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Résumé

La sélection d’un modèle approprié est l’une des tâches essentielles de l’apprentissage statistique.
En général, pour une tâche d’apprentissage donnée, on considère plusieurs classes de modèles
ordonnées selon un certain ordre de ≪ complexité ≫. Dans ce cadre, le processus de sélection de
modèle revient à trouver la ≪ complexité ≫ optimale, permettant d’estimer un modèle assurant
une bonne généralisation. Ce problème de sélection de modèle se résume à l’estimation d’un ou
plusieurs hyperparamètres définissant la complexité du modèle, par opposition aux paramètres qui
permettent de spécifier le modèle dans la classe de complexité choisie.

L’approche habituelle pour déterminer ces hyperparamètres consiste à utiliser une ≪ grille ≫. On
se donne un ensemble de valeurs possibles et on estime, pour chacune de ces valeurs, l’erreur
de généralisation du meilleur modèle. On s’intéresse, dans cette thèse, à une approche alter-
native consistant à calculer l’ensemble des solutions possibles pour toutes les valeurs des hyper-
paramètres. C’est ce qu’on appelle le chemin de régularisation. Il se trouve que pour les problèmes
d’apprentissage qui nous intéressent, des programmes quadratiques paramétriques, on montre que
le chemin de régularisation associé à certains hyperparamètres est linéaire par morceaux et que
son calcul a une complexité numérique de l’ordre d’un multiple entier de la complexité de calcul
d’un modèle avec un seul jeu hyper-paramètres.

La thèse est organisée en trois parties. La première donne le cadre général des problèmes d’ap-
prentissage de type SVM (Séparateurs à Vaste Marge ou Support Vector Machines) ainsi que les
outils théoriques et algorithmiques permettant d’appréhender ce problème. La deuxième partie
traite du problème d’apprentissage supervisé pour la classification et l’ordonnancement dans le
cadre des SVM. On montre que le chemin de régularisation de ces problèmes est linéaire par
morceaux. Ce résultat nous permet de développer des algorithmes originaux de discrimination et
d’ordonnancement. La troisième partie aborde successivement les problèmes d’apprentissage semi
supervisé et non supervisé. Pour l’apprentissage semi supervisé, nous introduisons un critère de
parcimonie et proposons l’algorithme de chemin de régularisation associé. En ce qui concerne
l’apprentissage non supervisé nous utilisons une approche de type ≪ réduction de dimension ≫.
Contrairement aux méthodes à base de graphes de similarité qui utilisent un nombre fixe de voisins,
nous introduisons une nouvelle méthode permettant un choix adaptatif et approprié du nombre de
voisins.

Mot clés : chemin de régularisation, sélection de modèle, classification, ordonnancement,
parcimonie, réduction de dimension, graphe de similarité.
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Abstract

The selection of a proper model is an essential task in statistical learning. In general, for a given
learning task, a set of parameters has to be chosen, each parameter corresponds to a different
degree of “complexity”. In this situation, the model selection procedure becomes a search for the
optimal “complexity”, allowing us to estimate a model that assures a good generalization. This
model selection problem can be summarized as the calculation of one or more hyperparameters
defining the model complexity in contrast to the parameters that allow to specify a model in the
chosen complexity class.
The usual approach to determine these parameters is to use a “grid search”. Given a set of possible
values, the generalization error for the best model is estimated for each of these values. This
thesis is focused in an alternative approach consisting in calculating the complete set of possible
solution for all hyperparameter values. This is what is called the regularization path. It can be
shown that for the problems we are interested in, parametric quadratic programming (PQP), the
corresponding regularization path is piecewise linear. Moreover, its calculation is no more complex
than calculating a single PQP solution.

This thesis is organized in three chapters, the first one introduces the general setting of a learning
problem under the Support Vector Machines’ (SVM) framework together with the theory and algo-
rithms that allow us to find a solution. The second part deals with supervised learning problems for
classification and ranking using the SVM framework. It is shown that the regularization path of
these problems is piecewise linear and alternative proofs to the one of Rosset [Ross 07b] are given
via the subdifferential. These results lead to the corresponding algorithms to solve the mentioned
supervised problems. The third part deals with semi-supervised learning problems followed by un-
supervised learning problems. For the semi-supervised learning a sparsity constraint is introduced
along with the corresponding regularization path algorithm. Graph-based dimensionality reduction
methods are used for unsupervised learning problems. Our main contribution is a novel algorithm
that allows to choose the number of nearest neighbors in an adaptive and appropriate way contrary
to classical approaches based on a fix number of neighbors.

Keywords: regularization path, model selection, classification, ranking, sparsity, dimension-
ality reduction, neighborhood graph.
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Résumé du Travail 8

1 Background 11

1.1 Statistical Learning Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Some SVM Learning Problem Examples . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Constrained Optimization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Dual of the SVM Learning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6 Quadratic Programming Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Model Selection via Regularization Paths in Supervised Learning 49

2.1 Piecewise Linear Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 SVM’s Regularization Path for Classification . . . . . . . . . . . . . . . . . . . . . 52

2.3 Complete Validation Error Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Ranking SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5 Sparse Ranking SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3 Model Selection in Semi-Supervised and Unsupervised Learning 95

3.1 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Laplacian SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3 L1-norm Laplacian SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.5 Shortcuts problems and their influence in graph based methods . . . . . . . . . . . 127

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Conclusions and Perspectives 139

1



Contents

A Appendix 143
A.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.2 Maximal Margin Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.3 Quadratic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

References 155

List of Tables 169

List of Figures 170

List of Symbols and Acronyms 173

Index 175

2



Remerciements
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possede une énergie de vivre contagieuse, et je la remercie pour sa bonne hummeur et ses conseils
judicieux. A Grégory Mallet qui a contribué au bon déroulement de cette dernière année et qui a
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Introduction

A large number of real life questions turn out to be far too complicated to be solved directly as
real world problems. Additionally, in general, the whole phenomenon cannot be observed and the
complete problematic structure has to be inferred with only partial observations. In order to find
a solution the observed problem is reduced to be able to represent it into mathematical terms and
notation in order to solve it with known theoretical tools.

When designing a mathematical model, different kinds goals have to be satisfied at the same
time, which in general lead to opposite solutions on its own. Parameters are introduced in order
to control the cost-benefit trade-off between all desired objectives to attain.

This thesis studies three different learning frameworks. These problems have the common
characteristic that can be modeled as optimization problems consisting of conflicting goals. Extra
parameters will be used to keep an equilibrium between all objectives. The efficient search of these
parameters is the central issue on this thesis, since it will lead to a satisfactory or not model.

The first learning problem belongs to the supervised learning framework, where data samples
are given with an attached label. This label can represent classes, relevance, dependent value, etc.
Labels are used with the general structure of the known samples to build a decision function that
will hopefully also work for unseen points. The aim is to build a function capable of correctly
assigning the observed data to their corresponding label, which can be done by adjusting a decision
function to these data. It is also desired to have a decision function able to generalize for unseen
points, this is normally controlled by measuring the model difficulty and number of observed errors
done by the built function. To achieve this goal and according to the now well known statistical
learning theory, a trade-off between the errors made by the learned function on the training data
and the complexity of the learner must exists. Along this work, efforts were directed toward
the correct and efficient model search in terms of computational time and generalization error.
The attention was focused on a class of learners represented by the Support Vector Machine. In
this framework the loss function used to measure the precision of the learner during the training
phase is a hinge-loss cost which is a piecewise linear function while the complexity of the decision
function is expressed via its quadratic norm. Under these statements, it turns out that the choice
of the trade-off parameter can be efficiently done by computing a regularization path [Ross 07b].
This computation consists essentially in tracking the evolution of the decision function according
to the regularization parameter, having the advantage that this property can be extended to other
formulations with different loss and complexity function. In this general framework, Hastie et al.
[Hast 04] have proposed the regularization path for SVM for classification where the final results
of the algorithms is a partition of the search interval into breakpoints where the linear relation
between the optimal functions changes.
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Contributions

In this thesis, we provide an alternative view of Rosset’s path formulation [Ross 07b] by
using a functional formulation (see Section 2.1). As far as our knowledge can go, this is the
first time that such a formulation is proposed. We believe this formulation is more general. This
formulation leads as well to the formulation of a bi-dual problem which is an equivalent problem
of the primal optimization problem with the advantage that the form of the decision function
is explicit. The aim of the expressed learning problem under these formulations is to achieve a
satisfactory generalization ability. An analysis of the way the overfitting problem arises is given
in Theorem 1.16.

We extended the regularization path algorithm to the ranking problem under the
SVM framework [Zapi 08b, Zapi 08a]. The ranking problem occurs typically in search engines
according to queries. The calculation of the whole solution set is a lot faster by means of the
regularization path than by repeatedly solving the QP problem in a grid search, which is the
traditional method.

To speed up the algorithm, we propose a procedure to reduce the number of constraints
involved in the ranking problem by a reformulation of the constraints graph. Indeed, if
we consider a set on n samples, the number of ranking constraints could be of order O(n2).
Even though the computation of the regularization path could be fast, the algorithm suffers from
this high number of constraints. Therefore, we derive a pre-processing algorithm to generate a
reduced graph of ranking constraints to alleviate the drawback. When we face a ranking problem
with different levels of relevance, the principle of the algorithms consists in generating intra-level
constraints (horizontal constraints) and inter-level constraints (vertical constraints). The vertical
constraints impose that all the samples of higher level of relevance dominate one randomly chosen
sample of lower level. Doing so, we have considerably reduced the complexity of the problem
and reduced the computational cost, nevertheless, there is a reduction in the performances of the
ranking decision function. This proposal is explained in depth in Section 2.4 and was published
in [Zapi 09].

The aforementioned problem in the ranking framework concerning the number of constraints
can impact the computation cost because the SVM algorithm expresses the ranking function as
a linear combination of the constraints. Another way to reduce the complexity is to express
the ranking function as a function of the samples instead of the constraints or using a sparsity
penalty to control the number of elements involved in the solution. We investigate in Section 2.5
the sparse ranking SVM where the loss function is a quadratic one and the regularizer is the
L1-norm penalty. Experimental results are provided and compared to the classical ranking SVM.

The regularization path algorithm that was analyzed, tracks the evolution of the learner ac-
cording to the training set. The same analysis can be carried out for a validation set. In Section
2.3 the validation path was developed, where it was shown that with high probability, if the
training and validation sets follow the same distribution, it is enough to keep the best solution
from the breakpoints given on the partition proposed by the regularization path on the learning
set and with high probability, it is not necessary to make a more refined search to find the deeper
partition proposed by the validation path. Nevertheless, if two breakpoints in the regularization
path are kept as optimal solution, the breakpoints given by the validation set can also be effi-
ciently calculated. This analysis brings a new insight in the properties of the regularization path
algorithms.

Up to now, we have considered that all the samples come accompanied with their labels. How-
ever, labeling can be very costly or not possible for all data. In the semi-supervised learning
framework, labels can be known for only a part of the dataset but not for the whole popula-
tion. This information even though uncomplete can still be used to help unraveling the hidden
information for the rest of the population and improve generalization capability of the learner
[Burg 05]. As for the ranking problem, a desired model would be the one that manages to have

6
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a satisfactory generalization ability by using only the essential points. In Section 3.1, we consider
the Laplacian SVM algorithm [Belk 06] to retrieve geometrical information from the unlabeled
data. As a result, this algorithm expresses the learned function with all available samples (labeled
or not). We conduct experiments showing that it is unnecessary to keep all the samples in the
final solution. From this remark, we propose a sparse version of the Laplacian SVM where
the necessary degree of sparsity is analyzed automatically via the computation of a regularization
path, simplifying the model search process. The main results of this algorithm were published in
[Gass 07c], [Gass 08b] and [Gass 08c].

Another way to exploit the unlabeled data is to use them to build an appropriate representation
of the data for supervised learning. The last part of this thesis deals with unsupervised learning.
Working on this kind of problem can aim at cluster discovering or dimensionality reduction. The
dimensionality reduction problem is approached by searching two objectives: elimination of super-
fluous information and preservation of the intrinsic relationships. That is, useless information has
to be discarded keeping the essential relationship between sampled data. Many of the implemented
algorithms consider a neighborhood graph. Unfortunately, if this graph is not properly built, the
results will be disappointing: local properties such as distance preserving will not be conserved in
the reduced space. Hence, efforts in Section 3.4 are focused in the proper neighborhood graph
construction by taking into account local properties and the manifold assumption. These prop-
erties include the Euclidean distance and the distance to the tangent at each point and are used
to create an appropriate neighborhood graph [Zapi 07]. The experimental results are compelling
compared to the existing graph correction algorithms.

This work is structured as follows: an introduction to all necessary concepts is given in Chap-
ter 1 and basic definitions are developed in the Appendixes. Especially emphasis is given to the
connection between the type of regularized problem solved usually in machine learning and the
constrained optimization. The links between notions of Pareto frontier and regularization paths
are also highlighted. The rest of the chapter reviews the SVM framework formulation, together
with the mathematical and optimization tools used to handle such an algorithm and the global
picture of model selection. Chapter 2 is dedicated to model selection for fully supervised learning
using the regularization path. This chapter exhibits our functional formulation and investigates
the validation path as well as path computation for ranking problems. Chapter 3 considers semi-
supervised and unsupervised learning and develops our contributions to model selection under
these frameworks. Finally, the thesis provides some concluding remarks and discusses some ex-
tensions.
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Résumé

L’objet principal de cette thèse est la sélection efficace de modèle dans le cadre de l’apprentissage
statistique. Les problèmes d’apprentissage statistique, en particulier les problèmes de reconnais-
sance de formes font appel à des données totalement ou faiblement étiquetées. L’élaboration de
modèles performants à partir de ces données procède en général de l’optimisation de critères an-
tagonistes. En effet, l’absence de connaissances sur les lois statistiques ayant généré les données et
l’impossibilité d’obtenir un nombre infini de données représentatives de ces lois amènent l’utilisateur
à faire appel à la minimisation structurelle de risques [Vapn 79]. Le cadre théorique maintenant
bien établi de l’apprentissage statistique [Vapn 79] stipule que les capacités de généralisation
d’un modèle sont liées à sa précision sur les données d’apprentissage et à sa complexité. Par
généralisation, nous entendons la capacité du modèle à prédire correctement les étiquettes des
données n’ayant pas servi à son réglage. Un modèle relativement complexe aura tendance à
s’adapter aux particularités des données d’apprentissage (notamment aux bruits) et généralisera
mal sur des données de test et vice versa. Se pose alors le problème du choix du critère de mesures
de la précision du modèle et la quantification de sa complexité. La précision est évaluée par
une fonction de coût alors que la complexité peut prendre la forme d’un terme de régularisation
[Schl 01]. En plus de ces choix, une question essentielle est la réalisation du compromis entre ces
critères antagonistes. Ce travail présente une manière efficace d’appréhender la réalisation de ce
compromis.

Pour illustrer nos propos, nous avons étudié dans un premier temps des problèmes de classi-
fication binaire en utilisant le formalisme des machines à vecteur support (SVM : Support Vec-
tor Machines) popularisées depuis les travaux initiaux de Boser et al. [Bose 92]. La fonction
de décision est un hyperplan linéaire ou non-linéaire dans l’espace des données. Dans le cadre
classique des SVM, la fonction de coût utilisée pour approximer la vraie erreur 0-1 (bonne ou
mauvaise classification) est le coût charnière (hinge loss). Cette fonction est convexe et linéaire
par morceaux. Pour mesurer la complexité du modèle, une autre fonction convexe représentée par
la norme quadratique du modèle est considérée. Pour résoudre le problème d’optimisation multi-
objectif, l’approche SVM minimise la combinaison linéaire de la fonction de coût et du terme de
régularisation via un paramètre de régularisation 0 ≤ λ <∞. La qualité du modèle final dépendra,
toutes choses égales par ailleurs, du choix optimal de ce paramètre. Il a été établi par Rosset et
al. [Ross 07b] que les paramètres de la fonction de décision varie de facon linéaire par morceaux
lorsque le paramètre λ change : on obtient alors le chemin de régularisation [Hast 04]. Ce faisant,
le choix de λ peut être automatisé car il est facile de déterminer l’évolution du modèle en fonction
de λ et de retenir le meilleur modèle en fonction d’un critère de sélection de modèle. De surcrôıt,
le calcul du chemin de régularisation a, en pratique, une complexité numérique légèrement plus
élevée que la résolution d’un SVM avec une seule valeur de λ.

Dans cette thèse, nous proposons une vue alternative des conditions nécessaires pour qu’un
algorithme d’apprentissage admette un chemin de régularisation linéaire par morceaux. Cette vue
présente un caractère plus général et repose sur des outils de dérivation fonctionnelle. De manière
similaire, une formulation alternative du chemin de régularisation pour les SVM a été proposée
par dérivation directe du problème d’optimisation des SVM via des outils d’analyse convexe (voir
Section 2.1). Le chemin de régularisation ne fournit pas seulement une méthode pour suivre effi-
cacement l’évolution du modèle sur les données d’apprentissage. Son formalisme peut être étendu
pour analyser le chemin de validation c’est-à-dire l’évolution de l’erreur de généralisation évaluée
comme la précision du modèle sur des données de validation. Ainsi, on peut efficacement suivre
les changements de l’erreur de validation en fonction du paramètre de régularisation. L’analyse
empirique du chemin de validation montre que si les ensembles d’apprentissage et de validation
sont statistiquement proches, avec une grande probabilité, l’évaluation de l’erreur de validation
aux points de changements (en apprentissage) de la variation linéaire du modèle est suffisante pour
réaliser une sélection pertinente de modèle. Cette analyse développée dans la Section 2.3 apporte
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Résumé du Travail

une nouvelle vision des propriétés du chemin de régularisation.
Dans un deuxième temps, nous avons étendu le formalisme du chemin de régularisation à des

problèmes d’ordonnancement (ranking problems) résolus avec des modèles de type SVM [Zapi 08b,
Zapi 08a]. Le calcul de l’ensemble des solutions est beaucoup plus rapide en utilisant le chemin
de régularisation que si le problème de programmation quadratique induit par le SVM est résolu
plusieurs fois pour différentes valeurs du paramètre de régularisation.

Pour accélérer l’algorithme, une réduction du nombre de contraintes participant au problème
d’ordonnancement est proposée en passant par une reformulation du graphe de contraintes (voir
Section 2.4). Si on considère un ensemble de n points, le nombre de contraintes peut être de l’ordre
O(n2). Le nombre de paramètres du problème de programmation quadratique étant du même or-
dre, les temps de calcul deviennent très rapidement prohibitifs pour des problèmes à grande échelle
même pour un chemin de régularisation. La proposition d’un nouveau graphe permet de réduire le
nombre de contraintes. Le principe de sa construction pour un problème d’ordonnancement avec
différents niveaux de pertinence consiste à regrouper les points d’apprentissage en fonction de
ces niveaux. Des contraintes d’ordonnancement horizontales (intra-niveaux) et verticales (inter-
niveaux) sont ensuite générées. A chaque niveau, un point dit maximal est choisi aléatoirement
et une relation d’ordre (supériorité) est imposée entre tous les points du niveau de pertinence
supérieur et ce maximum. Le graphe est finalement complété par des contraintes horizontales
en imposant des relations d’ordre entre le maximum de chaque niveau et tous les autres points
partageant ce niveau. Cette construction réduit considérablement le nombre de contraintes et par
conséquent les temps de calcul [Zapi 09]. Cependant, une légère réduction de la performance du
modèle a été également observée.

La réduction de la taille du modèle final n’est pas seulement importante à cause du temps
de calcul du temps, mais aussi parce que la taille du modèle optimal dépend du nombre de
contraintes. Une autre manière de réduire sa complexité est d’exprimer directement la fonc-
tion d’ordonnancement en fonction des points. Cette démarche s’inspirant de la décomposition
d’un signal sur un dictionnaire [Dono 03a] consiste à définir le modèle comme étant une com-
binaison linéaire de fonctions élémentaires (linéaires ou non-linéaires) définies en chaque point
d’apprentissage. Un sélection des fonctions élémentaires pertinentes est réalisée en adjoignant au
problème d’optimisation une contrainte de parcimonie définie comme la norme L1 du vecteur de
paramètres du modèle. Ce modèle a été appris avec une fonction de coût quadratique en utilisant
un chemin de régularisation linéaire par morceaux. Dans la Section 2.5, une description détaillée
de la formulation du chemin dans ce contexte et une comparaison empirique de ce nouveau modèle
d’ordonnancement avec le modèle classique de type SVM sont exposées.

Dans notre exposé, nous avons jusqu’à maintenant considéré que les données d’apprentissage
étaient toutes étiquetées. Cependant, dans certaines applications, il arrive que le coût d’étiquetage
des données soit important et qu’il faille élaborer le modèle à partir d’un faible nombre de données
avec étiquettes et un grand nombre de données sans étiquettes. Ce problème d’apprentissage dit
semi-supervisé peut être résolu en extrayant l’information sur la distribution statistique marginale
des données sans étiquettes et en intégrant cette information dans la résolution. Un autre type
d’information pouvant être pertinent à l’apprentissage semi-supervisé est la structure géométrique
sous-jacente des données. En effet si les données appartiennent à différentes classes pouvant être
décrites comme des variétés géométriques, il est pertinent d’utiliser des graphes de similarité pour
représenter cette structure. Le cadre flexible des algorithmes de type SVM permet d’intégrer
aisément ce type d’information. Ainsi nous avons étudié l’algorithme du Laplacien SVM [Belk 06]
qui inclut cette information de structure sous la forme d’une régularisation favorisant une variation
lisse et régulière de la fonction de décision le long des variétés. Un inconvénient de la solution
obtenue via cet algorithme est que le modèle a généralement autant de paramètres que de points
(avec ou sans étiquettes) et est donc peu parcimonieux. Dans la Section 3.1 une solution consistant
à ajouter une pénalisation supplémentaire de type L1 sur les paramètres du modèle est proposée
afin d’en réduire sa complexité. En se fondant sur les travaux de Wang [Wang 06b], un chemin
de régularisation est présenté permettant de calculer efficacement la solution. En parcourant le
chemin de régularisation, les paramètres du modèle varient linéairement par morceaux, ce qui
en fait un algorithme très efficace pouvant être couplé avec une procédure de validation croisée
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pour sélectionner le meilleur modèle. L’application sur des données simulées et réelles montre les
avantages d’un modèle parcimonieux où nous obtenons les mêmes niveaux de performance que le
Laplacien SVM en réduisant significativement la complexité du modèle final.

La dernière partie de ce travail, pouvant servir d’étape de pré-traitement pour les problèmes
d’apprentissage précédemment évoqués, concerne la réduction de dimension dans le cadre de
l’apprentissage non-supervisé. Cette réduction de dimension peut être utile à plusieurs égards
comme par exemple la visualisation des données, la réduction de la dimensionnalité du problème et
vise à projeter les données dans un espace de dimension réduite tout en préservant les informations
topologiques. Pour aborder cette problématique, nous nous sommes intéressés à des techniques
basées sur les graphes de similarité entre les points. Ce type de graphes comme dans l’algorithme
du Laplacien SVM sert à modéliser la proximité géométrique des points. En faisant l’hypothèse de
variétés formées par les points, l’objectif de la réduction de dimension est la préservation de cette
similarité après projection des points. Le souci majeur de ces techniques est qu’elles considèrent
un nombre fixe de voisins pour tous les points, en ignorant la densité locale autour de chaque
point. La conséquence est l’apparition de faux voisins et de raccourcis (shortcuts) dans le graphe
induisant une mauvaise modélisation de la topologie locale de la variété. Nous avons alors proposé
une procédure permettant d’éviter ces raccourcis [Zapi 07]. Elle est basée sur un choix adaptatif
du nombre de voisins. Elle part de l’hypothèse de régularité des variétés à modéliser et sup-
pose qu’en chaque point de la variété, la topologie locale peut être approximée par un hyperplan
(dans un espace euclidien) tangent à la variété. Les points voisins sont ceux situés à proximité de
l’hyperplan (c’est-à-dire ceux se trouvant à une distance inférieure à un certain seuil) et dans un
certain cône angulaire. De ce fait, différents nombres de voisins sont envisageables pour chaque
point d’apprentissage. L’évaluation empirique de la procédure montre une amélioration nette de
la qualité de la projection en termes de préservation de similarité entre points.

Le reste du document est structuré de la manière suivante : le chapitre 1 présente les principales
notions de l’apprentissage statistique et la manière classique d’appréhender le compromis optimal
à assurer entre complexité et précision du modèle. Nous avons ensuite établi une passerelle cette
formulation classique et l’optimisation multi-critères notamment la notion d’optimalité de Pareto.
Une vue générale des procédures utilisées dans la littérature pour la sélection de modèle est aussi
présentée. Dans le chapitre 1, le cadre des modèles de types SVM est développé ainsi que les
outils théoriques et algorithmiques utilisés pour déterminer ces modèles. Le chapitre 2 présente
l’arsenal théorique et algorithmique sous-tendant le calcul du chemin de régularisation pour la
classification et l’ordonnancement. L’analyse du chemin de validation ainsi que la comparaison
entre le graphe complet des contraintes d’ordonnancement et sa version réduite y sont développés.
Ce chapitre se termine par la dérivation du chemin de régularisation pour l’ordonnancement sous
la forme d’un développement parcimonieux sur un dictionnaire. Le dernier chapitre, chapitre 3,
aborde le problème d’apprentissage semi-supervisé et sa résolution via une version parcimonieuse
de l’algorithme du Laplacien SVM. La deuxième moitié de ce chapitre traite des méthodes de
réduction de dimension à base de graphes de similarité des données. Finalement, ce document se
conclut par quelques conclusions et perspectives.
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1 Background

Consider a machine which receives a set of inputs. These will be called the samples, input data or
points, and could correspond to an image on the retina, pixels in a camera or a sound waveform.
It could also correspond to less obviously sensory data, for example the words in a news story, the
list of items in a supermarket shopping basket or a taken survey. All this data can be reduced to
{x1,x2, ...,xn} ⊂ X , representing an image, a sound wave, or a word, etc.
Having a set representing the same kind of data, this data might be grouped according to particular
characteristics. The corresponding group will be named the label or class which can be known or
not. The label that corresponds to sample i, xi will be denoted yi. The aim is to build a decision
function f able to distinguish which label corresponds to each sample. This decision function is
the classifier or learner .
In general, the goal of statistical learning is to learn the decision function from the knowledge
of some samples xi and yi with the intent to perform as well on the unseen data as on the seen
data. It is well known in the literature that without a clever design, one can build a complex
decision function able to explain in depth the seen data (even the noisy data or outliers) and
which fails to predict correctly the appropriate labels of the unseen samples. This phenomenon is
known as overfitting . The paradigm employed to tackle this issue in statistical learning consists
in balancing at least two antagonist criteria: the adequacy to the learning data and the control of
complexity. This control of complexity avoids minimizing only the given error in seen data, leading
hopefully to a better generalization of the learned model for new data. The topic of this chapter
is to provide some efficient tools to help the neophyte user to achieve the aforementioned trade-
off in the particular context of Support Vector Machines (SVM) [Schl 01]. The SVM algorithms
were broadly studied these twelve last years and had shown satisfactory state of the art results in
most applications. They are based as well on a strong and sound mathematical theory and many
numerical tools were developed to address the practical resolution of the optimization problem.
This chapter aims at settling the background of the used tools and is divided as follows: Section 1.1
introduces the learning problem and relates it to a multiple objective optimization. This part also
introduces the notion of hypothesis space in which the decision function is sought. In particular,
we will consider in Section 1.1.2 the kernel space used in SVM to extend the linear algorithms to
nonlinear case. The notions of model adequacy (loss) and complexity (regularizer) are described
together with the regularization path which is the way the trade-off behaves, deriving a link
with the optimal Pareto frontier. This approach induces the problem of model selection which
is studied in Section 1.2, where the different techniques of selecting a model are exposed and a
brief analysis is summarized. The learning paradigm is illustrated in Section 1.3 on two particular
cases: classification and ranking. Section 1.4 provides basic mathematical tools to address such
a formulation. Optimality conditions to decide if a solution has been found are revised in this
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1.1 Statistical Learning Overview

section. It will be shown in Section 1.5 that the handled problems can be embedded into a standard
quadratic optimization problem thanks to duality. The chapter ends with a review of the most
used methods to solve quadratic problems.

1.1. Statistical Learning Overview

We will be dealing with a general setting called a learning problem , where sets X ,Y are consid-
ered and an unknown fixed joint probability measure P(x, y),x ∈ X , y ∈ Y is defined over X ×Y.
We are particularly interested in the conditional probability P(y|x) since the aim is to be able to
build an algorithm, called the learner. This last will take samples S ⊂ X ×Y to learn the relation
between points and labels to predict the appropriate label y for an observed x, even though, this
point has not been seen before by the learner.
Several methods have already been developed to realize supervised learning. These include neural
networks, regression methods, boosting, etc. (see [Hast 01] for an overview). In this work, we will
be focused on the support vector machines framework.
Support Vector Machines (SVM) [Vapn 99, Bose 92] are learning methods originally designed for
binary classification and regression. Its flexible framework makes them applicable to different
kind of learning problems. They possess several advantages as they have proved to have high
generalization ability, they are based on solid mathematical principles, and the training time has
been improved with efficient algorithms. However, as any other model, the generalization ability
depends on the chosen parameters, that is, efficient model selection has to be done in order to
obtain satisfactory results.
Hereafter, we develop the framework of statistical learning and the induced trade-off between
approximation quality and complexity control which is the basis of the SVM.

1.1.1 Overview: Learning as a Multi-criteria optimization problem

The pursued objective is the design of a decision function f ∈ H under a known space H of
functions f : X → Y that best predicts y from x according to the given probability. The space
H will be called the hypothesis space The hope is that H is dense enough to include the best
model according to P.
In order to find the most appropriate function and evaluate its quality, a loss function will be
given:

ℓ : H×X × Y → R
+ ∪ {0}

that will measure the discrepancy between the predicted value f(x) and the ground truth given
by the space {(x, y)|x ∈ X , y ∈ Y}.
Then, from a statistical point of view, the searched function would be the one that minimizes ℓ
over the space H×X × Y according to its probability measure. This is equivalent to minimizing
its expectation with respect to P(x, y), that is, the searched function is the one that solves:

argmin
f∈H

IEX×Y [ℓ(f,x, y)] = argmin
f∈H

∫

X×Y

ℓ(f,x,y)P(dx, dy) (1.1)

The term IEX×Y [ℓ(f,x, y)] is called the expected risk [Vapn 82].
Since the joint distribution P(x, y) is unknown and in reality it is only possible to partially ob-
serve the domain X × Y, the function f will be determined by using only a sample set S =
{(xi, yi)}i=[[n]] ⊂ X × Y which is assumed to be drawn i.i.d. according to P(x, y). Let SX =
{xi}i=[[n]] and SY = {yi}i=[[n]], where [[n]] = 1, 2, ..., n. Then the expected risk will be approxi-
mated with:

L(f, S) =
1

n

n∑

i=1

ℓ(f,xi, yi),

12
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L(f, S) is called the empirical risk . The usefulness of this formulation lies in the fact that this
is a consistent estimator , that is, the empirical risk converges in probability to the searched
expectation in Equation (1.1), where the unknow probability P(x, y) is being approximated using
the seen data S. This way of choosing a decision function is called the empirical risk minimization
(ERM ) method [Vapn 99].
The goal of the learner is to find a model that correctly predicts the corresponding label given a
new input even though this has never been seen by the classifier. This is called the generalization
ability .
Nevertheless, since only a finite sample of the space X is seen, to minimize this criterion, we would
only need a complete hypothesis space where one of the functions can perfectly adjust itself to a
finite sample set. This function will then minimize the empirical risk, possibly resulting in a zero
loss, but it will not guarantee to efficiently predict unseen samples. This phenomenon is known
as overfitting .
In general, the complexity of this function increases as it fits more precisely the sample set. This
complexity can be measured by various ways. For instance, the VC dimension was proposed by
Vapnik and Chervonenkis [Vapn 79] a complexity index of a class of functions. In a more empirical
way, the complexity can be related to the norm L2 or to the number of parameters or variables
involved in the model. This concept will be included in the problem as additional criterion to
avoid overfitting. This function is denominated penalization or regularization function . In
the sequel, we will denote the penalization of f by the term Ω(f) defined as:

Ω : H → R
+ ∪ {0}.

The inclusion of a penalization in the minimization problem will lead to a strongly consistent
method (see [Vapn 99] for more details) for choosing a decision function. This will form a multi
objective problem: we aim at minimizing the loss function and in parallel controlling the com-
plexity of f , that is, a compromise between simplicity and data fitting. These two objectives are
in general opposite to each other as a simple model might not be able to express the complete
relationship in the data as there might be missing explanatory variables or noise while a very
complex model might risk to overfit the data. The stated problem is written as a trade-off of these
two objectives, which is regulated by a parameter λ.
The type of problems we are interested in solving will have the form of a Parametric Program-
ming , which are about to be discussed in Subsection 1.1.5 under the setting of a multi-criteria
optimization. Such a problem will look as follows:

Problem 1.1 (Multi-criteria optimization Problem). Each criteria is balanced by a weigh λ as
follows:

f̂λ = argmin
f∈H

L(f, S) + λΩ(f)

where λ is a non-negative parameter that must be set by the user aiming at designing a learning
function that performs well on the training sample set S and the unseen data as well. The example
in Figure 1.1 illustrates how the trade-off influences the obtained solution. The aim in this example
is to be able to find a decision function that keeps in one side all triangles and on the other side
all circles. In Figure 1.1(b), λ in Problem (1.1) is very large and penalizes the complexity of
the function. The obtained function will suffer from underfitting, that is, the output is then a
very simple decision function that will have neither a satisfactory generalization ability nor a low
number of observed errors in the training set. The opposite case is when more weight is given to
the loss function, the decision function is rather complex and overfitting is produced as in Figure
1.1(c). Finally, if the appropriate value for parameter λ is found, we would obtain a solution like
in Figure 1.1(d), where the compromise between complexity and accuracy is reached.
The possibility to attain this compromise will depend in the chosen hypothesis space which needs
to be complete and in the chosen trade-off parameter. This will be translated in the possibility to
obtain also an optimal solution of Problem 1.1 for all λ. In addition, this space must be able to
provide a stable solution in the sense that a small change in S will induce a small change in f .
The study of kernel spaces in the following section will show that they form a suitable option.
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Figure 1.1: Illustrations of the trade-off between the loss and regularization functions. The red
line defines the decision frontier between the two classes.

Given λ, an optimal solution can be found for the multi-criteria optimization problem. The
consequences of this parameter change on f is the main interest of this dissertation.

There exists several theoretical frameworks that propose parametric programming which include
statistical analysis [Vapn 99], regularization [Pogg 89], model selection [Mass 07], and Bayesian
posterior maximization [Hast 01]. They all consist in an objective function that results from the
combination of two measures: the data adjustment and the hypothesis regularity or complexity.

Economists have also studied these kinds of problems with convex objective functions, noting
that a set of optimal solutions can be found where each solution corresponds to the result of a
multi-objective optimization problem solved with a particular trade-off parameter. This set of
optimal solutions is called the Pareto optimal set or Pareto frontier [Bi 03a, Bi 03b, Pare 97].
By definition, Pareto solutions are considered optimal because there are no better solutions in
terms of all objectives functions [Steu 86, Bele 99, Miet 99]. In the statistical learning field, this
set of optimal solutions is called the regularization path [Hast 04].

This connection between the Pareto frontier and the regularization path helps to understand and
study derived properties that will be useful to efficiently track the evolution of the decision function
in Problem 1.1 as λ changes. It will also clarify why piecewise linear paths are computed and the
advantage of it. We will show that convexity of L and Ω and their piecewise linear or quadratic
characteristics in the case of support vector machines play a central role in the derivation of the
problem solution.
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1.1.2 Hypothesis space induced by a kernel

Each element in the settled Problem 1.1 has an influence in the obtained result. In this section we
will put particular interest in the kind of hypothesis space H the decision function belongs to. As
it was mentioned, we need a complete and stable hypothesis space. It will be seen that the space
produced by kernel functions possesses many convenient characteristics that make them a good
choice of search space. Before delving into these characteristics, some notions of kernels must be
defined.
Several loss functions are based on similarity measures between samples such as the inner product
〈x, z〉 = x⊤z for some x, z ∈ R

D, D ∈ N that can be seen as a similarity measure between
real vectors. Another more powerful similarity measure known as kernel will be introduced here,
which will allow us to extend linear methods to larger and more complex spaces. Hence, the
kernel function can be seen as a generalization of the similarity measure to objects which can not
be necessary real vectors. Indeed, the kernel functions can be engineered for a large number of
structures as graphics, texts, proteins, documents, etc. [Shaw 04].

Definition 1.2 (Kernel [Aron 50]). Let X be a set, then a kernel k is a function of two variables
from X × X → R.

For convenience, we will deal with symmetric kernels, that is, we will suppose that k(x,y) =
k(y,x) for all x,y ∈ X .

Kernel Functions

A particularly desired property on a kernel is its positiveness, the space generated by positive
kernel has been already studied by Mercer [Merc 09] who showed that these functions can be
indeed seen as a similarity measure.
The kernel function for a finite set of samples SX = {xi}i=[[n]],xi ∈ X can be represented as a
matrix K ∈ R

n×n (called the Gram matrix ) with entries Kij = k(xi,xj). This kind of induced
Gram matrices by positive kernels were already studied by Moore [Moor 16]. All results were later
summarized by Aronszajn [Aron 50] after the second world war.

Definition 1.3 (Semi-Positive Definite Kernel (p.d. kernel)). A kernel k is said to be a semi-
positive definite kernel if for any positive integer n:

n∑

i=1

n∑

j=1

αiαjk(xi,xj) ≥ 0 for all {αi}i=[[n]] ∈ R, {xi}i=[[n]] ∈ X . (1.2)

Definition 1.4 (Positive Definite Kernel). A kernel k is said to be a positive definite kernel if
for any positive finite integer n, for all {xi}i=[[n]]xi ∈ X and for all {αi}i=[[n]]αi ∈ R with at least
one αi 6= 0:

n∑

i=1

n∑

j=1

αiαjk(xi,xj) > 0. (1.3)

The positive definiteness of a kernel k(x,y) over samples SX can be tested by checking if the
resulting eigenvalues of matrix K are strictly positive, that is, if for all vi ∈ R

n such that Kvi =
λivi, λi > 0, i = [[n]]. The Gram matrix provides also the pairwise comparison between samples
SX and we will see that it can be easily embedded in the learning algorithms.
Some examples of commonly used kernels with their properties for X = R

D are listed below.

Homogeneous kernel Also known as linear kernel , defined as: k(xi,xj) = 〈xi,xj〉 = x⊤
i xj

for all xi,xj ∈ R
D. As the inner product is symmetric, we can see that it is a positive kernel

because:

n∑

i=1

n∑

j=1

αiαjk(xi,xj) =

n∑

i=1

n∑

j=1

αiαjx
⊤
i xj =

(
n∑

i=1

αixi

)⊤



n∑

j=1

αjxj


 =

∥∥∥∥∥

n∑

i=1

αixi

∥∥∥∥∥

2

≥ 0.
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Polynomial kernel For two samples xi,xj ∈ R
D, the polynomial kernel with parameter d ∈ N

is defined as:

k(xi,xj) = (〈xi,xj〉+ b)d.

The symmetry and positiveness of this kernel follows directly from the homogeneous kernel
properties.

Gaussian kernel The Gaussian kernel [Bara 93, Jone 95], is a radial basis function (RBF). It is
based on the Gaussian probability distribution, where parameter σ ∈ R would represent the
square root of the variance. This form is also used in signal processing where parameter σ
determines the bandwidth of the applied filter. It is defined as:

k(xi,xj) = exp

(
−
‖xi − xj‖

2

2σ2

)
.

This is a symmetric positive definite kernel, and it is illustrated in Figure 1.2.
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Figure 1.2: Example of the Gaussian kernel applied to all xi ∈ R with xj = 0 and σ = 0.5.

Rational quadratic kernel This kernel has experimentally proved that it provides as satisfac-
tory results as the Gaussian Kernel [Kocs 04]. It was analyzed by Genton [Gent 02] and has
the following form:

k(xi,xj) =
t

t+ ‖xi − xj‖2
.

Sigmoidal kernel This is not a positive kernel in general but it was inspired by the neural net-
works [Luss 08, Liu 08] and has been largely discussed [Schl 97, Sell 99, Guo 05, Haas 05,
Lin 03]. There are two formulations of this kernel, the first one uses the hyperbolic formu-
lation:

k(xi,xj) = tanh(κ〈xi,xj〉+ θ),

parameter θ controls the center of the function, while parameter κ controls the slope. This

is an approximation of the sign function: sign(x) =

{
−1 if x < 0
1 if x > 0

, and the advantage

of the sigmoid function compared to this one is its continuity and differentiability with the
limit case κ =∞ corresponding to the sign function.

The other formulation is the exponential formulation:

k(xi,xj) =
1

1 + e−‖xi−xj‖

which can be seen as an approximation of the Heaviside function (or zero-one error function)
[Abra 74]

Γ(x) =

{
0 if x ≤ 0
1 if x > 0

.
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The Gaussian function proposed by Boser, Guyon and Vapnik [Bose 92], [Guyo 93] and [Vapn 99]
is usually one of the first choices in most applications.
All additional parameters in kernel definitions (usually called hyperparameters) are user deter-
mined, that is, these have to be a priori chosen, but there are several new works that intend to
automatically find the best hyperparameters [Keer 07, Wang 06b, Bach 05].
We will be interested in positive definite kernels since it will be seen that these result in very
nice hypothesis spaces. There are several kinds of positive kernels and an extended summary
can be consulted in the work of Genton [Gent 02]. Even though there exists several other non-
positive kernels with interesting properties, [Ong 04, Lin 03] they will not be further treated in
this document.
Since kernels will help us to define a space of searched functions, the first question about these
objects concerns the properties owned by the generated space.

Theorem 1.5 (Closure properties). Let k1 and k2 be two kernels over X × X , a ∈ R
+, and f

a real value function on X , φ : R → R a polynomial with positive coefficients and ψ : X → X .
Then, the following functions are p.d. kernels for x, z ∈ X :

i) k(x, z) = k1(x, z) + k2(x, z),

ii) k(x, z) = ak1(x, z),

iii) k(x, z) = k1(x, z)k2(x, z),

iv) k(x, z) = f(x)f(z),
The proof of i)− iv) properties can be found in [Shaw 04, Cato 07].

v) k(x, z) = φ(k1(x, z)) is a p.d. kernel.
Proof sketch: as φ(·) is a polynomial, this result can be proved by induction using properties
iii) and ii).

vi) k(x, z) = k1(ψ(x), ψ(z))
Proof: Since k1 is a p.d. kernel over X and since the image ψ(x) of any point x ∈ X belongs
as well to X , the positive definiteness follows obviously.

It can be seen that in fact if it is possible to find some positive definite kernels, an infinite number
of them can be derived and they form a closed convex cone. These results lead to the conclusion
that an infinite number of kernels can be generated and these kernels belong to a generated close
space over a field.
For any x ∈ X , and for a fixed set {xi} ∈ X , i = [[mf ]], with mf a natural number, a linear
combination of the form f(x) =

∑mf

i=1 αik(x,xi) defines a function f : X → R. Let H be the space
of these functions: H = {f(x) : f(x) =

∑mf

i=1 αik(x,xi), αi ∈ R,mf ∈ N,k(x,xi) : X × X → R}.
Using the closure properties of the kernel functions, we know that the addition and multiplication
of this kind of functions result in another function belonging to the same space. If the induced
space by the previous functions is taken as the hypothesis space, a distance is needed to test
consistency and stability. The following inner product will induce a norm between this kind of
functions.

Definition 1.6 (Kernel inner product). If f, g ∈ H with f(x) =
∑mf

i=1 αik(x, zi) and g(x) =∑mg

i=1 βik(x,yi) with mf ,mg ∈ N,x,yj , ziX , αi, βj ∈ R, i = [[mf ]], j = [[mg]]. A bilinear form
called an inner product under H will be defined as follow:

〈f, g〉H =

mf∑

i=1

mg∑

j=1

αiβjk(zi,yj) (1.4)

For simplicity, this inner product can also be denoted 〈f, g〉H = 〈f, g〉.
The next interest of the kernels lies on the fact that a function f issued from a linear combination
of these kernels can be reproduced by the aforementioned inner product. The interesting part of
this particularity of the positive kernels is that it will help us to calculate functional derivatives.
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1.1 Statistical Learning Overview

Definition 1.7 (Reproducing Property). Let H be a class of functions defined over X , H forming
a Hilbert space with inner product 〈·, ·〉H. The function k(x,y),x,y ∈ X is called a reproducing
kernel [Aron 50] or is said to possess the reproducing property in H if

1. For every x ∈ X , k(x, ·) is a function that belongs to H.

2. The reproducing property holds for every x ∈ X and every f ∈ H:

f(x) = 〈f(·),k(x, ·)〉H

Definition 1.8 (Reproducing kernel Hilbert space (RKHS)). A Hilbert space H embedded with
the inner product 〈·, ·〉H is said to have with reproducing kernel if it exists a positive kernel k with
the reproducing property over the elements in H.

Taking advantage of the p.d. kernel’s properties, the hypothesis space H that will be used is built
based on them. Let k be a p.d. kernel and let a hypothesis space H0 be defined as:

H0 = {f |f(x) =

m∑

i=1

αik(x, zi), with m <∞,x, zi ∈ X , αi ∈ R, i = [[m]]}.

It can be verified that the inner product defined in Equation (1.4) induces a norm with the form
‖f‖2H = 〈f, f〉H. This norm will measure the complexity of function f , inducing a measure of
overfitting.
Finally, the searched space will be the closure of H0 [Aron 50] noted:

H = H0.

This turns out to be a Hilbert space with a reproducing kernel, therefore, the hypothesis space we
will use is a RKHS.
The hypothesis space built based on kernel functions forms a rich family of functions. Intuitively,
when choosing a decision function f1 as a sufficient expansion over the kernel function evaluated
at xi, one can achieve a perfect fitting of the outputs yi. If the complexity of f1 is measured by
any non-negative function of its norm ‖f1‖H and we are able to find another function f2 ∈ H with
reduced complexity, the question is then how does this function perform on the training data and
how will both functions perform on unseen samples.
In the next section, we review some usual loss functions according to the type of solved problems
(classification or ranking) and common penalization functions as well. Although, the representer
theorem (see Theorem 1.9) suggests the use of the norm of f as complexity measure, other kinds
of measures can be proposed depending on the point of view adopted for f . Indeed, the measure
can consist in taking a non negative penalty on the coefficients of the expansion of the decision
function as described in Subsection 1.1.4.

Theorem 1.9 (Nonparametric Representer Theorem [Scho 01]). Suppose we are given a positive
definite real-valued kernel k on X × X , a training set S = {(x1, y1), . . . , (xn, yn)},xi ∈ X , yi ∈
R, i = [[n]], a strictly monotonically increasing real-valued function g on [0,∞), an arbitrary cost
function L : H× S → R ∪ {∞}, and a class of functions

F = {f ∈ H|f(·) =

∞∑

i=1

βik(·, zi), βi ∈ R, zi ∈ X , ‖f‖H <∞}.

Here, ‖ · ‖H is the norm in the RKHS H associated to k. Then any function f ∈ F minimizing
the regularized risk functional

L(f, S) + g(‖f‖H)

admits a representation of the form

f(·) =

n∑

i=1

αik(·,xi).
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1.1.3 Accuracy criteria: Loss function

An analysis of loss functions was already started in Section 1.1.1, in this section, we are inter-
ested in the different characteristics that form groups of them [Gass 07b], several properties and
convergence characteristics have been studied [Bart 06, Stei 07, Rosa 04].

