution pour les jeux non coopératifs généralisent la notion de
EN en stratégie pure: le EN en stratégie mixte et l’équilibre corrélé (EC). Une stratégie
mixte pour l’utilisateur k est une distribution de probabilité sur l’ensemble des actions
Ak. Soit ∆(Ak) désigne l’ensemble des distributions de probabilité sur l’ensemble Ak.
Le EN mixte est défini de façon similaire au EN en stratégies pures en remplaçant
les stratégies pures avec les stratégies mixtes. L’existence du EN mixte a été prouvée
dans [2] pour tous les jeux discrets. Si les espaces d’actions sont discrèts et finis, alors
p
k
∈ ∆(Ak) désigne le vecteur de probabilité telle que pk,j représente la probabilité que

l’utilisateur k choisit une certaine action a
(j)
k ∈ Ak et

∑

a
(j)
k ∈Ak

pk,j = 1.

Nous avons également défini le concept d’équilibre corrélé [21], qui peut être considéré
comme le EN d’un jeu où les joueurs reçoivent certaines recommandations de la part
d’un arbitre ou un d’un médiateur commun. La définition mathématique est la suivante:

Définition D.1.7 Une distribution de probabilité conjointe q ∈ ∆(A) est un équilibre

corrélé si pour tout k ∈ K et tous les a
(j)
k , a

(i)
k ∈ Ak

∑

a∈A:ak=a
(j)
k

qa

[
uk(a

(j)
k , a−k)− uk(a(i)

k , a−k)
]
≥ 0, (D.3)

où qa désigne la probabilité associée au profil d’action a ∈ A.

Lors du EC, l’utilisateur k a pas d’incitation à dévier de la recommandation du médiateur,

a
(j)
k ∈ Ak, en sachant que tous les autres joueurs suivent ainsi la recommandation du

médiateur (a−k). Notez que l’ensemble des EN mixtes est inclus dans l’ensemble des EC
en considérant des distribution de probabilités indépendants. De même, l’ensemble des
EN en stratégies pure est inclus dans l’ensemble des EN mixtes, en considérant des dis-
tribution de probabilités dégénérées (à savoir pk,j ∈ {0, 1}) sur l’ensemble des stratégies
pures.

D.1.3 Publications

Les travaux de recherche menés au cours des trois années de thèse ont conduit à plusieurs
publications. Les articles sont classés ci-dessous en fonction des sujets connexes.
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Jeux non-coopératifs d’allocation de puissance efficaces en terme de débit
de transmission

Les contributions sur les jeux non-coopératifs d’allocation de puissance pour le canal
à accès multiple MIMO à évanouissement rapide ont été publié dans quatre
articles de journal, dont deux d’entre eux sont des revues de mathématique, et un papier
conférence:

• E. V. Belmega, S. Lasaulce, M. Debbah, M. Jungers, and J. Dumont, “Power allo-
cation games in wireless networks of multi-antenna terminals”, Springer Telecom-
munications Systems Journal, DOI: 10.1007/s11235-010-9305-3, May 2010.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “Power allocation games for MIMO
multiple access channels with coordination”, IEEE Trans. on Wireless Commu-
nications, vol. 8, no. 6, pp. 3182–3192, Jun. 2009.

• E. V. Belmega, M. Jungers, and S. Lasaulce, “A generalization of a trace inequality
for positive definite matrices”, The Australian Journal of Mathematical Analysis
and Applications (AJMAA), to appear, 2010.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “A trace inequality for positive defi-
nite matrices”, Journal of Inequalities in Pure and Applied Mathematics (JIPAM),
vol. 10, no. 1, pp. 1-4, 2009.

• E. V. Belmega, S. Lasaulce, and M. Debbah “Power Control in Distributed Mul-
tiple Access Channels with Coordination”, IEEE/ACM Proc. of the Intl. Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
and Workshops (WIOPT), Berlin, Germany, 1–8 Apr. 2008.

L’étude du problème de l’allocation de puissance pour le canal parallèle à accès
multiples statique , formulée comme un jeu de routage non-coopératif, a débouché sur
deux papiers de conférence:

• S. Medina Perlaza, E. V. Belmega, S. Lasaulce, and M. Debbah, “On the base
station selection and base station sharing in self-configuring networks”, Interna-
tional Conference on Performance Evaluation Methodologies and Tools (VALUE-
TOOLS), Pisa, Italy, invited paper, Oct. 2009.

• E. V. Belmega and S. Lasaulce, “Information theoretic congestion games in het-
erogeneous wireless networks”, Game Theory for Analysis and Optimization of
Computer Systems (GAMECOMP), Grenoble, France, invited talk, May 2008.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “Decentralized handovers in cellular
networks with cognitive terminals”, in the IEEE Proc. of the 3rd International
Symposium on Communications, Control and Signal Processing (ISCCSP), St Ju-
lians, Malta, invited paper, 12–14 Mar. 2008.
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Le jeu non-coopératif d’allocation de puissance pour le canal parallèle à in-
terférence à relais a été étudié dans un papier journal, qui a été révisé, et quatre
papiers de conférence:

• E. V. Belmega, B. Djeumou, and S. Lasaulce, “Power allocation games in interfer-
ence relay channels: Existence analysis of Nash equilibria”, EURASIP Journal on
Wireless Communications and Networking (JWCN), accepted for publication,
Nov. 2010.

