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�I can live with doubt, and uncer-

tainty, and not knowing. I think

it's much more interesting living

not knowing than to have answers

which might be wrong.�

Richard Feynman





INTRODUCTION

In the last few decades, nonlinear optics has known a great development, becoming an
essential tool in several �elds of research and technology, from telecommunications and
optical storage to imaging of biological systems. However, it was only after the invention
of the �rst laser by Theodore Maiman �fty years ago, that a nonlinear optical process was
observed for the �rst time. In 1961, the group of Franken at the University of Michigan,
generated the second harmonic signal at 347.2 nm from a pulsed ruby laser emitted at
694.3 nm and transmitted through a quartz crystal [1]. Since then, nonlinear optical
spectroscopy has undergone remarkable theoretical and experimental developments. It
was in particular the group of Nicolaas Bloembergen at Harvard University, that has set
the theoretical basis of nonlinear optical spectroscopy [2, 3, 4], by establishing general
laws of re�ection and refraction in the nonlinear regime. It was thanks to his works
on nonlinear optics, that Bloembergen was awarded with the Nobel Prize in Physics in
1981, together with Arthur Leonard Schawlow, for �their contribution to the development
of laser spectroscopy�1. Another pioneer in the �eld of the nonlinear optics is Sergei
Akhmanov, at the Lomonosov Moscow State University, who developed the theory of
parametrical oscillation and ampli�cation [5]. In 1964, the �rst book in the world on
nonlinear interactions of light was written by Akhmanov and Khokhlov [6].

When nonlinear optics is associated to optical microscopy, it can provide a powerful
imaging system that is particularly useful for biological samples, for several reasons. First,
the nonlinear nature of the light-matter interaction provides submicrometric threedimen-
sional resolution and second, the use of near infrared excitation wavelengths allows deeper
penetration into the tissues. Coherent nonlinear optics has the further advantage of pro-
viding contrast from the intrinsic properties of the studied sample, without requiring any
labeling of the medium.

The �rst nonlinear optical microscopes go back to the 1970s, when second harmonic

1From the o�cial website of the Nobel Prize http://nobelprize.org/. In fact, Nicolaas Bloembergen
and Arthur Leonard Schawlow were awarded with half of the prize. The other half was assigned to Kai
M. Siegbahn �for his contribution to the development of high-resolution electron spectroscopy�.

1
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Introduction

generation (SHG) images of non-centrosymmetric crystals were reported [7, 8]. The �rst
application of nonlinear optics to the imaging of biological systems was only accomplished
ten years later, when Freund et al. used SHG to image collagen �bers in rat-tail tendon
[9]. Due to their highly oriented structure, collagen �bers have a non-centrosymmetric
nature and therefore emit a very strong SHG signal. For this reason, SHG microscopy has
been extensively used since the pioneer work of Freund et al. to image collagen structure
and organization in tissues [10, 11, 12, 13, 14, 15]. More recently, this technique has
been extended to other non-centrosymmetric biological media, such as muscles [16, 17,
18], microtubules [19] and polysaccharides [20]. SHG has also been employed in real-
time measurements of membrane potential in dendritic spines [21] and ions transportation
through liposome membrane [22].

Third harmonic generation (THG) is a more recent microscopy technique, whose con-
trast is obtained by the presence of local inhomogeneities in the sample. The �rst THG
microscope was built in 1997 as a proof of principle of the method, applied to image trans-
parent samples [23]. First applications to biological imaging were demonstrated in chara
plant rhizoids [24] and neuron and yeast cells [25]. Recently, this technique has been ap-
plied to image the development of zebra�sh embryos, until they reach about 1 mm thick
[26, 27, 28].

Coherent anti-Stokes Raman scattering (CARS) was �rst demonstrated in 1965 by
Maker and Terhune of the Ford Motor Company, that performed four-wave mixing spec-
troscopy experiments in liquids and crystals [29]. The name CARS, however, was only
employed almost ten years later, by Begley et al. [30]. As a nonlinear optical method,
CARS has the same capabilities as the previous SHG and THG techniques, with the ad-
vantage of being a vibrational resonant process, which provides chemical speci�city. Com-
pared to spontaneous Raman scattering, CARS has, in microscopy, a sensibility that is 106

times greater, due to its coherent and resonant nature. The only drawback of the CARS
technique is the presence of a nonresonant background, originated from the electronic re-
sponses of the medium to the incident �elds, which can eventually decrease the contrast.
The �rst CARS microscope was built in 1982 by Duncan et al. [31], but the use of vis-
ible dye lasers resulted in a strong two-photon enhanced nonresonant background. They
could however demonstrate the chemical speci�city of the CARS process by imaging onion
skin-cells soaked in deutered water. Developments in the technique remained inactive until
1999, when Zumbusch and coworkers built the �rst CARS microscope with near infrared
sources [32]. They reported CARS images of living cells (bacteria), demonstrating the
capability of the method to imaging biological samples. Since then, CARS has been ex-
tensively used to image intracellular structures with di�erent contrasts [33, 34], single lipid
bilayers [35, 36] and tissues [37, 38]. More recently, another label-free imaging technique
based on the stimulated Raman scattering (SRS) has allowed to image tissues and cells
with chemical selectivity, without the presence of the nonresonant background [39, 40].

Combining nonlinear optics with polarimetric measurements can provide new contrast
mechanisms, allowing to probe spatial symmetry properties as well as molecular organiza-
tion and orientation in the samples. In 1989, Shen demonstrated that polarization-resolved
second harmonic and sum-frequency generations are powerful tools to probe surface and

2
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interface properties [41, 42]. Since then, polarization-resolved sum-frequency generation
spectroscopy has been widely used to probe molecular orientations at interfaces [43, 44].
Polarimetric measurements have also been extensively employed in SHG microscopy, to
probe molecular order in collagen �bers [12, 45, 46, 14, 47, 48, 49, 50], in molecular media
[51, 52, 53, 54], and also to measure membrane potential in neurons [55]. More recently, the
potential of polarization-resolved THG has been explored, revealing orientation of biogenic
crystals [56] and anisotropic microstructures of human cornea [57].

Spectroscopic experiments using polarization-resolved coherent anti-Stokes scattering
have been performed in liquids and non-centrosymmetric media since the 1970s [58, 59, 60,
61]. These measurements were able to probe the microscopic structure of the susceptibility
tensors of the probed samples. Polarization-resolved CARS has also been demonstrated
to be an e�cient tool of modulating the nonresonant background contribution [62, 63,
64, 65], allowing to retrieve the spontaneous Raman spectrum under speci�c polarization
con�gurations. Despite widespread studies in spectroscopy, polarization-resolved CARS
techniques have nevertheless remained almost unexplored in microscopy applications. Only
the partial potential of CARS polarization analysis has been explored, allowing to measure
only qualitatively molecular orientation in anisotropic samples, such as water molecules in
phospholipid bilayers [66], ordered biomolecular assemblies in tissues [67, 68], and liquid
crystals [69].

In this thesis, we have explored for the �rst time the full potential of the polarization-
resolved four-wave mixing analysis in microscopy applications and for nonisotropic samples.
In our experiments, the two incident �elds, called pump and Stokes, are linearly polarized
and can have their polarizations controlled and tuned independently. The emitted �eld,
called anti-Stokes, is also analyzed along two perpendicular directions. The technique was
applied in three distinct samples: isotropic, crystalline and biological media. In the �rst
two, both the resonant and nonresonant CARS signals were analyzed, providing informa-
tion on the structure and orientation of the medium, together with the symmetry of the
vibrational modes. In the last sample, only the nonresonant four-wave mixing signal was
studied, allowing to probe order of the molecular distribution.

This manuscript is organized as follows:

� The �rst chapter introduces the theoretical tensorial approach of the nonlinear op-
tics. In particular, we show how the symmetry of the medium allows to determine
the structure of the susceptibility tensor. We derive both the nonresonant suscep-
tibilities, from spatial symmetry considerations, and the resonant ones, from the
symmetry properties of speci�c molecular modes of vibration. Then we show how to
read-out microscopic information on the studied samples from the macroscopic mea-
surements, either for media with crystalline organization or for molecular assemblies
with statistical orientational distribution.

� The second chapter describes the experimental setup implemented to perform CARS
and SRS measurements and depicts a calibration technique to characterize the polar-
ization distortions introduced either by the optical apparatus or by the sample itself,
when it is birefringent.

3
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� The third chapter is an application of polarization-resolved CARS and SRS tech-
niques to isotropic media. We �rst derive the expressions of the isotropic suscep-
tibility tensors for both processes, then we measure depolarization ratios and other
spectral parameters of vibrational modes with di�erent symmetries.

� The fourth chapter uses polarization-resolved CARS analysis to probe crystals with
cubic symmetry. The nonresonant CARS measurements allow to quantify departure
from isotropy and the resonant responses provide a characterization of deviations
from the Kleinman symmetry. For totally-symmetric vibrational modes, a compari-
son and spontaneous Raman scattering and CARS is provided.

� The �fth chapter studies polarization-resolved nonresonant CARS responses from
collagen �bers. The analysis allow to retrieve quantitative information on orientation
and symmetry order of the molecular orientational distribution in collagen �bers. An
analysis of the in�uence of the sample's birefringence on the polarization-resolved
nonresonant CARS responses is provided.

4



CHAPTER 1

INTRODUCTION TO THE TENSORIAL

APPROACH OF THE NONLINEAR

OPTICS THEORY

When light interacts with matter, the charged particles in the medium move under the
action of the electrical �eld. This displacement induces an oscillating dipole that radiates
throughout the surrounding environment. If the intensity of the incident light is su�-
ciently strong, the oscillation becomes anharmonic, modifying the optical properties of the
medium. This anharmonic oscillation and its associated radiated �elds are the very basis
of nonlinear optics. In this chapter, we introduce the general theory of nonlinear optics
and show brie�y how to calculate the induced nonlinear polarization in the semi-classical
approach. The expressions of the nonlinear susceptibility tensors can then be deduced from
the induced polarization, in the formalism of the density matrix operator. Subsequently,
we deal with the role of symmetry in optical responses. In particular, we introduce some
tensor notations and properties that show how the molecular symmetry of the medium
a�ects the structure of the nonlinear susceptibilities, contributing to reduce the number of
independent nonvanishing tensorial components. These symmetry considerations are par-
ticularly important for high-rank tensors. Furthermore, the symmetries of the molecular
modes of vibration can lead to structural changes of the susceptibility tensors at resonance.
Afterward, we show how to derive the macroscopic susceptibility tensor from the molecu-
lar hyperpolarizability, either for crystalline media or molecular assemblies with statistical
orientational distribution. Finally, the measured macroscopic susceptibility depends on the
orientation of the sample relative to the incident �eld polarization, and can be determined
by a 3D rotation from the sample frame to the laboratory frame.

5



Nonlinear optics: tensorial approach

1.1 The induced nonlinear polarization

The induced macroscopic polarization in a medium, resulting from the interaction of
charges with a strong electrical �eld, can be decomposed in a power series of the incident
�eld, where the p-order polarization is a function of order p with respect to the applied
�eld, that writes, in SI units1:

P(p)(ωσ) = ε0χ
(p)(−ωσ;ω1, . . . , ωp) : E(ω1) . . .E(ωp) (1.1)

where ωσ = ω1 + . . . + ωp, χ(p) is the p-order susceptibility tensor and E(ωl) are the
spectral components of the decomposition of the electric �eld E(t) as a combination of
monochromatic coherent incident waves, according to:

E(t) =
∑
l

E(ωl) exp(−iωlt). (1.2)

In Cartesian coordinates, the macroscopic induced polarization writes:

P
(p)
i0

(ωσ) = ε0
∑
i1...ip

χ
(p)
i0...ip

(−ωσ;ω1, . . . , ωp)Ei1(ω1) . . . Eip(ωp), (1.3)

where ii stands for one of the three coordinates, (x, y, z).
In this section we use the density matrix formalism to calculate the induced polariza-

tion, and by consequence, the susceptibility tensor, following references [70, 71]. In this
formalism, a molecule is a quantum system described by its density matrix ρ and the elec-
trical �eld is treated classically. The knowledge of the density matrix allows to calculate
the expectation value of any observable quantity. In order to describe the time evolution
of the system, it is thus necessary to know how the density matrix operator evolves in
time itself. The interest of this formalism is that it allows to take the surrounding medium
into account without introducing it directly in the quantum system. We consider here a
system composed of two parts: �rst, a quantum system with a certain number of energy
eigenstates (the molecule) and second, the thermal reservoir (surrounding medium). Only
the quantum system interacts with the external electrical �eld while the reservoir couples
non-radiativelly with the system, accounting for population relaxation and decoherence
between atomic states. With these assumptions, the evolution in time of the component
ρnm of the density matrix writes [70, 71]:

i~
dρnm
dt

= [Ĥ, ρ̂]nm − γnm
(
ρnm − ρ(eq)nm

)
(1.4)

where γnm is the decay rate to the stationary value of this matrix element, ρ
(eq)
nm . This rate

is introduced phenomenologically in order to take in account the dissipative interaction
of the molecule with its surrounding system. The Hamiltonian operator of the system,

1In SI units, the induced polarization is expressed in Cm−2 while the unit of the electrical �eld is the
Vm−1. By consequence, the dimension of the nonlinear susceptibility of order p χ(p) is (mV−1)p−1. The
linear susceptibility is thus dimensionless.
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1.1. The induced nonlinear polarization

Ĥ = Ĥ0 + V̂ (t), splits in two parts: the unperturbed Hamiltonian of the molecule Ĥ0 and
the interaction energy with the external �eld V̂ (t). In the electric dipole approximation,
the interaction energy is a function of the electric dipole operator µ̂, as V̂ (t) = µ̂ · E(t).

By calculating the matrix elements of the commutators [Ĥ0, ρ̂]nm and [V̂ (t), ρ̂]nm and
by de�ning the transition angular frequency between the eigenstates of the unperturbed
Hamiltonian | n〉 and | m〉 as ωnm = (En − Em)/~, the evolution equation of the elements
of the density matrix operator becomes [71]:

dρnm
dt

= −iωnmρnm − i~−1
∑
ν

(Vnνρνm − ρnνVνm)− iγnm(ρnm − ρ(eq)nm ) (1.5)

where
∑

ν accounts for the sum over all the intermediate states | ν〉. In order to solve Eq.
1.5 we develop a perturbation expansion, where the matrix element Vij of the interaction
Hamiltonian is replaced by λVij, with λ accounting for the strength of the perturbation.
In this approximation, the solution of the equation of motion of the density matrix can be
expanded in a power series of λ:

ρnm = ρ(0)
nm + λρ(1)

nm + λ2ρ(2)
nm + · · · . (1.6)

Finally, by replacing Eq. (1.6) into Eq. (1.5) it is possible to obtain the set of equations
of motion for each term of the perturbation expansion of the density matrix, as follows:

dρ
(0)
nm

dt
= −iωnmρ(0)

nm − γnm
(
ρ(0)
nm − ρ(eq)nm

)
(1.7a)

dρ
(j)
nm

dt
= −(iωnm + γnm)ρ(j)

nm − i~−1
[
V̂ , ρ̂(j−1)

]
nm
. (1.7b)

The solution of the zeroth-order term of the perturbation expansion, given by Eq.
(1.7a), corresponds to the absence of any external �eld, in which case, the elements of

the density matrix assume their value at thermal equilibrium, ρ
(0)
nm = ρ

(eq)
nm , with ρ

(eq)
nm = 0

when n 6= m. This last relation comes from the physical assumption that at thermal
equilibrium, the excited states of the system can be populated, but thermal excitation does
not contribute to any coherent superposition of molecular states. Once ρ

(0)
nm is known, all

the higher-order terms in the perturbation expansion of the density matrix can be obtained
by iteration. The knowledge of the matrix density allows to calculate the expectation value
of any physical observable Â, through the relation 〈Â〉 = Tr(ρ̂Â). Therefore, the average
induced dipole moment writes:

〈µ̂(t)〉 = Tr (ρ̂(t)µ̂) (1.8)

The induced macroscopic polarization is then deduced from the induced dipole moment
and the p-order polarization depends on the p-order term of the density matrix operator,
as follows:

7



Nonlinear optics: tensorial approach

P̂(p)(t) = N
∑
nm

ρ(p)
nm(t)µmn, (1.9)

where N is the number of molecules by unit volume. The induced dipole in Eq. (1.9) can be
decomposed into its frequency components, and by replacing Eq. (1.9) into Eq. (1.1), the
di�erent orders of the susceptibility tensor can be calculated. In the next section we deduce
the expressions for the susceptibilities tensors until the third-order of the perturbation
expansion.

1.2 The susceptibility tensors

In this section we show the explicit expressions of the susceptibility tensors, from the linear
until the third-order nonlinear susceptibilities. Here, we use the formalism developed in
the previous section, but we neglect the details of the calculations, which can nevertheless
be found in any specialized work in nonlinear optics[70, 72, 71].

1.2.1 The linear susceptibility

In order to determine the linear susceptibility, we need to calculate the density matrix
in the �rst order of the perturbation expansion, which means to integrate Eq. (1.7b)
for j = 1, once the commutator [V̂ (t), ρ̂(0)]nm has been calculated. In the electric dipole
approximation, this commutator is given by:

[V̂ (t), ρ̂(0)]nm = −
∑
ν

[
µnνρ

(0)
νm − ρ(0)

nνµνm

]
· E(t)

=
(
ρ(0)
mm − ρ(0)

nn

)
µnm · E(t), (1.10)

since ρ
(0)
nm = 0 if n 6= m. If we replace Eq. (1.10) into Eq. (1.7b) for j = 1 and if we

integrate the last one, the expression of the density matrix element ρnm(t) in the �rst
order of the perturbation expansion becomes:

ρ(1)
nm(t) = i~−1

(
ρ(0)
mm − ρ(0)

nn

)
µnm ·

∑
l

E(ωl)e
−(iωnm+γnm)t

∫ t

−∞
e[i(ωnm−ωl)+γnm]τdτ, (1.11)

where we used Eq. (1.2) to write the electric �eld E(t) as a discrete sum of positive and
negative frequency components E(ωl). Finally, by solving the integral in Eq. (1.11), we

can write ρ
(1)
nm(t) as:

ρ(1)
nm(t) = ~−1

(
ρ(0)
mm − ρ(0)

nn

)∑
l

µnm · E(ωl)e
−iωlt

(ωnm − ωl)− iγnm
. (1.12)
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1.2. The susceptibility tensors

According to Eq. (1.9), the macroscopic linear polarization can be calculated by ap-
plying the density matrix operator to the induced dipole moment. By decomposing the
induced polarization into its spectral components and by replacing Eq. (1.12) into Eq.
(1.9), we obtain:

∑
l

P(ωl)e
−iωlt = N

∑
l

∑
nm

~−1
(
ρ(0)
mm − ρ(0)

nn

) µmn[µnm · E(ωl)]e
−iωlt

(ωnm − ωl)− iγnm
. (1.13)

From Eq. (1.13) we can calculate the induced linear polarization P at frequency ωl,
which can be replaced into Eq. (1.1), in order to obtain the expression of the linear
susceptibility tensor:

χ(1)(ωl) =
N

ε0~
∑
nm

(
ρ(0)
mm − ρ(0)

nn

) µmnµnm

(ωnm − ωl)− iγnm
. (1.14)

In Cartesian coordinates, the linear susceptibility can be written as:

χ
(1)
ij (ωp) =

N

ε0~
∑
nm

(
ρ(0)
mm − ρ(0)

nn

) µimnµ
j
nm

ωnm − ωp − iγnm
. (1.15)

Finally, the expression of the linear susceptibility can be written, after some algebraic
manipulations, in a less compact form, that has a simpler physical interpretation, as follows:

χ
(1)
ij (ωp) =

N

ε0~
∑
nm

ρ(0)
mm

[
µimnµ

j
nm

ωnm − ωp − iγnm
+

µinmµ
j
mn

ωnm + ωp + iγnm

]
. (1.16)

The equation above shows that for positive frequencies (ωP > 0), only the �rst term in
brackets can become resonant. Therefore, when the incident frequency ωp is close to one
of the molecular resonances, the second term in brackets in Eq. (1.16) can be neglected.

The absorption coe�cient of a material is related to the imaginary part of the linear
susceptibility χ(1), while its refractive index involves the real part of χ(1). The spontaneous
Raman scattering is also associated to the linear susceptibility of the medium.

1.2.2 The nonlinear susceptibilities

The calculation of the higher-order susceptibilities follows the same procedure as the one
developed in the case of the linear susceptibility. In this section, we show only the �nal
expressions of the second and third-order susceptibilities, without detailing the calculations.
We present here both the resonant and nonresonant expressions of the susceptibilities.

The second-order susceptibility

The resonant second-order susceptibility χ(2) writes, in Cartesian coordinates:

9



Nonlinear optics: tensorial approach

χ
(2)
ijk(−ωσ;ωq, ωp) =

N

2ε0~2

∑
lmn

ρ
(0)
ll

×
{

µilnµ
j
nmµ

k
ml

(ωnl − ωp − ωq − iγnl)(ωml − ωp − iγml)

+
µilnµ

k
nmµ

j
ml

(ωnl − ωp − ωq − iγnl)(ωml − ωq − iγml)

+
µklnµ

i
nmµ

j
ml

(ωmn − ωp − ωq − iγmn)(ωnl + ωp − iγnl)

+
µjlnµ

i
nmµ

k
ml

(ωmn − ωp − ωq − iγmn)(ωnl + ωq − iγnl)

+
µjlnµ

i
nmµ

k
ml

(ωnm + ωp + ωq − iγnm)(ωml − ωp − iγml)

+
µklnµ

i
nmµ

j
ml

(ωnm + ωp + ωq − iγnm)(ωml − ωq − iγml)

+
µklnµ

j
nmµ

i
ml

(ωml + ωp + ωq − iγml)(ωnl + ωp − iγnl)

+
µjlnµ

k
nmµ

i
ml

(ωml + ωp + ωq − iγml)(ωnl + ωq − iγnl)

}
(1.17)

with ωσ = ωp + ωq. The �rst important property that we can deduce from Eq. (1.17)
is that the positive and negative frequency components of the susceptibility are related
according to:

χ
(2)
ijk(ωσ;−ωq,−ωp) = χ

(2)
ijk(−ωσ;ωq, ωp)

∗, (1.18)

where ∗ stands for complex conjugate. This is a direct consequence of the reality of
the induced polarization and the incident electrical �elds, that are physically measurable
quantities. Another important property of the nonlinear susceptibilities is the intrinsic
permutation symmetry. This condition states that the order of the incident �elds Ej(ωq)
and Ek(ωp) does not matter in the expression of the induced polarization (see Eq. (1.1)).
In terms of the susceptibility tensor, this property implies that we can simultaneously
interchange the last two Cartesian indices and the last two frequency arguments in Eq.
(1.17):

χ
(2)
ijk(−ωσ;ωq, ωp) = χ

(2)
ikj(−ωσ;ωp, ωq) (1.19)

When all the frequencies ωp, ωq and ωσ are far from any molecular resonance, Eq.
(1.17) can be simpli�ed, by neglecting the imaginary contributions in the denominators.
The �nal nonresonant second-order susceptibility is given by:

10



1.2. The susceptibility tensors

χ
(2)
ijk(−ωσ;ωq, ωp) =

N

2ε0~2∑
lmn

ρ
(0)
ll

{
µilnµ

j
nmµ

k
ml

(ωnl − ωp − ωq)(ωml − ωp)
+

µilnµ
k
nmµ

j
ml

(ωnl − ωp − ωq)(ωml − ωq)

+
µjlnµ

i
nmµ

k
ml

(ωnl + ωq)(ωml − ωp)
+

µklnµ
i
nmµ

j
ml

(ωnl + ωp)(ωml − ωq)

+
µklnµ

j
nmµ

i
ml

(ωml + ωp + ωq)(ωnl + ωp)
+

µjlnµ
k
nmµ

i
ml

(ωml + ωp + ωq)(ωnl + ωq)

}
(1.20)

The nonresonant second-order susceptibility tensor veri�es the property of full permu-
tation symmetry. This condition allows all the frequency arguments to interchange freely,
as long as the corresponding Cartesian indices are simultaneously interchanged. Therefore,
the full permutation symmetry establishes that:

χ
(2)NR
ijk (−ωσ;ωq, ωp) = χ

(2)NR
jki (−ωq;−ωp, ωσ) = χ

(2)NR
kij (−ωp;ωσ,−ωq). (1.21)

This condition is a direct consequence of the reality of the susceptibility tensor out of
resonance.

Examples of second-order nonlinear optical processes, involving the nonlinear suscepti-
bility χ(2), are second harmonic generation (SHG) and sum frequency generation (SFG).
In the �rst, the incident �elds have the same frequency ωq and ωp are equal (ωp = ωq = ω),
resulting in a scattered �eld whose frequency is doubled (ωσ = 2ω). Sum frequency gen-
eration is the general case where two incident beams with distinct frequencies ωp and ωq
result in a scattered �eld whose frequency is the sum of the incident ones (ωσ = ωp + ωq).
In spectroscopy applications, SFG is commonly used as a resonant process, where one
incident infrared beam excites a molecular vibrational mode. The molecular energy-level
diagram depicting these processes are shown in Fig. (1.1).

The third-order susceptibility

In the general case of third-order nonlinear induced polarization, three distinct incident
�elds at angular frequencies ωp, ωq and ωr combine to generate the emitted �eld at fre-
quency ωσ = ωp + ωq + ωr. The explicit expression of the third-order susceptibility tensor
χ(3) consists of 48 terms (instead of the eight terms in the case of χ(2)). Here, in order to
simplify we explicitly write only eight terms of the tensor, all the others being found by
intrinsic permutations of the incident �eld frequencies, that are included in the permuta-
tion operator PI . In the case of a third-order nonlinear optical process, this permutation
operator accounts for all the 3! permutations of the pairs (j, ωr)→ (k, ωq)→ (l, ωp). The
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Nonlinear optics: tensorial approach

Figure 1.1: Energy diagrams depicting some second-order nonlinear optical processes: (a)
second harmonic generation (SHG); (b) nonresonant sum frequency generation (SFG) and
(c) resonant SFG. | g〉 is the ground energy state, | v〉 is one of the molecular vibrational
states and | e〉 is an electronic level. Horizontal solid lines represent real molecular states,
while dashed lines correspond to virtual states.

�nal expression of the resonant third-order susceptibility is given by:

χ
(3)
ijkl(−ωσ;ωr, ωq, ωp) =

N

ε0~3
PI
∑
νnml

ρ
(0)
ll

×
{

µilνµ
j
νnµ

k
nmµ

l
ml

(ωνl − ωσ − iγνl)(ωnl − ωp − ωq − iγnl)(ωml − ωp − iγml)
(1.22a)

+
µllνµ

i
νnµ

j
nmµ

k
ml

(ωnν − ωσ − iγnν)(ωmν − ωp − ωq − iγmν)(ωνl + ωp + iγνl)
(1.22b)

+
µklνµ

i
νnµ

j
nmµ

l
ml

(ωnν − ωσ − iγnν)(ωνm + ωp + ωq + iγνm)(ωml − ωp − iγml)
(1.22c)

+
µllνµ

k
νnµ

i
nmµ

j
ml

(ωmn − ωσ − iγmn)(ωnl + ωp + ωq + iγnl)(ωνl + ωp + iγνl)
(1.22d)

+
µjlνµ

i
νnµ

k
nmµ

l
ml

(ωνn + ωσ + iγνn)(ωnl − ωp − ωq − iγnl)(ωml − ωp − iγml)
(1.22e)

+
µllνµ

j
νnµ

i
nmµ

k
ml

(ωnm + ωσ + iγnm)(ωmν − ωp − ωq − iγmν)(ωνl + ωp + iγνl)
(1.22f)

+
µklνµ

j
νnµ

i
nmµ

l
ml

(ωnm + ωσ + iγnm)(ωνm + ωp + ωq + iγνm)(ωml − ωp − iγml)
(1.22g)

+
µllνµ

k
νnµ

j
nmµ

i
ml

(ωml + ωσ + iγml)(ωnl + ωp + ωq + iγnl)(ωνl + ωp + iγνl)

}
(1.22h)
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1.2. The susceptibility tensors

In the limit of nonresonant excitation, the imaginary contributions iγαβ in the denomina-
tors in Eq. (1.22) can be neglected. Both expressions for the resonant and nonresonant
susceptibilities are very similar and for this reason we do not reproduce here the nonreso-
nant tensor. As in the case of χ(2), the nonresonant third-order susceptibility χ(3)NR also
veri�es the full permutation symmetry:

χ
(3)NR
ijkl (−ωσ;ωr, ωq, ωp) = χ

(3)NR
jkli (−ωr;−ωq,−ωp, ωσ)

= χ
(3)NR
klij (−ωq;−ωp, ωσ,−ωq)

= χ
(3)NR
lijk (−ωp;ωσ,−ωr,−ωq). (1.23)

Some examples of third-order nonlinear optical processes are four-wave mixing and
nonlinear coherent Raman processes, which will be detailed in the next section.

1.2.3 The third order susceptibilities for coherent Raman scatter-
ing

Coherent Raman scattering (CRS) processes are third-order nonlinear interactions that
are resonantly enhanced by two-photon frequency di�erence, whose advantage is that the
competing absorption processes can be neglected, once no single-photon resonances oc-
cur. CRS processes take place when two strong incident �elds, called pump and Stokes,
at frequencies ωp and ωs respectively, interact with a medium. By stimulated emission,
this interaction can lead to the ampli�cation of the Stokes signal (and by consequence a
depletion of the pump beam) and to the emission of an anti-Stokes �eld (at frequency
ωas = 2ωp − ωs), under the resonant condition ωp − ωs = ΩR. Here, ΩR = ωvg corresponds
to the transition frequency between the molecular ground state |g〉 and the vibrational
level |v〉. The two CRS processes, although concomitant, are called respectively stimulated
Raman scattering (SRS) and Coherent anti-Stokes Raman scattering (CARS). The molec-
ular energy-level diagram depicting both processes is shown in Figs. (1.2a) and (1.2b),
respectively. In the case of SRS, the two complimentary processes (Stokes ampli�cation
and pump depletion) can be measured separately. When it is the ampli�cation of the
Stokes beam which is detected, the processes is called stimulated Raman gain (SRG). In
the other hand, we name stimulated Raman loss (SRL) the process in which the depletion
of the pump �eld is detected. In the scope of this thesis, we are particularly interested in
the CARS process, which will be developed in more detail.

In this section we propose to write explicitly the expression for the susceptibility tensor
representing the resonant CARS process, χ(3)R(−ωas;ωp, ωp,−ωs). For this, we start from
Eq. (1.22), we replace the frequencies ωσ, ωr, ωq and ωp by the corresponding ωas, ωp, ωp
and −ωs and we keep only the resonant terms, that are the ones whose denominator contain
ΩR−ωp +ωs± iγvg. In order to simplify the calculations, we assume that the ground level
energy is nondegenerate and that this is the only populated level. Mathematically, this
means that ρ

(0)
ll = 1 when l = g and ρ

(0)
ll = 0 otherwise. By consequence, the summation
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Nonlinear optics: tensorial approach

Figure 1.2: Energy diagrams depicting coherent Raman processes: (a) stimulated Raman
scattering (SRS); (b) resonant coherent anti-Stokes Raman scattering (CARS) and (c)
nonresonant CARS. | g〉 is the ground energy state, | v〉 is one of the molecular vibrational
states and | e〉 is an electronic level. All the processes depicted here occur far from any
electronic resonance. The angular frequencies involved in the processes are ωp, ωs and ωas
for the pump, Stokes and anti-Stokes �elds, respectively. Horizontal solid lines represent
real molecular states, while dashed lines correspond to virtual states.

over l in Eq. (1.22) is done simply by replacing all the indices l by g. Therefore, the
resonant condition stated above is veri�ed in the terms (1.22a) and (1.22e) of Eq. (1.22),
when n = v. Under these assumptions, the CARS susceptibility writes:

χ
(3)CARS
ijkl (−ωas;ωp, ωp,−ωs) =

N/ε0~3

ΩR − ωp + ωs − iγvg

×PD
∑
νm

[
µigνµ

j
νvµ

k
vmµ

l
mg

(ωνg − ωas)(ωmg + ωs)
+

µjgνµ
i
νvµ

k
vmµ

l
mg

(ωνv + ωas)(ωmg + ωs)

µigνµ
j
νvµ

l
vmµ

k
mg

(ωνg − ωas)(ωmg − ωp)
+

µjgνµ
i
νvµ

l
vmµ

k
mg

(ωνv + ωas)(ωmg − ωp)

]
(1.24)

In this equation we neglected all the other imaginary contributions, by assuming that
neither ωp, ωs nor ωas are close to an electronic resonance. PD is a permutation factor due
to the degeneracy of the pump beams. It accounts for the four extra terms obtained by
permuting (j, ωp)→ (k, ωp).

The same development can be done for the SRS process. In this case, the third order
susceptibility components have the following frequency dependence: χ

(3)
ijkl(−ωs;ωp,−ωp, ωs)

for the stimulated Raman gain and χ
(3)
ijkl(−ωp;ωs, ωp,−ωs) for the stimulated Raman loss.

The tensor elements of the susceptibilities for both SRS processes are the same, but with
di�erent spectral dependencies: the resonant denominator is ΩR − ωp + ωs + iγvg for SRG
and ΩR − ωp + ωs − iγvg in the case of SRL. By consequence, the imaginary parts of the
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susceptibilities change sign: in the case of ampli�cation, Imχ(3) < 0, whereas Imχ(3) > 0
for depletion of the signal. This is a mathematical veri�cation of the physical concept that
connects the gain of the Stokes �eld with the loss of the pump beam[73].

All the calculations developed so far in this section correspond to the frequency dif-
ference resonant CARS process. Fig. (1.2c) shows however a nonresonant third-order
nonlinear process that occurs when the incident frequencies ωp and ωs generate a signal
at frequency ωas. In this case, there is no enhancement of the nonlinearity by vibrational
resonance and the process corresponds to the electronic response of the medium to the
incident �elds. This is the named nonresonant CARS process, whose susceptibility tensor
is given by:

χ
(3)NR
ijkl (−ωas;ωp, ωp,−ωs) =

N

~3ε0
PF
∑
νnm

µigνµ
j
νnµ

k
nmµ

l
mg

(ωνg − ωas)(ωng − ωp + ωs)(ωmg + ωs)
, (1.25)

where PF is the full permutation symmetry operator, that accounts for all permutations of
the pairs (i,−ωas), (j, ωp), (k, ωp) and (l,−ωs). Here we used the simpli�cative assumption
that the ground state |g〉 is the only populated level. The full description of the CARS
process involves therefore, both the resonant and nonresonant third-order susceptibilities,
given by Eqs. (1.24) and (1.25), respectively. The �nal susceptibility tensor corresponding
to the CARS process is then given by χ(3)CARS = χ(3)R + χ(3)NR.

1.3 Role of symmetry on optical responses

This section concentrates on the symmetry properties of the nonlinear susceptibilities and
a special attention is given to the third-order susceptibility. First, we deduce the Kleinamn
symmetry rule from the full permutation symmetry and then we discuss the case of spatial
symmetry. In this chapter, we give a general introduction about tensors and symmetries,
and in the next chapters we will concentrate on the speci�c case of CARS microscopy.

In this section and the following one (section 1.4), the term susceptibility tensor and

the notation χ
(p)
i0...ip

with i one of the Cartesian coordinates (x, y, z), will be applied to
either a crystal in its unit-cell frame or to a molecule in its molecular frame de�ned by its
principal axes. This is a simpli�cation, since a molecular response is usually called hyper-
polarizability instead of susceptibility. The formal notation will be however introduced in
section 1.5.2.

1.3.1 Permutation symmetry

We saw in section 1.2 that the nonlinear susceptibilities involve high-rank tensors with
quite complicated quantum expressions. In the case of second and third-order processes, the
susceptibility tensor contain 27 and 81 components, respectively. It is therefore essential to
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have a complete knowledge of the symmetry properties of these tensors in order to simplify
the problems in nonlinear optics. Some of these properties have already been seen in section
1.2, in particular the ones concerning the invariance of the susceptibility when we permute
simultaneously the incident frequencies and the corresponding Cartesian coordinates. In
the case of the third-order susceptibility, it means that χ

(3)
ijkl(−ωσ;ωr, ωq, ωp) is invariant

under all permutations of the pairs (j, ωr), (k, ωq) and (l, ωp). This property is known as
intrinsic symmetry and its physical meaning is that the order of the incident �elds do not
matter in the interaction with the medium.

We also saw in section 1.2, that in the case of lossless media, when the susceptibility
tensors are real, the susceptibilities are symmetric under the simultaneous permutation
of all pairs of Cartesian indices and frequencies, including the emitted frequency. This
property is called full permutation symmetry and is depicted in Eqs. (1.21) and(1.23) for
the second and third-order susceptibilities, respectively. We consider now the case of the
third-order susceptibility for the nonresonant CARS processes, given in Eq. (1.25). When
the optical �elds appearing in the denominator of this equation are much smaller than the
transition frequencies ωνo, ωno and ωmo of the medium, all the angular frequencies involved
in the process can be permuted freely without changing the susceptibility. This means
that for nonresonant interactions, the susceptibility is independent of the frequencies and
by consequence, all permutations of the Cartesian indices leave the susceptibility tensor
invariant. In the case of the third-order susceptibility, this property can be expressed as:

χ
(3)NR
ijkl (−ωσ;ωr, ωq, ωp) = χ

(3)NR
jkli (−ωσ;ωr, ωq, ωp)

= χ
(3)NR
klij (−ωσ;ωr, ωq, ωp) = χ

(3)NR
lijk (−ωσ;ωr, ωq, ωp). (1.26)

This symmetry property is veri�ed for all the nonresonant nonlinear susceptibilities and is
known as the Kleinman symmetry. It was �rst reported by Kleinman in his article of 1962
for the second-order susceptibility χ(2) [74].

1.3.2 Spatial symmetry

In addition to the permutation symmetry properties described in section 1.3.1, the suscep-
tibility tensors are also governed by the spatial symmetry of the medium. In this section
we show how these properties allow to reduce the number of independent components of
the susceptibility tensors. For this reason, in a �rst step, we review some of the basic
mathematical concepts on tensors.

Tensors: basic mathematical concepts

Let us consider a set of quantities Ti1...in...iR whose indices in may be the Cartesian co-
ordinates x, y or z. These quantities are the components of a tensor of rank R and the
total number of components is 3R. A tensor is called symmetric with respect to the in-
dices in and im when the permutation of these indices leave the component invariant:
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Ti1...in...im...iR = Ti1...im...in...iR . In the same way, the tensor is called antisymmetric with
respect to the indices in and im when Ti1...in...im...iR = −Ti1...im...in...iR . A tensor is called
totally symmetric when it is invariant under any permutation of the indices.

A tensorial contraction is a reduction of two tensors of di�erent ranks into a lower order
tensor. In the case of two tensors T et U with ranks R and S, respectively, with R > S,
the resulting tensor is of rank R− S. If R = 4 and S = 3, for instance, it follows:

Tensorial contraction (T : U)i =
∑
jkl

TijklUjkl.

When both tensors are of the same rank, their reduction is a scalar and is called tensorial
scalar product. For a 4-rank tensor, it is de�ned as follows:

Tensorial scalar product T ·U =
∑
ijkl

TijklUijkl.

When the tensorial scalar product is between the same tensor, it is possible to de�ne
the norm of a tensor, as follows:

Tensor norm |T| =
√∑

i1...iR

T 2
i1...iR

.

In the other hand, a tensorial product is the creation of a higher order tensor, from two
tensors of the same or di�erent ranks. If the initial tensors are R− and S−rank, then the
resulting tensorial product is a (R + S)-rank tensor. As in the previous case, it follows:

Tensorial product (T⊗U)ijklmno = TijklUmno.

It is straightforward to verify that the induced nonlinear polarization P(p), given in Eq.
(1.1) is the result of a tensorial contraction between the susceptibility tensor χ(p) and the
tensor of rank p−1 resulted from the tensorial product of the p−1 incident �elds E, which
are 1-rank tensors.

