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Introduction

Cette thèse concerne l’étude de la catégorie O des algèbres de Hecke doublement affines
rationnelles cyclotomiques ainsi que celle des représentations d’algèbres de Hecke affines de
type D. Elle se compose de trois chapitres. Bien qu’ils soient indépendants, ils ont tous en
commun d’étudier ces catégories de représentations via des catégorifications des algèbres
de Kac-Moody.

1 Contexte

1.1 Algèbres de Hecke et un théorème d’ Ariki

Fixons une fois pour toute un entier positif l. Soit q = (q, q1, . . . , ql) un l + 1-uplet de
nombres complexes. L’algèbre de Hecke cyclotomique Hq,n de paramètre q est la C-algèbre
engendrée par T0, T1, . . . , Tn−1 avec les relations suivantes :

T0T1T0T1 = T1T0T1T0,

TiTj = TjTi, j > i+ 2,
TiTi+1Ti = Ti+1TiTi+1, 1 6 i 6 n− 2,
(T0 − q1) · · · (T0 − ql) = (Ti + 1)(Ti − q) = 0, 1 6 i 6 n− 1.

C’est un cas particulier des algèbres de Hecke associées aux groupes de réflexions complexes
introduites par Broué-Malle-Rouquier [BMR98]. Le groupe en question est le produit en
couronne Bn(l) d’un groupe symétrique Sn et d’un groupe cyclique d’ordre l. En particu-
lier, si l = 1, on retrouve les algèbres de Hecke associées aux groupes symétriques. L’algèbre
Hq,n peut être aussi se réalisée comme un quotient d’une algèbre de Hecke affine de type
An−1.

Les représentations des algèbres de Hecke cyclotomiques ont été beaucoup étudiées.
Si Hq,n est semi-simple, ses modules simples (de dimension finie) sont paramétrés par
les représentations irréductibles du groupe Bn(l), qui en outre sont paramétrées par les
l-partitions. Dans le cas non semi-simple, une question importante et difficile est de com-
prendre la paramétrisation des Hq,n-modules simples de dimension finie. Ariki a répondu
cette question quand le paramètre q est de la forme

q = exp(2π
√
−1/e), qp = qsp , sp ∈ Z/eZ, 1 6 p 6 l. (1.1.1)

Plus précisément, soit Hq,N -mod la catégorie de tous les Hq,n-modules de dimension
finie avec n varié dans N. On considère les endo-fonteurs exacts EH , FH sur Hq,N -mod
donnés respectivement par les sommes des foncteurs de restriction et d’induction de Hq,n
à Hq,n+1. Ariki a introduit les foncteurs de i-restriction EH

i et de i-induction FH
i en

décomposant les foncteurs EH , FH en espaces propres généralisés pour l’action de certain
éléments centraux. Avec ces foncteurs, il a démontré le résultat suivant dans [Ari96].
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Theorem 1.1.1. (Ariki) Soit q comme dans (1.1.1). Soit s̃le l’algèbre de Kac-Moody de
type A(1)

e−1. Alors le groupe de Grothendieck (complexifié) [Hq,N -mod] admet un structure
de module sur s̃le dont les actions des générateurs de Chevalley sont données par les
opérateurs EH

i , FH
i . En plus, le s̃le-module [Hq,N -mod] est simple de plus haut poids

Λq, où Λq dépend de q. Sa base canonique (duale) est donnée par les classes des modules
simples.

1.2 Espace de Fock et sa base canonique

Le point de départ du théorème d’Ariki était une conjecture de Lascoux-Leclerc-Thibon
qui relie les représentations des algèbres de Hecke associées aux groupes symétriques avec
un modèle combinatoire, à savoir l’espace de Fock de niveau 1. Étant une démonstration et
généralisation de cette conjecture au niveau l arbitraire, le théorème d’Ariki fait intervenir
l’espace de Fock Fs de niveau l avec un multi-charge s = (s1, . . . , sl), qui est liée à q
via (1.1.1). En tant qu’espace vectoriel Fs a une base {|λ〉} indexée par les l-partitions
λ. Plus intéressant, pour chaque e > 0, l’espace de Fock Fs admet une structure de s̃le-
module intégrable dont les actions des générateurs de Chevalley sont données par des règles
combinatoires. Le sous module de Fs engendré par le vecteur vide |∅〉 est le s̃le-module
simple qui intervient dans le théorème d’Ariki. De plus, l’action de s̃le peut être déformée
en une action de l’algèbre enveloppante quantique Uv(s̃le) sur Fs(v) = Fs ⊗C C(v). En
généralisant les travaux de [LT96], Uglov [Ugl00] a défini et étudié une base canonique Bs
pour Fs(v). Il a donné un algorithme explicite pour calculer la matrice de décomposition
de Fs(v). La base Bs spécialisée à v = 1 est la base canonique de Fs. Un cristal est la
donnée d’un ensemble avec des flèches ẽi, f̃i satisfaisant certains axiomes. La base Bs
spécialisée à v = 0 donne un cristal sur l’ensemble des l-partitions. On l’appelle le cristal
de l’espace de Fock.

1.3 DAHA rationnelles cyclotomiques

À chaque groupe de réflexions complexes W et chaque paramètre c, on peut asso-
cier une algèbre de Hecke doublement affine(=DAHA) rationnelle. Ces algèbres sont des
cas particuliers des algèbres de réflexions symplectiques introduites par Etingof-Ginzburg
[EG02]. Leurs théorie des représentations a une certaine similarité avec celle des algèbres
de Lie semi-simples. En particulier, elle possède une catégorie O introduite par Ginzburg-
Guay-Opdam-Rouquier [GGOR03]. Cette catégorie est intéressante. D’une part elle est
une catégorie de plus haut poids, dont les modules standards sont paramétrés par les re-
présentations irréductibles de W . D’autre part, elle est étroitement liée aux algèbres de
Hecke associées au même groupe W via un foncteur KZ. L’un des problèmes les plus im-
portants pour les représentations des DAHA rationnelles est de comprendre les caractères
des modules simples. Pour l’instant, la réponse à cette question n’est connue que dans très
peu de cas, y compris celui du groupe symétrique. Dans le cas cyclotomique, une répose
conjecturale à cette question est liée à un analogue du théorème de Ariki dont nous allons
discuter dans la section suivante.
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2 Présentation des résultats

2.1 Cristaux et DAHA rationnelles cyclotomiques

Dans le chapitre I, nous donnons un analogue de la construction d’Ariki pour les caté-
goriesO des DAHA rationnelles cyclotomiques avec paramètres rationnels. Notre construc-
tion est basée sur les foncteurs d’induction/restriction paraboliques sur la catégorie O de
DAHA rationnelles, introduits très récemment par Bezrukavnikov-Etingof [BE09]. Nous
démontrons, dans le cas général des groupes de réflexions complexes quelconques, que
ces foncteurs correspondent via le foncteur KZ aux foncteurs d’induction/restriction des
algèbres de Hecke correspondantes. Cela permet, dans le cas cyclotomique, de les décom-
poser en foncteurs de i-induction/i-restriction, qui sont analogues à ceux d’Ariki pour les
algèbres de Hecke. Plus précisément, reprenons les notations de la section 1.1. Fixons un
l-uplet d’entiers s = (s1, . . . sl). Soit h = (h, h1, . . . , hl−1) avec

h = −1
e
, hp = sp+1 − sp

e
− 1
l
, 1 6 p 6 l − 1 .

Soit Oh,n la catégorie O de DAHA rationnelle associée au groupe Bn(l) et le paramètre
h. Le foncteur KZ envoie Oh,n à la catégorie des Hq,n-modules. Soit Oh,N =

⊕
n∈NOh,n.

Les modules standards dans Oh,N sont paramétrés par les l-partitions. Donc on a un
isomorphisme θ d’espaces vectoriels entre le groupe de Grothendieck [Oh,N] et l’espace de
Fock Fs de niveau l. Il envoie la classe du module standard associé à λ sur le vecteur
|λ〉. Nous nous intéressons aux endo-foncteurs E, F de Oh,N donnés par les sommes des
foncteurs de restriction/induction du Oh,n à Oh,n+1. Ces sont des analogues des foncteurs
EH , FH pour les algèbres de Hecke. Le foncteur KZ induit un isomorphisme entre le
centre de O et celui de l’algèbre de Hecke. Cela nous permet de décomposer les foncteurs
E, F en des foncteurs de i-restriction/i-induction Ei, Fi de la même manière que fait
Ariki pour décomposer les foncteurs EH , FH . En calculant les actions des Ei, Fi sur les
classes des modules standards, nous démontrons qu’ils définissent une action de s̃le sur
[Oh,N] telle que θ devienne un isomorphisme de s̃le-modules. Ensuite, nous définissons via
ces foncteurs une s̃le-catégorification au sens de Chuang-Rouquier [CR08]. Les propriétés
générales de ces catégorifications nous permettent de donner une structure de cristal sur
l’ensemble des classes des modules simples dans Oh,N et de l’identifier au cristal de l’espace
de Fock. C’est le résultat principal du chapitre.

Il est conjecturé par Rouquier que les classes des modules simples correspondent via
θ à la base canonique de Fs. La confirmation de cette conjecture donnerait les caractères
des modules simples. Cette conjecture ne peut pas être démontrée uniquement par les
techniques de notre construction.

2.2 Algèbres de Hecke affines de type D et bases canoniques

Le chapitre II est un travail en collaboration avec Michela Varagnolo et Eric Vasse-
rot. Nous démontrons une conjecture de Kashiwara-Miemietz qui donne un analogue du
théorème d’Ariki pour les algèbres de Hecke affines de type D.

Soit f la partie négative de l’algèbre enveloppante quantique de type A(1). La construc-
tion géométrique des modules simples des algèbres de Hecke affines utilisée par Kazhdan-
Lusztig dans la démonstration de la conjecture de Deligne-Lusztig donne une identifi-
cation naturelle entre ces modules simples et la base canonique de f . Une partie de la
démonstration du Théorème 1.1.1 est basé sur cette construction. Plus précisément, il
y a un isomorphisme linéaire entre f et le groupe de Grothendieck de la catégorie des
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modules de dimension finie sur algèbres de Hecke affines de type A. Les foncteurs d’in-
duction/restriction donnent l’action des générateurs de Chevalley et leurs transposés par
rapport à une certain forme bilinéaire symétrique sur f .

Récemment, une nouvelle famille d’algèbres, que l’on appelle maintenant les algèbres
KLR, ont été introduites par Khovanov-Lauda [KL09], et indépendemment par Rouquier
[Rou08a]. Ces algèbres sont Morita équivalentes à des algèbres de Hecke affines de type A.
Elles donnent lieu à une nouvelle interprétation de la catégorification de f . Ces algèbres
sont graduées. Donc elles sont mieux adaptées que les algèbres de Hecke affines pour
décrire la base canonique. Plus précisément, le lien entre algèbres KLR et bases canoniques
est donné par un isomorphisme explicite d’algèbres, due à Varagnolo-Vasserot [VV09b],
entre les algèbres KLR et les algèbres d’extension de certains complexes de faisceaux
constructibles qui interviennent dans la construction de Kazhdan-Lusztig.

Les règles de branchement pour les algèbres de Hecke affines de type B ont été étudiées
très récemment par [Eno09], [EK06, EK08a, EK08b], [Mie08] et [VV09a]. En particulier,
dans [Eno09], [EK06, EK08a, EK08b] un analogue de la construction d’Ariki ont été
conjecturé et étudié. Ici f est remplacé par un module θV(λ) d’une algèbre θBBB. Plus
précisément, il était conjecturé que θV(λ) admet une base canonique qui s’identifie de façon
canonique avec l’ensemble des classes d’isomorphisme des objets simples de la catégorie
des modules d’algèbres de Hecke affines de type B. Sous cette identification les règles de
branchement pour les algèbres de Hecke affines de type B doivent être donné par la θBBB-
action sur θV(λ). Cette conjecture a été démontré par Varagnolo-Vasserot [VV09a]. La
preuve utilise à la fois les approches géométriques qui étaient introduites dans [Eno09] et
un nouveau type d’algèbres graduées qui sont des analogues des algèbres KLR.

Une description similaire pour les algèbres de Hecke affines de type D a été conjecturé
dans [KM07]. Dans ce cas f est remplacé par un autre module ◦V sur l’algèbre θBBB (qui
est la même algèbre que dans le cas de type B). Dans le chapitre II, nous donnons une
preuve de cette conjecture. La méthode est la même que celle de [VV09a]. D’abord, nous
introduisons une famille d’algèbres graduées ◦Rm pour m un entier non négatif. Elles
peuvent être vues comme des algèbres d’extension de certains complexes de faisceaux
constructibles qui sont naturellement attachés à l’algèbre de Lie du groupe SO(2m), et
elles sont Morita équivalent aux algèbres de Hecke affines de type D. Nous identifions
ensuite ◦V avec groupes de Grothendieck des algèbres graduées ◦Rm en tant que θBBB-
modules. Le résultat principal du chapitre est le théorème II.3.9.1, où nous démontrons
que le θBBB-module ◦V admet une base canonique, elle est donnée par les classes des ◦Rm-
modules projectives gradués auto-duaux.

2.3 Graduation sur la catégorie O et filtration de Jantzen

L’action de l’algèbre enveloppante de type A(1) sur l’espace de Fock Fs se quantifie
en une action de l’algèbre enveloppante quantique Uv(s̃le). Du point de vue de la ca-
tégorification, le paramètre v ici correspond à une graduation sur la catégorie O. Cette
graduation est connue pour la catégorie O (parabolique) des algèbres de Lie semisimples
depuis les travaux de Beilinson-Ginzburg-Soergel [BGS96]. Elle a été beaucoup étudiée. À
ce jour, la graduation sur la catégorie O des DAHA rationnelles est inconnue. Mais dans
le cas cyclotomique, il est conjecturé par Varagnolo-Vasserot [VV08] que la catégorie Oh,n
est équivalente à une catégorie O parabolique d’une algèbre de Lie affine de gl au niveau
négatif, dont le type parabolique dépend de la multi-charge s. Au niveau l = 1 (le cas du
groupe symétrique), cette équivalence est connue. Elle est donnée par un foncteur explicite
défini par Suzuki. L’avantage de la catégorie O affine parabolique est qu’elle admet une
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théorie de localisation à la Beilinson-Bernstein. Ceci donne lieu à une graduation d’origine
géométrique sur cette catégorie, qui est l’analogue de celle apparue dans [BGS96]. Donc
l’analogie avec le cas du type fini nous indique que la graduation sur les modules standards
est donnée par la filtration de Jantzen.

Dans le chapitre III nous nous plaçons dans le cas l = 1 et nous étudions cette fil-
tration. Nous introduisons d’abord la filtration de Jantzen pour un objet standard dans
une catégorie de plus haut poids associée à une déformation donnée de la catégorie. Les
catégories déformées équivalentes donnent la même filtration. À l’aide d’une version dé-
formée du foncteur de Suzuki, nous construisons ensuite une équivalence de catégories
de plus haut poids entre la catégorie O affine parabolique déformée et la catégorie Oh,n
déformée. D’après une équivalence de Rouquier [Rou08b], ces deux catégories sont aussi
équivalentes en tant que catégories de plus haut poids à la catégorie des modules de dimen-
sion finie sur une algèbre de q-Schur. Toutes ces équivalences permettent donc d’identifier
les filtrations de Jantzen sur les modules standards dans les trois cas. Enfin, nous cal-
culons la filtration des modules de Verma paraboliques en utilisant les D-modules sur la
variété de drapeaux affines. Cet argument est une généralisation des techniques utilisées
par Beilinson-Bernstein dans la preuve des conjectures de Jantzen dans le cas du type
fini (nonparabolique) [BB93]. Le résutat final montre que les multiplicités (graduées) des
modules simples dans cette filtration sont données par certains polynômes de Kazhdan-
Lusztig paraboliques. Ce sont aussi les polynômes qui apparaissent dans la matrice de
décomposition de l’espace de Fock (quantifié) de niveau 1. En particulier, ceci confirme
une conjecture de Leclerc-Thibon [LT96] sur la filtration de Jantzen de modules de Weyl,
dont la version nongraduée était auparavant démontré dans [VV99].

Dans la suite, il serait intéressant de comprendre l’équivalence de catégories entre Oh,n
et la catégorie O affine parabolique au niveaux supérieurs comme conjecturé dans [VV08].
En particulier, une telle équivalence confirmerait la conjecture de Rouquier mentionée à la
fin de la section 2.1 de cette introduction. De plus, une version déformée appropriée d’une
telle équivalence nous permettrait de généraliser les résultats du chapitre III et d’étudier
les graduations sur les catégories Oh,n pour l quelconque. Il serait aussi très intéressant
de comparer les différents types de catégorifications sur les deux catégories O.





Chapter I

Crystals and rational DAHA’s

In [Ari96], Ariki defined the i-restriction and i-induction functors for cyclotomic Hecke
algebras. He showed that the Grothendieck group of the category of finitely generated
modules of these algebras admits a module structure over the affine Lie algebra of type
A(1), with the action of Chevalley generators given by the i-restriction and i-induction
functors.

In this chapter, we give an analogue of Ariki’s construction for the category O of
cyclotomic rational DAHA’s. More precisely, we define the i-restriction and i-induction
functors in this setting by refining the parabolic restriction and induction functors of
rational DAHA’s introduced by Bezrukavnikov and Etingof [BE09]. We show that the
action of these functors make the Grothendieck group of this category O a representation
of the type A(1) affine Lie algebra and it is isomorphic to a Fock space representation.
We also construct a crystal on the set of isomorphism classes of simple modules in the
category O. It is isomorphic to the crystal of the Fock space.

The result of this chapter has been prepublished in [Sha08].

Notation

For an algebra A, we will write A -mod for the category of finitely generated A-modules.
For f : A → B an algebra homomorphism from A to another algebra B such that B is
finitely generated over A, we will write

f∗ : B -mod→ A -mod

for the restriction functor and we write

f∗ : A -mod→ B -mod, M 7→ B ⊗AM.

A C-linear category A is called artinian if the Hom sets are finite dimensional C-
vector spaces and each object has a finite length. Given an object M in A, we denote by
soc(M) (resp. head(M)) the socle (resp. the head) of M , which is the largest semi-simple
subobject (quotient) of M .

Let C be an abelian category. The Grothendieck group of C is the quotient of the free
abelian group generated by objects in C modulo the relationsM = M ′+M ′′ for all objects
M,M ′,M ′′ in C such that there is an exact sequence 0 → M ′ → M → M ′′ → 0. Let [C]
denote the complexified Grothendieck group, a C-vector space. For each object M in C,
let [M ] be its class in [C]. Any exact functor F : C → C′ between two abelian categories
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induces a vector space homomorphism [C]→ [C′], which we will denote by F again. Given
an algebra A we will abbreviate [A] = [A -mod].

Denote by Fct(C, C′) the category of functors from a category C to a category C′. For
F ∈ Fct(C, C′) write End(F ) for the ring of endomorphisms of the functor F . We denote
by 1F : F → F the identity element in End(F ). Let G ∈ Fct(C′, C′′) be a functor from
C′ to another category C′′. For any X ∈ End(F ) and any X ′ ∈ End(G) we write X ′X :
G ◦ F → G ◦ F for the morphism of functors given by X ′X(M) = X ′(F (M)) ◦G(X(M))
for any M ∈ C.

1 Hecke algebras

In this section, we give some reminders on Hecke algebras and their parabolic restriction
and induction functors.

1.1 Definition

Let h be a finite dimensional vector space over C. A pseudo-reflection on h is a
non trivial element s of GL(h) which acts trivially on a hyperplane, called the reflecting
hyperplane of s. A complex refection group W is a finite subgroup of GL(h) generated by
pseudo-reflections. Let S be the set of pseudo-reflections in W and let A be the set of
reflecting hyperplanes. Let

hreg = h−
⋃
H∈A

H.

It is stable under the W -action on h. Fix a point x0 ∈ hreg. We will denote its image in
hreg/W again by x0. The braid group B(W, h) is the fundamental group π1(hreg/W, x0).

For H ∈ A, let WH be the pointwise stabilizer of H in W . It is a cyclic group. Let eH
be the order of WH and ζH = exp(2π

√
−1/eH). We denote by sH the unique element in

WH with determinant ζH . For x ∈ h we set x = prH(x) + pr⊥H(x) with prH(x) ∈ H and
pr⊥H(x) ∈ Im(sH − Idh). For t ∈ R we denote by stH the element in GL(h) defined by

stH(x) = ζtH pr⊥H(x) + prH(x),

where ζtH = exp(2πt
√
−1/eH). For x ∈ h we denote by σH,x the path in h from x to sH(x)

defined by
σH,x : [0, 1]→ V, t 7→ stH(x).

Whenever γ is a path in hreg with initial point x0 and terminal point xH , we define the
path σH,γ from x0 to sH(x0) by

σH,γ = sH(γ−1) · σH,xH · γ.

The homotopy class of σH,γ does not depend on the choice of xH provided xH is close
enough to H. The element in B(W, h) induced by this homotopy class is called a generator
of the monodromy around H, see [BMR98, Section 2B]. The following definition is due to
[BMR98, Definition 4.21].

Definition 1.1.1. For any map q : S → C∗ that is constant on the W -conjugacy classes,
the Hecke algebra Hq(W, h) the quotient of the group algebra CB(W, h) by the relations:

(TsH − 1)
∏

s∈WH∩S
(TsH − q(s)) = 0, (1.1.1)

where H ∈ A and TsH ∈ B(W, h) is a generator of the monodromy around H.
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Let hW denote the subspace of fixed points of W in h. If hW = 1 we will abbreviate

BW = B(W, h), Hq(W ) = Hq(W, h).

1.2 Parabolic restriction and induction functors for Hecke algebras

In this section we will assume that hW = 1. A parabolic subgroup W ′ of W is by
definition the stabilizer of a point b ∈ h. By a theorem of Steinberg, the group W ′ is also
generated by pseudo-reflections. Let q′ be the restriction of q to S ′ = W ′ ∩S. There is an
explicit inclusion

ıq : Hq′(W ′) ↪→Hq(W )

given by [BMR98, Section 2D]. The restriction functor
H ResWW ′ : Hq(W ) -mod→Hq′(W ′) -mod

is the functor (ıq)∗. The induction functor
H IndWW ′ = Hq(W )⊗Hq′ (W ′) −

is left adjoint to H ResWW ′ . The coinduction functor
H coIndWW ′ = HomHq′ (W ′)(Hq(W ),−),

is right adjoint to H ResWW ′ . All of the three functors above are exact functors.
Now, let us recall the definition of ıq. It is induced from an inclusion

ı : BW ′ ↪→ BW ,

which is in turn the composition of three morphisms `, κ,  defined as follows. First, let
A′ ⊂ A be the set of reflecting hyperplanes of W ′. Write

h = h/hW
′
, A = {H = H/hW

′ |H ∈ A′}, hreg = h−
⋃
H∈A

H, h′reg = h−
⋃

H∈A′
H.

The canonical epimorphism p : h→ h induces a trivial W ′-equivariant fibration p : h′reg →
hreg, which yields an isomorphism

` : BW ′ = π1(hreg/W ′, p(x0)) ∼→ π1(h′reg/W ′, x0). (1.2.1)

Next, we equip h with a W -invariant hermitian scalar product. Let || · || be the
associated norm. Set

Ω = {x ∈ h | ||x− b|| < ε}, (1.2.2)

where ε is a positive real number such that the closure of Ω does not intersect any hy-
perplane that is in the complement of A′ in A. Let γ : [0, 1] → h be a path such that
γ(0) = x0, γ(1) = b and γ(t) ∈ hreg for 0 < t < 1. Let u ∈ [0, 1[ such that x1 = γ(u)
belongs to Ω, write γu for the restriction of γ to [0, u]. Consider the homomorphism

σ : π1(Ω ∩ hreg, x1)→ π1(hreg, x0), λ 7→ γ−1
u · λ · γu.

The canonical inclusion hreg ↪→ h′reg induces a homomorphism π1(hreg, x0)→ π1(h′reg, x0).
Composing it with σ gives an invertible homomorphism

π1(Ω ∩ hreg, x1)→ π1(h′reg, x0).
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Since Ω is W ′-invariant, its inverse gives an isomorphism

κ : π1(h′reg/W ′, x0) ∼→ π1((Ω ∩ hreg)/W ′, x1). (1.2.3)

Finally, we see from above that σ is injective. So it induces an inclusion

π1((Ω ∩ hreg)/W ′, x1) ↪→ π1(hreg/W ′, x0).

Composing it with the canonical inclusion π1(hreg/W ′, x0) ↪→ π1(hreg/W, x0) gives an
injective homomorphism

 : π1((Ω ∩ hreg)/W ′, x1) ↪→ π1(hreg/W, x0) = BW . (1.2.4)

By composing `, κ,  we get the inclusion

ı =  ◦ κ ◦ ` : BW ′ ↪→ BW . (1.2.5)

It is proved in [BMR98, Section 4C] that ı preserves the relations in (1.1.1). So it induces
an inclusion of Hecke algebras which is the desired inclusion

ıq : Hq′(W ′) ↪→Hq(W ).

Note that if ı, ı′ : BW ′ ↪→ BW are two inclusions defined as above via different choices of
the path γ, then there exists an element ρ ∈ π1(hreg, x0) such that for any a ∈ BW ′ we have
ı(a) = ρı′(a)ρ−1. In particular, the functors ı∗ and (ı′)∗ from BW -mod to BW ′ -mod are
isomorphic. Also, we have (ıq)∗ ' (ı′q)∗. So there is a unique restriction functor H ResWW ′
up to isomorphisms.

1.3 Biadjointness of H ResWW ′ and H IndWW ′
We say that a finite dimensional C-algebra A is symmetric if A is isomorphic to A∗ =

HomC(A,C) as (A,A)-bimodules.

Proposition 1.3.1. Assume that Hq(W ) and Hq′(W ′) are symmetric algebras. Then the
functors H IndWW ′ and H coIndWW ′ are isomorphic, i.e., the functor H IndWW ′ is biadjoint
to H ResWW ′.

Proof. We abbreviate H = Hq(W ) and H ′ = Hq′(W ′). Since H is free as a left H ′-
module, for any H ′-module M the map

HomH ′(H ,H ′)⊗H ′ M → HomH ′(H ,M) (1.3.1)

given by multiplication is an isomorphism of H -modules. By assumption H ′ is isomor-
phic to (H ′)∗ as (H ′,H ′)-bimodules. Thus we have the following (H ,H ′)-bimodule
isomorphisms

HomH ′(H ,H ′) = HomH ′(H , (H ′)∗)
= HomC(H ′ ⊗H ′ H ,C)
= H ∗

= H .

The last isomorphism follows from the fact the H is symmetric. Thus, by (1.3.1) the
functors H IndWW ′ and H coIndWW ′ are isomorphic.

Remark 1.3.2. The Hecke algebra Hq(W ) is known to be symmetric for all irreducible
complex reflection groupW except for some of the 34 exceptional groups in the Shephard-
Todd classification. See [BMM99, Section 2A] for details.
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2 Category O of rational DAHA’s

2.1 Rational double affine Hecke algerbas.

The rational double affine Hecke algebras (=rational DAHA’s), also called rational
Cherednik algebras, have been introduced by Etingof and Ginzburg [EG02]. Let us recall
their definition.

Definition 2.1.1. Let c be a map from S to C that is constant on the W -conjugacy
classes. The rational double affine Hecke algebra Hc(W, h) is the quotient of the smash
product of CW and the tensor algebra of h⊕ h∗ by the relations

[x, x′] = 0, [y, y′] = 0, [y, x] = 〈x, y〉 −
∑
s∈S

cs〈αs, y〉〈x, α∨s 〉s,

for all x, x′ ∈ h∗, y, y′ ∈ h. Here 〈·, ·〉 is the canonical pairing between h∗ and h, the
element αs is a generator of Im(s|h∗ − 1) and α∨s is the generator of Im(s|h − 1) such that
〈αs, α∨s 〉 = 2.

By definition the algebra Hc(W, h) contains three subalgebras CW , C[h] and C[h∗].
We have the following Poincaré-Birkhoff-Witt type theorem [EG02, Theorem 1.3].

Proposition 2.1.2. The multiplication map yields an isomorphism of C-vector spaces

C[h]⊗C CW ⊗C C[h∗] ∼−→ Hc(W, h).

For s ∈ S write λs for the non trivial eigenvalue of s in h∗. The element

eu0 =
∑
s∈S

2cs
1− λs

s− dim(h)
2 . (2.1.1)

is in the center of CW . Let {xi} be a basis of h∗ and let {yi} be the dual basis. The Euler
element in Hc(W, h) is given by

eu =
∑
i

xiyi − eu0 (2.1.2)

Its definition is independent of the choice of the basis {xi}. We have

[eu, xi] = xi, [eu, yi] = −yi, [eu, s] = 0. (2.1.3)

2.2 The category O

A category O for Hc(W, h) has been introduced in [GGOR03]. Let us recall its defini-
tion and some basic properties.

Definition 2.2.1. The category O of Hc(W, h) is the full subcategory Oc(W, h) of the
category of Hc(W, h)-modules consisting of objects that are finitely generated as C[h]-
modules and h-locally nilpotent.

Note that by definition for any object M in Oc(W, h) the action of eu on M is locally
finite. Let Irr(W ) be the set of irreducible representations ofW over C. We will view each
ξ ∈ Irr(W ) as a CW nC[h]-module via the pull back of the projection

CW nC[h]→ CW, (w, x) 7→ w, ∀ x ∈ h∗, w ∈W.
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The standard module associated with ξ is the induced Hc(W, h)-module

∆(ξ) = Hc(W, h)⊗CWnC[h∗] ξ. (2.2.1)

It is an indecomposable object of Oc(W, h) with a simple head L(ξ). As ξ varies in Irr(W )
the L(ξ)’s give a complete set of nonisomorphic simple objects in Oc(W, h).

We say that an object M in Oc(W, h) has a standard filtration if there is a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Md = M

by objects in Oc(W, h) such that each quotient Mi/Mi−1 is isomorphic to a standard
module. Let O∆

c (W, h) be the full subcategory of Oc(W, h) consisting of such objects. The
following is due to [GGOR03, Proposition 2.21].

Lemma 2.2.2. An object in Oc(W, h) has a standard filtration if and only if it is free as
a C[h]-module.

The category Oc(W, h) is an artinian category with enough projective objects. For
each L(ξ) let P (ξ) be a projective cover of L(ξ) in Oc(W, h). For ξ ∈ Irr(W ) let cξ ∈ C
be the scalar by which the central element eu0 ∈ CW acts on ξ. Following [GGOR03,
Theorem 2.19], we equip Irr(W ) with a partial order ≺c given by

ξ ≺c η ⇐⇒ cη − cξ is a positive integer.

Proposition 2.2.3. The category Oc(W, h) is a highest weight category with respect to
the standard objects ∆(ξ) and the partial order ≺c, i.e., for ξ ∈ Irr(W ) we have

(a) The Jordan-Hölder factors in the kernel of the quotient map ∆(ξ) → L(ξ) are of
the form L(η) with η ≺c ξ.

(b) The object P (ξ) has a standard filtration

P (ξ)0 = 0 ⊂ P (ξ)1 ⊂ . . . ⊂ P (ξ)d = P (ξ)

such that P (ξ)d/P (ξ)d−1 ∼= ∆(ξ) and P (ξ)i/P (ξ)i−1 ∼= ∆(η) with η � ξ for 1 6 i 6 d− 1.
In particular, any projective object in Oc(W, h) has a standard filtration.

See [GGOR03, Corollaries 2.10, 2.14, Theorem 2.19].

Corollary 2.2.4. (a) The sets

{ [∆(ξ)] | ξ ∈ Irr(W ) } and { [L(ξ)] | ξ ∈ Irr(W ) }

give two bases of the C-vector space [Oc(W, h)].
(b) The category Oc(W, h) has finite homological dimension.

Proof. Since Oc(W, h) is artinian, the classes of simple objects form a basis of [Oc(W, h)].
By Proposition 2.2.3(a), this implies that the classes of standard objects also form a basis.
This proves part (a). Part (b) is a general fact about highest weight categories, see e.g.,
[Don98, Appendix, Proposition A2.3].
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2.3 Hom-space for functors on Oc(W, h).

Let Projc(W, h) denote the full subcategory of Oc(W, h) consisting of projective objects.
Let

I : Projc(W, h)→ Oc(W, h)

denote the canonical embedding functor. The following lemma will be useful to us.

Lemma 2.3.1. For any abelian category A and any right exact functors F1, F2 from
Oc(W, h) to A, the homomorphism of vector spaces

rI : Hom(F1, F2)→ Hom(F1 ◦ I, F2 ◦ I), γ 7→ γ1I

is an isomorphism.

Proof. We need to show that for any morphism of functors ν : F1 ◦ I → F2 ◦ I there is a
unique morphism ν̃ : F1 → F2 such that ν̃1I = ν. Since Oc(W, h) has enough projectives,
for anyM ∈ Oc(W, h) there exists P0, P1 ∈ Projc(W, h) and an exact sequence in Oc(W, h)

P1
d1−→ P0

d0−→M −→ 0. (2.3.1)

Applying the right exact functors F1, F2 to this sequence we get the two exact sequences
in the diagram below. The morphism of functors ν : F1 ◦ I → F2 ◦ I yields well defined
morphisms ν(P1), ν(P0) such that the square commutes

F1(P1)
F1(d1)//

ν(P1)
��

F1(P0)
F1(d0)//

ν(P0)
��

F1(M) // 0

F2(P1)
F2(d1)// F2(P0)

F2(d0)// F2(M) // 0.

Define ν̃(M) to be the unique morphism F1(M) → F2(M) that makes the diagram com-
mute. Its definition is independent of the choice of P0, P1, and it is independent of the
choice of the exact sequence (2.3.1). The assignment M 7→ ν̃(M) gives a morphism of
functor ν̃ : F1 → F2 such that ν̃1I = ν. It is unique by the uniqueness of the morphism
ν̃(M).

Corollary 2.3.2. Let F1, F2 be two functors as in the lemma above. Then we have

F1 ∼= F2 if and only if F1 ◦ I ∼= F2 ◦ I.

2.4 The Knizhnik-Zamolodchikov functor

The category Oc(W, h) is closely related to a Hecke algebra Hq(W, h) via the so called
Knizhnik-Zamolodchikov functor. Let us recall its definition from [GGOR03, Section 5.3].

Let D(hreg) be the algebra of differential operators on hreg. We abbreviate

Hc(W, hreg) = Hc(W, h)⊗C[h] C[hreg].

There is an isomorphism of algebras

Hc(W, hreg)
∼→ D(hreg) oCW,
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called the Dunkl isomorphism. It is given by the assignment

x 7→ x,

w 7→ w,

y 7→ ∂y +
∑
s∈S

2cs
1− λs

αs(y)
αs

(s− 1),

for x ∈ h∗, w ∈W , and y ∈ h. For M ∈ Oc(W, h) let

Mhreg = M ⊗C[h] C[hreg].

It identifies via the Dunkl isomorphism as a D(hreg) oW -module which is finitely gener-
ated over C[hreg]. So Mhreg is a W -equivariant vector bundle on hreg with an integrable
connection ∇ given by ∇y(m) = ∂ym for m ∈ M , y ∈ h. Further, the connection ∇ has
regular singularities, see [GGOR03, Proposition 5.7]. Now, regard hreg as a complex man-
ifold endowed with the transcendental topology. Let Oanhreg be the sheaf of holomorphic
functions on hreg. For any free C[hreg]-module N of finite rank, we consider

Nan = N ⊗C[hreg ] Oanhreg .

It is an analytic locally free sheaf on hreg. For ∇ an integrable connection on N , the sheaf
of holomorphic horizontal sections

N∇ = {n ∈ Nan | ∇y(n) = 0 for all y ∈ h}

is aW -equivariant local system on hreg. Hence it identifies with a local system on hreg/W .
So it yields a finite dimensional representation of CB(W, h). ForM ∈ Oc(W, h) it is proved
in [GGOR03, Theorem 5.13] that the action of CB(W, h) on (Mhreg)∇ factors through a
Hecke algebra Hq(W, h) with the parameter q given in [GGOR03, Section 5.2].

Definition 2.4.1. The Knizhnik-Zamolodchikov functor is the exact functor given by

KZ(W, h) : Oc(W, h)→Hq(W, h) -mod, M 7→ (Mhreg)∇.

We may abbreviate KZ = KZ(W, h) if this does not create any confusion.

2.5 Properties of the functor KZ
In this section, we assume that

the algebras Hq(W, h) and CW have the same dimension over C.

We recall some properties of KZ from [GGOR03]. The functor KZ is represented by a
projective object PKZ in Oc(W, h). More precisely, there is an algebra homomorphism

ρ : Hq(W, h)→ EndOc(W,h)(PKZ)op

such that KZ is isomorphic to the functor HomOc(W,h)(PKZ,−). By [GGOR03, Theorem
5.15] the homomorphism ρ is an isomorphism. In particular KZ(PKZ) is isomorphic to
Hq(W, h) as Hq(W, h)-modules.

Next, let Z(Oc(W, h)) be the center of the category Oc(W, h), that is the algebra of
endomorphisms of the identity functor IdOc(W,h). Then we have a canonical map

Z(Oc(W, h))→ EndOc(W,h)(PKZ).
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The composition of this map with ρ−1 yields an algebra homomorphism

γ : Z(Oc(W, h))→ Z(Hq(W, h)),

where Z(Hq(W, h)) denotes the center of Hq(W, h).

Lemma 2.5.1. (a) The homomorphism γ is an isomorphism.
(b) For M ∈ Oc(W, h) and f ∈ Z(Oc(W, h)) the morphism

KZ(f(M)) : KZ(M)→ KZ(M)

is the multiplication by γ(f).

See [GGOR03, Corollary 5.18] for (a). Part (b) follows from the definition of γ.
The functor KZ is a quotient functor, see [GGOR03, Theorem 5.14]. Therefore it has

a right adjoint S : Hq(W, h) -mod→ Oc(W, h) such that the canonical adjunction map

KZ ◦S → IdHq(W,h)

is an isomorphism of functors. We have the following proposition.

Proposition 2.5.2. Let Q be a projective object in Oc(W, h).
(a) For any object M ∈ Oc(W, h), the following morphism of C-vector spaces is an

isomorphism

HomOc(W,h)(M,Q) ∼−→ HomHq(W )(KZ(M),KZ(Q)), f 7→ KZ(f).

In particular, the functor KZ is fully faithful over Projc(W, h).
(b)The canonical adjunction map gives an isomorphism Q

∼→ S ◦KZ(Q).

See [GGOR03, Theorems 5.3, 5.16].

3 Parabolic restriction and induction for rational DAHA’s.

From now on we assume that hW = 1. Fix a point b ∈ h. Let W ′ be the parabolic
subgroup of W given by the stabilizer of b. We will use the same notation as in Section
1.2. Let c′ : S ′ → C be the map given by the restriction of c : S → C, and consider the
rational DAHA Hc′(W ′, h) and the category Oc′(W ′, h). In [BE09], Bezrukavnikov and
Etingof defined the parabolic restriction and induction functors

Resb : Oc(W, h)→ Oc′(W ′, h) , Indb : Oc′(W ′, h)→ Oc(W, h).

In this section, we will first review their constructions (Sections 3.1–3.3), then we give
some further properties of these functors (Sections 3.4–3.8).

3.1 The equivalence ζ.

We first explain the relation between the categoryOc′(W ′, h) and the categoryOc′(W ′, h).
Let h∗W ′ be the subspace of h∗ consisting of fixed points of W ′. Set

(h∗W ′)⊥ = {v ∈ h | f(v) = 0 for all f ∈ h∗W
′}.

We have a W ′-invariant decomposition

h = (h∗W ′)⊥ ⊕ hW
′
.
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The W ′-space (h∗W ′)⊥ is canonically identified with h. Since the action of W ′ on hW
′ is

trivial, we have an obvious algebra isomorphism

Hc′(W ′, h) = Hc′(W ′, h)⊗D(hW ′). (3.1.1)

It maps an element y in the subset hW
′ of Hc′(W ′, h) to the operator ∂y in D(hW ′).

Write O(1, hW ′) for the category of finitely generated D(hW ′)-modules that are ∂y-locally
nilpotent for all y ∈ hW

′ . Then the algebra isomorphism above yields an equivalence of
categories

Oc′(W ′, h) = Oc′(W ′, h)⊗O(1, hW ′). (3.1.2)
Upon taking Fourier transform, Kashiwara’s lemma (see e.g., [HTT08, Theorem 1.6.1])
implies that the functor

O(1, hW ′) ∼→ C -mod, M → {m ∈M | ∂y(m) = 0, ∀ y ∈ hW
′},

is an equivalence of categories. Composing it with the equivalence (3.1.2) we get an
equivalence of categories

ζ : Oc′(W ′, h)→ Oc′(W ′, h), M 7→ {v ∈M | yv = 0, ∀ y ∈ hW
′}. (3.1.3)

It has a quasi-inverse given by

ζ−1 : Oc′(W ′, h)→ Oc′(W ′, h), N 7→ N ⊗ C[hW ′ ], (3.1.4)

where C[hW ′ ] ∈ O(1, hW ′) is the polynomial representation of D(hW ′). Moreover, the
functor ζ maps a standard module in Oc′(W ′, h) to a standard module in Oc′(W ′, h).
Indeed, for any ξ ∈ Irr(W ′), we have an isomorphism of Hc′(W ′, h)-modules

Hc′(W ′, h)⊗C[h∗]oW ′ ξ =
(
Hc′(W ′, h)⊗C[(h)∗]oW ′ ξ

)
⊗
(
D(hW ′)⊗C[(hW ′ )∗] C

)
.

On the right hand side C denotes the trivial module of C[(hW ′)∗], and the latter is identified
with the subalgebra of D(hW ′) generated by ∂y for all y ∈ hW

′ . We have

D(hW ′)⊗C[(hW ′ )∗] C = C[hW ′ ]

as D(hW ′)-modules. So ζ maps the standard module ∆(ξ) for Hc′(W ′, h) to the standard
module ∆(ξ) for Hc′(W ′, h).

3.2 The isomorphism Θ and the equivalence R.

For a point p ∈ h we write C[[h]]p for the completion of C[h] at p, and we write Ĉ[h]p
for the completion of C[h] at the W -orbit of p in h. Note that we have C[[h]]0 = Ĉ[h]0.
For any C[h]-module M we write

M̂p = Ĉ[h]p ⊗C[h] M.

The completions Ĥc(W, h)b, Ĥc′(W ′, h)0 are well defined algebras. We denote by Ôc(W, h)b
the category of Ĥc(W, h)b-modules that are finitely generated over Ĉ[h]b, and we denote
by Ôc′(W ′, h)0 the category of Ĥc′(W ′, h)0-modules that are finitely generated over Ĉ[h]0.
Let

P = FunW ′(W, Ĥc(W ′, h)0)
be the set of W ′-invariant maps from W to Ĥc(W ′, h)0. Let Z(W,W ′, Ĥc(W ′, h)0) be
the ring of endomorphisms of the right Ĥc(W ′, h)0-module P . The following is due to
Bezrukavnikov and Etingof [BE09, Theorem 3.2].



