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Introduction
The purpose of this thesis, pertaining to the �eld of mesoscopic physics, is the study of the current
�uctuations emitted by a single electron source both in a direct measurement of the single-electron
beam, and after partition of the beam by a beam-splitter. The recent developments in micro and nano-
fabrication techniques, as well as in cryogenic instrumentation, have allowed the study of structures
and materials in which electronic transport is ruled by quantum mechanics. In particular, the ability to
engineer ballistic conductors presenting large phase coherence lengths and elastic mean free paths has
opened the way to the practical realization of electronic interferometry devices mimicking cornerstone
wave optics experiments, such as the double slit experiment [1], and the electronic Mach-Zehnder in-
terferometer [2]. Both these experiments were implemented in high-mobility two-dimensional electron
gases (2DEGs) obtained at the heterojunction between two semiconductors (here, GaAs-AlGaAs), and
put into light the role of the magnetic �eld (applied perpendicularly to the 2DEG) in the interferences
through the Aharonov-Bohm phase [3] acquired by electrons in the interferometer. Along with the strik-
ing demonstration of particle/wave duality of electrons in a mesoscopic conductor, these experiments
have led to studies of fundamental quantum mechanics processes occurring in a mesoscopic conductor,
such as the controlled loss of interferences caused by a which-path detector [4], or the precise determi-
nation of the electronic phase coherence length in a Mach-Zehnder interferometer [5]. Herein lies the
great interest of the �eld of electron quantum optics, where one uses electrons in a ballistic quantum
conductor to reproduce wave and quantum optics experiments: the tools of wave and quantum optics
can be transposed to mesoscopic devices, in order to probe the fundamental properties of quantum
electronic transport. In a further analogy with quantum optics, even more quantitative informations
can be extracted from the measurement of current �uctuations, as they unveil two-particle correlation
within the current, particularly two-particle interferences [6, 7]; moreover, a great richness is brought
in comparison with quantum optics by the presence of interactions. As of yet, all of these electron
quantum optics experiments were performed with sources continuously emitting a large number of
charges, without precise control over the energy and emission time; as in quantum optics, it is thus
crucial to implement experiments where ultimate control over a single electron is achieved in order
to study fundamental quantum mechanics processes occurring at the single particle scale. Similarly
to single-photon quantum optics, these so-called single-charge electron quantum optics experiments
would for instance allow to perform the entanglement of two independent single particles [8, 9], leading
to quantum information processing based on the coherent control of single charges.

While the basic building blocks of electron quantum optics were masterfully implemented in pre-
vious experiments, the development of a fully controlled single electron emitter, obviously essential to
the realization of single-charge electron quantum optics experiments, was only reported recently [10].
In this thesis, we present the �rst experimental realizations of single-charge electron quantum optics
experiments using the single electron emitter developed at the Laboratoire Pierre Aigrain [10, 11]. We
also give a theoretical description of our source within a Floquet scattering matrix formalism in order
to interpret our experimental results.

In this introduction, we �rst present the framework of electron quantum optics in two-dimensional
electron gases in the integer Quantum Hall E�ect (QHE) regime, where electrons propagate along edge
channels de�ned by the edges of the sample; we present the electronic Mach-Zehnder interferometer
experiment, allowing us to describe the basic building blocks used in electron quantum optics in the
QHE regime. We then present the concepts motivating the development of single-charge electron
quantum optics, and describe several types of single electron emitter, including the one studied in this
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Introduction

thesis; we also discuss the importance of noise measurements in single-charge electron quantum optics
experiments. Lastly, we brie�y describe the two single-charge electron quantum optics experiments
performed during my thesis, that is the measurement of the current �uctuations emitted by the source
and the current �uctuations after partition by a beam splitter, in a Hanbury-Brown and Twiss (HBT)
con�guration. We also present the principle of the next experiment, where two synchronized sources
are used to collide single charges in a Hong-Ou-Mandel geometry [12].

1 Electron quantum optics in 2-D electron gases

Two-dimensional electron gases are formed at the heterojunction between two semiconductors. The
progress in epitaxial growth has allowed to engineer samples with exceptional degrees of purity, with
two-dimensional electron gases presenting mobilities larger than 10 × 106 cm2/Vs [13, 14]. In such
structures, the large phase coherence length and mean free path (∼ 10 µm) have allowed the observation
of electronic interferences.

1.1 Electronic coherence in 2DEGs: the electronic Mach-Zehnder interferometer

One of the most striking examples of quantum interference devices in a 2DEG is the Mach-Zehnder
interferometer, �rst realized at the Weizmann Institute in 2003 [2]. The principle of the interferometer
is described in Fig.1, along with its optics equivalent and the measured interference signal. A high
perpendicular magnetic �eld is applied to the sample, so as to enter the quantum Hall e�ect regime;
a source contact (S) is used to send electrons towards a �rst beam splitter (QPC1). The re�ected
and transmitted paths are then recombined on a second beam splitter (QPC2); the phase di�erence
between the two paths is given by the Aharonov-Bohm phase φ = 2πA × B/Φ0, where A is the area
of the loop de�ned by the two paths, B the perpendicular magnetic �eld, and Φ0 = h/e the �ux
quantum. This phase can be modulated by either changing the magnetic �eld, or by changing the
length of the lower path with the side gates MG1 and MG2, thus modifying the area of the loop. After
recombination, the two output currents are collected on the detectors D1 and D2; Fig.1 shows the
variation of the current collected on D1 as a function of the magnetic �eld (blue) and side gate voltage
VMG (red). Both currents present clear periodic oscillations, demonstrating electronic interferences in
the device. The visibility of these interferences is very high (∼ 60%); visibilities up to 90% have been
recently demonstrated [7].

The electronic Mach-Zehnder interferometer has been since then realized in several other groups
[15, 16, 17], and has allowed to study the decoherence of electrons in QHE edge channels [5, 18, 19] as
well as to observe two-particle interferences in a double electronic Mach-Zehnder interferometer [7].

1.2 Building blocks of electron quantum optics in 2DEGs

We now describe the basic building blocks of electron quantum optics, in analogy with quantum optics:
QHE edge channels are used as one-dimensional phase coherent quantum rails, quantum point contacts
as tunable electronic beam splitters, and ohmic contacts as sources and detectors.

1.2.1 QHE edge channels

When a strong perpendicular magnetic �eld is applied to a two-dimensional electron gas, electron
transport only occurs along the edges of the sample de�ning the 2DEG. Furthermore, the conductance
of the sample becomes quantized in units of e2/h, equal to the inverse of the resistance quantum
Rk ≈ 25.8 kΩ. This so-called quantum Hall e�ect (QHE) can be described in a semi-classical view
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1. Electron quantum optics in 2-D electron gases

Figure 1: Electronic Mach-Zehnder interferometer. a) principle of the optical Mach-
Zehnder interferometer. b) schematic of the electronic Mach-Zehnder interferometer,
as implemented in [2] in a 2DEG. c) SEM view of the device. d) Measured interference
patterns in the current detected on contact D1. Red dots: the side gate MG is swept,
changing the area of the Aharonov-Bohm loop. Blue circles: current as a function
of time: the slow decay of the persistent current in the superconducting magnet
e�ectively changes the magnetic �eld. These �gures were taken from [2].

by considering the cyclotron motion of electrons in the 2DEG in presence of a perpendicular magnetic
�eld. The semi-classical motion of electrons is depicted in Fig.2a: electrons in the bulk move in closed
cyclotron orbits with a �xed center of motion, and therefore cannot travel from one end of the sample
to the other. The cyclotron orbits of electrons near the edges, on the other hand, are interrupted by
the edges, so that electrons "bounce" forward along skipping orbits. Because of the �xed direction of
rotation, all electrons on one edge propagate in the same direction (in Fig.2a, electrons in the upper
edge propagate from left to right), whereas electrons near the other edge propagate in the opposite
direction: electronic transport in the QHE regime is therefore chiral.

The quantized value of the conductance can be explained by considering the energy spectrum
of electrons in the 2DEG: electrons in the bulk are distributed on Landau levels with an energy
En = ~ωc(n+1/2), where ωc = |eB/m∗| is the cyclotron pulsation (the e�ective massm∗ of electrons in
2DEGs is equal to 0.067me) [20]. These Landau levels are bent near the potential barriers constituting
the edges of the sample, see Fig.2b; at high magnetic �eld, spin-degeneracy in the Landau levels is
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Figure 2: a) semi-classical interpretation of the quantum Hall e�ect: The 2DEG is
represented in light gray, and electrons propagate chirally along the upper and lower
edges of the gas. The electrons in the bulk do not take part in the transport. b) energy
diagram of the Landau levels (red lines) in the presence of edges at the positions xL
and xR. Edge states (green and purple dots) follow the equipotential lines formed at
the intersection with the Fermi level (blue dashed line). Here, the �lling factor ν is
equal to 4 (2 Landau levels × 2 spins; Zeeman splitting is not shown on this diagram).

removed by Zeeman splitting, and enhanced by interactions. The �nite number of electrons in the
2DEG de�nes the Fermi energy, which, for given values of the magnetic �eld, only crosses the Zeeman-
split Landau levels near the edges, thus de�ning a �nite number of chiral edge channels. This number
depends on the magnetic �eld: as B increases, the Landau levels are shifted upward with respect to the
Fermi energy, so that the number of Zeeman-split Landau levels crossing the Fermi level (that is, the
number of �lled Landau levels, called �lling factor ν) decreases. In particular, at �lling factor ν = 2,
electronic transport occurs on two edge channels, which are spin-polarized [20] (the �rst Landau level
is completely �lled, spin up and spin down).

Finally, the absence of backscattering in the edge channels [21] dramatically increases the mean
free path (∼ 100µm) of electrons; large phase coherence lengths have also been measured (∼ 20 µm at
20 mK [5]).

In the quantum Hall e�ect regime, electrons thus propagate along one-dimensional, phase coherent,
chiral edge channels without backscattering, that can be used as quantum rails in the realization of
electron quantum optics experiments. In this respect, many studies (experimental as well as theoret-
ical) have been performed in order to fully characterize the properties of electronic transport in edge
channels: among others, the noiseless character of transport in edge channels has been demonstrated
[22, 23]; an electronic Mach-Zehnder interferometer was used to measure the value of the phase co-
herence length given above, and the study of energy relaxation between adjacent edge channels was
recently realized [24, 25, 26]. More generally, theoretical predictions were made regarding the relaxation
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1. Electron quantum optics in 2-D electron gases

and decoherence of electronic excitations in an edge channel in the presence of a Fermi sea [27].

1.2.2 Quantum point contact

Figure 3: a) and b) false-colors SEM view of a quantum point contact. The 2DEG is
colored in blue, and the metallic QPC gates are colored in yellow. The yellow arrows
represent the typical trajectories of the edge channels (corresponding to equipotential
lines): in a), the transmission of the QPC is �nite, so that electrons can be partially
transmitted. In b), the transmission is zero: the electrons are systematically re�ected.
c) experimental realization of a QPC: the conductance, plotted as a function of the
QPC gate voltage, presents quantized plateaus. The number of plateaus decreases as
the magnetic �eld increases, corresponding to a decrease in the number of conduction
channels. The data are taken from [28].

The electronic analog of a beam splitter can be implemented in a two-dimensional electron gas in
the form of a quantum point contact (QPC) which consists of a pair of electrostatic gates deposited
on the surface of the sample. The typical geometry of QPC gates is shown in Fig.3a: when a negative
gate voltage is applied on the gates, a constriction is created in the 2DEG between the gates because
of electrostatic repulsion. This constriction gives rise to a potential barrier, the shape of which can
be determined from the geometry of the gates [29]. At zero �eld, because of the �nite width of the
constriction w, the number n of transmitted electronic modes becomes quantized in units of λf/2w
[30], where λf ≈ 60 nm is the Fermi wavelength of electrons in the 2DEG. The relatively large value
of λf allows to design QPCs with typical widths comparable to λf , which can be tuned by changing
the gate voltage. In particular, when large negative gate voltages are applied, the potential barrier
becomes very large, and no electron can be transmitted (Fig.3b).

At high magnetic �eld, the description of the transmission through the QPC in terms of spin-
degenerate electronic modes is replaced by the description in terms of edge channels following equipo-
tential lines, which are re�ected one by one as the QPC gate voltage is swept towards large negative
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values. This e�ect was �rst experimentally demonstrated in [28], see Fig.3c: the conductance at mag-
netic �elds below B = 1T presents steps in units of 2e2/h. At high magnetic �eld, the height of
the conductance steps is equal to e2/h, re�ecting the removal of spin-degeneracy, while the number of
conductance steps n decreases with the magnetic �eld, and corresponds to the number of edge channels
(given by the �lling factor ν). Between two conductance plateaus, the conductance G of the QPC is

proportional to the transmission probability D: G = D e2

h , and can be generalized for �nite number

of edge channels ν: G =
∑ν

i=1Di
e2

h , where Di is the transmission of the i-th edge channel. Fig.3c
therefore demonstrates that one can tune the transmission of a QPC by changing its gate voltage; in
particular, when set at the exact half of the opening of the �rst conductance plateau, the outer edge
channel is partially transmitted with a probability amplitude |t|2 = D = 0.5, while all other edge
channels are fully re�ected. The quantum point contact therefore acts as a tunable, channel-selective
beam splitter.

Quantum point contacts are crucial elements in electron quantum optics experiments, such as the
electronic Mach-Zehnder interferometer; QPCs also allow to put into evidence striking phenomena
through noise measurements.

• Partition noise
The study of the �uctuations of a current partitioned by a QPC at low temperature allows to probe
the quantum statistics underlying electron transport in edge channels: indeed, in the case of a classical
current I = GV = D e2

h V , where V is the bias voltage applied to the upper left contact in Fig.3a, one

expects Poissonian �uctuations SII = 2eI = 2e e
2

h V ×D. However, it was experimentally demonstrated
that the �uctuations of a partitioned current in an ideal quantum conductor [31], and in an edge channel

[32] are sub-Poissonian: SII = 2eI(1 −D) = 2e e
2

h V ×D(1 −D). The shot noise 2eI is thus reduced
by a factor (1−D); in particular, at unity transmission, the �uctuations vanish. This suppression of
shot noise demonstrates that Pauli exclusion principle correlates the �ow of electrons participating in
mesoscopic currents.

Furthermore, noise measurements in Hanbury-Brown and Twiss geometries [32, 33], where a QPC
is used to partition the current, allow to put into light transport through multiple energy levels of a
localized state [34], as well as to observe fractional charges in the fractional quantum Hall e�ect regime
[23, 35].

In all previously discussed experiments, currents were generated in the edge channels by applying
a bias voltage V to an ohmic contact upstream of the edge channel, at low temperature. Electrons
are therefore emitted in an energy window de�ned between εf and εf + eV (where εf is the Fermi
energy), and Pauli exclusion principle ensures that their �ow is noiseless. However, the number of
electrons emitted within this energy range is not controlled, nor is the emission time of the charges.
Symmetrically, currents are detected on output ohmic contacts, connected to the measurement circuit.
Although they are very e�cient electron sources and detectors, ohmic contacts are very far from
presenting a single charge resolution. It is therefore interesting to develop single electron detectors
[36, 37, 38, 39, 40, 41], as well as single electron sources. In particular, the realization of single electron
sources is crucial in order to perform single-charge electron quantum optics experiments.

2 Single-charge electron quantum optics

Aside from the analogy with single photon quantum optics, single-charge electron quantum optics allow
to probe fundamental processes taking place in Fermionic systems at the single charge scale. Indeed, a
great richness is brought by the presence of both a Fermi sea and electronic interactions, which induce
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2. Single-charge electron quantum optics

decoherence and relaxation. As mentioned above, decoherence and relaxation processes have been
studied at a large scale with thermal populations; however, they can only be fully characterized through
the study of the relaxation and decoherence of coherently-emitted single charges with a controlled
emission time and energy. Furthermore, one can study the fundamental di�erences between quantum
statistics of photons and electrons at the single-particle scale; in particular, the direct observation of
Pauli exclusion principle at the single charge scale can be considered using a two-particle Hong-Ou-
Mandel [42] collider geometry [12], and a two-particle entanglement scheme was recently proposed [9].
The obvious requirement in such experiments is the development of a single electron emitter; in the
next paragraph, we brie�y describe the various types of 2DEG devices used to emit single charges, and
discuss their respective advantages and limitations.

2.1 Single electron emitters

We now present several types of recently realized single electron sources; in particular, we describe
the single electron emitter developed at the Laboratoire Pierre Aigrain, which we have used during
my thesis to perform single-charge electron quantum optics experiments. We �nally present a recent
theoretical proposal for a noiseless single electron source, which is currently in development at the
Nanoelectronics Group (SPEC-CEA).

2.1.1 Surface acoustic waves

The piezoelectric properties of GaAs can be used to generate single-charge excitations in a 2DEG with
a large repetition rate [43, 44, 45, 46]. Applying a surface acoustic wave (SAW) to the GaAs substrate
generates a propagating wave of electrostatic potential in the 2DEG. The minima of this potential then
act as propagating localized states, each one carrying a single charge for a su�ciently large amplitude
of the SAW. The good piezoelectric properties of GaAs allow to generate single-electron pulses at GHz
frequencies and thus create quantized DC currents (in units of efSAW ) useful for metrology. However,
these devices do not o�er a full control over the electron escape time, since it cannot be decoupled
from the repetition frequency fSAW .

2.1.2 Quantum turnstiles and charge pumps

One of the main challenges in the realization of a single electron source lies in the ability to isolate
a single charge from the Fermi sea, in order to release it within a controlled emission time. High-
frequency charge pumps [47, 48] and quantum turnstiles [49] allow to sequentially trap and release a
single charge to perform single charge emission. In [47], a set of parallel fast gates is used to isolate an
electron from a continuous stream generated by a biased contact, then release it towards a measurement
contact. The fast gates allow to brie�y create potential barriers in the 2DEG: one can electrostatically
con�ne a single electron by raising the potential barriers in a time smaller than h/eV , where V is the
bias voltage. The electron trapped in the localized state can then be released by lowering the potential
barrier upstream of the measurement contact. This type of source has demonstrated a quantization of
the emitted DC current in units of ef , where f is the repetition rate of the source, with an uncertainty
of 15 parts per million [50]. The downside of this technique is the poor energy resolution of the emitted
charges.

2.1.3 Quantum dots: Coulomb blockade

As described in the previous paragraph, localized states can be used to temporarily trap electrons in
order to isolate them from the Fermi sea. One can also de�ne a quantum dot by isolating a small
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Figure 4: a) Coulomb blockade: the charge of a quantum dot presents quantized
steps as a function of the gate voltage controlling the potential in the dot. b) single-
charge emission with a quasi-metallic quantum dot: the dot is rapidly brought out of
equilibrium by changing the gate voltage from VN+1 to VN . An electron from one of
the levels promoted above the Fermi energy can tunnel out of the dot: a single charge
is emitted.

portion of the 2DEG (either electrostatically, or by etching the edges of the gas) weakly coupled to a
reservoir, and directly emit the charges sitting on the dot. Indeed, the number of charges on an isolated
island is quantized, and Pauli exclusion principle prevents two electrons in the dot from having the
same energy. The energy spectrum of a quantum dot presents two typical scales, one given by the
orbital motion of the charges in the dot (orbital level spacing ∆), and the other re�ecting the Coulomb
repulsion between electrons in the dot. The latter, called charging energy EC , is equal to the energy
one must pay in order to add an electron to the dot, and is given by EC = e2/CΣ, where CΣ is the
total capacitance of the dot.

Charges can be exchanged between the dot and a reservoir through a tunnel barrier, and one usually
controls the potential in the dot with an electrostatic gate. The total charge of the dot then varies
with the gate voltage as a series of quantized steps (see Fig.4a), corresponding to successive additions
of electrons in the dot. When spin degeneracy is removed, the voltage distance between each charge
step is proportional to the addition energy ∆ + EC . On the plateaus of the charge steps, the total
charge of the dot is independent of the gate voltage: indeed, in these conditions the lowest unoccupied
energy level is far above the chemical potential of the reservoir, and no charge can tunnel in or out of
the dot.

This so-called Coulomb blockade phenomenon allows to perform single charge emission: by rapidly
changing the value of the gate voltage, one can change the total charge in the dot from N + 1 to N
(see Fig.4b), thus emitting a single charge. This type of single-electron pump based on a metallic
quantum dot presenting a charging energy substantially larger thant the orbital level spacing has been
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thoroughly studied, theoretically as well as experimentally [51, 52, 53, 54]; however, since the electron
sitting on any one of the levels promoted above the Fermi energy can be emitted (Coulomb blockade
then prevents the emission of a second charge), the energy of the emitted charge is not well-controlled.
Moreover, the typical tunneling rates in these systems restrict the repetition frequency to a few MHz.

2.1.4 The mesoscopic capacitor as a single electron source

Figure 5: a) schematic of the mesoscopic capacitor. A quantum dot with a large level
spacing is coupled to the reservoir through a QPC (gate voltage Vg). The potential
in the dot is tuned using the top gate, and the emitted current is collected on contact
(1). b) principle of single charge emission with the mesoscopic capacitor. The upper
graph represents the evolution of the potential of the dot during the emission cycle.

1© the dot is at equilibrium. 2© the application of a large voltage step to the dot
top-gate shifts the energy levels upwards with respect to the Fermi energy, promoting
a single occupied level above the Fermi energy. A single electron is emitted. 3© the
excitation voltage is switched back to its original value: the emptied level is shifted
back below the Fermi energy, and can absorb an electron from the reservoir. A single
hole is emitted. During this cycle, only one level takes part in the emission. Since
only one state is promoted above the Fermi energy, the escape time only depends on
the transmission of the QPC, whereas in the case of a quasi-metallic quantum dot
depicted in Fig.4b, where the orbital level spacing is much smaller than the charging
energy, the escape time is highly dependent on the number of levels promoted above
the Fermi energy.

In the quasi-metallic case described in the previous paragraph, a large number of electronic levels
are promoted above the Fermi energy in order to emit a single charge, thus decreasing the control
over the energy of the emitted charge. A single electron source based on a quantum dot presenting
an orbital level spacing comparable or larger than the charging energy allows, however, to emit single
charges with a control over the energy and emission time close to the quantum limit. Indeed, in the
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case of a large orbital level spacing ∆, one can promote a single electronic level at an arbitrary energy
eV ≤ ∆ above the Fermi level; the uncertainty on the energy of the emitted single charge is then only
given by the energy width of the promoted level.

The single electron emitter developed at the Laboratoire Pierre Aigrain is based on a mesoscopic
capacitor [55], which consists of a submicronic quantum dot presenting a large orbital level spacing,
coupled to the reservoir through a quantum point contact (see Fig.5a). The potential in the dot is
tuned using an electrostatic top-gate deposited at the surface of the sample. The principle of operation
of such a source is depicted in Fig.5b: a large voltage step is applied to the top gate in order to shift
the energy levels upwards with respect to the Fermi energy. If the energy shift is comparable to the
level spacing, only one level is promoted above the Fermi energy. The single electron sitting on that
level (provided spin degeneracy is lifted) can then be emitted at an energy above εf in the reservoir
through the tunnel barrier formed by the QPC, with an escape time depending on the transmission
of the tunnel barrier. After emission of the electron, the voltage on the top gate is set to its original
value, so that the level previously promoted above the Fermi energy is shifted back to its position below
the Fermi energy. The dot can then absorb an electron from the reservoir, thus emitting a hole at an
energy below εf with the same escape time as the electron (provided the transmission of the tunnel
barrier is independent of energy). On a single cycle, the source therefore emits one single electron,
followed by a single hole, both with a controlled energy. This cycle is repeated at GHz rates (typically,
f0 = 1.5 GHz), thus generating an AC current composed of alternatively emitted single electrons
and single holes. The top gate and the QPC gates allow to independently tune the energy of the
emitted charges and their escape time. The energy and temporal widths of the emitted single-charge
wavepackets are respectively given by the width of the levels in the dot and the escape time, both of
which only depend on the level spacing ∆ and the transmission D. In this respect, the source allows
a control over the energy and emission instant of the charges close to the quantum limit; a controlled
variation of the escape time over several orders of magnitude (< 0.1 ns ↔ 10 ns) was experimentally
demonstrated [10]. The mesoscopic capacitor is thus a promising candidate to perform single charge
emission in single-charge electron quantum optics experiments.

2.1.5 Modulated contacts

Recent theoretical studies [56, 57] have shown that the emission of a single charge can be achieved by
applying a voltage pulse V (t) to an ohmic contact that veri�es the relation

∫
dtV (t) = h/e. Indeed, as

demonstrated in [58], an ohmic contact biased with a constant voltage V generates a continuous stream
of electrons, each electron occupying a wavepacket with a temporal width h/eV . One therefore expects
to emit a single electron when the bias voltage is applied during a well-controlled time equal to the
temporal width of the wavepacket. The shape of the voltage pulse is expected to determine the number
of additional electron/hole pairs emitted along with the single electron: this property is crucial, since
the emission of additional electron/hole pairs renders the description of the experiments in terms of
electron quantum optics irrelevant. In particular, it was predicted that applying a Lorentzian voltage
pulse allows the emission of a single charge with no spurious emission of additional electron/hole pairs.
Furthermore, the ability to tune the amplitude and the duration of the pulse allows to accurately control
the emission time of the charge. However, the energy of the emitted charge is not well controlled, which
does not allow the energy separation of the emitted charge and the Fermi sea.

2.2 Noise in single-charge electron quantum optics experiments

In quantum optics, the coherence of the emitted particles is probed by the successive correlators
g(n) (also called n-th order coherence), introduced by Roy Glauber in [59]. In particular, the �rst-
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order correlator g(1), probing the amplitude correlation of the electric �eld, is measured in classical
interferometers, such as the Mach-Zehnder and Michelson interferometers; the second-order correlator
g(2) probes the intensity correlation, and allows to discriminate between quantum and classical states
of light. The latter is commonly measured to probe the outcome of quantum optics experiments such
as Hanbury-Brown and Twiss, or Hong-Ou-Mandel experiments. In general, g(1) is only sensitive to
the wave nature of light, whereas higher order correlators are sensitive to its particle nature.

The measurements performed in the experiments mentioned in the beginning of this introduction
show an analogy with those correlators. Indeed, in the electronic Mach-Zehnder and double-slit ex-
periments, interference patterns are observed in the emitted currents, which are then the analog of
the �rst-order correlator g(1) of quantum optics. In [31] the quantum statistics correlating the �ow
of electrons is probed by measuring the partition noise. The correlation of the current �uctuations is
thus the analog of the quantum optics second-order correlator g(2). As such, the noise is the relevant
signal one should measure in a realization of single-charge electron quantum optics experiments.

3 Results obtained during the thesis

During my thesis, we have used a mesoscopic capacitor built in a GaAs/AlGaAs 2DEG as a single elec-
tron emitter to perform two basic single-charge electron quantum optics experiments: the measurement
of the noise of a single-charge beam, in a direct con�guration as well as in a HBT con�guration.

Measuring the intrinsic high-frequency noise of the source is of crucial importance, for it establishes
the short-time current autocorrelation as an unambiguous criterion of single-particle emission, and
con�rms that the mesoscopic capacitor can indeed be used as an on-demand single electron source.
Furthermore, the measurement of high-frequency noise allows to probe the occurrence of spurious
charges transfer events which do not appear in the average current, and thus de�ne optimal operating
conditions for the source.

The measurement of the current �uctuations in the HBT geometry is the direct electronic analog of
HBT measurements in quantum optics, used to characterize single photon sources [60, 61]; in addition
to completing the validation of the mesoscopic capacitor as a single electron source, partitioning allows
to quantify the presence of additional electron/hole pairs speci�c to Fermionic systems, by physically
separating them. Moreover, the use of time and energy-resolved single charges in this HBT experiment
yields a much larger richness in comparison to the previous Fermionic HBT experiments [32, 33]
performed on a continuous �ow of electrons generated by an ohmic contact.

The realization of these two experiments required the development of a consistent theoretical de-
scription of the source and the implementation of noise measurement setups able to detect the �uctu-
ations of single-electron currents.

In the �rst chapter of this manuscript, we describe the mesoscopic capacitor within a Floquet scattering
matrix theory, and show that the study (both theoretical and experimental) of the emitted average AC
current indicates that the mesoscopic capacitor can indeed be used as a single electron source. In the
linear regime (where the amplitude of the voltage step Vexc is much smaller than the frequency f0 and
the level spacing ∆, with hf0 � ∆), the average AC current re�ects the dynamics of charge relaxation
through the QPC [62] as well as the density of states in the dot; it therefore allows to extract the
parameters of the source. In the non-linear regime (Vexc comparable to the level spacing), we demon-
strate the quantization of the average AC current in units of 2ef0, corresponding to the emission, in
average, of one electron followed by one hole at each cycle [10]. We furthermore show that the aver-
age AC current gives access to the escape time, as well as the average transfered charge per half-period.

11



Introduction

In the second chapter, we describe the measurement of the autocorrelation of the current �uctua-
tions emitted by the source, constituting the �rst of the two single-charge electron quantum optics
experiments realized during my thesis. We �rst calculate the noise of the source using the Floquet
scattering model introduced in the �rst chapter. We then compare this model with a semi-classical
heuristic model describing the mesoscopic capacitor as an ideal single electron emitter. This compar-
ison allows us to de�ne the optimal operating conditions of the source. In particular, we show that
in these optimal operating conditions, the noise reduces to a fundamental noise limit called quantum

jitter, which is the signature of single particle emission.
We �nally present experimental measurements of the high-frequency noise of the source realized

during my thesis. In the optimal operating conditions, the noise is indeed given by the quantum
jitter, demonstrating on-demand single particle emission [63]. Furthermore, we observe an increase
in the noise when the source is driven out of the optimal operating conditions, that is when charges
are emitted in resonance with the Fermi energy. This excess noise, corresponding to the generation
of spurious additional charges, is well reproduced by the scattering model, indicating that the model
correctly describes our device.

In the two �rst chapters, the signals are measured in the direct con�guration depicted in Fig.5
shown above, where the emitted current is directly collected on an ohmic contact.

In the third chapter, we describe the second single-charge electron quantum optics experiment per-
formed during my thesis: the measurement of the current �uctuations of a single-charge beam par-
titioned by a QPC. The geometry of this experiment, shown on Fig.6, is the single-charge electron
quantum optics analog of the HBT geometry frequently used to characterize photon sources in quan-
tum optics. As in the previous chapters, we �rst derive an expression for the noise after partition by
the QPC using the Floquet scattering model. This theoretical study shows that the HBT geometry
allows to probe a large variety of properties of electronic transport in QHE edge channels; in particular,
we show that the measurement of the zero-frequency part of the noise after partition directly counts
the number of emitted electron/hole pairs per period. This property, �rst predicted in [64], allows
quantitative studies of the generation of spurious electron/hole pairs caused by the charge emission
mechanism. It also opens the way to the study of energy relaxation between adjacent edge channels
at the single charge scale: indeed, as the source only emits charges in a single edge channel (more
precisely, the outer edge channel, see �rst chapter), one can measure the number of electron/hole pairs
in the other edge channels, caused by energy relaxation. Furthermore, this property can be used to
measure the number of excess electron/hole pairs generated when a charge is emitted in resonance
with the Fermi energy. We also show that applying a bias voltage to the ohmic contact located at
the second input of the QPC (contact (B) in Fig.6) allows to measure the energy distribution of the
emitted charges.

We then present an experimental study of sample S434-8 , designed to perform noise measure-
ments in the HBT geometry. We show the �rst experimental observation of the partition noise of a
single-electron beam, which is well reproduced by the Floquet scattering matrix theory. These noise
measurements show that in the ideal operating conditions, the number of emitted electron/hole pairs
is close to the ideal value (that is, one electron/hole pair per period); they however put into light
crucial issues regarding the electronic environment that must be solved before proceeding to further
measurements.

In the fourth chapter, we �nally describe the noise measurement setups used two perform the two
single-charge electron quantum optics experiments. As we show in the second and third chapters,
the typical scale of the current �uctuations is given by e2f0, where f0 is the repetition frequency of
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Figure 6: Schematic of the single-charge HBT experiment: a single electron emitter
is placed at the �rst input arm of a QPC, acting as a beam splitter. The correlation of
the current �uctuations in the two output arms are measured. The ohmic contact on
the second input arm can be biased to measure the energy distribution of the emitted
charges.

the electron/hole emission cycle; with f0 = 1.5 GHz, this corresponds to a current noise equal to
∼ 4× 10−29 A2/Hz. The required resolution thus corresponds to typical resolutions demonstrated by
state-of-the-art low-frequency noise measurement setups.

We �rst describe the high-frequency measurement setup developed to measure the noise emitted by
the source in the direct con�guration. At high frequency (here, the noise is measured around the drive
frequency f0 = 1.5 GHz), noise measurements are much more challenging because of the characteristic
impedance of microwave circuits, equal to 50 Ω. We therefore use the combination of an impedance
transformer, which increases the measurement impedance to 120 Ω (thus increasing the noise power
by a factor 2.4), and an interferometric ampli�cation technique, called modulated double-balanced
ampli�er. This setup allows us to measure high-frequency noise with a state of the art resolution of
1.3× 10−29 A2/Hz in 5 minutes.

In the second part of the chapter, we describe the low-frequency noise measurement setup used
in the single-charge HBT measurements. The setup is a fairly basic one, where one measures the
cross-correlation of the noise detected by two distinct ampli�cation lines. The sensitivity of this setup
is lower than the one of the high-frequency noise measurement setup; we nonetheless propose several
easy-to-implement practical solutions to increase the sensitivity.

These two independent noise measurement setups allow to simultaneously measure the high and
low-frequency noise at the outputs of our sample.

4 Perspectives

In the third chapter, we show that the HBT geometry allows to measure the energy distribution of the
emitted charges, using a biased ohmic contact located at the second input of the QPC. This property
can be generalized to the case of a periodic excitation voltage applied to the contact, to measure the
o�-diagonal terms of the density matrix of the emitted charges. It is thus possible to perform single-
electron tomography [65]. One can then consider a wide range of derivations of the HBT geometry
where a tunable source of relaxation and/or decoherence is inserted between the single electron source
and the partitioning QPC: for instance, a voltage probe such as the one used in [19]. This collection
of experiments would allow to accurately characterize electronic transport in QHE edge channels.

Finally, one can use a second synchronized single electron source placed at the second input of
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Figure 7: Schematic of the single-charge Hong-Ou-Mandel experiment: two syn-
chronized single electron sources are placed at each input of a QPC. The emitted
charges collide on the central QPC, which acts as a beam splitter. The correlation of
the current �uctuations in the two output arms are measured: if the charges arrive
simultaneously and in the same state on the QPC, the noise vanishes.

the QPC to perform single-electron HOM collisions [12]; the principle of the experiment is shown
on Fig.7. If the two electrons sent towards the central QPC are in the same state, Pauli exclusion
principle causes each one to be transmitted/re�ected in a di�erent output of the QPC; one therefore
expects positive correlation at short time between the two outputs. This experiment furthermore
allows to probe Coulomb interactions between two single charges, as the interactions should become
predominant in the partition when the energies of the two colliding charges di�er. As for the HBT
geometry, this experiment presents a great richness in the number of tunable parameters, such as the
respective energy of the emitted charges, the desynchronization of the sources, or the temporal widths
of the emitted wave packets.
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Chapter 1. Realization of a Single Electron Source

Introduction of chapter 1

In this chapter, we describe the basic properties of a mesoscopic capacitor, and show that it can be
used as a single electron source when driven in the non-linear regime. We �rst propose a theoretical
description of the source using a time-dependent scattering formalism with which we calculate the
average AC current. This description will be used to predict the properties of the current �uctuations
in the next chapters. We then present measurements of the average AC current emitted by the
device. Our calculations show that when the excitation voltage compensates the level spacing, the
�rst harmonic of the emitted AC current becomes quantized in units of 2ef0, corresponding to the
periodic emission of a single electron followed by a single hole. The homodyne measurement of the
�rst harmonic con�rms this prediction and provides a characterization protocol for the source: we �rst
study the low-amplitude excitation regime of the device in order to extract the fundamental parameters
of each device such as level spacing, coupling between the metallic gates and the dot potential, and
electronic temperature. We then verify the predicted quantization of the �rst harmonic and determine
the correct operating conditions of the source.
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1.1 Response of a mesoscopic capacitor to a periodic excitation: theory

In this section, we present a theoretical description of the mesoscopic capacitor depicted in Fig.1.1. The
mesoscopic capacitor is made of a submicronic quantum dot etched in a two-dimensional electron gas,
connected to the leads via a Quantum Point Contact (QPC), which acts as a tunable tunnel barrier.
The potential in the dot can be tuned by applying voltages to an electrostatic gate placed near the
dot. When the potential is modulated periodically, a periodic charge transfer between the dot and the
leads occurs. This charge relaxation process can be described in terms of RC-circuit elements, which
will allow us to give a simple de�nition of charge relaxation time (or escape time).

We describe the scattering of electrons in the leads on the dot with a time-dependent scattering
matrix, or Floquet matrix, which was introduced for the mesoscopic capacitor in [66].

1.1.1 Modeling the device

A schematic view of the device is represented in Fig.1.1. When a strong magnetic �eld is applied
perpendicularly to the sample, electronic transport occurs along the edge states of the Quantum Hall
E�ect, represented by the red and blue lines in Fig.1.1, here corresponding to a �lling factor ν = 2.
We restrict the transmission of the quantum point contact coupling the dot to the leads to values for
which only the outer edge channel (red line) is partially transmitted. As a consequence, we can neglect
the in�uence of the inner edge channel (blue line), which does not take part in the emitted current
since the inner edge channel in the dot is completely decoupled from the one in the leads. We therefore
describe the system in a one-dimensional scattering formalism in which an electron from the outer
edge channel can tunnel into the dot with an amplitude d and perform several turns in the dot before
tunneling back to the lead. The description of electronic trajectories inside the dot in terms of QHE
edge channels is valid as long as the dot is larger than the width of an edge channel (a few hundreds of
nanometers [67]). The dots used in our experiments typically reach this limit in order to make them
as small as possible while still presenting well de�ned trajectories.

Figure 1.1: Modeling of a mesoscopic capacitor. Two edge channels are considered:
the inner edge channel (blue line) does not take part in the current emitted by the
capacitor. We measure the current collected on contact (1), while contact (2) is
grounded.

We express the electronic states in the outer edge channel in each region of the sample with
creation/annihilation operators depicted in Fig.1.1: â†, â from contact (2) to the dot, b̂†, b̂ from the dot
to contact (1), ĉ†, ĉ from contact (1) to contact (2). We neglect propagation e�ects in the edge channel;
the creation/annihilation operator are therefore only time dependent, and we express the outgoing
states b̂†(t), b̂(t) as a function of the incoming states â†(t), â(t) using a time-dependent scattering
matrix (or Floquet matrix) formalism described in the next paragraph. Since the edge states of the
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QHE are spin-polarized, we do not take spin into account; we also consider non-interacting edge
channels.

