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In recent years, urban traffic congestion and air pollution have become huge problems in many cities in the world. In order to reduce congestion, we can invest in improving city infrastructures. Infrastructure improvements, however, are very costly to undertake and do not reduce air pollution. Hence we can work on intelligent mobility in order to have a more efficient car use. The application of new information technologies, such as multi-agent technologies to urban traffic information control, has made it possible to create and deploy more intelligent traffic management like DRT (Demand Responsive Transport) system.

The objective of multi-agent based DRT system is to manage taxis in an intelligent way, to increase the efficient number of passengers in every vehicle, and at the same time to decrease the number of vehicles on streets. This will reduce the CO 2 emissions and air pollution caused by the vehicles, as well as traffic congestion and financial costs.

Multi-agent simulation has been looked as an efficient tool for urban dynamic traffic services. However, the main problem is how to build an agent-based model for it. This research presents a multi-agent based demand responsive transport (DRT) services model, which adopts a practical multi-agents planning approach for urban DRT services control that satisfies the main constraints: minimize total slack time, client's special requests, increases taxis' seats use ratio, and using minimum number of vehicle etc. In this thesis, we propose a multi-agent based multi-layer distributed hybrid planning model for the real-time problem. In the proposed method, an agent for each vehicle finds a set of routes by its local search, and selects a route by cooperation with other agents in its planning domain. By computational experiments, we examine the effectiveness of the proposed method.
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The background (actual situation, demands responsive transport services, advantages of the multi-agent concept), objectives and motivation, achievements, overview of dissertation are described in the following sections.

Background

Actual Situation

In recent years, urban traffic congestion and air pollution have become huge problems in many cities across many countries. In order to reduce congestion and air pollution, we can invest in improving our city infrastructures, but it is very costly to undertake and do not reduce air pollution. Hence, existing infrastructure and vehicles have to be used more efficiently.

In this situation, we can lead people to use transport services more efficiently, thereby persuading more people to give up the use of their cars, but it reduces their mobility levels.

On opposite situation, people can have more private vehicles, but this reduces the number of public transport users, making it a less viable alternative; creating the vicious circle of public transport decline. Additionally, there are issues having to do with rising costs in providing bus services. So these services are more expensive to provide, leading to increased costs of services and pressures to social public budgets.

Therefore, research on new traffic information control and traffic guidance strategies are particularly necessary and important. The application of new information technologies such as multi-agent technologies to urban traffic information control has made it possible to create and deploy more intelligent traffic management like DRT (Demand Responsive Transport) system.

So for using existing transport system more efficiently, at first we should know what conditions exist in public transport systems. Normally in the textbook definition of public transport is 'any transport available for hire and reward'. In fact, public transport is seen as being very important for many reasons. First, on well-trafficked routes, public transport is a more efficient mover of people and causes less congestion, air pollution and carbon dioxide per person per trip than private cars, i.e., it can be economically and environmentally desirable. Second, it potentially allows people without cars, those who are young, elderly, poor or disabled, to use the public transport system at any particular time. This is a very necessary point of functionality for our society. Hence, we can say it is socially desirable not only for reducing pollution in the city and saving money. In short, public urban transport can be summed up as follows:

'Whether one's concern was the economic vitality of cities, protecting the environment, stopping highways, energy conservation, assisting the elderly, handicapped and poor, or simply getting other people off the road so as to be able to drive faster, transit was a policy that could be embraced. This is not to say that transit was an effective way of serving all these objectives, but simply that it was widely believed to be so.'

Altshuler, Womack and Pucher (1979) Obviously, there are several types of public transport. However, a vehicle-based system is the most popular transport system in city. And it is possible implemented on corridors of high demand trip request, like DRT (Demand Responsive Transport) system. Reference will also be made to the position of Community Transport and of Specialist Transport services within the range of possible DRT implementations. The following section will therefore briefly outline the DRT systems.

Demand Responsive Transport (DRT) Services

Bakker (1999) [START_REF] Bakker | Large scale demand responsive transit systems -A local suburban transport solution for the next millennium[END_REF] defines Demand Responsive Transport (DRT) or paratransit as:

'Transportation options that fall between private car and conventional public bus services.

It is usually considered to be an option only for less developed countries and for niches like elderly and disabled people.' [START_REF] Bakker | Large scale demand responsive transit systems -A local suburban transport solution for the next millennium[END_REF] A second definition is:

'DRT is an intermediate form of transport, somewhere between the bus and taxi and covers a wide range of transport services ranging from less formal community transport through to area-wide service networks.'

Grosso et al. (2002)

DRT system is a form of flexible public transportation service in which the itineraries and the schedules of the vehicles are programmed on the basis of the requests of the users.

Early DRT systems were designed for the general public, but within some years they had with financial problems and had to be discontinued or radically transformed [START_REF] Lave | A handbook for acquiring demand-responsive transit software[END_REF]. At the present time, excluding some flourishing niche services such as airport feeders, existing DRT systems are almost entirely used for dedicated services in eligible categories (e.g., disabled and elderly) and are heavily subsidized [3].

In recent years there has been an increasing interest in reconsidering the implementation of these services in a broader set of circumstances. Technological advances can now provide Intelligent Transportation System devices, such as Automatic Vehicle Location or smart cards for fare collection, at a low cost. A large amount of research work has been carried out concerning the design of more efficient scheduling and routing algorithms of such systems; two of the latest comprehensive reviews can be found in [START_REF] Savelsbergh | The general pickup and delivery problem[END_REF] and in [START_REF] Desaulniers | The VRP with pickup and delivery[END_REF]. Improvements in routing and scheduling may help overcome the economical inefficiency that can be usually detected in existing systems. In this case, a ''smart'' DRT system can be seen as one of the possible alternatives to offer a service of acceptable quality when the travel demand density is too low to justify fixed route lines. To make this a feasible option, a set of transportation modeling tools is needed to effectively plan the system. Up to now, research efforts have mainly focused on the improvement of different aspects related to the service scheduling in order to achieve better efficiencies for the existing systems. When considering the tactical and operational decision levels, detailed planning activities related to the operation of the service must be carried out typically using mathematical programming techniques. However, during the design phase, the extensive datasets needed to perform such analyses are usually unavailable. Furthermore, as the system becomes bigger and more complex, the computational burden associated with efficient algorithmic procedures increases very rapidly. In those cases, the use of approximation models to estimate the costs on the basis of a few inputs may be sought. The utility of this kind of technique has already been shown in related research fields, such as in logistic systems [START_REF] Robusté | Implementing vehicle routing models[END_REF] and for the heuristic solution of the Traveling Salesman Problem [START_REF] Del Castillo | A heuristic for the traveling salesman problem based on a continuous approximation[END_REF]. The concept topology DRT service is shown in Figure 1.
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So in demand responsive transport services are planning computer systems in charge of the assignment and scheduling of client's traffic requests and using different vehicles available for these purposes. DRT services can provide rapid response transport services 'on demand' from the passengers, and offer greater flexibility in time and location for their clients. Moreover, it could also increase the number of passengers in every vehicle, so that will help reduce environmental pollution, traffic congestion and financial cost.

Advantages of the Multi-agent Concept

A multi-agent system (MAS) is a collection of software agents that work in conjunction with each other. They interact, they may cooperate or they may compete, or some combination of cooperation and competition, but there is some common infrastructure. A multi-agent system is an aggregate of agents, with the objective of decomposing a larger system into several smaller agent systems in which they communicate and cooperate with one other. So agent-based modeling can be used for high-quality simulations, like complex and large-scale distributed system behaviors. Such as the urban traffic system, a large-scale complex system with multiple entities and complicated relationships among them. Hence, the application of multi-agent system to model and study urban traffic information systems is highly suitable and can be very efficient.

In this thesis, we propose a new agent based multi-layer distributed hybrid planning model for demand responsive transportation systems that is able to automatically carry out traffic information control for DRT services.

Objectives and Motivation

To reduce traffic congestion and air pollution, it is necessary to make further research on the characteristics of traffic flow. In general, road traffic system consists of many autonomous, such as vehicle users, public transportation system, traffic lights and traffic management centre, which distribute over a large area and interact with one another to achieve individual goal.

Our motivation is:

• To increase the passengers in every vehicle, and at the same time to reduce the number of vehicles in street. Therefore, we can reduce the air pollution by the vehicle and traffic congestion;

• To fill geographical gaps in the existing public transport services;

• To Offer greater flexibility in time and location than conventional public transport in meeting individual requests for transport.

• Interest in urbanism: decrease urban space consumption by automobiles.

• Interest in climate change: if we increase mean number of passengers, it is possible to reduce the greenhouse gas CO2 emissions.

• Interest in decreasing public expense because it avoids overinvestment in urban roads.

Our objectives are:

• To study the problem of DRT, and formalize the essential processes.

• To identify important algorithms and computational problems we face and make attempts to define or resolve them.

• To create a Multi-agent based simulation model for DRT system.

Achievements

In this thesis we have:

• Discussed the background and relevant work on DRT (Demand Responsive Transport) system.

• Discussed the theoretical foundation of multi-agent based simulation and DRT system.

• Described a multi-agent architecture for the urban DRT intelligent control system.

• Investigated various multi agent planning problems and approaches.

• Proposed a new multi-agent based multi-layer distributed hybrid planning model for DRT system.

• Developed an efficient planning domain based plan merging algorithm. Experiments on established benchmark sets show the validity of our approach.

The intent of this study is to develop a multi-agent based analytical modeling approach to demand responsive transport (DRT) simulation model. Unlike standard optimization procedures that require the knowledge of the exact spatial and temporal location of the demand points, we propose a methodology in the situation which the spatial and temporal distributed of trip demand. Our methodology makes effective solution for this distributed situation.

Our research presents a multi-agent based demand responsive transport (DRT) services model, which adopts a practical multi-agents planning approach for urban DRT services control that satisfies the main constraints: using minimum number of vehicle etc. Our proposed model is for the distributed real-time problem like urban DRT system. In the proposed method, an agent for each vehicle finds a set of routes by its local search, and selects a route by cooperation with other agents in its planning domain. By computational experiments, we examine the effectiveness of the proposed method.

Overview of Dissertation

The work presented below investigates, implements, analyses and evaluates potential approaches to multi agent planning in terms of their efficiency, the types of DRT problem they can be applied to. Chapter 2 discusses relevant work on DRT system from the litera-of demand responsive transport. Chapter 4 discusses multi-agent planning problem that we will use for our approach. Chapter 5 discusses our approach for DRT system. Chapter 6 discusses multi-agent based multi-layer distributed hybrid planning DRT system prototype and provides experiments and empirical analysis of the performance of the algorithms applied to DRT planning problems that show the effectiveness of our approach. Chapter 7 reviews the contributions above in the light of the knowledge gained and suggests directions for future research presents a plan for future work.

Chapter 2.

Review of the Literature

The existing solution for DRT, objectives and motivation, existing software packages, modeling method for urban transport Simulation is described in the following phase. The TDC hardware required running the latest systems for scheduling and dispatching fleets of passenger vehicles is based on the latest information technology. The specification is largely determined by the software requirements and size of the problem, e.g. a system built around a large database for an entire county with detailed 1:10,000 digital maps requires powerful computers. The hardware requirements are typically:

Existing

• At least 512MB DDR memory.

• A fast Intel Pentium TM 4 or AMD Athlon XPTM processor.

• Fast and reliable hard drives.

• A reliable backup system for the extensive databases.

The booking, planning and dispatching system can be based on a single PC/server or multiple servers networked together via high-speed Local/Wide Area Network (LAN/WAN) connections. For example, the Northumberland TDC offering Phone & Go and Click & Go DRT services incorporates the existing Northumberland Journey Planner (a fixed routes database) into the new flexible route system. The so-called Intelligent Mobility Engine serves as the pivot, with additional external links to the VISUM traffic model database. These databases do not necessarily have to be located on the same server or in the same room, as long as the interconnections are reliable and fast (e.g. fiber optical cable, wireless Bluetooth TM). The booking can be either manual, automated or a combination of the two. At the user end bookings can usually be made over the phone, online over the web or at strategically placed terminals (e.g. hospital, GP practice). Note in terms of operating costs, the method of booking has a strong impact on overall TDC costs. No pre-booking is the least costly method -but pre-booking is the preferred option, as it leads to the most ef-ficient scheduling. Manual booking is the least costly method of pre-booking, but in Belgium it was anticipated that as bookings increase Interactive Voice Response System1

(IVRS) and Internet booking will offset operator costs. They have the added advantage of being available 24 hours, virtually eliminating the possibility of a call not being answered -which can lead to a lost booking. Touch screens and magnetic swipe cards, used in Gothenburg, are not cheap options, but they do improve the quality of service for return booking.

The TDC software is usually based on digital mapping and address data (for example, Ordnance Survey Traffic Master and Address Point). The maps assist with locating addresses and seeing vehicle positions. The address database makes it easy to find addresses or post-codes. Depending on the application, the customer database contains customer details and requirements, which in some cases can be automatically sent to the driver. The TDC operator can define all kinds of demand-responsive services, including fixed, semi flexed, deviating fixed route or free route. In addition, the supply side is covered by a vehicle database consisting of those vehicles that are offering DRT services (e.g. mini-buses, buses and taxis). Vehicle capacity and availability information are key -in some cases service offerings such as wheelchair and bicycle rack can be defined and used to appropriately match users and vehicles.

One of the main design features for the call centre software is to allow quick and efficient order taking and allocation of customers to vehicles with, for example, the facility to pre-register customers and default journeys. Section 3 will go into more details, presenting a review of the currently implemented TDC software packages plus a limited assessment against key design features.

As indicated above, the equipment needed for the vehicle consists of an onboard unit, including a modem, data terminal, key pad, central processing unit (CPU) and the antenna of the Geographical Positioning System (GPS). These are usually fixed but future applications are likely to involve mobile units based on Personal Digital Assistants (PDA) and the next generation of cellular phone technology. The link between the on-board unit and the TDC is based on digital information links, e.g. via a mobile General Packet Radio Service2

(GPRS) connection or satellite links. In some cases, automated vehicle counting assists the driver and the TDC in the on-going scheduling and dispatching process.

Because it is based on traditional telecommunication technology, the telematics-based DRT services response to client is slow, and sometimes it is difficult to find the best solution for client, besides being unstable.

Internet and Telematics Based DRT

The Northumberland UK County Council [START_REF] Brake | A case study of flexible solutions to transport demand in a deregulated environment[END_REF] is engaged in a DRT projects:

1. Phone and Go is designing, demonstrating and evaluating DRT services at two locations in Northumberland;

2. Click and Go is developing an internet-based system for pre-booking DRT (and other transport services) with special reference to health services.

As indicated in Figure 3, it works is exploring the requirements for integrating the TDC with pre-trip planning facilities, real-time information generated by Automated Vehicle Location(AVL) and Automated Passenger Counting (APC) devices. The Northumberland experience points the way towards the concept of a regional TDC with a multi-sector user base such as taxis, social services, patient transport services and community services. 

Journey Planner

Existing Software Packages

This review focuses on the existing software packages in different countries.

MobiRouter

The MobiRouter software allows real-time scheduling and dispatch of vehicles. The Currently, MobiRouter has a strong presence in the UK, with the majority share of DRT applications compared to its competitors. Therefore it seems worth looking at its features in more detail. The main operational steps are order entry, service definition and vehicle definition.

• Order entry (see screenshot in Figure 4 courtesy of MobiSoft ): A digital map display assists with locating addresses and seeing vehicle positions in all functions. A detailed address database makes it easy to find addresses or post-codes. This can be based on, for example, Ordnance Survey Address Point mapping data. In the order dialog box, default or common journeys can be selected to further reduce the time to take bookings. Also, default customer requirements can be modified for a specific order. Customer requirements are automatically sent to the driver. Specific messages about a customer can also be sent to help the driver. Block bookings and group bookings can be made, making it easy to book large groups such as school children or day care attendees.

• Service definition (see screenshot in 

Vehicle definition in MobiRouter

As well as sending customer specific messages, dispatchers can send general messages to drivers at any time. When entering orders a complete address database enables pickup and drop off addresses to be found quickly. A specific location can be found on the map. The map will automatically centre on the desired point. Local names can be added to the address database. Once added these names then become available to any dispatcher.

MobiRouter is claimed to be 'extremely flexible'. Indeed, the many software parameters cater for a variety of local conditions. For example, driving speeds can be set to vary for different road conditions throughout the day. In addition, individual roads can be cut or set to one way if, for example, they are under repair.

According to Jeff Duffell [START_REF]MobiSoft website[END_REF], Managing Director of Mobisoft (UK) Ltd., the key applications for MobiRouter are:

• Fixed route feeder services e.g. bus, train, airport;

• Travel to and between businesses;

• Schools transport;

• Multi-use vehicles (usage varying throughout the day);

• Rural transport -vehicles only traveling when necessary;

• Demand responsive public transport.

More information can be found on the MobiSoft website at www.mobisoft.com.

PersonalBus

PersonalBus (see screenshot in Figure 7) is a TDC software package developed and marketed by Softeco Sismat S.p.A. [START_REF]PersonalBus website[END_REF] in Italy. It has a strong presence in Italy, with cities in 9 regions offering DRT services using the software tool. In Tuscany, for example, cities such as Florence and Livorno use PersonalBus in a number of localized DRT schemes.

Other major cities include Rome and Naples.

The system's main features are:

• Management of DRT Service Resources: organization and management of shifts data for DRT vehicles. Vehicles are classified in terms of type, passenger capacity, and schedule times.

• Management of Geographic Area Data: acquisition of digital and geo-referenced maps.

Handling of map data related to one or more geographic areas covered by the service. Development of one or more service networks and possible alternate versions of the same network (e.g. for different week days, annual periods, seasons, etc.).

• Management of User's Service Requests: consists of the total requests users may make to the Travel Dispatch Centre operator. Different types of requests may be handled in relation to: Type of service (one-way, roundtrip, single, periodic, multi-passenger rides)

Schedules (same-day, subsequent days, and requests for a given time period)

User access modality (TDC phone calls, direct requests to the driver, via the

Internet)

The PersonalBus DRT service operation essentially features three distinct operative phases:

1. Route development:

• Automatic: routes developed directly through the system according to fixed parameters and restrictions and on the basis of optimizing criteria (algorithms).

by the operator.

• Manual: firsthand by the operator.

2. Personalized Solutions to Customer Requests:

• Immediate matching of a vehicle to a route and immediate phone confirmation to the client.

• The need for planning means that a solution is relayed later by calling back the client.

Negotiation of Proposed Solutions:

• Acceptance or modification of client requests.

• Rides matched to pre-planned, modified, or new routes.

Figure 7.

PersonalBus internet booking

for vehicle location and communications by advanced in-vehicle driver terminals based on GPS technology and support data and voice communications between the driver and the TDC (see Figure 8.). The sub-module (PersonalBus-IVT) enables planning and operation of fully dynamic demand-responsive services, with the capability of managing on-trip deviations and route modifications based on requests collected by the TDC after the trip has started. Furthermore, all typical AVL facilities (e.g. pre-coded messages handling, delay/advance display, mileage logging, etc.) are provided, as well as interoperability with other on-board devices (e.g. passenger displays, voice announcement, intelligent ticketing).

Note this is independent of DRT services and can be used by any PT operator or local authority.

Figure 8.

PersonalBus vehicle display unit

Technologically, the PersonalBus system is PC-based and can be installed in different buildings, thus making it possible to set up several operator centers when necessary. The basic hardware platform consists of a stand-alone PC that has been especially equipped to guarantee satisfactory performance. The basic software platform consists of a Microsoft

Windows© NT/2000/XP operative environment. As with MobiRouter, the main data archive is based on an Oracle relational database. Geographic area maps are managed by a MapInfo© GIS graphic tool, which is able to support any graphic format.

More information can be found on the PersonalBus website at http://www.personalbus.it/.

LITRES-2

This work is done in Australia which seeks to develop technology that can meet the needs of scheduling new forms of public transport such as demand responsive transport. LITRES-2 can handle the following transport modes:

LITRES

• Conventional timetabled, pre-scheduled modes: bus, light rail, train, ferry.

• Medium-volume demand-responsive modes: "Taxi-Transit" and "Personal public transport", which typically use vehicles intermediate in size between buses and taxis (e.g.

"maxi-taxis"). Such services probably are most valuable where demand is low or spatially diffused (e.g. zone-based service in suburban areas late at night), and as feeders to main bus and rail routes.

• Single and multiple hire taxis. Multiple-hire taxis differ from conventional taxis in that more than one group of passengers can travel together. Services of this kind may be provided commercially, or under a cooperative car-pooling arrangement.

The system provides a detailed representation of travel behavior and service provision.

It comprises a simulator and a scheduler. Demand is specified by means of origindestination and source-sink models. The simulator disaggregates these models to generate a time ordered stream of travel-requests. The methods used here allow for the overlaying of a wide variety of spatial, temporal and socio-economic patterns of travel demand. Travel requests are passed from the simulator to the scheduler. The scheduler's journey-planning module seeks to implement each request as a journey comprising one or more legs -possibly including walking -so as to minimize travelers' generalized costs. The scheduler also arranges bookings for journeys that involve the use of dynamically scheduled modes (e.g. taxis). A central scheduler is needed to respond to prospective passengers' inquiries and requests for travel, and to deploy vehicles efficiently. LITRES-2 includes embedded modules for two critical types of tasks in this respect:

1. The L2sched module controls the deployment of a fleet of demand-responsive passenger vehicles. Functions include dynamic booking, scheduling, dispatching and routing.

Heuristic techniques are used, with the objective (broadly speaking) of minimizing vehicle operating costs. This module has potential application as a real-time scheduling system for a fleet of passenger vehicles, or for local delivery or courier services.

2. The L2jplan module emulates the decision-making processes of prospective passengers. This involves minimizing for each passenger the generalized cost of travel (i.e. fares plus the value the traveler attributes to his own time). A journey-plan produced by L2jplan may comprise several legs, covered by walking, conventional modes (e.g. bus or train), or demand-responsive services (e.g. taxi or smart-shuttle). L2jplan has potential application as a component of a real-time information or booking-management service.