Definition 1.10 (Loss Function). Let f ∈ H be a decision function. A function ℓ : H×X ×Y →
[0,∞) with the property infX×Y {ℓ(f,x, y)} ≥ 0 for all f ∈ H is called a loss function.

These functions play a key role in machine learning and measure the cost of applying the decision
function f at the point (x, y). In general, we are interested in methods that output a function f
with small average cost like the ERM introduced in Section 1.1.1.
It is required that the loss function be non-negative. This will mean that the efficiency of a decision
function f will not be rewarded by doing a particularly good prediction while poorly performing
in the rest of the samples.
It has to be noticed that the loss function is not always the objective function as it can be
algorithmically infeasible.
There exists several loss functions tailored for the type of learning problem one intends to address.
Most learning problems are classification and regression (in the former case, the output to be
predicted is a discrete natural or relative value while in the latter case, the target spreads over R).
Hence, we will hereafter focus on the loss related to these problems. Most commonly used loss
functions for a binary classification problem with samples {(xi, yi)}i=[[n]], yi ∈ {−1, 1} are listed
below:

Misclassification error or (0-1)-loss. Consists on counting the misclassified examples, assign-
ing 1 if an example is wrongly classified and 0 otherwise. It is a non-convex and a non-
differentiable loss function:

ℓ(f,x, y) =

{
0 if y = f(x)
1 otherwise

.

Linex (Asymmetric) loss. One of these kinds of losses for which it is possible to solve analyt-
ically for the optimal predictor [Chri 97] is the linex loss:

ℓ(f,x, y) = b
(
ea(yf(x)) − a(yf(x))− 1

)
,

with a ∈ R \ {0}, b ∈ R
+. For classification usage, it is named so because when a > 0, loss is

approximately linear to the left of the origin and approximately exponential to the right, and
conversely when a < 0, it will give a larger cost to the errors made. This loss is illustrated
in Figure 1.3(a) and it is differentiable and convex.

Log-barrier loss. The log barrier loss assigns an infinite penalty for residuals y − f(x) larger

than c. The log barrier function is very close to the quadratic penalty for |y−f(x)
c | ≥ 0.25.

It arises in control theory and has several names [Boyd 91, Boyd 04]. With limit c > 0, it
has the form:

ℓ(f,x, y) =

{
−c2 log

(
1− (y−f(x))2

c2

)
if |y − f(x)| < c

0 if |y − f(x)| ≥ c
.

Input-dependent loss. This kind of loss functions depend on another function ℓ̃ which accounts
for input-dependence.

ℓ(f,x, y) =

{
0 if y = f(x)

ℓ̃(f,x, y) otherwise
.

The (0-1)-loss is a special case of this kind of functions that can equivalently be expressed
as:

ℓ(f,x, y) =
|sign(f(x))− y|

2
.
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1.1 Statistical Learning Overview

Soft margin loss (Hinge loss). In this case, a confidence on the prediction can be included and
depends on the product yf(x) to assess the quality of the estimate. It is defined as:

ℓ(f,x, y) = (1− yf(x))+ = max{0, 1− yf(x)}. (1.5)

In some cases, to make this function easier to minimize, the square version is used:

ℓ(f,x, y) = max{0, 1− yf(x)}2.

These loss functions are illustrated in Figure 1.3(b).

Logistic loss. This is a convex differentiable loss, which can be used to associate probabilities of
belonging to a particular class: ℓ(f,x, y) = log

(
1 + exp−yf(x)

)
.

Upper bounds for the (0-1)-loss. Several of the aforementioned loss functions are in fact what
is called a surrogate loss function of the (0-1)-loss function, that is, a convex upper bound
for the (0-1) loss. There exists other continuous differentiable examples like the exponential
loss: ℓ(f,x, y) = exp(−yf(x)), and also non-convex ones like the sigmoid loss function:
ℓ(f,x, y) = 1− tanh(yf(x)) which are an upper bound of the (0-1)-loss, see Figure 1.3(c).
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Figure 1.3: Classification loss functions, the horizontal axis indicates the value of yf(x) while the
vertical axis is the output value for the loss function.

The following table makes a summary about the characteristics of the previous loss functions for
classification

Differentiable Singular

Convex

Square hinge loss
Linex loss

Logistic loss
Square hinge loss

Hinge loss

Non-convex Sigmoid loss
0-1 loss

Log-barrier loss

Table 1.1: Summary of classification losses properties.

In addition to the loss functions for classification, there are several ones for the regression case
which is a learning problem defined with Y = R. The most common loss functions are:

Square loss. Defined as: ℓ(f,x, y) = (f(x) − y)2, resulting in a convex and differentiable loss,
illustrated in Figure 1.4(a).

Linlin (Asymmetric) loss. An asymmetric loss function for the regression case is the linlin
[Chri 97] (Figure 1.4(b)):

ℓ(f,x, y) =

{
a|y − f(x)| if y − f(x) > 0
b|y − f(x)| otherwise

.
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ε-insensitive. The ε-insensitive loss proposed by Vapnik allows errors in the approximating func-
tion without actual increase in loss. This was introduced in the support vector machines:
ℓ(f,x, y) = max

{
0, |f(x) − y| − ε

}
, together with its quadratic analogous [Loog 04] which

are both convex and the first one not differentiable.

Cauchy loss. Also useful for outliers detection : ℓ(f,x, y) = log(1 + (f(x) − y)2) [Stew 03],
resulting in a non-convex differentiable regression loss, as can be seen in Figure 1.4(c).
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Figure 1.4: Regression loss functions, the horizontal axis indicates the value of y− f(x) while the
vertical axis is the output value for the loss function.

Differentiable Singular

Convex Square loss
Linlin loss

ǫ-insensitive loss
Non-convex Cauchy loss Lp square root

Table 1.2: Summary of regression loss functions properties.

All these functions can be plugged into the empirical risk minimization setup. The characteristic
of the loss function will help to determine which resolution method is suitable. The advantage
of the use of a convex function is that it will guarantee that an efficient learning algorithm will
output a global minimum, while the interest of a non-differentiable loss lies on the fact that it
opens the possibility to reach sparse solutions.

1.1.4 Complexity criteria: Regularization function

The objective function of Problem 1.1 is composed of a regularization function and a loss function.
Particularly, the first one aims at measuring the complexity or regularity of the model.
There exists several ways of measuring the complexity of a function, again the convexity and
differentiability plays an important role in the resolution algorithm choice.
In the case that f ∈ H with H a RKHS, owing to the representer theorem the decision function

can be written as follows: f(x) =
m∑

i=1

αik(x,xi) and the complexity can be measured by a norm.

Let matrix K with Kij = k(xi,xj), i, j = [[m]] be the Gram matrix, the most used regularization
functions Ω are listed below:

• L2
H norm: Ω(f) = ‖f‖2H = α⊤Kα is a differentiable convex function.

However, the decision function f can be viewed as an expansion over a basis {k(xi, ·)}. Therefore,
one can intend to address the complexity of f by considering some penalizations over the coeffi-
cients of the decomposition. This leads, for instance, to the following regularizers that are usually
considered in signal processing community [Chen 98].
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• L2
2 norm: Ω(f) = α⊤α is the L2-norm in the case that the decision function f is considered

as a linear combination of elements of a dictionary of functions (see Figure 1.5 for illustration
of this regularizer).

• L1 norm: Ω(f) =
m∑

i=1

|αi|, useful to measure the sparsity of a decision function. It is a

convex but non-differentiable regularizer and is illustrated in Figure 1.5. This regularization
function coupled with the square loss is well known in the signal processing community
[Dono 03a] and in the statistical community as the lasso problem [Tibs 96].

• Bridge penalty (Lq
q) [Fu 00]: defined for a full-rank matrix M such that Ω(f) =

m∑
i=1

|βi|
q

with β = M⊤α. This penalty is also called Lq norm with Ω(f) =
( m∑

i=1

|βi|
q
)1/q

. This

penalty corresponds to a general setting including the L2
2 and L1 regularizer. It is not convex

and non differentiable if q < 1. This norm with q = 1
2 and M the identity matrix is depicted

in Figure 1.5.

• L∞ norm: Ω(f) = maxi{|αi|} (all vector in R
2 with supremum norm equal to 1 can be seen

in Figure 1.5).

• L0 norm: this norm counts the number of active variables: Ω(f) =
∑

i=[[m]]
αi 6=0

1.

• Sum of component wise penalizations: Except the case of L2
H a Bridge, all the previous

regularization terms can be cast as the sum of component-wise penalties. If ρ : R → R
+ is

a penalty function, then, a global penalty can be built by letting: Ω(f) =
m∑

i=1

ρ(αi).

• Sum of group-wise penalizations: instead of being component-wise, the penalization is
defined as:

Ω(f) =
∑

j

ρ(‖αj‖)

where ‖ · ‖ represents any norm and the vectors αj are any (overlapping or not) subset of
α.

Some properties of these regularizers can be mentioned:

• The L2 norm tends to advantage nicely smoothed decision functions.

• The Lq norm with q > 2 exhibits also such kind of behavior. For q = ∞, it forces the
parameters to have similar value.

• When the sparsity is concerned, the L1 norm, the Lq (q < 1) pseudo norm are appealing.
The extreme case of Lq penalization is the L0 but the latter leads to a combinatorial problem
to be solved.

An extended study of the univariate case can be consulted in [Anto 09].

1.1.5 Multi-criteria Optimization

The aim in this section is to review the different settings involving a loss function and a regular-
ization function.
A multi-objective optimization problem is formalized as:

min
f∈H





L(f, S)
and

Ω(f)
also denoted min

f∈H
{L(f, S),Ω(f)} (1.6)
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where SX is the set of sample features with corresponding labels in SY . In this case, making
some abuse of notation, we will denote, L(f, S) the empirical risk measure on sample (SX , SY ).
This formulation sets a conflict in the goal because both objective functions cannot be at their
minimum at the same point, which is the case in learning problems. In this situation, a certain
trade-off has to be achieved. An elegant way to represent this trade-off is the Pareto frontier.

Pareto Frontier

As in the previous sections, the analysis relies on the relationship between hypothesis f and its
associated objective functions L(f, S) and Ω(f) defined for a given sample. The feasible objective
set is the set of couples

(
L(f, S),Ω(f)

)
obtained for all f ∈ H. Using this set, elements of H can

partially be ordered according to Pareto dominance, a notion defined hereafter [Boyd 04].

Definition 1.11 (Pareto dominance). For a given sample S, a hypothesis f ∈ H dominates a
hypothesis g ∈ H in the sense of Pareto when L(f, S) < L(g, S) and Ω(f) < Ω(g).

This definition can be generalized to more than two objective functions. From this definition, a
notion of optimality can be defined: it is called the Pareto frontier .
There are two ways of defining the Pareto optimal set depending on the optimality highlighted.

Definition 1.12 (Pareto optimal solution). A hypothesis f ∈ H is said to be a Pareto opti-
mal solution in L if there exists a non-negative scalar C such that Ω(f) ≤ C and L(f, S) ≤
L(g, S) ∀g ∈ H holding Ω(g) ≤ C.
Analogously, a hypothesis f ∈ H is said to be a Pareto optimal solution in Ω if there exists a
non-negative scalar C ′ such that L(f, S) ≤ C ′ and Ω(f) ≤ Ω(g) ∀g ∈ H holding L(g, S) ≤ C ′.

We will be interested in the set of solutions that are given when varying parameter C and the
solutions cannot be compared between themselves in terms of joint minimization.

Definition 1.13 (Pareto frontier). The Pareto frontier (also called Pareto’s optimal trade-off
curve) of objective functions L and Ω is the set of optimal values

(
L(f, S),Ω(f)

)
obtained for all

Pareto optimal solutions f .
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1.1 Statistical Learning Overview

The Pareto frontier is a part of the hull of the feasible objective set. An example of a Pareto
frontier and Pareto dominance is given in Figure 1.6. Its is worth mentioning that Pareto frontier
is a convex curve if L and Ω are both convex functions. It looks reasonable to assume the solution
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Figure 1.6: Pareto Dominance and Pareto frontier. In the case of a square loss function and a
quadratic norm, any point in the blue area is less desirable than any of the points lying in the red
curve.

of the learning problem is Pareto optimal. The interest of this concept lies on the fact that the
calculation of the regularization path will gives us exactly this frontier. Before analyzing under
which conditions the equivalence between the regularization and Pareto frontier holds, let focus
on the different formulations of the multi-objective minimization.

Ivanov, Morozov and Tikhonov’s regularization

If the Pareto frontier is to be calculated, there are two formulations of the multi-criteria problem
to do it. Sometimes they are referred as Ivanov (I) [Ivan 76] or Morozov [Moro 84] (M)
regularization, respectively:

(I) :

{
min
f∈H

L(f, S)

s.t. Ω(f) ≤ C
(M) :

{
min
f∈H

Ω(f)

s.t. L(f, S) ≤ C ′.

The Ivanov formulation corresponds to the Pareto optimal solution in L. The Morozov one
corresponds to the Pareto optimal solution in Ω.

When C varies, the solution of problem (I) move along the Pareto frontier. Similarly, when C ′

varies, the solution of problem (M) will also move along the frontier. This set of solutions is called
the regularization path.

Definition 1.14 (Regularization path (I and M)). The regularization path of problem (I)
(respectively (M)) is the set of obtained solutions when varying C (respectively C ′).

There is another popular way of mixing objective functions known as Tikhonov regularization
(T ) [Tikh 79] defined as follows:

(T ) : min
f∈H

L(f, S) + λ Ω(f) (1.7)

for some λ ∈ R
+. A global optimization function is then defined as: J(f, S) = L(f, S) + λΩ(f).
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Definition 1.15 (Regularization path (T )). The regularization path of problem in Equation
(1.7) is the set of all solutions obtained when varying λ over R

+ i.e. Path = {fλ, λ ∈ [0,+∞]}.

When both L and Ω are convex, the Pareto frontier is convex and therefore problems (I), (M)
and (T ) are all equivalent [Miet 99, pages 12-13]. Indeed in this case, for any Pareto optimal
point f∗ there exists a λ ≥ 0 such that f∗ is the solution of the Tikhonov minimization problem.
Nevertheless, in general, it is not always the case that the solution set of Problem (T ) (that is the
regularization path) coincides with the Pareto frontier.
As optimization theory will be analyzed, we will see that there exists a large number of well
supported methods to solve the Tikhonov formulation and it is therefore the usual choice in
machine learning.
Note that the determination of the solution to the learning problem requires to choose the solution
within Pareto’s frontier or equivalently to find an optimal value for C, C ′ or λ depending on the
formulation used. This is the model selection issue.
Notation will be simplified by letting L(f, S) = L(f) for a fixed training set S. Given two convex
functions L,Ω : H → R

+ ∪ {0}, we are interested in the behavior of the function

f∗(C) =





argmin
f∈H

L(f)

s. t. Ω(f) ≤ C
(1.8)

with respect to C. To understand how the optimal function changes as C is continuously modified,
it has to be noticed that in the Tikhonov’s formulation the loss function (L(f)) and the complexity
function (Ω(f)) vary in an inverse manner as C increases or decreases. This is shown in the
following theorem:

Theorem 1.16 (Inverse Relation between the loss and the regularization function). If L(f) is
strictly convex, for any C0 < C, it holds that

1. L (f∗(C0)) ≥ L (f∗(C)) and

2. Ω(f∗(C0)) ≤ Ω(f∗(C)).

Proof. Let Γ(C) = {f ∈ H | Ω(f) ≤ C} be the convex set of feasible solutions for C and

f∗(C) = argmin
f∈Γ(C)

L
(
f
)
.

the optimal solution of this set. As L(f) is strictly convex, f∗(C) is unique. By optimality of
f∗(C),

L(f∗(C)) ≤ L(f(C)) for all f ∈ Γ(C) (1.9)

If C0 < C , then
Γ(C0) = {f : Ω(f) ≤ C0} ⊆ {f : Ω(f) ≤ C} = Γ(C),

and since f∗(C0) ∈ Γ(C0), it follows that f∗(C0) ∈ Γ(C).
So, statement (1.9) will be also valid for a particular f = f∗(C0) ∈ Γ(C)
Therefore,

L(f∗(C)) ≤ L(f∗(C0))

which proves the first part of the proposition. For the second part, we observe that by definition
of Γ(C), Ω

(
f∗(C)

)
≤ C. If:

i) Ω
(
f∗(C)

)
≥ C0, then Ω

(
f∗(C0)

)
≤ C0 ≤ Ω

(
f∗(C)

)

ii) Ω
(
f∗(C)

)
< C0, then f∗(C) ∈ Γ(C0) and therefore f∗(C) = f∗(C0), otherwise, it cannot be

the minimum of problem in Equation (1.8), leading to Ω
(
f∗(C)

)
= Ω

(
f∗(C0)

)
.
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Therefore, we deduce that

Ω(f∗(C)) ≥ Ω(f∗(C0)).

A general proof with a set of minima will follow directly from the convexity of the function. This
result emphasizes the fact that an additional set to the training set is necessary to make a judicious
model selection and that sole use of the training error is not an accurate measure since the learning
algorithm can produce a model that overfits the data. Some common strategies for model selection
are: training-validation sets, cross validation, bootstrap, etc. Some of these strategies are devised
in the next section.

1.2. Model Selection

The results of a decision function depend on the training samples and a set of training parameters.
To ease the presentation and to make concrete the dissertation, we will consider the framework of
Support Vector Machines that relies on the use of a RKHS induced by a kernel k as hypothesis
space and the optimization of Thikonov formulation of the learning problem. Hence, the training
parameters are the regularization term λ and other parameters like the hyperparameter(s) of the
kernel, for instance the bandwidth of the Gaussian kernel or the degree in the polynomial kernel,
to which we will refer in generic way as σ. Since these parameters determine the model, the task
of finding the best parameter combination is called model selection .
Another aspect of model selection includes the number of variables that will be defined and
included in the model. This is as well an important issue since we will be interested in getting
parsimonious models, that is, getting the best explaining model with the less variables.
There are two particular issues about model selection, the first one consists in deciding how to
measure the performance of a model and the second one consists in knowing how to explore the
space (λ, σ).
The first concern is how to measure a model. In an intuitive way, this question is easy to answer: a
good model always gives a correct result according to the task to be performed even with samples
that have never been seen, that is, the generalization ability. If the training error is driven to a very
small value, but with unseen test data the test error is large, then the model suffers overfitting .
A theoretical approach to the generalization ability was introduced with the Vapnik-Chervonenkis
dimension (VC dimension) [Vapn 79] as a way to bound the expected risk as a sum of the empirical
risk and a term depending on the VC dimension and the size of training samples.
In a practical way, some methods to choose a model are the resampling methods [Efro 87] which
consist in generating different sets to test the proposed models:

Training-Validation sets: in this case, a particular set for training is used while the general-
ization ability is tested on a different set called the validation set (strictly speaking, this is
not really a resampling method).

Cross validation: consists in dividing the n samples in k sets called folds. Each fold of size n
k

is tested on a model trained with the remaining samples. In this way, the generalization
ability of the model will be approximated. Having a set of models, they are tested on each
fold and the model that gives the best average error is the one chosen. The set division can
be seen as a sampling without replacement [Kurt 48].

Leave-one-out (LOO): this is a special case of cross validation setting where each test set is of
size one [Elis 03, Evge 04]. This kind of sampling is used in the jackknife technique [Dwas 57]
to estimate bias and variances of statistical estimators. The leave-one-out cross-validation
procedure can be efficiently approximated in closed form for a wide variety of kernel learning
methods, providing a convenient means for model selection using simplex methods or scaled
conjugate gradient descent [Cawl 07].
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Bootstrapping: Several training-validation sets are formed by making a random sampling of
the population with replacement. This kind of sampling is used in the bagging technique to
reduce the variance and helps to avoid overfitting [Efro 93].

The use of these methods will help us to have an idea of the generalization error that the chosen
model will do, that is, we will be able to generalize better depending on the used method [Lend 03].
On the other hand, each method implies that the resolution of the learning problem will be repeated
several times, the more problems have to be solved, the longest it will take to get an estimation
of the generalization error (or a bound of it) but also the better this approximation will be (a
narrower bound). This is summarized in Table 1.3.

Method Estimator Variance Cost
Training-Validation sets Biased Small Low

Cross validation Unbiased Large Medium
LOO Unbiased Large High†

Bootstrapping Unbiased Large Medium

Table 1.3: Generalization error estimation characteristics vs. computational cost for each model
selection method [Varm 06]. †The cost for the LOO method depends on the learning problem as
in some cases, the decision function can be easily updated for a single exclusion of training sample.

Once a goodness measure has been chosen for a model, the next issue is to figure out how the
parameter space (λ, σ) will be searched, since there is an infinite number of possibilities, it has to
be done in a efficient way.
A common technique is the discretization of the search space:

Grid search: consists in selecting a finite set of values for λ and a set of values for σ, generally
equally or logarithmically separated. All pairs generated by the combination of these points
are then explored. Eventually this grid is refined and the process is repeated to obtain the
parameter with a better precision. The built grid increases in dimension according to the
number of parameters that have to be set and the parameter search on it can be very time
consuming.

Random sampling: random pairs of (λ, σ) are tested to define a smaller search zone and the
process is repeated in a smaller zone.

Genetic Algorithms: a set of models is encoded with a predefined precision. This will define the
population, then a genetic algorithm is run and the model selection criterion is incorporated
into a fitness function that uses empirical measures or theoretical bounds [Less 06] [Zhou 05].

The possible reached accuracy that is obtained in average by these methods is summarized in
Table 1.4. In general, if the same number of points is to be explored, the cost of grid search and
random sampling will be similar but the global optimum can be overlooked.

Method Accuracy Cost
Grid search Medium Medium

Random sampling Medium Medium
Genetic Algorithms High High

Table 1.4: Accuracy vs. Cost of discretization methods.

Other methods use continuous techniques to explore the parameter space:

Gradient Descent: a continuous approximation of the validation function is done in order to
use a gradient descent approach along it [Keer 07] to choose the model that will minimize
the validation error. Other approaches use the gradient to find a direction to improve the
estimated generalization error and then make a correction step [Allg 90, Zang 81, Park 07,
Gang 07].

27



1.3 Some SVM Learning Problem Examples

Multi-kernel Optimization: the principle is to define the decision function as a convex sum of
elementary functions fj , defined each one over a prefixed RKHS, Hj , induced by different
kernels kj (and by the way, different subsets of features or variables). The optimization
problem attempts to retrieve the most useful combination of kernels according to the training
objective function and for fixed value of λ. This formulation can be seen as group-wise
penalization [Rako 07b, Sonn 06].

Parametric Quadratic Programming (PQP): regarding the set of optimization problems de-
fined by the use of a different λ parameter have a singular form that can be transformed
into a PQP problem, that is, a quadratic objective function and linear equality and in-
equality constraints. The complete set of optimal solutions turns out to be piecewise linear
[Hast 04, Ross 07b, Wang 06b].

Bilevel Optimization: in the bilevel optimization problems, constraints in the principal opti-
mization problem consist in sub-optimization problems with constraints, named hierarchical
optimization. This kind of problems has already been studied in the operations research
literature [Brac 73] and in the machine learning framework [Kuna 08].

Table 1.5 compares if in general the global optimum is reached by the use of the previous methods,
the cost of each method usage and the problem universe they are applied to. The multi-kernel
optimization was left out of this comparison because this method will output a combination of
methods rather than a single one.

Method Global Optimum Cost Problem Universe
Gradient Descent No Low Derivable validation functions

PQP Yes Low to Medium QP problems
Bilevel Optimization No (non-convex) Medium Hierarchical optimization

Table 1.5: Global Optimality, computational cost and applicability for each model selection
method. For PQP, parameter σ is considered fixed.

Model selection is a fundamental step to construct a model. In the statistical learning theory,
a model selection framework aims at approximating the generalization error and the overfitting
degree. The more accurately these are estimated, the better the chosen model will turn out to
be. When dividing the dataset into subsets, model fitting must be done independently from the
training data in order to avoid model selection bias.

1.3. Some SVM Learning Problem Examples

Once the necessary concepts of learning theory have been stated, in this section some of the most
commonly used frameworks are described. We start with the classification framework revised in
an interesting functional manner. The ranking problem is later illustrated and set as a learning
problem that can again be written as an optimization problem. As explained previously, we will
restrict our presentation to the SVM framework.

1.3.1 Classification Learning Problem

Classification is a particular kind of learning problems that belongs to the kind of Supervised
Learning . A set of samples or points {xi}i=[[n]] is given, where [[n]] = {1, ..., n}; it is assumed
that these samples belong to a vector space, denoted by X . Additionally, a corresponding set of
outputs or labels {yi}i=[[n]] is also given and these samples belong to Y.
We will initially deal with a two-class problem, where |Y| = 2 and w.l.o.g. we can assume that
Y = {+1,−1}. An example of a two class problem is depicted in Figure 1.7. We assume that the
magenta triangles represent the positive class and the blue circles the negative one. A decision
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Figure 1.7: Example of a two-class problem

function f(x) is sought so that it keeps all the positive samples on the subspace defined by
f(xi) > 0, ∀i, yi > 0 and the negative samples on the subspace defined by f(xi) < 0 ∀i, yi < 0.
In a classification problem, we can start by having only two classes, but it is possible to extend a
two-class classifier to a multi-class classifier. There exists several principles to do this extension,
some of them consist in dividing the training samples into several subsets with only two classes to be
able to train a binary classifier with each subset. Some of the alternatives assign points according
to these classifiers and transform these points into probabilities of belonging to a particular set.
A list of the most common methods to deal with more than two classes is given below.

One vs. One score If there are p classes, (p
2) binary classifiers are pairwise trained for this

problem [Furn 02]. To classify a new sample, this is tested in all binary models, resulting
in (p

2) proposed classes, which will be counted as a point for each winning class, points are
summed by class and the sample will be labeled with the class having more points (majority
vote). An example of this classifier with four classes is depicted in Figure 1.8, where there
are p = 4 classes and 6 binary classifiers are trained.

Sum of points

1 vs. 2

Output

p=4

1 vs. 3 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4

Figure 1.8: One versus one classifier for 4 classes

One vs. Rest score p different binary classifiers are trained, each one is trained to distinguish
the examples in a single class from the examples in all remaining classes [Rifk 04]. When it
is desired to classify a new example, the p classifiers are run, and the classifier which outputs
the largest (most positive) value is chosen. Figure 1.9 depicts an example of a one-vs.-rest
classifier with p = 4 classes, resulting in 4 binary classifiers.

DAG A directed acyclic graph is built where each node is a binary classifier that will lead to a
choice of a smaller set of classes. Each leaf of the graph outputs exactly one class. A new
point is then classified according to the decision path induced by the graph [Plat 00]. Figure
1.10 illustrates this method.

Probabilistic Outputs These methods assign to a new sample a probability of belonging to
each class either by training a logit function with a maximum likelihood score [Hast 98] or
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3 vs. rest

Output

p=4

Score comparison

4 vs. rest1 vs. rest 2 vs. rest

Figure 1.9: One versus rest classifier for 4 classes

Class 1,3

p=4

Root

Class 1,2,4Class 1,3,4

Class 1,4 Class 1,2 Class 4

Class 2Class 1Class 4Class 1Class 3Class 1

Figure 1.10: Example of a DAG for multi-class with 4 classes

by training an SVM that will be later map with a sigmoid function into probabilities. The
assigned class is the one with the largest probability [Plat 99b].

Global A general problem is posed where all classes are trained together via an optimization
problem with multiple criteria [Bred 99, Lee 04, West 98, Zhan 04]. Multi-class SVMs have
been proposed [Guer 07] where a loss function over all classes is used, the decision function
is a function with vectorial output (an entry for each class) and a hyperplane with maximum
distance to all classes is searched .

There are many different methodologies which are widely documented, these have been compared,
in terms of consistency and theoretical properties. Different works [Duan 05, Hsu 02, Tewa 05,
Rifk 04] summarized done comparisons. According to Bach [Bach 08], the winner is still unclear.
To solve the problem of binary classification, the SVM framework will be considered. It deals with
binary problems by stating a problem issued from a trade-off multiple criteria, as next explained.

Functional formulation of the SVM classifier (SVC)

This learning problem considers a function f that belongs to a RKHS with kernel k. The loss
function is the hinge loss function and the used regularization term is the norm of the function in
the RKHS. If Y = {1,−1} and we define f(x) = f0(x) + b, it has to be noticed that the hinge loss
function in Equation (1.5):

ℓ(f,x, y) = max{0, 1− yf(x)} (1.10)

can be rewritten as follow:

ℓ(f,x, y) =





minimize
ξ

ξ

subject to y(f(x)) ≥ 1− ξ
ξ ≥ 0

(1.11)

The generalization ability will be controlled by adding a regularization term as the norm in the
Hilbert space. We can therefore establish the following classification problem:
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Problem 1.17 (Functional SVM Classifier Primal Problem). Let S = {SX , SY } be a set of
samples SX = {xi}i=[[n]] and SY = {yi}i=[[n]], yi ∈ {+1,−1}, i = [[n]]. Let f0 ∈ H where H is a
RKHS with kernel k and induced Gram matrix Kij = k(xi,xj), i, j = [[n]]. The primal optimization
problem under a functional regularization framework with bias b is defined as follows:

min
f0∈H,b∈R,ξ∈Rn

n∑

i=1

ξi +
λ

2
‖f0‖

2
H

s. t. yi(f0(xi) + b) ≥ 1− ξi, i = [[n]]

ξi ≥ 0, i = [[n]]

Remark It can be observed that, in fact, this problem is equivalent to the classical one expressed
with C, where the objective function has weight C in the loss function and weight 1 in the
regularization one. To obtain Problem 1.17 from Problem A.30, it is enough to do C = 1

λ .

1.3.2 Ranking Learning Problem

Ranking algorithms address document retrieval applications where the main objective is to provide
in the top list, the most relevant documents according to the given user query. The aim is that
the more important a result is to the user, the closer to the top of the list it should be. For this
sake, the learning to rank algorithms use stored information coming from the feedback of the user
on previous queries to build a model able to achieve a satisfactory generalization rate.
To formally state the Ranking SVM algorithm, some precisions have to be done. Preference
ordering is determined by user defined queries {qi}i=[[Nq ]], where each one is expressed as a feature

vector in R
Q, and a list of possible associated documents {dj}j=[[Nd]], stated as a feature vector in

R
D, in this case, Nq and Nd indicates the number of available queries and documents, respectively.

The searched decision function f will work as a scoring function, giving higher value to the
most relevant documents according to the given query. An accuracy measure for ranking should
emphasize errors at the beginning of the permuted list rather than at the end of the list. The
proposed normalized discounted cumulative gain (NDCG) [Jarv 00] aims at that kind of scoring.
A permutation π of documents {di} is searched so that most important documents are placed at
the beginning of the list [Jarv 00], if a function f is given, the reordering will be done according
to the application of this function for each pair. The ranking problem can be stated as follows:

Problem Statement

Problem 1.18 (Ranking Problem). Let (qi, dj , yij) be a triplet consisting of a vector qi ∈ R
Q, i =

[[Nq]] containing query features, a vector dj ∈ R
D, j = [[Nd]] that includes document features and

yij ∈ R which is its corresponding ranking with respect to query qi. The ranking problem aims
at finding a decision function f : R

Q ×R
D → R that given query qi and document dj predicts the

ranking or relevance yij of the document for the particular query qi taking into account previous
seen samples.

For clarity and simplification sakes, let us consider an example of web pages search in ranking
problems. To this purpose, a query-document sample feature x = (q, d) ∈ X will be built, together
with its corresponding label y that indicates the relevance of document d with respect to query
q, so that if a document d′ is less relevant than d with respect to q it will hold y′ < y with
x′ = (q, d′). The previous relation can be restated as a directed graph in the sense that a relation
of relevance can be seen as an edge e from x to x′ where its direction indicates the sense where
relevance decrease. Therefore, a directed acyclic graph (X,E) can be built for each query, with
X ⊆ R

Q ×R
D and E ⊆ X2, |E| = m. The edges are of the form e = ((q, d), (q, d′)) = (x,x′) with

d, d′ ∈ R
D and q ∈ R

Q. It has to be noticed that the transitive property is respected, so that if
y > y′ and y′ > y′′ then y > y′′.
To illustrate this induced graph, we are going to consider an example with Nq = 3, Nd = 12. The
documents are rated with three degrees of relevance as stated in Table 1.6. Using this example,
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query document rank coding final representation
q1 d4 1 x1 = (q1, d4), y1 = 1 (x1, 1)
q1 d5 2 x2 = (q1, d5), y1 = 2 (x2, 2)
q1 d12 1 x3 = (q1, d12), y1 = 1 (x3, 1)
q2 d1 1 x4 = (q2, d1), y1 = 1 (x4, 1)
q2 d3 2 x5 = (q2, d3), y1 = 2 (x5, 2)
q2 d5 1 x6 = (q2, d5), y1 = 1 (x6, 1)
q2 d6 3 x7 = (q2, d6), y1 = 3 (x7, 3)
q2 d7 2 x8 = (q2, d7), y1 = 2 (x8, 2)
q2 d9 1 x9 = (q2, d9), y1 = 1 (x9, 1)
q2 d10 3 x10 = (q2, d10), y1 = 3 (x10, 3)
q2 d11 3 x11 = (q2, d11), y1 = 3 (x11, 3)
q3 d2 2 x12 = (q3, d2), y1 = 2 (x12, 2)
q3 d6 1 x13 = (q3, d6), y1 = 1 (x13, 1)
q3 d8 1 x14 = (q3, d8), y1 = 1 (x14, 1)
q3 d10 2 x15 = (q3, d10), y1 = 2 (x15, 2)

Table 1.6: Example of a ranking problem with queries {qi}i=[[3]], documents{di}i=[[12]] and ranks
{yi} ∈ {1, 2, 3}, i = [[15]]. The third column assigns a new encoding for the query-document
ranking that will be used to form the directed graph.

the induced directed graph will look as in Figure 1.11.

q1 q2 q3

x15

x1 x3 x4

x5

x7 x10

x8

x9x6

x11

x13

x12

x14

x2

Figure 1.11: Induced directed graph from ranking problem stated in Table 1.6.

This kind of problems has gain major attention given the nowadays amount of available informa-
tion. This is without doubt a challenging task in the medium and large scale context.
Several methods have been proposed to solve these problems. For the passive setting, the Rank-
boost algorithm ([Freu 03]) is an adaptation of the Adaboost algorithm to the ranking problem.
This is a boosting algorithm which works by iteratively building a linear combination of sev-
eral “weak” algorithms to form a more accurate algorithm. The Pranking algorithm ([Cram 02])
implements an online update of the ranking function similarly to the perceptron algorithm for
classification. The RankSVM [Herb 00] and SVRank [Cort 07] algorithms are the adaptation
for ranking of the classification and regression Support Vector machines, respectively, while the
MPRank ([Cort 07]) is a magnitude-preserving algorithm, which searches not only to keep the
relative position of each sample but also to preserve the given distance by the correct ordering.
This last algorithm has as well the form of a regularization problem like the two previous ones
with a different cost function.

Functional formulation of the RankSVM

The Ranking SVM (RankSVM) algorithm was proposed by [Herb 00] and [Joac 02] as an opti-
mization problem with constraints given by the induced graph of the ordered queries’ results. This
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algorithm belongs to the family of kernel algorithms of the SVM type ([Bose 92, Schl 01]).
Similar to the classification problem, a decision function f ∈ H is searched so that if for query
q, document dui

is more relevant than document dvi
, that is, yui

> yvi
then, feature vectors

xui
= (q, dui

) and xvi
= (q, dvi

) are formed and the searched decision function should hold:

f(xui
) ≥ f(xvi

), ∀i = [[m]]

where m is the resulting number of composed feature vectors xi. Again, flexibility will be given
by allowing some errors and introducing them in the objective function as follows:

min
f∈H

m∑

i=1

ξi, subject to f(xui
)− f(xvi

) ≥ 1− ξi, ξi ≥ 0, ∀i = [[m]]

A regularization term is included in the formulation to assure good generalization ability so that
the Ranking SVM algorithm is stated with the following optimization primal problem:

min
f∈H,ξ∈Rm

ξ⊤1I + λ
2 ‖f‖

2
H

s. t. f(xui
)− f(xvi

) ≥ 1− ξi ∀i = [[m]]
ξi ≥ 0 ∀i = [[m]].

with the same conventions as in Problem 1.17 As in SVM for classification, the slack variables
ξi, (ui, vi) ∈ E correspond to the cost of the constraints violation (ui, vi). The final document
order is then obtained by sorting X according to f and resolving ties randomly.

1.4. Constrained Optimization Theory

In the previous section, a learning problem was stated with different formulations. The Tikhonov
one is the general choice of problem setting, additional constraints are added to target the desired
decision and all together form an optimization problem (OP) with constraints. The advantage
of using this OP is that the necessary conditions for a point to be optimal have already been very
well studied. The other interest of this section relies on the fact that due to Equation (1.11),
the widely used hinge loss function in SVM can be turned into a minimization problem under
inequality constraints. Therefore, to derive the necessary optimality conditions, an overview of
constrained optimization is potentially useful. Constrained optimization theory will be reviewed
in this section, more details can be found in [Luen 69, Luen 05, Noce 99, Bonn 06].
The developed theory applies to minimization problems since a maximization problem can be
trivially transformed into a minimization one by optimizing the negative of the objective function.
We will focus our interest on constraint optimization problems with inequalities. In this section,
z represents a vector in a generic way.

Problem 1.19 (Constrained Optimization Problem). A constrained optimization problem
is defined as follows:

minimize
z∈X

J(z),

subject to h(z) ≥ 0

g(z) = 0

where J : X → R
+ ∪ {0} is a function called the objective function , with X a vector space;

h(z) a vector of inequality constraint functions of the form h(z) = (h1(z), h2(z), ...h|I|(z))
⊤ with

hi : X → R, i ∈ I and I a set of index; g(z) is a vector of equality constraint functions g(z) =
(g1(z), g2(z), ...g|E|(z))

⊤ with gi : X → R, i ∈ E and E is again a set of index.
The special case with a convex objective function is largely treated in the work of Boyd [Boyd 04].
Problem 1.19 aims at minimizing function J under a reduced domain defined by functions hi, i ∈ I
and gi, i ∈ E called the feasible set . The solution of Problem 1.19 can be characterized under
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certain conditions. We say that we are at an optimal point z∗ if h(z∗) ≥ 0,g(z∗) = 0 and
J(z∗) ≤ J(z) for all z such that h(z) ≥ 0 and g(z) = 0.
An inequality hi is said to be active at point z if its evaluation at this point reaches the equality,
that is, if hi(z) = 0. The active set A(z) in a constrained problem at any feasible z is the union
of all equality constraints and all active inequality constraints, that is,

A(z) = {i ∈ I|hi(z) = 0} ∪ E (1.12)

This set is relevant for the final solution since the constraints that are not active will not impose
a condition in the solution and are not useful as will be seen later.

1.4.1 Derivation of the Optimality Conditions

Some assumptions about the optimal solution have to be done in order to find optimality condi-
tions. These conditions exploit the notion of gradient that is next developed. Algorithms taking
advantage of these conditions will be design to find the solutions.

Brief review of gradient notions

Definition 1.20 (Directional Derivative). It X is a vector space, the directional derivative of
a scalar function f(z) : X → R along a vector d is the function defined by the limit:

∇df(z) = lim
ǫ→0

f(z + ǫd)− f(z)

ǫ
.

Sometimes authors write Dd instead of ∇d. If the function f is differentiable at z, then the
directional derivative exists along any vector d, and one has

∇df(z) = 〈∇f(z),d〉

where the ∇ on the right denotes the gradient and 〈·, ·〉 is the Euclidean inner product. At any
point z, the directional derivative of f intuitively represents the rate of change in f along d at
point z. Usually, the taken direction are normalized, so d is a unit vector, although the definition
above works for arbitrary (even zero) vectors.

Definition 1.21 (Gateaux differential). Let z ∈ Ω ⊂ X , F : X → Y, with X a vector space and
Y a normed space. The function F is Gateaux differentiable at z if the directional derivative

∂F(z;d) = lim
ǫ→0

1

ǫ
[F(z + ǫd)−F(z)] = 〈∇F(z),d〉 (1.13)

exists for every direction d ∈ X and is a linear and continuous function of d. The linear operator
∇F(z) represents the Gateaux differential of F at z.

The Gateaux differential generalizes the concept of directional derivative familiar in finite dimen-
sional space. The existence of the Gateaux differential is a rather weak requirement since its
definition requires no norm on X ; hence, properties of the Gateaux differential are not easily
related to continuity. When X is normed, a more satisfactory definition is given by the Fréchet
differential [Luen 69]. If Y = R, the Gateaux differential of F , if it exists represents the gradient
and is denoted sometimes as ∇zF(z). If the vector space X = R

D, then the gradient is a vector
with real entries.

Definition 1.22 (Fréchet Differential). Let F be a function defined on an open domain Ω in a
normed space X and having range in a normed space Y. If for fixed z ∈ Ω and each d ∈ X there
exists ∂F(z;d) ∈ Y which is linear and continuous with respect to d such that

lim
‖d‖→0

‖F(z + d)−F(z)− ∂F(z;d)‖

‖d‖
= 0

then F is said to be Fréchet differentiable at z and ∂F(z;d) is said to be the Fréchet differ-
ential of F at z with increment d.
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In later chapters, the use of kernel operators will help to increase the classifier potential by taking
the original samples x ∈ X into a more complex space. We are in first place concerned with
continuous linear bounded functions.
The linear functions on a vector space may be regarded as elements of a vector space by introducing
definitions of addition and scalar multiplication. Given two linear function F1,F2 over a space
X , we define their sum F1 + F2 as the function over X given by (F1 + F2)(z) = F1(z) + F2(z)
for all z ∈ X . Similarly, given a linear function F , we define αF by (αF)(z) = α[F(z)]. The null
element in the space of linear functions is the function that is identically zero on X . The space of
linear functions defined in this way is called the algebraic dual of X .

Derivation of optimality conditions

Optimality conditions depend on the constraints given in the problem. These can be derived by
analyzing the first order Taylor series.
In order to deduce the optimality conditions, we will follow [Noce 99].

No equality constraints (all constraints inactive). If the equality set is empty E = {} and
if the optimal solution z∗ belongs to the interior of the feasible set, that is if hi(z

∗) > 0
for all i ∈ I, then, the only condition that has to be verified would be

∇J(z∗) = 0 (1.14)

since we would be dealing with a problem without constraints.

At point z, a direction d of improvement, that is, a direction that produces a decrease in J ,
must satisfy 0 > J(z + d)− J(z) ≈ 〈∇J(z),d〉, or in first order,

〈∇J(z),d〉 < 0. (1.15)

This condition is depicted in Figure 1.12.

Allowed directions     to keep feasibility

〈∇J(z),d〉 = 0

〈∇J(z),d〉 < 0

z

J(z) = ℓ

∇J(z)

d

d

Figure 1.12: Admissible directions for a minimization problem without constraints. The black
curved line is a level curve of objective function J at level ℓ. The blue arrows and blue area depict
the allowed directions d at point z. The dashed gray line contains the directions perpendicular to
the gradient of the objective function (not included in the admissible set of directions).

Single equality constraint. If there is only one equality constraint, a direction d at point z
satisfying the constraint (gi(z) = 0), will keep feasibility if the following equation is satisfied:
0 = gi(z + d) ≈ gi(z) + 〈∇gi(z),d〉 = 〈∇gi(z),d〉, resulting in:

〈∇gi(z),d〉 = 0, i ∈ E . (1.16)

An example of a problem with a single equality constraint is illustrated in Figure 1.13.

If z∗ is an optimal point and if the active set at it consists of one index A = {i}, say gi, then
there should not be any direction satisfying both Equation (1.15) and (1.16) at the same
time, that is when the admissible sets in Figure 1.12 and Figure 1.13 do not intersect. The
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Allowed directions     to keep feasibility

z

gi(z) = 0

d

d

〈∇gi(z),d〉 = 0 (exclusively)

∇gi(z)

Figure 1.13: Admissible directions for a problem with equality constraints. The blue arrows depict
the allowed directions d with respect to the equality constraint gi at z.

only way that such a direction cannot exist is if ∇J(z∗) and ∇gi(z
∗) are parallel [Noce 99],

that is if at z∗, it is hold

∇J(z∗) = β∇gi(z
∗), β ∈ R. (1.17)

If X = R
D, then ∇gi(z) ∈ R

D and if condition given by Equation (1.17) is not satisfied,
then there exists a direction of improvement. The following is an improving direction at z:

d = −

(
I −
∇gi(z)∇gi(z)

⊤

‖∇gi(z)‖2

)
∇J(z)

where I is the identity matrix of size D. It can be verified that this direction satisfies both
conditions in Equations (1.15) and (1.16).

Inequalities constraints. If the inequalities are strictly satisfied at z (i.e. 0 ≤ hi(z)), the only
restriction for a direction d is to keep feasibility with respect to the inequality constraint by
holding, 0 ≤ hi(z + d) ≈ hi(z) + 〈∇hi(z),d〉 i ∈ I as shown in Figure 1.14, that is,

hi(z) + 〈∇hi(z),d〉 ≥ 0 (1.18)

To determine whether a direction d exists satisfying both Equations (1.15) and (1.18), two
cases have to be considered:

Case I: z is inside the feasible set. If an inequality constraint i is inactive, that is, we
have hi(z) > 0, and if ∇J(z) 6= 0, a direction d not violating this constraint can be
found by setting:

d = −hi(z)
∇J(z)

‖∇J(z)‖‖∇hi(z)‖

Case II: z is in the boundary of the feasible set. If an inequality constraint i is ac-
tive, that is if hi(z) = 0, to retain feasibility with respect to it, Equation (1.15) has
to be satisfied together with the condition given by Equation (1.18) which in this case
becomes: 〈∇hi(z),d〉 ≥ 0. The first condition defines an open subspace as illustrated
in Figure 1.12, while the second condition defines a closed space as shown in Figure
1.14.

It is clear from these two figures that the two admissible regions fail to intersect only
when ∇J and ∇hi point in the same direction at the optimal point z∗:

∇J(z∗) = α∇hi(z
∗) with α ≥ 0 (1.19)

The Lagrange Function L : X × R
|I|+|E| → R is introduced to help establish the necessary

conditions for a feasible point z with vectors α and β to be an optimal solution to Problem 1.19:

L(z,β,α) = J(z)− 〈α,h(z)〉 − 〈β,g(z)〉. (1.20)
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Allowed directions     to keep feasibility

〈∇hi(z),d〉 > 0

hi(z) = 0

d

d

〈∇hi(z),d〉 = 0 (included)

∇hi(z)

z

Figure 1.14: Admissible directions for a problem with inequality constraints. The light blue zone
depicts the allowed directions d with respect to hi at z.

The utility of this function lies on the characteristics of its derivative at the optimal point. It has
to be noticed that ∇zL(z∗,α,β) = ∇zJ(z∗) −

∑
i∈I αi∇zhi(z

∗) −
∑

i∈E βi∇zgi(z
∗) = 0, for all

β ∈ R
E and αi ≥ 0, i ∈ I, which is a generalization of Conditions (1.14), (1.17) and (1.19) for

more than one constraint function.

