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Abstract

In this thesis, we investigate the use of parametric probabilistic models for classification
tasks in the domain of natural language processing. We focus in particular on discrimi-
native models, such as logistic regression and its generalization, conditional random fields
(CRFs).

Discriminative probabilistic models design directly conditional probability of a class
given an observation. The logistic regression has been widely used due to its simplicity
and effectiveness. Conditional random fields allow to take structural dependencies into
consideration and therefore are used for structured output prediction. In this study, we
address two aspects of modern machine learning, namely, semi-supervised learning and
model selection, in the context of CRFs.

The contribution of this thesis is twofold. First, we consider the framework of semi-
supervised learning and propose a novel semi-supervised estimator and show that it is
preferable to the standard logistic regression. Second, we study model selection approaches
for discriminative models, in particular for CRFs and propose to penalize the CRFs with
the elastic net. Since the penalty term is not differentiable in zero, we consider coordinate-
wise optimization. The comparison with the performances of other methods demonstrates
competitiveness of the CRFs penalized by the elastic net.
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Résumé

Dans cette thèse nous étudions l’estimation de modèles probabilistes discriminants, surtout
des aspects d’apprentissage semi-supervisé et de sélection de caractéristiques.

Le but de l’apprentissage semi-supervisé est d’améliorer l’efficacité de l’apprentissage
supervisé en utilisant des données non-étiquetées. Cet objectif est difficile à atteindre dans
les cas des modèles discriminants.

Les modèles probabilistes discriminants permettent de manipuler des représentations
linguistiques riches, sous la forme de vecteurs de caractéristiques de très grande taille.
Travailler en grande dimension pose des problèmes, en particulier computationnels, qui
sont exacerbés dans le cadre de modèles de séquences tels que les champs aléatoires con-
ditionnels (CRF). Sélectionner automatiquement les caractéristiques pertinentes s’avère
alors intéressant et donne lieu à des modèles plus compacts et plus faciles à utiliser.

Notre contribution est double. Nous introduisons une méthode originale et simple
pour intégrer des données non étiquetées dans une fonction objectif semi-supervisée. Nous
démontrons alors que l’estimateur semi-supervisé correspondant est asymptotiquement
optimal. Le cas de la régression logistique est illustré par des résultats d’expériences.

Dans cette étude, nous proposons un algorithme d’estimation pour les CRF qui réalise
une telle sélection, par le truchement d’une pénalisation L1. Nous présentons également
les résultats d’expériences menées sur des tâches de traitement des langues (le chunking et
la détection des entités nommées), en analysant les performances en généralisation et les
caractéristiques sélectionnées. Nous proposons finalement diverses pistes pour améliorer
l’efficacité computationelle de cette technique.

Analyse asymptotique de l’apprentissage semi-supervisé

pour les modèles probabilistes discriminants

Dans de nombreux problèmes de classification (pour l’image, le son ou le texte), on
dispose de masses de données non-étiquetées facilement accessibles, alors que les données
étiquetées sont incomparablement moins volumineuses et sont coûteuses à acquérir.

Une question importante est donc de trouver des méthodes qui utilisent des données
non-étiquetées pour améliorer les performances de l’apprentissage supervisé. Dans les
dernières années, ce problème a suscité le développement de nombreux algorithmes (voir
(Chapelle et al., 2006) pour un état de l’art récent).
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Nous considérons des méthodes d’apprentissage probabilistes, c’est-à-dire, des méthodes
qui associent une mesure de confiance probabiliste à chaque décision: en particulier, le
modèle de régression logistique et ses extensions polytomiques nous serviront d’illustration
de nos techniques. Ces méthodes ne sont pas nécessairement les meilleures du point de
vue, par exemple, des performances en classification, mais elles sont importantes pour des
applications qui sont basées sur l’erreur de généralisation, des applications de ranking, des
combinaisons de décisions de sources multiples, etc. Dans le contexte de l’apprentissage
semi-supervisé, on distingue généralement modèles génératifs et modèles discriminants.
Les modèles probabilistes génératifs peuvent, en effet, s’accommoder de données non-
étiquetées d’une manière très intuitive, en spécifiant des modèles à données latentes, qu’il
est possible d’estimer par l’algorithme EM (Expectation-Maximization) (voir, par exem-
ple (Nigam et al., 2000, Klein and Manning, 2004) pour des mises en pratique réussies de
cette idée).

Les modèles discriminants permettent en général d’atteindre de meilleures perfor-
mances que les modèles génératifs pour des problèmes de classifications (Ng and Jordan,
2002). Malheureusement, l’intégration de données non-étiquetées, est, dans ce cadre, beau-
coup moins évidente. La raison en est claire: supposons que l’on veut apprendre à prédire
une étiquette y à partir de l’observation de x; l’apprentissage discriminant d’un modèle
réalisant cette tâche va typiquement chercher à maximiser P (y|x; θ), où θ est un vecteur
de paramètres. Dans ce contexte, toute connaissance supplémentaire sur la distribution
marginale P (x) que pourraient apporter des données non-étiquetées semble essentielle-
ment inutile; c’est du moins la thèse défendue par (Seeger, 2002, Lasserre et al., 2006).
Une des contributions de notre étude est de prouver que cette intuition s’appuie sur une
hypothèse implicite que le modèle est bien specifié, (au sens où l’espace des modèles con-
sidérés lorsque le paramètre varie contient le “vrai” modèle); nous aurons l’occasion de
montrer que lorsque cette hypothèse n’est pas vérifiée, alors les données non-étiquetées
peuvent avoir leur utilité.

Pour sortir de cette impasse, l’approche la plus répandue consiste à faire dépendre le
vecteur de paramètres θ, soit directement, soit indirectement, des données non-étiquetées.
Une manière d’introduire une telle dépendance consiste à poser des contraintes sur la
forme de P (y|x): “l’hypothèse de cluster” (cluster assumption), par exemple, stipule que
les frontières de décision se trouvent dans des régions de faible densité de P (x) (Seeger,
2002, Chapelle and Zien, 2005). (Grandvalet and Bengio, 2004) utilisent cette intuition
dans une méthode d’apprentissage semi-supervisé (régularisation de l’entropie), qui in-
troduit une nouvelle fonction objectif combinant le terme habituel de log-vraisemblance
(conditionnelle) avec une pénalité basée sur l’entropie, qui impose que les paramètres soit
positionnés de façon à classer sans ambigüıté les exemples non-étiquetés. Cette idée est ap-
pliquée aux Champs Aléatoires Conditionnels (Lafferty et al., 2001) par (Jiao et al., 2006);
on se reportera également à (Corduneanu and Jaakkola, 2003) pour des idées similaires.

La proposition de (Grandvalet and Bengio, 2004), comme presque toutes les ap-
proches qui introduisent des termes supplémentaires dans la fonction objectif du modèle
d’apprentissage supervisé, se heurte aux problèmes suivants: (i) la convexité de la fonc-
tion objective n’est plus garantie, ce qui rend le problème d’optimisation plus difficile
et très sensible aux conditions initiales; (ii) la consistance asymptotique de l’estimateur
usuel (maximisant la vraisemblance conditionnelle) est également perdue: concrètement,
cela signifie qu’il est possible de construire des configurations dans lesquelles l’utilisation
des données non-étiquetées conduit en fait à dégrader les performances de l’estimateur
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usuel. Pour résumer, obtenir des résultats positifs avec ces techniques demande de régler
finement les différents paramètres contrôlant le comportement de l’optimisation.

L’“hypothèse de cluster” est également au fondement des méthodes à base de graphes,
qui utilisent l’intuition que les points non-étiquetées doivent recevoir les mêmes étiquettes
que leur(s) (proche(s)) voisin(s) étiqueté(s): dans (Zhu and Ghahramani, 2002), cette
idée est réalisée par un algorithme propageant de manière itérative des étiquettes dans
un graphe de voisinage: initialement, seuls sont connus les labels des données étiquetées,
labels qui sont propagés dans le graphe vers les points non-étiquetés jusqu’à convergence.

(Lasserre et al., 2006) propose une autre approche, plus directe, pour faire dépendre
le modèle de classification des données non-étiquetées; elle consiste à considérer deux en-
sembles de paramètres: un pour la probabilité conditionnelle P (y|x; θ), et l’autre pour la
probabilité marginale P (x; ν). Le cas où θ et ν sont indépendants est celui d’un modèle dis-
criminant “pur” dans lequel on ne peut pas tirer partie des données non-étiquetées. Le cas
θ = ν correspond à un modèle génératif traditionnel (P (x) =

∑

y P (x|y; θ)); l’introduction
(via une distribution a priori) de dépendances entre θ et ν permet de construire toute
une gamme de situations intermédiaires, correspondant à modèles hybrides. Mention-
nons finalement (Mann and McCallum, 2007b), qui étudie toutefois une situation assez
différente de la nôtre, dans laquelle on dispose d’une connaissance a priori de la distribution
marginale des labels Y ; cette méthode semble donner des résultats prometteurs.

Dans cette étude, nous essayons de remettre en cause le point de vue selon lequel les
données non-étiquetées seraient inutiles dans des modèles discriminants. à cet effet, nous
introduisons un nouvel estimateur, dénommé l’estimateur “semi-supervisé”, du paramètre
θ dont nous montrons qu’il est asymptotiquement optimal et qu’il est, dans certains cas,
préférable à l’estimateur usuel (maximisant la vraisemblance conditionnelle). Pour cela,
nous nous plaçons dans une situation idéale dans laquelle la probabilité marginale est
complètement connue; cette supposition est vraie à la limite où l’on dispose d’un nombre
infini de données non-étiquetées. Dans ce cadre, une observation intéressante est que la
méthode proposée est la plus efficace quand l’erreur de Bayes est très faible. Cette ob-
servation correspond très bien avec l’intuition précédemment évoquée selon laquelle les
algorithmes semi-supervisés sont le plus efficaces lorsque les classes sont bien séparées.
Pour compléter les résultats asymptotiques, nous discutons également les résultats em-
piriques obtenus en utilisant l’estimateur semi-supervisé dans un modèle de régression
logistique (classification binaire).

Estimateur semi-supervisé

Soit g(y|x; θ) la fonction de densité de probabilité conditionnelle correspondant à un
modèle probabiliste discriminant paramétré par θ ∈ Θ. Dans la suite, nous supposons que
la variable de classe Y prend ses valeurs dans un ensemble fini Y; un cas particulier que
nous développons plus longuement est celui où les labels de classes sont binaires Y = {0, 1}.
Nous supposons également que les observations X appartiennent à un ensemble fini X , qui
peut être arbitrairement grand. La procédure d’apprentissage a accès à un ensemble de
n observations i.i.d. étiquetées, (Xi, Yi)1≤i≤n ainsi qu’à des observations non-étiquetées.
Le nombre d’observations non-étiquetées peut être infini, nous supposons qu’il est suff-
isamment grand pour que la probabilité marginale des observations soit complètement
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connue.

Pour une fonction f : R
p 7→ R, ∇zf(z⋆) dénote un vecteur de gradient de dimension

p × 1 et ∇zT∇zf(z⋆) une matrice hessienne p × p au point z⋆. Si f : R
p 7→ R

r, on note
∇zTf(z⋆) une matrice jacobienne r × p au point z⋆. Enfin, Eq(f) et Vq(f) désignent
respectivement l’espérance et la variance de f sous la loi q.

Un cas simple

Pour débuter, nous considérons le cas d’un modèle très simple, que nous désignerons
par la suite sous le terme de “modèle complètement spécifié”. Soit π(x, y) la probabilité
jointe complète de X et Y estimée par le modèle. Soient η(y|x) et q(x) respectivement
la probabilité conditionnelle et la probabilité marginale associées à π. Bien que ce cas
ne soit pas très intéressant pour les applications réelles de l’apprentissage statistique, il
fournit un cadre simple pour étudier le rôle qui joue la loi marginale q dans l’apprentissage
semi-supervisé.

Pour ce modèle, il est bien connu que l’estimateur du maximum de vraisemblance de
π(x, y) défini par

π̂n(x, y) =
1

n

n∑

i=1

✶{Xi = x, Yi = y} (1)

est asymptotiquement efficace avec une variance asymptotique υ(x, y) = π(x, y)(1 −
π(x, y)) (on suppose que 0 < π(x, y) < 1).

On suppose maintenant que q(x), la probabilité marginale de X est connue, avec
0 < q(x) < 1. Il est facile de vérifier que l’estimateur du maximum de vraisemblance de
π(x, y) sous contrainte marginale

∑

y∈Y π(x, y) = q(x) est défini par:

π̂s
n(x, y) =

∑n
i=1 ✶{Xi = x, Yi = y}
∑n

i=1 ✶{Xi = x} q(x) (2)

où l’indice s indique que l’estimateur est “semi-supervisé”. La fraction (2) correspond à
l’estimateur de maximum de vraisemblance de la probabilité conditionnelle η(y|x).

π̂s
n(x, y) étant un rapport de deux estimateurs simples, il est possible de calculer sa

variance asymptotique avec la méthode δ:

υs(x, y) = π(x, y)(1− π(x, y)/q(x))

Comme 0 < π(x, y) ≤ q(x) < 1, υs(x, y) est plus petit que υ(x, y).

Ce résultat élémentaire montre qu’en général, les estimateurs semi-supervisés π̂s
n(x, y)

et π̂n(x, y) ne sont pas équivalents asymptotiquement, et que π̂s
n(x, y), qui a une plus

petite variance asymptotique, est préférable. Plus précisément, υs(x, y)/υ(x, y) = (1 −
π(x, y)/q(x))/(1−π(x, y)), qui tend vers zéro quand q(x) s’approche de π(x, y). Autrement
dit, la performance de π̂s

n(x, y) est d’autant meilleure que celle de π̂n(x, y) que y est une
étiquette rare pour x. Dans ce cas, π̂s

n(x, y), qui tire profit de l’observation de x avec
d’autres labels que y, est préférable à π̂n(x, y), qui n’utilise pas la connaissance de la dis-
tribution marginale q(x), et ne peut donc bénéficier de ces informations supplémentaires.
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Modèle discriminant général

Les résultats énoncés dans la section précédente peuvent en fait être énoncés dans un cadre
beaucoup plus général, dans lequel la loi conditionnelle est paramétrée par un vecteur
θ ∈ Θ. La principale différence entre les deux situations est qu’un modèle paramétrique
{g(y|x; θ)}θ∈Θ n’est pas nécessairement capable d’approcher exactement la distribution
conditionnelle η(y|x) des données. Comme dans le cas complètement spécifié, il est pour-
tant possible de construire un estimateur semi-supervisé qui est asymptotiquement opti-
mal et dont nous allons prouver qu’il est préférable à l’estimateur usuel du maximum de
vraisemblance défini par:

θ̂n = arg min
θ∈Θ

1

n

n∑

i=1

ℓ(Yi|Xi; θ) (3)

où ℓ(y|x; θ) = − log g(y|x; θ) est l’opposé de la fonction de log-vraisemblance condition-
nelle.

Sous les hypothèses (classiques) du théorème 4.1 (voir ci-dessous), 1
n

∑n
i=1 ℓ(Yi|Xi; θ)

tend uniformément en θ vers Eπ[ℓ(Y |X; θ)] et la valeur limite de θ̂n est

θ⋆ = arg min
θ∈Θ

Eπ[ℓ(Y |X; θ)] (4)

L’estimateur du maximum de vraisemblance dans (3) peut être interprété comme θ̂n =
arg minθ∈Θ Eπ̂n

[ℓ(Y |X; θ)] où

π̂n(x, y) =
1

n

n∑

i=1

✶{Xi = x, Yi = y}

dénote la mesure empirique associée avec un couple (Xi, Yi)1≤i≤n, qui cöıncide également
avec l’estimation du maximum de vraisemblance de π(x, y) définie dans (1).

Si l’on considère maintenant que la loi marginale q(x) est connue, π̂n(x, y) est dominé
(asymptotiquement) par l’estimateur π̂s

n(x, y), défini dans (2), récrit ici:

π̂s
n(x, y) =







Pn
i=1 ✶{Xi=x,Yi=y}
Pn

i=1 ✶{Xi=x}
q(x) si

n∑

i=1

✶{Xi = x} > 0

0 sinon

(5)

Par analogie avec l’estimateur construit précédemment, on introduit l’estimateur semi-
supervisé de la façon suivante: θ̂s

n = arg minθ∈Θ Eπ̂s
n
[ℓ(Y |X; θ)], où la notation Eπ̂s

n
[f(Y, x)] =

∑

x∈X

∑

y∈Y π̂
s
n(x, y)f(x, y) est utilisée ici de manière un peu abusive, puisque pour n fini,

il est possible que l’on ait
∑

x∈X

∑

y∈Y π̂n(x, y) < 1, bien que π̂n(x, y) somme à un avec
probabilité un pour n assez grand.

Il est facile de vérifier que l’on peut récrire θ̂s
n comme:

θ̂s
n = arg min

θ∈Θ

n∑

i=1

q(Xi)
∑n

j=1 ✶{Xj = Xi}
ℓ(Yi|Xi; θ) (6)

L’équation (6) est donc une version pondérée de (3), où la pondération de x reflète la
connaissance a priori de la loi marginale q(x).
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Conclusion

Dans cette contribution, nous nous sommes intéressés à la question de l’apprentissage semi-
supervisé de modèles probabilistes discriminants (ou conditionnels) en essayant d’éviter
toute forme d’a priori sur le rôle qui devrait être joué par les données non-étiquetées. Cette
approche est assez originale dans la mesure où les critères d’estimation semi-supervisée
proposés dans la littérature reposent généralement sur des postulats visant, le plus sou-
vent, à diminuer l’incertitude de la décision pour les données non étiquetées ou à garantir
que peu de données non étiquetées se trouvent “au voisinage” des frontières de décision.
Le théorème 4.1 détaille le comportement asymptotique le plus favorable atteignable par
un algorithme d’estimation supposé connâıtre la loi marginale des observation. Ce résultat
fournit une confirmation du fait que les données non-étiquetées n’améliorent pas la per-
formance asymptotique lorsque le modèle est bien spécifié. Le théorème 4.1 montre, a
contrario, que la connaissance de la loi marginale des observations permet de construire
un estimateur asymptotiquement plus efficace que le maximum de vraisemblance (con-
ditionnel) lorsque le modèle est mal spécifié. En particulier, le théorème 4.1 confirme
l’intuition que les données non-étiquetées sont le plus utiles dans les cas où l’erreur de
Bayes est faible. Par ailleurs, l’avantage de l’estimateur semi-supervisé proposé est qu’il
ne compromet pas la simplicité de l’approche par maximum de vraisemblance dans la
mesure où le critère semi-supervisé pondéré reste convexe. Nous avons proposé un moyen
pour étendre la méthode à des problèmes de plus grande dimension, en particulier des
applications où les observations sont continues ou possèdent une structure plus complexe
(séquence ou graphe par exemple).

Une limitation des travaux exposés ici est leur caractère asymptotique qui ne permet
pas de rendre compte du comportement du critère proposé lorsque n est faible. Nous
avons toutefois pu constater empiriquement qu’il pouvait être beaucoup plus favorable
que ce que l’analyse asymptotique suggère. Par ailleurs, une autre voie non explorée pour
l’instant consisterait à introduire des connaissances a priori dans le cadre de cette méthode.
On pourrait par exemple utiliser un estimateur bayésien des probabilités conditionnelles
avec un a priori destiné à lier les valeurs obtenues pour des x comparables. Cette façon
de procéder qui s’inspire des estimateurs de type “back-off” utilisés pour les modèles de
langage pourrait permettre de dépasser les performances de l’approche proposée ici lorsque
l’hypothèse que les observations proches ont tendance à avoir des étiquettes similaires
s’applique effectivement.

Sélection de caractéristiques pour les champs aléatoires

conditionnels par pénalisation L1

Les méthodes à base d’apprentissage automatique ont profondément bouleversé la
méthodologie de développement d’applications de TAL.

Les approches fondées sur l’accumulation de règles symboliques produites par des ex-
perts ont progressivement été supplantées par des méthodes numériques qui s’appuient
principalement sur l’analyse statistique de corpus annotés. Le cadre d’utilisation le plus
commun est celui de l’apprentissage supervisé de règles de classification, qui permettent
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d’assigner une ou des étiquettes catégorielles à la représentation d’une entité linguis-
tique. Une analyse rétrospective des avancées dans ce domaine réalisées durant la dernière
décennie permet de dégager deux axes d’innovations majeurs: d’une part la diffusion
des modèles d’apprentissage discriminants (ou conditionnels), qui permettent d’intégrer
des traits linguistiques riches et variés; d’autre part le développement de techniques à
même de traiter les dépendances statistiques qui existent entre les diverses sous-parties de
représentations linguistiques structurées telles que les séquences, les arbres ou les graphes
acycliques.

Sur le premier axe, citons en particulier l’introduction pour le TAL de modèles de
régression logistique multinomiale (aussi appelés maxent) Rathnaparkhi (1998), des clas-
sificateurs à vaste marge (SVM) Cortes and Vapnik (1995) ou encore du boosting Freund
and Schapire (1996). Du point de vue statistique, ces modèles présentent l’intérêt de
résoudre directement, plutôt qu’indirectement par la règle de Bayes, le problème de classi-
fication visé, en modélisant (dans le cas des modèles d’entropie maximale) la distribution
conditionnelle de la classe sachant l’observation pθ(y|x) sous la forme d’une distribution
exponentielle selon

pθ(y|x) =
exp(θTF (x, y))

Zθ(x)
(7)

Dans cette équation, F (x, y) est un vecteur de caractéristiques arbitraires de l’entrée
x et de la classe y, chacune des composantes correspondant à un test atomique réalisé
conjointement sur x et y; θ est le vecteur de paramètres correspondant, contenant une
composante par caractéristique; Zθ(x) est un terme de normalisation qui garantit que
cette formulation définit une distribution de probabilité: Zθ(x) =

∑

y pθ(y|x). D’un point
de vue computationnel, l’estimation de ces modèles discriminants conduit à résoudre des
problèmes d’optimisation convexe (ce qui assure l’unicité de la solution): la maximisation
de la marge pour les SVM ou la maximisation de la log-vraisemblance conditionnelle pour
les modèles d’entropie maximale. Dans ce dernier cas, l’estimation des paramètres donne
lieu au programme suivant (les sommes portent sur les instances d’apprentissage, indicées
de n = 1 à N)

θ∗ = argmin
θ

N∑

n=1

− log(pθ(y
(n)|x(n))) = argmin

θ

N∑

n=1

log(Zθ(x
(n)))− θTF (x(n), y(n)) (8)

Il existe, pour ces problèmes, des techniques d’optimisation bien rodées, qui permettent de
trouver efficacement les valeurs optimales des paramètres y compris dans des espaces de
très grande dimension. L’efficacité de ces méthodes est conditionnée par l’ajout d’un terme
de régularisation (ou de pénalisation) à la fonction objectif, qui permet d’obtenir une sta-
bilité numérique de la solution même en très grande dimension. Ce terme de régularisation
prend le plus souvent la forme d’une fonction linéaire du carré de la norme L2 du vecteur
de paramètres, ce qui préserve la différentiabilité et la convexité de la fonction objectif et
se prête à une interprétation bayésienne Chen and Rosenfeld (2000) en termes de distribu-
tion a priori sur les paramètres. Concrètement, cela revient à ajouter un terme ρ‖θ‖22 à la
fonction objectif du programme défini en (8). Du point de vue de l’analyse linguistique en-
fin, ces modèles ont l’avantage de pouvoir intégrer des traits linguistiques riches et variés,
permettant l’incorporation au sein du modèle de multiples sources de connaissances. En
témoigne l’étude exemplaire de Toutanova and Manning (2000), qui, à partir d’une analyse
serrée des erreurs commises par un étiqueteur morpho-syntaxique, spécifie un ensemble
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de caractéristiques linguistiquement fondées qui conduisent à une amélioration très sen-
sible des performances en généralisation. Cette flexibilité de modélisation a conduit au
développement de modèles de complexité croissante, comportant un très grand nombre
de paramètres: ainsi, l’étude précitée propose de prendre en compte non seulement des
traits lexicaux (l’identité du mot à étiqueter, ou encore celle de ces voisins proches), mais
également des traits typographiques, des traits visant à modéliser grossièrement la mor-
phologie (présence de préfixes ou de suffixes de longueur bornée dans le mot), ou encore à
mieux caractériser le contexte syntaxique.

Les développements menés sur le second axe visent à prendre en compte le caractère
structuré de nombreuses représentations linguistiques, en intégrant de manière plus ex-
plicite les dépendances qui existent entre les divers sous-constituants de ces représentations
(on se reportera à Bakir et al. (2007) pour un état de l’art actuel de ces techniques). Par ex-
emple, le modèle des champs aléatoires conditionnels (CRF), introduit dans Lafferty et al.
(2001), permet d’étendre les modèles d’entropie maximale à des séquences d’étiquettes.
Si la forme générale du modèle reste celle donnée dans l’équation (7), les observations x
et les sorties y correspondent, dans ce nouveau modèle, à des séquences complètes et les
caractéristiques peuvent simultanément intégrer des tests portant sur plusieurs étiquettes
au sein de la séquence à prédire. Même si, pour des raisons computationnelles, ces tests
portent sur des étiquettes voisines, cette extension permet d’obtenir de nouveaux gains
très significatifs en généralisation: ainsi Toutanova et al. (2003), toujours sur une tâche
d’étiquetage morpho-syntaxique, rapporte que la modélisation explicite de ces dépendances
conduit à une réduction de près de 2 points du taux d’erreur. Les modèles probabilistes
discriminants pour les données structurées ont été généralisés pour traiter des tâches de
réordonnancement (ranking) Collins and Duffy (2002), Charniak and Johnson (2005),
d’étiquetage d’arbres Jousse et al. (2006b), d’analyse syntaxique en constituants Rozen-
knop (2002), Finkel et al. (2008), d’analyse en dépendances Koo et al. (2007) ou encore
d’alignement de mots en traduction automatique Blunsom and Cohn (2006). La prise en
compte de dépendances dans des représentations structurées a toutefois pour conséquence
directe l’augmentation massive du nombre de paramètres impliqués dans la modélisation,
puisque, pour s’en tenir au simple cas des séquences, la prise en compte des dépendances
entre étiquettes adjacentes requiert un nombre de paramètres qui croit comme le carré du
nombre d’étiquettes possibles.

Sélection de caractéristiques

Au final, l’effet de ce double mouvement a été l’utilisation de modèles de complexité tou-
jours croissante, intégrant typiquement des centaines de milliers, voire des millions de
paramètres. Si cette augmentation de la complexité s’accompagne le plus souvent d’une
amélioration des performances, elle n’en pose pas moins problème. La première difficulté
est computationnelle: ces millions de caractéristiques doivent être évaluées pour chaque
exemple d’apprentissage et de test; les paramètres correspondants doivent être stockés en
mémoire et conduisent à des problèmes d’optimisation en très grande dimension. Estimer
ces modèles conduit finalement à se placer dans une situation où le nombre de paramètres
surpasse de plusieurs ordres de grandeur le nombre d’instances d’apprentissage au risque
d’instabilité numérique des solutions obtenues, même en présence de régularisation (voir
par exemple les difficultés rencontrées par Sha et Pereira 2003, qui construisent un modèle
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intégrant près de 4 millions de caractéristiques pour une tâche d’analyse syntaxique de sur-
face). La seconde difficulté est d’ordre statistique: la présence de caractéristiques inutiles
ou redondantes dans le modèle peut conduire à des phénomènes de sur-apprentissage et
amener une dégradation des performances en généralisation Kazama and Tsujii (2003). En
fait, de nombreux auteurs s’étonnent d’observer des dégradations des performances lorsque
certaines caractéristiques sont injectées dans le modèle (voir infra). La troisième difficulté
porte sur la modélisation linguistique. Il n’existe en pratique pas de limite aux traits que
l’on voudrait pouvoir inclure dans un modèle: faute de critère (autres que les performances
globales) pour décider de l’utilité de tel ou tel trait, la pratique la plus répandue consiste à
ajouter tous les traits possibles et imaginables (dans la limite du raisonnable) et à évaluer
empiriquement l’intérêt de telle ou telle combinaison de caractéristiques. Cette situation
n’est pas satisfaisante et suscite des interrogations. Ainsi, dans Toutanova and Manning
(2000), déjà mentionné, les auteurs constatent qu’ajouter des caractéristiques qui testent
à la fois les mots suivants et précédents conduit à une petite dégradation des performances
en comparaison à n’utiliser que des tests sur le mot suivant. De même, l’utilisation de
caractéristiques portant sur les préfixes semble avoir un effet négatif:

Conversely, empirically it was found that the prefix features for rare words

were having a net negative effect on accuracy. We do not at present have a

good explanation for this phenomenon.

Ces constatations plaident pour le développement de techniques de sélection automa-
tique des caractéristiques les plus utiles. Les méthodes proposées dans la littérature pour ce
faire sont toutefois très heuristiques. Une pratique commune consiste à ne conserver que les
caractéristiques qui sont suffisamment fréquentes dans les données d’apprentissage. Ainsi,
Toutanova and Manning (2000) impose un seuil de fréquence minimum pour considérer des
caractéristiques, heuristique qui est reprise sans autre forme de discussion dans de nom-
breux travaux sur les modèles exponentiels: Lafferty et al. (2001) se limite ainsi à l’examen
de quelques préfixes, Bender et al. (2003) utilisent la même stratégie pour sélectionner les
caractéristiques incluses dans leur détecteur d’entités nommées, etc. Une approche plus
fondée est proposée par McCallum and Li (2003), McCallum (2003) qui s’inspire de Della
Pietra et al. (1997) pour développer un algorithme glouton de sélection des caractéristiques
sur la base d’une approximation de leur contribution à la log-vraisemblance globale.

La question de la sélection automatique de variables explicatives a pourtant donné
lieu à une vaste littérature dans le domaine des statistiques, et au développement de
méthodes efficaces Guyon and Elisseeff (2003). Parmi celles-ci, une approche initiale-
ment introduite dans un cadre de régression linéaire Tibshirani (1996) consiste à employer
une pénalisation de la norme L1 du vecteur de paramètres. Concrètement, cela revient
à ajouter dans la fonction objectif un terme de la forme ρ‖θ‖1 en place de ρ‖θ‖22. Ce
changement a pour effet d’annuler tous les paramètres dont la contribution à la log-
vraisemblance est insuffisante pour contrebalancer le “coût” de leur inclusion dans le
modèle, alors qu’avec une pénalisation L2, ces paramètres prennent des valeurs arbitraire-
ment faibles, mais non nulles. Seules les caractéristiques associées à des paramètres non-
nuls sont alors sélectionnées. Le comportement particulier de l’optimisation avec cette
forme de régularisation est, en dernière analyse, du à la non différentiabilité du terme de
régularisation en tout point où l’une des coordonnées de θ est nulle (voir également sur
ce point la discussion de (Hastie et al., 2001, p.6̃8 et suivantes)) . Cette propriété, mal-
heureusement, interdit l’utilisation de techniques usuelles d’optimisation, qui présupposent
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l’existence du gradient de la fonction objectif. Pour les modèles d’entropie maximale, des
techniques alternatives d’optimisation des paramètres qui restent valides dans ce cas ont
été récemment développées Kazama and Tsujii (2003), Dud́ık et al. (2004), Riezler and
Vasserman (2004), Friedman et al. (2007): nous étendons ici la dernière de ces propositions
au cas des CRF.

Champs aléatoires conditionnels pour l’étiquetage de
séquences

Champs aléatoires conditionnels

Les champs aléatoires conditionnels Lafferty et al. (2001), Sutton and McCallum (2006)
correspondent à un modèle discriminant de prédiction supervisée de séquences appartenant
à la famille logistique généralisée ou d’entropie maximale. Supposons donnée une séquence
d’entrée x = (x1, . . . , xT ) ainsi qu’une séquence d’étiquettes à prédire y = (y1, . . . , yT ). Le
modèle dit d’ordre un ou linear chain instancie l’équation (7) en postulant une distribution
de probabilité conditionnelle de la séquence d’étiquettes donnée par

pθ(y|x) =
1

Zθ(x)
exp

{
T∑

t=1

K∑

k=1

θkfk(yt−1, yt, xt)

}

(9)

Dans l’équation ci-dessus, Zθ(x) désigne le facteur de normalisation défini par

Zθ(x) =
∑

y∈Y T

exp

{
T∑

t=1

K∑

k=1

θkfk(yt−1, yt, xt)

}

(10)

où Y désigne l’ensemble des valeurs prises par yt (de même X désignera l’ensemble des
valeurs prises par xt). Par convention, l’étiquette y0 correspond à une valeur conven-
tionnelle toujours observée indiquant le début de séquence et on note Y l’ensemble Y
complété par cette étiquette de début de séquence. Dans l’équation (9), θ = (θ1, . . . , θK)
désigne le vecteur de paramètres du modèle tandis que les fonctions fk correspondent aux
caractéristiques sur lesquelles la prédiction des étiquettes va reposer. Par rapport à la
structure très générale de l’équation (7), la contrainte principale qui apparâıt dans (9),
et justifie le terme de modèle d’ordre un, est due au fait que chaque caractéristique ne
fait intervenir, au plus, que des bigrammes d’étiquettes successives (yt−1, yt). Ce choix
implique que la loi conditionnelle pθ(y|x) possède une structure d’indépendance condi-
tionnelle dans laquelle, sachant x, yt−1 et yt+1, yt est indépendant de ys pour s < t− 1 ou
s > t+ 1 et sa loi ne dépend que de xt, yt−1 et yt+1. La raison de ce choix est essentielle-
ment de nature computationnelle. En ce qui concerne la dépendance des caractéristiques
vis à vis de la séquence d’entrée x, les possibilités sont en fait beaucoup plus larges et la
forme retenue pour l’équation (9) ne constitue qu’un exemple, choisi pour sa simplicité,
où chaque caractéristique est une fonction du triplet (yt−1, yt, xt). En pratique, et selon
les applications envisagées, il est fréquent que les caractéristiques ne portent pas unique-
ment sur la valeur xt de la séquence d’entrée à la position t mais plutôt sur le contenu de
la séquence autour de la position t, par exemple sur le trigramme (xt−1, xt, xt+1). Nous
rencontrerons un autre cas de figure fréquent où la séquence d’entrée est en fait multi-
modale, xt = (x1

t , . . . , x
D
t ) et où on utilise une superposition de caractéristiques portant
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sur chacune des modalités de la séquence d’entrée en remplaçant
∑K

k=1 θkfk(yt−1, yt, xt)

dans (9) par
∑K

k=1

∑D
d=1 θ

d
kf

d
k (yt−1, yt, x

d
t ). Nous verrons cependant ci-dessous qu’en ce

qui concerne l’estimation des paramètres θ du modèle, la dépendance des caractéristiques
vis à vis de la séquence d’entrée ne pose pas de problème particulier dans la mesure où on
suppose toujours cette séquence observée. Pour des raisons de simplicité d’écriture, nous
conservons donc la forme présentée dans l’équation (9) qui permet d’illustrer l’ensemble
des enjeux liés à l’utilisation des champs aléatoires conditionnels d’ordre un.

Choix des caractéristiques

Dans le cadre du traitement automatique des langues, où les séquences tant d’entrée que
de sortie sont assimilables à des variables catégorielles, le choix le plus naturel pour les
caractéristiques fk consiste à utiliser des fonctions booléennes qui valent 1 ou 0 selon que le
triplet (yt−1, yt, xt) est ou n’est pas dans une configuration particulière. Plus précisément,
nous considérerons deux types de caractéristiques, dites respectivement de type unigramme
et bigramme, ce qui permet de décomposer le terme

∑K
k=1 θkfk(yt−1, yt, xt) selon

K∑

k=1

θkfk(yt−1, yt, xt) =
∑

y∈Y,x∈X

µy,x✶(yt = y, xt = x)

+
∑

(y′,y)∈Y ×Y,x∈X

λy′,y,x✶(yt−1 = y′, yt = y, xt = x) (11)

où ✶(test) = 1 si le test est positif et vaut 0 sinon. Dans l’expression ci-dessus, le vecteur
de paramètres µ = (µy,x)y∈Y,x∈X correspond aux caractéristiques de type unigramme qui
testent la cooccurrence d’une étiquette particulière y et d’une entrée x à la même position.
Le vecteur de paramètres λ = (λy′,y,x)(y′,y)∈Y ×Y,x∈X correspond aux caractéristiques de
type bigramme qui testent la succession de deux étiquettes conjointement avec l’occurrence
d’une valeur particulière de l’entrée. Il est clair également que dans (11) la sommation sur
les caractéristiques est dorénavant relativement fictive puisque l’on pourrait réécrire (11)
sous la forme µyt,xt + λyt−1,yt,xt .