3. Parabolic restriction and induction for rational DAHA’s. 25

Proposition 3.2.1. There is an isomorphism of algebras

Θ : Ĥc(W, h)b −→ Z(W,W ′, Ĥc′(W ′, h)0)

defined as follows: for f ∈ P , α ∈ h∗, a ∈ h, u ∈W ,

(Θ(u)f)(w) = f(wu),
(Θ(xα)f)(w) = (x(b)

wα + α(w−1b))f(w),

(Θ(ya)f)(w) = y(b)
waf(w) +

∑
s∈S,s/∈W ′

2cs
1− λs

αs(wa)
x

(b)
αs + αs(b)

(f(sw)− f(w)),

where xα ∈ h∗ ⊂ Hc(W, h), x(b)
α ∈ h∗ ⊂ Hc′(W ′, h), ya ∈ h ⊂ Hc(W, h), y(b)

a ∈ h ⊂
Hc′(W ′, h).

Using Θ we will identify Ĥc(W, h)b-modules with Z(W,W ′, Ĥc′(W ′, h)0)-modules. So
P = FunW ′(W, Ĥc(W ′, h)0) becomes an (Ĥc(W, h)b, Ĥc′(W ′, h)0)-bimodule. Hence for any
N ∈ Ôc′(W ′, h)0 the module P ⊗

Ĥc′ (W ′,h)0
N lives in Ôc(W, h)b. It is naturally identified

with FunW ′(W,N), the set of W ′-invariant maps from W to N . By Morita theory, the
functor

J : Ôc′(W ′, h)0 → Ôc(W, h)b, N 7→ FunW ′(W,N),

is an equivalence of categories. Let us give a quasi-inverse of J . To this end, fix elements
1 = u1, u2, . . . , ur in W such that W =

⊔r
i=1W

′ui. Let Matr(Ĥc′(W ′, h)0) be the algebra
of r × r matrices with coefficients in Ĥc′(W ′, h)0. We have an algebra isomorphism

Φ : Z(W,W ′, Ĥc′(W ′, h)0) → Matr(Ĥc′(W ′, h)0), (3.2.1)
A 7→ (Φ(A)ij)16i,j6r

such that
(Af)(ui) =

r∑
j=1

Φ(A)ijf(uj), ∀ f ∈ P, 1 6 i 6 r.

Denote by Eij , 1 6 i, j 6 r, the elementary matrix in Matr(Ĥc′(W ′, h)0) with coefficient
1 in the position (i, j) and zero elsewhere. Then the algebra isomorphism

Φ ◦Θ : Ĥc(W, h)b
∼−→ Matr(Ĥc′(W ′, h)0)

restricts to an isomorphism of subalgebras

Ĉ[h]b ∼=
r⊕
i=1

C[[h]]0Eii. (3.2.2)

Indeed, there is a unique isomorphism of algebras

$ : Ĉ[h]b ∼=
r⊕
i=1

C[[h]]u−1
i b. (3.2.3)

extending the algebra homomorphism

C[h]→
r⊕
i=1

C[h], x 7→ (x, x, . . . , x), ∀ x ∈ h∗.
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For each i consider the isomorphism of algebras

φi : C[[h]]u−1
i b → C[[h]]0, x 7→ uix+ x(u−1

i b), ∀ x ∈ h∗.

The isomorphism (3.2.2) is exactly the composition of $ with the direct sum ⊕ri=1φi,

and Eii is given by the image of the idempotent in Ĉ[h]b corresponding to the component
C[[h]]u−1

i b. We will denote by xpr the idempotent in Ĉ[h]b corresponding to C[[h]]b, i.e.,
Φ ◦Θ(xpr) = E11. Then a quasi-inverse of J is given by the functor

R : Ôc(W, h)b → Ôc′(W ′, h)0, M 7→ xprM,

where the action of Ĥc′(W ′, h)0 on R(M) = xprM is given by the following formulas. For
any α ∈ h∗, w ∈W ′, a ∈ h∗, m ∈M , we have

x(b)
α xpr(m) = xpr((xα − α(b))m), (3.2.4)
wxpr(m) = xpr(wm), (3.2.5)

y(b)
a xpr(m) = xpr((ya +

∑
s∈S, s/∈W ′

2cs
1− λs

αs(a)
xαs

)m). (3.2.6)

In particular, we have
R(M) = φ∗1(xpr(M)) (3.2.7)

as C[[h]]0 oW ′-modules. Finally, note that the following equality holds in Ĥc(W, h)b

xpruxpr = 0, ∀ u ∈W −W ′. (3.2.8)

3.3 Definition and basic properties of Resb and Indb.
For any C[h∗]-module M write E(M) ⊂ M for the locally nilpotent part of M under

the action of h. It is proved in [BE09, Theorem 2.3] that the functor

̂0 : Oc′(W ′, h)→ Ôc′(W ′, h)0, N 7→ N̂0,

is an equivalence of categories. A quasi-inverse is given by

E : Ôc′(W ′, h)0 → Oc′(W ′, h), M 7→ E(M).

Moreover, the canonical inclusion N ⊂ E(N̂0) is an equality for any N ∈ Oc′(W ′, h). We
will also consider the exact functor

̂b : Oc(W, h)→ Ôc(W, h)b, M 7→ M̂b.

It has an exact right adjoint

Eb : Ôc(W, h)b → Oc(W, h), N → E(N).

Now, we can give the definition of Resb and Indb [BE09, Section 3.5].

Definition 3.3.1. The restriction functor Resb and the induction functor Indb are defined
by

Resb(M) = ζ ◦ E ◦R(M̂b), M ∈ Oc(W, h), (3.3.1)

Indb(N) = Eb ◦ J( ̂ζ−1(N)0), N ∈ Oc′(W ′, h).
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For any Oc(W, h) we consider the following map between Grothendieck groups

ω : [Oc(W, h)]→ [CW ], [∆(ξ)] 7→ [ξ], ∀ ξ ∈ Irr(W ).

Then the functors Resb and Indb have the following properties.

Proposition 3.3.2. (a) Both functors Resb and Indb are exact. The functor Resb is left
adjoint to Indb. In particular Resb preserves projective objects and Indb preserves injective
objects.

(b) Let ResWW ′ and IndWW ′ be respectively the restriction and induction functors of
groups. Then the following diagram commute

[Oc(W, h)] ∼
ω //

Resb
��

[CW ]

ResW
W ′

��
[Oc′(W ′, h)] ∼

ω //

Indb

OO

[CW ′].

IndW
W ′

OO

See [BE09, Proposition 3.9, Theorem 3.10] for part (a) and [BE09, Proposition 3.14]
for (b).

3.4 Restriction of modules having a standard filtration

In this section, we study the action of the restriction functors on modules with a
standard filtration in Oc(W, h). We will need the following lemmas.

Lemma 3.4.1. Let M be an object of O∆
c (W, h).

(a) There is a finite dimensional subspace V of M such that V is stable under the
action of CW and the map

C[h]⊗ V →M, p⊗ v 7→ pv

is an isomorphism of C[h] oW -modules.
(b) We have the following equality in [CW ]

ω([M ]) = [V ].

Proof. Let
0 = M0 ⊂M1 ⊂ . . . ⊂Ml = M

be a filtration of M such that for any 1 6 i 6 l we have Mi/Mi−1 ∼= ∆(ξi) for some
ξi ∈ Irr(W ). We prove (a) and (b) by recurrence on l. If l = 1, then M is a standard
module. Both (a) and (b) hold by definition. For l > 1, by induction we may assume that
there is a subspace V ′ of Ml−1 such that the lemma holds for Ml−1 and V ′. Now, consider
the exact sequence

0 −→Ml−1 −→M
j−→ ∆(ξl) −→ 0

From the isomorphism of C[h] o W -modules ∆(ξl) ∼= C[h] ⊗ ξ we see that ∆(ξl) is a
projective C[h] o W -module. Hence there exists a morphism of C[h] o W -modules s :
∆(ξl)→M providing a section of j. Let V = V ′⊕s(ξl) ⊂M . It is stable under the action
of CW . The map C[h]⊗V →M in (a) is an injective morphism of C[h]oW -modules. Its
image is Ml−1 ⊕ s(∆(ξ)) = M . So it is an isomorphism. Since

ω([M ]) = ω([Ml−1]) + ω([∆(ξl)]),

and ω([Ml−1]) = [V ′] by assumption, we deduce that ω([M ]) = [V ′] + [ξl] = [V ].
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Lemma 3.4.2. (a) Let M be a Ĥc(W, h)0-module free over C[[h]]0. If there exist general-
ized eigenvectors v1, . . . vn of eu which form a basis ofM over C[[h]]0, then for f1, . . . , fn ∈
C[[h]]0 the element m =

∑n
i=1 fivi is eu-finite if and only if f1, . . . , fn all belong to C[h].

(b) Let N ∈ Oc(W, h). If N̂0 is a free C[[h]]0-module, then N is a free C[h]-module.
Further, it admits a basis consisting of generalized eigenvectors v1, . . . , vn of eu.

Proof. Part (a) follows from the proof of [BE09, Theorem 2.3]. Let us concentrate on
part (b). Since N belongs to Oc(W, h), it is finitely generated over C[h]. Denote by m
the maximal ideal of C[[h]]0. The canonical map N → N̂0/mN̂0 is surjective. So there
exist v1, . . . , vn in N such that their images form a basis of N̂0/mN̂0 over C. Moreover, we
may choose v1, . . . , vn to be generalized eigenvectors of eu, because the eu-action on N is
locally finite. Since N̂0 is free over C[[h]]0, Nakayama’s lemma yields that v1, . . . , vn form a
basis of N̂0 over C[[h]]0. By part (a) the set N ′ of eu-finite elements in N̂0 is the free C[h]-
submodule generated by v1, . . . , vn. Since N̂0 belongs to Ôc(W, h)0, by [BE09, Proposition
2.4] an element in N̂0 is h-nilpotent if and only if it is eu-finite. So N ′ = E(N̂0). On the
other hand, the canonical inclusion N ⊂ E(N̂0) is an equality by [BE09, Theorem 3.2].
Hence N = N ′. This implies that N is free over C[h], with a basis given by v1, . . . , vn,
which are generalized eigenvectors of eu. The lemma is proved.

Proposition 3.4.3. Let M be an object of O∆
c (W, h).

(a) The object Resb(M) has a standard filtration.
(b) Let V be a subspace of M as in Lemma 3.4.1(a). Then there is an isomorphism of

C[h] oW ′-modules
Resb(M) ∼= C[h]⊗ ResWW ′(V ).

Proof. We see from the end of Section 3.1 the equivalence ζ maps a standard module in
Oc′(W ′, h) to a standard one in Oc′(W ′, h). Hence to prove that Resb(M) = ζ ◦E ◦R(M̂b)
has a standard filtration, it is enough to show that N = E ◦R(M̂b) has one. We claim that
the module N is free over C[h]. To prove this, recall from (3.2.7) that R(M̂b) = φ∗1(xprM̂b)
as C[[h]]0oW ′-modules. Using the isomorphism of C[h]oW -modulesM ∼= C[h]⊗V given
in Lemma 3.4.1(a), we deduce an isomorphism of C[[h]]0 oW ′-modules

R(M̂b) ∼= φ∗1(xpr(Ĉ[h]b ⊗ V ))
∼= C[[h]]0 ⊗ V.

So the module R(M̂b) is free over C[[h]]0. The completion of the module N at 0 is
isomorphic to R(M̂b). So Lemma 3.4.2(b) implies that N is free over C[h]. The claim is
proved. Now, part (a) follows from Lemma 2.2.2. For part (b), note that since Resb(M)
has a standard filtration, by Lemma 3.4.1 there exists a finite dimensional vector space
V ′ ⊂ Resb(M) such that V ′ is stable under the action of CW ′ and we have an isomorphism
of C[h] oW ′-modules

Resb(M) ∼= C[h]⊗ V ′.

Moreover, we have ω([Resb(M)]) = [V ′] in [CW ′]. So Proposition 3.3.2(b) yields that
ResWW ′(ω[M ]) = ω([Resb(M)]). Since ω([M ]) = [V ] by Lemma 3.4.1(b), the CW ′-module
V ′ is isomorphic to ResWW ′(V ). So we have an isomorphism of C[h] oW ′-modules

Resb(M) ∼= C[h]⊗ ResWW ′(V ).
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3.5 KZ commutes with restriction functors

Now, we relate the restriction and induction functors for rational DAHA’s to the
corresponding functors for Hecke algebras via the functor KZ. We will work under the
same assumption as in Section 2.5. Let W be a complex reflection group acting on h.
Let b be a point in h and let W ′ be its stabilizer in W . We abbreviate KZ = KZ(W, h),
KZ′ = KZ(W ′, h).

Theorem 3.5.1. There is an isomorphism of functors

KZ′ ◦Resb ∼= H ResWW ′ ◦KZ .

Proof. We will regard KZ : Oc(W, h) → Hq(W ) -mod as a functor from Oc(W, h) to
BW -mod in the obvious way. Similarly we will regard KZ′ as a functor to BW ′ -mod.
Recall the inclusion ı : BW ′ ↪→ BW from (1.2.5). The theorem amounts to prove that for
any M ∈ Oc(W, h) there is a natural isomorphism of BW ′-modules

KZ′ ◦Resb(M) ∼= ı∗ ◦KZ(M). (3.5.1)

Step 1. Recall the functor ζ : Oc′(W ′, h)→ Oc′(W ′, h) from (3.1.3) and its quasi-inverse
ζ−1 in (3.1.4). Let

N = ζ−1(Resb(M)).

We have N ∼= Resb(M) ⊗ C[hW ′ ]. Since the canonical epimorphism h → h induces a
fibration h′reg → hreg, see Section 1.2, we have

Nh′reg
∼= Resb(M)hreg ⊗ C[hW ′ ]. (3.5.2)

By Dunkl isomorphisms, the left hand side is a D(h′reg) o W ′-module while the right
hand side is a (D(hreg)oW ′)⊗D(hW ′)-module. Identify these two algebras in the obvious
way. The isomorphism (3.5.2) is compatible with theW ′-equivariant D-module structures.
Hence we have

(Nh′reg)
∇ ∼= (Resb(M)hreg)

∇ ⊗ C[hW ′ ]∇.

Since C[hW ′ ]∇ = C, this yields a natural isomorphism

`∗ ◦KZ(W ′, h)(N) ∼= KZ′ ◦Resb(M),

where ` is the homomorphism defined in (1.2.1).
Step 2. Consider the W ′-equivariant algebra isomorphism

φ : C[h]→ C[h], x 7→ x+ x(b) for x ∈ h∗.

It induces an isomorphism φ̂ : C[[h]]b
∼→ C[[h]]0. The latter yields an algebra isomorphism

C[[h]]b ⊗C[h] C[hreg] ' C[[h]]0 ⊗C[h] C[h′reg].

To see this, note first that by definition the left hand side is C[[h]]b[α−1
s , s ∈ S]. For s ∈ S,

s /∈W ′ the element αs is invertible in C[[h]]b, so we have

C[[h]]b ⊗C[h] C[hreg] = C[[h]]b[α−1
s , s ∈ S ∩W ′].
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For s ∈ S ∩W ′ we have αs(b) = 0, so φ̂(αs) = αs. Hence

φ̂(C[[h]]b)[φ̂(αs)−1, s ∈ S ∩W ′] = C[[h]]0[α−1
s , s ∈ S ∩W ′]

= C[[h]]0 ⊗C[h] C[h′reg].

Step 3. We will assume in Steps 3, 4, 5 that M is an object of O∆
c (W, h). In this step

we prove that N is isomorphic to φ∗(M) as C[h] oW ′-modules. Let V be a subspace of
M as in Lemma 3.4.1(a). Then we have an isomorphism of C[h] oW -modules

M ∼= C[h]⊗ V. (3.5.3)

Also, by Proposition 3.4.3(b) there is an isomorphism of C[h] oW ′-modules

N ∼= C[h]⊗ ResWW ′(V ).

So N is isomorphic to φ∗(M) as C[h] oW ′-modules.
Step 4. In this step we compare ( ̂(φ∗(M))0)h′reg and (N̂0)h′reg as D̂(h′reg)0-modules. By

(3.3.1) we have N = E ◦ R(M̂b), so we have N̂0 ∼= R(M̂b). Next, by (3.2.7) we have an
isomorphism of C[[h]]0 oW ′-modules

R(M̂b) = φ̂∗(xpr(M̂b))

= ̂(φ∗(M))0.

So we get an isomorphism of C[[h]]0 oW ′-modules

Ψ̂ : ̂(φ∗(M))0 → N̂0.

Now, let us consider connections on these modules. Note that by Step 2 we have

( ̂(φ∗(M))0)h′reg = φ̂∗(xpr(M̂b)hreg).

Write ∇ for the connection onMhreg given by the Dunkl isomorphism for Hc(W, hreg). We
equip ( ̂(φ∗(M))0)h′reg with the connection ∇̃ given by

∇̃a(xprm) = xpr(∇a(m)), ∀ m ∈ (M̂b)hreg , a ∈ h.

Let ∇(b) be the connection on Nh′reg given by the Dunkl isomorphism for Hc′(W ′, h′reg).
This restricts to a connection on (N̂0)h′reg . We claim that Ψ is compatible with these
connections, i.e., we have

∇(b)
a (xprm) = xpr∇a(m), ∀ m ∈ (M̂b)hreg . (3.5.4)

Recall the subspace V of M from Step 3. By Lemma 3.4.1(a) the map

(Ĉ[h]b ⊗C[h] C[hreg])⊗ V → (M̂b)hreg , p⊗ v 7→ pv
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is a bijection. So it is enough to prove (3.5.4) for m = pv with p ∈ Ĉ[h]b ⊗C[h] C[hreg],
v ∈ V . We have

∇(b)
a (xprpv) = (y(b)

a −
∑

s∈S∩W ′

2cs
1− λs

αs(a)
x

(b)
αs

(s− 1))(xprpv)

= xpr(ya +
∑

s∈S,s/∈W ′

2cs
1− λs

αs(a)
xαs

−

−
∑

s∈S∩W ′

2cs
1− λs

αs(a)
xαs

(s− 1))(xprpv)

= xpr(∇a +
∑

s∈S,s/∈W ′

2cs
1− λs

αs(a)
xαs

s)(xprpv)

= xpr∇a(xprpv). (3.5.5)

Here the first equality is by the Dunkl isomorphism for Hc′(W ′, h′reg). The second is by
(3.2.4), (3.2.5), (3.2.6) and the fact that x2

pr = xpr. The third is by the Dunkl isomor-
phism for Hc(W, hreg). The last is by (3.2.8). Next, since xpr is the idempotent in Ĉ[h]b
corresponding to the component C[[h]]b in the decomposition (3.2.3), we have

∇a(xprpv) = (∂a(xprp))v + xprp (∇av)
= xpr(∂a(p))v + xprp (∇av)
= xpr∇a(pv).

Together with (3.5.5) this implies that

∇(b)
a (xprpv) = xpr∇a(pv).

So the claim is proved.
Step 5. Now, we prove the isomorphism (3.5.1) for M ∈ O∆

c (W, h). Here we need
some more notation. For X = h or h′reg, let U be an open analytic subvariety of X, write
i : U ↪→ X for the canonical embedding. For F an analytic coherent sheaf on X we write
i∗(F ) for the restriction of F to U . If U contains 0, for an analytic locally free sheaf E
over U , we write Ê for the restriction of E to the formal disc at 0.

Let Ω ⊂ h be the open ball defined in (1.2.2). Let f : h→ h be the morphism defined
by φ. The preimage of Ω via f is an open ball Ω0 in h centered at 0. We have

f(Ω0 ∩ h′reg) = Ω ∩ hreg.

Let u : Ω0 ∩ h′reg ↪→ h and v : Ω∩ hreg ↪→ h be the canonical embeddings. By Step 3 there
is an isomorphism of W ′-equivariant analytic locally free sheaves over Ω0 ∩ h′reg

u∗(Nan) ∼= φ∗(v∗(Man)).

By Step 4 the isomorphism Ψ̂ yields an isomorphism

̂u∗(Nan) ∼→ ̂φ∗(v∗(Man))

which is compatible with their connections. It follows from Lemma 3.5.2 below that there
is an isomorphism (

u∗(Nan)
)∇(b) ∼= φ∗

(
(v∗(Man))∇

)
.
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Since Ω0 ∩ h′reg is homotopy equivalent to h′reg via u, the left hand side is isomorphic to
(Nh′reg)

∇(b) . So we have

KZ(W ′, h)(N) ∼= κ∗ ◦ ∗ ◦KZ(M),

where κ,  are as in (1.2.3), (1.2.4). Combined with Step 1 we have the following isomor-
phisms

KZ′ ◦Resb(M) ∼= `∗ ◦KZ(W ′, h)(N)
∼= `∗ ◦ κ∗ ◦ ∗ ◦KZ(M) (3.5.6)
= ı∗ ◦KZ(M).

They are functorial on M .

Lemma 3.5.2. Let E be an analytic locally free sheaf over the complex manifold h′reg. Let
∇1, ∇2 be two integrable connections on E with regular singularities. If there exists an
isomorphism ψ̂ : (Ê,∇1)→ (Ê,∇2), then the local systems E∇1 and E∇2 are isomorphic.

Proof. Write End(E) for the sheaf of endomorphisms of E. Then End(E) is a locally free
sheaf over h′reg. The connections ∇1, ∇2 define a connection ∇ on End(E) as follows,

∇ : End(E)→ End(E), f 7→ ∇2 ◦ f − f ◦ ∇1.

So the isomorphism ψ̂ is a horizontal section of (Ênd(E),∇). Let (End(E)∇)0 be the set of
germs of horizontal sections of (End(E),∇) on zero. By the Comparison theorem [KK81,
Theorem 6.3.1] the canonical map (End(E)∇)0 → (Ênd(E))∇ is bijective. Hence there
exists a holomorphic isomorphism ψ : (E,∇1)→ (E,∇2) which maps to ψ̂. Now, let U be
an open ball in h′reg centered at 0 with radius ε small enough such that the holomorphic
isomorphism ψ converges in U . Write EU for the restriction of E to U . Then ψ induces
an isomorphism of local systems (EU )∇1 ∼= (EU )∇2 . Since h′reg is homotopy equivalent to
U , we have

E∇1 ∼= E∇2 .

Step 6. Finally, recall that I is the inclusion of Projc(W, h) into Oc(W, h). By Proposi-
tion 2.2.3(b), any projective object in Oc(W, h) has a standard filtration. So (3.5.6) yields
an isomorphism of functors

KZ′ ◦Resb ◦I → ı∗ ◦KZ ◦I.

Applying Corollary 2.3.2 to the exact functors KZ′ ◦Resb and ı∗ ◦KZ yields that there is
an isomorphism of functors

KZ′ ◦Resb ∼= ı∗ ◦KZ .

An immediate corollary of Theorem 3.5.1 is the following.

Corollary 3.5.3. There is an isomorphism of functors

KZ ◦ Indb ∼= H coIndWW ′ ◦KZ′ .
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Proof. To simplify notation let us write

O = Oc(W, h), O′ = Oc′(W ′, h), H = Hq(W ), H ′ = Hq′(W ′).

Recall that the functor KZ is represented by a projective object PKZ in O. So for any
N ∈ O′ we have a morphism of H -modules

KZ ◦ Indb(N) ∼= HomO(PKZ, Indb(N))
∼= HomO′(Resb(PKZ), N)
→ HomH ′(KZ′(Resb(PKZ)),KZ′(N)). (3.5.7)

By Theorem 3.5.1 we have

KZ′ ◦Resb(PKZ) ∼= H ResWW ′ ◦KZ(PKZ).

Recall from Section 2.4 that the H -module KZ(PKZ) is isomorphic to H . So as H ′-
modules KZ′(Resb(PKZ)) is also isomorphic to H . Therefore the morphism (3.5.7) can be
rewritten as

χ(N) : KZ ◦ Indb(N)→ HomH ′(H ,KZ′(N)). (3.5.8)

It yields a morphism of functors

χ : KZ ◦ Indb → H coIndWW ′ ◦KZ′ .

Note that if N is a projective object in O′, then χ(N) is an isomorphism by Proposition
2.5.2(a). So Corollary 2.3.2 implies that χ is an isomorphism of functors, because both
functors KZ ◦ Indb and H coIndWW ′ ◦KZ′ are exact.

3.6 A useful lemma.

Lemma 3.6.1. Let K, L be two right exact functors from O1 to O2, where O1 and O2
can be either Oc(W, h) or Oc′(W ′, h). Let KZ2 denote the KZ-functor on O2. Suppose that
K, L map projective objects to projective ones. Then the vector space homomorphism

Hom(K,L)→ Hom(KZ2 ◦K,KZ2 ◦L), f 7→ 1KZ2f, (3.6.1)

is an isomorphism.

Note that if K = L, this is even an isomorphism of rings.

Proof. Let Proj1, Proj2 be respectively the subcategory of projective objects in O1, O2.
Let K̃, L̃ be the functors from Proj1 to Proj2 given by the restrictions ofK, L, respectively.
Let H2 be the Hecke algebra corresponding to O2. Since the functor KZ2 is fully faithful
over Proj2 by Proposition 2.5.2(a), the following functor

Fct(Proj1,Proj2)→ Fct(Proj1,H2 -mod) , G 7→ KZ2 ◦G

is also fully faithful. Therefore we have an isomorphism

Hom(K̃, L̃) ∼→ Hom(KZ2 ◦K̃,KZ2 ◦L̃), f 7→ 1KZ2f.

Next, by Lemma 2.3.1 the canonical morphisms

Hom(K,L)→ Hom(K̃, L̃), Hom(KZ2 ◦K,KZ2 ◦L)→ Hom(KZ2 ◦K̃,KZ2 ◦L̃)

are isomorphisms. So the map (3.6.1) is also an isomorphism.
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3.7 Transitivity of restriction and induction functors

Let b(W,W ′′) be a point in h whose stabilizer is W ′′. Let b(W ′,W ′′) be its image in
h = h/hW

′ via the canonical projection. Write b(W,W ′) = b.

Proposition 3.7.1. There are isomorphisms of functors

Resb(W ′,W ′′) ◦Resb(W,W ′) ∼= Resb(W,W ′′),
Indb(W,W ′) ◦ Indb(W ′,W ′′) ∼= Indb(W,W ′′) .

Proof. Since the restriction functors map projective objects to projective ones by Proposi-
tion 3.3.2(a), Lemma 3.6.1 applied to the categoriesO1 = Oc(W, h), O2 = Oc′′(W ′′, h/hW

′′)
yields an isomorphism

Hom(Resb(W ′,W ′′) ◦Resb(W,W ′),Resb(W,W ′′))
= Hom(KZ′′ ◦Resb(W ′,W ′′) ◦Resb(W,W ′),KZ′′ ◦Resb(W,W ′′)).

By Theorem 3.5.1 the set on the second row is

Hom( H ResW ′W ′′ ◦H ResWW ′ ◦KZ, H ResWW ′′ ◦KZ). (3.7.1)

By the presentations of Hecke algebras in [BMR98, Proposition 4.22], there is an
isomorphism

σ : H ResW ′W ′′ ◦H ResWW ′
∼−→ H ResWW ′′ .

Hence the element σ1KZ in the set (3.7.1) maps to an isomorphism

Resb(W ′,W ′′) ◦Resb(W,W ′) ∼= Resb(W,W ′′) .

This proves the first isomorphism in the corollary. The second one follows from the
uniqueness of right adjoint functor.

3.8 Biadjointness of Resb and Indb.
In this section, we prove the biadjointness of Resb and Indb (Proposition 3.8.2). This

result was conjectured in [BE09, Remark 3.18]. Let us first consider the following lemma.

Lemma 3.8.1. (a) Let A, B be noetherian algebras and T be a functor

T : A -mod→ B -mod .

If T is right exact and commutes with direct sums, then it has a right adjoint.
(b) The functor

Resb : Oc(W, h)→ Oc′(W ′, h)

has a left adjoint.

Proof. Consider the (B,A)-bimodule M = T (A). We claim that the functor T is isomor-
phic to the functorM⊗A−. Indeed, by definition we have T (A) ∼= M⊗AA as B modules.
Now, for any N ∈ A -mod, since N is finitely generated and A is noetherian there exists
m, n ∈ N and an exact sequence

A⊕n −→ A⊕m −→ N −→ 0.
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Since both T and M ⊗A − are right exact and they commute with direct sums, the fact
that T (A) ∼= M ⊗A A implies that T (N) ∼= M ⊗A N as B-modules. This proved the
claim. Now, the functor M ⊗A − has a right adjoint HomB(M,−), so T also has a right
adjoint. This proves part (a). Let us concentrate on part (b). Recall that for any complex
reflection group W , a contravariant duality functor

(−)∨ : Oc(W, h)→ Oc†(W, h∗)

was defined in [GGOR03, Section 4.2], here c† : S → C is another parameter explicitly
determined by c. Consider the functor

Res∨b = (−)∨ ◦ Resb ◦(−)∨ : Oc†(W, h∗)→ Oc′†(W
′, (h)∗).

The category Oc†(W, h∗) has a projective generator P . The algebra EndO
c† (W,h∗)(P )op is

finite dimensional over C and by Morita theory we have an equivalence of categories

Oc†(W, h∗) ∼= EndO
c† (W,h∗)(P )op -mod .

Since the functor Res∨b is exact and obviously commutes with direct sums, by part (a) it
has a right adjoint Ψ. Then it follows that (−)∨ ◦ Ψ ◦ (−)∨ is left adjoint to Resb. The
lemma is proved.

Proposition 3.8.2. 1 Assume that the algebras Hq(W ) and Hq′(W ′) are symmetric. Then
the functor Indb is left adjoint to Resb.

Proof. We will prove the proposition in two steps.
Step 1. We abbreviate O = Oc(W, h), O′ = Oc′(W ′, h), H = Hq(W ), H ′ = Hq′(W ′),

and write IdO, IdO′ , IdH , IdH ′ for the identity functor on the corresponding categories.
We also abbreviate EH = H ResWW ′ , FH = H IndWW ′ and E = Resb. By Lemma 3.8.1 the
functor E has a left adjoint. We denote it by F : O′ → O. Recall the functors

KZ : O →H -mod, KZ′ : O′ →H ′ -mod .

The goal of this step is to show that there exists an isomorphism of functors

KZ ◦F ∼= FH ◦KZ′ .

To this end, let S, S′ be respectively the right adjoints of KZ, KZ′, see Section 2.5. We
will first give an isomorphism of functors

FH ∼= KZ ◦F ◦ S′.

Let M ∈ H ′ -mod and N ∈ H -mod. Consider the following equalities given by adjunc-
tions

HomH (KZ ◦F ◦ S′(M), N) = HomO(F ◦ S′(M), S(N))
= HomO′(S′(M), E ◦ S(N)).

The functor KZ′ yields a map

a(M,N) : HomO′(S′(M), E ◦ S(N))→ HomH ′(KZ′ ◦S′(M),KZ′ ◦E ◦ S(N)). (3.8.1)

1. This result has been independently obtained by Iain Gordon and Maurizio Martino.
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Since the canonical adjunction maps KZ′ ◦S′ → IdH ′ , KZ ◦S → IdH are isomorphisms
(see Section 2.5) and since we have an isomorphism of functors KZ′ ◦E ∼= EH ◦ KZ by
Theorem 3.5.1, we get the following equalities

HomH ′(KZ′ ◦S′(M),KZ′ ◦E ◦ S(N)) = HomH ′(M,EH ◦KZ ◦S(N))
= HomH ′(M,EH (N))
= HomH (FH (M), N).

In the last equality we used that FH is left adjoint to EH . So the map (3.8.1) can be
rewritten into the following form

a(M,N) : HomH (KZ ◦F ◦ S′(M), N)→ HomH (FH (M), N).

Now, take N = H . Recall that H is isomorphic to KZ(PKZ) as H -modules. Since PKZ
is projective, by Proposition 2.5.2(b) we have a canonical isomorphism in O

PKZ ∼= S(KZ(PKZ)) = S(H ).

Further E maps projectives to projectives by Proposition 3.3.2(a), so E ◦ S(H ) is also
projective. Hence Proposition 2.5.2(a) implies that in this case (3.8.1) is an isomorphism
for any M , i.e., we get an isomorphism

a(M,H ) : HomH (KZ ◦F ◦ S′(M),H ) ∼→ HomH (FH (M),H ).

Further this is an isomorphism of right H -modules with respect to the right action of
H on itself. Now, the fact that H is a symmetric algebra yields that for any finite
dimensional H -module N we have isomorphisms of right H -modules

HomH (N,H ) ∼= HomH (N,HomC(H ,C))
∼= HomC(N,C).

Therefore a(M,H ) yields an isomorphism of right H -modules

HomC(KZ ◦F ◦ S′(M),C)→ HomC(FH (M),C).

We deduce a natural isomorphism of left H -modules

KZ ◦F ◦ S′(M) ∼= FH (M)

for any H ′-module M . This gives an isomorphism of functors

ψ : KZ ◦F ◦ S′ ∼→ FH .

Finally, consider the canonical adjunction map η : IdO′ → S′ ◦KZ′. We have a morphism
of functors

φ = (1KZ ◦F η) ◦ (ψ1KZ′) : KZ ◦F → FH ◦KZ′ .

Note that ψ1KZ′ is an isomorphism of functors. If Q is a projective object in O′, then by
Proposition 2.5.2(b) the morphism η(Q) : Q → S′ ◦ KZ′(Q) is also an isomorphism, so
φ(Q) is an isomorphism. This implies that φ is an isomorphism of functors by Corollary
2.3.2, because both KZ ◦F and FH ◦KZ′ are right exact functors. Here the right exactness
of F follows from that it is left adjoint to E. So we get the desired isomorphism of functors

KZ ◦F ∼= FH ◦KZ′ .
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Step 2. Let us now prove that F is right adjoint to E. By uniqueness of adjoint
functors, this will imply that F is isomorphic to Indb. First, by Proposition 1.3.1 the
functor FH is isomorphic to H coIndWW ′ . So FH is right adjoint to EH . In other words,
we have morphisms of functors

εH : EH ◦ FH → IdH ′ , ηH : IdH → FH ◦ EH

such that

(εH 1EH ) ◦ (1EH ηH ) = 1EH , (1FH εH ) ◦ (ηH 1FH ) = 1FH .

Next, both F and E have exact right adjoints, given respectively by E and Indb. Therefore
F and E map projective objects to projective ones. Applying Lemma 3.6.1 to O1 = O2 =
O′, K = E ◦ F , L = IdO′ yields that the following map is bijective

Hom(E ◦ F, IdO′)→ Hom(KZ′ ◦E ◦ F, KZ′ ◦ IdO), f 7→ 1KZ′f. (3.8.2)

By Theorem 3.5.1 and Step 1 there exist isomorphisms of functors

φE : EH ◦KZ ∼→ KZ′ ◦E, φF : FH ◦KZ′ ∼→ KZ ◦F.

Let

φEF = (φE1F ) ◦ (1EH φF ) : EH ◦ FH ◦KZ′ ∼→ KZ′ ◦E ◦ F,
φFE = (φF 1E) ◦ (1FH φE) : FH ◦ EH ◦KZ ∼→ KZ ◦F ◦ E.

Identify
KZ ◦ IdO = IdH ◦KZ, KZ′ ◦ IdO′ = IdH ′ ◦KZ′ .

We have a bijective map

Hom(KZ′ ◦E ◦ F, KZ′ ◦ IdO′)
∼→ Hom(EH ◦ FH ◦KZ′, IdH ′ ◦KZ′), g 7→ g ◦ φEF .

Together with (3.8.2), it implies that there exists a unique morphism ε : E ◦ F → IdO′
such that

(1KZ′ε) ◦ φEF = εH 1KZ′ .

Similarly, there exists a unique morphism η : IdO → F ◦ E such that

(φFE)−1 ◦ (1KZη) = ηH 1KZ.

Now, we have the following commutative diagram

EH ◦KZ
1
EH ηH 1KZ

��

EH ◦KZ
φE //

1
EH 1KZη

��

KZ′ ◦E
1KZ′1Eη

��
EH ◦ FH ◦ EH ◦KZ

1
EH φFE// EH ◦KZ ◦F ◦ E

φE1F 1E // KZ′ ◦E ◦ F ◦ E

EH ◦ FH ◦ EH ◦KZ
1
EH 1

FH φE//

εH 1
EH 1KZ

��

EH ◦ FH ◦KZ′ ◦E

1
EH φF 1E

OO

φEF 1E //

εH 1KZ′1E
��

KZ′ ◦E ◦ F ◦ E
1KZ′ε1E

��
EH ◦KZ

φE // KZ′ ◦E KZ′ ◦E.
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It yields that

(1KZ′ε1E) ◦ (1KZ′1Eη) = φE ◦ (εH 1EH 1KZ) ◦ (1EH ηH 1KZ) ◦ (φE)−1.

We deduce that

1KZ′((ε1E) ◦ (1Eη)) = φE ◦ (1EH 1KZ) ◦ (φE)−1

= 1KZ′1E . (3.8.3)

By applying Lemma 3.6.1 to O1 = O, O2 = O′, K = L = E, we deduce that the following
map

End(E)→ End(KZ′ ◦E), f 7→ 1KZ′f,

is bijective. Hence (3.8.3) implies that

(ε1E) ◦ (1Eη) = 1E .

Similarly, we have (1F ε) ◦ (η1F ) = 1F . So E is left adjoint to F . By uniqueness of adjoint
functors this implies that F is isomorphic to Indb. Therefore Indb is biadjoint to Resb.

4 Fock spaces and cyclotomic rational DAHA’s

In this section, we construct the i-restriction and i-induction functors on the category
O of cyclotomic rational DAHA’s. We show that these functors yield a type A(1) affine
Lie algebra action on the Grothendieck group of the category O, which is isomorphic to a
Fock space.

4.1 The affine Lie algebra s̃le

Let e > 2 be an integer and let t be a formal parameter. Let sle be the Lie algebra of
traceless e× e complex matrices. Consider the affine Lie algebra of type A(1)

s̃le = sle ⊗ C[t, t−1]⊕ Cc⊕ C∂

with the Lie bracket given by

[ξ⊗tm+xc+y∂, ξ′⊗tn+x′c+y′∂] = [ξ, ξ′]⊗tm+n+mδm,−n tr(ξξ′)c+nyξ′⊗tn−my′ξ⊗tm,

where tr : sle → C is the trace map. Let

ŝle = sle ⊗ C[t, t−1]⊕ Cc.

It is the Lie subalgebra of s̃le generated by the Chevalley generators

ei = Ei,i+1 ⊗ 1, fi = Fi+1,i ⊗ 1, hi = (Eii − Ei+1,i+1)⊗ 1, 1 6 i 6 e− 1,
e0 = Ee1 ⊗ t, f0 = E1e ⊗ t−1, h0 = (Eee − E11)⊗ 1 + c.

Here Eij is the elementary matrix with 1 in the position (i, j) and 0 elsewhere. We consider
the Cartan subalgebra

t =
⊕

i∈Z/eZ
Chi ⊕ C∂,

and its dual t∗. For i ∈ Z/eZ let αi ∈ t∗ (resp. α∨i ∈ t) be the simple root (resp. coroot)
corresponding to ei. The fundamental weights are Λi ∈ t∗, i ∈ Z/eZ, with Λj(α∨i ) = δij for
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any i, j ∈ Z/eZ. Let δ ∈ t∗ be the element given by δ(hi) = 0 for all i and δ(∂) = 1. Let
P be the weight lattice of s̃le. It is the free abelian group generated by the fundamental
weights and δ. For any s̃le-module V and µ ∈ t∗ let

Vµ = {v ∈ V |hv = µ(h)v, ∀ h ∈ t}.

An element v ∈ V is called a weight vector if it belongs to Vµ for some µ.

4.2 Fock spaces.

In the rest of the chapter, we will fix once for all a positive integer l. Let us introduce
the following notation. For any positive integer n, a partition µ of n is a sequence of
integers µ1 > · · · > µk > 0 such that the sum |µ| =

∑k
i=1 µi = n. An l-partition of n is

an l-tuple of partitions λ = (λ(1), . . . , λ(l)) such that |λ| =
∑l
i=1 |λ(i)| = n. We denote by

Pn,l the set of l-partitions of n. To an l-partition λ = (λ(1), . . . , λ(l)) we attach the set

Υλ = {(a, b, j) ∈ N× N× (Z/lZ) | 0 < b 6 (λ(j))a}.

If µ is an l-partition such that Υµ contains Υλ, then we write µ/λ for the complement of
Υλ in Υµ. Let |µ/λ| be the number of elements in this set.

Given an l tuple of integers s = (s1, . . . , sl), the Fock space with multi-charge s is given
as follows. As a C-vector space, it is spanned by the l-partitions, i.e., we have

Fs =
⊕
n∈N

⊕
λ∈Pn,l

C|λ〉.

Moreover, following [JMMO91], the space Fs carries an integrable s̃le-action given by

ei(|λ〉) =
∑

|λ/µ|=1,res(λ/µ)=i
|µ〉, fi(|λ〉) =

∑
|µ/λ|=1,res(µ/λ)=i

|µ〉, ∀ i ∈ Z/eZ. (4.2.1)

∂(|λ〉) = −n0 |λ〉.

Here we have used the notation that

res((a, b, j)) = b− a+ sj ∈ Z/eZ, ∀ (a, b, j) ∈ Υλ,

and ni denotes the number of elements in the set {(a, b, j) ∈ Υλ | res((a, b, j)) = i} for any
i ∈ Z/eZ. For k ∈ Z we set Λk = Λk(mod e). Consider the weight

Λs = Λs1 + . . .+ Λsl .

Then each vector |λ〉 in Fs is a weight vector of weight

wt(|λ〉) = Λs −
∑

i∈Z/eZ
niαi. (4.2.2)

We call wt(|λ〉) the weight of λ.
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4.3 The wreath product Bn(l)
Let ε = exp(2π

√
−1/l). Let n be a positive integer. We consider the complex reflection

group Bn(l) given by the wreath product of the symmetric group Sn and the cyclic group
Z/lZ. In other words, let {y1, . . . , yn} be the standard basis of hn = Cn. For 1 6 i, j, k 6 n
with i, j, k distinct, let εk, sij be the following elements of GL(hn):

εk(yk) = εyk, εk(yj) = yj , sij(yi) = yj , sij(yk) = yk.

