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Introduction

Thanks to the discovery of the transistor effect and the invention of the first
point contact transistor during the early 1950s by John Bardeen, Walter
House Brattain and William Shockley at Bell Laboratories, the field of mi-
croelectronic devices was born [1] [2]. Based on a semiconducting crystal of
germanium this transistor enabled the fabrication of scalable and low power
consuming switches and amplifiers. About ten years later, still at Bell Labo-
ratories, the Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
was invented by John Atalla and Dawon Kahng [3] [4]. This particular fam-
ily of FETs, nowadays commonly based on silicon, has become the most
popular transistor mainly because of its low cost and excellent scalability.
Computers, cellular phones, and other digital appliances, now inextricable
parts of the structure of modern societies, were made possible by integrating
large numbers of these small transistors onto single electronic chips.
The race for miniaturisation is still an actual challenge. To give an order of
magnitude, today’s microprocessors hold billions of transistor with a typical
size of 50 nm that equip our everyday personal computer and new genera-
tions even smaller are becoming available on the market. Nonetheless the
atomic scale, typically below the nanometer, fixes the fundamental limita-
tion. Interestingly on this scale, objects obey the laws of quantum mechanics
which raise even larger challenges for tomorrow’s nanolectronics.
Nanoelectronics is at the research stage today and appears to be a very rich
and dynamical topic from the point of view of future applications as men-
tioned, but also of fundamental physics. A great illustration of these two
aspects of nanoelectronics is the quantum dot. In simple terms, a quantum
dot is a small region in space where electrons are confined, as in an atom.
Various materials are now used to build quantum dots, such as semiconduc-
tors, carbon nanotubes or molecules. The important enthusiasm quantum
dots encounter comes from their potential to implement quantum bits [5]
opening the road of quantum computing, and from the opportunities they
offer to study in situ important problems of condensed matter physics.
Some of the most intriguing problems in solid state physics arise when the
motion of one electron dramatically affects the motion of surrounding elec-
trons. Such highly correlated electron systems have been studied mainly
in materials with complex transition metal chemistry. A hallmark of these
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fundamental problems is know as the Kondo effect, a subtle many elec-
tron effect in which conduction electrons in the vicinity of a spin impurity
screen the spin to form a collective entangled ground state at low tempera-
tures. Originally observed in metals containing magnetic impurities it was
proved theoretically and experimentally that a quantum dot can undergo
the Kondo effect [6]. The connection between Kondo physics and a quan-
tum dot is made when an odd number of electrons confined within the dot
act as a single spin coupled to electron reservoirs. In the frame of the Kondo
effect quantum dots appears to be very powerful tools enabling the study
of a single magnetic impurity in the Kondo regime. It is worth noticing
that from the theoretical point of view, treating the Kondo effect is a hard
task due the non perturbative nature of the coupling of the system (spin)
to the environment (reservoirs). Experimentally, even though the physics of
quantum dots in the weak coupling regime has been extensively studied, the
strong coupling limit still suffers from a lack of investigations and knowledge
as we will see from our experiments.
The integration of multiple quantum dots, such as double quantum dots,
offers the possibility to study richer physics such as the charge Kondo ef-
fect where the degree of freedom being quenched at low temperature is no
longer a spin but a charge [7], the two channel Kondo effect where a sin-
gle magnetic impurity is screened by two independent electron reservoirs
(leads+large quantum) leading to a over screening regime [8] (Fig 1, a) or
the two stage Kondo effect where the Kondo mechanism enters in compe-
tition with the exchange interaction in order to screen two local moments
tunnel coupled, leading to two consecutive Kondo processes quenching both
spins at low temperature [9] (Fig 1, c).

This thesis project sits at the interface of the two channel Kondo effect
and the two stage Kondo effect. A connection between both effects can be
made through the scale of the second quantum dot that acts as a reservoir
in the first case or a local moment in the second case. For an interme-
diate size, a finite size reservoir interacts with the magnetic impurity, a
problem known in literature as the Kondo box problem [10] [11]. The cen-
tral point of this problem is the discretisation of the energy levels of the
larger dot on an energy scale being the Kondo temperature. When the ra-
tio TK/∆finite reservoir gets of the order of one, a critical inter dot Kondo
regime is expected with a loss of universality. Note that universality is one
of the strong signatures of the standard Kondo effect (Fig 1, b).

The outline of this thesis is the following:

• We will first present the base material from which our double quan-
tum dots are made, that is to say a semiconductor heterostructure of
aluminium gallium arsenide. The different nanofabrication steps used
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to engineer these heterostructures and build lateral quantum dots will
be introduced.

• In a second part we will draw up a non exhaustive list of theoretical
elements required to understand transport through quantum dots, and
in particular in the Kondo regime.

• Then a short part will be devoted to the cryogenic techniques used
to perform transport measurements at sub-Kelvin temperatures. The
necessity of low noise electronics encouraged us to design and interface
the major part of the electronic instruments. Their specification and
confirmations via bench measurements will be exposed.

• Finally, the experimental data and interpretations will be presented.
In a first part we will focus on the importance of hybridisation be-
tween two quantum dots strongly coupled. An particular interest will
be given to the strength of the inter dot tunnel coupling compared to
the intrinsic energy scales of the dots. Beyond a certain threshold,
above which the tunnelling matrix element becomes larger than the
level spacing of one dot, we will show the importance of considering the
hybridisation of multiple energy levels. As a result a complex molec-
ular addition spectrum will characterize the double dot system which
will lead to unusual transport properties at low temperature where
irregular filling of each dot will be displayed in the stability diagram.
The question of the evolution of the system with temperature will be
addressed. Interestingly, for temperatures above the tunnelling energy
scale, regular transport properties will be recovered. A multi-level in-
teracting quantum dots model will enable to capture the low and high
temperature limits via numerical simulations that will be confronted
to the experimental data.
In a second part, we will expose a study of a pronounced Kondo effect
occurring when both dots are degenerated in energy. In the frame-
work of the molecular eigenstates formed between the dots, we will
show that a spin Kondo effect boosted near the degeneracy point of
the dots can explain our observations. The first part of our analysis
will be done in the framework of a two level system. From our obser-
vation, the question of the interplay between the inter dot exchange
interaction and the Kondo temperature will naturally arise. Evidence
of an important inter dot tunnel coupling will push us to consider the
nature of the exchange interaction in a multi-level system. Interest-
ingly we will show that the hybridisation of more than two energy
levels tends to reduce the effective exchange interaction, which in our
case enables the system to undergo the Kondo effect.



Chapter 1

Two dimensional electron
gases and quantum dots

The availability of two dimensional electron gases (2DEG) to fundamental
research comes from the great success of modern electronics and the use of
semiconducting materials since the last fifty years.
The base material used during this project is a semiconducting heterostruc-
ture made of gallium arsenide (AsGa) and aluminium gallium arsenide (Al-
GaAs) with high mobility and low electron density. It has the particularity
to contain an embedded 2DEG and we usually refer to it as a High Electron
Mobility Transistor (HEMT) or Metal Semiconductor Field Effect Transis-
tor (MESFET).
As we will see in the following, thanks to the microfabrication methods
nowadays widely used in the microelectronics industry we will be able to
contact and shape these HEMT to reach specific geometries. These tech-
niques will also enable us to define fine metallic gates on the surface of the
structures with which quantum dots will be electrostatically created and
controlled. Lateral quantum dots are very powerful tools used in the field of
mesoscopic physics to study spin based quantum information and correlated
electron systems. Thanks to their high tunability they happen to be very
well suited to study Kondo physics.
We will first detail the structure of AlGaAs/GaAs wafers and understand
how a two dimensional gas forms in them by analysing their band structure.
Then we will expose the methods used to nanofabricate lateral quantum
dots and present the specific designs chosen to study Kondo physics.

1.1 Gallium arsenide heterostructures

In the frame of this Phd the GaAs/AlGaAs growth was made in Lehrstuhlfür

Angewandte Festkörperphysik in Bochum (Germany) in collaboration with
D. Reuter and Andreas D. Wieck [12]. Since we did not participate to
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the elaboration of the heterostructures we will only address briefly their
composition and growth process in the following.

1.1.1 Composition and growth

The gallium arsenide heterostructure is a semiconductor made of different
semiconducting layers of gallium arsenide and aluminium gallium arsenide
stacked on top of each other. The specific sequence of stacking, leads to a
particular band structure which gives rise to the formation of a 2DEG in
the structure as we will see later. Figure 1.1 shows the succession of these
different layers.
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Figure 1.1: Gallium arsenide heterostructure containing a two dimensional
electron gas at the GaAs and AlGaAs interface. The electrons present at
that interface come from the doping layer, in our case silicon donors. For
a very thin doping layer we talk about δ-doping. Z axis corresponds to the
growth direction

The different layers of GaAs and AlGaAs are realized using a Molecular
Beam Epitaxy (MBE) method where one or several molecular beams are sent
towards a chosen substrate under a controlled atmosphere with a residual
pressure less than 10−8Pa. This method enables to grow nanostuctured
samples of several cm2 with a speed of approximatively one atomic layer per
second. MBE produces very high crystal purity (less than 1014 impurities
per cm3) and offers the opportunity to implant dopants during the growth
process.
In the case of the GaAs heterostructure, the base substrate is a GaAs wafer
(100). A thick layer of GaAs (>100µm) is grown on top of it. Growth
continues with a AlGaAs alloy with an almost perfect lattice-matched to
the GaAs crystal. Atomically sharp interfaces between these materials can
be realized without introducing structural defects. A lattice plan remote
from the GaAs/AlGaAs interface is doped with sillicon atoms incorporated
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mainly on the gallium lattice sites (n-type δ-doping Fig. 1.1). The layer
sequence is completed by encapsulating the doping plane with AlGaAs and
protecting the surface from oxidation with a thin layer of GaAs.

1.1.2 Conduction band structure

GaAs presents an energy bandgap ∆Eg1 equal to 1.42 eV. By substituting
a fraction of gallium atoms by aluminium atoms, that is to say by changing
the chemical composition of GaAs to AlxGa1−xAs (AlGaAs) it is possible
to increase this energy bandgap. Usually a fraction x=0.3 is substituted
leading to an increase of 0.39eV of the energy bandgap. Therefore there is a
very sharp energy bandgap difference at the interface of these two chemical
compounds is the GaAs heterostructure.
When Si-dopants are implanted in the AlGaAs donor region (n type AlGaAs
layer), at the GaAs/AlGaAs heterojunction the conduction band profile ex-
hibits a triangular well (Fig. 1.2) giving rise to single occupied quantum
states in the confining direction. Free electrons of the n-type AlGaAs layer
then accumulate at the heterojunction, in the quantum well. Because of the
confining potential these electrons are only allowed to move in the plane of
the interface where they form the so called two dimensional electron gas.
The 2DEG is usually separated about 20 nm from the AlGaAs donor region
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Figure 1.2: Conduction band profile in the GaAs/AlGaAs heterostructure
showing the 2DEG formed in a triangular well potential formed at the
GaAs/AlGaAs interface.

by an undoped spacer layer. This separation allows for extremely high mo-
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bility of the electrons in the 2DEG, because scattering with the Si donors is
strongly reduced. At liquid helium temperature, i.e 4.2 K, the typical elec-
tron mobility and electron density are 105-106 cm2.V−1.s−1 and 1015 m−2

respectively. The relatively low electron density results in a large Fermi
wavelength, ∼ 40 nm, and a large screening length, which allows to locally
deplete the 2DEG with an electric field.
Electric fields can be created by applying voltages to metal gate electrodes
fabricated on top of the heterostructure as in a MOSFET. The Schottky
barrier formed at the metal-semiconductor junction ensures that no charges
leak into the heterostructure. The coupling between the gate and the elec-
tron gas is then purely capacitive. To first order this will be true at low
temperature though as we will see in the experimental data some tunnelling
events from the metal gate to the 2DEG exist and create undesirable charge
offsets. Note that experimental techniques have been developed to reduce
these events [13] [14].
In the case of quantum dots, in order to confine electrons of the 2DEG in
small closed regions, one needs to apply negative voltages on the metal gates
to locally deplete the gas. Figure 1.3 shows the typical profile of the elec-
trical field penetrating the structure and shows how a conducting channel
of electrons can be created for a certain set of metallic gates. It is now
straightforward to understand how an isolated island of electrons can be
electrostatically defined and controlled with a specific set of electrodes. We
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Figure 1.3: By applying voltages on the metal electrodes on the surface
of the heterostructure, the density of electrons in the gas can be changed.
For negative voltages the 2DEG can be locally depleted enabling the user
to confine electrons in one or zero dimension for a given geometry of the
metallic gates. In other words, quantum dots can be formed in the electron
gas using a specific set of gates.

will show in the next section how it is possible by using microlithographic
methods to engineer the heterostructure. Three main goals will thereby be
achieved : first we will contact the gas with ohmic pads, then we will etch
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the gas to shape it at a microscopic scale and finally metal electrodes will
be patterned on top of the structure following a specific geometry.

1.2 Nanofabrication methods

In order to fabricate quantum dots that we will probe via transport mea-
surements we need to engineer the AlGaAs heterostructure by means of
nanofabrication methods. We will expose the electronic beam lithography
technique that enables to write fine patterns in electro-sensitive resists pre-
viously pasted on the surface of the wafer. The written patterns will serve
as masks to deposit metals on top of the heterostructure. Different metals
will be used in order to create ohmic contacts connecting electrically the
2DEG, metal masks to etch and shape the wafer and metallic gates used
to deplete the electron gas (Fig. 1.3) and confine electrons thereby forming
quantum dots.
All the different nanofabrication steps and methods exposed in the next
sections are performed in the Laboratoire de Photonique et Nanostructures

(LPN/CNRS) in Marcoussis. The major part of the samples nanofabrication
was done by Dominique Mailly [15].

1.2.1 Electronic lithography

Borrowed from the modern electronics industry, the electron beam lithogra-
phy is a powerful technique to create extremely fine patterns. Derived from
scanning electron microscopes, the technique mainly consists of scanning a
beam of electrons on a surface pasted with a resist which will be sensitive
to the energy deposited by the beam. We will not go into the detail of how
such a beam is realized, for more informations we refer the reader to [16].
With today’s electron optics, electron beam widths can routinely go down to
a few nanometers. However, the feature resolution limit is determined not
by the beam size but by the forward scattering (effective beam broadening)
in the resist. In practice this technique will allow us to make high resolution
patterns (∼20 nm) and work with a wide variety of materials and patterns.
To start, the substrate is covered with an e-beam resist. In the case of
our samples the surface of the heterostructure is spin coated with a widely
used positive resist which is polymethyl methacrylate (PMMA). The resist is
baked at 200◦C for 15 to 30 minutes usually, before lithographic exposure.
An e-beam writer then scans the resist following a specific pattern. The
electron irradiation breaks polymer backbone bonds at the exposed areas,
leaving fragments of lower molecular weight. The beam energy and the
irradiation time are crucial parameters to be able to create good quality
patterns. Bad control over these parameters can lead to weak exposure of
the resist resulting in a low contrasted pattern or can lead to over exposure
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resulting in an effective broadening of the beam due to strong forward scat-
tering as mentioned above.
A solvent developer, such as MIBK:IPA, is used to wash away the lower
molecular weight fragments, thus forming a positive tone pattern. This pos-
itive tone pattern is then fully recovered with metal by evaporation.
The metal evaporation involves two basic processes : a hot metallic source
evaporates and condenses on the heterostructure surface. Different methods
exist to heat the source and in our case the so called resistive evaporation
is used. The idea is to pass a large current through a metallic wire or foil
containing the material to be deposited. To take place, the procedure has
to be performed in a high vacuum to ensure that the evaporated particles
can travel directly to the deposition target without colliding with the back-
ground gas. At a typical pressure of 10−4Pa, an 0.4 nm particle has a mean
free path of 60 m. In a single evaporation run, many materials can be de-
posited on the substrate assuming the vacuum can be guaranteed during the
hole time and that the different sources can be changed automatically. The
deposition process is controlled via a crystal of quartz present in the evapo-
rator. Quartz is a piezoelectrical solid used in electronics and is equivalent
to an RLC circuit with a very precise resonance frequency. This frequency
depends on different parameters but the one of interest is its mass. During
the evaporation the effective mass of the quartz changes. By measuring the
shift of the resonance one can derive the quantity of metal deposited. That
way it is possible to control the thickness of the metal layer deposited with
a precision better than the nanometer.
Finally, in order to reveal the metallic pattern a chemical solvent removes
the remaining resist parts. This last step is called the lift-off and is done by
using a solution of acetone or trichloroethylene. This is achieved by spraying
directly the surface of the substrate or by leaving it a few minutes to several
hours in the solution. Figure 1.4 illustrates these different microfabrication
steps.
This microfabrication process is very general and widely used in the context
of micro or nanoengineering. The three main steps presented in the next
sections take advantage of the electronic lithography technique.

1.2.2 Ohmic contacts diffusion

To be able to perform transport experiments in the 2DEG one has to con-
tact it first. Remember the gas is embedded in the heterostructure and no
contact to the outer world exists a priori. This is why we need ohmic con-
tacts through which we can bias the electron gas and detect the outcoming
currents. The idea is to diffuse a metal alloy through the structure to define
an electrical contact between the 2DEG and the surface.
To realize good electric contacts the technique used with GaAs HEMT is
the rapid thermal annealing (RTA). Using this technique surface electrodes,
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Figure 1.4: E-beam lithography basic process. a) An electron beam scans
the resist following a chosen pattern. b) A positive tone pattern is revealed
using a chemical developer such as MIBK:IPA. c) Metal is evaporated on the
hole surface. d) The final metallic pattern is revealed by a lift-off procedure
using a chemical solvent such as acetone or trichloroethylene.

with typical sizes 200µm by 200µm, are annealed on top of the wafer.
In the RTA process a stacked structure of Ni/Ge/Au/Ni/Au (10/60/120/20/200
nm), deposited using the procedure described in section 1.2.1 (see Fig. 1.4),
is quickly heated from 20◦C to 400◦C and is kept at this temperature for
a minute. The process takes place in a controlled hydrogen (H2)/nitrogen
(N2) atmosphere to prevent oxidation. During the RTA, the metallic elec-
trodes melt and diffuse into the heterostructure and form a ohmic contact
to the 2DEG [17].
First of all the incorporation of germanium atoms plays two crucial roles in
this case. On the one hand the association of gold and germanium forms a
eutectic system with a melting point near 360◦C. This temperature is much
lower than the melting points of Au (1064◦C) and Ge (937). At such high
melting temperatures, Ga atoms would sublimate from the GaAs crystal,
with a sublimation point at 490◦C. The GaAs wafer would be destroyed
before reaching the melting points of the pure metals. On the other hand
germanium atoms provide dopants in the GaAs region near the metal inter-
face reducing thereby the heterostructure diffusion barrier formed between
the metals and the semiconductor. This is why the metal pads can diffuse
into the semiconducting wafer and reach the electron gas.
Finally the nickel layer improves the uniformity of the contacts and enhances
the adhesion of the electrodes to the GaAs substrate, facilitating the wire
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bonding process on the ohmic pads.
The resultant resistance of 200µm by 200 µm contact after this treatment
is typically of 10 kΩ at room temperature and 1kΩ at liquid helium tem-
perature 4.2 K which means that several conduction modes exist at low
temperature. This aspect will be discussed in the next chapter.

1.2.3 Mesa etching

Before going into the details of the etching of the heterostructure lets em-
phasize first that on a single piece of wafer tens of samples are fabricated
during the complete process. All these different chips are all connected
through the 2DEG. Therefore to separate them electrically the electron gas
has to be etched. Another reason comes from the fact that each bonding
pad connecting one sample to the measuring lines is made of a ohmic pad.
This is obvious for the ohmic contacts but it is also the case for the metal
gates as you will see in the next section. Without etching the 2DEG all
these bonding pads would be shorted via the gas. The electrical isolation is
guaranteed when all the Si donors in the AlGaAs layer are removed during
the etching process, since they provide the electrons to form the 2DEG. The
remaining unaffected regions by the etching form a conduction area called
the ”mesa”.
Different methods can be used to etch a mesa. One can use wet etching
where an acid solution attacks the surface of the wafer or dry etching where
the surface is sputtered with an accelerated ion beam.
The ion beam etching (dry etching) method is used in our fabrication pro-
cess. It consists essentially on a momentum-transfer sputtering process
where the kinetic energy of the incoming ions is transferred to the surface
atoms, ejecting them from the surface.. Lack of chemical component to the
etch means that all materials etch at similar rates, depending only on their
relative bond strength and atomic mass. A heavy inert gas such as argon
is typically employed. In the case of a GaAs surface the ion beam energy
should not exceed 40 keV which corresponds to the atomic displacement
energy threshold for GaAs. Above this threshold an important disruption
of the near-surface lattice is caused.
When shaping the heterostructure surface by dry etching, there are two es-
tablished procedures. One is to etch completely down to the 2DEG and
is known as deep etching. Another possibility called shallow etching is to
stop the process in the layer which contains the dopants (20 nm from the
surface). In that case, the lateral structure is defined by the periodic elec-
trostatic potential given by the ionised donors. This last method produces
smooth edges and is very well suited for narrow mesa patterns. Though our
goal is not to make thin mesa structures the shallow etching method is used
to etch the samples.
In order to selectively expose different areas of the surface of the heterostruc-
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Drude conductivity σ σ = 1
Rxx

L

W
= 0.034 S

Electron density ne ne = B

eRxy
= 2.32× 1011 cm−2

Fermi velocity vF vF = �√2πne
m∗ = 2.09× 105 m.s−1

Elastic scattering time τe τe = m
∗
σ

e2ne
= 3.49× 10−11 s

Elastic mean free path le le = vF τe = hσ

e2
√

2πne
= 7.31× 10−6 m

Diffusion coefficient D D = 1
2vF le = π�2

σ

e2m∗ = 7628 cm2.s−1

Electron mobility µe µe = eτe
m∗ = σ

nee
= 921000 cm2.V−1.s−1

Table 1.1: Electronic parameters of a high mobility heterostructure of Al-
GaAs extracted from quantum Hall measurements performed at 4 K. The
different formulas relating these parameters have been specified.

ture, metal masks are used to protect the parts of the wafer that need to
be kept unaffected. We utilize two different metal masks. One consists of
the ohmic layer already deposited before the etching step. The second mask
is an aluminium mask with a thickness of 60 nm deposited after the ohmic
layer and again using the process described in figure 1.4. This mask enables
to define specific shapes of the 2DEG such as wires, rings, hall bars or more
complicated designs, which will then connect to the ohmic pads. In our
case the 2DEG is given a hall bar shape. This choice is motivated by the
fact that measuring the quantum Hall effect enables us to characterize the
electronic parameters of our samples at liquid helium temperature. These
parameters are listed in table 1.1.
Once the etching procedure finished, the aluminium mask is removed us-
ing a chemical solution of NaOH with a concentration of 0.1 mol.L−1. The
fabrication sequence can then end with the metal gates deposition.

1.2.4 Lateral gates deposition

In order to the define quantum dots, metal electrodes called lateral gates are
necessary. These gates, deposited on top of the heterostructure, enable us
to create electrical fields in the structure that deplete the electron gaz and
gives the opportunity to confine electrons as mentioned in section 1.1.2 and
depicted in figure 1.3. The electrical fields controlled via voltages applied on
the metal gates will enable us to create tunnel barriers in the 2DEG, that
as will see later are the basic requirement to form lateral quantum dots.
We now focus on the fabrication process of the lateral gates. It is important
to note that the metal gates are the finest structures in our samples. The
smallest parts which actually define the quantum dots, mainly quantum
point contacts, can be of the order of the lithographic technique resolution
we use, that is to say 20 nm wide. Obviously these fine gates have to
be connected to the measurement cables through bonding wires and big
bonding pads will be required as in the case of the ohmic contacts. An
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a) b)

c) d)

Figure 1.5: a) Deposition and RTA of the ohmic pads (yellow pattern). b)
Shallow etching of the mesa defined by the ohmic layer and the brown area
being the Hall bar. c) Deposition of the metallic gates (blue pattern). d)
Microscope picture of quantum dot chip. The dark grey part is the etched
surface. A brighter grey area is present in the middle of the sample and
corresponds to the Hall bar. The Gold coloured and black spotted regions
are the ohmics. Finally the gold shiny parts are the gates, the finer parts
are not visible on this picture.

important point not mentioned before is the fact that during the ohmic
step, ohmic pads are fabricated at the positions of the metal gates pads.
The reason is simple : robust pads in order to microbond without damaging
the metallic layer are required. Indeed ohmic pads are very suited for this
task.
Given the range of sizes needed to define the gates, two different patterns
are used : a fine gate pattern and a large gate pattern which will merge near



1.3 Quantum dot geometries 11

the mesa edge.
Again following the process shown in section 1.2.1 (Fig. 1.4) we first define
the fine and large gate positive tone patterns in a single ebeam lithographic
run on PMMA resist coated on the surface. Different exposure times under
the beam and beam sizes are used to define these two patterns. Then a fine
layer of titanium of 10 nm thickness and a thick gold layer of 100 nm are
deposited on the surface. The evaporation of the two metals are done within
a single step and in the same evaporator. The Ti layer simply ensures the
gold layer to stick properly on the surface. Finally we reveal the metal gate
pattern during the lift-off step.
Great care has to be taken concerning the lift-off of the metal gates since
the very small sizes of the fine parts makes it a critical step. There are
mainly two signatures of a bad lift-off. It can happen that some fine parts
are missing, that is to say too much metal comes off. Second, connections
between surface electrodes can occur, that is to say not enough metal comes
off. Usually the evaporated samples are left several hours in the lift-off
solution and subsequently, spraying this chemical solution onto the surface
from different directions completes the lift-off.
Figure 1.5 summarizes briefly the complete fabrication process of a double
quantum dot chip.

1.3 Quantum dot geometries

Thanks to nanoengineering, very few restrictions concerning the possible
geometries and sizes for our quantum dots exist. In order to choose a spe-
cific geometry one has to take into account different parameters though.
First of all the depletion length coming from the electrical field profile in
the structure (Fig 1.3) reduces the effective size of the quantum dot and
has to be taken into account in the lithographic patterns. As we will see
in the next chapter the size of a quantum dot is directly related to its en-
ergy spectrum. The choice of the size has therefore to be taken carefully.
Working with multiple quantum dots coupled to each others forces one to
select their arrangement with caution : dots connected in series, in paral-
lel or side coupled. Finally the widths and shapes of the different metallic
gates defining the quantum wells are also crucial parameters to reach spe-
cific quantum regimes. A great example of these choices is the geometry of
double quantum dots used in the few electron regimes to build spin based
quantum bits [18].
To study Kondo physics our choice was to use two quantum dots coupled
to each other. Though one quantum dot is sufficient to observe the Kondo
effect [6], connecting a second one offers the possibility to probe much richer
physics in this regime with a larger control. Exotic Kondo effects such as the
two channel spin Kondo effect [8], the two channel orbital Kondo effect [19],
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the SU(4) Kondo effect [20], or the Kondo box problem [10] [11] to name a
few, are predicted by theory in such quantum dots.
The exact setup consists of two asymmetric quantum dots coupled to each
other via a tunnel barrier controlled electrostatically. One of the quantum
dots has a typical size of 400 nm +/- 100 nm which means large level spac-
ing and charging energies. This small quantum dot can be addressed as an
artificial atom or impurity. The second quantum dot has a much larger size
going from 1µm to 2.5µm leading to reduced charging energies and vanishing
level spacing. This large quantum dot is at the limit of being a continuum
of quantum states and can be addressed as a reservoir with controllable
number of electrons. The next chapter will introduce the formalism used to
described quantum dots and explain the physical meaning of these different
energy scales and their importance.
Each of these quantum dots is also connected to two metallic leads formed
by the surrounding mesa. These leads enable to probe the system. Each
transport experiment gives the conductance map through the device from
which the quantum processes contributing to the current can be identified.
The described geometry is quite versatile and enables us in theory to moni-
tor all the currents coming out of the structure in response to one or several
excitations. The choice of this particular geometry was motivated by recent
theoretical proposals investigating the Kondo box problem in double quan-
tum dots arranged in a T-shape geometry [10] [11], a problem where due to
the finite size of the reservoir screening the local moment, the system under-
goes a critical Kondo regime. Note that the T shape (Fig. 1.6, b), that can
be achieved in a parallel quantum dots by tuning properly the device as we
will show later on, was earlier used by Goldhaber-Gordon et al. [8] in order
to study the two channel Kondo effect. In such a regime, a single impurity
(small dot) is screened by two independent channels (reservoirs+large quan-
tum dot) and a critical over-screening point is reached when the Kondo tem-
peratures defined for each channel are equal. During this project, we chose
to probe the system through the small quantum dot as proposed in [10],
which was motivated by an early collaboration with the authors of the pa-
per, Pascal Simon and Denis Feinberg.
Figure 1.6 shows a SEM picture of a double quantum dot chip used during
this PhD (a) and a schematic representation of the T shape geometry (b).
A scheme of the embedded quantum dots formed via the surface electrodes
for this specific design is shown for clarity (c).
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Figure 1.6: a) SEM picture of double quantum dots coupled in parallel.
b) Schematic representation of the double dots arranged in a T shape. c)
Schematic representation of the electrostatically defined quantum dots cou-
pled in parallel.
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Chapter 2

Elements of theory

This chapter is dedicated to the understanding of transport through quan-
tum dots. First we will introduce the Landauer Büttiker formalism necessary
to apprehend coherent conductors. This will enable us to describe a basic
component of a lateral quantum dot : the quantum point contact. By com-
bining this formalism with a semiclassical approach we will derive a simple
model to describe transport process in a quantum dot and introduce the
Coulomb blockade phenomenon. Extending the model to a double quantum
dot we will be able to extract its stability diagram, the so called honey-
comb diagram. We will interest ourselves to the influence of the coupling
between the dots on the honeycomb diagrams. Finally we will go beyond
the Coulomb blockade process and introduce the cotunneling events. The
chapter will be closed on the relation between cotunneling and the Kondo
effect in the framework of the Anderson model.
For each section experimental data acquired within the frame of this thesis
project will be confronted to theory. This choice is motivated by the fact
that lateral quantum dots physics started in the group with this project.
Thereby the observation of these different processes where key steps in our
understanding of transport through quantum dots and occupied an impor-
tant part of this PhD.