The scheduler has a graphical interface which can display travel requests that have been processed so far (Figure 9), a journey plan for the current travel request (Figure 10), and Detailed information about the road network is used, when planning fleet deployment and routing plans for vehicles. This information includes provision for fluctuation of travel speeds on the network over the course of the day. It is assumed that the dispatching technology provides information about current location when passengers are picked up and set down. LITRES-2 has been used in planning transport services for the Gold Coast area of Queensland, Australia. More information on the methodology can be found in [START_REF] Horn | Fleet scheduling and dispatching for demand responsive passenger services[END_REF] and [START_REF] Horn | Modelling and assessment of demand-responsive passenger transport services[END_REF], and more general background information is available at http://www.cmis.csiro.au/its/projects/litres2.htm.

SAMPO

The municipality of Tuusula, population 30,000, is located 25km north of the Helsinki Metropolitan area. Tuusula' s DRT system has been tested and implemented as part of a regional partnership comprising three municipalities of the Keski-Uusimaa region. The total regional population is 99,000. 11.) combines the resources of multiple municipalities through a shared travel dispatch centre.

The DRT system in Tuusula provides an excellent 'test bed' to evaluate the crosscutting themes. Results from the DRT system are briefly highlighted below. DRT meets the lack of public transport in rural areas providing solutions for school services, shopping trips, food and goods transport, feeding services for fixed bus services, hospital transport and the elderly and disabled. The DRT system is socially inclusive. Rural residents normally accustomed to limited public transport services benefit from a flexible and timely system overcoming barriers such as a lack of private transport or access to public services. Special user groups receive door-to-door services non-existent prior to DRT. This greatly increases mobility, access to public services and provides a significant increase to quality of life.

DRT provides a solution to battle the increasing costs in special transport services. DRT systems are not necessarily the cheapest solution compared with urban public transport however, it has been shown that, municipalities including Tuusula, have reduced the cost of servicing rural areas to an annual decrease of 2-3% compared with an annual increase of 15%, including set-up costs. The package specification includes:

• Fast telephone booking: The booking screen recalls customers' popular journeys and personal information to assist in quickly recording travel requests. Bookings can be classed as one-offs or repeating bookings and can be automatically priced according to pre-defined tax structures.

• Internet bookings: The internet booking facility can be used to streamline the booking process and affect considerable savings on call-centre operating costs. Online customers can create and review their travel requests at any time and receive activity reports of past, current and future travel commitments.

• Visual Diary Scheduler: A visual representation of operations in advance over any time scale is provided (see Figure 12 for a screenshot of the scheduler). LT: DRT is claimed to be extremely flexible in that it enables a 'mix and match' approach to operations, i.e. part of the fleet can be engaged in DRT operations, at the same time as other vehicles can be dedicated to other activities such as excursion or contract services. 

Modeling Method for Urban Transport Simulation

Software modeling and simulation of urban transport systems, it had a hard position during the 1970s [START_REF] Lee | Requiem for large-scale models[END_REF]. Though relevant at the time, the field of geographic modeling and simulation was revived by numerous advances in the related areas of research. Breakthroughs in the understanding of cities transport in general, as well as developments in mathematics and computer science, have enabled new approaches in urban transport modeling. In fact, the rise of the object-orientation paradigm in computer science provides both an insightful way for modeling and simulation, as well as a useful technique for software implementation.

Cellular Automata

Cellular automata (CA) [START_REF] Benenson | Geosimulation: Automata-based modeling of urban phenomena[END_REF] are presently the most popular modeling concept in urban geography domain. Cellular automata are standard automata, but the input is defined in a cellular context. In CA, each cell represents an automaton that is neighboring another automaton in a grid of cells. There are different ways how neighborhood may be defined in CA. The most popular approaches are the five-cell von Neumann neighborhood and the nine-cell Moore neighborhood.

The definition of a CA is:

A ~ (S, T, R)
Here, R denotes the cellular neighborhood of A, therefore defining the boundaries of input I. Changes of set S are again expressed through transport rules, virtually every possible discrete spatial process may be translated into transition rules for CA. Although cells are stationary in CA, information can be propagated, depending on the implemented neighborhood as stated above. In geographic modeling, CA is particularly popular for representing areas with varying land use as cellular units.

Geo-simulation

Geo-simulation is concerned with the design and construction of spatial models, with a focus on urban areas. These models are useful for exploring ideas and hypotheses about the inner works of the complex spatial systems that these models represent. Geo-simulation achieves that through object-oriented simulation software, which is then applied to real world scenarios within a spatial context. It employs spatially related automata as a basic concept for modeling. GIS and remote sensing databases serve as the predominant data sources for geo-simulation systems.

The special feature of geo-simulation is its constituent elements. Geo-simulation features a 'bottom-up' design, meaning that higher level entities such as census groupings are a product of the dynamics of animated and unanimated objects at the lowest level of modeling. These high-level entities may be considered emergent, in such as these high levels are significantly richer in characteristics compared to the atomic objects that compound them.

Optimal Multi-graph Simulation

The class of vehicle routing problems has drawn many researchers and industrial practitioners' attention during the last decades. These problems involve the optimization of freight or passenger transportation activities. They are generally treated via the representation of the road network as a weighted complete graph, constructed as follows. The vertex set is the set of origin or destination points. Arcs represent shortest paths between pairs of vertices. Several attributes can be defined for one arc (travel time, travel cost . . . ), but the shortest path implied by this arc is computed according to one single criterion, generally travel time. Consequently, some alternative paths proposing a different compromise between these attributes are dismissed at once from the solution space. In the following, to avoid any ambiguity between the paths of the new graph (working graph in the figure) and the paths of the original road network, the latter are called road-paths.

In [START_REF] Garaix | Vehicle routing problems with alternative paths: an application to on-demand transportation[END_REF], Thierry GARAIX represents the road network with a multi-graph, so that alternative routes are considered. A simple insertion algorithm is proposed and illustrated in the context of an on-demand transportation system was developed. Computational experiments on academic and realistic data underline the potential cost savings brought by the multigraph mode. Ideally, one arc will be added between two vertices for each Pareto optimal road-path according to arc attributes in the road network. Any good road-path would then be captured in the graph. Practically, one could prefer just to consider a reasonable set of arcs between two vertices.

Multi-agent Based Transportation Simulation

In computer science, the multi-agent system (MAS) is a system comprising multiple autonomous and intelligent agents, which are capable of perceiving their environment and acting upon that environment to achieve their goals. The main applications of MAS at the moment are problem solving, multi-agent simulation, construction of synthetic worlds and collective robotics. According to their study, a good behavior is measured by how successfully the agent's action to achieve its goal. In 2003, Russell and Norvig [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF] give out four factors involved in design a rational agent:

• The performance measure defining the success criterion;

• The agent's prior knowledge of the environment;

• The available actions of the agent;

• The agent's percept sequence to date.

The application of new multi-agent technologies to urban traffic information systems has made it possible to create intelligent systems for traffic control and management: the so-called Intelligent Traffic Systems (ITS) [START_REF]Transportation Systems Engineering: Theory and Methods[END_REF] or Advanced Traffic Management Systems (ATMS). The basic task of ITS is to support road managers in traffic management tasks [START_REF]Intelligent transportation systems architecture[END_REF].

Because urban traffic networks have interrupted traffic flow, they have to effectively manage a high quantity of vehicles in many small road sections. On the other side, they also have to deal with a non-interrupted flow and use traffic sensors for traffic data information integration. These features make it difficult for real time traffic management. The urban traffic simulators can be classified into two main kinds: macroscopic simulator and microscopic simulators. Macroscopic simulators use mathematical models that describe the flows of all vehicles. In microscopic simulator, each element is modeled separately, which allow it to interact with other elements.

Multi-agent systems are an efficient tool for the basis of urban traffic simulator. Many researchers have made studies on this subject. In [START_REF] Partich | Microscopic traffic simulation with reactive driving agents[END_REF], Patrick A. M. Ehlert and Leon J. M.

Rothkrantz designed driving agents, which can exhibit human-like behaviors ranging from slow and careful to fast and aggressive driving behaviors. In [START_REF] Miguel Leitao | Graphical Control of Autonomous Virtual Vehicles[END_REF], J. Miguel Leitao uses autonomous and controllable agent to model both the traffic environment and the controlled vehicles. And their scripting language is based in a well-known graphical language, Grafcet. In [START_REF] Joacbim Wahle | A Multi-Agent System for On-lie Simulations based on Real-World Traffic Data[END_REF], Joacbim Wahle and Michael Schreckenberg present and review a framework for online simulations and predictions, which are based on the combination of realworld traffic data and a multi-agent traffic flow model. Nagel [START_REF] Nagel | Traffic Networks[END_REF] discusses several aspects in the design of intelligent agents such as: route generation, activity generation, learning framework, route re-planning and private knowledge, while no transportation simulation integrates all the aspects. Guidi-Polanco et al. [START_REF] Guidi-Polanco | Architecting Global Automation Systems over a Distributed Multi-agent Infrastructure[END_REF] present a case study of a passenger transport planning system, in which transportation agents are identified in two layers: the internet layer for communicating with the external world, and the scheduling layer for scheduling and assignment services.

Comparison

We can see that all of the three approaches described above can be used to implement the urban transport simulation environment. Geo-simulation is too complex to be a good option since it aims at the most realistic and detailed modeling possible today. Cellular automata are not the first choice for modeling moving objects like vehicles, since CA are static in nature. Certain similarities nevertheless arise, since the urban street network of the simulation used here is a regular grid world. Optimal multi-graph simulation use the mathematic way to simulation, it is different to simulate large-scale real-time system behaviors.

A multi-agent system is an autonomous intelligent computer system, in which every agent always has a certain level of intelligence. The level of an agent's intelligence could agent system is an aggregate of agents, with the objective of decomposing a larger system into several smaller agent systems in which they communicate and cooperate with one other. Agent-based model can produce high-quality simulations for complex and largescale system behaviors like the urban traffic system. The multi-agent based simulation approach is the most suitable technique for urban transport domain, because clients and hosts can be modeled as more or less independent entities with their own behavior. The level of complexity can be adjusted to make this approach feasible, making multi-agent based simulation the method chosen for this work. Hence, the application of multi-agent system to model and simulate urban traffic systems is highly suitable and can be very efficient.

Chapter 3. Theoretical Foundation

The objective of this chapter is to provide necessary theoretical foundation information to familiarize readers with the context of this thesis. The work begins with a definition of multi-agent system. The next section discusses the capabilities and limitations of the multi-agent based modeling and simulation technique, laying a basis for the present modeling efforts. The last section details theory of demand responsive transport to establish an outlook in creating the model assumptions, methods and implementations.

Multi-agent System

Agent Definition

As is very common in the field of Artificial Intelligence, there is no standard definition of an agent. Instead, it seems that almost every major research and survey yields yet another definition. For the sake of completeness, some of the definitions of agent are presented below.

An agent is: "A computer system, situated in some environment, which is capable of flexible autonomous action in order to meet its design objectives" [START_REF] Wooldridge | Intelligent Agents: Theory and Practice[END_REF].

Others define an agent as:

• "An agent is a computational entity which: acts on behalf of other entities in an autonomous fashion, performs its actions with some level of pro-activity and/or reactive-ness, and exhibits some level of the key attributes of learning, cooperation and mobility" [START_REF] Green | Software Agents: A Review[END_REF].

• "A system that independently handles parts of the problem based on small independent knowledge bases" [START_REF] Grosz | AAAI Report to ARPA on 21st Century Intelligent Systems[END_REF].

• "An autonomous entity that interacts with the environment, and adapts its state and behavior based on interaction" [START_REF] Group | Agent Platform Special Interest Group[END_REF].

An agent has the following characteristics:

• Autonomy: An agent has its own beliefs, plans and intentions and it can accept or refuse a request.

• Interaction: An agent interacts with its environment. The agent can change the environment via its actions and the environment can change the agent's actions.

• Collaboration: An agent must be able to collaborate with other agents in order to achieve a common goal.

• Learning: An agent must have the ability to learn, based on previous experience from its interaction with the environment. (See Figure 13)

Figure 13. An Agent In Its Environment

It is important to note that some of the typical agents and agent architectures do not fully have all of the proposed characteristics. Sometime agent's architecture do not have full collaboration and learning characteristics [START_REF] Brooks | A robust layered control system for a mobile robot[END_REF], while agents in behavior based architectures do not "consciously" collaborate [START_REF] Matarić | Interaction and Intelligent Behaviour[END_REF]. The proposed set of characteristics can be seen as the result of evolution of the desired characteristics for an agent and represents the current typical approach to agency. The prospects of having a standard definition of an agent are as good as having a standard definition of an intelligent system.

Classification schemes of agents are not relatively explored by a same standard. Some classification schemes are implicitly given in various agent surveys and some explicitly.

Normally the classification of agents based on agent reasoning model, agent key attributes and agent paradigm origin. The following sections discuss classification based on agent reasoning models.

Classification based on an agent's reasoning method is not new. Despite the fact that classification based on reasoning method is not new, there is still no consensus on the exact naming of the two main paradigms that form the basis of this classification. The two main paradigms that form reasoning method classification are symbolic and sub-symbolic paradigms. Symbolic and sub-symbolic paradigms are respectively referred to as traditional and connectionist, or deliberative and reactive paradigms. These are all different names for the fundamental division between two different approaches in the field of AI.

According to reasoning method, agents can be classified into the following three distinctive groups:

• Symbolic Reasoning Agents, which utilize a traditional AI approach based on logic calculus. Traditional AI approaches are exemplified in the majority of expert systems. The main characteristic of a symbolic reasoning agent is that it relies on symbolic representation of the real-world. Symbolic reasoning agents usually have the following components:

• A symbolic model of the world usually represented in some form of rules such as first-order predicate logic.

• A symbolic specification of the agent's actions usually represented as a rule with a condition for its triggering, which consists of an antecedent (a conjunction of Boolean conditions) and a consequent (or action).

• A reasoning algorithm is that plans the agent's future actions. All reasoning related computations usually rely on inference rules, expressed in first order predicate calculus [START_REF] Jennings | A Roadmap of Agent Research and Development[END_REF].

• Sub-symbolic Reasoning Agents, which do not maintain a world model, or if they do, a non-symbolic representation is used for a world model. Sub-symbolic agents are sometimes called reactive agents. The main objective of sub-symbolic reasoning agents is to minimize the amount of predetermined behavior, and to create agents that exhibit intelligent behavior based on the agent's interaction with its environment. In other words, intelligent behavior should emerge.

The main characteristics of such agents are that they do not maintain a symbolic model of the world and usually do not communicate with other agents. The consequences are that a sub-symbolic agent's reasoning is based on interaction with the local environment. Despite the well-documented shortcomings of sub-symbolic agents, some of the sub-symbolic agent implementations have achieved spectacular results, albeit in very specific domains.

Like traditional decomposition of a mobile robot control system is one of reactive agent systems [START_REF] Brooks | A Robot That Walks: Emergent Behaviour from a Carefully Evolved Network[END_REF]. (See figure 14.)

Figure 14. Mobile Robot Control System

• Hybrid Reasoning Agents, which combine the characteristics of symbolic and subsymbolic agents. Shortcomings of both symbolic and sub-symbolic models have become apparent fairly early. Various hybrid models were proposed that try to exploit the best of both approaches such as Touring Machines [START_REF] Ferguson | Touring Machines: An Architecture for Dynamic, Rational, Mobile Agents[END_REF] (See Figure 15). Most hybrid architectures are layered architectures, where lower layers are simpler (reactive or behavioral) and upper layers are more complex, providing symbolic reasoning capabilities, as well as mechanisms for cooperation between various agents. 

Multi-agent Systems

Multi-agent systems Definition and Classification

A system that consists of multiple agents is called a Multi-Agent System (MAS). MAS are a generalization of an agent system where the main advantages of agents can be further exploited, namely an agent's ability to execute both autonomously and in parallel. MAS are ideally suited for problems that can be either executed in parallel or that can employ multiple problem-solving methods. However, the advantage of a MAS approach to problem-solving and parallelism does come at a price: interaction problems between autonomous agents exist, including cooperation (working towards a common goal), negotiations (coming to an agreement) and coordination (avoiding harmful interactions between agents).

MAS Definition

There are various definitions of MAS. MAS can be defined as a loosely-coupled network of problem-solvers that work together to solve problems that are beyond the individual capabilities or knowledge of each problem-solver [START_REF] Boone | Efficient Reinforcement Learning: Model-Based Acrob ot Control[END_REF]. Other authors keep the definition much simpler: MAS can also be seen as a society of agents [START_REF] Green | Software Agents: A Review[END_REF].

Wooldridge and Jennings propose a rather strict definition of MAS that is based on MAS characteristics:

• Each agent has incomplete information or capabilities for solving the problem, thus each agent has a limited viewpoint.

• There is no global system control.

• Data is decentralized.

Figure 16. Multi-agent Systems

MAS have some characteristics:

• Each agent has complete or incomplete information about the problem or capabilities to solve the problem [START_REF] Jennings | A Roadmap of Agent Research and Development[END_REF].

• There is no global rigid control system. However, there can be a global coordinating system, such as a supervisor.

• A complete set of data can be partially or completely decentralized.

• Computations are executed in parallel. (See figure 16.)

MAS Classification

Like the classification schemes of agents, there is various classification schemes of MAS are in existence [START_REF] Nwana | Software Agents: An Overview[END_REF]. Some of the presented classification schemes are generalized versions of agent classification schemes, while others are based on properties applicable only to MAS such as communication models.

Classification Based on Reasoning Module

MAS can be classified according to the reasoning module employed by the MAS. Using such a classification scheme, MAS can be divided into three classes: symbolic MAS, subsumption MAS and hybrid MAS. These classes are presented in chronological order of appearance.

Symbolic MAS

Symbolic architectures were the earliest to emerge as MAS. This is hardly surprising if it is taken into consideration that a significant contribution to the agent paradigm came from AI planning research, which was a very active research area during the 1970s and 1980s. Symbolic MAS are based on premises of the "physical-symbol system hypothesis".

In [START_REF] Newell | Computer Science as Empirical Enquiry[END_REF], Newell and Simon, defined a physical symbol system as a:

"Physically realizable set of physical entities (symbols) that can be combined to form structures and which is capable of running processes that operate on those symbols according to symbolically coded sets of instructions".

The physical-symbol hypothesis then stipulates that a physical symbol system is capable of general intelligent action. In [START_REF] Wooldridge | Intelligent Agents: Theory and Practice[END_REF], Wooldridge and Jennings define a symbolic architecture as "the architecture that contains an explicitly represented, symbolic model of the world, and in which decisions are made via logical (or at least pseudo-logical) reasoning, based on pattern matching and symbolic manipulations". Typically, a symbolic MAS is based on a problem-solving method, such as STRIPS (Stanford Research Institute Problem Solver) [START_REF] Fikes | STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving[END_REF] that employs a symbolic, centralized model of the world. A symbolic MAS is based on the cognitive science sense-think-act cycle. The sense-think-act cycle assumes that an agent senses a change in the environment deliberates about the change in the environment and decides on an optimal or nearly optimal course of action and, lastly, executes an action which may have an effect on its environment. In theory this sounds very good but there were problems when implemented in real world environments. In practice, problems such as slowness of deliberation and accurate real-world modeling were experienced. Systems such as STRIPS and General Problem Solver (GPS) have performed extremely well in virtual worlds, where the model of the world was static and accurately given [START_REF] Newell | GPS, a Program That Simulates Human Thought[END_REF].

Sub-symbolic MAS

Once the limitations of symbolic MAS became obvious and theoretically proven, in [START_REF] Brooks | A robust layered control system for a mobile robot[END_REF] Brooks had some criticism. As a complete opposite to the symbolic approach, an approach where knowledge is subsumed was proposed in the seminal work by Brooks. In this purely reactive approach, knowledge is subsumed in condition-action pairs. Intelligence is treated as a "side-effect" of an agent's interaction with its environment. The subsumption architecture employs no symbolic knowledge at all. Hence there is no model of the world. It assumes that intelligent behaviors emerge from interaction between more primitive behaviors represented, essentially, as action-reaction pairs. The subsumption architecture has been surprisingly successful, despite its apparent simplicity, but there are serious disadvantages of this architecture. An obvious problem is that, because of the lack of a world model, every agent decides on its actions based on information from its local environment.

Therefore, there is no coordination as such, actions are only locally optimal, and overall behavior is not easily understood.

An additional problem is that there is no effective way for an agent to learn from experience, as there is no direct feedback loop from consequences to actions. By the 1990s it was accepted that the subsumption architecture may be applicable to certain problem domains, such as modeling of insect behavior, but it was not suited as a general architecture [START_REF] Perez-Uribe | Learning and Foraging in Robot-bees[END_REF]. An attempt to reconcile symbolic and sub-symbolic approaches resulted in the next class of MAS, i.e. the hybrid MAS.

Hybrid MAS

Hybrid MAS is a result of trying to use the best of both worlds, i.e. symbolic and subsumption MAS. Two main problems of the symbolic architecture, namely its slowness and the problem of accurate world modeling were related to its interaction with its environment. Most of the strengths of the symbolic approach come from its deliberative and planned approach to acting on stimuli from the environment. On the other hand, the main strength of the sub-symbolic architecture stems from its efficient interaction with its environment and the main weakness is the fact there is no efficient, goal-driven interaction between agents. A typical hybrid system uses both symbolic and subsumed knowledge and exploits the strengths of each approach.

Typically, a hybrid MAS is a layered system, where different layers use different knowledge representations. The higher levels are based on symbolic knowledge reasoning, while lower levels are usually implemented using a sub-symbolic approach. A layered MAS exhibits symbolic planning and coordination, coupled with fast, efficient interaction with the environment. An example of a hybrid MAS is Multiple Automata for Complex Task Achievement (MACTA) [START_REF] Aylett | Supervising multiple cooperating mobile robots[END_REF] that utilizes a symbolic planner as a symbolic component, while a sub-symbolic component is implemented using the Behavioral Synthesis Architecture (BSA) [START_REF] Maes | The Agent Network Architecture (ANA)[END_REF].

Classification Based on Cooperation Level

With the appearance of MAS, the issue of avoiding negative interaction (or conflict) by means of negotiation and the issue of cooperation by means of coordination became very important. The potential for exhibiting negative interaction is due to the autonomy of agents, who may have their own beliefs, desires and intentions that are not necessarily shared between all agents. If agents' intentions are conflicting, a conflict may arise between the agents in MAS. Classification of MAS based on the level of cooperation was proposed in the late 80s [START_REF] Bond | An Analysis of Problems and Research in DAI[END_REF]. The cooperation based classification scheme has been adopted by other researchers [START_REF] Rosenschein | Rules of encounter: designing conventions for automated negotiation among computers[END_REF]. According to level of cooperation between agents, MAS can be divided into:

Cooperative Multi-Agent Systems

Cooperative MAS, historically the first to appear, have their background in early Distributed Artificial Intelligence (DAI). In cooperative MAS, the emphasis is not in optimizing the performance of an individual agent, but that of the whole system. This class of MAS roughly corresponds to symbolic MAS, as symbolic MAS often employ symbolic representation and cooperation enabling techniques that rely on symbolic representation of the world model. The consequence is that a global world model must be maintained. The main focus of research in cooperative MAS is that of coordination between the agents.