A tensor T of rank R can be decomposed into a tensorial product of the vectors that
form the basis of a coordinate system. In Cartesian coordinates, the tensor decomposi-

tion writes:

T =
∑
i1...iR

Ti1...iRi1 ⊗ . . .⊗ iR, (1.27)

where the vectors in are one of the unit vectors x̂, ŷ or ẑ that forms the basis of the
Cartesian coordinate system (x, y, z). Therefore, the tensor properties depend on the
chosen reference frame. It is then useful to de�ne the transformation law of a tensor when
we change the basis of our coordinate system (in other words, when we rotate from one
coordinate system to another):

T ′l1...ln...lR =
∑

i1...in...iR

al1i1 . . . alnin . . . alRiRTi1...in...iR . (1.28)
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Nonlinear optics: tensorial approach

Here, T ′l1...ln...lR and Ti1...in...iR are respectively the tensor components in the new (x′, y′, z′)
and old (x, y, z) frames and alnin are the matrix elements of the transformation, in other
words, the rotation from (x, y, z) to (x′, y′, z′): x′

y′

z′

 =

 ax′x ax′y ax′z
ay′x ay′y ay′z
az′x az′y az′z

 x
y
z

 (1.29)

Reduction of the susceptibility tensors from spatial symmetry considerations

The structure of a susceptibility tensor depends on the vanishing of some tensor components
and on the relations between the nonvanishing tensor elements. In this section, we de�ne
some rules that allow to determine the structures of the susceptibility tensors based on
spatial symmetry considerations of the medium. For this purpose, the main rule is called
Neumann's principle, that states that any physical property must include all the symmetry
elements of the point group2 of the system. In other words, Neumann's principle requires
that a susceptibility tensor will be invariant under any transformation of coordinates that
is governed by any symmetry operation of the medium. Mathematically, it means that,
if we apply a symmetry operation to the susceptibility tensor χ

(p)
i0...ip

(−ωσ;ω1, . . . , ωp), the

tensor in the new system of coordinates χ
(p)′
l0...lp

(−ωσ;ω1, . . . , ωp) writes:

χ
(p)′
l0...lp

(−ωσ;ω1, . . . , ωp) = δl0i0 . . . δlpipχ
(p)
i0...ip

(−ωσ;ω1, . . . , ωp). (1.30)

The susceptibility tensor in the new coordinate system relates to the susceptibility
tensor in the old coordinate system according to Eq. (1.28). Therefore, by replacing
Eq. (1.28) into Eq. (1.30), we determine the set of 3p+1 equations that must satisfy the
components of any p-order (or p+ 1-rank) susceptibility tensor [75]:∑

i0...ip

(
ajl0i0 . . . a

j
lpip
− δl0i0 . . . δlpip

)
χ

(p)
i0...ip

(−ωσ;ω1, . . . , ωp) = 0. (1.31)

Here, δli is the Kronecker delta and the superscript j stands for the jth symmetry operator
of the group. These 3p+1 equations must be veri�ed for all matrices ajli representing all the
symmetry operators of the group.

A direct consequence of Eq. (1.31) can be deduced for media with inversion operation.
For this symmetry operation, the transformation matrix ali is given by the opposite of the
identity matrix, or ali = −δli. By replacing this relation into Eq. (1.31), it follows:

[
(−1)p+1 − 1

]
χ

(p)
i0...ip

(−ωσ;ω1, . . . , ωp) = 0⇒

⇒ χ
(p)
i0...ip

(−ωσ;ω1, . . . , ωp) =

{
0 if p is even
∀ if p is odd

. (1.32)

2The de�nition of a point group is found in the paragraph �Crystal symmetry classes�.
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1.3. Role of symmetry on optical responses

This is a very important result in nonlinear optics, stating that all the susceptibility tensors
χ(p) for centrosymmetric media vanish for even-order nonlinear processes. This property
explains why second order processes, in particular second harmonic and sum frequency
generation, are widely used to probe interfaces and other media lacking a center of inversion.

Crystal symmetry classes The structure of the susceptibility tensor of a crystal in
its unit-cell frame or of a molecule in its molecular frame, is strongly related to spatial
symmetry considerations. According to crystallography, all crystals are divided into 32
groups, called crystallographic point groups. Most known molecules also belong to one of
the 32 crystallographic point groups. These are mathematical groups containing all the
symmetry operations that leave at least one point �xed and do not change the structure
appearance of the crystal or molecule after the operation. The number of symmetry

operations in a point group de�nes its order h. All the symmetry operations can be
summarized in �ve types:

1. Identity: a trivial operation, represented by the letter E.

2. n−fold rotation Cn: the crystal is symmetric under rotations by 360◦/n.

3. Re�ection in a plane σ. The re�ection plane is labeled either σv or σd if it contains
the main axis of rotation Cn, or σh if it is perpendicular to Cn.

4. Inversion i: the crystal is symmetric under inversion of the space in respect to the
origin of the coordinate system.

5. Rotation-re�ection (or improper rotation) S: the crystal is symmetric under a
rotation by 360◦/n followed by a re�ection in a plane perpendicular to the rotation
axis.

For a crystalline medium, determining the structure of the p−order susceptibility ten-
sor χ(p) in its crystallographic frame (x, y, z), consists of solving the system of 3p+1 linear
equations (1.31) for all the h symmetry operations of the group, which results in a total of
h3p+1 equations. It is well known from group theory, however, that only a limited number
of basic symmetry operations are su�cient to derive all the symmetry operations[75, 76].
Therefore, knowing the transformation matrices corresponding to these basic symmetry op-
erations, allows to reduce the system of linear equations to be solved in order to determine
the susceptibility tensor components. These transformation matrices are called �gener-
ating matrices� and are summarized in table 1.1. In this table, we do not show the
explicit expression of the generating matrices, but instead, the result of the transformation
x′ = Mx.

The 32 crystallographic point groups and their main symmetry operations are listed
in table 1.2, divided into seven crystal systems. Here, we use the Schön�ies notation,
that is widely employed among chemists and spectroscopists. Some authors prefer to use
the Hermann-Mauguin notation, that is the current labeling among crystallographers. As
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Nonlinear optics: tensorial approach

Table 1.1: Generating transformation matrices x′ = Mx [76].

Transformation x′ = Mx Physical interpretation

M0 (x, y, z)→ (x, y, z) Identity
M1 (x, y, z)→ (−x,−y,−z) Inversion
M2 (x, y, z)→ (−x,−y, z) Two-fold rotation about z

axis
M3 (x, y, z)→ (x, y,−z) Re�ection in the xy plane
M4 (x, y, z)→ (x,−y, z) Two-fold rotation about x

axis
M5 (x, y, z)→ (−x, y, z) Re�ection in the yz plane
M6 (x, y, z)→ (x,−y, z) Re�ection in the xz plane
M7 (x, y, z)→ (y,−x, z) Four-fold rotation about z

axis
M8 (x, y, z)→ (−y, x,−z) Four-fold inversion-rotation

about z axis

M9 (x, y, z)→
(
−x

2
−
√

3y
2
,
√

3x
2
− y

2
, z
)

Three-fold rotation about z
axis

M10 (x, y, z)→
(
x
2
−
√

3y
2
,
√

3x
2

+ y
2
,−z

)
Three-fold inversion-
rotation about z axis

M11 (x, y, z)→
(
x
2
−
√

3y
2
,
√

3x
2

+ y
2
, z
)

Six-fold rotation about z
axis

M12 (x, y, z)→
(
−x

2
−
√

3y
2
,
√

3x
2
− y

2
,−z

)
Six-fold inversion-rotation
about z axis

M13 (x, y, z)→ (z, x, y) Three-fold rotation about
[111] direction

M14 (x, y, z)→ (−y,−z,−x) Three-fold inversion-
rotation about [111] direc-
tion

we are not concerned with calculating the transformation matrices to all the symmetry
operations, we list in table 1.2 the generating matrices for each crystallographic point
group. These transformation matrices are valid only for a speci�c coordinate system,
which is speci�ed in the last column of table 1.1. The orthonormal Cartesian coordinate
system (x, y, z) de�ned by the �right-hand� rule is the most widely used. Here, we adopt
the convention that the main axis of symmetry is oriented along the z direction.

Direct inspection method The direct inspection, or Fumi's method, is the simplest
way of analyzing the invariance equation (1.31). According to this method, the di�erent
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1.3. Role of symmetry on optical responses

Table 1.2: List of the 32 crystallographic point groups, divided into seven crystal systems,
with their respective symmetry operations and generating matrices.

Crystal system Point

group

Symmetry

operation

Group

order h
Generating

matrices

Triclinic
C1 E 1 M0

Ci E, i 1 M1

Monoclinic
C2 E, C2 1 M2

Cs E, σ 1 M3

C2h E, C2, σ, i 4 M2, M3

Orthorhombic
D2 E, C2 4 M4, M2

C2v E, C2, σ 4 M5, M2

D2h E, C2, σ, i 8 M6, M5, M3

Trigonal

C3 E, C3 3 M9

S6 E, C3, S6, i 6 M10

D3 E, C3, C2 6 M9, M4

C3v E, C3, σ 6 M9, M5

D3d E, C3, C2, σ, i,
S6

12 M10, M5

Hexagonal

C6 E, C6 6 M11

C3h E, C3, σ, S3 6 M12

C6h E, C6, C3, C2, i,
S3, S6, σ

12 M12, M5

D6 E, C6, C3, C2 12 M11, M4

C6v E, C6, C3, C2, σ 12 M11, M5

D3h E, C3, C2 σ, S3 12 M11, M3

D6h E, C6, C3, C2,
σ, S3, S6, i

24 M11, M5, M3

Tetragonal

C4 E, C4 4 M7

S4 E, S4, C2 4 M8

C4h E, C4, C2, i, S4,
σ

8 M7, M3

D4 E, C4, C2 8 M7, M3

C4v E, C4, C2, σ 8 M7, M5

D2d E, S4, C2, σ 8 M8, M4

D4h E, C4, C2, i, S4,
σ

16 M7, M3, M5

Cubic

T E, C3, C2 12 M13, M2

Th E, C3, C2, i, S6,
σ

24 M14, M2

O E, C4, C3, C2 24 M13, M7

Td E, C3, C2, S4, σ 24 M13, M8

Oh E, C4, C3, C2, i,
S4, S6, σ

48 M14, M7
21



Nonlinear optics: tensorial approach

symmetry operations for a certain number of crystallographic point groups, when applied
to the h3p+1 set of equations (1.31), result only in intermixing of the indices and/or change
in the sign of the tensorial components. Mathematically, it is equivalent to:

χ
(p)
l0...lp

(−ωσ;ω1, . . . , ωp) = ±χ(p)
i0...ip

(−ωσ;ω1, . . . , ωp). (1.33)

This method can be applied to all point groups belonging to the monoclinic, orthorhom-
bic, tetragonal and cubic systems. They correspond to the crystal systems whose generating
matrices include M1 to M8, M13 and M14. These transformation matrices only transform
one coordinate into another or change their signs. They do not include transformations in
which the �nal coordinate is a linear combination of the initial ones.

From the tensor decomposition rule in Eq. (1.27), a p-order ((p + 1)-rank) tensor
behaves as the (p + 1) tensorial product of the unit vectors x̂, ŷ and ẑ that form the
basis of the Cartesian coordinate system. Therefore, a (p + 1)-rank tensor behaves as a
(p + 1)-rank polynomial build from the product of indexes x, y and z. The component

χ
(3)
xxyy(−ωσ;ωr, ωq, ωp), for instance, behaves like the polynomial xxyy. Note that the order

of the indexes in the polynomial is very important and must be respected. Consequently,
from Eq. (1.33), the direct inspection of the coordinates before and after transformation
is su�cient to determine the structure of the susceptibility tensor. If a polynomial is equal
to itself but with the opposite sign, then the corresponding component vanishes. All the
other elements of the tensor can be deduced by the relations between the polynomials.

As an example, we consider the case of the linear susceptibility χ(1) of a crystal with
cubic symmetry, belonging to the Oh point group. According to table 1.2, it is necessary to
inspect two generating matrices, M7 andM14, in order to determine the tensorial structure
of the crystal. As the linear susceptibility χ(1) is a 2-rank tensor of a linear optical process
(p = 1), for each generating matrix we have to solve a system of 3p+1 = 9 equations.
Therefore, for both transformations M7 and M14 the system to be solved consists of 18
polynomial equations. From table 1.1, these transformations are (from M14 in the left and
M7 in the right):

(1) xx → yy (10) xx → yy
(2) xy → yz (11) xy → −yx
(3) xz → yx (12) xz → yz
(4) yx → zy (13) yx → −xy
(5) yy → zz (14) yy → xx
(6) yz → zx (15) yz → −xz
(7) zx → xy (16) zx → zy
(8) zy → xz (17) zy → −zx
(9) zz → xx (18) zz → zz.

From (12) and (15), xz = yz = 0. In the same way, from (16) and (17), zx = zy = 0.
From (10) and (14), xx = yy and from (11), xy = −yx. But, from the relations given
by M14, like (2) for instance, xy = yz, which means xy = yx = 0. Finally, from (5) or
(9), xx = yy = zz. In conclusion, for a crystal that belongs to the Oh crystallographic
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1.3. Role of symmetry on optical responses

point group, the linear susceptibility has only three nonvanishing components, that are
furthermore mutually equal: χ

(1)
xx = χ

(1)
yy = χ

(1)
zz . All the other terms vanish: χ

(1)
ij = 0

for i 6= j. The same procedure allows to show that these relations stand for all crystals
with cubic symmetry. This structure also corresponds to the linear susceptibility for an
isotropic material. Therefore, linear optics does not allow to di�erentiate between isotropy
and cubic symmetry. A more detailed discussion is done in chapter 3.

Finally, the structure of the susceptibility tensors determined by direct inspection,
can be further modi�ed if we take into account additional permutation symmetry of the
tensor. For instance, when Kleinman symmetry is observed, some additional components
may vanish or become equal.

The direct inspection method and by consequence Eq. (1.33) are not valid for crystals
and molecules belonging to the trigonal and hexagonal systems. In these cases, the three- or
six-fold rotations lead to transformation matrices that change one coordinate into a linear
combination of coordinates, as we show in table 1.1. For these crystals, determining the
structure of the susceptibility tensors, requires to solve the whole system of equations (1.31).
Some methods, as the method of cyclic coordinates described in [75], make it easier the
determination of the structures of high-rank susceptibilities. The description of this method
however, is beyond the scope of this manuscript. Here, we are mainly concerned with
calculating susceptibility tensors until the fourth-rank (third order nonlinear processes,
p = 3). In the most complex case, corresponding to the D6h point group in the hexagonal
crystal system, determining the structure of the third order susceptibility tensor χ(3),
requires to solve 3p+1 = 81 linear equations for each of the three generating matrices,
resulting in a system of 3 · 3p+1 = 243 equations.

As an example, let us use Eq. (1.31) to determine the linear susceptibility χ(1) of a
crystal belonging to the C3 crystallographic point group. The only generating matrix for
this point group is M9, listed in table 1.1. Consequently, the tensor structure of the linear
susceptibility is determined by solving a system of 1 · 3p+1 = 9 equations:
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(11) −3

4

(
χ(1)
xx − χ(1)

yy

)
+

√
3

4

(
χ(1)
xy + χ(1)

yx

)
= 0

(12) −
√

3

4

(
χ(1)
xx − χ(1)

yy

)
− 3

4

(
χ(1)
xy + χ(1)

yx

)
= 0

(13) −3

2
χ(1)
xz −

√
3

2
χ(1)
yz = 0

(21) −
√

3

4

(
χ(1)
xx − χ(1)

yy

)
− 3

4

(
χ(1)
xy + χ(1)

yx

)
= 0

(22)
3

4

(
χ(1)
xx − χ(1)

yy

)
−
√

3

4

(
χ(1)
xy + χ(1)

yx

)
= 0

(23)

√
3

2
χ(1)
xz −

3

2
χ(1)
yz = 0

(31) −3

2
χ(1)
zx −

√
3

2
χ(1)
zy = 0

(32)

√
3

2
χ(1)
zx −

3

2
χ(1)
zy = 0

(33) 0χ(1)
zz = 0,

where the indices in brackets refer to the tensor components after transformation. From
(11) and (12) or (21) and (22) we deduce that χ

(1)
xx = χ

(1)
yy and χ

(1)
xy = −χ(1)

yx . It has been
demonstrated however, that the linear susceptibility is totally symmetric [72, 77], which

leads to χ
(1)
xy = χ

(1)
yx = 0. From (13) and (23), we show χ

(1)
xz = χ

(1)
yz =0 and (31) and (32)

imply that χ
(1)
zx = χ

(1)
zy =0. Finally, (33) indicates that χ

(1)
zz is independent and can have

any value. In conclusion, for a crystal that possesses a three-fold symmetry axis, the linear
susceptibility has only three nonvanishing components, χ

(1)
xx , χ

(1)
yy and χ

(1)
zz , two of which

are independent (χ
(1)
xx = χ

(1)
yy ).

In appendix A we show the �rst-, second- and third-order susceptibility tensors, for
all the 32 crystallographic point groups. In the case of linear optical processes, only �ve
di�erent tensor structures can be found. Indeed, the linear susceptibility tensors of crystals
belonging to the tetragonal, trigonal and hexagonal systems have the same structures, as
well as the susceptibilities of cubic crystals and isotropic media. In appendix A, the tensor
structures for the second-order susceptibilities are listed only for the 21 crystallographic
point groups that have no center of inversion.

1.4 Vibrations and symmetry

In the previous section (1.3.2), we studied how the structure of the susceptibility tensor
depends on the spatial symmetry of the crystal or the molecule. In this section, we will
use symmetry considerations to investigate the tensorial structure of the normal modes of
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1.4. Vibrations and symmetry

crystal and molecular vibration. A polyatomic molecule composed of n atoms, possesses
3n degrees of freedom of motion, because any of its atoms can move along the three
directions of a Cartesian coordinate system. The motions of a molecule can be either
rotations, translations or vibrations. Molecules can have 3n − 5 or 3n − 6 normal modes
of vibration, depending on wether they have linear3 or nonlinear4 geometries, respectively.
If we suppose that the atoms move as harmonic oscillators, then the normal modes of
vibration are independent of each other. According to group theory considerations [78],
molecular vibrational modes are classi�ed into the irreducible representations of the point
group of the molecule. In order to study molecular vibration, it is therefore necessary to
introduce some basic concepts of group theory, including, representations and the character
table of a point group.

1.4.1 Representations of groups

Group representations allow to manipulate group theory using linear algebra, which is
particularly useful when dealing with the e�ects of symmetry on the solutions of equations
describing a system such as a molecule.

In mathematics, a group is a set G with an operation, called group law and denoted with
the symbol •, which combines two elements of the group g and g′ to form another element
g •g′, of the same group. Every group has an identity element e, for which g •e = e•g = g.
For every element in the group we associate an inverse element. It means that, if g′ is the
inverse element of g, then g • g′ = g′ • g = e.

A group representation is a linear transformation which corresponds to an action of the
group G on a vector space V . In the particular case of the theory of molecular vibrations,
representations of the point groups are sets of square matrices, so that the group operations
can be represented by matrix multiplication. In this way, if Γ is a representation of the
group G, for every two group elements g and g′, we associate the matrices Γ(g) and
Γ(g′), that satisfy the group operation Γ(g)Γ(g′) = Γ(g • g′). The dimensionality of the
representation corresponds to the number of rows or columns in the matrix.

A similarity transformation relates two elements g and g′ of the group G. We say
that g and g′ are similar when there is an element h of the group G for each the following
relation is satis�ed:

h−1 • g • h = g′. (1.34)

The notation h−1 stands for the inverse element of h.
When it is possible to reduce the matrices representing all the elements of the group

to block form, with the same block structure and by the same similarity transformation,
then the representation is said to be reducible. If this cannot be done, the representation

3In linear molecules, the bond angles between atoms are 180◦. Carbon dioxide (CO2) is an example of
linear molecule.

4In water molecule H2O, the bonding angle between hydrogens is 104.45◦, which characterizes a non-
linear molecule.
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Nonlinear optics: tensorial approach

is irreducible. An irreducible representation is the simplest and most fundamental
representation of a group.

Figure 1.3: Scheme of the symmetry elements in the molecular frame for (a) a water
molecule, that has C2v symmetry and (b) an ammonia molecule, that belongs to the C3v

point group. In both cases we depict the symmetry elements in the 3D-space together with
their projection in the xy plane (the molecule is seen from the top, the z axis pointing
towards the reader). Reproduced from http://www-linux.gsi.de/~wolle/TELEKOLLEG/

KERN/PPT/NH3-symmetry1.ppt.

As an example, let us consider the point group C2v. This group has four elements:
identity E, two-fold rotation C2 and two vertical re�ection planes σv(xz) and σv(yz), as
depicted in Fig. (1.3a). The 3 × 3 matrices corresponding to the transformation of the
cartesian coordinate system (x, y, z) under each one the four group operations are listed
in table 1.3. The set of all four matrices together is a representation of dimension 3 of the
group C2v. We name this representation Γr. All four 3× 3 matrices of the representation
Γr of the group C2v are diagonal and have thus the same block structure. It means that
Γr is a reducible representation that can be decomposed in 3 irreducible representations
of C2v, that we name Γ1

r, Γ2
r and Γ3

r. These are one-dimensional representations and they
correspond to the diagonal elements of Γr, as listed in table 1.4.

Another example is the C3v group, that has 6 symmetry elements: the identity E, two
three-fold axes that we note C3 for a rotation of 120◦ and C2

3 for a rotation of 240◦, and
three vertical re�ection planes that we note σ1

v , σ
2
v and σ3

v . These symmetry elements are
depicted in Fig. (1.3b). The 3 × 3 matrices corresponding to the transformation of the
cartesian coordinate system (x, y, z) under each one of the six operations are showed in
table 1.5. The set of all six matrices together is a representation of dimension 3 of the group
C3v. This representation is named Γm. Two of the six 3× 3 matrices, Γm(E) and Γm(σ1

v),
of the representation Γm are diagonal while four matrices, Γm(C3), Γm(C2

3), Γm(σ2
v) and

Γm(σ3
v), are block-diagonalizable with two blocks: the �rst one consisting of 2×2 matrices,

corresponding to the �rst two rows and columns and the second one composed by the
element in the third row and third column of the matrices in Γm. This block structure is
also present in a diagonal matrix, which means that Γm is a reducible representation that
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Table 1.3: One reducible representation of the C2v point group.

C2v E C2 σv(xz) σv(yz)

Γr

 1 0 0
0 1 0
0 0 1

  −1 0 0
0 −1 0
0 0 1

  1 0 0
0 −1 0
0 0 1

  −1 0 0
0 1 0
0 0 1



Table 1.4: Some irreducible representations of the C2v point group.

C2v E C2 σv(xz) σv(yz)

Γ1
r 1 -1 1 -1

Γ2
r 1 -1 -1 1

Γ3
r 1 1 1 1

can be decomposed in 2 irreducible representations of C3v, that we name Γ1
m and Γ2

m. They
are listed in table 1.6.

Table 1.5: One reducible representation of the C3v point group.

C3v E C3 C2
3 σ1

v σ2
v σ3

v

Γm
 1 0 0

0 1 0
0 0 1

 1
2

−1 −
√
3 0√

3 −1 0
0 0 2

 1
2

 −1
√
3 0

−
√
3 −1 0

0 0 2

  1 0 0
0 −1 0
0 0 1

 1
2

 −1 −
√
3 0

−
√
3 1 0

0 0 2

 1
2

−1
√
3 0√

3 1 0
0 0 2



Table 1.6: Some irreducible representations of the C3v point group.

C3v E C3 C2
3 σ1

v σ2
v σ3

v

Γ1
m

(
1 0
0 1

)
1
2

(
−1 −

√
3√

3 −1

)
1
2

(
−1

√
3

−
√

3 −1

) (
1 0
0 −1

)
1
2

(
−1 −

√
3

−
√

3 1

)
1
2

(
−1

√
3√

3 1

)
Γ2
m 1 1 1 1 1 1

The representation Γ1
m has dimension 2 while the representation Γ2

m is one-dimensional.
The irreducible representations of a group satisfy the great orthogonality theorem,

that establishes the following relation:∑
g

Γ(i)(g)∗µνΓ
(j)(g)αβ =

h

li
δijδµαδνβ (1.35)
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where ∗ denotes the complex conjugate and Γ(i) and Γ(j) are inequivalent and irreducible
representations of a group with h elements. Here, the summation over g runs over all the
group elements and li is the dimensionality of the representation Γ(i). The subscripts µ and
ν stand for the element in the µth line and νth column of the matrix Γ(i)(g) (subscripts α and
β have the same role in the matrix Γ(j)(g)). It can be shown [78] that

∑
i l

2
i = h, where the

sum runs over all the inequivalent irreducible representations of the group. This relation
is called the dimensionality theorem and is essential for working out the irreducible
representations of any group.

All the matrix representations that are related to each other through unitary trans-
formations are equivalent and therefore, there is a large degree of arbitrariness in the
de�nition of the irreducible representations. The traces of matrices are, however, invariant
under such transformations and by consequence, they can be used as characterizers of these
representations. For this purpose, we de�ne the character of the group element g in the
jth representation as5:

χ(j)
c (g) = Tr[Γ(j)(g)], (1.36)

where Γ(j)(g) is the matrix corresponding to the element g in the representation Γ(j). When
the irreducible representation is one-dimensional, the character of Γ(j)(g) is Γ(j)(g) itself,
as a consequence of Eq. (1.36).

It is straightforward to prove that the characters form a set of orthogonal vectors in
the group-element space, by replacing Eq. (1.36) into the relation established by the great
orthogonality theorem (1.35) and by using in addition the dimensionality theorem. This
leads to: ∑

g

χ(i)(g)∗χ(j)(g) = hδij. (1.37)

The group elements can be classi�ed into classes. Two symmetry operations are in
the same class when they can be converted into one another by changing the coordinate
system through application of some symmetry operation of the group. Mathematically, it
means that two group elements g and g′ are in the same class if they can transform into
one another through a similarity transformation given by Eq. (1.34). For instance, in the
group C3v the two three-fold rotations C3 (rotation of 120◦ about the main axis) and C2

3

(rotation of 240◦) belong to the same class. In the same way, the three vertical mirror
planes σv, containing the main axis of symmetry, belong also to the same class.

Matrices representing group elements of the same class have the same traces (in the
C3v group Tr[Γ1

m(C3)] = Tr[Γ1
m(C2

3)] and Tr[Γ1
m(σ1

v)] = Tr[Γ1
m(σ2

v)] = Tr[Γ1
m(σ3

v)]). Matrices
with the same trace have the same character and therefore, Eq. (1.37) can be rewritten in
terms of classes, instead of group elements, according to:

5In general, a character is denoted χ(j)(g). In this manuscript, we added the subscript c in order to

discriminate the character χ
(j)
c (g) from the p-order susceptibility tensor χ(p).
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1.4. Vibrations and symmetry

Table 1.7: Character table of the C2v point group.

C2v E C2 σv(xz) σ′v(yz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

Table 1.8: Character table of the C3v point group.

C3v E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

∑
k

χ(i)
c (Ck)∗χ(j)

c (Ck)Nk = hδij, (1.38)

where Nk is the number of elements in the class Ck and the sum runs over classes and not
group elements.

It can be shown [78], �nally, that the number of irreducible representations is

equal to the number of classes of a group.

1.4.2 Character tables

The character tables are a convenient way of displaying the characters of the classes
in the di�erent irreducible representations of a group. In these tables, the columns are
labeled with the di�erent classes of the group and the rows correspond to the irreducible
representations. The entries are the character χ

(j)
c (Ck) of the class Ck in the jth irreducible

representation. Tables 1.7 and 1.8 show the character table for the groups C2v and C3v,
respectively.

The �rst row of a character table lists all the classes of the group, that are labeled ac-
cording to the Schön�ies notation. Each class is preceded by the number Nk of symmetry
elements in the class. The �rst column of a character table lists all the irreducible repre-
sentations of the group, that are labeled according to the Mulikan symbols. The number of
rows and columns in a character table are the same, which is a consequence of the fact that
the number of classes in a group is equal to the number of its irreducible representations.

The one-dimensional representations (li = 1) are said to be nondegenerate an they are
labeled with the symbols A or B in the Mulikan notation. Representations with dimension
2 (li = 2) or 3 (li = 3) are called doubly or triply degenerate and they are labeled E or T ,
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Nonlinear optics: tensorial approach

respectively. All point groups with principal axes greater than two-fold (principal rotation
less than 180◦) have degenerate representations.

The rules on how to interpret a character table are the following:

� If the irreducible representation is labeled A, then it is symmetric with respect to the
principal rotation. By consequence, any A representation has always a character +1
for the principal axis Cn. In the case of the point groups C2v and C3v the principal
axes are respectively C2 and C3, which have characters +1 when the irreducible
representation is A, according to tables 1.7 and 1.8.

� If the irreducible representation is labeled B, then its is antisymmetric with respect
to the main axis of rotation. Therefore, any B representation has the character −1
for the principal rotation Cn.

� One-dimensional representations, A and B, can only have characters ±1.

� The �rst listed symmetry operation is always the identity operation and its character
gives the dimensionality of the irreducible representation. Consequently, in A and B
representations the character of the element E is always 1, in E representations the
character of the identity element is always 2 and in T representations the character
of the E element is always 3.

� The �rst listed irreducible representation in a character table is always the totally
symmetric representation of the group, labeled A1, and it is composed of characters
+1 for all the symmetry operations.

� In centrosymmetric groups (i.e. groups with a center of inversion), the subscript g
indicates symmetry with respect to inversion, whereas u stands for antisymmetry. For
instance if an irreducible representation is labeled Ag, it is symmetric with respect
to the principal rotation and also to inversion. Therefore, the characters of the main
axis Cn and the inversion i are both +1.

According to these rules, we can identify the irreducible representations Γ3
r of C2v

and Γ2
m of C3v in tables 1.4 and 1.6, to the totally symmetric representation A1. In the

same way, the irreducible representations Γ1
r and Γ2

r of C2v (table 1.4) are identi�ed as B
representations, since they are antisymmetric with respect to the C2 axis. According to
the character table of the group C2v (table 1.7), we associate Γ1

r to the B1 representation
and Γ2

r to B2. The irreducible representation Γ1
m of C3v (table 1.6) is two-dimensional and

it corresponds thus to the doubly-degenerate representation E. Note that Tr[Γ1
m(E)] = 2,

which corresponds to the dimensionality of the representation. Furthermore, Tr[Γ1
m(C3)] =

Tr[Γ1
m(C2

3)] = 1, which corresponds to the character of the class C3 for the irreducible
representation E in table 1.8, and Tr[Γ1

m(σ1
v)] = Tr[Γ1

m(σ2
v)] = Tr[Γ1

m(σ3
v)] = 0, which is the

character of the class σv in the character table of the group C3v.
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1.4. Vibrations and symmetry

1.4.3 The projection operator

It can be shown [78] that degenerate vibrational modes transform according to the irre-
ducible representations of dimensionality greater than 1 and nondegenerate modes corre-
spond to one-dimensional representations of the molecular point group. In order to deter-
mine the resonant susceptibility tensor (either linear, for spontaneous Raman scattering,
third-order, for CRS processes or higher-order, for hyper-Raman e�ects) of a vibrational
mode of a crystal or molecule belonging to some point group, one convenient way is to
use the projection operator. This operator is a consequence of the great orthogonality
theorem, stated in Eq. (1.35) and it allows to �nd the transformation properties of the
susceptibility tensor of a speci�c vibrational mode, by projecting it into the irreducible
representation that corresponds to the normal mode of vibration of the resonance. The
projection operator to the jth irreducible representation of a point group is given by [78, 79]:

P(j) =
lj
h

∑
g

χ(j)
c (g)(∗)a(g), (1.39)

where χ
(j)
c (g) is the character of the jth irreducible representation, ∗ stands for the complex

conjugate and a(g) is the transformation operator that corresponds to the action of the
symmetry element g on the molecular frame (x, y, z). In other words, a(g) is the matrix
that transforms (x, y, z) into (x′, y′, z′) under the action of the group element g. The sum
runs over all the symmetry operations of the group. The p-order susceptibility tensors for
a given normal mode of vibration corresponding to the jth irreducible representation of the
group can be deduced from the projection operator as:

χ(p)j = P(j)χ(p), (1.40)

where χ(p) is the p-order susceptibility tensor in the molecular frame and χ(p)j is its �trans-
formation� by the projection operator associated to the jth irreducible representation of the
group. By replacing Eq. (1.39) into Eq. (1.40) and from the fact that a tensor transforms
according to Eq. (1.28), we can write:

χ
(p)j
l0...lp

=
lj
h

∑
g

∑
i0...ip

χ(j)
c (g)(∗)al0i0(g) . . . alpip(g)χ

(p)
i0...ip

, (1.41)

with ali(g) the element in the lth row and ith column of the matrix transformation cor-
responding the element g of the group. Furthermore, the susceptibility tensor must
remain invariant under the application of the projection operator, which means that
χ

(p)j
l0...lp

= δl0i0 . . . δlpipχ
(p)
i0...ip

, according to Eq. (1.30).

For the group C2v, the operators a(g) are the 3 × 3 matrices corresponding to the
transformation of the cartesian coordinate system (x, y, z) that we depicted in table 1.3.
Therefore, a(E) = Γr(E) for the identity operator, a(C2) = Γr(C2) for the two-fold rota-
tion, a(σv(xz)) = Γr(σv(xz)) for the re�ection plane xz and a(σv(yz)) = Γr(σv(yz)) for the
re�ection plane yz. As an example, we can calculate from the projection operator in Eq.
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Nonlinear optics: tensorial approach

(1.41), the resonant linear susceptibility tensor χ(1) of a Raman process for a molecule in
the group C2v.

In order to determine the Raman susceptibility tensor of a totally symmetric vibrational
mode, we have to project the susceptibility tensor χ(1) into the irreducible representation
A1. If the medium has C2v symmetry, the component χ

(1)A1

lm for the totally symmetric
resonance writes, according to Eq.(1.41):

χ
(1)A1

lm = 1
4

∑
ij

χ
(1)
ij

[
χA1
c (E)ali(E)amj(E) + χA1

c (C2)ali(C2)amj(C2)

+ χA1
c (σv(xz))ali(σv(xz))amj(σv(xz)) + χA1

c (σv(yz))ali(σv(yz))amj(σv(yz))
]

(1.42)

where we used the fact that the dimensionality of the irreducible representation A1 is
lA1 = 1 and the order of the group C2v is h = 4. χA1

c (E) are the characters of the group
elements in this representation and they are given in table 1.7. The transformation matrices
a are listed in table 1.3. By performing the calculations in Eq. (1.42), and by imposing
the invariance of the the linear susceptibility tensor under the application of the projection
operator, the linear susceptibility of a totally symmetric vibrational mode writes:

χ
(1)
xx ; χ

(1)
yy ; χ

(1)
zz

χ
(1)
xy = χ

(1)
xz = χ

(1)
yx = χ

(1)
yz = χ

(1)
zx = χ

(1)
zy = 0 . (1.43)

Therefore, the linear susceptibility tensor of a totally symmetric vibrational mode of a
medium with C2v symmetry has only three nonvanishing components, χ

(1)
xx , χ

(1)
yy and χ

(1)
zz ,

that are all independent from each other.
The linear susceptibility tensors of the other vibrational modes of the C2v group can

be determined in the same way as for the totally symmetric vibration. Following, we list
the structures of the linear susceptibility tensor for all the irreducible representations of
the group C2v, without considering the calculations:

� A2 vibrational mode: all the tensor components vanish, except χ
(1)
xy and χ

(1)
yx . Since

the linear susceptibility is a symmetric tensor, the two nonvanishing elements are
equal, and χ(1)A2 is completely characterized by χ

(1)
xy = χ

(1)
yx .

� B1 vibrational mode: the linear susceptibility has only two nonvanishing components
that are equal due to the symmetric nature of the tensor. These components are
χ

(1)
xz = χ

(1)
zx .

� B2 vibrational mode: the only two nonvanishing components of the linear suscepti-
bility are χ

(1)
yz = χ

(1)
zy .

The same procedure can be employed to calculate the Raman susceptibility for a
molecule in the group C3v. In this case, the operators a(g) are the 3 × 3 matrices cor-
responding to the transformation of the cartesian coordinate system (x, y, z) that we de-
picted in table 1.5: a(E) = Γm(E) for the identity operator, a(C3) = Γm(C3) for the three-
fold rotation of 120◦, a(C2

3) = Γm(C2
3) for three-fold rotation of 240◦, a(σ1

v) = Γm(σ1
v),
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1.4. Vibrations and symmetry

a(σ2
v) = Γm(σ2

v) and a(σ3
v) = Γm(σ3

v) for the three re�ection planes. Here, we detail the
calculations of the structure of the linear susceptibility tensor of a degenerate vibrational
mode E. From Eq. (1.41), the component χ

(1)E
lm writes:

χ
(1)E
lm = 2

6

∑
ij

χ
(1)
ij {2ali(E)amj(E)− 1 [ali(C3)amj(C3) + ali(C

2
3)amj(C

2
3)]

+0 [ali(σ
1
v)amj(σ

1
v) + ali(σ

2
v)amj(σ

2
v) + ali(σ

3
v)amj(σ

3
v)]} , (1.44)

where we used the fact that the dimensionality of the irreducible representation E is lE = 2
and the order of the group C3v is h = 6. The numbers multiplying the sums correspond
to the characters of the group elements in this representation, according to table 1.8. The
transformation matrices a are listed in table 1.5. Eq. (1.44), together with the invariance
of the susceptibility tensor under the application of the projection operator, leads to the
following linear susceptibility of a degenerate vibrational mode E of a molecule with C3v

symmetry:

χ
(1)
xx = 1

2

(
χ

(1)
xx − χ(1)

yy

)
(1.45a)

χ
(1)
xy = 1

2

(
χ

(1)
xy + χ

(1)
yx

)
(1.45b)

χ
(1)
xz = χ

(1)
xz (1.45c)

χ
(1)
yy = −1

2

(
χ

(1)
xx − χ(1)

yy

)
(1.45d)

χ
(1)
yz = χ

(1)
yz (1.45e)

χ
(1)
zz = 0 . (1.45f)

It follows from Eq. (1.45) that the linear susceptibility tensor of a degenerate vibrational

mode E of the C3v point group has only one vanishing component, χ
(1)
zz . All the others

are nonvanishing, and they are related to each other as follows: from Eqs. (1.45a) and

(1.45d), χ
(1)
xx = −χ(1)

yy ; from Eq. (1.45b) χ
(1)
xy = χ

(1)
yx ; from the symmetric nature of the

linear susceptibility, χ
(1)
xz = χ

(1)
zx and χ

(1)
yz = χ

(1)
zy .

The same procedure can be applied to determine the linear susceptibility tensors of the
other vibrational modes of the C3v group:

� Totally symmetric vibrational mode A1: the linear susceptibility has three nonva-
nishing components: χ

(1)
xx , χ

(1)
yy and χ

(1)
zz , from which only χ

(1)
zz is independent. The

other two nonvanishing tensor components are equal (χ
(1)
xx = χ

(1)
yy ).

� A2 vibrational mode: the linear susceptibility tensor vanishes. It means that A2

normal modes of vibration can not be probed by spontaneous Raman scattering. We
say that this mode is Raman inactive.
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Table 1.9: Complete character table of the C2v point group [80].

C2v E C2 σv(xz) σ′v(yz) Unit vectors (IR)
Binary direct
products (Raman)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 -1 -1 Rz xy
B1 1 -1 1 -1 x, Ry xz
B2 1 -1 -1 1 y, Rx yz

Table 1.10: Complete character table of the C3v point group [80].

C3v E 2C3 3σv Unit vectors (IR)
Binary direct
products (Raman)

A1 1 1 1 z x2 + y2, z2

A2 1 1 -1 Rz

E 2 -1 0 (x, y), (Rx, Ry) (x2 − y2, xy), (xz, yz)

We have seen in section 1.3.2 that a (p + 1)-rank tensor behaves as a (p + 1)-rank
polynomial, which is a consequence of the tensor decomposition in Eq. (1.27). Therefore,
the susceptibility tensors deduced from the application of the projection operators can be
written as polynomials, which are listed in the two last columns of the character tables
(polynomials of rank 1 and 2 are depicted in the penultimate and last column of the
character table, respectively). As an example, the complete character tables of the groups
C2v and C3v are reproduced in tables 1.9 and 1.10, respectively.

In the case of the C2v point group, the polynomial bases listed in the last column of the
character table (see table (1.9) come from the decomposition of the linear susceptibility
tensors of the di�erent vibrational modes, obtained from the projection operators. In
the case of a totally symmetric vibration, from the structure of the linear susceptibility
depicted in Eq. (1.43), χ(1)A1 decomposes as:

χ(1)A1 = χ(1)
xx x̂⊗ x̂ + χ(1)

yy ŷ ⊗ ŷ + χ(1)
zz ẑ⊗ ẑ.

By consequence, the three nonvanishing and independent components, χ
(1)
xx , χ

(1)
yy and χ

(1)
zz of

the totally symmetric vibration (A1) correspond to the polynomials x2, y2 and z2 listed in
the character table. The same analysis can be done for the other irreducible representations
of the group.

The same reasoning applies to the C3v point group. In the case of the A1 irreducible
representation, we have seen that the linear susceptibility has three nonvanishing compo-
nents, χ

(1)
xx = χ

(1)
yy and χ

(1)A1
zz . It means that the decomposition of the susceptibility tensor

of a totally symmetric vibrational mode writes:
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1.4. Vibrations and symmetry

χ(1)A1 = χ(1)
xx x̂⊗ x̂ + χ(1)

yy ŷ ⊗ ŷ + χ(1)
zz ẑ⊗ ẑ

= χ(1)
xx (x̂⊗ x̂ + ŷ ⊗ ŷ) + χ(1)

zz ẑ⊗ ẑ,

Consequently, the two tensor components that are equal to each other, χ
(1)
xx and χ

(1)
yy corre-

spond to the polynomial x2+y2 and while χ
(1)
zz is associated to z2. These are the polynomials

that are listed in the �rst row (corresponding to the A1 irreducible representation) in the
last column of the character table of the group C3v (see table 1.10).

The same procedure applied to the irreducible representation E of the point group C3v

leads to the following polynomials [see Eq. (1.45)]: x2 − y2, corresponding to the tensor

components χ
(1)
xx = −χ(1)

yy and xy, xz and yz associated to the tensor elements χ
(1)
xy , χ

(1)
xz and

χ
(1)
yz , respectively. These polynomials are listed in the line corresponding to the degenerate

irreducible representation E in the last column of the character table of the C3v group (see
table 1.10). The brackets in the table, combining the polynomials as (x2 − y2, xy) and
(xz, yz), come from the fact that (x, y) are degenerated in couple, as we will see in next
section (1.4.4).