Quelques commentaires s’imposent. Tout d’abord il n’est pas évident à ce stade que
l’utilisation simultanée de caractéristiques des deux types soit nécessaire dans la mesure où
pour toute valeur de µ et λ, il existe une valeur λ′ des paramètres pour laquelle la partie
bigramme seule réalise de façon équivalente (11) (en prenant λ′y′,y,x = λy′,y,x + µy,x).
Nous verrons cependant que l’utilisation simultanée des deux types de caractéristiques
est nécessaire pour obtenir des jeux de caractéristiques réduits, conduisant à de bonnes
performances de classification. Notons également que l’utilisation des caractéristiques
unigramme seules correspondrait à un modèle plus simple de régression logistique position
par position dans lequel

pµ(y|x) =
T∏

t=1

exp(µyt,xt)
∑

y∈Y exp(µy,xt)

L’aspect séquentiel du modèle, qui tient compte des corrélations entre étiquettes succes-
sives est donc uniquement le fait des caractéristiques de type bigramme. Par ailleurs,
les caractéristiques unigramme et bigramme sont en nombres très différents puisque le
total des caractéristiques unigramme disponibles est de |Y ||X| (où |Y |, |X| désignent le
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cardinal de Y et X) tandis qu’il y a |Y |(|Y | + 1)|X| caractéristiques de type bigramme,
le terme (|Y | + 1) venant de l’utilisation de l’étiquette supplémentaire qui correspond
au début de séquence. Les caractéristiques de type bigramme sont donc très majori-
taires numériquement dès que le nombre d’étiquettes distinctes est important. On peut
se demander si ces effectifs théoriques de caractéristiques ne peuvent pas être fortement
élagués en pratique au vu des fréquences d’occurrence de ces caractéristiques dans les
jeux de données disponibles pour l’entrâınement des modèles. Quelle que soit la méthode
d’inférence utilisée, il est aisé de vérifier que les caractéristiques unigramme ou bigramme
portant sur une éventuelle modalité d’entrée x qui n’est jamais observée dans le cor-
pus d’apprentissage peuvent être éliminées sans aucun risque, puisque les paramètres
correspondant µy,x et λy′,y,x seront de toute façon estimés à zéro. Toute autre forme
d’élagage a priori basé sur les statistiques d’occurrence dans le corpus d’apprentissage
modifie par contre le résultat d’estimation. En particulier, le fait de forcer µy,x à zéro
même si l’occurrence (yt = y, xt = x) n’est jamais apparue dans le corpus d’apprentissage
peut avoir des conséquences importantes si le motif (yt = y′, xt = x) est fréquent pour
d’autres valeurs y′ de l’étiquette. Un des intérêts de l’approche discutée dans cette étude
est précisément de sélectionner des caractéristiques pertinentes de façon beaucoup plus
efficace qu’en se contentant d’examiner, a priori, les fréquences d’occurrence des motifs.

Dans la suite, nous utiliserons à la fois la représentation en termes des caractéristiques
unigramme et bigramme paramétrée par µ et λ et, lorsque c’est plus simple, la représentation
totalement vectorisée dans laquelle les deux types de caractéristiques ne sont pas dis-
tinguées et θ désigne l’ensemble des paramètres du modèle.

Algorithme d’optimisation coordonnée par coordonnée pour
le critère avec pénalité L1

Choix de la pénalisation

L’approche la plus commune pour estimer le paramètre θ consiste à ajouter un terme de
pénalisation L2 au critère de perte logarithmique, auquel cas la fonction objectif à min-
imiser devient l(θ) + ρ2‖θ‖22, où ρ2 est un paramètre de régularisation. Outre ses bonnes
performances empiriques, l’intérêt pratique de cette approche est que l’évaluation de la
fonction objectif et de son gradient nécessitent les mêmes calculs que dans le cas de l(θ) et
n’importe quelle approche numérique de minimisation d’une fonction différentiable et con-
vexe, de surcrôıt sans contrainte de domaine, peut être utilisée. Les limitations principales
de cette approche standard sont, d’une part, liées au temps d’exécution avec la nécessité
de réaliser la récursion forward-backward pour toutes les séquences d’apprentissage lors de
chaque évaluation de la fonction ou du gradient et, d’autre part, liées à l’empreinte mémoire
du code du fait de la taille habituellement très grande du vecteur de paramètres. En pra-
tique, ce deuxième aspect interdit l’utilisation d’algorithmes cherchant à estimer directe-
ment le hessien ou son inverse et se traduit par l’utilisation prépondérante d’algorithmes
de type gradient conjugué ou quasi-Newton à mémoire limitée (de type L-BFGS, Limited
Memory BFGS, en particulier).

La pénalisation L2, si elle est efficace pour éviter le sur-apprentissage au moment
de l’entrâınement du modèle, ne réalise pas à proprement parler de sélection de car-
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actéristiques : les paramètres θk estimés sont tous non nuls et la sélection de caractéristiques
basée sur leur amplitude conduit à des performances relativement dégradées. Pour effec-
tivement incorporer l’objectif de sélection de caractéristiques dans le terme de pénalisation,
nous considérons l’inclusion d’un terme de pénalité additionnel de type L1. La fonction
objectif obtenue

l(θ) + ρ1‖θ‖1 +
ρ2

2
‖θ‖22 (12)

est dite elastic net par Zou and Hastie (2005) et comporte maintenant deux paramètres
de régularisation ρ1 et ρ2

1. Cette forme de pénalisation fournit un degré de liberté
supplémentaire pour ajuster le compromis entre le caractère creux des solutions et la
qualité des performances en généralisation. En particulier, elle permet d’atteindre, pour
ρ1 = 0 ou ρ2 = 0 les solutions obtenues avec chacune des pénalités utilisée séparément,
mais rend également accessible d’autres solutions qui sont peut-être plus intéressantes.
Dans la mesure toutefois où le terme de pénalisation L1 joue un rôle déterminant pour
la sélection de caractéristiques, nous continuerons, par la suite, à parler de modèle avec
régularisation L1 pour désigner notre modèle.

Algorithme d’optimisation coordonnée par coordonnée

Le principe de l’approche proposée par Friedman et al. (2008) consiste à remarquer
que si la minimisation directe du critère (12) est un problème délicat du fait de la
non différentiabilité de la fonction objectif en les points où l’un au moins des θk vaut
zéro, la minimisation coordonnée par coordonnée d’une approximation quadratique locale
de (12) est un problème très simple qui admet une résolution explicite. L’idée est que
l’inefficacité intrinsèque de la minimisation coordonnée par coordonnée peut être com-
pensée par l’extrême simplicité de la mise à jour à effectuer pour chaque coordonnée
associée à la possibilité d’utiliser des schémas plus efficaces de balayage des coordonnées,
possibilité dont on verra qu’elle est particulièrement attractive dans les cas des champs
aléatoires conditionnels.

étant donnée une valeur courante θ̄ du vecteur de paramètres, l’approximation quadra-
tique locale vis à vis de la k-ième coordonnée prend la forme suivante

lk,θ̄(θk) = Cst +
∂l(θ̄)

∂θk
(θk − θ̄k) +

1

2

∂2l(θ̄)

∂θ2
k

(θk − θ̄k)
2 + ρ1|θk| +

ρ2

2
θ2
k (13)

En écrivant les conditions d’optimalité au premier ordre (dite Karush-Kuhn-Tucker), il est
aisé de vérifier que le minimum de l’approximation quadratique locale (13) est atteint en

θk =
s
{

∂2l(θ̄)
∂θ2

k

θ̄k − ∂l(θ̄)
∂θk

, ρ1

}

∂2l(θ̄)
∂θ2

k

+ ρ2

(14)

où s désigne la fonction de seuillage progressif ou seuillage doux définie par

s(z, ρ) =







z − ρ if z > ρ

z + ρ if z < −ρ
0 sinon

(15)

1Zou and Hastie (2005) utilisent une paramétrisation différente de la régularisation qui, dans le type de
problèmes considérés ici, s’est avérée plus difficile à régler car chaque paramètre joue simultanément sur
les deux types de régularisation.
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Il est intéressant de noter que Dud́ık et al. (2004) présente une version alternative de
la même idée dans laquelle le comportement local de l est approximé sous une forme,
équivalente au premier ordre, mais non quadratique qui conduit elle aussi à une minimisa-
tion coordonnée par coordonnée explicite. Cette forme d’approximation repose cependant
crucialement sur le fait que chaque coordonnée θk du vecteur de paramètres est multipliée
par une caractéristique à valeur dans {0, 1}. Cette propriété n’est malheureusement pas
vérifiée dans les cas des champs aléatoires conditionnels, puisque la k-ième coordonnée du
vecteur de paramètres est multipliée par

∑T
t=1 fk(yt−1, yt, xt). Ce terme peut être stricte-

ment supérieur à 1, même si fk est à valeur dans {0, 1}, dès que la caractéristique corre-
spondante est présente à plusieurs positions distinctes dans la séquence d’apprentissage.

Applications aux champs aléatoires conditionnels

Pour appliquer l’approche précédente dans le cas des champs aléatoires conditionnels,
il est nécessaire de disposer des dérivées d’ordre un et deux de l(θ). Nous considérons
maintenant le cas de la dérivée seconde de l(θ). Un calcul direct donne

∂2l(θ)

∂θ2
k

=
N∑

n=1

{

Epθ(y|x(n))

(
Tn∑

t=1

fk(yt−1, yt, x
(n)
t )

)2

−
(

Epθ(y|x(n))

Tn∑

t=1

fk(yt−1, yt, x
(n)
t )

)2}

(16)

Le premier terme est problématique, car il implique des termes qui ne dépendent pas
uniquement des probabilités jointes conditionnelles Pθ(yt−1 = y′, yt = y|x(n)) et ne sont
donc pas calculables à partir de la récursion forward-backward. Même si des solutions de
calcul exactes existent (cf. chapitre 4 de Cappé et al. (2005)), celles-ci ne semblent pas
praticables étant donné l’échelle des modèles auxquels nous nous intéressons ici et nous
proposons d’utiliser l’approximation suivante

∂2l(θ)

∂θ2
k

≈

N∑

n=1

Tn∑

t=1

{

Epθ(y|x(n)) f
2
k (yt−1, yt, x

(n)
t )−

(

Epθ(y|x(n)) fk(yt−1, yt, x
(n)
t )
)2
}

(17)

Cette approximation correspond à l’hypothèse que conditionnellement à x(n), les car-

actéristiques fk(yt−1, yt, x
(n)
t ) et fk(ys−1, ys, x

(n)
s ) sont décorrélées dès que s 6= t. Lorsqu’on

utilise des caractéristiques unigramme ou bigramme, cette approximation est exacte pour
la n-ième séquence d’apprentissage dès lors que θk correspond soit à un paramètre un-
igramme µy,x soit à paramètre bigramme λy′,y,x pour lequel le symbole x n’est présent
qu’à une unique position dans la séquence d’apprentissage x(n). On remarque d’ailleurs
également que si le symbole x n’est pas présent dans la séquence d’apprentissage x(n),
celle-ci ne contribue en aucune façon à la minimisation de l’approximation quadratique
locale. Cette remarque essentielle nous permet, lorsque l’on met à jour un paramètre µy,x

ou λy′,y,x, de limiter la sommation dans (17) aux séquences dans lesquelles le symbole x
apparâıt, c’est à dire de n’effectuer la récursion forward-backward que pour les séquences
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correspondantes. En terme de temps de calcul, le gain est donc éventuellement très signifi-
catif, même s’il ne compense pas la nécessité de remettre à jour successivement chacune des
coordonnées du vecteur de paramètres. L’algorithme correspondant est décrit ci-dessous.

Mise à jour simultanée de blocs de coordonnées

L’utilisation de l’algorithme décrit ci-dessus bute sur la très grande dimensionalité du
vecteur de paramètres utilisé dans les applications. Dans le cas d’une utilisation conjointe
de caractéristiques unigramme et bigramme selon (11), le nombre total de paramètres
est de |Y ||X| pour les caractéristiques unigramme, plus |Y |(|Y | + 1)|X| pour les car-
actéristiques bigramme. Même si la mise à jour de chaque coordonnée n’implique qu’un
nombre réduit de séquences parmi l’ensemble des séquences d’apprentissage, la dimension
excessive du vecteur de paramètres rend difficilement envisageable la mise à jour coor-
donnée par coordonnée. Pour imaginer des schémas plus efficaces de mise à jour des coor-
données bloc par bloc, il est important de noter que pour mettre à jour un paramètre de
type unigramme µy,x ou de type bigramme λy′,y,x, il est nécessaire d’effectuer la récursion
forward-backward pour le sous-ensemble des séquences d’apprentissage qui comportent le
symbole x. Or, on constate à l’examen du gradient et (17) que le coût de calcul de la
dérivée première et de l’approximation de la dérivée seconde est marginal une fois que
les probabilités jointes conditionnelles Pθ(yt−1 = y′, yt = y|x(n)) on été obtenues pour
l’ensemble des indices n pour lesquels la séquence x(n) contient le symbole x. En d’autres
termes, pour un surcoût de calcul marginal, il est possible d’évaluer simultanément le
gradient et (17) pour l’ensemble des paramètres (µy,x)y∈Y et (λy′,y,x)(y′,y)∈Y ×Y . Cette
observation conduit à regrouper les caractéristiques par blocs correspondant à l’ensemble
des caractéristiques unigramme ou bigramme qui partagent un même symbole d’entrée x.
Il est intéressant de constater que cette contrainte computationnelle conduit à choisir des
blocs de caractéristiques qui sont orthogonaux à ceux utilisés dans le cas de la régression
logistique par Friedman et al. (2008) dans lequel les caractéristiques sont regroupées par
valeur commune de l’étiquette y. L’algorithme correspondant est donné ci-dessous.

Le coût de calcul associé à une itération de cet algorithme, l’itération correspon-
dant à la mise à jour de toutes les coordonnées du vecteur de paramètres, est donc
de l’ordre de |X| (le nombre de symboles d’entrée) multiplié par le nombre moyen de
séquences d’apprentissage contenant chaque symbole. Dans les expériences, ce coût est
en moyenne du même ordre de grandeur que celui associé à chaque itération d’un algo-
rithme d’optimisation globale du vecteur θ qui requiert le traitement de l’ensemble des N
séquences d’apprentissage pour l’évaluation du vecteur gradient de l(θ).

Un problème qui peut survenir lors de l’utilisation de l’algorithme est celui de l’instabilité
numérique qui se manifeste par une convergence peu régulière vers la solution pour cer-
taines valeurs de l’initialisation. L’interprétation à donner de ce phénomène est liée à la
mise à jour simultanée d’un bloc de coordonnées ce qui revient à approcher le hessien de
chaque bloc par une matrice diagonale dont les éléments diagonaux sont donnés par (17).
Il est connu que dans ce type d’algorithme de mise à jour par blocs avec calcul approché
du hessien, il est en général nécessaire d’ajuster le pas de l’algorithme pour garantir la sta-
bilité globale de l’optimum Nocedal and Wright (2006). Dans le cas qui nous préoccupe, la
stabilité peut être garantie en recherchant, pour chaque coordonnée, la valeur 0 < αk ≤ 1
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la plus grande possible du pas telle que la mise à jour

s
(

α−1
k

∂2l(θ̄)
∂θ2

k

θ̄k − ∂l(θ̄)
∂θk

, ρ1

)

α−1
k

∂2l(θ̄)
∂θ2

k

+ ρ2

conduise effectivement à une diminution de la fonction objectif. Cette façon de procéder
conduirait toutefois à une mise à jour au coût prohibitif, impliquant en particulier la
nécessité de recalculer l(θ) de façon répétée lors de chaque mise à jour. Face à ce problème
nous avons utilisé une solution heuristique consistant à fixer le pas α globalement pour
le bloc complet des paramètres remis à jour simultanément en s’ajustant sur la taille du
plus grand pas potentiellement effectué par l’algorithme de Newton ignorant les termes de
pénalités; c’est à dire en utilisant

α−1 = κ×max

{

1,max

(∣
∣
∣
∣

∂l(θ̄)

∂θk

/
∂2l(θ̄)

∂θ2
k

∣
∣
∣
∣

)}

Cette heuristique utilisée avec κ = 1.5 conduit à un algorithme très stable, avec des pas
de taille suffisamment grande pour ne pas trop ralentir la convergence : typiquement α−1

peut être de l’ordre de plusieurs centaines initialement lorsque le paramètre est très mal
estimé mais se fixe, lorsque l’on approche de la convergence, à des valeurs de l’ordre de 5.

Bilan et conclusion

Dans cette étude, nous avons proposé un nouvel algorithme pour réaliser l’étape d’estimation
dans les modèles CRF en présence d’une régularisation L1. Nos résultats sont conformes
à l’état de l’art, en ce sens qu’ils démontrent qu’il est possible d’élaguer très fortement
les paramètres du modèle sans dégrader de manière significative les performances. En
revanche, pour les données de test et les caractéristiques utilisées, nous n’avons pas ob-
servé de cas où l’utilisation d’une pénalité L1 améliore les performances par rapport à
l’utilisation d’une pénalité L2. Nous avons également comparé cette méthode de sélection
avec des méthodes heuristiques usuellement utilisées et démontré sa supériorité empirique.

L’autre contribution de ce travail a été d’analyser les caractéristiques qui sont extraites,
ce qui nous a permis de constater qu’elles avaient le plus souvent une interprétation lin-
guistique claire (pour les associations positives); à l’inverse, les paramètres négatifs sont
plus délicats à interpréter, dans la mesure où la valeur de ces caractéristique est le plus
souvent fixée par compensation avec une ou plusieurs associations positives.

Pour ces deux raisons, il semble que l’utilisation d’une pénalité L1 permette simul-
tanément d’estimer de manière robuste des modèles discriminants, tout en effectuant
une sélection parmi les caractéristiques les plus utiles. Ces deux facteurs plaident si-
multanément pour son utilisation systématique (à la place d’une pénalité L2) dans tous
les problèmes d’apprentissage dans lesquels le nombre de caractéristiques potentiellement
utiles est très grand, comme c’est souvent le cas dans des applications de traitement des
langues.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

Ambiguity is the major problem in natural language processing, and it is present
on all linguistic levels: phonetic (and phonological), morphological, syntactic, semantic,
and pragmatic. An illustration of phonological ambiguity are lexical items with different
graphic but similar phonetic transcriptions (e.g. ice cream and I scream). Morphological
ambiguity comes from internal structure of a word, for example, look can be infinitive,
first or second person singular or plural. Syntactic ambiguity can be illustrated by the
short sentence I saw a cat with a telescope which can be parsed in two different ways
represented by Figure 1.1, and therefore, two interpretations: either I used a telescope, or
the cat. Semantic ambiguity, e.g., lexical semantics ambiguity comes from that a lexical
item can have several meanings, for example, a noun party. Ambiguity on the level of
expression is ambiguity of pragmatics, e.g., novels of Graham Greene telling about tender
murderers and pious atheists contain oxymorons on the phrase as well as on the whole
text level.

The ambiguous nature of language demands modeling of uncertainty. Probabilistic
methods, that is, methods designed to provide a probabilistic confidence measure associ-
ated with each decision, are a natural and effective solution. Probabilistic models, espe-
cially discriminative probabilistic models, are used in numerous natural language appli-
cations. Discriminative probabilistic approaches (among them maximum entropy models,
conditional random fields) model directly probability of a label y ∈ Y given an observation
x ∈ X .

The models are trained on large sets of labeled data. Labeled data are expensive
to produce and always limited, unlabeled data are plentiful and cheap. Semi-supervised

1



learning is a natural approach to address the problem of lack of labeled data. Therefore,
the first problem which motivated our research is how to use efficiently unlabeled
data.

Probabilistic models such as conditional random fields introduced by Lafferty et al.
(2001) allow to model structure and arbitrary numerous dependencies. The disambigua-
tion rules involve complex patterns of features that are partially redundant. As we will see,
models are sparse what motivates model selection. Hence, the second problem considered
in this thesis is how to cope with the unnecessarily huge number of structural
dependencies and how to achieve computational efficiency if the vector of pa-
rameters is sparse.
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Figure 1.1: Example of ambiguity in sentence parsing: two possible parsings of a same
sentence.

1.2 Contributions

In this thesis, we consider probabilistic discriminative approaches, and our contribu-
tions are twofold.

• Semi-Supervised Learning. Based on the assumption that the number of unla-
beled data is sufficient to estimate the true marginal distribution of observations, we
propose a novel semi-supervised criterion for a discriminative probabilistic model.
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We demonstrate that the criterion achieves the minimal variance and is asymptoti-
cally preferable to the standard logistic regression. We compare the performance of
the introduced criterion to the standard logistic regression and carry out experiments
on synthetic and real world data (Spam Assassin corpus).

• Sparsity and Model Selection. Since penalties including the L1 norm are not
differentiable in zero and numerical methods can not be applied directly, we ex-
plore coordinate-wise and blockwise gradient descent methods for conditional ran-
dom fields penalized by the elastic net. The second order approximation includes
the second order derivative which has to be recomputed at every iteration of an
optimization procedure. We propose to group variables so as to perform blockwise
rather than coordinate-wise optimization. We discuss approximation of the matrix
of the second derivatives by its diagonal term. We use the sparsity of the vector
of parameters to speed up the forward-backward algorithm. The experiments were
carried out on Nettalk, CoNLL 2000, and CoNLL 2003 data sets. The results show
that blockwise descent is competitive and produces sparse and interpretable models.

1.3 Structure of the Thesis

This thesis consists of three parts.

1. The first part is dedicated to aspects of statistical learning in generative and discrimi-
native models. The models can be represented as graphical, directed and undirected,
models (Lauritzen, 1996, Jordan et al., 1999, Jordan, 1999, Wainwright and Jordan,
2003). Chapter 2 discusses briefly the probabilistic models for supervised learning,
the naive Bayes and the logistic regression, and models for sequential processing,
hidden Markov models (Bilmes, 1998, Cappé et al., 2005) and maximum entropy
Markov models (McCallum et al., 2000).

Chapter 3 introduces the model of conditional random fields, the framework that
allows to take arbitrary sequential dependencies into account. We provide training
and inference approaches for conditional random fields, and some results on standard
data sets in the domain of natural language processing.

2. The second part of the thesis is devoted to problems of semi-supervised learning.
In Chapter 4, we provide a brief overview of the state-of-the-art approaches and
ideas concerning semi-supervised learning (Chapelle et al., 2006). We introduce our
semi-supervised criterion.

In Chapter 5, we test the introduced semi-supervised criterion that asymptotically
achieves the minimal variance on synthetic and real-world data. We compare it to the
standard logistic regression, and to the Shimodaira weighted criterion (Shimodaira,
2000) which proposes a compensation for the covariate shift case. We discuss briefly
some difficulties encountered when applying the semi-supervised criterion to real
data sets.

Chapters 4 and 5 are partly based on the papers
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• N. Sokolovska, O. Cappé, and F. Yvon. The asymptotics of semi-supervised
learning in discriminative probabilistic models. In A. McCallum and S. Roweis,
editors, Proc. Int. Conf. Machine Learning (ICML), pages 984-991. Omni-
press, 2008.

• N. Sokolovska, O.Cappé, and F. Yvon. Analyse asymptotique de l’apprentissage
semi-supervisé pour les modèles probabilistes discriminants. In Proceedings of
Conférence d’Apprentissage (CAP), Porquerolles, France, 2008.

3. The third part of the thesis concerns the sparsity of models and ways to discover
sparsity patterns. Chapter 6 illustrates the existence of sparsity patterns on real data
and discusses state-of-the-art of the methods that return sparse parameter vectors,
including the L1 and elastic net penalties. We examine optimization approaches and
among them a class of coordinate-wise optimization procedures.

Chapter 7 illustrates the results of our model selection experiments on artificial and
real applications. We apply blockwise coordinate descent to conditional random
fields. The number of dependencies that can be eliminated from a model with-
out performance degradation is impressive. We achieve an acceptable performance
keeping a relatively small number of parameters. We compare our results to those
obtained using simple heuristics as well as to the orthant-wise limited quasi Newton
approach introduced in (Andrew and Gao, 2007).

Chapters 6 and 7 are partly based on the papers

• N. Sokolovska, T. Lavergne, O. Cappé, and F. Yvon. Efficient learning of
sparse conditional random fields for supervised sequence labeling. Submitted
to Journal of Selected Topics in Signal Processing, 2009.

• N. Sokolovska, O. Cappé, and F. Yvon. Sélection de caractéristiques pour les
champs aléatoires conditionnels par pénalisation L1. Accepted to Traitement
Automatique des Langues. Volume 50, Number 3/2009.

Chapter 8 provides our conclusions and discusses some future directions.
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Chapter 2

Discriminative and Generative
Learning in Probabilistic
Graphical Models

Contents
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2.4 Hidden Markov Models and Maximum Entropy Markov Mod-
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2.4.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . 16
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In this chapter, we explore probabilistic parametric learning approaches. A model
with a finite number of parameters is used to predict an output y ∈ Y given an input x ∈
X . Probabilistic machine learning methods rely on probability theory in the procedures
of training and inference. Uncertainty in the prediction can be measured in terms of
probability.

We investigate generative and discriminative approaches, usually opposed to each other
in the context of probabilistic learning for classification tasks. The former aims at esti-
mating joint distribution and uses Bayes rule, the latter aims at estimating conditional
distribution and performs direct inference. Both a joint and a conditional distributions
can be associated with a graphical structure, which allows to visualize dependencies and
to represent the distributions by a product of local functions.
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In this chapter, we consider and compare supervised generative and discriminative
learning methods such as the naive Bayes and the logistic regression, as well as approaches
that take more elaborate sequential dependencies into account, namely hidden Markov
models and maximum entropy Markov models.

2.1 Discriminative and Generative Learning

In many applications of machine learning, the goal is to assign to an observation
x ∈ X a label y ∈ Y. The estimation is performed by a parameterized decision function.
The parameters are learnt from a set of training input data X = {x1, . . . , xN} and a
corresponding set of labels Y = {y1, . . . , yN}. Generative and discriminative learning
approaches widely used nowadays are usually opposed to each other; in (Jebara, 2004),
for instance, they are even presented as two different schools of thought.

2.1.1 Generative models

Generative probabilistic models (Naive Bayes, mixtures of multinomials, hidden Markov
models, Markov random fields, etc.) design a joint probability distribution and produce
a probability density model over all variables. An alternative name of a “generative
approach” is “informative approach”, as mentioned in (Rubinstein and Hastie, 1997).

The optimal way to assign a label ŷ for a new sample x is to choose ŷ maximizing
p(y|x). According to Bayes rule,

ŷ = arg max
y

p(y, x)

= arg max
y

p(x|y)p(y)
p(x)

= arg max
y

p(x|y)p(y)

= arg max
y

p(y|x).

At first glance, what can be better than creating a model that is complete, i.e., a
generative model? The most intuitive explanation why generative classifiers are excessive
and can be outperformed by less elaborated models has been provided by Vapnik (1998):
“one should solve the problem directly and never solve a more general problem as an
intermediate step”. The generative models provide a generator of data but if the goal
is classification, modeling the data generator is an intermediate and often more complex
problem.

Generative models are known to obtain the correct posterior if the training data are
drawn according to the true distribution. We know that, in real-world applications, the
true distribution is unknown, and it is therefore unnecessary to construct the full under-
lying distribution if p(y|x), the distribution we need, can be modeled directly.
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2.1.2 Discriminative models

The discriminative approach avoids modeling the underlying distribution and is aimed
at directly mapping the observations into labels. Discriminative models design directly
p(y|x). Among the efficient probabilistic discriminative models, one can mention logistic
regression and its generalizations, such as maximum entropy Markov models and condi-
tional random fields. The discriminative learning paradigm does not include marginal
probability neither of labels, nor of observations (see Section 4.1.2 for details). Discrimi-
native models, in their turn, have some disadvantages. Discriminative approach is focused
on construction of classification boundaries as it is mentioned in (Tu, 2007), and to con-
struct them one needs both positive and negative examples, whereas negative examples
are not always available.

Given a training data set, a parametric family of probability models can either fit a
joint likelihood p(y, x) and result in a generative classifier, or conditional likelihood p(y|x),
and result in a conditional classifier. Such generative and conditional classifiers are called
in (Ng and Jordan, 2002) generative-discriminative pairs. To provide deeper insights in
generative and discriminative learning, let us consider two such pairs, the logistic regression
and naive Bayes models on the one hand and hidden Markov model and maximum entropy
Markov model on the other hand.

2.2 Logistic Regression and Naive Bayes for

Classification Tasks

In this section, we investigate a generative-discriminative pair of classification methods
widely used for supervised classification, logistic regression and naive Bayes.

We consider the distributions modeled by logistic regression and by naive Bayes. We
will see that the logistic regression directly models the conditional probability p(y|x) and
that the estimates p(x|y) and p(y) designed by the naive Bayes can be used to predict a
class given an observation.

We describe the maximum likelihood approaches used to estimate the parameters in
these models, and we discuss whether the logistic regression and the naive Bayes are
appropriate for all kinds of applications.

2.2.1 Logistic Regression

The logistic regression model aims to predict the posterior probability of a class y, y ∈
{1, . . . ,K} via linear functions of an observation x, x ∈ R

d. The model is based on the
assumption that the conditional probability of a class, given an observation, is proportional
to exp(fk(x)), with fk(x) = θT

k x, where k is a class k ∈ K, and θk is a vector of parameters
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associated with the class k. The functions

f1(x) = log
g(y = 1|x)
g(y = K|x) = θT

1 x with g(y = 1|x) =
exp(f1(x))

∑K−1
j=1 exp(fj(x)) + 1

f2(x) = log
g(y = 2|x)
g(y = K|x) = θT

2 x with g(y = 2|x) =
exp(f2(x))

∑K−1
j=1 exp(fj(x)) + 1

. . .

fK(x) = log
g(y = K|x)
g(y = K|x) = θT

Kx = 0 with g(y = K|x) =
1

∑K−1
j=1 exp(fj(x)) + 1

are called logit transformations. Therefore, the multiclass or polytomous logistic regression
is specified in terms of K − 1 logit functions. Here, we used g(y = K|x) as denominator,
however, this choice is arbitrary. Such a parameterization makes the model identifiable.

The estimation of the parameter vector θ both, for the binary and polytomous logistic
regressions is performed using maximum log-likelihood. Penalization methods, e.g., the
L2 norm penalty term, aim to avoid overfitting of a model penalizing large fluctuations of
the parameters to be estimated. The negated conditional log-likelihood of N observations
X = (x1, . . . , xN ) and their labels Y = (y1, . . . , yN ), penalized by the L2 penalty term, is
defined as

ℓ(Y |X; θ) = −
N∑

i=1

{ K∑

k=1

✶{yi = k}θT
k xi − log

K∑

k=1

exp θT
k xi

}

− ρ

2

d·(K−1)
∑

j=1

θ2
j , (2.1)

where ρ is a parameter to be adjusted, for instance, by cross-validation. Note that θK = 0.

For a binary logistic regression, y ∈ {0, 1}, the conditional log-likelihood takes the
form:

ℓ(Y |X; θ) = −
N∑

i=1

(

yiθ
Txi − log

(
1 + exp(θTxi)

)
)

− ρ

2

d∑

j=1

θ2
j . (2.2)

The logistic regression criterion is convex, since its Hessian matrix (the matrix of the
second derivatives) is positive semi-definite. The logistic regression criterion, penalized
with the L2 norm, is strictly convex, since the Hessian is guaranteed to be positive definite.

If the dimensionality of the problem d is reasonably small, so that it is feasible to store
and to recompute the matrix of the second derivatives at every iteration, the Newton-
Raphson method can be used to solve the problem. We use the Newton-Raphson method,
considered below to estimate the parameters of logistic regression in Chapter 5.

Newton-Raphson

The Newton-Raphson method (Nocedal and Wright, 2006) is a numerical method to min-
imize a function g(θ). At θ = θ̃, g(θ) can be approximated by the quadratic Taylor
expansion of g(θ):

g(θ) ≈ g(θ̃) +∇g(θ̃)T(θ − θ̃) +
1

2
(θ − θ̃)TH(θ̃)(θ − θ̃), (2.3)
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where ∇g(θ̃) is the gradient of g(θ̃), and H(θ̃) is the Hessian of g(θ̃); the approximation
of g(θ) is a quadratic function, which is minimized by solving

∇g(θ̃) +H(θ̃)(θ − θ̃) = 0

this yields the Newton-Raphson step:

θ = θ̃ −H(θ̃)−1∇g(θ̃). (2.4)

The speed of convergence of θ̃t to the optimum of equation (2.1) is quadratic in the number
of iterations t.

Since we apply the Newton method to the criteria of binary and polytomous logistic
regressions, let us consider the expressions of the gradient and Hessian for the binary and
polytomous logistic regressions. The first derivative of the negated unpenalized binary
logistic regression log-likelihood function is

∇θℓ(Y |X; θ) = −
N∑

i=1

(

yi −
1

1 + exp(−θTxi)

)

xi

= −
N∑

i=1

xi(yi − g(y = 1|xi)).

The second derivative of the binary negated unpenalized logistic regression log-likelihood
function is

∇2
θℓ(Y |X; θ) =

N∑

i=1

xix
T
i g(y = 1|xi)(1− g(y = 1|xi))

=

N∑

i=1

xix
T
i w(xi),

where w(xi) = g(y = 1|xi)(1− g(y = 1|xi)).

Therefore, the Newton-Raphson update for binary logistic regression taking the L2

penalty term into account is

θ = θ̃ +
( N∑

i=1

xix
T
i w(xi) + ρ

)−1(
N∑

i=1

xi(yi − g(y = 1|xi))− ρθ
)

. (2.5)

The expression for the negated unpenalized polytomous logistic regression gradient is

∇θk
ℓ(Y |X; θ) = −

N∑

i=1

K∑

k=1

(✶{yi = k} − g(y = k|xi))xi. (2.6)

The expression for the Hessian is the following:

∇2
θkθT

l

ℓ(Y |X; θ) =

{
∑N

i=1

∑K
k=1

∑K
l=1−g(y = k|xi)g(y = l|xi)xix

T
i if k 6= l,

∑N
i=1

∑K
k=1 g(y = k|xi)(1− g(y = k|xi))xix

T
i if k = l.

The quadratic convergence of the Newton-Raphson method is its strong advantage.
The necessity to compute the Hessian matrix at its each iteration makes the method not
applicable for large dimensional problems. The solutions for large dimensional tasks are
considered in Chapter 3.
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2.2.2 Naive Bayes Classifier

To classify a test example x, naive Bayes chooses a label ŷ that maximizes the joint
probability

ŷ = arg max
y∈Y

p(x, y). (2.7)

The applications we consider in the thesis are discrete data problems. The naive Bayes
classifier modeling

p(x|y)p(y) (2.8)

for discrete data uses counts to compute the maximum likelihood estimates p(x|y) and
p(y):

p(x|y) =

∑N
i=1 ✶{Xi = x, Yi = y}
∑N

i=1 ✶{Yi = y}
, (2.9)

p(y) =

∑N
i=1 ✶{Yi = y}

N
. (2.10)

In the models where observations are d dimensional vectors, the naive Bayes model
assumes that, given a class y, the components xj of the observation x are independent:

p(y, x) = p(y)

d∏

j=1

p(xj |y). (2.11)

The logistic regression and the naive Bayes technique have been widely used in the
machine learning community due to their simplicity and effectiveness. However, both
models are not suited for applications where elaborated dependencies are to be taken into
account.