Self-Interested Multi-Agent Systems

The emphasis of self-interested MAS is on improving performance of a single agent, hoping that improvement in the performance of an individual will lead to improvement in performance of the whole system. Unfortunately, agents may be openly antagonistic or they may exhibit conflicting behaviors. The problem is further compounded if there is no means of direct communication or no communication at all [START_REF] Brooks | Intelligence Without Representation[END_REF]. When it comes to interaction between agents, the main areas of interest for self-interested MAS are that of conflict resolution and negotiation, assuming, of course, the existence of a communication channel between agents.

Multi-agent Systems Architecture

Since there are more than two agents involved, interaction can occur between agents and environment and between agents themselves [START_REF] Weiss | Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence[END_REF]. The following discussion gives a few examples regarding how MAS can be constructed to meet a modeler's situation. The simplest case when "independent" agents interacting with the environment but not one another are portrayed in Figure 17. In the figure, arrows connecting each agent and environment indicate bi-directional interaction, which is "seeing and acting."

Figure 17. Independent Agents MAS

However, in general, there are many examples of agents who interacting with one another. One famous example of this is flocking behavior of birds. Birds, when they fly together, watch obstacles in their flight direction as well as adjacent neighbors to avoid possible collision and to be inside of their group [START_REF] Reynolds | Flocks, herds, and schools: A distributed behavioral model[END_REF]. In this case, agents can communicate with each other and act directly on other agents' states. The information layer, shown on top of Figure 18, is introduced to present this mechanism.

Figure 18. MAS with Information Layer

An advanced MAS architecture can be constructed using multiple information layers.

Figure 19 shows a multi-agent system in which case agents interact with the environment as usual but part of them collectively behaves as a group. The agents in the figure are divided into two groups: group X and group Y. Agent X n follows the rules, exchanges information, and affects other members in its group who share the same kind of behavioral patterns and rules through information layer X. Likewise, agents in group Y, which may retrieve a different set of information from the environment and affect the environment in a different way, do so with their own rules without (or with) consulting group X. Many hu-man social behaviors follow this architecture. A representative example would be the stock market where individual and institutional investors form different groups and act differently.

Figure 19. MAS with Multiple Groups

The last architecture of multi-agent configuration is that of organizational architecture,

shown in Figure 20. The best example can be found in military organization where the general is the head and the order passes down from top all the way to the bottom level. The lowest level agents, analogous to private soldiers or fighters, directly interact with the enemy and the environment around them. The agents X and Y in the intermediate level gather information and report this, such as attrition, to the super agent. They can control the lowest level agents with their own discretion as long as their goals obey the super agent's instructions.

Figure 20. MAS with Hierarchical Organization

In fact, the modeler can construct virtually any form of agent-based model with the appropriate architecture depending on the nature of the application problem. In next section, we will introduce multi-agent based modeling (ABM) and simulation.

Multi-agent Based Modeling and Simulation

On the technical side, computer simulations can be classified along several dividing lines. As every computer simulation involves some kind of dynamics, an important question is how to represent time. Time can be represented either as a continuous real-valued variable (within the limits of today's inherently discrete computers) or can be regarded as a sequence of discrete symbols. Another, perhaps more important, issue is that in time-based systems or in continuous event simulations the system state changes continuously in time, while in discrete event systems, changes are assumed to take place instantaneously, at specific points in time. These points are the ones when 'events' occur. It is also important to decide how the simulation handles the passing of time. In time driven systems time is advanced in constant small steps, so that state changes occur evenly in time. Most continuous-time simulations use this approach, making the time step of the simulation sufficiently small, so that there are no perceivable transitions within the system between the steps. In these systems, time usually has a 'physical' meaning, that is, the simulated time value directly corresponds to that of the modeled system. On the other hand, event driven simulations take the opposite approach. They determine when events occur, and advance the time variable to that point [START_REF] Davidsson | Multi Agent Based Simulation: Beyond social simulation[END_REF]. Event driven simulation is more efficient in the sense that it doesn't iterate through time steps when nothing happens. On the other hand, time driven simulation is more suited to human interaction (e.g., training simulations), as simulated time is more realistic in this case [START_REF] Parunak | Go to the Ant': Engineering Principles from Natural Agent Systems[END_REF].

Agent Based Simulation

Agent-based modeling and simulation is a new and specialized branch of computer simulation that emerged as a methodology for studying complex systems. While agentbased modeling is most commonly applied to the simulation of social processes, it has also been used in a wide range of other fields, such as ecology, biology, anthropology, psychology, and traffic & vehicle simulations [START_REF] Macy | From factors to actors: computational sociology and agent-based modeling[END_REF]. Agent-based models are generally used to perform highly abstract thought experiments [START_REF] Scholl | Agent-based and System Dynamics Modeling: A Call for Cross Study and Joint Research[END_REF].

The approach bears several names. In ecology, it is called individual-based modeling (IBM), while some people call it multi-agent simulation [START_REF] Davidsson | Multi Agent Based Simulation: Beyond social simulation[END_REF] or multi-agent based simulation (MABS). The most widely accepted name, however, remains agent-based modeling.

In principle, agent-based modeling (ABM) refers to the research methodology of constructing models in a particular way, and agent-based simulation (ABS) is a particular way of implementing simulations. However, almost all agent-based simulations are constructed using the ABM methodology and vice versa. Therefore the two terms are often used interchangeably. In the following, wherever the meaning is clear from the context, I will adopt this practice.

As mentioned before, agent-based modeling is a bottom-up approach that looks at what happens when a diverse group of individuals interacts locally. Agent-based models consist of agents and an environment (sometimes people call it: space or framework) . The agents have states and behavioral rules. States can be fixed for the life span of the agent or can be dynamic. The fixed states are often called parameters, while the dynamic ones variables.

The environment may be spatial (e.g., a rectangular grid), or non-spatial (e.g., an abstract trading community).

Most importantly, interactions among agents take place in the environment component.

The adaptive and autonomous agent operates in the following manner: First, an agent sees the world, and then it makes a decision that entails an action. The world is influenced, however unimportantly, by the action. The same agent now senses a different world, and updates its knowledge, which may then cause a different action or even shift its goal. Accumulated action of the agent produces an emergent behavior, which often renders a useful insight to the real world even if a model itself is in a very simple form. (See Figure 21)

Figure 21.

Concept of Agent-Based Modeling

Interactions among agents take place in the environment component. Interactions can be direct, where an action immediately changes the state of a partner, or indirect, where an action changes the environment, which, in turn, causes a partner's state to change. In any case, the embedded nature of agents implies that the type of interactions among the agents, often referred to as the interaction topology, is an inherent and highly explicit part of the model. Another important aspect is that the environment may be also active, having its own behavior [START_REF] Hammond | Simplified Worlds and Macroscopes: The Power of Agent-Based Modeling[END_REF]. This allows for the development of models in which the agent population co-evolves with the environment. (See Figure 22)

Figure 22. Interactions Among Agents

A simple formalization of these ideas, assuming a discrete-time system, is the following.

Let vector A denote the internal states of all agents. Similarly, vector E stands for environmental states. Then, the abstract form of an agent-based model can be written as two update functions:

A (t+1) =f (A (t), E (t)) E (t+1) = g (A (t), E (t))
When building agent-based models, the modeler has to define the cognitive and sensory capabilities of the agents, and the actions they can carry out, together with a description of the environment and its activities. Given this 'compartmentalization' ABM supports 'structure preserving modeling' of the simulated system. That is, there is a close match between the entities of reality, the entities of the model, and the entities of the simulation software.

It is also a fundamentally important point of the methodology that agents interact without the control of a central authority. Global patterns emerge from the bottom up, determined not by a centralized authority but by local interactions among autonomous decisionmakers. [START_REF] Gilbert | How to build and use agent-based models in social science[END_REF] After the rules for guiding an agent's actions and the relationships between the agent and environment are established, a computational model that imitates the real world is simulated. The observation and analysis should follow the simulation invoked by a user:

i.e., let them play and watch it. For this reason, agent-based modeling and simulation (ABM/S) can be thought of as a scientific reasoning approach that complements deduction and induction. In [START_REF] Axelrod | The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration[END_REF], Axelrod clearly explains this point as follows:

Like deduction, it starts with a set of explicit assumptions. But unlike deduction, it does not prove theorems. Instead, an agent-based model generates simulated data that can be analyzed inductively. Unlike typical induction, however, the simulated data come from a rigorously specified set of rules rather than direct measurement of the real world. Whereas the purpose of induction is to find patterns in data and that of deduction is to find consequences of assumptions, the purpose of agent-based modeling is to aid intuition.

The major strength of ABM/S comes from the fact that it is a simple, versatile and flexible method that is well suited for studies of complex non-linear systems. Agent-based simulations can reveal both qualitative and quantitative properties of the real system, so ABM/S can be used as a versatile laboratory to perform experiments to test nearly any kind of imaginable hypotheses. ABM/S, however, does have a downside. For a highly realistic model, large amounts of data input and computation may be needed. In [START_REF] Hood | Agent based modelling[END_REF], another issue for ABM/S is that identifying the right, rules or behaviors that capture the real dynamics can be a somewhat ad hoc process.

Application of Multi-agent Based Molding and Simulation

Although present applications of ABM/S have become very numerous, it was not until mid 1980s that the concept of agent based modeling blossomed with the evolution of computer technology. Additionally, as the amount of fundamental research on complex systems grew, the use of agent-based modeling and simulations became more widespread. Below lists a few applications of ABM/S found in the literature.

Natural Sciences

Ecology would be one of active application fields within the natural sciences. In [START_REF] Fishwick | A multimodeling basis for acrosstrophiclevel ecosystem modeling: The orida everglades example[END_REF],

Fishwick, Sanderson &Wolff presented modeling method for use in large-scale ecosystem, focusing on the dynamics of species with the Florida Everglades. Hartvigsen & Levin [START_REF] Hartvigsen | Evolution and spatial structure interact to influence plant-herbivore population and community dynamics[END_REF] developed an agent-based model of plant-herbivore interactions to test the interactive effects of explicit space and co-evolution on population and community dynamics.

ABM/S technique is also naturally adapted to the study of animals or plants. In [START_REF] Sumpter | From Bee to Society: An Agent-based Investigation of Honey Bee Colonies[END_REF],

Sumpter presented a mathematical study of determining the relationship between the local interactions of individuals in a population and the global dynamical behavior of that population in the context of honey bee behavior, using a variety of modeling techniques including ABM. Scheffer et al. [START_REF] Scheffer | Super-individuals: a simple solution for modelling large populations on an individual basis[END_REF] tried to model behaviors of fish population with their super-individual approach, an ABM technique which aims to enhance computational efficiency. Deutschman et al. [START_REF] Deutschman | Scaling from trees to forests: Analysis of a complex simulation model[END_REF] carried out computational simulations of forest dynamics using an individual-tree model of the forests of the northeastern United States.

Though not an obvious match, ABM/S has even found a fit in chemistry. McMullin & Varela [START_REF] Mcmullin | Rediscovering computational autopoiesis[END_REF] applied ABM/S to the field of artificial chemistry and presented simulation results which exhibits spontaneous emergence and persistence of auto organization.

Social sciences

The nature of the social sciences is the study of the human aspects of the world. ABM/S is a promising technique for social scientists in economics, political science, sociology and psychology. Its development has revived old and raised new questions regarding the dynamics of complex human society. In economics, a new branch of economics-called agentbased computational economics (ACE)-is fledging with increasing attention recently. Practical applications of ACE can be abundantly found. Basu, Pryor, Quint & Arnold [START_REF] Basu | Aspen: A microsimulation model of the economy[END_REF] have built a micro-analytic model, called Aspen, to simulate the U.S. economy. Raberto et al.

[66] carried out an agent-based simulation to look at a behavior of a virtual financial market through a realistic trading mechanism for price formation. An excellent survey paper is given by Tesfatsion [START_REF] Tesfatsion | Agent-based computational economics: Growing economies from the bottom-up[END_REF] regarding this blooming field. Other social sciences have actively adopted ABM/S as well. Chakrabarti [START_REF] Chakrabarti | An agent based model of corruption[END_REF] is building an ABM to provide a connection be- 

Advantages and Disadvantages

The most often claimed advantages of agent-based modeling and simulation can be summarized as follows.

• Bottom-up, generative method.

• Represents the environment and the interaction topology explicitly.

• Handle heterogeneous (diverse) and dynamic populations.

According to Ross Hammond "traditional models -to permit mathematical solutionmust often use either homogenous actors, or so-called representative agents." This is no longer necessary in ABM. Similarly, dynamic population can easily lead to the intractability of traditional models. [START_REF] Lauen | An Agent Based Modeling Approach to School Choice[END_REF] • Enforces realistic computational abilities for the agents.

Traditional social sciences, especially neoclassical economics, make very strong assumptions about rationality. Individuals are assumed to have perfect information, and infinite time and computational power to make complicated decisions. Agent-based models, for comparison, directly enforce the implementation of the agent's decision-making processes, therefore limiting their computational ability. Thus most ABMs use bounded rational agents that have only "local, limited information, and limited ability and time to process that information". Some writers go that far as making agent simplicity a methodological requirement for ABM [START_REF] Macy | From factors to actors: computational sociology and agent-based modeling[END_REF]. Others argue that agent simplicity is only due to the relative novelty of the approach and due to the lack of better tools. It is important to see, however, that the computational bounds imposed by ABM are there independent of the model's sophistication in depicting agent cognition. Moreover, "… often the main concern is not to model general cognitive capability, but to investigate the consequences of bounded rationality."

• ABM is arguably capable of modeling emergent actors and institutions.

Holland and Miller suggest that artificial agents can be used as 'subjects' in pilot studies to identify potential areas for human experiments. Participatory agent-based simulation, a new area even within the field of agent-based simulation, implements this idea by providing tools to mix human subjects with artificial agents within the same computational experiment [START_REF] Gulyás | Experimental Economics Meets Agent-Based Finance: A Participatory Artificial Stock Market[END_REF].

Technically, agent-based simulations are most often discrete-time, discrete event, event driven simulations, although exceptions exist to each of these properties. Generally they are built in an object-oriented programming language, although special purpose agent programming languages also exist.

One serious disadvantage of ABM:

• Generally slower and require more computers resource.

When compared to more aggregate modeling methods, is due to its bottom-up approach.

Implementing behavioral rules for each low-level individual may be more demanding than calculating the dynamics of aggregate global variables. Therefore, agent-based simulations are generally slower and require more powerful computers than, e.g., the simulations of the more traditional systems dynamics approach.

In summarize, agent-based modeling and simulation is a bottom-up approach to understanding complex systems. It encodes attributes and behaviors at the individual component or microscopic level of the system. It is thus a powerful complement to top-down modeling approach, particularly because it allows for the implications of assumptions that are necessarily made in top-down analysis. Whereas agent-based models can be made arbitrarily realistic by capturing the processes, mechanisms or architectures that drive individual components, they can also be made quite abstract in an attempt to understand .the essence of the problem. As pointed out by Bonabeau [START_REF] Bonabeau | Agent-based modeling: Methods and techniques for simulating human systems[END_REF], ABM/S is particularly useful for modeling of flows, markets, organizations, and diffusion in which system behaviors change due to learning or adaptation. He further states that ABM/S can bring significant benefits when 1) the interactions are complex, nonlinear or discontinuous, 2) an agent is spatially explicit,

3) agents are heterogeneous, 4) the topology of the interactions is heterogeneous and complex, and 5) agents exhibit learning and adaptation behavior. However, unlike other approaches based on mathematical formalism, there can be an element of subjectivity in constructing and testing an agent-based model. Also, the simulations of ABM/S are potentially very intensive from a computational aspect.

Theory of Demand Responsive Transport

In this section, we will introduce demand responsive transport from economic point view. Transportation demand analysis are discussed in this section, stemming from the literature spread including Kanafani [START_REF] Kanafani | Transportation Demand Analysis[END_REF], McCarthy [START_REF] Mccarthy | Transportation Economics: Theory and Practice: A Case Study Approach[END_REF], Labbé et al. [START_REF] Labb´e | Operations Research and Decision Aid Methodologies in Traffic and Transportation Management[END_REF] and Noland [START_REF] Noland | Relationship between highway capacity and induced vehicle travel[END_REF],

among others. The discussion begins with basic foundations of neoclassical economics.

Neoclassical Economic Theory

For planning transportation facilities, it is necessary to forecast how much they will be used. In order to price them rationally and determine the best operating policies, it is necessary to know how users respond to prices and service characteristics. In order to evaluate whether a project is worthwhile at all, it is necessary to have a measure of the benefits it produces. All these requirements are in the province of neoclassical economic analysis.

Neoclassical economic theory postulates that human beings are self-interested and highly rational when it comes to making decisions about economic activity. In other words, human beings select the choices that offer them the best possible advantage, given the cir-cumstances they face. Circumstances involve a wide variety of factors: the prices of goods and services, and the constraints on the decisions that may make such as income, regulations and technology limitations. Another premise is that our greed is non-satiable; the more, the better, always. Based on these postulations, neoclassical economists regard that any individual has a capability of comparing alternatives.

The demand transport decisions are often envisioned as a sequence, typically starting with residential and job locations, then vehicle ownership, then other aspects. This sequence is in decreasing order of the time span over which the decision can be changed easily. However, it does not imply a sequential decision procedure whereby one decision is made without regard to its implications for later decisions. Rather, each decision is affected by others and so can be fully understood only as part of a simultaneous choice process. A

given study may isolate just a few of these decisions for tractability; it is then all the more important to remember, in interpreting results, that other decisions are lurking in the background.

In addition, travel is a derived demand, usually undertaken to facilitate a spatially varied set of activities such as work, recreation, shopping, and home life. This observation links the study of travel demand to studies of labor supply, firms' choices of technologies, and urban development. It also calls attention to an increasingly common form of travel: the linking together of several trip purposes into one integrated itinerary or tour, a process known as trip chaining.

For more formal analysis, the approach most similar to standard economic analysis of consumer demand is an aggregate one. The demand for some portion of the travel market is explained as a function of variables that describes the product or its consumers. For example, total transit demand in a city might be related to the amounts of residential and industrial development, the average transit fare, the costs of alternative modes, some sim-ple measures of service quality, and average income. Because behavior cannot be predicted precisely, an "error term" is added to represent behavior that, to the researcher at least, appears random. Thus a demand function might be represented as:

x = f (Z) +ε
Where: x is the quantity demanded, Z is a vector of values of all the relevant characteristics of the good and its potential consumers, f ( ) is some mathematical function that depend on which domain apply, and ε is the random error term. Statistical data on x and Z can be used to estimate the function f and the probability distribution of ε.

It is possible to estimate f using non-parametric methods that impose no prior assumptions about its shape. More commonly, f is specified to be a particular functional form with parameters whose values are to be determined from statistical data. For example, f might be specified as a general quadratic function:

Where: Z k is one of the characteristics included in vector Z, Z l is a factor that possibly affects the extent the effect of Z k upon f, and the β parameters are to be estimated empirically. This is an example of an equation that is linear in parameters. To see why, define variables z 0 ≡1, z 1k =Z k , z 2k =Z k2 , and z 3kl =Z k Z l , for all values of k and l. Combining all these variables into a single vector z and all the corresponding parameters into a single vector β, we can write as:

x = β′z +ε
Where the prime on β indicates transposition (changing it from a column vector to a row vector); thus β'z is the inner product between β and z. So this equation is known as a regression of x on z. When it is linear in β, as in this example, one can very easily estimate the unknown parameters. Indeed, we chose this example to illustrate that even a quite complex relationship between x and Z can often be represented as a linear regression. The most common way of estimating the unknown parameters is ordinary least squares, which the value of β is found that minimizes the sum of squared residuals for a set of observations labeled n =1,…, N:

Where now we have indexed each observed data point (x n , z n ) by its observation label n.

Ordinary least squares has particularly nice properties when the random error ε is assumed to have a normal (bell-shaped) distribution. However it is quite possible to estimate regression models non-linear functional forms or with other error distributions.

The non-random part of the demand equation is often based on an explicit theory of consumer choice. Such a theory is not necessary in order to specify and estimate a demand function, but it may help by suggesting likely functional forms for f and it is useful for interpreting the results. The most common such theory postulates that a consumer or group of consumers maximizes a utility function, u(x, X); this function expresses preferences over the quantities of the good x under consideration and of other goods represented by the vector X. The consumer is limited by a budget constraint, expressed in terms of the price p of x and a price vector P consisting of prices of all the other goods X. Mathematically, then, consumption is determined as a solution to the following constrained maximization problem:

Where y is income and again the prime on P transposes it so that P′X is an inner product, expressing the cost of consuming all the goods in vector X. Denoting the solution to it by vector (x*, X*), we note that it depends on prices and income:

But if we knew, or were willing to postulate, a form for the function u, and if we could solve the maximization problem, we would know the form of the demand function except for its random term.

For the demand functions, when we derived in this way, can be used to define a very useful quantity. We simply substitute them into the utility function to see how much utility can be achieved with a given set of prices and income. The result is known as the indirect utility function, often written as V:

V (p, P, y) = u(x * (p, P, y), X * (p, P, y))

The indirect utility function has a property known as Roy's identity:

Where it is understood that all quantities in x * depend on p, P, and y. We will make use of the indirect utility function and Roy's identity when we discuss disaggregate demand analysis. For cleanness, our notation for demand functions will omit the asterisks in x* and X*.

The demand functions (x*, X*) were defined as resulting from an individual consumer's optimization. An aggregate demand function can simply be derived from individuals' demands by summing quantities demanded over consumers. Under some quite restrictive conditions, the resulting aggregate demand function may look as if it could have resulted from optimization by a single "representative" consumer, which can be convenient in analyses. Specifically, a necessary and sufficient condition for this to be true is that indi-viduals' indirect utility functions take the "Gorman form", meaning that for an individual i it can be written as V i (p, P, y) = a i (p, P) + b (p, P) • y i , where the ai-term can vary across consumers. This condition is satisfied for several utility functions commonly used for theoretical analysis.

