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Résumé

Les patients pharmaco-résistants sont des candidats pour la chirurgie de l’épilepsie. Le but de

cette chirurgie est d’enlever les zones à l’origine de la crise (SOZ) sans créer de nouveaux dé-

ficits neurologiques. Pour localiser les SOZs, une des meilleures approches consiste à analyser

des électroencéphalogrammes intracérébraux (iEEG). Toutefois, l’enregistrement des crises, qui

sont des événements rares et critiques, est compliqué contrairement à l’enregistrement de dé-

charges épileptiques intercritiques (IED), qui sont généralement très fréquentes et anodines. La

prévision des SOZs, par estimation des régions à l’origine des IEDs, est donc une alternative très

intéressante, et la question de savoir si l’estimation des régions IED peut être utile pour prédire

les SOZs, a été au coeur de plusieurs études. Malgré des résultats intéressants, la question reste

ouverte, notamment en raison du manque de fiabilité des résultats fournis par ces méthodes.

L’objectif de cette thèse est de proposer une méthode robuste d’estimation des régions à

l’origine des IEDs (notées `IED) par analyse d’enregistrements intracérébraux iEEG. Le point

essentiel de cette nouvelle méthode repose sur la détermination d’un graphe de connectivité

différentiel (DCG), qui ne conserve que les noeuds (électrodes) associées aux signaux iEEG

qui changent de façon significative selon la présence ou l’absence d’IEDs. En fait, on construit

plusieurs DCGs, chacun étant caractéristique d’une échelle obtenue après transformée en onde-

lettes. La fiabilitié statistiques des DCGs est obtenue à l’aide des tests de permutation. L’étape

suivante consiste à mesurer les quantités d’information émise par chaque noeud, et d’associer à

chaque connexion (arête) du graphe une orientation qui indique le transfert d’information du

noeud source vers le noeud cible. Pour celà, nous avons introduit une nouvelle mesure nommée

Local Information (LI), que nous avons comparée à des mesures classiques de graphes, et qui

permet de définir de façon robuste les noeuds sources pour les graphes de chaque échelle. Les

`IEDs sont finalement estimées selon une méthode d’optimisation multi-objectifs (de type Pa-

reto, peu utilisée dans la communauté signal-image) construite à partir des valeurs des LI des

DCG dans les différentes bandes de fréquences.

La méthode proposée a été validée sur cinq patients épileptiques, qui ont subi une chirurgie

d’exérèse et sont déclarés guéris. L’estimation des régions `IED a été comparée avec les SOZs

détectées visuellement par l’épileptologue et celles détectées automatiquement par une méthode

utilisant une stimulation destinée à provoquer des crises. La comparaison révèle des résultats

congruents entre les SOZs et les régions `IED estimées. Ainsi, cette approche fournit des `IED

qui devraient être des indications précieuses pour l’évaluation préopératoire en chirugie de l’épi-

lepsie.
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  چكيده
هدف از اين عمل جراحي حذف . توصيه مي شوند 1بيماران مبتلا به صرع كانوني و مقاوم در برابر دارو براي عمل جراحي صرع

ها ضبط تشنج از موج نگاري   SOZشناساييبهترين راه . بدون ايجاد اختلال عصبي جديد است) SOZ2(مناطق شروع تشنج 
ضبط تشنج دشوار است، در مقابل ضبط دشارژهاي الكتريكي در فواصل زماني بين  به هر حال. مي باشد) iEEG3(داخل مغزي 

مطالعات زيادي . بسيار ارزشمند است IEDاز طريق تخمين مناطق  SOZبنابراين پيش بيني . ساده تر است) IED4(تشنج ها 
ي ارزيابي هاي قبل از جراحي مفيد و در نهايت برا SOZمي تواند براي پيش بيني  IEDانجام شده است كه آيا تخمين مناطق 

باشد يا خير؟ با وجود نتايج اميدوار كننده اين مطالعات، همچنان براي حل اين مشكل جواب قطعي پيدا نشده و هنوز اين 
  .بر ميگردد مشكل عمده در همه اين مطالعات به قابليت اطمينان نتايج به دست آمده. موضوع تحت بررسي است

به كمك  IEDدر فواصل زماني  iEEGاز تجزيه و تحليل داده ) ℓIED5(پيشرو  IEDامه تخمين مناطق هدف از اين پايان ن
در اين پايان نامه يك روش قابل اعتماد تحليل گراف به نام . مي باشد SOZوروش گراف اتصال و مطالعه رابطه بين اين مناطق 

بين  iEEGاين گراف براي تجزيه و تحليل سيگنالهاي . كنيمارائه مي ) DCG6(روش تجزيه و تحليل گراف اتصال ديفرانسيلي 
  .بدون استفاده از سيگنالهاي تشنج پيشنهاد مي شود ℓIEDتشنجي به منظور تخمين مناطق 

و غير  IEDدر فواصل زماني  iEEGفركانس چند متغيره بين جفت سيگنالهاي كانالهاي - در روش ارائه شده كوپلينگ هاي زمان 
IED  روي اين كوپلينگ ها اعمال مي شود تا اتصالات ديفرانسيلي  7تست چندگانه اي بر اساس جايگشت. مي شوندتخمين زده

. را مي سازند) DCG(اين اتصالات ديفرانسيلي، گراف اتصال ديفرانسيلي . مغز شناسايي شود IEDو غير  IEDبين حالتهاي 
با استفاده از روش اندازه گيري ) dDCG8(ار شده جهت د DCGسپس . تخمين زده مي شوند DCGآنگاه جهت يال هاي 

با استفاده از روش بهينه سازي چند  ℓIEDدر نهايت نواحي . گراف پيشنهادي براي حصول گره هاي منبع تحليل مي شود
  .مي شوند تخمين زدهدر باندهاي فركانسي مختلف  dDCGروي مقادير اندازه گيري شده گره هاي گراف هاي  9منظوره

اين بيماران تحت عمل جراحي صرع قرار . ائه شده روي داده ضبط شده از پنج بيمار مبتلا به صرع اعمال شده استروش ار
هايي كه به طور  SOZتخمين زده شده با  ℓIEDمناطق  .گرفته و پس از عمل جراحي بهبود يافته وعاري از تشنج گشته اند

بر مبناي  iEEGهاي شناسايي شده با استفاده از داده  SOZن با بصري توسط متخصصين اپيلپسي تشخيص داده شده و همچني
ها را به خوبي نشان مي  SOZتخمين زده شده و  ℓIEDمقايسه نتايج، هماهنگي بين مناطق . تشنج القايي، مقايسه مي شوند

غز حين جراحي، مي تخمين زده شده در مناطق خارج شده از م ℓIEDعاري بودن بيماران از تشنج و شامل بودن مناطق . دهد
 .در ارزيابي هاي قبل از جراحي باشد ℓIEDتواند نشان دهنده قابل اعتماد بودن روش پيشنهادي براي تخمين مناطق 
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Abstract

Drug-resistant epileptic patients suffering from focal epilepsy are recommended for

epilepsy surgery. The aim of this surgery is to remove the seizure onset zones (SOZ)

without creating new neurological deficits. To identify the SOZs, the best way is

to record the seizures from intracerebral electroencephalogram (iEEG) recordings.

However recording seizures is complicated contrary to the recording of interictal

epileptiform discharges (IED). Therefore prediction of SOZ by estimating the IED

regions is very valuable. There are several studies wondering if the estimation of

the IED regions can be useful to predict the SOZ and eventually for presurgery

evaluations. Although the encouraging results of these studies, the problem is still

an open issue. The main problem of the previous studies is the reliability of the

results.

The aim of this thesis is to estimate the leading IED (`IED) regions from interictal

analysis of iEEG recordings through connectivity graph. The main originality of the

proposed method refers to a new reliable graph analysis method called differential

connectivity graph (DCG). This graph is designed to identify the significant discrim-

inated connections between IED and non-IED brain states. The statistical reliability

of DCG is obtained by using permutation-based multiple testing. In the proposed

method, multiple DCGs associated with different frequency bands are constructed.

Each DCG includes both source and sink nodes involved in IED events. To identify

the source nodes related to `IED regions, the directions of the edges of DCG are

estimated and a new measure called local information (LI) is proposed to measure

the emittance contribution of each node. To estimate the `IED regions from the LI

values related to multiple directed DCGs, a multi-objective optimization method is

used.

The proposed method is applied on five epileptic patients. These patients under-

went resective surgery and they are seizure-free after the surgery. Estimated `IED

regions are compared with SOZ detected visually by the epileptologist and SOZ de-

tected by a method using induced ictal iEEG. The comparison reveals congruent

results between estimated `IED regions and SOZs. Being all of the patients seizure

free and inclusion of estimated `IED regions in the removed regions during surgery

shows the reliability of estimated `IED regions for presurgery evaluations.
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Chapter 1

Introduction

We are interested in processing the connectivity graph of epileptic patients from electroen-

cephalogram (EEG) recordings for the identification of leading interictal epileptiform discharges

(IED) regions [1, 8–13]. EEG recordings have high temporal resolution which is a great advan-

tage to follow transient epileptic events in different frequency bands. We started our preliminary

analysis using scalp EEG recordings (appendix A, page 123) since they are non-invasive and sim-

ple [14]. However scalp EEG has very low spatial resolution and to identify the interictal brain

regions, one can consider two possibilities: 1) using the inverse problem methods or 2) using

invasive intracerebral EEG (iEEG) recordings. We had access to iEEG recordings through neu-

rology department of Grenoble university hospital (CHUG), Grenoble, France, so we continued

our research work with iEEG recordings [15].

Available methods for iEEG analysis to estimate leading IED regions through connectivity

graph have several problems. These problems can be clustered in three levels as follows.

1. The classic method to measure and interpret the functional connectivity [16,17] is to mea-

sure the interdependencies between the pairs of time series to provide a coupling strength

matrix, then an edge is involved in the graph if its related coupling strength is greater than

the threshold value [18,19]. Such graphs are threshold dependent and the threshold can be

different for different time intervals. The graph inference methods based on multiple test-

ing [20, 21] are preferred to threshold-based methods. However, usually in these methods

certain prior assumptions for the distribution of the test statistics are assumed that are

not necessarily true. Multiple testing methods based on resampling like permutation and

bootstrap methods allow powerful significance test by assuming less assumptions about

the underlying data. However, graph inference methods based on bootstrap cannot be

convenient for long time period processing of high-density electrode array recordings due

to expensive computation load and processing time [11]. Consequently, a confident graph

inference method which can be practically applied for long and high-density electrode

arrays of invasive EEG recordings is demanding in the available graph analysis methods.

Furthermore the methods for identification of epileptic regions through connectivity graph,

use only the interictal periods of EEG recordings [9, 10, 12]. Such graphs are very com-

plicated to be interpreted since other uninterested connections such as the connections of
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2 Introduction

background activity are also included.

2. Assuming the leading IED regions (sources) be more important than propagated IED

regions (sinks) [22,23], the directions of the relationships between brain regions is necessary.

Once the directed relationship between brain regions are estimated, the directed graph is

characterized to extract the information. To estimate the leading IED regions, a graph

measure is needed to quantify the source and sink nodes of the graph. Classic graph

measures like global efficiency, local efficiency, and node degree do not include the necessary

information for detection of source and sink nodes.

3. Since IEDs can appear in specific frequency band, frequency decomposition of these signals

is useful. Obtaining the graph related to each frequency band and its characterization

provide multi-dimensional graph measure values. Analysis of multi-dimensional measure

values from high-density electrode array of iEEG recordings encounters huge multi-criteria

data processing. A data mining tool is needed to extract the estimated leading IED regions

from these measure values. In the available studies [9, 12, 24], at each frequency band the

nodes of related graph which have the graph measure values greater than a threshold

were selected as the IED regions. Therefore a set of IED regions for each frequency

band were proposed, while the preference between these frequency bands is unknown.

This method or more generally single-objective optimization method, provide a unique

solution for each objective function. A method is needed to take into account all of the

objective functions simultaneously assuming that the preference between different objective

functions is unknown.

In this work, firstly we explain how we can obtain a reliable functional connectivity graph

from high-density electrode array of iEEG recordings. Moreover, we explain how to make easier

the interpretation of complex IED related graphs. Secondly we explain how we can measure

the emittance contribution of each node to the rest of directed graph for source and sink node

detection. Thirdly, we explain how a set of solutions can be obtained using multi-dimensional

graph measure values without knowing the preference between different dimensions.

