Micro-manipulation de l'ADN Vers une visualisation directe par microscopie de fluorescence

Adrien Meglio

Laboratoire de Physique Statistique, ENS

 1^{er} avril 2010

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	000000000	00
Outline					

- Introduction to single-molecule experiments
- 2 Experimental Setup
- 3 RNA Pol
- 4 FtsK, a molecular motor
- 5 Results

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	000000000	00
Outline					

Introduction to single-molecule experiments

- 2 Experimental Setup
- 3 RNA Pol
- 4 FtsK, a molecular motor
- 5 Results

Objective : biochemical studies of a protein

Single molecule experiments

- direct observation of
 v instead of (v)
- activity distribution reconstruction

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
○●	0000000	000	000000	000000000	00
Seeing an	d manipulat	ting biomol	ecules		

Micro-manipulation

 ${\circ}$

Technique	AFM	0T	MT
Measure nanometric changes	++	++	+
Generate force	++	++	+
Generate torque	-	+	++
Parallelize observations	-	+	++
Force and fluo colocalization	+	+	++
Previous experience in the lab	-	-	+

Observation

- Fluorescent labelling \Rightarrow direct visualization
- Evanescent wave \Rightarrow spatial positioning
- \bullet Objective illumination \Rightarrow compatible with MT setup

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	000000000	00
Outline					

- Introduction to single-molecule experiments
- 2 Experimental Setup
- 3 RNA Pol
- 4 FtsK, a molecular motor
- 5 Results
- 6 Conclusions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ■ のQQ

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	●000000	000	000000	000000000	00
The idea					

Characteristics

- specific surface-DNA & DNA-bead attachment
- relevant force scale : 1 k_BT/nm = 4 pN
- mm-wide fluo field of view
- \sim 100 nm EW z scale

Objectives

- force and torsion generation
- direct fluorescence observation
- multi-color excitation/detection

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0●00000	000	000000	000000000	00
What the	setup looks	like : the g	eneral set	up	

Introduction	The setup	RNA Po l	FtsK	Results	Conclusions
00	00●0000	000	000000	000000000	00
What the	setup looks	like : the d	chamber		

reservoir

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Introduction	The setup	RNA Po l	FtsK	Results	Conclusions
00	000●000	000	000000	000000000	00
The MT s	etup				

Key facts

- μm-sized DNA & superparamagnetic bead
- 100 μ m F $\sim \partial_{\parallel}B_{\perp}$ variation in z : 0.05 - 40 pN
- ∂_{||}B_⊥ uniform over field of view

Conclusion

- Constant force and rotation
- Parallel experiments over the field
- 5 nm z tracking accuracy

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Positioning

Conclusion

Single fluorophore (x, y) positioning : $\sigma = 5-10$ nm at T = 30 ms

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	○○○○○●○	000	000000	000000000	00
A proof o	fprinciple				

Observation

The motor MT and fluo activities are synchronous

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	००००००●	000	000000	000000000	00
Conclusion					

Conclusions

- fully functional MT and TIRF setup
- 5-10 nm (x, y) fluorophore positioning accuracy
- 5 nm z MT accuracy
- force and torsion generation
- simultaneous observation of activity in MT and fluo

Objectives

 apply this setup on key experiments on 2 DNA translocases : T7 RNAP and FtsK

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• begin with mechanistic studies

Introduction	The setup	RNA Pol	FtsK	Result s	Conclusions
00	0000000	000	000000	000000000	00
Outline					

- Introduction to single-molecule experiments
- 2 Experimental Setup
- 3 RNA Pol
- 4 FtsK, a molecular motor
- 5 Results
- 6 Conclusions

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	●00	000000	000000000	00
The RNA	Polymerase				

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	o●o	000000	000000000	00
RNAP stud	ies				

Strong structural basis on T7RNAP [Cheetham 99, Tahirov 02, Yin 04, Datta 06], bacterial RNAP [Vassylyev 02, Murakami 02] and yeast RNA Pol II [Cramer 01, Lehmann 07]

Single-molecule observations : mainly in coli

- T7 RNAP $\mathbf{RP}_{itc} \rightarrow \mathbf{RP}_{e}$ transition by FRET [Tang 09]
- T7 RNAP **RP**_e kinetics by OT [Thomen 02, 05, 08]
- *E. coli* RNAP $\mathbf{RP}_c \rightleftharpoons \mathbf{RP}_o$ equilibrium by MT [Revyakin 04]
- *E. coli* RNAP **RP**_{*itc*} scrunching by MT [Revyakin 06] and FRET [Kapanidis 06, Tang 08]
- *E. coli* RNAP **RP**_e step size, kinetics, pausing by OT [Wang 98, Neuman 03, Abbondanzieri 05, Herbert 06, Mejia 08]
- yeast RNA Pol II RP_e pausing and backtracking in OT [Galburt 07, Mejia 08]
- yeast RNA Pol II RP_e kinetics by *in vivo* RNA labeling
 [Darzacq 07]

I ntroduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	oo●	000000	000000000	00
Planned e	xperiments				

Planned experiments

- fluo-labelled T7 RNAP : monomeric, strong promoter [Chen 00], biotin tag [Thomen 02]
- RNAP-promoter interaction (not available in MT)
- **RP**_e rotation (not available in MT)

 \Rightarrow need good fluo (x, y)resolution to reach bp resolution and compare to Block

Outcome

- fluo-labelled RNAP functional in bulk
- fluo-labelled RNAP active in MT
- simultaneous MT and fluo activity (e.g. promoter unwinding) never observed

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Introduction	The setup	RNA Pol	FtsK	Result s	Conclusions
00	0000000	000	000000	000000000	00
Outline					

- Introduction to single-molecule experiments
- 2 Experimental Setup
- 3 RNA Pol
- 4 FtsK, a molecular motor
- 5 Results
- 6 Conclusions

 Introduction
 The setup coordination
 RNA Pol coordination
 FtsK econo
 Results coordinations coordinations
 Conclusions coordinations

 FtsK and the ASCE ATPases

Characteristics

- *E. coli* cell cycle coordination
- chromosome dimer recombinase activation
- chromosome positioning at division septum
- Hints on mechanism : strong structural and functional homologies with ASCE ATPases

Reproduced from [Erzberger 06]

- FtsK/HerA superfamily : SpolIIE, TrwB, φ29 gp16
- RecA ATPases : RecA/Rad51, Rho, dnaB, UvrD, T4 gp41, T7 gp4
- AAA+ supergroup : SV40, ClpX

 Introduction
 The setup coord
 RNA Pol coord
 FtsK coord
 Results coord
 Conclusions coord

 FtsK
 structural and functional features

Related proteins structures

- FtsK_{50C} forms *blobs* on DNA [Pease 05]
- FtsK_{Cαβ}-DNA complexes are hexameric [Massey 06]
- FtsK/HerA superfamily proteins are multimeric : φ29 gp16 portal motor [Morais 08], *E. coli* conjugation protein TrwB [Gomis-Rüth 01, Hormaeche 02], *P. abyssii* dsDNA helicase MlaA [Manzan 04]
- many other ASCE proteins are multimeric : dnaB helicase [Bailey 07], E1 replicative helicase [Enemark 06], T7 gp4 replicative helicase [Egelman 95], ClpX proteasome helicase [Grimaud 98]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	00●000	000000000	00
ATP hydro	lysis models				

a Concerted hydrolysis

b Sequential hydrolysis

Alternative

Direct observation of fluorescent ATP analogue

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Related proteins

- probabilistic in bacterial ClpX [Martin 05]
- sequential in T7 helicase gp4 [Hingorani 97]
- strictly sequential in E. coli helicase Rho [Stitt 97]
- coordinated in ϕ 29 gp16 [Moffitt 09]

In troduction	The setup	RNA Pol	FtsK	Results	Conclusions
			000000		
lecues in	MT observa	X			

Key experiment

- use the MT + fluo setup
- fluo-labelled FtsK
- DNA force/torsion control by magnetic tweezers

lssue	Experiment
multimeric state of FtsK _C	quantization by fluorescence
translocation direction	fluorescence tracking
ATP hydrolysis mechanism	fluorescent ATP hydrolysis
	point mutations
clean SM FtsK complex	covalent multimers

 Introduction
 The setup
 RNA Pol
 FtsK
 Results
 Conclusions

 ATP hydrolysis
 mechanism
 Mecha

Strategy

- covalent n-mers : MCM (natural) [Moreau 07], ClpX (artificial) [Martin 05]
- point mutations on monomers
- WA prevents ATP interaction
- WB prevents ATP hydrolysis
- RF (Arginine Finger) inhibit trans ATP hydrolysis coupling

Key experiment

- local wt/mutant monomer state
- global activity effect at complex level

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 Introduction
 The setup
 RNA Pol
 FtsK
 Results
 Conclusions

 Covalent FtsK multimers

Covalent multimers

- FtsK_C prepared in n-mers
- auto-organize in discrete complexes on DNA
- 3-mers used for convenience (high multimerization)
- possible C-term biot

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	000000000	00
Outline					

- Introduction to single-molecule experiments
- 2 Experimental Setup
- 3 RNA Pol
- 4 FtsK, a molecular motor

