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Introduction
The purpose of this thesis, pertaining to the �eld of mesoscopic physics, is the study of the
current �uctuations emitted by a single electron source both in a direct measurement of the
single-electron beam, and after partition of the beam by a beam-splitter. The recent develop-
ments in micro and nano-fabrication techniques, as well as in cryogenic instrumentation, have
allowed the study of structures and materials in which electronic transport is ruled by quan-
tum mechanics. In particular, the ability to engineer ballistic conductors presenting large phase
coherence lengths and elastic mean free paths has opened the way to the practical realization
of electronic interferometry devices mimicking cornerstone wave optics experiments, such as the
double slit experiment [1], and the electronic Mach-Zehnder interferometer [2]. Both these ex-
periments were implemented in high-mobility two-dimensional electron gases (2DEGs) obtained
at the heterojunction between two semiconductors (here, GaAs-AlGaAs), and put into light the
role of the magnetic �eld (applied perpendicularly to the 2DEG) in the interferences through the
Aharonov-Bohm phase [3] acquired by electrons in the interferometer. Along with the striking
demonstration of particle/wave duality of electrons in a mesoscopic conductor, these experiments
have led to studies of fundamental quantum mechanics processes occurring in a mesoscopic con-
ductor, such as the controlled loss of interferences caused by a which-path detector [4], or the
precise determination of the electronic phase coherence length in a Mach-Zehnder interferometer
[5]. Herein lies the great interest of the �eld of electron quantum optics, where one uses electrons
in a ballistic quantum conductor to reproduce wave and quantum optics experiments: the tools
of wave and quantum optics can be transposed to mesoscopic devices, in order to probe the
fundamental properties of quantum electronic transport. In a further analogy with quantum
optics, even more quantitative informations can be extracted from the measurement of current
�uctuations, as they unveil two-particle correlation within the current, particularly two-particle
interferences [6, 7]; moreover, a great richness is brought in comparison with quantum optics by
the presence of interactions. As of yet, all of these electron quantum optics experiments were
performed with sources continuously emitting a large number of charges, without precise control
over the energy and emission time; as in quantum optics, it is thus crucial to implement exper-
iments where ultimate control over a single electron is achieved in order to study fundamental
quantum mechanics processes occurring at the single particle scale. Similarly to single-photon
quantum optics, these so-called single-charge electron quantum optics experiments would for
instance allow to perform the entanglement of two independent single particles [8, 9], leading to
quantum information processing based on the coherent control of single charges.

While the basic building blocks of electron quantum optics were masterfully implemented in
previous experiments, the development of a fully controlled single electron emitter, obviously es-
sential to the realization of single-charge electron quantum optics experiments, was only reported
recently [10]. In this thesis, we present the �rst experimental realizations of single-charge elec-
tron quantum optics experiments using the single electron emitter developed at the Laboratoire
Pierre Aigrain [10, 11]. We also give a theoretical description of our source within a Floquet
scattering matrix formalism in order to interpret our experimental results.

In this introduction, we �rst present the framework of electron quantum optics in two-
dimensional electron gases in the integer Quantum Hall E�ect (QHE) regime, where electrons
propagate along edge channels de�ned by the edges of the sample; we present the electronic
Mach-Zehnder interferometer experiment, allowing us to describe the basic building blocks used
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Introduction

in electron quantum optics in the QHE regime. We then present the concepts motivating the
development of single-charge electron quantum optics, and describe several types of single elec-
tron emitter, including the one studied in this thesis; we also discuss the importance of noise
measurements in single-charge electron quantum optics experiments. Lastly, we brie�y describe
the two single-charge electron quantum optics experiments performed during my thesis, that is
the measurement of the current �uctuations emitted by the source and the current �uctuations
after partition by a beam splitter, in a Hanbury-Brown and Twiss (HBT) con�guration. We also
present the principle of the next experiment, where two synchronized sources are used to collide
single charges in a Hong-Ou-Mandel geometry [12].

1 Electron quantum optics in two-dimensional electron gases

Two-dimensional electron gases are formed at the heterojunction between two semiconductors.
The progress in epitaxial growth has allowed to engineer samples with exceptional degrees of
purity, with two-dimensional electron gases presenting mobilities larger than 10 × 106cm2/V s
[13, 14]. In such structures, the large phase coherence length and mean free path (∼ 10µm) have
allowed the observation of electronic interferences.

1.1 Electronic coherence in 2DEGs: the electronic Mach-Zehnder interferometer

One of the most striking examples of quantum interference devices in a 2DEG is the Mach-
Zehnder interferometer, �rst realized at the Weizmann Institute in 2003 [2]. The principle of the
interferometer is described in Fig.1, along with its optics equivalent and the measured interference
signal. A high perpendicular magnetic �eld is applied to the sample, so as to enter the quantum
Hall e�ect regime; a source contact (S) is used to send electrons towards a �rst beam splitter
(QPC1). The re�ected and transmitted paths are then recombined on a second beam splitter
(QPC2); the phase di�erence between the two paths is given by the Aharonov-Bohm phase
φ = 2πA×B/Φ0, where A is the area of the loop de�ned by the two paths, B the perpendicular
magnetic �eld, and Φ0 = h/e the �ux quantum. This phase can be modulated by either changing
the magnetic �eld, or by changing the length of the lower path with the side gates MG1 and
MG2, thus modifying the area of the loop. After recombination, the two output currents are
collected on the detectors D1 and D2; Fig.1 shows the variation of the current collected on D1 as
a function of the magnetic �eld (blue) and side gate voltage VMG (red). Both currents present
clear periodic oscillations, demonstrating electronic interferences in the device. The visibility of
these interferences is very high (∼ 60%); visibilities up to 90% have been recently demonstrated
[7].

The electronic Mach-Zehnder interferometer has been since then realized in several other
groups [15, 16, 17], and has allowed to study the decoherence of electrons in QHE edge channels
[5, 18, 19] as well as to observe two-particle interferences in a double electronic Mach-Zehnder
interferometer [7].

1.2 Building blocks of electron quantum optics in 2DEGs

We now describe the basic building blocks of electron quantum optics, in analogy with quantum
optics: QHE edge channels are used as one-dimensional phase coherent quantum rails, quantum
point contacts as tunable electronic beam splitters, and ohmic contacts as sources and detectors.
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1. Electron quantum optics in two-dimensional electron gases
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Figure 1: Electronic Mach-Zehnder interferometer. a) principle of the optical Mach-
Zehnder interferometer. b) schematic of the electronic Mach-Zehnder interferometer,
as implemented in [2] in a 2DEG. c) SEM view of the device. d) Measured interference
patterns in the current detected on contact D1. Red dots: the side gate MG is swept,
changing the area of the Aharonov-Bohm loop. Blue circles: current as a function
of time: the slow decay of the persistent current in the superconducting magnet
e�ectively changes the magnetic �eld. These �gures were taken from [2].

1.2.1 QHE edge channels

When a strong perpendicular magnetic �eld is applied to a two-dimensional electron gas, elec-
tron transport only occurs along the edges of the sample de�ning the 2DEG. Furthermore, the
conductance of the sample becomes quantized in units of e2/h, equal to the inverse of the re-
sistance quantum Rk ≈ 25.8kΩ. This so-called quantum Hall e�ect (QHE) can be described in
a semi-classical view by considering the cyclotron motion of electrons in the 2DEG in presence
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Introduction

of a perpendicular magnetic �eld. The semi-classical motion of electrons is depicted in Fig.2a:
electrons in the bulk move in closed cyclotron orbits with a �xed center of motion, and therefore
cannot travel from one end of the sample to the other. The cyclotron orbits of electrons near the
edges, on the other hand, are interrupted by the edges, so that electrons "bounce" forward along
skipping orbits. Because of the �xed direction of rotation, all electrons on one edge propagate in
the same direction (in Fig.2a, electrons in the upper edge propagate from left to right), whereas
electrons near the other edge propagate in the opposite direction: electronic transport in the
QHE regime is therefore chiral.'

&

$

%

Figure 2: a) semi-classical interpretation of the quantum Hall e�ect: The 2DEG is
represented in light gray, and electrons propagate chirally along the upper and lower
edges of the gas. The electrons in the bulk do not take part in the transport. b) energy
diagram of the Landau levels (red lines) in the presence of edges at the positions xL
and xR. Edge states (green and purple dots) follow the equipotential lines formed at
the intersection with the Fermi level (blue dashed line). Here, the �lling factor ν is
equal to 4 (2 Landau levels × 2 spins; Zeeman splitting is not shown on this diagram).

The quantized value of the conductance can be explained by considering the energy spectrum
of electrons in the 2DEG: electrons in the bulk are distributed on Landau levels with an energy
En = ~ωc(n + 1/2), where ωc = |eB/m∗| is the cyclotron pulsation (the e�ective mass m∗ of
electrons in 2DEGs is equal to 0.067me) [20]. These Landau levels are bent near the potential
barriers constituting the edges of the sample, see Fig.2b; at high magnetic �eld, spin-degeneracy
in the Landau levels is removed by Zeeman splitting, and enhanced by interactions. The �nite
number of electrons in the 2DEG de�nes the Fermi energy, which, for given values of the magnetic
�eld, only crosses the Zeeman-split Landau levels near the edges, thus de�ning a �nite number
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of chiral edge channels. This number depends on the magnetic �eld: as B increases, the Landau
levels are shifted upward with respect to the Fermi energy, so that the number of Zeeman-split
Landau levels crossing the Fermi level (that is, the number of �lled Landau levels, called �lling
factor ν) decreases. In particular, at �lling factor ν = 2, electronic transport occurs on two edge
channels, which are spin-polarized [20] (the �rst Landau level is completely �lled, spin up and
spin down).

Finally, the absence of backscattering in the edge channels [21] dramatically increases the
mean free path (∼ 100µm) of electrons; large phase coherence lengths have also been measured
(∼ 20µm at 20mK [5]).

In the quantum Hall e�ect regime, electrons thus propagate along one-dimensional, phase
coherent, chiral edge channels without backscattering, that can be used as quantum rails in the
realization of electron quantum optics experiments. In this respect, many studies (experimen-
tal as well as theoretical) have been performed in order to fully characterize the properties of
electronic transport in edge channels: among others, the noiseless character of transport in edge
channels has been demonstrated [22, 23]; an electronic Mach-Zehnder interferometer was used to
measure the value of the phase coherence length given above, and the study of energy relaxation
between adjacent edge channels was recently realized [24, 25, 26]. More generally, theoretical
predictions were made regarding the relaxation and decoherence of electronic excitations in an
edge channel in the presence of a Fermi sea [27].

1.2.2 Quantum point contact

The electronic analog of a beam splitter can be implemented in a two-dimensional electron gas
in the form of a quantum point contact (QPC) which consists of a pair of electrostatic gates
deposited on the surface of the sample. The typical geometry of QPC gates is shown in Fig.3a:
when a negative gate voltage is applied on the gates, a constriction is created in the 2DEG
between the gates because of electrostatic repulsion. This constriction gives rise to a potential
barrier, the shape of which can be determined from the geometry of the gates [28]. At zero
�eld, because of the �nite width of the constriction w, the number n of transmitted electronic
modes becomes quantized in units of λf/2w [29], where λf ≈ 60nm is the Fermi wavelength
of electrons in the 2DEG. The relatively large value of λf allows to design QPCs with typical
widths comparable to λf , which can be tuned by changing the gate voltage. In particular, when
large negative gate voltages are applied, the potential barrier becomes very large, and no electron
can be transmitted (Fig.3b).

At high magnetic �eld, the description of the transmission through the QPC in terms of spin-
degenerate electronic modes is replaced by the description in terms of edge channels following
equipotential lines, which are re�ected one by one as the QPC gate voltage is swept towards large
negative values. This e�ect was �rst experimentally demonstrated in [30], see Fig.3c: the conduc-
tance at magnetic �elds below B = 1T presents steps in units of 2e2/h. At high magnetic �eld,
the height of the conductance steps is equal to e2/h, re�ecting the removal of spin-degeneracy,
while the number of conductance steps n decreases with the magnetic �eld, and corresponds to
the number of edge channels (given by the �lling factor ν). Between two conductance plateaus,

the conductance G of the QPC is proportional to the transmission probability D: G = D e2

h ,

and can be generalized for �nite number of edge channels ν: G =
∑ν

i=1Di
e2

h , where Di is the
transmission of the i-th edge channel. Fig.3c therefore demonstrates that one can tune the trans-
mission of a QPC by changing its gate voltage; in particular, when set at the exact half of the
opening of the �rst conductance plateau, the outer edge channel is partially transmitted with
a probability amplitude |t|2 = D = 0.5, while all other edge channels are fully re�ected. The
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Figure 3: a) and b) false-colors SEM view of a quantum point contact. The 2DEG is
colored in blue, and the metallic QPC gates are colored in yellow. The yellow arrows
represent the typical trajectories of the edge channels (corresponding to equipotential
lines): in a), the transmission of the QPC is �nite, so that electrons can be partially
transmitted. In b), the transmission is zero: the electrons are systematically re�ected.
c) experimental realization of a QPC: the conductance, plotted as a function of the
QPC gate voltage, presents quantized plateaus. The number of plateaus decreases as
the magnetic �eld increases, corresponding to a decrease in the number of conduction
channels. The data are taken from [30].

quantum point contact therefore acts as a tunable, channel-selective beam splitter.

Quantum point contacts are crucial elements in electron quantum optics experiments, such
as the electronic Mach-Zehnder interferometer; QPCs also allow to put into evidence striking
phenomena through noise measurements.

• Partition noise
The study of the �uctuations of a current partitioned by a QPC at low temperature allows
to probe the quantum statistics underlying electron transport in edge channels: indeed, in the
case of a classical current I = GV = D e2

h V , where V is the bias voltage applied to the upper

left contact in Fig.3a, one expects Poissonian �uctuations SII = 2eI = 2e e
2

h V × D. However,
it was experimentally demonstrated that the �uctuations of a partitioned current in an ideal
quantum conductor [31], and in an edge channel [32] are sub-Poissonian: SII = 2eI(1 − D) =

2e e
2

h V × D(1 − D). The shot noise 2eI is thus reduced by a factor (1 − D); in particular, at
unity transmission, the �uctuations vanish. This suppression of shot noise demonstrates that
Pauli exclusion principle correlates the �ow of electrons participating in mesoscopic currents.
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2. Single-charge electron quantum optics

Furthermore, noise measurements in Hanbury-Brown and Twiss geometries [32, 33], where a
QPC is used to partition the current, allow to put into light transport through multiple energy
levels of a localized state [34], as well as to observe fractional charges in the fractional quantum
Hall e�ect regime [23, 35].

In all previously discussed experiments, currents were generated in the edge channels by
applying a bias voltage V to an ohmic contact upstream of the edge channel, at low temperature.
Electrons are therefore emitted in an energy window de�ned between εf and εf + eV (where εf
is the Fermi energy), and Pauli exclusion principle ensures that their �ow is noiseless. However,
the number of electrons emitted within this energy range is not controlled, nor is the emission
time of the charges. Symmetrically, currents are detected on output ohmic contacts, connected
to the measurement circuit. Although they are very e�cient electron sources and detectors,
ohmic contacts are very far from presenting a single charge resolution. It is therefore interesting
to develop single electron detectors [36, 37, 38, 39, 40, 41], as well as single electron sources. In
particular, the realization of single electron sources is crucial in order to perform single-charge
electron quantum optics experiments.

2 Single-charge electron quantum optics

Aside from the analogy with single photon quantum optics, single-charge electron quantum optics
allow to probe fundamental processes taking place in Fermionic systems at the single charge
scale. Indeed, a great richness is brought by the presence of both a Fermi sea and electronic
interactions, which induce decoherence and relaxation. As mentioned above, decoherence and
relaxation processes have been studied at a large scale with thermal populations; however, they
can only be fully characterized through the study of the relaxation and decoherence of coherently-
emitted single charges with a controlled emission time and energy. Furthermore, one can study
the fundamental di�erences between quantum statistics of photons and electrons at the single-
particle scale; in particular, the direct observation of Pauli exclusion principle at the single
charge scale can be considered using a two-particle Hong-Ou-Mandel [42] collider geometry [12],
and a two-particle entanglement scheme was recently proposed [9]. The obvious requirement
in such experiments is the development of a single electron emitter; in the next paragraph, we
brie�y describe the various types of 2DEG devices used to emit single charges, and discuss their
respective advantages and limitations.

2.1 Single electron emitters

We now present several types of recently realized single electron sources; in particular, we describe
the single electron emitter developed at the Laboratoire Pierre Aigrain, which we have used
during my thesis to perform single-charge electron quantum optics experiments. We �nally
present a recent theoretical proposal for a noiseless single electron source, which is currently in
development at the Nanoelectronics Group (SPEC-CEA).

2.1.1 Surface acoustic waves

The piezoelectric properties of GaAs can be used to generate single-charge excitations in a 2DEG
with a large repetition rate [43, 44, 45, 46]. Applying a surface acoustic wave (SAW) to the GaAs
substrate generates a propagating wave of electrostatic potential in the 2DEG. The minima of
this potential then act as propagating localized states, each one carrying a single charge for a
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su�ciently large amplitude of the SAW. The good piezoelectric properties of GaAs allow to
generate single-electron pulses at GHz frequencies and thus create quantized DC currents (in
units of efSAW ) useful for metrology. However, these devices do not o�er a full control over the
electron escape time, since it cannot be decoupled from the repetition frequency fSAW .

2.1.2 Quantum turnstiles and charge pumps

One of the main challenges in the realization of a single electron source lies in the ability to
isolate a single charge from the Fermi sea, in order to release it within a controlled emission
time. High-frequency charge pumps [47, 48] and quantum turnstiles [49] allow to sequentially
trap and release a single charge to perform single charge emission. In [47], a set of parallel fast
gates is used to isolate an electron from a continuous stream generated by a biased contact, then
release it towards a measurement contact. The fast gates allow to brie�y create potential barriers
in the 2DEG: one can electrostatically con�ne a single electron by raising the potential barriers
in a time smaller than h/eV , where V is the bias voltage. The electron trapped in the localized
state can then be released by lowering the potential barrier upstream of the measurement contact.
This type of source has demonstrated a quantization of the emitted DC current in units of ef ,
where f is the repetition rate of the source, with an uncertainty of 15 parts per million [50]. The
downside of this technique is the poor energy resolution of the emitted charges.

2.1.3 Quantum dots: Coulomb blockade

As described in the previous paragraph, localized states can be used to temporarily trap electrons
in order to isolate them from the Fermi sea. One can also de�ne a quantum dot by isolating a
small portion of the 2DEG (either electrostatically, or by etching the edges of the gas) weakly
coupled to a reservoir, and directly emit the charges sitting on the dot. Indeed, the number of
charges on an isolated island is quantized, and Pauli exclusion principle prevents two electrons
in the dot from having the same energy. The energy spectrum of a quantum dot presents two
typical scales, one given by the orbital motion of the charges in the dot (orbital level spacing ∆),
and the other re�ecting the Coulomb repulsion between electrons in the dot. The latter, called
charging energy EC , is equal to the energy one must pay in order to add an electron to the dot,
and is given by EC = e2/CΣ, where CΣ is the total capacitance of the dot.

Charges can be exchanged between the dot and a reservoir through a tunnel barrier, and
one usually controls the potential in the dot with an electrostatic gate. The total charge of the
dot then varies with the gate voltage as a series of quantized steps (see Fig.4a), corresponding
to successive additions of electrons in the dot. When spin degeneracy is removed, the voltage
distance between each charge step is proportional to the addition energy ∆+EC . On the plateaus
of the charge steps, the total charge of the dot is independent of the gate voltage: indeed, in
these conditions the lowest unoccupied energy level is far above the chemical potential of the
reservoir, and no charge can tunnel in or out of the dot.

This so-called Coulomb blockade phenomenon allows to perform single charge emission: by
rapidly changing the value of the gate voltage, one can change the total charge in the dot from
N + 1 to N (see Fig.4b), thus emitting a single charge. This type of single-electron pump based
on a metallic quantum dot presenting a charging energy substantially larger thant the orbital
level spacing has been thoroughly studied, theoretically as well as experimentally [51, 52, 53, 54];
however, since the electron sitting on any one of the levels promoted above the Fermi energy
can be emitted (Coulomb blockade then prevents the emission of a second charge), the energy of
the emitted charge is not well-controlled. Moreover, the typical tunneling rates in these systems
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Figure 4: a) Coulomb blockade: the charge of a quantum dot presents quantized
steps as a function of the gate voltage controlling the potential in the dot. b) single-
charge emission with a quasi-metallic quantum dot: the dot is rapidly brought out of
equilibrium by changing the gate voltage from VN+1 to VN . An electron from one of
the levels promoted above the Fermi energy can tunnel out of the dot: a single charge
is emitted.

restrict the repetition frequency to a few MHz.

2.1.4 The mesoscopic capacitor as a single electron source

In the quasi-metallic case described in the previous paragraph, a large number of electronic
levels are promoted above the Fermi energy in order to emit a single charge, thus decreasing
the control over the energy of the emitted charge. A single electron source based on a quantum
dot presenting an orbital level spacing comparable or larger than the charging energy allows,
however, to emit single charges with a control over the energy and emission time close to the
quantum limit. Indeed, in the case of a large orbital level spacing ∆, one can promote a single
electronic level at an arbitrary energy eV ≤ ∆ above the Fermi level; the uncertainty on the
energy of the emitted single charge is then only given by the energy width of the promoted level.

The single electron emitter developed at the Laboratoire Pierre Aigrain is based on a meso-
scopic capacitor [55], which consists of a submicronic quantum dot presenting a large orbital level
spacing, coupled to the reservoir through a quantum point contact (see Fig.5a). The potential
in the dot is tuned using an electrostatic top-gate deposited at the surface of the sample. The
principle of operation of such a source is depicted in Fig.5b: a large voltage step is applied to
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Figure 5: a) schematic of the mesoscopic capacitor. A quantum dot with a large level
spacing is coupled to the reservoir through a QPC (gate voltage Vg). The potential
in the dot is tuned using the top gate, and the emitted current is collected on contact
(1). b) principle of single charge emission with the mesoscopic capacitor. The upper
graph represents the evolution of the potential of the dot during the emission cycle.

1© the dot is at equilibrium. 2© the application of a large voltage step to the dot
top-gate shifts the energy levels upwards with respect to the Fermi energy, promoting
a single occupied level above the Fermi energy. A single electron is emitted. 3© the
excitation voltage is switched back to its original value: the emptied level is shifted
back below the Fermi energy, and can absorb an electron from the reservoir. A single
hole is emitted. During this cycle, only one level takes part in the emission. Since
only one state is promoted above the Fermi energy, the escape time only depends on
the transmission of the QPC, whereas in the case of a quasi-metallic quantum dot
depicted in Fig.4b, where the orbital level spacing is much smaller than the charging
energy, the escape time is highly dependent on the number of levels promoted above
the Fermi energy.

the top gate in order to shift the energy levels upwards with respect to the Fermi energy. If
the energy shift is comparable to the level spacing, only one level is promoted above the Fermi
energy. The single electron sitting on that level (provided spin degeneracy is lifted) can then be
emitted at an energy above εf in the reservoir through the tunnel barrier formed by the QPC,
with an escape time depending on the transmission of the tunnel barrier. After emission of the
electron, the voltage on the top gate is set to its original value, so that the level previously
promoted above the Fermi energy is shifted back to its position below the Fermi energy. The
dot can then absorb an electron from the reservoir, thus emitting a hole at an energy below εf
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with the same escape time as the electron (provided the transmission of the tunnel barrier is
independent of energy). On a single cycle, the source therefore emits one single electron, followed
by a single hole, both with a controlled energy. This cycle is repeated at GHz rates (typically,
f0 = 1.5GHz), thus generating an AC current composed of alternatively emitted single electrons
and single holes. The top gate and the QPC gates allow to independently tune the energy of
the emitted charges and their escape time. The energy and temporal widths of the emitted
single-charge wavepackets are respectively given by the width of the levels in the dot and the
escape time, both of which only depend on the level spacing ∆ and the transmission D. In this
respect, the source allows a control over the energy and emission instant of the charges close to
the quantum limit; a controlled variation of the escape time over several orders of magnitude
(< 0.1ns ↔ 10ns) was experimentally demonstrated [10]. The mesoscopic capacitor is thus a
promising candidate to perform single charge emission in single-charge electron quantum optics
experiments.

2.1.5 Modulated contacts

Recent theoretical studies [56, 57] have shown that the emission of a single charge can be achieved
by applying a voltage pulse V (t) to an ohmic contact that veri�es the relation

∫
dtV (t) = h/e.

Indeed, as demonstrated in [58], an ohmic contact biased with a constant voltage V generates
a continuous stream of electrons, each electron occupying a wavepacket with a temporal width
h/eV . One therefore expects to emit a single electron when the bias voltage is applied during
a well-controlled time equal to the temporal width of the wavepacket. The shape of the voltage
pulse is expected to determine the number of additional electron/hole pairs emitted along with
the single electron: this property is crucial, since the emission of additional electron/hole pairs
renders the description of the experiments in terms of electron quantum optics irrelevant. In
particular, it was predicted that applying a Lorentzian voltage pulse allows the emission of a
single charge with no spurious emission of additional electron/hole pairs. Furthermore, the ability
to tune the amplitude and the duration of the pulse allows to accurately control the emission
time of the charge. However, the energy of the emitted charge is not well controlled, which does
not allow the energy separation of the emitted charge and the Fermi sea.

2.2 Noise in single-charge electron quantum optics experiments

In quantum optics, the coherence of the emitted particles is probed by the successive correlators
g(n) (also called n-th order coherence), introduced by Roy Glauber in [59]. In particular, the
�rst-order correlator g(1), probing the amplitude correlation of the electric �eld, is measured in
classical interferometers, such as the Mach-Zehnder and Michelson interferometers; the second-
order correlator g(2) probes the intensity correlation, and allows to discriminate between quantum
and classical states of light. The latter is commonly measured to probe the outcome of quantum
optics experiments such as Hanbury-Brown and Twiss, or Hong-Ou-Mandel experiments. In
general, g(1) is only sensitive to the wave nature of light, whereas higher order correlators are
sensitive to its particle nature.

The measurements performed in the experiments mentioned in the beginning of this intro-
duction show an analogy with those correlators. Indeed, in the electronic Mach-Zehnder and
double-slit experiments, interference patterns are observed in the emitted currents, which are
then the analog of the �rst-order correlator g(1) of quantum optics. In [31] the quantum statis-
tics correlating the �ow of electrons is probed by measuring the partition noise. The correlation
of the current �uctuations is thus the analog of the quantum optics second-order correlator g(2).
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As such, the noise is the relevant signal one should measure in a realization of single-charge
electron quantum optics experiments.

3 Results obtained during the thesis

During my thesis, we have used a mesoscopic capacitor built in a GaAs/AlGaAs 2DEG as a
single electron emitter to perform two basic single-charge electron quantum optics experiments:
the measurement of the noise of a single-charge beam, in a direct con�guration as well as in a
HBT con�guration.

Measuring the intrinsic high-frequency noise of the source is of crucial importance, for it
establishes the short-time current autocorrelation as an unambiguous criterion of single-particle
emission, and con�rms that the mesoscopic capacitor can indeed be used as an on-demand single
electron source. Furthermore, the measurement of high-frequency noise allows to probe the
occurrence of spurious charges transfer events which do not appear in the average current, and
thus de�ne optimal operating conditions for the source.

The measurement of the current �uctuations in the HBT geometry is the direct electronic
analog of HBT measurements in quantum optics, used to characterize single photon sources
[60, 61]; in addition to completing the validation of the mesoscopic capacitor as a single electron
source, partitioning allows to quantify the presence of additional electron/hole pairs speci�c to
Fermionic systems, by physically separating them. Moreover, the use of time and energy-resolved
single charges in this HBT experiment yields a much larger richness in comparison to the previous
Fermionic HBT experiments [32, 33] performed on a continuous �ow of electrons generated by
an ohmic contact.

The realization of these two experiments required the development of a consistent theoretical
description of the source and the implementation of noise measurement setups able to detect the
�uctuations of single-electron currents.

In the �rst chapter of this manuscript, we describe the mesoscopic capacitor within a Floquet
scattering matrix theory, and show that the study (both theoretical and experimental) of the
emitted average AC current indicates that the mesoscopic capacitor can indeed be used as a
single electron source. In the linear regime (where the amplitude of the voltage step Vexc is
much smaller than the frequency f0 and the level spacing ∆, with hf0 � ∆), the average AC
current re�ects the dynamics of charge relaxation through the QPC [62] as well as the density
of states in the dot; it therefore allows to extract the parameters of the source. In the non-linear
regime (Vexc comparable to the level spacing), we demonstrate the quantization of the average
AC current in units of 2ef0, corresponding to the emission, in average, of one electron followed
by one hole at each cycle [10]. We furthermore show that the average AC current gives access
to the escape time, as well as the average transfered charge per half-period.

In the second chapter, we describe the measurement of the autocorrelation of the current �uc-
tuations emitted by the source, constituting the �rst of the two single-charge electron quantum
optics experiments realized during my thesis. We �rst calculate the noise of the source using
the Floquet scattering model introduced in the �rst chapter. We then compare this model with
a semi-classical heuristic model describing the mesoscopic capacitor as an ideal single electron
emitter. This comparison allows us to de�ne the optimal operating conditions of the source. In
particular, we show that in these optimal operating conditions, the noise reduces to a fundamen-
tal noise limit called quantum jitter, which is the signature of single particle emission.
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We �nally present experimental measurements of the high-frequency noise of the source re-
alized during my thesis. In the optimal operating conditions, the noise is indeed given by the
quantum jitter, demonstrating on-demand single particle emission [63]. Furthermore, we observe
an increase in the noise when the source is driven out of the optimal operating conditions, that is
when charges are emitted in resonance with the Fermi energy. This excess noise, corresponding
to the generation of spurious additional charges, is well reproduced by the scattering model,
indicating that the model correctly describes our device.

In the two �rst chapters, the signals are measured in the direct con�guration depicted in
Fig.5 shown above, where the emitted current is directly collected on an ohmic contact.

In the third chapter, we describe the second single-charge electron quantum optics experiment
performed during my thesis: the measurement of the current �uctuations of a single-charge beam
partitioned by a QPC. The geometry of this experiment, shown on Fig.6, is the single-charge
electron quantum optics analog of the HBT geometry frequently used to characterize photon
sources in quantum optics. As in the previous chapters, we �rst derive an expression for the
noise after partition by the QPC using the Floquet scattering model. This theoretical study
shows that the HBT geometry allows to probe a large variety of properties of electronic trans-
port in QHE edge channels; in particular, we show that the measurement of the zero-frequency
part of the noise after partition directly counts the number of emitted electron/hole pairs per
period. This property, �rst predicted in [64], allows quantitative studies of the generation of
spurious electron/hole pairs caused by the charge emission mechanism. It also opens the way to
the study of energy relaxation between adjacent edge channels at the single charge scale: indeed,
as the source only emits charges in a single edge channel (more precisely, the outer edge channel,
see �rst chapter), one can measure the number of electron/hole pairs in the other edge channels,
caused by energy relaxation. Furthermore, this property can be used to measure the number
of excess electron/hole pairs generated when a charge is emitted in resonance with the Fermi
energy. We also show that applying a bias voltage to the ohmic contact located at the second
input of the QPC (contact (B) in Fig.6) allows to measure the energy distribution of the emitted
charges.'
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Figure 6: Schematic of the single-charge HBT experiment: a single electron emitter is
placed at the �rst input arm of a QPC, acting as a beam splitter. The correlation of
the current �uctuations in the two output arms are measured. The ohmic contact on
the second input arm can be biased to measure the energy distribution of the emitted
charges.
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We then present an experimental study of sample S434-8 , designed to perform noise mea-
surements in the HBT geometry. We show the �rst experimental observation of the partition
noise of a single-electron beam, which is well reproduced by the Floquet scattering matrix theory.
These noise measurements show that in the ideal operating conditions, the number of emitted
electron/hole pairs is close to the ideal value (that is, one electron/hole pair per period); they
however put into light crucial issues regarding the electronic environment that must be solved
before proceeding to further measurements.

In the fourth chapter, we �nally describe the noise measurement setups used two perform
the two single-charge electron quantum optics experiments. As we show in the second and third
chapters, the typical scale of the current �uctuations is given by e2f0, where f0 is the repetition
frequency of the electron/hole emission cycle; with f0 = 1.5GHz, this corresponds to a current
noise equal to ∼ 4×10−29A2/Hz. The required resolution thus corresponds to typical resolutions
demonstrated by state-of-the-art low-frequency noise measurement setups.

We �rst describe the high-frequency measurement setup developed to measure the noise
emitted by the source in the direct con�guration. At high frequency (here, the noise is measured
around the drive frequency f0 = 1.5GHz), noise measurements are much more challenging
because of the characteristic impedance of microwave circuits, equal to 50Ω. We therefore use
the combination of an impedance transformer, which increases the measurement impedance to
120Ω (thus increasing the noise power by a factor 2.4), and an interferometric ampli�cation
technique, called modulated double-balanced ampli�er. This setup allows us to measure high-
frequency noise with a state of the art resolution of 1.3× 10−29A2/Hz in 5 minutes.

In the second part of the chapter, we describe the low-frequency noise measurement setup
used in the single-charge HBT measurements. The setup is a fairly basic one, where one measures
the cross-correlation of the noise detected by two distinct ampli�cation lines. The sensitivity of
this setup is lower than the one of the high-frequency noise measurement setup; we nonetheless
propose several easy-to-implement practical solutions to increase the sensitivity.

These two independent noise measurement setups allow to simultaneously measure the high
and low-frequency noise at the outputs of our sample.

4 Perspectives

In the third chapter, we show that the HBT geometry allows to measure the energy distribution
of the emitted charges, using a biased ohmic contact located at the second input of the QPC. This
property can be generalized to the case of a periodic excitation voltage applied to the contact, to
measure the o�-diagonal terms of the density matrix of the emitted charges. It is thus possible
to perform single-electron tomography [65]. One can then consider a wide range of derivations of
the HBT geometry where a tunable source of relaxation and/or decoherence is inserted between
the single electron source and the partitioning QPC: for instance, a voltage probe such as the
one used in [19]. This collection of experiments would allow to accurately characterize electronic
transport in QHE edge channels.

Finally, one can use a second synchronized single electron source placed at the second input
of the QPC to perform single-electron HOM collisions [12]; the principle of the experiment is
shown on Fig.7. If the two electrons sent towards the central QPC are in the same state, Pauli
exclusion principle causes each one to be transmitted/re�ected in a di�erent output of the QPC;
one therefore expects positive correlation at short time between the two outputs. This experiment
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Figure 7: Schematic of the single-charge Hong-Ou-Mandel experiment: two synchro-
nized single electron sources are placed at each input of a QPC. The emitted charges
collide on the central QPC, which acts as a beam splitter. The correlation of the
current �uctuations in the two output arms are measured: if the charges arrive simul-
taneously and in the same state on the QPC, the noise vanishes.

furthermore allows to probe Coulomb interactions between two single charges, as the interactions
should become predominant in the partition when the energies of the two colliding charges di�er.
As for the HBT geometry, this experiment presents a great richness in the number of tunable
parameters, such as the respective energy of the emitted charges, the desynchronization of the
sources, or the temporal widths of the emitted wave packets.
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Chapter 1. Realization of a Single Electron Source

Introduction of chapter 1

In this chapter, we describe the basic properties of a mesoscopic capacitor, and show that it
can be used as a single electron source when driven in the non-linear regime. We �rst propose
a theoretical description of the source using a time-dependent scattering formalism with which
we calculate the average AC current. This description will be used to predict the properties
of the current �uctuations in the next chapters. We then present measurements of the average
AC current emitted by the device. Our calculations show that when the excitation voltage
compensates the level spacing, the �rst harmonic of the emitted AC current becomes quantized
in units of 2ef0, corresponding to the periodic emission of a single electron followed by a single
hole. The homodyne measurement of the �rst harmonic con�rms this prediction and provides a
characterization protocol for the source: we �rst study the low-amplitude excitation regime of
the device in order to extract the fundamental parameters of each device such as level spacing,
coupling between the metallic gates and the dot potential, and electronic temperature. We
then verify the predicted quantization of the �rst harmonic and determine the correct operating
conditions of the source.
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1.1. Response of a mesoscopic capacitor to a periodic excitation: theory

1.1 Response of a mesoscopic capacitor to a periodic excitation: the-
ory

In this section, we present a theoretical description of the mesoscopic capacitor depicted in
Fig.1.1. The mesoscopic capacitor is made of a submicronic quantum dot etched in a two-
dimensional electron gas, connected to the leads via a Quantum Point Contact (QPC), which
acts as a tunable tunnel barrier. The potential in the dot can be tuned by applying voltages
to an electrostatic gate placed near the dot. When the potential is modulated periodically, a
periodic charge transfer between the dot and the leads occurs. This charge relaxation process
can be described in terms of RC-circuit elements, which will allow us to give a simple de�nition
of charge relaxation time (or escape time).

We describe the scattering of electrons in the leads on the dot with a time-dependent scat-
tering matrix, or Floquet matrix, which was introduced for the mesoscopic capacitor in [66].

1.1.1 Modeling the device

A schematic view of the device is represented in Fig.1.1. When a strong magnetic �eld is applied
perpendicularly to the sample, electronic transport occurs along the edge states of the Quantum
Hall E�ect, represented by the red and blue lines in Fig.1.1, here corresponding to a �lling factor
ν = 2. We restrict the transmission of the quantum point contact coupling the dot to the leads to
values for which only the outer edge channel (red line) is partially transmitted. As a consequence,
we can neglect the in�uence of the inner edge channel (blue line), which does not take part in
the emitted current since the inner edge channel in the dot is completely decoupled from the
one in the leads. We therefore describe the system in a one-dimensional scattering formalism
in which an electron from the outer edge channel can tunnel into the dot with an amplitude
d and perform several turns in the dot before tunneling back to the lead. The description of
electronic trajectories inside the dot in terms of QHE edge channels is valid as long as the dot is
larger than the width of an edge channel (a few hundreds of nanometers [67]). The dots used in
our experiments typically reach this limit in order to make them as small as possible while still
presenting well de�ned trajectories.'
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Figure 1.1: Modeling of a mesoscopic capacitor. Two edge channels are considered:
the inner edge channel (blue line) does not take part in the current emitted by the
capacitor. We measure the current collected on contact (1), while contact (2) is
grounded.

We express the electronic states in the outer edge channel in each region of the sample with
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creation/annihilation operators depicted in Fig.1.1: â†, â from contact (2) to the dot, b̂†, b̂ from
the dot to contact (1), ĉ†, ĉ from contact (1) to contact (2). We neglect propagation e�ects
in the edge channel; the creation/annihilation operator are therefore only time dependent, and
we express the outgoing states b̂†(t), b̂(t) as a function of the incoming states â†(t), â(t) using a
time-dependent scattering matrix (or Floquet matrix) formalism described in the next paragraph.
Since the edge states of the QHE are spin-polarized, we do not take spin into account; we also
consider non-interacting edge channels.

