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préparée à l’unité mixte de recherche 6074 IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires
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Introduction

Vision is a in very powerful tool that allows humans to interact with our environment with
simplicity and accuracy. In this process, the eyes only perform a very small part of the job. The
efficiency to analyze our visual environment is indeed mainly due to our brain. The parallelism
with the computer vision systems (computer equipped with visual sensors) is immediate: the
camera acquires the appearance of the environment as an image that is then analyzed by the
computer. The main difference is that the human has a large a priori knowledge of its environ-
ment and has many years of evolution behind him. Since the low-level human interpretation of
an image is mostly unconscious, many people are still wondering why there are still researches
in the vision domain to achieve a task that seems so simple. But the huge literature on the
subject proves the problem to be even more complex than it seems.

Work in computer vision is motivated by the wide applications that it offers. Indeed, the
partial reproduction of the vision sens applied to computers would have significant repercus-
sions in many domains: health care, surveillance, indexation, robot control and many others.
Although a human being has a good interpretation of his environment, it lacks the accuracy,
repeatability and strength of a robot. While many researches are focused on machine learning or
artificial intelligence to perform some complex tasks, some more “basic” researches on low-level
detection, tracking, matching or segmentation tasks are still under progress. In this thesis, we
address two of these tasks: the tracking problem, where the goal is to estimate the position
of an object in an image sequence or video and the visual servoing problem, that consists of
positioning a robot using the information provided by a visual sensor.

To perform this visual tracking and visual servoing tasks, many approaches propose to
extract visual features such as key-points or contours from the images and estimate this dis-
placement or control the robot using the geometrical information provided by the features.
Nevertheless, most of these approaches do not use the whole information provided by the im-
ages, but only some geometrical features that are suffering from measurement errors which may
affect the accuracy of the tasks. In this thesis, we focus on direct approaches: instead of using
local features, the object is directly represented by the whole set of pixel intensities of the image
where it appears. Therefore, all the information provided by the image is used. In this approach
a measure of similarity between two patches of intensities has to be considered to realize the
tracking and visual servoing tasks. Depending on the external conditions when the image is
acquired, the appearance of the object can undergo many variations. Therefore, the similarity
measure, or alignment function, has to be robust to such appearance variations.

After having evaluated many alignment functions, our interest has been caught by the mutual
information function that had significant repercussions in the medical field, due to its robustness
in the case of occlusions and multimodality of the images. Its latter appearance in tracking
applications showed that it is also robust to illumination variations. One of the first ideas of
this thesis was then to use the mutual information as a new metric for visual servoing tasks. To
do so the direct visual servoing approach has been considered: the image acquired at the desired
position is known, and, the goal is to make the camera move to the position that maximizes
the mutual information between the current image and desired image. The visual servoing
problem becomes, therefore, an optimization problem, where the mutual information has to be
differentiated with respect to the degrees of freedom of the camera/robot. First, the classical
optimization methods, that were common to the mutual information maximization, were used.
However, our research has shown that some very significant improvements of the performances in
terms of accuracy and robustness could be obtained using a new optimization approach. Since
there is a strong duality between the visual tracking and visual servoing problem, a similar
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registration approach has been considered to create a new mutual information-based tracking
method yielding the same improvements of its performance.

This thesis provides the knowledge required to perform a visual tracking and visual servoing
task based on the mutual information. We present a comparative analysis of many tracking
and visual servoing approaches to show the capability of the proposed approach. We present
the researches that are significant in our context and present the work that has been performed
to improve the existing approaches and create new tracking and visual servoing techniques.
Many experiments demonstrate the improvements that have been achieved. Several applications
illustrate the interest of such approaches in augmented reality, mosaicing or face tracking.
Finally the visual servoing approach has been validated on a 6 degrees of freedom gantry robot
and on a navigation task using a non-holonomic autonomous vehicle.

How is organized this thesis

This thesis has three major parts. The first part presents the basic knowledge on which our
contributions are defined. Its first chapter provides the background in computer vision that is
required to solve most of the visual tracking and visual servoing problems. Its second chapter
provides the background in statistics and information theory that is necessary to define the
mutual information function.

The second part presents the visual tracking part. A state of the art is presented where we
show the limitation of the existing approaches. To the previous issues, we propose as an answer
a mutual information-based tracking approach. The tracking method is first defined to track
objects in the image using parametric motion models. Then the approach is extended to the
estimation of the pose of the object in the 3D space.

In the last part, this optimization approach is applied to the pose of a real camera to solve
a visual servoing problem. We will note that the visual servoing problem is dual with the
previous pose computation problem. Therefore, the previous MI approach is simply adapted
to the visual servoing tasks. The performances of the new visual servoing method are then
evaluated in many experiments on a 6 degrees of freedom robot that shows the approach to
be very accurate and robust. The convergence is analyzed and compared to classical visual
servoing approaches. Finally an application of this new visual servoing metric is applied to the
navigation of a non-holonomic autonomous vehicle.

Contributions

This work has led several contributions in both the computer vision and robotic domain. Fol-
lowing chronological order, here are the contributions with the corresponding publications:

• We propose a new tracking approach based on mutual information that allies robustness
and efficiency [C4]. Many applications have demonstrated the efficiency of the method
with augmented reality application and multimodal registration of images.

• The new tracking approach has been proposed as an alternative to the classical KLT
approach that uses the difference between the pixel intensities and we show the advantages
on the robustness of the estimation [C2]. The detection process that is optimal for the
proposed tracking approach is proposed.

• A mutual information-based approach is also proposed to define a new control law for 2D
visual servoing tasks [C1][C3][R1]. This positioning task is robust to partial occlusions
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and illumination variations compared to the existing direct approaches. Since it uses the
whole information provided by the camera, it is also very accurate.

• The visual servoing approach has been adapted to propose a navigation approach for
non-holonomic vehicles equipped with a camera.

• A solution that unifies both the visual tracking and direct visual servoing problems is
proposed in [CN1].

Publications

Journal articles

[R1] A. Dame, E. Marchand. – Mutual information-based visual servoing. – In IEEE Trans.
on Robotics, Conditionally accepted.

National conference papers

[CN1] A. Dame, E. Marchand. – Une approche unifiée reposant sur l’information mutuelle pour
l’asservissement visuel et le suivi différentiel. – In 18e congrès francophone AFRIF-AFIA
Reconnaissance des Formes et Intelligence Artificielle, RFIA 2010, Caen, France, January
2010.

International conference papers

[C1] A. Dame, E. Marchand. – Entropy Based Visual Servoing. – In IEEE Int. Conf. on
Robotics and Automation, ICRA’09, Kobe, Japan, May 2009.

[C2] A. Dame, E. Marchand. – Optimal Detection and Tracking of Feature Points using
Mutual. – In IEEE Int. Conf. on Image Processing, ICIP’09, Cairo, Egypt, November
2009.

[C3] A. Dame, E. Marchand. – Improving mutual information based visual servoing. – In
IEEE Int. Conf. on Robotics and Automation, ICRA’10, Anchorage, Alaska, May
2010.

[C4] A. Dame, E. Marchand. – Accurate real-time tracking using mutual information. – In
IEEE Int. Symp. on Mixed and Augmented Reality, ISMAR’10, Seoul, Korea, October
2010 (ISMAR2010 Best paper runner-up award).
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Notations

General

• Some detailed information are given in separate Frames. We decided to separate the
content of these frames when the information which they provide is not required to under-
stand the remainder of the document. These frames are usually defining some particular
applications of the more general theory that is defined beside.

• the superscript ∗ denotes a reference. For instance, if I is an image, then I∗ is a reference
image.

General mathematics

• M = (M1,M2, . . . ,Mn): vertical concatenation of matrices, vectors or scalars.

• M = [M1,M2, . . . ,Mn]: horizontal concatenation of matrices, vectors or scalars.

• Rn: Real space with n dimensions.

• [ω]×: skew-symmetric matrix of ω.

Euclidean and projective geometry

• F: Cartesian frame.

• X : point in the Euclidean space.

• X = (X,Y, Z): vector representing the coordinates of a point in the Euclidean space.

• X̃ = (X, 1) = (λX, λ): vector representing the homogeneous coordinates of a point in the
Euclidean space.

• m = (xm, ym): image point coordinates in normalized form.

• m̃ = (m, 1): image point coordinates in homogeneous normalized form.

• x = (x, y): image point coordinates in pixels.

• x̃ = (x, 1): image point coordinates in homogeneous pixel formulation.

• jMi =

[
jRi

jti

0 1

]
: homogeneous transformation matrix (from the frame Fi to the frame

Fj).

• jRi = exp([ω]×): rotation matrix

– ω = θu: rotation vector.

– u: rotation axis.

– θ = ||ω||: rotation angle.

• jti = (tx, ty, tz): translation vector.
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• r = (θu, t): pose parameters (parametrization of an homogeneous transformation matrix).

• K =



px 0 u0

0 py v0
0 0 1


: intrinsic matrix of a camera (x̃ = Km̃).

– (px, py): ratio between the focal and the pixel size.

– (u0, v0): coordinates of the principal point in pixels.

Tracking

• w(x,p): warping function or parametric motion model that transforms the position of the
point x into a new position.

• p: parameter associated to a parametric motion model.

• G: Gradient matrix.

• H: Hessian matrix.

Visual servoing

• v = (ν,ω): velocity vector.

– ν = (νx, νy, νz): translation velocity vector.

– ω = (ωx, ωy, ωz): rotation velocity vector.

• s: visual feature.

• Ls: interaction matrix related to s.
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Chapter 1

Background on computer vision

This chapter presents the geometric tools required to build our tracking and visual servoing
approaches. The definition of the Euclidean geometry allows for modeling our 3D space in
which our camera is moving, and, from which the projection into the image space is performed.
We explain how the real world projects itself into the digital images. From the definition of
the 3D geometry and its projection, the effect in the image of the object or camera motions
is presented. Several models of transformations, or warping functions, are then defined to
introduce their use in the visual tracking problem.

1.1 Modeling the world

Euclidean geometry is a mathematical system that originally describes the two and three-
dimensional planar spaces. It is the ideal tool to give a simple and practical model of the 3D
world in which the object and camera are moving. In this section, we suppose that the reader
knows the basics of linear algebra. If the reader needs more details on this subject, he can find
them, for example, in [Ma 2004].

1.1.1 Euclidean geometry

To define the coordinates of an object in the space, first, it is required to define a frame in
which the coordinates will be expressed. Any object can be expressed relatively to any frame.
Nevertheless, if the tracked object is known, it is more likely in a frame Fo attached to the object.
Then, when we want to study the position of the object with respect to the camera, the goal is
to express the coordinates of the object in a frame attached to the camera noted Fc. Therefore,
we will choose the object and camera frames as an example to illustrate the transformation of
the coordinates from one frame to a new one. In the remainder of this section, we suppose that
the object is fixed and that the camera frame is changing but we have to keep in mind that this
problem is dual with the one considering a moving object and a fixed frame.

As the pose of an object is defined by a 3D position (for instance its center) and by its
orientation, we define the object frame (resp. the camera frame) by its position using its origin
Xo (resp. Xc) and its orientation using a basis of 3 orthonormal unitary vectors (i, j,k) as
illustrated in Figure 1.1.

An interesting property of the Euclidean geometry is that any geometric feature can be
defined using points (a line can for instance be defined by two points). Let us then limit
ourselves to the study of points in the 3D space. To locate each point X in the euclidean space,
three coordinates are required. The three coordinates are typically defined in the object frame
as oX = (oX,o Y,o Z) so that:

X = Xo +o Xio +o Y jo +o Zko (1.1)

To change the coordinates of the point from the object frame to the camera frame, a trans-
formation that models both the change in position an orientation is defined. The position
transformation is defined by a 3D translation cto that transforms the center of the object frame
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into the center of the camera frame, and the orientation by a 3D rotation cRo that defines
the transformation from the axes of the object frame to the axis of the camera frame. The
coordinates of the point X in the object frame oX are then given by the affine transformation:

cX = cRo
oX + cto (1.2)

To put this affine formulation into a simpler form, a linearization using the homogeneous for-
mulation is usually preferred. A point X defined by its coordinates X = (X,Y, Z) in the
Euclidean space can also be defined in a projective space by its homogeneous coordinates
X̃ = (X, 1) = (λX, λ) where λ is a non-null scalar. Using the homogeneous coordinates of
X in both the object and camera frame we can write the equivalent homogeneous formulation
of the equation (1.2) as:

cX̃ = cMo
oX̃ with: cMo =

[
cRo

cto

0 1

]
(1.3)

where the homogeneous matrix cMo contains the whole transformation from the object frame
to the camera frame that typically defines the camera pose. cRo is a 3× 3 matrix and cto is a
3× 1 vector, therefore, the homogeneous matrix cMo originally contains 12 values. Since these
values respect several constraints, it is in fact possible to represent the whole transformation
with fewer parameters.

?

Figure 1.1: Representation of the 3D space using Euclidean geometry.

1.1.2 Homogeneous matrix parametrization

Several solutions exist to parametrize the 3D transformation generated by an homogeneous
matrix. In this section, we focus only briefly on the most intuitive solutions in our point of
view. There is no trouble defining the translational part of the pose. Indeed the translation
part of the homogeneous matrix that changes the coordinates of a 3D point from the object
frame to the camera frame is already defined as a set of 3 parameters, that are the translations
along the three axis of the camera frame.

The problem is different for the rotational part. Indeed, the rotation is defined by a 3 × 3
matrix. If no constraint on the matrix is considered, it corresponds to 9 values. However, since
the displacement of an object must not affect the object size or its orientation, the rotation
matrix has to be a special orthogonal matrix that means that its columns define 3 orthogonal
unit vectors (typically the axis of the object frame defined in the camera frame).

Several parametrization of the rotation matrix are possible to respect these constraints.
A first solution, the Euler representation, is to consider the 3D rotation as a combination of
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three consecutive rotations around the axes of the space. The rotation matrix is, therefore,
represented as the product of the 1D rotations around the X, Y and Z axes. Every 1D rotation
is defined by one angle of rotation (typically rx,ry and rz) and the parametrization of the
3D rotation is then simply defined by a 3D vector (rx, ry, rz). This parametrization is very
satisfying in terms of simplicity, nevertheless, it presents one drawback. Several configurations
of the rotation angles cause one degree of freedom to be lost. This singularity problem can be
illustrated with a mechanical system of the Euler representation that is shown in Figure 1.2:
each gimbal can rotate around one axis (3 gimbals = 3×1D rotation). If two rotation axes are
aligned (Figure (b)) then one degree of freedom is lost (the singularity is usually called gimbal
lock).

(a) (b)

Figure 1.2: Three axis gimbal set: the blue gimbal can rotate in 3 dimensions. (a) Position with three degree of
freedom, and (b) one singularity position known as gimbal lock: since the first and last rotation axis are equal,
one degree of freedom is lost.

Another representation is the Exponential map. This parametrization assumes that all the
rotations in the 3D space can be parametrized by a rotation around one axis of the 3D space.
Therefore, the parameters contain two information: the axis of the rotation and its angle. The
Exponential map parametrizes this rotation as a vector ω = (ωx,ωy,ωz) where the rotation
axis is defined by the orientation of ω and the angle of rotation by its norm θ = ||ω||.

Using this parametrization and the Lie algebra, the rotation matrix can be written as:

R = exp(Ω) (1.4)

= I + Ω +
1

2!
Ω2 +

1

3!
Ω3 + ...

where Ω is the skew-symmetric matrix of ω:

Ω = [ω]× =




0 −ωz ωy

ωz 0 −ωz

−ωy ωz ωx


 . (1.5)

We see that the name exponential Map comes from the fact that the equation (1.4) is very similar
to the Taylor expansion of a classical exponential. This representation presents singularities for
θ = 2πn for n ≥ 1, nevertheless, these singularities are easily avoided: when the parameters are
near a singularity, its values are set to a new equivalent rotation far from the singularity.
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1.2 Projection in the image space

As the previous section shows, the Euclidean model is a nice way to model our environment.
However, our problem does not, in general, induce a direct knowledge of the world. Our
perception of the environment is usually limited to its 2D projection in an image. Depending
on the camera, the projection from the 3D world to the image space can have many forms. In
this thesis we will only focus on the pin-hole (or perspective) model that is the most widespread
type of camera.

1.2.1 Pin-hole camera model and digital images

To model the displacement of an object in an image, we must know how the image is created
beforehand. We are not particularly interested in the mechanic or photometric definition of a
camera, but more in the geometrical projection from the 3D space into the 2D image space and
to the transformation that changes the euclidean coordinates of the projection into the pixel
coordinates in the image.

1.2.1.1 Projection into the image plane

The optical system in a perspective camera is constructed to capture the incoming light rays
that are directed to a single point. The perspective cameras thus belong to the single-viewpoint
camera classes. This point of the camera is called the center of projection.

To have a clear vision of the perspective projection, a simple way is to have a look at the
history of photography. Indeed, we can assume that photography is born from a device called
camera obscura. This optical device is similar to the first cameras, as the difference the resulting
image was manually drawn instead of being acquired by chemistry. Camera obscura is composed
by two essential elements: one box with a hole that separates the outside bright environment
from the acquisition “room” and a plane in the unlit room (see Figure 1.3(b)). The rays from
the environment are directed into the hole and intersect the plane where an inverted image of
the environment appears.

(a) (b) (c)

Figure 1.3: A camera and its perspective projection model: (a) usual camera, (b) camera obscura and (c)
perspective projection model.

The current pin-hole cameras respect the same principle. The hole is called the projection
center and the plane, where the light rays are projected, is called image plane or projection
plane. To simplify the problem, we consider a frontal pinhole imaging model meaning that the
image plane is located between the center of projection and the scene. Then, the geometrical
model corresponds to the projection represented in Figure 1.3(c). The camera frame is chosen
such that the z axis (called the focal axis) is orthogonal to the projection plane. The coordinates
m ∈ R2 of the projection of X in the image are then given by the Thales theorem:

m =

[
xm

ym

]
=
f

Z

[
X
Y

]
(1.6)
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where cX = (X,Y, Z) are the coordinates of the point in the camera frame and f is the
focal length, i.e. the distance between the center of projection and the image plane. To write
the projection operation in a linear form, we express in homogeneous formulation both the
coordinates of the point in the image m̃ = (λm, λ) and in the 3D space X̃ = (λX, λ):

m̃ = AX̃ with A =



f 0 0 0
0 f 0 0
0 0 1 0


 (1.7)

The resulting coordinates, called normalized coordinates, define the location of the projected
point in the 2D euclidean space corresponding to the projection plane. This coordinates are,
therefore, typically expressed in the metric space. One supplementary step is then necessary to
convert them into the coordinates of the point in the digital image.

1.2.1.2 From the metric space to the pixel space

A digital image is a set of pixel intensities organized on a regular grid. An image I with a width
of w pixels and height of h pixels is thus basically defined as a w×h matrix where each element
of the matrix defines a pixel intensity. Physically, the pixel intensities are acquired using a
grid of electronic image sensors placed on the image plane. Each pixel encodes the value of
the perceived intensity. The matrix form of the image induces to have only integer coordinates
in the pixel space. But first, let us consider that both the metric space and pixel space are
defined on R, then, the next section will show how to estimate the intensity of the image at a
non integer position.

(a) (b)

160 159 160 162 162 159

160 157 159 154 152 158

156 159 156 157 159 160

157 156 155 159 158 157

152 159 158 158 154 160

156 158 156 156 157 157

156 158 156 156 156 154

159 157 153 154 158 155

160 157 157 156 157 155

155 155 158 158 154 159

159 153 155 159 158 157

158 157 156 153 158 156

157 158 158 156 153 160

157 157 158 157 156 156

(c)

Figure 1.4: Formation of the digital image. (a) Projection of the image, (b) conversion from the metric space of
the projection plane to the pixel space of the digital image and (c) part of the resulting digital image represented
as a matrix.

To convert the coordinates from meters to pixels, the position of the grid in the image plane is
usually parametrized as a four degrees of freedom (DOF) transformation. This transformation,
illustrated in Figure 1.4, is defined by the coordinates (u0, v0) of the principal point1 in pixel
and also by (lx, ly) the pixel size. The function that changes the coordinates of a point from
meters (x, y) to pixels x = (u, v) is then defined by:

{
u = u0 + 1

lx
x

v = v0 + 1
ly
y

(1.8)

This transformation can be written in a linear form using the homogeneous coordinates. If
the pixel is written in its homogeneous form x̃ = (λx, λ) then an equivalent formulation of the

1where the z axis of the camera frame intersects the image plane, i.e. the point with coordinates (0, 0) in the
2D meter space or (0, 0, f) in the 3D space

13



transformation is:

x̃ = K′m̃ with K′ =




1
lx

0 u0

0 1
ly

v0

0 0 1


 (1.9)

If we couple this equation with the equation (1.7) of the projection and put the focal term of A
into the matrix K′, then, the whole projection of the 3D point into the pixel space is formulated
as:

x̃ = KΠcX̃ with Π =




1 0 0 0
0 1 0 0
0 0 1 0


 (1.10)

and K =



px 0 u0

0 py v0
0 0 1


 (1.11)

or equivalently:

x̃ = KcX (1.12)

where px (resp. py) is the ratio between the focal length and the pixel width (resp. height):
px = f/lx (resp. py = f/ly). K contains all the parameters peculiar to the camera, and is
called the intrinsic matrix. To have the projection of a point X defined in the object frame, the
homogeneous matrix is introduced in the expression and the whole projection becomes:

x̃ = KΠcMo
oX̃ (1.13)

where cMo contains the parameters that define the position and orientation of the camera
called extrinsic parameters. An estimation of the intrinsic parameters is usually provided by the
camera constructor. These values are general estimations and the parameters of each camera can
strongly vary due to the fabrication process. A better estimation of the parameters is therefore
required. This estimation called camera calibration is generally performed using a set of images
where some known 3D points oX̃ are projected at some known positions x̃. This defines a system
of equations from which the intrinsic parameters (u0, v0, px, py) can be estimated (during the
process the extrinsic parameters are also estimated, nevertheless, it is usually not the purpose
of the calibration).

1.2.1.3 Subpixel approach

The classical definition of the image only provides the intensity of a pixel at an integer position
(u, v). Since we require a high accuracy in our tracking algorithm, it is sometimes necessary to
get the intensity of the image at a non integer position, a subpixel approach is then needed (see
Figure 1.5(a)). The evaluation of the intensity of an image at a non integer position is called
image interpolation. The most simple approach is to consider that the intensity of the image
at a real position is given by the intensity of the closest neighboring pixel. In Figure 1.5(a)
it corresponds to choose I(x) = I(x00). However, the resulting intensities of the image are
not smooth and it usually causes the computer vision algorithms to lack accuracy. When an
high accuracy is needed, an interpolation using the intensities of several neighboring pixels is
generally preferred.
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A common approach is the bilinear interpolation that computes the intensity of a pixel x
at a non integer position with respect to the intensities of its four nearest neighbors. If the
position of x is expressed with respect to the position of its neighbors as (see Figure 1.5):

x = x00 + αu(x01 − x00) + αv(x10 − x00) (1.14)

then the interpolated intensity of x is:

I(x) = αv((1− αu)I(x00) + αuI(x01))

+ (1− αv)((1− αu)I(x10) + αuI(x11)) (1.15)

This is typically the expression of a first linear interpolation of the intensities along the u axis
and then one along the v axis (see Figure 1.5(b)).

(a)

Pixel intensity

Interpolated intensity

(b)

Figure 1.5: Numerical image: subpixel approach. (a) Part of lena, a classical digital image and zoom in and
(b) bilinear interpolation illustration.

1.2.2 Parametrization of the image motion: the warp functions

In the second part of this thesis, our goal will be to track a rigid object projected onto the image
plane. No prior information on the object will be known. The tracking process will therefore
only define the displacement of the object in the image space.

The goal is then to find the transformation function, called warp function or parametric
motion model, that best maps the points x∗ of a first image I1 into the points x of another
image of the same object. Depending on the object itself and its motion in the 3D space, many
warp functions can be defined. A general notation of the warp function is written as:

w : P2 × Rn → P2

(x∗,p) 7→ x

where n is the number of parameters of the considered motion model which corresponds to
the number of DOF that defines the image transformation. To illustrate the following warping
functions and one of their applications, we use the mosaicing application presented in Frame 1.

1.2.2.1 Translation model

The simplest model is to consider that the object moves in the image with a translational motion
(see Figure 1.6). A 2D translation vector t that defines the horizontal and vertical translations
is applied to the coordinates of the point x as:

w(x, t) = x + t (1.16)
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Frame 1 Application of various warping functions in a mosaicing problem.

Image mosaics are a collection of overlapping images. The goal of the mosaicing problem is to find
the transformations that relate the different image coordinates. Once the transformation between
all the images is known, an image of the whole scene can be constructed. This problem requires to
find a warping function that maps the coordinates of one image into the coordinates of another im-
age. The presented warping functions have been evaluated on a simple set of two overlapping images.

The images are matched using M couples of points that are manually selected. Depending on the
warping function, the displacement parameters p are then retrieved from the set of points x and
x∗ using a linear operation or a non-linear optimization. The displacement parameters are typically
estimated by searching the parameters that minimize the error between the positions x∗ of the point
in second image and the transformation of the points from the first image to the second image
w(x,p):

p̂ = arg min
p

M∑

m=1

‖x∗

m − w(xm,p)‖

For instance if we want to estimate a translation then the equation becomes:

t̂ = arg min
t

M∑

m=1

‖x∗

m − (xm + t)‖

Since the function is minimal when its derivative is null, the problem is equivalent to:

M∑

m=1

(
x∗

m − (xm + t̂)
)

= 0 ⇐⇒ t̂ =
1

M

M∑

m=1

(x∗

m − xm)

The estimation has been performed on the bottom images. When the warp function becomes more
complex, the quality of the alignment increases.

Input images Mosaicing results
First image Translation Similitude

Second image Affine Homography
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Using the projection model, it can be proved that this model depicts only the motion of a planar
object that is parallel to the image plane and relatively moves parallely to it in a translational
motion. At first sight, this model is thus of limited interest. In practice, it can be very useful.
Let us first notice that both the displacement of the camera and the object will have an effect on
the motion in the image. These effects are very different: a rotation of the object yields a large
perspective effect in the image while a rotation of the camera will only cause a large motion in
the image. In the second case, the translation warp function is then a good approximation if
there is no rotation around the focal axis.

The advantage of this warp function is that the estimation of the displacement is very simple.
Indeed only one couple of point locations (x∗,x) is required to evaluate the translation from
one image to another, since one couple of points gives two equations, one for the horizontal
displacement and one for the vertical displacement.

Reference Translation Similitude Affine Homography

Figure 1.6: Classical warp functions. The homography defines the 3D motion of a planar object projected in
the image, therefore it can not be represented as 2D change of basis.

1.2.2.2 Similitude transformation

Another frequently used warping function is the similitude transformation [Goodall 1991], also
called Procrustes model or “shape-preserving mapping” model. This model considers the trans-
lation and adds the rotation ϕ and a scaling factor s in the image plane (see Figure 1.6). We
can therefore express the function as:

w(x,p) = (1 + s)R(ϕ)x + t (1.17)

where p = (s, ϕ, t) ∈ R4 and R(ϕ) ∈ R2×2 is the rotation matrix whose expression depends on
the angle ϕ:

R(ϕ) =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]

Theoretically, this model only depicts the projection of a planar object that remains parallel
to the image plane. In practice, if we consider that the camera is moving and not the object,
then the further the object is from the camera, the less the depth of the object has an effect in
the transformation, so the object’s shape can be approximated as a plane. Such a situation is
present, for instance, when a camera is mounted on the bottom of a quadrotor. Applications
are then various, from localization to mosaicing.
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1.2.2.3 Affine model

The affine model [Bookstein 1978] is a generalization of the similitude model that adds the
possibility to follow an object whose projection is stretched along the two directions from one
frame to another. Although it has no specific meaning in the 3D Euclidean space, it is a good
approximation of a lot of motions in the image plane. As its name indicates, this warping
function links the coordinates of a point in the two frames using an affine transformation, that
is a linear transformation A followed by a translation t:

w(x,p) = Ax + t with A =

[
1 + a00 a01

a10 1 + a11

]

and t =

[
tx
ty

]
(1.18)

where p = (a00, a10, a01, a11, tx, ty) ∈ R6. This transformation allows to approximate the dis-
placement in the image of a planar object as soon as the perspective effects are not too im-
portant. For instance, in the mosaicing application of the Frame 1, the affine model is already
giving a correct estimation of the transformation.

1.2.2.4 Homography

The last transformation that we consider is the homography transformation. In our domain,
where an accurate estimation of the displacement is generally required, the homography is
a suitable model. Contrary to the previous warping functions, the homography models the
perspective effects in the image. Indeed, the homography, also called projective transformation,
maps the displacement of a planar object from one frame to another. Therefore once it is
estimated, many 3D properties of the object can be retrieved [Faugeras 1988].

Let us consider a planar object in the first camera frame F1. Each physical point X of the
plane satisfies the equation:

1X.n = d ≡
n⊤ 1X

d
= 1 (1.19)

where n is the unit vector normal to the plane expressed in F1 and d is the distance between
the center of projection of F1 and the plane. Let us consider a second camera frame F2. The
transformation from F1 to F2 can be written:

2X = 2R1
1X + 2t1 (1.20)

where 2R1 (resp. 2t1) is the rotation matrix (resp. translation vector) from the frame F1 to
the frame F2. If the translation is factorized by the expression of equation (1.19), the equation
becomes:

2X = H1X with H = 2R1 +
2t1n

⊤

d
(1.21)

where H is a 3× 3 homography matrix that links the 3D coordinates of the point from the first
to the second frame. Since the projections x1 and x2 of the point in both images respect the
projection equation (1.12), we have:

x̃1 = K1X so 1X = K−1 x̃1 (1.22)
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Using both the projection equation (1.12) on the second image and equation (1.21) the projection
x̃2 can be rewritten as:

x̃2 = K 2X

= KH 1X

= KH K−1x̃1

= G x̃1 with G = KHK−1 (1.23)

The homography matrix G is thus a 3 × 3 matrix, but, due to the homogeneous formulation,
it is defined up to a scale factor and has in fact only 8 DOF. The degrees of freedom that
we can retrieve from the factorized formulation in equation (1.21) correspond to the normal of
the planar object (2 DOF) and to the rigid motion between the two camera poses (6 DOF).
Using a special decomposition, it is possible to find back these parameters from the homography
matrix [Faugeras 1988].

Considering that the homography matrix has 8 DOF, a first parametrization [Baker 2004]
is to choose the displacement parameters p as a vector in R8 corresponding to eight elements
of the matrix G, the last element of the matrix is then set to 1:

x̃2 =




1 + p0 p2 p4

p1 1 + p3 p5

p6 p7 1


 x̃1 (1.24)

Using the classical coordinates x̃1 = (1x, 1y, 1) and x̃2 = (2x, 2y, 1), it is equivalent to write:

2x =
(1 + p0)

1x+ p2
1y + p4

p6
1x+ p7

1y + 1
and 2y =

p1
1x+ (1 + p3)

1y + p5

p6
1x+ p7

1y + 1
(1.25)

This parametrization is usefull since it is very simple to compute and obtain its analytical
derivatives with respect to p. Therefore, in this thesis, we will frequently use this model.

One of the drawbacks of this parametrization is that the resulting matrices are not neces-
sarily corresponding to homography matrix as they are defined in equation (1.21). Both have 8
DOF, but the homography matrices G that describe a real displacement of a planar object in
an image are part of a group called the Special Lie group SL(3). To limit the estimated homo-
graphies to this group, another parametrization is sometimes preferred as in [Benhimane 2004]
where the determinant of G is fixed to 1 and the matrix is computed using the Lie algebra.
Altough this formulation shows some advantages in the problem discussed in [Benhimane 2004],
in our problem, it only limits our optimization formulations and causes problems due to the
computation of a matrix exponential.

Since it has 8 DOF, a minimum of four couples of points are required to estimate the
homography matrix. In the mosaicing application, the homography transformation between
two images has been estimated using points that have been manually selected. We can see in
Frame 1 that the reconstructed image shows a nice continuity.