Finally, even though we have calculated only linear susceptibilities in our examples, the
projection operator technique can be applied to susceptibility tensors of any order. There-
fore, the structures of the third order susceptibilities χ(3) of speci�c vibrational modes can
be determined from the projections operators. This has already been done in reference [77],
where the susceptibilities for all the irreducible representations of all the crystallographic
point groups are listed, including linear, second and third-order susceptibilities.

1.4.4 Selection rules and direct products: interpreting the char-
acter tables

In the previous section (sec. 1.4.3) we showed how to determine resonant susceptibility
tensors for speci�c vibrational modes and how the tensor components are related to the
polynomials listed in the last column of the character tables. A more straightforward way
of obtaining the structures of the susceptibility tensors at resonance can be achieved in
some particular cases by direct inspection of the character tables. These particular cases
are dipole moments (infrared absorption) and linear susceptibilities (Raman scattering) at
resonance. Higher-order susceptibilities are also included in the particular cases when the
normal mode of vibration of the resonance is nondegenerate.

Linear unit vectors are the unit vectors x̂, ŷ and ẑ that form the basis of the Cartesian
coordinate system. A rotational unit vector is a vector with norm 1 that represents a
rotation about one axis of the coordinate system. Accordingly, Rx, Ry and Rz are rotations
about the x, y and z axes, respectively. Finally, binary direct product of linear unit vectors
corresponds to the tensorial product of these vectors. The result is a rank-2 tensor (a
matrix) that can be decomposed according to the tensor decomposition rule in Eq. (1.27),
as we showed in the previous section (1.4.3).
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The penultimate column of the character table implies linear and rotational unit vectors:
it shows how they transform under the symmetry operations of the group. If one coordinate
x, y or z features in one row of the character table, it means that the corresponding
unit vector transforms according to this irreducible representation under the symmetry
operations of the group. In vibrational spectroscopy, selection rules state that vibrational
modes that transform as the linear unit vectors are infrared (IR) active (it means that they
can be observed in the infrared spectrum) [78, 80]. By consequence, IR active modes can
be easily identi�ed from the character tables.

In the case of the C2v point group (see table 1.9), the linear vectors ẑ, x̂ and ŷ trans-
form as the irreducible representations A1, B1 and B2, respectively. It means that ẑ is
invariant under all the symmetry operations of the group; x̂ remains itself under the iden-
tity operation and a re�ection through the plane σv(xz) while it changes its direction (it
becomes −x̂) under the two-fold rotation and the re�ection through the plane σv(yz); ŷ
is unaltered under the identity and re�ection through σv(yz) but it changes its direction
after a two-fold rotation or a re�ection through σv(xz).

For the C3v point group (see table 1.10), the unit vector ẑ transforms following the
totally symmetric representation A1. It means that ẑ remains invariant under all the
symmetry operations of the group. In the row of the degenerate representation E we
observe the notation (x, y). This indicates that the unit vectors x̂ and ŷ transform as a
degenerate pair and by consequence, there is no di�erence in symmetry between the x and
y directions, that must be treated as equivalent and indistinguishable.

The last column of the character table lists the transformation properties of the binary
direct products of linear vectors. Selection rules state that normal modes of vibration
transforming as the binary direct products of linear vectors are Raman active [80, 78]. By
consequence, Raman active vibrations can be easily identi�ed from the molecule's character
table and the structure of the Raman susceptibility tensor can be inferred from the analysis
of the last column of the character table, according to section 1.4.3.

In a similar way, the analysis of the character tables can lead to the tensor structure
of nonlinear Raman processes. When it is not possible to determine the tensor structure
directly from the character tables, which is the case for point groups with degenerate irre-
ducible representations, it is necessary to use projection operators. However, the character
tables can give at least some useful information on the vibrational modes. The end of this
section is devoted to the study of the character tables in order to obtain information on
the resonant nonlinear optical processes of higher-order.

Vibrational modes that are active in nonlinear Raman processes of order p transform
as the (p + 1)-nary direct product of unit linear vectors. Therefore, in the case of normal
modes active in CARS or SRS (third-order nonlinear optical processes with p = 3), they
transform as the quaternary direct product of linear unit vectors. The main selection
rules for CARS and SRS, as third order nonlinear processes, are: (1) in centrosymmetric
molecules, only vibrational modes that are symmetric with respect to the inversion will be
allowed as transitions from the ground state, and (2) all Raman active modes are CARS
and SRS active [81]. The reciprocal of the second condition is not necessarily true, and
some vibrational modes active in CARS or SRS may be inactive in Raman.
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In order to identify which normal modes are CARS active, from the inspection of the
character tables, it is necessary to enumerate some rules to calculate direct products. Note
that direct products of unit linear vectors imply the direct products of the corresponding
irreducible representations6. The rules are listed below.

1. Any direct product of two or more irreducible representations of a group results in
a representation of the group. The character and dimension of the resulting repre-
sentation will be the multiplication of the characters and dimensions, respectively, of
the irreducible representations present in the direct product.

2. The direct product of nondegenerate irreducible representations will also be a non-
degenerate representation.

3. The product of a nondegenerate with a degenerate irreducible representation is a
degenerate representation.

4. The direct product of any representation with the totally symmetric representation
is the representation itself.

5. The direct product of an irreducible representation with itself is or contains the
totally symmetric representation.

6. The direct product of two or more degenerate representations is a reducible represen-
tation Γr. The later can be reduced into the irreducible representations of the group
Γi. The number of times ni each irreducible representation Γi occurs in the reducible
representation Γr is given by the relation:

ni =
1

h

∑
k

Nkχ
(r)
c (Ck)χ(i)

c (Ck), (1.46)

where χ
(r)
c (Ck) and χ

(i)
c (Ck) are the characters of the class Ck in the reducible and

irreducible representations respectively, and h is the number of elements of the group.
The sum runs over the classes of operations Ck and Nk is the number of elements in
the class.

In the case of the C2v point group, these relations allow indeed to build the last column
of the character table, according to:

� The unit vector ẑ transforms as the totally symmetric irreducible representation A1.
By consequence, its binary direct product ẑ ⊗ ẑ also transforms as the irreducible
representation A1.

6Here, we are not concerned with formal mathematical de�nitions. Readers interested in the mathe-
matical formalism of group theory can read [82].
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� According to the rules stated above, the direct product of the irreducible represen-
tation B1 with itself is the totally symmetric irreducible representation A1. By con-
sequence, x̂⊗ x̂ transforms as A1. The same is true for the representation B2 which
implies that ŷ ⊗ ŷ transforms as the totally symmetric irreducible representation.

� B1⊗A1 = B1 and B2⊗A1 = B2. By consequence, x̂⊗ ẑ transforms as B1 and ŷ⊗ ẑ
transforms as B2.

� B1 ⊗B2 = A2 which means that x̂⊗ ŷ transforms as A2.

In the same way, we can calculate the quaternary direct products of linear vectors
n order to obtain the vibrational modes active in CARS or SRS. This corresponds to
calculating the binary direct product of the binary direct product of unit linear vectors.
In other words, the tensor structures of the resonant susceptibilities in a CARS or SRS
process is obtained by calculating the direct product of the last column of the character
table with itself. The result for the C2v point group is listed below (in order to lighten the
notation, we write the direct products as polynomials; for instance, we note x2y2 instead
of x̂⊗ x̂⊗ ŷ ⊗ ŷ):

A1 ⊗ A1 = A1 → x4, y4, z4, x2y2, x2z2, y2z2

A1 ⊗ A2 = A2 → x3y, xy3, xyz2

A1 ⊗B1 = B1 → x3z, xy2z, xz3

A1 ⊗B2 = B2 → x2yz, y3z, yz3

A2 ⊗ A2 = A1 → x2y2

B1 ⊗B1 = A1 → x2z2

B2 ⊗B2 = A1 → y2z2

 already obtained fromA1 ⊗ A1

A2 ⊗B1 = B2 → x2yz already obtained fromA1 ⊗B2

A2 ⊗B2 = B1 → xy2z already obtained fromA1 ⊗B1

B1 ⊗B2 = A2 → xyz2 already obtained fromA1 ⊗ A2. (1.47)

From Eq. (1.47) we can determine the structure of the CARS susceptibility of a medium
with C2v symmetry for any of the irreducible representations of the group. Let us consider
the totally symmetric irreducible representation A1. From the tensor decomposition rule
in Eq. (1.27) and the polynomials listed in Eq. (1.47), the CARS susceptibility tensor of
a totally symmetric resonance decomposes according to:

χ(3)A1 = χ(3)
xxxxx̂⊗ x̂⊗ x̂⊗ x̂ + χ(3)

yyyyŷ ⊗ ŷ ⊗ ŷ ⊗ ŷ + χ(3)
zzzzẑ⊗ ẑ⊗ ẑ⊗ ẑ

+ χ(3)
xxyyx̂⊗ x̂⊗ ŷ ⊗ ŷ + χ(3)

xxzzx̂⊗ x̂⊗ ẑ⊗ ẑ + χ(3)
yyzzŷ ⊗ ŷ ⊗ ẑ⊗ ẑ.

This leads to the following nonvanishing and independent components of the third-order
susceptibility tensor of a totally symmetric resonance of a medium with C2v symmetry:
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1.4. Vibrations and symmetry

χ
(3)
xxxx, χ

(3)
yyyy, χ

(3)
zzzz, χ

(3)
xxyy, χ

(3)
xxzz and χ

(3)
yyzz. In a point group with only nondegenerate

irreducible representations, the inconvenience of the direct product method compared to
the projection operator is that in the �rst, the resulting susceptibility tensor is always
symmetric under indexes permutation. This is a crude approximation at resonance, where
Kleinman symmetry does not apply and indexes permutation are not authorized.

The same procedure can be applied to the C3v point group. In this case however, this
technique has an addition limitation because it does not allow to determine explicitly the
direct products of linear vectors that correspond to degenerate irreducible representations.
From the rules of direct products, we can nevertheless extract some information from the
character tables. First, concerning the binary direct products of unit vectors, we can infer
that:

A1 ⊗ A1 = A1 → z2

A1 ⊗ E = E → (xz, yz)

E ⊗ E = A1 + A2 + E → ? (1.48)

The decomposition of the direct product E⊗E is obtained from Eq. (1.46) and from the
rules of the direct products stated above. Fist, we know that E ⊗E results in a reducible
representation Γr of the group C3v whose characters are: χ

(r)
c (E) = χ

(E)
c (E)χ

(E)
c (E) =

4, χ
(r)
c (C3) = χ

(E)
c (C3)χ

(E)
c (C3) = 1 and χ

(r)
c (σv) = χ

(E)
c (σv)χ

(E)
c (σv) = 0. Then, we

decompose the representation Γr into the irreducible representations of the C3v point group
A1, A2 and E by using Eq. (1.46). This leads to nA1 = nA2 = nE = 1, which means that
each irreducible representation of the group occurs once in the reducible representation
Γr. The inspection of the character table allows to �nd the decomposition into irreducible
representations of the direct product E ⊗E, but it does not allow to determine the direct
products of the linear unit vectors, which are now degenerated in couples. This is the
reason of the question mark in Eq. (1.48).

In the case of CARS and SRS, the binary direct products of the binary directs products
of linear vectors, give the normal modes that are active in CARS. When the direct product
involves at least one nondegenerate representation of the C3v group, it can be calculated
directly from the character table, depicted in table 1.10. This leads to:

A1 ⊗ A1 = A1 → z4, x2z2 + y2z2, x4 + 2x2y2 + y4 (1.49a)

A1 ⊗ E = E → (x2z2 − y2z2, xyz2), (xz3, yz3), (x4 − y4, x3y + xy3),

(x3z + xy2z, x2yz + y3z) (1.49b)

Note that E ⊗ E = A1 + A2 + E, which means that Eq. (1.49) does not contain all
the possible 4-nary direct products, but only the ones obtained when a nondegenerate
irreducible representation is implied in the direct product. It means that the method of
the direct product does not allow to determine the whole structure of the susceptibility
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tensor when the point group has degenerate irreducible representations. This can only be
done by applying the projection operator, as we showed in section 1.4.3.

1.5 From macroscopic measurements to microscopic in-
formation

We showed in sections 1.3 and 1.4 that the structure of the microscopic susceptibility
tensor contains rich information on the symmetries, either structural or vibrational, of
crystals or molecules in their proper frame. In polarimetric nonlinear optics experiments,
however, the incident electrical �elds that probe the macroscopic susceptibility tensor of
the medium, are controlled and expressed in the macroscopic frame. In order to extract
molecular or microscopic information on the studied sample it is thus necessary to relate the
macroscopic and microscopic susceptibilities. In this section, we are particularly interested
in two kinds of media: (1) crystalline and (2) molecular assemblies with an orientational
statistical distribution.

Eq. (1.9) shows that the macroscopic nonlinear polarization P(p) is expressed as a
function of the expectation values of the induced microscopic dipole moments and the
number of polarizable units by unit volume. Here, we use an �additive model�, where the
macroscopic polarization is calculated by summing over all molecular dipole moments. In
this model, we assume that the interaction volume between the macroscopic incident �eld
E(ω) and the medium is large enough to contain a large number o molecules but small
enough so that E(ω) is uniform within it. In this way, we do not account for local �elds or
interactions between molecules. This model has shown its robustness in distinct situations,
including crystals [83].

In this section, we de�ne three distinct coordinate systems at di�erent scales: molec-
ular, microscopic and macroscopic. The �rst one is labeled (u, v, w) and it corresponds
to the proper frame of one single molecule [see Fig. (1.4a)]. The local molecular dipole
moment induced by the electrical �eld depends on the molecular hyperpolarizability, that
we note γ

(p)
ν0...νp . The microscopic coordinate system is labeled (x, y, z) and it is de�ned

either by the frame of a crystal unit-cell in a crystalline medium, or by the frame of the
molecular distribution in the case of an assembly of molecules, as shown in Fig. (1.4b).

The microscopic susceptibility is denoted χ
(p)
i0...ip

and it is associated with the molecular

hyperpolarizability by the relation γ
(p)
ν0...νp = χ

(p)
i0...ip

/N , with N the number of crystal unit

cells or molecules by unit volume 7. Finally, the macroscopic coordinate system is labeled
(X, Y, Z) [Fig. (1.4c)] and it corresponds to the laboratory frame where the electrical �eld

components are de�ned. The p-order macroscopic susceptibility is represented by χ
(p)
I0...Ip

.

7The lowest-order hyperpolarizabilities are commonly labeled: αuv(−ω;ω), βuvw(−ωσ;ω1, ω2) and
γuvwν(−ωσ;ω1, ω2, ω3), for p = 1, 2 and 3, respectively. In SI units they are expressed in m3(mV−1)n−1.
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1.5. From macroscopic measurements to microscopic information

Figure 1.4: De�nition of the coordinate systems at the three distinct scales of a molecular
assembly: (a) the molecular frame (u, v, w) (the u points towards the reader); (b) the
microscopic frame (x, y, z), de�ned by the principal axis of the molecular distribution (see
section 1.5.2) and (c) the macroscopic (or laboratory) frame.

1.5.1 Crystalline media

A crystal is a 3D spatial translational-repetition of a unit cell that contains all the infor-
mation on the crystal symmetry. The unit cell is an assembly of atoms, ions or molecules
de�ning a �xed structure with a given crystalline symmetry. The unit cells for all crys-
tals must belong to one of the 32 crystallographic point groups de�ned in section 1.3.2.
Therefore, the microscopic susceptibility tensors of crystalline media are deduced from
the symmetry considerations discussed above. For a single crystal, the macroscopic sus-
ceptibility tensor depends on the orientation of the unit-cell. Thus, the nonlinear optical
response for a given input polarization depends on both the symmetry and orientation of
the unit cell. Fig. (1.5) shows a crystal of sodium chloride as an example. The chloride and
sodium ions arrange themselves in an unit-cell with face-centered cubic symmetry. The
translational-repetition of the unit-cells give raise to the macroscopic crystal.

The orientation of the crystal unit-cell in the 3D space is de�ned by the Euler angles
Ω0 = (θ0, φ0, ψ0). These angles represent a composition of three elementary rotations, each
one around a single axis, that allow to transform from a coordinate system to another.
According to the de�nitions established in the introduction of this section, we chose the
macroscopic frame as the coordinate system in which the incident electrical �eld polar-
izations are de�ned. This coordinate system is �xed as the reference frame and is called
laboratory frame. The orientation of the microscopic (crystal) frame in relation to the
reference coordinate system is obtained by three successive uniaxial rotations: �rst, a
counterclockwise rotation of φ0 around the z axis, followed by a clockwise rotation of θ0

around the new y′ axis and �nally a counterclockwise rotation of ψ0 around the new z′′ axis.
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Nonlinear optics: tensorial approach

Figure 1.5: Sodium chloride crystal, composed of chloride (green) and sodium (grey) ions.
The unit-cell is shown at left. Each ion is surrounded by six of the other type, which are
located at the vertices of a regular octahedron. The macroscopic crystal structure, shown
in the center, is obtained by translational-repetition of the unit-cell. Images of the crystal
are shown at right.

The coordinate systems together with the de�ned Euler angles are depicted in Fig. (1.6).

Following this convention, macroscopic susceptibility tensor χ
(p)
I0...Ip

can be obtained from

the microscopic susceptibility χ
(p)
i0...ip

, through a transformation such as the one described
in Eq. (1.28), with the Euler transformation matrix a given by:

a =

 cosφ0 cos θ0 cosψ0 − sinφ0 sinψ0 − cosφ0 cos θ0 sinψ0 − sinφ0 cosψ0 cosφ0 sin θ0

sinφ0 cos θ0 cosψ0 + cosφ0 sinψ0 − sinφ0 cos θ0 sinψ0 + cosφ0 cosψ0 sinφ0 sin θ0

− cosψ0 sin θ0 sinψ0 sin θ0 cos θ0

 .

(1.50)

This matrix transforms from the microscopic to the laboratory frame. Therefore, it is
equal to the inverse of the matrix obtained by the three successive rotations by the angles
(θ0, φ0, ψ0) described above. If the microscopic frame is rotated by an angle Ω0 in respect to
the macroscopic frame, the �nal expression of the macroscopic susceptibility tensor writes,
after transformation by Eq. (1.28):

χ
(p)
I0...Ip

(−ωσ;ω1, . . . ωp) =
∑
i0...ip

aI0i0(Ω0) . . . aIpip(Ω0)χ
(p)
i0...ip

(−ωσ;ω1, . . . ωp), (1.51)

where the capital and lowercase subscripts correspond respectively to the columns and lines
of the transformation matrix a and χ

(p)
i0...ip

is the susceptibility tensor in the crystal unit
cell frame. The number of crystal unit cells by unit volume is included in the microscopic
susceptibility. Since a crystal is de�ned as a translational-repetition of an unit cell, the
frame for one or N unit cells is the same.
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1.5. From macroscopic measurements to microscopic information

Figure 1.6: Euler angles (θ0, φ0, ψ0) allowing to orient the crystal frame (x, y, z), in red,
in relation to the macroscopic coordinate system (X, Y, Z), in black. The three successive
rotations are depicted in the �gure. First, a rotation of φ around z, followed by a clockwise
rotation of θ around the new axis y′ and �nally, a rotation of ψ around the z axis.

1.5.2 Statistical molecular assemblies

When the electric �eld interacts with one molecule, it induces a local molecular dipole
moment, that depends on the molecular hyperpolarizability γ

(p)
ν0...νp , whose structure is

determined from the vibrational and structural symmetries of the molecule, as we showed
in sections 1.3.2 and 1.4.

Molecules can aggregate in non-crystalline structures, with a certain degree of orga-
nization, such as polymers, membranes and proteins. Probing the molecular order and
orientation of these structures is a great challenge for biologists and can bring important
information on the functioning of biological entities. Molecular ensembles can be described
as an assemblage of molecules with a probability f(Ω) of being oriented between Ω and
Ω + dΩ, where Ω = (θ, φ, ψ) are the Euler angles de�ned in section 1.5.1. The function
f(Ω) is named an orientational distribution function.

The p-order microscopic induced polarization of a molecular assembly is an orientational
average of the molecular dipole moments p

(p)
moli

in the frame (x, y, z) of the distribution
function, de�ned by its principal axis of symmetry, as we show in Fig. (1.4b). It follows
that:

p
(p)
i = 〈p(p)

moli
(Ω)〉Ω =

∫
p

(p)
moli

(Ω)dN(Ω), (1.52)

where dN(Ω) = Nf(Ω)dΩ is the number of molecules by unit volume with orientation
between Ω and Ω + dΩ. The molecular polarization in the microscopic frame (x, y, z) is
a function of the orientation angle Ω = (θ, φ, ψ) and of the molecular hyperpolarizability
γ(p), according to:

43



Nonlinear optics: tensorial approach

p
(p)
moli0

(Ω) =
∑
i1...ip

∑
ν0...νp

ai0ν0 . . . aipνpγ
(p)
ν0...νp

Ei1 . . . Eip , (1.53)

where the term in brackets corresponds to the molecular hyperpolarizability in the micro-
scopic frame, γ

(p)
ν0...νp is the molecular hyperpolarizability in the molecular frame (u, v, w)

and aiν is the transformation matrix from the molecular to the microscopic frame, given in
Eq. (1.50). If we replace Eq. (1.53) into Eq. (1.52), the microscopic polarization induced
in the sample is given by:

χ
(p)
i0...ip

(−ωσ;ω1, . . . ωp) = N

∫ ∑
ν0...νp

[
ai0ν0(Ω) . . . aipνp(Ω)γ(p)

ν0...νp
(−ωσ;ω1, . . . ωp)

]
f(Ω)dΩ.

(1.54)

The macroscopic susceptibility χ
(p)
I0...Ip

can be obtained from a tensorial rotation of the
microscopic susceptibility given in Eq. (1.54). If Ω0 is the orientation of the distribution
function in the macroscopic frame, as we show in Fig. (1.4c), then:

χ
(p)
I0...Ip

(−ωσ;ω1, . . . ωp) =
∑
I0...Ip

aI0i0(Ω0) . . . aIpip(Ω0)χ
(p)
i0...ip

(−ωσ;ω1, . . . ωp), (1.55)

with aIi the rotation matrix from the microscopic to the macroscopic frame, given in Eq.
(1.50). Therefore, the macroscopic susceptibility depends on the following microscopic in-

formation on the sample: (1) the molecular hyperpolarizability γ
(p)
ν0...νp , (2) the orientational

distribution function f(Ω) of the molecular assembly and (3) the orientation Ω0 of the dis-
tribution function in relation to the macroscopic frame. The structure of the molecular
hyperpolarizability can be determine from the analysis developed in sections 1.3.2 and 1.4.
In order to characterize completely the macroscopic susceptibility, it is thus necessary to
de�ne the orientational distribution function.

The orientational distribution function

Orientational distribution functions with a known shape The distribution func-
tion is unknown in general, but under some simpli�cative assumptions, we can suppose
that its shape is known. This approach is usually applied in biological media, for which
the orientational distribution function is most often de�ned with gaussian or cone shape
[18, 84, 48, 50]. In a cone model, the orientational distribution function is depicted in Fig.
(1.7a), and it is de�ned as:

f(θ, φ) =

{
1

4πξ
if |θ| ≤ ξ

0 otherwise,
(1.56)

where ξ is the cone aperture. We have further supposed that the molecules are uniaxial,
which is the raison why the orientational distribution function f(θ, φ) does not depend on
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ψ. We assume that the main axis of the cone lies in the XY plane, which means that the
orientation of the cone in the macroscopic frame is completely speci�ed by the angle φ0, as
we show in Fig. (1.7). With these assumptions, the polarimetric nonlinear measurements
give access to three microscopic parameters:

� the orientation of the molecules in the conical distribution, characterized by the cone
aperture ξ,

� the orientation of the cone in the macroscopic frame, characterized by the angle φ0

in the XY plane,

� the component γ
(p)
w...w of the hyperpolarizability, which is the only one nonvanishing

in uniaxial molecules.

Figure 1.7: (a) FWHM of the function of a cone with aperture ξ, represented on the θ-
dependent section. (b) Scheme of the distribution in the microscopic frame (x, y, z): ξ
is the cone aperture of the distribution function and (θ, φ) de�nes the orientation of the
molecular frame in the cone frame. (c) In the macroscopic frame, the main axis of the cone
lays in the sample (XY ) plane. The angle φ0 speci�es the orientation of the cone.

If the orientational distribution function is a discrete distribution δ(Ω−Ω0), as we would
expect for a crystal whose lattice is oriented at Ω0 in respect to the laboratory frame, Eq.
(1.54) becomes:

χ
(p)
I0...Ip

(−ωσ;ω1, . . . ωp) = N

∫ ∑
i0...ip

aI0i0(Ω) . . . aIpip(Ω)χ
(p)unit cell
i0...ip

(−ωσ;ω1, . . . ωp)δ(Ω− Ω0)dΩ

= N

∫ ∑
i0...ip

aI0i0(Ω0) . . . aIpip(Ω0)χ
(p)unit cell
i0...ip

(−ωσ;ω1, . . . ωp)
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that is equivalent to Eq. (1.51), if χ
(p)unit cell
i0...ip

= χ
(p)
i0...ip

/N . Note that in a crystal, we
consider the distribution of unit cells in the macroscopic frame, which is de�ned by the
orientation Ω0. This is why we used the microscopic susceptibility of one unit cell χ

(p)unit cell
i0...ip

,
instead of the molecular hyperpolarizability. This means that the approaches developed
for crystals and molecular assemblies with angular statistical distributions is the same, the
only di�erence being the angular distribution function.

Unknown orientational distribution functions If the shape of the orientational dis-
tribution function is unknown, we can decompose it in a series of orthogonal functions that
are dependent on Ω = (θ, φ, ψ). Let us begin with some simpli�cative assumptions: �rst,
the molecules are uniaxial, which means that the orientational distribution function f(θ, φ)
does not depend on ψ and the molecular hyperpolarizability in the molecular frame has only
one nonvanishing component γ

(p)
w...w. Second, we state that the orientational distribution

function is positive and normalized, following: f(θ, φ) ≥ 0 ∀(θ, φ)∫ 2π

0

∫ π
0
f(θ, φ) sin θdφdθ = 1.

(1.57)

which guarantees the possibility of decomposing the function in a series of orthogonal
function.

It is well known that the functions named spherical harmonics form a complete or-
thonormal set for the functions de�ned in S2, where S2 ⊂ R3 is the sphere of unit radius
centered in the origin of the Cartesian coordinate system. Therefore, the orientational
distribution function can be decomposed according to:

f(θ, φ) =
∞∑
J=0

m=J∑
m=−J

fJmY
J
m(θ, φ), (1.58)

where Y J
m(θ, φ) is the spherical harmonics of order J , with J ∈ N and |m| ≤ J . The

zero-order term of the decomposition, Y 0
0 is isotropic and the degree of order becomes

higher when J increases. The coe�cients fJm are called order parameters [85] and they
correspond to the weights of the function Y J

m in the decomposition. Here, we list the
�rst-order spherical harmonics (J = 1), that will be necessary for the following of this
section:

Y 1
−1(θ, φ) =

1

2

√
3

2π
sin θe−iφ Y 1

0 (θ, φ) =
1

2

√
3

π
cos θ Y 1

1 (θ, φ) = −1

2

√
3

2π
sin θeiφ.

(1.59)
An important property of the spherical harmonics is the orthogonality relation, that

establishes that: ∫ 2π

0

∫ π

0

Y J∗
m (θ, φ)Y J ′

m′ (θ, φ) sin θdθdφ = δJJ ′δmm′ (1.60)
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where δJJ ′ is the Kronecker delta and ∗ stands for the complex conjugate. It can be shown
that Y J∗

m (θ, φ) = (−1)mY J
−m(θ, φ).

The product of two spherical harmonics of order J and J ′ results:

Y J1
m1

(θ, φ)Y J2
m2

(θ, φ) =

|J1+J2|∑
J=|J1−J2|

J∑
m=−J

√
(2J1 + 1)(2J2 + 1)(2J + 1)

4π

×
(
J1 J2 J
0 0 0

)(
J1 J2 J
m1 m2 m

)
Y J∗
m (θ, φ), (1.61)

where

(
J1 J2 J
m1 m2 m

)
are the Wigner 3 j-symbols, that are related to the Clebsch-Gordan

coe�cients [86]. These symbols are integers or half-integers that verify the following prop-
erties:

1. −|J1| ≤ m1 ≤ |J1|, −|J2| ≤ m2 ≤ |J2| and −|J | ≤ m ≤ |J |

2. m1 +m2 = m

3. J1 + J2 + J is an integer

4. the triangular inequalities |J1 − J2| ≤ J ≤ |J1 + J2|

5.

(
J1 J2 J
0 0 0

)
= 0 if J1 + J2 + J is odd.

Consequently, the products of two spherical harmonics will follow the selections rules of
the Wigner 3 j-symbols.

We have so far expanded the orientational distribution function f(θ, φ) in a series
of spherical harmonics and we have stated some important properties and rules for the
spherical harmonics. Now, we will show how to use these rules so that we can extract
order information from the microscopic susceptibility tensor χ

(p)
i0...ip

, given in Eq. (1.54).
First, as stated above, the hypothesis adopted here is that the molecules are uniaxial.

This means that the only nonvanishing component of the p-order molecular hyperpolariz-
ability is γ

(p)
w...w. In this case, the sum in Eq. (1.54), that corresponds to the tensor rotation

from the molecular frame to the microscopic frame (of the orientational distribution), has

only one term, ai0w . . . aipwγ
(p)
w...w, where a is the rotation matrix given in Eq. (1.50) with

ψ = 0◦. We note that the only matrix components that are involved in the theoretical
microscopic p-order susceptibilities, are the ones in the third column of the rotation matrix
a, that we reproduce here:

axw = cosφ sin θ, ayw = sinφ sin θ, azw = cos θ.
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From the expressions of the �rst-order spherical harmonics, given in Eq. (1.59), we can
write the components aiw of the rotation matrix as a linear combination of the functions
Y 1
m, according to:

axw = sin θ cosφ =

√
2π

3
(Y 1
−1 − Y 1

1 )

ayw = sin θ sinφ = i

√
2π

3
(Y 1
−1 + Y 1

1 )

azw = cos θ = 2

√
π

3
Y 1

0 . (1.62)

As a consequence, the microscopic susceptibility in Eq. (1.54) can be written in function
of the spherical harmonics, following:

χ
(p)
i0...ip

(−ωσ;ω1, . . . ωp) ∝ Nγ(p)
w...w(−ωσ;ω1, . . . ωp)

∫ π

0

∫ 2π

0

Y 1
m0

(θ, φ) . . . Y 1
mp

(θ, φ)

×
∞∑
J=0

m=J∑
m=−J

fJmY
J
m(θ, φ) sin θdθdφ, (1.63)

with -1, 0 or 1 being all the possibilities for m0 . . .mp.

From the product rule of spherical harmonics, in Eq. (1.61), we can write:

Y 1
m0

(θ, φ) . . . Y 1
mp
∝

J=p+1∑
J=0

J∑
m=−J

CJ
mY

J∗
m (θ, φ), (1.64)

where p is the order of the nonlinear optical process and the proportionality signal omits
all the Wigner 3 j-symbols from the successive products Y 1

mi
Y 1
mi+1

(detailed calculations
for a third-order nonlinear optical process (p = 3) are shown in appendix B). From the
selection rules of the Wigner 3 j-symbols, J + 1× (p+ 1) must be even so that the product
does not vanish. Therefore, the order J of the resulting spherical harmonics must have
the same parity as p + 18. Furthermore, as a consequence of the triangular inequalities,
0 ≤ J ≤ p + 1. By replacing Eq. (1.64) into Eq. (1.63), the microscopic susceptibility
writes:

8Note that this property arises only when the order of the spherical harmonics in the product is
indiscernible. If it is not the case (such as for resonant processes, where it is not possible to permute the
Y Jm in the product), a di�erent formalism should be used, and this property does not hold [87].
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χ
(p)
i0...ip

∝ Nγ(p)
w...w

∞∑
J=0

J∑
m=−J

J ′=p+1∑
J ′=0

J ′∑
m′=−J ′

fJmC
J ′

m′

∫ π

0

∫ 2π

0

Y J ′∗
m′ (θ, φ)Y J

m(θ, φ) sin θdθdφ,

∝ Nγ(p)
w...w

∞∑
J=0

J∑
m=−J

J ′=p+1∑
J ′=0

J ′∑
m′=−J ′

CJ ′

m′f
J
mδJJ ′δmm′ . (1.65)

where we have omitted the frequency arguments of the susceptibility. The last proportion-
ality comes from the orthogonality property of the spherical harmonics, in Eq. (1.60). As
J ′ has the same parity as p + 1 and 0 ≤ J ′ ≤ p + 1, the orthogonality of the spherical
harmonics implies that the p-order theoretical microscopic susceptibility vanishes when
J > p+ 1 or if the parities of J and p+ 1 are not the same. Consequently, the theoretical
χ

(p)
i0...ip

depends only on the terms of the expansion of the orientational distribution function
whose orders J are lower than p + 1 and with the same parity. Therefore, for even-order
nonlinear optical processes, only the odd order terms of the series expansion of the distribu-
tion function contribute to the theoretical expression of the microscopic susceptibility. In
the contrary, in the case of odd-order processes, only the even terms of the series expansion
are taken into account.

The macroscopic susceptibility tensor is �nally obtained by rotating the microscopic
χ

(p)
i0...ip

in the laboratory frame, as in Eq. (1.55). By consequence, the microscopic param-
eters that can be read-out from a p-order nonlinear optical process are the following:

� The nonvanishing component of molecular hyperpolarizability γ
(p)
w...w.

� The order parameters fJm of the spherical harmonics expansion of the orientational
distribution function. If p is even (respectively odd), only the parameters with J odd
(respectively even) can be determined.

� The orientation (θ0, φ0) of the orientational distribution function in the macroscopic
frame.

In the case of a third-order nonlinear process, such as CARS or SRS, the only order
parameters that can be read-out from the polarimetric measurements in the nonresonant
regime are the zero, second and fourth order, f 0

m, f
2
m and f 4

m, respectively. Note that for
each order J the number of parameters to be determined is 2J + 1, since |m| ≤ J .

We have assumed in this paragraph that the molecules are uniaxial and by consequence,
the orientational distribution function does not depend on ψ. If we add the assumption that
the orientational distribution function has cylindrical symmetry, then it does not depend on
φ and the decomposition is done in a series of the Legendre polynomials P J(cos θ). They
can be obtained from the spherical harmonic functions through the relation Y J

0 (θ, φ) =
[(2J + 1)/4π]1/2P J(cos θ). The expansion of the orientational distribution function in a
series of the Legendre polynomials is detailed in chapter 5.
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In the other hand, if we do not suppose any a priori information on the symmetry of
the medium, the orientational distribution function can also be expanded in a series of
orthogonal functions, called the Wigner functions, that depend on the three Euler angles
(θ, φ, ψ). In this case, the decomposition of the distribution function writes:

f(θ, φ, ψ) =
∑
m′,m,J

fJm′mD
J
m′m(θ, φ, ψ), (1.66)

where the coe�cients fJm′m are the order parameters and −J ≤ m,m′ ≤ J , with J ∈
N. The Wigner functions relate to the spherical harmonics according to DJ

m0(θ, φ, ψ) =√
4π/(2J + 1)Y J

m(θ, φ). They satisfy the following orthogonality property:

∫ 2π

0

∫ π

0

∫ 2π

0

DJ1∗
m′1m1

(θ, φ, ψ)DJ2
m′2m2

(θ, φ, ψ) sin θdθdφdψ =
8π2

2J1 + 1
δJ1J2δm1m2δm′1m′2 .

(1.67)
In the general case, where no assumption is made on the distribution function, the cal-

culations when the molecular assembly depends on the three Euler angles (θ, φ, ψ) become
more complex, since the number of order parameters to be determined increases.

1.6 Conclusion

In this chapter, we developed the basis of nonlinear optics from a semi-classical approach.
First, we were able to write the expressions of the susceptibility tensors from the density
matrix formalism. Then we deduced some of the symmetry properties of the susceptibili-
ties, that could be intrinsic permutation symmetries or arise from spatial considerations.
In the case of vibrational resonances, we showed how the symmetry of the normal mode of
the molecular vibration changes the structure of the associated susceptibilities. Next, we
studied the macroscopic nonlinear optical responses from crystals and molecular assemblies
with statistical orientational distribution. In the case of crystals, nonlinear polarimetric
measurements allow to retrieve the symmetry of the unit cell and its orientation in the
macroscopic frame. In the case of molecular assemblies, if the orientational distribution
function is unknown, it can be expanded in a series of orthonormal functions, that charac-
terize the order of the molecular assembly. Finally, polarimetric measurements on this kind
of sample allow to determine the symmetry of the molecular hyperpolarizability and of the
distribution function, together with its orientation in the macroscopic frame. The symme-
try properties discussed in this chapter will be exploited throughout this manuscript, in
order to analyze molecular and biological samples.
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CHAPTER 2

THE POLARIZATION RESOLVED CRS

SETUP: DESCRIPTION AND

CHARACTERIZATION

As we demonstrated in chapter 1, molecular symmetry and macroscopic distribution read-
out of the susceptibility tensor is possible with polarization dependence monitoring. In this
section we describe the experimental setup used in order to perform polarization resolved
CARS and SRS measurements. Special attention must be paid to the incident polarization
distortions that may introduce the optical apparatus. These distortions can lead to mis-
leading extraction of molecular order information from polarimetric measurements. Here,
we describe a model accounting for these e�ects and develop a calibration technique for the
determination of polarization parameters in the sample plane using either two-photon �uo-
rescence polarimetry in liquids or polarimetric analysis of the incident beam itself. Finally,
some samples can be highly birefringent, which can also a�ect the incident and emitted
polarizations. In this chapter, we depict a model that allows measuring the anisotropy of a
thick sample and accounting for this e�ect in nonlinear polarization resolved experiments.

2.1 Description of the experimental setup

2.1.1 The CARS setup

The experimental CARS setup is depicted in Fig. (2.1). The incident pump and Stokes
pulse trains are delivered by two picosecond tunable mode-locked lasers (Coherent Mira
900, 76 MHz, 3 ps), pumped by a Nd:Vanadate laser (Coherent verdi). The lasers are
electronically synchronized (Coherent SychroLock System) and are externally pulse-picked
(APE pulse Picker) to reduce their rate to 3.8 MHz. Both beams are linearly polarized and
achromatic half-waveplates mounted in a step rotation motor, allow to rotate the incident
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polarizations independently. The beams are spatially recombined through a dichroic �lter,
injected into a commercial inverted microscope (Zeiss Axiovert 200 M) and focused in
the sample through a low numerical aperture microscope objective (Olympus LUCPLFLN
40X, NA = 0.6), in order to avoid any contribution from the Z-polarized component of
the excitation �eld in the experiment [88]. In microscopy con�guration, the sample is
placed in a XY Z piezoelectric plate (Physike Instrument), in order to allow 3D scanning.
In spectroscopy con�guration (liquid sample), the sample is placed in a �xed plate. The
generated signal is either collected forward (fwd-CARS) by another microscope objective
(Olympus LMPLFLN 50X, NA = 0.5) or backward by the excitation objective (epi-CARS).
Then, it is �ltered by two dichroic �lters (a lowpass �lter to reject the incident lasers and a
bandpass �lter spectrally centered at the wavelength of the emitted anti-Stokes beam). The
signal is split by a broadband polarizing cube beamsplitter (Newport) and the two resulting
perpendicularly polarized beams are �nally detected by two avalanche photodiodes (Perkin
Elmer SPCM-AQR-14) used in photon counting mode.

Figure 2.1: Scheme of the polarization resolved CARS setup. APD: avalanche photodiode;
M: mirror; BC and BS: beam combiner and beamsplitter, respectively (dichroic �lters); F:
lowpass or bandpass �lters; PZT: translational XY Z piezoelectric plate; PBS: polarizing
beamsplitter; T: telescope; λ/2: half-wave plates.

The incident wavelengths are tunable in order to probe di�erent vibrational resonances
of the several studied samples. Here, the adopted protocol is to set the wavelength of the
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pump beam λp ≈ 730 nm and to adjust the wavelength of the Stokes �eld according to
the targeted resonance. In this work, we perform a complete polarimetric CARS analysis,
where three di�erent schemes of polarization tuning are feasible: either the polarization
of the Stokes (respectively pump) is �xed along the X axis and the polarization of the
pump (respectively Stokes) rotates from 0◦ to 360◦, or both input polarizations rotate
simultaneously. The three polarization con�gurations are called P, S and PS, respectively.
The step of the incident polarization tuning is 5◦, except when noted otherwise. For each
pair of incident �eld directions, (E(αp),E(αs)), the intensity of the emitted anti-Stokes
signal is detected either along the X or the Y axes. In the following of this manuscript, we
note αp,s the incident polarization angles relative to the X axis. Fig. (2.2) shows the three
possible polarization con�gurations, with a closeup on the detection scheme. The linear
incident polarizations lay in the XY plane, which corresponds to the sample plane.