1.1.2 Floquet scattering matrix

1.1.2.1 Time-dependent scattering matrix and gauge transformation

In this model, we suppose that the incoming states â†(t), â(t) are sent towards a scatterer which
is related to the time-dependent potential V (τ ′) applied to the dot. This is somewhat di�erent to
the description used in previous works [10, 11, 68], where a gauge transformation was performed
to maintain the electrostatic potential in the dot equal to zero, while the potential of the contacts
was modulated by the periodic signal −V (τ ′). Although very e�cient for the resolution of prob-
lems where only one time-dependent potential is considered, this gauge transformation becomes
useless whenever we have to take several non-synchronized potentials into account. This is par-
ticularly bothersome for two-electrons interference experiments where two distinct sources are
used. These two formalisms yield however the same results for a single source, as we demonstrate
in appendix A.3.1.

1.1.2.2 Expression of the Floquet scattering matrix
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Figure 1.2: Time-dependent scattering matrix description of the quantum dot: elec-
trons in the outer edge channel can tunnel into the dot with an amplitude d, or be
re�ected with an amplitude r =

√
1− d2. Electrons in the dot are subject to the

time-dependent potential V (τ ′).

Fig.1.2 depicts the relation between an outgoing state at a time t2 and incoming states at
times t1: an incoming electron can either be re�ected on the dot with an amplitude r, or enter
the dot with an amplitude d =

√
1− r2, where it can perform several turns, each in a �nite

time τ0 = l/vd (where l is the perimeter of the dot, and vd the electron drift velocity), before
escaping back to the lead. Between times t1 and t2, an electron in the dot is subject to the time-
dependent potential V (τ ′) = V0 + V

′
(τ ′), where V

′
(τ ′) is periodic with an angular frequency

Ω = 2πf0 = 2π/T and has no DC part, and V0 controls the equilibrium potential of the dot. It

therefore acquires a phase e−i
e
~
∫ t2
t1
V (τ ′)dτ ′ , where e is the charge of the electron. The relation

between the outgoing state at time t2 and the incoming states at time t1 is therefore:
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b̂(t2) =

∫
dt1U(t2, t1)â(t1) (1.1)

where the time-dependent scattering matrix U(t2, t1) is given by:

U(t2, t1) =

(
rδ(t2 − t1)− d2

∑
q

rq−1δ(t2 − t1 − qτ0)

)
e−i

e
~
∫ t2
t1
V (τ ′)dτ ′ (1.2)

We will now express this scattering matrix in the energy domain U(ε, ε′), de�ned by:

b̂(ε) =

∫
dε′U(ε, ε′)â(ε′) (1.3)

with:

b̂(t2) =
1√
h

∫
dεe−iεt2/~b̂(ε)

b̂(ε) =
1√
h

∫
dt2e

iεt2/~b̂(t2)

(1.4)

When using Eq.1.1, this last relation leads to:

b̂(ε) =
1√
h

∫
dt1dt2e

iεt2/~U(t2, t1)â(t1)

=
1

h

∫
dε′dt1dt2e

iεt2/~e−iε
′t1/~U(t2, t1)â(ε′)

(1.5)

U(ε, ε′) can then be calculated from the following expression:

U(ε, ε′) =
1

h

∫
dt1dt2e

iεt2/~e−iε
′t1/~U(t2, t1) (1.6)

When using the de�nition of U(t2, t1) given in Eq.1.2, with the variable substitution τ =
t2 − t1, we have:

U(ε, ε′) =
1

h

∫
dt2dτe

i(ε−ε′)t2/~eiε
′τ/~

[
rδ(τ)− d2

∑
q

rq−1δ(τ − qτ0)

]
e
−i e~

∫ t2
t2−τ

V (τ ′)dτ ′

=
1

h

∫
dt2e

i(ε−ε′)t2/~

[
r − d2

∑
q

rq−1ei((ε
′−eV0)/~)qτ0e

−i e~
∫ t2
t2−qτ0

V
′
(τ ′)dτ ′

]
(1.7)

Since the potential V
′
(τ ′) is T -periodic and has no DC part, the phase term e−i

e
~
∫ t2
0 V

′
(τ ′)dτ ′ is

T -periodic as well, and can then be expressed in terms of its Fourier components cn de�ned in
[11, 68]:
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cn =
1

T

T∫
0

dteinΩte−i
e
~
∫ t
0 V
′
(τ ′)dτ ′ (1.8)

e−i
e
~
∫ t
0 V
′
(τ ′)dτ ′ =

∑
n

cne
−inΩt (1.9)

∑
n

cnc
∗
n+k = δk,0 (1.10)

The phase term in Eq.1.7 is then equal to:

e
−i e~

∫ t2
t2−qτ0

V
′
(τ ′)dτ ′

= e−i
e
~
∫ t2
0 V

′
(τ ′)dτ ′e+i e~

∫ t2−qτ0
0 V

′
(τ ′)dτ ′

=
∑
n

cne
−inΩt2

∑
n′

c∗n′e
in′Ω(t2−qτ0) (1.11)

This gives us:

U(ε, ε′) =
1

h

∫
dt2e

i(ε−ε′)t2/~

r − d2
∑
q,n,n′

cnc
∗
n′r

q−1eiqτ0(ε′−eV0−n′~Ω)/~ei(n
′−n)Ωt2

 (1.12)

Eq.1.10 implies
∑

n,n′ cnc
∗
n′e

i(n′−n)Ωt2 = 1. We then have, with d2 = 1− r2:

U(ε, ε′) =
∑
n,n′

cnc
∗
n′

∫
dt2
h
ei((ε−ε

′)/~+(n′−n)Ω)t2

[
r − 1− r2

r

reiτ0(ε′−eV0−n′~Ω)/~

1− reiτ0(ε′−eV0−n′~Ω)/~

]

=
∑
n,n′

cnc
∗
n′

[
r − 1− r2

r

reiτ0(ε−eV0−n~Ω)/~

1− reiτ0(ε−eV0−n~Ω)/~

]
δ(ε− ε′ + (n′ − n)~Ω)

=
∑
n,n′

cnc
∗
n′
r − eiτ0(ε−eV0−n~Ω)/~

1− reiτ0(ε−eV0−n~Ω)/~ δ(ε− ε
′ + (n′ − n)~Ω)

(1.13)

The substitution m = n′ − n �nally gives us:

U(ε, ε′) =
∑
n,m′

cnc
∗
n+m

r − eiτ0(ε−eV0−n~Ω)/~

1− reiτ0(ε−eV0−n~Ω)/~ δ(ε− ε
′ +m~Ω) =

∑
m

Um(ε)δ(ε− ε′ +m~Ω) (1.14)

Using this expression, Eq.1.3 then becomes:

b̂(ε) =
∑
m

Um(ε)â(ε+m~Ω) (1.15)

Because of the periodic driving, the energy ε′ of outgoing electrons only takes values de�ned
by ε + m~Ω, where ε is the energy of electrons incoming on the dot. Eq.1.15 therefore shows
that energy transfers on the scatterer are quantized in units of the driving frequency ~Ω. The
quantized Floquet scattering matrix Um(ε) is given by:
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1.1. Response of a mesoscopic capacitor to a periodic excitation: theory

Um(ε) =
∑
n

c∗n+mcnU
0(ε− n~Ω) (1.16)

where

U0(ε) =
r − eiτ0(ε−eV0)/~

1− reiτ0(ε−eV0)/~ =
r − e2iπ(ε−eV0)/∆

1− re2iπ(ε−eV0)/∆
(1.17)

is the stationary scattering matrix, noted S(ε) in [11, 68] and de�ned by the relation b̂(ε) =
U0(ε)â(ε) when no periodic drive is applied to the top gate.

In all other scattering theory sections of this manuscript, we shall express the properties of
the emitted currents (AC average as well as �uctuations) as functions of the quantized Floquet
scattering matrix, which contains all the information on the periodic excitation drive V (τ ′) and
the parameters of the dot: level spacing ∆ = h/τ0, transmission D = 1 − r2, and the dot
equilibrium potential eV0, corresponding to the energy shift of the levels in the dot.

1.1.3 Stationary scattering matrix

The scattering model describes the dot as a single-contact electronic Fabry-Perot interferometer
with a tunable transmission (see Eq.1.17), which presents discrete energy levels with a constant
spacing ∆ and a tunable width proportional to the transmission D (see Fig.1.3). The position
of the levels relative to the Fermi energy can be shifted by the potential V0.

1.1.3.1 Density of states

The density of states in the dot N (ε) can be de�ned from the stationary scattering matrix U0(ε)
[69]:

N (ε) =
1

2iπ
U0∗(ε)

dU0

dε

=
1

∆

1− r2

1− 2r cos(2π(ε− eV0)/∆) + r2

(1.18)

For unity transmission (r = 0), the density of states is constant and equal to 1/∆; for low
transmissions, N (ε) becomes a succession of Lorentzian peaks with a regular spacing ∆ and a
�nite width ~γ = 2πD∆:

N (ε) ≈
∑
n

2

∆(1− r)
1

1 +
(

2π(ε−eV0−n∆)
∆(1−r)

)2

≈
∑
n

2

π~γ
1

1 +
(
ε−eV0−n∆

~γ/2

)2

(1.19)
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Figure 1.3: Calculated density of states in the dot for several values of the QPC
transmission. The peaks in the density of states are broadened as the transmission
increases. For unity transmission , the density of states is constant and equal to 1/∆.

1.1.3.2 Effects of the static gate voltages

We can modulate the extrinsic parameters of the dot (QPC transmission D and position of the
levels with respect to the Fermi energy eV0) encoded in the density of states by applying voltages
to the QPC gates and the top gate. The main e�ect of a voltage Vg applied to the QPC gates
is to change the QPC transmission D by varying the electrostatic potential in the constriction.
For an ideal saddle-point constriction [28], the relation between the transmission D and the gate
voltage Vg is rather simple and only depends on two parameters:

D(Vg) =
1

1 + e−
Vg−Vg0

∆V

(1.20)

Vg0 determines the position of transmission 1/2, while ∆V determines the width of the opening of
the QPC. We will show in 1.3 that these two parameters can be extracted from the dependence of
the measured current with Vg. Because there is also a non-negligible capacitive coupling between
the QPC gates and the dot potential, changing Vg also shifts the position of the energy levels in
the dot with a lever arm α given by αδVg = δε. A large portion of the measurements presented
in this chapter are measurements of the �rst harmonic of the average AC current as a function
of the gate voltage Vg; as such, they demonstrate the two e�ects of Vg on the dot.

The potential of the dot can also, as described in the introduction, be modulated by applying
voltages to the top gate. The lever arm β between a DC voltage applied to the top gate and the
energy shift ε0 = eV0 in the dot is given by βδVDC = δε0. We neglect however the in�uence of
the top gate on the QPC transmission.
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1.1. Response of a mesoscopic capacitor to a periodic excitation: theory

1.1.4 Calculation of the average AC current

1.1.4.1 General expression of the current

In the two-contacts geometry depicted in Fig.1.1, the measured current Î1(t) is not directly equal
to the current emitted from the dot, but rather to the di�erence between the current incoming
on contact (1), noted Îb(t), and the current emitted from contact (1) towards contact (2), noted
Îc(t). Since contact (1) is connected to a measurement impedance equal to Z0 = 50Ω � RK ≈
25kΩ, it is e�ectively grounded and therefore only emits, similarly to contact (2), electrons with
populations given by an equilibrium Fermi function f(ε), where we have taken the Fermi energy
εF equal to zero: 〈

â†(ε)â(ε′)
〉

=
〈
ĉ†(ε)ĉ(ε′)

〉
= f(ε)δ(ε− ε′) (1.21)

It appears clearly that the inner edge channel does not take part in the measured current,
since the contribution of the current in the inner channel incoming on contact (1) and emitted
from contact (1) are equal if the two contacts are at the same temperature. We can then express
the measured current Î1(t) as a function of the creation/annihilation operators in the outer edge
channel:

Î1(t) =
e

h

∫
dεdε′

(
b̂†(ε)b̂(ε′)− ĉ†(ε)ĉ(ε′)

)
ei
ε−ε′
~ t = Îb(t)− Îc(t) (1.22)

With:

Îb(t) =
e

h

∫
dεdε′b̂†(ε)b̂(ε′)ei

ε−ε′
~ t (1.23)

Îc(t) =
e

h

∫
dεdε′ĉ†(ε)ĉ(ε′)ei

ε−ε′
~ t (1.24)

When using Eq.1.3 to substitute b̂†(ε) and b̂(ε′) in the expression of Îb(t), we have:

Îb(t) =
e

h

∑
m,m′

∫
dεdε′U∗m(ε)Um′(ε

′)â†(ε+m~Ω)â(ε′ +m′~Ω)ei
ε−ε′
~ t (1.25)

From here on, we take ~Ω = 1, so that â†(ε+m~Ω) = â†(ε+m). Eq.1.25 then becomes:

Îb(t) =
e

h

∑
m,m′

∫
dεdε′U∗m(ε)Um′(ε

′)â†(ε+m)â(ε′ +m′)ei
ε−ε′
~ t (1.26)

This general expression of Îb(t) will be useful when calculating the current correlation in the
next chapters.

1.1.4.2 Average AC current

To calculate the measured average AC current, we simply take the quantum average of the
current operators: 〈

Î1(t)
〉

=
〈
Îb(t)

〉
−
〈
Îc(t)

〉
(1.27)

Eq.1.21 then gives:
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Chapter 1. Realization of a Single Electron Source

〈
Îb(t)

〉
=

e

h

∑
m,m′

∫
dεdε′U∗m(ε)Um′(ε

′)f(ε+m)δ(ε+m− (ε′ +m′))ei
ε−ε′
~ t

=
e

h

∑
m,m′

∫
dεU∗m(ε)Um′(ε+m−m′)f(ε+m)ei(m

′−m)t
(1.28)

and: 〈
Îc(t)

〉
=

e

h

∫
dεdε′f(ε)δ(ε+ ε′)ei

ε−ε′
~ t

=
e

h

∫
dεf(ε)

(1.29)

We can then use sum rules on Um(ε), demonstrated in appendix A.1, to express
〈
Îc(t)

〉
as a

function of Um(ε): ∑
m,m′

U∗m(ε)Um′(ε+m−m′)ei(m′−m)t = 1 (1.30)

This gives us: 〈
Îc(t)

〉
=
e

h

∫
dε
∑
m,m′

U∗m(ε)Um′(ε+m−m′)ei(m′−m)tf(ε) (1.31)

When combining the expressions of
〈
Îb(t)

〉
and

〈
Îc(t)

〉
, and performing the substitution m′ −

m = k, we �nally obtain a compact expression of the average AC current as a sum of Fourier
components:

I1(t) =
〈
Î1(t)

〉
=
e

h

∑
k,m

∫
dεU∗m(ε)Um+k(ε− k) [f(ε+m)− f(ε)] eikωt (1.32)

In particular, the �rst harmonic IΩ is given by:

IΩ =
e

h

∑
m

∫
dεU∗m(ε)Um+1(ε− ~Ω) [f(ε+m)− f(ε)] (1.33)

These two compact expressions will be used to numerically compute the average AC current
(in time-domain and �rst harmonic) to �t the experimental results presented in the next sections.
It is however interesting to expand Eq.1.32 and Eq.1.33 as a function of the coe�cients cn and
the stationary scattering matrix U0(ε) in order to calculate analytical limits of the current. This
calculation yields (see appendix A.2.1):

I1(t) =
〈
Î1(t)

〉
=
e

h

∑
k,m

cmc
∗
m+k

∫
dε
[
U0∗(ε)U0(ε− k)− 1

]
f(ε+m)eikΩt (1.34)
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1.2. Measurement of the average AC current emitted by the source

The expanded expression for the �rst harmonic is then:

IΩ =
e

h

∑
m

cmc
∗
m−1

∫
dε
[
U0∗(ε)U0(ε+ ~Ω)− 1

]
f(ε+m~Ω) (1.35)

These two expressions are strictly equivalent to the ones calculated by my predecessors using
the gauge transformation [11, 68], see demonstration in appendix A.3.1.

1.2 Measurement of the average AC current emitted by the source

In order to measure the AC current emitted by our sample, we install the sample in a dilution
fridge with a base temperature of 30mK � ∆. The fridge is equipped with a high-frequency
conductance measurement setup detailed in [70, 11]. We brie�y recall the setup in this section;
however, it has been subject of profound modi�cations in order to perform ultra-high precision
noise measurements presented in the next chapters. The details of these modi�cations will be
given in chapter 4.'

&

$

%
Figure 1.4: Measurement setup for the �rst harmonic of the average AC current. A
microwave homodyne detection is used to measre the in-phase and out-of-phase parts
of the average AC current.

The measurement setup of the �rst harmonic of the current is represented in Fig.1.4. We
describe both the excitation and measurement parts of the setup in the next paragraphs.

27



Chapter 1. Realization of a Single Electron Source

1.2.1 Excitation line

To drive the sample out of equilibrium, we use an Agilent 81134A microwave pulse/pattern
generator and a broadband transmission line that transmits the excitation signal from room
temperature to the base temperature of the dilution refrigerator. We use square signals with a
rise time shorter than 60ps. We can add a DC component to the square signal by using a bias
tee at room temperature with its low-frequency input connected to a DC voltage generator.

The microwave excitation line is composed of Huber+Suhner EZ-118 broadband (40GHz)
semi rigid cables separated by attenuators regularly placed in the fridge, see Fig.1.4. The purpose
of these attenuators is to thermalize the thermal radiation generated at 300K; each cable section
between two attenuators is carefully thermalized to the corresponding stage of the refrigerator,
as described in [70]. It is crucial to use attenuators with characteristics presenting variations
as small as possible when used at very low temperatures. We use XMA attenuators with a
NiCr inner conductor, which are well suited for cryogenic applications. The total attenuation
in the insert is −50dB; we also use an additional −10dB attenuator at room temperature (not
pictured in Fig.1.4). Because of skin e�ect, the total attenuation on the line is slightly larger at
room temperature than the one given by the attenuators (about 3dB at 4GHz). We expect this
additional attenuation to decrease when the insert is cooled-down.

The excitation line is connected to a sample holder thermally anchored to the mixing chamber
of the dilution refrigerator. The sample is directly wired to the signal line without any resistor
in parallel, contrary to [70, 11]. Because of the large mismatch between the impedances of the
line and of the sample (the impedance of the sample is typically given by the resistance quantum
RK ≈ 25.8kΩ� 50Ω), a stationary wave appears in the last section of the excitation line, with
the sample placed at an anti-node of the wave. The sample therefore appears as a quasi-open
line, so that all spectral components of the excitation voltage are maximal where the sample is
located. The sample holder is described in detail in chapter 4.

DC gate voltages, such as Vg, are applied via high-resistivity DC lines mounted in the insert.
These lines are �ltered at room temperature, mainly to protect the sample against large voltage
variations. The wiring is made with Lakeshore ultra miniature coaxial cables from the insert's
inputs to the 1K pot stage of the refrigerator, and with manganin microcoax from the 1K pot
stage to the mixing chamber. The high total resistance (about 120Ω) of the cables ensures proper
thermalization.

1.2.2 Measurement line

The average AC current measurement line was �rst implemented in the refrigerator by Julien
Gabelli, and is described in details in [70, 11]. The signal is �rst ampli�ed using cryogenic
ampli�ers thermalized in the helium bath vapors. We have changed the ampli�ers used in
[70, 11] for cryogenic ampli�ers presenting better characteristics (noise temperature TN ≈ 7K,
bandwidth 1− 4GHz) in order to perform the noise measurements presented in chapter 2.

Depending on the frequency, we can perform two kinds of measurements. For frequencies
below 500MHz, we record the current in the time domain and average it in real-time using a
fast acquisition card [71]. We will brie�y present some measurements in the time domain made
by my predecessors [71, 68] in the next sections. For higher frequencies, we measure the in-phase
and out-of-phase parts of the �rst harmonic of the signal with a microwave homodyne detection
depicted in Fig.1.4. Most of the measurements presented in this manuscript are performed at
the frequency f0 = 1.5GHz. The principle of the microwave homodyne detection is the same as
lock-in detection techniques: the measured signal is split in an in-phase part and out-of-phase
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1.3. Average AC current in the linear regime

part using a 90◦ hybrid coupler; each quadrature is then multiplied with a reference (with the
same frequency f0) provided by the pulse generator and split between the two quadratures. The
zero-frequency part of the result of each multiplication is then proportional to the amplitude
of each quadrature of the �rst harmonic of the signal. The lengths of the cables between the
splitter and the two multipliers have to be matched in order to obtain two signals with a 90◦

phase di�erence. This is experimentally done by using a phase shifter in one of the two cables.
The quadrature is achieved within less than 2◦, see [11].

Because of the propagation in the measurement lines, the signal acquires a global phase
relative to the reference. We will show in the next sections how the properties of the sample can
be used to determine this global phase.

1.2.3 Parasitic signal

At high frequency, �nite parasitic couplings exist between the top gate and the leads and between
the excitation and measurement lines on the sample holder. These couplings, which can be viewed
as essentially capacitive, give rise to a �nite parasitic signal. In order to remove this parasitic
signal, we measure the di�erence between the measured signal at a given Vg and the signal when
the QPC is completely closed, while keeping constant all other parameters (DC voltage applied
to the top gate VDC , temperature, or any other external parameter). This subtraction of the
reference allows us to isolate the signal emitted by the mesoscopic capacitor; we will show in the
next chapters that it has crucial implications in the measurement of current �uctuations emitted
by the single electron source.

1.3 Average AC current in the linear regime

In this section, we focus on the properties of the linear conductance of a mesoscopic capacitor. As
well as providing information on the intrinsic parameters of the sample, the linear conductance
reveals striking phenomena such as the violation of Kircho�'s laws, and the quantization of
charge relaxation resistance, demonstrated by Julien Gabelli [70].

1.3.1 Theory

Let us �rst consider the expression of the average AC current in Eq.1.34. We will expand it for
a low-amplitude sinusoidal driving potential in order to derive an analytical expression of the
linear conductance of the device. These calculations where �rst presented in [55].

1.3.1.1 Conductance of the sample

For a sinusoidal excitation V
′
(τ ′) = Vexccos(Ωτ

′), the Fourier coe�cients cn in Eq.1.34 are given
by the nth-order Bessel function Jn:

cn = Jn

(
eVexc
~Ω

)
(1.36)

The linear regime occurs when eVexc � ~Ω. Since Jn
(
eVexc
~Ω

)
≈
(
eVexc
~Ω

)|n|
in this regime, we only

consider the terms {m, k} = {±1,∓1} and {m, k} = {0,±1} in Eq.1.34. The average current
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only presents components at ±Ω, and is given by:

I1(t) =
e2

h

Vexc
2

∫
dε
[
U0∗(ε)U0(ε− ~Ω)− 1

] f(ε− ~Ω)− f(ε)

~Ω
eiΩt

+
e2

h

Vexc
2

∫
dε
[
U0∗(ε)U0(ε+ ~Ω)− 1

] f(ε)− f(ε+ ~Ω)

~Ω
e−iΩt

=
Vexc

2
g(−Ω)eiΩt +

Vexc
2
g(Ω)e−iΩt

(1.37)

The conductance of the sample at frequency Ω is then given by:

g(Ω) =
e2

h

∫
dε
[
U0∗(ε)U0(ε+ ~Ω)− 1

] f(ε)− f(ε+ ~Ω)

~Ω
(1.38)

1.3.1.2 Low-frequency equivalent circuit

In order to express the linear conductance of the device in terms of usual linear electronic
components such as resistor and capacitor, we perform a second-order expansion of Eq.1.38 in
frequency Ω:

g(Ω) =
e2

h

∫
dε

(
U0∗dU

0

dε
~Ω +

(
U0∗dU

0

dε

)2
(~Ω)2

2

)
df

dε
+O(Ω3) (1.39)

We can introduce the de�nition of the density of states (Eq.1.18) in this expression:

g(Ω) =

∫
dε

(
−iΩe2N (ε)

−df
dε

)
+

∫
dε

(
Ω2 h

2e2
(e2N (ε))2−df

dε

)
(1.40)

Within the low-frequency approximation, this conductance is identical to the conductance of a
series RC circuit, with:

Cq = e2

∫
dεN (ε)

−df
dε

Rq =
h

2e2

∫
dεN (ε)2−df

dε(∫
dεN (ε)−dfdε

)2

(1.41)

The low-frequency conductance of the mesoscopic capacitor is therefore given by the association
in series of a quantum capacitance Cq and a quantum resistance Rq, each one depending on
the density of states of the dot and the temperature. In this respect, the measurement of the
conductance of the sample brings quantitative information on the properties of the dot: at low
temperature, the quantum capacitance probes the density of states in the dot, and the relaxation
time of the dot is given by the product RqCq.

1.3.1.3 Validity of the expansion

In the previous paragraph, we have expressed the linear conductance of the mesoscopic capacitor
under the assumption that the driving frequency Ω is small compared to the scale of the variations
of the scattering matrix U0(ε). This scale is typically given by the width of the peaks in the
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1.3. Average AC current in the linear regime

density of states, proportional to the product D∆, and therefore related to the relaxation time
in the dot RqCq. While the previous results are only valid in the regime where RqCqΩ � 1, it
appears that the numerical computation of the exact formula 1.32 using experimental parameters
bears results that are quite comparable with the conductance of an RC circuit given by Eq.1.41,
even in regimes where the RqCqΩ � 1 criterion is clearly not satis�ed. This allows us to
understand our results in an RC-circuit framework, with a conductance given by Eq.1.41.

1.3.1.4 Zero-temperature limit

At zero temperature, the quantum capacitance is simply proportional to the density of states
evaluated at the Fermi energy: Cq = e2N (εf ). It therefore presents very narrow peaks at low
transmission, with a height however limited by the geometrical capacitance. The relaxation
resistance becomes independent of all parameters, and equal to half the resistance quantum:
Rq = h

2e2
[72]. The fact that it becomes independent of the QPC transmission D is a striking

property, and has been experimentally demonstrated by my predecessors [70, 11]. It can be
understood by again considering the quantum dot as a one-contact fully-coherent electronic
Fabry-Perot interferometer; as such, its resistance is given by the resistance of the single contact
h

2e2
. The zero-temperature limit is also valid as long as the temperature is small compared to

the variation scale of the density of states, i.e. kBT � D∆, which is the case for large enough
transmissions: experimentally, T ≈ 100mK and ∆ ≈ 2− 4K (the zero-temperature limit is thus
obtained for D > 0.2).

1.3.1.5 Finite temperature

When the temperature becomes comparable to the variation scale of the density of states, Rq
and Cq are given by the convolution of the density of states with the derivative of the Fermi
function. In particular, in the so-called sequential regime where D∆� kBT � ∆, the density of
states presents distinct Lorentzian peaks; in the calculation of Rq and Cq, we therefore consider
N (ε) as a single Dirac peak at energy εn. We thus have:

Cq ≈
e2

4kBT cosh2
(
εn−εf
2kBT

)
Rq ≈

D∆

h

e2

4kBT cosh2
(
εn−εf
2kBT

) (1.42)

In this regime, the capacitance is therefore bounded by e2

4kBT
, and only depends on the

temperature, whereas the resistance depends on the transmission as well as the temperature.
The characteristic shape of the conductance as a function of the energy in this regime will be
helpful in the calibration of the level spacing ∆ and the coupling between the top gate and the
levels in the dot.

1.3.2 Experimental results: determination of the sample parameters

The comparison between the theoretical predictions presented in the previous paragraph and the
experimental measurements allows us to determine the parameters of the sample, such as the
level spacing and the variation of the transmission as a function of the QPC gate voltage Vg. In
order to extract these parameters, we �rst need to tune the global phase acquired by the signal
relative to the reference mentioned in 1.2.2.
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1.3.2.1 Global phase tuning

The resolution of the measurement of the relaxation time RqCq is directly related to the resolution
of the global phase tuning. Indeed, the ratio between the real and imaginary parts of the current
is equal to RqCqΩ (see Eq.1.40), that is the relaxation time multiplied by the driving angular
frequency.

At unity transmission, RqCqΩ ≈ 0.05 for samples with a typical capacitance of 0.5fF , driven
at 1.5GHz. For an accurate measurement of both quadratures of the current, we need to tune
the global phase with a precision smaller than a few degrees.

Two tuning procedures have been implemented by my predecessors. The �rst one, presented
in [70], is based on the properties of the linear regime, where the resistance Rq becomes constant,
and therefore independent of the dot equilibrium potential. In this regime, when the phase is
correctly tuned, the oscillations in the measured resistance should vanish as a function of the
gate voltage Vg. The main drawback of this method comes from the fact that the tuning criterion
is based on the precise measurement of the real part of the current at unity transmission, thus
making the method extremely sensitive to noise added by the measurement setup. For this
reason, we rather use the method expanded by Gwendal Fève [11], which involves properties
of the capacitance in the non-linear regime: when the excitation voltage exactly compensates
the level spacing, the capacitance becomes independent of the transmission while the resistance
varies between in�nity and h/2e2. The Nyquist diagram of the current when D varies is therefore
a semicircle with a radius ef0, centered on (0, ef0). The application of this procedure for the
sample studied here is detailed in the next section.

1.3.2.2 Conductance as a function of the QPC gate voltage
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Figure 1.5: Conductance trace at 1.5GHz as a function of the QPC gate voltage Vg,
measured on sample S528-11. The applied magnetic �eld (B ≈ 1.8T ) corresponds to
a �lling factor ν = 4.

The linear conductance of sample S528-11 measured at 1.5GHz as a function of the QPC gate
voltage Vg is presented on Fig.1.5. As predicted in 1.3.1, the conductance at high transmission
(small negative gate voltages) probes the density of states at the Fermi energy, convoluted with
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1.3. Average AC current in the linear regime

the temperature. The oscillations of the conductance with the gate voltage re�ect the fact that
the QPC gate is coupled to the levels in the dot; Vg therefore shifts the levels with respect to the
Fermi energy. When Vg is swept towards smaller transmissions, the energy levels pass in front
of the Fermi energy while becoming narrower. In the RqCqΩ ∼ 1 regime, the real part of the
conductance becomes preponderant, then decreases again as the transmission is lowered. When
the transmission reaches zero, the current �owing through the mesoscopic capacitor vanishes; we
will refer to this regime as the pinch-o�.

1.3.2.3 Calibration of the quantum capacitance

In the sequential regime (D∆� kBT ), the observed conductance peaks when the energy levels
in the dot are shifted in resonance with the Fermi energy have a width given by the temperature,
while the distance between two peaks is proportional to the level spacing ∆. If the temperature
is known, it is thus possible to calibrate the level spacing.'
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%

Figure 1.6: Calibration of the quantum capacitance of sample S528-11 : a) real part of
the conductance in the sequential regime as a function of the top gate voltage VDC , for
di�erent temperatures of the mixing chamber. The conductance peaks corresponding
to the levels in the dot are broadened when the temperature increases. The exper-
imental data (black lines) are adjusted with functions given by Eq.1.42 (red lines).
b) width of the conductance peaks as a function of the mixing chamber temperature.
The red curve corresponds to the �t 2

β

√
T 2
mc + T 2

0 , where β is the coupling between
the top gate and the energy levels.

We have calibrated the level spacing at �lling factor ν = 4 for sample S528-11 by varying
the DC gate voltage applied to the top gate VDC for di�erent values of the mixing chamber
temperature of the dilution refrigerator, see Fig.1.6. The observed conductance peaks have
a shape given by 1/cosh2(β(VDC − V0)/2T ), derived from Eq.1.42, where β is the coupling
between the voltage applied to the top gate and the position of the levels in the dot (expressed
in Kelvin) introduced in 1.1.3.2, and V0 is the position of the peak of the density of states. We
have �tted the experimental data, spanning on three peaks, with the sum of three functions
1/cosh2((VDC − V0)/2L(T )), where L(T ) is the width of the peaks, expressed in Volts, as a
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Chapter 1. Realization of a Single Electron Source

function of the temperature of the mixing chamber (see Fig.1.6a). We have plotted on Fig.1.6b
the measured width as a function of the temperature; as expected, the relation is linear at
high temperatures, but saturates at low temperature. This saturation is caused by a residual
temperature T0 that re�ects an insu�cient thermalization of the electrons, or instabilities in the
sample leading to gate noise. A �t of the data by the function P1

√
T 2 + T 2

0 allows us to extract
the coupling β = 6.1K.V −1 and the residual temperature T0 = 60mK. The level spacing is then
simply given by the product of the distance in gate voltage between two peaks times the coupling
constant. For sample S528-11, we �nd ∆ = 4.2± 0.2K; the value of the quantum capacitance is
therefore Cq = e2/∆ = 0.44± 0.03fF .

1.3.2.4 QPC transmission law

Once the level spacing and the values of the capacitances of the system are known, we can
adjust the measured conductance as a function of the QPC gate voltage using the simple QPC
transmission given in Eq.1.20. The coupling α between the QPC gates and the levels in the dot is
�rst extracted by simply measuring the distance in QPC gate voltage between two conductance
peaks in Fig.1.5. We have �tted the linear conductance of sample S528-11 at three di�erent
temperatures (see Fig.1.7) using the following parameters: coupling constant α = 1.65KmV −1,
QPC opening width ∆V = 4.4mV , half-transmission voltage Vg0 = −329.8mV . The electronic
temperature T =

√
T 2
mc + T 2

0 was set to 70mK, according to the results of the calibration. This
temperature is quite low, so that the linear regime eVexc � kBT is not fully achieved. We have
therefore taken into account the �nite value of the excitation voltage. The agreement between
experimental data and the scattering theory is quite good, except for small transmissions. In
particular, the experimental data at 520mK show conductance oscillations persisting at lower
negative voltages than the theoretical �t. This can be explained by a variation of the transmission
with energy, which will have an non negligible e�ect in the non-linear regime presented in the
next section. Nonetheless, the excellent agreement between experimental data and the model
at large transmission and low temperature con�rms the quantization of the charge relaxation
resistance Rq = h/2e2, which was �rst demonstrated on sample E3 by Julien Gabelli [62, 70].

1.3.3 Conclusion on the linear regime

Beyond its fundamental properties emphasizing the e�ects of quantum coherence in mesoscopic
conductors, the linear regime of the mesoscopic capacitor allows us to determine every parameter
of the sample. We will use these parameters to compare the experimental results in the non linear
regime with our scattering theory with no adjustable parameter.

1.4 Average AC current in the non-linear regime

In order to inject single charges into the two-dimensional electron gas, we drive the mesoscopic
capacitor with a square signal the amplitude of which is equal to the level spacing. At zero
temperature, and for narrow enough levels in the dot, this places the last occupied energy level
of the dot above the Fermi energy. The electron sitting on this level can then escape form the
dot within a characteristic emission time τ ≈ h/D∆ depending on the QPC transmission.

In this section we will describe the properties of the mesoscopic capacitor in the non-linear
regime, and show that the quantization of the �rst harmonic of the average AC current in units
of 2ef0 is a �rst proof that the device can be used as a single electron source. We �rst present
theoretical considerations on the non-linear regime by introducing an extension of the scattering
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Figure 1.7: Linear conductance at 1.5GHz of sample S528-11 , for di�erent tem-
peratures. The �rst �gure corresponds to the QPC transmission law used for the
theoretical adjustment (red lines). At large transmissions, the conductance is equal
for all three temperatures.

model for strong driving amplitudes, as well as a heuristic model describing the device as a
perfect single electron source. We then present experimental results obtained for two samples,
and compare them with the predictions.

1.4.1 Scattering theory

In order to derive analytical expressions of the current in the non-linear regime, we expand
Eq.1.35 for a perfect square excitation. This calculation was �rst presented in [11].

1.4.1.1 AC response to a square excitation

The Fourier coe�cients cn (de�ned in Eq.1.8) for a perfect square excitation with an amplitude
Vexc have been de�ned in [11]. These coe�cients have a very simple expression when the ratio
of the drive amplitude divided by the frequency eVexc/~Ω is an even integer substantially larger
than one. This is the case for sample S528-11, where 2p = eVexc/~Ω ≈ 30 for eVexc = ∆/2
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Chapter 1. Realization of a Single Electron Source

(∆ ≈ 4K, Ω = 1.5GHz). The coe�cients cn are then given by:

c2p ≈ 1/2
ck ≈ 0 (k 6= p)

c2p+2k+1 ≈ 1

iπ(2k + 1)
c−n ≈ −cn

(1.43)

Combined with Eq.1.35, these coe�cients yield:

IΩ =
e

2iπh

∫
dε
(
U0∗(ε)U0(ε+ ~Ω)− 1

)
[f(ε+ eVexc)− f(ε− eVexc)

+f(ε+ ~Ω + eVexc)− f(ε+ ~Ω− eVexc)]
(1.44)

We now proceed to a second-order expansion in the frequency (for D∆� ~Ω), as it was done
in the linear regime:

IΩ =
i2Vexc
π

∫
dε

[
−iΩe2N (ε) + Ω2 h

2e2
(e2N (ε))2

]
f(ε− eVexc)− f(ε+ eVexc)

2eVexc
(1.45)

For the �rst harmonic of the AC current, in the low-frequency regime, we once again �nd
that the equivalent circuit is the series association of a capacitance Cnlq and a resistance Rnlq
given by:

Cnlq = e2

∫
dεN (ε)

f(ε− eVexc)− f(ε+ eVexc)

2eVexc

Rnlq =
h

2e2

∫
dεN (ε)2 f(ε−eVexc)−f(ε+eVexc)

2eVexc(∫
dεN (ε)f(ε−eVexc)−f(ε+eVexc)

2eVexc

)2

(1.46)

These two components are highly similar to their linear counterparts, except for the derivative
of the Fermi function in Eq.1.41, now replaced by the term f(ε−eVexc)−f(ε+eVexc)

2eVexc
, which emphasizes

the non-linearity of the circuit.

This equivalent circuit allows for a simple interpretation of the properties of the current in the
non-linear regime. Indeed, for a classical RC circuit driven by a square voltage, the capacitance
de�nes the average electric charge transfered per half-period in the circuit at low frequency,
and the product RC de�nes the characteristic charge transfer time. The quantum capacitance
de�ned in Eq.1.46 is equal to the integral of the density of states on a window de�ned by the
two potentials the dot is brought on during one period of the drive. This integral is equal
to the di�erence of the mean occupation numbers for each of the two potentials: when the
voltage step 2Vexc exactly compensates the level spacing, it is independent of the dot equilibrium
potential and equal to 1, provided that the density of states is ∆-periodic. A single peak in the
density of states is fully integrated, and the quantum capacitance becomes then independent of
temperature, QPC transmission and equilibrium potential: Cnlq = e2/∆.

As for the linear regime, this expansion is only valid when the escape time is small compared
to the drive period, that is Rnlq C

nl
q Ω � 1. However, it is once again possible to extend these
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1.4. Average AC current in the non-linear regime

de�nitions to regimes where the escape time becomes comparable or larger than the period; we
then de�ne a non-linear conductance Gnl for the �rst harmonic of the average AC current:

Gnl(Ω) =
−iCnlq Ω

1− iRnlq Cnlq Ω
(1.47)

When 2eVexc = ∆ for large transmissions, the current is essentially capacitive and the quadratic
term in Ω in Eq.1.45 can be neglected. The current is therefore equal to eΩ/π = 2ef0, corre-
sponding to the emission of a single electron followed by a single hole at each period.

1.4.1.2 Modulus of the current: quantization of the first harmonic
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Figure 1.8: Calculated �rst harmonic as a function of the excitation amplitude Vexc,
for a transmission D = 0.5. a) modulus of the �rst harmonic, for di�erent values
of the dot equilibrium potential expressed as a phase in the scattering amplitude
φ0 = 2πeV0/∆. When φ0 ≈ 0, the current presents a plateau at a value 2ef0. b)
density of states at equilibrium, for an equilibrium potential φ0 = 0. The checked
areas correspond to the integrated portion of the density of states in Eq.1.46, for
three values of the excitation amplitude (2eVexc = ∆,∆/2,∆/10). c) same as b), for
φ0 = π.