We now consider graphical models which are a framework to visualize dependencies
and structure, as well as to provide insights into training and inference of probabilistic
models.

2.3 Graphical Models

Graphical models are a natural formalism to describe a structure and dependencies in
a probabilistic model, since statistical models can be formulated in terms of graphs. The
research on graphical models is very active nowadays, see, e.g., (Lauritzen, 1996, Jordan
et al., 1999, Jordan, 1999, Wainwright and Jordan, 2003).

To provide some intuition, let us consider the logistic regression and the naive Bayes as
graphical models. Logistic regression and naive Bayes models can be represented graph-
ically, as it is done on the Figure 2.1: x = [x1, x2, x3] is a vector of observations, and
y its corresponding label. According to the standard notations, each node is a variable.
Shadowed nodes are considered to be observed, and the transparent ones are hidden.

12



An arrow defines conditional dependence of an observation given a label, e.g., p(x1|y),
p(x2|y), p(x3|y) on the Figure 2.1 on the left. As it was already mentioned, the idea of
modeling p(y|x) directly is connected with discriminative models, e.g., with the logistic
regression, drafted on the same figure on the right. The connection lines define conditional
dependency of a label given all nodes that are included in a clique.

The naive Bayes model assumes that given a class y, the components xj of the ob-
servation x are independent, as it is modeled by equation (2.11), and as it is shown on
the left of Figure 2.1. The models assumption consists in conditional independence of all
attributes.

In natural language processing application of logistic regression results in an approach
called “bag of words” (Lewis, 1998), what means that the word order is completely ignored.
It is a drastic simplification and can result in bad performance.

y

x

y

x

Figure 2.1: Graphical representations of the generative model naive Bayes (left) and dis-
criminative model logistic regression (right).

It is not efficient to model sequential structure dependencies, i.e. dependencies between
labels neither with the logistic regression, nor with the naive Bayes. Let us consider more
complicated graphs that include sequential dependencies.

In the machine learning community, the graphical models are used to visualize the
structure and the dependencies of the underlying distribution. All probabilistic labeling
methods we investigate in this thesis are associated with some graphical structure, which
is considered to be a part of their definitions. The graphical models are divided into di-
rected and undirected models. Both directed and undirected graphs can represent either a
generative or a discriminative underlying distribution. As we will see, it is the normalizing
factor that determines whether the distribution is conditional or joint.

The semantics of directed and undirected models is different and their distinction lies
in their factorization. Directed models are factorized as a product of local probability
functions, i.e. functions which are related to local marginal distributions. Undirected
models, on the contrary, factorize as a normalized product over all cliques of a graph, where
the functions associated with the cliques do not have any probabilistic interpretation.

The concept of conditional independence is fundamental for graphical models.

Definition 2.1. The nodes xA and xB are independent (xA ⊥ xB) if p(xA, xB) =
p(xA)p(xB).

Definition 2.2. The nodes xA and xB are called conditionally independent given xC

(xA ⊥ xB|xC) if p(xA, xB|xC) = p(xA|xC)p(xB|xC) or p(xA|xC , xB) = p(xA|xC).

Hence, missing variables in the local conditional probability functions correspond to
missing edges in the associated graph.

13



2.3.1 Directed Graphs

Let G = (V,E) be a directed graph and {φ(xi, xπi
) : i ∈ V } be a set of functions, where

xπi
are parents of xi, then we can write a joint probability distribution

p(x1, . . . , xT ) =

T∏

t=1

φk(xt, xπt), (2.12)

where T is the length of a sequence, and φk(xt, xπt) is a marginal probability of xi given
its parents. The choice of {φk(xt, xπt)}Tt=1 defines the joint probability distribution that
belongs to the family of joint probability distributions associated with a specific G.

Taking all the preceding context of xt into consideration, and defining φk(xt, xπt) =
p(xt|x1, . . . , xt−1), we model

p(x1, . . . , xT ) =
T∏

t=1

p(xt|x1, . . . , xt−1). (2.13)

An example of such a distribution is shown on Figure 2.2, and the factorization for this
graph in particular is as follows:

p(x1, x2, x3, x4, x5, x6) = p(x1) p(x2|x1) p(x3|x1, x2) p(x4|x1, x2, x3, x4)

p(x5|x1, x2, x3, x4) p(x6|x1, x2, x3, x4, x5).

x1

x3

x2

x6

x4

x5

Figure 2.2: Example of a (rather complex) directed graphical model

An example of the graphical model, which is less complex than one presented in equa-
tion 2.13, is drafted in Figure 2.3, and the graph is factorized as

p(x1, x2, x3, x4, x5, x6) = p(x1) p(x2|x1) p(x3|x1) p(x4|x2) p(x5|x3) p(x6|x2, x3).

x1

x3

x2

x6

x4

x5

Figure 2.3: Example of a directed graphical model representing certain conditional inde-
pendence assumptions
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2.3.2 Undirected Models

Let G = (V,E) be an undirected graph, and V = X ∪ Y , ψc be a local function (or
compatibility function), associated with a clique c ∈ C, where C is a set of all cliques;
x is an assignment to X, y to Y ; xc is an assignment to a set c ∈ C ⊂ X, yc to a set
c ∈ C ⊂ Y .

An example of undirected generative model are Markov random fields, defined in (Kin-
dermann and Snell, 1980) as

p(y, x) =
1

Z

∏

c∈C

ψc(yc, xc), (2.14)

where Z =
∑

y∈Y

∑

x∈X

∏

c∈C ψc(yc, xc) is a normalization forcing the probability distri-
bution to sum to one.

Note that, with the normalization factor Z =
∑

y∈Y

∏

c∈C ψc(yc, xc), we get a discrimi-
native model, that corresponds to an underlying conditional probability p(y|x). Typically,

ψc(yc, xc) = exp

( K∑

k=1

θckfck(yc, xc)

)

, (2.15)

where K is the number of features.

As an example of an undirected models representing certain conditional independen-
cies, look at Figure 2.4. The nodes x2 and x3 separate x1 from x4 and from x5 respectively.
Therefore, we say that the node x4 is independent from x1 given x2, and the node x5 is
independent from x1 given x3.

x1

x3

x2

x6

x4

x5

Figure 2.4: Example of an undirected graphical model, the nodes x4 and x5 are indepen-
dent from x1 given x2, and x3 respectively.

A joint or a conditional probability distribution in the context of graphical models is
designed as a product of local graph functions. According to the definition of the local
graph functions, there are several conditions not to be violated in the case of directed
models. If we come back to equation (2.12), for example, we see that the right-hand
side has to be non-negative, and the right-hand side sums to one over {x1, . . . xT }. The
properties of the exponential function guarantee that the local conditional functions are
non-negative, since exp(·) is non-negative.

Now let us explore probabilistic graphical models for sequential prediction.
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2.4 Hidden Markov Models and Maximum Entropy
Markov Models

Hidden Markov model (HMM) and maximum entropy Markov model (MEMM) con-
struct a generative-discriminative pair. HMM and MEMM achieve much better results
in sequential labeling tasks than the logistic regression and naive Bayes, the generative -
discriminative pair considered above.

In this section, we consider the structure modeling with HMM and MEMM, to be
precise, first order Markovian type models. We investigate the dynamic programming
procedure, since as we will see, the direct computation of the normalizing term is in-
tractable.

Both hidden Markov models and maximum entropy Markov models have been suc-
cessfully used for structured output prediction. Hidden Markov models have been widely
applied to language structure predicting, first of all, to part of speech tagging and dis-
ambiguation tasks (DeRose, 1988, Elworthy, 1994, Kupiec, 1992). More recently, HMMs
have been adapted for molecular biology problems, e.g., for gene prediction (Stanke and
Waack, 2003); for bioinformatics in general see (Koski, 2001).

Maximum entropy Markov Models have been applied to various natural language pro-
cessing tasks, e.g., (Blunsom, 2004) for semantic role labeling, and to protein secondary
structure prediction in (Kim, 2001).

2.4.1 Hidden Markov Models

Hidden Markov models are not only a powerful approach to sequence labeling with strong
theoretical foundations and good generalization performance. Inference in hidden Markov
models relies on dynamic programming techniques that are also used in more recent struc-
ture prediction methods.

We start with a terminological note. Applications considered in this thesis are super-
vised learning tasks. In our case, in the training process, “visible” Markov models are
constructed since the models we treat are mostly fully-observed, but, for the test (decod-
ing), the labels are hidden. First order hidden Markov models are graphically sketched on
the left on Figure 2.5.

y

x

y

x

Figure 2.5: Graphical representation of hidden Markov models (left) and maximum en-
tropy Markov models (right).

Hidden Markov models (Cappé et al., 2005), (Bilmes, 1998) have been and are one of
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the most efficient generative methods appropriate for sequential data for years. HMMs
construct a joint distribution over the states and observations. The states in hidden
Markov models are considered to be hidden since the states (in the test procedure) are not
given and have to be predicted. Here, we consider the transitions between two neighboring
states, a current state depends only on its previous state, in other words, transitions follow
a first order Markov process.

Formally, a hidden Markov model is defined by:

• a finite set of states Y ,

• a finite set of observations X,

• a state transition matrix A that contains the transition probabilities ay,y′ from a
state y′ to the following one y,

• an observation/transition matrix B containing the probability distribution bx,y (the
probabilities to emit x given y),

• an initial state distribution q(y).

Data generation under first order Markov models is described by the Algorithm 1.

Algorithm 1 Sequence Generation in a First Order Markov Process

Start in state y1 with probability q(y1)
Emit an observation x1 with probability bx1,y1

for t = 2 . . . T do
{for all positions in a sequence}
Move from yt−1 to yt with probability ayt,yt−1

Emit an observation xt with probability bxt,yt

end for

Three Classical HMM Problems

Three classical problems of hidden Markov models and their solutions can be directly
applied to maximum entropy Markov models, considered in Section 2.4.2 and to the model
we study in this thesis, conditional random fields, examined in the next chapter.

There are “three classical problems” (Rabiner, 1989) concerning hidden Markov mod-
els, and correspondingly three standard solutions. To simplify notations, we let θ =
(A,B, q).

1. Given a model, compute the probability of a sequence x

p(x|θ) =
∑

y

p(x,y|θ) =
∑

y

p(x|y, θ)p(y|θ)

=
∑

y

qy1bx1,y1ay2,y1bx2,y2 . . . ayT ,yT−1bxT ,yT
, (2.16)

where Y is the set of all possible label sequences. Usually the direct computation of
p(x|θ) is intractable, since it invokes 2×T×|Y |T computations. At every position t =
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1, . . . , T we have |Y | possible labels, and therefore |Y |T possible output sequences.
For every possible label sequence, one needs 2 × T computations, due to two types
of parameters, state transition and observation emission probabilities.

The probability of a sequence can be computed with the forward algorithm. The
joint probability of an observational subsequence (x1 . . . xt) reaching state y at time
t is defined as

αt(y) = p(x1, . . . xt, yt = y|θ).
The α-pass or forward recursion takes the form

{

α1(y) = qybx1,y,∀y,
αt(y) =

∑

y′ αt−1(y
′)ay,y′bx,y,∀y,

and the probability of a sequence of observation is

p(x|θ) =
∑

y

αT (y).

The complexity of the α-pass is T × |Y |2. Why we have T × |Y |2 computations, can
be illustrated by Figure 2.6 on the left. On every position t, t = 1, . . . , T we perform
|Y |2 propagations, we propagate values from each state at a position t − 1 to each
state at a position t.

2. Given observations and labels, train the model. The algorithm that is used to
estimate parameters is the Baum-Welch algorithm (Baum et al., 1970). It makes
use of a forward-backward procedure, and is a particular case of the expectation-
maximization method. The conditional probability of an observation subsequence
(xt+1, . . . , xT ) given yt = y is defined by

βt(y) = p(xt+1, . . . , xT |yt = y, θ).

The β-pass, or backward algorithm, computes these quantities through a recursion
{

βT (y) = 1,∀y,
βt(y

′) =
∑

y βt+1(y)ay,y′bxt+1,y,∀y′,
and the marginal conditional probabilities are

p(yt = y|x, θ) =
αt(y)βt(y)

p(x|θ) .

p(yt = y′, yt+1 = y|x) =
αt(y

′)bxt+1,yβt+1(y)ay,y′

p(x|θ) .

3. Given a model and an observation sequence, find the optimal state sequence.

The Viterbi algorithm (Viterbi, 1967), drafted as Algorithm 2 describes the inference
procedure: for every position t of a given sequence the optimal subpaths ending in
all possible states Y are kept. Dynamic programming is used. The idea of it is to
keep the probabilities of subpaths rather than recompute them several times. The
algorithm is similar to the forward pass, except for summation is replaced by maxi-
mization. The values are stocked in tables of dimension |Y | × T . Figure 2.6 on the
left schematically visualizes the tables which stock the probabilities of subpatterns,
and Figure 2.6 on the right provides an idea of the backtracking procedure used to
reconstruct the best path.
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Algorithm 2 The Viterbi Algorithm

δ1(y) = q(y) ∀y
for t = 2 . . . T do
{for all positions in a sequence}
{do Forward algorithm with max instead of summation}
δt(y) = maxy′ δt−1(y

′)ay,y′bxt,y ∀y
ιt(y) = arg maxy′ δt−1(y

′)ay,y′bxt,y ∀y
end for
{Backtracking}
ŷT = arg maxy δT (y)
for t = T − 1 : −1 : 1 do
ŷt = ιt+1(ỹt+1)

end for

y1

y2

y3

|Y |
t1 t2 tT

y1

y2

y3

|Y |
t1 t2 tT

Figure 2.6: Tables. Partial results of α-pass calculations (left) and backtracking procedure
(right).

2.4.2 Maximum Entropy Markov Models

The limitations of hidden Markov models motivated the development of the maximum
entropy Markov models (MEMMs). The primary idea is to avoid modeling a joint distri-
bution to solve a conditional problem.

The HMM transition and observation functions can be unified in a single function that
stands for a weight of a current state given a previous state and a current observation.
Such a reparameterization allows to take richer dependencies into account. This idea is
applied to MEMMs.
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The maximum entropy Markov model (McCallum et al., 2000) is a type of Markovian
sequential model. It is a directed discriminative graphical model, and its graphical repre-
sentation is drafted on the right of Figure 2.5. The three classical hidden Markov model
problems, described above, are relevant for the maximum entropy Markov models and are
solved straightforward with slightly modified forward-backward algorithm and the Viterbi
algorithm.

In the MEMM model, the transition probability and emitting probability are replaced
by a single dependency p(y|y′, x):

p(y|x) = p(y1|x1)
T∏

t=2

p(yt|yt−1, xt),

each of these functions is represented by an exponential model

p(y|y′, x) =
1

Z(y′, x)
exp

∑

k

θkfk(y
′, y, x).

The model suffers from increased number of parameters compared to HMMs. However,
splitting

∑

k θkfk(y
′, y, x) into

∑

m θmfm(y, x) and
∑

l θlfl(y
′, y) results in the number of

parameters equivalent to first order HMMs. Its estimation and inference complexity is
quadratic in the number of labels.

Maximum entropy Markov model made it possible to apply maximum entropy models
(Berger et al., 1996, Rosenfeld, 1996) to sequence labeling tasks, however, the so-called
label bias problem is usually associated with the model.

The Label Bias Problem

Lafferty et al. (2001) mention that MEMMs, which perform the per-state normalization
of probability distribution, can suffer from the so-called label bias problem. It has been
also reported that the per-state normalization can lead to such a topology of a graph in
which there are states with the only one outgoing state, or states with one highly probable
transition (the problem of topology has been originally mentioned by Bottou (1991)).

As stated by Lafferty et al. (2001), the label bias problem reflects the situation when
a previous state completely determines a next state. Klein and Manning (2002) estimated
(on a POS tagging task) the parameters with the upward conditional Markov model,
whose graphical representation is the same as of MEMM (see Figure 2.5 on the right) and
transitions are normalized per-state. This model coincides with the MEMMs. However,
Klein and Manning (2002) state that they did not observe the label bias problem but on
the contrary, they noticed the observation bias problem, the situation where a current
observation determines a label to be predicted ignoring a previous state.

We considered conditional random fields (see the next chapter) to be more perspective
in comparison to MEMMs, since CRFs allow to model arbitrary dependencies and were
reported to avoid the label bias problem. Therefore, in the context of the thesis, we did
not perform experiments with any model based on the per-state normalization. Although
we have never observed neither the label bias nor the observation bias problems in the
experiments with CRFs, we are not convinced that CRFs is free from these explaining-
away phenomena.
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2.5 Conclusions

In this chapter, we provided a brief overview of statistical approaches that can be
represented as graphical models. We have considered learning approaches for data without
underlying structure, logistic regression and naive Bayes classifier, and for sequential data
that take dependencies into account.

Probabilistic graphical models are widely used in machine learning, and are both a nat-
ural visualization of underlying probability distribution and a powerful inference frame-
work. We considered briefly discriminative and generative learning families, including
models for sequential prediction, namely hidden Markov models and maximum entropy
Markov models. It was mentioned that discriminative models achieve in general a better
generalizing performance than the generative ones (Ng and Jordan, 2002), however, the
maximum entropy Markov model which is both, adopted for sequential data and models
directly p(y|x), war reported to suffer from the label bias problem.

We devote the next chapter to the conditional random fields, an undirected discrimi-
native model for structured output prediction.
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Chapter 3

Conditional Random Fields
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In the previous chapter, we considered two approaches to sequential labeling, HMMs
and MEMMs. The discriminative alternative of HMM, maximum entropy Markov model,
was reported to have some limitations, in particular, the label bias problem, caused by
the per-state normalization.

The applications considered in this thesis are natural language tasks with sequential
structure and complex dependencies. Therefore, a learning framework has to model se-
quential dependencies and take a rich set of features into account. Markov random fields,
a generative approach, presented as equation (2.14), allow to construct arbitrary depen-
dencies, however it is impossible to apply the dynamic programming to compute the nor-
malizing factor. Even in a moderate size application the computation of the normalization
is intractable.

Conditional random fields are a discriminative approach which models directly a con-
ditional probability distribution p(y|x). In this chapter, we introduce the model and detail
training and inference in linear-chain conditional random fields. We illustrate performance
of conditional random fields on some standard natural language processing tasks.
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3.1 Model Description

Conditional random fields (CRFs), introduced by Lafferty et al. (2001) and presented
in details by Sutton and McCallum (2006) are based on the following discriminative prob-
abilistic model

pθ(y|x) =
1

Zθ(x)
exp

{
T∑

t=1

K∑

k=1

θkfk(yt−1, yt, xt)

}

, (3.1)

where x = (x1, . . . , xT ) denotes an input sequence and y = (y1, . . . , yT ) is the output
sequence, hereafter referred to as the sequence of labels; {fk}1≤k≤K is an arbitrary set of
feature functions and {θk}1≤k≤K are the associated real-valued parameter values. By con-
vention, y0 refers to a particular (always observed) label that indicates the beginning of the
sequence. The CRF form considered in (3.1) is referred to as linear-chain CRF, although
we stress that yt and xt could be composed not directly of the individual sequence tokens,
but on sub-sequences (e.g., trigrams) or other localized characteristics. We will denote by
Y , X, respectively, the sets in which yt and xt take their values. The normalization factor
in (3.1) is defined by

Zθ(x) =
∑

y∈Y T

exp

{
T∑

t=1

K∑

k=1

θkfk(yt−1, yt, xt)

}

. (3.2)

The graphical representation of a linear-chain conditional random fields is provided as Fig-
ure 3.1. As in the previous chapter, the shadowed nodes are observed and the transparent
ones are hidden during the inference procedure.

y

x

Figure 3.1: Graphical representation of linear-chain conditional random fields for a se-
quence of length 3.

One of possible feature choices is the combination of bigram λy′,y,x and unigram µy,x

features:

K∑

k=1

θkfk(yt−1, yt, xt) =
∑

y′,y∈Y 2,x∈X

λy′,y,x✶{yy−1 = y′, yt = y, xt = x}+

∑

y∈Y,x∈X

µy,x✶{yt = y, xt = x}, (3.3)

where ✶(test) = 1, if the variables are observed jointly and 0 otherwise. We can rewrite
equation (3.3) as µyt,xt + λyt−1,yt,xt .
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3.2 Training and Decoding in Conditional Random Fields

In this section, we consider the parameter estimation in CRFs. We perform minimiza-
tion of the negated log-likelihood function. Training and inference in CRF are based on
the forward-backward procedure, already considered for hidden Markov models in Sec-
tion 2.4.1.

3.2.1 Training in CRFs

Given N independent labelled sequences {x(i),y(i)}Ni=1, the conditional maximum likeli-
hood estimation is based on the minimization, with respect to θ, of

ℓ(D; θ) = −
N∑

i=1

log pθ(y
(i)|x(i))

=

N∑

i=1

{

logZθ(x
(i))−

Ti∑

t=1

K∑

k=1

θkfk(y
(i)
t−1, y

(i)
t , x

(i)
t )

}

, (3.4)

where Ti is the length of an observation x(i).

Although ℓ(D; θ) is a smooth convex function, it has to be optimized numerically.

The gradient of ℓ(D; θ) is given by

∂ℓ(θ)

∂θk
=

N∑

i=1

Ti∑

t=1

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t )−

N∑

i=1

Ti∑

t=1

fk(y
(i)
t−1, y

(i)
t , x

(i)
t ), (3.5)

where Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t ) denotes the conditional expectation given the observation

sequence. One can see that the gradient of the log-likelihood includes the empirical average
of the global feature vector and its model expectation. It is not difficult to calculate
the empirical average. The computation of the expectation in equation (3.5) implies to
repeatedly compute the conditional expectation

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t ) =

∑

(y′,y)∈Y 2

fk(y, y
′, x

(i)
t )pθ(yt−1 = y′, yt = y|x(i)). (3.6)

for all input sequences x(i) and for all feature functions.

The solution is the same as for hidden Markov models: the forward-backward method.
For every position of each training instance, we define the Y × Y matrix

Mt(yt−1, yt, x
(i)
t ) = exp

( K∑

k=1

θkfk(yt−1, yt, x
(i)
t )
)

. (3.7)

The probability of the label sequence y given x(i) can be therefore rewritten as

pθ(y|x(i)) =
1

Zθ(x(i))

Ti∏

t=1

Mt(yt−1, yt, x
(i)
t ). (3.8)
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The normalization factor Zθ(x
(i)) is nothing else than the sum

Zθ(x
(i)) =

∑

y

Ti∏

t=1

exp

( K∑

k=1

θkfk(yt−1, yt, x
(i)
t )

)

=
∑

y

Ti∏

t=1

Mt(yt−1, yt, x
(i)
t ).

The α and β vectors are recursively defined as
{

α1(y) = Mt(y
′, y, x

(i)
1 ),

αt+1(y) =
∑

y′ αt(y
′)Mt+1(y

′, y, x
(i)
t+1),

(3.9)

{

β1(y) = 1,

βt(y
′) =

∑

y βt+1(y)Mt+1(y
′, y, x

(i)
t+1).

(3.10)

The normalization factor can be rewritten

Zθ(x
(i)) =

∑

y

αTi
(y). (3.11)

The marginal probability is calculated by

pθ(yt−1 = y′, yt = y|x(i)
t ) =

αt−1(y
′)Mt(y

′, y, x
(i)
t )βt(y)

Zθ(x(i))
. (3.12)

Notice that the forward and backward variables of the recursions (3.9) and (3.10) do
not have any probabilistic interpretation, contrary to their analogues in hidden Markov
models.

For parameter estimation, the log-likelihood is usually complemented with an addi-
tional regularization term so as to avoid overfitting, e.g. with the L2 norm. We redefine
the objective functions as follows:

ℓ(D; θ) = ℓ(D; θ) +
||θ||2
2σ2

.

The pseudo code for linear-chain conditional random fields training is presented as
Algorithm 3. The complexity of the algorithm is Ti × |Y |2.

3.2.2 Decoding

The training of the CRF criterion results in an estimated vector of parameters which can
be directly applied to predict a new previously unobserved sample.

Decoding in conditional random fields is done as in hidden Markov models, using
Viterbi algorithm:

{

δ1 = θy′=y0,y=y1,x=x1 ,

δt(y) = maxy′{δt−1(y
′)
∑K

k=1 θkfk(y
′, y, x)}.

(3.13)
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Algorithm 3 Training CRF

while Convergence criterion is not met do
{Gradient and log-likelihood computations}
for all sequences i do

for all positions t = 1 . . . Ti do

Update empirical average fk(yt−1, yt, x
(i)
t ), ∀k

Compute αt(y) (eq. 3.9)
end for
Compute ℓ(θ;D) + ‖θ‖2

2σ2

for all positions t = Ti . . . 1 do
Compute βt(y

′) (eq. 3.10)

Compute expectation pθ(yt−1, yt|x(i)
t ) (eq. 3.12)

end for
end for
Accumulate empirical average of feature vector and its model expectation for all
sequences
Add the penalty term θ

σ2 to the gradient
{Update parameter values}
Perform an update step of numerical optimization

end while

The complexity of decoding in linear-chain CRFs is the same as for α-pass, considered for
HMMs in Chapter 2.

An alternative approach, symbol-by-symbol “maximum a posteriori” decoding based
on the following decision rule

ŷt = arg max
yt∈Y

p(yt|x) ∀t,

can achieve (Goel and Byrne, 2000) a better labeling quality than the Viterbi. However,
the maximum a posteriori is more computationally expensive, since it requires to perform
the Baum-Welch algorithm instead of the forward only.

Problem of Scaling

The values of αs and βs tend to rather small values and risk to be zeroed in the case
of long sequences. This problem and its solution exist for hidden Markov models, and it
is possible to apply the same approach, called scaling, for conditional random fields. Each
value of the αt vector is divided by the sum of αt.

Another option is to perform the forward-backward computations in the logarithmic
domain, as it is described in (Sutton and McCallum, 2006) and as it is implemented in
CRF++ (Kudo, 2005). The αs and βs values are computed as follows:

logαt(y) = ⊕y′∈Y(logMt(y
′, y, x

(i)
t ) + logαt−1(y

′)), (3.14)

log βt(y
′) = ⊕y∈Y(logMt+1(y

′, y, x
(i)
t+1) + log βt+1(y)), (3.15)

where the operator ⊕ is defined as a⊕ b = log(exp(a) + exp(b)).
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3.3 Optimization Methods for Conditional Random Fields

The conditional random fields criterion is convex and differentiable. However, the
number of parameters to be estimated is usually too large and the choice of an optimiza-
tion method should be done carefully. The estimation technique has to cope with large
dimensionality and large data sets.

In the paper that introduces the notion of conditional random fields, in (Lafferty et al.,
2001), generalized iterative scaling (Darroch and Ratcliff, 1972) and improved iterative
scaling (Della Pietra et al., 1997) are used for parameter optimization. Both approaches
are based on an iterative procedure

θi+1 = θi + δθi,

where δθi is a value of update. Lafferty et al. (2001) provide details on the experiments
carried out on the Penn Treebank POS tagging task. The improved iterative scaling
needs about 2, 000 iterations to converge. At the same time, the simple maximum Markov
entropy model converges within 100 iterations. To speed the training up, the vector of
parameters can be initialized with the optimized MEMMs parameter values, that results
in 1, 000 steps until convergence.

Iterative scaling is easy to implement and is computationally efficient for problems
where the computations of a gradient and a likelihood function are expensive. It has been
shown by Malouf (2002) that the performance of the scaling method is worse than one of
first and second order optimization numerical methods for the maximum entropy criterion
on several natural language processing problems.

A year after the introduction of CRFs, Wallach (2002) makes an attempt to extrapo-
late the results of (Malouf, 2002) to the conditional random fields and she shows that the
conjugate gradient method is much faster. On the CoNLL 2000 data Wallach (2002) re-
ports that the improved iterative scaling needs 150 iterations (188 seconds), the conjugate
gradient method with the Fletcher-Reeves coefficient – 19 iterations (124 seconds), and the
conjugate gradient with the Polack-Ribière coefficient – 27 iterations (176 seconds). Sha
and Pereira (2003) reported that the iterative scaling converges slowly and never reaches
the performance of the conjugate gradient method.

Below, we detail several numerical methods (Press et al., 1992) of the first and the
second order that are considered to be the state-of-the art optimization approaches for
conditional random fields in particular, and for log-linear models in general. All of the
approaches considered below follow the general principle of gradient descent.

3.3.1 Conjugate Gradient

The conjugate gradient method, introduced by Hestenes and Stiefel (1952), is an iterative
procedure that is suited for numerical optimization of high dimensional problems such
as CRFs training. The idea of the conjugate gradient method is to change the descent
direction at every iteration in such a way that the new direction is conjugate to the
previous one. A conjugate direction is a linear combination of a previous direction and of

28



a direction that is orthogonal to a previous one. The algorithm consists in the repetition
of two main operations:

1. Compute the gradient at a point θi and move in a direction that is conjugate to the
previous one.

2. Perform a line search along the selected direction.

A new conjugate direction can be found in the following way:

di+1 = dibi+1 + ri+1,

where di+1 is the new direction, di is the previous direction, ri+1 is a value of the so-called
residual, −∇θℓ(θi), and bi+1 is a coefficient.

There are two common ways (Press et al., 1992) to estimate the coefficient b:

• Fletcher and Reeves method:

bi+1 =
rTi+1ri+1

rTi ri
. (3.16)

• Polak and Ribière method:

bi+1 =
rTi+1(ri+1 − ri)

rTi ri
. (3.17)

As mentioned above, Wallach (2002) showed that the Fletcher-Reeves method converges
faster (for the CoNLL 2000 data set) than the method of Polak-Ribière.

Algorithm 4 Conjugate Gradient

{Compute residual in θ0}
d0 = r0 = −∇θℓ(θ0)
while Convergence criterion is not met, iterations i do
{Perform line search and find τi that minimizes} ℓ(θi + τidi)
θi+1 = θi + τidi

ri+1 = −∇θℓ(θi+1)
Compute bi+1 (Fletcher-Reeves (eq. 3.16) or Polak-Ribière (eq. 3.17))
New search direction di+1 = ri+1 + bi+1di

end while

3.3.2 BFGS and L-BFGS

We have already presented the Newton-Raphson method and its application to the logistic
regression in Section 2.2.1.

The Newton method demands to recompute the Hessian matrix and its inverse at
each iteration. It is expensive to store the Hessian matrix, especially for high dimensional
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applications. W. Davidon proposed to approximate the Hessian by successive gradient
values. In other words, Quasi-Newton methods are based on the stored information (based
on previous iterations) about the functions curvature.

The Quasi-Newton approaches decompose the Hessian matrix in such a way that it
is not recomputed completely but only updated. Let Hi = ∇2

θℓ(θi), then the matrix is
decomposed as

Hi+1 = Hi +Hu
i , (3.18)

where Hu
i is the matrix update, and Hi is the matrix at the iteration i.

Fixing two points θi and θi+1, one can define

gi = ∇θℓ(θi), gi+1 = ∇θℓ(θi+1),

pi = θi+1 − θi, qi = gi+1 − gi.

Using the two-point difference formula of approximation

gi+1 − gi ≈ H(θi)pi, (3.19)

which can be rewritten as
qi = Hpi, (3.20)

from which one gets a condition that is called the Quasi-Newton condition:

H−1qj = pj , 0 ≤ j ≤ i. (3.21)

However, it is rather the inverse of the Hessian that is used in Newton second-order
methods. The same decomposition as in (3.18) can be performed with the Hessian inverse
matrix as well. Let B = H−1, then

Bi+1 = Bi +Bu
i . (3.22)

There does not exist a unique formula to compute the update matrix, but its general form
is defined as

Bu
i = auuT + bvvT, (3.23)

where a, b are scalars, v, u are vectors.

There are two common formulas to compute the update matrix, Davidon-Fletcher-
Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS), that are based on the
Quasi-Newton condition:

Bi+1qj = pj , pj = Biqj +Bu
i qj , 0 ≤ j ≤ i.

Davidon-Fletcher-Powell (DFP) method

According to the Quasi-Newton conditions, one can write

pj = Biqj + auuTqj + bvvTqj . (3.24)

Let us set u = pi, v = Biqi, au
Tqi = 1 and bvTqi = −1. Hence, the Davidon-Fletcher-

Powell equation has the form

Bi+1 = Bi +
pip

T
i

pT
i qi
− Biqiq

T
i Bi

qTi Biqi
. (3.25)
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However, most implementations of CRFs, e.g. CRF++ (Kudo, 2005), Mallet (McCal-
lum, 2002) use the L-BFGS optimization method, introduced below, since it scales well to
the large dimensional data.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and L-BFGS

Equations qj = Hi+1pj and Bi+1qj = pj have similar forms and the pairs qj/pj , as well
as H/B, are interchangeable. The Broyden-Fletcher-Goldfarb-Shanno method defines the
Hessian approximation as

Hi+1 = Hi +
qiq

T
i

qT
i pi

− Hipip
T
i Hi

pT
i Hipi

. (3.26)

Taking the inverse of the Hessian, we have

Bi+1 = Bi +
1 + qTi Biqi

qTi pi

pip
T
i

pT
i qi
− piq

T
i Bi +Biqip

T
i

qTi pi

. (3.27)

The limited BFGS (L-BFGS) method was introduced by Nocedal (1980). The L-BFGS
method is very close to the the BFGS, except for that only the M last corrections of the
inverse Hessian (the differences of the variables and the differences of the gradient values)
are stored in the memory. The complexity of BFGS is O(d2), at the same time the L-BFGS
has complexity O(d×M), where d is the dimensionality of the problem.

The Quasi-Newton optimization procedure is presented as Algorithm 5.

Algorithm 5 Quasi-Newton Algorithm

Input θ0, B0

while stopping criterion is not met, iteration i do
Si = −Bigi

Perform line search to estimate τ that minimizes ℓ(θi + τSi)
θi+1 = θi + τSi

Compute Bu
i+1 (DFP eq. (3.25) or BFGS eq. (3.27))

Bi+1 = Bi +Bu
i+1

end while

3.3.3 Stochastic Gradient Descent

Efficient processing of large data sets is one of the major challenges of machine learning
nowadays. The stochastic gradient method (Spall, 2003, Bottou, 2004) takes one training
instance per iteration, instead of considering all available points. So, if, for the batch
gradient descent, the update takes a gradient (in case of a first-order method), or a gradient
and a second derivative (in case of a second-order method), where the gradient is cumulated
on all data

∑N
j=1∇θℓj(θi), where ∇θℓj(θi) is the value of the gradient in θ at an iteration

i for an observation j, then the on-line gradient descent (first-order method) takes one
instance j (one small batch) from the training set per iteration i and sets:

θi+1 = θi + τi∇θℓj(θi). (3.28)
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We use the implementation of stochastic gradient descent of Bottou (2007) in our
experiments and discuss its performance in Chapter 7.

The following choice of τi is a typical choice of the learning rate (see, e.g., (Collins
et al., 2008)):

τi =
τ0

1 + i/N
, (3.29)

where τ0 is a constant. However, the speed of convergence can be very poor and conver-
gence is not guaranteed. Vishwanathan et al. (2006) proposes to accelerate the conver-
gence of the stochastic gradient descent by choosing the step size using the second-order
information.

It is necessary to mention the recent exponentiated gradient algorithm (Collins et al.,
2008), that is an on-line approach with a convergence reported to be faster than ones of
L-BGFS and conjugate gradient.

3.4 Applications and generalizations of CRFs

Keeping in mind that an exhaustive state-of-the-art description of conditional random
fields includes a number of applications and methods that are far away from our interests
and are as well beyond of scope of the thesis, let us provide here recent ideas that refer to
optimization, complexity reduction, or other original implementation issues on sequential
data applications. Note that we come back to semi-supervised CRFs and sparse CRFs
later, in the following chapters, and we do not discuss extensively these topics here.