5 Results

- automatic measurement tests at high (2-5 mM) ATP
- benchmarking on known data : FtsK_{50C} [Saleh 04, Pease 05]

- 2 mM ATP
- 1509 events
- monomodal
- $\langle v \rangle = 0.9 \pm 0.3 \mu m/s$
- consistent with literature

Introduction	The setup	RNA Pol	FtsK	Result s	Conclusions
00	0000000	000	000000	0●0000000	00
Transloca	tion speed	ofvariante			

- wt-X-wt FtsK trimer variants (left to right : X = wt, WA, WB)
- similar translocation pattern for all variants and FtsK_{50C} at 2 mM ATP & F = 20 pN
- similar DNA translocation speed for wt, WA, WB, no loop formation activity for RF

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	00●000000	00
The hehe	vior of wt R				

Key observation

biot-wt-RF-wt exhibits DNA looping activity ⇒ consequence of DNA translocase activity

biot-wt-WA-wt (black) vs.
 biot-wt-RF-wt (grey)

5 mM ATP

DNA translocase activity (MT, bulk)

- 2/6 WA,WB,RF are active ⇒ rule out concerted mechanism
- 2/6 WA,WB speed = 0/6 speed
 ⇒ rule out pure stochastic mechanism
- 2/6 RF are inactive
 - \Rightarrow some degree of cooperativity

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	0000●0000	00
Force depen	idence studi	es			

Bulk observations suggests

- roadblock displacement impaired by mutations
- different mechanisms for roadblock displacement and DNA translocase

Conclusion

- no force dependence on wt and WA up to 25 pN
- to be tested on WB,RF and 3+/6 mutants
- constant position OT may be better suited [Pease 05]

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	○○○○●○○○	00
Cofactor de	pendence	: ATP			

Rationale

Study of the ATPase reaction : ATP \rightarrow ADP + P_i

Observations

- $v_{\infty} = 1.4 \pm 0.2 \mu m/s$
- $K_M = 0.8 \pm 0.2 \, mM$
- v_{∞} for FtsK_{50C} : 2.3 μ m/s [Saleh 04] 1.7 μ m/s [Pease 05]
- K_M for FtsK_{50C} : 0.3mM [Saleh 04]

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	○○○○○●○○	00
Cofactor	dependence	·ΔTΡ			

Conclusion

- no effect of 2/6 WA on loop formation limiting step
- strikingly, no effect on ATP binding constant

Set of data on biot-wt-WA-wt

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Observations

- ADP acts as a competitive inhibitor
- but processivity increases with [ADP]
- v([ADP] = 0) consistent with MM
- ADP $K_d = 2.4 \pm 0.6 mM$
- acquired on a **single** FtsK/DNA complex

Data on a single biot-wt-wt/DNA complex

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	○○○○○○○○	00
Conclusio	ns and ners	nectives			

Conclusions

- different activities have different cooperativies
- concerted and stochastic mechanisms ruled out for DNA translocase
- concerted mechanism ruled out, but some cooperativity for DNA looping
- 2/6 RF does not form loops on its own

Escort model (3 contacts) with 2 mutant subunits

Perspectives

- activity as a function of n/6
 ⇒ quantitize cooperativity
 (under investigation)
- wt-wt-wt-wt-WA-WA behaviour (under investigation)
- fluorescent ATP studies

Introduction	The setup	RNA Pol	FtsK	Result s	Conclusions
00	0000000	000	000000	000000000	00
Outline					

- Introduction to single-molecule experiments
- 2 Experimental Setup
- 3 RNA Pol
- 4 FtsK, a molecular motor
- 5 Results

Introduction	The setup	RNA Pol	FtsK	Result s	Conclusions
00	0000000	000	000000	000000000	●0
General o	onclusions				

Conclusions

Setup

- fully functionnal MT and fluorescence setup
- proof of principle of simultaneous protein activity observation FtsK
 - wt-X-wt trimer MT DNA translocase activity validation
 - identification of different types of cooperativity for different activities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Introduction	The setup	RNA Pol	FtsK	Results	Conclusions
00	0000000	000	000000	000000000	⊙●
Future work					

Perspectives

- direct protein labelling protocols for RNAP and FtsK
- direct observation of RNAP-promoter interaction and rotation
- direct visualization of FtsK translocation
- FtsK quantization
- discrimination between ATPase cooperativity mechanisms

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- higher-order FtsK multimers study
- application of fixed complexes to protein ageing

Photoelectron yield	FtsK activity	RNAP	DNA phases
000000	0		

Micro-manipulation de l'ADN Vers une visualisation directe par microscopie de fluorescence