As seen in the previous paragraph, the average current becomes constant and equal to 2ef0

when the excitation voltage compensates the level spacing in the dot. Numerical computations of
Eq.1.33 and 1.35, using the parameters extracted from the linear regime (∆ ≈ 4K, f0 = 1.5GHz,
T = 100mK), show that the modulus of the current is in fact quantized in units of 2ef0 whenever
the system is driven in the injection regime, that is whenever the highest occupied level in the
dot is shifted signi�cantly high above the Fermi level. The quantization of the modulus of the
average current is illustrated in Fig.1.8: depending on the dot equilibrium potential, the �rst
harmonic of the average AC current presents a plateau at IΩ = 2ef0 when the amplitude of the
excitation voltage Vexc is changed. When 2eVexc = ∆, all curves join at IΩ = 2ef0, where an
entire peak of the density of states is integrated.
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Figure 1.9: Calculated �rst harmonic as a function of the excitation amplitude, for
several values of the transmission. At low transmission, the current plateau does not
reach the value 2ef0 for φ0 = 0. Likewise, the current plateau for φ0 = π is lower than
4ef0. At transmission unity, the current becomes linear with the excitation amplitude.

We express the initial value of the dot equilibrium potential eV0 as a function of the level
spacing ∆ using the phase term φ0 = 2πeV0/∆. The situation where φ0 = 0 is called anti-
resonant because the active energy level is alternatively brought to −eVexc and +eVexc (with
εF = 0). For small excitation voltages, the level is slightly shifted around the Fermi energy, so
that the integrated portion of the density of states varies quickly with Vexc, see Fig.1.8b. When
Vexc increases, the level is brought far o�-resonance with the Fermi energy. In this case, the
current has a small dependence with the excitation voltage since the active level is much farther
above (or below) the Fermi energy than its width. In other terms, the boundaries of the integrals
in Eq.1.46 are changed in regions where the density of states is close to zero, which only slightly
changes Rnlq and Cnlq . On the other hand, the resonant case φ0 = π does not present a plateau in
the current when Vexc is changed. Indeed, when the active energy level is brought in resonance
with the Fermi energy, the current is maximally sensitive to small shifts in the position of the
level in respect to the Fermi energy: when Vexc is changed around 2eVexc = ∆, the boundaries
of the integrals in Eq.1.46 are changed on peaks of the density of states (see Fig.1.8c). The
curves corresponding to every other value of the dot equilibrium potential (here, φ0 = π/3 and
φ0 = 2π/3) are comprised within the area de�ned by the di�erence of the curves where φ0 = 0
and φ0 = π. The size of this area gives an insight on the accuracy of the quantization of the �rst
harmonic, and is a�ected by the QPC transmission. In Fig.1.9, we have plotted the value of the
�rst harmonic of the current as a function of the excitation amplitude, for di�erent values of the
transmission, in the anti-resonant (φ0 = 0) and resonant (φ0 = π) cases. For large transmissions
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1.4. Average AC current in the non-linear regime

(here, D = 0.8), the �rst harmonic is still equal to 2ef0 when 2eVexc = ∆; however, the plateau is
less pronounced, leading to a smaller area between the curves φ0 = 0 and φ0 = π. This is due to
the fact that the levels in the dot are well-coupled to the continuum of the leads, thus degrading
the quantization of the charge sitting on each level. For unity transmission, the density of states
is uniform and quantization is lost: the current becomes linear with the driving amplitude Vexc.

Finally, for small transmission (here, D = 0.1), the current presents a plateau at a value
lower than 2ef0: although the peaks in the density of states are well-de�ned, the escape time
becomes larger than the half-period of the excitation and charges are not always emitted before
the excitation signal changes sign: the average AC current therefore has a value lower than 2ef0,
determined by the escape time. The phase of the �rst harmonic of the current allows us to gain
access to the escape time. Indeed, the ratio between real and imaginary part of the �rst harmonic
is equal to Rnlq C

nl
q Ω, that is the escape time τ = Rnlq C

nl
q multiplied by the frequency of the drive.

A simple expression of τ can be derived from Eq.1.46 for 2eVexc = ∆, provided Rnlq C
nl
q Ω � 1,

and D � 1 so that the density of states can be approximated by a series of Lorentzian peaks.
At zero temperature, the Fermi functions in the integrals in Eq.1.46 set the boundaries of the
integrals over a single peak of the density of states. We then have:

Cnlq =
e2

2eVexc

∫
1peak

dεN (ε) =
e2

∆

Rnlq =
h

2e2

∫
1peak dεN

2(ε)[∫
1peak dεN (ε)

]2 ≈
h

De2

(1.48)

In this regime, the equivalent circuit is therefore given by the incoherent addition of the
quantum capacitor and the resistance of the quantum point contact, and the escape time is
given by τ = h

D∆ .

The expression of the quantum resistance in Eq.1.48 is in fact the low-transmission limit of the
charge relaxation resistance calculated in [73] in the linear regime, including a loss of electronic
coherence in the dot. The charge relaxation resistance is given by the series association of the
Landauer resistance [74] of the quantum point contact and the interface resistance of a single
contact: Rq = h

e2
1−D
D + h

2e2
. Since the capacitance is constant when 2eVexc = ∆, the escape time

in the charge emission regime is given by:

τ =
h

∆

(
1

D
− 1

2

)
(1.49)

This simple formula is consistent with the numerical computations of the scattering model
(see Fig.1.10), and allows us to precisely reproduce the experimental data by extracting the exact
QPC transmission law as a function of the QPC gate voltage.

1.4.2 Heuristic model

In order to gain a better comprehension of the physics of the single electron source in the anti-
resonant case (φ0 = 0), we present a heuristic numerical model describing the device as a perfect
single electron source. This simple semiclassical model was introduced by Adrien Mahé [68]
in order to interpret the noise measurements presented in [63]. Although its main interest is
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Figure 1.10: Calculated escape time as a function of the QPC transmission. The black
line corresponds to the escape time given by the formula τ = Rnlq C

nl
q . The blue circles

correspond to Eq.1.49. For low transmissions, the escape time becomes larger than
the half-period T /2.

to provide a complete understanding of the physical processes giving rise to the di�erent noise
regimes (see chapter 2), we present it in this chapter since it supports the description of the
device in terms of RC-circuit elements. The principle of this model is as follows: we restrict the
number of electrons in the dot to either 1 or 0 (thus e�ectively considering a single-level dot).
When an electron is inside the dot, it performs circles along the edges of the dot, each one in
a time τ0. At each turn, the electron can escape the dot with a probability b. The half-period
of the excitation drive is divided in a large number of turns N (typically, N ≈ 60 to mimic our
experiments). Single charge emission is enforced by prohibiting any additional charge transfer
process within the half-period after an electron is emitted. After N time units τ0, the other
half-period of the excitation drive sets in, and an electron can be absorbed in the dot with a
probability b per unit time τ0 only if the electron was emitted in the previous half-period. Only
a single absorption process can take place during this half-period, and all other processes are
prohibited. This de�nes a sequence in which during a period of the excitation drive, a single
electron can be emitted if the dot was previously occupied, and a single hole can be emitted only
if the electron has escaped. The repetition of this sequence generates an AC current comprised
of peaks/dips whenever an electron/hole is emitted, see Fig.1.11; for low probabilities b, charges
may not have enough time to escape within one half-period, and the peaks/dip appear semi-
randomly (Fig.1.11a), each peak being followed some time after by a dip, thus enforcing net
charge conservation on the dot. When b is increased, charges are systematically emitted with
an uncertainty on the emission time illustrated by the distribution of the peaks/dips within a
period, see Fig.1.11b. This randomness on charge emission is put into light when taking the
statistical average of the current, that is the average AC current emitted by the system (see
Fig.1.11c and d): the average AC current presents series of exponential decays described in the
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Figure 1.11: AC current emitted by the source, calculated with the heuristic model.
a) and b) emitted current as a function of time for escape probability b = 0.01 (a),
and b = 0.2 (b). A peak (dip) appears whenever an electron (hole) is emitted. c) and
d) statistical average of the current displayed on one period of the drive, for b = 0.01
(c), and b = 0.2 (d). The calculations (black lines) display the expected exponential
decay with a characteristic time given by τ = τ0(1/b− 1/2).

introduction at each half-period, which are expected for a RC-circuit.

The escape time is given by the characteristic decay time of the current, and we �nd a good
agreement with the formula similar to Eq.1.49: τ = τ0(1/b− 1/2), see Fig.1.12. The agreement
with the previous formula is not quite as good for large probabilities b, where the escape time
becomes comparable and smaller than the time unit τ0. This is not surprising, since we expect
singularities for escape times smaller than the time unit: the current then cannot be treated as
a continuous variable anymore.

The average transfered charge per half-period is fairly easy to compute: Qt = e×tanh(1/4f0τ).
As expected, it becomes quantized for short escape times. This expression can be compared with
the average transfered charge Qt in a RC circuit driven by a square voltage with an amplitude
Vexc:

Qt = 2VexcCtanh(
1

4f0τ
) (1.50)

In Fig.1.13, we have plotted the average transfered charge per half-period in the model, given by
the integral of the average AC current on one half-period, as a function of tanh( 1

4f0τ
), where the

drive frequency is equal to (2Nτ0)−1, and the escape time τ is extracted from the exponential
decay. All the calculated points fall on the line given by Eq.1.50. This allows us to de�ne the
capacitance of the circuit, given by the slope of the line: C = e/2Vexc = e2/∆. This capacitance
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Figure 1.12: Escape time, given by the characteristic time of the exponential decay in
the average current, versus 1/b − 1/2 (corresponding to the expression of the escape
time given in Eq.1.49), in the heuristic model. The red line has a unit slope.
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Figure 1.13: Average transfered charge per half-period versus tanh(1/4f0τ), in the
heuristic model. The red line has a unit slope, thus verifying Eq.1.50.

is constant, which con�rms the result presented for the scattering model.
In conclusion, the heuristic model supports the description of the sample in terms of RC-

circuit elements, since it reproduces the exponential decays in the average current, as well as
the variation of the average transfered charge with the escape time. Furthermore, it exactly
reproduces the results of the scattering model for 2eVexc = ∆, particularly the escape time,
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provided one makes the following links between the two models:

τ0 =
h

∆

b = D

(1.51)

These relations are rather intuitive: the time unit τ0 has the exact same de�nition in the two
models (see 1.1.2), and the escape probability b is the semi-classical equivalent of the square of
the tunneling amplitude, that is the QPC transmission D.

This model will be extremely useful in the next chapter, where we study the �uctuations of
the emitted current.

1.4.3 Experimental results

We now describe the experimental results obtained in the non-linear regime. We �rst brie�y
present time-domain measurements performed on a di�erent sample by Gwendal Fève and Adrien
Mahé [11, 68], and described in [71]. We then present measurements of the �rst harmonic of the
average current emitted for sample S528-11 , which con�rms the theoretical results described in
the previous section, particularly the quantization of AC current in the injection regime.

1.4.3.1 Time domain

In this paragraph, we brie�y describe the time-domain measurements performed by Gwendal
Fève and Adrien Mahé on sample E3 (see samples parameters in appendix B). In order to
measure the average AC current as a function of time, the excitation frequency is set to 32MHz.
The current is recorded and averaged in real time using a Acqiris AP240 fast acquisition card
with a 500ps time resolution. Although this resolution is too small to probe the coherent wave
packets emitted by the source, this measurement corroborates the description of the sample in
terms of RC-circuit elements.

Details on the measurement protocol are given in [71]. The excitation drive is used to trigger
the acquisition of the signal, which is averaged over a large number (typically 108) of periods.
We use the parasitic signal, modeled as a pure capacitive coupling, to deconvolute the e�ects of
the �nite bandwidth on the measurements.

Results are presented in Fig.1.14, and demonstrate the expected exponential decay of the
current as a function of time. The decay time gives access to the escape time which is modulated
by changes in the QPC transmission over an order of magnitude. These results also demonstrate
that the RC-circuit description of the sample is still valid in regimes where Ωτ ≈ 1. Furthermore,
while the amplitude of the traces depicted in Fig.1.14b) and c) di�er because the QPC trans-
mission varies from almost zero (b) to almost one (c), we have shown in [71] that the integral of
the current over one half-period, that is the average transfered charge, remains constant as long
as the escape time τ is signi�cantly smaller than the period 2π/Ω ≈ 30ns, which is compatible
with the periodic emission of single charges.

Although we did not reproduce these measurements for sample S528-11, the measurements
performed on sample E3 both validate the RC-circuit description of the system even in regimes
where the escape time is comparable with the drive period, and demonstrate the quantization of
the emitted charge when all harmonics of the average current are considered. A more quantitative
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Figure 1.14: Measured average AC current as a function of time, for sample E3.
Black lines correspond to experimental data measured at several values of the QPC
gate voltage. Blue lines correspond to exponential �ts.

indication of single charge emission is given by the measurements of the �rst harmonic presented
below.

1.4.3.2 First harmonic

We now present measurements of the �rst harmonic of the average AC current in the non-linear
regime obtained on sample S528-11. We used the homodyne measurement technique presented
in 1.2.

• Global phase tuning
As mentioned in 1.2 and 1.3.2.1, the homodyne detection measures the two quadratures of the
�rst harmonic of the average current, rotated by a phase due to the propagation of the signal in
the measurement lines.

A �rst method for tuning the global phase in the linear regime is presented in 1.3.2.1; we
have mentioned that the properties of the non-linear regime o�er a more e�cient protocol that
was used for sample S528-11 . Indeed, in the injection regime, the sample can be described as
the series association of a constant capacitance C = e2/∆ and a resistance which varies between
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Figure 1.15: Nyquist diagram of the measured current at 1.5GHz, for 2eVexc = ∆.
Since the capacitance of the sample is constant and equal to e2/∆ while the resistance
varies, the Nyquist diagram of the current is given by a circle centered on (0, ef0)
(black line). We present three di�erent phase tunings, separated by 4◦.

h/2e2 and in�nity. The Nyquist diagram of the current as the transmission varies is therefore
given by a circle with a radius ef0 centered on (0, ef0). In order to tune the global phase, we �rst
determine the injection voltage Vexc = ∆/2e, for which the capacitance oscillations presented in
1.3.2.2 vanish: when the driving amplitude exactly compensates the level spacing, the current
becomes independent of the transmission and the dot equilibrium potential, i.e. independent of
the QPC gate voltage Vg. We then plot the Nyquist diagram of the current and try to align it
with the circle de�ned above.

The results of the phase tuning at 1.5GHz are shown in Fig.1.15. Since the level spacing
varies slightly as Vg changes, the excitation amplitude Vexc does not exactly compensate the
level spacing for all values of the QPC gate voltage. It is therefore di�cult to perfectly align
the measured signal on the circle: the blue curve in Fig.1.15 seems better for high transmissions
(upper part of the circle), whereas the black curve suits the low transmissions better. It however
presents a negative real part, which is not compatible with the RC-circuit model. We therefore
use the phase tuning of the black curve (upper panel). The error on the phase tuning is estimated
to ±2◦, which corresponds to an error on the escape time of about 5ps for large transmissions.
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• AC current quantization

We have plotted the modulus of the �rst harmonic of the current as a function of the QPC
gate voltage for several values of the excitation amplitude in Fig.1.16. When 2eVexc ≈ ∆, the
current is zero for large negative Vg be cause the escape time is much larger than the half-period
(pinch-o�). As Vg increases, the current rises, the becomes independent of Vg for large enough
transmissions. It slightly increases and presents small oscillations for small negative gate voltages
because the level spacing diminishes at high transmissions. This can be qualitatively understood
by the fact that the shape of the dot changes with the QPC gate voltage: when the electrostatic
repulsion due to the QPC gates diminishes, the dot widens and the level spacing due to orbital
con�nement becomes smaller. This e�ect, which was not observed in former samples, may be due
to the fact that the dot in sample S528-11 is rather small, its width (600nm) being comparable
to the distance between the two QPC gates (approx. 350nm).'
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Figure 1.16: Modulus of the �rst harmonic of the average AC current as a function of
Vg, for several values of Vexc. The conductance oscillations vanish when 2eVexc = ∆.

The oscillations observed at lower excitation voltages appear again for excitation voltages
larger than the injection voltage, with a π-phase shift. The peaks of the oscillations at lower
excitation, which become dips at larger excitation, correspond to the anti-resonant case, noted
φ0 = 0, where the active energy level is shifted far away (±∆/2) from the Fermi energy. In this
injection regime, we expect the current to be quantized, which is illustrated in the measurements
by the fact that the value of the current in the peaks for Vexc < ∆/2e and in the dips for
Vexc > ∆/2e is quite close to the one obtained when Vexc = ∆/2e. This qualitative agreement
with the theory allows us to calibrate the measured current, and set the value of the current for
Vexc = ∆/2e to 2ef0. These measurements have however put into light another discrepancy of
sample S528-11 with the model: indeed, we were not able to adjust the current in the non-linear
regime with the QPC transmission law extracted from the linear regime. This variation of the
transmission with the excitation amplitude may also be related to the size of the dot: this e�ect
was not observed in sample E3, which had a level spacing of about 2.5K (dot width: 1µm).
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1.4. Average AC current in the non-linear regime

The energy shifts considered in sample S528-11 are therefore almost two times larger, and thus
become signi�cantly larger than the usual energy scales considered for quantum point contacts.'

&

$

%

Figure 1.17: Observation of AC current quantization for sample S528-11 . The dots
correspond to the experimental data, for di�erent values of Vg; the lines correspond to
the calculations using the scattering model, for a �xed transmission 0.47 in the upper
panel, and 0.8 in the lower panel. The curves join at the value 2ef0 when 2eVexc = ∆.
The dotted line in the upper panel corresponds to the value of the current given by
an independent calibration of the homodyne detection.

A more quantitative comparison between experimental data and theory can be made when
considering the variation of the �rst harmonic as a function of Vexc for a �xed QPC gate voltage.
The results, presented in Fig.1.17, display the characteristic quantization plateaus described in
1.4.1.2. The plateaus are, as expected, less pronounced when the transmission increases, while all
the curves corresponding to di�erent values of the dot equilibrium potential join at the quantized
value 2ef0 when the excitation amplitude compensates the level spacing. The value of the current,
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given by the theory, is in reasonable agreement (within ∼ 10%, see dotted line Fig.1.17) with
an independent calibration of the gain of the homodyne detection (described in [68]). Due to
the variation of the transmission with the excitation voltage, we cannot adjust the experimental
data using a simple transmission law: the transmission varies from 0.27 in the linear regime to
0.47 in the injection regime for the �rst set of data, and from 0.75 to 0.9 in the second set. The
agreement between the experimental data and a theory using a �xed transmission (0.47 for the
�rst set, 0.8 for the second) is still reasonable, thus demonstrating that beyond its discrepancies
with an ideal quantum point contact model, sample S528-11 veri�es the theoretical predictions
for both the linear and non-linear regimes, particularly the quantization of AC current in units
of 2ef0, corresponding to the periodic emission of a single electron followed by a single hole.'
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Figure 1.18: Two-dimensional plot of the �rst harmonic, as a function of Vg and
Vexc. The upper panel corresponds to experimental data, the lower panel corresponds
to calculations using a QPC transmission law extracted from the non-linear regime:
∆V = 4.5mV , Vg0 = −334.5mV . Both panels present white diamonds on which the
current is quantized in units of 2ef0.

The properties of the modulus of the �rst harmonic can be summarized in a two-dimensional
plot of the current versus the excitation amplitude Vexc and the QPC gate voltage Vg, presented
in Fig.1.18: both experimental and theoretical data present white diamond-like structures, which
correspond to the plateaus where the current is quantized and equal to 2ef0. The sharpness of
diamonds is related to the accuracy of the quantization; this representation therefore allows to
immediately locate the optimal operating conditions of the single electron source, which are given
by the center of the sharpest diamonds. In these conditions, the source emits single charges at
a well de�ned energy far above the Fermi level. As the transmission increases, the quantization
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1.4. Average AC current in the non-linear regime

is gradually lost and the diamonds fade into a linear dependence of the current with the driving
amplitude. The qualitative agreement between theory and experiment once again demonstrates
that the scattering model is well-suited to describe the sample, and seems to be mainly limited
by the behavior of the quantum point contact as a function of the extrinsic parameters of the
system. We will show in the following paragraph that the exact transmission variation law can
be rather simply extracted from the measurements, at least in the non-linear regime.

• Escape time and average transfered charge
The escape time, given by Rnlq C

nl
q , can be extracted from the measurements by calculating the

ratio between the real and imaginary part of the �rst harmonic. This ratio is equal to Ωτ ,
and therefore yields the escape time in units of the half-period when divided by π. Besides the
obvious interest of studying its variation with the QPC transmission, the escape time is useful to
extract the average transfered charge over one half-period which we de�ne with the RC-circuit
model. When combining Eq.1.50 with the expression of the conductance in the non-linear regime
given in Eq.1.47, it yields:

Qt = 2VexcCtanh

(
1

4f0τ

)

=
π

Ω
|IΩ|

√
1 + Ω2τ2tanh

(
2π

4Ωτ

) (1.52)

The knowledge of the two quadratures of the �rst harmonic of the current therefore allows
us to determine both the escape time and the average transfered charge.'
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Figure 1.19: Escape time and average transfered charge as a function of Vg, for
2eVexc = ∆. The red dashed line corresponds to simulations using the ideal non-linear
QPC transmission law. Discrepancies appear at smaller negative voltages, where the
ideal transmission law does not exactly reproduce the experimental data.

We have plotted the escape time and the average transfered charge extracted from the mea-
surements on sample S528-11 at 1.5GHz in Fig.1.19 (2eVexc = ∆). The theoretical adjustment
of the escape time was done using the de�nition of τ given in Eq.1.49, combined with the ideal
QPC transmission law used to calculate the current measurement in the non-linear regime (QPC
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opening width ∆V = 4.5mV , half-transmission voltage Vg0 = −334.5mV ). The agreement is
once again reasonable; in order to completely reproduce the measurements as a function of Vg,
one needs to precisely know the QPC transmission law, which signi�cantly di�ers from the ideal
Fermi function-like law for strong driving amplitudes. It is possible to extract the exact QPC
transmission law from the escape time by reverting Eq.1.49. We will use this transmission law
to adjust the noise measurements presented in the next chapter.

The optimal operating conditions of the source, de�ned by the sharpest diamonds in Fig.1.18,
correspond to the zone in Fig.1.19 where the average transfered charge becomes equal to e while
the escape time varies between∼ 0.5 T /3 and∼ 0.5 T /10, where T is the period of the excitation.

1.5 Validity of the model

In this last section of chapter 1, we discuss the validity of the scattering model in the light of our
experimental results. The main issue discussed here is the description of the density of states in
the dot, related to the trajectories of electrons visiting the dot. In our model, we have supposed
that electrons visiting the dot propagate on a closed trajectory given by the edges of the dot.
This gives rise to an orbital level spacing de�ned in Eq.1.17: ∆ = h

τ0
, where τ0 is the time

needed by an electron to perform a full turn in the dot. We neglect the e�ect of the interactions;
however, in the model previously expanded by Gwendal Fève [11], the e�ects of interactions in
the dot are taken into account by adding to the level spacing a charging energy contribution
Ec, which was found to be small compared to the orbital level spacing. Indeed, the samples are
engineered in order to maximize the geometrical capacitance: the dot is almost entirely covered
by the top gate, as described in the introduction. Several theoretical models have been proposed
[75, 76, 72] in order to include the e�ects of interactions in the linear regime, but a model fully
including interactions in the non-linear regime has yet to be developed.

The hypothesis of a quantum dot presenting a large orbital level spacing and a charging
energy smaller or comparable is validated in a rather naive way by calculating an approximation
of the orbital level spacing from the sample geometry: for a circular dot with a diameter d = 1µm,
and a typical value of drift velocity in III-V two-dimensional electron gases vd ≈ 2 × 105ms−1,
we �nd an orbital level spacing ∆ = h

τ0
= hvd

πd ≈ 3K. This value is quite comparable with the
measured level spacings: 2K for sample E3, 4.2K for sample S528-11 . The charging energy can
be estimated through the geometrical capacitance Cg = ε0εrS/d, where S is the surface of the
dot, d the distance between the dot and the top gate, and εr ≈ 12.8 is the relative permittivity
of GaAs. For the typical circular dot mentioned above, with d = 100nm, we have Cg ≈ 0.9fF ,
that is Ec ≈ 2K.

A more quantitative justi�cation of our hypothesis consists in comparing the variation of
the escape time as a function of the excitation amplitude between our model and its opposite
where the quantum dot has a uniform density of states and a large charging energy Ec. It
was shown [77] in this type of metallic-like quantum dots that the tunneling rate from the

dot to the leads is proportional to (∆E/Ec)/(e
∆E
kBT − 1), where ∆E is the di�erence between

the electrochemical potential of the leads and the electrochemical potential of the dot. At low
temperature (T � ∆E,Ec), this relation is essentially linear, which implies that the escape time
varies as the inverse of the excitation voltage. Fig.1.20 shows the variation of the escape time
as a function of Vexc, extracted from the results presented in Fig.1.18, for both the model and
the experiment. As it turns out, the variation of the escape time depends greatly on the dot
equilibrium potential: in the anti-resonant case (φ0 = 0), the escape time slowly decreases with
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Figure 1.20: Escape time as a function of Vexc. a) Experimental data, measured for
several values of Vg. The dashed line in the upper panel is the calculated value of the
escape time for the estimated transmission D = 0.43 at φ0 = 0. Lower panel: �ts
(dashed lines) of the experimental data (hollow dots) at φ0 = 0 with the metallic dot
formula. The green dashed line yields an electronic temperature equal to 2.6K. For
the blue dashed line, the temperature is �xed at 100mK. b) Numerical calculations
of the scattering model. Upper panel: the transmission is �xed at 0.43. Lower panel:
the transmission is estimated using the value of the escape time at 2eVexc = ∆.
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Vexc, whereas in the resonant case (φ0 = π), the escape time is small at low excitation1, then
suddenly rises above the value at φ0 = 0 when Vexc reaches ∆/2e, and slowly decreases for larger
excitations. This behavior is well reproduced by the scattering model for φ0 = 0; however, the
increase of the escape time at φ0 = π above its value at φ0 = 0 can only be reproduced with
the scattering model by assuming a variation of the transmission with φ0. This discrepancy is
directly related to the oscillations in the escape time shown in Fig.1.19. Nevertheless, it is not
possible to reasonably adjust any of the curves with the metallic case formula: an approximative
�t of the experimental data (green dashed line) yields an electronic temperature Tel = 2.6K
comparable to the level spacing, which is not compatible with the temperature deduced from
the calibration Tel ≈ 70mK. The experimental data can only be adjusted by increasing the
temperature so as to make the density of states uniform, thus proving the incompatibility of the
metallic-like quantum dot description for our samples.

These two considerations show that the experimental data are well reproduced by a model
where interactions are neglected: since we expect the charging energy to be comparable or smaller
than the orbital level spacing, it is reasonable to describe our results using the level spacing ∆,
where the interactions only renormalize its value.

The other discrepancies with the proposed model are mostly sample dependent; the most
cumbersome, such as extremely irregular density of states or double quantum dot structures
may be ruled out by careful sample post-selection. In samples presenting smaller orbital level
spacings, the charging energy cannot be neglected, as it was the case for sample E3 studied by
Gwendal Fève. The description of the dot as an e�ective two-level system in the presence of
interactions [11] allows to take into account the observed deviations.

1The standard deviation of the measurements are however rather large for these values of the excitation
amplitude, because both real and imaginary part of the �rst harmonic are almost zero.
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Conclusion of chapter 1

In this chapter, we have described the basic properties of the average AC current emitted by a
mesoscopic capacitor. We have �rst provided a theoretical description of the mesoscopic capac-
itor using a scattering formalism based on a Floquet scattering matrix. This approach di�ers
from the one developed by my predecessors, and allows the consideration of systems presenting
several time-dependent potentials, such as as two-electron interferometry in the Hong-Ou-Mandel
geometry using two distinct single electron emitters.

The presented experimental results obtained on sample S528-11 are in very good agreement
with the model, and allow to extract all the parameters describing the energy spectrum of the
dot. Furthermore, the results put into light the quantization of the �rst harmonic of the average
AC current in units of 2ef0, corresponding to the periodic emission of a single electron followed
by a single hole. In addition to providing a full characterization process for our samples, the
study of the average AC current demonstrates that the mesoscopic capacitor in the non-linear
regime can be used as a single electron source, therefore paving the way to single-charge electron
quantum optics.
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Introduction of chapter 2

The study of the average AC current presented in the previous chapter demonstrates the quanti-
zation of AC current in units of 2ef0, corresponding to the periodic emission of a single electron
followed by a single hole. The mesoscopic capacitor therefore acts on average, when driven in
the non-linear regime, as a single electron emitter, thus enabling single charge electron quantum
optics experiments.

Similarly to single photon sources used in quantum optics, it is then necessary to study the
current �uctuations emitted by the source. This serves several purposes; the most obvious one
is the characterization of the accuracy of single particle emission, in order to rule out any other
charge transfer process generating an average current equal to 2ef0. Indeed, one might naively
consider a situation where two electrons are emitted during one period, and none during the next
period, which would still correspond on average to the emission of one electron at each period.
The generation of additional electron-hole pairs within one half-period of the drive, would also
yield the same average transfered charge per half-period, and thus cannot be detected by average
current measurements. They are however natural excitations of a Fermi sea, and would as well
diminish the accuracy of single particle injection, thus jeopardizing the realization of electron
quantum optics experiments. In this respect, going beyond average quantities and studying the
correlation of the current �uctuations introduces conceptual tools which, in analogy with intensity
correlation measurements commonly performed in quantum optics, are the dedicated tools for
probing the outcome of single charge electron quantum optics experiments. It is therefore natural
to develop these tools on the basic building block of single-charge electron quantum optics, that
is the single electron emitter. Finally, such a study has a fundamental interest in the �eld
of quantum noise, for it unveils the crossover between shot noise (or charge noise), where the
number of emitted charges per half-period is �uctuating, and a regime of phase noise, where a
single charge is systematically emitted at each half-period, while a �nite noise arises because of
the quantum uncertainty on the emission time.

In this chapter, we focus on the direct autocorrelation of the current �uctuations generated by
the source, without partition on a beam splitter. This is somewhat di�erent from quantum optics,
where intensity correlations are usually measured in a Hanbury-Brown and Twiss con�guration.
Indeed, while cross-correlation and autocorrelation probe the same physical processes in quantum
optics (mainly, photon antibunching at zero time interval for ideal single photon sources [60, 61]),
the implementation of the latter is more challenging because one has to overcome the �nite
temporal resolution of photon detectors [78]. In our case, the autocorrelations are on the contrary
more easily implemented, because they do not require the additional Quantum Point Contact
used as the beam splitter in the HBT con�guration mentioned in the introduction. Furthermore,
we will show in the next chapter that the understanding of the direct autocorrelations is crucial
for the complete analysis of the results of the HBT experiment.

Conservation of the average charge on the dot implies that a hole is always eventually emitted
after an electron is emitted. The current generated by the source has therefore no zero-frequency
part: we study the noise of the single electron emitter at frequencies around the driving frequency
f0 = 1.5GHz. We �rst discuss general considerations on high frequency noise generated by a
periodic excitation. We then present two theoretical descriptions of the noise, in continuity with
the scattering and heuristic models presented in the previous chapter; we �nally compare the
results yielded by the two models with noise measurements performed on sample S528-11 , using
the high sensitivity microwave noise measurement setup described in chapter 4. These results
demonstrate that in ideal operating conditions, the noise reduces to a fundamental noise regime,
called quantum jitter, which is the signature of periodic single charge emission. In this regime, a
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single charge is systematically emitted at each half-period and charge noise is suppressed. The
residual noise arises from quantum �uctuations in the emission time, leading to a jittering of
the emitted current. The measurement of the reduction of the noise to the quantum jitter is
the single-charge electron quantum optics analog of the absence of photon bunching at zero time
interval for ideal single photon sources.
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2.1 Current correlations under periodic driving

The �uctuations of a stationary current around its mean value are usually determined by its
successive moments. The second moment particularly describes the power of the �uctuations:
∆I2 =< (I− < I >)2 >. Gaussian �uctuations are entirely described by the second moment;
in the case of non-Gaussian �uctuations however, the study of higher moments is relevant,
experimentally as well as theoretically. We will �rst consider the case of classical currents,
focusing on the second moment of the �uctuations, which is related to the autocorrelation of the
current �uctuations C(t, t′):

C(t, t′) =< δI(t)δI(t+ t′) > (2.1)

In the case of a stationary current, C(t, t′) depends only on the time di�erence t′, and is there-
fore equal to < δI(0)δI(t′) >. We can then focus on the spectrum of these �uctuations, de�ned
by the power spectral density which is equal to the Fourier transform of the autocorrelation:

S(ω) = 2

∫
dt′ < δI(0)δI(t′) > eiωt

′
(2.2)

The factor 2 allows us to restrict on positive values of the frequency ω.

In our case, the current is generated by a single electron emitter driven at a �nite frequency
Ω, and is therefore non-stationary. C(t, t′) depends then on both times t and t′; for a �xed t′,
C(t, t′) is furthermore T = 2π/Ω-periodic, and can be decomposed as a Fourier series [79, 80]:

C(t, t′) =
∑
l

Pl(t′)eilΩt (2.3)

The second moment is therefore time-dependent and presents harmonics at multiples of the
driving frequency Ω. In analogy with the �uctuations of a stationary signal, we focus on the
mean value of the power of the �uctuations, that is the mean value of the second moment, given
by the term l = 0. We therefore de�ne the mean power spectral density for a non-stationary
current:

S(ω) = 2

∫
dt′< δI(t)δI(t+ t′) >

t
eiωt

′
= 2P0(ω) (2.4)

where · · ·t de�nes the average over time t and Pl(ω′) is the Fourier transform of Pl(t′). We
can now generalize Eq.2.4 for a quantum system by replacing the statistical average < ... > by
the quantum average of the current operators de�ned in 1.1.4.

• Emission and absorption noise
We have de�ned above the power spectral density of current �uctuations for positive frequencies.
Since S(ω) is symmetric for classical currents, the above de�nition does not imply any loss of
generality. It is however not the case for quantum signals, because the current operators Î(t) and
Î(t+ t′) do not usually commute. We therefore need to separately consider negative and positive
values of ω. We de�ne the emission noise power spectral density S+(ω) for positive frequencies2:

2This convention is the opposite of the one used in [81, 82], where the emission noise is de�ned for negative
frequencies.
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S+(ω) = 2

∫
dt′< δÎ(t)δÎ(t+ t′) >

t
eiωt

′
(2.5)

The absorption noise power spectral density S−(ω), for positive frequencies as well, is then
given by:

S−(ω) = 2

∫
dt′< δÎ(t+ t′)δÎ(t) >

t
eiωt

′

= 2

∫
dt′< δÎ(t)δÎ(t+ t′) >

t
e−iωt

′

= S+(−ω)

(2.6)

These two power spectral densities are usually discriminated using a quantum spectrum
analyzer [82], such as Josephson junctions [83, 84, 85]. We show however in appendix A.4 that
because of both the geometry of the sample and the measurement process described in 1.2.3,
where the current at the pinch-o� is subtracted in order to isolate the signal of the source, the
emission and absorption noise are equal in our experiment. In the following sections, we shall
therefore use the quantum equivalent of Eq.2.4 without discriminating emission and absorption
processes.

2.2 Scattering model

2.2.1 Current operators

In this section, we derive an expression for the power spectral density of the current �uctuations
emitted by the source in the three-terminal geometry, using the expressions of the current op-
erators de�ned in 1.1.4. For this purpose, we recall the notations for the current operators in
Fig.2.1: Îb(t) �ows form the dot to contact (1), and Îc(t) �ows from contact (1) to contact (2).
The measured current Î1(t) is therefore equal to Î1(t) = Îb(t)− Îc(t).'

&

$

%Figure 2.1: De�nition of the current operators.

Let us �rst focus on the correlation of the measured current < Î1(t)Î1(t + t′) >. For more
clarity, we write Î(1,b,c)(t) = Î(1,b,c) and Î(1,b,c)(t+ t′) = Î

′

(1,b,c). With this notation, < Î1(t)Î1(t+

t′) > becomes:
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Chapter 2. Current �uctuations emitted by the source

< Î1Î
′
1 > = < ÎbÎ

′
b − ÎbÎ

′
c − ÎcÎ

′
b + ÎcÎ

′
c >

= < ÎbÎ
′
b > − < ÎbÎ

′
c > − < ÎcÎ

′
b > + < ÎcÎ

′
c >

(2.7)

Following the expressions of Îb and Îc given in Eq.1.23 and 1.24, the terms < ÎbÎ
′
c > and

< ÎcÎ
′
b > contain combinations of the creation/annihilation operators b̂†, b̂, ĉ†, ĉ. Because b̂†, b̂

and ĉ†, ĉ are independent, the cross terms < b̂†ĉ > (and any other combination of both b̂ and ĉ)
vanish, leaving only the two direct terms < b̂†b̂ > and < ĉ†ĉ >. The cross-correlation of currents
Îb and Îc does not take part in the noise, since:

< ÎbÎ
′
c > = < Îb >< Î

′
c >

< ÎcÎ
′
b > = < Îc >< Î

′
b >

(2.8)

As a result, only < ÎbÎ
′
b > and < ÎcÎ

′
c > contribute to the correlation of the �uctuations

< δÎ1δÎ
′
1 >. Furthermore, the term < ÎcÎ

′
c >, which gives rise to the thermal noise of the edge

channel �owing from contact (1) to contact (2), is independent of the QPC transmission D, and
therefore vanishes when the reference is subtracted. We thus only measure the autocorrelation
of the �uctuations of Îb, which are given by the cross terms in < ÎbÎ

′
b >.

2.2.2 Calculation of the current autocorrelation

Keeping only the contribution of current Îb, the power spectral density of the current �uctuations
emitted by the source is given, following Eq.2.4, by:

S(ω) = 2

∫
dt′< δÎb(t)δÎb(t+ t′) >

t
eiωt

′

= 2

∫
dt′(< Îb(t)Îb(t+ t′) > − < Îb(t) >< Îb(t+ t′) >)

t
eiωt

′

(2.9)

Let us expand the �rst term of this equation, using Eq.1.23:

2

∫
dt′< Îb(t)Îb(t+ t′) >

t
eiωt

′
= 2

e2

h2

∫
dt′dε1dε2dε3dε4 < b̂†(ε1)b̂(ε2)b̂†(ε3)b̂(ε4) >

ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~+ω)t′
(2.10)

Applying Wick's theorem allows us to isolate the terms contributing to the noise in this
equation:

< b̂†(ε1)b̂(ε2)b̂†(ε3)b̂(ε4) >=< b̂†(ε1)b̂(ε2) >< b̂†(ε3)b̂(ε4) > + < b̂†(ε1)b̂(ε4) >< b̂(ε2)b̂†(ε3) >

(2.11)

The direct term < b̂†(ε1)b̂(ε2) >< b̂†(ε3)b̂(ε4) > vanishes when the correlation < Îb >< Î
′
b >

is subtracted in Eq.2.9. S(ω) is therefore given by:

S(ω) = 2
e2

h2

∫
dt′dε1,2,3,4 < b̂†(ε1)b̂(ε4) >< b̂(ε2)b̂†(ε3) > ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~+ω)t′

(2.12)

60



2.2. Scattering model

We now express the operators b̂(ε) as a function of the incoming operators â(ε′) using Eq.1.15.
With the notation ε+m~Ω ≡ ε+m used in chapter 1, we have:

< b̂†(ε1)b̂(ε4) > =
∑
m1,m4

U∗m1
(ε1)Um4(ε4) < â†(ε1 +m1)â(ε4 +m4) >

=
∑
m1,m4

U∗m1
(ε1)Um4(ε4)f(ε1 +m1)δ(ε1 +m1 − (ε4 +m4))

(2.13)

< b̂(ε2)b̂†(ε3) > =
∑
m2,m3

Um2(ε2)U∗m3
(ε3) < â(ε2 +m2)â†(ε3 +m3) >

=
∑
m2,m3

Um2(ε2)U∗m3
(ε3)(1− f(ε2 +m2))δ(ε2 +m2 − (ε3 +m3))

(2.14)

This yields, after performing the average over t in Eq.2.12:

S(ω) = 2
e2

h2

∑
m1,m2,m3

∫
dt′dε1,2U

∗
m1

(ε1)Um1+m3−m2(ε1 +m2 −m3)

×Um2(ε2)U∗m3
(ε2 +m2 −m3)f(ε1 +m1)(1− f(ε2 +m2))ei((ε2−ε1)/~+ω)t′

(2.15)

The integral over t′ being equal to hδ((ε2 − ε1)/~ + ω), we have, after the variable substitution
ε = ε1 +m1:

S(ω) = 2
e2

h

∑
m1,m2,m3

∫
dεU∗m1

(ε−m1)Um1+m3−m2(ε−m1 +m2 −m3)

×Um2(ε−m1 − ~ω)U∗m3
(ε−m1 +m2 −m3 − ~ω)

×f(ε)(1− f(ε−m1 +m2 − ~ω))

(2.16)

The successive variable substitutions m = m2 −m1 and m̃1 = m3 −m yield:

S(ω) = 2
e2

h

∑
m1,m̃1,m

∫
dεU∗m1

(ε−m1)Um1+m(ε−m1 − ~ω)

×Um̃1(ε− m̃1)U∗m̃1+m(ε− m̃1 − ~ω)f(ε)(1− f(ε+m− ~ω))

(2.17)

The sums over m1 and m̃1 are complex conjugates; we thus can write a compact expression
of the power spectral density of the current �uctuations emitted by the source:

S(ω) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

U∗n(ε− n~Ω)Un+m(ε− n~Ω− ~ω)

∣∣∣∣∣
2

f(ε)(1−f(ε+m~Ω−~ω))

(2.18)

As in the previous chapter, we can expand this expression as a function of the cn coe�cients
and the stationary scattering matrix U0(ε), with ~Ω = 1, and ~ω ≡ ω (the obtained expression
is then strictly equivalent to the one obtained in Adrien Mahé's thesis [68] using the gauge
transformation mentioned in the previous chapter, see appendix A.3.2):

S(ω) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

c∗n+mcnU
0∗(ε+ n)U0(ε+ n− ω)

∣∣∣∣∣
2

f(ε−m)(1− f(ε− ω))

(2.19)
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Chapter 2. Current �uctuations emitted by the source

• zero and unity transmission limits
For D = 0 and D = 1, the stationary scattering matrix U0(ε) is constant and equal to unity.
Eq.2.19 therefore yields:

S(ω)D=0,D=1 = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

c∗n+mcn

∣∣∣∣∣
2

f(ε−m)(1− f(ε− ω))

= 2
e2

h

∑
m

∫
dεδm,0f(ε−m)(1− f(ε− ω))

= 2
e2

h

∫
dεf(ε)(1− f(ε− ω))

(2.20)

The noise is therefore equal to the equilibrium noise of an edge channel at frequency ω. The
similarity between the limitsD = 0 andD = 1 is explained by the fact that at unity transmission,
the dot only acts as an additional length of edge channel, and therefore does not contribute to
the noise.

• Zero-frequency limit
When ω = 0, the product of the stationary scattering matrices U0∗(ε+n)U0(ε+n−ω) becomes
unity, so that Eq.2.19 yields:

S(ω = 0) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

c∗n+mcn

∣∣∣∣∣
2

f(ε−m)(1− f(ε))

= 2
e2

h

∑
m

∫
dεδm,0f(ε−m)(1− f(ε))

= 2
e2

h

∫
dεf(ε)(1− f(ε))

(2.21)

We thus recover the equilibrium noise at zero frequency, which vanishes at zero temperature.
More importantly, since we focus on the excess noise with respect to the reference D = 0, its
value at zero frequency is given by the di�erence between the expression given in the last equation
and the expression obtained for the D = 0 limit in Eq.2.20, with ω = 0: the excess noise vanishes
at zero frequency.

2.2.2.1 Symmetry of the excess noise with the measurement frequency

When numerically computing S(ω), we will always subtract its value at D = 0, correspond-
ing to the subtracted reference mentioned above. One can then show (see appendix A.4) that
∆S(+ω) = S(ω) − S(ω,D = 0) = ∆S(−ω): the combination of the three-terminal geometry
and the subtraction of the reference implies that the emission and absorption noises of the sin-
gle electron source are equal. The importance of the three-terminal geometry can be viewed
as an out-of-equilibrium generalization of the formula proposed by Lesovik and Loosen [86] for
stationary signals, and extended by Park and Ahn [81] in the case of a �nite frequency excitation:

S−(ω)− S+(ω) = 2~ωG(ω) (2.22)

where G(ω) is the conductance of the sample, as seen by the measurement circuit. This relation
can be demonstrated in our case using ∆S(+ω) = ∆S(−ω) where G(ω) = e2/h is the conduc-
tance of the edge channel between contact (1) and contact (2). Indeed, the di�erence between
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2.2. Scattering model

absorption and emission noises in our sample is equal to the di�erence between absorption and
emission noises at zero transmission:

S−(ω)− S+(ω) = S−(ω,D = 0)− S+(ω,D = 0)

= 2
e2

h

∫
dε [f(ε)(1− f(ε+ ~ω))− f(ε)(1− f(ε− ~ω))]

= 2
e2

h

[
~ω

1− e−~ω/kBT
− −~ω

1− e~ω/kBT

]

= 2~ω
e2

h

(2.23)

From here on, we only consider the noise after subtraction of its value at D = 0. We therefore
confound the notations S(ω) and ∆S(ω).

2.2.3 Numerical calculations

Because Eq.2.18 does not provide a simple analytical expression of the noise, we have computed
it numerically using the parameters of sample S528-11 : ∆ = 4K; f0 = Ω/2π = 1.5GHz. The
simulation o�ers a wide range of parameters, such as the shape of the excitation signal, driving
and measurement frequencies, or temperature.

2.2.3.1 Effect of the QPC transmission and temperature

The most obvious dependence of the noise S(ω) (at least qualitatively) is on the QPC transmis-
sion D, in the injection regime 2eVexc = ∆. Indeed, as demonstrated above, we expect the noise
to vanish both at zero and unity transmission.

We �rst focus on the optimal operating conditions (2eVexc = ∆, φ0 = 0). We use a square
signal containing 30 odd harmonics. We have plotted in Fig.2.2 the calculated noise as a function
of the QPC transmission, for a measurement frequency ω/2π equal to the excitation frequency
f0 = Ω/2π. We have also plotted the average transfered charge per half-period, calculated using
Eq.1.52 (Fig.2.2a). As expected, the noise vanishes at zero and unity transmission, and describes
a bell shaped curve as D changes. The maximum of the curve is obtained at a transmission
D ≈ 0.07, for which the average transfered charge is equal to ∼ 0.75e per half-period. This
result is not consistent with a naive description of the noise as a partition noise, where the
partition probability would be de�ned by the emission probability P = Qt/e: in this case the
noise would be maximum for Qt/e = 0.5. Furthermore, S(Ω) does not vanish when the average
transfered charge becomes equal to e, thus demonstrating that it cannot be described as a simple
partition noise process. In the next section, we will demonstrate using the heuristic model that
the �nite value of the noise when the charge is quantized is due to the uncertainty on the emission
time.

In the anti-resonant case depicted here, the noise is quasi-independent of the temperature:
indeed, the di�erences between the curves for T =∼ 0K, 100mK, 500mK presented in Fig.2.2b
are small. This can be explained by the fact that when the energy level of the dot is shifted at
an energy ∆/2 above the Fermi energy, the charge emission is insensitive to the temperature, as
long as T is small compared to the level spacing.
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Chapter 2. Current �uctuations emitted by the source
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Figure 2.2: Calculated average transfered charge per half-period (upper panel) and
noise (lower panel) as a function of the QPC transmission, in the scattering model.
The level spacing ∆ is equal to 4K, and the measurement frequency is taken equal to
the driving frequency f0 = 1.5GHz.

2.2.3.2 Measurement frequency

As demonstrated above, the noise vanishes at zero frequency; this implies that the noise presents
non-trivial variations with the frequency, which should depend on the transmission. We have
plotted in Fig.2.3 the variation of the noise in the anti-resonant case with the measurement
frequency up to �ve times the excitation frequency, for di�erent values of the transmission. As
expected, the noise vanishes at zero frequency for all transmissions. At low transmission, S(ω)
rises sharply, then becomes independent of the frequency: this shot noise behavior describes
the fact that the charge emission is not systematic, because the escape time is longer than the
half-period of the excitation signal. When the transmission is increased, the saturation occurs at
higher frequencies, while the value of the noise at the saturation increases. We will show in the
next section that the maximum value of the saturation is ∼ 4e2f0. At large transmissions, the
noise increases monotonously with the frequency, with an ω2τ2 dependence. One can however
see that depending on the frequency, the noise does not reach a maximum for the same value
of the transmission. The variation of the noise with the transmission presented in Fig.2.2 is
therefore highly frequency dependent.

2.2.3.3 Variation with the dot equilibrium potential

All the results presented above correspond to the optimal operating condition of the single
electron emitter, that is the anti-resonant case φ0 = 0, where the highest occupied level of the
dot is shifted far above the Fermi energy. Since the QPC gate voltage Vg also modulates the
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Figure 2.3: Calculated noise as a function of the measurement frequency in the
injection regime: 2eVexc = ∆, φ0 = 0. We have taken f0 = 1.5GHz (that is
~Ω/kB = 0.07K), and ∆ = 4K.

position of the levels in the dot, it is interesting so study the variation of the noise with the
equilibrium potential of the dot, that is when the phase φ0 is changed.

The variation of the noise at ω = Ω with φ0 is plotted in Fig.2.4a), for a �xed transmission
D = 0.1. In the resonant case φ0 = π, we observe a diminution of the noise, which broadens
when the temperature is increased. This diminution of the noise is explained by the fact that
the electrons responsible for thermal noise are distributed in a typical energy bandwidth kBT
centered around the Fermi energy. When the highest occupied level of the dot is placed in this
energy bandwidth (that is, in the vicinity of the resonant case φ0 = π), the emitted electrons
are mixed with the thermally excited electrons, and one cannot separate the contributions of
thermal noise and the noise emitted by the source. As a result, the noise after subtraction of its
value at D = 0 (that is, after subtraction of the contribution of thermal noise) only considers
electrons emitted far from the Fermi sea, and therefore diminishes. This e�ect is similar to the
competition between temperature and bias voltage in measurements of the shot noise of a QPC
[31, 87]: when the bias voltage (that is, the energy of the charges emitted by the biased contact)
becomes smaller than the temperature, the partition noise vanishes, so that the measured shot
noise is essentially given by thermal noise. It is also reminiscent of the measurement of the Fano
factor in ballistic graphene shown in [88], where the Fano factor vanishes at zero bias because
the thermal contribution of the noise is removed.

We have plotted in Fig.2.4b) the variation of the noise with the measurement frequency in
the resonant and anti-resonant conditions, for much larger scales of the frequency: we observe a
cuto� at frequencies comparable to the level spacing, which depends on φ0. The cuto� frequency
is equal to ∆/2 in the anti-resonant condition: indeed, the electrons (holes) are emitted at an
energy ∆/2 above (below) the Fermi energy, and can therefore only emit photons at frequencies
lower than ∆/2. In the resonant condition, a portion of the charges is emitted at an energy ∆
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Figure 2.4: a) Calculated noise as a function of the dot equilibrium potential
φ0 = 2πeV0/∆, for D = 0.1 and ω = Ω. b) Calculated noise as a function of the
measurement frequency (positive and negative values), for φ0 = 0 (black line) and
φ0 = π (red line). The blue circle corresponds to the noise at the excitation frequency
Ω.

above/below the Fermi energy; the cuto� frequency is thus equal to ∆.

2.2.3.4 Shape of the drive

We have numerically studied the noise for di�erent shapes of the excitation signal, more specif-
ically its dependence on the number of harmonics contained in the square excitation voltage.
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2.2. Scattering model

Indeed, when the harmonic content of a square signal is diminished, oscillations (ripples) appear
in the signal (see Fig.2.5), which might a�ect the energy resolution of the emitted charge. The'
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$

%
Figure 2.5: Square signals, with 1 (black), 2 (red), 3 (blue) and 10 (green) odd
harmonics.

previous results where computed for a near-perfect square signal containing 30 odd harmonics;
we have plotted in Fig.2.6 the noise as a function of φ0, for di�erent numbers of odd harmonics
contained in the excitation square signal. It appears that the noise in the anti-resonant condition
φ0 = 0 is quasi-insensitive to the number of harmonics, while it presents a strong dependence
in the resonant condition: the ripples in an excitation square signal with few harmonics cause
the highest occupied level in the dot to oscillate in front of the Fermi energy in the resonant
case, leading to the emission and absorption of additional charges per half-period. Since these
additional charges are generated close to the Fermi energy, there is a competition between this
e�ect which tends to increase the noise because more charges are generated, and the e�ect de-
scribed in the previous paragraph, where the generation of a charge within the thermally excited
electrons in the Fermi sea causes the emission noise to diminish. This is observed for 3 harmonics
in Fig.2.6: when φ0 becomes close to π, the noise increases, then suddenly drops when φ0 = π.
Furthermore, this competition can be observed even with near-perfect excitation square signals
at T ∼ 0, see Fig.2.4: even though the ripples in the excitation signal are small, they cause
energy shifts larger than the energy bandwidth of the thermally excited electrons of the Fermi
sea.

2.2.3.5 Conclusion on the scattering model

The scattering model allows the computation of the autocorrelation of the current �uctuations
emitted by the source for a wide range of parameters, and puts into light several emission
processes that cannot be discriminated by the sole study of the average AC current, particularly
in the resonant condition φ0 = π. Because of the absence of an analytical formula, it does not
however provide a simple interpretation for the presence of �nite noise in the ideal operating
conditions when charges are systematically emitted. We have stated that this noise is due to the
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Figure 2.6: Calculated noise as a function of the dot equilibrium potential, for a square
excitation signal containing 2, 3, 10 and 30 odd harmonics (resp. black, red, blue and
gray line). The temperature is taken equal to 100mK.

uncertainty on the emission time; we will show in the next section using the heuristic model that
it is indeed the case, and demonstrate that this noise is the signature of single charge emission.

2.3 Heuristic model

In this section, we use the heuristic model presented in 1.4.2 to compute the autocorrelation
of the current �uctuations generated by the source. Since the model describes the mesoscopic
capacitor as an ideal single electron emitter, it computes the characteristic noise associated to the
periodic time-controlled single charge emission. We �rst present the principle of the computation
of the noise, and put into light the two fundamental limits of noise in the system: shot noise
(or charge noise: the probability of charge emission is small), and quantum jitter (phase noise:
the noise arises from random �uctuations in the emission time). We then compare the results
with the ones obtained with the scattering model, presented in the previous sections. We �nd
an excellent agreement between the two models, thus demonstrating that the device described
with the scattering model is indeed a single electron emitter.

2.3.1 Computation of the noise

The noise is calculated using the de�nition of the autocorrelation of the current �uctuations given

in Eq.2.4: S(ω) = 2
∫
dt′< δI(t)δI(t+ t′) >

t
eiωt

′
. The noise is given by the Fourier transform

of the current �uctuations correlator C(t′), which can be de�ned as the di�erence between two
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correlators C1(t′) and C2(t′):

C(t′) = < δI(t)δI(t+ t′) >
t

= < I(t)I(t+ t′) >
t −< I(t) >< I(t+ t′) >

t

= C1(t′)− C2(t′)

(2.24)

C1(t′) is therefore given by the statistical average of the autocorrelation of the instantaneous
current I(t) (pictured in Fig.1.11a) and b)), averaged over time t, while C2(t′) is given by the
autocorrelation of the average current < I(t) > (pictured in Fig.1.11c) and d)), averaged over
time t. Depending on the escape probability per turn b, the contributions of each of those
two correlators vary. The contributions are depicted in Fig.2.7: at short times t′, C1(t′) is a
Dirac peak centered on t′ = 0: indeed, since at most one charge is emitted per half-period, the
short-time correlations vanish. In this respect, the Dirac peak is the hallmark of single particle
emission. Correlations are recovered when t′ becomes close to a multiple of the half-period. The
height of the Dirac peak is proportional to the average transfered charge per half-period Qt:
C1(t′ = 0) counts the average number of peaks and dips in the signal, corresponding to emitted
electron and holes.

C2(t′) is given by the autocorrelation of the exponentially decaying average current depicted
in Fig.1.11c) and d). It therefore presents a peak at short times, centered on t′ = 0, with a �nite
width given by the escape time τ . At times comparable with multiples of the half-period, we once
again recover correlations, which compensate the long-times correlations in C1(t′) (see Fig.2.7,
lower panels). Indeed, for long times t′, C(t′) vanishes because the charges emitted by the source
are not correlated. As discussed below, the timescale on which C(t′) becomes equal to zero (i.e.
on which the correlations between the emitted charges are lost) depends on the transmission D.
The relevant timescale for the study of C(t′) is thus naturally given by the escape time τ .

2.3.1.1 Shot noise limit

For small escape probabilities b� 1, the escape time τ = τ0(1/b− 1/2) becomes larger than the
half-period. The peak at t′ = 0 in C2(t′) then becomes small with respect to the Dirac peak in
C1(t′), see Fig.2.7a. The current �uctuations correlator C(t′) is given by a Dirac peak on t′ = 0,
and takes small negative values at �nite times up to the escape time τ . The noise power spectral
density is therefore constant (except at zero frequency, where it vanishes because the areas of
C1(t′) and C2(t′) compensate): the source emits shot noise due to the random emission of charges.
The negative values of C(t′) at �nite times re�ect the antibunching of emitted charges: at low
probabilities, this antibunching extends over a large timescale τ (see Fig.2.7a, lower panel), which
illustrates the dot charge-memory: a hole must be emitted after the emission of an electron, for
the source to emit a second electron.

An analytical expression of the noise can be de�ned in the shot noise limit, using the vari-
ation of C1(t′) and C2(t′) depicted in Fig.2.7a. When neglecting C2(t′) and writing C1(t′) =
2e2f0Qt/eδ(t′), one �nds, using the expression of the average transfered charge de�ned in Eq.1.50
when fτ � 1:

Sshot(ω) = 4e2f0 × P =
e2

τ
(2.25)

where P = Qt/e the emission probability per half-period. This expression is identical to the
usual shot noise formula SII = 2eI, where the current I is given by the nominal emission current
I0 = 2ef0, multiplied by P .
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Figure 2.7: Current correlators C1(t′) and C2(t′), calculated with the heuristic model.
a) shot noise limit: for small escape probability b, charges are not systematically
emitted within a half-period: the emission probability per half-period P = Qt/e is
small, and the current �uctuations correlator is essentially given by the Dirac peak
in C1(t′). C1(t′), C2(t′) and C(t′) for long times t′ are plotted on the lower panel
(respectively in black, red and blue lines): C(t′) presents negative values for t′ ≤ 2T ,
re�ecting the antibunching of emitted charges. b) large emission probability limit:
for su�ciently large escape probabilities (here, b = 0.2), charges are systematically
emitted (P ≈ 1), and C2(t′) presents a peak with a �nite width given by the escape
time τ . C(t′) takes negative values on a smaller range of times t′.

2.3.1.2 Quantum jitter limit

In the other limit, the escape probability b is high enough for the charges to be systematically
emitted: the emission probability P is equal to unity, and the charge noise vanishes. The average
current then presents well-de�ned exponential decays with a decay time given by the escape time
τ � T /2: < I(t) >= ±e/τe−t/τ . We then �nd a simple expression for C2:

C2(t′) =
e2f0

τ
e−|t

′|/τ (2.26)

In the limit τ � T /2, the noise is thus given by:

Sjitter(ω) = 4e2f0
ω2τ2

1 + ω2τ2
(2.27)
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Even when charges are systematically emitted, we �nd a �nite noise which only depends on
the escape time τ : the uncertainty on the charge emission time, given by the escape τ , gives
rise to a fundamental noise, called quantum jitter. The quantum jitter is an intrinsically high
frequency noise, and is the signature of single charge emission: when the source systematically
emits single charges, the noise reduces to the value of the quantum jitter determined only by the
temporal extension τ of the emitted wave packets.

2.3.1.3 Analytic formula

Mathias Albert and collaborators have recently [89] proposed an analytic formula of the noise
for the heuristic model, which interpolates between the shot noise and the quantum jitter limits.
The noise is calculated by studying the charge dynamics in the dot using a master equation
coupling the average number of charges in the dot at a time t + τ0, written < Q(t + τ0) >, to
the average number of charges at a time t. During the time τ0, the charge can be emitted with
a probability b. Since only one charge transfer process can occur at half of the period (electron
emission or electron absorption), the average number of charges at a time t+ τ0 will be equal to
< Q(t + τ0) >= (1 − b) < Q(t) > for the emission half-period, and to < Q(t + τ0) >= b(1− <
Q(t) >)+ < Q(t) > for the absorption half-period.

After solving this master equation, the charge correlation function < δQ(t)δQ(t+ t′) >
t
is

evaluated, and one obtains an analytic formula for the noise power spectral density:

S(ω) = 4e2f0tanh

(
1

4f0τ

)
ω2τ2

1 + ω2τ2
=
Qt

e
× Sjitter(ω) (2.28)

This formula emphasizes the speci�c role of the quantum jitter in the noise generated by the
single electron emitter, since it can be generally be written as the product of the quantum jitter
with the charge emission probability P = Qt/e.

2.3.2 Comparison with the scattering model

We now present the numerical results obtained with the heuristic model, and their comparison
with the results of the scattering model in the optimal emission conditions (φ0 = 0) at T =
100mK. Except stated otherwise, all the results of the scattering model correspond to ∆ = 4K.

2.3.2.1 Transmission and frequency dependence

We have calculated the noise power spectral density generated by the source at the driving
frequency Ω/2π for the heuristic model as a function of the semi-classical escape probability
b. The results are shown in Fig.2.8. We have plotted as well the variation of the noise power
spectral density calculated with the scattering model as a function of the QPC transmission. We
�nd a perfect agreement between the two sets in the entire range of D and b. The coincidence
between the two curves veri�es the validity of Eq.1.51, which links the escape probability b to
its quantum counterpart D. More importantly, this demonstrates that the scattering model
e�ectively describes the device as a single electron emitter, and proves the existence of the
quantum jitter within a quantum-coherent formalism.

We have plotted in Fig.2.9 the variation of the noise spectra in both models as a function of
the measurement frequency ω. The agreement between the two models is once again outstanding,
and the two analytical noise limits (dashed lines) are well reproduced.
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Figure 2.8: Dependence of the noise on the escape probability b in the heuristic model
(black line). We also plot (blue circles) the dependence of the noise on the QPC
transmission D in the scattering model (φ0 = 0, T = 100mK).
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Figure 2.9: Dependence of the noise in the heuristic model (full lines) and in the
scattering model for φ0 = 0 (hollow symbols) on the measurement frequency ω. The
dashed lines correspond to analytical calculations of the shot noise and quantum jitter
limit, using Eqs.2.25 and 2.27.
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2.3.2.2 Noise versus modulus of the current

One can combine the analytical expression of the noise as a function of the escape time given
in Eq.2.28, for ω = Ω, with the expression of the modulus of the �rst harmonic of the current
derived from Eq.1.52: |IΩ| = 2ef0/

√
1 + Ω2τ2, in order to express the noise at the excitation

frequency as a function of the modulus of the current:

S(Ω) = 4e2f0tanh

 2π |IΩ|2ef0

4
√

1− ( |IΩ|2ef0
)2

(1− (
|IΩ|
2ef0

)2) (2.29)

When |IΩ| becomes small, one �nds the usual shot noise formula: S(Ω) ≈ πe|IΩ| = 2eI,
where I is the modulus of the current emitted by the source. The expression of the quantum
jitter as a function of |IΩ| is easily deduced:

Sjitter(Ω) = 4e2f0(1− (
|IΩ|
2ef0

)2) (2.30)

We have plotted in Fig.2.10 the noise as a function of |IΩ|, as de�ned in Eq.2.29, and the noise
as a function of the modulus of the �rst harmonic, calculated with the scattering model. The
agreement between the two models is excellent; a small discrepancy can be observed for low
values of the current, where the simulations of the scattering model su�er from the necessary
discretization of the energy: indeed, at very low transmissions, the width of the peaks in the
density of states becomes smaller than the energy increment used in the numerical computation.
We have also plotted the variations of shot noise and quantum jitter as a function of |IΩ| (dashed
lines): it appears that S(Ω) is well described by pure quantum jitter for values of the �rst
harmonic larger than ∼ 1.5ef0, which corresponds to a quantized average transfered charge per
half-period Qt = e.

The main interest of this representation is that it allows to compare the experimental results
with the model quite easily, since it does not require the knowledge of the variation of the QPC
transmission with the gate voltage Vg, nor the accurate measurement of the escape time τ .
However, it unveils the contribution of the quantum jitter only for a reduced portion of the data.
In this respect, the representation of the variation of the noise with the escape time, presented
in the next paragraph, is better suited.

2.3.2.3 Universality of the noise as a function of the escape time

When ω = Ω = 2πf0, Eq.2.28 shows that the power spectral density of the current �uctuations
generated by the source depends only on the escape time τ . We therefore plot in Fig.2.11 the
noise as a function of the escape time in the heuristic model, as well as the noise calculated in the
scattering model for three values of the level spacing: ∆ = 2, 4, 8K. The agreement between the
heuristic model and the scattering model is excellent, regardless of the value of the level spacing:
in the ideal emission conditions (2eVexc = ∆, φ ≈ 0), the value of the noise power spectral density
at the excitation frequency only depends on the escape time τ . The independence of the noise
with the level spacing and the temperature illustrates the universality of the noise generated
by the single electron emitter: as long as the charges are emitted signi�cantly above/below the
Fermi energy, the contribution of the Fermi sea can be ignored, and the noise probes the temporal
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Figure 2.10: Calculated noise in the heuristic model (red line) and in the scattering
model (blue circles) as a function of the modulus of the �rst harmonic of the average
AC current. The shot noise and quantum jitter limits (dashed lines) are given by the
usual shot noise formula and Eq.2.30.

distribution of charges within the emitted electron/hole stream, without discriminating at which
energy they are emitted.

The scattering model shows however that the universality is lost whenever charges are emitted
close to the Fermi energy, that is in the resonant condition φ0 = π.

The two models, developed independently, predict that the mesoscopic capacitor can indeed
be used, when driven in the appropriate regime, as a single electron emitter. Furthermore, they
show that it can achieve a controlled emission of single charges that is robust to changes of the
samples parameters.

2.4 Experimental setup

In the previous theoretical sections, we have shown that the autocorrelation of the emitted
current �uctuations presents a wide spectrum, and takes values typically given by e2f0, where
f0 is the driving frequency. For a driving frequency f0 = 1.5GHz, e2f0 ≈ 3.8 × 10−29A2/Hz.
These values, although very small, are commonly measured at low frequency [90, 23, 48, 91],
where one can transform small current �uctuations into larger voltage �uctuations by shunting
the output of the samples with a large resistor (typically, a few kΩ). Since the noise power
spectral density emitted by our sample vanishes at zero frequency, we need to measure it at
frequencies comparable with the driving frequency. This is much more challenging, for broad-
band microwave circuits must be 50Ω-adapted; we therefore cannot rely on the use of a large
resistor to increase our signal. Furthermore, the presence of high-frequency parasitic couplings
brings an additional di�culty, as they yield much larger powers than the signal itself.
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Figure 2.11: Calculated noise in the heuristic model (blue line) and in the scattering
model for di�erent values of the level spacing (hollow symbols) as a function of the
escape time τ . The shot noise and quantum jitter limits (dashed lines) are given by
Eqs.2.25 and 2.27.

2.4.1 Sample design

We have designed our samples in order to optimize the noise measurement. The two-dimensional
electron gas (for batch S528, see appendix B) has a nominal density equal to 1.9 × 1011cm−2

and a nominal mobility equal to 1.3 × 106cm2V −1s−1. The depth of the gas is 105nm. The
fabrication of the samples was made by Yong Jin at Laboratoire de Photonique et Nanostructures
in Marcoussis.

An optical view of sample S528-11 is shown in Fig.2.12b. In order to minimize the high-
frequency parasitic couplings, most of the surface of the sample is covered by an Au ground plane;
furthermore, the metalizations corresponding to the microwave excitation and measurement lines
are placed orthogonally to reduce the crosstalk. Fig.2.12b shows that the sample actually contains
two mesoscopic capacitors, which are not connected with each other. This design is a precursor
of the samples used for Hanbury-Brown and Twiss (described in the next chapter) and Hong-
Ou-Mandel experiments, where the two sources are connected by the electron gas, and a QPC
(which acts as a beam-splitter) is placed between the sources. This design allows to optimize
the number of samples per electron gas wafer, as well as to simplify the fabrication, since the
designs of the two types of samples (single source and collider) are highly similar.

• Three-terminal geometry
A close-up view of the active zone of the sample where the electron gas is not removed (see
Fig.2.12c) shows the two ohmic contacts mentioned in 1.1.1. Contact (1) is connected to the
microwave measurement line, while contact (2) is connected to the ground plane. The purpose
of this geometry is to use the chirality of the edge channels as a circulator, in order to protect
the sample from the back-action noise of the ampli�cation line. Indeed, the cryogenic ampli�ers
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Figure 2.12: Pictures of sample S528-11 : a) optical view of the sample installed in the
sample holder. b), c), d) optical views with increasing zoom of the chip. As seen on
b), each chip contains two samples. The black arrow in c) depicts to the chirality of
electronic transport when an strong perpendicular magnetic �eld is applied. e) SEM
view of the mesoscopic capacitor (with false colors). The quantum dot is highlighted
in red.

used in the measurement line send back noise towards the sample; this back-action noise is
typically �ve orders of magnitude larger than the noise of the sample. Because of the mismatch
between the impedance of the sample and the impedance of the measurement circuit, the back-
action noise is partially re�ected on the sample, and adds a parasitic noise to the measurement.
This parasitic noise can then be removed by subtracting the reference, as long as its value is
independent of the state of the sample.

The back-action noise is re�ected on the sample with a re�ection coe�cient that depends
on the conductance of the sample viewed from the measurement lines, noted Gm. Because the
sample is shunted by a resistor equal to the characteristic impedance of the measurement line
Z0 (see Fig.2.13), the power re�ection coe�cient is given by:

|S11|2 =
|Z0Gm|2

|2 + Z0Gm|2
(2.31)

In the case of a single contact (two-terminal geometry) shown n Fig.2.13a, Gm is equal to the
sum of the conductance of the sample Gnl(Ω), de�ned in 1.47, and the parasitic conductance
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Figure 2.13: a) schematic view of a sample in the two-terminal (single contact) geom-
etry. The back-action noise of the measurement line (blue oscillating lines) is re�ected
on the sample, with a coe�cient depending on the dot parameters. b) schematic view
of a sample in the three-terminal (dual contacts) geometry. The re�ected part of the
back-action noise only depends on the impedance of the edge channels �owing from
contact (1) to contact (2).

Gpara: the re�ection coe�cient |S11| therefore depends on the state of the sample, particularly
on the QPC transmission D. The value of the parasitic noise due to the re�ection of the back-
action noise thus changes when the reference is subtracted by a factor ∼ 10−4. Although quite
small, this measured variation is still about ten times larger than the noise emitted by the single
electron emitter, and the noise measurements probe as a matter of fact the conductance of the
sample by noise re�ectometry.

In the case of two contacts (three-terminal geometry), when a strong perpendicular magnetic
�eld is applied, Gm is given by the sum of the parasitic conductance and the conductance of the
edge channels connecting contact (1) to contact (2), see Fig.2.13b. This conductance is equal
to νe2/h, where ν is the �lling factor of the quantum Hall e�ect corresponding to the applied
magnetic �eld. As a result, the re�ection coe�cient is independent of the parameters applied
to the sample, and the parasitic noise is fully removed when the reference is subtracted. This
e�ect can be qualitatively understood by considering that the back-action noise incoming on the
sample is transmitted (at least partially) from contact (1) to the edge channels of the sample,
in the form of current �uctuations. In the two terminal geometry, these current �uctuations are
sent towards the quantum dot, where they are re�ected with a phase depending on the density of
states of the dot, as described in 1.1.2. In the three-terminal geometry however, the �uctuations
are sent towards contact (2), where they are absorbed.
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The use of an additional grounded contact to isolate the active part of the sample from the
noise of the environment is a fundamental technique for noise measurements in quantum Hall
e�ect systems [91].

2.4.2 Setup

We have measured the noise in a bandwidth centered around the excitation frequency f0 =
1.5GHz: ∆f = 1.2 − 1.8GHz = ∆ω/2π. On this bandwidth, the noise can be approximated
as a linear function of the frequency, so that the noise power spectral density integrated on this
bandwidth is equal to the noise at the excitation frequency:

1

∆ω

Ω+∆ω/2∫
Ω−∆ω/2

dωS(ω) ≈ S(Ω) (2.32)

The measurement setup is presented on Fig.2.14: while the excitation line is the same as the
one presented in the �rst chapter, we have built a high-sensitivity noise measurement line [92] that
allows us to simultaneously measure the noise and the conductance. The noise measurement line,
described in details in chapter 4 (principle, implementation and calibration), is composed of a
120Ω to 50Ω quarter-wave impedance transformer and an interferometric ampli�cation technique.
The quarter-wave impedance transformer allows the measurement of the current �uctuations on
a 120Ω resistor instead of the usual 50Ω resistor over a large bandwidth (0.5 − 4.5GHz). The
measured noise temperature, de�ned by:

TS = Z0S(Ω)/4kB (2.33)

is therefore increased by a factor 2.4; for a typical value of the noise power spectral density
S(Ω) = e2f0, the measured noise temperature increases from TS(50Ω) ≈ 35µK to TS(120Ω) ≈
83µK. This last value is still extremely small compared to the noise temperature of the cryogenic
ampli�ers TN ≈ 7K; we therefore use an interferometric ampli�cation technique, which is the
cryogenic equivalent of the double balanced ampli�er technique [93]. This technique can be seen
as the microwave analog of a Mach-Zehnder interferometer, where the cryogenic ampli�ers are
placed in the inner arms. We show in chapter 4 that it greatly enhances the stability of the
measurement.

The noise emitted by the single electron emitter is measured by subtracting the reference value
when the QPC transmission is set to zero; this allows us to suppress the thermal �uctuations of
both the edge channels and the 120Ω measurement load, and makes the measurement insensitive
to �uctuations of the ampli�cation parameters as well as variations of the temperatures in the
dilution insert.

The combination of the three-terminal geometry, the quarter wave impedance transformer
and the interferometric ampli�cation technique allows the accurate measurement of the auto-
correlation of the current �uctuations emitted by the single electron emitter during extended
periods of time; we demonstrate in chapter 4 a resolution smaller than 10µK ≈ e2f0/8 in about
2 hours.

2.5 Experimental results

In this section, we present results of the experimental measurement of the autocorrelation of the
current �uctuations emitted by the source. We have measured the noise power spectral density
at the excitation frequency S(Ω), in the charge injection regime 2eVexc = ∆.
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Figure 2.14: Schematic view of the setup used for high-frequency noise measurements.
The derivation of the signal to a homodyne detection allows the simultaneous mea-
surement of the average AC current and the power spectral density of the current
�uctuations around 1.5GHz.
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Figure 2.15: Measured noise as a function of the QPC gate voltage Vg. Upper panel:
escape time and average transfered charge versus Vg, extracted from the average AC
current measurements presented in chapter 1. Lower panel: noise measurements. The
red line corresponds to experimental data, the black dashed line to the quantum jitter
limit calculated with the values of the escape time presented in the upper panel.

2.5.1 Noise versus QPC gate voltage

We have measured the noise as a function of the QPC gate voltage Vg, plotted in Fig.2.15. The
values of the noise in units of e2f0 are deduced from the calibration of the noise measurement
setup described in chapter 4. The calibration gives us the equivalent noise temperature TS ,
which is then converted in the noise power spectral density S(Ω) using the formula: S(Ω)[e2f0] =
4G0kBTS/e

2f0, with G0 = 1/120Ω. The uncertainty on the calibration is equal to ±5%; it is
however neglected in Fig.2.15, since the error bars corresponding to the standard error on the
successive measurements (see chapter 4) are larger than the uncertainty on the calibration.

As expected, S(Ω) vanishes at zero and unity transmissions, and its maximum value reaches
∼ 2e2f0. When the average transfered charge Qt = e, the noise has a �nite value and presents
oscillations corresponding to the resonant condition φ0 = π. The global variation of S(Ω) with
Vg cannot be taken into account with an ideal QPC transmission law: in particular, neither
the linear QPC transmission law (see 1.3.2.4) nor the non-linear one (see 1.4.3.2) achieve to
accurately reproduce the global variation of S(Ω). However, the experimental data in the anti-
resonant condition φ0 = 0 present an excellent agreement with the quantum jitter (dashed line)
calculated using the measured escape time τ in Fig.2.15. In the next paragraph, we will therefore
focus on the φ0 = 0 regime, which is well reproduced by the heuristic model.
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Figure 2.16: Measured noise power spectral density versus modulus of the �rst har-
monic. The black squares are experimental data; points in the φ = 0 regime are
highlighted by the red circles. The red line corresponds to the theoretical formula
given in Eq.2.29, and the dashed lines to the shot noise and quantum jitter limits.

2.5.2 Universal graphs

As mentioned in 2.3.2.2, the easiest way to compare our experimental data and the theoretical
models without free parameters is to plot the noise as a function of the modulus of the current.
The curve is shown in Fig.2.16; the red circles correspond to φ0 = 0. For high values of the
current, the points in the resonant regime φ0 = π systematically fall above the points in the
anti-resonant regime φ0 = 0: this corresponds to the oscillations in the noise as a function of Vg
presented in Fig.2.15. While the agreement between the data in the φ0 = 0 regime and the theory
is good at both ends of the curves, it is less satisfactory for intermediate values of the current
(between ∼ 0.75 and ∼ 1.25ef0), where the experimental results are signi�cantly lower than their
expected values. This can be explained by the fact that for these values of the transmission, the
excitation voltage does not exactly compensate the level spacing, as seen in Fig.1.16 and 1.17:
|IΩ| presents oscillations with Vg, which corresponds to a 2eVexc < ∆ regime. The shot noise
and quantum jitter regimes (dashed lines) are nonetheless well described by our results.

• Noise versus escape time

The simultaneous measurement of the noise and the conductance allows us to plot the noise
as a function of the escape time τ : in this representation, the contribution of the quantum
jitter appears clearly (see Fig.2.11), which enables an unambiguous experimental demonstration
of single charge emission. We have plotted in Fig.2.17 the variation of the noise in the anti-
resonant regime φ0 ≈ 0, corresponding to the optimal operating conditions of the source, as a
function of the escape time. The error bars on the escape time correspond to an uncertainty
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on the global phase tuning of ±2◦, and an estimated error on the conductance measurement of
0.01ef0. For long escape times, the error bars become very large because both real and imaginary
part of the current are essentially equal to zero.'
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Figure 2.17: Measured noise power spectral density versus escape time, in the φ ≈ 0
regime (black circles). The error bars on the escape time correspond to an uncertainty
of ±2◦ on the global phase tuning and of ±0.01ef0 on the real and imaginary parts of
the �rst harmonic. The red line corresponds to the scattering model, and the dashed
lines to the shot noise and quantum jitter limits.

The experimental data present an excellent agreement with the model, without any free
parameter. In particular, the quantum jitter limit is clearly demonstrated in Fig.2.17, which
con�rms the on-demand single electron emitter nature of our device.

2.5.3 Noise oscillations and QPC transmission law

Let us now focus on the oscillations presented by the noise as a function of the QPC gate voltage
Vg. As mentioned before, these oscillations correspond to the resonant regime φ0 ≈ π, where
charges are emitted close to the Fermi energy. This regime cannot be described by the heuristic
model; the scattering model shows however that the noise in this regime presents strong variations
with the temperature and the shape of the excitation drive. In particular, the number of odd
harmonics contained in the excitation square signal signi�cantly changes the values of the noise
at resonance.

We use an Agilent 1134A Pulse Pattern Generator to drive our device out of equilibrium.
Square signals can be generated at frequencies up to 3.35GHz; using a spectrum GHz analyzer,
we have observed that the generated signal at 1.5GHz presents contains three odd harmonics.
In order to �t our experimental results, we have therefore calculated the noise in the scattering
model with an excitation square signal containing three harmonics. We have extracted the QPC
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transmission law from the measurement of the escape time as a function of Vg, using Eq.1.49:
τ = h/∆(1/D − 1/2), see Fig.2.18. The transmission presents oscillations as a function of Vg
that correspond to the oscillations in the escape time.'
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Figure 2.18: QPC transmission law, extracted from the measurements of the escape
time using the formula τ = h/∆(1/D − 1/2). The error bars correspond to the error
bars on the escape time presented in Fig.2.17.

We have combined the measured transmission and an excitation square signal containing three
odd harmonics to calculate the noise as a function of Vg in the scattering model. The result
is shown in Fig.2.19. As expected from the comparison between the scattering and heuristic
models, the agreement between experimental and numerical data is excellent in the φ0 ≈ 0
regime, particularly in the quantum jitter limit, where we have shown in the previous section
that our device is indeed an on-demand single electron emitter. In the resonant regime, the
peaks in the noise are qualitatively reproduced. However, because the noise in the φ0 = π regime
is highly dependent on a wide range of parameters such as temperature, number of harmonics,
level spacing, or excitation amplitude, it is di�cult to �nd a quantitative agreement.

While the noise measured in the resonant regime is rather di�cult to quantitatively reproduce
with the scattering model, its origin is qualitatively understood: the �nite number of harmonics
contained in the excitation drive creates ripples that shake the energy level in front of the Fermi
energy, thus causing additional charge transfer processes. The precise nature of these processes
cannot be investigated by only measuring the direct autocorrelation of the current �uctuations
emitted by the source. Nonetheless, the presence of these oscillations demonstrate that the
energy at which electrons are emitted is indeed controlled by the position of the level in the dot
at equilibrium, and that the in�uence of the Fermi sea can be neglected in the optimal operating
condition φ0 = 0.
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Figure 2.19: Measured noise power spectral density as a function of the QPC gate
voltage Vg (red line). The blue line corresponds to the calculated noise in the scattering
model, with an excitation signal containing only three odd harmonics. The dashed
line corresponds to the quantum jitter limit, calculated with the measured escape
time.

Conclusion of chapter 2

In this chapter, we have studied the autocorrelation of the current �uctuations emitted by the
mesoscopic capacitor driven in the charge injection regime 2eVexc = ∆. The measurement of
these high-frequency �uctuations represents a breakthrough in terms of high-frequency noise
measurement techniques, and experimentally demonstrates the on-demand single charge emis-
sion. More generally, the study of the noise generated by the single electron emitter puts into
light an intrinsic high-frequency noise regime, called quantum jitter, which is the signature of
single charge emission. This quantum jitter depends on the uncertainty on the emission time
with a simple formula given in Eq.2.27. We expect the measurement of this fundamental noise
limit to be an unambiguous test of the accuracy of GHz single-charge electronic devices.

We have observed an increase of the emitted noise whenever the source is driven out of its
optimal operating conditions, that is in the resonant regime φ0 = π. The excess noise is caused
by the limited harmonic content of our excitation signal, which excites the level in the dot in
front of the Fermi energy. The presence of the excess noise demonstrates that the energy of the
emitted charges is well controlled.

The measurement of the direct autocorrelation of the emitted current �uctuations cannot
accurately probe the generation of electron-hole pairs in the charge emission process: indeed, if
an electron and a hole are generated at the exact same time, the net current at any frequency
created by the pair is zero as long as one can neglect the di�erence between the group velocity of
the electron and the hole. These electron-hole pairs can be unveiled by partitioning the emitted
current using a QPC as an electronic beam splitter. In the next chapter, we will show that the
correlation of the current �uctuations after partition by the QPC gives access to the number
of electron-hole pairs generated by the source, as well as the energy distribution of the emitted
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charges.

85



Chapter 2. Current �uctuations emitted by the source

86



Chapter 3

Current fluctuations in the
Hanbury-Brown and Twiss geometry

3.1 Current auto and cross-correlations in the HBT geometry . . . . . . . . . . . 89

3.1.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.2 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.1.3 Cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.1.4 Current conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Partition of a single-charge beam: scattering model . . . . . . . . . . . . . . . 93

3.2.1 Calculation of the partition noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2.2 Numerical computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.3 Experiment proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.1 Sample geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.3.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4.1 Characterization of sample S434-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4.2 Noise of the single electron source . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4.3 Noise in the HBT geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.4.4 Noise measurements at −3.3T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

87



Chapter 3. Current �uctuations in the Hanbury-Brown and Twiss geometry

Introduction of chapter 3

The results presented in the previous chapters demonstrate that the mesoscopic capacitor indeed
behaves, when driven in the 2eVexc = ∆ regime, as a single electron emitter. Furthermore, we
have shown in chapter 2 that the correlations of the current �uctuations generated by the sample
are the proper tool to probe the outcome of single-charge electron quantum optics experiments.
In this chapter, we present the �rst realization of the single-charge electronic analog of one of the
most renown quantum optics experiments, that is the Hanbury-Brown and Twiss (HBT) exper-
iment. In the quantum optics HBT experiment, a single photon is sent towards a beam splitter,
and the correlations of the intensities at the two outputs of the beam splitter are measured. This
experiment is now commonly performed in order to characterize single photon sources [60, 61].
The zero value of correlations at times smaller than the repetition time of the source indicates the
emission of a single photon: indeed, the emission of two photons within a single operating cycle
of the source would lead to a positive peak in the intensity correlations at a time corresponding
to the delay between the two emissions.

Similarly to its quantum optics counterpart, the single-charge electron quantum optics HBT
experiment allows to characterize single electron emitters. In particular, the HBT geometry puts
into light the generation of electron/hole pairs, which, as demonstrated by the measurements of
photo-assisted noise [94], are the natural excitations of a two-dimensional electron gas in presence
of a high-frequency excitation. Moreover, the HBT geometry allows to probe the fundamental
phenomena arising from the partition of a single electron beam by a quantum point contact.

In this chapter, we �rst present a theoretical description of the single-charge electron quantum
optics HBT experiment based on the Floquet scattering formalism presented in the �rst chap-
ter. We particularly focus on the power spectral density of the autocorrelation of the current
�uctuations at one of the two outputs of the beam splitter, at both zero and high frequency. We
redemonstrate the result predicted in [64]: the zero-frequency part of the power spectral density
of the partition noise exactly measures the number of emitted electron-hole pairs per cycle at
zero temperature. We furthermore show that the HBT geometry allows to study the energy
relaxation of the emitted single charge on adjacent edge channels, similarly to what was done
using biased contacts in [24, 25], as well as to measure the energy distribution of the emitted
charges by using a biased contact placed at the second input of the beam splitter, leading to
quantum state tomography [65].

We then present an experimental study of sample S434-8 , leading to the �rst realization of
the single-charge electron quantum optics HBT experiment: after describing the experimental
procedure used to characterize the sample, we present measurements of the partition noise of a
single charge beam. These �rst measurements demonstrate that our single electron emitter is
spin-polarized, since it only injects charges in the outer edge channel, and that the number of
excess electron/hole pairs emitted in the optimal operating conditions is negligible.
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3.1 Current auto and cross-correlations in the HBT geometry

In the optics HBT experiment, one usually measures the time-resolved cross-correlation between
the signals at the two outputs of the beam splitter. Single photon sources are used with typical
repetition rates in the tens of MHz (80MHz in [61]). Measurement setups with subnanosecond
time resolution allow to accurately probe the short-times cross-correlation, and thus unambigu-
ously demonstrate the suppression of two-particle emission events. Our single electron source
however is driven at GHz frequencies; the measurement of time-resolved cross-correlation would
therefore need a detection system with a bandwidth ranging from 0Hz to a few GHz; further-
more, in order to probe the short-time correlations for small escape times, the bandwidth of the
detection system must be comparable to ∆/h, that is a few tens of GHz. Such a multi-octave mi-
crowave measurement system is however unrealistic: state-of-the art fast acquisition cards have
typical bandwidths equal to 2GHz. We therefore measure the autocorrelation of each output
signals, and take advantage of the dual-outputs geometry to measure both the high-frequency
and low-frequency parts of the partition noise. In a practical point of view, this allows us to
reuse the high-frequency noise measurement setup developed for the measurements presented in
the previous chapter.

In this section, we remind, using a scattering formalism, that current conservation in the
HBT geometry implies that the autocorrelation of the current �uctuations at either one of the
outputs of the beam splitter yields the same information as the cross-correlation of the two
outputs, provided that the �uctuations of the current incoming on the beam splitter are known.
This is however true at low frequency: at high frequency, displacement currents must be included
in the current conservation. We �rst show that when the transmission of the QPC is set to 0.5,
the autocorrelations of the two output currents �uctuations are equal. We then show that the
cross-correlations are symmetric in the output current �uctuations. We �nally establish a very
simple equation linking the auto and cross-correlation of the output currents �uctuations to the
autocorrelation of the �uctuations of the currents incoming on the QPC.

3.1.1 Geometry

The HBT geometry considered in this section is described in Fig.3.1: the device has a four-
terminal (two inputs, two outputs) geometry, and is split in two by a Quantum Point Contact.
We only consider the outer channel of the integer Quantum Hall E�ect regime (and therefore
assume that only the outer edge channel is partially transmitted through the QPC).'

&

$

%
Figure 3.1: De�nition of the creation/annihilation operators for the correlations in
the HBT geometry.

In these conditions, we de�ne creation/annihilation operators for each region of the device:
â†, â from contact (A) to the QPC, b̂†, b̂ from contact (B) to the QPC, ĉ†, ĉ from the QPC to
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contact (C), d̂†, d̂ from the QPC to contact (D), ê†, ê from contact (D) to contact (A), and
f̂ †, f̂ from contact (C) to contact (B). The input current on contact (A) (resp. (B)) is noted Î
(resp. Î3), and the output current �owing from contact (C) (resp (D)) noted Î1 (resp. Î2). The
re�ection and transmission amplitudes on the QPC are respectively noted

√
R and

√
T (with

R+ T = 1), so that:

d̂ =
√
Râ+

√
T b̂

ĉ = −
√
T â+

√
Rb̂

(3.1)

3.1.2 Autocorrelation

Let us �rst calculate the autocorrelation of the output currents Î1(t′) and Î2(t′), de�ned by (see
chapter 1):

Î1(t) =
e

h

∫
dε1dε2

(
ĉ†(ε1)ĉ(ε2)− f̂ †(ε1)f̂(ε2)

)
ei
ε1−ε2

~ t

Î2(t) =
e

h

∫
dε1dε2

(
d̂†(ε1)d̂(ε2)− ê†(ε1)ê(ε2)

)
ei
ε1−ε2

~ t

(3.2)

The creation/annihilation operators are energy dependent; as in the previous chapter, we use the
notation âi = â(εi). Similarly to the calculation of the autocorrelation of the current �uctuations
generated by the source presented in 2.2.2, we only consider the cross products of non-independent
operators, that is < ĉ†1ĉ4 >< ĉ2ĉ

†
3 > and < f̂ †1 f̂4 >< f̂2f̂

†
3 > for the autocorrelation of the

�uctuations of output current Î1(t), and < d̂†1d̂4 >< d̂2d̂
†
3 > and < ê†1ê4 >< ê2ê

†
3 > for the

autocorrelation of the �uctuations of output current Î2(t). We therefore have:

CI1I1 = < δÎ1(t)δÎ1(t+ t′) >
t′

=
e2

h2

∫
dε1,2,3,4

(
< ĉ†1ĉ4 >< ĉ2ĉ

†
3 > + < f̂ †1 f̂4 >< f̂2f̂

†
3 >
)

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~

CI2I2 = < δÎ2(t)δÎ2(t+ t′) >
t′

=
e2

h2

∫
dε1,2,3,4

(
< d̂†1d̂4 >< d̂2d̂

†
3 > + < ê†1ê4 >< ê2ê

†
3 >
)

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~

(3.3)

The term < f̂ †1 f̂4 >< f̂2f̂
†
3 > (resp. < ê†1ê4 >< ê2ê

†
3 >) only yields the thermal �uctuations

of the electrons emitted by contact (C) (resp. contact (D)). If the temperatures of the two
contacts are equal, the contributions of those two terms are the same. Let us now focus on the
contribution of the operators ĉ†, ĉ and d̂†, d̂, and expand it in terms of the operators â†, â and
b̂†, b̂ using Eq.3.1:

< ĉ†1ĉ4 >< ĉ2ĉ
†
3 > = < Tâ†1â4 −

√
RT (â†1b̂4 + b̂†1â4) +Rb̂†1b̂4 >

× < Tâ2â
†
3 −
√
RT (â2b̂

†
3 + b̂2â

†
3) +Rb̂2b̂

†
3 >

< d̂†1d̂4 >< d̂2d̂
†
3 > = < Râ†1â4 −

√
RT (â†1b̂4 + b̂†1â4) + T b̂†1b̂4 >

× < Râ2â
†
3 −
√
RT (â2b̂

†
3 + b̂2â

†
3) + T b̂2b̂

†
3 >

(3.4)

Since the operators â and b̂ are assumed to be independent, the cross terms < â†i b̂j > (and
any other combination of both operators) vanish. We �nally have:
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< ĉ†1ĉ4 >< ĉ2ĉ
†
3 > = T 2 < â†1â4 >< â2â

†
3 > +R2 < b̂†1b̂4 >< b̂2b̂

†
3 >

+RT
(
< â†1â4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â2â

†
3 >
)

< d̂†1d̂4 >< d̂2d̂
†
3 > = R2 < â†1â4 >< â2â

†
3 > +T 2 < b̂†1b̂4 >< b̂2b̂

†
3 >

+RT
(
< â†1â4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â2â

†
3 >
) (3.5)

When the QPC is set to transmission 0.5, that is when R = T = 0.5, the two cross terms
< ĉ†1ĉ4 >< ĉ2ĉ

†
3 > and< d̂†1d̂4 >< d̂2d̂

†
3 > are equal. We therefore have, if the two output contacts

have the same temperature, the trivial result CI1I1 = CI2I2 : at transmission 0.5, because of the
symmetry of the system, the autocorrelation of the �uctuations of the output currents are equal.

Eq.3.5 will be useful when calculating the noise of the single electron emitter in the HBT
geometry.

3.1.3 Cross-correlation

Let us now calculate the cross-correlation of the �uctuations of currents Î1(t) and Î2(t), that

is CI1I2 = < δÎ1(t)δÎ2(t+ t′) >
t′

and CI2I1 = < δÎ2(t)δÎ1(t+ t′) >
t′

. Following Eq.3.2, the

product of currents Î1(t) and Î2(t) yields products of the operators ĉ†i ĉj (resp. f̂
†
i f̂j) with d̂

†
i d̂j

(resp. ê†i êj). When considering the cross-correlation of the �uctuations, the contributions of

ê†i êj and f̂
†
i f̂j vanish since these operators are independent. The only non-vanishing term (due

to the relation between ĉ†, ĉ and d̂†, d̂ given in Eq.3.1) is therefore < ĉ†1ĉ2d̂
†
3d̂4 > in the product

Î1(t)δÎ2(t+ t′), and < d̂†1d̂2ĉ
†
3ĉ4 > in Î2(t)δÎ1(t+ t′). The cross-correlators of the �uctuations are

therefore given (after applying Wick's theorem in order to only consider the cross terms) by:

CI1I2 = < δÎ1(t)δÎ2(t+ t′) >
t

=
e2

h2

∫
dε1,2,3,4 < ĉ†1d̂4 >< ĉ2d̂

†
3 >

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~

CI2I1 = < δÎ2(t)δÎ2(t+ t′) >
t′

=
e2

h2

∫
dε1,2,3,4 < d̂†1ĉ4 >< d̂2ĉ

†
3 >

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~

(3.6)

We now expand these expressions in terms of the operators â†, â and b̂†, b̂, similarly to Eq.3.4:

< ĉ†1d̂4 >< ĉ2d̂
†
3 > = < −T â†1b̂4 −

√
RT (â†1â4 − b̂†1b̂4) +Rb̂†1â4 >

× < −T â2b̂
†
3 −
√
RT (â2â

†
3 − b̂2b̂

†
3) +Rb̂2â

†
3 >

< d̂†1ĉ4 >< d̂2ĉ
†
3 > = < Râ†1b̂4 −

√
RT (â†1â4 − b̂†1b̂4)− T b̂†1â4 >

× < Râ2b̂
†
3 −
√
RT (â2â

†
3 − b̂2b̂

†
3)− T b̂2â†3 >

(3.7)

Since â and b̂ are independent, we �nally obtain:
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< ĉ†1d̂4 >< ĉ2d̂
†
3 > = RT

(
< â†1â4 >< â2â

†
3 > + < b̂†1b̂4 >< b̂2b̂

†
3 >
)

−RT
(
< â†1â4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â2â

†
3 >
)

< d̂†1ĉ4 >< d̂2ĉ
†
3 > = RT

(
< â†1â4 >< â2â

†
3 > + < b̂†1b̂4 >< b̂2b̂

†
3 >
)

−RT
(
< â†1â4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â2â

†
3 >
)

(3.8)

The cross-correlators CI1I2 and CI2I1 are therefore equal, whatever the value of the QPC
transmission. Furthermore, at transmission 0.5, a simple relation can be found between Eq.3.5
and Eq.3.8:

< ĉ†1ĉ4 >< ĉ2ĉ
†
3 > + < ĉ†1d̂4 >< ĉ2d̂

†
3 >= 2T 2

(
< â†1â4 >< â2â

†
3 > + < b̂†1b̂4 >< b̂2b̂

†
3 >
)

(3.9)

Eq.3.9 therefore implies that the sum of the auto and cross-correlators is equal to half the sum
of the autocorrelation of the incoming current �uctuations.

3.1.4 Current conservation

The result of the previous paragraph can be established with a simple consideration of current
conservation: the net current �owing into the sample Î+ Î3 is necessarily equal to the net current
leaving the sample Î1 + Î2. One has therefore:

Î + Î3 = Î1 + Î2 (3.10)

Let us calculate the autocorrelation of the �uctuations of the net current �owing into the
sample< δ(Î+Î3)δ(Î

′
+Î
′
3) >, with Î

′
= Î(t+t′), while assuming that Î and Î3 are non-correlated:

< δ(Î + Î3)δ(Î
′
+ Î

′
3) > = < (Î + Î3)(Î

′
+ Î

′
3) > − < (Î + Î3) >< (Î

′
+ Î

′
3) >

= < ÎÎ
′
+ Î3Î

′
+ Î Î

′
3 + Î3Î

′
3 > − < (Î + Î3) >< (Î

′
+ Î

′
3) >

= < ÎÎ
′
> − < Î >< Î

′
> + < Î3Î

′
3 > − < Î3 >< Î

′
3 >

= CII + CI3I3
(3.11)

One can now use Eq.3.10 to express the left term in Eq.3.11 as a function of the output
currents Î1, Î2:

< δ(Î + Î3)δ(Î
′
+ Î

′
3) > = < δ(Î1 + Î2)δ(Î

′
1 + Î

′
2) >

= < (Î1 + Î2)(Î
′
1 + Î

′
2) > − < (Î1 + Î2) >< (Î

′
1 + Î

′
2) >

= < Î1Î
′
1 + Î2Î

′
1 + Î1Î

′
2 + Î2Î

′
2 > − < (Î1 + Î2) >< (Î

′
1 + Î

′
2) >

= CI1I1 + CI2I2 + CI1I2 + CI2I1
(3.12)
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We therefore have:

CII + CI3I3 = CI1I1 + CI2I2 + CI1I2 + CI2I1 (3.13)

This last equation thus gives a direct relation between the auto and cross-correlations of the out-
put current �uctuations, and the autocorrelation of the input current �uctuations. In particular,
when the QPC is set to transmission 0.5 (see previous paragraphs), this expression becomes:

CII + CI3I3 = 2CI1I1 + 2CI1I2 (3.14)

As we have shown in the last paragraph, the sum of the auto and cross-correlators of the
output current �uctuations is indeed equal to half the sum of the autocorrelation of the incoming
current �uctuations. Furthermore, when the current Î3 �owing into contact (B) is noiseless (for
instance, if the contact is grounded, or biased), we have CI3I3 = 0, which implies:

CII = 2CI1I1 + 2CI1I2 (3.15)

One can therefore unequivocally deduce the cross-correlation from the autocorrelation on
either output, as long as the noise of the incoming current Î is known. This is the case for the
single electron emitter in the HBT geometry, where the noise of the incoming current is precisely
the noise of the source, described and studied in the previous chapter. We can therefore use
our high frequency noise measurement setup to compare the noise at transmission 0.5 with the
noise at transmission 1 of the beam splitter (provided, of course, that the source is located
between contact (A) and the QPC, and the measurement setup connected to contact (C), see
next section), and thus obtain all the information contained in the cross-correlation.

Finally, one can also suppose that the current Î is noiseless, as it would be the case when
the escape time of the single electron emitter becomes much smaller than the half-period (see
previous chapter), or when no source is added, and contact (A) is simply biased. In this case,
CII = 0, and one �nds:

CI1I1 = −CI1I2 (3.16)

When both incoming current are noiseless, the auto and cross-correlation are thus opposite.
This result was established in [95] in the case of metallic di�usive conductors, and experimentally
demonstrated in [32, 96] in a two-dimensional electron gas.

3.2 Partition of a single-charge beam: scattering model

In this section, we use the scattering model presented in chapter 1 to calculate the autocorrelation
of the current �uctuation at either output of the sample3. We then present numerical calculations
of the output noise; we �nally propose several experiments using our device.

3The zero-frequency noise in a similar HBT geometry was calculated in [97] in the case of charges generated
by AC driven contacts.
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%Figure 3.2: Single electron emitter in the HBT geometry.

The geometry of the sample is shown on Fig.3.2: a quantum dot used as the single electron
source is inserted between contact (A) and the central QPC; we note â†, â the creation/annihilation
operators between contact (A) and the dot, and â′†, â′ the operators between the dot and the
central QPC. These operators are then linked by the Floquet scattering matrix Um(ε) de�ned in
Eq.1.15:

â′(ε) =
∑
m

Um(ε)â(ε+m~Ω) (3.17)

A �nite voltage Vbias can be applied to contact (B); we will show below how this can be used to
measure the energy distribution of the emitted charges.

3.2.1 Calculation of the partition noise

We now calculate the partition noise of the single electron emitter in the HBT geometry, that is
the autocorrelation of the �uctuations of either output currents Î1, Î2, as shown in Fig3.2. As it
is demonstrated in 3.1.2, the two currents are strictly equivalent, and one only needs to replace√
R by

√
T (and vice-versa) in Eq.3.5 in order to switch from the CI1I1 to CI2I2 (the − sign

in Eq.3.1 has no importance here, since both
√
R and

√
T are found with even powers when

calculating the correlation). In this calculation, we only consider the contribution of the source
(that is, terms containing â′†, â′), since any other contribution can be removed by subtracting
the noise at the pinch-o� (i.e. when the transmission of the source's QPC D is set to zero, see
previous chapter). In these conditions, the autocorrelation of the �uctuations of the transmitted
current Î1(t) are given by:

CI1I1(τ) = < δÎ1(t)δÎ1(t+ t′) >
t

=
e2

h2

∫
dε1,2,3,4 < ĉ†1ĉ4 >< ĉ2ĉ

†
3 >

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~
(3.18)

The term < ĉ†1ĉ4 >< ĉ2ĉ
†
3 > can be replaced by its expression given in Eq.3.5. The term

< b̂†1b̂4 >< b̂2b̂
†
3 >, which corresponds to the partition of the current emitted by contact (B), is

suppressed when taking into account the subtraction of the noise at the pinch-o� of the source
QPC. This yields:
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(< ĉ†1ĉ4 >< ĉ2ĉ
†
3 >)excess = T 2 < â′

†
1â
′
4 >< â′2â′

†
3 >

+T (1− T )
(
< â′

†
1â
′
4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â′2â′

†
3 >
)
(3.19)

The term < â′
†
1â
′
4 >< â′2â′

†
3 > corresponds to the autocorrelation of the current �uctuations

emitted by the source, which is calculated in 2.2.2. The Fourier transform of the correlator
CI1I1(t′), de�ned by:

CI1I1(ω) = 2

∫
dτe−iωτ< δÎ1(t)δÎ1(t+ t′) >

t
(3.20)

is therefore equal to the sum of the noise of the single electron source partitioned by the QPC
T 2S(ω) and a correlation term directly arising from the partition of the single charge electronic
beam emitted by the source T (1− T )C(ω):

CI1I1(ω) = T 2S(ω) + T (1− T )C(ω) (3.21)

To avoid any confusion, let us remind that the term corresponding to the partition of the
current emitted by the opposite contact (B) is suppressed by subtracting the noise at the pinch-
o�.

The �rst term in Eq.3.21 has been thoroughly studied in the previous chapter; in particular,
it was shown to vanish at zero frequency, so that low-frequency noise measurements would allow
to only detect the contribution of the correlation term C(ω). We now calculate this term as a
function of the source parameters encoded in the Floquet scattering matrix Um(ε), and show
that it indeed presents a �nite zero-frequency part.

Following Eq.3.19, the correlation term C(ω) is given by:

C(ω) = 2
e2

h2

∫
dt′dε1,2,3,4

(
< â′

†
1â
′
4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â′2â′

†
3 >
)

×ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~−ω)t′
(3.22)

C(ω) can be decomposed a sum C(ω) = Ce(ω) + Ch(ω). The two contributions Ce(ω) and
Ch(ω), which, as we will show above, correspond respectively to the contribution of electrons
and holes in the partition term C(ω), are de�ned by:
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Ce(ω) = 2
e2

h2

∫
dt′dε1,2,3,4 < â′

†
1â
′
4 >< b̂2b̂

†
3 > ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~−ω)t′

= 2
e2

h2

∫
dt′dε1,2,4 < â′

†
1â
′
4 > (1− f(ε2)) ei(ε1−ε4)t/~tei((ε2−ε4)/~−ω)t′

= 2
e2

h

∫
dε1,4 < â′

†
1â
′
4 > (1− f(ε4 + ~ω)) ei(ε1−ε4)t/~t

Ch(ω) = 2
e2

h2

∫
dt′dε1,2,3,4 < b̂†1b̂4 >< â′2â′

†
3 > ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~−ω)τ

= 2
e2

h2

∫
dt′dε1,2,3 < â′2â′

†
3 > f(ε1) ei(ε3−ε2)t/~tei((ε3−ε1)/~−ω)t′

= 2
e2

h

∫
dε2,3 < â′2â′

†
3 > f(ε3 − ~ω) ei(ε3−ε2)t/~t

(3.23)

The development of the terms < â′
†
1â
′
4 > and < â′2â′

†
3 > is similar to the one performed in

the previous chapter, in Eqs.2.13-2.14. The average over time t �nally yields:

Ce(ω) = 2
e2

h

∑
m

∫
dε |Um(ε)|2 f(ε+m~Ω)(1− f(ε+ ~ω))

Ch(ω) = 2
e2

h

∑
m

∫
dε |Um(ε)|2 (1− f(ε+m~Ω))f(ε− ~ω)

(3.24)

The correlator C(ω) is therefore given by (with ε + m ≡ ε + m~Ω, where Ω is the drive
frequency):

C(ω) = 2
e2

h

∑
m

∫
dε |Um(ε)|2 (f(ε+m)(1− f(ε+ ~ω)) + (1− f(ε+m))f(ε− ~ω))

(3.25)

We use this last equation to numerically compute the partition noise as a function of the
di�erent parameters of the sample.

3.2.1.1 Biased opposite contact

As described in the beginning of this section, the opposite contact (B) can be biased with a
�nite voltage Vbias. The partition noise of the current emitted by the contact can be removed by
subtracting the noise at the pinch-o�. In these conditions, the bias voltage only shifts the Fermi
function corresponding to the b̂†, b̂ operators, so that < b̂†(ε)b̂(ε′) >= f(ε+ eVbias)δ(ε− ε′). We
thus obtain:

C(ω) = 2
e2

h

∑
m

∫
dε |Um(ε)|2

(
f(ε+m)(1− f(ε+ ~ω + eVbias))

+(1− f(ε+m))f(ε− ~ω + eVbias)
) (3.26)
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3.2.1.2 Zero-temperature, zero-frequency limit

At zero temperature, the Fermi functions in this equation can be replaced by �xed boundaries
in the integrals, so that

∫
dε . . . (1 − f(ε)) =

∫ +∞
0 dε . . .. Let us demonstrate that Ce(ω = 0)

(Ch(ω = 0)) is proportional to the total number of electrons (holes) emitted by the source N+

(N−) during a measurement time Tacq, which can be written as a function of the number of
emitted electrons (holes) per period n+ (n−):

N+ = f0Tacqn+ =

+∞∫
0

dε < â′
†
(ε)â′(ε) >

=

+∞∫
0

dε
∑
m,m′

|Um(ε)|2 f(ε+m)δ((m−m′)~Ω)

N− = f0Tacqn− =

0∫
−∞

dε < â′(ε)â′
†
(ε) >

=

0∫
−∞

dε
∑
m,m′

|Um(ε)|2 (1− f(ε+m))δ((m−m′)~Ω)

(3.27)

where Tacq is the total acquisition time, and f0 the drive frequency. The Dirac function δ((m−
m′)~Ω) can be written as:

δ((m−m′)~Ω) =
1

h

Tacq/2∫
−Tacq/2

dtei(m−m
′)Ωt =

Tacq
h
δm,m′ (3.28)

When Tacq � 2π/Ω, we obtain, at zero temperature:

f0n+ =
1

h

+∞∫
0

dε
∑
m

|Um(ε)|2 f(ε+m)

=
1

h

∫
dε
∑
m

|Um(ε)|2 f(ε+m)(1− f(ε))

f0n− =
1

h

0∫
−∞

dε
∑
m

|Um(ε)|2 (1− f(ε+m))

=
1

h

∫
dε
∑
m

|Um(ε)|2 f(ε)(1− f(ε+m))

(3.29)

By introducing this expression in Eq.3.25 for ω = 0, one �nally obtains:

C(ω = 0) = 2e2f0(n+ + n−) (3.30)

At zero frequency and zero temperature, the correlator C(ω = 0) is therefore proportional
to the sum of the number of electrons emitted per period and the number of holes emitted per
period. One can also write it as a function of the number of electron/hole pairs emitted per
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period ne/h = (n+ + n−)/2. Since the autocorrelation of the current �uctuations emitted by the
source vanish at zero frequency (see chapter 2), the autocorrelation of the current �uctuations
after partition by the QPC CI1I1(ω = 0) is then equal to:

CI1I1(ω = 0) = 4e2f0T (1− T )ne/h (3.31)

When the QPC transmission is set to 0.5, CI1I1(ω = 0) (at zero temperature) is therefore
a direct measurement of the number of electron/hole pairs emitted per period, in units of e2f0.
This property was �rst established in [64], using a Floquet scattering formalism and considering
a single electronic level in the dot.

• Biased opposite contact
When calculating the derivative of Eq.3.26 with respect to the bias voltage applied to the opposite
contact Vbias, one obtains, for ω = 0:

∂C

∂Vbias
(ω = 0) = 2

e2

h

∑
m

∫
dε |Um(ε)|2

(
f(ε+m)(−edf

dε
(ε+ eVbias))

−(1− f(ε+m))(−edf
dε

(ε+ eVbias))
) (3.32)

At zero temperature, (−edfdε(ε+ eVbias)) = eδ(ε+ eVbias). We thus obtain:

∂C

∂Vbias
(ω = 0) = 2

e2

h

∑
m

e |Um(−eVbias)|2
(
f(−eVbias +m)− (1− f(−eVbias +m))

)

= 2
e2

h

(
−Ne(−eVbias) +Nh(−eVbias)

)
(3.33)

where Ne(−eVbias) (Nh(−eVbias)) is the number of electrons (holes) per energy unit at energy
−eVbias. The derivative of C(ω = 0) with respect to the bias voltage applied to the opposite
contact therefore measures the energy distribution of the emitted charges.

3.2.2 Numerical computations

We now present numerical computation of the noise after partition, both at zero frequency (thus
only considering the contribution of C(ω = 0)) and at �nite frequency (thus considering both
C(ω) and S(ω)), for di�erent parameters.

3.2.2.1 Zero-temperature, zero-frequency

We have plotted in Fig.3.3 the dependence of the zero-frequency part of the noise after partition
by the QPC CI1I1(ω = 0) = T (1 − T )C(ω = 0) as a function of the transmission of the central
QPC T and the transmission of the dot's QPC D. The noise is calculated in the ideal injection
conditions (2eVexc = ∆, φ0 = 0) at zero temperature. The level spacing ∆ is set to 3K,
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3.2. Partition of a single-charge beam: scattering model

corresponding to the level spacing of sample S434-8 studied in this chapter; the drive frequency
f0 is equal to 1.5GHz. The variation of the noise with the central QPC transmission T is trivial,
since it only contributes in the T (1 − T ) prefactor at zero frequency. The maximum value of
the curve as a function of T (for T = 0.5) is equal to the number of emitted electron/hole pairs
per cycle, which depends on the dot's QPC transmission D. For small values of D, the number
of emitted electron/hole pairs vanishes because the escape time becomes much larger than the
half-period of the drive. When D increases, ne/h becomes equal to one, thus demonstrating the
emission of a single electron followed by a single hole in a cycle. Furthermore, ne/h is equal to
unity for a wide range of values of D (typically 0.1− 0.8), indicating that a wide range of escape
times is available while the single particle emission remains enforced.'

&
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Figure 3.3: Zero-frequency part of the partition noise CI1I1(ω = 0) as a function of the
dot QPC transmission D and the central QPC transmission T , at zero temperature.
For a �xed transmission D, the partition noise (in units of e2f0) is given by 4T (1 −
T )ne/h(D).

When D becomes close to one, the number of emitted electron/hole pairs increases: indeed,
for large transmissions, the quantization of the levels in the dot is lost, so that the source is
similar to the type of source mentioned in the introduction, where the Fermi sea is modulated
periodically in order to emit single charges. As demonstrated in [57], a Lorentzian-shaped pulse
would allow to suppress the emission of additional electron/hole pairs.

• Variation with the dot equilibrium potential and shape of the drive
The results shown in chapter 2 indicate that depending on the dot equilibrium potential (that
is, on φ0) and the number of odd harmonics in the excitation drive, additional charge trans-
fer processes may take place, in particular in the resonant case φ0 = π, for a low number of
harmonics.

One therefore expects the number of emitted electron/hole pairs to increase in the resonant
case. We have plotted in Fig.3.4 the correlation term T (1 − T )C(ω = 0) for T = 0.5, as a
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Figure 3.4: a) variation of CI1I1(ω = 0) for T = 0.5 with the transmission D and the
dot equilibrium potential, for an excitation drive containing 3 odd harmonics. In the
resonant case φ0 = π, the number of emitted electron/hole pairs per period increases
signi�cantly. b) variation of CI1I1(ω = 0) for T = 0.5 with D, in both resonant
(φ0 = π) and anti-resonant (φ0 = 0) cases, for several shapes of the excitation drive.

function of the dot's QPC transmission D and the dot equilibrium potential, for several values of
the number of odd harmonics. As expected, the number of emitted electron/hole pairs increases
signi�cantly (up to a factor 3) for φ0 = π, indicating that additional charge transfer processes
indeed occur within this scattering formalism. Furthermore, the maximum value of additional
electron/hole pairs is reached for two odd harmonics, which corresponds to an excitation signal
presenting the largest ripples.
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3.2. Partition of a single-charge beam: scattering model

One can note that at transmission unity, the partition noise becomes independent of the dot
equilibrium potential since the density of states becomes uniform.

3.2.2.2 Zero-temperature, finite frequency
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Figure 3.5: Variation of C(ω) (circles) and S(ω) (full lines) with the measurement
frequency, in the φ0 = 0 case, at zero temperature. For small transmissions D, C(ω)
and S(ω) coincide at �nite frequency. Here, ∆ = 3K, and Ω = 70mK.

When the measurement frequency ω becomes �nite, one must take into account the contri-
bution of the intrinsic noise generated by the source S(ω). Particularly, in the con�guration
described in Fig.3.2, when the central QPC transmission becomes close to unity, S(ω) becomes
preponderant and the situation studied in chapter 2 is recovered. Since S(ω) and C(ω) are
by construction independent of the transmission T , one can directly compare them, particu-
larly their respective variation with the measurement frequency ω. This variation is plotted in
Fig.3.5, for several values of the dot transmission D. For a given transmission, S(ω) and C(ω)
are quite comparable, except at low frequencies, for which S(ω) vanishes. At high frequencies,
S(ω) and C(ω) coincide because of the ∆/2 frequency cuto�: in the anti-resonant case φ0 = 0,
the system cannot emit photons at energies above ∆/2. The width of the cuto� depends only
on the transmission D, more precisely on the width of the energy levels of the dot D∆. When
the transmission D becomes small, S(ω) and C(ω) coincide over a wide range of the measure-
ment frequency. Indeed, for small transmissions D, S(ω) is essentially shot noise; one can then
easily demonstrate, using Eq.55 in [79], that C(ω 6= 0) = S(ω 6= 0), see appendix A.5. The
frequency dependence of S(ω) and C(ω) can give access to the temporal variation of the cross-
correlation CI1I2(t′): indeed, as stated in Eq.3.15, CI1I2(t′) can be directly deduced from the
autocorrelation of the current �uctuations upstream and downstream of the QPC for T = 0.5:
CI1I2(t′) = CII(t

′)/2−CI1I1(t′). In the frequency domain, this reads, using Eq.3.21 with T = 0.5:
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Figure 3.6: Calculation of the frequency (a) and time (b) variations of the cross-
correlation, for several values of the dot QPC transmission D, at T = 0.5. Circles in

b): analytic formula CI1I2(t′) = − e2f0

τ e−|t
′|/τ , derived from the heuristic model.

CI1I2(ω) = (S(ω)− C(ω))/4 (3.34)

We have plotted in Fig.3.6a the cross-correlation in the frequency domain CI1I2(ω), calculated
using the data presented in Fig.3.5, for di�erent values of the transmission D. All data present
a dip at zero frequency, corresponding to the zero-frequency cuto� of S(ω) observed in Fig.3.5.
When D increases, so do the width and depth of the dip, re�ecting the increasing in�uence of
the quantum jitter in the noise. For large values of the frequency, all datasets are equal to zero
because of the ∆/2 high-frequency cuto� displayed by both S(ω) and C(ω).

The temporal variation of the cross-correlation CI1I2(t′), obtained by calculating the inverse
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Figure 3.7: Variation of CI1I1(ω = Ω) with the central QPC transmission T , for several
values of D. For large D, the noise becomes comparable to the T (1−T ) limit (dashed
line).

Fourier transform of the data discussed above, is plotted in Fig.3.6b. The cross-correlation
presents a negative dip at zero-time which corresponds to the expected antibunching of the
charges at short times, demonstrating single particle emission. The width of the dips, given by
the escape time τ , decreases with the dot QPC transmission D, re�ecting the charge memory
of the dot mentioned in 2.3.1: at low transmission, the escape time becomes larger than the
half-period, and the source cannot emit a hole until the electron is emitted (and vice-versa).
We have compared the calculated data at D = 0.5 with an analytic formula deduced from
the heuristic model: at large enough transmission, the dot behaves as an ideal single electron

source, so that the cross-correlation of the output currents < Î1(t)Î2(t+ t′) >
t
is equal to zero.

The cross-correlation signal is then given by the sole term −< Î1(t) >< Î2(t+ t′) >
t
, which,

according to Eq.2.26, is equal to − e2f0

τ e−|t
′|/τ . The excellent agreement between the scattering

model and this heuristic formula (plotted as circles in Fig.3.6b) demonstrates once again that
the scattering model e�ectively describes the mesoscopic capacitor as an ideal single electron
emitter when using the optimal operating conditions.

• Dependence of the noise at �nite frequency on the QPC transmission T

We have plotted in Fig.3.7 the noise after partition at the drive frequency Ω CI1I1(Ω) =
T 2S(Ω) + T (1 − T )C(Ω) as a function of the QPC transmission T , for several values of the
dot QPC transmission D. The shape of the curve highly depends on the transmission D, gradu-
ally changing from a monotonically increasing polynomial for small D (for which S(Ω) and C(Ω)
are comparable) to an exact T (1 − T ) curve for D = 1 (S(Ω) vanishes, while C(Ω) remains
�nite). Knowing the precise value of S(Ω) for a given transmission D allows to easily interpret
the noise CI1I1(Ω).
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3.2.2.3 Biased opposite contact
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Figure 3.8: Variation of ∂C(ω = 0)/∂Vbias with Vbias, probing the energy distribution
of the emitted charges. a) anti-resonant case φ0 = 0: the charges are emitted at an
energy ±∆/2 above/below the Fermi level. The dot QPC transmission changes the
energy width of the emitted charges. b) resonant case φ0 = π: the energy of the
emitted charges is not well-de�ned; a large portion of it is centered around the Fermi
level.
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3.2. Partition of a single-charge beam: scattering model

As demonstrated by Eq.3.33, the derivative of the correlation C(ω = 0) with respect to
the bias voltage Vbias measures the energy distribution of the emitted charges. As such, it
should display a strong dependence on the dot equilibrium potential, especially between the anti-
resonant case φ0 = 0 and the resonant case φ0 = π. We have plotted in Fig.3.8 the dependence
of ∂C

∂Vbias
(ω = 0) as a function of Vbias, in the anti-resonant and resonant cases, for several values

of the dot QPC transmission D. As expected, for φ0 = 0, ∂C
∂Vbias

(ω = 0) displays a peak (dip)
at eVbias = −∆/2 (eVbias = +∆/2), with a width proportional D∆: the single electron source
indeed emits charges at an energy ±∆/2, with an energy width D∆. In the resonant case, the
energy of the emitted charges is centered on zero: the charges are mainly emitted in resonance
with the Fermi energy.'
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Figure 3.9: E�ect of the temperature on the di�erence CI1I1(ω = 0, φ0 = π) −
CI1I1(ω = 0, φ0 = 0) (plotted as a function of the transmission D; T = 0.5). Dashed
lines: zero temperature limit Tel = 0K. Full lines: Tel = 100mK. Thin lines with
symbols: Tel = 300mK. The colors correspond to the number of harmonics in the
excitation drive: 1 (green), 2 (blue), 3 (red) and 10 (black). For any shape of the
drive, the measured di�erence diminishes with the temperature.

3.2.2.4 Effect of the temperature

• Detection of electron/hole pairs
When one increases the temperature in the expression of the number of emitted electrons and
emitted holes per period n+ and n− given in Eq.3.29, the Fermi functions ((1−f(ε)) for electrons,
f(ε) for holes), which de�ne the boundaries of the integrals at zero temperature, start to broaden.
As a result, the value of the integrals diminishes, because the number of emitted electrons (holes)
per energy unit Ne(ε) (Nh(ε)) is integrated with a smaller weight for positive (negative) energies
close to the Fermi level. At �nite temperature, the autocorrelation of the current �uctuations
after partition by the QPC CI1I1(ω = 0) (for T = 0.5) is therefore smaller than the total number
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of electron/hole pairs emitted per period: the accuracy of electron/hole pairs detection is reduced
by the temperature. One expects this e�ect to be particularly strong when charges are emitted
close to the Fermi energy, that is in the φ0 = π regime, or for large transmission D. We have
plotted in Fig.3.9 the di�erence between the zero-frequency noise CI1I1(ω = 0) in the φ0 = π
regime and in the φ0 = 0 regime (for T = 0.5), for an excitation square signal containing 1
(black), 2 (red), 3 (blue) and 10 (dark cyan) odd harmonics, at three di�erent temperatures
(0mK (hollow symbols), 100mK (full lines), 300mK (full symbols)). As expected, the di�erence
signi�cantly diminishes when the temperature is increased: less electron/hole pairs are detected.
At 300mK, the di�erence becomes negative: even though more electron/hole pairs are generated
when the charges are emitted close to the Fermi energy, the systems detects less of them than in
the anti-resonant regime. This e�ect is also present at 100mK for 10 odd harmonics. Working
at low enough temperature is therefore crucial in order to precisely measure the number of
pairs emitted per period, especially when one takes into account the �nite sensitivity of the
measurement, which yields error bars typically equal to 0.1− 0.2e2f0.

• Energy distribution of the emitted charges
At �nite temperature, the derivative of C(ω = 0) with respect to the bias voltage Vbias measures
the energy distribution of the emitted charges, convoluted by the derivative of the Fermi function.
One therefore expects the peaks and dips in the energy distribution function to be smoothed by
the temperature. We have plotted in Fig.3.10 the calculated derivative of C(ω = 0) with respect
to Vbias at transmission D = 0.2, for three di�erent temperatures, in the φ0 = 0 (upper panel)
and φ0 = π (lower panel) regimes. As for the detection of electron/hole pairs presented above,
the temperature signi�cantly diminishes the accuracy of the measurement of the emitted charges
energy distribution: at 100mK, the peak corresponding to the electron emitted at energy ∆/2
in the φ0 = 0 regime is reduced by ∼ 60%, while the variations are almost suppressed at 500mK.

A �nite temperature (within reasonable bounds, that is . 100mK) is less problematic for this
measurement than for the measurement of the variation of the number of emitted electron/hole
pair with the dot static potential φ0 described in the previous paragraph, since the detected
variable is C(ω = 0), which typical levels are not a�ected by the temperature: only the derivative
of C(ω = 0) with respect to Vbias) changes with the temperature (see insets in Fig.3.10: at 100mK
(red line), the variation of C(ω = 0) with Vbias is quite similar to the zero-temperature case (black
line)).

3.2.3 Experiment proposals

Based on the numerical results presented above, one can consider several measurements using
the HBT geometry:

• Measurement of the number of emitted electron/holes pairs per period
Provided that the electronic temperature is low enough, one can measure the zero-frequency part
of the noise after partition in order to measure the number of emitted electron/hole pairs per
period in several operating conditions of the source. Indeed, in the study of the noise of the source
presented in the previous chapter, oscillations in the noise S(Ω) were observed as a function of
the gate voltage Vg. We have shown that these oscillations correspond to an increase in the noise
in the φ0 = π regime, where charges are emitted close to the Fermi energy; this increase is due
to the limited harmonic content of the excitation signal, which causes the highest occupied level
in the dot to oscillate rapidly in front of the Fermi level. It is thus highly interesting to link
the increase in S(Ω) with the variation of the number of emitted electron/hole pairs, in order to
characterize the processes occurring when a charge is emitted close to the Fermi energy. One can
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Figure 3.10: ∂C(ω = 0)/∂Vbias versus Vbias, for increasing temperatures: 0K (black),
100mK (red), 500mK (blue). a) anti-resonant case φ0 = 0. b) resonant case φ0 = π.
Insets: variation of C(ω = 0) with Vbias, for the same temperatures.

also study the variation of the number of emitted pairs in the φ0 = π regime with the excitation
frequency. Indeed, one expects the number of emitted electron/hole pairs to increase when the
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driving frequency is lowered: it was predicted in [64] that the number of electron/hole pairs
generated by placing the electronic level in the dot in resonance with the Fermi energy during
a time t logarithmically diverges when t increases (i.e. when the driving frequency is lowered).
This e�ect is related to the "`orthogonality catastrophe"' �rst predicted in [98].

• Cross-correlation
Following Eq.3.15, one can deduce the cross-correlation of the current �uctuations after partition
from the measurement of the noise (autocorrelation) before and after partition. It would then be
possible to measure the temporal variations of the cross-correlation and demonstrate, similarly
to quantum optics, negative correlations at zero-time (see Fig.3.6). This representation however
requires the measurement of the full spectrum of the autocorrelation. This is challenging since
the measurement bandwidth of the high-frequency noise measurement setup should be increased
up to several dozens of GHz. Nonetheless, for transmissions below 0.2, the typical variation scale
of the cross-correlation in the frequency domain is comparable with the upper cuto� frequency
of the impedance transformer and the cryogenic ampli�ers of our RF noise measurement setup,
that is ∼ 4.5GHz = 3f0 = 225mK (see 4.1). Measuring the temporal variation of the cross-
correlation for small values of the transmission is thus within reach, provided that the bandwidth
of the RF measurement setup is extended to its maximum value.

• Measurement of the emitted charges energy distribution, tomography
The measurement of the variations of the zero-frequency partition noise with the bias voltage
Vbias gives access to the energy distribution of the emitted charges. This opens the way to a
wide range of experiments, such as the measurement of the relaxation of the emitted charges
as a function of the distance between the source and the central QPC. As predicted by Charles
Grenier and collaborators in [65], one can generalize this technique and apply a high-frequency
voltage to the opposite contact in order to measure the o�-diagonal terms of the density matrix of
the emitted charge (the diagonal being the energy distribution), thus performing a full quantum
tomography of the emitted charge. One can then once again study the evolution of the density
matrix with the propagation length, thus characterizing the relaxation and decoherence processes
occurring in Quantum Hall E�ect edge channels at the single charge scale.

• Energy relaxation between QHE edge channels
The HBT geometry can be used to study the energy exchanges between adjacent Quantum Hall
E�ect edge channels: indeed, while our scattering model only considers the outer edge channels,
it was recently shown [24, 25] that energy transfer processes occur between edge channels over
typical length of a few micrometers. Using a central QPC, one can then measure the amount of
energy transmitted from the outer channel, on which charges are emitted, to the inner channel at
�lling factor ν = 2. Using the single electron emitter allows to study the relaxation to the inner
channel at the single charge level, as a function of the energy of the emitted charge. Furthermore,
measuring the zero-frequency noise re�ected by the QPC at transmission 1.5 (outer channel fully
transmitted to the high-frequency measurement contact, inner channel partially re�ected to the
low-frequency measurement contact) allows to count the number of electron/hole pairs generated
in the inner channel.

3.3 Experimental setup

We now present the setup used to perform single charge experiments in the HBT geometry. The
sample has two outputs, corresponding to each output of the QPC, and is connected to two
noise measurement setups (high and low frequency) designed to detect noise levels of the order
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of e2f0, with f0 = 1.5GHz. We �rst describe the geometry of the sample, then the whole setup.
The noise measurement lines are described in detail in the next chapter; in particular, we have
increased the bandwidth of the high-frequency noise measurement setup used to perform the
experiments presented in chapter 2.

3.3.1 Sample geometry

The samples used in the experiments in the HBT geometry (batch S434 ) where made at Labo-
ratoire de Photonique et Nanostructures by Yong Jin. The two-dimensional electron gas has a
nominal density equal to 1.8× 1011cm−2, and a nominal mobility equal to 2.4× 106cm2V −1s−1.'
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a) b)

c)

Figure 3.11: Optical view (in false colors) of the samples used in the HBT measure-
ments. a), b) and c) correspond to successive zooms. The yellow arrows illustrate the
trajectories of electrons along the edge channels in the QHE regime.

We show an optical view of a typical sample from this batch in Fig.3.11: similarly to sample
S528-11 , studied in the previous chapter, most of the surface of the sample is covered by an Au
ground plane to reduce the parasitic couplings (high frequency couplings, as well as capacitive
couplings between the di�erent QPC gates). We however have added two additional ohmic
contacts (G1, G2), connected to the ground plane, that are placed between the measurement
contact (M1,M2) and the bias contact (B1, B2) on each side of the two-dimensional electron gas.
This geometry allows to keep the impedance of the sample seen by each of the two measurement
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lines independent of the state of the bias contacts: one can therefore either ground them, leave
them �oating, or connect them to a source with no in�uence on the measurement lines. The
sample has a symmetrical geometry, thus including two quantum dots (one on each input channel
of the QPC); this geometry, aimed towards Hong-Ou-Mandel electron collision experiments [12],
allows us to select the source presenting the most satisfying characteristics, particularly regarding
its response to the dot QPC gate voltage Vg compared to the the ideal description given in the
�rst chapter (regularity of the level spacing, ideal QPC transmission law). The width of the
quantum dot in sample S434-8, studied in the next section, is slightly larger than the size of
sample S528-11 : 800nm for S434-8, 600nm for sample S528-11 . The distance between each
source and the central QPC is ∼ 5µm.'
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Figure 3.12: Schematic view of the con�guration of the HBT experiment, based on a
SEM picture of the sample (false colors). The green arrows illustrate the trajectories
of electrons along the edge channels in the QHE regime, and red circles symbolize
the emitted single charges. RF signals are measured in transmission on the 120Ω
load, while DC signals are measured in re�ection on the 3kΩ load. The other source
(bottom right) is not used.

3.3.2 Setup

The sample is mounted on the sample holder described in 4.1 (see also Fig.2.12a). We have added
a second 40GHz, 50Ω RF excitation line in order to connect the top gate of each quantum dot
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to one of the two lines. After selecting the quantum dot with the best characteristics, the
con�guration of the sample is as shown in Fig.3.12: the transmission of the central QPC T is
tuned with the gate voltage Vqpc, while the transmission of the dot QPC D is tuned with the
gate voltage Vg. The RF excitation voltage Vexc is generated using either the Agilent 81134A

microwave pulse/pattern generator used in the previous chapter, or an Anritsu MT1810A signal
generator, which presents a larger bandwidth than the Agilent 81134A (∼ 10 odd harmonics for
f0 = 1.5GHz), and shorter rise times (35ps). In addition to the RF excitation voltage Vexc,
we can apply a constant gate voltage VDC to the top gate of the quantum dot, similarly to
the �rst chapter. The gates of the second quantum dot are grounded. The opposite contact
can be biased with the voltage Vbias. The ohmic contact collecting the single charges re�ected
by the QPC (that is, on the same side of the QPC as the source) is shunted by a 3kΩ load,
connected to the low-frequency noise measurement setup; the ohmic contact collecting the single
charges transmitted by the QPC (that is, on the other side of the QPC) is shunted by a 120Ω
load, connected to the high-frequency noise measurement setup. We can therefore measure the
transmission of the central QPC as a function of Vqpc both at high frequency (between the dot
top gate and the RF measurement contact), and at low frequency (between the biased contact
and the low frequency measurement contact). The low-frequency measurements are performed
at 1.2kHz using a lock-in detection.

3.4 Preliminary results

We now present results of the experimental measurements performed with sample S434-8, at a
base temperature of the dilution refrigerator Tmc ≈ 65mK. We �rst present a characterization
of the sample (two-dimensional electron gas, central QPC, source and couplings between the
di�erent QPC gates); we then present measurements of the noise after partition by the central
QPC at high and low frequencies.

3.4.1 Characterization of sample S434-8

3.4.1.1 Two-dimensional electron gas

While we had to rely, for the previous samples, on the nominal value of the electron density of
each batch of samples to estimate the value of the magnetic �eld to apply for a given �lling factor,
the new geometry (particularly, the biased contact) allows to precisely study the conductance
response of the two-dimensional electron gas to an applied magnetic �eld. We have measured
the transmission between the biased contact and the DC measurement contact, in a two-point
probe con�guration. The variation of the resistance between the two contacts as a function
of the magnetic �eld B for a fully opened central QPC (Vqpc = 0) is plotted in Fig.3.13. As
expected in Quantum Hall E�ect systems, the resistance presents a series of plateaus at high
magnetic �eld at integer fractions of the resistance quantum RK ≈ 25.8kΩ. These plateaus
correspond to integer �lling factors of the QHE, where electrons propagate on edge channels
without backscattering. The plateau corresponding to ν = 2 (R = RK/2 ≈ 12.9kΩ) appears
between B ≈ −3.9T and B ≈ −4.7T . Here, the values of the applied magnetic �eld are negative,
which corresponds to the correct con�guration where the electrons in the edge channels �ow from
the biased contact towards the QPC, instead of towards the grounded contact next to the biased
contact (see Fig.3.12).

The low-frequency transmission of the central QPC is plotted in Fig.3.14 as a function of
the magnetic �eld B and the QPC gate voltage Vqpc. We measure the voltage drop across
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Figure 3.13: Measurement of the two-point resistance between the bias contact and
the measurement contact as a function of the magnetic �eld. For magnetic �elds larger
than 1T , the resistance presents plateaus corresponding to integer values of the �lling
factor. We focus our study for B = −3.9T , indicated by the dashed line.

the low-frequency measurement impedance R0 = 3kΩ (see Fig.3.12), connected in parallel with
the impedance of the two-dimension electron gas RK/ν. The measured voltage Vout is then
proportional to the current I �owing from the central QPC to the low-frequency measurement
contact with Vout = I × R0RK/(νR0 + RK). The current I is itself given by the Landauer
formula:

I =
ν∑
i=1

Ti
RK

Vbias =
ν∑
i=1

Ti
e2

h
Vbias (3.35)

where Ti is the transmission of the central QPC for the i−th channel. The measured voltage can
therefore be written as a function of the bias voltage:

Vout =
R0

νR0 +RK

ν∑
i=1

TiVbias (3.36)

The height of the conductance steps therefore depends on the total number of edge channels ν,
and decreases as the magnetic �eld is lowered. This representation allows to choose a magnetic
�eld corresponding to an integer �lling factor, for which the conductance of the central QPC
presents clear quantized plateaus (in number equal to the �lling factor). For consistency with
other experiments aimed towards the realization of electron quantum optics experiments in two-
dimensional electron gases [15, 5, 18, 19, 24, 25], we focus our study for a magnetic �eld B =
−3.9T , corresponding to a �lling factor ν = 2 (highlighted in red in Fig.3.14. At this �lling
factor, the electron phase coherence length is well known (20µm at 20mK, see [19]), as well as
the inelastic length, characterizing the energy exchanges between the two edge channels (2.5µm
for a energy di�erence between the two channels equal to 115mK, see [25]).

112



3.4. Preliminary results

'

&

$

%
Figure 3.14: Conductance of the central QPC as a function of Vqpc and the magnetic
�eld: as the magnetic �led increases, the number of plateaus corresponding to a
quantized conductance in units of e2/h decreases. The conductance at B = −3.9T ,
corresponding to a �lling factor ν = 2, is emphasized in red.

Lastly, Fig.3.14 shows that the irregularities in the QPC transmission law (particularly, the
resonances) increase at high magnetic �eld; this can be clearly seen for |B| > 3T (�lling factors
smaller than 2).

3.4.1.2 Central QPC

The study of the transmission law of the central QPC allows to check the consistency between
high-frequency and low-frequency measurements: indeed, our dilution refrigerator was originally
devoted to microwave-frequency measurements, which do not require the level of precaution re-
garding ground de�nition as low-frequency measurements do (especially regarding ground loops).
In particular, the room-temperature ampli�ers of the high-frequency measurement setup (see
4.1.1.2) can be a source of large ground loops through their power supply unit.

We have therefore measured the transmission of the central QPC as a function of its gate
voltage Vqpc both at high (f0 = 1.5GHz, transmission between the dot top-gate and the RF
measurement contact) and low (1.2kHz, transmission between the biased contact and the DC
measurement contact) frequency. For the high-frequency measurement, the dot QPC is pinched
o�, so that we only consider the capacitive coupling between the dot top-gate and the edge
channels. The comparison between the two traces (normalized as transmission) after optimization
of ground de�nition is shown on Fig.3.15: we have only plotted the transmission of the �rst
channel at high frequency (black circles), since the coupling between the dot top-gate and the
outer and inner edge channels are di�erent. For the outer channel, the agreement between high
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and low frequency (the latter being shown as the red line) is excellent4, except for a small
discrepancy due to a resonance around Vqpc = −1V (see inset), where the transmission becomes
energy dependent.'
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Figure 3.15: Measured transmission of the central QPC as a function of Vqpc, at ν = 2.
Red line: low-frequency measurement (1.2kHz). Black circles: RF measurement
(1.5GHz). Inset: close-up view of the transmission of the outer channel versus Vqpc.

The results shown on Fig.3.15 allow to directly plot the measured partition noise at high and
low-frequency as a function of the QPC transmission T .

3.4.1.3 Single electron source

We have characterized the single electron source of sample S434-8 using the measurements of the
�rst harmonic of the average AC current described in chapter 1. To perform these measurements,
we have set the central QPC gate voltage Vqpc to zero, so as to leave the central QPC fully open
(see Fig.3.15).

The temperature calibration of the source (see 1.3.2.3) yields a level spacing ∆ ≈ 3K, and a
residual electronic temperature T0 ≈ 70mK.

The variation of the modulus of the �rst harmonic |IΩ| as a function of the dot QPC gate
voltage Vg and the excitation amplitude Vexc is plotted in Fig.3.16. While the diamonds cor-
responding to the quantization of the �rst harmonic in units of 2ef0 (described in 1.4.3.2) are
observed, the graph presents some discrepancies with the theoretical model (see for example
Fig.1.17, lower panel): one can observe diamond substructures (e.g. for Vg ≈ −580mV ), which
appear at high excitation voltages. These substructures might be related to resonances in the
QPC transmission; one can nonetheless discard them by simply choosing an operating point of
the source where no such substructures are observed (e.g. for Vg ≈ −585mV indicated by the
intersection of the dashed lines).

4This result was �rst observed in [99].
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Figure 3.16: Two-dimensional plot of the �rst harmonic of the average AC current
emitted by the single electron source versus Vg and Vexc, for sample S434-8. The
intersection of the dashed lines corresponds to the optimal operating conditions of the
source in the partition noise measurements.

More critical is the loss of current quantization (observed as a complete blurring of the
diamonds) for Vg = −585mV ↔ −590mV . This is caused by a large resonance in the QPC
transmission, where the transmission abruptly rises to a value close to unity (hence the loss of
quantization), then decreases to a value where the quantization is recovered. This resonance is
particularly troublesome because it occurs at a gate voltage range where the phase of the current
undergoes its maximum variation for an ideal smooth transmission law. We have plotted in
Fig.3.17a the real and imaginary part of the measured �rst harmonic for 2eVexc = ∆ as a function
of the QPC gate voltage Vg (full lines), as well as the calculated current using an ideal QPC
transmission law (see Eq.1.20) with the parameters Vg0 = −0.567V and ∆V = 7mV (dashed
lines). In order to try to reproduce the experimental results, we have modeled the resonance with
a Lorentzian curve (slightly skewed towards small negative Vg, see Fig.3.17b). The calculated
current is shown in dotted lines: although they reasonably reproduce the experimental data for
gate voltages above −0.59V , it is not possible to reproduce the behavior of the experimental data
for Vg = −0.61V ↔ −0.59V , where the imaginary part of the current is systematically larger
than the real part. This behavior is not consistent with the RC-circuit description of the source
presented in the �rst chapter.

In order to reproduce the experimental results, one would need to take into account the fact
that the phase of the electron visiting the quantum dot can undergo a large variation as it comes
across the localized state creating the resonance in the QPC: for instance, it was shown in [100]
that the phase of electrons in an interferometer is shifted when a localized state is inserted in
one of the two arms of the interferometer. In [100], a small tunable quantum dot is used as the
localized state, and one can control the number of electrons in the dot; the phase shift can then
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be as large as π when an electron is added in the dot.'
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Figure 3.17: Real (black line) and imaginary (red line) parts of the �rst harmonic
versus Vg, for 2eVexc = ∆ (lower panel). Dashed lines: calculation of the current with
the QPC transmission law presenting a resonance at Vg = −0.586V (red line in the
upper panel). Dotted lines: calculation of the current with the QPC transmission law
presenting a resonance at Vg = −0.589V (blue line in the upper panel). The black line
in the upper panel corresponds to an ideal Fermi-like transmission law (parameters
given in the text).

Because of this large resonance, the description of the source as an RC-circuit is not valid
for gate voltages below Vg = −0.58V . In particular, one cannot extract the escape time in
this range of gate voltages from the measurement of the real and imaginary part of the �rst
harmonic. Nonetheless, relevant single electron experiments can be performed for gate voltages
above Vg = −0.58V , corresponding to QPC transmission above ∼ 0.35.

3.4.1.4 Couplings between the gates

In order to perform a typical experiment where we measure the noise as a function of the
transmission of the dot QPC D while keeping the central QPC transmission T equal to 0.5, one
needs to estimate the coupling between the di�erent gates of the sample. Indeed, if the coupling
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between the dot QPC gates and the central QPC gate is �nite, changing the dot QPC gate
voltage Vg will result in a change in the central QPC transmission T . If we were to measure
the noise as a function of Vg while keeping Vqpc constant, the result would yield a non-negligible
deviation caused by changes in the transmission T . It is therefore crucial to precisely determine
the coupling between the two gates, so as to compensates the changes in the transmission T
when Vg is swept. We have extracted the in�uence of the dot QPC gate voltage Vg on the central'
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Figure 3.18: Transmission of the average AC current emitted by the source by the
central QPC (black line), along with the DC transmission (red line). A �nite portion
of the single electron source signal is measured on the inner channel (transmission > 1
for the black line).

QPC transmission from the low frequency measurements of the central QPC transmission as a
function of the gate voltages Vg and Vqpc: we measure the transmission T as a function of the
central QPC gate voltage Vqpc for several values of Vg. If the coupling between the two gates is
zero, one expects to measure the transmission trace shown before (Fig.3.15), una�ected by the
changes in Vg. For a �nite coupling, the transmission traces are slightly shifted as Vg changes. We
use several points in the transmission trace, including the sharp resonance at low transmission
(see Fig.3.15), to determine the coupling between Vg and Vqpc: we �nd δVqpc = 0.02δVg. In any
experiment requiring a �xed central QPC transmission T , we �rst set the dot to the pinch-o�
(Vg = −0.635V ), and set the transmission T to its speci�ed value. We then open the dot QPC
by changing its gate voltage Vg by the value δVg, while automatically compensating the e�ect
on the central QPC by changing its gate voltage Vqpc by the value −0.02δVg. These automatic
compensation techniques are well known in systems presenting a large number of metallic gates,
such as double quantum dot structures in two-dimensional electron gases [101, 102].

We take into account the in�uence of the central QPC gates on the dot QPC gates by simply
measuring the average AC current emitted by the source as a function of Vg, for di�erent values
of Vqpc. We obtain AC current traces similar to Fig.3.17, slightly shifted by the change in Vqpc.
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Measuring the same traces at a lower excitation amplitude allows to entirely determine the state
of the quantum dot (transmission D, equilibrium potential φ0) for any given set of gate voltages
(Vg, Vqpc).

We �nally neglect the in�uence of the top gate DC voltage VDC on the other gates, since no
in�uence on the dot QPC transmission was put in evidence whatsoever (see typical temperature
calibration data in Fig.1.6), let alone on the central QPC. Furthermore, VDC is swept on typical
energy scales given by the level spacing ∆; in the experimental conditions, this corresponds to
voltage scales of a few hundreds of µV , much smaller than the variation scales of both Vg and
Vqpc.'
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Figure 3.19: Noise of the single electron source versus Vg for sample S434-8. Red
circles: experimental data; blue dashed line: scattering model, using the QPC trans-
mission law with a resonance at Vg = −0.586V depicted in Fig.3.17. Black line with
symbols: modulus of the �rst harmonic of the average AC current, for 2eVexc = ∆.

The knowledge of the couplings allows us to isolate the contribution of the single electron
emitter in various measurements involving the central QPC, such as the one shown in Fig.3.18,
where we have plotted the low-frequency transmission of the central QPC (red) as a function of
Vqpc, as well as the transmission of the average AC current emitted by the source (here, D ≈ 1
for simplicity) by the central QPC. The majority of the source signal is measured in the outer
channel, e�ectively demonstrating the spin selectivity of the source. This result con�rms the
validity of the description of the density of states in the dot in terms of electronic trajectories
following the edges of the dot.

Furthermore, a small portion of the source signal is measured on the inner channel, which
may either correspond to the energy relaxation of electrons emitted in the outer channel into the
inner channel, or re�ect a �nite tunneling probability between the dot and the inner edge state.

In the next sections, we present the noise measurements performed on sample S434-8. We
�rst present the measurements of the autocorrelation of current �uctuations generated, similarly
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to chapter 2; we then present measurements of the noise of a partitioned single electron beam,
constituting the �rst realization of the single electron HBT experiment.

3.4.2 Noise of the single electron source
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Figure 3.20: Noise of the single electron source versus modulus of the �rst harmonic
of the current. Black squares: experimental data. Red line: model. The red dots
correspond to the expected value of the measured noise, given by Eq.2.28.

We have measured the autocorrelation of the current �uctuations emitted by the source S(Ω)
for 2eVexc = ∆ as a function of the dot QPC gate voltage Vg, with the central QPC fully opened
(Vqpc = 0V ). The result is shown on Fig.3.19. The shape of the obtained curve is similar to
experimental data presented in the previous chapter: the noise presents a bell-shaped variation,
with its maximum value corresponding to |IΩ| ≈ ef0 (black line). However, this maximum value
is slightly lower than the expected one in the scattering model (dashed line). This may be caused
by the resonance in the dot QPC transmission law mentioned in the previous section. Because of
the higher number of odd harmonics contained in the excitation drive compared to the previous
chapter, the oscillations of the noise with the dot's equilibrium potential are less pronounced.
One can nonetheless observe them for Vg = −0.598V and Vg = −0.595V .

The representation of the noise as a function of the modulus of the current, plotted in
Fig.3.20, shows that discrepancies indeed occur at values of |IΩ| below ∼ 1.4ef0, corresponding
to the zone where the RC-circuit model fails to describe the mesoscopic capacitor. While the
quantum jitter limit is well reproduced, the agreement between the data (black squares) and
the models developed in the previous chapter (blue line and red circles) is not satisfactory; in
particular, the value of the noise for |IΩ| = ef0 is signi�cantly lower than expected.

Even though the resonance in the dot QPC transmission invalidates the description of the
source in terms of RC circuit elements at low transmissions, the data at higher transmissions are
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consistent with the theoretical model, particularly in the quantum jitter limit, which corresponds
to the typical operating conditions of the source.

3.4.3 Noise in the HBT geometry

3.4.3.1 Zero-frequency partition noise
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Figure 3.21: Zero-frequency part of the partition noise of the source in the HBT
geometry, versus the central QPC transmission T . The zero-frequency noise for T =
0.5 measures the number of emitted electron/hole pairs per period ne/h. The �t (red
line) yields ne/h = 1.16 ± 0.04. The horizontal error bars correspond to the error on
the estimation of the central QPC transmission related to the stability of the QPC
transmission law.

As described in 3.2.2.1, the zero-frequency partition noise for T = 0.5 counts the number of
emitted electron/hole pairs per period. We have measured the zero-frequency noise as a function
of the central QPC gate voltage Vqpc. We have focused on the center of the current diamond
located next to the resonance in the dot QPC transmission (intersection of the two dashed lines
at Vg ≈ −0.585V in Fig.3.16), corresponding to the optimal operating conditions 2eVexc = ∆ and
φ0 = 0. The central QPC transmission traces shown in Fig.3.15 and Fig.3.18 allows to directly
plot the noise as a function of the transmission T . The experimental data, constituting the �rst
experimental realization of the partition of a single electron beam, is shown on Fig.3.21. We have
�tted the experimental data (black dots) with the function de�ned in Eq.3.31, the number of
emitted electron/hole pairs per period ne/h being taken as an adjustable parameter. The �t (red
line) yields ne/h = 1.16 ± 0.04: this value is close to the number of emitted electron/hole pairs
per cycle for a perfect single electron emitter (that is 1), thus experimentally proving that the
generation of excess electron/hole pairs by the source can be neglected in the optimal operation
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conditions: the measured excess value is comparable with the error bars on the measurement
(∼ 0.2e2f0). Improving the low-frequency noise measurement setup (see 4.2.3) would allow the
measurement of the number of emitted electron/hole pairs with more accuracy.

3.4.3.2 High frequency partition noise
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Figure 3.22: High frequency noise in the HBT geometry, measured as a function of
the transmission T (black dots). Red line: adjustment with the function 4ne/hT (1−
T ) + T 2S. The �t yields ne/h = 0.65± 0.08 and S = 0.37± 0.09e2f0.

We have measured the high frequency part of the noise after partition, as a function of
the transmission of the central QPC T , for both outer and inner channels. We use the same
operating point as for the low-frequency measurements. As described in the scattering model
section, the high frequency part of the noise contains the contribution of the intrinsic noise of
the source S(ω) with a factor T 2, and the contribution of the partition noise C(ω) with a factor
T (1 − T ). We have used the full bandwidth of the high-frequency noise measurement setup
(1Ghz ↔ 2.8GHz, see 4.1.4). The result is shown in Fig.3.22: values of T above 1 correspond
to the inner edge channel. In the outer channel (T ≤ 1), the noise is bell shaped, similarly to
the zero frequency part; furthermore, the noise does not vanish when the transmission T reaches
unity, which corresponds to the intrinsic noise generated by the source. This curve is thus very
similar to the theoretical calculation of the partition noise at �nite frequency shown in Fig.3.7.
However, the maximum value of the noise is signi�cantly below the theoretical value (∼ 1.3), as
well as the maximum value of the zero-frequency part of the noise discussed previously (1.16).
In the inner channel, the noise increases again, and reaches another local maximum for T = 1.5
(inner channel half-transmitted); the inner channel therefore yields a portion of the signal of the
source. Because the maximum value of the high-frequency noise at T = 0.5 is not consistent with
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the number of electron/hole pairs measured at low-frequency, we believe that the high frequency
part of the noise is reduced by capacitive couplings between the inner and outer channel. In
order to quantitatively analyze these discrepancies, we have �tted the data for the outer channel
(that is, for T ≤ 1) with a function 4ne/hT (1 − T ) + T 2S, where S is the intrinsic noise of the
source. The �t, shown as a red line in Fig.3.22, yields S = 0.37±0.09e2f0 and ne/h = 0.65±0.08.
The value of the number of emitted electron-hole pairs per period is not compatible with the
value obtained with the low-frequency partition noise measurements (Fig.3.21). We believe that
this is mainly caused by errors in the calibration of the RF noise measurement setup using the
full bandwidth. Measuring the partition noise over the di�erent available bandwidth of the RF
noise measurement setup might allow to verify this hypothesis.
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Figure 3.23: Zero-frequency noise in the HBT geometry versus Vg, measured for T =
0.5 (blue dots). Black line: modulus of the �rst harmonic, for 2eVexc = ∆; red line:
modulus of the �rst harmonic, for 2eVexc = ∆/5.

3.4.3.3 Variation with the dot QPC transmission D and dot equilibrium potential

We have measured the zero-frequency noise for T = 0.5, for a few values of the dot QPC gate
voltage Vg, so as to probe both the variation of the noise with the transmission D and the
equilibrium potential φ0. The result is shown in Fig.3.23; we have plotted as well the average
current emitted by the source, for two values of the driving amplitude, in order to compare the
noise data with the position of the energy levels in the dot. As expected, the noise shows no
variation with the transmission, since all points correspond to a transmission range where the
number of emitted electron/hole pairs is constant. However, there is no signi�cant increase of
the noise in the φ0 = π regions (Vg = −0.5805V,−0.566V,−0.563V ).
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Figure 3.24: Transmission of the average AC current emitted by the source by the
central QPC (black line), along with the DC transmission (red line) for B = −3.3T .
Dotted line: DC transmission at B = −3.9T (also plotted in Fig.3.18).
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Figure 3.25: High frequency noise in the HTB geometry, measured as a function of
the transmission T at B = −3.3T . The �t (red line) yields ne/h = 0.51 ± 0.07 and
S = 0.16± 0.1e2f0.
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3.4.4 Noise measurements at −3.3T

We have performed noise measurements at B = −3.3T in order to check the consistency of the
results presented above. Indeed, the central QPC has a smoother transmission law for this value
of the magnetic �eld (plotted in Fig.3.24), which may reduce the possible discrepancies caused
by resonances in the central QPC.'
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Figure 3.26: High frequency noise for T = 0.5 and D = 1, as a function of the
excitation amplitude Vexc. Black circles: experimental data. Full lines: numerical
calculations for Tel = 100mK (black), Tel = 300mK (black), and Tel = 500mK
(blue).

We have measured the high frequency noise (1− 2.8GHz) as a function of the central QPC
transmission T , similarly to 3.4.3.2. The obtained result, shown on Fig.3.25, is consistent with
the previous results: the �t, using the same function as for B = −3.9T , yields ne/h = 0.51±0.07
and S = 0.16 ± 0.1e2f0. These values, although close to the ones obtained at B = −3.9T , are
smaller than the latter; this remains to be investigated.