Figure 2.2: The three schemes of polarization tuning used in this work. (a) Closeup of the
detection setup. The incident polarizations lay in the sample plane and the intensity of
the emitted signal is detected either along X or Y . (b) Polarization con�guration P: the
Stokes polarization is �xed along X (αs = 0◦) whereas the pump polarization αp rotates
between 0◦ and 360◦, in the sample plane. (c) Polarization con�guration S: αp = 0◦ and
αs rotates from 0◦ to 360◦. (d) Polarization con�guration PS: both incident polarization
rotate simultaneously in the sample plane between 0◦ and 360◦.

2.1.2 The SRS setup

The SRS experiment is based on the stimulated Raman loss process (SRL), in which we
detect the decrease of the pump intensity due to stimulated Raman emission. The setup for
performing SRS measurements is showed in Fig. (2.3a) and it has been developed according
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to the principles described in references [40, 39]. It is based on the CARS experiment, with
some signi�cant modi�cations. First, the laser beams are not pulse-picked and they operate
with their standard repetition rate of 76 MHZ. Second, the Stokes beam is modulated at
1 MHZ with an acousto-optic modulator. Due to the stimulated Raman scattering, the
pump beam transmitted through the sample is modulated at the same frequency as the
Stokes �eld, according to Fig. (2.3b). The pump �eld is then collected in the forward
direction by the same collection objective as in the CARS setup, �ltered by a short-pass
�lter, projected into the X or Y directions by a polarizer and detected by a high-speed
photodiode (Thorlabs DET10A/M). The SRL signal, which is the modulation of the pump
intensity, is measured by a lock-in ampli�er (Signal Recovery 7280).

The polarimetric SRS analysis is performed by tuning independently the incident linear
polarizations of the pump and Stokes beams. However, an important feature of the SRL
signal is that it is always projected along the polarization of the pump �eld (Ep(ωp)). A
more formal demonstration will be developed in chapter 3. Therefore, in the SRL exper-
iment we perform the S polarization con�guration, where the Stokes linear polarization
αs rotates from 0◦ to 360◦ and the pump �eld is linearly polarized along an �xed direc-
tion αp. The SRL signal is detected along the X and Y directions and the polarimetric
measurements are repeated for di�erent orientations αp of the pump beam.

2.2 Characterizing the polarization distortions from op-
tical re�ection

The accuracy of the polarization resolved nonlinear optical technique requires the control
of the incident polarization states at the focal spot of the objective, which can be very
delicate. Through their optical path, the incident beams are successively re�ected on
mirrors and dichroic �lters, that can introduce several perturbations on their polarization
states. These distortions may lead to serious misinterpretations of the measured signals.
In inverted microscopy, where the polarization gets �xed at the entrance of the microscope,
there are two sources of these distortions: re�ection optics and high numerical aperture
focusing. In the scope of this thesis, we are mostly concerned with the �rst source of
distortions, because we are not dealing with high numerical aperture focusing, as we stated
in the previous section. A detailed analysis of the e�ect of focusing the incident beams
on the emitted nonlinear optical signal can be found in [89], where it was shown that
polarization nonlinear microscopy is a�ected by high numerical aperture of the objective
when NA> 0.8. The polarization distortions arise from the re�ections of the beam at
mirrors and dichroic beam splitters, which are made of multilayer dielectric thin �lms
usually well controlled for the �eld amplitudes but not for their phases. In the latter they
can be strongly frequency dependent, especially as one approaches the cuto� frequency that
separates the re�ective and transmissive spectral regions of the dichroic. Another source
of polarization distortions which we were confronted during this work, is the sample itself,
when it is anisotropic and therefore potentially birefringent. This is frequently observed in
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Figure 2.3: Polarization resolved SRS experiment, based on the SRL detection. (a) Exper-
imental setup. AOM: acousto-optic modulator. PD: photodiode; M: mirror; BC and BS:
beam combiner and beamsplitter, respectively (dichroic �lters); F: short-pass �lter; PZT:
translational XY Z piezoelectric plate; P: polarizer; T: telescope; λ/2: half-wave plates.
(b) Principle of the SRL detection scheme: the modulation of the Stokes amplitude results
in the modulation of the pump intensity due to stimulated Raman scattering (reproduced
from [40]).

crystals belonging to certain crystallographic point groups and in thick biological samples,
such as tissues.
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In this section, we present two simple and powerful techniques to retrieve the dichroism
and ellipticity in the sample plane of a nonlinear microscope. The �rst is based on the e�ects
of re�ection optics on two-photon �uorescence polarization responses of model samples
and can be used either in epi or fwd-detection con�guration. The second consists of a
polarimetric analysis of either the incident beam itself when no sample is present in the
focal volume, or the �eld transmitted through the object when it is not birefringent. This
technique can be performed in fwd-detection scheme.

2.2.1 Two-photon �uorescence polarization responses in isotropic
liquids

In this section we analyze the features of two-photon �uorescence (TPF) polarimetry under
a linearly tunable incident polarization at the entrance of the microscope, accounting for
experimental factors inducing polarization distortions.

The �uorescence intensity analyzed along a given polarization direction I is propor-
tional to the two-photon absorption probability multiplied by the probability of emission
in that direction, which, in a molecular ensemble, can be written as [53]:

II(α) ∝
∫ ∫ ∫ ∫ ∫

|µabs(Ω, r) · E(α, r)|4|Eem(Ω′, r′,k) · uI |2f(Ω,Ω′)dΩdΩ′drdr′dk,

(2.1)

where · · · accounts for time average. The �uorescence signal for a �eld propagating along
Z is detected along the direction I = (X, Y ). The incident electric �eld E(α, r) interacts
at position r with the absorption dipole µabs(Ω, r) whose orientation is given by the solid
angle Ω. The far �eld Eem(Ω′, r′,k) is radiated by the emission dipole µem(Ω′, r′) in the
propagation direction k, with Eem(Ω′, r′,k) ∝ k× [k×µem(Ω′, r′)]. uI is a normalized vec-
tor in the analysis direction I. f(Ω,Ω′) is the normalized molecular orientation distribution
function for the absorption and emission dipole orientations Ω = (θ, φ) and Ω′ = (θ′, φ′), re-
spectively. The incoherent summation of the �uorescence signal from individual molecules
over all their positions and orientations is denoted by dΩdΩ′drdr′, while dk describes the
integration over the emission propagation angles within the collection aperture. The pro-
portionality sign in Eq. (2.1) allows omitting e�ciency and collection factors that do not
come into play in a relative polarization measurement which is the case in our studies.

For an isotropic liquid under two-photon excitation, the rotational di�usion time of the
molecules is shorter than their typical �uorescence lifetimes. Therefore, the orientations of
the emission dipoles are decorrelated from those of the absorption dipoles, which leads to
f(Ω,Ω′) = f(Ω)f(Ω′). Moreover, the orientation distribution function for isotropic liquids
is f(Ω) = f(Ω′) = 1/(4π2) and Eq. (2.1) can then be written as:

II(α) ∝
∫ ∫

|µabs(Ω, r) · E(α, r)|4dΩdr

∫ ∫ ∫
|Eem(Ω′, r′,k) · uI |2dΩ′dr′dk, (2.2)
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where the absorption and emission dipoles µabs(Ω, r) and µem(Ω′, r′) are now completely
independent. The emission probability does not depend on the incident polarization and
as a consequence, contributes only as a multiplicative constant when this polarization is
tuned. Consequently, the collection aperture has no e�ect on the polarimetric response
of the emitted signal and only a�ects its global e�ciency. The study of the polarization
response of the �uorescence emission depends therefore only on the absorption probability
and Eq. (2.2) can be simpli�ed according to:

II(α) ∝ CI

∫ ∫
|µabs(Ω, r) · E(α, r)|4dΩdr, (2.3)

where CI contains the emitted �eld radiation factor and may vary for di�erent analyzing
directions due to di�erent e�ciencies along X and Y .

As the emission and excitation dependencies can be totally decoupled in isotropic liq-
uids, the result is not a�ected by correlation-related issues such as �uorescence energy
transfer or angles between the absorption and emission dipoles in the used molecules, con-
trary to isotropic materials made of �xed molecules such as in a polymer matrix [53]. As a
consequence, in the case of isotropic liquids, the �uorescence signal is independent on the
molecules and their concentrations.

2.2.2 In�uence of dichroism and ellipticity on the TPF polariza-
tion responses

When the incident linear polarization is rotated, the excitation �eld E(α) can be a�ected
by polarizations distortions, characterized by a degree of ellipticity and dichroism. The
incident amplitude of the �eld at the entrance of the objective can be written as [90]:

E(α, δ, γ) ∝ E√
1 + (1− γ2)

 cosα
(1− γ) sinα eiδ

0

 , (2.4)

where γ is the amplitude factor (dichroism) and δ is the phase di�erence (ellipticity)
between the two perpendicular polarization states s and p, de�ned by α = 0 and α = π

2
,

corresponding to the X and Y directions in the sample plane. Note that when the �eld is
polarized along X or Y , it is not a�ected by ellipticity and the polarization is kept linear for
any dichroism and ellipticity factors. By consequence, only the intermediate polarizations
are a�ected by these distortions. For any α between 0 and π/2, the polarization remains
linear along α for δ = 0, but it becomes elliptical around α when δ increases up to π

2
. At

this value, the �eld can even become circularly polarized when α = π
4
. For π/2 ≤ δ ≤ π,

the ellipticity decreases, but the ellipse becomes oriented along π − α. At δ = π the �eld
is linear again, but along π − α. The e�ect of the ellipticity on the incident polarization
is depicted in Fig. 2.4. Dichroism only plays a role on the relative amplitudes between X
and Y components of the electrical �eld. When γ > 0, the �elds becomes stronger in X
relative to Y , and the opposite occurs when γ < 0.
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Figure 2.4: E�ect of ellipticity δ on the polarization of the electric �eld for, di�erent
polarization angles α. At left, α = 0: the polarization remains linear along X for any δ.
in the middle, α = π

4
: the polarization is greatly a�ected by δ. Ellipticity increases with δ

until δ = π/2 and decreases for π/2 ≤ δ ≤ π, but the ellipse switches its orientation. At
right, α = π

2
: the polarization remains linear along Y for any δ.

Eq. (2.4) represents the expression of the amplitude of the electric �eld in the plane
wave approximation. When the �eld is focused, a small Z-component, which increases
with the numerical aperture, appears along the propagation direction of the �eld. In this
case, Eq. (2.4) is not valid anymore to characterize the incident electrical �eld. It is shown
however that, in a solution where the excitation process is randomized, the �uorescence
polarimetric response is independent on the objective's numerical aperture both in the
excitation and collection modes. An example is shown in Fig. (2.5), where we depict
theoretical curves of the TPF signal resolved in polarization for excitation objectives with
di�erent numerical apertures. The detail of the calculations is reported elsewhere [89].
For the case of strong focusing (NA = 1.2), numerical simulations were carried out in a
volume of 0.8µm in the lateral directions (X and Y ) and 1.6µm in the axial direction (Z),
homogeneously �lled with 160 x 160 x 320 dipoles. The weaker focusing case (NA = 0.9) is
based on a focal volume of 1 x 1 x 2µm3 with 200 x 200 x 400 dipoles. Both intensities along
the X and Y directions are conserved, since the �uorescence emission does not depend on
the analysis direction. The plane wave approximation is therefore adequate to study the
polarization state distortions brought by the re�ection optics.

By replacing the expression of the electric �eld (2.4) into Eq. (2.3), it is possible to
study the e�ect of the ellipticity δ and the amplitude factor γ on the polarization response
of the �uorescence intensity in an isotropic solution. The results are shown in Figs. (2.6a)
and (b). They show a polar representation of the �uorescence intensity as a function of
the polarization angle α. When no ellipticity and dichroism are present, the response does
not depend on α, as expected from an isotropic solution. At intermediate polarizations
(α 6= 0◦ or 90◦), the ellipticity δ decreases the excitation e�ciency, whose minimum occurs
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Figure 2.5: Polarization resolved TPF responses of an isotropic solution for di�erent numer-
ical apertures of the excitation objective. Three cases are simulated: very strong focusing
(NA = 1.2 - green squares), medium focusing (NA = 0.9 - blue crosses) and plane wave
illumination (NA = 0 - red line). Dichroic parameters: γ = 0.1 and δ = π

2
. All calculations

are performed for an excitation wavelength of 800 nm.

at α = π/4 modulo π/2. Contrary to δ, the amplitude factor γ a�ects mostly the intensities
in the X and Y polarization directions: when it is positive (resp. negative) the �uorescence
is the most e�cient for an incident polarization parallel to the X (resp. Y ) axis. For an
isotropic solution, the e�ect of the ellipticity δ on the �uorescence polarization response
has a period of π/2: the polar plots for 0 ≤ δ ≤ π/2 or π/2 ≤ δ ≤ π are ambiguous. This
is a consequence of the fact that in the isotropic summation of Eq. (2.3), the detected
�uorescence signal is dependent on | cos(2δ)|. Therefore, only polarization responses from
nonisotropic molecular angular distributions will be able to raise the ambiguity on δ. This
is illustrated in Fig. (2.6c) where the polarization �uorescence responses of a �xed 1D
�uorescent crystal has been modeled with an in-plane orientation of 2π/9 (40◦) in respect
to the X axis. In this case, the orientation distribution for the absorption dipoles in Eq.
(2.4) is a discrete function f(Ω) = δ(Ω − Ω0). The emitted �uorescence signal is then
calculated by taking Ω0 as the orientation of the crystal: Ω0 = (φ0, θ0) = (2π/9, π/2). In
this situation, the TPF polarization response is strongly dependent on the polarization
parameters of the dichroic used, as depicted in Fig. (2.6c). When there is no ellipticity,
the polarization response is anisotropic in the 2π/9 direction, as expected from the 1D
symmetry of the sample. As δ increases, the polarization response changes its direction,
until it reaches another quadrant for δ > π/2. Therefore, this is an e�cient technique
to remove the ambiguity on the range of the ellipticity: if the TPF polarization response
is in the quadrant of the sample orientation, then 0 ≤ δ ≤ π/2; otherwise, when the
polarization response reaches the next quadrant, π/2 ≤ δ ≤ π. This example emphasizes
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the detrimental in�uence of in-plane polarization ellipticity when performing polarimetric
measurements, the response being indeed strongly distorted for high ellipticities.

Figure 2.6: E�ect of the ellipticity (δ in rad) and dichroic (γ) parameters on the TPF
polarization response for a solution of Rhodamine6G (a,b) and an 1D �uorescent sample
oriented at (φ0, θ0) = (2π/9, π/2) (c). (a) In�uence of the amplitude factor γ for δ = 0.
(b,c) In�uence of the ellipticity δ when γ = 0. In the isotropic case, the polar plots are
expected to be identical for the signal detected along X and Y directions. The polarization
responses are normalized to a maximum value of 1.

2.2.3 Characterization of the dichroic parameters using two-photon
polarization measurements

In the previous section (2.2.2), we showed that the characterization of the polarization
perturbations induced by the dichroic beamsplitter is possible by performing polarization
resolved two photon �uorescence on an isotropic liquid, by continuously rotating the inci-
dent polarization. Actually, the determination of (γ, δ) requires only the measurements of
the TPF intensities at three incident polarizations: α = 0, π/4 and π/2 . This is shown in
Fig. (2.7), representing the cartographies of the ratios II(π/2)/II(0) and II(π/4)/II(0) in
a (γ, δ) coordinates map. Fig. (2.7a) shows that a given value of the ratio II(π/2)/II(0)
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corresponds to a vertical line in the (γ, δ)-map, this ratio being independent on the el-
lipticity of the dichroic beamsplitter, whereas Fig. (2.7b) indicates that a given value of
the ratio II(π/4)/II(0) corresponds to a curve that is (γ, δ)-dependent. The interception
between both curves is therefore a single point in the (γ, δ)-diagram, proving that the so-
lution (γ, δ) is unique with only three incident polarizations. Taking into account typical
experimental uncertainties, the solution space for each ratio will no longer be a single line
but a band with certain error-width, as shown in Fig. (2.7c). For a better experimental
estimation we do not measure the TPF intensity for only three incident polarizations, but
instead, we continuously rotate the incident polarization between 0◦ and 360◦. In this case,
a �t of the polarization dependent TPF-signal should be considered.

(a) (c)

(b)

Figure 2.7: (γ, δ) cartography of the two-photon �uorescence ratios (δ in deg): (a)
II(π/2)/II(0) and (b) II(π/4)/II(0). (c) Typical solution (red space) including exper-
imental error margins for a three-point �t.

The measurement of the polarization resolved TPF signal is made in the same setup
where the CARS or the SRS experiments are done. Polarimetric TPF is therefore employed
as an in situ calibration step before any polarization resolved measurements are performed.
The isotropic liquid used to perform the TPF experiments is a solution of free Rhodamine
6G (Rh6G) diluted in water. As the performance of all re�ection optics and in particular
the dichroic mirror is wavelength-dependent, the calibration procedure has to be carried
out at di�erent λ. In particular, in the case of CRS experiments, the parameters (γ, δ)
must be determined for both incident �elds, at angular frequencies pump and Stokes.

In order to determine the dichroic parameters (γ, δ) with accuracy, a �t procedure
is developed. For this purpose, theoretical curves, based on Eqs. (2.3) and (2.4), were
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calculated for a large variety of (γ, δ)-values and compared with the experimental data.
The concordance between theoretical and experimental curves is evaluated by the mean
square error method, in which the indicator is the sum of mean squares:

χ2(γ, δ) =
1

N

∑
α

[Iexp(α)− Itheo(α, γ, δ)]2 , (2.5)

where N is the number of incident polarizations α. Fig. (2.8a) shows the dependence of χ2

on γ and δ for a TPF measurement of Rh6G solution at λp = 730 nm. Only one minimum
exists, corresponding to the region surrounded by the red ellipse in the (γ, δ) cartography
in Fig. (2.8a), which proofs that the solution is unique. The same is true for all other
tested cases. This allows the use of a �tting procedure starting at an arbitrary point within
the (γ, δ)-space that minimizes χ2 by alternately varying both parameters until a stable
minimum is found. The best �t for the presented case is depicted in Fig. (2.8b) and it
corresponds to γ = 0.08 and δ = π/5 rad (36◦).

Figure 2.8: Experimental polarization resolved TPF response from a Rh6G solution excited
at λ = 730 nm. (a) χ2 cartography for a range of (γ, δ) (δ in deg). The red ellipse indicates
the region in the map where the mean square error is minimum. (b) Experimental points
(red markers) and corresponding best �t (blue solid line) given by (γ, δ) = (0.08, 36◦).

As we stated in the previous section (2.2.2), polarization resolved TPF response from
isotropic liquids does not allow to determine if the ellipticity is in the range [0, π/2] or
[π/2, π]. To remove this ambiguity, it is necessary to perform measurements on anisotropic
samples. For this purpose, we carried out TPF polarimetric experiments on a 1D �uorescent
sample made of oriented �uorescent molecules along a macroscopic crystal axis, which
macroscopic orientation can be identi�ed visually. This sample is a Perhydrotriphenylene
(PHTP)-4-Dimethylamino-40-nitrostilbene (DANS) co-crystal characterized in a previous
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work [91], oriented at an angle close to 150◦ in the plane of the sample. This can be
veri�ed in Fig. (2.9a), where we show a white light image of the crystal detected in a CCD
camera. The corresponding polarization resolved TPF signal is depicted in Fig. (2.9b).
As the orientation of the crystal and of the experimental curve depicted in the polar plot
are not in the same quadrant, it means that π/2 ≤ δ ≤ π and the value found in the
rhodamine �t is not the one of the real ellipticity. This is given by δ = π − δ′, with δ′ the
ellipticity �tted by the rhodamine solution. This means that the dichroic parameters for
the pump beam at λp = 730 nm are γ = 0.08 and δ = 4π/5 (144◦).

Figure 2.9: TPF polarization response of a 1D crystalline �uorescence sample made of
DANS molecules in a PHTP crystalline host, excited at λ = 730 nm. (a) White light
image of the crystal, showing its orientation in the sample plane. (b) Experimental polar
plots: the curves in red and green correspond to signal detected along X and Y axes,
respectively.

Finally, the performance of the dichroic mirror is wavelength-dependent. In the case of
the Stokes beam, whose wavelength is tuned in spectroscopic measurements, it is important
to characterize the polarization distortions introduced by the dichroic mirror for a large
range of λs. Some examples are shown in Fig. (2.10), for λs varying between 780 and 830
nm. Both the ellipticity and dichroic factors are very sensitive to the incident wavelength,
as indicated in the �gure. Big absolute value of γ at λs ≈ 780 nm (γ = −0.185) is due to the
fact that this wavelength is not far from the cuto� frequency that separates the re�ective
and transmissive spectral regions of the dichroic beamsplitter, where high amplitude factors
are expected. The polarization resolved TPF experiments on 1D crystal, with the same
in-plane orientation as in Fig. (2.9a) shows that 0 ≤ δ ≤ π/2 in the wavelength range
studied here.
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Figure 2.10: TPF polarization responses for excitations varying from λs = 780 to 830 nm.
(a-c) Measurements on a Rh6G solution; red marks correspond to the experimental data,
while the blue solid lines show the �tted curves. (d-f) Measurements on an 1D crystalline
�uorescent sample made of DANS molecules in a PHTP crystalline host; red and green
curves correspond to the signal detected along X and Y axes respectively.

2.2.4 Characterization of the dichroic parameters by measuring
the polarization states of the incident �eld

The method described in section 2.2.3, that uses TPF polarimetric measurements to charac-
terize the polarization distortions introduced by the experimental setup, can be used either
in the fwd- or epi-CARS detection schemes. This method had been initially implemented
in a setup where only the epi-detection geometry was available. However, when performing
experiments based on the forward detection of the emitted signal, a more straightforward
way of measuring these polarization aberrations is to carry out polarimetric measurements
on the excitation �eld itself. According to section 2.2.3, when the incident linear polar-
ization is rotated, the amplitude of the electric �eld E(α) is a�ected by ellipticity and
dichroism according to Eq. (2.4). If this �eld is projected along a particular direction αdet,
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the intensity detected along this direction is given by:

I(α, αdet, γ, δ) =
E2

1 + (1− γ2)

[
cos2 α cos2 αdet + (1− γ)2 sin2 α sin2 αdet

+ 2(1− γ) cos δ cosα cosαdet sinα sinαdet] , (2.6)

where α is the incident polarization and γ and δ are the dichroism and ellipticity, respec-
tively. Note that when the detection is along X or Y , the intensity does not depend on the
ellipticity. Therefore, in order to estimate both dichroic parameters δ and γ, it is necessary
that the detection direction be at an intermediate angle αdet 6= 0◦ or 90◦.

Fig. (2.11) shows the e�ect of the ellipticity δ [Fig. (2.11)a] and the amplitude factor γ
[Fig. (2.11)b] on the polarization response of the intensity of the incident �eld, in a polar
representation. The detection direction is set at αdet = 30◦ and the theoretical intensities
are calculated as a function of the incident polarization α, according to Eq. (2.6). When
no ellipticity and dichroism are present, the polarization response has a two-lobe shape
dependent on cos2(α − αdet), with the maximum intensity along the direction of analysis.
When ellipticity is present, these two-lobe shapes tend to open (no extinction occurring at
α = αdet + 90◦) and rotate progressively when δ increases, until they reach a dependence
on cos2(α + αdet) when δ = π (180◦). The e�ect of the amplitude factor is less signi�cant
and its contribution only slightly rotates the polar plots and increases or decreases their
maximum intensity if γ < 0 or γ > 0, respectively.

Figure 2.11: E�ect of the ellipticity (δ in deg) and dichroic parameters (γ) on the polariza-
tion response of the detected intensity of the incident �eld. (a) In�uence of the ellipticity
δ when γ = 0. (b) In�uence of the amplitude factor γ for δ = 0◦. Here, αdet is set at 30◦.

We perform this technique in order to measure the dichroic parameters of the pump
beam at λp = 730 nm. For this purpose, we rotate the incident polarization α from 0◦

to 360◦ and we detect the intensity of the excitation �eld along four di�erent directions:
αdet = 0◦, 30◦, 60◦ and 90◦. The results are shown in Fig. (2.12). The �t procedure is
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analogous to the one proposed in section 2.2.3, but here all the detection orientations are
�tted simultaneously, which leads to the following mean square error function:

χ2(γ, δ) =
1

N

∑
α,αdet

[Iexp(α, αdet)− Itheo(α, αdet, γ, δ)]2 . (2.7)

The values of the dichroic parameters that minimize the mean square error χ2 are γ = 0.09
and δ = 5π/6 (150◦), which are in good agreement with the ones found in section 2.2.3. The
theoretical intensities resulted from the �t are superimposed to the experimental curves in
Fig. (2.12).

Figure 2.12: Experimental intensities of the pump excitation �eld at λs = 730 nm resolved
in polarization. The intensities are detected along four di�erent directions: αdet = 0◦

(red), 30◦ (blue), 60◦ (green) and 90◦ (yellow). Dotted and solid lines correspond to the
experimental and theoretical curves, respectively. The �tted parameters ares (γ, δ) =
(0.09, 150◦).

Once these measurements are done, we can focus the incident beams in the sample
in order to determine its birefringence, through a technique that is presented in the next
section.

2.3 In situ characterization of the sample local bire-
fringence

In anisotropic samples, the incident �eld undergoes a birefringence retardation and its
expression must be rewritten in order to account for the consequent polarization distortions.
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In this work, we consider that the object projection in the (X, Y ) plane is uniaxial, which
is consistent with a cylindrical-symmetry distribution lying in the (X, Y ) plane, and is
relevant in most of the systems imaged in nonlinear microscopy. Following [92], we denote
Θb the angle between the macroscopic X axis and the fast optical axis of the object xb, as
shown in Fig. (2.13a), and Φb the phase shift between its fast and slow optical axes, after
a propagation distance d in the sample. The optical �eld polarization state at the focal
depth distance d can be obtained in three steps. First, by performing a rotation of Θb,
we calculate the projection of the electric �eld along the optical axes of the sample at the
object surface (Z = 0) [Fig. (2.13b)]:[

E0
xb

(α)
E0
yb

(α)

]
=

[
cos Θb − sin Θb

sin Θb cos Θb

]
·
[
E0
X(α)

E0
Y (α)

]
,

Then, as the electric �eld propagates a distance d in the sample, its component along the
slow axis undergoes a phase shift of Φb(d) relative to the component parallel to the fast
axis. The new electric �eld writes:[

Ed
xb

(α)
Ed
yb

(α)

]
=

[
E0
xb

(α)
E0
yb

(α) exp[iΦb(d)]

]
.

Finally, the electric �eld in the laboratory frame can be obtained by performing a rotation
of −Θb, following: [

Ed
X(α)

Ed
Y (α)

]
=

[
cos Θb sin Θb

− sin Θb cos Θb

]
·
[
Ed
xb

(α)
Ed
yb

(α)

]
.

Putting all three steps together, the optical �eld polarization state at the focal depth
distance d in the laboratory frame is given by:

[
EX(Z = d)
EY (Z = d)

]
=

[
cos Θb sin Θb

− sin Θb cos Θb

]
·
[

cos Θb − sin Θb

sin Θb exp(iΦb(d)) cos Θb exp(iΦb(d))

]
·
[
E0
X(α)

E0
Y (α)

]
,

(2.8)
where E0

X,Y (α) is the optical �eld polarization components in the macroscopic (X, Y ) frame
at the sample surface (Z = 0) [Fig. (2.13b)], given by Eq. (2.4). The phase shift Φb is given
by Φb = 2π

λ
∆nd, with λ the incident wavelength and ∆n the refractive index di�erence

between the fast and slow axes of the object in the sample plane.
In addition to this e�ect on the incident �eld, birefringence also a�ects the detected

signal at anti-stokes frequency, which propagates through the sample in the forward direc-
tion. A similar approach as the one described above can be implemented to account for
this e�ect, assuming that the same ∆n applies to both incident and emitted wavelengths.
In this work, we suppose that the refractive index di�erence between the fast and slow
axes of the sample is the same for the three wavelengths involved in the CARS process,
λp, λs and λas. We will show in chapter 5 the in�uence of birefringence on the CARS
signal, when focusing at di�erent depths in the sample volume. We consider that only the
emitted signal is a�ected by the birefringence when focusing at the surface of the sample
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Figure 2.13: (a) De�nition of the input polarization angle α and the birefringence fast
optical axis direction xb in the macroscopic frame of the sample plane (X, Y ). (b) Exper-
imental con�guration in the sample volume: a linearly polarized �eld at frequency ω is
focused at a distance d from the sample bottom surface along the optical axis direction Z.
The transmitted �eld at ω, that propagates through the whole thickness of the medium L,
is elliptical if the sample is birefringent.

(Z = 0), if forward detection is applied (this means that we neglect the fact that birefrin-
gence can have an e�ect over the focusing volume in the sample). Alternatively, when we
focus at Z = L, the upper surface of the sample, only the incident �elds are a�ected by
birefringence. Finally, at intermediate focusing depths Z = d, we make the approximative
assumption that the incident �elds propagate through a distance d in the sample, while
the the emitted �eld propagates through the remaining distance L − d. This latter case
is taken into account in our calculations through a simple cross-multiplication. We de�ne
two phase shifts Φbinc

and Φbas , characterizing the birefringence a�ecting the incident and
emitted �elds, respectively and by cross-multiplication, we impose that Φbinc

= d
L

Φb(λinc)
and Φbas =

(
1− d

L

)
Φb(λas).

The sample birefringence parameters can be deduced from a polarimetric measurement
similar to the one described in section 2.2.4, where the intensity of the �eld at frequency ωp
propagating through the sample is detected for various angles α of the incident polarization
Eωp(α). In this con�guration, the �eld propagates through the whole thickness of the
sample L and therefore the measured phase shift is Φb(L) at λinc = λp. Here, in order to
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determine the parameters (Θb,Φb), we employ a �t procedure similar to the one described
in Eq. (2.5), where Itheo in this case is calculated from Eq. (2.8). A polar representation of
the theoretical polarimetric responses of the transmitted intensity I

ωp

X (α) is depicted in Fig.
(2.14a). The �gure shows the e�ect of di�erent birefringence phase shifts when varying the
incoming polarization α, for a sample which optical axis xb is oriented at Θb = 30◦ in respect
to the macroscopic X axis. If no birefringence is present in the sample, the polarization
response presents a two-lobe pattern dependent on cos2 α with a maximum intensity along
X and vanishing intensity along the Y axis. In the presence of birefringence, this pattern
tends to open (no extinction occurring along the Y axis) and rotates progressively when
Φb increases. A similar behavior is expected for the intensity detected along the Y axis.

Fig. (2.14b) shows the polarization resolved intensity of the transmitted �eld calculated
from Eq. (2.8) for a given couple of birefringence parameters (Θb,Φb) = (44◦, 97◦), when
no polarization distortions are introduced (γ and δ are zero). The (Θb,Φb) cartography
of the mean square error (χ2) for this theoretical solution is shown in Fig. (2.14c). We
observe that the solution is unique, but with a certain periodicity: the minima of the mean
square error can be found for the given value of Θb with a π/2 periodicity and for each Θb

two solutions for the phase shift are possible, with Φb1(L) + Φb2(L) = 2π. The periodicity
observed for both Θb and Φb is consistent with the fact that this technique does not dis-
criminate the fast and slow axes of the system. When we account for the ellipticity δ and
dichroism γ introduced by the re�ection optics on the optical path, the theoretical polar
plots present a completely di�erent behavior, as shown in Fig. (2.14d). Changes are also
observed for the mean square error cartography, according to Fig. (2.14e). Here, the theo-
retical solution is built with the same birefringence parameters (Θb,Φb) = (44◦, 97◦) as the
previous case, but with the introduction of ellipticity and dichroism (γ, δ) = (0.043, 55◦).
Both Figs. (2.14d) and (e) show that accounting for the instrumental polarization distor-
tions is crucial before any data analysis. The main e�ect of the dichroic parameters is to
introduce a new solution (Θb,Φb), corresponding to the gray ellipses in Fig. (2.14e), that
is independent from the expected result. This means that the solution is not unique when
the incident polarizations are distorted by the e�ect of re�ection optics. Besides, the π/2
periodicity observed for Θb, Θb2 = Θb1 + π/2, leads necessarily to a new value of Φb, that
follows the relation Φb2(L) + Φb2(L) = 2π.

This technique is applied to a collagen type I �ber oriented at around 50◦ relative to the
X axis, as can be seen in Fig. (2.15a), which shows a white light image of the �ber. The
experimental curves representing the polarimetric responses of the transmitted intensities
detected along the X and Y axes, from a given position of the �ber, are depicted in Fig.
(2.15b). The corresponding (Θb,Φb) cartography of the mean square error is reproduced
in Fig. (2.15c). It presents the same pattern as the theoretical (Θb,Φb) map where the
incident polarization is a�ected by ellipticity and dichroism [see Fig. (2.14e)], with eight
solutions when both Θb and Φb are in the range [0◦, 360◦]. From the eight possible solutions,
only two are independent and their values are: (Θb,Φb) = (44◦, 263◦) and (65◦, 204◦). Both
values �tted for Θb lie roughly along the observed collagen �ber orientation that is depicted
Fig. (2.15a). In chapter 5, we will study the polarization resolved CARS responses of
collagen �bers. The determination of the birefringence parameters (Θb,Φb) is crucial for
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Figure 2.14: (a) Theoretical polarization-resolved intensities of the transmitted �eld at
frequency ω detected along the X axis (IωX). The optical axis of the sample is �xed at
Θb = 30◦ and the curves show the in�uence of the phase shift Φb on the polarimetric
measurements. (b,d) Theoretical polarization responses IωX,Y from a sample whose bire-
fringence parameters are (Θb,Φb) = (44◦, 97◦). (c,e) Theoretical (Θb,Φb) cartographies of
the mean square error. In (b,c) no polarization distortions are introduced whereas in (d,e)
the polarization distortions are γ = 0.043 and δ = 55◦. Dark and gray circles in (d) depict
all the possible solutions. Di�erent colors indicate that the solutions are independent.

an accurate interpretation of the experimental data and a more detailed study will be
developed therein. Note however that the method presented here allows only calculating
the average birefringence parameters over the whole thickness of the sample and does not
account for inhomogeneities of the sample along the optical axis Z.

2.4 Conclusion

In this chapter, we described the experimental setup used to perform polarization resolved
CARS and SRS microscopies. In this setup, the two incident �elds at frequencies ωp and
ωs can have their linear polarizations tuned independently and continuously. Furthermore,
the emitted anti-Stokes signal, at frequency ωas = 2ωp−ωs, or the SRL signal, at frequency
ωp, are detected along the two perpendicular polarizations X and Y . We showed that the
characterization of the polarization distortions introduced either by the re�ection optics in
the optical path or by birefringence of the sample, is crucial to an accurate interpretation of
the experimental data. Finally, we proposed di�erent models allowing to characterize these
polarization distortions. The �rst one enables the determination of the dichroic and ellip-
ticity parameters introduced by the dichroic beamsplitter. The second allows to estimate
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Figure 2.15: Experimental polarization-resolved intensities when the incident �eld is trans-
mitted through a collagen �ber oriented at around 50◦. (a) White light image of the �ber.
(b) Experimental polar plots (dots) and corresponding best �ts (solid line). Curves in red
and blue depict the intensities detected along the X and Y axes, respectively. (c) (Θb,Φb)
cartography of the mean square error. Best �t solutions are: (Θb,Φb) = (44◦, 263◦) and
(65◦, 204◦)

the birefringence parameters of the sample, de�ned by the orientation of the optical axis of
the object in the macroscopic frame (X, Y ) and the phase shift between the fast and slow
axes of the sample. These methods are a good calibration of the polarimetric setup and
must be executed before performing polarization resolved nonlinear optical experiments.
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CHAPTER 3

POLARIZATION RESOLVED COHERENT

RAMAN SCATTERING IN ISOTROPIC

MEDIA

In this chapter, we use polarization resolved CARS and SRS spectroscopies in order to
measure depolarization ratios in isotropic media, away from electronic resonances. This
quantity measures the depolarization of the scattered �eld in relation to the incident �eld,
when a particular molecular vibrational mode is addressed and characterizes the molecular
symmetry of liquids and solutions. Pioneer work in polarization-resolved CARS spec-
troscopy has been developed in the late seventies and early eighties [93, 60, 62, 61] as
a powerful alternative tool to spontaneous Raman spectroscopy, allowing the detection
of weak Raman bands and the discrimination of individual lines in congested spectra.
Moreover, this technique makes it possible to measure tensor invariants, such as the Ra-
man depolarization ratio, as well as the spectral features of the Raman lines. Finally,
the control of the incident polarizations combined with a heterodyne detection, where the
nonresonant signal plays the role of the local oscillator, allows to remove the nonresonant
background [93, 62]. More recently, these polarization analysis have been applied in the
determination of depolarization ratios by using multiplex coherent Raman scattering, ei-
ther in the absence of resonance enhancement [64, 94, 65] or under electronic resonant
conditions [95, 96, 63].

Our approach consists in a more general coherent Raman scattering polarization scheme,
as we showed in chapter 2. In the case of CARS spectroscopy, we do not seek to remove
the nonresonant background but instead, to probe di�erences in polarimetric signatures
between the resonant and nonresonant signal. In order to �nd polarimetric signatures of vi-
brational modes in coherent Raman spectroscopy, we �rst deduce the isotropic third-order
susceptibility tensor from the theoretical considerations developed in chapter 1. Then, we
develop an analytical model for both the polarized CARS and SRS signals, based on the
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plane wave approximation for the incident �elds. Finally, we show how to extract the
Raman depolarization ratio of a given vibrational mode, from the analytical model. In the
case of CARS, a spectroscopic study around the resonance allows to obtain all the spec-
troscopic parameters of a Raman band: the resonance frequency of the Raman mode, the
linewidth (HWHM) of the band and resonant versus nonresonant contribution. In the case
of SRS, we can access directly the Raman depolarization ratio, without any spectroscopic
consideration, except the knowledge of the Raman resonance frequency.

3.1 The third-order nonlinear susceptibility tensor for
isotropic media

Isotropy is the characteristic of a medium that is invariant under any rotation of the co-
ordinate system. In the term rotation, we also include inversion and re�ection operations.
As we showed in chapter 1, the even-order susceptibility tensors vanish for isotropic me-
dia and by consequence, the lowest nonlinear optical process capable of probing isotropic
samples is the third-order. Here, we use the direct inspection method, described in section
1.3.2, to deduce the nonvanishing and independent components of the susceptibility tensor
χ(3) for isotropic media. In particular, we follow the procedure adopted in reference [72].
This is not the formal mathematical method of determining the structure of an isotropic
tensor, but is a very intuitive way, that has the advantage of using some of the concepts
introduced in chapter 1. As we saw in section 1.3.2, inversion operation does not impose
any constraint on the χ(3) tensor, but instead, it tells only that it does not vanish when the
object is isotropic. Let us then consider a re�ection through the plane Y Z. In an isotropic
medium, it means that XJKL → −XJKL and XXXL → −XXXL, with JKL 6= X
and including all indexes permutations. Therefore, according to Fumi's method described
in section 1.3.2, this symmetry operation implies that all tensor components containing
an odd number of X indexes vanish. The same is veri�ed for the indexes Y and Z when
we consider re�ections through the planes XZ and XY , respectively. By consequence,
all the tensor components in which one of the indexes X, Y, orZ appears an odd number
of times, vanish for an isotropic medium. Therefore, only the remaining 21 components
are nonvanishing. It remains now to �nd which of these components are independent and
which relationships exist between dependent tensor elements.

Consider now a four-fold rotation about the Z axis. This operation corresponds to
the transformation M7 in table 1.1 and implies that χ

(3)
XXXX = χ

(3)
Y Y Y Y , χ

(3)
XXY Y = χ

(3)
Y Y XX ,

χ
(3)
XYXY = χ

(3)
Y XY X and χ

(3)
XY Y X = χ

(3)
Y XXY . Here, we omit the frequency arguments in order

to lighten the writing. Similar relations are obtained for four-fold rotations about the X
and Y axes and we conclude that:
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χ
(3)
XXXX = χ

(3)
Y Y Y Y = χ

(3)
ZZZZ

χ
(3)
XXY Y = χ

(3)
XXZZ = χ

(3)
Y Y XX = χ

(3)
Y Y ZZ = χ

(3)
ZZXX = χ

(3)
ZZY Y

χ
(3)
XYXY = χ

(3)
XZXZ = χ

(3)
Y XY X = χ

(3)
Y ZY Z = χ

(3)
ZXZX = χ

(3)
ZY ZY

χ
(3)
XY Y X = χ

(3)
XZZX = χ

(3)
Y XXY = χ

(3)
Y ZZY = χ

(3)
ZXXZ = χ

(3)
ZY Y Z . (3.1)

Finally, consider a general rotation of an angle θ about the Z axis. In this case, as
we showed in section 1.3.2, the direction inspection method is not applicable, but instead,
we can �nd linear combinations between the tensor components. In this case, the tensor
transformation law, given in Eq. (1.28), when applied to the component χ

(3)
XXXX , together

with the relations established in Eq. (3.1) results in:

χ
(3)
XXXX = (cos4 θ + sin4 θ)χ

(3)
XXXX + 2 cos2 θ sin2 θ

(
χ

(3)
XXY Y + χ

(3)
XYXY + χ

(3)
XY Y X

)
. (3.2)

Applying the basic rule of trigonometry, cos2 θ + sin2 θ = 1, into Eq. (3.2), it can be

shown that for an arbitrary angle θ, the relation χ
(3)
XXXX = χ

(3)
XXY Y + χ

(3)
XYXY + χ

(3)
XY Y X

is always veri�ed. This completes the proof that the third-order susceptibility tensor for
an isotropic medium has 21 nonvanishing components, from which three are independent.
Finally, from the results obtained above, it is possible to write the χ(3) elements in a
compact form, following:

χ
(3)
IJKL = δIJδKLχ

(3)
XXY Y + δIKδJLχ

(3)
XYXY + δILδJKχ

(3)
XY Y X , (3.3)

where δ is the Kronecker delta function.