This observation suggests that we can search for solutions of the constrained Problem 1.19 by
searching for stationary points of the Lagrangian function. The scalars αi and βj in Equation
(1.20) are called Lagrange multipliers for the constraints hi(z) ≥ 0 and gj(z) = 0, respectively.

Attention has to be given to the properties of the constraint gradients. The vector ∇hi(z) is
often called the normal to the constraint hi at the point z, since it is usually a vector that is
perpendicular to the contours of the constraint hi at z, and in the case of an equality constraint,
it points toward the feasible side of this constraint. However, it can happen that ∇hi vanishes
due to the algebraic representation of hi, so that the term αi∇hi(z) equals zero for all values of
αi and thus it plays no role in the Lagrangian gradient ∇zL. If the above condition holds, none
of the active constraint gradients can be zero.

1.4.2 Optimality Conditions

With the provided tools in the previous section, first order optimality conditions for a general
nonlinear programming problem can be provided. Before that, let us expose a useful definition.

Definition 1.23 (Regular point). Let X be a vector space and let Y be a normed space with a
positive cone P (see Appendix A.1.1) having nonempty interior. Let h : X → Y be a function which
has a Gateaux differential that is linear in its increment. A point z ∈ X is said to be a regular
point of the inequality h(z) ≤ 0 if h(z) ≤ 0 and there is a d ∈ X such that h(z) +∇dh(z) < 0.

Optimality conditions are stated in the following theorem.

Theorem 1.24 (First-Order-Necessary Conditions (KKT) [Noce 99]). Suppose that z∗ is a local
solution of Problem 1.19 and it is a regular point. Then there are Lagrange multipliers vectors α∗,
β∗ with components αi, i ∈ I, such that the following conditions are satisfied at (z∗, α∗,β∗):

∇xL(z∗,α∗,β∗) = 0, (1.21a)

gi(z
∗) = 0,∀i ∈ E , (1.21b)

hi(z
∗) ≥ 0,∀i ∈ I, (1.21c)

α∗
i hi(z

∗) = 0,∀i ∈ I. (1.21d)

α∗
i ≥ 0,∀i ∈ I, (1.21e)

The above conditions are often known as the Karush-Kuhn-Tucker conditions, KKT condi-
tions or system for short [Boyd 04], and they have to be satisfied in order to find an optimum for
problem 1.19.
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1.5. Dual of the SVM Learning Problem

The stated problems in Section 1.3 are well posed for a particular λ, in the sense that:

1. a solution exists,

2. the solution is unique,

3. the solution is stable.

There exists some numerical approaches to solve the proposed primal problems for classification
and ranking [Bott 07, Teo 07]. However, in this work we focused in methods applied to the
dual formulation that can be derived using the given optimality conditions. Taking the dual
formulation, deeper analysis can be done in order to obtain efficiently the whole optimal solution
set with respect to the parameter λ.

1.5.1 Classification Dual Problem

The dual of this problem can be obtained by considering the Lagrangian of Problem 1.17:

L(f0, b, ξ,α,γ) =
n∑

i=1

ξi +
λ

2
‖f0‖

2
H −

n∑

i=1

αi

(
yi

(
f0(xi) + b

)
− 1 + ξi

)
−

n∑

i=1

γiξi (1.22)

with αi ≥ 0, γi ≥ 0 and f0 ∈ H, with H a RKHS with reproducing kernel k and b ∈ R. The
decision function will be then f(x) = f0(x) + b.

Taking H as a RKHS is not a coincidence, this hypothesis space will give us several nice properties
as it is endowed with an inner product under H, 〈f0, g〉H, which is a linear operator. Moreover,
the norm is defined as:

‖f0‖
2
H = 〈f0, f0〉H

with the reproducing property:

f(x) = 〈f(·),k(x, ·)〉H.

If J(f) = 〈f, g〉H, then the directional derivative DJ(f, h) of 〈f, g〉H at f in the direction h, with
f, g, h ∈ H, can be calculated as follow:

DJ (f, h) = lim
ǫ→0

〈f + ǫh, g〉H − 〈f, g〉H
ǫ

= lim
ǫ→0

〈f, g〉H + ǫ〈h, g〉H − 〈f, g〉H
ǫ

= 〈h, g〉H.

and therefore, ∇f 〈f, g〉H = g(·). Following a similar derivation, we can deduce,

∇f‖f‖
2
H = ∇f 〈f, f〉H = 2f(·) and (1.23)

∇ff(x) = ∇f 〈f,k(x, ·)〉H = k(x, ·). (1.24)

This results can help to deduce the KKT optimality conditions for Problem 1.17:
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∇bL = 0 ⇒
n∑

i=1

αiyi = 0 (1.25a)

∇ξi
L = 0 ⇒ 1− αi − γi = 0 (1.25b)

⇒ γi = 1− αi

but as γi ≥ 0 ⇒ 1− αi ≥ 0

and together with αi ≥ 0, we get

0 ≤ αi ≤ 1

∇f0
L = 0 ⇒ λf0(·)−

n∑

i=1

αiyik(xi, ·) = 0

⇒ f0(·) =
1

λ

n∑

i=1

αiyik(xi, ·) (1.25c)

⇒ ‖f0‖
2 =

1

λ2

n∑

j=1

n∑

i=1

αiαjyiyjk(xi,xj). (1.25d)

And since f(x) = f0(x) + b, the decision function will have the form:

f(x) =
1

λ

n∑

i=1

αiyik(xi, ·) + b. (1.26)

Equation (1.25c) is commonly known as the representer theorem [Kime 71]. So plugging Equa-
tions (1.25c) and (1.25d) in (1.22), and using the relations (1.25b) and (1.25a) we get:

L =
n∑

i=1

αi −
1

2λ

n∑

j=1

n∑

i=1

αiαjyiyjk(xi,xj).

Finally, a dual problem can be deduced putting all the conditions together:

Problem 1.25 (SVC Dual Problem). Let S = {(xi, yi)}i=[[n]] be a set of samples as before. The
dual optimization problem is defined as follows:

maximize
α∈Rn

1I⊤α− 1
2λα⊤Y KYα

subject to y⊤α = 0

0 ≤ α ≤ 1I

where y = (y1, y2, ..., yn)⊤, Y = diag(y), Kij = k(xi,xj), i, j = [[n]] is the induced Gram matrix
from S and the inequalities are entry-wise considered. The vector 1I ∈ R

n is a vector with all
entrances equal to 1.

Remark

This problem turns out to be the same one derived from the maximal margin framework stated
in the Appendix A.2, that is, a quadratic problem, which is convex if Y KY is semi-definite
positive. We should notice that in Problem 1.25, if we use a change of variable by defining
α̃i = αi

λ = Cαi,∀i = [[n]], we retrieve the usual form of the SVM dual [Schl 01] (see Appendix
A.2).
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Bidual formulation

It is known in the case of convex optimization problems that the bidual is equivalent to the primal
problem. This is the case for the SVM since a bidual problem can be derived using again the
KKT optimality conditions for the dual Problem 1.25 expressed in its standard form:

minimize
α∈Rn

1
2λα⊤Y KYα− 1I⊤α

subject to y⊤α = 0

0 ≤ α ≤ 1I.

Its Lagrange function can be written as:

L(α, b,ν, ξ) =
1

2λ
α⊤Y KYα−α⊤1I + bα⊤y −α⊤ν − (1I−α)⊤ξ

L(α, b,ν, ξ) =
1

2λ
α⊤Y KYα + α⊤

(
− 1I + by − ν + ξ

)
− 1I⊤ξ (1.27)

with ξ ≥ 0 and ν ≥ 0. Optimality conditions imply:

∂L

∂α
= 0 ⇒

1

λ
Y KYα− 1I + by − ν + ξ = 0

⇒ α = λ(Y KY )−1 (1I− by + ν − ξ) (1.28)

and plugging this last Equation (1.28) into the Lagrange Equation (1.27), together with the
constraints of positiveness of the Lagrange multipliers we obtain:

L(α, b,ν, ξ) =
λ

2

(
(Y KY )−1 (1I− by + ν − ξ)

)⊤
Y KY (Y KY )−1 (1I− by + ν − ξ)

+λ
(
(Y KY )−1 (1I− by + ν − ξ)

)⊤
(−1I + by − ν + ξ)− 1I⊤ξ

= −
λ

2
((1I− by + ν − ξ))

⊤
(Y KY )−1 (1I− by + ν − ξ)− 1I⊤ξ

= −
λ

2
((1I− by + ν − ξ))

⊤
Y K−1Y (1I− by + ν − ξ)− 1I⊤ξ

together with the inequalities:

ξ ≥ 0, ν ≥ 0

Therefore, the new dual problem of the dual problem, the bidual problem, is stated as follows:

minimize
ν,ξ∈Rn,b∈R

λ
2 ((1I− by + ν − ξ))

⊤
Y K−1Y (1I− by + ν − ξ) + 1I⊤ξ

subject to ν ≥ 0,

ξ ≥ 0

Next, a change of variable is proposed to obtain a standard form of the problem. We will let
β = (Y K)−1[1I− by + ν − ξ] so that

Y Kβ = 1I− by + ν − ξ (1.29)

and

ν ≥ 0 ⇒ Y Kβ − 1I + by + ξ ≥ 0,

⇒ Y Kβ + by ≥ 1I− ξ. (1.30)
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It has to be remarked that Y = Y ⊤ and that Y Y = I, the identity matrix. The relation between
the primal and dual variables can be obtained by deriving from Equation (1.29): Y KβY =
(1I − by + ν − ξ)Y , but Y KβY = Y KY β because Y is diagonal and β a vector, leading to
β = (Y KY )−1(1I− by + ν − ξ)Y . Using Equation (1.28), we get:

α = λY β

With this result, the bidual problem can be derived:

Problem 1.26 (Bidual Problem). If S = {(xi, yi)}i=[[n]] is a set of samples, a bidual problem
equivalent to the primal problem is expressed as follows:

minimize
β∈Rn,b∈R,ξ∈Rn

1I⊤ξ + λ
2 β⊤Kβ

subject to Y (Kβ + b1I) ≥ 1I− ξ

ξ ≥ 0.

This problem turns out to be quite interesting because, as expected, the dual of the dual problem
(the bidual) is equivalent to the original primal problem. This concise derivation does not depend
anymore on the functional f but only in its expansion coefficients β. The functional form can

be retrieved as f0(x) =
n∑

i=1

βik(xi,x) (representer theorem!). Additionally, a clear relationship

can be established between the Lagrange multiplier of the dual problem and the bias b. If the
dual problem is solved together with the Lagrange multipliers, the bias term b is the Lagrange
multiplier associated to the equality constraint y⊤α = 0.
This way of calculating b contrasts with the one proposed by Keerthi [Keer 01] since if the dual is
solved, no additional calculation is necessary to obtain b.

1.5.2 Ranking Dual Problem

This problem can easily be transformed into a PQP problem with exactly the same procedure as
in the classification case. Therefore, all known methods can be used to improve the optimization
problem resolution and the parameter search.
We recall the ranking SVM problem that we are interested to solve as stated before:

argmin
f∈H,ξ∈Rm

ξ⊤1I + λ
2 ‖f‖

2
H

s. t. f(xui
)− f(xvi

) ≥ 1− ξi ∀i = [[m]]
ξi ≥ 0 ∀i = [[m]].

(1.31)

To ease the notation, we define ξ = (ξ1, . . . , ξm)⊤, let k : X × X → R be the reproducing kernel
of H and rename each vertex by xi ∈ SX = {xi}i=[[n]].
The Lagrange function will be defined as

L = ξ⊤1I +
λ

2
‖f‖2H −

m∑

i=1

αi(f(xui
)− f(xvi

)− 1 + ξi)− ξ⊤γ

with αi,≥ 0, γ = (γ1, . . . , γm)⊤ and γi ≥ 0, i = [[m]]. As f belongs to a RKHS, the gradient
derivation of the dot product with respect to f again holds along with the derivative of the norm
‖f‖2H and f(x) with respect to f as stated by Equations (1.23) and (1.24). The KKT optimality
conditions can be deduced as follows:

∂L

∂ξ
= 0 ⇒ 1I−α− γ = 0

⇒ 0 ≤ α ≤ 1I (1.32)

∂L

∂f
= 0 ⇒ f(·) =

1

λ

m∑

i=1

αi(k(xui
, ·)− k(xvi

, ·)) (1.33)
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where α = (α1, α2, . . . , αm)⊤. If K ∈ R
n×n is the Gram matrix induced by kernel k, so that

Kij = k(xi,xj), a matrix P ∈ R
m×n can be defined with entries

Pij =





+1 if j = ui

−1 if j = vi

0 otherwise
=⇒ PK =




k(xu1
)⊤ − k(xv1

)⊤

k(xu2
)⊤ − k(xv2

)⊤

...
k(xum

)⊤ − k(xvm
)⊤


 (1.34)

with slight abuse of notation we wrote k(x) = (k(x,x1),k(x,x2), ...,k(x,xn))⊤. From the defini-
tions of P and the vector k(x), we deduce that :

f(x) =
1

λ

m∑

i=1

αiPi,.k(x)

=
1

λ
α⊤Pk(x) (1.35)

where Pi,. represents the ith row of P . Hence if we define β = 1
λP

⊤α with β = (β1, β2, · · · , βn)
⊤

,
the decision function will have the form suggested by the representer theorem

f(·) =
n∑

i=1

βik(xi, ·) (1.36)

Plugging Equation (1.35) in the Lagrange function of the Ranking SVM together with the KKT
condition associated to the primal variables ξi, we deduce after some algebra that the dual of a
ranking Problem 1.31 with m preferences E = {(xui

,xvi
) | i = [[m]]} can be written as:

Problem 1.27 (SVM Ranking Dual Problem). Let S = {(xi, yi)}i=[[n]] be a set of samples as
before and E the set encoding the ranking constraints. The dual optimization problem for the
ranking problem is defined as follows:

argmax
α∈Rm

α⊤1I− 1
2λα⊤PKP⊤α

s.t. 0 ≤ α ≤ 1I.

where the kernel matrix K is defined as Kij = k(xi,xj), i, j = [[n]] and the matrix P defined
according to E by Equation (1.34).

This is a quadratic problem and there is a vast number of algorithms for its efficient resolution.
As already shown, the parameters of the primal model can be retrieved as β = 1

λP
⊤α from the

solution of the QP problem. Nevertheless, this quadratic problem is of O(m) which can be very
large, as it can be of O(n2). An alternative problem is proposed in the next chapter with the aim
of reducing the number of constraints.
As in the classification case, the bidual problem can be deduced in terms of β. The canonical
form of Problem 1.27 is:

argmin
α∈Rm

−α⊤1I + 1
2λα⊤PKP⊤α

s.t. α ≥ 0,
1I−α ≥ 0.

(1.37)

The Lagrangian function of the previous problem is then

L(α,ν, ξ) =
1

2λ
α⊤PKP⊤α−α⊤1I−α⊤ν − ξ⊤(1I−α), with ν ≥ 0, ξ ≥ 0,
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the optimality conditions can be derived as:

∂L

∂α
= 0 ⇒

1

λ
PKP⊤α− 1I− ν + ξ

⇒ ν =
1

λ
PKP⊤α− 1I + ξ ≥ 0.

Plugging it in the Lagrangian function and taking conditions ν ≥ 0, we obtain the problem:

argmax
α∈Rm

− 1
2λα⊤PKP⊤α− ξ⊤1I

s.t. 1
λPKP

⊤α− 1I + ξ ≥ 0
(1.38)

If we define β = 1
λP

⊤α, the ranking bidual problem can be stated as:

argmin
β∈Rm,ξ∈Rm

ξ⊤1I +
λ

2
β⊤Kβ (1.39)

s.t. PKβ ≥ 1I− ξ (1.40)

ξ ≥ 0. (1.41)

Again, the advantage of the bidual problem is that the functional form is not anymore involved
in the problem formulation, but instead its explicit formulation in terms of β.

1.6. Quadratic Programming Methods

Let the primal objective function J(z) in Problem 1.19 have a quadratic form J(z) = 1
2z

⊤Qz−1I⊤z
and let the constraints be linear functions of the form g(z) = y⊤z − d, (a linear constraint),
hi(z) = Ci − zi and hi′(z) = zi′ , i, i

′ ∈ I. Assuming z ∈ R
D, it turns out that with these

assumptions, Problem 1.19 takes the form of a quadratic problem:

minimize
z

1
2z

⊤Qz− 1I⊤z

subject to 0 ≤ zi ≤ Ci ∀i = [[D]] (1.42)

y⊤z = d,

where 1I is a vector of ones; 0 < Ci is the upper bound for variable zi; Q is an D × D positive
semidefinite matrix, and y is a vector of size D.
This is the dual of the SVM problem. The primal problem can also be efficiently solved in the
primal [Chap 07a, Shal 07, Do 08, Bott 08] but is no further treated in this thesis.
The difficulty of solving the previous problem lies in the density of Q, because Qij is in general
not sparse, so if the matrix Q is very large, it might not fit in the available memory, therefore, the
choice of appropriate algorithms have to be done.
The methods proposed by [Osun 97], [Plat 99a] and [Joac 99a] are decomposition algorithms that
modify only a subvector of z per iteration to approach this problem in a better way. This subset
–denoted as the working set B– leads to a small sub-problem to be minimized at each iteration.
Several QP solver methods are listed and explained in the book of Nocedal and in the one of
Luenberger [Noce 99, Luen 05].
In the case of the method proposed by Osuna [Osun 97] (usually called chunking), a subset of
the variables is taken and the resulting subproblem is solved. This breaks down the problem in
smaller subproblems and will eventually lead to an optimal solution for the whole QP. At each
iteration, the chosen variables are those that violate the most the KKT conditions. The variables
with Lagrange multipliers αi equal to zero, that is, all variables with αi = 0 will be left out of
the problem resolution for this iteration. This technique has the advantage that the size of the
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temporal QP problems that have to be solved is a lot smaller than the original one causing less
memory issues.
The decomposition technique [Osun 97] has the same principle as the previous one, but in this
case, it is recommended to keep fixed the number of variables to be changed for each subproblem.
The Sequential Minimal Optimization (SMO) [Plat 99a] is a particular (extreme) case of the
decomposition technique, where the subset is restricted to have size 2. Then, in each iteration a
simple two-variable problem is solved. Chang and Lin in [Chan 05] developed an algorithm based
in SMO but it relies more advanced working set selection scheme.
There exists several other methods for quadratic constrained optimization like the interior point
method , the gradient projection method and methods for general constrained optimization
problems. A more detailed explanation of these methods can be found in optimization books
[Noce 99, Boyd 04, Luen 05]. Because of their efficiency, we will focus in the SMO and the active
set methods, explained in the next subsections. The interior points method is described in the
Appendix A.3.

1.6.1 Sequential Minimal Optimization (SMO)

At each iteration, SMO identifies a pair {zi, zj} to solve a subproblem with only two variables.
This pair is chosen such that it leads to the maximum decrease in the objective function. The
algorithm to select the working set is described in [Fan 05]. After selecting this subset, a new
subproblem can be defined [Chan 05] as follows:

Problem 1.28 (Two-variable QP Subproblem). For iteration t, if B = {i, j} and Qii +Qjj −
2Qij > 0, then the following problem has to be solved

minimize
zt
B=(zi,zj)

1
2 [zi zj ]

[
Qii Qij

Qij Qjj

] [
zi

zj

]
+ (−1IB +QBN zt

N )⊤
[
zi

zj

]
,

s. t. 0 ≤ zi ≤ Ci,

0 ≤ zj ≤ Cj ,

yizi + yjzj = d− y⊤
N zt

N ,

where N = {1, ...,D} \ B, zt
B and zt

N are the sub-vectors of z at iteration t corresponding to B
and N respectively; yN is the sub-vector of y (vector containing the labels) corresponding to N
and 1IB is the vector of ones of size |B|.
In the particular case of SVM, we will see later that the quadratic term has the form Qij =
yiyjk(xi,xj), that is, Q is a matrix involving the labels, and the kernel evaluation.
To find the improving direction as J(z) is a quadratic function, the decrease in the objective
function is obtained via

J(zt + d)− J(zt) = ∇J(zt)⊤d +
1

2
d⊤∇2J(zt)d (1.43)

= ∇J(zt)⊤BdB +
1

2
d⊤
B∇

2J(zt)B,BdB (1.44)

where ∇2J(zt)B,B is the Hessian of J restricted to set B. At the same time, the equality constraint
is:

y⊤
B

(
zt
B + dB

)
= d⇒ y⊤

BdB = 0

In order to solve this subproblem, the following theorem in [Fan 05, Theorem 3] was used.

Theorem 1.29 (Working set selection). The violating pair B = {i, j} with Qii +Qjj − 2Qij > 0
which maximizes the error decrease 1.44 at point zt is the pair yielding the minimum of

−
(−yi∇J(zt)i + yj∇J(zt)j)

2

2(Qii +Qjj − 2Qij)
. (1.45)
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The optimization problem that provides the working set, defines also the corresponding value of
the parameter vector update dB. If the induced new parameters zB = zt

B + dB do not satisfy the
box constraints 0 ≤ zi ≤ Ci, a necessary projection of zB on this box is carried over [Fan 05].
Further modifications were later proposed to this method in order to turn it more efficient since
only few modifications are done at each iteration [Keer 01].

1.6.2 Active Set Method

This method is very efficient to solve the following kind of problems:

minimize
z∈RD

1
2z

⊤Qz− 1I⊤z (1.46a)

subject to 0 ≤ z ≤ C (1.46b)

y⊤z = 0 (1.46c)

where z = [z1, z2, ..., zD]⊤, 0 is a vector of zeros and C is a vector containing only the value C
and Q is again a positive definite matrix. A more general formulation with ai ≤ zi ≤ Ci can be
straightforwardly derived but we will focus on in the case ai = 0 because this will allow us to
handle datasets of huge size [Loos 07b].
The Lagrange equation of Problem 1.46 can be stated in an analogous way as follows:

L(z,α,β, µ) =
1

2
z⊤Qz− 1I⊤z−α⊤z− β⊤(C1I− z) + µy⊤z (1.47)

with α = [α1, α2, ..., αD]⊤, β = [β1, β2, ..., βD]⊤ and α ≥ 0 and β ≥ 0.
Then, the optimality conditions at the optimum (z∗,α∗,β∗, µ∗) of this problem would look like:

∇xL(z∗,α∗,β∗, µ∗) = 0,

y⊤z∗ = 0,

z∗ ≥ 0,

C1I− z∗ ≥ 0,

α∗
i z

∗
i = 0, (1.48a)

β∗
i (C1I− z∗)i = 0, (1.48b)

α∗ ≥ 0, (1.48c)

β∗ ≥ 0, (1.48d)

This method uses the advantage provided by the box-constraint in Equation (1.46b), that is
0 ≤ zi ≤ C, so that if an optimal solution z = [z1, z2, ..., zD]⊤ is given, variables zi can be
partitioned as follows:

• I0 = {i : zi = 0}

• Iw = {i : 0 < zi < C}

• Ic = {i : zi = C}

With these sets, the previous Lagrange Equation 1.47 can be written as follows:

L(z,α,β, µ) =
1

2
z⊤wQw,wzw +

1

2
z⊤c Qc,czc +

1

2
z⊤0 Q0,0z0

+z⊤c Qc,wzw + z⊤c Qc,0z0 + z⊤0 Q0,wzw

−1I⊤wzw − 1I⊤c zc − 1I⊤0 z0 (1.49)

−α⊤
wzw −α⊤

c zc −α⊤
0 z0

−β⊤
w(C1Iw − zw)− β⊤

c (C1Ic − zc)− β⊤
0 (C1I0 − z0)

+µ(y⊤
wzw + y⊤

c zc + y⊤
0 z0),
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where if u, v denote any of the sets {I0, Iw, Ic}, then Qu,v denotes the submatrix formed by the u
rows and v columns of Q and zu and 1Iv denote the sub-vectors containing the u and v entries of
vector z or 1I, respectively. It has to be noticed that this equation can be simplified as all zi ∈ I0
are equal to zero and all zi, i ∈ Ic are equal to C.
If we knew the repartition of the variables in these sets, we could reduce the size of the problem
as we know that all zi in I0 have zero value and all variables in Ic are equal to C. The remaining
problem is the calculation of the exact value of variables in Iw. Applying the same partition, the
objective function can be rewritten in terms of these sets as follows:

1

2
z⊤Qz− 1I⊤z =

1

2
z⊤wQw,wzw + Cz⊤wQw,c1Ic − 1I⊤wzw +K

where K = 1
2z

⊤
c Qc,czc − 1I⊤c zc is a constant value.

Analogously, constraint y⊤z = 0 can be rewritten as:

y⊤
wzw + Cy⊤

c 1Ic = 0

Using this configuration, the optimization problem can be restated as follows:

minimize
zw

1
2z

⊤
wQw,wzw − (1Iw − CQw,c1Ic)

⊤zw

subject to y⊤
wzw + Cy⊤

c 1Ic = 0
(1.50)

It has to be noticed that in the case the sets are known, Constraint (1.46b) is not longer necessary
as it is known that when optimality is reached, all variables in Iw would be between zero and C.
The Lagrangian function of Problem 1.50 is therefore:

L(zw, µ) =
1

2
z⊤wQw,wzw − (1Iw − CQw,c1Ic)

⊤zw + µ(y⊤
wzw + Cy⊤

c 1Ic)

and the KKT optimality conditions for Problem 1.50 can be stated as:

Qw,wzw − 1Iw + CQw,c1Ic + µyw = 0

y⊤
wzw + Cy⊤

c 1Ic = 0.

It has to be noticed that these equations are derived from |Iw| + 1 unknown variables (zw and
µ) and there are the same number of equations, therefore these two conditions can be stated as a
linear system: (

Qw,w yw

y⊤
w 0

)(
zw

µ

)
=

(
1Iw − CQw,c1Ic
−Cy⊤

c 1Ic

)
(1.51)

If after the resolution of this system, there are variables that violate the box constraints in Equa-
tions (1.46b), that is, if there are negative zi or zi is bigger than C, this shows that the initial
supposed repartition of sets I0, Iw and Ic is incorrect, therefore, it will be necessary to readjust
the sets by moving points from Iw to I0 or to Ic.
In the case that all the variables satisfy the constraints, it is still not enough for the optimality
since conditions in Equations (1.48c) and (1.48d) have to be verified for the original problem. To
calculate the value of the Lagrange multipliers α and β, some equivalences must be established.
It has to be noticed that for the variables that are in I0, Lagrange multipliers must hold β0 = 00

to satisfy Equation (1.48b), therefore, if the Lagrangian in Equation (1.49) goes to zero because
a change in z0 implies that its gradient ∇z0

L = Q0,0z0 +Q0,czc +Q0,wzw − 1I0 − α0 + µy0 = 0,
and since the condition to be verified is α0 ≥ 0, the following inequality is to be verified:

Q0,·z− 1I0 + µy0 ≥ 0,

where Q0,· denotes all columns of Q and rows in I0. Similarly, for the variables that are in Ic,
Lagrange multipliers αc = 0c to satisfy Equation (1.48a), then, if the Lagrangian in Equation
(1.49) goes to zero because a change in zc implies that its gradient ∇zc

L = Qc,czc + Qc,0z0 +
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Qc,wzw − 1Ic − αc − βc + µyc = 0, and the condition to be fulfilled is βc ≥ 0, then the following
inequality has to be verified:

−Qc,·z + 1Ic − µyc ≥ 0.

If it not the case, the most violating point in I0 or Ic must change from set to go into Iw.

So, the active set method consists in initializing sets Iw, I0 and Ic and iteratively changing vio-
lating points from set until all optimality conditions are satisfied.

1.6.3 Complexity of Quadratic Solvers

In [Bott 07], an analysis of the complexity of SVM QP solvers is provided: there are given two
intuitive lower bounds on the computational cost of any algorithm that solves the SVM problem
for arbitrary kernel matrices Kij . If a teacher or an oracle indicates the examples which are not
support vectors, that is, those with zi = 0, and the examples which are bounded support vectors
(zi = C), the coefficients of the R remaining free support vectors are determined by a system of R
linear equations representing the derivatives of the objective function. The resolution of the system
typically requires a number of operations proportional to R3. Simply verifying that a vector α

is a solution of the SVM problem involves computing the gradient g of the dual and checking
the optimality conditions. With n examples and S support vectors, this requires a number of
operations proportional to n ·S. Few support vectors reach the upper bound C when it gets large.
The cost is then dominated by the term R3 ≈ S3. The final number of support vectors therefore
is the critical component of the computational cost of solving the dual problem.

Since the asymptotic number of support vectors grows linearly with the number of examples, the
computational cost of solving the SVM problem has both a quadratic and a cubic component. It
grows at least like n2 when C is small and n3 when C gets large. Empirical evidence shows that
modern SVM solvers come close to these scaling laws.

1.7. Conclusions

In this chapter, the framework for a learning problem was established in terms of a multi-criteria
optimization (a balance to be set between the accuracy and the complexity of the model), these
objectives are in general opposite to each other and their interaction is controlled through a regu-
larization parameter. The problem of model selection is then exposed to clarify that a satisfactory
learner depends not only in the proper problem statement but also in the right parameter choice.
The idea of learning problem and model selection is illustrated with two particular cases: the clas-
sification and the ranking problem. A priori, the primal formulation can seem difficult to solve, but
by means of the development and application of continuous optimization results, a primal problem
can be transformed into another one like quadratic problems. The advantage of doing this, is that
the resolution of this type of problems has already been largely studied and efficient methods to
solve it have been developed. The disadvantage of this approach consists in the fact that in order
to do model selection, several optimization problems with different parameters have to be solved
for the given data partition. Unfortunately, the resolution of each one by continuous methods
(methods that take advantage of the function continuity) implies a non-negligible computational
cost as the number of data grows.

The reduction of this computational time is the target of this research. In later chapters, it is shown
that the solution of a problem with quadratic regularization function and linear loss is piecewise
linear with respect to the regularization parameter, leading to an efficient problem resolution not
only for a particular parameter but for the complete parameter domain. This result will be proved
and efficiently used in the following chapters.
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2
Model Selection via

Regularization Paths in
Supervised Learning

As explained in the previous chapter, the SVM framework involves some user’s choices (regular-
ization parameter, kernel choice, features selection). In the sequel, we will focus our interest in
the derivation of tools to tackle the automatic choice of the regularization parameter.
The first part of this chapter is focused on piecewise linear solutions [Ross 07b, Hast 04], which
include the general form of the solution set and a complete development of the regularization
path derived for the Support Vector machines for Classification (SVC). A result is proved here,
showing that the subgradient coefficients and the Lagrange multipliers of this problem are
equal at the optimality if the solution is unique.
The second part, Section 2.3, includes analysis of this path in terms of a validation set, called the
Validation Path , it is shown how an error path for the validation set can be easily built in order
to make faster model selection. It is proved that it is enough to calculate the validation error in
the regularization path breakpoints in order to get the proper regularization parameter.
In Section 2.4, the ranking problem is approached with a SVM-type framework. The problem is
reformulated in order to obtain a significant smaller problem than in the original RankSVM
framework with a low cost in accuracy. Model selection is proposed based on the regularization
path for RankSVM , which again uses the property that an SVM solution structure is mainly
characterized by the choice of the more relevant points, namely the support vectors. The new
framework will also improve the calculation of the regularization path as the problem to be solved
has been considerably reduced, additionally, a large amount of singularities are removed.
As several classification datasets are used to be solved by a ranking algorithm, the equivalence of
a classification and a raking framework, under certain assumptions, is proved in Section 2.4.1.
Finally, Section 2.5 considers a ranking function as an expansion over the basis formed by the
functions {k(xi, ·)}i=[[n]]. In this section, we explore the learning problem with the point of view
of sparsity by considering a ℓ2 loss function together with a ℓ1 regularizer to promote a ranking
solution with few points involved in.

2.1. Piecewise Linear Solutions

In this section, we are interested in multi-criteria problems like the one in Equation (1.7), page
24. The results established for classification could be extended to other SVM type algorithms like
ranking [Zapi 08b], regression [Gunt 06, Gass 07a] and density estimation [Rako 07a]. The main
advantage of this formulation is that the solution set has a linear form by intervals, that is, if we
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2.1 Piecewise Linear Solutions

express the optimal solution α as a function of λ in a particular interval, this will be linear. To
realize the potential of this property, a non-exhaustive list of the derived algorithms and extensions
based on it can be named: Elastic net (double penalization L1 and L2) [Zou 05], Fused Lasso (L1

and total variation penalizations) [Tibs 05], Grouped Lasso [Yuan 06], Least absolute deviation
regression (L1 loss and L1 penalization) [Wang 06c], Non-negative garotte [Yuan 07], L1 penal-
ization in infinite dimension [Ross 07a], Graph data and Lasso [Tsud 07], L1-norm SVM (SVM
with L1 penalty) [Zhu 04], Asymetric cost SVM [Bach 06], Doubly regularized SVM [Wang 06b],
ν-SVM [Loos 07a], SVR extensions [Gunt 06, Wang 06c, Gass 07b], Laplacian Semi-supervised
SVM [Wang 06a, Gass 07c], One-class SVM [Rako 07a], Ranking SVM [Zapi 08b]. In all these
problems, the cost is piecewise linear and the regularization is quadratic or vice versa. In this sec-
tion, we will take advantage of this fact to characterize the set of optimal solutions with respect to
the regularization parameter, as this turns out to be piecewise linear for the chosen multi-objective
criteria.
This kind of framework has been studied in the past in parametric quadratic programming
[Mark 59], least squares problems [Osbo 99] and more generally as piecewise-linear solutions
[Ross 07b]. We are interested in the calculation of the solution for the Tikhonov formulation
for all λ (see Definition 1.15 and Equation (1.7)).
We recall the type of problems our attention is focused on:

f̂λ(·) = argmin
f∈H

L(f, S) + λΩ(f) (2.1)

For notation simplicity, we will denote f̂λ(·) = fλ or simply f̂λ(·) = f . As one can see, with this
definition, the objective of getting all possible solutions can have a high computational cost since,
in principle, it is infinite. However, for finite training sample size, it will be seen that the whole
optimal solution set can be expressed with only a finite number of solutions as the rest of the
solutions can be derived from a linear relation of the firsts. As the set of relevant parameters is
finite, we can enumerate them by t and denote as λt the parameter λ at step t and the solution
f̂λt

(·) as f t. In order to gain in efficiency, the family of piecewise linear solution paths is of
particular interest. To highlight this fact, we consider the following definition.

Definition 2.1 (Piecewise Linear Solution Path). The solution set is said to have a piecewise
linear path when there exists a strictly decreasing (or increasing) sequence λt, t = [[N ]] such that:

f = f t + (λ− λt)ht ∀λ ∈ [λt+1, λt] with λt+1 < λt

(resp. f = f t + (λ− λt)ht ∀λ ∈ [λt, λt+1] with λt < λt+1)

where ht, t = [[N ]] denotes a sequence of functions in H.

With this property, it is easy to efficiently generate the whole path of solution. Indeed, in such a
case, one only needs the sequence λt and the corresponding ht. Any other functions in-between
can be simply obtained by linear interpolation. This means that the whole regularization path
can be completely defined by a finite set of regularization values {λt}t=[[N ]]. This set together with
its corresponding optimal decision functions set {f t}t=[[N ]] are sufficient to easily reconstruct the
rest of the solutions with low computational cost. Therefore, the QP does not need to be solved
from scratch for each λ value. The advantage lies in the fact that it has been experimentally
shown that a single QP resolution is only slightly less expensive than the computation of the
whole regularization path [Hast 04].
Hence, owing to such property, the computational cost of obtaining the whole path of solutions
may be of the order of a single solution computation.
The question induced by this remark is to find which kind of objective functions induce the solution
path to be piecewise linear. Rosset stated the necessary conditions for the problem in Equation
(2.1) to admit a linear solution path. The main result is summarized by the theorem below.

Theorem 2.2 (Piecewise Linear Solution Path Conditions [Ross 07b]). Assume the loss L(f, S)
and the regularizer Ω(f) are convex functions. If one objective function (either L(f, S) or Ω(f))
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is piecewise linear and the other one piecewise quadratic then the solution path of the Problem in
Equation (2.1) is piecewise linear.

Proof. [Ross 07b] Assume L(f, S) and Ω(f) are twice differentiable in a neighborhood of f t, the
solution of Equation (2.1) corresponding to λt. Let also λ = λt +δλ and its corresponding solution
f . Consider finally J(f, λ) = L(f, S) + λΩ(f) and J(f t, λ) = L(f t, S) + λ Ω(f t). The optimality
conditions associated to f t and f are, respectively:

∇f J(f t, λt) = ∇f L(f t, S) + λt∇f Ω(f t) = 0

∇f J(f t, λ) = ∇f L(f t, S) + λ∇f Ω(f t) = 0 (2.2)

where ∇f represents the functional gradient in H. For small values of δλ = (λ − λt) we can
approximate ∇f J(f t, λ) (viewed as a function of λ) by considering the following first order Taylor
expansion of Equation (2.2) around λt:

∇fJ(f t, λ) = ∇f L(f t, S) + λt∇fΩ(f t)

+δλ

[
∇2

fL(f t, S)
∂f

∂λ

∣∣∣∣
λt

+ λt∇2
fΩ(f t)

∂f

∂λ

∣∣∣∣
λt

+
∂λ

∂λ

∣∣∣∣
λt

∇fΩ(f t)

]
+ ǫ(δ2λ)

= ∇f L(f t, S) + δλ∇
2
fL(f t, S)

∂f

∂λ

∣∣∣∣
λt

+λt

(
∇fΩ(f t) + δλ∇

2
fΩ(f t)

∂f

∂λ

∣∣∣∣
λt

)
+ δλ∇fΩ(f t) + ǫ(δ2λ)

where the last equation is valid because ∂λ
∂λ

∣∣
λt = 1. If the functions are quadratic or linear, this

Taylor expansion will be exact as the derivative of third order or more will be zero: ǫ(δ2λ) = 0.
This is not necessary for the following result. Using the previous approximation together with
Equation (2.2), we have the following equivalent limit:

lim
δλ→0

∇f J(f t, λt)−∇f J(f t, λ)

δλ
=
∂f

∂λ

∣∣∣∣
λt

∇2
f L(f t, S) + λt ∂f

∂λ

∣∣∣∣
λt

∇2
fΩ(f t) +∇fΩ(f t) = 0

that gives
∂f

∂λ

∣∣∣∣
λt

= −
(
∇2

f L(f t, S) + λt ∇2
fΩ
(
f t
))−1

∇fΩ(f t)

The piecewise behavior is possible if ∂f
∂λ

∣∣∣
λt

is constant. To fulfill this condition, it is required

∇2
fΩ(f t) to be zero (independence with respect to λ) and ∇2

f L(f t, S) be constant. The latter
condition is satisfied as the loss is assumed to be quadratic and the regularizer linear, completing
the proof. The same can be straightforwardly proved for quadratic regularizer and linear loss.

If the constant derivative ∂f
∂λ

∣∣∣
λt

is known in each interval, the solution for any λ can be straight-

forwardly given.
The piecewise variation of the learning function with respect to the regularization parameter λ
was established for an optimization problem of the form minf L(f) + λΩ(f). The linear variation
holds if ∇2

fΩ(f) = 0 and ∇2
fL(f) = constant. One can remark that the same function f minimizes

CL(f) + Ω(f) with C = 1
λ . Hence using the same arguments as in Theorem 2.2, we deduce

that f is linear w.r.t. C if the loss function satisfies ∇2L(f) = 0 and the regularizer meets
∇2Ω(f) = constant. The need to turn back to this formulation originates from the formulation of
SVM where the regularizer Ω(f) = ‖f‖2H is quadratic and the loss is piecewise linear.
This piecewise linear property will help to find efficiently the complete set of solutions of the
problem as a function of the regularization parameter if the rest of the parameters remain fixed
[Efro 04, Hast 04]. It can also help on linear programming for feature selection [Yao 07] or for
functional component pursuit [Yao 08]. The regularization path can be combined with the search
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of other parameters [Wang 06b] or to make an analogous search [Ross 08]. There exists other
methods to obtain the complete solution set like the predictor-corrector algorithm [Bach 05] when
the conditions of Theorem 2.2 are not met but those algorithms are out of the scope of this work.
More references can be consulted in [Gass 08a].

2.2. SVM’s Regularization Path for Classification

The SVM problem is formed by a linear cost function (the hinge-loss function) and a quadratic
regularization function (norm in the Hilbert space), there exists a neighborhood of solutions (where
the functions are differentiable) around an optimal solution where the conditions of piecewise
linearity stated in Theorem 2.2 are satisfied. We will 2.1.1 be interested in explicitly formulating
this linear relation which has been derived by Hastie [Hast 04]. We recall Problem 1.17:

minimize
f0∈H,b∈R,ξ∈Rn

n∑

i=1

ξi +
λ

2
‖f0‖

2
H (2.3a)

s. t. yi(f0(xi) + b) ≥ 1− ξi, i = [[n]] (2.3b)

ξi ≥ 0, i = [[n]]. (2.3c)

The decision function is defined as f(x) = f0(x) + b. The piecewise linearity of the SVC problem
can be deduced in two manners, the first approach gives a solution by using the subdifferential
directly in the primal problem, while the second approach introduces a Lagrangian function to
achieve the result as in [Hast 04].
For the resolution of the previous problem, the definition of subdifferential is needed. The com-
plementary notions used throughout to review shortly the subdifferential and the optimality con-
ditions in the convex case are explained in Appendix A.1.2.

Definition 2.3 (Subdifferential). Let g(z) : X → R, with X a vector space, a proper and convex
function with the domain of definition Dom(g) ⊆ X . The subdifferential of g at z0 ∈ Dom(g) is
the non-empty convex set

∂zg(z0) = {ν ∈ X : g(z)− g(z0) ≥ 〈ν, z− z0〉,∀z ∈ Dom(g)}.

Each ν ∈ ∂zg(z0) is called subgradient of g at z0.
If the function is differentiable at point z0, then, the subdifferential is a set containing a single
element and it coincides with the gradient [Bonn 06].
The subdifferential is provided with similar properties as the gradient, like the sum and the chain
rules [Schi 07] (necessary definitions are summarized in the Appendix A.1.2):

Definition 2.4 (Proximal subgradient). A vector ν in R
n is said to be a proximal subgradient of

f at x0 provided that there exist a neighborhood U of x0 and a number σ > 0 that

∂P f(x0) = {ν ∈ U : f(x)− f(x0) ≥ +〈ν,x− x0〉 − σ‖x− x0‖
2 ∀x ∈ U}.

the set ∂P f(x0) is the proximal subdifferential.

Proposition 2.5 (Sum Rule (subdifferentials)). Let f0, f1, . . . , fn : X → R̄ be proper and convex
functions. Assume there exists x0 ∈ Dom(f0)∩ Int(Dom(f1))∩ · · · ∩ Int(Dom(fn)) such that fi is
continuous at x0 for i = [[n]]. Then for each x ∈ Dom(f0) ∩Dom(f1) ∩ · · · ∩Dom(fn), it holds

∂(f0 + f1 + · · ·+ fn)(x) = ∂(f0)(x) + ∂(f1)(x) + · · ·+ ∂(fn)(x).

This result can be proved by using the sandwich Theorem A.17 page 146 (see [Schi 07] for details).
Additionally, [Clar 98] gives (Section 9, page 59) a chain rule theorem for ∂(g ◦ f)(x) when f is
locally Lipschitz and g is Lipschitz near f(x). A more general chain rule is here presented in
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A.18, page 146. If the Clarke subdifferential (see [Schi 07]) and the subdifferential of the hinge
loss function g coincide, this theorem could be applied with f is locally L-continuous.

The main purpose of the subdifferential is to detect minimum points. This can be first considered
for unconstrain minimization [Schi 07]: if f : X → R̄ is convex and x∗ ∈ Dom(f), then we obtain
by definition:

f(x∗) = min
x∈X

f(x) ⇐⇒ 0 ≤ f(x)− f(x∗) ∀x ∈ X ⇐⇒ 0 ∈ ∂f(x∗). (2.4)

This result is formalized in Theorem 4.36, page 94 in [Mord 03].

If there are constraints, local optimality conditions can be derived by using the subdifferential (see
appendix A.1.2).

The importance of the obtained result is that both the subdifferential and the Lagrange
multipliers of the SVM optimization problem coincide if the problem has a unique
solution.

Theorem 2.6 (Equivalence of Subgradient and Lagrange Multipliers). If the SVM problem as
stated in Equations (2.3) has a unique solution, the subgradient vector at optimality is equal to the
derived Lagrange multipliers.

Proof. The proof consists in deriving the form of the decision function in terms of the subdiffer-
ential and with the Lagrangian method. The decision function is in both cases a weighted linear
combination where the weights are actually the corresponding subgradient and the corresponding
Lagrange multipliers. If the solution is unique, the subgradient and the Lagrange multipliers must
be the same.

The decision function is derived by the two approaches, resulting in the equivalent formulations
(2.13) and (2.17).

2.2.1 Subdifferential Approach Derivation

Aiming at deriving directly the primal function, we can set z = x ·y and f(z) = z, so that ℓ(f, x, y)
can be expressed as ℓ(z). The hinge loss function can be rewritten as:

ℓ(z) = max{0, 1− z} =

{
0 if z ≥ 1

1− z if z < 1
(2.5)

This implies that the primal problem in Equations (2.3) can be also expressed as the following
learning problem:

minimize
f0∈H,b∈R

J(f0, b) =

n∑

i=1

max{0, 1− yi(f0(xi) + b)}+
λ

2
‖f0‖

2
H (2.6)

In order to check for optimality, the hinge-loss function has to be differentiated. This function is
continuous and differentiable everywhere except at z = 1 (see Figure 1.3(b), page 20):

ℓ′(z) =

{
−1 if z < 1
0 if z > 1.

At z = 1, the subdifferential will be considered.

All the previous results of subdifferentials will be used to derive the solution of the optimization
problem in Equation (2.6). The Hinge loss is not differentiable at z0 = 1, but its subdifferential
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at this point can be calculated as follows:

∂zℓ(1) =
{
ν ∈ R : ℓ(z)− ℓ(1) ≥ 〈ν, z− 1〉 for all z ∈ R

}

=



ν ∈ R :





0− 0 ≥ ν(z− 1) if z ≥ 1
and

(1− z)− 0 ≥ ν(z− 1) if z < 1









=



ν ∈ R :





0 ≥ ν(z− 1) if z− 1 ≥ 0
and

(z− 1)(−ν − 1) ≥ 0 if z− 1 < 0









=



ν ∈ R :





0 ≥ ν if z− 1 ≥ 0
and

ν ≥ −1 if z− 1 < 0









∂zℓ(1) = {−1 ≤ ν ≤ 0} (2.7)

where the last equation is the result of the intersection of both admissible sets of ν. For the rest
of the domain, the subdifferential equals the gradient. Hence the subdifferential of the hinge loss
function is:

∂zℓ(z) =





−ν, 0 ≤ ν ≤ 1 if z = 1
0 if z > 1
−1 if z < 1.

(2.8)

If a subgradient of ℓ(f,x, y) at (xi, yi) is denoted as −αi, the subdifferential of the hinge loss
function ℓ(f,x, y) = max{0, 1− yif(xi)} at yif(xi) is:

∂yif(xi)ℓ(f,xi, yi) =





−αi, 0 ≤ αi ≤ 1 if yif(xi) = 1
αi αi = 0 if yif(xi) > 1
−αi αi = 1 if yif(xi) < 1,

(2.9)

so that

0 ≤ αi ≤ 1 ∀ i = [[n]].