1.1.2 Floquet scattering matrix

1.1.2.1 Time-dependent scattering matrix and gauge transformation

In this model, we suppose that the incoming states â†(t), â(t) are sent towards a scatterer which
is related to the time-dependent potential V (τ ′) applied to the dot. This is somewhat di�erent to
the description used in previous works [10, 11, 68], where a gauge transformation was performed to
maintain the electrostatic potential in the dot equal to zero, while the potential of the contacts was
modulated by the periodic signal −V (τ ′). Although very e�cient for the resolution of problems where
only one time-dependent potential is considered, this gauge transformation becomes useless whenever
we have to take several non-synchronized potentials into account. This is particularly bothersome for
two-electrons interference experiments where two distinct sources are used. These two formalisms yield
however the same results for a single source, as we demonstrate in appendix A.3.1.

1.1.2.2 Expression of the Floquet scattering matrix

Figure 1.2: Time-dependent scattering matrix description of the quantum dot: elec-
trons in the outer edge channel can tunnel into the dot with an amplitude d, or be
re�ected with an amplitude r =

√
1− d2. Electrons in the dot are subject to the

time-dependent potential V (τ ′).

Fig.1.2 depicts the relation between an outgoing state at a time t2 and incoming states at times t1:
an incoming electron can either be re�ected on the dot with an amplitude r, or enter the dot with an
amplitude d =

√
1− r2, where it can perform several turns, each in a �nite time τ0 = l/vd (where l is

the perimeter of the dot, and vd the electron drift velocity), before escaping back to the lead. Between
times t1 and t2, an electron in the dot is subject to the time-dependent potential V (τ ′) = V0 + V

′
(τ ′),

where V
′
(τ ′) is periodic with an angular frequency Ω = 2πf0 = 2π/T and has no DC part, and V0

controls the equilibrium potential of the dot. It therefore acquires a phase e−i
e
~
∫ t2
t1
V (τ ′)dτ ′ , where e is

the charge of the electron. The relation between the outgoing state at time t2 and the incoming states
at time t1 is therefore:

b̂(t2) =

∫
dt1U(t2, t1)â(t1) (1.1)

where the time-dependent scattering matrix U(t2, t1) is given by:

U(t2, t1) =

(
rδ(t2 − t1)− d2

∑
q

rq−1δ(t2 − t1 − qτ0)

)
e−i

e
~
∫ t2
t1
V (τ ′)dτ ′ (1.2)

We will now express this scattering matrix in the energy domain U(ε, ε′), de�ned by:
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b̂(ε) =

∫
dε′U(ε, ε′)â(ε′) (1.3)

with:

b̂(t2) =
1√
h

∫
dεe−iεt2/~b̂(ε)

b̂(ε) =
1√
h

∫
dt2e

iεt2/~b̂(t2)

(1.4)

When using Eq.1.1, this last relation leads to:

b̂(ε) =
1√
h

∫
dt1dt2e

iεt2/~U(t2, t1)â(t1)

=
1

h

∫
dε′dt1dt2e

iεt2/~e−iε
′t1/~U(t2, t1)â(ε′)

(1.5)

U(ε, ε′) can then be calculated from the following expression:

U(ε, ε′) =
1

h

∫
dt1dt2e

iεt2/~e−iε
′t1/~U(t2, t1) (1.6)

When using the de�nition of U(t2, t1) given in Eq.1.2, with the variable substitution τ = t2 − t1,
we have:

U(ε, ε′) =
1

h

∫
dt2dτe

i(ε−ε′)t2/~eiε
′τ/~

[
rδ(τ)− d2

∑
q

rq−1δ(τ − qτ0)

]
e
−i e~

∫ t2
t2−τ

V (τ ′)dτ ′

=
1

h

∫
dt2e

i(ε−ε′)t2/~

[
r − d2

∑
q

rq−1ei((ε
′−eV0)/~)qτ0e

−i e~
∫ t2
t2−qτ0

V
′
(τ ′)dτ ′

] (1.7)

Since the potential V
′
(τ ′) is T -periodic and has no DC part, the phase term e−i

e
~
∫ t2
0 V

′
(τ ′)dτ ′ is T -

periodic as well, and can then be expressed in terms of its Fourier components cn de�ned in [11, 68]:

cn =
1

T

T∫
0

dteinΩte−i
e
~
∫ t
0 V
′
(τ ′)dτ ′ (1.8)

e−i
e
~
∫ t
0 V
′
(τ ′)dτ ′ =

∑
n

cne
−inΩt (1.9)

∑
n

cnc
∗
n+k = δk,0 (1.10)

The phase term in Eq.1.7 is then equal to:

e
−i e~

∫ t2
t2−qτ0

V
′
(τ ′)dτ ′

= e−i
e
~
∫ t2
0 V

′
(τ ′)dτ ′e+i e~

∫ t2−qτ0
0 V

′
(τ ′)dτ ′

=
∑
n

cne
−inΩt2

∑
n′

c∗n′e
in′Ω(t2−qτ0) (1.11)
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This gives us:

U(ε, ε′) =
1

h

∫
dt2e

i(ε−ε′)t2/~

r − d2
∑
q,n,n′

cnc
∗
n′r

q−1eiqτ0(ε′−eV0−n′~Ω)/~ei(n
′−n)Ωt2

 (1.12)

Eq.1.10 implies
∑

n,n′ cnc
∗
n′e

i(n′−n)Ωt2 = 1. We then have, with d2 = 1− r2:

U(ε, ε′) =
∑
n,n′

cnc
∗
n′

∫
dt2
h
ei((ε−ε

′)/~+(n′−n)Ω)t2

[
r − 1− r2

r

reiτ0(ε′−eV0−n′~Ω)/~

1− reiτ0(ε′−eV0−n′~Ω)/~

]

=
∑
n,n′

cnc
∗
n′

[
r − 1− r2

r

reiτ0(ε−eV0−n~Ω)/~

1− reiτ0(ε−eV0−n~Ω)/~

]
δ(ε− ε′ + (n′ − n)~Ω)

=
∑
n,n′

cnc
∗
n′
r − eiτ0(ε−eV0−n~Ω)/~

1− reiτ0(ε−eV0−n~Ω)/~ δ(ε− ε
′ + (n′ − n)~Ω)

(1.13)

The substitution m = n′ − n �nally gives us:

U(ε, ε′) =
∑
n,m′

cnc
∗
n+m

r − eiτ0(ε−eV0−n~Ω)/~

1− reiτ0(ε−eV0−n~Ω)/~ δ(ε− ε
′ +m~Ω) =

∑
m

Um(ε)δ(ε− ε′ +m~Ω) (1.14)

Using this expression, Eq.1.3 then becomes:

b̂(ε) =
∑
m

Um(ε)â(ε+m~Ω) (1.15)

Because of the periodic driving, the energy ε′ of outgoing electrons only takes values de�ned by ε+m~Ω,
where ε is the energy of electrons incoming on the dot. Eq.1.15 therefore shows that energy transfers
on the scatterer are quantized in units of the driving frequency ~Ω. The quantized Floquet scattering
matrix Um(ε) is given by:

Um(ε) =
∑
n

c∗n+mcnU
0(ε− n~Ω) (1.16)

where

U0(ε) =
r − eiτ0(ε−eV0)/~

1− reiτ0(ε−eV0)/~ =
r − e2iπ(ε−eV0)/∆

1− re2iπ(ε−eV0)/∆
(1.17)

is the stationary scattering matrix, noted S(ε) in [11, 68] and de�ned by the relation b̂(ε) =
U0(ε)â(ε) when no periodic drive is applied to the top gate.

In all other scattering theory sections of this manuscript, we shall express the properties of the
emitted currents (AC average as well as �uctuations) as functions of the quantized Floquet scattering
matrix, which contains all the information on the periodic excitation drive V (τ ′) and the parameters
of the dot: level spacing ∆ = h/τ0, transmission D = 1 − r2, and the dot equilibrium potential eV0,
corresponding to the energy shift of the levels in the dot.
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1.1. Response of a mesoscopic capacitor to a periodic excitation: theory

1.1.3 Stationary scattering matrix

The scattering model describes the dot as a single-contact electronic Fabry-Perot interferometer with
a tunable transmission (see Eq.1.17), which presents discrete energy levels with a constant spacing
∆ and a tunable width proportional to the transmission D (see Fig.1.3). The position of the levels
relative to the Fermi energy can be shifted by the potential V0.

1.1.3.1 Density of states

The density of states in the dot N (ε) can be de�ned from the stationary scattering matrix U0(ε) [69]:

N (ε) =
1

2iπ
U0∗(ε)

dU0

dε

=
1

∆

1− r2

1− 2r cos(2π(ε− eV0)/∆) + r2

(1.18)

For unity transmission (r = 0), the density of states is constant and equal to 1/∆; for low trans-
missions, N (ε) becomes a succession of Lorentzian peaks with a regular spacing ∆ and a �nite width
~γ = 2πD∆:

N (ε) ≈
∑
n

2

∆(1− r)
1

1 +
(

2π(ε−eV0−n∆)
∆(1−r)

)2

≈
∑
n

2

π~γ
1

1 +
(
ε−eV0−n∆

~γ/2

)2

(1.19)

Figure 1.3: Calculated density of states in the dot for several values of the QPC
transmission. The peaks in the density of states are broadened as the transmission
increases. For unity transmission , the density of states is constant and equal to 1/∆.

21



Chapter 1. Realization of a Single Electron Source

1.1.3.2 Effects of the static gate voltages

We can modulate the extrinsic parameters of the dot (QPC transmission D and position of the levels
with respect to the Fermi energy eV0) encoded in the density of states by applying voltages to the QPC
gates and the top gate. The main e�ect of a voltage Vg applied to the QPC gates is to change the QPC
transmission D by varying the electrostatic potential in the constriction. For an ideal saddle-point
constriction [29], the relation between the transmission D and the gate voltage Vg is rather simple and
only depends on two parameters:

D(Vg) =
1

1 + e−
Vg−Vg0

∆V

(1.20)

Vg0 determines the position of transmission 1/2, while ∆V determines the width of the opening of the
QPC. We will show in 1.3 that these two parameters can be extracted from the dependence of the
measured current with Vg. Because there is also a non-negligible capacitive coupling between the QPC
gates and the dot potential, changing Vg also shifts the position of the energy levels in the dot with a
lever arm α given by αδVg = δε. A large portion of the measurements presented in this chapter are
measurements of the �rst harmonic of the average AC current as a function of the gate voltage Vg; as
such, they demonstrate the two e�ects of Vg on the dot.

The potential of the dot can also, as described in the introduction, be modulated by applying
voltages to the top gate. The lever arm β between a DC voltage applied to the top gate and the energy
shift ε0 = eV0 in the dot is given by βδVDC = δε0. We neglect however the in�uence of the top gate
on the QPC transmission.

1.1.4 Calculation of the average AC current

1.1.4.1 General expression of the current

In the two-contacts geometry depicted in Fig.1.1, the measured current Î1(t) is not directly equal to the
current emitted from the dot, but rather to the di�erence between the current incoming on contact (1),
noted Îb(t), and the current emitted from contact (1) towards contact (2), noted Îc(t). Since contact
(1) is connected to a measurement impedance equal to Z0 = 50 Ω � RK ≈ 25 kΩ, it is e�ectively
grounded and therefore only emits, similarly to contact (2), electrons with populations given by an
equilibrium Fermi function f(ε), where we have taken the Fermi energy εF equal to zero:〈

â†(ε)â(ε′)
〉

=
〈
ĉ†(ε)ĉ(ε′)

〉
= f(ε)δ(ε− ε′) (1.21)

It appears clearly that the inner edge channel does not take part in the measured current, since the
contribution of the current in the inner channel incoming on contact (1) and emitted from contact (1)
are equal if the two contacts are at the same temperature. We can then express the measured current
Î1(t) as a function of the creation/annihilation operators in the outer edge channel:

Î1(t) =
e

h

∫
dεdε′

(
b̂†(ε)b̂(ε′)− ĉ†(ε)ĉ(ε′)

)
ei
ε−ε′
~ t = Îb(t)− Îc(t) (1.22)

With:

Îb(t) =
e

h

∫
dεdε′b̂†(ε)b̂(ε′)ei

ε−ε′
~ t (1.23)

Îc(t) =
e

h

∫
dεdε′ĉ†(ε)ĉ(ε′)ei

ε−ε′
~ t (1.24)
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1.1. Response of a mesoscopic capacitor to a periodic excitation: theory

When using Eq.1.3 to substitute b̂†(ε) and b̂(ε′) in the expression of Îb(t), we have:

Îb(t) =
e

h

∑
m,m′

∫
dεdε′U∗m(ε)Um′(ε

′)â†(ε+m~Ω)â(ε′ +m′~Ω)ei
ε−ε′
~ t (1.25)

From here on, we take ~Ω = 1, so that â†(ε+m~Ω) = â†(ε+m). Eq.1.25 then becomes:

Îb(t) =
e

h

∑
m,m′

∫
dεdε′U∗m(ε)Um′(ε

′)â†(ε+m)â(ε′ +m′)ei
ε−ε′
~ t (1.26)

This general expression of Îb(t) will be useful when calculating the current correlation in the next
chapters.

1.1.4.2 Average AC current

To calculate the measured average AC current, we simply take the quantum average of the current
operators: 〈

Î1(t)
〉

=
〈
Îb(t)

〉
−
〈
Îc(t)

〉
(1.27)

Eq.1.21 then gives:〈
Îb(t)

〉
=

e

h

∑
m,m′

∫
dεdε′U∗m(ε)Um′(ε

′)f(ε+m)δ(ε+m− (ε′ +m′))ei
ε−ε′
~ t

=
e

h

∑
m,m′

∫
dεU∗m(ε)Um′(ε+m−m′)f(ε+m)ei(m

′−m)t
(1.28)

and: 〈
Îc(t)

〉
=

e

h

∫
dεdε′f(ε)δ(ε+ ε′)ei

ε−ε′
~ t

=
e

h

∫
dεf(ε)

(1.29)

We can then use sum rules on Um(ε), demonstrated in appendix A.1, to express
〈
Îc(t)

〉
as a

function of Um(ε): ∑
m,m′

U∗m(ε)Um′(ε+m−m′)ei(m′−m)t = 1 (1.30)

This gives us: 〈
Îc(t)

〉
=
e

h

∫
dε
∑
m,m′

U∗m(ε)Um′(ε+m−m′)ei(m′−m)tf(ε) (1.31)

When combining the expressions of
〈
Îb(t)

〉
and

〈
Îc(t)

〉
, and performing the substitution m′−m = k,

we �nally obtain a compact expression of the average AC current as a sum of Fourier components:

I1(t) =
〈
Î1(t)

〉
=
e

h

∑
k,m

∫
dεU∗m(ε)Um+k(ε− k) [f(ε+m)− f(ε)] eikωt (1.32)
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In particular, the �rst harmonic IΩ is given by:

IΩ =
e

h

∑
m

∫
dεU∗m(ε)Um+1(ε− ~Ω) [f(ε+m)− f(ε)] (1.33)

These two compact expressions will be used to numerically compute the average AC current (in
time-domain and �rst harmonic) to �t the experimental results presented in the next sections. It is
however interesting to expand Eq.1.32 and Eq.1.33 as a function of the coe�cients cn and the stationary
scattering matrix U0(ε) in order to calculate analytical limits of the current. This calculation yields
(see appendix A.2.1):

I1(t) =
〈
Î1(t)

〉
=
e

h

∑
k,m

cmc
∗
m+k

∫
dε
[
U0∗(ε)U0(ε− k)− 1

]
f(ε+m)eikΩt (1.34)

The expanded expression for the �rst harmonic is then:

IΩ =
e

h

∑
m

cmc
∗
m−1

∫
dε
[
U0∗(ε)U0(ε+ ~Ω)− 1

]
f(ε+m~Ω) (1.35)

These two expressions are strictly equivalent to the ones calculated by my predecessors using the
gauge transformation [11, 68], see demonstration in appendix A.3.1.

1.2 Measurement of the average AC current emitted by the source

In order to measure the AC current emitted by our sample, we install the sample in a dilution fridge
with a base temperature of ∼ 30 mK� ∆. The fridge is equipped with a high-frequency conductance
measurement setup detailed in [70, 11]. We brie�y recall the setup in this section; however, it has
been subject of profound modi�cations in order to perform ultra-high precision noise measurements
presented in the next chapters. The details of these modi�cations will be given in chapter 4.

The measurement setup of the �rst harmonic of the current is represented in Fig.1.4. We describe
both the excitation and measurement parts of the setup in the next paragraphs.

1.2.1 Excitation line

To drive the sample out of equilibrium, we use an Agilent 81134A microwave pulse/pattern generator
and a broadband transmission line that transmits the excitation signal from room temperature to the
base temperature of the dilution refrigerator. We use square signals with a rise time shorter than 60ps.
We can add a DC component to the square signal by using a bias tee at room temperature with its
low-frequency input connected to a DC voltage generator.

The microwave excitation line is composed of Huber+Suhner EZ-118 broadband (40 GHz) semi
rigid cables separated by attenuators regularly placed in the fridge, see Fig.1.4. The purpose of these
attenuators is to thermalize the thermal radiation generated at 300 K; each cable section between two
attenuators is carefully thermalized to the corresponding stage of the refrigerator, as described in [70].
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1.2. Measurement of the average AC current emitted by the source

Figure 1.4: Measurement setup for the �rst harmonic of the average AC current. A
microwave homodyne detection is used to measre the in-phase and out-of-phase parts
of the average AC current.

It is crucial to use attenuators with characteristics presenting variations as small as possible when
used at very low temperatures. We use XMA attenuators with a NiCr inner conductor, which are
well suited for cryogenic applications. The total attenuation in the insert is −50 dB; we also use an
additional −10 dB attenuator at room temperature (not pictured in Fig.1.4). Because of skin e�ect,
the total attenuation on the line is slightly larger at room temperature than the one given by the
attenuators (about 3 dB at 4 GHz). We expect this additional attenuation to decrease when the insert
is cooled-down.

The excitation line is connected to a sample holder thermally anchored to the mixing chamber of
the dilution refrigerator. The sample is directly wired to the signal line without any resistor in parallel,
contrary to [70, 11]. Because of the large mismatch between the impedances of the line and of the sample
(the impedance of the sample is typically given by the resistance quantum RK ≈ 25.8 kΩ� 50 Ω), a
stationary wave appears in the last section of the excitation line, with the sample placed at an anti-
node of the wave. The sample therefore appears as a quasi-open line, so that all spectral components
of the excitation voltage are maximal where the sample is located. The sample holder is described in
detail in chapter 4.

DC gate voltages, such as Vg, are applied via high-resistivity DC lines mounted in the insert. These
lines are �ltered at room temperature, mainly to protect the sample against large voltage variations.
The wiring is made with Lakeshore ultra miniature coaxial cables from the insert's inputs to the 1K pot
stage of the refrigerator, and with manganin microcoax from the 1K pot stage to the mixing chamber.
The high total resistance (about 120 Ω) of the cables ensures proper thermalization.
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Chapter 1. Realization of a Single Electron Source

1.2.2 Measurement line

The average AC current measurement line was �rst implemented in the refrigerator by Julien Gabelli,
and is described in details in [70, 11]. The signal is �rst ampli�ed using cryogenic ampli�ers thermalized
in the helium bath vapors. We have changed the ampli�ers used in [70, 11] for cryogenic ampli�ers
presenting better characteristics (noise temperature TN ≈ 7 K, bandwidth 1 − 4 GHz) in order to
perform the noise measurements presented in chapter 2.

Depending on the frequency, we can perform two kinds of measurements. For frequencies below
500 MHz, we record the current in the time domain and average it in real-time using a fast acquisition
card [71]. We will brie�y present some measurements in the time domain made by my predecessors
[71, 68] in the next sections. For higher frequencies, we measure the in-phase and out-of-phase parts of
the �rst harmonic of the signal with a microwave homodyne detection depicted in Fig.1.4. Most of the
measurements presented in this manuscript are performed at the frequency f0 = 1.5 GHz. The principle
of the microwave homodyne detection is the same as lock-in detection techniques: the measured signal
is split in an in-phase part and out-of-phase part using a 90◦ hybrid coupler; each quadrature is then
multiplied with a reference (with the same frequency f0) provided by the pulse generator and split
between the two quadratures. The zero-frequency part of the result of each multiplication is then
proportional to the amplitude of each quadrature of the �rst harmonic of the signal. The lengths of
the cables between the splitter and the two multipliers have to be matched in order to obtain two
signals with a 90◦ phase di�erence. This is experimentally done by using a phase shifter in one of the
two cables. The quadrature is achieved within less than 2◦, see [11].

Because of the propagation in the measurement lines, the signal acquires a global phase relative
to the reference. We will show in the next sections how the properties of the sample can be used to
determine this global phase.

1.2.3 Parasitic signal

At high frequency, �nite parasitic couplings exist between the top gate and the leads and between
the excitation and measurement lines on the sample holder. These couplings, which can be viewed
as essentially capacitive, give rise to a �nite parasitic signal. In order to remove this parasitic signal,
we measure the di�erence between the measured signal at a given Vg and the signal when the QPC
is completely closed, while keeping constant all other parameters (DC voltage applied to the top gate
VDC , temperature, or any other external parameter). This subtraction of the reference allows us to
isolate the signal emitted by the mesoscopic capacitor; we will show in the next chapters that it has
crucial implications in the measurement of current �uctuations emitted by the single electron source.

1.3 Average AC current in the linear regime

In this section, we focus on the properties of the linear conductance of a mesoscopic capacitor. As
well as providing information on the intrinsic parameters of the sample, the linear conductance reveals
striking phenomena such as the violation of Kircho�'s laws, and the quantization of charge relaxation
resistance, demonstrated by Julien Gabelli [70].

1.3.1 Theory

Let us �rst consider the expression of the average AC current in Eq.1.34. We will expand it for a
low-amplitude sinusoidal driving potential in order to derive an analytical expression of the linear
conductance of the device. These calculations where �rst presented in [55].
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1.3.1.1 Conductance of the sample

For a sinusoidal excitation V
′
(τ ′) = Vexccos(Ωτ

′), the Fourier coe�cients cn in Eq.1.34 are given by
the nth-order Bessel function Jn:

cn = Jn

(
eVexc
~Ω

)
(1.36)

The linear regime occurs when eVexc � ~Ω. Since Jn
(
eVexc
~Ω

)
≈
(
eVexc
~Ω

)|n|
in this regime, we only

consider the terms {m, k} = {±1,∓1} and {m, k} = {0,±1} in Eq.1.34. The average current only
presents components at ±Ω, and is given by:

I1(t) =
e2

h

Vexc
2

∫
dε
[
U0∗(ε)U0(ε− ~Ω)− 1

] f(ε− ~Ω)− f(ε)

~Ω
eiΩt

+
e2

h

Vexc
2

∫
dε
[
U0∗(ε)U0(ε+ ~Ω)− 1

] f(ε)− f(ε+ ~Ω)

~Ω
e−iΩt

=
Vexc

2
g(−Ω)eiΩt +

Vexc
2
g(Ω)e−iΩt

(1.37)

The conductance of the sample at frequency Ω is then given by:

g(Ω) =
e2

h

∫
dε
[
U0∗(ε)U0(ε+ ~Ω)− 1

] f(ε)− f(ε+ ~Ω)

~Ω
(1.38)

1.3.1.2 Low-frequency equivalent circuit

In order to express the linear conductance of the device in terms of usual linear electronic components
such as resistor and capacitor, we perform a second-order expansion of Eq.1.38 in frequency Ω:

g(Ω) =
e2

h

∫
dε

(
U0∗dU

0

dε
~Ω +

(
U0∗dU

0

dε

)2
(~Ω)2

2

)
df

dε
+O(Ω3) (1.39)

We can introduce the de�nition of the density of states (Eq.1.18) in this expression:

g(Ω) =

∫
dε

(
−iΩe2N (ε)

−df
dε

)
+

∫
dε

(
Ω2 h

2e2
(e2N (ε))2−df

dε

)
(1.40)

Within the low-frequency approximation, this conductance is identical to the conductance of a series
RC circuit, with:

Cq = e2

∫
dεN (ε)

−df
dε

Rq =
h

2e2

∫
dεN (ε)2−df

dε(∫
dεN (ε)−dfdε

)2

(1.41)

The low-frequency conductance of the mesoscopic capacitor is therefore given by the association in
series of a quantum capacitance Cq and a quantum resistance Rq, each one depending on the density
of states of the dot and the temperature. In this respect, the measurement of the conductance of the
sample brings quantitative information on the properties of the dot: at low temperature, the quantum
capacitance probes the density of states in the dot, and the relaxation time of the dot is given by the
product RqCq.
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1.3.1.3 Validity of the expansion

In the previous paragraph, we have expressed the linear conductance of the mesoscopic capacitor
under the assumption that the driving frequency Ω is small compared to the scale of the variations
of the scattering matrix U0(ε). This scale is typically given by the width of the peaks in the density
of states, proportional to the product D∆, and therefore related to the relaxation time in the dot
RqCq. While the previous results are only valid in the regime where RqCqΩ � 1, it appears that the
numerical computation of the exact formula 1.32 using experimental parameters bears results that are
quite comparable with the conductance of an RC circuit given by Eq.1.41, even in regimes where the
RqCqΩ� 1 criterion is clearly not satis�ed. This allows us to understand our results in an RC-circuit
framework, with a conductance given by Eq.1.41.

1.3.1.4 Zero-temperature limit

At zero temperature, the quantum capacitance is simply proportional to the density of states evaluated
at the Fermi energy: Cq = e2N (εf ). It therefore presents very narrow peaks at low transmission,
with a height however limited by the geometrical capacitance. The relaxation resistance becomes
independent of all parameters, and equal to half the resistance quantum: Rq = h

2e2
[72]. The fact that

it becomes independent of the QPC transmission D is a striking property, and has been experimentally
demonstrated by my predecessors [70, 11]. It can be understood by again considering the quantum
dot as a one-contact fully-coherent electronic Fabry-Perot interferometer; as such, its resistance is
given by the resistance of the single contact h

2e2
. The zero-temperature limit is also valid as long as

the temperature is small compared to the variation scale of the density of states, i.e. kBT � D∆,
which is the case for large enough transmissions: experimentally, T ≈ 100 mK and ∆ ≈ 2− 4 K (the
zero-temperature limit is thus obtained for D > 0.2).

1.3.1.5 Finite temperature

When the temperature becomes comparable to the variation scale of the density of states, Rq and Cq
are given by the convolution of the density of states with the derivative of the Fermi function. In
particular, in the so-called sequential regime where D∆ � kBT � ∆, the density of states presents
distinct Lorentzian peaks; in the calculation of Rq and Cq, we therefore consider N (ε) as a single Dirac
peak at energy εn. We thus have:

Cq ≈
e2

4kBT cosh2
(
εn−εf
2kBT

)
Rq ≈

D∆

h

e2

4kBT cosh2
(
εn−εf
2kBT

) (1.42)

In this regime, the capacitance is therefore bounded by e2

4kBT
, and only depends on the temperature,

whereas the resistance depends on the transmission as well as the temperature. The characteristic shape
of the conductance as a function of the energy in this regime will be helpful in the calibration of the
level spacing ∆ and the coupling between the top gate and the levels in the dot.

1.3.2 Experimental results: determination of the sample parameters

The comparison between the theoretical predictions presented in the previous paragraph and the
experimental measurements allows us to determine the parameters of the sample, such as the level
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1.3. Average AC current in the linear regime

spacing and the variation of the transmission as a function of the QPC gate voltage Vg. In order to
extract these parameters, we �rst need to tune the global phase acquired by the signal relative to the
reference mentioned in 1.2.2.

1.3.2.1 Global phase tuning

The resolution of the measurement of the relaxation time RqCq is directly related to the resolution of
the global phase tuning. Indeed, the ratio between the real and imaginary parts of the current is equal
to RqCqΩ (see Eq.1.40), that is the relaxation time multiplied by the driving angular frequency.

At unity transmission, RqCqΩ ≈ 0.05 for samples with a typical capacitance of 0.5 fF, driven at
1.5 GHz. For an accurate measurement of both quadratures of the current, we need to tune the global
phase with a precision smaller than a few degrees.

Two tuning procedures have been implemented by my predecessors. The �rst one, presented in
[70], is based on the properties of the linear regime, where the resistance Rq becomes constant, and
therefore independent of the dot equilibrium potential. In this regime, when the phase is correctly
tuned, the oscillations in the measured resistance should vanish as a function of the gate voltage Vg.
The main drawback of this method comes from the fact that the tuning criterion is based on the
precise measurement of the real part of the current at unity transmission, thus making the method
extremely sensitive to noise added by the measurement setup. For this reason, we rather use the
method expanded by Gwendal Fève [11], which involves properties of the capacitance in the non-linear
regime: when the excitation voltage exactly compensates the level spacing, the capacitance becomes
independent of the transmission while the resistance varies between in�nity and h/2e2. The Nyquist
diagram of the current when D varies is therefore a semicircle with a radius ef0, centered on (0, ef0).
The application of this procedure for the sample studied here is detailed in the next section.

1.3.2.2 Conductance as a function of the QPC gate voltage

Figure 1.5: Conductance trace at 1.5 GHz as a function of the QPC gate voltage
Vg, measured on sample S528-11. The applied magnetic �eld (B ≈ 1.8T ) corresponds
to a �lling factor ν = 4.

The linear conductance of sample S528-11 measured at 1.5 GHz as a function of the QPC gate
voltage Vg is presented on Fig.1.5. As predicted in 1.3.1, the conductance at high transmission (small
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Chapter 1. Realization of a Single Electron Source

negative gate voltages) probes the density of states at the Fermi energy, convoluted with the temper-
ature. The oscillations of the conductance with the gate voltage re�ect the fact that the QPC gate is
coupled to the levels in the dot; Vg therefore shifts the levels with respect to the Fermi energy. When
Vg is swept towards smaller transmissions, the energy levels pass in front of the Fermi energy while
becoming narrower. In the RqCqΩ ∼ 1 regime, the real part of the conductance becomes preponderant,
then decreases again as the transmission is lowered. When the transmission reaches zero, the current
�owing through the mesoscopic capacitor vanishes; we will refer to this regime as the pinch-o�.

1.3.2.3 Calibration of the quantum capacitance

In the sequential regime (D∆� kBT ), the observed conductance peaks when the energy levels in the
dot are shifted in resonance with the Fermi energy have a width given by the temperature, while the
distance between two peaks is proportional to the level spacing ∆. If the temperature is known, it is
thus possible to calibrate the level spacing.

Figure 1.6: Calibration of the quantum capacitance of sample S528-11 : a) real
part of the conductance in the sequential regime as a function of the top gate volt-
age VDC , for di�erent temperatures of the mixing chamber. The conductance peaks
corresponding to the levels in the dot are broadened when the temperature increases.
The experimental data (black lines) are adjusted with functions given by Eq.1.42 (red
lines). b) width of the conductance peaks as a function of the mixing chamber tem-
perature. The red curve corresponds to the �t 2

β

√
T 2
mc + T 2

0 , where β is the coupling
between the top gate and the energy levels.

We have calibrated the level spacing at �lling factor ν = 4 for sample S528-11 by varying the
DC gate voltage applied to the top gate VDC for di�erent values of the mixing chamber temperature
of the dilution refrigerator, see Fig.1.6. The observed conductance peaks have a shape given by
1/cosh2(β(VDC − V0)/2T ), derived from Eq.1.42, where β is the coupling between the voltage applied
to the top gate and the position of the levels in the dot (expressed in Kelvin) introduced in 1.1.3.2, and
V0 is the position of the peak of the density of states. We have �tted the experimental data, spanning
on three peaks, with the sum of three functions 1/cosh2((VDC − V0)/2L(T )), where L(T ) is the width
of the peaks, expressed in Volts, as a function of the temperature of the mixing chamber (see Fig.1.6a).
We have plotted on Fig.1.6b the measured width as a function of the temperature; as expected, the
relation is linear at high temperatures, but saturates at low temperature. This saturation is caused by
a residual temperature T0 that re�ects an insu�cient thermalization of the electrons, or instabilities
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1.3. Average AC current in the linear regime

in the sample leading to gate noise. A �t of the data by the function P1

√
T 2 + T 2

0 allows us to extract
the coupling β = 6.1 KV−1 and the residual temperature T0 = 60 mK. The level spacing is then
simply given by the product of the distance in gate voltage between two peaks times the coupling
constant. For sample S528-11, we �nd ∆ = 4.2 ± 0.2 K; the value of the quantum capacitance is
therefore Cq = e2/∆ = 0.44± 0.03 fF.

1.3.2.4 QPC transmission law

Once the level spacing and the values of the capacitances of the system are known, we can adjust
the measured conductance as a function of the QPC gate voltage using the simple QPC transmission
given in Eq.1.20. The coupling α between the QPC gates and the levels in the dot is �rst extracted
by simply measuring the distance in QPC gate voltage between two conductance peaks in Fig.1.5. We
have �tted the linear conductance of sample S528-11 at three di�erent temperatures (see Fig.1.7) using
the following parameters: coupling constant α = 1.65 KmV−1, QPC opening width ∆V = 4.4 mV,
half-transmission voltage Vg0 = −329.8 mV. The electronic temperature T =

√
T 2
mc + T 2

0 was set
to 70 mK, according to the results of the calibration. This temperature is quite low, so that the
linear regime eVexc � kBT is not fully achieved. We have therefore taken into account the �nite
value of the excitation voltage. The agreement between experimental data and the scattering theory

Figure 1.7: Linear conductance at 1.5 GHz of sample S528-11 , for di�erent tem-
peratures. The �rst �gure corresponds to the QPC transmission law used for the
theoretical adjustment (red lines). At large transmissions, the conductance is equal
for all three temperatures.

is quite good, except for small transmissions. In particular, the experimental data at 520 mK show
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Chapter 1. Realization of a Single Electron Source

conductance oscillations persisting at lower negative voltages than the theoretical �t. This can be
explained by a variation of the transmission with energy, which will have an non negligible e�ect in
the non-linear regime presented in the next section. Nonetheless, the excellent agreement between
experimental data and the model at large transmission and low temperature con�rms the quantization
of the charge relaxation resistance Rq = h/2e2, which was �rst demonstrated on sample E3 by Julien
Gabelli [62, 70].

1.3.3 Conclusion on the linear regime

Beyond its fundamental properties emphasizing the e�ects of quantum coherence in mesoscopic con-
ductors, the linear regime of the mesoscopic capacitor allows us to determine every parameter of the
sample. We will use these parameters to compare the experimental results in the non linear regime
with our scattering theory with no adjustable parameter.

1.4 Average AC current in the non-linear regime

In order to inject single charges into the two-dimensional electron gas, we drive the mesoscopic capacitor
with a square signal the amplitude of which is equal to the level spacing. At zero temperature, and for
narrow enough levels in the dot, this places the last occupied energy level of the dot above the Fermi
energy. The electron sitting on this level can then escape form the dot within a characteristic emission
time τ ≈ h/D∆ depending on the QPC transmission.

In this section we will describe the properties of the mesoscopic capacitor in the non-linear regime,
and show that the quantization of the �rst harmonic of the average AC current in units of 2ef0 is
a �rst proof that the device can be used as a single electron source. We �rst present theoretical
considerations on the non-linear regime by introducing an extension of the scattering model for strong
driving amplitudes, as well as a heuristic model describing the device as a perfect single electron
source. We then present experimental results obtained for two samples, and compare them with the
predictions.

1.4.1 Scattering theory

In order to derive analytical expressions of the current in the non-linear regime, we expand Eq.1.35 for
a perfect square excitation. This calculation was �rst presented in [11].

1.4.1.1 AC response to a square excitation

The Fourier coe�cients cn (de�ned in Eq.1.8) for a perfect square excitation with an amplitude Vexc
have been de�ned in [11]. These coe�cients have a very simple expression when the ratio of the drive
amplitude divided by the frequency eVexc/~Ω is an even integer substantially larger than one. This is
the case for sample S528-11, where 2p = eVexc/~Ω ≈ 30 for eVexc = ∆/2 (∆ ≈ 4 K, Ω = 1.5 GHz).
The coe�cients cn are then given by:

c2p ≈ 1/2
ck ≈ 0 (k 6= p)

c2p+2k+1 ≈ 1

iπ(2k + 1)
c−n ≈ −cn

(1.43)
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1.4. Average AC current in the non-linear regime

Combined with Eq.1.35, these coe�cients yield:

IΩ =
e

2iπh

∫
dε
(
U0∗(ε)U0(ε+ ~Ω)− 1

)
[f(ε+ eVexc)− f(ε− eVexc)

+f(ε+ ~Ω + eVexc)− f(ε+ ~Ω− eVexc)]
(1.44)

We now proceed to a second-order expansion in the frequency (for D∆ � ~Ω), as it was done in
the linear regime:

IΩ =
i2Vexc
π

∫
dε

[
−iΩe2N (ε) + Ω2 h

2e2
(e2N (ε))2

]
f(ε− eVexc)− f(ε+ eVexc)

2eVexc
(1.45)

For the �rst harmonic of the AC current, in the low-frequency regime, we once again �nd that the
equivalent circuit is the series association of a capacitance Cnlq and a resistance Rnlq given by:

Cnlq = e2

∫
dεN (ε)

f(ε− eVexc)− f(ε+ eVexc)

2eVexc

Rnlq =
h

2e2

∫
dεN (ε)2 f(ε−eVexc)−f(ε+eVexc)

2eVexc(∫
dεN (ε)f(ε−eVexc)−f(ε+eVexc)

2eVexc

)2

(1.46)

These two components are highly similar to their linear counterparts, except for the derivative of
the Fermi function in Eq.1.41, now replaced by the term f(ε−eVexc)−f(ε+eVexc)

2eVexc
, which emphasizes the

non-linearity of the circuit.

This equivalent circuit allows for a simple interpretation of the properties of the current in the non-
linear regime. Indeed, for a classical RC circuit driven by a square voltage, the capacitance de�nes the
average electric charge transfered per half-period in the circuit at low frequency, and the product RC
de�nes the characteristic charge transfer time. The quantum capacitance de�ned in Eq.1.46 is equal
to the integral of the density of states on a window de�ned by the two potentials the dot is brought on
during one period of the drive. This integral is equal to the di�erence of the mean occupation numbers
for each of the two potentials: when the voltage step 2Vexc exactly compensates the level spacing, it
is independent of the dot equilibrium potential and equal to 1, provided that the density of states is
∆-periodic. A single peak in the density of states is fully integrated, and the quantum capacitance
becomes then independent of temperature, QPC transmission and equilibrium potential: Cnlq = e2/∆.