2.1 Landauer-Büttiker formalism

When the size of a conductor is made smaller and smaller the importance of
quantum effects no more allows a classical description of the electron. One
has now to take into account the undulatory nature of matter and coherence.
This quantum nature has to be considered as soon as the typical size of the
conductor is of the order or smaller than the phase coherence length (Lφ)
of the electron. This physical observable is the length on which an electron
travels in the conductor with a well defined phase associated to its wave
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function1. To give an idea, weak localisation experiments were performed in
the group on quasi 1D wires etched in GaAs heterostructures [21]. These
measurements extracted a Lφ greater than 10 µm at 30 mK! In this frame
the Ohm’s law does not stand anymore and a new formalism is required to
understand transport. A first step was realised by Landauer who proposed
that conduction in a coherent 1D system could be viewed as a transmission
problem [22]. Later Büttiker extended this formalism to a multiterminal
geometry [23]. The idea is to model the coherent electron propagation with
conduction modes, as in the case of light propagation in an optical wave
guide. In that case the formula giving the conductance stands as:

G =
e2

h

�

k,σ

Tk,σ (2.1)

where e
2

h
is the quantum of conductance and Tk,σ represent the transmis-

sion probabilities of each conduction mode. The k and σ indexes identify the
wave vector and spin of each mode. They depend on the conductor under
consideration. For a 1D system with a single conduction mode and in the
absence of magnetic field, the conductance can reach 2e

2

h
for perfect trans-

mission. The quantification of the conductance as introduced by Landauer
and Büttiker will be illustrated in the next section by studying quantum
point contacts (QPC) which are the basic ingredients required to define lat-
eral quantum dots.
Moreover, we can take advantage of this formalism to describe conduc-
tion through a quantum dot. However this more delicate situation where
electron-electron interactions play an important role cannot be simply ad-
dressed through a set of transmissions coefficients and this formula has to
be adapted to get a suitable description.

2.2 Quantum point contacts

A quantum point contact is basically a constriction in a conductor forcing
all the conduction electrons to flow through a narrow gap. This constriction
is realised electrostatically by depleting the 2DEG with a set of gates that
we refer to as split gates [24] [25]. It consists of two gates facing each other
and separated usually by 200 nm (Fig. 2.1, left panel). The depleted region
formed between the gates is controlled continuously via the voltages applied
on them.
In a conductor, we know that electrons contributing to the current have a
certain momentum/wavelength called Fermi momentum/wavelength. The

1The coupling of the electron to the environment, such as a phonon bath, leads to
inelastic collisions which limit the phase coherence length. On length scales smaller than
Lφ, interference effects have to be taken into account
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transverse confinement in the quantum point contact results in a quantisa-
tion of the transverse motion. The electron wave can only pass through the
constriction if it interferes constructively, in other word if its wave length sat-
isfies the boundary conditions defined by the transverse confinement through
the QPC. For a given size of constriction, this only happens for a certain
number of modes N. The current carried by such a quantum state is the
product of the velocity times the electron density. These two quantities by
themselves differ from one mode to the other, but their product is mode
independent. As a consequence, each state contributes the same amount, e

2

h

per spin direction (perfect transmission) in agreement with the Landauer-
Büttiker formalism. The different conduction modes can be closed one by
one by changing the gate voltages which affects the width of the constric-
tion.

Quantized electronic modes
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Figure 2.1: Left panel : SEM picture of a quantum dot formed with a set
of quantum point contacts. The green lines delimit a single quantum point
contact. Quantized electronic modes have been represented near the QPC.
Right panel : Conductance measured through the QPC marked with green
lines when the voltages on the gates are swept. A staircase in multiples of
2e

2

h
appears showing the different conduction modes reflected by the QPC

one by one. After the last mode has been close we enter the tunnelling
regime.

This is shown in figure 2.1, where the evolution of the conductance through
a break junction is plotted versus the surface electrodes voltages. The stair-
case in units of e

2

h
illustrates the validity of the Landauer-Büttiker formal-

ism, the factor two coming from the spin degeneracy. It is worth noticing
that the conductance plateaus are not perfectly defined. Beyond thermal
broadening, this effect can be attributed to the specific design of the QPC
we used. In the limit where the width of the constriction varies very slowly,
the so called adiabatic limit, exponentially sharp conductance steps are ex-
pected [26]. However, from our SEM picture (Fig. 2.1) we see that we are
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far from this limit. In our case, parasitic transmission due to longitudinal
resonances along the constriction tend to deviate the conductance behaviour
from the perfect staircase picture [27] [28].
After the last mode has been closed, conduction occurs only through tun-
nelling events. In this regime the QPC forms a tunnel barrier. The threshold
after which the conductance drops to zero is called the pinch off. Using a
specific set of QPCs one can surround a small area of the 2DEG with tunnel
barriers and form a quantum dot. This particular point will be discussed in
section 2.3.2.

2.3 Transport through a quantum dot

As we will see in the following, quantum dots have a discrete addition en-
ergy spectrum due to they small size. In other words, a finite energy will
have to be paid in order to add/remove electrons from the quantum dot. It
will be shown that the origin of the finite addition energy comes from the
confinement potential and the electron-electron interactions.
We will take advantage of the discreteness of the addition energy spectrum
by considering the electrochemical potential of a dot that is related to fluc-
tuations of the number of particles confined. Since we are interested in
transport measurements, this quantity will lead us to a natural description
of conductance through the device. A simple formula giving the electro-
chemical potential of a quantum dot can be derived by combining the one
particle energies of the dot and a constant interaction term describing the
electron-electron interactions in the dot.

2.3.1 Quantization of the energy levels

When electrons are confined in a region of space comparable to their wave-
length, in our case the Fermi wavelength, quantum effects become extremely
important, in particular the discrete nature of their energy spectrum. For
simplicity we will not consider the effect of electron-electron interactions for
the moment. This will be done in the next section and we only focus here
on the one particle energy spectrum of an electron in a quantum well. To
illustrate the quantization of the energy we consider the quantum harmonic
oscillator problem, i.e. the quantum mechanical analogue of the classical
harmonic oscillator. This model is of great importance in quantum mechan-
ics since an arbitrary potential can be approximated as a harmonic potential
at the vicinity of the stable equilibrium point. We then make the assump-
tion that the electrons of the 2DEG confined electrostatically are subject to
a parabolic potential (i.e. harmonic). Following Landau’s work who was the
first to address this problem in an other context [29], one finds the expression
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of the energy levels in 1D harmonic oscillator :

En = �ω(n + 1/2), ω =
�

k

m∗ (2.2)

where ω is the characteristic angular frequency of the oscillator depending on
the strength of the potential. ω is a function of the force or spring constant
k and the effective electron mass m∗ equal to 0.067 me in AlGaAs/GaAS.
n represents the quantum number labelling each quantum state in the well.
We see that the energy spectrum is quantized and can only take half integer
multiple values of �ω. To transfer an electron from the n quantum state to
the n + 1 there is a finite cost to pay.

∆En→n+1 = �ω (2.3)

We refer to this energy scale of the dot as the level spacing. Since ω is
proportional to 1/x2, x being the displacement of the electron in the well,
we notice this energy will grow rapidly when the size of the quantum dot
is made smaller. All the formulas derived in this section are only valid
in a 1D problem. We know that lateral quantum dots are defined in a
two dimensional space. It should be noted that a generalization to a 2D
harmonic oscillator can be done and leads to the Fock-Darwin states which
exhibits a discrete energy spectrum parametrized by an angular frequency ω
proportional to 1/r2, a radial quantum number n and in addition an angular
momentum quantum number l [30]. Note that our aim is not to address the
exact one particle energy spectrum of a quantum dot. The main point of
importance here is to note that the confinement potential leads to a discrete
one particle energy spectrum (no interactions).
For a quantum dot with a typical size of 500 nm (pattern) the measured
level spacing is ∆En � 150µeV . If we convert this electron-volts energy
scale to Kelvins, eV = kBT , we find ∆En � 1.5K. To be able to resolve
experimentally the level spacing of such a quantum dot, low temperature
measurements are required, typically 100 mK or better.
For a complete description of a quantum dot, one needs to take into account
the interactions between electrons. This will introduce a new energy scale,
the charging energy.

2.3.2 Electron-electron interactions

The electron-electron interaction is actually a complicated problem in itself,
particularly when dealing with multiple particles. However a simple way to
take into account these interactions in a quantum dot is to describe it as a
capacitor [31]. To pass current through the structure it is obvious that the
number of electrons in it should fluctuate. The idea is to think of this process
as an equivalent of the charging and discharging process of a capacitor. That
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Figure 2.2: Schematic representation of a quantum dot connected to two
metallic reservoirs and a back gate controlling the electronic density. The
equivalent circuit is shown of the right side of the figure. The symbol devel-
oped on the top inset corresponds to a tunnel barrier symbol modelled with
a capacitor in parallel with a resistance.

way the Coulomb interactions will be absorbed in a geometrical factor being
the capacitance of the metallic island. For simplicity we ignore the level
spacing here and work in a classical framework. The circuit we use at this
point to describe the quantum dot is a transistor. Therefore we consider a
metallic island connected through tunnel barriers to two electronic reservoirs
called source and drain from which the current is driven. A back gate or
plunger gate is capacitively coupled to the island and controls the electronic
density in it. A schematic representation of such a device and the equivalent
circuit are given in figure 2.2. The minimal energy required to charge the
metallic island stands as :

EC =
e2

CP , CP = Csource + Cdrain + Cgate (2.4)

where CP is the total capacitance of the island. This energy represents the
energy to bring a single electron from the non interacting leads to the dot.
The smaller the capacitor, the smaller the dot is and the larger the charging
energy is. From experiments performed on quantum dots of a few hundred
of nanometers of diameter, the measured charging energy is of the order of
the meV. This is a huge energy scale, almost 10 Kelvins ! Assuming this
simple circuit is cooled down at a temperature much lower than EC and
that the bias voltage across the island is also smaller than EC , this model
suggests that the charge on the island is fixed and discrete.
However a purely capacitive model is not realistic. As depicted in figure 2.2
the coupling of the dot to the leads is a tunnel coupling. A correct treatment
of such a coupling is complex and has to be done in the frame of quantum
mechanics. For simplicity we just refine the model by adding a resistor in
parallel to the capacitor to describe the coupling to the reservoir. This will
enable a semiclassical description to test the range of validity of the previous
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model. To do so we use the Heisenberg incertitude principle. According to
this principle a quantum system undergoes energy fluctuations within a
related time window:

∆E∆t ≥ �
2

(2.5)

Translating this in terms of charge fluctuations in a simple form:

e2

C
×RC ≥ �

2
⇐⇒ G ≤ 2e2

� (2.6)

The intrinsic charge fluctuations of the dot will develop on a time scale
actually related to the resistance that couples it to the electronic reservoirs.
To avoid the dot to fluctuate on small time scales we end up with the fact
that the barriers forming the dot have to be in the tunnel regime, see section
2.2. In other words, in the tunnelling regime, the charging energy protects
the system from charge fluctuations and defines the number of electrons in
the dot.
We now have to combine the charging energy and the level spacing in a
single formalism to derive the conditions required to pass current through a
quantum dot.

2.3.3 The electrochemical potential

In transport experiments, a suitable quantity to focus on is the electro-
chemical potential that combines the concepts of energy stored in the form
of chemical and electrostatic potentials. This quantity relates the change in
energy with the change of the number of particles in the system.
Before starting we make two main assumptions in order to take advantage
of the energy scales derived earlier. First the interactions among electrons
in the dot and also between electrons in the dot and those present in the
local environment, are parametrized by a constant capacitance C. Second
the discrete energy spectrum can be described independent of the number of
electrons is the dot. This model is known as the constant interaction model.
We consider the transistor set-up depicted in figure 2.2 and write down the
total energy of the dot as the sum of the electrostatic energy and the single
particle states [32]. At zero temperature this energy reads:

U(N) =
[−|e|(N −N0) + CgVg + CLVL + CRVR]2

2C
+

N�

n=1

En (2.7)

The first term corresponds to the electrostatic part. The dot contains N
electrons at a set Vg, VL, VR of voltages applied on the plunger gate, the
source and the drain leads respectively. N0 is the number of electrons on the
dot when no voltage is applied on these gates and which compensates the
positive background charge originating from the donors in the heterostruc-
ture (N < N0). The terms CgVg, CLVL and CRVR, represent the continuous
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charge induced on the dot by the voltages applied on the gate and leads.
The last term corresponds to the single particle states.
The minimum energy for adding the N th electron to the system is by defi-
nition the electrochemical potential:

µdot(N) = U(N)− U(N − 1) (2.8)

For vanishing source and drain voltages this yields:

µdot(N) =
e2

C
(N − 1

2
)− eαgVg + EN (2.9)

where we defined αg as Cg

C
with C is the total capacitance of the dot (Eq. 2.4).

The alpha factor represents the lever arm of the plunger gate. When, at
fixed gate voltage, the number of electrons in the dot is changed by one, the
electrochemical potential is changed by :

µdot(N + 1)− µdot(N) =
e2

C
+ (EN+1 − EN ) = Eadd (2.10)

This energy change is called the addition energy [33]. The conclusion, as
sensed in the previous sections, is that there is finite energy cost to add a
single electron to the system. A complete description of the dot and its
environment indicates that this cost is the sum of the electrostatic contribu-
tion to charge the dot and the orbital contribution to occupy a given orbital
state (EN+1 − EN ). This simple statement has important consequences on
the transport through a quantum dot as we are going to see.

2.3.4 Coulomb blockade

Intuitively if Eadd is larger than any other energy scale such as temperature
or bias across the dot, we can perceive that this high energy cost can block
the transport through the dot. To illustrate this statement, we make use of
the potential landscape forming the quantum dot as shown in figure 2.3a.
We represented the electrochemical potentials in the dot for N + 1, N and
N−1 electrons confined. The (N +1)th electron cannot tunnel in the dot be-
cause the electrochemical potential µdot(N +1) is larger than the potentials
of the reservoirs. The N th electron cannot tunnel out off the dot since all
states in the reservoirs at an energy µdot(N) are occupied. In this situation
the number of electrons on the dot is fixed, no current can flow through the
system. This important phenomenon is called the Coulomb blockade [34].
Starting from a completely blocked system, different options exist to lift the
Coulomb blockade. One is to change the potential of the dot by means of the
plunger gate. By applying a negative voltage on this gate, the potential of
the dot is reduced. In the situation depicted in figure 2.3b, an electron can
now tunnel from the source (left lead) to the dot since µL > µdot(N + 1).
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Figure 2.3: Potential landscape of a quantum dot induced by the gates at
zero temperature. The states in the reservoirs are continuously filled up to
the electrochemical potentials µL and µR. We assume to be in the linear
transport regime, eV � ∆E, e

2

C
. The discrete states in the dot are filled

with N electrons up to µdot(N). The addition of one electron in the dot
would raise the electrochemical potential to µdot(N + 1). In the energetic
configuration depicted in (a), the addition is blocked. By lowering the po-
tential of the dot with a plunger gate, one can align µdot(N + 1) in the bias
window (b). Transport can now take place. The total charge on the dot
oscillates between N and N + 1.

This causes the electrochemical potential µdot to shift by ∆E + e
2

C
. Now

µdot(N +1) > µR, one electron can tunnel out off the dot to the drain reser-
voir (right lead), thereby causing the electrochemical potential to drop back
to µdot. Once the sequence finished, a new electron can repeat the cycle
N −→ N + 1 −→ N . This particular operating mode is called a charge
degeneracy point, where actually two charge configurations minimize at the
same time the total energy of the dot. The number of electrons fluctuates
between the two configurations leading to a current as mentioned. Note that
only one electron is involved in the tunnelling sequence. This process where
current is carried by a succession of discrete charging and discharging of the
dot is known as single electron tunnelling [35].
By sweeping the plunger gate voltage, the electrochemical potential of the
dot is shifted continuously. The conductance through the device then os-
cillates from zero, corresponding to the Coulomb blockade regions, to finite
values, where single electron tunnelling occurs [36]. In the Coulomb valleys
the number N of electrons in the dot is fixed. On a Coulomb peak the num-
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ber of electrons in the dot fluctuates between N and N+1. Quantum dots
are often referred to as Single Electron Transistors (SET) because of this
”on/off” behaviour. The voltage separating two consecutive peaks is related
to the addition energy. The period ∆Vg of the oscillations can be obtained
from equation 2.9 under the condition µdot(N,Vg) = µdot(N + 1, Vg + ∆Vg):

∆Vg =
1

eαg

�
e2

C
+ ∆E

�
(2.11)

In the case of spin degenerate states, two periods should be observed. One
period corresponds to the N th and (N +1)th electrons having opposite spins
and occupying the same orbital state. The other is related to the (N + 1)th

and (N + 2)th electrons being in different orbitals.
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Figure 2.4: Typical measurement of Coulomb blockade oscillations per-
formed on a single dot at a temperature of 20 mK. The random variation
of the peaks amplitude can be attributed to the random coupling between
each discrete state and the reservoirs.

Figure 2.4 shows a typical measurement of Coulomb blockade through a
quantum dot in the linear transport regime, i.e. eV � ∆E, e

2

C
, and at a

temperature of 20 mK. The dot has a diameter of 1500 nm with a charging
energy of EC = 300µeV and a level spacing ∆E = 20µeV . These energy
scales were not extracted from the conductance plot. According to equa-
tion 2.11, the α factor has to be known to be able to do so. To access the
arm lever value, a non linear spectroscopy experiment is necessary. This
will be the purpose of the next section. However we do see that the conduc-
tance exhibits sharp oscillations separated by large regions where transport
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through the dot is completely suppressed, emphasizing the dramatic influ-
ence of the Coulomb blockade on transport. Notice that the spacing between
the peaks appears to be very regular in this experiment. Due to the large
ratio EC/∆E in this quantum dot, the charging energy dominates trans-
port. This explains the fact that the Coulomb blockade oscillations seem ti
have a single period here.

So far we did not mention the effect of temperature. Actually the line shape
of the Coulomb peaks depends strongly on temperature. Three temperature
limits can be distinguished, assuming the coupling between the dot and the
reservoirs is negligible [37]:

• The low temperature or quantum limit: Γdot−leads < kBT < ∆E <
EC .

• The classical limit : Γdot−leads < ∆E < kBT < EC

• The high temperature limit : Γdot−leads < ∆E < EC < kBT

The strong coupling limit of none negligible Γdot−leads will be addressed
later.
We only discuss here about the low temperature limit, that is to say when
Γdot−leads < kBT < ∆E,EC . In this limit, the quantum states are resolved.
Tunnelling events only involve single discrete energy states. The line shape
of the Coulomb peak can be approximated by [37]:

G = Gmax cosh−2

�
αg(V res

g − Vg)
2kBT

�
, Gmax =

e2

4kBT

ΓLΓR

ΓL + ΓR

(2.12)

V res
g is the position of the resonance peak on the gate voltage axis. The

tunnel rates ΓL and ΓR entering the contrast factor, actually depend on the
state under consideration. Strictly speaking there is no reason that all the
orbitals of the dot couple exactly the same way to the leads. In practice,
one expects that for each orbital the spatial distribution of the electron is
unique, yet differs weakly from the others. From the spatial distribution one
can access the overlap of the wave function of an electron in the dot, and
the wave function of an electron in the leads (plane waves). The conclusion
is that one can label each orbital with a unique effective tunnel rate. In
the quantum limit, transport through the dot is sensitive to this unicity .
The random variation in the peaks amplitude of figure 2.4 illustrates this
fact. It is worth noting that beyond the constant interaction model, adding
an electron to a finite interacting region actually perturbates the other elec-
trons. Despite the variation of the charging energy (expected to be weak for
large dots holding an important number of electrons), the nature itself of
the confining potential will be affected, thereby affecting the wave functions
within the dot and there overlap with the quasi particles plane waves in the
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Figure 2.5: Single Coulomb peak fitted using equation 2.12. The red points
corresponds to the experimental data. The black line corresponds to the fit.
The effective electronic temperature extracted is 40 mK.

metallic leads. This effect is know as scrambling [38].
A fit to equation 2.12 on one of the peaks present in the measurement, en-
ables us to extract the effective electron temperature in our device at the
base temperature of our dilution refrigerator (20mK). The electronic tem-
perature extracted from the fit performed in figure 2.5 is 40 mK. Resistance
measurements versus temperature done earlier on identical AlGaAs/GaAs
wafers, have extracted a saturation temperature of 30 mK for the electrons.
From these measurements we estimate the electronic temperature in our
samples to be of the order of 30-40 mK which is slightly above the base
temperature of our dilution refrigerator2. We believe that the saturation
temperature of the Coulomb peaks width is not related to Γ broadening but
comes from a lack of filtering a high frequency3. We will discuss this point
later when dealing with electronics and noise in the experimental setup.

2.3.5 Stability diagrams

So far we only worked in the linear transport regime. We are going to focus
now on the non linear transport regime, i.e. when eV > kBT, ∆E,EC , in
order to get a complete spectroscopy of the energy spectrum of the dot. To
match the experimental setup we use in practice, we assume the right lead

2Measurements performed at 10 mK give the same electronic temperature in both
experiments.

3At frequencies around 500 MHz, the low frequency filters and high frequency filters
we use do not recover properly and could therefore explain the difficulties we have to cool
down electrons below 30 mK.
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is grounded, so VR = 04. The bias voltage will be applied on the left lead,
VL = Vbias. Equation 2.9 reads now :

µdot(N) =
e2

C
(N − 1

2
)− eαgVg − eαLVL + EN (2.13)

where αL = CL/C (see section 2.3.3, alphag). The minimum condition for
a tunnelling event to occur through the ground state of the dot, is that
its electrochemical potential aligns with at least one of the electrochemical
potentials of the leads. This defines the following conditions :

µdot(N) = µR = 0 (2.14)
µdot(N) = µL = −eVL (2.15)

This corresponds to lines in the (Vg, Vbias) diagram that form domains en-
closing the blockade regions. The equations of these lines given by the
previous conditions stand as :

VL ∝ −Cg

CL

× Vg + constant (2.16)

VL ∝ Cg

CR + Cg

× Vg + constant (2.17)

By combining the lines corresponding to different occupations numbers in
the dot, we can dress the regions in the (Vg, Vbias) space where the quantum
dot is blocked. The different lines enclosing a blockade area form a diamond
shape. In each diamond the number of electrons confined is fixed. The bor-
ders of the diamonds define the sets (Vg, Vbias) for which transport occurs
through the ground state. We refer to them as Coulomb diamonds.
In terms of transport through the dot, crossing the border of the diamond
implies that the current through the system increases sharply as the block-
ade is lifted. Rather than monitoring current through the system, a usual
method used to gain sensitivity and obtain good resolution of the Coulomb
diamonds is to probe the differential conductance dI/dVbias. Thereby, in-
stead of focusing on the absolute value of the current, more interest is put in
the relative variation of the current through the quantum dot as a function
of the bias voltage. That way a better contrast in non linear measurements
can be obtained. For a dI/dV measurements we refer the reader to [39] and
[40].
Figure 2.6 is a schematic colour plot of the differential conductance5 through

4To study transport through a dot, we apply a bias voltage on one lead and keep the
other lead connected to ground

5The color scale is related to the value of the differential conductance dI/dV . In
Figure 2.6, a binary colour code has been used : white corresponds to zero differential
conductance, blue corresponds to finite differential conductance.
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Figure 2.6: Schematic colour plot of the differential conductance through
the dot versus the voltage bias and the plunger gate voltage. The diamond
regions in the (Vg, Vbias) space enable to extract different important pa-
rameters of the dot: Eadd,∆Vg, αg and the different capacitances. Schemes
inserted at the bottom of the figure show the alignment of the electrochem-
ical potential of the dot with the leads in different areas of the stability
diagram.

the system and shows Coulomb diamonds for symmetric tunnel barriers. A
diamonds hight in the Vbias direction gives the addition energy. We omitted
the factor 1

e
for simplicity. The length of a diamond on the Vg axis gives

∆Vg from which we can extract now the αg factor. All the capacitances can



2.3 Transport through a quantum dot 29

at this point be determined.

Beyond transport through the ground states, multiple excitations exist in
the system. The excitation spectrum can be probed in non linear transport.
To be able to visit an excited state an electron needs to have enough energy
to jump to the next orbital state or higher. In the framework of tunnelling,
the incoming electrons on the dot have to first have enough energy to visit
the ground state (resonance). The excess of energy within regards to the
ground state can be used to occupy a higher orbital state. In other words
excited states can be observed beyond the borders of the diamonds 2.7. We
know the excitation spectrum is quantized. Then, starting from the border
of a diamond at fixed Vg one needs to open the bias window by an amount
: ∆Vbias = m∆E. Where m is an integer number and assuming the level
spacing is constant. If not ∆Vbias has simply to match the different ∆En of
the system. When this condition is met the incoming electron has now dif-
ferent paths to go through the dot, which leads to an increase of the current
detected. Since we are measuring the variation of the current through the
dot via a dI/dV measurement, the result in the (Vg, Vbias) stability diagram
is the presence of extra lines parallel to the borders of the diamonds indi-
cating the increase of the local conductance [40]. Each line corresponds to a
given excited state aligning in the conduction window. For a given number
of electrons N , we define µ∗

dot
(N) to be the electrochemical potential corre-

sponding to an excitation of the ground state µdot(N).
Figure 2.7 shows a typical non linear transport experiment through a single
quantum dot. The differential conductance dI

dV
(colours) is monitored as a

function of Vbias and Vg. We see that this experiment is in good agreement
with the simple constant interaction model. First of all, we clearly observe
the Coulomb diamonds in dark blue where no current through the system is
detected. Then, once the Coulomb blockade is lifted (borders of diamonds),
extra lines appear corresponding to excited states aligning in the bias win-
dow with the ground state. From the distance separating two consecutive
and parallel lines, one can extract the value of the level spacing. However
asymmetries and deviations exist :

• The diamonds are tilted. This is a signature of a detuning of the
tunnel barriers which leads to a detuning of the capacitances CL and
CR affecting the degeneracy lines of the Coulomb diamonds. This also
reflects in an asymmetry of the color contrast for positive and negative
bias.

