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The single-molecule rationale

Objective : biochemical
studies of a protein

Single molecule
experiments

direct observation of
v instead of 〈v〉
activity distribution
reconstruction

E. coli RNAP [Mejia 08]
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Seeing and manipulating biomolecules

Micro-manipulation

Technique AFM OT MT

Measure nanometric changes ++ ++ +

Generate force ++ ++ +

Generate torque - + ++

Parallelize observations - + ++

Force and �uo colocalization + + ++

Previous experience in the lab - - +

Observation

Fluorescent labelling ⇒ direct visualization

Evanescent wave ⇒ spatial positioning

Objective illumination ⇒ compatible with MT setup
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The idea

Characteristics

speci�c surface-DNA &
DNA-bead attachment

relevant force scale :
1 kBT/nm = 4 pN

mm-wide �uo �eld of view

∼100 nm EW z scale

Objectives

force and torsion generation

direct �uorescence
observation

multi-color
excitation/detection

E�ect A B

Fluo activity Yes Yes

MT activity No Yes
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What the setup looks like : the general setup
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What the setup looks like : the chamber
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The MT setup

Key facts

µm-sized DNA & super-
paramagnetic bead

100 µm F ∼ ∂‖B⊥ variation
in z : 0.05 - 40 pN

∂‖B⊥ uniform over �eld of
view

Conclusion

Constant force and rotation

Parallel experiments over the
�eld

5 nm z tracking accuracy
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An application of �uorescence microscopy : �uorophore

nm-accuracy positioning

A single �uorophore

Quantum dot

T = 30ms

Positioning

ξ = 400 nm (gaussian)

x = 10±1 nm

Conclusion

Single �uorophore (x , y) positioning : σ = 5-10 nm at T = 30ms
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A proof of principle

Observation

The motor MT and �uo activities are synchronous
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Conclusion

Conclusions

fully functional MT and
TIRF setup

5-10 nm (x , y) �uorophore
positioning accuracy

5 nm z MT accuracy

force and torsion generation

simultaneous observation of
activity in MT and �uo

Objectives

apply this setup on key
experiments on 2 DNA
translocases : T7 RNAP and
FtsK

begin with mechanistic
studies
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The RNA Polymerase
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RNAP studies

Strong structural basis on T7RNAP [Cheetham 99, Tahirov 02, Yin
04, Datta 06], bacterial RNAP [Vassylyev 02, Murakami 02] and
yeast RNA Pol II [Cramer 01, Lehmann 07]

Single-molecule observations : mainly in coli

T7 RNAP RPitc →RPe transition by FRET [Tang 09]

T7 RNAP RPe kinetics by OT [Thomen 02, 05, 08]

E. coli RNAP RPc 
RPo equilibrium by MT [Revyakin 04]

E. coli RNAP RPitc scrunching by MT [Revyakin 06] and
FRET [Kapanidis 06, Tang 08]

E. coli RNAP RPe step size, kinetics, pausing by OT [Wang
98, Neuman 03, Abbondanzieri 05, Herbert 06, Mejia 08]

yeast RNA Pol II RPe pausing and backtracking in OT
[Galburt 07, Mejia 08]

yeast RNA Pol II RPe kinetics by in vivo RNA labeling
[Darzacq 07]
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Planned experiments

Planned experiments

�uo-labelled T7 RNAP :
monomeric, strong promoter
[Chen 00], biotin tag
[Thomen 02]

RNAP-promoter interaction
(not available in MT)

RPe rotation (not available
in MT)

⇒ need good �uo (x , y)
resolution to reach bp resolution
and compare to Block

Outcome

�uo-labelled RNAP
functional in bulk

�uo-labelled RNAP active in
MT

simultaneous MT and �uo
activity (e.g. promoter
unwinding) never observed
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FtsK and the ASCE ATPases

Characteristics

E. coli cell cycle
coordination

chromosome dimer
recombinase
activation

chromosome
positioning at division
septum

Hints on mechanism :
strong structural and
functional homologies
with ASCE ATPases

Reproduced from [Erzberger 06]

FtsK/HerA superfamily : SpoIIIE,
TrwB, φ29 gp16

RecA ATPases : RecA/Rad51,
Rho, dnaB, UvrD, T4 gp41, T7
gp4

AAA+ supergroup : SV40, ClpX
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FtsK structural and functional features