Rest of the thesis is organized as follows. The structure of the thesis is summarized in Figure

1.1.

1. Part I: the state of the art is explained including three chapters to describe the necessary

background:

(a) Chapter 2: epilepsy and EEG measurement are explained in this chapter.

(b) Chapter 3: this chapter is about graph theory including: brain connectivity, definition

of graph, graph types, graph measures and coupling measures.

(c) Chapter 4: in this chapter we review the IED identification methods through connec-

tivity graph.

2. Part II: proposed iEEG analysis method is explained in this part including three chapters:
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(a) Chapter 5: this chapter is about the basic ideas of differential connectivity graph

(DCG).

(b) Chapter 6: in this chapter, we explain different steps of DCG calculation. Moreover

the estimation of causal relationship of the edges of DCG is explained in this chapter.

(c) Chapter 7: in this chapter we explain how to characterize the dDCG and how to

estimate the leading IED regions from multi-dimensional graph measure values.

3. Part III: this part is devoted to experimental results including three chapters:

(a) Chapter 8: data and parameters are explained in this chapter.

(b) Chapter 9: the results of dDCG are reported and the choice of parameters and

reliability of DCG are discussed.

(c) Chapter 10: the estimated leading IED regions based on different graph measures are

compared. Moreover the estimated leading IED regions are compared with the SOZ

detected by other methods. The reliability of the results and the choice of parameters

are discussed as well.

4. Chapter 11: the concluding remarks, prospectives, and the list of related publications are

brought in this chapter.

chapter 1:

Introduction
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chapter

2

chapter

3

chapter

4

part II: proposed method

chapter

5

chapter

6

chapter

7

part III: Experimental results

chapter

10

chapter

9

chapter

8

chapter 11:

Conclusions and

future works

Figure 1.1: A block representation of the thesis structure.
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Chapter 2

Epilepsy and EEG

2.1 Introduction

This chapter includes two main sections: 1) epilepsy, and 2) EEG measurement. In section

2.2 (epilepsy), we explain about the definitions of 1) interictal and ictal time periods, 2) IEDs,

and 3) different dysfunctional epileptic regions like epileptogenic zone and seizure onset zone.

Section 2.3 is devoted to EEG measurements including scalp and invasive EEG recordings.

2.2 Epilepsy

Figure 2.1: “Epilepsy needs understanding. We all swim in the same sea - every fish in the shoal
is different.” [2]

2.2.1 What is epilepsy?

Epilepsy is defined by the recurrence of epileptic seizures responsible for transient increase in

hypersynchronous electrical activity within relatively large neuronal networks. This may induce

disruption of normal brain functioning thus causes ictal semiology including motor symptoms,

loss of consciousness, hallucinations, etc.
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8 Epilepsy and EEG

2.2.2 How can we recognize epilepsy?

Patients with epilepsy are usually considered to have two main brain states:

1. The ictal state: the ictal state has short duration (few seconds) [25–27] and it is directly

related to epileptic seizures.

2. The interictal state: this state is represented the vast majority of time in the interval

between two seizures.

During interictal state the interictal discharges and during seizures, the seizure patterns can be

recognized from EEG recordings.

2.2.3 Interictal epileptiform discharges (IED)

The International Federation of Societies for Electroencephalography and Clinical Neurophysi-

ology (IFSECN) defines interictal discharges as a subcategory of “epileptiform pattern,” in turn

defined as “distinctive waves or complexes, distinguished from background activity, and resem-

bling those recorded in a proportion of human subjects suffering from epileptic disorders” [28].

Sharp waves, spikes, spike-wave complexes (also called spike-and-slow-wave complexes), and

polyspike-wave complexes (also called multiple-spike-and-slow-wave-complexes) are morphologi-

cal divisions of IEDs. In practical terms, the certainty with which these entities can be character-

ized from physiologic or nonspecific sharp transients are more important than the morphological

distinctions. IEDs may appear in isolation or in brief bursts; bursts longer than a few seconds

characterize electrographic seizures rather than interictal discharges. The following descriptions

are in use [28]:

• Sharp wave: distinct from background, transient activity, with duration of 70-200 millisec-

onds (msec).

• Spike: the pattern of spikes is the same as sharp wave, but with duration of 20 to less

than 70 msec.

• Spike-and-slow-wave complex : the pattern includes a spike followed by a slow wave (in

general the slow wave has higher amplitude than the spike).

• Multiple spike-and-slow-wave complex : the pattern is the same as spike-and-slow-wave

complex, but with 2 or more spikes related to one or more slow waves.

2.2.4 Classification of epileptic seizures

Seizures can be generally divided into two groups, partial, and generalized. Incidence of seizures

by type is illustrated in Figure 2.2.

• Partial : partial seizures occur in a segment of one hemisphere of the brain, but can some-

times secondarily generalize. Partial seizures last only a few seconds, and are categorized

into three sub-classes:
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– Simple: the most focal of the partial seizures. Consciousness is not affected.

– Complex : the most usual seizure class that is not restricted to one seizure focus.

Consciousness affected to some extent or is lost.

– Secondary generalized : a simple or complex seizure spreads to all areas of the brain.

• Generalized : generalized seizures contain all areas of the brain, i.e. there is no anatomical

localization. Consequently, their effect on the patient is more serious than partial seizures.

Generalized seizures are classified into three sub-classes:

– Tonic-clonic: most patients loose consciousness without warning, but some of them

experience a forewarning or“aura”before a tonic-clonic seizure. The muscles suddenly

contract, and thus the patient falls and lies rigidly for 10-30 seconds (sec), throughout

the first tonic phase. When the patient inhales, a high-pitched sound called stridor

may be emitted, if the throat or larynx is involved. As the seizure enters the clonic

phase, spasms related to alternate relaxation and contraction of muscles arise for 30-60

sec. The bowel or bladder control of patient may be lost. The complete seizure usually

lasts a total of 2-3 minutes (min), and next the patient may remain unconscious for

some minutes. The patient is usually confused and extremely tired, on regaining

consciousness. After a tonic-clonic seizure, a serious headache like migraine happens.

– Absence: absence seizures may include a short arrest of physical movement and loss

of attention during a short duration (<10-45 sec). They may even be undetected by

others. Mild clonic motions (usually movement of the eyelids), automatisms (uncon-

scious acts such as opening and closing a door), decreased postural tone (such as head

nodding), increased postural tone (arching of the back), and autonomic phenomena

are some general manifestations. Absence seizures and loss of consciousness may arise

as often as 50-100 times a day.

– Other seizures:

∗ Atonic (akinetic) seizure: affects loss of muscle tone. It may involve a single

body part or the whole body.

∗ Myoclonic seizures: include a series of brief jerky contractions of specific muscle

groups, like the face or trunk.

∗ Simple tonic or clonic seizures: in tonic seizures, the muscles contract and con-

sciousness is changed for about 10 sec, but the seizures do not develop the clonic

or jerking phase. Clonic seizures, that are rare, arise initially in young children,

who experience spasms of the muscles but not their tonic rigidity.

2.2.5 Surgical treatment

Where antiepileptic drug treatments fail for some of patients with partial or focal epilepsy, the

epilepsy surgery may cure [29]. This surgical procedure is aimed at removing the brain tissue
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Figure 2.2: Proportion of incident of epilepsy in Rochester, Minnesota, USA, between 1935 and
1984 [3].
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causing epileptic seizure without creating new neurological deficits. Despite the improvement

of resective surgical outcome in treatment of epileptic seizures in the past decade, the failure of

surgical outcome is still 10% to 40% in temporal lobe epilepsy and 34% to 55% in extratemporal

lobe epilepsy [30]. These statistics show that although valuable improvements, still pre-surgery

evaluations need more developements.

2.2.6 Dysfunctional epileptic regions (EZ, SOZ and IZ) and their relation-

ships

Several dysfunctional regions have been identified for epileptic patients, based on neurophys-

iological and surgical considerations [14, 29]. Here, we define three major important ones as

follows:

• Epileptogenic zone (EZ): the area of the cortex that is essential for the generation of

epileptic seizures. In other words, the region which its removal is both necessary and

sufficient to abolish seizures.

• Seizure onset zone (SOZ): the region where the first electrophysiological changes is detected

at ictal onset.

• Irritative zone (IZ) or IED regions: the site responsible for IEDs generation.

Relationships between SOZ, EZ and IZ have been the subject of numerous studies and de-

bates [14]. The extent of SOZ may be greater or smaller than EZ: if EZ is smaller than SOZ,

partial resection of SOZ may lead to seizure free outcome, because the rest of SOZ cannot gen-

erate seizures, or equivalently because the essential region for seizure generating is removed. In

other words, if we were able to find and disconnect EZ, other regions of the SOZ would not be

able to generate seizure any more. Contrarily, if EZ is greater than SOZ, even totally removing

SOZ will not result in seizure-freedom. However currently the extent and location of EZ cannot

be identified before surgery. More precisely if the patient is seizure-free after surgery, then epilep-

tologists deduce that the removed region included the EZ. Therefore practically one must infer

the location and extent of EZ indirectly from location and extent of other dysfunctional areas like

SOZ and IZ [14]. The best way to delineate SOZ is to record seizures by using implanted intrac-

erebral depth electrodes providing intracerebral EEG (iEEG) [1, 29, 31–34]. However recording

ictal EEG is difficult since seizures are not frequent in most of the patients. Therefore the num-

ber of seizures are limited and obtaining statistically reliable results from studying seizure time

intervals is quite difficult [22]. Consequently, SOZ prediction through interictal analysis can be

valuable.
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Figure 2.3: The anatomy of a typical neuron [4].

2.3 EEG measurement

2.3.1 What does EEG record?

The schematic diagram of a neuron including its axon, dendrites and synapse is depicted in Figure

2.3 (taken from [4]). To explain what EEG measures, we start with some general definitions as

follows:

• Synapse: the area where two neurons signal to each other. Synapse permits the neurons to

communicate with each other and also to connect and control other systems like muscles

or glands [35].

• Neurotransmitters: the chemical molecules which transmit the signals from a source neuron

to a target one across the synapse.

• Post-synaptic neuron: the target neuron or the neuron on the opposite side of synapse.

• Action potential (AP): the short-lasting alternation of the membrane potential is called

action potential or nerve impulse. Voltage alternation is due to ion movement.

• Post-synaptic potential (PSP): temporary changes of membrane potential of post-synaptic

neuron. The membrane potential decreases when the neuronal activity is inhibited, con-

versely when the membrane potential rises over certain threshold, the neuronal activity

is excitatory. A PSP is defined as excitatory when it increases the probability of the

occurrence of AP, while inhibitory PSP decreases the probability of a future AP.
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• Resting state: resting state is the condition where there is no perturbation to the neuron

opposed to neuronal activity state which neuron receives the information or transmits it

to another neuron. The resting state membrane potential difference between inside the

membrane and the surrounding media is about 70 mv.

The AP or the nerve impulse travels along the axon, when it reaches the synapse, it provokes

the neurotransmitters to be released in the synapse to bind to chemical receptor molecules located

in the membrane of post-synaptic neuron. This causes the electrical current in the dendrites and

therefore depolarizations or hyperpolarization in the membrane at the axon hillock (Figure 2.3) of

the post-synaptic neuron, i.e. increase or decrease of post-synaptic membrane potential or PSPs.

The sum of these PSPs may provide an AP which propagates down the axon of post-synaptic

neuron. Now this AP can provoke another AP in another neuron of the neuronal network. This

is how the information is transmitted in the neuronal networks. In EEG recordings, we measure

the PSP [36].

Figure 2.4: Scalp EEG recording, epilepsy department, CHUG, Grenoble, France.

2.3.2 Scalp EEG

The IED recordings from scalp EEG were first reported by Hans Berger in 1929 [37]. Still the

scalp EEG is the most common diagnosis tool for epilepsy.

Scalp EEG reflects the accumulation of the synchronous activity of thousands to millions of
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Figure 2.5: A typical scalp EEG electrodes’ placement in 10/20 system.

neurons oriented radially to the scalp. Scalp EEG measurement is sensitive to the activation

of these neurons in the cortex, while the activations of the neurons in deep regions of gray

matter cannot be reflected in this measurement. Besides, the potentials associated with vectors

tangential to the surface can be ignored by scalp EEG recordings. The EEG recordings from

scalp are attenuated and can be distorted because of meninges, skull and scalp. Eventually

EEG localization by scalp EEG is very complicated [38]. However scalp EEG (Figure 2.4) is

noninvasive, cheap, and simple. Figure 2.4 demonstrates the scalp EEG recording in epilepsy

department of CHUG, Grenoble , France. A schematic diagram of scalp EEG placement with

electrode labels is demonstrated in Figure 2.5.