• The contrast decreases with decreasing plunger gate voltage. This
can be due to a difference of coupling to the leads, of the charge states
participating to the transport (see section 2.3.4). A charge state better
coupled will result in a stronger conductance through the system. It
can also be due to cross talk between the gates. The voltage applied
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Figure 2.7: Top. dI

dV
colour plot as function of Vbias and Vg monitored at

20 mK in a quantum dot with a size of 300 nm. The dark blue regions
in the diamonds correspond to the blockade regions. Above the borders of
the diamonds, extra lines corresponding to excited states are clearly visible.
The distance in the Vbias direction separating two parallel lines correspond
to the excitations energies ∆En(N). Bottom. Schematic representations of
the transport through the ground state and through the first excited state.
Even though two states align in the bias window, only one electron can
tunnel at a time.

on the plunger gate influences the voltages on the tunnel barrier gates
and can lead to detuning of their transparencies.
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• The size of the diamonds increases with decreasing gate voltage. By
applying a more and more negative voltage on the plunger gate, the
dot is effectively squeezed. A size reduction then leads to an increase
of the addition energy.

• The level spacing is not strictly speaking a constant as anticipated
previously.

2.4 Transport through double quantum dots

Now that we have the basic ingredients to understand transport through a
single quantum dot, we are going to apply the previous formalism to a pair
of quantum dots attached to leads and coupled to each other. We will first
introduce a capacitive coupling between the dots and analyse the effect of
its strength on the transport properties. This will enable us to derive the
stability diagrams of double dots in different coupling regimes. In order to
achieve a better treatment we will add a tunnel coupling between the dots
and see how this influences the stability diagrams.

2.4.1 Semi classical model

In order to describe the transport properties through a double quantum
dot, we make use of an electrical setup inspired of figure 2.2 and extend it
to a parallel geometry. A small and a large quantum dot connect through
tunnel barriers to two metallic leads each other. These dots are mutually
coupled through a tunnel barrier too. The potential of each quantum dot
can be varied with plunger gates that couple capacitively to the dots. The
mentioned circuit is depicted on figure 2.8.
We only consider for the moment the electrostatic energy of the system and
forget about the influence of the quantum states [41]. First we only treat
the mutual coupling as purely capacitive. We assume to be in the linear
transport regime (vanishing Vbias) and work at zero temperature. If cross
capacitances and stray capacitances are negligible, the double dot electro-
static energy reads :

U(Nd, ND) =
1
2
Ed(Nd + νd)2 +

1
2
ED(ND + νD)2

+EdD(Nd + νd)(ND + νD) (2.18)

The indexes d and D stand for small dot and big dot respectively. N repre-
sents a number of electrons in a given dot. νd(D) stand for − 1

|e|Cgd(D)Vgd(D).
Ed, ED and EdD correspond to the charging energies of the small dot, the
big dot and the mutual charging energy between the dots. The coupling
EdD is the change in energy of one dot when an electron is added to the
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Figure 2.8: Electrical scheme of a double quantum dot arranged in a parallel
geometry.

other dot. The different charging energies can be expressed in terms of the
capacitances as follows:

Ed =
e2

Cd

�
1

1− C
2
dD

CdCD

�

ED =
e2

CD

�
1

1− C
2
dD

CdCD

�

EdD =
e2

CdD

�
1

CdCD

C
2
dD
− 1

�
(2.19)

Cd(D) is the sum of all the capacitances attached to the dot d(D) : Cd(D) =
CLd(D) + CRd(D) + Cgd(D) + CdD. We can observe that the capacitive cou-
pling between the dots actually renormalizes the charging energies of the
independent dots. The ratio CdD

Cd(D)
determines the importance of the renor-

malisation and the different transport regimes.
In the weak coupling regime, i.e. CdD = 0, hence EdD = 0, equation 2.18
reduces to:

U(Nd, ND) =
(−Nd|e| + CgdVgd)2

2Cd

+
(−ND|e| + CgDVgD)2

2CD

(2.20)
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Which corresponds to the energy of two independent dots.
In the strong coupling regime, when CdD

Cd(D)
−→ 1, the electrostatic energy is

given by:

U(Nd, ND) =

�
− (Nd + ND)|e| + CgdVgd + CgDVgD

�2

2(C̃d + C̃D)
(2.21)

This represents the energy of a single dot with Nd +ND charges and a total
capacitance C̃d+C̃D, where C̃d(D) = Cd(D)−CdD is the the total capacitance
of dot d(D). Thus a large intra dot capacitance leads to an effective single
dot.

These extreme limits are not of great interest in our work. We will be
more interested in intermediate regimes where the physics is richer. How-
ever tuning double quantum dots with a set of almost ten gates is delicate
and has to be done step by step. Knowing these limits enables to define a
starting point, the weak coupling regime, from which the intra dot coupling
is increased gradually towards the strong coupling limit. This enables us to
explore the evolution of the stability diagrams for different gate voltages.

2.4.2 Stability diagrams

To derive the stability diagrams of double quantum dots we focus once
again on the electrochemical potentials of the system as in section 2.3.3. We
now have to define two electrochemical potentials, one for each dot. The
electrochemical potential µd(D)(Nd, ND) of dot d(D) is defined as the energy
needed to add the Nd(D)

th electron to dot d(D), while having ND(d) electrons
in dot D(d). From equation 2.18 the electrochemical potentials of the two
dots are:

µd(Nd, ND) = U(Nd, ND)− U(Nd − 1, ND)

=
�
Nd −

1
2

�
Ed + NDEdD

− 1
|e|(CgdVgdEd + CgDVgDEdD), (2.22)

µD(Nd, ND) = U(Nd, ND)− U(Nd, ND − 1)

=
�
ND −

1
2

�
ED + NdEdD

− 1
|e|(CgDVgDED + CgdVgdEdD) (2.23)
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Then at fixed gate voltages, the changes in the electrochemical potentials
when a single electron is added in the system read:

µd(Nd + 1, ND)− µd(Nd, ND) = Ed

µD(Nd, ND + 1)− µd(Nd, ND) = ED

µd(Nd, ND + 1)− µd(Nd, ND) = µD(Nd + 1, ND)− µD(Nd, ND)
= EdD (2.24)

As in the case of a single dot, we have to pay a certain addition energy
in order to add an extra electron in the system. For an electron added
in dot d(D) this energy simply corresponds to the addition energy Ed(D).
The change in energy when one of the dots is charged, is felt by the other
dot through the mutual capacitance, therefore its electrochemical potential
is raised by EdD. So far we only considered the electrostatic part of the
energy. From the work made on single dots, we know that the addition
energy is a composition between the charging energy and the level spacing.
To take into account the quantized states of the dots we take advantage of
the fact that in the constant interaction model : µi,n = µi

class + En. This
leads to :

µd(Nd + 1, ND)− µd(Nd, ND) = Ed + ∆dE

µD(Nd, ND + 1)− µD(Nd, ND) = ED + ∆DE (2.25)

Where Ed and ED corresponds to the addition energies of dot d and D given
by equations 2.19. ∆dE and ∆DE stand for the level spacings of dot d and
D respectively. From equations 2.23, the charge stability diagrams of double
quantum dots can be derived with the convention that Ed and ED are now
the generalized addition energies that consist of the sum of the electrostatic
contribution ( 2.19) and the orbital contribution (level spacings ∆dE and
∆DE).
We fix the electrochemical potentials of the leads (µLd, µRd, µLD and µRD)
at zero and construct a charge stability diagram, giving the numbers Nd and
ND of electrons as a function of Vgd and VgD at the equilibrium. Since the
potentials of the leads are zero, the equilibrium charges will be given by the
largest values of Nd and ND for which both µd(Nd, ND) and µD(Nd, ND)
are less than zero. For values larger than zero, electrons escape to the leads.
When a set of two couples of numbers (Nd, ND) is allowed, a charge degen-
eracy line is found in the stability diagram. Different lines can be obtained
from equations 2.23, for a given intra dot coupling constant. We can derive
three main type of diagrams corresponding to three main coupling regimes
: weak coupling, intermediate coupling and strong coupling [42] [43]. These
diagrams are shown in figure 2.9.

Weak coupling limit (Fig 2.9 a). In this limit the mutual capacitance CdD
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Figure 2.9: Schematic charge stability diagrams of the double dot. The
equilibrium charge configurations are denoted (Nd, ND) and form domains
where the charge in the system is well defined. a) Weak coupling or vanishing
CdD. b) Strong coupling, CdD

Cd(D)
→ 1. c) Intermediate coupling with the

formation of honeycomb diagrams. d) Close view of a honeycomb cell. The
different sizes of the cell are directly related to the different energy scales of
the coupled dots.

vanishes to zero. In the (Vgd,VgD) space, the charge stability diagram is
formed of parallelipipedic domains in which the device is blocked. In each
domain one can define the charge configuration (Nd,ND) of the double dot.
The sizes of a parallelipided in the Vgd and VgD directions are directly re-
lated to the addition energies of dot d and dot D respectively and follow a
relation given by formula 2.11. Note that no cross capacitance have been as-
sumed, therefore there is no influence of the plunger gate d(D) on the charge
configuration of dot D(d). The quantum dots are completely independent.

Strong coupling limit (Fig 2.9 b). When the mutual capacitance becomes
of the order of the total capacitances of the two dots, i.e. CdD

Cd(D)
→ 1, di-

agonal stripes define the stable charge configuration of the system. In each
stripe the total number of electrons in the double dot is fixed. In such
a regime it is more relevant to speak about the total number of electrons
N = Nd + ND rather than the Nd and ND separately. The double dot can
simply be thought as a single large dot with two plunger gates, giving there-
fore coulomb peaks moving along a diagonal lines in the (Vgd,VgD) space.
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The distance separating two consecutive lines in the Vgd and VgD directions
is directly related to the addition energy of the total system (Eq. 2.11) .
Generally speaking, the arm leavers of each plunger gate are not equal.

Intermediate coupling (Fig 2.9 c). When the capacitive coupling between
the dots takes an intermediate value, honeycomb cells form domains in the
stability diagram where the charge configuration is fixed. Starting from fig-
ure 2.9 a, when the coupling is increased, two main effects appear. First,
the parallelipipedic domains get distorted because of the influence of the
potential of one dot on the other. The second point is, when a quadruple
point (4 charge configurations degenerated) appeared in the weak coupling
diagram corresponding to UdD → 0 (Fig 2.9 a), we now find in the interme-
diate regime two triple points separated by an extra degeneracy line6. The
reason is the following. The existence of a quadruple point in the honey-
comb diagram would allow to add or remove two electrons (one in each dot)
in the system at the same time. However the raise/drop (±Ed(D)) of the
electrochemical potential of one dot when one electron is added/removed,
is followed by a raise/drop (±EdD) of the electrochemical potential of the
other dot. Therefore two electrons cannot be added/removed at the same
time. One has to compensate the shift EdD of the electrochemical potential
of the other dot to add/remove the second electron. The mutual capaci-
tive coupling then opens a gap between the triple points (Fig. 2.9 c, ∆V dD

gd
,

∆V dD

gD
) which is seen via the degeneracy line separating the triple points. At

the exact center of the gap, the double dot system is blocked by the mutual
charging energy. This remark will be a key point in the understanding of
experimental data in a particular regime that will be addressed in the last
chapter.
The different dimensions of a honeycomb cell can be related to the addition
energies of the coupled dots from :

µd(Nd, ND;Vgd, VgD) = µd(Nd + 1, ND;Vgd + ∆Vgd, VgD) (2.26)

We then obtain:

∆Vgd =
1

eαgd

Ed =
1

eαgd

�
e2

Cd

+ ∆Ed

�
(2.27)

Similarly,

∆VgD =
1

eαgD

�
e2

CD

+ ∆ED

�
(2.28)

And from:

µd(Nd, ND;Vgd, VgD) = µd(Nd, ND + 1; Vgd + ∆V dD

gd
, VgD) (2.29)

6As an example we can see that there is no degeneracy point between the (0,0) and
(1,1) domain in the intermediate regime
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We derive:
∆V dD

gd
=

CdD
2

eCgdCD

EdD (2.30)

Similarly,

∆V dD

gD =
CdD

2

eCgDCd

EdD (2.31)

A close up view on a honeycomb cell (Fig 2.9 d) shows the different di-
mensions in the (Vgd,VgD) diagram that have been derived in the previous
equations [44] .

In order to test the double dot model, we are now going to compare it
with experimental data. These data have been taken in an intermediate
intra dot coupling and weak coupling to the leads. We now make an impor-
tant remark about the experimental setup. The setup that we will use in all
our experiments is not exactly the parallel geometry depicted in figure 2.8.
We actually tune the dot to achieve a ”T shape” geometry, a simpler form
of the parallel geometry.
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Figure 2.10: Top panel. Sem picture of a typical double quantum dot used
during this project. The gates connecting the large dot (blue) to its nearest
electronic reservoirs are superimposed with a red dashed line. This line indi-
cates the tunnel barriers are close, i.e. far in the pinch off. The plunger gates
of each dot have been highlighted with colours for clarity. The bias voltages
attached to the different leads will be addressed in the next chapter.Bottom

panel. Equivalent scheme of the double dot tuned as mentioned. The circuit
forms a ”T shape” where only the small dot is probed in transport.

By a ”T shape” we mean only one dot, the small one, connects to two leads.
The other dot, the big one, will connect to those leads through the first dot.
To do so, we always make sure that the tunnel barriers connecting the big
dot to leads µLD and µRD (Fig. 2.8) are far in the pinch off. That is to say
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the voltages applied on these gates are as small (negative) as possible to be
sure that the transparencies of the barriers are close to zero. That way the
tunnel events through these barriers can be neglected and we can simply
forget the metallic leads surrounding the big dot. This is what figure 2.10
shows on the left panel, where a SEM picture of our double dot presents a
red dashed line on the gates connecting the big dot to its electronic reser-
voirs. This line indicates closed barriers. Concerning the bias voltages, we
will discuss them in the next chapter when looking at the complete experi-
mental setup. For the moment just assume the equivalence between the left
panel and right panels of figure 2.10. In the ”T shape” geometry depicted,
only the small dot is probed in transport. The physics of the large dot will
reflect in the current outcoming from the small one, due to intra dot cou-
pling or hybridisation. We can think of the system as a small dot connected
to three leads, one of them having a finite size.
A typical measurement of a honeycomb diagram is presented in figure 2.11.
The graphic corresponds to a dI

dV
measurement (colours) when the two

plunger gates Vgd and VgD are scanned. To increase the contrast between the
low conductance and high conductance areas, we have plotted the logarithm
of the differential conductance. This measurement has been performed at
low temperature, 20 mK, low bias, 2µeV and in the weak coupling regime to
the leads. Honeycomb cells clearly appear in the stability diagram reflect-
ing an intermediate capacitive coupling between the dots. For clarity, three
honeycomb cells have been super imposed on the diagram. Each cell is com-
posed of three main degeneracy lines which correspond to specific transport
processes through the double dots.

Fig. 2.11 (1), (n, N) −→ (n − 1, N): Transport occurs through the small
dot via resonant tunnelling, while the big dot is in the blockade regime.

Fig. 2.11 (2) (n, N) −→ (n− 1, N + 1): No signal is detected on this partic-
ular line. We see that this line separates two different charge configurations
of the double dot and corresponds to an exchange of an electron from one
dot to the other. When we sit in the middle of this line, the electrochemical
potentials of the dots are degenerated and lie below the Fermi energy of the
leads. No transport occurs through the system and the blockade is defined
via the mutual charging energy UdD.

Fig. 2.11 (3) (n, N) −→ (n, N + 1): This degeneracy line corresponds to
the degeneracy of the electrochemical potential of the big dot and the elec-
trochemical potential of the leads. In the framework of capacitive coupling
between the dots, we do not expect to detect conductance on this type of
ridge. Indeed, in the T shape geometry we use, the small dot effectively
connects to the leads. In order to understand transport on ridges of type
(3), we need to go beyond inter-dot capacitive coupling and introduce tunnel
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Figure 2.11: Logarithm of the differential conductance monitored when
the two plunger gates are scanned. Honeycomb cells appear, reflecting
the intradot coupling and the different processes participating to transport
through the system. Each honeycomb cell is composed of three main degen-
eracy lines. They correspond to the degeneracy between the small dot and
the leads (1), between the two dots (2) and between the big dot and the
leads (3).



40 Elements of theory

coupling (sec 2.4.3). Briefly, inter-dot tunnelling will mix the wave functions
of the dots. Therefore, due to the mixing, a certain part of the small dot
wave function will remain on ridges of type (3) which will lead to conduc-
tance through the device.

At the intersections of the three degeneracy lines, a triple point is formed
and corresponds to alignment of all the electrochemical potentials in the
double dot-leads system.

2.4.3 Tunnel coupling

When electrons can tunnel coherently from one dot to the other at appre-
ciable rates, the eigenstates become delocalized, extending over the entire
double dot system. In principle, these are quantum mechanical many body
states of the two coupled dots. It is very difficult to give a full description of
such a many body system. For simplicity we discuss here the case of a two
level system which as proved to be useful in the understanding of double
dots tunnel coupled [45]. Basically, we only take into account the topmost
occupied level in each dot and neglect the interaction with electrons in lower
energy levels [43]. This simplified picture can be justified as long as transi-
tions occur between the ground states of both dots.
We model the double dot as a two level system described by a Hamiltonian
H0 with eigenstates |φ1 > and |φ2 > and eigenenergies E1 and E2.

H0|φ1 > = E1|φ1 >

H0|φ2 > = E2|φ2 > (2.32)

We now introduce a tunnel coupling between the two dots described by an
Hermitian matrix T taking the following form:

T =
�

0 t12

t21 0

�

The system is now described by a new Hamiltonian H=H0+ T. The new
eigenstates |B > (Bonding state) and |A > (antibonding states) correspond
to delocalized states. The new eigenenergies can be expressed in terms of
the eigenvalues of the uncoupled double dot and the tunnel matrix elements
as follows:

EB = EM −
�

1
4
(∆E)2 + |t12|2

EA = EM +
�

1
4
(∆E)2 + |t12|2 (2.33)

where EM = 1
2(E1 + E2), ∆E = E1 − E2 and |t12| = |t21|.

For a fix tunnel coupling, we see that EB and EA describe hyperbolas as
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a function of the detuning parameter ∆E. Figure 2.12 (panel c) shows the
deviation of the energy levels of the coupled dots from the energy levels of
the uncoupled dots when the detuning parameter is varied. We see that the
effect of the tunnelling is maximal when ∆E = 0. At this point, the energy
levels present an anti crossing that stabilizes the bonding state.
Beyond the renormalization of the energy levels of the system as pointed out
by the anti crossing, the tunnel coupling induces another important effect
that will influence conductance through our double dots : the mixing of
the wave functions of the isolated states. To emphasize this point we write
down the molecular eigenstates of the system (Eq. 2.34), that corresponds
to a superposition of the isolated states | ϕ1 > and | ϕ2 >:

| A > = cos
ϑ

2
| ϕ1 > +sin

ϑ

2
| ϕ2 >

| B > = −sin
ϑ

2
| ϕ1 > +cos

ϑ

2
| ϕ2 > (2.34)

| A > and | B > refer to anti bonding and bonding molecular states.
tgϑ = 2t12

�1−�2
defines the mixing between the wave functions and therefore

determines the weights of each wave function in a given molecular state. As
we can see, the proportion of | ϕ1 > and | ϕ2 > in the molecular states
will vary as a function of the detuning parameter δ = �2 − �1. We will go
from molecular states very close to a pure isolated states for large detuning
compared to the tunnelling element, δ >> t12, to equally mixed states for
vanishing detuning, δ = 0.

In order to test the two level description we made above we show in fig-
ure 2.12 (panel b) a stability diagram monitored in our double dot at low
temperature, 20 mK. Compared to figure 2.11, we have simply depolarized
the middle gates separating both dots which increases the inter dot tunnel
coupling. We see in figure 2.12 (panel b) that the diagram is very close
to a pure honeycomb diagram with corrections near the triple points that
smooth the degeneracy lines of the system. One can observe that the profile
of these molecular lines follows a hyperbola around the triple points (where
the dots levels are degenerated), in agreement with (Eq. 2.33). Note that
the contribution of the anti bonding state is not seen in the diagram. At
low temperature and low bias, kBT, eV << t12, the anti bonding state is a
high energy excited state that is not visited during resonant tunnelling with
the leads.
Moreover, from the mixing of the wave functions that varies with the de-
tuning parameter as stipulated by equation 2.34, we can also apprehend the
modulation of the conductance on a molecular degeneracy line. As an ex-
ample we focus on the area around the triple point in figure 2.12 indicated
by the black arrow. At the triple point the small dot and large dot levels
(electrochemical potentials) are degenerated, δ = 0. Due to tunnel coupling
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Figure 2.12: Panel a). Representation of the modulation of the differen-
tial conductance along a molecular degeneracy line. Panel b) Honeycomb
diagram at low temperature and weak couplings (leads, dots). A zoom on
two triple points (white dashed box) on the right side shows the effect of
tunnelling (red lines) smoothing out the honeycomb structure (black lines).
Panel c) Anti crossing between a small dot and large dot levels. On the right
side a representation of the independent energy levels (d and D) and molec-
ular levels (A and B) is given. The coloured arrows from panel c) to panel
b) make the connection between the coloured cuts (dashed lines) and three
different positions in the honeycomb diagram : large dot degeneracy line,
triple point and small dot degeneracy line, from left to right respectively.
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tdD, this leads to an anti crossing as depicted in figure 2.12 (panel b and c).
The molecular states | B > and | A > formed, are renormalized in energy
by the tunnel coupling and hold an equal proportion of small dot and large
dot wave functions, | ϕd > and | ϕD >. A two level representation is given
on the right side of the bottom panel for clarity. By continuity from the
honeycomb lattice to the molecular degeneracy lines we expect the conduc-
tance to take an average value around the area pointed by the orange arrow,
since 50% of the ground state has weight in the small dot wave function
and therefore effectively connects to the leads. For finite detuning around
the triple point, we expect the molecular states to be less renormalized and
therefore closer to the pure wave functions. For negative detuning, green
dashed cut in panel b), we see that the ground state is closer to the large
dot level, that is to say holds a small proportion of the wave function of
the small dot. We then expect the conductance to be weak near the area
pointed by the green arrow. The red dashed cut for positive detuning, leads
to a ground state close to the small dot level which means large conductance
on the point indicated by the red arrow.
It appears that the previous remarks are in qualitative agreement with the
colour plot shown in Figure 2.12 (panel b).
In conclusion for weak tunnel coupling in our device, the entire stability
diagram can be understood in the frame of the constant interaction model
applied to capacitively coupled dots (honeycomb diagrams) combined to a
two level representation that captures the effect of tunnel coupling. As we
will see later in the chapter dedicated to the experimental data, this descrip-
tion does not account for transport through our device for stronger inter dot
tunnel coupling.

2.5 Cotunnelling

In the prior analysis of single electron tunnelling, we only considered first
order transport processes. Transport was dominated by resonant tunnelling
only occurring at resonance with the Fermi energy of the leads. Off resonance
Coulomb blockade leaded to the suppression of the current. However in the
blockade regime, higher order processes may become relevant in the under-
standing of transport. These higher order processes become increasingly
important when the conductance of the tunnel barriers increase towards e

2

h
,

such that quantum fluctuations broaden the energy levels in the dot, al-
lowing more channels for charge transfer. We refer to these transitions as
cotunnelling events, because they involve the cooperation of two electrons.
The basic idea is to take advantage of the Heisenberg principle from which
large energy fluctuations (of the order of the charging energy in a Coulomb
valley) can exist on a short time scale. A simple picture would depict an
electron entering the dot and occupying a high energy state during a short
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time scale, while an other electron already confined would escape from the
dot within this time window (Fig. 2.13). Therefore during a short moment,
the dot contains one electron in excess normally forbidden because of the
addition energy one has to pay within the vicinity of the Coulomb blockade
valley. Such a state is refer to as a virtual state. We can identify two types
of cotunneling events: elastic [46] [47] and inelastic [48].

Elastic cotunnelling: eV < ∆E. During an elastic cotunnelling event, no en-
ergy is transferred to the dot. After the transition, the state of the quantum
dot is unchanged. An example of such a process is depicted in figure 2.13
a. An electron from the left lead enters the dot while a lower energy elec-
tron confined within the dot escapes to the right lead. The state of the
quantum dot after the sequence is conserved. Note that this description is
a very simple and common way of imaging cotunnelling events. Obviously
the phenomenon is much more complex. However the description of a tun-
nel event during which an electron at the Fermi energy in the leads enters
the dot (containing n electrons) and occupies a (n+1) high energy particle
state7, followed by a tunnel event during which an electron of the (n+1)
particle state escapes the dot and occupies a free state at the Fermi energy
in the leads, requires a proper mathematical framework which is not the
aim sat this stage. The main point here is that such cotunnelling processes
dominate transport in the Coulomb blockade valleys at low bias across the
dot and which we encounter for via the näıve picture in figure 2.13 a.

Inelastic cotunnelling: eV ≥ ∆E. In the case of inelastic cotunnelling
events, energy is transferred to the dot. The initial and final states of the dot
will be different. To illustrate in a simple way the mechanism at the origin
of this process, we make use of the same type of scheme as in the previous
paragraph. Figure 2.13 b is an example of inelastic cotunnelling. The main
difference here is that the bias voltage across the dot enables the incoming
electron to visit an excited state. We already discussed about transport
through excited states in the framework of resonant tunnelling (see section
2.3.5). It appears that the condition eV ≥ ∆E required to occupy excited
states within the dot can be extended to cotunnelling events. After the se-
quence depicted in figure 2.13 b, an excess of energy ∆E is left in the dot.
Naturally this is not a stable configuration and the extra energy has to be
dissipated. The dissipation will be done in the leads when the electron in
the excited state will leave the dot during the following cotunnelling event8.
The typical signature of inelastic cotunnelling is an increase of the current
in a Coulomb valley when eV ≥ ∆E. This effect has been pointed by dI

dV

7A n body quantum state.
8When an electron of the (n+1)* particle state, corresponding to an excitation of the

(n+1) particle state spectrum, will leave the dot during a following cotunnelling event
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measurements: an horizontal line present in the Coulomb diamonds shows
that the differential conductance increases because the electron has now two
”virtual paths” to tunnel through the dot [49] [50].

a) b)

Δ

μLμL μRμR

μ(n) μ(n)

μ*(n)

μ(n+1)μ(n+1)

Figure 2.13: a: Elastic cotunnelling. On a short time scale an electron of
the left lead occupies a high energy virtual state. According to Heisenberg
principle such energy fluctuations are allowed in a related time window. In
this time window a low energy electron escapes from the dot, bringing back
the dot in its initial state. b: Inelastic cotunnelling. When the bias across
the dot is large enough, i.e. eV ≥ ∆E, the incoming electron can now visit
an excited state. When the low energy electron leaves the dot, an energy
∆E (∆ in the figure) has been transferred to the dot. This energy will be
dissipated in the leads during the next cotunnelling events.

Note that even though tunnelling into a virtual state does not conserve en-
ergy, the entire cotunnelling process does conserve the energy.
We only considered above charge transfers without taking care of other de-
grees of freedom. Actually other degrees of freedom such as spin can lead to
transport processes involving cotunnelling which dominate the low temper-
ature behaviour of quantum dots. This type of physics, earlier discovered
in metallic systems containing magnetic impurities, is known as the Kondo
effect and has been successfully applied to quantum dots. The latter can be
regarded as the result of a coherent superposition of higher order cotunneling
events and will be the main focus of this thesis.