Related proteins structures

FtsK50C forms blobs on DNA [Pease 05]

FtsKCαβ-DNA complexes are hexameric

[Massey 06]

FtsK/HerA superfamily proteins are
multimeric : φ29 gp16 portal motor [Morais
08], E. coli conjugation protein TrwB
[Gomis-Rüth 01, Hormaeche 02], P. abyssii
dsDNA helicase MlaA [Manzan 04]

many other ASCE proteins are multimeric :
dnaB helicase [Bailey 07], E1 replicative
helicase [Enemark 06], T7 gp4 replicative
helicase [Egelman 95], ClpX proteasome
helicase [Grimaud 98]
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ATP hydrolysis models

Alternative

Direct observation
of �uorescent ATP
analogue

Related proteins

probabilistic in bacterial ClpX [Martin 05]

sequential in T7 helicase gp4 [Hingorani 97]

strictly sequential in E. coli helicase Rho [Stitt 97]

coordinated in φ29 gp16 [Mo�tt 09]
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Issues in MT observation of FtsK

Key experiment

use the MT + �uo setup

�uo-labelled FtsK

DNA force/torsion control by magnetic tweezers

Issue Experiment

multimeric state of FtsKC quantization by �uorescence

translocation direction �uorescence tracking

ATP hydrolysis mechanism �uorescent ATP hydrolysis
point mutations

clean SM FtsK complex covalent multimers
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ATP hydrolysis mechanism

Strategy

covalent n-mers : MCM (natural)
[Moreau 07], ClpX (arti�cial)
[Martin 05]

point mutations on monomers

WA prevents ATP interaction

WB prevents ATP hydrolysis

RF (Arginine Finger) inhibit trans
ATP hydrolysis coupling

Key experiment

local wt/mutant
monomer state

global activity e�ect
at complex level
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Covalent FtsK multimers

Covalent multimers

FtsKC prepared in
n-mers

auto-organize in
discrete complexes
on DNA

3-mers used for
convenience (high
multimerization)

possible C-term biot

Gel shift assay

35 bp dsDNA oligomer (Ian Grainge,
[Lowe 08])
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FtsK DNA translocase activity

automatic measurement tests at
high (2-5 mM) ATP

benchmarking on known data :
FtsK50C [Saleh 04, Pease 05]

2 mM ATP

1509 events

monomodal

〈v〉 = 0.9± 0.3µm/s

consistent with
literature
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Translocation speed of variants

wt-X-wt FtsK trimer variants (left to right : X = wt, WA, WB)

similar translocation pattern for all variants and FtsK50C

at 2 mM ATP & F = 20 pN

similar DNA translocation speed for wt, WA, WB, no loop

formation activity for RF
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The behavior of wt-RF-wt

Key observation

biot-wt-RF-wt exhibits DNA
looping activity
⇒ consequence of DNA
translocase activity

biot-wt-WA-wt (black) vs.
biot-wt-RF-wt (grey)

5 mM ATP
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The ATPase cooperativity

DNA translocase activity (MT, bulk)

2/6 WA,WB,RF are active
⇒ rule out concerted mechanism

2/6 WA,WB speed = 0/6 speed
⇒ rule out pure stochastic
mechanism

2/6 RF are inactive
⇒ some degree of cooperativity
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Force dependence studies

Bulk observations suggests

roadblock displacement impaired by mutations

di�erent mechanisms for roadblock displacement and DNA
translocase

Conclusion

no force dependence
on wt and WA up to
25 pN

to be tested on
WB,RF and 3+/6
mutants

constant position OT
may be better suited
[Pease 05]
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Cofactor dependence : ATP

Rationale

Study of the ATPase
reaction :
ATP→ADP + Pi

Observations

v∞ = 1.4± 0.2µm/s

KM = 0.8± 0.2mM

v∞ for FtsK50C :
2.3µm/s [Saleh 04]
1.7µm/s [Pease 05]

KM for FtsK50C :
0.3mM [Saleh 04]

Set of data on biot-wt-wt-wt (for future
use)
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Cofactor dependence : ATP

Conclusion

no e�ect of 2/6 WA on loop
formation limiting step

strikingly, no e�ect on ATP
binding constant

Set of data on biot-wt-WA-wt
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Cofactor dependence : ADP