Then Bn(l) is the subgroup of GL(hn) generated by the elements εk, 1 6 k 6 n, and sij ,
1 6 i < j 6 n. The set of reflections in Bn(l) is

Sn = R t
( l−1⊔
p=1

Zp
)
,

where R and Zp are conjugacy classes given by

R = {s(p)
ij = sijε

p
i ε
−p
j | 1 6 i < j 6 n, 1 6 p 6 l}, Zp = {εpi | 1 6 i 6 n}, 1 6 p 6 l − 1.

Note that there is an obvious inclusion Sn−1 ↪→ Sn. It yields an embedding

Bn−1(l) ↪→ Bn(l). (4.3.1)

This embedding identifies Bn−1(l) with the parabolic subgroup of Bn(l) given by the
stabilizer of the point bn = (0, . . . , 0, 1) ∈ Cn.

Given a partition λ of n, we denote the corresponding irreducible representation of Sn

again by λ. The irreducible representations of Bn(l) are labeled by the l-partitions of n.
Indeed, for λ ∈ Pn,l, let

Iλ(p) =
{p−1∑
i=1
|λ(i)|+ 1,

p−1∑
i=1
|λ(i)|+ 2, . . . ,

p∑
i=1
|λ(i)|

}
, 1 6 p 6 l.

We put Sλ = SIλ(1) × · · · × SIλ(l) and Bλ(l) = (Z/lZ)n o Sλ. Consider the character
ψ : Z/lZ→ C∗, a 7→ εa. We denote by ψ(p) the one dimensional character of (Z/lZ)Iλ(p) o
SIλ(p) whose restriction to (Z/lZ)Iλ(p) is (ψp−1)⊗|λ(p)| and whose restriction to SIλ(p) is
trivial. Then we have a bijection

Pn,l
∼→ Irr(Bn(l)), λ 7→ IndBn(l)

Bλ(l)(ψ
(1)λ(1) ⊗ · · · ⊗ ψ(l)λ(l)),

see e.g. [Rou08b, Section 6.1.1]. Below, we will always identify Pn,l and Irr(Bn(l)) in this
way.

4.4 Cyclotomic Hecke algebras

The Hecke algebras attached to the group Bn(l) are called cyclotomic Hecke algebras, or
Ariki-Koike algebras. Given a parameter q = (q, q1, . . . , ql), the corresponding cyclotomic
Hecke algebra Hq,n has the following presentation:
• Generators: T0, T1, . . . , Tn−1,
• Relations:

(T0 − q1) · · · (T0 − ql) = (Ti + 1)(Ti − q) = 0, 1 6 i 6 n− 1,
T0T1T0T1 = T1T0T1T0,

TiTj = TjTi, j > i+ 2, (4.4.1)
TiTi+1Ti = Ti+1TiTi+1, 1 6 i 6 n− 2.



4. Fock spaces and cyclotomic rational DAHA’s 41

The algebra Hq,n satisfies the assumption of Section 2.5, i.e., it has the same dimension
as the group algebra CBn(l). We will abbreviate

Cq,n = Cq,n, Cq =
⊕
n∈N
Cq,n.

For each l-partition λ of n, let Sλ be the corresponding Specht module in Cq,n, see [Ari02,
Definition 13.22] for its definition. The classes [Sλ] span the vector space [Cq,n].

Following Section 1.2, the embedding (4.3.1) of Bn−1(l) into Bn(l) yields an embedding
of Hecke algebras

ıq : Hq,n−1 ↪→Hq,n.

By [BMR98, Proposition 2.29] this embedding is given by

ıq(Ti) = Ti, ∀ 0 6 i 6 n− 2.

We will consider the following restriction and induction functors:

E(n)H = H ResBn(l)
Bn−1(l), F (n)H = H IndBn(l)

Bn−1(l) .

The algebra Hq,n is symmetric, see Remark 1.3.2. Hence by Proposition 1.3.1 we have

F (n)H ∼= H coIndBn(l)
Bn−1(l) .

Let

EH =
⊕
n>1

E(n)H , FH =
⊕
n>1

F (n)H .

Then (EH , FH ) is a pair of biadjoint endo-functors of Cq.

4.5 The i-Restriction and i-induction functors of cyclotomic Hecke al-
gebras.

Fix an l-tuple s = (s1, . . . , sl) and fix a positive integer e > 2. Let the parameter
q = (q, q1, . . . , ql) be given by

q = exp(2π
√
−1
e

), qp = qsp , 1 6 p 6 l. (4.5.1)

In this case, Ariki defined the i-restriction and i-induction functors on Cq as follows.
First, consider the following elements in Hq,n,

J0 = T0, Ji = q−1TiJi−1Ti for 1 6 i 6 n− 1.

They are called the Jucy-Murphy elements. Recall that Z(Hq,n) is the center of Hq,n.
For any symmetric polynomial σ of n variables, the element σ(J0, . . . , Jn−1) belongs to
Z(Hq,n), see [Ari02, Section 13.1]. In particular, let z be a formal variable. Then the
polynomial

Cn(z) =
n−1∏
i=0

(z − Ji) ∈Hq,n[z]

has coefficients in Z(Hq,n). Next, let C(z) be the fraction field of C[z]. To any a(z) ∈ C(z)
we associate an exact functor

Pn,a(z) : Cq,n → Cq,n, M 7→ Pn,a(z)(M),

such that Pn,a(z)(M) is the generalized eigenspace of Cn(z) acting onM with the eigenvalue
a(z).
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Definition 4.5.1. Let i ∈ Z/eZ. The i-restriction functor and i-induction functor

Ei(n)H : Cq,n → Cq,n−1, Fi(n)H : Cq,n−1 → Cq,n

are given by

Ei(n)H =
⊕

a(z)∈C(z)
Pn−1,a(z)/(z−qi) ◦ E(n)H ◦ Pn,a(z),

Fi(n)H =
⊕

a(z)∈C(z)
Pn,a(z)(z−qi) ◦ F (n)H ◦ Pn−1,a(z).

See [Ari02, Definition 13.33]. We abbreviate

EH
i =

⊕
n>1

Ei(n)H , FH
i =

⊕
n>1

Fi(n)H .

They are endo-functors of Cq. Further, let

aλ(z) =
∏
v∈Υλ

(z − qres(v)), ∀ λ ∈ Pn,l.

Then the functors EH
i , FH

i have the following properties.

Proposition 4.5.2. (a) The functors Ei(n)H , Fi(n)H are exact biadjoint functors.
(b) For λ ∈ Pn,l the element Cn(z) has a unique eigenvalue on the Specht module Sλ.

It is equal to aλ(z).
(c) We have

Ei(n)H ([Sλ]) =
∑

res(λ/µ)=i
[Sµ], Fi(n)H ([Sλ]) =

∑
res(µ/λ)=i

[Sµ].

(d) We have

E(n)H =
⊕

i∈Z/eZ
Ei(n)H , F (n)H =

⊕
i∈Z/eZ

Fi(n)H .

Proof. Part (a) follows from the fact that E(n)H , F (n)H are exact and biadjoint. See
[Ari02, Theorem 13.21(2)] for part (b) and [Ari02, Lemma 13.37] for part (c). Part (d)
follows from part (c) and [Ari02, Lemma 13.32].

4.6 Cyclotomic rational DAHA’s

Now, let us consider the cyclotomic rational DAHA’s, i.e., the rational DAHA’s as-
sociated with the complex reflection group Bn(l)’s. Given an l-tuple complex numbers
h = (h, h1, . . . , hl−1), we define a W -invariant function c : Sn → C by setting

c(R) = −h, c(Zp) = −1
2

l−1∑
p′=1

(ε−pp′ − 1)hp′ , ∀ 1 6 p 6 l − 1.

We write Hh,n = Hc(Bn(l), hn), and write Oh,n for the corresponding category O. Note
that the standard objects in Oh,n are indexed by l-partitions of n.

In the rest of the chapter, we will fix once for all an l-tuple of integers s = (s1, . . . , sl)
and a positive integer e > 2. We will always let the parameter h be given by

h = −1
e
, hp = sp+1 − sp

e
− 1
l
, 1 6 p 6 l − 1 . (4.6.1)
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In this case, the Knizhnik-Zamolodchikov functor has the following form

KZh,n = KZ(Bn(l), hn) : Oh,n → Cq,n,

where q is as in (4.5.1). The operator KZh,n : [Oh,n]→ [Hq,n] has the following property.

Lemma 4.6.1. For λ ∈ Pn,l we have

KZh,n([∆(λ)]) = [Sλ].

Proof. We abbreviate KZ = KZh,n. Let R be any commutative ring over C. For any l-
tuple z = (z, z1, . . . , zl−1) of elements in R one defines the rational DAHA over R attached
to Bn(l) with parameter z in the same way as before. Denote it by HR,z,n. The standard
modules ∆R(λ) are also defined as before. For any (l + 1)-tuple u = (u, u1, . . . , ul) of
invertible elements in R the Hecke algebra HR,u,n over R attached to Bn(l) with parameter
u is defined by the same presentation as in Section 4.4. The Specht modules SR,λ are also
well-defined, see [Ari02]. If R is a field, we will write Irr(HR,u,n) for the set of isomorphism
classes of simple HR,u,n-modules.

Now, fix R to be the ring of holomorphic functions of one variable $. We choose
z = (z, z1, . . . , zl−1) to be given by

z = l$, zp = (sp+1 − sp)l$ + e$, 1 6 p 6 l − 1.

Write x = exp(−2π
√
−1$). Let u = (u, u1, . . . , ul) be given by

u = xl, up = εp−1xspl−(p−1)e, 1 6 p 6 l.

By [BMR98, Theorem 4.12] the same definition as in Section 2.4 yields a well defined
HR,u,n-module

TR(λ) = KZR(∆R(λ)).

It is a free R-module of finite rank and it commutes with the base change functor by the
existence and unicity theorem for linear differential equations, i.e., for any ring homomor-
phism R→ R′ over C, we have a canonical isomorphism of HR′,u,n-modules

TR′(λ) = KZR′(∆R′(λ)) = TR(λ)⊗R R′. (4.6.2)

In particular, for any ring homomorphism a : R → C. Write Ca for the vector space
C equipped with the R-module structure given by a. Let a(z), a(u) denote the images
of z, u by a. Note that we have Ha(z),n = HR,z,n ⊗R Ca and Ha(u),n = HR,u,n ⊗R Ca.
Denote the Knizhnik-Zamolodchikov functor of Ha(z),n by KZa(z) and the standard module
corresponding to λ by ∆a(z)(λ). Then we have an isomorphism of Ha(u),n-modules

TR(λ)⊗R Ca = KZa(z)(∆a(z)(λ)).

Let K be the fraction field of R. By [GGOR03, Theorem 2.19] the category OK,z,n is
split semisimple. In particular, the standard modules are simple. We have

{TK(λ) |λ ∈ Pn,l} = Irr(HK,u,n).

The Hecke algebra HK,u,n is also split semisimple and we have

{SK,λ |λ ∈ Pn,l} = Irr(HK,u,n),
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see e.g., [Ari02, Corollary 13.9]. Thus there is a bijection ϕ : Pn,l → Pn,l such that TK(λ)
is isomorphic to SK,ϕ(λ) for all λ. We claim that ϕ is identity. To see this, consider
the algebra homomorphism a0 : R → C given by $ 7→ 0. Then Ha0(u),n is canonically
isomorphic to the group algebra CBn(l). In particular, it is semi-simple. Let K be the
algebraic closure of K. Let R be the integral closure of R in K and fix an extension a0 of
a0 to R. By Tit’s deformation theorem, see e.g., [CR87, Section 68A], there is a bijection

ψ : Irr(HK,u,n) ∼→ Irr(Ha0(u),n)

such that
ψ(TK(λ)) = TR(λ)⊗R Ca0 , ψ(SK,λ) = SR,λ ⊗R Ca0 .

By the definition of Specht modules we have SR,λ⊗RCa0
∼= λ as CBn(l)-modules. On the

other hand, since a0(z) = 0, by (4.6.2) we have the following isomorphisms

TR(λ)⊗R Ca0 = TR(λ)⊗R Ca0

= KZ0(∆0(λ))
= λ.

So ψ(TK(λ)) = ψ(SK,λ). Hence we have TK(λ) = SK,λ. Since TK(λ) = TK(λ) ⊗K K is
isomorphic to SK,ϕ(λ) = SK,ϕ(λ) ⊗K K, we deduce that ϕ(λ) = λ. The claim is proved.

Finally, let m be the maximal ideal of R consisting of the functions vanishing at
$ = −1/el. Let R̂ be the completion of R at m. It is a discrete valuation ring with
residue field C. Let a1 : R̂ → R̂/mR̂ = C be the quotient map. We have a1(z) = h and
a1(u) = q. Let K̂ be the fraction field of R̂. The decomposition map is given by

d : [H
K̂,u,n]→ [Hq,n], [M ] 7→ [L⊗

R̂
Ca1 ].

Here L is any H
R̂,u,n-submodule of M , free over R̂, such that L⊗

R̂
K̂ = M . The choice

of L does not affect the class [L⊗
R̂
Ca1 ] in [Hq,n]. See [Ari02, Section 13.3] for details on

this map. So we have

d([S
K̂,λ

]) = [S
R̂,λ
⊗
R̂
Ca1 ] = [Sλ],

d([T
K̂

(λ)]) = [T
R̂

(λ)⊗
R̂
Ca1 ] = [KZ(∆(λ))].

Since K̂ is an extension of K, by the last paragraph we have [S
K̂,λ

] = [T
K̂

(λ)]. We deduce
that [KZ(∆(λ))] = [Sλ].

4.7 The i-Restricion and i induction of cyclotomic rational DAHA’s

We abbreviate
Oh =

⊕
n∈N
Oh,n, KZ =

⊕
n∈N

KZh,n .

We have the following exact functors on Oh

E =
⊕
n>1

E(n), F =
⊕
n>1

F (n).

By Proposition 3.8.2, they are biadjoint. We have isomorphisms of functors

EH ◦KZ ∼= KZ ◦E, FH ◦KZ ∼= KZ ◦F (4.7.1)
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by Theorem 3.5.1 and Corollary 3.5.3.
Recall from Lemma 2.5.1(a) that we have an algebra isomorphism

γ : Z(Oh,n) ∼→ Z(Hq,n).

So there are unique elements K1, . . . ,Kn ∈ Z(Oh,n) such that the polynomial

Dn(z) = zn +K1z
n−1 + · · ·+Kn

maps to Cn(z) by γ. Since the elements K1, . . . ,Kn act on simple modules by scalars
and the category Oh,n is artinian, every module M in Oh,n is a direct sum of generalized
eigenspaces of Dn(z). For a(z) ∈ C(z) let Qn,a(z) be the exact functor

Qn,a(z) : Oh,n → Oh,n, M 7→ Qn,a(z)(M),

such that Qn,a(z)(M) is the generalized eigenspace of Dn(z) acting on M with the eigen-
value a(z).

Definition 4.7.1. The i-restriction functor and the i-induction functor

Ei(n) : Oh,n → Oh,n−1, Fi(n) : Oh,n−1 → Oh,n

are given by

Ei(n) =
⊕

a(z)∈C(z)
Qn−1,a(z)/(z−qi) ◦ E(n) ◦Qn,a(z),

Fi(n) =
⊕

a(z)∈C(z)
Qn,a(z)(z−qi) ◦ F (n) ◦Qn−1,a(z).

We abbreviate
Ei =

⊕
n>1

Ei(n), Fi =
⊕
n>1

Fi(n). (4.7.2)

Lemma 4.7.2. We have isomorphisms of functors

KZ ◦Ei(n) ∼= Ei(n)H ◦KZ, KZ ◦Fi(n) ∼= Fi(n)H ◦KZ, ∀ i ∈ Z/eZ.

Proof. Since γ(Dn(z)) = Cn(z), by Lemma 2.5.1(b) we have

KZ ◦Qn,a(z) ∼= Pn,a(z) ◦KZ, ∀ a(z) ∈ C(z).

So the proposition follows from (4.7.1).

Now, let us give some properties of the functors Ei, Fi in parallel to Proposition 4.5.2.

Proposition 4.7.3. (a) The functors Ei(n), Fi(n) are exact biadjoint functors.
(b) For any λ ∈ Pn,l the unique eigenvalue of Dn(z) on the standard module ∆(λ) is

aλ(z).
(c) We have

Ei(n)([∆(λ)]) =
∑

res(λ/µ)=i
[∆(µ)], Fi(n)([∆(λ)]) =

∑
res(µ/λ)=i

[∆(µ)]. (4.7.3)

(d) We have
E(n) =

⊕
i∈Z/eZ

Ei(n), F (n) =
⊕

i∈Z/eZ
Fi(n).
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Proof. By definition, the functors Ei(n), Fi(n) are exact. The biadjointness in part (a) fol-
lows from Proposition 3.8.2. For part (b), note that a standard module is indecomposable,
so the element Dn(z) has a unique eigenvalue on ∆(λ). By Lemma 4.6.1 this eigenvalue is
the same as the eigenvalue of Cn(z) on Sλ. So part (b) follows from Proposition 4.5.2(b).
Next, let us prove the equality for Ei(n) in part (c). The Pieri rule for the group Bn(l)
together with Proposition 3.3.2(b) yields

E(n)([∆(λ)]) =
∑
|λ/µ|=1

[∆(µ)], F (n)([∆(λ)]) =
∑
|µ/λ|=1

[∆(µ)]. (4.7.4)

So we have

Ei(n)([∆(λ)]) =
⊕

a(z)∈C[z]
Qn−1,a(z)/(z−qi)(E(n)(Qn,a(z)([∆(λ)])))

= Qn−1,aλ(z)/(z−qi)(E(n)(Qn,aλ(z)([∆(λ)])))
= Qn−1,aλ(z)/(z−qi)(E(n)([∆(λ)]))

= Qn−1,aλ(z)/(z−qi)(
∑
|λ/µ|=1

[∆(µ)])

=
∑

res(λ/µ)=i
[∆(µ)].

The last equality follows from the fact that for any l-partition µ such that |λ/µ| = 1 we
have aλ(z) = aµ(z)(z − qres(λ/µ)). The equality for Fi(n) is proved in the same way. So
part (c) is proved. Finally, part (d) follows from part (c) and (4.7.4).

Now, let us consider the following map

θ : [Oh] ∼→ Fs, [∆(λ)] 7→ |λ〉. (4.7.5)

It is an isomorphism of vector spaces.

Proposition 4.7.4. Under the isomorphism θ, the operators Ei, Fi on [Oh] go respectively
to the operators ei, fi on Fs. When i runs over Z/eZ they yield an action of ŝle on [Oh]
such that θ is an isomorphism of ŝle-modules.

Proof. This is clear from Proposition 4.7.3(c) and (4.2.1).

5 Categorifications and crystals

In this section, we present the main result of the chapter. We first construct an s̃le-
categorification on Oh. Then we use it to construct a crystal on the classes of simple
objects of Oh, which is isomorphic to the crystal of the Fock space Fs.

5.1 Categorifications

Let q = exp(2π
√
−1
e ). Recall that P is the weight lattice for the Lie algebra s̃le. Let

C be a C-linear artinian abelian category. For any functor F : C → C and any morphism
X ∈ End(F ), the generalized eigenspace of X acting on F with eigenvalue a ∈ C is called
the a-eigenspace of X in F .

Definition 5.1.1. An s̃le-categorification on C is the data of
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(i) an adjoint pair (U, V ) of exact functors C → C,
(ii) X ∈ End(U) and T ∈ End(U2),
(iii) a decomposition C =

⊕
τ∈P Cτ .

Let Ui (resp. Vi) be the qi-eigenspace of X in U (resp. in V ) 2 for i ∈ Z/eZ. We require
that

(a) U =
⊕
i∈Z/eZ Ui,

(b) the endomorphisms X and T satisfy

(1UT ) ◦ (T1U ) ◦ (1UT ) = (T1U ) ◦ (1UT ) ◦ (T1U ),
(T + 1U2) ◦ (T − q1U2) = 0, (5.1.1)
T ◦ (1UX) ◦ T = qX1U ,

(c) the action of ei = Ui, fi = Vi on [C] with i running over Z/eZ gives an integrable
representation of ŝle.

(d) Ui(Cτ ) ⊂ Cτ+αi and Vi(Cτ ) ⊂ Cτ−αi ,
(e) V is isomorphic to a left adjoint of U .

See [Rou08a, Definition 5.29], and also [CR08, Section 5.2.1].

5.2 Crystals arising from categorifications

Now, we explain how to use categorifications to construct crystals.

Definition 5.2.1. A crystal (or more precisely, an s̃le-crystal) is a set B together with
maps

wt : B → P, ẽi, f̃i : B → B t {0}, εi, ϕi : B → Z t {−∞},

such that
• ϕi(b) = εi(b) + 〈α∨i ,wt(b)〉,
• if ẽib ∈ B, then wt(ẽi(b)) = wt(b)+αi, εi(ẽi(b)) = εi(b)−1, ϕi(ẽi(b)) = ϕi(b)+1,
• if f̃i(b) ∈ B, then wt(f̃i(b)) = wt(b) − αi, εi(f̃i(b)) = εi(b) + 1, ϕi(f̃i(b)) =
ϕi(b)− 1,
• let b, b′ ∈ B, then f̃i(b) = b′ if and only if ẽi(b′) = b,
• if ϕi(b) = −∞, then ẽi(b) = 0 and f̃i(b) = 0.

Let b be the Lie subalgebra of s̃le generated by t and the elements ei, i ∈ Z/eZ. We
say that an s̃le-module V is b-locally finite if
• V =

⊕
µ∈P Vµ,

• for any v ∈ V , the b-submodule of V generated by v is finite dimensional.
Let V be a b-locally finite s̃le-module. For any nonzero vector v ∈ V and any i ∈ Z/eZ
we set

li(v) = max{l ∈ N | eli(v) 6= 0}.

Write li(0) = −∞. For l > 0 let

V <l
i = {v ∈ V | li(v) < l}.

A weight basis of V is a basis B of V such that each element of B is a weight vector. The
following definition is due to A. Berenstein and D. Kazhdan [BK07, Definition 5.30].

2. Here X acts on V via the isomorphism End(U) ∼= End(V )op given by adjunction, see [CR08, Section
4.1.2] for the precise definition.
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Definition 5.2.2. A perfect basis of V is a weight basis B together with maps ẽi, f̃i :
B → B t {0} for i ∈ Z/eZ such that
• for b, b′ ∈ B we have f̃i(b) = b′ if and only if ẽi(b′) = b,
• we have ẽi(b) 6= 0 if and only if ei(b) 6= 0,
• if ei(b) 6= 0 then we have

ei(b) ∈ C∗ẽi(b) + V
<li(b)−1
i . (5.2.1)

Given a perfect basis (B, ẽi, f̃i) and b ∈ B let wt(b) be the weight of b. Set also εi(b) = li(b)
and

ϕi(b) = εi(b) + 〈α∨i ,wt(b)〉.

Then the data
(B,wt, ẽi, f̃i, εi, ϕi) (5.2.2)

is a crystal. We will always attach this crystal structure to (B, ẽi, f̃i).
An element b ∈ B is called primitive if ei(b) = 0 for all i ∈ Z/eZ. Let B+ be the set of

primitive elements in B. Let V + be the vector space spanned by all the primitive vectors
in V . Then we have the following lemma.

Lemma 5.2.3. For any perfect basis (B, ẽi, f̃i) the set B+ is a basis of V +.

Proof. This is [BK07, Claim 5.32]. We give a proof for completeness. By definition we
have B+ ⊂ V +. Given a vector v ∈ V +, there exist ζ1, . . . , ζr ∈ C∗ and distinct elements
b1, . . . , br ∈ B such that v =

∑r
j=1 ζjbj . For any i ∈ Z/eZ let li = max{li(bj) | 1 6 j 6 r}

and J = {j | li(bj) = li, 1 6 j 6 r}. Then by the third property of perfect basis there exist
ηj ∈ C∗ for j ∈ J and a vector w ∈ V <li−1 such that 0 = ei(v) =

∑
j∈J ζjηj ẽi(bj) + w.

For distinct j, j′ ∈ J , we have bj 6= bj′ , so ẽi(bj) and ẽi(bj′) are different unless they are
zero. Moreover, since li(ẽi(bj)) = li − 1, the equality yields that ẽi(bj) = 0 for all j ∈ J .
So li = 0. Hence bj ∈ B+ for j = 1, . . . , r.

Consider an s̃le-categorification on a C-linear artinian abelian category C given by an
adjoint pair of endo-functors (U, V ), X ∈ End(U) and T ∈ End(U2). Assume that the s̃le-
module [C] is b-locally finite, then one can construct a perfect basis of [C] as follows. For
i ∈ Z/eZ let Ui, Vi be the qi-eigenspaces of X in U and V . By definition, the action of X
restricts to each Ui. The endomorphism T of U2 also restricts to endomorphism of (Ui)2,
see e.g., the beginning of Section 7 in [CR08]. It follows that the data (Ui, Vi, X, T ) gives
an sl2-categorification on C in the sense of [CR08, Section 5.21]. By [CR08, Proposition
5.20] this implies that for any simple object L in C, the object head(Ui(L)) (resp. soc(ViL))
is simple unless it is zero.

Let BC be the set of isomorphism classes of simple objects in C. As part of the data
of the s̃le-categorification, we have a decomposition C = ⊕τ∈PCτ . For a simple module
L ∈ Cτ , the weight of [L] in [C] is τ . Hence BC is a weight basis of [C]. Now for i ∈ Z/eZ
define the maps

ẽi : BC → BC t {0}, [L] 7→ [head(UiL)],
f̃i : BC → BC t {0}, [L] 7→ [soc(ViL)].

Proposition 5.2.4. The data (BC , ẽi, f̃i) is a perfect basis of [C].
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Proof. Fix i ∈ Z/eZ. Let us check the conditions in the definition. First, for two simple
modules L, L′ ∈ C, we have ẽi([L]) = [L′] if and only if 0 6= Hom(UiL,L′) = Hom(L, ViL′),
if and only if f̃i([L′]) = [L]. The second condition follows from the fact that any non
trivial module has a non trivial head. Finally, the third condition follows from [CR08,
Proposition 5.20(d)].

Example 5.2.5. We have the following well known s̃le-categorification on Cq, see e.g.,
[CR08, Section 7.2.2]. Consider the biadjoint endofunctors EH , FH on Cq. Let XH

be the endomorphism of EH given on E(n)H as the multiplication by the Jucy-Murphy
element Jn−1. Let TH be the endomorphism of (EH )2 given on E(n)H ◦ E(n − 1)H as
the multiplication by the element Tn−1 in Hq,n. Note that the endomorphisms XH and
TH satisfy the relations (5.1.1). Moreover, the qi-eigenspace of XH in EH and FH gives
respectively the i-restriction functor EH

i and the i-induction functor FH
i for i ∈ Z/eZ.

Finally, by [LM07, Theorem 2.11] the block decomposition of the category Cq has the form

Cq =
⊕
τ∈P

(Cq)τ , (5.2.3)

where (Cq)τ is the subcategory generated by the composition factors of the Specht modules
Sλ with λ running over l-partitions of weight τ . By convention (Cq)τ is zero if such λ does
not exist. Then the data (EH , FH , XH , TH ) and the decomposition (5.2.3) is an s̃le-
categorification on Cq.

5.3 An s̃le-categorification on Oh.

We construct an s̃le-categorification on Oh as follows. The adjoint pair will be given
by (E,F ). To construct the endomorphisms X, T , consider the isomorphism of functors

KZ ◦E ∼= EH ◦KZ

given by Theorem 3.5.1. It yields an isomorphism of rings

End(KZ ◦E) ∼= End(EH ◦KZ).

By Proposition 3.3.2(a), the functor E maps projective objects to projective ones, so
Lemma 3.6.1 applied to O1 = O2 = Oh and K = L = E yields an isomorphism

End(E) ∼= End(KZ ◦E).

Composing it with the isomorphism above gives a ring isomorphism

σE : End(E) ∼→ End(EH ◦KZ). (5.3.1)

Replacing E by E2 we get another isomorphism

σE2 : End(E2) ∼→ End((EH )2 ◦KZ).

Consider the XH , TH defined in Example 5.2.5. We define the endomorphisms X ∈
End(E), T ∈ End(E2) by

X = σ−1
E (XH 1KZ), T = σ−1

E2 (TH 1KZ).
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Finally, recall from Lemma 2.5.1 that the functor KZ induces a bijection between the
blocks of the category Oh and the blocks of Cq. So by (5.2.3), the block decomposition of
Oh is

Oh =
⊕
τ∈P

(Oh)τ ,

where (Oh)τ is the block corresponding to (Cq)τ via KZ.

Theorem 5.3.1. The data of
(i) the adjoint pair (E,F ),
(ii) the endomorphisms X ∈ End(E), T ∈ End(E2),
(iii) the decomposition Oh =

⊕
τ∈P (Oh)τ

is an s̃le-categorification on Oh.

Proof. First, let us show that for i ∈ Z/eZ the qi-generalized eigenspaces of X in E, F are
respectively the functors Ei, Fi defined in (4.7.2). Recall from Proposition 4.5.2(d) and
Proposition 4.7.3(d) that we have

E =
⊕

i∈Z/eZ
Ei and EH =

⊕
i∈Z/eZ

EH
i .

By the proof of Lemma 4.7.2 we see that any isomorphism

KZ ◦E ∼= EH ◦KZ

restricts to an isomorphism KZ ◦Ei ∼= EH
i ◦KZ for all i ∈ Z/eZ. So the isomorphism σE

in (5.3.1) maps Hom(Ei, Ej) to Hom(EH
i ◦KZ, EH

j ◦KZ). Write

X =
∑

i,j∈Z/eZ
Xij , XH 1KZ =

∑
i,j∈Z/eZ

(XH 1KZ)ij

with Xij ∈ Hom(Ei, Ej) and (XH 1KZ)ij ∈ Hom(EH
i ◦KZ, EH

j ◦KZ). We have

σE(Xij) = (XH 1KZ)ij .

Since EH
i is the qi-eigenspace of XH in EH , we have (XH 1KZ)ij = 0 for i 6= j and

(XH 1KZ)ii−qi is nilpotent for i ∈ Z/eZ. Since σE is an isomorphism of rings, this implies
that Xij = 0 and Xii − qi is nilpotent in End(E). So Ei is the qi-eigenspace of X in E.
The fact that Fi is the qi-eigenspace of X in F follows from adjunction.

Now, let us check the conditions (a)–(e):
(a) It is given by Proposition 4.7.3(d).
(b) Since XH and TH satisfy relations in (5.1.1), the endomorphisms X and T also

satisfy them. Because these relations are preserved by ring homomorphisms.
(c) It follows from Proposition 4.7.4.
(d) By the definition of (Oh)τ and Lemma 4.6.1, the standard modules in (Oh)τ are

all the ∆(λ) such that wt(λ) = τ . By (4.2.2) if µ is an l-partition such that res(λ/µ) = i
then wt(µ) = wt(λ) + αi. Now, the result follows from (4.7.3).

(e) This is Proposition 3.8.2.



5. Categorifications and crystals 51

5.4 Crystals of Fock spaces.

Let BFs be the set of l-partitions. In [JMMO91] this set is given a crystal structure.
We will call it the crystal of the Fock space Fs.

Theorem 5.4.1. 3 (a) The set

BOh = {[L(λ)] ∈ [Oh] : λ ∈ Pn,l, n ∈ N}

and the maps

ẽi : BOh → BOh t {0}, [L] 7→ [head(EiL)],
f̃i : BOh → BOh t {0}, [L] 7→ [soc(FiL)].

define a crystal structure on BOh.
(b) The crystal BOh given by (a) is isomorphic to the crystal BFs.

Proof. The Fock space Fs is a b-locally finite s̃le-module. So applying Proposition 5.2.4
to the s̃le-categorification in Theorem 5.3.1 yields that (BOh , ẽi, f̃i) is a perfect basis.
Therefore it defines a crystal structure on BOh by (5.2.2). This proves part (a). Now, let
us concentrate on part (b). It is known that BFs is a perfect basis of Fs. We identify the
s̃le-modules Fs and [Oh] via θ. By Lemma 5.2.3 the set B+

Fs
and B+

Oh
are two weight bases

of F+
s . So there is a bijection ψ : B+

Fs
→ B+

Oh
such that wt(b) = wt(ψ(b)). Since Fs is a

direct sum of highest weight simple s̃le-modules, this bijection extends to an automorphism
ψ of the s̃le-module Fs. By [BK07, Main Theorem 5.37] any automorphism of Fs which
maps B+

Fs
to B+

Oh
induces an isomorphism of crystals BFs

∼= BOh .

Remark 5.4.2. One can prove that if n < e then a simple module L ∈ Oh,n is finite
dimensional over C if and only if the class [L] is a primitive element in BOh . In the case
n = 1, we have Bn(l) = µl, the cyclic group, and the primitive elements in the crystal BFs

have explicit combinatorial descriptions. This yields another proof of the classification of
finite dimensional simple modules of Hh(µl), which was first given by W. Crawley-Boevey
and M. P. Holland. See type A case of [CBH98, Theorem 7.4].

3. This result has been independently obtained by Iain Gordon and Maurizio Martino.





Chapter II

Canonical bases and affine Hecke
algebras of type D.

In this chapter, we prove a conjecture of Kashiwara and Miemietz on canonical bases
and branching rules of affine Hecke algebras of type D.

This chapter is a joint work with Michela Varagnolo and Eric Vasserot. It has been
prepublished in [SVV09].

Introduction

Let f be the negative part of the quantized enveloping algebra of type A(1). Lusztig’s
description of the canonical basis of f implies that this basis can be naturally identified
with the set of isomorphism classes of simple objects of a category of modules of the affine
Hecke algebras of type A. This identification was mentioned in [Gro94], and was used
in [Ari96]. More precisely, there is a linear isomorphism between f and the Grothendieck
group of finite dimensional modules of the affine Hecke algebras of type A, and it is proved
in [Ari96] that the induction/restriction functors for affine Hecke algebras are given by the
action of the Chevalley generators and their transposed operators with respect to some
symmetric bilinear form on f .

The branching rules for affine Hecke algebras of type B have been investigated quite
recently, see [Eno09], [EK06, EK08a, EK08b], [Mie08] and [VV09a]. In particular, in
[Eno09], [EK06, EK08a, EK08b] an analogue of Ariki’s construction is conjectured and
studied for affine Hecke algebras of type B. Here f is replaced by a module θV(λ) over
an algebra θBBB. More precisely it is conjectured there that θV(λ) admits a canonical basis
which is naturally identified with the set of isomorphism classes of simple objects of a
category of modules of the affine Hecke algebras of type B. Further, in this identification
the branching rules of the affine Hecke algebras of type B should be given by the θBBB-action
on θV(λ). This conjecture has been proved [VV09a]. It uses both the geometric picture
introduced in [Eno09] (to prove part of the conjecture) and a new kind of graded algebras
similar to the KLR algebras from [KL09], [Rou08a].

A similar description of the branching rules for affine Hecke algebras of type D has
also been conjectured in [KM07]. In this case f is replaced by another module ◦V over the
algebra θBBB (the same algebra as in the type B case). The purpose of this chapter is to prove
the type D case. The method of the proof is the same as in [VV09a]. First we introduce
a family of graded algebras ◦Rm for m a non negative integer. They can be viewed as
the Ext-algebras of some complex of constructible sheaves naturally attached to the Lie
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algebra of the group SO(2m). This complex enters in the Kazhdan-Lusztig classification
of the simple modules of the affine Hecke algebra of the group Spin(2m). Then we identify
◦V with the sum of the Grothendieck groups of the graded algebras ◦Rm.

The plan of this chapter is the following. In Section 1 we introduce a graded algebra
◦R(Γ)ν . It is associated with a quiver Γ with an involution θ and with a dimension vector
ν. In Section 2 we consider a particular choice of pair (Γ, θ). The graded algebras ◦R(Γ)ν
associated with this pair (Γ, θ) are denoted by the symbol ◦Rm. Next we introduce the
affine Hecke algebra of type D, more precisely the affine Hecke algebra associated with
the group SO(2m), and we prove that it is Morita equivalent to ◦Rm. In Section 3 we
categorify the module ◦V from [KM07] using the graded algebras ◦Rm, see Theorem 3.8.2.
The main result of the chapter is Theorem 3.9.1.

Notation

0.1 Graded modules over graded algebras

Let k be an algebraically closed field of characteristic 0. By a graded k-algebra
R =

⊕
d Rd we will always mean a Z-graded associative k-algebra. Let R-mod be

the category of finitely generated graded R-modules, R-fmod be the full subcategory
of finite-dimensional graded modules and R-proj be the full subcategory of projective
objects. Unless specified otherwise all modules are left modules. We will abbreviate

K(R) = [R-proj], G(R) = [R-fmod].

Here [CCC] denotes the Grothendieck group of an exact category CCC. Assume that the k-vector
spaces Rd are finite dimensional for each d. Then K(R) is a free abelian group with a
basis formed by the isomorphism classes of the indecomposable objects in R-proj, and
G(R) is a free abelian group with a basis formed by the isomorphism classes of the simple
objects in R-fmod. Given an object M of R-proj or R-fmod let [M ] denote its class in
K(R), G(R) respectively. When there is no risk of confusion we abbreviateM = [M ]. We
will write [M : N ] for the composition multiplicity of the R-module N in the R-module
M . Consider the ring A = Z[v, v−1]. If the grading of R is bounded below then the
A-modules K(R), G(R) are free. Here A acts on G(R), K(R) as follows

vM = M [1], v−1M = M [−1].

For any M,N in R-mod let

homR(M,N) =
⊕
d

HomR(M,N [d])

be the Z-graded k-vector space of all R-module homomorphisms. If R = k we will omit the
subscript R in hom’s and in tensor products. For any graded k-vector space M =

⊕
dMd

we will write
gdim(M) =

∑
d

vddim(Md),

where dim is the dimension over k.

0.2 Quivers with involutions

Recall that a quiver Γ is a tuple (I,H, h 7→ h′, h 7→ h′′) where I is the set of vertices,
H is the set of arrows and for each h ∈ H the vertices h′, h′′ ∈ I are the origin and the
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goal of h respectively. Note that the set I may be infinite. We will assume that no arrow
may join a vertex to itself. For each i, j ∈ I we write

Hi,j = {h ∈ H |h′ = i, h′′ = j}.

We will abbreviate i→ j if Hi,j 6= ∅. Let hi,j be the number of elements in Hi,j and set

i · j = −hi,j − hj,i, i · i = 2, i 6= j.

An involution θ on Γ is a pair of involutions on I and H, both denoted by θ, such that
the following properties hold for each h in H
• θ(h)′ = θ(h′′) and θ(h)′′ = θ(h′),
• θ(h′) = h′′ if and only if θ(h) = h.

We will always assume that θ has no fixed points in I, i.e., there is no i ∈ I such that
θ(i) = i. To simplify we will say that θ has no fixed point. Let

θNI = {ν =
∑
i

νii ∈ NI | νθ(i) = νi, ∀i}.

For any ν ∈ θNI set |ν| =
∑
i νi. It is an even integer. Write |ν| = 2m with m ∈ N. We

will denote by θIν the set of sequences

i = (i1−m, . . . , im−1, im)

of elements in I such that θ(il) = i1−l and
∑
k ik = ν. For any such sequence i we will

abbreviate θ(i) = (θ(i1−m), . . . , θ(im−1), θ(im)). Finally, we set
θIm =

⋃
ν

θIν , ν ∈ θNI, |ν| = 2m.

0.3 The wreath product

Given a positive integer m, let Sm be the symmetric group, and Z2 = {−1, 1}. Con-
sider the wreath product Wm = Sm o Z2. Write s1, . . . , sm−1 for the simple reflections in
Sm. For each l = 1, 2, . . .m let εl ∈ (Z2)m be −1 placed at the l-th position. There is a
unique action of Wm on the set {1−m, . . . ,m− 1,m} such that Sm permutes 1, 2, . . .m
and such that εl fixes k if k 6= l, 1 − l and switches l and 1 − l. The group Wm acts also
on θIν . Indeed, view a sequence i as the map

{1−m, . . . ,m− 1,m} → I, l 7→ il.

Then we set w(i) = i ◦ w−1 for w ∈Wm. For each ν we fix once for all a sequence

ie = (i1−m, . . . , im) ∈ θIν .

Let We be the centralizer of ie in Wm. Then there is a bijection

We\Wm → θIν , Wew 7→ w−1(ie).

Now, assume that m > 1. We set s0 = ε1s1ε1. Let ◦Wm be the subgroup of Wm generated
by s0, . . . , sm−1. We will regard it as a Weyl group of type Dm such that s0, . . . , sm−1 are
the simple reflections. Note that We is a subgroup of ◦Wm. Indeed, if We 6⊂ ◦Wm there
should exist l such that εl belongs to We. This would imply that il = θ(il), contradicting
the fact that θ has no fixed point. Therefore θIν decomposes into two ◦Wm-orbits. We
will denote them by θIν+ and θIν−. For m = 1 we set ◦W1 = {e} and we choose again θIν+
and θIν− in a obvious way.
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1 The graded k-algebra ◦R(Γ)ν
Fix a quiver Γ with set of vertices I and set of arrows H. Fix an involution θ on Γ.

Assume that Γ has no 1-loops and that θ has no fixed points. Fix a dimension vector
ν 6= 0 in θNI. Set |ν| = 2m.

1.1 Definition of the graded k-algebra ◦R(Γ)ν
Assume that m > 1. We define a graded k-algebra ◦R(Γ)ν with 1 generated by 1i, κl,

σk, with i ∈ θIν , l = 1, 2, . . . ,m, k = 0, 1, . . . ,m−1 modulo the following defining relations
(a) 1i 1i′ = δi,i′1i, σk1i = 1skiσk, κl1i = 1iκl,
(b) κlκl′ = κl′κl,
(c) σ2

k1i = Qik,isk(k)(κsk(k),κk)1i,
(d) σkσk′ = σk′σk if 1 6 k < k′ − 1 < m− 1 or 0 = k < k′ 6= 2,
(e) (σsk(k)σkσsk(k) − σkσsk(k)σk)1i =

=


Qik,isk(k) (κsk(k),κk)−Qik,isk(k) (κsk(k),κsk(k)+1)

κk−κsk(k)+1
1i if ik = isk(k)+1,

0 else.

(f) (σkκl − κsk(l)σk)1i =


−1i if l = k, ik = isk(k),

1i if l = sk(k), ik = isk(k),

0 else.
Here we have set κ1−l = −κl and

Qi,j(u, v) =
{

(−1)hi,j (u− v)−i·j if i 6= j,

0 else.
(1.1.1)

If m = 0 we set ◦R(Γ)0 = k⊕k. If m = 1 then we have ν = i+ θ(i) for some i ∈ I. Write
i = iθ(i), and

◦R(Γ)ν = k[κ1]1i ⊕ k[κ1]1θ(i).
We will abbreviate σi,k = σk1i and κi,l = κl1i. The grading on ◦R(Γ)0 is the trivial one.
For m > 1 the grading on ◦R(Γ)ν is given by the following rules :

deg(1i) = 0,
deg(κi,l) = 2,
deg(σi,k) = −ik · isk(k).