1.3 Conclusion

In this chapter, we define the necessary tools to model a 3D environment as well as its projection
in the 2D image plane and into digital images. Several classical motion models are defined. In
the next chapter, we will define a similarity measure between two images that will allow an
accurate estimation of the considered motion parameters.
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Chapter 2

Background in information theory

One main idea of this thesis is to create robust algorithms for visual tracking and visual servoing.
As we will see, both domains are interconnected since both can be performed as a registration
task by combining an alignment function between two images and a non-linear optimization
process. Whereas the optimization approach is specific to the application, a common definition
of the alignment function is possible. This alignment function is nothing but a similarity
measure between two images. Since the robustness of the tasks, i.e. its capability to deal
with any conditions such as occlusions or illumination variations, is mainly depending on the
robustness of the alignment function, the goal will be to choose an adapted similarity measure.

This chapter provides the basics in information theory that are required to define mutual
information, the similarity measure on which this work is based. We present the original defini-
tion of mutual information and how to adapt it to our computer vision problem as an alignment
function. Finally we evaluate the robustness of the resulting function and compare it with other
well-known measures such as Sum of Squared Differences (SSD) or Zero-mean Normalized Cross
Correlation (ZNCC).

2.1 Statistics basics

This section provides some elements of statistics that are required to understand the information
theory. Since our final goal is to work with discrete variables (digital images), we limit this
introduction to discrete random variables and their properties. Once the definition of mutual
information is given, no more statistics are used. The readers that already have the necessary
knowledge in statistics can directly refer to the next section where the definition of the alignment
function is given. Since our work associates both information theory and computer vision, we
chose the notations in order to best respect the standards of each field.

2.1.1 Random variables

Every gambler is indirectly studying statistics. When he throws a dice or when he draws a
card, he probably does not know that random variables could model it. But random variables
are not only hiding in casinos, they are also useful to model many physical entities. Indeed, a
random variable (RV) is a variable whose value is unpredictable.

What is interesting is that, although the value of a RV is unpredictable, statistical laws
provide some properties of the RV that help us to know its most likely value. Let X be a
random variable and x one of its values. If we consider the RV X as the resulting number of
the throw of a six-sided dice, then one obvious fact is that the possible values of x are in the
set of values ΩX = {1, 2, 3, 4, 5, 6}. For simplicity reasons, let us consider that all our random
variables can only have bound positive integer values, so that ΩX ⊂ N. This condition is
typically satisfyed if we consider the pixel intensities of a gray-level image: its values can be
any of the 256 possible gray-levels, so that ΩX = {0, ..., 255}.
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2.1.2 Probability distribution

The probability distribution pX(x) = Pr(X = x) is the proportion of times the variable X
should take the value x. For instance, considering the case of a fair dice, one could expect
that each value has an equal probability to occur one time every six throws. The probability
distribution is then called uniform, since it is constant on ΩX (see Figure 2.1(a)).

Two axioms of the probability distribution are the following: first, the probability distribu-
tion function has a compact support. If a value is not in the set of possible values ΩX , then
its probability is not defined1. And, since the value x is always in the set ΩX , the sum of the
probabilities of the values over the set is one:

∑

x∈ΩX

pX(x) = 1 (2.1)

Considering these two properties, a probability distribution function stands in a wide range of
functions. Simply imagine that the six-sided dice is loaded, the probability distribution function
has an infinity of possible definitions since you can load whichever part of the dice you want and
the way you want. If for instance the 6th side is loaded, we can expect a probability distribution
function as in Figure 2.1(b). Face 6 has a larger occurrence probability than the other faces,
and face 1, i.e. opposite to face 6, has the smallest probability.

Fair dice Loaded dice

(a) (b)

Figure 2.1: Probability distribution function of the throw of a six-sided dice.

2.1.3 Joint probability and conditional probability

Given two random variables X and Y , we can similarly express the probability pXY (x, y) of a
couple of value (x, y) to occur, called joint probability.

pXY (x, y) = Pr(X = x and Y = y) (2.2)

Its properties are similar to the ones of the probability distribution function. The probability
is not defined for each samples x and y out of the set of possible values ΩX and ΩY . And the
sum over the two sets of values equals one:

∑

x∈ΩX

∑

y∈ΩY

pXY (x, y) = 1. (2.3)

To find the link between this joint probability and the probabilities of the two variables X
and Y , two cases have to be considered. The simplest one is when the two variables X and Y
are independent, i.e. knowing that X = x has no effect on the probability of Y , and conversely,
knowing that Y = y has no effect on the probability of X. One simple example is to consider
two throws of a dice: it is clear that knowing the result of the first throw has no effect on the

1Who would bet on the number 7 with a six-sided dice?
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second throw. The joint probability or proportion of time the couple of values (x, y) should
occur is then simply given by the product of the two probabilities of the variables X and Y as:

pXY (x, y) = pX(x)pY (y) (2.4)

It is classical to refer to pX(x) and pY (y) as the marginal probabilities to differentiate them
from the joint probability pXY (x, y).

Let us now consider the example of two following draws from the same deck containing N
cards. If all the cards are unique, then the probability pX(x) of one card to appear in the first
draw is 1/N . If we do not put back the first card in the deck, then, there are only N − 1
cards remaining. The probability of the remaining cards to appear in a second draw is then of
1/(N −1) and the probability of the card x to appear a second time is 0. This function is called
conditional probability and is noted Pr(Y = y | X = x), the probability of a variable Y to have
a value y knowing that X = x. The joint probability of (x, y) is then given by the following
equations:

pXY (x, y) = Pr(Y = y | X = x)pX(x)

= Pr(X = x | Y = y)pY (y) (2.5)

If X and Y are independent, then Pr(Y = y | X = x) = Pr(Y = y) and this equation is
equivalent with the Equation (2.4). This probability distribution provides already a measure to
compare the link between two variables. It is not sufficient to directly compare the correlation
between these two variables but it gives the necessary tools to define the information theory
and the mutual information.

2.2 Information theory

Information theory is one basis of computer science. Its first use in the mathematical theory
of communication by Claude Shannon [Shannon 1948] is now generalized to every numerical
systems, from internet to image processing problems. This section defines how, from the prob-
ability distribution functions of random variables, we can measure the quantity of information
they contain or they share.

2.2.1 Entropy

Shannon defines the quantity of information of a variable as a measure of its variability. Indeed,
if a variable is constant then it contains no information, and the more it is variable, the more we
can consider that it is containing information. Shannon’s entropy H(X) measures the variability,
i.e. the quantity of information, of a discrete random variable X as:

H(X) = −
∑

x∈ΩX

pX(x) logα pX(x). (2.6)

with 0 logα(0) = 0. The formulation can be interpreted as follows: the higher pX(x), the more
evident X = x, and the lower pX(x), the more uncertain X = x. At the same time, the
higher pX(x), the lower − logα pX(x), and the lower pX(x), the higher − logα pX(x). Thus
− logα pX(x) is a measure of the uncertainty of the value x. H(X) is then a weighted mean of
the uncertainties, which finally represents the variability of X.

The logarithm basis α is only changing the unit of the entropy. For instance, the logarithm
basis is set to α = 2 to compute the entropy of a digital signal in bits. This measure is
typically related to the theoretical number of bits required for a noiseless compression of a
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signal [Shannon 1948]. In practice, the basis only changes the entropy value with a scale factor.
Therefore, it has no interest in our context, since we only seek the maximum of a cost function
and not a particular value. The only thing is to keep it constant. In the remainder of this
thesis, the logarithm basis is set to α = 2, but the units of the resulting values (in bits) will not
be precised since they are not significant.

If the variable has a uniform probability distribution function, it contains a large amount
of information and its entropy is high. On the contrary, if for instance, one value has a high
probability, the variable is quasi constant, it contains a small amount of information and the
entropy is low.

Example: the previous interpretations are easily illustrated in the case of a variable with
two possible values. Figure 2.2(a) represents the uncertainty added by a value according to its
probability. we can notice that the smaller the probability, the stronger the effect it has on the
entropy value. The entropy has been computed with respect to the probability of the first event
PX(x1)

2. As expected, Figure 2.2(b) shows that the entropy is maximal when the probability
distribution is uniform (i.e. PX(x1) = PX(x2) = 0.5) and null when the variable is constant (ie
PX(x1) = 1 or PX(x2) = 1).

Uncertainty Entropy

(a) (b)

Figure 2.2: Uncertainty added by a value with respect to its probability (a) and entropy of a binary variable
with respect to the probability of its first value x1 (b).

Several other entropy measures have been proposed to solve some particular problems. We
can cite for instance Rényi’s entropy [Rényi 1956] that includes a new parameter to control the
relative effect of the values depending on their probabilities. It is for example possible to limit
the effect of the values that have a small probability. Nevertheless, in this thesis, we prefer
to focus only on Shannon’s entropy [Shannon 1948], since it does not require any additional
parameter.

2.2.2 Joint entropy

Following the same principle, the joint entropy H(X,Y ) of two random variables X and Y is
defined as the variability of the couple of variables (X,Y ). Shannon’s joint entropy is computed
as:

H(X,Y ) = −
∑

x∈ΩX

∑

y∈ΩY

pXY (x, y) logα pXY (x, y) (2.7)

This equation typically defines a weighted mean of the joint uncertainties − log pXY (x, y). Sim-
ilarly to the probabilities function, it is classical to refer to H(X) and H(Y ) as the marginal
entropies to differentiate them from the joint entropy H(X,Y ). Since the joint entropy measures
the global variability of the system of variables, it also provides some information about the
correlation between the two variables. Indeed the global variability can be also interpreted as

2The second event probability is simply given by PX(x2) = 1− PX(x1).
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the variability of X to which we add the new information provided by Y . At first sight, the
joint entropy could be considered as a good similarity measure, since, if the variability of Y is
mostly part of the variability of X (the variables are strongly correlated), the joint entropy is
relatively small. Nevertheless, the joint entropy is also linked with the marginal entropies of
the two variables and this dependence makes it not suited as a similarity measure.

Example: let us consider a similarity measure between two signals X and Y illustrated in
Figure 2.3. If the two variables are equal then pXY (x, y) = pX(x) = pY (y) and the joint entropy
is minimal with H(X,Y ) = H(X) = H(Y ). If now we consider that the variable X is constant,
the uncertainty of the system is then the uncertainty of the variable Y . The entropy is therefore
also minimal with H(X,Y ) = H(Y ), despite the fact that X and Y are not similar. That shows
that joint entropy is not a good similarity measure.

To overcome this dependency with respect to the variable entropies, the conditional entropy
of the variable Y given knowledge of X is considered. The definition of the conditional entropy
is the uncertainty of the system of variables (X,Y ) when X is known. Its expression is given
by:

H(Y | X) = H(X,Y )−H(X) (2.8)

If the two variables are completely correlated with respect to each other, the conditional entropy
is null. If the two variables are independent: H(Y | X) = H(Y ), a dependence with the entropy
of Y is remaining. Thus it can still not be used as a similarity measure.

X = Y X(i) = Y (i+ 10) X = Constant
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Figure 2.3: The joint entropy is a dispersion measure of joint probability. It is not adapted to measure the
alignment between two variables since if one RV is constant then the dispersion is small (gray cell). This problem
is solved when using the mutual information that is maximal for the perfect alignment X = Y (gray cell).
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2.2.3 Mutual information

Mutual information has been proposed to define a similarity measure that solves the above
mentioned problem. A solution to remove the dependency of conditional entropy with respect
to the entropy of Y is to consider the difference between these two values. This formulation
yields to the following definition of mutual information:

MI(X,Y ) = H(Y )−H(Y | X)

= H(X) + H(Y )−H(X,Y ) (2.9)

This expression defines the difference of variability between the variable Y and the variable Y
knowing X. The more dependent the two variables, the larger this difference is. Thus this
function simply defines the amount of information that is shared by the two variables.

If mutual information is computed using the previous examples presented in Figure 2.3, we
see that it is not depending on the marginal entropies of the variables as joint entropy was.
If the two variables are equal then mutual information is maximal. If one of the variables is
constant then it shares no information with the other variable, so mutual information is null.

2.3 Application to image processing

As we previously stated, the goal is to use mutual information to compare images. The pre-
vious definition of mutual information is generic and was defined to be used in the theory of
communication. In this section we show the limits of this original formulation in the image
processing problem and review the most significant work that have been performed to adapt
mutual information to our problem.

2.3.1 Information theory on digital images

The two previous variables X and Y are now referring to the image intensities, so let us change
the notations and use instead I and I∗. The pixel intensities of both images I and I∗ are
respectively noted i and j. Since we use classical 256 gray-level images, the possible values of i
and j are ΩI = ΩI∗ = [0, 255] ⊂ N. The probability pI(i) of a gray-level value i is the proportion
of occurrence of value i in the image I. This is classically estimated using the histogram of the
image normalized by the total number of pixels:

pI(i) =
1

Nx

∑

x

δ (i− I(x)) (2.10)

where x are the pixel positions of the image and Nx is the number of pixels. In the classical
formulation of the histogram computation, each time I(x) = i the ith histogram bin value is
incremented. This is typically performed using a Kronecker’s function defined as:

δ(x) =

{
1 if x = 0
0 otherwise

(2.11)

The entropy, that depicts the variability of the image, can be simply considered as a measure of
the dispersion of the image histogram. Using the probability distribution function of the image,
the entropy expression becomes:

H(I) = −
∑

i∈ΩI

pI(i) log pI(i). (2.12)
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As for the probability pI(i), the joint probability pII∗(i, j) of the couple (i, j) is the propor-
tion of occurrence of the couple of values (i, j) in the couple of images (I, I∗). Its computation
is thus simply obtained by computing the joint histogram of the two images normalized by the
number of pixels Nx:

pII∗(i, j) =
1

Nx

∑

x

δ (i− I(x)) δ (j − I∗(x)) (2.13)

The expression of the joint entropy is obtained from equation (2.7) and gives:

H(I, I∗) = −
∑

i∈ΩI

∑

j∈ΩI∗

pII∗(i, j) log pII∗(i, j). (2.14)

Developing the mutual information function using the equations (2.12) and (2.14) yields the
following expression:

MI(I, I∗) = H(I) + H(I∗)−H(I, I∗)

= −
∑

i

pI(i) log pI(i)−
∑

j

pI∗(j) log pI∗(j) +
∑

i,j

pII∗(i, j) log pII∗(i, j)

=
∑

i,j

−pII∗(i, j) log pI(i)− pII∗(i, j) log pI∗(j) + pII∗(i, j) log pII∗(i, j)

=
∑

i,j

pII∗(i, j) log

(
pII∗(i, j)

pI(i)pI∗(j)

)
(2.15)

where the set of possible values has been omitted for purpose of clarity.

2.3.1.1 Experimental evaluation of mutual information

In this section, we propose a process to evaluate the quality of mutual information as an align-
ment function. A first image I∗ is considered and a set of images I are created that represents
the same scene than I∗, as the difference that they are warped using the horizontal and vertical
translations3 (see section 1.2.2 page 15). The translational motions are applied following a reg-
ular grid of positions centered on the ground truth position of I∗. Since MI is maximal when
the two images are aligned, the goal is typically to have an alignment function that decreases
when the similarity between the images decreases, i.e. when the error of alignment increases.

To create the images I∗ and I, we use a virtual environment that allows for the control of the
external conditions of acquisition. To create the translational motion between the images we
use the environment presented in Figure 2.4: a camera is oriented perpendicularly to a planar
scene and we move the camera with a translation parallel to the scene (perpendicular to its focal
axis). We note ∆r = (tx, ty) the horizontal and vertical displacement between the positions of
acquisition of I∗ and I.

The values of MI have been computed with respect to ∆r and represented in Figure 2.4.
The global maximum of the cost function corresponds to the correct alignment position ∆r =
(0, 0) = 0. Mutual information provides a correct measure of the dependence between the
information of the two images. Nevertheless we can observe that the global maximum is very
sharp and that the function shape shows many local maxima. Therefore, once the alignment
error is large, it is impossible to judge the quality of the alignment using this original formulation
of MI. To improve the definition of MI, some approaches have been proposed to smooth the
function and remove this local maxima that are interpolation artifacts.

3We limit our alignment task to two DOF (two parameters) for a purpose of clarity, since the results using
more than two DOF would be difficult to illustrate.
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Virtual environment Original MI

Reference image I∗ Current image I
∆r = (−5,−5) ∆r = (−5, 5) ∆r = (5,−5) ∆r = (5, 5)

Figure 2.4: Mutual information between two images with respect to the translation between them. ∆r is the
translation between the current and desired camera poses expressed in centimeters.

2.3.1.2 Interpolation artifacts

To explain the formation of the interpolation artifacts, we simply use a short example. For a
more detailed definition of them, the reader can refer to [Pluim 1999]. Let us consider a very
small translation, if we focus on an edge of the image then the resulting changes in intensity will
probably yield to the apparition of new pixel intensities that were not present in the original
image. Thus a small translation can change several bins of the histograms from a null value to
a small value (as well as changing all the other ones).

The definition of entropy that was previously given in 2.2.1 precised that, when the proba-
bility of an event is small, then the variation of entropy due to its variation is large. One can
therefore consider that a small translation will have a strong effect on the marginal and joint
entropies as well as on mutual information, and produce the interpolation artifacts.

The apparition of new intensities is not only due to the displacement of the camera. New
intensities can also be due to noise in the image acquisition process. Such noise also strongly
affects the value of mutual information. Therefore, the effects of new pixel intensities have to
be avoided to smooth and robustify the cost function.

2.3.2 Smoothing MI

The previous section shows that mutual information provides a measure of the correlation
between two images that suffers from interpolation artifacts and has a sharp maximum. To
smooth and robustify the mutual information, the solution is simply to remove the empty bins
from the histograms. To our knowledge, two methods can then be applied [Tsao 2003]: binning
the histograms and working on the interpolation of the images.
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2.3.2.1 Histogram binning and partial volume interpolation

The first observation that can be made is that the larger the number of histogram bins, the
more bins will be empty. It is therefore not surprising that an histogram with 256 entries has
a large number of empty bins. Moreover, such large histograms are very expensive to build in
terms of both memory and time.

Starting from these observations, a first solution is to decrease the number of histogram bins.
In the original formulation proposed in equation (2.10), the number of bins was originally equal
to the number of possible gray-level intensities NcI

= 256 of the image pixels. This number is
typically linked with the maximum gray-level value Imax = NcI

− 1. To reduce the number of
bins, we simply change Imax by scaling the image intensities as follows:

I∗(x) = I∗(x)
Nc − 1

NcI∗
− 1

(2.16)

where Nc is the new number of histogram bins. The resulting intensities are no longer integer
values. Using a Kronecker’s function δ, as it was previously defined in equation (2.10), will re-
quire to keep only the integer part of the intensity and thus lose a large part of the information
contained in the images. This function has then to be modified to keep the information of these
real values. Several solutions have been proposed to simultaneously smooth the mutual infor-
mation function and keep its accuracy [Maes 1997, Viola 1997]. In [Viola 1997] the histogram is
computed using Gaussian functions, while, in [Maes 1997], an approximation of these Gaussian
functions are performed using B-spline functions. The advantages of the B-splines come from
the simple computation of their values and derivatives. Since these properties are required in
our context, our approach is based on the use of centered cardinal B-spline functions. Classical
B-spline functions and their properties have been represented in Frame 2, where Bn refers to
the B-spline of order n. We can see that, the more the order of the B-spline is high, the more it
is smooth, differentiable and the approximation of the Gaussian function is good. Nevertheless,
as the order increases, the complexity of its computation also increases.

To respect the differentiability conditions that will be explained in the next section we chose
to use the cubic B-spline functions B4. For a purpose of clarity, let us note φ these B-splines.
The final analytical formulation of the normalized histogram becomes:

pI(i) =
1

Nx

∑

x

φ
(
i− I(x)

)
(2.17)

where the possible gray-level values are now I(x) ∈ [0, Nc − 1].

Remark: Since cubic B-splines are used, Nc does not correspond anymore to the number of
histogram bins. Indeed, let us consider equation (2.17): if a pixel has an intensity I(x) = 0,
the bins i = {−1, 0, 1} are incremented. Similarly if I(x) = Nc − 1 then the bins i = {Nc −
2, Nc− 1, Nc} are incremented. Therefore, the cubic B-spline interpolation has side-effects that
add two bins (for i = −1 and i = Nc) to the marginal histograms.

The probability distribution function of I∗ and the joint probability of (I, I∗) are modified
using the same approach that yields to:

pI∗(j) =
1

Nx

∑

x

φ
(
j − I∗(x)

)
(2.18)

pII∗(i, j) =
1

Nx

∑

x

φ
(
i− I(x)

)
φ
(
j − I∗(x)

)
(2.19)
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Frame 2 Centered cardinal B-Splines.

B-Splines are very usefull functions for interpolation problems. Let us note Bn the centered cardinal
B-Spline of order n. The general definition of the functions Bn can be expressed using the recursive
expression:

Bn(i) = (Bn−1 ∗B1)(i) with: B1(i)=

{
1 if i ∈ [−0.5,−0.5[
0 otherwise

where ∗ denotes the convolution operation. This function shows many interesting properties that
are well suited in our problem:

• their unit summation:

+∞∑

m=−∞

Bn(m+ i) = 1 ∀(i,m) ∈ R× Z

• Bn is n − 1 times differentiable function. The derivatives are easily computed using the B-
splines of lower order:

∂Bn(i)

∂i
= Bn−1

(
i+

1

2

)
−Bn−1

(
i−

1

2

)

For instance, the B-splines from order 2 to 4 are defined by (see the bottom figure):

B2(i) =





1 + i if i ∈ [−1, 0[
1− i if i ∈ [0, 1[
0 otherwise

B3(i)=





(1.5 + i)2/2 if i ∈ [−1.5,−0.5[
1 + i− (0.5 + i)2 if i ∈ [−0.5, 0[
1− i− (0.5− i)2 if i ∈ [0, 0.5[
(1.5− i)2/2 if i ∈ [0.5, 1.5[
0 otherwise

B4(i) =





((2 + i)3)/6 if i ∈ [−2,−1[
(1 + 3(1 + i) + 3(1 + i)2 − 3(1 + i)3)/6 if i ∈ [−1, 0[
(1 + 3(1− i) + 3(1− i)2 − 3(1− i)3)/6 if i ∈ [0, 1[
((2− i)3)/6 if i ∈ [1, 2[
0 otherwise

B-splines B-splines derivative
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Several solutions have been proposed to estimate an optimal number of histogram bins using
for instance Sturges’ rule [Sturges 1926] or Scott’s rule [Scott 1979]. Nevertheless, a constant
number of bins, for instance Nc = 8, which keeps a small value and avoids losing too much
information, has always given satisfying results in our experiments.

If we compare the mutual information values between the basic formulation and the new
one, the benefits of histogram binning are obvious. As Figure 2.5 shows, the mutual information
function is not subject to interpolation artifacts anymore. Nevertheless, MI keeps a very sharp
maximum.

Original Effect of histogram Effect of image
formulation binning Nc = 8 filtering
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Figure 2.5: Smoothing mutual information. The input images are the ones presented in Figure 2.4.

2.3.2.2 Image interpolation or image smoothing?

The sharpness of the maximum is due to the quality of the alignment measure. Nevertheless,
we will see in the next chapters that a too sharp maximum is not adapted for most of the
optimization methods. To reduce the sharpness of the maximum, a simple method is to reduce
the quality of the alignment at the maximum by “smoothing the information”.

A way to smooth the information in the image is to use a more complex interpolation of the
image or simply to filter the image [Tsao 2003]. In most of our work, we decided to filter the
input images that is the less time consuming operation. The chosen filter is a 5×5 Gaussian filter
(see Figure 2.6). This filter smoothes the information in the sens that the intensity of a pixel
is smoothed using the intensities of its neighbors. For instance the edges that were previously
really strong and defining a precise information are smoother after the image filtering, but they
keep the information were it is.

As we show in Figure 2.5, the use of both histogram binning and image filtering with a 5×5
Gaussian filter makes the mutual information function’s shape perfectly smooth and accurate.
And we will see that these properties are necessary to solve the tracking and visual servoing
problems that will be presented in the next chapters.
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Original Image Filtered image

Figure 2.6: Smoothing the input images: original and filtered image. The filtered image has smoother edges.

2.3.3 Comparison with classical alignment functions

MI is known as one of the more robust alignment functions [Pluim 1999]. To validate its
robustness and accuracy compared to other well known appearance-based alignment functions,
we perform several experiments similar to the one presented in Figure 2.4 with, this time,
appearance variations. The alignment functions we consider are the ones that follow:

• The sum of the squared difference (SSD) of each pixel intensities that is the alignment
function of the well known KLT algorithm [Tomasi 1991, Hager 1998a]:

SSD(I, I∗) =
∑

x

(I(x)− I∗(x))2

• the Kernel density alignment function that is typically a distance between the weighted
histograms of both images that can be computed either using a Batthacharrya distance as
in [Comaniciu 2003] or a simple Matuzita distance [Kallem 2007] between the histograms:

ρ(I, I∗) =
∑

i

(√
pI(i)−

√
pI∗(i)

)2
.

This is typically the alignment function that is considered in the mean shift optimization.
Here a Gaussian Kernel K centered around x0 has been used so that the histograms are
computed with:

pI(i) = C−1
∑

x

K(x)φ(I(x)− i)

with K(x) = exp(−‖x − x0‖) and C =
∑

xK(x). The number of bins used here are
the same as the one in the MI computation. The formulation of the histograms remains
therefore very similar to those computed in the MI. The only difference comes from the
fact that they are weighted by the Kernel K;

• the zero-mean normalized cross correlation or ZNCC (or NCC in [Irani 1992]) defined as:

ZNCC(I, I∗) =

∑
x

(
I(x)− Î

)(
I∗(x)− Î∗

)

σIσI∗

where Î and Î∗ are respectively the average intensities of the images I and I∗: and σI and
σI∗ are the standard deviations of the two images.

32



First, we focus on the alignment task in nominal conditions, then we focus on some variations
that are commonly met in the usual image sequences or in the visual servoing experiments: white
noise, occlusions and illumination variations. Finally, we also evaluate the robustness of these
different approaches with respect to non-linear variations in the image intensity by comparing
images acquired using several modalities.

2.3.3.1 Nominal conditions

The first step to evaluate the alignment function is to consider them in the nominal conditions.
The evaluation that we propose is based on the same approach that we used in the previous
section (see Figure 2.4 page 28) to analyze the mutual information function.

Figure 2.7 shows the values of the alignment measures with respect to the translations
between the reference and current images. As expected, the four measures have their optimum
located at the correct alignment position with a pose error ∆r = 0. The SSD and the Kernel
approach, which are both dissimilarity functions, have a minimum at the alignment position,
whereas the ZNCC and MI functions, which are similarity functions, present a maximum. The
four measures are very smooth and present no local optimum in the domain of interest. They
are therefore all suited for optimization problems, as a consequence they can all be used for
tracking applications in nominal conditions.

Reference image SSD Kernel

Current image (∆r = 0) ZNCC MI

Figure 2.7: Evaluation of the alignment measures in nominal conditions (the reference and current image at
the alignment position are identical).

2.3.3.2 Robustness with respect to noise

Image noise is a random change in the intensity of the pixels. It can be due to the sensors of
the camera as well as to the communication or coding process of the images. In any case, noise
changes the images from their ideal form and, thus, can affect the performance of the alignment
measures.

Figure 2.8 shows the values of the alignment functions with respect to the translations of
the camera when the reference and current images are subject to a Gaussian white noise with a
covariance of 5. We can see that all the functions are really robust to white noise. The optima
of the functions are always correctly located at the alignment position ∆r = 0 and there is still
no local optimum.
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Reference image SSD Kernel

Current image (∆r = 0) ZNCC MI

Figure 2.8: Robustness of the cost functions with respect to white noise. The white noise is visible on the
current image at the alignment position.

2.3.3.3 Robustness with respect to occlusions

In image sequences, there can be objects moving in the foreground. These objects can thus move
in front of our region of interest and temporarily modify the appearance of the considered scene.
These modifications can have a strong impact on the shape of the alignment functions since
they are built on the appearance of the scene. Figure 2.9 shows the results of an experiment
where the scene has been modified using such occlusions.

Reference image SSD Kernel

Current image (∆r = 0) ZNCC MI

Figure 2.9: Robustness of the cost functions with respect to occlusions.

This experiment, that corresponds to moderately large occlusions, shows that the Kernel
based function is not robust to occlusions. There is no optimum in the searched window. Indeed,
the occlusions are completely changing the histogram of the scene at the desired position and
thus the distance between histograms cannot provide satisfying results.

The ZNCC function has a very large maximum near the alignment position, nevertheless
the accuracy suffers from the occlusion. The estimated pose of the camera is located 1 cm away
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from the ground truth alignment pose.

Surprisingly, despite the large difference of appearance, the difference between the images
(SSD) keeps its minimum at the correct alignment pose. Nevertheless, we see that the occlusions
have strongly modified the SSD cost function shape and that a valley begins to appear near the
optimum.

As for mutual information, since there is still some information shared by the two images,
and since the occlusions do not share information with the desired image at any position, the
mutual information remains robust to the occlusions with an accurate maximum at the ground
truth alignment position.

To show that the results obtained with MI can be very surprising, we also evaluate the
alignment measures in the case of a very large occlusion in Figure 2.10. Despite the large
occlusions, we see that there is still enough information shared between the two images to align
them. Moreover, we can observe that there is still no local maxima in the searched window. This
time the SSD and ZNCC functions show their limits: both have no optimum at the alignment
position.

Reference image SSD Kernel

Current image (∆r = 0) ZNCC MI

Figure 2.10: Robustness of the cost functions with respect to very large occlusions.

2.3.3.4 Robustness with respect to illumination variations

Illumination variations can have many forms. Nevertheless, independently of their nature, they
can either modify the appearance of the whole scene, called global illumination variation, or
modify only a part of the scene, called local illumination variations [Phong 1975, Blinn 1977].
Since the alignment measures are global appearance measures, we will see that the effects of
global and local variations are very different.

Global illumination variations:

Global illuminations affect every pixel of the image in a consistent way. Many variations can
be applied to the pixels, depending on the surface of the object, its orientation and the nature
of the illumination (light source). Nevertheless, we limit our study to variations that affect the
intensities with a simple affine relationship. This assumption remains a good approximation of
the existing global illumination variations [Blinn 1977].
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We compute the cost function using the same reference image and a current image acquired
under a more intense light. The results are presented in Figure 2.11. MI is robust and keeps
exactly the same shape as in the nominal case (or in the noise case). ZNCC, which is by
definition robust to linear relationships between the intensities of the images pixels keeps also
the same shape and thus gives the correct alignment position.

All the pixel intensities of the current image are modified compared to the reference image
so that SSD, which is based on the pixel intensity differences, is also modified. Nevertheless, the
modification is mainly a shift of the values of SSD. Indeed, the optimum of the SSD function
corresponding to the position where the smallest (respectively the highest) intensities of the
current image are matched with the smallest (respectively the highest) intensities of the reference
image, and this is typically enough to be robust with respect to a linear change of the pixel
intensities.

The only alignment function that suffers from the global illumination variation is the Kernel
density function. Indeed, the shift in the histogram of the current image causes the distance
between the histograms to provide no information about the alignment position.

Reference image SSD Kernel

Current image (∆r = 0) ZNCC MI

Figure 2.11: Robustness of the cost functions with respect to global illumination variations.

Local illumination variations:

Local illumination variations partially change the illumination of the scene. They appear in two
major conditions: when surrounding objects partially increase the illumination (as a focused
light would do) or decrease the illumination (as an object occluding the light directed to the
scene) or when the object is non Lambertian, which does not diffuse an isotropic light (same
light in all directions).

For instance, let us consider a laptop screen: some light can be reflected on its surface,
the resulting brightness of the object will thus be strongly increased on a narrow spot. These
modifications in the appearance of the object are more difficult to manage than the global
variations since they are difficily modeled. The only way to predict it is to know the position of
the light, the position and the surface properties of the object and the position of the observer.