As for the linear regime, this expansion is only valid when the escape time is small compared to
the drive period, that is Rnlq C

nl
q Ω � 1. However, it is once again possible to extend these de�nitions

to regimes where the escape time becomes comparable or larger than the period; we then de�ne a
non-linear conductance Gnl for the �rst harmonic of the average AC current:

Gnl(Ω) =
−iCnlq Ω

1− iRnlq Cnlq Ω
(1.47)

When 2eVexc = ∆ for large transmissions, the current is essentially capacitive and the quadratic term
in Ω in Eq.1.45 can be neglected. The current is therefore equal to eΩ/π = 2ef0, corresponding to the
emission of a single electron followed by a single hole at each period.
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Figure 1.8: Calculated �rst harmonic as a function of the excitation amplitude Vexc,
for a transmission D = 0.5. a) modulus of the �rst harmonic, for di�erent values
of the dot equilibrium potential expressed as a phase in the scattering amplitude
φ0 = 2πeV0/∆. When φ0 ≈ 0, the current presents a plateau at a value 2ef0. b)
density of states at equilibrium, for an equilibrium potential φ0 = 0. The checked
areas correspond to the integrated portion of the density of states in Eq.1.46, for
three values of the excitation amplitude (2eVexc = ∆,∆/2,∆/10). c) same as b), for
φ0 = π.

1.4.1.2 Modulus of the current: quantization of the first harmonic

As seen in the previous paragraph, the average current becomes constant and equal to 2ef0 when the
excitation voltage compensates the level spacing in the dot. Numerical computations of Eq.1.33 and
1.35, using the parameters extracted from the linear regime (∆ ≈ 4 K, f0 = 1.5 GHz, T = 100 mK),
show that the modulus of the current is in fact quantized in units of 2ef0 whenever the system is driven
in the injection regime, that is whenever the highest occupied level in the dot is shifted signi�cantly
high above the Fermi level. The quantization of the modulus of the average current is illustrated in
Fig.1.8: depending on the dot equilibrium potential, the �rst harmonic of the average AC current
presents a plateau at IΩ = 2ef0 when the amplitude of the excitation voltage Vexc is changed. When
2eVexc = ∆, all curves join at IΩ = 2ef0, where an entire peak of the density of states is integrated.

We express the initial value of the dot equilibrium potential eV0 as a function of the level spacing
∆ using the phase term φ0 = 2πeV0/∆. The situation where φ0 = 0 is called anti-resonant because the
active energy level is alternatively brought to −eVexc and +eVexc (with εF = 0). For small excitation
voltages, the level is slightly shifted around the Fermi energy, so that the integrated portion of the
density of states varies quickly with Vexc, see Fig.1.8b. When Vexc increases, the level is brought far o�-
resonance with the Fermi energy. In this case, the current has a small dependence with the excitation
voltage since the active level is much farther above (or below) the Fermi energy than its width. In
other terms, the boundaries of the integrals in Eq.1.46 are changed in regions where the density of
states is close to zero, which only slightly changes Rnlq and Cnlq . On the other hand, the resonant case
φ0 = π does not present a plateau in the current when Vexc is changed. Indeed, when the active energy
level is brought in resonance with the Fermi energy, the current is maximally sensitive to small shifts
in the position of the level in respect to the Fermi energy: when Vexc is changed around 2eVexc = ∆,
the boundaries of the integrals in Eq.1.46 are changed on peaks of the density of states (see Fig.1.8c).
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1.4. Average AC current in the non-linear regime

Figure 1.9: Calculated �rst harmonic as a function of the excitation amplitude, for
several values of the transmission. At low transmission, the current plateau does not
reach the value 2ef0 for φ0 = 0. Likewise, the current plateau for φ0 = π is lower than
4ef0. At transmission unity, the current becomes linear with the excitation amplitude.

The curves corresponding to every other value of the dot equilibrium potential (here, φ0 = π/3 and
φ0 = 2π/3) are comprised within the area de�ned by the di�erence of the curves where φ0 = 0 and
φ0 = π. The size of this area gives an insight on the accuracy of the quantization of the �rst harmonic,
and is a�ected by the QPC transmission. In Fig.1.9, we have plotted the value of the �rst harmonic
of the current as a function of the excitation amplitude, for di�erent values of the transmission, in the
anti-resonant (φ0 = 0) and resonant (φ0 = π) cases. For large transmissions (here, D = 0.8), the �rst
harmonic is still equal to 2ef0 when 2eVexc = ∆; however, the plateau is less pronounced, leading to a
smaller area between the curves φ0 = 0 and φ0 = π. This is due to the fact that the levels in the dot
are well-coupled to the continuum of the leads, thus degrading the quantization of the charge sitting
on each level. For unity transmission, the density of states is uniform and quantization is lost: the
current becomes linear with the driving amplitude Vexc.

Finally, for small transmission (here, D = 0.1), the current presents a plateau at a value lower
than 2ef0: although the peaks in the density of states are well-de�ned, the escape time becomes larger
than the half-period of the excitation and charges are not always emitted before the excitation signal
changes sign: the average AC current therefore has a value lower than 2ef0, determined by the escape
time. The phase of the �rst harmonic of the current allows us to gain access to the escape time.
Indeed, the ratio between real and imaginary part of the �rst harmonic is equal to Rnlq C

nl
q Ω, that is

the escape time τ = Rnlq C
nl
q multiplied by the frequency of the drive. A simple expression of τ can be

derived from Eq.1.46 for 2eVexc = ∆, provided Rnlq C
nl
q Ω� 1, and D � 1 so that the density of states

can be approximated by a series of Lorentzian peaks. At zero temperature, the Fermi functions in the
integrals in Eq.1.46 set the boundaries of the integrals over a single peak of the density of states. We
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then have:

Cnlq =
e2

2eVexc

∫
1peak

dεN (ε) =
e2

∆

Rnlq =
h

2e2

∫
1peak dεN

2(ε)[∫
1peak dεN (ε)

]2 ≈
h

De2

(1.48)

In this regime, the equivalent circuit is therefore given by the incoherent addition of the quantum
capacitor and the resistance of the quantum point contact, and the escape time is given by τ = h

D∆ .

Figure 1.10: Calculated escape time as a function of the QPC transmission. The
black line corresponds to the escape time given by the formula τ = Rnlq C

nl
q . The blue

circles correspond to Eq.1.49. For low transmissions, the escape time becomes larger
than the half-period T /2.

The expression of the quantum resistance in Eq.1.48 is in fact the low-transmission limit of the
charge relaxation resistance calculated in [73] in the linear regime, including a loss of electronic co-
herence in the dot. The charge relaxation resistance is given by the series association of the Lan-
dauer resistance [74] of the quantum point contact and the interface resistance of a single contact:
Rq = h

e2
1−D
D + h

2e2
. Since the capacitance is constant when 2eVexc = ∆, the escape time in the charge

emission regime is given by:

τ =
h

∆

(
1

D
− 1

2

)
(1.49)

This simple formula is consistent with the numerical computations of the scattering model (see
Fig.1.10), and allows us to precisely reproduce the experimental data by extracting the exact QPC
transmission law as a function of the QPC gate voltage.
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1.4. Average AC current in the non-linear regime

1.4.2 Heuristic model

In order to gain a better comprehension of the physics of the single electron source in the anti-resonant
case (φ0 = 0), we present a heuristic numerical model describing the device as a perfect single electron
source. This simple semiclassical model was introduced by Adrien Mahé [68] in order to interpret the
noise measurements presented in [63]. Although its main interest is to provide a complete understanding
of the physical processes giving rise to the di�erent noise regimes (see chapter 2), we present it in this
chapter since it supports the description of the device in terms of RC-circuit elements. The principle of

Figure 1.11: AC current emitted by the source, calculated with the heuristic model.
a) and b) emitted current as a function of time for escape probability b = 0.01 (a),
and b = 0.2 (b). A peak (dip) appears whenever an electron (hole) is emitted. c) and
d) statistical average of the current displayed on one period of the drive, for b = 0.01
(c), and b = 0.2 (d). The calculations (black lines) display the expected exponential
decay with a characteristic time given by τ = τ0(1/b− 1/2).

this model is as follows: we restrict the number of electrons in the dot to either 1 or 0 (thus e�ectively
considering a single-level dot). When an electron is inside the dot, it performs circles along the edges
of the dot, each one in a time τ0. At each turn, the electron can escape the dot with a probability
b. The half-period of the excitation drive is divided in a large number of turns N (typically, N ≈ 60
to mimic our experiments). Single charge emission is enforced by prohibiting any additional charge
transfer process within the half-period after an electron is emitted. After N time units τ0, the other
half-period of the excitation drive sets in, and an electron can be absorbed in the dot with a probability
b per unit time τ0 only if the electron was emitted in the previous half-period. Only a single absorption
process can take place during this half-period, and all other processes are prohibited. This de�nes
a sequence in which during a period of the excitation drive, a single electron can be emitted if the
dot was previously occupied, and a single hole can be emitted only if the electron has escaped. The
repetition of this sequence generates an AC current comprised of peaks/dips whenever an electron/hole
is emitted, see Fig.1.11; for low probabilities b, charges may not have enough time to escape within one
half-period, and the peaks/dip appear semi-randomly (Fig.1.11a), each peak being followed some time

37



Chapter 1. Realization of a Single Electron Source

after by a dip, thus enforcing net charge conservation on the dot. When b is increased, charges are
systematically emitted with an uncertainty on the emission time illustrated by the distribution of the
peaks/dips within a period, see Fig.1.11b. This randomness on charge emission is put into light when
taking the statistical average of the current, that is the average AC current emitted by the system
(see Fig.1.11c and d): the average AC current presents series of exponential decays described in the
introduction at each half-period, which are expected for a RC-circuit.

Figure 1.12: Escape time, given by the characteristic time of the exponential decay
in the average current, versus 1/b−1/2 (corresponding to the expression of the escape
time given in Eq.1.49), in the heuristic model. The red line has a unit slope.

The escape time is given by the characteristic decay time of the current, and we �nd a good
agreement with the formula similar to Eq.1.49: τ = τ0(1/b − 1/2), see Fig.1.12. The agreement with
the previous formula is not quite as good for large probabilities b, where the escape time becomes
comparable and smaller than the time unit τ0. This is not surprising, since we expect singularities for
escape times smaller than the time unit: the current then cannot be treated as a continuous variable
anymore.

The average transfered charge per half-period is fairly easy to compute: Qt = e × tanh(1/4f0τ).
As expected, it becomes quantized for short escape times. This expression can be compared with the
average transfered charge Qt in a RC circuit driven by a square voltage with an amplitude Vexc:

Qt = 2VexcCtanh(
1

4f0τ
) (1.50)

In Fig.1.13, we have plotted the average transfered charge per half-period in the model, given by the
integral of the average AC current on one half-period, as a function of tanh( 1

4f0τ
), where the drive

frequency is equal to (2Nτ0)−1, and the escape time τ is extracted from the exponential decay. All
the calculated points fall on the line given by Eq.1.50. This allows us to de�ne the capacitance of
the circuit, given by the slope of the line: C = e/2Vexc = e2/∆. This capacitance is constant, which
con�rms the result presented for the scattering model.

In conclusion, the heuristic model supports the description of the sample in terms of RC-circuit
elements, since it reproduces the exponential decays in the average current, as well as the variation of
the average transfered charge with the escape time. Furthermore, it exactly reproduces the results of
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Figure 1.13: Average transfered charge per half-period versus tanh(1/4f0τ), in the
heuristic model. The red line has a unit slope, thus verifying Eq.1.50.

the scattering model for 2eVexc = ∆, particularly the escape time, provided one makes the following
links between the two models:

τ0 =
h

∆

b = D

(1.51)

These relations are rather intuitive: the time unit τ0 has the exact same de�nition in the two
models (see 1.1.2), and the escape probability b is the semi-classical equivalent of the square of the
tunneling amplitude, that is the QPC transmission D.

This model will be extremely useful in the next chapter, where we study the �uctuations of the
emitted current.

1.4.3 Experimental results

We now describe the experimental results obtained in the non-linear regime. We �rst brie�y present
time-domain measurements performed on a di�erent sample by Gwendal Fève and Adrien Mahé [11, 68],
and described in [71]. We then present measurements of the �rst harmonic of the average current
emitted for sample S528-11 , which con�rms the theoretical results described in the previous section,
particularly the quantization of AC current in the injection regime.

1.4.3.1 Time domain

In this paragraph, we brie�y describe the time-domain measurements performed by Gwendal Fève and
Adrien Mahé on sample E3 (see samples parameters in appendix B). In order to measure the average
AC current as a function of time, the excitation frequency is set to 32MHz. The current is recorded
and averaged in real time using a Acqiris AP240 fast acquisition card with a 500ps time resolution.
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Although this resolution is too small to probe the coherent wave packets emitted by the source, this
measurement corroborates the description of the sample in terms of RC-circuit elements.

Details on the measurement protocol are given in [71]. The excitation drive is used to trigger the
acquisition of the signal, which is averaged over a large number (typically 108) of periods. We use
the parasitic signal, modeled as a pure capacitive coupling, to deconvolute the e�ects of the �nite
bandwidth on the measurements.

Figure 1.14: Measured average AC current as a function of time, for sample E3.
Black lines correspond to experimental data measured at several values of the QPC
gate voltage. Blue lines correspond to exponential �ts.

Results are presented in Fig.1.14, and demonstrate the expected exponential decay of the current
as a function of time. The decay time gives access to the escape time which is modulated by changes in
the QPC transmission over an order of magnitude. These results also demonstrate that the RC-circuit
description of the sample is still valid in regimes where Ωτ ≈ 1. Furthermore, while the amplitude of
the traces depicted in Fig.1.14b and c di�er because the QPC transmission varies from almost zero
(b) to almost one (c), we have shown in [71] that the integral of the current over one half-period, that
is the average transfered charge, remains constant as long as the escape time τ is signi�cantly smaller
than the period 2π/Ω ≈ 30ns, which is compatible with the periodic emission of single charges.

Although we did not reproduce these measurements for sample S528-11, the measurements per-
formed on sample E3 both validate the RC-circuit description of the system even in regimes where
the escape time is comparable with the drive period, and demonstrate the quantization of the emitted
charge when all harmonics of the average current are considered. A more quantitative indication of
single charge emission is given by the measurements of the �rst harmonic presented below.
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1.4.3.2 First harmonic

We now present measurements of the �rst harmonic of the average AC current in the non-linear regime
obtained on sample S528-11. We used the homodyne measurement technique presented in 1.2.

• Global phase tuning
As mentioned in 1.2 and 1.3.2.1, the homodyne detection measures the two quadratures of the �rst
harmonic of the average current, rotated by a phase due to the propagation of the signal in the
measurement lines.

Figure 1.15: Nyquist diagram of the measured current at 1.5 GHz, for 2eVexc = ∆.
Since the capacitance of the sample is constant and equal to e2/∆ while the resistance
varies, the Nyquist diagram of the current is given by a circle centered on (0, ef0)
(black line). We present three di�erent phase tunings, separated by 4◦.

A �rst method for tuning the global phase in the linear regime is presented in 1.3.2.1; we have
mentioned that the properties of the non-linear regime o�er a more e�cient protocol that was used for
sample S528-11 . Indeed, in the injection regime, the sample can be described as the series association
of a constant capacitance C = e2/∆ and a resistance which varies between h/2e2 and in�nity. The
Nyquist diagram of the current as the transmission varies is therefore given by a circle with a radius
ef0 centered on (0, ef0). In order to tune the global phase, we �rst determine the injection voltage
Vexc = ∆/2e, for which the capacitance oscillations presented in 1.3.2.2 vanish: when the driving
amplitude exactly compensates the level spacing, the current becomes independent of the transmission
and the dot equilibrium potential, i.e. independent of the QPC gate voltage Vg. We then plot the
Nyquist diagram of the current and try to align it with the circle de�ned above.

The results of the phase tuning at 1.5 GHz are shown in Fig.1.15. Since the level spacing varies
slightly as Vg changes, the excitation amplitude Vexc does not exactly compensate the level spacing
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for all values of the QPC gate voltage. It is therefore di�cult to perfectly align the measured signal
on the circle: the blue curve in Fig.1.15 seems better for high transmissions (upper part of the circle),
whereas the black curve suits the low transmissions better. It however presents a negative real part,
which is not compatible with the RC-circuit model. We therefore use the phase tuning of the black
curve (upper panel). The error on the phase tuning is estimated to ±2◦, which corresponds to an error
on the escape time of about 5ps for large transmissions.

• AC current quantization
We have plotted the modulus of the �rst harmonic of the current as a function of the QPC gate voltage
for several values of the excitation amplitude in Fig.1.16. When 2eVexc ≈ ∆, the current is zero for large
negative Vg be cause the escape time is much larger than the half-period (pinch-o�). As Vg increases,
the current rises, the becomes independent of Vg for large enough transmissions. It slightly increases
and presents small oscillations for small negative gate voltages because the level spacing diminishes at
high transmissions. This can be qualitatively understood by the fact that the shape of the dot changes
with the QPC gate voltage: when the electrostatic repulsion due to the QPC gates diminishes, the dot
widens and the level spacing due to orbital con�nement becomes smaller. This e�ect, which was not
observed in former samples, may be due to the fact that the dot in sample S528-11 is rather small, its
width (600nm) being comparable to the distance between the two QPC gates (approx. 350nm).

Figure 1.16: Modulus of the �rst harmonic of the average AC current as a function
of Vg, for several values of Vexc. The conductance oscillations vanish when 2eVexc = ∆.

The oscillations observed at lower excitation voltages appear again for excitation voltages larger
than the injection voltage, with a π-phase shift. The peaks of the oscillations at lower excitation, which
become dips at larger excitation, correspond to the anti-resonant case, noted φ0 = 0, where the active
energy level is shifted far away (±∆/2) from the Fermi energy. In this injection regime, we expect
the current to be quantized, which is illustrated in the measurements by the fact that the value of the
current in the peaks for Vexc < ∆/2e and in the dips for Vexc > ∆/2e is quite close to the one obtained
when Vexc = ∆/2e. This qualitative agreement with the theory allows us to calibrate the measured
current, and set the value of the current for Vexc = ∆/2e to 2ef0. These measurements have however
put into light another discrepancy of sample S528-11 with the model: indeed, we were not able to
adjust the current in the non-linear regime with the QPC transmission law extracted from the linear
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regime. This variation of the transmission with the excitation amplitude may also be related to the
size of the dot: this e�ect was not observed in sample E3, which had a level spacing of about 2.5 K
(dot width: 1µm). The energy shifts considered in sample S528-11 are therefore almost two times
larger, and thus become signi�cantly larger than the usual energy scales considered for quantum point
contacts.

Figure 1.17: Observation of AC current quantization for sample S528-11 . The dots
correspond to the experimental data, for di�erent values of Vg; the lines correspond to
the calculations using the scattering model, for a �xed transmission 0.47 in the upper
panel, and 0.8 in the lower panel. The curves join at the value 2ef0 when 2eVexc = ∆.
The dotted line in the upper panel corresponds to the value of the current given by
an independent calibration of the homodyne detection.

A more quantitative comparison between experimental data and theory can be made when con-
sidering the variation of the �rst harmonic as a function of Vexc for a �xed QPC gate voltage. The
results, presented in Fig.1.17, display the characteristic quantization plateaus described in 1.4.1.2. The
plateaus are, as expected, less pronounced when the transmission increases, while all the curves corre-
sponding to di�erent values of the dot equilibrium potential join at the quantized value 2ef0 when the
excitation amplitude compensates the level spacing. The value of the current, given by the theory, is in
reasonable agreement (within ∼ 10%, see dotted line Fig.1.17) with an independent calibration of the
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gain of the homodyne detection (described in [68]). Due to the variation of the transmission with the
excitation voltage, we cannot adjust the experimental data using a simple transmission law: the trans-
mission varies from 0.27 in the linear regime to 0.47 in the injection regime for the �rst set of data, and
from 0.75 to 0.9 in the second set. The agreement between the experimental data and a theory using
a �xed transmission (0.47 for the �rst set, 0.8 for the second) is still reasonable, thus demonstrating
that beyond its discrepancies with an ideal quantum point contact model, sample S528-11 veri�es the
theoretical predictions for both the linear and non-linear regimes, particularly the quantization of AC
current in units of 2ef0, corresponding to the periodic emission of a single electron followed by a single
hole.

Figure 1.18: Two-dimensional plot of the �rst harmonic, as a function of Vg and
Vexc. The upper panel corresponds to experimental data, the lower panel corresponds
to calculations using a QPC transmission law extracted from the non-linear regime:
∆V = 4.5 mV, Vg0 = −334.5 mV. Both panels present white diamonds on which the
current is quantized in units of 2ef0.

The properties of the modulus of the �rst harmonic can be summarized in a two-dimensional plot of
the current versus the excitation amplitude Vexc and the QPC gate voltage Vg, presented in Fig.1.18:
both experimental and theoretical data present white diamond-like structures, which correspond to
the plateaus where the current is quantized and equal to 2ef0. The sharpness of diamonds is related
to the accuracy of the quantization; this representation therefore allows to immediately locate the
optimal operating conditions of the single electron source, which are given by the center of the sharpest
diamonds. In these conditions, the source emits single charges at a well de�ned energy far above the
Fermi level. As the transmission increases, the quantization is gradually lost and the diamonds fade
into a linear dependence of the current with the driving amplitude. The qualitative agreement between
theory and experiment once again demonstrates that the scattering model is well-suited to describe the
sample, and seems to be mainly limited by the behavior of the quantum point contact as a function
of the extrinsic parameters of the system. We will show in the following paragraph that the exact
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transmission variation law can be rather simply extracted from the measurements, at least in the
non-linear regime.

• Escape time and average transfered charge

The escape time, given by Rnlq C
nl
q , can be extracted from the measurements by calculating the ratio

between the real and imaginary part of the �rst harmonic. This ratio is equal to Ωτ , and therefore
yields the escape time in units of the half-period when divided by π. Besides the obvious interest of
studying its variation with the QPC transmission, the escape time is useful to extract the average
transfered charge over one half-period which we de�ne with the RC-circuit model. When combining
Eq.1.50 with the expression of the conductance in the non-linear regime given in Eq.1.47, it yields:

Qt = 2VexcCtanh

(
1

4f0τ

)

=
π

Ω
|IΩ|

√
1 + Ω2τ2tanh

(
2π

4Ωτ

) (1.52)

The knowledge of the two quadratures of the �rst harmonic of the current therefore allows us to
determine both the escape time and the average transfered charge.

Figure 1.19: Escape time and average transfered charge as a function of Vg, for
2eVexc = ∆. The red dashed line corresponds to simulations using the ideal non-linear
QPC transmission law. Discrepancies appear at smaller negative voltages, where the
ideal transmission law does not exactly reproduce the experimental data.

We have plotted the escape time and the average transfered charge extracted from the measurements
on sample S528-11 at 1.5 GHz in Fig.1.19 (2eVexc = ∆). The theoretical adjustment of the escape time
was done using the de�nition of τ given in Eq.1.49, combined with the ideal QPC transmission law used
to calculate the current measurement in the non-linear regime (QPC opening width ∆V = 4.5 mV,
half-transmission voltage Vg0 = −334.5 mV). The agreement is once again reasonable; in order to
completely reproduce the measurements as a function of Vg, one needs to precisely know the QPC
transmission law, which signi�cantly di�ers from the ideal Fermi function-like law for strong driving
amplitudes. It is possible to extract the exact QPC transmission law from the escape time by reverting
Eq.1.49. We will use this transmission law to adjust the noise measurements presented in the next
chapter.
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The optimal operating conditions of the source, de�ned by the sharpest diamonds in Fig.1.18,
correspond to the zone in Fig.1.19 where the average transfered charge becomes equal to e while the
escape time varies between ∼ 0.5 T /3 and ∼ 0.5 T /10, where T is the period of the excitation.

Figure 1.20: Escape time as a function of Vexc. a) Experimental data, measured
for several values of Vg. The dashed line in the upper panel is the calculated value of
the escape time for the estimated transmission D = 0.43 at φ0 = 0. Lower panel: �ts
(dashed lines) of the experimental data (hollow dots) at φ0 = 0 with the metallic dot
formula. The green dashed line yields an electronic temperature equal to 2.6K. For
the blue dashed line, the temperature is �xed at 100 mK. b) Numerical calculations
of the scattering model. Upper panel: the transmission is �xed at 0.43. Lower panel:
the transmission is estimated using the value of the escape time at 2eVexc = ∆.
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1.5 Validity of the model

In this last section of chapter 1, we discuss the validity of the scattering model in the light of our
experimental results. The main issue discussed here is the description of the density of states in the
dot, related to the trajectories of electrons visiting the dot. In our model, we have supposed that
electrons visiting the dot propagate on a closed trajectory given by the edges of the dot. This gives
rise to an orbital level spacing de�ned in Eq.1.17: ∆ = h

τ0
, where τ0 is the time needed by an electron

to perform a full turn in the dot. We neglect the e�ect of the interactions; however, in the model
previously expanded by Gwendal Fève [11], the e�ects of interactions in the dot are taken into account
by adding to the level spacing a charging energy contribution Ec, which was found to be small compared
to the orbital level spacing. Indeed, the samples are engineered in order to maximize the geometrical
capacitance: the dot is almost entirely covered by the top gate, as described in the introduction.
Several theoretical models have been proposed [75, 76, 72] in order to include the e�ects of interactions
in the linear regime, but a model fully including interactions in the non-linear regime has yet to be
developed.

The hypothesis of a quantum dot presenting a large orbital level spacing and a charging energy
smaller or comparable is validated in a rather naive way by calculating an approximation of the orbital
level spacing from the sample geometry: for a circular dot with a diameter d = 1 µm, and a typical
value of drift velocity in III-V two-dimensional electron gases vd ≈ 2 × 105 ms−1, we �nd an orbital
level spacing ∆ = h

τ0
= hvd

πd ≈ 3 K. This value is quite comparable with the measured level spacings:
2 K for sample E3, 4.2 K for sample S528-11 . The charging energy can be estimated through the
geometrical capacitance Cg = ε0εrS/d, where S is the surface of the dot, d the distance between the
dot and the top gate, and εr ≈ 12.8 is the relative permittivity of GaAs. For the typical circular dot
mentioned above, with d = 100 nm, we have Cg ≈ 0.9 fF, that is Ec ≈ 2 K.

A more quantitative justi�cation of our hypothesis consists in comparing the variation of the escape
time as a function of the excitation amplitude between our model and its opposite where the quantum
dot has a uniform density of states and a large charging energy Ec. It was shown [77] in this type
of metallic-like quantum dots that the tunneling rate from the dot to the leads is proportional to

(∆E/Ec)/(1− e
− ∆E
kBT ), where ∆E is the di�erence between the electrochemical potential of the leads

and the electrochemical potential of the dot. At low temperature (T � ∆E,Ec), this relation is
essentially linear, which implies that the escape time varies as the inverse of the excitation voltage.
Fig.1.20 shows the variation of the escape time as a function of Vexc, extracted from the results
presented in Fig.1.18, for both the model and the experiment. As it turns out, the variation of the
escape time depends greatly on the dot equilibrium potential: in the anti-resonant case (φ0 = 0), the
escape time slowly decreases with Vexc, whereas in the resonant case (φ0 = π), the escape time is small
at low excitation1, then suddenly rises above the value at φ0 = 0 when Vexc reaches ∆/2e, and slowly
decreases for larger excitations. This behavior is well reproduced by the scattering model for φ0 = 0;
however, the increase of the escape time at φ0 = π above its value at φ0 = 0 can only be reproduced
with the scattering model by assuming a variation of the transmission with φ0. This discrepancy is
directly related to the oscillations in the escape time shown in Fig.1.19. Nevertheless, it is not possible
to reasonably adjust any of the curves with the metallic case formula: an approximative �t of the
experimental data (green dashed line) yields an electronic temperature Tel = 2.6 K comparable to the
level spacing, which is not compatible with the temperature deduced from the calibration Tel ≈ 70 mK.
The experimental data can only be adjusted by increasing the temperature so as to make the density
of states uniform, thus proving the incompatibility of the metallic-like quantum dot description for our

1The standard deviation of the measurements are however rather large for these values of the excitation amplitude,
because both real and imaginary part of the �rst harmonic are almost zero.
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samples.
These two considerations show that the experimental data are well reproduced by a model where

interactions are neglected: since we expect the charging energy to be comparable or smaller than
the orbital level spacing, it is reasonable to describe our results using the level spacing ∆, where the
interactions only renormalize its value.

The other discrepancies with the proposed model are mostly sample dependent; the most cumber-
some, such as extremely irregular density of states or double quantum dot structures may be ruled
out by careful sample post-selection. In samples presenting smaller orbital level spacings, the charging
energy cannot be neglected, as it was the case for sample E3 studied by Gwendal Fève. The descrip-
tion of the dot as an e�ective two-level system in the presence of interactions [11] allows to take into
account the observed deviations.
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Conclusion of chapter 1

In this chapter, we have described the basic properties of the average AC current emitted by a meso-
scopic capacitor. We have �rst provided a theoretical description of the mesoscopic capacitor using a
scattering formalism based on a Floquet scattering matrix. This approach di�ers from the one devel-
oped by my predecessors, and allows the consideration of systems presenting several time-dependent
potentials, such as as two-electron interferometry in the Hong-Ou-Mandel geometry using two distinct
single electron emitters.

The presented experimental results obtained on sample S528-11 are in very good agreement with the
model, and allow to extract all the parameters describing the energy spectrum of the dot. Furthermore,
the results put into light the quantization of the �rst harmonic of the average AC current in units of
2ef0, corresponding to the periodic emission of a single electron followed by a single hole. In addition
to providing a full characterization process for our samples, the study of the average AC current
demonstrates that the mesoscopic capacitor in the non-linear regime can be used as a single electron
source, therefore paving the way to single-charge electron quantum optics.
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Introduction of chapter 2

The study of the average AC current presented in the previous chapter demonstrates the quantization
of AC current in units of 2ef0, corresponding to the periodic emission of a single electron followed by a
single hole. The mesoscopic capacitor therefore acts on average, when driven in the non-linear regime,
as a single electron emitter, thus enabling single charge electron quantum optics experiments.

Similarly to single photon sources used in quantum optics, it is then necessary to study the current
�uctuations emitted by the source. This serves several purposes; the most obvious one is the character-
ization of the accuracy of single particle emission, in order to rule out any other charge transfer process
generating an average current equal to 2ef0. Indeed, one might naively consider a situation where two
electrons are emitted during one period, and none during the next period, which would still correspond
on average to the emission of one electron at each period. The generation of additional electron-hole
pairs within one half-period of the drive, would also yield the same average transfered charge per
half-period, and thus cannot be detected by average current measurements. They are however natural
excitations of a Fermi sea, and would as well diminish the accuracy of single particle injection, thus
jeopardizing the realization of electron quantum optics experiments. In this respect, going beyond
average quantities and studying the correlation of the current �uctuations introduces conceptual tools
which, in analogy with intensity correlation measurements commonly performed in quantum optics,
are the dedicated tools for probing the outcome of single charge electron quantum optics experiments.
It is therefore natural to develop these tools on the basic building block of single-charge electron quan-
tum optics, that is the single electron emitter. Finally, such a study has a fundamental interest in
the �eld of quantum noise, for it unveils the crossover between shot noise (or charge noise), where the
number of emitted charges per half-period is �uctuating, and a regime of phase noise, where a single
charge is systematically emitted at each half-period, while a �nite noise arises because of the quantum
uncertainty on the emission time.

In this chapter, we focus on the direct autocorrelation of the current �uctuations generated by the
source, without partition on a beam splitter. This is somewhat di�erent from quantum optics, where
intensity correlations are usually measured in a Hanbury-Brown and Twiss con�guration. Indeed, while
cross-correlation and autocorrelation probe the same physical processes in quantum optics (mainly,
photon antibunching at zero time interval for ideal single photon sources [60, 61]), the implementation
of the latter is more challenging because one has to overcome the �nite temporal resolution of photon
detectors [78]. In our case, the autocorrelations are on the contrary more easily implemented, because
they do not require the additional Quantum Point Contact used as the beam splitter in the HBT
con�guration mentioned in the introduction. Furthermore, we will show in the next chapter that the
understanding of the direct autocorrelations is crucial for the complete analysis of the results of the
HBT experiment.

Conservation of the average charge on the dot implies that a hole is always eventually emitted
after an electron is emitted. The current generated by the source has therefore no zero-frequency
part: we study the noise of the single electron emitter at frequencies around the driving frequency
f0 = 1.5 GHz. We �rst discuss general considerations on high frequency noise generated by a periodic
excitation. We then present two theoretical descriptions of the noise, in continuity with the scattering
and heuristic models presented in the previous chapter; we �nally compare the results yielded by
the two models with noise measurements performed on sample S528-11 , using the high sensitivity
microwave noise measurement setup described in chapter 4. These results demonstrate that in ideal
operating conditions, the noise reduces to a fundamental noise regime, called quantum jitter, which
is the signature of periodic single charge emission. In this regime, a single charge is systematically
emitted at each half-period and charge noise is suppressed. The residual noise arises from quantum
�uctuations in the emission time, leading to a jittering of the emitted current. The measurement of
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the reduction of the noise to the quantum jitter is the single-charge electron quantum optics analog of
the absence of photon bunching at zero time interval for ideal single photon sources.
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2.1 Current correlations under periodic driving

The �uctuations of a stationary current around its mean value are usually determined by its successive
moments. The second moment particularly describes the power of the �uctuations: ∆I2 =< (I− < I >
)2 >. Gaussian �uctuations are entirely described by the second moment; in the case of non-Gaussian
�uctuations however, the study of higher moments is relevant, experimentally as well as theoretically.
We will �rst consider the case of classical currents, focusing on the second moment of the �uctuations,
which is related to the autocorrelation of the current �uctuations C(t, t′):

C(t, t′) =< δI(t)δI(t+ t′) > (2.1)

In the case of a stationary current, C(t, t′) depends only on the time di�erence t′, and is therefore
equal to < δI(0)δI(t′) >. We can then focus on the spectrum of these �uctuations, de�ned by the
power spectral density which is equal to the Fourier transform of the autocorrelation:

S(ω) = 2

∫
dt′ < δI(0)δI(t′) > eiωt

′
(2.2)

The factor 2 allows us to restrict on positive values of the frequency ω.
In our case, the current is generated by a single electron emitter driven at a �nite frequency Ω,

and is therefore non-stationary. C(t, t′) depends then on both times t and t′; for a �xed t′, C(t, t′) is
furthermore T = 2π/Ω-periodic, and can be decomposed as a Fourier series [79, 80]:

C(t, t′) =
∑
l

Pl(t′)eilΩt (2.3)

The second moment is therefore time-dependent and presents harmonics at multiples of the driving
frequency Ω. In analogy with the �uctuations of a stationary signal, we focus on the mean value of
the power of the �uctuations, that is the mean value of the second moment, given by the term l = 0.
We therefore de�ne the mean power spectral density for a non-stationary current:

S(ω) = 2

∫
dt′< δI(t)δI(t+ t′) >

t
eiωt

′
= 2P0(ω) (2.4)

where · · ·t de�nes the average over time t and Pl(ω′) is the Fourier transform of Pl(t′). We can now
generalize Eq.2.4 for a quantum system by replacing the statistical average < ... > by the quantum
average of the current operators de�ned in 1.1.4.

• Emission and absorption noise
We have de�ned above the power spectral density of current �uctuations for positive frequencies. Since
S(ω) is symmetric for classical currents, the above de�nition does not imply any loss of generality. It
is however not the case for quantum signals, because the current operators Î(t) and Î(t + t′) do not
usually commute. We therefore need to separately consider negative and positive values of ω. We
de�ne the emission noise power spectral density S+(ω) for positive frequencies2:

S+(ω) = 2

∫
dt′< δÎ(t)δÎ(t+ t′) >

t
eiωt

′
(2.5)

The absorption noise power spectral density S−(ω), for positive frequencies as well, is then given
by:

2This convention is the opposite of the one used in [81, 82], where the emission noise is de�ned for negative frequencies.
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S−(ω) = 2

∫
dt′< δÎ(t+ t′)δÎ(t) >

t
eiωt

′

= 2

∫
dt′< δÎ(t)δÎ(t+ t′) >

t
e−iωt

′

= S+(−ω)

(2.6)

These two power spectral densities are usually discriminated using a quantum spectrum analyzer
[82], such as Josephson junctions [83, 84, 85]. We show however in appendix A.4 that because of both
the geometry of the sample and the measurement process described in 1.2.3, where the current at the
pinch-o� is subtracted in order to isolate the signal of the source, the emission and absorption noise
are equal in our experiment. In the following sections, we shall therefore use the quantum equivalent
of Eq.2.4 without discriminating emission and absorption processes.

2.2 Scattering model

2.2.1 Current operators

In this section, we derive an expression for the power spectral density of the current �uctuations emitted
by the source in the three-terminal geometry, using the expressions of the current operators de�ned in
1.1.4. For this purpose, we recall the notations for the current operators in Fig.2.1: Îb(t) �ows form
the dot to contact (1), and Îc(t) �ows from contact (1) to contact (2). The measured current Î1(t) is
therefore equal to Î1(t) = Îb(t)− Îc(t).

Figure 2.1: De�nition of the current operators.

Let us �rst focus on the correlation of the measured current < Î1(t)Î1(t+ t′) >. For more clarity,
we write Î(1,b,c)(t) = Î(1,b,c) and Î(1,b,c)(t+ t′) = Î

′

(1,b,c). With this notation, < Î1(t)Î1(t+ t′) > becomes:

< Î1Î
′
1 > = < ÎbÎ

′
b − ÎbÎ

′
c − ÎcÎ

′
b + ÎcÎ

′
c >

= < ÎbÎ
′
b > − < ÎbÎ

′
c > − < ÎcÎ

′
b > + < ÎcÎ

′
c >

(2.7)

Following the expressions of Îb and Îc given in Eq.1.23 and 1.24, the terms < ÎbÎ
′
c > and <

ÎcÎ
′
b > contain combinations of the creation/annihilation operators b̂†, b̂, ĉ†, ĉ. Because b̂†, b̂ and ĉ†, ĉ

are independent, the cross terms < b̂†ĉ > (and any other combination of both b̂ and ĉ) vanish, leaving
only the two direct terms < b̂†b̂ > and < ĉ†ĉ >. The cross-correlation of currents Îb and Îc does not
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take part in the noise, since:

< ÎbÎ
′
c > = < Îb >< Î

′
c >

< ÎcÎ
′
b > = < Îc >< Î

′
b >

(2.8)

As a result, only < ÎbÎ
′
b > and < ÎcÎ

′
c > contribute to the correlation of the �uctuations < δÎ1δÎ

′
1 >.

Furthermore, the term < ÎcÎ
′
c >, which gives rise to the thermal noise of the edge channel �owing from

contact (1) to contact (2), is independent of the QPC transmission D, and therefore vanishes when
the reference is subtracted. We thus only measure the autocorrelation of the �uctuations of Îb, which
are given by the cross terms in < ÎbÎ

′
b >.