Adrien Meglio

Laboratoire de Physique Statistique, ENS

1^{er} avril 2010

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Photoelectron yield	FtsK activity	RNAP	DNA phases
0000000	0	o	○
Outline			

Photoelectron yield

8 FtsK activity

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = 目 - 釣��

Photoelectron yield	FtsK activity	RNAP	DNA phases
●000000	0	o	O
The photoelectron	yield		

The problem

- For every photon hitting the sensor, ρ electrons are created and detected
- Must know ρ to measure the number N of photons from the electron signal S

The usual solution For an uncorrelated source of photons and $S = \rho \cdot N$:

$$\frac{\sigma_{S}^{2}}{\langle S \rangle} = \frac{\rho}{2} \tag{1}$$

Example : iXon EMCCD @ -80°C

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

On this camera $ho=68\pm21~e^-/h
u$

Photoelectron yield	FtsK activity	RNAP	DNA phases
0●00000	0	o	O
Imaging a point sou	rce		

Ideal case (hypotheses)

- lots of photons
- perfect spatial resolution on the detector
- cylindrical symmetry of optics

What would be observed

- spatial distribution of photons : Bessel function
- center (x,y)
- width ξ

A simulated ideal observation

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Photoelectron yield	FtsK activity	RNAP	DNA phases
00●0000	0	o	O
Imaging a point s	source		

Real world

- time series of frames $(i, \Delta t)$
- finite number of photons N_i
- detector size a
- shot noise b

Questions

- what are (x_i, y_i) ?
- how much is ξ_i ?
- how much is N_i ?

An actual observation

• single QDot, $\Delta t = 30$ ms

•
$$a=16~\mu{
m m}$$

・ロト ・四ト ・ヨト ・ヨト

E nar

Photoelectron yield	FtsK activity	RNAP	DNA phases
000●000	0	o	O
Point source measur	rements		

Questions

- what are (x_i, y_i) ?
- how much is ξ_i ?
- still, how much is N;?

Measurements

- Gaussian approximation
- x_i = -140 nm
- $\xi_i = 420 \text{ nm}$

An example of measurement

・ロト (個) (目) (目) (目) (目) (0)

Photoelectron yield	FtsK activity	RNAP	DNA phases
0000●00	0	o	0
Point source measur	ements		

Questions

• still, how much is N_i?

The position error σ_x

- Derived in [Thompson, 2002]
- a is known
- **b**, σ and ξ are measured
- $N = \langle N_i \rangle$ can be measured

The x_i distribution

Single QDot, 1024 frames Source position error $\sigma_x = 9$ nm

$$\frac{\sigma}{\xi} = \frac{1}{\sqrt{N}} \sqrt{1 + \frac{1}{12} \left(\frac{a}{\xi}\right)^2 + \frac{8\pi b^2}{N} \left(\frac{\xi}{a}\right)^2}$$
(2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Photoelectron yield	FtsK activity	RNAP	ONA phases
00000●0	0	o	○
Back to the photoel	ectron yield		

Method

- Vary Δt (or Laser intensity)
- Measure $\sigma(\Delta t)$
- Calculate $N(\Delta t)$
- Plot $S(\Delta t)$ vs. $N(\Delta t)$

Results

- σ as a function of Δt, maximum around 20 ms
- Fluorophore photon flux $\Phi = N/\Delta t = 100 \text{ kHz}$
- Photoelectron yield $\rho = 100 \ {\rm e}^-/{\rm h}\nu$

Single QDot, 1024 frames/point

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

Photoelectron yield	FtsK activity	RNAP	DNA phases
0000000	0	o	O
Conclusion			

- Equally long than standard method (varying Δt)
- Requires more complex operations (fits), but have to be implemented anyway for tracking
- Direct access to setup parameters, most notably $\sigma(\Delta t)$
- Direct access to fluorophore parameter $\Phi,$ hence ability to count multiple QDs

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

 $\bullet\,$ Independant measurement of $\rho\,$

Photoelectron yield	FtsK activity	RNAP	DNA phases
0000000	0	o	○
Outline			

Photoelectron yield

8 FtsK activity

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = 目 - 釣��

Photoelectron yield	FtsK activity	RNAP	DNA phases
	•		

Translocation-rotation coupling

Photoelectron yield	FtsK activity	RNAP	DNA phases
0000000	0	o	0
Outline			

Photoelectron yield

8 FtsK activity

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Photoelectron yield	FtsK activity	RNAP	DNA phases
0000000	0	o	0
Outline			

Photoelectron yield

8 FtsK activity

Photoelectron yield	FtsK activity	RNAP	DNA phases
	○	o	●

Plectoneme - cruciform transition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで