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Introduction

Cette these concerne ’étude de la catégorie O des algebres de Hecke doublement affines
rationnelles cyclotomiques ainsi que celle des représentations d’algebres de Hecke affines de
type D. Elle se compose de trois chapitres. Bien qu’ils soient indépendants, ils ont tous en
commun d’étudier ces catégories de représentations via des catégorifications des algebres
de Kac-Moody.

1 Contexte
1.1 Algebres de Hecke et un théoreme d’ Ariki

Fixons une fois pour toute un entier positif [. Soit q = (q,q1,...,q) un I + l-uplet de
nombres complexes. L’algebre de Hecke cyclotomique J7 ,, de parametre q est la C-algebre
engendrée par 1y, 11, ..., T,,_1 avec les relations suivantes :

To T ToTh = T ToThTo,

T;T; =151, J=zi+2
LT T =TT T4, I<i<n—2,
(To—q1) - (To — @) = (T; + 1)(T; — q) =0, I<is<n-—1L

C’est un cas particulier des algebres de Hecke associées aux groupes de réflexions complexes
introduites par Broué-Malle-Rouquier [BMR9S8]. Le groupe en question est le produit en
couronne By, (l) d'un groupe symétrique S,, et d'un groupe cyclique d’ordre . En particu-
lier, sil = 1, on retrouve les algebres de Hecke associées aux groupes symétriques. L’algebre
Hqn Peut étre aussi se réalisée comme un quotient d’une algebre de Hecke affine de type
AL 1.

Les représentations des algebres de Hecke cyclotomiques ont été beaucoup étudiées.
Si Hqn est semi-simple, ses modules simples (de dimension finie) sont paramétrés par
les représentations irréductibles du groupe By, (l), qui en outre sont paramétrées par les
[-partitions. Dans le cas non semi-simple, une question importante et difficile est de com-
prendre la paramétrisation des % ,-modules simples de dimension finie. Ariki a répondu
cette question quand le parametre q est de la forme

qg=-exp(2nv—-1/e), q,=¢", s,€ZjeZ, 1 <p<l. (1.1.1)

Plus précisément, soit g ny-mod la catégorie de tous les J7 ,-modules de dimension
finie avec n varié dans N. On considere les endo-fonteurs exacts £, F”* sur J n-mod
donnés respectivement par les sommes des foncteurs de restriction et d’induction de J7 ,,
a Hyn+1. Ariki a introduit les foncteurs de i-restriction E;* et de i-induction F;* en
décomposant les foncteurs £, F'”¢ en espaces propres généralisés pour I’action de certain
éléments centraux. Avec ces foncteurs, il a démontré le résultat suivant dans |Ari96].
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Theorem 1.1.1. (Ariki) Soit q comme dans (1.1.1)). Soit sl, Ialgtbre de Kac-Moody de

type Agl_)l. Alors le groupe de Grothendieck (complexifié) [#g n-mod] admet un structure

de module sur sl, dont les actions des générateurs de Chevalley sont données par les
opérateurs E7*, F. En plus, le slc-module [ y-mod] est simple de plus haut poids
Aq, ou Ay dépend de q. Sa base canonique (duale) est donnée par les classes des modules
simples.

1.2 Espace de Fock et sa base canonique

Le point de départ du théoreme d’Ariki était une conjecture de Lascoux-Leclerc-Thibon
qui relie les représentations des algebres de Hecke associées aux groupes symétriques avec
un modele combinatoire, & savoir espace de Fock de niveau 1. Etant une démonstration et
généralisation de cette conjecture au niveau [ arbitraire, le théoreme d’Ariki fait intervenir
lespace de Fock Fg de niveau [ avec un multi-charge s = (s1,...,5), qui est liée & q
via (1.1.1). En tant qu'espace vectoriel Fs a une base {|A)} indexée par les [-partitions
A. Plus intéressant, pour chaque e > 0, 'espace de Fock Fs admet une structure de sl,-
module intégrable dont les actions des générateurs de Chevalley sont données par des regles
combinatoires. Le sous module de Fg engendré par le vecteur vide |0) est le sl,-module
simple qui intervient dans le théoreme d’Ariki. De plus, ’action de sl, peut étre déformée
en une action de lalgébre enveloppante quantique U,(sl.) sur Fs(v) = Fs @c C(v). En
généralisant les travaux de [LT96], Uglov [Ugl00] a défini et étudié une base canonique Bg
pour Fg(v). Il a donné un algorithme explicite pour calculer la matrice de décomposition
de Fs(v). La base Bg spécialisée a v = 1 est la base canonique de Fs. Un cristal est la
donnée d’un ensemble avec des fleches é;, ﬁ satisfaisant certains axiomes. La base Bg
spécialisée a v = 0 donne un cristal sur I’ensemble des [-partitions. On 'appelle le cristal
de I'espace de Fock.

1.3 DAHA rationnelles cyclotomiques

A chaque groupe de réflexions complexes W et chaque paramétre ¢, on peut asso-
cier une algebre de Hecke doublement affine(=DAHA) rationnelle. Ces algebres sont des
cas particuliers des algebres de réflexions symplectiques introduites par Etingof-Ginzburg
[EG02]. Leurs théorie des représentations a une certaine similarité avec celle des algebres
de Lie semi-simples. En particulier, elle posséde une catégorie O introduite par Ginzburg-
Guay-Opdam-Rouquier [GGORO03|. Cette catégorie est intéressante. D’une part elle est
une catégorie de plus haut poids, dont les modules standards sont paramétrés par les re-
présentations irréductibles de W. D’autre part, elle est étroitement liée aux algebres de
Hecke associées au méme groupe W via un foncteur KZ. L’un des problémes les plus im-
portants pour les représentations des DAHA rationnelles est de comprendre les caracteres
des modules simples. Pour I'instant, la réponse a cette question n’est connue que dans tres
peu de cas, y compris celui du groupe symétrique. Dans le cas cyclotomique, une répose
conjecturale a cette question est liée a un analogue du théoreme de Ariki dont nous allons
discuter dans la section suivante.
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2 Présentation des résultats

2.1 Cristaux et DAHA rationnelles cyclotomiques

Dans le chapitre I, nous donnons un analogue de la construction d’Ariki pour les caté-
gories O des DAHA rationnelles cyclotomiques avec parameétres rationnels. Notre construc-
tion est basée sur les foncteurs d’induction/restriction paraboliques sur la catégorie O de
DAHA rationnelles, introduits trés récemment par Bezrukavnikov-Etingof [BE09]. Nous
démontrons, dans le cas général des groupes de réflexions complexes quelconques, que
ces foncteurs correspondent via le foncteur KZ aux foncteurs d’induction/restriction des
algebres de Hecke correspondantes. Cela permet, dans le cas cyclotomique, de les décom-
poser en foncteurs de i-induction/i-restriction, qui sont analogues a ceux d’Ariki pour les
algebres de Hecke. Plus précisément, reprenons les notations de la section Fixons un
l-uplet d’entiers s = (s1,...s;). Soit h = (h, hy,...,hj_1) avec

h:i’ hpzm_l7 1<p<i—1.
e e l
Soit On, la catégorie O de DAHA rationnelle associée au groupe B, (l) et le parametre
h. Le foncteur KZ envoie Oy, ,, a la catégorie des 7 ,-modules. Soit Onny = @,,cny Onyn-
Les modules standards dans Oy sont paramétrés par les [-partitions. Donc on a un
isomorphisme 6 d’espaces vectoriels entre le groupe de Grothendieck [Op ] et 'espace de
Fock Fs de niveau [. Il envoie la classe du module standard associé a A sur le vecteur
|A). Nous nous intéressons aux endo-foncteurs £, F de O n donnés par les sommes des
foncteurs de restriction/induction du Oy, & Op 1. Ces sont des analogues des foncteurs
E”, F’ pour les algebres de Hecke. Le foncteur KZ induit un isomorphisme entre le
centre de O et celui de I'algebre de Hecke. Cela nous permet de décomposer les foncteurs
E, F en des foncteurs de i-restriction/i-induction F;, F; de la méme maniére que fait
Ariki pour décomposer les foncteurs E7, F”*. En calculant les actions des F;, F; sur les
classes des modules standards, nous démontrons qu’ils définissent une action de sl, sur
[On ] telle que 6 devienne un isomorphisme de sl,-modules. Ensuite, nous définissons via
ces foncteurs une g[e-catégoriﬁcation au sens de Chuang-Rouquier [CRO8|. Les propriétés
générales de ces catégorifications nous permettent de donner une structure de cristal sur
I’ensemble des classes des modules simples dans Oy, iy et de I'identifier au cristal de ’espace
de Fock. C’est le résultat principal du chapitre.

Il est conjecturé par Rouquier que les classes des modules simples correspondent via
0 a la base canonique de Fs. La confirmation de cette conjecture donnerait les caracteres
des modules simples. Cette conjecture ne peut pas étre démontrée uniquement par les
techniques de notre construction.

2.2 Algebres de Hecke affines de type D et bases canoniques

Le chapitre II est un travail en collaboration avec Michela Varagnolo et Eric Vasse-
rot. Nous démontrons une conjecture de Kashiwara-Miemietz qui donne un analogue du
théoreme d’Ariki pour les algebres de Hecke affines de type D.

Soit f la partie négative de Palgebre enveloppante quantique de type A(!). La construc-
tion géométrique des modules simples des algebres de Hecke affines utilisée par Kazhdan-
Lusztig dans la démonstration de la conjecture de Deligne-Lusztig donne une identifi-
cation naturelle entre ces modules simples et la base canonique de f. Une partie de la
démonstration du Théoreme [1.1.1| est basé sur cette construction. Plus précisément, il
y a un isomorphisme linéaire entre f et le groupe de Grothendieck de la catégorie des
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modules de dimension finie sur algebres de Hecke affines de type A. Les foncteurs d’in-
duction/restriction donnent ’action des générateurs de Chevalley et leurs transposés par
rapport a une certain forme bilinéaire symétrique sur f.

Récemment, une nouvelle famille d’algebres, que 'on appelle maintenant les algebres
KLR, ont été introduites par Khovanov-Lauda [KL09], et indépendemment par Rouquier
[Rou08a). Ces algebres sont Morita équivalentes a des algebres de Hecke affines de type A.
Elles donnent lieu a une nouvelle interprétation de la catégorification de f. Ces algebres
sont graduées. Donc elles sont mieux adaptées que les algebres de Hecke affines pour
décrire la base canonique. Plus précisément, le lien entre algebres KLLR et bases canoniques
est donné par un isomorphisme explicite d’algebres, due & Varagnolo-Vasserot [VV09b],
entre les algebres KLR et les algebres d’extension de certains complexes de faisceaux
constructibles qui interviennent dans la construction de Kazhdan-Lusztig.

Les régles de branchement pour les algebres de Hecke affines de type B ont été étudiées
treés récemment par [Eno(09], [EK06, [EK08al, [EKO8D], [Mie08] et [VV09a]. En particulier,
dans [Eno09], [EK06, EKO08a, [EKO8b] un analogue de la construction d’Ariki ont été
conjecturé et étudié. Ici f est remplacé par un module *V()\) d’une algebre B. Plus
précisément, il était conjecturé que (’V()\) admet une base canonique qui s’identifie de facon
canonique avec I’ensemble des classes d’isomorphisme des objets simples de la catégorie
des modules d’algebres de Hecke affines de type B. Sous cette identification les régles de
branchement pour les algébres de Hecke affines de type B doivent étre donné par la ?B-
action sur YV()). Cette conjecture a été démontré par Varagnolo-Vasserot [VV09a]. La
preuve utilise a la fois les approches géométriques qui étaient introduites dans [Eno09] et
un nouveau type d’algebres graduées qui sont des analogues des algebres KLR.

Une description similaire pour les algebres de Hecke affines de type D a été conjecturé
dans [KMO7]. Dans ce cas f est remplacé par un autre module °V sur lalgebre ‘B (qui
est la méme algebre que dans le cas de type B). Dans le chapitre II, nous donnons une
preuve de cette conjecture. La méthode est la méme que celle de [VV(9a]. D’abord, nous
introduisons une famille d’algebres graduées °R,, pour m un entier non négatif. Elles
peuvent étre vues comme des algebres d’extension de certains complexes de faisceaux
constructibles qui sont naturellement attachés a l’algebre de Lie du groupe SO(2m), et
elles sont Morita équivalent aux algeébres de Hecke affines de type D. Nous identifions
ensuite °V avec groupes de Grothendieck des algebres graduées °R,, en tant que ‘B-
modules. Le résultat principal du chapitre est le théoreme I1[3.9.1] ot nous démontrons
que le B-module °V admet une base canonique, elle est donnée par les classes des °R.,,-
modules projectives gradués auto-duaux.

2.3 Graduation sur la catégorie O et filtration de Jantzen

L’action de I’algébre enveloppante de type A() sur 'espace de Fock Fy se quantifie
en une action de l'algebre enveloppante quantique Uv(;[e). Du point de vue de la ca-
tégorification, le parametre v ici correspond a une graduation sur la catégorie 0. Cette
graduation est connue pour la catégorie O (parabolique) des algebres de Lie semisimples
depuis les travaux de Beilinson-Ginzburg-Soergel [BGS96]. Elle a été beaucoup étudiée. A
ce jour, la graduation sur la catégorie O des DAHA rationnelles est inconnue. Mais dans
le cas cyclotomique, il est conjecturé par Varagnolo-Vasserot [VV08] que la catégorie Oy, ,
est équivalente a une catégorie O parabolique d’une algebre de Lie affine de gl au niveau
négatif, dont le type parabolique dépend de la multi-charge s. Au niveau [ = 1 (le cas du
groupe symétrique), cette équivalence est connue. Elle est donnée par un foncteur explicite
défini par Suzuki. L’avantage de la catégorie O affine parabolique est qu’elle admet une
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théorie de localisation a la Beilinson-Bernstein. Ceci donne lieu & une graduation d’origine
géométrique sur cette catégorie, qui est I'analogue de celle apparue dans [BGS96]. Donc
I’analogie avec le cas du type fini nous indique que la graduation sur les modules standards
est donnée par la filtration de Jantzen.

Dans le chapitre III nous nous plagons dans le cas [ = 1 et nous étudions cette fil-
tration. Nous introduisons d’abord la filtration de Jantzen pour un objet standard dans
une catégorie de plus haut poids associée a une déformation donnée de la catégorie. Les
catégories déformées équivalentes donnent la méme filtration. A 'aide d’une version dé-
formée du foncteur de Suzuki, nous construisons ensuite une équivalence de catégories
de plus haut poids entre la catégorie O affine parabolique déformée et la catégorie Oy
déformée. D’apreés une équivalence de Rouquier [RouO8b], ces deux catégories sont aussi
équivalentes en tant que catégories de plus haut poids a la catégorie des modules de dimen-
sion finie sur une algebre de g-Schur. Toutes ces équivalences permettent donc d’identifier
les filtrations de Jantzen sur les modules standards dans les trois cas. Enfin, nous cal-
culons la filtration des modules de Verma paraboliques en utilisant les Z-modules sur la
variété de drapeaux affines. Cet argument est une généralisation des techniques utilisées
par Beilinson-Bernstein dans la preuve des conjectures de Jantzen dans le cas du type
fini (nonparabolique) [BB93]. Le résutat final montre que les multiplicités (graduées) des
modules simples dans cette filtration sont données par certains polynéomes de Kazhdan-
Lusztig paraboliques. Ce sont aussi les polynémes qui apparaissent dans la matrice de
décomposition de 'espace de Fock (quantifié) de niveau 1. En particulier, ceci confirme
une conjecture de Leclerc-Thibon [LT96] sur la filtration de Jantzen de modules de Weyl,
dont la version nongraduée était auparavant démontré dans [VV99].

Dans la suite, il serait intéressant de comprendre I’équivalence de catégories entre Oy, ,,
et la catégorie O affine parabolique au niveaux supérieurs comme conjecturé dans [VVO0S].
En particulier, une telle équivalence confirmerait la conjecture de Rouquier mentionée a la
fin de la section de cette introduction. De plus, une version déformée appropriée d’une
telle équivalence nous permettrait de généraliser les résultats du chapitre III et d’étudier
les graduations sur les catégories Oy, ,, pour | quelconque. Il serait aussi tres intéressant
de comparer les différents types de catégorifications sur les deux catégories O.






Chapter 1

Crystals and rational DAHA’s

In [Ari96], Ariki defined the i-restriction and i-induction functors for cyclotomic Hecke
algebras. He showed that the Grothendieck group of the category of finitely generated
modules of these algebras admits a module structure over the affine Lie algebra of type
A with the action of Chevalley generators given by the i-restriction and i-induction
functors.

In this chapter, we give an analogue of Ariki’s construction for the category O of
cyclotomic rational DAHA’s. More precisely, we define the i-restriction and i-induction
functors in this setting by refining the parabolic restriction and induction functors of
rational DAHA’s introduced by Bezrukavnikov and Etingof [BE09]. We show that the
action of these functors make the Grothendieck group of this category O a representation
of the type AW affine Lie algebra and it is isomorphic to a Fock space representation.
We also construct a crystal on the set of isomorphism classes of simple modules in the
category (. It is isomorphic to the crystal of the Fock space.

The result of this chapter has been prepublished in [Sha0§g].

Notation

For an algebra A, we will write A -mod for the category of finitely generated A-modules.
For f : A — B an algebra homomorphism from A to another algebra B such that B is
finitely generated over A, we will write

f« : B-mod — A-mod
for the restriction functor and we write
f*:A-mod — B-mod, M+~ B® M.

A C-linear category A is called artinian if the Hom sets are finite dimensional C-
vector spaces and each object has a finite length. Given an object M in A, we denote by
soc(M) (resp. head(M)) the socle (resp. the head) of M, which is the largest semi-simple
subobject (quotient) of M.

Let C be an abelian category. The Grothendieck group of C is the quotient of the free
abelian group generated by objects in C modulo the relations M = M’ + M” for all objects
M, M', M" in C such that there is an exact sequence 0 — M’ — M — M"” — 0. Let [C]
denote the complexified Grothendieck group, a C-vector space. For each object M in C,
let [M] be its class in [C]. Any exact functor F : C — C’ between two abelian categories
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induces a vector space homomorphism [C] — [C'], which we will denote by F again. Given
an algebra A we will abbreviate [A] = [A-mod].

Denote by Fet(C,C") the category of functors from a category C to a category C'. For
F € Fet(C,C") write End(F') for the ring of endomorphisms of the functor F'. We denote
by 1p : F — F the identity element in End(F). Let G € Fct(C',C") be a functor from
C’ to another category C”. For any X € End(F) and any X' € End(G) we write X'X :
G o F — G o F for the morphism of functors given by X' X (M) = X'(F(M)) o G(X(M))
for any M € C.

1 Hecke algebras

In this section, we give some reminders on Hecke algebras and their parabolic restriction
and induction functors.

1.1 Definition

Let b be a finite dimensional vector space over C. A pseudo-reflection on b is a
non trivial element s of GL(h) which acts trivially on a hyperplane, called the reflecting
hyperplane of s. A complex refection group W is a finite subgroup of GL(h) generated by
pseudo-reflections. Let S be the set of pseudo-reflections in W and let A be the set of
reflecting hyperplanes. Let

hreg = b - U H.
HecA
It is stable under the W-action on h. Fix a point z¢ € hreq. We will denote its image in
Dreg/W again by xg. The braid group B(W,b) is the fundamental group 71 (hreq/W, x0).

For H € A, let W be the pointwise stabilizer of H in W. It is a cyclic group. Let ey
be the order of Wy and (g = exp(2my/—1/ey). We denote by sy the unique element in
Wy with determinant (. For x € h we set © = pry(z) + pr;(z) with pry(z) € H and
pr;(z) € Im(sy — Idy). For t € R we denote by st; the element in GL(h) defined by

sty () = ¢y pri(z) + pry(a),

where Cl; = exp(2nty/—1/ey). For x € h we denote by g, the path in b from z to sy (z)
defined by

oz [0,1] =V, te sh(x).
Whenever v is a path in b, with initial point z¢ and terminal point xf, we define the
path oy, from zg to sg(xo) by

Oy =sa(v ) Ty -

The homotopy class of o does not depend on the choice of xy provided zy is close
enough to H. The element in B(W, h) induced by this homotopy class is called a generator
of the monodromy around H, see [BMROS| Section 2B]. The following definition is due to
[BMROIS, Definition 4.21].

Definition 1.1.1. For any map ¢ : S — C* that is constant on the W-conjugacy classes,
the Hecke algebra 7¢,(W,h) the quotient of the group algebra CB(W,h) by the relations:

(TsH - 1) H (TSH - q(s)) = 07 (111)

seWgNS

where H € A and T, € B(W, ) is a generator of the monodromy around H.
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Let B denote the subspace of fixed points of W in h. If h" =1 we will abbreviate

Bw = B(W.h), (W)= #(W.b).

1.2 Parabolic restriction and induction functors for Hecke algebras

In this section we will assume that b = 1. A parabolic subgroup W' of W is by
definition the stabilizer of a point b € h. By a theorem of Steinberg, the group W’ is also
generated by pseudo-reflections. Let ¢’ be the restriction of ¢ to &’ = W' NS. There is an
explicit inclusion

' Hog (W) = (V)
given by [BMRIS|, Section 2D]. The restriction functor
7 Res{V, : H;(W)-mod — #(W')-mod
is the functor (z4)«. The induction functor
P Indyys = Ag(W) @, (wr) —
is left adjoint to ” Res{}... The coinduction functor

 colndll, = HomE%,(W/)(%(W), -),

is right adjoint to 7 ‘ORes%/. All of the three functors above are exact functors.
Now, let us recall the definition of ¢,. It is induced from an inclusion

ZZBW/ L).B[/V,

which is in turn the composition of three morphisms ¢, x, 7 defined as follows. First, let
A’ C A be the set of reflecting hyperplanes of W’. Write

h=b/0"", A={H=HNH"'|HeA}, b=b—JH b,=b-J H

HcA HeA

The canonical epimorphism p : h — b induces a trivial W’-equivariant fibration p : Breg —

Hreg, which yields an isomorphism
0 BW/ = ﬂl(Hreg/W/,p(Q}[))) :> Fl([];neg/W/,a}()). (1.2.1)
Next, we equip h with a W-invariant hermitian scalar product. Let || - || be the

associated norm. Set
Q={zxep||lx—-0|| <e}, (1.2.2)

where ¢ is a positive real number such that the closure of Q does not intersect any hy-
perplane that is in the complement of A’ in A. Let v : [0,1] — b be a path such that
7v(0) = xo, ¥(1) = b and ¥(t) € hyeg for 0 <t < 1. Let u € [0,1] such that z1 = ~(u)
belongs to 2, write v, for the restriction of 7 to [0,u]. Consider the homomorphism

U:W1<th7’eg;xl) _>7r1(b7‘egax0)7 )"_>’Y171A'7u

The canonical inclusion bcy < b, , induces a homomorphism 71 (hreg, 20) — 71 (hyeqs T0)-

Composing it with ¢ gives an invertible homomorphism

ﬂ—l(Q m bregawl) _> ﬂ—l(b'/rega xo)
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Since Q is W/ -invariant, its inverse gives an isomorphism

KT (Dreg /W 20) S 11 (2N breg) /W', 21). (1.2.3)

reg

Finally, we see from above that o is injective. So it induces an inclusion
7"'1((Q N hreg)/W/a 1‘1) — Wl(hreg/W/a ZL‘O)'

Composing it with the canonical inclusion 1 (Hreq/W', o) — 1 (hreg/W, z0) gives an
injective homomorphism

71 ((2N breg) /W' 1) < 71 (breg/W, o) = Bw. (1.2.4)
By composing /¢, k, 3 we get the inclusion
1=jg0kKkol: By — By. (1.2.5)

It is proved in [BMROS| Section 4C] that 2 preserves the relations in (1.1.1). So it induces
an inclusion of Hecke algebras which is the desired inclusion

g Aoy (W) > H(W).

Note that if 2, ' : By < By are two inclusions defined as above via different choices of
the path 7, then there exists an element p € 71 (hyeg, o) such that for any a € By we have
1(a) = pi’(a)p~t. In particular, the functors 2, and (¢). from By -mod to By -mod are
isomorphic. Also, we have (14)« =~ ()« So there is a unique restriction functor < Resip
up to isomorphisms.

1.3 Biadjointness of “Res};, and “Indy;,
We say that a finite dimensional C-algebra A is symmetric if A is isomorphic to A* =
Homc¢(A,C) as (A, A)-bimodules.

Proposition 1.3.1. Assume that 7#,(W) and A (W') are symmetric algebras. Then the
functors %Ind%, and %colnd%, are isomorphic, i.e., the functor ‘%ﬂlnd%/ is biadjoint
to %Res%l.

Proof. We abbreviate ¢ = (W) and 5" = 7 (W'). Since S is free as a left -
module, for any .7#’-module M the map
Hom (A, jf’) Q. M — Hom gy (A, M) (1.3.1)

given by multiplication is an isomorphism of 7#-modules. By assumption " is isomor-
phic to (H")* as (A, 7#")-bimodules. Thus we have the following (., #”)-bimodule
isomorphisms
Homjf/(%7<7f/) = Hom%/(%7 (%/)*)
= Hom(c(j‘f/ Qe %,(C)

—

= .
The last isomorphism follows from the fact the .7 is symmetric. Thus, by (1.3.1)) the
functors *Ind}},, and “ colnd}},, are isomorphic. O

Remark 1.3.2. The Hecke algebra (W) is known to be symmetric for all irreducible
complex reflection group W except for some of the 34 exceptional groups in the Shephard-
Todd classification. See [BMM99, Section 2A] for details.
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2 Category O of rational DAHA’s

2.1 Rational double affine Hecke algerbas.

The rational double affine Hecke algebras (=rational DAHA’s), also called rational
Cherednik algebras, have been introduced by Etingof and Ginzburg [EG02]. Let us recall
their definition.

Definition 2.1.1. Let ¢ be a map from § to C that is constant on the W-conjugacy
classes. The rational double affine Hecke algebra H.(W,h) is the quotient of the smash
product of CW and the tensor algebra of h & h* by the relations

[wvxl] =0, [y, yl] =0, [y.2]=(z,y)— Z csas, y) (w, a;/>57
s€S

for all z, 2’ € b*, y,y/ € h. Here (-,-) is the canonical pairing between h* and b, the
element o is a generator of Im(s|y« — 1) and o is the generator of Im(s|, — 1) such that
(ag, ) = 2.

By definition the algebra H.(W,h) contains three subalgebras CW, C[h] and C[h*].
We have the following Poincaré-Birkhoff-Witt type theorem [EG02, Theorem 1.3].

Proposition 2.1.2. The multiplication map yields an isomorphism of C-vector spaces
C[h] @c CW @c C[h*] — H.(W, ).

For s € § write \g for the non trivial eigenvalue of s in h*. The element

2,  dim(h)
- - . 2.1.1
et %;S 1-x" 2 (211)

is in the center of CW. Let {x;} be a basis of h* and let {y;} be the dual basis. The Euler
element in H.(W,h) is given by

eu = Z ;Y — €Uy (2.1.2)
i

Its definition is independent of the choice of the basis {z;}. We have

lew, z;] = z;, [ew,y;] =—y;, [eu,s]=0. (2.1.3)

2.2 The category O

A category O for H.(W,h) has been introduced in [GGORO03|. Let us recall its defini-
tion and some basic properties.

Definition 2.2.1. The category O of H.(W,b) is the full subcategory O.(W,h) of the
category of H.(W,bh)-modules consisting of objects that are finitely generated as C[h]-
modules and h-locally nilpotent.

Note that by definition for any object M in O.(W,§) the action of eu on M is locally
finite. Let Irr(WW) be the set of irreducible representations of W over C. We will view each
¢ € Irr(W) as a CW x C[h]-module via the pull back of the projection

CW x C[h] = CW, (w,z)—w, VYzeh* weWW.
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The standard module associated with ¢ is the induced H.(W, h)-module

A(§) = Ho(W,h) @cwwcly) §- (2.2.1)

It is an indecomposable object of O.(W, ) with a simple head L(§). As £ varies in Irr(W)
the L(&)’s give a complete set of nonisomorphic simple objects in O.(W, h).
We say that an object M in O.(W,h) has a standard filtration if there is a filtration

O=MyCM,C...CMy=M

by objects in O.(W,bh) such that each quotient M;/M;_; is isomorphic to a standard
module. Let O2 (W, h) be the full subcategory of O.(W, ) consisting of such objects. The
following is due to [GGORO03, Proposition 2.21].

Lemma 2.2.2. An object in O (W, ) has a standard filtration if and only if it is free as
a C[h]-module.

The category O.(W,bh) is an artinian category with enough projective objects. For
each L(&) let P(§) be a projective cover of L(§) in O.(W,h). For £ € Irr(W) let ¢ € C
be the scalar by which the central element euy € CW acts on £. Following |[GGORO03,
Theorem 2.19], we equip Irr(W) with a partial order <. given by

§ <cm <= ¢, — c¢ is a positive integer.

Proposition 2.2.3. The category O.(W,h) is a highest weight category with respect to
the standard objects A(§) and the partial order <., i.e., for & € Irr(W) we have

(a) The Jordan-Hdélder factors in the kernel of the quotient map A(§) — L(&) are of
the form L(n) with n <. &.

(b) The object P(§) has a standard filtration

P&oy=0C P C...CP&g=P(

such that P(§)a/P(§)a—1 = A(&) and P(§)i/P(§)i—1 = A(n) withn = &£ for 1 <i<d—1.
In particular, any projective object in O (W, b) has a standard filtration.

See [GGORO3], Corollaries 2.10, 2.14, Theorem 2.19].

Corollary 2.2.4. (a) The sets

{[A@IEelrr (W)} and {[L()][€ € Irr(W) }

give two bases of the C-vector space [O.(W,h)].
(b) The category O.(W,H) has finite homological dimension.

Proof. Since O.(W, ) is artinian, the classes of simple objects form a basis of [O.(W, h)].
By Proposition m(a), this implies that the classes of standard objects also form a basis.
This proves part (a). Part (b) is a general fact about highest weight categories, see e.g.,
[Don98, Appendix, Proposition A2.3]. O
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2.3 Hom-space for functors on O.(W,}).

Let Proj.(W, ) denote the full subcategory of O.(W, b) consisting of projective objects.
Let
I : Proj. (W, h) — O.(W,b)

denote the canonical embedding functor. The following lemma will be useful to us.

Lemma 2.3.1. For any abelian category A and any right exact functors Fy, Fy from
O.(W,h) to A, the homomorphism of vector spaces

rr : Hom(Fy, Fy) — Hom(Fy o [, Fyol), ~~— vl
is an isomorphism.

Proof. We need to show that for any morphism of functors v : F} oI — Fy o I there is a
unique morphism 7 : F; — Fj such that 717 = v. Since O.(W, h) has enough projectives,
for any M € O.(W, ) there exists Py, P1 € Proj.(W, h) and an exact sequence in O.(W, b)

P-4 Py M — 0. (2.3.1)

Applying the right exact functors Fi, F5 to this sequence we get the two exact sequences
in the diagram below. The morphism of functors v : Fy o I — F5 o [ yields well defined
morphisms v(P;), v(Py) such that the square commutes

Fy(d Fy(d
Fi(P) Y Ry () 2 By () ——0
v(Pr1) v(Po)
Fy(dv) F»(do)

FQ(Pl) —_— FQ(P()) —_— FQ(M) —0.

Define 7(M) to be the unique morphism Fj(M) — Fy(M) that makes the diagram com-
mute. Its definition is independent of the choice of Py, P, and it is independent of the
choice of the exact sequence (2.3.1). The assignment M — (M) gives a morphism of

functor 7 : F; — F5 such that 717 = v. It is unique by the uniqueness of the morphism
p(M). O

Corollary 2.3.2. Let Fy, F5 be two functors as in the lemma above. Then we have
=2F difand onlyif Frol 2 Fyol.

2.4 The Knizhnik-Zamolodchikov functor

The category O.(W, ) is closely related to a Hecke algebra 72, (W, §) via the so called
Knizhnik-Zamolodchikov functor. Let us recall its definition from [GGORO03, Section 5.3].
Let D(byeq) be the algebra of differential operators on b,.,. We abbreviate

HC(W7 hreg) = HC(W7 h) ®(C[h} C[hreg]~
There is an isomorphism of algebras

Hc(VVa hreg) :> D(hreg) A (CW7
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called the Dunkl isomorphism. It is given by the assignment

r = oz,
wo o= w,
2¢s  as(y)
— O, + — " (s — 1),
Yy ) L;S-l_)\s Qs ( )

forz e b*, we W,and y € h. For M € O.(W, ) let
Mhreg = M ®C[h] (C[breg]‘

It identifies via the Dunkl isomorphism as a D(b,cy) x W-module which is finitely gener-
ated over Clbyey]. So My, is a W-equivariant vector bundle on b, with an integrable
connection V given by V,(m) = dym for m € M, y € h. Further, the connection V has
regular singularities, see [GGORO3, Proposition 5.7]. Now, regard b,., as a complex man-
ifold endowed with the transcendental topology. Let (’)gig be the sheaf of holomorphic
functions on h,¢4. For any free C[h;¢4]-module N of finite rank, we consider

N = N ®cpy,.q] Oy

It is an analytic locally free sheaf on b,.4. For V an integrable connection on IV, the sheaf
of holomorphic horizontal sections

NY ={n e N™|V,(n) =0 forall y € h}

is a W-equivariant local system on b,.,. Hence it identifies with a local system on byeq/W.
So it yields a finite dimensional representation of CB(W, ). For M € O.(W, ) it is proved
in [GGORO03, Theorem 5.13] that the action of CB(W,h) on (M,.,)V factors through a
Hecke algebra .72, (W, h) with the parameter ¢ given in [GGORO03|, Section 5.2].

Definition 2.4.1. The Knizhnik-Zamolodchikov functor is the exact functor given by
KZ(W,h) : Oc(W,b) — (W, h)-mod, M = (My,,,)"

We may abbreviate KZ = KZ(W, §y) if this does not create any confusion.

2.5 Properties of the functor KZ
In this section, we assume that
the algebras H5(W,h) and CW have the same dimension over C.

We recall some properties of KZ from [GGORO03]. The functor KZ is represented by a
projective object Pxyz in O (W, h). More precisely, there is an algebra homomorphism

p: (W, h) — Endo, ) (Pkz)™®

such that KZ is isomorphic to the functor Home, (w)(Pkz, —). By [GGOR03, Theorem
5.15] the homomorphism p is an isomorphism. In particular KZ(Pky) is isomorphic to
(W, ) as (W, h)-modules.

Next, let Z(O.(W, b)) be the center of the category O.(W,h), that is the algebra of
endomorphisms of the identity functor Idp, ). Then we have a canonical map

Z(O(W, b)) = Endo, ) (Pkz)-
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The composition of this map with p~! yields an algebra homomorphism
7 Z(0W, ) = Z(A(W, ),
where Z(;(W,h)) denotes the center of J7, (W, h).

Lemma 2.5.1. (a) The homomorphism ~y is an isomorphism.

(b) For M € O.(W,b) and f € Z(O(W, b)) the morphism
KZ(f(M)) : KZ(M) — KZ(M)
is the multiplication by vy(f).

See [GGORO03, Corollary 5.18] for (a). Part (b) follows from the definition of .
The functor KZ is a quotient functor, see [GGORO03, Theorem 5.14]. Therefore it has
a right adjoint S : (W, h) -mod — O.(W, h) such that the canonical adjunction map

KZoS — Id?ﬁ](W,h)

is an isomorphism of functors. We have the following proposition.

Proposition 2.5.2. Let QQ be a projective object in O.(W,b).
(a) For any object M € O.(W,b), the following morphism of C-vector spaces is an
isomorphism

Homo, (wp) (M, Q) — Hom 1w (KZ(M),KZ(Q)), f — KZ(f).

In particular, the functor KZ is fully faithful over Proj,(W,h).
(b) The canonical adjunction map gives an isomorphism Q = S o KZ(Q).

See [GGORO3|, Theorems 5.3, 5.16].

3 Parabolic restriction and induction for rational DAHA'’s.

From now on we assume that BV = 1. Fix a point b € h. Let W’ be the parabolic
subgroup of W given by the stabilizer of b. We will use the same notation as in Section
Let ¢ : 8’ — C be the map given by the restriction of ¢ : § — C, and consider the
rational DAHA H. (W', h) and the category Oy (W', h). In [BEQ9], Bezrukavnikov and
Etingof defined the parabolic restriction and induction functors

Resy, : OC(W7 h) — Oc’(W,aE) , Indy : Oc’(W,aE) — OC(W b)

In this section, we will first review their constructions (Sections , then we give
some further properties of these functors (Sections 3.8).

3.1 The equivalence (.

We first explain the relation between the category O (W', h) and the category O. (W', ).
Let b*"’ be the subspace of h* consisting of fixed points of W’. Set

(W)L ={ven|flv) =0 forall fep™}.
We have a W'-invariant decomposition

h _ (h*W’)L ® hW,'



24 CHAPTER I. CRYSTALS AND RATIONAL DAHA’S

The W’ -space (b*W/)l is canonically identified with B. Since the action of W’ on §"' is
trivial, we have an obvious algebra isomorphism

Hu(W',9) = Ho (W', 5) @ D(H™"). (3.1.1)

It maps an element y in the subset §"' of H. (W’ h) to the operator 9, in D(H"").
Write O(1,5"") for the category of finitely generated D(h"")-modules that are Oy-locally
nilpotent for all y € h"'. Then the algebra isomorphism above yields an equivalence of
categories

Ou(W',h) = Ou(W',5) © O(1,5™). (3.1.2)
Upon taking Fourier transform, Kashiwara’s lemma (see e.g., [HTT08, Theorem 1.6.1])
implies that the functor

O(1,6"") 3 C-mod, M — {me M|d,(m)=0, Vyeh"},

is an equivalence of categories. Composing it with the equivalence (3.1.2)) we get an
equivalence of categories

C: 0y (W' ) = Ou(W'H), M—{veM|ypv=0,Vyech"} (3.1.3)
It has a quasi-inverse given by
¢ Ou(W, ) = Ou(W',h), Nw— NoCh"v, (3.1.4)

where C[TJW/] e O(1, hW/) is the polynomial representation of D(hW/). Moreover, the
functor ¢ maps a standard module in O, (W', h) to a standard module in O (W', b).
Indeed, for any £ € Irr(W’), we have an isomorphism of H. (W', h)-modules

He (W', ) @cpyepaws & = (He (W) Sey)epar §) @ (PO™) @gygwr)) ©)-

On the right hand side C denotes the trivial module of C[(§"V")*], and the latter is identified
with the subalgebra of D(hW/) generated by 9, for all y € HW'. We have

as D(h"")-modules. So ¢ maps the standard module A(€) for Hy (W', ) to the standard
module A(¢) for Ha (W', b).

3.2 The isomorphism O and the equivalence R.

—

For a point p € h we write C[[h]], for the completion of C[h] at p, and we write (C[f)],p

for the completion of C[h] at the W-orbit of p in . Note that we have C[[h]]o = (E[H]O.
For any C[h]-module M we write

]/\Zp = (C[f]]p ®C[b] M.

The completions H, (W, H)p, H, (W' h)o are well defined algebras. We denote by @C(I/V, H)p
the category of lLAIC(I/V7 h)s-modules that are finitely generated over C[h],, and we denote
by Oy (W', h)o the category of Hy (W', h)o-modules that are finitely generated over C[b],-
Let

P = FunW’(W7 ﬁC(W/) b)O)
be the set of W'-invariant maps from W to ﬁc(W’,h)g. Let Z(W, W',ITIC(W',P))O) be

the ring of endomorphisms of the right }AIC(W’ ,h)o-module P. The following is due to
Bezrukavnikov and Etingof [BE09, Theorem 3.2].
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Proposition 3.2.1. There is an isomorphism of algebras
© : Ho(W, )y — Z(W, W', Ha (W', )o)
defined as follows: for f € P, a € bh*, ach,uecW,

OW)fw) = flwu),
(O(a)f)(w) = (2} + alw™ b)) f(w),

O(yq w) = yOfw 2¢s o (wa) sw) — f(w)),
O = s+ 3 T B ) = )

where zo € b* C Ho(W,h), 2 € b* € Ho(W',b), ya € b C Ho(W,b), ot € b C

Hc’ (W’, h) .
Using © we will identify ﬁc(VV, f)p-modules with Z(W, W', ﬁC/(W’, H)o)-modules. So

P = Funyy (W, H.(W’,b)o) becomes an (H.(W, §)y, Ho (W', h)o)-bimodule. Hence for any

N e @C/(W’, b)o the module P @4 LV b)o N lives in @C(W, B)p. It is naturally identified

with Funy (W, N), the set of W’-invariant maps from W to N. By Morita theory, the
functor

J: Ou(W,h)g = Oc(W,b)s, N = Funyy (W, N),

is an equivalence of categories. Let us give a quasi-inverse of J. To this end, fix elements

~

1 =wuy,ug,...,u, in W such that W = LI7_y Wu;. Let Mat,(Ho (W' b)o) be the algebra
of r X r matrices with coefficients in H. (W', h)g. We have an algebra isomorphism

®: Z(W, W' Hy(W' b)) — Mat,(Hy(W’, b)), (3.2.1)
A = (2(A)ijh<ij<r

such that

T

j=1

~

Denote by Ej;, 1 < 4,7 < r, the elementary matrix in Mat, (H (W', §)o) with coefficient
1 in the position (i, j) and zero elsewhere. Then the algebra isomorphism

do @ : ﬁC(VV, h)b L> Matr(ﬁc’(le h)())

restricts to an isomorphism of subalgebras
Clb], = @C[[h]]oEii- (3.2.2)
Indeed, there is a unique isomorphism of algebras
= OBl = DClbllcn (323
extending the algebra homomorphism

Clp] — ETBC[[]], x— (x,z,...,x), Vaxebh”.
i=1
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For each i consider the isomorphism of algebras
¢i : C[[b]] ,—1, — C[[bllo, = wiz+ z(u;'b), Vax e

The isomorphism ([3.2.2) is exactly the composition of w with the direct sum @]_;¢;,
and Fj; is given by the image of the idempotent in C[h], corresponding to the component
CI[[b]] ,-1,- We will denote by xp, the idempotent in C[h], corresponding to C[[bh]]s, i.e.,

® 0 O(zpr) = E11. Then a quasi-inverse of J is given by the functor
R: @C(VV, h)b — @c’(le b)()u M — l'prM’

where the action of Hy (W', ) on R(M) = xpr M is given by the following formulas. For
any a € b*, w € W', a € h*, m € M, we have

xg’)xpr(m) = Zpr((xa — a(b))m), (3.2.4)

wpe(m) = wp(wm),

yPe(m) = zpllya+ Y 12_63 O‘;(a))m). (3.2.6)
seS, s¢W'! s s

In particular, we have

R(M) = ¢1(xp:(M)) (3.2.7)
as C[[b]]o x W-modules. Finally, note that the following equality holds in H,(W, ),

TpuTpy =0, YueW-—W. (3.2.8)

3.3 Definition and basic properties of Res, and Ind,.

For any C[h*]-module M write E(M) C M for the locally nilpotent part of M under
the action of h. It is proved in [BEQ9, Theorem 2.3| that the functor

AO : OC’(Wla h) - 66’(W,a h)07 N — NO)
is an equivalence of categories. A quasi-inverse is given by
E:Ou(W' h)o — Ou(W',h), M E(M).

Moreover, the canonical inclusion N C E (No) is an equality for any N € O (W' h). We
will also consider the exact functor

T2 (W) = Oc(W.b)y, M = M.
It has an exact right adjoint

E*: O(W,b)y = Oc(W.h), N — E(N).
Now, we can give the definition of Res;, and Ind, [BEQ9, Section 3.5].

Definition 3.3.1. The restriction functor Res, and the induction functor Ind, are defined
by

Resy(M) = (oEoR(M,), M € O(W,Bh), (3.3.1)

Indy(N) = E’oJ(C"Y(N)y), N €Ou(W'h).
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For any O.(W, ) we consider the following map between Grothendieck groups
w: [Oc(W,0)] = [CW], [A(§)] =[], V& e l(W).
Then the functors Res, and Ind, have the following properties.

Proposition 3.3.2. (a) Both functors Resy and Indy, are exact. The functor Resy, is left
adjoint to Indy. In particular Resy preserves projective objects and Indy preserves injective
objects.

(b) Let Res%/ and Ind%, be respectively the restriction and induction functors of
groups. Then the following diagram commute

[0(W, )] —=— [CW]

~

Inde lResb IndVWV,T lResg,

[0 (W', )] =— [CW'].

See [BEQ9, Proposition 3.9, Theorem 3.10] for part (a) and [BE09, Proposition 3.14]
for (b).

3.4 Restriction of modules having a standard filtration

In this section, we study the action of the restriction functors on modules with a
standard filtration in O.(W, h). We will need the following lemmas.

Lemma 3.4.1. Let M be an object of OX(W,b).
(a) There is a finite dimensional subspace V' of M such that V is stable under the
action of CW and the map

Chle@V =M, pRuv—pv

is an isomorphism of C[h] x W-modules.
(b) We have the following equality in [CW]

Proof. Let
O=MyCM,C...CM;=M

be a filtration of M such that for any 1 < i < [ we have M;/M;_1 = A(§;) for some
& € Irr(W). We prove (a) and (b) by recurrence on [. If [ = 1, then M is a standard
module. Both (a) and (b) hold by definition. For I > 1, by induction we may assume that
there is a subspace V' of M;_; such that the lemma holds for M;_; and V'. Now, consider
the exact sequence

0— My_1 — M -5 A(§) — 0

From the isomorphism of C[h] x W-modules A(&) = C[h] ® £ we see that A(§) is a
projective C[h] x W-module. Hence there exists a morphism of C[h] x W-modules s :
A(&) — M providing a section of j. Let V = V'@ s(§) C M. It is stable under the action
of CW. The map C[h] ® V — M in (a) is an injective morphism of C[h] x W-modules. Its
image is M;_1 @ s(A(§)) = M. So it is an isomorphism. Since

w([M]) = w([Mi-1]) + w([A&)]),
and w([M;_1]) = [V’] by assumption, we deduce that w([M]) = [V'] + [§] = [V]. O
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Lemma 3.4.2. (a) Let M be a H,(W,§)o-module free over C[[b]]o. If there exist general-
ized eigenvectors v, . .. v, of eu which form a basis of M over C[[b]]o, then for f1,..., fn €
C[[b]]o the element m = "1, fiv; is eu-finite if and only if fi,..., fn all belong to Clh].

(b) Let N € O (W,b). If Ny is a free C[[b]]lo-module, then N is a free C[h]-module.

Further, it admits a basis consisting of generalized eigenvectors vy, ...,v, of eu.

Proof. Part (a) follows from the proof of [BEQ9, Theorem 2.3]. Let us concentrate on
part (b). Since N belongs to O.(W,b), it is finitely generated over C[h]. Denote by m
the maximal ideal of C[[h]]o. The canonical map N — Ny/mNj is surjective. So there
exist v1,...,v, in N such that their images form a basis of ]/\\70 / mﬁo over C. Moreover, we
may choose vy, ..., v, to be generalized eigenvectors of eu, because the eu-action on N is
locally finite. Since Ny is free over C[[h]]o, Nakayama’s lemma yields that vy, . . ., v, form a
basis of Ny over C[[h]]o. By part (a) the set N’ of eu-finite elements in N is the free C[p]-
submodule generated by v, ..., vp. Since Ny belongs to O, (W, 5)o, by [BEQ9, Proposition
2.4] an element in No is b- nllpotent if and only if it is eu-finite. So N’ = E(Np). On the
other hand, the canonical inclusion N C E(No) is an equality by [BE09, Theorem 3.2].
Hence N = N’. This implies that N is free over C[h], with a basis given by vy,..., vy,
which are generalized eigenvectors of eu. The lemma is proved. O

Proposition 3.4.3. Let M be an object of O (W, b).
(a) The object Resy(M) has a standard filtration.
(b) Let V' be a subspace of M as in Lemmal[3.4.1)(a). Then there is an isomorphism of
C[b] x W'-modules
Resy(M) = C[h] @ Resi}/ (V).

Proof. We see from the end of Section [3.1] the equivalence ¢ maps a standard module in
Oy (W' b) to a standard one in O (W', ). Hence to prove that it Resy(M) = CoEoR(M,)
has a standard filtration, it is enough to show that N = Eo R ») has one. We claim that
the module N is free over C[h]. To prove this, recall from (3 that R(M,) = ox (l‘prMb)
as C[[h]]o x W'-modules. Using the isomorphism of C[h] x W—modules M = Clh]®V given
in Lemma [3.4.1]a), we deduce an isomorphism of C[[h]]o x W’-modules

12

R(M,) &1 (e (C[0], @ V)

Clbllo @ V.

12

So the module R(M;) is free over C[[h]]o. The completion of the module N at 0 is
isomorphic to R(M,). So Lemma b) implies that N is free over C[h]. The claim is
proved. Now, part (a) follows from Lemma For part (b), note that since Resy(M)
has a standard filtration, by Lemma there exists a finite dimensional vector space
V' C Resy(M) such that V' is stable under the action of CIW’ and we have an isomorphism
of C[h] x W'-modules

Resy(M) 2 C[h] @ V'.

Moreover, we have w([Resy(M)]) = [V'] in [CW’]. So Proposition [3.3.2(b) yields that
Res{V (w[M]) = w([Resb( )]). Since w([M]) = [V] by Lemma (b)7 the CW’-module
V' is isomorphic to Res}y. (V). So we have an isomorphism of C[h] x W’-modules

Resy (M) = C[] ® Resyy (V).
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3.5 KZ commutes with restriction functors

Now, we relate the restriction and induction functors for rational DAHA’s to the
corresponding functors for Hecke algebras via the functor KZ. We will work under the
same assumption as in Section Let W be a complex reflection group acting on b.
Let b be a point in h and let W’ be its stabilizer in W. We abbreviate KZ = KZ(W, h),
KZ' = KZ(W',b).

Theorem 3.5.1. There is an isomorphism of functors
KZ' oResy = 7 Res}l o KZ.

Proof. We will regard KZ : O.(W.h) — #5(W)-mod as a functor from O.(W,h) to
By -mod in the obvious way. Similarly we will regard KZ' as a functor to By -mod.
Recall the inclusion 2 : By < By from . The theorem amounts to prove that for
any M € O.(W, ) there is a natural isomorphism of Byy-modules

KZ' oResy(M) = 1, 0 KZ(M). (3.5.1)

Step 1. Recall the functor ¢ : Oy (W', h) — Ou (W', ) from (3.1.3) and its quasi-inverse

¢ lin . Let
N = ¢ (Resy(M)).

We have N = Resy(M) @ C[h"W']. Since the canonical epimorphism h — § induces a
fibration b..., = b,.,, see Section E we have

reg

Nh/

re

, = Resy(M)y @ clp™]. (3.5.2)

By Dunkl isomorphisms, the left hand side is a D(h.,) x W'-module while the right

reg
hand side is a (D(b,¢,) 3 W) @D (H"")-module. Identify these two algebras in the obvious
way. The isomorphism ([3.5.2)) is compatible with the W’-equivariant D-module structures.
Hence we have
(Ny,,)¥ = (Resy(M); )Y @ C[p"]Y.
Since (C[F)W/]V = C, this yields a natural isomorphism

l, o KZ(W', h)(N) =2 KZ oResy(M),

where ¢ is the homomorphism defined in ((1.2.1)).
Step 2. Consider the W’-equivariant algebra isomorphism

¢ :Clh] = Clb], x+— z+ z(b) for x € h*.
It induces an isomorphism ¢ : C[[h]], = C[[h]]o. The latter yields an algebra isomorphism

C[[b]ls @co) Clbreg] == C[[b]lo @cpp) Clbireg]-

To see this, note first that by definition the left hand side is C[[]]s[as ', s € S]. For s € S,
s ¢ W' the element «y is invertible in C[[h]]s, so we have

Clb])e ®cgp) Clbreg] = Cllb]lslaz ", s € SNW.
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For s € SN W' we have a;(b) = 0, so ¢(as) = as. Hence

O(C[[b]]p)[d(as) s e SNW'] = C[[b]lo[a ', s € SNW]
= C[[hl]o @cjp] Clbreg)-

Step 3. We will assume in Steps 3, 4, 5 that M is an object of OCA(VV, h). In this step
we prove that N is isomorphic to ¢*(M) as C[h] x W/-modules. Let V be a subspace of
M as in Lemma [3.4.1a). Then we have an isomorphism of C[h] x W-modules

M=Clh V. (3.5.3)
Also, by Proposition [3.4.3(b) there is an isomorphism of C[h] x W’'-modules
N = C[h] @ Resi (V).

So N is isomorphic to ¢*(M) as C[h] x W'-modules.

Step 4. In this step we compare «WDO)W@ and (No)h/%g as DTh;\eg)—modules. By

(3.3.1) we have N = E o R(M,), so we have Ny = R(M,). Next, by (3.2.7) we have an
isomorphism of C[[h]]o x W’'-modules

—

R(My) = ¢ (wpr(My))
= (¢*(M))o.
So we get an isomorphism of C[[h]]op ¥ W'-modules

b 2 (¢*(M)), — No.

Now, let us consider connections on these modules. Note that by Step 2 we have

— o~

((¢*(M))o)n;.., = & (pr(M)p.,)-

Write V for the connection on My, given by the Dunkl isomorphism for H, (W, Breg). We
equip ((¢*(M))g)v;,, With the connection V given by

Va(zprm) = 2pe(Ve(m)), Vm e (]\//Tb) ach.

breg7

Let V) be the connection on Ny, given by the Dunkl isomorphism for Hu (W', by, ).

g reg
This restricts to a connection on (Np)
connections, i.e., we have

We claim that ¥ is compatible with these

h;eg.

v((zb)(xprm) = xprva(m)a Vme (]/\Ib) (354)

hreg‘

Recall the subspace V of M from Step 3. By Lemma [3.4.1)(a) the map

(CI0], ®cpp) Clbreg)) @ V — (M) PRV pu

hreg’
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is a bijection. So it is enough to prove |D for m = pv with p € (E[E]b ®cly] Clhregl,
v € V. We have

VO@up) = G = Y O (1)) app)

sESﬁW’l_)\S Lo,
2cs ag(a
= IEpr(ya"‘ Z _S)\ ;( )—
SES,s¢W’ s s
2 S S
- ) )
sesSnw’ s s
2¢s  ag(a)
A/ D DL T
SES,s¢W’ s s
= ZpVa(zppv). (3.5.5)

Here the first equality is by the Dunkl isomorphism for H. (W’ b ). The second is by

reg

(]3.2.4[), (]3.2.5[), (]3.2.6D and the fact that 22, = Zpr. The third is by the Dunkl isomor-

phism for H.(W, byeq). The last is by 1} Next, since xp, is the idempotent in ((f[a b
corresponding to the component CI[h]], in the decomposition (3.2.3]), we have

Va (Cﬂprpv) = (8(1 (l‘prp))v + Tpep (vav)
= Zpr(0a(p))v + Tpep (Vav)
= ZpVa(po).

Together with (3.5.5) this implies that
Vz(zb) (Tprpv) = Tpe Va(pu).

So the claim is proved.

Step 5. Now, we prove the isomorphism for M € OCA(VV, h). Here we need
some more notation. For X = or h;eg, let U be an open analytic subvariety of X, write
i : U — X for the canonical embedding. For F' an analytic coherent sheaf on X we write
i*(F') for the restriction of F' to U. If U contains 0, for an analytic locally free sheaf F
over U, we write E for the restriction of E to the formal disc at 0.

Let ©Q C b be the open ball defined in . Let f: b — b be the morphism defined
by ¢. The preimage of ) via f is an open ball )y in h centered at 0. We have

f(QO N h;ﬂeg) =Qn breg-

Let u: Qo Nh., — hand v : QN hyey — bh be the canonical embeddings. By Step 3 there

reg
is an isomorphism of W’-equivariant analytic locally free sheaves over €y N b;eg

By Step 4 the isomorphism ¥ yields an isomorphism

wF (V) 5 (o7 (M)

which is compatible with their connections. It follows from Lemma below that there
is an isomorphism

(wr (v T = gt (o (MY,
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/

reg Via u, the left hand side is isomorphic to

Since Qg N b, is homotopy equivalent to b

reg

(Ny, )V(b>. So we have

KZ(W',5)(N) 2 1, 0 35 0 KZ(M),

where k, 7 are as in ((1.2.3)), (1.2.4). Combined with Step 1 we have the following isomor-
phisms

KZ' oResy(M) = £, oKZ(W' h)(N)

Uy 0Ky 0 g, 0 KZ(M) (3.5.6)
= 1. 0 KZ(M).

12

They are functorial on M.

Lemma 3.5.2. Let E be an analytic locally free sheaf over the complexr manifold f);eg. Let
V1, Vo be two integrable connections on E with reqular singularities. If there exists an

isomorphism 1[1 : (E, Vi) — (E, V3), then the local systems EV' and EV? are isomorphic.

Proof. Write End(FE) for the sheaf of endomorphisms of E. Then End(FE) is a locally free

sheaf over by.,. The connections Vi, Va define a connection V on End(E) as follows,

V :End(E) — End(E), f+ Vaof— foVi.

So the isomorphism ¢ is a horizontal section of (Egl(\E)7 V). Let (End(E)V)g be the set of
germs of horizontal sections of (End(F), V) on zero. By the Comparison theorem [KK81),

—

Theorem 6.3.1] the canonical map (End(E)Y)g — (End(E))V is bijective. Hence there
exists a holomorphic isomorphism ¢ : (£, V1) — (E, V3) which maps to ¥. Now, let U be
an open ball in by, centered at 0 with radius e small enough such that the holomorphic
isomorphism 1 converges in U. Write Ey for the restriction of F to U. Then 1 induces
an isomorphism of local systems (Ey)Vt = (Ey)V2. Since brey is homotopy equivalent to
U, we have

EVi = EV2,
m

Step 6. Finally, recall that I is the inclusion of Proj.(W, h) into O.(W, ). By Proposi-
tion b), any projective object in O.(W, h) has a standard filtration. So (3.5.6)) yields

an isomorphism of functors
KZ' oResp ol — 1, 0 KZol.

Applying Corollary to the exact functors KZ' o Res;, and 7, o KZ yields that there is
an isomorphism of functors
KZ' oResy & 1, 0 KZ.

An immediate corollary of Theorem is the following.

Corollary 3.5.3. There is an isomorphism of functors

KZolInd, 2 * colndlV, o KZ'.
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Proof. To simplify notation let us write
O=0.W,h), O =0.W'8y), H=x8W) H=HW).

Recall that the functor KZ is represented by a projective object Pkxz in O. So for any
N € O we have a morphism of #-modules

KZoIndy(N) = Homo(Pkyz,Indy(V))
= HOHI(Q/ (Resb(PKZ), N)
— Homjf/ (KZ/(ReSb(PKz)),KZ,(N)). (3.5.7)

By Theorem we have
K7 o Resy(Pkyz) = 7 Resl o KZ(Pxz).

Recall from Section that the J#-module KZ(Pxz) is isomorphic to . So as J#'-
modules KZ'(Res,(Pkz)) is also isomorphic to 5. Therefore the morphism (3.5.7)) can be
rewritten as

X(N) : KZoIndy(N) — Hom (52, KZ'(N)). (3.5.8)
It yields a morphism of functors
x : KZoInd, — *colndl}, o KZ'.

Note that if N is a projective object in O’, then x(N) is an isomorphism by Proposition
2.5.2(a). So Corollary implies that x is an isomorphism of functors, because both
functors KZoInd, and “ colnd}},, o KZ' are exact. O

3.6 A useful lemma.

Lemma 3.6.1. Let K, L be two right exact functors from O1 to Oz, where O1 and Oo
can be either O.(W,H) or Ou (W' b). Let KZo denote the KZ-functor on Os. Suppose that
K, L map projective objects to projective ones. Then the vector space homomorphism

Hom(K, L) - Hom(KZs oK,KZyoL), f+ 1kz,f, (3.6.1)
is an isomorphism.
Note that if K = L, this is even an isomorphism of rings.

Proof. Let Proj;, Projy be respectively the subcategory of projective objects in Oy, Os.
Let K, L be the functors from Proj; to Proj, given by the restrictions of K, L, respectively.
Let 7% be the Hecke algebra corresponding to Oy. Since the functor KZs is fully faithful
over Proj, by Proposition [2.5.2)(a), the following functor

Fet(Proj;, Projy) — Fet(Proj;, #%-mod), G+ KZyoG
is also fully faithful. Therefore we have an isomorphism
Hom(K, L) = Hom(KZy oK, KZyoL), f lkz,f.
Next, by Lemma [2:3.T] the canonical morphisms
Hom(K, L) — Hom(K, L), Hom(KZs oK, KZsoL) — Hom(KZy oK ,KZsoL)

are isomorphisms. So the map (3.6.1)) is also an isomorphism. O



34 CHAPTER I. CRYSTALS AND RATIONAL DAHA’S

3.7 Transitivity of restriction and induction functors

Let b(W,W") be a point in h whose stabilizer is W”. Let b(W', W") be its image in
b =h/h"’ via the canonical projection. Write b(W, W’) = b.

Proposition 3.7.1. There are isomorphisms of functors
ReSb(nywu) o Resb(W,W’) = Resb(mwu),
Indb(W’W/) o Indb(W/’W//) = Il’ldb(W’W//) .

Proof. Since the restriction functors map projective objects to projective ones by Proposi-

tion@(a), Lemma applied to the categories O1 = O (W, h), Oy = O (W, f)/hW”)
yields an isomorphism

Hom(Resb(W/7W//) o Resb(Wywl), ReSb(Wyw//))
= HOIH(KZ” @) ReSb(lew//) @) Resb(WW/), KZ” @) ReSb(WW//)).

By Theorem the set on the second row is
Hom( ” Res{n o 7 Resly 0 KZ, 7 Resln o KZ). (3.7.1)

By the presentations of Hecke algebras in [BMRO8, Proposition 4.22], there is an
isomorphism
o : “Resl o Reslly = *Reslln .

Hence the element olky in the set (3.7.1) maps to an isomorphism

Resb(W/7W/,) o Resb(VVJ/V’) —t Resb(VV,W”) .

This proves the first isomorphism in the corollary. The second one follows from the
uniqueness of right adjoint functor. O

3.8 Biadjointness of Res, and Ind,.

In this section, we prove the biadjointness of Res, and Ind, (Proposition [3.8.2)). This
result was conjectured in [BE0Q9, Remark 3.18]. Let us first consider the following lemma.

Lemma 3.8.1. (a) Let A, B be noetherian algebras and T be a functor
T:A-mod — B-mod.

If T is right exact and commutes with direct sums, then it has a right adjoint.
(b) The functor
ReSb : OC(W7 h) - OC/(lea)

has a left adjoint.

Proof. Consider the (B, A)-bimodule M = T'(A). We claim that the functor T is isomor-
phic to the functor M ® 4 —. Indeed, by definition we have T'(A) 2 M ®4 A as B modules.
Now, for any N € A-mod, since N is finitely generated and A is noetherian there exists
m, n € N and an exact sequence

AP s AP N 0.
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Since both T and M ® 4 — are right exact and they commute with direct sums, the fact
that T(A) =2 M ®4 A implies that T(N) = M ®4 N as B-modules. This proved the
claim. Now, the functor M ®4 — has a right adjoint Homp(M, —), so T also has a right
adjoint. This proves part (a). Let us concentrate on part (b). Recall that for any complex
reflection group W, a contravariant duality functor

(_)\/ : OC(W7 h) - OCT(VVa h*)

was defined in [GGORO03, Section 4.2], here ¢/ : S — C is another parameter explicitly
determined by c. Consider the functor

Res) = (—)Y oRespo(—)" : O (W, h*) — (’)c,T(W', (5)*).

The category O (W, h*) has a projective generator P. The algebra Endo . (w-) ()P is
finite dimensional over C and by Morita theory we have an equivalence of categories

OCT (W, b*) = EndOcT (WJ)*)(P)OP -mod .

Since the functor Resy is exact and obviously commutes with direct sums, by part (a) it
has a right adjoint W. Then it follows that (=) o ¥ o (=) is left adjoint to Res,. The
lemma is proved. ]

Proposition 3.8.2.1 Assume that the algebras 7#;,(W) and #,(W') are symmetric. Then
the functor Indy is left adjoint to Resy.

Proof. We will prove the proposition in two steps.

Step 1. We abbreviate O = O.(W, ), O' = Ou (W', 4), A = HZ(W), H#' = Hy(W'),
and write Idp, Ider, Id s, Id 4 for the identity functor on the corresponding categories.
We also abbreviate E” = #Resll,, F? = #Ind}},, and E = Res;. By Lemma the
functor E has a left adjoint. We denote it by F : 0" — O. Recall the functors

KZ: 0O — # -mod, KZ':0" — s -mod.
The goal of this step is to show that there exists an isomorphism of functors
KZoF = F” oKZ' .

To this end, let S, S" be respectively the right adjoints of KZ, KZ', see Section We
will first give an isomorphism of functors

F?* 2KZoF oS

Let M € ' -mod and N € 2 -mod. Consider the following equalities given by adjunc-
tions

Hom y(KZoF o S'(M),N) = Homp(F oS (M),S(N))
Home/ (S'(M), E o S(N)).

The functor KZ' yields a map

a(M,N) : Home/ (S (M), E o S(N)) — Hom y (KZ' oS (M), KZ oE o S(N)). (3.8.1)

1. This result has been independently obtained by Iain Gordon and Maurizio Martino.
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Since the canonical adjunction maps KZ' oS’ — Id 4, KZoS — Id are isomorphisms
(see Section and since we have an isomorphism of functors KZ'oE = E“ o KZ by
Theorem [3.5.1] we get the following equalities

Hom y(KZ' oS'(M),KZ' oE o S(N)) = Hom (M, E” o KZoS(N))
= Hom (M, E”(N))
= Hom y(F”(M),N).

In the last equality we used that F”* is left adjoint to E”*. So the map (3.8.1)) can be
rewritten into the following form

a(M,N) : Hom_y(KZoF o S'(M), N) — Hom y(F” (M), N).

Now, take N = 7. Recall that 7 is isomorphic to KZ(Pkyz) as #-modules. Since Pk
is projective, by Proposition m(b) we have a canonical isomorphism in O

Pxy =2 S(KZ(Pky)) = S(2).

Further £ maps projectives to projectives by Proposition m(a), so F o S() is also
projective. Hence Proposition [2.5.2(a) implies that in this case (3.8.1)) is an isomorphism
for any M, i.e., we get an isomorphism

a(M, ) : Hom y(KZoF o S'(M), ) = Hom_y(F” (M), 7).

Further this is an isomorphism of right #-modules with respect to the right action of
A on itself. Now, the fact that 7 is a symmetric algebra yields that for any finite
dimensional s#-module N we have isomorphisms of right s#-modules

Hom (N, ) = Homy (N, Home(J,C))
= Homg¢(N,C).
Therefore a(M, .#) yields an isomorphism of right #-modules
Hom¢(KZoF o §'(M),C) — Home(F” (M), C).
We deduce a natural isomorphism of left .7#-modules
KZoF o S'(M) = F” (M)

for any 2#’-module M. This gives an isomorphism of functors

W :KZoF oS & F7,

Finally, consider the canonical adjunction map 7 : Idgr — S’ o KZ'. We have a morphism
of functors
¢ = (1kzorn) o (Vlky) : KZoF — F o KZ'.

Note that 11k, is an isomorphism of functors. If @ is a projective object in @', then by
Proposition b) the morphism 7(Q) : Q@ — S’ o KZ'(Q) is also an isomorphism, so
#(Q) is an isomorphism. This implies that ¢ is an isomorphism of functors by Corollary
because both KZ oF and F?* oKZ' are right exact functors. Here the right exactness
of F' follows from that it is left adjoint to F. So we get the desired isomorphism of functors

KZoF = F” o KZ'.
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Step 2. Let us now prove that F' is right adjoint to £. By uniqueness of adjoint
functors, this will imply that F is isomorphic to Ind,. First, by Proposition the
functor F7* is isomorphic to “ coIndl,. So F”* is right adjoint to E”. In other words,
we have morphisms of functors

e E7 o F” = 1dy, n” :1dy — F7 oE”
such that
(e 1gse) o (Ipwn™) =1gw, (Lpwe™)o (™ lpwx)=1ps.

Next, both F' and E have exact right adjoints, given respectively by E and Ind,. Therefore
F and E map projective objects to projective ones. Applying Lemma to 01 = Oy =
O, K =FEoF, L=1Ido yields that the following map is bijective

Hom(E o F, Ide) — Hom(KZ oE o F, KZ' o1dp), f+ lgyf. (3.8.2)
By Theorem and Step 1 there exist isomorphisms of functors
¢p B oKZ 5 KZ' oE, ¢p: F” oKZ' = KZoF.
Let

orr = (pplp) o (lgwdr) : B o F* 0o KZ' 55 KZ' oE o F,
orE = (oplp) o (lpw¢p) : F7* 0o B o KZ = KZoF o E.

Identify
KZoldp =IdyoKZ, KZ oldpr =1d s oKZ' .

We have a bijective map
Hom(KZ' oFE o F, KZ' oldp) = Hom(E” o F” o KZ', Id 1 0o KZ'), g+ go ¢pr.

Together with (3.8.2)), it implies that there exists a unique morphism € : F o F — Ider
such that

(lxz€) o drr = 7 gy
Similarly, there exists a unique morphism 7 : Idp — F o F such that
(¢rp)~" o (1kzn) = 1" 1kz.

Now, we have the following commutative diagram

E” o KZ E” oKZ KZ oF

1E%U%1KZ\L 1poe lxzn J{le/lEﬁ
1E329¢FE ¢plrlp

E#XocF?* o E?*o0KZ —— E?*o0cKZoFoE —— KZoEoFoFE

1w orle
w w w Lpoelpoe o8 - P , $EFlE ,
E* o F*oFE*oKZ —— E? ocF?o0KZoFE — KZoEoFoFE
EﬂlEK%” 1KZ\L 8*%1KZ/1E \Llelle

E” o KZ KZ' oFE KZ oF.




38 CHAPTER I. CRYSTALS AND RATIONAL DAHA’S

It yields that

(1xzelp) o (lxzlen) = ¢ o (€ 1w lkz) o (Lpwn™lkz) o (¢r) "
We deduce that
Ik ((elg) o (1gn)) = épo(lpwlkz)o (¢p) "

By applying Lemma to 01 =0, 0y =0, K = L = E, we deduce that the following
map

End(E) — End(KZ' oE), fw lgzf,
is bijective. Hence ([3.8.3)) implies that
(elp)o (1pn) = 1g.

Similarly, we have (1pe)o (nlp) = 1p. So E is left adjoint to F'. By uniqueness of adjoint
functors this implies that F' is isomorphic to Ind,. Therefore Indy is biadjoint to Resy. [

4 Fock spaces and cyclotomic rational DAHA’s

In this section, we construct the i-restriction and i-induction functors on the category
O of cyclotomic rational DAHA’s. We show that these functors yield a type A™) affine
Lie algebra action on the Grothendieck group of the category O, which is isomorphic to a
Fock space.

4.1 The affine Lie algebra sl,

Let e > 2 be an integer and let ¢ be a formal parameter. Let sl. be the Lie algebra of
traceless e x e complex matrices. Consider the affine Lie algebra of type A1)

sl =sl, @ C[t,t '] @ Cc CH
with the Lie bracket given by
[E@t™ +xc+yd, £ @t +a'c+y 0] = [€, 1Rt +mbyy,—n tr(E€ ) c+nyé @t —my €2t
where tr : sle — C is the trace map. Let
sl = sl, @ C[t,t7!] & Ce.
It is the Lie subalgebra of sl, generated by the Chevalley generators

ei=FEiip1®1l, fi=F1,,®1, hi=(Ei—Eit41)®1, 1<i<e—1,
eo = Ee1 ®t, fo=Eie®@t™, hy=(Bee—En)®1+c

Here E;; is the elementary matrix with 1 in the position (¢, j) and 0 elsewhere. We consider
the Cartan subalgebra
t= @ Ch; & Co,
€L/l
and its dual t*. For i € Z/eZ let a; € t* (resp. o € t) be the simple root (resp. coroot)
corresponding to e;. The fundamental weights are A; € t*, i € Z/eZ, with A;(o)) = d;; for
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any i,j € Z/eZ. Let 6 € t* be the element given by d(h;) = 0 for all i and §(0) = 1. Let
P Dbe the weight lattice of sl.. It is the free abelian group generated by the fundamental
weights and §. For any sl.-module V' and p € t* let

Veo={veV]hv=puh)v, Vhet}

An element v € V' is called a weight vector if it belongs to V), for some p.

4.2 Fock spaces.

In the rest of the chapter, we will fix once for all a positive integer [. Let us introduce
the following notation. For any positive integer n, a partition p of n is a sequence of
integers py > -+ = pp > 0 such that the sum |u| = Zle i = n. An [-partition of n is
an [-tuple of partitions A = (A1), ..., A®) such that |A] = YL, [A®)| = n. We denote by
P, the set of [-partitions of n. To an [-partition A = ()\(1), ... ,)\(l)) we attach the set

Ty = {(a,b,j) e Nx N x (Z/IZ)|0 < b < (AD),}.
If 4 is an [-partition such that Y, contains Y, then we write p/\ for the complement of
Ty in T,. Let |1/ be the number of elements in this set.

Given an [ tuple of integers s = (s1,..., s1), the Fock space with multi-charge s is given
as follows. As a C-vector space, it is spanned by the [-partitions, i.e., we have

Fs=PB p c.

neNAeP, ;

Moreover, following [JMMOO1], the space Fg carries an integrable sl -action given by

ei(|A) = > ) fillA) = > W), VieZ/eZ. (4.2.1)

|A/ul=1,res(N/p)=i |/ Al=1,res(p/N)=i
A(|A) = —no |A).
Here we have used the notation that
res((a,b,j)) =b—a+s; € Z/eZ, V¥ (a,b,j) € Ty,

and n; denotes the number of elements in the set {(a,b,j) € Ty | res((a,b,j)) =i} for any
i € Z/eZ. For k € Z we set Ap = Aj(moq ). Consider the weight

As = A, + ...+ Ay,
Then each vector |\) in Fg is a weight vector of weight

wt([A) = As — D nias. (4.2.2)
i€L/el

We call wt(|A)) the weight of A.
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4.3 The wreath product B,(I)

Let e = exp(2my/—1/1). Let n be a positive integer. We consider the complex reflection
group By, (1) given by the wreath product of the symmetric group &,, and the cyclic group
Z/IZ. In other words, let {y1,...,yn} be the standard basis of h,, = C". For 1 <i,j,k < n
with i, j, k distinct, let e, s;; be the following elements of GL(by,):

ex(ye) = ey,  ex(yy) =5, sij(wi) =y, sij(Yk) = Yk

Then By,(1) is the subgroup of GL(h,,) generated by the elements €5, 1 < k < n, and s;;,
1 <i < j < n. The set of reflections in B, ({) is

-1
Sn=RuU(| ]2,
p=1

where R and ZP are conjugacy classes given by
R={s¥ =s;ele;?|1<i<j<nl<p<l}, ZP={f[1<i<n}, 1<p<Ii-L
Note that there is an obvious inclusion §,,_1 < S,,. It yields an embedding

Bn—1(l) = By(l). (4.3.1)

This embedding identifies B,,—1(l) with the parabolic subgroup of B,(l) given by the
stabilizer of the point b, = (0,...,0,1) € C™.

Given a partition A of n, we denote the corresponding irreducible representation of &,
again by A. The irreducible representations of By, (l) are labeled by the [-partitions of n.
Indeed, for A € Py, let

p—1 p—1 P
Lp)= {391 +1, ST x@p 42, 3O, 1<p<i
=1 =1 =1

We put &) = &1y X -+ X &7, ;) and By(l) = (Z/IZ)" x &). Consider the character
Y : ZJIZ — C*, a — . We denote by ¥(®) the one dimensional character of (Z/17)®) x
&, (p) Whose restriction to (Z/1Z)7 () is (wp*1)®|)‘(p)| and whose restriction to &y, is
trivial. Then we have a bijection

Poa 3 Trx(B(1), A Ind () (@WAD @ - @ pOAD),
see e.g. [RouO8bl, Section 6.1.1]. Below, we will always identify P, ; and Irr(B, (1)) in this

way.

4.4 Cyclotomic Hecke algebras
The Hecke algebras attached to the group B, (1) are called cyclotomic Hecke algebras, or

Ariki-Koike algebras. Given a parameter q = (q,q1,-..,q), the corresponding cyclotomic
Hecke algebra 77 , has the following presentation:
e Generators: 1o, 11, ..., T,_1,
e Relations:
(To—q) - (To —q) = (T; + 1)(T; — q) = 0, I1<i<n—1,
ToT 10Ty = Th' Ty I To,
T;T; =TT, j=zi+2, (4.4.1)
LT T = T T4, 1<i<n—2.
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The algebra J7 ,, satisfies the assumption of Section i.e., it has the same dimension
as the group algebra CB,,(I). We will abbreviate

Cqn =Cqn, Cq= @ Cq,n-
neN

For each [-partition A of n, let Sy be the corresponding Specht module in Cq ,, see [Ari02,
Definition 13.22] for its definition. The classes [S)] span the vector space [Cqn]-
Following Section the embedding of B,_1(l) into By, (1) yields an embedding
of Hecke algebras
lq - %m_l — e%pm.

By [BMROS8|, Proposition 2.29] this embedding is given by
(1) =T;, VO<i<n—2.
We will consider the following restriction and induction functors:

n(l By (l
B(n)” = ”Reanfj(l), F(n)” = ”mdanf(l).

The algebra 7, is symmetric, see Remark Hence by Proposition we have

o~ Bn(l)
F(n)” = *colndy"" .

Let
E* =P EMn)”, F*=FMn)”.
n=1 n=1
Then (E”*, F”") is a pair of biadjoint endo-functors of Cq.
4.5 The i-Restriction and i-induction functors of cyclotomic Hecke al-
gebras.

Fix an [-tuple s = (s1,...,s;) and fix a positive integer e > 2. Let the parameter
qa=(¢,q1,-..,q) be given by

2w/ —1
e

q = exp( ), w=q¢", 1<p<l (4.5.1)

In this case, Ariki defined the i-restriction and i-induction functors on Cq as follows.
First, consider the following elements in J7 ,,

Jo=To, Ji=q 'T;J; 1T, forl<i<n-—1.

They are called the Jucy-Murphy elements. Recall that Z(J4, ) is the center of J7 .
For any symmetric polynomial o of n variables, the element o(Jy,...,J,—1) belongs to
Z(Hyn), see |[Ari02, Section 13.1]. In particular, let z be a formal variable. Then the

polynomial
n—1

Cn(z) = H (z — J;) € I nl7]
i=0
has coefficients in Z (.7 ,,). Next, let C(z) be the fraction field of C[z]. To any a(z) € C(z)
we associate an exact functor

Pn,a(z) : Cq’n — Cq7n7 M = Pn7a(z) (M)’

such that P, ,.)(M) is the generalized eigenspace of Cy,(2) acting on M with the eigenvalue

a(z).
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Definition 4.5.1. Let i € Z/eZ. The i-restriction functor and i-induction functor
Ei(n)" : Cam — Cam—t.  Fi(n)™ : Camo1 = Cqm
are given by

El(n)% = @ Pnfl,a(z)/(zfqi) © E(n)%ﬂ O I'pa(z)s
a(2)eC(z)

Fl(n)% = @ Pn,a(z)(z—qi) 0 F(n)% O L'n—1,a(z)-
a(z)eC(z)

See [Ari02, Definition 13.33]. We abbreviate
EY =P En)”, F*=FMn™”.

nz=1 n>1

They are endo-functors of Cq. Further, let

ax(z) = H (z — qreS(”)), VAeEPy.

vET )
Then the functors E7, F* have the following properties.

Proposition 4.5.2. (a) The functors E;(n)”, F;(n)” are exact biadjoint functors.
(b) For X\ € Py the element Cy,(2) has a unique eigenvalue on the Specht module S.
It is equal to a)(z).

(c) We have
Em)”([S\)= > [Sd  EM7(SD= > S
res(A/p)=1 res(p/N)=t
(d) We have
1€Z/eZ i€EZ/eZ

Proof. Part (a) follows from the fact that E(n)”, F(n)” are exact and biadjoint. See
[Ari02, Theorem 13.21(2)] for part (b) and [Ari02, Lemma 13.37] for part (c). Part (d)
follows from part (c) and [Ari02, Lemma 13.32]. O

4.6 Cyclotomic rational DAHA’s

Now, let us consider the cyclotomic rational DAHA’s, i.e., the rational DAHA’s as-
sociated with the complex reflection group B, (l)’s. Given an I-tuple complex numbers
h=(h,hy,...,h_1), we define a W-invariant function ¢ : S,, — C by setting

-1
—1 /
c(R)=—h, c(Z")= > dE? —1Dhy, V1i<p<i-1
p'=1
We write Hy, ,, = Hc(Bn(l),h,), and write Oy, for the corresponding category O. Note
that the standard objects in Oy, ,, are indexed by Il-partitions of n.

In the rest of the chapter, we will fix once for all an l-tuple of integers s = (s1,...,8;)
and a positive integer e = 2. We will always let the parameter h be given by
-1 — 1
h= =) hy="2"""_ - J<p<i-1. (4.6.1)

e e l’
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In this case, the Knizhnik-Zamolodchikov functor has the following form
KZh,n = KZ(Bn(l)a hn) : Oh,n — Cq,m
where q is as in (4.5.1)). The operator KZy, ,, : [On ] = [#4,n] has the following property.

Lemma 4.6.1. For A € P,; we have
KZnn([A(N)]) = [S)].

Proof. We abbreviate KZ = KZy, ,,. Let R be any commutative ring over C. For any [-
tuple z = (2, 21, ...,2;—1) of elements in R one defines the rational DAHA over R attached
to By () with parameter z in the same way as before. Denote it by Hpg ,,. The standard
modules Ar(\) are also defined as before. For any (I 4+ 1)-tuple u = (u,uq,...,u;) of
invertible elements in R the Hecke algebra #% y, , over R attached to By, (l) with parameter
u is defined by the same presentation as in Section @ The Specht modules Sg ) are also
well-defined, see [Ari02]. If R is a field, we will write Irr(#% ) for the set of isomorphism
classes of simple J#g y ,-modules.

Now, fix R to be the ring of holomorphic functions of one variable . We choose
z=(z,21,...,2-1) to be given by

z=lw, zp=(spt1—sp)lw+ew, 1<p<Il-1.
Write x = exp(—27v/—1w). Let u = (u,uq,...,u;) be given by
u=2a', wu,= eP~lgsl=(=e 1 < p <L

By [BMR98, Theorem 4.12] the same definition as in Section yields a well defined
R un-module
Tr(A) = KZp(Agr(M)).

It is a free R-module of finite rank and it commutes with the base change functor by the
existence and unicity theorem for linear differential equations, i.e., for any ring homomor-
phism R — R’ over C, we have a canonical isomorphism of #% ., ,-modules

Tr(\) = KZr (Ar/(N\) = Tr(\) @ R'. (4.6.2)

In particular, for any ring homomorphism a : R — C. Write C, for the vector space
C equipped with the R-module structure given by a. Let a(z), a(u) denote the images
of z, u by a. Note that we have H,,),, = Hrzn ®r Cq and H (), = HRun @r Cq.
Denote the Knizhnik-Zamolodchikov functor of Hy (), by KZ,(5) and the standard module
corresponding to A by A,,)(A). Then we have an isomorphism of J7 ) ,-modules

TR()\) ®rCq = KZa(z) (Aa(z) ()‘))

Let K be the fraction field of R. By [GGORO03), Theorem 2.19] the category Ok 5, is
split semisimple. In particular, the standard modules are simple. We have

{TK()\) | A€ 'PnJ} = Irr(,%ﬁ](7u7n).
The Hecke algebra J#j ., is also split semisimple and we have

{SkA|A€ Py} =Irr(Hk un),



44 CHAPTER I. CRYSTALS AND RATIONAL DAHA’S

see e.g., [Ari02, Corollary 13.9]. Thus there is a bijection ¢ : P, ; — Py such that Tk (X)
is isomorphic to Sk ) for all A. We claim that ¢ is identity. To see this, consider
the algebra homomorphism ag : R — C given by @ + 0. Then J%, (), is canonically
isomorphic to the group algebra CB,(l). In particular, it is semi-simple. Let K be the
algebraic closure of K. Let R be the integral closure of R in K and fix an extension @y of
ap to R. By Tit’s deformation theorem, see e.g., [CR8T, Section 68A], there is a bijection

(3 Irr(t%”ﬁum) = e (A (w),n)

such that
V(Tr(N) =Tr(N) @5 Cap,  ¥(Sg.,) = S5 @7 Cao-

By the definition of Specht modules we have Sz , ®7Cg, = A as CBy(l)-modules. On the
other hand, since ag(z) = 0, by (4.6.2) we have the following isomorphisms

T(N) @5 Cqy = Tr(A) ®r Cq
= KZo(Ao(N))
= A

So ¢(T(N)) = ¥(S% ). Hence we have Ty(\) = Sx . Since T(N) = Tx(\) @k K is
isomorphic to SK o(\) = Sk @K K, we deduce that ¢(A\) = X. The claim is proved.

Finally, let m be the maximal ideal of R consisting of the functions vanishing at
w = —1/el. Let R be the completion of R at m. It is a discrete valuation ring with
residue field C. Let a; : R — R/mR = C ‘be the quotient map. We have ai(z) = h and
a1(u) = q. Let K be the fraction field of R. The decomposition map is given by

d: [ o) = Panl, [M] = [Log Ca).
Here L is any %” —submodule of M, free over R such that L Qp K = M. The choice

of L does not affect the class [L ®5 Cq, | in [ n]. See [Ari02) Sectlon 13.3] for details on
this map. So we have

d([Sz \D) =[5z ©5 Cai] = [SA],
d([Tz (M) = [T(N) ® Ca,] = [KZ(AN))].
Since K is an extension of K, by the last paragraph we have [$ =) = [Tz(N)]. We deduce
that [KZ(A(X))] = [Sy]. ’ 0

4.7 The i-Restricion and ¢ induction of cyclotomic rational DAHA’s

We abbreviate
Oh =P Onpn, KZ=EP Kz,

neN neN

We have the following exact functors on Oy

E=EM), F=F(n).

n>1 n>1

By Proposition they are biadjoint. We have isomorphisms of functors

E”* oKZ = KZoE, F” oKZ~KZoF (4.7.1)
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by Theorem and Corollary
Recall from Lemma a) that we have an algebra isomorphism

v Z(Onn) = Z(Hyn).
So there are unique elements K7, ..., K, € Z(Oy,) such that the polynomial
Dp(2)=2"+ K12 '+ + K,

maps to C,(z) by «. Since the elements Kj,..., K, act on simple modules by scalars
and the category Oy, ,, is artinian, every module M in Oy, is a direct sum of generalized
eigenspaces of Dy, (z). For a(z) € C(2) let Q,, 4(-) be the exact functor

Qn,a(z) : Oh,n - Oh,m M~ Qn,a(z)(M)7

such that @y, 4(;)(M) is the generalized eigenspace of D, (2) acting on M with the eigen-
value a(z).

Definition 4.7.1. The i-restriction functor and the i-induction functor
Ei(n): Onn = Onp—1,  Fi(n) : Onp—1 — Onp
are given by

E; (n) = @ Qn—l,a(z)/(z—qi) o E(TL) ° Qn,a(z)a
a(z)eC(z)

Fl(n) = @ Qn,a(z)(z—qi) 0 F(?’L) 0 Qn—l,a(z)'
a(z)eC(z)

We abbreviate

Ei = @ EZ(TL), Fi = @ FZ(TL) (4.7.2)

n=1 n>1

Lemma 4.7.2. We have isomorphisms of functors
KZoE;(n) = E;(n)” oKZ, KZoF;(n)= F;(n)” oKZ, Vi€ Z/eZ.
Proof. Since v(Dy(z)) = Cy(2), by Lemma [2.5.1(b) we have
KZ0Qy o) = Prarz) cKZ, Va(z) € C(2).
So the proposition follows from . O

Now, let us give some properties of the functors E;, F; in parallel to Proposition [4.5.2

Proposition 4.7.3. (a) The functors E;(n), F;(n) are exact biadjoint functors.
(b) For any A € Py the unique eigenvalue of Dy (z) on the standard module A(X) is

ax(z).
(¢c) We have
Em(AW) = > [AWl  E®(AN)= > [A@) (4.7.3)
res(A/p)=t res(pu/N)=i
(d) We have
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Proof. By definition, the functors F;(n), F;(n) are exact. The biadjointness in part (a) fol-
lows from Proposition For part (b), note that a standard module is indecomposable,
so the element Dy, (z) has a unique eigenvalue on A()). By Lemma[4.6.1] this eigenvalue is
the same as the eigenvalue of Cy,(z) on Sy. So part (b) follows from Proposition [£.5.2(b).
Next, let us prove the equality for F;(n) in part (c). The Pieri rule for the group B, (l)
together with Proposition (b) yields

Em[AN) = > AWl FO)([ANWD) = ) [Aw). (4.7.4)

[A/pl=1 |/ A|=1
So we have
El(n)([A(A)]) = @ Qn—l,a(z)/(z—qz)(E(n)(Qn,a(z)<[A(/\)])))
a(2)€Clz]
= Qn Lax(2)/(z—q%) (E(n)(Qna/\(z)([A()‘)])))
= Qn Lax(2)/(z—q%) (E(n)([ ( )]))
= Qn—l,a)\(z)/(z—qi)( [A(:u)])
=1
= > (A
res(A/p)=1

The last equality follows from the fact that for any [-partition p such that |A/u| =1 we
have ay(z) = a,(2)(z — ¢=*MM). The equality for F( ) is proved in the same way. So
part (c) is proved. Finally, part (d) follows from part (c) and (4.7.4). O

Now, let us consider the following map
0:[0n = Fs, [AN)] = |N). (4.7.5)
It is an isomorphism of vector spaces.

Proposition 4.7.4. Under the isomorphism 0, the operators E;, F; on [Oy] go respectively
to the operators e;, f; on Fs. When i runs over Z/eZ they yield an action of sle on [Oy]
such that 0 is an isomorphism of sl.-modules.

Proof. This is clear from Proposition “ ) and - O

5 Categorifications and crystals

In this section, we present the main result of the chapter. We first construct an sl,-
categorification on Oy. Then we use it to construct a crystal on the classes of simple
objects of Oy, which is isomorphic to the crystal of the Fock space Fs.

5.1 Categorifications

Let g = exp(%r) Recall that P is the weight lattice for the Lie algebra sl,. Let
C be a C-linear artinian abelian category. For any functor F' : C — C and any morphism
X € End(F), the generalized eigenspace of X acting on F' with eigenvalue a € C is called
the a-eigenspace of X in F.

Definition 5.1.1. An g[e—categoriﬁcation on C is the data of
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(i) an adjoint pair (U, V) of exact functors C — C,

(ii) X € End(U) and T € End(U?),

(iii) a decomposition C = @, cpCr.
Let U; (resp. V;) be the ¢'-eigenspace of X in U (resp. in V)2 for i € Z/eZ. We require
that

(a) U= @iez/ez Ui,
(b) the endomorphisms X and T satisfy

(1gT) o (T1y) o (1yT) = (T1y) o (1yT) o (T1y),
(T + 1y2) o (T — qly) = 0, (5.1.1)
To (1UX) ol = leU,
(c) the action of e; = U;, f; = V; on [C] with i running over Z/eZ gives an integrable
representation of sl,.

(d) U’L(CT) C CT+O£¢ and ‘/;(CT) C C’r—aiv
(e) V is isomorphic to a left adjoint of U.

See [Rou08al, Definition 5.29], and also [CRO8|, Section 5.2.1].

5.2 Crystals arising from categorifications

Now, we explain how to use categorifications to construct crystals.

Definition 5.2.1. A crystal (or more precisely, an ;[e—CTystal) is a set B together with
maps

wt:B — P, &,fi:B— BU{0}, €,¢:B—ZLU{-0cc},

such that
o 0i(b) =€(b) + (o), wt(b)),

e if &b € B, then wt(&;(b)) = w ( Jtai,  €(€(b) =e(d)—1, @i(éi(b)) = pi(b)+1,
o if (JZ)( ) € B, then wt(fi(b)) = wt(b) — i, €(fi(b)) = ei(b) + 1, wi(fi(b) =
Pi L

o let b,b’ € B, then f;(b) =V’ if and only if &(b') = b,
o if (pz(b) = —0Q, then él(b) =0 and fl(b) =0.

Let b be the Lie subalgebra of sl, generated by t and the elements e;, i € Z/eZ. We
say that an sl,-module V is b-locally finite if

o V= GBMEP Vua

e for any v € V, the b-submodule of V' generated by v is finite dimensional.
Let V be a b-locally finite sl.-module. For any nonzero vector v € V and any i € Z/eZ
we set

l;(v) = max{l € N|el(v) # 0}.
Write 1;(0) = —oo. For [ > 0 let

L= fv eV |li(v) <1}.

A weight basis of V is a basis B of V such that each element of B is a weight vector. The
following definition is due to A. Berenstein and D. Kazhdan [BK07, Definition 5.30].

2. Here X acts on V via the isomorphism End(U) = End(V')°? given by adjunction, see [CRO8| Section
4.1.2] for the precise definition.
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Definition 5.2.2. A perfect basis of V is a weight basis B together with maps &, f; :
B — B {0} for i € Z/eZ such that

e for b,/ € B we have f;(b) = b’ if and only if &(b') = b,

e we have é;(b) # 0 if and only if e;(b) # 0,

o if €;(b) # 0 then we have

es(b) € C*&;(b) + V<071, (5.2.1)

Civen a perfect basis (B, &;, f;) and b € B let wt(b) be the weight of b. Set also ¢;(b) = I;(b)
and

pi(b) = €i(b) + (o, wt(b)).

Then the data
(B7Wt7éi7fi76i7(pi) (522)

is a crystal. We will always attach this crystal structure to (B, é;, fz)

An element b € B is called primitive if e;(b) = 0 for all i € Z/eZ. Let BT be the set of
primitive elements in B. Let V' be the vector space spanned by all the primitive vectors
in V. Then we have the following lemma.

Lemma 5.2.3. For any perfect basis (B, é;, f;) the set Bt is a basis of V.

Proof. This is [BK07, Claim 5.32]. We give a proof for completeness. By definition we
have B* C V. Given a vector v € VT, there exist (1,...,(, € C* and distinct elements
b1,...,br € B such that v =377, (;b;. For any i € Z/eZ let l; = max{l;(bj) |1 < j < r}
and J = {j|l;(bj) = 1;; 1 < j <r}. Then by the third property of perfect basis there exist
n; € C* for j € J and a vector w € V<ti~! such that 0 = ¢;(v) = > ies Gnj€i(b;) + w.
For distinct j, j' € J, we have b; # bjs, so €;(b;) and &;(b;/) are different unless they are
zero. Moreover, since [;(€;(bj)) = l; — 1, the equality yields that é;(b;) = 0 for all j € J.
So l; =0. Hence bj € BT for j =1,...,r. O

Consider an g[e—categoriﬁcation on a C-linear artinian abelian category C given by an
adjoint pair of endo-functors (U, V), X € End(U) and T € End(U?). Assume that the sl,-
module [C] is b-locally finite, then one can construct a perfect basis of [C] as follows. For
i € Z/eZ let U;, V; be the ¢i-eigenspaces of X in U and V. By definition, the action of X
restricts to each U;. The endomorphism T of U? also restricts to endomorphism of (U;)?,
see e.g., the beginning of Section 7 in [CRO8]. It follows that the data (U;, V;, X, T) gives
an sly-categorification on C in the sense of [CRO8, Section 5.21]. By [CRO08, Proposition
5.20] this implies that for any simple object L in C, the object head(U;(L)) (resp. soc(ViL))
is simple unless it is zero.

Let B¢ be the set of isomorphism classes of simple objects in C. As part of the data
of the g[e—categoriﬁcation, we have a decomposition C = ®,cpC,. For a simple module
L € C;, the weight of [L] in [C] is 7. Hence B is a weight basis of [C]. Now for i € Z/eZ
define the maps

€ : B¢ — BcU{0}, [L] — [head(U;L)],
fi: Be— Beuw{0}, [L]+ [soc(V;L)].

Proposition 5.2.4. The data (Bc,é;, fi) is a perfect basis of [C].
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Proof. Fix i € Z/eZ. Let us check the conditions in the definition. First, for two simple
modules L, L' € C, we have ¢;([L]) = [L'] if and only if 0 # Hom(U; L, L") = Hom(L, V;L'),
if and only if f;([L’]) = [L]. The second condition follows from the fact that any non
trivial module has a non trivial head. Finally, the third condition follows from [CROS,
Proposition 5.20(d)]. O

Example 5.2.5. We have the following well known gle—categoriﬁcation on Cq, see e.g.,
[CRO8|, Section 7.2.2]. Consider the biadjoint endofunctors E*, F”* on Cq. Let X%
be the endomorphism of E* given on E(n)” as the multiplication by the Jucy-Murphy
element J,, 1. Let 7% be the endomorphism of (E**)? given on E(n)” o E(n — 1)* as
the multiplication by the element T}, in 77 ,. Note that the endomorphisms X7 and
T7¢ satisfy the relations . Moreover, the ¢'-eigenspace of X7 in E” and F” gives
respectively the i-restriction functor E7* and the i-induction functor F* for i € Z/eZ.
Finally, by [LMO7, Theorem 2.11] the block decomposition of the category Cq has the form

Cq = P (Ca)r (5.2.3)

TeEP

where (Cq)- is the subcategory generated by the composition factors of the Specht modules
Sy with A running over [-partitions of weight 7. By convention (Cq)- is zero if such A does
not exist. Then the data (E,F”, X7 T7) and the decomposition is an sl.-
categorification on Cq.

5.3 An f:[e-categoriﬁcation on O,.

We construct an gle—categoriﬁcation on Oy, as follows. The adjoint pair will be given
by (E, F). To construct the endomorphisms X, T, consider the isomorphism of functors

KZoE = E” o KZ
given by Theorem It yields an isomorphism of rings
End(KZoF) = End(E” o KZ).

By Proposition m(a), the functor E maps projective objects to projective ones, so
Lemma [3.6.1] applied to O1 = Oy = Oy and K = L = E yields an isomorphism

End(F) = End(KZoFE).
Composing it with the isomorphism above gives a ring isomorphism
op : End(E) = End(E” o KZ). (5.3.1)
Replacing E by E? we get another isomorphism
op2 : End(E?) 5 End((E7)? 0 KZ).

Consider the X% T? defined in Example [5.2.5, We define the endomorphisms X €
End(E), T € End(E?) by

XZJEl(nyle), TZO’E.%(T”le)
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Finally, recall from Lemma that the functor KZ induces a bijection between the
blocks of the category Oy, and the blocks of Cq. So by (5.2.3)), the block decomposition of
Oh is

On = P (On)-.

TeEP

where (Oy,); is the block corresponding to (Cq)- via KZ.

Theorem 5.3.1. The data of
(i) the adjoint pair (E,F),
(ii) the endomorphisms X € End(E), T € End(E?),
(iii) the decomposition Op = @,cp(On)r

1s an sle-categorification on Oy,.

Proof. First, let us show that for i € Z/eZ the ¢'-generalized eigenspaces of X in E, F are
respectively the functors Ej, F; defined in (4.7.2). Recall from Proposition [4.5.2(d) and
Proposition [4.7.3(d) that we have

E= @ E and E”= P E”.
€L/l €L/l

By the proof of Lemma [£.7.2] we see that any isomorphism
KZoE = E” o KZ

restricts to an isomorphism KZoE; = E7* o KZ for all i € Z/eZ. So the isomorphism o
in (5.3.1) maps Hom(FE;, E;) to Hom(E;” o KZ, EY* o KZ). Write

X= > Xy X"lkz= Y (X"Ikz)y
ijET /el ijEL/eT

with X;; € Hom(E;, E;) and (X7 1kz)i; € Hom(E7” o KZ, EY* 0o KZ). We have

Since E7¢ is the ¢'-eigenspace of X” in E?, we have (X*1kz);; = 0 for i # j and
(X7 1kyz)i — 4" is nilpotent for i € Z/eZ. Since o is an isomorphism of rings, this implies
that X;; = 0 and X;; — q' is nilpotent in End(E). So Ej; is the ¢’-eigenspace of X in E.
The fact that F; is the ¢"-eigenspace of X in F follows from adjunction.

Now, let us check the conditions (a)—(e):

(a) It is given by Proposition [4.7.3|(d).

(b) Since X7 and T satisfy relations in (5.1.1)), the endomorphisms X and T also
satisfy them. Because these relations are preserved by ring homomorphisms.

(c) It follows from Proposition [4.7.4]

(d) By the definition of (Oy), and Lemma the standard modules in (Oy), are
all the A(X) such that wt(\) = 7. By if 44 is an [-partition such that res(\/p) =1
then wt(p) = wt(A) + a;. Now, the result follows from (4.7.3).

(e) This is Proposition [3.8.2] O
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5.4 Crystals of Fock spaces.

Let Br, be the set of [-partitions. In [JMMO91] this set is given a crystal structure.
We will call it the crystal of the Fock space Fs.

Theorem 5.4.1.2 (a) The set

Bo, = {[L()\)] € [Oh] A€ Pn,l,n S N}

h

and the maps

& : Bo, — Bo, U{0}, [L]~ [head(E;L)],
fi: Bo, — Bo, U{0},  [L]+~ [soc(F;L)].

define a crystal structure on Bo,, .
(b) The crystal Bo, given by (a) is isomorphic to the crystal Br,.

Proof. The Fock space Fg is a b-locally finite sle-module. So applying Proposition
to the sl,-categorification in Theorem yields that (Bo,, é;, fi) is a perfect basis.
Therefore it defines a crystal structure on Bp, by . This proves part (a). Now, let
us concentrate on part (b). It is known that Bz, is a perfect basis of Fs. We identify the
sl,-modules Fy and [Oy] via 6. By Lemma the set Bf and B(Jgh are two weight bases
of FF. So there is a bijection v : Bj_-s — B(Jgh such that wt(b) = wt(¢(b)). Since Fs is a
direct sum of highest weight simple g[e—modules, this bijection extends to an automorphism
¢ of the sl,-module Fs. By [BK07, Main Theorem 5.37] any automorphism of Fy which
maps Bjés to B(Jgh induces an isomorphism of crystals Br, = Bo, . O

Remark 5.4.2. One can prove that if n < e then a simple module L € Oy, is finite
dimensional over C if and only if the class [L] is a primitive element in Bp, . In the case
n = 1, we have B, (l) = u;, the cyclic group, and the primitive elements in the crystal Bz,
have explicit combinatorial descriptions. This yields another proof of the classification of
finite dimensional simple modules of Hy (1), which was first given by W. Crawley-Boevey
and M. P. Holland. See type A case of [CBH98 Theorem 7.4].

3. This result has been independently obtained by Iain Gordon and Maurizio Martino.






Chapter 11

Canonical bases and affine Hecke
algebras of type D.

In this chapter, we prove a conjecture of Kashiwara and Miemietz on canonical bases
and branching rules of affine Hecke algebras of type D.

This chapter is a joint work with Michela Varagnolo and Eric Vasserot. It has been
prepublished in [SVV09].

Introduction

Let f be the negative part of the quantized enveloping algebra of type AN, Lusztig’s
description of the canonical basis of f implies that this basis can be naturally identified
with the set of isomorphism classes of simple objects of a category of modules of the affine
Hecke algebras of type A. This identification was mentioned in [Gro94], and was used
in [Ari96]. More precisely, there is a linear isomorphism between f and the Grothendieck
group of finite dimensional modules of the affine Hecke algebras of type A, and it is proved
in [Ari96] that the induction/restriction functors for affine Hecke algebras are given by the
action of the Chevalley generators and their transposed operators with respect to some
symmetric bilinear form on f.

The branching rules for affine Hecke algebras of type B have been investigated quite
recently, see [Eno09], [EK06, [EKO08a, [EK08b|, [Mie0§] and [VV09al]. In particular, in
[Eno09], [EK06, EKO08a, [EK08b] an analogue of Ariki’s construction is conjectured and
studied for affine Hecke algebras of type B. Here f is replaced by a module *V(\) over
an algebra “B. More precisely it is conjectured there that *V()\) admits a canonical basis
which is naturally identified with the set of isomorphism classes of simple objects of a
category of modules of the affine Hecke algebras of type B. Further, in this identification
the branching rules of the affine Hecke algebras of type B should be given by the ?B-action
on V()\). This conjecture has been proved [VV09a)]. It uses both the geometric picture
introduced in [Eno09] (to prove part of the conjecture) and a new kind of graded algebras
similar to the KLR algebras from [KL09], [Rou08a].

A similar description of the branching rules for affine Hecke algebras of type D has
also been conjectured in [KMOT7]. In this case f is replaced by another module °V over the
algebra B (the same algebra as in the type B case). The purpose of this chapter is to prove
the type D case. The method of the proof is the same as in [VV09a]. First we introduce
a family of graded algebras °R,, for m a non negative integer. They can be viewed as
the Ext-algebras of some complex of constructible sheaves naturally attached to the Lie



54 CHAPTER II. CANONICAL BASES AND AFFINE HECKE ALGEBRAS OF TYPE D.

algebra of the group SO(2m). This complex enters in the Kazhdan-Lusztig classification
of the simple modules of the affine Hecke algebra of the group Spin(2m). Then we identify
°V with the sum of the Grothendieck groups of the graded algebras °R,,.

The plan of this chapter is the following. In Section [1] we introduce a graded algebra
°R(T"),. It is associated with a quiver I" with an involution # and with a dimension vector
v. In Section |2| we consider a particular choice of pair (I',#). The graded algebras °R(I"),
associated with this pair (I',6) are denoted by the symbol °R,,. Next we introduce the
affine Hecke algebra of type D, more precisely the affine Hecke algebra associated with
the group SO(2m), and we prove that it is Morita equivalent to °R,,. In Section [3| we
categorify the module °V from [KMO7] using the graded algebras °R,,,, see Theoremm
The main result of the chapter is Theorem [3.9.1]

Notation

0.1 Graded modules over graded algebras

Let k be an algebraically closed field of characteristic 0. By a graded k-algebra
R = @, R, we will always mean a Z-graded associative k-algebra. Let R-mod be
the category of finitely generated graded R-modules, R-fmod be the full subcategory
of finite-dimensional graded modules and R-proj be the full subcategory of projective
objects. Unless specified otherwise all modules are left modules. We will abbreviate

K(R) = [R-proj], G(R)=[R-fmod].

Here [C] denotes the Grothendieck group of an exact category C. Assume that the k-vector
spaces Ry are finite dimensional for each d. Then K(R) is a free abelian group with a
basis formed by the isomorphism classes of the indecomposable objects in R-proj, and
G(R) is a free abelian group with a basis formed by the isomorphism classes of the simple
objects in R-fmod. Given an object M of R-proj or R-fmod let [M] denote its class in
K(R), G(R) respectively. When there is no risk of confusion we abbreviate M = [M]. We
will write [M : N] for the composition multiplicity of the R-module N in the R-module
M. Consider the ring A = Z[v,v"!]. If the grading of R is bounded below then the
A-modules K(R), G(R) are free. Here A acts on G(R), K(R) as follows

oM = M[1], v ‘M = M[-1].
For any M, N in R-mod let

homg (M, N) = @HomR(M,N[d])
d
be the Z-graded k-vector space of all R-module homomorphisms. If R = k we will omit the
subscript R in hom’s and in tensor products. For any graded k-vector space M = @, M,
we will write
gdim(M) = Zvddim(Md),
d

where dim is the dimension over k.

0.2 Quivers with involutions

Recall that a quiver T is a tuple (I, H,h +— h’,h — h") where I is the set of vertices,
H is the set of arrows and for each h € H the vertices W/, " € I are the origin and the
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goal of h respectively. Note that the set I may be infinite. We will assume that no arrow
may join a vertex to itself. For each 7,7 € I we write

Hi,j = {h€H|h/:Z,hH:j}
We will abbreviate ¢ — j if H; ; # (. Let h; j be the number of elements in H; ; and set
i-j=—hij—hj; i-i=2, 1#].

An involution 6 on I' is a pair of involutions on I and H, both denoted by 6, such that
the following properties hold for each h in H

e O(h) =06(h") and O(h)" = 0(K),

e G(h') = h” if and only if 6(h) = h.
We will always assume that 8 has no fixed points in I, i.e., there is no ¢ € I such that
0(i) = i. To simplify we will say that 6 has no fixed point. Let

ONI = {1/ = ZI/ZZ & NI‘V@(Z) = Vi, VZ}

For any v € NI set |v| = 3, 4. Tt is an even integer. Write |v| = 2m with m € N. We
will denote by I” the set of sequences

i= (il—m> s 7im—17im)

of elements in I such that 6(i;) = i;_; and ) i = v. For any such sequence i we will
abbreviate 6(i) = (0(i1—m),---,0(im—1),0(ir,)). Finally, we set

‘=", ve®NI, |v|=2m.

v

0.3 The wreath product

Given a positive integer m, let &,, be the symmetric group, and Zs = {—1,1}. Con-

sider the wreath product W,, = &,,, 1 Zs. Write s1, ..., s,_1 for the simple reflections in
Sy. Foreach I =1,2,...m let g € (Z2)™ be —1 placed at the I-th position. There is a
unique action of W,,, on the set {1 —m,...,m — 1,m} such that &,, permutes 1,2,...m

and such that ¢; fixes k if kK #£ [, 1 — [ and switches [ and 1 — [. The group W, acts also
on I”. Indeed, view a sequence i as the map

{1-m,....om—=1m} =1, 11,
Then we set w(i) =iow™! for w € W,,. For each v we fix once for all a sequence
ie = (i1—ms---,im) €IV
Let W, be the centralizer of i in W,,. Then there is a bijection
W \Wy = 1Y, Wow — w1l (i)

Now, assume that m > 1. We set so = £15161. Let °W,,, be the subgroup of W,,, generated
by so,.-.,Sm—1. We will regard it as a Weyl group of type D,, such that sq, ..., sn_1 are
the simple reflections. Note that W, is a subgroup of °W,,. Indeed, if W, ¢ °W,,, there
should exist [ such that ¢; belongs to W,. This would imply that i; = 6(;), contradicting
the fact that 6 has no fixed point. Therefore °I” decomposes into two °W,,-orbits. We
will denote them by I% and I”. For m = 1 we set °W; = {e} and we choose again °I%
and °I” in a obvious way.



56 CHAPTER II. CANONICAL BASES AND AFFINE HECKE ALGEBRAS OF TYPE D.

1 The graded k-algebra °R(I"),

Fix a quiver I with set of vertices I and set of arrows H. Fix an involution 6 on I'.
Assume that I' has no 1-loops and that # has no fixed points. Fix a dimension vector
v #0in 'NI. Set |v| = 2m.

1.1 Definition of the graded k-algebra °R(I),

Assume that m > 1. We define a graded k-algebra °R(T"), with 1 generated by 1;, s,
or, withie ¥, 1=1,2,...,m, k=0,1,...,m—1 modulo the following defining relations
(@) L1y =6iwly,  oply = lg40k,  24l; = lisg,
(b) sy = s,
( o-lzli = Qikyisk(k) (%Sk(k)7 %k)]-ia
(d) OkOK = O/ Ok ifl<k</€/—1<m—101‘0=/€<k5,7§2,
(€) (Tsu(k)TkT sy, (k) — OkO s (k)Tk) L1 =

Qikvisk(k)(%Sk(k)’%k)_Qik1isk(k)(%Sk(k)’ﬂsk(k)Jrl)1‘ i —
o Sk — gy (k)41 i Wi =1, (k)+1>

0 else.

—1; ifl=k i = Uy (k)
(f) (onsa — s por)li = Qi if L= sp(k), ik = ig, ),

0 else.
Here we have set 3;_; = —3¢ and
—D)Mid(w—v)"if i £,
Qij(u,v) = (=1)"(u—wv) 7 (1.1.1)
0 else.

If m =0 we set °R(I")g = kd k. If m = 1 then we have v = i+ 6(i) for some i € I. Write
i=160(i), and
OR(F>V = k[%l]li D k[%l]le(i)-

We will abbreviate oj = 0x1; and s5; = »41;. The grading on °R(I")g is the trivial one.
For m > 1 the grading on °R(I"), is given by the following rules :

deg(ll) =0,

deg(%u) = 2,

deg(aiyk) = —ik . isk(k)~
We define w to be the unique anti-involution of the graded k-algebra °R(I'), which fixes
1i, 54, 0. We set w to be identity on °R(T)o.

1.2 Relation with the graded k-algebra R(I),

A family of graded k-algebra R.(T") A has been introduced in [VV09al Section 5.1], for

A an arbitrary dimension vector in NI. Here we will only consider the special case A = 0,

and we abbreviate *R(T"), = *R(I')g,. Recall that if v # 0 then *R(T), is the graded

k-algebra with 1 generated by 1, s, g, m, withi € 1%, 1=1,2,...,m, k=1,...,m—1
such that 1i, 4 and o} satisfy the same relations as before and
W% = 1, 7T11i7T1 = 151i, T = %el(l)a

(mo1)? = (1m)?, mogm = o if k # 1.
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If v = 0 then YR(I")g = k. The grading is given by setting deg(1;), deg(s,), deg(oix)
to be as before and deg(m11;) = 0. In the rest of Section |1] we will assume m > 0. Then
there is a canonical inclusion of graded k-algebras

°R(T), C 'R(I"), (1.2.1)

such that 15, 3,05 — 1;,q,0p fori € 1, 1 =1,....,m, k =1,...,m — 1 and such that
og + moymi. From now on we will write og = mo1m; whenever m > 1. The assignment
x + mom defines an involution of the graded k-algebra *R.(I"),, which normalizes °R.(T),,.
Thus it yields an involution

~v:°R(T"), — “R(T),. (1.2.2)

Let () be the group of two elements generated by . The smash product °R(T"), x (v)
is a graded k-algebra such that deg(vy) = 0. There is an unique isomorphism of graded
k-algebras

"R(), % (7) = "R(T), (1.2.3)

which is identity on °R/(T"),, and which takes v to my.

1.3 The polynomial representation and the PBW theorem

For any i in I let °F; be the subalgebra of °R(I"), generated by 1; and 2, with
l=1,2,...,m. It is a polynomial algebra. Let

F, = P F..

icorv

The group W,, acts on ’F, via w(s4,1) = Hu(i),w@) for any w € Wy,. Consider the fixed
points set
°S, = ("F,)"m.

Regard ‘R(I"), and End(°F,) as °F,-algebras via the left multiplication. In [VV09al,
Proposition 5.4] is given an injective graded ?F,-algebra morphism ‘R/(T"), — End(?F,).
It restricts via (1.2.1) to an injective graded °F,-algebra morphism

°R(T), — End(°F,). (1.3.1)

Next, recall that °W,, is the Weyl group of type D,, with simple reflections sg, ..., Sm_1.
For each w in °W,,, we choose a reduced decomposition w of w. It has the following form

W = S, Sky "~ Sk, 0 < by, ko, .o,k <m— 1.
We define an element oy, in °R(T"), by

1i ifr=0

(1.3.2)
else,

0w =Y liow, lioy= {
i

Observe that the element oy may depend on the choice of the reduced decomposition
w. Let °F), = @, F}, where °F} is the localization of the ring ’F; with respect to the
multiplicative system generated by

liog, 04y -+ - Ok

-

Dagtomp | L<IAT <mPUg,]1=1,2,...,m}.
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Proposition 1.3.1. The k-algebra °R(T"), is a free (left or right) °F,-module with basis
{og|w € °Wy,}. Its rank is 2™~ !
is independent of the choice of the reduced decomposition w. The inclusion °R(T"), C
End(“F,) yields an isomorphism of °F),-algebras °F), @op °R(T), — "F}, x °W,,, such
that for each i and each 1 =1,2,...,m, k=0,1,2,...,m — 1 we have

m!. The operator 1joy4 is homogeneous and its degree

1 = 1,
s 1l (1.3.3)
oin s (s — %sk(k:));l(sk - D if i = i, k),
’ (a1 — o)) P Fsplyif g F g (i)
Proof. Following the proof of [VV09al, Proposition 5.5], we filter the algebra °R(T"), with

1, 55, in degree 0 and o, in degree 1. The Nil Hecke algebra of type Dy, is the k-algebra
°NH,, generated by 6¢,01,...,0,—1 with relations

OLOL = OO ifl<k<kz'—1<m—1or0:k<k"7§2,
T (k) Tk T sy (k) = TkOs, (k)0ks 0 = 0.
We can form the semidirect product F, x °NH,,, which is generated by 1;, 5, &), with
the relations above and
Op¥ = Hg, (1)0k, XX = .
We have a surjective k-algebra morphism
%, x °NH,, — gr°R(),, 1+ 1;, 54— s, G} — 0%
Thus the elements oy, with w € °W,, generate °R(I"), as a F,-module. We claim that
they form a ’F,-basis of °R(T"),. Indeed, by [VV09a, Corollary 5.6], the inclusion (|1.3.1)
yields a surjective algebra homomorphism
¢ :F, @op, °R(T), — "Fl, x “ Wi,
such that for each iand each { =1,2,...,m, k=0,1,2,...,m — 1 we have
d)(]'l) = 1i7
P(3,) = »li,
(st — 225, 0)) sk — D1y if i = g k),
P(oin) = hi, covin e
(tr — 2, 1y) O Fsply i dy # gy k)

Therefore we have

Plowl)) = DY, vpswli

VE W, v<w

for some element p, ,, in the ring QFQ, with py . invertible. This proves the claim. The
rest of the proposition follows. O

Restricting the ?F,-action on °R(I"), to the k-subalgebra °S, we get a structure of
graded °S,-algebra on °R(I),.

Proposition 1.3.2. (a) The algebra °S, is isomorphic to the center of °R(T),.

(b) The algebra °R(T), is a free graded module over °S, of rank (2™~ tm!)2,
Proof. Part (a) is clear by the °F)-algebra isomorphism ‘F), @ °R(T), = °F}, x °W,,
in Proposition Part (b) follows from (a) and Proposition [1.3.1] O
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2 Affine Hecke algebras of type D

2.1 Affine Hecke algebras of type D

Fix p in k*. For any integer m > 0 we define the extended affine Hecke algebra H,,
of type D,, as follows. If m > 1 then H,, is the k-algebra with 1 generated by

Ty, X, k=0,1,....m—1, 1=12...,m

satisfying the following defining relations :
( ) Xlel Ale/le7
( ) TkTsk k)Tk: =T, (ke )TkTsk(k)a T Ty =TT, if 1 <k< K —1lork= 0, K 75 2,
(¢) (Th —p)(Tx+p1) =0,
(d) To Xy Ty = Xo, To X Th, =
1#1,2.
Finally, we set Hy = k @ k and H; = k[X{™!].

1fk:7£0 Tle XlTkifk#O,l,l—lork:O,

Slc

Remark 2.1.1. (a) The extended affine Hecke algebra HE of type B,, with parameters
p,q € k* such that ¢ = 1 is generated by P, Tk, Xlil, k=1,....m—1,1=1,...,msuch
that Ty, X lil satisfy the relations as above and

P?=1, (PT)*=(TWP)? PIT,=TyPifk+#]1,
PX;{'P=X,, PX;=X/Pifl#1.

See e.g., [VV09al, Section 6.1]. There is an obvious k-algebra embedding H,,, ¢ HE. Let
~ denote also the involution H,, — H,,, a — PaP. We have a canonical isomorphism of

k-algebras
H,, x (y) ~HE.

Compare Section

(b) Given a connected reductive group G we call affine Hecke algebra of G the Hecke
algebra of the extended affine Weyl group W x P, where W is the Weyl group of (G, T),
P is the group of characters of T, and T is a maximal torus of G. Then H,, is the affine
Hecke algebra of the group SO(2m). Let Hf, be the affine Hecke algebra of the group
Spin(2m). It is generated by H,, and an element X such that

X2 =X1Xo... Xy, TiXo=XoTkifk#0, ToXoX; ' Xy Ty = Xo.

Thus H,, is the fixed point subset of the k-algebra automorphism of Hf, taking T}, X; to
Ty, (—1)%0X; for all k,1. Therefore, if p is not a root of 1 the simple H,,-modules can be
recovered from the Kazhdan-Lusztig classification of the simple H -modules via Clifford
theory, see e.g., [Ree02].

2.2 Intertwiners and blocks of H,,
We define

A=k XFLxF . XE) A'=A[ETY, H, =A'©sH,,
where 3 is the multiplicative set generated by

1- XX 1 - p?XEXGEL AT
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For k = 0,...,m — 1 the intertwiner ¢ is the element of H/, given by the following

formulas
X = X ()

pXy — 1 X, (k)

o —1= (T, — p). (2.2.1)

The group °W,, acts on A’ as follows

(ska)(Xl,... ,Xm) = a(Xl,.. . ,Xk+1,Xk,...,Xm) if k 75 O,
(500)(X1,..., Xm) = a(X5 L, X700, Xon).

There is an isomorphism of A’-algebras
A’ x on — H;m Sk — Qk-

The semi-direct product group Z x Zs = Z x {—1,1} acts on k* by (n,¢) : z — 25p?™.
Given a Z X Zo-invariant subset I of k* we denote by H,,-Mod; the category of all H,,-
modules such that the action of X1, Xo, ..., X,, is locally finite with eigenvalues in 1. We
associate to the set I and to the element p € k* a quiver I" as follows. The set of vertices
is I, and there is one arrow p?i — i whenever i lies in I. We equip I' with an involution
6 such that 6(i) = i~! for each vertex i and such that  takes the arrow p? — i to the
arrow it — p~2i~Y. We will assume that the set I does not contain 1 nor —1 and that
p # 1,—1. Thus the involution € has no fixed points and no arrow may join a vertex of I'
to itself.

Remark 2.2.1. We may assume that I = £{p"; n € Zoqq}. See the discussion in [KMOT].
Then I is of type A if p has infinite order and I is of type Aq(nl) if p? is a primitive r-th
root of unity.

2.3 The H,,-modules versus the °R,,-modules

Assume that m > 1. We define the graded k-algebra

)

‘Rim =P "Ry, "Ry ="R(D)y, “Rim=EP R, “Rp,=°R(I),, I"=| |,

v v

where v runs over the set of all dimension vectors in ’NI such that |v| = 2m. When there
is no risk of confusion we abbreviate

0 0 0 0
R, = RI,ya R, = Rl,ma ORV = ORI,lM oRm = ORI,m-

Note that R, and ’R,, are the same as in [VV09al Section 6.4], with A = 0. Note
also that the k-algebra °R,,, may not have 1, because the set I may be infinite. We de-
fine °R,,,-Mod) as the category of all (non-graded) °R,,-modules such that the elements
1, M9, ..., %y, act locally nilpotently. Let °R,,-fMody and H,,-fMod; be the full sub-
categories of finite dimensional modules in °R,,-Mody and H,,,-Mod; respectively. Fix
a formal series f(3) in k[[»]] such that f(») = 1+ » modulo (»?).

Theorem 2.3.1. We have an equivalence of categories
°R,,-Mody — H,,-Mod;, M +— M

which is given by
(a) X; acts on 1;M by il_lf(%l) for each 1 =1,2,...,m,
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(b) if m > 1 then Ty, acts on 1;M as follows for each k =0,1,...,m — 1,
(pf Ge) =0~ f (s (1)) o= 525 (i) o .
f(%k)*fk(%sk(k)) okt p, if ts(k) = ik
fGa)—f (e, (1)) (p™2=1) f (55, (k)
(0= 1 f G ) —pf (25, (1)) Gek— 525, (k) pfGae) =P~ sy (1))

Pinf (o) =D Viay (1) f (25, (1)) (0™ =i f (s, (1)) iy . 9,
e f (o) =5y (k) (5o, (k) Tk isy (1) f Gar) =ik S (25, (1)) i i (k) # o, D7l

3Ok + if ds (k) = P ik

Proof. This follows from [VV09al, Theorem 6.5] by Section [I.2]and Remark [2.1.1[a). One
can also prove it by reproducing the arguments in loc. cit. by using (1.3.3]) and (2.2.1). O

Corollary 2.3.2. There is an equivalence of categories

v:°R,,-fMody — H,,-fMod;, M — M.

Remark 2.3.3. The results in Section [2.3| are still true if k is any field. Set f(») =1+ s
for instance.

2.4 Induction and restriction of H,,-modules

For ¢ € I we define functors

Ei : Hm+1—fM0d[ — Hm—fMOd[, (241)
FZ' : Hm—fMOd] — Hm+1—fM0d[,

where E;M C M is the generalized i~ !-eigenspace of the X, 1-action, and where

H
F;M =TInd ™"
g H,,@k[XE! |

Here k; is the 1-dimensional representation of k[Xﬂﬂ_l] defined by X, 41 — i~ L.

3 Global bases of °V and projective graded °R-modules

3.1 The Grothendieck groups of °R,,

The graded k-algebra °R,, is free of finite rank over its center, a commutative graded
k-subalgebra. See Proposition Therefore any simple object of °R,,-mod is finite-
dimensional and there is a finite number of isomorphism classes of simple modules in
°R,,-mod. The abelian group G(°R,,) is free with a basis formed by the classes of the
simple objects of °R,,-mod. The abelian group K(°R,,) is free with a basis formed by
the classes of the indecomposable projective objects. Both G(°R,,) and K(°R,,) are free
A-modules, where v shifts the grading by 1. We consider the following A-modules

°Ki =P Kim: °Kim = K(°Rn),
m=0
°Gr =P °Grm: °Grm = G(°Ru).

m=0

We will also abbreviate

Kir= P Kim: °Gra= P G

m>0 m>0
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From now on, to unburden the notation we may abbreviate °R = °R,,,, hoping it will not
create any confusion. For any M, N in “R-mod we set

(M : N) =gdim(M“ @gr N), (M:N)=gdimhomor(M,N),

where w is the anti-involution defined in Section The Cartan pairing is the perfect
A-bilinear form
Ky x°Gr— A, (PM)— (P:M).

First, we concentrate on the A-module °Gj. Consider the duality
°R-fmod — °R-fmod, M ~ M’ = hom(M, k),
with the action and the grading given by
(zf)(m) = f(w(@)m), (M°)4 = Hom(M_y, k).
This duality functor yields an A-antilinear map
°G; —°Gy, M~ M.

Let °B denote the set of isomorphism classes of simple objects of °"R-fMody. We can now
define the upper global basis of °Gy as follows. The proof is given in Section

Proposition/Definition 3.1.1. For each b in °B there is a unique selfdual irreducible
graded °R-module °G"P(b) which is isomorphic to b as a (non graded) °R-module. We set
°G"P(0) =0 and °G"P = {°G"P(b) | b € °B}. Hence °G"P is an A-basis of °Gr.

Now, we concentrate on the A-module °K;. We equip °K; with the symmetric A-
bilinear form

Ky x°Kr—A, (M,N)— (M:N). (3.1.1)

Consider the duality

°R-proj — °R-proj, P — P*=homogr(P,°R),
with the action and the grading given by

(@f)(p) = f(P)w(z), (PF)a=Homer(P[-d],°R).
This duality functor yields an A-antilinear map

°K; = °K;, P — Pt

Set K = Q(v). Let K — K, f — f be the unique involution such that v = v~

Definition 3.1.2. For each b in °B let °G°V(b) be the unique indecomposable graded
module in °R-proj whose top is isomorphic to °G™(b). We set °G°V(0) = 0 and ° GV =
{°G™¥(b|b € °B}. The latter is an A-basis of K;.

Proposition 3.1.3. (a) We have (°G*¥(b) : °G"P(V)) = 6y for each b,b' in °B.

(b) We have (P%: M) = (P : M") for each P, M.
(c) We have OGlow(b)jj = %G (b) for each b in °B.

The proof is the same as in [VV09a, Proposiiton 8.4].
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Example 3.1.4. Set v =i+ 6(i) and i = i6(7). Consider the graded °R,-modules
°R; = °R1; = I;°R, °L; = top(°Ry).
The global bases are given by
GV = {°Ry, Ryy}, GiP = {°Ly, “Lygg;)}-
For m = 0 we have °"Rg =k @ k. Set o1 =k P 0 and ¢_ = 0D k. We have

"GEY = "GP = {64, 0- ).

3.2 Definition of the operators ¢, f;, e}, f!

In this section we will always assume m > 0 unless specified otherwise. First, let us
introduce the following notation. Let D,, 1 be the set of minimal representative in °Wp, 1
of the cosets in °W,,,\°Wp,4+1. Write

Dm,l;m,l = Dm,l N (Dm,l)_l-
For each element w of D, 1,1 We set
W(w) = "Wy Nw(*Wy)w ™

Let Ry be the k-algebra generated by elements 1;, 5¢;, i € I, satisfying the defining relations
1; 1y = 6, #1; and s = 1;551;. We equip Ry with the grading such that deg(1;) = 0 and
deg(s;) = 2. Let

R,L' = 11'R1 = Rlli, Lz = tOp(RZ’) = Rz/(%z)

Then R; is a graded projective Rj-module and L; is simple. We abbreviate
Rini="Rmn @R1. Ry = "R @Ry

There is an unique inclusion of graded k-algebras

‘Roi — "Ry,
o1, — 1y,
1i & Ml 7 A s
R = ey,
T @1l = wyg,
oir®1l; — oy,

where, given i € I and i € I, we have set i = 0(i)ii, a sequence in I™*!. This inclusion
restricts to an inclusion °R,;, 1 C “Ryy1.

Lemma 3.2.1. The graded °R,, 1-module °Ry,11 is free of rank 2(m + 1).

Proof. For each w in Dy, we have the element oy in °R;, 41 defined in (1.3.2)). Using
filtered /graded arguments it is easy to see that

(¢} [¢]
Ro1= @ °Rmiow.

’LUEDm,l
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We define a triple of adjoint functors (¢, 1™, 1) where
»* : °Rypr1-mod — °R,,-mod x Ri-mod
is the restriction and 11, v, are given by

o °R,,-mod x R;-mod — °R,,,11-mod,
(M, M) = °Riny1 @R, (M @ M),

b °R,,-mod x R;-mod — °R,,11-mod,
" (M, M") + homer,, , (*Rins1, M @ M').

First, note that the functors 1, ¥*, ¥, commute with the shift of the grading. Next, the
functor ©* is exact, and it takes finite dimensional graded modules to finite dimensional
ones. The right graded °R,, ;-module °R,, 1 is free of finite rank. Thus vy is exact, and
it takes finite dimensional graded modules to finite dimensional ones. The left graded
°R,, 1-module °R,, 11 is also free of finite rank. Thus the functor 1, is exact, and it takes
finite dimensional graded modules to finite dimensional ones. Further i) and * take
projective graded modules to projective ones, because they are left adjoint to the exact
functors ¥*, 1, respectively. To summarize, the functors i, 1*, 1, are exact and take
finite dimensional graded modules to finite dimensional ones, and the functors iy, ¥* take
projective graded modules to projective ones.

For any graded °R,,-module M we write

fitM) = °Rpqilym; ®er,, M, (3.2.1)
ei(M) = °Ryp1 @Ry 1y lm-1:M.

Let us explain these formulas. The symbols 1,,; and 1,,_1; are given by

1m—l,ijw = @ 16(i)iiM7 ie Opm—1,
i

Note that f;(M) is a graded °R,,,+1-module, while e;(M) is a graded °R,,,—1-module. The
tensor product in the definition of e;(M ) is relative to the graded k-algebra homomorphism

‘Ry-11 = "Rpc1®R;1 = Ry 1 @Ry = °Ryy1 @ Ly = °Ryy 1.

In other words, let €;(M) be the graded °R,,_1-module obtained by taking the direct
summand 1,,_1;M and restricting it to °R,,—1. Observe that if M is finitely generated
then (M) may not lie in °R,,_1-mod. To remedy this, since €,(M) affords a °R,,,_1 @ R-
action we consider the graded °R,,,_1-module

ei(M) = ¢}(M)/i€}(M).

Definition 3.2.2. The functors e;, f; preserve the category °R-proj, yielding A-linear
operators on °K; which act on °Ky , by the formula (3.2.1)) and satisfy also

filo1) = "Rypyis  fild-) = "Rig),  €i(Ryg(y);) = i o+ + iy

Let e;, f; denote also the A-linear operators on °G; which are the transpose of f;, e; with
respect to the Cartan pairing.
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Note that the symbols e;(M), fi(M) have a different meaning if M is viewed as an
element of °K7 or if M is viewed as an element of °G;. We hope this will not create any
confusion. The proof of the following lemma is the same as in [VV09al Lemma 8.9].

Lemma 3.2.3. (a) The operators e;, f; on °Gy are given by
ei(M) = 1ym—1;M  fi(M) =homer,, ,("Riy1, M ® L;), M € °R,,-fmod.
(b) For each M € °R,,-mod, M’ € °R,,,+1-mod we have
(ei(M') : M) = (M": fi(M)).

7

(c) We have f;(P)* = f;(P*) for each P € °R-proj.
(d) We have e;(M)’ = e;(M”) for each M € °R-fmod.

3.3 Induction of H,,-modules versus induction of °R,,-modules
Recall the functors FE;, F; on H-fMod; defined in . We have also the functors
for : °R,,,-fmod — °R,,,-fMod,, V :°R,,-fMody — H,,-fMod/,
where for is the forgetting of the grading. Finally we define functors

E; : oRm—fMOdg — oRm_l—fMOdo, E;M = 1m—17iM, (331)
Fi : °Ryp-fMody — “Ryny1-fMody,  FyM = ¢ (M, Ly).

Proposition 3.3.1. There are canonical isomorphisms of functors
E,oV=VoF;, FoW=VoF; FE,ofor=foroe;, Fiofor:forofg(i).

Proof. The proof is the same as in [VV09al, Proposition 8.17]. O

Proposition 3.3.2. (a) The functor ¥ yields an isomorphism of abelian groups

@ [°R;,-fMod,] = @ [H,,,-fMod;].

m=0 m=0

The functors E;, F; yield endomorphisms of both sides which are intertwined by W.

(b) The functor for factors to a group isomorphism

°G/(v — 1) = B [°Rim-fMody].

m=0

Proof. Claim (a) follows from Corollary and Proposition Claim (b) follows
from Proposition O
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3.4 Type D versus type B

We can compare the previous constructions with their analogues in type B. Let ‘K,
B, 9G¥ etc., denote the type B analogues of °K, °B, °G'°%, etc., see [VV09a] for details.

We will use the same notation for the functors ¢*, ¥y, 1, €;, fi, etc., on the type B side
and on the type D side. Fix m > 0 and v € NI such that |v| = 2m. The inclusion of
graded k-algebras °R,, C ‘R, in l) yields a restriction functor

res : “R,-mod — °R,-mod
and an induction functor
ind : °R,-mod — °R,-mod, M — R, ®@-r, M.

Both functors are exact, they map finite dimensional graded modules to finite dimen-
sional ones, and they map projective graded modules to projective ones. Thus, they yield
morphisms of A-modules

res : 6'I<[’m — OK[,m, res : GGLm — OG[,m,
ind : OKLm — BKLm, ind : OG],m — GG[’m.

Moreover, for any P € 'K 1,m and any L € G 1,m we have
res(P*) = (res P)*, ind(P*) = (ind P)* (3.4.1)
res(L’) = (resL)’, ind(L’) = (ind L)°.
Note also that ind and res are left and right adjoint functors, because
‘R, ®or, M = homer, ("R, M)
as graded “R,-modules. Recall the involution v of °R,, from ([5.9.4)).

Definition 3.4.1. For any graded °R,-module M we define M” to be the graded °R,-
module with the same underlying graded k-vector space as M such that the action of °R,,
is twisted by 7, i.e., the graded k-algebra °R,, acts on M” by am = y(a)m for a € °R,,
and m € M.

Note that (M7)Y = M, and that M7 is simple (resp. projective, indecomposable) if M
has the same property. For any graded °R,,,-module M we have canonical isomorphisms
of °R-modules

(fi(M)) = fi(M7), (ei(M))" = ei(M7).

The first isomorphism is given by
ORm—i—llm,z ®OR"L M — ORm+11m7Z ®OR7YL M7 a ® mi— ’y(a) ® m.

The second one is the identity map on the vector space 1,, ;M.
Recall that T” is the disjoint union of I Y and o1V . We set

Lr=> 1 L_=> 1

iefry iefrr

Lemma 3.4.2. Let M be a graded °R,-module.
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a) Both 1,1 and 1, _ are central idempotents in °R,,. We have 1, 4 = v(1,,—).

b) There is a decomposition of graded °R,-modules M =1, M &1, _M.

¢) We have a canonical isomorphism of °R,,-modules resoind(M) = M & M".

d) If there exists a € {+,—} such that 1,,_,M = 0, then there are canonical isomor-
phisms of graded °R,-modules

(
(
(
(

M=1,,M, 0=1,,M", MY=1,_,M".
Proof. Part (a) follows from Proposition and the equality e1(°I%) = °I”. Part (b)
follows from (a), (c) is given by definition, and (d) follows from (a), (b). O

Now, let m and v be as before. Given i € I, we set v/ = v + i + 0(i). There is an
obvious inclusion W, C Wyn41. Thus the group W, acts on I” ', and the map

v 01 i 0(i)ii

is Wy,-equivariant. Thus there is a; € {+, —} such that the image of GIJ”r is contained in
o1 L‘{:, and the image of I” is contained in 9[1/%.

Lemma 3.4.3. Let M be a graded °R,-module such that 1, _ M = 0, with a = +, —.
Then we have

1V’,—a,-afi(M) =0, 1V’,aiaf9(i) (M) =0.

Proof. We have

1V’,*aiafi(M) = 1V’,faiaoRz/1z/,i ®°RV M (3.4.2)
= ORI/’lu’,—aialu,ilzx,a XoR,, M. (343)

Here we have identified 1, , with the image of (1,4,1;) via the inclusion (3.2.1). The
definition of this inclusion and that of a; yield that

1u’,aia1u,ilu,a = 11/,a7 1V’,—aia1u,i11/,a =0.
The first equality follows. Next, note that for any i € °I”, the sequences 0(i)ii and

ii6(i) = em+1(0(7)ii) always belong to different °W,, 1 1-orbits. Thus, we have ag(;) = —a;.
So the second equality follows from the first.

Consider the following diagram

P
°R,-mod x R;-mod —= °R,/-mod

w*
res X IdT\Lind x Id reS,H]ind
n

R,-mod x R;-mod T R,/,-mod.

Lemma 3.4.4. There are canonical isomorphisms of functors

indoyy =1 o (ind x Id), 9" oind = (ind x Id) 0 9™, ind oth, = 1), o (ind x Id),
resothy = Yy o (res x Id), " ores = (res x Id) o 9™, resorh, = 1, o (res x 1d).
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Proof. The functor ind is left and right adjoint to res. Therefore it is enough to prove the
first two isomorphisms in the first line. The isomorphism

ind othy = 1)y o (ind x Id)
comes from the associativity of the induction. Let us prove that
¥* oind = (ind x Id) o 9",
For any M in °R,,-mod, the obvious inclusion ‘R, @ R; C 'R,/ yields a map
(ind x Id) ¢* (M) = (R, ® R;) @or,er, ¥* (M) = ¢* (R, @or,er, M).
Combining it with the obvious map
‘R, ®r,er, M = 'Ry ®@r , M
we get a morphism of “R,, ® R;-modules
(ind x Id) " (M) — ¢* ind(M).

We need to show that it is bijective. This is obvious because at the level of vector spaces,
the map above is given by

Me(m, M) —=>Ma& (T, M), m+m,@n—m+r,, n.

Here 7y, and 7,/ denote the element 7 in R, and GR,/ respectively. O

Corollary 3.4.5. (a) The operators e;, f; on °Kj, and on OKI,* are intertwined by the
maps ind, res, i.e., we have
e; oind =indoe;, f;oind =indof;, e;ores=resoe;, f;ores=resof;.

(b) The same result holds for the operators e;, f; on °Gr . and on GGI,*.

3.5 Non graded case

Now, we concentrate on non graded irreducible modules. First, let
Res : “R,-Mod — °R,-Mod, Ind:°R,-Mod — ’R,-Mod
be the (non graded) restriction and induction functors. We have
for o res = Resofor, for oind = Ind ofor.

Lemma 3.5.1. Let L, L' be irreducible °R, -modules.
(a) The °R,,-modules L and L7 are not isomorphic.

(b) Ind(L) is an irreducible R, -module, and every irreducible °R,,-module is obtained
i this way.

(¢) Ind(L) ~ Ind(L') if and only if L' ~ L or L7.

Proof. For any °R,-module M # 0, both 1,+M and 1, _M are nonzero. Indeed, we have
M =1, M®1,_M, and we may suppose that 1, M # 0. The automorphism M — M,
m +— mym takes 1, 4 M to 1, _M by Lemma 3.15(a). Hence 1, _M # 0.

Now, to prove part (a), suppose that ¢ : L — L7 is an isomorphism of °R,-modules.
We can regard ¢ as a ~y-antilinear map L — L. Since L is irreducible, by Schur’s lemma
we may assume that ¢? = Id;. Then L admits a R,-module structure such that the
°R,-action is as before and m; acts as ¢. Thus, by the discussion above, neither 1, L nor

1,,—L is zero. This contradicts the fact that L is an irreducible °R,-module.
Parts (b), (c¢) follow from (a) by Clifford theory, see e.g., [RR03l appendix]. O
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3.6 Proof of Proposition [3.1.1

Now, let us prove Proposition Let b € °B. We may suppose that b = 1, ;b.
By Lemma @(b) the module % = Ind(b) lies in °B. By [VV09a, Proposition 8.2] there
exists a unique selfdual irreducible graded *R-module G (%) which is isomorphic to %
as a non graded module. Set

G (b) = 1, res(%GP (%)).

By Lemma [3.4.2(d) we have °G"P(b) = b as a non graded °R-module, and by
it is selfdual. This proves existence part of the proposition. To prove the uniqueness,
suppose that M is another module with the same properties. Then ind(M) is a selfdual
graded R-module which is isomorphic to % as a non graded “R-module. Thus we have

ind(M) = %G (%) by loc. cit. By Lemma [3.4.2(d) we have also
M =1, res(’G™(D)).

So M is isomorphic to °G"P(b). O

3.7 The crystal operators on °G; and °B

Fix a vertex ¢ in I. For each irreducible graded °R,,,-module M we define

&i(M) =soc (e;(M)), fi(M)=topyn(M,L;), &;(M)=max{n>0|el(M)# 0}.

Lemma 3.7.1. Let M be an irreducible graded °R-module such that e;(M), f;(M) belong
to °Gr . We have

ind(&,(M)) = &(ind(M)), ind(F(M)) = fi(ind(M)), =(M) = ei(ind (M)
In particular, & (M) is irreducible or zero and fy(M) is irreducible.