Derivation of Transportation Demand

Suppose a hypothetical situation that transportation and all other goods are given by a commodity bundle (t, x) which contains t units of transportation (T) and x units of all other goods (X). As shown previously, an indifference curve can be generated that gives the consumer the same level of utility. However, this does not necessarily mean the consumer has no limitations in selecting any alternatives on the iso-utility curve. The consumer always has constraints under which she/he seeks to maximize the utility. In microeconomic demand theory, it is common to consider the monetary budget constraints since it is usually the most important. Now consider a case that a consumer who has the monetary budget B 1 . Then the combined expense for purchasing T and X should not exceed the budget B 1 . The quantities t and

x that a consumer can afford is dictated by:

P T * t + P X * X ≤ B1
Where: P T and P X are the prices of T and X. Any pair (t, x) comprises the feasible choice set (or opportunity set) for a consumer. A consumer's final alternative can be found by solving a simple optimization problem as follows:

Maximize U (t, x), or minimize -U (t, x) 

(t 1 , x 

Figure 23. Income Effect on the Consumer's Choice

The effect of changes in price of T or X, all else being constant, results in expansion or contraction of a consumer's choice set. Consider the transportation price P T used to be p 2 but there is an incident that leads to higher transportation prices. The price is p 3 now, so the t-intercept of the budget line shift leftwards, which brings contraction of the feasible choice set. Then, a consumer's selection point also changes with lower amount of transportation with potentially less impact on all other goods as shown in Figure 24 weakness is that it is not applicable if more than one variable are simultaneously changed.

In order to deal with these situations, the perturbation and the sensitivity are defined next. The elasticity simply equals to the ratio of the sensitivity to the perturbation as v 1 approaches v 0 , the reference or baseline state.

Perturbation

While this equation is mathematically rigorous in regard of Equation t p ε , it is not generally required (or possible) to take the limit in practice; instead small perturbation-on the order of a few percent-is adequate enough. The elasticity without taking the limit is frequently used, called the arc elasticity e, and it can be calculated through the following equation:

Which has an advantage since it gives the same value regardless of perturbation sequence. Still, it is very important to keep track of v 1 and especially the reference state v 0 . It is meaningless to compare which dependent variable's effect is significant when the baseline state is not the same.

Trip Distribution Models

The transportation activity is essentially to link people or goods that are spatially sepa- The following summarizes the characteristics of the O-D matrix.

∑ j t i j (k) = P i (k) ∑ i t i j (k) = A j (k) ∑ i P i (k) = ∑ j A j (k) = ∑ i,j t i j (k) = D(k)
Creating and estimating a reliable O-D matrix forms a crucial basis for the study of the transportation demand analysis. The simplest approach is to utilize the concept of growth factors.

When a priori knowledge is available, growth factor models are most frequently used, though some variations can be found. They basically attempt to predict the future demand by multiplying observed trips by some scaling factor. The simplest model has a constant growth factor for all t ij (k) but in practice each element of the O-D matrix has a corresponding growth factor, that is:

t i j (k+1) = g ij (k) * t ij (k)
Where (k+1) is an index for indicating the next time period after time period k. The concept of the Hadamard product [START_REF] Huang | Some inequalities for the Hadamard product and the Fan product of matrices[END_REF] Using the above definitions, Equation t i j (k+1) is equivalent to the following matrix equation:

T (k+1) = G (k) o T (k) where G (k) = [g ij (k)]. Further, if G (k) is a constant ma-
trix with respect to k, the trip distribution after k periods can be easily computed with the initial trip distribution T (0) as follows:

As seen, growth factor models are a very intuitive and simple approach for estimating the O-D matrix. They are particularly useful for forecasting of near-term demands especially when a clear trend is identified in the past data. However, growth factor models do not have the capability to account for changes in the system that in turn affects growth factors. Hence, various trip distribution models have been suggested to properly reflect the effects of influencing variables into the O-D matrix. Kanafani [START_REF] Kanafani | Transportation Demand Analysis[END_REF] (1983) observes that most of trip distribution models have a general form given as follows:

t ij = µ i v j C ij
Where µ i and v j are functions of the socioeconomic characteristics of locations i and j, respectively; and C ij is a general function representing the impedance to travel between i and j. He further suggests that trip distribution models can be classified into three major categories: demand models, choice models, and spatial interaction models. The first two groups are rooted in utility theory while the last one is derived from analogies of physical laws.

The most basic approach to modeling trip distribution is to construct a demand model for trips between an origin and a destination. This model can be an individual or aggregate function, depending on the information available for calibration. It is derived by using the utility maximization principle discussed previously. Assume a utility function for an individual living location i is represented as follows: U =U (x i1 , x i2 ,…..; x in ) where x ij is the number of trips from the origin i to destination j. Associated with these trips, total travel cost are given by C = ∑ j c ij x ij where c ij is a unit travel cost from i to j. Maximizing U under the constraint C can be solved by constructing a Lagrangian: L =U-λC where λ is a Lagrangian multiplier. Then derivatives of L mush vanish so that U has optima:

∂U ⁄ ∂x ij = λc ij , for all j
Which states that constant is the ratio of the marginal utility to the trip cost for all locations. In order to solve the Lagrangian equations, however, an analytic form for U should be given. A common utility function to use is a linear combination of the constant elasticity utility functions [START_REF] White | Empirical tests of the life cycle hypothesis[END_REF] which can be expressed as:

ij j ij ij x U ρ α ∑ =
Where α ij and ρ ij are parameters and 0 < ρ ij < 1 to satisfy the law of diminishing marginal utility. Substitution this into the Lagrange equations makes x ij to be solved for. The result is:

From which a general structure can be observed as follows:

Where (γ ij = 1 ⁄ 1-γ ij )> 1.
The aggregate trip distribution demand t ij is the sum of x ij 's for all individuals in location i and the assumption is that t ij follow the general structure appearing in equation above. So the total trip distribution is given as:

t ij = S ij * c ij -γ ( γ  > 1)
This result is interpreted as S ij and c ij represent a generalized trip attraction factor and a generalized trip impedance factor between locations i and j, respectively. S ij is often replaced with the product of two functions. Each is a function of some socioeconomic characteristics of the corresponding location. Note that the trip impedance c ij can be trip cost, trip time or a combination of both. While demand models are derived from individual's utility, choice models assume that each location possesses some utility that represents the amount of its attractiveness for travelers. Under this assumption, the basic idea is that one can get the probability of location j being chosen as trip destination from location i, π(i, j), by utilizing the probabilistic choice theory which is to be discussed in the following section. If the multinomial logit model is adopted (again, to be discussed in the following section), π (i, j) is given by Where n is the total number of locations and V (i, j) is called the deterministic utility for rips from i to j which includes a generalized travel cost component and some measures of attractiveness. If the trip production P i is known, the trip distribution is computed by the following equation:

t ij = π (i, j) * P i .
Spatial interaction models are derived from analogies with the physical laws. The gravity model, derived from Newton's law of Gravitation, is the most common form currently in use and has the longest history. According to Kanafani's theory, the earliest observation that the magnitude of population movements between cites is similar to the gravitational pull between masses was suggested by Ravenstein in 1885. The basic structure is in line with the law as follows:

Where µ i and n j indicates a function of characteristics of origin i and destination j such as P i and A j , respectively and c ij is representing impedance between i and j. Keeping strict gravitational framework would take 2 where d ij represents distance between locations i and j.

k ij = k and c ij γ = d ij
Another approach based on physical analogy is the entropy model introduced by Wilson [START_REF] Wilson | A statistical theory of spatial distribution models[END_REF]. In this approach, the entropy of the O-D matrix T is given by This has the lowest value 1, when all trips are aggregated on a particular cell in the OD matrix. Just like physical cases, this pseudo entropy is maximized in order to achieve system's equilibrium. Consider that the optimization problem is subject to the following constraints: ∑ j t ij = P i , ∑ j t ij = = A j , and ∑ j t ij =B. The first two constraints and the last constraint mandates that the total transportation cost expended is limited to a budget B.

Formulating a Lagrangian equation and differentiating with respect to t ij result in the following expression.

t ij = k ij P i A j e -λc ij
Where: k ij and λ are parameters for model calibration. For more details about derivation, refer to [START_REF] Bierlaire | Mathematical Models for Transportation Demand Analysis[END_REF].

tions and so have generated a wide variety of modified forms. Despite the variety, all models have some same objectives. For example, we think that every good model should be properly responsive to socioeconomic factors and other transportation related conditions.

We would like use multi-agent planning approach to solve DRT problem. In our multiagent based simulation approach for DRT system: multi-layer hybrid planning model, which uses planning domain based agents planning framework to coordinate the plans of demand responsive transport systems. The system offers trip solutions to client's requests, at the same time use minimal number of taxi, from socioeconomic view the system also proposes good solutions.

We will introduce our approach and model in next chapters.

In next chapter, we will present our multi-agent based simulation approach for DRT system: multi-layer hybrid planning model, which uses planning domain based agents planning framework to coordinate the plans of demand responsive transport systems.

Classical Planning Problem

The classical planning problem can be defined as follows [START_REF] Smith | Temporal planning with mutual exclusion reasoning[END_REF]:

• A description of the known part of the initial state of the world in a formal language, usually propositional logic, denoted by I.

• A description of the goal (i.e., a set of goal states) in a formal language, denoted by G.

• A description of the possible (atomic) actions that can be performed, modeled as state transformation functions.

Determine a plan, i.e., a sequence of actions that transform each of the states fitting the initial configuration of the world to one of the goal states. The formal language that was used for STRIPS [START_REF] Fikes | STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving[END_REF] is common to most classical planning frameworks.

Single Agent Planning

Planning is a process of search. The planning agent is given a set of input information such as the current state of the environment, a set of actions that may be performed and a set of goals to achieve, and searches through possible sequences of actions until it finds a suitable solution plan. This is a hard problem as the space of possible sequences can be very large. Successful planning approaches involve an informed systematic search through the possibilities until a solution plan is found, or until the agent is reasonably sure that no solution exists (either the search space has been exhausted or a timeout interval has passed without a solution being found).

This section reviews current approaches to single agent planning in an attempt to identify approaches suitable for adaptation to multiple agents. We describe the refinement planning paradigm, which is not a specific approach but a framework in which many planning algorithms can be expressed and compared using common concepts and terminology.

Refinement planning is used throughout the rest of this thesis in the discussion of single and multi agent planning mechanisms and algorithms alike. Then we describe various refinement planning mechanisms that might be used as a basis for multi agent planning, and alternative local search planning approaches that do not fit into the refinement framework.

Refinement Planning

Planning can be formulated as a search through possible candidate action sequences to find a solution that achieves the desired result. The refinement planning paradigm [START_REF] Kambhampati | Refinement planning as a unifying framework for plan synthesis[END_REF] involves starting with a state representing the set of all possible action sequences and gradually shrinking it to a single solution sequence. Refinement planning maintains an open list of sets of candidates that have yet to be considered, allowing the agent to perform a sound, complete, systematic search of "candidate space", but limiting its applicability to environments that are static during planning. By contrast, local search planning does not provide soundness and completeness guarantees, but is more suited to dynamic environments.

Partial plans

Sets of candidate action sequences are specified using sets of constraints, called partial plans. A partial plan simultaneously represents all the action sequences that are consistent with its constraints. As constraints are added to the partial plan, so the set of candidate sequences decreases in size. The planner is finished when it has a partial plan in which all candidates are solutions.

Consider, for example, a planning formalism in which actions may be inserted at any point into a totally ordered list. The empty list represents all possible candidate sequences as no commitment has been made to any actions or orderings. The list (go to shops, go to cinema….) represents all candidate sequences in which the shops and cinema are visited, in that order but not necessarily immediately after one another.

If the planning algorithm only allowed the addition of actions to the beginning or end of the list, the same list would represent all candidate sequences in which the shops and cinema are visited consecutively. Thus, the set of sequences represented by a partial plan is dependent on the plan representation used and the set of planning operators available to the agent. In practice, depending on the partial plan representation chosen, it may not always be possible to represent the desired set of candidates at a particular stage of refinement using a single partial plan. For example, the list based representation from the example above is only capable of representing totally ordered action sequences, so it cannot be used to represent the plan "visit the shops before or after cinema". Strictly speaking, refinement planning operates on sets of partial plans that represent all necessary candidates.

Refinement planning algorithm

A generalized deterministic refinement planning algorithm is shown in Figure 26 and graphically in Figure 27. The algorithm takes an initial partial plan, representing a large set of candidate sequences, as input, and progressively refines it to produce a solution plan in which only solution sequences remain. The solution plan in Figure 27 contains a single solution sequence, but in practice several solutions can be represented in a single plan. In iteration, the planning agent chooses a feature of the plan to improve, called a refinement (line 10). A refinement can be many things including the removal of a flaw, the extension of the plan by an action, or the making of a specific decision. There may be more than one way of performing a given refinement. For example, there may be more than one way of resolving a particular problem or performing a particular task. Each of these ways is embodied in a planning operator (or sequence of operators) leading to a valid partial plan. The agent chooses an appropriate operator and applies it to the plan (line 11). Each successive operator fills in more constraints, and the process continues until a solution plan is found (line 6) or no more valid plans can be generated.

Consider, for example, an agent trying to produce a list of up to five letters, chosen from the set {A, B, C, D, E} representing any dictionary word. The complete set of candidate sequences can be generated by appending different combinations of letters to the end of an empty list. The agent starts with an empty letter sequence and adds it to its open list (line 3). In iteration, the agent removes a partial sequence from the list and checks if it is a dictionary word (line 6). If so, the agent returns the word as a solution. Otherwise, the agent applies the append_letter refinement (line 10), generating all possible sequences resulting from appending a single letter and adding all sequences of five letters or less back to the open list (line 11).

In most planning algorithms an agent will be able to perform more than one type of refinement. In the example above the agent could have been given a preprend_letter refinement as well as an append_letter one. A single refinement r 0 is picked per partial plan p 0 visited during search. When r 0 is applied to p 0 , it should output a set of plans P 1 that, between them, represent the complete set of candidate sequences of p 0 . If each of the members of P 1 contains some kind of definite flaw, the agent can signal failure immediately: it does not have to backtrack and try an alternative refinement of p 0 . For example, there are no words in the English language that contain three or more identical consecutive vowels: if the agent in the example above were to come across the partial sequence "AAA", it could discard it immediately without considering the derivatives "AAAA", "AAAB", "AAAC" and so on.

Planning approaches:

The refinement planning algorithm can be altered to resemble almost any modern planning algorithm by changing one or more of the following features, referred to collectively as a planning approach.

Plan representation: This is the type of data structure used to represent the plan, including features such as temporal and resource models. The choice of representation affects the sets of candidates that can be stored in a single partial plan. This affects how many plans the agent has to produce to cover all possible ways of performing a refinement, and consequently the number of plans that need to be visited per refinement in the worst case.

resolvable flaws in some partial plans and prune the corresponding branches of search (as with the three vowel example above).

Search algorithm:

The push and pop functions can be implemented in various ways to The aspects of planning listed above are collectively referred to in this thesis as a planning approach. The same aspects minus the planning algorithm are collectively referred to as a planning mechanism. Thus: Approach = mechanism + algorithm While we concern with multi agent planning rather than single agent planning, a limited discussion of the basic approaches to single agent planning is required. Refinement based planning approaches can be divided into two categories: those that search in the space of states of the environment that may be visited by performing actions, and those that search in the space of possible plans. These paradigms, called state space and plan space planning respectively, are briefly introduced in the following sections. In next sections, we will discuss the STRIPS (Stanford Research Institute Problem Solver) [START_REF] Fikes | STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving[END_REF] action representation that is common to many planning algorithms, state space approaches, the two basic types of plan space planners: least commitment and hierarchical planners. Finally, Section 4.2.6

discusses a class of local search planners that do not fit into the refinement planning framework.

and literals are referred to as grounded if all their arguments refer to objects in the world and lifted if they contain one or more variables. Variables are bound to world objects when an agent decides to commit to a specific action during planning.

Variables in preconditions are existentially quantified, referring to a single object in the world. Variables in effects must appear in the action description or preconditions. This allows the planning agent to analyze the predicted state of the world at the time when the action is due to start and bind variables accordingly to produce the desired effects.

Plans: A complete STRIPS plan is a totally ordered sequence of grounded actions. The following conditions hold for a plan:

• The plan is valid if the preconditions of each action match subsets of the world state immediately before the action is executed (taking into account the effects of previous actions).

• The plan is a solution to a problem if goals of the problem match a subset of the world state immediately after the last action in the plan is executed. Universal quantification and conditional action effects were first addressed by the Action Description Language (ADL) [START_REF] Pednault | Formulating multi-agent dynamic-world problems in the classical planning framework[END_REF] and later by the well known Planning Domain Definition Language (PDDL) [START_REF] Fox | Pddl2.1: An extension of pddl for expressing temporal planning domains[END_REF]. PDDL, in its various incarnations, has also provided support for many of the other features above, although noticeably not looping.

Extensions to STRIPS representation:

While many of the features above are useful for solving real world problems, only a few are strictly necessary for dealing with multiple agents. The most important features in this regard are a sufficiently expressive model of interactions and relationships between concurrent actions [START_REF] Brenner | Multiagent planning with partially ordered temporal plans[END_REF]. Early work by Georgeff [START_REF] Georgeff | Communication and interaction in multi-agent planning[END_REF] on process models helped laid the groundwork for understanding in this area. Support for sensing actions or uncertainty are also potentially useful if agents have severely limited knowledge of the world, although less so if agents are able to exchange information before plan execution to get a complete picture of world state. Other features such as universal quantification and conditional ef-fects reduce potential maintenance on plans in dynamic worlds where external changes may cause action effects to change.

State Space Planning

The first category of refinement planners, state space planners, includes STRIPS itself.

State space planning involves searching in the space of possible world states. Reachable states are determined by simulating the effects of actions. State space planners are given three initial inputs:

1. A set of symbols O representing objects in the world and a complete description of the initial world state I. World state is specified as a set of literals defined on tuples of elements from O.

2. The goal state G, also specified as a set of literals. G does not have to be a complete description of world state; unspecified literals are assumed to be unimportant and are ignored when checking for goal states.

3. A set of actions A, in STRIPS or some equivalent representation.

They proceed in one of two ways:

• Forward chaining planners start at the initial world state and search forward in time. Actions are added to the end of the plan, which is assumed to be totally ordered, until a state is reached that matches the goal state.

• Regression planners do a similar search starting at the goal state and working backward towards the initial conditions.

Despite the intuitiveness of state space planning, the space of reachable world states is vast and for many years no good techniques were known for guiding algorithms to solu-tions [START_REF] Ghallab | Automated Planning: Theory and Practice[END_REF]. This meant that for a long time state space planners were only able to handle small problems and plan space planning dominated. Recent work on planning graphs [START_REF] Blum | Fast planning through planning graph analysis[END_REF] has revived state space planning by providing a compact way of simultaneously representing alternative orderings of actions.

Planning graphs: Planning graphs are a compact plan representation that forms the basis of some of the fastest current planning techniques. In figure 28 and sensing actions [START_REF] Weld | Recent advances in AI planning[END_REF], metric resources, quantitative time and durative actions with delayed effects [START_REF] Srivastava | Planning the project management way: Efficient planning by effective integration of causal and resource reasoning in RealPlan[END_REF]. Many of the fastest modern planners [START_REF] Bacchus | Using temporal logics to express search control knowledge for planning[END_REF] plan in state space and use planning graphs either directly or as the basis of heuristics [START_REF] Hoffmann | The FF planning system: Fast plan generation through heuristic search[END_REF].

Figure 28.

Planning Graph of a Simple Route Planning Problem.

The Least Commitment Planning

Least commitment planning introduced by Marr [100], has been used in many fields of AI, including computer vision, planning and theorem proving. It involves deferring decisions about the temporal orderings and variable bindings until they are required to resolve conflicts in the partial plan. Least commitment allows the planner to be flexible about parts of its plan until it has enough information to work out the best possible course of action.

While many of the fastest current planning algorithms are based on state space planning, it is this flexibility that makes plan space planning, including least commitment planning, interesting from a multi agent perspective. Least commitment planners are often also referred to as "partial order planners" or "Partial Order Causal Link (POCL) planners". The following is a simplified version of the description of UCPOP provided by Penberthy and

Weld [101]:

A partial plan p is a tuple < A, T, B, L > where A is a set of actions, T is a set of temporal constraints, B is a set of variable bindings and L is a set of causal links. The preconditions and effects of an action a∈ A are referred to as pre (a) and eff (a) respectively. Actions are unordered and lifted by default; constraints are added to T and B where necessary to impose temporal orderings, ground variables and remove conflicts. By changing the language of implementation of T [START_REF] Schwalb | Temporal constraints: A survey[END_REF], a number of qualitative and quantities temporal models can be implemented with varying complexity and expressiveness [START_REF] Dechter | Temporal constraint networks[END_REF].

A causal link is a structure a i ⎯→ ⎯ l a j where a i and a j are actions in A, a i is ordered before a j and l is an effect of ai and a precondition of a j . a i and a j are referred to as the provider and consumer of the literal respectively. Causal links are added to the plan to protect preconditions, making sure they do not come under threat from actions with conflicting effects.

Least commitment planners are given two initial inputs:

1. An initial plan p where:

• A p contains two dummy actions: a 0 and a ∞ , eff (a 0 ) represents the initial state of the world, pre (a 1 ) represents the goal state, a 0 is ordered before a ∞ , B p is empty, L p is empty.

2. A set of actions in STRIPS representation or some equivalent.

They proceed by iteratively selecting an action a j and unachieved precondition l∈pre (a j ) and trying to achieve it by making the following refinements to the plan:

• Adding a causal link a i ⎯→ ⎯ l a j from an appropriate existing action a i ;

• Adding a new action ai that may be used as a provider and a causal link a i ⎯→ ⎯ l a j ;

• Removing a threat to an existing causal link a i ⎯→ ⎯ l a j from an action a k with ¬l ∈ eff(a k ) by adding appropriate constraints to T and/or B.