2.2.2 Calculation of the current autocorrelation

Keeping only the contribution of current Îb, the power spectral density of the current �uctuations
emitted by the source is given, following Eq.2.4, by:

S(ω) = 2

∫
dt′< δÎb(t)δÎb(t+ t′) >

t
eiωt

′

= 2

∫
dt′(< Îb(t)Îb(t+ t′) > − < Îb(t) >< Îb(t+ t′) >)

t
eiωt

′

(2.9)

Let us expand the �rst term of this equation, using Eq.1.23:

2

∫
dt′< Îb(t)Îb(t+ t′) >

t
eiωt

′
= 2

e2

h2

∫
dt′dε1dε2dε3dε4 < b̂†(ε1)b̂(ε2)b̂†(ε3)b̂(ε4) >

ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~+ω)t′
(2.10)

Applying Wick's theorem allows us to isolate the terms contributing to the noise in this equation:

< b̂†(ε1)b̂(ε2)b̂†(ε3)b̂(ε4) >=< b̂†(ε1)b̂(ε2) >< b̂†(ε3)b̂(ε4) > + < b̂†(ε1)b̂(ε4) >< b̂(ε2)b̂†(ε3) > (2.11)

The direct term < b̂†(ε1)b̂(ε2) >< b̂†(ε3)b̂(ε4) > vanishes when the correlation < Îb >< Î
′
b > is

subtracted in Eq.2.9. S(ω) is therefore given by:

S(ω) = 2
e2

h2

∫
dt′dε1,2,3,4 < b̂†(ε1)b̂(ε4) >< b̂(ε2)b̂†(ε3) > ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~+ω)t′ (2.12)

We now express the operators b̂(ε) as a function of the incoming operators â(ε′) using Eq.1.15.
With the notation ε+m~Ω ≡ ε+m used in chapter 1, we have:

< b̂†(ε1)b̂(ε4) > =
∑
m1,m4

U∗m1
(ε1)Um4(ε4) < â†(ε1 +m1)â(ε4 +m4) >

=
∑
m1,m4

U∗m1
(ε1)Um4(ε4)f(ε1 +m1)δ(ε1 +m1 − (ε4 +m4))

(2.13)

< b̂(ε2)b̂†(ε3) > =
∑
m2,m3

Um2(ε2)U∗m3
(ε3) < â(ε2 +m2)â†(ε3 +m3) >

=
∑
m2,m3

Um2(ε2)U∗m3
(ε3)(1− f(ε2 +m2))δ(ε2 +m2 − (ε3 +m3))

(2.14)
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This yields, after performing the average over t in Eq.2.12:

S(ω) = 2
e2

h2

∑
m1,m2,m3

∫
dt′dε1,2U

∗
m1

(ε1)Um1+m3−m2(ε1 +m2 −m3)

×Um2(ε2)U∗m3
(ε2 +m2 −m3)f(ε1 +m1)(1− f(ε2 +m2))ei((ε2−ε1)/~+ω)t′

(2.15)

The integral over t′ being equal to hδ((ε2 − ε1)/~ + ω), we have, after the variable substitution ε =
ε1 +m1:

S(ω) = 2
e2

h

∑
m1,m2,m3

∫
dεU∗m1

(ε−m1)Um1+m3−m2(ε−m1 +m2 −m3)

×Um2(ε−m1 − ~ω)U∗m3
(ε−m1 +m2 −m3 − ~ω)

×f(ε)(1− f(ε−m1 +m2 − ~ω))

(2.16)

The successive variable substitutions m = m2 −m1 and m̃1 = m3 −m yield:

S(ω) = 2
e2

h

∑
m1,m̃1,m

∫
dεU∗m1

(ε−m1)Um1+m(ε−m1 − ~ω)

×Um̃1(ε− m̃1)U∗m̃1+m(ε− m̃1 − ~ω)f(ε)(1− f(ε+m− ~ω))

(2.17)

The sums over m1 and m̃1 are complex conjugates; we thus can write a compact expression of the
power spectral density of the current �uctuations emitted by the source:

S(ω) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

U∗n(ε− n~Ω)Un+m(ε− n~Ω− ~ω)

∣∣∣∣∣
2

f(ε)(1− f(ε+m~Ω− ~ω))

(2.18)

As in the previous chapter, we can expand this expression as a function of the cn coe�cients and
the stationary scattering matrix U0(ε), with ~Ω = 1, and ~ω ≡ ω (the obtained expression is then
strictly equivalent to the one obtained in Adrien Mahé's thesis [68] using the gauge transformation
mentioned in the previous chapter, see appendix A.3.2):

S(ω) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

c∗n+mcnU
0∗(ε+ n)U0(ε+ n− ω)

∣∣∣∣∣
2

f(ε−m)(1− f(ε− ω)) (2.19)

• zero and unity transmission limits
For D = 0 and D = 1, the stationary scattering matrix U0(ε) is constant and equal to unity. Eq.2.19
therefore yields:

S(ω)D=0,D=1 = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

c∗n+mcn

∣∣∣∣∣
2

f(ε−m)(1− f(ε− ω))

= 2
e2

h

∑
m

∫
dεδm,0f(ε−m)(1− f(ε− ω))

= 2
e2

h

∫
dεf(ε)(1− f(ε− ω))

(2.20)

57



Chapter 2. Current �uctuations emitted by the source

The noise is therefore equal to the equilibrium noise of an edge channel at frequency ω. The
similarity between the limits D = 0 and D = 1 is explained by the fact that at unity transmission, the
dot only acts as an additional length of edge channel, and therefore does not contribute to the noise.

• Zero-frequency limit
When ω = 0, the product of the stationary scattering matrices U0∗(ε+n)U0(ε+n−ω) becomes unity,
so that Eq.2.19 yields:

S(ω = 0) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

c∗n+mcn

∣∣∣∣∣
2

f(ε−m)(1− f(ε))

= 2
e2

h

∑
m

∫
dεδm,0f(ε−m)(1− f(ε))

= 2
e2

h

∫
dεf(ε)(1− f(ε))

(2.21)

We thus recover the equilibrium noise at zero frequency, which vanishes at zero temperature. More
importantly, since we focus on the excess noise with respect to the reference D = 0, its value at zero
frequency is given by the di�erence between the expression given in the last equation and the expression
obtained for the D = 0 limit in Eq.2.20, with ω = 0: the excess noise vanishes at zero frequency.

2.2.2.1 Symmetry of the excess noise with the measurement frequency

When numerically computing S(ω), we will always subtract its value at D = 0, corresponding to
the subtracted reference mentioned above. One can then show (see appendix A.4) that ∆S(+ω) =
S(ω)− S(ω,D = 0) = ∆S(−ω): the combination of the three-terminal geometry and the subtraction
of the reference implies that the emission and absorption noises of the single electron source are equal.
The importance of the three-terminal geometry can be viewed as an out-of-equilibrium generalization
of the formula proposed by Lesovik and Loosen [86] for stationary signals, and extended by Park and
Ahn [81] in the case of a �nite frequency excitation:

S−(ω)− S+(ω) = 2~ωG(ω) (2.22)

where G(ω) is the conductance of the sample, as seen by the measurement circuit. This relation can
be demonstrated in our case using ∆S(+ω) = ∆S(−ω) where G(ω) = e2/h is the conductance of
the edge channel between contact (1) and contact (2). Indeed, the di�erence between absorption and
emission noises in our sample is equal to the di�erence between absorption and emission noises at zero
transmission:

S−(ω)− S+(ω) = S−(ω,D = 0)− S+(ω,D = 0)

= 2
e2

h

∫
dε [f(ε)(1− f(ε+ ~ω))− f(ε)(1− f(ε− ~ω))]

= 2
e2

h

[
~ω

1− e−~ω/kBT
− −~ω

1− e~ω/kBT

]

= 2~ω
e2

h

(2.23)

From here on, we only consider the noise after subtraction of its value at D = 0. We therefore
confound the notations S(ω) and ∆S(ω).
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2.2.3 Numerical calculations

Because Eq.2.18 does not provide a simple analytical expression of the noise, we have computed it
numerically using the parameters of sample S528-11 : ∆ = 4 K; f0 = Ω/2π = 1.5 GHz. The simulation
o�ers a wide range of parameters, such as the shape of the excitation signal, driving and measurement
frequencies, or temperature.

2.2.3.1 Effect of the QPC transmission and temperature

The most obvious dependence of the noise S(ω) (at least qualitatively) is on the QPC transmission
D, in the injection regime 2eVexc = ∆. Indeed, as demonstrated above, we expect the noise to vanish
both at zero and unity transmission.

Figure 2.2: Calculated average transfered charge per half-period (upper panel) and
noise (lower panel) as a function of the QPC transmission, in the scattering model.
The level spacing ∆ is equal to 4 K, and the measurement frequency is taken equal
to the driving frequency f0 = 1.5 GHz.

We �rst focus on the optimal operating conditions (2eVexc = ∆, φ0 = 0). We use a square signal
containing 30 odd harmonics. We have plotted in Fig.2.2 the calculated noise as a function of the QPC
transmission, for a measurement frequency ω/2π equal to the excitation frequency f0 = Ω/2π. We
have also plotted the average transfered charge per half-period, calculated using Eq.1.52 (Fig.2.2a).
As expected, the noise vanishes at zero and unity transmission, and describes a bell shaped curve
as D changes. The maximum of the curve is obtained at a transmission D ≈ 0.07, for which the
average transfered charge is equal to ∼ 0.75e per half-period. This result is not consistent with a naive
description of the noise as a partition noise, where the partition probability would be de�ned by the
emission probability P = Qt/e: in this case the noise would be maximum for Qt/e = 0.5. Furthermore,
S(Ω) does not vanish when the average transfered charge becomes equal to e, thus demonstrating that
it cannot be described as a simple partition noise process. In the next section, we will demonstrate
using the heuristic model that the �nite value of the noise when the charge is quantized is due to the
uncertainty on the emission time.
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Chapter 2. Current �uctuations emitted by the source

In the anti-resonant case depicted here, the noise is quasi-independent of the temperature: indeed,
the di�erences between the curves for T =∼ 0K, 100 mK, 500 mK presented in Fig.2.2b are small.
This can be explained by the fact that when the energy level of the dot is shifted at an energy ∆/2
above the Fermi energy, the charge emission is insensitive to the temperature, as long as T is small
compared to the level spacing.

2.2.3.2 Measurement frequency

As demonstrated above, the noise vanishes at zero frequency; this implies that the noise presents
non-trivial variations with the frequency, which should depend on the transmission. We have plotted

Figure 2.3: Calculated noise as a function of the measurement frequency in the
injection regime: 2eVexc = ∆, φ0 = 0. We have taken f0 = 1.5 GHz (that is ~Ω/kB =
0.07 K), and ∆ = 4 K.

in Fig.2.3 the variation of the noise in the anti-resonant case with the measurement frequency up to
�ve times the excitation frequency, for di�erent values of the transmission. As expected, the noise
vanishes at zero frequency for all transmissions. At low transmission, S(ω) rises sharply, then becomes
independent of the frequency: this shot noise behavior describes the fact that the charge emission is
not systematic, because the escape time is longer than the half-period of the excitation signal. When
the transmission is increased, the saturation occurs at higher frequencies, while the value of the noise
at the saturation increases. We will show in the next section that the maximum value of the saturation
is ∼ 4e2f0. At large transmissions, the noise increases monotonously with the frequency, with an
ω2τ2 dependence. One can however see that depending on the frequency, the noise does not reach a
maximum for the same value of the transmission. The variation of the noise with the transmission
presented in Fig.2.2 is therefore highly frequency dependent.

2.2.3.3 Variation with the dot equilibrium potential

All the results presented above correspond to the optimal operating condition of the single electron
emitter, that is the anti-resonant case φ0 = 0, where the highest occupied level of the dot is shifted far
above the Fermi energy. Since the QPC gate voltage Vg also modulates the position of the levels in
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the dot, it is interesting so study the variation of the noise with the equilibrium potential of the dot,
that is when the phase φ0 is changed.

The variation of the noise at ω = Ω with φ0 is plotted in Fig.2.4a), for a �xed transmission
D = 0.1. In the resonant case φ0 = π, we observe a diminution of the noise, which broadens when
the temperature is increased. This diminution of the noise is explained by the fact that the electrons
responsible for thermal noise are distributed in a typical energy bandwidth kBT centered around the
Fermi energy. When the highest occupied level of the dot is placed in this energy bandwidth (that
is, in the vicinity of the resonant case φ0 = π), the emitted electrons are mixed with the thermally
excited electrons, and one cannot separate the contributions of thermal noise and the noise emitted
by the source. As a result, the noise after subtraction of its value at D = 0 (that is, after subtraction
of the contribution of thermal noise) only considers electrons emitted far from the Fermi sea, and
therefore diminishes. This e�ect is similar to the competition between temperature and bias voltage
in measurements of the shot noise of a QPC [31, 87]: when the bias voltage (that is, the energy of
the charges emitted by the biased contact) becomes smaller than the temperature, the partition noise
vanishes, so that the measured shot noise is essentially given by thermal noise. It is also reminiscent of
the measurement of the Fano factor in ballistic graphene shown in [88], where the Fano factor vanishes
at zero bias because the thermal contribution of the noise is removed.

We have plotted in Fig.2.4b the variation of the noise with the measurement frequency in the
resonant and anti-resonant conditions, for much larger scales of the frequency: we observe a cuto� at
frequencies comparable to the level spacing, which depends on φ0. The cuto� frequency is equal to
∆/2 in the anti-resonant condition: indeed, the electrons (holes) are emitted at an energy ∆/2 above
(below) the Fermi energy, and can therefore only emit photons at frequencies lower than ∆/2. In the
resonant condition, a portion of the charges is emitted at an energy ∆ above/below the Fermi energy;
the cuto� frequency is thus equal to ∆.

2.2.3.4 Shape of the drive

We have numerically studied the noise for di�erent shapes of the excitation signal, more speci�cally
its dependence on the number of harmonics contained in the square excitation voltage. Indeed, when
the harmonic content of a square signal is diminished, oscillations (ripples) appear in the signal (see
Fig.2.5), which might a�ect the energy resolution of the emitted charge. The previous results where
computed for a near-perfect square signal containing 30 odd harmonics; we have plotted in Fig.2.6
the noise as a function of φ0, for di�erent numbers of odd harmonics contained in the excitation
square signal. It appears that the noise in the anti-resonant condition φ0 = 0 is quasi-insensitive
to the number of harmonics, while it presents a strong dependence in the resonant condition: the
ripples in an excitation square signal with few harmonics cause the highest occupied level in the dot
to oscillate in front of the Fermi energy in the resonant case, leading to the emission and absorption
of additional charges per half-period. Since these additional charges are generated close to the Fermi
energy, there is a competition between this e�ect which tends to increase the noise because more
charges are generated, and the e�ect described in the previous paragraph, where the generation of a
charge within the thermally excited electrons in the Fermi sea causes the emission noise to diminish.
This is observed for 3 harmonics in Fig.2.6: when φ0 becomes close to π, the noise increases, then
suddenly drops when φ0 = π. Furthermore, this competition can be observed even with near-perfect
excitation square signals at T ∼ 0, see Fig.2.4: even though the ripples in the excitation signal are
small, they cause energy shifts larger than the energy bandwidth of the thermally excited electrons of
the Fermi sea.
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Figure 2.4: a) Calculated noise as a function of the dot equilibrium potential
φ0 = 2πeV0/∆, for D = 0.1 and ω = Ω. b) Calculated noise as a function of the
measurement frequency (positive and negative values), for φ0 = 0 (black line) and
φ0 = π (red line). The blue circle corresponds to the noise at the excitation frequency
Ω.

2.2.3.5 Conclusion on the scattering model

The scattering model allows the computation of the autocorrelation of the current �uctuations emitted
by the source for a wide range of parameters, and puts into light several emission processes that
cannot be discriminated by the sole study of the average AC current, particularly in the resonant
condition φ0 = π. Because of the absence of an analytical formula, it does not however provide a
simple interpretation for the presence of �nite noise in the ideal operating conditions when charges are
systematically emitted. We have stated that this noise is due to the uncertainty on the emission time;
we will show in the next section using the heuristic model that it is indeed the case, and demonstrate
that this noise is the signature of single charge emission.
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Figure 2.5: Square signals, with 1 (black), 2 (red), 3 (blue) and 10 (green) odd
harmonics.

Figure 2.6: Calculated noise as a function of the dot equilibrium potential, for a
square excitation signal containing 2, 3, 10 and 30 odd harmonics (resp. black, red,
blue and gray line). The temperature is taken equal to 100 mK.

2.3 Heuristic model

In this section, we use the heuristic model presented in 1.4.2 to compute the autocorrelation of the
current �uctuations generated by the source. Since the model describes the mesoscopic capacitor as
an ideal single electron emitter, it computes the characteristic noise associated to the periodic time-
controlled single charge emission. We �rst present the principle of the computation of the noise, and
put into light the two fundamental limits of noise in the system: shot noise (or charge noise: the
probability of charge emission is small), and quantum jitter (phase noise: the noise arises from random
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�uctuations in the emission time). We then compare the results with the ones obtained with the
scattering model, presented in the previous sections. We �nd an excellent agreement between the two
models, thus demonstrating that the device described with the scattering model is indeed a single
electron emitter.

2.3.1 Computation of the noise

The noise is calculated using the de�nition of the autocorrelation of the current �uctuations given

in Eq.2.4: S(ω) = 2
∫
dt′< δI(t)δI(t+ t′) >

t
eiωt

′
. The noise is given by the Fourier transform of the

current �uctuations correlator C(t′), which can be de�ned as the di�erence between two correlators
C1(t′) and C2(t′):

C(t′) = < δI(t)δI(t+ t′) >
t

= < I(t)I(t+ t′) >
t −< I(t) >< I(t+ t′) >

t

= C1(t′)− C2(t′)

(2.24)

C1(t′) is therefore given by the statistical average of the autocorrelation of the instantaneous current
I(t) (pictured in Fig.1.11a and b), averaged over time t, while C2(t′) is given by the autocorrelation of
the average current < I(t) > (pictured in Fig.1.11c and d), averaged over time t. Depending on the
escape probability per turn b, the contributions of each of those two correlators vary. The contributions
are depicted in Fig.2.7: at short times t′, C1(t′) is a Dirac peak centered on t′ = 0: indeed, since at
most one charge is emitted per half-period, the short-time correlations vanish. In this respect, the
Dirac peak is the hallmark of single particle emission. Correlations are recovered when t′ becomes
close to a multiple of the half-period. The height of the Dirac peak is proportional to the average
transfered charge per half-period Qt: C1(t′ = 0) counts the average number of peaks and dips in the
signal, corresponding to emitted electron and holes.

C2(t′) is given by the autocorrelation of the exponentially decaying average current depicted in
Fig.1.11c and d. It therefore presents a peak at short times, centered on t′ = 0, with a �nite width
given by the escape time τ . At times comparable with multiples of the half-period, we once again
recover correlations, which compensate the long-times correlations in C1(t′) (see Fig.2.7, lower panels).
Indeed, for long times t′, C(t′) vanishes because the charges emitted by the source are not correlated.
As discussed below, the timescale on which C(t′) becomes equal to zero (i.e. on which the correlations
between the emitted charges are lost) depends on the transmission D. The relevant timescale for the
study of C(t′) is thus naturally given by the escape time τ .

2.3.1.1 Shot noise limit

For small escape probabilities b � 1, the escape time τ = τ0(1/b − 1/2) becomes larger than the
half-period. The peak at t′ = 0 in C2(t′) then becomes small with respect to the Dirac peak in C1(t′),
see Fig.2.7a. The current �uctuations correlator C(t′) is given by a Dirac peak on t′ = 0, and takes
small negative values at �nite times up to the escape time τ . The noise power spectral density is
therefore constant (except at zero frequency, where it vanishes because the areas of C1(t′) and C2(t′)
compensate): the source emits shot noise due to the random emission of charges. The negative values of
C(t′) at �nite times re�ect the antibunching of emitted charges: at low probabilities, this antibunching
extends over a large timescale τ (see Fig.2.7a, lower panel), which illustrates the dot charge-memory:
a hole must be emitted after the emission of an electron, for the source to emit a second electron.

An analytical expression of the noise can be de�ned in the shot noise limit, using the variation of
C1(t′) and C2(t′) depicted in Fig.2.7a. When neglecting C2(t′) and writing C1(t′) = 2e2f0Qt/eδ(t′),
one �nds, using the expression of the average transfered charge de�ned in Eq.1.50 when fτ � 1:
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Figure 2.7: Current correlators C1(t′) and C2(t′), calculated with the heuristic
model. a) shot noise limit: for small escape probability b, charges are not systemati-
cally emitted within a half-period: the emission probability per half-period P = Qt/e
is small, and the current �uctuations correlator is essentially given by the Dirac peak
in C1(t′). C1(t′), C2(t′) and C(t′) for long times t′ are plotted on the lower panel
(respectively in black, red and blue lines): C(t′) presents negative values for t′ ≤ 2T ,
re�ecting the antibunching of emitted charges. b) large emission probability limit:
for su�ciently large escape probabilities (here, b = 0.2), charges are systematically
emitted (P ≈ 1), and C2(t′) presents a peak with a �nite width given by the escape
time τ . C(t′) takes negative values on a smaller range of times t′.

Sshot(ω) = 4e2f0 × P =
e2

τ
(2.25)

where P = Qt/e the emission probability per half-period. This expression is identical to the usual
shot noise formula SII = 2eI, where the current I is given by the nominal emission current I0 = 2ef0,
multiplied by P .

2.3.1.2 Quantum jitter limit

In the other limit, the escape probability b is high enough for the charges to be systematically emitted:
the emission probability P is equal to unity, and the charge noise vanishes. The average current
then presents well-de�ned exponential decays with a decay time given by the escape time τ � T /2:
< I(t) >= ±e/τe−t/τ . We then �nd a simple expression for C2:

C2(t′) =
e2f0

τ
e−|t

′|/τ (2.26)

In the limit τ � T /2, the noise is thus given by:
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Sjitter(ω) = 4e2f0
ω2τ2

1 + ω2τ2
(2.27)

Even when charges are systematically emitted, we �nd a �nite noise which only depends on the
escape time τ : the uncertainty on the charge emission time, given by the escape τ , gives rise to a
fundamental noise, called quantum jitter. The quantum jitter is an intrinsically high frequency noise,
and is the signature of single charge emission: when the source systematically emits single charges, the
noise reduces to the value of the quantum jitter determined only by the temporal extension τ of the
emitted wave packets.

2.3.1.3 Analytic formula

Mathias Albert and collaborators have recently [89] proposed an analytic formula of the noise for the
heuristic model, which interpolates between the shot noise and the quantum jitter limits. The noise is
calculated by studying the charge dynamics in the dot using a master equation coupling the average
number of charges in the dot at a time t+ τ0, written < Q(t+ τ0) >, to the average number of charges
at a time t. During the time τ0, the charge can be emitted with a probability b. Since only one charge
transfer process can occur at half of the period (electron emission or electron absorption), the average
number of charges at a time t+ τ0 will be equal to < Q(t+ τ0) >= (1− b) < Q(t) > for the emission
half-period, and to < Q(t+ τ0) >= b(1− < Q(t) >)+ < Q(t) > for the absorption half-period.

After solving this master equation, the charge correlation function < δQ(t)δQ(t+ t′) >
t
is evalu-

ated, and one obtains an analytic formula for the noise power spectral density:

S(ω) = 4e2f0tanh

(
1

4f0τ

)
ω2τ2

1 + ω2τ2
=
Qt

e
× Sjitter(ω) (2.28)

This formula emphasizes the speci�c role of the quantum jitter in the noise generated by the single
electron emitter, since it can be generally be written as the product of the quantum jitter with the
charge emission probability P = Qt/e.

2.3.2 Comparison with the scattering model

We now present the numerical results obtained with the heuristic model, and their comparison with
the results of the scattering model in the optimal emission conditions (φ0 = 0) at T = 100 mK. Except
stated otherwise, all the results of the scattering model correspond to ∆ = 4 K.

2.3.2.1 Transmission and frequency dependence

We have calculated the noise power spectral density generated by the source at the driving frequency
Ω/2π for the heuristic model as a function of the semi-classical escape probability b. The results are
shown in Fig.2.8. We have plotted as well the variation of the noise power spectral density calculated
with the scattering model as a function of the QPC transmission. We �nd a perfect agreement between
the two sets in the entire range of D and b. The coincidence between the two curves veri�es the validity
of Eq.1.51, which links the escape probability b to its quantum counterpart D. More importantly, this
demonstrates that the scattering model e�ectively describes the device as a single electron emitter,
and proves the existence of the quantum jitter within a quantum-coherent formalism.
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Figure 2.8: Dependence of the noise on the escape probability b in the heuristic
model (black line). We also plot (blue circles) the dependence of the noise on the
QPC transmission D in the scattering model (φ0 = 0, T = 100 mK).

We have plotted in Fig.2.9 the variation of the noise spectra in both models as a function of the
measurement frequency ω. The agreement between the two models is once again outstanding, and the
two analytical noise limits (dashed lines) are well reproduced.

Figure 2.9: Dependence of the noise in the heuristic model (full lines) and in the
scattering model for φ0 = 0 (hollow symbols) on the measurement frequency ω. The
dashed lines correspond to analytical calculations of the shot noise and quantum jitter
limit, using Eqs.2.25 and 2.27.
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2.3.2.2 Noise versus modulus of the current

One can combine the analytical expression of the noise as a function of the escape time given in Eq.2.28,
for ω = Ω, with the expression of the modulus of the �rst harmonic of the current derived from Eq.1.52:
|IΩ| = 2ef0/

√
1 + Ω2τ2, in order to express the noise at the excitation frequency as a function of the

modulus of the current:

S(Ω) = 4e2f0tanh

 2π |IΩ|2ef0

4
√

1− ( |IΩ|2ef0
)2

(1− (
|IΩ|
2ef0

)2) (2.29)

When |IΩ| becomes small, one �nds the usual shot noise formula: S(Ω) ≈ πe|IΩ| = 2eI, where I is
the modulus of the current emitted by the source. The expression of the quantum jitter as a function
of |IΩ| is easily deduced:

Sjitter(Ω) = 4e2f0(1− (
|IΩ|
2ef0

)2) (2.30)

We have plotted in Fig.2.10 the noise as a function of |IΩ|, as de�ned in Eq.2.29, and the noise as a
function of the modulus of the �rst harmonic, calculated with the scattering model. The agreement
between the two models is excellent; a small discrepancy can be observed for low values of the current,
where the simulations of the scattering model su�er from the necessary discretization of the energy:
indeed, at very low transmissions, the width of the peaks in the density of states becomes smaller than
the energy increment used in the numerical computation. We have also plotted the variations of shot
noise and quantum jitter as a function of |IΩ| (dashed lines): it appears that S(Ω) is well described
by pure quantum jitter for values of the �rst harmonic larger than ∼ 1.5ef0, which corresponds to a
quantized average transfered charge per half-period Qt = e.

The main interest of this representation is that it allows to compare the experimental results with
the model quite easily, since it does not require the knowledge of the variation of the QPC transmission
with the gate voltage Vg, nor the accurate measurement of the escape time τ . However, it unveils
the contribution of the quantum jitter only for a reduced portion of the data. In this respect, the
representation of the variation of the noise with the escape time, presented in the next paragraph, is
better suited.

2.3.2.3 Universality of the noise as a function of the escape time

When ω = Ω = 2πf0, Eq.2.28 shows that the power spectral density of the current �uctuations
generated by the source depends only on the escape time τ . We therefore plot in Fig.2.11 the noise as
a function of the escape time in the heuristic model, as well as the noise calculated in the scattering
model for three values of the level spacing: ∆ = 2, 4, 8 K. The agreement between the heuristic
model and the scattering model is excellent, regardless of the value of the level spacing: in the ideal
emission conditions (2eVexc = ∆, φ ≈ 0), the value of the noise power spectral density at the excitation
frequency only depends on the escape time τ . The independence of the noise with the level spacing
and the temperature illustrates the universality of the noise generated by the single electron emitter:
as long as the charges are emitted signi�cantly above/below the Fermi energy, the contribution of the
Fermi sea can be ignored, and the noise probes the temporal distribution of charges within the emitted
electron/hole stream, without discriminating at which energy they are emitted.
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Figure 2.10: Calculated noise in the heuristic model (red line) and in the scattering
model (blue circles) as a function of the modulus of the �rst harmonic of the average
AC current. The shot noise and quantum jitter limits (dashed lines) are given by the
usual shot noise formula and Eq.2.30.

Figure 2.11: Calculated noise in the heuristic model (blue line) and in the scattering
model for di�erent values of the level spacing (hollow symbols) as a function of the
escape time τ . The shot noise and quantum jitter limits (dashed lines) are given by
Eqs.2.25 and 2.27.

The scattering model shows however that the universality is lost whenever charges are emitted close
to the Fermi energy, that is in the resonant condition φ0 = π.

The two models, developed independently, predict that the mesoscopic capacitor can indeed be
used, when driven in the appropriate regime, as a single electron emitter. Furthermore, they show
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that it can achieve a controlled emission of single charges that is robust to changes of the samples
parameters.

2.4 Experimental setup

In the previous theoretical sections, we have shown that the autocorrelation of the emitted current
�uctuations presents a wide spectrum, and takes values typically given by e2f0, where f0 is the driving
frequency. For a driving frequency f0 = 1.5 GHz, e2f0 ≈ 3.8 × 10−29 A2/Hz. These values, although
very small, are commonly measured at low frequency [90, 23, 48, 91], where one can transform small
current �uctuations into larger voltage �uctuations by shunting the output of the samples with a large
resistor (typically, a few kΩ). Since the noise power spectral density emitted by our sample vanishes
at zero frequency, we need to measure it at frequencies comparable with the driving frequency. This is
much more challenging, for broad-band microwave circuits must be 50 Ω-adapted; we therefore cannot
rely on the use of a large resistor to increase our signal. Furthermore, the presence of high-frequency
parasitic couplings brings an additional di�culty, as they yield much larger powers than the signal
itself.

2.4.1 Sample design

We have designed our samples in order to optimize the noise measurement. The two-dimensional
electron gas (for batch S528, see appendix B) has a nominal density equal to 1.9 × 1011 cm−2 and a
nominal mobility equal to 1.3× 106 cm2/Vs. The depth of the gas is 105 nm. The fabrication of the
samples was made by Yong Jin at Laboratoire de Photonique et Nanostructures in Marcoussis.

An optical view of sample S528-11 is shown in Fig.2.12b. In order to minimize the high-frequency
parasitic couplings, most of the surface of the sample is covered by anAu ground plane; furthermore, the
metalizations corresponding to the microwave excitation and measurement lines are placed orthogonally
to reduce the crosstalk. Fig.2.12b shows that the sample actually contains two mesoscopic capacitors,
which are not connected with each other. This design is a precursor of the samples used for Hanbury-
Brown and Twiss (described in the next chapter) and Hong-Ou-Mandel experiments, where the two
sources are connected by the electron gas, and a QPC (which acts as a beam-splitter) is placed between
the sources. This design allows to optimize the number of samples per electron gas wafer, as well as to
simplify the fabrication, since the designs of the two types of samples (single source and collider) are
highly similar.

• Three-terminal geometry
A close-up view of the active zone of the sample where the electron gas is not removed (see Fig.2.12c)
shows the two ohmic contacts mentioned in 1.1.1. Contact (1) is connected to the microwave mea-
surement line, while contact (2) is connected to the ground plane. The purpose of this geometry is to
use the chirality of the edge channels as a circulator, in order to protect the sample from the back-
action noise of the ampli�cation line. Indeed, the cryogenic ampli�ers used in the measurement line
send back noise towards the sample; this back-action noise is typically �ve orders of magnitude larger
than the noise of the sample. Because of the mismatch between the impedance of the sample and the
impedance of the measurement circuit, the back-action noise is partially re�ected on the sample, and
adds a parasitic noise to the measurement. This parasitic noise can then be removed by subtracting
the reference, as long as its value is independent of the state of the sample.

The back-action noise is re�ected on the sample with a re�ection coe�cient that depends on the
conductance of the sample viewed from the measurement lines, noted Gm. Because the sample is
shunted by a resistor equal to the characteristic impedance of the measurement line Z0 (see Fig.2.13),
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2.4. Experimental setup

Figure 2.12: Pictures of sample S528-11 : a) optical view of the sample installed in
the sample holder. b), c), d) optical views with increasing zoom of the chip. As seen
on b), each chip contains two samples. The black arrow in c) depicts to the chirality of
electronic transport when an strong perpendicular magnetic �eld is applied. e) SEM
view of the mesoscopic capacitor (with false colors). The quantum dot is highlighted
in red.

the power re�ection coe�cient is given by:

|S11|2 =
|Z0Gm|2

|2 + Z0Gm|2
(2.31)

In the case of a single contact (two-terminal geometry) shown n Fig.2.13a, Gm is equal to the sum of the
conductance of the sample Gnl(Ω), de�ned in 1.47, and the parasitic conductance Gpara: the re�ection
coe�cient |S11| therefore depends on the state of the sample, particularly on the QPC transmission D.
The value of the parasitic noise due to the re�ection of the back-action noise thus changes when the
reference is subtracted by a factor ∼ 10−4. Although quite small, this measured variation is still about
ten times larger than the noise emitted by the single electron emitter, and the noise measurements
probe as a matter of fact the conductance of the sample by noise re�ectometry.

In the case of two contacts (three-terminal geometry), when a strong perpendicular magnetic �eld is
applied, Gm is given by the sum of the parasitic conductance and the conductance of the edge channels
connecting contact (1) to contact (2), see Fig.2.13b. This conductance is equal to νe2/h, where ν is
the �lling factor of the quantum Hall e�ect corresponding to the applied magnetic �eld. As a result,
the re�ection coe�cient is independent of the parameters applied to the sample, and the parasitic
noise is fully removed when the reference is subtracted. This e�ect can be qualitatively understood by
considering that the back-action noise incoming on the sample is transmitted (at least partially) from
contact (1) to the edge channels of the sample, in the form of current �uctuations. In the two terminal
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Chapter 2. Current �uctuations emitted by the source

Figure 2.13: a) schematic view of a sample in the two-terminal (single contact) geom-
etry. The back-action noise of the measurement line (blue oscillating lines) is re�ected
on the sample, with a coe�cient depending on the dot parameters. b) schematic view
of a sample in the three-terminal (dual contacts) geometry. The re�ected part of the
back-action noise only depends on the impedance of the edge channels �owing from
contact (1) to contact (2).

geometry, these current �uctuations are sent towards the quantum dot, where they are re�ected with
a phase depending on the density of states of the dot, as described in 1.1.2. In the three-terminal
geometry however, the �uctuations are sent towards contact (2), where they are absorbed.

The use of an additional grounded contact to isolate the active part of the sample from the noise
of the environment is a fundamental technique for noise measurements in quantum Hall e�ect systems
[91].

2.4.2 Setup

We have measured the noise in a bandwidth centered around the excitation frequency f0 = 1.5 GHz:
∆f = 1.2−1.8 GHz = ∆ω/2π. On this bandwidth, the noise can be approximated as a linear function
of the frequency, so that the noise power spectral density integrated on this bandwidth is equal to the
noise at the excitation frequency:

1

∆ω

Ω+∆ω/2∫
Ω−∆ω/2

dωS(ω) ≈ S(Ω) (2.32)

The measurement setup is presented on Fig.2.14: while the excitation line is the same as the one
presented in the �rst chapter, we have built a high-sensitivity noise measurement line [92] that allows
us to simultaneously measure the noise and the conductance. The noise measurement line, described
in details in chapter 4 (principle, implementation and calibration), is composed of a 120 Ω to 50 Ω
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2.4. Experimental setup

Figure 2.14: Schematic view of the setup used for high-frequency noise measure-
ments. The derivation of the signal to a homodyne detection allows the simultaneous
measurement of the average AC current and the power spectral density of the current
�uctuations around 1.5 GHz.
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quarter-wave impedance transformer and an interferometric ampli�cation technique. The quarter-wave
impedance transformer allows the measurement of the current �uctuations on a 120 Ω resistor instead
of the usual 50 Ω resistor over a large bandwidth (0.5 − 4.5 GHz). The measured noise temperature,
de�ned by:

TS = Z0S(Ω)/4kB (2.33)

is therefore increased by a factor 2.4; for a typical value of the noise power spectral density S(Ω) = e2f0,
the measured noise temperature increases from TS(50Ω) ≈ 35 µK to TS(120Ω) ≈ 83 µK. This last
value is still extremely small compared to the noise temperature of the cryogenic ampli�ers TN ≈ 7 K;
we therefore use an interferometric ampli�cation technique, which is the cryogenic equivalent of the
double balanced ampli�er technique [93]. This technique can be seen as the microwave analog of a
Mach-Zehnder interferometer, where the cryogenic ampli�ers are placed in the inner arms. We show
in chapter 4 that it greatly enhances the stability of the measurement.

The noise emitted by the single electron emitter is measured by subtracting the reference value
when the QPC transmission is set to zero; this allows us to suppress the thermal �uctuations of both the
edge channels and the 120 Ω measurement load, and makes the measurement insensitive to �uctuations
of the ampli�cation parameters as well as variations of the temperatures in the dilution insert.

The combination of the three-terminal geometry, the quarter wave impedance transformer and
the interferometric ampli�cation technique allows the accurate measurement of the autocorrelation of
the current �uctuations emitted by the single electron emitter during extended periods of time; we
demonstrate in chapter 4 a resolution smaller than 10 µK ≈ e2f0/8 in about 2 hours.

2.5 Experimental results

In this section, we present results of the experimental measurement of the autocorrelation of the
current �uctuations emitted by the source. We have measured the noise power spectral density at the
excitation frequency S(Ω), in the charge injection regime 2eVexc = ∆.

2.5.1 Noise versus QPC gate voltage

We have measured the noise as a function of the QPC gate voltage Vg, plotted in Fig.2.15. The
values of the noise in units of e2f0 are deduced from the calibration of the noise measurement setup
described in chapter 4. The calibration gives us the equivalent noise temperature TS , which is then
converted in the noise power spectral density S(Ω) using the formula: S(Ω)[e2f0] = 4G0kBTS/e

2f0,
with G0 = 1/120 Ω. The uncertainty on the calibration is equal to ±5%; it is however neglected in
Fig.2.15, since the error bars corresponding to the standard error on the successive measurements (see
chapter 4) are larger than the uncertainty on the calibration.

As expected, S(Ω) vanishes at zero and unity transmissions, and its maximum value reaches ∼
2e2f0. When the average transfered charge Qt = e, the noise has a �nite value and presents oscillations
corresponding to the resonant condition φ0 = π. The global variation of S(Ω) with Vg cannot be taken
into account with an ideal QPC transmission law: in particular, neither the linear QPC transmission
law (see 1.3.2.4) nor the non-linear one (see 1.4.3.2) achieve to accurately reproduce the global variation
of S(Ω). However, the experimental data in the anti-resonant condition φ0 = 0 present an excellent
agreement with the quantum jitter (dashed line) calculated using the measured escape time τ in
Fig.2.15. In the next paragraph, we will therefore focus on the φ0 = 0 regime, which is well reproduced
by the heuristic model.
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Figure 2.15: Measured noise as a function of the QPC gate voltage Vg. Upper panel:
escape time and average transfered charge versus Vg, extracted from the average AC
current measurements presented in chapter 1. Lower panel: noise measurements. The
red line corresponds to experimental data, the black dashed line to the quantum jitter
limit calculated with the values of the escape time presented in the upper panel.