Proof. By Corollary we have ind(e;(M)) = e;(ind(M)). Thus, since ind is an exact
functor we have ind(é;(M)) C e;(ind(M)). Since ind is an additive functor, by Lemma
3.5.1{(b) we have indeed

ind(éi(M)) C éi(ind<M)).

Note that ind(M) is irreducible by Lemma [3.5.1(b), thus é;(ind(M)) is irreducible by
[VV09al, Proposition 8.21]. Since ind(€;(M)) is nonzero, the inclusion is an isomorphism.
The fact that ind(é;(M)) is irreducible implies in particular that é;(M) is simple. The
proof of the second isomorphism is similar. The third equality is obvious. O

Similarly, for each irreducible “R-module b in °B we define
E;(b) = soc(E;(b),  Fi(b) = top(F;(b)), ei(b) = max{n > 0] E}'(b) # 0}.

Hence we have

foroé; = F;ofor, foro f; = F,ofor, ¢g; =c¢;ofor.
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Proposition 3.7.2. For each b,V in °B we have
(a) Fi(b) € °B,
(b) Ei(b) € °BU {0},
(c) E(b) =V < E;(V/) =,
(d) ei(b) = max{n > 0| E}'(b) # 0},
(e) ei(Fy(b)) = i(b) + 1,
(f) if Ei(b) = 0 for all i then b= ¢.

Proof. Part (c) follows from adjunction. The other parts follow from [VV09al Proposi-
tion 3.14] and Lemma [3.7.1] O

Remark 3.7.3. For any b € °B and any i # j we have F;(b) # F;(b). This is obvious
if j # 0(i). Because in this case F;(b) and Fj(b) are °R,-modules for different v. Now,
consider the case j = 6(i). We may suppose that Fj(b) = 1, 1 Fj(b) for certain v. Then by

Lemma [3.4.3| we have 1, . Fy;(b) = 0. In particular Fj(b) is not isomorphic to Fy (b).
+0(0) (4)

3.8 The algebra B and the B-module °V
Following [EK06, [EK08a), [EK08b] we define a K-algebra B as follows.

Definition 3.8.1. Let B be the K-algebra generated by e;, f; and invertible elements t;,
i € I, satisfying the following defining relations
(a) titj = tjtz' and tg(z) = tz' for all i,j, N o
(b) tiejt; ' =00 de; and t; fit; 1 = 00D £, for all 4, j,
(C) eifj = U_i'jfjei + 51'7]' + 59(1)’]'1;1' for all 4, 7,
a (a b a a b . . .
@ > (0’ = 3 (DUULAY =0iti# ]

atb=1—i-j atb=1—i-j

Here and below we use the following notation

(D)

s

02) = 99/ (a)!, <a>:§a:va+1—2ﬁ (a)! =
=1 l

Il
—

We can now construct a representation of ‘B as follows. By base change, the operators e;,
fi in Definition [3.2.2] yield K-linear operators on the K-vector space

°V=K®4 Kj.
We equip °V with the C-bilinear form given by
(M:N),.,=0—-v>)™(M:N), V¥ M,N € °R,,-proj.

Theorem 3.8.2. (a) The operators e;, f; define a representation of B on °V. The B-
module °V is generated by linearly independent vectors ¢4 and ¢— such that for each i € I
we have

eip+ =0, ti¢i:¢$7 {ZL‘GOV|€jZL‘:0, VJ}:k¢+€Bk¢*

(b) The symmetric bilinear form on °V is non-degenerate. We have (¢pq : ¢a/) cp = Oa,a’
fora,a =+,—, and (e;x :y) = (x : fiy)p fori €I and x,y € °V.
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Proof. For each i in I we define the A-linear operator t; on °K; by setting
tipr = ¢x and ;P =0V HOIpY v pe°R,-proj.

We must prove that the operators e;, fi, and t; satisfy the relations of “B. The relations
(a), (b) are obvious. The relation (d) is standard. It remains to check (¢). For this we
need a version of the Mackey’s induction-restriction theorem. Note that for m > 1 we
have

Dm,l;m,l = {67 Sm 5m+151}7
Wi(e) = "Wn, W(sm)="Wn-1, W(emsie1) =""Wp,.
Recall also that for m = 1 we have set °W; = {e}.

Lemma 3.8.3. Fizi, j in I. Let u, v in 'NI be such that v +i+ 0(i) = u+j + 0(j).
Put |v| = |u| =2m. The graded (°Ry, 1, °Roy,1)-bimodule 1, ;°Ry, 411, has a filtration by
graded bimodules whose associated graded is isomorphic to

01, ("Ry @ Ry) @ (2 ; (“Rw)Y @ Ry(yy) [d'] & Ald],
where A is equal to
CRmly i @ Ri) @r (1,/,,°Rim @ Ry) ifm>1,
(“Re) ® Ri @r, R, “Rog) @ Rj) © (*Rj ® R; ®er R, "Ri @ Ry) if m = 1.

Here we have set v/ =v —j —60(j), R' =°Ry_11 @Ry, i =0(3), j = jO(j), d = —i - j,
and d = —v- (i+0(i))/2.

The proof is standard and is left to the reader. Now, recall that for m > 1 we have
[i(P) = “Ringi1limj ®oR,,, (PO R1), €j(P)=1n_1,;P,
where 1,,_1 ;P is regarded as a °R,,_i;-module. Therefore we have
€ifi(P) = 1mi*Rmt1lmj ®R,,, (P @ Ra),
fi€i(P) = “Riplp15 ®R,,_1, (Im-1,P @ Ry).
Therefore, up to some filtration we have the following identities
e e;fi(P)=PoR; + fie;(P)[-2],
o ¢ifow)(P) = PY @Ry [—v - (i +0(i)) /2] + foqei(P)[—i - 0(i)],
o ¢ fi(P) = fiei(P)[—i-jl it i # 4, 0(j).
These identities also hold for m = 1 and P = °Ry;); for any i € I. The first claim of part

(a) follows because R; = k @ R;[2]. The fact that °V is generated by ¢+ is a corollary of
Proposition below. Part (b) of the theorem follows from [KMO7, Proposition 2.2(ii)]

and Lemma [3.2.3((b). O

Remark 3.8.4. (a) The B-module °V is the same as the “B-module Vj from [KMO7, Propo-
sition 2.2]. The involution o : °V — °V in [KMO7, Remark 2.5(ii)] is given by o(P) = P7.
It yields an involution of °B in the obvious way. Note that Lemma [3.5.1](a) yields o(b) # b
for any b € °B.

(b) Let YV be the ‘B-module K ® 4K  and let ¢ be the class of the trivial “Rg-module
k, see [VV09al, Theorem 8.30]. We have an inclusion of #B-modules

V5oV, ¢ opPo_, Psres(P).
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Proposition 3.8.5. For any b € °B the following holds

{ fi((GP (b)) = (€i(b) + 1) G(F3b) + Sy fopr Gl V),

(a)
VeB, &)>eb)+1, fiy € v =02,
€i(°GU (b)) = o' =) GV (Eb) + 30y ey G (Y),
(0) {
V€°B, &) =e(b), ey €v =7

Proof. We prove part (a), the proof for (b) is similar. If °G'%(b) = ¢+ this is obvious. So
we assume that °G1°%(b) is a °R,,-module for m > 1. Fix v € NI such that f;(°G'¥ (b))
is a °R,-module. We will abbreviate 1,, = 1, for a € {+,~}. Since °G'%(b) is inde-
composable, it fulfills the condition of Lemma So there exists a € {4, —} such that
1_ofi(°G'¥ (b)) = 0. Thus, by Lemma [3.4.2(c), (d) and Corollary we have
fi(CG¥ (b)) = 14 res ind f;(°GV (b)) = 1, res f; ind(°G°¥(b)).
Note that % = Ind(b) belongs to ’B by Lemma b). Hence (3.4.1) yields
ind(oGlow(b)) — GGlow (Bb)

We deduce that
£ (°G™ Y (b)) = 14 res fi(%G™Y (D)).

Now, write

fi(eGIOW(Gb)) — Z f‘gb,eb’ QGIOW(Hb/)’ Gb/ c GB.

Then we have

[i((GY (1)) = Y ooy Lares((GOV (V).
For any %' € °B the °R-module 1, Res(%’) belongs to °B. Thus we have
1, res(%GY (W) = °G'% (1, Res(%)).
If %' # %" then 1, Res(%') # 1, Res(%"), because %' = Ind(1, Res(%')). Thus
[i(GY () =D fap o0 G (1o Res(V)),
and this is the expansion of the left hand side in the lower global basis. Finally, we have
gi(1,Res(W)) = (%)

by Lemma So part (a) follows from [VV09al, Propositions 10.11(b), 10.16]. O
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3.9 The global bases of °V

Since the operators e;, f; on °V satisfy the relations e; f; = v™2f;e; + 1, we can define
the modified root operators &;, f; on the ‘B-module °V as follows. For each u in °V we
write

U= Z fi(n)un with e;u,, = 0,

n=0

n>1 n=0

Let R C K be the set of functions which are regular at v = 0. Let °L be the R-submodule
of °V spanned by the elements f;, ...f; (¢+) with [ > 0, ¢1,...,4 € I. The following is
the main result of this chapter.

Theorem 3.9.1. (a) We have

°L= P RG"(b), &(°L)C°L, £(°L)C °L,
be°B

& (G (b)) = GY(E;(b)) mod v°L, E(°GPU(b)) = GPU(E(b) mod v°L.

(b) The assignment b — OGlojﬂ(b) mod v °L yields a bijection from °B to the subset of
°L/v°L consisting of the fi, ... fi,(¢1)’s. Further °G'“(b) is the unique element x € °V
such that 2* = x and x = °G""(b) mod v °L.

(¢) For each bt in°B let E; by, Fy by € A be the coefficients of G (V) in eg(y (G*(b)),
f:(°G*™ (b)) respectively. Then we have

E@b’b/‘vzl = [B\I/fOP(OGuP(b/)) : \I/fOI‘(OGuP(b»],
F;pp|v=1 = [E;¥for(\G*(V)) : Ufor(°G"(b))].

Proof. Part (a) follows from [EK08b], Theorem 4.1, Corollary 4.4}, [Eno09}, Section 2.3], and
Proposition [3.8.5] The first claim in (b) follows from (a). The second one is obvious. Part
(c) follows from Proposition More precisely, by duality we can regard F;py, Fpy
as the coefficients of °G"P(b) in fy(;) ("GP (b)) and e;(°G"P(b')) respectively. Therefore, by
Proposition we can regard E;pp|v=1, Fipplo=1 as the coefficients of Ufor(°G"P (b))
in F;¥for(°G"P(V')) and E;¥for(°G"P(b')) respectively. O






Chapter II1

The v-Schur algebras and Jantzen
filtration

In this chapter, we prove that certain parabolic Kazhdan-Lusztig polynomials calculate
the graded decomposition matrices of v-Schur algebras given by the Jantzen filtration of
Weyl modules. This confirms a conjecture of Leclerc and Thibon [LT96].

The result of this chapter has been prepublished in [Shal0].

1 Statement of the main result

Let v be a r-th root of unity in C. The v-Schur algebra S,(n) over C is a finite
dimensional quasi-hereditary algebra. Its standard modules are the Weyl modules W, ()
indexed by partitions A of n. The module W,,(\) has a simple quotient L,()\). See Section
3.9 for more details.

The decomposition matrix of S,(n) is given by the following algorithm. Recall from
Section IJ4.2] that the Fock space F of level one is the C-vector space with a basis {|\)}
indexed by the set of partitions. Let F, = F @ C(q) be its g-version. It carries an action of
the quantum enveloping algebra Uq(glr). Let L (resp. L™) be the Z[g]-submodule (resp.
Z[q~']-submodule) in F, spanned by {|A)}. Following Leclerc and Thibon [LT96, Theorem
4.1], the Fock space F, admits two particular bases {G} }, {G } with the properties that

GY =|A) mod ¢L*, Gy =|\) mod ¢ 'L™.

Let dy.(q), eau(q) be elements in Z[q] such that
Gr =2 dw@N), Gy =) ex—a)ln)-
A Iz

For any partition A write A\’ for the transposed partition. Then the Jordan-Holder mul-
tiplicity of L,(u) in Wy (A) is equal to the value of dy,/(q) at ¢ = 1. This result was
conjectured by Leclerc and Thibon [LT96, Conjecture 5.2] and has been proved by Varag-
nolo and Vasserot [VV99].

We are interested in the Jantzen filtration of W, (\) [JM97]

W,(\) = J'W,(\) > J'W,(\) D ...

It is a filtration by S,(n)-submodules. The graded decomposition matrix of S,(n) counts
the multiplicities of L,(u) in the associated graded module of W, (A). The graded version
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of the above algorithm was also conjectured by Leclerc and Thibon [LT96, Conjecture
5.3]. The main result of this chapter is a proof of this conjecture under a mild restriction
on v.

Theorem 1.0.1. Suppose that v = exp(2wi/k) with k € Z and k < —3. Let \, p be
partitions of n. Then

e (q) = D [T Wo(N) /T W, (A) = Ly(w)]g". (1.0.1)
>0

Let us outline the idea of the proof. We first show that certain equivalence of highest
weight categories preserves the Jantzen filtrations of standard modules (Proposition .
By constructing such an equivalence between the module category of the v-Schur algebra
and a subcategory of the affine parabolic category O of negative level, we then transfer
the problem of computing the Jantzen filtration of Weyl modules into the same problem
for parabolic Verma modules (Corollary . The latter is solved using Beilinson-

Bernstein’s technics (Sections [5] [6] [7)).

2 Jantzen filtration of standard modules

2.1 Notation

We will denote by A-mod the category of finitely generated modules over an algebra
A, and by A-proj its subcategory consisting of projective objects. Let R be a commutative
noetherian C-algebra. By a finite projective R-algebra we mean a R-algebra that belongs
to R-proj.

A R-category C is a category whose Hom sets are R-modules. All the functors between
R-categories will be assumed to be R-linear, i.e., they induce morphisms of R-modules on
the Hom sets. Unless otherwise specified, all the functors will be assumed to be covariant.
If C is abelian, we will write C -proj for the full subcategory consisting of projective objects.
If there exists a finite projective algebra A together with an equivalence of R-categories
F : C = A-mod, then we define C N R-proj to be the full subcategory of C consisting
of objects M such that F(M) belongs to R-proj. By Morita theory, the definition of
CNR-proj is independent of A or F'. Further, for any C-algebra homomorphism R — R’ we
will abbreviate R'C for the category (R’ ®@r A)-mod. The definition of R'C is independent
of the choice of A up to equivalence of categories.

For any abelian category C we will write [C] for the Grothendieck group of C. Any exact
functor F' from C to another abelian category C’ yields a group homomorphism [C] — [C'],
which we will again denote by F.

A C-category C is called artinian if the Hom sets are finite dimensional C-vector spaces
and every object has a finite length. The Jordan-Hélder multiplicity of a simple object L
in an object M of C will be denoted by [M : LJ.

We abbreviate ® = ®c and Hom = Homc.

2.2 Highest weight categories

Let C be a R-category that is equivalent to the category A-mod for some finite pro-
jective R-algebra A. Let A be a finite set of objects of C together with a partial order <.
Let C® be the full subcategory of C consisting of objects which admit a finite filtration
such that the successive quotients are isomorphic to objects in

{DeU|D e A, Ue€ R-proj}.
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We have the following definition, see [Rou08bl, Definition 4.11].

Definition 2.2.1. The pair (C,A) is called a highest weight R-category if the following
conditions hold:

e the objects of A are projective over R,
we have End¢(D) = R for all D € A,
given D1, Dy € A, if Homc(Dl, DQ) # 0, then Dy < Do,
if M € C satisfies Home(D, M) =0 for all D € A, then M =0,
given D € A, there exists P € C-proj and a surjective morphism f : P — D such
that ker f belongs to C®. Moreover, in the filtration of ker f only D’ ® U with
D’ > D appears.

The objects in A are called standard. We say that an object has a standard filtration
if it belongs to C2. There is another set V of objets in C, called costandard objects, given
by the following proposition.

Proposition 2.2.2. Let (C,A) be a highest weight R-category. Then there is a set V =
{DV| D € A} of objects of C, unique up to isomorphism, with the following properties:
(a) the pair (C°P, V) is a highest weight R-category, where V is equipped with the same
partial order as A,
. R ifi=0and Dy =D
(b) for D1, Dy € A we have Exty(Dy, Dy) = i and 21 2
0 else.
See [Rou08bl, Proposition 4.19].

2.3 Base change for highest weight categories.

From now on, unless otherwise specified we will fix R = C[[s]], the ring of formal power
series in the variable s. Let g be its maximal ideal and let K be its fraction field. For any
R-module M, any morphism f of R-modules and any ¢« € N we will write

M(p") = M @r (R/¢'R), Mg =M @K,
f(9") = f®r (R/¢'R), fk=f®rK.

We will abbreviate
C(p) = R(p)C, Cx = KC.
Let us first recall the following basic facts.
Lemma 2.3.1. Let A be a finite projective R-algebra. Let P € A-mod.
(a) The A-module P is projective if and only if P is a projective R-module and P(p)

belongs to A(gp)-proj.
(b) If P belongs to A-proj, then we have a canonical isomorphism

Hom 4 (P, M)(p) = Hom 4,y (P(p), M(p)), ¥ M € A-mod.
Further, if M belongs to R-proj then Homy (P, M) also belongs to R-proj.
We will also need the following theorem of Rouquier [Rou08bl, Theorem 4.15].

Proposition 2.3.2. Let C be a R-category that is equivalent to A-mod for some finite
projective R-algebra A. Let A be a finite poset of objects of CN R-proj. Then the category
(C,A) is a highest weight R-category if and only if (C(p), A(p)) is a highest weight C-
category.
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Finally, the costandard objects can also be characterized in the following way.

Lemma 2.3.3. Let (C, A) be a highest weight R-category. Assume that V' ={VD|D € A}
is a set of objects of C N R-proj such that for any D € A we have

(YD)(p) = D(p)", (YD)x = Dg.
Then we have VD = DY € V.

Proof. We prove the lemma by showing that V' has the properties (a), (b) in Proposition
2.2.2]with VD playing the role of DV. This will imply that YD = DV € V. To check (a) note
that V'(p) is the set of costandard modules of C(p) by assumption. So (C(p)°P, V'(p))
is a highest weight C-category. Therefore (C°P,V’) is a highest weight R-category by
Proposition Now, let us concentrate on (b). Given Dy, Dy € A let P =0 — P, —
.-+ — Py be a projective resolution of Dy in C. Then Exté(Dl, V'Dy) is the cohomology of
the complex

Ces = Home (P, ¥ D3).

Since D; and all the P; belong to R-proj and R is a discrete valuation ring, by the
Universal Coefficient Theorem the complex

Po(p) =0 = Pu(p) = -+ = Po(p)

is a resolution of Di(p) in C(p). Further, each P;(p) is a projective object in C(p) by
Lemma a). So Exte,) (Di(p), VD4 (p)) is given by the cohomology of the complex

Ce(p) = Home ) (Pe(p), ¥ Da()).
Again, by the Universal Coefficient Theorem, the canonical map
Hi(Co)(p) — Hi(C(p)s)
is injective. In other words we have a canonical injective map
Ext¢ (D1, Y D) () — Exte,) (Di(p), ¥ Da(p))- (2.3.1)

Note that each R-module Cj} is finitely generated. Therefore Exté(Dl, Y Ds) is also finitely
generated over R. Note that if ¢ > 0, or ¢ = 0 and Dy # Da, then the right hand side of
(2.3.1)) is zero by assumption. So Ext% (D1, D2)(p) = 0, and hence Ext’(Dy, Y Do) = 0 by
Nakayama’s lemma. Now, let us concentrate on the R-module Hom¢(D, Y D) for D € A.
First, we have

Home(D,YD) ®r K = Home, (Dk, (YD)k)
— Ende, (Dx)
= Endc(D) ®pr K
- K. (2.3.2)

Here the second equality is given by the isomorphism Dy = (VD) and the last equality
follows from Ende(D) = R. Next, note that Home(D, Y D)(p) is included into the vector
space Home(,) (D(p), " D(p)) = C by . So its dimension over C is less than one.
Together with this yields an isomorphism of R-modules Home (D, Y D) = R, because
R is a discrete valuation ring. So we have verified that V' satisfies both property (a) and
(b) in Proposition Therefore it coincides with V with VD isomorphic to DV. t
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2.4 The Jantzen filtration of standard modules

Let (Cc, Ac) be a highest weight C-category and (C, A) be a highest weight R-category
such that (Cc, Ac) = (C(p), A(p)). Then any standard module in A¢ admits a Jantzen
type filtration associated with (C,A). It is given as follows.

Definition 2.4.1. For any D € Alet ¢ : D — D" be a morphism in C such that ¢(p) # 0.
For any positive integer i let '
m: DY — DY /o' DY (2.4.1)

be the canonical quotient map. Set
=ker(mio¢) C D, J'(D(p)) = (D' + pD)/pD.

Below, we will abbreviate J!(D(p)) = J'D(p). The Jantzen filtration of D(p) is the
filtration
D(p) = J°D(p) > J'D(p) >

To see that the Jantzen filtration is well defined, one notices first that the morphism ¢
always exists because Home (D, DY) (p) = R(p). Further, the filtration is independent of
the choice of ¢. Because if ¢’ : D — DV is another morphism such that ¢’(p) # 0, the fact
that Home (D, DY) = R and ¢(p) # 0 implies that there exists an element a in R such
that ¢’ = a¢. Moreover ¢'(p) # 0 implies that a is invertible in R. So ¢ and ¢’ define the
same filtration.

Remark 2.4.2. If the category Cx is semi-simple, then the Jantzen filtration of any standard
module D(p) is finite. In fact, since End¢(D) = R we have Ende, (Dk) = K. Therefore
Dy is an indecomposable object in Cx. The fact that Cx is semi-simple implies that the
object Dk is simple. Similarly D} is also simple. So the morphism ¢ : D — D}, is an
isomorphism. In particular ¢ is injective. Now, consider the intersection

ﬂﬂ ﬂ (D' + pD)/pD.

Since we have D? D D'*!| the intersection on the right hand side is equal to ((; D?) +
©D)/pD. The injectivity of ¢ implies that (); D* = ker ¢ is zero. Hence (; J*D(p) = 0.
Since D(gp) € C(p) has a finite length, we have J'D(p) = 0 for i large enough.

2.5 [Equivalences of highest weight categories and Jantzen filtrations.

Let (C1, A1), (Ca2, A2) be highest weight R-categories (resp. C-categories or K-categories).
A functor F' : C; — Co is an equivalence of highest weight categories if it is an equivalence
of categories and if for any Dy € A; there exists Dy € Ag such that F/(D;) = Ds. Note
that for such an equivalence F' we also have

F(DY) =~ DY, (2.5.1)

because the two properties in Proposition which characterize the costandard objects
are preserved by F'.

Let F': C; — Cy be an exact functor. Since C; is equivalent to A-mod for some finite
projective R-algebra A, the functor F' is represented by a projective object P in Cy, i.e.,
we have F' = Homg, (P, —). Set

F(p) = Home, (o) (P(p), =) : C1(p) — C2(p).
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Note that the functor F'(p) is unique up to equivalence of categories. It is an exact functor,
and it is isomorphic to the functor Home, (P, —)(p), see Lemma In particular, for
D € A; there are canonical isomorphisms

F(D)(p) = F(p)(D(p)), F(D¥)(p) = F(p)(D"(p))- (2.5.2)

Proposition 2.5.1. Let (C1,A1), (C2,Ag) be two equivalent highest weight R-categories.
Fiz an equivalence F : Cy — Co. Then the following holds.
(a) The functor F(p) is an equivalence of highest weight categories.

(b) The functor F(p) preserves the Jantzen filtration of standard modules, i.e., for any
D, e Al let Dy = F(Dl) € AQ, then

F(p)(J'Di(p)) = J'Da(p), VieN.

Proof. (a) If G : Co — C; is a quasi-inverse of F' then G(p) is a quasi-inverse of F'(p). So
F(p) is an equivalence of categories. It maps a standard object to a standard one because

of the first isomorphism in (2.5.2)).

(b) The functor F' yields an isomorphism of R-modules
Home, (D1, DY) = Homg, (F(D1), F(DY)),

where the right hand side identifies with Homg, (D2, DY) via the isomorphism (2.5.1]). Let
¢1 be an element in Home, (D1, DY) such that ¢1(p) # 0. Let

¢2 = F(¢1) : Dy — DJ.

Then we also have ¢2(p) # 0.

For a =1,2 and i € N let m,; : DY — DY (") be the canonical quotient map. Since F
is R-linear and exact, the isomorphism F(DY) = DY maps F(p'DY) to p'Dy and induces
an isomorphism

F(D{(¢") = D3 (¢").

Under these isomorphisms the morphism F'(y ;) is identified with 7 ;. So we have

F(D})

F(ker(my ;0 ¢1))
ker(F(my;) o F(¢1))
ker(ma; o ¢2)

Ds.

12

Now, apply F' to the short exact sequence
0 — oDy — D} + oDy — J'Di(p) — 0, (2.5.3)

we get

12

F(J'D1(p)) (F(DY) + pF (D1))/oF (D1)

12

Since F(J'D1(p)) = F(p)(J'D1(p)), the proposition is proved. O
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3 Affine parabolic category O and v-Schur algebras

3.1 The affine Lie algebra

Fix an integer m > 1. Let Gy D By D Ty be respectively the linear algebraic group
GL,,(C), the Borel subgroup of upper triangular matrices and the maximal torus of diag-
onal matrices. Let gg D bg D tp be their Lie algebras. Let

g=00®C[t,t '] ClaCo
be the affine Lie algebra of gg. Its Lie bracket is given by
(€@t + 21490, @t* +2'1+4/9] = [£,6] @t + ady_p tr(€€)1 +bye’ @t° —ay'€ @1,

where tr : gg — C is the trace map. Set t =ty & C1 ¢ C9.

For any Lie algebra a over C, let (a) be its enveloping algebra. For any C-algebra R,
we will abbreviate ar = a® R and U(ar) = U(a) ® R.

In the rest of the chapter, we will fix once for all an integer ¢ such that

k=c+m € Zo. (3.1.1)

Let U,;, be the quotient of U(g) by the two-sided ideal generated by 1 —c. The U,-modules
are precisely the g-modules of level c.
Given a C-linear map A : t - R and a gr-module M we set

My ={ve M|hv=Ah)v, VY het} (3.1.2)

Whenever M) is non zero, we call A a weight of M.
We equip t* = Homc (¢, C) with the basis €1, ..., €y, wo, 6 such that e;,..., e, € ¢ is
dual to the canonical basis of {tg,

0(0) =wo(1) =1, wo(to @ CO) =0d(tg ® C1) = 0.
Let (—: —) be the symmetric bilinear form on t* such that
(€1 €5) =0i5, (wo:0)=1, (tH@dCo:0)= (t§® Cwp : wy) = 0.
For h € t* we will write ||h||> = (h : h). The weights of a U,-module belong to
H={ et | (A:0) =c}.
Let a denote the projection from t* to tj. Consider the map
z:t"—=>C (3.1.3)

such that A\ — z(\)J is the projection t* — Co.

Let II be the root system of g with simple roots c; = €¢; — €;4.1 for 1 <i < m — 1 and
ag = 0 — ;1_11 «;. The root system Iy of go is the root subsystem of II generated by
at,...,0m—1. We will write IIT, H(J{ for the sets of positive roots in II, Il respectively.

The affine Weyl group & is a Coxeter group with simple reflections s; for 0 < ¢ < m—1.
It is isomorphic to the semi-direct product of the symmetric group &g with the lattice
ZI1y. There is a linear action of & on t* such that &g fixes wy, J, and acts on tj by

permuting ¢;’s, and an element 7 € ZIly acts by
7(6) =9, T(wo)=T+wo—(T:7)6/2, T(A)=A—(T:A)J, Ve (3.1.4)

Let pg be the half sum of positive roots in Il and p = pg + mwy. The dot action of & on
t* is given by w- A = w(A + p) — p. For A € t* we will denote by S(A) the stabilizer of A
in G under the dot action. Let [ : & — N be the length function.
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3.2 The parabolic Verma modules and their deformations

The subset Iy of IT defines a standard parabolic Lie subalgebra of g, which is given by
qg=go®C[t]® C1 e Co.

It has a Levi subalgebra
[=godC1pCo.

The parabolic Verma modules of U, associated with q are given as follows.
Let A be an element in

AT={Ne t|(N:a)eN, Vacl}.

Then there is a unique finite dimensional simple go-module V' (\) of highest weight a(\).
It can be regard as a [-module by letting h € C1 @ CJ act by the scalar A(h). It is further
a g-module if we let the nilpotent radical of q act trivially. The parabolic Verma module
of highest weight A is given by

M.(\) =U(g) Qu(q) V(A).

It has a unique simple quotient, which we denote by L ().
Recall that R = C[[s]] and g is its maximal ideal. Set

c=c+s and k=k+s.

They are elements in R. Write Uy for the quotient of U(gr) by the two-sided ideal
generated by 1 —c. So if M is a Uy-module, then M (p) is a U,-module. Now, note that R
admits a qr-action such that go ® C[t] acts trivially and t acts by the weight swy. Denote
this qg-module by Rgy,. For A € AT the deformed parabolic Verma module My () is the
gr-module induced from the qr-module V(A) ® Rgy,. It is a Ug-module of highest weight
A 4+ swp, and we have a canonical isomorphism

MV () 2 M(V).
We will abbreviate A; = A 4+ swg and will write
k= {As | A € ot7
Lemma 3.2.1. The gx-module My(\) g = My (\) @g K is simple.

Proof. Assume that My (\)x is not simple. Then it contains a nontrivial submodule. This
submodule must have a highest weight vector of weight ps for some p € AT, u # \. By
the linkage principle, there exists w € & such that pus = w - As. Therefore w fixes wq, so
it belongs to &p. But then we must have w = 1, because \, 4 € A™. So A = u. This is a
contradiction. O

3.3 The Jantzen filtration of parabolic Verma modules

For A € A" the Jantzen filtration of M, (\) is given as follows. Let o be the R-linear
anti-involution on gg such that

cléat")y=t¢xt™ o1)=1, o(d)=0.
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Here £ € go and ¢ is the transposed matrix. Let gg act on Hompg (M (N), R) via (zf)(v) =
f(o(z)v) for x € gr, v € Mk(A). Then

DMy(\) = @ Hompg(My(A),, R) (3.3.1)

is a gr-submodule of Homp(My(\), R). It is the deformed dual parabolic Verma module
with highest weight A;. The As-weight spaces of My (A\) and DMy () are both free R-
modules of rank one. Any isomorphism between them yields, by the universal property of
Verma modules, a gr-module morphism

such that ¢(p) # 0. The Jantzen filtration (J*My(A)) of M(A) defined by [Jan79] is the
filtration given by Definition [2.4.1] using the morphism ¢ above.

3.4 The deformed parabolic category O

The deformed parabolic category O, denoted by O, is the category of Uy-modules M
such that

o M = ®A€kt* M) with M, € R-mod,

o for any m € M the R-module U(qr)m is finitely generated.
It is an abelian category and contains deformed parabolic Verma modules. Replacing k
by x and R by C we get the usual parabolic category O, denoted O.

Recall the map z in . For any integer r set

W= et [r—2(p) € Z2o}-

Define  t* in the same manner. Let "O,, (resp. "Ok) be the Serre subcategory of O,; (resp.
Ok) consisting of objects M such that M, # 0 implies that p belongs to J.t* (resp. pt*).
Write "AT = AT N7t*. We have the following lemma.

Lemma 3.4.1. (a) For any finitely generated projective object P in" Oy and any M € "Oy
the R-module Homrp, (P, M) is finitely generated and the canonical map

Homro, (P, M)(p) — Homro, (P(p), M(p))

is an isomorphism. Moreover, if M is free over R, then Homro, (P, M) is also free over

R.
(b) The assignment M — M(p) yields a functor

7"(91( — T(’)H.

This functor gives a bijection between the isomorphism classes of simple objects and a
bijection between the isomorphism classes of indecomposable projective objects.

For any A € "A™ there is a unique finitely generated projective cover "Pi()) of Ls())
in "O,, see [RCWS82, Lemma 4.12]. Let Ly(\), "Px(A) be respectively the simple object
and the indecomposable projective object in "Oy that map respectively to L(\), Py()
by the bijections in Lemma [3.4.1(b). Then we have the following lemma.

Lemma 3.4.2. The object "Py(\) is, up to isomorphism, the unique finitely generated
projective cover of Ly () in"Oy. It has a filtration by deformed parabolic Verma modules.
In particular, it is a free R-module.
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The proof of Lemmas can be given by imitate [Fie03, Section 2]. There,
Fiebig proved the analogue of these results for the (nonparabolic) deformed category O
by adapting arguments of [RCW82]. The proof here goes in the same way, because the
parabolic case is also treated in [RCWS82|]. We left the details to the reader. Note that the
deformed parabolic category O for reductive Lie algebras has also been studied in [Str09].

3.5 The highest weight category &

Fix a positive integer n < m. Let P,, denote the set of partitions of n. Recall that a
partition A of n is a sequence of integers A\; > ... > A, > 0 such that Y ;"; \; = n. For
such a A denote the element ;" \j¢; in { again by A. We will identify P, with a subset
of A* by the following inclusion

(A A+ 2p0)

P, — AT, A= A+ cwp —
2K

. (3.5.1)

We will also fix an integer r large enough such that P, is contained in "A™. Equip AT with
the partial order < given by A < p if and only if there exists w € & such that u = w- A
and a(p) — a(\) € NII§. Let < denote the dominance order on P, given by

i i
Adp = Y N <D py, VI<i<m
j=1 j=1
Note that for A, u € P, we have
A== A<y, (3.5.2)
because A < p implies that g — A € NII], which implies that
i i
ZMj-ZAjZ(M—/\,Gl—i----—i-GZ’)ZO, Vi<i<m.
j=1 j=1
Now consider the following subset of "AT
E={pe€"™ A" |u=w-)\for some w € &,\ € P,}.
Lemma 3.5.1. The set E is finite.

Proof. Since P, is finite, it is enough to show that for each A € P, the set G- AN"AT is
finite. Note that for w € &y and 7 € ZII we have z(wt-A) = z(7- A). By (3.1.4) we have

Ap

22 = =) - S (Il + LY - AL,

If z(7-\) <r, then

A -+ P 2 2 A -+ P 2
—|F < —(r—2(A —||".
I+ 2222 < = - 2) + 12
There exists only finitely many 7 € ZIIy which satisfies this condition, hence the set E is
finite. O
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Let &, be the full subcategory of "O, consisting of objects M such that
pE€AT, u¢ E = Homro, ("Pe(n), M) = 0.

Note that since " P, () is projective in "O,;, an object M € "y, is in &, if and only if each
simple subquotient of M is isomorphic to L,(u) for p € E. In particular &, is abelian
and it is a Serre subcategory of "O,. Further &, is also an artinian category. In fact, each
object M € &, has a finite length because F is finite and for each u € E the multiplicity
of L (1) in M is finite because dimcM,, < co. Let g’ denote the Lie subalgebra of g given
by
g =go®C[t,t7 ] @ C1.

Forgetting the O-action yields an equivalence of categories from &, to a category of g'-

modules, see [Soe98, Proposition 8.1] for details. Since k is negative, this category of
g’-modules is equal to the category studied in [KL93, [KL94al [KL.94b].

Lemma 3.5.2. (a) For A\ € E, p € "A" such that [M,;(\) : Le.(p)] # 0 we have p € E
and p < A.
(b) The module " P,,(\) admits a filtration by U,-modules

TPH()\):P()Dplj"'DPl:O

such that Py/ Py is isomorphic to M(\) and P;/Piy1 = Mg (;) for some p; = .
(c) The category &, is a highest weight C-category with standard objects M(\), A € E.
The indecomposable projective objects in &, are the modules " Pc(\) with \ € E.