We define ω to be the unique anti-involution of the graded k-algebra ◦R(Γ)ν which fixes
1i, κl, σk. We set ω to be identity on ◦R(Γ)0.

1.2 Relation with the graded k-algebra θR(Γ)ν
A family of graded k-algebra θR(Γ)λ,ν has been introduced in [VV09a, Section 5.1], for

λ an arbitrary dimension vector in NI. Here we will only consider the special case λ = 0,
and we abbreviate θR(Γ)ν = θR(Γ)0,ν . Recall that if ν 6= 0 then θR(Γ)ν is the graded
k-algebra with 1 generated by 1i, κl, σk, π1, with i ∈ θIν , l = 1, 2, . . . ,m, k = 1, . . . ,m− 1
such that 1i, κl and σk satisfy the same relations as before and

π2
1 = 1, π11iπ1 = 1ε1i, π1κlπ1 = κε1(l),

(π1σ1)2 = (σ1π1)2, π1σkπ1 = σk if k 6= 1.
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If ν = 0 then θR(Γ)0 = k. The grading is given by setting deg(1i), deg(κi,l), deg(σi,k)
to be as before and deg(π11i) = 0. In the rest of Section 1 we will assume m > 0. Then
there is a canonical inclusion of graded k-algebras

◦R(Γ)ν ⊂ θR(Γ)ν (1.2.1)

such that 1i,κl, σk 7→ 1i,κl, σk for i ∈ θIν , l = 1, . . . ,m, k = 1, . . . ,m − 1 and such that
σ0 7→ π1σ1π1. From now on we will write σ0 = π1σ1π1 whenever m > 1. The assignment
x 7→ π1xπ1 defines an involution of the graded k-algebra θR(Γ)ν which normalizes ◦R(Γ)ν .
Thus it yields an involution

γ : ◦R(Γ)ν → ◦R(Γ)ν . (1.2.2)

Let 〈γ〉 be the group of two elements generated by γ. The smash product ◦R(Γ)ν o 〈γ〉
is a graded k-algebra such that deg(γ) = 0. There is an unique isomorphism of graded
k-algebras

◦R(Γ)ν o 〈γ〉 → θR(Γ)ν (1.2.3)

which is identity on ◦R(Γ)ν and which takes γ to π1.

1.3 The polynomial representation and the PBW theorem

For any i in θIν let θFi be the subalgebra of ◦R(Γ)ν generated by 1i and κi,l with
l = 1, 2, . . . ,m. It is a polynomial algebra. Let

θFν =
⊕

i∈θIν

θFi.

The group Wm acts on θFν via w(κi,l) = κw(i),w(l) for any w ∈ Wm. Consider the fixed
points set

◦Sν = (θFν)◦Wm .

Regard θR(Γ)ν and End(θFν) as θFν-algebras via the left multiplication. In [VV09a,
Proposition 5.4] is given an injective graded θFν-algebra morphism θR(Γ)ν → End(θFν).
It restricts via (1.2.1) to an injective graded θFν-algebra morphism

◦R(Γ)ν → End(θFν). (1.3.1)

Next, recall that ◦Wm is the Weyl group of type Dm with simple reflections s0, . . . , sm−1.
For each w in ◦Wm we choose a reduced decomposition ẇ of w. It has the following form

w = sk1sk2 · · · skr , 0 6 k1, k2, . . . , kr 6 m− 1.

We define an element σẇ in ◦R(Γ)ν by

σẇ =
∑

i
1iσẇ, 1iσẇ =

{
1i if r = 0
1iσk1σk2 · · ·σkr else,

(1.3.2)

Observe that the element σẇ may depend on the choice of the reduced decomposition
ẇ. Let θF′ν =

⊕
i
θF′i, where θF′i is the localization of the ring θFi with respect to the

multiplicative system generated by

{κi,l ± κi,l′ | 1 6 l 6= l′ 6 m} ∪ {κi,l | l = 1, 2, . . . ,m}.
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Proposition 1.3.1. The k-algebra ◦R(Γ)ν is a free (left or right) θFν-module with basis
{σẇ |w ∈ ◦Wm}. Its rank is 2m−1m!. The operator 1iσẇ is homogeneous and its degree
is independent of the choice of the reduced decomposition ẇ. The inclusion ◦R(Γ)ν ⊂
End(θFν) yields an isomorphism of θF′ν-algebras θF′ν ⊗θFν

◦R(Γ)ν → θF′ν o ◦Wm, such
that for each i and each l = 1, 2, . . . ,m, k = 0, 1, 2, . . . ,m− 1 we have

1i 7→ 1i,

κi,l 7→ κl1i, (1.3.3)

σi,k 7→

(κk − κsk(k))−1(sk − 1)1i if ik = isk(k),

(κk − κsk(k))
hisk(k),ik sk1i if ik 6= isk(k).

Proof. Following the proof of [VV09a, Proposition 5.5], we filter the algebra ◦R(Γ)ν with
1i, κi,l in degree 0 and σi,k in degree 1. The Nil Hecke algebra of type Dm is the k-algebra
◦NHm generated by σ̄0, σ̄1, . . . , σ̄m−1 with relations

σ̄kσ̄k′ = σ̄k′ σ̄k if 1 6 k < k′ − 1 < m− 1 or 0 = k < k′ 6= 2,
σ̄sk(k)σ̄kσ̄sk(k) = σ̄kσ̄sk(k)σ̄k, σ̄2

k = 0.

We can form the semidirect product θFν o ◦NHm, which is generated by 1i, κ̄l, σ̄k with
the relations above and

σ̄kκ̄l = κ̄sk(l)σ̄k, κ̄lκ̄l′ = κ̄l′κ̄l′ .
We have a surjective k-algebra morphism

θFν o ◦NHm → gr ◦R(Γ)ν , 1i 7→ 1i, κ̄l 7→ κl, σ̄k 7→ σk.

Thus the elements σẇ with w ∈ ◦Wm generate ◦R(Γ)ν as a θFν-module. We claim that
they form a θFν-basis of ◦R(Γ)ν . Indeed, by [VV09a, Corollary 5.6], the inclusion (1.3.1)
yields a surjective algebra homomorphism

φ : θF′ν ⊗θFν
◦R(Γ)ν → θF′ν o ◦Wm,

such that for each i and each l = 1, 2, . . . ,m, k = 0, 1, 2, . . . ,m− 1 we have

φ(1i) = 1i,

φ(κi,l) = κl1i,

φ(σi,k) =

(κk − κsk(k))−1(sk − 1)1i if ik = isk(k),

(κk − κsk(k))
hisk(k),ik sk1i if ik 6= isk(k).

Therefore we have
φ(σẇ1i) =

∑
v∈◦Wm, v6w

vpv,w1i,

for some element pv,w in the ring θF′i, with pw,w invertible. This proves the claim. The
rest of the proposition follows.

Restricting the θFν-action on ◦R(Γ)ν to the k-subalgebra ◦Sν we get a structure of
graded ◦Sν-algebra on ◦R(Γ)ν .

Proposition 1.3.2. (a) The algebra ◦Sν is isomorphic to the center of ◦R(Γ)ν .
(b) The algebra ◦R(Γ)ν is a free graded module over ◦Sν of rank (2m−1m!)2.

Proof. Part (a) is clear by the θF′ν-algebra isomorphism θF′ν ⊗θFν
◦R(Γ)ν

∼→ θF′ν o ◦Wm

in Proposition 1.3.1. Part (b) follows from (a) and Proposition 1.3.1.
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2 Affine Hecke algebras of type D
2.1 Affine Hecke algebras of type D

Fix p in k×. For any integer m > 0 we define the extended affine Hecke algebra Hm

of type Dm as follows. If m > 1 then Hm is the k-algebra with 1 generated by

Tk, X±1
l , k = 0, 1, . . . ,m− 1, l = 1, 2, . . . ,m

satisfying the following defining relations :
(a) XlXl′ = Xl′Xl,
(b) TkTsk(k)Tk = Tsk(k)TkTsk(k), TkTk′ = Tk′Tk if 1 6 k < k′ − 1 or k = 0, k′ 6= 2,
(c) (Tk − p)(Tk + p−1) = 0,
(d) T0X

−1
1 T0 = X2, TkXkTk = Xsk(k) if k 6= 0, TkXl = XlTk if k 6= 0, l, l − 1 or k = 0,

l 6= 1, 2.
Finally, we set H0 = k⊕ k and H1 = k[X±1

1 ].

Remark 2.1.1. (a) The extended affine Hecke algebra HB
m of type Bm with parameters

p, q ∈ k× such that q = 1 is generated by P , Tk, X±1
l , k = 1, . . . ,m− 1, l = 1, . . . ,m such

that Tk, X±1
l satisfy the relations as above and

P 2 = 1, (PT1)2 = (T1P )2, PTk = TkP if k 6= 1,
PX−1

1 P = X1, PXl = XlP if l 6= 1.

See e.g., [VV09a, Section 6.1]. There is an obvious k-algebra embedding Hm ⊂ HB
m. Let

γ denote also the involution Hm → Hm, a 7→ PaP . We have a canonical isomorphism of
k-algebras

Hm o 〈γ〉 ' HB
m.

Compare Section 1.2.
(b) Given a connected reductive group G we call affine Hecke algebra of G the Hecke

algebra of the extended affine Weyl group W n P , where W is the Weyl group of (G,T ),
P is the group of characters of T , and T is a maximal torus of G. Then Hm is the affine
Hecke algebra of the group SO(2m). Let He

m be the affine Hecke algebra of the group
Spin(2m). It is generated by Hm and an element X0 such that

X2
0 = X1X2 . . . Xm, TkX0 = X0Tk if k 6= 0, T0X0X

−1
1 X−1

2 T0 = X0.

Thus Hm is the fixed point subset of the k-algebra automorphism of He
m taking Tk, Xl to

Tk, (−1)δl,0Xl for all k, l. Therefore, if p is not a root of 1 the simple Hm-modules can be
recovered from the Kazhdan-Lusztig classification of the simple He

m-modules via Clifford
theory, see e.g., [Ree02].

2.2 Intertwiners and blocks of Hm

We define

A = k[X±1
1 , X±1

2 , . . . , X±1
m ], A′ = A[Σ−1], H′m = A′ ⊗A Hm,

where Σ is the multiplicative set generated by

1−XlX
±1
l′ , 1− p2X±1

l X±1
l′ , l 6= l′.
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For k = 0, . . . ,m − 1 the intertwiner ϕk is the element of H′m given by the following
formulas

ϕk − 1 =
Xk −Xsk(k)

pXk − p−1Xsk(k)
(Tk − p). (2.2.1)

The group ◦Wm acts on A′ as follows

(ska)(X1, . . . , Xm) = a(X1, . . . , Xk+1, Xk, . . . , Xm) if k 6= 0,
(s0a)(X1, . . . , Xm) = a(X−1

2 , X−1
1 , . . . , Xm).

There is an isomorphism of A′-algebras

A′ o ◦Wm → H′m, sk 7→ ϕk.

The semi-direct product group Z o Z2 = Z o {−1, 1} acts on k× by (n, ε) : z 7→ zεp2n.
Given a ZoZ2-invariant subset I of k× we denote by Hm-ModI the category of all Hm-
modules such that the action of X1, X2, . . . , Xm is locally finite with eigenvalues in I. We
associate to the set I and to the element p ∈ k× a quiver Γ as follows. The set of vertices
is I, and there is one arrow p2i → i whenever i lies in I. We equip Γ with an involution
θ such that θ(i) = i−1 for each vertex i and such that θ takes the arrow p2i → i to the
arrow i−1 → p−2i−1. We will assume that the set I does not contain 1 nor −1 and that
p 6= 1,−1. Thus the involution θ has no fixed points and no arrow may join a vertex of Γ
to itself.
Remark 2.2.1. We may assume that I = ±{pn; n ∈ Zodd}. See the discussion in [KM07].
Then Γ is of type A∞ if p has infinite order and Γ is of type A(1)

r if p2 is a primitive r-th
root of unity.

2.3 The Hm-modules versus the ◦Rm-modules

Assume that m > 1. We define the graded k-algebra

θRI,m =
⊕
ν

θRI,ν ,
θRI,ν = θR(Γ)ν , ◦RI,m =

⊕
ν

◦RI,ν ,
◦RI,ν = ◦R(Γ)ν , θIm =

⊔
ν

θIν ,

where ν runs over the set of all dimension vectors in θNI such that |ν| = 2m. When there
is no risk of confusion we abbreviate

θRν = θRI,ν ,
θRm = θRI,m,

◦Rν = ◦RI,ν ,
◦Rm = ◦RI,m.

Note that θRν and θRm are the same as in [VV09a, Section 6.4], with λ = 0. Note
also that the k-algebra ◦Rm may not have 1, because the set I may be infinite. We de-
fine ◦Rm-Mod0 as the category of all (non-graded) ◦Rm-modules such that the elements
κ1,κ2, . . . ,κm act locally nilpotently. Let ◦Rm-fMod0 and Hm-fModI be the full sub-
categories of finite dimensional modules in ◦Rm-Mod0 and Hm-ModI respectively. Fix
a formal series f(κ) in k[[κ]] such that f(κ) = 1 + κ modulo (κ2).

Theorem 2.3.1. We have an equivalence of categories

◦Rm-Mod0 → Hm-ModI , M 7→M

which is given by
(a) Xl acts on 1iM by i−1

l f(κl) for each l = 1, 2, . . . ,m,
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(b) if m > 1 then Tk acts on 1iM as follows for each k = 0, 1, . . . ,m− 1,

(pf(κk)−p−1f(κsk(k)))(κk−κsk(k))
f(κk)−f(κsk(k)) σk + p, if isk(k) = ik,

f(κk)−f(κsk(k))
(p−1f(κk)−pf(κsk(k)))(κk−κsk(k))σk + (p−2−1)f(κsk(k))

pf(κk)−p−1f(κsk(k)) , if isk(k) = p2ik,

pikf(κk)−p−1isk(k)f(κsk(k))
ikf(κk)−isk(k)f(κsk(k)) σk + (p−1−p)ikf(κsk(k))

isk(k)f(κk)−ikf(κsk(k)) , if isk(k) 6= ik, p
2ik.

Proof. This follows from [VV09a, Theorem 6.5] by Section 1.2 and Remark 2.1.1(a). One
can also prove it by reproducing the arguments in loc. cit. by using (1.3.3) and (2.2.1).

Corollary 2.3.2. There is an equivalence of categories

Ψ : ◦Rm-fMod0 → Hm-fModI , M 7→M.

Remark 2.3.3. The results in Section 2.3 are still true if k is any field. Set f(κ) = 1 + κ
for instance.

2.4 Induction and restriction of Hm-modules

For i ∈ I we define functors

Ei : Hm+1-fModI → Hm-fModI , (2.4.1)
Fi : Hm-fModI → Hm+1-fModI ,

where EiM ⊂M is the generalized i−1-eigenspace of the Xm+1-action, and where

FiM = IndHm+1
Hm⊗k[X±1

m+1](M ⊗ ki).

Here ki is the 1-dimensional representation of k[X±1
m+1] defined by Xm+1 7→ i−1.

3 Global bases of ◦V and projective graded ◦R-modules

3.1 The Grothendieck groups of ◦Rm

The graded k-algebra ◦Rm is free of finite rank over its center, a commutative graded
k-subalgebra. See Proposition 1.3.2. Therefore any simple object of ◦Rm-mod is finite-
dimensional and there is a finite number of isomorphism classes of simple modules in
◦Rm-mod. The abelian group G(◦Rm) is free with a basis formed by the classes of the
simple objects of ◦Rm-mod. The abelian group K(◦Rm) is free with a basis formed by
the classes of the indecomposable projective objects. Both G(◦Rm) and K(◦Rm) are free
A-modules, where v shifts the grading by 1. We consider the following A-modules

◦KI =
⊕
m>0

◦KI,m,
◦KI,m = K(◦Rm),

◦GI =
⊕
m>0

◦GI,m,
◦GI,m = G(◦Rm).

We will also abbreviate

◦KI,∗ =
⊕
m>0

◦KI,m,
◦GI,∗ =

⊕
m>0

◦GI,m.
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From now on, to unburden the notation we may abbreviate ◦R = ◦Rm, hoping it will not
create any confusion. For any M,N in ◦R-mod we set

(M : N) = gdim(Mω ⊗◦R N), 〈M : N〉 = gdim hom◦R(M,N),

where ω is the anti-involution defined in Section 1.1. The Cartan pairing is the perfect
A-bilinear form

◦KI × ◦GI → A, (P,M) 7→ 〈P : M〉.

First, we concentrate on the A-module ◦GI . Consider the duality

◦R-fmod→ ◦R-fmod, M 7→M [ = hom(M,k),

with the action and the grading given by

(xf)(m) = f(ω(x)m), (M [)d = Hom(M−d,k).

This duality functor yields an A-antilinear map

◦GI → ◦GI , M 7→M [.

Let ◦B denote the set of isomorphism classes of simple objects of ◦R-fMod0. We can now
define the upper global basis of ◦GI as follows. The proof is given in Section 3.6.

Proposition/Definition 3.1.1. For each b in ◦B there is a unique selfdual irreducible
graded ◦R-module ◦Gup(b) which is isomorphic to b as a (non graded) ◦R-module. We set
◦Gup(0) = 0 and ◦Gup = {◦Gup(b) | b ∈ ◦B}. Hence ◦Gup is an A-basis of ◦GI .

Now, we concentrate on the A-module ◦KI . We equip ◦KI with the symmetric A-
bilinear form

◦KI × ◦KI → A, (M,N) 7→ (M : N). (3.1.1)

Consider the duality

◦R-proj→ ◦R-proj, P 7→ P ] = hom◦R(P, ◦R),

with the action and the grading given by

(xf)(p) = f(p)ω(x), (P ])d = Hom◦R(P [−d], ◦R).

This duality functor yields an A-antilinear map

◦KI → ◦KI , P 7→ P ].

Set K = Q(v). Let K → K, f 7→ f̄ be the unique involution such that v̄ = v−1.

Definition 3.1.2. For each b in ◦B let ◦Glow(b) be the unique indecomposable graded
module in ◦R-proj whose top is isomorphic to ◦Gup(b). We set ◦Glow(0) = 0 and ◦Glow =
{◦Glow(b | b ∈ ◦B}. The latter is an A-basis of ◦KI .

Proposition 3.1.3. (a) We have 〈◦Glow(b) : ◦Gup(b′)〉 = δb,b′ for each b, b′ in ◦B.
(b) We have 〈P ] : M〉 = 〈P : M [〉 for each P , M .
(c) We have ◦Glow(b)] = ◦Glow(b) for each b in ◦B.

The proof is the same as in [VV09a, Proposiiton 8.4].
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Example 3.1.4. Set ν = i+ θ(i) and i = iθ(i). Consider the graded ◦Rν-modules
◦Ri = ◦R1i = 1i

◦R, ◦Li = top(◦Ri).

The global bases are given by
◦Glow

ν = {◦Ri,
◦Rθ(i)}, ◦Gup

ν = {◦Li,
◦Lθ(i)}.

For m = 0 we have ◦R0 = k⊕ k. Set φ+ = k⊕ 0 and φ− = 0⊕ k. We have
◦Glow

0 = ◦Gup
0 = {φ+, φ−}.

3.2 Definition of the operators ei, fi, e′i, f ′i
In this section we will always assume m > 0 unless specified otherwise. First, let us

introduce the following notation. Let Dm,1 be the set of minimal representative in ◦Wm+1
of the cosets in ◦Wm\◦Wm+1. Write

Dm,1;m,1 = Dm,1 ∩ (Dm,1)−1.

For each element w of Dm,1;m,1 we set

W (w) = ◦Wm ∩ w(◦Wm)w−1.

Let R1 be the k-algebra generated by elements 1i, κi, i ∈ I, satisfying the defining relations
1i 1i′ = δi,i′1i and κi = 1iκi1i. We equip R1 with the grading such that deg(1i) = 0 and
deg(κi) = 2. Let

Ri = 1iR1 = R11i, Li = top(Ri) = Ri/(κi).

Then Ri is a graded projective R1-module and Li is simple. We abbreviate
θRm,1 = θRm ⊗R1,

◦Rm,1 = ◦Rm ⊗R1.

There is an unique inclusion of graded k-algebras
θRm,1 → θRm+1,

1i ⊗ 1i 7→ 1i′ ,

1i ⊗ κi,l 7→ κi′,m+l,

κi,l ⊗ 1i 7→ κi′,l,

πi,1 ⊗ 1i 7→ πi′,1,

σi,k ⊗ 1i 7→ σi′,k,

where, given i ∈ θIm and i ∈ I, we have set i′ = θ(i)ii, a sequence in θIm+1. This inclusion
restricts to an inclusion ◦Rm,1 ⊂ ◦Rm+1.

Lemma 3.2.1. The graded ◦Rm,1-module ◦Rm+1 is free of rank 2(m+ 1).

Proof. For each w in Dm,1 we have the element σẇ in ◦Rm+1 defined in (1.3.2). Using
filtered/graded arguments it is easy to see that

◦Rm+1 =
⊕

w∈Dm,1

◦Rm,1σẇ.
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We define a triple of adjoint functors (ψ!, ψ
∗, ψ∗) where

ψ∗ : ◦Rm+1-mod→ ◦Rm-mod×R1-mod

is the restriction and ψ!, ψ∗ are given by

ψ! :
{
◦Rm-mod×R1-mod→ ◦Rm+1-mod,
(M,M ′) 7→ ◦Rm+1 ⊗◦Rm,1 (M ⊗M ′),

ψ∗ :
{
◦Rm-mod×R1-mod→ ◦Rm+1-mod,
(M,M ′) 7→ hom◦Rm,1(◦Rm+1,M ⊗M ′).

First, note that the functors ψ!, ψ∗, ψ∗ commute with the shift of the grading. Next, the
functor ψ∗ is exact, and it takes finite dimensional graded modules to finite dimensional
ones. The right graded ◦Rm,1-module ◦Rm+1 is free of finite rank. Thus ψ! is exact, and
it takes finite dimensional graded modules to finite dimensional ones. The left graded
◦Rm,1-module ◦Rm+1 is also free of finite rank. Thus the functor ψ∗ is exact, and it takes
finite dimensional graded modules to finite dimensional ones. Further ψ! and ψ∗ take
projective graded modules to projective ones, because they are left adjoint to the exact
functors ψ∗, ψ∗ respectively. To summarize, the functors ψ!, ψ∗, ψ∗ are exact and take
finite dimensional graded modules to finite dimensional ones, and the functors ψ!, ψ∗ take
projective graded modules to projective ones.

For any graded ◦Rm-module M we write

fi(M) = ◦Rm+11m,i ⊗◦Rm M, (3.2.1)
ei(M) = ◦Rm−1 ⊗◦Rm−1,1 1m−1,iM.

Let us explain these formulas. The symbols 1m,i and 1m−1,i are given by

1m−1,iM =
⊕

i
1θ(i)iiM, i ∈ θIm−1.

Note that fi(M) is a graded ◦Rm+1-module, while ei(M) is a graded ◦Rm−1-module. The
tensor product in the definition of ei(M) is relative to the graded k-algebra homomorphism

◦Rm−1,1 → ◦Rm−1 ⊗R1 → ◦Rm−1 ⊗Ri → ◦Rm−1 ⊗ Li = ◦Rm−1.

In other words, let e′i(M) be the graded ◦Rm−1-module obtained by taking the direct
summand 1m−1,iM and restricting it to ◦Rm−1. Observe that if M is finitely generated
then e′i(M) may not lie in ◦Rm−1-mod. To remedy this, since e′i(M) affords a ◦Rm−1⊗Ri-
action we consider the graded ◦Rm−1-module

ei(M) = e′i(M)/κie′i(M).

Definition 3.2.2. The functors ei, fi preserve the category ◦R-proj, yielding A-linear
operators on ◦KI which act on ◦KI,∗ by the formula (3.2.1) and satisfy also

fi(φ+) = ◦Rθ(i)i, fi(φ−) = ◦Riθ(i), ei(Rθ(j)j) = δi,jφ+ + δi,θ(j)φ−.

Let ei, fi denote also the A-linear operators on ◦GI which are the transpose of fi, ei with
respect to the Cartan pairing.
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Note that the symbols ei(M), fi(M) have a different meaning if M is viewed as an
element of ◦KI or if M is viewed as an element of ◦GI . We hope this will not create any
confusion. The proof of the following lemma is the same as in [VV09a, Lemma 8.9].

Lemma 3.2.3. (a) The operators ei, fi on ◦GI are given by

ei(M) = 1m−1,iM fi(M) = hom◦Rm,1(◦Rm+1,M ⊗ Li), M ∈ ◦Rm-fmod.

(b) For each M ∈ ◦Rm-mod, M ′ ∈ ◦Rm+1-mod we have

(e′i(M ′) : M) = (M ′ : fi(M)).

(c) We have fi(P )] = fi(P ]) for each P ∈ ◦R-proj.

(d) We have ei(M)[ = ei(M [) for each M ∈ ◦R-fmod.

3.3 Induction of Hm-modules versus induction of ◦Rm-modules

Recall the functors Ei, Fi on H-fModI defined in (2.4.1). We have also the functors

for : ◦Rm-fmod→ ◦Rm-fMod0, Ψ : ◦Rm-fMod0 → Hm-fModI ,

where for is the forgetting of the grading. Finally we define functors

Ei : ◦Rm-fMod0 → ◦Rm−1-fMod0, EiM = 1m−1,iM, (3.3.1)
Fi : ◦Rm-fMod0 → ◦Rm+1-fMod0, FiM = ψ!(M,Li).

Proposition 3.3.1. There are canonical isomorphisms of functors

Ei ◦Ψ = Ψ ◦ Ei, Fi ◦Ψ = Ψ ◦ Fi, Ei ◦ for = for ◦ ei, Fi ◦ for = for ◦ fθ(i).

Proof. The proof is the same as in [VV09a, Proposition 8.17].

Proposition 3.3.2. (a) The functor Ψ yields an isomorphism of abelian groups⊕
m>0

[◦Rm-fMod0] =
⊕
m>0

[Hm-fModI ].

The functors Ei, Fi yield endomorphisms of both sides which are intertwined by Ψ.
(b) The functor for factors to a group isomorphism

◦GI/(v − 1) =
⊕
m>0

[◦Rm-fMod0].

Proof. Claim (a) follows from Corollary 2.3.2 and Proposition 3.3.1. Claim (b) follows
from Proposition 3.1.1.
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3.4 Type D versus type B

We can compare the previous constructions with their analogues in type B. Let θK,
θB, θGlow, etc., denote the type B analogues of ◦K, ◦B, ◦Glow, etc., see [VV09a] for details.
We will use the same notation for the functors ψ∗, ψ!, ψ∗, ei, fi, etc., on the type B side
and on the type D side. Fix m > 0 and ν ∈ θNI such that |ν| = 2m. The inclusion of
graded k-algebras ◦Rν ⊂ θRν in (1.2.1) yields a restriction functor

res : θRν-mod→ ◦Rν-mod

and an induction functor

ind : ◦Rν-mod→ θRν-mod, M 7→ θRν ⊗◦Rν M.

Both functors are exact, they map finite dimensional graded modules to finite dimen-
sional ones, and they map projective graded modules to projective ones. Thus, they yield
morphisms of A-modules

res : θKI,m → ◦KI,m, res : θGI,m → ◦GI,m,

ind : ◦KI,m → θKI,m, ind : ◦GI,m → θGI,m.

Moreover, for any P ∈ θKI,m and any L ∈ θGI,m we have

res(P ]) = (resP )], ind(P ]) = (indP )] (3.4.1)
res(L[) = (resL)[, ind(L[) = (indL)[.

Note also that ind and res are left and right adjoint functors, because

θRν ⊗◦Rν M = hom◦Rν (θRν ,M)

as graded θRν-modules. Recall the involution γ of ◦Rν from (5.9.4).

Definition 3.4.1. For any graded ◦Rν-module M we define Mγ to be the graded ◦Rν-
module with the same underlying graded k-vector space as M such that the action of ◦Rν

is twisted by γ, i.e., the graded k-algebra ◦Rν acts on Mγ by am = γ(a)m for a ∈ ◦Rν

and m ∈M .

Note that (Mγ)γ = M , and that Mγ is simple (resp. projective, indecomposable) if M
has the same property. For any graded ◦Rm-module M we have canonical isomorphisms
of ◦R-modules

(fi(M))γ = fi(Mγ), (ei(M))γ = ei(Mγ).

The first isomorphism is given by

◦Rm+11m,i ⊗◦Rm M → ◦Rm+11m,i ⊗◦Rm M, a⊗m 7→ γ(a)⊗m.

The second one is the identity map on the vector space 1m,iM .
Recall that θIν is the disjoint union of θIν+ and θIν−. We set

1ν,+ =
∑

i∈θIν+

1i, 1ν,− =
∑

i∈θIν−

1i.

Lemma 3.4.2. Let M be a graded ◦Rν-module.
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(a) Both 1ν,+ and 1ν,− are central idempotents in ◦Rν . We have 1ν,+ = γ(1ν,−).
(b) There is a decomposition of graded ◦Rν-modules M = 1ν,+M ⊕ 1ν,−M.
(c) We have a canonical isomorphism of ◦Rν-modules res ◦ ind(M) = M ⊕Mγ .
(d) If there exists a ∈ {+,−} such that 1ν,−aM = 0, then there are canonical isomor-
phisms of graded ◦Rν-modules

M = 1ν,aM, 0 = 1ν,aMγ , Mγ = 1ν,−aMγ .

Proof. Part (a) follows from Proposition 1.3.2 and the equality ε1(θIν+) = θIν−. Part (b)
follows from (a), (c) is given by definition, and (d) follows from (a), (b).

Now, let m and ν be as before. Given i ∈ I, we set ν ′ = ν + i + θ(i). There is an
obvious inclusion Wm ⊂Wm+1. Thus the group Wm acts on θIν

′ , and the map

θIν → θIν
′
, i 7→ θ(i)ii

is Wm-equivariant. Thus there is ai ∈ {+,−} such that the image of θIν+ is contained in
θIν

′
ai , and the image of θIν− is contained in θIν

′
−ai .

Lemma 3.4.3. Let M be a graded ◦Rν-module such that 1ν,−aM = 0, with a = +,−.
Then we have

1ν′,−aiafi(M) = 0, 1ν′,aiafθ(i)(M) = 0.

Proof. We have

1ν′,−aiafi(M) = 1ν′,−aia
◦Rν′1ν,i ⊗◦Rν M (3.4.2)

= ◦Rν′1ν′,−aia1ν,i1ν,a ⊗◦Rν M. (3.4.3)

Here we have identified 1ν,a with the image of (1ν,a, 1i) via the inclusion (3.2.1). The
definition of this inclusion and that of ai yield that

1ν′,aia1ν,i1ν,a = 1ν,a, 1ν′,−aia1ν,i1ν,a = 0.

The first equality follows. Next, note that for any i ∈ θIν , the sequences θ(i)ii and
iiθ(i) = εm+1(θ(i)ii) always belong to different ◦Wm+1-orbits. Thus, we have aθ(i) = −ai.
So the second equality follows from the first.

Consider the following diagram

◦Rν-mod×Ri-mod
ψ! //

ind× Id
��

◦Rν′-mod
ψ∗

oo

ind
��

θRν-mod×Ri-mod
ψ! //

res× Id

OO

θRν′-mod.
ψ∗

oo

res

OO

Lemma 3.4.4. There are canonical isomorphisms of functors

ind ◦ψ! = ψ! ◦ (ind× Id), ψ∗ ◦ ind = (ind× Id) ◦ ψ∗, ind ◦ψ∗ = ψ∗ ◦ (ind× Id),
res ◦ψ! = ψ! ◦ (res× Id), ψ∗ ◦ res = (res× Id) ◦ ψ∗, res ◦ψ∗ = ψ∗ ◦ (res× Id).
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Proof. The functor ind is left and right adjoint to res. Therefore it is enough to prove the
first two isomorphisms in the first line. The isomorphism

ind ◦ψ! = ψ! ◦ (ind× Id)

comes from the associativity of the induction. Let us prove that

ψ∗ ◦ ind = (ind× Id) ◦ ψ∗.

For any M in ◦Rν′-mod, the obvious inclusion θRν ⊗Ri ⊂ θRν′ yields a map

(ind× Id)ψ∗(M) = (θRν ⊗Ri)⊗◦Rν⊗Ri ψ
∗(M)→ ψ∗(θRν′ ⊗◦Rν⊗Ri M).

Combining it with the obvious map
θRν′ ⊗◦Rν⊗Ri M → θRν′ ⊗◦Rν′ M

we get a morphism of θRν ⊗Ri-modules

(ind× Id)ψ∗(M)→ ψ∗ ind(M).

We need to show that it is bijective. This is obvious because at the level of vector spaces,
the map above is given by

M ⊕ (π1,ν ⊗M)→M ⊕ (π1,ν′ ⊗M), m+ π1,ν ⊗ n 7→ m+ π1,ν′ ⊗ n.

Here π1,ν and π1,ν′ denote the element π1 in θRν and θRν′ respectively.

Corollary 3.4.5. (a) The operators ei, fi on ◦KI,∗ and on θKI,∗ are intertwined by the
maps ind, res, i.e., we have

ei ◦ ind = ind ◦ei, fi ◦ ind = ind ◦fi, ei ◦ res = res ◦ei, fi ◦ res = res ◦fi.

(b) The same result holds for the operators ei, fi on ◦GI,∗ and on θGI,∗.

3.5 Non graded case

Now, we concentrate on non graded irreducible modules. First, let

Res : θRν-Mod→ ◦Rν-Mod, Ind : ◦Rν-Mod→ θRν-Mod

be the (non graded) restriction and induction functors. We have

for ◦ res = Res ◦for, for ◦ ind = Ind ◦for.

Lemma 3.5.1. Let L, L′ be irreducible ◦Rν-modules.
(a) The ◦Rν-modules L and Lγ are not isomorphic.
(b) Ind(L) is an irreducible θRν-module, and every irreducible θRν-module is obtained

in this way.
(c) Ind(L) ' Ind(L′) if and only if L′ ' L or Lγ .

Proof. For any θRν-module M 6= 0, both 1ν,+M and 1ν,−M are nonzero. Indeed, we have
M = 1ν,+M ⊕1ν,−M , and we may suppose that 1ν,+M 6= 0. The automorphism M →M ,
m 7→ π1m takes 1ν,+M to 1ν,−M by Lemma 3.15(a). Hence 1ν,−M 6= 0.

Now, to prove part (a), suppose that φ : L → Lγ is an isomorphism of ◦Rν-modules.
We can regard φ as a γ-antilinear map L → L. Since L is irreducible, by Schur’s lemma
we may assume that φ2 = IdL. Then L admits a θRν-module structure such that the
◦Rν-action is as before and π1 acts as φ. Thus, by the discussion above, neither 1ν,+L nor
1ν,−L is zero. This contradicts the fact that L is an irreducible ◦Rν-module.

Parts (b), (c) follow from (a) by Clifford theory, see e.g., [RR03, appendix].
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3.6 Proof of Proposition 3.1.1

Now, let us prove Proposition 3.1.1. Let b ∈ ◦B. We may suppose that b = 1ν,+b.
By Lemma 3.5.1(b) the module θb = Ind(b) lies in θB. By [VV09a, Proposition 8.2] there
exists a unique selfdual irreducible graded θR-module θGup(θb) which is isomorphic to θb
as a non graded module. Set

◦Gup(b) = 1ν,+ res(θGup(θb)).

By Lemma 3.4.2(d) we have ◦Gup(b) = b as a non graded ◦R-module, and by (3.4.1)
it is selfdual. This proves existence part of the proposition. To prove the uniqueness,
suppose that M is another module with the same properties. Then ind(M) is a selfdual
graded θR-module which is isomorphic to θb as a non graded θR-module. Thus we have
ind(M) = θGup(θb) by loc. cit. By Lemma 3.4.2(d) we have also

M = 1ν,+ res(θGup(θb)).

So M is isomorphic to ◦Gup(b).

3.7 The crystal operators on ◦GI and ◦B

Fix a vertex i in I. For each irreducible graded ◦Rm-module M we define

ẽi(M) = soc (ei(M)), f̃i(M) = topψ!(M,Li), εi(M) = max{n > 0 | eni (M) 6= 0}.

Lemma 3.7.1. Let M be an irreducible graded ◦R-module such that ei(M), fi(M) belong
to ◦GI,∗. We have

ind(ẽi(M)) = ẽi(ind(M)), ind(f̃i(M)) = f̃i(ind(M)), εi(M) = εi(ind(M)).

In particular, ẽi(M) is irreducible or zero and f̃i(M) is irreducible.

Proof. By Corollary 3.4.5 we have ind(ei(M)) = ei(ind(M)). Thus, since ind is an exact
functor we have ind(ẽi(M)) ⊂ ei(ind(M)). Since ind is an additive functor, by Lemma
3.5.1(b) we have indeed

ind(ẽi(M)) ⊂ ẽi(ind(M)).

Note that ind(M) is irreducible by Lemma 3.5.1(b), thus ẽi(ind(M)) is irreducible by
[VV09a, Proposition 8.21]. Since ind(ẽi(M)) is nonzero, the inclusion is an isomorphism.
The fact that ind(ẽi(M)) is irreducible implies in particular that ẽi(M) is simple. The
proof of the second isomorphism is similar. The third equality is obvious.

Similarly, for each irreducible ◦R-module b in ◦B we define

Ẽi(b) = soc(Ei(b)), F̃i(b) = top(Fi(b)), εi(b) = max{n > 0 |Eni (b) 6= 0}.

Hence we have

for ◦ ẽi = Ẽi ◦ for, for ◦ f̃i = F̃i ◦ for, εi = εi ◦ for.
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Proposition 3.7.2. For each b, b′ in ◦B we have
(a) F̃i(b) ∈ ◦B,
(b) Ẽi(b) ∈ ◦B ∪ {0},
(c) F̃i(b) = b′ ⇐⇒ Ẽi(b′) = b,
(d) εi(b) = max{n > 0 | Ẽni (b) 6= 0},
(e) εi(F̃i(b)) = εi(b) + 1,
(f) if Ẽi(b) = 0 for all i then b = φ±.

Proof. Part (c) follows from adjunction. The other parts follow from [VV09a, Proposi-
tion 3.14] and Lemma 3.7.1.

Remark 3.7.3. For any b ∈ ◦B and any i 6= j we have F̃i(b) 6= F̃j(b). This is obvious
if j 6= θ(i). Because in this case F̃i(b) and F̃j(b) are ◦Rν-modules for different ν. Now,
consider the case j = θ(i). We may suppose that F̃i(b) = 1ν,+F̃i(b) for certain ν. Then by
Lemma 3.4.3 we have 1ν,+F̃θ(i)(b) = 0. In particular F̃i(b) is not isomorphic to F̃θ(i)(b).

3.8 The algebra θBBB and the θBBB-module ◦V

Following [EK06, EK08a, EK08b] we define a K-algebra θBBB as follows.

Definition 3.8.1. Let θBBB be the K-algebra generated by ei, fi and invertible elements ti,
i ∈ I, satisfying the following defining relations

(a) titj = tjti and tθ(i) = ti for all i, j,
(b) tiejt

−1
i = vi·j+θ(i)·jej and tifjt−1

i = v−i·j−θ(i)·jfj for all i, j,
(c) eifj = v−i·jfjei + δi,j + δθ(i),jti for all i, j,
(d)

∑
a+b=1−i·j

(−1)ae(a)
i eje

(b)
i =

∑
a+b=1−i·j

(−1)af (a)
i fjf

(b)
i = 0 if i 6= j.

Here and below we use the following notation

θ(a) = θa/〈a〉!, 〈a〉 =
a∑
l=1

va+1−2l, 〈a〉! =
m∏
l=1
〈l〉.

We can now construct a representation of θBBB as follows. By base change, the operators ei,
fi in Definition 3.2.2 yield K-linear operators on the K-vector space

◦V = K ⊗A ◦KI .

We equip ◦V with the K-bilinear form given by

(M : N)KE = (1− v2)m (M : N), ∀ M,N ∈ ◦Rm-proj.

Theorem 3.8.2. (a) The operators ei, fi define a representation of θBBB on ◦V. The θBBB-
module ◦V is generated by linearly independent vectors φ+ and φ− such that for each i ∈ I
we have

eiφ± = 0, tiφ± = φ∓, {x ∈ ◦V | ejx = 0, ∀j} = kφ+ ⊕ kφ−.

(b) The symmetric bilinear form on ◦V is non-degenerate. We have (φa : φa′)KE = δa,a′

for a, a′ = +,−, and (eix : y) = (x : fiy)KE for i ∈ I and x, y ∈ ◦V.
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Proof. For each i in I we define the A-linear operator ti on ◦KI by setting

tiφ± = φ∓ and tiP = v−ν·(i+θ(i))P γ , ∀ P ∈ ◦Rν-proj.

We must prove that the operators ei, fi, and ti satisfy the relations of θBBB. The relations
(a), (b) are obvious. The relation (d) is standard. It remains to check (c). For this we
need a version of the Mackey’s induction-restriction theorem. Note that for m > 1 we
have

Dm,1;m,1 = {e, sm, εm+1ε1},
W (e) = ◦Wm, W (sm) = ◦Wm−1, W (εm+1ε1) = ◦Wm.

Recall also that for m = 1 we have set ◦W1 = {e}.

Lemma 3.8.3. Fix i, j in I. Let µ, ν in θNI be such that ν + i + θ(i) = µ + j + θ(j).
Put |ν| = |µ| = 2m. The graded (◦Rm,1,

◦Rm,1)-bimodule 1ν,i◦Rm+11µ,j has a filtration by
graded bimodules whose associated graded is isomorphic to

δi,j
(◦Rν ⊗Ri

)
⊕ δθ(i),j

(
(◦Rν)γ ⊗Rθ(i)

)
[d′]⊕A[d],

where A is equal to

(◦Rm1ν′,i ⊗Ri)⊗R′ (1ν′,i◦Rm ⊗Ri) if m > 1,
(◦Rθ(j) ⊗Ri ⊗◦R1⊗R1

◦Rθ(i) ⊗Rj)⊕ (◦Rj ⊗Ri ⊗◦R1⊗R1
◦Ri ⊗Rj) if m = 1.

Here we have set ν ′ = ν − j − θ(j), R′ = ◦Rm−1,1 ⊗R1, i = iθ(i), j = jθ(j), d = −i · j,
and d′ = −ν · (i+ θ(i))/2.

The proof is standard and is left to the reader. Now, recall that for m > 1 we have

fj(P ) = ◦Rm+11m,j ⊗◦Rm,1 (P ⊗R1), e′i(P ) = 1m−1,iP,

where 1m−1,iP is regarded as a ◦Rm−1-module. Therefore we have

e′ifj(P ) = 1m,i◦Rm+11m,j ⊗◦Rm,1 (P ⊗R1),
fje
′
i(P ) = ◦Rm1m−1,j ⊗◦Rm−1,1 (1m−1,iP ⊗R1).