2.6 Kondo effect

Before proceeding with a discussion of the features of the Kondo effect in
quantum dots, let us first recall the main features of the Kondo effect as
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exhibited by dilute magnetic alloys. While it is well known that the sup-
pression of electron-phonon interactions with decreasing temperature leads
to the decrease of the resistance of pure metals, experiments performed more
than seventy years ago pointed out a change in the sign of the temperature
coefficient of the resistance at very low temperature, which then increases
with decreasing temperature. This unexpected effect was explained in 1964
by Jun Kondo [51]. The Kondo effect finds its origin in the scattering of
the conduction electrons with magnetic impurities trapped in the metal host
through an antiferromagnetic exchange interaction. The key advance in the
understanding of these scattering processes was the realization that their de-
scription requires to go beyond second order perturbation calculations. The
reason is the importance of virtual exchange scattering processes, in which
the conduction electrons scatter between some initial and final state, via an
intermediate virtual state. In such a process their spin is effectively flipped
with the magnetic impurity conserving thereby the total spin momentum.
Later, Wilson extended Kondo’s work using a numerical renormalization
group approach [52]. He showed that the resistance due to exchange scat-
tering should saturate in the low temperature limit. In this regime, the
localized magnetic moment of the impurity is screened by the spin exchange
with the surrounding electrons [53]. Later on the basis of the Anderson
model [54], Glazman and Raikh [55] and Ng and Lee [56] predicted that
quantum dots should exhibit the Kondo effect.

2.6.1 Anderson Hamiltonian

To describe a local moment we consider a single quantum state Ed. In order
to take into account Coulomb interactions, a term U shifts the energy level
for double occupancy. Four configurations of the impurity state exist : an
empty state at E = 0, two single occupied state at Ed (spin degeneracy)
and a singlet state at 2Ed + U . The different configurations are depicted in
figure 2.14. The empty and double occupied state are non magnetic whereas
the single occupied state present a magnetic moment S = 1

2 . The existences
of a stable magnetic moment is the key understanding of the standard Kondo
effect.
We now couple this localised d state to electronic reservoirs (Fig. 2.14 4). As
in the case of a quantum dot, the localised quantum level connects through
tunnel barriers to the metallic reservoirs. The Anderson Hamiltonian of the
system describes the d level of the impurity hybridised with the conduction
electrons of the leads,

H =
�

σ

�dnd,σ + Und,↑nd,↓ +
�

k,σ

�kc
†
k,σ

ck,σ

+
�

k,σ

(tkc
†
d,σ

ck,σ + t∗
k
c†
k,σ

cd,σ) (2.35)
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Figure 2.14: Configuration for the impurity state. (1) E = 0 no magnetic
moment. (2) E = Ed,↑(↓) magnetic moment S = 1

2 (taking into account
spin degeneracy leads to two possible states at Ed). (3) E = 2Ed + U no
magnetic moment. (4) Localized level coupled to electronic reservoirs. The
situation depicted is the local moment regime.

The first term is the energy of the localised level without any interactions.
The second term corresponds to the on site Coulomb interaction acting when
the d level is double occupied. The third term represents the kinetic energy
of the free conduction electrons in the leads. The last term describes the
hybridisation between the d level and the k states in the leads via tunnelling
(tk)9σ and k stand for the spin component and the wave vector respectively.
The simplest case of a non degenerate d orbital which has at most double
occupancy with a spin ↑ and a spin ↓ electrons is considered. Such an atomic
description of a localised quantum level is relatively general and already
enabled us to describe transport through quantum dots within the weak
coupling limit (tk → 0) though using a semiclassical approach. In the strong
coupling limit we know that cotunnelling events overcome the blockade and
have to be taken into account to understand transport through the system.
These cotunnelling events happen to be at the origin of the Kondo effect.

2.6.2 Link between the Anderson and the Kondo Hamilto-
nians

It was shown by Schrieffer and Wolff [57] that such an Hamiltonian (Eq. 2.35)
for odd occupancy, case (2) figure 2.14, can be approximated to a Kondo
Hamiltonian,

HK =
�

k,σ

�kc
†
k,σ

ck,σ −
�

k,k�

Jk,k�

�2
(ψ†

k�Sψk)(ψ
†
d�Sψd) (2.36)

9Strictly speaking this term of the Hamiltonian describes a single lead. To account for
several leads, the sum should be carried over a additional index accounting for each lead.
For symmetric couplings of the d level to each leads, the summation of this last index can
be dropped.
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ψ†
d�Sψd is the spin operator of electrons in the d level of the impurity and

the spin operator ψ†
k�Sψk is the operator describing the transitions of the

free electrons between states k and k�. For an exchange coupling J negative,
the interaction is antiferromagnetic and the energy is minimised by forming
a singlet between the local moment and the free electrons. The connection
between Kondo physics and quantum dots is made when an odd number
of electrons confined within the dot act as a single spin coupled to electron
reservoirs.
However, it is not obvious that an equivalence between the Anderson Hamil-
tonian and the Kondo Hamiltonian exists. A schematic cotunnelling mech-
anism can help to understand the link between these Hamiltonians and why
quantum dots undergo the Kondo effect.

�d

�d + U
µL µR

Initial state Virtual state Final state

Figure 2.15: Schematic representation of the cotunnelling sequence leading
to a spin flip on a quantum dot. The process depicted is an electron process
where a high energy singlet is formed in the dot during a short time. An
equivalent sequence exists with an empty virtual state if the localized elec-
tron tunnels out of the dot before a conduction electron tunnels in. This
process is referred to as a hole process.

In figure 2.15, we start from an initial configuration where we consider two
spins, one in the leads and one in the dot, with opposite directions. A co-
tunnelling process allows the electron of the Fermi sea to tunnel into the
dot and form a high energy singlet within a short time window, this is the
virtual state. An electron wihtin the dot then tunnels out of the dot to
occupy an empty state in the continuum of the right lead and the energy
of the dot drops back to its initial value. Because each tunnelling event
conserves the spin, the result is an effective flip of the spin of the quantum
dot. The Schrieffer Wolff transformation incorporates the tunnel events to
second order into an effective exchange coupling taking the following form:

Jk,k� = t∗
k
tk�

�
1

U + �d − ��
k

+
1

�k − �d

�
(2.37)
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In the local moment regime, that is to say U + �d > �F and �d < �F , the
effective exchange coupling is negative for scattering of conduction electrons
in the region of the Fermi level �k, �k� � �F . Therefore the interaction term
in the Kondo Hamiltonian (Eq. 2.36) is antiferromagnetic.

2.6.3 Notes on perturbation theory

The Schrieffer-Wolff transformation makes a parallel between Hamiloni-
tian 2.35 and 2.36, but does not give the solution to the Kondo problem.
As pointed out by Kondo, finding the solution to Hamiltonian 2.36 requires
to go beyond usual perturbation theory. In his original paper [51], Kondo
showed that in a metal containing diluted magnetic impurities, the spin flip
events involving the spin of the free conduction electrons and a localized
spin, lead to a correction of the resistance that to third order in J reads:

Rspin

impurity
=

3πmJ2S(S + 1)
2e2�EF

�
1− 4Jρ0(EF ) ln

�
kBT

D

��
(2.38)

where m is the electron mass, S the spin of the localized moment, ρ0(EF )
is the density of states in the metal at the Fermi energy and D the en-
ergy bandwidth of the problem. As one observes, the correction to third
order gives rise to a lnT dependence that increases as T decreases for an
anti-ferromagnetic coupling J . We can see through this expression the im-
portance of high order spin flips as temperature decreases that strongly
renormalize the effective exchange interaction. Actually the more the tem-
perature is lowered and the more higher order corrections to the exchange
interaction become important10. This feature leads to great difficulties in
the derivation of a complete solution to the Kondo problem and was a great
challenge in the late 1960s and early 1970s for theoretical physics. If we
go back to equation 2.38, the break down of the perturbation calculations
performed by Kondo appears when the third order correction becomes of
the order of the second order term. In other words when,

− Jρ0(EF ) ln
�

kBT

D

�
� 1

Which leads to the definition of a very important energy scale of the Kondo
effect: the Kondo temperature,

kBTK � D exp
�

−1
ρ0(EF )J

�
(2.39)

In order to find a solution to the Kondo problem at all temperatures, non
perturbative tools were developed to account for corrections to all orders.

10The Kondo effect can be considered as an example of asymptotic freedom, i.e. a
situation where the coupling becomes non perturbatively strong at low temperatures and
low energies



50 Elements of theory

The understanding of the complete mathematical background related to the
Kondo effect are not the aim of this thesis and we will address briefly some
points of the non perturbative methods used to treat the problem. The first
step was made by Anderson, within the framework of the so called poor
man’s scaling [58]. The ideas developed in this model can be approached to
the Schrieffer-Wolff transformation where the high energy excitations can be
absorbed as a renormalization of the coupling J . The underlying philosophy
of this method is to realize that only a few features of the high energy physics
of the system are relevant to account for its low energy excitations. For an
Hamiltonian H(D) parametrized by a high energy cut-off D, the highest
one particle excitation11, the idea is to reduce the cut-off D bit by bit by
adjusting the Hamiltonian at each step in order to conserve the low energy
dynamics. Within the framework of the Anderson Hamiltonian, he high
energy charge fluctuations will be quenched during the scaling and the low
energy spin excitations of the system will be revealed.
To carry out the scaling here, the conduction band is divided into states at
energy �k, −D̃ + δ | D |< �k < D̃− | δD |, which are retained and states
within | δD | of the band edge which are to be eliminated provided the
effective exchange Hamiltonian (JS.s12) is perturbatively renormalized by
changing J → δJ . From the lowest order corrections to J due to virtual
scattering of conduction electrons with energy � in the band edge13, one can
find the expression of δJ ,

δJ = −ρ0J
2 | δD |

D
(2.40)

Which leads to the scaling equation,

dJ

d ln
�
ρ0J

� = −ρ0J
2 (2.41)

Integrating equation 2.41 from the initial band width D̃ and coupling con-
stant J (Schrieffer-Wolff type) to a new band width D̄ and renormalized
coupling constant J̄ yields,

D̃ exp
�
− 1

ρ0J

�
= D̄ exp

�
− 1

ρ0J̄

�
(2.42)

Equation 2.42 shows that the solution of the scaling equation 2.41 is charac-
terized by a single parameter which plays the role of a scaling invariant [59].
Comparing equation 2.39 and 2.42 we see that this scaling invariant is the
Kondo temperature. This energy scale is the unique energy scale of the

11We will see that in the case of quantum dots, the cut-off energy corresponds to the
charging energy

12Kondo type Hamiltonian
13Expressed in terms of Feynamn diagrams
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Kondo problem which makes it a universal energy scale. Any system un-
dergoing the Kondo effect is governed by the Kondo temperature and all
observables can be expressed in terms of a dimensionless parameters such
as T/TK

14. Unfortunately the poor man’s scaling procedure stops when D
becomes of the order of TK due to new divergences appearing in the renor-
malized parameters of the low energy Hamiltonian.
The complete scaling procedure is a hard task. In order to find the so-
lution to the Kondo problem on the entire energy range (from T >> TK

to T << TK), the development of the Numerical Renormalization Group
(NRG) theory by Wilson was necessary [52]. We will not address features
of such complex calculations which are way beyond the range of this thesis.
During the renormalization procedure developed by Wilson, the Hamilto-
nian is not forced to match the Kondo Hamiltonian and is free to evolve. In
a very elegant way, the NRG method leads to an effective Anderson Hamilto-
nian at very low temperature (T << TK) with a strongly reduced Coulomb
repulsion term. The reduction is such that a perturbative treatment15 is
possible in order to derive the ground state properties. An important point,
earlier conjectured and proved by the NRG is the nature of this ground
state as temperature approaches zero. It appears that the localized spin is
gradually screened out by the conduction electrons as the temperature is
lowered, such that as T → 0 it behaves effectively as a non-magnetic impu-
rity giving a temperature independent contribution to the resistivity in this
regime. This regime is called the unitary limit and the system consists of
an N body singlet where the local moment entangles with the spins of the
conduction electrons in the metal host.
Interestingly, where the Kondo effect gives rise to a raise of the resistiv-
ity in metals containing diluted magnetic impurities, it was proven that in
quantum dots the result of the Kondo effect is an equivalent raise (same tem-
perature scaling) of the conductance through it [54] [55]Ng and Lee [56].
This point will be discussed in more details when presenting the Kondo
resonance. Briefly, the establishment of a Kondo state at low temperature
(T << TK) between the reservoirs and the quantum dot will enable to cre-
ate a channel (pinned at the Fermi energy) for conductance in the vicinity of
a Coulomb blockade valley corresponding to an odd filling of the dot (spin
1/2 impurity).

2.6.4 Kondo temperature

As mentioned, the Kondo effect is governed by a single energy scale called
the Kondo temperature, TK , that in a sense defines the binding energy of
the singlet state formed at low temperature. The expression of the Kondo

14Generally speaking the ratio between an external energy and the Kondo temperature
kBTK

15U can be treated as a perturbation
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temperature in the framework of the Kondo Hamitonian 2.36 reads with the
proper pre-factors:

TK � D
�

ρJ exp

�
− 1

ρJ

�
(2.43)

where ρ0 as been written ρ for simplicity. Interestingly Haldane [60] showed
later that the Kondo temperature could be expressed in terms of the An-
derson model parameters as:

TK �
√

ΓU

2
exp

�
π�(� + U)

ΓU

�
(2.44)

with Γ ∼ ρt216 being the effective coupling of the localized level with the
leads, U the addition energy and � the detuning parameter measuring the
position of the localized level relative to the Fermi energy of the leads. All
the parameters of the Anderson model collapse into a single energy scale,
confirming that in the Kondo regime the Kondo temperature becomes the
unique relevant energy scale of the system. Note that this expression of the
Kondo temperature is widely used in the context of quantum dots. Any
external excitation (Eexternal = kBT, eV, µBB, ...) can be compared to the
Kondo temperature in order to identify the regime the system sits in.

• At low energy, that is to say TK >> Eexternal, the system is in the low
temperature limit also called the unitary limit. The local moment is
screened by the surrounding electrons forming a N body non magnetic
state. Is this regime, Nozières [61] showed that the system behaves as
a Fermi liquid. The conductance can be expressed [62],

G(V = 0, T ) = G0

�
1−

�
πT

TK

�2
�

(2.45)

The external perturbation in this equation is a thermal perturbation.
As mentioned previously this perturbation can be of other origin such
as magnetic field for example. The ratio T/TK denotes the ratio of
two energies competing together.

• At high energy, TK << Eexternal, the Kondo coupling can be treated
as a perturbation. The impurity acts as a diffusion center as proved by
weak localisation measurements in metallic nanowires [63]. Logarith-
mic corrections are found in the conductance that follows a law [62],

G � G0
1

ln2
�
T/TK

� (2.46)
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Figure 2.16: Evolution of the renormalised conductance versus renormalised
temperature in the Kondo regime. The red curve corresponds the universal
function f obtained using numerical renormalization group calculations. For
comparison the low temperature and high temperature limits as obtained
by Nozières and Kondo respectively have been added.

However the link between the low and high temperature limits cannot be
expressed with an exact analytical formula. The solution was given Nu-
merical Renormalization Group calculations [64]. This numerical approach
enables to compute and extract the whole temperature dependence of the
conductance (Fig. 2.16),

G(T )−Gbackground

G0
= f(T/TK) (2.47)

Gbackground and G0 are parameters that are sample dependent as we will see.
The crucial point is that the numerical function f is a universal function
that does not depend on the system under study but only on the Kondo
temperature and the value of the spin of the impurity.

2.6.5 Kondo resonance

The Kondo effect causes a distinctive modification of the density of states
of the system impurity+electronic reservoirs. This point is of great impor-
tance in tunnelling experiments since the intensity of the current is linked
to the local density of states. We have to understand this modification to
apprehend transport experiments performed in quantum dots in the Kondo
regime.

16t represents the tunnel coupling of the impurity to the reservoirs.
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A simple two level system can enable to capture the basis of this modifica-
tion. We consider a two level system composed of a non interacting level
spin degenerated simulating an electronic reservoir at the Fermi energy. A
localized level detuned from the Fermi energy at �d < EF is then coupled to
the first level via a tunnelling element t. This localized level has an on site
Coulomb repulsion energy U pushing the double occupied localized state to
high energy (Fig 2.17). This model is a non degenerate Anderson model

EF

εd

ε   + U d

EF

εd

ε   + U d

t t

a) b)

Figure 2.17: a). Ground state of two level system with a non interacting
level at EF and localized level at �d with on site repulsion (U) when the
system contains a single electron. textitb). Ground state of the system
when it contains two electrons. A singlet delocalized between the localized
d level and the non interacting level is formed. Note that the tunnel coupling
t is supposed to be weak compared to the other energy scales.

with a single conduction band state at EF . The Hamiltonian of the sys-
tem is the Anderson Hamiltonian presented before (Eq. 2.35) where all the
sums over the k index have been dropped. For our purpose it is enough to
consider states with only one or two electrons. For an impurity state well
below the Fermi energy we have t << EF − �d. In this limit the one electron
eigenstates differ weakly from the uncoupled states and can be expressed
as17:

E+ = �d −
t2

EF − �d

, E− = EF +
t2

EF − �d

(2.48)

We see that the ground state is E+ and differs from �d of a correction factor
t
2

EF−�d
small in the limit we are considering.

The two electron states can be classified as singlets or triplets. For large
on site Coulomb repulsion, the states in which the impurity is predomi-
nantly doubly occupied are pushed to very high energy, 2�D + U , and can
be forgotten at low energy. We can also neglect the states in which the
non interacting level is predominantly doubly occupied since they are also

17A Taylor expansion of equation 2.33 for t12 << ∆E leads to this result
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high energy states (� 2EF ). The ground state will be a state in which the
two electrons are shared between the non interacting and localized levels.
Taking into account the spin, two states are possible, a triplet state and a
singlet state. One can show that the eigenenergies of these states are [59],

ET = �d + EF

ES = �d + EF −
2t2

EF − �d

(2.49)

The ground state when the system contains two electrons is a singlet state
formed between the non interacting level at EF and the localized d level
(Fig. 2.17, b). The singlet state is more stable than the triplet state due to
hybridisation(Eq. 2.49). The reduction factor stands as 2t

2

EF−�d
which can be

associated to the energy gain 2J in the Kondo Hamiltonian with J being
given by the Schieffer- Wolff transformation in the limit U →∞.

We consider now the excitations of two particle system. We consider an
excitation in which an electron is removed from the ground state at ES .
Two possible final states exist : the state at E− and the state at E+ being
the lowest energy state (Eq. 2.48). One can calculate the energy of both
transitions:

ES − E+ = EF −
t2

EF − �d

(2.50)

which corresponds to an excitation energy just below the Fermi energy. And,

ES − E− = �d −
3t2

EF − �d

(2.51)

which corresponds to an excitation energy well below the Fermi and close
to �d. Based on their respective energy cost, we see that the last transition
(Eq. 2.51) is the most probable. Nevertheless the fact that the transitions
shown in equation 2.50 carry some weight is of importance in the under-
standing of the Kondo effect. A comparable treatment for the addition of
an electron to the singlet shows transitions with spectral weight situated
just above the Fermi energy (particle-hole symmetry). These transitions
around the Fermi energy are the keystone of transport in the Kondo regime
as we are about to see. For a more detailed analysis of this two level sys-
tem and for the complete treatment of the Kondo effect in the framework
of the Anderson Hamiltonian (Eq. 2.35) we refer the reader to [59]. The
complete calculation shows that the singlet binding energy increases from
2J to kBTK . The spectral weight around the Fermi energy develops into
the Kondo resonance with a FWHM kBTK in the unitary limit and centred
at EF .
The resonant state (Fig. 2.18) sensed in the simplified Anderson model and
confirmed by renormalization calculation in the Anderson model is an es-
sential point in transport experiments performed in the Kondo regime as
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Figure 2.18: Left panel. Schematic representation of the singlet formed at
low temperature between the impurity and the free electrons in the leads.
Right panel. Plot of the energy versus the local density of states of the
system. A kondo resonance locked at the Fermi energy develops in the
low temperature regime of the Kondo effect which opens an extra channel
through the device.

mentioned. The existence of a Kondo resonance at the Fermi energy in the
unitary limit illustrates the fact that a virtual resonant state is created at
low temperature. Even though the impurity or quantum dot is blocked, the
Kondo effect reestablishes conductance via this extra channel and can reach
2e

2

h
for symmetric tunnel barriers. This is valid at low temperature when

the Kondo singlet is well formed. In the high temperature limit the singlet
is gradually destroyed as well as the resonant state. Conductance drops
following the universal law mentionend previously (Fig. 2.16).
The main signatures of the Kondo effect in quantum dots are :

• The enhanced conductance in the odd valleys (local moment regime)
of the Coulomb blockade at low energy (eV , kBT , gµBB << kBTK)

• The existence of a Kondo resonance at low energy accessible via non
linear measurements and referred to as a zero bias anomaly since it
is locked at the Fermi energy of the leads (the zero bias). One can
give a simple explanation of the presence of a ZBA in the Kondo
regime. The Kondo temperature defines the binding energy of the N
body singlet formed between the localized state and the leads. IN
the vicinity of a Kondo valley, when a bias voltage of the order of
this energy scales is applied, | eV |∼ kBTK , the Kondo singlet is
broken and the mechanism leading to transport through the device is
destroyed. As a result a peak of width of the order of TK is seen in the
dI/dVbias vs Vbias characteristic curve. Another way to apprehend the
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Figure 2.19:

ZBA stands in the fact that at zero bias the virtual processes leading
to the Kondo mechanism involve free electrons at the same energy in
both leads. When the bias voltage is raised, these mechanism do not
occur at the same energy any more and the coherence of the process is
lost. Consequently, the Kondo mechanism is quenched, therefore the
conductance decreases.

• The evolution of the conductance in the odd valleys follows a universal
function when an external perturbation such as temperature is applied
to the system.

These different points are illustrated in figure 2.19. These data are extracted
from work made by van der Wiel et al. [65]. The experiments were performed
in the Quantum Transport department leaded by Leo Kouwenhoven of Delft
University of Technology.

Figure 2.19 A shows a series of Coulomb peaks when the plunger gate
of a single quantum dot is scanned. At low temperature (red line, 15 mK)
the Coulomb blockade peaks sequence exhibits a parity effect with one min-
ima over two increasing with decreasing temperature. The interpretation of
this effect is clear in the Kondo regime. For odd occupancy, the dot acts as a
magnetic impurity and undergoes the Kondo effect. The Coulomb blockade
is lifted with the formation of the Kondo singlet and conductance reaches
the quantum of conductance in the odd valleys. For even occupancy, the
dot is none magnetic. It cannot enter the Kondo regime in that case and
conductance decreases in the even valleys.
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Figure 2.19 B is a non linear transport where the bias voltage across the
quantum dot is scanned when the dot is in the Kondo regime (odd valley).
At low temperature (red line) a narrow peak in the local density of states
(dI/dV) is observed. This is the Zero Bias Anomaly (ZBA) illustrating the
formation of a Kondo resonance at low energies. Notice this peak is cen-
tered at zero bias, that is to say at the Fermi energy of the leads. At high
temperature the ZBA is lost, the Kondo cloud is destroyed as well as the
Kondo resonance.

Figure 2.19 C shows the evolution of the conductance in a Coulomb block-
ade valley undergoing the Kondo effect in agreement with the NRG calcula-
tions. A scaling of the renormalized conductance (G/G0) versus renormal-
ized temperature (T/TK) shows the universal character of the Kondo effect
when the dot is in the Kondo regime.



Chapter 3

Experimental setup

The energy scales of the physics probed in lateral quantum dots set the
experimental constraints. Low temperature measurements, typically below
100 mK and low noise electronics are required in order to investigate lateral
quantum dots. This chapter is dedicated to the presentation of the cryogen-
ics techniques used to cool the samples down to 20 mK and to the electronics
developed in the Neel Institut to perform transport measurements at low
temperature.

3.1 Dilution refrigerator

3.1.1 Principle

The dilution refrigerator is the work-horse of low temperature physics. This
device is the most widely used in laboratories to work at temperatures below
100 mK. It presents the advantages to work in closed cycle, that is to say
the capability to stay cold without any time limit, and without creating any
electromagnetic field (to the extent of the pumps).
The main idea, proposed originally by London, Clarke and Mendoza [66],
stands on the thermodynamic properties of 3He − 4He mixtures. If you
lower the temperature of any solution of more than 6% 3He sufficiently, the
mixture will separate into two phases. One of these phases will (at very low
temperatures) be almost pure 3He. The other phase will be mostly pure
4He, but even at T = 0, will contain a fraction of 6% 3He impurity. This
property is the key of the operation of dilution refrigerators.
If we consider a ”mixing chamber” (Fig. 3.1, mixing chamber) holding a so-
lution of 3He− 4He, at low temperature the light phase rich in 3He atoms
will float on top of the heavy phase poor in 3He atoms. At the boundary of
the two species, an effective liquid-vapor interface of 3He develops below 0.7
K. Note that this is a common representation to think of the rich 3He phase
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Figure 3.1: Basic components of a dilution refrigerator

as a liquid and of the poor 3He phase as a gaz1. By pumping on the 3He va-
por (poor 3He phase), the equilibrium between the two phases is destroyed.
In order to reestablish the equilibrium, 3He atoms of the liquid phase will
migrate towards the vapor phase leading to an effective evaporation process.
During the process energy has to be brought to the fluid. This energy will
be taken from the environment, in other words the mixing chamber and the
sample thermally anchored to it. By injecting back the 3He vapor into the
”mixing chamber” at the new equilibrium temperature, which is done with
proper thermalization points and heat exchangers (Fig. 3.1, 1K pot, Still,
continuous ans discrete exchangers), the evaporation process can be repro-
duced continuously and enables in practice to cool down samples to 10 mK.
Figure 3.1 is a schematic representation of the dilution stage of a refrigerator
as we used during this project. For a detailed understanding of dilution re-
frigerators and experimental principles of low temperature physics we refer

1Though reality is more subtle, this description enables to understand in simple terms
the operation of a dilution refrigerator
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the reader to [67].

3.1.2 Coaxial lines and filtering

The cabling of a dilution refrigerator is a crucial point for any low tempera-
ture measurement. Since we are interested in transport experiments at low
frequency (<100 Hz) and low temperature (< 100 mK), we require wires
with low resistance, low thermal conductivity and good attenuation proper-
ties at high frequency.
Following Zorin’s work [68], we use ”Thermocoax” cables manufactured by
Philips (type 1 NcAc) with an outer diameter d = 0.5 µm. In the role of
filtering elements they presents a good alternative to ordinary power trans-
mitting cables for several reasons. First, the DC resistance is of 50 Ω.m−1

and almost independent of temperature. Second, the jacket is a bulk tube, so
external screening of these lines is unnecessary. Third, the thermal conduc-
tivity of the materials, i.e. inner wire, insulator, and the jacket are closely
related and very low (almost 20 times less than copper at room tempera-
ture), so the lines are able to link the coldest part of the cryostat with the
warmer part without important heat flow. Last and of great importance,
due to skin effect in the conductors, the cables present a good attenuation
factor at high frequency.
We recall the main specifications of these coaxial lines:

• Inner wire. NiCr alloy with a resistance per unit of length R = 50
Ω.m−1 only differing from a few percent at 4.2 K.

• Jacket. Stainless steel with a resistance per unit of length R= 6.9
Ω.m−1.

• Insulator. Highly compacted mineral powder of MgO with negligible
leakage at low temperature

• Capacitance and inductance Capacitance and inductance per unit
of length: C=490 pF.m−1 (low RC constant) and l=0.14 µH.m−1.

• Attenuation Typical values of the attenuation per unit of length at
10 MHz, 2 GHz and 10 GHz : A10MHz(w) � 10 dB.m−1, A2GHz(w) �
100 dB.m−1 and A10GHz(w) � 200 dB.m−1.

Figure 3.2 (left panel) shows the amplification factor, that is to say the op-
posite of the attenuation, of a 50 centimetres long ”Thermocoax” line for
frequencies above 10 MHz. In our case, 3 meters long coaxial lines were
necessary to cable the fridge from the 300 K plate of the refrigerator to the
sample holder. The different thermalization points are realized by soldering
the jackets of the cables to different areas of the dilution stage. Therefore
there are no interruptions of the lines which minimizes the possible entrance
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of high frequency radiations.
Concerning low frequencies, typically below the megahertz, two types of low
pass filters are used. An RC filter with a rise time of ∼ 1 ms and a cut off
frequency at 100 Hz is connected in series with a commercial low pass filter
(minicircuits SLP 1.9 +) which has a cut off frequency at 1.9 MHz (Fig. 3.2
right panel). Due to the lack of space in the fridge, these filters could not
be attached to the lines at low temperature. They are connected at the top
of the measuring lines at room temperature.
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Figure 3.2: Left panel. Amplification factor of a ”Thermocoax” line of 50 cm
long at high frequencies. Right panel. Amplification factor of a ”Minicircuit”
low pass filter (model SLP 1.9 +) showing the cut off frequency at 1.9 MHz.
Around 10 MHz the curve show a cusp which is actually due to the noise of
the spectrum analyser in this frequency range.