Figure 2.16: Measured noise power spectral density versus modulus of the �rst
harmonic. The black squares are experimental data; points in the φ = 0 regime are
highlighted by the red circles. The red line corresponds to the theoretical formula
given in Eq.2.29, and the dashed lines to the shot noise and quantum jitter limits.
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2.5.2 Universal graphs

As mentioned in 2.3.2.2, the easiest way to compare our experimental data and the theoretical models
without free parameters is to plot the noise as a function of the modulus of the current. The curve is
shown in Fig.2.16; the red circles correspond to φ0 = 0. For high values of the current, the points in
the resonant regime φ0 = π systematically fall above the points in the anti-resonant regime φ0 = 0:
this corresponds to the oscillations in the noise as a function of Vg presented in Fig.2.15. While the
agreement between the data in the φ0 = 0 regime and the theory is good at both ends of the curves,
it is less satisfactory for intermediate values of the current (between ∼ 0.75 and ∼ 1.25ef0), where the
experimental results are signi�cantly lower than their expected values. This can be explained by the
fact that for these values of the transmission, the excitation voltage does not exactly compensate the
level spacing, as seen in Fig.1.16 and 1.17: |IΩ| presents oscillations with Vg, which corresponds to a
2eVexc < ∆ regime. The shot noise and quantum jitter regimes (dashed lines) are nonetheless well
described by our results.

• Noise versus escape time
The simultaneous measurement of the noise and the conductance allows us to plot the noise as a
function of the escape time τ : in this representation, the contribution of the quantum jitter appears
clearly (see Fig.2.11), which enables an unambiguous experimental demonstration of single charge
emission. We have plotted in Fig.2.17 the variation of the noise in the anti-resonant regime φ0 ≈ 0,
corresponding to the optimal operating conditions of the source, as a function of the escape time. The
error bars on the escape time correspond to an uncertainty on the global phase tuning of ±2◦, and
an estimated error on the conductance measurement of 0.01ef0. For long escape times, the error bars
become very large because both real and imaginary part of the current are essentially equal to zero.

Figure 2.17: Measured noise power spectral density versus escape time, in the φ ≈ 0
regime (black circles). The error bars on the escape time correspond to an uncertainty
of ±2◦ on the global phase tuning and of ±0.01ef0 on the real and imaginary parts of
the �rst harmonic. The red line corresponds to the scattering model, and the dashed
lines to the shot noise and quantum jitter limits.

The experimental data present an excellent agreement with the model, without any free parameter.
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In particular, the quantum jitter limit is clearly demonstrated in Fig.2.17, which con�rms the on-
demand single electron emitter nature of our device.

2.5.3 Noise oscillations and QPC transmission law

Let us now focus on the oscillations presented by the noise as a function of the QPC gate voltage
Vg. As mentioned before, these oscillations correspond to the resonant regime φ0 ≈ π, where charges
are emitted close to the Fermi energy. This regime cannot be described by the heuristic model;
the scattering model shows however that the noise in this regime presents strong variations with
the temperature and the shape of the excitation drive. In particular, the number of odd harmonics
contained in the excitation square signal signi�cantly changes the values of the noise at resonance.

We use an Agilent 1134A Pulse Pattern Generator to drive our device out of equilibrium. Square
signals can be generated at frequencies up to 3.35 GHz; using a GHz spectrum analyzer, we have
observed that the generated signal at 1.5 GHz presents contains three odd harmonics. In order to
�t our experimental results, we have therefore calculated the noise in the scattering model with an
excitation square signal containing three harmonics. We have extracted the QPC transmission law
from the measurement of the escape time as a function of Vg, using Eq.1.49: τ = h/∆(1/D− 1/2), see
Fig.2.18. The transmission presents oscillations as a function of Vg that correspond to the oscillations
in the escape time.

Figure 2.18: QPC transmission law, extracted from the measurements of the escape
time using the formula τ = h/∆(1/D − 1/2). The error bars correspond to the error
bars on the escape time presented in Fig.2.17.

We have combined the measured transmission and an excitation square signal containing three odd
harmonics to calculate the noise as a function of Vg in the scattering model. The result is shown in
Fig.2.19. As expected from the comparison between the scattering and heuristic models, the agreement
between experimental and numerical data is excellent in the φ0 ≈ 0 regime, particularly in the quantum
jitter limit, where we have shown in the previous section that our device is indeed an on-demand single
electron emitter. In the resonant regime, the peaks in the noise are qualitatively reproduced. However,
because the noise in the φ0 = π regime is highly dependent on a wide range of parameters such
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as temperature, number of harmonics, level spacing, or excitation amplitude, it is di�cult to �nd a
quantitative agreement.

Figure 2.19: Measured noise power spectral density as a function of the QPC gate
voltage Vg (red line). The blue line corresponds to the calculated noise in the scattering
model, with an excitation signal containing only three odd harmonics. The dashed line
corresponds to the quantum jitter limit, calculated with the measured escape time.

While the noise measured in the resonant regime is rather di�cult to quantitatively reproduce
with the scattering model, its origin is qualitatively understood: the �nite number of harmonics con-
tained in the excitation drive creates ripples that shake the energy level in front of the Fermi energy,
thus causing additional charge transfer processes. The precise nature of these processes cannot be
investigated by only measuring the direct autocorrelation of the current �uctuations emitted by the
source. Nonetheless, the presence of these oscillations demonstrate that the energy at which electrons
are emitted is indeed controlled by the position of the level in the dot at equilibrium, and that the
in�uence of the Fermi sea can be neglected in the optimal operating condition φ0 = 0.
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Conclusion of chapter 2

In this chapter, we have studied the autocorrelation of the current �uctuations emitted by the meso-
scopic capacitor driven in the charge injection regime 2eVexc = ∆. The measurement of these high-
frequency �uctuations represents a breakthrough in terms of high-frequency noise measurement tech-
niques, and experimentally demonstrates the on-demand single charge emission. More generally, the
study of the noise generated by the single electron emitter puts into light an intrinsic high-frequency
noise regime, called quantum jitter, which is the signature of single charge emission. This quantum
jitter depends on the uncertainty on the emission time with a simple formula given in Eq.2.27. We
expect the measurement of this fundamental noise limit to be an unambiguous test of the accuracy of
GHz single-charge electronic devices.

We have observed an increase of the emitted noise whenever the source is driven out of its optimal
operating conditions, that is in the resonant regime φ0 = π. The excess noise is caused by the limited
harmonic content of our excitation signal, which excites the level in the dot in front of the Fermi
energy. The presence of the excess noise demonstrates that the energy of the emitted charges is well
controlled.

The measurement of the direct autocorrelation of the emitted current �uctuations cannot accurately
probe the generation of electron-hole pairs in the charge emission process: indeed, if an electron and a
hole are generated at the exact same time, the net current at any frequency created by the pair is zero
as long as one can neglect the di�erence between the group velocity of the electron and the hole. These
electron-hole pairs can be unveiled by partitioning the emitted current using a QPC as an electronic
beam splitter. In the next chapter, we will show that the correlation of the current �uctuations after
partition by the QPC gives access to the number of electron-hole pairs generated by the source, as well
as the energy distribution of the emitted charges.
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Introduction of chapter 3

The results presented in the previous chapters demonstrate that the mesoscopic capacitor indeed
behaves, when driven in the 2eVexc = ∆ regime, as a single electron emitter. Furthermore, we have
shown in chapter 2 that the correlations of the current �uctuations generated by the sample are the
proper tool to probe the outcome of single-charge electron quantum optics experiments. In this chapter,
we present the �rst realization of the single-charge electronic analog of one of the most renown quantum
optics experiments, that is the Hanbury-Brown and Twiss (HBT) experiment. In the quantum optics
HBT experiment, a single photon is sent towards a beam splitter, and the correlations of the intensities
at the two outputs of the beam splitter are measured. This experiment is now commonly performed
in order to characterize single photon sources [60, 61]. The zero value of correlations at times smaller
than the repetition time of the source indicates the emission of a single photon: indeed, the emission of
two photons within a single operating cycle of the source would lead to a positive peak in the intensity
correlations at a time corresponding to the delay between the two emissions.

Similarly to its quantum optics counterpart, the single-charge electron quantum optics HBT exper-
iment allows to characterize single electron emitters. In particular, the HBT geometry puts into light
the generation of electron/hole pairs, which, as demonstrated by the measurements of photo-assisted
noise [94], are the natural excitations of a two-dimensional electron gas in presence of a high-frequency
excitation. Moreover, the HBT geometry allows to probe the fundamental phenomena arising from the
partition of a single electron beam by a quantum point contact.

In this chapter, we �rst present a theoretical description of the single-charge electron quantum
optics HBT experiment based on the Floquet scattering formalism presented in the �rst chapter. We
particularly focus on the power spectral density of the autocorrelation of the current �uctuations at one
of the two outputs of the beam splitter, at both zero and high frequency. We redemonstrate the result
predicted in [64]: the zero-frequency part of the power spectral density of the partition noise exactly
measures the number of emitted electron-hole pairs per cycle at zero temperature. We furthermore
show that the HBT geometry allows to study the energy relaxation of the emitted single charge on
adjacent edge channels, similarly to what was done using biased contacts in [24, 25], as well as to
measure the energy distribution of the emitted charges by using a biased contact placed at the second
input of the beam splitter, leading to quantum state tomography [65].

We then present an experimental study of sample S434-8 , leading to the �rst realization of the
single-charge electron quantum optics HBT experiment: after describing the experimental procedure
used to characterize the sample, we present measurements of the partition noise of a single charge
beam. These �rst measurements demonstrate that our single electron emitter is spin-polarized, since
it only injects charges in the outer edge channel, and that the number of excess electron/hole pairs
emitted in the optimal operating conditions is negligible.
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3.1 Current auto and cross-correlations in the HBT geometry

In the optics HBT experiment, one usually measures the time-resolved cross-correlation between the
signals at the two outputs of the beam splitter. Single photon sources are used with typical repetition
rates in the tens of MHz (80MHz in [61]). Measurement setups with subnanosecond time resolution
allow to accurately probe the short-times cross-correlation, and thus unambiguously demonstrate the
suppression of two-particle emission events. Our single electron source however is driven at GHz
frequencies; the measurement of time-resolved cross-correlation would therefore need a detection system
with a bandwidth ranging from 0Hz to a few GHz; furthermore, in order to probe the short-time
correlations for small escape times, the bandwidth of the detection system must be comparable to ∆/h,
that is a few tens of GHz. Such a multi-octave microwave measurement system is however unrealistic:
state-of-the art fast acquisition cards have typical bandwidths equal to 2 GHz. We therefore measure
the autocorrelation of each output signals, and take advantage of the dual-outputs geometry to measure
both the high-frequency and low-frequency parts of the partition noise. In a practical point of view,
this allows us to reuse the high-frequency noise measurement setup developed for the measurements
presented in the previous chapter.

In this section, we remind, using a scattering formalism, that current conservation in the HBT
geometry implies that the autocorrelation of the current �uctuations at either one of the outputs of
the beam splitter yields the same information as the cross-correlation of the two outputs, provided that
the �uctuations of the current incoming on the beam splitter are known. This is however true at low
frequency: at high frequency, displacement currents must be included in the current conservation. We
�rst show that when the transmission of the QPC is set to 0.5, the autocorrelations of the two output
currents �uctuations are equal. We then show that the cross-correlations are symmetric in the output
current �uctuations. We �nally establish a very simple equation linking the auto and cross-correlation
of the output currents �uctuations to the autocorrelation of the �uctuations of the currents incoming
on the QPC.

3.1.1 Geometry

The HBT geometry considered in this section is described in Fig.3.1: the device has a four-terminal
(two inputs, two outputs) geometry, and is split in two by a Quantum Point Contact. We only consider
the outer channel of the integer Quantum Hall E�ect regime (and therefore assume that only the outer
edge channel is partially transmitted through the QPC).

Figure 3.1: De�nition of the creation/annihilation operators for the correlations in
the HBT geometry.

In these conditions, we de�ne creation/annihilation operators for each region of the device: â†, â
from contact (A) to the QPC, b̂†, b̂ from contact (B) to the QPC, ĉ†, ĉ from the QPC to contact (C),
d̂†, d̂ from the QPC to contact (D), ê†, ê from contact (D) to contact (A), and f̂ †, f̂ from contact (C) to
contact (B). The input current on contact (A) (resp. (B)) is noted Î (resp. Î3), and the output current
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�owing from contact (C) (resp (D)) noted Î1 (resp. Î2). The re�ection and transmission amplitudes
on the QPC are respectively noted

√
R and

√
T (with R+ T = 1), so that:

d̂ =
√
Râ+

√
T b̂

ĉ = −
√
T â+

√
Rb̂

(3.1)

3.1.2 Autocorrelation

Let us �rst calculate the autocorrelation of the output currents Î1(t′) and Î2(t′), de�ned by (see
chapter 1):

Î1(t) =
e

h

∫
dε1dε2

(
ĉ†(ε1)ĉ(ε2)− f̂ †(ε1)f̂(ε2)

)
ei
ε1−ε2

~ t

Î2(t) =
e

h

∫
dε1dε2

(
d̂†(ε1)d̂(ε2)− ê†(ε1)ê(ε2)

)
ei
ε1−ε2

~ t

(3.2)

The creation/annihilation operators are energy dependent; as in the previous chapter, we use the
notation âi = â(εi). Similarly to the calculation of the autocorrelation of the current �uctuations
generated by the source presented in 2.2.2, we only consider the cross products of non-independent
operators, that is < ĉ†1ĉ4 >< ĉ2ĉ

†
3 > and < f̂ †1 f̂4 >< f̂2f̂

†
3 > for the autocorrelation of the �uctuations

of output current Î1(t), and < d̂†1d̂4 >< d̂2d̂
†
3 > and < ê†1ê4 >< ê2ê

†
3 > for the autocorrelation of the

�uctuations of output current Î2(t). We therefore have:

CI1I1 = < δÎ1(t)δÎ1(t+ t′) >
t′

=
e2

h2

∫
dε1,2,3,4

(
< ĉ†1ĉ4 >< ĉ2ĉ

†
3 > + < f̂ †1 f̂4 >< f̂2f̂

†
3 >
)

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~

CI2I2 = < δÎ2(t)δÎ2(t+ t′) >
t′

=
e2

h2

∫
dε1,2,3,4

(
< d̂†1d̂4 >< d̂2d̂

†
3 > + < ê†1ê4 >< ê2ê

†
3 >
)

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~

(3.3)

The term < f̂ †1 f̂4 >< f̂2f̂
†
3 > (resp. < ê†1ê4 >< ê2ê

†
3 >) only yields the thermal �uctuations of

the electrons emitted by contact (C) (resp. contact (D)). If the temperatures of the two contacts are
equal, the contributions of those two terms are the same. Let us now focus on the contribution of the
operators ĉ†, ĉ and d̂†, d̂, and expand it in terms of the operators â†, â and b̂†, b̂ using Eq.3.1:

< ĉ†1ĉ4 >< ĉ2ĉ
†
3 > = < Tâ†1â4 −

√
RT (â†1b̂4 + b̂†1â4) +Rb̂†1b̂4 >

× < Tâ2â
†
3 −
√
RT (â2b̂

†
3 + b̂2â

†
3) +Rb̂2b̂

†
3 >

< d̂†1d̂4 >< d̂2d̂
†
3 > = < Râ†1â4 −

√
RT (â†1b̂4 + b̂†1â4) + T b̂†1b̂4 >

× < Râ2â
†
3 −
√
RT (â2b̂

†
3 + b̂2â

†
3) + T b̂2b̂

†
3 >

(3.4)

Since the operators â and b̂ are assumed to be independent, the cross terms < â†i b̂j > (and any
other combination of both operators) vanish. We �nally have:
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< ĉ†1ĉ4 >< ĉ2ĉ
†
3 > = T 2 < â†1â4 >< â2â

†
3 > +R2 < b̂†1b̂4 >< b̂2b̂

†
3 >

+RT
(
< â†1â4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â2â

†
3 >
)

< d̂†1d̂4 >< d̂2d̂
†
3 > = R2 < â†1â4 >< â2â

†
3 > +T 2 < b̂†1b̂4 >< b̂2b̂

†
3 >

+RT
(
< â†1â4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â2â

†
3 >
) (3.5)

When the QPC is set to transmission 0.5, that is when R = T = 0.5, the two cross terms <
ĉ†1ĉ4 >< ĉ2ĉ

†
3 > and < d̂†1d̂4 >< d̂2d̂

†
3 > are equal. We therefore have, if the two output contacts have

the same temperature, the trivial result CI1I1 = CI2I2 : at transmission 0.5, because of the symmetry
of the system, the autocorrelation of the �uctuations of the output currents are equal.

Eq.3.5 will be useful when calculating the noise of the single electron emitter in the HBT geometry.

3.1.3 Cross-correlation

Let us now calculate the cross-correlation of the �uctuations of currents Î1(t) and Î2(t), that is CI1I2 =

< δÎ1(t)δÎ2(t+ t′) >
t′

and CI2I1 = < δÎ2(t)δÎ1(t+ t′) >
t′

. Following Eq.3.2, the product of currents

Î1(t) and Î2(t) yields products of the operators ĉ†i ĉj (resp. f̂ †i f̂j) with d̂†i d̂j (resp. ê†i êj). When

considering the cross-correlation of the �uctuations, the contributions of ê†i êj and f̂ †i f̂j vanish since
these operators are independent. The only non-vanishing term (due to the relation between ĉ†, ĉ and

d̂†, d̂ given in Eq.3.1) is therefore < ĉ†1ĉ2d̂
†
3d̂4 > in the product Î1(t)δÎ2(t + t′), and < d̂†1d̂2ĉ

†
3ĉ4 > in

Î2(t)δÎ1(t + t′). The cross-correlators of the �uctuations are therefore given (after applying Wick's
theorem in order to only consider the cross terms) by:

CI1I2 = < δÎ1(t)δÎ2(t+ t′) >
t

=
e2

h2

∫
dε1,2,3,4 < ĉ†1d̂4 >< ĉ2d̂

†
3 >

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~

CI2I1 = < δÎ2(t)δÎ2(t+ t′) >
t′

=
e2

h2

∫
dε1,2,3,4 < d̂†1ĉ4 >< d̂2ĉ

†
3 >

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~

(3.6)

We now expand these expressions in terms of the operators â†, â and b̂†, b̂, similarly to Eq.3.4:

< ĉ†1d̂4 >< ĉ2d̂
†
3 > = < −T â†1b̂4 −

√
RT (â†1â4 − b̂†1b̂4) +Rb̂†1â4 >

× < −T â2b̂
†
3 −
√
RT (â2â

†
3 − b̂2b̂

†
3) +Rb̂2â

†
3 >

< d̂†1ĉ4 >< d̂2ĉ
†
3 > = < Râ†1b̂4 −

√
RT (â†1â4 − b̂†1b̂4)− T b̂†1â4 >

× < Râ2b̂
†
3 −
√
RT (â2â

†
3 − b̂2b̂

†
3)− T b̂2â†3 >

(3.7)

Since â and b̂ are independent, we �nally obtain:
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< ĉ†1d̂4 >< ĉ2d̂
†
3 > = RT

(
< â†1â4 >< â2â

†
3 > + < b̂†1b̂4 >< b̂2b̂

†
3 >
)

−RT
(
< â†1â4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â2â

†
3 >
)

< d̂†1ĉ4 >< d̂2ĉ
†
3 > = RT

(
< â†1â4 >< â2â

†
3 > + < b̂†1b̂4 >< b̂2b̂

†
3 >
)

−RT
(
< â†1â4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â2â

†
3 >
)

(3.8)

The cross-correlators CI1I2 and CI2I1 are therefore equal, whatever the value of the QPC transmis-
sion. Furthermore, at transmission 0.5, a simple relation can be found between Eq.3.5 and Eq.3.8:

< ĉ†1ĉ4 >< ĉ2ĉ
†
3 > + < ĉ†1d̂4 >< ĉ2d̂

†
3 >= 2T 2

(
< â†1â4 >< â2â

†
3 > + < b̂†1b̂4 >< b̂2b̂

†
3 >
)

(3.9)

Eq.3.9 therefore implies that the sum of the auto and cross-correlators is equal to half the sum of the
autocorrelation of the incoming current �uctuations.

3.1.4 Current conservation

The result of the previous paragraph can be established with a simple consideration of current conser-
vation: the net current �owing into the sample Î + Î3 is necessarily equal to the net current leaving
the sample Î1 + Î2. One has therefore:

Î + Î3 = Î1 + Î2 (3.10)

Let us calculate the autocorrelation of the �uctuations of the net current �owing into the sample
< δ(Î + Î3)δ(Î

′
+ Î

′
3) >, with Î

′
= Î(t+ t′), while assuming that Î and Î3 are non-correlated:

< δ(Î + Î3)δ(Î
′
+ Î

′
3) > = < (Î + Î3)(Î

′
+ Î

′
3) > − < (Î + Î3) >< (Î

′
+ Î

′
3) >

= < ÎÎ
′
+ Î3Î

′
+ Î Î

′
3 + Î3Î

′
3 > − < (Î + Î3) >< (Î

′
+ Î

′
3) >

= < ÎÎ
′
> − < Î >< Î

′
> + < Î3Î

′
3 > − < Î3 >< Î

′
3 >

= CII + CI3I3

(3.11)

One can now use Eq.3.10 to express the left term in Eq.3.11 as a function of the output currents
Î1, Î2:

< δ(Î + Î3)δ(Î
′
+ Î

′
3) > = < δ(Î1 + Î2)δ(Î

′
1 + Î

′
2) >

= < (Î1 + Î2)(Î
′
1 + Î

′
2) > − < (Î1 + Î2) >< (Î

′
1 + Î

′
2) >

= < Î1Î
′
1 + Î2Î

′
1 + Î1Î

′
2 + Î2Î

′
2 > − < (Î1 + Î2) >< (Î

′
1 + Î

′
2) >

= CI1I1 + CI2I2 + CI1I2 + CI2I1

(3.12)

We therefore have:

86



3.2. Partition of a single-charge beam: scattering model

CII + CI3I3 = CI1I1 + CI2I2 + CI1I2 + CI2I1 (3.13)

This last equation thus gives a direct relation between the auto and cross-correlations of the output
current �uctuations, and the autocorrelation of the input current �uctuations. In particular, when the
QPC is set to transmission 0.5 (see previous paragraphs), this expression becomes:

CII + CI3I3 = 2CI1I1 + 2CI1I2 (3.14)

As we have shown in the last paragraph, the sum of the auto and cross-correlators of the output
current �uctuations is indeed equal to half the sum of the autocorrelation of the incoming current
�uctuations. Furthermore, when the current Î3 �owing into contact (B) is noiseless (for instance, if
the contact is grounded, or biased), we have CI3I3 = 0, which implies:

CII = 2CI1I1 + 2CI1I2 (3.15)

One can therefore unequivocally deduce the cross-correlation from the autocorrelation on either
output, as long as the noise of the incoming current Î is known. This is the case for the single electron
emitter in the HBT geometry, where the noise of the incoming current is precisely the noise of the
source, described and studied in the previous chapter. We can therefore use our high frequency noise
measurement setup to compare the noise at transmission 0.5 with the noise at transmission 1 of the
beam splitter (provided, of course, that the source is located between contact (A) and the QPC, and
the measurement setup connected to contact (C), see next section), and thus obtain all the information
contained in the cross-correlation.

Finally, one can also suppose that the current Î is noiseless, as it would be the case when the escape
time of the single electron emitter becomes much smaller than the half-period (see previous chapter),
or when no source is added, and contact (A) is simply biased. In this case, CII = 0, and one �nds:

CI1I1 = −CI1I2 (3.16)

When both incoming current are noiseless, the auto and cross-correlation are thus opposite. This
result was established in [95] in the case of metallic di�usive conductors, and experimentally demon-
strated in [32, 96] in a two-dimensional electron gas.

3.2 Partition of a single-charge beam: scattering model

In this section, we use the scattering model presented in chapter 1 to calculate the autocorrelation of
the current �uctuation at either output of the sample3. We then present numerical calculations of the
output noise; we �nally propose several experiments using our device.

3The zero-frequency noise in a similar HBT geometry was calculated in [97] in the case of charges generated by AC
driven contacts.

87



Chapter 3. Current �uctuations in the Hanbury-Brown and Twiss geometry

Figure 3.2: Single electron emitter in the HBT geometry.

The geometry of the sample is shown on Fig.3.2: a quantum dot used as the single electron source
is inserted between contact (A) and the central QPC; we note â†, â the creation/annihilation operators
between contact (A) and the dot, and â′†, â′ the operators between the dot and the central QPC. These
operators are then linked by the Floquet scattering matrix Um(ε) de�ned in Eq.1.15:

â′(ε) =
∑
m

Um(ε)â(ε+m~Ω) (3.17)

A �nite voltage Vbias can be applied to contact (B); we will show below how this can be used to measure
the energy distribution of the emitted charges.

3.2.1 Calculation of the partition noise

We now calculate the partition noise of the single electron emitter in the HBT geometry, that is
the autocorrelation of the �uctuations of either output currents Î1, Î2, as shown in Fig3.2. As it is
demonstrated in 3.1.2, the two currents are strictly equivalent, and one only needs to replace

√
R by√

T (and vice-versa) in Eq.3.5 in order to switch from the CI1I1 to CI2I2 (the − sign in Eq.3.1 has no
importance here, since both

√
R and

√
T are found with even powers when calculating the correlation).

In this calculation, we only consider the contribution of the source (that is, terms containing â′†, â′),
since any other contribution can be removed by subtracting the noise at the pinch-o� (i.e. when the
transmission of the source's QPC D is set to zero, see previous chapter). In these conditions, the
autocorrelation of the �uctuations of the transmitted current Î1(t) are given by:

CI1I1(τ) = < δÎ1(t)δÎ1(t+ t′) >
t

=
e2

h2

∫
dε1,2,3,4 < ĉ†1ĉ4 >< ĉ2ĉ

†
3 >

×ei(ε1−ε2+ε3−ε4)t/~tei(ε3−ε4)t′/~
(3.18)

The term < ĉ†1ĉ4 >< ĉ2ĉ
†
3 > can be replaced by its expression given in Eq.3.5. The term < b̂†1b̂4 ><

b̂2b̂
†
3 >, which corresponds to the partition of the current emitted by contact (B), is suppressed when

taking into account the subtraction of the noise at the pinch-o� of the source QPC. This yields:

(< ĉ†1ĉ4 >< ĉ2ĉ
†
3 >)excess = T 2 < â′

†
1â
′
4 >< â′2â′

†
3 >

+T (1− T )
(
< â′

†
1â
′
4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â′2â′

†
3 >
) (3.19)

The term < â′
†
1â
′
4 >< â′2â′

†
3 > corresponds to the autocorrelation of the current �uctuations

emitted by the source, which is calculated in 2.2.2. The Fourier transform of the correlator CI1I1(t′),
de�ned by:
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CI1I1(ω) = 2

∫
dτe−iωτ< δÎ1(t)δÎ1(t+ t′) >

t
(3.20)

is therefore equal to the sum of the noise of the single electron source partitioned by the QPC
T 2S(ω) and a correlation term directly arising from the partition of the single charge electronic beam
emitted by the source T (1− T )C(ω):

CI1I1(ω) = T 2S(ω) + T (1− T )C(ω) (3.21)

To avoid any confusion, let us remind that the term corresponding to the partition of the current
emitted by the opposite contact (B) is suppressed by subtracting the noise at the pinch-o�.

The �rst term in Eq.3.21 has been thoroughly studied in the previous chapter; in particular, it
was shown to vanish at zero frequency, so that low-frequency noise measurements would allow to only
detect the contribution of the correlation term C(ω). We now calculate this term as a function of the
source parameters encoded in the Floquet scattering matrix Um(ε), and show that it indeed presents
a �nite zero-frequency part.

Following Eq.3.19, the correlation term C(ω) is given by:

C(ω) = 2
e2

h2

∫
dt′dε1,2,3,4

(
< â′

†
1â
′
4 >< b̂2b̂

†
3 > + < b̂†1b̂4 >< â′2â′

†
3 >
)

×ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~−ω)t′
(3.22)

C(ω) can be decomposed a sum C(ω) = Ce(ω) + Ch(ω). The two contributions Ce(ω) and Ch(ω),
which, as we will show above, correspond respectively to the contribution of electrons and holes in the
partition term C(ω), are de�ned by:

Ce(ω) = 2
e2

h2

∫
dt′dε1,2,3,4 < â′

†
1â
′
4 >< b̂2b̂

†
3 > ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~−ω)t′

= 2
e2

h2

∫
dt′dε1,2,4 < â′

†
1â
′
4 > (1− f(ε2)) ei(ε1−ε4)t/~tei((ε2−ε4)/~−ω)t′

= 2
e2

h

∫
dε1,4 < â′

†
1â
′
4 > (1− f(ε4 + ~ω)) ei(ε1−ε4)t/~t

Ch(ω) = 2
e2

h2

∫
dt′dε1,2,3,4 < b̂†1b̂4 >< â′2â′

†
3 > ei(ε1−ε2+ε3−ε4)t/~tei((ε3−ε4)/~−ω)τ

= 2
e2

h2

∫
dt′dε1,2,3 < â′2â′

†
3 > f(ε1) ei(ε3−ε2)t/~tei((ε3−ε1)/~−ω)t′

= 2
e2

h

∫
dε2,3 < â′2â′

†
3 > f(ε3 − ~ω) ei(ε3−ε2)t/~t

(3.23)

The development of the terms < â′
†
1â
′
4 > and < â′2â′

†
3 > is similar to the one performed in the

previous chapter, in Eqs.2.13-2.14. The average over time t �nally yields:

Ce(ω) = 2
e2

h

∑
m

∫
dε |Um(ε)|2 f(ε+m~Ω)(1− f(ε+ ~ω))

Ch(ω) = 2
e2

h

∑
m

∫
dε |Um(ε)|2 (1− f(ε+m~Ω))f(ε− ~ω)

(3.24)
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The correlator C(ω) is therefore given by (with ε+m ≡ ε+m~Ω, where Ω is the drive frequency):

C(ω) = 2
e2

h

∑
m

∫
dε |Um(ε)|2 (f(ε+m)(1− f(ε+ ~ω)) + (1− f(ε+m))f(ε− ~ω)) (3.25)

We use this last equation to numerically compute the partition noise as a function of the di�erent
parameters of the sample.

3.2.1.1 Biased opposite contact

As described in the beginning of this section, the opposite contact (B) can be biased with a �nite voltage
Vbias. The partition noise of the current emitted by the contact can be removed by subtracting the
noise at the pinch-o�. In these conditions, the bias voltage only shifts the Fermi function corresponding
to the b̂†, b̂ operators, so that < b̂†(ε)b̂(ε′) >= f(ε+ eVbias)δ(ε− ε′). We thus obtain:

C(ω) = 2
e2

h

∑
m

∫
dε |Um(ε)|2

(
f(ε+m)(1− f(ε+ ~ω + eVbias))

+(1− f(ε+m))f(ε− ~ω + eVbias)
) (3.26)

3.2.1.2 Zero-temperature, zero-frequency limit

At zero temperature, the Fermi functions in this equation can be replaced by �xed boundaries in the
integrals, so that

∫
dε . . . (1 − f(ε)) =

∫ +∞
0 dε . . .. Let us demonstrate that Ce(ω = 0) (Ch(ω = 0))

is proportional to the total number of electrons (holes) emitted by the source N+ (N−) during a
measurement time Tacq, which can be written as a function of the number of emitted electrons (holes)
per period n+ (n−):

N+ = f0Tacqn+ =

+∞∫
0

dε < â′
†
(ε)â′(ε) >

=

+∞∫
0

dε
∑
m,m′

|Um(ε)|2 f(ε+m)δ((m−m′)~Ω)

N− = f0Tacqn− =

0∫
−∞

dε < â′(ε)â′
†
(ε) >

=

0∫
−∞

dε
∑
m,m′

|Um(ε)|2 (1− f(ε+m))δ((m−m′)~Ω)

(3.27)

where Tacq is the total acquisition time, and f0 the drive frequency. The Dirac function δ((m−m′)~Ω)
can be written as:
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3.2. Partition of a single-charge beam: scattering model

δ((m−m′)~Ω) =
1

h

Tacq/2∫
−Tacq/2

dtei(m−m
′)Ωt =

Tacq
h
δm,m′ (3.28)

When Tacq � 2π/Ω, we obtain, at zero temperature:

f0n+ =
1

h

+∞∫
0

dε
∑
m

|Um(ε)|2 f(ε+m)

=
1

h

∫
dε
∑
m

|Um(ε)|2 f(ε+m)(1− f(ε))

f0n− =
1

h

0∫
−∞

dε
∑
m

|Um(ε)|2 (1− f(ε+m))

=
1

h

∫
dε
∑
m

|Um(ε)|2 f(ε)(1− f(ε+m))

(3.29)

By introducing this expression in Eq.3.25 for ω = 0, one �nally obtains:

C(ω = 0) = 2e2f0(n+ + n−) (3.30)

At zero frequency and zero temperature, the correlator C(ω = 0) is therefore proportional to the
sum of the number of electrons emitted per period and the number of holes emitted per period. One can
also write it as a function of the number of electron/hole pairs emitted per period ne/h = (n+ +n−)/2.
Since the autocorrelation of the current �uctuations emitted by the source vanish at zero frequency
(see chapter 2), the autocorrelation of the current �uctuations after partition by the QPC CI1I1(ω = 0)
is then equal to:

CI1I1(ω = 0) = 4e2f0T (1− T )ne/h (3.31)

When the QPC transmission is set to 0.5, CI1I1(ω = 0) (at zero temperature) is therefore a direct
measurement of the number of electron/hole pairs emitted per period, in units of e2f0. This property
was �rst established in [64], using a Floquet scattering formalism and considering a single electronic
level in the dot.

• Biased opposite contact
When calculating the derivative of Eq.3.26 with respect to the bias voltage applied to the opposite
contact Vbias, one obtains, for ω = 0:

∂C

∂Vbias
(ω = 0) = 2

e2

h

∑
m

∫
dε |Um(ε)|2

(
f(ε+m)(−edf

dε
(ε+ eVbias))

−(1− f(ε+m))(−edf
dε

(ε+ eVbias))
) (3.32)

At zero temperature, (−edfdε(ε+ eVbias)) = eδ(ε+ eVbias). We thus obtain:
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∂C

∂Vbias
(ω = 0) = 2

e2

h

∑
m

e |Um(−eVbias)|2
(
f(−eVbias +m)− (1− f(−eVbias +m))

)

= 2
e2

h

(
−Ne(−eVbias) +Nh(−eVbias)

)
(3.33)

where Ne(−eVbias) (Nh(−eVbias)) is the number of electrons (holes) per energy unit at energy
−eVbias. The derivative of C(ω = 0) with respect to the bias voltage applied to the opposite contact
therefore measures the energy distribution of the emitted charges.

3.2.2 Numerical computations

We now present numerical computation of the noise after partition, both at zero frequency (thus only
considering the contribution of C(ω = 0)) and at �nite frequency (thus considering both C(ω) and
S(ω)), for di�erent parameters.

3.2.2.1 Zero-temperature, zero-frequency

We have plotted in Fig.3.3 the dependence of the zero-frequency part of the noise after partition by the
QPC CI1I1(ω = 0) = T (1−T )C(ω = 0) as a function of the transmission of the central QPC T and the
transmission of the dot's QPC D. The noise is calculated in the ideal injection conditions (2eVexc = ∆,
φ0 = 0) at zero temperature. The level spacing ∆ is set to 3 K, corresponding to the level spacing
of sample S434-8 studied in this chapter; the drive frequency f0 is equal to 1.5 GHz. The variation
of the noise with the central QPC transmission T is trivial, since it only contributes in the T (1 − T )
prefactor at zero frequency. The maximum value of the curve as a function of T (for T = 0.5) is equal
to the number of emitted electron/hole pairs per cycle, which depends on the dot's QPC transmission
D. For small values of D, the number of emitted electron/hole pairs vanishes because the escape time
becomes much larger than the half-period of the drive. When D increases, ne/h becomes equal to one,
thus demonstrating the emission of a single electron followed by a single hole in a cycle. Furthermore,
ne/h is equal to unity for a wide range of values of D (typically 0.1− 0.8), indicating that a wide range
of escape times is available while the single particle emission remains enforced.

When D becomes close to one, the number of emitted electron/hole pairs increases: indeed, for
large transmissions, the quantization of the levels in the dot is lost, so that the source is similar to the
type of source mentioned in the introduction, where the Fermi sea is modulated periodically in order
to emit single charges. As demonstrated in [57], a Lorentzian-shaped pulse would allow to suppress
the emission of additional electron/hole pairs.

• Variation with the dot equilibrium potential and shape of the drive
The results shown in chapter 2 indicate that depending on the dot equilibrium potential (that is, on
φ0) and the number of odd harmonics in the excitation drive, additional charge transfer processes may
take place, in particular in the resonant case φ0 = π, for a low number of harmonics.

One therefore expects the number of emitted electron/hole pairs to increase in the resonant case.
We have plotted in Fig.3.4 the correlation term T (1 − T )C(ω = 0) for T = 0.5, as a function of the
dot's QPC transmission D and the dot equilibrium potential, for several values of the number of odd
harmonics. As expected, the number of emitted electron/hole pairs increases signi�cantly (up to a
factor 3) for φ0 = π, indicating that additional charge transfer processes indeed occur within this
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3.2. Partition of a single-charge beam: scattering model

Figure 3.3: Zero-frequency part of the partition noise CI1I1(ω = 0) as a function of
the dot QPC transmission D and the central QPC transmission T , at zero temper-
ature. For a �xed transmission D, the partition noise (in units of e2f0) is given by
4T (1− T )ne/h(D).

scattering formalism. Furthermore, the maximum value of additional electron/hole pairs is reached for
two odd harmonics, which corresponds to an excitation signal presenting the largest ripples.

One can note that at transmission unity, the partition noise becomes independent of the dot
equilibrium potential since the density of states becomes uniform.