3.4.1 Application Domains of CRFs

The number of applications of conditional random fields is very large. We briefly mention
only some of them.

The primary field of applications for CRFs is sequence labeling. Usually, sequences
have internal structure which is hardly detectable. Conditional random fields which can
model arbitrary dependencies, can model the structure.

• Structure of natural texts. The initial application of CRFs, considered by Lafferty
et al. (2001), concerns part-of-speech tagging (on the Penn TreeBank). First order
HMMs, MEMMs, and linear-chain CRFs have been trained. The authors report
that HMMs perform better than the MEMMs. CRFs in their turn outperform the
HMMs. However note that there is not any drastic improvement in performance.
The error rates reported are 5.69%, 6.37%, and 5.55% for HMMs, MEMMs, and
CRFs respectively.

Attempts have been made to use the discriminative model to discover relations
in natural texts (Culotta et al., 2006). CRFs were used to perform named-entity
categorization (Watanabe et al., 2007), named-entity recognition in Wikipedia, to
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introduce gazetteers in discriminative models (Smith and Osborne, 2006). Multiple
variations of parsing with CRFs have been realized (see e.g., (Finkel et al., 2008)).

Conditional random fields have been applied to various languages, e.g. to Japanese
to perform morphological analysis (Kudo et al., 2004), and Chinese, to detect new
words and carry out segmentation (Peng et al., 2004), (Tseng et al., 2005), to Arabic
to perform named-entities recognition (Benajiba and Rosso, 2008), etc.

• Language discourse tasks. Isotonic conditional random fields, introduced in (Mao
and Lebanon, 2007) are used to predict polarity, negative or positive, of the opinions
that are expressed in a text.

A sentiment is a function of words and it takes values in a finite ordered set ( 0, ≤ ).
For sentiment prediction it is important and natural to take the context of words
into account. The CRFs criterion, presented as equation (3.1) is not appropriate
for ordinal relations. The order can be imposed with the help of the following
constraints. LetM1 contain words associated with positive sentiments, andM2 be
associated with negative sentiments. Then imposing the constraints

y ≤ y′ ⇒ θy,x ≤ θy′,x,∀x ∈M1,

y ≤ y′ ⇒ θy,x ≥ θy′,x,∀x ∈M2,

the ordinary CRF criterion can be applied to the local sentiment flow analysis.

Skip-chain CRFs (Sutton and McCallum, 2006) that model distant dependencies
among labels have been applied for ranking utterances by importance of meetings
(Galley, 2006). Every meeting has been analyzed given either its transcription pro-
vided by a human expert, or a result of an automatic speech recognition system.

These two applications, isotonic and skip-chain CRFs can be considered as an at-
tempt to attack language discourse tasks.

• Applications in molecular biology. Conditional random fields are successfully used
in molecular biology for gene prediction (Culotta et al., 2005) and segmentation of
biological sequences (Liu et al., 2005).

• Robotics. The approach is used in robotics, for scan matching (Ramos et al., 2007),
multi-agent reinforcement learning applied to the light control task (Zhang et al.,
2007). Conditional random fields were tested for low-level vision (Tappen et al.,
2007) and brain tumor segmentation (Lee et al., 2005).

• Statistical machine translation includes several but at least two phases: a) word
alignment from bilingual corpus and b) inference to predict, in other words, to
translate, a new text. Recently conditional random fields have been applied for
word alignment for phrase-based statistical machine translation (Blunsom and Cohn,
2006). The results presented outperform the generative system GIZA++ described
by Och and Ney (2003).
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3.4.2 Generalizations and Alternative Estimation Meth-
ods

Among the numerous extensions of conditional random fields we want to mention the
following.

• Bayesian conditional random fields (BCRF) have been described by Qi et al. (2005a),
and applied to diagram structure recognition by Qi et al. (2005b). The training
method of BCRF is opposed to maximum likelihood training. Given the likelihood
of data and the prior p0(θ), the posterior distribution of the parameters

p(θ|y,x) ∝ p0(θ)
1

Z(x)

∏

k,t

exp θkfk(yt−1, yt, xt)

is optimized during training.

• Semi-Markov CRFs, that are inspired by segmentation problems, have been intro-
duced by Sarawagi and Cohen (2004). Let us consider the example reproduced in
Table 3.1. The observation is a sentence, the sequence of labels indicates for each
word whether it is inside or outside an entity. The goal is to predict a segmentation.
A segmentation is a triplet (start position, end position, label), e.g. in the example
(2, 2,O) is decoded as “a phrase that starts at a position 2 and ends at position 2 is
outside any entity”, and (8, 9, I) contains information that “words at the positions 8
and 9 form an entity”.

She went skiing with Claude Frollo in Massif Central.
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
O O O O I I O I I

︸ ︷︷ ︸ ︸ ︷︷ ︸

↓ ↓ ↓ ↓ ↓ ↓ ↓
(1,1,O) (2,2,O) (3,3,O) (4,4,O) (5,6,I) (7,7,O) (8,9,I)

Table 3.1: Example of named-entity segmentation

Formally, a segment st includes a start position bt, an end position et, and a label yt ∈
Y , st = (bt, et, yt). The feature functions in semi-Markov CRFs are segmentation
feature functions

fk(xt, st) = fk(yt−1, yt, xt, bt, et).

Hence, the criterion of the semi-Markov CRFs, often called semi-CRFs is defined as

pθ(s|x) =
1

Z(x)
exp

∑

k,t

θkfk(st−1, st, xt).

The distinction between the original CRFs and Semi-Markov models consists in
that the latter model allows each segment st to last for an arbitrary number of
time units. Transitions within each segment st are not necessarily Markovian. The
approach provides flexibility in structure modeling in comparison to n-order CRFs.
The n-order CRFs have a computational cost that is exponential in n, O(|Y |n).
The semi-Markov CRFs have the complexity that is linear in n. The power of
expressiveness and the computational cost of n-order CRFs and the semi-Markov
CRFs in which all segments have the same length n are the same.
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• The optimization of the sequential CRFs criterion is usually used. However, since it
is not easy to make the correct prediction for a whole sequence, the performance is
often measured pointwise. An alternative for optimization of a sequential function is
training for maximum labelwise accuracy. The pointwise (Altun et al., 2003) or label-
wise approach (Gross et al., 2006) is supposed to optimize pθ(yt|x) instead of pθ(y|x).
The approach is theoretically attractive, since it addresses the risk minimization in a
direct way. Among its significant disadvantages that prevent the proposed criterion
to become as popular as the sequential function, are non-convexity and an increased
time complexity.

In terms of performance, Altun et al. (2003) has reported that the sequential and
pointwise criteria achieve the similar accuracy (experiments on POS tagging using
the Penn TreeBank and CoNLL 2002 data set).

• Structure modeling in n-order CRFs is expensive. Pseudo-likelihood is an approxi-
mation of the likelihood function, where variables are conditioned on their neighbors
(Besag, 1975). In the linear-chain CRFs it is equivalent to the per-state normal-
ization, discussed in Chapter 2 for MEMMs. Piecewise estimation is a heuristic
approach described in (Sutton and McCallum, 2005) and is equivalent to node-
splitting. Piecewise pseudo-likelihood (Sutton and McCallum, 2007) that is a sum
of local conditional probabilities is appealing for models with large cardinalities,
since the piecewise pseudo-likelihood criterion conditions on fewer variables than
the standard conditional random fields.

Let us consider the example of likelihood approximation by piecewise pseudo-likelihood.
Figure 3.2 displays a dependency which can be modeled in CRFs. The complexity of
such a model is proportional to |Y |3 and is not tractable in many applications. The
node-splitting procedure of the graph can result in two cliques which are illustrated
on Figure 3.3 and which lead to a model with squared complexity in the cardinality
of Y .

y′ yy′′

x

Figure 3.2: A clique modeling the dependency (y′′, y′, y, x).

y′y′′

x

yy′

x

Figure 3.3: Example of node-splitting of the clique represented on Figure 3.2.
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We investigate the node-splitting idea in our CRFs experiments in Section 3.5. We
will see that splitting the expensive feature functions (yt, xt−1, xt, xt+1) into combina-
tion of (yt, xt−1), (yt, xt), and (yt, xt+1) does not degrade performance but drastically
decreases the number of parameters.

• Computational Savings Methods. Many attempts have been made to reduce the
complexity of the training and decoding routines. Cohn et al. (2005) proposes to
represent labels as codewords in an error correcting code and to train one binary CRF
for each bit of these codewords. In (Pal et al., 2006), the authors achieve significant
computational savings by using beam-search during the forward-backward algorithm.

• CRFs are applied in cases where the goal is to model some structure. Since the under-
lying structure is not known, introduction of additional latent or observed layers can
provide supplementary information. Dynamic Conditional Random Fields (DCRFs,
(Sutton et al., 2004)) are a generalization of linear-chain conditional random fields.
The DCRFs are motivated by the idea to introduce more complex interactions be-
tween labels, and to provide a possibility to perform training with multiple labels.
Their graphical representation for a case of two types of labels is drafted as Figure 3.4
on the left.

As an example, let us imagine that we want to perform named-entity recognition.
Our corpus contains, e.g., words, POS tags, and named entities. We know that POS
tags are obtained by some tagging method (e.g., by cascading CRFs) and can be
erroneous. We in our experiments (Section 3.5) consider POS tags to be additional
observations. Another approach, namely DCRF, reflects the idea that POS tags are
stochastic rather than observed and are considered to be supplementary labels.

Although the objective function of DCRFs is convex and L-BFGS optimization can
be applied directly, the number of parameters is larger than in our experiments (Sec-
tion 3.5), since there are two (or more) types of labels and the number of parameters
is proportional to the sum of squared cardinalities of each type of labels. Sutton
et al. (2004) propose to use approximations of the likelihood function to perform
optimization of parameters.

y1

y2

x

y

h

x

Figure 3.4: Graphical scheme of dynamic conditional random fields (left) and hidden
conditional random fields (right).

• In Hidden Conditional Random Fields (Quattoni et al., 2007, Sung et al., 2007),
intermediate hidden variables are used to model the underlying structure of the
domain of observations (see graphical representation on the right of Figure 3.4).
The joint distribution over the labels and hidden states given observations takes the
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form

p(y|x; θ) =
∑

h

p(y,h|x; θ) =

∑

h exp f(y,h,x, θ)
∑

y′,h exp f(y′,h,x, θ)
.

The HCRF criterion is non-convex, therefore any optimization method may converge
to a local optimum of the likelihood. HCRFs are useful for applications in which
some intermediate structure is important and can be introduced via latent variables.
In the natural language processing applications we consider in this thesis, it is not
straightforward to design such a hidden layer.

• Annotation of trees is much less studied than annotation of sequences. CRFs have
been generalized for trees, see, for instance, CRFs for XML document transformation
(Jousse et al., 2006a,b), and tree-structured conditional random fields (Cohn and
Blunsom, 2005). The inside-outside algorithm is used to compute the gradient.

Performance and computational efficiency of modified CRFs depend on domain of ap-
plications and on a particular task. Moreover, generalizations and alternative estimation
approaches listed above are motivated by applications. So, semi-Markov CRFs is rele-
vant for applications where labels are assigned to segments; piecewise-pseudo likelihood
approach is used when the training is performed on very large CRFs; and to introduce
hidden layers into CRFs as it is done in HCRFs, the knowledge of the structure of the
hidden variables is required.

Although all CRFs extensions mentioned above deserve to be studied more deeply, the
natural language applications we consider in the thesis do not necessarily argue in favor
of such modifications. Therefore, in the next section, we apply the classical linear-chain
CRFs to three corpora.

3.5 Performance of Conditional Random Fields

The goal of this section is to demonstrate the potential of conditional random fields as
a domain- and language-independent tool on several real world data sets. We also know
that for CRFs which are able to take completely arbitrary dependencies into consideration,
the modelling of dependencies is essential, both for the generalization performance and
for complexity reasons. The regularisation value σ2 (in this section, we discuss the results
of training with the L2 regularization term) is important and influences the performance,
and is chosen by cross-validation.

In the following, features whose configurations are never observed during training are
called negative examples. We will show that negative examples are much more numerous
than the positive, i.e. observed ones, and are important to achieve a good generalization
on a test data set.

There are several implementations of conditional random fields, e.g. CRFSuite (Okazaki,
2007), Sunita Sarawagi’s CRF Package (Sarawagi and Cohen, 2004)1, MALLET (McCal-
lum, 2002). Results reported in this section are obtained with CRF++2 (Kudo, 2005).

1http://crf.sourceforge.net/
2http://crfpp.sourceforge.net/
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Feature functions {fk}Kk=1 take binary values, “+” is used to denote the superposition
of different types of features. As mentioned above, (yt, xt) is a feature of a label y and an
observation x at a position t; the feature is extracted for all configurations, that is, for all
labels and all observed x. If a data set contains more than one type of observations, e.g.,
words and part-of-speech tags and if we intend to extract the same dependencies for each
observation type, our feature set takes the form of (yt, x

1
t )+(yt, x

2
t ), where x1 is associated

with words and x2 with part of speech tags.

3.5.1 Performance of Conditional Random Fields
on Nettalk Corpus

In this section, we present the performance of CRFs on the Nettalk corpus, a word phone-
tization task. The data contain words extracted from an English dictionary and their
phonetic transcriptions. The size of the letter alphabet is 26, and the number of phonemes
is 53. A brief description of the Nettalk corpus is provided in Appendix B. We use nine
parts (each part contains 1, 628 instances) of the Nettalk corpus for training, and one for
testing performance.

The performance is measured in terms of the error rate on the testing set of N obser-
vations and their labels:

1

N

N∑

i=1

✶{ŷi 6= yi},

where ŷi is a predicted label and yi is provided by an expert.

Choice of Features

We carried out a number of experiments on the Nettalk corpus, starting from naive features
such as (yt, xt) that result in a high error rate up to elaborated redundant dependencies
with millions of features and an acceptable performance.

Table 3.2 provides error rates and the number of features involved for different depen-
dency patterns.

It is not surprising that longer and richer dependencies perform better than the simple
ones. E.g., (yt−1, yt, xt) and the combination of (yt−1, yt, xt) and (yt, xt) reach a signifi-
cantly better accuracy than (yt, xt) alone. However, we have observed several less straight-
forward effects. Long patterns of observations such as (yt, xt−2, xt−1, xt, xt+1, xt+2) do not
generalize well to data and are prone to overfitting. Notice, e.g. that the combination
of features which extracts about 17 millions of features overfits more than one with 3
millions of features (the last and the next to last results inTable 3.2). The redundant
short dependencies play a role of smoothing. We notice that the feature (yt, xt) provides
important smoothing.

The experiments demonstrate that longer dependencies can be modeled not only as
indivisible observed patterns as the feature (yt, xt−2, xt−1, xt, xt+1, xt+2). A trial to split
this configuration, which extracts 2 millions features, into (yt, xt−2)+(yt, xt−1)+(yt, xt)+
(yt, xt+1) + (yt, xt+2) with 7, 000 parameters, results in the significant improvement in
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performance (11.65% versus 20.5% on the test set). It is obvious that redundant features
play an important role, and that the contribution of longer features is not possible without
shorter redundant features.

Note that in the configurations with bigram features (yt−1, yt, xt), it is important that
the implementation of CRFs takes care of the case t = 1. The CRF++ tool ignores the
feature (y0, y1, x1) and the error rate with the single feature (yt−1, yt, xt) is 27.2% on the
training data, and 27.8% on the test set. Taking the feature into account as a special case
leads to 14.8% error on the testing set. However such situations of first (or last) positions
in a sequence are not very critical. It is sufficient to add the unigram (yt, xt) features to
reintroduce the missed dependency to the model.

Qualitative Error Analysis

Even with a large number of features, we could not achieve a better performance than
approximately 7%. We tried to analyze the errors in order to understand where they come
from. Qualitative analysis of errors made on the Nettalk data set is shown in Table 3.3
for two choices of features, although the results are rather similar. The most frequent
confusions reflect the phonetic ambiguity. The most frequent error is to mix up long and
short sounds, e.g., [æ] (avid -[æ v ✯ d] (long sound)) is confused with [✕] (creditable - [k r e d
✯ t ✕ b l] (short sound)). Another source of ambiguity are letters that are associated with
several phonemes, e.g., “er” at the end of words can be pronounced differently (confusion
[✕:] (adventurer - [✕ d v e n ◗ ✕ r ✕:]) - [✕] (defender - [d i f e n d ✕])).3

The errors are directly connected with the estimated parameter vectors. Let us consider
(observation, label) pairs that suffer at most from the false predictions. Given a model
and an observation sequence, score(y) is the value of log-likelihood of y given x. We
compare the scores computed using estimated parameters of a correct sequence yoriginal

and a labeled sequence ylabeled. Approximately 65% of words are predicted with errors. In
our experiments, there are 1, 100 words (the whole testing set contains 1, 628 sequences) for
which score(ylabeled)−score(yoriginal) 6= 0, and these words are labeled wrongly. However,
the majority of erroneously labeled sequences have only one or two confusions:

more than 2 confusions =⇒ 355 words,

more than 5 confusions =⇒ 80 words,

more than 8 confusions =⇒ 23 words,

more than 10 confusions =⇒ 11 words.

There are only few words whose predictions are almost completely wrong. Table 3.4
lists the most problematic words (the most problematic in the sense of maximal difference
score(ylabeled) − score(ycorrect) > 8) for structured prediction from the Nettalk corpus
with their correct labels and corresponding decoded labels.

There is not any very clear correspondence between the pattern frequency and its
estimated parameter value. Performing training with a single type of features (yt−1, yt, xt),
we get 54 ∗ 53 ∗ 26 = 74, 412 parameters, but only 1, 976 triplets are really observed in the
training procedure. Therefore, a great number of dependencies are the so-called negative

3See Appendix B for the description of the phoneme set.
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Feature(s) Number of features Train Test
extracted with CRF++

(yt, xt)* 1, 378 38.7% 38.7%

(yt−1, yt, xt)* 74, 412 17.9% 18.5%

(yt, xt) + (yt−1, yt, xt)* 75, 790 13.9% 14.8%

(yt, xt−1, xt, xt+1) 252, 408 12.5% 13.9%

(yt, xt−1, xt, xt+1)+ 258, 640 13.8% 13.9%
(yt, xt)

(yt, xt−1, xt, xt+1)+ 331, 674 10.5% 11.4%
(yt−1, yt, xt)

(yt, xt)

(yt, yt−1, xt−1, xt, xt+1) 12, 125, 216 7.6% 9.6%

(yt−1, yt, xt−1, xt, xt+1)+ 12, 976, 149 7.4% 9.3%
(yt, xt)

(yt−1, yt, xt−1, xt, xt+1)+ 13, 049, 183 6.8% 8.5%
(yt−1, yt, xt)

(yt, xt)

(yt, xt−2, xt−1, xt, xt+1, xt+2) 1, 916, 200 3.1% 20.6%

(yt, xt−2, xt−1, xt, xt+1, xt+2)+ 2, 169, 960 5.3% 9.6%
(yt, xt−1, xt, xt+1)+

(yt, xt)

(yt, xt−2) + (yt, xt−1) + (yt, xt)+ 7, 072 10.7% 11.7%
(yt, xt+1) + (yt, xt+2)

(yt, xt−2, xt−1, xt, xt+1, xt+2)+ 17, 318, 756 3.4% 7.8%
(yt, xt−2, xt−1, xt+1, xt+2)+
(yt−1, yt, xt−1, xt, xt+1)+

(yt−1, yt, xt−1, xt+1)

(yt, xt−2, xt−1, xt+1, xt+2)+ 2, 984, 436 4.0% 7.3%
(yt−1, yt, xt−1, xt+1)+
(yt, xt) + (yt−1, yt, xt)

Table 3.2: Different patterns on Nettalk corpus, extimation carried with CRF++ except
for features marked with a star (our Matlab implementation).
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Confusion Confusion counts
ŷt − yt

[æ] - [✕] 104 (max)
[ai] - [✯] 84
[.] - [✕] 81
[e] - [.] 80
[❂] - [✕] 69
[✕] - [.] 64
[z] - [s] 46
[i] - [✯] 45
[✯] - [e] 45
[❂:]- [✕] 44
[a:] - [✕] 43
[✕]- [æ] 43
[✕] - [❂] 43
[e] - [✯] 41
[✯] - [.] 39
[e] - [✕] 39
[✕❱] - [❂] 35
[✕:]- [✕] 35
[✕] - [ei] 35
[æ] - [ei] 32

Confusion Confusion counts
ŷt − yt

[æ] - [✕] 90 (max)
[ai] - [✯] 85
[❂] - [✕] 69
[✯] - [e ] 61
[✕] - [æ] 51
[.] - [✕] 44
[✕] - [❂] 43
[i ] - [✯] 42
[z] - [s] 39
[✕] - [e] 39
[✕] - [.] 39
[❂:] - [✕] 38
[a:] - [✕] 38
[e] - [✯] 35
[e] - [✕] 34
[✕]- [ei] 34
[✕:] - [✕] 33
[æ]- [ei] 32
[.] - [e] 31

[✕❱] - [❂] 30

Table 3.3: The most frequent confusions (IPA) made by conditional random fields on
Nettalk corpus. Left: training carried out with the feature (yt−1, yt, xt). Right: training
carried out with the feature combination (yt−1, yt, xt) + (yt, xt).

examples that appear to be important as well. We tried to understand which features are
the most and least important and whether their frequencies play any role for the parameter
estimation. Considering the most frequent label transitions for each letter and comparing
them to the maximal values of parameters associated with each letter, we notice that for 14
letters the most frequent state transition coincides with the maximal estimated value. The
very negative values of parameters appear as a counterpart to the frequent dependencies
and are configurations, where marginal frequency of a label or an observation is high but
their joint frequency is not, e.g., if a value of xt is frequently observed in the corpus but
never or rare with particular value of yt−1 and yt.

3.5.2 Performance of Conditional Random Fields

on CoNLL Data Sets

CoNLL 2000 and CoNLL 2003 data sets are connected with the analysis of structure
of natural language. As we will see from the results, CRFs can achieve a reasonable
performance based on a rather simple choice of features and without making any use of
linguistic sources. The CoNLL 2000 challenge is devoted to the prediction of groups of
words that are syntactically correlated. The goal of the CoNLL 2003 challenge is to predict
named entities. Brief descriptions of the corpora are given in the Appendix C.
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x ycorrect ycorr. ylabeled ylab.

score score
ofttimes [❂ f t t ai m z] 63.29 [❂ f t ✯ m e s] 71.76
curvature [k ✕: v ✕ ◗ ❱✕] 71.54 [k ✕: v ei t ✕:] 80.14

meteorological [m i: t i ✕ r ✕ l ❂ d❛ ✯ k ❱ l] 117.27 [m e t ✕ r ❂ l ❂ d❛ ✯ k ❱ l] 125.30
beautify [b y❱ t ✯ f ai] 61.47 [b i: y❱ t ✯ f ai] 69.82
cabaret [k æ b ✕ r ei] 52.45 [k ✕ b a: e t] 63.72

exhortation [e k s ❂: t ei ▼ ✕ n] 81.69 [✯ gz ✕ t ei ▼ ✕ n] 96.65
rarely [r ✘✕ l i] 28.47 [r a: ✕ l ✯] 58.68

boatswain [b ✕❱ s ✕ n] 71.53 [b ✕❱ t s w ei n] 84.76
glowworm [g l ✕ ❱ w ✕: m] 66.50 [g l a u w ✕: m] 76.38
chemise [▼ e m i: z] 58.76 [◗ e m ✯ s] 67.52

anywhere [e n i w ✘✕] 63.21 [✕ n i w ✕] 71.27
cyclist [s ai k l ✯ s t] 60.26 [s ✯k l ✯ s t] 68.37

magazine [m æ g ✕ z i: n] 63.64 [m æ g ei z ✯ n ] 74.37
elaboration [✯ l æ b ✕ r ei ▼✕ n] 90.11 [✯ l ✕ b ❂ r ei ▼✕ n] 99.38
austerity [❂ s t e r ✯ t i] 73.31 [✕ s t ✕ r ✯ t ✯] 82.56

rye [r ai] 16.32 [r i] 32.54
acre [ei k ✕] 26.13 [æ k r ✯] 34.78

fiance [f i a n s ei] 37.97 [f ✯ a n s] 55.12
aforesaid [✕ f ❂: s e d] 66.38 [✕ f ❂ e s ei d] 77.38
regime [r ei d❛ i m] 39.35 [r ✯ d❛ i m] 58.11
because [b i k ❂ z] 54.24 [b e k ✕ s] 63.63

Table 3.4: Words with their correct and predicted labels for that score(ylabeled) -
score(ycorrect) > 8.

Both CoNLL00 and CoNLL03 corpora are multiobservational sets. We let x1 be as-
sociated with words, x2 – with part of speech tags, and x3 – with syntactic chunks. It is
necessary to say that, as any kind of data, the CoNLL 2000 and CoNLL 2003 sets have
some peculiarities, but they have some common aspects. Note, e.g., that in Table 3.8
the combination of unigram features (yt, x

1
t ) + (yt, x

2
t ) + (yt, x

3
t ) performs better than the

corresponding combination of bigram features (yt−1, yt, x
1
t ) + (yt−1, yt, x

2
t ) + (yt−1, yt, x

3
t ).

Therefore, it happens that the simple dependencies generalize much better to the test
data than more elaborated features. Table 3.5 demonstrates another aspect of the CoNLL
data: different informational intensity of different types of observations. In other words,
it may happen, as it happens for CoNLL 2000, that performance on part-of-speech tags
only is better than on words only.

The performances of the CoNLL challenges are usually evaluated using precision, recall,
and F-measure rather than accuracy (Davis and Goadrich, 2006). To understand the
measures, let us consider a binary problem, with 2 possible labels {−1,+1}. As a result
of a classification, one gets a confusion matrix (Table 3.6) that contains the numbers of
true/false classified data with respect to the given classes {−1,+1}.

True label +1 True label −1

Classified as +1 True Positive False Positive
Classified as −1 False Negative True Negative

Table 3.6: Classification confusion matrix
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Feature CoNLL 2000 CoNLL 2003
8,936 training sequences 14,987 training sequences
Train error Test error Train error Test A Test B

error error
(yt, xt = word) 16.2 24.66 1.7 10.3 14.6

(CoNLL00 – 420, 684 feat.)
(CoNLL03 – 188, 992 feat.)

(yt, xt = POS) 22.6 22.7 14.1 13.5 15.2
(CoNLL00 – 968 feat.)
(CoNLL03 – 368 feat.)

(yt, xt = SCT ) N/A N/A 16.6 16.7 17.9
(CoNLL03 – 136 feat.)

Table 3.5: Performance of naive features

Feature Train Error Test Error

(yt−1, yt, x
1
t , x

2
t ) 9.0 17.2

(yt, x
1
t ) + (yt, x

2
t ) 15.2 17.7

(yt−1, yt) + (yt, x
1
t )+ 4.9 5.9

(yt, x
2
t )

(yt−1, yt, x
1
t )+ 4.9 6.7

(yt−1, yt, x
2
t )

(yt, x
1
t ) + (yt, x

2
t ) 3.0 5.6

(yt−1, yt, x
1
t ) + (yt−1, yt, x

2
t )

Table 3.7: Performance on CoNLL 2000, CRF++ (σ2 = 1)

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, F =

2 Precision Recall

Recall + Precision
, (3.30)

where TP are true positives, FN – false negatives, and FP – false positives.

Performance on CoNLL 2000

For the CoNLL 2000 task (text chunking, problem described in Appendix C), 211, 727
observation/label pairs are used for training, and 47, 377 pairs for testing. The base-
line4 proposed by the challenge is obtained by predicting the chunk tag based on its
joint frequency with a corresponding part-of-speech tag. The baseline result is the fol-
lowing: precision – 72.58%, recall – 82.14%, F – 77.07. The best result reported on
the data set is by Zhang et al. (2001): precision – 94.29%, recall – 94.01%, F – 94.13.
The results of the conditional random fields experiments with the feature combination
(yt, x

1
t ) + (yt−1, yt, x

1
t ) + (yt, x

2
t ) + (yt−1, yt, x

2
t ) reaches accuracy of 93.24%, precision of

89.65%, recall – 89.26%, and F-measure – 89.46. The number of parameters is 9, 266, 269.

Table 3.7 displays the performance for different models. We notice that it is preferable
both computationally and in terms of generalization to the test set to split the dependen-
cies. The combination of unigram features with a simple bigram bias term (yt−1, yt) +
(yt, x

1
t )+(yt, x

2
t ) has less parameters and performs better than (yt−1, yt, x

1
t )+(yt−1, yt, x

2
t ).

4http://www.cnts.ua.ac.be/conll2000/chunking/
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Feature Train Error Test Error
Test A Test B

(yt−1, yt, x
1
t , x

2
t , x

3
t ) 1.4 8.2 12.9

(yt, x
1
t ) + (yt, x

2
t ) + (yt, x

3
t ) 1.6 3.9 5.8

(yt, x
1
t ) + (yt, x

2
t )+ 0.5 3.6 5.4

(yt, x
3
t ) + (yt−1, yt)

(yt−1, yt, x
1
t ) + (yt−1, yt, x

2
t )+ 1.4 4.8 7.5

(yt−1, yt, x
3
t )+

(yt, x
1
t ) + (yt−1, yt, x

1
t ) 0.1 3.0 5.2

(yt, x
2
t ) + (yt−1, yt, x

2
t )

(yt, x
3
t ) + (yt−1, yt, x

3
t )

Table 3.8: Performance on CoNLL 2003, CRF++ (σ2 = 50)

Performance on CoNLL 2003

The CoNLL 2003 challenge is a named entity recognition task, briefly described in Ap-
pendix C. The baseline5 for CoNLL 2003 is obtained by labelling unambiguous named
entities observed in the training set. The baseline values of performance are as follows:
precision – 71.91%, recall – 50.90%, and F – 59.61± 1.2. The best result of the challenge
on the data set is presented in (Florian et al., 2003): precision – 88.99%, recall – 88.54%,
and F – 88.76± 0.7. The performance of conditional random fields with the feature com-
bination (yt, x

1
t ) + (yt−1, yt, x

1
t ) + (yt, x

2
t ) + (yt−1, yt, x

2
t ) + (yt, x

3
t ) + (yt−1, yt, x

3
t ) is the

following: accuracy – 96.96%, precision – 85.42%, recall – 80.78, and F-measure – 83.04.

A number of linguistic but language independent features are often used (see e.g.,
(Carreras et al., 2002, Carreras and Màrquez, 2003)), among them forms of words, bi-
nary flags with respect to whether a word is capitalized, whether only the first letter is
capitalized. The nature of characters is taken also often into consideration (digits, al-
phanumeric, roman-number, punctuation, single-character patterns, etc.). The so-called
predefined classes of items can provide additional information: whether a current word is
a functional word, whether it is an URL, etc. Prefixes and suffixes (up to 3 − 4 charac-
ters) are often extracted from observed words, as well as flags indicating start/end of a
word/phrase/sentence. An additional feature (used e.g. by Zhang and Johnson (2003)) is
to convert all words either to lower-case, or to upper-case, not to loose the information
that the same word can either start a sentence or be situated on a position t.

Conditional random fields with interdependent numerous features have been applied
by McCallum and Li (2003) to the CoNLL 2003 English data. 8 lexicons entered by
hand, such as days and months, 15 lexicons obtained from web sites (countries, publicly-
traded companies, surnames, stop-words, and universities), and 25 lexicons obtained by
WebListing (including people names, organizations, NGOs, and nationalities) have been
used. The results reported by McCallum and Li (2003) on test B: precision – 84.52%,
recall – 83.55%, F – 84.04.

5http://www.cnts.ua.ac.be/conll2003/ner/
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3.6 Conclusions

In this chapter, we introduced the conditional random field model. Conditional ran-
dom fields and their extensions are among the state-of-the art approaches for structured
prediction tasks. Conditional random fields allow to model arbitrary dependencies. At the
same time, even for the linear-chain conditional random fields the complexity is quadratic
in the number of labels. The problems of feature selection arise from the capability of
CRFs to model arbitrary dependencies. We consider the problem of feature selection in
Chapters 6 and 7.

We tested the CRFs performance on standard data sets. It is important to underline
that conditional random fields are a powerful learning approach. One achieves a baseline
performance even with a modest feature choice, and with a more elaborated feature set
CRFs are close to state-of-the-art performance without inducing knowledge about the
domain of an application.
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Chapter 4

Semi-Supervised Learning of
Discriminative Models
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In most real-world pattern classification problems (e.g., for text, image or audio data),
unannotated data are plentiful and can be collected at almost no cost, whereas labeled
data are comparatively rarer, and more costly to gather. Semi-supervised learning has
drawn attention of the machine learning community, since it is a sensible question to find
ways to exploit the unlabeled data in order to improve the performance of supervised
training procedures.

We consider semi-supervised probabilistic classifiers, in which observations and their
labels are modeled as random variables. Semi-supervised approaches can be applied to
real-world classification tasks which either do or do not take underlying structure into
consideration. In previous chapters we discussed the advantages of the discriminative
models over generative ones. Following the conclusions we made, our goal is to make use
of unlabeled data in discriminative models. As we will see, it is not so straightforward as
for generative models.

We define the problem and consider the framework of semi-supervised learning in
general and in discriminative models in particular. We propose, in Section 4.2 a semi-
supervised estimator that is shown to be asymptotically optimal. Experiments on synthetic
and real world data will be reported in Chapter 5.
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4.1 Brief Overview of Semi-Supervised Learning Methods

In this section, we discuss the attempts that have been made to combine the su-
pervised and unsupervised learning, as well as we provide the formalization of various
semi-supervised learning approaches.

Given X = (x1, . . . , xn) which are n i.i.d. (independent identically distributed) points
(xi ∈ X ), unsupervised learning aims to reveal the structure of data, to find some sim-
ilarities between data points and to split the input into several subsets, usually called
clusters.

Supervised learning is based on the observed i.i.d. pairs (observation, label), (xi, yi),
and the goal is to find a mapping from X to Y . Usually, one supposes that the pairs (xi, yi)
are sampled from a probability distribution on X × Y, as described in Chapter 2. There
are two main families of algorithms for supervised learning: generative and discriminative.

Semi-supervised learning assumes that there are some labeled data, and some unlabeled
data. So, if we have Xl = (x1, . . . , xl), Yl = (y1, . . . , yl), observations with their labels and
Xu = (xl+1, . . . , xl+u), some unlabeled observations, the problem is called semi-supervised
learning. We refer to Du = Xu as the unlabeled data, and to Dl = (Xl, Yl) as the labeled
data. The problem of semi-supervised learning was taken into consideration later than
the supervised and unsupervised learning frameworks, and the first formulation of the
semi-supervised problem as it is now accepted is made by Merz et al. (1992).

The reason why the semi-supervised approach became topical is that labeled data are
expensive and limited. Whereas unlabeled data are cheap and plentiful. The supervised
algorithms achieve a satisfactory performance, but their performance depends directly on
the amount of input data. Could it be possible to improve the performance somehow
with the unlabeled data? Although intuitively it should be so, some negative results are
reported (Cohen et al., 2004), and it is still an open question, when and why unlabeled
data are useful, and when their introduction into a model degrades performance.