A valid solution is a plan with no unachieved preconditions and no threats to causal links. Penberthy andWeld [START_REF] Penberthy | UCPOP: A sound, complete, partial order planner for ADL[END_REF] built on early least commitment planners in 1992 such as SNLP [START_REF] Mcallester | Systematic nonlinear planning[END_REF] and TWEAK [START_REF] Chapman | Planning for conjunctive goals[END_REF] to produce UCPOP, the first least commitment planner to handle ADL (conditional action effects and universal quantification). Since then they have gone on to produce Zeno [START_REF] Penberthy | Temporal planning with continuous change[END_REF], one of the most expressive current plan space planners, which is capable of handling domain features such as metric resources and durative actions with delayed and continuous effects.

Hierarchical Task Network Planning

The earliest plan space planners did not search in the space of task orderings and causal links, but rather in the space of decompositions of actions [START_REF] Tate | Generating project networks[END_REF]. These early planners gave rise to another form of plan space refinement planning: Hierarchical Task Network (HTN)

planning [START_REF] Sacerdoti | The nonlinear nature of plans[END_REF]. Like least commitment planning, hierarchical planning allows a certain amount of flexibility during planning. It also allows agents to reason at varying levels of abstraction, which could be useful for reducing communications overheads and limiting the complexity of inter-agent coordination in multi agent planning.

HTN planners are similar to least commitment planners in that they search in the space of partial plans and explicitly model temporal and variable binding constraints. However, they are different in the way they search the space: by considering the possible decompositions of abstract tasks. Just as the "flat" planners above are based on the notions of actions, goals and plans, HTN planners are based on notions of tasks, task networks and methods:

Tasks subsume actions and goals. Rather than planning to achieve a set of goals, an agent plans to perform a set of tasks. There are two types of task: primitive tasks that can be executed directly and abstract tasks that must be decomposed into smaller tasks during planning.

Task networks are used to represent plans and sub-plans. A task network n is a tuple < A, T, B > where A is a set of tasks, T is a set of temporal constraints on the members of A and B is a set of variable binding constraints.

Methods represent ways of decomposing abstract tasks. A method m is a tuple < h, b > where h is an abstract task and b is a task network representing a sub-plan that achieves the desired effects of h.

HTN planners are given two initial inputs:

1. A non-empty initial plan p containing abstract and primitive tasks those need to be performed.

2. A set of methods M providing ways of decomposing abstract tasks.

They proceed by iteratively selecting a task t ∈A p and decomposing it using an applicable method m∈M by substituting for t with b m . Primitive tasks have preconditions and effects in the same way STRIPS actions do. Abstract tasks have no preconditions and effects per se, although new preconditions and effects may be introduced when an abstract task is decomposed. A single abstract task may have more than one applicable method, so relevant preconditions and effects are not always known in advance. Conflicts introduced during decomposition are resolved as they are in least commitment planning by adding temporal or variable binding constraints.

Most HTN planners search only in the space of task decompositions. This is limiting because every combination of actions has to have been thought out in advance by the human designer of the method library. This is the major objection raised against HTN planning by supporters of "flat" planning techniques, but it does not prevent HTN planners being the most widely used planners in industry for two reasons:

1. HTN is an intuitive way of thinking about planning, and many planning systems in industry are mixed initiative systems that interact with human operators as well as performing automated search.

2. Human designers can encode problem specific knowledge into methods such that the planner produces predictable plans in a timely fashion.

Consider, for example, a manufacturing scenario in which it is necessary for a particular machine to produce a diagnostic report every time it is used. The specification of this constraint in a "flat" planning formalism would require the addition of state information and action preconditions and effects to ensure that every time a use machine action is added to a plan, a produce report action is also added. This is a non-trivial adjustment to the planning domain, and would add an extra layer of complexity to the problems given to the planner. In HTN planning, however, the produce report task would simply need to be added to the relevant method, and the planner would not need to do any extra processing to ensure its use at the relevant points in the plan.

Recursive versus non-recursive domains: HTN planning problems can broadly be classified into ones that contain recursive methods and ones that are not. A method m is recursive if B m contains a subtask, some part of which may be decomposed with m. Blocksworld is a classic example of a recursive HTN domain:

In order to pick up block A, I have to make sure there is nothing on top of it. If there is a block B on top of A, I must pick it up and place it on the table. In order to pick up block B I have to make sure there is nothing on top of it. If there is a block C on top of B, I must pick it up and place it on the table...

Consider, for example, an agent planning the preparation of an exotic meal as shown in

Figure 29. This is done in three decompositions: first, the agent chooses whether to prepare a Chinese or an Indian meal, then it shops for the ingredients, and finally it cooks and eats the meal. Chinese meals involve eating with chopsticks: if the agent doesn't have any chopsticks, it will be unable to find a suitable plan if it uses the prepare_chinese method. A human would immediately recognize this and choose to make an Indian meal. An uninformed HTN agent, however, may choose prepare_chinese and make all sorts of decisions about which shops to visit, which ingredients to buy, and how long to cook the noodles, before realizing that the chopstick requirement cannot be satisfied.

Figure 29. Example of HTN Planning

A number of planning systems use control strategies to guide search and stop the planner making "poor" choices of decomposition: The Task Formalism (TF) of the early HTN planner [START_REF] Tate | Generating project networks[END_REF] allows the domain designer to specify several types of information about methods. For example, a high level effect of a method m specifies an effect that the body of m is designed to achieve. An unsupervised condition of m specifies a precondition of a descendant of m in the decomposition hierarchy that no other descendant is able to achieve. These pieces of information can help the planner prune inappropriate choices of method, but can affect soundness and completeness. For example, a high level effect of a method m may affect the soundness of a planner if one or more decompositions and linearization of m do not have an appropriate concrete effect.

Similarly, SHOP [START_REF] Nau | SHOP: A Simple Hierarchical Ordered Planner[END_REF] and SHOP-2 [START_REF] Nau | SHOP2: An HTN planning system[END_REF] allow human domain designers to annotate methods with the preconditions for situations in which they should be applied: a human designer could add a requires chopsticks precondition to the the prepare chinese method to prevent it being used when chopsticks are not available. This requires the planner to totally order tasks and decompose them in the order they will be executed, so that the complete world state is known at the beginning of each abstract task. SHOP requires method bodies to be totally ordered. SHOP-2 relaxes this requirement, creating a totally ordered plan from partially ordered methods. Tsuneto et al. [START_REF] Tsuneto | Analyzing external conditions to improve the efficiency of HTN planning[END_REF] present a technique for automatically computing external conditions of methods from the decomposition hierarchy, by looking at the possible interactions between the descendant tasks of a method. External conditions serve the same purpose as Tate's unsupervised conditions, but because they are automatically calculated rather than designed by a human, they can be shown to never affect soundness or completeness. Similar work by Clement and Durfee [START_REF] Clement | Top-down search for coordinating the hierarchical plans or multiple agents[END_REF] use summary information derived from methods and subtasks to detect possible conflicts directly between abstract tasks in non-recursive propositional HTN domains. They use this information both as a heuristic guide and to prune search states from which conflicts cannot be moved. Their planning mechanism is called Concurrent Hierarchical Plans (CHiPs).

Local Search Planning

All of the planning algorithms described so far are refinement planning algorithms. Simulated annealing is a technique where the current location of search is loosely modeled as the position of a particle in a hot material that is slowly cooling. At first, when the material is at a high temperature, the particle will have lots of energy and will be able to move large distances. As the material cools, the particle's energy will drop and it will eventually come to rest at the location of a local energy minimum. In search terms, this means that the agent starts with a candidate plan and randomly changes it to try and minimize the number of conflicts it contains. At first it will try large ("high temperature") changes, but over time it will decrease the magnitude of its changes until a conflict minimum is reached.

Hopefully this minimum will be low enough to constitute a solution to the problem.

No-good constraints keep records of parts of plans that have failed to work together.

They are similar to taboos lists, preventing agents from revisiting previous states, but only record information specific to conflicts and are kept around for the remainder of planning, rather than for a short period of time.

Multi-agent Planning

This section describes various approaches to multi agent planning, based on refinement based and local search based approaches to single agent planning. Centralized planning, distributed planning and plan merging are described in this section.

Centralized Planning

Any of the techniques from single agent planning can be applied to multi agent planning if agents are willing to share complete information about their goals and plans. The process of centralized planning is shown in Figure 31.

Figure 31. Centralized Planning System

There are three steps in multi-agent centralized planning:

Goal aggregation

Agents' goals are merged into a single set of joint goals, and passed to a planning delegate agent that takes on the job of planning on behalf of the team. If goals are nonconflicting, aggregation can be as simple as union goals from each agent. If goals are conflicting or contradictory, agents may have to select a subset of goals that are achievable. In [START_REF] Rosenschein | Rules of encounter: designing conventions for automated negotiation among computers[END_REF], Rosenschein and Zlotkin describe many bidding and negotiation protocols that can be applied to such problems. Their emphasis is on efficiency [START_REF] Zlotkin | Mechanisms for automated negotiation in state oriented domains[END_REF], simplicity, fairness and the prevention of deception and cheating. Domain dependent aspects of negotiation, such as agents' preferences for plans that achieve a maximum number of goals or that are robust to environmental events, are typically encoded as measures of "cost" or "worth" of goals and plans, which are fed into the protocols in a domain independent way. Agents may not be able to determine whether or not goals are conflicting until some planning has been performed, meaning goal selection may have to be revisited after planning has started.

Planning

The planning creates a joint plan to achieve all the joint goals. Any of the single agent planning techniques can be used that have a sufficiently expressive plan representation.

Plan separation

The joint plan must be split into a set of coordinated individual plans that can be passed to the relevant executives.

If "real world" plan execution is being considered, this step may involve reasoning about executives and their roles in the joint plan. Executives may have to be assigned to certain actions if the decision has not already been made during planning [START_REF] Browning | Plays as effective multiagent plans enabling opponent-adaptive play selection[END_REF]. Synchronization and coordination information may also have to be inserted into the plan to ensure successful multi executive executions [START_REF] Biggers | Automatic generation of communication and teamwork within multi-agent teams[END_REF].

Centralized planning is an attractive approach because the planning delegate may draw on well established algorithms from single agent planning. However, centralized planning does have one major drawback in that individual agents have no privacy or independence.

This may be inappropriate if agents are acting on behalf of companies or have access to sensitive information. In such cases it may be more appropriate for agents to keep their goals and knowledge private and only share information about their plans [START_REF] Weerdt | A method to integrate planning and coordination[END_REF]. Centralized planning may also be inefficient if agents' goals do not conflict significantly. In [START_REF] Korf | Planning as search: A quantitative approach[END_REF],

Korf categorizes goals as independent, serialsable and non-serialisable depending on the nature of their relationships. Independent goals do not interfere during planning and are obviously solved faster by separate planners.

Distributed Planning

In complex "real world" environments, agents with different goals and abilities may need to create plans quickly and individually without relying on other agents for help. In some situations, demands for independence or privacy may limit the applicability of plan merging techniques. In these situations agents may require a higher degree of independence.

In this approach, agents are allowed to communicate and exchange information during planning as shown in Figure 32. While this approach is flexible, it is also complicated as each agent has to keep other agents informed of salient changes to its plan while staying on top of similar reciprocal messages.

Figure 32. Distributed Local Planning System

Two types of distributed search:

Distributed global search

It is essentially a form of centralized planning that takes advantage of concurrency. A single agent controls the search process and assigns refinements to other agents as planning tasks. The results of refinements are passed back to the delegate and stored ready for the next iteration. This is the paradigm adopted by, for example, the Multi-agent Planning Architecture (MPA) of Wilkins and Myers [START_REF] Wilkins | A Multiagent Planning Architecture[END_REF]. Agents in this paradigm are equivalent to subordinate problem solvers because they are directly under the control of a master agent. This is potentially a way of increasing the speed of centralized planning, but it does not deal with the issue of independence any more than centralized planning does.

Distributed local search

It is an approach that agents plan independently but periodically update each other with salient information about resource usage, requests for planning assistance and so on (Fig- Distributed local search is a topic that has been dealt with very little in the planning literature, although relevant approaches have been used in the field of distributed constraint satisfaction. In [START_REF] Yokoo | Algorithms for distributed constraint satisfaction: A review of "plans and situated actions[END_REF], Yokoo and Hirayama present several asynchronous algorithms for solving constraint satisfaction problems with single and multiple agents. These algorithms do not store backtracking states, relying instead on no-good constraints to store invalid combinations of values so that they are not visited again. Brenner [START_REF] Brenner | Multiagent planning with partially ordered temporal plans[END_REF] has also suggested basing a forward chaining algorithm for multi agent planning on asynchronous backtracking, although at the time of writing his algorithm is unpublished.

Commitments and conventions

In [START_REF] Jennings | Commitments and conventions: The foundation of coordination in multiagent systems[END_REF], Jennings creates a general theory of multiagent problem solving using distributed goal search formalism. He argues that multi agent cooperation and coordination are based on two central premises:

Commitments are "pledges to undertake a specified course of action". Commitments about future actions are fundamental because without them consensus cannot be achieved.

For example, if an agent commits that it is going to a specific bar in the evening, other agents can decide whether to join in and when and where to meet up: if no commitment is made, no plan will be made either. Commitments need to be, within reason, binding. If they are rarely held for long, agents cannot reliably use them as the basis of further decisions. Refinements in planning are essentially commitments to particular plan features. For example, an agent may commit to a certain order of execution or to the use of a particular resource. When agents backtrack or try different branches of search they retract or switch between commitments, which can be bad for other agents.

Conventions "provide means of monitoring commitments in changing circumstances".

Changing circumstances sometimes require commitments to be broken. Agents need to agree on when this is necessary, and on the courses of action to choose in such an event.

Random changes to commitments are equivalent to unpredictable events in a dynamic environment: they are more of a hindrance than a help. In planning, conventions can be enforced in a number of ways, including distributed search algorithms, negotiation protocols and social laws. The important feature of all of these techniques is predictability: this is what distinguishes a change in an agent's plan in a well thought out multi agent planning approach from a random change in the external environment.

Jennings performs an in-depth analysis of commitments and conventions in various hypothetical scenarios, and shows how they can be used to model existing distributed problem solving systems. His analysis is based on distributed goal search formalism. An example is shown in Figure 33. Agents' plans are modeled as classic and/or goal trees. It is possible for agents to share goals and goals to share sub-goals. Further interdependencies can exist between goals belonging to the same agent or different agents. These interdependencies can be strong or weak, unidirectional or bidirectional. Interdependencies can also exist between goals and resources: resources are either required to achieve a goal or are provided by achieving a goal.

Figure 33.

A distributed goal search tree (adapted from Jennings, 1993)

Given a distributed goal tree and a set of interdependencies, agents make commitments by choosing or branches to pursue and imposing constraints on the order in which they will be pursued. The structure of the interdependencies helps agents determine which commitments are likely to be the most appropriate and/or stable. Jennings's goal trees are rich and expressive formalism that has inspired a number of projects in distributed artificial intelligence:

Partial Global Planning Generalized Partial Global Planning (GPGP) [START_REF] Decker | Generalizing the Partial Global Planning algorithm[END_REF] is concerned with the "distributed coordination problem", which is described as " the local scheduling of activities at each agent affected by non-local concerns and constraints".

GPGP uses a goal formalism called TAEMS [START_REF] Horling | The TAEMS white paper[END_REF] that is very similar to Jennings's goal trees: quantitative interdependencies can be specified between goals and resources at varying levels of abstraction, allowing agents to schedule problem solving activities to maximize the quality of their results. GPGP is a family of coordination algorithms for goal allocation and subdivision, information sharing, and result merging. GPGP does not deal explicitly with planning problems in the conventional sense: agents are provided with a problem structure in terms of a goal tree, whereas in planning the tree would have to be inferred from the description of the problem domain. The quantitative nature of GPGP gears it towards optimization problems, in which there are few hard constraints but many weak constraints that affect the quality of the solutions output.

Task trees and summary information

The work of Clement and Durfee [START_REF] Clement | Top-down search for coordinating the hierarchical plans or multiple agents[END_REF] is also based on a goal tree like formalism. Their task trees are a blend of goal trees and HTN planning formalisms, and their summary information allows weak and strong interdependency information to be automatically generated from the planning domain. In performing the crossover with HTN planning Clement and Durfee drop some of the flexibility of Jennings's representation. For example, there is not multiple parenthood as there is with goal 6 and goal 18 in Figure 33, and this means that a single task cannot be controlled by more than one agent. This simplification is presumably in the interests of simplicity when developing the formal semantics of task trees, although this is not made clear in the literature.

Jennings's hypothesis about the centrality of commitments and conventions makes many state space planning approaches less attractive from the point of view of distributed local planning:

• Agents need to be able to make commitments progressively during planning. If agents do not make commitments regularly or retract them too quickly, other agents cannot make decisions based on them. Agents using planning graphs, in particular, do not commit to any temporal orderings until the very end of planning, when a valid plan is extracted from the graph. This gives a single agent enormous amounts of flexibility, but is bad from a multi agent point of view.

• Distributed local planning is about resolving conflicts between agents' plans.

An agent may be required to resolve a specific conflict at a specific stage in planning, which is more likely to be possible if agents only commit to plan features when necessary to remove conflicts that have already been detected. State space planning algorithms commit heavily to temporal orderings regardless of whether there are conflicts in the plan or not, meaning they may have to backtrack several levels if there is a problem caused by an action in the middle of a plan. Plan space approaches that use the principle of least commitment are more likely to be able to make a quick change to fix a particular conflict.

Plan Merging

Plan merging is a popular approach to multi agent planning that addresses part of the problem of sensitive information and fares better than centralized planning when agents' goals are largely independent. Figure 34 shows a typical plan merging procedure: 

Plan merging

All agents pass their uncoordinated plans to coordination by plan merging. Plan information can safely be shared without exchanging information about the agent's original goals and knowledge, although agents must be willing to share the plans themselves before execution. The merger agent combines the uncoordinated individual plans to form a single coordinated joint plan, resolving conflicts by adding ordering constraints and variable bindings and by eliminating redundant actions (difficulties can arise if there are unresolvable conflicts in or between the individual plans: this is discussed in more detail below).

Plan separation

It is the same as in centralized planning, and is required to assign individual plans to executives.

Plan merging is also used in some planning systems when new goals are added after some planning has been completed. There are many examples of this in the field of continual planning where planning and execution are continual interleaved processes [START_REF] Desjardins | A survey of research in Distributed, Continual Planning[END_REF].

In [START_REF] Alami | A scheme for coordinating multi-robot planning activities and plans execution[END_REF], Alami et al. present an "efficient forward chaining plan merging algorithm that supports multiple agents and continual planning". At any point there are several agents with plans that have already been coordinated and are being executed. Agents periodically receive new goals from a central server and create uncoordinated plans to achieve them.

Once an agent has a complete uncoordinated plan it requests and performs a plan merging operation (PMO), in which it examines the coordinated plans from all the other agents and merges its new plan in with them. Agents can create new uncoordinated plans and execute existing coordinated plans concurrently and continuously, apart from during the short period of time in which a PMO is taking place. Only one agent is allowed to perform a PMO at a time, causing a potential bottleneck when goals are numerous and the plans to achieve them are short. Un-resolvable conflicts between new and existing plans may occasionally make plan merging impossible, in which case a centralized planner is used as a fallback, pausing execution and recreating all plans from scratch.

In [START_REF] Tsamardinos | Merging plans with quantitative temporal constraints, temporally extended actions, and conditional branches[END_REF], Tsamardinos et al. present a plan merging algorithm for partial order plans that can handle simple conditional branching, quantitative time and actions with temporal duration. They use it to merge new goals into existing single agent plans. Plans are merged using constraint satisfaction techniques on two constraint graphs: a conditional simple temporal network, containing the start and end points of actions, and a conflict-resolution graph of the threats on causal links in the plan.

In [START_REF] Weerdt | Resource Based Multi Agent Plan Merging: framework and application[END_REF], De Weerdt has developed a resource oriented representation of actions and state called the Action Resource Formalism (ARF). He uses this as the basis of an anytime plan merging algorithm with polynomial complexity based on the exchange of resources between agents. The system requires agents to have an existing set of concurrently executable plans. Plan merging is not strictly required for the plans to be executable, but it may help reduce the cost of execution to the agents involved. In [START_REF] Valk | Algorithms for coordination in multi-agent planning[END_REF], Valk et al. present a related plan merging paradigm that adds an extra pre-planning coordination phase, in which agents exchange goals to suit their own planning knowledge. This helps create the set of independently executable plans required by De Weerdt. The problem of allocating a set of planning tasks to a set of agents is shown to be NP-hard in general, but Valk et al. develop an approximate algorithm that suffices in most cases.

Serial solution of sub-goals

Korf [START_REF] Korf | Planning as search: A quantitative approach[END_REF] did some influential work on the serial solution of subgoals in single agent planning, briefly mentioned in the last section, which has some relevance to plan merging and multi agent planning in general. Serial solution involves concentrating on one subgoal at a time: once a sub-goal has been achieved, the relevant bits of state information are fixed so the planner cannot undo them, and the next sub-goal is tackled. Serial solution is not possible for all sets of goals, but if it is possible it can significantly reduce problem complexity. Korf categorizes sub-goals in the following way:

Independent sub-goals do not interfere with each other, and can be solved serially in any order. For example, an agent could solve any number of "eight puzzles" independently: once each puzzle has been solved, it can be left untouched while the planner solves the others.

Serialisable sub-goals can be solved serially in some orders but not in others. For example, an agent can put away its toys and then close the toy box, but cannot close the toy box and then put away its toys.

Non-serialisable sub-goals have to be solved at the same time. For example, the robots rely on each others' movement to reach their destinations. It is impossible to move one robot and then the other.

Korf shows that the serial solution of n independent sub-goals reduces planning time by a factor of n. However, with serialisable goals the results are not always clear cut, and with non-serialisable sub-goals no speed increase is possible. In the majority of "interesting" planning domains, goals often have serialisable and non-serialisable relationships that make serial solution much more difficult. The relationships between goals may also be difficult to solve in general.

Restrictions on subgoals

Some attempts to solve this problem of independence have been made by limiting the interactions between the goals that may be given to different agents. For example, Yang et al. [START_REF] Yang | Merging separately generated plans with restricted interactions[END_REF] propose two domain independent restrictions that can be imposed on goals to ensure fast plan merging:

1. Given a set of plans S, the actions therein can be partitioned into a set of merge ability classes {E 1 , E 2 . . .E n } such that actions can only be merged if they belong to the same class. The merging of a set of actions involves replacing them with a single action that has precisely the same effects.

2. In the joint plan formed by merging the members of S, if there is a precedence relationship such that an action a must be ordered before an action b from a different mergeability class, then the reverse precedence relationship of b before a can not also be required.