3.2.2.2 Zero-temperature, finite frequency

When the measurement frequency ω becomes �nite, one must take into account the contribution
of the intrinsic noise generated by the source S(ω). Particularly, in the con�guration described in
Fig.3.2, when the central QPC transmission becomes close to unity, S(ω) becomes preponderant and
the situation studied in chapter 2 is recovered. Since S(ω) and C(ω) are by construction independent
of the transmission T , one can directly compare them, particularly their respective variation with the
measurement frequency ω. This variation is plotted in Fig.3.5, for several values of the dot transmission
D. For a given transmission, S(ω) and C(ω) are quite comparable, except at low frequencies, for which
S(ω) vanishes. At high frequencies, S(ω) and C(ω) coincide because of the ∆/2 frequency cuto�: in
the anti-resonant case φ0 = 0, the system cannot emit photons at energies above ∆/2. The width of
the cuto� depends only on the transmission D, more precisely on the width of the energy levels of the
dot D∆. When the transmission D becomes small, S(ω) and C(ω) coincide over a wide range of the
measurement frequency. Indeed, for small transmissions D, S(ω) is essentially shot noise; one can then
easily demonstrate, using Eq.55 in [79], that C(ω 6= 0) = S(ω 6= 0), see appendix A.5. The frequency
dependence of S(ω) and C(ω) can give access to the temporal variation of the cross-correlation CI1I2(t′):
indeed, as stated in Eq.3.15, CI1I2(t′) can be directly deduced from the autocorrelation of the current
�uctuations upstream and downstream of the QPC for T = 0.5: CI1I2(t′) = CII(t

′)/2 − CI1I1(t′). In
the frequency domain, this reads, using Eq.3.21 with T = 0.5:
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Chapter 3. Current �uctuations in the Hanbury-Brown and Twiss geometry

Figure 3.4: a) variation of CI1I1(ω = 0) for T = 0.5 with the transmission D and the
dot equilibrium potential, for an excitation drive containing 3 odd harmonics. In the
resonant case φ0 = π, the number of emitted electron/hole pairs per period increases
signi�cantly. b) variation of CI1I1(ω = 0) for T = 0.5 with D, in both resonant
(φ0 = π) and anti-resonant (φ0 = 0) cases, for several shapes of the excitation drive.

CI1I2(ω) = (S(ω)− C(ω))/4 (3.34)

We have plotted in Fig.3.6a the cross-correlation in the frequency domain CI1I2(ω), calculated
using the data presented in Fig.3.5, for di�erent values of the transmission D. All data present a dip
at zero frequency, corresponding to the zero-frequency cuto� of S(ω) observed in Fig.3.5. When D
increases, so do the width and depth of the dip, re�ecting the increasing in�uence of the quantum
jitter in the noise. For large values of the frequency, all datasets are equal to zero because of the ∆/2
high-frequency cuto� displayed by both S(ω) and C(ω).

94



3.2. Partition of a single-charge beam: scattering model

Figure 3.5: Variation of C(ω) (circles) and S(ω) (full lines) with the measurement
frequency, in the φ0 = 0 case, at zero temperature. For small transmissions D, C(ω)
and S(ω) coincide at �nite frequency. Here, ∆ = 3 K, and Ω = 70 mK.

The temporal variation of the cross-correlation CI1I2(t′), obtained by calculating the inverse Fourier
transform of the data discussed above, is plotted in Fig.3.6b. The cross-correlation presents a nega-
tive dip at zero-time which corresponds to the expected antibunching of the charges at short times,
demonstrating single particle emission. The width of the dips, given by the escape time τ , decreases
with the dot QPC transmission D, re�ecting the charge memory of the dot mentioned in 2.3.1: at low
transmission, the escape time becomes larger than the half-period, and the source cannot emit a hole
until the electron is emitted (and vice-versa). We have compared the calculated data at D = 0.5 with
an analytic formula deduced from the heuristic model: at large enough transmission, the dot behaves as

an ideal single electron source, so that the cross-correlation of the output currents < Î1(t)Î2(t+ t′) >
t

is equal to zero. The cross-correlation signal is then given by the sole term −< Î1(t) >< Î2(t+ t′) >
t
,

which, according to Eq.2.26, is equal to − e2f0

τ e−|t
′|/τ . The excellent agreement between the scattering

model and this heuristic formula (plotted as circles in Fig.3.6b) demonstrates once again that the
scattering model e�ectively describes the mesoscopic capacitor as an ideal single electron emitter when
using the optimal operating conditions.

• Dependence of the noise at �nite frequency on the QPC transmission T

We have plotted in Fig.3.7 the noise after partition at the drive frequency Ω CI1I1(Ω) = T 2S(Ω)+T (1−
T )C(Ω) as a function of the QPC transmission T , for several values of the dot QPC transmission D.
The shape of the curve highly depends on the transmission D, gradually changing from a monotonically
increasing polynomial for small D (for which S(Ω) and C(Ω) are comparable) to an exact T (1 − T )
curve for D = 1 (S(Ω) vanishes, while C(Ω) remains �nite). Knowing the precise value of S(Ω) for a
given transmission D allows to easily interpret the noise CI1I1(Ω).
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Figure 3.6: Calculation of the frequency (a) and time (b) variations of the cross-
correlation, for several values of the dot QPC transmission D, at T = 0.5. Circles in

b): analytic formula CI1I2(t′) = − e
2f0
τ e−|t

′|/τ , derived from the heuristic model.

3.2.2.3 Biased opposite contact

As demonstrated by Eq.3.33, the derivative of the correlation C(ω = 0) with respect to the bias
voltage Vbias measures the energy distribution of the emitted charges. As such, it should display a
strong dependence on the dot equilibrium potential, especially between the anti-resonant case φ0 = 0
and the resonant case φ0 = π. We have plotted in Fig.3.8 the dependence of ∂C

∂Vbias
(ω = 0) as a function

of Vbias, in the anti-resonant and resonant cases, for several values of the dot QPC transmission D. As
expected, for φ0 = 0, ∂C

∂Vbias
(ω = 0) displays a peak (dip) at eVbias = −∆/2 (eVbias = +∆/2), with a

width proportional D∆: the single electron source indeed emits charges at an energy ±∆/2, with an
energy width D∆. In the resonant case, the energy of the emitted charges is centered on zero: the
charges are mainly emitted in resonance with the Fermi energy.
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3.2. Partition of a single-charge beam: scattering model

Figure 3.7: Variation of CI1I1(ω = Ω) with the central QPC transmission T , for
several values of D. For large D, the noise becomes comparable to the T (1− T ) limit
(dashed line).

3.2.2.4 Effect of the temperature

• Detection of electron/hole pairs
When one increases the temperature in the expression of the number of emitted electrons and emitted
holes per period n+ and n− given in Eq.3.29, the Fermi functions ((1 − f(ε)) for electrons, f(ε) for
holes), which de�ne the boundaries of the integrals at zero temperature, start to broaden. As a result,
the value of the integrals diminishes, because the number of emitted electrons (holes) per energy unit
Ne(ε) (Nh(ε)) is integrated with a smaller weight for positive (negative) energies close to the Fermi
level. At �nite temperature, the autocorrelation of the current �uctuations after partition by the QPC
CI1I1(ω = 0) (for T = 0.5) is therefore smaller than the total number of electron/hole pairs emitted
per period: the accuracy of electron/hole pairs detection is reduced by the temperature. One expects
this e�ect to be particularly strong when charges are emitted close to the Fermi energy, that is in the
φ0 = π regime, or for large transmission D. We have plotted in Fig.3.9 the di�erence between the
zero-frequency noise CI1I1(ω = 0) in the φ0 = π regime and in the φ0 = 0 regime (for T = 0.5), for an
excitation square signal containing 1 (black), 2 (red), 3 (blue) and 10 (dark cyan) odd harmonics, at
three di�erent temperatures (0 mK (hollow symbols), 100 mK (full lines), 300 mK (full symbols)). As
expected, the di�erence signi�cantly diminishes when the temperature is increased: less electron/hole
pairs are detected. At 300 mK, the di�erence becomes negative: even though more electron/hole pairs
are generated when the charges are emitted close to the Fermi energy, the systems detects less of them
than in the anti-resonant regime. This e�ect is also present at 100 mK for 10 odd harmonics. Working
at low enough temperature is therefore crucial in order to precisely measure the number of pairs
emitted per period, especially when one takes into account the �nite sensitivity of the measurement,
which yields error bars typically equal to 0.1− 0.2e2f0.

• Energy distribution of the emitted charges
At �nite temperature, the derivative of C(ω = 0) with respect to the bias voltage Vbias measures
the energy distribution of the emitted charges, convoluted by the derivative of the Fermi function.
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Figure 3.8: Variation of ∂C(ω = 0)/∂Vbias with Vbias, probing the energy distribu-
tion of the emitted charges. a) anti-resonant case φ0 = 0: the charges are emitted
at an energy ±∆/2 above/below the Fermi level. The dot QPC transmission changes
the energy width of the emitted charges. b) resonant case φ0 = π: the energy of the
emitted charges is not well-de�ned; a large portion of it is centered around the Fermi
level.

One therefore expects the peaks and dips in the energy distribution function to be smoothed by the
temperature. We have plotted in Fig.3.10 the calculated derivative of C(ω = 0) with respect to Vbias
at transmission D = 0.2, for three di�erent temperatures, in the φ0 = 0 (upper panel) and φ0 = π
(lower panel) regimes. As for the detection of electron/hole pairs presented above, the temperature
signi�cantly diminishes the accuracy of the measurement of the emitted charges energy distribution:
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3.2. Partition of a single-charge beam: scattering model

Figure 3.9: E�ect of the temperature on the di�erence CI1I1(ω = 0, φ0 = π) −
CI1I1(ω = 0, φ0 = 0) (plotted as a function of the transmission D; T = 0.5). Dashed
lines: zero temperature limit Tel = 0 K. Full lines: Tel = 100 mK. Thin lines with
symbols: Tel = 300 mK. The colors correspond to the number of harmonics in the
excitation drive: 1 (green), 2 (blue), 3 (red) and 10 (black). For any shape of the
drive, the measured di�erence diminishes with the temperature.

at 100 mK, the peak corresponding to the electron emitted at energy ∆/2 in the φ0 = 0 regime is
reduced by ∼ 60%, while the variations are almost suppressed at 500 mK.

A �nite temperature (within reasonable bounds, that is . 100 mK) is less problematic for this
measurement than for the measurement of the variation of the number of emitted electron/hole pair
with the dot static potential φ0 described in the previous paragraph, since the detected variable is
C(ω = 0), which typical levels are not a�ected by the temperature: only the derivative of C(ω = 0)
with respect to Vbias) changes with the temperature (see insets in Fig.3.10: at 100 mK (red line), the
variation of C(ω = 0) with Vbias is quite similar to the zero-temperature case (black line)).

3.2.3 Experiment proposals

Based on the numerical results presented above, one can consider several measurements using the HBT
geometry:

• Measurement of the number of emitted electron/holes pairs per period
Provided that the electronic temperature is low enough, one can measure the zero-frequency part of
the noise after partition in order to measure the number of emitted electron/hole pairs per period in
several operating conditions of the source. Indeed, in the study of the noise of the source presented
in the previous chapter, oscillations in the noise S(Ω) were observed as a function of the gate voltage
Vg. We have shown that these oscillations correspond to an increase in the noise in the φ0 = π regime,
where charges are emitted close to the Fermi energy; this increase is due to the limited harmonic
content of the excitation signal, which causes the highest occupied level in the dot to oscillate rapidly
in front of the Fermi level. It is thus highly interesting to link the increase in S(Ω) with the variation
of the number of emitted electron/hole pairs, in order to characterize the processes occurring when a
charge is emitted close to the Fermi energy. One can also study the variation of the number of emitted
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Figure 3.10: ∂C(ω = 0)/∂Vbias versus Vbias, for increasing temperatures: 0 K
(black), 100 mK (red), 500 mK (blue). a) anti-resonant case φ0 = 0. b) resonant case
φ0 = π. Insets: variation of C(ω = 0) with Vbias, for the same temperatures.

pairs in the φ0 = π regime with the excitation frequency. Indeed, one expects the number of emitted
electron/hole pairs to increase when the driving frequency is lowered: it was predicted in [64] that the
number of electron/hole pairs generated by placing the electronic level in the dot in resonance with the
Fermi energy during a time t logarithmically diverges when t increases (i.e. when the driving frequency
is lowered). This e�ect is related to the "`orthogonality catastrophe"' �rst predicted in [98].
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• Cross-correlation

Following Eq.3.15, one can deduce the cross-correlation of the current �uctuations after partition from
the measurement of the noise (autocorrelation) before and after partition. It would then be possible to
measure the temporal variations of the cross-correlation and demonstrate, similarly to quantum optics,
negative correlations at zero-time (see Fig.3.6). This representation however requires the measurement
of the full spectrum of the autocorrelation. This is challenging since the measurement bandwidth of the
high-frequency noise measurement setup should be increased up to several tens of GHz. Nonetheless, for
transmissions below 0.2, the typical variation scale of the cross-correlation in the frequency domain is
comparable with the upper cuto� frequency of the impedance transformer and the cryogenic ampli�ers
of our RF noise measurement setup, that is ∼ 4.5 GHz = 3f0 = 225 mK (see 4.1). Measuring the
temporal variation of the cross-correlation for small values of the transmission is thus within reach,
provided that the bandwidth of the RF measurement setup is extended to its maximum value.

• Measurement of the emitted charges energy distribution, tomography

The measurement of the variations of the zero-frequency partition noise with the bias voltage Vbias
gives access to the energy distribution of the emitted charges. This opens the way to a wide range of
experiments, such as the measurement of the relaxation of the emitted charges as a function of the
distance between the source and the central QPC. As predicted by Charles Grenier and collaborators
in [65], one can generalize this technique and apply a high-frequency voltage to the opposite contact
in order to measure the o�-diagonal terms of the density matrix of the emitted charge (the diagonal
being the energy distribution), thus performing a full quantum tomography of the emitted charge.
One can then once again study the evolution of the density matrix with the propagation length,
thus characterizing the relaxation and decoherence processes occurring in Quantum Hall E�ect edge
channels at the single charge scale.

• Energy relaxation between QHE edge channels

The HBT geometry can be used to study the energy exchanges between adjacent Quantum Hall E�ect
edge channels: indeed, while our scattering model only considers the outer edge channels, it was recently
shown [24, 25] that energy transfer processes occur between edge channels over typical length of a few
micrometers. Using a central QPC, one can then measure the amount of energy transmitted from the
outer channel, on which charges are emitted, to the inner channel at �lling factor ν = 2. Using the
single electron emitter allows to study the relaxation to the inner channel at the single charge level, as a
function of the energy of the emitted charge. Furthermore, measuring the zero-frequency noise re�ected
by the QPC at transmission 1.5 (outer channel fully transmitted to the high-frequency measurement
contact, inner channel partially re�ected to the low-frequency measurement contact) allows to count
the number of electron/hole pairs generated in the inner channel.

3.3 Experimental setup

We now present the setup used to perform single charge experiments in the HBT geometry. The sample
has two outputs, corresponding to each output of the QPC, and is connected to two noise measurement
setups (high and low frequency) designed to detect noise levels of the order of e2f0, with f0 = 1.5 GHz.
We �rst describe the geometry of the sample, then the whole setup. The noise measurement lines
are described in detail in the next chapter; in particular, we have increased the bandwidth of the
high-frequency noise measurement setup used to perform the experiments presented in chapter 2.
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3.3.1 Sample geometry

The samples used in the experiments in the HBT geometry (batch S434 ) where made at Laboratoire de
Photonique et Nanostructures by Yong Jin. The two-dimensional electron gas has a nominal density
equal to 1.8× 1011 cm−2, and a nominal mobility equal to 2.4× 106 cm2/ Vs.

a) b)

c)

Figure 3.11: Optical view (in false colors) of the samples used in the HBT measure-
ments. a), b) and c) correspond to successive zooms. The yellow arrows illustrate
the trajectories of electrons along the edge channels in the QHE regime.

We show an optical view of a typical sample from this batch in Fig.3.11: similarly to sample S528-
11 , studied in the previous chapter, most of the surface of the sample is covered by an Au ground plane
to reduce the parasitic couplings (high frequency couplings, as well as capacitive couplings between
the di�erent QPC gates). We however have added two additional ohmic contacts (G1, G2), connected
to the ground plane, that are placed between the measurement contact (M1,M2) and the bias contact
(B1, B2) on each side of the two-dimensional electron gas. This geometry allows to keep the impedance
of the sample seen by each of the two measurement lines independent of the state of the bias contacts:
one can therefore either ground them, leave them �oating, or connect them to a source with no in�uence
on the measurement lines. The sample has a symmetrical geometry, thus including two quantum dots
(one on each input channel of the QPC); this geometry, aimed towards Hong-Ou-Mandel electron
collision experiments [12], allows us to select the source presenting the most satisfying characteristics,
particularly regarding its response to the dot QPC gate voltage Vg compared to the the ideal description
given in the �rst chapter (regularity of the level spacing, ideal QPC transmission law). The width of
the quantum dot in sample S434-8, studied in the next section, is slightly larger than the size of sample
S528-11 : 800 nm for S434-8, 600 nm for sample S528-11 . The distance between each source and the
central QPC is ∼ 5 µm.
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Figure 3.12: Schematic view of the con�guration of the HBT experiment, based on a
SEM picture of the sample (false colors). The green arrows illustrate the trajectories
of electrons along the edge channels in the QHE regime, and red circles symbolize
the emitted single charges. RF signals are measured in transmission on the 120Ω
load, while DC signals are measured in re�ection on the 3 kΩ load. The other source
(bottom right) is not used.

3.3.2 Setup

The sample is mounted on the sample holder described in 4.1 (see also Fig.2.12a). We have added a
second 40 GHz, 50Ω RF excitation line in order to connect the top gate of each quantum dot to one of
the two lines. After selecting the quantum dot with the best characteristics, the con�guration of the
sample is as shown in Fig.3.12: the transmission of the central QPC T is tuned with the gate voltage
Vqpc, while the transmission of the dot QPC D is tuned with the gate voltage Vg. The RF excitation
voltage Vexc is generated using either the Agilent 81134A microwave pulse/pattern generator used in
the previous chapter, or an Anritsu MT1810A signal generator, which presents a larger bandwidth
than the Agilent 81134A (∼ 10 odd harmonics for f0 = 1.5 GHz), and shorter rise times (35ps). In
addition to the RF excitation voltage Vexc, we can apply a constant gate voltage VDC to the top gate
of the quantum dot, similarly to the �rst chapter. The gates of the second quantum dot are grounded.
The opposite contact can be biased with the voltage Vbias. The ohmic contact collecting the single
charges re�ected by the QPC (that is, on the same side of the QPC as the source) is shunted by a 3 kΩ
load, connected to the low-frequency noise measurement setup; the ohmic contact collecting the single
charges transmitted by the QPC (that is, on the other side of the QPC) is shunted by a 120Ω load,
connected to the high-frequency noise measurement setup. We can therefore measure the transmission
of the central QPC as a function of Vqpc both at high frequency (between the dot top gate and the
RF measurement contact), and at low frequency (between the biased contact and the low frequency
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measurement contact). The low-frequency measurements are performed at 1.2 kHz using a lock-in
detection.

3.4 Preliminary results

We now present results of the experimental measurements performed with sample S434-8, at a base
temperature of the dilution refrigerator Tmc ≈ 65 mK. We �rst present a characterization of the
sample (two-dimensional electron gas, central QPC, source and couplings between the di�erent QPC
gates); we then present measurements of the noise after partition by the central QPC at high and low
frequencies.

3.4.1 Characterization of sample S434-8

3.4.1.1 Two-dimensional electron gas

While we had to rely, for the previous samples, on the nominal value of the electron density of each
batch of samples to estimate the value of the magnetic �eld to apply for a given �lling factor, the
new geometry (particularly, the biased contact) allows to precisely study the conductance response of
the two-dimensional electron gas to an applied magnetic �eld. We have measured the transmission

Figure 3.13: Measurement of the two-point resistance between the bias contact and
the measurement contact as a function of the magnetic �eld. For magnetic �elds larger
than 1 T, the resistance presents plateaus corresponding to integer values of the �lling
factor. We focus our study for B = −3.9 T, indicated by the dashed line.

between the biased contact and the DC measurement contact, in a two-point probe con�guration.
The variation of the resistance between the two contacts as a function of the magnetic �eld B for
a fully opened central QPC (Vqpc = 0) is plotted in Fig.3.13. As expected in Quantum Hall E�ect
systems, the resistance presents a series of plateaus at high magnetic �eld at integer fractions of the
resistance quantum RK ≈ 25.8 kΩ. These plateaus correspond to integer �lling factors of the QHE,
where electrons propagate on edge channels without backscattering. The plateau corresponding to
ν = 2 (R = RK/2 ≈ 12.9 kΩ) appears between B ≈ −3.9 T and B ≈ −4.7 T. Here, the values of the
applied magnetic �eld are negative, which corresponds to the correct con�guration where the electrons
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in the edge channels �ow from the biased contact towards the QPC, instead of towards the grounded
contact next to the biased contact (see Fig.3.12).

The low-frequency transmission of the central QPC is plotted in Fig.3.14 as a function of the
magnetic �eld B and the QPC gate voltage Vqpc. We measure the voltage drop across the low-frequency
measurement impedance R0 = 3 kΩ (see Fig.3.12), connected in parallel with the impedance of the two-
dimension electron gas RK/ν. The measured voltage Vout is then proportional to the current I �owing
from the central QPC to the low-frequency measurement contact with Vout = I ×R0RK/(νR0 +RK).
The current I is itself given by the Landauer formula:

I =

ν∑
i=1

Ti
RK

Vbias =

ν∑
i=1

Ti
e2

h
Vbias (3.35)

where Ti is the transmission of the central QPC for the i−th channel. The measured voltage can
therefore be written as a function of the bias voltage:

Vout =
R0

νR0 +RK

ν∑
i=1

TiVbias (3.36)

The height of the conductance steps therefore depends on the total number of edge channels ν, and
decreases as the magnetic �eld is lowered. This representation allows to choose a magnetic �eld
corresponding to an integer �lling factor, for which the conductance of the central QPC presents clear
quantized plateaus (in number equal to the �lling factor). For consistency with other experiments
aimed towards the realization of electron quantum optics experiments in two-dimensional electron
gases [15, 5, 18, 19, 24, 25], we focus our study for a magnetic �eld B = −3.9 T, corresponding to a
�lling factor ν = 2 (highlighted in red in Fig.3.14. At this �lling factor, the electron phase coherence
length is well known (20 µm at 20 mK, see [19]), as well as the inelastic length, characterizing the
energy exchanges between the two edge channels (2.5 µm for an energy di�erence between the two
channels equal to 115 mK, see [25]).

Lastly, Fig.3.14 shows that the irregularities in the QPC transmission law (particularly, the reso-
nances) increase at high magnetic �eld; this can be clearly seen for |B| > 3 T (�lling factors smaller
than 2).

3.4.1.2 Central QPC

The study of the transmission law of the central QPC allows to check the consistency between high-
frequency and low-frequency measurements: indeed, our dilution refrigerator was originally devoted
to microwave-frequency measurements, which do not require the level of precaution regarding ground
de�nition as low-frequency measurements do (especially regarding ground loops). In particular, the
room-temperature ampli�ers of the high-frequency measurement setup (see 4.1.1.2) can be a source of
large ground loops through their power supply unit.

We have therefore measured the transmission of the central QPC as a function of its gate voltage
Vqpc both at high (f0 = 1.5 GHz, transmission between the dot top-gate and the RF measurement
contact) and low (1.2 kHz, transmission between the biased contact and the DC measurement contact)
frequency. For the high-frequency measurement, the dot QPC is pinched o�, so that we only consider
the capacitive coupling between the dot top-gate and the edge channels. The comparison between the
two traces (normalized as transmission) after optimization of ground de�nition is shown on Fig.3.15:
we have only plotted the transmission of the �rst channel at high frequency (black circles), since the
coupling between the dot top-gate and the outer and inner edge channels are di�erent. For the outer
channel, the agreement between high and low frequency (the latter being shown as the red line) is

105



Chapter 3. Current �uctuations in the Hanbury-Brown and Twiss geometry

Figure 3.14: Conductance of the central QPC as a function of Vqpc and the magnetic
�eld: as the magnetic �led increases, the number of plateaus corresponding to a
quantized conductance in units of e2/h decreases. The conductance at B = −3.9 T,
corresponding to a �lling factor ν = 2, is emphasized in red.

excellent4, except for a small discrepancy due to a resonance around Vqpc = −1 V (see inset), where
the transmission becomes energy dependent.

Figure 3.15: Measured transmission of the central QPC as a function of Vqpc, at ν =
2. Red line: low-frequency measurement (1.2 kHz). Black circles: RF measurement
(1.5 GHz). Inset: close-up view of the transmission of the outer channel versus Vqpc.

4This result was �rst observed in [99].
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The results shown on Fig.3.15 allow to directly plot the measured partition noise at high and
low-frequency as a function of the QPC transmission T .

3.4.1.3 Single electron source

We have characterized the single electron source of sample S434-8 using the measurements of the �rst
harmonic of the average AC current described in chapter 1. To perform these measurements, we have
set the central QPC gate voltage Vqpc to zero, so as to leave the central QPC fully open (see Fig.3.15).

The temperature calibration of the source (see 1.3.2.3) yields a level spacing ∆ ≈ 3 K, and a
residual electronic temperature T0 ≈ 70 mK.

The variation of the modulus of the �rst harmonic |IΩ| as a function of the dot QPC gate voltage
Vg and the excitation amplitude Vexc is plotted in Fig.3.16. While the diamonds corresponding to
the quantization of the �rst harmonic in units of 2ef0 (described in 1.4.3.2) are observed, the graph
presents some discrepancies with the theoretical model (see for example Fig.1.17, lower panel): one can
observe diamond substructures (e.g. for Vg ≈ −580 mV), which appear at high excitation voltages.
These substructures might be related to resonances in the QPC transmission; one can nonetheless
discard them by simply choosing an operating point of the source where no such substructures are
observed (e.g. for Vg ≈ −585 mV indicated by the intersection of the dashed lines).

Figure 3.16: Two-dimensional plot of the �rst harmonic of the average AC current
emitted by the single electron source versus Vg and Vexc, for sample S434-8. The
intersection of the dashed lines corresponds to the optimal operating conditions of the
source in the partition noise measurements.

More critical is the loss of current quantization (observed as a complete blurring of the diamonds)
for Vg = −585 mV↔ −590 mV. This is caused by a large resonance in the QPC transmission, where
the transmission abruptly rises to a value close to unity (hence the loss of quantization), then decreases
to a value where the quantization is recovered. This resonance is particularly troublesome because it
occurs at a gate voltage range where the phase of the current undergoes its maximum variation for
an ideal smooth transmission law. We have plotted in Fig.3.17a the real and imaginary part of the
measured �rst harmonic for 2eVexc = ∆ as a function of the QPC gate voltage Vg (full lines), as
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well as the calculated current using an ideal QPC transmission law (see Eq.1.20) with the parameters
Vg0 = −0.567 V and ∆V = 7 mV (dashed lines). In order to try to reproduce the experimental results,
we have modeled the resonance with a Lorentzian curve (slightly skewed towards small negative Vg,
see Fig.3.17b). The calculated current is shown in dotted lines: although they reasonably reproduce
the experimental data for gate voltages above −0.59 V, it is not possible to reproduce the behavior
of the experimental data for Vg = −0.61 V ↔ −0.59 V, where the imaginary part of the current is
systematically larger than the real part. This behavior is not consistent with the RC-circuit description
of the source presented in the �rst chapter.

In order to reproduce the experimental results, one would need to take into account the fact that
the phase of the electron visiting the quantum dot can undergo a large variation as it comes across the
localized state creating the resonance in the QPC: for instance, it was shown in [100] that the phase
of electrons in an interferometer is shifted when a localized state is inserted in one of the two arms of
the interferometer. In [100], a small tunable quantum dot is used as the localized state, and one can
control the number of electrons in the dot; the phase shift can then be as large as π when an electron
is added in the dot.

Figure 3.17: Real (black line) and imaginary (red line) parts of the �rst harmonic
versus Vg, for 2eVexc = ∆ (lower panel). Dashed lines: calculation of the current with
the QPC transmission law presenting a resonance at Vg = −0.586 V (red line in the
upper panel). Dotted lines: calculation of the current with the QPC transmission law
presenting a resonance at Vg = −0.589 V (blue line in the upper panel). The black line
in the upper panel corresponds to an ideal Fermi-like transmission law (parameters
given in the text).
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Because of this large resonance, the description of the source as an RC-circuit is not valid for gate
voltages below Vg = −0.58 V. In particular, one cannot extract the escape time in this range of gate
voltages from the measurement of the real and imaginary part of the �rst harmonic. Nonetheless, rele-
vant single electron experiments can be performed for gate voltages above Vg = −0.58 V, corresponding
to QPC transmission above ∼ 0.35.

3.4.1.4 Couplings between the gates

In order to perform a typical experiment where we measure the noise as a function of the transmission
of the dot QPC D while keeping the central QPC transmission T equal to 0.5, one needs to estimate the
coupling between the di�erent gates of the sample. Indeed, if the coupling between the dot QPC gates
and the central QPC gate is �nite, changing the dot QPC gate voltage Vg will result in a change in the
central QPC transmission T . If we were to measure the noise as a function of Vg while keeping Vqpc
constant, the result would yield a non-negligible deviation caused by changes in the transmission T .
It is therefore crucial to precisely determine the coupling between the two gates, so as to compensates
the changes in the transmission T when Vg is swept. We have extracted the in�uence of the dot QPC

Figure 3.18: Transmission of the average AC current emitted by the source by the
central QPC (black line), along with the DC transmission (red line). A �nite portion
of the single electron source signal is measured on the inner channel (transmission > 1
for the black line).

gate voltage Vg on the central QPC transmission from the low frequency measurements of the central
QPC transmission as a function of the gate voltages Vg and Vqpc: we measure the transmission T as
a function of the central QPC gate voltage Vqpc for several values of Vg. If the coupling between the
two gates is zero, one expects to measure the transmission trace shown before (Fig.3.15), una�ected
by the changes in Vg. For a �nite coupling, the transmission traces are slightly shifted as Vg changes.
We use several points in the transmission trace, including the sharp resonance at low transmission (see
Fig.3.15), to determine the coupling between Vg and Vqpc: we �nd δVqpc = 0.02δVg. In any experiment
requiring a �xed central QPC transmission T , we �rst set the dot to the pinch-o� (Vg = −0.635 V), and
set the transmission T to its speci�ed value. We then open the dot QPC by changing its gate voltage
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Vg by the value δVg, while automatically compensating the e�ect on the central QPC by changing its
gate voltage Vqpc by the value −0.02δVg. These automatic compensation techniques are well known
in systems presenting a large number of metallic gates, such as double quantum dot structures in
two-dimensional electron gases [101, 102].

We take into account the in�uence of the central QPC gates on the dot QPC gates by simply
measuring the average AC current emitted by the source as a function of Vg, for di�erent values of
Vqpc. We obtain AC current traces similar to Fig.3.17, slightly shifted by the change in Vqpc. Measuring
the same traces at a lower excitation amplitude allows to entirely determine the state of the quantum
dot (transmission D, equilibrium potential φ0) for any given set of gate voltages (Vg, Vqpc).

We �nally neglect the in�uence of the top gate DC voltage VDC on the other gates, since no in�uence
on the dot QPC transmission was put in evidence whatsoever (see typical temperature calibration data
in Fig.1.6), let alone on the central QPC. Furthermore, VDC is swept on typical energy scales given
by the level spacing ∆; in the experimental conditions, this corresponds to voltage scales of a few
hundreds of µV, much smaller than the variation scales of both Vg and Vqpc.

Figure 3.19: Noise of the single electron source versus Vg for sample S434-8. Red
circles: experimental data; blue dashed line: scattering model, using the QPC trans-
mission law with a resonance at Vg = −0.586 V depicted in Fig.3.17. Black line with
symbols: modulus of the �rst harmonic of the average AC current, for 2eVexc = ∆.

The knowledge of the couplings allows us to isolate the contribution of the single electron emitter
in various measurements involving the central QPC, such as the one shown in Fig.3.18, where we have
plotted the low-frequency transmission of the central QPC (red) as a function of Vqpc, as well as the
transmission of the average AC current emitted by the source (here, D ≈ 1 for simplicity) by the central
QPC. The majority of the source signal is measured in the outer channel, e�ectively demonstrating
the spin selectivity of the source. This result con�rms the validity of the description of the density of
states in the dot in terms of electronic trajectories following the edges of the dot.

Furthermore, a small portion of the source signal is measured on the inner channel, which may
either correspond to the energy relaxation of electrons emitted in the outer channel into the inner
channel, or re�ect a �nite tunneling probability between the dot and the inner edge state.

In the next sections, we present the noise measurements performed on sample S434-8. We �rst

110



3.4. Preliminary results

present the measurements of the autocorrelation of current �uctuations generated, similarly to chap-
ter 2; we then present measurements of the noise of a partitioned single electron beam, constituting
the �rst realization of the single electron HBT experiment.

3.4.2 Noise of the single electron source

Figure 3.20: Noise of the single electron source versus modulus of the �rst harmonic
of the current. Black squares: experimental data. Red line: model. The red dots
correspond to the expected value of the measured noise, given by Eq.2.28.

We have measured the autocorrelation of the current �uctuations emitted by the source S(Ω) for
2eVexc = ∆ as a function of the dot QPC gate voltage Vg, with the central QPC fully opened (Vqpc =
0 V). The result is shown on Fig.3.19. The shape of the obtained curve is similar to experimental
data presented in the previous chapter: the noise presents a bell-shaped variation, with its maximum
value corresponding to |IΩ| ≈ ef0 (black line). However, this maximum value is slightly lower than
the expected one in the scattering model (dashed line). This may be caused by the resonance in the
dot QPC transmission law mentioned in the previous section. Because of the higher number of odd
harmonics contained in the excitation drive compared to the previous chapter, the oscillations of the
noise with the dot's equilibrium potential are less pronounced. One can nonetheless observe them for
Vg = −0.598 V and Vg = −0.595 V.

The representation of the noise as a function of the modulus of the current, plotted in Fig.3.20,
shows that discrepancies indeed occur at values of |IΩ| below ∼ 1.4ef0, corresponding to the zone
where the RC-circuit model fails to describe the mesoscopic capacitor. While the quantum jitter limit
is well reproduced, the agreement between the data (black squares) and the models developed in the
previous chapter (blue line and red circles) is not satisfactory; in particular, the value of the noise for
|IΩ| = ef0 is signi�cantly lower than expected.

Even though the resonance in the dot QPC transmission invalidates the description of the source
in terms of RC circuit elements at low transmissions, the data at higher transmissions are consistent
with the theoretical model, particularly in the quantum jitter limit, which corresponds to the typical
operating conditions of the source.
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3.4.3 Noise in the HBT geometry

3.4.3.1 Zero-frequency partition noise

Figure 3.21: Zero-frequency part of the partition noise of the source in the HBT
geometry, versus the central QPC transmission T . The zero-frequency noise for T =
0.5 measures the number of emitted electron/hole pairs per period ne/h. The �t (red
line) yields ne/h = 1.16 ± 0.04. The horizontal error bars correspond to the error on
the estimation of the central QPC transmission related to the stability of the QPC
transmission law.

As described in 3.2.2.1, the zero-frequency partition noise for T = 0.5 counts the number of emitted
electron/hole pairs per period. We have measured the zero-frequency noise as a function of the central
QPC gate voltage Vqpc. We have focused on the center of the current diamond located next to the
resonance in the dot QPC transmission (intersection of the two dashed lines at Vg ≈ −0.585 V in
Fig.3.16), corresponding to the optimal operating conditions 2eVexc = ∆ and φ0 = 0. The central
QPC transmission traces shown in Fig.3.15 and Fig.3.18 allows to directly plot the noise as a function
of the transmission T . The experimental data, constituting the �rst experimental realization of the
partition of a single electron beam, is shown on Fig.3.21. We have �tted the experimental data (black
dots) with the function de�ned in Eq.3.31, the number of emitted electron/hole pairs per period ne/h
being taken as an adjustable parameter. The �t (red line) yields ne/h = 1.16± 0.04: this value is close
to the number of emitted electron/hole pairs per cycle for a perfect single electron emitter (that is
1), thus experimentally proving that the generation of excess electron/hole pairs by the source can be
neglected in the optimal operation conditions: the measured excess value is comparable with the error
bars on the measurement (∼ 0.2e2f0). Improving the low-frequency noise measurement setup (see
4.2.3) would allow the measurement of the number of emitted electron/hole pairs with more accuracy.

3.4.3.2 High frequency partition noise

We have measured the high frequency part of the noise after partition, as a function of the transmission
of the central QPC T , for both outer and inner channels. We use the same operating point as for the
low-frequency measurements. As described in the scattering model section, the high frequency part of
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Figure 3.22: High frequency noise in the HBT geometry, measured as a function of
the transmission T (black dots). Red line: adjustment with the function 4ne/hT (1−
T ) + T 2S. The �t yields ne/h = 0.65± 0.08 and S = 0.37± 0.09e2f0.

the noise contains the contribution of the intrinsic noise of the source S(ω) with a factor T 2, and the
contribution of the partition noise C(ω) with a factor T (1 − T ). We have used the full bandwidth of
the high-frequency noise measurement setup (1 GHz ↔ 2.8 GHz, see 4.1.4). The result is shown in
Fig.3.22: values of T above 1 correspond to the inner edge channel. In the outer channel (T ≤ 1), the
noise is bell shaped, similarly to the zero frequency part; furthermore, the noise does not vanish when
the transmission T reaches unity, which corresponds to the intrinsic noise generated by the source.
This curve is thus very similar to the theoretical calculation of the partition noise at �nite frequency
shown in Fig.3.7. However, the maximum value of the noise is signi�cantly below the theoretical value
(∼ 1.3), as well as the maximum value of the zero-frequency part of the noise discussed previously
(1.16). In the inner channel, the noise increases again, and reaches another local maximum for T = 1.5
(inner channel half-transmitted); the inner channel therefore yields a portion of the signal of the source.
Because the maximum value of the high-frequency noise at T = 0.5 is not consistent with the number
of electron/hole pairs measured at low-frequency, we believe that the high frequency part of the noise
is reduced by capacitive couplings between the inner and outer channel. In order to quantitatively
analyze these discrepancies, we have �tted the data for the outer channel (that is, for T ≤ 1) with
a function 4ne/hT (1 − T ) + T 2S, where S is the intrinsic noise of the source. The �t, shown as a
red line in Fig.3.22, yields S = 0.37 ± 0.09e2f0 and ne/h = 0.65 ± 0.08. The value of the number
of emitted electron-hole pairs per period is not compatible with the value obtained with the low-
frequency partition noise measurements (Fig.3.21). We believe that this is mainly caused by errors in
the calibration of the RF noise measurement setup using the full bandwidth. Measuring the partition
noise over the di�erent available bandwidth of the RF noise measurement setup might allow to verify
this hypothesis.
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Figure 3.23: Zero-frequency noise in the HBT geometry versus Vg, measured for
T = 0.5 (blue dots). Black line: modulus of the �rst harmonic, for 2eVexc = ∆; red
line: modulus of the �rst harmonic, for 2eVexc = ∆/5.

3.4.3.3 Variation with the dot QPC transmission D and dot equilibrium potential

We have measured the zero-frequency noise for T = 0.5, for a few values of the dot QPC gate voltage Vg,
so as to probe both the variation of the noise with the transmission D and the equilibrium potential φ0.
The result is shown in Fig.3.23; we have plotted as well the average current emitted by the source, for
two values of the driving amplitude, in order to compare the noise data with the position of the energy
levels in the dot. As expected, the noise shows no variation with the transmission, since all points cor-
respond to a transmission range where the number of emitted electron/hole pairs is constant. However,
there is no signi�cant increase of the noise in the φ0 = π regions (Vg = −0.5805 V,−0.566 V,−0.563 V).