• E. V. Belmega, B. Djeumou, and S. Lasaulce “Resource allocation games in in-
terference relay channels”, IEEE Intl. Conference on Game Theory for Networks
(Gamenets), Istanbul, Turkey, invited paper, May 2009.

• E. V. Belmega, B. Djeumou, and S. Lasaulce “What happens when cognitive
terminals compete for a relay node?”, IEEE Intl. Conference on Acoustics, Speech
and Signal Processing (ICASSP), Taipei, Taiwan, 1–4 Apr. 2009.

• E. V. Belmega, B. Djeumou, and S. Lasaulce “Jeux d’allocation de puissance pour
les canaux à interférence à relais”, GRETSI, Dijon, France, Sep. 2009.

• B. Djeumou, E. V. Belmega, and S. Lasaulce, “Régions de taux atteignables pour
le canal à interférence à relais”, GRETSI, Dijon, France, Sep. 2009.

L’état de l’art par rapport à ce sujet sera publiée dans le chapitre du livre qui suit:

• E. V. Belmega, S. Lasaulce, and M. Debbah, “Shannon rate efficient power al-
location games”, Game Theory for Wireless Communications and Networking,
Auerbach Publications, Taylor and Francis Group, CRC Press, accepted for
publication, 2009.

Communication efficace en terme de consommation d’énergie
Le problème de l’allocation de puissance dans le sens de la maximisation de l’efficacité

énergétique (i.e., le nombre de bits qui peut être transmis d’une manière fiable à travers
le canal par unité d’énergie consommée) a été étudié dans le cadre du canal MIMO
mono-utilisateur . Les principaux résultats sont présentés dans un article de journal,
et trois articles de conférence:

• E. V. Belmega, and S. Lasaulce, “Energy-efficient precoding for multiple-antenna
terminals”, IEEE Trans. on Signal Processing, accepted for publication, Sep.
2010.

• E. V. Belmega, S. Lasaulce, and M. Debbah, “A survey on energy-efficient com-
munications”, IEEE Intl. Symp. on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC 2010), Istanbul, Turkey, Sep. 2010.

• E. V. Belmega, and S. Lasaulce, “An information-theoretic look at MIMO energy-
efficient communications”, International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS), Pisa, Italy, Oct. 2009.
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• E. V. Belmega, S. Lasaulce, M. Debbah, and A. Hjørungnes “A new energy effi-
ciency function for quasi-static MIMO channels”, International Wireless Commu-
nications and Mobile Computing Conference (IWCMC), Leipzig, Germany, invited
paper, Jun. 2009.

Les algorithmes d’apprentissage dans les jeux d’allocation de ressources

L’étude des algorithmes d’apprentissage, qui permettent aux émetteurs de converger
vers des états souhaitables du réseau avec peu de connaissances sur l’environnement
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• E. V. Belmega, S. Lasaulce, M. Debbah, and A. Hjørungnes, “Learning Distributed
Power Allocation Policies in MIMO Channels”, European Signal Processing Con-
ference (EUSIPCO), Aalborg, Denmark, invited paper, Aug. 2010.
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les appendices. Ils seront utilisés comme références à des détails manquants d’analyse
et de démonstrations mathématiques.
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et/ou publiées dans deux articles de journal, un chapitre de livre et trois papiers de
conférence:

• E. Altman, Y. Hayel, and E. V. Belmega, “Modelling competition between Hawks
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namic Games and Applications, Birkhauser-Springer, to be submitted, Jan.
2011.
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• B. Djeumou, E. V. Belmega, and S. Lasaulce, “Recombinaison de signaux décodés
et transférés pour le canal à relais à division fréquentielle”, Actes du GRETSI,
Troyes, France, 1–4 Sep. 2007.

• E. V. Belmega, B. Djeumou, and S. Lasaulce, “Performance analysis for the AF-
based frequency division cooperative broadcast channel”, in the IEEE Proceed-
ings of the Signal Processing Advances in Wireless Communications conference
(SPAWC), Helsinki, Finland, 1–5 Jun. 2007.

D.2 Jeux Non-coopératifs d’Allocation de Puissance Effi-
caces en Terme de Débit de Transmission

Dans cette section, notre objectif est d’étudier des réseaux sans fil distribués ou au-
tonomes. Dans de tels réseaux, les émetteurs sont en mesure de gérer leurs propres
ressources avec peu ou, idéalement, aucune intervention de la part de l’autorité cen-
trale. Les émetteurs sont supposés être rationnels, égöıstes et capables de choisir leur
propre politique d’allocation de puissance pour maximiser la performance de leurs com-
munications. La performance d’une communication est mesurée en termes de débit
de transmission atteignable. L’interférence mutuelle crée par les émetteurs partageant
le même environnement de communication induit une interaction entre les émetteurs.
Cette interaction est étudiée en utilisant le cadre de la théorie des jeux non coopératifs.
Sauf indication contraire, les composantes du jeu non-coopératif peuvent être identifiées
comme suit. Les joueurs sont les émetteurs. Les fonctions de paiement sont les débits
de transmission atteignables. Les actions des joueurs sont leurs stratégies de précodage.