Therefore, up to some filtration we have the following identities

• e′ifi(P ) = P ⊗Ri + fie
′
i(P )[−2],

• e′ifθ(i)(P ) = P γ ⊗Rθ(i)[−ν · (i+ θ(i))/2] + fθ(i)e
′
i(P )[−i · θ(i)],

• e′ifj(P ) = fje
′
i(P )[−i · j] if i 6= j, θ(j).

These identities also hold for m = 1 and P = ◦Rθ(i)i for any i ∈ I. The first claim of part
(a) follows because Ri = k⊕Ri[2]. The fact that ◦V is generated by φ± is a corollary of
Proposition 3.8.5 below. Part (b) of the theorem follows from [KM07, Proposition 2.2(ii)]
and Lemma 3.2.3(b).

Remark 3.8.4. (a) The θBBB-module ◦V is the same as the θBBB-module Vθ from [KM07, Propo-
sition 2.2]. The involution σ : ◦V→ ◦V in [KM07, Remark 2.5(ii)] is given by σ(P ) = P γ .
It yields an involution of ◦B in the obvious way. Note that Lemma 3.5.1(a) yields σ(b) 6= b
for any b ∈ ◦B.

(b) Let θV be the θBBB-module K⊗A θKI and let φ be the class of the trivial θR0-module
k, see [VV09a, Theorem 8.30]. We have an inclusion of θBBB-modules

θV→ ◦V, φ 7→ φ+ ⊕ φ−, P 7→ res(P ).
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Proposition 3.8.5. For any b ∈ ◦B the following holds

(a)
{ fi(◦Glow(b)) = 〈εi(b) + 1〉 ◦Glow(F̃ib) +

∑
b′ fb,b′

◦Glow(b′),

b′ ∈ ◦B, εi(b′) > εi(b) + 1, fb,b′ ∈ v2−εi(b′)Z[v],
.

(b)
{ ei(◦Glow(b)) = v1−εi(b) ◦Glow(Ẽib) +

∑
b′ eb,b′

◦Glow(b′),

b′ ∈ ◦B, εi(b′) > εi(b), eb,b′ ∈ v1−εi(b′)Z[v].
.

Proof. We prove part (a), the proof for (b) is similar. If ◦Glow(b) = φ± this is obvious. So
we assume that ◦Glow(b) is a ◦Rm-module for m > 1. Fix ν ∈ θNI such that fi(◦Glow(b))
is a ◦Rν-module. We will abbreviate 1ν,a = 1a for a ∈ {+,−}. Since ◦Glow(b) is inde-
composable, it fulfills the condition of Lemma 3.4.3. So there exists a ∈ {+,−} such that
1−afi(◦Glow(b)) = 0. Thus, by Lemma 3.4.2(c), (d) and Corollary 3.4.5 we have

fi(◦Glow(b)) = 1a res ind fi(◦Glow(b)) = 1a res fi ind(◦Glow(b)).

Note that θb = Ind(b) belongs to θB by Lemma 3.5.1(b). Hence (3.4.1) yields

ind(◦Glow(b)) = θGlow(θb).

We deduce that
fi(◦Glow(b)) = 1a res fi(θGlow(θb)).

Now, write
fi(θGlow(θb)) =

∑
fθb,θb′

θGlow(θb′), θb′ ∈ θB.

Then we have
fi(◦Glow(b)) =

∑
fθb,θb′1a res(θGlow(θb′)).

For any θb′ ∈ θB the ◦R-module 1a Res(θb′) belongs to ◦B. Thus we have

1a res(θGlow(θb′)) = ◦Glow(1a Res(θb′)).

If θb′ 6= θb′′ then 1a Res(θb′) 6= 1a Res(θb′′), because θb′ = Ind(1a Res(θb′)). Thus

fi(◦Glow(b)) =
∑

fθb,θb′
◦Glow(1a Res(θb′)),

and this is the expansion of the left hand side in the lower global basis. Finally, we have

εi(1a Res(θb′)) = εi(θb′)

by Lemma 3.7.1. So part (a) follows from [VV09a, Propositions 10.11(b), 10.16].
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3.9 The global bases of ◦V

Since the operators ei, fi on ◦V satisfy the relations eifi = v−2fiei + 1, we can define
the modified root operators ẽi, f̃i on the θBBB-module ◦V as follows. For each u in ◦V we
write

u =
∑
n>0

f
(n)
i un with eiun = 0,

ẽi(u) =
∑
n>1

f
(n−1)
i un, f̃i(u) =

∑
n>0

f
(n+1)
i un.

Let R ⊂ K be the set of functions which are regular at v = 0. Let ◦L be the R-submodule
of ◦V spanned by the elements f̃i1 . . . f̃il(φ±) with l > 0, i1, . . . , il ∈ I. The following is
the main result of this chapter.

Theorem 3.9.1. (a) We have

◦L =
⊕
b∈◦B
R ◦Glow(b), ẽi(◦L) ⊂ ◦L, f̃i(◦L) ⊂ ◦L,

ẽi(◦Glow(b)) = ◦Glow(Ẽi(b)) mod v ◦L, f̃i(◦Glow(b)) = ◦Glow(F̃i(b)) mod v ◦L.

(b) The assignment b 7→ ◦Glow(b) mod v ◦L yields a bijection from ◦B to the subset of
◦L/v◦L consisting of the f̃i1 . . . f̃il(φ±)’s. Further ◦Glow(b) is the unique element x ∈ ◦V
such that x] = x and x = ◦Glow(b) mod v ◦L.

(c) For each b, b′ in ◦B let Ei,b,b′ , Fi,b,b′ ∈ A be the coefficients of ◦Glow(b′) in eθ(i)(◦Glow(b)),
fi(◦Glow(b)) respectively. Then we have

Ei,b,b′ |v=1 = [FiΨfor(◦Gup(b′)) : Ψfor(◦Gup(b))],

Fi,b,b′ |v=1 = [EiΨfor(◦Gup(b′)) : Ψfor(◦Gup(b))].

Proof. Part (a) follows from [EK08b, Theorem 4.1, Corollary 4.4], [Eno09, Section 2.3], and
Proposition 3.8.5. The first claim in (b) follows from (a). The second one is obvious. Part
(c) follows from Proposition 3.3.1. More precisely, by duality we can regard Ei,b,b′ , Fi,b,b′
as the coefficients of ◦Gup(b) in fθ(i)(◦Gup(b′)) and ei(◦Gup(b′)) respectively. Therefore, by
Proposition 3.3.1 we can regard Ei,b,b′ |v=1, Fi,b,b′ |v=1 as the coefficients of Ψfor(◦Gup(b))
in FiΨfor(◦Gup(b′)) and EiΨfor(◦Gup(b′)) respectively.





Chapter III

The v-Schur algebras and Jantzen
filtration

In this chapter, we prove that certain parabolic Kazhdan-Lusztig polynomials calculate
the graded decomposition matrices of v-Schur algebras given by the Jantzen filtration of
Weyl modules. This confirms a conjecture of Leclerc and Thibon [LT96].

The result of this chapter has been prepublished in [Sha10].

1 Statement of the main result

Let v be a r-th root of unity in C. The v-Schur algebra Sv(n) over C is a finite
dimensional quasi-hereditary algebra. Its standard modules are the Weyl modules Wv(λ)
indexed by partitions λ of n. The module Wv(λ) has a simple quotient Lv(λ). See Section
3.9 for more details.

The decomposition matrix of Sv(n) is given by the following algorithm. Recall from
Section I.4.2 that the Fock space F of level one is the C-vector space with a basis {|λ〉}
indexed by the set of partitions. Let Fq = F⊗C(q) be its q-version. It carries an action of
the quantum enveloping algebra Uq(ŝlr). Let L+ (resp. L−) be the Z[q]-submodule (resp.
Z[q−1]-submodule) in Fq spanned by {|λ〉}. Following Leclerc and Thibon [LT96, Theorem
4.1], the Fock space Fq admits two particular bases {G+

λ }, {G
−
λ } with the properties that

G+
λ ≡ |λ〉 mod qL+, G−λ ≡ |λ〉 mod q−1L−.

Let dλµ(q), eλµ(q) be elements in Z[q] such that

G+
µ =

∑
λ

dλµ(q)|λ〉, G−λ =
∑
µ

eλµ(−q−1)|µ〉.

For any partition λ write λ′ for the transposed partition. Then the Jordan-Hölder mul-
tiplicity of Lv(µ) in Wv(λ) is equal to the value of dλ′µ′(q) at q = 1. This result was
conjectured by Leclerc and Thibon [LT96, Conjecture 5.2] and has been proved by Varag-
nolo and Vasserot [VV99].

We are interested in the Jantzen filtration of Wv(λ) [JM97]

Wv(λ) = J0Wv(λ) ⊃ J1Wv(λ) ⊃ . . . .

It is a filtration by Sv(n)-submodules. The graded decomposition matrix of Sv(n) counts
the multiplicities of Lv(µ) in the associated graded module of Wv(λ). The graded version
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of the above algorithm was also conjectured by Leclerc and Thibon [LT96, Conjecture
5.3]. The main result of this chapter is a proof of this conjecture under a mild restriction
on v.

Theorem 1.0.1. Suppose that v = exp(2πi/κ) with κ ∈ Z and κ 6 −3. Let λ, µ be
partitions of n. Then

dλ′µ′(q) =
∑
i>0

[J iWv(λ)/J i+1Wv(λ) : Lv(µ)]qi. (1.0.1)

Let us outline the idea of the proof. We first show that certain equivalence of highest
weight categories preserves the Jantzen filtrations of standard modules (Proposition 2.5.1).
By constructing such an equivalence between the module category of the v-Schur algebra
and a subcategory of the affine parabolic category O of negative level, we then transfer
the problem of computing the Jantzen filtration of Weyl modules into the same problem
for parabolic Verma modules (Corollary 3.11.3). The latter is solved using Beilinson-
Bernstein’s technics (Sections 5, 6, 7).

2 Jantzen filtration of standard modules

2.1 Notation

We will denote by A -mod the category of finitely generated modules over an algebra
A, and by A -proj its subcategory consisting of projective objects. Let R be a commutative
noetherian C-algebra. By a finite projective R-algebra we mean a R-algebra that belongs
to R -proj.

A R-category C is a category whose Hom sets are R-modules. All the functors between
R-categories will be assumed to be R-linear, i.e., they induce morphisms of R-modules on
the Hom sets. Unless otherwise specified, all the functors will be assumed to be covariant.
If C is abelian, we will write C -proj for the full subcategory consisting of projective objects.
If there exists a finite projective algebra A together with an equivalence of R-categories
F : C ∼= A -mod, then we define C ∩ R -proj to be the full subcategory of C consisting
of objects M such that F (M) belongs to R -proj. By Morita theory, the definition of
C∩R -proj is independent of A or F . Further, for any C-algebra homomorphism R→ R′ we
will abbreviate R′C for the category (R′⊗RA) -mod. The definition of R′C is independent
of the choice of A up to equivalence of categories.

For any abelian category C we will write [C] for the Grothendieck group of C. Any exact
functor F from C to another abelian category C′ yields a group homomorphism [C]→ [C′],
which we will again denote by F .

A C-category C is called artinian if the Hom sets are finite dimensional C-vector spaces
and every object has a finite length. The Jordan-Hölder multiplicity of a simple object L
in an object M of C will be denoted by [M : L].

We abbreviate ⊗ = ⊗C and Hom = HomC.

2.2 Highest weight categories

Let C be a R-category that is equivalent to the category A -mod for some finite pro-
jective R-algebra A. Let ∆ be a finite set of objects of C together with a partial order <.
Let C∆ be the full subcategory of C consisting of objects which admit a finite filtration
such that the successive quotients are isomorphic to objects in

{D ⊗ U |D ∈ ∆, U ∈ R -proj}.
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We have the following definition, see [Rou08b, Definition 4.11].

Definition 2.2.1. The pair (C,∆) is called a highest weight R-category if the following
conditions hold:
• the objects of ∆ are projective over R,
• we have EndC(D) = R for all D ∈ ∆,
• given D1, D2 ∈ ∆, if HomC(D1, D2) 6= 0, then D1 6 D2,
• if M ∈ C satisfies HomC(D,M) = 0 for all D ∈ ∆, then M = 0,
• given D ∈ ∆, there exists P ∈ C -proj and a surjective morphism f : P → D such
that ker f belongs to C∆. Moreover, in the filtration of ker f only D′ ⊗ U with
D′ > D appears.

The objects in ∆ are called standard. We say that an object has a standard filtration
if it belongs to C∆. There is another set ∇ of objets in C, called costandard objects, given
by the following proposition.

Proposition 2.2.2. Let (C,∆) be a highest weight R-category. Then there is a set ∇ =
{D∨ |D ∈ ∆} of objects of C, unique up to isomorphism, with the following properties:

(a) the pair (Cop,∇) is a highest weight R-category, where ∇ is equipped with the same
partial order as ∆,

(b) for D1, D2 ∈ ∆ we have ExtiC(D1, D
∨
2 ) ∼=

{
R if i = 0 and D1 = D2

0 else.

See [Rou08b, Proposition 4.19].

2.3 Base change for highest weight categories.

From now on, unless otherwise specified we will fix R = C[[s]], the ring of formal power
series in the variable s. Let ℘ be its maximal ideal and let K be its fraction field. For any
R-module M , any morphism f of R-modules and any i ∈ N we will write

M(℘i) = M ⊗R (R/℘iR), MK = M ⊗R K,
f(℘i) = f ⊗R (R/℘iR), fK = f ⊗R K.

We will abbreviate
C(℘) = R(℘)C, CK = KC.

Let us first recall the following basic facts.

Lemma 2.3.1. Let A be a finite projective R-algebra. Let P ∈ A -mod.
(a) The A-module P is projective if and only if P is a projective R-module and P (℘)

belongs to A(℘) -proj.
(b) If P belongs to A -proj, then we have a canonical isomorphism

HomA(P,M)(℘) ∼→ HomA(℘)(P (℘),M(℘)), ∀ M ∈ A -mod .

Further, if M belongs to R -proj then HomA(P,M) also belongs to R -proj.

We will also need the following theorem of Rouquier [Rou08b, Theorem 4.15].

Proposition 2.3.2. Let C be a R-category that is equivalent to A -mod for some finite
projective R-algebra A. Let ∆ be a finite poset of objects of C ∩R -proj. Then the category
(C,∆) is a highest weight R-category if and only if (C(℘),∆(℘)) is a highest weight C-
category.
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Finally, the costandard objects can also be characterized in the following way.

Lemma 2.3.3. Let (C,∆) be a highest weight R-category. Assume that ∇′ = {∨D |D ∈ ∆}
is a set of objects of C ∩R -proj such that for any D ∈ ∆ we have

(∨D)(℘) ∼= D(℘)∨, (∨D)K ∼= DK .

Then we have ∨D ∼= D∨ ∈ ∇.

Proof. We prove the lemma by showing that ∇′ has the properties (a), (b) in Proposition
2.2.2 with ∨D playing the role ofD∨. This will imply that ∨D ∼= D∨ ∈ ∇. To check (a) note
that ∇′(℘) is the set of costandard modules of C(℘) by assumption. So (C(℘)op,∇′(℘))
is a highest weight C-category. Therefore (Cop,∇′) is a highest weight R-category by
Proposition 2.3.2. Now, let us concentrate on (b). Given D1, D2 ∈ ∆, let P• = 0→ Pn →
· · · → P0 be a projective resolution of D1 in C. Then ExtiC(D1,

∨D2) is the cohomology of
the complex

C• = HomC(P•, ∨D2).

Since D1 and all the Pi belong to R -proj and R is a discrete valuation ring, by the
Universal Coefficient Theorem the complex

P•(℘) = 0→ Pn(℘)→ · · · → P0(℘)

is a resolution of D1(℘) in C(℘). Further, each Pi(℘) is a projective object in C(℘) by
Lemma 2.3.1(a). So ExtiC(℘)(D1(℘), ∨D2(℘)) is given by the cohomology of the complex

C•(℘) = HomC(℘)(P•(℘), ∨D2(℘)).

Again, by the Universal Coefficient Theorem, the canonical map

Hi(C•)(℘) −→ Hi(C(℘)•)

is injective. In other words we have a canonical injective map

ExtiC(D1,
∨D2)(℘) −→ ExtiC(℘)(D1(℘), ∨D2(℘)). (2.3.1)

Note that each R-module Ci is finitely generated. Therefore ExtiC(D1,
∨D2) is also finitely

generated over R. Note that if i > 0, or i = 0 and D1 6= D2, then the right hand side of
(2.3.1) is zero by assumption. So ExtiC(D1,

∨D2)(℘) = 0, and hence ExtiC(D1,
∨D2) = 0 by

Nakayama’s lemma. Now, let us concentrate on the R-module HomC(D, ∨D) for D ∈ ∆.
First, we have

HomC(D, ∨D)⊗R K = HomCK (DK , (∨D)K)
= EndCK (DK)
= EndC(D)⊗R K
= K. (2.3.2)

Here the second equality is given by the isomorphism DK
∼= (∨D)K and the last equality

follows from EndC(D) = R. Next, note that HomC(D, ∨D)(℘) is included into the vector
space HomC(℘)(D(℘), ∨D(℘)) = C by (2.3.1). So its dimension over C is less than one.
Together with (2.3.2) this yields an isomorphism of R-modules HomC(D, ∨D) ∼= R, because
R is a discrete valuation ring. So we have verified that ∇′ satisfies both property (a) and
(b) in Proposition 2.2.2. Therefore it coincides with ∇ with ∨D isomorphic to D∨.
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2.4 The Jantzen filtration of standard modules

Let (CC,∆C) be a highest weight C-category and (C,∆) be a highest weight R-category
such that (CC,∆C) ∼= (C(℘),∆(℘)). Then any standard module in ∆C admits a Jantzen
type filtration associated with (C,∆). It is given as follows.

Definition 2.4.1. For any D ∈ ∆ let φ : D → D∨ be a morphism in C such that φ(℘) 6= 0.
For any positive integer i let

πi : D∨ −→ D∨/℘iD∨ (2.4.1)

be the canonical quotient map. Set

Di = ker(πi ◦ φ) ⊂ D, J i(D(℘)) = (Di + ℘D)/℘D.

Below, we will abbreviate J i(D(℘)) = J iD(℘). The Jantzen filtration of D(℘) is the
filtration

D(℘) = J0D(℘) ⊃ J1D(℘) ⊃ · · · .

To see that the Jantzen filtration is well defined, one notices first that the morphism φ
always exists because HomC(D,D∨)(℘) ∼= R(℘). Further, the filtration is independent of
the choice of φ. Because if φ′ : D → D∨ is another morphism such that φ′(℘) 6= 0, the fact
that HomC(D,D∨) ∼= R and φ(℘) 6= 0 implies that there exists an element a in R such
that φ′ = aφ. Moreover φ′(℘) 6= 0 implies that a is invertible in R. So φ and φ′ define the
same filtration.
Remark 2.4.2. If the category CK is semi-simple, then the Jantzen filtration of any standard
module D(℘) is finite. In fact, since EndC(D) = R we have EndCK (DK) = K. Therefore
DK is an indecomposable object in CK . The fact that CK is semi-simple implies that the
object DK is simple. Similarly D∨K is also simple. So the morphism φK : DK → D∨K is an
isomorphism. In particular φ is injective. Now, consider the intersection⋂

i

J iD(℘) =
⋂
i

(Di + ℘D)/℘D.

Since we have Di ⊃ Di+1, the intersection on the right hand side is equal to ((
⋂
iD

i) +
℘D)/℘D. The injectivity of φ implies that

⋂
iD

i = kerφ is zero. Hence
⋂
i J

iD(℘) = 0.
Since D(℘) ∈ C(℘) has a finite length, we have J iD(℘) = 0 for i large enough.

2.5 Equivalences of highest weight categories and Jantzen filtrations.

Let (C1,∆1), (C2,∆2) be highest weightR-categories (resp. C-categories orK-categories).
A functor F : C1 → C2 is an equivalence of highest weight categories if it is an equivalence
of categories and if for any D1 ∈ ∆1 there exists D2 ∈ ∆2 such that F (D1) ∼= D2. Note
that for such an equivalence F we also have

F (D∨1 ) ∼= D∨2 , (2.5.1)

because the two properties in Proposition 2.2.2 which characterize the costandard objects
are preserved by F .

Let F : C1 → C2 be an exact functor. Since C1 is equivalent to A -mod for some finite
projective R-algebra A, the functor F is represented by a projective object P in C1, i.e.,
we have F ∼= HomC1(P,−). Set

F (℘) = HomC1(℘)(P (℘),−) : C1(℘)→ C2(℘).
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Note that the functor F (℘) is unique up to equivalence of categories. It is an exact functor,
and it is isomorphic to the functor HomC1(P,−)(℘), see Lemma 2.3.1. In particular, for
D ∈ ∆1 there are canonical isomorphisms

F (D)(℘) ∼= F (℘)(D(℘)), F (D∨)(℘) ∼= F (℘)(D∨(℘)). (2.5.2)

Proposition 2.5.1. Let (C1,∆1), (C2,∆2) be two equivalent highest weight R-categories.
Fix an equivalence F : C1 → C2. Then the following holds.

(a) The functor F (℘) is an equivalence of highest weight categories.
(b) The functor F (℘) preserves the Jantzen filtration of standard modules, i.e., for any

D1 ∈ ∆1 let D2 = F (D1) ∈ ∆2, then

F (℘)(J iD1(℘)) = J iD2(℘), ∀ i ∈ N.

Proof. (a) If G : C2 → C1 is a quasi-inverse of F then G(℘) is a quasi-inverse of F (℘). So
F (℘) is an equivalence of categories. It maps a standard object to a standard one because
of the first isomorphism in (2.5.2).

(b) The functor F yields an isomorphism of R-modules

HomC1(D1, D
∨
1 ) ∼→ HomC2(F (D1), F (D∨1 )),

where the right hand side identifies with HomC2(D2, D
∨
2 ) via the isomorphism (2.5.1). Let

φ1 be an element in HomC1(D1, D
∨
1 ) such that φ1(℘) 6= 0. Let

φ2 = F (φ1) : D2 → D∨2 .

Then we also have φ2(℘) 6= 0.
For a = 1, 2 and i ∈ N let πa,i : D∨a → D∨a (℘i) be the canonical quotient map. Since F

is R-linear and exact, the isomorphism F (D∨1 ) ∼= D∨2 maps F (℘iD∨1 ) to ℘iD∨2 and induces
an isomorphism

F (D∨1 (℘i)) ∼= D∨2 (℘i).

Under these isomorphisms the morphism F (π1,i) is identified with π2,i. So we have

F (Di
1) = F (ker(π1,i ◦ φ1))

= ker(F (π1,i) ◦ F (φ1))
∼= ker(π2,i ◦ φ2)
= Di

2.

Now, apply F to the short exact sequence

0→ ℘D1 → Di
1 + ℘D1 → J iD1(℘)→ 0, (2.5.3)

we get

F (J iD1(℘)) ∼= (F (Di
1) + ℘F (D1))/℘F (D1)

∼= J iD2(℘).

Since F (J iD1(℘)) = F (℘)(J iD1(℘)), the proposition is proved.
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3 Affine parabolic category O and v-Schur algebras

3.1 The affine Lie algebra

Fix an integer m > 1. Let G0 ⊃ B0 ⊃ T0 be respectively the linear algebraic group
GLm(C), the Borel subgroup of upper triangular matrices and the maximal torus of diag-
onal matrices. Let g0 ⊃ b0 ⊃ t0 be their Lie algebras. Let

g = g0 ⊗ C[t, t−1]⊕ C1⊕ C∂

be the affine Lie algebra of g0. Its Lie bracket is given by

[ξ⊗ ta +x1 + y∂, ξ′⊗ tb +x′1 + y′∂] = [ξ, ξ′]⊗ ta+b + aδa,−b tr(ξξ′)1 + byξ′⊗ tb− ay′ξ⊗ ta,

where tr : g0 → C is the trace map. Set t = t0 ⊕ C1⊕ C∂.
For any Lie algebra a over C, let U(a) be its enveloping algebra. For any C-algebra R,

we will abbreviate aR = a⊗R and U(aR) = U(a)⊗R.
In the rest of the chapter, we will fix once for all an integer c such that

κ = c+m ∈ Z<0. (3.1.1)

Let Uκ be the quotient of U(g) by the two-sided ideal generated by 1− c. The Uκ-modules
are precisely the g-modules of level c.

Given a C-linear map λ : t→ R and a gR-module M we set

Mλ = {v ∈M |hv = λ(h)v, ∀ h ∈ t}. (3.1.2)

Whenever Mλ is non zero, we call λ a weight of M .
We equip t∗ = HomC(t,C) with the basis ε1, . . . , εm, ω0, δ such that ε1, . . . , εm ∈ t∗0 is

dual to the canonical basis of t0,

δ(∂) = ω0(1) = 1, ω0(t0 ⊕ C∂) = δ(t0 ⊕ C1) = 0.

Let 〈− : −〉 be the symmetric bilinear form on t∗ such that

〈εi : εj〉 = δij , 〈ω0 : δ〉 = 1, 〈t∗0 ⊕ Cδ : δ〉 = 〈t∗0 ⊕ Cω0 : ω0〉 = 0.

For h ∈ t∗ we will write ||h||2 = 〈h : h〉. The weights of a Uκ-module belong to

κt
∗ = {λ ∈ t∗ | 〈λ : δ〉 = c}.

Let a denote the projection from t∗ to t∗0. Consider the map

z : t∗ → C (3.1.3)

such that λ 7→ z(λ)δ is the projection t∗ → Cδ.
Let Π be the root system of g with simple roots αi = εi − εi+1 for 1 6 i 6 m− 1 and

α0 = δ −
∑m−1
i=1 αi. The root system Π0 of g0 is the root subsystem of Π generated by

α1, . . . , αm−1. We will write Π+, Π+
0 for the sets of positive roots in Π, Π0 respectively.

The affine Weyl group S is a Coxeter group with simple reflections si for 0 6 i 6 m−1.
It is isomorphic to the semi-direct product of the symmetric group S0 with the lattice
ZΠ0. There is a linear action of S on t∗ such that S0 fixes ω0, δ, and acts on t∗0 by
permuting εi’s, and an element τ ∈ ZΠ0 acts by

τ(δ) = δ, τ(ω0) = τ + ω0 − 〈τ : τ〉δ/2, τ(λ) = λ− 〈τ : λ〉δ, ∀ λ ∈ t∗0. (3.1.4)

Let ρ0 be the half sum of positive roots in Π0 and ρ = ρ0 +mω0. The dot action of S on
t∗ is given by w · λ = w(λ+ ρ)− ρ. For λ ∈ t∗ we will denote by S(λ) the stabilizer of λ
in S under the dot action. Let l : S→ N be the length function.
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3.2 The parabolic Verma modules and their deformations

The subset Π0 of Π defines a standard parabolic Lie subalgebra of g, which is given by

q = g0 ⊗ C[t]⊕ C1⊕ C∂.

It has a Levi subalgebra
l = g0 ⊕ C1⊕ C∂.

The parabolic Verma modules of Uκ associated with q are given as follows.
Let λ be an element in

Λ+ = {λ ∈ κt
∗ | 〈λ : α〉 ∈ N, ∀ α ∈ Π+

0 }.

Then there is a unique finite dimensional simple g0-module V (λ) of highest weight a(λ).
It can be regard as a l-module by letting h ∈ C1⊕C∂ act by the scalar λ(h). It is further
a q-module if we let the nilpotent radical of q act trivially. The parabolic Verma module
of highest weight λ is given by

Mκ(λ) = U(g)⊗U(q) V (λ).

It has a unique simple quotient, which we denote by Lκ(λ).
Recall that R = C[[s]] and ℘ is its maximal ideal. Set

c = c+ s and k = κ+ s.

They are elements in R. Write Uk for the quotient of U(gR) by the two-sided ideal
generated by 1−c. So ifM is a Uk-module, then M(℘) is a Uκ-module. Now, note that R
admits a qR-action such that g0 ⊗C[t] acts trivially and t acts by the weight sω0. Denote
this qR-module by Rsω0 . For λ ∈ Λ+ the deformed parabolic Verma module Mk(λ) is the
gR-module induced from the qR-module V (λ)⊗Rsω0 . It is a Uk-module of highest weight
λ+ sω0, and we have a canonical isomorphism

Mk(λ)(℘) ∼= Mκ(λ).

We will abbreviate λs = λ+ sω0 and will write

kt
∗ = {λs |λ ∈ κt

∗}.

Lemma 3.2.1. The gK-module Mk(λ)K = Mk(λ)⊗R K is simple.

Proof. Assume thatMk(λ)K is not simple. Then it contains a nontrivial submodule. This
submodule must have a highest weight vector of weight µs for some µ ∈ Λ+, µ 6= λ. By
the linkage principle, there exists w ∈ S such that µs = w · λs. Therefore w fixes ω0, so
it belongs to S0. But then we must have w = 1, because λ, µ ∈ Λ+. So λ = µ. This is a
contradiction.

3.3 The Jantzen filtration of parabolic Verma modules

For λ ∈ Λ+ the Jantzen filtration of Mκ(λ) is given as follows. Let σ be the R-linear
anti-involution on gR such that

σ(ξ ⊗ tn) = tξ ⊗ t−n, σ(1) = 1, σ(∂) = ∂.
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Here ξ ∈ g0 and tξ is the transposed matrix. Let gR act on HomR(Mk(λ), R) via (xf)(v) =
f(σ(x)v) for x ∈ gR, v ∈Mk(λ). Then

DMk(λ) =
⊕
µ∈kt∗

HomR

(
Mk(λ)µ, R

)
(3.3.1)

is a gR-submodule of HomR(Mk(λ), R). It is the deformed dual parabolic Verma module
with highest weight λs. The λs-weight spaces of Mk(λ) and DMk(λ) are both free R-
modules of rank one. Any isomorphism between them yields, by the universal property of
Verma modules, a gR-module morphism

φ : Mk(λ)→ DMk(λ)

such that φ(℘) 6= 0. The Jantzen filtration
(
J iMκ(λ)

)
of Mκ(λ) defined by [Jan79] is the

filtration given by Definition 2.4.1 using the morphism φ above.

3.4 The deformed parabolic category O

The deformed parabolic category O, denoted by Ok, is the category of Uk-modules M
such that
• M =

⊕
λ∈kt∗

Mλ with Mλ ∈ R -mod,
• for any m ∈M the R-module U(qR)m is finitely generated.

It is an abelian category and contains deformed parabolic Verma modules. Replacing k
by κ and R by C we get the usual parabolic category O, denoted Oκ.

Recall the map z in (3.1.3). For any integer r set
r
κt
∗ = {µ ∈ κt

∗ | r − z(µ) ∈ Z>0}.

Define rkt∗ in the same manner. Let rOκ (resp. rOk) be the Serre subcategory of Oκ (resp.
Ok) consisting of objects M such that Mµ 6= 0 implies that µ belongs to r

κt
∗ (resp. r

kt
∗).

Write rΛ+ = Λ+ ∩ r
κt
∗. We have the following lemma.

Lemma 3.4.1. (a) For any finitely generated projective object P in rOk and anyM ∈ rOk
the R-module HomrOk(P,M) is finitely generated and the canonical map

HomrOk(P,M)(℘)→ HomrOκ(P (℘),M(℘))

is an isomorphism. Moreover, if M is free over R, then HomrOk(P,M) is also free over
R.

(b) The assignment M 7→M(℘) yields a functor
rOk → rOκ.

This functor gives a bijection between the isomorphism classes of simple objects and a
bijection between the isomorphism classes of indecomposable projective objects.

For any λ ∈ rΛ+ there is a unique finitely generated projective cover rPκ(λ) of Lκ(λ)
in rOκ, see [RCW82, Lemma 4.12]. Let Lk(λ), rPk(λ) be respectively the simple object
and the indecomposable projective object in rOk that map respectively to Lκ(λ), Pκ(λ)
by the bijections in Lemma 3.4.1(b). Then we have the following lemma.

Lemma 3.4.2. The object rPk(λ) is, up to isomorphism, the unique finitely generated
projective cover of Lk(λ) in rOk. It has a filtration by deformed parabolic Verma modules.
In particular, it is a free R-module.
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The proof of Lemmas 3.4.1, 3.4.2 can be given by imitate [Fie03, Section 2]. There,
Fiebig proved the analogue of these results for the (nonparabolic) deformed category O
by adapting arguments of [RCW82]. The proof here goes in the same way, because the
parabolic case is also treated in [RCW82]. We left the details to the reader. Note that the
deformed parabolic category O for reductive Lie algebras has also been studied in [Str09].

3.5 The highest weight category Ek

Fix a positive integer n 6 m. Let Pn denote the set of partitions of n. Recall that a
partition λ of n is a sequence of integers λ1 > . . . > λm > 0 such that

∑m
i=1 λi = n. For

such a λ denote the element
∑m
i=1 λiεi in t∗0 again by λ. We will identify Pn with a subset

of Λ+ by the following inclusion

Pn → Λ+, λ 7→ λ+ cω0 −
〈λ : λ+ 2ρ0〉

2κ δ. (3.5.1)

We will also fix an integer r large enough such that Pn is contained in rΛ+. Equip Λ+ with
the partial order � given by λ � µ if and only if there exists w ∈ S such that µ = w · λ
and a(µ)− a(λ) ∈ NΠ+

0 . Let E denote the dominance order on Pn given by

λE µ ⇐⇒
i∑

j=1
λj 6

i∑
j=1

µj , ∀ 1 6 i 6 m.

Note that for λ, µ ∈ Pn we have

λ � µ =⇒ λE µ, (3.5.2)

because λ � µ implies that µ− λ ∈ NΠ+
0 , which implies that

i∑
j=1

µj −
i∑

j=1
λj = 〈µ− λ, ε1 + · · ·+ εi〉 > 0, ∀ 1 6 i 6 m.

Now consider the following subset of rΛ+

E = {µ ∈ rΛ+ |µ = w · λ for some w ∈ S, λ ∈ Pn}.

Lemma 3.5.1. The set E is finite.

Proof. Since Pn is finite, it is enough to show that for each λ ∈ Pn the set S · λ ∩ rΛ+ is
finite. Note that for w ∈ S0 and τ ∈ ZΠ0 we have z(wτ ·λ) = z(τ ·λ). By (3.1.4) we have

z(τ · λ) = z(λ)− κ

2 (||τ + λ+ ρ

κ
||2 − ||λ+ ρ

κ
||2).

If z(τ · λ) 6 r, then

||τ + λ+ ρ

κ
||2 6

2
−κ

(r − z(λ)) + ||λ+ ρ

κ
||2.

There exists only finitely many τ ∈ ZΠ0 which satisfies this condition, hence the set E is
finite.
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Let Eκ be the full subcategory of rOκ consisting of objects M such that

µ ∈ rΛ+, µ /∈ E =⇒ HomrOκ(rPκ(µ),M) = 0.

Note that since rPκ(µ) is projective in rOκ, an object M ∈ rOκ is in Eκ if and only if each
simple subquotient of M is isomorphic to Lκ(µ) for µ ∈ E. In particular Eκ is abelian
and it is a Serre subcategory of rOκ. Further Eκ is also an artinian category. In fact, each
object M ∈ Eκ has a finite length because E is finite and for each µ ∈ E the multiplicity
of Lκ(µ) in M is finite because dimCMµ <∞. Let g′ denote the Lie subalgebra of g given
by

g′ = g0 ⊗ C[t, t−1]⊕ C1.

Forgetting the ∂-action yields an equivalence of categories from Eκ to a category of g′-
modules, see [Soe98, Proposition 8.1] for details. Since κ is negative, this category of
g′-modules is equal to the category studied in [KL93, KL94a, KL94b].

Lemma 3.5.2. (a) For λ ∈ E, µ ∈ rΛ+ such that [Mκ(λ) : Lκ(µ)] 6= 0 we have µ ∈ E
and µ � λ.

(b) The module rPκ(λ) admits a filtration by Uκ-modules
rPκ(λ) = P0 ⊃ P1 ⊃ · · · ⊃ Pl = 0

such that P0/P1 is isomorphic to Mκ(λ) and Pi/Pi+1 ∼= Mκ(µi) for some µi � λ.
(c) The category Eκ is a highest weight C-category with standard objects Mκ(λ), λ ∈ E.

The indecomposable projective objects in Eκ are the modules rPκ(λ) with λ ∈ E.

Proof. Let Uv be the quantized enveloping algebra of g0 with the parameter v = exp(2πi/κ).
Then the Kazhdan-Lusztig’s tensor equivalence [KL93, Theorem IV.38.1] identifies Eκ with
a full subcategory of the category of finite dimensional Uv-modules. It maps the module
Mκ(λ) to the Weyl module of Uv with highest weight a(λ). Since v is a root of unity,
part (a) follows from the strong linkage principle for Uv, see [And03, Theorem 3.1]. Part
(b) follows from (a) and [KL93, Proposition I.3.9]. Finally, part (c) follows directly from
parts (a), (b).

Now, let us consider the deformed version. Let Ek be the full subcategory of rOk
consisting of objects M such that

µ ∈ rΛ+, µ /∈ E =⇒ HomrOk(rPk(µ),M) = 0.

Lemma 3.5.3. An object M ∈ rOk belongs to Ek if and only if M(℘) belongs to Eκ. In
particular, we have Mk(λ) and rPk(λ) belong to Ek for λ ∈ E.

Proof. By Lemma 3.4.1(a) for any µ ∈ rΛ+ the R-module HomrOk(rPk(µ),M) is finitely
generated and we have

HomrOk(rPk(µ),M)(℘) = HomrOκ(rPκ(µ),M(℘)).

Therefore HomrOk(rPk(µ),M) is nonzero if and only if HomrOκ(rPκ(µ),M(℘)) is nonzero
by Nakayama’s lemma. So the first statement follows from the definition of Ek and Eκ.
The rest follows from Lemma 3.5.2(c).

Let
Pk(E) =

⊕
λ∈E

rPk(λ), Pκ(E) =
⊕
λ∈E

rPκ(λ).

We have the following corollary.
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Corollary 3.5.4. (a) The category Ek is abelian.
(b) For M ∈ Ek there exists a positive integer d and a surjective map

Pk(E)⊕d −→M.

(c) The functor HomrOk(Pk(E),−) yields an equivalence of R-categories

Ek ∼= EndrOk(Pk(E))op -mod .

Proof. LetM ∈ Ek, N ∈ rOk. First assume thatN ⊂M . For µ ∈ rΛ+ if HomrOk(rPk(µ), N) 6=
0, then HomrOk(rPk(µ),M) 6= 0, so µ belongs to E. Hence N belongs to Ek. Now, if N
is a quotient of M , then N(℘) is a quotient of M(℘). Since M(℘) belongs to Eκ, we also
have N(℘) ∈ Eκ. Hence N belongs to Ek by Lemma 3.5.3. This proves part (a). Let us
concentrate on (b). Since M ∈ Ek we have M(℘) ∈ Eκ. The category Eκ is artinian with
Pκ(E) a projective generator. Hence there exists a positive integer d and a surjective map

f : Pκ(E)⊕d −→M(℘).

Since Pk(E)⊕d is projective in rOk, this map lifts to a map of Uk-modules f̃ : Pk(E)⊕d →
M such that the following diagram commute

Pk(E)⊕d
f̃ //

����

M

����
Pκ(E)⊕d

f // // M(℘).

Now, since the map f̃ preserves weight spaces and all the weight spaces of Pk(E)⊕r and
M are finitely generated R-modules, by Nakayama’s lemma, the surjectivity of f implies
that f̃ is surjective. This proves (b). Finally part (c) is a direct consequence of parts (a),
(b) by Morita theory.

Proposition 3.5.5. The category Ek is a highest weight R-category with standard modules
Mk(µ), µ ∈ E.

Proof. Note that EndrOk(Pk(E))op is a finite projective R-algebra by Lemmas 3.4.1, 3.4.2.
Since Eκ is a highest weight C-category by Lemma 3.5.2(c), the result follows from Propo-
sition 2.3.2.

3.6 The highest weight category Ak

By definition Pn is a subset of E. Let Ak be the full subcategory of Ek consisting of
the objects M such that

HomrOk(Mk(λ),M) = 0, ∀ λ ∈ E, λ /∈ Pn.

We define the subcategory Aκ of Eκ in the same way. Let

∆k = {Mk(λ) |λ ∈ Pn}, ∆κ = {Mκ(λ) |λ ∈ Pn}.

Recall that E ⊂ rΛ+ is equipped with the partial order �, and that Pn ⊂ E. We have
the following lemma
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Lemma 3.6.1. The set Pn is an ideal in E, i.e., for λ ∈ E, µ ∈ Pn, if λ � µ then we
have λ ∈ Pn.

Proof. Let λ ∈ E and µ ∈ Pn and assume that λ � µ. Recall that E ⊂ κt
∗, so we can

write a(λ) =
∑m
i=1 λiεi. Since E ⊂ rΛ+ we have λi ∈ Z and λi > λi+1. We need to show

that λm ∈ N. Since λ � µ there exist ri ∈ N such that a(µ)−a(λ) =
∑m−1
i=1 riαi. Therefore

we have λm = µm + rm−1 > 0.

Now, we can prove the following proposition.

Proposition 3.6.2. The category (Ak,∆k) is a highest weight R-category with respect
to the partial order E on Pn. The highest weight category (Ak(℘),∆k(℘)) given by base
change is equivalent to (Aκ,∆κ).

Proof. Since Ek is a highest weight R-category and Pn is an ideal of E, [Rou08b, Proposi-
tion 4.14] implies that (Ak,∆k) is a highest weight R-category with respect to the partial
order � on Pn. By (3.5.2) this implies that (Ak,∆k) is also a highest weight R-category
with respect to E. Finally, the equivalence Ak(℘) ∼= Aκ follows from the equivalence
Ek(℘) ∼= Eκ and loc. cit.

3.7 Costandard objects of Ak

Consider the (contravariant) duality functor D on Ok given by

DM =
⊕
µ∈kt∗

HomR(Mµ, R), (3.7.1)

where the action of Uk on DM is given as in Section 3.3, with the module Mk(λ) there
replaced by M . Similarly, we define the (contravariant) duality functor D on Oκ by

DM =
⊕
µ∈κt∗

Hom(Mµ,C), (3.7.2)

with the Uκ-action given in the same way. This functor fixes the simple modules in Oκ.
Hence it restricts to a duality functor on Aκ, because Aκ is a Serre subcategory of Oκ.
Therefore (Aκ,∆κ) is a highest weight category with duality in the sense of [CPS89].
It follows from [CPS89, Proposition 1.2] that the costandard module Mκ(λ)∨ in Aκ is
isomorphic to DMκ(λ).