Proof. Let U, be the quantized enveloping algebra of gg with the parameter v = exp(27i/k).
Then the Kazhdan-Lusztig’s tensor equivalence [KL93, Theorem IV.38.1] identifies £, with
a full subcategory of the category of finite dimensional U,-modules. It maps the module
M, (X) to the Weyl module of U, with highest weight a()). Since v is a root of unity,
part (a) follows from the strong linkage principle for U,, see [And03, Theorem 3.1]. Part
(b) follows from (a) and [KL93| Proposition 1.3.9]. Finally, part (c) follows directly from
parts (a), (b). O

Now, let us consider the deformed version. Let & be the full subcategory of "Oy
consisting of objects M such that

pe€AY, pn¢ E = Homro, ("Pc(u), M) =0.

Lemma 3.5.3. An object M € "Oy belongs to E if and only if M(p) belongs to E;. In
particular, we have My (\) and " Py () belong to & for A € E.

Proof. By Lemma [3.4.1f(a) for any g € "A" the R-module Homro, (" Py (1), M) is finitely
generated and we have

Hom o, (" Pic(k), M) () = Homr o, (" Pu(), M(p)).

Therefore Homro, (" Pk (1), M) is nonzero if and only if Homro, (" P (1), M (p)) is nonzero
by Nakayama’s lemma. So the first statement follows from the definition of & and &j.
The rest follows from Lemma [3.5.2fc). O

Let

P(E)= @ PN, P(E)= & "P(N.

\EE AEE
We have the following corollary.
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Corollary 3.5.4. (a) The category E is abelian.
(b) For M € & there exists a positive integer d and a surjective map

P (B)® — M.
(¢) The functor Homro, (Px(E), —) yields an equivalence of R-categories
& = Endrp, (P (F))°P-mod.

Proof. Let M € &, N € "Oy. First assume that N C M. For p € "A™T if Homro, ("Pc(p), N) #
0, then Homro, ("Px(p), M) # 0, so p belongs to E. Hence N belongs to . Now, if N
is a quotient of M, then N(p) is a quotient of M(gp). Since M (p) belongs to &, we also
have N(p) € &;. Hence N belongs to & by Lemma This proves part (a). Let us
concentrate on (b). Since M € & we have M(p) € &;. The category &, is artinian with
P, (F) a projective generator. Hence there exists a positive integer d and a surjective map

f:P(E)® — M(p).

Since Py (E)® is projective in " Oy, this map lifts to a map of Uy-modules f : P (E)®¢ —
M such that the following diagram commute

Be(E)®d S

M
|
(0

Now, since the map f preserves weight spaces and all the weight spaces of Py (E)®" and
M are finitely generated R-modules, by Nakayama’s lemma, the surjectivity of f implies
that f is surjective. This proves (b). Finally part (c) is a direct consequence of parts (a),
(b) by Morita theory. O

PN(E)GBdg )

Proposition 3.5.5. The category Ex is a highest weight R-category with standard modules
Mk(u)7 IUS E.

Proof. Note that Endrp, (Px(E))°P is a finite projective R-algebra by Lemmas
Since & is a highest weight C-category by Lemma m(c), the result follows from Propo-
sition [2.3.2) O

3.6 The highest weight category A

By definition P, is a subset of E. Let Ay be the full subcategory of & consisting of
the objects M such that

Homrp, (Mx(X),M) =0, VAe€E, \¢&P,.
We define the subcategory A, of & in the same way. Let
Ag = {MxN) | A€ Pp}, Ax={M;AN)|\E Py}

Recall that £ C "A™T is equipped with the partial order <, and that P, C E. We have
the following lemma
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Lemma 3.6.1. The set P, is an ideal in E, i.e., for X\ € E, u € Py, if A 2 then we
have A € P,.

Proof. Let A\ € E and u € P, and assume that A =< u. Recall that £ C ,t*, so we can
write a(A) = Y., \i€;. Since E C "AT we have \; € Z and \; > \j+1. We need to show
that A, € N. Since A < y there exist 7; € N such that a(u) —a(\) = 77" 104, Therefore
we have A\, = i + rm—1 = 0. L]

Now, we can prove the following proposition.

Proposition 3.6.2. The category (Ayx, Ax) is a highest weight R-category with respect
to the partial order < on P,. The highest weight category (Ax(p), Ax(p)) given by base
change is equivalent to (A, Ay).

Proof. Since & is a highest weight R-category and P, is an ideal of F, [Rou08b, Proposi-
tion 4.14] implies that (Ay, Ag) is a highest weight R-category with respect to the partial
order < on P,. By this implies that (Ay, Ak) is also a highest weight R-category
with respect to <. Finally, the equivalence Ay (p) = A, follows from the equivalence
Ek(p) = & and loc. cit. O

3.7 Costandard objects of Ay

Consider the (contravariant) duality functor D on Oy given by

DM = P Hompg(M,,R), (3.7.1)
HE

where the action of Uy on DM is given as in Section with the module My(\) there
replaced by M. Similarly, we define the (contravariant) duality functor D on Oy by

DM = 5 Hom(M,,C), (3.7.2)

HE L t*

with the Us-action given in the same way. This functor fixes the simple modules in O.
Hence it restricts to a duality functor on A,, because A, is a Serre subcategory of O.
Therefore (A, A,) is a highest weight category with duality in the sense of [CPS89].
It follows from [CPS89, Proposition 1.2] that the costandard module M;(\)Y in A, is
isomorphic to DM, ().

Lemma 3.7.1. The costandard module My (\)Y in Ay is isomorphic to DMy ()\) for any
A€ Py.

Proof. By definition we have a canonical isomorphism
(DM (M) (p) = D(Mi(N)) = Mo(N)".

Recall from Lemma that Myg(\)x is a simple Uy g-module. Therefore we have
(DMg(N)x = Mg(N) k. So the lemma follows from Lemma applied to the highest
weight category (Ax, Ax) and the set {DMy (M) |\ € Py} O

3.8 Comparison of the Jantzen filtrations

By Definition for any A € P, there is a Jantzen filtration of M, (\) associated with
the highest weight category (Ag,Ag). Lemma implies that this Jantzen filtration
coincides with the one given in Section
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3.9 The v-Schur algebra

In this section let R denote an arbitrary integral domain. Let v be an invertible element
in R. The Hecke algebra J%, over R is a R-algebra, which is free as a R-module with basis
{T\y |w € Sp}, the multiplication is given by

T, Ty = Twywos if l(wlwg) = l(wl) + l(wg),
(Ts, + 1)(Ts, — v) =0, 1<i<m—1.
Next, recall that a composition of n is a sequence p = (u1,...,pq) of positive integers

such that z?zl p; = n. Let &), be the set of compositions of n. For u € X, let G, be the
subgroup of &g generated by s; for all 1 < i < d— 1 such that i # pq +--- + p; for any j.
Write

X, = Z Ty and y,= Z (—v)_l(“’)Tw.

weS, weq,,

The v-Schur algebra Sy of parameter v is the endomorphism algebra of the right J4-
module @B, x, x, 7. We will abbreviate

Ay = Sy -mod.

Consider the composition w of n such that w; =1 for 1 < i < n. Then 2,54 = J4,. So
the Hecke algebra 47, identifies with a subalgebra of Sy, via the canonical isomorphism
I, = End A (%)

For A\ € P, let X be the transposed partition of A\. Let ¢, be the element in Sy given
by @a(h) = xp\h for h € x5, and py(v,74,) = 0 for any composition p # w. Then
there is a particular element w) € & associated with A such that the Weyl module Wy, (\)
is the left ideal in Sy generated by the element

zx = eATw Y € Sy.
See [JMO7] for details. We will write

Ay = {Wy(\) | A € Py}

3.10 The Jantzen filtration of Weyl modules
Now, set again R = C|[[s]]. Fix

v=exp(2ri/k) € C  and v =exp(2mi/k) € R.

Below we will consider the v-Schur algebra over C with the parameter v, and the v-Schur
algebra over R with the parameter v. The category (A,, A,) is a highest weight C-category.

Write L, () for the simple quotient of W,,(A). The canonical algebra isomorphism Sy (p) =
S, implies that (A, Ay) is a highest weight R-category and there is a canonical equivalence

(Av(p), Av(p)) = (Ay, Ay).

We define the Jantzen filtration (JW,()\)) of W,(\) by applying Definition to
(Ay, Ay). This filtration coincides with the one defined in [JM97], because the contravari-
ant form on Wy (\) used in [JM97]’s definition is equivalent to a morphism from W5 () to
the dual standard module Wy (A\)Y = Hompg(Wy(A), R).
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3.11 Equivalence of Ay and A,

In this section we will show that the highest weight R-categories Ay and A, are
equivalent. The proof uses rational double affine Hecke algebras and Suzuki’s functor.
Let us first give some reminders. Let h = C”, let y1,...,y, be its standard basis and
T1,...,oTn € h* be the dual basis. Let Hy/. be the rational double affine Hecke algebra
associated with &,, with parameter 1/k. Recall from Definition I that Hy /. is the
quotient of the smash product of the tensor algebra T'(h @ h*) with CS,, by the relations

1 -1 . .,
[yi, zi] =1+ — Z%ﬁ Wi, 7] = —sij, 1< i,j<n, i#].
i "
Here s;; denotes the element of &,, that permutes i and j. Denote by B, the category O
of H /., see Section I It is a highest weight C-category. Let {B;()\) | € P,} be the
set of standard modules.

Now, let V' = C™ be the dual of the vectorial representation of go. For any object M

in A, consider the action of the Lie algebra go ® C[z] on the vector space

T(M)=V®"® M @ C[h]

given by

n

@2Yvemef)=) {hv)eom@aif+ve (1) (Rt )m® f
=1

for £ € go, a €N, v € V¥, m € M, f € C[h]. Here & is the operator on V" that acts
on the i-th copy of V by £ and acts on the other copies of V' by identity. Suzuki defined
a natural action of Hy/, on the space of coinvariants

€. (M) = Ho(go ® C[z], T(M)).
The assignment M — &, (M) gives a right exact functor
¢.: A — Bs..
See [Suz06] or [VV08, Section 2] for details. We have
Eu(Mu(N) = Bu(V),

and €, is an equivalence of highest weight categories [VV08, Theorem A.6.1].

Next, we consider the rational double affine Hecke algebra H, /i over R with parameter
1/k. The category O of H,y is defined in the obvious way. It is a highest weight R-
category. We will denote it by By. The standard modules will be denoted by By (). The
Suzuki functor over R

€t Ax = Bk, M — Ho(go ® Cl[z], T(M))
is defined in the same way. It has the following properties.

Lemma 3.11.1. (a) We have €x(My(N\)) = Bx(A) for A € Py,
(b) The functor €y restricts to an ezact functor AL — BE.
(¢) The functor € maps a projective generator of Ay to a projective generator of By.
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Proof. The proof of part (a) is the same as in the nondeformed case. For part (b), since &
is right exact over Ay, it is enough to prove that for any injective morphism f: M — N
with M, N € Af the map

C(f) : E(M) — Ex(N)

is injective. Recall from Lemma that the Uy g-module My () is simple for any A.
So the functor

Cx Ak xk — By i
is an equivalence. Hence the map
¢ (f) ©r K : €k (Mk) = €k (Nk)

is injective. Since both €y (M) and €, (N) are free R-modules, this implies that &y (f)
is also injective. Now, let us concentrate on (c). Let P be a projective generator of Aj.
Then P(p) is a projective generator of A,. Since &, is an equivalence of categories, we
have &, (P(p)) is a projective generator of B,. By (b) the object €, (P) belongs to B, so
it is free over R. Therefore by the Universal Coefficient Theorem we have

(€x(P))(p) = €x(P(p))-

Hence €y (P) is a projective object of By. Note that for any A € P, there is a surjective
map P — My (\). The right exact functor €y sends it to a surjective map €y (P) — Bk (A).
This proves that €y (P) is a projective generator of By. O

Proposition 3.11.2. Assume that k < —3. Then there exists an equivalence of highest
weight R-categories

Ak & Ay,
which maps My (X) to Wy (A) for any X € P,,.

Proof. We first give an equivalence of highest weight categories
D : .Ak — By

as follows. Let P be a projective generator of Ax. Then @Q = €g(P) is a projective
generator of By by Lemma|3.11.1j(c). By Morita theory we have equivalences of categories

Hom g, (P, —) : Ay = End 4, (P)°P -mod,
Homp, (Q, —) : Bx = Endp, (Q)°P -mod.

We claim that the algebra homomorphism
End g, (P) — Endp, (Q), [~ €(f), (3.11.1)

is an isomorphism. To see this, note that we have

Q(p) = €x(P(p)), (Endg, (P))(p) =Enda,(P(p)), (Endg (Q))(p)=Endg, (Q(p)).

Since €, is an equivalence, it yields an isomorphism

Enda, (P(p)) S Endg, (Q(9), f  €alf):
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Since both End 4, (P) and Endp, (Q) are finitely generated free R-modules, by Nakayama’s
lemma the morphism (3.11.1)) is an isomorphism. In particular, it yields an equivalence of
categories

End 4, (P)°? -mod = Endp, (Q)°P -mod.
Combined with the other two equivalences above, we get an equivalence of categories
d: Ay — By.
It remains to show that
O(My(N) = Be(N\), X € Py.

Note that the functor €y yields a morphism of finitely generated R-modules

Homp, (Q, ®(Mi(}))) = Endp, (Q)* @gna y, (p)er Homa, (P, Mi(X))
—  Hompg, (Q, €x(Myx(N)))
= Homg, (Q, Bk(}\)).

Let us denote it by . Note also that we have isomorphisms

Hom 4, (P, Mx(N))(p) = Homuy, (P(p), M.(N)),
Homgk(Q,Bk()\))(p) = HOIIIBR(Q(@),BK(A)%

and note that &, is an equivalence of categories. So the map ¢(p) is an isomorphism.
Further Homp, (Q, Bk(\)) is free over R, so Nakayama’s lemma implies that ¢ is also an
isomorphism. The preimage of ¢ under the equivalence Homp, (@, —) yields an isomor-
phism

(M (A)) = Bi(N).

Finally, if v # —1, i.e., kK < —3, then by [Rou08bl Theorem 6.8] the categories By and
Ay are equivalent highest weight R-categories with By (\) corresponding to Wy (A). This
equivalence composed with ® gives the desired equivalence in the proposition. O

Corollary 3.11.3. Assume that k < —3. Then for any A\, p € P, and i € N we have

[T Mo (N /T TEM(N) 2 Le(p)] = [T Wy (A) /T W, (A) 2 Ly (1)) (3.11.2)
Proof. This follows from the proposition above and Proposition [2.5.1] O

To prove the main theorem, it remains to compute the left hand side of (3.11.2). This
will be done by generalizing the approach of [BB93] to the affine parabolic case. To this
end, we first give some reminders on Z-modules on affine flag varieties.

4 Generalities on Z-modules on ind-schemes
In this section, we first recall basic notion for Z-modules on (possibly singular) schemes.

We will also discuss twisted Z-modules and holonomic Z-modules. Then we introduce
the notion of Z-modules on ind-schemes following [BD00] and [KV04].
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4.1 Reminders on Z-modules

Unless specified otherwise, all the schemes will be assumed to be of finite type over C,
quasi-separated and quasi-projective. Although a large number of statements are true in
a larger generality, we will only use them for quasi-projective schemes. For any scheme Z,
let 07 be the structure sheaf over Z. We write O(Z) for the category of quasi-coherent
Oz-modules on Z. Note that we abbreviate &z-module for sheaf of &z-modules over Z.
For f : Z — Y a morphism of schemes, we write f,, f* for the functors of direct and
inverse images on O(Z), O(Y). If f is a closed embedding and .# € O(Y'), we consider
the quasi-coherent &'z-module

flutt = 7 Home, (f Oz, M).

It is the restriction to Z of the subsheaf of .# consisting of sections supported scheme-
theoretically on f(Z) C Y.

Let Z be a smooth scheme. Let Zz be the ring of differential operators on Z. We
denote by M(Z) the category of right Zz-modules that are quasi-coherent as &z-modules.
It is an abelian category. Let €27 denote the sheaf of differential forms of highest degree
on Z. The category of right Z7-modules is equivalent to the category of left Zz-modules
via M — Qz R¢p, H. Let i : Y — Z be a morphism of smooth schemes. We consider the
(Dy,i~1Dz)-bimodule

‘@Y%Z = Z*.@Z = ﬁy ®i—lﬁz i_l.@Z.
We define the following functors

i M(Z) > M(Y), M= Qy Qe (Dy—z g, (Qz R0, M)),
ie : M(Y) — M(Z), M= i (M Rg, Dy—z7).
For any .# € M(Y) let .#? denote the underlying ¢y-module of .#. Then we have
(M) =i ()7

If the morphism 7 is a locally closed affine embedding, then the functor i, is exact. For any
closed subscheme Z’ of Z, we denote by M(Z, Z') the full subcategory of M(Z) consisting
of 9z-modules supported set-theoretically on Z’. If i : Y — Z is a closed embedding of
smooth varieties, then by a theorem of Kashiwara, the functor ie yields an equivalence of
categories
M(Y) =2 M(Z,Y). (4.1.1)

For more details on Z-modules on smooth schemes, see [HTTO§]| for instance.

Now, let Z be a possibly singular scheme. We consider the abelian category M(Z) of
right Z-modules on Z with a faithful forgetful functor

M(Z) - O(2), M — #°

as in [BD00, 7.10.3]. If Z is smooth, it is equivalent to the category M(Z) above, see
[BDOO, 7.10.12]. For any closed embedding i : Z — X there is a left exact functor

it M(X) — M(2)
such that (i'(.#))? =i'(.#?) for all .#. Tt admits an exact left adjoint functor

is : M(Z) — M(X).
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In the smooth case these functors coincide with the one before. If X is smooth, then i,
and i' yield mutually inverse equivalences of categories

M(Z) = M(X, Z). (4.1.2)

such that i' 04 = Id, see [BDOO, 7.10.11]. Note that when Z is smooth, this is Kashiwara’s
equivalence . In this chapter, we will always consider Z-modules on a (possibly
singular) scheme Z embedded into a smooth scheme. Finally, if j : Y — Z is a locally
closed affine embedding and Y is smooth, then we have the following exact functor

joe=1i0(ioj)e: M(Y)— M(Z). (4.1.3)

Its definition is independent of the choice of 1.

4.2 Holonomic Z-modules

Let Z be a scheme. If Z is smooth, we denote by Mj,(Z) the category of holonomic
Pz-modules, see e.g., [HTTO8, Definition 2.3.6]. Otherwise, let i : Z — X be a closed
embedding into a smooth scheme X. We define M (Z) to be the full subcategory of
M(Z) consisting of objects .# such that ie.# is holonomic. The category My (Z) is
abelian. There is a (contravariant) duality functor on My (Z) given by

D: My(Z) = My(2), M+ i(Qx Ray EtG™ (iel , Dx)).

For a locally closed affine embedding 7 : Y — Z with Y a smooth scheme, the functor i,
given by (4.1.3) maps M (Y") to Mp(Z). We put

it=DoigoD: Mp(Y)— My(2).
There is a canonical morphism of functors
Y1 h = .
The intermediate extension functor is given by
e : Mp(Y) = Mp(2), M v— Im(p(A):iyM — ieM).
Let us give some properties of these functors, see e.g. [HTTOS8] for details.

Lemma 4.2.1. Let Y be a smooth scheme and let i : Y — Z be a locally closed affine
embedding.

(a) The functors ie, i1 are exact.

(b) If i is a closed embedding, then 1 is an isomorphism of functors iy = is.

(¢) If i is an open embedding and the scheme Z is smooth, then the functor i' is exact.
Further we have i' = i* and

(i, = i)

form a triple of adjoint functors between the categories My (Y) and My (Z). Finally, for
M € My(Z) we have

(io( )7 =iy (MY).
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4.3 Weakly equivariant Z-modules

Let T be a linear group. For any T-scheme Z there is an abelian category M7 (Z) of
weakly T-equivariant right Z-modules on Z with a faithful forgetful functor

MT(Z) - M(2). (4.3.1)

If Z is smooth, an object .# of M (Z) is an object .# of M(Z) equipped with a structure
of T-equivariant &'z-module such that the action map .# ®4, Y7 — A is T-equivariant.
For any T-scheme Z with a T-equivariant closed embedding ¢ : Z — X into a smooth
T-scheme X, the functor i, yields an equivalence M”(Z) = M? (X, Z), where M (X, Z)
is the subcategory of M’ (X) consisting of objects supported set-theoretically on Z.

4.4 Twisted Z-modules

Let T be a torus, and let t be its Lie algebra. Let 7 : ZT — Z be a right T-torsor over
the scheme Z. For any object . € M (Z") the 6z-module 7.(.#?) carries a T-action.
Let

MY =7 (T

be the &z-submodule of 7, (.#?) consisting of the T-invariant local sections. We have
0zZ,.u" =12, .4)T.

For any weight A € t* we define the categories M:\(Z ), M*(Z) as follows.
First, assume that Z is a smooth scheme. Then ZT is also smooth. So we have a sheaf
of algebras on Z given by

‘@} = (-@ZT)T7

and .#" is a right _@}—module for any .# € MT(Z"). For any open subscheme U C Z the
T-action on 7~ 1(U) yields an algebra homomorphism

5, Ut) = T(U, 2}), (4.4.1)

whose image lies in the center of the right hand side. Thus there is also an action of U(t)
on .1 commuting with the .@}—action. For A\ € t* let my C U(t) be the ideal generated
by

{h+ A(h) | h € t}.

We define M*(Z) (resp. MS‘(Z )) to be the full subcategory of M’ (ZT) consisting of the
objects . such that the action of my on .Z T is zero (resp. nilpotent). In particular
M*(Z) is a full subcategory of M*(Z) and both categories are abelian. We will write

T(Z,.#) = T(Z,.4Y, Y .eMZ). (4.4.2)

Now, let Z be any scheme. We say that a T-torsor 7 : Z1 — Z is admissible if there
exists a T-torsor XT — X with X smooth and a closed embedding i : Z — X such
that Z1 = X T~>< x Z as a T-scheme over Z. We will only use admissible T-torsors. Let
M X, Z), MA(X, Z) be respectively the subcategories of M*(X), M*(X) consisting of
objects supported on ZT. We define M*(Z), M*(Z) to be the full subcategories of M (Z7)
consisting of objects .# such that is(.#) belongs to M*(X, Z), M*(X, Z) respectively.
Their definition only depends on the T-torsor 7.
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Remark 4.4.1. Let Z be a smooth scheme. Let M(.@;) be the category of right Qg—modules
on Z that are quasi-coherent as &z-modules. The functor

ML (Zh 3 M(2)), st (4.4.3)

is an equivalence of categories. A quasi-inverse is given by 7%, see e.g., [BB93, Lemma
1.8.10].

Remark 4.4.2. We record the following fact for a further use. For any smooth T-torsor
7 : Z' — Z, the exact sequence of relative differential 1-forms

Q) — Qi — Qi) — 0
yields an isomorphism
QZT = ﬂ'*(QZ) ®@’ZT QZT/Z'
Since 7 is a T-torsor we have indeed
Qzt)z = Ozt
as a line bundle. Therefore we have an isomorphism of &',;-modules
sz - W*(Qz>.

Below, we will identify them whenever needed.

4.5 Twisted holonomic Z-modules and duality functors

Let 7 : ZT — Z be an admissible T-torsor. We define M7 (ZT) to be the full subcat-
egory of MT(Z1) consisting of objects .# whose image via the functor belongs to
M,,(ZT). We define the categories M7 (Z), M3(Z) in the same manner.

Assume that Z is smooth. Then the category M7 (Z') has enough injective objects,

see e.g., [Kas08, Proposition 3.3.5] and the references there. We define a (contravariant)
duality functor on M7? (ZT) by

D ME(Z5) - ME(ZT), it Qi 00, Sty (M, D).
We may write D' = D’,. Note that by Remark and the equivalence (4.4.3|) we have
(D) = Oz @0, gxtginz* ', 2}, . eM(Zh. (4.5.1)
For any A € t* the functor D' restricts to (contravariant) equivalences of categories
D' MMNZ) - M;NZ), D :MMZ) - M;2), (4.5.2)

see e.g., [BB93, Remark 2.5.5(iv)]. In particular, if A = 0 then D' yields a duality on
M) (ZT). Further (4.4.3) yields an equivalence of categories

d:MUZ) - Mu(2), M A

Recall the duality functor D on My (Z) defined in Section The following result is
standard.

Lemma 4.5.1. We have oD =D o &.
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For an admissible T-torsor  : Z' — Z with an embedding i into a smooth T-torsor
Xt - X, we define

D' M (ZY) - ME(ZY),  a — iD (e ().

The definition of I’ only depends on w. The equivalence and Lemma hold
again.

A weight \ € t* is integral if it is given by the differential of a character e* : T — C*.
For an integral weight A we consider the invertible sheaf .#2 in O(Z) defined by

LU, 23)={y eT(x '(U), Oz) [v(zh™") = X ()y(z), (k) €n ' (U) x T}
for any open set U C Z. Then we define the following translation functor
O : M (Z1) = M} (ZY), M — M 20, T (L)

It is an equivalence of categories. A quasi-inverse is given by ©~*. For any u € t* the
restriction of ©* yields equivalences of categories

0N MY (Z) - MY (Z), ©): MY (Z) - META(2). (4.5.3)
We define the duality functor on M%(Z ) to be
D:MNZ) = MMNZ), M 0P o ().

It restricts to a duality functor on MQ(Z), which we denote again by . To avoid any
confusion, we may write D = D*. The equivalence ©* intertwines the duality functors,
i.e., we have

DMH o @) = ©* o DM, (4.5.4)

For any locally closed affine embedding of T-torsors ¢ : Z — Y with Z smooth, we
define the functor

it=DoisoD: MNZ) = MAY).

As in Section we have a morphism of functors 1) : iy — i, which is an isomorphism if
is a closed embedding. The intermediate extension functor i, is defined in the same way.

Lemma holds again.

Remark 4.5.2. Assume that Z is smooth. Let .# € M}(Z). Put = 0 in (4.5.3)). Using
the equivalence ® we see that .#" is a right module over the sheaf of algebras

Dy =25 @0, V2 @0, L3
Further, we have

D(A)' =z ®0, ®0, L5 @0, SutGS (M, D7)

by Lemma [4.5.1] and (4.5.4]), compare [KT95, (2.1.2)].
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4.6 Injective and projective limit of categories

Let us introduce the following notation. Let A be a filtering poset. For any inductive
system of categories (Co)aca With functors iqg : Co — Cg, a < 3, we denote by 2@ C, its
inductive limit, i.e., the category whose objects are pairs (a, M,) with a € A, M, € C,
and

Homghgca ((a, Ma), (,8, Nﬁ)) = hﬂ HOHICv (’L'a,y(Ma), i/@w(Nﬁ)).
vzo.B
For any projective system of categories (Cy)aca with functors joz : Cg — Co, o < 3,
we denote by 21'&1(3& its projective limit, i.e., the category whose objects are systems
consisting of objects M, € C, given for all @ € A and isomorphisms j,5(Mg) — M, for
each a < f and satisfying the compatibility condition for each a@ < 5 < . Morphisms are
defined in the obvious way. See e.g., [KV04] 3.2, 3.3].

4.7 The O-modules on ind-schemes

An ind-scheme X is a filtering inductive system of schemes (X4 )aea with closed em-
beddings in5 : Xo — Xp for a < 3 such that X represents the ind-object “ hg " Xq. See
[KS94] 1.11] for details on ind-objects. Below we will simply write lim for lim ”, hoping
this does not create any confusion. The categories O(X,) form a projective system via
the functors ilaﬁ : O(X3) = O(X,). Following [BDO00, 7.11.4] and [KV04, 3.3] we define
the category of -modules on X as

o(X) = 21&1 O(X,).
It is an abelian category. An object .# of O(X) is represented by
M= (Mo, Pap :ing M — Me)

where .#, is an object of O(X,) and ¢,3, a < 3, is an isomorphism in O(X,).

Note that any object .# of O(X) is an inductive limit of objects from O(X,). More
precisely, we first identify O(X,) as a full subcategory of O(X) in the following way: since
the poset A is filtering, to any .#, € O(X,) we may associate a canonical object (.43) in
O(X) such that A5 = inp«(#o) for o < B and the structure isomorphisms ¢z, 8 < 7,
are the obvious ones. Let us denote this object in O(X) again by .#,. Given any object
M € O(X) represented by A = (My, pap), these M, € O(X), a € A, form an inductive
system via the canonical morphisms .#, — .#3. Then, the ind-object lig//la of O(X)
is represented by .#. So, we define the space of global sections of .Z to be the inductive
limit of vector spaces

X, #)= lignF(Xa, My). (4.7.1)

We will also use the category C)(X ) defined as the limit of the projective system
of categories (O(Xq), %), see [BDO0, 7.11.3] or [KV04, 3.3]. Note that the canonical
isomorphisms izﬁﬁxﬁ = Ox, yield an object (Ox_)aca in G(X) We denote this object
by Ox. An object .F € O(X) is said to be flat if each .Z, is a flat @x, -module. Such a
Z yields an exact functor

O(X) = OX), MM Qo F = (Mo @y, Fo)- (4.7.2)

For .7 € O(X) the vector spaces I'(Xq,.%,) form a projective system with the structure
maps induced by the functors 7, 5. We set

g\ — i a
X, #) = y_F(Xa,e/a). (4.7.3)
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4.8 The Z-modules on ind-schemes

The category of Z-modules on the ind-scheme X is defined as the limit of the inductive
system of categories (M(X4),iqge), see e.g., [KV04, 3.3]. We will denote it by M(X).
Since M(X,) are abelian categories and i3, is an exact functor, the category M(X) is
abelian. Recall that an object of M(X) is represented by a pair (a,.#,) with o € A,
Mo € M(X,). There is an exact and faithful forgetful functor

M(X) = O(X), M = (a,Mo)— M = (iage( M) )0
The global sections functor on M(X) is defined by
DX, .#)=T(X,.49).

Next, we say that X is a T-ind-scheme if X = ligXa with each X, being a T-scheme

and i, : Xo — X3 being T-equivariant. We define M7 (X) to be the abelian category
given by the limit of the inductive system of categories (M”(X,),iag.). The functors
(4.3.1) for each X, yield an exact and faithful functor

MT(X) — M(X). (4.8.1)

The functor I' on M7 (X) is given by the functor I' on M(X).
Finally, given a T-ind-scheme X = @Xa let 7 : XT — X be a T-torsor over X, i.e., 7

is the limit of an inductive system of T-torsors 7, : X — X,. We say that 7 is admissible
if each of the m, is admissible. Assume this is the case. Then the categories M*(X,,),

M;\(Xa) form, respectively, two inductive systems of categories via i,ge. Let

MNX) = 2limMN(X,),  M(X) = 2lim M (X,).

They are abelian subcategories of M7 (XT). For any object .# = (a, .#,) of MT(XT), the
O x,-modules (iage-ty)’ with B > a give an object of O(X). We will denote it by .#7.
The functor

MT(XT) - O(X), A — a1

is exact and faithful. For .2 € M* (X) we will write
D(#)=T(X,.#"). (4.8.2)

Note that it is also equal to I'(XT,.#)T. We will also consider the following categories

M(X) = 2lim Mp(Xo), Mp(X) = 2lim M(Xa).

Let Y be a smooth scheme. A locally closed affine embedding ¢ : Y — X is the composition
of an affine open embedding i; : Y — Y with a closed embedding i : Y — X. For such a
morphism the functor i, : MQ(Y) — MQ(X) is defined by 7, = 794 © i1e, and the functor
0 MQ(Y) — MQ(X) is defined by ) = 794 0 11.

4.9 The sheaf of differential operators on a formally smooth ind-scheme.

Let X be a formally smooth ind-scheme, i.e., for any commutative C-algebra A and
any nilpotent ideal I C A, any morphism of schemes f : Spec(A/I) — X is given by the
composition of Spec(A/I) — Spec(A) and a morphism f’ : Spec(4) — X, see e.g., [BDOO),
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7.11.1] and the references there. Fix f > « in A let _@iﬁﬂ’a be the ﬁxﬁxxa—submodule
of Homc(Ox,,iap«0Ox,) consisting of local sections supported set-theoretically on the
diagonal X, C Xg x X,. Here %om@(ﬁxﬁ,iag*ﬁxa) denotes the sheaf of morphisms
between the sheaves of C-vector spaces associated with Ox, and inp.0x,,. As a left Ox,-
module Ziff 5 , is quasi-coherent, see e.g., [BB93| Section 1.1]. So it is an object in O(X4,).
For 8 < ~ the functor ig,. and the canonical map Ox., — igy«Ox, yield a morphism of
Ox,-modules
L%pom(c(ﬁxﬂ,iag*ﬁxa) — t%pom(c(ﬁxwia,y*ﬁxa).

It induces a morphism %iff 3, — Ziff. , in O(X,). The Ox,-modules Ziffs,, 8 = «,
together with these maps form an inductive system. Let

Diff o, = lim Ziff 5., € O(Xa).

Bza

The system consisting of the Ziff,’s and the canonical isomorphisms i 5 Ziff 3 — Ziff,

is a flat object in O(X), see [BDOO, 7.11.11]. We will call it the sheaf of differential
operators on X and denote it by Zx. It carries canonically a structure of &'x-bimodules,
and a structure of algebra given by

@iﬁ’y”@@ﬁxﬁ 9iﬁﬁ,a_>@iﬁl'y,a) (g’f)'_)gofv a<5<7
Any object .# € M(X) admits a canonical right Zx-action given by a morphism
MR Dx — M (4.9.1)

in O(X) which is compatible with the multiplication in Zx.

5 Localization theorem for affine Lie algebras of negative
level

In this section we first consider the affine localization theorem which relates right
Z-modules on the affine flag variety (an ind-scheme) to a category of modules over the
affine Lie algebra with integral weights and a negative level. When the weight is regular,
we compute the image of standard Z-modules using Kashiwara-Tanisaki’s construction
(via the Kashiwara affine flag scheme). Next, we give a geometric construction of the
translation functor for the affine category O inspired from [BG99], and we apply this to
singular blocks. Finally, we consider the Z-modules corresponding to the parabolic Verma
modules. All these constructions hold for a general simple linear group. We will only use
the case of SL,,, since the multiplicities on the left hand side of that we want
to compute are the same for sl,, and gl,,. We will use, for sl,,, the same notation as in
Section (3| for gl,,. In particular go = sl,, and t; is now given the basis consisting of the
weights €; — €;41 with 1 <4 <m — 1. We identify P,, as a subset of tj via the map

Po—=t, A=A, m) = > (A —n/me.
=1
Finally, we will modify slightly the definition of g by extending C[t,t!] to C((t)), i.e.,
from now on we set

g=go®C((t)) @ C1o Co.

The bracket is given in the same way as before. We will again denote by b, n, q, etc., the
corresponding Lie subalgebras of g.
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5.1 The affine Kac-Moody group

Consider the group ind-scheme LGy = Go(C((t))) and the group scheme LTGy =
Go(C[[t]]). Let I ¢ L*tGy be the Iwahori subgroup. It is the preimage of By via the
canonical map LTGy — Gy. For z € C* the loop rotation t — zt yields a C*-action on
LGy. Write

LGy = C* x LG.

Let G be the Kac-Moody group associated with g. It is a group ind-scheme which is a
central extension
1-C"—=G— LGy — 1,

see e.g., [Kum02, Section 13.2]. There is an obvious projection pr: G — LGy. We set
B=p'(I), Q=pr ' (L*Gp), T =pr (Tp).
Finally, let N be the prounipotent radical of B. We have
g = Lie(G), b=Lie(B), q=Lie(Q), t=Lie(T), n=Lie(N).