To minimize J in (2.6), optimality conditions will be analyzed and its calculation will be divided
in three parts according to the hinge-loss function differentiability, letting f(x) = f0(x) + b:

• Iα = {i : yif(xi) = 1} =⇒ 0 ≤ αi ≤ 1, ∀αi ∈ Iα,

• I0 = {i : yif(xi) > 1} =⇒ αi = 0, ∀αi ∈ I0,

• I1 = {i : yif(xi) < 1} =⇒ αi = 1, ∀αi ∈ I1.

These sets will be generally referred to as I(·). Objective function J can be rewritten using this
partition as:

J(f0, b) = λ
2 ‖f0‖

2
H +

∑

i∈Iα

max{0, 1− yi(f0(xi) + b)}

+
∑

i∈I0

max{0, 1− yi(f0(xi) + b)}+
∑

i∈I1

max{0, 1− yi(f0(xi) + b)}.
(2.10)

Since J is a function with no constraints, the equivalences in Equation (2.4) will be used to find
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Chapter 2 Model Selection via Regularization Paths in Supervised Learning

the minimum of J . The subdifferential of J is:

∂f0
J(f0, b) = ∂f0

(
λ

2
‖f0‖

2
H +

∑

i∈Iα

max{0, 1− yi(f0(xi) + b)}

+
∑

i∈I0

max{0, 1− yi(f0(xi) + b)}+
∑

i∈I1

max{0, 1− yi(f0(xi) + b)}

)

= ∂f0

λ

2
‖f0‖

2
H + ∂f0

∑

i∈Iα

max{0, 1− yi(f0(xi) + b)}

+∂f0

∑

i∈I0

max{0, 1− yi(f0(xi) + b)}+ ∂f0

∑

i∈I1

max{0, 1− yi(f0(xi) + b)}

= ∇f0

λ

2
‖f0‖

2
H + ∂f0

∑

i∈Iα

max{0, 1− yi(f0(xi) + b)}

+∇f0

∑

i∈I0

max{0, 1− yi(f0(xi) + b)}+∇f0

∑

i∈I1

max{0, 1− yi(f0(xi) + b)}

= λf0(·) + ∂f0

∑

i∈Iα

max{0, 1− yi(f0(xi) + b)} −
∑

i∈I0

αiyik(xi, ·)−
∑

i∈I1

αiyik(xi, ·)

= λf0(·)−
∑

i∈Iα

αiyik(xi, ·)−
∑

i∈I0

αiyik(xi, ·)−
∑

i∈I1

αiyik(xi, ·).

The second equality holds thanks to the sum rule of subdifferentials. The subdifferential is replaced
by the gradient in the third equality as these functions are differentiable. We recalled results in
Section 1.5.1 page 38 to obtain the fourth equality. It was stated that if f belongs to a RKHS,
we have: ∇f‖f‖

2
H = ∇f 〈f, f〉H = 2f(·) and ∇ff(x) = ∇f 〈f,k(x, ·)〉H = k(x, ·). Finally, it has to

be notice that for the hinge loss function the proximal subdifferential and the subdifferential are
the equal. Additionally, the hinge loss function, and f are Lipschitz. Therefore, the chain rule of
Clarke [Clar 98] was used to obtain the last equality.
Analogously,

∂bJ(f0, b) = −
∑

i∈I0

αiyi −
∑

i∈Iα

αiyi −
∑

i∈I1

αiyi

To find a minimum of J , we will use the equivalences in Equation (2.4) or the Remark 4.21 in
[Bonn 06]: finding z that minimizes f : X → R is equivalent to find a point z that satisfies the
relation 0 ∈ ∂f(z).
If 0 ∈ ∂f0

J(f0, b) and 0 ∈ ∂bJ(f0, b), then there exists a subgradient (equivalently a vector of
coefficients αi) so that the optimality conditions with the subdifferential is:

∂f0
J(f0, b) : −

∑
i∈I0

αiyik(xi, ·)−
∑

i∈Iα
αiyik(xi, ·)−

∑
i∈I1

αiyik(xi, ·) + λf0(·) = 0 (2.11)

and

∂bJ(f0, b) : −
∑

i∈I0
αiyi −

∑
i∈Iα

αiyi −
∑

i∈I1
αiyi = 0 ⇒

n∑
i=1

αiyi = 0 ,(2.12)

with αi the subdifferential of the hinge-loss function with respect to yif(xi) and defined according
to (2.9).
A corresponding representer theorem can be deduced from Equation (2.11) resulting in a
explicit formulation of function f0:

f0(·) =
1

λ

n∑

i=1

αiyik(xi, ·) (2.13)

and the decision function can be defined

f(·) =
1

λ

(
n∑

i=1

αiyik(xi, ·) + α0

)
,
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2.2 SVM’s Regularization Path for Classification

with α0 = λb.

2.2.2 Lagrangian Approach Derivation

In this section, the same results as above are proved by using instead a Lagrange function as done
by Hastie et al. [Hast 04]. The Lagrange function will be defined for problem in Equations (2.3)
as:

L =
n∑

i=1

ξi +
λ

2
‖f0‖

2
H −

n∑

i=1

αi

(
yi(f0(xi) + b)− 1 + ξi

)
−

n∑

i=1

γiξi (2.14)

with Lagrange multipliers αi ≥ 0 and γi ≥ 0. Hence, the regularization path is again based on the
optimality conditions, that, following the development in Equations (1.25), are stated as follows:

∂L

∂b
= 0 ⇒

n∑

i=1

αiyi = 0 (2.15)

∂L

∂ξi
= 0 ⇒ 0 ≤ αi ≤ 1 (2.16)

∂L

∂f0
= 0 ⇒ λf0(·) =

n∑

i=1

αiyik(xi, ·). (2.17)

Letting f(·) = f0(·) + b , the KKT conditions can be stated as follows:

αi(1− yif(xi)− ξi) = 0, i = [[n]],

γiξi = 0, i = [[n]],

γi ≥ 0, i = [[n]] and

ξi ≥ 0, i = [[n]].

Using all these constraints, the following implications can be deduced:

αi = 1 and ξi > 0 ⇒ yif(xi) < 1

yif(xi) > 1 ⇒ αi = 0 and letting ξi = 0 to minimize the objective function (2.3a)

yif(xi) = 1 ⇒ 0 ≤ αi ≤ 1

Once an optimal solution α is obtained with a regularization parameter λ, three sets can be defined
taking into consideration the distribution of the points according to the margin:

• Iα = {i : yif(xi) = 1, 0 ≤ αi ≤ 1}, points on the margin

• I1 = {i : yif(xi) < 1, αi = 1}, points inside the margin or badly classified

• I0 = {i : yif(xi) > 1, αi = 0}, points outside the margin and well classified.

This partition is exactly the same as the one given by the subgradient approach.

2.2.3 Piecewise Linearity for SVM

We are interested in finding the regularization path for all λ ≥ 0. The aim is to find an initial
solution, for example, starting with λ very large and by decreasing its value, all events will be
registered as it changes, until λ = 0. When λ decreases, the regularization term ‖f0‖

2 will be
allowed to increase as it is less penalized in the objective function. The analogous to the linear
soft case is translated as a decrease of the margin (see Appendix A.2), allowing more points to
move from being inside the margin (holding yif(xi) < 1) to the outside (yif(xi) > 1) that by
continuity pass through the margin (yif(xi) = 1) while their αi goes down from 1 to 0.
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If the repartition of our sets I(·) were known, the values for αi, with i ∈ I0 ∪I1 would be zero and
one, respectively. Then, the only unknown variables would be the subgradients for αj , j ∈ Iα∪{0}.
To obtain these values, it has to be observed that

1 = yjf(xj) =
1

λ

(
∑

i∈Iα

αiyiyjk(xi,xj) +
∑

i∈I1

yiyjk(xi,xj) + α0yj

)
∀ xj ∈ Iα

⇒ λ =
∑

i∈Iα

αiyiyjk(xi,xj) +
∑

i∈I1

yiyjk(xi,xj) + α0yj ∀ xj ∈ Iα. (2.18)

Additionally, constraint y⊤α = 0 can be considered given by the optimality condition of Equation
(2.12) or (2.15) when written in vectorial form. Recalling that αi = 0 ∀i ∈ I0, αi = 1 ∀i ∈ I1 and
using a matrix notation for the previous Equation (2.18), a linear system is derived as:

0 = y⊤
Iα

αIα
+ y⊤

I1
1II1

λ1IIα
= YIα

KIα,Iα
YIα

αIα
+ YI1

KI1,Iα
yIα

+ α0yIα

where 1IIα
and 1II1

represent a vector of ones of size |Iα| and |I1|, respectively, YIα
and YI1

is a
diagonal matrix containing elements yi, i ∈ Iα or I1 accordingly, y,α ∈ R

n are vectors containing
the values of yi or αi, i = [[n]], respectively. Finally, a subvector of such a vector is denoted with
a subindex like yI(·)

. These equations will give the following system of |Iα|+ 1 equations and the
same number of variables:

[
0 y⊤

Iα

yIα
YIα

KIα,Iα
YIα

] [
α0

αIα

]
=

[
−y⊤

I1
1II1

λ1IIα
− YI1

KI1,Iα
yIα

]

[
α0

αIα

]
= M−1

[
−y⊤

I1
1II1

λ1IIα
− YI1

KI1,Iα
yIα

]
(2.19)

where M =

[
0 y⊤

Iα

yIα
YIα

KIα,Iα
YIα

]
.

For known sets I(·), the subgradient values αi, i = [[n]] at a fixed λ can be seen as unknow variables
which can be deduced via the solution of a linear system.
Two important results are obtained by this last Equation (2.19). The first result is that if the
three set I(·) are known, the value for all the subgradient variables can be straightfor-
wardly obtained and therefore, the decision function.
The second one, is that the subgradient variables αi for i ∈ Iα∪{0} vary in a linear manner
as the derivative is constant and this result can be obtained from Equation (2.19):




∂α0

∂λ

∂αIα

∂λ


 = η = M−1

[
0

1IIα

]
.

with η = (η0, η1, . . . , η|Iα|)
⊤, where η0, corresponds to the derivative of α0.

An initial solution for λ very large can be easily found, the details for this initialization can be
found in the work of Hastie [Hast 04]. With this solution, the values for α would be known and
sets Iα, I1 and I0 can be set. The rest of the α values can be exactly determined with the linear
equation:

[
α0

αIα

]
=

[
αt

0

αt
Iα

]
+ δλη =

[
αt

0

αt
Iα

]
− (λt − λ)η (2.20)

or

αi − α
t
i = −(λt − λ)ηi i ∈ Iα ∪ {0}. (2.21)
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2.2 SVM’s Regularization Path for Classification

2.2.4 Event Detection

All previous results are valid as long as sets I(·) remain unchanged, therefore, the next interest
is to be able to determine when this is no longer the case, which is called an event . In order to
be able to detect an event, the first aim of this section is to write the variation of the decision
function f and variables αi, i = [[n]] as functions of λ. The variation of f with respect to λ will
be first search.

The direct consequence of the remark after Theorem 2.2 is that the function f(x) is linear w.r.t
to C. To enforce this fact, let us write

f(x) =
1

λ

(
n∑

i=1

αiyik(xi,x) + α0

)
⇒ f(x) = C

(
n∑

i=1

αiyik(xi,x) + α0

)
.

The piecewise variation stated that f(·) = f t(·) + (C − Ct) ∂f
∂C

∣∣∣
Ct
. However, we want to retrieve

the formulation of f as a function of λ and can write

f(·) = f t(·) +
λt − λ

λtλ

∂f

∂C

∣∣∣∣
Ct

It just remains to drop down C in the derivative ∂f
∂C

∣∣∣
Ct

. We can see that ∂C = ∂ 1
λ = −∂λ

λ2 , leading

to the equation

f(·) = f t(·) +
λ− λt

λ
λt ∂f

∂λ

∣∣∣∣
λt

. (2.22)

The derivative of the decision function with respect to λ will be:

∂f

∂λ
=

1

λ

(
n∑

i=1

yik(xi, ·)
∂αi

∂λ
+
∂α0

∂λ

)
−

1

λ2

(
n∑

i=1

αiyik(xi, ·) + α0

)

=
1

λ

(
n∑

i=1

yik(xi, ·)
∂αi

∂λ
+
∂α0

∂λ

)
−

1

λ
f(·)

=
1

λ

(
∑

i∈Iα

yik(xi, ·)
∂αi

∂λ
+
∂α0

∂λ

)
−

1

λ
f(·).

The last equation holds while sets I0, Iα, I1 remain fixed in a neighborhood of λ. If this derivative
is evaluated at λt we get

∂f

∂λ

∣∣∣∣
λt

=
1

λt

(
∑

i∈Iα

yik(xi, ·)
∂αi

∂λ

∣∣∣∣
λt

+
∂α0

∂λ

∣∣∣∣
λt

)
−

1

λt
f t(·)

Plugging this last derivative in our piecewise variation derivation, Equation (2.22) we get

f(·) = f t(·) +
λ− λt

λ

(
∑

i∈Iα

yik(xi, ·)
∂αi

∂λ
+
∂α0

∂λ

)
−
λ− λt

λ
f t

f(·) =
λt

λ
f t +

λ− λt

λ

(
∑

i∈Iα

yik(xi, ·)
∂αi

∂λ
+
∂α0

∂λ

)

f(·) =
λt

λ
f t +

1

λ

∑

i∈Iα

yik(xi, ·)(αi − α
t
i) + (α0 − α

t
0) (2.23)
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where the last line is true because it was proved that α follows a linear trajectory:

αi = αt
i − (λt − λ)ηi = αt

i − (λt − λ)
∂αi

∂λ

∣∣∣∣
λt

, i ∈ {0} ∪ Iα (2.24)

αi = αt
i, i ∈ I0 ∪ I1 (2.25)

with ηi as given in Equation (2.21) and will be true, while sets I0, Iα and I1 remain fixed.
The final objective will be to find the next λ causing an event, that is, the one involving an
evolution of the sets Iα, I0 and I1. These changes can be detected by two principal events:

1. A point xi, i ∈ Iα reaches I0 or I1, that is αi, i ∈ Iα reaches its boundary value zero or one.
These events can be detected using Equation (2.24) for all αi, i ∈ Iα, that is, solving for λ
the following equations:

1 = αt
i − (λt − λ)ηi, i ∈ Iα (2.26)

0 = αt
i − (λt − λ)ηi, i ∈ Iα (2.27)

2. A point xi, i ∈ I0∪I1 reaches the margin (that is, yif(xi) = 1). The λ causing these events
can be calculated by using the fact that αi−α

t
i = −(λt−λ)ηi and rewriting Equation (2.23)

as:

f(x) =
λt

λ
f t(x) +

λ− λt

λ
ht(x) with ht(x) =

∑

i∈Iα

yik(xi,x)ηi + η0.

If xi, with i ∈ I0 ∪I1 reaches Iα, then yif(xi) = 1, obtaining 1 = λt

λ f
t(xi)yi + λ−λt

λ ht(xi)yi

and the λ that causes such an event can be calculated as:

λ = λt

(
f t(xi)− h

t(xi)

yi − ht(xi)

)
, (2.28)

2.2.5 Regularization Path Algorithm

We recall the derived dual problem in Section 1.5.1:

maximize
α∈Rn

1I⊤α− 1
2λα⊤Y KYα

subject to y⊤α = 0 (2.29)

0 ≤ α ≤ 1I

If the regularization path was started with λ0 very large (that is, a solution α0 of the QP (2.29)
was obtained with λ0), the path can be calculated by starting with this pair (α0, λ0) and from it,
sequentially deriving all λ’s resulting from Equations (2.26), (2.27) and (2.28) as λ decreases and
choosing as following step the largest λ < λt to adjust slope ηt.
Figure 2.1 shows an example of the trajectory that each αi follows as λ decreases. The problem
considered here is the mixture dataset [Hast 01], which is a case of binary classification that follows
a distribution of Gaussian mixtures. We followed the values of the dual variables αi as λ changed.
The regularization path starts with λ0 ≈ 15 with all points in I1 and finalizes with λ ≈ .06 when
I1 turns empty. At each interval, αi follows a linear way. Some instability can be observed at the
end of the path.
The SVM regularization path algorithm is summarized in Algorithm 1.

Initialization issues

The algorithm can also be used starting with a very small λ and making it increase. However,
the advantage of starting with a very large parameter value is that there exists techniques to
efficiently obtain an initial solution : the principle is simple and consists in determining initial
values λ0 and b0 so that all points belong at the beginning to I1. Then, at least one point from
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(a) α’s trajectories at the beginning of the path.
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(b) α’s trajectories at the end of the path.

Figure 2.1: Evolution of the α values as λ changes.

Algorithm 1 Pseudo-code of the SVM regularization path computation

Input: Training set {(xi, yi)}, i ∈ [[n]].
Output: Complete solution set {(αλ, λ)}.

Set t = 0.
Compute the initial value λ0 and corresponding solution α0.
Deduce the corresponding sets (Iα, I1, I0).
repeat

Compute the update direction ηt =

(
0 yt⊤

yt Kt
∗

)−1(
0
1I

)
, with Kt

∗ = YIt
α
KIt

α,It
α
YIt

α
.

Use αt,ηt and f t(xi) to detect all λ’s producing an event.
Select the corresponding decreasing value λt+1.
Save the corresponding event(s) type and the related point(s).
Update parameter α using Equation (2.24).
Update sets (Iα, I1, I0) according to the retained event(s) and concerned point(s).
Set t = t+ 1.

until λ is small, I1 is empty or another termination criteria is reached.

each class is placed on the margin (i.e. in Iα) [Hast 04]. This procedure holds if the learning
problem is perfectly balanced that is the numbers of samples in both classes are equal otherwise
a QP problem is solved with user set value λ0 to initialize the algorithm.

It is worth mentioning that for a training set, this initialization procedure provides an upper bound
λmax on the meaningful values of the regularization parameter. Indeed for λ ∈ [λmax,∞), the
margin is large and all the points could be positioned in I1 by adjusting b accordingly. Therefore
in the path calculation, the focus will solely concerns values λ in the interval [λmin, λmax], where
λmin has to be deduced. A guess of λmin, if it is different from zero, can be derived using results
in [Loos 07a] where a path for ν−SVM algorithm is proposed along with an initialization that
considers error-free solutions.

To conclude this part, it can be said that the beauty of the regularization path lies in the fact
that the computational cost to calculate the whole path is experimentally about the same as the
calculation of a single optimization problem with a fix λ [Hast 04]. After having calculated the
path, not only a particular optimal solution will be obtained but the whole optimal solution set
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Chapter 2 Model Selection via Regularization Paths in Supervised Learning

for all λ’s will be in hand to apply any of the model selection methods to choose a final machine.

2.3. Complete Validation Error Curves

In Section 2.1, the conditions of a multi-objective function for its solution to have a piecewise
linear path were established. If the conditions hold, the complete solution set can be efficiently
calculated. The following question to be solved is: How to estimate the generalization ability
for each model? The challenge in this issue lies in the fact that there is an infinite number of
models to be tested. We will focus our first efforts to solve this question in the classification theory,
particularly, in the Support Vector Machines for Classification (SVC) method, but the presented
development can be straightforwardly extended to other frameworks holding the same piecewise
characteristics.
As proved in the previous section, the entire regularization path will give as output all possible
models, that is, the associated model to all regularization parameter λ. Some approaches have been
done to automatically select the regularization parameter using the regularization path [Loos 07a]
breakpoints that give a sampling of the regularization parameters.
Indeed, keeping trace of the validation error measure along the regularization path is a prac-
tical approach as relevant changes in the decision function is given at each regularization path
breakpoint. Our matter in this section consists in knowing if that is a sufficient sampling of the
regularization parameters to choose a model.
To illustrate this issue, consider Figure 2.2, the validation error for all λ is depicted with the
dotted red line while the validation error on the regularization path breakpoints is depicted with
a blue line. In Figure 2.2(a), the blue curve follows the red one even along the local minima while
in Figure 2.2(b), the real minimum of the validation error curve between 0.5 and 1 is skipped by
the regularization path curve.
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(a) Validation error along the regularization and valida-
tion path.
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(b) Validation error along the regularization and valida-
tion path. A value of λ with lower validation error is
missed in the regularization path.

Figure 2.2: Validation path vs. regularization path examples. The blue line denotes the validation
error at each of all breakpoints given by the regularization path. The dotted red line depicts the
validation error for all regularization parameter λ, that is, the complete validation curve.

A justification of the fact that it is statistically enough to use the sampling given by the regular-
ization path is developed in this section.
In this section, model selection for the SVC is analyzed under a training-validation-test sets frame-
work. We take advantage of the piecewise-linear solution property in order to be able to calculate
the complete validation error curve. As it will be noticed, this curve also has a piecewise form
with respect to the previously defined sets Iα, I0 and I1 and new ones defined in a similar way
for the validation set.
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2.3 Complete Validation Error Curves

We will restrict ourself to the case when the data is partitioned in three sets for learning:

• Training Data (SX , SY ), with n points.

• Validation Data (SXV
, SYV

), with nV points.

• Test Data

The model choice is based on the validation data, that is, the model that outputs the minimum
error on the validation data will be retained.
The regularization path reviewed in Section 2.2 outputs a set {λt} and its corresponding solutions
αt and slopes ηt that define the trajectory of the optimal solutions for each induced interval. Using
the same convention as in Section 2.1, let us denote f = f̂λ and f t = f̂λt

as the corresponding
solutions to λ and λt, respectively.
At each given model, f , with parameter λ, the validation error can be measured as:

EV (λ, SXV
, SYV

) =

nV∑

i=1
(xi,yi)∈SXV

×SYV

L(f,xi, yi),

where L is a loss function and will generate in this way a validation error curve that depends
on the value of λ. In order to generate the complete curve, the validation error should be measured
for all regularization parameter, which turns out to be infinite. Fortunately, in this section, it is
proved that this curve is piecewise constant with respect to the parameter λ.
It is later observed that, in average, observing the validation error at the regularization path
breakpoints will be enough to choose a model.

2.3.1 Validation Error Curve Path

It was proved in Theorem 1.16 that as λ decreases, the training error decreases as well. Neverthe-
less, the validation error decreases until the model starts to overfit the training data, causing an
increase in the validation error. In our case, we will consider the 0-1 loss to calculate the validation
error for the model given by parameter λ:

EV = EV (λ, SXV
, SYV

) =
∑

(xj ,yj)∈(SXV
,SYV

)

Γyj ·f(xj)<0

where Γu is the indicator function equals to 1 if the predicate u is true and 0 otherwise.
In a parallel approach, Rosset [Ross 08] follows the path of cross validated solutions to regularized
kernel quantile regression, allowing him to efficiently solve the whole family of bi-level problems.
The validation error curve will change as λ varies. Let {λl} be the set of breakpoints where
the validation curve changes, that is, where a change in the error measure occurs. The set {λl}
will include all the breakpoints in the regularization path {λt} additionally with breakpoints
given by the change of side in the decision function of the validation points, which will be called
validation events. The curve given by all values El

V = EV (λl, SXV
, SYV

) for all λl will be called
the validation path .
Our first interest is to determine in an efficient manner the validation error for each λ. For this
purpose, it has to be observed that the value of f(xj) depends on λ and has an hyperbolic relation
with respect to it see Equation (see Equation (2.22)), with λt+1 ≤ λ ≤ λt and sets Iα, I0 and I1
fixed in this interval.
Consider a sample xj belonging to the validation set. The prediction output by the decision
function for this sample is:

f(xj) =
1

λ

(
α⊤Y k(xj) + α0

)
xj ∈ SXV

where k(x) = [k(x1,x) · · · k(xn,x)]
⊤

and n is the training set size. To simplify the notation and
ease our development, here we let vector α to include all the Lagrange multipliers and not only
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those related uniquely to support vectors. Using the piecewise linear variation α = αt +(λ−λt)ηt

on regularization path, the latter expression of f(xj) takes the form

f(xj) =
1

λ

(
α⊤Y KV

·,j + α0

)

=
1

λ

(
α⊤

Iα
YIα

KV

Iα,j + α⊤
I1
YI1

KV

I1,j + α0

)

=
1

λ

((
αt

Iα
+ (λ− λt)ηt

Iα

)⊤
YIα

KV

Iα,j + 1I⊤YI1
KV

I1,j + αt
0 + (λ− λt)η0

)

=
1

λ

((
αt

Iα
− λtηt

It
α

)⊤
YIα

KV

Iα,j + 1I⊤YI1
KV

I1,j − λ
tη0 + αt

0

)
(2.30)

+
1

λ

(
ληt

Iα

⊤
YIα

KV

Iα,j + λη0

)

=
1

λ
τ t
j + υt

j (2.31)

where KV represents the n × nV kernel matrix applied to the validation set, that is: KV
i,j =

k(xi,xj),xi ∈ SX ,xj ∈ SXV
, and KV

·,j is the submatrix of KV containing all rows and column j.
Finally, YI(·)

is the diagonal matrix containing labels yi with i ∈ I(·) and

τ t
j =

(
αt

Iα
− λtηt

Iα

)⊤
YIα

KV

Iα,j + 1I⊤YI1
KV

I1,j − λ
tη0 + αt

0,

υt
j = ηt

Iα

⊤
YIα

KV

Iα,j + η0.

As f(xj) is proportionally inverse to λ, the validation error count can be easily updated as λ
moves. This is done by calculating when a validation sample is going through the zero of the
decision function. As in the regularization path under the training set, our interest will be to
detect the events that cause this relationship to change, therefore, three sets will be defined:

• V0 = {j : xj ∈ SXV
, f(xj) = 0},

• V+ = {j : xj ∈ SXV
, yjf(xj) > 0},

• V− = {j : xj ∈ SXV
, yjf(xj) < 0}.

These sets contain points in the validation set that are, respectively, on the decision frontier,
correctly or wrongly classified. Therefore, the λ values of interest can be determined by monitoring
the validation events, which are defined as the following set changes:

• j ∈ V0 −→ V+ ∪ V−

• j ∈ V+ −→ V0 −→ V−

• j ∈ V− −→ V0 −→ V+

Where the first event denotes the points that are on the decision function and turn well or wrongly
classified, the second one includes the points that are well classified and get exactly on the decision
function. The third one is the incorrectly classified points that reach the decision function.
The previous list makes emphasis in the fact that if xj , j ∈ V+ (or V−) achieves the boundary of
the two classes, that is, at λl+1, f l+1(xj) = 0, event j −→ V0 will be produced, but, by continuity,
an infinitesimal reduction of λl+1, say λl+2 = λl+1−ε, where ε is an infinitesimal positive number,
will again move xj to V− (or V+) for all λ < λl+1, producing a change in the validation error.
Figure 2.3 illustrates the change in the decision function for a point xj in different cases for
positive yj . Figures 2.3(a), 2.3(c) and 2.3(e) consider the case when the coefficient τj of the
evaluation of the decision function for xj is positive. This would mean that if λ decreases along
the regularization path, the evaluation of the decision function at xj will monotonically increase.
The case τj < 0 is depicted in subfigures 2.3(b), 2.3(f) and 2.3(d).
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(a) Evaluation of f at xj , j ∈ V0, yj , τj > 0.
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(b) Evaluation of f at xj , j ∈ V0, yj > 0, τj < 0.
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(c) Evaluation of f at xj , j ∈ V
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, yj , τj > 0.
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(d) Evaluation of f at xj , j ∈ V
−

, yj > 0, τj < 0, no
event can occur in this case.
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(e) Evaluation of f at xj , j ∈ V+, yj > 0, τj > 0, no
event can occur in this case.
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(f) Evaluation of f at xj , j ∈ V+, yj > 0, τj < 0.

Figure 2.3: Validation event detection for case yj = 1. Evaluation of f for λl, λl+1 and, if it
applies, for λl+2. The filled red point indicates the position at λl and the empty one(s) illustrates
the searched events (see Table 2.1).
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Chapter 2 Model Selection via Regularization Paths in Supervised Learning

For a specific range of λ, say an interval given by two consecutive breakpoints in the regularization
path, [λt+1, λt], the form of the evaluation of point xj is known: f(xj) = 1

λτ
t
j + υt

j . We are
interested in finding for xj all possible validation events in this interval but only certain cases are
matter of interest at each state. Let seek first, if it exists, the parameter value λl+1 that causes

f l+1(xj) = 0 with λt+1 < λl+1 < λt. (2.32)

Table 2.1 summarizes the conditions to detect validation events, which can be fast updated

Sets Case λ value EV Sets update Fig.

j ∈ V0

f l(xj) = 0

yj · τj > 0 λl+1 = λl − ε El+1
V = El

V − 1
V l+1

+ = V l
+ ∪ {j}

V l+1
0 = V l

0 \ {j}
(a)

yj · τj < 0 λl+1 = λl − ε El+1
V = El

V

V l+1
− = V l

− ∪ {j}
V l+1

0 = V l
0 \ {j}

(b)

j ∈ V−

f l(xj)yj < 0

yj · τj > 0
λl+1, f l+1(xj) = 0 El+1

V = El
V

V l+1
0 = V l

0 ∪ {j}
V l+1
− = V l

− \ {j} (c)

λl+2 = λl+1 − ε El+2
V = El+1

V − 1
V l+2

+ = V l+1
+ ∪ {j}

V l+2
0 = V l+1

0 \ {j}

yj · τj < 0 No event − − (d)

j ∈ V+

f l(xj)yj > 0

yj · τj > 0 No event − − (e)

yj · τj < 0
λl+1, f l+1(xj) = 0 El+1

V = El
V + 1

V l+1
0 = V l

0 ∪ {j}
V l+1

+ = V l
+ \ {j}

λl+2 = λl+1 − ε El+2
V = El+1

V

V l+2
− = V l+1

− ∪ {j}
V l+2

0 = V l+1
0 \ {j}

(f)

Table 2.1: Validation set event detection. The first column denotes the set a point xj belongs to
at breakpoint λl. The second column divides the possible cases depending on the class a point
belongs to and the form of the evaluation function. The third column enumerates the values of λ
for the possible events for each particular case, followed by the corresponding validation error and
sets update in the last two columns. The value ε denotes an infinitesimal value that will cause the
point to move again into another set.

hereupon. As already mentioned, when a validation point reaches the decision function at λl+1,
f l+1(xj) = 0, by continuity, for an infinitesimal decrease of size ε > 0, on λl+1, a validation
event will occur, for λl+2 = λl+1 − ε, leading the point on the other side of the decision function.
This table was constructed by observing the form of the evaluation function for each point in the
validation set. These functions are strictly increasing or decreasing according to λ. Observing
Figures 2.3(e) and 2.3(d), it can be seen that some events cannot occur if λ decreases.

To better understand Table 2.1, the derivation of a case for a positive sample in the validation set,
xj with yj > 0, will be developed. Let us take as example the case j ∈ V− for λl, λl ∈ [λt+1, λt],
then f l(xj) < 0 (a wrongly classified sample). In the case τ t

j > 0 (leading to the case yj · τ t
j > 0),

the evolution of the decision function with respect to λ is an hyperbola increasing as λ decreases
(see Figure 2.3(c)). If no validation event has been detected in interval [λt+1, λt], the last validation
event will coincide with an event in the regularization path, so that λl = λt. As point xj is bad
classified, we are looking for the event f(xj) > 0. To achieve this state, event f l+1(xj) = 0 has
to occur first. The next validation breakpoint, λl+1, will move point xj from set V− to set V0.
At this stage, the validation sample will still be incorrectly classified, so that the validation error
remains constant: El+1

V = El
V . It is important to notice that the evaluation function at xj will

continue to increase as λ decreases, so that if the next regularization breakpoint λt+1 < λl+1,
point xj will instantaneously move from set V0 to set V+ for any infinitesimal reduction of λl+1,
which can be numerically denoted as λl+2 = λl+1 − ε > λt+1, with any small ε > 0. Finally, this
last event will indeed reduce the validation error so that El+2

V = El+1
V − 1.
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2.3 Complete Validation Error Curves

On the other hand, if τ t
j < 0 (leading to the case yj · τ

t
j < 0, see Figure 2.3(d)), no event can occur

under the same previous conditions because j ∈ V− implies that f t(xj) < 0 and for τ t
j < 0 the

evaluation of the decision function will continue to decrease (see Figure 2.3(e)). Therefore, it will
never occur f l+1(xj) = 0 or f l+1(xj) > 0 for any λ < λl.
The rest of the cases in Table 2.1 can be also easily deduced depending on the shape of the decision
function.
It is important to notice that the Validation path can be easily extended in a cross validation
or bootstrap frameworks to assure a robust parameter choice. A Validation path can be built
for each of the {training − validation} partition sets and an approximation of the generalization
error curve can be obtained by taking the average of the k-fold cross or bootstrap validation given
paths.
Algorithm 2 describes the steps to follow in order to obtain the complete validation error curve.

Algorithm 2 Pseudo-code for the SVM validation error curve calculation

Input: training set {(xi, yi)}, i = [[n]],
validation set {(xj , yj)}, j = [[nV ]].

Output: Complete validation error curve set {(El
V , λ

l)}
Use Algorithm 1 to obtain the complete solution set {(αt

λ, λ
t)}.

Initialize the validation error for parameter λ0 as E0
V .

Set l = 1 and t = 1.
repeat

At interval [λt+1, λt], calculate the corresponding constants τ t
λ and υt

λ.
repeat

Use Table 2.1 to detect the next validation event, λl+1, in [λt+1, λl]. Add λl+1 to the
validation path and update its corresponding validation error value and validation sets.
Set l = l + 1.

until no more events are found.
Set t = t+ 1.

until the whole regularization path is covered.

2.3.2 Model Selection with the Validation Path

During the path calculation phase, a breakpoint λt is given when an event occurs. Each training
event will modify the form of the function, and therefore, the validation error can increase or
decrease between two consecutive decision functions. The validation error will substantially change
if there is a large number of validation events between two solutions given by the regularization
path.
If the two sets were drawn independently from the same distribution, with high probability, dense
and sparse regions all over the space should appear similar in both sets. Additionally, two optimal
solutions from consecutive events in the regularization path will determine a subspace in the
sample space where classification labels have not changed for the training points.
Each modification in the linear relationship of the decision function, that is, in the coefficients,
implies an event in the training set. This suggests that an area with many events indicates a dense
area of the samples distribution. Vice versa, a large area without training events will occur if the
decision frontier is traversing a sparse area.
We can bound the space so that the whole training set is included in it, assigning zero probability
measure to the rest of the space. Then, the space will be divided according to the given decision
functions by the regularization path, if we assume that the areas are disjoint. This can be seen
as if the decision frontiers were moving in a parallel manner encountering training points one
after another. In order to approximate the distribution, it will be supposed that we have equal
probability to encounter a point in each of these defined areas.
A rough approximation of the probability distribution can be done by giving an equal probability
of finding a point in each of the defined areas by the sequence of decision function at each event.
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If both sets (the training and validation one) are equally distributed, with high probability, we
will find a maximum of three validation events between two regularization path breakpoints. So
that the approximation of the validation error done at the breakpoints of the regularization path
will have, with high probability, a maximum distance of three to the minimum possible validation
error.
This can be better explained in an unidimensional space, as the bounded space is an interval
and it will be divided by each of the events in sub-intervals. Suppose that n = nV , then the
admissible interval will be divided in n+1 subintervals. If we consider a particular subinterval, we
can calculate the probability for each of the validations points to lie in this particular sub-interval
if they are sampled one by one. That will give us the probability of encountering one, two, etc.
validation points in this particular sub-interval. This turns out to be a Bernoulli distribution
which density and cumulative distribution look as in Figure 2.4.
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Figure 2.4: Distribution of the number of validation points encountered between two decision
frontiers given by two consecutive parameters in the regularization path. The figure illustrates the
probability of having 0, 1, 2, etc. points out of n in a particular interval out of n+ 1 intervals. It
is assumed that the probability of lying in any interval is equal. It was observed that for any n,
the maximum probability is attained at one.

In Figure 2.4 it can be seen that the probability of encountering more than three points in the
same interval is very low. This analysis was made considering that there is the same number of
samples in the training and in the validation sets. So that, with high probability, the validation
error at each of the regularization path breakpoints will not be larger than three as the probability
of having more than three points in an interval is 0.98.
A deeper analysis of the maximum number of expected events can be found in [Ewen 06], where
the probability for the maximum number of events in any interval is estimated.
The results coming out from the previous statements are summarized in the next theorem:

Conjecture 2.7 (Model choice using regularization path breakpoints1). When choosing a model
under the training-validation set framework, if the training and the validation sets possess the
same distribution, choosing the best model given by the regularization path breakpoints will be, with
high probability, the best possible chosen model among all models.

The previous proposition states that if the validation error is measured over all possible models,
which are infinite because λ is continuous, the best model will lie in average, on one of the
breakpoints given by the regularization path obtained with the training set, therefore, statistically,
it is not necessary to obtain the complete validation curve to be able to efficiently select a model.

1Special thanks to Gregory Mallet for his help in the formalization of this result.
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After this proposition, model selection under the training-validation sets framework is reduced
to finding all breakpoints in the regularization path and measuring in these points the validation
error. This implies that the validation error can be in practice obtained for all λ, leading to an
efficient model selection because the exact value at each point is exactly calculated, and the best
possible model under a validation set criterion can be explicitly found.

2.3.3 Experiments

Proposition 2.7 was tested on several datasets from the UCI site2 and in a toy dataset3. This
last one is an example generated with several Gaussian mixtures. The datasets where normalized
according to their standard deviation and mean.

The characteristics corresponding to the used dataset are summarized in Table 2.2, the dimension
of each sample, the total number of samples and the number of existing classes.

Dataset No. features No. of samples No. of classes
Mixture 2 200 2
Cancer 30 569 2

Diabetes 8 768 2
Heart 13 270 2

Schnitzel 3 280 2
Usps (1 vs. 7) 256 1858 2
Usps (2 vs. 5) 256 1657 2
Usps (4 vs. 9) 256 1200 2

Spam 57 4126 2

Table 2.2: Datasets characteristics.

The Gaussian kernel was used in all the experiments to generate the decision function. The
used kernel bandwidth is the one proposed by a method that approximates the validation error
using a gradient descent method [Chap 02] to later search the regularization parameter with the
regularization path. For each run, the complete dataset was randomly partitioned in four parts,
leaving three quarters of the data as learning set and the last quarter as test set. At each stage, a
partition for the learning set was done to obtain a training set with about the half of the learning
data and a validation set with the rest, so that both have an equal distribution according to the
algorithm described in [Aupe 08]. The complete validation error curve is calculated in a bootstrap
framework [Hast 01] with five bootstrap folds to smooth the validation error curve.

For the model selection task, the validation error was measured in both the regularization path
breakpoints and in all the given validation path breakpoints. For both paths, the λ parameter
incurring the minimum validation error was kept. The two kept parameters were used to derive
two models that were trained using a data set combining the training and validation sets, that
is, with the learning set. Finally, the test error is measured on the unseen test set. This process
is repeated five times by randomly generating learning-test sets and the mean of the test error is
taken to make an estimation of the generalization error.

The aim of the experiments is to show that the regularization path has enough breakpoints to be
analyzed and also that it can help the gradient algorithm [Chap 02] to get out of local minimums
while taking advantage of the proposed approximation given by the gradient method. Figure 2.5
shows the complete average validation error curve for the cancer dataset. It can be seen that with
the regularization path, the local minimum found by the gradient method can be overcome.

After applying the explained method, the obtained results in terms of test error of the best
selected model are reported in Table 2.3. Three options were considered: the regularization
curve, the validation curve and the gradient method. The last column contains the average of the

2http://archive.ics.uci.edu/ml/
3taken from http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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Figure 2.5: Usage of gradient method with the regularization and validation path in the cancer
dataset. The green circle is the one founded by the gradient method, the kernel parameter is kept
while the regularization parameter is searched with the validation path. The resulting λ using
only the regularization path is drawn in blue and the one using the complete validation curve in
dotted red. The validation error against the value of λ is plotted.

kernel parameter proposed by the gradient method. It can be seen that the performances of the
algorithms are closely similar.

Dataset
Test error
reg. Path

Test error
Val. Curve

Test error
Grad. Method

kernel-σ

Mixture 0.2 0.2 0.2 0.466
Cancer 0.021 0.021 0.021 5.513

Diabetes 0.25 0.25 0.242 3.183
Heart 0.179 0.179 0.173 3.854

Schnitzel 0.037 0.037 0.043 0.677
Usps (1 vs.7) 0.008 0.008 0.007 12.200
Usps (2 vs.5) 0.003 0.003 0.002 10.897
Usps (4 vs.9) 0.009 0.009 0.01 14.510

Spam 0.064 0.064 0.057 5.757

Table 2.3: Mean test error with homogeneous partition. The errors are the ratio of the number
of misclassified points over the size of the test set. The experiment was repeated ten times, the
average test error is shown.

Table 2.4 compares the difference between the obtained regularization parameter according to the
minimum validation error in the regularization path against the global minimum in the validation
curve and the regularization parameter given by the gradient method. The calculation time of
both methods is shown. The calculation of all possible models for all regularization parameters
with fixed kernel parameter is larger than the needed time using the gradient method and it
increases depending in the dataset complexity.

Finally, the last column in Table 2.4 measures the average number of validation events between
two regularization path events. The remarkable issue in this result is the fact that in average there
is one validation event every two regularization path events, confirming the fact that the given
sampling by the regularization path is enough to choose a parameter as stated in Proposition 2.7.

In the case where there exists a local minimum in the validation curve, analyzing the complete
curve can help to find the global minimum, still the usefulness of doing so is not clear as the test
error was not systematically improved by doing so. However, having in hand a complete and entire
validation path, even at a slightly expensive price, could help the user in the choice of the optimal
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2.4 Ranking SVM

Dataset
λ diff.

train-val
λ diff.

train-grad
Reg. path

time
Gradient

time
No. Events

Mixture -0.031 -0.179 0.51 0.18 0.40 (0.54)
Cancer -0.020 -0.238 2.31 0.91 0.39 (0.39)

Diabetes -0.009 0.145 7.26 1.57 0.39 (0.78)
Heart -0.042 -3.605 0.56 0.24 0.39 (0.48)

Schnitzel 0.064 -0.765 0.76 0.28 0.39 (0.45)
Usps (1 vs.7) -0.005 -1.283 50.08 12.48 0.45 (0.35)
Usps (2 vs.5) 0.745 -3.017 101.48 10.15 0.38 (0.87)
Usps (4 vs.9) 0.012 0.143 38.07 9.30 0.42 (0.39)

Spam -0.002 -1.233 5710.48 108.74 0.42 (0.89)

Table 2.4: Difference between the proposed λ parameter per method, calculation time (in seconds)
for each method and average number of events per regularization path breakpoint with its standard
deviation in parenthesis.

solution.

Interestingly, results in Table 2.3 do not seem to be very affected if the sampling of the training-
validation sets is not homogeneous. Test were done with training-validation partitions with less
guarantee to have an homogeneous distribution, but after the bootstrap procedure, the non-
homogeneity does not seem to substantially change the test error or the number of encountered
validation events.

2.3.4 Conclusions

The Regularization path is a tool to obtain all optimal solutions for the SVM framework given
a fixed kernel parameter. An algorithm to efficiently obtain the complete validation curve was
developed so that along the regularization path, track can be kept of the corresponding validation
error.

It was argued that given an homogeneous partition of the training and validation sets, it will be
enough to choose one of the regularization parameters proposed by the regularization path to get,
with high probability, the model with the lowest validation error. Experiments showed that there
is, in average, one validation event between two regularization path events, that could eventually
improve the validation error. This result suggests that the calculation of the complete validation
error curve could be unnecessary as the breakpoints of the training regularization path contain
almost enough informations for the evaluation of the generalization error.

The time to calculate the complete set of solutions with a fixed kernel parameter is about five
to ten times the calculation of the optimal model with the gradient method. Still, it is not clear
if after the solution given by the gradient method, fixing the kernel parameter and having at
hand the regularization parameter that outcomes the minimum of the validation error will help
to improve the test error. The exploration of the combination of a regularization path for kernel
parameter determination simultaneously with the one of regularization parameter could provide
insights and valuable answers to this question.

2.4. Ranking SVM

Supervised learning problems under the ranking framework is introduced in this section. As stated
in Section 1.3.2, the flexibility of the kernel methods framework is used, so that the rankSVM
algorithm is a regularization problem, controlling the generalization error by balancing the training
error and the complexity of the decision function f by means of a regularization parameter λ . The
complexity is measured as the norm (often the L1 or L2 norm in SVM setting) of f . The originally
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proposed rankSVM uses a L2 norm for this purpose. We recall this optimization problem:

Problem 2.8 (SVM Ranking Dual Problem).

min
f∈H,ξ∈Rm

ξ⊤1I + λ
2 ‖f‖

2
H

subject to f(xui
)− f(xvi

) ≥ 1− ξi ∀i = [[m]]
ξi ≥ 0 ∀i = [[m]].

With its dual formulation:

Problem 2.9 (SVM Ranking Dual Problem).

argmax
α∈Rm

α⊤1I− 1
2λα⊤PKP⊤α

s.t. 0 ≤ α ≤ 1I.

where P is a matrix encoding the ordering constraints (see Equations (1.34)). In this section, we
concentrate on speeding up and automating the choice of λ by means of a regularization path
[Zapi 08b] for the rankSVM and building on top of the results obtained in the last section, leading
to an efficient problem resolution.
Additional issues on this framework include the fact that, if there are n samples, the number of
constraints is of order O(n2) and the final model is a linear combination of all these. In general,
ranking problems are large-scale problems and constrained in time.

2.4.1 Ranking vs. Classification

It is natural to expect that the classification problem and the ranking one are related under the
SVM framework. A classification problem can be turned into a ranking one by artificially assigning
preferences according to the class each sample belongs to. In this section, a link is made between
the rankSVM and the SVC frameworks. The aim is to prove that the feasible set of both problems
is the same under the same conditions and that the introduction of artificial preferences is useful
in both cases.

Theorem 2.10 (Equivalence of the feasible sets for the ranking and classification problems (con-
straint to functions with no training error)). If a ranking problem is composed of only two ranks
(w.l.o.g. yi ∈ {±1}, C1 the positive class (yi = 1) and C2 the negative class (yi = −1)) and we
define FC = {f : yi(f(xi) + b) ≥ 1 ∀i = [[n]], for a particular b ∈ R for a fixed f}, the feasible set
(of functions with no training error) of the classification problem, and FR = {f : f(xi)− f(xj) ≥
2,∀i ∈ C1, j ∈ C2} a slightly modified (but equivalent) feasible set (of functions with no training
error) of the ranking problem, then, sets FC and FR are the same set.

Proof. The proof is done in two parts:

• To prove: FC ⊂ FR.

Let f ∈ FC , then yi(f(xi) + b) ≥ 1 for all i = [[n]], so we have in particular:

f(xi) + b ≥ 1, ∀xi ∈ C1

−(f(xj) + b) ≥ 1, ∀xj ∈ C2,

for a particular b ∈ R. Adding these inequalities we get:

(f(xi) + b)− (f(xj) + b) ≥ 1 + 1, ∀xi ∈ C1,xj ∈ C2

f(xi)− f(xj) ≥ 2, ∀xi ∈ C1,xj ∈ C2

thus, f belongs to FR
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• To prove: FR ⊂ FC .