3.1.1 The depolarization ratio

In spontaneous Raman scattering, the depolarization ratio measures the degree of depo-
larization of the scattered �eld in respect to the incident �eld, when a molecular normal
mode of vibration is excited. It is de�ned as:

ρSR =
ISR⊥
ISR‖

, (3.4)

where ISR is the intensity of the scattered light, that can be polarized either parallel or
perpendicularly to the incident �eld polarization. A scheme of this de�nition is shown in
Fig. (3.1). This ratio can be expressed in terms of the invariant components of the Raman
polarizability tensor [97].

ρSR =
5γ2

a + 3γ2
s

45α2 + 4γ2
s

, (3.5)
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Polarization resolved CRS in isotropic media

where α and γ are respectively the isotropic and anisotropic components of the invariant
decomposition of the polarizability tensor1 (note that the γ term introduced here is di�erent
from the third-order molecular hyperpolarizability γ). The subscripts s and a stand for
the symmetric and anti-symmetric contributions of the γ term. As we are dealing with
electronically non-resonant scattering, the polarizability tensor is totally symmetric and
the anti-symmetric component γ2

a vanishes. A polarized band corresponds to a totally
symmetric vibrational mode and it is characterized by 0 ≤ ρSR < 0.75. Usually, for
highly symmetric molecules, ρSR ≈ 0 [80], in which case the anisotropic component of
the polarizability γ2

s , vanishes. A depolarized band characterizes a non-totally symmetric
normal mode of vibration and it exists when the isotropic component of the polarizability
α2 vanishes, which corresponds to ρSR = 0.75.

Figure 3.1: De�nition of the depolarization ratio in spontaneous Raman scattering. ISR‖
and ISR⊥ are the intensities scattered by Raman e�ect polarized, respectively, parallel and
perpendicularly to the incident polarization.

By analogy, it is possible to de�ne a depolarization ratio for coherent Raman scattering.
As the third-order susceptibility tensor has three independent components for an isotropic
medium, we can de�ne up to three CRS depolarization ratios, that can be expressed as
functions of the invariants of the Raman polarizability tensor [95], according to:

ρCRS =
χ

(3)R
XXY Y

χ
(3)R
XXXX

=
45α2 − 2γ2

s

45α2 + 4γ2
s

(3.6a)

ρCRS =
χ

(3)R
XYXY

χ
(3)R
XXXX

=
5γ2

a + 3γ2
s

45α2 + 4γ2
s

(3.6b)

ρCRS =
χ

(3)R
XY Y X

χ
(3)R
XXXX

=
−5γ2

a + 3γ2
s

45α2 + 4γ2
s

(3.6c)

with ρCRS + ρCRS + ρCRS = 1, which is a consequence from Eq. (3.3). The terms α and γ
are similar to the α and γ introduced above, except that they are written as elements of the
CRS tensor and therefore involve di�erent resonance properties [97]. The main di�erence
between Raman and CRS depolarization ratios is that the former is a ratio of intensities
wether the second is a ratio of susceptibility tensor components. By consequence, in the

1α is the trace of the Raman polarizability
∑
i αii, while γ contains the terms (αii−αjj) and αij , with

i 6= j [97].
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3.1. The third-order nonlinear susceptibility tensor for isotropic media

case of spontaneous Raman scattering, the depolarization ratio is always a positive and
real number whereas it can assume a complex and negative value in CRS. However, if
one-photon absorption is not allowed at frequencies ωp and ωs, the anti-symmetric term
γ2
a vanishes and Eqs. (3.6b) and (3.6c) are equivalent. Moreover, under this condition, it

has been shown [63] that the remaining invariants are the same as the ones in spontaneous
Raman scattering (α = α) and (γs = γs). Consequently, the depolarization ratios ρCRS
and ρCRS in coherent Raman scattering and ρSR in spontaneous Raman scattering are
equivalent.

This de�nition of the depolarization ratio for the CRS processes can be rather intuitive.
In the case of CARS, the susceptibility tensor, including the frequency arguments, writes
χ

(3)R
IJKL(−ωas;ωp, ωp,−ωs). The χ(3)R

Y XXY component represents the polarization state where
the anti-Stokes and Stokes �elds are polarized perpendicularly to the pump polarization.
In the other hand, the χ

(3)R
XXXX component accounts for the polarization state where all the

�elds are parallely polarized. Their ratio measures therefore how a vibrational mode that
is excited by stimulated emission depolarizes the scattered �eld. In this way, as χ

(3)R
Y XXY =

χ
(3)R
XY Y X from Eq. (3.1), we associate ρCRS in Eq. (3.6c) to the CARS depolarization ratio.

In the same way, we can de�ne the depolarization ratios for SRS. In the case of stimulated
raman gain, the susceptibility tensor writes χ

(3)SRG
IJKL (−ωs;ωp,−ωp, ωs) and we can associate

to this scattering the same depolarization ratio as for the CARS process. The susceptibility
tensor for the stimulated Raman loss scattering is given by χ

(3)SRL
IJKL (−ωp;ωs, ωp,−ωs), which

can be associated to ρCRS in Eq. (3.6b).

In conclusion, we can de�ne two depolarization ratios for CARS and SRS processes,
that are equivalent to the spontaneous Raman depolarization ratio, under the condition
that no electronically resonance is addressed. Eq. (3.7) summarizes the expressions of the
depolarization ratios in CRS processes:

ρCARS = ρSRG =
χ

(3)R
XY Y X

χ
(3)R
XXXX

= ρSR (3.7a)

ρSRL =
χ

(3)R
XYXY

χ
(3)R
XXXX

= ρSR (3.7b)

Since the medium concerned here is isotropic, it appears that ρSR will only depend on
the structure of the molecular hyperpolarizability γ (χ

(3)
IJKL is indeed constructed from an

isotropic average of the molecular hyperpolarizabilities γ, as seen in chapter 1). There-
fore, the depolarization ratio ρSR will strongly depend on the symmetry of the molecular
vibration, which determines the structure of the γ tensor (distinct molecular modes of
vibration imply di�erent hyperpolarizability structures, resulting in di�erent values of the
depolarization ratio ρSR).

In the CARS process, the susceptibility tensor has also a nonresonant contribution, that
accounts for the electronic responses of the medium. In this case, since it is a nonresonant
scattering, Kleinman symmetry applies and as a consequence, χ

(3)NR
XYXY = χ

(3)NR
XXY Y = χ

(3)NR
XY Y X .
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From Eq. (3.3) we can deduce that they are equal to χ
(3)NR
XXXX/3. It is then possible to de�ne

a nonresonant depolarization ratio ρNR that, from Eq. (3.7a), is equal to 1/3.

3.1.2 CARS susceptibility tensor for isotropic media

From the general expression of the third-order susceptibility for isotropic media, given by
Eq. (3.3) together with the expression of the CARS polarization ratio (Eq. [3.7a]), we can
deduce the CARS susceptibility, as a function of ρSR. In order to do this, we need �rst to
take into account the degeneracy of the χ(3)CARS in respect to the frequency of the pump
�eld, which implicates that χ

(3)R
XXY Y = χ

(3)R
XYXY . Replacing this relation and Eq. (3.7a) into

Eq. (3.3), we can write the resonant CARS susceptibility as:

χ
(3)R
IJKL = χR

(
δIJδKL + δIKδJL +

2ρSR
1− ρSR

δILδJK

)
. (3.8)

where χR is an alleged notation for the susceptibility component χ
(3)R
XXY Y . The nonresonant

CARS susceptibility is given by Eq. (3.3) when Kleinman symmetry condition is veri�ed.
If we sum the resonant contribution, given by Eq. (3.8), with the nonresonant one, we can
deduce the total CARS susceptibility tensor, as following:

χ(3)CARS = χ(3)NR + χ(3)R (3.9a)

⇒ χ
(3)CARS
IJKL = χNR (δIJδKL + δIKδJL + δILδJK)

+ χR

(
δIJδKL + δIKδJL +

2ρSR
1− ρSR

δILδJK

)
, (3.9b)

where χNR is the notation to refer to the nonresonant tensor component χ
(3)NR
XXY Y . This

term has a real value and does not depend on the incident frequencies, ωp and ωs [58, 98].
On the other hand, the resonant term χR is a complex number and presents a lorentzian
spectral dependency, given by

χR(δω) =
a

(δω − ΩR) + iΓ
, (3.10)

according to section 1.2.3. The formalism developed therein establishes that the coe�cient
a, characterizing the oscillator strength, has a strictly negative value. ΩR is the resonance
angular frequency, δω = ωp−ωs is the angular frequency di�erence between the pump and
Stokes �elds and Γ is the half width at half maximum (HWHM) of the probed Raman line,
which represents the damping factor γvg between the molecular excited vibrational level
and the ground state , as we saw in Eq. (1.24), in section 1.2.3.

3.1.3 The spectral behavior of the CARS susceptibility

The far �eld anti-Stokes �eld detected in a position R′ in the space results from a linear
contribution of the nonlinear polarization P(3) induced at all positions R in the sample. By
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3.1. The third-order nonlinear susceptibility tensor for isotropic media

consequence, the CARS intensity is proportional to the modulus square of P(3) and there-
fore, from Eq. (1.1), to the modulus square of the CARS susceptibility tensor χ(3)CARS(R),
according to:

ICARS(R′) = |Eas(R
′)|2 ∝

∣∣P(3)(R)
∣∣2 ∝ ∣∣χ(3)CARS(R)

∣∣2 (3.11)

As we saw in the previous section, the CARS susceptibility tensor has two di�erent
contributions: one that is resonant and originates from the excitation of the molecular
vibrational mode and another one that is nonresonant and arises from the electronically
response of the medium. If we replace Eq. (3.9a) into Eq. (3.11), the latter becomes:

ICARS(R′) ∝
∣∣χ(3)R(R)

∣∣2 +
∣∣χ(3)NR(R)

∣∣2 + 2Re
[
χ(3)R(R) · χ(3)NR∗(R)

]
. (3.12)

Even for an isotropic material, Eq. (3.12) is very complicated because it holds the
tensorial and spectral dependency of the medium. In a �rst step, we are interested only in
the spectral behavior of the medium, in such a way that we neglect its tensorial structure.
This can be done simply by replacing the tensors in Eq. (3.12) by scalars that keep their
spectral dependency. This crude approximation corresponds to the physical situation where
both terms in brackets in (Eq. 3.9b), corresponding to nonresonant and resonant tensor
structures, are equal to each other. This can be achieved, for instance, in a vibrational mode
with depolarization ratio equal to 1/3, when all the incident and emitted polarizations are
parallel to each other. With this simpli�cations, and omitting the arguments R and R′ in
order to shorten the notation, Eq. (3.11) writes

ICARS ∝ |χR|2 + χ2
NR + 2χNRRe (χR) . (3.13)

The CARS intensity is the superposition of three contributions called, in the order
they appear in Eq. (3.13), �resonant�, �nonresonant� and �heterodyne�, respectively. The
resonant term holds all the spectral information on the addressed vibrational mode, ac-
cording to Eq. (3.10). The nonresonant term is constant and does not contain any spectral
information. Finally, the heterodyne contribution is proportional to the real part of the
resonant term. In this way, the CARS signal can be interpreted as being the result of
the interference between two spectral waves, where the interference term is carried by the
heterodyne component. In Fig. (3.2) we plot the typical CARS spectrum for an isotropic
medium, together with the three contributions: resonant, nonresonant and heterodyne.
The spectrum was built with the following spectral parameters: a = −5, Γ = 3 cm−1, for
the resonant contribution, and χNR = 1 for the nonresonant term.

Fig. (3.2) shows the typical CARS spectrum of a molecular vibrational mode in an
isotropic medium. Without the simpli�cative assumptions applied earlier in this section,
the spectrum will vary according to the di�erent polarization con�gurations, but it will
keep the same characteristic patterns. The major changes of the CARS spectrum compared
to the Raman spectrum arise from the presence of the heterodyne term. This term is
proportional to the real part of the resonant term, expressed as the lorentzian function
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Figure 3.2: Typical CARS spectrum for an isotropic medium (in blue), together with the
contributions of the resonant (in red), nonresonant (in green) and heterodyne (in purple)
terms.

in Eq. (3.10), and is therefore antisymmetric in relation to the resonance frequency ΩR.
This is the reason why the heterodyne contribution reaches a maximum intensity when
the frequency shift from the Raman resonance is negative (δω − ΩR < 0) and a minimum
intensity when this shift is positive (δω−ΩR > 0). Therefore, when we sum the heterodyne
contribution with the resonant and nonresonant terms, the resulting CARS spectrum also
presents a maximum and a minimum. These intensities are named respectively peak and
dip [35]. Moreover, the peak is shifted towards the lower frequencies, compared to the peak
of the Raman spectrum. Finally, the presence of the heterodyne contribution makes the
CARS band wider than the Raman line. When the medium is not isotropic, however, the
CARS spectrum can present di�erent features from the ones presented here, depending on
the symmetry of the medium and on the polarization con�guration. An example will be
shown in chapter 4, in the case of a crystal with cubic symmetry.

3.1.4 SRS susceptibility tensor for isotropic media

We can determine the expression of the SRS susceptibility tensor, either for the stimulated
Raman gain or loss scattering. As in our experimental setup we are only concerned in
detecting the depletion of the pump �eld resulted from the stimulated emission, we are
only interested in the χ(3) tensor for the SRL process. In this case, the degeneracy in the
Stokes frequency implies that χ

(3)SRL
XXY Y = χ

(3)SRL
XY Y X . To this relation, we add the expression of

the SRL depolarization ratio, given by Eq. (3.7b), and from Eq. (3.3), we determine the
SRL susceptibility tensor for isotropic media, as:
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χ
(3)SRL
IJKL = χR

(
δIJδKL + δILδKJ +

2ρSR
1− ρSR

δIKδJL

)
, (3.14)

where χR = χ
(3)SRL
XXY Y . This term has a complex value and is frequency dependent according

to the Lorenztian function in Eq. (3.10). Eqs. (3.8) and (3.14) show that the resonant
isotropic tensor is not the same for di�erent coherent Raman scattering processes and
therefore care must be taken when manipulating the tensorial indexes and the frequency
arguments.

3.2 Analytical model of the induced nonlinear polariza-
tion in coherent Raman scattering

3.2.1 The polarization-resolved CARS response

In chapter 1, we showed that the p−order macroscopic induced polarization results from
the coupling of the susceptibility tensor χ(p) with the excitating electromagnetic �elds. In
the case of CARS, the third-order nonlinear induced polarization writes:

P
(3)
I (ωas) = ε0

∑
IJKL

χ
(3)CARS
IJKL (−ωas;ωp, ωp,−ωs)EPJ

(ωp)EPK
(ωp)E

∗
sL

(ωs), (3.15)

where Ep and Es are the pump and Stokes incident �elds at angular frequencies ωp and ωs,
respectively and ωas = 2ωp − ωs is the angular frequency of the emitted anti-Stokes �eld.

The analytic model of the polarization-resolved CARS emission for an isotropic medium
follows the work described in [99]. It is developed from the tensor structure introduced in
Eq. (3.9) and under some additional simpli�cative assumptions. First, following the polar-
ization schemes described in chapter 2, the pump and Stokes �elds are linearly polarized
with polarization angles αp and αs, respectively, with respect to the X direction. Second,
as we are focusing with a low numerical aperture objective (NA=0.6), we assume that the
incident �elds are plane waves propagating in the Z direction and therefore, we neglect
the �eld components EpZ and EsZ , that can contribute up to 20% of the �eld amplitudes,
as showed in chapter 2. Nevertheless, we will show in section 3.3.1 that for the case of
nonresonant CARS responses, the experimental and theoretical intensities are in very good
agreement, which justi�es the simpli�cation adopted here. Under these assumptions, the
X and Y components of the CARS signal polarization can be determined by introducing
Eq. (3.9) into Eq. (3.15), following:

P
(3)
X = ε0χ

(3)
Xe�

E2
pE
∗
s (3.16a)

P
(3)
Y = ε0χ

(3)
Ye�
E2
pE
∗
s (3.16b)
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where Ep and Es are the peak amplitudes of the incident �elds and the e�ective suscepti-

bilities χ
(3)
Xe�

and χ
(3)
Ye�

are de�ned as:

χ
(3)
Xe�

= χNR
(
2 cosαp sinαp sinαs + sin2 αp cosαs + 3 cos2 αp cosαs

)
+ 2χR ×(

cosαp sinαp sinαs +
ρSR

1− ρSR
sin2 αp cosαs +

1

1− ρSR
cos2 αp cosαs

)
(3.17a)

χ
(3)
Ye�

= χNR
(
2 cosαp sinαp cosαs + cos2 αp sinαs + 3 sin2 αp sinαs

)
+ 2χR ×(

cosαp sinαp cosαs +
ρSR

1− ρSR
cos2 αp sinαs +

1

1− ρSR
sin2 αp sinαs

)
. (3.17b)

By manipulating the cosα and sinα with the standard trigonometric relations, Eq.
(3.17) can be recast under:

χ
(3)
Xe�

= χNR [2 cosαs + cos(2αp − αs)] +

+
a

(δω − ΩR) + iΓ

[
1 + ρSR
1− ρSR

cosαs + cos(2αp − αs)
]

(3.18a)

χ
(3)
Ye�

= χNR [2 sinαs + sin(2αp − αs)] +

+
a

(δω − ΩR) + iΓ

[
1 + ρSR
1− ρSR

sinαs + sin(2αp − αs)
]
, (3.18b)

where χR was replaced by its expression given by Eq. (3.10). From Eq. (3.18), both

expressions of χ
(3)
Xe�

and χ
(3)
Ye�

have a nonresonant term that only depends on the incident
polarization direction and a resonant contribution that depends also on the spectral shift
and the Raman depolarization ratio.

In order to simplify the expression of the e�ective CARS susceptibility, in Eq. (3.18),
let us �rst de�ne the functions

GX(αp, αs) = χNR[2 cosαs + cos(2αp − αs)] (3.19a)

GY (αp, αs) = χNR[2 sinαs + sin(2αp − αs)], (3.19b)

that correspond to the nonresonant terms in Eqs. (3.18a) and (3.18b), respectively. Then,
we can de�ne a normalized spectral shift from the Raman resonance as

ζ =
δω − ΩR

Γ
. (3.20)

By replacing Eqs. (3.19) and (3.20) into Eq. (3.18) the e�ective susceptibilities become
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χ
(3)
X(Y )e�

(αp, αs, ζ, ρSR) = GX(Y ) ×[
1 +

a

χNRΓ(ζ + i)

1

2 + βX(Y )

(
1 + ρSR
1− ρSR

+ βX(Y )

)]
. (3.21)

where the angular dependency in the functions G and β are omitted in order to shorten
the notation. The latter, is a function of the incident polarizations αp and αs, de�ned as

βX(αp, αs) =
cos(2αp − αs)

cos(αs)
and βY (αp, αs) =

sin(2αp − αs)
sin(αs)

. (3.22)

By analogy with [100], we de�ne a function ηX(Y ) = −2ΓχNR/(aFX(Y )) that character-
izes the strength of the nonresonant over the resonant CARS signal. Here, the function
FX(Y ) expresses the polarization-dependent term of the resonant contribution, as follows

FX(Y )(αs, αs, ρSR) =
1

2 + βX(Y )

(
1 + ρSR
1− ρSR

+ βX(Y )

)
. (3.23)

After some algebraic manipulations, that we do not detail here, Eq. (3.21) can be recast
under a polar form, according to the formalism developed in [100]:

χ
(3)
X(Y )e�

(αp, αs, ζ, ρSR) =
GX(Y )

ηX(Y )(ζ2 + 1)

[
ηX(Y )(ζ

2 + 1)− 2ζ + 2i
]

∝
√
IX(Y ) exp(iφ)

, (3.24)

where I corresponds to a CARS intensity analyzed along the X or the Y directions. The
proportionality in Eq. (3.24) is a crude simpli�cation that does not take into account the
far �eld structure and its relation to the spatial dependent susceptibility χ(3). Nevertheless
we know that the total emitted CARS intensity is proportional to the modulus square of
the susceptibility, which is expressed here on a simple plane wave basis. From Eq. (3.24),
the CARS intensity I and the phase of the e�ective susceptibility φ write

IX(Y )(αp, αs, ζ, ρSR) ∝ G2
X(Y )

[
1 + 4

1
ηX(Y )

− ζ
ηX(Y )(ζ2 + 1)

]
, (3.25a)

tanφX(Y )(αp, αs, ζ, ρSR) =
2

ηX(Y )(ζ2 + 1)− 2ζ
. (3.25b)

When the pump and Stokes �elds are �xed, the term ε0E
2
pE
∗
s in Eq. (3.16) acts only

as a multiplicative constant and does not contributes in Eqs. (3.25a) and (3.25b). Finally,
Eq. (3.25a) includes any linear polarization states of the pump and Stokes beams together
with the spectral dispersion associated with the Raman line.
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The nonresonant polarization-resolved CARS response

When the incident frequencies ωp and ωs are tuned away from the resonance frequency
of a molecular vibrational mode, the CARS process is purely nonresonant and the second
term in brackets in Eq. (3.25a) vanishes, leading to IX(Y )(αp, αs) ∝ G2

X(Y )
2. Therefore,

the CARS intensities depend only on the incident polarizations and we can study the the-
oretical polarization-responses of the nonresonant CARS signal for the three polarization
con�gurations stated in section 2.1. The results are depicted in Fig. (3.3). In (a), the
Stokes polarization is �xed along the X axis (αs = 0◦) and the CARS intensities are plot-
ted as a function of the pump polarization (P con�guration), whereas in (b) αp = 0◦ and
the CARS intensities vary according to αs (S con�guration). In both cases the CARS
signal is emitted essentially along the X axis, except for αp = 90◦ and αs = 0◦, when the
IX vanishes. In Fig. (3.3c) (PS con�guration), the incident polarizations rotate simultane-
ously and the polar plots show the typical emission pattern of an isotropic medium, where
the intensity of the total emitted signal does not depend on the incident polarization, ie,
(IX + IY )(αp = αs) = C.

Figure 3.3: Theoretical polarization-resolved nonresonant CARS intensities. (a) αs = 0◦

and αp rotates from 0◦ to 360◦ (P polarization con�guration). (b) αp = 0◦ and αs rotates (S
polarization con�guration). (c) Both polarizations rotate simultaneously (PS polarization
scheme). Red and green curves depict the CARS intensities along the X and Y axes,
respectively.

It is worth noticing that, in the PS polarization con�guration, the polar plots represent-
ing the CARS intensities have always the same shape, even when a molecular vibrational

2This is not surprising, since the function GX(Y ) is by de�nition the nonresonant contribution to the
CARS signal.
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mode is addressed. This fact can be veri�ed from the expressions of the e�ective suscepti-
bilities in Eq. (3.18). If we put αp = αs = α, then these susceptibilities become:

χ
(3)
Xe�

=

[
3χNR + +

2a

[(δω − ΩR) + iΓ](1− ρSR)

]
cosα

χ
(3)
Ye�

=

[
3χNR + +

a

[(δω − ΩR) + iΓ](1− ρSR)

]
sinα.

The CARS intensities along the X and Y directions are therefore proportional to cos2 α
and sin2 α, respectively, with the same proportionality constant. By consequence, the total
intensity IX +IY does not depend on the polarization angle α and the shapes of the polar
plots are the same as in the nonresonant case. In conclusion, the PS polarization scheme
brings no additional information on the medium, beyond the fact that it is isotropic, and
can be consequently, discarded when studying isotropic samples.

3.2.2 Determination of the spectroscopic CARS parameters

In this section, we propose a simple method to determine the Raman depolarization ratio
and the strength of the resonant over the nonresonant amplitudes a/χNR of an isotropic
medium, together with its spectral parameters ΩR and Γ. For this purpose, we derive
the expressions of the polarized CARS intensities at the two spectral positions de�ned
earlier in section 3.1.3, the peak and dip. The choice of these speci�c spectral positions
comes from the fact that they are convenient to determine experimentally. In order to
derive theoretical expressions for these intensities, the �rst step is to calculate the spectral
shifts ζPX(Y )

and ζDX(Y )
, where P and D stand respectively for peak and dip, for which the

CARS intensity in Eq. (3.25a) is maximum or minimum. This is done by canceling the
�rst derivative of the CARS intensities with respect to ζ. The spectral shifts found by this
method are

ζPX(Y )
=

1−
√

1 + η2
X(Y )

ηX(Y )

and ζDX(Y )
=

1 +
√

1 + η2
X(Y )

ηX(Y )

. (3.26)

This operation requires some caution because Eq. (3.26) is not valid when GX(Y ) = 0 or
ηX(Y ) tends to in�nity: in both situations the derivative of the intensity with respect to ζ
vanishes for any value of ζ. The polarization con�guration that veri�es GX = 0 correspond
to αp = 0◦ and αs = 90◦ modulo 180◦. Two polarization settings satisfy GY = 0: either
αs = 0◦ and αp = 0◦ modulo 90◦, or αp = 0◦ and αs = 0◦ modulo 180◦. ηX(Y ) can tend to
in�nity only when ρSR = 0 and βX(Y ) = −1.

Replacing Eq. (3.26) into Eq. (3.25a) leads to the �nal expressions for the CARS peak
and dip intensities:
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IPX(Y )
∝ G2

X(Y )

√
1 + η2

X(Y ) + 1√
1 + η2

X(Y ) − 1
and IDx(y)

∝ G2
X(Y )

√
1 + η2

X(Y ) − 1√
1 + η2

X(Y ) + 1
. (3.27)

Both expressions are very similar except for the fact that they interchange (−) and (+)
signals. Consequently, if we sum them up, we obtain a simple quadratic function of ηX(Y )

and therefore of ρSR and a/(χNRΓ). Moreover, multiplying IPX(Y )
by IDX(Y )

results in the

nonresonant contribution G4
X(Y ). From these observations, we can de�ne the ratio SPD as

SPDX(Y )
(αp, αs, ρSR) =

IPX(Y )
+ IDX(Y )√

IPX(Y )
IDX(Y )

= 2 +

(
a

χNRΓ

)2

F 2
X(Y ), (3.28)

where FX(Y ) is given by Eq. (3.23) and the normalization factor (IPX(Y )
IDX(Y )

)1/2 was
chosen to eliminate the nonresonant contribution of GX(Y ). When αs = 0◦, βY tends
to in�nity for any value of αp and by consequence FY tends to 1 (see Eq. (3.23)) and
SPDY

does not depend on the Raman depolarization ratio. As a result, measuring the Y
component of the peak and dip CARS intensities allows to retrieve the ratio a/(χNRΓ),
following

a

χNRΓ
= −

√
SPDY

(αs = 0◦)− 2. (3.29)

When αs = 0◦, this expression is valid for any value of the pump polarization, except when
they cancel GY . In particular, Eq. (3.29) is veri�ed when αp = 45◦, the pump polarization
that maximizes the CARS intensity along the Y direction, as shown in Fig. (3.3a) for the
nonresonant case. By setting the incident polarizations αs = 0◦ and αp = 45◦ and inserting
Eq. (3.29) into the expression of SPDX

given by Eq. (3.28), the Raman depolarization ratio
can be calculated as

ρSR =

2

√
SPDX

(αp = 45◦, αs = 0◦)− 2
SPDY

(αp = 45◦, αs = 0◦)− 2
− 1

2

√
SPDX

(αp = 45◦, αs = 0◦)− 2
SPDY

(αp = 45◦, αs = 0◦)− 2
+ 1

. (3.30)

As Eq. (3.28) is quadratic on ρSR, another solution is also possible and is given by
the same expression as Eq. (3.30) but with the (−) and (+) signs interchanged. However,
this leads to a solution where ρSR > 1 which is not acceptable since 0 ≤ ρR ≤ 3/4 for non
electronically resonant excitation and linear incident polarizations, as we saw in section
3.1.1. The scheme described above permits therefore to measure ρSR and a/(χNRΓ) for
any pump polarization angle di�erent from 0◦ modulo 90◦, but one speci�c polarization
con�guration, namely αs = 0◦ and αp = 45◦, is chosen in order to maximize the signal to
noise ratio in the Y direction.

It is also possible to determine ρSR and a/(χNRΓ) by recording the X component of the
peak and dip CARS intensities for several pump polarization angles, in the P polarization
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con�guration (αs = 0◦ and αp rotates from 0◦ to 360◦). We can then search for the set of
parameters (a/(χNRΓ), ρSR) that best �ts the experimental data to the analytic expression
of SPDX

given by Eq. (3.28), using the least square method. We can thus build an indicator
of the �t quality, χ2(a/(χNRΓ), ρSR), following

χ2(a/(χNRΓ), ρSR) =
1

N

∑
αp

[
SexpPDX

(αp)− StheoPDX
(αp, a/(χNRΓ, ρSR)

]2
, (3.31)

where we have used the same notation as in Eq. (2.5) in section 2.2.2. The interest of
this method is that the behavior of SPDX

changes dramatically for di�erent values of the
Raman depolarization ratio, as we show in Fig. (3.4). This can be explained by the fact
that, according to Eq. (3.28), SPDX

depends quadratically on FX , whose behavior with
respect to βX varies for di�erent values of ρSR. From Eq. (3.23), FX is an increasing
function of βX for ρSR < 1/3, it is constant for ρSR = 1/3 and a decreasing function of βX
for ρSR > 1/3. Unlike the �rst method that uses only one pump polarization αp = 45◦,
this �tting method uses several pump polarization angles in order to determine ρSR and
a/(χNRΓ), which can be more accurate for a medium where the signal to noise ratio is too
low.

Figure 3.4: Theoretical SPDX
ratios as a function of the pump polarization angle when

αs = 0◦, for di�erent depolarization ratios: 0 (blue), 1/3 (red), 0.55 (light blue) and 0.75
(green). The ratio a/(χNRΓ) is �xed and equal to -1.

The Raman frequency ΩR and its half width at half-maximum Γ can be determined by
solving the two-equation system ζP(D) = (δωP(D) − ΩR)/Γ. The two unknown can be then
written as

Γ =
δωD − δωP
ζP − ζD

and ΩR =
ζDδωP − ζPδωD

ζD − ζP
, (3.32)
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where the values of the normalized spectral shift ζP and ζD are calculated from Eq. (3.26).

3.2.3 The polarization-resolved SRS response

In the SRS process, the signal detected is either the increase of the Stokes intensity or the
decrease of the pump intensity due to the stimulated Raman emission, when a molecular
vibrational mode is addressed. Here, we are interested in the stimulated Raman loss process
(SRL) in which we quantify the depletion undergone by the pump �eld (see section 1.2.3).
In this case, the detected SRL signal can be interpreted as the interference between the
incident �eld at frequency ωp, Ep(ωp), and the �eld generated by stimulated Raman e�ect
in the interaction length L, ESRL(ωp, L), according to:

Ip(ωp, L) ∝ |Ep(ωp) + ESRL(ωp, L)|2. (3.33)

The �eld ESRL(ωp, L) is generated by the four-wave mixing process and is proportional
to the third-order nonlinear polarization induced in the sample, given by Eq. (1.1). The
signal measured in the lock-in detection is the variation of the pump intensity. In the limit
where the SRL �eld is weak compared to the pump �eld (ESRL << Ep), the detected signal
corresponds to the interference term between both electric �elds, Ep(ωp) and ESRL(ωp, L),
following:

∆Ip(ωp, L) = Ip(ωp, L)− Ip(ωp) = E∗p(ωp) · ESRL(ωp, L) + c.c.

=
∑
I

E∗pI (ωp)E
SRL
I (ωp, L) + c.c. (3.34)

where c.c. stands for complex conjugate. If we replace the Eq. (1.3) into Eq. (3.34) and
if we omit the propagation of the �eld through the interaction length L, the SRL signal
detected along the direction I = (X, Y ) writes:

ISRLI ∆IpI (ωp) ∝ ε0
∑
JKL

χ
(3)SRL
IJKL (−ωp;ωs, ωp,−ωs)E∗pI (ωp)EsI (ωs)EpJ (ωp)E

∗
sK

(ωs), (3.35)

where the signal measured is denoted ISRLI , by analogy with the notation used in the CARS
process.

Contrary to the CARS process, which is proportional to the modulus square of the
susceptibility and consequently to the square of the molecular concentration, the SRS
process is linear with the susceptibility and by consequence, with the number of molecules
by unit volume. By analogy with Eq. (3.16), we can replace the expression of the SRL
susceptibility tensor, given by Eq. (3.14), into Eq. (3.35) and by using the plane wave
approximation for the incident �elds, we can write the SRL intensity along the X or the
Y axes as:

ISRLX(Y ) ∝ ε0χ
(3)SRL
X(Y )e�

IpIs, (3.36)
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where Ip = |Ep|2 and Is = |Es|2 are the intensities of the pump and Stokes �elds, respec-
tively, and the e�ective susceptibilities are given by:

χ
(3)SRL
Xe�

(αp, αs, ρR) ∝ Im(χR)

[
cos2 αp

(
ρSR

1− ρSR
+ cos2 αs

)
+ cosαp sinαp cosαs sinαs] (3.37a)

χ
(3)SRL
Ye�

(αp, αs, ρR) ∝ Im(χR)

[
sin2 αp

(
ρSR

1− ρSR
+ sin2 αs

)
+ cosαp sinαp cosαs sinαs] . (3.37b)

The proportionality symbol accounts for the omission of some constants, which are the
same in both directions X and Y and thus do not contribute to the analysis developed here.
We do not demonstrate that the spectral term is equal to the imaginary part of the third-
order susceptibility. This can be done by calculating the wave propagation equation in the
nonlinear regime, which is not in the scope of this manuscript, but is very well presented in
references [73, 72]. By consequence, as the SRL is proportional to Im(χ(3)), it is not a�ected
by any nonresonant contribution from the electronic response of the medium, for which,
χ

(3)
NR is real. As a consequence, the expressions of the e�ective susceptibilities, given by Eq.

(3.37), are much simpler than in the CARS process [see Eq. (3.18)]. Therefore, SRS allows
direct access to the depolarization ratio without any a priori spectral knowledge, except
the position of the Raman peak. Moreover, its spectrum coincides with the spectrum of
the spontaneous Raman scattering, also proportional to Im(χR). On the other hand, a
polarimetric study of the SRL signal in the peak of the Raman band does not allow to
determine any other spectral parameter of the Raman band.

The �rst consequence of Eq. (3.37) is that there is no SRL signal along the X or
the Y direction if the pump polarization is along the Y or the X axis, respectively. This
comes from the the fact that the SRL scattering results from an interferometric process
with the pump �eld and by consequence, no signal is generated perpendicular to the pump
polarization. The depolarization ratio can be extracted from Eq. (3.37a), for di�erent
polarization con�gurations. In particular, if we set αp = 0◦ and we measure the SRL signal
along X, at two di�erent Stokes polarizations, αs = 0◦ and αs = 90◦, we obtain:

ISRLX (αp = 0◦, αs = 0◦) = 1
1−ρSR

ISRLX (αp = 0◦, αs = 90◦) =
ρSR

1−ρSR

 ⇒ ρSR =
ISRLX (αp = 0◦, αs = 90◦)

ISRLX (αp = 0◦, αs = 0◦)
(3.38)

which is actually the de�nition of the depolarization ratio showed in Eq. (3.7b). Note that
we omitted the spectral contribution in Eq. (3.38). In fact, this term acts only as a mul-
tiplicative factor that is constant for any polarization con�guration, and is canceled when
performing the ratio ISRLX (αp = 0◦, αs = 90◦)/ISRLX (αp = 0◦, αs = 0◦). The inconvenience
of this method of calculating the Raman depolarization ratio, specially when working in
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a microscopy setup, is that it is necessary to perform two measurements at two distinct
Stokes polarizations. Consider then the case where the Stokes polarization is �xed along
the X axis, which leads to:

ISRLX (αp, αs = 0◦) = cos2 αp
1

1− ρSR
and ISRLY (αp, αs = 0◦) = sin2 αp

ρSR
1− ρSR

.

If besides, we set αp = 45◦, then we can determine the Raman depolarization ratio by
recording simultaneously the SRL signal along the X and Y axes, for only one incident
polarization con�guration, αp = 45◦, αs = 0◦, following:

ρSR =
ISRLY (αp = 45◦, αs = 0◦)

ISRLX (αp = 45◦, αs = 0◦)
. (3.39)

3.3 Experimental results: calculating the Raman depo-
larization ratio of liquids

3.3.1 Experimental polarization-resolved CARS responses

The nonresonant response

We �rst present the CARS polarization responses of a pure nonresonant medium, here
water, for the two polarization con�gurations P and S. In the �rst, the Stokes polarization
angle is �xed to zero (αS = 0◦) while the pump linear polarization rotates from 0◦ to
360◦. In the second, it is the pump polarization that is �xed along X while the Stokes
polarization rotates. Pump and Stokes wavelengths are �xed to 724.5 nm and 797.0 nm,
which corresponds to a frequency shift δω = 1236.5 cm−1, that is far from any resonance
frequency of pure water. The average powers are 2 mW and 1 mW for pump and Stokes,
respectively. The results are shown in Fig. 3.5, where we plot the experimental CARS
intensities together with the theoretical ones, calculated as the modulus square of the
function GX(Y ), given in Eq. (3.19). It is important to note here that the theoretical ap-
proach developed in this chapter does not take in account possible polarization distortions
from optical re�ections. The good agreement observed between the uncorrected theoret-
ical intensities and the experimental data, in the nonresonant case for both polarization
con�gurations, shows that the e�ects of dichroism and ellipticity can be neglected. This
is only true for an isotropic medium probed with the same wavelengths as in the nonres-
onant case. As the wavelength of the pump is �xed (or varies slightly), we can always
neglect the polarization distortions in the P con�guration, for an isotropic medium. In the
S polarization scheme, however, the wavelength of the Stokes �eld can have distinct values,
according to the resonance frequency of the probed vibrational mode. As we showed in
section 2.2.3, the polarization distortions are very sensitive to the incident wavelength and
therefore, in the S polarization con�guration, it is necessary to verify the dichroism and
ellipticity introduced by the optical re�ections for each Stokes frequency. Nevertheless,
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3.3. Experimental results: calculating the Raman depolarization ratio of liquids

the two �t methods for the CARS intensities proposed in this chapter are performed in
the P polarization scheme and by consequence, we are not concerned with polarization
distortions a�ecting the Stokes �eld.

Figure 3.5: CARS polarization responses IX (in red) and IY (in green), for pure water, with
the respective theoretical nonresonant intensities (dotted lines). (a) Stokes polarization αs
is set parallel to the X axis and the pump αp polarization rotates from 0◦ to 360◦. (b)
αp = 0◦ and αs rotates. IY are magni�ed by a factor of 2 for clarity.

The resonant response

We now focus on the resonant polarization-resolved CARS responses of some liquids, in
order to determine their spectroscopic parameters, in particular, the Raman depolarization
ratio. The experiments are carried out on toluene and cyclohexane, at two vibrational
modes with di�erent symmetries. In the case of toluene, we concentrate on the polarized
Raman band at 787 cm−1 corresponding to the A1 vibration [101]. The corresponding
CARS peak arises at 776 cm−1 which is addressed with pump and Stokes wavelengths at
730.26 nm and 774.15 nm, respectively and average power 300 µW for each beam. For
cyclohexane, we focus on the depolarized Raman line at 1267 cm−1 corresponding to the
Eg CH2 wagging vibration [102]. In this case, the corresponding CARS peak arises at
1256 cm−1 and is addressed with pump and Stokes wavelengths at 724.5 nm and 797.0 nm
and average powers 2 mW and 1 mW, respectively. In this section, the words �toluene�
and �cyclohexane� will refer exclusively to these two bands.

We �rst acquire the CARS spectra of toluene and cyclohexane with both incident
polarizations parallel to the X axis (αP = αS = 0◦), in order to determine their peak and
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Figure 3.6: Experimental CARS polarization responses IX (in red) and IY (in green),
for toluene, in the two polarization con�gurations, P (left) and S (right). (a) Intensities
acquired at the peak of the CARS spectrum. (b) Polarimetric measurements at the dip.

dip wavenumbers. As we work with two picosecond lasers, the CARS spectra are obtained
by �xing the wavelength of the pump �eld and by acquiring the CARS intensity along the
X direction for di�erent values of the Stokes wavelength. The peak and dip wavenumbers
are determined within an experimental accuracy of ±4 cm−1.