5.2 The affine flag variety

Let X = G/B be the affine flag variety. It is a formally smooth ind-scheme. The
enhanced affine flag variety XT = G/N is a T-torsor over X via the canonical projection

T XT = X. (5.2.1)

The T-action on X' is given by gN +— gh™'N for h € T, g € G. The T-torsor  is
admissible, see the end of Section The ind-scheme XT is also formally smooth. For
any subscheme Z of X we will write Z! = 771(Z). The B-orbit decomposition of X is

X =] Xu X, = BwB/B,
wed

where w is a representative of w in the normalizer of T" in G. Each X,, is an affine space
of dimension [(w). Its closure X,, is an irreducible projective variety. We have

Xo= || Xu, X:lgfw.
w

w'<w

5.3 Localization theorem

Recall the sheaf of differential operators Zy+ € O(X ). The space of sections of P+
is defined as in (4.7.3). The left action of G on XT yields an algebra homomorphism

6 U(g) = T(XT, D). (5.3.1)

Since the G-action on XT commutes with the right T-action, the image of the map above
lies in the T-invariant part of T'(XT, @yi). So for .# € MT(XT) the Zyi-action on .#
given by @ induces a g-action® on .#" via &;. In particular the vector space I'(.#)
as defined in @ is a g-module. Let M(g) be the category of g-modules. We say that
a weight A € t* is antidominant (resp. dominant, regular) if for any a € II'" we have
(Ara) <O (resp. (A:a) >0, (A:a) #0).

1. More precisely, here by g-action we mean the g-action on the associated sheaf of vector spaces (.# 1L)C,
see Step 1 of the proof of Proposition @ for details.
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Proposition 5.3.1. (a) The functor
I':MNX)— M(g), A+ T(A)

is exact if A+ p is antidominant.

(b) The functor )
I:MMNX)— M(g), A v—T(A)

is exact if A+ p is antidominant.

Proof. A proof of part (a) is sketched in [BD0O, Theorem 7.15.6]. A detailed proof can
be given using similar technics as in the proof of the Proposition below. This is left
to the reader. See also [FG04, Theorem 2.2] for another proof of this result. Now, let

us concentrate on part (b). Let .# = (a,.#,) be an object in M*(X). By definition
the action of my on .#" is nilpotent. Let .#, be the maximal subobject of .# such that
the ideal (my)" acts on .#, by zero. We have .#, 1 C My, and .4 = ligrl,//ln. Write
RFT'(X,—) for the k-th derived functor of the global sections functor I'(X,—). Given

n > 1, suppose that
RO(X, . #)) =0, Yk>0.

Since .y 11/, is an object of M*(X), by part (a) we have
RET(X, (Moyir ) M,)T) =0, Y >0,
The long exact sequence for RT'(X, —) applied to the short exact sequence
0 — My — M — (Myir | M) — 0

implies that RFT'(X, //l;[ +1) = 0 for any k£ > 0. Therefore by induction the vector space
RFT(X,.#) vanishes for any n > 1 and k > 0. Finally, since the functor RFT'(X, —)
commutes with direct limits, see e.g., [TT90, Lemma B.6], we have

RO(X, . 41) = @er(x, M =0, VEk>O0.

5.4 The category O, and Verma modules

For a t-module M and )\ € t* we set
M ={meM|[(h—Ah)Nm=0, Vhet, N>0} (5.4.1)

We call a tmodule M a generalized weight module if it satisfies the conditions

M= M;,
A€ t*

dimc M5 < oo, Vet

Its character ch(M) is defined as the formal sum

ch(M) = Y dimg(M;)e. (5.4.2)
AEt*

Let O be the category consisting of the U (g)-modules M such that
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e as a t-module M is a generalized weight module,
e there exists a finite subset = C t* such that M; # 0 implies that A € E+Z;’:01 Z<poy;.

The category O is an abelian category. We define the duality functor D on O by

DM = P Hom(Mj, C), (5.4.3)
AEt*

with the action of g given by the involution o, see Section Let O, be the full subcat-
egory of O consisting of the g-modules M such that 1 — ¢ acts on M locally nilpotently,
where ¢ = kK — m. The category O, is also abelian. It is stable under the duality functor,
because o(1) = 1. The category O, is a full Serre subcategory of Oy.

For A € ,t* we consider the Verma module

Ni(A) =U(g) @y Cx.

Here C, is the one dimensional b-module such that n acts trivially and t acts by A. It is an
object of Oy. Let L, ()\) be the unique simple quotient of N (\). We have DL, ()\) = L, ()\)
for any A. A simple subquotient of a module M € O, is isomorphic to L,;(\) for some
A € t*. The classes [L,(\)] form a basis of the vector space [O], because the characters
of the L,(\)’s are linearly independent.

Denote by A the set of integral weights in ,t*. Let A € A and w € &. Recall the line
bundle fj}w from Section Let

ﬂlﬁ = QXZJ ®ﬁXT W*(g)éw) (544)

It is an object of M7 (X,,) such that

D(A2) = .

w w

Let iy : XJ, — XT be the canonical embedding. It is locally closed and affine. We have
the following objects in M7 (X),

Doy = i( D)), Dje = 1wte(D),  Spe = ()

w w w

We will consider the Serre subcategory Mp(X) of Mf‘L(X ) generated by the simple objects
AN, for w € &. Tt is an artinian category. Since D(Z)\,) = <72,, the category M{(X) is

w!e’

stable under the duality. We have the following proposition.

Proposition 5.4.1. Let A € A be such that X\ + p is antidominant and reqular. Then we
have isomorphisms of g-modules

() = No(v-X), T(Zh) =DNi(v-)), D(HN)=Le(v-)), YVve& (54.5)

vl v
This is essentially due to [KT95]. However, the setting of loc. cit. is slightly different
from the one used here. Let us recall their construction and adapt it to our setting.
5.5 The Kashiwara affine flag variety

We first introduce some more notation. Recall that II is the root system of g and IT*
is the set of positive root. Write II~ = —II". For a € II we write

go={zx€g]|[hx]=alh)x, Vhet}
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For any subset YT of II, II~ we set respectively

W(Y) =P (V) =D o

aeY a€eY
For o = Z?i_ol hia; € T we write ht(«a) = Z?i_ol h; and for | € N we set
II; ={aell” | ht(a) < =1}, n, =n (II,).

Consider the group scheme L~Go = Go(C[[t7!]]). Let B~ be the preimage of B, by the
map
L™ Gy — Gy, 7 0,

where B is the Borel subgroup of G opposite to By. Let N, C B~ be the group
subscheme given by

N = @exp(nf/n,:).
k

Let X be the Kashiwara affine flag variety, see [Kas89. It is a quotient scheme X =
Goo/B, where G is a coherent scheme with a locally free left action of B~ and a locally
free right action of B. The scheme X is coherent, prosmooth, non quasi-compact, locally
of countable type, with a left action of B~. There is a right T-torsor

7: % =Go/N = X.

For any subscheme Z of X let ZT be its preimage by 7. Let

x=|]x

weS

be the B~ -orbit decomposition. The scheme X is covered by the following open sets

xv = ||z

v<w

For each w there is a canonical closed embedding X,, — X*. Moreover, for any integer [
that is large enough, the group INV;™ acts locally freely on X*, X"t the quotients

PN = N
are smooth schemes ?, and the induced morphism
Xy — XY (5.5.1)
is a closed immersion. See [KT95, Lemma 2.2.1]. Further we have
X, =X xxp 1

In particular, we get a closed embedding of the T-torsor YL — X, into the T-torsor
%}UT — X}”. This implies that the T-torsor 7 : X T — X is admissible. Finally, let

Piyiy ¢ %lul)T — %ZZTv bi: %wT — %;UTa ll = 12

be the canonical projections. They are affine morphisms.

2. For [ large enough the scheme X}’ is separated (hence quasi-separated). To see this, one uses the
fact that X¥ is separated and applies [TT90, Proposition C.7].
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5.6 The category H(X).

Fix w,y € & with y > w. For [} > I3 large enough, the functor

(Praia)e - MY, X0) — MA(XY, X )

1>

yields a filtering projective system of categories, and we set

H(XY, X ) = 2yl_m My (XY, X ).

For z > y let j,. : x¥" — x* be the canonical open embedding. It yields a map Jyz
%;”L — %ZZT for each I. The pull-back functors by these maps yield, by base change, a
morphism of projective systems of categories

(M (X7, X))t = (Mp(X], Xo))i-
Hence we get a map i i
H (%%, X,,) — HNXY, X ).

As y, z varies these maps yield again a projective system of categories and we set

HY(X,,) = 2lim HY (XY, X,,).

y>w

Finally, for w < v the category H (X ) is canonically a full subcategory of HS‘(YU). We
define ) )
HA(X) = 2lim HY(X ).
?I‘I’l w

This definition is inspired from [KT95], where the authors considered the categories
M) (X7, X,,) instead of the categories Mﬁ(%?,yw) Finally, note that since the cate-
gory H:\(Yw) is equivalent to M%(%y,yw) for y, [ large enough, and since the latter is
equivalent to Mi (X ), see Section we have an equivalence of categories

5.7 The functors I and T

For an object .# of H;\(X), there exists w € & such that .# is an object of the subcat-
egory H(X ). Thus . is represented by a system (#)y>y,, with .4 € Mp(X}, X )
and [ large enough. For [y > [, there is a canonical map

(pllb)*('%l?i) — (plllz)o(//[g) = .%ZZ
It yields a map (see (4.4.2) for the notation)
D(X},, . #)]) — T(X},, ;).

Next, for y, z > w and [ large enough, we have a canonical isomorphism



5. LOCALIZATION THEOREM FOR AFFINE LIE ALGEBRAS OF NEGATIVE LEVEL 105

Following [KT95], we choose a y > w and we set

D) = him D (XY, .40)).
l

This definition does not depend on the choice of w, y. Now, regard .# as an object of

M7 (X). Recall the object . € O(X) from Section Suppose that .#7 is represented

by a system (///yﬁ)y>w with ///y/} € O(X,). By definition we have ///yﬁ = (i'.4)T, where

i denotes the closed embedding Y; — %}“’T, see (5.5.1)). Therefore we have

F(Yy"//yﬁ) = F(yy’i!(jllyﬂ)
c T (5.7.1)

Next, recall that we have

D(A) =T(X, ") =i (X, 4.

So by first taking the projective limit on the right hand side of with respect to
[ and then taking the inductive limit on the left hand side with respect to y we get an
inclusion
() CT(A).

It identifies I'(.#) with the subset of I'(.#) consisting of the sections supported on sub-
schemes (of finite type) of X.

The vector space I'(.#) has a g-action, see [KT95, Section 2.3]. The vector space
I'(.#) has also a g-action by Section The inclusion is compatible with these g-actions.
Following loc. cit., let

T() C ()
be the set of t-finite elements. It is a g-submodule of I'(.#).

5.8 Proof of Proposition [5.4.1

By [KT95, Theorem 3.4.1] under the assumption of the proposition we have isomor-
phisms of g-modules.

f(%ﬁ\) :NH(U')‘)a f(%{) :DNH(U')‘)’ f(d),‘.) :LH(U')‘)v Vv e 6.

v

We must check that for f =!, e, or le, the g-submodules F(%Au) and f(.gz{vAﬁ) of f(szfv?) are
equal. Let us prove this for § = . We will do this in several steps.

Step 1. Following [KT95] we first define a particular section 9 in I'(2Z)). Let w be
a nowhere vanishing section of Qy,. It is unique up to a nonzero scalar. Let t* be the
nowhere vanishing section of .£3, such that t*(uib) = e~*(b) for u € N, b € B. Then
w @t is a nowhere vanishing section of &M over X,. Now, for y > v and [ large enough,
let i} : X, — X} be the composition of the locally closed embedding X, — X, and
the closed embedding X, — X! in . We will denote the corresponding embedding
XJ — %;’T again by V. Note that (%, (<)), represents the object o7, in H*(X). Therefore
we have

P(}) = lm (XY, if, ().
!

Consider the canonical inclusion of ﬁx?—modules
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Let 9, € ['(XY,4, (%)) be the image of w ® t* under this map. The family (¢;) defines
an element

9 € T()).

Step 2. Let VY = yB™ - B/B. It is an affine open set in X¥. For [ large enough, let V}
be the image of V¥ in %y via the canonical projection X¥ — %y Write j Vy — %y for
the inclusion. Note that Vy = N~ /N, as affine spaces. Therefore if I is large enough such
that II,” C II” NolIl™, then the right @;(U—module structure on &7 yields an isomorphism
of sheaves of C-vector spaces over V}

3 @§0x,) @U@~ (I Nol7))/n) = zy(?.(u@ﬂ))

This yields an isomorphism of t-modules
DX}, it (,) = U™ /0;) @ Co, (5:8.1)
see [KT95, Lemma 3.2.1]. By consequence we have an isomorphism of t-modules

D()) = Un™ /n)) @ Cyx. (5.8.2)

Step 3. Now, let us prove I'(«7y) = T'(</;,). First, by (5.8.1) the space I'(XY, i, (<))
is t-locally finite. So (5.7.1)) implies that I'(<Z) is the inductive limit of a system of
t-locally finite submodules. Therefore it is itself t-locally finite. Hence we have

T() € T(0).

To see that this is indeed an equality, note that if m € f‘(;z/v);
by ([5.8.2)) the section m is represented by an element in

LZ/{ /nl ) ® Cyon

) is not t-locally finite, then

which does not come from U(n~) ® C,.) via the obvious map. Then one sees that m can
not be supported on a finite dimensional scheme, i.e., it can not belong to I'(2Z}). This
proves that

[(;0) =T ().

Now, we can prove the other two equalities. Since A 4 p is antidominant, by Propo-

sition ( ) the functor I' is exact on M*(X). So I'(«7,) is a g-submodule of I'(.2Z})).

vle

Therefore all the elements in T'(.«7),) are t-finite, i.e., we have

(’Q{'o) - f(%ﬁ\o)

v

On the other hand, by [KT95, Theorem 3.4.1] we have

()

V!

Therefore, Step 3 yields that each section in T'(7),) is supported on a finite dimensional
scheme, and hence belongs to I'(<7),). We deduce that

v
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Finally, since ,quf.‘ has a finite composition series whose constituents are given by <77\,
for w < v. Since both I' and T are exact functors on M} (X), see Proposition
and [KT95, Corollary 3.3.3, Theorem 3.4.1]. We deduce from that I'(<7)) is t-
locally finite, and the sections of f(fgfﬁ) are supported on finite dimensional subschemes.
Therefore we have

D()) = ().

The proposition is proved. ]

5.9 Translation functors

In order to compute the images of Jz/j,‘ and @), in the case when \ + p is not regular,
we need the translation functors. For A € ,t* such that A + p is anti-dominant, we define

Oy to be the Serre subcategory of O, generated by L, (w - A) for all w € &. The same
argument as in the proof of [DGK82, Theorem 4.2] yields that each M € O, admits a
decomposition

M=@Mm, M €O, (5.9.1)

where A runs over all the weights in ,t* such that A + p is antidominant. The projection
pry : @H — @:‘i,)\’ M — M)‘,

is an exact functor. Fix two integral weights A, p in t* such that A + p, u + p are
antidominant and the integral weight v = A — i is dominant. Assume that A € ,t*, then
p belongs to .t* for an integer ' < k. Let V(v) be the simple g-module of highest weight
v. Then for any M € O, the module M ® V(v) belongs to O,. Therefore we can define
the following translation functor

o : @,47“ — @,ﬁ)\, M — pry(M @ V(v)),

see [Kum94]. Note that the subcategory (’jn, » of O is stable under the duality D, because
D fixes simple modules. We have a canonical isomorphism of functors

0" oD =Dob". (5.9.2)

Indeed, it follows from that DIM @V (v)) = D(M)®D(V(v)) as g-modules. Since
V(v) is simple, we have DV (v) = V(v). The equality follows.

On the geometric side, recall the T-torsor 7 : XT — X. For any integral weight \ € t*
the family of line bundles jf%w (see Section with w € G form a projective system of

¢-modules under restriction, yielding a flat object .£* of O(X). Note that 7*(£*) is a
line bundle on XT. For integral weights A, 4 in t* the translation functor

N ME(X) = My(X), M~ M T(LH),

is an equivalence of categories. A quasi-inverse is given by ©#~*. By the projection
formula we have

ONH(AL) = A}y, for f=I, le, e, (5.9.3)

Now, assume that p + p is antidominant. Consider the exact functor

I:MH(X)— M(g), A —T(H)
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as in Proposition Note that if y + p is regular, then T’ maps <!, to L.(v - u) by
Proposition Since the subcategory O, of M(g) is stable under extension, the exact
functor I restricts to a functor

I':ME(X) = Oy
The next proposition is an affine analogue of [BG99 Proposition 2.8].

Proposition 5.9.1. Let )\, p be integral weights in t* such that X + p, p + p are an-
tidominant and v = X\ — u is dominant. Assume further that pu + p is regular. Then the
functors

0" oT : MH(X) = Opx CM(g) and ToO”: M(X)— M(g)
are isomorphic.

Proof. We will prove the proposition in several steps.

Step 1. First, we define a category Sh(X) of sheaves of C-vector spaces on X and we
consider g-modules in this category. To do this, for w € & let Sh(X,,) be the category of
sheaves of C-vector spaces on X ,,. For w < z we have a closed embedding iy, 5 : Xy — X,
and an exact functor

iy Sh(Xy) = Sh(Xy), F iy (F),
where zlux(ﬁ ) is the subsheaf of .% consisting of the local sections supported set-theoretically
on X,. We get a projective system of categories

|

(Sh(Xw), iy)-

w,x

Following [BD00, 7.15.10] we define the category of sheaves of C-vector spaces on X to be
the projective limit

Sh(X) = 2lim Sh(X,).

This is an abelian category. By the same arguments as in the second paragraph of Section
m the category Sh(X,,) is canonically identified with a full subcategory of Sh(X), and
each object .# € Sh(X) is a direct limit

F = lig,?w, Fw € Sh(X ).
The space of global sections of an object of Sh(X) is given by
NX,7)= @F(Yw,ﬂw).
Next, consider the forgetful functor
0(X,) = Sh(X,), & — #C

Recall that for .# € O(X) we have # = lim .7, with 4, € O(Xy). The tuple of
sheaves of C-vector spaces

lim ., (L), we &,
gives an object in Sh(X). Let us denote it by .#C. The assignment .# — .#C yields a

faithful exact functor
O(X) — Sh(X)
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such that
O(X, #)=T(X,.#°), (5.9.4)

see (4.7.1)) for the definition of the left hand side. Now, let .# = (.%#,) be an object in
Sh(X). The vector spaces End(#,,) form a projective system via the maps

End(F,) = End(Zy), [ ity (f).

We set
End(%) = @End(ﬁw). (5.9.5)

We say that an object .7 of Sh(X) is a g-module if it is equipped with an algebra homo-
morphism

U(g) — End(F).

For instance, for . € MT(XT) the object (.#T)® of Sh(X) is a g-module via the algebra
homomorphism

6 U(g) = T(XT, Dys) (5.9.6)

See also the beginning of Section [5.3}

Step 2. Next, we define G-modules in @(X) A standard parabolic subgroup of G is a
group scheme of the form P = @ x¢g, Po with Fy a parabolic subgroup of Go. Here the
morphism @ — Gy is the canonical one. We fix a subposet & C & such that for w € 'S
the subscheme X,, C X is stable under the P-action and

X = hg X,
wels

We say that an object .Z = (%) of O(X) has an algebraic P-action if .#,, has the
structure of a P-equivariant quasicoherent ﬁyw—module for w € S and if the isomorphism
i Fx = Fy is P-equivariant for w < z. Finally, we say that 7 is a G-module if it is
equipped with an action of the (abstract) group G such that for any standard parabolic
subgroup P, the P-action on .7 is algebraic.

We are interested in a family of G-modules #7 in O(X) defined as follows. Fix a basis
(my)ien of V(v) such that each m; is a weight vector of weight v; and v; > v; implies
j < i. By assumption we have 1y = v. For each i let V' be the subspace of V(v) spanned
by the vectors m; for j <i. Then

Voicvicvic...

is a sequence of B-submodule of V(r). We write V> = V(v). For 0 < i < co we define a
O'x-module “//xi on X such that for any open set U C X we have

DU YR ={f:p7(U) = V' | f(gb™") =0f(9), g€ Ge, bE B},

where p : G5 — X is the quotient map. Let ¥, be the restriction of ”f/jg to X,. Then
(¥ )wes is a flat G-module in O(X). We will denote it by #%. Note that since V()
admits a G-action, the G-module ¥ € O(X) is isomorphic to the G-module x ®@ V (1)
with G acting diagonally. Therefore, for .# € M} (X) the projection formula yields a
canonical isomorphism of vector spaces

N4)oV) = (X, #4H)e V)
0(X, 4" ®p, V). (5.9.7)
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On the other hand, we have
DO (A) = T(X, (M @0, (L))
= (X, M ®p, L7). (5.9.8)

Our goal is to compare the g-modules I'(©"(.#)) and the direct factor 6”(I'(.#)) of
[(#)® V(v). To this end, we first define in Step 3 a g-action on (AT ®4, ¥*)C for
each 7, then we prove in Steps 4-6 that the inclusion

(M 0o, L) = (M 04, V) (5.9.9)

induced by the inclusion £¥ = #9 C ¥ splits as a g-module homomorphism in Sh(X).
Step 3. Let P be a standard parabolic subgroup of GG, and let p be its Lie algebra. Let
S C & be as in Step 2. The P-action on ¥ yields a Lie algebra homomorphism

p—End(7)), Vwe’s.

Consider the g-action on (.#1)C given by the map &; in (5.9.6). Note that for w < z in F'&,
any element ¢ € p maps a local section of .#, supported on X, to a local section of ./,
with the same property. In particular, for w € & we have a Lie algebra homomorphism

p — End((.4) . 795), €= (meuve EmOu+me ), (5.9.10)

where m denotes a local section of ., v denotes a local section of 7. These maps are
compatible with the restriction

End((4] ®o 7)) = End((A] @0 V)%)s o ial(f):
They yield a Lie algebra homomorphism
p — End((A4T 24, ¥H)C).
As P varies, these maps glue together yielding a Lie algebra homomorphism
g — End((A4T @4, 7VH)C). (5.9.11)
This defines a g-action on (.#T ®4, #%)* such that the obvious inclusions
(M 2g, VO C (M 2p, YN C---

are g-equivariant. So (5.9.9) is a g-module homomorphism. Note that the flatness of 7
yields an isomorphism in O(X)

M @py, VM @6, VTV M 0p, L (5.9.12)

Step 4. In order to show that the g-module homomorphism splits, we consider
the generalized Casimir operator of g. Identify t and t* via the pairing (— : —). Let p¥ € t
be the image of p. Let h; be a basis of tg, and let h? be its dual basis in ty with respect to
the pairing (— : —). For £ € go and n € Z we will abbreviate £ = ¢ @ ¢" and ¢ = £(0).
The generalized Casimir operator is given by the formal sum

C=20" + 3 Whi + 201+ ejie; + 3> el Vel £ STS AR (5.9.13)

i<j n>1i#j n>1 i
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see e.g., [Kac90, Section 2.5]. Let §;(€) be the formal sum given by applying ¢; term by
term to the right hand side of (5.9.13]). We claim that 6;(€) is a well defined element in
F(XT, Dx+), i.e., the sum is finite at each point of XT. More precisely, let

={eijli < yu{e n{V i £ jin > 1},
and let e be the base point of XT. We need to prove that the sets

Yg={¢eX[a(é)(ge) # 0}, g€,

are finite. To show this, consider the adjoint action of G on g
Ad: G — End(g), ¢+~ Adg,

and the G-action on the object Zx+ of (A)(XT) coming from the G-action on XT. The map
d; is G-equivariant with respect to these actions. So for £ € g and g € G we have

a(€)(ge) #0 = G(Ady-1(£))(e) # 0.
Further the right hand side holds if and only if Ad,-1() ¢ n. Therefore

S, ={€€ | Adyi(6) ¢ 1)

is a finite set, the claim is proved. By consequence € acts on the g-module (.#1)C for any
M € MT(XT). Next, we claim that the action of € on the g-module (.#T ®4, 7%)C
also well defined. It is enough to prove this for (.# ®4, 7 *)C. By the action of
¢ on (M ®¢, ¥>)C is given by the operator

col+ioe— Y el - 3 pitm g p
neEL,i#j NEZLyi

Since for both .#1 and #°°, at each point, there are only finitely many elements from X
which act nontrivially on it, the action of € on the tensor product is well defined.
Step 5. Now, let us calculate the action of € on (T ®4, £¥)C. We have

Ad,-1(C€)=¢€, Vged.
Therefore the global section §;(€) is G-invariant and its value at e is

§1(€)(e) = 5,(2p" + Z hih; +201)(e).

On the other hand, the right T-action on X yields a map
6t = D(XT, Dys).

Since the right T-action commutes with the left G-action, for any h € t the global section
0r(h) is G-invariant. We have 9, (h)(e) = —d;(h)(e) because the left and right T-actions on
the point e are inverse to each other. Therefore the global sections &;(€) and §,(—2p" +
S, hih; + 201) takes the same value at the point e. Since both of them are G-invariant,
we deduce that
§i(€) = 6,(=2p" + Y _ h'h; 4 201).
(2
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Recall from Sectionthat for A\ € t* and .# € M*(X) the operator 6,(—2p" +3, hih; +
201) acts on .1 by the scalar

“A(=2pY + 3 hih 4 201) = ||A+ p|]2 — ||o][>-

Therefore € acts on .#T by the same scalar. In particular, for .# € M*(X) and i € N,
the element € acts on .#1 ®g, L% by ||+ vi + p|[* — ||p||>. Note that the isomorphism
is compatible with the g-actions. So € also acts by ||u + v; + p||? — ||p||* on
(‘%T Qo Ai/z/le Qo Aj/i_l)c'

Step 6. Now, we can complete the proof of the proposition. First, we claim that
A+ ol = 11l = [+ vi + pl 2 = [lpl 2 = vi=v. (5.9.14)
The “if” part is trivial. For the “only if” part, we have by assumption

lu+v+pll? = [lu+vi+ ol
= |lp+v+ollP +llv—vill’ =2(u+v+p:v—uw).
Since v — v; € NII'™ and g+ v + p = A + p is antidominant, the term —2(\+ p : v — 1)
is positive. Hence the equality implies that || — 14||> = 0. So v — v; belongs to N. But
(Ap:0) =k < 0. So we have v = v;. This proves the claim in (5.9.14). A direct

consequence of this claim and of Step 5 is that the g-module monomorphism ([5.9.9) splits.
It induces an isomorphism of g-modules

DM @py L) =pry\T(MT R0p, V), M € M(X). (5.9.15)

Finally, note that the vector spaces isomorphisms ([5.9.7) and (5.9.8) are indeed isomor-
phisms of g-modules by the definition of the g-actions on (.ZT ®4, 7)€ and (AT ®4,
Z")C. Therefore (5.9.15) yields an isomorphism of g-modules

L(e"(4)) = 6"(L(A)).
O

Remark 5.9.2. We have assumed p + p regular in Proposition [5.9.1] in order to have
I(M{(X)) C Oy It follows from Proposition that this inclusion still holds if
1+ p is not regular. So Proposition makes sense without this regularity assumption,
and the proof is the same in this case.
Corollary 5.9.3. Let A € A such that A + p is antidominant. Then

(a) D() = Ne(w - N),

(b) D(,) = DNy(w - V),

(¢) I'(

w!e

o) = {Lﬁ(w -A\) if w is the shortest element in wS(N),

else.

Proof. By Proposition it is enough to prove the corollary in the case when A + p is
not regular. Let w;, 0 < ¢ < m — 1, be the fundamental weights in t*. Let

VZ} Wi,
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where the sum runs over all ¢ = 0,...,m — 1 such that (A + p: «;) = 0. The weight v is
dominant. Let p = A — v. Then u + p is an antidominant weight. It is moreover regular,
because we have

(Wtp:a)y=AN+p:ra;) —(v:a;) <0, 0<i<m-—1.

Let k" = (u+ p: 6). So Propositions and the equation (5.9.3) implies that
D(epy) = 0" (Nw(w - ), T(gya) = 0"(Li(w- 1), T(Hp) = 6" (DN (w - ).

w- w

So parts (a), (c) follow from the properties of the translation functor ¥ given in [Kum94,
Proposition 1.7]. Part (b) follows from (a) and the equality ([5.9.2]). O

5.10 The parabolic Verma modules.

Let 45 be the set of the longest representatives of the cosets Go\&. Let wg be the
longest element in Gy. Recall the following basic facts.

Lemma 5.10.1. For w € & ifw- X € AT for some X € A with X\ + p antidominant, then
w € 95. Further, if w € 95 then we have

(a) the element w is the unique element v in Gow such that IIJ C —v(II),

(b) for any v € &y we have l(vw) = l(w) — l(v),

(c) the element wow is the shortest element in Sow.

The Q-orbit decomposition of X is given by

X=|]| Y, Y, = QuB/B.
weRS

Each Y, is a smooth subscheme of X, and X,, is open and dense in Y,,. The closure of
Y, in X is a projective irreducible variety of dimension [(w) given by

Yo= ] Y.

w' €98, w' <w

Recall that Y,) = 77%(Y,,). The canonical embedding 7j,, : Y| — XT is locally closed and
affine, see Remark |6.2.2(b). For A € A and w € 95 let

By = Oy ®0, ™(A). (5.10.1)

We have the following objects in M7 (X)
’%i\)! = jw!(@z)&)v %vi\;!o = j’LUIO(’%i\J)7 '%i\;o = jw.('%l)i\))

Now, consider the canonical embedding r : )gj — Y. Consider the triple of adjoint
functors (r,7*,7s) between the categories M7 (Y,,) and M7 (X,,), see Lemma (c)
Note that 7*(%,) = </,. We have the following lemma.

Lemma 5.10.2. For A € A and w € 95 the following holds.
(a) The adjunction morphism rr* — 1d yields a surjective morphism in Mp(Yy)

() — B. (5.10.2)
(b) The adjunction morphism Id — rer* yields an injective morphism in Mﬁ(Yw)

By — re(A). (5.10.3)
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Proof. We begin by considering part (b). It is enough to prove that the & :-module
morphism

(B = (rar*(2)))° (5.10.4)

is injective. By Lemma the right hand side is equal to r*r*((%’fg)ﬁ). Now, consider
the closed embedding
i Y — Xl — vl

The morphism (5.10.4) can be completed into the following exact sequence in O(YJ),
0—ii'(#5)7) = (22)7 = ra*(82)7),

see e.g., [HTTO8, Proposition 1.7.1]. Note that the &.+-module (%))? is locally free.

So it has no subsheaf supported on the closed subscheme Y,/ — XI. We deduce that
ii'((#))?) = 0. So the morphism (5.10.4) is injective. This proves part (b). Now,
consider the (contravariant) duality functor D on M7 (Y,,), see Section We have

D(%#3) = %, D(ri(y)) = re(D(,)) = re(y).

So applying D to the morphism (5.10.3|) we get the morphism ([5.10.2)). So part (b) implies
part (a). O

Lemma 5.10.3. For A € A and w € 95 we have

”Q{)\ = ‘%1)1\1!0'

wle

Proof. By applying the exact functor j,e to the map (5.10.3) we see that %, is a subob-
ject of 77, in M (X). In particular %2, is a simple subobject of .«7;,. So it is isomorphic
to AN, O

Proposition 5.10.4. Let A\ € A such that A + p is antidominant, and let w € 93.
(a) If there exists a € I such that (w(A + p) : a) = 0, then

(%) = 0.
(b) We have
(wWA+p):a)#0, Vacll] <+ w-AcAt.
In this case, we have
P(#Y) = Me(w- ), T(#) = DMe(w- A).
(c) We have

Li(w-X) if w is the shortest element in w&S(\),

(B, =
(Pure) {0 else.
Proof. The proof is inspired by the proof in the finite type case, see e.g., [Mil93, Theorem
G.2.10]. First, by Kazhdan-Lusztig’s algorithm, see Remark in the Grothendieck
group [M{(X)] we have

(Ba] = > (—1)!®[azn]. (5.10.5)

yw!
y€6&o
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Since A + p is antidominant, the functor I' is exact on Mj(X) by Proposition [5.3.1)a).
Therefore we have the following equalities in [Oy]

T(Zy)] = > (=)W [T()]
y€S&o

= (=)@ [N, (yw - N)]. (5.10.6)
yeSyp

Here the second equality is given by Corollary Now, suppose that there exists
o € TI§ such that (w(\ + p) : ) = 0. Let s, be the corresponding reflection in &y. Then
we have

SqW - A=w- \.

By Lemma [5.10.1)(b) we have I(w) = I(sqw)+1. So the right hand side of (5.10.6) vanishes.
Therefore we have I'(%,,) = 0. This proves part (a). Now, let us concentrate on part (b).

Note that A + p is antidominant. Thus by Lemma [5.10.1(a) we have (w(A+p): «a) € N
for any o € Hg . Hence

(wA+p):a)#0 <= (WA+p):a)>21 = (w-A:a)=0.

By consequence (w(A + p) : a) # 0 for all « € IIJ if and only if w - A belongs to AT. In
this case, the right hand side of is equal to [My(w - \)] by the BGG-resolution.
We deduce that

[D(Ba)] = [M(w - N)]. (5.10.7)

Now, applying the exact functor ji to the surjective morphism in yields a quotient
map %o, — <2y in M*(X). The exactness of I implies that I'(%,) is a quotient of
Ne(w - X\) =T(e72)). Since M, (w - \) is the maximal g-locally-finite quotient of N, (w - \)
and T'(2%))) is q-locally finite, we deduce that I'(%.)) is a quotient of M, (w - ). So the
first equality in part (b) follows from . The proof of the second one is similar.
Finally, part (c) follows from Lemma and Corollary O

Remark 5.10.5. Note that if w € 5 is a shortest element in w&()\), then we have
(w(A+ p) : a) # 0 forall @ € TI§ . Indeed, if there exists a € T such that (w(\ + p) : @) =
0. Let s = w lsqw. Then s’ belongs to &(A\). Therefore we have I(ws') > I(w). But
ws' = sqw and s, € &g, by Lemma we have l(ws') = [(sqw) < l(w). This is a
contradiction.

6 The geometric construction of the Jantzen filtration

In this part, we give the geometric construction of the Jantzen filtration in the affine
parabolic case by generalizing the result of [BB93].

6.1 Notation

Let R be any noetherian C-algebra. To any abelian category C we associate a category
Cr whose objects are the pairs (M, upr) with M an object of C and pps : R — Ende(M)
a ring homomorphism. A morphism (M, upr) — (N, un) is a morphism f: M — N in C
such that un(r) o f = f o up(r) for r € R. The category Cg is also abelian. We have a
faithful forgetful functor

for:Cr—C, (M, par) — M. (6.1.1)
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Any functor F : C — C’ gives rise to a functor
Fr:Cr—Cpg, (M, pn) — (F(M), ppan)

such that ppa(r) = F(unm(r)) for r € R. The functor Fg is R-linear. If F' is exact,
then Fpr is also exact. We have for o Fr = F o for. Given an inductive system of
categories (Cq,iag), it yields an inductive system ((Co)g, (iag)R), and we have a canonical
equivalence

(2lim Ca) = 2Aim((Ca) ).
6.2 The function f,

Let Q' = (Q,Q) be the commutator subgroup of Q. It acts transitively on Y, for
w € 95. We have the following lemma.

Lemma 6.2.1. For any w € 45 there exists a reqular function f,, : ?L — C such that
fo2(0) =YL, — Y and

fulgeh™") = e "0 (h) fu(x), qeQ, zeY), heT.
Proof. Let V denote the simple g-module of highest weight wg. It is integrable, hence it
admits an action of G. Let v9 € V' be a nonzero vector in the weight space V,,,. It is fixed
under the action of @’. So the map
p:G—=YV, g g g
maps QB to Bir~lvg for any w € 9&. Let V(w™!) be the U(b)-submodule of V generated

by the weight space V, We have Buw~lvg € V(w™!). Recall that for v’ € 45 we
have

71“)0.

w<w = (W) <w!