Trois étapes peuvent être identifiées dans notre approche. Tout d’abord, nous
étudions le jeu non-coopératif en un coup où les utilisateurs ont une connaissance par-
faite de la structure du jeu. Nous étudions l’existence et la multiplicité de la solution
d’équilibre de Nash. Plusieurs questions se posent. La connaissance parfaite de la struc-
ture du jeu au niveau des émetteurs est souvent une hypothèse irréaliste. En effet, en
général, des expressions analytiques des points EN ne sont pas disponibles. En outre, si
plusieurs états d’équilibre existent, il n’y a aucune raison de supposer que les émetteurs
rationnels doivent prédire le même résultat du jeu. Dans cette situation, le réseau peut
fonctionner dans un état qui ne correspond même pas à un état d’équilibre. Pour faire
face à ces questions, une solution possible est de considérer des algorithmes itératifs. En
conséquence, l’étape suivante de notre est d’étudier les algorithmes itératifs basés sur
les meilleures réponses. Comme nous le verrons, ces algorithmes sont identiques aux
algorithmes dits de water-filling. En plus, ils peuvent permettre aux utilisateurs de con-
verger vers l’un des EN du jeu en un coup. Ces algorithmes sont distribués dans le sens
qu’ils nécessitent moins d’informations sur la structure du jeu. Un autre inconvénient
de la notion EN est le fait que c’est généralement un point de fonctionnement inefficace
(par rapport à la performance globale du réseau, mais également par rapport aux per-
formances individuelles des utilisateurs). Comme dernière étape, nous abordons aussi
la formulation de Stackelberg [22] pour améliorer les performances du point EN. Cela
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implique un certain coût en termes de signalisation centralisée de la part de l’autorité
du système.

Les jeux non-coopératifs d’allocation de puissance efficaces en terme de débit de
transmission sont étudiés pour deux modèles de base du réseau: les canaux à accès mul-
tiples (CAM) et les canaux à interférences à relais (CIR). Avant d’exposer nos contri-
butions principales, nous allons discuter ci-dessous de plusieurs hypothèses importantes
et de différences entre ces deux modèles de réseaux. En termes de temps de cohérence
du canal, trois cas peuvent être distingués. Les gains de canal peuvent être: i) con-
stants et déterministes, i.e., des liens statiques; ii) des variables aléatoires qui changent
indépendamment à chaque utilisation du canal, i.e., liens à évanouissement rapide; iii)
des variables aléatoires qui restent constantes pour toute la durée de la transmission,
i.e. liens à faible évanouissement. Dans le troisième cas, les débits de Shannon at-
teignables sont strictement égaux à zéro [14] [23]. Ainsi, pour étudier le jeu d’allocation
de puissance, il faut considérer une autre métrique pour mesurer la satisfaction des util-
isateurs. Par exemple, comme nous le verrons dans la section D.3, on pourrait envisager
une mesure de performance en fonction de la probabilité de coupure [24]. Cependant,
ceci est hors de portée ici et ce cas ne sera pas considéré dans cette section. Pour le
CAM, nous allons examiner brièvement le cas des liens statiques et ensuite nous allons
nous concentrer sur le cas plus difficile de liens à évanouissement rapide. Du point de
vue de la théorie de l’information, l’analyse du CIR est beaucoup plus difficile. C’est
pourquoi, seul le cas des liens statiques sera pris en compte. Pour la même raison, le
cas général des multiples dimensions (MIMO) ne sera étudié que pour le CAM. Pour le
CIR, nous limiterons notre attention au cas des sous-canaux parallèles (ou orthogonaux).
Une autre différence intrinsèque entre les deux modèles de réseaux est la technique de
décodage. Pour le CAM, le récepteur doit décoder tous les messages des émetteurs et est
donc censé connâıtre les alphabets utilisés par tous les émetteurs. Dans cette situation,
deux techniques de décodage peuvent être utilisées: i) le décodage simultané des util-
isateurs (DSU) (lorsque le récepteur décode le message d’un émetteur, les signaux des
autres émetteurs sont considérés comme du bruit additif); ii) l’annulation d’interférence
successive (AIS), à savoir, les message des émetteurs sont décodés séquentiellement (lors
du décodage du message d’un émetteur, les messages décodés précédemment sont pris
en compte pour réduire le niveau total de l’interférence reçue). Pour le CIR, chaque
décodeur connâıt que l’alphabet employé par son propre émetteur. Par conséquent, la
technique de l’AIS, bien qu’attrayante en termes de taux de transmission, ne sera pas
étudiée.

Dans ce qui quit, nous allons résumer nos contributions par rapport à ces sujets.
Pour le CAM MIMO, le détail des analyses et les preuves des résultats peuvent être

trouvés en Appendice A.1, Appendice A.2, Appendice A.3, Appendice A.4 et Appendice
A.5.

• Tout d’abord nous avons étendu les résultats de [20] au cas où les ensembles des
actions des utilisateurs sont des ensembles de matrices au lieu des ensembles de
vecteurs.

• À partir de cette base, nous avons étudié l’existence et l’unicité de l’état EN dans
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le jeu en un coup. L’existence d’au moins un point de EN est garantie. Pour
le cas des liens statiques, le EN n’est généralement pas unique et des conditions
suffisantes sur les paramètres du canal assurant l’unicité ont été fournies. Pour le
cas des liens à évanouissement rapide, l’EN est prouvé être unique.

• Pour le cas des liens à évanouissement rapide, déterminer le point EN n’est pas un
problème trivial car les débits de transmission ergodiques n’ont pas d’expressions
analytiques. Tout d’abord, nous avons déterminé les vecteurs propres optimaux
des matrices de precodage. Ensuite, nous avons utilisé la théorie des matrices
aléatoires pour approximer les taux ergodiques avec leurs équivalents déterministes.
Enfin, nous proposons un algorithme itératif de type water-filling qui converge vers
les valeurs propres optimales.

• Le jeu d’allocation de puissance a été analysé pour deux techniques de décodage
différentes: DSU et AIS. Le décodage DSU est plus facile à mettre en œuvre, mais
il s’avère inefficace par rapport au débit total du réseau. Pour le décodage AIS
nous avons proposé un signal de coordination sous-optimal qui donne l’ordre de
décodage au niveau du récepteur. Ce signal doit être connu au niveau du chaque
émetteur et par conséquent, implique un certain coût de signalisation.

• Pour évaluer les performances du réseau au point de EN, nous avons introduit
l’efficacité en terme de débit total du réseau. Cette mesure traduit l’écart entre
le débit total atteignable au point du EN et la capacité-somme du CAM MIMO à
évanouissement rapide. Dans les régimes extrêmes du RSB, en supposant que le
décodeur utilise le décodage AIS, cet écart tend vers zéro. Pour RSB arbitraire,
cette écart a été évaluée à travers les simulations numériques. Il s’avère que,
en supposant que le décodage AIS, l’écart est très faible, même si le signal de
coordination ne dépend pas de coefficients d’évanouissement. Comme nous l’avons
prévu, décodage DSU est moins efficace. Un paradoxe intéressant du type Braess
a été souligné. Si les utilisateurs sont obligés d’allouer leur puissances de manière
uniforme dans le temps (et quel que soit le signal de la coordination) le débit total
du réseau au point du EN sera plus grand que dans le cas général.

Pour le CIR parallèle, l’analyse complète se trouve dans l’Appendice A.6.

• Le jeu d’allocation de puissance a été étudié pour trois protocoles de transmission
différents: Décoder-et-Transférer (DT), Estimer-et-Transférer (ET) et Amplifier-
et-Transférer (AT).

• Des conditions suffisantes assurant l’existence d’au moins un EN ont été fournies
pour DT et AT. En supposant que les nœuds de relais utilisent le protocole ET,
l’existence du EN est toujours garantie.

• Basé sur une technique de partage du temps, l’existence du EN peut toujours être
garantie indépendamment du protocole utilisé au niveau des relais. Toutefois, cela
implique un certain niveau de coordination entre les émetteurs.
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• L’analyse de la multiplicité des EN n’est pas triviale. Pour le cas particulier du pro-
tocole AT avec un gain d’amplification constant, l’analyse complète caractérisant
le nombre de points EN en fonction des paramètres du canal a été fournie. En
outre, sur la base du ”duopole de Cournot”, la convergence vers l’un des EN des
algorithmes itératifs basés sur les meilleures réponses a été prouvée.

• Des simulations numériques ont été utilisées pour évaluer la performance du réseau
au EN. Lorsque l’on compare les trois protocoles du relais en terme de débit total
du réseau, des observations similaires à celles du canal à relais classique ont été
faites: DT est optimal si le relais est situé à proximité des sources (très bon
liens source-relais), tandis que ET est optimal si le relais se trouve à proximité
des destinations (très bons liens relais-destination). Plusieurs formulations de
Stackelberg, où le propriétaire du réseau choisit les paramètres du relais (i.e., la
localisation spatiale, le gain d’amplification du AT, l’allocation de puissance pour
les DT et ET) ont été évalués à l’aide de simulations numériques.

Plusieurs questions ouverts et extensions intéressantes sont indiqués ci-après:

• Le CAM MIMO: Une extension intéressante serait d’étudier le cas pour lequel
les récepteurs ont une connaissance imparfaite des paramètres du canal. Une
autre question intéressante et ouverte serait de déterminer les vecteurs propres
optimaux et les valeurs propres des matrices de covariance lorsque la contrainte,
Vk = V pour tout k ∈ K est relâchée. En ce sens, les résultats récents de la
théorie des matrices aléatoires en [59] peuvent être utilisés. Une question ouverte
intéressante est de prouver mathématiquement la convergence des algorithmes
itératifs proposés basés sur le water-filling.

• Le CIR parallèle: Une extension de ce travail serait d’examiner des protocoles de
relayage et des techniques de codage-décodage plus efficaces tels que ceux de [60]
et des ouvrages connexes. Il est également important de bien déterminer le nombre
ou la topologie de l’ensemble des équilibres de Nash et d’étudier la convergence des
algorithmes itératifs et distribués d’allocation de puissance. Nous avons également
vu que des problèmes supplémentaires d’allocation de puissance entrent en jeu et
doivent être pris en compte dans le problème général: le problème de l’allocation
de puissance de transmission entre les différents sous-canaux au niveau des sources
(AT, DT, ET), pour choisir le degré de coopération avec les relais au niveau des
sources (DT), l’allocation de puissance entre les signaux de coopération au niveau
des relais (ET et DT), la répartition la puissance d’émission en temps.