2.3.3 Invasive EEG

Foester and Altenburger published the first report on measuring electrical activity directly from

human cerebral cortex [39] in 1935 and electrocorticography (ECoG) recordings became crucial

in surgical treatment of temporal lobe epilepsy in early 1950s. In 1950s the chronic intracranial

electrodes were also suggested permitting the ictal activity recording [40]. Scalp EEG and ECoG

were now commonly used for IZ and SOZ detection for presurgical studies in addition to clinical

knowledge and ictal symptoms that had been previously used.

The ECoG can be recorded using subdural grids or strips located directly on the lateral surface

of the brain [41]. There are other clinical routines for recording invasive EEG using multi-lead

depth electrodes [15]. The depth electrode implantations (Figure 2.6) are usually referred to

as stereotactic EEG due to stereotactic technique developed by Talairach and Bancaud for

the electrodes localization [14, 42–45]. In this manuscript, such implantations are referred to

intracerebral EEG (iEEG) recordings. Multilead depth electrodes are semi-flexible and shaped

as narrow needles. The implantation of these electrodes needs only small burr holes opposed to

larger craniotomy of subdural grid implantations. The subdural grid provides cortical coverage

and cortical maps of gyral activity, while depth multi-lead electrodes have the potential to
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record the activity of both sulci and gyri and from beneath the cortical surface to deep cortical

structures. However both recordings have sufficient spatial resolution to localize neural activity

at the gyral level as good as functional magnetic resonance imaging (fMRI).

Simultaneous video recording of clinical manifestations with continuous EEG recording is used

frequently in presurgery evaluations [46–49]. During video-EEG monitoring sufficient number

of IEDs during awake and sleep stages can be recorded. Seizures are less frequent and mostly

long recordings is required to record a few seizures.

A typical segment of simultaneous iEEG and video recordings is demonstrated in Figure 2.7.

In this Figure the labels from 3 to 4 indicate some examples of IED time interval, while the

labels from 7 to 8, indicate examples of non-IED time intervals. Please note that all of IED

time intervals are not labeled in this Figure. A picture of the video-iEEG recording center of

neurology department of CHUG, Grenoble, France is shown in Figure 2.8.

(a) Sagittal view (b) Coronal view

Figure 2.6: Implantation scheme of the iEEG electrodes (a) Sagittal view; (b) Coronal view.

2.3.4 EEG and fMRI

Invasive EEG and fMRI

Although newer technologies like fMRI, video-iEEG monitoring still remains gold standard in

the definition of IZ and SOZ [14]. fMRI measures blood flow changes, i.e. relative decrease in

interictal blood flow with respect to ictal state. This recording allows non-invasive evaluation

of all areas of the brain with the same accuracy. However, fMRI recording is short, therefore

it is limited to the patients who have very frequent seizures and also with retained conscious-

ness and without motor symptoms. Movements and related artifacts prevent meaningful fMRI

recordings. The spatial resolution of invasive EEG recordings and fMRI is comparable, while

the temporal resolution of invasive EEG recordings of about msec is not comparable with the

temporal resolution of fMRI that is about 1-4 sec.
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Figure 2.7: A typical segment of iEEG recordings. Some typical IED and non-IED time intervals
are labeled. Labels 3, 4, 7, 8 show onset and offset of IED and non-IED time intervals, respectively.

Figure 2.8: Video-iEEG recording center in neurology department, CHUG, Grenoble, France.
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Figure 2.9: Simultaneous scalp EEG and fMRI recording, CHUG, Grenoble, France.

Simultaneous scalp EEG and fMRI

Integrating high spatial resolution of fMRI and high temporal resolution of EEG seems interest-

ing in simultaneous scalp EEG and fMRI analysis. Figure 2.9 demonstrates the simultaneous

EEG and fMRI recording in CHUG, Grenoble, France. However EEG recorded inside a mag-

netic resonance (MR) scanner is interfered with very strong artifacts including: 1) MR artifacts,

2) RF pulse artifacts, and 3) balistocardiogram (BCG) artifacts.

The MR artifact is caused by the switching of the magnetic filed gradients used in the image

acquisition, which induces unwanted voltages on the EEG recordings. The RF pulse artifact

is due to the time varying electromagnetic field pulses (RF pulses) used for excitation in MRI

recordings. Although, the RF pulse has a very high frequency (in the order of several megahertz);

but it is nonlinearly rectified to low frequencies (below 100Hz), within the EEG bandwidth. BCG

artifact is caused by the micro motions of head EEG leads and wires within the static magnetic

field. These motions are related to the pulsatile blood-flow in the head.

Although there are efficient methods for removing these artifacts (appendix B, page 129), it

is difficult to know how much of EEG information is removed during artifact removal methods.

However the non-contaminated EEG should be clean enough that IED time intervals can be

detected. IEDs are spontaneous events and cannot be controlled, therefore to analyze fMRI

recorded simultaneously with EEG, the IED time intervals are required to be detected from

non-contaminated EEG.
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2.4 Conclusion

Drug resistant epeileptic patients are recommended to undergo the resective surgery. Practically

the aim of resective surgery is to remove the SOZ. The best way of SOZ detection is ictal analysis

of iEEG recordings. However seizures are infrequent in most of the patients and thus obtaining

statistically reliable results from a few seizures is complicated. Therefore SOZ prediction through

interictal iEEG analysis remains valuable.



Chapter 3

Graph theory

3.1 Introduction

In this chapter first we explain the necessary background of graph theory including the definition

of graph, graph types, and graph measures used in this work. Next different coupling measures

to measure the functional connectivity are explained.

3.2 Brain connectivity

Brain connectivity [16, 17] refers to three main topics: anatomical connectivity, functional con-

nectivity and effective connectivity.

• Anatomical connectivity: this connectivity is the set of structural links between neural

units at a given time. The neural units refer to individual neurons, neuronal populations,

or anatomically segregated brain regions. The anatomical connections are relatively static

in short time durations (seconds to minutes), while these connections can be dynamic in

longer time durations (hours to days).

• Functional connectivity: functional connectivity is time dependent, i.e. the temporal

couplings or interdependencies between the activities recorded from spatially remote brain

regions associated with neural units.

• Effective connectivity: effective connectivity is based on the effect of one neural unit

over another. Effective connectivity can be estimated using model-based methods (like

structural equation modeling [50], dynamic causal modeling [51–55], or Granger causal-

ity [56]) or model-free methods by estimating the time causality between neural events

recorded from different brain regions [57–62].

Anatomical and functional connectivity are not independent according to the theory of brain

plasticity, where thinking, learning, and acting modify both of these connectivities. For example

learning in adulthood is not only through the changes of the strength of the connections, but also

through adding or eliminating connections, or adding cells. Furthermore, effective connectivity

19
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can be derived from functional connectivity [16, 17, 63, 64] based on the causal information be-

tween the interacting regions using model-free methods. Consequently, functional connectivity

has the most important role among the three concepts of brain connectivity.

In this work we focus on functional connectivity and the effective connectivity is derived from

functional connectivity using model-free methods.

The interpretation of the measured functional connectivity can be illustrated by a graph. In

the following section, we will explain the graphs and some of their related concepts in graph

theory.

3.3 Graph

A graph is a set pair of vertices (or nodes or points or dots) and edges (or connections or lines

or links), which edges connect the vertices. Graph theory [65–71] helps us to understand the

behavior and properties of a variety of systems like internet, World-Wide Web, social networks

and brain neural networks. Systems in the form of networks or mathematically graphs abound

in the world [72].

Reviews in [17,72–79] permit us to know about the graph theory and related problems. In the

following, we explain the types of graphs, some general definitions for directed graphs, widely

used usual graph measures and coupling measures.

3.4 Types of graphs

There are different types of graphs which some of them are explained in appendix C (page 141 ).

In this work we focus on a particular directed graph (digraph) in which each edge is permitted

to have a unique direction, i.e. between nodes i and j only one direction exist. Such graphs

include neither multiple edges nor loops. These particular digraphs are called oriented graphs.

However we simply call them digraphs in the following.

3.5 General definitions for the digraphs

Here we explain about the general definitions for digraphs which further we use to define the

graph measures.

3.5.1 Adjacency matrix

The functional connectivity structure of a digraph can be represented by the adjacency matrix

indicating whether two nodes communicate or not and in which direction.

Let’s assume digraph G = (V,E), where V and E are the set of vertices and edges. We

describe the digraph G with an adjacency matrix denoted as AG = [aij ] ∈ {0, 1}N×N , where N

is the number of nodes. The adjacency matrix of digraphs (oriented graphs) has no symmetric
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pair of directed edges (each edge is permitted to have a unique direction) and has a diagonal of

zeros (no loops are allowed). If there is an edge from node i to node j, then aij = 1 and aji = 0,

otherwise if there is no edge, then aij = aji = 0. The maximum possible number of directed

edges for such digraphs is equal to Nc = (N2 −N)/2 (
∑

ij aij = (N2 −N)/2).

3.5.2 Path and shortest path length

A path from node i to node j (or outgoing path of i, or incoming path of j) is an ordered

sequence of non-repeated edges and nodes connecting node i to node j [17]. The shortest path

length between nodes i and j is the minimum number of edges traversed to get from i to j.

We assume the shortest path length matrix denoted as LG = [lij ], where lij is the shortest

path length between nodes i and j. If any path does not exist from i to j, then lij =∞.

3.5.3 Size and order

The number of nodes (N or the length of set V) and number of edges (length of set E) are

defined as the size and order of a digraph, respectively.

3.5.4 Subdigraph

Subdigraph Gi− = (Vi,Ei) is the digraph of the first-order outgoing neighbors of node i ex-

cluding node i, i.e. {j 6= i ∈ V| aij = 1}. When node i is included, the subdigraph is denoted

as Gi+ .

3.6 A sample digraph

Figure 3.1 demonstrates a simple example of digraph G = (V,E) (left) and subdigraph G7− =

(V7,E7) (right). The size of digraph G is equal to 7 or equivalently V = {1, 2, 3, 4, 5, 6, 7}. The

order of digraph G is equal to 12, i.e. E includes 12 directed edges among Nc = 21 possible

edges. The adjacency (AG), and shortest path length (LG) matrices of digraph G are as follows:

AG =



0 1 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1

1 1 1 1 0 0 0


, LG =



3 1 2 3 4 1 2

∞ ∞ 1 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
3 3 1 3 1 2 2

2 2 2 2 3 1 1

2 2 2 2 3 3 1

1 1 1 1 2 2 3


. (3.1)
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The shortest path length matrix (LG7−
) of subdigraph G7− = (V7,E7), V7 = {1, 2, 3, 4} is as

follows:

LG7−
=


∞ 1 2 ∞
∞ ∞ 1 ∞
∞ ∞ ∞ ∞
∞ ∞ 1 ∞

 (3.2)

1

23

4

5 6

7 1

23

4

Figure 3.1: A sample digraph G (left) and the subdigraph of node 7, G7− (right).

3.7 Graph measures

There are different graph measures like clustering coefficient, path length (appendix D, page

143), betweenness, centrality, etc. Here we focus on node degree, global and local efficiencies.

3.7.1 Indegree and outdegree

The outdegree kout[i] of node i is the number of outgoing edges incident the node [76]:

kout[i] =
∑
j∈V

aij (3.3)

Accordingly, indegree kin[i] of node i is related to its incoming edges:

kin[i] =
∑
j∈V

aji (3.4)

where aij are the entries of adjacency matrix AG. The total degree of node i, ktot[i], can be

defined as the difference between kout[i] and kin[i]: ktot[i] = kout[i]− kin[i] =
∑

j∈V(aij − aji).
The total degree (ktot = [ktot[1], . . . , ktot[7]]T ) for the digraph G depicted in Figure 3.1 is

equal to the vector ktot = [1,−1,−3, 1, 1,−1, 2]T .
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3.7.2 Global efficiency

If we define the efficiency of the connection between node pair (i, j) as eij = 1/lij [80], then the

global efficiency of the node i ∈ V is defined as:

Eglob[i] =
1

N − 1

∑
j∈V,j 6=i

1

lij
(3.5)

and the global efficiency of the whole digraph G is defined [80] as:

Eglob[G] =
1

N

∑
i∈V

Eglob[i]. (3.6)

Eglob[i] and Eglob[G] are in the range [0, 1]. Eglob[i] is equal to zero for a node without any

outgoing path and equal to one if lij = 1, ∀j 6= i, j ∈ V, i.e. if from node i we can reach each

node of the digraph with one single edge.