• Measurement of the electronic temperature

The low-frequency noise measurements as a function of the dot QPC gate voltage Vg show no
variation of the noise with the dot equilibrium potential, which we suppose is caused by a high
electronic temperature. We have estimated the electronic temperature for T = 0.5 by measuring
the high frequency partition noise for D = 1 as a function of the excitation amplitude Vexc.
Indeed, for D = 1, the noise is expected to be zero as long as eVexc is smaller than the electronic
temperature kBTel. For eVexc � kBTel, ~Ω, one expects the noise to increase linearly. We have
plotted in Fig.3.26 the measured noise (black dots) as a function of the excitation amplitude, as
well as numerical computation of the noise for Tel = 100mK, Tel = 300mK and Tel = 500mK
(resp. black, red and blue lines). The agreement between the latter and the experimental
data shows that the electronic temperature is indeed much larger than expected; the di�erence
between this temperature and the electronic temperature measured with the calibration of the
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level spacing indicates that the increase in the temperature is caused by the biased contact. It
is therefore crucial to properly �lter the wires connecting the contact.

The �rst measurements in the HBT geometry presented here are quite promising, since
they show that in spite of the samples imperfections and the large electronic temperature, the
experimental results are in reasonable agreement with the model. Particularly, the low-frequency
noise measurements presented in Fig.3.21 are the �rst experimental realization of the probing of
coherent particle transfers proposed in [64].
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Conclusion of chapter 3

In this chapter, we have focused on the autocorrelation of current �uctuations after partition
of the single-charge beam emitted by the single electron emitter. We have shown, using the
Floquet scattering matrix model introduced in the �rst chapter, that the zero-frequency part
of the partition noise measures the number of emitted electron/hole pairs per period, as it was
�rst predicted in [64]. The theoretical study presented here allows us to contemplate a wide
range of experiments, which would thoroughly probe the electronic transport in the QHE edge
channel at the single charge scale, thus completing the many recent investigations on the subject
[15, 5, 18, 19, 24, 25, 27, 26, 65].

The experimental results show that although challenging, the proposed experiments are
within reach; we are currently improving the �ltering of the bias lines in order to reduce the
e�ective temperature. Improvements in the low-frequency noise measurement setup (see 4.2.3)
are also considered.

Finally, the whole experimental setup presented in this chapter allows to contemplate the
realization of increasingly complex single-charge electron quantum optics experiments; in partic-
ular, two particle Hong-Ou-Mandel [42] collisions of single charges [12] can be rapidly initiated,
since the studied samples already comprise two single electron source in a mesoscopic collider
geometry (see Fig.3.12).
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Introduction of chapter 4

The noise measurements presented in chapters 2 and 3 show typical noise level given by e2f0 ≈
3.8× 10−29A2/Hz at f0 = 1.5GHz. The detection of such noise levels requires highly sensitive
noise measurement setup. In this chapter, we present the principle, implementation and operation
of both theGHz range noise measurement setup used in the measurements presented in chapter 2,
and the low-frequency (100kHz range) measurement setup used in the measurements presented
in chapter 3.

The high frequency noise measurement setup [92] combines a wideband 120Ω to 50Ω impedance
transformer that increases the measured voltage �uctuations, and a modulated double-balanced
ampli�er scheme that allows the averaging of very small noise power spectral densities over ex-
tended periods of time with a high stability. We demonstrate a state of the art sensitivity of
2.3× 10−28A2/Hz/

√
Hz (1.3× 10−29A2/Hz in 5 minutes) for noise power spectral densities in

the 1.2−1.8GHz bandwidth. We also present modi�cations on the setup that allowed to increase
the measurement bandwidth to 1− 2.8GHz, used for the measurements presented in chapter 3.

The low frequency noise measurement setup relies on a rather common cross-correlation
technique: the current �uctuations are converted into large voltage �uctuations using a 3kΩ
load. The signal is then split into two independent ampli�cation chains, and the integrated
power of the cross-correlation is calculated using a fast acquisition card. We demonstrate a
sensitivity of ∼ 4× 10−28A2/Hz/

√
Hz (0.23× 10−29A2/Hz in 5 minutes).

We have implemented the two noise measurement setups in our dilution refrigerator in order
to simultaneously measure both the high-frequency and low-frequency noise.
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4.1 High sensitivity ultra-low temperature RF current and noise mea-
surement setup

The small magnitude of the emitted current �uctuations makes their measurement very challeng-
ing at microwave frequencies [87, 22, 103, 104, 88], especially since fast single charge detection
su�ers a mismatch problem between the high impedance (Z ∝ h/e2 ≈ 26kΩ) of quantum sources
[105] and the low (50Ω) impedance of microwave ampli�ers. This can hardly be overcome in
broadband high-frequency experiments and strongly alters the current noise power resolution
(by typically �ve orders of magnitude), which can only be recovered by increasing the measuring
time. A standard RF noise measurement method consists in integrating the noise power spectral
density over a �nite bandwidth using square law detectors, see Fig.4.2a. One has to take into
account the noise of the �rst ampli�er in the setup, which is usually signi�cantly larger than
the noise of the sample. The resolution is limited by the integration time, which becomes very
large and may eventually exceed the timescale over which the ampli�cation gain can vary, thus
making the measurement method less reliable.

In this section, we present a highly sensitive, wideband microwave frequency noise mea-
surement technique with a current noise resolution lying an order of magnitude below the e2f0

threshold. We have used the implemented setup to study the current �uctuations emitted by
the single electron source, see chapter 2. The coupling between the source and the ampli�ers is
�rst increased by using a broad-band 120Ω to 50Ω quarter-wave impedance transformer. The
signal is then ampli�ed with a phase-modulated double balanced ampli�er. This setup allows a
highly stable ampli�cation on a broad bandwidth (1.2− 1.8GHz) of very low signals emitted at
the base temperature of a dilution refrigerator.

In a �rst part, we recall the principle of the modulated double balanced ampli�er, and its
advantages compared to a direct ampli�cation technique. We also describe its implementation,
including a microwave homodyne detection of the average current, inside an Oxford Kelvinox 400
dilution refrigerator, as well as its calibration using Johnson noise thermometry. In a second part,
we describe the impedance transformer and its realization inside a sample holder connected to the
mixing chamber of the dilution refrigerator. We �nally present a typical operation of the whole
setup, demonstrating a stability of the measurement over more than 40 hours and a sensitivity
of about 2× 10−28A2/Hz/

√
Hz (1.15× 10−29A2/Hz in a 5 minutes integration time).

4.1.1 Modulated double balanced amplifier

We present here the ampli�cation technique used in our setup. We �rst describe its principle
(Fig.4.1) and discuss its expected signal-to-noise ratio. We then present the complete apparatus
(Fig.4.3).

4.1.1.1 Principle of the setup

We use a modulated double balanced ampli�er scheme (see Fig.4.1b) to amplify the noise of the
sample. The balanced ampli�er [93] is widely used in cellular phone applications as well as in
astrophysics, for downconverted millimeter radiation in recent Cosmic Microwaves Background
detection [106], and particle physics to detect halo axions [107]; it can be seen as the microwave
analog of a Mach-Zehnder interferometer. Its key elements are the 90-degrees hybrid couplers
[108], which act as the beam splitters in the interferometer. When the gains and phases acquired
in both arms of the interferometer are equals, the signal in the �rst input IN (resp. second
input ISO) of the interferometer is ampli�ed and entirely transmitted to the second output 90◦
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Figure 4.1: Principle of the modulated double balanced ampli�er setup. The setup
measures the di�erence between the two input noise powers, with a ±1 factor given
by the modulation.

(resp. �rst output 0◦). On the other hand, the noise of each ampli�er in the inner arms is evenly
distributed between the two outputs of the interferometer. As a result, when one measures the
di�erence between the interferometer's output powers, the noise of the ampli�ers vanishes and
only the di�erence between the two input signals remains. In addition, when a π-phase modulator
is inserted in one arm inside the interferometer, one can alternatively swap the interferometer's
outputs for the signal, hence alternatively change the sign of the di�erence between the two input
signals while leaving the noise of the ampli�ers unchanged. This allows to completely remove
the ampli�ers noise in a lock-in detection.

The 90◦ hybrid coupler is a four ports microwave component with a S-parameters matrix S
between the complex amplitude of its two inputs (IN, ISO) and its two outputs (0◦, 90◦) given
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by:

S =
1√
2

(
1 i
i 1

)
(4.1)

Each one of the two inner arms of the interferometer includes an ampli�er with a gain gi and
a noise Ni. The gain gi includes the phase di�erence acquired by the signal over the arm length.
The left arm also includes a π-phase modulator, which multiplies the signal by a factor ±1
according to the sign of the driving voltage. When the driving voltage is a low-frequency square
(here, 2.7kHz), the signal in the left arm ULb periodically switches between ULb and −ULb. The
output signals of the interferometer, obtained after recombination of the left arm and right arm's
signals on the second hybrid coupler, are �ltered and applied to two square law detectors which
measure the average power with an integration time of 0.1µs. Finally, the measured di�erence
between the two output powers is averaged over a long time T0 to achieve the requested noise
power resolution. Let us �rst consider that the ISO input signal U2 is zero. When the IN -input
monochromatic signal with a complex amplitude U1 is split by the �rst hybrid coupler, Eq.4.1
gives:

{
ULa = 1√

2
U1

URa = i√
2
U1

(4.2)

Here, ULa (resp. URa) is the complex amplitude of the signal in the left (resp. right) inner
arm of the interferometer, before ampli�cation. After ampli�cation, the signals become:

{
ULb = ±( 1√

2
gLU1 +NL)

URb = i√
2
gRU1 +NR

(4.3)

The ±1 factor in ULb is given by the π-phase modulator. The signals are then recombined
on the second hybrid coupler:

 Uout,L = 1√
2

(
1√
2
(±gL − gR)U1 ±NL + iNR

)
Uout,R = 1√

2

(
i√
2
(±gL + gR)U1 ± iNL +NR

) (4.4)

When the interferometer is perfectly balanced, the gains and phase di�erences across the
inner arms are equal, giving gL = gR = g. The prefactor of U1 in Uout,L (resp. Uout,R) is then
equal to g(±1− 1)/2 = {0,−g} (resp. g(±1 + 1)/2 = {+g, 0}): the signal is entirely transmitted
to only one output at a time, and periodically switched between the two outputs. The square law
detectors measure the average power of the �ltered signals Vi ∝ |Uout,i|2 over the �lter bandwidth
∆f :

 VL = α1
2

(
|g|2
2 (±1− 1)2|U1|2 + |NL|2 + |NR|2

)
VR = α2

2

(
|g|2
2 (±1 + 1)2|U1|2 + |NL|2 + |NR|2

) (4.5)

αi is the power to voltage conversion factor of the quadratic detectors; it includes ampli�ca-
tion/attenuation factors in the output arms of the setup. Eq.4.5 assumes that U1, NL and NR
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are independent, so that all correlation terms such as U∗1NL, U∗1NR or N∗LNR vanish. As NL

and NR have equal contributions in both outputs, they vanish in the �nal subtraction VL − VR
if α1 = α2 = α. This gives:

Vmeas = ∓α|g|2|U1|2 (4.6)

The measured output voltage is therefore a square signal, with a frequency f = 2.7kHz
and an amplitude Vmeas = α|g|2|U1|2, that can be detected with conventional lock-in measure-
ment techniques so as to make the measurement insensitive to low-frequency variations of the
ampli�cation parameters, thus greatly enhancing the stability of the device. Since th setup is
symmetric, the contribution of a signal U2 on the second input ISO of the interferometer can
easily be included:

Vmeas = ±α|g|2
(
|U2|2 − |U1|2

)
(4.7)

One can generalize this formula to non-monochromatic input signals with current power
spectral densities S1,2(f), meaning that the result has to be integrated over a �nite bandwidth.
We �nally obtain:

Vmeas = ±α
∞∫

0

|χ(f)g(f)|2(S2(f)− S1(f))df (4.8)

where χ(f) is the �lter function of each output arm of the device, ideally given by a square
window with a bandwidth ∆f and equal for both arms. The setup therefore measures the
di�erence of the power spectral densities of the two inputs. As described in the next section,
we connect the �rst input to the sample output, and the second input to a load with a �xed
temperature; interestingly, this di�erential setup can be used to measure the noise di�erence
between two samples, or between two distinct ports of the same sample, leading to cross-spectrum
measurements.

We shall now discuss the advantages of this setup compared to a direct ampli�cation tech-
nique, as described in Fig.4.2a, where the noise of the sample is directly ampli�ed, �ltered and
measured on a square law detector. For a direct comparison with the ampli�ers noise tempera-
ture, we express the current �uctuations of the input signals SI in terms of a noise temperature
TSI :

Z0SI = 4kBTSI (4.9)

where Z0 is the load impedance (generally 50Ω for microwave circuits), and kB the Boltzmann
constant. In each case, the sample emits a noise TS , and is connected to the measurement
load Z0, which itself emits an equilibrium noise Teq. In Fig.4.2a, the ampli�cation adds a noise
TN � Teq (typically, TN ≈ 7K and Teq ≈ 30mK) to the signal TS + Teq: the measured signal
is then proportional to the sum TS + TN + Teq. In order to extract TS , one usually removes
TN + Teq by periodically switching on and o� TS while performing a lock-in detection. In this
case, the low-frequency output voltage is a square signal with an o�set TN + Teq + TS/2 and an
amplitude TS/2. If the ampli�er's noise TN is Gaussian [109], the signal-to-noise ratio is then
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equal to (S/N)direct = (TS/2TN )
√

∆ftmeas, where ∆f is the bandwidth of the �lter, and tmeas
the measurement time. This expression can be compared to the signal-to-noise ratio calculated
for our setup, see Fig.4.2b: the sample and the measurement load are connected to the IN
input, and a Z0 load is connected to the ISO input. The noise temperature on the IN input is
therefore equal to TS + Teq, while the noise on the ISO input is equal to Teq. Our setup detects
the di�erence between the two input noises, that is ±TS . The low-frequency output voltage is
therefore a square signal with an amplitude TS and no o�set. The suppression of the noise o�set
due to the ampli�ers greatly enhances the stability of the setup, since one is no more sensitive to
variations of the ampli�ers noise, which are usually much larger than the signal TS . This result
is illustrated by the graphs in Fig.4.2, which represent the measured lock-in voltage as a function
of time for the direct ampli�cation scheme (a) and our setup (b).'

&

$

%

Figure 4.2: a) Direct ampli�cation technique: the signal is ampli�ed, �ltered and
applied to the square law detector, measuring the sum of the noise temperature of the
signal and the measurement load TS + Teq and the noise temperature of the ampli�er
TN . Below is a schematic representation of the measured lock-in voltage as a function
of time: the value of the lock-in voltage alternatively switches between Teq + TN and
TS + Teq + TN . The peak-peak amplitude of the detected square voltage is equal to
TS . b) Our setup detects and modulates the di�erence between the two input noises
TS + Teq and Teq, that is ∓TS . The lock-in voltage is then centered on zero while its
peak-peak amplitude is equal to 2TS . The standard deviation is however

√
2 times

larger in our setup.

In our setup, the standard deviations of the two ampli�er's noises add, while the noise
o�set due to the ampli�ers is zero after the �nal subtraction. The standard deviation of the
ampli�cation noise in our setup is then

√
2 times the �uctuations of a single ampli�er. However,
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since the amplitude of the measured noise is double in our setup, the signal-to-noise ratio is still
larger than in the direct ampli�cation scheme, and given by:

(
S

N

)
setup

=
TS√
2TN

√
∆ftmeas (4.10)
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Figure 4.3: a) Schematic of the setup, as implemented in our Oxford Kelvinox 400
dilution refrigerator. b) and c) Pictures of the room-temperature parts of the setup.

For a given signal-to-noise ratio, our setup therefore allows measurements twice as fast as a
direct ampli�cation technique. However, Eq.4.10 stands for a perfectly balanced setup. Using the
same calculations for a non-balanced setup, we expect the signal-to-noise ratio to be diminished
by 5% for a 3dB gain di�erence between the output arms, and the measurement time to be
increased by 3% for a 10◦ phase di�erence between the two inner arms. Furthermore, the
suppression of the noise o�set due to the ampli�ers greatly enhances stability, since the slow
variations of TN are automatically compensated.

The modulated double balanced ampli�er technique is thus expected to increase the sta-
bility and sensitivity for high frequency noise measurements, while being relatively robust to
imperfections in the setup.

4.1.1.2 Implementation

The implemented setup is shown in Fig.4.3. Two cryogenic ampli�ers (MiteQ AFS3-02000400-08-

CR-4) are used with a noise temperature of about 7K when thermalized at 10K in Helium vapor,
and an extended bandwidth of 1 − 4GHz; these ampli�ers can present a noise temperature as
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Figure 4.4: a) Phase di�erence between the two inner arms of the device as a function
of the frequency. The signals of the two arms are measured just before the second
hybrid coupler. b) Transmission between the input of the refrigerator and the two
output arms of the setup (just before the square law detectors) for a positive (+1)
and negative (−1) DC voltage on the modulator. The 1.5GHz carrier is suppressed
by more than 60dB.

low as 3.5K when thermalized in a pumped bath at 1.8K [110]. Up to the dilution refrigerator's
outputs, the setup is wired with UT-85 SS semirigid cryogenic microwave cables for an optimized
thermalization. We also protect the sample from the back-action noise of the ampli�ers using
Pamtech LTC 1384K4 cryogenic circulators whose 50Ω loads are thermalized to the mixing
chamber of the dilution fridge to reduce the background thermal noise. These optional circulators
restrict the bandwidth of the whole setup to 1.2 − 1.8GHz. The lengths of the inner arms are
matched using a phase shifter to tune the length of the second arm. 3dB attenuators are regularly
placed in between room temperature parts of the setup to suppress multiple re�ections between
the components; the 6dB attenuator in the �rst inner arm is used to balance the gain di�erence
between ampli�ers A1 and A2. We insert a π-phase modulator (Miteq BMA0104LA1MD) in
each inner arm to symmetrize the insertion losses and phase shifts ( 90◦); however, we modulate
only the signal in the �rst arm, feeding the �rst modulator with a 2.7kHz square voltage through
a 600Ω load while the second modulator is fed with a constant current. After recombination on
the second hybrid coupler, the signals are �ltered in the 1.2− 1.8GHz band. We use a 1.5GHz
excitation voltage to drive the sample out of equilibrium. The signal therefore presents a 1.5GHz
component which contains informations on the average AC current emitted by the sample, as
well as a parasitic signal. We derive a portion of the signal in the second output arm using a
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Figure 4.5: a) 120Ω − 50Ω transformer line: the coplanar waveguide is built on a
TMM10 substrate for low-temperature performance. The width of the center con-
ductor is 0.66mm for the 50Ω port, and 0.075mm for the 120Ω port. b) and c)
Pictures of the 4-microwave ports sample holder. The 50Ω lines and the transformer
lines are encased in the four sides of the sample holder. d) Zoom on the center part
of the sample holder; the size of the sample is 2mm× 2mm. e) Re�ection on the 50Ω
port of the two transformer lines as a function of the frequency, measured in liquid
nitrogen.

6dB splitter (compensated by a 6dB attenuator in the �rst output arm) and detect the in-phase
and out-of-phase parts of the carrier frequency with a homodyne detection. We use a 90◦ hybrid
coupler and multiply the 0◦ and 90◦ outputs by a 1.5GHz local oscillator. The result of the
multiplication of the 0◦ (resp. 90◦) output yields a zero-frequency part proportional to the in-
phase (resp. out-of-phase) part of the carrier frequency. When the modulation is turned on,
the carrier frequency is switched between the two output arms; therefore, the homodyne signals
are 2.7kHz square voltages switching between zero and a value proportional to the quadrature
components of the carrier frequency, and are detected with lock-in techniques. In the noise
measurement part of the setup, the 1.5GHz carrier frequency is removed (−70dB) with BL-

Microwave 1.5GHz notch �lters. The noises in the two output arms are subtracted with a NF

LI75-A low frequency di�erential ampli�er.

We have tuned the setup to optimize the phase and gain balance in the inner arms, as well
as the gain balance in the output arms. The latter is done by inserting a variable attenuator,
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set to 0dB, in the second output arm (the insertion loss of the attenuator compensates the gain
di�erence in the arms). In order to characterize the gain and the phase balance, we use a vector
network analyzer to measure the transmission between the �rst input of the setup with a 90dB
attenuation, and each one of the two inner arms just before the second hybrid coupler (Fig.4.4a),
or each one of the two output arms just before the square law detectors (Fig.4.4b). The second
input of the setup is connected to a 50Ω load thermalized to the mixing chamber, and the �rst
modulator (mod1 ) is fed with a constant (positive or negative) voltage to study both situations.

The results of the tuning are shown in Fig.4.4. The phase balance is achieved within ±5◦ in
the 1.2 − 1.8GHz bandwidth, which only degrades the signal-to-noise ratio by a few percents.
As a result, the test signal is transmitted to only one output, with less than 1% of the power
transmitted to the other output. This 20dB di�erence between the two transmissions compares
favorably with standard isolation values in commercial-grade microwave components. The ampli-
�cation and �ltering are identical (to less than 1dB) for both outputs. The 1.7GHz peak in the
phase balance, due to the cryogenic circulators, causes a decrease of the transmission di�erence
to 15dB, which is still within acceptable bounds.

4.1.1.3 Calibration

We have calibrated the setup by replacing the thermalized 50Ω load (see Fig.4.6a) connected to
the second input with a variable temperature 50Ω load, which acts as a tunable thermal noise
source. The temperature of the load is measured with a calibrated RuO2 resistance. We use
a series of SMA connectors to thermically decouple the load from the mixing chamber. We
obtain a calibration (Fig.4.6b) between input temperature di�erence ∆T and the amplitude of
the measured 2.7kHz voltage: Pmeas(V ) = 1.37× 10−5(±5%)∆T .
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Figure 4.6: Calibration of the high-frequency noise measurement setup. The calibra-
tion yields Pmeas(V ) = 1.37× 10−5(±5%)∆T .

137



Chapter 4. High-frequency and low-frequency noise measurement setups

4.1.2 Quarter-wave impedance transformer

For given current �uctuations, one can increase the equivalent noise temperature by increasing
the load impedance Z0 in Eq.4.9. However, since a vast majority of commercial microwave
components are 50Ω-adapted, one needs to transform the impedance seen by the sample from
the increased Z0 (in our case, Z0 = 120Ω) to 50Ω while keeping a large bandwidth. This can be
achieved by using a quarter wave impedance transformer [111, 87], which consists of a series of
coplanar waveguides with gradually changing impedances. Every coplanar section has the same
length, given by the quarter of the wavelength at center frequency. Depending on the series of
impedances, one can either optimize the gain �atness or the total bandwidth.

We designed an 8-sections Chebychev (equal ripple) 120Ω−50Ω transformer 5 (see Fig.4.5a),
allowing a large bandwidth (0.5−4.5GHz). The 120Ω port is shunted by two 240ΩNiCr resistors
in parallel (see Fig.4.5d) to avoid back-re�ection of the noise of the measurement setup on the
sample connected in parallel to the resistors, thus acting as a 120Ω-adapted current source (we
neglect the in�uence of the sample's impedance, of a few KΩ). We have taken into account the
parasitic capacitances of the resistors (typically 0.03pF ) and the sample ( 0.06pF ) by changing
the length of each section to optimize the transmission of the device. We use a 4 microwave ports
geometry for the sample holder; the two input ports are 50Ω-adapted while each output port
includes an impedance transformer. Both input and output lines are coplanar waveguides built
on a TMM10 substrate, and encased in a copper sample holder (Fig.4.5b and c) thermalized to
the mixing chamber of the dilution refrigerator. We have characterized the frequency response
of the transformers by measuring the re�ection of the 120Ω port as a function of the frequency
(see Fig.4.5e). We �nd a re�ection of 15dB at 77K, which is comparable to the re�ection factors
in commercial microwave components. This corresponds to a power transmission through the
transformer of 97%. The use of the transformer allows to increase the power spectral density of
the measured signals by a factor 2.4. For a noise temperature of the ampli�ers of about 7K and
a 120Ω measurement load, Eq.4.10 gives an expected sensitivity of 2× 10−28A2/Hz/

√
Hz.

4.1.3 Operation of the setup

We combine the e�ects of the quarter-wave impedance transformer and the modulated double-
balanced ampli�er to increase the signal of our sample, and measure it over extended periods of
time with a large stability. In a standard noise measurement of a mesoscopic sample, one usually
measures the noise TS(V g) as a function of the device parameters, which can be tuned using one
(or more) gate voltage V g. Since the ampli�cation parameters as well as the temperatures of
the di�erent stages of the dilution refrigerator can vary over the usual averaging times (about 1
hour per point), we perform repeated short measurements of the noise for a few (typically 5) gate
voltages V g1,..,5 and a reference gate voltage V gref which de�nes the zero of the measured noise.
We thus measure the excess noise compared to a reference operating point of the sample. Since
the measurement device is highly sensitive, one has to make sure that the temperature di�erence
between the 120Ω load connected to the sample and the load connected to the second input of the
interferometer varies as slowly as possible. We connect the 120Ω load of the second impedance
transformer built on the sample holder (see Fig.4.5d) to the second input of the interferometer to
keep the same thermal environment for the two loads, as well as reduce the o�set due to the noise
temperature di�erence between a 120Ω and a 50Ω load. We also stabilize the temperature of

5The impedance transformer lines were designed with a free spreadsheet applet available at http://www.

microwaves101.com/downloads/Xfmr101Rev3.xls ; the optimization of the lines was done with AWR Microwave
O�ce.
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Figure 4.7: Operation of the setup: a) stability of the device for two non-consecutive
runs: measured noise (line) and temperature of the 1K pot (circles) as a function of
time. Noise data for both graphs are measured for the same reference gate voltage
of the sample. The averaging time per point is 10 s for run A, and 20 s for run B.
b) datasets obtained after subtraction of the reference for the �rst value of the gate
voltage Vg of both runs. The dataset for run A presents a signi�cantly larger standard
deviation due to the shorter averaging time per point.

the mixing chamber within less than a milliKelvin using the femtopower temperature regulation
provided with Oxford Kelvinox refrigerators.

A typical operation of the setup is presented in Fig.4.7a: we measure the noise for each of the
5 gate voltages TS(V g1,..,5) during a short time (10 s for run A, 20 s for run B). We systematically
measure the noise for the reference gate voltage TS(V gref ) after each gate voltage, thus creating
a sequence composed of 10 short measurements (TS(V g1), TS(V gref(1)), TS(V g2), TS(V gref(2)),
and so on), which we repeat a large number of times (621 for run A, 403 for run B). The total
averaging time for each point is therefore at least ten times shorter than the total measurement
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Chapter 4. High-frequency and low-frequency noise measurement setups

time; a signi�cant portion (one third for run A) of the total measurement time is spent in setting
the gate voltage to its di�erent values. We then remove the long-time variations of the signal due
to slow temperature changes in the dilution refrigerator (such as the 1K pot temperature plotted
in Fig.4.7a) by calculating the di�erence between the traces obtained for each gate voltage and
their respective reference: TS(V gi) − TS(V gref(i)). We �nally calculate the mean value of each
set of data such as the two presented in Fig.4.7b to obtain the noise, while the sensitivity of the
measurement is given by the standard error. Fig.4.7b demonstrates a resolution Tres of less than
10µK (i.e. 4.6 × 10−30A2/Hz) in about 2 hours; this gives a sensitivity s = Tres

√
tmes equal

to 0.71mK/
√
Hz, i.e. 3.3× 10−28A2/Hz/

√
Hz on a 120Ω load. This value of the sensitivity is

larger than the theoretical value; however, one has to consider the fact that the noise values are
obtained after subtraction of a reference noise, hence multiplying the standard error by a factor√

2. The calculated e�ective sensitivity of the measurement is thus
√

2 times larger than the
sensitivity of the setup, which is then equal to 2.3 × 10−28A2/Hz/

√
Hz. This value is close to

the theoretical sensitivity (see paragraph 4.1.2), demonstrating the good implementation of the
device, and a large enough stability to perform measurements averaged over several hours.

We have used the setup to measure the autocorrelation of the current �uctuations emitted
by the single electron source, presented in chapter 2. In particular, the noise data presented in
Fig.2.15 have been obtained in about �ve days, each data point being measured in a total of 40
minutes using the measurement procedure described in the beginning of this section.'

&

$

%
Figure 4.8: Modi�ed high-frequency noise measurement setup. The cryogenic circula-
tors have been removed to extend the total bandwidth to 1−2.8GHz. This bandwidth
can be restricted using di�erent bandpass �lters.

4.1.4 Modifications

In order to study the temporal variation of the current �uctuations correlation in the HBT
con�guration as proposed in 3.2, we have modi�ed the high frequency noise measurement setup:
indeed, by measuring the value of the noise power spectral density at di�erent frequencies, one

can rebuild the current �uctuations correlation function 〈δI(t)δI(t+ τ)〉t. Since dividing the
base bandwidth 1.2−1.8GHz into smaller frequency intervals causes the sensitivity to diminish,
we have rather increased the total bandwidth of the setup to 1 − 2.8GHz by removing the
circulators and replacing some of the elements of the setup (mainly, ampli�ers A3 and A4 in
Fig.4.3, as well as the 1.2− 1.8GHz �lters).
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Figure 4.9: Tuning and calibration of the modi�ed setup, for three sets of �lters
(a,b,c) and the full bandwidth (d). Left panel: transmission between the input of the
refrigerator and the two output arms of the setup (see Fig.4.4 for details). Right panel:
calibration using a variable temperature 50Ω load. Each calibration is performed twice
to estimate the error on the conversion coe�cient.
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Chapter 4. High-frequency and low-frequency noise measurement setups

A schematic view of the modi�ed setup is presented in Fig.4.8: after recombination on the
second hybrid coupler, the signal is �ltered on a larger bandwidth (1 − 2.8GHz) using BL-

Microwave bandpass �lters. The upper corner frequency has been set to 2.8GHz in order to
discard the second harmonic of the 1.5GHz carrier frequency; we use the same notch-�lters
as in the previous version of the setup to discard the �rst harmonic. Another �lter stage has
been added right after the notch �lters: in order to change the measurement frequency, we
simply change the �lters on this last stage. We use three sets of paired RF-�lters to de�ne the
measurement bandwidths (see Fig.4.9): 1.2− 1.8GHz, 1.5− 2.2GHz and 1.8− 2.5GHz. We can
also remove the �lters to measure the noise on the whole bandwidth of the setup (1− 2.8GHz).

Like the previous version, we have tuned and calibrated the setup for the four available
measurement bandwidths: the result is shown on Fig.4.9. However, in order to implement the
low-frequency noise measurement setup (see next section), we connect the second input of the
modulated double-balanced ampli�er to a 50Ω instead of the second 120Ω load of the sample
holder, which we replace by a larger load for the low-frequency noise measurement.

The high frequency noise measurements presented in chapter 3 demonstrate the e�ectiveness
of the modi�ed setup. Furthermore, measuring on the full bandwidth of the setup improves the
sensitivity to ∼ 1.1× 10−28A2/Hz/

√
Hz.

4.2 Low frequency noise measurement setup

In this section, we describe the measurement setup used in the study of low-frequency current
�uctuations of a partitioned single electron beam presented in chapter 3. We �rst describe
the measurement principle, based on cross-correlation measurements. We then describe the
calibration and operation of the setup, as well as possible modi�cations allowing to increase the
sensitivity.

4.2.1 Description of the setup

The low-frequency noise measurement setup relies on a widely used cross-correlation technique
[31, 112, 113], where voltage �uctuations are detected on two independent measurement lines.
The outputs of both lines are then digitized using a fast acquisition card, which �nally calculates
the integrated power in band of the cross-correlation of the two signals. The purpose of this
technique is to render the measurement insensitive to �uctuations of the ampli�ers gains, as well
as the thermal noise of the wires connecting the sample to the ampli�ers. Indeed, the noise
o�set due the ampli�ers voltage noise is usually much larger than the measured signal, so that
a small �uctuation of the gain causes variations in the noise o�set still larger than the signal.
As for the high-frequency measurement setup, it is therefore crucial to remove this noise o�set;
in low-frequency noise measurements, this is usually done by calculating the cross-correlation of
two independent measurement lines [31, 112].

The principle of the setup is described in Fig.4.10: the current �uctuations emitted by the
source (not pictured in the �gure) are converted into voltage �uctuations using the measurement
load R0. The signal is then split in two measurement lines containing three ampli�cation stages.
After the last ampli�cation stage, the signals are �ltered and sent on an Acquiris AP240 fast
acquisition card (previously used in the time-domain measurements presented in 1.4.3.1). After
digitization, we directly calculate the integrated power in band of the cross-correlation.
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Figure 4.10: Schematic view of the low frequency noise measurement setup. The �lter
stages are described in Fig.4.11.

4.2.1.1 Implementation

We have replaced the 120Ω load of the second output of the sample holder (see Fig.4.5d) by a
3kΩ load. The measurement impedance R0 is then given by the parallel association of the 3kΩ
load with the impedance of the edge channels of the Quantum Hall E�ect (see Fig.3.12). For a
�lling factor ν = 2, we have R0 ≈ 2.4kΩ. Because this value of the measurement impedance is
rather large, we have wired the setup with UT − 85−SS semi-rigid cryogenic microwave coaxial
cable to maximize the bandwidth. As for the high frequency measurement setup, the wires are
carefully thermalized to each stage of the dilution refrigerator. The thermal load caused by the
multiplication of microwave coaxial cables in the dilution refrigerator has led to an increase of the
base temperature to ∼ 65mK. All three ampli�cation stages are placed at room temperature;
the �rst stage is composed of a pair of NF SA-220F5 ampli�ers, with a voltage noise equal to
0.7nV/

√
Hz. After the second and third ampli�er stages (respectively, NF LI-75A and Sonoma

310 ), we use a pair of lab-built 6th-order highpass �lters to remove the low-frequency part of
the spectrum (below ∼ 30kHz), which contains many parasitic signals. We then use a pair
of lab-built 8th-order lowpass �lters with a ∼ 380kHz cuto� frequency as anti-aliasing �lters.
The two sets of �lters are 50Ω-adapted; their schematics and frequency response are shown in
Fig.4.11.

The two signals are then digitized (130000 samples) with a 1MHz sampling frequency. We
�nally use numeric 10th-order highpass �lter with a tunable corner frequency (typically, fc =
80kHz) to remove any remaining low-frequency parasitic signal, and calculate the integrated
power of the product of the two �ltered signals. This last step increases the total measurement
time by less than 8%.

4.2.1.2 Signal-to-noise ratio

In order to estimate the measurement time, one must compare the noise emitted by the sample
with the noise added by the �rst ampli�cation stage. The principle of the comparison for the
cross-correlation scheme [112] is illustrated in Fig.4.12: when connected to a measurement load
R0, a low-frequency ampli�er adds both a voltage noise SnV V =< (V n)2 > and a current noise
SnII =< (In)2 >. The addition of these noises is represented by the voltage and current generators
in Fig.4.12. The current noise can be expressed as a voltage noise using the load R0, so that the
ampli�er adds an e�ective voltage noise to the signal:

V n
eff = V n +R0I

n (4.11)

If V n and In are assumed to be independent, this yields:
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Figure 4.11: Circuit diagram and frequency response of the lab-made lowpass (LP1
and LP2, a) and highpass (HP1 and HP2, b) �lters used in the low-frequency noise
measurement setup. Each measurement line include one lowpass and one highpass
�lter (see Fig.4.10).
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Figure 4.12: Principle of low-frequency cross-correlation measurement: the noise emit-
ted by the sample (not depicted) is detected on the measurement load R0 by two inde-
pendent ampli�ers A1 and A2, which add the input voltage noises S

n1,2

V V =< (V n
1,2)2 >

and the current noises S
n1,2

II =< (In1,2)2 >. Because the voltage noises are not corre-
lated, their contribution to the noise o�set after multiplication of the the outputs of
the two lines vanish.

SnV V,eff =< (V n
eff )2 >=< (V n)2 > +R2

0 < (In)2 >= SnV V +R2
0S

n
II (4.12)

The optimal measurement impedance Ropt is obtained when the contribution of the voltage
and current noise (expressed as voltage �uctuations) are equal, that is R2

optS
n
II = SnV V .

In the cross-correlation measurement, the current noise sources of the two ampli�ers are in
parallel (see Fig.4.12); their contributions in the voltage noise of each measurement line therefore
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4.2. Low frequency noise measurement setup

add, so that the voltage noise in each line is given by:

V1 = V n
1 +R0(In1 + In2 )

V2 = V n
2 +R0(In1 + In2 )

(4.13)

For more clarity, we suppose that the two ampli�ers are identical, so that Sn1
V V = Sn2

V V = SnV V
and Sn1

II = Sn2
II = SnII . The noise o�set after multiplication of the outputs of the two lines is given

by < V1V2 >; since V
n

1 , V n
2 , In1 and In2 are not correlated, the contribution of the voltage noises

V n
1 V n

2 vanishes, so that the noise o�set is equal to the sum of the contributions of the current
noises R2

0(Sn1
II + Sn2

II ) = 2R2
0S

n
II . However, when considering the �uctuations of the ampli�ers

noise, one must still take into account the voltage noises S
n1,2

V V = SnV V . Since the ampli�ers noise

is Gaussian, the output voltage �uctuations S∗V V =
√
< (V1V2)2 > − < V1V2 >2 are given by:

(S∗V V )2 = (SnV V + 2R2
0S

n
II)

2 + (2R2
0S

n
II)

2 (4.14)

Because the current noises sources are in parallel, the cross-correlation technique does not
increase the signal-to-noise ratio. It however enhances the stability of the measurement, since
the voltage noise o�set is suppressed. In order to fully bene�t from this technique, one should
therefore choose a value of the measurement impedance slightly below the optimal value, in order
to optimize the signal-to-noise ratio, which is calculated by the voltage �uctuation calculated
above with the current noise emitted by the source (typically, Sii = e2f0), expressed as a voltage
noise: SV V = R2

0e
2f0. The signal-to-noise ratio is therefore given by:

S

B
=

(
SV V
S∗V V

)√
∆ftmeas =

 R2
0e

2f0√
(SnV V + 2R2

0S
n
II)

2 + (2R2
0S

n
II)

2

√∆ftmeas (4.15)

where ∆f is the bandwidth of the measurement lines, and tmeas the measurement time.
We estimate ∆f by considering the measurement lines as a RC-circuit, where the resistor is
given by the measurement impedance R0, and the capacitor is given by the total shunting
capacitance of the wires connecting the sample to the ampli�ers (see Fig.4.12). For a pair of
∼ 2 meters-long UT-85-SS coaxial cables, the shunting capacitance C is equal to ∼ 0.4nF .
The integrated bandwidth is therefore equal to ∆f = 1/4R0C. However, we remove the low-
frequency part of this bandwidth (up to 80kHz), so that the e�ective bandwidth is equal to
∆f∗ = 1/4R0C − 80kHz ≈ 175kHz for R0 ≈ 2.4kΩ. The measurement time for a signal-to-
noise ratio equal to 1 is therefore given by:

tmeas =
(SnV V + 2R2

0S
n
II)

2 + (2R2
0S

n
II)

2

(R2
0e

2f0)2

1

1/4R0C − 80kHz
(4.16)

With NF SA-220F5 ampli�ers (SnV V ≈ 4 × 10−19V 2/Hz, SnII = 4 × 10−26A2/Hz, so that
Ropt ≈ 3.3kΩ) and R0 ≈ 2.4kΩ, we have tmeas ≈ 110s. This corresponds to a sensitivity equal
to 3.98× 10−28A2/Hz/

√
Hz, almost two times larger than the sensitivity of our high-frequency

noise measurement setup.
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4.2.2 Calibration and operation

We have calibrated the low-frequency noise measurement setup using the thermal noise of the 3kΩ
measurement impedance: provided the temperature of the measurement load R0 is well known,
one can measure the low frequency noise emitted by the load for di�erent temperatures of the
mixing chamber, and thus extract the correspondence between a temperature variation δT and
a variation of the measured power in band δP . The assumption of a well-known temperature
of the load is however non-trivial, since it implies that the measurement circuit is correctly
thermalized to the mixing chamber. The temperature calibrations of the mesoscopic capacitor
described in 1.3.2.3 (also shown in chapter 3 for sample S434-8 ) ensure that this assumption is
correct for temperature larger than the e�ective electronic temperature (typically 70mK). We
have therefore calibrated the setup for temperatures ranging from 80mK to ∼ 500mK. The
calibration procedure is as follows: a large power (∼ 2mW ) is applied to the heater of the
mixing chamber, so as to set its temperature to ∼ 500mK. We ensure a proper thermalization
of the measurement load to the mixing chamber temperature by waiting a few tens of minutes at
∼ 500mK, then turn o� the heating power and let the refrigerator cool down while repeatedly
measuring the low-frequency noise averaged over ∼ 3 seconds. The result is shown on Fig.4.13:
we have adjusted the data with a function including a noise o�set (partly corresponding to
the ampli�ers current noise) and a residual temperature T0: P (T ) = P0 + α

√
T 2

0 + T 2
mc. We

obtain the calibration between a variation of the measured power-in-band and the equivalent
noise temperature variation: ∆P = 5.5e − 6 ± 10%∆T . The residual temperature is found
equal to ∼ 20mK; while this value is lower than the value found in the capacitance calibration in
1.3.2.3, this measurement of the residual electronic temperature is not sensitive to gate noise, and
therefore only gives the contribution to the residual temperature due to improper thermalization
of the coaxial cables.