Dans cette section, nous avons considéré que les émetteurs allouent leurs puissances
afin de maximiser leur taux de Shannon atteignables sans aucune considération à propose
de la consommation d’énergie. La consommation d’énergie a un impact direct sur la
durée de vie des batteries des dispositifs. Il existe des applications (e.g., les réseaux de
capteurs) pour lesquels la durée de vie des batteries joue un rôle crucial et maximiser le
débit de transmission n’est plus de première importance. Pour ce type d’applications,
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une mesure de performance différente doit être considérée. Dans la section D.3, nous
étudierons la métrique de l’efficacité énergétique mesurant le nombre de bits qui peuvent
être transmis à travers le canal par unité d’énergie consommée.

D’autres questions importantes concernent les algorithmes itératifs de type water-
filling. Tout d’abord, il s’agit de la rationalité des utilisateurs et la connaissance parfaite
de leurs fonctions de paiement ou des meilleures réponse. En outre, ces algorithmes exige
généralement la connaissance parfaite au niveau de l’émetteur de l’état du canal global
(pour le cas statique) ou de son distribution (pour le cas évanouissement rapide). De
plus, ces algorithmes nécessitent beaucoup de signalisation entre les utilisateurs. A
chaque itération, l’utilisateur qui met à jour son choix, doit envoyer cette information
à tous les autres utilisateurs. Toutes ces hypothèses peuvent être considérées comme
étant irréalistes dans de nombreuses applications. Une solution possible est fournie par
la théorie de l’apprentissage dans les jeux qui sera étudiée dans la section D.4.

D.3 Communications Efficaces en Terme de Consomma-
tion d’Énergie

Dans la section précédente, la performance de la communication a été mesurée en terme
de débit de transmission atteignable. Le coût de la communication, à savoir, la puis-
sance d’émission consommée pour atteindre les débits de transmission correspondants
n’a pas été prise en compte. Dans les réseaux cellulaires ou les réseaux de capteurs,
dans lesquels les terminaux mobiles ou les capteurs sont équipés de batteries ayant
une capacité limitée, il est important d’optimiser la durée de vie de la batterie que
d’optimisation des taux de transmission. Par conséquent, ce coût doit être pris en con-
sidération. Dans cette section, nous allons considérer une métrique de performance
différente qui appartient à la théorie de l’information: l’efficacité énergétique. Cette
mesure est définie comme le rapport entre le bénéfice de la transmission (par exemple,
le nombre de bits transmis à travers le canal) et le coût de la transmission (i.e., la
puissance d’émission).

La recherche sur ce thème a été axée sur deux grandes approches: une approche
pragmatique basée sur des modulations pratiques, systèmes de codage-décodage, de
l’électronique (voir [8], [61], [62], [63]), et une approche de la théorie d’information basée
sur la capacité par unité de coût, notion introduite dans [7]. Une discussion détaillée et
pertinente sur l’état de l’art des deux approches est présentée dans [64] (voir l’Appendice
B.1). La plupart de cette recherche est centré sur des réseaux composés des dispositifs
équipés d’une antenne unique. Il est bien connu que, pour une communication point à
point, l’utilisation d’antennes multiples au niveau des terminaux [65] [66] [14] dans le
mode de fonctionnement qui maximise la diversité (i.e., toutes les antennes d’émission
sont utilisés pour envoyer les mêmes informations sur le canal) permet de diminuer la
puissance de transmission tout en assurant une qualité de transmission constante (par
exemple, le taux d’erreur binaire). Dans ce qui suit, nous nous concentrerons sur le
problème de l’allocation de puissance d’un point de vue de la théorie de l’information
dans les canaux MIMO comme dans la setion précédente. En outre, seule la puissance
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d’émission à la sortie des circuits RF (ou la puissance de transmission fiable des données)
est considérée. Même si cette hypothèse est irréaliste, elle nous permet de caractériser
la limite supérieure des performances qui peuvent être atteintes dans la pratique.

Notre objectif initial était d’étudier le jeu non-coopératif d’allocation de puissqnce
pour le canal MIMO à accès multiples, tel que décrit dans la section précédente. Dans
notre cas, les joueurs, les émetteurs, choisissent leur meilleure matrice de covariance afin
de maximiser leur fonction d’efficacité énergétique au lieu du débit de transmission Shan-
non. Toutefois, le problème s’est avéré être très difficile. Pour cette raison, nous nous
sommes limités seulement à étude du cas particulier du canal MIMO mono-utilisateur
(voir l’Appendice B.2). Notez que sous cette hypothèse, le jeu est réduit à un problème
d’optimisation qui se révélera être généralement insolluble.

Ce problème est discuté en détail dans l’Appendice B.2. Pour les cas des liens
statiques et liens à évanouissement rapide, la solution se révèle être triviale. Afin d’être
économes en énergie, l’émetteur envoie des données avec une puissance de transmission
très faible, ce qui implique aussi que les débits atteignables sont eux aussi très faibles.
Pour les liens à faible évanouissement, le problème d’optimisation est plus difficile et la
solution s’est avérée être non-triviale en général. Nos contributions sont les suivantes:

• Nous conjecturons la solution du problème général et nous donnons la solution dans
des cas particuliers: dans les régimes extrêmes de RSB; dans les cas particuliers
où l’un des dispositifs (le récepteur ou l’émetteur) est équipé d’une seule antenne
(canaux MISO et SIMO).

• Un cas particulier intéressant est le cas de l’allocation uniforme de puissance. Dans
ce cas, la fonction de l’efficacité énergétique est conjecturée être quasi-concave par
rapport à la puissance d’émission. Une preuve rigoureuse est présentée en utilisant
l’hypothèse de grands systèmes et la théorie des matrices aléatoires.