The CARS polarization responses are shown in Fig. 3.6 for toluene and Fig. 3.7 for
cyclohexane, for both polarization con�gurations P and S. In Figs. (3.6a) and (3.7a), we
depict the CARS signal recorded at the peak of the considered Raman bands, while in (b)
we show the intensities at the dip of the spectrum. At �rst sight, a comparison between the
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Figure 3.7: Experimental CARS polarization responses IX (in red) and IY (in green), for
cyclohexane, in the two polarization con�gurations, P (left) and S (right). (a) Intensities
acquired at the peak of the CARS spectrum. (b) Polarimetric measurements at the dip.

resonant polar plots [Figs. (3.6) and (3.7)] and the nonresonant ones (Fig. [3.5]) depict very
similar curve shapes, showing that the polarization-resolved CARS signal is dominated by
the nonresonant response of the considered medium. Nevertheless, a careful observation
shows that the signature of the spectral resonance is the ratio of the two perpendicularly
polarized CARS intensities, IX and IY . For both polarization con�gurations at the CARS
peak and dip, the ratio of IY to IX is indeed strongly dependent on the Raman line
depolarization ratio. At the peak of the spectrum, the ratio IY /IX for αs = 0◦ and
αp = 45◦, is close to unity in a polarized band, as toluene, and it decreases to less than
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1/2 in a depolarized band, as in cyclohexane. At the dip of the spectrum, the polarized
and depolarized band present the opposite behavior in respect to the ratio IY /IX : in this
case, when αs = 0◦ and αp = 45◦, the ratio tends to unity for a depolarized line. In the S
polarization scheme, the relative intensities between the CARS signals along X and Y is
also a signature of the vibrational resonance.

Table 3.1: Raman depolarization ratios and spectral parameters calculated for toluene and
cyclohexane.

Sample a
χ

(3)
NRΓ

ρR Γ (cm−1) ΩR (cm−1) Method

Toluene
−1.301±0.003 0.037±0.002 6.5±1.5 779±3 1

−1.24±0.03 0.04±0.01 6.1±1.4 779±3 2

Cyclohexane
−0.154±0.009 0.78±0.01 10.9±2.0 1266±3 1

−0.12±0.02 0.82±0.03 10.9±2.0 1267±3 2

From the acquired CARS intensities, we calculate the ratio SPDX(Y )
(for αs = 0◦, αp =

45◦ - referred as method 1) and then we use Eqs. (3.29) and (3.30) to obtain respectively
the factor a/(χNRΓ) and the Raman depolarization ratio ρSR. The results are shown in
table 3.1, under the label method 1. The uncertainties were derived from the experimental
uncertainties of IX(Y ). The same CARS spectroscopic coe�cients were also deduced from
�tting the analytic expression of SPDX

in Eq. (3.28) to the experimental data (for αp
in the range [0◦, 360◦] and αs = 0◦ - referred as method 2). The results are shown in
table 3.1, under the label method 2. For method 2, the retained solution is the couple
(a/(χNRΓ), ρSR) that minimizes the mean square error function given by Eq. (3.31). Fig.
(3.8) plots the cartography of the mean square error χ2(a/(χNRΓ), ρSR), for toluene (a)
and cyclohexane (b). As both surfaces have only one and well de�ned global minimum, we
demonstrate here the unicity of the solution, for di�erent depolarization ratios. Fig. (3.9)
shows the experimental ratio SPDX

for toluene and cyclohexane and the best �t to Eq.
(3.28) as a function of the pump polarization angle αp. We observe that SPDX

for toluene
and cyclohexane exhibit very di�erent behaviors, as expected from Eqs. (3.28) and (3.23)
for polarized and depolarized lines. We �nally calculate Γ and ΩR, as explained in section
3.2.2 for both methods (see table 3.1, methods 1 and 2).

From table 3.1, both methods allow recovering the degree of polarization of the toluene
and cyclohexane bands (ρSR ≈ 0 and ρSR ≈ 3/4 respectively). Furthermore, the ratio
of the resonant to the nonresonant contribution (a/χNR), the spectral line position and
its HWHM are obtained within an acceptable agreement between methods 1 and 2. The
advantage of method 1 lies in its increased simplicity in an experimental setup: only one
polarization con�guration at two speci�c spectral positions (peak and dip) is required to
obtain the CARS spectroscopic parameters. Results are also comparable with Raman
measurements reported elsewhere for toluene [101] and cyclohexane [64]. The Raman
depolarization ratio bigger than 3/4 for the depolarized band of the cyclohexane can be
attributed to possible remaining ellipticity introduced by the dichroic �lter to the incident
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Figure 3.8: Cartography of the mean square error χ2(a/(χNRΓ), ρSR) for toluene (a) and
cyclohexane (b). The retained solution in each case is the couple (a/(χNRΓ), ρSR) that
minimizes χ2.

Figure 3.9: Experimental SPDX
and their best �t as a function of the pump polarization

angle αp for toluene (a) and cyclohexane (b).

pump polarization. In order to verify the consistency of the parameters �tted in this section,
we build a theoretical CARS spectrum for toluene and compare it with the experimental
one. The result is shown in Fig. (3.10). The CARS intensity is calculated as the modulus

square of the e�ective susceptibility χ
(3)
Xe�

, given in Eq. (3.18), with αp = αs = 0◦ and

the spectroscopic parameters given in table 3.1 (we chose to take the mean values between
method 1 and 2). Both theoretical and experimental spectra are in good agreement, which
shows that despite its simpli�ed assumptions, our analytic model can estimate satisfyingly
the CARS spectroscopic parameters for isotropic media.

3.3.2 Experimental polarization-resolved SRS responses

The SRS experiments were carried out only on cyclohexane, at two distinct vibrational
modes with di�erent symmetries. The �rst is the polarized Raman band at 802 cm−1,
corresponding to the totally symmetric (A1g) vibration of the carbon ring [102]. This
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Figure 3.10: Experimental spectrum of toluene (markers) for αp = αs = 0◦ detected along
the X axis, together with the theoretical spectrum (solid line), calculated with the spectral
parameters determined by the analytic model. The intensities are normalized so that they
are equal to one at the peak. Spectra are plotted as a function of the normalized spectral
shift ζ.

resonance is addressed with pump and Stokes wavelengths at 730.26 nm and 775.47 nm,
respectively. The second resonance is the same as in the CARS experiment i.e., the de-
polarized Raman line at 1267 cm−1 corresponding to the Eg CH2 wagging vibration [102].
In this case, the peak is addressed with pump and Stokes wavelengths at 724.5 nm and
797.66 nm. The average powers are 10 mW for each beam.

In the SRS experiments, the pump polarization is �xed along a given direction and we
rotate the Stokes linear polarization. For each Stokes wavelength, it is therefore necessary
to characterize the ellipticity and dichroism introduced by the dichroic mirror and to correct
the theoretical curves by these factors, by accounting them into the incident �elds. It is
worth noticing, however, that ellipticity does not a�ect the value of the depolarization ratio,
as a consequence of the fact that in the calculations, we only take into account the Stokes
intensities acquired along the X or Y axes, as showed in Eqs. (3.38) and (3.39). Indeed,
according to section 2.2.2, the incident polarization remains linear when it is parallel the
X or the Y axis. When we use Eq. (3.39) to calculate ρSR, the pump is polarized along
αp = 45◦, direction that can present high ellipticity. However, as the depolarization ratio
is calculated by dividing two intensities acquired at the same polarization αp = 45◦, then
this ellipticity does not a�ect the result.

Here, we perform two distinct polarization-resolved experiments for each vibrational
mode. In the �rst, the pump polarization is �xed along the X axis and the Stokes po-
larization rotates from 0◦ to 360◦. In the second, the pump beam has a �xed linear
polarization along an intermediate direction (αp 6= 0◦ or 90◦) and the Stokes polarization is
tuned as in the �rst con�guration. For the A1g mode, we chose to �x αp = 150◦, whereas
for the Eg mode we set αp = 30◦. In both schemes, we detect the SRL signal along the
X and Y directions. With the �rst polarization con�guration (αp = 0◦), we calculate
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the Raman depolarization ratio by using Eq. (3.38). Then, we verify that the theoretical
SRL intensities, calculated by replacing the value of ρSR into Eq. (3.37) with the appro-
priate polarization angles, agree with the intensities acquired in the second polarization
con�guration (αp 6= 0◦).

Figure 3.11: Polarization-resolved SRL responses IX (in red) and IY (in green), for the
A1g vibrational mode of cyclohexane. Solid lines correspond to the experimental data and
dotted lines represent the theoretical intensities. (a) αp = 0◦ and αs rotates from 0◦ to
360◦. (b) αp = 150◦ and αs rotates from 0◦ to 360◦. Inset: Zoom into small intensities:
the lobes correspond to negative values of the SRL signal.

The results are shown in Fig. (3.11) for the A1g mode and Fig. (3.12) for the Eg
mode. In both �gures, (a) corresponds to the case for which αp = 0◦ and (b) depicts the
polar plots obtained for the intermediate linear polarization αp. The curves are normalized
so that the maximum of the total intensity (IX + IY ) is equal to 1. As expected, when
αp = 0◦, no SRL signal is detected in the Y direction, for both vibrational modes (the small
intensities depicted in the polar plots correspond to the noise of the detector). Moreover,
the shapes of the polarization-resolved intensities alongX are good signatures of the Raman
depolarization ratio. For a polarized band [Fig. (3.11)] we observe a two-lobe shape that is
almost closed when αs = 90◦, which points out that ρSR is close to zero. For a depolarized
band [Fig. (3.12)], the shape of the polar plot becomes more isotropic, indicating that ρSR
is close to 0.75.

The values of depolarization ratios found are 0.063 ± 0.006 for the A1g mode and
0.743 ± 0.014 for the Eg mode, which is in agreement with values found in the literature
[64]. In Fig. (3.12b), we can observe that the experimental curve corresponding to the IX
SRL intensity is tilted in relation to the theoretical one. This can be an e�ect of small
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Figure 3.12: Polarization-resolved SRL responses IX (in red) and IY (in green), for the
Eg vibrational mode of cyclohexane. Solid lines correspond to the experimental data and
dotted lines represent the theoretical intensities. (a) αp = 0◦ and αs rotates from 0◦ to
360◦. (b) αp = 30◦ and αs rotates from 0◦ to 360◦.

misalignments in the experimental setup. Our results seem to show however that these
misalignments are negligible when the pump �eld is linearly polarized along X but they
become crucial when the pump is polarized along an intermediate direction.

Finally, the inset in Fig. (3.11b) shows small lobes in the SRL intensities appearing
when αs ≈ 240◦ for IX and αs ≈ 30◦ and 150◦, for IY . In fact, these lobes correspond
to negative values of the SRL signal, which means that at these particular polarization
con�gurations, the component X or Y of the pump �eld is not depleted but stimulated.
Note however that the total intensity of the pump beam always decreases in a SRL process
(the sum of the SRL signal along the X and Y axes is always positive). Moreover, these
e�ect is only observed in polarized bands.

3.4 Conclusion

In this chapter, we have developed analytic models for the linear polarization CARS and
SRS spectroscopies applied to isotropic media without electronic resonances. In the case of
SRS we were particularly interested in the stimulated Raman loss e�ect, that accounts for
the decrease of intensity of the pump �eld. These models give simple expressions for the
perpendicularly polarized CARS and SRS intensities IX and IY as a function of the incident
pump and Stokes polarization angles. In the case of CARS, the access to the depolarization
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ratios is less direct than in SRS, due to the presence, in the former, of the nonresonant
response of the medium. We have shown that the in�uence of the depolarization ratio in
the CARS signal, and thus of the resonant response, can be observed in the ratio of IX to
IY , although the general shape of these plots are dominated by the nonresonant response.

The CARS analytic model allowed us to calculate analytic expressions of the CARS
signal at the spectral peak and dip. Two di�erent methods were then proposed to determine
the CARS spectroscopic parameters (depolarization ratio, ratio of the resonant to the
nonresonant components a/χNR, spectral position of the Raman band and its half width
at half-maximum). The �rst method uses only one polarization con�guration, where the
Stokes beam is polarized parallel to the X axis and the pump polarization angle is �xed
at 45◦ with respect to the same axis. The second method keeps the Stokes �eld polarized
parallel to the X axis whereas the pump polarization angle rotates from 0◦ to 360◦.

In the SRS analytic model, we can calculate the Raman depolarization ratio without
any a priori spectral information, with the exception of the resonance frequency of the
vibrational mode. When the pump �eld is polarized along X, the depolarization ratio is
given simply by the ratio of the SRS intensities IX detected when the Stokes polarization is
αs = 90◦ and αs = 0◦. Another way of determining ρSR in the SRS model consists of �xing
αs along X and αp at 45◦ and calculating the ratio of the SRS intensities IY /IX . Satisfying
results for the CARS and SRS analytic methods were found for toluene and cyclohexane
solutions. Here, we have considered species with well separated spectral lines. In congested
spectra, the methods developed here could be in principle applicable, not without some
additional di�culties, particularly in the case of CARS, where it can be di�cult to identify
spectral peaks and dips.
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CHAPTER 4

POLARIZATION RESOLVED CARS

SIGNALS OF CRYSTALLINE MEDIA

In the previous chapter, we studied the polarization-resolved CARS and SRS responses in
isotropic media. The main application of the study was to measure depolarization ratios
of liquids, that characterize the symmetry of the addressed vibrational modes. Here, we
extend some of the concepts developed in chapter 3 to crystalline media. We concentrate
our analysis in the case of the CARS process.

In the case of ordered media with crystalline organization, the polarization-resolved
CARS study is based on the a priori knowledge of the crystallographic point group of the
crystal. According to chapter 1, this information allows to retrieve the structure of the
susceptibility tensor of the medium. In nonisotropic samples, the polarimetric CARS study
must be done in two steps. First, we analyze the nonresonant response of the medium,
in order to determine the orientation of the crystal lattice in the macroscopic coordinate
system and also the nonresonant tensor components in the microscopic frame. Here, we
are not interested in �nding the absolute values of these tensor elements but instead, we
calculate relative values to one particular component, that act as generalized structural
depolarization ratios. Second, we study the resonant responses of the medium to one
particular vibrational mode, whose symmetry is also known a priori. As we showed in
chapter 1, the tensor structure of a vibrational mode can be di�erent from the one of
the bulk, unless the addressed resonance is the totally symmetric mode. In the resonant
case, we study departures from the Kleinman symmetry and we try to calculate the new
microscopic elements of the susceptibility tensor .

In this chapter, we apply polarization-resolved CARS analysis to crystals with cubic
symmetry. As these are centrosymmetric media, there is no nonlinear process of lower
order that can occur in the sample. Moreover, these high order symmetry crystals are seen
as isotropic in spontaneous Raman scattering. By consequence, CARS is the lowest order
optical process capable of probing the susceptibility tensor structure of cubic systems. In
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our approach, we use the polarization-resolved nonresonant CARS responses to quantify
departure from isotropy and the resonant responses to characterize, or even quantify in the
particular case of totally symmetric vibrations, deviations from the Kleinman symmetry.
The work reported in this chapter is based on reference [103].

4.1 The third-order nonlinear susceptibility tensor for
media with cubic symmetry

In nonisotropic samples, the CARS susceptibility tensor has a more complex structure
than for isotropic media. First, the nonresonant CARS signal generated by the electronic
response of the medium to the incident �elds is not isotropic. Second, each resonance has
its own symmetry speci�city, which is characterized by a tensor whose structure can be
di�erent from the nonresonant one. The complexity of the susceptibility tensor is further
increased at resonance, where Kleinman symmetry conditions do not apply [74]. In this
section, we develop the expressions of the microscopic CARS susceptibility tensor for a
medium with cubic symmetry, belonging to the Oh crystallographic point group. First,
we describe the nonresonant tensor and then the resonant susceptibility for two di�erent
vibrational modes: the totally symmetric resonance A1g and the degenerate mode Eg.

4.1.1 The microscopic nonresonant susceptibility tensor

Appendix A presents the structures of the third-order susceptibility tensors for all 32
crystallographic point groups. In particular, crystals with cubic symmetry have the same 21
nonvanishing components as an isotropic medium. In the speci�c case of crystals belonging
to the Oh crystallographic point group, only four tensor elements are independent, which
leads to the following χ(3) structure:

χ
(3)
xxxx = χ

(3)
yyyy = χ

(3)
zzzz (4.1a)

χ
(3)
xyxy = χ

(3)
xzxz = χ

(3)
yxyx = χ

(3)
yzyz = χ

(3)
zxzx = χ

(3)
zyzy (4.1b)

χ
(3)
xxyy = χ

(3)
xxzz = χ

(3)
yyxx = χ

(3)
yyzz = χ

(3)
zzxx = χ

(3)
zzyy (4.1c)

χ
(3)
xyyx = χ

(3)
xzzx = χ

(3)
yxxy = χ

(3)
yzzy = χ

(3)
zxxz = χ

(3)
zyyz . (4.1d)

where the frequency arguments are omitted in order to shorten the notation. Lowercase
indexes x, y, z indicate that we are dealing with the microscopic susceptibility tensor in the
crystal frame. In the nonresonant regime, Kleinman symmetry applies and the nonresonant
χ(3)NR has only two independent components, following:

χ
(3)NR
xxxx = χ

(3)NR
yyyy = χ

(3)NR
zzzz

χ
(3)NR
xxyy = χ

(3)NR
xxzz = χ

(3)NR
yyzz

(4.2)
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with all index permutations allowed. The aim of our polarimetric study is not to calculate
absolute values of tensor elements, but to determine some important ratios between com-
ponents, that allow to characterize the symmetries of the medium or its resonances, as we
did in the isotropic case. For this purpose, in analogy with an isotropic medium, we de�ne
a generalized nonresonant depolarization ratio,

ρNR =
χ

(3)NR
xyyx

χ
(3)NR
xxxx

(4.3)

that characterizes completely the whole microscopic susceptibility tensor of a crystal that
belongs do the 0h point group. From Eq. (3.3), this ratio is equal to 1/3 in the isotropic
case. In a crystal with cubic symmetry, ρNR can have any arbitrary value and it quanti�es
the departure from isotropy. Note that this simpli�cation is only possible in the case of the
Oh point group and a more complex symmetry would involve more than one depolarization
ratio.

4.1.2 The microscopic resonant susceptibility tensor

In the vicinity of vibrational resonances, the CARS susceptibility tensor takes a more
complex expression including the Lorentzian spectral resonant contribution, given by Eq.
(3.10), leading to the following expression for χ(3):

χ(3) = χ(3)NR
xxxx

(
χ(3)NR

χ
(3)NR
xxxx

+
A

(δω − ΩR) + iΓ

χ(3)R

χ
(3)R
xxxx

)
(4.4)

with ΩR the frequency of the addressed vibrational mode, A = χ
(3)R
xxxx/χ

(3)NR
xxxx the ratio of

the strength of the resonant over the nonresonant contributions, and Γ the Raman line
width (HWHM). We chose to normalize the whole tensor by the component χ

(3)NR
xxxx , so the

�rst term in brackets in Eq. 4.4 corresponds exactly to the nonresonant tensor in section
4.1.1. The tensor structure of the resonant contribution χ(3)R, which can di�er from that of
χ(3)NR, depends on the symmetry of the vibrational mode and is deduced from the analysis
of the corresponding irreducible representation, as we showed in section 1.4. It is therefore
expected that the CARS spectral behavior will considerably depend on the polarization
settings for both pump and Stokes �elds, especially for nontotally symmetric modes that
exhibit di�erent symmetry properties than the nonresonant background.

The totally symmetric vibrational mode

A totally symmetric vibrational mode, A1g, exhibits a similar symmetry structure as the
crystal point group. The only di�erence between the nonresonant and resonant cases is
the antisymmetric nature of the tensor at resonance, due to the departure from Kleinman
symmetry conditions which imposes χ

(3)R
iijj 6= χ

(3)R
ijij 6= χ

(3)R
ijji , with i, j = (x, y, z) and i 6=

j. Consequently, the resonant CARS tensor for a totally symmetric vibration has three
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independent components that are, from Eq. (4.1) and taking into account the degeneracy
with respect to the pump �eld,

χ
(3)R
xxxx(−ωas;ωp, ωp,−ωs)

χ
(3)R
xxyy(−ωas;ωp, ωp,−ωs) = χ

(3)R
xyxy(−ωas;ωp, ωp,−ωs)

χ
(3)R
xyyx(−ωas;ωp, ωp,−ωs).

(4.5)

Here we explicit the frequency arguments in order to show the degeneracy of the tensor
with respect to the second and third indexes. All components obtained by interchanging
the indexes x → y → z are equal. By analogy with the nonresonant case, for a totally
symmetric vibrational resonance of a crystal belonging to the Oh point group, we can de�ne
two depolarization ratios, that characterize the whole resonant tensor:

ρR
A1

=
χ

(3)R
xyyx

χ
(3)R
xxxx

and ρR
A2

=
χ

(3)R
xxyy

χ
(3)R
xxxx

. (4.6)

When ρR
A1

= ρR
A2
, Kleinman symmetry is veri�ed and the tensor is totally symmetric.

When this is not the case, the ratio between the two depolarization ratios quanti�es the
departure from Kleinman symmetry at resonance.

Nontotally symmetric resonance: the degenerate Eg mode

In a crystal with cubic symmetry, the tensorial structure of the third-order susceptibility
of a degenerate vibrational mode Eg is very di�erent from the nonresonant or the totally
symmetric resonant tensors, mainly because in the former, the z dependent components
become nondegenerate. According to section 1.4, the tensor structure of a degenerate mode
can be determined by the method of the projection operators. Here, we use the results
tabulated in reference [77], where we can �nd the selection rules for linear up to third-
order nonlinear Raman e�ects. According to this reference, the quaternary direct products
transforming as the Eg irreducible representation of the Oh crystallographic point-group
are:

(x4 − y4, x4 + y4 − 2z4)

(y2z2 − z2x2, y2z2 + z2x2 − 2x2y2) .

From section 1.4.4, we know that the third order susceptibility tensor can be decom-
posed, in Cartesian coordinates, in a linear combination of the quaternary direct products,
following:
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χ
(3)R
Eg

= α
(
x4 − y4

)
+ β

(
x4 + y4 − 2z4

)
+ γ

(
y2z2 − z2x2

)
+ δ

(
y2z2 + z2x2 − 2x2y2

)
= (α + β)x4 + (−α + β)y4 − 2βz4 + (γ + δ)y2z2 + (−γ + δ)z2x2 − 2δx2y2

= χ(3)R
xxxxx

4 + χ(3)R
yyyyy

4 + χ(3)R
zzzzz

4 + χ
(3)R
y2z2y

2z2 + χ(3)R
zzxxz

2x2 + χ(3)R
xxyyx

2y2

where the polynomials i4 and i2j2 are lightened notations for the fourth-order tensorial
product of unit vectors, î⊗ î⊗ î⊗ î and î⊗ î⊗ ĵ⊗ ĵ, respectively. The resulting susceptibility
tensor structure of an Eg vibrational mode is:

χ
(3)R
zzzz = −

(
χ

(3)R
xxxx + χ

(3)R
yyyy

)
with χ

(3)R
xxxx 6= χ

(3)R
yyyy

χ
(3)R
xxyy = −

(
χ

(3)R
xxzz + χ

(3)R
yyzz

)
with χ

(3)R
xxzz 6= χ

(3)R
yyzz.

(4.7)

If we suppose that Kleinman symmetry applies, which is a crude approximation due
to the resonant nature of the process but reduces considerably the number of independent
tensor components, then we can de�ne three depolarization ratios that characterize the
whole structure of the susceptibility tensor, following:

ρR
E1

=
χ

(3)R
yyyy

χ
(3)R
xxxx

, ρR
E2

=
χ

(3)R
yyzz

χ
(3)R
xxxx

and ρR
E3

=
χ

(3)R
zzxx

χ
(3)R
xxxx

. (4.8)

4.2 The theoretical anti-Stokes signal generated by cu-
bic crystals

According to Eq.(1.1), the third-order nonlinear polarization induced in the sample re-
sults from the coupling of the linearly polarized incident �elds pump and Stokes with the
macroscopic susceptibility tensor of the medium χ(3). The emitted anti-Stokes intensity is
proportional to the induced polarization and is given by:

II(ωas, αp, αs) ∝∣∣∣χ(3)
IJKL(−ωas, ωp, ωp,−ωs)EpJ (ωp, αp)EpK (ωp, αp)E

∗
sL

(ωs, αs)
∣∣∣2 , (4.9)

with I, J,K, L standing for the macroscopic axes X, Y, or Z. In section 4.1 we reported the
microscopic nonresonant and resonant susceptibility tensors χ(3) in the crystal frame. In
order to obtain the macroscopic susceptibility, in the frame where the incident polarizations
are de�ned, it is necessary to apply the tensor transformation relation, given in Eq. (1.51),
which we reproduce here for the case of a third-order nonlinear process:
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χ
(3)
IJKL(−ωas;ωp, ωp,−ωs) =

∑
ijkl

aIiaJjaKkaLl(Ω)χ
(3)
ijkl(−ωas;ωp, ωp,−ωs). (4.10)

The orientation of the crystal unit-cell in the 3D space is de�ned by the Euler angles
Ω = (θ, φ, ψ) and aIi are the rotation matrix components between the macroscopic and
microscopic frames, given by Eq. (1.50). Contrary to the isotropic case, the CARS signal
emitted by a crystal with cubic symmetry depends on the orientation of the crystal lattice.
One feasible approach to retrieve the orientation of the crystal unit-cell would be to study
the polarization responses of the nonresonant CARS signal. In this case the anti-Stokes
intensity is not a�ected by any vibrational resonance and the microscopic susceptibility
tensor is very simple, depending only on the depolarization ratio ρNR.

4.2.1 In�uence of the crystal orientation on the nonresonant anti-
Stokes signal

The nonresonant CARS signal emitted by a medium with cubic symmetry depends on the
3D orientation of the crystal lattice, characterized by the Euler angles Ω = (θ, φ, ψ) that
were introduced on section 1.5, and on the nonresonant depolarization ratio ρNR, de�ned
in Eq. (4.3). Figs. (4.1) and (4.2) show the in�uence of the crystal orientation on the
theoretical nonresonant anti-Stokes intensities resolved in polarization, for ρNR = 0.75.

Fig. (4.1) shows the theoretical CARS intensities along the X and Y directions, as a
function of the tuning incident polarization, in the three polarization con�gurations, P, S
and PS, for di�erent values of the Euler angle φ. The curves are normalized so that the
maximum of the total intensity IX + IY is equal to 1. The polarimetric CARS responses
in the three polarization con�gurations, P, S and PS are very sensitive to φ, when θ and ψ
are 0◦. The only exception is observed for the curves of IX in the S polarization scheme,
for which the only e�ect of φ is to tilt slightly the polar plots around the X axis, without
modifying their two-lobe shapes. A prominent feature in the polar graphes is that the
curves obtained for φ modulo 45◦ are related to each other by a rotation of the polar plots
in the XY plane. This is a result of the cubic symmetry of the medium but is only veri�ed
when θ = 0◦. Another consequence of the cubic symmetry of the medium, is that the
polarimetric responses are equivalent for φ = 0◦ and φ = 90◦. This is observed because
the main axis of symmetry is a four-fold axis. Finally, the theoretical curves presented in
Fig. (4.1) were built for ψ = 0◦ but the same results would have been found for φ = 0◦. In
fact, when the microscopic axis z is aligned with the macroscopic Z (θ = 0◦), φ and ψ have
equivalent roles. This means that the theoretical polar plots obtained for φ = 0◦, ψ = 30◦

or φ = 30◦, ψ = 0◦, for instance, are the same. Moreover, the rotation φ + ψ = 30◦ is
equivalent to φ = 0◦, ψ = 30◦ or φ = 30◦, ψ = 0◦.

The same study can be done to verify the in�uence of θ on the polarimetric CARS
responses. The results are shown in Fig. (4.2), for the three polarization con�gurations,
P, S and PS, with φ = ψ = 0◦. Again, the anti-Stokes intensities resolved in polarization
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Figure 4.1: Theoretical nonresonant CARS intensities resolved in polarization, for a
medium with cubic symmetry and depolarization ratio ρNR = 0.75. The Euler angles
θ and ψ are set to 0◦ and φ varies from 0◦ to 90◦. (a) P polarization con�guration: αs = 0◦

and αp rotates from 0◦ to 360◦. (b) S polarization scheme: αp = 0◦ and αs rotates. (c) PS
polarization con�guration: both incident polarizations rotate simultaneously. Polar plots
on the top row depict the CARS intensities along the X axis IX , while the ones on the
bottom show IY . Insets show the curves enlarged for clarity. Curves are normalized so
that the maximum of the total intensity (IX + IY ) is equal to 1. Curves in the insets were
enlarged for clarity.

are sensitive to θ, with the only exception of IX in the S polarization scheme, where no
dependence on θ is observed. The curves obtained for θ modulo 45◦ are equal to each
other, which is a consequence of the cubic symmetry of the medium but only veri�ed when
φ = ψ = 0◦.

The study developed in this section is valid for any depolarization ratio, except for
ρNR = 1/3. In this case, χ

(3)NR
xxyy + χ

(3)NR
xyxy + χ

(3)NR
xyyx = χ

(3)NR
xxxx , according to Eq. (4.1),

which is the characterization of an isotropic medium, as we showed in Eq. (3.3). By
consequence, the polarization resolved nonresonant CARS responses of a cubic crystal for
which ρNR = 1/3, do not depend on the orientation of the crystal lattice.
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Figure 4.2: Theoretical nonresonant CARS intensities resolved in polarization, for a
medium with cubic symmetry and depolarization ratio ρNR = 0.75. The Euler angles
φ and ψ are set to 0◦ and θ varies from 0◦ to 90◦. (a) P polarization con�guration: αs = 0◦

and αp rotates from 0◦ to 360◦. (b) S polarization scheme: αp = 0◦ and αs rotates. (c)
PS polarization con�guration: both incident polarizations rotate simultaneously. Polar
plots on the top row depict the CARS intensities along the X axis IX , while the ones on
the bottom show IY . Curves are normalized so that the maximum of the total intensity
(IX + IY ) is equal to 1.

4.2.2 In�uence of the crystal orientation on the resonant anti-
Stokes signal: theoretical study for a totally symmetric vi-
brational mode

We can extend the analysis done in the previous section to the resonant CARS signal.
In particular, we are interested in the anti-Stokes �eld emitted when a totally symmetric
vibrational mode is addressed. In this case, the resonant susceptibility tensor has the same
structure as the nonresonant one, but it is completely characterized by two depolarization
ratios, as we showed in Eq. (4.6). Fig. (4.3) shows how the orientation of the crystal
lattice a�ects the polarization resolved CARS intensities. Here, we concentrate on the PS
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polarization con�guration, where we tune both incident polarizations simultaneously. The
theoretical curves were built for ρNR = 0.38, ρR

A1
= 2.5 and ρR

A12
= 1.5.

Figure 4.3: Theoretical resonant CARS intensities resolved in polarization, for the totally
symmetric vibrational mode of a medium with cubic symmetry. Depolarization ratios:
ρNR = 0.38, ρR

A1
= 2.5 and ρR

A12
= 1.5. The polar plots correspond to the PS polarization

con�guration. Di�erent curves depict di�erent values of ψ from 0◦ to 90◦. The other Euler
angles are set to: θ = φ = 0◦ in (a) and θ = 45◦, φ = 22.5◦ in (b). Polar plots on the top
row depict the CARS intensities along the X axis IX , while the ones on the bottom show
IY . Curves are normalized so that the maximum of the total intensity (IX + IY ) is equal
to 1.

Fig. (4.3a) displays very similar features to Fig. (4.1c) and the same analysis developed
in the previous section for the nonresonant case is also valid for the totally symmetric
resonance. Fig. (4.3b) shows that when θ and φ are di�erent from 0◦, the polar plots do
not have any periodicity on 45◦ but the 90◦− periodicity, that is intrinsic to a medium
with cubic symmetry, is always observed, even at resonance.

When ρNR = 1/3 and ρR
A1

+ 2ρR
A2

= 1 the susceptibility tensor has the same structure
as for an isotropic medium and no in�uence of the crystal lattice orientation is expected
to be observed.

At this level, it is interesting to compare, for a totally symmetric vibrational mode,
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the polarization responses of the anti-Stokes signal emitted by the CARS process, which
is a third-order nonlinear scattering, to the Stokes signal emitted by spontaneous Raman
scattering, which is a linear optical process. As we showed in section 1.3.2, the linear
susceptibility χ(1) of a medium with cubic symmetry has the same structure as an isotropic
object: only three nonzero components equal to each other, χ

(1)
xx = χ

(1)
yy = χ

(1)
zz . This tensor,

which has the same structure at resonance when the vibrational mode is totally symmetric,
is thus invariant under the transformation by the rotation matrix aIi given by Eq. (1.50),

for any Euler angle Ω. Therefore, the macroscopic linear susceptibility χ
(1)
IJ of a crystal

with cubic symmetry does not depend on the orientation of the crystal lattice in the
macroscopic frame. Consequently, in spontaneous Raman scattering, if the incident �eld
is linearly polarized, the intensity of the scattered Stokes �eld is:

IsX =
(
χ(1)
xx

)2
cos2(αp)IpX

IsY =
(
χ(1)
xx

)2
sin2(αp)IpY , (4.11)

where αp and Ip are the polarization and intensity of the incident �eld, respectively. The
total Raman intensity IX + IY is hence constant for whatever αp, which proofs that spon-
taneous Raman scattering does not di�erentiate between cubic symmetry and isotropy.
Note that this is only true for a totally symmetric resonance, whose susceptibility tensor
structure is the same as the crystal point group. In the case of nontotally symmetric vibra-
tional modes, the structure of the �st-order resonant susceptibility can become di�erent
from the nonresonant tensor structure, making it possible to distinguish between isotropy
and cubic symmetry through spontaneous Raman scattering.

Fig. (4.3) shows that in the case of the CARS process, contrary to spontaneous Raman
scattering, the polarization resolved intensities emitted when a totally symmetric vibra-
tional mode is addressed are highly sensitive to the orientation of the crystal lattice. It
means that the CARS process allows to distinguish between an isotropic medium and an
object with cubic symmetry. Therefore, nonlinear optical process are necessary to charac-
terize high-order symmetries.

4.3 The sample: crystalline medium with cubic symme-
try

The sample studied in this work is an octahydrosilasesquioxane (HT8) H8Si8O12 crystal,
that has cubic symmetry and belongs to the Oh crystallographic point group [104]. The
elementary molecular component is shown in Fig. (4.4a). The investigated crystals are of
millimetric size and their in-plane orientation can be easily visualized from their rectangular
shape using white light transmission imaging, as we show in Fig. (4.4b). From this image,
we can deduce that the main axis of the crystal is oriented at 49◦ relative to the X axis
and therefore, φ = 49◦. Fig. (4.4c) shows a scheme of the 3D orientation of the crystal
lattice in the macroscopic frame, with the de�nition of the respective Euler angles. As the
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principal axis of the crystal z lays in the XY plane, the angle θ is known and �xed to 90◦.
The remaining Euler angle ψ can not be deduced from direct macroscopic observation of
the sample and is one of the parameters that we try to determine from the polarimetric
CARS measurements.

Despite their cubic symmetry, these crystals are found to be birefringent. This behavior
has already been reported for other cubic crystals [105]. It is important to notice that this
anisotropy only a�ects the polarization of the incident or emitted light and does not have
any in�uence on the susceptibility tensor structure of the medium. This birefringence can
be characterized by the method that we proposed in section 2.3. However, in order to
minimize these e�ects in our measurements, we chose to align the fast optical axis of the
crystal to the macroscopic X axis. This is why we set φ = 49◦. Furthermore, if we focus
the incident beams on the bottom surface of the crystal [position Z = 0µm in Fig. (2.13)],
only the polarization of the emitted anti-Stokes �eld is distorted by birefringence. As
the optical axis of the sample is aligned to the macroscopic coordinate system, Eq. (2.8)
shows that the only consequence of the sample's birefringence is to introduce a phase shift
between the X and Y components of the anti-Stokes �eld. As we detect the intensities of
the CARS signal, this dephasing is not measured and by consequence, our results are not
a�ected by birefringence.

In this work, we explore the polarized CARS responses of the HT8 crystal at three
distinct spectral positions, that are pointed out in the Raman spectrum depicted in Fig.
(4.4d). First, we study the nonresonant response at ≈ 1380 cm−1; second, the totally
symmetric A1g vibrational mode, corresponding to the Si-H stretching at 2302 cm−1, and
third, the degenerate Eg mode of the O-Si-H bending at 932 cm−1. In order to address these
di�erent vibrational modes we set the pump wavelength at λp = 724.49 nm and we tune the
Stokes wavelength λs. The polarization measurements are performed following the three
di�erent polarization schemes described in section 2.1: P, when the pump polarization is
tuned; S, when the Stokes polarization rotates and PS when both incident polarizations
are rotated simultaneously.

4.4 The experimental CARS signal

4.4.1 The nonresonant CARS responses of a medium with cubic
symmetry

The microscopic nonresonant susceptibility tensor of a medium with cubic symmetry is
given by Eq. (4.2) and it depends only on the nonresonant depolarization ratio ρNR,
de�ned in Eq. (4.3). The emitted anti-Stokes signal is given by Eq. (4.9) and it is a
function of the macroscopic nonresonant CARS susceptibility, which can be obtained from
the microscopic tensor, by a 3D rotation of the Euler angles Ω = (θ, φ, ψ). According to
section 4.3, two Euler angles φ and θ are deduced by the macroscopic observation of the
crystal. Consequently, only two unknowns are involved in the nonresonant experiment, ψ
and ρNR, and they can be considered as free parameters in a data �tting method. The
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Figure 4.4: (a) Molecular structure of the H8Si8O12 (HT8) crystal. (b) White light trans-
mission image of a crystal in the microscope. (c) Orientation of the crystal in the laboratory
frame, de�ning the three Euler angles (θ, φ, ψ) (E(α) is an incident �eld polarization di-
rection in the (X, Y ) sample plane). (d) Raman spectrum of the crystal. The arrows point
the resonances studied in this work (A1g mode at ΩR = 2302 cm−1; Eg mode at ΩR = 932
cm−1; NR: nonresonant signal at 1380 cm−1).

�tting procedure consists of �nding, for all polarization tuning con�gurations P, S and PS
simultaneously, the couple (ψ, ρNR) that minimizes the mean square error for the CARS
intensities in the X (IX) and Y (IY ) directions, normalized by the maximum of the total
intensity, IX + IY . According to this de�nition, the mean square error function is given
by:

χ2(ψ, ρNR) =
1

Nα

∑
i

{[
IthX (ψ, ρNR, α

i
p)− I

exp
X (αip)

]2
+
[
IthY (ψ, ρNR, α

i
p)− I

exp
Y (αip)

]2
+
[
IthX (ψ, ρNR, α

i
s)− I

exp
X (αis)

]2
+
[
IthY (ψ, ρNR, α

i
s)− I

exp
Y (αis)

]2
+
[
IthX (ψ, ρNR, α

i
p,s)− I

exp
X (αip,s)

]2
+
[
IthY (ψ, ρNR, αp,s)− IexpY (αip,s)

]2}
,

(4.12)
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where the sum runs over the di�erent incident polarization angles αi. The �rst two terms
in the sum correspond to the P polarization con�guration, where αp rotates and αs = 0◦,
which is pointed out by the subscript p. The following two terms correspond to the S
polarization scheme (αs is tuned and αp = 0◦), which is noted by the subscript s. Fi-
nally, in the last two terms, the subscript p, s stands for the PS polarization con�guration,
where αp = αs rotate from 0◦ to 360◦. The superscript �th� denotes the theoretical inten-
sity, calculated from Eq. (4.9), while �exp� corresponds to the CARS intensity acquired
experimentally. Finally, the error function is normalized by the number of the incident po-
larization angles over which the sum is done, here Nα = 73. The experimental polarization
resolved nonresonant CARS intensities in the three polarization con�gurations, together
with the best �ts, are shown in Fig. (4.5).

Figure 4.5: Polarization dependence of the nonresonant CARS signal (1380 cm−1) analyzed
along the X (red) or the Y (green) directions, depicted as a function of either αp and/or αs.
Markers: experimental data; solid line: best �t according to Eq. (4.12). (a) P polarization
con�guration (αp rotates and αs = 0◦); (b) S polarization scheme (αs rotates and αp = 0◦)
and (c) PS polarization con�guration (both incident polarizations rotate simultaneously).
Curves are normalized so that the maximum of the total intensity (IX + IY ) is equal to 1.

Fig. (4.5) shows that the experimental results are in very good agreement with the
crystal structure. In Fig. (4.6) we plot the cartography of the mean square error χ2

for di�erent values of the �tting parameters (ψ, ρNR). We notice that the solution for
the depolarization ratio is unique and corresponds to the value of ρNR where the mean
square error χ2 is minimum, which is ρNR = 0.38 ± 0.05. However, the solution is not
unique for the Euler angle ψ, for which a large range of possible values is observed in Fig.
(4.6). This angle indetermination is most probably due to the present geometry which
investigates a projection of a cubic object in the sample plane. Although the depolarization
ratio expression resembles that from an isotropic medium, its value di�ers from the value
measured in a pure water solution. If we apply the model developed in this chapter for a
medium with cubic symmetry, to the experimental polarization resolved CARS responses
of pure water, showed in Fig. (3.5), we obtain ρNR = 0.30 ± 0.03, which is close to the
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expected value of 1/3, that was explained in chapter 3). This approach is thus able to
quantify the deviation of the measured crystal symmetry from isotropy.

Figure 4.6: (ψ, ρNR) cartography of the mean square error function de�ned in Eq. (4.12).
The retained solution corresponds to the couple (ψ, ρNR) that minimizes this function.
There is no unique solution for the angle ψ, whereas a minimum is found for ρNR =
0.38± 0.05.