There exists several forms of semi-supervised learning. In most cases it is considered
as a supervised learning with additional information. Semi-supervised learning can be
also considered as unsupervised learning guided by constraints whether unlabeled data
points should have or should not have these of those labels. Recently, (Daumé III, 2009)
proposed to introduce a differentiation between semi-supervised and semi-unsupervised
learning. Usually we are in one of two following situations. We either have a lot of
unlabeled instances and we hope to improve the performance by introducing some labeled
points, or on the contrary, we perform the supervised learning and try to make use of
unlabeled data. Semi-unsupervised learning should be based on a lot of unlabeled and
little labeled points, semi-supervised learning should take little unlabeled and a lot of
labeled data. It is suggested that for the case of numerous unlabeled data, i.e. for a
semi-unsupervised learning, it is more natural to use a generative model, and for the case
of little unlabeled data, i.e. for semi-supervised learning, to apply a discriminative model.
In this thesis, we do not follow the terminology proposed by Daumé III (2009), and we
refer to all methods which make use of unlabeled data as the semi-supervised approaches.
However, we focus on the second scenario where there are plenty of unlabeled examples
which are used (hopefully) to improve the performance of supervised classification.
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The semi-supervised setting reflects in some sense the real-world better than the su-
pervised and unsupervised approaches. Some data points are already classified, and for
the rest it is up to us to deduce where observations belong to. Many proposals have
been made in the recent years to devise effective semi-supervised training schemes (see
(Chapelle et al., 2006) for an up-to-date panorama). Zhu (2005b) mentions five semi-
supervised methods which are used more often than others: expectation-maximization
with generative models, self-training, co-training, transductive support vector machines,
and graph-based methods. We consider expectation-maximization applied to generative
models and provide some intuition on graph-based methods in Section 4.1.2. Below we
describe transductive learning, self-training, and co-training which are application inde-
pendent state-of-the art semi-supervised approaches.

Transduction Versus Semi-Supervised Learning

The idea of transductive learning is to transfer the information from labeled instances to
testing points directly. Transductive learning is considered to be a simpler task than the
inductive learning which consists in finding the dependencies, i.e. a function, between
observations and labels. An exciting discussion ((Chapelle et al., 2006), Chapter 25) is
devoted to common, if there are any, aspects of the semi-supervised and transductive
algorithms. The transductive learning can be formulated as a semi-supervised learning
task, since a transductive approach always uses the information of the test data points.
Although the discussion on the similarities between the semi-supervised and transductive
learning invokes more questions, sometimes philosophical, than solutions, one of the con-
clusions is that both a semi-supervised approach and a transductive one use the marginal
probability of observations. The interesting opinion is that in an asymptotic case, when
we have infinitely many unlabeled points, the semi-supervised and the transductive ap-
proaches should perform the same thing: induction that somehow uses knowledge of the
marginal probability of observations. The weighted semi-supervised estimator, proposed
in Section 4.2 is based on similar ideas.

Self-Training

Self-training is mentioned for the first time in (Scudder, 1965). It has many names. The
same learning principle is sometimes called self-learning, self-labeling, decision-directed
learning, and bootstrapping. The idea lies in usage of one’s own predictions. The al-
gorithm starts on labeled data and in each iterative step a part of unlabeled data, the
most confident points (e.g., instances with maximal conditional probabilities of a class
given an observation), is labeled according to a current decision rule. Self-training is a
wrapper method and the learner has to be chosen. As a result, the method depends on a
supervised underlying method. If margin maximization methods are used, then the deci-
sion boundary is pushed away from the unlabeled data; and for a number of optimization
methods the behavior of self-training is not determined (Chapelle et al., 2006). In spite
of its disadvantages, self-training was successfully applied to several real-world problems,
e.g., to the word sense disambiguation problem in natural language processing (Yarowsky,
1995).
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Co-Training

Co-training is another approach which can be classified as a semi-supervised learning
method. It was introduced by Blum and Mitchell (1998) and exploits the training of
several classifiers, each of which is trained on different types of features, in other words,
on different “views” of the objects to be classified. These “views” are independent, given
a classifier. Unlabeled data are also split into “views”. The constraints impose that labels
for all “views” of an observation should be the same. Therefore, each classifier labels
data and simultaneously teaches another classifier. For instance, the possible “views” of
feature split for a document categorization task can be all words of a document on the
one hand and all hyperlinks of the same document on the other hand (Denis et al., 2003).
Co-training is based on two important assumptions. The feature split into “views” has
to be possible, and each “view” has to be sufficient to train a classifier. The notion of
co-training is used for cases with two “views”. If more “views” are invoked, the approach
is called multiview learning. We do not apply neither co-training nor multiview training
to the tasks considered in this thesis, since it is not obvious how to model the “views”,
e.g., in the phonetisation task (Nettalk corpus), previously considered in Section 3.5, it is
hardly possible to design two representations of a letter (or a group of letters).

4.1.1 Four Assumptions Proposed for Semi-Supervised
Learning

Discussions around the utility of unlabeled data have been going on since the problem of
semi-supervised learning has been formalized. Chapelle et al. (2006) recently proposed
four assumptions which state when semi-supervised learning can work.

1. Smoothness assumption. If two points x1, x2 in a high-density region are close to
each other, then so should be the corresponding outputs y1, y2.

2. Cluster assumption. If points are in a same cluster, they are likely to be of the same
class.

Stronger interpretation of the cluster assumption has been formalized by Rigollet
(2007) for the binary case. Let y be a label, y ∈ {0, 1}, η(x) = p(y = 1|x), the con-
ditional probability of a class given an observation, Cj , j = 1, 2, . . . , be a collection
of clusters such that Cj ⊂ X . Then the cluster assumption means that the function
x ∈ X → ✶{η(x) ≥ 1/2} takes a constant value on each of the Cj .

3. Low-density separation. The decision boundary lies in a low-density region.

4. Manifold assumption. The data lie on a low-dimensional manifold.

The assumptions are clear but they rely more on intuition than on theoretic founda-
tions. So, to our knowledge, the only attempt to formalize the semi-supervised assumptions
was done by Rigollet (2007) and concerns the cluster assumption. Although the types of
algorithms listed below can implement some assumptions mentioned above, there is not
any direct correspondence between the assumptions and methods.
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A semi-supervised approach does not necessarily implement all these assumptions.
Our semi-supervised criterion proposed in Section 4.2.1 was not initially based on any
assumption. As we will see, an interesting observation about the proposed method is
that it is most efficient when the Bayes error is very small which correlates well with the
intuition underlying most semi-supervised approaches that unlabeled data is most useful
if one can assume that the classes are “well-separated”. The notion of “well-separated”
classes is common to the smoothness, cluster, and low-density separation assumptions.

4.1.2 Categories of Algorithms

The decades of semi-supervised learning have been fruitful. Usually (see (Chapelle et al.,
2006, Zhu, 2005a)), semi-supervised learning algorithms are divided into four categories
listed below. This classification of the semi-supervised approaches provides a brief overview
over existing semi-supervised learning methods, but as we will see, it is not complete.

Investigating the categories described below, we consider the difficulties of integrating
the unlabeled data into discriminative models and the possible solutions of the problem.

Generative Models

Probabilistic generative models fare easily with the use of unlabeled data, usually through
Expectation-Maximization (Dempster et al. (1977)). They are the oldest ones among the
semi-supervised approaches and are explicitly described in (Seeger, 2002). In a generative
framework the log-likelihood of the labeled data is given by

ℓG(θ) =

|Dl|∑

i=1

log

{

p(xi, yi|θ)
}

=

|Dl|∑

i=1

log

{

p(xi|yi, λ)p(yi|π)

}

, (4.1)

where the parameter θ = (λ, π). Unlabeled data can be encoded directly and the joint
log-likelihood of labeled data Dl and unlabeled data Du is as follows:

ℓG(θ) =

|Dl|∑

i=1

log

{

p(yi|π)p(xi|yi, λ)

}

+

|Dl|+|Du|∑

i=|Dl|+1

log
∑

y∈Y

{

p(y|π)p(xi|y, λ)

}

. (4.2)

The class posteriors p(y|x) are influenced by both estimated parameters, λ and π. One
can notice that the labels y associated with the unlabeled data can be seen as latent
variables. The expectation-maximization algorithm used for optimization is an itera-
tive approach that converges to a local maximum of the log-likelihood function. The
expectation-maximization procedure is drafted as Algorithm 6. It has been successfully
applied by, e.g., (Mérialdo, 1993), (Nigam et al., 2000) and (Klein and Manning, 2004),
to text classification problems with both labeled and unlabeled data.

In contrast, in discriminative models, the class posteriors are modeled directly, hence,
one can see that the discriminative model’s likelihood

LD(θ) =

|Dl|∏

i=1

p(yi|xi, θ) (4.3)
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Algorithm 6 Expectation-Maximization Algorithm

while Until convergence criterion is not met do
{Expectation step, for every xi,}
Compute p(y|xi)
if xi is unlabeled then
p(y|xi) ∝ p(y|π)p(xi|y, λ)

else
p(y|xi) = ✶{y = yi}

end if
{Maximize with respect to λ and π}
λ(t+1), π(t+1) = arg maxλ(t),π(t) ℓG(Dl,Du, λ

(t), π(t))
end while

yπ

xλ

θ

yθ(π , λ)

xθ′(π′ , λ′)

Figure 4.1: On the left: generative framework; on the right: discriminative framework.

does not take Du into consideration and therefore Du does not change the posterior belief.

Minka (2005) and Seeger (2002) argue from the Bayesian point of view that in a
discriminative model (on the right of Figure 4.1)

p(y, x, θ, θ′) = p(θ)p(θ′)
N∏

i=1

p(yi|xi, θ)p(xi|θ′). (4.4)

the posterior p(θ|x, y) does not depend on the nature of the marginal p(x|θ′). In contrast,
assuming that θ = θ′ gives a generative model (on the left of Figure 4.1).

Hybrid Models. The major intuition behind hybrid models is that generative and dis-
criminative models can be mutually complementary.

Bouchard and Triggs (2004) and Holub and Perona (2005) consider hybrid models
that are based on a convex combination of a discriminative model likelihood LD(θ) and a
generative model likelihood LG(θ)

α logLD(θ) + (1− α) logLG(θ),

where 0 ≤ α ≤ 1 is a trade-off between two models.

Minka (2005) explores another avenue, further developed in (Lasserre et al., 2006).
As we have already mentioned, the case where θ and θ′ in equation (4.4) are unrelated
corresponds to the purely discriminative model, where unlabeled data are of no help;
taking θ = θ′ results in the traditional generative model; introducing via their Bayesian
prior distribution dependencies between (θ, θ′) allows to build a full range of hybrid models.
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The hybrid models are reported to achieve better accuracy than a generative and a
discriminative models separately. However, the main drawback of hybrid of generative and
discriminative methods is the increased number of parameters to be estimated. Usually,
it is doubled, since there is a set of parameters associated with a generative model, and
another set, associated with a discriminative model. Lasserre et al. (2006) reports that
the optimization in hybrid models can be carried out with the conjugate gradient or
expectation-maximization methods.

Low-Density Separation Methods

They include, first of all, margin maximizing approaches, such as support vector ma-
chines (Chapelle and Zien, 2005), transductive support vector machines, and entropy
minimization approaches. So, transductive support vector machines use p(x), estimated
on unlabeled data, to avoid setting the separator p(y|x) in the high-density regions. The
information regularization approach (Szummer and Jaakkola, 2002) is based on a similar
idea that labels can not vary very much in the regions where p(x) is high.

Criterion of Grandvalet and Bengio. The criterion of Grandvalet and Bengio (2004) is
particularly important for us, since it integrates unlabeled data into a probabilistic dis-
criminative model. The criterion is based on the idea that classes should be well-separated.
This idea was applied to the mixture models integrating unlabeled data (O’Neill, 1978).
Later, Castelli and Cover (1996) concluded that information content of unlabeled data de-
creases as classes overlap. In (Grandvalet and Bengio, 2004), it is Shannon’s conditional
entropy over unlabeled data

H(y|x) = −
|Du|∑

i=1

∑

y∈Y

p(y|xi) log p(y|xi)

that is used as a measure of class overlap. Grandvalet and Bengio (2004) minimize the
following semi-supervised criterion embedding an entropy regularization term (ρBG is used
to tune the strength of the regularizer)

ℓ(θ) =−
|Dl|∑

i=1

log p(yi|xi; θ) + ρBGH(y|x)

=−
|Dl|∑

i=1

log p(yi|xi; θ) + ρBG

|Dl|+|Du|∑

i=|Dl|+1

∑

y∈Y

p(y|xi; θ) log p(y|xi; θ). (4.5)

The criterion of Grandvalet and Bengio is significant, since it makes an attempt to in-
troduce unlabeled data into discriminative models. However, the entropy term yields a
non-convex criterion, hence one expects local minima.

Graph-Based Methods

The cluster assumption is also used in graph-based methods, which exploit the intuition
that unlabeled data points should receive the same label as their labeled neighbors: in
(Zhu and Ghahramani, 2002), a neighborhood graph is used to iteratively propagate labels
from labeled to unlabeled data points until convergence.
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Graph-based methods are an active area of semi-supervised learning. Most of them are
based on the graph Laplacian, which is matrix representation of a graph. Let g = (V,E)
be a graph, and w(e) - the weight of an edge e, that is a measure of similarity between
nodes. If an edge is missing, two nodes are considered to be independent. A weighted
adjacency matrix, which describes the graph, is defined as:

Wij =

{

w(e), e = (i, j) ∈ E,
0, e = (i, j) /∈ E.

(4.6)

An example of a graph-based approach are transductive algorithms already discussed in
Section 4.1. They use the smoothness assumption to label the test points.

Change of Representation

Many approaches use unlabeled data to induce new representation or new features. These
methods are based mainly on the two following steps (e.g., approaches described in (Sha
and Saul, 2005) and (Zhu et al., 2005)):

1. An unsupervised step on all data (labels are ignored), that may lead to construction
of a new metric or kernel to perform a projection to a low-dimensional space.

2. Ignore the unlabeled data and perform a supervised learning, using the new repre-
sentation.

The list of considered semi-supervised approaches is not complete, and the algorithms
incorporate mostly information about unlabeled observations X. Additional information
regarding labels Y can be introduced as well. It can be even the case that both marginal
probability distributions, p(x) and p(y) are provided. However, it is not obvious how to
integrate this knowledge into a model. The cases where both distributions are known are
discussed below.

Knowledge of Class Proportions

It was suggested that not only marginal probability of observations can be important. The
class proportion knowledge can be used as constraints as well (Joachims, 1999). In some
specific applications, some prior knowledge on the distribution of the labels Y may be
available, e.g, one can make an assumption that in a natural text about 50% of capitalized
lexical items are named entities. Recently, Mann and McCallum (2007b) introduced class
proportions into a regularizer, and the criterion under consideration takes the form:

min
θ
−

|Dl|∑

i=1

log ℓθ(yi|xi) + ρKL(p̂||p̂θ), (4.7)

where p̂ is a distribution of class proportions provided by a human expert, p̂θ is a distri-
bution of class proportions associated with the model parameterized by θ, computed on
unlabeled data

1

|Du|

|Dl|+|Du|∑

i=|Dl|+1

pθ(Yi = y)
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and KL is the Kullback-Leibler divergence. According to Mann and McCallum (2007b),
among the advantages of criteria embedding the class proportions marginals are simplicity,
scalability, and robustness.

The previous ideas are connected to estimation under marginal constraints, which
have been addressed in the 1960-s, e.g. by Ireland and Kullback (1968) for the case of the
contingency tables.

Ireland and Kullback (1968) describe one of possible ways to estimate the joint prob-
ability pij when the marginals pi· and p·j are known, with

pi· =
∑

j

pij p·j =
∑

i

pij .

The criterion to be optimized is the Kullback-Leibler divergence between the model prob-
abilities and the empirical distribution arising from the data:

∑

i,j

pij log
pij

Nij
, (4.8)

where Nij are entries in cells of the contingency table.

Algorithm 7 summarizes the iterative procedure proposed by Ireland and Kullback
(1968) to optimize the proposed criterion. The parameters ai and bj are unknown and
are estimated, and N =

∑

i,j Nij . Although the approach is considered for a case of a
two-dimensional table, it can be generalized for tables of higher dimensions.

Algorithm 7 Algorithm of C.T. Ireland and S. Kullback

INPUT: pi·, p·j , N , Nij

OUTPUT: pij , ai, bj (values ai and bj themselves are not of primary importance)
bj = 1
ai = pi·N/Ni·, pij = aibjNij/N
while some stopping criterion/a is/are not met do
bj = p·jN/(

∑

i aiNij), pij = aibjNij/N
ai = pi·N/(

∑

j bjNij), pij = aibjNij/N
end while

4.1.3 Semi-Supervised CRFs

Semi-supervised learning has also been applied to structured output prediction tasks.
Altun et al. (2005) and Brefeld and Scheffer (2006) describe a maximum margin semi-
supervised learning approaches for structured output prediction; Jiao et al. (2006), Mann
and McCallum (2008), and Mann and McCallum (2007a) discuss semi-supervised learning
for conditional random fields.

Jiao et al. (2006) applied the minimum entropy regularization approach of Grandvalet
and Bengio, already mentioned as equation (4.5), for conditional random fields:

−
|Dl|∑

i=1

log pθ(y
(i)|x(i)) +

||θ||2
2σ2

− ρBG

|Dl|+|Du|∑

i=|Dl|+1

∑

y

pθ(y|x(i)) log pθ(y|x(i)). (4.9)
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The direct computation of the gradient of the entropy term requires O(T 2|Y |3) opera-
tions in comparison to O(T |Y |2) of a standard forward-backward procedure. Mann and
McCallum (2007a) proposed an efficient way (complexity of a standard forward-backward
algorithm) to compute the gradient of the criterion presented in (4.9).

A hybrid semi-supervised model is proposed in (Suzuki et al., 2007). The model com-
bines discriminative and generative models, the parameters Γ = {{γi}Ii=1, {γj}I+J

j=I+1} are
associated with I generative and J discriminative models. Unlabeled data are introduced
into the generative models, as we discussed above in Section 4.1.2. The following criterion

p(y|x,Λ,Θ,Γ) ∝
∏

i

pD
i (y|x, λi)

γi

∏

j

pG
j (x,y, θj)

γj (4.10)

contains three sets of parameters to be estimated, Γ, Λ, and Θ. The values of Λ are
estimated on labeled data. An iterative optimization procedure run until convergence
is used to adjust Γ (parameters of hybrid models) and parameters Θ associated with
discriminative components.

Suzuki and Isozaki (2008) introduce a semi-supervised approach that is simpler than
the one proposed in (Suzuki et al., 2007), since there are only two parameter vectors to
be estimated. The parameter vector Λ is estimated on labeled data using a discriminative
model, and Θ on unlabeled data, using a generative approach.

Results reported on CoNLL 2003 and CoNLL 2000 data sets achieve state-of-the art
performance. (See Chapter 3 for the state-of-the art and baselines values of performance.)
The following results are provided as F-score. On CoNLL 2003 corpus, the semi-supervised
CRF and the hybrid models reach respectively 84.4 and 87.2. On the CoNLL 2000 data
set, the semi-supervised CRF achieves 93.87, and the hybrid model 94.3.

Daumé III (2009) called the approach discussed in (Suzuki et al., 2007) a great step
forward in hybrid models, since it combines models that take underlying structure into
account, namely hidden Markov models and conditional random fields. The approach of
Suzuki and Isozaki (2008) has been recently applied to parsing problems by Suzuki et al.
(2009).

One of the recent works on semi-supervised learning applied to natural language pro-
cessing is a trial to add incomplete annotations (Tsuboi et al., 2008). Ambiguous annota-
tions are considered as candidate labels, and parameters are estimated by marginalizing
out the unknown labels. The method is a particular case of hidden conditional random
fields, introduced in (Quattoni et al., 2004) and mentioned in Chapter 3.

The idea to introduce the knowledge of labels proportions, the method called “expec-
tation regularization”, proposed in (Mann and McCallum, 2007b) for maximum entropy
models, has been generalized in (Mann and McCallum, 2008) for structured output pre-
diction, using linear-chain CRFs. The approach was called generalized expectation. It was
supposed that not only fully labeled instances can be used but labeled features as well.
The proposed criterion

−
N∑

i=1

log pθ(y
(i)|x(i)) +

‖θ‖2
2σ2

+ ρKL(p̂||p̃θ)

uses the values of p̂ provided by an expert.
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The K-similar conditional random fields (Chen et al., 2008) method relies on an as-
sumption that a word can be labeled using knowledge of labels of similar words. Similarity
can be measured using standard coefficients: inner product, cosine coefficient, Dice coef-
ficient, and Jaccard coefficient. The unlabeled data are used to compute the similarity
between words. The criterion

pθ(y|x) =
1

Zθ(x)
exp

{
∑

x′∈S(x)

(wθ)TF (y,x′)

}

(4.11)

where S(x) is a set of k-similar words of x and w are corresponding similarity weights,
incorporates the similarity features in the linear-chain CRFs.

Although all described above semi-supervised methods for sequential labeling are re-
ported to be efficient, they are either application dependent (such as K-similar CRFs and
generalized expectation), or violate the convexity (as the minimum entropy regularization
approach), or suffer from an increased complexity (such as the hybrid semi-supervised
method of Suzuki et al.).

In the following, we propose a semi-supervised estimator, that is based on the in-
troduction of the marginal probability of observations p(x) into a discriminative model.
The approach is application independent, the criterion is convex and therefore the first-
and second-order numerical optimization methods can be applied directly. Using p(x) as
weights does not change the model’s complexity.

4.2 Marginal Probability in Discriminative Models

As we have seen, it is easy to introduce unlabeled data into generative models. It is
however an extensively documented fact that discriminative models perform better than
generative models for classification tasks (Ng and Jordan, 2002, Liang and Jordan, 2008).
Integrating unlabeled data into discriminative models is a much more challenging issue.
Put in probabilistic terms, when learning to predict an output y from an observation x,
a discriminative model attempts to fit p(y|x; θ), where θ denotes the parameter. The role
to be played by any available prior knowledge about the marginal probability p(x) in this
context is not obvious.

In general, as we discussed in previous section, the most common approach is to make
the unknown parameter vector θ depend on the unlabeled data, either directly or indirectly.
One way to achieve this goal is to use the unlabeled data to enforce constraints on the
shape of p(y|x): the cluster assumption, for instance, stipulates that the decision boundary
should be located in low density regions. This approach, as any attempt to distort the
supervised training criterion with supplementary terms faces two risks:

• to turn a well-behaved convex optimization problem into a non-convex one, fraught
with local optima, thus making the results highly dependent of a proper initialization;

• to loose the asymptotic consistency property of the usual (conditional maximum
likelihood) estimator.
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As a result, these methods are not guaranteed to improve over a trivial baseline which
would only use the available annotated data. They furthermore require a fine tuning of
the various optimization parameters as in (Mann and McCallum, 2007b).

We try to challenge the view that unlabeled data cannot help purely discriminative
models by exhibiting a semi-supervised estimator of the parameter θ which is asymptot-
ically optimal and, in some situations, preferable to the usual maximum (conditional)
likelihood estimator. To this aim, we make the simplifying assumption that the marginal
p(x) is fully known, which is true in the limit of infinitely many unlabeled data.

4.2.1 Asymptotically Optimal Semi-Supervised Estimation

Let g(y|x; θ) denote the conditional probability density function (pdf) corresponding to a
discriminative probabilistic model parametrized by θ ∈ Θ. The case when η(x) 6= g(y|x; θ⋆)
is referred to as misspecification. In the following, we will always assume that the class
variable Y takes its values in a finite set, Y, with a special interest for the binary case where
Y = {0, 1}. We will further assume that the input (or explanatory) variable X also takes
its values in a finite set X , which may be arbitrary large. Such an assumption is made to
simplify the mathematical framework. At the same time, the assumption coincides with
the settings of real-world applications.

The training procedure has access to a set of n i.i.d. labeled observations, (Xi, Yi)1≤i≤n,
as well as to a potentially unlimited number of unlabeled observations, where the quantity
of unlabeled data is so large that we can consider that the marginal probability of X is
fully known.

Finally, for a function f : R
p 7→ R, we denote by ∇zf(z⋆) the p×1 gradient vector and

by ∇zT∇zf(z⋆) the p×p Hessian matrix in z⋆. When f : R
p 7→ R

r, the notation ∇zTf(z⋆)
will be used to denote the r × p Jacobian matrix in z⋆.

Connection with Stratified Sampling

We first consider the case where the “model” of interest is very basic and simply consists in
estimating the complete joint probability of X and Y , which is denoted by π(x, y). We will
also denote by η(y|x) and q(x), respectively, the conditional and the marginal probabilities
associated with π. Although this case is not directly of interest for statistical learning, it
highlights the role played by the knowledge of the marginal q in semi-supervised learning.

It is well known that the maximum-likelihood estimator of π(x, y) defined by

π̂n(x, y) =
1

n

n∑

i=1

✶{Xi = x, Yi = y} (4.12)

is asymptotically efficient with asymptotic variance υ(x, y) = π(x, y)(1−π(x, y)) (assuming
that 0 < π(x, y) < 1).

Assume now that we are given q(x), the marginal distribution of X, and that 0 <
q(x) < 1. It is easily checked that the maximum-likelihood estimator of π(x, y) subject to
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the marginal constraint that
∑

y∈Y π(x, y) = q(x) is given by

π̂s
n(x, y) =

∑n
i=1 ✶{Xi = x, Yi = y}
∑n

i=1 ✶{Xi = x} q(x), (4.13)

where the superscript s stands for “semi-supervised” and the ratio is recognized as the
maximum-likelihood estimate of the conditional probability η(y|x). As π̂s

n(x, y) is a ratio
of two simple estimators, its asymptotic variance can be computed using the δ-method,
yielding

υs(x, y) = π(x, y)(1− π(x, y)/q(x)).

As 0 < π(x, y) ≤ q(x) < 1, υs(x, y) is less than υ(x, y). Hence, in general the semi-
supervised estimator π̂s

n(x, y) and π̂n(x, y) are not asymptotically equivalent, and π̂s
n(x, y)

is preferable. More precisely, υs(x, y)/υ(x, y) = (1 − π(x, y)/q(x))/(1 − π(x, y)) which
tends to zero as π(x, y) gets closer to q(x). In other words, the performance of π̂s

n(x, y) is
all the more appreciable, compared to that of π̂n(x, y), that y is a frequent label for x. In
this case, knowledge of the marginal q(x) makes it possible to obtain a precise estimate of
π̂s

n(x, y) ≈ q(x) even with a very limited number of observations of x.

The classical statistical use of this result consists in estimating marginal probabilities
p(y) according to

p̂s
n(y) =

∑

x

π̂s
n(x, y).

To determine the asymptotic variance of the stratified estimator p̂s
n(y), it is first easily

shown that π̂s
n(x1, y) and π̂s

n(x2, y) are asymptotically uncorrelated when x1 6= x2 and
then by rewriting υs(x, y) as q(x)η(y|x)(1− η(y|x)) one obtains the classic formula

∑

x

q(x)η(y|x)(1− η(y|x)) = Eq (Vη [✶{Y = y}|X]) ,

which is indeed smaller than Vπ [✶{Y = y}] for the un-stratified estimator

p̂n(y) =
1

n

n∑

i=1

✶{Yi = y}

due to the well-known Rao-Blackwell variance decomposition

Vπ [f(Y )] = Eq (Vη [f(Y )|X]) + Vq (Eη [f(Y )|X]) . (4.14)

Estimation in General Discriminative Models

We now consider the extension of the previous simple observation to the case of a general
discriminative probabilistic model; the main difference being the fact that a given para-
metric model {g(y|x; θ)}θ∈Θ will generally not be able to fit exactly the actual conditional
distribution η(y|x) of the data. As in the fully-specified case above, it is nonetheless possi-
ble to exhibit a semi-supervised estimator which is asymptotically optimal and preferable
to the usual conditional maximum likelihood estimator defined by

θ̂n = arg min
θ∈Θ

1

n

n∑

i=1

ℓ(Yi|Xi; θ) (4.15)
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where ℓ(y|x; θ) = − log g(y|x; θ) denotes the inverse of the conditional log-likelihood func-
tion.

Under the (classical) assumptions of Theorem 4.1 below, 1
n

∑n
i=1 ℓ(Yi|Xi; θ) tends,

uniformly in θ, to Eπ[ℓ(Y |X; θ)] and thus the limiting value of θ̂n is given by

θ⋆ = arg min
θ∈Θ

Eπ[ℓ(Y |X; θ)] (4.16)

The maximum likelihood estimator in (4.15) may also be interpreted as

θ̂n = arg min
θ∈Θ

Eπ̂n
[ℓ(Y |X; θ)]

where

π̂n(x, y) =
1

n

n∑

i=1

✶{Xi = x, Yi = y}

denotes the empirical measure associated with the sample (Xi, Yi)1≤i≤n, which also coin-
cides with the maximum likelihood estimate of π(x, y) defined in (4.12).

If we now assume that the marginal q(x) is available, we know that π̂n(x, y) is domi-
nated (asymptotically) by the estimator π̂s

n(x, y) defined in (4.13), which we here partic-
ularize to

π̂s
n(x, y) =







Pn
i=1 ✶{Xi=x,Yi=y}
Pn

i=1 ✶{Xi=x}
q(x) if

n∑

i=1

✶{Xi = x} > 0

0 otherwise

(4.17)

By analogy with the construction used in the absence of information on q, we now define
the corresponding semi-supervised estimator as θ̂s

n = arg minθ∈Θ Eπ̂s
n
[ℓ(Y |X; θ)], where the

notation Eπ̂s
n
[f(Y, x)] =

∑

x∈X

∑

y∈Y π̂
s
n(x, y)f(x, y) is used somewhat loosely here as it

may happen that, for finite n,
∑

x∈X

∑

y∈Y π̂
s
n(x, y) < 1, although π̂s

n(x, y) sums to one

with probability one, for sufficiently large n. It is easily checked that θ̂s
n may also be

rewritten as

θ̂s
n = arg min

θ∈Θ

n∑

i=1

q(Xi)
∑n

j=1 ✶{Xj = Xi}
ℓ(Yi|Xi; θ) (4.18)

Eq. (4.18) is a weighted version of (4.15) where the weight given to observations that share
the same input x is common and reflects our prior knowledge on the marginal q(x).

Theorem 4.1. Let the joint probability of X and Y factorize as π(x, y) = η(y|x)q(x),
where q is known, and define the following matrices

H(θ⋆) = Eq (Vη [∇θℓ(Y |X; θ⋆)|X]) (4.19)

I(θ⋆) = Eπ

[

∇θℓ(Y |X; θ⋆) {∇θℓ(Y |X; θ⋆)}T
]

(4.20)

J(θ⋆) = Eπ [∇θT∇θℓ(Y |X; θ⋆)] (4.21)

Assume that (1) X and Y are finite sets; (2) π(x, y) > 0 for all (x, y) ∈ X ×Y; (3) for all
(x, y) ∈ X ×Y, ℓ(y|x; θ) is bounded on Θ; (4) θ⋆ is the unique minimizer of Eπ[ℓ(Y |X; θ)]
on Θ; (5) for all (x, y) ∈ X × Y, ℓ(y|x; θ) is twice continuously differentiable on Θ; (6)
the matrices H(θ⋆) and J(θ⋆) are non singular.
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Then, θ̂n and θ̂s
n are consistent and asymptotically normal estimators of θ⋆, which

satisfy

√
n
(

θ̂n − θ⋆

)
L−→ N

(
0, J−1(θ⋆)I(θ⋆)J

−1(θ⋆)
)

(4.22)

√
n
(

θ̂s
n − θ⋆

)
L−→ N

(
0, J−1(θ⋆)H(θ⋆)J

−1(θ⋆)
)

(4.23)

Furthermore, θ̂s
n is asymptotically efficient.

Proof. First note that (4.22) is the well-known result that pertains to the behavior of the
maximum likelihood estimator in misspecified models – see, for instance, (White, 1982)
or Lemma 1 of (Shimodaira, 2000).

Now, the fact that θ̂s
n = arg minθ∈Θ Eπ̂s

n
[ℓ(Y |X; θ)] implicitly defines the semi-supervised

estimator θ̂s
n as a function of the maximum-likelihood estimator of the conditional proba-

bilities

η̂n(y|x) =

∑n
i=1 ✶{Xi = x, Yi = y}
∑n

i=1 ✶{Xi = x}

In our setting, the conditional probability η may be represented by a finite dimensional
vector block defined by η = (η(x1), . . . ,η(xd))

T, where η(xi) = (η(y1|xi), . . . , η(yk|xi))
T,

{x1, . . . , xd} denote the elements of X , and, {y0, . . . , yk} denote the elements of Y. As usual
in polytomous regression models, we omit one of the possible values of Y (by convention,
y0) due to the constraint that

∑

y∈Y η(y|x) = 1, for all x ∈ X . The estimator η̂n is defined
similarly with η̂n(y|x) substituted for ηn(y|x). η̂n is the maximum likelihood estimator of
η and it is asymptotically efficient with asymptotic covariance matrix given by K−1(η),
the inverse of the Fisher information matrix for η, block-defined by

K−1(η) = diag
(
K−1(x1;η), . . . ,K−1(xd;η)

)

where
K−1(xi; η) = q(xi)

−1
{
diag (η(xi))− η(xi)η

T(xi)
}

(4.24)

To obtain the asymptotic behavior of the semi-supervised estimator θ̂s
n, remark that θ̂s

n

is obtained as a function ψ of η̂n, where ψ is implicitly defined by the optimality equation
s(η, ψ(η)) = 0 where s is the (negative of the) score function defined by

s(η, θ) = ∇θ Eπ [∇θℓ(Y |X; θ)] =
∑

x∈X

q(x)
∑

y∈Y

η(y|x)∇θℓ(y|x; θ) (4.25)

Because θ⋆ = ψ(η) and θ̂s
n = ψ(η̂n), θ̂s

n is an asymptotically efficient estimator of θ⋆

with asymptotic covariance matrix given by ∇ηTψ(η)K−1(η)
{
∇ηTψ(η)

}T
. The Jacobian

matrix ∇ηTψ(η) may be evaluated thanks to the implicit function theorem as

∇ηTψ(η) = {∇θTs(η, θ⋆)}−1∇ηTs(η, θ⋆)

From the definition of the score function in (4.25), it is obvious that ∇θTs(η, θ⋆) = J(θ⋆).
In order to calculate ∇ηTs(η, θ⋆), we differentiate the rightmost expression in (4.25) using
the fact that η(y0|x) = 1−∑y 6=y0

η(y|x) to obtain

∂s(η, θ)

∂η(x|y) = q(x) [∇θℓ(y|x; θ)−∇θℓ(y0|x; θ)]
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Thus ∇ηTs(η, θ⋆) is obtained as the concatenation of the d (k× 1) vectors ∇η(xi)Ts(η, θ⋆)
(for i = 1, . . . , d) where

∇η(xi)Ts(η, θ⋆) =

(q(xi) [∇θℓ(y1|xi; θ⋆)−∇θℓ(y0|xi; θ⋆)] , . . . , q(x) [∇θℓ(yk|xi; θ⋆)−∇θℓ(y0|xi; θ⋆)])
T (4.26)

The asymptotic covariance matrix of θ̂s
n is given by

J−1(θ⋆)

[
∑

x∈X

∇η(x)Ts(η, θ⋆)K
−1(x;η)

{

∇η(x)Ts(η, θ⋆)
}T
]

J−1(θ⋆)

Tedious but straightforward calculations, using (4.24), (4.26) and the fact that η(y0|x) =
1−∑y 6=y0

η(y|x) show that

∇η(x)Ts(η, θ⋆)K
−1(x;η)

{

∇η(x)Ts(η, θ⋆)
}T

=
∑

y∈Y

∇θℓ(y|x; θ⋆) {∇θℓ(y|x; θ⋆)}T η(y|x)

−
(
∑

y∈Y

∇θℓ(y|x; θ⋆)η(y|x)
)(

∑

y∈Y

∇θℓ(y|x; θ⋆)η(y|x)
)T

,

which concludes the proof.

Theorem 4.1 asserts that the asymptotic covariance matrix associated with θ̂s
n is op-

timal. Understanding the relations between H(θ⋆) and I(θ⋆) is thus important to assess
the asymptotic performance achievable by any semi-supervised training method which
assumes prior knowledge of q(x). The multivariate generalization of the Rao-Blackwell
variance decomposition (4.14) shows that

I(θ⋆)−H(θ⋆) = Vq (Eη [∇θℓ(Y |X; θ⋆)|X])

As a result, the difference between both estimators will mostly depend on whether

Eη [∇θℓ(Y |X; θ⋆)|X = x] varies significantly or not around 0 as a function of x, given
that, by definition, θ⋆ is such that Eq (Eη [∇θℓ(Y |X; θ⋆)|X]) = 0.