If f ∈ FR then by hypothesis

f(xi)− f(xj) ≥ 2 for all xi ∈ C1,xj ∈ C2. (2.33)

Let

xmin = min
xi,i∈C1

{f(xi)} and xmax = max
xj∈C2

{f(xj)}

and we will define

b = −
f(xmin) + f(xmax)

2

then using (2.33) we get f(xmin)− f(xmax) ≥ 2, so for i ∈ C1

f(xi) ≥ f(xmin) = f(xmin)−
f(xmin) + f(xmax)

2
+
f(xmin) + f(xmax)

2

=
f(xmin)− f(xmax)

2
+
f(xmin) + f(xmax)

2
≥

2

2
− b

and therefore f(xi) + b ≥ 1

analogously, noting that f(xmax)− f(xmin) ≤ −2 for j ∈ C2

f(xj) ≤ f(xmax) = f(xmax)−
f(xmin) + f(xmax)

2
+
f(xmin) + f(xmax)

2

=
f(xmax)− f(xmin)

2
+
f(xmin) + f(xmax)

2
≤ −

2

2
− b

and therefore −(f(xj) + b) ≥ 1.

we can then conclude that both sets are the same.

2.4.2 RankSVM Singularity and Graph Reduction

The rankSVM optimization problem induces a directed graph for each query (see Figure 1.11).
Each edge corresponds to a relationship of relevance between samples that has to be satisfied,
that is, each edge corresponds to a constraint. These constraints include as well all transitive
relationships that could in fact be induced by other ones. It was experimentally observed that
this redundancy causes the Hessian matrix PKP⊤ in Problem 2.9 to be singular with many zero
eigenvalues. The singularity can be overcome by making a correction of the Hessian matrix,
nevertheless, the number of variables remains large.
The fact that there exists several redundant constraints was already noticed in other RankSVM
publication [Herb 00] and was used to derive uniform convergence bounds. In order to derive this
bound in an analogous manner as for the classification case, samples must be drawn in a i.i.d.
manner, which is not the case given the transitivity relations.
Here, we take advantage of the transitivity relations to reduce in a robust manner the number of
constraints in the rankSVM problem by imposing a higher rank to one of the samples among each
rank level.
This new graph is built so that for each rank level a particular sample is designed as the maximum
among his ranking, so that edges from the chosen sample will be added to the other samples in
the same level (intra-rank constraints), indicating that the chosen sample has more relevance than
the rest at the same rank. For the immediate upper level, all samples in it will be only compared
to the artificially designed maximum of the lower rank (inter-rank constraints) and repeating this
for each rank level. We recall the ranking example seen in Section 1.3.2, with the following graph:
The corresponding reduced graph for this problem would look as in Figure 2.7:
The procedure to create the new graph is described in Algorithm 3 page 73.
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Figure 2.6: Induced graph for the ranking problem stated in Table 1.6.
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Figure 2.7: Reduced graph for the ranking problem stated in Table 1.6.

Algorithm 3 Reduced graph construction for the RankSVM problem.

Input: Training set {(xi, yi, qi)}, i = [[n]] (sample, rank, query).
Output: adjacency matrix P ′ ∈ R

m′×n corresponding to the reduced directed graph.
Set nr = number of ranks, nq = number of queries, and j = 1.
for Q = 1 to nq do

for R = nr − 1 to 1 do
Choose at random a sample k, xk, with rank yk = R and qk = Q.
Let V = {i|yi = R, qi = Q, i 6= k} samples with rank R for the query Q, ns = |V |,

Intra-rank constraints generation
for l = 1 to ns do

Set P ′
jk = 1, P ′

jVl
= −1, P ′

jm = 0,∀m /∈ {k ∪ Vl} with Vl the lth element of set V .
Set j = j + 1.

end for

Inter-rank constraints generation
Let V = {i|yi = R+ 1, qi = Q} samples with rank (R+ 1) for the query Q, ns = |V |,
for l = 1 to ns do

Set P ′
jk = −1, P ′

jVl
= 1, P ′

jm = 0,∀m /∈ {k ∪ Vl}.
Set j = j + 1.

end for
end for

end for

By transitivity reasons, Figure 2.7 includes the constraints of Figure 2.6. A solution to the ranking
problem based upon Graph 2.7 and satisfying all constraints will be a solution of the same problem
as Graph 1.11.

For a solution searching to violate as few as possible constraints, the best strategy would be to
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2.4 Ranking SVM

keep all samples having equal relevance within a particular band-value in the decision function
evaluation. If this is hold, and the evaluation value increases as the ranking does, all inter-rank
constraints will be satisfied, the unsatisfied constraints will be located between samples of the
same rank (intra-rank constraints). Intra-rank violations will be preferred to inter-rank violations
because the first ones are fewer. Notice that if one intends to enforce this fact, an asymmetric
ranking problem can be formulated where different regularization parameters could be applied
with regard to the type of ordering constraints (intra or inter-rank constraints).
The advantage of this new formulation is that the number of constraints is significantly smaller
than in the original RankSVM algorithm. The first one can be of order O(n2), while the second
one is of order O(n). To see this, it has to be noticed that with the new formulation, for each rank
level, if there are ns samples at that level, there will be a maximum of (2×ns) edges: ns−1 edges
to design the maximum of that level and ns edges going to the lower level. This construction
will lead to a smaller problem and, therefore, a faster training time with a consistent problem
statement.

Theorem 2.11 (Relation between ordering constraint matrices P and P ′). Let matrix P be the
adjacency matrix containing all constraints as proposed in the original rankSVM problem. Let
P ′ be the resulting matrix built as described in Algorithm 3, then, matrix P ′ is the result of row
operations on matrix P and if n is the number of rows (equal in both), the number of columns in
P ′ will be less than 2n.

Proof. Let matrix P be of size m× n and matrix P ′ of size m′ × n with n the sample size, m and
m′ the number of ordering constraints for respectively the complete and the reduced graph. Each
edge in matrix P ′ is either an edge going from levels (k + 1) or k to level k.
i) a row in P ′ representing an edge going from level (k+ 1) to level k will already exists in matrix
P , say row i, therefore if a column vector o is defined with zeros everywhere except in the i-th
row, multiplication o⊤P will output the desired row of matrix P ′.
ii) a row in P ′ representing an edge going from xui

to xvi
in the same level can be easily constructed

by taking any sample xi in an upper level and finding the corresponding rows eu and ev representing
the edges from xi to xui

or xvi
, respectively. Finally, let o⊤ be the column vector with minus one

in the eu-th row and one in the ev-th row. o⊤P will output the desired row of matrix P ′.
For the size of P ′, it only has to be noticed that each of the n nodes will have at most two
adjacent edges: one coming from the designed maximum of its own rank and the other going to
the maximum of the lower rank.

This new proposed graph construction will not only reduce the size of the optimization problem
but will also help an important issue which is the fact that for a particular λ, there exists many
optimal solutions as there are redundant constraints.

2.4.3 Regularization path for RankSVM

The number of ranking constraints m is of the order of the square of the number of labeled pairs
x = (d, q) (with the full graph), and therefore, grid search on the regularization parameter will be
very time consuming. The reduced graph proposes a problem of order n, the number of labeled
pairs, but solving many QP is still costly. This section investigates the application of regularization
path idea to help the tuning of λ.
Similar to SVM classification, it turns out that the derivation of the ranking function f involves
a piecewise variation of its parameters with respect to λ and hence forms a regularization
path. Indeed, in the RankSVM algorithm, the loss function L(f) is the hinge loss (which is a L1

type-function) and the regularizer Ω(f) is chosen as a quadratic function. Following the works
of [Ross 07b] and [Hast 04], the regularization path for the rankSVM framework was derived
[Zapi 08b].
For a given λ, let α and f(x) be the optimal solution and the decision function for Problem 2.9,
respectively. Then, the following sets derived from the KKT optimality conditions can be formed:

• Iα = {i ∈ [[m]] | f(xui
)− f(xvi

) = 1, 0 ≤ αi ≤ 1},
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• I0 = {i ∈ [[m]] | f(xui
)− f(xvi

) > 1, αi = 0},

• I1 = {(i ∈ [[m]] | f(xui
)− f(xvi

) < 1αi = 1} .

Iα is the set of pairs (or ordering constraints) that lie on the margin whereas I0 and I1 represent
respectively the sets of satisfied and non-satisfied ordering constraints.
Similarly, we will denote by αt and f t(x) the optimal solution of the dual Problem 2.9 with
regularization parameter λt. We assume the sets (It

α, I
t
1, I

t
0) induced by the solution of the opti-

mization problem with λt remain unchanged for all λ ∈ (λt+1, λt), i.e., (It
α, I

t
1, I

t
0) = (Iα, I1, I0).

Hence, αi, i ∈ I0 ∪ I1 remains with value zero or one respectively, while αi ∈ Iα has a linear
relation on λ.
This can be seen by writing f(x) as follows:

f(x) =

[
f(x)−

λt

λ
f t(x)

]
+
λt

λ
f t(x)

=
1

λ

[
(α−αt)⊤Pk(x) + λtf t(x)

]
using Equation (1.35)

f(x) =
1

λ

[
(αIα

−αt
Iα

)⊤PIα
k(x) + λtf t(x)

]
(2.34)

where the last line is true as αi − α
t
i = 0 for all i /∈ Iα. PIα

is the submatrix of P containing the
rows corresponding to Iα and all columns. For all i ∈ Iα we have that 1 = f(xui

) − f(xvi
) =

f t(xui
)− f t(xvi

), leading to

1 =
1

λ

[(
αIα
−αt

Iα

)⊤
PIα

(
k(xui

)− k(xvi
)
)

+ λt
]
.

Therefore
λ− λt =

(
αIα
−αt

Iα

)⊤
PIα

(
k(xui

)− k(xvi
)
)
. (2.35)

This equation is valid for all pairs in Iα for fixed sets Iα, I0, and I1. It can be simplified by
transposing Equation (2.35) and using Equation (1.34) in it, getting:

(λ− λt)1IIα
= PIα

KP⊤
Iα

(
αIα
−αt

Iα

)
(2.36)

If we define η = (PIα
KP⊤

Iα
)−11IIα

, with 1IIα
a vector of ones of size |Iα|, then it can finally be

seen that αi, i ∈ Iα changes piecewise linearly in λ as follows:

αi = αt
i − (λt − λ)ηi i ∈ Iα. (2.37)

Therefore, for all λ, the optimal solution can easily be obtained using Equation (2.37) while the
sets remain fixed, i.e., no event occurs. These events can be detected to update vector η.

2.4.4 Initialization

An initial solution is necessary to define sets Iα, I1 and I0 and vector η. Given λ, the quadratic
Problem 2.9 can be solved but as mentioned before, it is computationally expensive. Instead, an
initial solution can be easily obtained if λ is very large since β = 0 minimizes the bidual problem
expressed in Equation (1.39). This implies that ξi = 1 and because of the strict complementary
and KKT conditions, the associated Lagrange parameter αi = 1. To have at least one element in
Iα, we need to find a pair (xui

,xvi
) such as 1 = f(xui

)− f(xvi
). Thus, the following equation

λui,vi
= α⊤P (k(xui

)− k(xvi
))

has to be solved for all pairs and knowing that α = 1I. Hence, initially all pairs will be in I1 and,
as initial λ value, we take

λ0 = max{λui,vi
}.

The corresponding pair (xui
,xvi

) is included as first element of Iα.
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2.4.5 Event Detection

At step t the optimal solution αt defines a partition Iα, I1, I0. The linear variation of the param-
eters α remains until a change in these sets happens. If an event occurs, then the linear equation
has to be readjusted. Two types of events have to be determined: a) a pair in Iα goes to I1 or I0
and b) a pair in I1 or I0 goes to Iα.

Pair in Iα goes to I1 or I0

This event can be determined by analyzing at which value of λ the corresponding αi turns zero or
one. Equation (2.37) is used and the following systems are solved for λi:

1 = αt
i − (λt − λi)ηi i ∈ Iα (2.38)

0 = αt
i − (λt − λi)ηi i ∈ Iα. (2.39)

Using this last equation, the exact values for λi that produce an event on pairs in Iα moving to
I0 ∪ I1 can be determined.

Pair in I1 or I0 goes to Iα

To detect this event, note that Equation (2.36) can also be written as follows:

(
αIα
−αt

Iα

)
= (λ− λt)

[(
PIα

KP⊤
Iα

)−1
1IIα

]
= (λ− λt)η. (2.40)

Plugging Equation (2.40) in Equation (2.34), we can write f(x) in a convenient manner and letting
ht(x) = η⊤PIα

k(x), then

f(x) =
1

λ

[
λtf t(x)− λtht(x) + λht(x)

]
(2.41)

An event on pair (xui
,xvi

) ∈ I0 ∪ I1 −→ Iα means that f(xui
)− f(xvi

) = 1 and can be detected
by using Equation (2.41). The corresponding λi that generates this event is calculated as follows:

λi =
λt [(f t(xui

)− f t(xvi
))− (ht(xui

)− ht(xvi
))]

1− (ht(xui
)− ht(xvi

))
(2.42)

λt+1 will be the largest resulting λi < λt from Equations (2.38), (2.39) and (2.42).

2.4.6 Remarks and comments

Here we briefly discuss some issues of the algorithm related to the piecewise variation, the numerical
complexity and how to address the emptiness of the set Iα.

Implementation Details

It has to be noticed that the matrix multiplication PIα·K·,· can be reduced by detecting the points
Aα = {i|(xi,xj) ∈ Iα or (xj ,xi) ∈ Iα} so that PIα·K·,· = PIαAα

KAα,·, which avoids quite a few
multiplications by zero. An analogous reduction can be done when having PI0·K·,· or PI1·K·,·.
The path computation is summarized by the pseudo-code of Algorithm 4.

On the functional piecewise variation

Let function g = λf corresponds to the regularization parameter λ. In a similar manner, consider
the function gt = λtf t which corresponds to the solution for the value λt. From Equation (2.41),
one derives easily the relation g = gt + (λ − λt)ht. Therefore, we recover the conditions for
the piecewise linear variation stated in Theorem 2.2. This linear variation formally concerns the
function g instead of f . However the parameters α involved in f evolve linearly with λ.
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Algorithm 4 Pseudo-code of the rankSVM regularization path computation

Input: The set of m preferences E = {(xui
,xvi

) | i ∈ [[m]]}

Output: All solutions (fλ, λ)

Set t = 0
Compute the initial value λ0 and estimation α0.
Deduce the corresponding sets (I0

α, I
0
1 , I

0
0 )

repeat

Compute the update direction of the parameters ηt = (PIt
α
KP⊤

It
α
)−11IIt

α

Use ηt to detect all the necessary events and the corresponding regularization parameter
values

Select the appropriate boundary value λt+1, save the event type (pair in I1 ∪ I0 goes to Iα

or pair in Iα goes to I1 or I0) and the related pair(s) of constraint(s)

Update the parameters according to Equation (2.37)

Update the sets (It
α, I

t
1, I

t
0) according to the retained event and the concerned pair(s)

t = t+ 1

until λ is small or another termination criteria is reached.

On the numerical complexity

The numerical complexity of the algorithm can be analyzed as follows. We assume the whole matrix
P K P⊤ is available beforehand as it can be built and stored at the beginning of the algorithm and
this computation requires O(mn2) operations from the knowledge of the matrices P and K. At
each iteration, solving the linear system in Equation (2.36) involves a cost of order O(|Iα|

3). The
calculation of all subsequent values λt+1 (using Equation (2.38), (2.39) and (2.42)) has a numerical
complexity of O(m|Iα|) whereas the detection of the next event is of order O(m). According to
Equation (2.37), the update of all αi is O(m). We can note that the computational complexity
is essentially related to the cardinality of |Iα|. The cubic complexity of the linear system can
be decreased to square complexity using a Sherman-Morrison rule to update the inverse of the
matrix PIα

K P⊤
Iα

or a Cholesky update procedure. The exact complexity of the algorithm is hard
to predict since the total number of events needed for exploring entirely the regularization path
is data-dependent and the mean size of |Iα| is difficult to guess beforehand. However, the total
complexity is few multiples of the cost for solving directly the dual Problem 2.9.

Applying this mechanism, the different solutions of the original rankSVM can be retrieved. Follow-
ing the same arguments as [Hast 04], the theoretical numerical complexity of the path computation
is a small multiple of the QP solving. However, in practice the computational cost can be slightly
higher due to some numerical problems which requires sometimes to reinitialize the algorithm us-
ing the warm restart procedure [DeCo 00] of the SVM algorithms. Beyond these technical points,
we want to emphasize that the singularity of the SVM hinge loss induces sparsity in ordering
constraints but the number of parameters is the order of the number of the labeled pairs (d, q).
To achieve sparsity in the parameters, we propose later in this chapter a L1-norm penalization.

On the emptiness of Iα

It may happen during the algorithm that the set Iα becomes empty. In such situation, a new
initialization of the algorithm is needed. We apply the procedure developed in Subsection 2.4.4
except the fact we consider solely the pairs in I1 keeping unchanged the set I0.
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2.4.7 Experimental Results

Several datasets where used to measure the accuracy and time to process the regularization path for
the RankSVM algorithm. Firstly, a toy example generated from Gaussian distributions ([Hast 01])
was applied. Some investigations on real life datasets taken from the UCI repository4 are further
presented. Before delving into the details of the experimental results, one of the performance
measure used to assess the quality of a ranking function is presented: the discounted cumulative
gain.

The ndcg score

The discounted cumulative gain (dcg) [Jarv 02, Weim 08] is a score used to measure the accuracy
of a ranking. Its particularity is that it assigns more weight to the first m results as in a search
engine, where the user will typically pay attention only to the first m results. This score has a
normalized version (ndcg), which runs between zero and one, the perfect ranking (πs) will have
a score of one while bad rankings will have a score close to zero. The ndcg at the mth level is
denoted as ndcg@m.
Let S be a set. A function π : S → S is called a permutation of S if it is injective (one-to-one)
and surjective (onto). This function will map a vector to another vector with the same elements
but in different order. If the vector a is permuted by π, [π(a)]i is the index of the element in a
that appears at position i after the permutation. For instance if πs is a permutation that sorts a
decreasingly, then the following assertion is true:

[πs(a)]i ≥ [πs(a)]i+1 ∀i ∈ {1 . . . n− 1}

The [n]dcg@m of a sequence y, permuted by π is:

ndcg(y,m, π) =
dcg(y,m, π)

dcg(y,m, πs)
(2.43)

dcg(y,m, π) =
m∑

i=1

2[π(y)]i − 1

log2(i+ 1)
(2.44)

where πs is the permutation which sorts y decreasingly.
To illustrate this norm, we take a fictitious example for a particular query and a decision function
f , its output is shown in Table 2.5.

i-th Sample (xi) x1 x2 x3 x4 x5 x6 x7

Real Ranking (yi) 1 1 3 2 1 3 4

Proposed Ranking by f(xi) 1 2 3 7 6 4 5

Table 2.5: Example of the use of the ndcg. This table presents the real ranking given by yi and
the proposed ranking given by f , both rankings induce a permutation assigning a new order.

The first row in Table 2.5 is the arbitrary label that a sample has (subindex i), the second row,
contains the real relevance (ranking) yi associated to each of the samples xi. This ranking induces
a perfect order given by permutation πs. Finally, the third row contains the rank given by the
decision function f(xi) for each of the samples xi, inducing a permutation π.
In order to calculate the ndcg for f , it is necessary to calculate the dcg for the perfect permutation
given by πs and for the proposed permutation π. The given dcg at m with the perfect permutation
πs will be the normalization constant to calculate the ndcg at m. Samples xi and real rankings y
are ordered according to πs in Table 2.6, where y = (y1, y2, ..., y7)

⊤.

4http://archive.ics.uci.edu/ml/datasets.html
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i-th Ordered Sample 1 2 3 4 5 6 7

πs(x) = Optimal Order x7 x3 x6 x4 x1 x2 x5

πs(y) = Optimal Ranking order 4 3 3 2 1 1 1

Table 2.6: Ordered ranking values according to the perfect permutation πs.

With this information, the dcg at different levels m can be calculated (in this example it is done
for m = 5 and m = 3):

dcg(y, 5, πs) =
24 − 1

log2(1 + 1)
+

23 − 1

log2(2 + 1)
+

23 − 1

log2(3 + 1)
+

22 − 1

log2(4 + 1)
+

21 − 1

log2(5 + 1)
= 24.59

dcg(y, 3, πs) =
24 − 1

log2(1 + 1)
+

23 − 1

log2(2 + 1)
+

23 − 1

log2(3 + 1)
= 16.85

The same is done considering the proposed permutation π, as shown in Table 2.7. Again the

i-th Ordered Sample 1 2 3 4 5 6 7

π(x) = Proposed Order x4 x5 x7 x6 x3 x2 x1

π(y) = Proposed Ranking order by f 2 1 4 3 3 1 1

Table 2.7: Ordered ranking values according to the permutation π fetched by the ranking function.

formula for the dcg is applied at the same levels as previously done with πs m = 3 and m = 5:

dcg(y, 5, π) =
22 − 1

log2(1 + 1)
+

21 − 1

log2(2 + 1)
+

24 − 1

log2(3 + 1)
+

23 − 1

log2(4 + 1)
+

23 − 1

log2(5 + 1)
≈ 16.85

dcg(y, 3, π) =
22 − 1

log2(1 + 1)
+

21 − 1

log2(2 + 1)
+

24 − 1

log2(3 + 1)
≈ 11.13

Then, the Normalized Discounted Cumulative Gain can be easily calculated:

ndcg(y, 5, π) =
dcg(y, 5, π)

dcg(y, 5, πs)
= 0.68524

ndcg(y, 3, π) =
dcg(y, 3, π)

dcg(y, 3, πs)
= 0.48572

Consistency of the Reduced Graph

In this section we will illustrate the results given by the reduced graph proposed in the previous
section. This section gives an intuitive idea of the form of the given solution using an induced
constraint matrix with fewer constraints.
The reduced graph was analyzed with two artificial datasets, a generated separable three moons
dataset and a combination of Gaussian mixtures. Both examples represent one query and have
three rank levels. The samples distributions are shown in the Figure 2.8. Three relevances are
represented, relevance one with green triangles, relevance two with blue squares and the most
relevant, relevance three, with magenta circles.
In both cases, the regularization path was run and the solution was observed at a particular value
of λ. For the three moons, the solution was registered for several graph designs changing at
each time the chosen most representative sample of each rank. In the case of the three moons,
the regularization path was run, and, as this is a separable case, it finished when all constraints
were satisfied. This means that at the end of the regularization path (when λ ≈ 0), the decision
function had a margin of one between each class. Several runs with different graph constructions
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Figure 2.8: Examples for the reduced graph test. Magenta circles are the most relevant samples,
blue squares the second more relevant and green triangles are the least relevant samples.

for the three moons example (where the maximum of each class was changed) are shown in Figure
2.9. The regularization path was observed at an arbitrary value of λ ≈ 1 for each run, knowing
that the solution with no error on the training set will occur when λ ≈ 0. Some values of the
decision function are illustrated as level curves and it can be seen that the algorithm tries to keep
all samples with equal ranking on a band value in the decision function evaluation.
The same experiment was done with the three Gaussian mixtures example and the maximum of
each rank level was changed at each run. This is a no-separable case, but it can also be seen in
Figure 2.10 that samples in the same rank have similar values in the decision function.
The reduced graph for the three mixtures example gives consistent results as the previous one,
samples with equal rank are kept in about the same value band on the decision function f .
The previous figures illustrate that the reduce graph forces the level curves of the decision function
toward a segmentation of the points according to their rank, that is, the highest values of the
decision function will be around the samples with the highest ranks and the value of the decision
function will decrease along the space according to the repartition of the sample ranking.

Graphical illustration of the path.

The regularization path was run over several datasets. The mixtures dataset [Hast 04] was orig-
inally designed for binary classification with instances xi and corresponding labels yi ∈ {±1}.
However, it can be viewed as a ranking problem with E = {(xi,xj) | yi > yj}. It contains 100
positive and 100 negative points which would induce 10 000 constraints. The regularization path
was run on this dataset, some level curves are depicted, showing that the most relevant class (red
points) tends to stay in the part where the function has the largest values. Additionally, a decision
function was taken on zero f(x) = 0. This decision boundary can still be improved by observing
the generated ROC curve at each level, that is, by counting at which level fc of the decision
function f(x) = fc the training and validation error rate is minimal. Figure (2.11) illustrates the
decision function for different breakpoints of the regularization path. The initial solution (a) is
poor in terms of generalization but after some iterations the results are improved as shown in
Subfigure (b). The most interesting solution is illustrated on sub-figure 2.11(b) where almost all
constraints are satisfied. If the regularization path keeps going, as the parameter λ decreases the
algorithm outputs solutions that overfit the data as in Figures 2.11(c) and 2.11(d).

Experiments with the Regularization Path

Dataset Description Classification and regression problems can also be viewed as ranking
problems by constructing a set of constrains E as: E = {(xi,xj) | yi > yj}. The regression
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Figure 2.9: Reduced graphs used to solve a three moons problem. Green triangles have rank 1,
blue squares rank 2 and magenta circles rank 3. Red points are the chosen maximum for each rank
level. Level curves indicates decision function values. Each figure corresponds to a different trial
where the most relevant point for each rank was changed. The value of decision function depends
on the repartition of the point’s ranking.
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Figure 2.10: Reduced graph used to solve a problem of three Gaussian mixtures. Green triangles
have a rank of 1, blue squares a rank of 2 and magenta circles, the highest rank of 3. Red points
indicate the chosen maximum for each rank level. Illustration of the problem solution for λ ≈ 2.
Some values of the decision function are depicted in the level curves, showing that the solution
tries to segment the space according to the sample ranking.
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(b) Solution after some iterations
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(c) Solution after more iterations
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(d) Solution for the smallest λ

Figure 2.11: Illustration of the regularization path for the mixture dataset, all red points must
be ranked higher than the blue points. As λ decreases, the margin gets smaller and the distance
between pairs tends to be larger than one.
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datasets (auto and housing) were modified for the ranking problem: both quantiles of q 1
3

and q 2
3

are found for the response variable y and the rank for each sample was assigned depending on the
position with respect to each quantile, so that if a sample has a regression value lower than q 1

3
, it

will have rank 0, if it is higher than q 2
3
, it will have rank 2 and rank 1 otherwise.

The number of induced constraints on the complete dataset and those obtained after following
the graph design in Figure 2.7 are compared in Table 2.8. Attention was paid to the number of
constraints (rows in P ) involved in the multiple bootstrapping methodology to choose a parameter
(with a subset of the training set) and in the number of rows of matrix Ptrain used to build the final
model with the chosen parameter using the complete training set. One can remark the important
decrease in terms of problem complexity which depends on the number of given constraints.

Dataset
Bootstrapping Final Train

P rows Ptrain rows
Features Samples Ranks comp./red. comp./red.

mixture 2 200 2 2491/99 5625/149
mixture3 2 300 3 3322/132 16872/297
3moons 2 300 3 3318/134 16866/301
cancer 30 569 2 2379/99 42612/426

diabetes 8 768 2 2155/99 75375/575
auto 7 392 3 3301/133 29007/390

housing 13 506 3 3310/131 48108/501
spam 57 4126 2 n.a./99 n.a./3094
ad 1558 2359 2 n.a./99 n.a./1769

Table 2.8: Datasets characteristics (complementary table). The number of features, samples and
ranks is shown together with the average number of constraints used in the bootstrapping search
given by both matrix P (number of rows) and by the reduced constraint matrix P ′ proposed in
Section 2.4.2. The number of rows in Ptrain is the number of constrains included in the training
of the final model using the complete training set. For some datasets the size of the complete
graph is not available (n.a.)

Experimental Protocol In order to measure the usefulness of the proposed methods (the
reduced graph and the regularization path), the previously described problems were solved using
a grid search and the regularization path. In both cases, bootstrapping was used to choose the
parameters.
Five independent repetitions of the experiment were done. At each time, a training set and a
test set were taken in order to estimate the generalization ability with the test error. These were
averaged over the five experiments to have a more robust estimation.
Subsets of the training set were done to do bootstrapping, at each time, one hundred samples are
taken to train a model and fifty samples to validate. This was repeated for ten bootstrap runs.
For the grid search, several models were built with different regularization parameters. Twenty
values in the interval [0.01, 50] were taken in a logarithmic scale. One is chosen and a finer search
of ten values linearly separated around it are taken. The λ that gives the maximum average
validation ndcg is used to build the final model.
For the regularization path, ten complete regularization paths are calculated for the sub-samples of
one hundred points. The validation error is measured at thirty values distributed according to the
given breakpoints of the regularization path, this means that the distribution of the thirty points
depend on the distribution of the breakpoints, so that more samples will be taken around more
dense areas of the breakpoint distribution. It has to be noticed that at each bootstrap trail the
evaluated values for the regularization parameter will not be necessarily the same. A validation
curve is obtained by averaging with all the bootstrap trials.
For both cases, the ndcg@30 was used as validation measure. The reason behind this choice is the
fact that the ndcg applied to the first positions tends to be unstable.
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Experimental results with the reduced graph. Grid Search vs. Regularization Path
The main issue of the resolution of ranking problems lies in the fact that the use of the complete
graph requires a calculation time that increases with the number of constraints to the point of
making it unfeasible, either because the time turns too long, because of memory problems or
because it turns numerically instable. Experiments were done with the above mentioned examples
using the reduced graph.
Table 2.9 summarizes the obtained errors with the reduced graph. One measure is the percentage
of pairs not respecting the ranking order (% error), this corresponds to the measure:

∑mte

i=1 IPi,·[f(x1),f(x2),...,f(xnte
)]⊤≤0

mte

where nt is the number of test samples and mte the number of test constraints (in the complete
graph). For both cases, it can be observed that quite good results can be obtained as the ndcg at
different levels is close to 1 and the percentage error is very low.
Nevertheless, the model output by the regularization path search seems to be slightly better than
the ones obtain by grid search in all cases.

Grid Search Reg. Path
Dataset

Error (%)
ndcg

Error (%)
ndcg

@1 @5 @10 @1 @5 @10
mixture 15 1 1 0.96 13 1 1 0.98
mixture3 11 1 1 1 9 1 1 1
3moons 1 1 1 1 0 1 1 1
cancer 2 1 0.96 0.97 2 1 1 1

diabetes 22 0.73 0.81 0.81 18 0.87 0.94 0.9
auto 6 1 1 0.95 5 1 1 1

housing 16 1 0.97 0.97 8 1 0.97 0.98
spam 18 1 1 1 6 1 1 1
ad 7 0.87 0.9 0.93 3 0.87 0.94 0.94

Table 2.9: ndcg errors at different levels.

Table 2.10 compares several details in the resolution of the ranking problem with the reduced
graph: the time for the grid search and the regularization path is measured on the bootstrapping
setting in the two first columns, only a subset of the population of size one hundred was used on the
bootstrapping setting. The time taken to solve a single model against a complete regularization
path is shown in the last two columns. A search with the regularization path is faster than solving
multiple times a single ranking problem in the dual formulation, that is, as a QP.
A Gaussian kernel was used in all cases with a bandwidth σ depending on the extent of the training
sample domain. As Gaussian models result in a mixture of several Gaussian functions on certain
samples, the chosen value should be able to cover the complete domain, but it also has to be fine
enough to be able to define accurate models. If the domain belongs to a cube with all sides in the
interval [xmin, xmax], the kernel parameter taken is: xmin,xmax

10 .
Table 2.11 gives an idea of the stability of the chosen parameter as the standard deviation of the
given λ is shown together with the mean value. The used kernel bandwidth is given in the middle
column. The size of the model, where A is the number of active variables, that is, the number
of coefficients βi involved in the model with value different from zero. The last column has the
average number of breakpoints resulting on the resolution of a regularization path of the final
model, this gives an idea of its complexity.
The advantage of the regularization path can be appreciated as a larger time is needed to do grid
search (Table 2.10), additionally, the estimation of the proper regularization parameter to be used
is more robust with the calculation of regularization paths (Table 2.11). For the final model, a
single resolution of one problem remains faster than a complete regularization path.
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Bootstrapping Final Train
Dataset Grid Reg Path Grid Reg Path

Time Time Time Time
mixture 18.7s 14s 0.1s 3.5s
mixture3 29.4s 22.5s 0.2s 19s
3moons 30.7s 20s 0.1s 12.4s
cancer 17.9s 9.6s 0.2s 22.3s

diabetes 16.6s 11.3s 1.5s 108.2s
auto 26s 16.5s 0.3s 18.9s

housing 27s 17.8s 0.8s 56.1s
spam 48.2s 12.4s 92.1s 9770.3s
ad 44.3s 39.3s 10.6s 2182.6s

Table 2.10: Search and training time in the case of grid search and regularization path. The first
two columns indicates the time for the parameter search under a bootstrap framework. The last
two columns have the average training time of the final model.

Dataset
Grid Reg Path used Grid Reg Path Number
λ value λ value kernel Size A Size A Breakpoints

mixture 4.37 (7.5) 0.4 (0.4) 0.65 97.6 (38.8) 83.6 (12.2) 243 (7)
mixture3 6.13 (7) 1.36 (0.7) 0.82 143.2 (6.1) 154.2 (6.4) 349 (16)
3moons 3.93 (7.5) 1.29 (1.2) 0.53 94.6 (56.2) 109.8 (32.4) 373 (13)
cancer 0.39 (0.5) 6.32 (11.5) 343.8 82.4 (16.5) 104.6 (70.9) 241 (7)

diabetes 5.49 (12) 0.45 (0.6) 75.16 364.4 (82.4) 317.6 (3.5) 223 (5)
auto 5.18 (9.2) 2.74 (6.1) 511.04 197.8 (24.3) 171.2 (36.7) 308 (5)

housing 7.75 (11) 0.07 (0.2) 71.1 270.8 (7.5) 232.4 (11.7) 318 (12)
spam 0.26 (0.3) 0.03 (0.1) 1006.2 2032.6 (71.5) 1521.2 (101.6) 98 (10)
ad 0.66 (1.4) 0.73 (1) 64 408 (64.4) 389 (32.6) 259 (13)

Table 2.11: General model Information. The average chosen regularization parameter λ is given
with its standard deviation in parenthesis; the used kernel parameter and the number of variables
involved in the final model for both parameter searches is given (Size of A). Finally, the number
of found breakpoints in the regularization path is indicated in the last column.
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Experimental results, reduced graph vs. complete graph The reduced graph was also
tested in the ranking algorithm proposed by Chapelle [Chap 07a], this is a ranking problem that
uses a square hinge-loss and also a L2 regularization term. A gradient based method is done to
find the solution, this method is very efficient in terms of computational time. This algorithm was
used to compare the output results using the complete graph as in the original paper [Herb 00]
and the proposed reduced graph in this work.

The used dataset is the ohsumed dataset [Xu 07, Hers 94]. This is a collection of medical queries
and documents ranked by experts. There are five folds in the ohsumed dataset, for each one, the
ndcg@10 was observed on the test set.

In Table 2.12, the errors were measured using a fix regularization parameter C = 10−4, the
accuracy was decreased with respect to the use of the complete graph but with a significant gain
in training time. Only the training set was used to train the final model that was used with the
test set to measure an error.

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Time
ohsumed (complete graph) 0.38 0.47 0.46 0.47 0.50 8.99s
ohsumed (reduced graph) 0.31 0.41 0.35 0.42 0.43 0.28s

Table 2.12: Results of the ndcg@10 with C = 1e−4 (λ = 10000) for each of the ohsumed dataset’s
folds with linear kernel. The last column contains the average time of training in seconds.

The following experiment consisted in using the given validation set at each fold to search the
appropriate regularization parameter C = 1

λ for the final model of each fold.

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Time
ohsumed (complete graph) 0.38 0.44 0.40 0.48 0.42 105s

used C 41.18 0.02 0.01 0.5 2.9 349.4s
ohsumed (reduced graph) 0.32 0.43 0.36 0.43 0.42 0.42s

used C 0.02 0.02 0.01 17.6 0.06 24.3s

Table 2.13: ndcg@10 for each of the ohsumed folds with linear kernel. Grid search was used to
estimate the regularization parameter C for each fold. The average training time in seconds of the
final model is given in the same row as the ndcg error while the average time of the grid search is
given in the same row as the regularization parameter C.

For the experiments in Table 2.13, the regularization parameter C was searched with a grid using
the training set to find a model and evaluating it in the given validation set at each fold. With the
chosen parameter, the error was then measured in the test set for each fold with a model issued
from the training and validation set together. For the reduced graph, the accuracy on the ndcg
was improved in almost all folds, indicating that if the proper regularization parameter is used,
the obtained results can be close to the ones obtained with the complete graph. The results got
even closer to the one of the complete graph as for it the accuracy was strangely reduced in almost
every fold with respect to the results obtained with an a priori chosen regularization parameter.

It is worth noticing that with a training-validation-test sets framework for the parameter choice,
the chosen regularization parameter is less stable in the complete graph than in the reduced one.
In the first case it runs in the [0 − 42] interval while in the reduced case it belongs to a smaller
interval: [0− 18].

With these results, it can be concluded that the reduced graph is a consistent and good approx-
imation of the complete graph and gives reasonable results in toy and real problem. The next
question to be solved is to be able to use the reduced graph as a warm start sub-solution for the
complete one.
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2.4.8 Conclusions

Regularization parameter search for the ranking SVM can be efficiently done by calculating the
regularization path. This approach calculates efficiently the optimal solution for all possible reg-
ularization parameters by solving (in practice) small linear problems. This approach has the
advantage of overcoming local minima of the validation error curve, in case there exists. Parame-
ter selection is less time consuming and the obtained results are more robust, resulting in a slightly
better generalization capacity with regularization paths than with grid search.

The numerical complexity of the algorithm depends on the number of iterations needed to explore
the overall solution path and the mean size of Iα. At each iteration, a linear system is solved
to get η which has complexity O(|Iα|

2). Empirically we observed that the number of iterations
for a regularization path resolution is typically about the same as the number of training pairs
constraints m in the reduced graph.

For a ranking problem with quadratic cost and regularization term, the output given by the reduced
graph are close to the ones obtained with the complete graph, improvements could probably be
done by an even deeper parameter search.

In SVM methods, another key point is the determination of kernel hyper-parameter. This problem
was not tackled here. However, one can seek to combine our regularization path with the kernel
parameter path developed in [Gang 07].

2.5. Sparse Ranking SVM

In the previous section, the regularization parameter is efficiently sought via a regularization path.
Still, the optimal solution is expressed using all training points. Indeed the presented L2 norm
Ranking SVM involves a number of ordering constraints. If the number of samples is n, then, the
number of constraints is of order O(n2) or O(n) in the reduced graph proposed in Section 2.4.2.
As the used cost function is the hinge loss, its piecewise linear variation induces a sparsity in the
number of constraints involved in the model expression. Basically, all constraint pairs that are in
set I0 will not influence the model as the gradient of the loss function will be zero for those points.
Unfortunately, the number of parameters remains in general of the order of the training set size.
To earn more sparsity in the number of parameters, the use of the L1-norm as regularization term
is here investigated, replacing the L2 regularization, and the L2-norm will be used as penalization
term. A good summary of different methods to solve a problem under L1 norm constraint is given
by Schmidt [Schm 07]. The objective is to help to control overfitting and to obtain a reduced
model with similar accuracy.

It will be assumed that the searched function has the same form as in Section 1.5.2 [Rifk 07]:
f(xi) = β⊤k(xi) where k(x) is the vector containing as i − th entry k(x,xi) for, with xi, i ∈ X
the learning set and k the reproducing kernel in a RKHS. We can define the L1-norm of f as

‖β‖1 =

n∑

j=1

|βj |.

In this formulation, the complete graph is used, but the reduced graph could also be applied,
nevertheless, the complete graph was decided to be kept as the introduction of a L1 norm will
impose more constraints. A regularization path will be built, unfortunately, it was observed in
the previous section that this approach turn out to be extremely slow because there are many
events given by the L2 regularization term (see Table 2.10), a solution will be to eliminate the L2

regularization term. By removing this L2 term, the number of events that have to be detected are
considerably reduced, leading to a faster resolution. Additionally, for the ranking problem, there
exists other successful approaches that have this form [Chap 07a].

Using the L1-norm to regularize will help to control the number of terms in the final model.
Instead of the hinge loss, we turn here to a least squares loss, so that the optimal coefficients β
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are the result of the following L1-norm Ranking SVM optimization problem:

argmin
β∈Rn,ξ∈Rm

1
2ξ⊤ξ

s. t. β⊤
(
k(xui

)− k(xvi
)
)
≥ 1− ξi ∀i = [[m]]

‖β‖1 ≤ s

(2.45)

Notice that in this case, s ∈ R
+ is a hyperparameter which controls the sparsity of the solution.

And therefore, the optimal solution depends on the choice of this hyperparameter. The final
permutation π is then obtained by sorting V according to f and resolving ties randomly.
Using the aforementioned expression of f , this problem can be rewritten as a least squares ranking
SVM with a L1 penalty:

argmin
β∈Rn

1
2 (1I− PKβ)⊤(1I− PKβ)

s. t.
n∑

j=1

|βj | ≤ s
(2.46)

As it can be seen, the problem in Equations (2.46) is a L2 cost function with a L1-norm regular-
ization consisting in estimating n parameters using m data (with m = O(n2) or m = O(n)) if the
reduced graph is used).
There exist several efficient methods to find the optimal solution for this problem that consists
on a L2-loss function plus a L1-regularization function with a fixed s-value, an example is the
Path-wise Coordinate Optimization [Frie 07]. Since our interest is to choose s, that is, model
selection, we will focus ourselves to a method that progressively solves the problem for all s.
This problem can also be related to the Lasso algorithm in regression [Tibs 96] and among the
tools used for solving this problem, we can mention an efficient one which is the LARS (least
angle regression and stepwise) [Efro 04]. Basically, the LARS algorithm relies on the derivation of
a regularization path according to the variation of s. Hence, in this section, we adapt the LARS
methodology to the least squares ranking SVM. There exists several methods to solve the LASSO
problem [Schm 07, Figu 07, Duch 08], nevertheless, we are interested in solving this problem not
only for a particular set of s values but for all the possible values. The LARS is an efficient
approach that allows solving the LASSO problem for all value of s and is therefore an attractive
tool.
The Lagrange function corresponding to problem in Equations 2.46 reads

L = L(β) + λ




n∑

j=1

|βj | − s




where L(β) = 1
2 (1I − PKβ)⊤(1I − PKβ) stands for the loss function and λ ≥ 0 is the Lagrange

parameter associated to the L1 penalty. The L1 penalty term being non-differentiable, the deriva-
tion of the optimality condition relies on the use of the subdifferential. For a parameter βj , this
condition turns out to be

0 ∈ ∇βj
L(β) + λg(βj). (2.47)

In this expression g(βj) represents the subdifferential of the absolute value function defined as

g(βj) =

{
sign(βj) if βj 6= 0
γ, with − 1 ≤ γ ≤ 1 if βj = 0

.

From this definition, if we split the variables into two sets:

• A = {j = [[n]] | βj 6= 0}, set of active variables

• Ā = {j = [[n]] | βj = 0} set of inactive variables
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Equation (2.47) and the form of a subgradient can be used to establish the following properties:

• for βj ∈ A, we have |∇βj
L(β)| = λ and

• for βj ∈ Ā, we have |∇βj
L(β)| ≤ λ.

where ∇βj
L(β) is the i-th element of this vector. In the LARS original paper by Efron et al.

[Efro 04] these properties were termed as correlation conditions because the derivative ∇βL(β) =
−KP⊤(1I−PKβ) is simply a vector containing the correlations of the variables with the residuals
(in case the covariates and the output are centered and normalized).

To better understand the derivation of the two previous properties, since λ > 0, Equation (2.47)
can be then analyzed by cases:

• for j ∈ A

βj > 0, λ > 0 ⇔ ∇βj
L(β) = −λ, j ∈A

βj < 0, λ > 0 ⇔ ∇βj
L(β) = λ j ∈A .

leading to the condition |∇βj
L(β)| = λ which under the specific problem formulation reads

| − (KP⊤1I)Ā + (KP⊤PKβ)Ā| = λ (2.48)

• for j ∈ Ā, since −1 ≤ g(|βj |) ≤ 1:

−∇βj
L(β) = λg(|βj |) ≤ λ

and

−∇βj
L(β)) = λg(|βj |) ≥ −λ

leading to the condition |∇βj
L(β)| ≤ λ which here is | − (KP⊤1I)Ā + (KP⊤PKβ)Ā| ≤ λ.

To derive the regularization path, let us assume that βt is the solution corresponding to st, At

and Āt is the associated sets. According to Equation (2.47) βt will meet the general condition

− (KP⊤1I)A + (KP⊤PKβ)A + λ sign(βA) = 0 (2.49)

along with the strict complementary one

∑

j∈A

|βj | = sign(βA)⊤βA = s. (2.50)

Assume that it exists a value st+1 such that if s increases to a smaller value than st+1, the sets
At and Āt remain unchanged. Hence, Equations (2.49) and (2.50) will still hold for s < st+1, but
the active parameters must evolve. If ∆θ denotes the change in parameter θ, the following system
is obtained:

(
(KP⊤PK)AA sign(βA)

sign(βA)⊤ 0

)(
∆βA

∆λ

)
=

(
0

∆s

)

the last equation was derived by a simple differentiation of the two previous equations applied
for st and any value s between st and st+1. From this relation, we are able to derive the overall
regularization path. To begin, let focus on the initialization of the algorithm.
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2.5.1 Initialization

A starting solution has to be found to define the sets and calculate the adjusting slope for pa-
rameters update. This initialization can be obtained via one off the shelf Lasso solver for a fixed
value of λ providing hence an initial value of s, β and elements of set A. One alternative is to
consider the smallest meaningful value of s from which the entire path is run. For this sake, one
can notice that if s = 0, the trivial solution is β = 0. By increasing appropriately s, we allow at
least one variable to be active. Therefore, the active set is initialized as A = argmaxj |∇βj

L(β)|
as well as the initial value of λ = |∇βj

L(β)| > 0. The meaning of this initialization is simple: the
first active parameters correspond to the variables in the model which will lead to the maximum
decrease of the learning error.
From this solution, s can be increased up to a stopping criteria that could be when all variables
are included in the model.

2.5.2 Event Detection

If we let H to be the matrix,

H =

(
(KP⊤PK)AA sign(βA)

sign(βA)⊤ 0

)

the following linear system hold as long as the active set A remains unchanged
(

βA

λ

)
=

(
βt
A

λt

)
+ η(s− st) (2.51)

with η = H−1

(
0
1

)
. From this point, two types of events have to be monitored.

• Check if a variable βj ∈ A
t becomes inactive

We need to solve (2.51) for s with βj = 0. That is:

sj = st +
0− βt

j

ηj
∀j ∈ At (2.52)

• Verify if a variable βj ∈ Ā
t will turn active

For this situation to occur, Equation (2.48) must hold. If we define:

cj = ∇βj
L(β) = −(KP⊤1I)j + (KP⊤PKβ)j ∀j ∈ Ā (2.53)

then, using Eqs. (2.51) and (2.53), we can derive:

cj − c
t
j = (KP⊤PKβ)j − (KP⊤PKβt)j

= (KP⊤PK(β − βt))j

= (KP⊤PKη(s− st))j

= ηcj
(s− st)

by letting ηcj
= (KP⊤PKη)j . And therefore, for a variable βj ∈ Ā

t that moves to A,
Equation (2.48) must be satisfied:

If βt+1
j > 0⇒ sj = st −

λt + ctj
ηcj

+ ηλ
∀j ∈ Āt (2.54)

If βt+1
j < 0⇒ sj = st +

λt − ctj
ηcj
− ηλ

∀j ∈ Āt. (2.55)

Then, st+1 will be the smallest sj from Eqs. (2.52), (2.54) and (2.55) such that sj > st.
The overall algorithm is closely similar in spirit to the one of L2 rankingSVM (except the types of
events to be managed). For this reason, the sparse ranking SVM algorithm will not be developped
here.