We calculate global efficiency (3.5)-(3.6) for the example depicted in Figure 3.1. The global

efficiency (Eglob = [Eglob[1], . . . , Eglob[7]]T ) for the seven nodes of digraph G and the global

efficiency of digraph G are equal to Eglob = [0.6, 0.17, 0, 0.61, 0.67, 0.56, 0.83]T and Eglob(G) =

0.5, respectively. Global efficiency of node 7 is high since from this node we can reach the rest

of digraph with one or two edges (the seventh row of matrix LG).

3.7.3 Local efficiency

The Eglob[G] can also be evaluated for the subdigraph Gi− to measure the local properties. The

local efficiency of node i can be defined as the evaluation of (3.6) for the subdigraph Gi− as

following:

Eloc[i] = Eglob[Gi− ]. (3.7)

Eloc[i] shows the efficiency of the connections between the first-order outgoing neighbors of

i when i is removed. Equivalently, local efficiency measures the “resilience” of digraph to the

damage of node removal, i.e. if we remove a node, how efficient its first-order outgoing neighbors

can communicate. Eloc[i] is in the range [0, 1]. Eloc[i] is equal to zero if the first-order outgoing

neighbors of node i are not connected with each other, i.e. Gi− is disconnected. Eloc[i] is also

equal to zero if node i is not connected to any other node or if node i does not have any first-order

outgoing neighbor.

Local efficiency (3.7) is calculated for the example depicted in Figure 3.1. The local efficiency

(Eloc = [Eloc[1], . . . , Eloc[7]]T ) for the nodes of digraph G is equal to Eloc = [0, 0, 0, 0, 0.5, 0, 0.3]T .

For calculation of local efficiency of node 7, the subdigraph G7− = (V7,E7) depicted in Figure

3.1 (right) is used. Eloc[5] is higher than Eloc[7] because the neighbors of node 7 (nodes 1, 2, 3,

and 4) do not communicate as well as neighbors of node 5 (nodes 5, 6, and 7 make a triangle).
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3.8 Coupling measure

A graph can be inferred using different coupling measures between signal pairs providing a N

by N matrix for N signals. The different methods of graph inference are explained in section

4.2.2, page 35. In this section, we explain some of widely used non-directional and directional

coupling measures [81–83].

3.8.1 Non-directional couplings

Here we explain the following non-directional coupling measures:

1. Cross-correlation

2. Wavelet cross-correlation

3. Coherence

4. Wavelet coherence and wavelet phase Synchrony

5. Hilbert phase Synchrony

6. Mutual information.

Cross-correlation

We assume N -dimensional observations X = [x1, . . . ,xN ], where xi = [xi[1], . . . , xi[T ]]T , the ith

column of matrix X ∈ RT×N , contains T samples of the signal recorded from the ith channel,

and N is the number of channels. The cross-correlation coefficient [84–87] between channel pair

(i, j) is defined as:

ρ̂ (xi,xj , τ) =
ĉov(xi[k], xj [k − τ ])√
v̂ar(xi[k])v̂ar(xj [k − τ ])

(3.8)

where ĉov and v̂ar [84] are estimated by empirical average and τ is the time delay. The cross-

correlation is in the range [−1, 1]. A perfectly linearly correlated signal pair has the maximum

cross-correlation equal to 1 if the signals are in phase. Accordingly, perfectly correlated signal

pair which signals are in opposition has the minimum cross-correlation equal to -1.

Wavelet cross-correlation

Let’s assume djwi be the wavelet coefficients of xi at level jw. Wavelet coefficients of level jw are

associated with frequency interval [ fs
2jw+1 ,

fs
2jw

], where fs is the sampling rate (Hz). The wavelet

cross-correlation [20,81,88] between djwi and djwj at level jw is estimated as:

ρ̂
(
djwi ,d

jw
j , τ

)
=

ĉov(djwi [k], djwj [k − τ ])√
v̂ar(djwi [k])v̂ar(djwj [k − τ ])

(3.9)

Values of the wavelet cross-correlation coefficients are in [−1, 1]. The cross-correlation can also

be calculated for narrow band pass filtered signals [82].
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Coherence

The coherence [89–93] between xi and xj at frequency f can be estimated as below:

%̂ (xi,xj , f) =

∣∣∣Ŵxixj [f ]
∣∣∣√

Ŵxixi [f ] · Ŵxjxj [f ]
(3.10)

where Ŵxixj [f ] is the estimated cross-spectra density function between xi and xj or Fourier

transform of their cross-correlation function. |·| refers to magnitude. %̂ (xi,xj , f) is in the

range [0, 1]. If the coherence is close to one for all of the frequencies, then there is a linear

relationship between xi and xj . Coherence is roughly equal to the correlation coefficient between

the frequency components of xi and xj at frequency f [90,94,95].

Fourier-based coherence (3.10 ) is not suitable for the analysis of non-stationary signals, while

wavelet coherence can detect transient linear couplings [95]. In the following we explain wavelet

coherence, wavelet phase synchrony, and Hilbert phase synchrony.

Wavelet coherence and wavelet phase Synchrony

The instantaneous complex phase vector of signals xi and xj in the frequency range associated

with level jw can be estimated [96] as:

ϕ̂ϕϕ (xi,xj , jw) =
d∗jwi · djwj∣∣∣djwi ∣∣∣ · ∣∣∣djwj ∣∣∣ (3.11)

where ∗ denotes complex conjugate. Many complex wavelets may be chosen like Morlet or

Hilbert. To provide less noisy complex phase measure [96], a smoothing can be applied as

follows:

ϕ̂s (xi,xj , jw) =
〈d∗jwi · djwj 〉√
〈
∣∣∣djwi ∣∣∣2〉 · 〈∣∣∣djwj ∣∣∣2〉 (3.12)

where 〈〉 denotes averaging over window length of ∆k, which ∆k should be selected properly.

Lachaux et al. explained about the selection of ∆k in [95]. The wavelet coherence [95, 96] can

be defined as:

%̂w (xi,xj , jw) = |ϕ̂s (xi,xj , jw)| (3.13)

The magnitude squared coherence (MSC) is defined as the squared of (3.13).

A dynamic study of the wavelet coherence between signal pairs is proposed in [96]. For this

purpose ϕ̂s was calculated for sliding widows of length ∆k where k is the sample index. For a

window starting at time sample k1, ϕ̂s was calculated between d∗jwi [(k+k1) : (k+k1 +∆k)] and

djwj [(k+k1) : (k+k1 + ∆k)] which its value substituted with the complex phase value of sample

k1 giving a smoothed complex phase vector denoted as ϕ̂sϕsϕs (xi,xj , jw). ϕ̂sϕsϕs (xi,xj , jw) includes

complex phase values in time and in specific frequency range for the pair signal xi and xj . To



26 Graph theory

study the dynamic relationships, the dynamic wavelet coherence can be considered as:

%̂%%w (xi,xj , jw) = |ϕ̂ϕϕs (xi,xj , jw)| . (3.14)

Following to dynamic wavelet coherence definition, we explain different definitions of phase

difference. Once the phase difference is obtained, different synchronization indices [97–99] like

phase locking value (3.17) [93, 100] can be calculated to characterize the phase relationship

between underlying signal pair.

In [96] the phase difference between signal pairs xi and xj in the frequency range related to

level jw was defined as:

∆̂φs (xi,xj , jw) = arg(ϕ̂s (xi,xj , jw)). (3.15)

The phase locking or phase synchrony interval was defined [96] as time period which has the

following conditions: 1) when
∣∣∣∆̂φs (xi,xj , jw)

∣∣∣ is smaller than a threshold or the variation of

phase difference is small. 2) when the wavelet coherence (3.13) is greater than a threshold. The

two thresholds are required to be set properly.

In [93], the phase difference was defined differently as:

∆̂φφφ (xi,xj , jw) = arg(ϕ̂ϕϕ(xi,xj , jw)). (3.16)

The phase synchrony or phase locking value [93] was defined as:

P̂L (xi,xj , jw) =
∣∣∣〈ej∆̂φφφ(xi,xj ,jw)〉

∣∣∣ = |〈ϕ̂ϕϕ (xi,xj , jw)〉| (3.17)

where averaging is over time period ∆k′. P̂L (xi,xj , jw) measures the variability of the phase

difference in time period ∆k′. If the variation of phase difference is small during time period

∆k′, the phase synchrony is great and close to one, otherwise close to zero. A bootstrap based

test was used in [93] to test if the phase locking value is equal to one. This method is preferred

to simple thresholding method. However bootstrap method is time consuming and for certain

applications is not convenient.

The phase difference can also be estimated based on Hilbert transform under certain condi-

tions [101] as explained below.

Hilbert phase Synchrony [102]

If we model real signal xi as:

xi[k] = Ai[k] cosφi[k] (3.18)

then

xi[k] + iH(xi[k]) = Ai[k] cosφi[k] + iH(Ai[k] cosφi[k]) (3.19)
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where H(·) denotes the Hilbert transform. Using the Bedrosian theorem [103, 104], it can be

deduced that:

H(Ai[k] cosφi[k]) = Ai[k]H(cosφi[k]) (3.20)

if the spectral supports of Ai[k] and cosφi[k] do not overlap. For a narrow-band signal xi which

its spectral support is limited in a narrow range centered on the main frequency of its spectra

(not necessarily single frequency signal), the following condition was verified [105]:

Ai[k] cosφi[k] + iAi[k]H(cosφi[k]) = Ai[k] cosφi[k] + iAi[k] sinφi[k], (3.21)

which leads to the following model [101,105–107] as:

xi[k] + iH(xi[k]) = Ai[k] exp(iφi[k]) (3.22)

For a narrow-band signal, the relative variation of amplitude can be assumed to be much

slower than the variation of the phase which implies the following condition [108]:∣∣∣∣dφi[k]

dk

∣∣∣∣� ∣∣∣∣ 1

Ai[k]

dAi[k]

dk

∣∣∣∣ . (3.23)

The real signal xi can be modeled by the pair (Ai,φφφi) using Hilbert transform (3.22) if the

condition (3.23) is satisfied. The better this condition being satisfied the more likely the pair

(Ai,φφφi) obtained with the Hilbert transform gives an accurate model for real signal xi [101].

For the narrow band real signals which provide condition (3.23), the phase difference based

on Hilbert transform can be defined as:

∆̂φφφH(xi,xj) = φφφj −φφφi. (3.24)

Comparison of cross-correlation, coherence and phase synchrony

Coherence is bounded between 0 and 1, therefore it cannot distinguish between correlated and

anti-correlated signal pairs opposed to cross-correlation ([−1, 1]) which can differentiate be-

tween correlated and anti-correlated relationships. The maximum of wavelet cross-correlation

coefficient reflects the same concept of wavelet coherence. However complex wavelet is used in

wavelet coherence while in wavelet cross-correlation the wavelet is real. Although using different

mother wavelets, still the linear relationship between wavelet coherence and maximum wavelet

cross-correlation is conserved, but the value of each measure is different.

It is shown in [93] that wavelet coherence (3.13) increases in both following conditions: 1) if the

cross-correlation between envelopes of the signal pairs increases and 2) if the phase difference

between signal pairs has small variations in time. Therefore coherence does not specifically

characterize the phase-relationships, whereas the phase synchrony (3.17) is only sensitive to the

phase difference variations [93].
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Mutual information (MI)

Let’s assume time series xi = [xi[1] . . . xi[T ]]T and xj = [xj [1] . . . xj [T ]]T as the observations

of two random variables Xi and Xj . The MI [109] between xi and xj is estimated as:

MI(xi,xj) =
∑
mn

p̂ij(m,n)log
p̂ij(m,n)

p̂i(m)p̂j(n)
(3.25)

where p̂i(m), p̂j(n), and p̂ij(m,n) are marginal and joint estimated probabilities of xi and

xj . Previous coupling measures except phase synchrony are designed to measure the linear

relationship between signal pairs, while using MI, the nonlinear relationships between signal

pairs can also be measured. However for Gaussian signals, MI can be approximated as a

nonlinear function of correlation coefficient.