Observations

ADP acts as a
competitive inhibitor

but processivity
increases with [ADP]

v([ADP] = 0)
consistent with MM

ADP
Kd = 2.4± 0.6mM

acquired on a single

FtsK/DNA complex
Data on a single biot-wt-wt-wt/DNA
complex
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Conclusions and perspectives

Conclusions

di�erent activities have
di�erent cooperativies

concerted and stochastic
mechanisms ruled out for
DNA translocase

concerted mechanism ruled
out, but some cooperativity
for DNA looping

2/6 RF does not form loops
on its own

Perspectives

activity as a function of n/6
⇒ quantitize cooperativity
(under investigation)

wt-wt-wt-wt-WA-WA
behaviour (under
investigation)

�uorescent ATP studies
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General conclusions

Conclusions

Setup

fully functionnal MT and �uorescence setup

proof of principle of simultaneous protein activity observation

FtsK

wt-X-wt trimer MT DNA translocase activity validation

identi�cation of di�erent types of cooperativity for di�erent
activities



Introduction The setup RNA Pol FtsK Results Conclusions

Future work

Perspectives

direct protein labelling protocols for RNAP and FtsK

direct observation of RNAP-promoter interaction and rotation

direct visualization of FtsK translocation

FtsK quantization

discrimination between ATPase cooperativity mechanisms

higher-order FtsK multimers study

application of �xed complexes to protein ageing
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The photoelectron yield

The problem

For every photon hitting the
sensor, ρ electrons are
created and detected

Must know ρ to measure the
number N of photons from
the electron signal S

The usual solution For an
uncorrelated source of photons
and S = ρ · N :

σ2S
〈S〉

=
ρ

2
(1)

Example : iXon EMCCD @ -80°C

On this camera
ρ = 68± 21 e−/hν
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Imaging a point source

Ideal case (hypotheses)

lots of photons

perfect spatial resolution on
the detector

cylindrical symmetry of
optics

What would be observed

spatial distribution of
photons : Bessel function

center (x,y)

width ξ

A simulated ideal observation
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Imaging a point source

Real world

time series of frames (i ,∆t)

�nite number of photons Ni

detector size a

shot noise b

Questions

what are (xi ,yi ) ?

how much is ξi ?

how much is Ni ?

An actual observation

single QDot, ∆t = 30 ms

a = 16 µm
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Point source measurements

Questions

what are (xi ,yi ) ?

how much is ξi ?

still, how much is Ni ?

Measurements

Gaussian approximation

xi = -140 nm

ξi = 420 nm

An example of measurement

Single QDot, ∆t = 30 ms
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Point source measurements

Questions

still, how much is Ni ?

The position error σx

Derived in [Thompson,
2002]

a is known

b, σ and ξ are measured

N = 〈Ni 〉 can be
measured

The xi distribution

Single QDot, 1024 frames
Source position error σx = 9 nm

σ

ξ
=

1√
N

√
1 +

1

12

(
a

ξ

)2

+
8πb2

N

(
ξ

a

)2

(2)
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Back to the photoelectron yield

Method

Vary ∆t (or Laser intensity)

Measure σ(∆t)

Calculate N(∆t)

Plot S(∆t) vs. N(∆t)

Results

σ as a function of ∆t,
maximum around 20 ms

Fluorophore photon �ux
Φ = N/∆t = 100 kHz

Photoelectron yield ρ = 100
e−/hν

Example : iXon EMCCD @ -80°C

Single QDot, 1024 frames/point
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Conclusion

Equally long than standard method (varying ∆t)

Requires more complex operations (�ts), but have to be
implemented anyway for tracking

Direct access to setup parameters, most notably σ(∆t)

Direct access to �uorophore parameter Φ, hence ability to
count multiple QDs

Independant measurement of ρ
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Translocation-rotation coupling
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2πR

10.5
> σxy ⇒ R > 9 nm (3)
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Plectoneme - cruciform transition

∆ET
X = −kBT ln

(
〈τT 〉
〈τX 〉

)
(4)

E =
1

2
Cσ2 + . . . (5)

∆ΓTX ∝
∂∆ET

X

∂σ
= ∆CT

X σ (6)
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