These are limiting restrictions, but they still allow the representation of a significant number of planning problems (see the paper for examples). Yang et al. define two polynomial time algorithms for merging plans where each planning agent is given a single individual goal:

• One algorithm produces an optimal joint plan from a set of individual plans in O (n 3 ) time.

• Another algorithm produces a near-optimal joint plan in situations where each planning agent produces a set of alternative individual plans. Again, the algorithm has O (n 3 ) complexity.

Algorithms are also defined for situations in which planning agents produce plans for multiple goals. The algorithms ensure that plans can be merged if they can be found, but the assumption is still made that individual plans can be found without interaction during planning.

Implicit coordination and social laws

Shoham and Tennenholtz [START_REF] Shoham | On social laws for artificial agent societies: Offline design[END_REF] show how social laws can be used to reduce conflicts in planning. Social laws are predefined rules that agents must follow. A simple example is the rule "Always drive on the left." If all driving agents follow this rule they rarely need to worry about collisions. Social laws are effective means of reducing time spent on planning, but poorly defined rules can prevent planning being sound. For example, if the left hand lane is blocked then it is a reasonable course of action to temporarily cross to the other side of the road: the rule defined above forbids this, so agents would be unable to create a valid plan in this case.

Briggs and Cook [START_REF] Briggs | Modularity and Communication in Multi-Agent Planning[END_REF] extend the social law paradigm by allowing agents to relax social laws when necessary to find a solution. Laws are given a ranking, from the strictest to the most flexible. If agents cannot find valid plans with the strictest set of laws, they relax the highest ranking laws and try again. Soundness is preserved because agents end up trying to find plans subject to no laws, which equates to "normal" planning and plan merging.

Optimality of plans is not guaranteed if they are created following laws, but in complex domains the quick production of a sub-optimal plan is often preferred to the time consuming production of an optimal one.

Summary of Multi-agent Based Planning

In particular, three general types of multi agent planning approaches have been outlined:

Centralized planning collects individual planning problems into one large joint planning problem, and passes that problem to a single agent to solve. Independence of individual agents is sacrificed in exchange for the ability to use fast refinement planning techniques.

These new actions are labeled with the name of this agent. Once a complete plan has been constructed, each agent should execute exactly those actions that are labeled with its name in the order prescribed by the global plan.

Distributed local planning approaches give agents the maximum independence possible: they only share the information necessary to coordinate their plans, and do not rely on the outsourcing of planning or merging activities to others. The distributed nature of search means that refinement search algorithms are inappropriate without modification. Local search provides a possible alternative paradigm.

Plan merging techniques allow agents to plan independently using single agent planning techniques. The individual plans are collected by a single agent and merged into a coordinated joint plan. Individual agents are more independent in this approach than in centralized planning, but the division of search into two separate phases causes it to be inappropriate for some problems. Refinement planning approaches are useful throughout, although the plan merging agent may benefit from increased flexibility if it is given the ability to undo commitments made in individual plans to create a valid joint plan.

In terms of independence view, distributed planning is the most attractive of the three approaches. However, for our situation plan merging is more suitable. Because in plan merging, each agent has its own resources, plans and goals might coordinate after plan merging in order to reduce their plan costs without giving up their autonomy. For example in our DRT system, each taxi has its own plans and goals, normally all the taxis drive in its side, so we do not need coordinating all the taxis in real-time.

Chapter 5. Our Approach for DRT System

In this chapter we present our multi-agent based simulation approach for DRT system: multi-layer hybrid planning model, which uses planning domain based agents planning framework to coordinate the plans of demand responsive transport systems. Our research presents a multi-agent based demand responsive transport (DRT) services model, which adopts a practical multi-agents planning approach for urban DRT services control that satisfies the main constraints: using minimum number of vehicle etc. Our proposed model is for the distributed real-time problem like urban DRT system. In the proposed method, an agent for each vehicle finds a set of routes by its local search, and selects a route by cooperation with other agents in its planning domain. By computational experiments, we examine the effectiveness of the proposed method.

The Problem to Solve

Multi-agent simulation has been looked as an efficient tool for urban dynamic traffic services. However, the main problem is how to build an agent-based model for it. This research presents a multi-agent based demand responsive transport (DRT) services model, which adopts a practical multi-agents planning approach for urban DRT services control that satisfies the main constraints: minimize total slack time, client's special requests, increases taxis' seats use ratio, and using minimum number of vehicle etc. In this thesis, we propose a multi-agent based multi-layer distributed hybrid planning model for the real-time problem which can solve this question. In the proposed method, an agent for each vehicle finds a set of routes by its local search, and selects a route by cooperation with other agents in its planning domain. By computational experiments, we examine the effectiveness of the proposed method.

Multi-layer distributed hybrid planning model based on multiple agents. Multi-agent systems can exhibit more complex behaviors such as: autonomy, learning, aggregation of agents: decompose the larger task to several small agents, communicate and cooperate planning with each other. Agent-based model has been used for simulation if complex large-scale system behaviors. So the application of multi-agent system to DRT system is suitable.

In short, the problem can be stated as follows: "How can we make agents to cooperate so as to give the client the trip solution for his transportation request, and use the minimum number of vehicles?" (See Figure 35)
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Figure 35. Agent Based DRT

In multi-agent simulation, the model design is very important for system. So in next section, we will first introduce our model.

Multi-layer Hybrid Planning Model for DRT

In the following sections, we propose our agent-based multi-layer distributed hybrid planning model and its planning domain based multi-agent plan logic for demand responsive transportation intelligent control simulation that perform the basic interface, planning and support services for managing different types of DRT services.

Framework of System

This section describes the agent framework used for urban demand responsive transportation information intelligent control. The system agent framework is composed of three layers. The first layer is an agent platform (A-globe platform), on top of it is the multiagent architecture and finally there is the urban demand responsive transportation information system. (See Figure 36) • Agent platform -provides basic components for running one or more agent containers, i.e. container manager and message transport layer;

• Agent container -skeleton entity of A-globe, ensures basic functions, communication infrastructure and storage for agents;

• Environment simulator (ES) agents -simulates the real-world environment and controls visibility among other agent containers;

• Agents -represent basic functional entities in a specific simulation scenario. On top of the A-globe agent platform resides the multi-agent architecture, providing the base agents, structures and semantics for implementing urban demand responsive transportation information intelligent control system [START_REF] Xiac-Ming | Study of City Area Traffic Coordination Control on The Basis of Agent[END_REF]. The agents are of four kinds:

the user agent, which is in-charge of the communication with the different parties involved (vehicles, clients, other systems) by means of different devices; the node-station agents, which are in-charge of processing, assigning and scheduling the received trip requests encapsulate the assignment and scheduling of the transportation requests processed by the system; the taxi agent, which is in-charge of modeling each real vehicle for the system; and the transport-admin agent, which is in-charge of all agents (taxis, node-stations).

Finally, over the multi-agent architecture layers an urban demand responsive transportation system layer is implemented. By extending and implementing the agent-based system provided by the architecture, a dynamic trips planning and traffic control system can be developed.

The Definition of Agents

This section describes the main agents in the multi-agent architecture used for urban demand responsive transportation intelligent control system.

User Agent

This kind of agent represents a human user and their (allowed) interactions with system.

It is responsible for capturing all the client's requirements. It provides communication and interoperability between the end user and the urban demand responsive transportation intelligent system.

Node-station Agent

This kind of agent is to model each real geographical node-station for the system. This agent is in-charge of processing, assigning and scheduling the received trip requests. It is responsible for coordination with the other agents and the administration of the transporta-tion service. It helps in the collaboration among agents that provide support to related functions, such as the matching of request to vehicles, the geographical data access, the accountability of the transactions and the service payment among others.

Taxi Agent

This kind of agent is in-charge of modeling each real vehicle in the system. It processes the trip plan of the vehicle and provides interoperability between the vehicle and the DRT system. Taxi agents make proposals for the actual plan, process change information with the node-station agent, update the plan and reschedule the remaining trip requests.

Transport-admin Agent

This kind of agent is in-charge of all agents (taxis, node-stations, users). It can set: how many taxi agents will start, how route planning and intercommunication they will use matching transport requests with available vehicles. It manages service descriptions coming from vehicles side and client's side.

Agent Planning Sequence Model Design

The taxi agent planning sequence model design could be carried out by either a centralized model or a decentralized model. The differences among these two options are briefly described and then we present our multi-layer distributed hybrid planning model.

The centralized model (See Figure 38) considers the optimization of the entire system as the most important thing. For this reason, it pursues the minimization of all disutility function that considers the agent operator (number of vehicles required, occupancy and slack times) [START_REF]Transportation Research Board[END_REF] and the served users (effective waiting time, effective excess ride time).

The decentralized model (See Figure 39) is based on self-interested actors. This means that each agent seeks the maximization of its own utility.

The hybrid model uses a third actor, the planner for applying filtering policies [START_REF] Tomás | New technologies to work with traffic management plans[END_REF].

The taxi agent behaves in a self-interested way as in the decentralized model approach [START_REF] Zhang Jin | Towards the Applications of Multiagent Techniques in Intelligent Transportation Systems[END_REF]. The difference from the decentralized model is the hybrid planning algorithm for transport tasks allocation.

Centralized Model

Figure 38. Centralized Model

In the centralized model, it focus is on optimization of the global utility for the system.

Transport-admin agent can control other three kind agents, and choose the trip plan for clients.

tralized model and centralized model is difficult to find good solution. Then we will introduce our multi-layer distributed hybrid planning model.

Multi-Layer Distributed Hybrid Planning Model

Figure 40. Agent Planning Domain Framework

In Figure 40 we can see: each taxi agent has graph with its particular edges (costs of edges) and a planning domain. According to it, taxi agent makes its plan of path. Because of traffic unpredictability (traffic jams, etc.), taxi agents need to communicate with other agents exchange information. Therefore each taxi agent makes own statistic of pass times.

It updates it by means of own experience and experience of the others, that are transmitted among them by sending messages.

In our approach, every taxi agent is moving and the trip requests are random. So it is a dynamic distributed situation. If all the agents communicate together online, it will be slowly and unstable. Hence each taxi has a limited range of planning domain it need not communicate with all taxi agents. The taxi agent can communicate only with taxis agents or node-station agents in its planning domain, the information interchange is performed As mentioned above, in the multi-layer distributed hybrid planning model we have:

1) A multi-layer distributed hybrid structure is used.

2) The node-station agent applies filtering policies.

3) The taxi agent makes proposals for the actual plan, process change information with the node-station agent in its planning domain, updates the plan and reschedules the remaining requests, transport passengers.

Figure 41. Agent Multi-Layer Planning Framework

In the transport-admin agent layer, user agent's job is to represent the client and his decisions of the transportation request. So it is responsible for the result. Since the real client does not directly communicate with the taxi agent, the user agent also constitutes a kind of client towards the transportation system, which is represented by the node-station agent.

So when the clients change their requests in a dynamic scenario to deal with unexpected situations, the user agent also has responsibility for communicating the client about any subsequent changes to the original deal. These unexpected situations must also be communicated with the other agents though transport-admin agent. The user agent must communicate to the transport-admin agent about changes on the clients' desires (e.g. change the lieu, delays, and trip cancellations). The transport-admin will implement a negotiation with the node-station agent about the changed request.

In the node-station agent layer, the node-station agent gives the client (through taxi agent) the most suitable trip solution offered by the planning together after filtering a list of proposals. The node-station agents do not move, like the station in the geography map. At the same time, the node-station agent holds a request profile containing the client's preferences concerning the trip. It also holds some negotiation capabilities with the other nodestation agent in real time. The node-station agent processes all the client's requests coming through the User agent. It is the agent who in charge of executing a negotiation role in the layer. In addition, the node-station is in charge of implementing the assignment through filtering policies and the negotiation process. It holds a list containing the trip requests being processed and a list of filtering policies to apply to the trip solutions. Before the taxi agent gives the proposals to the node-station agent, it will communicate with the other agents that manage the trip plan of the vehicle and other traffic information in its planning domain.

In the taxi agent layer, when a taxi agent communicates with other agents in its planning domain, if there is not any node-station agent in it, the planning model will be "decentralized", and in the plan logic we will chose a trusted third party acting as auctioneer. The details we will describe in section 5.2.4. (See Figure 42)

Figure 42. Taxi Agent "Decentralized" Planning Model

If there is a higher lever node-station agent in it, the planning model will be centralized (See Figure 43). When we set the taxi agent planning domain, we should make sure that there is not two node-station agents in its planning domain. In this situation, we will choose node-station agent acting as auctioneer in planning logic.

Planning Domain Based Multi-agent Plan Logic

In the demand responsive transportation system, a general formulation of a client's demand function is:

) ..... ( 3 2 1 i x x x x F Y • • • • =
Where Y is the dependent variable (level of demand) and x i (i = 1, 2..., n) are the explanatory variables. The demand function reflects the behavior of an individual client, whose preferences dictate the particular functional form of the relationship, or it may be formulated to explain the behavior of an aggregate group of individual client.

A particular specification of the demand function which is often used to analyze client's travel demand is expressed in terms of 'generalized costs' (time, money…). This concept is an attempt to summarize the 'cost' of a journey by adding together the various components of time or money spent. The operation system can be formulated as the following optimization problem:

Minimize 0 1 c m q a AC M i i i T ∑ = + + • = β
Where: AC T is the all generalized cost of the journey at time T.

β is the value of coefficients.

M is a set of all passengers. m is the monetary cost of the journey. a i is the value of time associated with time component i. q i is the time required to complete the journey divided into the various components i of traveling time: like a get-on delay time of passenger i, a get-off delay time of passenger i, the travel time. c 0 is the residual component of the 'cost' of making a journey which is not a function of the monetary cost or the time involved but is a 'cost' associated with user's special requirement component. This cost may represent many different aspects of travel, e.g. the effort involved in taking heavy or bulky baggage on a trip or that part of the discomfort or general inconvenience which is not a function of the time duration of the journey. In some models this component also represents the different propensities to travel of different segments of the population, grouped by income, sex, age etc and will take different average values in all these categories. The generalized cost function represents the traveler's willingness to pay to reduce the waiting, walking or trip time. The residual effort component is also measured in monetary units.

In our multi-layer distributed hybrid planning model, we propose a special approach to multi-agent planning logic for taxi agents and node-station agents, extending an existing resource-based planning approach. As the earlier section described situation of our model, we assume that each of the agents has a plan available to satisfy their goals. In order to lower their costs, two or more agents investigate whether they can cooperate together in their planning domain.

In [START_REF] Deweerdt | A resource logic for multiagent plan merging[END_REF], Mathijs de [START_REF] Weerdt | Resource Based Multi Agent Plan Merging: framework and application[END_REF] introduced a resource oriented representation of actions and state called the Action Resource Formalism (ARF). His main idea is that in carrying out a plan an agent possibly produces side products that can be used as resources by other agents. As a result, other agents can discard some of its planned actions. This process of exchanging products, called plan merging, results in distributed plans in which The problem is that for every plan merging, we need to do "auction" collecting all requests of all agents, so how many agents in the system? If there are many mobile agents in the system, it will be slow and difficult to avoid deadlock. For example, in our real-time distributed situation, there are many taxi-agents moving in real-time. If we use auction mechanism merging all the agents' plan together in real-time, the system will be slow and not stable. So as we introduced before, in our proposed model there are three layers, taxiagents and node-station agents plan together in their planning domain.

We propose a special planning domain based multi-agent planning logic, extending an existing resource-based ARF (Action Resource Formalism) planning approach. We also use many-sorted first-order language to describe our framework [START_REF] Yang | Many-sorted first-order logic database language[END_REF]. At first we introduce many-sorted language described primitive ARF (Action Resource Formalism) main elements notions like goals, resources, action, plans, and our special element planning domain. Then we describe the planning domain based multi-agent plan merging logic and its algorithm. Definition 1. The alphabet of a many-sorted first-order language consists of the following sets of symbols:

A countable set S∪{bool} of sorts (or types) containing the special sort bool, and such that S is nonempty and does not contain bool.

• Logical connectives: ∧ (and), ∨ (or), ⊃ (implication), ≡ (equivalence), all of rank (bool.bool, bool), ¬ (not) of rank (bool, bool), ⊥(of rank (e, bool));

• Quantifiers: For every sort s ∈S, ∀s (for all), ∃s (there exists), each of rank (bool, bool); For every sort s in S, the equality symbol = . s , of rank (ss, bool).

The symbols consisting of:

• Sorts: Sorts = {s 1 , s 2 , . . . , s n , . . .}.

• Variables: Vars = { Vars to denote the set of all variables.

• Predicate symbols: Pred = {p,q, . . .} with rank r : Pred → Sorts * .

• Function symbols: Fun s = {f,g, . . .} and rank r : Fun s → Sort s + × {s} for each s ∈ Sorts.

• Constants: Cons = { 1 s c , . . . , n s c , . . .} for each s∈Sorts.

Resource

For the plans, the resources are required to achieve a goal. This attribute captures the resource requirements of all actions within the plan and does not include the resource requirements of any sub-goals of the plan. We model a real process, like transportation in our DRT systems, by an action. Each resource fact represents a particular atomic product or object with all its properties at a specific time and place. This implies that for each object many possible resource facts exist, but only one at a time. Resource facts may also be used to denote more abstract 'products', such as possibilities and availabilities. The properties of a resource are described by the terms in our language, and are defined for all planning agents in a specific domain. A fundamental property of resources is that they can be consumed and produced by actions. We use these actions combining together to achieve certain goals in agent's planning domain. This kind of actions combing together is called as plan.

A resource fact, or simply resource, in many-sorts first order language formula p(t 1 : s 1 , t 2 : s 2 , . . . , t n : s n ). The terms s j are also called the attributes of resource p with attribute values t j .

As an example, take a resource fact:

Taxiagent(1234 : id, Rouen1 : loc, [START_REF] Pednault | Formulating multi-agent dynamic-world problems in the classical planning framework[END_REF][START_REF] Marr | Vision[END_REF]: time, [START_REF] Alami | A scheme for coordinating multi-robot planning activities and plans execution[END_REF][START_REF] Tsamardinos | Merging plans with quantitative temporal constraints, temporally extended actions, and conditional branches[END_REF]: planningdomain)

It is referring to the taxi with identification 1234 at location Rouen1 at time interval [START_REF] Pednault | Formulating multi-agent dynamic-world problems in the classical planning framework[END_REF][START_REF] Marr | Vision[END_REF], taxi123 and taxi124 in his planning domain. This point is different from resource based planning logic before, in our model taxi agents change information and planning together in his planning domain.

Resource scheme is used to indicate a set of sources sharing some attributed. It is useful to denote arbitrary resources that are ground instances of a resource scheme. For example, Taxiagent (x : id, rouen : loc, I : time)

It is a resource scheme denoting some taxi at Rouen, where we do not care about the time interval I it is available. Definition 2. A set of resources R satisfies an extended resource scheme (R S , C), RS is a set of resource schemes, and C is a set of constraints for terms with variables occurring in resources in RS,, abbreviated as R |= (R S , C), if there exists some resource-identity preserving ground substitution θ with respect to R S such that

1. R S θ ⊆ R, 2.
|= Cθ, i.e., every constraint reduces to true under θ.

If we want to specify the substitution θ used to satisfy the extended resource scheme, we write R |= θ (R S , C).

a general resource fact, we introduce the notion of a substitution. A substitution θ replaces variables occurring in a resource r by terms of the appropriate sort like. We also use rθ to denote the resource r' that results from replacing the variables occurring in r according to θ like in ARF. If R is a set of general resources, Rθ is a shorthand for {rθ | r∈R}.

Goals

Some resources an agent already has, others he needs to obtain. In general, such an agent does not care about obtaining a specific (unique) resource as a goal g, but only a resource having some specific properties. So we will conceive an individual goal g as a resource scheme. Even more generally, we may want to obtain a set of goals meeting some constraints. Therefore, we define goals and goal schemes analogously to resources and extended resource schemes as follows: Definition 3. A goal g is a resource scheme. A goal scheme Gs is an extended resource scheme Gs = (G, C), where G is a set of goals. G = {g 1 , . . . , g n }.

As goal schemes are extended resource schemes, we also use R |= G to express that the resource set R satisfies the goal G. if there exists a ground substitution θ such that Gθ ⊆ R, i.e., there is a set of ground instances of the goals that is provided by the resources in R.

Two resources r 1 and r 2 are called equivalent, denoted by r 1 ≡ r 2 , when they are equal except for the value of their occurrence attribute. Resource facts are used to model the state of the world (as far as it is relevant) by enumerating the set of resource facts that are true at a certain time point. Possible transitions from one state to another are described by actions.

An action is a basic process that consumes and produces resources. An action o has a set of input resources in(o) that it consumes, and a set of output resources out(o) it produces. Furthermore, an action may contain a specification param(o) of some variables that occur in the set of output resources as parameters of the action. To ensure that each output resource out is uniquely defined, it may only contain variables var(out) that already occur in the input resources or in the set of the parameters. This is formally defined as follows.

Action

Action is a rule of the form a: Rs Remark: The value (id,-i) of the occurrence id for the i-th input resource is inherited from the value of the occurrence identifier of the action o in which its is used. Analogously the value (id, i) of output resources is constructed. As can be seen later on, this mechanism provides us with unique occurrence labels of resources in plans.

Example : Consider the following action move id (y : loc) : taxi (id,-1) (n : num, x : loc) ⇒ ride (id,1) (x : loc, y : loc) ∧ taxi(id,2)(n : num, y : loc)

This action specifies how a taxi may move from a source location x to a destination y and requires the taxi to be present at the source x. It "produces" a taxi at the destination and the ride opportunity (for passengers) to travel with this taxi from x to y. Let O be a finite set of action specifications. The set O is said to be a set of (concrete) actions over O if 

Plan

In general, a single action applied to an initial set of resources is not sufficient to achieve a desired state. Often, a set of actions have to be applied in some partial order to produce the desired effect. A specification of only the ordering of actions, however, in general is not sufficient to describe a plan in sufficient detail. ARF also need to specify for each consumed resource, which produced resource it is dependent upon. Such a partially ordered set of actions with a specification of the dependency relation between resources is called a plan. To specify how actions are interrelated, we also use the notion of a dependency function. The first requirement is met if there exists a substitution θ such that for two resources r and r', d(r) = r' implies rθ ≡ r' θ , that is θ is a unifier for every pair of resources (r, d(r)).