91



2.5 Sparse Ranking SVM

2.5.3 Experiments

Experiments were done on different datasets from the UCI repository. A 5-fold cross-validation
was done to measure the error. For model selection, at each fold, a training and a validation set
were randomly chosen. Table 2.14 summarizes the datasets characteristics, the number of features,
the number of training instances and the number of induced constraints. Table 2.15 summarizes
the achieved error in misclassification percentage, and the ndcg score for the 1,3,5,10 and 20 first
ranked points. The needed time to choose additional model and kernel parameters, the chosen s
and the final size of the active set A is shown in Table 2.16.

Dataset Data size Training size Training Constr.
mixtures 100 80 1590
mixture3 150 120 4789
3moons 150 120 4788
diabetes 615 492 54958
cancer 285 228 12112

Table 2.14: Data characteristics, size of the dataset, number of training instances, number of
training constraints.

Dataset Error (%) ndcg@1 ndcg@3 ndcg@5 ndcg@10 ndcg@20
mixtures 20 1 1 1 0.93 0.91
mixture3 12 1 1 1 1 1
3moons 2 1 1 1 1 1
diabetes 34 0.87 0.80 0.75 0.73 0.70
cancer 46 1 1 1 1 1

Table 2.15: Test error. Percentage of misclassified pairs, normalized discounted cumulative gain
at the 1, 3, 5, 10 and 20 positions.

Comparison between Tables 2.9 and 2.15 shows that the accuracy was not substantially affected
in this new framework with respect to the use of the reduced graph. Additionally, the number
of variables involved is considerably smaller. The cost that has to be paid is the time of training
(Tables 2.10 and 2.16) plus the additional time needed for the parameter search (not shown).

Dataset Training Time Kernel used s value |A|
mixtures 2.65 (0.2) 5 40.6 (49.6) 4.5 (0.7)
mixture3 15 (0.9) 5 7975.9 (11259.2) 10 (7.1)
3moons 14.9 (0.5) 5 291530.6 (400600) 19 (12.7)
diabetes 988.1 (18.2) 5 4.5 (1.7) 26.6 (10.6)
cancer 11.63 (1) 5 0.42 (0.2) 7.5 (3.5)

Table 2.16: Required time in seconds, used Kernel, optimal s, number of active variables

These results show that a satisfactory model reduction can be obtained by the use of an L1 norm
in the model coefficients.

2.5.4 Conclusions

Using the L1 norm instead of the L2 norm as a regularizer, leads indeed to a sparser model, but as
it can be expected, accuracy was reduced. On the other hand, the training time was substantially
reduced. A good example is the ohsumed dataset, which would take a day with the L1 norm,
while the regularization path with the L2 norm has been running for weeks. Nevertheless, the
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complete validation error curve could be analyzed in order to decide which local minimum is the
optimal one for generalization.

2.6. Conclusions

In this chapter, the classification and ranking problems were analyzed under a SVM framework,
their solution is related as classification problems can be turned into ranking ones, eventually,
ranking problems could be transformed into multi-class problems. Theoretically, it was proved
under several assumptions, that in the case of binary problems, the solution set of the SVM
classification framework and the SVM ranking one are the same.
The common point of these algorithms is the fact that their optimal solution has a linear relation
by pieces with respect to the regularization parameter. This piecewise linearity helps to efficiently
find the optimal solutions corresponding to each regularization parameter via a regularization
path. The regularization path derivation was extended for the ranking framework.
The developed linear relationship is valid in given intervals of the regularization parameter. These
intervals are defined by breakpoints, where the corresponding slope changes. The stated problem
of analyzing the optimal solution along the whole parameter space get significantly reduced by
the fact that is was viewed that with high probability, the only worthy values are the ones given
by the regularization path, which are a finite number of the order of the size of the dataset.
Therefore, if a validation set has to be tested to choose a model, it is enough to test it at each
breakpoint. Nevertheless, if we are willing to study the complete parameter space with respect to
a validation set, this is possible as it is given by the validation path, where the validation error
can be determined for all values and is piecewise constant; and again, the number of breakpoints
of the validation error turns out to be finite.
The rankingSVM setting has a particular difficulty: the used datasets tend to be very large. This
cause a very long calculation time for several resolution algorithms of the rankingSVM problem and
their regularization path. This issue was tackled by two propositions: the first one was a robust
reformulation of the preference graph, leading to a significantly smaller number of constraints; as a
natural consequence, the accuracy is reduced. The other solution was to change the used loss and
regularization functions, to get rid of the large number of encountered breakpoints caused by the
hinge-loss function while only considering the breakpoints caused by the L1-norm regularization
that additionally control the sparsity of the model.
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3
Model Selection in

Semi-Supervised and
Unsupervised Learning

Our everyday world is characterized by the development of digital new technologies resulting in
the generation of overwhelming data. Labeling data implies in general a high cost or cannot
be done for all individuals. Even though this information is not provided for all data points,
implicit structure can be used to infer labeling in the whole dataset and improve the generalization
ability of the learner. For instance, information like the statistical distribution of the points or
the geometrical shape of the data can be exploited in order to compensate the lack of sufficient
labeled data. Clustering approaches or graph based techniques can be applied to use these valuable
information.

This chapter deals with two frameworks that use partially labeled and unlabeled data, respectively.
The first problem consists in incorporating the information given by the topology of the unlabeled
data into the final decision model while the second one consists on unraveling the internal structure
of the data leading to the topology knowledge. Section 3.1 treats the case of semi-supervised
learning where only a part of the data is labeled and the manifold assumption is used to help
construct a decision function. Under this framework, efforts are done to obtain via a regularization
path [Gass 07c] a model that will require fewer variables to be expressed. In the second part of
this chapter, Section 3.4, a review of several methods that deal with unlabeled datasets is done. It
is noticed that many of the algorithms are based on the construction of a neighborhood graph and
their efficiency decreases if links between points that are not neighbors are included. A method to
detect incorrect links in the neighborhood graph is proposed based also on the manifold assumption
[Zapi 07].

3.1. Semi-Supervised Learning

Semi-supervised learning addresses the learning problem of a database containing a few number
of labeled data (l) and a relative large amount of unlabeled data (u), that is, a total of n = l + u
data points is available. The goal of semi-supervised algorithms is to leverage the learning process
by using unlabeled points to unravel the underlying structure of the dataset.

If we let SX = {xi, i = [[n]]} be the set of all points, with Sℓ = {xi ∈ SX , i = [[l]]} the set of labeled
points with their corresponding labels Yℓ = {yi ∈ Y|i = [[l]]}, a semi-supervised algorithm can be
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3.1 Semi-Supervised Learning

formalized as a problem with the following given sets [Chap 08]:

Sℓ × Yℓ = {(xi, yi) ∈ X × Y, i = [[l]]} (set of labeled points)

Su = {xi ∈ X , i = l + 1, . . . , n, n = l + u} (set of unlabeled points)

with SX = Sℓ ∪ Su.

This situation can occur when the cost of giving a label to each point by an expert is high. An
example is the problem of web pages or document classification. The arisen question is whether
the knowledge of the labels of few points is enough to construct a decision function able to guess
the correct class of the unlabeled data.

To show the interest of taking into account unlabeled points, example in Figure 3.1 will be con-
sidered. It can be seen that the obtained result by a usual SVM in Figure 3.1(a) fits perfectly
according to the labeled data, nevertheless, the results are not satisfactory for the unlabeled points.
Intuitively, if we exploit the form of the cloud of points around each label point, the form of the
decision function could be improved. The interest of the semi-supervised machines consists in
extracting such a kind of information and in integrating this information in the learning model.
A decision function that would be closer to the one expected is depicted in Figure 3.1(b).
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(a) Obtained solution by a SVM using only the la-
beled points.
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(b) Obtained solution using additionally the unla-
beled points.

Figure 3.1: Illustration of the utility of unlabeled points. There are only two labeled points per
class (red squares and green circles) The points in blue represent unlabeled points. The decision
function is depicted in light green.

Different approaches have been proposed and a good review can be found in [Chap 06a, Zhu 05a,
Chap 08]. The overall spirit of these approaches is the smoothness assumption which states that
if two points are close or similar in a certain sense, they should share the same label. Say=id in
a different way, the labels of the data vary in a smooth way according to the similarity of these
data. Two general frameworks to implement this smoothness hypothesis can be mentioned:

Cluster assumption: under this assumption, the aim is to avoid changes of labels in dense
regions. An usual example to illustrate this assumption is to consider for instance that the
data of each class (in a binary semi-supervised learning problem) are issued from different
clusters. In this context, a reasonable hypothesis is to seek the decision function such that the
frontier between the classes does not go across the clusters where typically we will encounter
high data density. Some of the learning techniques that rely from this cluster assumption
are presented hereafter.

Semi-Supervised Support Vector Machines (S3VM): [Vapn 77, Chap 08] aims at
optimizing both the decision function and the estimation of the unknown labels denoted
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ŷu = (ŷl+1, . . . , ŷn)⊤:

min
f,ŷu

Ω(f) +A

l∑

i=1

L1(f,xi,yi) +B

n∑

i=l+1

L2(f,xi, ŷi) (3.1)

the first two terms in the previous objective function define a standard SVM with Ω
a regularization function and a loss function L1, while the third term incorporates
unlabeled data, also used with a loss function L2. The loss over labeled and unlabeled
examples is weighted by two fixed parameters A and B, which reflect confidence in labels
and in the cluster assumption respectively. The most commonly used loss function L is
the hinge loss but other losses can be considered as well as illustrated in [Chap 08]. The
minimization problem in Equation (3.1) is solved under the class balancing constraint:

1

u

n∑

i=l+1

max(yi, 0) = r or equivalently
1

u

n∑

i=l+1

yi = 2r − 1,

where the fraction r is a user-defined parameter. The main interest of this constraint is
to alleviate one drawback of the optimization problem in Equation (3.1) that consists
in the arbitrary assignment of all unlabeled data to one class. The class balancing
constraint permits to avoid this trivial solution by enforcing a fraction r of the unlabeled
data to belong to the positive class.

A good overview of the two main categories of algorithms for solving problem in Equa-
tion (3.1) is presented in [Chap 08].

The first is the Combinatorial Optimization, consisting in iteratively solving an opti-
mization problem for f with fixed ŷu (that will turn to be an usual SVM problem) and

f̂ being known, optimizing for yu over a set of binary variables. One way to adress the
optimization for yu is the branch and bound algorithm [Benn 98, Chap 07b] able to
find the global minimum but at a high computational cost. An alternative algorithm
was proposed by Joachims [Joac 99b] with the S3VMlight. The main idea consists in
switching the labels of a pair of unlabeled data such that a decrease of the objective
function occurs. With the new labelling, a SVM is trained for f and the procedure is
repeated until convergence. Another approach considers the optimization problem in
the dual space and converts it into a semi-definite programming [Bie 06] using convex
relaxation. Finally, we should mention the deterministic annealing [Sind 06] procedure
where to avoid the optimization over binary variables, the optimization is carried over
the probability of an unlabeled data to belong to each. Doing so, analytic expression
of these probabilies could be obtained or gradient based algorithm could be applied to
the SVM semi-supervised learning.

The second category of S3VM solvers is the Continuous Optimization approach and
consists in eliminating the variables yu in Problem 3.1 by assigning the optimal ŷu

to be an application of a fixed f to the unlabeled data Su (ŷj = sign f(xj), j ∈ Su).
However, the resulting optimization problem is non-convex and has been solved directly
in the primal or in the dual [Chap 05, Chap 06b, Coll 06, Fung 01].

Generative models: have been also proposed to do semi-supervised learning. The key
point is to model the noise given by the unlabeled data [Lawr 05]. A generative model
can be yielded for semi-supervised learning and the model includes a conditional den-
sity P(x|y) part and a marginal distribution P(x) part to find the clusters [Fuji 05].
The parameters of the generative model are learned based on the EM algorithm (see
Appendix A.1.6).

Entropy minimization: uses the prior which prefers minimal class overlap by using the
label entropy on unlabeled data as regularizer [Gran 05, Zhu 05b].

Low density separation: as previously stated, a corollary of the cluster assumption is to
force the decision function to go through low density regions. The S3VM algorithm
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implements this idea by pushing unlabeled data apart from the decision function, but
the low density desirable feature can also be improved by feeding the learning algorithm
with a kernel enforcing this property. For instance, the authors in [Chap 05] have pro-
posed a kernel based on low density sensitive distance and this kernel was further used
for training (a SVM on only labeled data or for S3VM) so that labeled and unlabeled
data can be clustered and two points that are close share the same label. In the same
spirit, Weston et al. [West 04] have proposed a cluster kernel based on the rescale of
the original kernel by another crafted kernel representing the empirical probability of
two points to belong to the same cluster.

Manifold assumption: under this assumption, the data are supposed to lie on a low dimensional
manifold (this is the case for instance digits classification problem). Therefore a manifold
based metric can be used to measure the similarity of the points. More precisely, a graph
is used to measure the similarity between the points (labeled and unlabeled ones) [Bous 04,
Chap 05, Belk 06]. The idea behind this is the same as the cluster assumption because
the decision function should avoid to cut the manifolds where the points lie in majority.
The basis of the related methods is the introduction of an additional regularization term
that assumes label smoothness over the graph. Most of these algorithms are essentially
discriminative and transductive (they aim to find directly the labels of the unlabeled points
instead of the expression of the decision function). Some of them are summarized below.

Quadratic loss and Laplacian regularization for Transductive classification: a
bunch of methods were proposed to minimize an objective function having the form
[Wu 07]:

min
f∈Rn

f⊤Rf + (f − y)⊤A(f − y) (3.2)

where f = [f(x1) · · · , f(xl), f(xl+1) · · · , f(xn)]. The first term of Equation (3.2)
refers to the graph regularization that enforces smoothness along the manifold. Matrix
R ∈ R

n×n is generally named Laplacian L or normalized Laplacian Ln of the
neighborhood graph defining the similarity between the labeled and unlabeled data,
more details about these operators are given later. The normalized graph Laplacian
is preferable to L, since the Ln spectrum is contained in [0, 2]. The details of the
Laplacian of a graph are given in Section 3.2. The second term of (3.2) is the loss
function where A is a diagonal matrix with entries Ai = A for labeled points and
Ai = B for unlabeled ones. The target output is y = [y1 · · · , yl, 0 · · · , 0] with yi

the label. From this unified view, different algorithms were derived according to the
particular choice of R and A. We can distinguish:

Gaussian Random Fields and harmonic function: it is a continuous relaxation
of the difficult case discrete Markov random fields [Zhu 03]. This method corre-
sponds to a choice R = L, A =∞ and B = 0. The values of f(xi) are constrained
to fit exactly yi for the labeled data and are free for the unlabeled ones.

Tikhonov Regularization: this algorithm [Belk 04] uses R = L or L
p for some

integer p, 0 < C < ∞ and B = 0. Compared to Gaussian Random Fields, this
algorithm relaxes the constraint on f(xi), i = [[l]].

Label propagation: [Zhou 04] this algorithm is similar to the previous one except
the fact that the normalized Laplacian is used and mainly A = B. Because of this
last setting, all unlabeled and labeled points which are similar are forced to have
the same label at the same time. Hence, there is a label-propagation effect from
neighbors to neighbors.

Spectral Graph Transducer: [Joac 03] in this algorithm, the target output is dif-
ferently encoded. Indeed, it considers yi =

√
l−/l+ for positively labeled data and

yi = −
√
l+/l− for negatively labeled data, where l+ is the number of positive data
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and l− the number of negatively labeled data. For the unlabeled data, yi is set to 0.
The misclassification cost matrix A is freely set. Because of its origin from graph
ratiocut optimization, additionnal constraints are enforced in the form f⊤1I = 0
and f⊤f = n.

Graph Kernels from the Spectrum of the Laplacian: [Chap 03, Smol 03] it has been
shown that the spectral transformation of a Laplacian L results in kernels suitable for
semi-supervised learning, this induces a semi-norm on f which penalizes the changes
between adjacent vertices [Smol 03]. A class of regularization functionals on graphs can
be defined as:

〈f, r(Ln)f〉.

where Ln is the normalized Laplacian, f a decision function and r(Ln) is understood
as applying a scalar valued function r(λ) to the eigenvalues of Ln, that is,

r(Ln) =

m∑

i=1

r(λi)νiν
⊤
i ,

where {λi,νi} constitutes the eigensystem of Ln. There are some choices of r(λ) of
interest:

• The diffusion kernel corresponds to a spectrum transform of the Laplacian with

r(λ) = exp
(

σ2

2 λ
)
.

• The regularized Gaussian process kernel corresponds to r(λ) = 1
λ+σ , where σ is a

given parameter.

• Regularized Laplacian: r(λ) = 1 + σ2λ, where σ is a given parameter.

• One-Step Random Walk: r(λ) = (AI − λ)−1, with a ≥ 2.

• p-Step Random Walk: r(λ) = (AI − λ)−p, with a ≥ 2.

• Inverse Cosine: r(λ) = (cos(λπ/4)−1.

Local learning Regularization: a local linear classifier oi(x) is built from the nearest
neighbors xj of xi with labels f(xj). The Laplacian regularizer of Equation (3.2)
is therefore replaced by the cost of the agreement between f(xi) and the prediction
value oi(xi) of xi using this local classifier. The main idea is based in the fact that
it can be shown [Wu 07] that the regularization term is also quadratic with matrix
R = (I − A)⊤(I − A) where A is the transfer matrix that relates f to O (the vector
formed by the output oi(xi) yielded by each local linear classifier) by O = Af .

Laplacian SVM: in this case [Belk 06], the loss function is the classical SVM hinge-loss
defined over the labeled data. Beside it, two regularization terms are used, the first one
being the classical quadratic regularizer of SVM and the second one, a aforementioned
penalty preserving the smoothness of the decision function along the manifolds and
based on the similarity graph.

In the remainder of this part of the chapter, our attention will be focused in the Laplacian SVM.
Using the framework of the reproducing kernel Hilbert space, a corresponding representer theo-
rem was derived expressing the decision function as a linear combination of the kernel function
evaluated on all data points (labeled and unlabeled ones) [Belk 06].
The Laplacian SVM algorithm involves some difficulties: the construction of the similarity graph
(problem common to all graph based method and the choice of the two regularization parameters
(the parameters associated to the L2-norm regularization and the manifold regularization). Wang
et al. have addressed the later problem [Wang 06a] using a regularization path on one of the
parameters. But the decision function still depends on all data, even though there might be several
points that does not contribute to the information. To circumvent this drawback and to obtain a
sparse solution to deal with large scale learning, Sindwhani et al. [Sind 05b] have introduced the
linear Laplacian SVM. Aiming to induce sparsity in the obtained solution, it is proposed [Gass 07c]
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3.2 Laplacian SVM

to include in the semi-supervised classification problem a L1-norm regularization following the idea
pursued in [Wang 06b] as an extension to the original framework. The goal here is to express the
classifier in function of few data points (labeled or not) rather than the solution with all points
given by the original Laplacian SVM algorithm. To examine the evolution of the decision function
in relation to this latest regularization, we compute a L1-norm regularization path. According
to [Hast 04, Wang 06b], it can be shown that the solution paths are piecewise linear and can be
computed in a smart and efficient way.

In the sequel, the Laplacian SVM algorithm is described, then, the L1-norm is introduced within
the Laplacian SVM framework, followed by the description of the regularization path.

3.2. Laplacian SVM

The aim is to built a SVM classifier that exploits the information given by the unlabeled data.
The framework of the manifold regularization considers that if two points are close in the intrinsic
geometry of the marginal distribution PX , they share the same conditional density [Belk 06] i.e. if
xi ∼ xj along the manifoldM, then f(xi) ∼ f(xj), where f is the decision function. This means
that the labels vary smoothly along a submanifold the data is lying on, so that it can be seen as
a traditional SVM classification problem with an additional penalization on the regular variation
of the decision function f . The corresponding optimization problem is:

(f̂0, b̂) = argmin
f0∈H,b∈R

l∑

i=1

L(f,xi, yi) +
λ

2
‖f0‖

2
H +

µ

2
‖f‖2M

where L(·, ·, ·) is a loss function, λ, µ are the regularization parameters for the regularization
term and the manifold condition, respectively and f(x) = f0(x) + b. The first penalty term is
the classical L2-norm regularizer in a Hilbert space whereas the second penalty is related to the
smoothness along manifold M . An approximation of this last term can be computed [Belk 06] as:

‖f‖2M = fT
Lf , (3.3)

with f = [ f(x1) f(x2) . . . f(xl+u) ] and L the Laplacian of the neighborhood graph which vertices
are the l + u points and edges obey the nearest neighbors rule (xi is connected to its k-NN or xi

is connected to ε-close points, see Section 3.4). In general, the most commonly used distance to
measure proximity is the Euclidean distance, but any other metric more adapted to the nature of
data xi can be used. A weight Wij is associated to each edge between xi and xj . Let matrix W
be the corresponding weighted adjacency matrix with weights Wij and D a diagonal matrix where
all its diagonal elements are Dii =

∑
j Wij . The Laplacian is then defined as:

L = D −W (3.4)

A normalized variant of the Laplacian can be computed by L = (I −D−1W ).

To illustrate the effect of the Laplacian regularizer, let consider the following example. Suppose
that nearest neighbors are connected in the neighborhood graph and the adjacency matrix W is
defined as Wij = 1 if xi and xj are nearest neighbors (xi ∼ xj) and zero otherwise (xi ≁ xj). This
is illustrated in Figure 3.2, where neighbors points are depicted with an edge (Wij = 1), and the
absence of edge means that the two points are not neighbors (Wij = 0). Therefore, the regularity
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constraints take the form
∑

i,j:
xi∼xj

(f(xi)− f(xj))
2

=
∑

i,j:
xi∼xj

f(xi)
2 − 2

∑

i,j:
xi∼xj

f(xi)f(xj) +
∑

i,j:
xi∼xj

f(xj)
2

=

n∑

i=1

f(xi)
2Dii − 2

∑

i,j:
xi∼xj

f(xi)f(xj) +

n∑

j=1

f(xj)
2Djj

= 2
n∑

i=1

f(xi)
2Dii − 2

∑

i,j:
xi∼xj

f(xi)f(xj)

= 2

n∑

i=1

f(xi)
2Dii − 2

n∑

i=1

n∑

j=1

f(xi)f(xj)Wij

= 2f⊤Df − 2f⊤W f

= 2f⊤(D −W )f

= 2f⊤Lf .

with Dii =
∑

j Wij and f = [ f(x1) f(x2) . . . f(xl+u) ] as before, obtaining a direct relation with
the graph Laplacian L.
As an example, the change along the graph in Figure 3.2 can be measured with

W =




0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


 and D =




2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3




and
∑

i,j:xi∼xj

(f(xi)− f(xj))
2

= (f(x1)− f(x2))
2

+ (f(x1)− f(x4))
2

+(f(x2)− f(x3))
2

+ (f(x2)− f(x4))
2

+ (f(x3)− f(x4))
2

= 2f(x1)
2 + 3f(x2)

2 + 2f(x3)
2 + 3f(x4)

2 − 2f(x1)f(x2)

−2f(x1)f(x4)− 2f(x2)f(x3)− 2f(x2)f(x4)− 2f(x3)f(x4)

= [ f(x1) f(x2) f(x3) f(x4) ] (D −W ) [ f(x1) f(x2) f(x3) f(x4) ]
⊤

x
1

x
2

x
3

x
4

Figure 3.2: Induced graph by an adjacency matrix.
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3.2 Laplacian SVM

3.2.1 Formulation of the Laplacian SVM

It is considered that the decision function f(x) belongs to a RKHS, and including the later
definitions in the SVM framework, Belkin et al. [Belk 06] express the Laplacian SVM as:

minimize
f,ξ

l∑

i=1

ξi +
λ

2
‖f‖2H +

µ

2
‖f‖2M

subject to yif(xi) ≥ 1− ξi, i = [[l]]
ξi ≥ 0, i = [[l]].

(3.5)

Indeed, the extension of the Reproducing Kernel Hilbert Space (RKHS) theory to the manifold
regularization brings them to propose a corresponding representer theorem which shows that the
solution of problem in Equations (3.5) depends on all (l + u) points as follows:

f(x) =

l+u∑

j=1

βjk(x,xj) + b (3.6)

with k(·, ·) the reproducing kernel. Using this result and letting β = (β1, . . . , βn)⊤, the previous
optimization problem can be rewritten in terms of the new parameters:

minimize
f,ξ

l∑

i=1

ξi +
λ

2
β⊤Kβ +

µ

2
β⊤KLKβ (3.7a)

subject to yi

(
β⊤k(xi) + b

)
≥ 1− ξi, i = [[l]] (3.7b)

ξi ≥ 0, i = [[l]] (3.7c)

where k(xi) = (k(xi,x1), . . . ,k(xi,xl+u))⊤ and K ∈ R
(l+u)×(l+u) is the kernel matrix. It should

be noticed that f = Kβ. If we note the Lagrange parameters for constraints (3.7b) and constraints
(3.7c) as αi and γi, i = [[l]] respectively, then, the Lagrangian L is defined as:

L =

l∑

i=1

ξi +
λ

2
β⊤Kβ +

µ

2
β⊤KLKβ −

l∑

i=1

αi

(
yiβ

⊤k(xi) + yib− 1 + ξi

)
−

l∑

i=1

γiξi.

with αi, γi ≥ 0, i = [[l]]. The optimality conditions related to the primal variables yield:

∇bL = 0 : α⊤y = 0 (3.8)

∇ξi
L = 0 : 1− αi − γi = 0 ⇒ 0 ≤ αi ≤ 1 (3.9)

∇βL = 0 : λKβ + µKLKβ −
l∑

i=1

αiyiK
⊤
i,· = 0

where y = (y1, y2, . . . , yl)
⊤, α = (α1, α2, . . . , αl)

⊤ and Ki,· = k(xi) denotes the i-th row of the
kernel matrix K. Defining Y = diag(y) ∈ R

l×l, the parameters of the optimal decision function
(the one that solves Equations (3.7)) are given by:

β̂ = (λIl+u + µLK)
−1
J⊤Y α̂ (3.10)

with J =
[
Il 0l×u

]
, Il the identity matrix of size l and 0l×u a matrix full of zeros of size l × u.

Vector α̂ is the solution of the dual problem involving only the labeled data:

maximize
α∈Rl

−
1

2
α⊤Qα + α⊤1

subject to α⊤y = 0, i = [[l]]

0 ≤ αi ≤ 1, i = [[l]]
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with Q = Y JK(λIl+u + µLK)−1J⊤Y .

Here two remarks can be made: first, the solution (3.10) requires to solve a linear system which
has O((l+u)3) complexity. This computation can be long especially for large scale database. The
solution of the dual problem is sparse in the labeled points (that is, some elements of α will be
zero) but the parameter β still depends on all data inducing a non sparse solution in the variables
of the model (if we consider the term k(x,xj) in the expression of f(x) as a variable).

We can remark also that due to the KKT conditions, we can make a partition of the labeled points
in three sets as for a classical SVM:

I1 : yif(xi) < 1 and αi = 1, bounded points (3.11)

I0 : yif(xi) > 1 and αi = 0, useless points (3.12)

Iα : yif(xi) = 1 and 0 ≤ αi ≤ 1, margin points (3.13)

so that Sℓ = I1 ∪ I0 ∪ Iα. Support vectors will lie in sets I1 (misclassified points) and Iα (points
that are exactly on the margin). Points in I0 are well classified points that become useless for the
construction of the decision function. The solution (3.10) is entirely determined by the knowledge
of these sets which will be exploited in the derivation of the solution path in the next section.

3.3. L1-norm Laplacian SVM

In general vector β obtained in Equation (3.10) is not sparse. In this case the classification
function relies on all the learning points (labeled or unlabeled). To obtain sparsity, we introduce
an additional L1-norm constraint to the problem. We formulate the L1-norm Laplacian SVM as:

minimize
β,b,ξ

l∑

i=1

ξi +
λ

2
β⊤Kβ +

µ

2
β⊤KLKβ

subject to yi(β
⊤k(xi) + b) ≥ 1− ξi, i = [[l]]

ξi ≥ 0, i = [[l]]

l+u∑

j=1

|βj | ≤ s

(3.14)

this form satisfies the conditions of Rosset’s [Ross 07b] formulations and it has therefore a piecewise
linear solution with respect to s.

If we consider the form of the decision function in Equation (3.6), this formulation can be seen
as the expansion of f(x) over a dictionary composed of a set D = {h1(x), h2(x), . . . , hl+u(x)} of
basis functions. These basis functions hj(x) are here the kernel functions defined in the point xj

i.e. hj(x) = k(x,xj). If s = ∞, the Laplacian SVM solution will be obtained, while making the
parameter s small tends to cause many coefficients βj to be null. The aim in this section is to
analyze the degree of the sparsity when s varies.

The objective is to use an iterative algorithm that will give the set of all solutions for all 0 ≤ s ≤ ∞
with the same computational cost as one single problem resolution: the regularization path. We
are not trying to fix some values for s, solve the problem given by in Equations (3.14) for each
value and then compare the degree of the sparsity obtained for each solution. It will be shown that
if at step t, solution f t is the optimal one, the solution for a close value s′ to s will be deduced
from the last one with a simple linear relation. As in previous sections, this linear relation will
hold until the previously defined sets remain unchanged. The details of the regularization path is
analyzed hereafter.
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3.3 L1-norm Laplacian SVM

To deduce the regularization path, the Lagrangian associated to (3.14) is needed. It is given by:

L =

l∑

i=1

ξi +
λ

2
β⊤Kβ +

µ

2
β⊤KLKβ

−
l∑

i=1

αi

(
yi(β

⊤k(xi) + b)− 1 + ξi

)
−

l∑

i=1

γiξi

+ζ




l+u∑

j=1

|βj | − s




with ζ ≥ 0

αi ≥ 0, i = [[l]]

γi ≥ 0, i = [[l]]

The optimality conditions related to the primal variables b and ξi of the previous section remain
unchanged (see Equations (3.8) and (3.9)), but the derivation of the optimality condition for β is
slightly different due to the non-differentiability of the ℓ1-norm. Indeed, let A = {j|βj 6= 0} be the
set of active variables and Ā = {j|βj = 0} be its complement in D. Remark that, due to the
definition of D, A coincides with the set of useful points (labeled or not). To facilitate notation,
let

P = λK + µKLK.

It can be noticed that f(xj) = Kj,AβA, for j ∈ Sℓ ∪ Su, with Kj,A = k(xj)A being the vector
formed with the j-th column of K and the corresponding rows to set A, while βA is the sub-vector
of β corresponding to the positions of set A. The optimality conditions according to β could be
derived directly using the notion of subdifferential, leading to 0 ∈ Pβ−

∑l
i=1 αiyik(xi)+ζg where

g is the vector of subdifferentials with entries gi = signβi if βi 6= 0 and −1 ≤ gi ≤ 1 if βi = 0.
Using this optimality condition the path derivation analysis can be carried on as well. Therefore,
the optimality condition with respect to βA yields

PA,AβA −
l∑

i=1

αiyiK
⊤
i,A + ζ sign(βA) = 0

where PA,A is the submatrix composed by the corresponding A columns and rows of P .
We have that this equation is equivalent to

PA,AβA −KA,Sℓ
YSℓ,Sℓ

α + ζ sign (βA) = 0 (3.15)

At an optimal point, the KKT conditions for the points in Iα become equality conditions, resulting
in:

yi (Ki,AβA + b) = 1, ∀i ∈ Iα (3.16)

ζ



∑

j∈A

|βj | − s


 = ζ

(
sign (βA)

⊤
βA − s

)
= 0

From this formulation, the L1-norm regularization path is deduced. If λ and µ are fixed, the
s-path (or equivalently the ζ-path) will provide the evolution of the form of f (that is, of β, b and
α) according to s. Remark that, conversely, fixing ζ and µ, we can analyze the variation of f with
relation to λ giving the λ-path.

3.3.1 The sparsity regularization path

The problem in Equations (3.14) is a convex one, ans as seen in Section 1.1.5, it can be shown
that its solution coincides with the following equivalent problem:
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minimize
β,b

∑ℓ
i=1 max(0, 1− yi(k(xi)

⊤β + b)) + λ
2 β⊤(K + µ

λKLK)β + ζ‖β‖1

where ‖β‖1 is the L1-norm of vector β. This last problem involves a hinge-loss function, a
quadratic penalty and a piecewise linear penalty. As this problem satisfies the required conditions
in Theorem 2.2, it also has a piecewise linear solution if λ is fixed and it has a regularization path
along ζ. In a similar way, the regularization path for λ can be found if ζ is fixed.
Following the ideas developed by Wang et al. [Wang 06b], a sufficiently small s can be found at
step t so that the L1-norm constraint is active, that is,

sign
(
βt
A

)⊤
βt
A = st, (3.17)

corresponding to ζt = 0, when we increase st by an infinitesimal quantity, the constraint is inactive
and the solution remains the same unless a certain value s is reached. When st increases sets A,
Iα, I1 and I0 also remain unchanged. By continuity of the solutions (meaning that a wrongly
classified point cannot be well classified unless it passes through the decision function border, or
margin), the variations of α, β, b and ζ can be expressed as a function of the variation of s via
the relations (3.8, 3.15-3.17). If these are reformulated in matrix form, the following linear system
is obtained:

PA,A∆βA −KA,Iα
YIα

∆αIα
+ ∆ζ sign (βA) = 0

y⊤
Iα

∆αIα
= 0

YIα
(KIα,A∆βA + 1Iα

∆b) = 0

sign (βA)
⊤

∆βA = (s− st)

where, in order to simplify the notation, YIα
stands for YIα,Iα

, the diagonal matrix containing
labels of points in Iα. Notice that in these equations, only the variations of the Lagrangian param-
eters in vector αIα

associated to the margin points Iα are considered since the other parameters
are fixed either to one or zero.
We have a linear system of |A| + |Iα| + 2 equations and |A| + |Iα| + 2 unknown parameters
∆βA ∈ R

|A|, ∆αIα
∈ R

|Iα|, ∆b and ∆ζ. This system can be written in matrix form (after some
algebra):

H∆θ = (s− st)z, where (3.18)

∆θ =




∆βA

∆αIα

∆b
∆ζ


 , z =




0A

0Iα

0
1


 and

H =




PA,A −KA,Iα
YIα

0A sign(βA)
−YIα

KIα,A 0Iα
−yIα

0Iα

0⊤
A −y⊤

Iα
0 0

sign(βA)⊤ 0⊤
Iα

0 0




letting η = H−1z, it is straightforward to see that the evolution of the various parameters of the
model are piecewise linear in s as we have:

θ = θt + (s− st)ηθ (3.19)

where θ stands in a general way either for βA, αIα
, b or ζ. This linear variation holds until one

of the previous sets A, Iα, I1 or I0 changes. The specific value of s at which this change occurs
is determined by reviewing four types of events:

1. A labeled point in Iα moves to I0 or I1.

105
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2. A labeled point in I0 ∪ I1 reaches Iα.

3. An active variable βj 6= 0 in A becomes inactive.

4. An inactive variable βj = 0 in Ā becomes active and joins A.

5. A termination criteria is satisfied.

The detection of these events is described in the next subsection.

3.3.2 The events and determination of next value s

1. A labeled point xi ∈ Iα moves to I1 or I0.
Looking at the definition of I1 and I0, this point movement implies that the Lagrange
parameter associated to it achieves one of the limits values, that is αi = 1 or αi = 0. Thus,
using the Equation (3.19) to update the parameters, the next value of s that will cause one
of these events is:

if xi ∈ Iα → I1 ⇒ st+1 = st +
1− αt

i

ηαi

or

if xi ∈ Iα → I0 ⇒ st+1 = st +
0− αt

i

ηαi

,

2. A labeled point xi ∈ I1 or xi ∈ I0 moves to Iα.
This event happens when the residual ri = 1 − yif(xi) turns zero. More explicitly, the
residual for the non-margin points is ri = 1 − yi (Ki,AβA + b), ∀i ∈ I1 ∪ I0. Thus, we get
the variation of the residual:

ηri
= −yi

(
Ki,AηβA

+ ηb

)
, ∀i ∈ I1 ∪ I0

and deduce the value of s corresponding to this event

s = st +
0− rt

i

ηri

, ∀i ∈ I1 ∪ I0

3. An active variable βj 6= 0, j ∈ A becomes inactive.
This event means that the parameter associated to variable βj turns zero and the following
conditions are satisfied:

st+1 = st +
0− βt

j

ηβj

, ∀j ∈ A

4. An inactive variable βj = 0, j ∈ Ā becomes active.
To track this event, we consider the optimality condition associated to βm in Equation (3.15):

Pj,·β −Kj,Sℓ
Yα = −ζ sign(βj) ∀j ∈ A

This expression can be seen as the generalized correlation of the variable k(x,xj) and shows
that for all active variables, the right term is equal to −ζ times the sign of the parameter
(as an analogy to the LARS algorithm [Efro 04] and Chapter 2.5). Hence, for all variable
(active or not), if the generalized correlation is defined as:

cj = Pj,·β −Kj,Sℓ
Yα

106



Chapter 3 Model Selection in Semi-Supervised and Unsupervised Learning

which depends on the parameters of the model. Therefore, using the same arguments of
the variation, it can be established that cj varies linearly, so that at step t, knowing that
only βA is active we have that for an inactive variable βj , c

t
j = Pj,AβA −Kj,Sℓ

Yα and the
variation of cj is

ηcj
= Pj,A ηA −Kj,Iα

YIα
ηIα

where for simplicity sake, the notations ηA and ηIα
stand respectively for ηβA

and ηαIα
.

If an inactive variable βj , j ∈ A turns active, it must verify the generalized correlation
constraint:

|ct+1
j | = |ζt+1|

where ct+1
j = ctj + ηcj

(st+1 − st)

and ζt+1 = ζt + ηζ(s
t+1 − st).

From the correlation constraint we deduce the next value of st+1 that will possibly activate
variable βj :

st+1 = st + min

(
ζt − ctj

ηcj
− ηζ

,
−ζt − ctj
ηcj

+ ηζ

)

+

j ∈ Ā

with (x)+ = max(0,x)

5. The last event that can occur, which is one of the stopping criteria of the algorithm, is that
the generalized correlation of active variables turns zero, that is, that parameter ζ turns
zero. This will happen for the value:

st+1 = st +
0− ζk

ηζ

.

If the regularization parameter is swept by increasing s, given st, the next value of s will be the
minimum of the previously enumerated st+A with value larger than st. The sets are modified
according to the identified event.

3.3.3 Algorithm initialization

The initialization procedure is here briefly described. Two cases can be considered: the balanced
case (where the number of points of the positive points and the number of negative points are
equal, that is, l+ = l−) and the unbalanced case l+ 6= l−, letting l+ and l− be the number of
positively and negatively labeled data points, respectively.

Balanced case (l+ = l−) When st = 0, all parameters βj are zero (A is empty), β = 0 then,
the decision function is a straight line satisfying the equation f(x) = b. The solution b is not
unique but it can be chosen so that all points belong to I1. This can be done by letting α = 1l, a
vector of ones of size l. The procedure consists in identifying the variables with maximum absolute
generalized correlation |cj | = |Kj,Sℓ

Yα| which will join A. Since their sign is known, it can be
solved for ∆βA and ∆ζ using Equation (3.18) from which we exclude the terms related to ∆αIα

and ∆b. Tiding up this information, we have

1− (b+ (s− st)Ki,A∆βA) ≥ 0, ∀i, yi > 0

and
1 + (b+ (s− st)Ki,A∆βA) ≥ 0, ∀i, yi < 0.

Since all points are in I1 and f(xi) = (s− st)Ki,A∆βA, both inequalities involve b and s. These
two last parameters are then determined so that at least one point in each class goes to Iα. It
can be seen that the initial configuration is equivalent to set all points inside the margin or on the
margin. Set I0 is empty at the initialization.
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Unbalanced case (l+ 6= l−) To identify the different sets for this case, a Linear Programming
problem is solved with a fixed value of s. We refer the reader to the paper of Wang et al.
[Wang 06b] to get more insights.

3.3.4 The L1 regularization path algorithm

The regularization path can be summarized by the pseudo-code of Algorithm 5.

Algorithm 5 Pseudo-code for the sparse Laplacian SVM regularization path

Input: training set {(xi, yi)}, i = [[l]], and Su = {(xi)}, i = [[u]]
Output: Complete regularization path {(αs, s)}

Find an initial solution for parameters βA, α, b, ζ and its corresponding s.
Initialize sets A, Iα, I1 and I0 accordingly.
Set t = 1.
repeat

Compute the direction of variation for the parameters: ηA, ηIα
, ηb and ηζ using equation

(3.18): Hη = z.
Deduce from these variations the residuals ones ηrj

, j ∈ I0∪I1 and the ones of the generalized

correlation ηcj
, j ∈ Ā.

Compute the next value of st+1 by detecting the following event to occur.
Update the parameters of the model using (3.19).
Update the sets A, Iα, I1 and I0 according to the occurred event.
Set t = t+ 1.

until no more events are found, ζ turns zero.

Other stopping criteria can be include like a minimum value for the parameters or a fix number
of iterations.

3.3.5 Computational complexity

Beyond the computation cost of the neighborhood graph (O(l+u)2), the Laplacian L (see Equation
(3.4)) and the kernel matrix K, the sparse Laplacian solution path involves different costs.

The resolution of the linear system in Equation (3.18) requires a computational cost of O((|A|+
|Iα|+ 2)3) for the inversion of matrix H. This cost can be reduced to O((|A|+ |Iα|+ 2)2) using
Sherman-Morrisson updating at a given step, the linear system differs from the previous by one
row or column due to the update of the sets.

The computation of ηri
and ηcj

costs respectively O(|A|) and O(|A|+ |Iα|), therefore, the overall
computation cost are respectively O(|A| × l) and O((l + u)× (|A|+ |Iα|)).
Finally, the detection of an event involves O(l + u) operations. From this analysis, the total
complexity of a step of the algorithm is approximately O((|A|+ |Iα|+2)2 +(l+u)× (|A|+ |Iα|)).
It is very hard to predict the number of steps of the algorithm but it can be estimated like a small
multiple of l+ u (it takes l+ u moves to examine all the l+ u variables). However, if a validation
procedure is coupled with the algorithm, there is no need to explore entirely the regularization
path. An early stop of the algorithm has to be performed in order to yield a sparse solution.

3.3.6 Applications of the algorithm

The algorithm is illustrated on a synthetic data: the classical two moons datasets (see Figure 3.3),
and in real datasets from the UCI database.

For the toy dataset, each half-moon represents a class and is a non-linear separable case, and the
dataset consists on 200 points. To evaluate the algorithm, the following procedure was followed:
a given number l of labeled data was chosen and the algorithm was run over them and the other
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(a) Resulting decision function at the end of
the regularization path.
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ization path.

Figure 3.3: Illustration of the algorithm on the two moons dataset when only one labeled point
per class is available. Blue points are unlabeled, red circles are labeled points and red squares are
the active points in the optimal model with the used regularization parameter.

200−ℓ unlabeled points. A Gaussian kernel with σ as the bandwidth was used. The neighborhood
graph is computed using k-NN technique with k = 7, which showed to give satisfactory results.
At the beginning of the algorithm, there are 200 candidate variables k(x,xi). At the end of
the algorithm we select the sparsest decision function (the function with the minimum number
of variables) which gives a zero error classification performance. The experiment is repeated 10
times and is carried out for respectively l = 4, 8, 16, 32, 64 labeled data points. The obtained
results are summarized in the Table 3.1 as well as the parameters used to realize the experiment.
We can see that the number of selected variables increases when the number of labeled data is

l 4 8 16 32 64
σ 0.5 0.5 0.5 0.5 0.5
λ 0.001 0.01 0.01 0.01 0.01
µ 1 1 1 1 1
|A| 48.87 (12.58) 32.2 (11.69) 28.4 (12.81) 23.8 (6.54) 22.5 (2.27)

Table 3.1: Summary of the number of selected variables for different numbers of labeled points l
for the two moons dataset. The mean number of selected variables over the 10 trials is given (|A|)
with its standard deviation in parenthesis.

small. The decision frontier is supported by the variables k(x,xi) induced by the unlabeled data
which tend to cover the manifold (see the illustrations of Figure 3.4). The relative high variability
of the cardinality of A can be explained by the position in the manifold of the labeled data. If
the labeled data cover well the manifold, a few number of variables is required to achieve a sparse
solution.
It has to be remarked that for l = 4, more importance to the manifold assumption is given as
λ = 0.001 in this case whereas λ = 0.01 is used in the other cases.
Finally, for this dataset, Figure 3.5 illustrates the evolution of the number of non-zero parameters
as s varies. It can be noticed that when s is small, few variables are included in the model while
it increases as s does.
The algorithm was also tested on real dataset. Firstly, it was tested on the USPS handwritten
digit database from the UCI database. Initially, the algorithm was trained to separate class “2”
against class “5”. The learning set comprises 847 points and the test set contains 1274 points.
A Gaussian kernel with σ = 10 was used while the regularization parameters were λ = 0.001
and µ = 0.1. The labeled points were randomly selected and, to limit the calculation time, the
algorithm was stopped until the same results as the LapSVM were obtained (which involves all
847 variables). Table 3.2 summarizes the results which were averaged over 7 runs for each of
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Figure 3.4: Illustration of the two moons dataset. The sparse solution gives a 100% good clas-
sification with 40 variables whereas the 200 variables are needed in the original framework of
the Laplacian SVM. labeled data points are marked with circles while the selected variables for
the model correspond to points represented by a red square. These last ones tend to cover the
manifold.
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Figure 3.5: Evolution of the non-zero coefficients as s increases. Two moons dataset case with
ℓ = 4.

the values of ℓ. The standard deviations are indicated in parentheses. As we can see, a similar
performance can be achieved with a reduced number of parameters.

The same experiment was done to classify “1” versus “7”. The results are summarized in Table
3.3. In this example, ℓ+ u = 954 learning points were considered. Again, it can be seen that the
reduction of the number of variables is important.

These tests were then extended to two other datasets: the Text and the coil3 set. Text is a docu-
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l 16 32 64
A 132 (104.17) 126 (154.18) 105.87 (114)

Test error (%) 19 (8.73) 13 (2.78) 9 (3.33)

Table 3.2: USPS dataset results of class “2” against class “5”. The error is the average number of
misclassified points (expressed in percentage), standard deviation of the average number of active
points and the error is in parenthesis.

ℓ 16 32 64
|A| 348 (118.7) 317 (37.42) 408 (190.40)

Test error (%) 36.8 (23.63) 23.25 (6.19) 13.75 (2.63)

Table 3.3: Sparse Laplacian SVM results on the USPS dataset “1” vs. “7”. Average number
of active variables and the test error (in percentage) is summarized together with its standard
deviation in parenthesis.

ment classification problem while coil3 is an image classification problem and their characteristics
are explained in the Table 3.4.

ℓ ℓ+ u Dimension Number of Classes
coil3 6 216 1024 3
Text 50 1946 7511 2

Table 3.4: Characteristics of the coil3 and Text datasets

A part of the set (25%) were used as test and the rest was used for the learning. Labeled datasets
are again randomly selected and the accuracy is average along 4 tries. The obtained results can
be seen in Table 3.5 for the Text dataset. It can be seen that the obtained accuracies are similar
to the ones mentioned in [Sind 05a] or [Chap 08] but with a reduced number of variables. These
accuracies are nevertheless lower than the ones given by the Transductive SVM algorithm that
are of the 9% order [Chap 08].