The importance of filtering does not stand only on the reduction of the noise
captured during the acquisition to obtain ”clean” signals. Obviously mini-
mizing the noise entering the measuring chain and amplified with the signals
of interest is essential, since averaging is time consuming and useless against
certain type of noise, for example 1/f noise [69]. However another aspect
of great interest comes from the effective electronic temperature of the elec-
trons flowing through the sample. We already mentioned this in the previous
chapter, when we presented Coulomb blockade. The point is that, it is not
sufficient to cool down a sample holder to low temperature to insure that
the electrons flowing through the sample itself have the same temperature.
In order to understand this statement, we recall the two main mechanisms
that participate to the thermalization of free electrons in conductors. First,
the electron-phonon interaction enables to cool down electrons by cooling
down the lattice. This process, very efficient at high temperatures, becomes
negligible below 1K typically. At lower temperature, another type of in-
teraction tends to thermalized a bath of electrons : the electron-electron
interaction [70]. In this regime, the thermal bath that allows to thermalize
the conduction electrons within the sample is actually the wires [71] (they
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can be considered as thermal baths due to their macroscopic size). The noise

Figure 3.3: Pictures of the dilution refrigerator used during this project.
Bottom panel. Entire vue of the fridge and the calorimeter (CALO) holding
the 8 Tesla coil.Top panel. Zoom on the dilution stage showing the essential
elements from the 4K flange to the mixing chamber under which the sample
holder is thermally anchored.
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entering the acquisition chain provides energy to the electrons of the hole
setup and can be seen as a heating source. This effect is not important at
high temperature, but is of great concern for the parts sitting at low tem-
perature, that is to say the wires and the sample. An excess of noise will
inevitably manifest itself in a difficulty to effectively cool down a sample at
very low temperature, in other words to get a low electronic temperature.
In that sense filtering plays a crucial role.
All the different elements cited previously, from cryogenics to filtering, can
be identified on figure 3.3 which displays an overview of the dilution refrig-
erator used for all the experiments performed on double quantum dots, and
a close up view of the dilution stage.

3.2 Electronics

The different electronic instruments used to polarize the metal gates, to bias
the quantum dots and to detect the out coming currents, were all developed
in the Néel Institut. This work was done in close collaboration with the
NANO and MCBT electronic departments under the direction of Daniel
Lepoittevin [72], Christophe Guttin [72] and Tristan Meunier [72].

3.2.1 Digital-to-analog converters

Specifications

The bias voltage across the dot and the DC voltages used to polarize the
lateral gates, are generated by digital-to-analog converters (DACs) that en-
able to remote control the quantum dots through a virtual interface on a
computer. Many DAC chips are available in the commerce corresponding to
different uses (audio, video, ...). In our case, our choice was motivated by
two main criterions : the stability of the output voltage of the chip within
temperature and time. A very good candidate is the LTC2642 16 bit DAC,
manufactured by Linear Technology.
We recall here the principal specifications of this chip:

• Resolution. 16 bits on a ±5 V scale, that is to say 150 µV resolution

• Supply current. Low supply current, 120 µA, allowing to operate
the DACs on batteries to avoid as much as possible ground loops and
reduce interferences effects on the measurement signal

• Ouput noise. 30 nVrms/
√

Hz

• Thermal drift. 0.25 ppm/◦C

The following bench tests confirm the noise level within frequency and the
quality of the stability of the output voltage of the LTC2642 DAC. A power
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spectrum in units of Vrms/
√

Hz within a frequency range from 100 Hz to
100 kHz, is displayed in the top panel of figure 3.4. In agreement with the
specifications, we obtain an almost flat frequency spectrum with a noise level
at ∼ 25 nVrms/

√
Hz. Measurements at higher frequency, typically above

1 MHz, show a diminution of this noise floor down to ∼ 20 nVrms/
√

Hz.
The 1/f noise structure present around 100 Hz is actually the 1/f noise of
the spectrum analyser. The bottom panel shows the total output voltage
integrated over a 100 kHz bandwidth.

Figure 3.4: Top panel. Power spectrum in units of Vrms/
√

Hz of the voltage
output of a LTC2642 DAC in the frequency range 100Hz-100kHz.Bottom

panel. Output voltage integrated over a 100 kHz bandwidth.

Concerning the stability, figure 3.5 shows a measurement of the DAC output
voltage within time. A polarization of -1 V was applied and monitored dur-
ing 15 hours with a Keithley 2002 digital multimeter. Note that the temper-
ature was not monitored at the same time, therefore we cannot decorrelate
the drift within temperature and the drift within time. However this simple
experiment shows a total drift of ∼ 10 µV for the entire acquisition time.

Metal gates polarization

All metal gates are polarized with DC voltages of the order of -1 V. Since
the quantum dots are defined through the voltages applied on the gates, it is
necessary to deliver clean (low noise) and stable signals on the lateral gates.
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Figure 3.5: Stability of the voltage output of a LTC2642 DAC. Red curve :
Voltage input drift of the digital multimeter (Keithley 2002) when grounded.
The curve has been offset for clarity. Blue curve : voltage output drift of
the DAC measured with the multimeter.

The output voltages of the DACs are filtered through 3 different types of
filters as mentioned previously : RC filter 100 Hz cut off, SLP 1.9 MHz
cut off and ”Thermocoax” lines with high attenuation at high frequency,
typically the gigahertz. Therefore the total output noise is strongly reduced
and the effective temperature extracted from Coulomb blockade peaks (30-
40 mK) illustrates the quality of the voltages applied at the end of the
coaxial lines (bias voltage is another limiting parameter). Concerning the
stability, we can estimate at ∼ 1µV for a change of 5◦C of Troom) when a 1 V
polarization is applied. Note that the experimental room is air conditioned,
which actually makes our estimate a high limit. The drift within time cannot
be eliminated and we know that it is of a few µV (Fig 3.5) for several hours.
To give an idea of the impact of such a drift, lets convert this few microvolts
scale into an effective energy within the dot. The conversion is made via
the alpha factor that is typically of the order of the 10% for metal gates in
lateral quantum dots. We find an energy drift induced by the metal gates
around the µeV . This energy scale is well below the intrinsic energy scales
of our quantum dots and beyond our detection sensitivity. Therefore we will
not be much concerned by drifts that small developing on such time scales.

Bias voltage

The bias voltage across the structure is composed of a DC and a AC excita-
tion super imposed by using a single DAC channel. The idea is to monitor
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responses of the system only at the frequency of the AC excitation (around
10 Hz) by performing a synchrone detection. First of all, the synchrone de-
tection is a way to minimize the influence of the noise on the measurement by
optimizing the signal to noise ratio: the measurement bandwidth is shifted
at a chosen frequency and can be made very narrow around it. Then, this
type of measurement, that is to say collecting the AC response to a DC+AC
excitation, is a direct dI/dV measurement, in our case a direct measurement
of the differential conductance, which avoids numerical noise normally pro-
duced when performing a numerical derivative. The bias voltages we apply,
are usually of the order of 2µeV . To achieve such low biases, a voltage di-
vider is necessary and has the advantage of dividing the entire noise level
too. Thermostable resistances manufactured by CADDOCK (USF 200, 2
ppm/◦C) were used to realize our voltage dividers. Again for a problem
of space, the voltage divider could not be placed near the sample at low
temperature and we connect it in series with the different filters : RC filter
1kHz cut off (to avoid out of phase signals), SLP 1.9+ and ”Thermocoax”
lines.

Communication

The software layer was developed in collaboration with Sylvain Hermelin [72].
Communication with the different DAC channels is made via an Ethernet
connection with a National Instrument card sbRIO-9602 integrating a real
time processor, a FPGA circuit and different I/O. This logical circuit al-
lows for a large amount of uses and enabled us to configure a synchrone
detection (AC+DC excitation on a single channel, numerical demodulation)
minimizing the entrance of extra noise in the measurement chain by elimi-
nating additional instruments. It offered also the possibility to deport the
main part of the signal processing on the card, which means a gain of time
by avoiding delay times usual commercial operating systems suffer from.
Finally this solution is a relatively low cost solution with the possibility to
integrate a large number of DAC channels (∼ 100) in a reduced space.

3.2.2 Current-to-voltage converter

The current (AC+DC) outcoming of the system in response to the voltage
excitation, is collected by a current-to-voltage converter (Fig. 3.6) that con-
verts and amplifies the signal which is finally demodulated to extract the
differential conductance.
The first concern is the input current noise of the amplifier since the currents
we want to deal with span in a range of a few hundreds of fA to a few tens
of pA. The progress in electronics is such that nowadays, I/V converters are
only limited by the Johnson-Nyquist noise of the feedback resistance giving
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the gain of the amplifier.

Iconverter =

�
4kBT∆f

Rfeedback

(3.1)

In the tunnelling regime, the typical gain we use is a 109 gain, that is to
say a 1 GΩ feedback resistance which leads to an input current noise of 4.3
fA/

√
Hz. Figure 3.7 is a measurement of the noise spectral density in units

of fA/
√

Hz that confirms a noise level situated around 4 fA/
√

Hz. The
reduction of this noise after 100 Hz is due to the cut off frequency of the
amplifier at this gain.

+

-Sample

Rfeedback

I/V converter - 300 K

Vbias Vout

Isample

= R  x Isamplef

4K

Figure 3.6: Schematic two point measurement used to study transport
through quantum dots. The red dashed box encloses the I/V converter
sitting at room temperature. The black dashed box encloses the sample,
sitting at low temperature in the dilution refrigerator.

Another important feature is the input voltage offset. Each I/V converter
presents a voltage input offset which can be tuned via an adjustment screw
in our case. It is actually difficult to make it smaller than a few tens of
µV . Since this offset directly biases the sample (on the drain), it has to
be countered with the bias voltage (on the source) to achieve zero DC bias.
The main problems related to the voltage offset are the noise it brings on
the sample and the drift it is subject to.
A excess of noise on the input would manifest itself by instabilities of the
structure and cooling problems for reasons we have already evoked (section
3.1.2). It is worth noting that no voltage divider is present as in the case of
the bias voltage applied on the source. We therefore need a low noise input
and good filtering at high frequency. The filtering set-up has already been
addressed earlier, we just emphasize that no RC filter is used before the I/V
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Figure 3.7: Ouput current noise spectral density in units of fA/
√

Hz. The
reduction of the noise level after 100 Hz is due to the cut off frequency of
the I/V converter.

converter due to impedance mismatching. Figure 3.8 shows the noise level
at the input of the amplifier with a pronounced peak at 50 Hz showing the
influence of the electrical network and a relatively high 1/f noise structure.
The white noise extracted from the power spectrum lies at 10 nV/

√
Hz.
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Figure 3.8: Voltage input noise spectral density of the I/V converter in units
of nV/

√
Hz. The sharp peak centered at 50 Hz shows the dramatic influence

of the electrical network via ground loops.

As we mentioned, the zero DC bias will be defined with respect to the
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voltage offset at the input of the converter (the offset of the DAC+divider
is negligible). To equilibrate the electrochemical potentials on the source
and drain, one has to counter the offset due to the amplifier on the drain,
with the voltage bias applied via the DAC. In the case of our experiments
the voltage offset on the converter is of 140 µeV at room temperature with
a variation of a few µeV at low temperature at the end of the coaxial line.
To identify the effective zero DC voltage bias we perform Coulomb blockade
measurements at low temperature. By focusing on the amplitude of the
Coulomb peaks (in DC current), we search for the bias corresponding to
a situation where this amplitude is suppressed, that is to say when the
electrochemical potentials of the dots are equal. An AC component is then
added to the DC component on the source to create a voltage bias across the
quantum dots. A delicate point as mentioned, is the drift within temperature
and time of the I/V converter offset that effectively changes the zero bias
across the structure. For this purpose, our home made converter is based
on a stable Texas Instrument chip (TLC220). A stability measurements of
the voltage offset of the I/V converter is shown in figure 3.9.

!""

!"#
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! !%# $ $%# & &%# ' '%# #

~ 3 μV

Figure 3.9: Stability of the voltage input of the I/V converter used during
this project. The voltage input was monitored with a Keithley 2002 multi-
meter. We find a total drift (time+thermal) of 3 µV for a 5 hours acquisition
measurement.

A total drift of ∼ 3µV was measured within 5 hours of acquisition with a
Keithley 2002 already used to measure the stability of our DACs. Note that
the Keithley multimeter has a voltage input drift on the order of the µV
(Fig. 3.5, red curve). We can estimate the drift of the I/V converter around
2 µV . This gives us the accuracy of the definition of the effective zero bias
across the structure for long time acquisitions.
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3.2.3 Acquisition chain

We summarize the different elements entering the acquisition chain in the
schematic representation given in figure 3.10.
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Figure 3.10: Schematic representation of the acquisition chain used to study
transport through quantum dots.
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Chapter 4

Experiments and
interpretations

In this chapter we will present experiments performed on a double quan-
tum dot sample where the inter-dot tunnel coupling and the coupling to the
free electron reservoirs, influence drastically transport through the system.
These studies aim to understand the effect of the hybridisation of a quantum
dot with metallic leads, that is to say a conventional non interacting reser-
voir and with a second quantum dot which can be regarded as an interacting
finite reservoir. As mentioned earlier, in each experiment we probe the con-
ductance through the small quantum dot side coupled to a large quantum
dot.
We know from the Meir-Wingreen formula [73] that the conductance through
an interacting region of electrons is related to the spectral function of this
region and from which can be derived the addition spectrum. Our goal
will be to understand how the different couplings in the system modify the
addition spectrum of the small quantum dot and how this reflects in the
conductance through the total system.
Before going into details of each experiment, we recall the main charac-
teristics of the sample and the set-up used to study transport through the
system. Note that all the experiments we will discuss in the following, were
performed using the same double quantum dot sample. The following table
(Table 4.1) summarises the different sizes1 and bare energy scales of each
quantum dot composing the device2.
As mentioned in section 2.4.2, Chapter 2, the equivalent electrical set-up
used to probe the transport properties of the two quantum dots is a T-
shape geometry. As one can see in figure 4.1, in this set-up only the small

1The sizes indicated represent the lithographic sizes.
2The different energy scales were measured via non linear transport experiments

(Coulomb diamonds, Chap 2, section 2.3.5). They were extracted by polarizing only
one quantum dot at a time, this is why we refer to them as bare energy scales.
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Small dot Large dot
Size (nm) 500 1500
Charging energy (µeV) 700 300
Level spacing (µeV) 150 20-30

Table 4.1: Table recalling the lithographic sizes of each quantum dot forming
the double dot and their bare charging energies and level spacings.

dot connects through tunnel barriers to the metallic leads. All the measure-
ment are performed as follows : a voltage bias is applied on one lead of the
small dot and the response of the system to this excitation is collected via
an I/V converter connected to the remaining lead (Fig. 4.1, purple dashed
box). This set-up enables us to monitor the conductance of the small dot
only. We can actually reformulate this: from the point of view of quantum
mechanics, our geometry allows us to probe only the part of the total wave
function of the system belonging to the small dot and effectively connecting
to the reservoirs. The presence of the large dot, tunnel coupled to the small
dot, will then be seen in the conductance due to hybridisation of the wave
function.
In practice, to achieve the T shape set-up we require two main features we
already addressed in chapter 2 and 3 and that we recall here for clarity:

• To insure that the large dot only couples to the small dot, we need to
isolate it from the nearby conduction electrons. This is done by push-
ing the gates defining the coupling of the large dot to the surrounding
mesa (Fig. 4.1, dashed leads), far in the pinch off regime (Fig. 4.1,
dashed red lines). That way, charge fluctuations through the tunnel
barriers formed by the gates develop on very long time scales and can
be neglected in our analysis. We consider that the large dot fluctuates
only via tunnel processes through the smaller dot.

• To be able to apply a single voltage excitation on one lead with respect
to the others, we need to define the same potential for the three other
leads (1 lead small dot, 2 leads large dot). We mentioned in chapter
3 that the I/V converter brings a non negligible voltage offset on the
lead it connects to (Fig. 4.1, point A). This voltage offset, of the order
of 140 µeV, is large compared to the small voltage biases we usually
apply (Vexcitation) that are of the order of the µeV. This bias offset is
compensated on the other lead of the small dot (Vbias = Vexcitation +
Voffset I/V ), but also on both leads connected to the large dot (V �

bias
=

Voffset I/V ). Even though the tunnel barriers connecting the large dot
to its leads are far in the pinch off regime, such a high offset has to
be compensated to avoid large potential differences between the leads
that can give rise to parasitic cross currents.
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Figure 4.1: Left panel. SEM image of the double quantum dot. A green and
a blue circle sketch the quantum dots formed in the mesa. The red dashed
line superimposed of the large dot gates indicates that these gates are pushed
far in the pinch off. The black dashed lines indicate the relevant couplings
in the system (ΓLeads−dot,Γdot−Dot). The position of the excitation voltage
(Vbias), the I/V converter (purple dashed box) and the voltages applied on
the large dot leads (V �

bias
) have been added for clarity. Right panel. Scheme

of the equivalent geometry. The dashed leads surrounding the large dot will
not enter our analysis and will be dropped.

The different experiments will be presented as follows:

We will present an experiment where we will focus on the effect of inter-
dot tunnel coupling and try to understand how this influences transport
through our device in a regime where hybridisation involves several energy
levels. To account for the physics of a multi-level interacting system we
will have to go beyond the semi-classical description used in chapter 2 (sec.
2.4.1) to describe transport through weakly interacting quantum dots. A
particular interest will be given to the evolution of the transport properties
when the temperature of the sample is increased.

In a second experiment we will focus on the study of a pronounced Kondo
effect defined on the orbital degeneracy ridge of the double dot where the
system is blocked due to the mutual charging energy of the dots (Fig. 2.11,
3). We will understand how such a Kondo effects develops at that particular
degeneracy point and discuss the degrees of freedom involved. Evidence of
the hybridisation of the dots energy levels will lead us to study the interplay
between the Kondo temperature defined via the coupling with the leads and
the exchange interaction defined through the inter-dot tunnel coupling.
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4.1 Interplay between inter-dot tunnelling and tem-
perature

We report first on measurements where we will investigate the effect of
hybridization between the dots mediated by the inter-dot tunnel coupling,
tdD, and try to understand how this influences transport through the device
at low and high temperature. From the strong tunnelling element connecting
the dots found in the stability diagrams, a multi level molecular approach
will be necessary to describe the double dot. The effect of temperature
will be captured via the number of molecular states participating to the
transport. A comparison between kBT and tdD will enable a definition of
”low” and ”high” temperature limits.

4.1.1 Low temperature and high temperature limits

The major observations are found in the low temperature stability diagram
and its evolution in temperature. The low temperature, 20 mK, and high
temperature, 500 mK, stability diagrams are depicted in figure 4.2 as color
plots of the differential conductance in units of e

2

h
, as a function of Vgd and

VgD. For clarity, three dimensional graphics of the previous colorplots are
shown in figure 4.3.
The global remarks we can make from these diagrams are:

• Leads-dot coupling. In the low temperature stability diagram, the
conductance monitored within the Coulomb blockade valleys is of the
order of 10−3 e

2

h
. This value has to be compared with the weak cou-

pling limit, Γdot−leads ≤ kBT < ∆E,EC [32], where the conductance
within the valleys is of the order of 10−4 e

2

h
, as shown in figure 2.12.

It appears that in figure 4.2 the conductance is enhanced in the vicin-
ity of the Coulomb blockade valleys. This effect can be attributed to
cotunneling events contributing to the conductance due to finite cou-
pling of the system with the leads. However, we are still far from the
strong coupling limit as we will see in the following experiment (see
section 4.2) where the conductance in the Coulomb blockade valleys is
100 times larger, (∼ 0.1 e

2

h
). Therefore, the coupling of the double dot

with the leads will be treated as a weak perturbation in the follow-
ing, Γweakcoupling ≤ Γcurrent experiment, and we will concentrate on the
effect of inter-dot tunnel coupling. Effects of non negligible coupling
to the leads, Γ ∼ ΓKondo regime will be discussed at the end of this
section.

• dot-Dot coupling. In the low temperature and high temperature lim-
its, the degeneracy points of the system appear as smooth lines which
do not follow a honeycomb lattice. This regime appears as a molec-
ular regime (see strong coupling limit Chap 2, sec. 2.4.2 and 2.4.3)
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Figure 4.2: Low temperature and high temperature stability diagrams of the
double dot system. Top panel Colorplot in units of e

2

h
of the low temperature

stability diagram (20 mK). The degeneracy points of the system appear as
smooth lines in the diagram differing a lot from the usual honeycomb lattice
and indicating strong inter-dot tunnel coupling. The pattern followed by the
degeneracy lines appears to be complex and cannot be interpret in terms of
independent dots, again indicating strong inter-dot coupling. Bottom panel

High temperature diagram, 500 mK. The degeneracy points still appear as
smooth lines, however the complex low temperature pattern has been lost
and a regular pattern is observed at higher temperature.
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Figure 4.3: Low temperature (top panel) and high temperature (bottom
panel) stability diagrams of the double dot system shown in three dimen-
sional plots. The complex low temperature pattern and regular high tem-
perature pattern followed by the degeneracy points of the system appear
with more clarity in these graphics.
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where almost diagonal degeneracy lines are observed. This indicates a
strong inter-dot tunnel coupling smoothing out the honeycomb lattice.
Note that these lines appear as equally spaced, indicating a constant
addition energy for the complete system dot+Dot.

• Conductance pattern. At low temperature the conductance pattern,
that is to say the modulation along the molecular degeneracy lines, is
quite irregular. As depicted in figure 4.3 (top panel), large conduc-
tance peaks unequally spaced along the Vgd direction are observed,
indicating the reminiscence of the small dot charge states. Moreover
in the VgD direction we can see that on the left part of the diagram two
peaks structures merge, and on the right part of the diagram two peak
structures cross each other. The point is that in the framework of the
constant interaction model usually used, we expect that the molecular
degeneracy lines display a periodic modulation because the addition of
electrons in each dot is controlled by their respective addition energies
that tend to be almost constant in our dots3. The reminiscence of the
small dot and large dot charge states would result in a periodic and
continuous modulation of the conductance along the diagonal lines.
We cannot account for the observed irregularities in this framework.

• Temperature evolution. Surprisingly, when the temperature is raised,
a rather regular conductance pattern is recovered (Fig. 4.2, bottom
panel). That is to say, the modulation of the conductance along the
molecular degeneracy lines follows a periodic modulation, indicating a
regular filling of each dots that can be accounted for in the framework
of a constant addition spectrum of the dots.

In order to describe transport at low temperature we need to work in a more
general framework than the semi-classical constant interaction (model Chap.
2, sec. 2.4.1) to understand why irregularities in the conductance pattern
(or in the reminiscence of the charge states of both dots) are observed at low
temperature and how they can disappear at high temperature. We believe
that the main parameter explaining these unexpected diagrams, results from
the strength of the inter-dot tunnel coupling. Therefore we will focus on the
molecular addition spectrum of the system and consider the coupling to the
leads as a weak perturbation to simplify our study. We will see that due
to the important value of the inter-dot tunnelling and the relatively low
value of the large dot level spacing (20µeV ), several energy levels will be
involved in the hybridisation process and a multi level description will be
required to apprehend transport. Interestingly the effect of temperature will
be incorporated quite naturally in our model via the number of molecular

3Measurements performed on both dots independently show a rather constant addition
energy. This is due to the fact that their addition energy is dominated by their charging
energy, much larger than their level spacing.
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states involved in transport.
With the help of numerical calculations we will simulate conductance maps
in order to confront our model to the experimental data. All theoretical
and numerical investigations were done in close collaboration with Denis
Feinberg [72] (theory), Carlos Balseiro [74] (theory and numerical code) and
Pablo Cornaglia [74] (theory and numerical code). Note that our goal is not
to reproduce the entire stability diagram but to capture as much physical
effects as possible via this description.
Before going into the core of the multi-level interacting dot model, we will
address briefly two extreme limits in order to situate the context of this
experiment : the weak inter-dot tunnel coupling and the strong inter-dot
tunnel coupling regime4. As we will see simple pictures of the system can
be given in these limiting regimes. For small tunnel coupling, the system
will display a behaviour close to uncoupled5 dots (honeycomb diagrams).
For large tunnel coupling, no distinction will be made between the wave
functions of each dot and the system will behave as a large quantum dot
(merged dots).

4.1.2 inter-dot tunnel coupling : limiting cases

To situate the context of the experiment we present in this part two limits
that can be addressed in double quantum dots : the weak inter-dot tunnel
coupling regime and the strong inter-dot tunnel coupling regime.

Weak inter-dot tunnel coupling

The problem of weak inter-dot tunnel coupling was already addressed in
chapter 2, section 2.4.3 in the framework of a two level system. We recall
here the main points and the range of validity of this simple description.
For weak tunnel coupling, the behaviour of the double dot differs weakly
from purely capacitively coupled dots. A honeycomb lattice is found in the
low temperature stability diagram (Fig 2.12, panel b) and the effect of inter-
dot tunnelling is seen as a small correction to the honeycomb that appears
to be slightly smoothed near the triple points because of the formation of
molecular states.

Hypothesis

To describe transport in this regime, the following hypothesis are made:

• The electron-electron interactions are treated via a charging energy
in the framework of the constant interaction model (chapter 2, sec

4We will precise what we mean by ”strong” and ”weak” limits
5Uncoupled from the point of view of tunnel coupling
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2.4.2). To take into account orbital effects, we make the following ap-
proximation : µsystem(N) = µclassical + ∆E where the electrochemical
potential of the system is described as the sum of a classical contribu-
tion representing a mean field Coulomb interaction 6 and an orbital
contribution that implicitly takes into account energy renormalization
effects coming from the formation of molecular states between the dots.

• The effect of inter-dot tunnelling leading to the formation of molecular
states is done via a two level system in the case of a single electron
(one level per dot). Only the top most occupied energy levels of each
dot are considered. Spin effects are neglected by considering a single
electron. Transport is described as the tunnelling of a single charge.

Range of validity

By assuming we can describe our double dot as a two level system tun-
nel coupled, we assume that the hybridisation process involves only two
energy levels. This approximation as we will see later is actually strong. It
implies that the tunnel coupling is smaller than the other intrinsic energy
scales of the system, in other words tdD < ∆Ed(D), EdD, Ed(D). We recall
the notations used in chapter 2 for clarity:

• ∆Ed(D): level spacing in dot d (or D)

• EdD : mutual charging energy of the double dot

• Ed(D) : charging energy of dot d(or D).

By referring to table 4.1, we can see that the lowest energy scale will be the
level spacing of the large dot, ∆ED ∼ 20µeV . This value sets the minimum
criterion required to account for transport in our double dot via a two level
representation.

An estimation of the tunnelling matrix element between the dots can be
extracted from figure 2.12 (panel b) in order to confirm the two level sce-
nario. By analysing the deviation of the experimental degeneracy lines from
the underlying honeycomb structure, a value of tdD can be extracted. On a
triple point, this deviation is exactly tdD (Chap 2, sec. 2.4.3), with a conver-
sion factor transforming gate voltage to energy that is the alpha factors of
each plunger gate. In figure 2.12 (panel b), we find a shift in gate voltage of
300 µV on each gate, which corresponds to a tunnel coupling around 20 µeV
for alpha factors of the order of 0.05 (measured in previous experiments).
If we compare this estimation to the large dot level spacing (smallest level
spacing), we find that tdD � ∆ED. This estimation confirms a two level
scenario, and that we are in the limit of this description.

6Described via a network of capacitors
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Lead

Lead

VgDVgd

Figure 4.4: Schematic representation of the double in the strong coupling
limit. The system acts as a single large quantum dot controlled via two
plungers gates (black rectangles).