We evaluate the robustness of the cost functions with respect to local illumination variations
using the example in Figure 2.12. For the same reasons than for global illumination variations,
the Kernel approach is not adapted to match the two images. This time, the relationship
between the pixel intensities is different from one part of the image to another part, so the
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minimum of SSD is affected by the illumination variation and gives a wrong estimation of the
correct alignment position.

Since the relation between the pixels intensities is different from one part of the image to
another, ZNCC and MI are affected by the variation. The modification is visible on the shapes
of both cost function, nevertheless the current and learned images still share a lot of common
information, so the maxima are still located on the correct alignment position. ZNCC and MI
can therefore be considered as strongly robust to global and local illumination variations.

Reference image SSD Kernel

Current image (∆r = 0) ZNCC MI

Figure 2.12: Robustness of the cost functions with respect to global illumination variations.

2.3.3.5 Robustness with respect to multimodality

Researches on the use of mutual information in computer vision is highly focused on its use in
the medical field to align images acquired under different modalities. Indeed, in the medical
field, the sensors are not limited to the classical cameras that we usually consider in robotics.
Scanners of many kind are used and the resulting images have to be matched from one system
to another. This multimodal alignment task is nevertheless not limited to the medical field and
we show in this thesis that other applications are also possible.

Multimodal medical images:

To illustrate the performance of the alignment measures in the medical domain, we use two
magnetic resonance images. The ground truth translation between the two images is known.
As Figure 2.13 shows, the two images represent the same part of a head. Nevertheless, it is
clear that no linear relationship can express the pixel intensities of one image with respect to
the intensities of the other. The use of the mutual information to compare the two images is
thus perfectly adapted.

As expected, the Kernel, SSD and ZNCC approaches are not able to measure the alignment
between the two multimodal images. On the contrary, MI remains robust and allows for the
estimation of the correct alignment position. Near the alignment position, the more the images
are correctly aligned, the higher the mutual information is. Far from the alignment position,
the cost function is quasi planar since the two images do not share information anymore.
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Reference image SSD Kernel

Current image (∆r = 0) ZNCC MI

Figure 2.13: Robustness of the cost functions with respect to multimodality: application to the medical field
with two different magnetic resonance images.

Airborne vs map images:

In this thesis, we also propose a new application of the MI-based multimodal matching to
estimate the displacement between airborne images and map images. The two images used
are provided by the IGN (Institut Géographique National) Geoportail website a tool similar to
Google earth.

Figure 2.14 shows the values of the four alignment measures in the case of a multimodal
alignment task. As it was the case in the previous multimodal example, only the mutual infor-
mation effectively copes with the transformation of the pixel intensities between the airborne
image and the map image.

Reference image SSD Kernel

Current image (∆r = 0) ZNCC MI

Figure 2.14: Robustness of the cost functions with respect to multimodality: alignment between one airborne
image and one map.
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2.4 Conclusion

In this chapter, we show that using some basics on statistics and information theory a very
robust alignment function, mutual information, can be defined. Among many applications, we
will show in the next chapters that MI can be used in optimization problems to track some
objects in image sequences or to control a robot using visual servoing tasks.
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Part II

Visual tracking

41





Introduction

Visual tracking is one of the main research areas in computer vision. The overall objective is
to estimate the displacement of an object in an image sequence. Depending on the application,
a coarse estimation of the displacement can be sufficient (for example in surveillance). In this
thesis, we are interested in this last application, but also on the development of approaches that
allows the complete localization of an object in the 3D space. Prospective applications range
from image based-robot control to augmented reality or mosaicing.

Augmented reality and robotic applications illustrate how challenging defining a visual track-
ing method is [Marchand 2005a]. First, the algorithm must be robust: it has to keep on tracking
even in the presence of illumination changes, occlusions and many other variations of the object
aspect. Second, it must be accurate: if the goal is, for instance, to control a gripper mounted
on a 6 degrees of freedom robot arm, then the positioning error between the effector and the
object has to be small. Finally, the tracking algorithm must usually provide this localization
information in real-time (at video rate).

In computer vision or robot vision literature, the history of visual tracking is really signifi-
cant. We begin this part with a quick state of the art on the existing visual tracking approaches.
In this context, we define our new tracking algorithm based on the mutual information regis-
tration function. Since MI was previously defined in the Chapter 2, this part focuses on the
actual way to use MI in tracking applications within a differential approach. We detail our
contribution on the optimization method in the 2D tracking problem. This new approach is
validated through many experiments where we show the improvements in terms of accuracy,
robustness and computational efficiency. A generalization to the 3D localization (or pose esti-
mation problem) follows and ends with several experiments that show significant results.

(a) (b)

(c) (d)

Figure 2.15: Some illustrations of classical tracking approaches over the time: (a) tracking points of inter-
est [Lowe 2004], (b) contours tracking [Blake 1998], (c) SSD tracking with omnidirectional camera [Mei 2006],
(d) hybrid pose estimation approach based on both the contours and appearance of the object [Pressigout 2005].

43



44



Chapter 3

Tracking as a registration issue

The literature related to visual tracking is very rich. In this chapter, we will mainly focus on the
approaches that are related to our context of real-time monocular tracking of rigid objects. We
organize this chapter following the classical steps of a tracker’s creation: first, we need to know
what information is relevant in the image. This information depends on the considered object
to be tracked as well as its displacement to be estimated. Once the visual features are chosen,
we need to define the matching or registration process, and, define a suitable parametrization
to estimate its 2D position or 3D position, called its pose.

Most of the presented algorithms can be incorporated into filtering processes such as Kalman
filters [Bar-Shalom 1993] or particle filters [Li 2004, Ababsa 2007] to increase their robustness.
Nevertheless, our goal is not to propose contributions to the filtering processes, therefore, we
will not focus on these aspects.

3.1 Modeling the object’s appearance

The properties of the object appearance in the image can be divided in two classes, some that
are local, meaning basically geometrical features such as points or contours, and the ones that
are more general, representing for instance its color, its texture or its information.

3.1.1 Local features

A way to describe the tracked objects can be performed using simple geometric features such as
dots, points of interest [Harris 1988], angles, contours [Berger 1994, Blake 1998], straight lines,
segments [Hager 1998b, Boukir 1998, Marchand 1999], ellipses [Vincze 2001, Marchand 1999],
etc. Some good examples of tracking systems using such features are the XVision [Hager 1998b]
framework or the ViSP library [Marchand 2005b], that were, for instance, used to extract and
track the features in the experiments presented in Figure 3.1.

These geometrical features can be enriched by a local appearance model as in the track-
ing by matching approaches that mainly consider the notion of keypoint characterized by a
descriptor. Several approaches have been proposed, the well-known SIFT [Lowe 2004] and
SURF [Bay 2006] approaches use histograms of gradients to define the local models, while the
FERNS approach [Ozuysal 2007] defines it using the surrounding pixel intensities.

(a) (b) (c)

Figure 3.1: Local features are mainly defined by geometrical properties in the image as (a) dots, (b) points of
interest and (c) contours.
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The main advantages of this class of approaches are their simplicity and, now, their low
computation cost. Moreover, these features represent geometrical properties of the object,
which are, in general, invariant to illumination variations. On the other side, they totally
depend on the presence of geometrical features on the object. Furthermore, the quality of the
results (precision and robustness),that typically depends on the number of features, can not
always be guaranteed and depends on the scene (for example, these approaches are usually very
dependent on the features density and on the occlusion phenomenons).

3.1.2 Global features

The previous approaches rely mainly on the analysis of intensity gradients in the images. An-
other possibility is to directly consider the image intensity and to model the object using its
colors, defining the appearance as an histogram [Comaniciu 2000], or using its general ap-
pearance in order to store the whole texture of the object [Lucas 1981, Irani 1998, Jurie 2001,
Benhimane 2004].

These global features depict the appearance of the object on a large set of positions, while
each geometrical feature depicts one particular position. To evaluate the effect of the displace-
ment on one global feature, it is required to transform the whole set of positions. The resulting
tracking approaches are therefore usually more complex than the local features methods and
also more time consuming. Moreover, since the appearance of the object depends on the illu-
mination variations, most of the resulting tracking approaches are sensitive to the illumination
conditions. Nevertheless, these approaches do not require any particular features extraction
process in the image. They remain relatively robust to partial occlusions. Finally, since most of
the information of the image is used to model the object, the resulting estimation of the object
motion is very accurate thanks to the redundancy of the available information.

(a) (b) (c)

Figure 3.2: Global features tracking: (a) using histograms with the Mean-shift approach [Comaniciu 2000], (b)
texture based registration with the NCC [Irani 1998] and (c) tracking from differences (SSD) [Jurie 2001].

3.2 The registration formulation

Once the object’s visual features are chosen, the goal is to match these features from the model
(2D or 3D) of the object with the current image features. In this section, we differentiate two
registration approaches: one that estimates the transformation in the image plane, while the
other is performed between one image and 3D model of the tracked object (the pose or viewpoint
estimation problem).
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3.2.1 2D registration or motion estimation

The tracking problem can usually be formulated as the optimization of a similarity function
between the current input image It of an image sequence (I0, ..., IN ) and a modelM:

p̂t = arg max
p

f(It,M(p)) (3.1)

where p are parameters representing the position of the model in the 2D image space and
p̂t are the parameters that best map the model with the current image in the sens of f . The
problem is different whether the features of the model are local or global: the local features have
generally their low-level peculiar tracking or matching process and the information provided by
the displacement of all the features allows the estimation of the object’s displacement, while
one global feature is enough to estimate this displacement.

3.2.1.1 Local features-based registration

The use of local features classically induces a first low level tracking or matching approach. A
feature point can, for instance, be defined as a corner in the appearance of the object. But the
feature can also be enriched using a local descriptor [Lowe 2004, Bay 2006] of appearance and
define a keypoint. The descriptor will allow for matching the feature points between several
images (see Figure 3.3(a)). Similarly a line can be tracked along an image sequence with the
moving edges algorithm (see Figure 3.3(b)) [Bouthemy 1989]. This low level tracking tasks
provide an estimation of the displacement for each independent feature. Since the goal is to
find the motion of a rigid object, a global motion constraint has to be applied.

(a) (b)

Figure 3.3: Some low-level matching and tracking processes. (a) Key-points matching between two im-
ages using local descriptors constructed with the image gradients [Bay 2006] and (b) moving edge algo-
rithm [Bouthemy 1989]: the new contour line is searched as a strong edge along the normal of the previous
line position.

If the geometrical features in a first image are defined as vectors y∗ and matched with the
features y in another image, the registration problem can then be defined as the minimization of
their reprojection error from one frame to another. Using a warping function w, the displacement
parameters p̂ that best map y into y∗ are found using:

p̂ = arg min
p

M∑

m=1

‖y∗
m − w(ym,p)‖

where M is the number of visual features. If, for instance, the features are interest points x
and the displacement is an homography [Berger 1998, Simon 2000, Pressigout 2005], then, the
problem is:

p̂ = arg min
p

M∑

m=1

‖x̃∗
m −Hx̃m‖
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where H is the homography matrix and x̃m are the homogeneous coordinates of the point xm

(see chapter 1). In some cases, this problem can be solved linearly as we showed in the mosaicing
example in Frame 1 page 16. Nevertheless, most of the feature models and their motion are non-
linear. Then the resolution of the problem requires non-linear optimization methods, such as a
Gradient descent method (see Frame 3). Since it is classical to have some failure in the low-level
tracking or matching process, robust methods can be performed [Stewart 1999, Malis 2006] to
decrease the effect of outliers.

3.2.1.2 Appearance-based registration

The appearance-based approaches, also known as template-based approaches, are different in
the way that there is no low-level tracking or matching processes. Indeed, let us consider that
the appearance of the object is learned from a model defined as a reference image I∗ at some
pixel locations x ∈ W and that we seek its new location w(x,p) in an image I. Then we
can directly define the registration problem as minimizing the dissimilarity (or maximizing the
similarity) between the appearance in I∗ at the positions x in a region W and in I at the
positions w(x,p). An analytic formulation of the tracking problem can then be written as:

p̂ = arg min
p
f (I∗(x), I(w(x,p)))

where f is a dissimilarity function. Considering that the appearance is defined as the set of
pixel intensities of the patch and that the dissimilarity function is the SSD, leads typically to
the KLT algorithm [Lucas 1981, Shi 1994] for small patch and translational model or to the
algorithm of [Hager 1998a, Belhumeur 1999, Baker 2004] for large template and affine motion:

p̂ = arg min
p

∑

x∈W

(I∗(x)− I(w(x,p)))2

This algorithm is described in details in Frame 4. Since the problem is defined with the images
difference, this formulation is very sensitive to the perturbations of the object’s appearance.
Therefore, several approaches have been proposed to robustify it. To add robustness with
respect to occlusions or specularities, one can for instance use a robust estimation process.
A proposed solution is to consider M-estimators [Odobez 1995, Hager 1998a] and modify the
previous formulation as:

p̂ = arg min
p

∑

x∈W

ρ (I∗(x)− I(w(x,p)))

where ρ is a function that decreases the sensitivity of the cost function to outliers. The prob-
lem can also be modified to model the illumination variations of the object [Hager 1998a,
Silveira 2007]. In [Hager 1998a], a learning step is performed to model the possible illumi-
nation variations of the object using a principal component analysis. In [Silveira 2007], no
learning step is required: several parameters are added to the optimization problem, with one
parameter β to model the global illumination variation and a set of parameters to model a patch
of local variations S (an image of illumination variations). The optimization problem becomes:

p̂ = arg min
p,β,S

∑

x∈W

ρ (I∗(x)− (S(x)I(w(x,p)) + β))

Nevertheless, the additional parameters are slowing the convergence of the optimization. To
keep the same number of parameters and change the robustness of the tracking problem, an-
other solution is simply to consider another alignment function f or other global features. The
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Frame 3 Non-linear optimization.

Cost function Steepest gradient Newton’s method

(a) (b) (c)

The goal of an optimization problem is to find the best solution for one problem. Typically an
analytical formulation defines it using parameters p and a cost function f that is maximal for the
best parameters p̂:

p̂ = arg max
p

f(p)

In some cases, this problem can be solved linearly. In our tracking problem it is rarely the case. The
problem is hence solved with a non-linear optimization: a first estimation of the parameters p0 is
iteratively refined using an update ∆p until it reaches the maximum of f (let us note the iteration
number by the superscript k). Two widespread approaches are the steepest gradient descent and the
Newton’s method. If the update step is defined as an addition (pk+1 = pk +∆pk), these approaches
can be defined as follows.

Steepest gradient descent

Using a parameter vector p ∈ R2, the steepest gradient descent (ascent in our example) can be
illustrated as a climbing problem: suppose you are on a hill (the cost function), searching for the
top of it (the optimum) but you can not see the relief of the place (only know the function locally),
a good solution is to approximate the local relief as a plane (the function derivatives: see the top
figure (b)) and follow the steepest ascent. To find the optimum, the first guess of the parameter p0

is iteratively updated using:

∆pk = αG with: G =
∂f(p)

∂∆p

∣∣∣∣
p=pk

where α is a scale factor applied to the Gradient G to avoid large steps that can cause the optimization
to diverge. This process is repeated until convergence.

Newton’s method

The Newton’s method also uses a local approximation of the cost function in order to update the
current displacement parameters. While the steepest descent locally approximates the function by its
first-order derivatives (by a plane if p ∈ R2), the Newton’s method uses its second order derivatives
(f is locally approximated by a parabola, see top figure (c)). This approximation is performed using
the Taylor expansion of ∂f/∂p at pk+1:

∂f(p)

∂∆p

∣∣∣∣
p=pk+1

=
∂f(p)

∂∆p

∣∣∣∣
p=pk

+
∂2f(p)

∂∆p2

∣∣∣∣
p=pk

∆pk

Since the goal is to find pk+1 = p̂ for which the derivative of f are zero, the update is obtained
using:

∆pk = −
∂2f(p)

∂∆p2

∣∣∣∣
−1

p=pk

∂f(p)

∂∆p

∣∣∣∣
p=pk

The process is repeated until p converges, i.e. until ∆p is small enough.
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object can indeed be characterized using histograms (of colors, for instance) [Comaniciu 2000],
where f defines the distance between two histograms as the Batthacharrya [Bhattacharyya 1943]
or Matuzita distance [Cha 2008]. Several approaches have also been proposed to directly de-
fine a robust alignment function between two set of pixel intensities. For instance, some ap-
proaches define f as the Normalized Cross Correlation [Irani 1992] or the mutual informa-
tion [Collignon 1995, Viola 1995]. While MI cost function has a shape adapted to the tracking
problem (see section 2.3.3), there is still one drawback: no approach such as Gauss-Newton
(for the SSD function) exists to perform the optimization in a simple and efficient way. There-
fore complex optimization approaches, such as Line-search methods, are used [Thévenaz 2000,
Dowson 2006, Dowson 2008], that are time-consuming and limit the accuracy of the estimation.

Warp update rule

Since all these alignment problems can not be solved linearly, a non-linear optimization approach
is usually required. The basic idea is that a first guess of the displacement parameters is available
and the goal is to refine it. Several approaches are then possible. All the possibilities depend
on how the refinement process (or update) is applied to the current parameters, i.e. the warp
update rule [Baker 2001]. In the following table, we reported several of these update rules and
their corresponding optimization formulations.

Method Optimization Update

Forward
∆pk = arg min∆p f(I∗(x), I(w(x,pk + ∆p))) pk+1 = pk + ∆pk

additional

Forward
∆pk = arg min∆p f(I∗(x), I(w(w(x,∆p),pk))) w(x,pk+1)← w(w(x,∆pk),pk)

compositional

Inverse
∆pk = arg min∆p f(I∗(w(x,∆p)), I(w(x,pk))) w(x,pk+1)← w(w−1(x,∆pk),pk)

compositional

Other approaches are possible such as in [Odobez 1995, Hager 1998a], we do not report
them in details since their formulation can not be simplified as the previous ones. The for-
ward additional approach [Lucas 1981] has the advantage of its simplicity, it is very intuitive
and suitable to any warp, but it is very expensive to compute. The forward compositional
approach [Shum 2000] has the advantage of its relatively good efficiency compared to the for-
ward additional formulation. Since the forward compositional formulation is both intuitive and
relatively efficient, this will be the approach used to introduce the mutual information opti-
mization in the next chapter. Nevertheless, the inverse approaches [Odobez 1995, Hager 1998a,
Baker 2001] allow a large increase of the efficiency of the tracking problem. In the remainder
of this thesis, we preferred to focus on the inverse compositional approach [Baker 2001] for
its simplicity. A combination of both the forward and inverse formulation was also proposed
in [Benhimane 2004] to improve the convergence rate of the tracking approach.

3.2.2 Pose estimation

The goal of the pose estimation problem is to find the relative pose between the camera and the
object corresponding to an image. This is also a registration problem, but in that case, the 3D
model of the object is required. This model can be known [Drummond 2002, Vacchetti 2004,
Comport 2006] or learned from a sequence of images [Lim 1988], or both the tracking and
reconstruction can be performed simultaneously [Davison 2007].

We focus here on applications where the 3D model and camera calibration are known. In
this case, the problem can be formulated as an optimization of a similarity function between the
input images I∗ and the projection of the modelM using a camera with its intrinsic parameters
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Frame 4 KLT algorithm [Lucas 1981, Tomasi 1991, Shi 1994].

The KLT (for Kanade Lucas Tomasi) algorithm is an approach that estimates the displace-
ment of a template between two images. If we consider two frames I0 and It of an image
sequence, the goal is to estimate the transformation of a small patch of pixels W between
the two frames. If we search the transformation w(x,pt) that maps the pixel x of I0 into
the pixels xt of It, then the brightness constancy constraint gives:

It(xt) = It(w(x,pt)) = I0(x)

for all the pixels x in the patch W. The transformation that best respects this equation
over the whole patch is the one that minimizes the difference:

p̂t = arg min
p
C(p) with: C(p) =

∑

x∈W

(It(w(x,p))− I0(x))2

This problem is reformulated as searching pt for which the derivative of C is zero. It is
solved using a non-linear approach (see Frame 3), where a first guess p0

t = p̂t−1 is iteratively
updated in order to find p̂t (limk→∞ pk

t = p̂t). The update ∆pk of the parameters pk
t is

searched to approximate:

∆pk = arg min
∆p
C(∆p) = arg min

∆p

∑

x∈W

(It(w(x,pk
t + ∆p))− I0(x))2 (3.2)

Using a first order Taylor expansion, this yields:

∆pk = arg min
∆p

∑

x∈W

(
It(w(x,pk

t )) +∇It
∂w

∂∆p
∆p− I0(x)

)2

(3.3)

where ∇It is the gradient of the image at the pixel w(x,pk
t ). At the optimum of C, the

derivative of C with respect to ∆p is zero:

∂C

∂∆p
=
∑

x∈W

(
∇It

∂w

∂∆p

)⊤(
It(w(x,pk

t )) +∇It
∂w

∂∆p
∆p− I0(x)

)
= 0 (3.4)

That yields the final update expression:

∆pk =

(∑

x∈W

(
∇It

∂w

∂∆p

)⊤(
∇It

∂w

∂∆p

))−1 ∑

x∈W

(
∇It

∂w

∂∆p

)⊤

(I0(x)− It(w(x,pk
t )))(3.5)

The update is computed and applied to the current parameter pk
t until convergence. We can

observe the similitude with the Newton’s approach presented in Frame 3, where the second
derivatives of the Hessian matrix are neglected (Gauss-Newton method).
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γ and pose r. The formulation can be written:

r̂ = arg max
r
f (I∗, prγ(M, r)) . (3.6)

The similarity function f can represent the distance between the geometrical features of I∗

and the model or represent the similarity between the image and the projection of textured 3D
model of the object.

The first approach that uses geometrical features is the most commonly used approach.
Indeed, only the geometrical properties of the object are required and their projection into the
image space is easy to perform. For instance, the model can be defined by 3D points oPm in
the object frame and matched with 2D points x̃m in the image. The problem is then to find
the homogeneous matrix cMo (equivalent of the pose r) that minimizes the reprojection error:

r̂ = arg min
r

M∑

m=1

‖x̃m −KcMo
oP̃m‖ (3.7)

one classical approach is for instance to use the Dementhon approach where only four points
are sufficient [Dementhon 1995] to compute r.

Although geometric 3D models are usually considered, some methods use global model
of appearance (textured models). We can, for instance, cite one approach using directly the
pixel intensities coupled with a robust estimation in [Comport 2007] and one using mutual
information in [Panin 2008], with the same drawback as the MI based 2D tracking approaches.
Since these approaches use the whole information of the image, they yield an accurate estimation
of the pose. Finally some approaches that mix both local and global features have been proposed
in [Masson 2003, Kyrki 2005, Pressigout 2007]. These approaches take advantages of both local
and global methods in terms of accuracy and robustness.

The maximization defined in the pose computation problem remains very similar to the
tracking problem that was previously defined. A first guess of the parameters, that is the
current camera pose, is known and the goal is to iteratively refine it to reach the optimum of
the alignment function corresponding to the desired camera pose. Since the problem is not
linear, the optimization of the cost function is in general performed using a Gradient descent
approach, where the variations of the cost function have to be computed with respect to the
variations of the parameters.

Several approaches are possible to perform the refinement. The pose can be updated us-
ing the additional or compositional approaches. In the additional approach, the goal at each
iteration of the optimization is to find the update ∆r that brings to the maximum of the cost
function f using:

∆rk = arg max
∆r

f
(
I∗, prγ(M, rk + ∆r)

)
. (3.8)

And the update rk+1 = rk + ∆r is performed until we reach the convergence.
Another solution is to use the similitude with the visual servoing problem where the camera

pose is updated using a velocity [Sundareswaran 1998, Marchand 2002]. The virtual visual
servoing (VVS) approach follows the same update rule: the current camera pose rk is updated
using the velocity v of the virtual camera as:

ck+1

Mo = e[v] ck

Mo (3.9)

where e[v] is the exponential map of v. Since the velocity depicts the variation of the pose with
respect to the time, the “period of time” between two iterations is considered as a gain.
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Whatever the update solution is, the optimization problem usually requires to estimate the
variation of the visual features (i.e. the variation of the points, edges, SSD, MI) with respect
to the variation of the pose. Since visual features are build on points (a line is defined by
two points and a patch by a set of points), the basis is to know the variation of a point
position with respect to the variation of the pose. The advantage of the VVS approach comes
from its simplicity to compute these variations compared to the other approaches (see the
Frame 9 versus the Appendix B.2). However, we show in the Appendix that some simplifications
on the compositional approach lead to an equation equivalent to the virtual visual servoing
approach. An equivalent approach was also proposed in [Drummond 2002] using the Lie algebra
(equivalence proved in [Comport 2005]).

3.3 Conclusion

In this chapter, we have seen that the tracking (2D or 3D) problem can be solved using many
approaches mainly depending on the visual features used to represent the object. Geometrical
features, computed using the strong gradients in the images, have the advantages of their
robustness and simplicity. Nevertheless they require a first low-level tracking or matching step
that remains their main difficulty.

To solve this problem, global visual features can be used to model the appearance of the
object in terms of intensity. Since these intensities vary with occlusions and illumination varia-
tions, most of this method have a lack of robustness. To improve the robustness of the tracker,
the optimization can be build on a robust alignment function, mutual information. Nevertheless,
although MI based registration techniques were already largely studied, the existing approaches
still show many limits that will be discussed and solved in the following chapter.
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Chapter 4

Mutual information-based tracking

In this chapter, we present the mutual information-based tracking approach. We detail the
existing approaches and exhibit some drawbacks of these methods and present our solutions to
solve these issues.

The first section of this chapter recall the principle of the template based tracking approach.
To begin with an intuitive formulation, the problem is first defined using a forward compositional
formulation. We apply the classical optimization methods to MI, and discuss them to present
our new optimization approach. This section ends with an empirical evaluation that compares
the existing optimization approaches with the proposed one. The following section presents
some possible improvements of the optimization method to make it more efficient: we define
the inverse compositional formulation. Then, we study the choice of the reference pixels to
improve the computation time, and finally, we present coarse-to-fine estimation approaches
that improve both the robustness and efficiency of the tracker. To validate the performance
of the proposed MI-based tracker, we end this chapter with several tracking and registration
experiments in various contexts.

4.1 MI based registration: forward compositional formulation

In this section, we recall the definition of our tracking problem and develop it using a composi-
tional formulation. We detail the classical approaches that are possible to solve the underlying
optimization problem. In the same time, we detail the derivation of MI with respect to the
motion parameters, that is necessary to perform the optimization methods. We highlight the
drawbacks of the existing approaches and present our new optimization method as a response.
Finally an empirical evaluation of the approaches efficiency is presented.

4.1.1 Mutual information optimization

The goal of our tracking problem is to align an image template I∗ with an input image I. If we
assume that the reference template appears in I, the goal is to search for the transformation
that aligns the pixels x of the reference image I∗ to the corresponding pixels x′ of I. Assuming
that the transformation from the reference points to the input image can be modeled by a warp
function, as defined in the previous section, the problem can be formulated as:

p̂ = arg max
p

f
(
I∗(x), I(x′)

)

= arg max
p

f (I∗(x), I(w(x,p))) (4.1)

where f is the cost function that measures the alignment between the two images and thus p̂
are the displacement parameters that best align the reference image with the input image I in
the sens of f . The more the alignment function f is robust to the appearance variations of the
object, the more the tracking problem is itself robust. Therefore, following the evaluation of the
alignment functions that were performed in section 2.3.3, we define f as the mutual information
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function because of its robustness to occlusions and illumination variations, and we rewrite the
problem as:

p̂ = arg max
p

MI (I∗(x), I(w(x,p))) (4.2)

Since this problem is impossible to solve linearly, a non-linear optimization is performed.To
initialize the optimization, a first guess of the displacement parameters is required. Since we
suppose that the displacement of the object between two consecutive frames is small, a good
approximation is to approximate the parameter pt of the input image It at a time t using the
parameters estimated for the previous frame: pt = p̂t−1 (see the Figure 4.1).

MI
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I
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I *

MI
p

1

I
2

MI
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I
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p

t

I
t + 1

p
t - 1

Figure 4.1: Mutual information-based tracking.

To initialize the whole tracking approach, the position of the template in the first image
I0 has to be known. Since the first image of the sequence is usually the one that defines the
template I∗, the first displacement parameters p0 between the template and the first image
simply correspond to an identity transformation (considering the warp functions defined in the
first chapter it yields: p0 = 0). Otherwise, the first estimation can be performed using some
matching process, such as a keypoints matching approach [Lowe 2004, Lepetit 2006].

The first approximation of the displacement p0
t = p̂t−1 is then refined using the numerical

resolution of the equation (4.2). To solve the maximization, an iterative optimization method
is used that successively goes closer and closer to the optimum of the cost function p̂t (see
Figure 4.2). For a clarity purpose, let us now consider the maximization peculiar to one image
I (we drop the subscript t) and focus on the iteration number noted using the superscript k.
In the forward compositional approach [Shum 2000], the goal is then formulated as finding the
update ∆p that leads to the optimum, so that, at each iteration k, we seek:

∆pk = arg max
∆p

MI
(
I∗(x), I(w(w(x,∆p),pk))

)

with:

w(x,pk+1)← w(w(x,∆pk),pk) (4.3)
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Remark that the warp function should correspond to an identity transformation if the update is
null. Therefore it must satisfy: w(x,0) = x (that is the case for all the transformation functions
defined in the previous chapters). For a clarity purpose, let us note pk+1 = pk ◦∆pk where ◦ is
the composition operator. As an example, we provide the detailed computation of pk+1 with
respect to pk and ∆pk in the Appendix A.1 for the affine model. If the previous expression is
approximately respected at each iteration, the displacement parameters should converge to the
optimum of MI:

p̂ = lim
k→+∞

pk (4.4)

Of course, the number of iterations k has to be limited for the efficiency of the approach. To
do so, a convergence test is performed to evaluate the significance of the update. Since the
elements of ∆pk have not the same units, its Euclidean norm does not give a proper measure of
its significance. To evaluate it, we compute its effect in terms of displacement in the image. We
set M reference points xm (in our experiments, we choose the corner of the region of interest
in I∗) and compute the effect as:

d(∆pk) =
1

M

M∑

m=1

‖w(xm,p
k+1)− w(xm,p

k)‖ (4.5)

where d(∆pk) represents the mean of the displacement of the reference points in the image
caused by ∆pk in pixels. If this displacement is below a threshold ε, i.e. d(∆pk) < ǫ, we
consider that the algorithm has converged (p̂ = pk) and we stop the iterative process.

Previous image It−1 Current image It

Figure 4.2: The first approximation of the position p0
t , given by the previous position p̂t−1, is iteratively refined

to find the optimal parameters cpt (images from Comedy Central).

Let us now focus on the classical optimization approaches that were used in the context of
the mutual information maximization: the method of steepest descent [Viola 1995] (where the
gradient was not computed analytically) and the Newton’s method [Dowson 2008]. In the same
time, the derivatives of MI are defined and we show the characteristics of MI that cause the
existing optimization approaches to have a small convergence domain. Finally, we propose a
solution to increase the convergence domain and efficiency of the registration problem. In the
remainder of this section, we focus on the computation of one update step in one particular
iteration. Therefore, the superscript k, that indicates the iteration number, will be omitted.
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4.1.1.1 Steepest gradient-descent and MI gradient

Steepest gradient-descent is the basis of the non-linear optimization methods (see Frame 3
page 49). If the goal is to optimize a function with a few parameters (2D or 3D), this solution
is practical and efficient. Nevertheless, in our tracking problem, where our goal is to estimate
homographies using 8 parameters that are strongly correlated, the steepest gradient descent ap-
proach becomes slow and subject to oscillations in the update estimation. Although it was used
in [Viola 1995], where the derivative is approximated with a stochastic approach, it is presented
here only as an introduction to the other optimization methods and to the computation of the
mutual information derivatives.