Laplacian SVM Sparse Laplacian SVM
|A| 1458 1027

Test error (in %) 10.38 10.38

Table 3.5: Obtained results on the Text dataset with the sparse Laplacian SVM algorithm.

For the coil3 dataset the classification was done by pair. Given the low number of data, a cross
validation was done. For each classifier, the dataset was divided in four, where one part was used
as validation set and the other three as learning set. The results shown in Table 3.6 cannot be seen
as a multi-class learner but as the performances of each classifier. It can be again appreciated that
the use of a parsimonious model does not substantially decrease the generalization ability of the
Laplacian SVM. Results with low accuracy are essentially linked to the difficulty to discriminate
between the class “2” and “3”. Nevertheless, the presented results are better to the ones given by
a semi-supervised approach based on the cluster assumption [Chap 08].

3.3.7 L2 regularization path for the sparse Laplacian SVM

To develop the previous regularization path, it was supposed that parameters λ and µ are known
and fixed. If additionally, the interest is turned into the analysis of the influence of the parameter λ
over the solution f , a regularization path can also be established, which will be called the L2-path.
Especially, if we fix µ and ζ (or s), the λ-path can be derived as briefly explained below.
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Laplacian SVM Sparse Laplacian SVM

’1’ vs. ’2’
|A| 108 83

Test Error 5.55 4.86

’1’ vs. ’3’
|A| 108 90

Test Error 17.36 18.05

’2’ vs. ’3’
|A| 108 88

Test Error 29.16 29.16

Table 3.6: Obtained results on the Coil3 datasets with the sparse Laplacian SVM algorithm. The
error is expressed in percentage.

We suppose ζ fixed. Therefore, Conditions (3.8) and (3.15-3.17) hold. Recalling Relation (3.15)
and making explicit the dependence of PA on λ, we get

λRA,AβA −KA,Sℓ
Yα + ζ sign (βA) = 0

with R = K(I + ρLK) and ρ = µ/λ. If we let ν = 1
λ and α̃i = ναi, the latest conditions become:

RA,AβA −KA,Sℓ
Y α̃ = −ν ζ sign (βA) (3.20)

At this point, we proceed in a slightly different way to the L1-path as some parameters will vary
in a linear way with respect to λ while other do it inversely to λ. Given a value of λt at step t
(corresponding to a νt) the solutions βt, αt bt and the sets It

α, It
0, I

t
1, A

t and Āt are known.
Under the hypothesis that these sets remain unchanged when νt changes to ν, it can be established
by differentiation of the Equations (3.8), (3.16) and (3.20) the following relations:

y⊤
Iα

∆αIα

∆λ
= 0 (3.21)

YIα

(
KIα,A

∆βA

∆ν
+ 1Iα

∆b

∆ν

)
= 0 (3.22)

RA,A
∆βA

∆ν
−KA,Iα

YIα

∆α̃

∆ν
= −ζ sign (βA) (3.23)

with ∆ν = ν − νt. It will be noticed that the variations of βj , α̃i and b are given with respect to
ν instead of λ. The following relation can be deduced:

∆α̃i

∆ν
= αt

i − λ
t ∆αi

∆λ

By the substitution of this relation in Equation (3.23), it can be finally established

RA,A
∆βA

∆ν
+ λtKA,Iα

YIα

∆αIα

∆λ
= λRA,Aβt

A. (3.24)

Combining the Equations (3.22), (3.21) and (3.24), it can be seen that the unitary variations of
the parameters can be calculated from a system of linear equations with |Iα|+ |A|+ 1 equations

and |Iα|+ |A|+ 1 variables:
∆βA

∆ν ,
∆αIα

∆λ and ∆b
∆ν .

By letting θ be the vector containing the unitary variations, it can be deduced that as the pa-
rameter λ varies, parameters α vary linearly with respect to λ while the parameters β and b vary
linearly with respect to ν.

From this linear variation, it is then possible to use the same development line as the L1 regular-
ization path and to deduce the conditions for the different previous events to occur that will cause
a change in the partition sets.

112



Chapter 3 Model Selection in Semi-Supervised and Unsupervised Learning

3.3.8 Conclusion

A L1-norm regularization path was presented for a semi-supervised learning algorithm (the Lapla-
cian SVM). In the original approach, the decision function relies on all data (labeled or unla-
beled). By introducing a L1-norm constraint, we show that similar classification performance can
be achieved using a fewer number of variables. Since the choice of the L1-norm regularization pa-
rameter can be difficult for a given problem, a regularization path is proposed. In the experiments,
the parameters λ and µ are chosen ad hoc. They can be computed using also a regularization
path.

3.4. Unsupervised Learning

In numerous machine learning application (as bioinformatics, signal processing, etc.) the used
data possess a very large dimensionality as they are issued from the extraction of a large number
of features. Nevertheless, it can turn out that only a reduced number of these characteristics
are actually providing information or are matter of interest for classification or ranking tasks, for
example. In this case, a multidimensional projection in a space with lower dimensionality might
be useful. Other reasons for doing such a projection is to allow a 2D or 3D visualization of the
data that will preserve the essential morphology of the dataset.

A task on a set of samples SX = {xi}i=[[n]] with n data points, xi ∈ R
Di = [[n]], with no label

information form an unsupervised learning problem . Even though no extra information is
given, an intrinsic structure can still be learned. The aim of unsupervised learning is to discover
this hidden structure without extra information apart from the data itself.

The underlying idea is to project the original data points in a space with reduced dimensional-
ity so that the similarity (or dissimilarity) among points is mostly preserved in the projection.
Most algorithms tend to minimize a criteria that measures the preservation of this similarity (or
dissimilarity).

Unsupervised methods aim at clustering , dimensionality reduction or manifold learning .
The first task looks for a partition of the dataset SX that will keep in a cluster all samples sharing
similar characteristics, while the last two tasks can be used as a preprocessing step for classi-
fication or regression, for feature extraction, improvement on calculation time or generation of
computationally feasible problem. These techniques are useful to discover similarities and differ-
ences between data points or to establish relations between them. For instance, in semi-supervised
learning setup, the informations conveyed by the clusters formed by the data or the informa-
tions about the geometrically shape of these data can help to improve the learning performances
[Sind 05a, Chap 05] as shown in the previous section.

In the clustering task, the aim is to make a partition of SX in k subsets, which will be denoted
∆ = {C1, C2, ..., Ck}. A label yi = f(xi) will be assigned to each element in SX . The quality of
the found partition will be measured by the cost function L(∆). It can be chosen to have either a
hard clustering or a soft clustering by giving a degree of membership, γij , of element xi to cluster

Cj , where
∑k

j=1 γij = 1 for all i = [[n]].

Although clustering is clearly an unsupervised learning problem, we will not develop further the
related algorithms. In the sequel, we will be more concerned by dimension reduction techniques
for which we have developed some interesting extensions of existing algorithms. However, to be
complete in our bibliography work, we would like to mention that there exists several techniques to
realize clustering. Many of the most popular techniques are based on a statistical formulation and
solved using the well-known Expectation Maximization technique (See Appendices A.1.5 and
A.1.6). We can also cite algorithms like hierarchical clustering [John 67] and spectral clustering
[Ng 01, Luxb 07].

The remainder is organized as follows: after a description of the dimensionality reduction, we
present an overview of techniques presented in the literature to deal with such a problem. We
describe the strengths and weaknesses of those methods as well. The details of the approach we
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developed to overcome one weakness common to projection techniques based on graph construction
(namely shortcuts problem) is discussed afterward.

3.4.1 Brief state of the art of the dimensionality reduction problems

Formally, the dimensionality reduction task [Fodo 02] can be stated as follows: given the
D-dimensional random vector x = (x1, . . . , xD)⊤, find a lower dimensional representation of it,
y = (y1, . . . , yd)

⊤ with d ≤ D, that captures the content in the original data, according to some
criterion, that is, the process of reducing the number of random variables under consideration. The
components of y are sometimes called the hidden components. Different fields use different names
for the d multivariate vectors: the term variable is mostly used in statistics, while feature and
attribute are alternatives commonly used in the computer science and machine learning literature.

Several methods for dimensionality reduction uses the assumption that the data lies on or near
a low dimensional manifold. Manifolds are spaces that are locally linear, but unlike Euclidean
subspaces, they can be globally nonlinear. Curves and surfaces are familiar examples of one and
two dimensional manifolds. These methods use the idea that a manifold is differentiable and
therefore a tangent subspace to the original manifold can be estimated. This will correspond to
a tangent hyperplane in a space of lower dimensionality. All nearest neighbors should lie close to
this tangent subspace, where distance will be measured not only with the Euclidean distance but
also with the deviation angle to the tangent subspace.

We are willing to find the embedding manifold M ⊂ R
D of input data X = {xi}, xi ∈ M,

i = 1, . . . , n. The pursued objective is the projection of X into a subspace R
d (d < D) that

preserves the topological characteristics of M. This will yield to dataset Y = {yi}, yi ∈ R
d. To

achieve this goal, several techniques proceed by constructing the neighborhood graph related to
the training points and then finding a transformation of this graph.

There are two common used techniques to determine nearest neighbors of each point in the dataset:
the k-NN approach and the ǫ-ball technique, which are explained in Section 3.4.4.

To illustrate the use of manifolds, consider Figure 3.6, the original dataset is a toroidal helix in
three dimensions (Figure 3.6(a)), the relevant information that is to be maintained among the
data points is the immediate neighborhood, that is, close points along the manifold are to be
kept close. The neighborhood of each point can be represented by a graph, where each vertex is
a data point and each edge corresponds to close neighbors (Figure 3.6(b)), the dataset could be
represented with an equivalent manifold in two dimensions by keeping the neighborhood relation,
as in Figure 3.6(c), achieving the reduction in the dimensionality.

For the dimensionality reduction and manifold learning tasks, there is an equivalent goal consisting
on the internal data structure unraveling with the aim at expressing data relations with less
information. While learning the embedding manifold of a dataset, the learned manifold could be
expressed as a compact function in a smaller space, that is, in a reduced dimensionality.

In order to obtain general information about a dataset, it is very usual to sample the data. If this
subset of the whole population is taken under certain conditions, it will give a rough idea of the
characteristics of the whole set.

There exists different methods for dimensionality reduction, good surveys can be found in several
sources [Huo 07, Lawr 08, Lee 07, Verl 03, Gail 08]. These could be roughly divided in 3:

1. Statistically-based dimensionality reduction.

2. Graph-based dimensionality reduction.

3. Kernel extension, which are in general extensions of the previous one adapting the use of a
kernel.

Several methods are based in the spectral decomposition technique, consisting in the factor-
ization of a positive definite matrix A into A = UΛU⊤ where Λ is a diagonal matrix containing
the eigenvalues of A, matrix U contains its eigenvectors and U⊤ is the transpose of U . This
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(a) Original dataset in three dimensions

(b) Information to be kept: neighborhood graph (c) Data points embedding with only two
dimensions

Figure 3.6: Manifold dimensionality reduction illustration. Figure 3.6(a) shows the distribution of
the data points in the original space. In Figure 3.6(b), the corresponding nearest neighbors graph
is depicted: two close points are linked by an edge. Finally, the desired projection in a space with
lower dimensionality is shown in Figure 3.6(c). Colors are only used for visualization purposes.

.
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decomposition can be written as a sum of outer products:

A =

n∑

i=1

Λiuiu
⊤
i ,

where ui is the i-th column of U . Given n points with D-dimensional vector coordinates ui, let U
be the D×n matrix whose j-th column consists of the coordinates of the vector uj , with j = [[n]].
Then define the n × n Gram matrix of dot products aij = u⊤

i · uj as A = U⊤U . The Gram
matrix determines the vectors ui up to symmetry.

3.4.2 Dimensionality Reduction Background

3.4.3 Statistically-based dimensionality reduction

Methods which are statistically based, assume that the sampled points are issued from a proba-
bilistic distribution, therefore, the variance among the points is observed or an estimation of the
underlying density is done.

Principal Component Analysis (PCA). This method [Joll 86] consists in the projection of
each data point xi over the axis with maximum variance. Random variable x is assumed to
have the following statistical properties:

• Variable is centered: IE[x] = 0,

• Covariance matrix is Σ = IE[x · x⊤] ∈ R
D×D.

In order to realize the basis change, an orthonormal basis is considered {w1,w2, . . . ,wD}
of SX , with wj ∈ R

D. A matrix W will be built so that W = [w1,w2, . . . ,wD]. It will be
noticed that given the orthonormality, we get that W⊤W = ID, the identity matrix in R

D.
A projection on this new basis of a point x will be defined as follows:

x̃ = W⊤x =




w⊤
1 x

w⊤
2 x
...

w⊤
Dx


 .

Since W is orthogonal, x can be reconstructe by x̃ by doing:

x = W x̃ =

D∑

j=1

(w⊤
j x)wj .

Therefore, new variables y can be now considered to be issue of the projection of x on the
vectorial sub-space spanned by vectors {w1,w2, . . . ,wd} with d < D, so that, in similar way,
it can be written:

y = V ⊤x with V = [w1,w2, . . . ,wd] ∈ R
D×d

The reconstruction of vector x, denoted x̂ (which will be an approximation of x) from y is
written:

x̂ = V y =

d∑

j=1

(w⊤
j x)wj .

In PCA, the minimization of the error between x and its reconstruction x̂ is searched:

J = IE
[
‖x− x̂‖2

]
= IE

[ ∥∥(I − V V ⊤)x
∥∥2
]
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Using the properties V ar(Ax) = A·V ar(x)·A⊤, tr(AB) = tr(BA), tr(A+B) = tr(A)+tr(B)
and noticing that V ⊤V = Id, it can be established:

J = tr(Σ)− tr(V ⊤ΣV )

see [Paie 03, Joll 86] for more details. Minimizing the reconstruction error is equivalent to
look for vectors wj , j = [[d]] that maximize the trace of the variance-covariance matrix of the
projection y because it has to be noticed that IE[y] = 0 and V ar(y) = V ar(V ⊤x) = V ⊤ΣV .

Variance Maximization. Vectors wj can be iteratively searched. For w1 it is searched:

max
w1

J subject to w⊤
1 w1 = 1.

The solution is to take w1 as the associated eigenvector to the largest eigenvalue λ1 of Σ.
For w2:

max
w2

J subject to w⊤
2 w2 = 1 and w⊤

2 w1 = 0.

The solution will be to take w2 as the associated eigenvector to the second largest eigenvalue
λ2 of Σ. Proceeding like this, the d vector components of matrix V can be determined.

Practical approach. The PCA method can be summarized as follows:

• Center observations xi, i = [[n]].

• Calculate the empirical variance-covariance matrix Σ = 1
N

∑N
i=1 xix

⊤
i .

• Diagonalize matrix Σ = WΛW⊤ with Λ = diag (λ1, · · ·λD) and λ1 ≥ λ2 . . . ≥ λD ≥ 0.

• Choose the d eigenvalues providing maximal variance.

• The searched matrix V is formed by the eigenvectors associated to these eigenvalues.

Properties. The projection done by PCA possesses the following characteristics:

1. Let yk be the kth component of variable y: V ar(yk) = λk which is the variance contri-
bution by the kth principal component.

2. IE[yi
⊤yj ] = 0: PCA linearly transforms dependent variables xℓ, ℓ = [[D]] in linearly

independent variables yk, k = [[d]].

3. yk =
∑D

ℓ=1 wℓkxℓ is a linear combination of the initial variables, where wℓk is the k-th
element of the ℓ-th vector wℓ.

4. For each observation xi, its projection is given by yi = V ⊤xi, that is, it is possible to
calculate the projection of each new point, knowing the PCA model, V .

5. It does not has tuning parameters.

6. It is an Eigenvector method and therefore, it does not require iterations.

7. There are no local optima.

Disadvantages. Some of the weaknesses of the PCA method are:

• It ignores correlations in the data that are higher than second order, as it is a linear
transformation, and limited to second order statistics.

• It assumes that large variances corresponds to interesting directions.
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Metric Multidimensional Scaling (MDS). Multidimensional scaling is a linear method for
dimensionality reduction based in Euclidean distances. Classical (or metric) MDS finds an
embedding that preserves the inter-point distances via spectral decomposition, which is in
fact, equivalent to PCA when those distances are Euclidean.

The principle of the method can be summarized by the two following points:

• Similarity among samples SX = {xi}, i = [[n]] is measured with the Euclidean distance.
A distance matrix is then generated ∆ = [∆ij ] with ∆ij = d(xi,xj), the Euclidean
distance for all xi,xj ∈ SX .

• A configuration for points yi, i = [[n]] is searched in a space with reduced dimensionality
so that d(yi,yj) ≈ ∆ij , that is, the new space will try to preserve the distances between
the initial points xi. This will be equivalent to optimize the criterion:

J =

n∑

i=1

n∑

j=1

(∆ij − d(yi,yj))
2.

Definition 3.1 (Euclidean Matrix). A matrix of distance ∆ = [∆ij ] ∈ R
n×n is called an

Euclidean matrix if for points xi, i = [[n]], we have ∆ij = (xi − xj)
⊤(xi − xj).

Method. The multidimensional Scaling method is based in the following theorem that
establishes if a matrix is Euclidean or not.

Theorem 3.2 (Euclidean Matrix [Paie 03]). Let ∆ = [∆ij ] be a matrix and A = [aij ] so
that aij = − 1

2∆ij, finally, let M = HAH where H is a centering matrix of the data defined
by H = IN −

1
N 1N1⊤N . Matrix ∆ is called Euclidean if and only if matrix M is positive semi-

definite. In this case, matrix M coincides with the Gram matrix G = HXX⊤H calculated
with the centered variables.

Remark: data matrix X is structured in the following way:

X =




x⊤
1

x⊤
2
...

x⊤
n


 ∈ R

n×D

Practical approach. The basis of the MDS method is derived following the next steps,
assuming that the distance matrix ∆ is given:

• Build from ∆ matrix M = HAH with A = [aij ], aij = − 1
2∆ij and H the centering

matrix.

• Calculate the spectral decomposition of M :

M = WΛW⊤ with W = [w1 · · · wn] ∈ R
n×n and Λ = diag (λ1, . . . , λn) .

Matrix M has D non-zero eigenvalues and n−D zero eigenvalues (assuming n > D).

• Recalling Theorem 3.2, it can then be written Xc = HX = WΛ1/2. To obtain a
configuration of points in a space with a reduced dimensionality d, it is enough to
consider:

Y = WΛ
1/2
d with W = [w1 · · · wd], d < D and Λd = diag (λ1, . . . , λd) .

The structure of matrix Y will be: Y = [y1,y2, . . . ,yn]
⊤ ∈ R

n×d. Finally, the resulting
new variables will be written as: yj =

√
λjwj .
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Disadvantages. Since the MDS scaling method is equivalent to PCA if the Euclidean
distance is used, it has the same weaknesses as this last one.

Principal Curves. This method can also be seen as a continuous and unidimensional self-
organizing map or as a non-linear generalization of PCA. In an intuitive manner, a principal
curve is a smooth curve that passes in the middle of the observed data. More formally,
they were defined by Hastie and Stuetzle [Hast 89] as a parametric curve that respects a
consistency score:

f(w) = IE[x|g(x) = w] (3.25)

where x is an out coming data point from a density probability P(x). g(x) is the projection
of x over the curve f , that is, is the value of w such that f(w) is the closest one to x (or
the largest value if several are possible):

g(x) = sup{λ : ‖x− f(λ)‖ = inf
τ
{x− f(τ)}}. (3.26)

This means that each point of the curve is the mean (with respect to the distribution P(x))
of all data points that projected over it.

In an analogous way to the PCA, the principal curve is the one that minimizes the error of
distortion:

L = IEP(x)[‖x− g(x)‖2]. (3.27)

From the consistency Property (3.25), an algorithm was proposed to build a principal curve
if the density P(x) is known. Given an initial curve (for example, the principal axis of the
dataset), the algorithm iterates two steps that resembles the k-means algorithm:

• the projection of the dataset over the curve (3.26)

• the estimation of the mean of the data point that are projected to the same point (3.25).

In practice, the density P(x) is unknown and in this case, the expectation in Equation (3.25)
cannot be calculated. When this density is characterized with a finite sampling, each point
of the curve is then defined as a weighted sum of the data points that are locally projected
around it.

Strengths.

• It can handle several connected components.

• It is a non-linear method.

• It can handle some noise.

Disadvantages.

• The intrinsic dimensionality of the model is one.

3.4.4 Graph-based Dimensionality Reduction Methods

The following methods are based in the construction of a neighborhood graph. The neighboring
points are usually determined by three different rules:

k-Nearest Neighbors (k-NN). This method consists in choosing the closest k points to each
sampled point and design them as the nearest neighbors.
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ε-ball. In this case, a spherical neighborhood is chosen of fix diameter ε. Samples belonging to
the sphere of size ε centered at a particular sampled point are set as nearest neighbors to
it. In the context of a neighborhood graph with adjacency matrix W , the edges would be
chosen as follows:

Wij =

{
1 if ‖xi − xj‖ ≤ ε
0 otherwise.

Minimum Spanning Tree. If a graph has n vertex, a spanning tree of a graph is a subset of
n − 1 edges that form a tree. The minimum spanning tree of a weighted graph is a set
of n − 1 edges of minimum total weight which form a spanning tree of the graph [Weis].
Weights in a neighborhood graph is given by the distance. This technique [Zhao 06] consists
in finding the pair nearest of nearest components. A component is each set of points that
are connected between them, but disconnected from other components. The algorithm ends
when there is left only one component.

k and ε are the parameters to set in order to rule the first two neighborhood searching algo-
rithms. Some of the latest algorithms for dimensionality reduction based on the construction of
the neighborhood graph are enumerated:

Isometric feature mapping (Isomap) Isomap [Tene 00] is a variant of MDS in which standard
Euclidean distances are substituted by estimates of geodesic distances along the submanifold.

The key assumption made by Isomap is that the quantity of interest, when comparing two
points is the distance along the curve between the two points. The geodesic distance is
approximated by the shortest path in the net formed by neighboring points input.

This method preserves the pairwise distances between input patterns as measured along the
submanifolds from which they were sampled.

Definition 3.3. Geodesic Distance. The geodesic distance between two points xi and
xj is defined as the length of the shortest path from xi to xj along the manifold. This is
different from the Euclidean distance in a graph, for example, as the distance between two
points is measured along the shortest path over the connecting edges.

Practical approach to Isomap. The following shows the three basic steps for the Isomap
algorithm:

1. Construct the neighborhood graph

• Determine the nearest neighbors of each sample using one of the previous algorithm.

• Construct a graph whose vertex represent input patterns and whose (undirected)
edges connect nearest neighbors.

• Assign weights to the edges based on the Euclidean distance between nearest neigh-
bors.

2. Compute the pairwise distance ∆ij between all nodes (xi,xj) along shortest paths
through the graph.

• Algorithms: Djikstra’s algorithm, O(n2logn + n2k) operations; Floyd’s algorithm,
O(n3) operations.

• Make matrix D such that Dij = ∆ij .

3. Construct d-dimensional embedding by applying MDS to the shortest path distance
matrix D.

As result we can obtain a low dimensional embedding (d << D) of the original dataset in
which the Euclidean distances between outputs match the geodesic distances between input
patterns on the submanifold from which they were sampled.

True dimensionality of the data can be estimated from the decrease of the eigenvalues as the
dimensionality of the embedding is increased.
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Strengths

• Method that directly models the manifold [Burg 05] without mapping.

• It is capable of discovering the nonlinear transformations and recover the true dimen-
sionality and geometric structure of a strictly larger class of nonlinear manifolds than
MDS and PCA.

• It combines the major algorithmics features of PCA and MDS: reasonable cost, global
optimality, and asymptotic convergence guarantees.

• Non-iterative (one pass through data).

• Polynomial-time optimizations.

• Only heuristic is the neighborhood size.

Weaknesses

• The scale-invariant k parameter is typically easier to set than ε, but this may yield
to misleading results when the local dimensionality varies across the data set. When
available, additionally constraints such as the temporal ordering of observations may
also help to determine neighbors.

• It is vulnerable to noise because it considers the subset of point-to-point relationships
that has the lowest signal-to-noise ratio; small changes to the trusted set can induce
large changes in the set of constraints on the embedding, making solutions unstable.
Topological stability could be achieve by tuning the parameter ε [Bala 02] or k. Thus,
it is sensitive to the graph construction.

• It can fail if the data hull is non-convex [Bran 03].

• No immediate out-of-sample extension.

Maximum Variance Unfolding (MVU). Founded on the notion of isometry, MVU [Saul 05,
Wein 04] considers the transformations that only preserve the geometric properties of local
neighborhoods. Formally, two Riemannian manifolds are said to be isometric if there is a
diffeomorphism such that the metric on one pulls back to the metric on the other. Informally,
an isometry is a smooth invertible mapping that looks locally like a rotation plus translation,
thus preserving distances along the manifolds.

Intuitively, for two dimensional surfaces, the class of isometries includes whatever physical
transformation one can perform on a sheet of paper without introducing holes, tears, or
self-intersections.

The aim is to translate inputs {xi}
n
i=1,xi ∈ R

D into outputs {yi}
n
i=i ∈ R

d of lower dimen-
sionality, d << D. Neighborhoods of inputs and outputs will be related by translation and
rotation if and only if all the distances and angles between points and their neighbors are
preserved. Thus, whenever both xj and xk are neighbors of xi, for local isometry, we must
have that:

〈yi − yj ,yi − yk〉 = 〈xi − xj ,xi − xk〉 (3.28)

or

||yi − yj ||2 = ‖xi − xj ||2 (3.29)

Equation (3.28) is sufficient for local isometry because the triangle formed by any point and
its neighbors is determined up to a rotation by specifying the lengths of two sides and the
angle between them. This can also be determined with Equation (3.29) by specifying the
lengths of all its sides.
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The outputs yi will be also constrained to be centered on the origin:

n∑

i=1

yi = 0. (3.30)

Equation (3.30) removes a translational degree of freedom from the final solution. With this,
a semidefinite optimization problem can be stated:

Problem 3.4 (MVU).

maximize
∑

ij ||yi − yj ||2, (3.31)

subject to
∑

i yi = 0, (3.32)

||yi − yj ||2 = Dij , for all (i, j) with ηij = 1, (3.33)

where D is the distance matrix such that Dij = ||xi−xj ||
2 and ηij = 1 if node i is connected

to node j and 0 otherwise.

The previous problem can be reformulated in terms of the elements of the inner product
matrix Kij = 〈yi,yj〉, this matrix is positive semi-definite, denoted by K � 0. Using a
change of variables, we have the following:

• Equation (3.32) can be rewritten as
∑

ij Kij = 0 (centering).

• Equation (3.33) can be rewritten as Kii − 2Kij +Kjj = Dij (local isometry).

• Finally, if we expand the terms in the objective function, and using the property that
the outputs are centered in the origin, Equation (3.31) can be rewritten as

1

2n

∑

ij

||yi − yj ||
2 =

1

2n

∑

ij

(||yi||
2 + ||yj ||

2 − 2yi · yj)

=
∑

i

||yi||
2 =

∑

i

Kii = Trace(K).

Additionally, the distance matrix K is constrained to be positive semidefinite, this is denoted
by K � 0, leading to a convex semi-define programming (SDP) problem.

Practical approach to MVU. The following steps describe the MVU algorithm:

1. Construct the neighborhood graph

• Build a neighborhood graph for the n samples xi using a k-NN algorithm.

• Let ηij = 1 if node i in the graph is connected to node j and 0 otherwise, D be the
distance matrix for inputs xi.

2. Solve the following optimization problem.

Problem 3.5 (Dual MVU).

maximizeK Trace(K),

subject to K � 0,
∑

ij Kij = 0,

Kii − 2Kij +Kjj = Dij , for all (i, j) with ηij = 1. (3.34)

3. Spectral decomposition

• The outputs can be recovered by matrix diagonalization. For the matrix K, let
ναi denote the i-th element of the α-th eigenvector, with eigenvalue λα.
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• A d-dimensional embedding that is k-locally isometric to the inputs xi is obtained
by identifying the α-th element of the output yi as:

yαi =
√
λαναi (3.35)

• The eigenvalues of K are guaranteed to be nonnegative. Thus, from Equation
(3.35), a large gap in the eigenvalue spectrum between the d-th and the (d+ 1)-th
eigenvalues indicates that the outputs lie in or near a subspace of dimensionality d.
In this case, a low dimensional embedding that is approximately locally isometric
is given by truncating the elements of yi.

Problem 3.4 is a not convex problem, as it involves maximizing a quadratic form subject to
quadratic equality constraints. As opposed to PCA and MDS, here the eigenvalue spectrum
reflects the dimensionality of an underlying manifold and not merely a subspace.

Further refinements of the MVU algorithm was proposed by relaxing the equality constraints
3.34 and allowing slight violations of these constraints using positive slack variables similarly
to SVM [Hou 08]. This relaxation may prove particularly usefulness in applications when
the distances Dij are not computed from Euclidean distances but are specified in some other
way.

Strengths

• Eigenvalues reveal dimensionality.

• Constraints ensure local isometry.

Weakness

• Computationally expensive.

• Limited to n ≤ 2000, k ≤ 6 to keep computational time reasonable.

• Limited to isometric embeddings.

Locally Linear Embedding (LLE). The LLE algorithm [Rowe 00, Saul 00] is based on geo-
metric intuitions. It is assumed that the sample data SX is taken from some smooth un-
derlying manifold. In the case where the manifold is well-sampled, there would be sufficient
data so that each data point will lie with its neighbors close to a linear subspace of the
manifold. The local geometry can be characterized by linear coefficients that reconstruct
each data point from its neighbors, which are chosen either with the k-NN or the ε-ball
techniques. Reconstruction errors are then measured by the cost function:

E(W ) =
∑

i

∥∥∥xi −
∑

j

Wijxj

∥∥∥
2

, (3.36)

which adds up the squared distances between all the data points and their reconstructions.
The weightsWij summarize the contribution of the j-th data point to the i-th reconstruction.
To compute the weights Wij , the cost function is minimized subject to two constraints:

• Each data point xi is reconstructed only from its neighbors, enforcing Wij = 0 if xj

does not belong to this set.

• The rows of the weight matrix sum to one:
∑

j Wij = 1.
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The constrained weights that minimize these reconstruction errors obey to an important
symmetry: for any particular data point, they are invariant to rotations, rescalings, and
translations of that data point and its neighbors, where the first invariance follows directly
from Equation (3.36) and the last two are enforced by the sum-to-one constraint on the rows
of the weight matrix. The enforced symmetry will lead to the reconstruction weights and
characterization of the intrinsic geometric properties for each neighborhood, as opposed to
properties that depend on a particular frame of reference.

As it is supposed that the samples are taken from a manifold of dimensionality d < D, in
the final step of LLE algorithm, each high dimensional observation xi is mapped to a low
dimensional vector yi representing global internal coordinates on the manifold. This is done
by choosing d-dimensional vector yi representing global internal coordinates on the manifold,
which will be done by minimizing the embedding cost function:

Φ(y) =
∑

i

∥∥∥yi −
∑

j

Wijyj

∥∥∥
2

. (3.37)

As the previous function in Equation (3.36) is based on locally linear reconstruction errors,
but here weights Wij are fix while optimizing the coordinates yi. Additional constraints like
centering of the outputs yi and a unit covariance matrix for these outputs are also enforced
in the learning problem.

Practical Approach of LLE

1. Compute the neighbors of each data point, xi.

2. Compute the weights Wij that best reconstruct each data point xi from its neighbors,
minimizing the cost in Eq. (3.36) by constrained linear fits.

3. Compute the vectors yi best reconstructed by the weightsWij , minimizing the quadratic
form in Eq. (3.37). These vectors are yielded by the d lower eigenvalues of the matrix
(I −W )(I −W )⊤.

Strengths

• Polynomial-time optimizations

• No local minima

• Non-iterative (one pass through data)

• Only heuristic is the neighborhood size.

Weakness

• Sensitive to shortcuts

• No out-of-sample extension

• No estimate of dimensionality

Laplacian Eigenmaps. The core of this algorithm [Belk 01] is very simple: it consists in a few
local computations and one sparse eigenvalue problem. The solution will reflect the intrinsic
geometric structure of the manifold. The Laplacian operator is used to justify help providing
an optimal embedding. The Laplacian of the graph obtained from the data points may be
viewed as an approximation to the Laplace-Beltrami operator defined on the manifold (see
the Appendix A.1 and [Belk 01, Hein 07] for additional definitions). The embedding maps for
the data come from approximations to a natural map that is defined on the entire manifold.
The connection of the Laplacian to the heat kernel enables the algorithm to choose the
weights of the graph in a principled manner.

As the Laplacian Eigenmap algorithm tries to preserve locality, the algorithm is relatively
insensitive to outliers and noise.
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Practical Approach of Laplacian Eigenmaps.

1. Construct the neighborhood graph.

2. Compute the adjacency matrix. Here are two variations:

• Heat kernel: if nodes i and j are connected, set

Wij = e−
‖xi−xj‖2

σ2

where it is necessary to choose parameter σ2.

• Simple-minded: if nodes i and j are connected, set

Wij = 1 and 0 otherwise.

3. Eigenmaps. Assume the graph G, constructed above, is connected, otherwise proceed
with this step for each connected component: compute eigenvalues and eigenvectors for
the generalized eigenvector problem:

Ly = λDy (3.38)

where D is a diagonal weight matrix, its entries are the sum of columns (or rows, since
W is symmetric) of W , Dii =

∑
j Wji. L = D−W is the Laplacian matrix. Laplacian

is a symmetric, positive semidefinite matrix which can be thought of as an operator on
functions defined on vertices of G.

Let y0, . . . ,yd be the solutions of Equation (3.38), ordered according to their eigenval-
lues with y0 having the smallest eigenvalue (in fact zero since the Laplacian has always
a zero eigenvalue). The image of xi under the embedding into the lower dimensional
space R

d is given by (y1i, . . . ,ydi).

Hessian Eigenmaps (HLLE). This method [Dono 03b] is derived from a conceptual framework
of local isometry in which the manifold M , viewed as a Riemannian submanifold in the
Euclidean space R

D, is locally isometric to an open, connected subset y of Euclidean space
R

d. This algorithm is then an extension of the Isomap one, but in principle, for the HLLE
algorithm, y does not have to be convex.

A quadratic form H(f) =
∫

M
‖∇2

f (x)‖2F∂x defined on function f : M → R, where, ∇2
f

denotes the Hessian of f , and H(f) averages the Frobenius norm of the Hessian over M

(see [Dono 03b] and Section A.1 for more details of these definitions). To define the Hessian,
orthogonal coordinates are used on the tangent planes of M .

The algorithm is based in the observation that if M is truly locally isometric to an open
connected subset of R

d, then, H(f) has a (d + 1)-dimensional null space, consisting of the
coordinates. Hence, the isometric coordinates can be recovered up to a linear isometry.

HLLE can be viewed as a modification of the LLE method, while the theoretical framework
can be seen as a modification of the Laplacian Eigenmaps one, where a quadratic form based
on the Hessian substitutes the Laplacian.

A space y ⊂ R
d is assumed with a smooth mapping Φ : y → R

D, with d < D. The image
M = Φ(y) is called the manifold, although from the viewpoint of manifold theory it is
actually a special case of a single coordinate patch.

The vector y can be thought of as some control points underlying a measuring device, and
the manifold as the enumeration x = Φ(y) of all possible measurements as the points y
changes. Thus the mapping Φ associates points to measurements.

The aim is that, given points xi, we manage to recover the mapping Φ and points yi. As
stated, this is an ill-posed problem, since Φ is one solution, and if Ψ : R

d → R
D is a morphing

of the Euclidean space R
d, the combined mapping Φ ◦Ψ is another solution.

Two results are the basis of the HLLE algorithm:
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Theorem 3.6. [Dono 03b]. Suppose M = Φ(y) where y is an open, connected subset
of R

d, and Φ is a locally isometric embedding of y into R
D. Then, H(f) has a (d + 1)-

dimensional null space consisting of the constant function and a d-dimensional spaced of
functions spanned by the original isometric coordinates.

Corollary 3.7. [Dono 03b] Under the same assumptions as the previous Theorem, the
isometric coordinates y can be recovered, up to a rigid motion, by identifying a suitable basis
for the null space of H(f).

Practical approach of the HLLE. The setting where sampled data SX is lying on M ,
and the underlying parametrization Φ and parameter settings yi is to be recover, at least
up to a rigid motion. Theorem (3.6) and Corollary (3.7) suggest the following algorithm,
which is based on the original LLE algorithm. The algorithm takes as input the set SX and
parameters d and k or ε are to be set:

• Let Ni denote the collection of those neighbors according to the chosen method. For
each neighborhood Ni, i = [[n]], a k × n matrix M i is formed with rows consisting of
the recentered points xj − x̄i, j ∈ Ni, where x̄j = Ave{xj : j ∈ Ni}.

• Obtain tangent coordinates: Perform a singular value decomposition of M i, getting
matrices U , D, and V ; U is k × min(k, n). The first columns of U give the tangent
coordinates of points in Ni.

• Develop Hessian estimator: Infrastructure is derived for least-squares estimation of the
Hessian. Basically, this is a matrix Hi with the property that if f is a smooth function
f : X → R, and fi = (f(xi)), then the vector vi with entries that are obtained from f
by extracting those entries corresponding to points in the neighborhood Ni; then, the
matrix vector product Hivi gives a d(d + 1)/2 vector whose entries approximate the

entries of the Hessian matrix,
(

∂f
∂Ui∂Uj

)
.

• Develop quadratic form: Build a symmetric matrix Hij so that:

Hij =
∑

l

∑

r

(H l)r,i(H
l)r,j .

where H l is the d(d + 1)/2 × k matrix associated with estimating the Hessian over
neighborhood Nl, where rows r correspond to specific entries in the Hessian matrix and
columns i correspond to specific points in the neighborhood.

• Find Approximate Null Space. Perform an eigenanalysis of H, and identify the (d+1)-
dimensional subspace corresponding to the (d+ 1) smallest eigenvalues. There will be
an eigenvalue zero associated with the subspace of constant functions, and the next d
eigenvalues will correspond to eigenvectors spanning a d-dimensional space V̂d in which
our embedding coordinates are to be found.

• Find Basis for Null Spaces. Select a basis for V̂d which has the property that its restric-
tion to a specific fixed neighborhood N0 (the neighborhood may be chosen arbitrarily
from those used in the algorithm) provides and orthonormal basis. The given basis has
basis vectors w1, . . . , wd; these are the embedding coordinates.

Strenghts

• Asymptotic convergence: for data sampled from a submanifold that is isometric to an
open, connected subset of Euclidean space, HLLE will recover the subset up to rigid
motion.

• No convexity assumption: convergence is obtained for a larger class of manifolds than
Isomap, handling in this manifolds with holes.
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There exists other graph based algorithms that do not belong directly to the machine learning
field and will not be developed here, see [Gail 08].

Quality measures for dimensionality reduction methods

For any of these methods, there is still the remaining question of how to measure the quality of
the proposed projection. Several works have been done in this direction where either Voronoi cells
[Aupe 07] are used; measure of the conservation of local distances or topological characteristics;
count of the number of intrusions and extrusions [Lee 09] and a priori knowledge can be also
included.

3.5. Shortcuts problems and their influence in graph based
methods

In the previous sections a brief description of the most usual algorithms for non-linear dimension-
ality reduction was done. Many of these methods are based on the construction of a neighborhood
graph, but in the presence of shortcuts (union of two points whose distance measure along the
submanifold is actually large), the resulting embedding will be unsatisfactory. Indeed, one im-
portant drawback is the fact that the underlying manifold cannot be estimated if the nearest
neighborhood graph is not properly defined and contains shortcuts. That is, two points are
considered to be neighbors whereas they are actually far away from each other in the sense of
measured distance along the manifold, as shortcuts will cause underestimation of real distances
between points. This is explained by the fact that the main goal of most dimensionality reduction
algorithms is to preserve the Euclidean distance between the nearest neighbors defined by the
graph. The algorithm is constrained to keep these distances in the new embedding, but these can
be constraints not achievable in a smaller space. This section proposes an algorithm to correct
wrong graph connections based on the tangent subspace of the manifold at each point. This leads
to the estimation of the proper and adaptive number of neighbors for each point in the dataset.
Experiments show graph construction improvement.
Local approximation techniques may have good results, but if the distribution along the submani-
fold is not uniform or dense enough, the adjacency graph will be either not connected or shortcuts
will appear.

3.5.1 Problem formulation and illustration

Since many methods are graph-based, the matter of interest in this section is the correct graph
construction, where the geodesic distance between every pair of points approximates properly its
real distance along the manifold. If the graph is not properly built, the distances will not be
correctly approximated and the results using any graph method will be unsatisfactory.
For the toroidal helix example in Figure 3.6(a), if a neighborhood is built with the k-nearest
neighbors method with k = 3, the resulting neighborhood graph turns as depicted in Figure
3.7(a), where far points along the manifold are connected because the Euclidean distance is short.
If this graph is directly used with a graph-based dimensionality reduction method, the resulting
embedding will be as in Figure 3.7(b), where the imposed neighborings will be kept as shown in
the Graph 3.7(c).
This problem will be denoted as shortcuts, because the real distance between two points is no
longer based on the manifold form but on some additional paths that will shorten its distance.

Problem 3.8 (Shortcuts Problem). Let SX ⊂ M be a subset of a manifold, and let Ni ⊂ SX

be a subset of nearest neighbors of xi ∈ SX defined according to the distance measured along
the manifold. Let the longest distance between xi and all points in Ni be ∆, that is, ∆ =
maxxl∈Ni

{δ(xi,xl)}, with δ the distance along the manifold. If an approximation of Ni is done
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(a) Wrong nearest neighborhood graph

(b) Resulting projection in a space with reduced di-
mensionality

(c) Resulting projection in a space with reduced di-
mensionality. Neighborhood graph is shown in the
new space.

Figure 3.7: Example of a wrong neighborhood assignation
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by a subset Ni ⊂ SX , then, there is a shortcut in xi if there exists a point xj ∈ Ni such that
δ(xi,xj) > ∆ + ǫ, for a positive tolerance ǫ.

3.5.2 Approaches in the literature to solve the shortcuts problem

Choi [Choi 07] developed an algorithm to remove noisy points that produce shortcuts. For each
point xi the total flow is defined as the number of shortest paths passing through xi. This
criterion for removing points might delete useful points and might miss several edges that should
be removed. A similar approach was used by Yang [Yang 06]. Other approaches are based on
the construction of minimal spanning trees [Zhao 06] which avoids having cycles, but will not
necessarily respect intrinsic topological aspects. Finally, the work of Mekus [Meku 06] and Wang
[Wang 05] are based on the estimation of the tangent subspace at each point independently.
We propose a method to correct neighborhood graphs using this last approach of tangent sub-
spaces. One important difference is the fact that the estimation of the tangent space is done taking
into consideration tangent spaces on neighboring points and therefore, respecting continuity in the
manifold.

3.5.3 Our approach: Manifold and Tangent Subspace

By definition, a manifold is a differentiable surface, therefore, if we have the k nearest neighbors
for each point, and the data lies on a connected submanifold M ∈ R

d, assuming that d < k, the
tangent subspace to each point can be estimated from its k nearest neighbors. If additionally,
the maximum curvature θ of the manifold is known, analysis of nearest neighbors can be done
regarding the Euclidean distance with respect to a point xi (which should be smaller than a value
ǫ deduced from θ), and the angle deviation with respect to the tangent subspace Pi at xi (which
should be smaller than θ). The idea exploited in our solution is as follows: instead of considering
a fix number of nearest neighbors using the k-NN algorithm or a fix radius ε of enclosing sphere
for all samples, our strategy is to estimate an adaptive number of neighbors ki for each sample xi

according to the density of points in its neighborhood and some mild assumptions on the manifold
where these data lay.
Let Ni = {xj |xj is nearest neighbor of xi} with |Ni| = ki be the set containing the ki nearest
neighbors of xi, that is, for each sample xi, the number of nearest neighbors might be different.
For all neighborhood Ni i = [[n]], define Ii = {j|xj ∈ Ni}, as the set of indexes of points belonging
to neighborhood Ni, which will be denoted as Ii = {i1, i2, ..., iki

}. Finally, define a matrix Ai of
the form Ai = [xi1 ,xi2 , ...,xiki

] ∈ R
D×ki for all i = [[n]].

The implemented algorithm iterates between obtaining an estimation of the set Ni and the ap-
proximation of the tangent subspace Pi at xi defined by Ni.

3.5.4 Tangent subspace estimation and neighborhood estimation

If the Euclidean distance in the original space of a point xi to its nearest neighbors Ni is a close
approximation of the distance along the manifold, the the neighborhood is well defined. A plane
Pi passing through xi can be defined with an orthogonal vector wi and a bias bi:

Pi(Ni) = {x|〈x,wi〉+ bi = 0}

Since the plane must pass through xi, the distance of xi to the plane must be zero, that is

〈xi,wi〉+ bi = 0.

Additionally, if the set of nearest neighbors is well defined, the orthogonal vector wi must satisfy
A⊤

i wi + bi1I = 0, with 1I,0 ∈ R
ki vectors of ones and zeros, respectively. In order to ease

the calculations to find wi, a similar condition will be searched: the projections of the nearest
neighbors along the orthogonal vector should be at the same level, for example A⊤

i wi + 1I = 0.

The best approximation to this condition can be obtained via the pseudoinverse: wi =
(
A⊤

i

)+
1I.
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3.5 Shortcuts problems and their influence in graph based methods

Given a set of nearest neighbors resulting for each point, the approximation to the tangent subspace
will be given by the following elements:

wi =
(A⊤

i )
+

1I

||(A⊤
i

)+1I||2
and bi = −〈xi,wi〉 (3.39)

where A⊤
i

+
represents the pseudo-inverse of matrix A⊤

i and unicity of the orthogonal vector was
added..
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Figure 3.8: Pi (blue straight line) at xi (red point) using Ni (blue points).

Figure 3.8 shows the estimated tangent plane, which in this case is a straight line (in blue) at the
red point, estimated with the set of nearest neighbors, mark in blue. Vice versa, if we have an
adjusted tangent subspace Pi at xi and an initial neighborhood N 0

i , we can measure the Euclidean
distance ǫij of xj ∈ N 0

i to xi and the deviation angle θij with respect to Pi as follows

ǫij = ||xj − xi||2 θij = arcsin
| 〈wi, (xj − xi)〉|

||xj − xi||2
. (3.40)

Then, neighborhood Ni can be updated as follows:

xj ∈ Ni if ǫij < ǫ and θij < θ0 ∀ xj ∈ N
0
i . (3.41)

where θ0 is the maximum curvature input by the user and ǫ is estimated by the algorithm (see
step (4) in Section (3.5.5)). Otherwise, xj is removed from N 0

i . An example of the form of the
admissible area is depicted in Figure 3.9, the possible neighbors of the red points are the ones that
lie in the light blue area. Far or not nearest neighbors points will lie in the light pink area.