— (@) lvy € ni Loy, (6.2.1)

see e.g., [Kum02, Proposition 7.1.20]. Thus, if w’ < w then p(Qu'B) C V(w™!). The
C-vector space V(w™!) is finite dimensional. We choose a linear form [, : V(w™!) — C
such that

Lo( ) #0 and L, (ni~tvg) = 0.

Set fu =lwoe. Thenfor g€ Q', h € T, u € N we have

fw (qu')h_lu) = Iy (u_lhu')_lvo)
e 0 () Ly (b~ vg)

= ¥ O(R) fu(i ).

A similar calculation together with (6.2.1) yields that f,(Quw'B) = 0 for w' < w. Hence
fw defines a regular function on | |, Qu'B which is invariant under the right action

of N. By consequence it induces a regular function f,, on YL which has the required
properties. O
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Remark 6.2.2. (a) The function f,, above is completely determined by its value on the
point wN/N, hence is unique up to scalar.

(b) The lemma implies that the embedding j, : Y;{ — X1 is affine.

(c) The function f, is an analogue of the function defined in [BB93, Lemma 3.5.1] in
the finite type case. Below we will use it to define the Jantzen filtration on %2,. Note
that [BB93|’s function is defined on the whole enhanced flag variety (which is a smooth

scheme). Although our f,, is only defined on the singular scheme ?ju, this does not create
any problem, because the definition of the Jantzen filtration is local (see Section , and

each point of ?L admits a neighborhood V' which can be embedded into a smooth scheme
U such that f,, extends to U. The choice of such an extension will not affect the filtration,
see [BB93, Remark 4.2.2(iii)].

6.3 The Z-module £
Fix A € A and w € ¥5. In the rest of Section @ we will abbreviate

j = jwa f = f’w7 r% - '%)1)1\)7 e@! = %A!, etc.

w

Following [BB93] we introduce the deformed version of . Recall that R = C[[s]] and
p is the maximal ideal. Let x denote a coordinate on C. For each integer n > 0 set
R = R(p"). Consider the left Z¢--module

7™ = (0 @ R™)a®.

It is a rank one ¢+ ® R™-module generated by a global section z* such that the action
of P+ is given by 20, (2°) = s(2°). The restriction of f yields a map Y,i — C*. Thus
f* 7™ is a left Dyt ® RM™_-module. So we get a right Dyt ® R™_-module

B — '%)(X)ﬁyT f*j(n)'

Lemma 6.3.1. The right 9.+ ® R™ -module ™ is an object of M%(Yw).

w

Proof. Since R is a C-algebra of dimension n and 2 is locally free of rank one over Oy,
the O i-module A" is locally free of rank n. Hence it is a holonomic 9,i-module. Note
that the Zc«-module .#(™ is weakly T-equivariant such that 2® is a T-invariant global

section. Since the map [ is T-equivariant, we deduce that the %, i-module f*.% (n) g

weakly T-equivariant. Let f* be the global section of f*.#(™ given by the image of 2*
under the inclusion

r(C*, 7M™y c oy, 7M.

Then f* is T-invariant. It is nowhere vanishing on Y,/ and thus yields an isomorphism of
ﬁYT ® R™-modules

fro® = Oyt ® R,
By consequence we have the following isomorphism
(B = (1" (Qy, Ry, L) @ o, f ST

= QYw ®0’Yw g;\w ®ﬁym ﬂ-*(f*j(n))T
Uy, Doy, L, @oy, (Oy, ® R™).

Il
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See Remark for the first equality. Next, recall from (4.4.1)) that the right T-action
on Y, yields a morphism of Lie algebras

0r: t = D(Y,], Zy).
The right Q;r/w—module structure of f*(.# ™) is such that
(f - 6:(h)(m) = sw™lwo(=h) f*(m), ¥V m e Y]
So the action of the element
h+ A(h) + sw™lwy(h) € Ut) @ R

on (%)t via the map 8, vanishes. Since the multiplication by s on (%) is nilpotent,
the action of the ideal my is also nilpotent. Therefore A™ belongs to the category
M (V). 0

It follows from the lemma that we have the following objects in Mé (X)
B = j(B™), B =i (B, B =], (B™).

Further, for v = zw € & with z € &y, let 7, : XJ — Y,/ be the canonical inclusion. We
have ¢, = j o r;. Then the tensor product

I = @s . rifrs™ 6.3.1
v v X xr

t

v

is an object of Mé(Xv), and we have the following objects in Mi(X)

%(!n) _ iv!(%(n))’ %(!7:) _ iv!.(%(n))’ %(.") _ iv.(%(n))‘

6.4 Deformed Verma modules

Fix A € A and w € 4. For i € .t* we have defined the Verma module N, (u) in
Section The deformed Verma module is the U-module given by

Ni(p) = U(9) @u(v) Bytswo-

Here the b-module R, ., is a rank one R-module over which t acts by u + swp, and n
acts trivially. The deformed dual Verma module is

DNy () = €D Hompg(Ni(u)x, R),
et

see (3.3.1). Let n > 0. We will abbreviate

N (1) = Nic(m)(9"), DN (1) = DNie(p) (97).

For any R(™-module (resp. R-module) M let pu(s') : M — M be the multiplication by s
and write s'M for the image of u(s). We define a filtration

F°M = (F°M > F'M > F°M > ..))

on M by putting F*M = s'M. We say that it is of length n if F"M = 0 and F"~ 1M # 0.
We set
g M=Fe' M, g'M=FM/F*TM.
i>0
For any gpm-module M let ch(M) be the tpm)-module image of M by the forgetful
functor.
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Lemma 6.4.1. If A + p is antidominant then we have an isomorphism of tpm)-modules
ch(T'(#3)) = ch(DN (v - \)).

Proof. The proof is very similar to the proof of Proposition We will use the notation
introduced there.

Step 1. Consider the nowhere vanishing section f* of (f*.# )t over Y,,. Its restriction
to X, yields an isomorphism

() 2 Qx, @0y, L3, @ BT,

Let w be a nowhere vanishing section of Qx,, and let +* be the nowhere vanishing section
of 3 over X, such that t*(uib) = e *(b) for u € N, b € B. Then the global section

WwR® f°of %(n) defines an element

in the same way as ¢ is defined in the first step of the proof of Proposition [5.4.1
Step 2. In this step, we show that

ch(T(#2)) = ch(DN (v - N)).

The proof is the same as in the second step of the proof of Proposition [5.4.1] The right

@;(U—module structure on (befv(n))T yields an isomorphism of sheaves of C-vector spaces over
Vy
l

~

35 Ox,) @ U™ (T No(IT7)) /ny) @ R™ 5 58 (if, (a2,™M)1),
feper = ((9°-f)- ap)r

This yields an isomorphism of tp(,)-modules

ch(D(XY, ity (™)) = chU(n/ny) @ RIS, .0).

Therefore we have

ch(l(#5")) = eh((fmlU(n™/n)) & RS ) (6.4.1)

and
ch(T(#3))) = chUm )R, ..

= ch(DN"(v-\)). (6.4.2)

Step 8. In this step, we prove that F(%(?)) = f(%(.n)) as gpm-modules. Since both
of them are gpm-submodules of f‘(%(.n )). It is enough to prove that they are equal as

vector spaces. Consider the filtration F’(%(n)) on ™. It is a filtration in MS‘(XU) of
length n and '
gr' () =), 0<i<n—1.

Since 7,6 is exact and

RT(#) = RT(eyy) =0, Vi>0,
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the functor I" o ;e commute with the filtration. Therefore both the filtrations F‘F(;zfv(f ))
and F’f(%(.n )) have length n and

g D)) =T()), e T(AD) =T()), 0<i<n-—1.

By Step 3 of the proof of Proposition we have I'(«7))) = T'(#/})). We deduce that all

the sections in T’ (%(.n )) are t-finite and all the sections in f(%(? )) are supported on finite
dimensional subschemes. This proves that

F(%(f”)) — f(%(f))_
We are done by Step 2. O
Lemma 6.4.2. If X\ + p is antidominant there is an isomorphism of gp)-modules
T(#3) = DN (v ).

Proof. Note that

Dngn) (v-A) = @ Hompg (N (v - A)p, R)(9")
pEKL*
= @ HomR(m(NlEn)(U . A)uaR(n))‘
PEK®

For p € kt* let F(.va(.n )) u be the weight space as defined in 1) By Lemma we

have
N(3)) = @ T(AW),,

HE R

because the same equality holds for DNIE") (v-A). So we can consider the following gpn)-
module
DI (/) = @ Hom e (D(4),, R™). (6.4.3)
pELE

It is enough to prove that we have an isomorphism of gpn)-modules
DI(#%) = N (v ).
By (6.4.3) we have
ch(DI(#2)) = ch(I'(3))). (6.4.4)
Together with Lemma this yields an isomorphism of R(™-modules

Nl(cn) ('l) : )‘)v-)\+sw0 = (DF(‘Q%U(.TL)))

v-A+swo”

By the universal property of Verma modules, such an isomorphism induces a morphism
Of gR(n) -module

0 N (v )) = DI().

We claim that for each p € 1 t* the R(-module morphism

n: N (W V) = (DD(S)),
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given by the restriction of ¢ is invertible. Indeed, by Lemma|6.4.1| and (6.4.4}), we have

ch(DI(#37)) = ch(DN (v - X)) = ch(N (v - \)).

So
N (- A), = (DI()),,

as R-modules. On the other hand, Corollary yields that the map
0(9) = ¢ Do (R™/9R™) 1 Ny(v-A) — DI(,)

is an isomorphism of g-modules. So ¢, (p) is also an isomorphism. By Nakayama’s lemma
this implies that ¢, is an isomorphism. So ¢ is an isomorphism. The lemma is proved. [

Lemma 6.4.3. If A+ p is antidominant and v is a shortest element in v&S(X), then there
is an isomorphism of gpn)-modules

D)) = N (v~ A).

Proof. We abbreviate v = v - A. The lemma will be proved in three steps.
Step 1. Recall the character map from (5.4.2)). Note that since I" and 4, are exact, and

gr A" = ()",
we have an isomorphism of t-modules

arT( V) = T())®". (6.4.5)

v!

Next, since the action of s on I‘(%(!n)) is nilpotent, for any u € t* we have

dime (D(,")5) = dime (g (")),

vl

We deduce that as a t-module I" (;afv(!n)) is a generalized weight module and

ch(T(#(")) = ch(gr T(#\")) = nchT()). (6.4.6)

v!
On the other hand, we have the following isomorphism of t-modules
ar NV (v) = Ny (v)®". (6.4.7)
Therefore we have
ch(N (1)) = nch(Ny(v)).
Since I'(#)) = N,,(v) as g-modules by Corollary this yields

ch(T(#(")) = ch(N (v)). (6.4.8)

V!

Further, we claim that there is an isomorphism of R(™-module

(=N (W), Vpet (6.4.9)

vl

Note that I'(.«Z, (,n)) 4 is indeed an R(™-module because the action of s on T'(.<7, (,n)) is nilpo-

v vl
tent. To prove the claim, it suffices to notice that for any finitely generated R(™-modules

M, M’ we have that M is isomorphic to M’ as R -modules if and only if gr' M = gr* M’



122 CHAPTER III. THE v-SCHUR ALGEBRAS AND JANTZEN FILTRATION

for all i. So the claim follows from the isomorphisms of t-modules (6.4.5)), (6.4.7) and
Corollary [5.9.3]

Step 2. In this step, we prove that as a tp»)-module

F(%(n))ﬁ — R(n)

v! v+Sswo

where R(n)

v+swo -
us consider the canonical morphisms in M7 (X)

is the rank one R(™-module over which t acts by the weight v + swy. Let

42{(,”) a7\ %(:l)‘

vle

Since T is exact on M* (X), we deduce the following chain of gp)-module morphisms

n o n B n
D (") == D () =T ().

vle

Consider the following tp(»)-morphisms given by the restrictions of «, 3

n v n By n
F(%(! ))17 L»F(d(' ))ﬂc_> F(%(.))f,.

Ve

We claim that «,, and (3, are isomorphisms. Note that by (6.4.6) we have
dimeT (™) = ndimeT(42)5 = n.

By Lemma we also have dimcf(%(? )),; = n. Next, consider the exact sequence in
M, (Xo), . | |
0— Fitlg™ 5 Fig™ 5 o 7™ 0.

Applying the functor i,1e to it yields a surjective morphism
iv!o(Fi%(n))/iv!O(FHl%(n)) - Z'U!.(gri %(n))'
Since iyt (F i%(n)) =F i(iv!.(%(n))) and gr’ A" = ), we deduce a surjective morphism

gr’ JZ/U(;:) — N, 0<i<n-—1.
Applying the exact functor I' to this morphism and summing over i gives a surjective
morphism of g-modules

v gr D) = T()) "

vie

Since v is minimal in v&(A), by Corollary [5.9.3(c) the right hand side is equal to L (v).
We deduce from the surjectivity of « that

dimeI( U(!:Z))D = dimcng(%(ﬁ)),;

> dimC(LK(V)g)@"

n

It follows that the epimorphism «, and the monomorphism [, are isomorphisms. The
claim is proved. So we have an isomorphisms of tp»)-modules

Byoa, : F(,QZU(!n))Z; — F(%(f));,.
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In particular, we deduce an isomorphisms of tp(»)-modules
F(%(!n))u-i-swo — F(%(IL))V-FSUJ()?

because
P('Q{’U(JL))V-FSOJO C F(%(ﬁn))177 fOI" ﬁ :!7 o.

By Lemma [6.4.2] we have
F(%(:L))VJrswo = R(n)

v+swo *

We deduce an isomorphism of tpn)-modules

F(d(ln))quswo — R(”)

v+swo *

Step 3. By the universal property of Verma modules and Step 2, there exists a morphism
of gpm-modules

¢ N (W) = T(ay”).
For any u € t* this map restricts to a morphism of R(™-modules
o N " (W) = T(Ay )

By Step 1, the R(™-modules on the two sides are finitely generated and they are isomor-
phic. Further, the induced morphism

() : Nu(v) = T(y)

is an isomorphism by Corollary So by Nakayama’s lemma, the morphism ¢, is an
isomorphism for any . Therefore ¢ is an isomorphism. The lemma is proved. O

Remark 6.4.4. The hypothesis that v is a shortest element in v&(A) is probably not
necessary but this is enough for our purpose.

6.5 Deformed parabolic Verma modules

Fix A € A and w € 95 as before. Let n > 0. We will abbreviate
M= Ma(w-)), Mc=Mdw-X), M"=>MJ"), DM = DM)(").

Lemma 6.5.1. Assume that A+ p is antidominant and w is a shortest element in wS(A).
Then there are isomorphisms of gpm)-modules

r(#™) =M™, 1(#")=DM".

Proof. Recall from Remark [5.10.5 that the assumption of the proposition implies that
w-\ € A*. Consider the canonical embedding r : X — Y,|. We claim that the adjunction
map yields a surjective morphism

P (B) = B, (6.5.1)

Indeed, an easy induction shows that it is enough to prove that gr’(rr*(Z™)) — grt (™
is surjective for each i. Since the functors r, r, are exact and gr' (™ = 2, this follows
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from Lemma [5.10.2(a). Note that r*(#™) = 5. So the image of 1) by the exact

functor I' o ji is a surjective morphism
(<)) = T(B"). (6.5.2)

Since w is a shortest element in w&(A), by Lemma we have F(;zfu(}?)) = Nlin). Since

the gpm-module F(%f")) is g-locally finite and Ml({n) is the largest quotient of Nl((") in O,
the morphism (6.5.2)) induces a surjective morphism

@ Mlgn) — F(%!(n)).

Further, by Proposition [5.10.4(b) the map
e(p) : My — T'(%)

is an isomorphism. The same argument as in Step 1 of the proof of Lemma [6.4-3] shows
that for each p € t* the generalized weight spaces (Mlgn)) i and F(%!(n)) ;i are isomorphic as
RM™_-modules. We deduce that © is an isomorphism by Nakayama’s lemma. This proves
the first equality. The proof for the second equality is similar. We consider the adjunction
map

B 5 ror (B™). (6.5.3)

It is injective by Lemma [5.10.2(b) and the same arguments as above. So by applying the
exact functor I' o j,, we get an injective morphism

o T(B™M) - DM

Again, by using Proposition [5.10.4(b) and Nakayama’s lemma, we prove that ¢’ is an
isomorphism. O
6.6 The geometric Jantzen filtration

Now, we define the Jantzen filtration on %, following [BB93| Sections 4.1,4.2]. Recall
that ™ is an object of M7 (Y,,). Consider the map

p: R™ — End (B™), wu(r)(m) =rm,

M (Ya)

where m denotes a local section of 2™ Then the pair (%’(”), p) is an object of the
category M7 (Yy) g, see Section ﬂ We will abbreviate ™ = (£ u). Fix some
integer a > 0. Recall the morphism of functors ¥ : j1 — j,. We consider the morphism

Y(a,n) : @!(n) — B

in the category M}S‘L(X )R given by the composition of the chain of maps

i 5@ (n)
) Jr(n(s*) P v )%En). (6.6.1)

2"
The category Mi(X Jr(n is abelian. The obvious projection RM™ — RM-1) yields a
canonical map

Coker(i(a,n)) — Coker(¢(a,n — 1)).
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By [Bei87, Lemma 2.1] this map is an isomorphism when n is sufficiently large. We define
7*(#) = Coker(¢p(a,n)), n>0. (6.6.2)

This is an object of M;‘L(X)Rm). We view it as an object of M%(X) via the forgetful
functor (6.1.1). Now, let us consider the maps

o: B — 7 (B), B:1Y(B)— (B
in Mé (X) given as follows. First, since
70(#) = Coker(p(#™)) and (%) = Coker((#™) o ji(1(s)))

by (6.6.1)), there is a canonical projection 7!(%) — 7°(%). We define § to be this map.
Next, the morphism (#™) maps j1(s(Z™)) to Im(¢)(1,n)). Hence it induces a map

(B [5(BM)) = 7' (B),  n>0.

Composing it with the isomorphism % = %™ /s(%™) we get the map . Let p' denote
the R(™-action on 7'(%). Then by [Bei87] the sequence

0— B % 71(B) s 7%(B) — 0, (6.6.3)

is exact and « induces an isomorphism
By — Ker(u'(s) : 71(B) — 71 (B)).
The Jantzen filtration of A is defined by
JH(PB) = Ker(u'(s)) NIm(p(s)?), Vi>0. (6.6.4)

6.7 Comparison of the Jantzen filtrations

Fix A € A and w € 45 as before. Consider the Jantzen filtration (J*M,) on M, as
defined in Section [3.3] The following proposition compares it with the geometric Jantzen
filtration on 4.

Proposition 6.7.1. Assume that A + p is antidominant and that w is a shortest element
in wS(\). Then we have
J'M,=T(J"%), Yi=D0.

Proof. By Proposition [5.10.4(b) and Lemma we have
— )y _ ap(n) (n)y _ (n)
I(%) =M, T[(@")=m" r@B")=DM".

So the map
o =T(w(#™M)) : T(#") - (&),

identifies with a gp(n-module homomorphism

o™ ™ — DM,
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Consider the projective systems (Mlgn)), (DMlin)), n > 0, induced by the quotient map
R™ — R Their limits are respectively My and DMy. The morphisms ¢, n > 0,
yield a morphism of gr-modules

¢ = lim g™ : My — DM,
such that

d(p) = oM =T (4(2)).

The functor T is exact by Proposition So the image of ¢(p) is ['(%A,). It is non zero
by Proposition [5.10.4(c). Hence ¢ satisfies the condition of Definition and we have

J' M, = ({x € My | ¢(x) € s'DMy} + sMy) /s M.

By Lemma [3.2.1] and Remark the map ¢ is injective. So the equality above can be
rewritten as

J M, = (¢(My) N s'DMy + sp(My))/sp( My).

Now, for a > 0 let
¢(a,n) : Ml((n) — DMIEH)

be the gpn)-module homomorphism given by the composition

o)

DMIETL)' (6.7.1)
Then we have I'(¢(a,n)) = ¢(a,n). Since T is exact, we have
Coker(¢(a,n)) = I'(Coker(¢(a, n))).
So the discussion in the last section and the exactness of I' yields that the canonical map
Coker(¢(a,n)) — Coker(¢(a,n — 1))
is an isomorphism if n is large enough. We deduce that
DMy /s* My = Coker(¢(a,n)) =T'(7*(A)), n>0,

see (6.6.2). The action of u(s) on DMk/s“gZ)(M{% is nilpotent, because p(s) is nilpotent
6

on DMkn . Further I" maps the exact sequence (|6.6.3)) to an exact sequence

0— M, — DMk/S¢(Mk) — DMk/qb(Mk) — O, (672)
and the first map yields an isomorphism
M, = Ker (u(s) : DMy /s¢p(My) — DMy /sp(My)).

Note that since DM is a free R-module, for x € DMy if sz € s¢(My) then x € ¢p(My).
So by (6.6.4]) and the exactness of I', we have for i > 0,

D(J'%) = Ker(u(s)) N Im(u(s)")
= (¢(My) N s' DMy + s(M)) /(M)
= J'M,.

The proposition is proved. O
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7 Proof of the main theorem

7.1 Mixed Hodge modules

Let Z be a smooth scheme. Let MHM(Z) be the category of mixed Hodge modules
on Z [Sai90]. It is an abelian category. Each object .# of MHM(Z) carries a canonical
filtration

Wt = WEaat SWtit - -,

called the weight filtration. For each k € Z the Tate twist is an auto-equivalence
(k) : MHM(Z) - MHM(Z), A — (k)

such that W*(.Z (k)) = W*+2*(_#). Let Perv(Z) be the category of perverse sheaves on
Z with coefficient in C. There is an exact forgetful functor

o: MHM(Z) — Perv(Z).
For any locally closed affine embedding i : Z — Y we have exact functors
i1, ie : MHM(Z) - MHM(Y')

which correspond via o to the same named functors on the categories of perverse sheaves.

If Z is not smooth we embed it into a smooth variety Y and we define MHM(Z) as the
full subcategory of MHM(Y") consisting of the objects supported on Z. It is independent
of the choice of the embedding for the same reason as for Z-modules.

7.2 The graded multiplicities of %), in %.,

Now, let us calculate the multiplicities of a simple object r%’;\!. in the successive quo-
tients of the Jantzen filtration of %’ﬁ‘]! for z, w € 95 with = < w.

We fix once for all an element v € &, and we consider the Serre subcategory Mé‘ (X,)
of M7 (X,) generated by the objects </, with w < v, w € &. The De Rham functor
yields an exact fully faithful functor

DR : M)(X,) — Perv(X,).

See e.g., [KT95, Section 4]. Let MHM(X,) be the full subcategory of MHM(X,)
consisting of objects whose image by g belong to the image of the functor DR. There

exists a unique exact functor

n: MHM,(X,) — My(X,)

such that DRon = o. An object .# in MHM(X,) is pure of weight i if we have
V[{k//l/Wk_l/// = 0 for any k # i. For any w € &, w < v, there is a unique simple object
) in MHM(X,,) pure of weight [(w) such that n(/)) = &, see e.g. [KT02]. Let

Aoy = (1) F),  Dgre = (iw)e(H).

w! = w wle w
They are objects of MHM((X,) such that

77(42/;2\!) = @7/\!7 77(42;/\ ) = 42/13!.-

w w'e
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Now, assume that w € 45 and w < v. Recall that 1%7’1)1‘) € M)‘(Yw), and that %ﬁ. e
M?*(X) can be viewed as an object of M*(X,). We define similarly the objects %, €
MHM(Y,,) and %2, %2,, € MHM;(X,) such that

wle

n('@i\)') = ’%i\)!a

77(@@):\11.) = ‘@5\2!0'

The object %, has a canonical weight filtration W*. We set J*2) = &, for k < 0. The
following proposition is due to Gabber and Beilinson-Bernstein [BB93, Theorem 5.1.2,
Corollary 5.1.3].

Proposition 7.2.1. We have n(W'W=F 35\ ) = 7532 in M)(X,) for all k € Z.

So the problem that we posed at the beginning of the section reduces to calculate the
multiplicities of %2, in %, in the category MHM,(X,). Let ¢ be a formal parameter.
The Hecke algebra 7,(&) of & is a Z[q, ¢~ ]-algebra with a Z[q, ¢~ !]-basis {T}, }wes whose
multiplication is given by

T Twy = Towywss if [(wywy) = l(w1) + l(we),
(Ts, + 1)(Ts, —q) =0, 0<i<m-—1.
On the other hand, the Grothendieck group [MHM(X,)] is a Z[q, ¢~ !]-module such that
L) = [H(—k)], keZ, #cMHM)X,).
For x € G with & < v consider the closed embedding
¢y :pt — Xy, pt— iB/B.
There is an injective Z[q, ¢~ ']-module homomorphism, see e.g., [KT02, (5.4)],

xI/;[MHMO(Y )} — H(6),
— O (—DFH (AT

<V kEZL
The desired multiplicities are given by the following lemma.

Lemma 7.2.2. For w € 95 we have

V(%)) = Y, (FD)TOPR, (),

a:GQG,:céw
where Py, € Z[g,q "] is the Kazhdan-Lusztig polynomial.

Proof. Since the choice for the element v above is arbitrary, we may assume that w < v.
By the definition of ¥ we have

() = (—1)'T,,. (7.2.1)
By [KL80], [KT95], we have
U([pa]) = (=)' > P (7.2.2)
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Next, for = € @S with < v we have

V(Zn) = > D (-DMH (B Ty

yEGo kEZ
)3 Ty (7.2.3)
y€6&o
Since by Lemma [5.10.3 we have ) .
dﬂi\'. = ’%)fl\)!ov
the following equalities hold
\p([‘@i\)‘o]) = (['Q{w'o])

= (_1)l(w) Z Z e

€98, r<w y€So

= (_l)l(w) Z Pa:,w Z T,

€98, r<w y€&o

- Y (—)@@p,  w((B)).

€5, r<w

Here the third equality is given by the well known identity:

Pym,w:Px,w7 yEGo,xEQG,x<w

O
Remark 7.2.3. Let z € 95. Since V¥ is injective, the equation (7.2.3)) yields that
(23] = > (=)W ).
y€6o
By applying the functor i we get the following equality in [MJ(X)]
(2] = > (1)@ ]ap). (7.2.4)

y€&o

7.3 Proof of Theorem [1.0.1l

Recall from (3.5.1)) that we view P,, as a subset of AT. By Corollary [3.11.3, Theorem
1.0.1]is a consequence of the following theorem.

Theorem 7.3.1. Let A, u be partitions of n. Then for any negative integer k we have

dA’u’(Q) = Z[JiMH()‘)/JiJrlMH()‘) : LH(:U’)]qi‘ (731)

i>0
Here dy,(q) is the polynomial defined in Section[1] with v = exp(2mi/k).

Proof. By (5.9.1) we may assume that u, A belong to the same orbit of a weight v under
the dot action of & such that v + p is antidominant. For any p € AT N (& - v) let w(u),
be the shortest element in the set

w(p)ySv) ={we&[p=w- v}
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Note that w(u),&(v) is contained in %5 by Lemma [5.10.1] m We fix v € & such that
v 2 w(y)y, for any v € Pp. Let q'/? be a formal variable. We identify ¢ = (¢'/2)2. Let
P, ., be the Kazhdan-Lusztig polynomial normalized as follows

Pyw(q) = q(l(w)—l(z))/pr w(q—1/2)_
Let Qm,w be the inverse Kazhdan-Lusztig polynomial given by

Z QZ'J(_Q)pxﬂU(Q) = 5z,w7 zZ, W € 6

ze6

Then by (7.2.1)), (7.2.2]) we have

= N U@-DRG, (T AY), Yz eS.

wed
By Remark [7.2.3] we see that
= 2 (X TN (7)) (B, Vae®s. (1.32)
wels €60
Now, let
[Mg(yv)]q = [MS( v)] ®z Zlq 1/2 71/2], [(/N)H]q [@ | ®z Z[q 1/2 71/2]'

We have a Z[q, ¢~ ']-module homomorphism

€ [MHM(X,)] —  [Mg(Xo)lg,
— Z[n(W’!///W’;l.///)]qi/Q.
1€Z
Note that e([%%,]) = ¢*)/2[%",] and by Proposition we have
e((#0) = Y 11 B/ T B TIR 2 e 98, 2 <o
€N
Next, let

[Mn(/\)]q = Z[JiMn(/\)/Ji+1Mn()‘)]q_i/2-
ieN

Then by Proposition we have

On the other hand, by ([7.3.2]) we have

Pe([Zuo,)) = D (Z (—1)“5)q(“sw(””)*l(w”ﬂéswmy,w(—q”Q))Fa[@{’uz.]
wels €60
= ¥ (Z o) qUswO) UGN 2Q (q—l/Q))ql(w(u)u)ﬂ[Ln(u)].
HEPn s€Gy

Here in the second equality we have used Proposition |5.10.4{c) and the fact that P, is an
ideal in AT. Note that I(sw()),) = l(w(N),) — I(s) for s € &y by Lemma [5.10.1(b). We
deduce that

o= 2 (2 (a7 O Quuam. (7)) Le(u)]

HEPn s€Gy



7. PROOF OF THE MAIN THEOREM 131

By [Lec00, Proposition 5], we have

d)\’,,u’(q_l/Z) - Z (_q_l/z)l(s)st()\)y,w(u)y(q_1/2>7
se€Bg

see also the beginning of the proof of Proposition 6 in loc. cit., and [LT00, Lemma 2.2]
for instance. We deduce that

> [T Me(N)/J T Me(N]d' = Y d g (a) L)
€N HEPR

The theorem is proved. ]

Remark 7.3.2. The g-multiplicities of the Weyl modules W,,(\) have also been considered
in [Ari09] and [RT10]. Both papers are of combinatorial nature, and are very different
from the approach used here. In [Ari09] Ariki defined a grading on the g-Schur algebra
and he proved that the g-multiplicities of the Weyl module with respect to this grading is
also given by the same polynomials dy . However, it not clear to us how to relate this
grading to the Jantzen filtration.

Remark 7.3.3. The radical filtration C*(M) of an object M in an abelian category C is
given by putting C°(M) = M and C**1(M) to be the radical of C*(M) for i < 0. It
follows from [BB93|, Lemma 5.2.2] and Proposition that the Jantzen filtration of %
coincides with the radical filtration. If A € A such that A + p is antidominant and regular,
then the exact functor I' is faithful, see [BD00, Theorem 7.15.6]. In this case, we have

D(C* () = C*(I(#) = C* M. (M.

So the Jantzen filtration on M, (\) coincides with the radical filtration. If we have further
A € P, and k£ < —3, then by the equivalence in Proposition [3.11.2] we deduce that the
Jantzen filtration of W, (\) also coincides with the radical filtration. This is compatible
with recent result of Parshall-Scott [PS09], where they computed the radical filtration
of Wy, () under the same assumption of regularity here but without assuming x < —3.
We conjecture that for any A the Jantzen filtration on M, () coincides with the radical
filtration.

Remark 7.3.4. The results of Sections [5] [6] [7] hold for any standard parabolic subgroup @
of G with the same proof. In particular, it allows us to calculate the graded decomposition
matrices associated with the Jantzen filtration of the parabolic Verma modules in more
general cases.
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List of Notation

Note that the notation of the three chapters are independent.

Chapter I
1.1: h: 87 -A’ hreg, (W b) (W b) BWa %(W)
1.2: “Resll, =%”Ind ;, 7 eolndyy, A A, B, Breg, Bleg,

2.1: H.(W,h), as, o), euy, eu.

22 OL(IW.b). (1), A(©), LE), O2(W:), PE), <.

2.3: Proj.(W,h), I : Proj.(W,h) — O(W, ).

2.4: D(breg), He(W, breg), Myeg, OF , N, NV, KZ = KZ(W,b).

2.5: Pxz, Z(O(W,0)), Z(HAg(W, b)), v, S.

3.1: b, W, ¢, ¢, ¢L

3.2: C[[b]p, Clb],, My, He(W, )y, Ho (W', )0, Oc(W, )y, O (W', b)o, P = Funy, (W, Ho (W', b)),
Z(W, W', H.(W',5)0), ©, 2, 4, J, 2pr, R.

3.3: —o, E, ", E’, Resy, Ind,,.

3.5: KZ' = KZ(W',h).

4.1: slg, sle, e, fi, hi, t, az, Y, Ay, P, V.

4.2: |A|, Pny, T, s, Fs, |A), res(p/N), As, wt(|A)).

4.3: By(l), Sn, by, € C*, Py 5 Trr(By(1)).

4.4: Hyn, Cqn, Cq, Sx, E(n)”, F(n)”, E7, F*.

4.5: q, Ji, Cn(2), Ppa(z), Ei(n)”, Fi(n)”, B, F7%, ax(2).

4.6: h, Hy, ., Onpy KZp .

4.7: On, KZ, E, F, Dp(2), Qn.a(z), Ei(n), Fi(n), E;, Fj,

5.1: ¢ = exp(2my/—1/e).

5.2: B, wt, &, fi, €, i, b, li(v), Vi<l, BT, VT,

5.4: Br,, Bo,,.



134 APPENDIX A. LIST OF NOTATION

Chapter II

0.1: k, K(R), G(R), A, homg, gdim.

0.2: T, H,j,i—j, hij, i3, 0, °NI, |v], 1", 0(i), oI™.

0.3: G, Zo, Win, w(i), ic, We, so0, Wi, 1%, 1"

1.1: °R(I'),, 1i, »4, op, Qi j(u,v), oy, 24, w.
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3.9: &, f;, R, °L.



135

Chapter III

1: dyu(q), N
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Canonical bases and gradings associated with
rational double affine Hecke algebras

Abstract

This thesis consists of three chapters. In Chapter I, we define the i-restriction and
i-induction functors on the category O of the cyclotomic rational double affine Hecke
algebras. Using these functors, we construct a crystal on the set of isomorphism classes
of simple modules, which is isomorphic to the crystal of a Fock space. Chapter II is a
joint work with Michela Varagnolo and Eric Vasserot. We prove a conjecture of Miemietz
and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type D.
In Chapter III, we prove a conjecture of Leclerc and Thibon on the graded multiplicities
associated with the Jantzen filtration of Weyl modules over v-Schur algebras.

Résumé

Cette theése se compose de trois chapitres. Dans le chapitre I, nous définissons les
foncteurs de i-restriction et i-induction sur la catégorie O des algebres de Hecke double-
ment affine rationnelles cyclotomiques. En utilisant ces foncteurs, nous construisons un
cristal sur I’ensemble des classes d’isomorphisme des modules simples, qui est isomorphe
au cristal de ’espace de Fock. Le chapitre II est un travail en collaboration avec Michela
Varagnolo et Eric Vasserot. Nous démontrons une conjecture de Kashiwara et Miemietz
sur bases canoniques et regles de branchement pour les algebres de Hecke affines de type
D. Dans le chapitre III, nous démontrons une conjecture de Leclerc et Thibon sur les
multiplicités graduées associées a la filtration de Jantzen de modules de Weyl sur algebres
de v-Schur.



	Page de garde
	Remerciements
	Table des matières
	Introduction
	Contexte
	Présentation des résultats

	Crystals and rational DAHA's
	Hecke algebras
	Category O of rational DAHA's
	Parabolic restriction and induction for rational DAHA's.
	Fock spaces and cyclotomic rational DAHA's
	Categorifications and crystals

	Canonical bases and affine Hecke algebras of type D.
	The graded k-algebra R()
	Affine Hecke algebras of type D
	Global bases of V and projective graded R-modules

	The v-Schur algebras and Jantzen filtration
	Statement of the main result
	Jantzen filtration of standard modules
	Affine parabolic category O and v-Schur algebras
	Generalities on D-modules on ind-schemes
	Localization theorem for affine Lie algebras of negative level
	The geometric construction of the Jantzen filtration
	Proof of the main theorem

	List of Notation
	Bibliography
	Résumé