Pour le cas des liens statiques et à évanouissement rapide, la fonction de l’efficacité
énergétique ne semble pas être une métrique de performance appropriée. La solution
triviale qui maximise la fonction de l’efficacité énergétique peut être expliquée par le
fait que la consommation d’énergie des circuits électriques n’est pas prise en compte.
Une extension importante de ce travail serait de considérer la puissance des circuits.
Dans ce cas, si l’émetteur ne transmet pas, le coût en terme de puissance consommée
ne sera pas nul et la solution triviale ne sera plus optimale. De plus, avoir plusieurs
antennes au niveau des dispositifs peut se révéler sous-optimal par rapport au cas avec
une seule antenne. Une autre façon d’éviter la solution triviale consiste à considérer une
contrainte de QoS minimale (par exemple, du débit de transmission minimal).

La solution n’est plus triviale pour le cas des liens à faible évanouissement, ce qui
peut être expliqué par le fait que les bénéfices de la transmission sont fondamentale-
ment différents. Pour les canaux statiques et à évanouissement rapide, la transmission
est contrainte à être asymptotiquement fiable (avec probabilité d’erreur zéro). Cette
contrainte se révèle à être trop rigide et une transmission économe en énergie n’est pas
possible à une puissance d’émission non-nulle. Pour le canal à faible évanouissement,
il s’avère qu’il y a un compromis optimal entre la probabilité de coupure et la débit
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de transmission qui permet une communication efficace en terme d’énergie avec une
puissance de transmission non-nulle.

De nombreux problèmes ouverts sont introduits par cette métriqu, ici nous allons
citer quelques-uns:

• Tout d’abord, la conjecture sur la matrice de précodage optimale pour les canaux
MIMO généraux doit être prouvée (voir Appendice B.2).

• La quasi-concavité de la fonction d’efficacité énergétique pour le cas de liens à
faible évanouissement lorsque l’on suppose une allocation de puissance uniforme
reste à être prouvée dans le régime fini des dimensions du système.

• Un modèle de canal plus général doit être envisagé. Nous avons considéré des ma-
trices de canal avec des entrées i.i.d. standard Gaussiennes. Le modèle plus com-
plexe des matrices aléatoires de moyenne non-nulle avec des profils de corrélation
arbitraires apparâıt comme un problème difficile à résoudre.

• Le lien entre la métrique proposée et le compromis entre la diversité et le multi-
plexage à fort RSB n’a pas été exploré.

• Seuls les canaux à un seul utilisateur ont été pris en considération. De toute
évidence, les canaux MIMO à plusieurs utilisateurs comme les canaux à accès mul-
tiples ou les canaux à interférence doivent être étudiés. Le problème des canaux
distribués à plusieurs utilisateurs et le jeu non-coopératif d’allocation de puis-
sance associé est très intéressant. À cet égard, un seul résultat est mentionné ici:
l’existence d’un équilibre de Nash pour les canaux à accès multiple en supposant
l’allocation de puissance uniforme et le décodage simultané des utilisateurs.

La principale difficulté réside dans le fait que le problème d’optimisation de la prob-
abilité de coupure est encore un problème ouvert. Nous avons vu que, pour résoudre le
problème général, il suffit de démontrer la conjecture de Telatar et le cas d’attribution
de puissance uniforme. Optimisation de la probabilité de coupure est un problème dif-
ficile, même à partir d’un point de vue numérique. C’est pourquoi, dans le chapitre
suivant, nous verrons si l’utilisation simple d’apprentissage algorithmes, l’émetteur peut
converger vers la solution qui maximiser la probabilité de coupure.

D.4 Les Algorithmes d’Apprentissage

Dans la section D.2, nous avons étudié les jeux non-coopératifs d’allocation de puissance
où les émetteurs choisissent la politique d’allocation de puissance optimale pour max-
imiser leur taux atteignable. Des algorithmes itératifs ont été proposés pour calculer les
points d’équilibre de Nash au niveau des émetteurs. Afin d’appliquer ces algorithmes,
les émetteurs sont considérés comme des joueurs strictement rationnels qui connaissent
parfaitement la structure du jeu et les stratégies jouées par les autres joueurs dans le
passé. En outre, la rationalité des émetteurs est supposée être de notoriété publique.
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Dans cette section, nous étudions une autre façon d’expliquer comment les joueurs
peuvent converger vers un point d’équilibre du jeu en un coup. Cette alternative est of-
ferte par la théorie de l’apprentissage dans les jeux [74]. Les algorithmes d’apprentissage
sont des processus à long terme dans lesquels les hypothèses de connaissance et de ra-
tionalité des joueurs sont moins restrictives. Les utilisateurs optimisent leur paiement
moyen en appliquant des mises à jour simples de la distribution définie sur l’espace des
stratégies en fonction d’un retour d’information de la part de l’environment. Nous allons
principalement étudier l’algorithme d’apprentissage par renforcement similaire à celui
proposé en [75]. Dans ce cadre, les utilisateurs sont simplement des automates capables
de choisir leurs actions dans un ensemble fini. Leurs choix sont basés sur les résultats
obtenus par retour d’information de l’environnement. Ainsi, ils peuvent améliorer leurs
performances au fil du temps tout en fonctionnant dans un environnement presque in-
connu.