In particular, we are looking at a most general unifier (mgu) θ with this property.

The second condition requires that there are no loops in the dependency relation be- in his planning domain. We can now combine these plans into one composed plan (P pd1 ║P pd2 ║ ••• ║ P pdn ) for the combined problem Π. An independent combination of their plans can be considered as a model of their joint plans:

P i = pdj PD j P i U ∈ ) ( a A a P Out ∈ U |= a A a G ∈ U and a A a I ∈ U |= ) ( a A a P In ∈ U
That is mean: the agents jointly are able to satisfy the joint goals G using their joint resources I. So we can use the plan reduction techniques in the every agent's planning domain to deal with the multi-agent cooperation planning problem.

Planning domain based multi-agent plan merging logic

The main idea of planning domain based multi-agent plan merging is that agents can reduce the cost (action) of their own plan by communication and cooperation with other agents in his planning domain. Agent can remove actions for which the results (the resources produced by these actions) are readily available at other agents in his planning domain.

Plan reduction:

In the planning domain, we also use plan reduction like in AFR. The different is: the plans reduce and merging in the agent's planning domain. ( cos of their plan, while maintaining goal-reliability. To reduce the costs of a plan an agent therefore might try to remove some action o from its plan, by replacing every output resource r of o that is used in the plan, i.e. d -1 (r) ≠ ⊥, by another other, freely available resource r' occurring in the current plan or by an input resource of o. The resources r' that is not used in a plan to attain the goals is called free resources and are defined as follows: Definition 8. Given a plan P = (O, d, θ) that is a solution to a problem Π= (O, I,G), and a substitution θ G such that G θ G ⊆ Out(P), the set of free resources is defined as Free(P,

Π) = (I \ In(P)) U (Out(P) \ G θ G ).
If using Free (P, Π) U in(o) θ, every output resource can be replaced such that a cheaper valid plan P' can be obtained, we say that P is reduced by removing o.

Note that if o cannot be removed, a nonempty subset of its (used) output resources cannot be replaced. We call this set the request set RequestSet(P, Π, o) belonging to o and note that it contains the set {r | r ∈ out(o), d -1 (r) ≠ ⊥ }\ (Free (P, Π) U in(o)). Viewed from a multi-agent perspective, these request sets can be used for resource transactions between agents: if free resources are available from other agents in his planning domain, we can reduce the plan P exists if these free resources are sufficient to attain RequestSet. 

o i P , )∪ { } U j \ A j∈
Free(P j ).

Multi-agent plan reduction: Given a multi-agent planning problem { Π a | a ∈ A}, where Π a = (O a , I a ,G a ), an action o ∈ O for an agent i ∈ A, in agent i planning domain a set of independent embedded agent j plans {P j | j ∈ PD i }, where Theorem 1. Given a set of agents A, for each agent i ∈ A a problem Π i and a plan P i that solves this problem, the action o in the plan P j of agent j (agent j in agent i planning domain) can be removed if

P a = (((O a , d a , θ a ) , I a , d Ia , θ Ia ) ,G a , d Ga , θ Ga ). If Free ( - o i P , )∪ { } ) ( i PD j \ j A j P Free ∈ ∈ U |= In( + o i P , )∪(G i \ 1 - Gi d (Out ( + o i P , )) , then a partial injective function f : In( + o i P , )∪(G i \ 1 - Gi d (Out( + o i P , ))→Free( - o i P , ) ∪ { } ) ( i PD j \ i A i P Free
{ } ) , ( i PD j \ i i A i P Free Π ∈ ∈ U |= RequestSet (P j , Π i , o).
About proof of resource based multi-agent plan reduction theorem can be found in [START_REF] Desaulniers | The VRP with pickup and delivery[END_REF]. This reduction property is used in the plan merging algorithm to be discussed next.

Plan merging:

In Action Resource Formalism (ARF), it uses auctioneer mechanism algorithm to exchange of resource facts. It assumes that one of the agent or a trusted third party acts as the virtual auctioneer. The problem is that it chose one auctioneer for the entire agents plan merging make system slow and difficult to avoid deadlock especially for real-time system.

In our model, we also use auctioneer mechanism in agent planning domain plan merging. When in one taxi-agent planning domain, there is one high lever station-agent, we will choose the station-agent acting as auctioneer. If there is only the same lever taxi-agents in his planning domain, we will assume that a trusted third party acting as virtual auctioneer.

And for avoiding deadlock if one taxi-agent in one station-agent planning domain, it will be not acting as auctioneer in other agents' planning domain at the same time.

The planning domain based plan merging algorithm (Algorithm 1.) works as follows:

Agents communicate with other agents in his planning domain to choose the auctioneer in the agent planning domain. The auctioneer announces when the agents in the planning domain can start the plan merging, thereby announcing some minimum allowed cost reduction value. All agents in his planning domain deposit their request sets with this auctioneer. Each request set corresponds with the removal of an action from an agent's plan and contains a set of resource facts the agent needs to remove the particular action. Furthermore, the request contains a cost reduction value defined by the difference in costs between the old plan and the resulting plan if the exchange would succeed.

The auctioneer deals with the request with the highest potential cost reduction first. All the agents openly announce their cost reduction values. Right before each auction round starts, the requesting agent (a i ) is asked for the specific set of resource facts that has to be replaced by resource facts of other agents -this set is called the RequestSet. This set is not necessarily equal to the set in the initial request, since other exchanges influence the availability of resource facts for the agents. Next, the set of requested resource facts is sent to each agent, except to a i . The agents in the planning domain return all their free resource facts for which there is an equivalent one in the request set RequestSet, and include the price of each of their offered resource facts. When all bids (collected in R') are collected by the auctioneer, it selects for each requested resource fact the cheapest bid (Vickrey (1961) auction).

If for each resource fact in RequestSet a replacement can be found, the requesting agent a i may remove the corresponding action(s). Furthermore, we have to add dependencies be-tween the providing agents and the initial resource facts for the requesting agent. At the end of each successful exchange each involved agent has to update the cost reduction values of all of their requests, because this value can change as the agent can now have more or less resource facts available. One could repeat this process until none of the auctions has been successful done.

We can see that the planning domain based agent plan merging algorithm is a distributed any-time algorithm, because it can be stopped at any moment. And the system will not be dead that even in some agent's planning domain have dead-lock problem. If the algorithm is stopped, it still returns an improved set of agent plans, because it uses a greedy policy to dealing with the requests with the largest potential cost reduction first.

Algorithm 1. planning domain based plan merging

Example: In taxi agent T1planning domain, there is taxi agent T2 and node-station agent N1. Suppose that a taxi agent T1, starting in A, has the plan to put down a passage1 at station1 and put down passage2 at station2 , and get a passenger3 from station1 to sta-tion2. Taxi agent T2 starts in B, has the plan to put down a passage4 at station1, and get a passenger5 from station1 to station2. Their initial routes are shown in Figure 44. Each taxi has at least 4 passenger seats.

Figure 44.

Taxi Agent T1 ad T2 Initial Routes When these agents are cooperating and plan merging together, they can significantly reduce the distance traveled and costs by sharing their capacities and travel. In taxi agent T1 planning domain, there are taxi agent T2 and high lever station-agent N1, so N1 will be acting as auctioneer. (See Figure 45) If there is no node-station agent, we will choose a trusted third party acting as virtual auctioneer.
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Analysis

In multi-agent simulation, Simulation platform is very important for system design. So in next section, we will first introduce simulation platform. Then we will introduce prototype implantation and experiments analyze.

Simulation Platform

Programming Language

There are many different multi-agent construction platforms or frameworks available, some of which are for academic and educational research, while others are built for commercial applications. Agent construction tools use the principle of object-oriented design and programming to encapsulate the fundamental agent building blocks, as base classes, and provide Software Development Kits (SDK) for agent developers to construct agents by providing a class library. Tools and systems are built on many different kinds of platforms and languages, including Java, C/C++, Prolog, and Python. As the following table shows, the majority of the agent tools and systems are built using Java. Table 1, originally created by Serenko and Detlor [START_REF] Serenko | Agent Toolkits: A General Overview of the Market and an Assessment of Instructor Satisfaction With Utilizing Toolkits in the Classroom[END_REF], gives a summary of some of the popular toolkits by categories: mobile agent toolkits, multi-agent toolkits, Internet agent toolkits, and other agent toolkits. From table 1, we can see: Java programming language is often used for multiagent systems. So for its wide use we will choose Java programming language.

Gerstner Laboratory [START_REF] Vrba | Java-based agent platform evaluation[END_REF]). In our approach it will be necessary to run a lot of agents at the same time. And we want to run this simulation on a common personal computer. Platforms were compared in message speed benchmark and memory requirements benchmark.

These benchmarks are carried out in platforms: Jade, FIPA-OS, ZEUS, JACK and A-Globe.

Message Speed Benchmark

The agent platform runtime, carrying out interactions, should be fast enough to ensure reasonable message delivery times. The selected platforms have been put through a series of tests where the message delivery times have been observed under different conditions.

In each test, the so called average roundtrip time (avgRTT) is measured. This is the time period needed for a pair of agents (let's say A and B) to send a message from A to B and In the serial test, the A agent from each pair sends one message to its B counterpart and when a reply is received, the roundtrip time for this trial is computed. It is repeated in the same manner N-times (N is 1000/100/10 according to the number of agents). The parallel test differs in such a way that the A agent from each pair sends all N messages to B at once and then waits until all N replies from B are received.

Different protocols used by agent platforms for the inter-platform communication are mentioned: Java RMI (Remote Method Invocation) for JADE and FIPA-OS, TCP/IP for ZEUS and A-globe and UDP for JACK. Some of the tests, especially in the case of 100 agents, were not successfully completed mainly because of communication errors or errors connected with the creation of agents. These cases are marked by a special symbol.

Table 2. Message Delivery Time Results

Memory requirements benchmark

This issue is mainly interesting for deploying agents on small devices like mobile phones or personal digital assistants (PDA) which can have only a few megabytes of memory available. This issue is also important for running thousands of agents on one computer at the same time. Approximate memory requirements per agent are shown in Figure 49 (originally created by David Sislak, Martin Rehak, Michal Pechoucek, Milan Rollo, Dusan Pavlıcek).

Figure 49. Memory Requirements per Agent

With regard to this important points (memory requirements and processor load), there are two good possible platforms: JACK and A-Globe.

JACK applications consist of a collection of autonomous agents that take input from the environment and communicate with other agents. This provides system builders with a very powerful form of encapsulation. Each agent is defined in terms of its goals, knowledge and social capability, and is then left to perform its function autonomously within the environment it is embedded in. This is a very effective way of building applications for dynamic and complex environments-each agent is responsible for pursuing its own goals, reacting to events and communicating with other agents in the system. There is no need to explicitly program the interactions of the whole application; rather, the interactions emerge as a by-product of the individual goals and capabilities of the constituent agents. JACK is a mature, cross-platform environment for building, running and integrating commercial- On the other hand A-Globe is suitable for real-world simulations including static and mobile units. For large scale scenarios the interoperability also brings problems with system performance (memory requirements, communication speed). A-globe is suitable for real-world simulations including both static (e.g. towns, ports, etc.) and mobile units (e.g. vehicles). It could be useful for large taxi simulations. In such case the platform can be started in extended version with Geographical Information System (GIS) services and Environment Simulator (ES) agent. The ES agent simulates dynamics (physical location, movement in time and others parameters) of each unit. In A-Globe there is a nice container

Prototype Implementation

In the section, at first we will introduce the implementation flow of multi-agent based DRT simulation system. Then we will introduce the taxi agent and node-station agent planning static structure. At last, we will introduce the interface and function of multiagent based DRT simulation system.

Flow of Multi-agent Based DRT Simulation System

At first, the User agent receives passenger's requests at time T and transfers them toward all others agents, and holds information of all passenger's requests. Taxi agent exists for each vehicle and determines its route by planning and cooperation with node-station agents and other taxi agents in his planning domain.

The route is determined as follows:

1) To finds some candidate routes by its local planning domain search.

2) To decide each route by planning and cooperation with agents in its planning domain.

3) Do the above step until each route is chosen. 

Visualization of DRT System

If double click the entity name on the Node-station and Taxi agent Status interface, we can see the single taxi agent status interface (see Figure 57). Capacity and actual status can be seen in the interface.

By the same way, we can open single node-station agent status interface (see Figure 58).

The waiting passenger's information in the station can be seen in interface. From experiment above, we can see that use our model planning domain based algorithm can effectively find minim number of taxis for certain trip requests. We also interest about increase the efficient passages in every vehicle. There are only 1.4 passengers in every vehicle now. The capacity utilization of taxis can be used to show taxis' seats use ratio in different situation, so capacity utilization of taxis will be discussed in next section. In the figure 62, it shows the relationship among capacity utilization of taxis, number of taxis and number of waiting passengers in planning domain limited situation. We can see that when there are 30 taxis (taxi agents) in the street, the capacity utilization of taxis is almost 99%, but there are 42 passengers waiting. If there are 70 taxis (taxi agents) in the street, there are no passengers waiting, but the capacity utilization of taxis is only 68%. So we can see 50 taxis in the street is the best result, because it has a balance among capacity utilization of taxis (90%), number of taxis [START_REF] Reynolds | Flocks, herds, and schools: A distributed behavioral model[END_REF] and number of waiting passengers [START_REF] Desaulniers | The VRP with pickup and delivery[END_REF]. We can see in every vehicle there are 3.6 passengers. In this thesis we have:

• Discussed the background and relevant work on DRT (Demand Responsive Transport) system.

• Discussed the theoretical foundation of multi-agent based simulation and DRT system.

• Described a multi-agent architecture for the urban DRT intelligent control system.

• Investigated various multi agent planning problems and approaches.

• Proposed a new multi-agent based multi-layer distributed hybrid planning model for DRT system.

• Developed an efficient planning domain based plan merging algorithm. Experiments on established benchmark sets show the validity of our approach.

The intent of this study is to develop a multi-agent based analytical modeling approach as to demand responsive transport (DRT) simulation model. Unlike standard optimization procedures that require the knowledge of the exact spatial and temporal location of the demand points, we propose a methodology using spatial and temporal distribution of trip demand. Our methodology makes effective solution for this distributed situation.

Multi-agent simulation has been looked as an efficient tool for urban dynamic traffic services. However, the main problem is how to build an agent-based model for it. This research presents a multi-agent based demand responsive transport (DRT) services model, which adopts a practical multi-agents planning approach for urban DRT services control that satisfies the main constraints: minimize total slack time, client's special requests, increases taxis' seats use ratio, and using minimum number of vehicle etc. In this thesis, we propose an agent based multi-layer distributed hybrid planning model for the real-time problem which can solve this question. In the proposed method, an agent for each vehicle finds a set of routes by its local search, and selects a route by cooperation with other agents in its planning domain. By computational experiments, we examine the effectiveness of the proposed method.

Future Work

This thesis attempted to find a multi-agent based method to solve demand responsive transport (DRT) problem in urban real-time distributed situation. Our project "Gestion Temps Réel du Transport Collectif à la Demande (CPER) Budgetthe French" will continue. Further study include: improving multi-layer distributed hybrid planning model, doing more experiments, developing application, and application to wider domain of problem.

Improving multi-layer distributed hybrid planning model

As mentioned above, in the multi-layer distributed hybrid planning model we have:

• A multi-layer distributed hybrid structure is used.

• The node-station agent applies filtering policies and communicates in real-time.

• The taxi agent makes proposals for the actual plan, process change information with the node-station agent and other taxi agents in its planning domain, updates the plan and reschedules the remaining requests, transport passengers. 

Application to wider domain of problem

The multi-agent system is an autonomous intelligent computer system, in which every agent always has a certain level of intelligence. The level of an agent's intelligence could vary from having pre-determined roles and responsibilities to a learning entity. A multi-agent system is an aggregate of agents, with the objective of decomposing a larger system into several smaller agent systems in which they communicate and cooperate with one other. So agent-based model can produce high-quality simulations for complex and largescale real-time distributed system behaviors, like the urban traffic system that a large-scale complex system with multiple entities and complicated relationships among them.

In real world, there are many different real-time distributed systems like DRT system.

So our multi-layer distributed hybrid planning model also can apply to these systems. For example, like aviation system. In aviation system, the airport in every city cannot move like node-station in DRT system, the plane transport passengers among different airports in different cities like taxi. How to make the plane usage more efficient by change passenger's trip information is a problem. Certainly one plane do not need to communicate and change information with all other planes in the world. Our model can be extended apply to this problem.

And for supermarket supplies distribution system, every supermarket in the city cannot move like node-station, the truck transport different supplies request for different supermarket like taxi. By change the supplies request information, how to make the trucks usage more efficient and quickly, and at the same time to reduce the cost of transport is a problem. Our model also can be extended apply to this problem.

So as future work is considered to continue optimizing our model with known benchmarks and extend its application.
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  operator can therefore choose to accept bookings as little as 15 minutes before requested pick-up times. Suitable vehicles are automatically suggested to the dispatcher, based on the passenger requirements taken on the phone -pick-up and drop-off locations and times, calculated travel times, and existing commitments to other passengers. The selected vehi-cle's driver then automatically receives the passenger and journey details through his in vehicle display screen. When a passenger calls in to book a bus journey from their front door, the dispatcher enters the passenger details and pick-up and drop-off locations, aided by a detailed digital mapping display, and the software automatically assigns the best vehicle for the job, offering alternatives where possible. MobiRouter was developed by MobiSoft Oy in Finland and is marketed and supplied in the UK by Mobisoft (UK) Ltd.

Figure 5

 5 courtesy of MobiSoft Oy): In the route dialog box, a variety of services can be defined for the same vehicle, varying from hour to hour or day to day. Any combination of demand responsive services can be defined; including 'fixed', 'semi-fixed' or 'free route'. Service areas and zones are defined using a simple drawing tool on the digital map. Other tools help to design service areas by indicating travel time between selected points or equidistance areas from a central point. fleets of vehicles can be defined, including minibuses, taxis, etc. Capacities can be defined to suit the service offering, e.g. wheelchair, bicycle rack. Multiple capacities can be defined to reflect different vehicle configurations. MobiRouter can also be used to schedule taxis. A variety of running costs can be associated with taxis and the software algorithm will indicate which is the cheapest for a given journey. The software can also automatically indicate where taxi sharing is possible.

Figure 4 .

 4 Figure 4.

  -2 is a R&D activity concerned with the simulation and scheduling of public transport services. The first LITRES simulator was developed in 1993-94 and was applied in planning studies for Canberra, Sydney and Perth. The most recent version, called LITRES-2 (1996-97), handles multi-leg journeys and makes a clear distinction between simulation and scheduling modules, with the scheduler designed for stand-alone use in real-time applications (TDC application). The LITRES-2 software provides a fine-grained simulation capability for use in urban public transport planning. According to the developers, the software is well suited to the investigation of initiatives and scenarios, including combinations of conventional service (e.g. bus, rail and single-hire taxi) with novel modes, such as demand-responsive and zone-based bus services. In the longer term, LITRES-2 is intended as the kernel for traveler-information and fleet-scheduling systems.
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  tween theoretical study of corruption developing micro models of individual acts and empirical study of corruption at the country level. McPhail [69] discussed collective actions of people in large assembling and dispersal such as crowds, mobs and demonstrations. Helbing, Farkas & Vicsek [70] also performed a simulation study on aggregate behavior of individuals in a panic situation. Benenson & Omer [71] are doing an interesting research to demonstrate the dynamics of urban residential distribution of Arab and Jewish people in a few Israeli cities. Merelo, Prieto & Rivas [72] attempt to forecast the effects of mass media advertising using ABM/S.

1 )

 1 is located on the tangent point of the budget line and the utility curve U 1 . Suppose the consumer's income increases. This causes a rightward parallel shift in the budget line since the amount of budget will also increase to B 2 (> B 1 ). The expansion of feasible choice set poses a new constraint and the consumer's choice moves to a 2 = (t 2 , x 2 ) which offers increased utility to the consumer, as shown in Figure23(b).

  (a). If this process is repeated with different prices, a general description of relationship between transportation price P T and transportation demand t can be obtained, shown in Figure24(b).

Figure 24 .

 24 Figure 24. Generation of Transportation Demand
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 101 (P): The change in system's state v, from v 0 to v 1 , denoted by v p If the change involves only a single variable in cardinal number, the perturbation can also refer to the amount of the difference of that variable with respect to its reference (or baseline) value v 0 , i.e., The difference of system's dependent variable η with respect to its reference value η 0 brought by the perturbation v p 0 i.e., These definitions are very generic and will be used in later chapters. It is very important to keep track of state v 0 and state v 1 when the sensitivity is compared to other sensitivity.

  rated. Consequently, the study of transportation demand should be implemented with distribution of trips in origins and destinations. The first step to study trip distribution is to divide physical space under investigation into mutually exclusive zones or locations. Then, the trip distribution can be conveniently specified in a matrix form. If t ij (k) indicates the number of trips during a given time period k between origin location i and destination location j, an n-by-n matrix T(k) = [t ij (k)] can be constructed where n is the number of locations. This matrix is often called trip table, trip distribution matrix or origin-destination (O-D) matrix. In general, a typical O-D matrix is not symmetric and shown in Figure25.

Figure 25 .
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  is useful in converting equation t ij (k+1) into a matrix equation, and introduced in the followings. Hadamard Product : Let M m,n denote the set of m-by-n matrices. The Hamadard product of A = [a ij ]∈M m,n and B = [b ij ] ∈ M m,n is AoB ≡[a ij * b ij ]∈M m,n . Hadamard Exponent: Let A = [a ij ] ∈M m,n then the Hadamard exponent of the matrix A in the order of m is denoted by A [m] and its component is obtained by calculating a ij m .

Figure 26 . Generalized algorithm for refinement planning Figure 27 .