Optimization approach

As it was defined in Frame 3 page 49, the principle of the steepest gradient-descent is really
simple: if we are near the maximum of the cost function and we “climb” it following the steepest
ascent, then, after a few iterations, we should reach the maximum. The derivatives of the cost
function are by definition the steepest descent direction. The goal of the steepest gradient-
descent is thus to iteratively update the displacement parameters using the direction provided
by the derivatives. One remaining problem is that there is no information about the amplitude
needed to reach the optimum. A scalar α, the step-size, has thus to be applied to the derivative
of the cost function to control this amplitude. The update parameters are then given by:

∆p = αG with G =
∂MI (I∗(x), I(w(x,p ◦∆p)))

∂∆p

∣∣∣∣
∆p=0

(4.6)

where G is the first order derivative of mutual information with respect to the displacement
update, also called gradient. This gradient is computed for the current parameter p, i.e. for
∆p = 0. The definition of MI given through the partial volume interpolation allows the
analytical computation of its derivatives. We recall that MI is obtained with:

MI(I, I∗) =
∑

i,j

pII∗(i, j) log

(
pII∗(i, j)

pI(i)pI∗(j)

)

where pI(i) and pI∗(j) are respectively the marginal probabilities of I and I∗, and pII∗(i, j) is
the joint probability of I and I∗.

Mutual information gradient

Applying the derivative chain rules to equation (2.15) page 27 yields the following expression
of the mutual information gradient [Dowson 2006]:

G =
∑

i,j

∂pII∗

∂∆p

(
1 + log

pII∗

pI∗

)
(4.7)

where we drop the i and j parameters for a clarity purpose. The details of the computation can
be found in the Appendix B.1. As we can see in this equation, the gradient of mutual infor-
mation depends on the derivatives of the joint probability. Applying the forward compositional
formulation to MI yields the following joint probability expression:

pII∗ =
1

Nx

∑

x

φ
(
i− I(w(x,p ◦∆p))

)
φ
(
j − I∗(x)

)
(4.8)
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We recall that φ is a B-spline function that is chosen to be twice differentiable. Passing the
derivative through the summation yields the following expression:

∂pII∗

∂∆p
=

1

Nx

∑

x

∂φ
(
i− I(w(x,p ◦∆p))

)

∂∆p
φ
(
j − I∗(x)

)
(4.9)

The remaining expression to evaluate is the variation of the function φ with respect to the
update. Its derivative is obtained using the chain rules and gives:

∂φ(i− I(w(x,p ◦∆p)))

∂∆p
= −

∂φ

∂i

∂I(w(x,p ◦∆p))

∂∆p
(4.10)

The way to compute the B-spline derivative is detailed in the Chapter 2 among the MI definition.
Finally the derivative of the current image intensity with respect to the update parameters ∆p
is given by the following expressions:

∂I(w(x,p ◦∆p))

∂∆p
= ∇I

∂w(w(x,∆p),p)

∂∆p

∣∣∣∣
∆p=0

= ∇I
∂w(x,p)

∂x

∂w(x,∆p)

∂∆p

∣∣∣∣
∆p=0

= ∇I(w(x,p))
∂w(x,∆p)

∂∆p

∣∣∣∣
∆p=0

(4.11)

where ∇I = (∇xI,∇yI) is the gradient of the image I (computed at the position w(x,p)),
while ∇I(w(x,p)) is the gradient of the warped image I(w(x,p)), i.e. their derivatives with
respect to the horizontal and vertical axes. The second term of the expression is the Jacobian
of the warp function that links the displacement of each point w(x,∆p) with the update ∆p
computed for ∆p = 0. This Jacobian matrix is computed as follows:

∂w(x,∆p)

∂∆p
=

[
∂wx

∂∆p
∂wy

∂∆p

]
=

[
∂wx

∂p0

∂wx

∂p1
. . . ∂wx

∂pn
∂wy

∂p0

∂wy

∂p1
. . .

∂wy

∂pn

]
(4.12)

where n is the number of elements of the displacement update ∆p. As an example, we provide
the computation of the derivation of the affine and homography warps in Frame 5. Since this
matrix is computed for ∆p = 0, it is constant and can be precomputed for each point.

To illustrate the resulting gradient in a numerical example, we simply compute the mutual
information of two identical images with respect to the horizontal translation tx between them,
and compute the corresponding gradient analytically (from the equation (4.7)) and numerically
using the MI values: ∂MI(tx)/∂tx ≃ (MI(tx + δtx)−MI(tx− δtx))/(2δtx) with δtx = 0.1px that
we consider as ground truth. The resulting values are presented in Figure 4.3. The analytical
and numerical values are similar. This formulation using B-splines results in a really smooth
gradient suited to optimization problems.

To focus back on our tracking problem, we propose in Figure 4.4 a 2D translation estimation
example. In this experiment, we compute the MI between two images I∗(x) and I(w(x, t)) with
respect to a translational motion t = (tx, ty), knowing that their exact alignment position is
t = (0, 0). For every parameter t, the gradient of MI is computed to verify if the steepest
ascent provides a good estimation of the update ∆p. As we represent in Figure 4.4(a), the
steepest gradient method approximates the local shape of the function by a plane. Since the
resulting updates correspond to 2D motions, we can represent them in the image space as a
vector flow (see Figure 4.4(b)). In this figure, the mutual information value is represented in
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Frame 5 Jacobian of the affine and homography warp functions.

Jacobian of the affine warp

If the formulation of the affine warp function, presented in section 1.2.2.3 page 18, is developed, it
yields the following formulation:

w(x,∆p) =

[
(1 + ∆p0)x+ ∆p2y + ∆p4

∆p1x+ (1 + ∆p3)y + ∆p5

]

If the two components of the resulting vector is differentiate with respect to the elements of the
displacement parameter ∆p using the equation (4.12), it yields:

∂w(x,∆p)

∂∆p
=

[
x 0 y 0 1 0
0 x 0 y 0 1

]

For the affine warp, we can observe that there is no difference if the Jacobian of the warp is
computed for ∆p = 0. In any case, this Jacobian matrix is only depending on the position of the
point x.

Jacobian of the homography warp

Similarly, if the expression of the homography warp function, defined in section 1.2.2.3 is
developed, we obtain:

w(x,∆p) =
1

∆p6x+ ∆p7y + 1

[
(1 + ∆p0)x+ ∆p2y + ∆p4

∆p1x+ (1 + ∆p3)y + ∆p5

]

=
1

D

[
x′a
y′a

]
(4.13)

with:

x′a = (1 + ∆p0)x+ ∆p2y + ∆p4

y′a = ∆p1x+ (1 + ∆p3)y + ∆p5 (4.14)

D = ∆p6x+ ∆p7y + 1. (4.15)

Developing the general Jacobian expression defined in equation (4.12), the Jacobian of the
homography warp becomes:

∂w(x,∆p)

∂∆p
=

1

D

[
x 0 y 0 1 0 −xx′a −yx′a
0 x 0 y 0 1 −xy′a −yy′a

]

This matrix is originally depending on the value of the parameters ∆p. One of the advantages of
the compositional approach is that this Jacobian is always computed for ∆p = 0. Therefore, it
becomes only dependent on the position of the pixel x:

∂w(x,∆p)

∂∆p

∣∣∣∣
∆p=0

=

[
x 0 y 0 1 0 −x2 −xy
0 x 0 y 0 1 −xy −y2

]
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Mutual information Jacobians

Figure 4.3: Mutual information and its gradient with respect to the horizontal translation.

the image space by isocontours, or contour lines, which are contours that join points with an
equal function value. As expected, since the isocontour direction is the one with a null descent
(the smallest descent), the resulting directions of the steepest descent are orthogonal to the
isocontours (Figure 4.4(c)).

Mutual information Local approximation

-20  0  20
-20

 0

 20

 0

 1

tx

ty

(a) (b)

Jacobian Optimization example

(c) (d)

Figure 4.4: Steepest gradient descent. (a) Mutual information, (b) its local approximation (in black) at
(tx, ty) = (4.5, 4.5), (c) its gradient and (d) one example of optimization of mutual information. The gradients
that make the optimization converge are represented in red arrows and the others in green.
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In Figure 4.4(d), we represent one steepest descent optimization using a first guess t0 =
(4.5, 4.5). To best avoid the divergence of the optimization, we fix the step-size α to a small
value. After 25 iterations, the optimization reaches an estimation of t within an error of 0.1
px. Since the gain α depends on the function to optimize a more clever computation of α is
strongly recommended.

Gain computation: line-search method

The line-search approaches are dedicated to the estimate an ideal step-size α. The estimation is,
in general, performed using an iterative method. Some of them, as the Wolfe’s Rule [Press 1992],
require to compute the derivative of the cost function for each temporary step-size α in the
iterative process. In our context, the computation of the MI derivatives is time consuming
and we prefer to consider the Brent’s method [Press 1992]: a successive parabolic interpolation
method, that only uses the cost function values.

Let us focus on one iteration of the maximization problem: once the direction is computed,
the goal is to maximize the cost function with respect to the step-size α:

α̂ = arg max
α

MI
(
I∗(x), I(w(w(x, αG),pk))

)

The usual assumption of this method is that we can approximate the function shape along the
direction of the update by a parabola. If we compute three values of the cost function using
three different step-sizes, then, we can estimate this parabola and compute the step-size that
maximizes it. Since the first estimation of the parabola is coarse, the first estimation of the
step-size is, in general, not optimal and the method has to be iterated. Keeping the three best
estimations of the minimum (the step-sizes that maximize the MI) among the four available
step-sizes, the process is performed again until it reaches the convergence.

The successive iterations of the step-size computation method are represented in Figure 4.5(a)
for the first iteration of the maximization. The estimation of only 4 parabolas are sufficient
to reach an accurate estimation of the maximum along the direction given by the steepest
gradient-descent.

Optimization using line-search Optimal gain computation

(a) (b)

Figure 4.5: First order optimization of mutual information using a line-search algorithm. Brent’s method is
performed to compute the optimal gain of the first step.

Figure 4.5(b) shows the result of the steepest gradient-descent optimization method coupled
with the Brent’s method. The optimization with the line-search method gives good results
on the translation estimation. After 8 iterations, the precision of the estimation is within 0.1
pixels. Nevertheless, at each step, the generated descent direction is orthogonal to the previous
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one. Indeed, if the line-search method is successfully performed, the update must reach the
minimum of the function along its direction that is then tangent to the isocontour. The new
steepest descent, which is defined as orthogonal to the isocontour, is therefore also orthogonal to
the previous direction. Even with an efficient line-search method the steepest gradient-descent
keeps a slow convergence rate.

4.1.1.2 Newton’s method and MI Hessian matrix

Newton’s method is one of the most popular optimization methods. It locally approximates
the function by a parabola (as we presented in Frame 3). Most of the time, this approximation
provides a good estimation of the function shape and computes an update that has both a good
direction and a good amplitude. It is a second order optimization method, i.e. it is based on
the second-order derivatives of the function called its Hessian matrix H.

Optimization approach

Considering that, at the optimum of the cost function, its gradient is null, the Newton’s method
reformulates the problem of searching the optimum of the function, as finding the zero of its
gradient. To find it, this method makes the assumption that the function’s gradient is linear
(it considers the local function’s shape to be parabolic) around the current parameters p. The
equation of the cost function’s derivative is approximated using a Taylor’s expansion:

∂MI(p ◦∆p)

∂∆p
=

∂MI(p ◦∆p)

∂∆p

∣∣∣∣
∆p=0

+
∂2MI(p ◦∆p)

∂∆p2

∣∣∣∣
∆p=0

∆p + ξ

≃ G + H∆p

where ξ represents the terms of higher order that are neglected. Since the goal is to reach
a position where the gradient is null, the equation to solve is:

∂MI(p ◦∆p)

∂∆p
= 0 =⇒ G + H∆p = 0

Then, the update can be estimated as:

∆p = −H−1G. (4.16)

This approach typically corresponds to approximate the local shape of the function with a
parabola and estimate the update ∆p that leads to its optimum. More commonly, the update
is regulated by a stepsize α ∈ [0, 1] and lead to ∆p = −αH−1G.

Mutual information Hessian computation

The Hessian matrix of mutual information is defined as the derivative of the gradient matrix.
Recalling that the gradient G is:

G =
∑

i,j

∂pII∗

∂∆p

(
1 + log

pII∗

pI∗

)

If we apply the derivative chain rules, we find the following expression:

H =
∑

i,j

∂pII∗

∂∆p

⊤∂pII∗

∂∆p

(
1

pII∗
−

1

pI∗

)
+
∂2pII∗

∂∆p2

(
1 + log

pII∗

pI∗

)
(4.17)

By analogy with the Gauss-Newton approach that will be detailed later, the second deriva-
tives are usually neglected in the Hessian matrix computation [Thévenaz 2000, Dowson 2006,
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Frame 6 Why the Hessian matrix must not be approximated?

MI gradient MI Hessian

It is common to find the Hessian matrix of MI given in equation (4.17) approximated by the following
expression [Thévenaz 2000][Dowson 2006]:

H ≃
∑

i,j

∂pII∗

∂∆p

⊤ ∂pII∗

∂∆p

(
1

pII∗

−
1

pI∗

)
(4.18)

where the second order derivative of the joint probability has been neglected (see equation (4.17)).
The approximation is inspired from the one that is made in the Gauss-Newton’s method for the
resolution of the SSD minimization, where we assume that the neglected terms are null at the
convergence. Considering the properties of the marginal probability and joint probability in the MI
computation, we have:

pI∗(j) =
∑

i

pII∗(i, j) with: pII∗(i, j) > 0 and pI∗(j) > 0

Therefore, it is clear that:

∀(i, j) ∈ [0, Nc]
2, pI∗(j) > pII∗(i, j) ⇐⇒ 1/pII∗(i, j)− 1/pI∗(j) > 0

Since ∂pII∗

∂∆p

⊤ ∂pII∗

∂∆p
is a positive matrix then the final Hessian matrix given by equation (4.18) is

positive. The goal is to maximize MI, therefore the Hessian matrix at the optimum must be negative,
so that the approximation is wrong at the optimum.
As an example, the evaluation of the approximation has been performed on the horizontal translation
example previously used to illustrate the gradient computation. The top figures show the MI gradient
and its Hessian using the approximation overlaid with the Hessian numerically computed with the
gradient using: H(tx) ≃ (G(tx + δtx) −G(tx − δtx))/(2δtx). The comparison illustrates the above
mentioned problem: the approximated Hessian is positive although it should be negative near the
optimum, where MI is concave. The common approximation of equation (4.18) is thus not suited for
the optimization of MI.
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Dowson 2008]. Let us call this method, the Hessian Approximation (HA) method. In our ap-
proach we compute the Hessian matrix using the full expression, which is, in our point of view,
required to obtain an accurate and robust optimization method. We give a detailed explanation
of why H must not be approximated in Frame 6.

The expression of the second order derivative of the joint probability and its computation
are similar to those of the first order derivative:

∂2pII∗

∂∆p2 =
1

Nx

∑

x

∂2φ
(
i− I(w(x,p ◦∆p))

)

∂∆p2 φ
(
j − I∗(x)

)
. (4.19)

Since φ has been chosen to be differentiable twice, the derivative of the φ function is given by:

∂2φ
(
i− I(w(x,p ◦∆p))

)

∂∆p2 =
∂

∂∆p

(
−
∂φ

∂i

∂I(w(x,p ◦∆p))

∂∆p

)

=
∂2φ

∂i2
∂I

∂∆p

⊤
∂I

∂∆p
−
∂φ

∂i

∂2I

∂∆p2 . (4.20)

with:

∂2I

∂∆p2 =
∂

∂∆p

(
∇I(w(x,p))

∂w(x,∆p)

∂∆p

)

=
∂w

∂∆p

⊤

∇2I(w(x,p))
∂w

∂∆p
+∇xI(w(x,p))

∂2wx

∂∆p2 +∇yI(w(x,p))
∂2wy

∂∆p2 (4.21)

where ∇2I(w(x,p)) is the Hessian of the warped image I(w(x,p)) with respect to the horizontal

and vertical axes and ∂2w
∂∆p2 is the Hessian of the warp function. For instance, ∂2wx

∂∆p2 is generally

written:

∂2wx

∂∆p2 =




∂2wx

∂p2
0

∂2wx

∂p0∂p1
. . . ∂2wx

∂p0∂pn

∂2wx

∂p0∂p1

∂2wx

∂p1∂p1
. . . ∂2wx

∂p0∂pn

...
...

. . .
...

∂2wx

∂p0∂n
∂2wx

∂p0∂pn
. . . ∂2wx

∂p2
n




(4.22)

In Frame 7, we developed the computation of the Hessian matrix ∂2w
∂∆p2 of the homography

warp. To evaluate the quality of the Hessian matrix formulation, it has been computed on the
simple horizontal translation (the one that we presented in the previous section). In Figure 4.6,
we compare the Hessian computed with the analytical formulation and the numerical values
obtained with H(tx) ≃ (G(tx + δtx)−G(tx− δtx))/(2δtx). The values of the Hessian computed
with this analytical formulation are close to the numerical value and second they are smooth.

One geometrical interpretation of the Newton’s method is represented in Figure 4.7(b) for
the translation estimation already considered in the previous paragraph. Given a first coarse
estimation of the translation, the tangent line of the gradient at the current guess is estimated
using the value of the Hessian. Newton’s method assumes that a better estimation of the
zero is then found at the intersection between the tangent line and the horizontal axis. The
corresponding interpretation can be made at the cost function level: given a coarse guess of the
optimum of the cost function, if the function is approximated by a parabola using a Taylor’s
expansion, then a better estimation of the optimum can be found at the optimum of the parabola
(see Figure 4.7(a)). In this 1D example, the Newton’s method seems ideal when the first guess
is near convergence, i.e. when it is situated in the parabolic shape of the maximum.

65



Frame 7 Hessian of the affine and homography warp functions.

Affine warp

As we showed in the Frame 5, the Jacobian matrix of the affine warp function does not depend on
the displacement parameter ∆p. Its Hessian (the derivative of its Jacobian) with respect to ∆p is
therefore null. Remark that this does not cause the approximation of the second terms of the
Hessian matrix to be justified, indeed many terms of the equation (4.20) are still not null.

Homography warp

Using the same notation as in the Frame 5 and the general equation of the Hessian matrix defined
in equation (4.22), the Hessian matrix of the homography warp is computed as:

∂2wx

∂∆p2
=

2
66666666664

0 0 0 0 0 0 x2 xy
0 0 0 0 0 0 0 0
0 0 0 0 0 0 xy y2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 x y
0 0 0 0 0 0 0 0
x2 0 xy 0 x 0 −x2x′

a −xyx′

a

xy 0 y2 0 y 0 −xyx′

a −y2x′

a

3
77777777775

and
∂2wy

∂∆p2
=

2
66666666664

0 0 0 0 0 0 0 0
0 0 0 0 0 0 x2 xy
0 0 0 0 0 0 0 0
0 0 0 0 0 0 xy y2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 x y
0 x2 0 xy 0 x −x2y′

a −xyy′

a

0 xy 0 y2 0 y −xyy′

a −y2y′

a

3
77777777775

As it was the case for the computation of the Jacobian, we can observe that in the
compositional formulation, since the Hessian matrix is computed for ∆p = 0, it becomes
constant for each point and it can be precomputed.

Mutual information Gradient

(a) (b)

Figure 4.6: Mutual information derivatives: the analytic computation of H is smooth and is similar to the
numeric values obtained using the gradient as: H(tx) ≃ (G(tx + δtx)−G(tx − δtx))/(2δtx).

Mutual information Gradient

(a) (b)

Figure 4.7: Mutual information and its gradient with respect to the horizontal translation and geometrical
interpretation of Newton’s method: with a first guess t0x = 1 near the optimum btx = 0, the optimization
converges.
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We evaluate the Newton’s method with the 2D translation estimation that was previously
used in the steepest gradient-descent method. As in the 1D problem, the Newton’s method
remains suited to the estimation of the displacement parameters when a first guess, close to the
real optimum position, is available. The estimation of the parabola is close to the parabolic
shape of the function near the optimum (see figure 4.8(a)) and, therefore, the resulting updates
and optimization are effective (see figure 4.8(c)). In 3 iterations, the algorithm reaches an
estimation within a precision of 0.1 px.

Approximated parabola Newton’s updates Optimization

(a) (b) (c)

Figure 4.8: Optimization of MI using the Newton’s method near the convergence. (a) shows the local approx-
imation (in black) of MI at (tx, ty) = (0.7, 0.7), (b) shows all the resulting updates converging to the optimum.
(c) Since the first guess is near the optimum of MI, the optimization converges.

Quasi-concave problem

The Newton’s method approximates the cost function’s shape with a parabola to find a new
estimation. This method is highly efficient to evaluate the displacement parameters, if a first
guess, close to the optimum, is available. Nevertheless, if this guess is far from it, the estimated
parabola is not a good approximation of the function at convergence and it causes the method
to diverge.

A geometrical interpretation is given in the case of a 1D translation estimation problem. In
the previous case, when the first guess was near the optimum (see Figure 4.7), the Hessian was
negative (MI is concave, see Figure 4.6 for the Hessian values), the tangent line was directed
toward the optimum and the algorithm converged. Now if the first guess is far from it, the
second-order derivative is positive (MI is convex), so the tangent line is directed toward a
translation further from the optimum and the method diverges as it is shown in Figure 4.9.

Mutual information Gradient

(a) (b)

Figure 4.9: Mutual information and its gradient with respect to the horizontal translation and the geometrical
interpretation of Newton’s method: with a first guess t0x = 4 far from the optimum btx = 0, the optimization
diverges.
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If we evaluate the approach with the 2D translation estimation that was previously used we
see on figure 4.10 that it is exactly the same situation as in the 1D problem. If the first guess
is far from the convergence then the local approximation of MI is not a concave parabola and
thus, the updates make the optimization diverge.

Approximated parabola Newton’s updates Optimization

(a) (b) (c)

Figure 4.10: Optimization of the MI using the Newton’s method far from the convergence. (a) shows the local
approximation of MI at (tx, ty) = (4.5, 4.5), this approximation is right but its optimum is further from the
optimum of MI. (b) shows the resulting updates, red vectors represents the converging updates, the convergence
domain is in fact small. (c) since the first guess of the optimization is out of the concave domain, the algorithm
diverges.

4.1.1.3 Toward an efficient optimization approach

The convergence domain of the optimization using the Newton’s method with MI is limited
compared to the quality of its function shape. For a cost function that has a similar shape, the
convergence domain using the SSD and the Gauss-Newton optimization is much larger! In this
section, we propose a new Newton’s like approach that solves the quasi-concavity problem and
has a large convergence domain.

Analogy with the SSD optimization

To introduce our solution, let us first study the optimization of the SSD. This problem is similar
to the problem of maximizing the MI. The SSD function is quasi-convex, as MI is quasi-concave.
If we consider the opposite of SSD, the two problems become equivalent. If we seek to minimize
the SSD using the Newton’s method with a first guess out of its convex domain, we will face
exactly the same problem that we faced in section 4.1.1.2 with MI: the Hessian matrix will not
be positive and it will make the optimization diverge.

However this problem is rarely discussed. Due to some second derivative terms, the exact
Hessian matrix of SSD is difficult and expensive to compute (see the Frame 8 for the details).
The optimization is then always performed using the Gauss-Newton approach where these
terms are neglected. This approximation is not only good for its simplicity, indeed the resulting
approximated Hessian matrix is (in this minimization problem) always a positive matrix. The
Gauss-Newton gives therefore the solution to avoid the problem due to the quasi-convexity of
the function.

In Figure 4.11, we represent the values of the opposite SSD with respect to one translation
tx between two images I and I∗, and compute the resulting gradient and Hessian matrices using
the Newton and Gauss-Newton approaches. We represented the opposite of the function to show
the similitude with MI. Using a Newton’s like approach, the update will be directed toward the
optimum only where the gradient is also oriented toward the optimum and where the Hessian
is negative. If the exact Hessian matrix is used (Newton’s method), the convergence domain
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is small (purple area), while, if the Gauss-Newton method is used, the convergence domain is
large (blue domain).

As we can see, the MI and SSD functions and its derivatives are really similar. Therefore, a
Gauss-Newton’s like approach for MI would improve its robustness as Gauss-Newton improves
the robustness of SSD. But as we have seen previously, neglecting the second derivatives of the
Hessian matrix has a completely different effect whether the cost function is MI or SSD.

Frame 8 Newton and Gauss-Newton optimization of the SSD function.

To introduce our solution, let us first study the optimization of the SSD. In Figure 4.11, we represent
the values of the SSD with respect to one translation p between two images I and I∗:

SSD(p) =
∑

x

(I(w(x,p))− I∗(x))2 (4.23)

The gradient of the SSD is computed using the compositional formulation as follows:

G =
∑

x

∂I(w(x,p ◦∆p))

∂∆p

⊤

(I(w(x,p))− I∗(x)) (4.24)

And the Hessian matrix have been computed using the exact formulation HN (the matrix used in
the Newton’s method) and the one computed as in the Gauss-Newton approach HGN , where the
second order derivative are neglected:

HN =
∑

x

∂I(w(x,p ◦∆p))

∂∆p

⊤
∂I(w(x,p ◦∆p))

∂∆p
(4.25)

+
∑

x

∂2I(w(x,p ◦∆p))

∂∆p2 (I(w(x,p))− I∗(x))

HGN ≃
∑

x

∂I(w(x,p ◦∆p))

∂∆p

⊤
∂I(w(x,p ◦∆p))

∂∆p
(4.26)

We can see on the resulting values, that dropping the second order derivatives makes the approxi-
mated Hessian matrix quasi-constant. This observation is easily verified on the equation (4.26) in
the 1D problem: since the derivation of the translational motion is constant for every pixel x, the
resulting Hessian is only depending on the summation of the image gradient over the region of inter-
est. A small motion of the region of interest will only change this summation due to the pixels that
enter or leave the region, therefore, the variation of HGN remains small.
In our compositional formulation, since the Jacobian of the warp remains constant for each pixel
and is only slightly different from one pixel to another one, this observation can be generalized to
our more complex parametric motions. Therefore, neglecting the second-order terms of the Hessian
matrix is similar to estimate the Hessian matrix after convergence that remains by definition convex.
In [Baker 2004], the authors interpreted the improvements of the Gauss-Newton methods by the
fact that the noise increasement in estimating the second derivatives of the image outweigh the
increase of sophistication in the algorithm. Comparing the analytical Hessian and its numerical
values (computed directly using the gradient values) in figure 4.11 that are almost equal, makes us
search a new interpretation. In our point of view, the approximation allows to avoid the problem
caused by the concavity of the function, when the first guess is out of the convex domain of the
SSD. In this case, the approximated Hessian is still positive and the update is directed toward the
optimum, while the exact Hessian matrix is not positive and makes the Newton’s method diverge.
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MI optimization

To solve the problem concerning the MI optimization, our goal is to follow the same principle
than the Gauss-Newton approach. As we presented in Frame 6, we recall that, simply neglecting
the second derivatives of the Hessian of MI does not provide the solution of our problem. We
build our approach on two observations: first, the Newton’s method is converging when the first
guess is near the optimum, second, the Gauss-Newton approach gives an approximation of the
Hessian matrix of the SSD at the optimum (see the Frame 8).

Our solution is therefore simply to use the Hessian matrix H∗ of MI computed at the opti-
mum in a Newton’s like approach. Let us note this approach HC for Hessian after convergence.
Since this matrix is by definition negative (it corresponds to the maximum of MI), the quasi-
concavity of MI is not a problem anymore. And since this Hessian matrix depicts the exact
variability of MI at the optimum, it allows an optimal convergence as soon as the current guess
is near the optimum, and should provide an accurate estimation of the displacement parameters.

At convergence, the expression of the Hessian matrix is unchanged. To compute it, we need
to estimate the joint probability and its derivatives at the optimum p∗:

pII∗ =
1

Nx

∑

x

φ
(
i− I(w(x,p∗))

)
φ
(
j − I∗(x)

)
(4.27)

∂pII∗

∂∆p
=

1

Nx

∑

x

∂φ
(
i− I(w(x,p∗ ◦∆p))

)

∂∆p
φ
(
j − I∗(x)

)
(4.28)

∂2pII∗

∂∆p2 =
1

Nx

∑

x

∂2φ
(
i− I(w(x,p∗ ◦∆p))

)

∂∆p2 φ
(
j − I∗(x)

)
. (4.29)

To compute these expressions, we have to estimate the value of the current image I at the
pixel locations x warped using the optimal parameters p∗. To do so, we can assume that the
intensities of the reference and current warped images remain similar and write:

I(w(x,p)) ≃ I∗(x) (4.30)

This is typically right in nominal conditions, in the case of a perfect alignment. Therefore, we
can estimate the joint probability and its derivatives as:

pII∗ =
1

Nx

∑

x

φ
(
i− I∗(x)

)
φ
(
j − I∗(x)

)
(4.31)

∂pII∗

∂∆p
=

1

Nx

∑

x

∂φ
(
i− I∗(w(x,∆p))

)

∂∆p
φ
(
j − I∗(x)

)
(4.32)

∂2pII∗

∂∆p2 =
1

Nx

∑

x

∂2φ
(
i− I∗(w(x,∆p))

)

∂∆p2 φ
(
j − I∗(x)

)
. (4.33)

Since the reference image I∗ is constant and the gradient and Hessian matrices are computed for
∆p = 0, these three expressions are constant. The Hessian matrix H∗ is therefore also constant
and can be precomputed. We recall that the gradient and Hessian matrices are computed for
∆p = 0 due to the compositional formulation. In an additional formulation, the derivatives
would have to be computed for p = p∗ that is unknown. This approach is, therefore, not suited
for an additional formulation.

In Figure 4.12, we show the estimation of a 2D motion estimated using this approach (with
the same example that was used with the steepest gradient-descent method and the Newton’s
method). We can observe that the local approximation of MI is given by the curvature of MI
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Figure 4.11: SSD, MI and their derivatives with respect to one translation (px). The purple area is the
convergence domain using a classical Newton’s method, the blue one is the convergence domain of a Gradient
descent method. The proposed method keeps the wider convergence domain of the gradient’s method in blue.

at the optimum. The estimation of the resulting update is performed for a large set of initial
guesses. There is no problem due to the quasi-concave shape of the function, as it was the case
with the Newton’s method in Figure 4.10. The convergence domain becomes as large as the one
obtained with the steepest gradient-descent method, but the direction is better and there is no
problem of choosing an update step-size. The optimization presented in Figure 4.12(c) with a
first guess (tx, ty) = (4.5, 4.5) is now converging and after 6 iterations it reaches an error within
0.1 px. We can see that all the steps of the optimization are directed toward the optimum.

Approximated parabola Newton’s updates Optimization

(a) (b) (c)

Figure 4.12: Optimization of MI using the Hessian H∗ far from the convergence. Most of the resulting updates
are converging to the optimum since the approximated parabola remains always concave.
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4.1.2 Empirical convergence analysis

The previous section has presented several optimization approaches applied to MI and we pre-
sented the theoretical advantages of the proposed HC approach that uses the estimation of the
Hessian matrix computed at the optimum. In this section, we realize a set of experiments to
compare the performances of the optimization methods in a practical homography estimation
problem.

The goal of this set of experiments is to estimate the position p∗ of a template of 100× 100
pixels in an image knowing a first guess p0. We study the effect of the initial positioning error
between p∗ and p0 on the different registration approaches. We define this positioning error
err(p) by the RMS distance in pixels between the ground truth position of M reference points
x∗

m = w(xm,p
∗) and their positions computed with the current parameters p. We simple choose

the reference points as the 4 corners of the template. The analytic formulation of the error is
given by:

err(p) =

M∑

m=1

‖x∗
m − w(xm,p)‖ (4.34)

In Figure 4.13, we show the ground truth position of the template and some initial positions
that were used to begin the optimization, depending on the initial error err(p0). For each initial
error err(p0) from 1 to 30, 500 initial parameters p0 are randomly generated. For every initial
parameters p0, all the optimization approaches are performed. We consider that an optimization
converges, if, after 250 iterations, the positioning error err(p250) is below 0.5 pixels (px).

To compare the behavior of the optimization, we used the following performance metrics:

• The frequency of convergence: for each initial positioning error and method, we compute
over 500 experiments the proportion of them that converge.

• The average convergence rate: we compute the average positioning error against the
number of iterations. Since the goal is to have a fair comparison between the approaches,
only the experiments that converge for all the optimization approaches are considered.

• The average number of iterations required to reach the optimum, that is also computed
considering the experiments where all the approaches converge.