Lemma 3.7.1. The costandard module Mk(λ)∨ in Ak is isomorphic to DMk(λ) for any
λ ∈ Pn.

Proof. By definition we have a canonical isomorphism

(DMk(λ))(℘) ∼= D(Mκ(λ)) ∼= Mκ(λ)∨.

Recall from Lemma 3.2.1 that Mk(λ)K is a simple Uk,K-module. Therefore we have
(DMk(λ))K ∼= Mk(λ)K . So the lemma follows from Lemma 2.3.3 applied to the highest
weight category (Ak,∆k) and the set {DMk(λ) |λ ∈ Pn}.

3.8 Comparison of the Jantzen filtrations

By Definition 2.4.1 for any λ ∈ Pn there is a Jantzen filtration ofMκ(λ) associated with
the highest weight category (Ak,∆k). Lemma 3.7.1 implies that this Jantzen filtration
coincides with the one given in Section 3.3.
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3.9 The v-Schur algebra

In this section let R denote an arbitrary integral domain. Let v be an invertible element
in R. The Hecke algebra Hv over R is a R-algebra, which is free as a R-module with basis
{Tw |w ∈ S0}, the multiplication is given by

Tw1Tw2 = Tw1w2 , if l(w1w2) = l(w1) + l(w2),
(Tsi + 1)(Tsi − v) = 0, 1 6 i 6 m− 1.

Next, recall that a composition of n is a sequence µ = (µ1, . . . , µd) of positive integers
such that

∑d
i=1 µi = n. Let Xn be the set of compositions of n. For µ ∈ Xn let Sµ be the

subgroup of S0 generated by si for all 1 6 i 6 d− 1 such that i 6= µ1 + · · ·+ µj for any j.
Write

xµ =
∑
w∈Sµ

Tw and yµ =
∑
w∈Sµ

(−v)−l(w)Tw.

The v-Schur algebra Sv of parameter v is the endomorphism algebra of the right Hv-
module

⊕
µ∈Xn xµHv. We will abbreviate

Av = Sv -mod .

Consider the composition $ of n such that $i = 1 for 1 6 i 6 n. Then x$Hv = Hv. So
the Hecke algebra Hv identifies with a subalgebra of Sv via the canonical isomorphism
Hv ∼= EndHv(Hv).

For λ ∈ Pn let λ′ be the transposed partition of λ. Let ϕλ be the element in Sv given
by ϕλ(h) = xλh for h ∈ x$Hv and ϕλ(xµHv) = 0 for any composition µ 6= $. Then
there is a particular element wλ ∈ S0 associated with λ such that the Weyl module Wv(λ)
is the left ideal in Sv generated by the element

zλ = ϕλTwλyλ′ ∈ Sv.

See [JM97] for details. We will write

∆v = {Wv(λ) |λ ∈ Pn}.

3.10 The Jantzen filtration of Weyl modules

Now, set again R = C[[s]]. Fix

v = exp(2πi/κ) ∈ C and v = exp(2πi/k) ∈ R.

Below we will consider the v-Schur algebra over C with the parameter v, and the v-Schur
algebra overR with the parameter v. The category (Av,∆v) is a highest weight C-category.
Write Lv(λ) for the simple quotient ofWv(λ). The canonical algebra isomorphism Sv(℘) ∼=
Sv implies that (Av,∆v) is a highest weightR-category and there is a canonical equivalence

(Av(℘),∆v(℘)) ∼= (Av,∆v).

We define the Jantzen filtration (J iWv(λ)) of Wv(λ) by applying Definition 2.4.1 to
(Av,∆v). This filtration coincides with the one defined in [JM97], because the contravari-
ant form on Wv(λ) used in [JM97]’s definition is equivalent to a morphism from Wv(λ) to
the dual standard module Wv(λ)∨ = HomR(Wv(λ), R).
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3.11 Equivalence of Ak and Av

In this section we will show that the highest weight R-categories Ak and Av are
equivalent. The proof uses rational double affine Hecke algebras and Suzuki’s functor.
Let us first give some reminders. Let h = Cn, let y1, . . . , yn be its standard basis and
x1, . . . , xn ∈ h∗ be the dual basis. Let H1/κ be the rational double affine Hecke algebra
associated with Sn with parameter 1/κ. Recall from Definition I.2.1.1 that H1/κ is the
quotient of the smash product of the tensor algebra T (h⊕ h∗) with CSn by the relations

[yi, xi] = 1 + 1
κ

∑
j 6=i

sij , [yi, xj ] = −1
κ
sij , 1 6 i, j 6 n, i 6= j.

Here sij denotes the element of Sn that permutes i and j. Denote by Bκ the category O
of H1/κ, see Section I.2.2. It is a highest weight C-category. Let {Bκ(λ) |λ ∈ Pn} be the
set of standard modules.

Now, let V = Cm be the dual of the vectorial representation of g0. For any object M
in Aκ consider the action of the Lie algebra g0 ⊗ C[z] on the vector space

T (M) = V ⊗n ⊗M ⊗ C[h]

given by

(ξ ⊗ za)(v ⊗m⊗ f) =
n∑
i=1

ξ(i)(v)⊗m⊗ xai f + v ⊗ (−1)a(ξ ⊗ t−a)m⊗ f

for ξ ∈ g0, a ∈ N, v ∈ V ⊗n, m ∈ M , f ∈ C[h]. Here ξ(i) is the operator on V ⊗n that acts
on the i-th copy of V by ξ and acts on the other copies of V by identity. Suzuki defined
a natural action of H1/κ on the space of coinvariants

Eκ(M) = H0(g0 ⊗ C[z], T (M)).

The assignment M 7→ Eκ(M) gives a right exact functor

Eκ : Aκ → Bκ.

See [Suz06] or [VV08, Section 2] for details. We have

Eκ(Mκ(λ)) = Bκ(λ),

and Eκ is an equivalence of highest weight categories [VV08, Theorem A.6.1].
Next, we consider the rational double affine Hecke algebra H1/k over R with parameter

1/k. The category O of H1/k is defined in the obvious way. It is a highest weight R-
category. We will denote it by Bk. The standard modules will be denoted by Bk(λ). The
Suzuki functor over R

Ek : Ak → Bk, M 7→ H0(g0 ⊗ C[z], T (M))

is defined in the same way. It has the following properties.

Lemma 3.11.1. (a) We have Ek(Mk(λ)) = Bk(λ) for λ ∈ Pn.
(b) The functor Ek restricts to an exact functor A∆

k → B∆
k .

(c) The functor Ek maps a projective generator of Ak to a projective generator of Bk.
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Proof. The proof of part (a) is the same as in the nondeformed case. For part (b), since Ek
is right exact over Ak, it is enough to prove that for any injective morphism f : M → N
with M , N ∈ A∆

k the map
Ek(f) : Ek(M)→ Ek(N)

is injective. Recall from Lemma 3.2.1 that the Uk,K-module Mk(λ)K is simple for any λ.
So the functor

Ek,K : Ak,K → Bk,K

is an equivalence. Hence the map

Ek(f)⊗R K : Ek,K(MK)→ Ek,K(NK)

is injective. Since both Ek(M) and Ek(N) are free R-modules, this implies that Ek(f)
is also injective. Now, let us concentrate on (c). Let P be a projective generator of Ak.
Then P (℘) is a projective generator of Aκ. Since Eκ is an equivalence of categories, we
have Eκ(P (℘)) is a projective generator of Bκ. By (b) the object Ek(P ) belongs to B∆

k , so
it is free over R. Therefore by the Universal Coefficient Theorem we have

(Ek(P ))(℘) ∼= Eκ(P (℘)).

Hence Ek(P ) is a projective object of Bk. Note that for any λ ∈ Pn there is a surjective
map P →Mk(λ). The right exact functor Ek sends it to a surjective map Ek(P )→ Bk(λ).
This proves that Ek(P ) is a projective generator of Bk.

Proposition 3.11.2. Assume that κ 6 −3. Then there exists an equivalence of highest
weight R-categories

Ak
∼→ Av,

which maps Mk(λ) to Wv(λ) for any λ ∈ Pn.

Proof. We first give an equivalence of highest weight categories

Φ : Ak → Bk

as follows. Let P be a projective generator of Ak. Then Q = Ek(P ) is a projective
generator of Bk by Lemma 3.11.1(c). By Morita theory we have equivalences of categories

HomAk(P,−) : Ak
∼→ EndAk(P )op -mod,

HomBk(Q,−) : Bk
∼→ EndBk(Q)op -mod .

We claim that the algebra homomorphism

EndAk(P )→ EndBk(Q), f 7→ Ek(f), (3.11.1)

is an isomorphism. To see this, note that we have

Q(℘) = Eκ(P (℘)), (EndAk(P ))(℘) = EndAκ(P (℘)), (EndBk(Q))(℘) = EndBκ(Q(℘)).

Since Eκ is an equivalence, it yields an isomorphism

EndAκ(P (℘)) ∼→ EndBκ(Q(℘)), f 7→ Eκ(f).
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Since both EndAk(P ) and EndBk(Q) are finitely generated free R-modules, by Nakayama’s
lemma the morphism (3.11.1) is an isomorphism. In particular, it yields an equivalence of
categories

EndAk(P )op -mod ∼= EndBk(Q)op -mod .

Combined with the other two equivalences above, we get an equivalence of categories

Φ : Ak → Bk.

It remains to show that
Φ(Mk(λ)) ∼= Bk(λ), λ ∈ Pn.

Note that the functor Ek yields a morphism of finitely generated R-modules

HomBk(Q,Φ(Mk(λ))) = EndBk(Q)op ⊗EndAk (P )op HomAk(P,Mk(λ))
→ HomBk(Q,Ek(Mk(λ)))
= HomBk(Q,Bk(λ)).

Let us denote it by ϕ. Note also that we have isomorphisms

HomAk(P,Mk(λ))(℘) = HomAκ(P (℘),Mκ(λ)),
HomBk(Q,Bk(λ))(℘) = HomBκ(Q(℘), Bκ(λ)),

and note that Eκ is an equivalence of categories. So the map ϕ(℘) is an isomorphism.
Further HomBk(Q,Bk(λ)) is free over R, so Nakayama’s lemma implies that ϕ is also an
isomorphism. The preimage of ϕ under the equivalence HomBk(Q,−) yields an isomor-
phism

Φ(Mk(λ)) ' Bk(λ).

Finally, if v 6= −1, i.e., κ 6 −3, then by [Rou08b, Theorem 6.8] the categories Bk and
Av are equivalent highest weight R-categories with Bk(λ) corresponding to Wv(λ). This
equivalence composed with Φ gives the desired equivalence in the proposition.

Corollary 3.11.3. Assume that κ 6 −3. Then for any λ, µ ∈ Pn and i ∈ N we have

[J iMκ(λ)/J i+1Mκ(λ) : Lκ(µ)] = [J iWv(λ)/J i+1Wv(λ) : Lv(µ)]. (3.11.2)

Proof. This follows from the proposition above and Proposition 2.5.1.

To prove the main theorem, it remains to compute the left hand side of (3.11.2). This
will be done by generalizing the approach of [BB93] to the affine parabolic case. To this
end, we first give some reminders on D-modules on affine flag varieties.

4 Generalities on D-modules on ind-schemes

In this section, we first recall basic notion for D-modules on (possibly singular) schemes.
We will also discuss twisted D-modules and holonomic D-modules. Then we introduce
the notion of D-modules on ind-schemes following [BD00] and [KV04].
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4.1 Reminders on D-modules

Unless specified otherwise, all the schemes will be assumed to be of finite type over C,
quasi-separated and quasi-projective. Although a large number of statements are true in
a larger generality, we will only use them for quasi-projective schemes. For any scheme Z,
let OZ be the structure sheaf over Z. We write O(Z) for the category of quasi-coherent
OZ-modules on Z. Note that we abbreviate OZ-module for sheaf of OZ-modules over Z.
For f : Z → Y a morphism of schemes, we write f∗, f∗ for the functors of direct and
inverse images on O(Z), O(Y ). If f is a closed embedding and M ∈ O(Y ), we consider
the quasi-coherent OZ-module

f !M = f−1 HomOY (f∗OZ ,M ).

It is the restriction to Z of the subsheaf of M consisting of sections supported scheme-
theoretically on f(Z) ⊂ Y .

Let Z be a smooth scheme. Let DZ be the ring of differential operators on Z. We
denote by M(Z) the category of right DZ-modules that are quasi-coherent as OZ-modules.
It is an abelian category. Let ΩZ denote the sheaf of differential forms of highest degree
on Z. The category of right DZ-modules is equivalent to the category of left DZ-modules
via M 7→ ΩZ ⊗OZ M . Let i : Y → Z be a morphism of smooth schemes. We consider the
(DY , i

−1DZ)-bimodule

DY→Z = i∗DZ = OY ⊗i−1OZ i
−1DZ .

We define the following functors

i∗ : M(Z)→M(Y ), M 7→ ΩY ⊗OY

(
DY→Z ⊗DZ (ΩZ ⊗OZ M )

)
,

i• : M(Y )→M(Z), M 7→ i∗(M ⊗DY DY→Z).

For any M ∈M(Y ) let M O denote the underlying OY -module of M . Then we have

i∗(M O) = i∗(M )O .

If the morphism i is a locally closed affine embedding, then the functor i• is exact. For any
closed subscheme Z ′ of Z, we denote by M(Z,Z ′) the full subcategory of M(Z) consisting
of DZ-modules supported set-theoretically on Z ′. If i : Y → Z is a closed embedding of
smooth varieties, then by a theorem of Kashiwara, the functor i• yields an equivalence of
categories

M(Y ) ∼= M(Z, Y ). (4.1.1)

For more details on D-modules on smooth schemes, see [HTT08] for instance.
Now, let Z be a possibly singular scheme. We consider the abelian category M(Z) of

right D-modules on Z with a faithful forgetful functor

M(Z)→ O(Z), M 7→M O

as in [BD00, 7.10.3]. If Z is smooth, it is equivalent to the category M(Z) above, see
[BD00, 7.10.12]. For any closed embedding i : Z → X there is a left exact functor

i! : M(X)→M(Z)

such that (i!(M ))O = i!(M O) for all M . It admits an exact left adjoint functor

i• : M(Z)→M(X).
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In the smooth case these functors coincide with the one before. If X is smooth, then i•
and i! yield mutually inverse equivalences of categories

M(Z) ∼= M(X,Z). (4.1.2)

such that i!◦ i• = Id, see [BD00, 7.10.11]. Note that when Z is smooth, this is Kashiwara’s
equivalence (4.1.1). In this chapter, we will always consider D-modules on a (possibly
singular) scheme Z embedded into a smooth scheme. Finally, if j : Y → Z is a locally
closed affine embedding and Y is smooth, then we have the following exact functor

j• = i! ◦ (i ◦ j)• : M(Y )→M(Z). (4.1.3)

Its definition is independent of the choice of i.

4.2 Holonomic D-modules

Let Z be a scheme. If Z is smooth, we denote by Mh(Z) the category of holonomic
DZ-modules, see e.g., [HTT08, Definition 2.3.6]. Otherwise, let i : Z → X be a closed
embedding into a smooth scheme X. We define Mh(Z) to be the full subcategory of
M(Z) consisting of objects M such that i•M is holonomic. The category Mh(Z) is
abelian. There is a (contravariant) duality functor on Mh(Z) given by

D : Mh(Z)→Mh(Z), M 7→ i!
(
ΩX ⊗OX ExtdimX

DX (i•M ,DX)
)
.

For a locally closed affine embedding i : Y → Z with Y a smooth scheme, the functor i•
given by (4.1.3) maps Mh(Y ) to Mh(Z). We put

i! = D ◦ i• ◦ D : Mh(Y )→Mh(Z).

There is a canonical morphism of functors

ψ : i! → i•.

The intermediate extension functor is given by

i!• : Mh(Y )→Mh(Z), M 7→ Im(ψ(M ) : i!M → i•M ).

Let us give some properties of these functors, see e.g. [HTT08] for details.

Lemma 4.2.1. Let Y be a smooth scheme and let i : Y → Z be a locally closed affine
embedding.

(a) The functors i•, i! are exact.
(b) If i is a closed embedding, then ψ is an isomorphism of functors i! ∼= i•.
(c) If i is an open embedding and the scheme Z is smooth, then the functor i! is exact.

Further we have i! = i∗ and
(i!, i! = i∗, i•)

form a triple of adjoint functors between the categories Mh(Y ) and Mh(Z). Finally, for
M ∈Mh(Z) we have

(i•(M ))O = i∗(M O).
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4.3 Weakly equivariant D-modules

Let T be a linear group. For any T -scheme Z there is an abelian category MT (Z) of
weakly T -equivariant right D-modules on Z with a faithful forgetful functor

MT (Z)→M(Z). (4.3.1)

If Z is smooth, an object M of MT (Z) is an object M of M(Z) equipped with a structure
of T -equivariant OZ-module such that the action map M ⊗OZ DZ →M is T -equivariant.
For any T -scheme Z with a T -equivariant closed embedding i : Z → X into a smooth
T -scheme X, the functor i• yields an equivalence MT (Z) ∼= MT (X,Z), where MT (X,Z)
is the subcategory of MT (X) consisting of objects supported set-theoretically on Z.

4.4 Twisted D-modules

Let T be a torus, and let t be its Lie algebra. Let π : Z† → Z be a right T -torsor over
the scheme Z. For any object M ∈MT (Z†) the OZ-module π∗(M O) carries a T -action.
Let

M † = π∗(M O)T

be the OZ-submodule of π∗(M O) consisting of the T -invariant local sections. We have

Γ(Z,M †) = Γ(Z†,M )T .

For any weight λ ∈ t∗ we define the categories Mλ̃(Z), Mλ(Z) as follows.
First, assume that Z is a smooth scheme. Then Z† is also smooth. So we have a sheaf

of algebras on Z given by
D†Z = (DZ†)†,

and M † is a right D†Z-module for any M ∈MT (Z†). For any open subscheme U ⊂ Z the
T -action on π−1(U) yields an algebra homomorphism

δr : U(t)→ Γ(U,D†Z), (4.4.1)

whose image lies in the center of the right hand side. Thus there is also an action of U(t)
on M † commuting with the D†Z-action. For λ ∈ t∗ let mλ ⊂ U(t) be the ideal generated
by

{h+ λ(h) | h ∈ t}.

We define Mλ(Z) (resp. Mλ̃(Z)) to be the full subcategory of MT (Z†) consisting of the
objects M such that the action of mλ on M † is zero (resp. nilpotent). In particular
Mλ(Z) is a full subcategory of Mλ̃(Z) and both categories are abelian. We will write

Γ(Z,M ) = Γ(Z,M †), ∀ M ∈Mλ̃(Z). (4.4.2)

Now, let Z be any scheme. We say that a T -torsor π : Z† → Z is admissible if there
exists a T -torsor X† → X with X smooth and a closed embedding i : Z → X such
that Z† ∼= X† ×X Z as a T -scheme over Z. We will only use admissible T -torsors. Let
Mλ(X,Z), Mλ̃(X,Z) be respectively the subcategories of Mλ(X), Mλ̃(X) consisting of
objects supported on Z†. We define Mλ(Z), Mλ̃(Z) to be the full subcategories of MT (Z†)
consisting of objects M such that i•(M ) belongs to Mλ(X,Z), Mλ̃(X,Z) respectively.
Their definition only depends on the T -torsor π.
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Remark 4.4.1. Let Z be a smooth scheme. Let M(D†Z) be the category of right D†Z-modules
on Z that are quasi-coherent as OZ-modules. The functor

MT (Z†) ∼→M(D†Z), M 7→M † (4.4.3)

is an equivalence of categories. A quasi-inverse is given by π∗, see e.g., [BB93, Lemma
1.8.10].
Remark 4.4.2. We record the following fact for a further use. For any smooth T -torsor
π : Z† → Z, the exact sequence of relative differential 1-forms

π∗(Ω1
Z) −→ Ω1

Z† −→ Ω1
Z†/Z −→ 0

yields an isomorphism
ΩZ† = π∗(ΩZ)⊗O

Z†
ΩZ†/Z .

Since π is a T -torsor we have indeed

ΩZ†/Z = OZ†

as a line bundle. Therefore we have an isomorphism of OZ†-modules

ΩZ† = π∗(ΩZ).

Below, we will identify them whenever needed.

4.5 Twisted holonomic D-modules and duality functors

Let π : Z† → Z be an admissible T -torsor. We define MT
h (Z†) to be the full subcat-

egory of MT (Z†) consisting of objects M whose image via the functor (4.3.1) belongs to
Mh(Z†). We define the categories Mλ

h(Z), Mλ̃
h(Z) in the same manner.

Assume that Z is smooth. Then the category MT (Z†) has enough injective objects,
see e.g., [Kas08, Proposition 3.3.5] and the references there. We define a (contravariant)
duality functor on MT

h (Z†) by

D′ : MT
h (Z†)→MT

h (Z†), M 7→ ΩZ† ⊗O
Z†

ExtdimZ†
MT (Z†)(M ,DZ†).

We may write D′ = D′Z . Note that by Remark 4.4.2 and the equivalence (4.4.3) we have

(D′ZM )† = ΩZ ⊗OZ ExtdimZ†
D†Z

(M †,D†Z), ∀ M ∈MT (Z†). (4.5.1)

For any λ ∈ t∗ the functor D′ restricts to (contravariant) equivalences of categories

D′ : Mλ̃
h(Z)→M−̃λ

h (Z), D′ : Mλ
h(Z)→M−λ

h (Z), (4.5.2)

see e.g., [BB93, Remark 2.5.5(iv)]. In particular, if λ = 0 then D′ yields a duality on
M0

h(Z†). Further (4.4.3) yields an equivalence of categories

Φ : M0
h(Z)→Mh(Z), M 7→M †.

Recall the duality functor D on Mh(Z) defined in Section 4.2. The following result is
standard.

Lemma 4.5.1. We have Φ ◦ D′ = D ◦ Φ.
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For an admissible T -torsor π : Z† → Z with an embedding i into a smooth T -torsor
X† → X, we define

D′ : MT
h (Z†)→MT

h (Z†), M 7→ i!D′X(i•(M )).

The definition of D′ only depends on π. The equivalence (4.5.2) and Lemma 4.5.1 hold
again.

A weight λ ∈ t∗ is integral if it is given by the differential of a character eλ : T → C∗.
For an integral weight λ we consider the invertible sheaf L λ

Z in O(Z) defined by

Γ(U,L λ
Z ) = {γ ∈ Γ(π−1(U),OZ†) | γ(xh−1) = eλ(h)γ(x), (x, h) ∈ π−1(U)× T}

for any open set U ⊂ Z. Then we define the following translation functor

Θλ : MT
h (Z†)→MT

h (Z†), M 7→M ⊗O
Z†
π∗(L λ

Z ).

It is an equivalence of categories. A quasi-inverse is given by Θ−λ. For any µ ∈ t∗ the
restriction of Θλ yields equivalences of categories

Θλ : Mµ̃
h(Z)→Mµ̃+λ

h (Z), Θλ : Mµ
h(Z)→Mµ+λ

h (Z). (4.5.3)

We define the duality functor on Mλ̃
h(Z) to be

D : Mλ̃
h(Z)→Mλ̃

h(Z), M 7→ Θ2λ ◦ D′(M ).

It restricts to a duality functor on Mλ
h(Z), which we denote again by D. To avoid any

confusion, we may write D = Dλ. The equivalence Θλ intertwines the duality functors,
i.e., we have

Dλ+µ ◦Θλ = Θλ ◦ Dµ. (4.5.4)

For any locally closed affine embedding of T -torsors i : Z → Y with Z smooth, we
define the functor

i! = D ◦ i• ◦ D : Mλ̃
h(Z)→Mλ̃

h(Y ).

As in Section 4.2, we have a morphism of functors ψ : i! → i• which is an isomorphism if i
is a closed embedding. The intermediate extension functor i!• is defined in the same way.
Lemma 4.2.1 holds again.

Remark 4.5.2. Assume that Z is smooth. Let M ∈Mλ
h(Z). Put µ = 0 in (4.5.3). Using

the equivalence Φ we see that M † is a right module over the sheaf of algebras

Dλ
Z = L −λ

Z ⊗OZ DZ ⊗OZ L λ
Z .

Further, we have

D(M )† = ΩZ ⊗OZ ⊗OZL 2λ
Z ⊗OZ ExtdimZ

Dλ
Z

(M †,Dλ
Z)

by Lemma 4.5.1 and (4.5.4), compare [KT95, (2.1.2)].
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4.6 Injective and projective limit of categories

Let us introduce the following notation. Let A be a filtering poset. For any inductive
system of categories (Cα)α∈A with functors iαβ : Cα → Cβ, α 6 β, we denote by 2lim−→Cα its
inductive limit, i.e., the category whose objects are pairs (α,Mα) with α ∈ A, Mα ∈ Cα
and

Hom2lim−→ Cα((α,Mα), (β,Nβ)) = lim−→
γ>α,β

HomCγ (iαγ(Mα), iβγ(Nβ)).

For any projective system of categories (Cα)α∈A with functors jαβ : Cβ → Cα, α 6 β,
we denote by 2lim←−Cα its projective limit, i.e., the category whose objects are systems
consisting of objects Mα ∈ Cα given for all α ∈ A and isomorphisms jαβ(Mβ) → Mα for
each α 6 β and satisfying the compatibility condition for each α 6 β 6 γ. Morphisms are
defined in the obvious way. See e.g., [KV04, 3.2, 3.3].

4.7 The O-modules on ind-schemes

An ind-scheme X is a filtering inductive system of schemes (Xα)α∈A with closed em-
beddings iαβ : Xα → Xβ for α 6 β such that X represents the ind-object “ lim−→ ”Xα. See
[KS94, 1.11] for details on ind-objects. Below we will simply write lim−→ for “ lim−→ ”, hoping
this does not create any confusion. The categories O(Xα) form a projective system via
the functors i!αβ : O(Xβ) → O(Xα). Following [BD00, 7.11.4] and [KV04, 3.3] we define
the category of O-modules on X as

O(X) = 2lim←−O(Xα).

It is an abelian category. An object M of O(X) is represented by

M = (Mα, ϕαβ : i!αβMβ →Mα)

where Mα is an object of O(Xα) and ϕαβ, α 6 β, is an isomorphism in O(Xα).
Note that any object M of O(X) is an inductive limit of objects from O(Xα). More

precisely, we first identify O(Xα) as a full subcategory of O(X) in the following way: since
the poset A is filtering, to any Mα ∈ O(Xα) we may associate a canonical object (Nβ) in
O(X) such that Nβ = iαβ∗(Mα) for α 6 β and the structure isomorphisms ϕβγ , β 6 γ,
are the obvious ones. Let us denote this object in O(X) again by Mα. Given any object
M ∈ O(X) represented by M = (Mα, ϕαβ), these Mα ∈ O(X), α ∈ A, form an inductive
system via the canonical morphisms Mα → Mβ. Then, the ind-object lim−→Mα of O(X)
is represented by M . So, we define the space of global sections of M to be the inductive
limit of vector spaces

Γ(X,M ) = lim−→Γ(Xα,Mα). (4.7.1)

We will also use the category Ô(X) defined as the limit of the projective system
of categories (O(Xα), i∗αβ), see [BD00, 7.11.3] or [KV04, 3.3]. Note that the canonical
isomorphisms i∗αβOXβ = OXα yield an object (OXα)α∈A in Ô(X). We denote this object
by OX . An object F ∈ Ô(X) is said to be flat if each Fα is a flat OXα-module. Such a
F yields an exact functor

O(X)→ O(X), M 7→M ⊗OX F = (Mα ⊗OXα
Fα). (4.7.2)

For F ∈ Ô(X) the vector spaces Γ(Xα,Fα) form a projective system with the structure
maps induced by the functors i∗αβ. We set

Γ(X,F ) = lim←−Γ(Xα,Fα). (4.7.3)
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4.8 The D-modules on ind-schemes

The category of D-modules on the ind-scheme X is defined as the limit of the inductive
system of categories (M(Xα), iαβ•), see e.g., [KV04, 3.3]. We will denote it by M(X).
Since M(Xα) are abelian categories and iαβ• is an exact functor, the category M(X) is
abelian. Recall that an object of M(X) is represented by a pair (α,Mα) with α ∈ A,
Mα ∈M(Xα). There is an exact and faithful forgetful functor

M(X)→ O(X), M = (α,Mα)→M O = (iαβ•(Mα)O)β>α.

The global sections functor on M(X) is defined by

Γ(X,M ) = Γ(X,M O).

Next, we say that X is a T -ind-scheme if X = lim−→Xα with each Xα being a T -scheme
and iαβ : Xα → Xβ being T -equivariant. We define MT (X) to be the abelian category
given by the limit of the inductive system of categories (MT (Xα), iαβ•). The functors
(4.3.1) for each Xα yield an exact and faithful functor

MT (X)→M(X). (4.8.1)

The functor Γ on MT (X) is given by the functor Γ on M(X).
Finally, given a T -ind-scheme X = lim−→Xα let π : X† → X be a T -torsor over X, i.e., π

is the limit of an inductive system of T -torsors πα : X†α → Xα. We say that π is admissible
if each of the πα is admissible. Assume this is the case. Then the categories Mλ(Xα),
Mλ̃(Xα) form, respectively, two inductive systems of categories via iαβ•. Let

Mλ(X) = 2lim−→Mλ(Xα), Mλ̃(X) = 2lim−→Mλ̃(Xα).

They are abelian subcategories of MT (X†). For any object M = (α,Mα) of MT (X†), the
OXβ -modules (iαβ•Mα)† with β > α give an object of O(X). We will denote it by M †.
The functor

MT (X†)→ O(X), M 7→M †

is exact and faithful. For M ∈Mλ̃(X) we will write

Γ(M ) = Γ(X,M †). (4.8.2)

Note that it is also equal to Γ(X†,M )T . We will also consider the following categories

Mλ̃
h(X) = 2lim−→Mλ̃

h(Xα), Mλ
h(X) = 2lim−→Mλ

h(Xα).

Let Y be a smooth scheme. A locally closed affine embedding i : Y → X is the composition
of an affine open embedding i1 : Y → Y with a closed embedding i2 : Y → X. For such a
morphism the functor i• : Mλ̃

h(Y ) →Mλ̃
h(X) is defined by i• = i2• ◦ i1•, and the functor

i! : Mλ̃
h(Y )→Mλ̃

h(X) is defined by i! = i2• ◦ i1!.

4.9 The sheaf of differential operators on a formally smooth ind-scheme.

Let X be a formally smooth ind-scheme, i.e., for any commutative C-algebra A and
any nilpotent ideal I ⊂ A, any morphism of schemes f : Spec(A/I) → X is given by the
composition of Spec(A/I)→ Spec(A) and a morphism f ′ : Spec(A)→ X, see e.g., [BD00,
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7.11.1] and the references there. Fix β > α in A let Diff β,α be the OXβ×Xα-submodule
of HomC(OXβ , iαβ∗OXα) consisting of local sections supported set-theoretically on the
diagonal Xα ⊂ Xβ × Xα. Here HomC(OXβ , iαβ∗OXα) denotes the sheaf of morphisms
between the sheaves of C-vector spaces associated with OXβ and iαβ∗OXα . As a left OXα-
module Diff β,α is quasi-coherent, see e.g., [BB93, Section 1.1]. So it is an object in O(Xα).
For β 6 γ the functor iβγ∗ and the canonical map OXγ → iβγ∗OXβ yield a morphism of
OXα-modules

HomC(OXβ , iαβ∗OXα)→HomC(OXγ , iαγ∗OXα).
It induces a morphism Diff β,α → Diff γ,α in O(Xα). The OXα-modules Diff β,α, β > α,
together with these maps form an inductive system. Let

Diff α = lim−→
β>α

Diff β,α ∈ O(Xα).

The system consisting of the Diff α’s and the canonical isomorphisms i∗αβ Diff β → Diff α

is a flat object in Ô(X), see [BD00, 7.11.11]. We will call it the sheaf of differential
operators on X and denote it by DX . It carries canonically a structure of OX -bimodules,
and a structure of algebra given by

Diff γ,β ⊗OXβ
Diff β,α → Diff γ,α, (g, f) 7→ g ◦ f, α 6 β 6 γ.

Any object M ∈M(X) admits a canonical right DX -action given by a morphism

M ⊗OX DX →M (4.9.1)

in O(X) which is compatible with the multiplication in DX .

5 Localization theorem for affine Lie algebras of negative
level

In this section we first consider the affine localization theorem which relates right
D-modules on the affine flag variety (an ind-scheme) to a category of modules over the
affine Lie algebra with integral weights and a negative level. When the weight is regular,
we compute the image of standard D-modules using Kashiwara-Tanisaki’s construction
(via the Kashiwara affine flag scheme). Next, we give a geometric construction of the
translation functor for the affine category O inspired from [BG99], and we apply this to
singular blocks. Finally, we consider the D-modules corresponding to the parabolic Verma
modules. All these constructions hold for a general simple linear group. We will only use
the case of SLm, since the multiplicities on the left hand side of (3.11.2) that we want
to compute are the same for slm and glm. We will use, for slm, the same notation as in
Section 3 for glm. In particular g0 = slm and t∗0 is now given the basis consisting of the
weights εi − εi+1 with 1 6 i 6 m− 1. We identify Pn as a subset of t∗0 via the map

Pn → t∗0, λ = (λ1, . . . , λm) 7→
m∑
i=1

(λi − n/m)εi.

Finally, we will modify slightly the definition of g by extending C[t, t−1] to C((t)), i.e.,
from now on we set

g = g0 ⊗ C((t))⊕ C1⊕ C∂.

The bracket is given in the same way as before. We will again denote by b, n, q, etc., the
corresponding Lie subalgebras of g.
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5.1 The affine Kac-Moody group

Consider the group ind-scheme LG0 = G0(C((t))) and the group scheme L+G0 =
G0(C[[t]]). Let I ⊂ L+G0 be the Iwahori subgroup. It is the preimage of B0 via the
canonical map L+G0 → G0. For z ∈ C∗ the loop rotation t 7→ zt yields a C∗-action on
LG0. Write

L̂G0 = C∗ n LG0.

Let G be the Kac-Moody group associated with g. It is a group ind-scheme which is a
central extension

1→ C∗ → G→ L̂G0 → 1,

see e.g., [Kum02, Section 13.2]. There is an obvious projection pr : G→ LG0. We set

B = pr−1(I), Q = pr−1(L+G0), T = pr−1(T0).

Finally, let N be the prounipotent radical of B. We have

g = Lie(G), b = Lie(B), q = Lie(Q), t = Lie(T ), n = Lie(N).

5.2 The affine flag variety

Let X = G/B be the affine flag variety. It is a formally smooth ind-scheme. The
enhanced affine flag variety X† = G/N is a T -torsor over X via the canonical projection

π : X† → X. (5.2.1)

The T -action on X† is given by gN 7→ gh−1N for h ∈ T , g ∈ G. The T -torsor π is
admissible, see the end of Section 5.5. The ind-scheme X† is also formally smooth. For
any subscheme Z of X we will write Z† = π−1(Z). The B-orbit decomposition of X is

X =
⊔
w∈S

Xw, Xw = BẇB/B,

where ẇ is a representative of w in the normalizer of T in G. Each Xw is an affine space
of dimension l(w). Its closure Xw is an irreducible projective variety. We have

Xw =
⊔
w′6w

Xw′ , X = lim−→
w

Xw.

5.3 Localization theorem

Recall the sheaf of differential operators DX† ∈ Ô(X†). The space of sections of DX†

is defined as in (4.7.3). The left action of G on X† yields an algebra homomorphism

δl : U(g)→ Γ(X†,DX†). (5.3.1)

Since the G-action on X† commutes with the right T -action, the image of the map above
lies in the T -invariant part of Γ(X†,DX†). So for M ∈ MT (X†) the DX†-action on M
given by (4.9.1) induces a g-action 1 on M † via δl. In particular the vector space Γ(M )
as defined in (4.8.2) is a g-module. Let M(g) be the category of g-modules. We say that
a weight λ ∈ t∗ is antidominant (resp. dominant, regular) if for any α ∈ Π+ we have
〈λ : α〉 6 0 (resp. 〈λ : α〉 > 0, 〈λ : α〉 6= 0).

1. More precisely, here by g-action we mean the g-action on the associated sheaf of vector spaces (M †)C,
see Step 1 of the proof of Proposition 5.9.1 for details.
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Proposition 5.3.1. (a) The functor

Γ : Mλ(X)→M(g), M 7→ Γ(M )

is exact if λ+ ρ is antidominant.
(b) The functor

Γ : Mλ̃(X)→M(g), M 7→ Γ(M )

is exact if λ+ ρ is antidominant.

Proof. A proof of part (a) is sketched in [BD00, Theorem 7.15.6]. A detailed proof can
be given using similar technics as in the proof of the Proposition 5.9.1 below. This is left
to the reader. See also [FG04, Theorem 2.2] for another proof of this result. Now, let
us concentrate on part (b). Let M = (α,Mα) be an object in Mλ̃(X). By definition
the action of mλ on M † is nilpotent. Let Mn be the maximal subobject of M such that
the ideal (mλ)n acts on M †

n by zero. We have Mn−1 ⊂ Mn and M = lim−→Mn. Write
RkΓ(X,−) for the k-th derived functor of the global sections functor Γ(X,−). Given
n > 1, suppose that

RkΓ(X,M †
n) = 0, ∀ k > 0.

Since Mn+1/Mn is an object of Mλ(X), by part (a) we have

RkΓ(X, (Mn+1/Mn)†) = 0, ∀ k > 0.

The long exact sequence for RΓ(X,−) applied to the short exact sequence

0 −→M †
n −→M †

n+1 −→ (Mn+1/Mn)† −→ 0

implies that RkΓ(X,M †
n+1) = 0 for any k > 0. Therefore by induction the vector space

RkΓ(X,M †
n) vanishes for any n > 1 and k > 0. Finally, since the functor RkΓ(X,−)

commutes with direct limits, see e.g., [TT90, Lemma B.6], we have

RkΓ(X,M †) = lim−→RkΓ(X,M †
n) = 0, ∀ k > 0.

5.4 The category Õκ and Verma modules

For a t-module M and λ ∈ t∗ we set

Mλ̃ = {m ∈M | (h− λ(h))Nm = 0, ∀ h ∈ t, N � 0}. (5.4.1)

We call a t-module M a generalized weight module if it satisfies the conditions

M =
⊕
λ∈κt∗

Mλ̃,

dimCMλ̃ <∞, ∀ λ ∈ t∗.

Its character ch(M) is defined as the formal sum

ch(M) =
∑
λ∈t∗

dimC(Mλ̃)eλ. (5.4.2)

Let Õ be the category consisting of the U(g)-modules M such that
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• as a t-module M is a generalized weight module,
• there exists a finite subset Ξ ⊂ t∗ such thatMλ̃ 6= 0 implies that λ ∈ Ξ+

∑m−1
i=0 Z60αi.

The category Õ is an abelian category. We define the duality functor D on Õ by

DM =
⊕
λ∈t∗

Hom(Mλ̃,C), (5.4.3)

with the action of g given by the involution σ, see Section 3.3. Let Õκ be the full subcat-
egory of Õ consisting of the g-modules M such that 1 − c acts on M locally nilpotently,
where c = κ−m. The category Õκ is also abelian. It is stable under the duality functor,
because σ(1) = 1. The category Oκ is a full Serre subcategory of Õκ.

For λ ∈ κt
∗ we consider the Verma module

Nκ(λ) = U(g)⊗U(b) Cλ.

Here Cλ is the one dimensional b-module such that n acts trivially and t acts by λ. It is an
object of Õκ. Let Lκ(λ) be the unique simple quotient of Nκ(λ). We have DLκ(λ) = Lκ(λ)
for any λ. A simple subquotient of a module M ∈ Õκ is isomorphic to Lκ(λ) for some
λ ∈ κt

∗. The classes [Lκ(λ)] form a basis of the vector space [Õκ], because the characters
of the Lκ(λ)’s are linearly independent.

Denote by Λ the set of integral weights in κt
∗. Let λ ∈ Λ and w ∈ S. Recall the line

bundle L λ
Xw

from Section 4.5. Let

A λ
w = Ω

X†w
⊗O

X
†
w

π∗(L λ
Xw). (5.4.4)

It is an object of Mλ
h(Xw) such that

D(A λ
w ) = A λ

w .

Let iw : X†w → X† be the canonical embedding. It is locally closed and affine. We have
the following objects in Mλ

h(X),

A λ
w! = iw!(A λ

w ), A λ
w!• = iw!•(A λ

w ), A λ
w• = iw•(A λ

w )

We will consider the Serre subcategory Mλ
0(X) of Mλ

h(X) generated by the simple objects
A λ
w!• for w ∈ S. It is an artinian category. Since D(A λ

w!•) = A λ
w!•, the category Mλ

0(X) is
stable under the duality. We have the following proposition.

Proposition 5.4.1. Let λ ∈ Λ be such that λ+ ρ is antidominant and regular. Then we
have isomorphisms of g-modules

Γ(A λ
v!) = Nκ(v · λ), Γ(A λ

v•) = DNκ(v · λ), Γ(A λ
v!•) = Lκ(v · λ), ∀ v ∈ S. (5.4.5)

This is essentially due to [KT95]. However, the setting of loc. cit. is slightly different
from the one used here. Let us recall their construction and adapt it to our setting.

5.5 The Kashiwara affine flag variety

We first introduce some more notation. Recall that Π is the root system of g and Π+

is the set of positive root. Write Π− = −Π+. For α ∈ Π we write

gα = {x ∈ g | [h, x] = α(h)x, ∀ h ∈ t}.
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For any subset Υ of Π+, Π− we set respectively

n(Υ) =
⊕
α∈Υ

gα, n−(Υ) =
⊕
α∈Υ

gα.

For α =
∑m−1
i=0 hiαi ∈ Π we write ht(α) =

∑m−1
i=0 hi and for l ∈ N we set

Π−l = {α ∈ Π− | ht(α) 6 −l}, n−l = n−(Π−l ).

Consider the group scheme L−G0 = G0(C[[t−1]]). Let B− be the preimage of B−0 by the
map

L−G0 → G0, t−1 7→ 0,

where B−0 is the Borel subgroup of G0 opposite to B0. Let N−l ⊂ B− be the group
subscheme given by

N−l = lim←−
k

exp(n−l /n
−
k ).

Let X be the Kashiwara affine flag variety, see [Kas89]. It is a quotient scheme X =
G∞/B, where G∞ is a coherent scheme with a locally free left action of B− and a locally
free right action of B. The scheme X is coherent, prosmooth, non quasi-compact, locally
of countable type, with a left action of B−. There is a right T -torsor

π : X† = G∞/N → X.

For any subscheme Z of X let Z† be its preimage by π. Let

X =
⊔
w∈S

◦
Xw.

be the B−-orbit decomposition. The scheme X is covered by the following open sets

Xw =
⊔
v6w

◦
Xv.