Note that in the particular case where the model is well-specified, in the sense that θ⋆

is such that g(y|x; θ⋆) = η(y|x) for all (x, y) ∈ X ×Y, not only is Eq (Eη [∇θℓ(Y |X; θ⋆)|X])
null but one indeed has the stronger result that for all x ∈ X , Eη [∇θℓ(Y |X; θ⋆)|X = x] = 0.
This is the only case for which H(θ⋆) = I(θ⋆), and hence, where both estimators are
asymptotically equivalent; it is also well known that in this case J(θ⋆) = I(θ⋆) so that
all asymptotic covariance matrices coincide with the usual expression of the inverse of the
Fisher information matrix for θ. Theorem 4.1 gives formal support to the intuition that it
is impossible to improve over the classic maximum likelihood estimator for large n’s when
the model is well-specified, even when the marginal q is known.

The results of Theorem 4.1 are stated in terms of parameter estimation which is usually
not the primary interest for statistical learning tasks. Due to the non-differentiability of
the 0–1 loss, it is not directly possible to derive results pertaining to the error probability
from Theorem 4.1. One may however state the following result in terms of the logarithmic
risk, in which the negated log-likelihood ℓ(y|x; θ) is interpreted as a loss function.
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Corollary 4.2. In addition to the assumptions of Theorem 4.1, assume that ℓ(y|x; θ) has
bounded second derivative on Θ. Then, the logarithmic risk admits the following asymptotic
equivalent:

Eπ⊗n{Eπ[ℓ(Y |X; θ̂n)]} = Eπ[ℓ(Y |X; θ⋆)] +
1

2n
trace

{
I(θ⋆)J

−1(θ⋆)
}

+ o

(
1

n

)

where Eπ⊗n denotes the expectation with respect to the training data (Xi, Yi)1≤i≤n; for the
semi-supervised estimator θ̂s

n, the first order term is given by 1
2n

trace
{
H(θ⋆)J

−1(θ⋆)
}
.

Proof. Corollary 4.2 is based on the classical asymptotic expansion of Eπ[ℓ(Y |X; θ̂n)] −
Eπ[ℓ(Y |X; θ⋆)] as 1

2(θ̂n − θ⋆)
TJ(θ⋆)(θ̂n − θ⋆) + op(

1
n
), see, for instance, (Bach, 2006).

4.2.2 Covariate Shift

Usually machine learning approaches make a drastic simplification, assuming that training
and test samples are drawn from the same distribution. This assumption does not hold in
practice and the cases of differing training and test distributions are being studied, e.g., by
Bickel et al. (2007) and Sugiyama et al. (2007). The reason of different distributions can
be the so-called sample selection bias problem (see e.g. (Cortes et al., 2008)). The sample
selection bias problem implies that training points are drawn from the test distribution
but some of instances are not available during the training procedure.

The simplest model of covariate shift consists in assuming that q0(x) is determined by a
sampling scheme and q1(x) is determined by a population. The complete joint probabilities
of training and testing distributions are π0(x, y) = q0(x)g(y|x) and π1(x, y) = q1(x)g(y|x),
and in the following the expectations E0 and E1 are taken with respect to π0(x, y) and
π1(x, y) respectively. Interestingly the weighting approaches used in this setting, e.g., in
(Shimodaira, 2000) have some similarities with the proposed semi-supervised estimator.

In the absence of covariate shift:

lim
n→∞

q1(xi)

n−1
∑n

j=1 ✶{xj = xi}
−→ 1,

with a covariate shift, we have:

lim
n→∞

q1(xi)

n−1
∑n

j=1 ✶{xj = xi}
−→ q1(xi)

q0(xi)
.

Considering the logistic risk criterion based on test sample marginal

C(θ) = −
∑

x∈X

q1(x)
∑

y∈Y

η(y|x) log ℓ(y|x; θ), (4.27)

Shimodaira (2000) introduced the weighted estimator

π̂w
n =

1

n

n∑

i=1

q1(Xi)

q0(Xi)
✶{Xi = x, Yi = y}

=
1

n

n∑

i=1

w(Xi)✶{Xi = x, Yi = y}
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and proved that w(x) = q1(x)/q0(x) is the optimal weight if n is sufficiently large, i.e.
asymptotically. The key idea lies in the importance sampling identity:

E0[
q1(x)

q0(x)
log ℓ(y|x; θ)] =

∑

x∈X,y∈Y

q0(x)η(y|x)
q1(x)

q0(x)
log ℓ(y|x; θ)

= E1[log ℓ(Y |X; θ)].

The form of the semi-supervised estimator in (4.18) shows that θ̂s
n will be consistent

also in the presence of covariate shift , whereas the logistic regression estimates can only
be consistent in this case if we assume that the model is well-specified (Shimodaira, 2000).
In the presence of covariate shift however, the expressions of the asymptotic covariance
matrices are given by the following proposition.

Proposition 4.3. Assuming that the training distribution π0(x, y) = q0(x)η(y|x) satisfies
the assumptions of Theorem 4.1 and that q1(x)/q0(x) > 0, the semi supervised estimator
used with q(x) = q1(x) converges to θ1,⋆ = arg minθ∈Θ Eπ1 [ℓ(Y |X; θ)] with asymptotic
variance given by J−1

1 (θ1,⋆)H0,1(θ1,⋆)J
−1
1 (θ1,⋆) where

J1(θ1,⋆) = Eπ1 [∇θT∇θℓ(Y |X; θ1,⋆)] (4.28)

H0,1(θ1,⋆) = Eq1

[
q1
q0

(X) Vη (∇θℓ(Y |X; θ1,⋆)|X)

]

(4.29)

By comparison, the weighted estimator θ̂w
n = arg minθ∈Θ

∑n
i=1

q1

q0
(Xi)ℓ(Yi|Xi; θ), which, in

addition, assumes knowledge of q0 has a larger asymptotic variance given by

J−1
1 (θ1,⋆)I0,1(θ1,⋆)J

−1
1 (θ1,⋆),

where

I0,1(θ1,⋆) = Eπ1

[
q1
q0

(X)∇θℓ(Y |X; θ1,⋆) {∇θℓ(Y |X; θ1,⋆)}T
]

(4.30)

Proof. Asymptotic normality of the weighted ML estimator is proved in Lemma 1 of
(Shimodaira, 2000). For the semi-supervised estimator, the only change that is needed to
the proof of Theorem 4.1 above is to replace (4.24) by

K−1(xi; η) = q0(xi)
−1
{
diag (η(xi))− η(xi)η

T(xi)
}

as the training observations are distributed under π0. Then θ1,⋆ is now the minimizer of
Eπ1 [ℓ(Y |X; θ)] and thus s(η, θ) in (4.25) must now be defined as

s(η, θ) =
∑

x∈X

q1(x)
∑

y∈Y

η(y|x)∇θℓ(y|x; θ)

The rest of the proof is unchanged which gives the expressions of J1 and H0,1 in (4.28)
and (4.29), respectively.
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4.3 Application to Binary Logistic Regression

To gain further insights into the results summarized in Theorem 4.1 and Proposi-
tion 4.3, we consider the example of the logistic regression model with binary labels Y
and input variables X in R

p; the parameter θ is thus p-dimensional. In this model, the
negative log-likelihood function is given by ℓ(y|x; θ) = −yθTx+ log(1 + eθTx)1. Thus, the
estimation equation which implicitly defines the value of the optimal fit θ⋆ as the value
for which Eπ [∇θℓ(Y |X; θ⋆)] = 0 may be rewritten as

Eq [X (g(1|X; θ⋆)− η(1|X))] = 0 (4.31)

Similar direct calculations yield

H = Eq

[
η(1|X)(1− η(1|X))XXT

]
(4.32)

I(θ⋆) = Eq

[{
η(1|X)(1− η(1|X))

+ (η(1|X)− g(1|X; θ⋆))
2
}
XXT

]
(4.33)

J(θ⋆) = Eq

[
g(1|X; θ⋆){1− g(1|X; θ⋆)}XXT

]
(4.34)

J(θ⋆) is the Fisher information matrix traditionally found in logistic regression. Inter-
estingly, H is recognized as the Fisher information matrix for θ⋆ corresponding to the
fully supervised logistic regression model in the well-specified case (i.e. assuming that
g(y|x; θ⋆) = η(y|x)), although we made no such assumption here. Note that, as a con-
sequence, it does not depend on the fitted model and, in particular, on the parameter
value θ⋆.

For the logistic regression, the difference

I(θ⋆)−H = Eq

[
{η(1|X)− g(1|X; θ⋆)}2XXT

]

is clearly a term that is all the more significant that the fit achievable by the model is
poor. The second important factor that can lead to substantial differences between the
asymptotic performances of θ̂n and θ̂s

n is revealed by the following observation: for a given
distribution π, the largest (in a matrix sense) achievable value for I(θ⋆) is given by

I(θ⋆) = Eq

[
max{η(1|X), 1− η(1|X)}XXT

]

whereas H in (4.32) may be rewritten as

H = Eq

[
max{η(1|X), 1− η(1|X)}min{η(1|X), 1− η(1|X)}XXT

]

Hence, the difference between I(θ⋆) and H can only become very significant in cases
where min{η(1|X = x), 1−η(1|X = x)} is small, that is, when the probability of incorrect
decision is small, for some values of x. The overall effect will be all the more significant
that this situation happens for many values of x, or, in other words, that the Bayes error
associated with π is small.

1Or log(1 + e−θTyx) when the labels are coded as {−1, 1} rather than {0, 1}.
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In the presence of the covariate shift, Proposition 4.3 gives the following expressions

I0,1(θ1,⋆) = Eq1

[
q1(X)

q0(X)

(
η(1|X)(1− η(1|X)) + (η(1|X)− g(1|X; θ1,⋆))

2
)
XTX

]

H0,1 = Eq1

[
q1(X)

q0(X)
(η(1|X)(1− η(1|X)))XTX

]

J1(θ1,⋆) = Eq1

[(
g(1|X; θ1,⋆)(1− g(1|X; θ1,⋆))X

TX
)]

Note that the standard (unweighted) logistic regression estimator is not directly compa-
rable to the other estimators in this case as it converge to θ0,⋆ = arg minθ∈Θ Eπ0 [ℓ(Y |X; θ)]
rather than to θ1,⋆. Its asymptotic covariance matrix is defined by J−1

0 (θ0,⋆)I0(θ0,⋆)J
−1
0 (θ0,⋆),

where

I0(θ0,⋆) = Eq0

[(

η(1|X)
(
1− η(1|X)

)
+
(
η(1|X)− g(1|X; θ0,⋆)

)2
)

XTX
]

,

J0(θ0,⋆) = Eq0

[

g(1|X; θ⋆)
(
1− g(1|X; θ0,⋆)

)
XTX

]

.

Of course, if the model is assumed to be well-specified, then θ1,⋆ = θ0,⋆ and all estimators
can now be compared with the unweighted logistic regression being preferable to the
weighted logistic regression and equivalent to the semi-supervised estimator.

In Appendix A we provide the expressions of the asymptotic matrices for the polyto-
mous logistic regression.

4.4 Conclusions

We have considered the problem of semi-supervised learning in general and tried to
address the problem of semi-supervised learning in the discriminative framework by intro-
ducing the marginal p(x) into the model using an asymptotic perspective. We do not use
any prior idea on what type of information is provided by the unlabeled data. The result
of Theorem 4.1 provides both proper theoretical support for the claim that the unlabeled
data does not matter asymptotically when the model is well-specified and a better under-
standing of the cases where the unlabeled data does matter. In particular, it confirms the
intuition that unlabeled data is most useful when the Bayes error is small. In addition to
the asymptotic results, in the next chapter we carry out experiments on an artificial data
set, make an attempt to apply the semi-supervised criterion to the real world data, and
discuss a number of empirical findings pertaining to logistic regression.
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Chapter 5

Semi-Supervised Learning
Experiments

Contents

5.1 A Small Scale Experiment . . . . . . . . . . . . . . . . . . . . . . 69
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5.1.2 Experiments with the Criterion of Bengio-Grandvalet . . . . . . 71

5.1.3 Performance of the Proposed Semi-Supervised Estimator . . . . 71

5.2 Text Classification Experiments . . . . . . . . . . . . . . . . . . . 74

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

In this chapter, we perform experiments testing the newly introduced asymptotically
optimal semi-supervised estimator on a synthetic set (in Section 5.1) and real data set (in
Section 5.2). We compare its performance to one of the standard logistic regression, as
well as discuss our main observations.

5.1 A Small Scale Experiment

We consider here experiments on artificial data, which correspond to the case of binary
logistic regression discussed in previous chapter. We focus on a small-scale problem, where
it is possible to exactly compute error probabilities and risks so as to completely bypass
the empirical evaluation of trained classifiers. This setting makes it possible to obtain an
accurate assessment of the performance, as the only source of Monte Carlo error lies in
the random selection of the training corpus.

We simulate data in such a way that we can perform experiments with both well-
specified and misspecified models. It is well-known that one can simulate data from
well-specified logistic models by resorting to a mixture of multinomial distributions.

We consider the case where each observation consists of a vector of p = 10 positive
counts which sums to d = 3. Hence the logistic regression parameter θ is ten-dimensional
and the set X of possible count vectors contains exactly 220 different vectors. We describe
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the model in details just below.

5.1.1 Multinomial Model and Artificial Data

The probability mass function of the multinomial distribution is defined as:

f(x1, . . . xp; d;β1, . . . , βp) =

{
d!

x1!...xd!β
x1
1 . . . β

xp
p , if

∑p
i=1 xi = d

0, otherwise
(5.1)

where d is the number of trials, p is the number of possible outcomes (each of which has
some probability βi, i = 1, . . . , p),

∑p
i=1 βi = 1; xi is the number of times outcome i has

been seen within d trials.

The intuition behind our simulated data is as follows. We generate an artificial “docu-
ment” data set, where each “document” belongs either to class 0 or to class 1. Each “doc-
ument” contains d = 3 “words”, and the “language” includes p = 10 “words”. According
to the formula of combinations with repetitions, the number of possible “documents” is
(d+p−1)!
(p−1)!d! = 220.

Denote by α1 the prior probability of class 1, and by β0 and β1 the vectors of multi-
nomial parameters. Count vectors X generated from the mixture of multinomials have
marginal probabilities q(x) = α1 mult(x;β1) + (1−α1) mult(x;β0) and conditional proba-
bilities P(Y = 1|X = x) = {1+exp−[(log β1− log β0)

Tx+log α1
1−α1

]}−1, where the log is to
be understood componentwise. In the following, we take α1 = 0.5, i.e., balanced classes, so
as to avoid the bias term, that is, log α1

1−α1
= 0. In order to generate misspecified scenarios,

we simply flipped the labels of a few (to be precise, three in the following experiments)
x’s taken among the most likely ones. This label flipping transformation leaves the Bayes
error unchanged to that of the underlying unperturbed logistic model but the performance
achievable by logistic regression is of course reduced.

Evaluation Parameters

Since we simulate our data, and all the parameters are known, we can easily control the
Bayes error of the problem, the probability of error, and the logistic loss. The Bayes error
is defined as ∑

x∈X

min{η(x), 1− η(x)}q(x). (5.2)

We calculate the probability of error in our binary case as follows:

E(✶{y = 0, ĝθ(x) = 1}+ ✶{y = 1, ĝθ(x) = 0}) =
∑

x∈X

q(x)(✶{y = 0, ĝθ(x) = 1}+ ✶{y = 1, ĝθ(x) = 0}).

The logarithmic loss for a binary problem takes the form
∑

x∈X

q(x){η(x) log ℓ(y = 1|x; θ) + (1− η(x)) log(1− ℓ(y = 0|x; θ))}. (5.3)
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5.1.2 Experiments with the Criterion of
Bengio-Grandvalet

In the Bengio–Grandvalet criterion already presented as equation (4.5) we replace empir-
ical average over unlabeled xis by expectation computed under q. We aim at minimizing
the negative log-likelihood:

n∑

i=1

∑

y∈Y

−ℓ(y|Xi; θ)✶{Yi = y}+ ρBG

∑

x∈X




∑

y∈Y

−ℓ(y|x; θ)L(y|x; θ)



 q(x). (5.4)

We applied the criterion of Bengio-Grandvalet to the artificial data. In our experi-
ments, the optimal value of ρBG that controls the impact of the unlabeled data, has been
chosen by cross validation and equals ρBG = 0.001. If ρBG is large (> 0.01), that is we
let unlabeled data influence the estimation significantly, the performance tends to drop.
The criterion of Bengio-Grandvalet is not convex, therefore there are local minima and
the necessity to choose well the initial point for θ.

Several experiments on the simulated data lead to the following conclusions:

• The Bengio-Grandvalet method is sensitive to the parameter initialization. So, if we
provide it with initial values that are close to θ̂ML, its convergence is faster and the
optimized values of parameters are more appropriate than if we initialize it randomly.

• The value ρBG has to be well chosen, otherwise the generalization performance is
significantly worse than that of logistic regression.

• We noticed that the method has difficulties (stability problems) in the interval of
very small n values (n = 10, 20, 30).

In our experiments, the use of the entropy regularization did not warrant improved
results, even in cases where the Bayes error was particularily low.

5.1.3 Performance of the Proposed Semi-Supervised Es-
timator

In this section, we provide the comparative performance on the synthetic data of the
asymptotically optimal estimator, described in Chapter 4. Figures 5.1 and 5.2 correspond
to a case where the underlying unperturbed logistic model has a Bayes error of 1.7%
and the probability of error associated with the best fitting logistic model is of 9.4%.
Remember that in these figures, the only source of randomness is due to the choice of the
training sample, which is repeated 1000 times independently for each size of the training
sample, from n = 10 to n = 5000 observations.

As logistic regression is very sensitive to the use of regularization for small sample
sizes (here, when n is less than one thousand), both (4.15) and (4.18) were regularized by
adding a L2 penalty term of the form ρn‖θ‖22, where ρn has been calibrated independently
for each value of n. This being said, the optimal regularization parameter was always
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Figure 5.1: Boxplots of the scaled squared parameter estimation error as a function of
the number of observations. Left: for logistic regression, n‖θ̂n − θ⋆‖2; right: for the
semi-supervised estimator, n‖θ̂s

n − θ⋆‖2.
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Figure 5.2: Boxplots of the scaled excess logarithmic risk as a function of the number of
observations. Left: for logistic regression, n(Eπ[ℓ(Y |X; θ̂n)] − Eπ[ℓ(Y |X; θ⋆)]); right: for
the semi-supervised estimator, n(Eπ[ℓ(Y |X; θ̂s

n)]− Eπ[ℓ(Y |X; θ⋆)]).

found to be within a factor 2 of ρn = 1/n for (4.15) and ρn = 1
n

∑

{x:
P1

i=1 ✶{Xi=x}>0} q(x)

for (4.18). The effect of regularization is also negligible for the two rightmost boxplots in
each graph (i.e., when n is greater than 1000). On Figures 5.1 and 5.2, the superimposed
horizontal dashed lines correspond to the theoretical averages computed from Theorem 4.1
and Corollary 4.2, respectively.

Notice that the squared error and the logarithmic risk are scaled by n, since both
values decrease at speed 1/n.

When n is larger than one thousand, Figures 5.1 and 5.2 perfectly correlate with the
theory which predicts some advantage for the semi-supervised estimator as we are consid-
ering a case where the Bayes error is small and the model misspecification is significant.
For large values of n, the semi-supervised estimator not only achieves better average per-
formance but also does so more constantly, with a reduced variability. For smaller values
of n, the picture is more contrasted, particularly when n ranges from 50 to 100 where the
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semi-supervised estimator may perform comparatively worse than the logistic regression.
In this example, in terms of the probability of error, the semi-supervised estimator per-
forms marginally better than logistic regression when n = 10 and n = 5000 (although the
difference is bound to be very small in the latter case) and somewhat worse in between.
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Figure 5.3: Boxplots of the scaled squared parameter estimation error as a function of
the number of observations for the case with the covariate shift. Left: for the logistic
regression, n‖θ̂n − θ⋆‖2; right: for the semi-supervised estimator, n‖θ̂s

n − θ⋆‖2.
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Figure 5.4: Boxplots of the scaled excess logarithmic risk as a function of the num-
ber of observations for the case with a covariate shift. Left: for the logistic re-
gression, n(Eπ[ℓ(Y |X; θ̂n)] − Eπ[ℓ(Y |X; θ⋆)]); right: for the semi-supervised estimator,
n(Eπ[ℓ(Y |X; θ̂s

n)]− Eπ[ℓ(Y |X; θ⋆)]).

Figures 5.3 and 5.4 correspond to the case of a covariate shift. In the experiments,
q0(x) that is the training distribution, is uniform, q0(x) = 1/220, ∀x. The test distribution
q1(x) is the same as described in Section 5.1.1. The dashed horizontal line corresponds to
the theoretical values computed according to Theorem 4.1 and Proposition 4.3.

As expected, the difference between both approaches for large values of n decreases for
scenarios with larger error probabilities. In those scenarios, the semi-supervised estimator
performs worse than logistic regression for smaller values of n and equivalently for large
values of n. A finding of interest is the fact that for well-specified models (i.e., with data
generated from a multinomial mixture model) with low Bayes error, the semi-supervised
approach does perform better than logistic regression, for small values of n. This effect
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Figure 5.5: Boxplots of the probability of error as a function of the number of observations
for a well-specified model. Left: for the logistic regression; right: for the semi-supervised
estimator.

can be significant even when considering the probability of error of the trained classifiers,
as exemplified on Figure 5.5 in a case where the Bayes error is 6.3%. This observation is
promising and deserves further investigation as the analysis of Section 4.2.1 only explains
the behavior observed for large values of n, which in the case of well-specified models
results in the two approaches being equivalent.

5.2 Text Classification Experiments

To evaluate our methodology on a more realistic test bed, we have used a simple binary
classification task, consisting in classifying mails as spam or ham based on their textual
content (SpamAssassin corpus), and the word phonetisation task (Nettalk corpus).

The corpus used is the SpamAssassin corpus (Mason, 2002), which contains approxi-
mately 6,000 documents. The error rate on the test data is approximately 3% using the
standard logistic regression. Adapting our technique to real-world data requires to pro-
vide an estimate for the marginal q(x). The space of X is too large (about 1,500 words in
the corpus dictionary) to estimate q(x) as it is done for the simulated data. It was then
carried out by performing a discrete quantification of the data vectors as follows. We first
use unsupervised clustering techniques to partition the available unlabeled collection of
documents in k clusters. More specifically, we used a mixture of multinomial model as
in (Nigam et al., 2000, Rigouste et al., 2007) with k = 10 components. We then simply
adapt (4.18) by replacing q(Xi) by the empirical frequency of the cluster to which Xi be-
longs, likewise the denominator

∑n
j=1 ✶{Xj = Xi} is replaced by the number of training

documents belonging to the same cluster as Xi. We believe that this methodology is very
general and makes the proposed approach applicable to a large variety of data. In effect,
observations belonging to clusters which are underrepresented in the training corpus have
higher relative weights, while the converse if true for observations belonging to overrep-
resented clusters. Note that, at this stage, no attempts have been made at tuning the
number k of clusters, although the intuition suggests that it would probably be reasonable
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to increase k (slowly) with n.

L50 S50 L300 S300

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

er
ro

r 
ra

te

Figure 5.6: Boxplots of the error rates for, L50: logistic regression with n = 50; S50:
semi-supervised estimator with n = 50; L300 and S300, idem with n = 300.

We tested the method with n = 50 and n = 300 randomly chosen training docu-
ments, the remaining mails serving as the test set; each trial gave rise to 50 Monte Carlo
replications. For each value of n, the best regularization parameter was determined exper-
imentally both for the usual logistic regression and the semi-supervised estimator. Each
document is here represented as a count vector of dimension 1,500. The resulting error
rates are plotted as boxplots on Figure 5.6. Although the difference between both methods
is certainly not very significant in this preliminary experiment, we note that, as in the sim-
ple case of Section 5.1, the semi-supervised estimator provides a more stable performance
when n is small.

5.3 Conclusions

We carried out a number of experiments with the criterion proposed in the previ-
ous chapter. The advantage of the proposed method is that it does not compromise the
simplicity of the maximum likelihood approach because the weighted semi-supervised cri-
terion stays convex. In addition, one could incorporate prior knowledge as used in other
semi-supervised approaches: for instance the “cluster assumption” can be implemented
by modifying (4.17) so as to incorporate a Bayesian prior that connects conditional prob-
abilities for neighboring values of the input vector. In Section 5.2, we suggested a means
by which the method can be extended to larger scales problem, including applications in
which the feature vector is either continuous or has a more complex structure.

On the real data set the performance of the semi-supervised criterion is close to the
performance of the standard logistic regression and the difference is hardly distinguishable.
We explain it as follows. The asymptotic advantage of the semi-supervised approach
can be observed only when considering the scaled excess logarithmic risk or the scaled
squared error. The computations of the excess risk and the squared error involve the
knowledge of the true distribution. In the case of any real data we do not know the
optimal parameter values and thus neither the excess logarithmic risk, nor the squared
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error are available. More generally, the fact that the observed differences are mostly
significant in the asymptotic regime suggests that the approach has a limited potential for
typical semi-supervised settings in machine learning applications.

The extension of the proposed approach to the case of sequence labeling with condi-
tional random fields is still an open issue.

The experiments have illustrated another open problem, that is the theoretical analysis
of the behavior of the proposed criterion when n is small, which cannot be deduced from
the asymptotic analysis presented here.
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L1 Norm Based Model Selection in

Discriminative Models
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Chapter 6

Sparsity and Model Selection in
Discriminative Models
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Conditional random fields, considered in Chapter 3, constitute a popular and effective
approach for supervised structure learning tasks involving the mapping between complex
objects such as strings and trees. An important property of CRFs is their ability to cope
with large and redundant feature sets and to integrate some form of structural dependency
between output labels.

The dependencies in conditional random fields are extracted according to pre-defined
patterns. The number of parameters to be estimated can be very large. Do we need all
of them? Is there any sparsity of the model and, if yes, can we exploit it to speed up the
training and inference procedures?

In this chapter, we illustrate on real world applications in the domain of natural lan-
guage processing that sparsity patterns do exist and we can hope to obtain a model that
is sparse and interpretable in the sense that irrelevant features have zero values. We start
with some simple heuristic methods which result in sparse models but whose performance
is worse than the accuracy of state-of-the-art approaches based on L1 penalization. We
investigate the combination of the L1 and L2 norms known as elastic net.
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6.1 Empirical Study: Sparsity in Conditional Random
Fields

In this section, we illustrate the natural sparsity of the data sets already considered in
Chapter 3. We perform experiments on Nettalk, CoNLL 2000 and CoNLL 2003 data and
therefore motivate the need to perform model selection.

In the following, we use CRFs that involve two types of feature functions, unigram
µy,x and bigram λy′,y,x which we index as follows for the Nettalk corpus:

K∑

k=1

θkfk(yt−1, yt, xt) =
∑

y∈Y,x∈X

µy,x✶{yt = y, xt = x}

+
∑

(y′,y)∈Y 2,x∈X

λy′,y,x✶{yt−1 = y′, yt = y, xt = x}, (6.1)

where X = {letters} and as follows for the CoNLL data sets

K∑

k=1

θkfk(yt−1, yt, xt) =
∑

X∈X

(
∑

y∈Y,x∈X

µy,x✶{yt = y, xt = x}

+
∑

(y′,y)∈Y 2,x∈X

λy′,y,x✶{yt−1 = y′, yt = y, xt = x}
)

, (6.2)

where
X = {words,POS tags}

for the CoNLL 2000 corpus, and

X = {words,POS tags, syntactic chunks}

for CoNLL 2003 set.

6.1.1 How Many Features Can Be Eliminated?

We carry out training of the L2-penalized CRF criterion with the feature set described
above. For each corpus, the regularization parameter is chosen by cross validation. Tables
6.1, 6.2, and 6.3 illustrate the sparsity for CoNLL 2000, CoNLL 2003, and Nettalk data
respectively.

CoNLL Data Sets

For CoNLL 2000 and CoNLL 2003 we take all types of observations into account, that is
words and part of speech tags for CoNLL 2000, and words, their part of speech tags, and
syntactic tags for CoNLL 2003. We know that parameters estimated with the L2 penalty
term are never sparse, however, a large number of values is close to zero. After parameter
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Interval Nb. of active Nb. of active Accuracy Precision Recall F
feat. set to 0 features features %

∅ 9, 266, 269 100 94.43 91.34 90.98 91.16
[−0.25 0.25] 26, 986 0.29 94.42 91.34 91.02 91.18
[−0.5 0.5] 12, 127 0.13 94.35 91.11 90.83 90.97

[−0.75 0.75] 5, 457 0.06 93.82 90.46 89.61 90.03
[−1 1] 2, 079 0.02 93.02 89.14 87.93 88.53

Table 6.1: Empirical study of sparsity patterns (CoNLL 2000 Corpus, English) . Depen-
dencies λy′,y,xj , µy,xj , j ∈ {1, 2}.

estimation, we consequently set to zero a number of parameters whose estimated values
lie in the interval centered at zero.

Tables 6.1 and 6.2 illustrate that for the CoNLL 2000 and CoNLL 2003 data, we
can set 99.99% of feature parameters to zero and still achieve baseline performance (see
Section 3.5.2 for the values of baseline performance), and about 90% of parameters of the
initial full model can be deleted without degrading performance. We noticed empirically
that after training of the L2-penalized criterion the positive feature values correspond
to observed patterns. The never observed features (negative examples) correspond to
negative values.

Nettalk Corpus
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Figure 6.1: L1 norm of the parameters estimated with standard L2-regularized maximum
likelihood for the Nettalk task. Left: |µy,x| for the 53 phonemes y and 26 letters x. Right:
∑

y′ |λy′,y,x| for the 53 phonemes y and 26 letters x.

Figure 6.1 displays the sparsity of the parameter vectors (Nettalk data) obtained with
the L2-regularized maximum likelihood approach. Sparsity is especially striking in the
case of the bigram parameters λy′,y,x which are, by far, the most numerous (532 × 26).
Another observation is that this sparsity pattern is quite correlated to the corresponding
value of |µy,x|: in other words, most sequential dependencies λy′,y,x are only significant
when the associated marginal factor µy,x is. This suggests to take a closer look at the
internal structure of the feature set.
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Interval Number of Number of
Active Feat. Active Feat. in % Test A Test B

Acc. Prec. Recall FB1 Acc. Prec. Recall FB1
∅ 1,611,832 100 96.96 85.42 80.78 83.04 94.69 75.17 71.23 73.15

[ -0.1 0.1] 97,790 6.07 96.95 85.36 80.72 82.97 94.69 75.19 71.28 73.18
[ -0.25 0.25] 62,563 3.88 96.81 84.65 79.94 82.23 94.55 74.84 70.71 72.72
[ -0.5 0.5] 38,520 2.39 96.67 84.03 79.06 81.47 94.45 74.75 70.21 72.41

[ -0.75 0.75] 26,038 1.62 96.5 83.49 78.11 80.71 94.22 74.64 68.70 71.54
[ -1 1] 19,244 1.19 96.18 86.11 75.24 80.31 94.0 78.65 65.67 71.58

Table 6.2: Empirical study of sparsity patterns (CoNLL 2003 Corpus, English). Dependencies λy′,y,xj , µy,xj , j ∈ {1, 2, 3}.
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Interval Number of Number of Error
feat. set to 0 active features active features in %

∅ 75,790 100 13.98%
[−0.25 0.25] 5,446 7.2 14.02%
[−0.5 0.5] 4,005 5.3 14.11%

[−1 1] 2,585 3.4 14.91%
[−2 2] 1,288 1.7 17.08%

≤ 0 1,697 2.2 17.49%

Table 6.3: Empirical study of sparsity patterns (Nettalk). Dependencies λy′,y,x, µy,x.

In the Nettalk experiments, we tried to eliminate all negative features, and estimate
the error rate keeping positive features only (see the last result in the Table 6.3). We
came to the conclusion that never observed configurations, the so-called negative instances
are equally important as observed, the so-called positive examples. The performance
degradation is significant, with an error rate of 17.49%, compared to the initial error rate
of 13.98% when using all features.

6.1.2 Most Influential Features

What kind of dependencies are still active after our naive screening? Since the depen-
dencies µy,x and λy′,y,x are redundant and in some sense hierarchical, one can imagine
two scenarios. The bigram feature λy′,y,x is there only if the corresponding unigram µy,x

feature is active. The second intuition is based on their redundancy. It is not necessary
that both of them survive. If λy′,y,x is active, µy,x is not informative anymore.

Nettalk Corpus

We performed training with two types of features λy′,y,x and µy,x. On Figure 6.2 (Nettalk
data), one can see the dependency of the number of active λy′,y,x features to their corre-
sponding µy,x.

• Figure 6.2 on the left represents the case when parameters from the interval [−0.25
0.25] are set to 0. There are 5, 446 parameters with non zero values. We have 949
unigram and 4, 497 of type bigram features that are not zeroed. Among 4, 497 bigram
features there are 83 (2%) bigram dependencies (marked with the green color) whose
corresponding unigram parameters are set to 0.

• Figure 6.2 on the right shows the case when parameters from the interval [−2 2] are
set to 0. We get 1, 288 not zeroed parameters, among them 161 unigram, and 1, 127
bigram. Notice that the number of bigram dependencies with associated unigram
features set to 0 is 112 (10%) and is not negligible (these features are highlighted
with the green color).
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Figure 6.2: Nettalk. Number of active features (y′, y, x) for every possible (y, x) depen-
dency. Left: features from the interval (−∞,−0.25], [0.25,+∞). Right: features from the
interval (−∞,−2], [2,+∞).
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Figure 6.3: CoNLL 2000. Left: The number of dependencies based on words which are
active with performance being close to the baseline. Right: the number of dependencies
based on POS tags that are active with performance being close to the baseline.

There exists a hierarchical link between redundant features, here, in particular, between
λy′,y,x and µy,x. In other words, we can find parameters µy,x that can be set to zero, i.e.
eliminated from the model with their corresponding λy′,y,x without degrading performance.

CoNLL Data Sets

It is less easy to visualize and analyze parameter values of CoNLL 2000 and CoNLL 2003
corpora, since there are more types of feature functions and therefore many more pa-
rameters than in the Nettalk corpus. Figure 6.3 displays the number of active unigram
parameters for every observation. Figure 6.3 on the left shows how numerous are the uni-
gram features based on words. On the right, we display the same dependency for features
based on part-of-speech tags. The plots contain three curves, each of these corresponds
to an interval from which parameters are zeroed, [-1 1], [-2 2], [-3 3]. The parameter
values are sorted according to the number of features active for observations. We see that
increasing the interval, the model becomes more and more deterministic, e.g., eliminating
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parameters in the interval [-3 3], we get about 500 words for which only one unigram
parameter is not zeroed, and therefore there is the only one possible label (from 23).

Note that setting parameter values from the interval [−1 1] to 0, there are 2, 970 active
features (2, 119 that are based on words, and 851 based on POS tags); setting parameters
from the interval [−2 2] to 0, we get 762 values different from 0 (370 for words, and 392 for
POS tags), for the baseline performance (the interval [−3 3]), we have only 310 parameters
(95 for words, and 215 for POS tags). Note that originally there are many more word/label
features than POS tag/label features. If the goal is to reach a better performance with
the least possible number of parameters, the trend seems to be very clear: POS tags/label
features are more numerous after severe elimination, since these dependencies are more
informative than the ones based on lexical items.

One would expect to attain the high classification accuracy with a much reduced set
of feature functions using an appropriate feature selection approach. It is encouraging to
know that there are a lot of irrelevant dependencies that can be deleted, since it is feasible
to implement a method that would be able to choose the vital features itself. We can also
hope to integrate many more and richer features into an initial model.