• The average residue, i.e. the average remaining positioning error of the converging exper-
iments after the 250 iterations.

• The average computation time per iteration of the optimization methods.

We recall that, since the displacement parameters are strongly correlated, the steepest gradi-
ent descent approach is not suited for the estimation of an homography. Therefore, it converges
so rarely on the set of experiments that plotting the results does not make sense and it would
bias the results of the other approaches. We consider the following optimization approaches:

• the Newton’s method: the Hessian matrix is computed without approximation.

• the HA method: the second derivatives of the Hessian matrix are neglected [Dowson 2006].

• the HC method: the update is computed using the exact Hessian matrix H∗ estimated at
the optimum.
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Ground truth Initial positions

err = 5px err = 15px err = 25px

Figure 4.13: Empirical convergence analysis of the optimization methods. Illustration of some initial parameters
guesses compared to the ground truth.

4.1.2.1 Evaluation without line-search

First we begin to evaluate the performance of the different optimization approaches without line-
search method. As presented in Frame 6, the Hessian matrix computed using the approximation
proposed in [Thévenaz 2000, Dowson 2006, Dowson 2008] causes the optimization to diverge if a
line-search method is not considered. Therefore, no experiment using this optimization approach
converged, so we do not consider or plot the corresponding results in this section.

The results concerning the Newton’s approach and the Newton’s like approach using H∗ are
reported in the Figure 4.14, where we plot the convergence frequency, (average) convergence
rate and (average) number of iterations. In the Figure 4.15, we give the computation time
and remaining positioning error. The main differences are in terms of convergence frequency
and computation time. We can observe that the frequency of convergence of the Newton’s
method decreases as soon as the initial error becomes larger than 3 px, while the frequency of
convergence of the HC approach begins to decrease for err(p0) > 15. For a computation time
that is half the computation time of the Newton’s method, the advantages of the HC approach
are evident.

4.1.2.2 Evaluation with a line-search method

In this section, the optimization was performed using a Brent method, as defined in sec-
tion 4.1.1.1. Since the issue raised by the approximation of the second derivative of the Hessian
matrix (the HA method) can be solved by a line-search method, this optimization approach
converges and we can compare its performances with the other optimization methods.

We can observe in the Figure 4.14 that the convergence frequency of the HA method be-
comes as high as the HC approach. The convergence domain of the exact Newton’s method
remains small. Concerning the number of iterations, we see that the Newton’s method requires
as many iterations as the HC approach, while the HA approach requires a larger number of
iterations. Since both the HC and HA methods only require to compute the gradient matrix of
the joint histogram, they have also a similar computation time. For a lesser amount of iterations
and a smaller residue, the HC approach is, in general, more adapted to the estimation of the
homography.

4.1.3 Conclusion

The approach that is proposed in this section is intuitive, it has a large convergence domain
and provides an accurate estimation of the optimum. Since the Hessian matrix is computed
only one time, it is not necessary to improve the efficiency of its computation. Nevertheless
the computation of the gradient matrix still requires a large computation time to evaluate the
current image gradients and fill the joint histogram and joint histogram derivatives. In the next
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Figure 4.14: Empirical convergence analysis of the optimization methods. The convergence frequency of the
method using H∗ (in red) is far better than the real Newton’s approach, while the convergence rate and number
of iterations are similar.

Newton HA HC

Time/iteration (ms) 26.4 10 10

Residue (px) 0.06 — 0.06

Figure 4.15: Average time in ms required to compute one update ∆p without line-search and remaining
positioning error after 250 iterations.
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Figure 4.16: Empirical convergence analysis of the optimization methods with the Brent line-search method.
The convergence frequency of the method using H∗ (in red) is far better than the other approaches. The efficiency
of the Newton’s method is limited in terms of convergence rate and number of iterations.

Newton HA HC

Time/iteration (ms) 42.2 24.2 24.2

Residue (px) 0.045 0.052 0.06

Figure 4.17: Average time in ms required to compute one update ∆p with a Brent line-search method and
remaining positioning error after 250 iterations.
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section, we will see how the formulation of the problem can be changed to improve the efficiency
of the optimization.

4.2 Improving the tracker efficiency and robustness

This section is intended to present some methods that can be used to improve both the efficiency
and robustness of the tracker. To evaluate the proposed methods, we will keep the same
empirical validation presented in the previous section.

4.2.1 Optimization approaches

In this section, we present some possible improvements of the MI-based tracking approach in
terms of efficiency and convergence domain. We begin this section by two propositions that
intend to reduce the computation time. First, we apply the inverse compositional formulation
to our MI optimization method. Then we present a new approach to limit the number of pixels
used in the computation of the MI derivatives. Finally, we apply two coarse-to-fine schemes
to increase the robustness of the tracker: one hierarchical warping method and one pyramidal
tracking approach.

4.2.1.1 Inverse compositional formulation

A first step to make the optimization faster is to change the formulation of the problem. As we
saw in the previous section, one drawback of the forward compositional approach is that the
derivatives of the cost function are depending on the current image gradients that are obviously
changing for each input image. To avoid it, we switch the roles of the current and reference
images, and consider that the update parameters are applied to the reference image. This
approach is called the inverse compositional formulation, that is commonly used to solve the
SSD minimization problem for its efficiency [Baker 2001].

We recall that the tracking problem remains formulated as the following optimization prob-
lem:

p̂ = arg max
p

MI (I∗(x), I(w(x,p)))

The difference with the forward compositional approach comes from the optimization process
where the updating steps from the current guess to the optimal displacement parameters are
modified. Instead of searching the update parameters that will bring the warped points of the
current image into the points of the template image, the formulation of the problem is inverted
so that we search the “inverse” update that brings the points of the template image into the
warped points of the current image. The goal can thus be formulated as finding the update ∆p
so that:

∆pk = arg max
∆p

MI
(
I∗(w(x,∆p)), I(w(x,pk))

)
(4.35)

The updating step can be found by changing variables. If we note y = w(x,∆pk) that induces
x = w−1(y,∆pk) then equation (4.35) can be rewritten:

∆pk = arg max
∆p

MI
(
I∗(y), I(w(w−1(y,∆p),pk))

)
. (4.36)

By analogy with the tracking problem definition, it becomes clear that the update satisfies:

w(x,pk+1)← w(w−1(x,∆pk),pk) (4.37)
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that justifies the “inverse compositional” term: the new parameters are obtained with a com-
position of the transformation using the current displacement parameters pk and the inverse of
the transformation produced by the update ∆pk.

The optimization using this formulation is similar to the optimization using the forward
compositional approach. Nevertheless, since the update is considered to affect the reference
image, we will see that more elements of the mutual information derivatives with respect to the
update can be precomputed.

The formulation has changed, nevertheless, the function to optimize remains the same. The
Newton’s, HA and HC methods have, therefore, the same effect on the optimization of MI in
the forward and inverse compositional approaches. Thus, we directly consider the optimization
of the problem using the proposed HC approach with the Hessian matrix computed at the
optimum:

∆p = H∗−1G (4.38)

As we focus on the computation of the update in one iteration, we simplify the notations
by dropping the superscript k that indicates the iteration number (as we did in the previous
section). The gradient matrix G and Hessian matrix H are this time computed from the
equation (4.35) as:

G =
∂MI (I∗(w(x,∆p)), I(w(x,p)))

∂∆p

∣∣∣∣
∆p=0

(4.39)

H =
∂2MI (I∗(w(x,∆p)), I(w(x,p)))

∂∆p2

∣∣∣∣
∆p=0

(4.40)

The equation of the gradient and Hessian matrices are modified considering the fact that now
pI∗ is depending on ∆p and pI is not. The developed expression becomes [Dowson 2008]:

G =
∑

i,j

∂pII∗

∂∆p

(
1 + log

pII∗

pI

)
(4.41)

H =
∑

i,j

∂pII∗

∂∆p

⊤∂pII∗

∂∆p

(
1

pII∗
−

1

pI

)
+
∂2pII∗

∂∆p2

(
1 + log

pII∗

pI

)
(4.42)

These expressions depend on the joint probability and its derivatives that are now equal to:

pII∗ =
1

Nx

∑

x

φ
(
i− I(w(x,p))

)
φ
(
j − I∗(w(x,∆p))

)
(4.43)

∂pII∗

∂∆p
=

1

Nx

∑

x

φ
(
i− I(w(x,p))

) ∂φ
(
j − I∗(w(x,∆p))

)

∂∆p
(4.44)

∂2pII∗

∂∆p2 =
1

Nx

∑

x

φ
(
i− I(w(x,p))

) ∂2φ
(
j − I∗(w(x,∆p))

)

∂∆p2 (4.45)

The derivatives of the φ function can be computed using the same decomposition that were
performed in the previous section:

∂φ(j − I∗(w(x,∆p)))

∂∆p
= −

∂φ

∂j

∂I∗(w(x,∆p))

∂∆p
(4.46)

∂2φ
(
j − I∗(w(x,∆p))

)

∂∆p2 =
∂2φ

∂i2
∂I∗

∂∆p

⊤
∂I∗

∂∆p
−
∂φ

∂j

∂2I∗

∂∆p2 (4.47)
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with:

∂I∗(w(x,∆p))

∂∆p
= ∇I∗

∂w(x,∆p)

∂∆p

∣∣∣∣
∆p=0

(4.48)

∂2I∗(w(x,∆p))

∂∆p2 =
∂w

∂∆p

⊤

∇2I∗
∂w

∂∆p
+∇xI∗

∂2wx

∂∆p2 +∇yI∗
∂2wy

∂∆p2 (4.49)

One of the main interests of the inverse formulation becomes clear. Indeed, since the reference
image is constant, its gradient ∇I∗ is also constant, as well as ∇2I∗. The derivative of the φ
function is computed for I∗(w(x,∆p)) for a null update ∆p, thus I∗(w(x,∆p)) = I∗(x) is also
constant. Finally, since the derivatives of the warp function are also computed for ∆p = 0,
they are also constant. The whole expressions defined by equations (4.46) and(4.47) are finally
constant and can be precomputed for each pixel x.

Considering the computation of the Hessian matrix H∗, since we assume that at the maxi-
mum the current image is perfectly aligned with the reference image with: I(w(x,p∗)) = I∗(x),
the whole expression of the joint probability second derivatives in the equation (4.45) is con-
stant. Therefore the Hessian matrix H∗ remains constant, as it was previously the case in the
forward compositional formulation.

In this section, we presented the inverse compositional formulation applied to the proposed
HC method. It has been shown in [Baker 2001] that the inverse and forward compositional
approaches are equivalent in nominal conditions. Since the derivatives are computed using the
reference image (resp. current image) gradients in the inverse (resp. forward) formulation, the
optimization will be more sensitive to image noise in the reference (resp. current) image. In
our approaches, where, most of the time, the reference image is the first image of the sequence,
the current and reference frames are equally noisy and both optimization methods are then
equivalent. Considering the gain in efficiency that will be evaluated in the empirical validation,
the inverse compositional approach is best suited for our tracking problem.

4.2.1.2 Template pixels selection

Compared to a simple SSD minimization problem, mutual information can still be considered as
a complex function to compute. The inverse approach coupled with the proposed optimization
method offers already a practical solution. Nevertheless, a faster computation allows to achieve
more optimization iterations within the same constant amount of time (for instance between
two incoming frames) and is therefore always an advantage. In this section, we will see that a
simple selection of pixels of the template in the derivatives computation yields to a really faster
optimization that keeps its robustness and accuracy.

To compute the MI between the two images, all the information is required, so all the
reference pixels must be used to compute the marginal and joint probabilities. Nevertheless, to
compute the mutual information derivatives all pixels are not necessary. Indeed, if we consider
the equations (4.46) and (4.47), we can see that the effect of a pixel on the MI derivatives is
proportional to the value of the gradient of the reference image at the pixel location. If a pixel
is located in a uniform region of the image (with small gradients), its motion will not cause
any change in the image entropy or in its mutual information with an other image. One simple
modification is then to perform the computation of the gradient and Hessian matrices using
only the reference pixels that are not in uniform regions.

A simple measure to consider if a pixel is in an uniform region of the template is given by
the norm of the reference image gradients. Therefore, the selection condition can be written as:

‖∇I∗(x)‖ > α (4.50)
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where α is a given threshold. The computation of the joint probability derivatives in the
equations (4.44) and (4.45) is therefore only performed on the reference pixels that respect
this condition (see the Figure 4.18). Since the computation of the joint probability gradient
remains a time consuming operation, this selection significantly improves the efficiency of the
registration.

Reference template Selected pixels of the template

Figure 4.18: To improve the computation time, only the pixels of the template that are not in a uniform region
are used to compute the gradient and Hessian of MI (the pixels in white).

4.2.1.3 Hierarchical motion model

This section is intended to propose a practical solution for the estimation of complex parametric
motion models such as homographies. This approach is based on a coarse-to-fine motion esti-
mation approach that allows to improve the registration in terms of efficiency and robustness.

The transformations that we defined in the first chapter form a group with particular prop-
erties. It is indeed possible to show that translation motions are a subset of the affine trans-
formations, that are as well a subset of the homography transformations [Hartley 2001]. Since
the estimation of a translation is easier and more efficient to estimate, it is much more adapted
to search the homography between two images, by first estimating the translation between
them. Following the same principle, once the translation displacement is estimated, an affine
displacement can be estimated to end with the homography estimation.

This optimization approach is possible with the compositional formulation. Let us note
w the homography warp function and w′ one transformation that belongs to the homography
transformation subset. The tracking problem can be formulated as finding the update ∆pk

that satisfies:

∆pk = arg max
∆p

MI
(
I∗(w(x,∆p)), I(w(x,pk))

)
(4.51)

where ∆pk is the displacement parameter of the transformation w′. The warp update rule is
modified to project the update ∆p into an update on the homography parameter pk as:

w(x,pk+1)← w(w′−1(x,∆pk),pk) (4.52)

If ∆p represents a translation, then then gradient and Hessian matrices of MI are computed
with respect to only two parameters. Moreover, since the displacement model is simple, the
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convergence is reached in a few iterations. The solution that we propose is thus to first estimate
the translational motion. As soon as the convergence is reached for the current motion model, a
more complex displacement model w′ is considered to end with the homography estimation. In
our experiments, we choose to use the translational model, then the Similitude transformation,
then the homography.

The estimation of the homography pt between a reference image I∗ and the image It with
a first guess pt−1 has been illustrated in Figure 4.19. The figure shows some steps of the
optimization with and without the hybrid warping with respect to the number of iteration. It
is clear that the convergence of the hybrid approach is fast compared to the classical approach.

On top of this faster convergence, since the motion model is simple far from the convergence,
this formulation is less sensible to local maxima. The robustness of the tracker is therefore
really improved by this approach. Figure 4.20 represents a registration task where the classical
approach falls in a local maxima and fails, whereas the hybrid approach estimates the large
translational motion first and thus, it avoids the local maxima and converges to the optimum
of MI.

4.2.1.4 Pyramidal implementation

One last point that can increase the convergence rate and the robustness of the optimization
is the use a spatial multi resolution approach. This method is inspired from the KLT imple-
mentation of [Bouguet 2000]. Both the reference and current images are sub-sampled to build
a Gaussian pyramid. The estimation of the displacement parameters is performed from the
smaller resolution to the higher resolution, that is the actual resolution of the input images.
This approach allows to have a coarse to fine estimation of the displacement parameters that
enlarges the convergence domain and, since the optimization is mainly performed at a lower
resolution, it also speeds up the convergence and computation time.

A diagram that represents the pyramidal approach for the MI estimation is given in Fig-
ure 4.21. First a Gaussian pyramid of the reference image I∗ is created. Let us call I∗r the
reference image at a resolution level r, let r = 0 be the original resolution I∗0 = I∗ and M the
number of pyramid levels.

For each input image I a Gaussian pyramid (I0...IM ) is computed. The displacement
parameters p0

t−1 estimated for the previous image for the lower level of the pyramid are converted
into the corresponding displacement parameters at the M th level of the pyramid:

pM
t−1 = PyrM,0(p

0
t−1) (4.53)

where Pyrn,m(pm) is the function that converts the displacement parameters from the mth

pyramid level to the nth that is detailed in the Appendix A.2. A first estimation of the displace-
ment pM

t is then performed by the MI optimization between the two images IM and I∗M . Since
the optimization uses the sub-sampled input images that give less information than the original
images, the resulting estimation can be considered as “coarse”. The estimated parameter is
then converted into the corresponding displacement in the lower level of the pyramid:

pM−1
t−1 = PyrM−1,M (pM

t ) (4.54)

then the estimation of the displacement is refined with the images IM−1 and I∗M−1 of this lower
level of the pyramid. The process is repeated until the lower level of the pyramid is reached,
and finally, the finer parameter p0

t is obtained using the original input images.
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Figure 4.19: Efficiency of the hybrid approach: comparison between the convergence in the classical optimization
and the hybrid warping optimization. The red rectangle represents the ground truth of the position of the template
in the image and the green one represents the current estimated position. The convergence is reached in 149
iterations using the hybrid warping process and 502 iterations with the classical one. We represent the iterations
corresponding to the moment when the warping function w′ changed in the hierarchical approach: translation
estimation [0..88], affine estimation [88..115], homography estimation [115..149].
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Figure 4.20: Robustness of the hybrid approach: comparison between the classical and hybrid approaches as
in Figure 4.19. The classical approach falls in a local maxima while the hybrid approach converges.
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Figure 4.21: Mutual information-based tracking.
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4.2.2 Empirical convergence analysis

In this section, we use the empirical evaluation defined in the previous section to measure the
performances of the considered registration approaches, and validate their advantages. We re-
ported the results in the Figure 4.22. The original inverse approach using the Hessian computed
at convergence is referred as “HC”, the one using the selection approach as “HC fast”, the hi-
erarchical approach as “HC warp”, and the approach using both the hierarchical warp model
and the pyramidal approach as “HC pyramidal + warp”.

First, let us compare the results obtained using the inverse and compositional approaches
using the HC method. The frequency of convergence and the number of iterations to converge
are similar between the two approaches. As expected, the difference comes from the time per
iterations reported in the Figure 4.23: the computation time of the inverse approach is half the
computation time of the forward approach.

Now, if we compare the classical inverse approach with the one that selects the reference
pixels for the MI derivatives computation, we can see that the performances are also similar. In
this experiment, only 30% of the pixels were used to compute the gradient and Hessian matrix
of MI. This selection improves the computation time of about 33% although the convergence
frequency and required number of iterations remain similar.

Finally, as it is generally the case, the coarse-to-fine approaches allow a large increase of the
convergence frequency for a smaller number of iterations. The average computation time is not
significantly modified. Indeed, the convergence is rapidly reached and most of the 250 iterations
used to compute the computation time are therefore performed using the finest estimation.
However, in practice, the computation time is greatly reduced.

4.2.2.1 Conclusion

In this section, from MI based registration methods that had a very small convergence domain
or a low efficiency, we developed a really efficient registration approach. A new optimization
approach that allows for an fast and accurate estimation of the optimum is proposed. This
optimization is generic to the forward and inverse compositional approaches. We show that
additional improvements can be applied to the inverse formulation using a selection of the
reference pixels to obtain a faster computation of the MI derivatives. However, we still have to
evaluate the robustness of the proposed approach to appearance variations that is the topics of
the following section.

4.3 Experimental results

The visual tracking method that is presented in this chapter has been implemented on a laptop
with an Intel core 2 duo 2.4GHz processor. The evaluation of the displacement parameters has
been performed using the presented inverse compositional scheme combined with the coarse-to-
fine approaches. We limit our experiments to the displacement estimation of planar objects (or
almost planar objects in the mosaicing application).

4.3.1 Tracking experiments

The robustness and accuracy of the proposed mutual information tracker have been evaluated
on various image sequences. This first experiments show the performance of the displacement
estimation in classical tracking problems.
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Figure 4.22: Empirical convergence analysis of the improved optimization methods. The efficiency of the fast
approach is similar to the classical proposed approach. The hybrid warping and pyramidal approaches increase
the efficiency of the optimization in terms of both convergence domain and speed.

Inverse Inverse fast Inverse fast Inverse fast
hierarchical hierarchical and pyramidal

Time/iteration (ms) 5.1 3.4 3.1 3.0

Residue (px) 0.06 0.06 0.06 0.06

Figure 4.23: Average time in ms required to compute one update ∆p with the improved methods.
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4.3.1.1 Indoor sequences

These experiments concern two indoor sequences acquired at video rate (25Hz). The initializa-
tion of the tracker has been performed by learning the reference image from the first image of
the sequence and setting the initial homography to the identity. No ground truth of the position
of the object is known, so the comparison in this section is only qualitative.

Comparison between the SSD, NCC and MI trackers

This first experiment shows the advantages of using the MI tracker compared to the SSD tracker
using a simple Gauss-Newton method [Lucas 1981, Shi 1994] and the NCC tracker using the
HC method.

The figure 4.24 illustrates some images of a sequence showing a planar object. The para-
metric motion is an homography. We represent the estimated position of the reference template
by its projection in the image. The reference template includes 5000 pixels. When there is no
strong appearance variations, the SSD tracker performs a good estimation of the object motion.
The registration is very efficient. Indeed, the estimation is performed in an average of 8 milisec-
onds per image. Nevertheless, once the object is subject to illumination variations, the SSD
tracker diverges. The NCC and MI trackers still converge even in the presence of occlusions and
illumination variations. But the estimation of the displacement using the NCC is not as robust
to occlusions as the MI tracker, we can see in the Figure 4.24 that the optimization falls into a
local maxima or the local maxima of NCC is no more corresponding to the correct position of
the object. The computation time is however higher for this two approaches: the NCC tracker
requires about 20 ms per image and the optimization of MI requires about 35 ms per image.

In figure 4.25, we compare the result of the different tracking approaches on a sequence
where the object is not planar. In this sequence, obtained from Youtube, the tracked object is
the face of a speaker. The speaker moves his hands in front of his face, creating large occlusions.
Since the object is not planar, we simply want to estimate a general displacement of the face
in the image and use an affine motion. All the approaches keep on tracking tracking the face
despite the large occlusions. Nevertheless, we can observe that during the first occlusion, the
estimation given by the MI-based tracker is far more accurate than the other approaches.

Testing the tracker robustness

This second sequence is chosen to illustrate the robustness of the motion estimation through
many perturbations. Some images of the sequence are shown in figure 4.26. The template
includes 16000 reference pixels. Firstly, the object is subject to several illumination variations:
the artificial light produced an oscillation on the global illumination of the captured sequence.
Moreover the object is not Lambertian, thus the sequence is subject to saturation and specu-
larities. The object is moved from its initial position using wide angle and wide range motions.
And finally the object is subject to fast motion causing a significant blur in many images.

The frames of the sequence are presented with the corresponding estimated positions of
the reference image. No ground truth of the object position is known, however, the projection
of the tracked image on the reference image has been performed and qualitatively attests the
accuracy of the tracker. Indeed the reconstructed templates show strong variations in terms
of appearance but not in terms of position. The augmented reality application based on the
homography estimation and presented in Figure 4.27 also illustrates the quality of the computed
displacement. We can conclude that the estimation of the motion is robust and accurate despite
the strong illumination variations and blurring effects.

Concerning the processing time, using inverse approach with the Hessian computed at the
optimum with no selection of the reference pixels (section 4.2.1.1) the images are processed at
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SSD NCC MI

Figure 4.24: Tracking a planar object in an indoor sequence. Comparison between the SSD (in green), NCC
(blue) and MI tracker (orange): the SSD tracker fails when the object is subject to small local illumination
variations, while both the NCC and MI trackers converge. However the NCC tracker is more sensible to occlusions.

87



SSD NCC MI

Figure 4.25: Tracking a non-planar object using affine motion. Comparison between the SSD (in green),
NCC (blue) and MI tracker (orange): the SSD and NCC trackers are more sensible to local occlusions than the
MI-based tracker.
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video rate (25Hz). Using the fast computation (section 4.2.1.2) it is about 40Hz with the same
robustness and precision.

Tracked images Templates Tracked images Templates

Figure 4.26: Tracking a planar object through illumination variations. Tracked frames: the orange rectangle
represents the rectangle from the template image transformed using the estimated homography. Templates:
projection of the templates for the same iterations in the reference image.

4.3.1.2 Evaluation on benchmark datasets

To have a quantitative measure of its accuracy and robustness, the tracker has been evaluated
on some very demanding reference datasets proposed by Metaio GmbH [Lieberknecht 2009].
Those datasets include a large set of sequences with the typical motions that we are supposed
to face in augmented reality applications. Indeed it includes sequences using the eight reference
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Figure 4.27: Augmenting the input images with a virtual robot placed on the top of the box.

images presented in Figure 4.28, from low repetitive texture to highly repetitive texture. And
for each reference image is a set of four sequences depicting wide angle, high range, fast far and
fast close motion and one sequence with illumination variations.

Low repetitive Repetitive

Normal Highly repetitive

Figure 4.28: Reference images used in the tracking experiments from low repetitive texture to highly repetitive
texture.

The estimated motion has been compared with the ground truth for each sequences. The
percentages given in the tables have been computed by Metaio relative to their ground truth.
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The upper table on figure 4.31 shows the results that have been obtained using the proposed
approach. The tracker is considered in convergence if the error between the estimation and
the ground truth is below a given threshold. The error measure represents the reprojection
error of the corner of the reference in pixels. Its equation is the same as the one defined in
equation (4.34). Some images of the sequences are shown in Figure 4.29 and Figure 4.30 with
the estimated position of the reference template. The mutual information-based tracker proves
its robustness and accuracy on most of the sequences.
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Figure 4.29: Various image sequences from the dataset: angle, range and fast far. The first line represents the
image with the estimated position of the reference (in green). The second line represents inverse projection from
the image to the reference image.

The results obtained using the ESM approach [Benhimane 2007] are also represented in
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Figure 4.30: Various image sequences from the dataset: fast close and illumination variations.

92



the lower table of figure 4.31 where better convergence results are in bold font (reported
from [Lieberknecht 2009]). If we compare the results of the two methods we can see that
both have similar convergence rates in most cases. But MI has an undeniable advantage in the
cases of illumination variations experiments.

We can conclude that the proposed MI computation has a large convergence domain (at
least as large as the one using the SSD function) and that the proposed registration scheme is
adapted to use the potential of the MI function leading to a very efficient tracker well suited
for the augmented reality problem.

MI Angle Range Fast Far Fast Close Illumination
Low 100.0 % 94.1 % 75.2 % 56.5 % 99.5 %

100.0 % 98.1 % 69.9 % 43.7 % 93.0 %
Repetitive 76.9 % 67.9 % 22.8 % 63.6 % 100.0 %

91.3 % 67.1 % 10.4 % 70.5 % 96.2 %
Normal 99.2 % 99.3 % 43.9 % 86.7 % 99.6 %

100.0 % 100.0 % 14.8 % 84.5 % 100.0 %
High 47.1 % 23.2 % 7.2 % 10.0 % 50.6 %

100.0 % 69.8 % 20.8 % 83.8 % 100.0 %

ESM Angle Range Fast Far Fast Close Illumination
Low 100.0 % 92.3 % 35.0 % 21.6 % 71.1 %

100.0 % 64.2 % 10.6 % 26.8 % 56.3 %
Repetitive 61.9 % 50.4 % 22.5 % 50.2 % 34.5 %

2.9 % 11.3 % 6.8 % 35.8 % 11.3 %
Normal 95.4 % 77.8 % 7.5 % 67.1 % 76.8 %

99.6 % 99.0 % 15.7 % 86.8 % 90.7 %
High 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

100.0 % 61.4 % 22.8 % 45.5 % 79.7 %

Figure 4.31: Ratio of successfully tracked images for our approach compared to the ESM [Lieberknecht 2009]
(these results are provided by Metaio after the evaluation of our results).

4.3.2 Multimodal tracking

In this section, we show the application of the proposed approach in multimodal tracking or
registration problems. We call multimodal images, the images that have been acquired using
different types of sensors. In this chapter, we will present applications registering a map with
airborne images and a satellite image with infrared images.

4.3.2.1 Satellite images versus map

This experiment illustrates the capabilities of the mutual information-based tracker in align-
ment applications between map and aerial images (see Figure 4.32). The reference image is a
map template provided by IGN (Institut Géographique National) that can easily be linked to
Geographic Information System (GIS) and the sequence has been acquired using a moving USB
camera focusing on a poster representing the satellite image corresponding to the map.

As it has been previously noticed in the second chapter on mutual information, a non-linear
relationship exists between the intensities of the map and aerial image and this link can be
evaluated by the MI functions. Mutual information can therefore allow for tracking the satellite
image using the map template. Figure 4.33 shows the reference image and some image of the
sequence with the corresponding overlaid results. There is no available ground truth for this
experiment, nevertheless the overlaid results give a good overview of the alignment accuracy.
To validate the accuracy, we also used the estimated homography in an augmented reality
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Reference Classical image

Figure 4.32: Input images: map vs airborne images.

application. Since the IGN map is linked with a GIS, some virtual information such as road,
hydrographic network, or house footprint can be overlaid on the original satellite image in a
consistent way.

4.3.2.2 Airborne infrared image versus satellite images

The same method has been evaluated with another current modality. This time the reference is
a satellite image and the sequence is an airborne infrared sequence provided by Thales Optronic
(see Figure 4.34). The initial homography is manually defined.

As we can expect, although very different, the two images shown in figure 4.35 are sharing
a lot of information and thus MI can handle the tracking on the infrared sequence. The warp
function is still a homography. The satellite scene is then supposed to be planar leading to
an approximation. Nevertheless the proposed method remains robust. No ground truth is
available, but the overlaid images as well as the augmented reality application qualitatively
validates the accuracy of the tracker. As figure 4.35 shows, the satellite image of the airport is
well tracked on the sequence.

The homographies have been decomposed to estimate the position of the plane with respect
to the airport. The resulting 3D trajectory of the camera is represented in figure 4.36, as we
can see the trajectory is smooth and has the expected behavior that shows the approach of a
plane with respect to the runway. Figures 4.35 and 4.37 show some tracked images and some
augmented images that validate the accuracy of the motion estimation.

4.3.2.3 Potential AR applications of multimodal registration

Registering a map and an aerial image sequence is an extreme case, but registration between
aerial and satellite (or any combination of such modalities), acquired at different time (and thus
different) can be considered. Potential applications include visual odometry, aircraft or drone
localization, pilot assistance, etc.

Infrared cameras (although still expensive) are widely used by civilians and, obviously,
military aircraft. Such a registration process with a simple satellite image may prove to be
very helpful for the pilots especially when landing (night or day) on a small and ILS free
airport. Considering that aircraft position is fully known, additional information about runway,
other aircraft positions or military targets may thus be easily displayed in the pilot helmet.

Although we mentioned here applications in the aeronautic area, it is clear that other do-
mains may be targeted such as energy monitoring, robotics, urbanization, architecture or de-
fense.
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Tracked images Augmented images

Figure 4.33: Tracking an aerial sequence using a map template image by MI: the frames are represented with
the overimposed satellite reference (inside the green rectangle) projected using the estimated homography (image
and map source: IGN) and augmented with roads and aquatic areas.
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Reference Classical image

Figure 4.34: Input images: satellite vs infrared airborne images.

4.3.3 Mosaicing application

This experiment shows the application of the MI tracker to the mosaicing problem that was
defined in Frame 1 page 16. We recall that the goal of the mosaicing task is to create one
image from several overlapping images. In this experiment, the overlapping images are simply a
compressed sequence of 3600 images obtained from Youtube. The aerial scene is acquired from
a camera embedded on a flying UAV and shows the ground that is approximately 1 kilometer
away from the camera. Since this distance is very large, the scene can be approximated as a
plane and tracked using homographies. During the acquisition of the sequence, the camera is
moving forward and is rotating around the vertical axis.

Since there is no object visible in the whole sequence, it is necessary to define multiple
reference images. The approach is build as follows:

• Initialization: the first image is chosen as reference image, i.e. I∗0 = I0.

• Tracking: for every frame, we compute the displacement pk between It and I∗k.

• Reference Update: every 30 images, the reference image I∗k is changed and defined as the
current image, i.e. I∗k = It for t = 30k.