Deux scénarios différents seront considérés. Tout d’abord, nous étudions un jeu
d’allocation de puissance semblable au CAM MIMO à évanouissement rapide où le
récepteur applique la technique de décodage DSU (voir Sec. D.2). La différence réside
dans les ensembles des actions de joueurs qui sont ici des ensembles discrets et finis.
En raison de cette différence, l’analyse menée dans Sec. D.2 n’est plus valide. Par
conséquent, nous devons d’abord analyser l’équilibre de Nash pour le jeu en un coup
non-coopératif. Ensuite, nous verrons qu’en utilisant de simples règles d’adaptation,
les joueurs convergent vers l’un des points du EN. Le deuxième scénario est le canal
MIMO à faible évanouissement qui à été considéré dans la D.3 du point de vue des
communications énergétiques. Nous allons voir que la matrice de covariance optimale
qui minimize la probabilité de coupure (et qui est toujours un problème ouvert) peut
être calculée en appliquant un algorithme d’apprentissage de renforcement similaire.

Dans l’Appendice C.1 le scénario du CAM MIMO à évanouissement rapide est
étudié en détails. Nous avons observé que des algorithmes simples d’apprentissage par
renforcement permettent aux émetteurs d’apprendre leur politique d’allocation. Au
niveau du réseaux, les points de fonctionnement vers lesquels les émetteurs convergent
sont des états désirables (e.g., le EN). Ces algorithmes ont plusieurs caractéristiques
intéressantes. Ils sont des algorithmes de faible complexité et adaptatifs en temps. Les
utilisateurs mettent à jour leurs choix d’actions basés sur un certain retour d’information
de l’environnement qui leur permet d’améliorer leurs performances. La mise à jour ne
nécessite aucune autre connaissance sur l’environnement (topologie du réseau, des in-
formations sur les états du canal) ni l’hypothèse de la rationalité. Cependant tous ces
avantages ont un coût en temps de convergence qui devient relativement large. En
outre, ces algorithmes sont de nature stochastique et seule la convergence asymptotique
en probabilité peut être assurée. Dans la pratique, cela se traduit par le fait qu’un choix
très minutieux du pas de quantification doit être fait pour assurer une bonne performance
des algorithmes. Nous avons vu qu’il existe un compromis entre la probabilité (ou bien
la fréquence) de convergence et le temps nécessaire pour la convergence. Ces problèmes
sont également causés par les propriétés inhérentes de l’apprentissage par renforcement et
la dynamique du réplicateur. Les algorithmes d’apprentissage par renforcement permet-
tent aux utilisateurs de converger vers les solutions de l’équation différentielle décrivant
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la dynamique du réplicateur. Toutes les stratégies pures, même celles qui ne sont pas
optimales, sont des points stationnaires de cette dynamique. C’est une des raisons pour
laquelle les méthodes numériques ne parviennent pas à converger vers le points opti-
maux. Pour résoudre ces problèmes, d’autres techniques d’apprentissage fondées sur
l’apprentissage du type Boltzman-Gibbs et autres [84] peuvent être étudiées. En outre,
dans la littérature il y a des algorithmes stochastiques [81] [80] qui sont dédiés aux
processus contraints sur des ensembles bornés. Ces algorithmes peuvent également être
étudiés afin de relâcher quelques contraintes sur les matrices des canaux.

Nous avons aussi vu que les algorithmes d’apprentissage par renforcement nous per-
mettent de calculer numériquement les solutions de problèmes ouverts tels que l’optimisation
de la probabilité de coupure pour le canal MIMO à faible évanouissement. Cette anal-
yse peut être étendue afin de trouver la matrice de covariance optimale qui maximise
la fonction d’efficacité énergétique définie dans la section D.3. En outre, une extension
intéressante est d’étudier le cas général du scénario avec plusieurs utilisateurs (e.g., le
canal à accès multiple ou canal à interference). Une autre question intéressante est
d’étudier les écarts entre le cas continu étudié dans les sections précédentes (i.e., section
D.2 et section D.3 où les ensembles des actions des utilisateurs sont les cônes convexes de
matrices positives semi-définies de trace finie) et le cas discret étudié dans ce chapitre.
Notez que pour le canal standard de Rayleigh il n’y a pas d’écart d’optimalité entre les
deux approches. Toutefois, pour les modèles de canaux généraux, le problème n’est plus
trivial et une analyse mathématique en profondeur est requise.

D.5 Conclusions

Dans ce manuscrit, notre objectif principal a été d’étudier les réseaux sans fil dans
lesquels les nœuds terminaux sont équipés de plusieurs antennes. Plusieurs thèmes
d’actualité, tels que les réseaux intelligents auto-optimisants, les communications dites
green ou vertes et algorithmes distribués ont été abordés plutôt d’un point de vue
théorique. Dans ce but, nous avons utilisé une gamme diversifiée d’outils de la théorie des
jeux, théorie de l’information, théorie des matrices aléatoires et théorie de l’apprentissage.
Bien qu’il reste encore un grand écart à combler afin de rendre ces études réalistes, leur
importance réside dans le fait qu’elles représentent les limites de performance atteignable
en pratique.

Nous avons commencé notre analyse par l’étude du problème d’allocation de puis-
sance dans les réseaux MIMO distribués. Les émetteurs sont censés être autonomes et
capables de gérer leurs puissances afin d’optimiser leur taux de Shannon atteignables.
Le cadre des jeux non-coopératifs a été utilisé pour étudier la solution de ce problème.
Des algorithmes itératifs basés sur les meilleure réponses ont été mis en œuvre pour
calculer les solutions de l’équilibre de Nash. Deux modèles différents ont été considérés:
le canal à accès multiples MIMO et le canal à interférence à relais parallèle.