4.4.2 The resonant CARS responses of a totally symmetric vibra-
tional mode

The resonant CARS polarization responses are �rst analyzed for the totally symmetric
vibrational mode A1g. These intensities are measured at the peak of the CARS spectrum,
that is shown in Fig. (4.7), for di�erent polarization con�gurations. These spectra do not
present the wavelength dependence of a typical CARS spectrum, showed in Fig. (3.2), since
no prominent dip is observed. This is due to the fact that the resonant signal dominates
strongly the nonresonant contribution, because this is a very strong band, as can be seen
in the spontaneous Raman spectrum of the HT8 crystal, in Fig. (4.4). In this case, the
CARS and Raman spectra become very similar. The polarizations of the incident �elds
seem to play a major role on the peak intensities but no signi�cative change is observed
on the shapes of the bands, except for αp = αs = 0◦ and αp = 90◦, αs = 0◦, in which
cases the line widths become broader. This is probably due to the presence of a neighbor
band at 2296 cm−1, that corresponds to the degenerate T2g vibrational mode [104], and
has therefore a much more complex tensor structure than a totally symmetric vibration.

The experimental polarization resolved CARS intensities are depicted in Fig. (4.8a).
These polar plots resemble slightly the nonresonant responses of Fig. (4.5). This is expected
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4.4. The experimental CARS signal

Figure 4.7: Experimental multiplex CARS spectra detected along the Y direction, around
the totally symmetric vibrational mode A1g of the HT8 crystal at 2302 cm−1. Di�erent
spectra correspond to distinct polarization con�gurations. Curves in cyan, red and blue
are enlarged for clarity.

since a totally symmetric vibrational mode A1g exhibits a similar symmetry structure as
the crystal point group [77]. The only di�erence between the nonresonant and totally sym-
metric resonant cases is the antisymmetric nature of the susceptibility tensor at resonance,
due to the departure from Kleinman symmetry conditions, as we showed in Eq. (4.5). This
property is visualized in the behavior of IY (αs) that di�ers from the nonresonant response
[Fig. (4.5b)].

Extending the approach developed in the previous section to this more complex resonant
situation, the �t of the experimental data are performed according to Eq. (4.12), using the
CARS intensities given in Eq. (4.9) with the microscopic susceptibility tensor described
in Eq. (4.4). In the case of a totally symmetric vibration, three independent parameters
are used in the �t: the depolarization ratios ρR

A1
and ρR

A2
, given in Eq. (4.6), and the Euler

angle ψ, that remains undetermined from the nonresonant �t. The factor A, that measures
the strength of the resonant over the nonresonant contributions is deduced from the CARS
spectra showed in Fig. (4.7). For this measurement, we use the spectrum obtained at
αp = αs = 45◦, in which case the incident polarizations are almost parallel to the in-plane
orientation of the crystal (φ = 49◦ according to section 4.3). The vibrational band width
Γ is measured in the spontaneous Raman spectrum of the HT8 crystal depicted in Fig.
(4.4d).

The multiple-�eld polarization data �tting shows again that the ψ angle is not a cru-
cial factor, with an angle range (ψ ≤ 15◦) providing acceptable solutions. A �t solution,
depicted in Fig. (4.8b), shows a good agreement with the experimental data. The cartog-
raphy of the mean square error between theory and experiment as a function of the two
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Figure 4.8: (a) Experimental polarization responses of the CARS signal analyzed along
the X (red) and Y (green) directions of the A1g vibrational mode at ΩR = 2302 cm−1. (b)
Theoretical polar plots resulted from the �t, with �tting parameters ρR

A1
= 9.9, ρR

A2
= 6.3, ψ

= 12◦. From left to right: P, S and PS polarization con�gurations. Curves are normalized
so that the maximum of the total intensity (IX + IY ) is equal to 1.

depolarization ratios ρR
A1

and ρR
A2

is shown in Fig. (4.9). The analysis of this map suggests
a large range of reliable solutions, following a linear dependence of slope 0.53. This value
is well below 1, which is the observed when Kleinman symmetry conditions apply, as in
the nonresonant case. Consequently, this experiment, in addition to quantifying micro-
scopic depolarization ratio relations for this vibrational band, provides also an estimation
of Kleinman symmetry conditions departure at the speci�c wavelength of measurement.

Finally, we performed polarization resolved spontaneous Raman scattering measure-
ments in the HT8 crystals. In these experiments, we rotate the incident polarization αp
from 0◦ to 180◦ and we acquire the Raman spectra along the X and Y directions for each
incident polarization. In the case of the A1g mode, the intensities detected at the peak of
the Raman band in function of αp are depicted in Fig. (4.10), together with the theoret-
ical Raman intensities, calculated according to Eq. (4.11). In the theoretical curves, the
incident �eld is corrected by the dichroism and ellipticity introduced by the experimental
setup, following the procedure described in section 2.2.2. A good agreement is observed
between the experiment and the theory, although the experimental curves are slightly tilted
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Figure 4.9: (ρR
A1
, ρR

A2
) cartography of the mean square error function de�ned in Eq. (4.12),

for the totally symmetric vibrational mode at 2302 cm −1 of the HT8 crystal.

compared to the theoretical ones. This could be an e�ect of the birefringence of the sam-
ple, if its optical axis is not correctly aligned to the macroscopic frame, as we discussed in
section 4.3. This is an experimental proof that spontaneous Raman spectroscopy can not
di�erentiate cubic symmetry from isotropy. Therefore, nonlinear optical processes, such as
CARS, are necessary to probe objects with high order symmetry.

4.4.3 The resonant CARS responses of a nontotally symmetric
vibrational mode

In this section, we investigate the degenerate vibrational mode Eg, at ΩR = 932 cm−1. The
polarization responses at the peak of the CARS spectrum are shown in Fig. (4.11a) and
they strongly di�er from the nonresonant and totally symmetric vibration cases [Figs. (4.5)
and (4.8), respectively]. In addition, the CARS spectrum itself is strongly dependent on the
incident polarization settings, as we show in Fig. (4.12a), contrary to the A1g vibrational
mode. In the Eg resonance, the spectral positions of the peak and dip of the band as
well as the intensity of the nonresonant contribution are very sensitive to the incident
polarization arrangements. This is essentially due to the di�erent tensorial structure of the
Eg susceptibility in Eq. (4.7), as compared to the nonresonant CARS tensor in Eq. (4.2).

In order to include this spectral dimension in the CARS polarization data �t, we chose to
�t principally the IX(αp) dependence, which is the most sensitive to wavelengths changes,
at four spectral positions around the peak, depicted in Fig. (4.12a). All points are �tted
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Figure 4.10: Polarization responses of the spontaneous Raman scattered intensities ana-
lyzed along the X (red) and Y (green) directions, for the A1g vibrational mode at 2302
cm−1. Light-color curves correspond to the experimental data, while dark-color curves
depict the theoretical intensities. Curves are normalized so that the maximum of the total
intensity (IX + IY ) is equal to 1.

simultaneously, supposing in a �rst approximation that Kleinman symmetry conditions are
valid. As mentioned previously, this crude assumption allows to reduce the number of free
parameters in the �t. In this case, we chose ψ = 12◦, which is the same value used to build
the theoretical polarimetric CARS responses of the totally symmetric vibrational mode,
in Fig. (4.8b). The �tting parameters are therefore the three independent depolarization
ratios de�ned in Eq. (4.8), ρR

E1
, ρR

E2
and ρR

E3
, and the mean square error function writes,

following the same notation as in Eq. (4.12):

χ2(ρR
E1
, ρR

E2
, ρR

E3
) =

1

Nα

∑
i

{[
IthX (ρR

E1
, ρR

E2
, ρR

E3
, αip, δωA)− IexpX (αip, δωA)

]2
+

[
IthX (ρR

E1
, ρR

E2
, ρR

E3
, αip, δωB)− IexpX (αip, δωB)

]2
+

[
IthX (ρR

E1
, ρR

E2
, ρR

E3
, αip, δωC)− IexpX (αip, δωC)

]2
+

[
IthX (ρR

E1
, ρR

E2
, ρR

E3
, αip, δωD)− IexpX (αip, δωD)

]2}
, (4.13)

where δω is the frequency shift ωp − ωs and the subscripts A, B, C and D correspond
to the spectral positions depicted in Fig. (4.12). Each intensity IX is normalized by the
maximum of the IX(αp) curve acquired at the peak of the CARS spectrum, in order to �t
the shapes of the polar plots and also the relative intensities between the distinct spectral
positions.

The best �t solutions obtained from Eq. (4.13), together with the experimental data,
for the intensities along the X axis in the P polarization con�guration at di�erent spectral
positions, are depicted in Fig. (4.12b). The theoretical curves show a good agreement
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Figure 4.11: (a) Experimental polarization responses of the CARS signal at the peak of
the CARS spectrum, analyzed along the X (red) and Y (green) directions, of the Eg
vibrational mode (ΩR = 932 cm−1). (b) Theoretical polar plots resulted from the �t. From
left to right: P, S and PS polarization con�gurations. Curves are normalized so that the
maximum of the total intensity (IX + IY ) is equal to 1.

with the experimental data only in some spectral regions, in particular at the peak of
the CARS spectrum where the other polarization tuning experiments (P, S and PS) also
show a relatively good agreement with the model, as show in Fig. (4.11b). Between the
peak and dip positions of the CARS spectrum [point C in Fig. (4.12)], no satisfactory
solution can be found for any of the polarization tuning experiments, indicating essentially
that Kleinman relations are not valid anymore. This is observed at the spectral region
that corresponds to the maximum of the Raman vibrational band, that is shifted from
the CARS peak, due to the presence of the nonresonant background in the CARS process
(see section 3.1.3). By consequence, this spectral region is the most sensitive to resonance
e�ects. The surrounding points A and D resemble typical nonresonant responses, although
A is slightly perturbed by the appearance of another vibrational band in its vicinity, as
can be seen in the CARS spectra in Fig. (4.12a). Overall, this analysis shows that the
whole CARS spectral region around the Eg vibrational mode is strongly a�ected by its
symmetry, characterized by the χ(3)R tensor structure in Eq. (4.7), with an additional
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Figure 4.12: (a) Experimental multiplex CARS spectra detected along the Y direction,
around the degenerate vibrational mode Eg of the HT8 crystal at 932 cm−1, for di�erent
incident polarizations αp, αs. (b) IX(αp) CARS signal when tuning the pump polarization,
at di�erent spectral positions shown in the CARS spectrum: (A) before the CARS peak;
(B), at the CARS peak; (C) around the minimum intensity of the CARS spectrum (dip);
and (D) approaching the non-resonant signal. Red curves correspond to the experimental
data and pink lines represent the best �t. In (b) the curves are normalized by the maximum
of IBX .

Kleinman deviation e�ect observed at the peak position of the spontaneous Raman band
[point C, in Fig. (4.12)].

4.5 Conclusion

In this chapter, we have studied the polarization-resolved CARS signal of crystalline me-
dia with a priori known symmetry. In a �rst step, the analysis is done on the nonreso-
nant CARS responses, which can provide information on the microscopic structure of the
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nonresonant susceptibility tensor and also on the orientation of the crystal lattice in the
macroscopic coordinate system. Depending on the crystal point group, the polarization-
resolved nonresonant CARS signal allows to quantify the departure of the microscopic
structure from isotropy. The second step consists of studying the resonant responses of
the medium when a particular vibrational mode, with a priori known symmetry, is ad-
dressed. At resonance, the structure of the susceptibility tensor can be di�erent from the
nonresonant, unless the probed vibration is a totally symmetric mode. The analysis of
the polarization-resolved CARS intensities can lead to the characterization of the micro-
scopic tensor structure at resonance. Furthermore, it is possible to observe departure from
Kleinman symmetry under resonant conditions, and even to quantify these deviations for
certain vibrational modes.

The method developed in this chapter was applied to HT8 crystals, that have cubic
symmetry and belong to the Oh crystallographic point group. In this case, the analysis
of the nonresonant CARS signal allows to di�erentiate the crystal from an isotropic sam-
ple, which is not possible with lower-order optical processes, such as spontaneous Raman
scattering. Two di�erent resonances were also studied: a totally symmetric vibrational
mode A1g and a nontally symmetric degenerate vibration Eg. In the �rst, the polarization-
resolved CARS analysis allowed to determine structural microscopic depolarization ratios,
as well as to estimate Kleinman symmetry conditions departure at the peak of the CARS
spectrum. In the Eg case, a spectral analysis together with the polarization measurements,
showed that the CARS spectrum around the resonance is strongly a�ected by the structure
of the microscopic resonant CARS tensor. Furthermore, evidence of Kleinman symmetry
deviation is observed at the spectral position corresponding to the peak of the spontaneous
Raman band.

The analysis developed in this chapter is restricted to media with cubic symmetry but
it can be in principle extended to crystals belonging to any of the 32 crystallographic point
groups. The only limitation in our method is that the used polarization con�gurations allow
to probe up to 12 microscopic distinct tensor components. This is a consequence of the fact
that three incident beams and one emitted �eld with linear polarizations projected along
the X or Y axes can probe 24 = 16 distinct macroscopic tensor components. Since CARS is
a degenerated optical process, with twice the pump �eld, the number of macroscopic tensor
components that can be probed is reduced to 24−22 = 12. Because the macroscopic and the
microscopic elements of the susceptibility tensor are related through rotations of the Euler
angles from on frame to another, the former are linear combinations of the latter. If the
orientation of the crystal unit cell in the macroscopic frame is know, our method allows
therefore to probe up to 12 microscopic tensor components. By consequence, crystals
whose susceptibility tensor has more than 12 independent elements can not be totally
characterized by this method. In the next chapter, we develop a method where no a

priori information on the symmetry of the medium is necessary. This model is based on
a statistical orientational distribution of the molecules and it allows to quantify molecular
order and orientation, instead of individual microscopic tensor components.
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CHAPTER 5

POLARIZATION RESOLVED CARS

RESPONSES OF BIOMOLECULAR

ASSEMBLIES

Type I collagen is a �brillar collagen that is the most abundant in the body [12]. Changes in
its �brillar organization characterize di�erent disease states and could be of great interest in
early diagnostics. As �brillar collagen is highly non-centrosymmetric, it generates a strong
second harmonic generation (SHG) signal [9], whose polarization dependence provides in-
formation on �ber orientation and molecular organization. Previous works on polarization
resolved SHG on collagen [45, 46, 14, 47, 48, 49, 50] have been able to retrieve individual
microscopic second-order susceptibility tensor components, which can lead to the symme-
try order of the molecular orientational distribution. The molecules probed in these cases
are tightly packed amino-acids, responsible for the SHG response. A recent work has also
shown the role of linking peptide bonds [106]. As SHG is a three wave-mixing process, it
can probe up to the third order of symmetry of the molecular orientational distribution, as
we showed in section 1.5.2. In addition, as most of the SHG investigations are nonresonant
processes, only the odd-order symmetries can be addressed [107, 108]. The complementary
even-order symmetries of the molecular orientational distribution can be probed by four
wave mixing processes, such as CARS. Combining both methods could be a powerful way
to retrieve the whole molecular angular distribution at microscopic scale (in a nonresonant
regime, one would expect the same microscopic structures to be responsible for both SHG
and CARS signals). A previous work on multimodal nonlinear optical imaging of collagen
[109] has already shown qualitatively, that combining CARS and SHG provides compli-
mentary information on the submicrometric architecture of collagen arrays. However, in
the cited work, no polarization measurements have been performed, which does not allow
to extract any quantitative information.

In this chapter, we use polarization resolved nonresonant CARS to retrieve quantitative
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information on molecular order and orientation in collagen �bers. As we are dealing with
a nonresonant third-order nonlinear process, the correct denomination would be to say
degenerate four-wave mixing process instead of CARS. However, in order to keep the
consistency with the other chapters, we will use the term nonresonant CARS process, by
malapropism. In the same way, we refer to the incident �elds as the pump and Stokes
beams, even if no vibrational resonance is addressed. In the �rst section, we use the model
developed in section 1.5.2 to deduce the third-order nonresonant susceptibility tensor of
collagen. Then, we present the experimental results and propose a �t procedure to quantify
orientation and symmetry order of the molecular orientational distribution in collagen.
Finally, we discuss how birefringence and the in-plane orientation of the �ber a�ect the
expected results.

5.1 The nonresonant CARS susceptibility tensor of col-
lagen

Biomolecular assemblies, such as collagen �bers, can be described as an assemblage of uni-
axial molecules with a given statistical orientational distribution [12, 18, 84, 48, 50]. As we
showed in section 1.5.2, this molecular angular distribution is de�ned by a normalized prob-
ability distribution function f(Ω), with Ω = (φ, θ, ψ) the spherical angles characterizing
the molecular orientation. As we are dealing with uniaxial molecules [Fig. (5.1)a], we can
neglect the angle ψ in the calculations, which leads to Ω = (θ, φ). Moreover, the molecular
hyperpolarizability has only one nonvanishing component in the molecular frame (u, v, w),

say γ
(3)NR
wwww (if it is oriented along the w axis). The molecular orientational distribution

function is de�ned in the microscopic frame (x, y, z) by making its principal symmetry axis
be parallel to the z axis. We can then assume that the main symmetry axis of the angular
distribution is oriented along the direction of the collagen �ber, whose orientation in the
macroscopic frame (X, Y, Z) is �xed and de�ned by the angles Ω0 = (θ0, φ0), as we show
in Fig. (5.1). Under these assumptions, the macroscopic nonresonant CARS susceptibility
of the collagen �ber can be written from Eqs. (1.54) and (1.55), as:

χ
(3)NR
IJKL = N

∑
ijkl

[aIiaJjaKkaLl] (Ω0)

∫
γ(3)NR
wwww [aiwajwakwalw] (Ω)f(Ω)dΩ. (5.1)

where N is the number of molecules by unit volume and aij are the elements of the rotation
matrix de�ning the Euler angles (with ψ = 0), depicted in Eq. (1.50). The transformation
from the molecular frame (u, v, w) to the microscopic frame (x, y, z) implies only the matrix
elements in the third row of the transformation matrix (1.50).

We assume that the molecular orientational distribution function of the collagen �ber
has cylindrical symmetry and by consequence, does not depend on φ. This means that
f(θ) can be expanded in a series of the Legendre polynomials, according to:
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Figure 5.1: De�nition of the molecular, microscopic and macroscopic frames. In (a) we
identify the angles (θ, φ) that characterize the orientation of the molecular w axis in the
microscopic (x, y, z) frame. We assume that the molecules are one-dimensional and oriented
along the w axis. In (b) we show the orientation of the collagen �ber in the macroscopic
frame (X, Y, Z), de�ned by the Euler angles (φ0, θ0).

f(θ) =
∑
J

fJPJ(cos θ) (5.2)

where PJ(cos θ) is a J−order polynomial on cos θ, with J ∈ N accounting for the order
of symmetry of the orientational distribution function. The coe�cients fJ correspond to
the weights of the function PJ in the decomposition and they are called order parameters
[85]. They are equivalent to the coe�cients fJm of the spherical harmonics expansion in
Eq. (1.58) (see section 1.5.2). The Legendre polynomials are de�ned by [85]:

PJ(cos θ) =
1

2JJ !

dJ

d(cos θ)J
(cos2 θ − 1)2, (5.3)

where dJ

d(cos θ)J
is the J th derivative with respect to cos θ.
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The �rst Legendre polynomials, until the fourth order (J = 4) are:

P0(cos θ) = 1 (5.4a)

P1(cos θ) = cos θ (5.4b)

P2(cos θ) =
1

2
(3 cos2 θ − 1) (5.4c)

P3(cos θ) =
1

2
(5 cos3 θ − 3 cos θ) (5.4d)

P4(cos θ) =
1

8
(35 cos4 θ − 30 cos2 θ + 3), (5.4e)

with their graphical representations depicted in Fig. (5.2), which shows that the higher
the order of the polynomials, the narrower they become in relation to θ. An orientational
distribution function that has only the zero-order term of the decomposition, does not
depend on θ and is therefore isotropic. In the other hand, the degree of order increases with
the contribution of the higher-order terms of the Legendre polynomials in the distribution
function decomposition.

Figure 5.2: Graphical representation of the �rst Legendre polynomials PJ(cos θ) until the
fourth order (J = 4).

As the Legendre polynomials form a complete set of orthonormal functions, they verify
the orthogonality property, as follows:∫ π

0

PJ(cos θ)PK(cos θ) sin(θ)dθ =
2δJK

2J + 1
, (5.5)

where δJK is the Kronecker delta, which is 1 when J = K and 0 otherwise.
In the case of nonresonant CARS process, we are dealing with a third-order nonlinear

process, and by consequence, a fourth rank susceptibility tensor. According to section
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1.5.2 it is thus possible to probe until the fourth order of symmetry of the orientational
distribution function, corresponding to J = 4. Furthermore, only the even components
of the decomposed distribution function can be read-out, in a nonresonant CARS process
(section 1.5.2). Therefore, nonresonant CARS responses can provide complementary infor-
mation in relation to three wave mixing processes, such as second harmonic generation. In
the case of SHG, only the odd components of the orientational distribution function can
be read, up to the third order of symmetry.

Finally, by replacing the even order Legendre polynomials into Eq. (5.1), the macro-
scopic nonresonant CARS susceptibility tensor writes:

χ
(3)NR
IJKL = N

∑
ijkl

[aIiaJjaKkaLl] (Ω0)

∫
[aiwajwakwalw] (θ, φ)

× [1 + f2(3 cos2 θ − 1) + f4(35 cos4 θ − 30 cos2 θ + 3)] sin θdθdφ (5.6)

where f2 and f4 are the second and fourth order parameters, respectively. These coe�cients
are normalized by the weight f0 of the zeroth-order symmetry (isotropic distribution). f2

and f4 can assume any value under the condition that the distribution function f(θ) is
always positive and normalized. The macroscopic susceptibility tensor is normalized by
γwwww.

5.1.1 The molecular orientational distribution function

The decomposition of the molecular orientational distribution function in a series of the
Legendre polynomials corresponds to a multipolar expansion [107], for an one-dimensional
structure with cylindric symmetry. The zeroth-order term J = 0 is the monopole and cor-
responds to an isotropic distribution. When the coe�cient f2 is zero, then the distribution
is purely hexadecapolar, with fourth-order symmetry. In the same way, when f4 is zero,
then the distribution is purely quadrupolar, with second-order symmetry (J = 2). Fig.
(5.3) shows the theoretical molecular angular distribution function f(θ) projected into the
plane xz as a function of θ. In Fig. (5.3a), at least one of the two coe�cients f2 or f4

is set equal to zero, whereas in (b) both coe�cients are nonvanishing and can have either
positive or negative values. Note that we do not plot the whole distribution function, but
only its even terms, until the fourth-order.

When both coe�cients f2 and f4 vanish the distribution is isotropic and no direction
is privileged, as expected from the zeroth-order term of the multipolar expansion. When
f4 = 0, the distribution function has a two-lobe shape, that can be either along the z axis
or in the plane perpendicular to it (xy plane), if the nonvanishing coe�cient f2 is either
positive or negative, respectively. In the other hand, when f2 = 0 the angular distribution
function has a four-lobe shape, that characterizes the higher multipolar order. In this case
also, the behavior of the function f(θ) changes with the sign of the nonvanishing coe�cient
f4. If f4 > 0 then the lobes are parallel to the axes x and z, whereas if f4 < 0, the lobes
are tilted in respect to these axes. When both coe�cients are nonvanishing, the four-lobe
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Figure 5.3: Molecular angular distribution function f(θ) projected into the xz plane. (a)
At least one of the two coe�cients f2 or f4 vanishes. Green curves correspond to f4 = 0
whereas blue curves depict f2 = 0. The red curve represents the isotropic distribution, for
which f2 = f4 = 0. (b) Both coe�cients f2 and f4 are nonvanishing.

pattern is always observed, as we show in Fig. (5.3b). Here, the orientation of the lobes
follows the same behavior with the sign of f4 as in the case where f2 = 0.

5.2 Experimental nonresonant CARS responses of col-
lagen

5.2.1 Sample preparation

In this work we use collagen type I �bers, of about 100 µm thick, extracted from rat
tail and prepared in the group of Peter Winlove (University of Exeter, UK). To prepare
the �bers, Adult Sprague Dawley rats were euthanased for purposes unconnected with the
present research. Tails were removed and immediately snap frozen in liquid nitrogen cooled
isopentane. At the time of use, the tissue was thawed and the tendon exposed. Individual
�bers were teased out by microdissection and either examined immediately or stored frozen
until required. Control Raman spectra were identical in either case, contained none of the
peaks characteristic of proteoglycans, and were indistinguishable from those obtained from
�bers puri�ed by enzymatic extraction.

The sample is sandwiched between two glass coverslips glued together by a thickener
double sided tape at the edge. This procedure prevents motion of the �bers during the
measurements. The volume between the two coverslips is �lled in with pure water. Record-
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ing the nonresonant CARS signal emitted by the water allows to perform all the �ne optical
settings and alignments of the setup.

5.2.2 Experimental Protocol

The experimental protocol consists of the following steps: we �rst set both incident polar-
izations parallel to each other (either αp = αs = 0◦ or αp = αs = 90◦). Then, we acquire
two Fwd-CARS images of the collagen �ber simultaneously, one along the X axis and the
other along the Y axis. The images have 40 × 40µm2 (101 × 101 pixels) and the pixel
dwell time is 20 ms. The average powers of the pump and Stokes beams are 2 mW. In the
�rst step, the focal plane is �xed at the bottom surface of the sample (Z = 0, according
to Fig. (5.4a). In this case, only the emitted anti-Stokes signal is a�ected by the �ber's
birefringence. The next step consists of choosing di�erent (X, Y ) positions of the acquired
image in order to perform the polarization resolved nonresonant CARS measurements,
described earlier in section 2.1. Here, we focus on two polarization con�gurations out of
the three depicted in section 2.1: either the P scheme (pump polarization is tuned while
the Stokes polarization is �xed along the X axis) or the PS con�guration (both incident
polarizations are tuned simultaneously). These con�gurations are chosen for their high
sensitivity to the sample symmetry and orientation. For each chosen point, we also record
the polarization response of the input laser at frequency ωp, in order to characterize the
local birefringence, which is nevertheless averaged over the whole thickness of the sample,
as we discussed in section 2.3. We repeat the same procedure for another Z position of
the sample [see Fig. (5.4b)], by focusing the incident beams deeper into the collagen �ber,
at a distance Z = d from the bottom surface. In this case, both the incident pump and
Stokes and emitted anti-Stokes beams are a�ected by birefringence. We are careful enough
to perform the polarization measurements at the same in-plane (X, Y ) positions at this
di�erent depth. As we are dealing with pure nonresonant CARS signals, the pump and
Stokes wavelengths are set to λp = 724.49 nm and λs = 856.99 nm, respectively. The
corresponding frequency shift is δω = ωp − ωs = 2134 cm−1, which is far from any Raman
active vibrational mode in the collagen spectrum.

5.2.3 Characterizing the orientation and symmetry order of the
surface of the collagen �ber (Z = 0µm)

The Fwd-CARS images of the collagen �bers, acquired at Z = 0µm, are shown in Fig.
(5.5). The three images correspond to di�erent pieces of the �ber, away from each other
more than a few millimeters. Direct observation of the images in Fig. (5.5), already shows
that the orientation of the �ber is not the same for all three pieces. Here, we show the total
nonresonant CARS intensity, obtained by the sum of the two images acquired along the
X and Y axes simultaneously. Each image is normalized so that the maximum intensity
is equal to 1. The three points depicted represent the (X, Y ) spots chosen to make the
polarimetric measurements.
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Figure 5.4: Fwd-detection scheme. The incident beams are linearly polarized and propagate
along the Z axis. In (a) the pump and Stokes �elds are focused at Z = 0, corresponding
to the bottom surface of the sample. In this case, the polarization of the anti-Stokes signal
emitted in the forward direction becomes elliptical after it crosses the whole thickness L
of the sample. The birefringence of the collagen �ber can be estimated by measuring the
ellipticity of the transmitted pump �eld. In (b) the incident �elds are focused at a distance
Z = d from the surface of the sample. In this case, they are elliptical at the excitation
point. The anti-Stokes signal is emitted in the forward direction and it travels a distance
Z = L− d in the sample.

The polarization responses of the nonresonant CARS signal allow to characterize the
symmetry order of the molecular assemblies in the collagen �ber, as well as the mean ori-
entation of the molecular distribution in the �ber, in respect to the macroscopic coordinate
system (the laboratory frame). This can be done by �tting the theoretical model described
in section 5.1 to the experimental data. The �t parameters are: (1) the order parameters
f2 and f4, corresponding to the weights of the terms of the probability distribution function
expansion and (2) the angle φ0, characterizing the orientation of the molecular distribu-
tion in the XY plane. The other Euler angle θ0, that de�nes completely the orientation
of the molecular distribution in the (X, Y, Z) coordinate system, is set to 90◦, because the
collagen �ber lies in the plane XY .

The �tting procedure consists of �nding, for the two polarization con�gurations P and
PS simultaneously, the set (f2, f4, φ0) that minimizes the mean square error function for
the nonresonant CARS intensities in the X and Y directions, each one normalized by the
maximum of the total intensity, IX + IY . With such de�nitions, the mean square error
function is given as following:
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Figure 5.5: Fwd-nonresonant CARS images of collagen �bers, at di�erent in-plane positions
in the sample. The images show the total CARS intensity (I = IX + IY ) at Z = 0µm. In
the left, incident polarizations are set parallel to the Y axis, while in the other two images,
input polarizations are along the X axis. Points 1, 2 and 3 correspond to the spots where
the polarizations measurements take place. Red lines correspond to the orientation of the
principal symmetry axis of the orientational distribution function in the XY plane, φ0,
given by the best �t of the polarization resolved CARS intensities. The white curves show
a section of the orientational distribution function, truncated to its orders 0, 2 and 4 and
oriented in the macroscopic sample plane XY . Green lines represent the orientation of the
fast optical axis of the �ber, Θb, obtained by the �t of the intensity of the incident �eld
E(αp, ωp). Scale bar: 10µm; average powers: 2 mW; integration time: 20 ms; number of
pixels: 101 × 101.

χ2 (f2, f4, φ0) =
1
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]2}
, (5.7)

where the sum runs over the di�erent incident polarization angles αi. The �rst two terms
in the sum correspond to the P polarization con�guration, where αp rotates and αs = 0◦,
which is pointed out by the subscript p. In the two last terms, the subscript p, s stands for
the PS polarization con�guration, where αp = αs rotate from 0◦ to 360◦. The superscript
�th� stands for the theoretical intensity, calculated as the modulus square of the CARS
induced polarization, given by Eq. (1.3), with the CARS susceptibility obtained from Eq.
5.6. The superscript �exp� corresponds to the CARS intensity acquired experimentally.
Finally, the error function is normalized by the number of the incident polarization angles
over which the sum is done, here Nα = 73.

Note that before �tting, the excitation and emitted �eld polarizations must be corrected
by polarization distortions introduced by the optical setup and by birefringence of the
sample, as described in section 2.3. However, we have shown in the same section that
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only the emitted anti-Stokes �eld is a�ected by birefringence when the incident beams are
focused at the bottom surface of the sample (Z = 0µm). In this way, the theoretical
CARS �eld used in the �t equation (5.7) must account for the orientation of the optical
axis Θb and the dephasing Φb between the fast and slow axes of the collagen �ber. As
we saw in section 2.3, when the incident �elds are a�ected by dichroism and ellipticity,
the solution (Φb,Θb) is not unique. We will show in section 5.3, that the two independent
solutions do not result in the same theoretical CARS intensities, for the same parameters
(f2, f4, φ0). Furthermore, solutions for which Θb is related by a π/2 periodicity, result in the
same theoretical CARS intensities for the same parameters (f2, f4, φ0) only when Z = 0 or
Z = L, i.e., only when either the emitted CARS signal or the incident �elds are a�ected by
birefringence. The in�uence of the birefringence will be discussed in more detail in section
5.3. Here, we �t independently the parameters (f2, f4, φ0) for both birefringence solutions
that are independent and we chose the couple (Φb,Θb) that gives the smallest mean square
error χ2. Fig. (5.6) shows the experimental results and best �ts for the three positions
depicted in Fig. (5.5). The polar plots represent the nonresonant CARS intensities as
a function of the incident polarization. Fig. (5.6a) corresponds to the P polarization
con�guration (only αp rotates) whereas Fig. (5.6b), shows the polarization resolved CARS
responses in the PS scheme (both polarizations αp = αs rotate). The parameters found in
this �t procedure are summarized in table 5.1.

Table 5.1: Set of parameters (f2, f4, φ0) obtained by the �t procedure, for di�erent positions
of the collagen �ber in the same XY plane for Z = 0µm. Values of (Φb,Θb) are obtained
by �tting the sample's birefringence.

Position f2 f4 φ0 (deg) Φb (deg) Θb (deg)

1 −0.35 0.25 54 191 30
2 0.05 0.1 51 201 76
3 0.4 −0.2 63 179 58

Once the parameters f2 and f4 are �tted, it is possible to build the corresponding even
terms of the orientational distribution functions in the microscopic frame. Their 3D plots
in the microscopic frame (x, y, z) are shown in Fig. (5.7). In all three cases, f4 6= 0,
which means that the angular distribution has a high-order symmetry (hexadecapolar)
contribution. This explains the four-lobe shape depicted in the 3D plots. Position 2 (Fig.
5.7(b)) has the most isotropic molecular angular distribution. Positions 1 and 3 have more
anisotropic distributions, in particular, positive values of f4 contribute to the appearance of
the equatorial torus-like shape in the distribution, while negative values of f4 are responsible
for the hollow shape of the distribution, as we have already shown in section 5.1.1. As we
mentioned in section 1.5.2, a complete view of the orientational distribution function f(θ),
until the fourth-order in the series expansion, would require the knowledge of the order
parameters f1 and f3. The latter could be probed by second harmonic generation resolved
in polarization [110]. The diversity of shapes found in this sample could be most likely

132



5.2. Experimental nonresonant CARS responses of collagen

Figure 5.6: Nonresonant CARS intensities along X (red curves) or Y (green curves) as
a function of the incident polarization. (a) P polarization con�guration: the intensities
vary as a function of αp for αs = 0◦. (b) Polarization scheme PS: αp and αs rotate
simultaneously. The solid lines correspond to theoretical intensities given by the best �t,
while markers depict the experimental data. From left to right, the polar plots correspond
respectively to positions 1, 2 and 3, showed in Fig. (5.5). Data are acquired at Z = 0µm.

due to the di�erent arrangements of �bers depending on the sample location: indeed, we
do not probe here single isolated crystalline collagen micro�bers, but rather a macroscopic
organization of them in bundles, that constitute the tendon tissue.

In Fig. (5.5), the red lines superimposed to the nonresonant CARS images of the
collagen, represent the �tted orientations of the molecular distribution φ0. The white curves
are a projection in the xz plane of the 3D orientational distribution function (only the even
terms up to the fourth order), oriented at θ0 = 90◦ and the �tted φ0 in the macroscopic
frame. We can observe that the orientation of the collagen �ber, observed from the acquired
images, agrees qualitatively with the molecular orientational distribution, for all the three
studied positions. The �tted microscopic order parameters are therefore a good qualitative
characterization of the macroscopic collagen �ber organization at localized positions.

The green lines in Fig. (5.5) correspond to the orientation of the �ber's fast optical axis
Θb, which should in principle coincide with the direction of the collagen �ber [111]. We can
see however that this is not always observed in our measurements. In fact, the value of Θb

corresponds to the average orientation of the optical axis throughout the thickness of the
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Figure 5.7: 3D plots of the even-order terms of the multipolar expansion of the molecular
angular distribution functions, build from the �tted parameters f2 and f4. Figures (a), (b)
and (c) correspond respectively to positions 1, 2 and 3. The plots are in the microscopic
frame (x, y, z).

collagen �ber. It is therefore expected to �nd some discrepancies between the direction of
the long axis of the �ber and its optical axis, specially when the orientation of the collagen
�ber is very inhomogeneous along its thickness. The measured birefringence phase shift
Φb(L) ≈ 190◦, can be used to deduce the approximate sample thickness L at the measured
sample location. Assuming ∆n ≈ 0.003 [111], between the long axis of the collagen �bers
and its perpendicular direction, this measurement leads to L ≈ 128µm, which is reasonable
in the studied sample.

In the next section we will study the in�uence of the sample's birefringence on the po-
larimetric CARS responses, that can be crucial when performing measurements at positions
in the sample other than Z = 0µm.

5.3 In�uence of the sample's birefringence on the po-
larimetric CARS responses

If the collagen �ber is composed by �brils that are all oriented in the same direction along
Z and if it is not birefringent, then the polar plots obtained at di�erent focal planes Z for
the same position in the XY plane, should be the same. Fig. (5.8) shows that this is not
observed in our experimental data. The polar plots depict the experimental nonresonant
Fwd-CARS intensities acquired at a di�erent depth in the sample, Z ≈ 60µm. A major
change is observed at positions 1 and 3, specially for the intensity acquired along the X
axis (IX) when the polarization αp rotates. In this case, the two-lobe shape at the surface
becomes a four-lobe pattern deeper in the �ber. Inhomogeneities and di�erent orientations
of the �brils along Z, but also birefringence, could explain the changes observed. As
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collagen is highly birefringent, the CARS signal is not the same when the incident �elds
are focused in the plane Z = 0µm or in the plane Z = 60µm. In the �rst case, only the
emitted signal is a�ected by birefringence, while in the second situation, both the incident
and emitted �elds are depolarized by the e�ect of the �ber's anisotropy, as we explained
in section 2.3.

Figure 5.8: Experimental nonresonant CARS intensities, measured at Z ≈ 60µm, along
X (red curves) or Y (green curves), as a function of the incident polarization. (a) P
polarization con�guration. (b) PS polarization con�guration. From left to right, the polar
plots correspond respectively to positions 1, 2 and 3.

In order to study the e�ects of birefringence on the nonresonant polarimetric CARS
signal, we recall the approach adopted in section 2.3, in order to calculate the sample's
anisotropy, de�ned by the parameters Θb and Φb. Fig. (5.9a) shows the intensities of the
pump beam transmitted throughout the �ber and detected along the X and Y axes, as a
function of αp, with the respective best �ts, for position 3. The corresponding cartography
of the mean square error as a function of (Θb,Φb) is depicted in Fig. (5.9b).

As we already showed in section 2.3, it is possible to identify four local minima, which
proofs that the solution is not unique, in situations where the dichroic mirror already a�ects
the input polarization. The four possible values for the set (Θb,Φb), for position 3, are:
(58◦, 179◦)1, (40◦, 228◦)2, (148◦, 181◦)3 and (130◦, 132◦)4, the subscripts being used only to
label the di�erent possible results. Solutions 1 and 2 are independent and contribute to
di�erent theoretical polarization resolved CARS intensities. By consequence, using solution
1 or 2 in our �t procedure results in di�erent values for the �tted parameters (f2, f4, φ0). In
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Figure 5.9: Fitting the birefringence of the collagen �ber. (a) Experimental laser intensities
at frequency (dots) along X (red curves) and Y (blue curves), as a function of the incident
polarization αp. Solid lines correspond to the respective best �ts. (b) (Φb,Θb)-cartography
of the mean square error.

the case of position 3, the best �ts reported in table 5.1, are obtained with the birefringence
of the �ber given by solution 1. In the following, we will therefore consider only solutions
1 and 3. The other two solutions, 3 and 4, are related to 1 and 2, respectively, by the
π/2-periodicity on Θb (Θ

3(4)
b = θ

1(2)
b + π/2 and by consequence, Φ

3(4)
b = 2π − Φ

1(2)
b ).

When only the emitted CARS signal or the incident �elds are a�ected by birefringence
(corresponding respectively to focusing at Z = 0 or Z = L, according to the scheme de-
picted in Fig. (5.4)), the two solutions where the optical axis is turned by 90◦ (i. e., related
by the π/2−periodicity on Θb), give the same theoretical nonresonant CARS intensities.
This is not observed when we focus in an intermediate position into the �ber (Z = d,
0 < d < L). In this case, correcting the incident and emitted �elds by (Θb(d),Φb(d))1 or
(Θb(d),Φb(d))3 does not lead to the same polarimetric CARS responses, in both polariza-
tion con�gurations P and PS, as we show in Fig. (5.10). Therefore, in order to study the
polarization responses of the CARS signal when both the incident and emitted �elds are
a�ected by birefringence, it is necessary to remove the ambiguity from the birefringence
solution (Θb,Φb). The same behavior is noticed in positions 1 and 2.

Fig. (5.10) shows the theoretical e�ect of the birefringence on the polarization-resolved
CARS intensities, when the incident beams are focused at di�erent Z into the �ber (d/L
varies from 0 to 1, with a step of 1/4). As we stated in section 2.3, the incident and
emitted �elds are a�ected each one by an e�ective birefringence whose phase shift is given,
respectively by Φbinc

= d
L

Φb and Φbas =
(
1− d

L

)
Φb. The theoretical CARS polar plots were

built with the set of parameters (f2, f4, φ0) of position 3 and for both birefringence solutions
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coupled by a π/2− periodicity, (Θb,Φb)1 and (Θb,Φb)3. The results are highly sensitive to
the birefringence parameters. In the case of the P polarization scheme (Fig. 5.10(c,d)), the
four-lobe shape that appears in the experimental polar plots of the CARS intensities along
X (Fig. 5.8) could be explained by the e�ect of birefringence. Indeed, when d/L ≤ 0.5 we
observe this behavior in the theoretical polar plots of IX (Fig. 5.10(c,d)). Note that this
e�ect is more prominent for Θb = 148◦ (solution 3). The theoretical behaviors of the polar
plots in the PS polarization con�guration, however, seem to agree very slightly (at least
qualitatively) with the experimental results showed in Fig. (5.8). A suitable reason for this
disagreement is the fact that the orientation φ0 of the collagen �ber is not homogeneous
along Z. In this case, the direction of the fast optical axis of the �ber Θb can no longer be
considered as a constant parameter throughout the whole thickness of the collagen �ber.
The in�uence of φ0 in the polarization responses of the nonresonant CARS intensities is
discussed in the next section.