Using the homography from the current image to the current reference image and the homo-
graphies between the references, we retrieve the homography between the current image and
the first image. Using this homography, we can project all the images of the sequence into the
mosaic image and construct the global image of the whole scene. In Figure 4.38 we show some
images from the sequence. This sequence has been downloaded on Youtube and is affected by
the H264 coding artifacts. We can also note the poor quality of the images. As we can see in the
resulting mosaic image. Despite this poor quality, the resulting mosaic presented in Figure 4.39
shows the accuracy of the MI tacker. Since the camera is making an entire revolution, the first
and last images are overlapping. A small shift occurs between the first and last estimated posi-
tions: we highlight two corresponding patterns that should have been at the same location on
the mosaic. Let us note that nothing has been performed to reduce the drift (such as the bundle
adjustment approach proposed by [Brown, Matthew 2007]). Considering the template update
problem and the planar approximation result, we can assume that the estimated homographies
are accurate. The same experiment was performed using the SSD tracker. In this case, due to
the noise and illumination variations, this registration approach diverges after a few iterations.
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Figure 4.35: Tracking of a satellite template image using MI on an airborne FLIR sequence. 6 frames are
represented with the overimposed aerial reference (inside the green rectangle) projected using the estimated
homography (Infrared images courtesy of Thales Optronic, optical image is obtained from google earth).
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Figure 4.36: From the homography to the estimation of the camera position. Green curve: estimated camera
trajectory in the 3D space, blue: the 6 estimated camera positions corresponding to the frames represented in
figure 4.35.

Figure 4.37: Augmenting the infrared images with the satellite appearance of the runway and an additional
“land here” sign.
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Figure 4.38: Some overlapping key images used for the mosaicing application.

Figure 4.39: Resulting mosaic image: despite the poor quality of the sequence and the approximation that the
scene is planar, the final displacement between the first and last image is accurate. The red and green contours
show the position of one physical pattern in the first and last images of the sequence.
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4.4 Conclusion

This chapter has presented a robust and accurate template based-tracker that was defined using
a new approach based on the mutual information function. A reference image representing the
object is used to track the object along a sequence of images. At each input image, the algorithm
estimates the position of the object that maximizes the mutual information between the current
image and the warped reference image. Many experiments including reference benchmarks
shows the proposed approach to be very efficient:

• The proposed definition uses the advantages of MI with respect to its robustness toward
occlusions, illumination variations and images from different modalities.

• No geometrical features are required, the only condition is to have a textured object. Using
this texture in our approach provides a very accurate estimation of the object or camera
displacement. This accuracy is demonstrated in several augmented reality applications.

• Our contributions include the creation of a new optimization approach that is defined to
deal with the quasi-concave shape of MI. This approach is taking advantage of both the
wide convergence domain of MI and its accurate maximum and, besides, the approach is
computationally efficient.

• We also propose algorithm improvements that greatly reduce the computation time of the
optimization using a selection on the reference pixels that yields to an accurate, fast and
robust tracker.

More generally, our tracking approach is here only applied to planar rigid objects, future works
include tracking approaches of deformable objects. In this chapter we limit the optimization
method to the mutual information function. Nevertheless, this approach can also be applied to
every quasi-concave or quasi-convex cost function. Such method is not necessary in the SSD
minimization problem for which the Gauss-Newton method has proved to be efficient. However,
considering the NCC or ZNCC similarity functions, the proposed approach would be well suited.
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Chapter 5

Mutual information-based pose
estimation

The previous chapter presented how to determine the position of an object in the image. We
have seen that some parametric motion models allow the estimation of the pose of the object in
the Cartesian space. Nevertheless, this model is limited to planar objects. To extend the pose
estimation to the other rigid objects, instead of considering warping functions, the projection
of a 3D model is directly considered with respect to the relative pose between the camera and
the model. The goal is then to find the pose that best register the model with the input images.

In this chapter, we present our new pose estimation method that is based on a virtual visual
servoing approach. The optimization approach that was proposed in the previous chapter is
modified to fit the present problem. Finally, the last section shows some applications that show
the robustness and accuracy of the proposed pose estimation approach.

5.1 Pose estimation as a registration problem

In this section, we focus on a model-based pose estimation problem that assumes the model
of the object (or the scene) to be known. Since the goal is to perform the registration of the
model with respect to an image, it can be formulated as the optimization of a similarity function
between the input image I∗ and the projection of the model M. If γ are the intrinsic camera
parameters and r its pose (extrinsic parameters), the registration problem can be written as:

r̂ = arg max
r
f (I∗, prγ(M, r)) . (5.1)

We assume that the intrinsic parameters are already estimated using the camera calibration.
The camera pose r contains the parameters that define the homogeneous matrix involved in the
projection of the model. This general formulation yields to many approaches. The classical one
is to extract some features from the input image I∗ and minimize the reprojection error between
these features and the one of the model projected using r [Dementhon 1995, Drummond 2002,
Comport 2006, Lim 1988, Lu 2000].

The considered approach differs from those classical approaches in the sens that there is
no more features extraction. The mutual information function directly measures the similarity
of appearance between the image I∗ and the image Iγ resulting from the projection of the
model [Panin 2008]:

r̂ = arg max
r

MI(I∗, Iγ(M, r)) (5.2)

= arg max
r

MI(I∗, I(r)).

In this approach, it is therefore necessary to have the textured 3D model of the object and
this model has to be projected for each pose of the camera r used in the iterative optimization
process. Using the projection equations that have been defined in Section 1.1.1, it is possible
to implement this projection. An optimized implementation of this projection process can be
performed using any 3D renderer as OpenGL or DirectX.
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To perform this maximization problem, several approaches are possible. We recall that
the optimization on the pose parameters can be performed using either an additional or a
compositional approach. In this part, we consider that the current parameters r define the
estimated camera pose, and we update it using an increment v that is nothing but the velocity
v of this virtual camera. This is exactly the problem that will be considered in the visual
servoing problem, as the difference that the camera will be real. Since in this method the
camera is virtual, it is generally called the virtual visual servoing approach [Sundareswaran 1998,
Marchand 2002].

5.2 Mutual information on SE(3)

Since we know the variation of the point coordinates with respect to the camera pose, it is
possible to study the resulting variation of MI and solve the registration problem based on the
MI maximization.

The pose of the camera is defined by 6 parameters: 3 translations and 3 rotations. Indepen-
dently, the rotations around the 3 axes of the camera frame have a very different effect on the
image, as well as the 3 translations. However it is not the case if the rotations and translations
are simultaneously considered. For instance we computed the mutual information with respect
to the positioning error on the rotation around y and translation along x in Figure 5.1. The
distance between the desired camera pose and the scene is 1 meter. We can see that the mutual
information similarity function has a valley shape that follows tx = −ry. Indeed the two degree
of freedom are strongly correlated. As we can see the image I∗ acquired at the desired position
is very similar to the image acquired with a positioning error of (tx, ry) = (−0.1, 0.1). For the
reasons of symmetry, it is similar if we consider the rotation around x with a translation along
y.

This correlation can be analytically observed in the expression of the interaction matrix.
Indeed if we focus only on the translation velocity νx and the rotation velocity ωy of the
interaction matrix, the position variation in the image gives:

ẋ =

[
−1/Z

0

]
νx +

[
−(1 + x2)
−xy

]
ωy (5.3)

If x is small then the variation ẋ tends to be null for ωy = −Zνx. If the camera is moving with
a positioning error that satisfies ry = −Ztx, the variation in the image is very small, as well
as the variation of the mutual information or any alignment function (the alignment functions
have a valley shape).

Since the rotations and translations in r are correlated, a simple steepest descent optimiza-
tion approach using the direction given by the interaction matrix related to MI would not
provide an accurate estimation of the optimum of MI. Therefore, a second order optimization
approach such as a Newton’s like method is necessary.

5.2.1 MI based optimization

Since the link between the variation of the point position and the pose variation is known as
well as the MI shape with respect to the camera pose, the goal is now to find the increment
that changes the current image I(r) to optimally increase its MI with the input image I∗.

Let f be any function depending on the camera pose r. Using a first order Taylor expansion
f at the current pose rk in the visual servoing problem gives:

f(rk+1) ≃ f(rk) + L⊤
f ṙ∆t (5.4)
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MI(tx, ry)
Desired pose Pose and image for
and image (tx, ry) = (−0.1, 0.1)

Figure 5.1: Correlation between the camera pose parameters. MI function has a valley shape. Indeed, the
rotation ry is strongly correlated with the translation tx, as well as rx and ty. On the right we can observe its
cause: the two transformations have almost the same effect on the image, so that two different camera poses can
yield to similar images.

where δt is the lapse of time necessary to transform rk into rk+1 using the pose variation ṙ
(which can be seen as a virtual camera pose v with v = ṙ). The update rule of the pose is
computed as follows:

rk+1 = e[v] rk (5.5)

where e[v] is the exponential map of v. Lg is the interaction matrix related to f , i.e. the matrix
that links the variation of f with the pose variation [Chaumette 2006]. If f is replaced by L⊤

MI

the interaction matrix of MI, it yields:

L⊤
MI(r

k+1) ≃ L⊤
MI(r

k) + HMI(r
k)v∆t (5.6)

where HMI is the interaction matrix of the interaction matrix of MI, that we call the MI Hessian
matrix in an abuse of notation. Since the goal is to maximize the mutual information, we want
to reach the pose rk+1 where the variation of MI with respect to the pose variation is zero
(LMI(r

k+1) = 0). Let us simply set ∆t to 1 second and drop it. Using the equation (5.6), the
increment that leads to a null MI variation approximatelly respects:

v = −αH−1
MI(r

k)L⊤
MI(r

k) (5.7)

where α ∈ [0, 1] is a scalar gain that control the convergence speed. Since the expression of the
mutual information keeps the same quasi-concave shape as in the tracking problem, with the
same coupling problem between the pose parameters, as it was the case between the parameters
of the homography, we can assume that the study of the optimization approach used in the
tracking problem is applicable to the pose estimation problem. Therefore, the increment of the
pose is computed using the proposed HC approach:

v = −αH∗−1

MI L⊤
MI (5.8)

where H∗
MI is the Hessian matrix estimated at the optimal position r∗ (H∗

MI = HMI(r
∗)) and

LMI refers to the interation matrix related to MI computed at the current position rk. Of course
the optimal pose r∗ is unknown, nevertheless, we will see that, as in the tracking problem, the
Hessian matrix at the optimum H∗

MI can be estimated without knowing r∗.
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5.2.2 MI derivatives

Given the MI equation (2.15) page 27 and the chain rules simplifications [Dowson 2006] detailed
in Appendix B.1, the expression of the Gradient and Hessian are:

LMI =
∑

i,j

LpII∗

(
1 + log

(
pII∗

pI∗

))
(5.9)

HMI =
∑

i,j

L⊤
pII∗

LpII∗

(
1

pII∗
−

1

pI∗

)
+ HpII∗

(
1 + log

(
pII∗

pI∗

))
(5.10)

For the same reasons detailed in Section 4.1.1.2, we compute the full expression of the Hessian
matrix. Considering the expressions of equations (5.9) and (5.10), all the required variables are
known apart from the joint probability derivatives. From the equation (2.19), we deduce the
joint probability expression and its variations with respect to the camera pose:

pII∗(i, j, r) =
1

Nx

∑

x

φ
(
i− I(x, r)

)
φ
(
j − I∗(x)

)
(5.11)

LpII∗ (i,j,r) =
1

Nx

∑

x

Lφ(i−I(x,r))φ
(
j − I∗(x)

)

HpII∗ (i,j,r) =
1

Nx

∑

x

Hφ(i−I(x,r))φ
(
j − I∗(x)

)

The variation of φ can be obtained using the chain rule:

Lφ(i−I(x,r)) = −
∂φ

∂i
LI (5.12)

Hφ(i−I(x,r)) =
∂2φ

∂i2
L⊤

I
LI −

∂φ

∂i
HI (5.13)

If we make the assumption that the scene is Lambertian that is correct for a very small dis-
placement, then the interaction matrix of the intensity of a point LI and its Hessian HI are
found using [Collewet 2008b]:

LI = ∇I Lx (5.14)

HI = Lx
⊤ ∇2I Lx +∇xIHx +∇yIHy (5.15)

where ∇I = (∇xIm,∇xIm) are the image gradients, ∇2I ∈ R2×2 are the gradients of the
image gradients and Lx is the interaction matrix of a point that links its displacement in the
image plan to the camera velocity. Hx and Hy are the Hessians of the two coordinates of
the point with respect to the camera velocity. Since the variations of position of the point
provided by the interaction matrix and Hessian matrix are, in general, given in meters, the
image gradients must also be expressed in meters. This convertion from the pixel to the metric
space of the image gradients is performed using the camera intrinsic parameters px and py using
∇I = (px∇xI, py∇yI). The interaction matrix is given by (see the details in Frame 9):

Lx =

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
.

This interaction matrix depends on both the position (x, y) of the point in the image plane
and its depth Z in the camera frame. In the pose estimation problem, since the image is the
projection of our 3D model, it is possible to get the depth image or depth map using the object’s
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Frame 9 Interaction matrix computation.

Let us note ẋ the derivative of the variable x with respect to the time. We recall that a
point cX = (X,Y, Z) expressed in the camera frame is projected in the image plan using
x = (X/Z, Y/Z) (x is expressed in the metric space). To obtain the derivative of the position
of a pixel, we differentiate this expression [Chaumette 2006]:

{
ẋ = Ẋ/Z −XŻ/Z2 = (Ẋ − xŻ)/Z

ẏ = Ẏ /Z − Y Ż/Z2 = (Ẏ − yŻ)/Z
(5.16)

Where we see that the derivative of the pixel location is depending on the derivative of the
3D coordinates of the physical point X in the camera frame. Since the physical point is
supposed motionless in the world frame, the derivative of its coordinates are only depending
on the camera velocity v = (ν,ω) and are given by:

Ẋ = −ν − ω ×X⇐⇒





Ẋ = −νx − ωyZ − ωzY

Ẏ = −νy − ωzX − ωxZ

Ż = −νz − ωxY − ωyX

(5.17)

where × denotes the cross product operation. Combining the two equations (5.16) and (5.17)
the displacement of a point in the image can be expressed with respect to the camera velocity:

{
ẋ = −νx/Z + xνz/Z + xyωx − (1 + x2)ωy + yωz

ẏ = −νy/Z + yνz/Z + (1 + y2)ωx − xyωy − xωz
(5.18)

This equation is linear and can therefore be rewritten as:

ẋ = Lxv (5.19)

with

Lx =

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
. (5.20)

Lx is called the interaction matrix that links the displacement of a point in the image to the
velocity of the camera. We see that it only depends on the coordinates of the point (x, y)
in meters and the depth Z of the point in the camera frame.
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model and the perspective geometry, or directly using the Z-buffer that is usually available in
the 3D renderers.

The Hessian matrix of the point is given by [Lapresté 2004]:

Hx =




0 0 −V 2 0 2xV −yV
0 0 0 −V 0 −xV
−V 2 0 2xV 2 yV −2x2V 2xyV

0 −V yV −x −2xy y2 − x2

2xV 0 −2x2V −2xy 2x(1 + x2) −y(1 + 2x2)
−yV −xV 2xyV y2 − x2 −y(1 + 2x2) x(2y2 + 1)




Hy =




0 0 0 V yV 0
0 0 −V 2 0 xV −2yV
0 −V 2 2yV 2 −xV −2xyV 2y2V
V 0 −xV −y x2 − y2 −2xy
yV xV −2xyV x2 − y2 y(2x2 + 1) −2xy2

0 −2yV 2y2V −2xy −2xy2 2y(1 + y2)




where V = 1/Z. During the iterative process, the virtual camera moves, causing the depth
of each point to change. The interaction matrix and Hessian matrix are therefore changing
at every iteration. The HC optimization method, that consists in using the Hessian matrix
at the optimum r∗ of MI, needs the depth of each point Z∗ at the optimum that is unknown.
To perform the estimation, we assume that the depth of the points between the current and
the desired pose is slighly changing and we set the depth Z∗ equal to the current depth Z. To
improve the convergence of the optimization, the depths of each point Z∗ and the Hessian matrix
H∗ are updated while the algorithm is converging. Therefore, at convergence, the estimation of
H∗ will be accurate.

5.3 Experimental results

This section presents two pose estimation experiments using the proposed MI-based approach.
To show its capability to estimate the pose of a known object, one first pose computation
experiment is performed in simulation so that the ground truth is known and that the quality
of the pose estimation can be evaluated. A second experiment presents the proposed approach
in real conditions.

5.3.1 Simulation results

In this experiment, the virtual outdoor environment presented in Figure 5.2 is used to acquire
a reference image shown in Figure 5.3. The desired pose of the camera is learned as ground
truth. The virtual camera is then moved to a new pose. Then the virtual visual servoing task
is performed begining from this initial pose.

As we can see in Figure 5.3, the positioning error is decreasing to reach a very accurate esti-
mation of the pose of the camera with a final image error that depicts a null error (uniform gray
image). The final positioning error is about 0.02 meters in translation and 0.01o. Considering
that the distance between the camera and the scene is about 50 meters, the accuracy is very
significant.

5.3.2 Real environment

To show the application of the approach in real conditions a pose computation experiment is
performed on a real indoor image. The input image has been acquired with a calibrated camera.
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External view Initial depth image

Figure 5.2: Localization experiment in an urban environment.

A coarse model of the object has been created. No ground truth is available so that the results
are only judged using the final image error.

Figure 5.4 shows the reference image (the acquired image) and the initial image resulting
from the model projected at the initial virtual camera pose. We can see that the initial pose is
far from the desired pose. Figure 5.5 shows the evolution of pose estimation in the registration
process. Since the illumination conditions of the real scene are unknown and different from the
conditions in the simulator, the final image error does not show a null error, nevertheless it is
clear that the two images are well matched since the edges are in the same position in the error
image. In spite of the large initial positioning error and the different illumination conditions
from the reference to the rendered image the pose estimation task converges and provides a
good estimation of the camera pose (or object pose).

5.4 Conclusion

In this chapter, our contribution is to propose a new way to estimate the pose of an object in
an image using the mutual information between the image and the projection of a 3D model.
The advantages of this approach are its robustness to appearance variations and its accurate
estimation of the camera pose that it provides. We observe that the approach requires to render
the current image for each pose of the camera during the optimization. The process is currently
time consuming due to rendering process and, therefore, the whole approach can for the moment
not be performed at video rate.

Nevertheless, also more experiments have to be performed, the experimental results pre-
sented here are really promising for many applications. Since 3D models of most of the cities
are created, a very interesting application will be to use the proposed approach for vehicle lo-
calization and visual odometry. The approach would be perfectly suited due to the robustness
of MI with respect to illumination variations and occlusions.
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Input images I∗ Initial error

Initial projection of the model I(r0) Final Error

Translation errors (m) Rotational error (o)

Camera velocity MI evolution

Figure 5.3: Virtual visual servoing using mutual information with a simulation. The image error and positioning
error show that the estimation of pose is very accurate.
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Input image Camera velocity

Evolution of MI Estimated pose

Figure 5.4: Pose computation experiments on a real indoor image: input image, camera velocity (in m.s−1 and
rad.s−1), MI with respect to the iteration number and final estimated pose relative to the 3D model.
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Rendered current image Current depth image Error image
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Figure 5.5: Evolution of the registration process.
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Part III

Visual Servoing
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Overview

The integration of sensors in the area of robotics has created many new possibilities. As
the sens of sight is very important in the human perception, from all robots sensors (ultra-
sonic, infrared, accelerometers, force sensors), visions-sensors greatly improve the adaptability
of robotic systems. Visual servoing consists in controlling a robot using the information pro-
vided by one or multiple cameras that can either be mounted on the robot or that observes
it [Hashimoto 1993, Hutchinson 1996, Chaumette 2006]. From the classical positioning task
to more complex navigation tasks, the applications are widespread in the industrial, medical,
space, defense domains and many others.

Most of these applications require a positioning task that is accurate, robust to the ap-
pearance variations of the scene and that is responsive (see the Figure 5.6). In this thesis, we
focus on the case when one camera is mounted on the robot (also called monocular eye-in-hand
configuration). We begin this part with a partial state of the art on the different visual servoing
scheme. Along with the classical approaches that use geometric features, we present the di-
rect approaches (that does not require any matching nor tracking steps) and show the interest
of our new method based on mutual information. Since visual servoing and pose computa-
tion (defined in the previous chapter) are two dual problems, we will briefly define the mutual
information-based visual servoing task and will focus on the experimental validation of the pro-
posed approach. The new approach is evaluated on many experiments using a 6 dof gantry
robot and compared with other visual servoing methods. The classical visual servoing task is
finally adapted to a navigation problem. We will show its efficiency on outdoor experiments
carried out using a non-holonomic robot.

(a) (b)

(c) (d)

Figure 5.6: Some illustrations of visual servoing applications: (a) people tracking [Crétual 1998], (b) Eurobot
walking on ISS (image courtesy of ESA) [Dionnet 2007], (c) ultrasound visual servoing [Nadeau 2010], (d) bottle
grasping.
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Chapter 6

From geometric to direct visual
servoing

In this section, we recall the general principle of a visual servoing task and some of the solutions
proposed in the literature. The goal is not to provide an exhaustive state of the art, but is
simply to present the main visual servoing approaches to introduce and show what is original
in our own method.

6.1 Positioning tasks

A visual servoing task involves using the information provided by a camera to control the
displacement of a dynamic system. This positioning problem can always be written as the
optimization of a cost function. From an initial arbitrary pose r0, the camera has to reach the
desired pose r∗ that better satisfies some properties measured in the images. If we note f , the
function that measures the positioning error, then the visual servoing task can be written as:

r̂ = arg min
r
f(r, r∗). (6.1)

The visual servoing problem can, therefore, be considered as an optimization of the function f
where r is incrementally updated to reach an optimum of f at r̂ (if f is correctly chosen at the
end of the minimization we should have r̂ = r∗). The pose update is performed by applying a
velocity v to the camera that is mounted on a robot. Depending on the way to build the cost
function f , we separate the visual servoing approaches in two categories: the ones that require
a matching or/and tracking step between visual features to define the measurement error and
the ones that do not.

6.1.1 Visual servoing using geometric features

Most of the visual servoing approaches use 2D, 2D1/2 or 3D information extracted from the
image to control the position of the robot r. The information is parametrized into a vector of
visual features s(r) that depends on the pose r. The goal of the task is then to minimize the
error between the desired features s∗ and the current features s(r) extracted from the current
image. The error is usually defined as the difference between the two vectors s∗ and s(r):

r̂ = arg min
r

e(r) with: e = s(r)− s∗ (6.2)

Since the desired features are constant, the variation of the error is equal to the variation of the
current features (ṡ = ė). To evaluate the evolution of the error with respect to time, the time
variation of the features is then considered. This variation is defined by:

ṡ = Lsv (6.3)

where v = (ν,ω) is the velocity of the camera and Ls is the interaction matrix that links the
variation of the features to the velocity of the camera. Several control laws can be considered.
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The classical solution is to require an exponential decrease of the error, so that when the camera
is far from the desired position it moves faster. On the contrary, when it reaches the desired
pose, it converges to a null velocity. To have an exponential decrease, the error must satisfy

ė = −λe

where λ is a scalar factor. The velocity has then to satisfy:

Lsv = −λe (6.4)

where the resolution of the problem is performed using an iterative least square approach:

v = −λL+
s e with: L+

s = (L⊤
s Ls)

−1L⊤
s (6.5)

where the velocity v is recomputed for each input image. L+
s is called pseudo-inverse of the

matrix Ls. Several choices of visual features s have been proposed.

6.1.1.1 3D visual servoing

A first solution is to define the error directly in the Cartesian space and the features as the pose
of the object (environment) with respect to the camera (or with respect to a reference frame). s
is then defined using the parametrization of the transformation between the current and desired
pose. Since the interaction matrix is a full rank 6 × 6 matrix of rank 6, the pseudo-inverse of
the interaction matrix is equivalent with its inverse. The velocity is then directly obtained
using [Wilson 1996, Chaumette 2006]:

v = −λL−1
s e (6.6)

The main drawback of this approach is that it requires to estimate the pose of the object (see
the pose computation problem in the previous chapter). This estimation is a difficult task and
requires to have the intrinsic parameters of the camera and a 3D model of the object. An other
issue is that the resulting control law defines an optimal trajectory in the Cartesian space but
gives no guaranty to keep the visibility of the visual features in the image (necessary to solve
the pose estimation problem). To keep the visibility of the features some approaches have been
proposed to couple the visual servoing task with a trajectory planification task [Mezouar 2001].
Nevertheless, the combination of the two tasks becomes complex.

6.1.1.2 2D visual servoing

Feature-based approaches

The 2D visual servoing approaches minimize the positioning error in the image space. A
widespread approach is to define the features as geometrical patterns in the images such as
points, lines or moments. The error is then defined as the distance between these current fea-
tures and their desired positions (see the 2D feature-based visual servoing in Figure 6.1: the
error to minimize is represented by the green segments between the desired features in red
and current features in blue). Since a large number of visual features allows a more accurate
positioning task, it is common to consider several visual features.

A typical visual servoing approach based on 4 dots is detailed in the Frame 10. At the
beginning of the task, the current and desired features have to be matched. Then, at each
iteration of the control law, the current features are tracked over the frames. The control law is
defined to minimize the visual error between the current and desired features. If the interaction
matrix is correctly estimated, the current features are supposed to move from their initial
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position to their desired position following a straight line in the image. The current features
should, therefore, remain in the image and, contrary to the 3D approaches, the risk to have
them outside the image decreases. Nevertheless, this implies that the trajectory of the robot in
the Cartesian space is not optimal. For example, a large rotational positioning error around the
z axis induces a large translational motion of the camera along the z axis [Chaumette 1997].
This is why several researches have been proposed to best decouple the degrees of freedom of the
camera using, for example, image moments [Tahri 2005], second order control laws [Corke 2001,
Lapresté 2004, Malis 2004] or introducing some 3D information in the features as in the 2D 1/2
visual servoing approach [Chaumette 2000].

The main problem of these approaches is their dependence to particular geometrical features
that have to be chosen for each object and extracted from the image. Moreover, the robustness
of the task depends on the matching and tracking steps. And finally, the positioning error
is computed using the features that are subject to measurement errors which may limit the
accuracy of the positioning task.

Toward direct approaches

To solve some of these problems, more global visual features can be considered. Indeed the
desired feature can be simply defined as the image acquired at the desired pose of the camera.
The goal of the visual servoing task simply becomes to move the camera in order to align the
current image with the reference image using the motion of the camera.

Several solutions have been proposed that use the homography between the current image
acquired by the camera and the reference image. One first solution proposed in [Vargas 2005]
was to decompose the homography matrix to evaluate the 3D displacement between the current
and desired pose. The estimated transformation was then used in a position-based visual servo-
ing task. Later, the solution presented in [Benhimane 2007] proposed to use the homography,
this time, without any decomposition. In these approaches, a first matching step is manually
or automatically performed, then a tracking algorithm [Benhimane 2004] estimates the homog-
raphy that is used as input of the control law. In this case, the positioning error is no longer
defined as a difference between the desired and current features, but similarly as a distance
between the current estimated homography and the identity matrix. An illustration of this
approach is proposed in Figure 6.1, where the current position of the template is represented
in blue and its desired position is represented in red.

Following a similar principle, [Crétual 1998] proposes a dynamic visual servoing approach
where the feature is defined as a global motion model (parametrized optical flow). The current
optical flow is computed using a tracking step [Odobez 1995], and the goal of the control law is
to minimize the error between the current motion parameters and a desired one.

The main drawback of these approaches is that a tracking step is always necessary to estimate
either the current homography or the optical flow at each iteration of the visual servoing task.

6.1.2 Direct visual servoing

Recently, it has been shown that no information other than the image intensity can be considered
to control the robot motion. Instead of trying to reach some desired geometric features, the goal
can be formulated as finding the velocity v that makes the current image I(r) reach a desired
image I∗. The optimization problem of the visual servoing task can simply be rewritten:

r̂ = arg min
r
C(I(r), I∗) (6.7)

where C directly measures the dissimilarity between the images I(r) and I∗. [Deguchi 2000,
Nayar 1996] consider the full image, but in order to reduce the dimension of image data, they
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Frame 10 Example of image-based visual servoing with 4 dots [Chaumette 2006].

External view First internal view Last internal view

(a) (b) (c)

The goal of the visual servoing problem using 4 points is to make the current position of the points
xi = (xi, yi) (represented in red) reach the desired positions x∗

i = (x∗i , y
∗

i ) (in green) with i ∈ [0..3].
The features vectors are then simply defined using the coordinates of the dots:

s = (x0,x1,x2,x3)

s∗ = (x∗

0,x
∗

1,x
∗

2,x
∗

3)

The 6 dof positioning problem of the robot in the Cartesian space is formulated as the minimization
of the 2D position error e between the current features s(r) and the desired features s∗:

e = s(r)− s∗

To have an exponential decrease of the error, the velocity of the camera is computed as:

v = −λL+
s e

where Ls is the interaction matrix that links the variation of the feature s with the camera velocity v.
Since s is obtained with a concatenation of the point coordinates, its interaction matrix is computed
with a concatenation of the interaction matrix of the points:

Ls =




Lx0

Lx1

Lx2

Lx3




with:

Lx =

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
.

The details of the computation of Lx can be found in the Frame 9 page 105. Since the current depth
of the points Z are unknown, it is common to use the interaction matrix of the point computed at
the desired position L∗

x instead of Lx in the control law. Using this approach, the current positions
of the points are reaching the desired positions following the blue trajectories represented in the top
right figure (since the interaction matrix is approximated by L∗

x, the trajectories are not perfectly
straight).
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consider an eigenspace decomposition of it. The control is then performed directly in the
eigenspace which requires the off-line computation of this eigenspace (using a principal com-
ponent analysis) and then, for each new frame, the projection of the image on this subspace.
Moreover, the interaction matrix related to the eigenspace is not computed analytically but
learned. To cope with these issues a way to compute the interaction matrix related to the lu-
minance under temporal luminance constancy case has been proposed in [Collewet 2008b] (see
Frame 11 for more details). In that case, the function C to be regulated is nothing but the SSD
between the current and a reference image. [Kallem 2007] also consider the pixels intensity.
This approach is based on the use of kernel methods that lead to a high decoupled control law.
However, only the 3 translations and the rotation around the z axis are considered. Another
approach that does not require tracking nor matching has been proposed in [Abdul Hafez 2008].
It models collectively feature points extracted from the image as a mixture of Gaussian and
attempts to minimize the distance function between the Gaussian mixture at the current and
desired poses. Simulation results show that this approach is able to control a 3 degrees of free-
dom robot. However, note that an image processing step is still required to extract the current
feature points.

A representation of these approaches is given in Figure 6.1 (3rd row). This figure shows
the simplicity of these methods where the control law is simply defined using the comparison
between the patch of intensities of the current and desired images at the same pixel locations.
Such approaches have the advantage of their accuracy in the nominal conditions. Nevertheless,
the existing approaches are all very sensitive to non global illumination variations. Although
using an illumination model is possible as in [Collewet 2008a], this approach remains limited to
some specific conditions.

6.2 Navigation tasks

In recent years, robot localization and navigation have made considerable progress. Navigation
can be seen as the ability for a robot to move autonomously from an initial position to a desired
one (which may be far away from the initial one). Thanks to sensor-based navigation, we have
seen autonomous robots in various challenging areas (from highways to deserts and even on
Mars). Nevertheless, the design of these autonomous robots usually relies on more than one
sensor (camera, stereo sensors, lidar, GPS,...). In this section, we discuss few researches related
to non-holonomic vehicle navigation using a monocular camera. As in the visual servoing
problem, the different approaches can be divided into two classes: the position-based visual
navigation methods, where the control law is directly defined using the Cartesian space and
where a 3D model of the environment has to be known or reconstructed, and the image-based
methods, that are conceptually simpler since the task is directly defined in the image space.