Strong inter-dot tunnel coupling

In the other limit, that is to say strong inter-dot tunnel coupling, we expect
the double dot system to act as a single molecular object where no distinction
can be made between one dot or the other.
This regime corresponds to tdD � ∆Ed(D), EdD, Ed(D), in other words tdD

is the dominant energy scale of the problem.

• tdD � ∆Ed(D). From this equation we know that several levels of each
dot will be involved in the formation of the molecular spectrum of the
system. Although we do not know the complete molecular spectrum,
we can anticipate from equation 2.34 that the mixing parameter will
be quite homogeneous as a function of detuning of the dot levels. The
resulting molecular states will hold an equal proportion of the small
dot and large dot wave functions in the entire stability diagram.

• tdD � EdD, Ed(D). For a tunnel coupling exceeding the intrinsic charg-
ing energies we expect that an electron charging one dot will be able
to tunnel immediately to the other dot and vice versa. As a result we
can only talk of the charging of the entire object.

The above assumptions tend to wash out the distinction one can make be-
tween each dot. A simple description of the double dot device in this regime
is to think of it as a large dot enclosing both dots, that can be controlled via
two plunger gates (Fig. 4.4). As in the case of weakly interacting quantum
dots, transport can be described in this limit with a semi-classical formalism
(chap 2, sec. 2.3.3) already introduced in the context of transport through
single quantum dots.
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Figure 4.5: Stability diagram monitored at low temperature in our double
dot device. The coupling of the system with the leads is weak (FWHM of
the Coulomb peaks : 40 mK). The inter-dot coupling is made very large by
depolarizing sufficiently the middle gates. The stability diagram displays
diagonal degeneracy lines which are not subject to a modulation of their
amplitude.

In terms of transport, the stability diagram will be composed of a series of
diagonal degeneracy lines in the (Vgd, VgD) space, indicating that control-
ling the system via one plunger gate or the other is equivalent. The slope of
these lines are determined by the alpha factors of the corresponding gates.
Moreover, since no distinction can be made between each dot, this lines
should not display a periodic modulation of the conductance typical of the
reminiscence of the charge states of the small dot. Therefore a flat conduc-
tance is expected along a degeneracy line of the system. This behaviour
can be seen in the stability diagram shown in figure 4.5 that corresponds
to an experiment performed at low temperature (20 mK) in our double dot
device. This regime was achieved by depolarized as much as possible the
middle gates separating the dots, which leads to important inter-dot tun-
nelling. Let us recall that in large quantum dots where the ratio EC/∆E is
large, the addition energy is dominated by the charging energy determined
by the geometrical size of the device (constant interaction model). Thereby
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equally Coulomb blockade peaks or lines (in a 2D gate space) are expected
(see Fig. 2.4). These features appear in the stability diagram addressed in
figure 4.5.

Intermediate regime

As mentioned, the problem we want to address within this experiment
(Fig. 4.2, Fig. 4.3) is the intermediate regime, where a multilevel system
is required in order to account for the molecular spectrum, but where the
charging energies of each dots are the dominating energy scales of the prob-
lem. We assume that the experimental regime within this experiment cor-
responds to: ∆ED < tdD < EdD,∆Ed < ED, Ed. Numerical simulation will
help us to confirm this hierarchy.
We want to emphasize here, that even though a simple description can be
achieved in the case of weak and strong inter-dot tunnelling, the evolution
from one limit to the other is not straightforward (Fig. 4.6).

tdDDouble dot Complex molecule Single dot

Figure 4.6: Schematic representation of the evolution of the inter-dot tunnel
coupling in the double dot.

Starting from the weak coupling limit, by continuity, we would expect the
smoothing of the honeycomb lattice to be more and more pronounced un-
til diagonal degeneracy lines are found in the stability diagram. At order
zero we would simply expect the high contrast modulation of the (molecu-
lar) degeneracy lines found in the weak coupling limit to be reduced grad-
ually until flat molecular degeneracy lines are found for strong inter-dot
tunnelling. During this evolution we would tend to believe that the peri-
odic modulation along the molecular degeneracy lines remains unchanged,
at that we simply lose track of the charge states of both dots when the
amplitude of this modulation becomes to small. We illustrate this in fig-
ure 4.7. The point is that such a näıve extrapolation is wrong, in particular
due to multilevel effects that one has to account for when the threshold
tdD > ∆Ed(D) is crossed. Contrary to the weak and strong limiting cases, in
the intermediate regime the eigen molecular spectrum of the system cannot



4.1 Interplay between inter-dot tunnelling and temperature 85

be derived independently from the Coulomb repulsion contribution to the
energy. As a consequence, we need to go beyond the semi-classical descrip-
tion (µsystem(N) = µclassical + ∆E) and work in a more general framework
to understand transport in this situation.
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Weak inter-dot tunnelling
Intermediate inter-dot tunnelling
Strong inter-dot tunnelling (merged dots)

Figure 4.7: Schematic representation of the evolution the conductance pat-
tern along a molecular degeneracy line from weak coupling (honeycomb) to
strong coupling. From a näıve point of view we see that the amplitude of
the modulation of the conductance is reduced as tdD increases, though the
periodicity is unchanged.

The study of transport will be done via exact diagonalization of a multi level
interacting quantum dot Hamiltonian. We will present the hypothesis made
to simplify the study and discuss the different steps of the calculation that
enable us to calculate the conductance through the system as a function of
the energy of both dots (plunger gates voltage) and the temperature of the
leads. The different conductance maps obtained will be confronted to the
experimental data to confirm our analysis.

4.1.3 Effect of cross talk

Before presenting a multi-level model describing our double quantum dot
system, we would like to point out an important experimental issue that
affects the conductance properties.
A very generic effect in lateral quantum dots and that influences the conduc-
tance maps is the cross talk effect. Due to capacitive coupling between the
gates at the surface of the sample, moving the voltage on one gate always
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affects the voltages on the surrounding gates. To obtain a stability diagram
we sweep the plunger gate of each dot (Vgd and VgD). Therefore we aim to
incorporate in our analysis the cross talk between the plunger gates and the
middle gates separating the dots and defining the inter-dot tunnel coupling
( Fig 4.8). That way the tunnelling element will vary in both directions of
the voltage gate space(Eq. 4.1).

d D VgDVgd

VgD

VgD

VgdD

VgdDVgdD

VgdD

Figure 4.8: Left panel. SEM picture of the double dot device. The black
gates correspond to the plunger gates that are swept to obtain a stability
diagram. The red gates correspond to the middle gates separating the dots
and defining the inter-dot tunnel coupling. Right panel. Scheme of the
double dot device. The small dot and large dot appear as green and blue
circles respectively. All the metal gates defining the dots in the 2DEG have
been represented for clarity. Capacitors connect the plungers gates to the
middle gates and lead to cross talk between them.

tdD = t0 + α× Vgd + β × VgD (4.1)

The effect of cross talk is actually clearly seen in a larger stability diagram
monitored at low temperature. Figure 4.9 displays large views (2D and 3D)
of the low temperature diagrams previously shown in figures 4.2 and 4.3.
We see in the 2D color plot of the top panel, that honeycomb cells are present
in the left part of the diagram, whereas rather smooth lines are found from
the center part to the right part. A continuous change from a double dot
like regime to a single molecule like regime is observed with a cross over
region around the center of the map where complex structures appear. We
see that the inter-dot tunnel coupling increases when the small dot plunger
gate voltage (Vgd) is made less negative, consistent with a cross talk effect.
The 3D diagram in the bottom panel shows that in the VgD direction the
modulation presents also irregularities which can be attributed to cross talk
induced by the large dot plunger gate.
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Let us recall that the inter-dot tunnelling element tdD determines the impor-
tance of the change in energy of the eigenstates of the system with respect
to the pure small dot and large dot energy levels. By varying the tunnel
coupling (Eq. 4.1), we directly affect the molecular energy spectra. We be-
lieve that a variation of the tunnel coupling within the diagram is a source
of complexity and it will be taken into account in the numerical simulations.

Interestingly, from the diagram in figure 4.9, we can get lower limit for the
tunnel coupling. It appears that on the bottom left corner of the diagram,
honeycomb cells are present. From this diagram we can estimate tdD and
find a tunnel coupling of the order of 30-40 µeV in this parameter region.
Due to cross talk, this value will increase when depolarizing the plunger
gates, clearly pointing in the direction of a large tunnel coupling compared
to the large dot level spacing, tdD > ∆ED, at the center and right part of
the stability diagram.

4.1.4 Multi level system approach

The Hamiltonian used to describe the system is shown in appendix A. This
is a two impurity Anderson Hamiltonian widely used in the context of double
quantum dots. To simplify our study of transport we make the following
hypothesis:

• We consider that each dot holds three energy levels. Therefore the
sums in Hd and HD are carried from i = 0 to i = 2. The total double
dot system will be able to hold up to 12 electrons. Note that these
calculations are time consuming (30 hours per conductance map) and
a finite number of states, that is to say a finite space in the energy
diagram of the double dot is calculated.

• The different parameters entering the Hamiltonian in appendix A, that
is to say the charging energies Ud, UD, UdD and the level spacings ∆Ed,
∆ED are all estimated from experimental data taken on the double
dot sample.

• We calculate the eigenstates of the isolated double dot, therefore the
terms HV and Hband are dropped in the Hamiltonian. The transport
will be calculated at second order in the dot-leads coupling. Kondo
physics cannot be accounted for in this context.

Mathematical procedure

We present here the different steps of the calculation. In order to extract
the conductance through the double dot, we make use of the Meir-Wingreen
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tdD

Figure 4.9: Larger view (2D and 3D) of the low temperature stability dia-
gram shown in figures 4.2 and 4.3. Top panel : On the left part of the diagram
we can identify honeycomb cells, whereas in the center and left part of the
diagram the degeneracy lines follow smooth lines, with long linear domains.
This effect can be attributed to cross talk induced by the small dot plunger
gate Vgd mainly. Bottom panel : The three dimensional graphic shows in
better details the complexity of the diagram. For example in the center of
diagram indicated by a black arrow, two peak structures merge and on the
right part a crossing seems to happen. We believe that the combination of
cross talk induced by the two plunger gates, as indicated by the axis on the
bottom left corner of the 2D diagram, can lead to such complex patterns.
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formula [73] which relates G to the spectral function A(�) of the system:

G =
e2

h
π

�
d�

∂f(�)
∂�

Tr {Γ(�)A(�)} (4.2)

where f(�) denotes the Fermi-Dirac distribution in the leads, Γ(�) represents
the coupling of the small dot to the leads and A(�) is the spectral function
of system. Note that the couplings to right and left leads are supposed iden-
tical.
The spectral function A(�) is a generalisation of the density of states when
interactions are present [75]. Basically it gives the spectral weight related to
the transition from a N particle state (of N particle molecular spectrum) of
the system to a N +1 particle state (of a N +1 particle molecular spectrum)
and takes into account electron-electron interactions and orbital effects. Due
to the T-shape geometry, only the states holding weight within the small
dot are considered to contribute to the spectral function that affects the
conductance through the system(Eq. 4.2). Note that temperature effects
are taken into account in the spectral function via statistical probabilities
(Boltzmann type) that give the probability to occupy a given state at a
given temperature. These probabilities will enable to activate high energy
transitions which have low weight at low energy by increasing the tempera-
ture.

The calculations are performed as follows:

• The different eigenstates (molecular states) of the reduced Hamiltonian
are calculated via exact diagonalization for N electrons, where N varies
from 0 to 12.

• Once the N body molecular spectra are known, the transitions ele-
ments from a N particle state to a N + 1 particle state are calculated
at fixed temperature. These transitions will enable to calculate the de-
generacy lines in the stability diagram from a Coulomb blockade valley
with N electrons to a Coulomb blockade valley with N + 1 electrons.

• The matrix A(�) obtained is then incorporated in the Meir-Wingreen
formula to extract the conductance through the system at a given
temperature. Note that the Fermi distribution takes into account the
broadening of the density of states in the leads with T , which in simple
terms enlarges the conduction window through the device.

4.1.5 Numerical simulations

Note that all the different graphics are subject to boundary effects coming
from the finite number of states considered. For example, on certain bor-
ders of the diagrams, the degeneracy lines of the system disappear. This
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behaviour can be attributed to the fact that one dot is completely empty in
that region and transition to the next electronic configuration would imply
a negative occupation of that dot. Since these border effects do not describe
physical effects we will not pay attention to them. The different energy
scales used during the calculation are indicated at the top of each map and
are expressed in meV. They follow the same notations used previously to
describe the intrinsic energies of the double dot system. The tunnel coupling
and cross talk effect are accounted via the law:

tdD = 0.03 + (�d + �D) ∗ 0.0011 (4.3)

where �d and �D are the free parameters in the Hamiltonian of appendix
A that enable to vary the dots energy. These parameters are by definition
negative and enable to simulate the effect of the plunger gates. They are
expressed in mV for that reason, however one cannot transpose � to Vg di-
rectly as we will discuss on later. The choices of the different parameters in
equation 4.3 were made by matching the intercept t0 = 0.03 meV with the
experimental estimations (see sec. 4.1.3) and by varying the slope ∆t/∆�
until the numerical simulations managed to capture some conductance fea-
tures seen in the low temperature experimental data (qualitative agreement
when ∆t/∆� = 0.0011 meV.mV−1 as we will see).

Low temperature results

Figure 4.10 shows a conductance map calculated in the regime tdD > kBT
where T = 100mK.
In the corresponding diagram the main features we observe are:

• The presence of honeycomb cells in the bottom left corner of the con-
ductance where the tunnelling element is the smallest because of the
cross talk applied in both voltage directions.

• On the right side of the diagram an apparent structure where two
conductance peaks merge is observed.

• Globally, a rather complex conductance pattern is found is this tem-
perature regime.

We believe that the complex conduction pattern captured via these cal-
culations, reflect the complex molecular spectra formed in this particular
tunnelling regime. At low temperature, we assume transport to involve a
single resonant molecular state. Therefore we should be very sensitive to
the nature of this molecular state (proportion of small dot versus large dot)
and the way it connects to the leads. In other words, we are doing the
spectroscopy of the molecular spectrum of the double dot device.
Notice that the relative voltage scans in the numerical simulations are smaller
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Figure 4.10: Low temperature, 100 mK, conductance map. Note the pres-
ence of honeycomb cells in the bottom left corner of the diagram and the
presence of a structure where an apparent merging of two conductance peaks
is seen.

than the experimental ones. �d and �D are expressed in voltages via a con-
version factor that is the electron charge e. To match the experiments the
conversion should also take into account the ratio between the plunger gate
capacitance and the total capacitance of the corresponding dot. This ratio
is always smaller than one which explains why the relative voltage scans
appear to be larger in the experiments (see alpha factor, sec. 2.3.3).

High temperature results

Figure 4.11 shows a conductance map caculated in the regime tdD < kBT
where T = 500mK.
In the corresponding diagram the main features we observe are:

• All the degeneracy lines are subject to thermal broadening.

• The presence of cross talk is still seen in this conductance map where
on the bottom left side we can identify broadened honeycomb cells
and on the top right side we see rather linear degeneracy lines. This
is consistent with the fact that cross talk does not depend on temper-
ature.

• The modulation of the degeneracy lines follows a periodic pattern as
indicated by the white dashed lines in both voltage directions. The
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Figure 4.11: High temperature, 500 mK, conductance map. A regular con-
ductance pattern is recovered. The modulation of the conductance following
both voltage axis appears to be periodic, indicating a regular filling of the
dots.

reminiscence of small dot and large dot charge states can now be con-
ciliated with constant addition energies for both dots.

In the high temperature limit, T >> tdD, we expect that due to the broad-
ening of the Fermi distribution within the leads, at resonance we now have
several molecular states available for transport7. Therefore the bonding and
anti bonding states now contribute equally to transport which washes out
the effect of tdD. As we can see, this leads to a rather regular conductance
pattern subject to thermal broadening. Another way to think of the de-
vice, is to identify it as a small dot connected to metallic leads and coupled
incoherently with a large dot. The molecular waves that spread through
the double dot at low temperature effectively lose there coherence at high
temperature and one recovers the small dot and large dot wave functions as
a result. The large dot acts simply as a charge reservoirs and we recover a
modulation of the conductance on the degeneracy lines of the system that
keeps track of a regular filling of the small dot and the large dot in the �d

and �D directions respectively.
Interestingly an analogy with single quantum dots can be made. At low
temperature kBT < ∆E, a single resonant state contributes to transport
through the device. As a result a series of Coulomb blockade peaks with
different amplitudes is found and illustrates the unicity of each charge state
(Chap 2., sec. 2.3.4). At higher temperature, kBT > ∆E, several states con-
tribute to the current at resonance. As a result, enlarged Coulomb peaks

7Remember we are always in the single electron tunnelling regime
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are observed in transport with an almost identical amplitude. This is un-
derstood as an averaging of the current of several states which on long time
scales (acquisition time scales), washes out the random variation of the am-
plitude of the Coulomb peaks.

4.1.6 Cross talk between the plunger gates

If we compare the high temperature experimental data 4.2 (bottom panel)
and numerical data 4.11 we can see that the reminiscence of the small dot
charge states (high conductance) follows tilted periodicity lines. However
the slopes found in the experiments and the numerical simulations do not
agree.

Numerical simulations

It appears that the slopes found in the numerical simulations can be at-
tributed to the particular form of the Hamiltonian in appendix A and the
role played by �d and �D. These free parameters used to vary dot d in Hd

and dot D in HD, actually do not vary the energy of the dots independently
when both terms are added with the interaction term HdD in the complete
Hamiltonian. Therefore the degeneracy lines of the system appear to be
tilted since the energy of both dots is changed when a single � parameter is
moved.

Experiments

In the experiments, the conductance maps are plotted as a function of the
plunger gate voltage. To understand the effect of these voltages, equa-
tion 2.18 is a good illustration. Due to the particular form of each inter-
action term, it appears that one can compensate a shift in nd by a shift in
Vgd, and a shift in nD by a shift in VgD, independently of each other. As a
result, the periodicity lines indicating the position of the small dot charge
states are expected to be vertical (Fig. 2.9).
Strictly speaking we would expect to see the behaviour in the experimental
data. However an experimental issue, the cross talk between the plunger
gates of both dots, explains the deviation of the periodicity lines from ver-
tical lines. When the voltage on one plunger gate is increased, due to cross
talk, the plunger gate of the other is increased by a smaller amount. This
effect tends to give the slope the periodicity lines follow in the experiment.
It appears that this effect dominates the effect of the mutual charging energy
in our experiments. However this type of cross talk is not relevant in our
analysis since it does not affect the tunnel coupling.

To summarize, the (�d, �D) and (Vgd, VgD) spaces are not equivalent but
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are related. Work still under progress aims to express the numerical data in
terms of the plunger gate voltages.

4.1.7 Effect of hybridisation with the leads

So far we did not discuss the effect of hybridisation with the leads. The
difficulty of treating this coupling is that one can no more perform exact
diagonalizations of the complete Hamiltonian shown in Annex A. More so-
phisticated methods such as NRG calculations are required in order to ex-
tract the relevant mechanisms leading to transport at low energies. These
methods are extremely time consuming and before treating the effect of
hybridisation with the leads our choice was to account for transport in a
simpler framework. Indeed we saw that by considering the molecular eigen-
states of the system we succeeded to capture physics in the low temperature
regime, and also incorporated naturally the effect of temperature via the
number of molecular states participating to transport.
However the question of non negligible Γdot−leads remains open and in par-
ticular the possibility of Kondo mechanisms at low temperature. Due to the
complex conductance pattern seen at low temperature, we did not investi-
gate yet such mechanisms that we assume to be difficult to extract due to
the irregularities present in the conductance diagram.
We will see in the following experiment, a regime where inter-dot tunnel
coupling and strong coupling to the leads have to be considered in order to
account for the low temperature transport mechanisms.

4.2 Kondo effect on an orbital degeneracy point

In the following experiment we will focus on the orbital degeneracy point of
the dots (Fig. 4.12, red line). By orbital degeneracy of the dots, we mean
that the electrochemical potentials of each dot are degenerated (dot-Dot
degeneracy), leading to charge fluctuations between them (see Chap. 2, sec.
2.4.2). This situation is met in a honeycomb diagram on the red dashed line
depicted in figure 4.12.

4.2.1 Low temperature stability diagram

The starting point is a stability diagram of the double dot taken at low
temperature, 30 mK, in a regime where the coupling to the leads (small
dot-leads) and between the dots have been increased compared to the weak
coupling limit already addressed earlier (Chap. 2, sec. 2.4.3, Chap. 4, sec
4.1.2).
Figure 4.13 shows two stability diagrams where the bottom one corresponds
to the weak coupling regime and will serve as a reference and the top diagram
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Figure 4.12: Scheme of a part of a honeycomb diagram. nd and ND represent
the occupation numbers of the small and large dot respectively. Red dashed
line : orbital degeneracy line. Blue line: large dot degeneracy line. Green
line: small dot degeneracy line.

corresponds to the situation where the tunnel couplings are stronger. A few
remarks can be made at this stage:

• Leads-dot coupling. In the bottom diagram of figure 4.13 the degener-
acy lines appear as very fine lines and the conductance in the valleys
of the honeycomb cells is of the order of 10−4 e

2

h

8, which corresponds to
our noise detection level. This regime is a very well defined Coulomb
blockade regime, hΓ � kBT < ∆E,EC [32], and was already describe
in the framework of weak couplings in chapter 2. In the top diagram
the degeneracy lines present important Γ broadening, that is to say
they are enlarged due to hybridisation with the leads, hΓ > kBT , and
the conductance in the valleys is greatly enhanced : ∼ 0.1 e

2

h
, again

suggesting Γ broadening and also cotunnelling processes participating
to transport (Chap.2, sec. 2.5).

• dot-Dot coupling. The bottom diagram differs very weakly from a pure
honeycomb diagram. The impact of tunnelling between the dots is
mainly seen at the triple points where the lines are slightly smoothed
and where the effect of tunnelling between the dots is expected to
be the largest (Chap. 2, sec. 2.4.3). In the top diagram, the effect
of tunnelling does not limit itself to the triple points and extends
further on the degeneracy lines. The entire honeycomb structure is
distorted and the presence of large conductance on the degeneracy
lines associated to the large dot, suggest stronger mixing of the wave
functions, thereby stronger inter-dot tunnel coupling.

8The color code of the diagram has been offset in order to reveal the degeneracy lines
of the large dot that present very low conductance actually slightly above the noise level.
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Figure 4.13: Top diagram. Low temperature (30 mK) stability diagram with
important coupling to the leads seen in the Γ broadening of the degeneracy
lines and the enhanced conductance in the Coulomb valleys (∼ 0.1 e

2

h
). Note

that the effect of inter-dot tunnel coupling is seen in the smoothing of the
underlying honeycomb diagram. Unusual feature : the orbital degeneracy
ridge of the dots, indicated with a white dashed line, presents very high
conductance, of the order of e

2

h
. Bottom diagram. Reference diagram taken

also at low temperature (30 mK), in the weak coupling limit to the leads
and between the dots. The important point is the absence of conductance
on the orbital degeneracy lines, where the system is blocked via the mutual
charging energy of the dots (UdD) as expected.
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• dot-Dot degeneracy line We see the appearance of conductance on the
orbital degeneracy line of the dots (Fig. 4.13, white dashed lines) in
the top diagram whereas the system is completely blocked in the weak
coupling situation as expected. Moreover the conductance on these
degeneracy lines is very high, since it reaches almost the quantum of
conductance, ∼ e

2

h
.

The question of how the enhancement of the inter-dot tunnel coupling and
the dot-leads coupling results in strong conductance at low temperature
on the orbital degeneracy ridge of the dots, arises. More precisely, which
mechanism reestablishes transport on a degeneracy ridge where we expect
the system to be blocked via the mutual charging energy of the double dot,
UdD

9. As we will see in the following, we can relate transport on this ridge
to Kondo physics. In order to determine the different energy scales entering
the problem and to describe the Kondo mechanism on the ridge we will
first try and describe the system in the framework of a two level system.
Experimental data will help us to test this simple approach. We will close
our analysis on possible scenarios that enable us to solve theoretical issues
of the two level model. In particular, a multi level approach supported by
NRG calculations currently running, will be discussed.

4.2.2 Kondo signatures

Evolution in temperature

We study the evolution of the stability diagram as a function of tempera-
ture. We therefore vary the temperature of the sample from 30 mK to 440
mK and for each temperature we monitor the same stability diagram. Fig-
ure 4.14 (top panel) shows a high temperature limit diagram monitored at
320 mK and the evolution of an entire dot-Dot ridge at all the temperatures
we studied (bottom panel). Despite the general thermal broadening of the
degeneracy lines expected from the broadening of the Fermi-Dirac spectral
density in the metallic leads, the notable feature is the disappearance of con-
ductance on the orbital degeneracy line at high temperature. It is actually
not straightforward to position the ridge and a guide to the eye has been
added in the top panel of figure 4.14 (white dashed line) to show its position.
A more detailed analysis of the evolution of the ridge within temperature is
shown in the bottom panel of Figure 4.14. The two peak structures present
a high and low temperature corresponds to triple points of the stability dia-
gram separated by the ridge under consideration. Each curve was extracted
from a stability diagram monitored at constant temperature. The waterfall
formed by all the curves shows a symmetric behaviour with respect to the
center of the ridge and one can notice that the conductance drops faster at

9We changed notation here concerning the mutual charging energy. We will keep the
notation UdD in the following
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Figure 4.14: Top panel. High temperature (320 mK) stability diagram corre-
sponding to a close up view around a the orbital degeneracy ridges monitored
at low temperature (Fig 4.13) . The position of the ridge is indicated with
a dashed white line, however the ridge is almost indistinguishable at this
temperature. Bottom panel. An orbital degeneracy ridge extracted from
the stability diagrams at all the temperatures studied between 30 mK and
440 mK. Note that the abscissa axis is actually the composition of two gate
voltage scans. For simplicity we only expressed Vgd on the graphic, however
this does not correspond to a projection.
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that center than near the triple points.
We can summarize briefly the behaviour in temperature by the three follow-
ing points:

• When the temperature increases the conductance on the ridge drops,
that is to say the mechanism that leads to high conductance at low
temperature is destroyed at high temperature

• More precisely, the conductance at the center of the ridge drops faster
when temperature increases than near the triple points with a quite
symmetric behaviour with respect to the center.

• The peak structures that we identify with the triple points move closer
to each other as the temperature is decreased.

We know from theory that a possible mechanism leading to strong conduc-
tance at low temperature in a Coulomb blockade valley of a quantum dot
and destroyed at higher temperature, is the Kondo effect.

• Our first observation, that is to say in the valleys separating two triple
points, Coulomb blockade is lifted at low temperature and a high con-
ductance ridge appears, is consistent with Kondo effect in quantum
dots. Note on this ridge the relevant charging energy is the mutual or
molecular charging energy UdD.

• Our second observation can be analysed by taking advantage of the
Haldane formula of the Kondo temperature in the Anderson model
(Chap 2.6.3, 2.44). This formula states that the Kondo temperature
is maximal when � = 0 or � = −U , that is to say on the Coulomb
peaks. Even though this formula is actually not valid close to the
Coulomb peaks10, the profile of the Kondo temperature versus de-
tuning (in practice gate voltage) around the center of the Coulomb
blockade valley follows the Haldane formula. We therefore expect the
Kondo temperature to increase when we move near the charge degen-
eracy peaks. The fact that conductance drops faster at the center of
the orbital ridge is consistent with a smaller Kondo temperature than
near the triple points. Going back to Haldane’s formula we see that
the profile of the Kondo temperature is symmetric around the position
� = −U/2, that is to say the center of the valley. This agrees with the
symmetric behaviour in gate voltage the waterfall shows.

• Our last observation concerning the position of the triple points as a
function of temperature has already been reported in the context of
Kondo physics in single quantum dots [65].