3.8.2 Directional couplings

Using directional coupling measures like Granger causality [110,111] the drive-response relation-

ship between signal pairs can be estimated. The causal relationship can also be estimated by

time delay estimation between signal pairs observed at the nodes. Here we briefly review some

of time delay estimation methods [57–60] and Granger causality [110,111] which are widely used

in this domain.

Time delay estimation

Direction of a connection can be estimated from the estimation of the time delay between the

signal pairs observed at the two ends of a connection [60]. There are several studies on the

estimation of the time delay. Here we focus on two methods:

1. Time delay estimation based on phase difference [60]

2. Time delay estimation based on cross-correlation [57–59].

Here we review briefly these two methods.

1) Time delay estimation based on phase difference: The phase difference between

signal pairs is in the range [−π,+π]. Each phase difference value can be added to ±2kπ which

leads to different time delays assuming the following linear relationship for single frequency

signals:

∆φ =
2πf

fs
∆τ (3.26)

where f , ∆φ, and ∆τ refer to frequency, phase difference, and time delay, respectively. There is

an ambiguity in choosing the correct time delay. This ambiguity is worse for higher frequencies.

When the possible time delays are smaller than the maximum physiological time delay, even by

using physiological constraint, we cannot reject any of them. Gotman [60] studied the phase

difference in terms of frequency using cross-spectra density function (based on Fourier trans-

form). To solve this ambiguity of time delay estimation, he proposed considering the slope of
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∆φ over a frequency interval instead of considering single ∆φ at each frequency bin. By choosing

narrow frequency intervals (∆f) or wide time periods, ∆φ may associate to time delays with

large differences in their values. Hence the greater time delays can safely be rejected accord-

ing to physiological constraints like the physiological time delay between different brain regions

recorded from separate iEEG recordings. Moreover by choosing the slope of ∆φ, the difference

between the choices of time delays does not depend on the frequencies used in frequency interval

measurement and instead depends on only the length of the frequency interval.

Gotman [60] used the estimated time delays to interpret the causal relationships between

signal pairs from iEEG recordings of epileptic patients. Ktonas et al. [112] followed this method

and studied the statistical errors of this time delay estimation.

This method of time delay estimation may not be applied on phase difference methods based

on wavelet transform. In wavelet transform the phase difference can be calculated for each

frequency interval, i.e. a single phase difference is obtained for each frequency interval. In other

words, we do not know the values of phase difference at the two single frequencies of a frequency

interval to calculate the slope of ∆φ. Furthermore the variances of wavelet coefficients of different

frequency bands are not generally the same. Wavelet transform has much more interests than

Fourier transform which one may prefer to stick with wavelet and using another measure to

calculate the time delay.

2) Time delay estimation based on cross-correlation: The estimation of time delay

between signal pairs using cross-correlation was proposed in [57–59,90]. In most of these studies

the following linear model was assumed:

x1[k] = s[k] + n1[k]

x2[k] = s[k + ∆τ ] + n2[k]
(3.27)

where s[k], n1[k] and n2[k] are the realizations of uncorrelated Gaussian random process and ∆τ

is the time delay. In these studies, the cross-correlation is calculated for various time lags and

the time delay was estimated as the time lag in which the absolute maximum of cross-correlation

occurs. A simple simulation is demonstrated in Figure 3.2 to show how the cross-correlation

estimates the time difference between two events in a signal pair.

Granger causality

An intuitive definition of causality between two temporal signals was introduced by Wiener [110]

and formalized by Granger [111]. The Granger causality concept for two processes X1 and X2

is as follows.

If the knowledge of the past of both X1 and X2 reduces the variance of the prediction error

of X2 more than using only the knowledge of the past of X2 then X1 causes X2. The linear

Granger causality test [113] and its extended measures like direct coherence [56], and partial

directed coherence [114] are based on a multivariate coupled autoregressive model. In linear

Granger causality [113], the causality test is based on the variance of the prediction error in the
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Figure 3.2: Time delay estimation based on cross-correlation coefficient. Time delay is the time
lag which the absolute cross-correlation coefficient maximizes.

multivariate coupled autoregressive model. The direct coherence [56] shares the same model of

linear Granger causality except an extra noise is added to the bivariate autoregressive model

allowing noises to be uncorrelated. In the same perspective, the partial directed coherence [114] is

based on Fourier transform of multivariate autoregressive model used in linear Granger causality.

The partial nonlinear Granger causality [115] uses the same concept of linear Granger causal-

ity in the context of probability, i.e. X1 is not a nonlinear Granger cause of X2 if the probability

distribution of the future of X2 does not change by adding the knowledge of the past of X1.

Gourévitch et al. [116] studied different measures of Granger causality and extended linear

Granger causality and nonlinear partial Granger causality to multivariate case. In [116], differ-

ent Granger causality measures are compared using simulated and real scalp EEG recordings,

concluding the following remarks:

1. Direct coherence [56] and partial direct coherence [114] measures do not give similar results

and should be carefully interpreted. These two measures have good results for linear

linkages, while they do not provide reliable results to some simple nonlinear linkages. If

nonlinearity is suspected, partial nonlinear Granger causality [115] can only be used as a

complementary method to for example partial directed coherence measure.

2. Although partial nonlinear Granger causality can provide good results for complex sys-

tems, it is highly dependent on the selected parameters.

There are other directed measures based on nonlinear methods like estimating the time delay

using nonlinear correlation coefficient [82, 117, 118], generalized synchrony [119–123], transfer

entropy [124], structural equation modeling [50], and dynamic causal modeling [51–55], which

we do not go through these measures.
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3.9 Conclusion

In this chapter, we explained about the directed graph, the characterization of its nodes using

different graph measures, and different non-directional and directional coupling measures used

for graph inference.

Among non-directional coupling measures, cross-correlation and coherence can measure the

linear relationship between signal pairs, while phase synchrony and mutual information are use-

ful when we suspect nonlinear relationships between signal pairs. Several studies indicate no

preference of nonlinear coupling measures over linear ones during interictal period of EEG anal-

ysis [8,10,99,125,126]. Therefore, in this work we use maximum wavelet correlation coefficient to

measure the functional connectivity. This measure is calculated between signal pairs during IED

and non-IED time intervals (for details refer to section 6.2.2, page 56). Once the relationship

between different brain regions are inferred, we estimate the directions of these relationships. To

this end, the time causality between IEDs recorded from iEEG channels is estimated using the

same measure (maximum wavelet correlation coefficient) between signal pairs during the whole

selected data for processing (see section 6.3.2, page 61).
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Chapter 4

Identification of leading IED regions

from invasive EEG

The aim of surgery of drug resistant focal epileptic patients is to remove the EZ for a seizure free

outcome [14, 29]. However EZ cannot be determined before surgery by the current recordings

and techniques. Therefore, practically we have to estimate the EZ by the estimation of other

dysfunctional brain regions like SOZ or IZ. Usually SOZs are estimated using ictal state analysis

from iEEG for pre-surgical evaluations [1,32,33]. Recording ictal EEG is time-consuming and ex-

pensive, because seizures are infrequent phenomena in most of the patients, thus EEG recording

period may be prolonged (over few weeks) till a seizure occurs. This long recording period may

increase the risk of complications like brain hemorrhage and infection [127–130]. Eventually the

number of seizures are limited and each seizure period is short. Thus obtaining statistically reli-

able results from studying seizure time intervals is quite difficult [22]. Consequently, suggestion

of SOZ through interictal analysis remains valuable.

In this chapter, the state of the art in identification of IZ or IED regions based on interictal

discharge analysis from invasive EEG recordings is reviewed. Due to the rather old history of

the EEG analysis of epileptic patients and the rich literature in this field, we focus on the works

specifically developed for the problem of interest.

There are several studies wondering if quantitative analysis of interictal discharges can be

used to guide the resection surgical decision [8–10, 12, 13, 22–24, 131–133]. There are two main

methods:

1. Univariate methods, i.e. the interactions between the brain regions are not considered.

2. Multivariate methods, i.e. the couplings between signal pairs related to different brain

regions are investigated.

4.1 Univariate methods

In [131], Alarcon et al. reported a complex and definite correlation between interictal and ictal

activities according to their univariate analysis from ECoG recordings. They used univariate
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indices to measure the latency, amplitude, and frequency of spikes from fast Fourier transform

(FFT) of the ECoG signal during ictal and interictal stages and studied the relationship between

resection of interictal discharge regions and post-surgical outcome.

The main problem of SOZ detection through interictal analysis is the propagation of inter-

ictal discharges [22, 134]. IEDs may start from a complex relationship between separate zones,

following the propagation of neuronal activity through specific neural pathways. By studying

leading epileptic regions, where interictal discharges demonstrate earlier peaks, Alarcon et al.

reported that these regions may have higher epileptogenicity potentials rather than the sites

with secondary propagated activity [22]. This may suggest the unnecessity of resecting all of

IED regions to control the seizures, while removing leading regions may be helpful to guide

a successful surgery. Following pioneer works of [22, 131], univariate measures such as earliest

spikes, highest average amplitude, and shortest spike duration were studied for localization of

IED regions [23]. In [23] a greater overlap between the averaged earliest spikes localizations

and the site of seizure origin comparing to highest averaged spike amplitude localizations was

reported.

There are other studies based on the estimation of the occurrence time of the interictal

discharges to identify the leading IED regions [132, 135, 136]. In [132] the occurrence time

of spikes from ECoG recordings was used to determine an activation map of different ECoG

channels. To estimate the occurrence time of spikes, they tested four different measures including

the occurrence time of peak amplitude of the temporal ECoG recordings, the peak of the first,

second and Laplacian derivatives of the temporal ECoG recordings. They concluded that the

time occurrence of the peak amplitude of the ECoG recordings is the best measure to determine

the occurrence time of spikes. Based on the estimated time occurrence of spikes, the leading

IED regions were identified as the regions which have the shortest latency. They concluded a

strong correlation between leading IED regions and SOZ.

These studies confirmed that identification of regions which originally originate the interictal

discharges can be valuable for the estimation of SOZ and presurgical evaluations.

4.2 Multivariate methods

Following to univariate methods, multivariate methods are used in this domain to add the

information of the inter-relationships between different IED regions. Each EEG channel can be

considered as a node and the relationship between nodes can be identified by edges. Here, we try

to summarize the multivariate methods based on connectivity graph in the domain of studying

the relationship between IED regions and SOZ [8–10, 12, 13, 24]. The schematic block diagram

of these methods is depicted in Figure 4.1. The following steps are considered.

1. Step 1: Coupling measure

2. Step 2: Graph inference: this step includes two sub-steps:

(a) thresholding
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(b) multiple testing

3. Step 3: IED identification

In the following we explain these steps.
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Figure 4.1: The schematic block diagram of multivariate methods in studying the relationship
between the interictal brain regions and seizure onset zones through connectivity graph.

4.2.1 Step 1: Coupling measure

In multivariate methods, first interictal couplings between multivariate N -dimensional prepro-

cessed EEG recordings are calculated based on linear, nonlinear, or directed interdependencies

giving a N by N coupling matrix. The preprocessing can include filtering, FFT, or wavelet

transform. The coupling matrix, is a square matrix containing the coupling measures calculated

between N channels. Some of widely used linear and nonlinear coupling measures [81–83] are

explained in section 3.8, page 24.

4.2.2 Step 2: Graph inference

For inferring the graph from the coupling measures (Figure 4.1) or to define the associations

between EEG channels (nodes), we explain two mostly used methods as follows.

(a) Thresholding

(b) Multiple testing

Thresholding

The classic method compares the coupling strength with a threshold value [18, 19, 137–139].

If the coupling strength is greater than the threshold, an edge is inserted between underlying

nodes.

There are several studies following this procedure using different threshold selection strategies.

One strategy is to choose a threshold which provides a fixed number of edges [137]. Another

strategy is to apply a variety of thresholds to obtain a collection of graphs and extract interested

feature(s) from these graphs. In these methods either the threshold is selected as the threshold

in which the extremum of feature values occurs or the extracted features in terms of different
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thresholds are studied [137,140]. Kramer et al. [11,19] tested latter procedure and found it time

consuming and unsatisfactory.

Indeed threshold based graph inference has several problems. First the inferred graph is

crucially dependent on the value of the threshold and the threshold may vary for different time

intervals of processing the data. For example in dynamic study of graphs which appearing

or disappearing of edges is important, the graphs of different time intervals are compared.