Reconstruction-based navigation

Most navigation approaches consider a partial 3D reconstruction of the environment, leading
to SLAM-like techniques (Simultaneous Localization And Mapping). Such solutions are at-
tractive, since the navigation task will be achieved using a classical pose-based control of the
robot in the metric space. Within this context, during a learning step the environment is recon-
structed using bundle adjustment approaches [Royer 2007] or Kalman/particle filters based ap-
proaches [Clemente 2007]. Despite the complexity of the underlying problem, SLAM has proved
to be a viable solution to create accurate maps of the environment [Clemente 2007, Se 2002]
even in large ones [Frese 2006]. In this context, the control of the robot during the navigation
task is a well known problem and the main difficulties here are the complexity of the initial
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Frame 11 Photometric visual servoing [Collewet 2008b].

Initial image Desired image Initial error Final error

The photometric visual servoing approach can be considered as a feature-based approach. The
difference with the classical approaches comes from the fact that the features are no longer defined
using geometric information but directly using the pixel intensities of the images. The desired features
are the intensities of the reference image I∗ for all the points x in the region of interest W (usually
all the image) and the current features are the intensities of the current image I(r) at the same
locations:

s = (I(x0, r), . . . , I(xN , r))
s∗ = (I∗(x0), . . . , I

∗(xN ))
with: W = {x0, . . . ,xN}

The goal remains to minimize the error between the current and desired features, i.e. to minimize
the difference between the intensities of the current and desired images:

e = s(r)− s∗

To solve this problem, the velocity is computed as in the classical feature-based approach:

v = −λL+
s e

where Ls is the interaction matrix that links the variation of the feature s with the camera velocity
v. Since s is now obtained with a concatenation of the pixel intensities, its interaction matrix is
computed with a concatenation of the interaction matrix of the intensities:

Ls =




LI(x0)

...
LI(xN )




Using the temporal luminance constancy hypothesis [Horn 1981], the interaction matrix related to a
pixel intensity is given by [Collewet 2008b]:

LI(x) = ∇I Lx

where∇I = (∂I(x)/∂x, ∂I(x)/∂y) is the gradient of the image at the point x and Lx is the interaction
matrix related to the point x. Using this approach in nominal conditions shows very good results.
Since there is no feature extraction and that the whole information of the image is used, the final
position of the robot is very accurate. Problems come from its robustness with respect to illumination
variations.
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Figure 6.1: From the feature-based 2D visual servoing approach to the direct approaches.
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reconstruction step and the matching of visual features observed during the learning step with
current observations. With a monocular camera as unique sensor, these are mainly complex
computer vision issues.

Model-free based navigation

Another class of techniques relies on the definition of a visual path: the appearance-based
approaches [Burschka 2001, Remazeilles 2007, Segvic 2009, Courbon 2009, Chen 2009]. The
trajectory is no longer described in the metric space but as a set of reference images. The
applications are therefore more limited and most of them concern path following applications.
A 2D visual servoing step allows the robot to navigate from its current position to the next key
images. When the robot gets close to this image, a new key image is selected. In this context,
the environment can be modeled by a graph whose nodes are the key images. A visual path
in the environment is nothing but a path in the graph [Remazeilles 2007]. Working directly in
the sensor space, such approaches do not require prior 3D reconstruction step. In some cases,
partial reconstruction has to be considered. In [Segvic 2009, Diosi 2007] a part of the epipolar
geometry that links the current and key images is considered in order to predict the location of
currently not visible features and ensure a robust tracking. In [Courbon 2009], an homography
estimation between the current image and the reference images allows to precisely localize the
robot. In any case, the learning step of these appearance-based approaches is far less complex
since it does not require any prior 3D reconstruction.

Nevertheless, at navigation level, for both pose-based or image-based visual navigation,
features have to be extracted or tracked in the image stream and matched with either the 3D
database or key images to design the control law. This robust extraction and real-time spatio-
temporal tracking and matching of the visual cues [Marchand 2005a] are non trivial tasks. Some
more direct navigation tasks exist that use template-based approaches [Matsumoto 1996], but
a tracking step is still required at each iteration of the process.

6.3 Conclusion

In this chapter, we gave a general overview of the existing visual servoing approaches. The
approaches based on a low level tracking or matching process have the advantages of their
robustness and convergence domain. But these advantages are entirely depending on the ro-
bustness of the tracker. To avoid this tracking (and sometimes matching) step, new direct
approaches have been proposed. Some of this direct visual servoing approaches demonstrate
to be well suited to reach an accurate position. Nevertheless, the existing approaches exhibit
major issues of robustness with respect to illumination variations.
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Chapter 7

Mutual information-based visual
servoing

In this chapter, we propose a new way to achieve visual servoing task. Rather than minimizing
the error between the position of two set of geometric features, we consider the direct visual
servoing approach. The positioning task is defined as computing the camera velocity v that will
maximize the similarity between the current image I(r) and the desired image I∗. Since the
appearance of the image I(r) can change depending on the illumination variations or occlusions,
the similarity measure between the two images has to be robust for the visual servoing task to
be robust. To satisfy this condition, we propose to find the desired pose by maximizing the
mutual information shared by the current image and a reference image:

r̂ = arg max
r

MI (I∗, I(r)) . (7.1)

This leads to a new information theoretic approach to visual servoing. Since mutual information
is robust to illumination variations, occlusions and non-linear changes in the intensities of the
image, its use in the visual servoing problem allies both robustness and efficiency. Furthermore
as for [Collewet 2008b], it does not require any tracking or matching process. Experiments on
a 6 dof robot validate the advantages of the proposed visual servoing task.

7.1 MI based control law

In this section, we present the control law obtained using the mutual information function.
We show that both the MI-based visual servoing and MI-based pose computation are sensi-
bly equivalent. Therefore, the computation of the velocity is then nothing but the increment
computation in the pose computation task.

We recall that the goal of the pose computation problem was to find the object (or camera)
pose r in an input image I∗. This problem can be formulated as finding the camera pose r that
projects a model of the objectM into an image I that is the most similar to the image I∗:

r̂ = arg max
r

MI(I∗, Iγ(M, r)) (7.2)

where γ are the intrinsic camera parameters and Iξ is the image resulting from the projection
of the model into the image plane of the virtual camera. This equation can be solved using a
non-linear optimization. We consider that r represents the position of a virtual camera. The
update of r can, therefore, be performed using the velocity v of the virtual camera.

This pose estimation process can be seen as a simulation of a visual servoing task or virtual
visual servoing task [Sundareswaran 1998, Marchand 2002]. M models the environment where
the camera is moving and the projection into Iγ(M, r) simply corresponds to the projection
that takes place in the real camera I(r). Finally, the update of the camera pose that was
performed using the exponential map of the velocity simply corresponds to the velocity control
of the robot. Therefore, pose computation and visual servoing are two dual problems.
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Since all the inputs of the MI optimization are equivalent, the velocity necessary to maximize
the MI in the visual servoing problem can be obtained using almost the same approach as in the
pose estimation problem. A steepest gradient descent approach [Viola 1995] is inefficient when
the parameters are strongly correlated: the optimization is then subject to oscillation, and the
resulting velocity of the robot would be unadapted. We have also seen that a Newton’s method
using a the approximation of the Hessian matrix [Thévenaz 2000, Dowson 2006, Dowson 2008,
Panin 2008] is satisfying only coupled to a line-search algorithm. But a back-tracking approach
is impractical in the visual servoing problem: we could hardly move continually the robot
forward and backward to reach an accurate pose. On the contrary, the optimization approach
that we proposed in the chapter 4 is perfectly suited to compute the velocity of the robot.
This method (called HC method) is a Newton’s like approach that uses the Hessian of the cost
function estimated at its optimum to compute the velocity as:

v = −αH∗
MI

−1L⊤
MI (7.3)

where α ∈ [0, 1] is the stepsize that limit the convergence speed. LMI and HMI are respectively
the interaction matrix of MI and its Hessian matrix. We recall that H∗

MI is the estimation of
the Hessian matrix computed at the optimum of the mutual information function. Using the
developed formulation of MI, we recall that its derivatives yield:

LMI =
∑

i,j

LpII∗

(
1 + log

(
pII∗

pI∗

))
(7.4)

HMI =
∑

i,j

L⊤
pII∗

LpII∗

(
1

pII∗
−

1

pI∗

)
+ HpII∗

(
1 + log

(
pII∗

pI∗

))
(7.5)

We recall that the joint probability pII∗ between the key image I∗ and current image I and its
variations are given by:

pII∗(i, j, r) =
1

Nx

∑

x

φ
(
i− I(x, r)

)
φ
(
j − I∗(x)

)

LpII∗ (i,j,r) =
1

Nx

∑

x

Lφ(i−I(x,r))φ
(
j − I∗(x)

)

HpII∗ (i,j,r) =
1

Nx

∑

x

Hφ(i−I(x,r))φ
(
j − I∗(x)

)

where Nx is the number of pixels considered in the images I and I∗. φ is a B-spline function
differentiable twice (see the MI definition in section 2.3.2.1). The interaction matrix and Hessian
of φ are given by:

Lφ(i−I(x,r)) = −
∂φ

∂i
LI (7.6)

Hφ(i−I(x,r)) =
∂2φ

∂i2
L⊤

I
LI −

∂φ

∂i
HI (7.7)

and:

LI = ∇I Lx (7.8)

HI = Lx
⊤ ∇2I Lx +∇IHx (7.9)

where the two expressions are depending on the interaction matrix Lx and Hessian matrix Hx

of each pixels. To compute the analytical formulation of these matrices in a 6 dof task, the
depth of each pixel at the current position is required (see equation (5.16)). In the real visual
servoing problem, this depth is unknown. In our approach, we assume that the depth of the
pixels can be approximated by a constant.
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7.2 Efficient control law

As we have seen previously the optimization of the mutual information is based on the Hessian
matrix at convergence that is kept constant. Using a classical Newton’s method will give a
velocity that is directly linked to the gradient of mutual information. Since mutual information
cost function is flat at convergence and far from the convergence, the velocity will be small at
convergence what is required, but it may also be small far from the convergence.

The usual goal of a visual servoing task is to have an error that decreases exponentially. This
is easily implemented using the classical geometric feature-based visual servoing methods. In a
direct visual servoing task, there is no measure of the distance to reach the optimum. We seek
the maximum of the mutual information, but there is no available estimation of the MI value
after the convergence. In the geometric approach, we know that the final error must be null.
This section shows how the proposed visual servoing approach can be improved by increasing
the velocity far from the convergence.

7.2.1 Sequencing the task

To improve the behavior of the visual servoing task far from the convergence, we propose to
separate the convergence process in two steps. When the robot is far from the convergence (the
first step of the task), a post treatment is applied to the resulting velocity v of the optimization
approach. The final velocity vpost is constrained to have a constant norm. The modification is
then simply applied as a gain factor to the velocity v:

vpost = v
‖vc‖

‖v‖
(7.10)

When the robot is close to the convergence (the second step), this post treatment stops
and the velocity sent to the robot is simply the one computed with the control law that is
properly decreasing to reach a null velocity at convergence as well as the MI gradient’s norm is
decreasing.

7.2.2 Estimation of the remaining positioning error

One problem to divide the visual servoing task in two steps is that we cannot estimate directly
the remaining error between the current and the desired pose. To determine in which state
the robot is, the knowledge on the evolution of the Hessian matrix is essential. As it has been
seen in previous sections mutual information is quasi concave at convergence. It means that
the concavity of mutual information at the current pose of the camera reflects somehow the
distance with the desired pose.

A study of the current Hessian matrix could seem to be a solution of the problem. However,
since the mutual information function is highly depending on the scene, it is not possible to
simply consider the Hessian matrix.

On the other hand, we know that the current Hessian matrix is adapted to the optimization
problem as soon as the camera pose is in the concave domain of MI, that is near the convergence.
In this case, the velocities vc and vd obtained respectively using the current Hessian matrix
and the Hessian matrix at convergence are both adapted and similar when the camera reaches
the concave domain. To estimate if the camera is next to the convergence, a simple similarity
measure is computed between the two velocities vc and vd as follows:

ǫ(vc,vd) =
1

‖vc‖
2 ‖vd‖

2v⊤
c vd (7.11)
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that has a score bound to [−1, 1]. If ǫ = −1 then vc is pointing to the opposite direction of
vd, and if ǫ = 1 then the two vectors are equals up to a factor. First, the normalized velocity
is sent to the robot. And, as soon as the two velocity vectors are similar that is ǫ above a
given threshold (0.5 in our experiments), the visual servoing task is considered to be near the
convergence, and the normalization of the velocity takes end.

7.3 Experimental results

To validate the proposed approach several experiments have been performed using a camera
mounted on a 6 dof gantry robot. The computation time remains low, since the control law is
computed at video rate. A velocity is computed in about 10ms for a 320×240 input image using
a 2.4 GHz laptop and sent to the robot at 50Hz, the video-rate. In the following experiments,
we will use, in several occasions, the difference between the desired and current image I∗− I to
illustrate first the precision of the positioning task in nominal conditions, then to illustrate the
perturbations. Nevertheless, we recall that we do absolutely not rely on this error to perform
the visual servoing task.

7.3.1 Positioning tasks

A first set of experiments is realized to validate the robustness of the proposed approach using
classical images in nominal conditions. We also consider occlusions and illumination variations
to validate the robustness of mutual information with respect to perturbations. The camera is
first moved to the desired pose r∗ where the reference image is acquired. The camera pose is
then set to an initial pose r to satisfy that the reference image is partially represented in the
current image.

During the task, the positioning error ∆r, that is the transformation between r and r∗, is
computed to evaluate the behavior of the task and assess its precision. For a clarity purpose,
the error will be referred in the text as ∆rtrans, the norm of the translation of the camera
between the current pose and the desired pose in meters, and as ∆rrot, the norm of rotation
error in degrees.

7.3.1.1 Nominal conditions

In this experiment, the illumination conditions remain constant during the realization of the
positioning task. Figure 7.2 shows the desired and initial images acquired by the camera, the
initial and final error image, and the positioning error using the Cartesian coordinates for the
translation part of ∆r and the error on the rotational part.

From an initial positioning error of ∆rtrans = 0.37 m and ∆rrot = 25.0o, the camera is
smoothly converging to the desired pose to reach a final positioning error of ∆rtrans = 3.10−4

m and ∆rrot = 0.06o. Considering that the distance from the camera to the scene is about one
meter, the proposed visual servoing task proves to be very accurate compared to the accuracy
that feature-based approaches would provide.

Comparison between the original and sequenced tasks

To show the advantages of the sequencing method proposed in section 7.2, we repeat exactly
the same experiment and perform the visual servoing task without the sequencing method.
Figure 7.3 shows the results of both the original and improved visual servoing tasks. Far from
the optimum (far from the desired pose), the gradient of MI has small values. Since the HC
method provides a velocity that is directly linked to the gradient of MI, the resulting velocity
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Initial pose Pose at t = 40s Final pose

Figure 7.1: External view of one MI-based visual servoing task. The current and desired poses of the robot are
overlaid. On the final pose, there is no difference between the two poses.

Reference image Initial error image Translational error Velocities

Initial image Final error image Rotational error (o) Mutual information

Figure 7.2: Visual servoing using mutual information. The positioning error, velocities (in m.s−1 and rad.s−1)
and mutual information are represented with respect to the time in seconds.
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Without the task improvement With the task improvement

Translational error Rotational error (o) Translational error Rotational error (o)

Velocities Mutual information Velocities Mutual information

Figure 7.3: Comparison between the original and improved visual servoing tasks: far from the desired pose,
the original task converges slowly while the improved task is fast.

far from the desired pose is small. The convergence rate of the original visual servoing task is
therefore very slow. The method proposed in the previous section allows the improvement of
the convergence rate. When the camera is far from its desired pose, the velocity is normalized
using the equation (7.10) and the desired pose is rapidly reached (in about 60 seconds while it
took 140 seconds without the method).

7.3.1.2 Robustness with respect to calibration errors

Since the MI gradient matrix depends on the interaction matrix related to a point, it also
depends on the camera calibration. In most of the visual servoing applications, the camera and
its calibration are known. However, this calibration can be subject to estimation error. In this
section, we show the effects of calibration errors on the previous positioning task.

We plot the convergence rates of the positioning tasks using an accurate calibration of the
camera and using coarse calibrations in Figure 7.4. We note (px, py, u0, v0) the intrinsic camera
parameters where (px, py) are related to the pixel size and (u0, v0) represent the position of the
central point in the image. (p̂x, p̂y, û0, v̂0) are the accurate intrinsic camera parameters that
were used in the previous experiment. The visual servoing task keeps converging even with a
percentage error on the intrinsic parameters wider than 50 percents. The accuracy of the final
positioning error it does not change with the px and py parameters but is affected by the u0

and v0 values. For instance, the experiment that uses (u0, v0) = (0.1û0, 0.1v̂0) reaches a final
positioning error of ∆rtrans = 9.10−4 m and ∆rrot = 0.15o, while, we recall that the one using
(u0, v0) = (û0, v̂0) reaches an error of ∆rtrans = 3.10−4 m and ∆rrot = 0.06o. Finally, if this
error is too large (last experiment of the figure with 20 percents of error on px and py, and 150
percents on u0 and v0), the task diverges. However, the calibration errors are not supposed to
be this large.

7.3.1.3 Robustness with respect to occlusions and illumination variations

In these experiments the appearance of the scene is modified during the positioning task using
occlusions or illumination variations. As we can see in Figure 7.5, despite the large initial
positioning error and the change in appearance, the visual servoing task converges and we can see
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Accurate calibration Coarse calibration
(px, py, u0, v0) = (p̂x, p̂y, û0, v̂0) (px, py, u0, v0) = (0.7p̂x, 0.7p̂y, û0, v̂0)

Translational error Rotational error (o) Translational error Rotational error (o)

Coarse calibration Coarse calibration
(px, py, u0, v0) = (1.5p̂x, 1.5p̂y, û0, v̂0) (px, py, u0, v0) = (p̂x, p̂y, 0.1û0, 0.1v̂0)

Translational error Rotational error (o) Translational error Rotational error (o)

Coarse calibration Coarse calibration
(px, py, u0, v0) = (p̂x, p̂y, 1.5û0, 1.5v̂0) (px, py, u0, v0) = (1.2p̂x, 0.8p̂y, 2.5û0, 2.5v̂0)

Translational error Rotational error (o) Translational error Rotational error (o)

Figure 7.4: Effect of the camera calibration on the visual servoing task. The MI-based visual servoing task
is robust to camera calibration errors. Nevertheless, if the error is too large, the task diverges (bottom right
experiment).
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that the positioning error decreases with respect to the time to become very small. As expected,
the proposed MI-based visual servoing scheme is naturally robust to large perturbations and
remains very accurate. Indeed, in the illumination variation experiment, the initial positioning
error is ∆rtrans = 0.17 m and ∆rrot = 16.3o and the visual servoing task reaches a final
positioning error of ∆rtrans = 9.10−4 m and ∆rrot = 0.08o. In the occlusion experiment
the initial error is ∆rtrans = 0.35 m and ∆rrot = 25.2o, after the visual servoing task it is
∆rtrans = 1.10−3 m and ∆rrot = 0.1o.

7.3.1.4 Grasping, robustness with respect to depth approximation

As previously discussed, the proposed approach is very accurate. This section shows that this
accuracy can be useful to position a gripper with respect to an object and grasp it. Since the
object is non planar it also validates the robustness of the proposed approach with respect to
non-constant depth (see the approximation of the scene’s depth in section 5.2.2).

Since the appearances of the object from the initial pose to the final pose are very dif-
ferent, several sequential positioning tasks are required to reach the final grasping pose. In
this experiment five following visual servoing tasks have been performed using five different
reference images. Figure 7.6 shows the scene with the initial and final poses and 3 reference
images used to reach the final pose. The experiment converges and the final positioning error is
∆rtrans = 4.10−4 m and ∆rrot = 4.10−2 o

which is sufficient to position the gripper and grab
the object. Note also the lack of texture in the scene. Even with a small amount of information,
the method remains accurate enough to positionate the gripper.

7.3.2 Multimodal image-based navigation

In the definition of the mutual information, we stated that a linear dependency between the
intensities of the desired and current images is not required. Mutual information is thus able
to align two images even if they are acquired from different modalities as soon as they share
enough information. In this experiment, we show the robustness of MI as a multimodal similarity
measure by servoing the camera on an aerial scene using a map as a reference image.

Here, we consider a different task: following a visual path. A more complete analysis of such
task will be presented in the next chapter. This experiment is similar to the grasping experiment
described in the previous paragraph except that more images are considered to define the visual
path. A second important difference is that the visual path has been learnt when observing the
map (provided by IGN (Institut géographique nationale) geoportail). Once the visual path (a
set of reference images) has been learnt, the map is replaced by a satellite image (at the same
scale) and the camera is positioned near the camera pose corresponding to the image of the
learned visual path (in order to be in the convergence domain of the task). Then the navigation
task can be performed.

Several navigation tasks have been performed with success. Figure 7.7 illustrates one of
these navigation tasks using only 3 dof: the rotation around the z axis and the translations
along the x and y axis. We can see that the current and reference images are correctly aligned
with the displacement of the camera despite their large differences of appearance (that would
cause every feature-based or photometric-based techniques to fail). And thus, we can see on
the projection of the trajectories on the xOy plane that the resulting camera trajectory of the
navigation task properly replays the learned trajectory.

Figure 7.8 shows the images and trajectory in a visual servoing task using 6 degrees of
freedom. To show the accuracy of the method, we define a learnt trajectory that implies large
motions of the camera for small transformations in the image. The defined trajectory is about
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Figure 7.5: Visual servoing using mutual information. The robustness of the visual servoing task with respect
to occlusions and illumination variations is verified by the evolution of positioning error over time (in seconds)
and by appearance of the final error image.
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Initial Pose Final pose

Reference 1 Reference 2 Reference 3

Figure 7.6: Grasping using multiple visual servoing tasks.

60 centimeters long. Despite the strong correlation between the DOF of the robot, the visual
servoing task converges and the resulting trajectory is similar to the desired trajectory.

7.4 Empirical convergence analysis

When considering IBVS with redundant features, only local stability can be considered and
this is also the case for our MI-based visual servoing scheme [Chaumette 2006]. Nevertheless,
it is always possible to evaluate the convergence area of this method from an empirical point
of view. This section evaluates the performances of the proposed visual servoing approach on
a large set of simulated experiments (considering simulation allows to perform exhaustive tests
with hundreds of positioning tasks).

7.4.1 Convergence domain and performance metrics

A set of initial poses has been chosen to best evaluate the robustness of the task with respect
to the six degrees of freedom of the robot in nominal conditions (no lighting variations are
considered).

7.4.1.1 Convergence area

The initial poses are set so that the center of the camera is placed on a regular three-dimensional
grid centered on the desired pose and its direction is defined so that initial and desired images
overlap (this implies large variation around the rx and ry axes). In this case, each initial
pose ensures that the current image shares some information with the desired image. We also
consider several initial rotation errors around the camera z axis rz, since these rotations are
usually difficult to handle in visual servoing.
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Figure 7.7: 3D Multi-modal MI-based visual servoing in a navigation task. An image path is learnt on the map
scene and the visual servoing task performs the navigation on the satellite scene. The reference and resulting
trajectories are very close. The correct alignment is also visible in the image with the reference and current
images overlaid.
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Figure 7.8: 6D Multi-modal MI-based visual servoing in a navigation task. The reference and resulting trajec-
tories remain similar.

134



Figure 7.9 shows the convergence results obtained on a 3D grid of 21× 21× 21 initial poses
varying from −2 to 2 meters on the translations along the x and y axes (producing rotations
from −60 to 60o around the same axis) and from −1 to 1 meter in translation along the camera
z axis with an initial rotation rz of 0o and 20o. The convergence domain is large. We can notice
on the slices along the three plans defining the grid that the convergence domain is convex and
that its hull has a spherical shape approximately centered on the desired pose with a radius
of about 1 meter. The size of this sphere decreases while the initial rotation error around z
increases.

7.4.1.2 Camera trajectory

Whereas the previous experiments described the convergence area, it is also of interest to analyze
the camera trajectory during the positioning task. A set of four quantitative metrics [Gans 2003]
has been measured on this set of experiments to perform this evaluation. The first is the
convergence ratio that gives the proportion of converging visual servoing tasks on the whole
set of experiments. The second and third are the average distance covered by the center of the
camera and the average integral between the camera center and the geodesic (considering only
successful experiments). Both measures are illustrated in Figure 7.10 on the resulting trajectory
of the camera in one of the experiments with an initial positioning error of ∆rtrans = 1 m and
∆rrot = 49.0o. Finally the last metric is the final positioning error, that is the transformation
between the final pose of the camera and its desired pose.

The results that have been obtained are represented in Table 7.1 with respect to the initial
rotational error around the focal axis rz0

. Despite the small convergence frequencies that are
reported in the table, the proposed visual servoing task has a large convergence domain. The
frequency is in fact small due to the large domain of evaluation. The integral between the
geodesic and the camera trajectory is relatively small compared to the distance covered by the
camera, we can, therefore, consider that the camera trajectory is close from the geodesic and
is good. As expected, the greater the initial rotational error, the more the convergence rate
decreases. Indeed, if this rotation is too large then the initial amount of shared information
between the images is too small and the control law reaches a local optimum. The final po-
sitioning error has not been reported in the table since it is remaining constant with a final
translation error of 3.10−5mm and 0.003o in every converging experiment.

rz0
0o 10o 20o 30o 40o 50o

Convergence (%) 26.7 27.6 25.2 21.0 12.4 1.8
Distance (m) 1.06 1.08 1.11 1.16 1.27 1.65
Integral (m2) 0.11 0.12 0.12 0.13 0.14 0.25

Table 7.1: Performance of the proposed visual servoing task on the set of initial poses represented in Figure 7.9.

7.4.2 Comparison with existing solutions

Let us now compare our approach with other visual servoing schemes in one typical visual ser-
voing task with and without illumination variations. Two visual servoing approaches, adapted
to the current problem, have been considered. The first one is the photometric based visual
servoing [Collewet 2008b]. The second one is a classical feature based visual servoing where the
features are points extracted and matched using the SIFT algorithm [Lowe 2004].

The obtained results have been summarized in Figure 7.11 where SSD refers to the photo-
metric approach. Without illumination variations the proposed approach has a similar behavior
as the photometric one. In term of trajectory the direct approaches (MI and photometric) are

135



further from the geodesic than the SIFT approach. Considering the final positioning error, the
direct approaches are more accurate than the feature-based approach. A good alternative is
then to use the feature-based approach and switch the control law at convergence to finally
use the MI based visual servoing approach to take advantage of both a trajectory near the
geodesic and a very accurate final pose. This approach, that we call hybrid approach, has been
implemented and gives indeed the most adapted behavior with both advantages of trajectory
and accuracy.

To evaluate the performance of the approaches with respect to illumination variations, the
following variation has been applied to the scene: from the acquisition of the desired image to
the visual servoing tasks, the left part of the scene has been illuminated and the right part is
put in the shadow. The consequence of such a modification in the intensities makes the SSD
function to have a minimum at the wrong camera pose and thus the photometric approach
diverges. The illumination variation has also a slight effect on the matching step of the SIFT
approach, the visual servoing task is then converging but has with a larger final positioning
error. As for MI based approach, the trajectory of the camera is slightly affected but the final
positioning task remains very accurate.

7.5 Conclusion

In this chapter, we presented a new visual servoing approach based on mutual information.
The algorithm uses directly the image that should be visible at the desired pose of the camera.
Many experiments demonstrate the validity of our approach on a 6 dof robot. This approach
shows many advantages:

• The new control law does not use any geometrical features, so that it also does not require
any extraction, matching or tracking steps that are usually the bottleneck of classical
approaches. Only the desired image has to be known to reach the desired camera pose.

• Since the mutual information is naturally robust to partial occlusions and illumination
variations, the control law, that is nothing but the optimization of the mutual information,
is also robust to the appearance variations of the scene.

• The whole content of the image is directly considered in the computation of the mutual
information. Mutual information is very accurate. Since the control law is directly de-
fined by the MI optimization, without any tracking and matching processes, the resulting
positioning task is very accurate.

• As it is well known in the medical field, mutual information is also robust to multimodal
alignment. Some new visual servoing application are therefore possible including for in-
stance aerial drones navigation. Although our experiments were limited to map and aerial
images, other modalities can be easily considered such as infrared images.
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Figure 7.9: Domain of attraction in the 3D space with respect to the rotation around the focal axis. Axes are
in meters. The blue volume in (a) represents the convex hull of the initial poses that converged. The yellow plan
represents the target (a). Slices of the domain of attraction through the x(b), y(c) and z(d) plans are represented
with the poses that converged in green and that diverged in red.
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Figure 7.10: Illustration of the performance metrics on one task. (a) Reference image, (b) image at the initial
pose, (c) final image error and (d) resulting trajectory (green) of the camera from the initial pose (blue) to the
desired pose (red).
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Figure 7.11: Comparison between our MI based VS, the photometric VS (SSD), a SIFT based VS and an hybrid
VS with and without illumination variations. (a) Reference image, (b) Image acquired at the initial pose, (c)
final error image, (d) trajectories in the 3D space. The tables show the corresponding values of the performance
metrics.
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Chapter 8

Mutual information-based visual non
holonomic navigation

In this thesis we propose a new approach based on the mutual information based visual servo-
ing, that no longer relies on geometrical features nor on pixels intensity but uses directly the
information contained in the images. We propose an approach that requires only a sequence of
key images that are acquired from a camera mounted on the vehicle in a learning step. Using
the current image acquired from the vehicle and one of the key images, we show that it is
possible to compute the interaction matrix that relates the variation of the mutual information
to the vehicle velocity leading to the definition of the control law. The variation of the mutual
information related to the camera rotation velocity is computed as in the classical visual ser-
voing problem. The link between the translational velocity, rotational velocity and the steering
angle is then obtained using the model of the vehicle. Once the steering angle is computed the
vehicle can navigate and the key images are selected. A simultaneous process also based on the
MI based VS approach is proposed to switch from one key frame to another.

As for the visual servoing approach, the navigation task does not require any features ex-
traction, tracking, matching step or 3D reconstruction. The approach remains very robust to
illumination variations, to large occlusions, to the wind in the trees and several other appearance
variations.

8.1 Navigation process overview

This section describes briefly the implemented visual navigation framework. In this work, we
consider a non-holonomic robot with a camera mounted on the front. Our goal is not to localize
the robot within its environment (visual odometry) but only to ensure that it is able to reproduce
a visual path defined as a set of images previously acquired by the camera.

Learning step: definition of the visual path

With respect to the approaches that rely on 3D reconstruction (eg. [Royer 2007]) or even on
appearance-based approaches [Segvic 2009], the learning step of our method is simple. It does
not require any features extraction nor scene reconstruction: no image processing is done, only
raw images are stored. The vehicle is driven manually along a desired path. While the vehicle is
moving, the images acquired by the camera are stored chronologically thus defining a trajectory
in the image space. Let us call I∗0 , . . . , I

∗
N the key images that define this visual path (see

Figure 8.1).

Navigation step: following the visual path

The vehicle is initially placed close to the initial position of the learned visual path (defined by
the image I∗0). The navigation is performed using a visual servoing task. Figure 8.2 shows the
general control scheme used for the navigation. In [Royer 2007, Segvic 2009, Chen 2009] the
considered control scheme is either pose-based control law or consider classical visual servoing
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Figure 8.1: Key images that define the visual path. This visual path is learned prior to the navigation step.

process based on the use of visual features extracted from the current and key images (I and
I∗k).

In this work the definition of a new control law is proposed. One of the originality of this
work is that, rather than relying on features extraction and tracking, we build the control law
directly from the information shared by I and I∗k , their mutual information. When the mutual
information between two images is maximized, the two images are similar. We then control
the robot in order to maximize the mutual information between I and I∗k . As for any visual
servoing scheme, it is then necessary to exhibit the gradient that links the variation of the
mutual information to the control input of the robot (that is the steering angle ψ or the camera
rotational velocity ρ̇) needed to follow the path with a constant translational velocity vz. This
process, already presented in the previous chapter for a generic 6 dof robot, is presented in the
next section in the specific case of a non holonomic vehicle. In the same time, when the vehicle
reaches the key image I∗k , a new one I∗k+1 is selected in the visual path. To achieve a seamless
switching between key images, a specific process is proposed.