For each w there is a canonical closed embedding Xw → Xw. Moreover, for any integer l
that is large enough, the group N−l acts locally freely on Xw, Xw†, the quotients

Xwl = N−l \X
w, Xw†l = N−l \X

w†

are smooth schemes 2, and the induced morphism

Xw → Xwl (5.5.1)

is a closed immersion. See [KT95, Lemma 2.2.1]. Further we have

X
†
w = Xw ×Xw

l
Xw†l .

In particular, we get a closed embedding of the T -torsor X†w → Xw into the T -torsor
Xw†l → Xwl . This implies that the T -torsor π : X† → X is admissible. Finally, let

pl1l2 : Xw†l1 → Xw†l2 , pl : Xw† → Xw†l , l1 > l2

be the canonical projections. They are affine morphisms.

2. For l large enough the scheme Xwl is separated (hence quasi-separated). To see this, one uses the
fact that Xw is separated and applies [TT90, Proposition C.7].
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5.6 The category Hλ̃(X).

Fix w, y ∈ S with y > w. For l1 > l2 large enough, the functor

(pl1l2)• : Mλ̃
h(Xyl1 , Xw)→Mλ̃

h(Xyl2 , Xw)

yields a filtering projective system of categories, and we set

Hλ̃(Xy, Xw) = 2lim←−
l

Mλ̃
h(Xyl , Xw).

For z > y let jyz : Xy† → Xz† be the canonical open embedding. It yields a map jyz :
Xy†l → Xz†l for each l. The pull-back functors by these maps yield, by base change, a
morphism of projective systems of categories

(Mλ̃
h(Xzl , Xw))l → (Mλ̃

h(Xyl , Xw))l.

Hence we get a map
Hλ̃(Xz, Xw)→ Hλ̃(Xy, Xw).

As y, z varies these maps yield again a projective system of categories and we set

Hλ̃(Xw) = 2lim←−
y>w

Hλ̃(Xy, Xw).

Finally, for w 6 v the category Hλ̃(Xw) is canonically a full subcategory of Hλ̃(Xv). We
define

Hλ̃(X) = 2lim−→
w

Hλ̃(Xw).

This definition is inspired from [KT95], where the authors considered the categories
Mλ

h(Xyl , Xw) instead of the categories Mλ̃
h(Xyl , Xw). Finally, note that since the cate-

gory Hλ̃(Xw) is equivalent to Mλ̃
h(Xyl , Xw) for y, l large enough, and since the latter is

equivalent to Mλ̃
h(Xw), see Section 4.1, we have an equivalence of categories

Hλ̃(X) ∼= Mλ̃
h(X).

5.7 The functors Γ̂ and Γ

For an object M of Hλ̃(X), there exists w ∈ S such that M is an object of the subcat-
egory Hλ̃(Xw). Thus M is represented by a system (M y

l )y>w,l, with M y
l ∈Mλ̃

h(Xyl , Xw)
and l large enough. For l1 > l2 there is a canonical map

(pl1l2)∗(M y
l1

)→ (pl1l2)•(M y
l1

) = M y
l2
.

It yields a map (see (4.4.2) for the notation)

Γ(Xyl1 ,M
y
l1

)→ Γ(Xyl2 ,M
y
l2

).

Next, for y, z > w and l large enough, we have a canonical isomorphism

Γ(Xyl ,M
y
l ) = Γ(Xzl ,M z

l ).
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Following [KT95], we choose a y > w and we set

Γ̂(M ) = lim←−
l

Γ(Xyl ,M
y
l ).

This definition does not depend on the choice of w, y. Now, regard M as an object of
Mλ̃

h(X). Recall the object M † ∈ O(X) from Section 4.4. Suppose that M † is represented
by a system (M O

y )y>w with M O
y ∈ O(Xy). By definition we have M O

y = (i!M y
l )†, where

i denotes the closed embedding X†y → Xy†l , see (5.5.1). Therefore we have

Γ(Xy,M
O
y ) = Γ(Xy, i

!(M y
l )†)

⊂ Γ(Xyl ,M
y
l ). (5.7.1)

Next, recall that we have

Γ(M ) = Γ(X,M †) = lim−→
y

Γ(Xy,M
O
y ).

So by first taking the projective limit on the right hand side of (5.7.1) with respect to
l and then taking the inductive limit on the left hand side with respect to y we get an
inclusion

Γ(M ) ⊂ Γ̂(M ).
It identifies Γ(M ) with the subset of Γ̂(M ) consisting of the sections supported on sub-
schemes (of finite type) of X.

The vector space Γ̂(M ) has a g-action, see [KT95, Section 2.3]. The vector space
Γ(M ) has also a g-action by Section 5.3. The inclusion is compatible with these g-actions.
Following loc. cit., let

Γ(M ) ⊂ Γ̂(M )
be the set of t-finite elements. It is a g-submodule of Γ̂(M ).

5.8 Proof of Proposition 5.4.1

By [KT95, Theorem 3.4.1] under the assumption of the proposition we have isomor-
phisms of g-modules.

Γ(A λ
v!) = Nκ(v · λ), Γ(A λ

v•) = DNκ(v · λ), Γ(A λ
v!•) = Lκ(v · λ), ∀v ∈ S.

We must check that for ] =!, •, or !•, the g-submodules Γ(A λ
v]) and Γ(A λ

v]) of Γ̂(A λ
v]) are

equal. Let us prove this for ] = •. We will do this in several steps.
Step 1. Following [KT95] we first define a particular section ϑ in Γ̂(A λ

v•). Let ω be
a nowhere vanishing section of ΩXv . It is unique up to a nonzero scalar. Let tλ be the
nowhere vanishing section of L λ

Xv
such that tλ(uv̇b) = e−λ(b) for u ∈ N , b ∈ B. Then

ω⊗ tλ is a nowhere vanishing section of A λ,†
v over Xv. Now, for y > v and l large enough,

let ivl : Xv → Xyl be the composition of the locally closed embedding Xv → Xy and
the closed embedding Xy → Xyl in (5.5.1). We will denote the corresponding embedding
X†v → Xy†l again by ivl . Note that (ivl•(A λ

v ))l represents the object A λ
v• in Hλ̃(X). Therefore

we have
Γ̂(A λ

v•) = lim←−
l

Γ(Xyl , i
v
l•(A λ

v )).

Consider the canonical inclusion of OXy
l
-modules

ivl∗(A λ
v )† −→ ivl•(A λ

v )†.
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Let ϑl ∈ Γ(Xyl , ivl•(A λ
v )†) be the image of ω ⊗ tλ under this map. The family (ϑl) defines

an element
ϑ ∈ Γ̂(A λ

v•).

Step 2. Let V y = yB− ·B/B. It is an affine open set in Xy. For l large enough, let V y
l

be the image of V y in Xyl via the canonical projection Xy → Xyl . Write jyl : V y
l → Xyl for

the inclusion. Note that V y
l
∼= N−/N−l as affine spaces. Therefore, if l is large enough such

that Π−l ⊂ Π−∩vΠ−, then the right D†Xv -module structure on A λ,†
v yields an isomorphism

of sheaves of C-vector spaces over V y
l

jy∗l (ivl∗OXv)⊗ U(n−(Π− ∩ v(Π−))/n−l ) ∼→ jy∗l
(
ivl•(A λ

v )†
)
,

f ⊗ p 7→ (ϑ · f) · δl(p).

This yields an isomorphism of t-modules

Γ(Xyl , i
v
l•(A λ

v )) = U(n−/n−l )⊗ Cv·λ, (5.8.1)

see [KT95, Lemma 3.2.1]. By consequence we have an isomorphism of t-modules

Γ̂(A λ
v•) = (lim←−

l

U(n−/n−l ))⊗ Cv·λ. (5.8.2)

Step 3. Now, let us prove Γ(A λ
v•) = Γ(A λ

v•). First, by (5.8.1) the space Γ(Xyl , ivl•(A λ
v ))

is t-locally finite. So (5.7.1) implies that Γ(A λ
v•) is the inductive limit of a system of

t-locally finite submodules. Therefore it is itself t-locally finite. Hence we have

Γ(A λ
v•) ⊂ Γ(A λ

v•).

To see that this is indeed an equality, note that if m ∈ Γ̂(A λ
v•) is not t-locally finite, then

by (5.8.2) the section m is represented by an element in

lim←−
l

U(n−/n−l )⊗ Cv·λ

which does not come from U(n−)⊗ Cv·λ via the obvious map. Then one sees that m can
not be supported on a finite dimensional scheme, i.e., it can not belong to Γ(A λ

v•). This
proves that

Γ(A λ
v•) = Γ(A λ

v•).

Now, we can prove the other two equalities. Since λ + ρ is antidominant, by Propo-
sition 5.3.1(a) the functor Γ is exact on Mλ(X). So Γ(A λ

v!•) is a g-submodule of Γ(A λ
v•).

Therefore all the elements in Γ(A λ
v!•) are t-finite, i.e., we have

Γ(A λ
v!•) ⊂ Γ(A λ

v!•).

On the other hand, by [KT95, Theorem 3.4.1] we have

Γ(A λ
v!•) ⊂ Γ(A λ

v•).

Therefore, Step 3 yields that each section in Γ(A λ
v!•) is supported on a finite dimensional

scheme, and hence belongs to Γ(A λ
v!•). We deduce that

Γ(A λ
v!•) = Γ(A λ

v!•). (5.8.3)



5. Localization theorem for affine Lie algebras of negative level 107

Finally, since A λ
v! has a finite composition series whose constituents are given by A λ

w!•
for w 6 v. Since both Γ and Γ are exact functors on Mλ

0(X), see Proposition 5.3.1
and [KT95, Corollary 3.3.3, Theorem 3.4.1]. We deduce from (5.8.3) that Γ(A λ

v!) is t-
locally finite, and the sections of Γ(A λ

v!) are supported on finite dimensional subschemes.
Therefore we have

Γ(A λ
v!) = Γ(A λ

v!).

The proposition is proved.

5.9 Translation functors

In order to compute the images of A λ
v! and A λ

v• in the case when λ+ ρ is not regular,
we need the translation functors. For λ ∈ κt

∗ such that λ+ ρ is anti-dominant, we define
Õκ,λ to be the Serre subcategory of Õκ generated by Lκ(w · λ) for all w ∈ S. The same
argument as in the proof of [DGK82, Theorem 4.2] yields that each M ∈ Õκ admits a
decomposition

M =
⊕

Mλ, Mλ ∈ Õκ,λ, (5.9.1)

where λ runs over all the weights in κt
∗ such that λ+ ρ is antidominant. The projection

prλ : Õκ → Õκ,λ, M 7→Mλ,

is an exact functor. Fix two integral weights λ, µ in t∗ such that λ + ρ, µ + ρ are
antidominant and the integral weight ν = λ− µ is dominant. Assume that λ ∈ κt

∗, then
µ belongs to κ′t

∗ for an integer κ′ < κ. Let V (ν) be the simple g-module of highest weight
ν. Then for any M ∈ Õκ′ the module M ⊗ V (ν) belongs to Õκ. Therefore we can define
the following translation functor

θν : Õκ′,µ → Õκ,λ, M 7→ prλ(M ⊗ V (ν)),

see [Kum94]. Note that the subcategory Õκ,λ of Õ is stable under the duality D, because
D fixes simple modules. We have a canonical isomorphism of functors

θν ◦D = D ◦ θν . (5.9.2)

Indeed, it follows from (5.4.3) that D(M ⊗V (ν)) = D(M)⊗D(V (ν)) as g-modules. Since
V (ν) is simple, we have DV (ν) = V (ν). The equality (5.9.2) follows.

On the geometric side, recall the T -torsor π : X† → X. For any integral weight λ ∈ t∗

the family of line bundles L λ
Xw

(see Section 4.5) with w ∈ S form a projective system of
O-modules under restriction, yielding a flat object L λ of Ô(X). Note that π∗(L λ) is a
line bundle on X†. For integral weights λ, µ in t∗ the translation functor

Θλ−µ : Mµ
0 (X)→Mλ

0(X), M 7→M ⊗O
X†
π∗(L λ−µ),

is an equivalence of categories. A quasi-inverse is given by Θµ−λ. By the projection
formula we have

Θλ−µ(Aµw]) = Aλw], for ] =!, !•, •. (5.9.3)

Now, assume that µ+ ρ is antidominant. Consider the exact functor

Γ : Mµ(X)→M(g), M 7→ Γ(M )
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as in Proposition 5.3.1. Note that if µ + ρ is regular, then Γ maps A µ
v!• to Lκ(v · µ) by

Proposition 5.4.1. Since the subcategory Õκ of M(g) is stable under extension, the exact
functor Γ restricts to a functor

Γ : Mµ
0 (X)→ Õκ,µ.

The next proposition is an affine analogue of [BG99, Proposition 2.8].

Proposition 5.9.1. Let λ, µ be integral weights in t∗ such that λ + ρ, µ + ρ are an-
tidominant and ν = λ − µ is dominant. Assume further that µ + ρ is regular. Then the
functors

θν ◦ Γ : Mµ
0 (X)→ Õκ,λ ⊂M(g) and Γ ◦Θν : Mµ

0 (X)→M(g)

are isomorphic.

Proof. We will prove the proposition in several steps.
Step 1. First, we define a category Sh(X) of sheaves of C-vector spaces on X and we

consider g-modules in this category. To do this, for w ∈ S let Sh(Xw) be the category of
sheaves of C-vector spaces onXw. For w 6 x we have a closed embedding iw,x : Xw → Xx,
and an exact functor

i!w,x : Sh(Xx)→ Sh(Xw), F 7→ i!w,x(F ),

where i!w,x(F ) is the subsheaf of F consisting of the local sections supported set-theoretically
on Xw. We get a projective system of categories

(Sh(Xw), i!w,x).

Following [BD00, 7.15.10] we define the category of sheaves of C-vector spaces on X to be
the projective limit

Sh(X) = 2lim←−Sh(Xw).

This is an abelian category. By the same arguments as in the second paragraph of Section
4.7, the category Sh(Xw) is canonically identified with a full subcategory of Sh(X), and
each object F ∈ Sh(X) is a direct limit

F = lim−→Fw, Fw ∈ Sh(Xw).

The space of global sections of an object of Sh(X) is given by

Γ(X,F ) = lim−→Γ(Xw,Fw).

Next, consider the forgetful functor

O(Xw)→ Sh(Xw), N 7→ N C.

Recall that for M ∈ O(X) we have M = lim−→Mw with Mw ∈ O(Xw). The tuple of
sheaves of C-vector spaces

lim−→
x>w

i!w,x(M C
x ), w ∈ S,

gives an object in Sh(X). Let us denote it by M C. The assignment M 7→M C yields a
faithful exact functor

O(X)→ Sh(X)
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such that
Γ(X,M ) = Γ(X,M C), (5.9.4)

see (4.7.1) for the definition of the left hand side. Now, let F = (Fw) be an object in
Sh(X). The vector spaces End(Fw) form a projective system via the maps

End(Fx)→ End(Fw), f 7→ i!w,x(f).

We set
End(F ) = lim←−

w

End(Fw). (5.9.5)

We say that an object F of Sh(X) is a g-module if it is equipped with an algebra homo-
morphism

U(g)→ End(F ).

For instance, for M ∈MT (X†) the object (M †)C of Sh(X) is a g-module via the algebra
homomorphism

δl : U(g)→ Γ(X†,DX†) (5.9.6)

See also the beginning of Section 5.3.
Step 2. Next, we define G-modules in Ô(X). A standard parabolic subgroup of G is a

group scheme of the form P = Q ×G0 P0 with P0 a parabolic subgroup of G0. Here the
morphism Q→ G0 is the canonical one. We fix a subposet PS ⊂ S such that for w ∈ PS
the subscheme Xw ⊂ X is stable under the P -action and

X = lim−→
w∈PS

Xw.

We say that an object F = (Fw) of Ô(X) has an algebraic P -action if Fw has the
structure of a P -equivariant quasicoherent OXw

-module for w ∈ PS and if the isomorphism
i∗w,xFx

∼= Fw is P -equivariant for w 6 x. Finally, we say that F is a G-module if it is
equipped with an action of the (abstract) group G such that for any standard parabolic
subgroup P , the P -action on F is algebraic.

We are interested in a family of G-modules V i in Ô(X) defined as follows. Fix a basis
(mi)i∈N of V (ν) such that each mi is a weight vector of weight νi and νj > νi implies
j < i. By assumption we have ν0 = ν. For each i let V i be the subspace of V (ν) spanned
by the vectors mj for j 6 i. Then

V 0 ⊂ V 1 ⊂ V 2 ⊂ . . .

is a sequence of B-submodule of V (ν). We write V∞ = V (ν). For 0 6 i 6∞ we define a
OX-module V i

X on X such that for any open set U ⊂ X we have

Γ(U,V i
X) = {f : p−1(U)→ V i | f(gb−1) = bf(g), g ∈ G∞, b ∈ B},

where p : G∞ → X is the quotient map. Let V i
w be the restriction of V i

X to Xw. Then
(V i
w)w∈S is a flat G-module in Ô(X). We will denote it by V i. Note that since V (ν)

admits a G-action, the G-module V ∞ ∈ Ô(X) is isomorphic to the G-module OX ⊗ V (ν)
with G acting diagonally. Therefore, for M ∈ Mµ

0 (X) the projection formula yields a
canonical isomorphism of vector spaces

Γ(M )⊗ V (ν) = Γ(X,M †)⊗ V (ν)
= Γ(X,M † ⊗OX V ∞). (5.9.7)
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On the other hand, we have

Γ(Θν(M )) = Γ
(
X, (M ⊗O

X†
π∗(L ν))†

)
= Γ(X,M † ⊗OX L ν). (5.9.8)

Our goal is to compare the g-modules Γ(Θν(M )) and the direct factor θν(Γ(M )) of
Γ(M ) ⊗ V (ν). To this end, we first define in Step 3 a g-action on (M † ⊗OX V i)C for
each i, then we prove in Steps 4-6 that the inclusion

(M † ⊗OX L ν)C → (M † ⊗OX V ∞)C (5.9.9)

induced by the inclusion L ν = V 0 ⊂ V ∞ splits as a g-module homomorphism in Sh(X).
Step 3. Let P be a standard parabolic subgroup of G, and let p be its Lie algebra. Let

PS ⊂ S be as in Step 2. The P -action on V i yields a Lie algebra homomorphism

p→ End(V i
w), ∀ w ∈ PS.

Consider the g-action on (M †)C given by the map δl in (5.9.6). Note that for w 6 x in PS,
any element ξ ∈ p maps a local section of M †

x supported on Xw to a local section of M †
x

with the same property. In particular, for w ∈ PS we have a Lie algebra homomorphism

p→ End
(
(M †

w ⊗O
Xw

V i
w)C

)
, ξ 7→

(
m⊗ v 7→ ξm⊗ v +m⊗ ξv

)
, (5.9.10)

where m denotes a local section of M †
w, v denotes a local section of V i

w. These maps are
compatible with the restriction

End
(
(M †

x ⊗O
Xx

V i
x )C

)
→ End

(
(M †

w ⊗O
Xw

V i
w)C

)
, f 7→ i!w,x(f).

They yield a Lie algebra homomorphism

p→ End
(
(M † ⊗OX V i)C

)
.

As P varies, these maps glue together yielding a Lie algebra homomorphism

g→ End
(
(M † ⊗OX V i)C

)
. (5.9.11)

This defines a g-action on (M † ⊗OX V i)C such that the obvious inclusions

(M † ⊗OX V 0)C ⊂ (M † ⊗OX V 1)C ⊂ · · ·

are g-equivariant. So (5.9.9) is a g-module homomorphism. Note that the flatness of V i

yields an isomorphism in O(X)

M † ⊗OX V i/M † ⊗OX V i−1 ∼= M † ⊗OX L νi . (5.9.12)

Step 4. In order to show that the g-module homomorphism (5.9.9) splits, we consider
the generalized Casimir operator of g. Identify t and t∗ via the pairing 〈− : −〉. Let ρ∨ ∈ t
be the image of ρ. Let hi be a basis of t0, and let hi be its dual basis in t0 with respect to
the pairing 〈− : −〉. For ξ ∈ g0 and n ∈ Z we will abbreviate ξ(n) = ξ ⊗ tn and ξ = ξ(0).
The generalized Casimir operator is given by the formal sum

C = 2ρ∨ +
∑
i

hihi + 2∂1 +
∑
i<j

ejieij +
∑
n>1

∑
i 6=j

e
(−n)
ij e

(n)
ji +

∑
n>1

∑
i

hi,(−n)h
(n)
i , (5.9.13)
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see e.g., [Kac90, Section 2.5]. Let δl(C) be the formal sum given by applying δl term by
term to the right hand side of (5.9.13). We claim that δl(C) is a well defined element in
Γ(X†,DX†), i.e., the sum is finite at each point of X†. More precisely, let

Σ = {eij | i < j} ∪ {e(n)
ji , h

(n)
i | i 6= j, n > 1},

and let e be the base point of X†. We need to prove that the sets

Σg = {ξ ∈ Σ | δl(ξ)(ge) 6= 0}, g ∈ G,

are finite. To show this, consider the adjoint action of G on g

Ad : G→ End(g), g 7→ Adg,

and the G-action on the object DX† of Ô(X†) coming from the G-action on X†. The map
δl is G-equivariant with respect to these actions. So for ξ ∈ g and g ∈ G we have

δl(ξ)(ge) 6= 0 ⇐⇒ δl(Adg−1(ξ))(e) 6= 0.

Further the right hand side holds if and only if Adg−1(ξ) /∈ n. Therefore

Σg = {ξ ∈ Σ | Adg−1(ξ) /∈ n}

is a finite set, the claim is proved. By consequence C acts on the g-module (M †)C for any
M ∈ MT (X†). Next, we claim that the action of C on the g-module (M † ⊗OX V i)C is
also well defined. It is enough to prove this for (M ⊗OX V ∞)C. By (5.9.10) the action of
C on (M ⊗OX V ∞)C is given by the operator

C⊗ 1 + 1⊗ C−
∑

n∈Z,i 6=j
e

(−n)
ij ⊗ e(n)

ji −
∑
n∈Z,i

hi,(−n) ⊗ h(n)
i .

Since for both M † and V ∞, at each point, there are only finitely many elements from Σ
which act nontrivially on it, the action of C on the tensor product is well defined.

Step 5. Now, let us calculate the action of C on (M † ⊗OX L νi)C. We have

Adg−1(C) = C, ∀ g ∈ G.

Therefore the global section δl(C) is G-invariant and its value at e is

δl(C)(e) = δl(2ρ∨ +
∑
i

hihi + 2∂1)(e).

On the other hand, the right T -action on X† yields a map

δr : t→ Γ(X†,DX†).

Since the right T -action commutes with the left G-action, for any h ∈ t the global section
δr(h) is G-invariant. We have δr(h)(e) = −δl(h)(e) because the left and right T -actions on
the point e are inverse to each other. Therefore the global sections δl(C) and δr(−2ρ∨ +∑
i h

ihi + 2∂1) takes the same value at the point e. Since both of them are G-invariant,
we deduce that

δl(C) = δr(−2ρ∨ +
∑
i

hihi + 2∂1).
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Recall from Section 4.4 that for λ ∈ t∗ and M ∈Mλ(X) the operator δr(−2ρ∨+
∑
i h

ihi+
2∂1) acts on M † by the scalar

−λ(−2ρ∨ +
∑
i

hihi + 2∂1) = ||λ+ ρ||2 − ||ρ||2.

Therefore C acts on M † by the same scalar. In particular, for M ∈ Mµ(X) and i ∈ N,
the element C acts on M † ⊗OX L νi by ||µ+ νi + ρ||2 − ||ρ||2. Note that the isomorphism
(5.9.12) is compatible with the g-actions. So C also acts by ||µ + νi + ρ||2 − ||ρ||2 on
(M † ⊗OX V i/M † ⊗OX V i−1)C.

Step 6. Now, we can complete the proof of the proposition. First, we claim that

||λ+ ρ||2 − ||ρ||2 = ||µ+ νi + ρ||2 − ||ρ||2 ⇐⇒ νi = ν. (5.9.14)

The “if” part is trivial. For the “only if” part, we have by assumption

||µ+ ν + ρ||2 = ||µ+ νi + ρ||2

= ||µ+ ν + ρ||2 + ||ν − νi||2 − 2〈µ+ ν + ρ : ν − νi〉.

Since ν − νi ∈ NΠ+ and µ + ν + ρ = λ + ρ is antidominant, the term −2〈λ+ ρ : ν − νi〉
is positive. Hence the equality implies that ||ν − νi||2 = 0. So ν − νi belongs to Nδ. But
〈λ+ ρ : δ〉 = κ < 0. So we have ν = νi. This proves the claim in (5.9.14). A direct
consequence of this claim and of Step 5 is that the g-module monomorphism (5.9.9) splits.
It induces an isomorphism of g-modules

Γ(M † ⊗OX L ν) = prλ Γ(M † ⊗OX V ∞), M ∈Mµ
0 (X). (5.9.15)

Finally, note that the vector spaces isomorphisms (5.9.7) and (5.9.8) are indeed isomor-
phisms of g-modules by the definition of the g-actions on (M † ⊗OX V ∞)C and (M † ⊗OX

L ν)C. Therefore (5.9.15) yields an isomorphism of g-modules

Γ(Θν(M )) = θν(Γ(M )).

Remark 5.9.2. We have assumed µ + ρ regular in Proposition 5.9.1 in order to have
Γ(Mµ

0 (X)) ⊂ Õκ,µ. It follows from Proposition 5.9.1 that this inclusion still holds if
µ+ ρ is not regular. So Proposition 5.9.1 makes sense without this regularity assumption,
and the proof is the same in this case.

Corollary 5.9.3. Let λ ∈ Λ such that λ+ ρ is antidominant. Then

(a) Γ(A λ
w!) = Nκ(w · λ),

(b) Γ(A λ
w•) = DNκ(w · λ),

(c) Γ(A λ
w!•) =

{
Lκ(w · λ) if w is the shortest element in wS(λ),
0 else.

Proof. By Proposition 5.4.1 it is enough to prove the corollary in the case when λ + ρ is
not regular. Let ωi, 0 6 i 6 m− 1, be the fundamental weights in t∗. Let

ν =
∑

ωi,
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where the sum runs over all i = 0, . . . ,m− 1 such that 〈λ+ ρ : αi〉 = 0. The weight ν is
dominant. Let µ = λ− ν. Then µ+ ρ is an antidominant weight. It is moreover regular,
because we have

〈µ+ ρ : αi〉 = 〈λ+ ρ : αi〉 − 〈ν : αi〉 < 0, 0 6 i 6 m− 1.

Let κ′ = 〈µ+ ρ : δ〉. So Propositions 5.4.1, 5.9.1 and the equation (5.9.3) implies that

Γ(A λ
w!) = θν(Nκ′(w · µ)), Γ(A λ

w!•) = θν(Lκ′(w · µ)), Γ(A λ
w•) = θν(DNκ′(w · µ)).

So parts (a), (c) follow from the properties of the translation functor θν given in [Kum94,
Proposition 1.7]. Part (b) follows from (a) and the equality (5.9.2).

5.10 The parabolic Verma modules.

Let QS be the set of the longest representatives of the cosets S0\S. Let w0 be the
longest element in S0. Recall the following basic facts.

Lemma 5.10.1. For w ∈ S if w · λ ∈ Λ+ for some λ ∈ Λ with λ+ ρ antidominant, then
w ∈ QS. Further, if w ∈ QS then we have

(a) the element w is the unique element v in S0w such that Π+
0 ⊂ −v(Π+),

(b) for any v ∈ S0 we have l(vw) = l(w)− l(v),
(c) the element w0w is the shortest element in S0w.

The Q-orbit decomposition of X is given by

X =
⊔

w∈QS
Yw, Yw = QẇB/B.

Each Yw is a smooth subscheme of X, and Xw is open and dense in Yw. The closure of
Yw in X is a projective irreducible variety of dimension l(w) given by

Y w =
⊔

w′∈QS, w′6w
Yw′ .

Recall that Y †w = π−1(Yw). The canonical embedding jw : Y †w → X† is locally closed and
affine, see Remark 6.2.2(b). For λ ∈ Λ and w ∈ QS let

Bλ
w = Ω

Y †w
⊗O

Y
†
w

π∗(L λ
Yw). (5.10.1)

We have the following objects in Mλ
h(X)

Bλ
w! = jw!(Bλ

w), Bλ
w!• = jw!•(Bλ

w), Bλ
w• = jw•(Bλ

w).

Now, consider the canonical embedding r : X†w → Y †w. Consider the triple of adjoint
functors (r!, r

∗, r•) between the categories Mλ̃
h(Yw) and Mλ̃

h(Xw), see Lemma 4.2.1(c).
Note that r∗(Bλ

w) ∼= A λ
w . We have the following lemma.

Lemma 5.10.2. For λ ∈ Λ and w ∈ QS the following holds.
(a) The adjunction morphism r!r

∗ → Id yields a surjective morphism in Mλ
h(Yw)

r!(A λ
w )→ Bλ

w. (5.10.2)

(b) The adjunction morphism Id→ r•r
∗ yields an injective morphism in Mλ

h(Yw)

Bλ
w → r•(A λ

w ). (5.10.3)
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Proof. We begin by considering part (b). It is enough to prove that the O
Y †w

-module
morphism

(Bλ
w)O →

(
r•r
∗(Bλ

w)
)O (5.10.4)

is injective. By Lemma 4.2.1 the right hand side is equal to r∗r∗
(
(Bλ

w)O
)
. Now, consider

the closed embedding
i : Y †w −X†w −→ Y †w.

The morphism (5.10.4) can be completed into the following exact sequence in O(Y †w),

0→ i∗i
!((Bλ

w)O)→ (Bλ
w)O → r∗r

∗((Bλ
w)O),

see e.g., [HTT08, Proposition 1.7.1]. Note that the O
Y †w

-module (Bλ
w)O is locally free.

So it has no subsheaf supported on the closed subscheme Y †w − X†w. We deduce that
i∗i

!((Bλ
w)O

)
= 0. So the morphism (5.10.4) is injective. This proves part (b). Now,

consider the (contravariant) duality functor D on Mλ
h(Yw), see Section 4.5. We have

D(Bλ
w) = Bλ

w, D(r!(A λ
w )) = r•(D(A λ

w )) = r•(A λ
w ).

So applying D to the morphism (5.10.3) we get the morphism (5.10.2). So part (b) implies
part (a).

Lemma 5.10.3. For λ ∈ Λ and w ∈ QS we have

A λ
w!•
∼= Bλ

w!•.

Proof. By applying the exact functor jw• to the map (5.10.3) we see that Bλ
w• is a subob-

ject of A λ
w• in Mλ

h(X). In particular Bλ
w!• is a simple subobject of A λ

w•. So it is isomorphic
to A λ

w!•.

Proposition 5.10.4. Let λ ∈ Λ such that λ+ ρ is antidominant, and let w ∈ QS.
(a) If there exists α ∈ Π+

0 such that 〈w(λ+ ρ) : α〉 = 0, then

Γ(Bλ
w!) = 0.

(b) We have

〈w(λ+ ρ) : α〉 6= 0, ∀ α ∈ Π+
0 ⇐⇒ w · λ ∈ Λ+.

In this case, we have

Γ(Bλ
w!) = Mκ(w · λ), Γ(Bλ

w•) = DMκ(w · λ).

(c) We have

Γ(Bλ
w!•) =

{
Lκ(w · λ) if w is the shortest element in wS(λ),
0 else.

Proof. The proof is inspired by the proof in the finite type case, see e.g., [Mil93, Theorem
G.2.10]. First, by Kazhdan-Lusztig’s algorithm, see Remark 7.2.3, in the Grothendieck
group [Mλ

0(X)] we have
[Bλ

w!] =
∑
y∈S0

(−1)l(y)[A λ
yw!]. (5.10.5)
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Since λ + ρ is antidominant, the functor Γ is exact on Mλ
0(X) by Proposition 5.3.1(a).

Therefore we have the following equalities in [Õκ]

[Γ(Bλ
w!)] =

∑
y∈S0

(−1)l(y)[Γ(A λ
yw!)]

=
∑
y∈S0

(−1)l(y)[Nκ(yw · λ)]. (5.10.6)

Here the second equality is given by Corollary 5.9.3. Now, suppose that there exists
α ∈ Π+

0 such that 〈w(λ+ ρ) : α〉 = 0. Let sα be the corresponding reflection in S0. Then
we have

sαw · λ = w · λ .

By Lemma 5.10.1(b) we have l(w) = l(sαw)+1. So the right hand side of (5.10.6) vanishes.
Therefore we have Γ(Bλ

w!) = 0. This proves part (a). Now, let us concentrate on part (b).
Note that λ + ρ is antidominant. Thus by Lemma 5.10.1(a) we have 〈w(λ+ ρ) : α〉 ∈ N
for any α ∈ Π+

0 . Hence

〈w(λ+ ρ) : α〉 6= 0 ⇐⇒ 〈w(λ+ ρ) : α〉 > 1 ⇐⇒ 〈w · λ : α〉 > 0.

By consequence 〈w(λ+ ρ) : α〉 6= 0 for all α ∈ Π+
0 if and only if w · λ belongs to Λ+. In

this case, the right hand side of (5.10.6) is equal to [Mκ(w · λ)] by the BGG-resolution.
We deduce that

[Γ(Bλ
w!)] = [Mκ(w · λ)]. (5.10.7)

Now, applying the exact functor j! to the surjective morphism in (5.10.2) yields a quotient
map Bλ

w! → A λ
w! in Mλ(X). The exactness of Γ implies that Γ(Bλ

w!) is a quotient of
Nκ(w · λ) = Γ(A λ

w!). Since Mκ(w · λ) is the maximal q-locally-finite quotient of Nκ(w · λ)
and Γ(Bλ

w!) is q-locally finite, we deduce that Γ(Bλ
w!) is a quotient of Mκ(w · λ). So the

first equality in part (b) follows from (5.10.7). The proof of the second one is similar.
Finally, part (c) follows from Lemma 5.10.3 and Corollary 5.9.3.

Remark 5.10.5. Note that if w ∈ QS is a shortest element in wS(λ), then we have
〈w(λ+ ρ) : α〉 6= 0 for all α ∈ Π+

0 . Indeed, if there exists α ∈ Π+
0 such that 〈w(λ+ ρ) : α〉 =

0. Let s′ = w−1sαw. Then s′ belongs to S(λ). Therefore we have l(ws′) > l(w). But
ws′ = sαw and sα ∈ S0, by Lemma 5.10.1 we have l(ws′) = l(sαw) < l(w). This is a
contradiction.

6 The geometric construction of the Jantzen filtration

In this part, we give the geometric construction of the Jantzen filtration in the affine
parabolic case by generalizing the result of [BB93].

6.1 Notation

Let R be any noetherian C-algebra. To any abelian category C we associate a category
CR whose objects are the pairs (M,µM ) with M an object of C and µM : R → EndC(M)
a ring homomorphism. A morphism (M,µM )→ (N,µN ) is a morphism f : M → N in C
such that µN (r) ◦ f = f ◦ µM (r) for r ∈ R. The category CR is also abelian. We have a
faithful forgetful functor

for : CR → C, (M,µM )→M. (6.1.1)
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Any functor F : C → C′ gives rise to a functor

FR : CR → C′R, (M,µM ) 7→ (F (M), µF (M))

such that µF (M)(r) = F (µM (r)) for r ∈ R. The functor FR is R-linear. If F is exact,
then FR is also exact. We have for ◦ FR = F ◦ for. Given an inductive system of
categories (Cα, iαβ), it yields an inductive system ((Cα)R, (iαβ)R), and we have a canonical
equivalence

(2lim−→Cα)R = 2lim−→((Cα)R).

6.2 The function fw

Let Q′ = (Q,Q) be the commutator subgroup of Q. It acts transitively on Y †w for
w ∈ QS. We have the following lemma.

Lemma 6.2.1. For any w ∈ QS there exists a regular function fw : Y †w → C such that
f−1
w (0) = Y

†
w − Y †w and

fw(qxh−1) = ew
−1ω0(h)fw(x), q ∈ Q′, x ∈ Y †w, h ∈ T.

Proof. Let V denote the simple g-module of highest weight ω0. It is integrable, hence it
admits an action of G. Let v0 ∈ V be a nonzero vector in the weight space Vω0 . It is fixed
under the action of Q′. So the map

ϕ : G→ V, g 7→ g−1v0

mapsQẇB toBẇ−1v0 for any w ∈ QS. Let V (w−1) be the U(b)-submodule of V generated
by the weight space Vw−1ω0 . We have Bẇ−1v0 ⊂ V (w−1). Recall that for w′ ∈ QS we
have

w′ < w ⇐⇒ (w′)−1 < w−1

⇐⇒ (ẇ′)−1v0 ∈ nẇ−1v0, (6.2.1)

see e.g., [Kum02, Proposition 7.1.20]. Thus, if w′ 6 w then ϕ(Qẇ′B) ⊂ V (w−1). The
C-vector space V (w−1) is finite dimensional. We choose a linear form lw : V (w−1) → C
such that

lw(ẇ−1v0) 6= 0 and lw(nẇ−1v0) = 0.

Set f̃w = lw ◦ ϕ. Then for q ∈ Q′, h ∈ T , u ∈ N we have

f̃w(qẇh−1u) = lw(u−1hẇ−1v0)
= ew

−1ω0(h)lw(ẇ−1v0)
= ew

−1ω0(h)f̃w(ẇ−1).

A similar calculation together with (6.2.1) yields that f̃w(Qẇ′B) = 0 for w′ < w. Hence
f̃w defines a regular function on

⊔
w′6wQẇ

′B which is invariant under the right action
of N . By consequence it induces a regular function fw on Y

†
w which has the required

properties.
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Remark 6.2.2. (a) The function fw above is completely determined by its value on the
point ẇN/N , hence is unique up to scalar.

(b) The lemma implies that the embedding jw : Y †w → X† is affine.
(c) The function fw is an analogue of the function defined in [BB93, Lemma 3.5.1] in

the finite type case. Below we will use it to define the Jantzen filtration on Bλ
w!. Note

that [BB93]’s function is defined on the whole enhanced flag variety (which is a smooth
scheme). Although our fw is only defined on the singular scheme Y †w, this does not create
any problem, because the definition of the Jantzen filtration is local (see Section 6.6), and
each point of Y †w admits a neighborhood V which can be embedded into a smooth scheme
U such that fw extends to U . The choice of such an extension will not affect the filtration,
see [BB93, Remark 4.2.2(iii)].

6.3 The D-module B(n)

Fix λ ∈ Λ and w ∈ QS. In the rest of Section 6, we will abbreviate

j = jw, f = fw, B = Bλ
w, B! = Bλ

w!, etc.

Following [BB93] we introduce the deformed version of B. Recall that R = C[[s]] and
℘ is the maximal ideal. Let x denote a coordinate on C. For each integer n > 0 set
R(n) = R(℘n). Consider the left DC∗-module

I (n) = (OC∗ ⊗R(n))xs.

It is a rank one OC∗ ⊗R(n)-module generated by a global section xs such that the action
of DC∗ is given by x∂x(xs) = s(xs). The restriction of f yields a map Y †w → C∗. Thus
f∗I (n) is a left D

Y †w
⊗R(n)-module. So we get a right D

Y †w
⊗R(n)-module

B(n) = B ⊗O
Y
†
w

f∗I (n).

Lemma 6.3.1. The right D
Y †w
⊗R(n)-module B(n) is an object of Mλ̃

h(Yw).

Proof. Since R(n) is a C-algebra of dimension n and B is locally free of rank one over O
Y †w

,
the O

Y †w
-module B(n) is locally free of rank n. Hence it is a holonomic D

Y †w
-module. Note

that the DC∗-module I (n) is weakly T -equivariant such that xs is a T -invariant global
section. Since the map f is T -equivariant, we deduce that the D

Y †w
-module f∗I (n) is

weakly T -equivariant. Let fs be the global section of f∗I (n) given by the image of xs
under the inclusion

Γ(C∗,I (n)) ⊂ Γ(Y †w, f∗I (n)).

Then fs is T -invariant. It is nowhere vanishing on Y †w, and thus yields an isomorphism of
O
Y †w
⊗R(n)-modules

f∗I (n) ∼= O
Y †w
⊗R(n).

By consequence we have the following isomorphism

(B(n))† = π∗(π∗(ΩYw ⊗OYw
L λ
Yw)⊗O

Y
†
w

f∗I (n))T

= ΩYw ⊗OYw
L λ
Yw ⊗OYw

π∗(f∗I (n))T

∼= ΩYw ⊗OYw
L λ
Yw ⊗OYw

(OYw ⊗R(n)).
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See Remark 4.4.2 for the first equality. Next, recall from (4.4.1) that the right T -action
on Y †w yields a morphism of Lie algebras

δr : t→ Γ(Y †w,DY †w
).

The right D†Yw -module structure of f∗(I (n)) is such that

(fs · δr(h))(m) = sw−1ω0(−h)fs(m), ∀ m ∈ Y †w.

So the action of the element

h+ λ(h) + sw−1ω0(h) ∈ U(t)⊗R(n)

on (B(n))† via the map δr vanishes. Since the multiplication by s on (B(n))† is nilpotent,
the action of the ideal mλ is also nilpotent. Therefore B(n) belongs to the category
Mλ̃

h(Yw).

It follows from the lemma that we have the following objects in Mλ̃
h(X)

B
(n)
! = j!(B(n)), B

(n)
!• = j!•(B(n)), B

(n)
• = j•(B(n)).

Further, for v = xw ∈ S with x ∈ S0, let rx : X†v → Y †w be the canonical inclusion. We
have iv = j ◦ rx. Then the tensor product

A (n)
v = A λ

v ⊗O
X
†
v

r∗xf
∗I (n) (6.3.1)

is an object of Mλ̃
h(Xv), and we have the following objects in Mλ̃

h(X)

A
(n)
v! = iv!(A (n)

v ), A
(n)
v!• = iv!•(A (n)

v ), A
(n)
v• = iv•(A (n)

v ).

6.4 Deformed Verma modules

Fix λ ∈ Λ and w ∈ QS. For µ ∈ κt
∗ we have defined the Verma module Nκ(µ) in

Section 5.4. The deformed Verma module is the Uk-module given by

Nk(µ) = U(g)⊗U(b) Rµ+sω0 .

Here the b-module Rµ+sω0 is a rank one R-module over which t acts by µ + sω0, and n
acts trivially. The deformed dual Verma module is

DNk(µ) =
⊕
λ∈kt∗

HomR(Nk(µ)λ, R),

see (3.3.1). Let n > 0. We will abbreviate

N
(n)
k (µ) = Nk(µ)(℘n), DN (n)

k (µ) = DNk(µ)(℘n).