Comparing these graphs which were inferred with different thresholds may not provide correct

comparison. The same problem exists for comparing the graphs of different patients which their

related thresholds may not be the same. Second in such inferred graphs the rate of falsely

detected edges is unknown and there is no measure of graph uncertainty [11]. Therefore graph

inference methods based on significance tests seem more interesting. We explain these methods

in the next section.

Multiple testing

The necessary background about multiple testing is explained in appendix F, page 147. In graph

inference methods based on multiple testing [20,21,141,142], usually the following procedure is

examined:

1. The statistical hypothesis and the test statistic in terms of the selected coupling measure

are defined e.g. scaled maximum cross-correlation coefficient to its variance as the test

statistic.

2. In the classic methods, a predefined distribution is assumed for the test statistic. For ex-

ample normal distribution is assumed for the scaled maximum cross-correlation coefficient

test statistic.

3. Upon this assumption the raw p-values are calculated for all of the tests or all of node

pairs (Nc: the number of possible connections, see section 3.5, page 20).

4. The raw p-values are adjusted for multiple testing e.g. based on controlling familywise

error rate (FWER).

5. The adjusted p-values are compared with αfw (appendix F, page 147). The multiple

testing including null hypothesis, i.e. Hn
0 : “No coupling” versus alternative hypothesis, i.e.

Hn
1 : “Coupling” is done for all of the node pairs, n = 1, . . . , Nc. For the test in which its

adjusted p-value is smaller than αfw, the null hypothesis is rejected and an edge is inserted

between the related node pairs.

In the graph inference methods based on multiple testing, the expected rate of falsely detected

edges can be declared if the p-values (raw and adjusted) are correctly estimated. Furthermore

a fixed αfw can be set for different time interval graphs, contrary to the threshold used in

threshold-based graph inference methods. However if the assumption for the distribution of

the test statistic (the second step of the above procedure) is not correct, then the raw p-values
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cannot be estimated correctly. Hence incorrect p-values may not provide a correct significance

test [11]. Besides for non-stationary invasive EEG recordings, the estimation of the test-statistic

distribution is complicated. Therefore we need a method which requires less assumptions about

the data. Resampling methods like permutations provide a suitable choice for this purpose as

they need less assumptions about the underlying data allowing reliable significance test [143,144].

In several contexts graph inference methods based on multiple testing were used [11, 12, 21,

141,142]. Kramer et al. [11] compared a bootstrap-based multiple testing with two other multiple

testing methods:

1. Multiple testing based on the predefined statistical distribution of the test statistic. In the

following we refer to this method as naive method. The normal distribution was assumed

for the test statistic of scaled maximum cross-correlation to its variance.

2. A new test-statistic in terms of maximum cross-correlation was proposed which was de-

clared as a better approximation of normal distribution. This new test statistic was the

normalized maximum of the Fisher transform of the cross-correlation.

Here we first explain the bootstrap based method used in [11] and then we explain about the

comparison of this method with the above multiple testing methods reported in [11]. For the

bootstrap based method, the temporal signals were resampled with replacement, preserving the

spectral characteristics of the original signals. For each signal, the resampling was repeated Nb

times to construct Nb resampled signals in the surrogate data. Therefore, for each original signal

pair (i, j) there were Nb resampled signal pairs. For these Nb signal pairs, the test statistics were

calculated providing Nb test statistics which formed the test-statistc distribution of signal pair

(i, j). Using this distribution and the test statistic of original signal pair, the p-value of signal

pair (i, j) was calculated. For N channels which gives Nc = N × (N − 1)/2 signal pairs, Nb×Nc

bootstrap distributions were calculated.

To compare the naive method based on normal distribution, and the new test-statistic with

the bootstrap-based method, the simulated and ECoG data were used in [11]. The new test-

statistic and bootstrap method were reported to provide much better results than naive method.

However their new test-statistic can be used only for maximum cross-correlation which the

analytical expressions could be derived.

The bootstrap method used in [11] is very time consuming and the processing time is de-

pendent on the length of selected data for processing. For one second of ECoG processing of

N = 97 channels, the bootstrap-based method took 90 minutes and for 30 seconds, 45 hours

(on a 2 GHz Core Duo processor). This method is not suitable for long length data processing

which is crucial for reliable statistical results.

4.2.3 Step 3: IED identification

So far the graph was inferred from the coupling measure matrix and now the lED regions should

be identified from the graph analysis. IED regions can be identified based on quantifying the

nodes of the graph using graph measures. Some of classic graph measures quantifying the
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structure of graph were reviewed in section 3.7, page 22. Other graph measures for the purpose

of IED region identification are suggested. Ortega et al. [24] quantified each node i as the sum

of coupling measure values between node i and its first neighbors in the grid of ECoG recording

denoted as synchronization power of node i. The IED regions were identified as the cluster of

nodes whose synchronization powers were greater than a threshold. Three coupling measures:

cross-correlation coefficient, phase locking value based on Hilbert phase synchrony and mutual

information were used in this study.

Another survey of similar strategy was proposed in [12]. Each node was quantified as the

sum of its outgoing directed coupling measure values denoted as causal source activity. The

nodes which have causal source activities greater than a threshold were chosen. The direct

transfer function [145, 146] was used as the directed coupling measure. In the same strategy,

Monto et al. [9] studied the detrended fluctuation analysis exponent of autocorrelation function

(a self-similarity measure) of each ECoG channel. The nodes which have greater values were

selected.

The problem of such studies is that they are threshold based. Furthermore in case of studying

different frequency bands, for each frequency band a separate set of IED regions is obtained

while the preference between different frequency bands is usually unknown. For the case of

considering different frequency bands, one can consider different classic methods like clustering

[147] (appendix A, page 123) for identification of IED regions from graph measures related to

different frequency bands. Such methods and their problems are discussed in section 7.3, page

69.

4.3 Conclusion

We explained the problems of available multivariate methods on identification of IED regions

through connectivity graphs. Here we summarize these problems and briefly present our pro-

posed solutions.

4.3.1 Problems

1. Available methods analyze either IED or non-IED time intervals separately. The inter-

pretation of such graphs is complicated as they include background activity and related

volume conduction effect connections as well as interested connections related to IEDs.

2. Most of the graph inference methods used do not provide powerful significance tests.

3. Usual graph measures do not include enough information for quantification of graphs for

leading IED region identification. To identify the leading IED nodes, we need to quantify

the strength of source and sink nodes.

4. Current methods for IED region identification provide a set of IED regions for each indi-

vidual frequency band, while the preference between different frequency bands is unknown.
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4.3.2 Proposed solutions

Toward solving the above problems, we proposed the following ideas, which are the main con-

tributions of our work:

1. Proposing a new graph termed as differential connectivity graph (DCG) using both IED

and non-IED time intervals. DCG includes significant discriminated connections between

IED and non-IED states.

2. Application of permutation-based multiple testing [144] for a statistically confident graph

inference in the domain studied.

3. Introducing a graph measure for characterizing the local information of the nodes of di-

graphs using lagged mutual information.

4. Proposing a multiple graph analysis to extract the information from the graph measure

values of multiple graphs using multi-objective optimization method [148,149].

In the following part, first the basic ideas of DCG and IED region identification are explained

in Chapter 5. Next, contributions 1 and 2 are described in Chapter 6 and finally Chapter 7

includes the explanations of contributions 3 and 4.
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Part II

Proposed method
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Chapter 5

Basic idea of differential connectivity

and identification of leading epileptic

regions

5.1 Basic idea of differential connectivity graph

Transient neuronal assemblies are referred to large group of distributed neurons becoming

abruptly associated or disassociated [150]. Specific neuronal assemblies can emerge the func-

tional elements of brain activity that execute the basic operations of information processing [151].

The construction of a neuronal assemble is along with an increase of total potential (excita-

tory/inhibitory PSP), while its destruction is described by the decrease of total potential [152].

These oscillations of total potential can be manifested in the EEG recordings in which temporary

stable local microstates in the brain operations can lead EEG segments or piecewise “explicit”

state EEG time intervals [36, 64, 153–158]. An EEG segment may refer to e.g. alpha activity,

interictal epileptiform activities, etc. The transition from one EEG segment to another, reflects

the changes in the neuronal assembly state and/or in the neuronal assembly itself [64]. These

transitions may change the functional brain connectivity. In this research work, assuming that

functional connectivity changes during the transitions between the two explicit states, a new

graph is proposed to demonstrate the differences of the connectivity between the two states.

We proposed a differential connectivity graph (DCG) which is designed to detect significantly

these discriminated connections. Although the method is general, in this thesis we focus on

the application of epileptic patients and the two IED and non-IED states. In the following we

explain the related problems in the DCG construction.

5.2 Problem statement

Identification of discriminated connections from two separated IED and non-IED connectivity

graphs is challenging. Let’s infer the graph related to one IED time interval with simplest method

which is thresholding the coupling matrix [18]. For example for an IED time interval of length
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2693 samples (fs = 512 Hz) in the frequency range 4-8 Hz, the graph is demonstrated in Figure

5.1(a) from N = 111 iEEG bipolar channels of a focal epileptic patient. The graph of a non-

IED time interval of length 4969 samples (fs = 512 Hz) for the same patient, frequency range

and threshold value is depicted in Figure 5.1(b). The threshold is set equal to 0.3. Different

values of threshold will change the number of edges in these graphs [11] as it can be seen

in comparing Figures 5.2 (threshold=0.5) and 5.1 (threshold=0.3). However these graphs are

very complicated to be interpreted. Furthermore each IED related graph has some variability

(in the set of connections) in time [13, 19]. This is true for non-IED related graphs as well.

To demonstrate these time variability which is more in non-IED graphs since they reflect the

background activity, the IED and non-IED graphs of two other time intervals of the same patient

and frequency band are shown in Figure 5.3(a) and 5.3(b), respectively.

So if we construct the IED and non-IED related graphs of large number of IED and non-IED

time intervals, we obtain two collections of graphs (IED and non-IED) with some time variability

in each collection. The aim is to extract the most reliable connections which significantly change

between these two collections of graphs. In other words the aim is to find the couplings with

low variance (in time) in each collection and large mean difference between two collections.

The variance of the couplings for different time intervals depends on the estimation error of

the coupling of each time interval and also depends on the non-stationarity of the couplings

among different time intervals. Controlling the confidence interval of the couplings for each

time interval is challenging. Because the data is non-stationary so modeling the distribution

of the test statistic of each time interval is complicated. Available methods for calculating the

confidence interval of each coupling e.g. wavelet cross-correlation [88] are very conservative and

propose very long time intervals for a reasonable confidence interval for low frequency bands

which is not in accordance with real practical problems.

A solution can be using resampling based multiple testing methods [144] which provide pow-

erful significance test. In these methods, the distributions of the test statistics are estimated

under null hypothesis assuming less assumptions about the data. Using permutation test, the

most reliable connections differing between IED and non-IED couplings can be detected while

controlling the error rate (familywise error rate or false discovery rate).

Here we summarize how DCG solves the above problems.

1. To identify the discriminated connections between two brain states instead of comparing

two collections of graphs, we focus on the connections whose coupling measures change

significantly between different IED and non-IED time intervals.

2. Instead of analyzing each time interval separately which gives a complicated graph, DCG

searches for statistically significant connections among large number of IED and non-IED

time intervals giving sparser graph which can be interpreted more easily. The DCG of

the same patient and the same frequency band of the graphs of Figures 5.1-5.3 is depicted

in Figure 5.4. In part (a) the same sphere layout as Figures 5.1-5.3 is used for a better

comparison. This graph is depicted in part (b) in a different layout for better representation

excluding disconnected nodes.
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(a) IED

(b) Non-IED

Figure 5.1: Graph related to one (a) IED time interval of length 2693 samples and (b) non-IED
time interval of length 4969 samples in 4-8 HZ from N = 111 iEEG bipolar channels of a focal
epileptic patient. The sampling rate, fs is equal to 512 Hz. The graph is inferred by simple
thresholding for threshold equal to 0.3.
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(a) IED

(b) Non-IED

Figure 5.2: The graphs of the same (a) IED and (b) non-IED time intervals used in Figure 5.1
for a different threshold value equal to 0.5.
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(a) IED

(b) Non-IED

Figure 5.3: Graph related to one (a) IED time interval of length 2311 samples and (b) non-IED
time interval of length 7023 samples in 4-8 HZ from N = 111 iEEG bipolar channels of a focal
epileptic patient. The sampling rate fs, is equal to 512 Hz. The graph is inferred by simple
thresholding for threshold equal to 0.3.
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3. By using permutation-based multiple testing [144], the distributions of the test statistics

are estimated under null hypothesis assuming less assumptions about the data with the

controlled error rate.