3.4.4 Noise measurements at −3.3 T

We have performed noise measurements at B = −3.3 T in order to check the consistency of the
results presented above. Indeed, the central QPC has a smoother transmission law for this value of the
magnetic �eld (plotted in Fig.3.24), which may reduce the possible discrepancies caused by resonances
in the central QPC.

We have measured the high frequency noise (1 − 2.8 GHz) as a function of the central QPC
transmission T , similarly to 3.4.3.2. The obtained result, shown on Fig.3.25, is consistent with the
previous results: the �t, using the same function as for B = −3.9 T, yields ne/h = 0.51 ± 0.07 and
S = 0.16±0.1e2f0. These values, although close to the ones obtained at B = −3.9 T, are smaller than
the latter; this remains to be investigated.

• Measurement of the electronic temperature
The low-frequency noise measurements as a function of the dot QPC gate voltage Vg show no variation
of the noise with the dot equilibrium potential, which we suppose is caused by a high electronic
temperature. We have estimated the electronic temperature for T = 0.5 by measuring the high
frequency partition noise for D = 1 as a function of the excitation amplitude Vexc. Indeed, for D = 1,
the noise is expected to be zero as long as eVexc is smaller than the electronic temperature kBTel. For
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Figure 3.24: Transmission of the average AC current emitted by the source by the
central QPC (black line), along with the DC transmission (red line) for B = −3.3 T.
Dotted line: DC transmission at B = −3.9 T (also plotted in Fig.3.18).

Figure 3.25: High frequency noise in the HTB geometry, measured as a function of
the transmission T at B = −3.3 T. The �t (red line) yields ne/h = 0.51 ± 0.07 and
S = 0.16± 0.1e2f0.

eVexc � kBTel, ~Ω, one expects the noise to increase linearly. We have plotted in Fig.3.26 the measured
noise (black dots) as a function of the excitation amplitude, as well as numerical computation of the
noise for Tel = 100 mK, Tel = 300 mK and Tel = 500 mK (resp. black, red and blue lines). The
agreement between the latter and the experimental data shows that the electronic temperature is indeed
much larger than expected; the di�erence between this temperature and the electronic temperature
measured with the calibration of the level spacing indicates that the increase in the temperature is
caused by the biased contact. It is therefore crucial to properly �lter the wires connecting the contact.
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Figure 3.26: High frequency noise for T = 0.5 and D = 1, as a function of the
excitation amplitude Vexc. Black circles: experimental data. Full lines: numerical
calculations for Tel = 100 mK (black), Tel = 300 mK (black), and Tel = 500 mK
(blue).

The �rst measurements in the HBT geometry presented here are quite promising, since they show
that in spite of the samples imperfections and the large electronic temperature, the experimental
results are in reasonable agreement with the model. Particularly, the low-frequency noise measurements
presented in Fig.3.21 are the �rst experimental realization of the probing of coherent particle transfers
proposed in [64].

116



3.4. Preliminary results

Conclusion of chapter 3

In this chapter, we have focused on the autocorrelation of current �uctuations after partition of the
single-charge beam emitted by the single electron emitter. We have shown, using the Floquet scatter-
ing matrix model introduced in the �rst chapter, that the zero-frequency part of the partition noise
measures the number of emitted electron/hole pairs per period, as it was �rst predicted in [64]. The
theoretical study presented here allows us to contemplate a wide range of experiments, which would
thoroughly probe the electronic transport in the QHE edge channel at the single charge scale, thus
completing the many recent investigations on the subject [15, 5, 18, 19, 24, 25, 27, 26, 65].

The experimental results show that although challenging, the proposed experiments are within
reach; we are currently improving the �ltering of the bias lines in order to reduce the e�ective temper-
ature. Improvements in the low-frequency noise measurement setup (see 4.2.3) are also considered.

Finally, the whole experimental setup presented in this chapter allows to contemplate the realization
of increasingly complex single-charge electron quantum optics experiments; in particular, two particle
Hong-Ou-Mandel [42] collisions of single charges [12] can be rapidly initiated, since the studied samples
already comprise two single electron source in a mesoscopic collider geometry (see Fig.3.12).
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Introduction of chapter 4

The noise measurements presented in chapters 2 and 3 show typical noise level given by e2f0 ≈
3.8× 10−29 A2/Hz at f0 = 1.5 GHz. The detection of such noise levels requires highly sensitive noise
measurement setup. In this chapter, we present the principle, implementation and operation of both
the GHz range noise measurement setup used in the measurements presented in chapter 2, and the
low-frequency (100 kHz range) measurement setup used in the measurements presented in chapter 3.

The high frequency noise measurement setup [92] combines a wideband 120 Ω to 50 Ω impedance
transformer that increases the measured voltage �uctuations, and a modulated double-balanced ampli-
�er scheme that allows the averaging of very small noise power spectral densities over extended periods
of time with a high stability. We demonstrate a state of the art sensitivity of 2.3× 10−28A2/Hz/

√
Hz

(1.3 × 10−29A2/Hz in 5 minutes) for noise power spectral densities in the 1.2 − 1.8 GHz bandwidth.
We also present modi�cations on the setup that allowed to increase the measurement bandwidth to
1− 2.8 GHz, used for the measurements presented in chapter 3.

The low frequency noise measurement setup relies on a rather common cross-correlation technique:
the current �uctuations are converted into large voltage �uctuations using a 3 kΩ load. The signal is
then split into two independent ampli�cation chains, and the integrated power of the cross-correlation
is calculated using a fast acquisition card. We demonstrate a sensitivity of ∼ 4 × 10−28A2/Hz/

√
Hz

(0.23× 10−29 A2/Hz in 5 minutes).
We have implemented the two noise measurement setups in our dilution refrigerator in order to

simultaneously measure both the high-frequency and low-frequency noise.

120



4.1. High sensitivity ultra-low temperature RF current and noise measurement setup

4.1 High sensitivity ultra-low temperature RF current and noise measure-
ment setup

The small magnitude of the emitted current �uctuations makes their measurement very challenging
at microwave frequencies [87, 22, 103, 104, 88], especially since fast single charge detection su�ers a
mismatch problem between the high impedance (Z ∝ h/e2 ≈ 26 kΩ) of quantum sources [105] and
the low (50 Ω) impedance of microwave ampli�ers. This can hardly be overcome in broadband high-
frequency experiments and strongly alters the current noise power resolution (by typically �ve orders
of magnitude), which can only be recovered by increasing the measuring time. A standard RF noise
measurement method consists in integrating the noise power spectral density over a �nite bandwidth
using square law detectors, see Fig.4.2a. One has to take into account the noise of the �rst ampli�er in
the setup, which is usually signi�cantly larger than the noise of the sample. The resolution is limited
by the integration time, which becomes very large and may eventually exceed the timescale over which
the ampli�cation gain can vary, thus making the measurement method less reliable.

In this section, we present a highly sensitive, wideband microwave frequency noise measurement
technique with a current noise resolution lying an order of magnitude below the e2f0 threshold. We
have used the implemented setup to study the current �uctuations emitted by the single electron
source, see chapter 2. The coupling between the source and the ampli�ers is �rst increased by using
a broad-band 120 Ω to 50 Ω quarter-wave impedance transformer. The signal is then ampli�ed with
a phase-modulated double balanced ampli�er. This setup allows a highly stable ampli�cation on a
broad bandwidth (1.2 − 1.8 GHz) of very low signals emitted at the base temperature of a dilution
refrigerator.

In a �rst part, we recall the principle of the modulated double balanced ampli�er, and its advan-
tages compared to a direct ampli�cation technique. We also describe its implementation, including a
microwave homodyne detection of the average current, inside an Oxford Kelvinox 400 dilution refrig-
erator, as well as its calibration using Johnson noise thermometry. In a second part, we describe the
impedance transformer and its realization inside a sample holder connected to the mixing chamber of
the dilution refrigerator. We �nally present a typical operation of the whole setup, demonstrating a
stability of the measurement over more than 40 hours and a sensitivity of about 2×10−28 A2/Hz/

√
Hz

(1.15× 10−29 A2/Hz in a 5 minutes integration time).

4.1.1 Modulated double balanced amplifier

We present here the ampli�cation technique used in our setup. We �rst describe its principle (Fig.4.1)
and discuss its expected signal-to-noise ratio. We then present the complete apparatus (Fig.4.3).

4.1.1.1 Principle of the setup

We use a modulated double balanced ampli�er scheme (see Fig.4.1b) to amplify the noise of the sample.
The balanced ampli�er [93] is widely used in cellular phone applications as well as in astrophysics, for
downconverted millimeter radiation in recent Cosmic Microwaves Background detection [106], and
particle physics to detect halo axions [107]; it can be seen as the microwave analog of a Mach-Zehnder
interferometer. Its key elements are the 90-degrees hybrid couplers [108], which act as the beam
splitters in the interferometer. When the gains and phases acquired in both arms of the interferometer
are equals, the signal in the �rst input IN (resp. second input ISO) of the interferometer is ampli�ed
and entirely transmitted to the second output 90◦ (resp. �rst output 0◦). On the other hand, the noise
of each ampli�er in the inner arms is evenly distributed between the two outputs of the interferometer.
As a result, when one measures the di�erence between the interferometer's output powers, the noise
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Chapter 4. High-frequency and low-frequency noise measurement setups

Figure 4.1: Principle of the modulated double balanced ampli�er setup. The setup
measures the di�erence between the two input noise powers, with a ±1 factor given
by the modulation.

of the ampli�ers vanishes and only the di�erence between the two input signals remains. In addition,
when a π-phase modulator is inserted in one arm inside the interferometer, one can alternatively swap
the interferometer's outputs for the signal, hence alternatively change the sign of the di�erence between
the two input signals while leaving the noise of the ampli�ers unchanged. This allows to completely
remove the ampli�ers noise in a lock-in detection.

The 90◦ hybrid coupler is a four ports microwave component with a S-parameters matrix S between
the complex amplitude of its two inputs (IN, ISO) and its two outputs (0◦, 90◦) given by:

S =
1√
2

(
1 i
i 1

)
(4.1)

Each one of the two inner arms of the interferometer includes an ampli�er with a gain gi and a
noise Ni. The gain gi includes the phase di�erence acquired by the signal over the arm length. The
left arm also includes a π-phase modulator, which multiplies the signal by a factor ±1 according to
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4.1. High sensitivity ultra-low temperature RF current and noise measurement setup

the sign of the driving voltage. When the driving voltage is a low-frequency square (here, 2.7 kHz),
the signal in the left arm ULb periodically switches between ULb and −ULb. The output signals of
the interferometer, obtained after recombination of the left arm and right arm's signals on the second
hybrid coupler, are �ltered and applied to two square law detectors which measure the average power
with an integration time of 0.1µs. Finally, the measured di�erence between the two output powers is
averaged over a long time T0 to achieve the requested noise power resolution. Let us �rst consider that
the ISO input signal U2 is zero. When the IN -input monochromatic signal with a complex amplitude
U1 is split by the �rst hybrid coupler, Eq.4.1 gives:

{
ULa = 1√

2
U1

URa = i√
2
U1

(4.2)

Here, ULa (resp. URa) is the complex amplitude of the signal in the left (resp. right) inner arm of
the interferometer, before ampli�cation. After ampli�cation, the signals become:

{
ULb = ±( 1√

2
gLU1 +NL)

URb = i√
2
gRU1 +NR

(4.3)

The ±1 factor in ULb is given by the π-phase modulator. The signals are then recombined on the
second hybrid coupler:

 Uout,L = 1√
2

(
1√
2
(±gL − gR)U1 ±NL + iNR

)
Uout,R = 1√

2

(
i√
2
(±gL + gR)U1 ± iNL +NR

) (4.4)

When the interferometer is perfectly balanced, the gains and phase di�erences across the inner
arms are equal, giving gL = gR = g. The prefactor of U1 in Uout,L (resp. Uout,R) is then equal to
g(±1 − 1)/2 = {0,−g} (resp. g(±1 + 1)/2 = {+g, 0}): the signal is entirely transmitted to only
one output at a time, and periodically switched between the two outputs. The square law detectors
measure the average power of the �ltered signals Vi ∝ |Uout,i|2 over the �lter bandwidth ∆f :

 VL = α1
2

(
|g|2
2 (±1− 1)2|U1|2 + |NL|2 + |NR|2

)
VR = α2

2

(
|g|2
2 (±1 + 1)2|U1|2 + |NL|2 + |NR|2

) (4.5)

αi is the power to voltage conversion factor of the quadratic detectors; it includes ampli�cation/attenuation
factors in the output arms of the setup. Eq.4.5 assumes that U1, NL and NR are independent, so that
all correlation terms such as U∗1NL, U∗1NR or N∗LNR vanish. As NL and NR have equal contributions
in both outputs, they vanish in the �nal subtraction VL − VR if α1 = α2 = α. This gives:

Vmeas = ∓α|g|2|U1|2 (4.6)

The measured output voltage is therefore a square signal, with a frequency f = 2.7 kHz and an
amplitude Vmeas = α|g|2|U1|2, that can be detected with conventional lock-in measurement techniques
so as to make the measurement insensitive to low-frequency variations of the ampli�cation parameters,
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thus greatly enhancing the stability of the device. Since th setup is symmetric, the contribution of a
signal U2 on the second input ISO of the interferometer can easily be included:

Vmeas = ±α|g|2
(
|U2|2 − |U1|2

)
(4.7)

One can generalize this formula to non-monochromatic input signals with current power spectral
densities S1,2(f), meaning that the result has to be integrated over a �nite bandwidth. We �nally
obtain:

Vmeas = ±α
∞∫

0

|χ(f)g(f)|2(S2(f)− S1(f))df (4.8)

where χ(f) is the �lter function of each output arm of the device, ideally given by a square window
with a bandwidth ∆f and equal for both arms. The setup therefore measures the di�erence of the
power spectral densities of the two inputs. As described in the next section, we connect the �rst input
to the sample output, and the second input to a load with a �xed temperature; interestingly, this
di�erential setup can be used to measure the noise di�erence between two samples, or between two
distinct ports of the same sample, leading to cross-spectrum measurements.

We shall now discuss the advantages of this setup compared to a direct ampli�cation technique,
as described in Fig.4.2a, where the noise of the sample is directly ampli�ed, �ltered and measured on
a square law detector. For a direct comparison with the ampli�ers noise temperature, we express the
current �uctuations of the input signals SI in terms of a noise temperature TSI :

Z0SI = 4kBTSI (4.9)

where Z0 is the load impedance (generally 50 Ω for microwave circuits), and kB the Boltzmann constant.
In each case, the sample emits a noise TS , and is connected to the measurement load Z0, which itself
emits an equilibrium noise Teq. In Fig.4.2a, the ampli�cation adds a noise TN � Teq (typically,
TN ≈ 7 K and Teq ≈ 30 mK) to the signal TS + Teq: the measured signal is then proportional to the
sum TS + TN + Teq. In order to extract TS , one usually removes TN + Teq by periodically switching
on and o� TS while performing a lock-in detection. In this case, the low-frequency output voltage is
a square signal with an o�set TN + Teq + TS/2 and an amplitude TS/2. If the ampli�er's noise TN is
Gaussian [109], the signal-to-noise ratio is then equal to (S/N)direct = (TS/2TN )

√
∆ftmeas, where ∆f

is the bandwidth of the �lter, and tmeas the measurement time. This expression can be compared to
the signal-to-noise ratio calculated for our setup, see Fig.4.2b: the sample and the measurement load
are connected to the IN input, and a Z0 load is connected to the ISO input. The noise temperature
on the IN input is therefore equal to TS + Teq, while the noise on the ISO input is equal to Teq.
Our setup detects the di�erence between the two input noises, that is ±TS . The low-frequency output
voltage is therefore a square signal with an amplitude TS and no o�set. The suppression of the noise
o�set due to the ampli�ers greatly enhances the stability of the setup, since one is no more sensitive
to variations of the ampli�ers noise, which are usually much larger than the signal TS . This result is
illustrated by the graphs in Fig.4.2, which represent the measured lock-in voltage as a function of time
for the direct ampli�cation scheme (a) and our setup (b).

In our setup, the standard deviations of the two ampli�er's noises add, while the noise o�set due
to the ampli�ers is zero after the �nal subtraction. The standard deviation of the ampli�cation noise
in our setup is then

√
2 times the �uctuations of a single ampli�er. However, since the amplitude of
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4.1. High sensitivity ultra-low temperature RF current and noise measurement setup

Figure 4.2: a) Direct ampli�cation technique: the signal is ampli�ed, �ltered and
applied to the square law detector, measuring the sum of the noise temperature of the
signal and the measurement load TS + Teq and the noise temperature of the ampli�er
TN . Below is a schematic representation of the measured lock-in voltage as a function
of time: the value of the lock-in voltage alternatively switches between Teq + TN and
TS + Teq + TN . The peak-peak amplitude of the detected square voltage is equal to
TS . b) Our setup detects and modulates the di�erence between the two input noises
TS + Teq and Teq, that is ∓TS . The lock-in voltage is then centered on zero while its
peak-peak amplitude is equal to 2TS . The standard deviation is however

√
2 times

larger in our setup.

the measured noise is double in our setup, the signal-to-noise ratio is still larger than in the direct
ampli�cation scheme, and given by:

(
S

N

)
setup

=
TS√
2TN

√
∆ftmeas (4.10)

For a given signal-to-noise ratio, our setup therefore allows measurements twice as fast as a direct
ampli�cation technique. However, Eq.4.10 stands for a perfectly balanced setup. Using the same
calculations for a non-balanced setup, we expect the signal-to-noise ratio to be diminished by 5% for
a 3 dB gain di�erence between the output arms, and the measurement time to be increased by 3%
for a 10◦ phase di�erence between the two inner arms. Furthermore, the suppression of the noise
o�set due to the ampli�ers greatly enhances stability, since the slow variations of TN are automatically
compensated.

The modulated double balanced ampli�er technique is thus expected to increase the stability and
sensitivity for high frequency noise measurements, while being relatively robust to imperfections in the
setup.
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Chapter 4. High-frequency and low-frequency noise measurement setups

Figure 4.3: a) Schematic of the setup, as implemented in our Oxford Kelvinox 400
dilution refrigerator. b) and c) Pictures of the room-temperature parts of the setup.

4.1.1.2 Implementation

The implemented setup is shown in Fig.4.3. Two cryogenic ampli�ers (MiteQ AFS3-02000400-08-CR-

4) are used with a noise temperature of about 7 K when thermalized at 10 K in Helium vapor, and an
extended bandwidth of 1 − 4 GHz; these ampli�ers can present a noise temperature as low as 3.5 K
when thermalized in a pumped bath at 1.8 K [110]. Up to the dilution refrigerator's outputs, the setup
is wired with UT-85 SS semirigid cryogenic microwave cables for an optimized thermalization. We also
protect the sample from the back-action noise of the ampli�ers using Pamtech LTC 1384K4 cryogenic
circulators whose 50 Ω loads are thermalized to the mixing chamber of the dilution fridge to reduce
the background thermal noise. These optional circulators restrict the bandwidth of the whole setup to
1.2− 1.8 GHz. The lengths of the inner arms are matched using a phase shifter to tune the length of
the second arm. 3 dB attenuators are regularly placed in between room temperature parts of the setup
to suppress multiple re�ections between the components; the 6 dB attenuator in the �rst inner arm
is used to balance the gain di�erence between ampli�ers A1 and A2. We insert a π-phase modulator
(Miteq BMA0104LA1MD) in each inner arm to symmetrize the insertion losses and phase shifts ( 90◦);
however, we modulate only the signal in the �rst arm, feeding the �rst modulator with a 2.7 kHz
square voltage through a 600 Ω load while the second modulator is fed with a constant current. After
recombination on the second hybrid coupler, the signals are �ltered in the 1.2 − 1.8 GHz band. We
use a 1.5 GHz excitation voltage to drive the sample out of equilibrium. The signal therefore presents
a 1.5 GHz component which contains informations on the average AC current emitted by the sample,
as well as a parasitic signal. We derive a portion of the signal in the second output arm using a 6 dB
splitter (compensated by a 6 dB attenuator in the �rst output arm) and detect the in-phase and out-
of-phase parts of the carrier frequency with a homodyne detection. We use a 90◦ hybrid coupler and
multiply the 0◦ and 90◦ outputs by a 1.5 GHz local oscillator. The result of the multiplication of the 0◦

(resp. 90◦) output yields a zero-frequency part proportional to the in-phase (resp. out-of-phase) part
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4.1. High sensitivity ultra-low temperature RF current and noise measurement setup

Figure 4.4: a) Phase di�erence between the two inner arms of the device as a function
of the frequency. The signals of the two arms are measured just before the second
hybrid coupler. b) Transmission between the input of the refrigerator and the two
output arms of the setup (just before the square law detectors) for a positive (+1)
and negative (−1) DC voltage on the modulator. The 1.5 GHz carrier is suppressed
by more than 60 dB.

of the carrier frequency. When the modulation is turned on, the carrier frequency is switched between
the two output arms; therefore, the homodyne signals are 2.7 kHz square voltages switching between
zero and a value proportional to the quadrature components of the carrier frequency, and are detected
with lock-in techniques. In the noise measurement part of the setup, the 1.5 GHz carrier frequency is
removed (−70 dB) with BL-Microwave 1.5 GHz notch �lters. The noises in the two output arms are
subtracted with a NF LI75-A low frequency di�erential ampli�er.

We have tuned the setup to optimize the phase and gain balance in the inner arms, as well as the
gain balance in the output arms. The latter is done by inserting a variable attenuator, set to 0 dB,
in the second output arm (the insertion loss of the attenuator compensates the gain di�erence in the
arms). In order to characterize the gain and the phase balance, we use a vector network analyzer to
measure the transmission between the �rst input of the setup with a 90 dB attenuation, and each one
of the two inner arms just before the second hybrid coupler (Fig.4.4a), or each one of the two output
arms just before the square law detectors (Fig.4.4b). The second input of the setup is connected to a
50 Ω load thermalized to the mixing chamber, and the �rst modulator (mod1 ) is fed with a constant
(positive or negative) voltage to study both situations.

The results of the tuning are shown in Fig.4.4. The phase balance is achieved within ±5◦ in
the 1.2 − 1.8 GHz bandwidth, which only degrades the signal-to-noise ratio by a few percents. As a
result, the test signal is transmitted to only one output, with less than 1% of the power transmitted
to the other output. This 20 dB di�erence between the two transmissions compares favorably with
standard isolation values in commercial-grade microwave components. The ampli�cation and �ltering
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Figure 4.5: a) 120 Ω − 50 Ω transformer line: the coplanar waveguide is built
on a TMM10 substrate for low-temperature performance. The width of the center
conductor is 0.66 mm for the 50 Ω port, and 0.075 mm for the 120 Ω port. b) and c)
Pictures of the 4-microwave ports sample holder. The 50 Ω lines and the transformer
lines are encased in the four sides of the sample holder. d) Zoom on the center part of
the sample holder; the size of the sample is 2 mm× 2 mm. e) Re�ection on the 50 Ω
port of the two transformer lines as a function of the frequency, measured in liquid
nitrogen.

are identical (to less than 1 dB) for both outputs. The 1.7 GHz peak in the phase balance, due to the
cryogenic circulators, causes a decrease of the transmission di�erence to ∼ 15 dB, which is still within
acceptable bounds.

4.1.1.3 Calibration

We have calibrated the setup by replacing the thermalized 50 Ω load (see Fig.4.6a) connected to the
second input with a variable temperature 50 Ω load, which acts as a tunable thermal noise source.
The temperature of the load is measured with a calibrated RuO2 resistance. We use a series of
SMA connectors to thermically decouple the load from the mixing chamber. We obtain a calibration
(Fig.4.6b) between input temperature di�erence ∆T and the amplitude of the measured 2.7 kHz
voltage: Pmeas(V ) = 1.37× 10−5(±5%)∆T .

4.1.2 Quarter-wave impedance transformer

For given current �uctuations, one can increase the equivalent noise temperature by increasing the
load impedance Z0 in Eq.4.9. However, since a vast majority of commercial microwave components
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Figure 4.6: Calibration of the high-frequency noise measurement setup. The cali-
bration yields Pmeas(V ) = 1.37× 10−5(±5%)∆T .

are 50 Ω-adapted, one needs to transform the impedance seen by the sample from the increased Z0

(in our case, Z0 = 120 Ω) to 50 Ω while keeping a large bandwidth. This can be achieved by using a
quarter wave impedance transformer [111, 87], which consists of a series of coplanar waveguides with
gradually changing impedances. Every coplanar section has the same length, given by the quarter of
the wavelength at center frequency. Depending on the series of impedances, one can either optimize
the gain �atness or the total bandwidth.

We designed an 8-sections Chebychev (equal ripple) 120 Ω − 50 Ω transformer 5 (see Fig.4.5a),
allowing a large bandwidth (0.5− 4.5 GHz). The 120 Ω port is shunted by two 240 Ω NiCr resistors
in parallel (see Fig.4.5d) to avoid back-re�ection of the noise of the measurement setup on the sample
connected in parallel to the resistors, thus acting as a 120 Ω-adapted current source (we neglect
the in�uence of the sample's impedance, of a few kΩ). We have taken into account the parasitic
capacitances of the resistors (typically 0.03 pF) and the sample (∼ 0.06 pF) by changing the length of
each section to optimize the transmission of the device. We use a 4 microwave ports geometry for the
sample holder; the two input ports are 50 Ω-adapted while each output port includes an impedance
transformer. Both input and output lines are coplanar waveguides built on a TMM10 substrate,
and encased in a copper sample holder (Fig.4.5b and c) thermalized to the mixing chamber of the
dilution refrigerator. We have characterized the frequency response of the transformers by measuring
the re�ection of the 120 Ω port as a function of the frequency (see Fig.4.5e). We �nd a re�ection of
15 dB at 77 K, which is comparable to the re�ection factors in commercial microwave components.
This corresponds to a power transmission through the transformer of 97%. The use of the transformer
allows to increase the power spectral density of the measured signals by a factor 2.4. For a noise
temperature of the ampli�ers of about 7 K and a 120 Ω measurement load, Eq.4.10 gives an expected
sensitivity of 2× 10−28 A2/Hz/

√
Hz.

4.1.3 Operation of the setup

We combine the e�ects of the quarter-wave impedance transformer and the modulated double-balanced
ampli�er to increase the signal of our sample, and measure it over extended periods of time with a large

5The impedance transformer lines were designed with a free spreadsheet applet available at http://www.

microwaves101.com/downloads/Xfmr101Rev3.xls ; the optimization of the lines was done with AWR Microwave O�ce.
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Figure 4.7: Operation of the setup: a) stability of the device for two non-consecutive
runs: measured noise (line) and temperature of the 1K pot (circles) as a function of
time. Noise data for both graphs are measured for the same reference gate voltage
of the sample. The averaging time per point is 10 s for run A, and 20 s for run B.
b) datasets obtained after subtraction of the reference for the �rst value of the gate
voltage Vg of both runs. The dataset for run A presents a signi�cantly larger standard
deviation due to the shorter averaging time per point.

stability. In a standard noise measurement of a mesoscopic sample, one usually measures the noise
TS(V g) as a function of the device parameters, which can be tuned using one (or more) gate voltage V g.
Since the ampli�cation parameters as well as the temperatures of the di�erent stages of the dilution
refrigerator can vary over the usual averaging times (about 1 hour per point), we perform repeated
short measurements of the noise for a few (typically 5) gate voltages V g1,..,5 and a reference gate voltage
V gref which de�nes the zero of the measured noise. We thus measure the excess noise compared to
a reference operating point of the sample. Since the measurement device is highly sensitive, one has
to make sure that the temperature di�erence between the 120 Ω load connected to the sample and
the load connected to the second input of the interferometer varies as slowly as possible. We connect
the 120 Ω load of the second impedance transformer built on the sample holder (see Fig.4.5d) to the
second input of the interferometer to keep the same thermal environment for the two loads, as well as
reduce the o�set due to the noise temperature di�erence between a 120 Ω and a 50 Ω load. We also
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stabilize the temperature of the mixing chamber within less than a milliKelvin using the femtopower

temperature regulation provided with Oxford Kelvinox refrigerators.
A typical operation of the setup is presented in Fig.4.7a: we measure the noise for each of the 5 gate

voltages TS(V g1,..,5) during a short time (10 s for run A, 20 s for run B). We systematically measure
the noise for the reference gate voltage TS(V gref ) after each gate voltage, thus creating a sequence
composed of 10 short measurements (TS(V g1), TS(V gref(1)), TS(V g2), TS(V gref(2)), and so on), which
we repeat a large number of times (621 for run A, 403 for run B). The total averaging time for each
point is therefore at least ten times shorter than the total measurement time; a signi�cant portion (one
third for run A) of the total measurement time is spent in setting the gate voltage to its di�erent values.
We then remove the long-time variations of the signal due to slow temperature changes in the dilution
refrigerator (such as the 1K pot temperature plotted in Fig.4.7a) by calculating the di�erence between
the traces obtained for each gate voltage and their respective reference: TS(V gi) − TS(V gref(i)). We
�nally calculate the mean value of each set of data such as the two presented in Fig.4.7b to obtain the
noise, while the sensitivity of the measurement is given by the standard error. Fig.4.7b demonstrates
a resolution Tres of less than 10 µK (i.e. 4.6× 10−30 A2/Hz) in about 2 hours; this gives a sensitivity
s = Tres

√
tmes equal to 0.71 mK/

√
Hz, i.e. 3.3 × 10−28 A2/Hz/

√
Hz on a 120 Ω load. This value

of the sensitivity is larger than the theoretical value; however, one has to consider the fact that the
noise values are obtained after subtraction of a reference noise, hence multiplying the standard error
by a factor

√
2. The calculated e�ective sensitivity of the measurement is thus

√
2 times larger than

the sensitivity of the setup, which is then equal to 2.3 × 10−28 A2/Hz/
√

Hz. This value is close to
the theoretical sensitivity (see paragraph 4.1.2), demonstrating the good implementation of the device,
and a large enough stability to perform measurements averaged over several hours.

We have used the setup to measure the autocorrelation of the current �uctuations emitted by the
single electron source, presented in chapter 2. In particular, the noise data presented in Fig.2.15 have
been obtained in about �ve days, each data point being measured in a total of 40 minutes using the
measurement procedure described in the beginning of this section.

Figure 4.8: Modi�ed high-frequency noise measurement setup. The cryogenic cir-
culators have been removed to extend the total bandwidth to 1 − 2.8 GHz. This
bandwidth can be restricted using di�erent bandpass �lters.

4.1.4 Modifications

In order to study the temporal variation of the current �uctuations correlation in the HBT con�guration
as proposed in 3.2, we have modi�ed the high frequency noise measurement setup: indeed, by measuring
the value of the noise power spectral density at di�erent frequencies, one can rebuild the current

�uctuations correlation function 〈δI(t)δI(t+ τ)〉t. Since dividing the base bandwidth 1.2 − 1.8 GHz
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into smaller frequency intervals causes the sensitivity to diminish, we have rather increased the total
bandwidth of the setup to 1− 2.8 GHz by removing the circulators and replacing some of the elements
of the setup (mainly, ampli�ers A3 and A4 in Fig.4.3, as well as the 1.2− 1.8 GHz �lters).
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Figure 4.9: Tuning and calibration of the modi�ed setup, for three sets of �lters
(a,b,c) and the full bandwidth (d). Left panel: transmission between the input
of the refrigerator and the two output arms of the setup (see Fig.4.4 for details).
Right panel: calibration using a variable temperature 50 Ω load. Each calibration is
performed twice to estimate the error on the conversion coe�cient.

A schematic view of the modi�ed setup is presented in Fig.4.8: after recombination on the second
hybrid coupler, the signal is �ltered on a larger bandwidth (1−2.8 GHz) using BL-Microwave bandpass
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4.2. Low frequency noise measurement setup

�lters. The upper corner frequency has been set to 2.8 GHz in order to discard the second harmonic of
the 1.5 GHz carrier frequency; we use the same notch-�lters as in the previous version of the setup to
discard the �rst harmonic. Another �lter stage has been added right after the notch �lters: in order to
change the measurement frequency, we simply change the �lters on this last stage. We use three sets
of paired RF-�lters to de�ne the measurement bandwidths (see Fig.4.9): 1.2− 1.8 GHz, 1.5− 2.2 GHz
and 1.8− 2.5 GHz. We can also remove the �lters to measure the noise on the whole bandwidth of the
setup (1− 2.8 GHz).

Like the previous version, we have tuned and calibrated the setup for the four available measurement
bandwidths: the result is shown on Fig.4.9. However, in order to implement the low-frequency noise
measurement setup (see next section), we connect the second input of the modulated double-balanced
ampli�er to a 50 Ω instead of the second 120 Ω load of the sample holder, which we replace by a larger
load for the low-frequency noise measurement.

The high frequency noise measurements presented in chapter 3 demonstrate the e�ectiveness of the
modi�ed setup. Furthermore, measuring on the full bandwidth of the setup improves the sensitivity
to ∼ 1.1× 10−28 A2/Hz/

√
Hz.

4.2 Low frequency noise measurement setup

In this section, we describe the measurement setup used in the study of low-frequency current �uctua-
tions of a partitioned single electron beam presented in chapter 3. We �rst describe the measurement
principle, based on cross-correlation measurements. We then describe the calibration and operation of
the setup, as well as possible modi�cations allowing to increase the sensitivity.

4.2.1 Description of the setup

The low-frequency noise measurement setup relies on a widely used cross-correlation technique [31,
112, 113], where voltage �uctuations are detected on two independent measurement lines. The outputs
of both lines are then digitized using a fast acquisition card, which �nally calculates the integrated
power in band of the cross-correlation of the two signals. The purpose of this technique is to render
the measurement insensitive to �uctuations of the ampli�ers gains, as well as the thermal noise of
the wires connecting the sample to the ampli�ers. Indeed, the noise o�set due the ampli�ers voltage
noise is usually much larger than the measured signal, so that a small �uctuation of the gain causes
variations in the noise o�set still larger than the signal. As for the high-frequency measurement setup,
it is therefore crucial to remove this noise o�set; in low-frequency noise measurements, this is usually
done by calculating the cross-correlation of two independent measurement lines [31, 112].

The principle of the setup is described in Fig.4.10: the current �uctuations emitted by the source
(not pictured in the �gure) are converted into voltage �uctuations using the measurement load R0.
The signal is then split in two measurement lines containing three ampli�cation stages. After the
last ampli�cation stage, the signals are �ltered and sent on an Acquiris AP240 fast acquisition card
(previously used in the time-domain measurements presented in 1.4.3.1). After digitization, we directly
calculate the integrated power in band of the cross-correlation.

4.2.1.1 Implementation

We have replaced the 120 Ω load of the second output of the sample holder (see Fig.4.5d) by a 3 kΩ
load. The measurement impedance R0 is then given by the parallel association of the 3 kΩ load with
the impedance of the edge channels of the Quantum Hall E�ect (see Fig.3.12). For a �lling factor
ν = 2, we have R0 ≈ 2.4 kΩ. Because this value of the measurement impedance is rather large, we
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Chapter 4. High-frequency and low-frequency noise measurement setups

Figure 4.10: Schematic view of the low frequency noise measurement setup. The
�lter stages are described in Fig.4.11.

have wired the setup with UT −85−SS semi-rigid cryogenic microwave coaxial cable to maximize the
bandwidth. As for the high frequency measurement setup, the wires are carefully thermalized to each
stage of the dilution refrigerator. The thermal load caused by the multiplication of microwave coaxial
cables in the dilution refrigerator has led to an increase of the base temperature to ∼ 65 mK. All
three ampli�cation stages are placed at room temperature; the �rst stage is composed of a pair of NF
SA-220F5 ampli�ers, with a voltage noise equal to 0.7 nV/

√
Hz. After the second and third ampli�er

stages (respectively, NF LI-75A and Sonoma 310 ), we use a pair of lab-built 6th-order highpass �lters
to remove the low-frequency part of the spectrum (below ∼ 30 kHz), which contains many parasitic
signals. We then use a pair of lab-built 8th-order lowpass �lters with a ∼ 380 kHz cuto� frequency as
anti-aliasing �lters. The two sets of �lters are 50 Ω-adapted; their schematics and frequency response
are shown in Fig.4.11.

Figure 4.11: Circuit diagram and frequency response of the lab-made lowpass (LP1
and LP2, a) and highpass (HP1 and HP2, b) �lters used in the low-frequency noise
measurement setup. Each measurement line include one lowpass and one highpass
�lter (see Fig.4.10).

The two signals are then digitized (130000 samples) with a 1 MHz sampling frequency. We �nally
use numeric 10th-order highpass �lter with a tunable corner frequency (typically, fc = 80 kHz) to
remove any remaining low-frequency parasitic signal, and calculate the integrated power of the product
of the two �ltered signals. This last step increases the total measurement time by less than 8%.
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4.2. Low frequency noise measurement setup

4.2.1.2 Signal-to-noise ratio

Figure 4.12: Principle of low-frequency cross-correlation measurement: the noise
emitted by the sample (not depicted) is detected on the measurement load R0 by
two independent ampli�ers A1 and A2, which add the input voltage noises S

n1,2

V V =<
(V n1,2)2 > and the current noises S

n1,2

II =< (In1,2)2 >. Because the voltage noises are
not correlated, their contribution to the noise o�set after multiplication of the the
outputs of the two lines vanish.

In order to estimate the measurement time, one must compare the noise emitted by the sample with
the noise added by the �rst ampli�cation stage. The principle of the comparison for the cross-correlation
scheme [112] is illustrated in Fig.4.12: when connected to a measurement load R0, a low-frequency
ampli�er adds both a voltage noise SnV V =< (V n)2 > and a current noise SnII =< (In)2 >. The
addition of these noises is represented by the voltage and current generators in Fig.4.12. The current
noise can be expressed as a voltage noise using the load R0, so that the ampli�er adds an e�ective
voltage noise to the signal:

V n
eff = V n +R0I

n (4.11)

If V n and In are assumed to be independent, this yields:

SnV V,eff =< (V n
eff )2 >=< (V n)2 > +R2

0 < (In)2 >= SnV V +R2
0S

n
II (4.12)

The optimal measurement impedance Ropt is obtained when the contribution of the voltage and
current noise (expressed as voltage �uctuations) are equal, that is R2

optS
n
II = SnV V .