6.2 Brief Overview of Feature Selection Techniques

In this section, we briefly consider the approaches and optimization methods to produce
sparse models. We explore algorithms applied to the least squares, logistic regression, and
conditional random fields.

6.2.1 Naive Model Selection Methods for CRFs

The most naive approach for model selection is probably to train a model that is not
sparse, and eliminate some dependencies a posteriori, e.g. features whose values are not
of sufficient magnitude, as we have done in the previous section to motivate the sparsity
of CRF model applied to various natural language processing tasks.

Another simple and not necessarily specific for CRFs heuristic approach used, e.g., in
(Toutanova and Manning, 2000) consists in getting rid of rare features a priori. We will
refer to this method as to “cut-off”, since it cuts off all the dependencies whose frequencies
are smaller than some provided threshold.

Pre-selection of features based on their frequency is not the only possible way. Pre-
selection can be based on mutual information, see, e.g. (Yang and Pedersen, 1997). Mutual
information or information gain between two discrete random variables z and v, ✶{Y =
y} = z, ✶{Y 6= y} = z′ and ✶{X = x} = v, ✶{X 6= x} = v′ is defined as follows and can
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be directly applied to the features µy,x, in other words, to the unigram features:

I(z, v) =
∑

v,z

p(v, z) log
p(v, z)

p(v)p(z)
+
∑

v,z′

p(v, z′) log
p(v, z′)

p(v)p(z′)
+

∑

v′,z

p(v′, z) log
p(v′, z)

p(v′)p(z)
+
∑

v′,z′

p(v′, z′) log
p(v′, z′)

p(v′)p(z′)
. (6.3)

For the bigram features, we choose to compute the mutual information between the vari-
ables ✶{Y = y} = z and ✶{Y ′ = y′, X = x} = v following the idea that we predict y given
y′ and x. In this case the equation (6.3) is applicable for bigram features as well.

As we will see in Section 7.3.3, such naive heuristics do not achieve a reasonable
accuracy on test data, especially in cases where we want to keep very few active features.

6.2.2 Heuristic Approaches Applied to CRFs

To our knowledge, McCallum (2003) made the first attempt to perform model selection
for conditional random fields. The approach was mainly motivated by Della Pietra et al.
(1997) and is based on a greedy algorithm which selects features with respect to their
impact on the log-likelihood function. Related ideas also appear in (Dietterich et al.,
2004).

Cohn (2006) makes another kind of approximation and considers “generalized” feature
functions: rather than making each feature function depend on a specific value of the label
(or on specific values of label pairs), the author introduces functions that only depend on
subsets of (pairs of) labels. This amounts to introducing tying between some parameter
values, a property that can then be used to speed-up the forward-backward procedure
during training. This technique allows to considerably reduce the training time, with vir-
tually no loss in accuracy. The algorithm relies on a decomposition of the clique potential
into two terms, the first has a linear complexity (with respect to the number of labels),
and the other is sparse. This idea was already present in (Siddiqi and Moore, 2005). This
method however requires to a priori specify the tying pattern.

6.2.3 Penalty Terms Including the L1 Norm

Some kind of penalty, e.g. the L2 norm, is essential to estimate a model that general-
izes well to unseen data. Penalizing approaches concern either the dimensionality of the
model, or values of parameters. Examples of approaches penalizing the dimensionality
of the model are e.g., AIC (Akaike Information Criterion) and BIC (Bayesian Informa-
tion Criterion), introduced by Akaike (1973) and Schwartz (1978) respectively. The norm
penalizing techniques on the contrary, impose penalty on the values of parameters. The
L2 norm has been a widely used penalty term for years, as it performs well and does
not violate convexity of a criterion. In the following, we refer to ρ2 as the regularization
parameter associated with the L2 norm, and ρ1 with the L1 penalty term.

An important advantage of the L2 penalization is that the penalized objective function
remains convex and differentiable everywhere, e.g., the least squares criterion penalized
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by the L2 norm

θ̂ridge = arg min
θ

N∑

i=1

(

yi −
p
∑

j=1

xijθj

)2
+ ρ2

p
∑

j=1

θ2
j , (6.4)

which is called ridge regression.

The L1 regularizer for the least squares criterion

θ̂lasso = arg min
θ

N∑

i=1

(

yi −
p
∑

j=1

xijθj

)2
+ ρ1

p
∑

j=1

|θj |, (6.5)

was introduced in (Tibshirani, 1996). The L1 penalization for the least squares criterion is
known as well under another name, lasso (least absolute shrinkage and selection operator).
It produces a sparse vector of parameters which is interpretable and that makes a structure
of the model more clear.

The L2 penalty term pushes the parameter values towards zero, hence less important
features correspond to values that are close to zero but they are never zeroed. The property
of the L1 penalty is to produce a vector of parameters which contains a lot of zeros.
Setting a parameter to zero corresponds to excluding the corresponding dependency from
the model.

The major disadvantage of the L1 regularizer is that although the penalized criterion
is still convex (Boyd and Vandenberghe, 2004), it is not differentiable at zero. Therefore,
numerical gradient-based optimization methods cannot be applied directly. A number of
approaches have been recently proposed to optimize the L1 penalized criterion and various
penalties including the L1 norm. We consider some of optimization methods in Section 6.3.

Elastic Net

Some limitations of the L1-penalized criterion have been empirically observed. Zou and
Hastie (2005) reported that in a case of highly correlated variables the L1-penalized cri-
terion tends to select more or less randomly one variable in a group of correlated parame-
ters. In applications considered in this thesis, the parameters are correlated, some of them
are highly correlated, since the feature functions are even redundant. Tibshirani (1996)
observed that the performance of the L1-penalized least squares is dominated by ridge
regression in such situations. Taking these remarks into account, a new regularization
technique called elastic net has been proposed.

The elastic net penalty (introduced in (Zou and Hastie, 2005), considered in details in
(Friedman et al., 2008)) is a compromise between the L2 norm and the L1 norm penalties.
The use of both types of penalty terms seems preferable in log-linear conditional models,
as it makes it possible to control both the number of non zero coefficients (through ρ1) and
to avoid the numerical problems that might occur in large dimensional parameter settings
if the magnitude of the θks is not sufficiently constrained by the penalty. The elastic net
criterion is defined as

ℓ(D; θ) + Pρ1,ρ2(θ),

where

Pρ1,ρ2(θ) =
ρ2

2
‖θ‖22 + ρ1‖θ‖1 =

p
∑

j=1

(ρ2

2
θ2
j + ρ1|θj |

)

.
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For the case of the least squares criterion, if we set ρ2 = 0, we get the pure lasso, otherwise,
if we set ρ1 = 0, the criterion is the same as the ridge regression.

Note that Zou and Hastie (2005) impose the reparameterisation

ρ1 = γα ρ2 = γ(1− α), (6.6)

where 0 ≤ α ≤ 1 controls the ratio between the L1 and L2 penalty terms. We do not
apply the condition (6.6) to our approach, described in Chapter 7. We fix the value of ρ2

and examine the sparsity impact of the parameter ρ1.

Group and Hierarchical Structure of Data

The motivation for the group lasso is to select whole blocks of variables, rather than
isolated variables. The group lasso estimator, introduced in (Yuan and Lin, 2005), is
an extension of the lasso. Its distinctive property is the capability to perform variable
selection at the group level, where either all the variables in a group are selected or all the
variables in a group are set to zero. The group lasso criterion is defined as

θ̂ = arg min
θ

1

2

N∑

i=1

(

yi −
p
∑

i=1

xijθj

)2

+ ρ

G∑

g=1

‖θIg‖2, (6.7)

where Ig is the index set belonging to the gth group of variables, g = 1, . . . , G. Meier
et al. (2008) have extended the group lasso to the logistic regression.

For cases where prior information is available, not only on groups of variables but also
on a hierarchical structure of the variables, Zhao et al. (2009) proposed an approach which
develops the idea of the enclosed norms that create the effect of a certain hierarchy. The
approach is called Composite Absolute Penalties (CAP). Hierarchical penalization that
combines lasso and group lasso has been introduced by Szafranski et al. (2007). However,
the composite and group penalties can be applied only in cases where a prior hierarchy
exists. In cases when the hierarchy and group structure exist but are not straightforward
to be modeled, it is problematic to apply these criteria.

6.3 Numerical Optimization of Criteria Including the L1

Norm

Recently, a number of methods has been introduced to optimize the L1 criterion. We
discuss those that are applicable to large scale log-linear models. To deal with L1 penalties,
the simplest idea is that of Kazama and Tsujii (2003) which was introduced for maximum
entropy models but can be directly applied to conditional random fields. The main idea
of Kazama and Tsujii (2003) is to split every parameter θ into two positive constrained
parameters, θ+ and θ−, such that θ = θ+ + θ−. The L1 penalty ρ|θ| takes the form
ρ(θ+ + θ−), at most one variable in each pair θ+ and θ− is non zero.

The optimization procedure is quite simple, but the number of parameters is dou-
bled and Andrew and Gao (2007) reported that the method has a slow convergence rate.
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Andrew and Gao (2007) have proposed the Quasi-Newton method adapted for the L1

penalized criterion which we consider just below.

An approach called Grafting is proposed in (Perkins et al., 2003). The method adds a
parameter into the active set at each iteration. In order to decide which parameter is to
be integrated in the model, a local derivative information is examined.

Lee et al. (2006) propose the IRLS-LARS (Iteratively Reweighted Least Squares - Least
Angle Regression) algorithm to optimize the L1 regularized logistic regression. The L1

penalized least squares, solved with LARS (see (Efron et al., 2004) for details), are used to
optimize the L1 penalized logistic regression criterion. Unfortunately, the method based
on pure Newton optimization approach cannot be applied to large-scale problems.

6.3.1 Orthant-Wise Limited-Memory Quasi-Newton

The idea of the method proposed in (Andrew and Gao, 2007), is based on the observation
that restricted to a set in which each coordinate never changes sign, the L1 norm is a
differentiable linear function. Such sets are called orthants. The algorithm resembles
Quasi-Newton. One of the major distinctions is the usage of the pseudo-gradient instead
of the usual gradient. The pseudo-gradient is applied to determine which orthant to
explore. The orthant-wise limited-memory quasi-Newton algorithm (OWL-QN) uses the
inverse Hessian matrix update described in (Nocedal, 1980).

In the following, we define σ to be the sign function of a real number a:

σ(a) =







−1 a < 0,

0 a = 0,

1 a > 0.

(6.8)

The criterion to be minimized is the negated log-likelihood penalized by the norm L1

ℓ(θ) + ρ1‖θ‖1. (6.9)

The pseudo-gradient, is no more than a generalization of a gradient in that the direc-
tional derivative at θ is minimized in the direction of ⋄ℓ(θ):

⋄jℓ(θ) =







∂ℓ(θ̄)
∂θj

+ ρ1σ(θ̄), θ̄j 6= 0,
∂ℓ(θ̄)
∂θj

+ ρ1,
∂ℓ(θ̄)
∂θj

+ ρ1 < 0, θ̄j = 0,
∂ℓ(θ̄)
∂θj
− ρ1,

∂ℓ(θ̄)
∂θj
− ρ1 > 0, θ̄j = 0,

0, otherwise,

The update takes the form

θt+1 = π(θt + τqt; ξt),

where

πi(a; b) =

{

ai, if σ(ai) = σ(bi),

0, otherwise,
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τ is a step size, usually adjusted by a line search, q is an update value that is the ratio
(taken coordinate-wise) of the pseudo-gradient and the second derivative of the objective
function, and ξt is a sign vector that contains information on the sign of every coordinate.

The inverse Hessian is approximated using first-order information, as in L-BFGS ap-
proach. To construct the changes of the gradient, the OWL-QN uses the gradient values of
the unpenalized loss function which is differentiable everywhere. Coordinates that change
sign are set to zero. The orthant is defined as follows:

ξt
j =

{

σ(θt
j), if θt

j 6= 0,

σ(− ⋄j ℓ(θt)), if θt
j = 0.

In comparison to other optimization methods mentioned above, OWL-QN can be ap-
plied to large-dimensional problems due to the limited memory updates that are similar
to those used in L-BFGS.

In Sections 7.3.2 and 7.3.3 we illustrate performance of OWL-QN on real world data.

6.3.2 Coordinate-Wise Descent

Although the ideas of coordinate-wise optimization were considered before, notably in
(Dud́ık et al., 2004) and (Krishnapuram et al., 2005), we investigate the approach presented
in (Friedman et al., 2007), which proposes to apply coordinate-wise descent to L1 penalized
criteria. The idea of coordinate-wise methods consists in that one updates one parameter
per iteration, i.e. “one-at-a-time” (Friedman et al., 2007). Let us start with the coordinate-
wise method applied to the criterion of the univariate least-squares, since it is obvious to
write its solution analytically.

Univariate Least Squares

For the least squares with a single predictor penalized by the elastic net

N∑

i=1

(yi − xiθ)
2 + ρ2θ

2 + ρ1|θ| (6.10)

we can write the solution in analytical from:

θk =
S(
∑N

i=1 yixi, ρ1)
∑N

i=1 x
2
i + ρ2

,

where the threshold function S is defined as follows:

S(a, ρ1) ≡ σ(a)(|a| − ρ1)+

=







a− ρ1, a ≥ 0, ρ1 ≤ |a|,
a+ ρ1, a ≤ 0, ρ1 ≤ |a|,
0, ρ1 ≥ |a|.

(6.11)
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Multivariate Least Squares

In the case of multiple predictors, if regressors are linearly independent, uncorrelated, and
orthonormal, the problem is separable and we can apply coordinate-wise optimization.

Fixing parameters θj , ∀j 6= k and considering θk to be a single variable, the criterion
takes the form

1

2

N∑

i=1

(yi −
∑

j 6=k

xijθj − xikθk)
2 + ρ1

∑

j 6=k

|θj |+ ρ1|θk|+ ρ2

∑

j 6=k

θ2
j + ρ2θ

2
k.

We find the minimum with respect to θk, while looping over all parameters repeatedly
until convergence. The update takes the form:

θk =

S

(
∑N

i=1 xik(yi − yk
i ), ρ1

)

∑N
i=1 x

2
ik + ρ2

, (6.12)

where yk
i =

∑

j 6=k xijθj .

Binary Multivariate Logistic Regression

For the logistic regression, Zou and Hastie (2005) propose to perform coordinate-wise
update using a local quadratic approximation of the log-likelihood logistic regression func-
tion.

Fixing θj ∀j 6= k, we can write the approximation the criterion of the binary logistic
regression, already presented as equation (2.2) as

ℓQ(θ) = Cst(θ̃)− θk

N∑

i=1

xi(yi − g(y = 1|xi)) +
1

2

N∑

i=1

(θk − θ̃k)
2x2

ikw(xi)+

1

2

N∑

i=1

∑

j 6=k

(θk − θ̃k)x
2
ijw(xi)(θj − θ̃j),

and the update takes the form:

θk =

S

(

θ̃k

∑N
i=1 x

2
ikw(xi) +

∑N
i=1

∑

j 6=k(θj − θ̃j)x
2
ijw(xi) +

∑N
i=1 xi(yi − g(y = 1|xi))

)
, ρ1

)

∑N
i=1 x

2
ikw(xi) + ρ2

.

(6.13)

Note that an alternative version of the same idea is presented in (Dud́ık et al., 2004).
The local behavior of the function ℓ(D; θ) is approximated by a different function, of the
first order only, that leads to a coordinate-wise optimization procedure. However, this
approximation is based on the fact that every coordinate θk is multiplied by a function
which takes its values in {0, 1}. It is quite inappropriate for the conditional random
fields model, where every parameter is weighted by

∑T
t=1 fk(yt−1, yt, xt). Although fk is a

binary function and takes its values in {0, 1}, the sum is more than one if the configuration
(yt−1, yt, xt) is present more than once in a training sequence.
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6.4 Conclusions

In this chapter, we illustrated the potential sparsity of the model. Setting more than
90% of parameters to zero a posteriori, we still achieve an acceptable accuracy. We con-
sidered the methods to perform model selection and to obtain sparse solutions based on
L1 penalization. Numerical optimization methods can not be applied directly, since the
criterion is not differentiable everywhere. We considered several recent optimization ap-
proaches. In particular, orthant-wise limited memory quasi-Newton, a modification of the
quasi-Newton which achieves the state-of-the-art performance. A prospective approach
that is easy to implement is coordinate-wise descent whose performance on the CRFs
criterion and the real data we consider in the following chapter.

The elastic net criterion has been applied by Zou and Hastie (2005) to the binary and
multiclass logistic regressions which can be generalized to CRFs. The interest to consider
the elastic net in details for the logistic regression is twofold. First, we consider how the
quadratic approximation of the log-likelihood function can be used.Second, coordinate-wise
descent can be efficient for tasks with a limited number of parameters to be estimated.
Zou and Hastie (2005) illustrate the idea to optimize parameters in blocks, where a block
contains all features associated with a given class l. We make use of two above mentioned
ideas in the next chapter, while penalizing the conditional random fields criterion with
the elastic net penalty. The state-of-the-art results state that although the penalty terms
based on the L1 norm produce a sparse and interpretable model, they do not perform
necessarily better than the L2-penalized criteria.
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Chapter 7

Application of Coordinate-wise
Optimization Approach to CRFs

Contents

7.1 Coordinate-wise Method for Conditional Random Fields . . . 94
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7.2 Implications of Sparsity: Sparse Forward-Backward . . . . . . . 97

7.3 Experiments with Elastic Net Conditional Random Fields . . . 98
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Conditional random fields are able to incorporate a large number of dependencies,
however as we have illustrated in the previous chapter, only some part of them has to be
kept to reach a reasonable accuracy. In Chapter 3 we have observed that the conditional
random fields achieve its best performance with redundant and highly correlated features.
Zou and Hastie (2005) noticed that in the case of correlated features it is more appropriate
to apply the elastic net penalty to perform model selection than the L1 norm.

In this chapter, we apply coordinate-wise descent to the negated log-likelihood func-
tion of conditional random fields penalized by the elastic net. Real world applications
can involve millions of parameters to be estimated, and it is infeasible to perform sin-
gle coordinate optimization. We investigate blockwise updating schemes to speed up the
optimization procedure.

We compare the proposed optimization algorithm for CRFs with simple heuristic model
selection methods and with the state-of-the art orthant-wise quasi-Newton approach, con-
sidered in the previous chapter.
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7.1 Coordinate-wise Method for Conditional Random
Fields

In this section, we consider local quadratic approximations for CRFs and discuss ways
to avoid computations of the full Hessian matrix. We denote by ℓ(D; θ) the negated
log-likelihood of CRF, defined in equation (3.1).

In the multivariate case, fixing all parameters for θj 6= θk, we write a second order
Taylor expression of the negative log-likelihood with respect to the parameter θk:

Cst(θ̃) +
∂ℓ(D; θ̃)

∂θk
(θk − θ̃k) +

1

2
(θk − θ̃k)

2∂
2ℓ(D; θ̃)

∂θ2
k

,

where θ̃ denotes the current value of the parameter. Taking into account the elastic net
penalty and the quadratic approximation, the update step is

θk =

S

(

θ̃k
∂2ℓ(D;θ̃)

∂θ2
k

− ∂ℓ(D;θ̃)
∂θk

, ρ1

)

∂2ℓ(D;θ̃)
∂θ2

k

+ ρ2

, (7.1)

where S is the soft-threshold function defined by (6.11).

7.1.1 Coordinate Descent and Discussion on the Approx-
imation of the Second Derivatives

The application of coordinate-wise descent to conditional random fields requires compu-
tation of the second derivative of the log-likelihood function. If the first order derivative
is readily computable using the forward-backward recursions described in Section 7.2, the
exact computation of the second derivative is more problematic for CRFs.

The diagonal elements of the Hessian are given by

∂2ℓ(θ)

∂θ2
k

=
N∑

i=1

{

Epθ(y|x(i))

( Ti∑

t=1

fk(yt−1, yt, x
(i)
t )

)2

−
(

Epθ(y|x(i))

Ti∑

t=1

fk(yt−1, yt, x
(i)
t )

)2
}

.

(7.2)

The first term is problematic as it involves the conditional expectation of a square which
cannot be computed only from the pairwise probabilities pθ(yt−1 = y′, yt = y|x(i)) returned
by the forward-backward procedure. It can be shown (see Chapter 4 of (Cappé et al., 2005)
and (Cappé and Moulines, 2005)) that (7.2) can be computed using auxiliary recursions
related to the usual forward recursion with an overall complexity of order |Y |2 × Ti per
sequence. Unfortunately, this recursion is specific for each index k and cannot be shared
between parameters. As we will see below, sharing (part of) the computations between
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parameters is desirable feature for handling non trivial CRFs; we thus propose to use
instead the approximation

∂2ℓ(D; θ)

∂θ2
k

≈
N∑

i=1

Ti∑

t=1

{

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t )−

(

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t )
)2
}

. (7.3)

This approximation assumes that, given x(i), fk(yt−1, yt, x
(i)
t ) and fk(ys−1, ys, x

(i)
s ) are

uncorrelated when s 6= t. Note that this approximation is exact when the feature fk

is only active at one position along the sequence. It is likely that the accuracy of this
approximation is reduced when fk is active twice, especially if the corresponding positions
positions s and t are close. In the linear-chain CRFs considered here, this can happen
only if some symbols in the observation sequence occur repeatedly.

The coordinate descent algorithm applied to CRFs is thus summarized as Algorithm 8.

Algorithm 8 Coordinate-wise Descent for CRF

Require: Observations and their labels, ρ1, ρ2

Ensure: θ
Initialize θ = 0T

while Convergence criterion is not met do
for every parameter θk do

for all sequences for which θk is active do
Compute ∂ℓ(D; θ̃)/∂θk , ∂2ℓ(D; θ̃)/∂θ2

k

Perform update using equation (7.1).
end for

end for
end while

A potential issue with this algorithm is the fact that, in contrast to the logistic re-
gression case considered in (Friedman et al., 2008), we are using an approximation to
∂2ℓ(D; θ)/∂θ2

k which could have a detrimental effect on the convergence of the coordi-
nate descent algorithm. An important observation is that (7.3) used with an approximate
second order derivative still yields the correct stationary points (see also (Krishnapuram
et al., 2005)).

To see why it is true, assume that θ̃ is such that (7.3) leaves θ̃k unchanged (i.e.,
θk = θ̃k). If θ̃k = 0, this can happen only if |∂ℓ(D; θ̃)/∂θk| ≤ ρ1, which is indeed the
first order optimality condition in 0. Now assume that θ̃k > 0, the fact that θ̃k is left
unmodified by the recursion implies that θ̃kρ2 + ∂ℓ(D; θ)/∂θk + ρ1 = 0, which is also
recognized as the first order optimality condition (note that since θ̃k 6= 0, the criterion
is differentiable at this point). The symmetric case, where θ̃k < 0, is similar. Hence,
the use of an approximated second order derivative does not prevent the algorithm from
converging to the appropriate solution. A more subtle issue is the question of stability:
it is easily checked that if ∂2ℓ(D; θ)/∂θ2

k is smaller than it should be (remember that it
has to be positive as ℓ(D; θ) is strictly convex), the algorithm can fail to converge even
for simple functions (e.g., if ℓ(D; θ) is a quadratic function). An elaborate solution to this
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issue would consist in performing a line search in the “direction”

s
(

τ−1 ∂2l(D;θ̃)
∂θ2

k

θ̃k − ∂ℓ(D;θ̃)
∂θk

, ρ1

)

τ−1 ∂2ℓ(D;θ̃)
∂θ2

k

+ ρ2

,

where 0 < τ ≤ 1, is chosen as close as possible to 1 with the constraint that it indeeds
leads to a decrease of the objective function (note that the step size affects only the second
order term in order to preserve the convergence behavior). On the other hand, coordinate
descent algorithms are only reasonable if each individual update can be performed very
quickly, which means that using line search is not really an option. In our experiments,
we found that using a fixed value of τ = 1 was sufficient for Algorithm 8, probably due to
the fact that the second order derivative approximation is usually quite good.

For the blockwise approach described below, we had to use larger values of τ to ensure
stability. To be precise, in our experiments the second derivative is scaled by

max

(

κ1,

∣
∣
∣
∣
∣

∂ℓ(D; θ̃)

∂θk
/
∂2ℓ(D; θ̃)

∂θ2
k

∣
∣
∣
∣
∣

)

κ2, (7.4)

where κ1 and κ2 are empirically chosen values that guarantee the absence of numerical
problems. The heuristics makes the algorithm stable and as we will make sure in the
experiments in Section 7.3, it converges within a reasonable number of iterations.

7.1.2 Blockwise Coordinate Descent for CRFs

The algorithm described in the previous section is efficient in simple problems but cannot
be used, even for moderate size applications of CRFs. As for instance, the Nettalk appli-
cation involves |Y |2 ∗|X|+ |Y |∗ |X| = 75,790 parameters and single component coordinate
descent is definitely ruled out in this case. Following the idea of Friedman et al. (2008), we
investigate the use of blockwise updating schemes, which update several parameters simul-
taneously trying to share as much computations as possible. It turns out that the case of
CRFs is rather different from the polytomous logistic regression case considered in (Fried-
man et al., 2008) and requires specific blocking schemes. In this discussion, we consider
the parametrization defined in (6.1) which makes it easier to highlight the proposed block
structure.

The forward-backward procedure shows that the computation of the first or second
order derivative of the objective function with respect to µy,x or λy′,y,x requires to com-
pute the pairwise probabilities pθ(yt = y′′, yt+1 = y′|x(i)) for all values of (y′′, y′) ∈ Y 2

and for all sequences x(i) which contain the symbol x (at any position in the sequence).
Hence, the most natural grouping in this context is to update simultaneously the set of all
parameters {µy,x, λy′,y,x}(y′,y)∈Y 2 that correspond to the same value of x. This grouping is
orthogonal to the solution adopted for polytomous regression in (Friedman et al., 2008),
where parameters are grouped by common values of the target label.

The blockwise procedure is presented as Algorithm 9.

Different variants of this algorithm are possible, including updating only one of the sub
blocks {µy,x}y∈Y or {λy′,y,x}(y′,y)∈Y 2 at a time or using a full Hessian approximation (at
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Algorithm 9 Blockwise Coordinate Descent for CRF with Diagonal Hessian Approxima-
tion
Require: Observations and their labels, ρ1, ρ2

Ensure: θ
Initialize θ = 0T

while Convergence criterion is not met do
for i = 1 : |x alphabet| do

ind ← indices associated with xi

for k = 1 : |ind| do
for all sequences for which θk is active do

Compute ∂ℓ(D; θ̃)/∂θk , ∂2ℓ(D; θ̃)/∂θ2
k

Perform update using equation (7.1).
end for

end for
end for

end while

least when |Y | is not too large). The expression of full Hessian for a block of parameters
is provided in Appendix D. On the examples that we have considered so far, the above
solution appeared to be preferable to these alternatives. Although the above algorithm
requires scanning all the |X| possible symbols x at each iteration, it is usually relatively
fast due to the fact that only those sequences that contain x are considered.

7.2 Implications of Sparsity: Sparse Forward-Backward

The standard approach for computing the conditional probabilities in CRFs is in-
spired by the forward-backward algorithm for hidden Markov models: in the case of the
parametrization of (6.1), the algorithm implies the computation of

{

α1(y) = exp(µy,x1 + λy0,y,x1),

αt+1(y) =
∑

y′ αt(y
′) exp(µy,xt+1 + λy′,y,xt+1),

(Forward Recursion)

{

βTi
(y) = 1,

βt(y
′) =

∑

y βt+1(y) exp(µy,xt+1 + λy′,y,xt+1),
(Backward Recursion)

where the joint probabilities pθ(yt = y′, yt+1 = y|x(i)) and the normalization constant
Zθ(x

(i)) are obtained by normalizing αt(y
′) exp(µy,xt+1 + λy′,y,xt+1)θt+1(y) and αTi

(y), re-
spectively. These recursions require a number of operations that grows quadratically with
the size of Y .

Let us now consider the case where the set of features {λy′,y,xt+1}(y′,y)∈Y 2 is sparse
with only r(xt+1)≪ |Y |2 non null values and define the |Y | × |Y | matrix

Mt+1(y
′, y) = exp(λy′,y,xt+1)− 1.

Observe that Mt+1(y
′, y) also is sparse and that the forward and backward equations may
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be rewritten as

αt+1(y) = exp(µy,xt+1)

{
∑

y′

αt(y
′) +

∑

y′

αt(y
′)Mt+1(y

′, y)

}

,

βt(y
′) =

∑

y

vt+1(y) +
∑

y

Mt+1(y
′, y)vt+1(y), (7.5)

where vt+1(y) = βt+1(y) exp(µy,xt+1). The resulting computational savings stem from
the fact that the vector matrix products in (7.5) now only involve the sparse matrix
Mt+1(y

′, y). This means that they can be computed, using an appropriate sparse ma-
trix implementation, with exactly r(xt+1) multiplications instead of |Y |2. If the set
{µy,xt+1}y∈Y is also sparse, one may use a similar idea although the computation sav-
ings will in general be less significant. Of course, the same tricks may also be used to
speed up the decoding step.

Using this implementation, the complexity of the forward-backward procedure for the
sequence x(i) can be reduced from Ti × |Y |2 to the cumulated sizes of the feature sets
encountered at each position along the sequence. On average, it means that the complexity
of the forward-backward procedure is proportional to the average number of active features
per position in the parameter set rather than to the actual number of potentially active
features. We illustrate the efficiency of the proposed approach on the real data set in
Section 7.3.2. This observation suggests that it might even be possible to use some longer
term dependencies between labels, as long as only a few of them are active simultaneously.

In Section 7.1.1 we discussed the approximation that no matter how many times a
feature fk is observed in a sequence, we consider the feature fk to be active only on one
position in the sequence. In such a case we can perform α- and β-passes until position
t which is the first occurrence of the feature fk.The normalization factor Zθ(x

(i)) can be
computed as a product of αt and βt.

7.3 Experiments with Elastic Net Conditional Random

Fields

In this section, we discuss the efficiency of the elastic net penalty applied to conditional
random fields. We carry out experiments on both artificial data and real world applications
in the domain of natural language processing.

7.3.1 Artificial Data Set

In this section, we illustrate that a sparse model can reach the same performance as a
model with rich and numerous dependencies.

The synthetic data are simulated with hidden Markov models. The observation al-
phabet contains 5 symbols, the size of the labels alphabet is 6. Note, that the data are
generated in such a way that only two transition probabilities (yt−1, yt) are important,
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all the others transition probabilities from a previous state to a next one are uniform. In
other words, the distribution is almost completely defined by the conditional probability
of an observation given a state. Figure 7.1 illustrates the data generation mechanism by
representing matrices of state transition probabilities and conditional probability of an
observation given its state.
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Figure 7.1: Distribution generating synthetic data. Left: distribution p(yt|yt−1), right:
p(xt|yt).

Figure 7.2 compares several models: M1 contains both (yt−1, yt, xt) and (yt, xt) fea-
tures, M2 and M3 are simpler, with M2 containing only the bigram features, and M3
only the unigram features. The models M1–M3 are penalized with the L2 norm. Models
M4–M8 contain both features, bigram and unigram, but are penalized by the elastic net
penalty term. For the L2-penalized models (M1–M3), the regularization factor ρ2 is set to
its optimal value (obtained by cross validation). For M4–M8 however, the value of ρ2 does
not influence much the performance and is set to 0.001 while M4–M8 correspond to differ-
ent choices of ρ1, as shown in Table 7.1. The L2 penalty term in the elastic net prevents
numerical problems that can occur when the Hessian values are very small. However, the
heuristics which we added, equation (7.4) to guarantee the stability, ensures that there
are no numerical problem as well. That is why we can fix ρ2 to a small value.

For this experiment, we used only N = 10 sequences for training, so as to reproduce
the situation, which is prevalent in practical uses of CRFs, where the number of training
tokens (here 10× 5 = 50) is of the same order as the number of parameters, which ranges
from 6× 5 = 30 for M3 to 6× 5 + 62 × 5 = 210 for M1 and M4–M8. Figure 7.2 displays
box-and-whiskers plots summarizing 100 independent replications of the experiment.

M4 M5 M6 M7 M8

ρ1 0.001 0.01 0.1 1 2.5
Number of active unigram features 28.5 15.0 10.9 6.2 5.8
Number of active bigram features 50.6 26 17.2 4.9 1.3

Table 7.1: Impact of ρ1 on the number of active features (ρ2 = 0.001).

Unsurprisingly, M1 and M2, which contain more parameters, perform very well on
the training set, much better than M3. The test performance tells a different story: M2
performs in fact much worse that the simple unigram model M3, which is all the more
remarkable that we know from the simulation model that the observed tokens are indeed
not independent and that the models are nested (i.e. any model of type M3 corresponds
to a model of type M2). Thus, even with regularization, richer models are not necessary
the best, hence the need for feature selection techniques. Interestingly, M1 which embarks
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both unigram and bigram features, achieves the lowest test error, highlighting the interest
of using simultaneously both feature types to achieve some sort of smoothing effect. With
proper choice of the regularization (here, M7), L1-penalized models achieve comparable
test set performance. As a side effect of model selection, notice that M7 is somewhat better
than M1 at predicting the test performance at training time: for M1, the average train
error is 6.4% vs. 18.5% for the test error while for M7, the corresponding figures are 10.3%
and 17.9%, respectively. Finally, closer inspection of the sparsity pattern determined by
M7 shows that it is most often closely related to the structure of the simulation model
which is also encouraging.
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Figure 7.2: Performance of the models on artificial data. ModelsM1−M3 are trained with
L2 penalty (L-BFGS), models M4−M8 with the L1 penalty term (block coordinate-wise
descent). Left: performance on training set. Right: performance on testing set.

The following figures display the average frequency of feature selection for all individual
features (we have done 50 Monte-Carlo replications). The training was carried out with the
parameters ρ1 = 0.8 and ρ2 = 0.001. The figures illustrate not the values but the average
of the coordinate-wise selection frequency, in other words which features are selected by
the elastic net and how often. Therefore, a parameter associated with a large value can be
either positive or negative. Figure 7.3 on the left illustrates average selection frequency of
unigram features. On the right, we display the average values of these features. Notice,
that the unigram features associated with x = 5 are active for all y. However, among these
features only two of them correspond to positive values. Figure 7.4 displays the average
selection frequency of bigram features λ for every x.
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Figure 7.3: Average selection frequency of unigram µ features (on the left) and their
estimated average values (on the right).
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Figure 7.4: Average selection frequency of bigram λ features for X = 1, . . . , 5.

The estimated parameters capture the initial structure and dependencies quite well.
The true and learnt probability distributions are almost completely defined by unigram
features probability. Figure 7.3 shows clearly that x = 5 is the most ambiguous among
all observations given y. Figure 7.4 displays the strong dependency of a current x on a
current y. For the most ambiguous x = 5, we get the pattern (yt|yt−1) similar to the true
one (on the left of Figure 7.1)

Coordinate-wise and Blockwise Optimization

Figure 7.5 compares the behavior of the coordinate-wise update policy with the blockwise
approach, where one iteration refers to a complete round where all model parameters
are updated exactly once. As can be seen on these graphs, the convergence behavior is
comparable for both approaches, both in terms of objective function (Figure 7.6) and test
error (right plot of Figure 7.5). Each iteration of the blockwise algorithm is however about
50 times faster than the coordinate-wise update, which roughly correspond to the size of
each block. Clearly, the blockwise approach is the only viable strategy when tackling more
realistic higher-dimensional tasks such as those considered in the next two sections.