Figure 5.10: Theoretical nonresonant CARS intensities built from the �tted set of parame-
ters (f2, f4, φ0) of position 3, when focusing at di�erent Z = d into the �ber (d/L varies from
0 to 1 with a step of 1/4). (a,b) PS polarization scheme (αp and αs rotate simultaneously).
(c,d) P polarization con�guration (αp rotates while αs = 0◦). (a,c) (Θb,Φb)1 = (58◦, 179◦);
(b,d) (Θb,Φb)3 = (148◦, 181◦). Red and blue curves correspond respectively to d/L = 0
and d/L = 1 and they are the same for both birefringence solutions.
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5.4 In�uence of the �ber's in-plane orientation on the
polarimetric CARS responses

We showed in the previous section that only birefringence of the �ber is not su�cient to
explain the quantitative behavior of the polarization responses of the CARS signal, when
focusing at di�erent depths Z into the sample. In this section, we study the e�ect of the
in-plane orientation φ0 of the collagen �ber on the nonresonant CARS intensities. First,
we analyze the in�uence of φ0 on the polarization responses of the CARS intensities at
Z = 0µm, where only the emitted anti-Stokes signal is a�ected by birefringence. Then, we
try to �nd an orientation that matches both the experimental curves when focusing deeper
into the �ber, for the �tted set of birefringence parameters, (Θb,Φb).

The theoretical polarization responses of the nonresonant CARS intensities for di�erent
orientations of the collagen �ber in the XY plane at Z = 0µm are drawn in Fig. (5.11).
The polar plots are built with the parameters f2, f4, Θb and Φb given in table 5.1. Positions
1, 2 and 3 correspond to Figs. (5.11) (a), (b) and (c) respectively. For both polarization
con�gurations P and PS, the shapes of the polar plots are highly sensitive to φ0, except for
position 2. In this case, as we showed in section 5.2.3, the molecular angular distribution
function is close to an isotropic distribution [see Fig. (5.7b)], which means that the CARS
signal is not strongly dependent on the orientation of the �ber. Positions 1 and 3, in
the contrary, are much dependent on φ0. In these cases, if the orientation of the �ber
changes slightly with Z, then the polarization responses of the CARS signal can present
very important variations. This fact can elucidate why only accounting for birefringence
is not su�cient to explain the behavior of the CARS signal when focusing at di�erent Z
into the �ber.

The analysis developed in this section and in the previous one, concerning the in�uence
of the sample's birefringence and in-plane orientation on the polarization-resolved CARS
responses, shows that determining the local symmetry of the molecular orientational distri-
bution function is a very delicate procedure, specially for a highly inhomogeneous medium.
This is particularly true when the polarimetric measurements are carried out in di�erent
depths of the sample, other than its surfaces (Z = 0 or Z = L). At Z = 0µm, only the
emitted anti-Stokes signal is a�ected by birefringence, which can be measured throughout
the whole thickness of the sample, by the method explained in section 2.3. By consequence,
the ellipticity of the anti-Stokes polarization due to the anisotropy of the sample, can be
corrected in the theoretical model, without a�ecting the determination of the order param-
eters and orientation of the molecular distribution. However, the local characterization of
the orders of symmetry in a molecular statistical ensemble at Z = d 6= 0µm can become a
very complicated problem in inhomogeneous media, due to the sample's birefringence, since
we can not measure (Θb,Φb) at Z = d (except if supposing a homogeneous medium). A
complete �t including all the parameters (f2, f4, φ0,Θb,Φb) would not work even for a given
Z, because it would involve too many parameters. In fact, for every value of the birefrin-
gence parameters (Θb,Φb), it would be possible to �nd a di�erent solution for (φ0, f2, f4).
It means that the local birefringence of the sample at di�erent Z, (Θb(Z),Φb(Z)), must be
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Figure 5.11: Theoretical CARS intensities for di�erent orientations of the collagen �ber in
the XY plane (φ0). Figs. (a), (b) and (c) represent positions 1, 2 and 3, respectively. For
each position, we depict separately the theoretical intensities along the X or the Y axes
(IX and IY , respectively). Both polarization schemes P (αp) and PS (αp,s) are shown in
each case. Di�erent curves correspond to the following in-plane orientation φ0: (1) −45◦,
violet; (2) 0◦, green; (3) 45◦, blue and (4) 90◦, red.

entered as a priori known parameters.

An iterative method should be employed in order to characterize the local molecular
orientational distribution at intermediate depths in the sample. First, we characterize the
�ber's birefringence, averaged throughout the thickness of the sample. Then, we measure
the polarization-resolved CARS intensities IX and IY at di�erent depths Zi = d in the
sample, varying from Z0 = 0 to Zn = L. Finally, for each position Zi we �t a set of
parameters (f2, f4, φ0,Θb,Φb), by taking into account the results �tted in the previous
measurement Zi−1. With only two points throughout the whole thickness of the sample,
it is not accurate to proceed to a rigorous �t at the intermediate depth, especially when
it is highly inhomogeneous. This seems to be the case for positions 1 and 3, since the
polarimetric nonresonant CARS intensities acquired at Z = 0µm and Z = 60µm do not
present the same patterns, as can be seen in Figs. (5.6) and (5.8). For this reason, we do
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not �t the experimental results at Z = 60µm measured at positions 1 and 3. However, in
the case of position 2, it is possible to �nd theoretical curves that match the experimental
data showed in Fig. (5.8). This is a consequence of the fact that, at this particular XY
position, the molecular angular distribution is close to isotropy. Therefore, the polarization-
resolved CARS response does not depend strongly on the in-plane orientation φ0 of the
sample. We assume thus, that at this position, the �ber is homogeneous along Z and has
consequently, the same molecular orientational distribution. In this way, we suppose that
the �tted parameters f2 and f4 are the same at Z = 0µm or Z = 60µm and we try to
�nd an orientation φ0 that best �ts the polarization-resolved CARS measurements showed
in Fig. (5.8). The results are depicted in Fig. (5.12). For the �t, we used Θb = 76◦ and
Φb = 201◦. The �tted φ0 is 40◦, which is not far from the one found at the surface of the
�ber.

Figure 5.12: Experimental CARS intensities with their best �ts at position 2 in the XY
plane and Z = 60µm. (a) P and (b) PS polarization con�guration. Red and green
curves correspond to the CARS intensities along the X and Y axes, respectively. Markers
represent the experimental data and solid lines correspond to the best �ts. Insets in (a)
and (b) show in detail the �t IY . In the case of (b), it is the intensity along Y normalized
to 1 that is plotted in the polar graph.

5.5 Conclusion

In this chapter, we have shown that polarization resolved nonresonant CARS is a powerful
technique to retrieve the even orders of symmetry up to the fourth order in a molecular
statistical ensemble, such as collagen �bers. In particular, we propose a �tting procedure
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5.5. Conclusion

that allows to estimate the microscopic molecular orientational distribution function and
its orientation in the macroscopic frame. Careful analysis concerning the birefringence
of the sample must be performed before �tting the experimental CARS signals, in order
to avoid misunderstanding results. Note that the procedure of accounting for birefrin-
gence is made here delicate due to the dichroic mirror in�uence on the �eld polarization.
This could be circumvented by correcting this e�ect before the microscope entrance (by
a SLM controllable wave plate, for instance). The further extension of this technique to
microscopy, enabling imaging of local symmetry orders and molecular organization, brings
new possibilities for highcontrast structural spatial investigation with submicrometric res-
olution. Polarization resolved multimodal nonlinear microscopic can also be performed, by
combining CARS with second-order nonlinear optical processes, such as SHG, in order to
obtain complimentary information on the symmetry orders of the molecular distribution.
Finally, this method can be widen to resonant polarization resolved CARS, by probing
speci�c vibrational resonances of the molecular ensembles.
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CARS responses of biomolecular assemblies
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CONCLUSION

This thesis has demonstrated the potential of polarization resolved four-wave mixing to
read-out structural and vibrational symmetries in molecular media. Theoretical and ex-
perimental analyses were developed for three distinct samples: isotropic, crystalline and
biomolecular assemblies. The third-order nonlinear optical process considered in this work
was essentially coherent anti-Stokes Raman scattering (CARS), either at vibrational reso-
nance or not. Stimulated Raman scattering (SRS) was also performed in isotropic media.

In a �rst step, we have set the theoretical basis of the tensorial approach of nonlinear
optics, by demonstrating how the structures of the microscopic susceptibility tensors can
be determined from symmetry considerations. In nonresonant processes, only spatial sym-
metries are involved, while at resonance, the symmetries of the vibrational modes play a
major role in the characterization of the susceptibilities. In the case of third-order nonlin-
ear optical processes, without any symmetry considerations, the susceptibility tensor has
81 nonvanishing and independent components (57 in the case of degenerate CARS pro-
cess). This number can drop to only a few in highly symmetric media. In order to probe
these microscopic information from polarimetric measurements, it is necessary to derive the
macroscopic susceptibility tensors from the microscopic ones, either for crystalline media
or molecular assemblies with statistical orientational distribution. Polarimetric measure-
ments on crystals allow to retrieve the orientation and symmetry of the crystal unit cell.
In the case of molecular assemblies, nonlinear polarimetry provides information on the
symmetry order and orientation of the molecular distribution. As CARS is a third-order
nonlinear optical process, it can probe symmetries up to the fourth-order.

Here, we have explored the full potential of CARS polarization analysis, by control-
ling and tuning independently the linear polarization states of the incident beams. The
generated �eld is also analyzed along two distinct orthogonal directions. Precise control
of the polarization in the experimental setup is essential for the accurate interpretation
of the experimental results. We have then demonstrated the necessity of calibrating the
polarization distortions in the optical setup in order to correctly interpret the experimental
results.
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Conclusion

Polarization resolved four-wave mixing measurements in media with distinct symme-
tries, such as isotropic, crystal and collagen, have achieved successful results. Polarimetric
measurements at resonance were able to reveal the symmetry of the probed vibrational
modes, either in isotropic media or in crystals with cubic symmetry. In isotropic samples,
the symmetry of the vibrational resonance is characterized by the depolarization ratio,
that could be measured from one single polarization con�guration at two distinct spectral
positions, in the case of CARS experiments. For SRS, it is possible to determine the de-
polarization ratio from one single polarization con�guration at the peak of the spectrum.
In cubic crystals, polarization responses of totally and nontotally symmetric vibrational
modes showed completely di�erent patterns, demonstrating the power of the technique
in probing vibrational symmetries. Furthermore, we were able to characterize, and even
quantify in totally symmetric vibrations, departure from Kleinman symmetry conditions.

Nonresonant four-wave mixing polarimetric measurements were able to probe depar-
ture from isotropy in crystals with cubic symmetry, which is not possible in lower-order
optical processes, such as spontaneous Raman scattering. Furthermore, nonresonant mea-
surements on collagen �ber provided quantitative information on the symmetry of the
molecular orientational distribution, revealing the even terms of the multipolar expansion
of the distribution function, up to the fourth order of symmetry.

Following the pioneer works developed in the 1970s, our study con�rms the great po-
tential of polarimetric four-wave mixing in revealing structural and vibrational symmetries
in molecular media. It opens new prospective investigations based not only on chemical
selectivity, but also structural imaging, dedicated to materials or biological diagnostics
down to the nanoscale.

Polarimetric nonlinear optics is currently a very active �eld of research in the Mosaic
group at Fresnel Institute, and the perspectives are very promising. Some of the directions
to follow suggested by the studies developed in this thesis are:

� To perform polarimetric measurements combining di�erent nonlinear optical pro-
cesses, in order to get complimentary information on the sample's structural sym-
metry. It could be considered, for instance, to acquire polarimetric CARS and SHG
images of the same sample simultaneously.

� To extended the nonresonant CARS measurements performed on collagen �bers to
the resonant case. By consequence, additional information on the symmetry of the
addressed vibrational modes could be obtained. For samples where the nonresonant
signal is very strong, polarimetric measurements on SRS may be considered.

� To extend the application of the method to di�erent samples with great interest in
biology, including cell membranes, microtubules, chromosomes, protein aggregates
and tissues.
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APPENDIX A

SUSCEPTIBILITY TENSORS

Here we list the �rst-, second- and third-order susceptibility tensors, for all the 32 crys-
tallographic point groups and also for isotropic media. This appendix is a reproduction of
the Appendix 3 of reference [72] (pages 298 to 302). The tensor structures listed below are
for arbitrary ratio of frequencies.

A.1 First-order susceptibility tensor χ(1)
ij (−ωσ;ωp)

Triclinic system

Six independent nonvanishing components.

χ
(1)
xx χ

(1)
yy χ

(1)
zz

χ
(1)
xy = χ

(1)
yx χ

(1)
zx = χ

(1)
xz χ

(1)
yz = χ

(1)
zy

Monoclinic system

Four independent nonvanishing components.

χ
(1)
xx χ

(1)
yy χ

(1)
zz

χ
(1)
zx = χ

(1)
xz

Orthorhombic system

Three independent nonvanishing components.
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Susceptibility tensors

χ
(1)
xx χ

(1)
yy χ

(1)
zz

Tetragonal, Trigonal and Hexagonal systems

Two independent nonvanishing components.

χ
(1)
xx = χ

(1)
yy

χ
(1)
zz

Cubic system and isotropic

One independent nonvanishing component.

χ(1)
xx = χ(1)

yy = χ(1)
zz

A.2 Second-order susceptibility tensor χ(2)
ijk(−ωσ;ωq, ωp)

Triclinic system

Class C1 All the 27 tensor components are independent and nonvanishing.

Monoclinic system

Class C2 13 independent nonvanishing components.

χ
(2)
xyz χ

(2)
xzy χ

(2)
yzx χ

(2)
yxz χ

(2)
zxy χ

(2)
zyx

χ
(2)
xxy χ

(2)
xyx χ

(2)
yxx

χ
(2)
yyy

χ
(2)
yzz χ

(2)
zyz χ

(2)
zzy

Class C1h 14 independent nonvanishing components.

χ
(2)
xxx χ

(2)
xyy χ

(2)
xzz χ

(2)
xzx χ

(2)
xxz

χ
(2)
yyz χ

(2)
yzy χ

(2)
yxy χ

(2)
yyx

χ
(2)
zxx χ

(2)
zyy χ

(2)
zzz χ

(2)
zzx χ

(2)
zxz
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A.2. Second-order susceptibility tensor χ
(2)
ijk(−ωσ;ωq, ωp)

Orthorhombic system

Class D2 Six independent nonvanishing components.

χ
(2)
xyz χ

(2)
xzy

χ
(2)
yzx χ

(2)
yxz

χ
(2)
zxy χ

(2)
zyx

Class C2v Seven independent nonvanishing components.

χ
(2)
xzx χ

(2)
xxz

χ
(2)
yyz χ

(2)
yzy

χ
(2)
zxx χ

(2)
zyy χ

(2)
zzz

Tetragonal system

Class C4 Seven independent nonvanishing components.

χ
(2)
xyz = −χ(2)

yxz

χ
(2)
xzy = −χ(2)

yzx

χ
(2)
xzx = χ

(2)
yzy

χ
(2)
xxz = χ

(2)
yyz

χ
(2)
zxx = χ

(2)
zyy

χ
(2)
zzz

χ
(2)
zxy = −χ(2)

zyx

Class S4 Six independent nonvanishing components.

χ
(2)
xyz = χ

(2)
yxz

χ
(2)
xzy = χ

(2)
yzx

χ
(2)
xzx = −χ(2)

yzy

χ
(2)
xxz = −χ(2)

yyz

χ
(2)
zxx = −χ(2)

zyy

χ
(2)
zxy = χ

(2)
zyx
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Susceptibility tensors

Class D4 Three independent nonvanishing components.

χ
(2)
xyz = −χ(2)

yxz

χ
(2)
xzy = −χ(2)

yzx

χ
(2)
zxy = −χ(2)

zyx

Class C4v Four independent nonvanishing components.

χ
(2)
xzx = χ

(2)
yzy

χ
(2)
xxz = χ

(2)
yyz

χ
(2)
zxx = χ

(2)
zyy

χ
(2)
zzz

Class D2d Three independent nonvanishing components.

χ
(2)
xyz = χ

(2)
yxz

χ
(2)
xzy = χ

(2)
yzx

χ
(2)
zxy = χ

(2)
zyx

Cubic system

Class O One independent nonvanishing component.

χ(2)
xyz = χ(2)

yzx = χ(2)
zxy = −χ(2)

xzy = −χ(2)
yxz = −χ(2)

zyx

Class Td One independent nonvanishing component.

χ(2)
xyz = χ(2)

yzx = χ(2)
zxy = χ(2)

xzy = χ(2)
yxz = χ(2)

zyx

Class T Two independent nonvanishing components.

χ
(2)
xyz = χ

(2)
yzx = χ

(2)
zxy

χ
(2)
xzy = χ

(2)
yxz = χ

(2)
zyx
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A.2. Second-order susceptibility tensor χ
(2)
ijk(−ωσ;ωq, ωp)

Trigonal system

Class C3 Nine independent nonvanishing components.

χ
(2)
xxx = −χ(2)

xyy = −χ(2)
yxy = −χ(2)

yyx

χ
(2)
xyz = −χ(2)

yxz

χ
(2)
xzy = −χ(2)

yzx

χ
(2)
xzx = χ

(2)
yzy

χ
(2)
xxz = χ

(2)
yyz

χ
(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx

χ
(2)
zxx = χ

(2)
zyy

χ
(2)
zzz

χ
(2)
zxy = −χ(2)

zyx

Class D3 Four independent nonvanishing components.

χ
(2)
xxx = −χ(2)

xyy = −χ(2)
yxy = −χ(2)

yyx

χ
(2)
xyz = −χ(2)

yxz

χ
(2)
xzy = −χ(2)

yzx

χ
(2)
zxy = −χ(2)

zyx

Class C3v Five independent nonvanishing components.

χ
(2)
xzx = χ

(2)
yzy

χ
(2)
xxz = χ

(2)
yyz

χ
(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx

χ
(2)
zxx = χ

(2)
zyy

χ
(2)
zzz

Hexagonal system

Class C6 Seven independent nonvanishing components. The tensor structure is the same
as for the class C4 of the tetragonal crystal system.

Class C3h Two independent nonvanishing components.
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Susceptibility tensors

χ
(2)
xxx = −χ(2)

xyy = −χ(2)
yxy = −χ(2)

yyx

χ
(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx

Class D6 Three independent nonvanishing components. The tensor structure is the same
as for the class D4 of the tetragonal crystal system.

Class C6v Four independent nonvanishing components. The tensor structure is the same
as for the class C4v of the tetragonal crystal system.

Class D3h One independent nonvanishing component.

χ(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx

A.3 Third-order susceptibility tensor χ(3)
ijkl(−ωσ;ωr, ωq, ωp)

Triclinic system

For both classes C1 and Ci, all the 81 tensor components are independent and nonvanishing.

Monoclinic system

For all three classes (C2, C1h and C2h), there are 41 independent nonvanishing tensor
components, consisting of:

� 3 elements with su�xes all equal,

� 18 elements with su�xes equal in pairs,

� 12 elements with su�xes having two ys, one x and one z,

� 4 elements with su�xes having three xs and one z,

� 4 elements with su�xes having three zs and one x.

Orthorhombic system

For all three classes (D2, C2v and D2h), there are 21 independent nonvanishing tensor
components, consisting of:

� 3 elements with su�xes all equal,

� 18 elements with su�xes equal in pairs.
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A.3. Third-order susceptibility tensor χ
(3)
ijkl(−ωσ;ωr, ωq, ωp)

Tetragonal system

For the three classes C4, S4 and C4h , there are 41 nonvanishing tensor components of which
only 21 are independent. They are:

χ
(3)
xxxx = χ

(3)
yyyy χ

(3)
zzzz

χ
(3)
zzxx = χ

(3)
zzyy χ

(3)
xyzz = −χ(3)

yxzz χ
(3)
xxyy = χ

(3)
yyxx χ

(3)
xxxy = −χ(3)

yyyx

χ
(3)
xxzz = χ

(3)
yyzz χ

(3)
zzxy = −χ(3)

zzyx χ
(3)
xyxy = χ

(3)
yxyx χ

(3)
xxyx = −χ(3)

yyxy

χ
(3)
zxzx = χ

(3)
zyzy χ

(3)
xzyz = −χ(3)

yzxz χ
(3)
xyyx = χ

(3)
yxxy χ

(3)
xyxx = −χ(3)

yxyy

χ
(3)
xzxz = χ

(3)
yzyz χ

(3)
zxzy = −χ(3)

zyzx χ
(3)
yxxx = −χ(3)

xyyy

χ
(3)
zxxz = χ

(3)
zyyz χ

(3)
zxyz = −χ(3)

zyxz

χ
(3)
xzzx = χ

(3)
yzzy χ

(3)
xzzy = −χ(3)

yzzx

For the four classes D4, C4v, D4h and D2d , there are 21 nonvanishing tensor components
of which only 11 are independent. They are:

χ
(3)
xxxx = χ

(3)
yyyy χ

(3)
zzzz

χ
(3)
yyzz = χ

(3)
xxzz χ

(3)
yzzy = χ

(3)
xzzx χ

(3)
xxyy = χ

(3)
yyxx

χ
(3)
zzyy = χ

(3)
zzxx χ

(3)
yzyz = χ

(3)
xzxz χ

(3)
xyxy = χ

(3)
yxyx

χ
(3)
zyyz = χ

(3)
zxxz χ

(3)
zyzy = χ

(3)
zxzx χ

(3)
xyyx = χ

(3)
yxxy

Cubic system

For the two classes T and Th, there are 21 nonvanishing tensor components of which only
seven are independent. They are:

χ(3)
xxxx = χ(3)

yyyy = χ(3)
zzzz

χ(3)
yyzz = χ(3)

zzxx = χ(3)
xxyy

χ(3)
zzyy = χ(3)

xxzz = χ(3)
yyxx

χ(3)
yzyz = χ(3)

zxzx = χ(3)
xyxy

χ(3)
zyzy = χ(3)

xzxz = χ(3)
yxyx

χ(3)
yzzy = χ(3)

zxxz = χ(3)
xyyx

χ(3)
zyyz = χ(3)

xzzx = χ(3)
yxxy

For the three classes 0, Td and Oh, there are 21 nonvanishing tensor components of
which only four are independent. They are:

χ
(3)
xxxx = χ

(3)
yyyy = χ

(3)
zzzz

χ
(3)
yyzz = χ

(3)
zzyy = χ

(3)
zzxx = χ

(3)
xxzz = χ

(3)
xxyy = χ

(3)
yyxx

χ
(3)
yzyz = χ

(3)
zyzy = χ

(3)
zxzx = χ

(3)
xzxz = χ

(3)
xyxy = χ

(3)
yxyx

χ
(3)
yzzy = χ

(3)
zyyz = χ

(3)
zxxz = χ

(3)
xzzx = χ

(3)
xyyx = χ

(3)
yxxy

151



Susceptibility tensors

Trigonal system

For the two classes C3 and S6, there are 73 nonvanishing tensor components of which only
27 are independent. They are:

χ
(3)
zzzz

χ
(3)
xxxx = χ

(3)
yyyy = χ

(3)
xxyy + χ

(3)
xyyx + χ

(3)
xyxy


χ

(3)
xxyy = χ

(3)
yyxx

χ
(3)
xyyx = χ

(3)
yxxy

χ
(3)
xyxy = χ

(3)
yxyx

χ
(3)
yyzz = χ

(3)
xxzz χ

(3)
xyzz = −χ(3)

yxzz

χ
(3)
zzyy = χ

(3)
zzxx χ

(3)
zzxy = −χ(3)

zzyx

χ
(3)
zyyz = χ

(3)
zxxz χ

(3)
zxyz = −χ(3)

zyxz

χ
(3)
yzzy = χ

(3)
xzzx χ

(3)
xzzy = −χ(3)

yzzx

χ
(3)
yzyz = χ

(3)
xzxz χ

(3)
xzyz = −χ(3)

yzxz

χ
(3)
zyzy = χ

(3)
zxzx χ

(3)
zxzy = −χ(3)

zyzx

χ
(3)
xxxy = −χ(3)

yyyx = χ
(3)
yyxy + χ

(3)
yxyy + χ

(3)
xyyy


χ

(3)
yyxy = −χ(3)

xxyx

χ
(3)
yxyy = −χ(3)

xyxx

χ
(3)
xyyy = −χ(3)

yxxx

χ
(3)
yyyz = −χ(3)

yxxz = −χ(3)
xyxz = −χ(3)

xxyz

χ
(3)
yyzy = −χ(3)

yxzx = −χ(3)
xyzx = −χ(3)

xxzy

χ
(3)
yzyy = −χ(3)

yzxx = −χ(3)
xzyx = −χ(3)

xzxy

χ
(3)
zyyy = −χ(3)

zyxx = −χ(3)
zxyx = −χ(3)

zxxy

χ
(3)
xxxz = −χ(3)

xyyz = −χ(3)
yxyz = −χ(3)

yyxz

χ
(3)
xxzx = −χ(3)

xyzy = −χ(3)
yxzy = −χ(3)

yyzx

χ
(3)
xzxx = −χ(3)

yzxy = −χ(3)
yzyx = −χ(3)

xzyy

χ
(3)
zxxx = −χ(3)

zxyy = −χ(3)
zyxy = −χ(3)

zyyx

For the three classes C3v, D3d and D3 there are 37 nonvanishing tensor components of
which only 14 are independent. They are:
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A.3. Third-order susceptibility tensor χ
(3)
ijkl(−ωσ;ωr, ωq, ωp)

χ
(3)
zzzz

χ
(3)
xxxx = χ

(3)
yyyy = χ

(3)
xxyy + χ

(3)
xyyx + χ

(3)
xyxy


χ

(3)
xxyy = χ

(3)
yyxx

χ
(3)
xyyx = χ

(3)
yxxy

χ
(3)
xyxy = χ

(3)
yxyx

χ
(3)
yyzz = χ

(3)
xxzz χ

(3)
xxxz = −χ(3)

xyyz = −χ(3)
yxyz = −χ(3)

yyxz

χ
(3)
zzyy = χ

(3)
zzxx χ

(3)
xxzx = −χ(3)

xyzy = −χ(3)
yxzy = −χ(3)

yyzx

χ
(3)
zyyz = χ

(3)
zxxz χ

(3)
xzxx = −χ(3)

xzyy = −χ(3)
yzxy = −χ(3)

yzyx

χ
(3)
yzzy = χ

(3)
xzzx χ

(3)
zxxx = −χ(3)

zxyy = −χ(3)
zyxy = −χ(3)

zyyx

χ
(3)
yzyz = χ

(3)
xzxz

χ
(3)
zyzy = χ

(3)
zxzx

Hexagonal system

For the three classes C6, C3h and C6h, there are 41 nonvanishing tensor components of
which only 19 are independent. They are:

χ
(3)
zzzz

χ
(3)
xxxx = χ

(3)
yyyy = χ

(3)
xxyy + χ

(3)
xyyx + χ

(3)
xyxy


χ

(3)
xxyy = χ

(3)
yyxx

χ
(3)
xyyx = χ

(3)
yxxy

χ
(3)
xyxy = χ

(3)
yxyx

χ
(3)
yyzz = χ

(3)
xxzz χ

(3)
xyzz = −χ(3)

yxzz

χ
(3)
zzyy = χ

(3)
zzxx χ

(3)
zzxy = −χ(3)

zzyx

χ
(3)
zyyz = χ

(3)
zxxz χ

(3)
zxyz = −χ(3)

zyxz

χ
(3)
yzzy = χ

(3)
xzzx χ

(3)
xzzy = −χ(3)

yzzx

χ
(3)
yzyz = χ

(3)
xzxz χ

(3)
xzyz = −χ(3)

yzxz

χ
(3)
zyzy = χ

(3)
zxzx χ

(3)
zxzy = −χ(3)

zyzx

χ
(3)
xxxy = −χ(3)

yyyx = χ
(3)
yyxy + χ

(3)
yxyy + χ

(3)
xyyy


χ

(3)
yyxy = −χ(3)

xxyx

χ
(3)
yxyy = −χ(3)

xyxx

χ
(3)
xyyy = −χ(3)

yxxx

For the four classes D6, C6v, D6h and D3h, there are 21 nonvanishing tensor components
of which only 10 are independent. They are:
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Susceptibility tensors

χ
(3)
zzzz

χ
(3)
xxxx = χ

(3)
yyyy = χ

(3)
xxyy + χ

(3)
xyyx + χ

(3)
xyxy


χ

(3)
xxyy = χ

(3)
yyxx

χ
(3)
xyyx = χ

(3)
yxxy

χ
(3)
xyxy = χ

(3)
yxyx

χ
(3)
yyzz = χ

(3)
xxzz

χ
(3)
zzyy = χ

(3)
zzxx

χ
(3)
zyyz = χ

(3)
zxxz

χ
(3)
yzzy = χ

(3)
xzzx

χ
(3)
yzyz = χ

(3)
xzxz

χ
(3)
zyzy = χ

(3)
zxzx

Isotropic

There are 21 nonvanishing tensor components of which only three are independent. They
are:

χ
(3)
xxxx = χ

(3)
yyyy = χ

(3)
zzzz

χ
(3)
yyzz = χ

(3)
zzyy = χ

(3)
zzxx = χ

(3)
xxzz = χ

(3)
xxyy = χ

(3)
yyxx

χ
(3)
yzyz = χ

(3)
zyzy = χ

(3)
zxzx = χ

(3)
xzxz = χ

(3)
xyxy = χ

(3)
yxyx

χ
(3)
yzzy = χ

(3)
zyyz = χ

(3)
zxxz = χ

(3)
xzzx = χ

(3)
xyyx = χ

(3)
yxxy

χ
(3)
xxxx = χ

(3)
xxyy + χ

(3)
xyxy + χ

(3)
xyyx
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APPENDIX B

EXPANSION OF THE ORIENTATIONAL

DISTRIBUTION FUNCTION IN A SERIES

OF SPHERICAL HARMONICS: DETAILS

OF THE CALCULATIONS FOR A

THIRD-ORDER NONLINEAR OPTICAL

PROCESS

We limit the analysis to a third-order nonlinear optical process (p = 4) and we consider
only molecules with cylindrical symmetry around their main symmetry axis. With this
assumption, the orientation can be de�ned by only two Euler angles Ω = (θ, φ) and it does
not depend on ψ. The rotation matrix from the molecular (u, v, w) to the microscopic
frame (i, j, k) can be written as a linear combination of the �rst-order spherical harmonics,
according to:

aiν(θ, φ) =
1∑

m=−1

Cu,i
m,J=1Y

J=1
m (θ, φ) (B.1)

where aiν is the element in the ith column and νth line of the rotation matrix by the angles
(θ, φ) and Cu,i

m,J are the projection coe�cients of this new basis decomposition. Therefore,
the third-order hyperpolarizability in the microscopic frame writes:
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spherical harmonics

γijkl(θ, φ) =
∑
uvwν

aiuajvakwalν(θ, φ)γuvwν =
∑
uvwν

γuvwν

×
∑

m1m2m3m4

Cu,i
m1,J1

Cv,j
m2,J2

Cw,k
m3,J3

Cν,l
m4,J4

Y J1
m1

(θ, φ)Y J2
m2

(θ, φ)Y J3
m3

(θ, φ)Y J4
m4

(θ, φ), (B.2)

with J1...4 = 1 and −1 ≤ m1...4 ≤ 1.
As we have shown in chapter 1, the product of two spherical harmonics can be expressed

by a linear combination of new spherical harmonics using the Wigner 3-j symbols [86]:

Y J1
m1

(θ, φ)Y J2
m2

(θ, φ) =
∑
J,m

√
(2J1 + 1)(2J2 + 1)(2J + 1)

4π

×
(

J1 J2 J
m1 m2 m

)(
J1 J2 J
0 0 0

)
(−1)mY J

−m(θ, φ). (B.3)

The Wigner 3-j symbols can be calculated from the Racah formula [112]:

(
J1 J2 J
m1 m2 m

)
= δm1+m2+m3,0(−1)J1−J2−m

×
√

(J+J1−J2)!(J−J1+J2)!(−J+J1+J2)(J−m)!(J+m)!
(J1+J2+J+1)!(J1−m1)!(J1+m1)!(J2−m2)!(J2+m2)!

×
∑

k
(−1)k+J2+m2 (J2+J+m1−k)!(J1−m1+k)!
(J−J1+J2−k)!(J−m−k)!(k+J1−J2+m)!

.

The selection rules of the Wigner 3-j symbols have been reported in chapter 1. Brie�y,
they must satisfy the triangular inequalities |J1 − J2| ≤ J ≤ |J1 + J2| and the parity rule,
that establishes that J1 + J2 + J must be even so the product does not vanishes.

According to the multiplication rule for spherical harmonics, the product of two �rst-
order spherical harmonics (J = 1) can be simpli�ed as:

Y J1=1
m1

(θ, φ)Y J2=1
m2

(θ, φ) =
∑
J=0,2

J∑
m=−J

3

2

√
(2J + 1)

π
Am,Jm1,m2

(−1)mY J
−m (B.4)

where Am1,m2,m,J is the coe�cient containing the previous Wigner 3-j symbols. From the
triangular inequalities, (1− 1) ≤ J ≤ (1 + 1) and from the parity rule, 1 + 1 + J must be
even, leading to J even. By consequence, the order of the resulting spherical harmonics
can only be 0 or 2, this is the reason why the sum over J can only have these values.
In the case of a third-order optical process, the rotation from the molecular frame to the
microscopic frame implies the product of four �rst-order spherical harmonics, that writes:

Y 1
m1
Y 1
m2
Y 1
m3
Y 1
m4

=
∑

JJ ′mm′

9

4π

√
(2J + 1)(2J ′ + 1)Am,Jm1,m2

Am
′,J ′

m3,m4
(−1)m+m′Y J

−mY
J ′

−m′ (B.5)
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where the angular arguments (θ, φ) were omitted in order to lighten the notation. From
the rules above, J and J ′ must be even and between 0 and 4. The resulting spherical
harmonics product in Eq. (B.5) can also be expressed in terms of the multiplication rule
for spherical harmonics, leading to:

Y J
−mY

J ′

−m′ =
∑
Kn

√
(2J + 1)(2J ′ + 1)(2K + 1)

4π

×
(

J J ′ K
−m −m′ n

)(
J J ′ K
0 0 0

)
(−1)nY K

−n (B.6)

By replacing Eq. (B.6) into Eq. (B.5), the product of four �rst-order spherical har-
monics writes:

Y 1
m1
Y 1
m2
Y 1
m3
Y 1
m4

=
∑

JJ ′Kmm′n

9

8π

√
(2K + 1)

π
(2J + 1)(2J ′ + 1)

×Am,Jm1,m2
Am,J

′

m3,m4
AJ,J

′,K
−m,−m′,n(−1)m+m′+nY K

−n (B.7)

with J + J ′ +K even,leading to K even and 0 ≤ K ≤ 4, from the triangular inequalities.
In conclusion, K = 0, 2, 4 in the decomposition of the four spherical harmonics products.
Finally, the molecular hyperpolarizability in the microscopic frame writes:

γijkl(θ, φ) =
∑
u,v,w,ν

γuvwν

×
∑
K,n

∑
m1,m2,m3,m4,
m,m′,J,J ′

Cu,i
m1,J1

Cv,j
m2,J2

Cw,k
m3,J3

Cν,l
m4,J4

BJ,J ′,K
m1,m2,m3,m4,m,n

Y K
−n(θ, φ), (B.8)

where B = (−1)m+m′+n9/(8π)[(2K + 1)/π]1/2(2J + 1)(2J ′ + 1)Am,Jm1,m2
Am,J

′
m3,m4

AJ,J
′,K

−m,−m′,n.
According to Eq. (1.54) in chapter 1, the microscopic susceptibility tensor component

χ
(3)
ijkl in the microscopic frame writes:

χ
(3)
ijkl = N

∫ 2π

0

∫ π

0

γijkl(θ, φ)f(θ, φ) sin θdθdφ (B.9)

where f(θ, φ) is an orientational distribution function, that can be expanded in a series of
spherical harmonics, according to:

f(θ, φ) =
∑
M,p

fMp Y
M
p (θ, φ) (B.10)

with −M ≤ p ≤ M . The �nal expression of the microscopic third-order susceptibility is
then:
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χ
(3)
ijkl =

∑
u,v,w,ν

γuvwν
∑

K,M,n,p

∑
m1,m2,m3,m4,
m,m′,J,J ′

Cu,i
m1,J1

Cv,j
m2,J2

Cw,k
m3,J3

Cν,l
m4,J4

×BJ,J ′,K
m1,m2,m3,m4,m,n

fMp

∫ 2π

0

∫ π

0

Y K
−n(θ, φ)Y M

p (θ, φ) sin θdθdφ. (B.11)

The orthogonality property of the spherical harmonics [see Eq. (1.60) in chapter 1],
states that: ∫ 2π

0

∫ π

0

Y K
−n(θ, φ)Y M

p (θ, φ) sin θdθdφ = δ−npδKM . (B.12)

Therefore Eq. (B.11) vanishes with M 6= K, which leads to M = 0, 2, 4. In conclusion,
the theoretical third-order microscopic susceptibilities depend only on the terms of the
orientational distribution function whose orders are M = 0, 2, 4. By consequence, third-
order nonlinear polarimetric measurements can only read-out the even order terms of the
distribution function, up to the fourth-order.
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Abstract

One of the greatest challenges in nonlinear optics microscopy is the search for new contrast mech-

anisms. This is one of the reasons of the increasing interest in polarimetric nonlinear optics in

the last couple of decades. In this work we have explored the potential of four-wave mixing in

probing vibrational and structural symmetries in molecular media. In particular, we have been

concerned with coherent Raman scattering (CRS), either at resonance or not. We have devel-

oped a theoretical model allowing to determine the structures of the susceptibility tensors from

symmetry considerations, involving both the spatial structure of the medium and the vibration

of speci�c molecular modes. Experimental results on isotropic sample, crystals and biomolecular

assemblies were successfully achieved. Polarimetric measurements at resonance provide infor-

mation on the symmetry of the addressed vibrational modes and on departure from Kleinman

symmetry conditions. Nonresonant polarimetric measurements are able to reveal departure from

isotropy in cubic crystals and the symmetry order and orientation of molecular distribution in

biomolecular assemblies, such as collagen �bers. In particular, we have shown that higher-order

molecular symmetries can only be probed by high-order nonlinear optical processes. Finally, this

work has demonstrated the great potential of polarimetric four-wave mixing as a powerful contrast

mechanism, providing structural selectivity in microscopy imaging. When it is further associated

with a resonant process (such as CRS), it provides also chemical selectivity, allowing a complete

description of the sample, involving both structural and vibrational symmetries.

Keywords : four-wave mixing, coherent Raman scattering, polarization, structural symmetry,

vibrational symmetry, microscopy

Résumé

Un des plus grands dé�s de la microscopie optique non linéaire est la recherche de nouveaux mé-

canismes de contraste. Ceci explique l'intérêt croissant pour l'optique non-linéaire polarimétrique

ces dernières décennies. Dans ce travail de thèse, nous utilisons le mélange à quatre ondes ré-

solu en polarisation pour sonder les symétries structurales et vibrationnelles dans les milieux

moléculaires. En particulier, nous nous sommes intéressés à la di�usion cohérente Raman (CRS,

pour l'acronyme en anglais), à-et-hors résonance. Nous avons développé un modèle théorique qui

permet de déterminer les structures des tenseurs de susceptibilité à partir des considérations de

symétrie qui impliquent aussi bien la structure spatiale du milieu que les vibrations des modes

moléculaires spéci�ques. Des résultats expérimentaux sur des échantillons isotropes, cristaux et as-

semblages biomoléculaires ont été accompli avec succès. Les mesures polarimétriques à résonance

fournissent des informations concernant la symétrie des modes de vibration considérés et l'écart

aux conditions de la symétrie de Kleinman. Les mesures polarimétriques hors résonance perme-

ttent de révéler l'écart de l'isotropie dans les cristaux à symétrie cubique et l'ordre de symétrie

et orientation de la distribution moléculaire dans les milieux biomoléculaires, comme les �bres de

collagène. En particulier, nous avons montré que les symétries moléculaires d'ordre supérieur ne

peuvent être sondées que par les processus optiques non linéaires d'ordre élevé. En�n, ce travail

a démontré que le mélange à quatre ondes résolu en polarisation peut être utilisé comme puissant

mécanisme de contraste, permettant une sélectivité structurale en imagerie microscopique. Asso-

cié à un processus résonant (comme CRS, par exemple), il est possible d'obtenir une séléctivité

chimique, ce qui permet de décrire complètement l'échantillon, à partir des symétries structurales

et vibrationnelles.

Mots clefs : mélange à quatre ondes, di�usion Raman cohérente, polarisation, symétrie struc-

turale, symétrie vibrationnelle, microscopie
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