Propagation of the tangent subspace estimation

Having a reliable estimation of Pi and Ni for point xi, this subspace is a good approximation of Pj

for a xj ∈ Ni. Then, Pi can be used to remove faulty nearest neighbors in N 0
j by using a relaxed

parameter θ > θ0 in Eqs. (3.41). The calculation of θ is explained in Algorithm 6. Remaining
points will form set Nj which will allow us to calculate Pj(Nj) using Eqs. (3.39).
Figure 3.10 shows how the tangent plane at each point can help to determine if there are faulty
connections or not. Figure 3.10(a) depicts a correct neighborhood of the red point an Figure
3.10(b) the corresponding tangent plane of the red point (in blue) and the tangent planes of
its nearest neighbors (in cyan), all of them are similar. Nevertheless, if there is a faulty set of
neighbors like illustrated in Figure 3.10(c), the tangent planes of the red point (in blue) are not
similar with the ones of its nearest neighbors (in cyan).
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Tangent planePossible neighborhood

Faulty connections
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Figure 3.9: Admissible neighborhood area for red point. Graph connections leading to a point in
the light pink area will be eliminated.

−1 −0.5 0 0.5
0.9

0.95

1

1.05

(a) Allowed neighborhood.

−1 −0.5 0 0.5
0.9

0.95

1

1.05

(b) Similar tangent planes.
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(c) Faulty neighborhood.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−0.5

0

0.5

1

1.5

0

1

2

(d) Different tangent planes.

Figure 3.10: Illustration of the use of tangent planes to detect faulty connections. Nearest neigh-
bors (blue points) of red point. When there is no faulty connection, its tangent plane (in blue) is
similar to the one of its neighbors (in cyan).
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Finding a starting point

The calculation of the tangent subspace at each point xi is done by propagation of the tangent
subspace Pi at point xi to its neighbors. This can be done only if we know that Pi is a reliable
approximation. Therefore, the departure point is an important matter.

A first approximation to find Ni, can be done by using the k nearest neighbors of each point,
then each Pi will be estimated with these neighborhoods. If at a point xi and at all its k-nearest
neighbors in Ni a close approximation of the tangent subspace was found, the perpendicular
vectors to their tangent subspaces should be all quite similar. Therefore, the chosen starting point
xt0 is the one whose orthogonal vector wt0 maximizes the cost function

C(wi, Ii) =
1

ki

∑

j∈Ii

|〈wi,wj〉|. (3.42)

If there is a shortcut at point xi, the estimated subspace at this point will be biased, and this
subspace will not have the same orientation as its nearest neighbors, giving a smaller value in
Equation (3.42).

3.5.5 Algorithm Description

Initialization phase

This phase consists in finding a point xt0 located in a low curvature zone. So further tangent
subspace approximations based on Pt0 are reliable. Let ∠(x,y) be the angle between vector x and
vector y, the algorithm can be initialized as follows:

Algorithm 6 Pseudo-code for the tangent plane approximation and initial neighborhood definition

Input: Samples set SX = {xi}i=[[n]], curvature θ0 and the maximum number of neighbors k, set
ki = k.
Set N 0

i ← {xj |xj is a k-nearest neighbor of xi}, ∀i = [[n]].
Set θij = ∞, i, j = [[n]], which will be later updated with the deviation angle of xj to stable
tangent subspaces Pi.

Output: initial Ni,Pi.
1: Estimate the initial tangent subspace P0

i (N 0
i ) = {wi, bi}, i = [[n]] using Eq. (3.39).

2: Find xt with the best tangent subspace approximation: the one that maximizes Eq. (3.42).
3: Set ǫ = ||xt − xtk+1

||, where xtk+1
is the (k + 1)-nearest neighbor of xt. This will be the

maximum radius of ǫ-balls.
4: for all xi reduce its neighborhood Ni using the ǫ-ball.
5: Set Idone ← {t} the index of points xi ∈ SX having a stable tangent space Pi.
6: Select nearest neighbors Nt ∈ N

0
t using tangent plane P0

t and rule (3.41).
7: Update Pt(Nt) using Eq. (3.39).
8: Set deviation angle θtj = ∠(wt,xj − xt), for all j /∈ Idone.

Successive Approximation phase

This phase uses reliable estimations of tangent subspaces to make approximations at other points.
Graph is covered considering deviation angles. The successive approximation scheme is described
by Algorithm 7 which uses the outputs of the initialization algorithm 6. Again ∠(x,y) denotes the
angle between vector x and vector y and ∠(x, P ) denotes the angle between vector x and plane
P .

In the algorithm, θ can be initialized with an approximation of a stable point, but through the
experiments, it was observed that a constant θ = 20◦ turns to be appropriate.
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Algorithm 7 Pseudo-code for the shortcut correction via tangent hyper-planes

Input: deviation angles θij , initial neighborhood Ni, Idone

Output: Clean Neighborhoods {Ni}i=[[n]].
1: Choose t = argminj{θij | i ∈ Idone, j ∈ Ni}, so that for a point xs, s ∈ Idone, xt ∈ Ns has the

minimum deviation to tangent subspace Ps, let s = argmini{θit, i ∈ Idone}.
2: Select nearest neighbors Nt ∈ N

0
t using Eqs. (3.41) with Pt = Ps and θ = θ+∠(xt−xs,Ps).

3: Update Pt(Nt) with Eqs. (3.39).
4: Set Idone = Idone ∪ {t}.
5: Set θtj = ∠(wt,xj − xt), j /∈ Idone. Set θjt =∞, j ∈ Idone to avoid selecting again xt.
6: If |Idone| < n, go to step (1), else go to (7).

7: If the graph is not connected, make a single component based on
θij

ǫij
.

3.5.6 Experimental Results

To validate our algorithm, we applied it on the swissroll example (Figure 3.11) which real un-
derlying dimensionality lies in R

2. We generated a lightly sparse dataset with 300 points and
compared our results to k-NN and the total flows algorithm [Choi 07]. Parameter k was set to
values between 8 and 16, giving in our case similar results. Curvature θ was set to 20 degrees.

It has to be noticed that a swissroll generated with only 300 points is a very sparse example and
there are therefore more difficulties to handle it. The expected resulting embedding would look
like in Figure 3.11(c), which conserves local distances as set by the nearest neighborhood graph
in Figures 3.11(b) and 3.11(d).

The tangent hyper-plane method was tested with the swiss-roll dataset. Three methods are shown
in Figure 3.12, the first Figure 3.12(a) is the resulting neighborhood graph with the k-NN method,
with k = 8, from here, shortcuts are detected using the flow method in Figure 3.12(b), it managed
to clean the graph as the tangent plane method in Figure 3.12(c) but the embedding result are
nicer with the last one.

The second line in Figure 3.12 shows the resulting embedding with the given graph by the k-NN
method (Figure 3.12(d)), the flows method in Figure 3.12(e) and the tangent plane in Figure
3.12(f) using the Isomap method, while the third line shows the embedding results using the LLE
method. In both cases, the embedding resulting with the tangent planes technique seems more
appropriate.

An example were 10 nearest neighbors were used as the base is shown in Figure 3.13 the first line of
figures shows as in the previous set of figures the resulting nearest neighbors graph, it can be seen
that the tangent plane technique has successfully removed all shortcuts while the flows method did
not. The second row, Figures 3.13(d), 3.13(e) and 3.13(f) shows the resulting embedding with the
Isomap method while the last three figures, the resulting embedding with the LLE method. The
number of nearest neighbors were increased up to 20, the tangent plane manage to successfully
clean the graph.

Figure 3.14 illustrates the method with a dataset of rendered faces. In Figure 3.14(a), shortcuts
are encountered, the two faces that in the original space are very similar and therefore impeding
the dimensionality reduction are shown in Figure 3.14(b). It can be seen that these two faces are
lacking of contrast and the only differentiations are on the left and right border. With the tangent
plane techniques, faces that appear to be close in the original space but not in reality, are detected,
resulting in the reduced representation in Figure 3.14(c). Using tangent planes, we manage to get
rid of shortcuts (false neighbors) that might appear by using a large k. Figure 3.14(d) shows the
kind of faces that can be found along the unfolded graph. If the tangent subspace at each point
is estimated and the neighborhood graph is built using this subspace, we are able to reduce the
shortcuts in the original graph construction with the k-NN method. Additionally experiments
showed that if we add Gaussian noise with zero mean and variance equal to .1 to this dataset, our
algorithm is robust.
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(a) Swissroll Original dataset distribution. (b) Swissroll Nearest neighbors graph.

(c) Swissroll Embedding. (d) Swissroll Conservation of NN in the embedding.

Figure 3.11: Swiss roll example and its NN graphs.

3.5.7 Dimensionality Reduction Conclusions

The estimation of tangent subspaces at each point can improve the structure of an initial graph
given a maximum number of nearest neighbors. The use of neighborhood information helps to
improve the estimation of tangent subspaces. We propose an algorithm that helps to detect the
presence of shortcuts in a graph. Future work includes automatic estimation of the manifold
curvature and use of this technique in real data.

3.6. Conclusions

Manifold theory has been successfully introduced in the learning theory, in this chapter, two appli-
cation were shown: classification under a semi-supervised learning framework and dimensionality
reduction under the manifold assumption.

For the semi-supervised learning, a manifold assumption is used in order to discover dense areas
and nearest neighbors. A model can be successfully built with the use of this information despite
the lack of labels in many data points. The arisen problem was the fact that the obtained de-
cision function depends on the complete set of points, resulting in a slow model for new points
classification. This problem was tackled by introducing a L1-norm which controls the number of
active variables in the model. Using this technique, according to the associated parameter s to
the L1-norm, the number of active variables in the model is adjusted, so that it can be controlled
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(a) k-NN, k = 8 (b) Flows use (c) Tangents Propagation

(d) Embedding using k-NN, k = 8,
Isomap method

(e) Embedding using Flows use,
Isomap method

(f) Embedding using Tangents Prop-
agation, Isomap method

(g) Embedding using k-NN, k = 8,
LLE method

(h) Embedding using Flows use, LLE
method

(i) Embedding using Tangents Prop-
agation, LLE method

Figure 3.12: Resulting NN graph with different algorithms and its resulting embedding with the
Isomap and LLE methods, k = 8.

by increasing or decreasing s. It was shown that a very similar generalization level can be reached
as the original Laplacian SVM where s =∞ but with significantly less data points.
The second part of the chapter analyzed dimensionality reduction methods based in neighborhood
graphs, it was shown that if the neighborhood graph if not properly defined, these methods will
fail to discover the real dimensionality. A solution to the problem of shortcuts was proposed taking
advantage of the fact that the dataset lies in a manifold and that, locally, it can be considered like
an Euclidean space and the tangent plane at each point can be approximated with the nearest
neighbors as they can properly represent a plane given the manifold assumption. The use of this
technique showed that, in many cases, most of the shortcuts can be eliminated, improving the
results of the reduction methods.
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(a) k-NN, k = 10 (b) Flows use (c) Tangents Propagation

(d) Embedding using k-NN, k = 10,
Isomap method

(e) Embedding using Flows use,
Isomap method

(f) Embedding using Tangents Prop-
agation, Isomap method

(g) Embedding using k-NN, k = 10,
LLE method

(h) Embedding using Flows use, LLE
method

(i) Embedding using Tangents Prop-
agation, LLE method

Figure 3.13: Resulting NN graph with different algorithms and its resulting embedding with the
Isomap and LLE methods, k = 10.
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Figure 3.14: Illustration of the algorithm use in the faces datasets.
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Conclusions and Perspectives

Conclusions

Analysis of the Regularization Path

Along this work, several machine learning problems stated as multi-objective optimization prob-
lems were analyzed. Based on the optimality conditions, direct deduction of primal, dual and
bi-dual problems can be done by the use of subdifferential operators on the Lagrangian function,
their interest lies in the different resolution methods that can be applied to each of them and the
form of the decision function. For example, the dual problem can be solved via quadratic solvers,
while the bi-dual one explicitly contains the form of the decision function. The treated frameworks
in supervised and semi-supervised learning for classification and ranking problems belong to the
algorithms that hold the necessary conditions to have piecewise linear optimal solution as func-
tion of the regularization parameter. The extension to non-differentiable forms can be trivially
deduced by using instead of the gradient, the more general subdifferential definition. It was shown
that the piecewise linearity is helpful to efficiently calculate the complete regularization path. The
advantage of this is the fact that the calculation time of the complete regularization path turns
out to be in practice comparable to a few single resolutions of popular quadratic methods used to
solve the dual problem for a particular regularization parameter value.

Extension of the Regularization Path

Under this setting, the regularization path was developed for the SVM ranking framework. The
most important issue here encountered is the fact that the number of constraints is very large,
leading to a very large regularization path, and a slow problem resolution. A proposition of
constraints reduction was done which seems to be fairly satisfactory as it substantially reduces
the calculation time with some accuracy lost. It was seen and analyzed that in general, the newly
proposed constraint graph leads to coherent results as it can be compared to a weighted graph,
where some relations have positive weights and other zero weights.
In a different approach aiming at calculation time reduction and parsimonious models for the
ranking problem, the regularization function was changed from a L2-norm to a L1-norm, so that
the number of involved components in the final chosen model can be controlled with an additional
parameter, at the same time, the hinge-loss penalization function was substituted by a square one,
decreasing the number of breakpoints in the regularization path, and leading therefore to a faster
optimal set computation. The accuracy was slightly affected by this, but it has the advantage
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that the solution is a lot sparser.
Finally, under the semi-supervised framework, sparsity was again included by the addition of the
L1-norm as a constraint of the Laplacian SVM framework. Equal accuracy rates can be achieved
with considerably less variables, having the advantage that a regularization path can be also
efficiently deduced.

Parameter selection

Even though the regularization path provides the complete solution set corresponding to each
parameter value, the next natural issue is the model selection one. An analysis of the validation
error curve was done, it was observed that for the problems belonging to the same family, the
decision function has an hyperbolic relation with respect to the regularization parameter, so that
the validation errors can be fast updated along the regularization path, that is, breakpoints for
the change of the validation error (which is piecewise constant) can be given, this was named the
validation path. Nevertheless, this is revealed not needed every time as a representative sampling
of the parameter values can be done by using the resulting breakpoints from the regularization
path calculation. It was shown that, indeed, the regularization path breakpoints induce a selection
of the most interesting regularization parameter values which are to be explored and, with high
probability, will contain the one that outputs the minimum of the validation error curve.
This analysis done under the training-validation-test sets setting can be straightforwardly extended
to bootstrap and cross-validation frameworks by averaging the obtained validation error curves at
each trial.
In the last section of this work, unsupervised learning was approached, particularly, graph methods
for dimensionality reduction. The common issue of this methods is the construction of the graph,
that is, the correct designation of neighbors for each point. In the case where there exists shortcuts,
unsatisfactory results will be obtained when applying dimensionality reduction methods, where the
degree of satisfactory projections can be measured as faulty distance, topological characteristics
conservation or with a priori knowledge. If the manifold assumption is made in order to apply
a method, then, we can also take advantage of the local linearity to iteratively estimate tangent
hyperplanes at each point of the manifold, checking that these remain similar between neighbor
points. Having an estimation of the tangent planes, most of the edges producing shortcuts can be
detected by comparing the angular distance to the hyperplane and be removed. The used method
to detect edges producing shortcuts manage to provide a sparser graph that will output better
results than the initial one, usually calculated with the k-NN method.

Perspectives

As further research lines, double or multiple regularization paths could be considered. In the
present work only the regularization parameter is moved. For instance, in the sparse Laplacian
SVM, the parameter of the L2-norm regularizer is fixed while the L1 path is explored and vice
versa. An extension to this work could be the efficient exploration of the surface or volume induced
where different types of penalties are encoded in the learning problem. This problem boils down
to an efficient exploration of a deformed grid when considering bi-dimensional parameter space.
A way this grid exploration can be useful is to consider the exploration of the space of parameters
formed by the regularization parameter and the kernel parameter in SVM framework. If exact
calculation is not possible on bi-dimensional search spaces, approximations could be done if it is,
for example, in the case of the kernel parameter.
With respect to the proposed reduced graph, the fact that it is the result of elementary operations
and the encouraging obtained results with it give some clues in the sense that not all the infor-
mation is needed to built a satisfactory model. The next question to be solved is to be able, for
example, to efficiently use the reduced graph as a warm start sub-solution for the complete one
for a faster convergence and for faster parameter search.
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Given that the gradient-descent method leads to quite nice results, the stochastic gradient method
for parameter search can be considered, this should normally overcome local optima in all directions
and it has the advantage that it does not require differentiability of the objective function for its
application because the subdifferential can be used instead of the derivative.
For the neighborhood setting, a better approximation of the curvature of the manifold can be
considered with second order projections. This will be able to reduce the problem of over cutting,
that is, removing to many edges from the original neighborhood graph. The technique of tan-
gent planes could also be extended to the out-of-sample problem, but most of the dimensionality
reduction methods, there is no direct out-of-sample extension.
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A Appendix

A.1. Mathematical Background

A large number of definitions would be needed to exhaustively complete the mathematical used
element in the present work. For a larger in deep into algebraic and analysis definitions there are
different references to consult [Fral 89, Bart 76, Rudi 76]. In general, the samples are supposed
to belong to a vector space X or that they can be transformed into such a space. The following
definitions will allow us to search for an appropriate decision function.

A.1.1 Sets, Spaces and Sequences

Definition A.1 (Extended real numbers). The extended real numbers to be the set: R̄ =
R ∪ {−∞,+∞} with 0 · (±∞) = (±∞) · 0 = 0 but ((+∞)− (+∞)) not defined.

Definition A.2 (Vector space). Let F be a field with a sum operation denoted a+b and a multipli-
cation operation denoted ab for all a, b ∈ F . A vector space over F (or F -vector space) consists
of a set X with a closed binary operation ⊕ between elements of X together with a multiplicative
operation · of each element of X by each element of F on the left, such that for all a, b ∈ F and
x,y, z ∈ X the following conditions are satisfied:

• The binary operation ⊕ is associative: x⊕ (y ⊕ z) = (x⊕ y)⊕ z.

• There is an element e in X such that e ⊕ x = x ⊕ e = x for all x ∈ X . This element e is
an identity element for ⊕ on X .

• For each x ∈ X , there is an element x′ in X with the property that x′⊕x = x⊕x′ = e. The
element x′ is an inverse of x with respect to the operation ⊕.

• The operation ⊕ is commutative: x⊕ y = y⊕ x, a commutative group is called an Abelian
group.

• The binary operation · is closed: a · x ∈ X .

• Multiplicative operations are associative: a · (b · x) = (ab) · x.

• The distribute property holds: (a+ b) · x = (a · x)⊕ (b · x) and a · (x⊕ y) = (a · x)⊕ (a · y).

• The identity 1 of F for its multiplicative operation satisfies: 1 · x = x.
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Definition A.3 (Algebra). An algebra consists of a vector space X over a field F , together
with a binary operation of multiplication ⊗ on the set X of vectors, such that for all a ∈ F and
x,y, z ∈ X , the following conditions are satisfied:

• (a · x)⊗ y = a · (x⊗ y) = x⊗ (a · y)

• (x + y)⊗ z = x⊗ z + y ⊗ z

• x⊗ (y + z) = x⊗ y + x⊗ z

X is an associative algebra over F if additionally it holds:

• x⊗ y ⊗ (z) = x⊗ (y ⊗ z) for all x,y, z ∈ X .

Definition A.4 (Convex set). A set S in a linear vector space is said to be convex if, given
x1,x2 ∈ S, all points of the form αx1 + (1− α)x2 with 0 ≤ α ≤ 1 are in S.

This definition merely says that given two points in a convex set, the line segment between them
is also in the set.

Definition A.5 (Cone). A set S is said to be a cone if for all x, z ∈ S and α > 0, we have
αx+ z ∈ S

Definition A.6 (Cauchy sequence). A sequence (x1,x2, . . . ,xn) in R
D is said to be a Cauchy

sequence in case for every ε > 0 there is a natural number M(ε) such that for all m,n ≥ M(ǫ),
then ‖xm − xn‖ < ε.

Any convergent sequence in R
D is as Cauchy sequence.

Definition A.7 (Metric space). A set X , whose elements we shall call points, is said to be a
metric space if with any two points x,y ∈ X there is associated a real number d(x,y) called the
distance from x to y, such that

• d(x,y) > 0 if x 6= y; d(x,x) = 0.

• d(x,y) = d(y,x).

• d(x,y) ≤ d(x, z) + d(z,y) for any z ∈ X .

Any function with these properties is called a distance function, or a metric. A metric space
X is said to be complete (or Cauchy) if every Cauchy sequence of points in X has a limit that is
also in X or alternatively if every Cauchy sequence in X converges in X .

Definition A.8 (Banach space). A complete normed vector space, that is a vector space that
has a norm defined over its elements (see A.20), is called as Banach space.

This means that a Banach space is a vector space X over the real or complex numbers with a
norm ‖ · ‖ such that every Cauchy sequence (with respect to the metric d(x, y) = ‖x − y‖) in X
has a limit in X . Since the norm induces a topology on the vector space, a Banach space provides
an example of a topological vector space.
A simple consequence of the first two axioms of Definition A.20, positive homogeneity and the
triangle inequality, is ‖0‖ = 0 and thus ‖x‖ ≥ 0 (positivity).
A pre-Hilbert space is a Vector space X endowed with a dot product 〈·, ·〉 : X ×X → F , with
F = R or F = C that for all a ∈ F and x,y, z ∈ X holds:

• 〈x,y〉 = 〈y,x〉 (the hermitian-symmetric property)

• 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity in first argument)

• 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉 (additivity in second argument)

• 〈x,x〉 ≥ 0 (and equality only for x = 0: positivity)

144



Chapter A Appendix

• 〈ax,y〉 = a〈x,y〉 (linearity in first argument)

• 〈x, ay〉 = ā〈x,y〉 (conjugate-linearity in second argument)

Definition A.9 (Hilbert space). A Hilbert space is a Banach space with a norm induced by an
inner product.

Definition A.10 (Positive Cone). Let P be a convex cone in a vector space X . For z,y ∈ X ,
we write z ≥ y (with respect to P ) if z − y ∈ P . The cone P defining this relation is called the
positive cone in X. The cone N = −P is called the negative cone in X and we write y ≤ z
for y − z ∈ N .

For example, in R
n the convex cone

P = {z ∈ R
n : z = (e1, e2, ..., en); ei ≥ 0 for all i}

defines the ordinary positive orthant.

A.1.2 Functionals

In this annex, we study continuity properties of convex functionals [Schi 07].

Definition A.11 (Indicator Functional). Let M ⊆ X be nonempty. The indicator functional
of M δM : X → R̄ is defined by

δM (x) :=

{
0 if x ∈M
+∞ if x ∈ X \M

It can be seen that δM is proper and convex if and only if M is nonempty and convex.

Definition A.12 (Effective domain). If f : M → R̄ with M an nonempty subset of a vector space,
then we call the effective domain of f the set

Dom(f) = {x ∈M |f(x) <∞}.

Definition A.13 (Proper function). f : X → R̄ is said to be proper if Dom(f) 6= ∅ and f(x) >
−∞ for each x ∈ X .

Definition A.14 (Convex function). Let M ⊂ X be nonempty and convex. The function f :
M → R is called convex if

f
(
(λx) + (1− λy)

)
≤ λf(x) + (1− λ)f(y) (A.1)

holds for all x,y ∈M and all λ ∈ (0, 1) for which the right-hand side is defined, i.e., is not of the
form (+∞) + (−∞) or (−∞) + (+∞). If (A.1) holds with < instead of ≤ whenever x 6= y, then
f is called strictly convex.

Definition A.15 (Lipschitz continuous). If X is a normed vector spaced, then the proper func-
tional f : X → R̄ is said to be locally Lipschitz Continuous, or briefly locally L-continuous,
around x0 ∈ Dom(f) if there exist ǫ > 0 and λ > 0 such that

|f(x)− f(y)| ≤ λ‖x− y‖| ∀ x,y ∈ B(x0, ǫ).

Moreover, f is called locally L-continuous on the open subset D of X if f is locally L-continuous
around each x0 ∈ D.

Definition A.16 (Lipschitz condition and locally Lipschitz). A function f : X → (−∞,+∞] is
said to satisfy the Lipschitz condition of rank K on a given set S provided that f is finite on S
and satisfies

|f(x)− f(y)| ≤ K‖x− y‖

A function f is said to be locally Lipschitz on S if f is Lipschitz near x for every x ∈ S.
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All f ∈ C1(U), continuous functions, U open, are locally Lipschitz in U

Theorem A.17 (Sandwich Theorem). Let X be a topological vector space and let p, q : X → R̄

be proper, convex and such that −q(x) ≤ p(x) for all x ∈ X . Suppose further that:

1. Int(Dom(p)) ∩Dom(q) 6= ∅ and p is continuous at some point of Int(Dom(p)) or

2. Dom(p) ∩ Int(Dom(q)) 6= ∅ and q is continuous at some point of Int(Dom(q)).

Then there exists v ∈ X ∗ and c ∈ R such that

−q(x) ≤ 〈v,x〉+ c ≤ p(x) ∀ x ∈ X ,

with X ∗ is the topological dual of X .

Proof in [Schi 07].
A general chain rule for subdifferentials is next given:

Theorem A.18 (Chain Rule (subdifferentials)). Let g and h be so that:

h : X → R
n, g : R

n → R, (g ◦ h)(x) = g(h(x)), x ∈ X ,

h = (h1, h2, . . . , hn)⊤, with hi : X → R, i = [[n]], and define for any a ∈ R
n, ha(x) := 〈a,h(x)〉,

x ∈ X . Let c̄o∗(A) denotes the closed convex hull of the set A ∈ X according to X and its
topological dual (see [Schi 07] for details). Assume that h is locally L-continuous around x0 ∈ X
and g is locally L-continuous around h(x0). Let ∂◦(g) be the Clarke generalized gradient (see
[Schi 07] for details). Then:

(a) The composite function g ◦ h is locally L-continuous around x0, and there holds

∂◦(g ◦ h)(x0) ⊆ c̄o∗
(
{∂◦ha(x0)|a ∈ ∂◦g(h(x0))}

)
.

(b) If, in addition, g is regular at h(x0), any hi is regular at x0, i = [[n]], and any a ∈ ∂◦(h(x0))
has nonnegative components, then the previous equation holds as equality and g ◦h is regular
at x0.

The proof of the previous theorem can be found in [Schi 07].

Theorem A.19 (Local Necessary Conditions with subdifferentials (J-KKT) [Schi 07]). Consider
the following optimization problem:

min
z∈X

J(z) (A.2a)

subject to h(z) ≥ 0 (A.2b)

similarly defined as Problem 1.19 in page 33. Suppose that h = (h1, h2, . . . , hn) and J, h1, . . . , hm :
X → R̄ are proper convex functionals and let A be a nonempty convex subset of D : Dom(J) ∩
Dom(h1)∩· · ·∩Dom(hm). The (Fritz) John conditions (J) and the Karush-Kuhn-Tucker conditions
(KKT) are the following:

(J): ∃(λ∗, α∗
2, . . . , α

∗
m) ∈ R

m+1
+ \ {0} :

0 ∈ λ∗∂f(z∗) + α∗
2∂g1(z

∗) + · · ·+ α∗
m∂gm(z∗) + ∂δX (z∗)

αihi(z
∗) = 0, i = [[m]]

(KKT): ∃(α∗
2, . . . , α

∗
m) ∈ R

m
+ :

0 ∈ ∂f(z∗) + α∗
2∂g1(z

∗) + · · ·+ α∗
m∂gm(z∗) + ∂δX (z∗)

αihi(z
∗) = 0, i = [[m]].
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If the functionals J, h1, . . . , hm are continuous at some point of A ∩ Int(D) and the slater con-
dition:

∃ z0 ∈ A : hi(z0) < 0 for i = [[m]],

is hold, then

(KKT ) ⇐⇒ z∗is a global solution of Problem in Equations (A.2) ⇐⇒ (J).

The proof can be found in [Schi 07].

A.1.3 Norms

Definition A.20 (Norm). Given a vector space X over a subfield F such as the complex or real
numbers, a norm on X is a function ‖ · ‖ : X → R with the following properties: for all a ∈ F
and all x,y ∈ X ,

• ‖ax‖ = |a|‖x‖, (positive homogeneity or positive scalability).

• ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality or subadditivity).

• ‖x‖ = 0 if and only if x is the zero vector (positive definiteness).

Naturally, a normed vector space is a vector space that has a norm defined over its elements.

Definition A.21 (Norm of a Function). Let F , a bounded functional from X onto R that is there
exists a positive constant α such that |F(x)| ≤ α‖x‖,∀x ∈ X . Therefore, the norm of F is the
smallest positive constant M that holds |F(x)| ≤ M‖x‖ for all x ∈ X is called the norm of F
and is denoted ‖F‖. Thus, ‖F‖ = inf{M : |F(x) ≤M‖x‖, for all x ∈ X}.

Is can be shown that this definition satisfies the usual requirements of a norm.
The space becomes a normed space by assigning the norm according to the last definition. The
norm of a function F can be expressed in several ways. We have

‖F‖ = inf{M : |F(x)| ≤M‖x‖, for all x ∈ X} (A.3)

‖F‖ = sup
x6=0

|F(x)|

‖x‖
(A.4)

‖F‖ = sup
‖x‖≤1

|F(x)| (A.5)

‖F‖ = sup
‖x‖=1

|F(x)|. (A.6)

The norm defined in this way satisfies the usual requirements of a norm: ‖F‖ > 0; ‖F‖ = 0 if and
only if F = 0; ‖αF‖ = |α|‖F‖; ‖F1 + F2‖ ≤ ‖F1‖+ ‖F2‖.

Definition A.22 (Frobenius Norm). The Frobenius norm [Golu 96], sometimes also called the
Euclidean norm (which may cause confusion with the vector L2-norm which also sometimes known
as the Euclidean norm), is matrix norm of an m × n matrix A defined as the square root of the
sum of the absolute squares of its elements:

||A||F =

√√√√
m∑

i=1

n∑

j=1

|aij |2

The Frobenius norm can also be considered as a vector norm. It is also equal to the square root of
the matrix trace of AAH , where AH is the conjugate transpose, i.e.,

||A||F =
√
Trace(AAH).

147



A.1 Mathematical Background

Definition A.23 (Consistent method). We say that the method of ERM is consistent for a set
of functions fn and for the probability distribution P if the following hold [Vapn 99]:

limn→∞ P

((
R(fn)− inff∈H

{
R(f)

})
> ǫ
)

= 0 ∀ǫ > 0

limn→∞ P

((
Remp(fn)− inff∈H

{
R(f)

})
> ǫ
)

= 0 ∀ǫ > 0

A.1.4 Laplace operator

These notions are used to manipulate objects related to manifolds.

Definition A.24 (Laplacian). The Laplacian is the sum of all the unmixed second partial deriva-
tives:

∆ = ∇2 = ∇ · ∇ =

n∑

i=1

∂2

∂x2
i

(A.7)

Definition A.25 (Laplace equation). The n-th dimensional Laplace equation is:

∆ =
n∑

i=1

∂2

∂x2
i

= 0 (A.8)

Definition A.26 (Metric Tensor). The metric tensor gij is a function which tells how to compute
the distance between any two points xi,xj in a given space. Its components can be viewed as
multiplication factors which must be placed in front of the differential displacements ∂xi in a
generalized Pythagorean theorem

∂s2 = g11∂x2
1 + g12x1∂x2 + g22∂x2

2 + .... (A.9)

In Euclidean space, gij = δij where δ is the Kronecker delta (which is 0 for i 6= j and 1 for i = j),
reproducing the usual form of the Pythagorean theorem:

∂s2 = ∂x2
1 + ∂x2

2 + .... (A.10)

Definition A.27 (Laplace-Beltrami operator). The Laplace-Beltrami operator is defined in any
local coordinates by:

∆u(x) = g−
1
2 (x)

∑

i,j

∂xi

(
g(x)gij(x)∂xj

(
g−

1
2 (x)u(x)

))
(A.11)

where gij is the metric tensor and g ≡ |det{gij}|−
1
2 is the canonical Riemannian density.

A.1.5 Mixture Models

Mixture models [Jain 88, McLa 00] represent a family of probabilistic approach used to represent
the data in an unsupervised way.
For mixture models, observations SX = {xi}, i ∈ [[n]],xi ∈ R

D are supposed to be realizations of
a random variable denoted by X with probability density function f(x) on R

D. In the framework
of mixture models, this density function is defined as:

f(x) =

k∑

i=1

πifi(x), (A.12)

where the fi(x) are densities and the πi are nonnegative quantities that sum up to one, that is,

0 ≤ πi ≤ 1, i ∈ [[k]] and
∑k

i=1 πi = 1.
The quantities πi, . . . , πk are called the mixing proportions or weights and the corresponding
densities f1(x), . . . , fk(x) are called the component densities of the mixture. Density (A.12) is
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referred as a k-component finite mixture distribution. Depending on the model, k be considered
to be fixed or that it increases as the sample size n does, see [McLa 00] for references on these
models.

One of the most known methods to estimate the mixing proportions along with the parameters
of the components is the Expectation Maximization (EM) method [Demp 77]. In the identi-
fication of the mixture models based on EM, the hidden information are the membership of each
sample to the components fi. We would have known this information, the optimization problem
will amount to a single maximum likelihood estimation step.

A.1.6 Maximum Likelihood Estimation (MLE)

Let X denote observable variables, and let Z denote latent variables. Often, X and Z decompose
into sets of independent, identically-distributed (i.i.d.) pairs, in particular X can often be written
as X = (X1,X2, ...,Xn), where Xi are (i.i.d.) variables and the observed data, x = (x1,x2, ...,xn),
are the observed values of X. The aim is to estimate the probability model P(x, z|θ) where θ
represents the parameter vector to be determined.

If Z could be observed, then the MLE problem [Jord 02] would amount to maximizing the com-
plete log likelihood :

log
(
P(x, z|θ)

)
,

If the probability P(x, z|θ) factors in some way, such that separate components of θ in separate
factors, then the operation of the logarithm has the effect of separating the likelihood into terms
that can be maximized independently, this is what is generally called decoupling the estimation
problem.

Given that z is not in fact observed, the probability of the data x is a marginal probability, and
the incomplete log likelihood takes the following form:

log P(x|θ) = log
∑

z

P(x, z|θ),

where here the summation is used to stand for marginalization (the derivation goes through
without change if it is integrated over a continuous z). The logarithm on the right-hand side
is separated from P(x, z|θ) by the summation sign, and the problem does not decouple. At this
point, it is not clear how to exploit the conditional independence structure that may be present
in the probability model.

Given that Z is not observed, the complete log likelihood is a random quantity, and cannot be
maximized directly. But suppose we average over z to remove the randomness, using an averaging
distribution q(z|x). That is, let us define the expected complete log likelihood :

l(θ,x, z)q =
∑

z

q(z|x, θ) log P(x, z|θ),

a quantity that is a deterministic function of θ. Note that the expected complete log likelihood is
linear in the complete log likelihood and thus should inherit its favorable computational properties.
Moreover, if q is chosen well, then perhaps the expected complete log likelihood will not be too
far from the log likelihood and can serve as an effective surrogate for the log likelihood. While we
cannot hope that maximizing this surrogate will yield a value of θ that maximizes the likelihood,
perhaps it will represent an improvement from an initial value of θ. If so, then we can iterate the
process and hill-climb. This is the basic idea behind the EM algorithm. It will be shown that an
averaging distribution q(z|x) can be used to provide a lower bound on the log likelihood. Consider
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the following line of argument:

l(θ,x) = log P(x|θ)

= log
∑

z

P(x, z, |θ)

= log
∑

z

q(z|x)
P(x, z, |θ)

q(z|x)
(A.13)

≥
∑

z

q(z|x) log
P(x, z, |θ)

q(z|x)
(A.14)

≡ L(q, θ,x)

where the last line defines L(q, θ,x), a function that will be referred to as an auxiliary function.
In Equation (A.14), Jensen’s inequality was used, a simple consequence of the concavity of the
logarithm function. What has been shown is that –for an arbitrary distribution q(z,x)– the
auxiliary function L(q, θ,x) is a lower bound for the log likelihood.
The EM algorithm is a coordinate ascent algorithm on the function L(q, θ,x). At the (t + 1)-
st iteration, L(q, θt,x) is first maximized with respect to q to yield qt+1, and then L(qt+1, θ,x)
is maximized with respect to θ, which yields the updated value θt+1. Giving these steps their
traditional names, it is gotten:

E step: qt+1 = argmaxq L(q, θt,x)

M step: θt+1 = argmaxθ L(qt+1, θ,x)

In order to understand the assigned names for each step, it has to be first noticed that the M step
can be equivalently viewed as the maximization of the expected complete log likelihood. To see
this, note that the lower bound L(q, θ,x) breaks into two terms:

L(q, θ,x) =
∑

z

q(z|x) log
P(x, z|θ)

q(z|x)

=
∑

z

q(z|x) log P(x, z|θ)−
∑

z

q(z|x) log q(z|x)

= l(θ,x, z)q −
∑

z

q(z|x) log q(z|x)

and that the second term is independent of θ. Thus, maximizing L(q, θ,x) with respect to θ is
equivalent to maximizing l(θ,x, z)q with respect to θ.
Let us now consider the E step. This maximization problem can be solved once and for all; indeed,
we can verify that the choice qt+1(z|x) = P(z|x, θt) yields the maximum. To see this, evaluate
L(q, θ,x) for this choice of q:

L(P(z|x, θt), θt,x) =
∑

z

P(z|x, θt) log
P(x, z|θt)

P(z|x, θt)

=
∑

z

P(z|x, θt) log P(x|θt)

= log P(x|θt)

= l(θt,x). (A.15)

Given that l(θt,x) is an upper bound for L(P(z|x, θt), θt,x), this shows hat L(P(z|x, θt), θt,x) is
maximized by setting q(z,x) equal to P(z|x, θt).
The conditional distribution P(z|x, θt) is an intuitively appealing choice of averaging distribution.
Given the model P(z|x, θt) is our best guess as to the values of the latent variables, conditioned
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on the data x. What the EM algorithm does is to use this best guess distribution to calculate an
expectation of the complete log likelihood. The M step then maximizes this expected complete log
likelihood with respect to the parameters to yield new values θt+1. We then presumably have an
improved model, and we can now make a better guess P(z|x, θt+1), which is used as the averaging
distribution in a subsequent EM iteration.

What is the effect of an EM iteration on the log likelihood l(θ,x)? In the M step, the parameters
are chosen so as to increase a lower bound on the likelihood. Increasing a lower bound on a
function does not necessarily increase the function itself, if there is a gap between the function
and the bound. In the E step, however, we have closed the gap by an appropriate choice of the q
distribution. That is, we have:

l(θt,x) = L(qt+1, θt,x),

by Equation (A.15), and thus an M-step increase in L(qt+1, θ,x) will also increase l(θt,x).

In summary, it was shown that the EM algorithm is a hill-climbing algorithm in the log likelihood
l(θ,x). The algorithm achieves his hill-climbing behavior indirectly, by coordinate ascent in the
auxiliary function L(q, θ,x). The advantage of working with the latter function is that it involves
maximization of the expected complete lo likelihood rather than the log likelihood itself, and it is
ofter a substantial simplification.

A.2. Maximal Margin Classifier

A.2.1 Hard Margin linear Case

Having a set {(xi, yi)}i∈[[n]], xi ∈ X = R
D, yi ∈ {1,−1}, i ∈ [[n]], we say that the two classes are

linearly separable if there is a linear function f : R
D → R, b ∈ R, and the induced hyperplane

P : {x ∈ X , b ∈ R|f(x) + b = 0,x ∈ X} can divide the space X in two subspaces holding, for
example, f(xi)− f(xj) > 0 for all pairs {xi}yi=1 and {xj}yj=−1.

The hyperplane has the form f(x) will give the length of x along direction w f(x)+b = 〈w,x〉+b,
so that f(x) will give the length of x along direction w .

Hyperplanes in Figure A.1 are all valid functions to divide the samples in Figure 1.7 and actually,
there is an infinite number of hyperplanes that keep all samples of the same class on one subspace
and the rest in the other one.

Figure A.1: Possible dividing hyperplanes for a two-class problem

Intuitively, the hyperplane that would like to be kept is the one that has the largest distance to
both classes.

We will say that the two classes are perfectly separated by a hyperplane P if the following equations
are fulfilled [Vapn 99]:

{
f(xi) + b ≥ 1 if yi = 1
f(xi) + b ≤ −1 if yi = −1

or equivalently {yi(f(xi) + b) ≥ 1, for i ∈ [[n]] (A.16)
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To achieve a separation of the two classes with a maximum distance between them, we are inter-
ested in finding a particular hyperplane called canonical hyperplane for which, it holds

min
i∈[[n]]

‖f(xi) + b‖ = 1.

Figure A.2 shows a hyperplane with maximal margin for the classification problem in Figure A.1.

{x |〈w, x〉 + b = −1}

w

yi = +1

yi = −1

{x |〈w, x〉 + b = +1}

{x |〈w, x〉 + b = 0}

Figure A.2: Hyperplane with maximal margin for a two-class problem

In the example, the vector w is a vector orthogonal to the hyperplane P and geometrically, 〈w,x〉
can be interpreted as the length of x along direction w. This distance can be standardized by
scaling the inner product by the norm of w, ‖w‖.
It has to be noticed that if a canonical hyperplane is used, the closest points of the different classes
satisfy: xi with yi = 1 and a xj with yj = −1 holding f(xi) + b = +1 and f(xj) + b = −1. This
leads to 〈w,xi〉 − 〈w,xj〉 = 2, which after normalization by the norm of w, we get:

1

‖w‖

(
〈w,xi〉 − 〈w,xj〉

)
=

2

‖w‖
(A.17)

With the previous equation, we can conclude that the distance of the closest vector to the hyper-
plane is 1

‖w‖ , then finding the hyperplane with the maximum distance is equivalent to maximize

the norm of the decision function f that corresponds to the hyperplane that will divide the two
classes if Constraints A.16 are included in the setting.
Therefore, the regularization problem can be stated as follows:

Problem A.28 (SVM-Primal Optimization Problem). Consider a binary classification problem
with class labels encoded as +1 and −1. The optimal margin hyperplane primal problem is defined
as follows.

minimize
w∈H,b∈R

1
2‖w‖

2, (A.18)

subject to yi(〈xi,w〉+ b) ≥ 1, i = 1, .., n, (A.19)

The final decision function would look like

f ′(x) = sign(〈w,x〉+ b).

The samples lying on the margin (that is the patterns locate at a distance 1
‖w‖ from the hyperplane)

are called Support Vectors (SVs) as the solution w will depend only on those points.
Using the mathematical tools developed in Section 1.4 of Chapter 1, on can easily derive the
corresponding dual of Problem A.28 in the following form

Problem A.29 (SVM-Dual Optimization Problem). The dual problem corresponding to the op-
timal margin hyperplane Problem A.28 is given by

maximize
α∈Rn

∑n
i=1 αi −

1
2

∑n
i,j=1 αiαjyiyj〈xi,xj〉,

subject to αi ≥ 0, i = 1, ..., n,
∑n

i=1 αiyi = 0.
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knowing that the expression of w is given by w =
∑n

i=1 yiαixi.

A.2.2 Soft Margin linear Case

Often, the problem can be an unfeasible problem because there does not exist any hyperplane that
can separate perfectly both classes. For such problems, the C-SV classifier was introduced allowing
some mistakes through slack variables with a penalization in the objective function, leading to the
following problem.

Problem A.30 (SV Classifier (SVC) Primal Problem). For a two-class problem, the primal
optimization problem with slack variables ξ, i = 1, · · · , n is defined as:

minimize
w∈H,b∈R,ξ∈Rm

1
2‖w‖

2 +
∑n

i=1 Cξi,

subject to yi(〈xi,w〉+ b) ≥ 1− ξi, i = 1, .., n,

ξi ≥ 0, i = 1, .., n.

Here again, the dual is straightforwardly given in the definition below.

Problem A.31 (C-SV Classifier (SVC) Dual Problem). In a two-class problem, the optimal
margin hyperplane dual problem with slack variables is defined as follows

maximize
α∈Rn

∑n
i=1 αi −

1
2

∑n
i,j=1 αiαjyiyj〈xi,xj〉, (A.20)

subject to 0 ≤ αi ≤ C, i = 1, ..., n,
∑n

i=1 αiyi = 0.

Here, the support vectors include the samples in the margin as previously but also the points with
slack variables strictly positive, namely the points lying inside the margin or those badly classified.

A.3. Quadratic Problems

Another commonly used method to solve nonlinear convex optimization is the interior points
method. We are concerned in this method as it is the principle of some piecewise linear solutions
for parametric quadratic programming [Hast 04, Ross 07b, Mark 59].
The original method was proposed for linear programming [Vand 01], there exist many extensions
for nonlinear programming, some of them based in barrier methods using the logarithmic or
quadratic function but in our case, we will be interested in the primal-dual implementation for
the quadratic particular case.
The method will be derived for the following problem:

minimize
x

1
2x

⊤Qx− 1I⊤x

subject to Ax ≥ b (A.21)

y⊤x = d

where Q is symmetric and positive semidefinite, and where A is a matrix and y a vector that
define linear inequality and equality constraints respectively.
The optimal solution (x∗, α∗, β∗) should satisfy the KKT conditions stated in Equations 1.21.
This conditions are recalled under this framework:

Qx− 1I−A⊤α + βy = 0

Ax− b ≥ 0

y⊤x− d = 0

αi(Ax− b)i = 0

α ≥ 0
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where (Ax− b)i denotes the i-th element of vector (Ax− b). A slack vector will be introduced in
the inequality s = (Ax− b) equation so that it can be written as:

Qx− 1I−A⊤α + βy = 0 (A.23a)

Ax− b− s = 0 (A.23b)

y⊤x− d = 0 (A.23c)

αisi = 0 (A.23d)

α, s ≥ 0 (A.23e)

These KKT conditions are not only necessary but also sufficient as the objective function and
feasible region are convex. Hence, the quadratic Problem A.21 can be solved if a solution can
be found for Equations A.23. The previous system will be rewritten as a constrained system of
nonlinear equations and derive a primal-dual interior points algorithms by applying modifications
of Newton’s method to this system by defining:

F (x, s,α,β) =




Qx− 1I−A⊤α + βy
Ax− b− s
y⊤x− d
SΛ1I


 , α, s ≥ 0 (A.24)

with S = diag(s1, s2, . . . , sm), Λ = diag(α1, α2, . . . , αm) and 1I a vector of ones.
Following [Noce 99], at solution (x, s,α,β) that satisfies α, s ≥ 0, a duality measure µ can be
defined by

µ =
1

m

m∑

i=1

siαi =
s⊤α

m

Then, the central path C is the set of points (xt, st,αt,βt), t > 0 indicates in this case the
iteration number, such that

F (x, s,α,β) =




0
0
0
t1I


 ,α, s ≥ 0

In order to achieve this, we are interested in calculating the generic step (∆x,∆s,∆α,∆β) to
make a Newton-like step from the current point (x, s,α,β) on the central path, where σ ∈ [0, 1]
is a parameter chosen by the algorithm. By doing linearization, implying, for example that terms
of second order like ∆S∆Λ will be neglected, this step satisfies the system:




Q −A⊤ y 0
A 0 0 −I
y⊤ 0 0 0
0 S 0 Λ







∆x
∆α
∆β
∆s


 =




−r1I
−rb
−rd

∆S + σµ1I


 (A.25)

where
−r1I = Qx− 1I−A⊤α + yβ, −rb = Ax− b− s and −rd = y⊤x− d
and the following iterate is obtained by setting:

(xt, st,αt,βt) = (x, s,α,β) + λ(∆x,∆s,∆α,∆β)

where λ is chosen to retain the inequality (st,αt, βt) > 0 and possibly to satisfy various other
conditions.
The system A.25 can be differently restated in a more compact and symmetric form (see [Noce 99]
for more details) which can be later used to form a normal equation –that has to be actualized at
each iteration– and a modified Cholesky algorithm can be used to solve it.
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