For any R(n)-module (resp. R-module) M let µ(si) : M →M be the multiplication by si
and write siM for the image of µ(si). We define a filtration

F •M = (F 0M ⊃ F 1M ⊃ F 2M ⊃ . . .)

on M by putting F iM = siM. We say that it is of length n if FnM = 0 and Fn−1M 6= 0.
We set

grM =
⊕
i>0

griM, griM = F iM/F i+1M.

For any gR(n)-module M let ch(M) be the tR(n)-module image of M by the forgetful
functor.
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Lemma 6.4.1. If λ+ ρ is antidominant then we have an isomorphism of tR(n)-modules

ch(Γ(A (n)
v• )) = ch(DN (n)

k (v · λ)).

Proof. The proof is very similar to the proof of Proposition 5.4.1. We will use the notation
introduced there.

Step 1. Consider the nowhere vanishing section fs of (f∗I (n))† over Yw. Its restriction
to Xv yields an isomorphism

(A (n)
v )† ∼= ΩXv ⊗OXv

L λ
Xv ⊗R

(n).

Let ω be a nowhere vanishing section of ΩXv , and let tλ be the nowhere vanishing section
of L λ

Xv
over Xv such that tλ(uv̇b) = e−λ(b) for u ∈ N , b ∈ B. Then the global section

ω ⊗ tλ ⊗ fs of A
(n)
v defines an element

ϑs ∈ Γ̂(A (n)
v• )

in the same way as ϑ is defined in the first step of the proof of Proposition 5.4.1.
Step 2. In this step, we show that

ch(Γ(A (n)
v• )) = ch(DN (n)

k (v · λ)).

The proof is the same as in the second step of the proof of Proposition 5.4.1. The right
D†Xv -module structure on (A (n)

v )† yields an isomorphism of sheaves of C-vector spaces over
V y
l

jy∗l (ivl∗OXv)⊗ U(n−(Π− ∩ v(Π−))/n−l )⊗R(n) ∼→ jy∗l
(
ivl•(A (n)

v )†
)
,

f ⊗ p⊗ r 7→
(
(ϑs · f) · δl(p)

)
r.

This yields an isomorphism of tR(n)-modules

ch
(
Γ(Xyl , i

v
l•(A (n)

v ))
)

= ch
(
U(n−/n−l )⊗R(n)

v·λ+sω0

)
.

Therefore we have

ch(Γ̂(A (n)
v• )) = ch

(
(lim←−
l

U(n−/n−l ))⊗R(n)
v·λ+sω0

)
, (6.4.1)

and

ch(Γ(A (n)
v• )) = ch

(
U(n−)⊗R(n)

v·λ+sω0

)
= ch(DN (n)

k (v · λ)). (6.4.2)

Step 3. In this step, we prove that Γ(A (n)
v• ) = Γ(A (n)

v• ) as gR(n)-modules. Since both
of them are gR(n)-submodules of Γ̂(A (n)

v• ). It is enough to prove that they are equal as
vector spaces. Consider the filtration F •(A (n)

v ) on A
(n)
v . It is a filtration in Mλ̃(Xv) of

length n and
gri(A (n)

v ) = A λ
v , 0 6 i 6 n− 1.

Since iv• is exact and
RiΓ(A λ

v•) = RiΓ(A λ
v•) = 0, ∀ i > 0,
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the functor Γ ◦ iv• commute with the filtration. Therefore both the filtrations F •Γ(A (n)
v• )

and F •Γ(A (n)
v• ) have length n and

gri Γ(A (n)
v• ) = Γ(A λ

v•), gri Γ(A (n)
v• ) = Γ(A λ

v•), 0 6 i 6 n− 1.

By Step 3 of the proof of Proposition 5.4.1, we have Γ(A λ
v ) = Γ(A λ

v ). We deduce that all
the sections in Γ(A (n)

v• ) are t-finite and all the sections in Γ(A (n)
v• ) are supported on finite

dimensional subschemes. This proves that

Γ(A (n)
v• ) = Γ(A (n)

v• ).

We are done by Step 2.

Lemma 6.4.2. If λ+ ρ is antidominant there is an isomorphism of gR(n)-modules

Γ(A (n)
v• ) = DN (n)

k (v · λ).

Proof. Note that

DN (n)
k (v · λ) =

⊕
µ∈kt∗

HomR(Nk(v · λ)µ, R)(℘n)

=
⊕
µ∈kt∗

HomR(n)(N (n)
k (v · λ)µ, R(n)).

For µ ∈ kt
∗ let Γ(A (n)

v• )µ be the weight space as defined in (3.1.2). By Lemma 6.4.1 we
have

Γ(A (n)
v• ) =

⊕
µ∈kt∗

Γ(A (n)
v• )µ,

because the same equality holds for DN (n)
k (v · λ). So we can consider the following gR(n)-

module
DΓ(A (n)

v• ) =
⊕
µ∈kt∗

HomR(n)(Γ(A (n)
v• )µ, R(n)). (6.4.3)

It is enough to prove that we have an isomorphism of gR(n)-modules

DΓ(A (n)
v• ) = N

(n)
k (v · λ).

By (6.4.3) we have
ch
(
DΓ(A (n)

v• )
)

= ch
(
Γ(A (n)

v• )
)
. (6.4.4)

Together with Lemma 6.4.1, this yields an isomorphism of R(n)-modules

N
(n)
k (v · λ)v·λ+sω0 =

(
DΓ(A (n)

v• )
)
v·λ+sω0

.

By the universal property of Verma modules, such an isomorphism induces a morphism
of gR(n)-module

ϕ : N (n)
k (v · λ)→ DΓ(A (n)

v• ).

We claim that for each µ ∈ kt
∗ the R(n)-module morphism

ϕµ : N (n)
k (v · λ)µ →

(
DΓ(A (n)

v• )
)
µ
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given by the restriction of ϕ is invertible. Indeed, by Lemma 6.4.1 and (6.4.4), we have

ch(DΓ(A (n)
v• )) = ch(DN (n)

k (v · λ)) = ch(N (n)
k (v · λ)).

So
N

(n)
k (v · λ)µ =

(
DΓ(A (n)

v• )
)
µ

as R(n)-modules. On the other hand, Corollary 5.9.3 yields that the map

ϕ(℘) = ϕ⊗R(n) (R(n)/℘R(n)) : Nκ(v · λ)→ DΓ(A λ
v•)

is an isomorphism of g-modules. So ϕµ(℘) is also an isomorphism. By Nakayama’s lemma
this implies that ϕµ is an isomorphism. So ϕ is an isomorphism. The lemma is proved.

Lemma 6.4.3. If λ+ ρ is antidominant and v is a shortest element in vS(λ), then there
is an isomorphism of gR(n)-modules

Γ(A (n)
v! ) = N

(n)
k (v · λ).

Proof. We abbreviate ν = v · λ. The lemma will be proved in three steps.
Step 1. Recall the character map from (5.4.2). Note that since Γ and i! are exact, and

gr A (n)
v = (A λ

v )⊕n,

we have an isomorphism of t-modules

gr Γ(A (n)
v! ) = Γ(A λ

v!)⊕n. (6.4.5)

Next, since the action of s on Γ(A (n)
v! ) is nilpotent, for any µ ∈ t∗ we have

dimC(Γ(A (n)
v! )µ̃) = dimC

(
(gr Γ(A (n)

v! ))µ̃
)
.

We deduce that as a t-module Γ(A (n)
v! ) is a generalized weight module and

ch(Γ(A (n)
v! )) = ch(gr Γ(A (n)

v! )) = n ch Γ(A λ
v!). (6.4.6)

On the other hand, we have the following isomorphism of t-modules

grN (n)
k (ν) = Nκ(ν)⊕n. (6.4.7)

Therefore we have
ch(N (n)

k (ν)) = n ch(Nκ(ν)).

Since Γ(A λ
v!) = Nκ(ν) as g-modules by Corollary 5.9.3, this yields

ch(Γ(A (n)
v! )) = ch(N (n)

k (ν)). (6.4.8)

Further, we claim that there is an isomorphism of R(n)-module

Γ(A (n)
v! )µ̃ = N

(n)
k (ν)µ̃, ∀ µ ∈ t∗. (6.4.9)

Note that Γ(A (n)
v! )µ̃ is indeed an R(n)-module because the action of s on Γ(A (n)

v! ) is nilpo-
tent. To prove the claim, it suffices to notice that for any finitely generated R(n)-modules
M , M ′ we have that M is isomorphic to M ′ as R(n)-modules if and only if griM = griM ′
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for all i. So the claim follows from the isomorphisms of t-modules (6.4.5), (6.4.7) and
Corollary 5.9.3.

Step 2. In this step, we prove that as a tR(n)-module

Γ(A (n)
v! )ν̃ = R

(n)
ν+sω0

where R(n)
ν+sω0 is the rank one R(n)-module over which t acts by the weight ν + sω0. Let

us consider the canonical morphisms in Mλ̃
h(X)

A
(n)
v!

// // A
(n)
v!•

� � // A
(n)
v• .

Since Γ is exact on Mλ̃(X), we deduce the following chain of gR(n)-module morphisms

Γ(A (n)
v! ) α // // Γ(A (n)

v!• ) � � β // Γ(A (n)
v• ).

Consider the following tR(n)-morphisms given by the restrictions of α, β

Γ(A (n)
v! )ν̃

αν // // Γ(A (n)
v!• )ν̃

� � βν // Γ(A (n)
v• )ν̃ .

We claim that αν and βν are isomorphisms. Note that by (6.4.6) we have

dimCΓ(A (n)
v! )ν̃ = ndimCΓ(A λ

v!)ν̃ = n.

By Lemma 6.4.2 we also have dimCΓ(A (n)
v• )ν̃ = n. Next, consider the exact sequence in

Mλ̃
h(Xv),

0→ F i+1A (n)
v → F iA (n)

v → gri A (n)
v → 0.

Applying the functor iv!• to it yields a surjective morphism

iv!•(F iA (n)
v )/iv!•(F i+1A (n)

v )→ iv!•(gri A (n)
v ).

Since iv!•(F iA (n)
v ) = F i(iv!•(A (n)

v )) and gri A (n)
v = A λ

v , we deduce a surjective morphism

gri A (n)
v!• → A λ

v!•, 0 6 i 6 n− 1.

Applying the exact functor Γ to this morphism and summing over i gives a surjective
morphism of g-modules

γ : gr Γ(A (n)
v!• )→ Γ(A λ

v!•)⊕n.

Since v is minimal in vS(λ), by Corollary 5.9.3(c) the right hand side is equal to Lκ(ν).
We deduce from the surjectivity of γ that

dimCΓ(A (n)
v!• )ν̃ = dimC gr Γ(A (n)

v!• )ν̃
> dimC(Lκ(ν)ν̃)⊕n

= n

It follows that the epimorphism αν and the monomorphism βν are isomorphisms. The
claim is proved. So we have an isomorphisms of tR(n)-modules

βν ◦ αν : Γ(A (n)
v! )ν̃ → Γ(A (n)

v• )ν̃ .
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In particular, we deduce an isomorphisms of tR(n)-modules

Γ(A (n)
v! )ν+sω0 → Γ(A (n)

v• )ν+sω0 ,

because
Γ(A (n)

v] )ν+sω0 ⊂ Γ(A (n)
v] )ν̃ , for ] =!, •.

By Lemma 6.4.2, we have
Γ(A (n)

v• )ν+sω0 = R
(n)
ν+sω0 .

We deduce an isomorphism of tR(n)-modules

Γ(A (n)
v! )ν+sω0 = R

(n)
ν+sω0 .

Step 3. By the universal property of Verma modules and Step 2, there exists a morphism
of gR(n)-modules

ϕ : N (n)
k (ν)→ Γ(A (n)

v! ).

For any µ ∈ t∗ this map restricts to a morphism of R(n)-modules

ϕµ : N (n)
k (ν)µ̃ → Γ(A (n)

v! )µ̃.

By Step 1, the R(n)-modules on the two sides are finitely generated and they are isomor-
phic. Further, the induced morphism

ϕ(℘) : Nκ(ν)→ Γ(A λ
v!)

is an isomorphism by Corollary 5.9.3. So by Nakayama’s lemma, the morphism ϕµ is an
isomorphism for any µ. Therefore ϕ is an isomorphism. The lemma is proved.

Remark 6.4.4. The hypothesis that v is a shortest element in vS(λ) is probably not
necessary but this is enough for our purpose.

6.5 Deformed parabolic Verma modules

Fix λ ∈ Λ and w ∈ QS as before. Let n > 0. We will abbreviate

Mκ = Mκ(w · λ), Mk = Mk(w · λ), M
(n)
k = Mk(℘n), DM (n)

k = (DMk)(℘n).

Lemma 6.5.1. Assume that λ+ρ is antidominant and w is a shortest element in wS(λ).
Then there are isomorphisms of gR(n)-modules

Γ(B(n)
! ) = M

(n)
k , Γ(B(n)

• ) = DM (n)
k .

Proof. Recall from Remark 5.10.5 that the assumption of the proposition implies that
w ·λ ∈ Λ+. Consider the canonical embedding r : X†w → Y †w. We claim that the adjunction
map yields a surjective morphism

r!r
∗(B(n))→ B(n). (6.5.1)

Indeed, an easy induction shows that it is enough to prove that gri(r!r
∗(B(n)))→ gri B(n)

is surjective for each i. Since the functors r!, r∗ are exact and gri B(n) = B, this follows
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from Lemma 5.10.2(a). Note that r∗(B(n)) = A
(n)
w . So the image of (6.5.1) by the exact

functor Γ ◦ j! is a surjective morphism

Γ(A (n)
w! )→ Γ(B(n)

! ). (6.5.2)

Since w is a shortest element in wS(λ), by Lemma 6.4.3 we have Γ(A (n)
w! ) = N

(n)
k . Since

the gR(n)-module Γ(B(n)
! ) is q-locally finite andM (n)

k is the largest quotient of N (n)
k in Ok,

the morphism (6.5.2) induces a surjective morphism

ϕ : M (n)
k → Γ(B(n)

! ).

Further, by Proposition 5.10.4(b) the map

ϕ(℘) : Mκ → Γ(B!)

is an isomorphism. The same argument as in Step 1 of the proof of Lemma 6.4.3 shows
that for each µ ∈ t∗ the generalized weight spaces (M (n)

k )µ̃ and Γ(B(n)
! )µ̃ are isomorphic as

R(n)-modules. We deduce that ϕ is an isomorphism by Nakayama’s lemma. This proves
the first equality. The proof for the second equality is similar. We consider the adjunction
map

B(n) → r•r
∗(B(n)). (6.5.3)

It is injective by Lemma 5.10.2(b) and the same arguments as above. So by applying the
exact functor Γ ◦ j•, we get an injective morphism

ϕ′ : Γ(B(n)
• )→ DM (n)

k .

Again, by using Proposition 5.10.4(b) and Nakayama’s lemma, we prove that ϕ′ is an
isomorphism.

6.6 The geometric Jantzen filtration

Now, we define the Jantzen filtration on B! following [BB93, Sections 4.1,4.2]. Recall
that B(n) is an object of Mλ̃

h(Yw). Consider the map

µ : R(n) → EndMλ̃
h

(Yw)(B
(n)), µ(r)(m) = rm,

where m denotes a local section of B(n). Then the pair (B(n), µ) is an object of the
category Mλ̃

h(Yw)R(n) , see Section 6.1. We will abbreviate B(n) = (B(n), µ). Fix some
integer a > 0. Recall the morphism of functors ψ : j! → j•. We consider the morphism

ψ(a, n) : B
(n)
! → B

(n)
•

in the category Mλ̃
h(X)R(n) given by the composition of the chain of maps

B
(n)
!

j!(µ(sa)) // B
(n)
!

ψ(B(n)) // B
(n)
• . (6.6.1)

The category Mλ̃
h(X)R(n) is abelian. The obvious projection R(n) → R(n−1) yields a

canonical map
Coker(ψ(a, n))→ Coker(ψ(a, n− 1)).
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By [Bĕı87, Lemma 2.1] this map is an isomorphism when n is sufficiently large. We define

πa(B) = Coker(ψ(a, n)), n� 0. (6.6.2)

This is an object of Mλ̃
h(X)R(n) . We view it as an object of Mλ̃

h(X) via the forgetful
functor (6.1.1). Now, let us consider the maps

α : B! → π1(B), β : π1(B)→ π0(B)

in Mλ̃
h(X) given as follows. First, since

π0(B) = Coker(ψ(B(n))) and π1(B) = Coker(ψ(B(n)) ◦ j!(µ(s)))

by (6.6.1), there is a canonical projection π1(B) → π0(B). We define β to be this map.
Next, the morphism ψ(B(n)) maps j!(s(B(n))) to Im(ψ(1, n)). Hence it induces a map

j!(B(n)/s(B(n)))→ π1(B), n� 0.

Composing it with the isomorphism B ∼= B(n)/s(B(n)) we get the map α. Let µ1 denote
the R(n)-action on π1(B). Then by [Bĕı87] the sequence

0 −→ B!
α−→ π1(B) β−→ π0(B) −→ 0, (6.6.3)

is exact and α induces an isomorphism

B! → Ker(µ1(s) : π1(B)→ π1(B)).

The Jantzen filtration of B! is defined by

J i(B!) = Ker(µ1(s)) ∩ Im(µ1(s)i), ∀ i > 0. (6.6.4)

6.7 Comparison of the Jantzen filtrations

Fix λ ∈ Λ and w ∈ QS as before. Consider the Jantzen filtration (J iMκ) on Mκ as
defined in Section 3.3. The following proposition compares it with the geometric Jantzen
filtration on B!.

Proposition 6.7.1. Assume that λ+ ρ is antidominant and that w is a shortest element
in wS(λ). Then we have

J iMκ = Γ(J iB!), ∀ i > 0.

Proof. By Proposition 5.10.4(b) and Lemma 6.5.1 we have

Γ(B!) = Mκ, Γ(B(n)
! ) = M

(n)
k , Γ(B(n)

• ) = DM (n)
k .

So the map
φ(n) = Γ(ψ(B(n))) : Γ(B(n)

! )→ Γ(B(n)
• ).

identifies with a gR(n)-module homomorphism

φ(n) : M (n)
k → DM (n)

k .
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Consider the projective systems (M (n)
k ), (DM (n)

k ), n > 0, induced by the quotient map
R(n) → R(n−1). Their limits are respectively Mk and DMk. The morphisms φ(n), n > 0,
yield a morphism of gR-modules

φ = lim←−φ
(n) : Mk → DMk

such that
φ(℘) = φ(1) = Γ(ψ(B)).

The functor Γ is exact by Proposition 5.3.1. So the image of φ(℘) is Γ(B!•). It is non zero
by Proposition 5.10.4(c). Hence φ satisfies the condition of Definition 2.4.1 and we have

J iMκ =
(
{x ∈Mk |φ(x) ∈ siDMk}+ sMk

)
/sMk.

By Lemma 3.2.1 and Remark 2.4.2 the map φ is injective. So the equality above can be
rewritten as

J iMκ =
(
φ(Mk) ∩ siDMk + sφ(Mk)

)
/sφ(Mk).

Now, for a > 0 let
φ(a, n) : M (n)

k → DM (n)
k

be the gR(n)-module homomorphism given by the composition

M
(n)
k

µ(sa) // M
(n)
k

φ(n)
// DM (n)

k . (6.7.1)

Then we have Γ(ψ(a, n)) = φ(a, n). Since Γ is exact, we have

Coker(φ(a, n)) = Γ
(
Coker(ψ(a, n))

)
.

So the discussion in the last section and the exactness of Γ yields that the canonical map

Coker(φ(a, n))→ Coker(φ(a, n− 1))

is an isomorphism if n is large enough. We deduce that

DMk/s
aMk = Coker(φ(a, n)) = Γ(πa(B)), n� 0,

see (6.6.2). The action of µ(s) on DMk/s
aφ(Mk) is nilpotent, because µ(s) is nilpotent

on DM (n)
k . Further Γ maps the exact sequence (6.6.3) to an exact sequence

0 −→Mκ −→ DMk/sφ(Mk) −→ DMk/φ(Mk) −→ 0, (6.7.2)

and the first map yields an isomorphism

Mκ = Ker
(
µ(s) : DMk/sφ(Mk)→ DMk/sφ(Mk)

)
.

Note that since DMk is a free R-module, for x ∈ DMk if sx ∈ sφ(Mk) then x ∈ φ(Mk).
So by (6.6.4) and the exactness of Γ, we have for i > 0,

Γ(J iB!) = Ker(µ(s)) ∩ Im(µ(s)i)
=

(
φ(Mk) ∩ siDMk + sφ(Mk)

)
/sφ(Mk)

= J iMκ.

The proposition is proved.
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7 Proof of the main theorem

7.1 Mixed Hodge modules

Let Z be a smooth scheme. Let MHM(Z) be the category of mixed Hodge modules
on Z [Sai90]. It is an abelian category. Each object M of MHM(Z) carries a canonical
filtration

W •M = · · ·W kM ⊃W k−1M · · · ,

called the weight filtration. For each k ∈ Z the Tate twist is an auto-equivalence

(k) : MHM(Z)→MHM(Z), M 7→M (k)

such that W •(M (k)) = W •+2k(M ). Let Perv(Z) be the category of perverse sheaves on
Z with coefficient in C. There is an exact forgetful functor

% : MHM(Z)→ Perv(Z).

For any locally closed affine embedding i : Z → Y we have exact functors

i!, i• : MHM(Z)→MHM(Y )

which correspond via % to the same named functors on the categories of perverse sheaves.
If Z is not smooth we embed it into a smooth variety Y and we define MHM(Z) as the

full subcategory of MHM(Y ) consisting of the objects supported on Z. It is independent
of the choice of the embedding for the same reason as for D-modules.

7.2 The graded multiplicities of Bλ
x!• in Bλ

w!

Now, let us calculate the multiplicities of a simple object Bλ
x!• in the successive quo-

tients of the Jantzen filtration of Bλ
w! for x, w ∈ QS with x 6 w.

We fix once for all an element v ∈ S, and we consider the Serre subcategory Mλ
0(Xv)

of Mλ
h(Xv) generated by the objects A λ

w!• with w 6 v, w ∈ S. The De Rham functor
yields an exact fully faithful functor

DR : Mλ
0(Xv) −→ Perv(Xv).

See e.g., [KT95, Section 4]. Let MHM0(Xv) be the full subcategory of MHM(Xv)
consisting of objects whose image by % belong to the image of the functor DR. There
exists a unique exact functor

η : MHM0(Xv)→Mλ
0(Xv)

such that DR ◦η = %. An object M in MHM0(Xv) is pure of weight i if we have
W kM /W k−1M = 0 for any k 6= i. For any w ∈ S, w 6 v, there is a unique simple object
Ã λ
w in MHM(Xw) pure of weight l(w) such that η(Ã λ

w ) = A λ
w , see e.g. [KT02]. Let

Ã λ
w! = (iw)!(Ã λ

w ), Ã λ
w!• = (iw)!•(Ã λ

w ).

They are objects of MHM0(Xv) such that

η(Ã λ
w!) = A λ

w!, η(Ã λ
w!•) = A λ

w!•.



128 Chapter III. The v-Schur algebras and Jantzen filtration

Now, assume that w ∈ QS and w 6 v. Recall that Bλ
w ∈ Mλ(Yw), and that Bλ

w! ∈
Mλ(X) can be viewed as an object of Mλ(Xv). We define similarly the objects B̃λ

w ∈
MHM(Yw) and B̃λ

w!, B̃λ
w!• ∈MHM0(Xv) such that

η(B̃λ
w!) = Bλ

w!, η(B̃λ
w!•) = Bλ

w!•.

The object B̃λ
w! has a canonical weight filtrationW •. We set JkBλ

w! = Bλ
w! for k < 0. The

following proposition is due to Gabber and Beilinson-Bernstein [BB93, Theorem 5.1.2,
Corollary 5.1.3].

Proposition 7.2.1. We have η(W l(w)−kB̃λ
w!) = JkBλ

w! in Mλ
0(Xv) for all k ∈ Z.

So the problem that we posed at the beginning of the section reduces to calculate the
multiplicities of B̃λ

x!• in B̃λ
w! in the category MHM0(Xv). Let q be a formal parameter.

The Hecke algebra Hq(S) of S is a Z[q, q−1]-algebra with a Z[q, q−1]-basis {Tw}w∈S whose
multiplication is given by

Tw1Tw2 = Tw1w2 , if l(w1w2) = l(w1) + l(w2),

(Tsi + 1)(Tsi − q) = 0, 0 6 i 6 m− 1.

On the other hand, the Grothendieck group [MHM0(Xv)] is a Z[q, q−1]-module such that

qk[M ] = [M (−k)], k ∈ Z, M ∈MHM0(Xv).

For x ∈ S with x 6 v consider the closed embedding

cx : pt→ Xv, pt 7→ ẋB/B.

There is an injective Z[q, q−1]-module homomorphism, see e.g., [KT02, (5.4)],

Ψ : [MHM0(Xv)] −→ Hq(S),
[M ] 7−→

∑
x6v

∑
k∈Z

(−1)k[Hkc∗x(M )]Tx.

The desired multiplicities are given by the following lemma.

Lemma 7.2.2. For w ∈ QS we have

Ψ([B̃λ
w!•]) =

∑
x∈QS,x6w

(−1)l(w)−l(x)Px,wΨ([B̃λ
x!]),

where Px,w ∈ Z[q, q−1] is the Kazhdan-Lusztig polynomial.

Proof. Since the choice for the element v above is arbitrary, we may assume that w 6 v.
By the definition of Ψ we have

Ψ([Ã λ
w!]) = (−1)l(w)Tw. (7.2.1)

By [KL80], [KT95], we have

Ψ([Ã λ
w!•]) = (−1)l(w) ∑

x∈S
Px,wTx. (7.2.2)
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Next, for x ∈ QS with x 6 v we have

Ψ([B̃λ
x!]) =

∑
y∈S0

∑
k∈Z

(−1)k[Hkc∗yx(B̃λ
x!)]Tyx

= (−1)l(x) ∑
y∈S0

Tyx. (7.2.3)

Since by Lemma 5.10.3 we have
Ã λ
w!• = B̃λ

w!•,

the following equalities hold

Ψ([B̃λ
w!•]) = Ψ([Ã λ

w!•])
= (−1)l(w) ∑

x∈QS,x6w

∑
y∈S0

Pyx,wTyx

= (−1)l(w) ∑
x∈QS,x6w

Px,w
∑
y∈S0

Tyx

=
∑

x∈QS,x6w
(−1)l(w)−l(x)Px,wΨ([B̃λ

x!]).

Here the third equality is given by the well known identity:

Pyx,w = Px,w, y ∈ S0, x ∈ QS, x 6 w.

Remark 7.2.3. Let x ∈ QS. Since Ψ is injective, the equation (7.2.3) yields that

[B̃λ
x!] =

∑
y∈S0

(−1)l(y)[Ã λ
yx!].

By applying the functor η we get the following equality in [Mλ
0(X)]

[Bλ
x!] =

∑
y∈S0

(−1)l(y)[A λ
yx!]. (7.2.4)

7.3 Proof of Theorem 1.0.1.

Recall from (3.5.1) that we view Pn as a subset of Λ+. By Corollary 3.11.3, Theorem
1.0.1 is a consequence of the following theorem.

Theorem 7.3.1. Let λ, µ be partitions of n. Then for any negative integer κ we have

dλ′µ′(q) =
∑
i>0

[J iMκ(λ)/J i+1Mκ(λ) : Lκ(µ)]qi. (7.3.1)

Here dλ′µ′(q) is the polynomial defined in Section 1 with v = exp(2πi/κ).

Proof. By (5.9.1) we may assume that µ, λ belong to the same orbit of a weight ν under
the dot action of S such that ν + ρ is antidominant. For any µ ∈ Λ+ ∩ (S · ν) let w(µ)ν
be the shortest element in the set

w(µ)νS(ν) = {w ∈ S |µ = w · ν}.
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Note that w(µ)νS(ν) is contained in QS by Lemma 5.10.1. We fix v ∈ S such that
v > w(γ)ν for any γ ∈ Pn. Let q1/2 be a formal variable. We identify q = (q1/2)2. Let
P̃x,w be the Kazhdan-Lusztig polynomial normalized as follows

Px,w(q) = q(l(w)−l(x))/2P̃x,w(q−1/2).

Let Q̃x,w be the inverse Kazhdan-Lusztig polynomial given by∑
x∈S

Q̃x,z(−q)P̃x,w(q) = δz,w, z, w ∈ S.

Then by (7.2.1), (7.2.2) we have

[Ã ν
x!] =

∑
w∈S

q(l(x)−l(w))/2Q̃x,w(q−1/2)[Ã ν
w!•], ∀ x ∈ S.

By Remark 7.2.3 we see that

[B̃ν
x!] =

∑
w∈QS

(∑
s∈S0

(−1)l(s)q(l(sx)−l(w))/2Q̃sx,w(q−1/2)
)
[B̃ν

w!•], ∀ x ∈ QS. (7.3.2)

Now, let

[Mν
0(Xv)]q = [Mν

0(Xv)]⊗Z Z[q1/2, q−1/2], [Õκ]q = [Õκ]⊗Z Z[q1/2, q−1/2].

We have a Z[q, q−1]-module homomorphism

ε : [MHM0(Xv)] −→ [Mν
0(Xv)]q,

[M ] 7−→
∑
i∈Z

[η(W iM /W i−1M )]qi/2.

Note that ε([B̃ν
x!•]) = ql(x)/2[Bν

x!•] and by Proposition 7.2.1 we have

ε([B̃ν
x!]) =

∑
i∈N

[J iBν
x!/J

i+1Bν
x!]q(l(x)−i)/2, x ∈ QS, x 6 v.

Next, let
[Mκ(λ)]q =

∑
i∈N

[J iMκ(λ)/J i+1Mκ(λ)]q−i/2.

Then by Proposition 6.7.1, we have

Γε([B̃ν
w(λ)ν !]) = ql(w(λ)ν)/2[Mκ(λ)]q.

On the other hand, by (7.3.2) we have

Γε([B̃ν
w(λ)ν !]) =

∑
w∈QS

(∑
s∈S0

(−1)l(s)q(l(sw(λ)ν)−l(w))/2Q̃sw(λ)ν ,w(−q1/2)
)
Γε[B̃ν

w!•]

=
∑
µ∈Pn

(∑
s∈S0

(−1)l(s)q(l(sw(λ)ν)−l(w(µ)ν))/2Q̃sw(λ)ν ,w(µ)ν (q−1/2)
)
ql(w(µ)ν)/2[Lκ(µ)].

Here in the second equality we have used Proposition 5.10.4(c) and the fact that Pn is an
ideal in Λ+. Note that l(sw(λ)ν) = l(w(λ)ν) − l(s) for s ∈ S0 by Lemma 5.10.1(b). We
deduce that

[Mκ(λ)]q =
∑
µ∈Pn

(∑
s∈S0

(−q−1/2)l(s)Q̃sw(λ)ν ,w(µ)ν (q−1/2)
)
[Lκ(µ)].
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By [Lec00, Proposition 5], we have

dλ′,µ′(q−1/2) =
∑
s∈S0

(−q−1/2)l(s)Q̃sw(λ)ν ,w(µ)ν (q−1/2),

see also the beginning of the proof of Proposition 6 in loc. cit., and [LT00, Lemma 2.2]
for instance. We deduce that∑

i∈N
[J iMκ(λ)/J i+1Mκ(λ)]qi =

∑
µ∈Pn

dλ′,µ′(q)[Lκ(µ)].

The theorem is proved.

Remark 7.3.2. The q-multiplicities of the Weyl modules Wv(λ) have also been considered
in [Ari09] and [RT10]. Both papers are of combinatorial nature, and are very different
from the approach used here. In [Ari09] Ariki defined a grading on the q-Schur algebra
and he proved that the q-multiplicities of the Weyl module with respect to this grading is
also given by the same polynomials dλ′,µ′ . However, it not clear to us how to relate this
grading to the Jantzen filtration.
Remark 7.3.3. The radical filtration C•(M) of an object M in an abelian category C is
given by putting C0(M) = M and Ci+1(M) to be the radical of Ci(M) for i 6 0. It
follows from [BB93, Lemma 5.2.2] and Proposition 6.7.1 that the Jantzen filtration of B!
coincides with the radical filtration. If λ ∈ Λ such that λ+ ρ is antidominant and regular,
then the exact functor Γ is faithful, see [BD00, Theorem 7.15.6]. In this case, we have

Γ(C•(B!)) = C•(Γ(B!)) = C•Mκ(λ).

So the Jantzen filtration on Mκ(λ) coincides with the radical filtration. If we have further
λ ∈ Pn and κ 6 −3, then by the equivalence in Proposition 3.11.2 we deduce that the
Jantzen filtration of Wv(λ) also coincides with the radical filtration. This is compatible
with recent result of Parshall-Scott [PS09], where they computed the radical filtration
of Wv(λ) under the same assumption of regularity here but without assuming κ 6 −3.
We conjecture that for any λ the Jantzen filtration on Mκ(λ) coincides with the radical
filtration.
Remark 7.3.4. The results of Sections 5, 6, 7 hold for any standard parabolic subgroup Q
of G with the same proof. In particular, it allows us to calculate the graded decomposition
matrices associated with the Jantzen filtration of the parabolic Verma modules in more
general cases.
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List of Notation

Note that the notation of the three chapters are independent.

Chapter I

1.1: h, S, A, hreg, B(W, h), Hq(W, h), BW , Hq(W ).

1.2: H ResWW ′ , H IndWW ′ , H coIndWW ′ , A′, A, h, hreg, h′reg, Ω.

2.1: Hc(W, h), αs, α∨s , eu0, eu.

2.2: Oc(W, h), Irr(W ), ∆(ξ), L(ξ), O∆
c (W, h), P (ξ), ≺c.

2.3: Projc(W, h), I : Projc(W, h)→ Oc(W, h).

2.4: D(hreg), Hc(W, hreg), Mreg, Oanhreg , N
an, N∇, KZ = KZ(W, h).

2.5: PKZ, Z(Oc(W, h)), Z(Hq(W, h)), γ, S.

3.1: b, W ′, c′, ζ, ζ−1.

3.2: C[[h]]p, Ĉ[h]p, M̂p, Ĥc(W, h)b, Ĥc′(W ′, h)0, Ôc(W, h)b, Ôc′(W ′, h)0, P = FunW ′(W, Ĥc(W ′, h)0),
Z(W,W ′, Ĥc(W ′, h)0), Θ, x(b)

α , y(b)
a , J , xpr, R.

3.3: ̂0, E, ̂b, Eb, Resb, Indb.

3.5: KZ′ = KZ(W ′, h).

4.1: s̃le, ŝle, ei, fi, hi, t, αi, α∨i , Λi, P , Vµ.

4.2: |λ|, Pn,l, Υλ, s, Fs, |λ〉, res(µ/λ), Λs, wt(|λ〉).

4.3: Bn(l), Sn, bn ∈ Cn, Pn,l
∼→ Irr(Bn(l)).

4.4: Hq,n, Cq,n, Cq, Sλ, E(n)H , F (n)H , EH , FH .

4.5: q, Ji, Cn(z), Pn,a(z), Ei(n)H , Fi(n)H , EH
i , FH

i , aλ(z).

4.6: h, Hh,n, Oh,n, KZh,n.

4.7: Oh, KZ, E, F , Dn(z), Qn,a(z), Ei(n), Fi(n), Ei, Fi,

5.1: q = exp(2π
√
−1/e).

5.2: B, wt, ẽi, f̃i, εi, ϕi, b, li(v), V <l
i , B+, V +.

5.4: BFs , BOh .
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Chapter II

0.1: k, K(R), G(R), A, homR, gdim.

0.2: Γ, Hi,j , i→ j, hi,j , i · j, θ, θNI, |ν|, θIν , θ(i), θIm.

0.3: Sm, Z2, Wm, w(i), ie, We, s0, ◦Wm, θIν+, θIν−.

1.1: ◦R(Γ)ν , 1i, κl, σk, Qi,j(u, v), σi,k, κi,l, ω.

1.2: θR(Γ)ν , π1, σ0, γ, 〈γ〉.

1.3: θFi, θFν , ◦Sν , ẇ, σẇ, θF′i, θF′ν .

2.1: Hm, Tk, Xl.

2.2: A, A′, H′m, ϕk, Hm-ModI .

2.3: θRν , θRm, ◦Rν , ◦Rm, ◦Rm-Mod0, ◦Rm-fMod0, Hm-fModI , Ψ.

2.4: Ei, Fi, ki.

3.1: ◦KI , ◦GI , ◦KI,∗, ◦GI,∗, (• : •), 〈• : •〉, M [, ◦B, ◦Gup, P ], K, f̄ ,◦Glow, φ+, φ−.

3.2: Dm,1, Dm,1;m,1, W (w), R1, Ri, Li, θRm,1, ◦Rm,1, ψ!, ψ∗, ψ∗, fi, ei, e′i.

3.3: for.

3.4: res, ind, Mγ , 1ν,+, 1ν,−.

3.5: Res, Ind.

3.7: ẽi, f̃i, εi.

3.8: θBBB, θ(a), 〈a〉, 〈a〉!, ◦V.

3.9: ẽi, f̃i, R, ◦L.
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Chapter III

1: dλµ(q), λ′

2.1: C ∩R -proj, R′C.

2.2: C∆, ∆, ∇, D∨.

2.3: R = C[[s]], ℘, K, M(℘i), MK , f(℘i), fK , C(℘), CK .

2.4: J iD(℘).

2.5: F (℘).

3.1: G0, B0, T0, g0, b0, t0, g, t, 1, ∂, c, κ = c+m, aR, Uκ, Mλ, t∗0, t∗, δ, ω0, εi, 〈− : −〉,
||h||2, κt∗, a, z, Π, Π0, Π+, Π+

0 , αi, S, S0, w · λ, ρ0, ρ, S(λ), l : S→ N.

3.2: q, l, Λ+, Mκ(λ), Lκ(λ), c, k, Uk, Mk(λ), λs, kt
∗.

3.3: σ, DMk(λ), J iMκ(λ).

3.4: Ok, Oκ, rκt∗, rkt∗, rOκ, rOk, rΛ+, rPκ(λ), Lk(λ), rPk(λ).

3.5: Pn, �, E, E, Eκ, g′, Ek, Pk(E), Pκ(E).

3.6: Ak, Aκ, ∆k, ∆κ.

3.7: D.

3.9: Hv, Sv, Av, Wv(λ), ∆v.

3.10: v = exp(2πi/κ), v = exp(2πi/k), J iWv(λ).

3.11: H1/κ, Bκ, Bκ(λ), Eκ, H1/k, Bk, Ek, Bk(λ).

4.1: OZ , O(Z), f∗, f∗, f !, DZ , M(Z), ΩZ , DY→Z , M O , M(Z,Z ′), i∗, i•, i!.

4.2: Mh(Z), D, i!, i!•.

4.3: MT (Z), MT (X,Z).

4.4: M †, D†Z , δr, mλ, Mλ(Z), Mλ̃(Z), Mλ(X,Z), Mλ̃(X,Z), M(D†Z).

4.5: MT
h (Z†), Mλ

h(Z), Mλ̃
h(Z), D′, L λ

Z , Θλ, D = Dλ, Dλ
Z .

4.6: 2lim−→Cα, 2lim←−Cα.

4.7: X = lim−→Xα, O(X), Γ(X,M ) (for M ∈ O(X)), Ô(X), OX , −⊗OX F , Γ(X,F )
(for F ∈ Ô(X)).

4.8: M(X) (with X an ind-scheme), M O , Γ(X,M ) (for M ∈ M(X)), MT (X),
Mλ(X), Mλ̃(X), Γ(M ) (for M ∈Mλ̃(X)), Mλ

h(X), Mλ̃
h(X), i!, i•.

4.9: DX (with X a formally smooth ind-scheme).

5.1: G, B, Q, T , N , g, b, n.

5.2: X = G/B, X† = G/N , π : X† → X, Xw, ẇ, Xw.

5.3: δl : U(g)→ Γ(X†,DX†), M(g), Γ

5.4: Mλ̃, ch(M), Õ, Õκ, Nκ(λ), Lκ(λ), Λ, A λ
w , iw, A λ

w!, A λ
w!•, A λ

w•.

5.5: Π−, n(Υ), n−(Υ), Π−l , n
−
l , N

−
l , X, X†, Xw, Xwl , X

w†
l , pl1l2 , pl.
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5.6: Hλ̃(Xy, Xw), Hλ̃(Xw), Hλ̃(X).

5.7: Γ̂(M ), Γ(M ).

5.9: Õκ,λ, prλ, V (ν), θν , L λ, Θλ−µ.

5.10: QS, w0, Yw, Y w, jw, Bλ
w, Bλ

w!, Bλ
w!•, Bλ

w•, r : X†w → Y †w.

6.1: CR, µM , for, FR.

6.2: Q′, fw.

6.3: j, f , B, B!, I (n), xs, fs, B(n), B
(n)
! , B

(n)
!• , B

(n)
• , A

(n)
v , A

(n)
v! , A

(n)
v!• , A

(n)
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6.4: Nk(µ), Rµ+sω0 , DNk(µ), N (n)
k (µ), DN (n)

k (µ), siM , F •M , grM , ch(M).

6.5: Mκ, Mk, M
(n)
k , DM (n)

k .

6.6: ψ(a, n), πa(B), J i(B!).

7.1: MHM(Z), W •M , (k), Perv(Z), %.

7.2: Mλ
0(Xv), DR, MHM0(Xv), η, Ã λ

w , Ã λ
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Canonical bases and gradings associated with
rational double affine Hecke algebras

Abstract

This thesis consists of three chapters. In Chapter I, we define the i-restriction and
i-induction functors on the category O of the cyclotomic rational double affine Hecke
algebras. Using these functors, we construct a crystal on the set of isomorphism classes
of simple modules, which is isomorphic to the crystal of a Fock space. Chapter II is a
joint work with Michela Varagnolo and Eric Vasserot. We prove a conjecture of Miemietz
and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type D.
In Chapter III, we prove a conjecture of Leclerc and Thibon on the graded multiplicities
associated with the Jantzen filtration of Weyl modules over v-Schur algebras.

Résumé

Cette thèse se compose de trois chapitres. Dans le chapitre I, nous définissons les
foncteurs de i-restriction et i-induction sur la catégorie O des algèbres de Hecke double-
ment affine rationnelles cyclotomiques. En utilisant ces foncteurs, nous construisons un
cristal sur l’ensemble des classes d’isomorphisme des modules simples, qui est isomorphe
au cristal de l’espace de Fock. Le chapitre II est un travail en collaboration avec Michela
Varagnolo et Eric Vasserot. Nous démontrons une conjecture de Kashiwara et Miemietz
sur bases canoniques et règles de branchement pour les algèbres de Hecke affines de type
D. Dans le chapitre III, nous démontrons une conjecture de Leclerc et Thibon sur les
multiplicités graduées associées à la filtration de Jantzen de modules de Weyl sur algèbres
de v-Schur.
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