 2627 Figure 26.Generalized algorithm for refinement planning

  produce different search algorithms. Stack like functions produce depth first search, queue like functions produce breadth first search and so on. The most common form of search in planning is A* and best first (heuristic only A*) search, which treat the open list as a priority queue sorted by a heuristic measure of plan quality. Depending on the nature of the planning problem, however, other algorithms may prove more useful. Search algorithms are discussed in more detail by Russell and Norvig [88].
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 37 Figure 37.A-globe System Architecture Structure

  when other agents entry to the planning domain. It also ensures change while each meeting. So they can change their plan and use another path.Taxi planning system ensures route planning and communication with the view of improving planning. It consists of two main parts. First part is taxi agents planning and replanning paths within its planning domain. Second part is node-station communicating in real time. It ensures right interchange and using information about traffic situation and passengers' trip requests. (See Figure41)

  (i) every action occurring in O is obtained from an action o id () in O by substituting a unique ground value v for its occurrence identifier id and (ii) variables in actions are standardized apart, i.e., for each o≠ o'∈O we have var(o) ≠ var(o'). A concrete action o ∈ O can be applied to a set of (ground) resources R if there exists a ground substitution θ such that in(o) θ ⊆ R. Application of this action to R results in consuming the set in(o)θ of input resources while producing the set out(o) θ. The result of o applied to R (under θ) therefore is a resource transformation: starting with R, the set R \ in(o)∪out(o)θ is produced. The set res(O) is the set of all resources mentioned in the input in(o) or output out(o) of actions o ∈ O. The set cons(O) specifies the set of all resources consumed using actions in O: cons(O) = ∪ o ∈ O in(o), while the set of resources produced equals prod(O) = ∪ o ∈ O out(o).

Definition 5 .

 5 Let O be a set of (concrete) actions. A dependency function is an injective function d : cons(O) → prod(O) ∪ {⊥} specifying (in a unique way) for each resource r to be consumed which resource r' produced by another action is used to provide r (or ⊥ if r is not produced by an action in O, i.e., r is an input resource).Sometimes we need the inverse d -1 of d, which is defined as follows: for every r'∈ prod(O) such that d(r) = r', d -1 (r') = r,and for every r' ∈ prod(O) not occurring in ran(d), d -1 (r') = ⊥. As mentioned before, plans are composed of partially ordered actions. Since a dependency function d specifies an immediate dependency of input resources of an action on output resources of another action, d can only specify a valid dependency if (i) the resources involved are equivalent and (ii) d generates a partial ordering of the actions in O.

  tween actions generated by d: we say that o directly depends on o', abbreviated as o' << d o, if resources r ∈ in(o) and r' ∈ out(o') exist such that d(r) = r'. Let < d = << + d be the transitive closure of << d . Then the second condition simply requires < d to be a (strict) partial order on O.Now a plan can be defined as follows.

  For each concrete action o ∈ O there is a positive integer value cost (o), representing the cost of executing o. Agents, once having conceived a plan P = (O, d, θ) will aim at reducing the cost cost(P) = ∑ ∈O o o t )

Definition 8 .

 8 Free resources of a multi-agent plan: Given a multi-agent planning problem {(O a , I a , G a ) | a ∈ A}, and an action o ∈ O for an agent i ∈ A, in agent i planning domain a set of independent embedded agent plans {P a | a ∈ PD i }. Then the set of free resources with respect to the action o is given by Free ( -

U

  can be found such that the tuple ({(O a , d a , θ a ) | a ∈ A}, d * , θ * ) is a multi-agent solution where d * ⊆ f is a partial dependency function U A a∈ In(P a ) → U A a∈ Out(P a ) and θ * is a substitution.
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 46 Figure 46. Action Resource Graph of Taxi Agent T1
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 48 Figure 48.The Merging Plan of Taxi Agent T1 and T2

  get reply from B to A. The roundtrip time is computed by the agent A when a reply from B is received as a difference between the receive time and the send time. This message exchange was repeated several times (depending on the type of experiment) and the results were computed as an average from all the trials.The overall benchmark results are presented in the Table2(originally created by David Sislak, Martin Rehak, Michal Pechoucek, Milan Rollo, Dusan Pavlıcek). A more transparent representation of these results in the form of bar charts is depicted in Figure10. Three different numbers of agent pairs have been considered: 1 agent pair (A-B) with 1000 messages exchanged, 10 agent pairs with 100 messages exchanged within each pair and 100 agent pairs with 10 messages per pair. Moreover, for each of these configurations two different ways of executing the tests are applied.

  grade multi-agent systems. It is built on a sound logical foundation: BDI (Beliefs/Desires/Intentions). BDI is an intuitive and powerful abstraction that allows developers to manage the complexity of the problem. In JACK, agents are defined in terms of their beliefs (what they know and what they know how to do), their desires (what goals they would like to achieve), and their intentions (the goals they are currently committed to achieving). Entirely written in Java™, JACK is highly portable and runs on anything from PDAs to high-end, multi-CPU servers. Its Java foundation means that JACK can run with multiple threads across multiple CPUs, has platform-independent GUIs, and is easily integrated with third-party libraries. But JACK platform is not open source, so we prefer to choice an open-source platform.

4 )

 4 When the system receives a new trip request T=T+1 do the above step. The flow of multi-agent based DRT system planning is shown in figure 51.
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 563 Figure 63. Capacity Utilization of Taxis with Unlimited Planning Domain

  In recent years, more and more people care about urban traffic congestion and air pollution problems of many cities in the world. In order to reduce congestion, we can invest in improving city infrastructures. Infrastructure improvements, however, are very costly to undertake and do not reduce air pollution. Hence we can work on the intelligent mobility in order to have a more efficient car use. The application of new information technologies, such as multi-agent technologies to urban traffic information control, has made it possible to create and deploy more intelligent traffic management like DRT (Demand Responsive Transport) system. The objective of multi-agent based DRT system is to manage taxis in an intelligent way, to increase the efficient number of passengers in every vehicle, and at the same time to decrease the number of vehicles on streets. This will reduce the CO 2 emissions and air pollution caused by the vehicles, as well as traffic congestion and financial costs.

  New distributed planning domain based agent plan mechanisms and algorithms may benefit from ideas like the exchange only of summary needed information, even if the information used in different planning domain. The point is here: the node-station agent abstract relevant information what needed by other node-station agents in its involved planning domain. So in this way we can reduce communication costs and improves privacy and communications competence and taxi agent can update his plan more quickly and more efficient.

LITRES-2 scheduler: journey plan for the current travel request

  

	restricted to "blue ribbon" taxis, but it may also offer a variety of lower-priced multiple-
	hire services. Other possibilities include cooperative dial-a-ride arrangements, and special
	services for the elderly and disabled.
	L2sched plans passenger services as far ahead in time as possible. For instance, if a
	booking is made six hours in advance, the passenger is immediately allocated to a vehicle
	on a tentative basis. This provides scope for optimization, and helps to ensure reliability of
	service. It is also consistent with a yield-management approach which would reward "early
	booking" passengers with reduced fare rates. The optimization techniques used in L2sched
	are designed to maximize the efficiency of fleet deployment over time (efficiency is typi-
	cally defined in terms of minimizing total travel time or distance, or maximising the
	number of passengers carried). Work allocations and routing plans can be revised in re-
	sponse to events as they occur in real time (e.g. vehicle breakdowns), and to changes in the
	spatial and temporal patterns of demand.
	current itinerary for each vehicle. Note that L2sched is designed for use in conjunction
	with radio-based dispatching systems and (optionally) with location-finding technologies
	such as GPS. The operating modes that can be handled by L2sched include traditional
	phone booked or "step-in" service; multiple hiring; and "smart shuttle" services working
	nominally to timetables but run on demand. Thus the fleet managed by L2sched may be

  They work by iteratively adding to a partial plan until a solution plan is found. At iteration, the agent picks a refinement to apply to the current plan and uses various combinations of planning operators to create a set of new plans. The agent uses heuristics to estimate which new plan is most appropriate, and saves the others on an open list as backtracking points.Backtracking guarantees completeness if the planner can always spot solution and failure states. Additionally the search algorithm is able to signal failure if the entire search space has been covered and no solution has been found. The price of this is the storing of the backtracking points, which take up memory and can require maintenance in the event of external changes to the environment.Local search algorithms are "hill descending" algorithms, constantly iterating towards "better" plans of smaller heuristic value, according to the local slope of a heuristic landscape. They do not guarantee completeness and normally only signal failure after being unable to find a solution for a predetermined length of time. Like all hill climbing algorithms, local search planners are prone to getting stuck in heuristic plateau and local minima that do not contain solution plans. Local search can be effective, however, if good heuristics are used that create a relatively smooth landscape that minimizes at solutions, and stochastic search techniques are used to help the planner escape local anomalies. Example techniques include:

	Figure 30.	Local Search in a Space of Candidate Plans (adapted from Narayek,
		2002)

Local search is an alternative technique in which few if any backtracking points are used. Search algorithms use a combination of the refinement operators from global search and iterative repair operators that correct individual flaws in the plan. Planners never backtrack: they simply keep changing aspects of their plans in an ad hoc manner until they find a solution. (See figure 30)

  2.8). This approach focuses on the independence of the agents, but means that centralized control like that in centralized planning and plan merging is impossible. Refinement planning algorithms are of limited use to agents in this paradigm because changes in other agents' plans, which are essentially changes in the external environment, can invalidate established parts of the plan. Agents are forced to use alternative algorithms, such as local search algorithms, that do not rely on a static external environment.

  2 ← < Rs 1 ,C>, a is the name of the action, Rs 2 is set of resources produced by a, Rs 1 is the set of resources consumed by a and C the set of constraints on Rs 1 .

Definition 4. An action specification is a formula:

o id (x 1 , . . . , x n ) :Ф{in id,-i |1≦ i ≦m} ⇒ Ф{out id,i |1≦i≦k} where 1.

id is a variable of sort identity, 2. x 1 , . . . , x n are the parameters of the action, 3. Ф {in id,-i |1≤i≤m} is a conjunction of general (input) resources in id,-i (. . .), 4. Ф {out id,i |1≤i≤k} is a conjunction of general (output) resources out id,i (. . .), such that for all 1≤i≤k, var(out id,i ) ⊆ U j var(in id,j ) U {x l | 1≤l≤n}.

  Running planning domain based plan merging algorithm in taxi agent T1 planning domain, taxi agent T1 and T2 return a set of requests to the auctioneer node-station agent N1.For taxi agent T1, it finds that it can reduce its plan with two actions if it is able to obtain a resource ride (A, N1) and ride (N1, N2) from one of the other agents. For taxi agent T2, it finds that it can reduce its plan with two actions if it is able to obtain a resource ride (B, N1) and ride (N1, N2) from one of the other agents. Each request consists of a resource and a number of the potential cost reduction. The requests are put in a priority queue based on this cost reduction. Unfortunately, there is not resource for taxi agent T1 request ride

(A, N1), and for taxi agent T2 request ride (B, N1) either. So these requests do not lead to a success. But for request ride (N1, N2) both taxi agent T1 and taxi agent T2 can obtain from each other. To satisfy taxi agent T1 request, we can not remove any action because there is passage2 on taxi1 who want go to station N2. We can see that to satisfy taxi agent T2 request can remove one action. So this request has the highest priority and is treated by auctioneer first. Then the actions move (N1, N2) can be removed from the plan of taxi agent T2. When this has all been done, the auctioneer continues with the next request if there are any other requests. The result of the merging plan is depicted in Figure

48

.

6.2.2 The Taxi Agent and Node-Station Agent Planning Static StructureIn last section, we introduce the flow of multi-agent based DRT simulation system. In this section, we will introduce the taxi agent and node-station agent planning static structure.
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Multi-agent Planning

Many situations involve decision making, like our situation: demand transportation tasks to be carried out, use minimum resource (vehicles…) for the DRT systems. Often the problem structure is the same: the world is in a certain state, but managers or directors would like it to be in another state. The problem of how to get from the current state of the world through a sequence of actions (possibly concurrent) to the desired goal state is a planning problem. Ideally, to solve such planning problems, people would like to have a general planning-problem solver. Since it turned out to be inherently impossible to design an algorithm with a reasonable time complexity that can solve all planning problems correctly, several simplifications of this problem have been made in the past, eventually leading to what may be called 'the classical planning problem'. Although not all realistic problems can be modeled and solved as such a classical planning problem, they can help to solve more complex problems.

We would like to use multi-agent planning approach to solve our problem. So in this chapter, at first we will give an overview of planning techniques for this classical planning problem. Then we review current approaches to single agent planning. This is done for two reasons: to give the reader a basic understanding of the range of approaches, and to identify the approaches that are may be suitable for extension to multiple agents.

Then we discuss relevant approaches to multi-agent planning. Multi-agent planning approaches can roughly be divided into two categories: those that explicitly deal with the interaction of plans of agents and those that use some kind of market or economy to ensure that no conflicts occur and help agents take advantage of positive interactions. Each agent in such a multi-agent system has to solve some form of planning problem. The most studied and accepted 'basic' planning problem is the classical planning problem.

Refinements and operators:

The refinements available to the planner affect the efficiency, completeness and branching properties of the algorithm. They affect the ability of the planner to directly tackle specific flaws in a plan, minimize the production of redundant plans, and so on.

Choice of refinement:

The choice of refinement (pick refinement function, line 10) has a large effect on the performance of the algorithm. Strategies such as least commitment [START_REF] Weld | An introduction to least-commitment planning[END_REF] and the identification of separable sub-problems [START_REF] Korf | Planning as search: A quantitative approach[END_REF] require the agent to identify refinements early on in planning that shape search later on. In particular, refinement choice affects:

• How quickly sets of invalid action sequences can be pruned from the search space;

• The ability of an agent to commit to plan features in a multi agent environment, for the benefit of fellow agents;

• The redundancy in plans visited during planning;

• Whether second or third parties need to be contracted to help resolve conflicts in multi agent problems.

Heuristics: Heuristics may be used to help pick the refinements that will produce the maximum benefit later on, and to choose the order in which to investigate partial plans once they have been generated.

Solution and failure test functions:

The solution function (line 6) is used to identify complete or partial solutions when they arise. In some cases this can be a complex problem, as it will not always be obvious whether some or all of the candidate action sequences in a partial plan are solutions. Other functions may also be made available to identify un-

STRIPS (Stanford Research Institute Problem Solver)

The first planner was the General Problem Solver (GPS) of Newell and Simon [START_REF] Newell | GPS, a program that simulates human thought[END_REF].

GPS could solve various problems, including planning and theorem proving, through the iterative application of logical rules. Work on planners has since focused on more specific formalisms better suited to the production of efficient planning algorithms. GPS was succeeded by STRIPS [START_REF] Fikes | STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving[END_REF], the most commonly known planning system. The major contribution of STRIPS was a compact action representation that is still used by many current planners. A STRIPS action consists of three parts: a description, a precondition formula and a set of effects. For example the action of traveling between neighboring towns might be represented as follows:

Action: travel (? a, ? b) Preconditions: at (? a) ^ road (? a, ? b)

Effects: {at (? b), ¬at (? a)} where travel is the name of the action, ?a and ?b are variable arguments representing towns and at (?x ) and road(?x , ?y) are Boolean valued state literals. In English this translates as:

Preconditions: To travel from ?a to ?b there must be a road from ?a to ?b and the traveler must be at ?a.

Effects: Once the traveler has moved, he is no longer at ?a: he is at ?b instead.

Planning variables: Variables are used to specify actions that can be applied to more than one object. They allow a partial specification of the arguments of an action. Actions

Conflict detection: HTN planners are prone to backtracking because preconditions and effects are only added to the plan after tasks have been decomposed.

Since the urban demand responsive transportation information system is not always linear, when something is amiss in the communication between the agents, the centralized system will be unstable. (See Figure 38)

Decentralized Model

Figure 39. Decentralized Model

In the decentralized model, each agent is interested in maximizing its utility (See Figure 39). Every agent can propose his trip plan to clients. In the decentralized model is based on self-interested actors. This means that each agent seeks the maximization of its own utility.

In our situation, node-station agent to model each real geographical node-station for the system, they do not move. The taxi agents are in-charge of modeling each real vehicle in the system, they are moving in real-time. It is a distributed real-time situation. So decen-

Figure 43. Taxi Agent Centralized Planning Model

When the node-station agent receives the trip-proposals from the taxi agent, it can implement different filtering policies that include: the minimum number of used vehicles, the waiting time, the travel time, and the total traveled distance. This point is very important for the client that the system just like a "Black Box" [START_REF] Alan | The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks[END_REF]. The clients propose the request to the User agent and get the best solution for his request.

To sum up, the multi-layer distributed hybrid planning model is able to provide resolution for the gaps in performance for our distributed real-time situation. In next chapter, we examine the effectiveness of the proposed method by computational experiments.

agents become dependent on each other, but are able to reach their goals more efficiently.

The formalism is a resource logic based on the notions of resource, skill, goal, and service.

In the Action Resource Formalism (ARF) planning merging logic, two agents can cooperate if one agent produces a resource -one that is not directly needed for goal satisfaction, but as a byproduct -that is needed by the other agent. Both agents may agree to cooperate by exchanging resources. That is to say, the agent producing the resource allows the other agent to use it. As a result, the resource that was originally produced as a byproduct becomes a sub-goal for the agent.

Several potential problems may arise during merging of two plans. Plans may conflict and get into deadlock situation. Normally it happens when agents require the same resource for correct execution, or the prescribed order of actions may lead to dead-lock, e.g., both have to wait for the other to finish the certain action. For example, consider the following two goals: Agent1: G1.underCondition(A), B is one of the subgoal of G1 Agent2: G2.underCondition(B), A is one of the subgoal of G2.

Assume that agent1 is pursuing G1 under condition A, but has not yet reached subgoal B. The agent2 is pursuing G2 under condition B, but has not yet reached subgoal A. In this situation, the system will be into deadlock. So in Mathijs de Weerdt's model, he used auction mechanism exchanging resources. He assumed one of the agents acts as an auctioneer and collects all requests of all agents. For each request an auction is held, in which all agents, other than the requesting agent, may offer to deliver the requested resource. The auctioneer ensures that all constraints are satisfied and that the exchange actually takes place, resulting in a cost reduction. We assume that agents are always willing to cooperate.

Example: Consider a passenger p(x: loc, I 1 : time) at location x at time interval I 1 , waiting for a (taxi)-ride ride(x : loc, y : loc, c : cap, I 2 : time) from location x to y, having c free seats and occurring in time interval I 2 . To help the passenger it is required that c > 0, and I 1 ∩ I 2 = Ø. This is expressed by the following extended resource scheme:

({p(x : loc, I 1 : time), ride(x : loc, y : loc, c : cap,

Every set R of resources containing at least one ride and one passenger resource meeting these constraints will satisfy this extended resource scheme.

A resource fact is the concise description of an object (resource) that is relevant to an agent with respect to the planning problem at hand. Such a resource is either a physical object such as a taxi or a passenger, or an abstract conceptual notion such as an opportunity to travel. Syntactically, an atomic resource fact is denoted by a predicate name together with a complete specification of its attributes, together with their values. The predicate name serves to indicate the type of resource mentioned in the fact (e.g., a taxi or a passenger). If taxi is a resource type, having an attribute location loc and an attribute num, then taxi (8:

num, A: loc) is an atomic resource fact describing taxi number 8 in A. Since similar resources (i.e., resources with the same type and the same values for the attributes) may occur multiple times in the same plan, we add to each resource a unique occurrence identifier of sort identity, i.e., a special index that is used exclusively to distinguish between different occurrences of a resource in a plan. A resource of type t with i as (the value of its) occurrence identifier is denoted as t i (. . .).

Values of attributes may be ground (i.e., constant), but may also be variables or functions. In the latter case, a resource fact describes a set of ground resource facts (instances) of the same resource type. For example, the following resource refers to all taxis in loca- A planning domain of the agent a i ∈ A is a tuple PD i = (P j , a j ) where P j is plan of agent a j in the agent a i planning domain, A = {a 1 , a 2 , . . . ,a n } is a set of agents.

For a set of agents A = {a In this section, we present the results of comparison of available JAVA-based agent development platform (evaluated by an industry expert Pavel Vrba from Rockwell Automation Research Centre in Prague, which was carried out in cooperation with the GUI. This gives an easy way to inspect container state and to install or remove its components. The GUI screen shot is shown in Figure 50.

Figure 50. A-Globe GUI screen shot

Further in A-Globe you can find the Sniffer Agent. This is on-line tool for monitoring messages. This tool allows you to monitor all messages and their status. One of very important advantages of A-Globe is our communication possibility with authors. Furthermore A-Globe is an open-source platform.

From mentioned above that A-Globe is the best available platform for our application.

container state and to install or remove its components. Each entity is an agent with its own A-Globe container.

Figure 55. DRT GUI Screen Shot

In figure 56, we can see the visualization of DRT System. It makes taxi agents and node-station agents visualization on the map. We can see the taxi agent moving and its status, like destination, the number of passengers in the taxi, and its planning domain circle. The status of node-station agent also can be seen, like the number of passengers and taxi in station.

Experiments Analysis

Structure of Experiments

In last sections, we introduced the planning domain based plan merging algorithm and prototype the implementation. In this section the experimental will be discussed.

For the performance of the plan merging algorithm, we are interested in the realistic aspects. For example, to find minim number of taxis for trip requests, increase the efficient passages in every vehicle, and while at the same time reduce the number of vehicles on the street for reducing the air pollution caused by the vehicle, traffic congestion and financial cost.

The ideal data set to use for these experiments would consist of the schedules of several trip requests and taxis in the one region and for the same time passages and taxis are prepared to share taxis. The experiment is organized as follows: The test considered 500 random trips requests in one hour, the capacity of the vehicle (total number of seats) is 4.

The scenario has 12 stations. These plans were merged using the plan merging algorithm in taxi agent planning domain. We assume that we constructed an action resource plan for each of the taxi agent at first, and the taxi agents try to improve their plans using the planning domain based plan merging algorithm.

We assume that taxi agent can exchange information in its planning domain. Therefore, our goal is to reduce the costs by taxi agents exchanging their resource among taxi agents in its planning domain and planning together. The attributes of resource describes a taxi agent like agent ID, destination station, the number of useable seat, preferred pickup time, agents who get in and get out of its planning domain, etc. The most important resource facts for plan merging in planning domain are the ride of a taxi that passengers to travel from one location to another and agent's ID who get in and get out of its planning domain. 

Number of taxis

Résumé

Durant ces dernières années, la congestion du trafic urbain et la pollution de l'air sont devenus d'énormes problèmes dans de nombreuses villes dans le monde. Afin de réduire cette congestion, nous pouvons investir dans l'amélioration des infrastructures de la ville. Toutefois, cette solution reste très coûteuse à entreprendre et de ne permet pas de réduire la pollution de l'air. C'est pourquoi nous travaillons sur la mobilité intelligente afin de disposer d'une meilleure utilisation de la voiture.

L'application de nouvelles technologies de l'information, tels que les systèmes multi-agents appliqués au contrôle de l'information de la circulation urbaine, a permis de créer et de déployer 
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