In the cross-correlation measurement, the current noise sources of the two ampli�ers are in parallel
(see Fig.4.12); their contributions in the voltage noise of each measurement line therefore add, so that
the voltage noise in each line is given by:

V1 = V n
1 +R0(In1 + In2 )

V2 = V n
2 +R0(In1 + In2 )

(4.13)

For more clarity, we suppose that the two ampli�ers are identical, so that Sn1
V V = Sn2

V V = SnV V
and Sn1

II = Sn2
II = SnII . The noise o�set after multiplication of the outputs of the two lines is given

by < V1V2 >; since V
n

1 , V n
2 , In1 and In2 are not correlated, the contribution of the voltage noises V n

1

V n
2 vanishes, so that the noise o�set is equal to the sum of the contributions of the current noises
R2

0(Sn1
II + Sn2

II ) = 2R2
0S

n
II . However, when considering the �uctuations of the ampli�ers noise, one

must still take into account the voltage noises S
n1,2

V V = SnV V . Since the ampli�ers noise is Gaussian, the

output voltage �uctuations S∗V V =
√
< (V1V2)2 > − < V1V2 >2 are given by:

(S∗V V )2 = (SnV V + 2R2
0S

n
II)

2 + (2R2
0S

n
II)

2 (4.14)
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Chapter 4. High-frequency and low-frequency noise measurement setups

Because the current noises sources are in parallel, the cross-correlation technique does not increase
the signal-to-noise ratio. It however enhances the stability of the measurement, since the voltage noise
o�set is suppressed. In order to fully bene�t from this technique, one should therefore choose a value of
the measurement impedance slightly below the optimal value, in order to optimize the signal-to-noise
ratio, which is calculated by the voltage �uctuation calculated above with the current noise emitted
by the source (typically, Sii = e2f0), expressed as a voltage noise: SV V = R2

0e
2f0. The signal-to-noise

ratio is therefore given by:

S

B
=

(
SV V
S∗V V

)√
∆ftmeas =

 R2
0e

2f0√
(SnV V + 2R2

0S
n
II)

2 + (2R2
0S

n
II)

2

√∆ftmeas (4.15)

where ∆f is the bandwidth of the measurement lines, and tmeas the measurement time. We
estimate ∆f by considering the measurement lines as a RC-circuit, where the resistor is given by the
measurement impedance R0, and the capacitor is given by the total shunting capacitance of the wires
connecting the sample to the ampli�ers (see Fig.4.12). For a pair of ∼ 2 meters-long UT-85-SS coaxial
cables, the shunting capacitance C is equal to ∼ 0.4nF . The integrated bandwidth is therefore equal
to ∆f = 1/4R0C. However, we remove the low-frequency part of this bandwidth (up to 80 kHz), so
that the e�ective bandwidth is equal to ∆f∗ = 1/4R0C − 80 kHz ≈ 175 kHz for R0 ≈ 2.4 kΩ. The
measurement time for a signal-to-noise ratio equal to 1 is therefore given by:

tmeas =
(SnV V + 2R2

0S
n
II)

2 + (2R2
0S

n
II)

2

(R2
0e

2f0)2

1

1/4R0C − 80 kHz
(4.16)

With NF SA-220F5 ampli�ers (SnV V ≈ 4 × 10−19V 2/Hz, SnII = 4 × 10−26A2/Hz, so that Ropt ≈
3.3 kΩ) and R0 ≈ 2.4 kΩ, we have tmeas ≈ 110s. This corresponds to a sensitivity equal to
3.98 × 10−28 A2/Hz/

√
Hz, almost two times larger than the sensitivity of our high-frequency noise

measurement setup.

4.2.2 Calibration and operation

We have calibrated the low-frequency noise measurement setup using the thermal noise of the 3 kΩ
measurement impedance: provided the temperature of the measurement load R0 is well known, one
can measure the low frequency noise emitted by the load for di�erent temperatures of the mixing
chamber, and thus extract the correspondence between a temperature variation δT and a variation of
the measured power in band δP . The assumption of a well-known temperature of the load is however
non-trivial, since it implies that the measurement circuit is correctly thermalized to the mixing chamber.
The temperature calibrations of the mesoscopic capacitor described in 1.3.2.3 (also shown in chapter 3
for sample S434-8 ) ensure that this assumption is correct for temperature larger than the e�ective
electronic temperature (typically 70 mK). We have therefore calibrated the setup for temperatures
ranging from 80 mK to ∼ 500 mK. The calibration procedure is as follows: a large power (∼ 2mW )
is applied to the heater of the mixing chamber, so as to set its temperature to ∼ 500 mK. We ensure
a proper thermalization of the measurement load to the mixing chamber temperature by waiting a
few tens of minutes at ∼ 500 mK, then turn o� the heating power and let the refrigerator cool down
while repeatedly measuring the low-frequency noise averaged over ∼ 3 seconds. The result is shown on
Fig.4.13: we have adjusted the data with a function including a noise o�set (partly corresponding to
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4.2. Low frequency noise measurement setup

the ampli�ers current noise) and a residual temperature T0: P (T ) = P0 +α
√
T 2

0 + T 2
mc. We obtain the

calibration between a variation of the measured power-in-band and the equivalent noise temperature
variation: ∆P = 5.5e− 6± 10%∆T . The residual temperature is found equal to ∼ 20 mK; while this
value is lower than the value found in the capacitance calibration in 1.3.2.3, this measurement of the
residual electronic temperature is not sensitive to gate noise, and therefore only gives the contribution
to the residual temperature due to improper thermalization of the coaxial cables.

Figure 4.13: Calibration of the low-frequency measurement setup: the thermal
noise of the measurement load is recorded as the mixing chamber cools down to the
base temperature (averaging time: ∼ 3s). We repeat the calibration several time to
estimate the error on the conversion coe�cient.

The calibration also allows us to estimate the sensitivity of the measurement setup: indeed, for
an integration time equal to ∼ 3.3s, we �nd a standard deviation in the measurement of the noise
temperature equal to 10 mK, that is a standard deviation in the current noise power spectral density
equal to ∼ 5.8e2f0. This corresponds to a measurement time for a standard deviation equal to e2f0

tmeas ≈ 110s. The sensitivity of the implemented setup is therefore equal to 4 × 10−28 A2/Hz/
√

Hz,
very close to the ideal sensitivity.

• Operation

The procedure for low-frequency noise measurements is similar to the one used for high-frequency noise
measurements: we measure the noise for a given set of bias voltages during a short time (typically
10s), then measure the noise with the QPC pinched-o� while all other parameters are kept constant
(especially, one has to compensate the change in the transmission of the central QPC in the HBT
con�guration caused by the coupling between Vg and Vqpc, see chapter 3). As for the high-frequency
noise measurements, doing so makes the measurement insensitive to long-term variations of the envi-
ronmental noise since only the contribution of the single electron emitter is measured. This sequence is
repeated a large number of times (typically 700); as for high-frequency noise measurement, the stability
of the dilution fridge over the whole measurement is crucial. We then subtract the two data sets in
order to remove the long time variation of the background noise, and calculate the mean value and the
standard error of the di�erence, which respectively yield the measured noise value and the error bars.
Once again, because we calculate the di�erence between two noises, the variance increases by a factor
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√
2, so that the e�ective sensitivity should become equal to 5.66×10−28 A2/Hz/

√
Hz. In chapter 3, we

show typical low-frequency noise measurements with error bars equal to ∼ 0.2e2f0, for a total integra-
tion time per point equal to 6370s. This corresponds to a measurement time for a unity signal-to-noise
ratio tmeas = 254s: the e�ective sensitivity is therefore equal to 6.13× 10−28 A2/Hz/

√
Hz. This value

is slightly higher than the expected e�ective sensitivity because the averaging time per sequence is still
long enough for the background to vary; however, choosing shorter averaging times is not recommended
because the total time spent changing the gate voltages might become comparable to (if not higher
than) the total averaging time per point.

4.2.3 Possible improvements

The measured sensitivities (absolute as well as e�ective) demonstrate the proper implementation of
the setup, as well as the e�ciency of the measurement protocol. However, the sensitivity of our
low-frequency noise measurement setup is still rather poor compared to our high-frequency noise mea-
surement setup, let alone to state-of-the art low frequency noise measurement setups such as the one
described in [114], which present sensitivities as low as 8.85 × 10−29 A2/Hz/

√
Hz. While we have

opted for a simple design in order to have an operational measurement setup as soon as possible, a few
modi�cations can be made that can greatly enhance the sensitivity of the setup:

• Resonant circuit
The main di�culty of low-frequency noise measurements comes from microphonics caused by mechan-
ical vibrations of the measurement cables. These vibrations induce many parasitic signals in the tens
of kHz range, which can hardly be compensated by the measurement protocol. When operating at
high magnetic �eld, these parasitic signals can become larger than the ampli�ers noise even when all
the wires are �rmly anchored to the insert. The most straightforward way to make the measurement
impervious to this e�ect is to simply �lter out the whole frequency band where it takes place: in our
case, we use a 10th-order highpass �lter to remove frequencies below 80 kHz. While the measured
spectra are devoid of most of the parasitic signals, we have signi�cantly decreased the measurement
bandwidth, thus increasing the measurement time by 40%. The use of a resonant circuit, however, al-
lows to compensate the shunting capacitance of the measurement cables so as to shift the measurement
bandwidth towards larger frequencies, where the parasitic signals vanish. As described in [114], the
measurement impedance is shunted by an inductor (preferably thermalized to colder stage of the dilu-
tion refrigerator), thus creating a resonant parallel RLC circuit, where C is the shunting capacitance of
the measurement wires. The inductance can be chosen so that the resonance frequency fr = 1/2π

√
LC

is in the few hundreds of kHz range, while the total bandwidth is still given by 1/4R0C. Provided
that the measured noise is white for frequencies below 1 MHz, using a resonant RLC circuit allows a
measurement on the whole bandwidth with no pollution caused by 10 kHz-range parasitic signals.

While this technique is quite straightforward, it su�ers from a major constraint caused by the
�nite resistance of the shunting inductor. Indeed, when the inductor is connected in parallel with the
measurement load, its �nite resistance r generates a thermal noise SrV V = 4rkBTL, where TL is the
temperature of the inductor. This voltage noise is �ltered by the resonant RLC circuit, so that its
contribution to the total voltage noise seen by the ampli�ers is:

(SrV V )∗ =
4rkBTL

(1− LCω2)2 + (LωR0
)2

(4.17)

For the usual values of R0 and C, a 150µH inductor with a typical 1 Ω resistance generates a
voltage noise at the resonance frequency fc = 650 kHz equal to 2.6 × 10−19V 2/Hz, that is 0.5 times
the ampli�ers voltage noise. Connecting the inductor at room temperature therefore increases the
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measurement time by a factor 2.25; it is thus necessary to implement the inductor inside the dilution
refrigerator to reduce this additional noise. In this case, one should carefully choose the inductor so that
its characteristics in a cryogenic environment are well known; in particular, non-magnetic inductors
are mandatory when working at large magnetic �elds (see [114]).

The design and implementation of a non-magnetic inductive shunt (typically 150 µH) inserted in
the low-temperature part of the measurement setup therefore would allow us to measure the noise on
the full bandwidth of the setup, centered on the frequency fc = 650 kHz.

• Cryogenic ampli�ers
For a given measurement load, the bandwidth of the setup is mainly limited by the value of the
shunting capacitance of the cables connecting the sample to the ampli�ers. While microwave coaxial
wires can be chosen to minimize the capacitance per unit length (typically 95 pF/m), the total length
can hardly be diminished if the �rst ampli�cation stage is placed at room temperature. Using cryogenic
ampli�ers thermalized at liquid helium temperature allows to reduce the length of cable by a factor ∼ 2,
and therefore increases the bandwidth. Furthermore, cryogenic ampli�ers generally have a lower input
voltage noise density than room-temperature ampli�ers: for instance, the voltage noise of the cryogenic
ampli�ers used in [114] (Agilent ATF-34143 ) is equal to 0.4 nV/

√
Hz, compared to 0.7 nV/

√
Hz for

the NF SA-220F5 ampli�ers used in our setup. Cryogenic HEMTs with a voltage noise equal to
0.2 nV/

√
Hz have also been recently developed at Laboratoire de Photonique et Nanostructures.

Using cryogenic ampli�ers therefore allows to signi�cantly extend the measurement bandwidth
while lowering the ampli�ers voltage noise, and could therefore decrease the measurement time by
an order of magnitude. However, the main drawback of this technique is that cryogenic ampli�ers
dissipate a signi�cant amount of heat, which might decrease the e�ciency and stability of the dilution
refrigerator, as well as increase liquid Helium consumption. Because of its e�ciency, we are nonetheless
still considering this option.

• Removing the measurement load and using NF LI-75A ampli�ers
The measurement load plays a critical role in the measurement time, since a larger measurement load
increases the measured signal to the power 4, but also increases the contribution of the ampli�er
current noise to the power 4 and diminishes the measurement bandwidth. We have plotted in Fig.4.14
the estimated measurement time for a unity signal-to-noise ratio as a function of the value of the
measurement load R0 with our current measurement setup. When the frequencies below 80 kHz
are removed, the chosen measurement load (R0 = 2440 Ω) optimizes the measurement time. When
the noise is measured on the whole bandwidth (e.g. using the resonant circuit described above),
the measurement time signi�cantly decreases, and the value of the measurement load optimizing the
measurement time is ∼ 3 kΩ: as expected, this value is lower than the value of the optimal impedance
Ropt = 3.5 kΩ. When the measurement load becomes higher than the optimal value, the contribution
of the ampli�ers current noise dominates, and the measurement time increases again.

Using ampli�ers presenting a lower current noise allows to increase the measurement load, provided
one can measure on the whole bandwidth: using NF LI-75A ampli�ers, which have a higher input
voltage noise density (2 nV/

√
Hz), but a lower current noise (0.02 pA/

√
Hz instead of 0.2 pA/

√
Hz),

in conjunction with a resonant circuit, would allow to remove the measurement load and directly
measure on the impedance of the edge channels of the sample (∼ 12.4 kΩ at �lling factor 2) with
a measurement time lower than 10s. This scheme appears to be the most interesting in terms of
improvement of the sensitivity compared to the amount of modi�cations. However, it is only e�cient
for high magnetic �elds, where the impedance of the edge channels is larger than 6 kΩ, that is for
�lling factors lower than 4.

139



Chapter 4. High-frequency and low-frequency noise measurement setups

Figure 4.14: Calculated measurement time using Eq.4.16, for NF SA-220F5 ampli-
�ers, as a function of the measurement load R0. Black line: the �rst 80 kHz of the
measurement bandwidth are removed to reproduce the implemented setup. The blue
circle corresponds to R0 = 2400 Ω. Red line: the whole measurement bandwidth is
used.

Conclusion of chapter 4

We have built two noise measurement setups able to measure the low-frequency (below 250 kHz)
and high frequency (1 − 2.8 GHz) noise generated by the coherent manipulation of single electrons.
Our high-frequency noise measurement setup demonstrates a state of the art sensitivity for GHz-
range noise measurement, and several modi�cation improving the sensitivity of the low-frequency
noise measurement setup to state-of-the-art levels are considered. The ability to measure both low-
frequency and high-frequency noise with a resolution of a fraction of e2f0 is crucial to fully characterize
the outcome of single-charge electron quantum optics experiments. Furthermore, our dual-output
measurement setup, where the high-frequency noise is measured at one output, and low-frequency
noise is measured at the other, might be used in further experiments where two distinct outputs
are considered, such as the measurement of two-particle non-local Aharonov-Bohm e�ect with single
charges [9], or any other experiment including a central QPC.
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Conclusion

In this thesis, we have studied the noise generated by a single electron emitter, both intrinsic and
after partition by a quantum point contact in a Hanbury-Brown and Twiss geometry. Similarly to
quantum optics, the measurement of the �uctuations of the output currents is a relevant tool to probe
the outcome of single-charge electron quantum optics experiments.

In the �rst chapter, we have presented a theoretical description of the mesoscopic capacitor within
a Floquet scattering matrix formalism, which we have used to calculate the noise in the next chapters.
We then focused both theoretically and experimentally on the average AC current emitted by the
capacitor. Under a large periodic excitation drive, the current is quantized in units of 2ef0, where f0 is
the driving frequency, indicating that the mesoscopic capacitor can indeed be used as a single electron
source. The study of the average AC current furthermore allows to characterize the parameters of
the source: indeed, the value of the level spacing ∆ and the residual temperature T0 can be extracted
from a temperature study of the linear regime, while the non-linear regime allows to locate the optimal
operating point of the source (excitation amplitude Vexc, transmission D, equilibrium potential φ0).

In the second chapter, we have studied the autocorrelation of the high-frequency current �uctuations
emitted by the source. We have put into light the existence of an intrinsically high-frequency noise
arising from the randomness in the emission times of single charges. This noise, called quantum jitter,
is the signature of single charge emission: one expects to systematically measure its contribution
when measuring high-frequency noise in a single-charge electron quantum optics experiment. Our
experimental results demonstrate that in the optimal operating conditions of the source, the noise
reduces to the quantum jitter, thus demonstrating single particle emission. We have also observed
the crossover between the quantum jitter regime and the shot noise regime, where single charges are
emitted randomly. In the optimal operating conditions, the agreement between the two models and the
experimental data is excellent. We have measured an increase in the noise when charges are emitted
close to the Fermi energy; this increase, related to the generation of additional electron/hole pairs,
is well reproduced with the scattering model. The measurement of the noise emitted by the source
therefore allows to put into light several regimes of noise which are well understood using the two
models, thus demonstrating the validity of the description of the mesoscopic capacitor as time and
energy-resolved single electron emitter.

In the third chapter, we have studied the partition of the current emitted by the single electron
source by a quantum point contact, in the Hanbury-Brown and Twiss geometry. The calculation of
the noise after partition within the Floquet scattering matrix formalism demonstrates the richness of
the HBT geometry; in particular, the zero-frequency part of the partition noise directly counts the
number of emitted electron/hole pairs per period. This property, which was �rst predicted in [64],
allows to characterize the generation of additional electron/hole pairs when charges are emitted in
resonance with the Fermi energy. It also opens the way to quantitative studies of the energy exchanges
between adjacent quantum Hall e�ect edge channels at the single charge scale. Furthermore, the use
of a biased contact at the second input of the QPC allows to measure the energy distribution of the
emitted charges; the principle of this measurement can be extended to measure the diagonal terms
of the density matrix (coherence) by applying RF signals to the biased contact [65], leading to the
full tomography of single charges. The experimental results presented in this chapter demonstrate
the feasibility of these measurements; however, they also emphasize the importance of a controlled
measurement environment, particularly regarding the electronic temperature.
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Conclusion

Finally, we have described in the fourth chapter the noise measurement setups used in the experi-
mental studies presented in chapters 2 and 3. Indeed, both high and low-frequency noises considered in
these chapters are of the order of e2f0 ≈ 3.8×10−29 A2/Hz, where f0 = 1.5 GHz is the drive frequency;
while this value of the noise corresponds to typical resolutions in state of the art low-frequency noise
measurement setups [114, 48], it is extremely challenging to reach in a high-frequency measurement.
We have therefore designed and implemented a high-frequency noise measurement setup with an ex-
ceptional sensitivity of 1.3 × 10−29 A2/Hz in a 5 minutes measurement time, based on the joint use
of a quarter-wave impedance transformer which allows to increase the measurement impedance from
50 Ω to 120 Ω (thus increasing the amplitude of the voltage �uctuations), and a modulated double
balanced ampli�er which dramatically increases the stability of the measurement. An independent cal-
ibration of the setup allows us to compare the experimental noise data presented in the second chapter
with the results yielded by the two models without any free parameter. We have also implemented
a low-frequency noise measurement setup in order to perform the experiments presented in the third
chapter. While the sensitivity of this setup is not as good as the sensitivity of the high-frequency noise
measurement setup, one can consider several relatively simple modi�cations that would signi�cantly
increase its e�ciency.

In conclusion, the measurements performed during my thesis are the �rst experimental realization of
single-charge electron quantum optics experiments. We have shown that the current �uctuations yield
the signature of single particle emission, as well as numerous informations on the number of emitted
electron/hole pairs per period and the energy distribution of the emitted charges, thus demonstrating
the fact that noise measurements are the proper tools for the realization of single-charge electron
quantum optics experiments. Furthermore, we have demonstrated the e�ectiveness of the mesoscopic
capacitor as a single electron emitter, making it a solid candidate to perform single-charge electron
quantum optics experiments.

After having performed the experiments proposed in the third chapter, the implementation of single
charge tomography can be considered, using the second excitation line built in our dilution refrigerator
to apply RF voltages to the opposite contact. The ability to measure the energy distribution and the
coherences of emitted charges opens the way to a vast quantity of experiments probing both relaxation
and decoherence of single charges in QHE edge channels: one could for instance measure the density
matrix after di�erent propagation lengths by adding a gate between the source and the central QPC
to change the length of the path; one can also implement the voltage probe technique used in Mach-
Zehnder interferometers [19] to tune the decoherence of the emitted charges. Lastly, results presented
in this thesis allow to soundly consider the use of a second synchronized single electron source to
perform Hong-Ou-Mandel electronic collision experiments [12].
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Appendix A

Scattering Formalism

A.1 Floquet scattering matrix

A.1.1 Sum Rules

• Sum rule A

Let us calculate the sum
∑

n U
∗
n+m(ε−m~Ω)Un+m′(ε−m′~Ω), with:

U∗n+m(ε−m~Ω) =
∑
k

ck+n+mc
∗
kU

0∗(ε− (m+ k)~Ω)

Un+m′(ε−m′~Ω) =
∑
k′

c∗k′+n+m′ck′U
0(ε− (m′ + k′)~Ω)

(A.1)

With the notation ~Ω = 1, so that ε+m~Ω ≡ ε+m, the sum yields:

∑
n

U∗n+m(ε−m)Un+m′(ε−m′) =
∑
k,k′

(∑
n

ck+n+mc
∗
k′+n+m′

)
×c∗kck′U0∗(ε−m− k)U0(ε−m′ − k′)

(A.2)

The sum rule on the cn coe�cients implies that
∑

n ck+n+mc
∗
k′+n+m′ = δk′+m′,k+m. This yields,

with U0∗(ε−m− k)U0(ε−m− k) = 1:∑
n

U∗n+m(ε−m)Un+m′(ε−m′) =
∑
k,k′

δk′+m′,k+mc
∗
kck′U

∗
0 (ε−m− k)U0(ε−m′ − k′)

=
∑
k

c∗kck+m−m′

(A.3)

The sum rule on the cn coe�cients now implies:

∑
n

U∗n+m(ε−m~Ω)Un+m′(ε−m′~Ω) = δm,m′ (A.4)

• Sum rule B

Let us demonstrate the sum rule Σ =
∑

m |
∑

n U
∗
n(ε− n)Um+n(ε− n− ω)|2 = 1 (with ~Ω = ~ = 1):
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Σ =
∑
m

(∑
n

U∗n(ε− n)Um+n(ε− n− ω)

)(∑
n′

Un′(ε− n′)U∗m+n′(ε− n′ − ω)

)

=
∑
n,n′

U∗n(ε− n)Un′(ε− n′)
∑
m

Um+n(ε− n− ω)U∗m+n′(ε− n′ − ω)

=
∑
n

U∗n(ε− n)Un(ε− n)

(A.5)

We use the �rst sum rule to simplify the sum over m. Let us now expand the Floquet scattering
matrices in terms of cn coe�cients and equilibrium scattering matrix U0(ε):

Σ =
∑
n

∑
k,k′

ck+nc
∗
kc
∗
k′+nck′U

0∗(ε− n− k)U0(ε− n− k′) (A.6)

The successive variable substitutions ñ = n+ k and k̃ = k − k′ yield:

Σ =
∑
ñ

∑
k̃

cñc
∗
ñ−k̃

(∑
k′

c∗
k′+k̃

ck′

)
U0∗(ε− ñ)U0(ε− ñ+ k̃) (A.7)

We now use the sum rule on the cn coe�cients
∑

k′ c
∗
k′+k̃

ck′ = δk̃,0 to demonstrate sum rule B:

∑
m

∣∣∣∣∣∑
n

U∗n(ε− n)Um+n(ε− n− ω)

∣∣∣∣∣
2

=
∑
n

c∗ncnU
0∗(ε)U0(ε)

=
∑
n

c∗ncn = 1

(A.8)

A.2 Average ac current

A.2.1 Expansion of Eq.1.32

Let us �rst expand the expression of Îb(t) given in Eq.1.32:

Îb(t) =
e

h

∑
m,m′,n,n′

∫
dεdε′cn+mc

∗
nc
∗
n′+m′cn′U

0∗(ε− n)U0(ε′ − n′)â†(ε+m)â(ε′ +m′)ei
ε−ε′
~ t (A.9)

The variable substitutions ε̃ = ε− n, ε̃′ = ε′ − n′, followed by m̃ = m+ n, m̃′ = m′ + n′, provide:

Îb(t) =
e

h

∑
m̃,m̃′

cm̃c
∗
m̃′

∑
n,n′

c∗ncn′e
i(n−n′)t

∫ dε̃dε̃′U0∗(ε̃)U0(ε̃′)â†(ε̃+ m̃)â(ε̃′ + m̃′)ei
ε̃−ε̃′
~ t (A.10)
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The sum rule on the cn coe�cients de�ned in Eq.1.10 implies that
∑

n,n′ c
∗
ncn′e

i(n−n′)t = 1. There-
fore, after substituting {ε̃, ε̃′, m̃, m̃′} with {ε, ε′,m,m′} for more clarity, we obtain:

Îb(t) =
e

h

∑
m,m′

cmc
∗
m′

∫
dεdε′U0∗(ε)U0(ε′)â†(ε+m)â(ε′ +m′)ei

ε−ε′
~ t (A.11)

We can introduce the aforementioned sum rule
∑

m,m′ c
∗
mcm′e

i(m−m′)t = 1 in Eq.1.24 to obtain, after

the substitutions ε→ ε+m and ε′ → ε′ +m′, a similar expression for Îc(t);

Îc(t) =
e

h

∑
m,m′

cmc
∗
m′

∫
dεdε′ĉ†(ε+m)ĉ(ε′ +m′)ei

ε−ε′
~ t (A.12)

The total current is therefore given by:

Î1(t) =
e

h

∑
m,m′

cmc
∗
m′

∫
dεdε′

[
U0∗(ε)U0(ε′)â†(ε+m)â(ε′ +m′)− ĉ†(ε+m)ĉ(ε′ +m′)

]
ei
ε−ε′
~ t (A.13)

Eq.1.34 is thus found when taking the quantum average of this last equation.

A.3 Comparison with the gauge-translation formalism

A.3.1 Average ac current

Let us compare the expression of the average ac current emitted by the mesoscopic capacitor obtained
in Eq.1.32 with the expression given in Adrien Mahé's manuscript [68], calculated using a gauge
translation that keeps the potential of the dot equal to zero, and modulates the potential of the
contacts (Eq.1.11, p.22):

Ig(t) =
e

h

∑
n,n′

c∗ncn′

∫
dε
[
U0∗(ε)U0(ε+ (n′ − n)~Ω)− 1

]
f(ε− n~Ω)ei(n−n

′)Ωt (A.14)

After the successive variable substitutions n′ = −(k +m) and n = −m, Eq.1.32 yields:

I1(t) =
e

h

∑
n,n′

c∗−n′c−n

∫
dε
[
U0∗(ε)U0(ε+ (n′ − n)~Ω)− 1

]
f(ε− n~Ω)ei(n−n

′)Ωt (A.15)

with:

c−n =
1

T

T∫
0

dtei−nΩte−i
e
~
∫ t
0 V
′
(τ ′)dτ ′ = c∗n[−V ′ ] (A.16)

This �nally gives:

I1(t) =
e

h

∑
n,n′

c∗n[−V ′ ]cn′ [−V
′
]

∫
dε
[
U0∗(ε)U0(ε+ (n′ − n)~Ω)− 1

]
f(ε− n~Ω)ei(n−n

′)Ωt (A.17)

This last expression is strictly equivalent to Eq.A.14, since the gauge translation changes the sign
of the drive (the potential −V ′(t) is applied on the contacts).
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A.3.2 Current fluctuations autocorrelation

We now compare the expression of the autocorrelation of the current �uctuations emitted by the source
given in Eq.2.18 with its expression established in Adrien Mahé's thesis using the gauge translation
(Eq.2.25, p.62):

S(ω) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

c∗n+mcnU
0∗(ε+ n)U0(ε+ n− ω)

∣∣∣∣∣
2

f(ε−m)(1− f(ε− ω)) (A.18)

We �rst perform the variable substitution ε′ ≡ ε+m in Eq.2.18, so that the integrand becomes:

Σ =

∣∣∣∣∣∑
n

U∗n(ε′ −m− n)Un+m(ε′ −m− n− ω)

∣∣∣∣∣
2

f(ε′ −m)(1− f(ε′ − ω)) (A.19)

We expand the Floquet scattering matrices U∗n(ε′−m−n) and Un+m(ε′−m−n−ω) as a function
of the cn coe�cients. We perform a variable substitution so that the sum rule on the cn coe�cients
given in Eq.1.10 yields:

Σ =

∣∣∣∣∣∑
n

c∗ncn−mU
0∗(ε′ − n)U0(ε′ − n− ω)

∣∣∣∣∣
2

f(ε′ −m)(1− f(ε′ − ω)) (A.20)

The variable substitution n′ ≡ −n yields:

Σ =

∣∣∣∣∣∑
n′

c∗−n′c−n′−mU
0∗(ε′ + n′)U0(ε′ + n′ − ω)

∣∣∣∣∣
2

f(ε′ −m)(1− f(ε′ − ω)) (A.21)

Eq.A.16 �nally yields, with the notations n ≡ n′ and ε ≡ ε′:

Σ =

∣∣∣∣∣∑
n

cn[−V ′]c∗n+m[−V ′]U0∗(ε+ n)U0(ε+ n− ω)

∣∣∣∣∣
2

f(ε−m)(1− f(ε− ω)) (A.22)

This integrand is identical to the one in Eq.A.18, with a change of the sign of the potential V ′(t)
caused by the gauge translation.

A.4 Emission and absorption noise

We demonstrate here that the excess noise of the source (i.e. the remaining contribution of noise
when the noise at the pinch-o� is subtracted) is symmetric with the measurement: the emission and
absorption noises of the single electron emitter are equal.

We �rst calculate ∆(S) = S(ω)−S(−ω), using Eq.2.18. In the expression of S(−ω), the successive
variable substitutions ε′ ≡ ε+m+ ω, n′ ≡ n+m and m′ = −m yield:

S(−ω) = 2
e2

h

∑
m

∫
dε′

∣∣∣∣∣∑
n

U∗n(ε′ −m− n− ω)Un+m(ε′ − n−m)

∣∣∣∣∣
2

f(ε′ −m− ω)(1− f(ε′))

= 2
e2

h

∑
m

∫
dε′

∣∣∣∣∣∑
n′

U∗n′−m(ε′ − n′ − ω)Un′(ε
′ − n′)

∣∣∣∣∣
2

f(ε′ −m− ω)(1− f(ε′))

= 2
e2

h

∑
m′

∫
dε′

∣∣∣∣∣∑
n′

U∗n′+m′(ε
′ − n′ − ω)Un′(ε

′ − n′)

∣∣∣∣∣
2

f(ε′ +m′ − ω)(1− f(ε′))

(A.23)

146



Appendix A. Scattering Formalism

The di�erence ∆(S) = S(ω)− S(−ω) is therefore equal to:

∆(S) = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

U∗n(ε− n)Un+m(ε− n− ω)

∣∣∣∣∣
2

(f(ε)− f(ε+m− ω)) (A.24)

Using the second sum rule on the Floquet scattering matrix (see A.1), the di�erence between
absorption and emission noise at zero transmission ∆(S)◦ = S(ω,D = 0)− S(−ω,D = 0) is given by:

∆(S)◦ = 2
e2

h

∫
dε (f(ε)− f(ε− ω))

= 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

U∗n(ε− n)Un+m(ε− n− ω)

∣∣∣∣∣
2

(f(ε)− f(ε− ω))

(A.25)

The di�erence ∆(S)−∆(S)◦ is then equal to:

∆(S)−∆(S)◦ = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

U∗n(ε− n)Un+m(ε− n− ω)

∣∣∣∣∣
2

(f(ε− ω)− f(ε+m− ω)) (A.26)

Similarly to A.3.2, we expand the Floquet scattering matrix as a function of the cn coe�cients and
apply variable substitutions so that the sum rule on the cn coe�cients yields:

∆(S)−∆(S)◦ = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

cnc
∗
m+nU

0∗(ε− n)U0(ε− n− ω)

∣∣∣∣∣
2

(f(ε− ω)− f(ε+m− ω))

(A.27)
We now assume that the cn coe�cients are real, so that cnc

∗
m+n = cncm+n. This only corresponds

to a shift in the origin of time so that the excitation drive is even in time. The successive variable
substitutions ε′ ≡ ε+m, n′ = n+m and m′ = m yield:

∆(S)−∆(S)◦ = 2
e2

h

∑
m

∫
dε′

∣∣∣∣∣∑
n

cncm+nU
0∗(ε′ − n−m)U0(ε′ − n−m− ω)

∣∣∣∣∣
2

×
(
f(ε′ −m− ω)− f(ε′ − ω)

)
= 2

e2

h

∑
m

∫
dε′

∣∣∣∣∣∑
n′

cn′−mcn′U
0∗(ε′ − n′)U0(ε′ − n′ − ω)

∣∣∣∣∣
2

×
(
f(ε′ −m− ω)− f(ε′ − ω)

)
= 2

e2

h

∑
m′

∫
dε′

∣∣∣∣∣∑
n′

cn′+m′cn′U
0∗(ε′ − n′)U0(ε′ − n′ − ω)

∣∣∣∣∣
2

×
(
f(ε′ +m′ − ω)− f(ε′ − ω)

)

(A.28)

We �nally obtain:

∆(S)−∆(S)◦ = 2
e2

h

∑
m

∫
dε

∣∣∣∣∣∑
n

cn+mcnU
0∗(ε− n)U0(ε− n− ω)

∣∣∣∣∣
2

(f(ε+m− ω)− f(ε− ω))

= − (∆(S)−∆(S)◦)
(A.29)

The di�erence ∆(S)−∆(S)◦ is therefore equal to zero: the excess absorption and emission noises
of the source are indeed equal.
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A.5 Partition of a shot noise

The numerical computation of the variations of both the noise of the source S(ω) and the partition
term C(ω) with the measurement frequency ω presented in 3.2.2.2 show that at low transmission of
the dot QPC D, S(ω 6= 0) and C(ω 6= 0) are equal. For these values of the transmission, S(ω 6= 0) can
be described as a shot noise; we rely on this property to demonstrate the result mentioned above. We
use Eq.55 de�ned for multiterminal devices at zero temperature in [79], which expresses the correlation
Sαβ between the current �uctuations of two terminals α and β as a function of the Fermi distributions
of each terminal fγ(ε), and the scattering matrix elements sαγ :

Sαβ =
e2

h

∑
γ 6=δ

∫
dεTr[s†αγsαδs

†
βδsβγ ] (fγ(ε)(1− fδ(ε)) + fδ(ε)(1− fγ(ε))) (A.30)

• Shot noise emitted by the source
Let us �rst calculate the expression of the noise of the source S(ω 6= 0) in the shot-noise limit, by
describing the source as a simple tunnel barrier with a low transmission D = t2, as depicted in Fig.A.1.

QPC1

r t

(1)

(4) (2)

(3)

Figure A.1: Partition noise generated by a quantum point contact: terminal (1) is
biased, all other terminals are grounded

Terminal (1) is biased with the voltage Vb, while all other terminals are grounded; we focus on the
autocorrelation of the current �uctuations in terminal (3) S33. The relevant scattering matrix elements
are therefore s31 = t and s32 = r. Eq.A.30 thus yields:

S33 = 2
e2

h
r2t2

∫
dε (f1(ε)(1− f2(ε)) + f2(ε)(1− f1(ε))) (A.31)

At zero temperature� the integral is equal to eVb. With r2t2 = D(1 −D), we recover the well-known
expression of the partition noise:

S33 = 2e

(
e2

h
Vb

)
D(1−D) = 2eI ×D(1−D) (A.32)

Where I = e2

h Vb = G0Vb is the current in terminal (1), G0 being the conductance of a single edge
channel. When the transmission D is low, we have S33 = S(ω 6= 0) = 2eI ×D.

• Partition of the shot noise
To reproduce the HBT geometry discussed in the third chapter, we now consider the con�guration
depicted in Fig.A.2, where the current �owing from the �rst QPC (terminal (3) in the previous para-
graph) is partitioned by a second QPC. To suppress multiple loops between the two QPCs, an ohmic
contact (5) is inserted in the lower branch between the two QPCs; we then have s31 = t1t2, s32 = r2

and s42 = 0. As in the previous paragraph, only terminal (1) is biased, and we calculate the autocor-
relation of the current �uctuations in terminal (3) S33. The relevant scattering matrix elements are
therefore s31 = t1t2, s32 = r2 and s35 = r1t2.
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QPC1
(1)

(4) (2)

(3)
QPC2

(5)

r1 t1 r2 t2

Figure A.2: Partition of a partition noise generated by a quantum point contact:
terminal (1) is biased, all other terminals are grounded

In these conditions, Eq.A.30 yields:

S33 =
e2

h

∫
dε(t1t2r2)2(f1(ε)(1− f2(ε)) + f2(ε)(1− f1(ε)))

+
e2

h

∫
dε(t1t2r1t2)2(f1(ε)(1− f5(ε)) + f5(ε)(1− f1(ε)))

+
e2

h

∫
dε(r2r1t2)2(f2(ε)(1− f5(ε)) + f5(ε)(1− f2(ε)))

(A.33)

Since only terminal (1) is biased, the third term in the above equation vanishes at zero temperature.
We therefore have, with t21 = T1, (t2r2)2 = T2(1− T2), t22 = T2, (t1r1)2 = T1(1− T1):

S33 = 2e

(
e2

h
VbT1T2(1− T2) + T1(1− T1)T 2

2

)
= 2eI × T1T2(1− T2) + 2eI × T1(1− T1)T 2

2 (A.34)

As seen in the third chapter, the noise after partition by the second QPC yields a partition term
multiplied by T2(1 − T2), corresponding to the partition term C(ω), and the noise upstream of the
second QPC 2eI × T1(1 − T1), multiplied by the factor T 2

2 , corresponding to the term S(ω). When
the transmission of the �rst QPC T1 becomes small, we recover a pure shot noise term for the noise
upstream of the second QPC S(ω 6= 0) = 2eI×T1, which is then equal to the partition term C(ω 6= 0).
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Appendix B

Summary of the samples parameters
We present here a table summarizing the parameters of the various samples mentioned in this manuscript:

sample ID E3 S528-11 S434-8

density n 1.3× 1011cm−2 1.9× 1011cm−2 1.8× 1011cm−2

mobility µ 2.6× 106cm2V −1s−1 1.3× 106cm2V −1s−1 2.4× 106cm2V −1s−1

dimensions of the dot 1µm× 1µm 0.6µm× 0.6µm 0.8µm× 0.8µm

level spacing ∆ 2.5± 0.5K 4.2± 0.2K 3± 0.2K

residual temperature
Tel

270± 20mK 60± 15mK 70± 15mK

operating frequency
f0

32MHz, 180MHz,
515MHz, 1.5GHz

1.5GHz 1.5GHz

magnetic �eld B 1.38T 1.79T 3.9T

measurements

I(t) (32MHz)
IΩ (180MHz−1.5GHz) IΩ IΩ

S(Ω) S(Ω)
CI1I1(Ω), CI1I1(0)

references [10, 11, 62, 70, 71] [63, 68]
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