The calibration also allows us to estimate the sensitivity of the measurement setup: indeed,
for an integration time equal to ∼ 3.3s, we �nd a standard deviation in the measurement of
the noise temperature equal to 10mK, that is a standard deviation in the current noise power
spectral density equal to ∼ 5.8e2f0. This corresponds to a measurement time for a standard
deviation equal to e2f0 tmeas ≈ 110s. The sensitivity of the implemented setup is therefore equal
to 4× 10−28A2/Hz/

√
Hz, very close to the ideal sensitivity.

• Operation

The procedure for low-frequency noise measurements is similar to the one used for high-frequency
noise measurements: we measure the noise for a given set of bias voltages during a short time
(typically 10s), then measure the noise with the QPC pinched-o� while all other parameters are
kept constant (especially, one has to compensate the change in the transmission of the central
QPC in the HBT con�guration caused by the coupling between Vg and Vqpc, see chapter 3).
As for the high-frequency noise measurements, doing so makes the measurement insensitive to
long-term variations of the environmental noise since only the contribution of the single electron
emitter is measured. This sequence is repeated a large number of times (typically 700); as for
high-frequency noise measurement, the stability of the dilution fridge over the whole measurement
is crucial. We then subtract the two data sets in order to remove the long time variation of the
background noise, and calculate the mean value and the standard error of the di�erence, which
respectively yield the measured noise value and the error bars. Once again, because we calculate
the di�erence between two noises, the variance increases by a factor

√
2, so that the e�ective

sensitivity should become equal to 5.66×10−28A2/Hz/
√
Hz. In chapter 3, we show typical low-

frequency noise measurements with error bars equal to ∼ 0.2e2f0, for a total integration time per
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Figure 4.13: Calibration of the low-frequency measurement setup: the thermal noise of
the measurement load is recorded as the mixing chamber cools down to the base tem-
perature (averaging time: ∼ 3s). We repeat the calibration several time to estimate
the error on the conversion coe�cient.

point equal to 6370s. This corresponds to a measurement time for a unity signal-to-noise ratio
tmeas = 254s: the e�ective sensitivity is therefore equal to 6.13×10−28A2/Hz/

√
Hz. This value

is slightly higher than the expected e�ective sensitivity because the averaging time per sequence
is still long enough for the background to vary; however, choosing shorter averaging times is not
recommended because the total time spent changing the gate voltages might become comparable
to (if not higher than) the total averaging time per point.

4.2.3 Possible improvements

The measured sensitivities (absolute as well as e�ective) demonstrate the proper implementation
of the setup, as well as the e�ciency of the measurement protocol. However, the sensitivity of
our low-frequency noise measurement setup is still rather poor compared to our high-frequency
noise measurement setup, let alone to state-of-the art low frequency noise measurement setups
such as the one described in [114], which present sensitivities as low as 8.85×10−29A2/Hz/

√
Hz.

While we have opted for a simple design in order to have an operational measurement setup as
soon as possible, a few modi�cations can be made that can greatly enhance the sensitivity of the
setup:

• Resonant circuit
The main di�culty of low-frequency noise measurements comes from microphonics caused by
mechanical vibrations of the measurement cables. These vibrations induce many parasitic signals
in the tens of kHz range, which can hardly be compensated by the measurement protocol. When
operating at high magnetic �eld, these parasitic signals can become larger than the ampli�ers
noise even when all the wires are �rmly anchored to the insert. The most straightforward way
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to make the measurement impervious to this e�ect is to simply �lter out the whole frequency
band where it takes place: in our case, we use a 10th-order highpass �lter to remove frequencies
below 80kHz. While the measured spectra are devoid of most of the parasitic signals, we have
signi�cantly decreased the measurement bandwidth, thus increasing the measurement time by
40%. The use of a resonant circuit, however, allows to compensate the shunting capacitance of
the measurement cables so as to shift the measurement bandwidth towards larger frequencies,
where the parasitic signals vanish. As described in [114], the measurement impedance is shunted
by an inductor (preferably thermalized to colder stage of the dilution refrigerator), thus creating
a resonant parallel RLC circuit, where C is the shunting capacitance of the measurement wires.
The inductance can be chosen so that the resonance frequency fr = 1/2π

√
LC is in the few

hundreds of kHz range, while the total bandwidth is still given by 1/4R0C. Provided that
the measured noise is white for frequencies below 1MHz, using a resonant RLC circuit allows a
measurement on the whole bandwidth with no pollution caused by 10kHz-range parasitic signals.

While this technique is quite straightforward, it su�ers from a major constraint caused by
the �nite resistance of the shunting inductor. Indeed, when the inductor is connected in parallel
with the measurement load, its �nite resistance r generates a thermal noise SrV V = 4rkBTL,
where TL is the temperature of the inductor. This voltage noise is �ltered by the resonant RLC
circuit, so that its contribution to the total voltage noise seen by the ampli�ers is:

(SrV V )∗ =
4rkBTL

(1− LCω2)2 + (LωR0
)2

(4.17)

For the usual values of R0 and C, a 150µH inductor with a typical 1Ω resistance generates
a voltage noise at the resonance frequency fc = 650kHz equal to 2.6 × 10−19V 2/Hz, that is
0.5 times the ampli�ers voltage noise. Connecting the inductor at room temperature therefore
increases the measurement time by a factor 2.25; it is thus necessary to implement the inductor
inside the dilution refrigerator to reduce this additional noise. In this case, one should carefully
choose the inductor so that its characteristics in a cryogenic environment are well known; in
particular, non-magnetic inductors are mandatory when working at large magnetic �elds (see
[114]).

The design and implementation of a non-magnetic inductive shunt (typically 150µH) inserted
in the low-temperature part of the measurement setup therefore would allow us to measure the
noise on the full bandwidth of the setup, centered on the frequency fc = 650kHz.

• Cryogenic ampli�ers
For a given measurement load, the bandwidth of the setup is mainly limited by the value of the
shunting capacitance of the cables connecting the sample to the ampli�ers. While microwave
coaxial wires can be chosen to minimize the capacitance per unit length (typically 95pF/m),
the total length can hardly be diminished if the �rst ampli�cation stage is placed at room
temperature. Using cryogenic ampli�ers thermalized at liquid helium temperature allows to
reduce the length of cable by a factor ∼ 2, and therefore increases the bandwidth. Furthermore,
cryogenic ampli�ers generally have a lower input voltage noise density than room-temperature
ampli�ers: for instance, the voltage noise of the cryogenic ampli�ers used in [114] (Agilent ATF-
34143 ) is equal to 0.4nV/

√
Hz, compared to 0.7nV/

√
Hz for the NF SA-220F5 ampli�ers used

in our setup. Cryogenic HEMTs with a voltage noise equal to 0.2nV/
√
Hz have also been recently

developed at Laboratoire de Photonique et Nanostructures.
Using cryogenic ampli�ers therefore allows to signi�cantly extend the measurement band-

width while lowering the ampli�ers voltage noise, and could therefore decrease the measurement
time by an order of magnitude. However, the main drawback of this technique is that cryogenic
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ampli�ers dissipate a signi�cant amount of heat, which might decrease the e�ciency and sta-
bility of the dilution refrigerator, as well as increase liquid Helium consumption. Because of its
e�ciency, we are nonetheless still considering this option.

• Removing the measurement load and using NF LI-75A ampli�ers
The measurement load plays a critical role in the measurement time, since a larger measurement
load increases the measured signal to the power 4, but also increases the contribution of the
ampli�er current noise to the power 4 and diminishes the measurement bandwidth. We have
plotted in Fig.4.14 the estimated measurement time for a unity signal-to-noise ratio as a func-
tion of the value of the measurement load R0 with our current measurement setup. When the
frequencies below 80kHz are removed, the chosen measurement load (R0 = 2440Ω) optimizes
the measurement time. When the noise is measured on the whole bandwidth (e.g. using the
resonant circuit described above), the measurement time signi�cantly decreases, and the value
of the measurement load optimizing the measurement time is ∼ 3kΩ: as expected, this value is
lower than the value of the optimal impedance Ropt = 3.5kΩ. When the measurement load be-
comes higher than the optimal value, the contribution of the ampli�ers current noise dominates,
and the measurement time increases again.'

&

$

%

Figure 4.14: Calculated measurement time using Eq.4.16, for NF SA-220F5 ampli-
�ers, as a function of the measurement load R0. Black line: the �rst 80kHz of the
measurement bandwidth are removed to reproduce the implemented setup. The blue
circle corresponds to R0 = 2400Ω. Red line: the whole measurement bandwidth is
used.

Using ampli�ers presenting a lower current noise allows to increase the measurement load,
provided one can measure on the whole bandwidth: using NF LI-75A ampli�ers, which have a
higher input voltage noise density (2nV/

√
Hz), but a lower current noise (0.02pA/

√
Hz instead

of 0.2pA/
√
Hz), in conjunction with a resonant circuit, would allow to remove the measurement

load and directly measure on the impedance of the edge channels of the sample (∼ 12.4kΩ at
�lling factor 2) with a measurement time lower than 10s. This scheme appears to be the most
interesting in terms of improvement of the sensitivity compared to the amount of modi�cations.
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However, it is only e�cient for high magnetic �elds, where the impedance of the edge channels
is larger than 6kΩ, that is for �lling factors lower than 4.
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4.2. Low frequency noise measurement setup

Conclusion of chapter 4

We have built two noise measurement setups able to measure the low-frequency (below 250kHz)
and high frequency (1−2.8GHz) noise generated by the coherent manipulation of single electrons.
Our high-frequency noise measurement setup demonstrates a state of the art sensitivity for GHz-
range noise measurement, and several modi�cation improving the sensitivity of the low-frequency
noise measurement setup to state-of-the-art levels are considered. The ability to measure both
low-frequency and high-frequency noise with a resolution of a fraction of e2f0 is crucial to fully
characterize the outcome of single-charge electron quantum optics experiments. Furthermore,
our dual-output measurement setup, where the high-frequency noise is measured at one output,
and low-frequency noise is measured at the other, might be used in further experiments where
two distinct outputs are considered, such as the measurement of two-particle non-local Aharonov-
Bohm e�ect with single charges [9], or any other experiment including a central QPC.
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Conclusion

In this thesis, we have studied the noise generated by a single electron emitter, both intrinsic and
after partition by a quantum point contact in a Hanbury-Brown and Twiss geometry. Similarly
to quantum optics, the measurement of the �uctuations of the output currents is a relevant tool
to probe the outcome of single-charge electron quantum optics experiments.

In the �rst chapter, we have presented a theoretical description of the mesoscopic capacitor
within a Floquet scattering matrix formalism, which we have used to calculate the noise in the
next chapters. We then focused both theoretically and experimentally on the average AC current
emitted by the capacitor. Under a large periodic excitation drive, the current is quantized in
units of 2ef0, where f0 is the driving frequency, indicating that the mesoscopic capacitor can
indeed be used as a single electron source. The study of the average AC current furthermore
allows to characterize the parameters of the source: indeed, the value of the level spacing ∆ and
the residual temperature T0 can be extracted from a temperature study of the linear regime,
while the non-linear regime allows to locate the optimal operating point of the source (excitation
amplitude Vexc, transmission D, equilibrium potential φ0).

In the second chapter, we have studied the autocorrelation of the high-frequency current
�uctuations emitted by the source. We have put into light the existence of an intrinsically high-
frequency noise arising from the randomness in the emission times of single charges. This noise,
called quantum jitter, is the signature of single charge emission: one expects to systematically
measure its contribution when measuring high-frequency noise in a single-charge electron quan-
tum optics experiment. Our experimental results demonstrate that in the optimal operating
conditions of the source, the noise reduces to the quantum jitter, thus demonstrating single
particle emission. We have also observed the crossover between the quantum jitter regime and
the shot noise regime, where single charges are emitted randomly. In the optimal operating
conditions, the agreement between the two models and the experimental data is excellent. We
have measured an increase in the noise when charges are emitted close to the Fermi energy; this
increase, related to the generation of additional electron/hole pairs, is well reproduced with the
scattering model. The measurement of the noise emitted by the source therefore allows to put
into light several regimes of noise which are well understood using the two models, thus demon-
strating the validity of the description of the mesoscopic capacitor as time and energy-resolved
single electron emitter.

In the third chapter, we have studied the partition of the current emitted by the single electron
source by a quantum point contact, in the Hanbury-Brown and Twiss geometry. The calculation
of the noise after partition within the Floquet scattering matrix formalism demonstrates the
richness of the HBT geometry; in particular, the zero-frequency part of the partition noise
directly counts the number of emitted electron/hole pairs per period. This property, which was
�rst predicted in [64], allows to characterize the generation of additional electron/hole pairs when
charges are emitted in resonance with the Fermi energy. It also opens the way to quantitative
studies of the energy exchanges between adjacent quantum Hall e�ect edge channels at the single
charge scale. Furthermore, the use of a biased contact at the second input of the QPC allows to
measure the energy distribution of the emitted charges; the principle of this measurement can be
extended to measure the diagonal terms of the density matrix (coherence) by applying RF signals
to the biased contact [65], leading to the full tomography of single charges. The experimental
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results presented in this chapter demonstrate the feasibility of these measurements; however, they
also emphasize the importance of a controlled measurement environment, particularly regarding
the electronic temperature.

Finally, we have described in the fourth chapter the noise measurement setups used in the
experimental studies presented in chapters 2 and 3. Indeed, both high and low-frequency
noises considered in these chapters are of the order of e2f0 ≈ 3.8 × 10−29A2/Hz, where f0 =
1.5GHz is the drive frequency; while this value of the noise corresponds to typical resolutions in
state of the art low-frequency noise measurement setups [114, 48], it is extremely challenging to
reach in a high-frequency measurement. We have therefore designed and implemented a high-
frequency noise measurement setup with an exceptional sensitivity of 1.3 × 10−29A2/Hz in a 5
minutes measurement time, based on the joint use of a quarter-wave impedance transformer which
allows to increase the measurement impedance from 50Ω to 120Ω (thus increasing the amplitude
of the voltage �uctuations), and a modulated double balanced ampli�er which dramatically
increases the stability of the measurement. An independent calibration of the setup allows us to
compare the experimental noise data presented in the second chapter with the results yielded by
the two models without any free parameter. We have also implemented a low-frequency noise
measurement setup in order to perform the experiments presented in the third chapter. While the
sensitivity of this setup is not as good as the sensitivity of the high-frequency noise measurement
setup, one can consider several relatively simple modi�cations that would signi�cantly increase
its e�ciency.

In conclusion, the measurements performed during my thesis are the �rst experimental real-
ization of single-charge electron quantum optics experiments. We have shown that the current
�uctuations yield the signature of single particle emission, as well as numerous informations on
the number of emitted electron/hole pairs per period and the energy distribution of the emit-
ted charges, thus demonstrating the fact that noise measurements are the proper tools for the
realization of single-charge electron quantum optics experiments. Furthermore, we have demon-
strated the e�ectiveness of the mesoscopic capacitor as a single electron emitter, making it a
solid candidate to perform single-charge electron quantum optics experiments.

After having performed the experiments proposed in the third chapter, the implementation
of single charge tomography can be considered, using the second excitation line built in our
dilution refrigerator to apply RF voltages to the opposite contact. The ability to measure the
energy distribution and the coherences of emitted charges opens the way to a vast quantity of
experiments probing both relaxation and decoherence of single charges in QHE edge channels:
one could for instance measure the density matrix after di�erent propagation lengths by adding
a gate between the source and the central QPC to change the length of the path; one can also
implement the voltage probe technique used in Mach-Zehnder interferometers [19] to tune the
decoherence of the emitted charges. Lastly, results presented in this thesis allow to soundly
consider the use of a second synchronized single electron source to perform Hong-Ou-Mandel
electronic collision experiments [12].
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Appendix A

Scattering Formalism

A.1 Floquet scattering matrix

A.1.1 Sum Rules

• Sum rule A

Let us calculate the sum
∑

n U
∗
n+m(ε−m~Ω)Un+m′(ε−m′~Ω), with:

U∗n+m(ε−m~Ω) =
∑
k

ck+n+mc
∗
kU

0∗(ε− (m+ k)~Ω)

Un+m′(ε−m′~Ω) =
∑
k′

c∗k′+n+m′ck′U
0(ε− (m′ + k′)~Ω)

(A.1)

With the notation ~Ω = 1, so that ε+m~Ω ≡ ε+m, the sum yields:

∑
n

U∗n+m(ε−m)Un+m′(ε−m′) =
∑
k,k′

(∑
n

ck+n+mc
∗
k′+n+m′

)
×c∗kck′U0∗(ε−m− k)U0(ε−m′ − k′)

(A.2)

The sum rule on the cn coe�cients implies that
∑

n ck+n+mc
∗
k′+n+m′ = δk′+m′,k+m. This

yields, with U0∗(ε−m− k)U0(ε−m− k) = 1:∑
n

U∗n+m(ε−m)Un+m′(ε−m′) =
∑
k,k′

δk′+m′,k+mc
∗
kck′U

∗
0 (ε−m− k)U0(ε−m′ − k′)

=
∑
k

c∗kck+m−m′

(A.3)

The sum rule on the cn coe�cients now implies:

∑
n

U∗n+m(ε−m~Ω)Un+m′(ε−m′~Ω) = δm,m′ (A.4)

• Sum rule B

Let us demonstrate the sum rule Σ =
∑

m |
∑

n U
∗
n(ε− n)Um+n(ε− n− ω)|2 = 1 (with ~Ω = ~ =

1):
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Σ =
∑
m

(∑
n

U∗n(ε− n)Um+n(ε− n− ω)

)(∑
n′

Un′(ε− n′)U∗m+n′(ε− n′ − ω)

)

=
∑
n,n′

U∗n(ε− n)Un′(ε− n′)
∑
m

Um+n(ε− n− ω)U∗m+n′(ε− n′ − ω)

=
∑
n

U∗n(ε− n)Un(ε− n)

(A.5)

We use the �rst sum rule to simplify the sum over m. Let us now expand the Floquet
scattering matrices in terms of cn coe�cients and equilibrium scattering matrix U0(ε):

Σ =
∑
n

∑
k,k′

ck+nc
∗
kc
∗
k′+nck′U

0∗(ε− n− k)U0(ε− n− k′) (A.6)

The successive variable substitutions ñ = n+ k and k̃ = k − k′ yield:

Σ =
∑
ñ

∑
k̃

cñc
∗
ñ−k̃

(∑
k′

c∗
k′+k̃

ck′

)
U0∗(ε− ñ)U0(ε− ñ+ k̃) (A.7)

We now use the sum rule on the cn coe�cients
∑

k′ c
∗
k′+k̃

ck′ = δk̃,0 to demonstrate sum rule

B:

∑
m

∣∣∣∣∣∑
n

U∗n(ε− n)Um+n(ε− n− ω)

∣∣∣∣∣
2

=
∑
n

c∗ncnU
0∗(ε)U0(ε)

=
∑
n

c∗ncn = 1

(A.8)

A.2 Average ac current

A.2.1 Expansion of Eq.1.32

Let us �rst expand the expression of Îb(t) given in Eq.1.32:

Îb(t) =
e

h

∑
m,m′,n,n′

∫
dεdε′cn+mc

∗
nc
∗
n′+m′cn′U

0∗(ε−n)U0(ε′−n′)â†(ε+m)â(ε′+m′)ei
ε−ε′
~ t (A.9)

The variable substitutions ε̃ = ε − n, ε̃′ = ε′ − n′, followed by m̃ = m + n, m̃′ = m′ + n′,
provide:

Îb(t) =
e

h

∑
m̃,m̃′

cm̃c
∗
m̃′

∑
n,n′

c∗ncn′e
i(n−n′)t

∫ dε̃dε̃′U0∗(ε̃)U0(ε̃′)â†(ε̃+ m̃)â(ε̃′+ m̃′)ei
ε̃−ε̃′
~ t (A.10)
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The sum rule on the cn coe�cients de�ned in Eq.1.10 implies that
∑

n,n′ c
∗
ncn′e

i(n−n′)t = 1.
Therefore, after substituting {ε̃, ε̃′, m̃, m̃′} with {ε, ε′,m,m′} for more clarity, we obtain:

Îb(t) =
e

h

∑
m,m′

cmc
∗
m′

∫
dεdε′U0∗(ε)U0(ε′)â†(ε+m)â(ε′ +m′)ei

ε−ε′
~ t (A.11)

We can introduce the aforementioned sum rule
∑

m,m′ c
∗
mcm′e

i(m−m′)t = 1 in Eq.1.24 to obtain,

after the substitutions ε→ ε+m and ε′ → ε′ +m′, a similar expression for Îc(t);

Îc(t) =
e

h

∑
m,m′

cmc
∗
m′

∫
dεdε′ĉ†(ε+m)ĉ(ε′ +m′)ei

ε−ε′
~ t (A.12)

The total current is therefore given by:

Î1(t) =
e

h

∑
m,m′

cmc
∗
m′

∫
dεdε′

[
U0∗(ε)U0(ε′)â†(ε+m)â(ε′ +m′)− ĉ†(ε+m)ĉ(ε′ +m′)

]
ei
ε−ε′
~ t

(A.13)
Eq.1.34 is thus found when taking the quantum average of this last equation.

A.3 Comparison with the gauge-translation formalism

A.3.1 Average ac current

Let us compare the expression of the average ac current emitted by the mesoscopic capacitor
obtained in Eq.1.32 with the expression given in Adrien Mahé's manuscript [68], calculated using
a gauge translation that keeps the potential of the dot equal to zero, and modulates the potential
of the contacts (Eq.1.11, p.22):

Ig(t) =
e

h

∑
n,n′

c∗ncn′

∫
dε
[
U0∗(ε)U0(ε+ (n′ − n)~Ω)− 1

]
f(ε− n~Ω)ei(n−n

′)Ωt (A.14)

After the successive variable substitutions n′ = −(k +m) and n = −m, Eq.1.32 yields:

I1(t) =
e

h

∑
n,n′

c∗−n′c−n

∫
dε
[
U0∗(ε)U0(ε+ (n′ − n)~Ω)− 1

]
f(ε− n~Ω)ei(n−n

′)Ωt (A.15)

with:

c−n =
1

T

T∫
0

dtei−nΩte−i
e
~
∫ t
0 V
′
(τ ′)dτ ′ = c∗n[−V ′ ] (A.16)

This �nally gives:

I1(t) =
e

h

∑
n,n′

c∗n[−V ′ ]cn′ [−V
′
]

∫
dε
[
U0∗(ε)U0(ε+ (n′ − n)~Ω)− 1

]
f(ε−n~Ω)ei(n−n

′)Ωt (A.17)

This last expression is strictly equivalent to Eq.A.14, since the gauge translation changes the
sign of the drive (the potential −V ′(t) is applied on the contacts).
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A.3.2 Current fluctuations autocorrelation

We now compare the expression of the autocorrelation of the current �uctuations emitted by the
source given in Eq.2.18 with its expression established in Adrien Mahé's thesis using the gauge
translation (Eq.2.25, p.62):

S(ω) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

c∗n+mcnU
0∗(ε+ n)U0(ε+ n− ω)

∣∣∣∣∣
2

f(ε−m)(1− f(ε− ω)) (A.18)

We �rst perform the variable substitution ε′ ≡ ε + m in Eq.2.18, so that the integrand
becomes:

Σ =

∣∣∣∣∣∑
n

U∗n(ε′ −m− n)Un+m(ε′ −m− n− ω)

∣∣∣∣∣
2

f(ε′ −m)(1− f(ε′ − ω)) (A.19)

We expand the Floquet scattering matrices U∗n(ε′ −m− n) and Un+m(ε′ −m− n− ω) as a
function of the cn coe�cients. We perform a variable substitution so that the sum rule on the
cn coe�cients given in Eq.1.10 yields:

Σ =

∣∣∣∣∣∑
n

c∗ncn−mU
0∗(ε′ − n)U0(ε′ − n− ω)

∣∣∣∣∣
2

f(ε′ −m)(1− f(ε′ − ω)) (A.20)

The variable substitution n′ ≡ −n yields:

Σ =

∣∣∣∣∣∑
n′

c∗−n′c−n′−mU
0∗(ε′ + n′)U0(ε′ + n′ − ω)

∣∣∣∣∣
2

f(ε′ −m)(1− f(ε′ − ω)) (A.21)

Eq.A.16 �nally yields, with the notations n ≡ n′ and ε ≡ ε′:

Σ =

∣∣∣∣∣∑
n

cn[−V ′]c∗n+m[−V ′]U0∗(ε+ n)U0(ε+ n− ω)

∣∣∣∣∣
2

f(ε−m)(1− f(ε− ω)) (A.22)

This integrand is identical to the one in Eq.A.18, with a change of the sign of the potential
V ′(t) caused by the gauge translation.

A.4 Emission and absorption noise

We demonstrate here that the excess noise of the source (i.e. the remaining contribution of noise
when the noise at the pinch-o� is subtracted) is symmetric with the measurement: the emission
and absorption noises of the single electron emitter are equal.

We �rst calculate ∆(S) = S(ω) − S(−ω), using Eq.2.18. In the expression of S(−ω), the
successive variable substitutions ε′ ≡ ε+m+ ω, n′ ≡ n+m and m′ = −m yield:

S(−ω) = 2
e2

h

∑
m

∫
dε′

∣∣∣∣∣∑
n

U∗n(ε′ −m− n− ω)Un+m(ε′ − n−m)

∣∣∣∣∣
2

f(ε′ −m− ω)(1− f(ε′))

= 2
e2

h

∑
m

∫
dε′

∣∣∣∣∣∑
n′

U∗n′−m(ε′ − n′ − ω)Un′(ε
′ − n′)

∣∣∣∣∣
2

f(ε′ −m− ω)(1− f(ε′))

= 2
e2

h

∑
m′

∫
dε′

∣∣∣∣∣∑
n′

U∗n′+m′(ε
′ − n′ − ω)Un′(ε

′ − n′)

∣∣∣∣∣
2

f(ε′ +m′ − ω)(1− f(ε′))

(A.23)
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The di�erence ∆(S) = S(ω)− S(−ω) is therefore equal to:

∆(S) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

U∗n(ε− n)Un+m(ε− n− ω)

∣∣∣∣∣
2

(f(ε)− f(ε+m− ω)) (A.24)

Using the second sum rule on the Floquet scattering matrix (see A.1), the di�erence between
absorption and emission noise at zero transmission ∆(S)◦ = S(ω,D = 0) − S(−ω,D = 0) is
given by:

∆(S)◦ = 2
e2

h

∫
dε (f(ε)− f(ε− ω))

= 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

U∗n(ε− n)Un+m(ε− n− ω)

∣∣∣∣∣
2

(f(ε)− f(ε− ω))

(A.25)

The di�erence ∆(S)−∆(S)◦ is then equal to:

∆(S)−∆(S)◦ = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

U∗n(ε− n)Un+m(ε− n− ω)

∣∣∣∣∣
2

(f(ε− ω)− f(ε+m− ω))

(A.26)
Similarly to A.3.2, we expand the Floquet scattering matrix as a function of the cn coe�cients
and apply variable substitutions so that the sum rule on the cn coe�cients yields:

∆(S)−∆(S)◦ = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

cnc
∗
m+nU

0∗(ε− n)U0(ε− n− ω)

∣∣∣∣∣
2

(f(ε− ω)− f(ε+m− ω))

(A.27)
We now assume that the cn coe�cients are real, so that cnc

∗
m+n = cncm+n. This only

corresponds to a shift in the origin of time so that the excitation drive is even in time. The
successive variable substitutions ε′ ≡ ε+m, n′ = n+m and m′ = m yield:

∆(S)−∆(S)◦ = 2
e2

h

∑
m

∫
dε′

∣∣∣∣∣∑
n

cncm+nU
0∗(ε′ − n−m)U0(ε′ − n−m− ω)

∣∣∣∣∣
2

×
(
f(ε′ −m− ω)− f(ε′ − ω)

)
= 2

e2

h

∑
m

∫
dε′

∣∣∣∣∣∑
n′

cn′−mcn′U
0∗(ε′ − n′)U0(ε′ − n′ − ω)

∣∣∣∣∣
2

×
(
f(ε′ −m− ω)− f(ε′ − ω)

)
= 2

e2

h

∑
m′

∫
dε′

∣∣∣∣∣∑
n′

cn′+m′cn′U
0∗(ε′ − n′)U0(ε′ − n′ − ω)

∣∣∣∣∣
2

×
(
f(ε′ +m′ − ω)− f(ε′ − ω)

)

(A.28)

We �nally obtain:

∆(S)−∆(S)◦ = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

cn+mcnU
0∗(ε− n)U0(ε− n− ω)

∣∣∣∣∣
2

(f(ε+m− ω)− f(ε− ω))

= − (∆(S)−∆(S)◦)
(A.29)

The di�erence ∆(S) −∆(S)◦ is therefore equal to zero: the excess absorption and emission
noises of the source are indeed equal.
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A.5 Partition of a shot noise

The numerical computation of the variations of both the noise of the source S(ω) and the partition
term C(ω) with the measurement frequency ω presented in 3.2.2.2 show that at low transmission
of the dot QPC D, S(ω 6= 0) and C(ω 6= 0) are equal. For these values of the transmission,
S(ω 6= 0) can be described as a shot noise; we rely on this property to demonstrate the result
mentioned above. We use Eq.55 de�ned for multiterminal devices at zero temperature in [79],
which expresses the correlation Sαβ between the current �uctuations of two terminals α and β as
a function of the Fermi distributions of each terminal fγ(ε), and the scattering matrix elements
sαγ :

Sαβ =
e2

h

∑
γ 6=δ

∫
dεTr[s†αγsαδs

†
βδsβγ ] (fγ(ε)(1− fδ(ε)) + fδ(ε)(1− fγ(ε))) (A.30)

• Shot noise emitted by the source
Let us �rst calculate the expression of the noise of the source S(ω 6= 0) in the shot-noise limit,
by describing the source as a simple tunnel barrier with a low transmission D = t2, as depicted
in Fig.A.1.'

&

$

%

QPC1

r t

(1)

(4) (2)

(3)

Figure A.1: Partition noise generated by a quantum point contact: terminal (1) is
biased, all other terminals are grounded

Terminal (1) is biased with the voltage Vb, while all other terminals are grounded; we focus
on the autocorrelation of the current �uctuations in terminal (3) S33. The relevant scattering
matrix elements are therefore s31 = t and s32 = r. Eq.A.30 thus yields:

S33 =
e2

h
r2t2

∫
dε (f1(ε)(1− f2(ε)) + f2(ε)(1− f1(ε))) (A.31)

At zero temperature� the integral is equal to 2eVb. With r2t2 = D(1 − D), we recover the
well-known expression of the partition noise:

S33 = 2e

(
e2

h
Vb

)
D(1−D) = 2eI ×D(1−D) (A.32)

Where I = e2

h Vb = G0Vb is the current in terminal (1), G0 being the conductance of a single edge
channel. When the transmission D is low, we have S33 = S(ω 6= 0) = 2eI ×D.

• Partition of the shot noise
To reproduce the HBT geometry discussed in the third chapter, we now consider the con�guration
depicted in Fig.A.2, where the current �owing from the �rst QPC (terminal (3) in the previous
paragraph) is partitioned by a second QPC. To suppress multiple loops between the two QPCs,
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an ohmic contact (5) is inserted in the lower branch between the two QPCs; we then have
s31 = t1t2, s32 = r2 and s42 = 0. As in the previous paragraph, only terminal (1) is biased, and
we calculate the autocorrelation of the current �uctuations in terminal (3) S33. The relevant
scattering matrix elements are therefore s31 = t1t2, s32 = r2 and s35 = r1t2.'

&

$

%

QPC1
(1)

(4) (2)

(3)
QPC2

(5)

r1 t1 r2 t2

Figure A.2: Partition of a partition noise generated by a quantum point contact:
terminal (1) is biased, all other terminals are grounded

In these conditions, Eq.A.30 yields:

S33 =
e2

h

∫
dε(t1t2r2)2(f1(ε)(1− f2(ε)) + f2(ε)(1− f1(ε)))

+
e2

h

∫
dε(t1t2r1t2)2(f1(ε)(1− f5(ε)) + f5(ε)(1− f1(ε)))

+
e2

h

∫
dε(r2r1t2)2(f2(ε)(1− f5(ε)) + f5(ε)(1− f2(ε)))

(A.33)

Since only terminal (1) is biased, the third term in the above equation vanishes at zero temper-
ature. We therefore have, with t21 = T1, (t2r2)2 = T2(1− T2), t22 = T2, (t1r1)2 = T1(1− T1):

S33 = 2e

(
e2

h
VbT1T2(1− T2) + T1(1− T1)T 2

2

)
= 2eI×T1T2(1−T2)+2eI×T1(1−T1)T 2

2 (A.34)

As seen in the third chapter, the noise after partition by the second QPC yields a partition
term multiplied by T2(1−T2), corresponding to the partition term C(ω), and the noise upstream
of the second QPC 2eI × T1(1 − T1), multiplied by the factor T 2

2 , corresponding to the term
S(ω). When the transmission of the �rst QPC T1 becomes small, we recover a pure shot noise
term for the noise upstream of the second QPC S(ω 6= 0) = 2eI × T1, which is then equal to the
partition term C(ω 6= 0).
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Appendix B

Summary of the samples parameters
We present here a table summarizing the parameters of the various samples mentioned in this
manuscript:

sample ID E3 S528-11 S434-8

density n 1.3× 1011cm−2 1.9× 1011cm−2 1.8× 1011cm−2

mobility µ 2.6× 106cm2V −1s−1 1.3× 106cm2V −1s−1 2.4× 106cm2V −1s−1

dimensions of the dot 1µm× 1µm 0.6µm× 0.6µm 0.8µm× 0.8µm

level spacing ∆ 2.5± 0.5K 4.2± 0.2K 3± 0.2K

residual temperature
Tel

270± 20mK 60± 15mK 70± 15mK

operating frequency
f0

32MHz, 180MHz,
515MHz, 1.5GHz

1.5GHz 1.5GHz

magnetic �eld B 1.38T 1.79T 3.9T

measurements

I(t) (32MHz)
IΩ (180MHz−1.5GHz) IΩ IΩ

S(Ω) S(Ω)
CI1I1(Ω), CI1I1(0)

references [10, 11, 62, 70, 71] [63, 68]
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Résumé

Cette thèse est consacrée à l'étude des corrélations de courant de faisceaux mono-électroniques
dans un conducteur quantique balistique. Nous utilisons une capacité mésoscopique comme
source d'électrons uniques a�n d'émettre à la demande des charges dans un canal de bord de
l'e�et Hall quantique. En présence d'une forte tension d'excitation radiofréquence, la source émet
périodiquement un électron unique suivi d'un trou, générant un courant alternatif quanti�é en
unités de 2ef0, où f0 est la fréquence d'excitation. Nous avons mesuré le bruit émis par la source,
et mis en évidence une limite de bruit haute fréquence fondamentale, appelée jitter quantique,
qui est la signature de l'émission de charges uniques. Les mesures sont en très bon accord
avec un modèle heuristique décrivant le système comme une source d'électrons uniques parfaite,
ainsi qu'avec un modèle plus ra�né de di�usion des ondes électroniques. Nous avons également
mesuré les autocorrélations des �uctuations du courant après partition par un contact ponctuel
quantique jouant le rôle de lame séparatrice électronique. Cette géométrie, analogue électronique
de l'expérience de Hanbury-Brown et Twiss en optique quantique, permet de quanti�er la qualité
de l'émission de particules uniques. Dans un conducteur ballistique, cette géométrie permet en
outre de compter le nombre d'excitations générées à chaque cycle, ainsi que de mesurer leur
distribution en énergie.

Ces deux expériences constituent les premières réalisations d'expériences d'optique quan-
tique électronique avec des charges uniques. Elles permettent d'envisager des expériences plus
complexes, comme la collision de deux charges, et la tomographie d'un électron unique.

Mots-clés: Physique mésoscopique, optique quantique électronique, e�et Hall quantique, boîte
quantique, dynamique électronique cohérente subnanoseconde, source d'électrons uniques, �uc-
tuations de courant.

Abstract

This thesis is devoted to the study of current correlation of single-electron beams in a ballistic
quantum conductor. A mesoscopic capacitor is used as an on-demand single electron source to
emit single charges in a quantum Hall e�ect edge channel. When driven by a large high-frequency
excitation voltage, the source periodically emits a single electron followed by a single hole, thus
generating a quantized AC current in units of 2ef0, where f0 is the drive frequency. We have
measured the autocorrelation of the current �uctuations emitted by the source, putting into light
a fundamental high-frequency noise limit, called quantum jitter, which is the signature of single
particle emission. The measurements are in excellent agreement with both a heuristic model
describing the mesoscopic capacitor as a perfect emitter, and more sophisticated time-dependent
scattering model. We have also measured the autocorrelation of the current �uctuations after
partition by a quantum point contact acting as an electronic beam-splitter. This geometry is
the electronic analog of the quantum optics Hanbury-Brown and Twiss experiment, allowing
to characterize the accuracy of single-particle emission. In a ballistic conductor, this geometry
furthermore allows to measure the number of excitations generated per cycle, as well as to
measure their energy distribution.

These two experiments are the �rst realizations of single-charge electron quantum optics
experiments, paving the way to more complex experiments such as two-particle collisions and
single charge tomography.

Keywords: Mesoscopic physics, electron quantum optics, quantum Hall e�ect, quantum dot,
subnanosecond coherent electronic dynamics, single electron source, current �uctuations.
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