10Close to the Coulomb peaks we enter the so called mix valence regime [76]
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We can now try and go beyond this qualitative analysis. We know in the
framework of the standard Kondo model, that the conductance in a Coulomb
blockade valley undergoing the Kondo effect, follows a universal T depen-
dence. Although this law is given via numerical calculations, an empirical
formula deviating weakly from the numerical function exists and was pro-
posed by Goldhaber-Gordon [76]:

G(T )−Gbackground = G0

�
T �

K

2

T 2 + T �
K

2

�s

(4.4)

with T �
K

= TK/

�
2

1
s − 1 where the fit parameter s � 0.22 for a spin-1/2

system. G0 corresponds to the saturation value of the conductance at low
temperature (T << TK), Gbackground is a possible conductance background
offsetting the whole curve and TK is the Kondo temperature.
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Figure 4.15: Conductance versus temperature on the orbital degeneracy
ridge for two different gate voltages in figure 4.14. Red circles correspond to
a cut in the middle of the ridge. Blue circles correspond to a cut on the left
side of the ridge.The black curve is a fit to the red circles using equation 4.4
with TK and G0 as free parameters.

We apply this fit to a cut performed at the center of the waterfall curves
(Fig. 4.14, black dashed line) at Vgd = −0.47V and use TK and G0 as free
parameters. The result of the fitting is depicted in figure 4.15, where the
red circles correspond to the experimental data that we fit with the black
curve, being the empirical fit, Eq. 4.4. Even though the fit agrees with an
enhancement of the conductance when the temperature decreases, it fails to
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reproduce properly the experimental data which appear to follow a steeper
temperature dependence.
For the moment, we conclude that the temperature behaviour of the conduc-
tance on the orbital ridge is not consistent with a standard Kondo scaling
law. To make sure we are dealing with Kondo processes, non linear transport
experiments are required.

Non linear transport measurement

Another feature of the Kondo effect that we can test is the behaviour of
the system when a finite voltage bias is applied across the leads. In the
Kondo effect, a Kondo resonance is formed at low temperature, and shows
as peak in the local density of states locked at the Fermi energy (in practice
zero bias). In non linear transport measurements this peak is seen as a zero
bias anomaly (Chap. 2, sec. 2.6). Since we expect the Kondo resonance
to extend on the entire Coulomb blockade valley where the local moment is
defined, we expect to detect a ZBA for any gate voltage corresponding to
this blockade valley. Experiments have already reported this behaviour in
several devices such as single dots or carbon nanotubes [77], where a fine
line of conductance locked at zero bias is visible within Coulomb diamonds
(Coulomb diamonds colour plots, Chap 2) where a local magnetic moment
is confined (odd occupancy of the quantum dot).
The experiment we perform in the following is a gate voltage scan (Vgd+VgD)
that follows the orbital degeneracy ridge, where the bias voltage is swept at
each gate voltage point (see Fig. 4.16) as one would do in a usual Coulomb
diamond experiment in single quantum dots (see Chap. 2, sec. 2.3.5).

V

V

gd

gD

Bias sweeps
...

Gate voltage 
scan direction

Figure 4.16: Voltage scan direction follows the degeneracy line (dotted black
arrow). At each voltage point in the (Vgd, VgD) space the voltage bias across
the dot is swept.
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Figure 4.17: Non linear transport experiments performed along the orbital
degeneracy line. The black lines are guide to the eyes showing the underlying
diamond shape expected. The abscissa corresponds to a scan involving Vgd

and VgD. For clarity only Vgd is expressed. A clear zero bias anomaly is
present at the center of the diamond.

The resulting diagram is shown in figure 4.17:

• Even though the structures present in the spectroscopy are subject
to important Γ broadening, it seems that a diamond shape can be
guessed (indicated for clarity in Fig. 4.17). As in the case of Coulomb
diamond experiments performed in single quantum dots, we are testing
the variation of the addition energy of an electron in the system as a
function of the position along the orbital ridge. In other words, we
are analysing the energy position of the electrochemical potential of
the double dot molecule for the addition of an electron with respect
to the Fermi energy of the leads. It appears from the diamond shape
that analogy with single quantum dots spectroscopy experiments can
be made (Chap. 2, sec. 2.3.5). Due to the important coupling to the
leads, the degeneracy lines forming the diamond are broadened and
a guide to the eye indicates the diamond for clarity. Note that the
degeneracy points of the diamond on the zero bias axis correspond to
the positions of the triple points where we see large structures with
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high conductance.

• Concerning the hight of the diamond, one can relate it to the addition
energy. In the constant interaction model one can express it as the
sum of an electrostatic contribution describing the Coulomb interac-
tion and an orbital contribution (Chap 2., sec 2.3.3). We find here
Eadd ∼ 130µeV . At the center of the orbital ridge, we expect from
the underlying honeycomb pattern that the relevant Coulomb energy
is the mutual charging energy UdD. Concerning the orbital contri-
bution, we know from our two level system that the tunnel coupling
reduces the energy of the molecular ground state by an amount tdD.
By analogy with the constant interaction model we would tend to say
that Eadd = UdD + tdD ∼ 130µeV . However precautions should be
taken before making such assumptions. Indeed, when the bias voltage
is raised, and due to capacitive coupling between the lead and the de-
vice, an arm lever will raise the energy levels of the device. From the
T shape geometry, it is legitimate to believe that the energy levels of
the small dot will be more affected by the arm level than the levels
of the large dot. Therefore at high bias one should also account for
detuning between the dot energy levels, which inevitably changes the
nature and the position of the energy levels of the molecular states.
This will affect the expression of the addition energy.
Our aim here is to get a qualitative description using a simple model.
NRG calculations should help us later to get a more quantitative un-
derstanding.

• The most striking feature in this diagram is the presence of a line
locked at zero bias, joining the triple points and presenting strong
conductance, ∼ e

2

h
. From this line we conclude that the conductance

on the orbital degeneracy ridge is locked at zero bias, in other words
is a zero bias anomaly (ZBA) in agreement with a Kondo mecha-
nism probed in transport. Applying a finite bias destroys the Kondo
resonance, which shows up as a drastic decrease of the differential
conductance away from the zero bias line in the diagram.

From the FWHM of the ZBA at the center of the diamond, we can get an
estimation of the Kondo temperature as mentioned earlier. At the position
Vgd=-0.47 V, we perform a cut in the diagram and fit the peak locked at
zero bias with a Lorentzian function of the form:

G(Vbias) = G0
TK

2

�
TK
2

�2 + (Vbias)2
(4.5)

where TK is the Kondo temperature and represents the Full Width Half
Maximum (FWHM) of the Lorentzian. Note that TK and Vbias are assumed
to be expressed already in energy units (µeV in our case), therefore the



104 Experiments and interpretations

proportional factors (kB and e) have been dropped in the equation. G0

enables to adjust the amplitude of the peak. Figure 4.18 shows the fitted
peak, leading to FWHM of ∼ 20µeV ↔ 200mK, where TK and G0 are
used as free parameters. From the temperature behaviour of the conduc-
tance in the middle of the ridge shown in figure 4.15 we know that even
at the lowest experimental temperature, the system is not yet in the uni-
tary limit. Therefore one cannot associate the FWHM found, to the Kondo
temperature of the system at the center of the ridge (Vgd=-0.47 V). Earlier
experiments performed in semiconductor quantum dots have shown that the
ZBA anomaly in the Kondo regime is thermally broadened (with a linear
dependence) when the system exits the unitary regime [65]. We conclude
that the FWHM extracted from the fit is an upper limit of the Kondo tem-
perature of the system. We estimate TK to be of the order of 100 mK.
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Figure 4.18: Zero bias anomaly extracted from the non linear transport
diagram at Vgd=-0.47 V. A fit using a lorentzian function gives a FWHM of
10 µeV which gives us an estimate of the Kondo temperature at the center
of the diamond.

4.2.3 Two level system approach

In order to understand the Kondo mechanism leading to transport at low
temperature on the orbital degeneracy ridge, we start with a simple two
level system approach, where each dot is assigned with a single level. Our
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aim is to identify the degree of freedom involved in the Kondo process by
use of a simple model11.
We already used a two level system description earlier (Chap.4, sec 4.1.2),
where we only consider the topmost occupied level in each dot. In order to
take into account electron-electron interactions, we make use of the constant
interaction model which absorbs lower occupied energy states in a mean
field Coulomb repulsion term. This approach enabled us to account for
the honeycomb diagrams in capacitively coupled dots (Chap 2, sec. 2.4.2).
Moreover we assume that at low temperature, only the ground state of the
system is probed in linear transport and therefore excited states will not
play a role. In the following we are going to discuss the effect of inter-dot
tunnelling and hybridisation of the system with the leads.

Inter-dot tunnel coupling

inter-dot tunnel coupling was already addressed in a two level system holding
a single electron (Chap 2, Chap 4) and led to the formation of a set of
two molecular states, the bonding and anti bonding state. We follow this
description and take into account the Coulomb repulsion term
On the orbital degeneracy ridge, the energetic configuration of the double
dot is the following : the levels of each dot are degenerated and lie below the
Fermi energy of the leads. Figure 4.19 shows the energy landscape of the
double dot system and leads, at the center of the degeneracy ridge according
to this simplified model.
The independent levels, d and D (for small dot and large dot), are situated
at an energy � = −UdD

2 (EF is taken as the reference). The tunnel coupling
creates an anti-crossing of the levels, with the formation of molecular states,
B and A (for bonding and anti bonding), separated in energy by 2tdD. The
electron in the system then occupies the bonding state, that is to say the
ground state. The addition of the second electron is blocked by the inter-dot
Coulomb repulsion term UdD.
It is straightforward to see that the system acts here as a spin 1

2 magnetic
impurity. By analogy with a single quantum dot, it is legitimate to believe
that the system can undergo a spin Kondo effect.

Coupling with the leads

So far we treated the double dot as isolated and considered the molecular
eigenstates formed between the dots in order to show that the system can act
as a magnetic impurity. In order to undergo the Kondo effect, the impurity
has to couple to electronic reservoirs to be able to form a delocalized singlet
”impurity-leads” at low temperature. Strictly speaking, for non negligible
coupling with the leads we should not consider to the eigenstates of the

11Strictly speaking the Kondo effect does not restrict to the spin degree of freedom
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dot DotLeads

tdD

Figure 4.19: Energetic configuration of the double dot at the center of the
orbital degeneracy ridge. The independent levels d and D, that is to say
without tunnel coupling are represented in green and blue respectively. To
first order transport is blocked via the mutual charging energy UdD. For
finite inter-dot coupling, molecular states B and A are formed in the double
dot system. The degeneracy is lifted via the tunnelling element, leading to
a gap 2tdD between the molecular states. In the ground state, the single
electron occupies the bonding state (B).

system to be those given by the isolated double dot. For simplicity we
stay in the framework of the molecular basis considered above in order to
apprehend the Kondo mechanism in our device. For strong coupling with
the leads we can expect the system to undergo the Kondo effect as depicted
in figure 4.20, with a Kondo temperature given by:

TK �
√

ΓUdD

2
exp

�
π�(� + UdD)

ΓUdD

�
(4.6)

where UdD is the mutual charging energy of the double dot, � = EF −�d−�D

is the detuning parameter. Γ is the coupling of the small dot to the leads
(T shape geometry). Interestingly, due to the mixing of the wave functions
in the molecular eigenstates (Eq 4.7, d is small dot, D large dot), they will
always be a finite proportion of the small dot in the total wave function of
the ground state of the system.

| A > = cos
ϑ

2
| ϕd > +sin

ϑ

2
| ϕD >

| B > = −sin
ϑ

2
| ϕd > +cos

ϑ

2
| ϕD > (4.7)

In other words, in the molecular basis we are considering that the system
can always undergo the Kondo effect with a effective coupling Γ that will



4.2 Kondo effect on an orbital degeneracy point 107

vary as a function of the proportion of the small dot wave function in the
molecular basis. The more weight in the small dot the molecular state will
have and the better coupling to the leads the total wave function will have.
We will refer now to Γ as Γd (d for small dot).

U    + t
dD

EF

B

A

Leads Molecule

dD

Kondo
resonance

Figure 4.20: Kondo resonance formed in the double dot system at low tem-
perature. Due to the mutual charging energy of the system, transport is
blocked to first order and a magnetic impurity is stabilized at high tem-
perature. For low enough temperature (< TK), the electron in the ground
state (bonding state) entangles with conduction electrons in the leads via
a Kondo mechanism to form a singlet. A Kondo resonance locked at the
Fermi energy is seen in transport, illustrating the excitations of the Kondo
state.

This simple model is in qualitative agreement with the low temperature be-
haviour of conductance on the orbital ridge (yet not the scaling law within
temperature), and the zero bias anomaly observed in non linear transport
along the ridge. However we need to understand why evidences of Kondo
physics is found only on this particular ridge. One could argue that an or-
bital degeneracy could lead to an orbital Kondo effect and therefore display
orbital Kondo physics only on the ridge we are studying. Indeed the Kondo
mechanism does not only apply to spin degree of freedom [78] [7]. Gener-
ally speaking the Kondo process requires a degenerated ground state, and
conservation of the quantum number related to the degeneracy during the
tunnel process to (from) the leads. For lateral quantum dots, the orbital de-
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gree of freedom is not conserved during the tunnelling process since it does
not exist in the leads. We can therefore rule out the orbital Kondo effect in
our device. A spin Kondo effect appears to be a more reliable scenario. The
point is that if we take a look at the diagram depicted in figure 4.12, on both
sides of the orbital ridge there is a magnetic configuration since we have a
single electron in the device. Then why do we only detect Kondo physics on
the ridge and not in the surrounding blockade valleys. Our argument stands
on the variation of the Kondo temperature around the orbital degeneracy.

4.2.4 Boosting the Kondo temperature

Variation of the charging energy

If we take a look back to figure 2.9 where schematic stability diagrams of
a double dot are represented, we notice that the charging energy of the
system is not constant in a honeycomb cell ( the different ∆Vg depend on
different charging energies). In the middle of a honeycomb cell, the blockade
is dominated by the renormalized charging energies of each dot, Ud and UD,
whereas in the vicinity of the orbital degeneracy ridge the blockade is fixed
by the mutual charging energy UdD. In our system, since Ud > UD > UdD,
the global charging energy of the system will be reduced by moving towards
the orbital degeneracy ridge. This simple remark is of importance in the
regime we are focusing on.
We recall the Haldane formula of the Kondo temperature (Eq. 4.8). Note
that now the charging energy depends on the voltages applied on the gates.

TK �
�

ΓdU(Vgd, VgD)
2

exp

�
π�(� + U(Vgd, VgD))

ΓdU(Vgd, VgD)

�
(4.8)

Where Γd is the coupling to the leads, � the detuning parameter or the
relative position of the molecular level with respect to the Fermi energy and
U(Vgd, VgD) the charging energy of the system depending on the position
in the honeycomb diagram we are considering. At the center of a Coulomb
blockade valley, that is to say � = −U(Vgd,VgD)

2 we find:

TK = 0.28
�

ΓdU(Vgd, VgD) exp

�
−πU(Vgd, VgD)

8Γd

�
(4.9)

We can see from the exponential dependence of TK versus the charging
energy, that a reduction of the charging energy can boost the Kondo tem-
perature.

Variation of the coupling to the leads

It should be noted that while the charging energy of the system varies by
moving away from the ridge, the effective Γ (Γd) varies too. Whereas the



4.2 Kondo effect on an orbital degeneracy point 109

variation of the charging energy can be understood in a purely classical
framework, the variation of the coupling to the leads is the combination of
inter-dot tunnel coupling and sample geometry.
When we move away from the orbital degeneracy ridge towards the sur-
rounding honeycomb cells, the energy levels of the dots are continuously de-
tuned. From quantum mechanics we know that the detuning of these energy
levels influences the resulting molecular states. In particular, our concern is
the different proportion of small dot/large dot wave function they hold, and
that varies with the detuning of the dots levels.
We consider the surrounding domains (1,0) and (0,1) depicted in figure 4.21.
In the center of the (1,0) domain, the molecular ground state is close to a
pure small dot state and holds an important proportion of the small dot wave
function. In the T shape geometry we use, this means the molecular state
connects strongly to the leads, therefore large Γd. On the contrary, in the
center of the (0,1) domain, the molecular ground state is close to the pure
large dot state and holds a small proportion of the small dot wave function.
This leads to a small coupling to the leads. On the orbital degeneracy ridge,
the proportion of the small dot/large dot wave functions in the molecular
ground state is equal. An average coupling to the leads is expected.
To sum up, it appears that moving away from the orbital ridge towards the
(0,1) domain, involves an increase of the charging energy and a decrease of
the coupling to the leads. These two effects tend to decrease sharply the
Kondo temperature of the system (Eq. 4.8). Moving towards the (1,0) do-
main involves this time an increase of the charging energy and an increase of
the coupling to the leads too. These two effects compete against each other
in the expression of the Kondo temperature. In conclusion, the experiment
shows that the balance obtained in the expression of the Kondo temperature
around the orbital ridge is such that the Kondo temperature has a measur-
able value only on the ridge in question. It is interesting to notice that the T
shape geometry we use, implies that in the present Kondo regime we always
probe a Kondo effect resulting from a local magnetic moment defined in the
small dot.
The expected hierarchy of the Kondo temperatures at different points of the
stability diagram is:

TK(1,0)/(0,1) > TK(1,0) > TK(0,1) (4.10)

Where TK(1,0)/(0,1) is the Kondo temperature on the ridge, TK(1,0) the Kondo
temperature in the (1,0) domain and TK(0,1) in the (0,1) domain. At zero
temperature, a continuous plateau reaching 2e

2

h
in the symmetric case would

be expected from one domain (1,0) to the other (0,1). It is then due to
the fact that our device is operated at finite temperature that the orbital
degeneracy ridge appears clearly in the stability diagram.
Concerning the two other domains present in figure 4.21, the (0,0) does not
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Figure 4.21: schematic honeycomb diagram. The magnetic configurations
around the degeneracy ridge have been represented by green and blue arrow
for a spin confined in the small dot and large dot respectively. The question
of the (1,1) domain concerning the magnetic ground state arises.

present any interest since it corresponds to an empty system. Interestingly,
the (1,1) domain where an inter-dot singlet is expected, raises the question of
a possible Kondo mechanism. Considerations of the Kondo effect involving
this type of electronic configuration will be given later.

4.2.5 Evolution of the Kondo resonance

In order to test our scenario, that is to say a spin Kondo effect on the small
dot with a Kondo temperature boosted near the orbital degeneracy ridge, we
perform non linear transport measurements locally around the ridge. The
idea is to study the evolution of the ZBA associated to the Kondo resonance
(therefore to TK), when we move away from the ridge towards the (1,0) or
(0,1) domain. Given the hierarchy we have set in equation 4.10, the ZBA
should survive longer in the (1,0) domain than in the (0,1) domain at finite
temperature.

Parallel spectroscopy

We perform gate voltage scans above and below the orbital degeneracy ridge
along parallel lines as depicted in figure 4.22 (center panel, white arrows).
At each voltage gate point, the voltage bias is swept. The point of scanning
in parallel to the ridge is to keep a constant detuning between the dots levels
and a fixed effective charging energy of the system (as it was the case along
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the ridge) (fig. 4.17).

Figure 4.22: non linear measurements around the orbital degeneracy ridge.
Top panel. The direction of the gate voltage scans are indicated by white
arrows in the low temperature stability diagram and which are parallel to
the orbital degeneracy ridge. At each point of gate voltage (set [Vgd, VgD]),
the bias voltage is swept. Bottom panel, left side. Spectroscopy diagram for
the scan performed above the ridge. In the broad diamond obtained, a zero
bias anomaly associated to low conductance is present, showing the Kondo
processes survive at our base temperature when entering in the correspond-
ing honeycomb cell. Bottom panel, right side. Spectroscopy diagram for the
scan performed below the ridge. No zero bias anomaly is observed, there-
fore the Kondo processes are suppressed. Instead a excited state within the
diamond can be seen around Vbias = 0.3 meV.

The diagrams obtained are shown in figure 4.22 (bottom panel).

• Bottom panel, left side. This non linear transport measurements cor-
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responds to a voltage gate scan performed along a parallel line to the
ridge, running above it. As in the case of the spectroscopy follow-
ing the orbital ridge (Fig. 4.17), a diamond shape can be identified in
the dI/dV color plot. The main observation is the presence of a line
within the diamond presenting low conductance and locked at zero
bias. This line is consistent with a Kondo resonance (Sec. 4.2.2, non
linear transport measurements). Due to the low conductance associ-
ated to the ZBA, it is straightforward that the Kondo temperature of
the system is reduced within respect to the Kondo temperature found
on the ridge. We can also see that despite the small amplitude of the
ZBA, it presents a rather large width. We conclude that the ZBA
identified in this diagram can be associated to a thermal broadened
Kondo resonance (Tel > TK). In other words, here the system is in the
high temperature limit of the Kondo regime because of the reduced
TK .

• Bottom panel, right side. In the case of this diagram, the voltage scan
is now performed below the orbital ridge. We can immediately see
that there is no ZBA within the diamond obtained. It is legitimate
to believe that the Kondo temperature in this diagram is so small,
TK << T , that even at the lowest temperature we can achieve, the
system has no yet entered the Kondo regime. Therefore no trace of
Kondo resonance is detected.

If we make a parallel between the different spectroscopy diagrams analysed
and our model, we can associate the honeycomb cell above the ridge to a
domain of type (1,0) and the honeycomb cell below the ridge, to a domain
of type (0,1) in order to conciliate the experimental data and our two level
system description.

One can note at this point that the domain where the ZBA survives longer
(at finite temperature) should be located below the orbital degeneracy ridge
according to figure 4.21. By taking into account the fact that our device
holds multiple electrons in each dot, we can meet a situation where the
whole diagram is inverted in terms of effective configurations. For example
we start from a (3,3) configuration instead of a (0,0) configurations. The
(3,3) configurations can be mapped onto a (1,1) configuration by eliminat-
ing the low energy singlets of each dot which are not magnetic, so that we
consider they do not enter the Kondo process. From the (3,3) configurations
we can build the diagram depicted in figure 4.23 which we can now concili-
ate with the experimental data, more precisely the behaviour of the Kondo
resonance around the orbital degeneracy ridge.

Before concluding, we want to emphasize that precautions should be taken.
The previous spectroscopy experiments do not give the complete evolution
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of the Kondo resonance away from the ridge. An unfortunate choice of the
gate voltage scan can actually lead to the wrong conclusion. Indeed if the
gate voltage scan is performed too close to the orbital degeneracy ridge,
then on both sides of the ridge we can expect to detect a ZBA. In the case
of a gate voltage scan too far from the ridge we can then expect on both
sides of the ridge that no ZBA is detected. Therefore, if the diagram shown
in figure 4.22 (bottom panel, left side) corresponds to a gate voltage scan
too close to the ridge and that the diagram shown in figure 4.22 (bottom
panel, right side) corresponds to a gate voltage scan too far from the ridge
we would expect to see the observed behaviour around zero bias in any case.
To get a better insight of the evolution of the Kondo resonance, spectroscopy
experiments following transversal gate voltage scans to the orbital ridge will
be presented in next section. Before showing these non linear measurements
we discuss briefly about the excited states seen in the diagrams of figure 4.22.

n

N

d

D

(1,1)(3,3)

(1,0)(3,4)

(0,1)(4,3)

(0,0)(4,4)

Figure 4.23: Effective configurations around an orbital degeneracy ridge for
higher fillings. The non magnetic singlets are assumed not to play a role in
the Kondo process and therefore eliminated.

Excited states

Beyond the behaviour of the system near zero bias, we can see the pres-
ence of extra lines within the diamonds of figure 4.22 (bottom panel),. As
discussed in the chapter 2, section 2.5, these lines can be attributed to inelas-
tic cotunneling lines. The idea is that near zero bias, transport only involves
the ground state of the system. When the voltage bias | Vbias | is increased,
it can provide the energy necessary for an incoming electron to visit an
excited state, more precisely when | eVbias |≥ Eexcited state − Eground state.
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The result is an increase of the current through the device since more paths
are now available for an electron to flow through the device. As mentioned
in Chapter 2, this holds for cotunnelling processes that dominate transport
when the system is blocked. In a Coulomb diamond an increase of the cur-
rent due to inelastic cotunneling (cotunneling involving an excited state)
shows up as a line in terms of differential conductance (dI/dV ).

• Figure 4.22, bottom panel, left side. Two inelastic cotunneling lines (at
positive and negative bias) are seen, and show a dispersive behaviour
from one side of the diamond to the other. Usually, since the quantity
Eexcited state − Eground state is expected to be constant, a non disper-
sive inelastic cotunneling is expected (parallel to the gate voltage axis).
However such dispersive behaviours of inelastic cotunneling lines have
already been reported in nanotubes [79] and are attributed to an asym-
metry between the ground state and the excited state from the point
of view of the coupling to the leads, ΓGround state �= Γexcited state. The
main remark we can give about these excited states is that since they
are seen near the orbital degeneracy ridge and within the diamond we
can relate them to excitations where the electron hopes from one dot
to the other (fixed charge in the total system). More precisely in the
(1,0) domain the (0,1) state is an excited state and vice versa. Or in
terms of molecular states, we can relate the excitations of the system
with the anti bonding state.

• Figure 4.22, bottom panel, right side. A single cotunneling line is
observed at positive bias. This kind of asymmetry is usually attributed
to an asymmetry ΓL �= ΓR. However it is not yet clear if this is indeed
the case. Concerning the nature of the excited state, again we can
relate them to the anti bonding state of the molecular system.

As we will see better understanding of these inelastic cotunnelling lines can
be achieved via non linear measurements following transverse cuts to the
orbital (degeneracy) ridge.

Transversal spectroscopy

Another type of spectroscopy experiment we can perform is a non linear
transport measurement following a transverse scan to the ridge crossing its
center as shown in figure 4.23 (black arrows). During such a scan, the lev-
els of the dots are detuned continuously to go towards the pure small dot
and large dot states, recovered for large detuning compared to the tunnel
coupling. Moreover by going towards the center of the honeycomb cells the
effective charging energy of the system increases, thereby decreasing the
Kondo temperature according to our argumentation. This type of spec-
troscopy should enable us to monitor the continuous evolution of the Kondo
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resonance.
The obtained diagram are shown in figure 4.24 where the bottom diagram
corresponds to a transverse cut towards the domain above the ridge (ef-
fective (1,0)) and the top diagram to a transverse cut towards the domain
below the ridge (effective (0,1)) (see fig. 4.23).
At a voltage Vgd = −0.468V on the voltage axis of each graphic, large con-
ductance around zero bias is found. This corresponds to the conductance
associated to the orbital ridge, in other words the ZBA resulting from Kondo
processes on the ridge as indicated in the figure.
The main observations we can make from these diagrams are:

• We can immediately observe that the conductance around zero bias,
which is associated to the Kondo resonance decreases more rapidly
in the bottom diagram (Towards ridge above) than in the top dia-
gram (Towards ridge below). This remark points in the direction of
a Kondo temperature decreasing more rapidly in the bottom diagram
than in the top diagram. Interestingly, the diagram where the Kondo
temperature decreases the less corresponds to a domain that we associ-
ated to an effective (0,1) from the parallel spectroscopy measurements
(Fig 4.22) since we performed it below the orbital degeneracy ridge.
This is inconsistent with the hierarchy shown in equation 4.10. Since
the transverse spectroscopy experiments give a continuous evolution
of the ZBA we rely on these more than on the parallel ones. As men-
tioned, the parallel spectroscopy can induce in error, and this is what
figure 4.24 points out. Therefore we now associate the domain below
the orbital ridge with an effective (1,0) configuration and the domain
above with an effective (0,1) configuration as depicted in the diagrams.
We will confirm this point by analysing the profile of the orbital ridge
in the stability diagram.

• Interestingly, if we look carefully at the evolution of the ZBA in the
top diagram, it seems to disperse to higher bias when we move away
from the position of the orbital degeneracy ridge. A priori, this is
not consistent with a Kondo resonance that should be locked at zero
bias. We believe this is due to the asymmetry of the diagram with
respect to the bias. This can be attributed to the asymmetry of the
coupling to the leads, Γleft �= Γright. The diagram presents three lines
(2 excitations, 1 ZBA) Γ broadened. Since the line present at negative
bias has little spectral weight, we believe that the recovery of the ZBA
and the excitation line at positive bias gives the impression that the
ZBA disperses. Simple simulations where performed to confirm this
statement as shown figure 4.25.