5.3 Schematic diagram of the main blocks of the proposed iEEG

analysis method

So far the basic idea of DCG is explained. Once the DCG is obtained, different graph measures

can be applied to characterize the nodes of the graph for the purpose of IED region identification.

The block diagram of the proposed method is brought in Figure 5.5. The IED and non-IED

onsets and offsets are determined visually by the epileptologist from iEEG recordings. Using

these labels the wavelet coefficients of temporal iEEG signals related to each frequency level j,

j = 1, . . . , J are segmented to IED and non-IED segments. Based on these segments, J DCGs

are constructed for J frequency levels. These J DCGs are characterized providing J-dimensional

measure values for all of the nodes. The leading IED (`IED) regions are estimated by multiple

graph analysis using multi-objective optimization method based on these measure values.

5.4 Conclusion

In this chapter we explained the basic idea of DCG which included the existing problems of the

available methods and the proposed solutions. Furthermore, the main blocks of the proposed

iEEG analysis method are introduced. In the next chapter we explain how to calculate the

DCG.
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(a)

(b)

Figure 5.4: DCG of a focal epileptic patient (the same patient of Figures 5.1-5.3) in 4-8 HZ for
two different layout representations in parts (a) and (b). The layout representation of part (a) and
Figures 5.1-5.3 are the same for a better comparison.
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Figure 5.5: block representation of the main steps of the proposed method for iEEG analysis.
First, the IED and non-IED onsets and offsets are identified visually from iEEG recordings by
epileptologist. The wavelet coefficients are segmented according to these IED and non-IED time
intervals. Next DCG related to each frequency level j, j = 1, . . . , J is constructed based on IED
and non-IED wavelet coefficients. Please notice that all of the sub-blocks of DCG calculation are
not demonstrated in this block diagram. For more details about the DCG calculation refer to
the next chapter. Finally, the J DCGs are characterized and the `IED regions are estimated by
multiple graph analysis based on these characterized measure values.



Chapter 6

Differential connectivity graph

(DCG)

6.1 Introduction

The main problem of available graphs for interictal analysis of iEEG recordings is lack of relia-

bility (for details see section 5.2, page 43). The other important problem is that classic graphs

are based on the analysis of only IED time intervals. The interpretation of such graphs is

difficult since the connections related to unwanted events like background activity is included

as well as connections related to IED events. In this chapter we explain how to analyze both

IED and non-IED time intervals using permutation-based multiple testing [144] for solving these

problems.

This chapter is organized as follows. First the different steps of DCG calculation is explained.

Then we describe the method that is used to estimate the directions of the edges of DCG to

provide directed DCG (dDCG).

6.2 DCG calculation

DCG calculation consists of three stages:

1. IED and non-IED segmentation

2. Couplings computation

3. DCG inference

The diagram of the proposed stages are demonstrated in Figure 6.1.

6.2.1 IED and non-IED segmentation

The diagram depicted in Figure 6.2 summarizes the procedure of IED and non-IED segmentation.
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iEEG

signals
DCG

IED and

non-IED

segmentation

Coupling

computation

DCG

inference

Figure 6.1: Diagram of DCG calculation.

IED and non-IED detection

The IED and non-IED time intervals are IED and non-IED onsets and offsets identified from the

time series of iEEG recordings. This is done manually by the epileptologist for each patient. An

IED period is a non-stationary time interval including at least one IED. A non-IED period is a

time interval without any IED or abnormal event. Two typical IED and non-IED time intervals

are depicted in Figure 6.3. The number of IED and non-IED periods are on average 304 and

174 per patient, respectively, which provides statistically significant results.

IED and

non-IED

detection

iEEG

signals

Wavelet

transform

j = 1
IED and

non-IED

segments

j = J
IED and

non-IED

segments

j = 2
IED and

non-IED

segments

Figure 6.2: Diagram of IED and non-IED segmentation.

IED and non-IED segments

IED or non-IED segments or periods refer to the wavelet coefficients during IED or non-IED

time intervals explained above. In the following we explain about the reason of using wavelet

transform and the wavelet transform applied in this procedure.

Maximal overlap discrete wavelet transform The IEDs often take place within a specific

frequency band and can best be determined by decomposition of the signal to the frequency

band of interest through Fourier transform [60, 118], filter banks [82] or appropriate wavelet

transform [88,93,159–161].

The average of power spectral density (PSD) of IED time intervals for all of bipolar iEEG

channels are demonstrated in Figure 6.4 for a typical patient. The PSD of electrode leads of each

electrode are depicted with the same color. Considering the shape of PSD of IED time intervals,
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Figure 6.3: Two typical IED and non-IED time intervals from two channels of iEEG recordings.

Figure 6.4: Power spectral density of IED time intervals for a typical patient.
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the power is concentrated in the range [2 60] Hz. In this range the frequency contribution of

IED time intervals is greater for lower frequencies. Wavelet transforms which are well-known

for analyzing non-stationary EEG signals [26, 88, 91, 93, 159–167] provide automatic frequency

band selection which adapts narrower bands for lower frequencies and larger bands for higher

frequencies. Furthermore, mother wavelets like Daubechies [168, 169] are a proper choice for

filtering IED signals due to the shape of the filter [165]. Consequently, in this work we prefer to

use wavelet transforms.

Here, we use the maximal overlap discrete wavelet transform (MODWT) [88,170]. MODWT

is a non-decimated version of orthonormal discrete wavelet transform (DWT) that relaxes or-

thogonality to gain properties like the ability to handle the time series of arbitrary sample size

and translation invariance [163,170,171]. In contrast to DWT, the MODWT coefficients are as-

sociated with zero phase filters that provide consistent time-shift of MODWT coefficients with

temporal signals. In MODWT, the set of coefficients in each level of decomposition includes

the same number of samples as the temporal signal minus the samples affected by boundary

effect1. The start and end time points of IED and non-IED time intervals in temporal signal are

consistent with the MODWT coefficients and these coefficients can be segmented according to

temporal labeling. This property does not hold for the DWT. In addition the MODWT variance

estimator is asymptotically more efficient than the same estimator upon DWT [163, 170]. Nev-

ertheless, the number of independent samples of each level is the same for DWT and MODWT

but the MODWT coefficients are more redundant (due to the lack of orthogonality) than the

DWT coefficients.

We assume N -dimensional observations X = [x1 . . . xN ], where xi = [xi[1] . . . xi[T ]]T , the

ith column of matrix X ∈ RT×N , contains T samples of the signal recorded from the ith channel,

and N is the number of channels associated with bipolar iEEG electrode leads (see section 8.2,

page 83). The J-level MODWT of xi is W J
i = MODWTJ [xi] = [cJi dJi . . .d

1
i ] (cji and dji are

the approximate (scaling) and detailed (wavelet) coefficient sequences) such that

∥∥W J
i

∥∥2
=
∥∥cJi ∥∥2

+
J∑
j=1

∥∥∥dji∥∥∥2
(6.1)

W J
i is calculated recursively as:

cj+1
i [k] = hj [−k] ∗ cji [k], j = 0, . . . , J − 1 (6.2)

dj+1
i [k] = gj [−k] ∗ cji [k], j = 0, . . . , J − 1 (6.3)

where h and g are the scaling and wavelet filters of an orthonormal wavelet transform, respec-

tively. h0 = h, g0 = g, c0
i = xi, and * denotes convolution. The MODWT scaling filter of level

1The boundary effect may cause a shift difference between the events in the original time series and wavelet
coefficients. To compensate this effect, the wavelet coefficients are shifted by half of the MODWT filter length at
each level j (0.5(2j − 1)(Nf − 1) + 1, Nf is the wavelet filter length at level j = 1 [88]) to have the same time
instant in the temporal signal and in the wavelet coefficients. Here a periodic boundary effect is used.
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(j + 1) is the up-sampled versions of the previous level:

hj+1[k] =

{
hj [k2 ], k even

0, k odd
(6.4)

Wavelet coefficients of level j are associated with frequency interval [ fs
2j+1 ,

fs
2j

], where fs is the

sampling rate (Hz).

MODWT is applied on the whole processed signal for J frequency bands providing wavelet

coefficients, denoted as J matrices Mj
X, j = 1, . . . , J (Figure 6.5). Then columns of each matrix

Mj
X are segmented into L1 IED and L2 non-IED time intervals (section 6.2.1, page 51) called

segments. The N -dimensional IED or non-IED segment m is denoted as Slm =
[
sl1m . . . slNm

]
,

m = 1, . . . , Ll, where the upper index l denotes the IED (l=1) or non-IED (l=2) variable. Ll

and T lm are the number of time intervals or segments and the sample number of each segment

m, respectively. slim =
[
slim[1] . . . slim[T lm]

]T
is the ith column of matrix Slm ∈ RT

l
m×N that

contains T lm samples of wavelet coefficients at a given frequency level during IED or non-IED

segment m. Figure 6.5 shows how to extract Slm from X.

X

N

Txi

iEEG

signals

wavelet

IED and

non-IED

detection

Mj
X

N

T

j
=

1
.
.
.
J

dji

J wavelet

coefficient

matrices

slimT lm

S1
m

N

T 1
m

m
=
1
. . .
L 1

s1im

S2
m

N

T 2
m

m
=
1
. . .
L 2

s2im

IED and non-

IED segment

matrices of level j0

Figure 6.5: IED and non-IED segment matrices. The MODWT transform is applied on the T
samples of N -dimensional iEEG recordings, X, for the J frequency levels providing J matrices
denoted as Mj

X, j = 1, . . . , J . xi and dji are the ith columns of matrices X and Mj
X, respectively.

dji contains wavelet coefficients of xi at frequency level j. Columns of each matrix Mj
X (at each

given level j) are segmented according to IED and non-IED time intervals providing L1 and L2

matrices denoted as S1
m and S2

m, respectively. T lm is the number of rows of matrix Slm which is
equal to the length of each IED or non-IED segment m denoted as slim, where i = 1, . . . , N is the
channel index. j0 is a given frequency level.
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6.2.2 Coupling computation

Different coupling measures [172] may be selected between pairs of time series (3.8, page 24)

like measures of linear coupling (e.g., cross-correlation [85, 173], wavelet correlation coefficient

[20, 62, 88, 147, 161, 174], coherence [92, 175–180]), nonlinear coupling (e.g., nonlinear corre-

lation [13, 181, 182], phase synchrony [60, 95, 96, 101, 107, 112, 175, 183], mutual information

[25, 109, 184–188]), and directed coupling (e.g., Granger causality [111, 189], directed coher-

ence [56,116], partial directed coherence [190,191], directed transfer function (DTF) [83,116,145],

generalized synchrony [119–123], transfer entropy [124]). In this work, we focus on linear cou-

pling and directional properties are estimated by the estimation of the time delays. We chose

linear coupling since there are several studies indicating no preference of nonlinear coupling

measures over linear ones during interictal period of EEG analysis [8, 10, 99, 125, 126]. We

also tested wavelet-Hilbert synchrony (nonlinear coupling) [96] and found almost similar final

results (leading IED regions) confirming the latter studies. Furthermore linear measures like

cross-correlation can be estimated directly from the time series without any partitioning (quan-

tization, coarsegraining), that is valuable compared to some other nonlinear methods like mutual

information [192]. An important practical advantage of cross-correlation is the number of param-

eters. The only parameter of cross-correlation is the maximum time lag, while other measures

like Granger causality measures and generalized synchrony need more number of parameters.

Here, our formal coupling measure is maximum wavelet correlation-coefficient. The MODWT

cross-correlation coefficients [20,88] are estimated for each channel pair (i, j) ∈ {1, . . . , N}2, i 6= j

and during IED or non-IED segments in terms of different time lags (τ):

ρ̂lm

(
slim, s

l
jm, τ

)
=

ĉov
{
slim[k], sljm[k − τ ]

}
√
v̂ar(slim[k])v̂ar(sljm[k − τ ])

(6.5)

where ĉov and v̂ar [88] are estimated covariance and variance (by empirical average), respectively.