8.2 Mutual information based navigation

Considering that the translational velocity is constant, we consider in this section that the
navigation consists of controlling the rotational velocity of the robot. The rotational velocity is
obtained with a visual servoing approach. The model of the vehicle is then used to retrieve the
steering angle with respect to the velocity.

8.2.1 Navigation as a visual servoing task

In the previous chapter, it has been shown that it is possible to achieve a 6 dof visual servoing
task using only the information contained in the images acquired from a camera mounted
on a robot and one reference image. The robot reached its desired position by maximizing
the mutual information between the current and reference images. Our navigation approach
remains very similar in the sens that it consists of maximizing the mutual information using
only the rotational velocity around the y axis of the camera (the vertical axis). If we assume
that the translational velocity is known (for example set to a constant value or depending on the
steering angle), the basic approach remains therefore to compute the rotational velocity that
corresponds to a simplification of the 6 dof visual servoing problem to one degree of freedom.
The problem becomes to find the camera orientation ρ that maximizes the mutual information
as:
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Figure 8.2: Navigation based on multiple visual servoing tasks.

ρ̂∗ = arg max
ρ

MI(I∗, I(ρ)). (8.1)

One difference is that the more the rotational error between the current and key images is
large the more the steering angle has to be large. The use of a constant Hessian (the HC method)
as it was advised in the previous chapters is not suited in the navigation context. Indeed as it
was explained in the visual servoing problem, the use of the constant Hessian causes the update
to be small far from the convergence.

To avoid this problem, the classical Newton’s method is preferred. Since the Newton’s
method fails when the function is convex (in a maximization problem), the images are smoothed
and a small number of histogram bins are chosen to have the largest possible concave domain
(see section 2.2.3). Using the classical Newton’s method, the rotational velocity ρ̇ = ωy can be
computed using:

ρ̇ = −αH−1
MIL

⊤
MI (8.2)

where LMI and HMI are respectively the interaction matrix and Hessian that links the variation
of MI with the rotation ρ̇ = ωy. In this problem, since ωy has one dimension, LMI and HMI

are in fact just scalar values. α ∈ [0, 1] is a scalar factor that allows to set the speed of the
convergence (in our navigation task the goal is not to get to the maximum in one iteration).
The divergence problem caused by the quasi-concavity of the function is easily avoided in our
1D optimization problem: a simple verification on the Hessian sign is enough to verify if the
local approximation of the function is concave, if it is not, the rotation is very large so that
the steering angle is set to its maximal value. Nevertheless, this case had never occurred in our
experiments since the MI function was always concave. The computation of LMI and HMI is
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(a) (b)

Figure 8.3: Compute of mutual information and its derivatives with respect to the rotation around the vertical
axis ρ. (a) External view of the camera at the desired position in red (used to acquire the desired image I∗)
and at one measurement position in green. (b) Derivatives of mutual information and corresponding rotational
update. First row: derivative of mutual information with respect to the rotational error ρ (o), second row: second
derivative and third row: computed velocity ωy.

similar to the classical visual servoing problem:

LMI =
∑

i,j

LpII∗

(
1 + log

(
pII∗

pI∗

))
(8.3)

HMI =
∑

i,j

L⊤
pII∗

LpII∗

(
1

pII∗
−

1

pI∗

)
+ HpII∗

(
1 + log

(
pII∗

pI∗

))
(8.4)

where the detailled computation is exactly the same as the one in the classical visual servoing
problem. The only difference with the 6 dof visual servoing problem of the previous part is
that this time, the interaction matrix Lx and Hessian Hx of a point are simply expressed with
respect to the rotation velocity ωy:

Lx =

[
−(1 + x2)
−xy

]
and Hx =

[
2x(1 + x2)
y(1 + 2x2)]

]
(8.5)

The resulting velocities have been computed on the example illustrated in Figure 8.3. The
figure shows the value of the derivatives of mutual information and the resulting computed
camera velocity depending on the rotation between the desired and the current positions. The
relation between the real rotation and the computed update is quasi linear. The result of this
proposed update will then cause a quasi exponential decreasing of the error, that is the ideal
goal of typical visual servoing tasks.

8.2.2 Application to the non-holonomic vehicle

For every acquisition of an image I, a velocity ωy is computed in order to move the camera and
increase mutual information between I and I∗. Using the model of the vehicle, we can find back
the steering angle that will produce the required rotational velocity.

The velocity of the camera is directly linked to the steering angle ψ of the wheels. Using the
model of the non-holonomic vehicle used in our experiments (see the car-like model on Figure
8.4), the general steering angle is computed as follows:

ψ = arctan

(
L ωy

vz

)
(8.6)
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Figure 8.4: Considered vehicle and its model.

where vz is the translational velocity of the vehicle (along the z axis) and L is the distance
between the front and rear wheels.

8.3 Switching between key images in the visual path

The previous section shows how to control a vehicle toward one key image using the information
shared by the current and key images. To be able to follow the learned trajectory a switching
process between the key images of the visual path has to be defined.

8.3.1 Various solutions

At first sight this problem shows several solutions. Since mutual information is supposed to
increase in the visual servoing task, one could propose to simply analyze the cost function
evolution and check if the function (equation (8.1)) is increasing. If it is no longer the case, it
could mean that the key image is outdated. This solution is unfortunately limited to nominal
or simple cases. In an outdoor environment, such conditions are unpractical: if the illumination
is changing then the cost function value will be affected and this simple selection process of the
key image may fail.

Another solution could be to consider the rotation required to reach the alignment position.
We can assume that this rotation is provided by the resulting camera velocity ωy (obtained
using the visual servoing approach). In this case, if the computed rotation is smaller than a
given threshold it could mean that the vehicle is next to the desired position, then the next
key image can be loaded. But such a simplistic solution will obviously fail when the tracked
trajectory is a straight line.

8.3.2 Proposed key image selection process

The proposed approach uses the last described solution coupled with a translation estimation
along the z axis between the camera current position and the current key image. Two conditions
are then verified: first, the remaining rotational error between the current and desired image
must be low and, second, the translational error between the two images is small.

The rotation required to reach I∗ is linked with the velocity ωy. However no estimation is
given a priori on the translational error (that is the remaining distance between the current
position and the position corresponding to the key image).

Our approach is to consider the variation of the mutual information between the key image
and the current image depending on the variation of translational position tz of the vehicle. If
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the variation of MI is null, it means that the maximum of MI is reached and that the robot
is at the desired position. If the variation is positive (respectively negative) it means that
mutual information is increasing (respectively decreasing) and that the robot is getting closer
to (respectively moving away from) the desired position.

This variation is simply computed as the derivation of mutual information with respect to
the translational velocity vz of the camera. The formulation of the problem is similar to the one
proposed to estimate the rotational velocity ωy, as the difference that the current image is now
depending on vz. The derivative of the mutual information is now expressed with the interaction
matrix corresponding to the translational degree of freedom that is Ltz = [x/Z y/Z]t where
Z is the depth of each point. Since an accurate estimation of the translation is not needed, Z
is approximated to be constant with 20 meters.

To validate the proposed approach, some simulations have been performed using an environ-
ment with a non constant depth. Figure 8.5 illustrates the performed experiment. The value of
the derivative of mutual information is shown depending on the translation between the current
and the key position along the z axis. We can see that the choice of the depth value is not
critical (in fact using the previous equations, it can be seen that changing Z is only modifying
the derivative up to a scale factor). Considering a strongly non flat scene, mutual information
derivative with respect to the translation remains accurate with a null value when the robot
reaches the desired translation.

Using two given thresholds on both the parameter update and the translation estimation
allows to update the key image each time the robot is close to the current desired position.

(a) (b)
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Figure 8.5: Translation estimation between the current and desired image. (a) Desired image, (b) acquired
image with a 4 meter translation, (c) scene depth and (d) derivative of mutual information with respect to the
translation along the z axis (in meters) with various fixed scene’s depth Z.
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(a) (b)

Figure 8.6: Simulation experiment. (a) Aerial view of the environment, (b) 2D representation of map with the
learned trajectory in green and the resulting path in red (gray rectangles are buildings).

8.4 Experimental results

This section presents navigation experiments performed with the vehicle represented in Figure
8.4 using the mutual information-based navigation process.

8.4.1 Simulation

The first experiment is a simulation that describes the behavior of the proposed navigation task
in nominal conditions. Since this is a simulation, the acquired trajectory and the resulting one
are perfectly known. The simulation is performed in an urban-like environment that is shown in
Figure 8.6(a). The ground is flat and there are no occlusions nor illumination variations between
the environment in the learning and in the navigation phases. The buildings of the environment
have various type of textures with low, high and repetitive textures. The experiment has been
done using 320 × 240 images. Figure 8.6(b) shows the trajectory used to acquire the learned
sequence. The learned sequence contains 400 images on the whole trajectory and the navigation
task is performed using 2500 images.

The results have been obtained using a number of histogram bins set to 8. The standard
deviation of the Gaussian filter applied on the images is set to 11. The resulting trajectory is
represented on Figure 8.6(b) overlaid with the learned trajectory.

Considering the steering angle sent to the vehicle (red plot on Figure 8.7), we can see that
the control law is obviously not continuous. Each time the key image is changed, the computed
rotation is abruptly changed and then decreases exponentially. The effect on a real vehicle may
be hard to endure. To solve this issue, we propose to filter the previous result to have smoother
changes of the steering angle. A simple Kalman filter with a constant velocity model has been
applied to the computed angle. The result of the Kalman filter is shown on previous computed
steering angles (see Figure 8.7). This result is adapted for the control of the vehicle that keeps
on following properly the path with smoother changes in its direction.

8.4.2 Navigation in natural environment

The mutual information control scheme has been tested on a non-holonomic vehicle (see Figure
8.4) in an outdoor environment. The final approach presented in the previous paragraph has
been used. Let us emphasize that the vehicle is equipped with a monocular camera and that no
other sensor such as GPS, radar or odometry are considered in these experiments. Furthermore,
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Figure 8.7: Simulation experiment: steering angle (in degrees) in the first turn of the path with respect to the
time (in second). The computed steering angle in red shows two exponential decreasement corresponding to two
visual servoing tasks, the filtered steering angle is in green.

the 3D structure of the scene remains fully unknown during the learning and navigation steps.
Considering the vehicle speed during the learning step, a key-frame has been acquired each
meter.

For information, aerial views of the environment, where the navigation task takes place, are
shown in Figure 8.8 along with the considered trajectory (about 400 meters). As seen on the
pictures, the environment is semi-urban with both trees and buildings (with windows acting as
repetitive textures). Let us note that the vehicle crosses a covered parking lot (green part of
the trajectory in Figure 8.8) and that the ground is not flat (mainly in the first 100 meters of
the trajectory).

When learning the path the vehicle is manually driven at a roughly constant velocity. For
this experiment we consider 1200 key images (that is around three key images per meter). The
navigation task itself is carried out at 0.5 m/s. Images are acquired at 30Hz (nearly 25000
images are acquired and processed in real-time during this navigation task).

Some pictures of one navigation task are shown in Figure 8.9 and 8.10. By comparing the
current and key images (and the image error on the third row), we can see that the robot is
qualitatively (as defined in [Remazeilles 2007]) following the same path. The navigation task
has been tested with both cloudy and sunny weather using the same learned visual path). Since
time had passed between the acquisition of the visual path and the navigation task, there have
been very large illumination changes between the current and the key images as it is highlighted
in Figure 8.11(a). The task has even been tested with a ground recovered with snow still using
the same initial visual path (See Figure 8.11(b)). Despite those illumination and scene variations
the navigation task was still converging. This highlights the robustness of the proposed control
law to illumination variations and the efficiency of the mutual information similarity criterion
to perturbation. Although no ground truth was available, the average metric deviation from the
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(a) (b)

Figure 8.8: Outdoor environment with an approximation of the learned trajectory (the red part is the trajectory
executed under a covered parking lot). (a) First aerial view, (b) second aerial view.

original path was less than 1 meter. Since the vehicle is moving in the visual path, we preferred
to evaluate the navigation using a visual evaluation (image differences).

Since no obstacle avoidance process is considered, the navigation task has been performed
in quiet conditions. Nevertheless several vehicles have overtaken or crossed our experimental
vehicle and appeared in the camera view. Despite this perturbation, and thanks to the robust-
ness of the similarity criterion, the navigation task has never failed showing the robustness of
mutual information to occlusions (see in Figure 8.11(c) where the van in the current image was
not present in the key image).

8.5 Conclusion

In this chapter, we have presented a new way to achieve image based navigation task. We
show that our vehicle is able to track a previously learned trajectory using only the information
provided by a monocular camera. The navigation task can be achieved despite important
variation in the lighting condition and possible perturbations. This can be achieved thanks
to various elements related to the use of mutual information that are new in vision-based
navigation:

• Our approach does not rely on features extracted from the image. Therefore we do not
need to track or match features which has proved to be a difficult and not always reliable
process. Furthermore no 3D information related to the scene structure is required.

• Again, as in the classical visual-servoing task, to avoid this tracking and matching pro-
cesses, the vision-based control law of the non-holonomic vehicle is directly linked to the
MI optimization.

• The derivation of the control law requires the derivation (up to the second order) of the
interaction that links the vehicle motion to mutual information. The proposed approach
that considers a derivation, up to the second order, allows a large convergence domain
along with fast (video rate) computation.

• Considering information contained in the images and not features extracted from the image
or the image intensities induces a natural robustness to perturbation that is essential in
our navigation context.
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Figure 8.9: Outdoor navigation experiment, begining of the experiment. First row: current image acquired by
the vehicle, second row: desired image and third row: difference between the current and desired image. The
first top column and the last bottom column show respectively the first images and the last images used in the
navigation task.
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Figure 8.10: Outdoor navigation experiment, end of the experiment.
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(a)

(b)

(c)

key image current image image error

Figure 8.11: Mutual information robustness. (a) robustness to illumination variations, (b) illumination vari-
ations and snow on the ground, (c): robustness to occlusions. First column: desired image, second column:
current image and third column: difference of the current and desired images.
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Future works include improving the key images selection process and the definition of navigation
tasks that require more degrees of freedom and more complex control models such as aerial
drones.
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Conclusion and perspectives

The development of new technologies have led new needs in the computer vision domain. Ap-
plications such as augmented reality or special effects require some very robust and accurate
visual tracking methods. While others such as autonomous navigation or manipulation require
efficient visual servoing techniques. One widespread technique, in both the visual tracking and
servoing problems, has been to use some geometrical features of the objects in the image. While
they demonstrated to be very efficient in many situations, one remaining problem is that they
miss some information of the image that is provided by the pixel intensities and the accuracy of
the corresponding tasks is, therefore, not maximal. Considering only the pixel intensities but
not the geometrical information has been proposed in the density based approaches, such as the
mean-shift. In these methods, the object is only modeled by its global appearance in terms of
colors (or grayscale levels). The problem is that no spatial information is included in the model
and, therefore, a coarse task (such as a translation estimation) can be performed, but problems
such as positioning a robot using 6 degrees of freedom or estimating the pose of an object are
impossible to solve.

To deal with these problems, direct approaches have been proposed where the object or scene
is directly defined by its whole appearance. These techniques are based on a similarity function
that measures the alignment between two sets of pixel intensities. For instance, the classical
approach directly considers the difference between the two sets of intensities. Nevertheless,
since the appearance of the object is changing with the environmental conditions, we show
that the simple difference between the intensities is not robust enough to accurately solve
the tracking and servoing problems. To improve the robustness of these approaches in our
method, the intensities of the image are not directly used. Instead, we consider the information
that is shared between the two sets of pixel intensities by measuring the mutual information
similarity function. While the intensities of the image are strongly depending on the illumination
conditions, the information that it contains is mainly maintained.

In this document, we presented the researches that we performed during the last three years
on this subject. The contributions include a visual tracking approach based on mutual informa-
tion that uses a new optimization method. This work has shown that the MI based registration
is a practical solution to build a robust, accurate and efficient tracking approach. Many ap-
plications have been tested with face tracking, mosaicing and augmented reality experiments.
We show that this approach can be extended to the model-based pose estimation problem to
perform a very accurate estimation of the pose of a camera with respect to an object. Since
the information is also maintained between images from different modalities, new multimodal
registration applications have also been demonstrated.

Since the visual servoing problem is dual to the pose estimation one, we show that MI
provides also an efficient metric for the visual servoing problem. In the continuity with the
existing direct visual servoing approaches, we developed a new method that does not require
any feature extraction or matching steps. A first advantage comes from the robustness of MI that
visual servoing tasks in case of many conditions, such as occlusions and illumination variations.
Secondly, since there is no intermediary measure and since the control law is directly computed
with respect to the whole image, the positioning task is very accurate. We demonstrated the
performances of the approach through many experiments including the positioning task of a 6
dof robot and the navigation of a non-holonomic autonomous vehicle.
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Perspectives

Many topics of this research have still to be studied. First, it will be very beneficial for the
tracking and visual servoing approaches to have a measure of the confidence of the estimated
position. For the moment, we can estimate if the parameters correspond to a maximum of the
mutual information. However, there is for the moment no information if this maximum is local
or global. Due to the robustness of MI, the estimated parameters are “usually” corresponding
to the correct position (i.e. the global maximum), but sometimes the process can fail. Working
on the cost function, it would be also very interesting to be able to estimate, at the beginning
of the tracking or visual servoing process, if the reference image provides enough information
to perform the optimization and achieve the task.

Our MI-based tracking approach has shown its efficiency on many applications. This study
was limited to rigid objects, but its application to deformable objects will be very favorable for
many applications, for instance, in the medical field. We also limit the tracking approach to
pin-hole cameras, the extension to other projection models such as central catadioptric cameras
would provide new solutions, for instance, in the navigation field.

In this work, several contributions have been proposed on the optimization aspects of the
visual tracking and visual servoing approach. The optimization approaches are similar from one
cost function to another. An extension to other similarity measures than MI could therefore
be possible. For instance, when the problem remains to optimize a quasi-concave (or con-
vex) function that requires a large computation time such as the Zero-mean Normalized Cross
Correlation, the proposed approach would be perfectly adapted.

Finishing with the theoretic perspectives, a principal subject of interest in the visual ser-
voing community is to decouple the degrees of freedom of the camera. Many approaches have
been proposed in the classical geometric features based methods, but work remains to be done
concerning the direct visual servoing methods.

Concerning more the applications, one first objective could be to improve the implemen-
tation of the tracking method. Putting the algorithm on dedicated hardware would be very
interesting to include the method in embedded systems. Since the accuracy depends on the
number of optimization iterations per image, a faster implementation, using for instance graph-
ics processing unit (GPU) would be also an advantage.

Finally, one of our projects is to use our pose estimation approach in an autonomous vehicle
navigation application. The project is held in Paris where a partial textured model of the city
is already existing. An image of the environment is given as input of the system. Using both
this image and the 3D model of the city, it is possible to localize the vehicle and perform the
navigation. In this application, the MI based approach would be particularly well suited, since
many occlusions can occur from the model to the image, as well as modifications of small parts
of the architecture or illumination variations.
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Part IV

Appendices
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Appendix A

Parametric motion models and
differential tracking

In this appendix, we provide some specific knowledge required to use parametric motion models
in a differential tracking problem. The first section defines the update rule using an affine
motion. This step is required to modify the displacement parameters and make them converge
to the optimum of the function to optimize. The second section is dedicated to a pyramidal
implementation of the tracking approaches and provides the conversion of the displacement
parameters from one level of the pyramid to an other.

A.1 Update rule of the affine warp function

We recall the definition of the affine warp function given in section 1.2.2.3

w(x,p) = Ax + t =

[
p0 p1

p2 p3

] [
x
y

]
+

[
p4

p5

]

The goal of this appendix is to find the displacement parameters p′ resulting from the compo-
sition of p and ∆p. Following the update rule defined in equation 4.3 we have:

x′ = w(w(x,∆p),p) = w(x,p′)

Developing using the affine function, it yields:

x
′ =

»
1 + p0 p2

p1 1 + p3

– „»
1 + ∆p0 ∆p2

∆p1 1 + ∆p3

– »
x
y

–
+

»
∆p4

∆p5

–« »
p4

p5

–

=

»
1 + p0 + ∆p0 + p0∆p0 + p2∆p1 p2 + ∆p2 + p0∆p2 + p2∆p3

p1 + ∆p1 + p1∆p0 + p3∆p1 1 + p3 + ∆p3 + p1∆p2 + p3∆p3

– »
x
y

–

+

»
p4 + ∆p4 + p0∆p4 + p2∆p5

p5 + ∆p5 + p1∆p4 + p3∆p5

–

=

»
p′

0 p′

2

p′

1 p′

3

– »
x
y

–
+

»
p′

4

p′

5

–

By identification, the resulting parameters p′ are obtained using:

p′ =




p0 + ∆p0 + p0∆p0 + p2∆p1

p1 + ∆p1 + p1∆p0 + p3∆p1

p2 + ∆p2 + p0∆p2 + p2∆p3

p3 + ∆p3 + p1∆p2 + p3∆p3

p4 + ∆p4 + p0∆p4 + p2∆p5

p5 + ∆p5 + p1∆p4 + p3∆p5




A.2 Pyramidal conversion of the displacement parameters

Let us consider that we know the displacement parameter pk of the kth level of the pyramid
and that we seek the parameter pk−1. A simple way to solve the problem is to consider the
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displacement of a point xk into the point xk
2 at the kth level with:

xk
2 = w(xk,pk) (A.1)

The corresponding displacement parameters pk−1 should as well modify the corresponding
points of the lower level of the pyramid following:

xk−1
2 = w(xk−1,pk−1) (A.2)

Knowing that, from one level of the pyramid to another, we have:

xk =
1

2
xk−1 (A.3)

xk
2 =

1

2
xk−1

2 (A.4)

(A.5)

Thus:

w(xk−1,pk−1) = 2xk
2 (A.6)

= 2w(xk,pk) (A.7)

For every x we thus have:

w(x,pk−1) = 2w

(
1

2
x,pk

)
(A.8)

that is sufficient to estimate the parameters pk−1.

Example Let us consider the homography example. For simplicity, we note p′ = pk−1 and
p = pk. The warp function is given by:

x2 =

[
x2

y2

]
= w(x,p) =

1

p6x+ p7y + 1

[
p0x+ p2y + p4

p1x+ p3y + p5

]
(A.9)

Therefore the equation (A.8) yields:

1

p6x+ p7y + 1

[
p0x+ p2y + p4

p1x+ p3y + p5

]
=

2

p′6
x
2 + p′7

y
2 + 1

[
p′0

x
2 + p′2

y
2 + p′4

p′1
x
2 + p′3

y
2 + p′5

]
(A.10)

=
1

p′
6

2 x+
p′
7

2 y + 1

[
p′0x+ p′2y + 2p′4
p′1x+ p′3y + 2p′5

]
(A.11)

By identification, the projection in the kth level of the pyramid of pk−1 is given by pk =
(pk−1

0 , pk−1
1 , pk−1

2 , pk−1
3 , 2pk−1

4 , 2pk−1
5 , pk−1

6 /2, pk−1
7 /2)⊤.
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Appendix B

Derivative computation

In this appendix, we detail some of the derivative computation that are required in the tracking
and visual servoing approaches. First, the mutual information derivation is detailed. This
derivation is corresponding to both the tracking and visual servoing problems. Then, the
Jacobian of a pixel position is computed with respect to the camera pose, to show different
approaches that can be chosen to achieve a pose estimation task.

B.1 Mutual information derivatives

We recall that the mutual information between two images I and I∗ is given with respect to
the normalized histograms and joint histograms of the images by (see equation 2.15):

MI(I, I∗) =
∑

i,j

pII∗(i, j) log

(
pII∗(i, j)

pI(i)pI∗(j)

)
(B.1)

Since only the current image I depends on the parameters r, the resulting mutual information
derivative is:

G =
∑

i,j

∂pII∗

∂∆p
log

pII∗

pIpI∗
+
∂pII∗

∂∆p
−

∂pI

∂∆p

pII∗

pI
(B.2)

For the purpose of clarity, the marginal probabilities and joint probability that are actually
depending on i, j, p and ∆p are simply denoted as pI , pI∗ and pII∗ . Since the summation of
the probability function is always constant with

∑
p = 1, the summation of its derivative is

always null. Therefore, the last term of the expression can be decomposed and simplified as:

∑

i,j

∂pI

∂∆p

pII∗

pI
=

∑

i

∑

j

∂pI

∂∆p

pII∗

pI

=
∑

i

∂pI

∂∆p

1

pI

∑

j

pII∗

=
∑

i

∂pI

∂∆p

= 0
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The expression of the gradient is then:

G =
∑

i,j

∂pII∗

∂∆p

(
1 + log

pII∗

pIpI∗

)

=
∑

i,j

∂pII∗

∂∆p

(
1 + log

pII∗

pI
− log(pI∗)

)

=
∑

i,j

∂pII∗

∂∆p

(
1 + log

pII∗

pI

)
−
∑

i,j

∂pII∗

∂∆p
log pI∗

=
∑

i,j

∂pII∗

∂∆p

(
1 + log

pII∗

pI

)
−
∑

j

∂I∗

∂∆p
log pI∗

Since the reference image is constant, the derivative of its histogram is null and the last term
of this expression is also null. Finally the expression of the gradient of the mutual information
is given by the expression:

G =
∑

i,j

∂pII∗

∂∆p

(
1 + log

pII∗

pI

)
(B.3)

B.2 Optimization on SE(3) using the Rodrigues formula

A very straightforward solution to study the position variation of a point with respect to the
pose of the camera is to directly use the projection model defined in section 1.1.1 and write the
non-linear relation between the projection of the point and the camera pose parameters r. To
focus on the extrinsic parameters let us first consider the projection of the point in meters with
a focal distance of 1 meter so that the intrinsic parameters are not involved 1. If the projection
function is noted h, the projection x of a 3D point Xo defined in the object frame is given by:

x(r) =

[
x
y

]
=

[
Xc/Zc

Yc/Zc

]
= h (Xc) = h(R(ω)Xo + T(ν)) (B.4)

where R(ω) and T(ν) are the rotation and translation matrices resulting from the parameters
r = (ν,ω).

B.2.1 Forward additional formulation

If the parameters update is directly applied by an addition using a forward additional formula-
tion, the goal becomes to compute the variation of the function:

x(r + ∆r) = h(R(ω + ∆ω)Xo + T(ν + ∆ν)) (B.5)

with respect to ∆r. The derivative of this expression is computed for ∆ω = 0 and it can thus
be written:

∂x(r + ∆r)

∂∆r
=
∂h(Xc)

∂Xc

[
∂T(ν+∆ν)

∂∆r

∂R(ω+∆ω)Xo

∂∆r

]
(B.6)

From the definition of h the projection into the image plan given in equation (B.4), its derivative
with respect to the 3D coordinates of the object in the camera frame is:

∂h(Xc)

∂Xc
=

[
Xc/Zc 0 −Xc/Z

2
c

0 Yc/Zc −Yc/Z
2
c

]
. (B.7)

1The focal approximation is only changing the expression up to a scale factor.
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In equation (B.6) the derivative of the translational part is evident and is the identity matrix. As
for the rotational part, the expression of the rotation matrix using the exponential map defined
in equation (1.4) gives no way to compute the derivative easily. Nevertheless it has been proven
that the exponential map can be equivalently rewritten using the Rodrigues formula:

R(ω) = cos θI +
1− cos θ

θ2
ωω

⊤ +
sin θ

θ
Ω. (B.8)

Using this expression it becomes possible to compute the derivative of the rotational part. But,
even if the derivative can be obtained, its expression becomes quickly unreadable and difficult
to implement.

Nevertheless one can observe that if ω is very small, then the rotation matrix and its
derivative computed using the Rodrigues formula becomes very simple. As it has been shown
in the tracking problem, it is possible to change the general formulation to satisfy this condition
using a compositional approach.

B.2.2 Forward compositional formulation

A solution to simplify the problem is to consider that the new position resulting from the
update is a composition of a first transformation using r and a second one using ∆r. The new
homogeneous matrix c′Mo(r ◦∆r) is therefore given by:

c′Mo(r ◦∆r) =c′ Mc(∆r)cMo(r).. (B.9)

The position of the point in the image plan with respect to ∆r becomes:

x(r ◦∆r) = h(R(∆ω)(Xc) + T(∆ν)). (B.10)

This expression can be written using only the 3D point transformed with the current estimated
camera position and the transformation resulting from the update. The derivative of this
expression with respect to ∆r is computed for ∆ω = 0 and thus, it is given by:

∂x(r ◦∆r)

∂∆r
=
∂h(Xc)

∂Xc

[
∂T(∆ν)

∂∆r

∂R(∆ω)Xc

∂∆r

]
(B.11)

Again the expression of the rotation matrix R(∆ω) is given by the Rodrigues formula. Never-
theless, since ∆ω is the update and is assumed to be very small, θ can be considered null and
the approximation of the Rodrigues formula becomes:

R(∆ω) = I + Ω. (B.12)

This approximation is very helpful to compute the derivative that simply becomes:

∂x(r ◦∆r)

∂∆r
=

∂h(Xc)

∂Xc

[
I Xc×

]
(B.13)

=

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]

To keep an orthogonal rotation matrix, the rotation matrix corresponding to the update in
equation (B.9) is preferably computed using the exact Rodrigues formula.

The readers that are already familiar with the visual servoing problem typically recognize
in equation (B.9) the equivalence between the two approaches (see the interaction matrix com-
putation in Frame 9 page 105).
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Abstract

In this thesis, we address the visual tracking and visual servoing problems, that are crucial in the
robot vision domain. With the expansion of potential applications (robot control, augmented
reality, ...), the robustness and accuracy of the algorithms become major issues. The classical
tracking and servoing methods remain mainly built on the observation of particular geometrical
features in the image. Since this solution does not take advantage of the full information pro-
vided by the image, new techniques called direct approaches have been proposed. Nevertheless,
the existing direct methods are most of the time built directly on the pixel intensities of the
images that are sensitive to appearance variations such as when the illumination conditions are
changing. As a result, their robustness is limited to nominal conditions.

To overcome this problem, we propose a solution that is no longer built directly on the
intensities but on the information contained in the images. An approach is proposed to create
a unified solution, practical for both the tracking and servoing problems. Several tracking
experiments validate the robustness and accuracy of the proposed method compared to the
existing ones. The illustrated applications are various with localization, face tracking, mosaicing
and augmented reality. Similarly, the mutual information-based visual servoing approach is
validated though many experiments on a six dof gantry robot and also on a non-holonomic
autonomous vehicle.

Keywords : Visual tracking, visual servoing, mutual information, entropy, computer vision,
image registration.

Résumé

Dans cette thèse, nous traitons les problèmes d’asservissement et de suivi visuel, qui sont essen-
tiels dans le domaine de la vision robotique. Leur robustesse ainsi que leur précision deviennent
des enjeux majeurs. Les techniques classiques sont principalement basées sur l’observation
de primitives géométriques dans l’image. Ces primitives ne prennent néanmoins pas compte de
toute l’information présente dans les images. C’est pour cette raison que de nouvelles approches,
dites approches directes, ont vu le jour. Un inconvénient des méthodes directes actuelles vient
du fait qu’elles sont centrées sur l’observation des intensités lumineuses des images qui sont
fortement sensibles aux changements d’apparence qui peuvent survenir, par exemple, lors de
modification de l’illumination ou occultation. Ceci a pour effet de rendre l’application de ces
techniques limitée à des conditions nominales d’utilisation.

Pour régler ce problème, nous proposons une solution qui n’est plus directement basée sur
les intensités lumineuses mais sur l’information contenue dans les images. Nous montrons que la
maximisation de cette information permet de créer une solution unifiée pour résoudre des tâches
de suivi et d’asservissement visuel. De nombreuses expériences de suivi valident la robustesse
et la précision de la technique proposée dans des applications variées en passant par le suivi
de visages, la localisation, la construction de mosäıques et la réalité augmentée. La méthode
d’asservissement visuel reposant sur l’information mutuelle est également validée à l’aide d’une
plateforme contenant un robot cartésien à six degrés de liberté ainsi qu’un véhicule autonome
non-holonome.

Most-clefs : Suivi visuel, asservissement visuel, information mutuelle, entropie, vision par
ordinateur, recalage d’images.