• The mentioned excitation lines correspond to inelastic cotunneling
lines. We attribute these lines to the anti bonding state that is visit
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Figure 4.24: Non linear measurements performed following gate voltage
scans transverse the orbital ridge and crossing its center. Bottom diagram.
Measurements following a gate scan going towards the domain above the
orbital ridge. The position Vgd = −0.469V corresponds to the location of
the orbital ridge. Top diagram. Measurements following a gate scan going
towards the domain below the orbital ridge. The position Vgd = −0.469V
corresponds to the location of the orbital ridge.

at finite voltage bias. The dispersion when the gate voltage is moved
comes from the detuning of the dots levels. On the orbital ridge,
the detuning is zero and one should find the anti bonding state at
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Figure 4.25: Simulations using three Gaussian functions, where one is locked
at zero bias (Kondo resonance) and the other two disperse (inelastic cotun-
neling lines). For the symmetric case, each Gaussian has the same amplitude
(spectral weight) fixed to 1 ( in arbitrary units). In the asymmetric case the
Gaussian function dispersing towards negative values of Vbias has been at-
tributed a lower spectral weight, fixed to 0.4. In this situation the maximum
of amplitude near zero bias seems to disperse towards positive bias.

Vbias = ±tdD. By moving away from the orbital ridge the energy of
the anti bonding state is raised which is consistent with the disper-
sion observed in both diagrams. Notice that the splitting that one
should see on the orbital ridge cannot be identified in the diagrams
due the strong conductance structure associated to the ZBA. This
would suggest tdD � 20µeV . As we will see later we have evidence
that the inter-dot tunnel coupling is actually larger. The question of a
large tdD will be considered later, in the framework of a more general
description of the system involving more than two levels in order to
understand the experimental data.

To summarize, the transverse spectroscopy experiments confirm a spin Kondo
effect with a Kondo temperature boosted on the orbital ridge and that fol-
lows a asymmetric profile around the ridge in agreement with the arguments
given in section 4.2.4.

4.2.6 Profile of the orbital degeneracy ridge

The asymmetric behaviour of the Kondo temperature as seen in the previous
diagrams 4.24 will be contained in the stability diagram where the conduc-
tance should fall more rapidly on one side of the ridge (towards domain
below) than on the other (towards domain above). It is not obvious from
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Figure 4.26: Cuts across the orbital ridge performed in the stability diagram
for different temperatures. The diagram attached in the top right corner
shows the direction of the cuts via a white arrow.

the color code in figure 4.13 that this is the case. To confirm, we perform
a direct cut across the orbital ridge in the stability diagram and do it for
different temperatures. The profiles obtained are shown in figure 4.26.
The asymmetric profile obtained confirms the observations made from the
transverse spectroscopy diagrams. We see that:

• Fixed temperature. The conductance drops faster when we enter the
domain above the orbital ridge (left side of the peak).

• Fixed gate voltage. For fixed distance around the ridge Vgd = −0.4715±
Vgd0, the conductance drops faster within temperature when we enter
the domain above the ridge.

4.2.7 Addition of the second electron

As one can observe in figures 4.13 and 4.22, all the orbital degeneracy
ridges present in the low temperature stability diagrams present relatively
high conductance. So far, we gave an explanation near the degeneracy of
the (1,0) and (0,1) states (or effective states). As depicted in figure 4.27, we
need to consider the addition of the second electron in the system in order
to account for the physics around the next orbital degeneracy ridge.
This naturally leads us to consider the orbital ridge corresponding to the
degeneracy of the (1,1) state and (0,2) state (Fig. 4.27, dashed black box).
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Notice that by using effective electronic configuration, we have a continuous
succession of orbital degeneracy ridges of type (1,0)↔(0,1) and (1,1)↔(0,2)
in the two level representation we are using. It is worth noticing that if we
derive a Kondo mechanism around the (1,1)↔(0,2) degeneracy ridge, then
all orbital ridges can in principle be understood from the effective electronic
configurations (1,0), (0,1), (1,1) and (0,2) since we can always map a two
level system onto these effective configurations by eliminating the low energy
singlets.

n

N

d

D

(0,2)

(0,1)(0,3)

(1,0)(1,2)

(1,1)(1,3)

(1,1)

(0,1)

(1,0)

Figure 4.27: Schematic honeycomb diagram depicting several orbital degen-
eracy ridges and the associated effective electronic configurations according
to a two level representation.

First we show the spectroscopy experiments performed around the orbital
ridge below the first one we studied, as indicated by the white dashed line
in figure 4.22. non linear measurements following gate voltages scans along
and across the ridge are shown in figure 4.28, following the same protocol
as presented earlier around the (1,0)↔(0,1) degeneracy line (sec. 4.2.5).
Interestingly, the spectroscopy obtained display the same patterns as in the
studies performed around the previous orbital degeneracy ridge:

• Panel a. The spectroscopy performed along the ridge displays a ZBA
extending from one triple point to the other. The large conductance of
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Scan along the ridge :
ZBA locked at zero bias

Transverse scan towards 
the domain above the ridge :

ZBA decreases rapidly
Dispersing inelastic cotunneling
lines

a)

b) c) Transverse scan towards 
the domain below the ridge :

ZBA less rapidly
Dispersing inelastic cotunneling
lines

Figure 4.28: Panel a. non linear measurements following a gate voltage scan
along the orbital degeneracy ridge. The conductance on the ridge is locked
at zero bias. Panel b non linear measurements following a transverse gate
voltage scan parallel to the ridge going towards the domain above it. Panel

c. non linear measurements following a transverse gate voltage scan parallel
to the ridge going towards the domain below it.
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the ZBA, ∼ e
2

h
, indicates a well formed Kondo resonance. The FWHM

is found to be of the order of 200 mK as on the previous ridge.

• Panel b. The transverse spectroscopy going towards the domain above
(Fig. 4.27, (0,2)) shows that the ZBA found on the orbital ridge de-
creases rapidly.

• Panel c. The transverse spectroscopy going towards the domain below
(Fig. 4.27, (1,1)) shows that the ZBA decreases less rapidly.

The similarities found from one orbital ridge to the following are actually
not straightforward to apprehend. The point is that the ground state of the
system for one electron and for two is extremely different from the point of
view of magnetism. In the case of a single electron, the system is always
magnetic. On the contrary for two electrons we expect the system to be non
magnetic [45]:

• (1,1) domain In presence of inter-dot tunnel coupling and at zero mag-
netic field, the (1,1) state should correspond to a singlet state delo-
calized between both dots that is stabilized by the inter-dot exchange
interaction. We expect that by stabilizing a singlet in the double dot
device, the Kondo effect is suppressed. This is in disagreement with
the ZBA found within figure 4.28 (c) that extends far in the (1,1)
domain.

• (0,2) domain This domain corresponds to the absence of magnetism in
each dot since the occupation number of both of them is even. Due to
the fact that we work at zero magnetic field, we expect singlet states
in each dot (no triplet S=1) and therefore we expect that the system
cannot undergo the Kondo effect in this domain. We cannot explain
with this assumption and the previous one, the presence of a ZBA in
figure 4.28 (b).

To summarize we do not expect the system to undergo the Kondo in the
domains surrounding the orbital ridge (1,1)↔(0,2) if as assumed singlets
are stabilized within the double dot. By extension, it is straightforward
that the orbital degeneracy should not display a ZBA and lead to high
conductance through the device.In this case, one orbital ridge over two in the
VgD direction, should be ”switched off” if we follow the effective electronic
configurations depicted in figure 4.27 (In the dashed box, no conductance
should be found on the orbital ridge). This parity effect does no appear
in the experimental data (Fig. 4.22, top panel). We need to understand
which kind of mechanism explains the absence of parity effect, that is to say
how the Kondo process is found on each orbital ridge of figure 4.22. Two
scenarios based on the interplay of the Kondo mechanism and the inter-dot
exchange interaction will be discussed:
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• A two stage Kondo effect in the (1,1) domain.

• A multi level effect in the double dot device.

4.2.8 Interplay between Kondo and exchange

Two stage Kondo effect

We mentioned in the previous section, that in presence of inter-dot tunnel
coupling, the (1,1) state is a singlet state. This is accurate for an isolated
double dot or in the case of weak coupling to the leads. Generally speaking,
in presence of tunnel coupling to leads, that is to say to Fermi seas, the
ground state is not necessary an inter-dot singlet. In a T shape geometry,
where the spin of the small dot connects to leads and to the large dot, a com-
petition will establish between the inter-dot exchange interaction favouring
an inter-dot singlet and the Kondo temperature favouring a singlet delocal-
ized between the small dot and the leads. From theoretical literature [9] [80],
the ratio JdD/TKd will define the ground state of the system. As schemed

J    > TdD Kd

Formation of an 
inter dot singlet

Formation of a
Kondo singlet 
small dot-leads

J    > TdD Kd

Figure 4.29: T shape double quantum dot. Left panel In the limit of JdD >
TKd an inter-dot singlet is stabilized. The system does not undergo the
Kondo effect. Right panel. In the limit JdD < TKd a singlet is formed
between the small dot and the leads. At T ∼ TKd, the system undergoes
the Kondo effect. During this first stage the spin in the large dot decouples.
It will be screened during a second stage at T ∼ TKD � TKd.

in figure 4.29 (left panel), when the inter-dot exchange JdD is larger than
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TKd, an inter-dot singlet is stabilized and the system does not undergo the
Kondo effect at any temperature. In the other limit where JdD is smaller
than TKd, a Kondo type singlet between the moment of the small and the
leads is formed and the system can undergo the Kondo effect at T ∼ TKd.
Theoretical studies dealing with side coupled double dots, have shown that
in that limit the system undergoes the so called two stage Kondo effect. In
the first stage, the magnetic moment of dot d is quenched by the electrons of
the leads below some temperature TKd as depicted previously. The conduc-
tance through the device shows the usual enhancement of the conductance
following a temperature law well established in the standard Kondo effect.
During the first stage the local moment on the large dot, effectively de-
couples. In the second stage, which occurs at a much lower temperature
(Eq 4.11), the magnetic moment of dot D is in turn quenched by electrons
that lie within the narrow Kondo resonance around the Fermi level formed
during the first stage.

TKD ∼ TKd exp

�
JdD

TKd

�
(4.11)

The screening of the second local moment side coupled, results in a suppres-
sion of the conductance through the device. At low temperature, T � TKD,
the magnetic moments of the dots form a tightly bound singlet.
Since TKD � TKd, and given the estimation of the Kondo temperature ex-
tracted earlier from non linear measurements, i.e. TKD ∼ 100mK, we would
not be able to resolve the second stage of the Kondo effect in the (1,1) con-
figuration and we would only be sensitive to the first stage, that is to say
an enhanced conductance at TKD < T < TKd through the device due to a
spin 1/2 Kondo effect.
This can explain a spin Kondo effect detected at finite temperature in the
(1,1) domain. However an estimation of the tunnel coupling that one can
relate to the inter-dot exchange would be helpful. By studying the deviation
of the low temperature stability diagram (Fig. 4.13) from a pure honeycomb
diagram as we did in section 4.1, we find tdD ∼ 60µeV . In the (1,1) domain,
far from the orbital degeneracy line, one can show that J ∼ 4 t

2
dD
Ud

, from
which we get an estimation J ∼ 20µeV . This estimation is already above
the estimation of the Kondo temperature extracted on the ridge where it is
maximal12. Moreover, we know from the literature that the binding energy
of the inter-dot singlet will grow as we approach the degeneracy point with
the (2,0) state. This immediately translates in an increase of the inter-dot
exchange interaction as going towards the orbital degeneracy line.
In conclusion, the two stage Kondo effect would explain why a spin Kondo

12Temperature law and estimation of the Kondo temperature on the (1,1)↔(0,2) ridge
give the same results as in the case of the (1,0)↔(0,1) ridge
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effect can be expected in the (1,1) domain at finite temperature and by con-
tinuity a Kondo resonance can be expected at the interface (1,1)-(2,0), with
a boost of TKd via the reduced charging energy of the system. However by
putting numbers this scenario seems to be difficult to conciliate with the ex-
perimental data. Work on better ways to extract a more reliable estimation
of tdD is still undergoing.

Multi level quantum dots

Due to the weak level spacing measured in the large quantum dot, we know
from our previous experiment (sec. 4.1) that for large inter-dot tunnel cou-
pling, tdD > ∆ED, it is important to consider the hybridisation of the dots
in a multi level approach. The estimation of tdD given previously indicates
that the inter-dot tunnel coupling is greater than the level spacing of the
large dot.
In the following we are going to discuss the implications of a multi level
large quantum dot from the point of view of the binding energy of the inter
dot singlet possibly formed in the (1,1) configuration. We will address two
extreme limits in the (1,1) configuration: the case of a single energy level in
the small dot that hybridises with a continuum of energy levels or a single
energy level, in the large quantum dot. The evolution from one limit to the
other will enable us to define the ground state of the system in the (1,1)
configuration.

From the Continuum limit to the single level limit

In the (1,1) configuration, the question of the interaction of a single localized
level (small dot) and a continuum of states (large dot) can be mapped on the
Kondo problem13. Indeed this situation corresponds to the hybridisation of
a local moment and a continuum or reservoir. As we know from theory, at
low energy a N body singlet will be formed between the dots with a binding
energy defined by the Kondo temperature (Appendix B):

TKdD � D exp

�
− 1

ρJ

�
(4.12)

Where ρ is the density of states in the large dot that corresponds to a
continuum, D is an energy cut off (bandwidth =2D) and J the Schrieffer-
Wolff exchange interaction (Eq. 2.37).
In the opposite limit where two single localized levels (one level per dot) are
tunnel coupled, the ground state of the system in the (1,1) configuration is
a molecular singlet state stabilized by the exchange interaction,

JdD = Esinglet − Etriplet ∼ 4
tdD

2

U
(4.13)

13For odd occupancy of the localized level



4.2 Kondo effect on an orbital degeneracy point 125

Actually, if one performs an analogous perturbation calculation used to ob-
tain equation 4.12 [81] when the large dot contains a single level, ρ = 1

2D
,

the expression of the Kondo temperature reduces to the exchange interac-
tion (Appendix B).

Reduction of the inter-dot singlet binding energy

The crucial point of our discussion holds in the fact that the bare exchange
interaction 4.1314 is larger than the Kondo temperature. That is to say the
binding energy of the inter-dot singlet is larger in the case of a two level
system than in the continuum limit.
To illustrate our point we make the following calculation. We start from the
expression of the Kondo temperature given in 4.12 where ρ is replaced by
1/D as commonly done in literature.

TKdD ∼ 1
ρ

exp

�
− 1

ρJdD

�

TK

JdD

∼
exp

�
− 1

ρJdD

�

ρJdD

(4.14)

Since the quantity ρJdD < 1 (⇔ JdD > D)15 in the Kondo regime, we con-
clude that TKdD < JdD.
As a result, the increase of the number of energy levels entering the large
quantum dot tend to reduce the binding energy of the singlet formed be-
tween the dots. We refer now to the binding energy of the inter-dot singlet
as TKdD(N) or TKdD(1/∆ED) since its is a function of the number of energy
levels entering the hybridisation process. From the limiting cases addressed
above, we assume that for fixed tunnel coupling there must be a contin-
uous reduction of TKdD(1/∆ED) when the level spacing in the large dot
decreases.
To emphasize this reduction, Pablo Cornaglia performed calculations of the
Singlet-Triplet splitting (singlet binding energy) EST and the effective hop-
ping (teff ) for a single level in the small dot d coupled to a multi level
quantum dot D (large dot). The study is done in the center of the (1,1)
domain, deep in the Coulomb blockade valley. In order to simplify the nu-
merics, the parameters chosen for system were Ud = UD. A fixed energy
span W for the levels of the large dot that couple to the small dot was con-
sidered, so that for N levels, its level spacing stands as ∆ = W/(N − 1).

14Defined in a two level system
15JdD > D would imply that at an energy D, the highest excitation energy, JdD dom-

inates already the physics of the system. A singlet state is stabilized at high energy
(temperature) and the system does not undergo the Kondo effect.
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Figure 4.30: Evolution of the inter-dot singlet binding energy as a function
of the number of energy levels in the large involved in the hybridisation
processes with the small dot.

The hopping to each level is given by tdD/
√

N . The effective hopping is cal-
culated for a single electron in the double quantum dot as the energy gain
due to the presence of the hopping. Then, the EST is obtained as the singlet
triplet splitting for two electrons in the system (no Kondo renormalisation
here).
We show in figure 4.30 a plot of EST /(4t2

eff
/U) as a function of t/∆ for

different W (N from 2 to 11). As one can see in all cases the singlet triplet
splitting energy decreases when more energy levels of the large dot are in-
volved in the inter-dot hybridisation process, i.e when t/∆ increases.
We believe that from our estimation of tdD that at least three energy levels
in the large dot or more are involved in the hybridisation with the small dot.
Therefore, we expect our system to be in the intermediate regime between
the single level limit and the continuum limit.

Screening of the local moments in the (1,1) domain

In order to define the ground state of the system we need to compare the
energy scale TKdD(1/∆ED) defining the binding energy of the inter-dot sin-
glet and TKd defining the binding energy of the small dot-leads singlet. On
the one hand if TKdD(1/∆ED) > TKd, an inter-dot singlet is formed at
temperatures of the order of TKdD(1/∆ED) and the system does not un-
dergo the Kondo effect with the leads at any temperature. A parity effect
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would be seen in the low temperature stability diagram as mentioned ear-
lier (sec. 4.2.7). On the other hand if the condition TKd > TK(1/∆ED) is
satisfied as represented by the red dashed lines in figure 4.30, the system
gains more energy by stabilizing a ”small dot-leads” singlet rather than a
”small dot-large dot” singlet. As in the case presented in section 4.2.8 the
system will undergo a two stage Kondo effect resulting in a none magnetic
ground state at zero temperature. At temperatures of the order of TKd

the system undergoes a spin Kondo effect with the leads that screens the
spin on the small quantum dot. During this first stage the large dot spin
decouples. The screening of the remaining spin is pushed to much lower
temperature via the same process mentioned in section 4.2.8 (Two stage
Kondo effect), that is to say the spin in the large dot will be screened by
the quasi-particles that lie within the Kondo resonance around the Fermi
energy formed during the first stage. As a result the Kondo temperature
of the second stage TKD will be a renormalized quantity depending on TKd

and will take a form analogous to 4.11. The energy scale TK(1/∆ED) is
no more a relevant quantity. To conciliate experiments with this qualitative
analysis, we require that TKD < T < TKd, in other words that at the lowest
temperatures we can achieve we cannot resolve the second stage, which given
our estimation of the Kondo temperature in the system makes sense. Then,
by continuity from the center of the (1,1) domain, we can expect a Kondo
plateau extending up to the orbital degeneracy ridge (1,1)↔(0,2) which at
finite temperature could reveal a marked Kondo ridge at the interface (1,1)-
(0,2) because of the boosting of the Kondo temperature already discussed.
NRG calculations using a reduced form of the Hamiltonian of the system
shown in appendix A, are currently being performed in order to confirm this
scenario. Moreover an estimation of the number of energy levels required to
satisfy T leads

K
> TK(1/∆ED) in our system is needed. Calculation in that

directions are under consideration.

All the theoretical support concerning this experiment was given by Serge
Florens [72], Denis Feinberg [72], Carlos Balseiro [74] and Pablo Cornaglia [74].
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Conclusion and perspectives

During this project, a double quantum dot device was used to study an
important problem of highly correlated electron systems, the Kondo effect.
Motivated by recent theoretical publications, we chose a design consisting
of small quantum dot connected to metallic leads and side coupled to a
large quantum dot. This specific design, already used to study the two
channel Kondo effect [8], is expected from literature to offer the opportu-
nity to study various exotic Kondo effects [19] [20] including the Kondo box
problem [11] [10]. This particular problem arises when a magnetic impurity
(small dot) is screened by a finite reservoir (large dot). Strong finite size
effects such as the loss of universality are expected when the level spacing
in the finite reservoir becomes of the order of the Kondo temperature.
Even though we did not find evidences of an inter dot Kondo effect, the
strong coupling regimes that we studied raised intriguing questions con-
cerning the hybridisation mechanisms between the dots and with the leads.
Important experimental and theoretical efforts were put into the influence
of hybridisation (”dot-Dot” and ”dot-leads”) on the transport properties of
the double dots system.

The first problematic we raised was the effect of strong inter-dot tunnelling
when the coupling to the leads can be considered as weak. At low tem-
perature, strong irregularities associated to irregular fillings of both dots
were observed in the stability diagram whereas regular fillings were recov-
ered at higher temperature. It was emphasized that a crucial parameter to
understand transport through the system was the ratio tdD

∆ED
. The result of

a large ratio, is a complex molecular addition spectrum that accounts for
the unusual transport properties at low temperature. In order to capture
the physics of the system a formalism based on exact diagonalization of a
reduced Hamiltonian of the system, that is to say of multi-level interacting
dots, was presented. Thanks to the Meir-Wingreen formula, conductance
maps were simulated. A qualitative agreement between experiments and
theory was obtained by taking into account the cross talk effect influencing
the inter dot tunnelling matrix element. Interestingly the effect of tem-
perature was naturally taken into account by the model via the number of
molecular states participating to transport. Above a certain temperature,
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T > tdD, an effective averaging over several molecular states leads to regular
transport properties as observed.

By increasing the coupling with the leads, we could tune our device in the
Kondo regime on a particular region of the stability diagram: the orbital
degeneracy ridge where the dot energy levels are degenerated. On this ridge,
the effect of inter dot tunnel coupling is maximal and the molecular eigen-
states of the system are far from the pure small dot/large dot states. We
attribute this Kondo ridge to a spin Kondo effect where the Kondo tempera-
ture is boosted near the ridge via the reduction of the charging energy of the
system. Spectroscopy experiments performed around the orbital degeneracy
ridge showed an odd/even effect as a function of the parity of the small dot.
Interestingly, no parity effect was found as far as the large dot occupation
number. To account for this invariance, we were pushed to consider the
interplay between the Kondo temperature and the exchange interaction be-
tween the dots to explain that a delocalized singlet ”small dot/leads” was
formed at low temperature rather than a delocalized singlet ”small dot/
large dot”. A multi level scenario describing hybridisation between the dots
enabled us to point out the reduction of inter-dot singlet binding energy
when the level spacing of the large dot decreases. Theoretical investigations
based on NRG calculations are currently outgoing to confirm that in our
system the reduction is sufficient to satisfy J < TK , in other words that a
Kondo singlet ”dot-lead” is stabilized.

To summarize, both experiments show the importance of the strength of
the tunnel coupling compared to the intrinsic energy scales of the dots, and
in particular the level spacing. It appears from literature that a lot of work
has still to be done in these strong coupling regimes from the point of view
of theory and experiments to get better insight on this physics.

In perspective we would like to point out that:

• Our first experiment showed that rich transport properties are ob-
tained in multi level (or strongly coupled) interacting dots, however
we still suffer from a lack of physical pictures and analogies to un-
derstand in simpler terms transport in this strong inter-dot coupling
regime. An important question that we did not study in detail is the
influence of the coupling with the leads on the transport properties
of the system. It appears that, so far, no formalism is able to treat
the complete Hamiltonian shown in appendix A in order to calculate
the transport parameters of the system. From this point of view it is
crucial to carry more experimental investigations in strongly coupled
dots. Simple question such as the influence of Kondo mechanisms on
the modulation of the molecular degeneracy lines, their position in the
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diagram, the evolution of the system within temperature appear to be
difficult questions to answer to at this stage.

• The question of the Kondo box problem still remains open to our
knowledge. Even though the problems of the exchange interaction in
the case of two energy levels and the case of a single energy level and
a continuum have found answers, the evolution from one scenario to
the other is still a complicated problem. Indeed the case of a finite
interacting reservoir screening a local moment is a difficult problem to
treat theoretically and very few literature can be found on this topic.
NRG methods used in the continuum limit appear to be difficult to
adapt to a problem where the reservoir is subject to on-site repulsion
and we suffer from a lack of knowledge of the physics in this intermedi-
ate regime where finite size effects are expected. Therefore theoretical
and experimental efforts are required to apprehend the Kondo regime
in a finite system.



132 Conclusion and perspectives



Appendix A

Multi level interacting
quantum dots

The Hamiltonian describing our double quantum dot is derived from a two
impurity Anderson Hamiltonian [82]. The expression of the complete Hamil-
tonian representing our double dot stands as:

Hd =
�

i∈d,σ

(εd + i×∆εd)niσ + Udnd(nd − 1)/2 (A.1)

Representing the Hamiltonian of the small dot isolated from the environ-
ment. εd corresponds to the energy of the first orbital in the dot and serves
as an energy reference. ∆εd and niσ stand for the level spacing and the num-
ber of electrons in orbital i with spin σ respectively. εd is a free parameter
that will enable to vary the energy of dot d, in other words it will simulate
the effect of the plunger gate in our experiments. However the transposition
from εd to Vgd is not direct as one can notice in section 4.1, chapter 2. The
first term, where the sum is performed over index i represents the orbital
contribution. The second term corresponds to the on site Coulomb repulsion
where Ud is the charging energy of the small dot d.

HD =
�

i∈D,σ

(εD + i×∆εD)niσ + UDnD(nD − 1)/2 (A.2)

Representing the Hamiltonian of the large isolated from the environment.

HdD = UdDndnD + tdD

�

σi∈d,j∈D

�
d†

iσ
djσ + H.c.

�
(A.3)

Representing the interaction term between the dots. The first contribution
comes from the mutual Coulomb repulsion proportional to UdD. The second
term describes the hybridisation of the wave function of each dot. tdD is the
intra dot tunnel coupling. The operators d†

iσ
and djσ are the creation and
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annihilation operators that create a particle in orbital i of dot d with spin σ
and destroys one in orbital j of dot D with the same spin σ, and vice versa
(Hermitian conjugate). Transitions at all energies are obtained by summing
over different orbitals i and j of dot d and D respectively and over the spin
degree of freedom σ.

HV =
�

α=L,R

Vα

�

(i∈d),k,σ

�
c†
αkσ

di,σ + H.c.
�

(A.4)

Representing the hybridisation of the small dot d and the leads (T shape
geometry). Vα is the tunnel coupling leads-dot where alpha identifies left
or right lead. Note that an asymmetry left right can be taken into account.
Here a given orbital i is assumed to connect identically to the leads. c†

αkσ

and di,σ create a particle in the lead α with wave vector k and spin σ and
destroys a particle in orbital i of dot d with the same spin σ and vice versa
(Hermitian conjugate). Transitions at all energies are obtained by summing
over α, k, σ and i.

Hband =
�

α,k,σ

�knαkσ (A.5)

Represents the kinetic energy of the quasi particles in the metallic leads
labelled by the index α. �k is the energy of a state with wave vector k. nαkσ

is the number of particles in state k with spin σ. The total energy is given
by summing over α, k and σ.



Appendix B

Singlet binding energy

We consider a continuum of energy states (large dot) interacting with a single
energy level with on-site Coulomb repulsion (small dot). Following [81] we
can show that the expression of the exchange interaction with correction to
second order stands as:

J + δJ = J + J2ρ log
D

T

J = J

�
1 + Jρ log

D

T

�
(B.1)

where J is the exchange interaction (Schrieffer-Wolff), δJ is the correction
term, ρ is the density of states of the continuum, D is the relevant energy
bandwidth of the problem and T is the temperature.
The definition of the Kondo temperature is given when the correction δJ
in B.1 is no more a perturbation, that is to say when:

Jρ log
D

T
� 1 (B.2)

which leads to,

TK � D
�

ρJ exp

�
− 1

ρJ

�
(B.3)

However when the density of states ρ of the continuum reduces to a single
energy state, ρ = 1

2D
, then the correction δJ takes the form:

δJ = ρJ2D
1
T

(B.4)

which leads to,

δJ =
J2

2T
J = δJ(TK)

TK =
J

2
(B.5)
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The complete calculation giving the binding energy of the singlet from the
case of a single energy level to a continuum of energy levels in the reservoir
(large dot) is currently under progress.
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