Le premier modèle se caractérise par le fait qu’une technique de décodage plus com-
plexe que le décodage simultané des utilisateurs peut être mises en œuvre au niveau
du récepteur: l’annulation d’interférence successive. Nous avons vu qu’en utilisant un
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simple signal de coordination qui caractérise l’ordre de décodage au niveau du récepteur,
le débit total du système à l’équilibre de Nash est assez proche de la solution du réseau
centralisé. En outre, la distribution de ce signal public peut être manipulée de manière
centralisée pour contrôler le point de fonctionnement du réseau. En supposant les liens
à évanouissement rapide, la théorie des matrices aléatoires a été utilisé pour déterminer
le point d’équilibre de Nash. Un cas particulier intéressant est le cas du CAM par-
allèle avec des liens statiques, qui a été étudié dans une perspective des jeux de routage.
Plusieurs paradoxes de Braess ont également été mis en évidence.

Le second modèle, i.e. le canal à interférence à relais parallèle, est caractérisé par
la présence des nœuds supplémentaires de relais. Ces nœuds peuvent être exploités par
les émetteurs d’améliorer leurs performances de communication. Trois protocoles de
relayage différents sont étudiés et leurs performances comparées par des simulations
numériques: Amplifier-et-Transférer, Decoder-et-Transférer et Estimer-et-Transférer.
Les paramètres des nœuds relais peuvent être manipulés par le propriétaire du système
pour contrôler le point de fonctionnement du réseau. Plusieurs questions intéressantes
se posent, l’étude du jeu général impliquant tous les degrés de liberté des émetteurs, la
multiplicité des équilibres de Nash, les formulations Stackelberg.

Plusieurs enjeux majeurs apparaissent lorsque nous utilisons le cadre des jeux non-
coopératifs et les algorithmes itératifs basés sur les meilleures réponses. Tout d’abord, les
émetteurs sont supposés être des dispositifs strictement rationnels. Deuxièmement, les
informations nécessaires au niveau des émetteurs par rapport à leurs propres fonctions
de paiement et les paramètres des canaux ou leur statistiques sont souvent irréalistes.
Troisièmement, les itérations impliquent beaucoup de signalisation entre les émetteurs
car ils doivent rendre public leur choix d’action. Quatrièmement, prouver la convergence
vers l’un des points d’équilibre est généralement un problème très difficile.

La théorie de l’apprentissage dans les jeux apparâıt comme une solution candidate à
toutes ces problèmes. Nous avons vu qu’avec l’utilisation de règles de mise à jour simples
(e.g., l’apprentissage par renforcement), chaque utilisateur converge vers l’équilibre de
Nash du jeu moyen en un coup. Dans ce cadre, les utilisateurs ne sont plus rationnels,
mais des dispositifs automates. En outre, la seule connaissance de l’environnement
nécessaire est un retour d’information (à savoir la valeur instantanée de la fonction du
paiement) qui marque le choix des utilisateurs. Il s’avère que, sur la base de ce re-
tour d’information, les utilisateurs peuvent s’adapter et apprendre dans le temps leurs
stratégies optimales. Cependant, ces algorithmes sont de nature stochastique et seule
une convergence probabiliste peut être garantie. En outre, la convergence dans la pra-
tique implique un temps relativement long.

Un autre problème majeur est lié à la question de l’efficacité énergétique de la commu-
nication. Afin d’atteindre des débits de transmission élevés, la consommation d’énergie
est également élevée. Dans les réseaux où la consommation d’énergie est une question cri-
tique, le débit de Shannon atteignable n’est plus une métrique de performance adaptée.
C’est pourquoi nous avons également abordé le problème de l’optimisation d’une fonction
d’efficacité énergétique. Cette métrique de performance traduit le nombre moyen de bits
qui peuvent être transmis à travers le canal par unité d’énergie consommée. En raison
des difficultés rencontrées, notre travail a été limité au canal MIMO mono-utilisateur.
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Dans le cadre de la théorie l’information, si aucune erreur n’est tolérée en réception, une
communication efficace en terme d’énergie n’est pas possible. Cependant, en supposant
un débit de transmission fixe et qu’une probabilité d’erreur est tolérée, alors la com-
munication efficace en termes d’énergie est possible avec une puissance de transmission
strictement positive.

Pour le canal MIMO à faible évanouissement, le problème général qui consiste à
trouver la matrice de covariance qui maximise la fonction d’efficacité énergétique est
encore une question ouverte. Nous avons vu que ce problème revient à résoudre le
cas particulier de l’allocation uniforme de puissance sur les antennes d’émission et de
prouver que la conjecture Telatar de [14] est vraie. Cependant, trouver la matrice de
covariance optimale qui minimise la probabilité de coupure se révèle être une question
difficile. Comme nous l’avons vu, les algorithmes d’apprentissage fournissent des outils
qui permettent de calculer la matrice de covariance optimale au niveau de l’émetteur.
Une autre extension importante, est l’étude du scénario à plusieurs utilisateurs.
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[79] M. Benäım, “Dynamics of stochastic approximation algorithms,” Séminaire de
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