The algorithms introduced cycle every iteration over all parameters. The goal is to set a
number of parameters to zero, and therefore select the most influential dependencies. The
algorithms can change parameter values on every iteration, and hence, on every iteration
add or eliminate variables from the model. According to our empirical results, once a
parameter is zeroed, it rarely enters the active set in subsequent iterations. Figures 7.5
and 7.6 display the train and test errors, and the values of logistic loss on the simulated
data (n = 10, 50 Monte-Carlo replications, Bayes error ≈ 15%) of the coordinate-wise
method, blockwise optimization, and the coordinate-wise algorithm with zeroed features
not revisited. For the synthetic data, the results are in favor of deleting a dependency
once it is zeroed at some iteration, since as we can see, zeroed features practically do not
re-enter the model. The approach is fast in comparison to the coordinate-wise approach
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that visits all the coordinates. The blockwise update takes 7.8 seconds for 10 iterations,
the coordinate-wise method cycling over all features 126.5 seconds, and the coordinate-
wise optimization cycling only over features that were active in the previous step, 25.8
seconds.

However, in the following we apply the blockwise procedure, since computationally it
is more efficient and faster. The results presented in Sections 7.3.2 and 7.3.3 are obtained
with the blockwise version of the algorithm, coded in C1. We refer to the proposed method
as to Sparse Blockwise Coordinate Descent (SBCD), since the algorithm implements the
sparse Forward-Backward discussed in Section 7.2.
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Figure 7.5: Performance comparison of coordinate-wise method, block-wise method, and
coordinate-wise method that does not revisit points which have been zeroed in a previous
iteration
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Figure 7.6: Logarithmic loss comparison of coordinate-wise method, block-wise method,
and coordinate-wise method that does not revisit points which have been zeroed in a
previous iteration

1Implementation by Thomas Lavergne, LIMSI, University Paris-Sud, XI
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7.3.2 Nettalk Corpus (Phonetisation Task)

The SBCD algorithm is tested on the Nettalk corpus. In our experiments, we consider
that each phoneme is a target label, and we only use features that test the value of one
single letter. The training set comprises 16, 452 sequences and the test set contains 1, 628
sequences.

Figure 7.7 displays the parameter sets estimated for the L1 penalty with ρ1 = 0.2.
One can see that the algorithm identifies correctly some parameters that are important
for the task. The first column corresponds to the null sound, and is associated with almost
all letters. One can also directly visualize the ambiguity of the vocalic graphemes which
correspond to the first (’a’), fifth (’e’), ninth (’i’)...) gray rows; this contrasts with the
much more deterministic association of one consonant grapheme with one single consonant
phoneme. See Appendix B for the list of phonemes.
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Figure 7.7: Nettalk experiments, ρ1 = 0.2, ρ2 = 0.05. Left: feature values of type unigram.
Right: feature values of type bigram:

∑

yt−1
|λyt−1,yt,xt |

Method Iter. Time Train Test Kµ Kλ

(min.) (%) (%)

SBCD, ρ1 = 0 30 125 13.3 14.0 1,378 73,034
SBCD, ρ1 = 0.1 30 76 13.5 14.2 1,155 4,171
SBCD, ρ1 = 0.2 30 70 14 14.2 1,089 3,598
SBCD, ρ1 = 0.5 30 63 13.7 14.3 957 3,077
SBCD, ρ1 = 1 30 55 16.3 16.8 858 3,111
SBCD, ρ1 = 2 30 43 16.4 16.9 760 2,275
SBCD, ρ1 = 10 30 25 17.3 17.7 267 997

OWL-QN, ρ1 = 0.1 50 165 13.5 14.2 1,864 4,079

L-BFGS 90 302 13.5 14.1 74,412

SGD 30 17 18.5 19.1 74,412

Table 7.2: Upper part: summary of results for various values of ρ1 for the proposed Sparse
Blockwise Coordinate Descent (SBCD) algorithm (with ρ2 = 0.001) and orthant-wise L-
BFGS (OWL-QN). Lower part: results obtained with ρ2 regularization only, for L-BFGS
and stochastic gradient descent (SGD).

Table 7.2 gives the per phoneme accuracy with varying level of sparsity, both for the
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proposed algorithm (SBCD) and the orthant-wise L-BFGS (OWL-QN) strategy of Andrew
and Gao (2007). For comparison purposes the lower part of the table also reports perfor-
mance obtained with L2 regularization only. For L2-based methods (L-BFGS and SGD)
the regularization constant was set to its optimal value determined by cross validation as
ρ2 = 0.02. The proposed algorithm (SBCD) is C coded while OWL-QN and L-BFGS use
the CRF++ package (Kudo, 2005) modified to use the liblbfgs library provided with
CRFsuite (Okazaki, 2007) that implements the standard and orthant-wise modified ver-
sions of L-BFGS. Finally, SGD uses the software of Bottou (2007). All running times were
measured on a computer with an Intel Pentium 4 3.00GHz CPU and 2G of RAM memory.
Measuring running time is a difficult issue as each iteration of the various algorithms does
not achieve the same improvement in term of performance. For the proposed method, 30
iterations were found necessary to reach reasonable performance in the sense that further
iterations did not significantly reduce the error rates (with variations smaller than 0.3%).
Proceeding similarly for the other methods showed that OWL-QN and L-BFGS usually
require more iterations to reach stable performance, which is reflected in Table 7.2. Fi-
nally, SGD requires few iterations (where an iteration is defined as a complete scan of all
the training sequences) although we obtained disappointing performance on this dataset
with SGD, since the step, equation (3.29), of the algorithm becomes too small to make
significant descent along the gradient.

First, Table 7.2 shows that for ρ1 = 0.1 or 0.2 (κ1 = 1 and κ2 = 1.2 guarantee
the reasonable rate of convergence) the proposed method reaches an accuracy that is
comparable with that of non-sparse trainers (SBCD with ρ1 = 0 or L-BFGS) but with
only about 5000 active features. Note in particular the dramatic reduction achieved for
the bigram features λy′,y′,x as the best accuracy/sparsity compromise (ρ2 = 0.2) nullifies
about 95% of these parameters. We observe that the performance of SBCD (for ρ1 = 0.1)
is comparable to that of OWL-QN, which is reassuring as they optimize related criterions,
except for the fact that OWL-QN is based on the use of the sole L1 penalty. There are
however minor differences in the number of selected features for both methods. In addition
to the slight difference in the penalties used by SBCD and OWL-QN, it was constantly
observed in all our experiments that for L1-regularized methods the performance stabilizes
much faster than the pattern of selected features which may require as much as a few
hundreds of iterations to fully stabilize. This effect was particularly noticeable with the
OWL-QN algorithm. We have not found satisfactory explanation regarding the poor
performance of SGD on this dataset: further iterations do not significantly improve the
situation and this failure has not been observed on the CoNLL 2003 data considered
below. In general, SGD is initially very fast to converge and no other algorithm is able
to obtain similar performance with such small running time. The fact that SGD fails to
reach satisfactory performance in this example is probably related to an incorrect decrease
of the step size. In this regard, an important difference between the Nettalk data and the
CoNLL 2003 example considered below is the number of possible labels which is quite
high here (53). A final remark regarding timings is that all methods except SBCD use
logarithmic computation in the forward-backward recursions. As discussed in Section 7.2,
this option is slower by a factor which, in our implementation, was measured to be about
2.4. Still, the SBCD algorithm compares favorably with other algorithms, especially with
OWL-QN which optimizes the same objective function.

Table 7.2 also shows that the running time in the SBCD method depends on the
sparsity of the estimated model, which is fully attributable to the sparse version of the
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Figure 7.8: Running time as a function of the number of active features for the SBCD
algorithm on the Nettalk corpus. The blue line corresponds to the running time when
using non-sparse forward-backward.

forward-backward recursion. To make this connection clearer, Figure 7.8 displays the
running time as a function of the number of active features (rather than ρ1). When
the number of active feature is less than 10000, the curve indeed shows a decrease that
is proportional to the number of active features (beware that the x-axis is drawn on a
logarithmic scale). The behavior observed for larger numbers of actives features, where
the sparse implementation becomes worse than the baseline (horizontal blue line) can be
attributed to the overhead generated by the use of sparse matrix-vector multiplications
for matrices that are indeed not sparse. Hence the sparse forward-backward approach
really has a strong potential for reducing the computational burden in situations where
the active parameter set is very small compared to the total number of available features.
Note also that the OWL-QN optimizer could benefit from this idea as well.

7.3.3 CoNLL 2000 and CoNLL 2003 Data Sets

For the CoNLL 2000 and CoNLL 2003 corpora we apply the blockwise variant of the
algorithm, the same approach as for the Nettalk data. We carry out several experiments,
with two feature sets.

The first experiment is performed with (yt−1, yt, x
1
tx

2
t ) and (yt, x

1
tx

2
t ) for CoNLL 2000

and (yt−1, yt, x
1
tx

2
tx

3
t ) and (yt, x

1
tx

2
tx

3
t ) for CoNLL 2003 features, where x1 is associated

with words, x2 with part-of-speech tags, and x3 with syntactic chunks. In other words, the
role of observations is played by a Cartesian product of all possible words × POS tags for
CoNLL 2000 and words × POS tags × syntactic tags for CoNLL 2003. It is an illustration
that the choice of dependencies can be inefficient. The error rate is far from optimal for
all possible values of ρ1 and ρ2. On the CoNLL 2000 set we get 13.5% error on the test
set, and on the CoNLL 2003 we did not reach a better performance than approximately
6% errors on the test A, and 10% on test B.

For another experiment we decompose all types of observations (“+” as in Chapter 3
is used to denote the superposition of different types of features):

(yt−1, yt, x
1
t ) + (yt−1, yt, x

2
t ) + (yt, x

1
t ) + (yt, x

2
t )
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for CoNLL 2000 and

(yt−1, yt, x
1
t ) + (yt−1, yt, x

2
t ) + (yt−1, yt, x

3
t ) + (yt, x

1
t ) + (yt, x

2
t ) + (yt, x

3
t )

for CoNLL 2003. With such a choice of features we practically achieve state-of-the-art
performance. We run 30 iterations of the blockwise algorithm for each corpora, and we
see quite well, e.g., on CoNLL 2000, Figure 7.10 that the method converges and the
optimization is stabilized. The number of active parameters decreases drastically. As in
Chapter 3, the number of extracted parameters associated with unigram features of the
form (yt, xt) equals to |Y | × |X ′|, and for the features (yt−1, yt, xt) to |Y |2 × |X ′|, where
X ′ ∈ X is the subset of all patterns that are observed in the training data. Tables 7.3 and
7.4 demonstrate a number of parameters of each type that is active on the first iteration
step, and that is active after 30 iterations on CoNLL 2000 and CoNLL 2003 respectively.
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Figure 7.9: CoNLL 2003, ρ2 = 0.001
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Figure 7.10: CoNLL 2000, error.

We did not notice any drastic influence of the value ρ2 in our experiments, and let it be
rather small, since its role is limited to guarantee the absence of numerical problems. The
value of ρ1 is much more influential. It regulates the number of non-zero parameters, and
hence, it influences the performance. Figure 7.9 provides the correspondence between the
value of ρ1 and the error rate for CoNLL 2003. We see that with ρ1 small enough, in the
range 1e−05 . . . 0.5, one reaches an acceptable error rate. For ρ1 = 2.5 one notices a serious
degradation. Figure 7.11 provides the information on the number of active parameters as
a function of ρ1. It is noteworthy that although the error rate practically does not change
for ρ1 = 1e−05 . . . 0.5, the number of active parameters decreases. Mainly it is the number
of dependencies based on words that decreases, since they are the most numerous, and
features based on POS tags and syntactic chunks alone achieve a good generalization. The
syntactic tags features are not so numerous, however after 30 iterations we get 46.5% of
unigram syntactic parameters, and 16.5% of bigram dependencies.

The number of active parameters in sparse models is still large, therefore it is not
possible to make a complete analysis of active parameters. However, we can examine the
parameters whose absolute values are of large magnitude. We take into consideration the
parameter values associated with bigram and unigram features of the CoNLL 2000 corpus.

Figure 7.12 displays the values of unigram parameters. On Figure 7.12 on the left we
provide values of unigram parameters that depend on words. It is not very easy to provide
a revealing illustration, because of the large number of words (approximately 20,000). So,
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Figure 7.11: CoNLL 2003. Left: number of active parameters that depend on POS tags
and syntactic chunks. Right: number of active parameters that depend on words.

Feature Initial number of parameters After 30 iterations

(yt, x
1
t ) 496, 547 5, 057

(yt, x
2
t ) 1, 012 485

(yt−1, yt, x
1
t ) 11, 917, 128 9, 439

(yt−1, yt, x
2
t ) 24, 288 1, 591

Table 7.3: Results for CoNLL 2000, with ρ1 = 0.5, ρ2 = 1e− 05

Feature Initial number of parameters After 30 iterations

(yt, x
1
t ) 242, 320 10, 550

(yt, x
2
t ) 386 186

(yt, x
3
t ) 144 67

(yt−1, yt, x
1
t ) 2, 180, 880 13, 585

(yt−1, yt, x
2
t ) 3, 312 488

(yt−1, yt, x
3
t ) 1, 296 214

Table 7.4: Results for CoNLL 2003, with ρ1 = 0.1, ρ2 = 1e− 05

we visualize the most important ones, that are words for which
∑

y |µy,x| > 5. Note,
that the parameters having negative values are important as well. Horizontal patterns
are typical for this illustration, and can be explained quite easily: the horizontal lines are
formed by the most frequent chunks, e.g., 6 - B-NP, 11 - B-VP, 17 - I-NP, 23 - Outside.
Figure 7.13 gives information on chunks counts in training and testing data. The most
frequent elements are associated with strong patterns. See Appendix C for the description
of chunks and POS tags.

Figure 7.12 on the right illustrates the unigram values for POS tags/chunks parameters.
The values presented are their absolute values |λy′,y,x|, and at a first glance we notice that
there are some horizontal and some much stronger vertical patterns. Figures 7.14 are an
attempt to demonstrate the bigram feature values (as a sum over a previous state in order
to map into a two-dimensional space). What is here impressive, is the sparsity, especially
of POS tags/chunks dependencies. As to the words/chunks dependencies, one can observe
the same horizontal lines associated with the most frequent chunks.
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Figure 7.12: CoNLL 2000 (ρ1 = 0.5, ρ2 = 1e − 05). Left: values of unigram parameters
that depend on words for which

∑

y |µy,x1 | > 5. Right: values of unigram parameters that
depend on POS tags.

Figure 7.13: CoNLL 2000. Left: Unnormalized frequency of POS tags. Right: Unnormal-
ized frequency of chunks.

Let us consider Figure 7.12 in details and split it into two representations, one for
positive and one for negative values illustrated on Figure 7.15. Now it is much more
informative. The positive horizontal values are associated, exactly as it is for words,
with the most frequent chunks. For example, the chunk B-NP (6) has strong associations
with POS tags such as Noun, Proper Noun Singular and Plural, Predeterminer, Possessive
Endings, Personal Pronoun, Possessive Pronoun, Wh-determiner, and Wh-pronoun (20-26,
40-41). The chunk Outside (23) leads to strong values when associated with punctuation
symbols (3 - 8).

On Figure 7.15, large positive values of the parameters result from high joint frequency
of a POS tag and a chunk. Large negative values are associated with parameters whose
POS tags are frequent but joint occurrence with a chunk is low. (The counts of POS tags
in the training and testing sets are shown on Figure 7.13.)

On the CoNLL 2000 data we carried out one supplementary experiment. We intro-
duced feature functions that do not depend on observations but on labels only. Figure
7.16 demonstrates the positive and negative components of parameter values for transi-
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Figure 7.14: CoNLL 2000 (ρ1 = 0.5, ρ2 = 1e − 05). Left: values of bigram parameters
(
∑

yt−1
|λyt−1,yt,x

1
t
|) that depend on words for which

∑

y |µy,x1 | > 5. Right: values of
bigram parameters ((

∑

yt−1
|λyt−1,yt,x

2
t
|)) that depend on POS tags.
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Figure 7.15: CoNLL 2000. Left: positive unigram POS parameters. Right: negative
unigram POS parameters.

tions (yt−1, yt). Let us consider the maximal positive values from Figure 7.16 on the left.
The strongest transitions are connected with the rare deterministic transitions, such as
Begin List Marker - Inside of Interjection (4 - 15), Begin of Unlike Coordinated Phrase -
Inside of Unlike Coordinated Phrase (10 - 21), Inside of Interjection - Inside of Interjection
(15 - 15), Inside of Particles - Inside of Particles (19 -19). Strong but not deterministic
values have Begin Noun Phrase - Inside Noun Phrase (6 - 17) and Begin Verbal Phrase -
Inside Verbal Phrase (11 - 22).

The negative transitions on Figure 7.16 (on the right) can be interpreted as prohibited
previous state/current state transitions. For example, transitions starting from I-NP (17)
to the following chunks are very unlikely: Begin of Prepositional Clause (7), Begin of
Particles (8), Begin of Unlike Coordinated Phrase (10), Begin of Verb Phrase (11), Inside
of Adjective Phrase (12), Inside of Adverb Phrase (13), Inside of Conjunction Phrase (14),
and Inside of Verb Phrase (22).

We skip the detailed analysis of parameters based on words, since they are too numer-
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Figure 7.16: CoNLL 2000. Left: positive (yt−1, yt) parameters. Right: negative (yt−1, yt)
parameters.

ous. Let us, however, look at the most influential words, i.e. the ones that are involved
in selected parameters and whose absolute weights are the maximal ones (Tables 7.5 and
7.6 for CoNLL 2000 and CoNLL 2003). The set of the most influential words is connected
to the task. For CoNLL 2000, we get mostly functional words that define the structure
of language. For the CoNLL 2003 corpus, on the contrary, we get a lot of adjectives and
nouns, that are parts of some named entities. Note that the most important lexical items
of CoNLL 2003 have low frequency and the associated parameter values are negative, with
large absolute values.

about after and as but depressed
down due following for half n’t

if in including is like not
now of off on or out

pending rather right tax that the
times to today up whether while

Table 7.5: CoNLL 2000, words with the maximal absolute unigram values,
∑

y |µy,x1 | > 10

Afghan African Albanian American Australian
Belgian Bosnian British Cup Democratic

Democrats Dutch English European French
Frenchman German Indian Israel Italian

July June Kurdish Lebed London
Men Mickelson Nepal Nigerian OSCE

Olympics Palestinian President Regulation Republicans
Russian Sampras September Stansted Treasury
Turkish U.S. Wednesday Western Wimbledon

Table 7.6: CoNLL 2003, words with the maximal absolute unigram values,
∑

y |µy,x1 | > 7

To illustrate the efficiency of L1-based feature selection, we compare it to three simple
minded approaches of feature selection, which are often used in practice. The first one,
termed “cut-off”, consists in incorporating only those features that have been observed
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sufficiently often in the training corpus. This amounts to deleting a priori all the rare
dependencies. The second option consists in training a model that is not sparse (e.g.,
with an L2 penalty term) eliminating, a posteriori, all parameters whose values are not
of sufficient magnitude. Another method to perform a pre-selection is based on mutual
information. The methods have already been mentioned in Section 6.2.1.

Figure 7.17 compares the error rates and Figure 7.18 F-measures obtained with these
strategies on the CoNLL 2003 data set to those achieved by the SBCD and OWL-QN
algorithms. Obviously, the a priori cut-off strategy is very poor. The a posteriori thresh-
olding strategy is more efficient but cannot be used to obtain well-performing models that
are very sparse (here, with less than 10,000 features).
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Figure 7.17: CoNLL 2003 Data. Dependence of performance on the number of active
features. Left: on set Test A, right: on set Test B.
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Figure 7.18: CoNLL 2003 Data. Dependence of F-measure on the number of active fea-
tures. Left: on set Test A, right: on set Test B.

In this experiment, SBCD is less efficient from a computational point of view compared
to the phonetisation task considered in Section 7.3.2 as the number of blocks is of the same
order as the number of training sequences and, in addition, the sparse forward-backward
implementation is less efficient than in the case of the phonetisation task as the number
of labels is much smaller: SBCD needs 42 minutes (with ρ1 = 1, corresponding to 6,656
actives features) to achieve a reasonable performance while OWL-QN is faster, taking
about 5 minutes to converge. If sparsity is not needed, SGD appears to be the most
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efficient method for this corpus as it converges in less than 4 minutes. L-BFGS in contrast
requires about 25 minutes to reach a similar performance.

7.4 Conclusions

We have proposed to apply the elastic net penalty term to CRFs. The benefits of
working with sparse parameter vectors are twofold: obviously, less parameters need be
computed and stored; more importantly, sparsity can be used to speed up the forward-
backward and the Viterbi algorithms.

The ρ2 parameter ensures that there are no numerical problems. The heuristic pre-
sented as equation (7.4) guarantees the stability. With κ1 = 1 and κ2 = 2, as in our
experiments, the block coordinate-wise descent does not suffer from numerical problems,
the L2 penalty term does not practically influence the performance.

To make the method feasible, we have introduced and validated the approximation
that consists in ignoring the off-diagonal terms of the Hessian of the objective function
and which allows to reduce the computational load through blockwise gradient descent.
This method has been tested on artificial and real-world data, yielding accuracy that is
comparable with conventional training algorithms, and much sparser parameter vectors.

The results achieved open several avenues that we wish to explore in the future. A
first extension of this work is related to finding the optimal weights for the penalization
terms, a task that is usually achieved through heuristic search for the value(s) that will
deliver the best performance on a development set. Based on our experiments, this search
can be performed efficiently using pseudo regularization-path techniques, which amount
here to starting the tuning with a very constrained model, and to progressively reduce
the weight of the L1 term so as to increase the number of active features. This can be
performed effectively at very little cost by restarting the coordinate-wise optimization from
the parameter values obtained with the previous weights setting, thereby greatly reducing
the number of iterations needed to reach convergence.

A second line of research, aiming at improving the training speed, is based on the
observation that the number of active features stabilizes very quickly, typically in a dozen
iterations or so. This suggests that those features that are inactive at that stage will
remain inactive till the convergence of the procedure. Instead of repeatedly trying to
recompute the gradient for those features, one might well decide to zero them once and
for all. Some encouraging results have been obtained on the artificial data set considered
in Section 7.3.1.

Another interesting observation is that the parameter vector is not only sparse, but
that the sparsity patterns are closely correlated with the structure of the feature set: as
discussed above, in Chapter 6, bigram features testing label pairs tend to be active only
when the corresponding unigram feature is significant. There might be other ways to take
advantage from this observation, such as, for instance, hierarchical penalties introduced in
(Zhao et al., 2009), or growing a model by progressively introducing high-order features
when the corresponding low-order have proved useful.
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Chapter 8

Conclusions and Future
Directions

In this thesis, we studied two significant strata of modern machine learning, semi-supervised
learning and model selection, in the context of conditional random fields.

In the first part of our thesis, we have made an attempt to show the importance of
statistical and probabilistic methods for machine learning, above all the importance of
approaches that allow to take structure into account.

In the framework of semi-supervised learning, we presented our semi-supervised esti-
mator that allows to introduce unlabeled data into discriminative models under the form of
marginal probability of observations. We provide proofs that the proposed semi-supervised
estimator is asymptotically optimal, and illustrate its functioning and its competitiveness
with the logistic regression, both on the artificial and real-world problem of binary classi-
fication.

The next step would be a generalization of the semi-supervised estimator to sequential
tasks which can be solved with conditional random fields. Here, we face another challenge
that is to estimate or to approximate probability or importance weights of sequences.
Another question is how to introduce both marginal probabilities: one of observations
and marginal probabilities of labels. The introduction of probabilities of labels has been
already considered in, e.g., (Mann and McCallum, 2007b). Another avenue concerned with
importance weights is active learning. Kanamori and Shimodaira (2003) made an attempt
to attack active learning tasks with the maximum weighted log-likelihood estimator.

We noticed that the non-asymptotic analysis of the semi-supervised estimator, i.e.,
for cases when the number of labeled observations is very small, could give much more
information not only on the proposed semi-supervised algorithm, but also on related issues.

Another problem considered in this thesis is model selection. Empirical experiments
on real data show that a huge number of extracted patterns can be eliminated from the
model without degrading the performance. We applied the elastic net criterion, which is a
combination of the L1 and L2 norms, to conditional random fields, where the L1 norm is
responsible for sparsity, and the L2 norm is introduced to protect the optimization from
numerical problems.

The optimization approach is the coordinate-wise gradient descent, which we approxi-
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mated by the block-wise gradient descent in order to speed up the optimization procedure.
In our applications, the choice of blocks was naive and natural at the same time. A block
corresponds to all features associated with an observation. However, the possibility to
form more practical blocks, groups, and integrate hierarchical dependencies is still an im-
portant open problem, although some research has been made, see e.g., (Szafranski et al.,
2007), (Meier et al., 2008), and (Zhao et al., 2009). The approximation of the second
derivative is worth studying much deeper than what we did. A regularisation path, i.e.
the set of solutions as a function of ρ1 can be performed at low cost. We can progressively
reduce the weight of the L1 term to increase the number of active features by restarting
the blockwise optimization based on parameter values obtained from the previous setting.

Nowadays, the majority of algorithms that return sparse solutions cycle over all pa-
rameters at every iteration. In this thesis, we discussed an approach to speed up the
optimization, namely, the forward-backward procedure for sparse vectors of parameters.
Another idea which was mentioned but not deeply studied, is to avoid cycling over all
parameters.

We analyzed the results of our model selection experiments and examined the param-
eters which have been chosen as significant ones by the elastic net conditional random
fields. The values appeared to be interpretable and pertinent, illustrating also the fact
that the never observed configurations are as important as the observed ones.

In the context of structured output prediction, the feature engineering is not to be
ignored. A literature survey shows that the feature choice resulting in a baseline perfor-
mance is task-independent, but the domain knowledge plays a significant role for a good
accuracy. The complexity reduction in conditional random fields is an important issue
which is an active field of research (Qian et al., 2009). First of all, it concerns richer
structural dependencies. When elaborated features are important, and how to avoid the
increase in complexity, is still an open problem.

There are some approaches that are not considered but related to the thesis and there-
fore they should be explored in the future. Among them are, e.g., methods that allow to
select training instances, such as active learning. Feature kernelization, which is not in-
vestigated in the thesis, is worth studying to perform a low-dimensional mapping (Balcan
et al., 2006).
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Appendix A

Asymptotic Performance of the
Semi-Supervised Estimator for
K-classes Logistic Regression

Here, we follow the simplified notations g(k|X; θ⋆) = gk and η(k|X) = ηk.

For the K-class logistic regression without covariate shift:

I(θ⋆) = Eq

[

XXT⊗





(η1 − g1)2 + η1(1− η1) · · · (g1gk−1 − η1ηk−1)− η1ηk−1(
gk−1

ηk−1

+ g1

η1

− 1)
...

. . .
...

(g1gk−1 − η1ηk−1)− η1ηk−1(
gk−1

ηk−1

+ g1

η1

− 1) . . . (ηk−1 − gk−1)
2 + ηk−1(1− ηk−1)









 ,

J(θ⋆) = Eq



XXT ⊗





g1(1− g1) . . . −g1gk−1

...
. . .

...
−g1gk−1 . . . gk−1(1− gk−1)







 .

For the proposed semi-supervised estimator:

I(θ⋆) = Eq



XXT ⊗





η1(1− η1) . . . −η1ηk−1

...
. . .

...
−η1ηk−1 . . . ηk−1(1− ηk−1)







 ,

J(θ⋆) = Eq



XXT ⊗





g1(1− g1) . . . −g1gk−1

...
. . .

...
−g1gk−1 . . . gk−1(1− gk−1)







 .
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For the Shimodaira criterion under the covariate shift:

I(θ⋆) = Eq0

[

q21(X)

q20(X)
XXT⊗






(η1 − g1)2 + η1(1− η1) · · · (g1gk−1 − η1ηk−1)− η1ηk−1(
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− 1)
...

. . .
...

(g1gk−1 − η1ηk−1)− η1ηk−1(
gk−1

ηk−1

+ g1
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2 + ηk−1(1− ηk−1)
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J(θ⋆) = Eq0
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 .

For our semi-supervised criterion under covariate shift:

I(θ⋆) = Eq0




q21(X)

q20(X)
XXT ⊗





η1(1− η1) . . . −η1ηk−1
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−η1ηk−1 . . . ηk−1(1− ηk−1)
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J(θ⋆) = Eq0




q1(X)

q0(X)
XXT ⊗





g1(1− g1) . . . −g1gk−1

...
. . .

...
−g1gk−1 . . . gk−1(1− gk−1)
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Appendix B

Nettalk Corpus

The original Nettalk corpus has been introduced in (Sejnowski and Rosenberg, 1987). The
Nettalk corpus we use for our experiments has been suggested for the Pascal Letter-to-
Phoneme Conversion Challenge1. The English data set contains 16280 words aligned with
their phonetical transcriptions. The corpus is split into 10 parts, each of which includes
1628 sequences of observations and corresponding labels.

We provide the Table of the correspondence of Nettalk phonetical symbols with inter-
national phonetic alphabet.

Associated Number IPA Nettalk Symbol Example

1 /./ empty sound
2 [gz] /1/ exact
3 [❛] /2/ measure
4 [✘] /3/ elaboration
5 [✕] /A/ above
6 [b] /B/ bat
7 [d] /D/ amend
8 [e] /E/ set
9 [f] /F/ f ine
10 [g] /G/ got
11 [h] /H/ hat
12 [✯] /I/ pity
13 [d❛] /J/ just
14 [k] /K/ kiss
15 [✕L] /L/ typical
16 [m] /M/ ram
17 [n] /N/ nut
18 [❂] /O/ wash
19 [p] /P/ pate
20 [r] /R/ ran
21 [s] /S/ sit
22 [t] /T/ table

1http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/Datasets/
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Associated Number IPA Nettalk Symbol Example

23 [☎] /U/ fun
24 [v] /V/ vine
25 [w] /W/ wet
26 [y] /Y/ yet
27 [z] /Z/ buzz
28 [✕:] /a/ burn
29 [◗] /b/ chance
30 [æ] /c/ apple
31 [❱] /d/ full
32 [✽] /e/ rang
33 [✕❱] /f/ ago
34 [i:] /g/ see
35 [ei] /h/ fate
36 [au] /i/ now
37 [ai] /j/ lie
38 [▼] /k/ ship
39 [l] /l/ little
40 [a:] /m/ calm
41 [ks] /n/ convex
42 [❂:] /o/ born
43 [y❱] /p/ curlew
44 [✓] /q/ this
45 [i] /r/ harmony
46 [kw] /s/ quit
47 [❂i] /t/ voice
48 [k▼] /u/ anxious
49 [❱✕] /v/ jury
50 [❙] /w/ math
51 [i✕] /x/ near
52 [❱:] /y/ boon
53 [✘✕] /z/ tare
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Appendix C

CoNLL 2000 and CoNLL 2003
Data Sets

CoNLL 2000

The Conference on Computational Natural Language Learning 2000 challenge was intro-
duced in (Tjong Kim Sang and Buchholz, 2000). The purpose is to chunk already divided
into syntactically correlated groups, e.g.,

He reckons the current account deficit will narrow ...
B-NP B-VP B-NP I-NP I-NP I-NP B-VP I-VP ...

The labels are chunks providing information whether a word is the first word of a
group X (chunk B-X), or is inside of a group X (I-X). Words that do not belong to any
group, in other words, outside of any group, and are labelled with O. There are 11 types
of groups, therefore, there 23 (2 × 11 + 1) chunks (see Table C.2). The data contains two
types of observations: lexical items and their part-of-speech tags (see Table C.1) derived
by the Brill tagger. The labels have been extracted from the PennTreeBank. The size of
the lexical items dictionary of the CoNLL 2000 corpus is 21589.

CoNLL 2003

Named entity recognition consists in extracting groups of syntagms that correspond to
named entities (e.g., names of persons, organizations, places, etc.). The data used for our
experiments are taken from the CoNLL 2003 challenge (Tjong Kim Sang and de Meulder,
2003) and implies four distinct types of named entities, and 8 labels. Labels have the form
B-X or I-X, that is begin or inside of a named entity X (however, the label B-PER is not
present in the corpus). Words that are not included in any named entity, are labeled with
O (outside), e.g.,

U.N. official Ekeus heads for Baghdad
B-ORG O B-PER O O B-LOC

At each position in the text, the input consists of three separate components: a word
(with 30290 distinct words in the corpus), its part-of-speech(44), and syntactic (18) tags.

See Table C.3 for the details on the CoNLL 2000 and 2003 English corpora.
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Associated number Abbreviation Explanation

1 #
2 $
3 ”
4 (
5 )
6 ,
7 .
8 :
9 CC Coordinating conjuction
10 CD Cardinal Number
11 DT Determiner
12 EX Existential “there”
13 FW Foregn word
14 IN Preposition or subordinating conjunction
15 JJ Adjective
16 JJR Adjective, comparative
17 JJS Adjective, superlative
18 MD Modal
19 NN Noun, singular or mass
20 NNP Proper noun, singular
21 NNPS Proper noun, plural
22 NNS Noun, plural
23 PDT Predeterminer
24 POS Possessive ending
25 PRP Personal pronoun
26 PRP$ Possessive pronoun
27 RB Adverb
28 RBR Adverb, comparative
29 RBS Adverb, superlative
30 RP Particle
31 SYM Symbol
32 TO “to”
33 UH Interjection
34 VB Verb, base form
35 VBD Verb, past tense
36 VBG Verb, gerund or present particle
37 VBN Verb, past participle
38 VBP Verb, non-3rd person singular present
39 VBZ Verb, 3rd person singular present
40 WDT Wh-determiner
41 WP Wh-pronoun
42 WP$ Possessive wh-pronoun
43 WRB Wh-adverb
44 “

Table C.1: Part of Speech Tags.
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Associated number Abbreviation Explanation

1 B-ADJP Begin of Adjective Phrase
2 B-ADVP Begin of Adverb Phrase
3 B-CONJP Begin of Conjunction Phrase
4 B-INTJ Begin of Interjection
5 B-LST List Marker
6 B-NP Begin of Noun Phrase
7 B-PP Begin of Prepositional Phrase
8 B-PRT Begin of Particles
9 B-SBAR Begin of Subordinated Clause
10 B-UCP Begin of Unlike Coordinated Phrase
11 B-VP Begin of Verb Phrase
12 I-ADJP Inside of Adjective Phrase
13 I-ADVP Inside of Adverb Phrase
14 I-CONJP Inside of Conjunction Phrase
15 I-INTJ Insider of Interjection
16 I-LST Inside of List Marker
17 I-NP Inside of Noun Phrase
18 I-PP Inside of Prepositional Phrase
19 I-PRT Inside of Particles
20 I-SBAR Inside of Subordinated Clause
21 I-UCP Inside of Unlike Coordinated Phrase
22 I-VP Inside of Verb Phrase
23 O Outside

Table C.2: Chunks of CoNLL 2000.

Chunking Named Entities
Phrases Tokens Articles Phrases Tokens

Entrâınement 9,836 211,727 946 14,987 203,621
Developpement - - 216 3,466 51,362
Test 2012 47,377 231 3,684 46,435

Table C.3: Corpora CoNLL 2000 and CoNLL 2003 details.
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Appendix D

Expression of the Full Hessian
for the Block of Parameters
Associated with µy,x and λy′,y,x

The off diagonal terms of the Hessian ∂2ℓ(D, θ)/∂θj∂θk are approximated. One replaces

f2
k (yt−1, yt, x

(i)
t ) by fj(yt−1, yt, x

(i)
t )fk(yt−1, yt, x

(i)
t ) and the final squared term by

Epθ(y|x(i)) fj(yt−1, yt, x
(i)
t )× Epθ(y|x(i)) fk(yt−1, yt, x

(i)
t ).

Therefore, we have

∂2ℓ(D; θ)

∂θk∂θl
≈

N∑

i=1

Ti∑

t=1

∑

k,l∈K

{

pk(y|x(i)
t )(1− pk(y|x(i)

t )), k = l,

−pk(y|x(i)
t )pl(y|x(i)

t ), k 6= l.

The full Hessian for a block of parameters associated with µy,x and λy′,y,x takes the
following form:

H(i)
g =

(
A C
C B

)

,

where

A = H(i)
g1:|Y |,1:|Y |

=

{
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t ) Epθ(y|x(i)) fl(yt−1, Yt = b, x
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t ), if a = b.
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