For each channel pair and IED or non-IED segment, the maximum of MODWT cross-correlation

(6.5) is obtained as:

τ∗ij = arg maxτ (
∣∣∣ρ̂lm(slim, s

l
jm, τ)

∣∣∣)
ρ̂lmaxm

(
slim, s

l
jm

)
= ρ̂lm(slim, s

l
jm, τ

∗
ij)

(6.6)

where ρ̂lmaxm , the maximal MODWT cross-correlation (MMCC), is considered as our formal cou-

pling measure. The τ∗ij is the lag between slim and sljm at which the maximum of the absolute

value of ρ̂lm

(
slim, s

l
jm, τ

)
occurs. For non-stationary fractionally differenced signals (the defini-

tion is given in [88]), the confidence interval of MODWT cross-correlations can be approximated

based on [88]. Here, the non-stationary time series do not hold this particular property, thus a

permutation method is used as explained in section 6.2.3, page 57.

For each Slm, the coupling measure (MMCC), ρ̂lmaxm , calculated for each channel pair (i, j) ∈
{1, . . . , N}2, provides a square symmetric N × N matrix, Γlm =

[
γlm[i, j]

]
, where γlm[i, j] =

ρ̂lmaxm

(
slim, s

l
jm

)
. Due to the symmetry, only entries of the upper triangle of matrix Γlm are
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considered. We build vector clm: as the concatenation of the upper triangle columns of Γlm. clm:

includes the MMCC between all of channel pairs during IED or non-IED time interval m (Fig.

6.6). Length of clm: is the number of possible connections that is Nc = N2−N
2 .

S1
m

N

T 1
m

m
=
1
. . .
L 1

Γ1
m

N

N

m
=

1
. . . L 1

C1

Nc

L1

S2
m

N

T 2
m

m
=
1
. . .
L 2

Γ2
m

N

N

m
=

1
. . . L 2

Coupling computation

C2

Nc

L2

DCG inference

multiple testing DCG

Figure 6.6: Coupling computation and DCG inference at a given frequency band. Each wavelet

coefficient matrix of IED or non-IED segment m (m = 1, . . . , Ll), Slm ∈ RT
l
m×N provides one

symmetric N × N coupling measure matrix, Γlm. Each Γlm builds the mth row of the matrix

Cl ∈ RLl×Nc , which contains all of the information concerning couplings between all of the possible
connections at each frequency level. The DCG connections are identified by comparing C1 and
C2, using permutation-based multiple testing.

6.2.3 DCG inference

Multiple testing

The scheme depicted in Figure 6.6 demonstrates how to infer the DCG [20, 62, 147, 193] for

a given frequency band. We denote Cl = [clmn], m = 1, . . . , Ll, n = 1, . . . , Nc. Cl includes

MMCC between activities recorded from all of channels in the columns and during all of IED

or non-IED time intervals (temporal epileptic activities) in the rows. C1 and C2 are served to a

multiple hypothesis test (appendix F, page 147) for testing whether or not to assign a connection

between channels i and j, (i, j) ∈ {1, . . . , N}2 (denoted as connection n for simplicity). We test

the null hypothesis that the connection n is unchanged under IED and non-IED states against

the alternative that their connection changes such that:{
Hn

0 : µ1
n = µ2

n

Hn
1 : µ1

n 6= µ2
n

(6.7)
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where µln is the average of cl:n, which is the nth column of matrix Cl. The test statistic tn for

each connection n between pair of nodes i and j is defined as:

tn =
µ̂1
n − µ̂2

n√
(σ̂1
n)2

L1 + (σ̂2
n)2

L2

(6.8)

where µ̂ln and
(
σ̂ln
)2

are the empirical estimated mean and variance of cl:n, respectively. The

simple and ideal method to do each connection test is to assume a theoretical distribution

for the test statistic under null hypothesis. Since we do not know the distribution of tn, we

use permutation tests, which require fewer assumptions about the data, thereby yielding more

reliable procedures by using data-based distributional characteristics [143,144,194].

Permutation resampling method

Figure 6.7 demonstrates different stages of the permutation procedure. We permute Np (number

of permutations) times the coupling measures computed for IED and non-IED groups. More

precisely, for each connection n, we permute Np times the L1 + L2 entries of c1
:n and c2

:n,

then regroup the first L1 and L2 entries as IED and non-IED groups, respectively. For each

permutation we calculate the test statistic tn according to (6.8). The Np values of tn form a

“permutation”distribution to which we compare the observed tn of the original data and estimate

a raw p-value as follows:

p[n] =
card(

{
np|
∣∣tnpn ∣∣ > |tn|})

Np
(6.9)

where p[n], n = 1, . . . , Nc denotes the raw p-value of each connection n. t
np
n , np = 1, . . . , Np is

the calculated test statistic of npth permutation and card(.) refer to the number of elements.

The raw p-value is estimated as the number of permutations which the absolute value of their

corresponding test statistic, t
np
n , exceeds the absolute value of the observed tn (calculated from

the original data) divided by Np. Large number of permutations (Np is experimentally chosen

equal to one million for about 5000 connections) may provide better estimation of p-values. The

total number of possible permutations for L1 + L2 samples, with L1 and L2 samples of each

group is (L1+L2)!
L1!L2!

, i.e. in our experiment over 1050. The Np permuted sets are chosen randomly

from the sets of possible permutations.

Computing the distribution of tn values for all of the node pairs is time consuming. For

instance, if the graph includes 105 nodes (number of channels for iEEG recordings of patient 2,

P2), then we construct a distribution for each tn of the Nc = 1052−105
2 = 5460 connections. If

construction of each distribution (for a single connection) requires Np = 106 repetitions then we

compute tn for 5460 × 106 times. Each computation of tn taking 2.2 µs (on a shared 3 GHz, 4

core Xeon 64 bits processor), then the calculation of raw p-values (for all of connections) takes

200 minutes.

Exchangeability Permutation test relies on the assumption that the distribution of observa-

tions does not change by permutation under the null hypothesis [143, 195]. The permutation-
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Figure 6.7: Permutation based multiple testing. For each connection n, L1+L2 entries of c1:n and
c2:n (c1:n and c2:n are the colored columns of matrices C1 and C2) are permuted and regrouped to L1

IED and L2 non-IED entries. The permutation is repeated Np times. A schematic demonstration
of first (np = 1) and Npth (np = Np) permutation for one connection is depicted in the first row.
For the original couplings and each permutation the test statistic (6.8) is calculated denoted as
tn and t

np
n , respectively. Using the estimated distribution of tn under null hypothesis from Np

values of t
np
n and its comparison with tn, the raw p-value of each connection, p[n] is obtained. p[n]

is defined in the first right block of second row. card(.) denotes the number of elements. These
raw p-values are corrected for each connection using multiple test correction providing adjusted
p-values, a[n]. The raw p-values are adjusted to keep FWER equal to αfw. The null hypothesis
(Hn

0 ) is rejected if its adjusted p-value is smaller than αfw. As such an edge is inserted between
the related nodes in the graph.
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based null distribution can be correctly estimated when the number of IED and non-IED time

intervals are equal (balanced sample sizes) [144]. However, unbalanced number of samples can

be problematic when the sample size is small. Here, the number of time intervals is unbalanced,

but large (Table 8.2). The permutation tests for large unbalanced and balanced number of

samples were computed to test the performance of the method (section 9.3.1, page 93). The

results are comparable based on high similarity percentages between the DCGs related to two

conditions of large unbalanced and balanced number of samples. Similarity percentage is defined

as the normalized sum of common number of significant or non-significant t-values over number

of possible connections. The latter result based on similar performance of permutation test for

large unbalanced and balanced number of samples was previously confirmed in [144, 193] for

simulated data.

Multiple testing correction

For multiple testing, we need to control the abundance of false positives [144], i.e. the scalar

α (significance level or Type I error). Since the probability of making Type I error increases

in multiple testing, we adjust raw p-values in order to keep FWER equal to αfw where αfw is

familywise α. FWER is the probability of making at least one Type I error for the whole family

of Nc tests. For more details please see appendix F.3, page 148.

We suspect that the couplings between signal pairs for different time intervals are non-

independent (non-independent tests). As we explained in appendix F.3 (page 148), the S̆idàk

correction method becomes conservative for non-independent tests compared to independent

tests. Here we use S̆idàk step down method [144,196] which is more powerful (smaller adjusted

p-values) while keeping strong control of the FWER.

Let a[n], n = 1, . . . , Nc be the adjusted p-values for Nc connections. S̆idàk step down adjust-

ments (more details can be found in [144]) are defined as:{
a[i] = max(a[i− 1], 1− (1− p[i])Nc−i+1) 2 ≤ i ≤ Nc

a[1] = 1− (1− p[1])Nc i = 1
(6.10)

For connection n, we reject the null hypothesis in the test (6.7) when its related adjusted

p-value is less than or equal to αfw. The DCG is constructed by keeping the connections

whose MMCC values significantly change between IED and non-IED time intervals. In the

following, the significant connections which
∣∣µ̂1
n

∣∣ > ∣∣µ̂2
n

∣∣ or
∣∣µ̂2
n

∣∣ > ∣∣µ̂1
n

∣∣ are called positive or

negative connections, respectively. A positive or negative connection demonstrates respectively

a significant increase or decrease of coupling between channel pair (i, j) (connection n) during

IED state.

For each interested frequency band, its related DCG is calculated, thus for J interested

frequency bands, J DCGs are obtained. In the next section, we explain how the direction of the

edges of the DCG is estimated.
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6.3 Directed DCG (dDCG) computation

6.3.1 Introduction

To estimate the direction of the edges of DCG, we try to estimate the time delay between the

MODWT coefficients of the signal pairs observed at the two ends of each edge of DCG. To

estimate the time lags, we use the classic method of maximum cross-correlation [57–59,90].

6.3.2 Causal relationship

Let’s assume DCG=(V,E), where V and E represent the set of DCG vertices (or nodes associ-

ated with bipolar iEEG channels) and edges (or connections), respectively. dja[k] and djb[k] are

denoted as the jth level MODWT coefficients (6.1)-(6.3) of signals xa and xb observed at nodes

a and b (a, b ∈ V), where k = 1, . . . , T , and T is the number of samples of the whole processed

iEEG recording. The drive-response relationship between xa and xb for the resolution level j is

defined through the estimation of time lag between dja and djb, denoted as τ∗jab . τ∗jab is the time

lag in which the absolute maximum cross-correlation between dja and djb occurs:

ρ̂
(
dja,d

j
b, τ
)

=
ĉov

{
dja[k], djb[k − τ ]

}
√
v̂ar(dja[k])v̂ar(djb[k − τ ])

(6.11)

τ∗jab = arg max
τ

(
∣∣∣ρ̂(dja,d

j
b, τ
)∣∣∣) (6.12)

where ρ̂, ĉov, and v̂ar are the empirical estimations of correlation coefficient, covariance and

variance, respectively.

We estimate the time lag between dja and djb signals assuming that:

1. dja and djb include sufficient large number of samples

2. There is a connection between node pair (a, b) in the frequency level j.

Upon these two assumptions, the direction of the edge between node pair (a, b) is estimated

from a to b if τ∗jab is negative and the reverse relationship if τ∗jab is positive. The reasoning of the

above assumptions are explained through the study of the reliability of the time lag estimation

in the next section.

We assume that the “transfer function” between signals recoded from different brain regions

cannot be represented by pure delay, eventually we do not confine the time causality to be the

same for all of the frequency bands, thus we estimate τ∗jab for each frequency level j.

The sign of time delay (τ∗jab ) is used in this section to estimate the direction of DCG connec-

tions and the value of time delay (τ∗jab ) is used to calculate the emittance measure in the next

chapter. For simplicity in the following, we mark dja, djb, and τ∗jab as da, db, and τ∗ab, respectively.
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Figure 6.8: A typical temporal signal pair during IED events and the cross-correlation functions
between the MODWT coefficients of this signal pair for the time interval of length T in 2-4 Hz,
4-8 Hz, 8-16 Hz, 16-32 Hz, and 32-64 Hz.



Differential connectivity graph (DCG) 63

6.3.3 Time causality reliability

The signals studied here are non-stationary signals including biphasic waveforms. A typical

temporal signal pair during IED time interval is demonstrated for a length of 5 sec in Figure

6.8. The cross-correlation function (CCF) between the MODWT coefficients of this signal pairs

(6.11) for the whole selected time interval of length T is also demonstrated for 2-4 Hz, 4-8 Hz,

8-16 Hz, 16-32 Hz, and 32-64 Hz in the first and second columns, respectively. The CCF of

such signal pairs which include byphasic waveforms oscillate around its maximum correlation

and damps out (appendix G.3, page 155). Thus there would be an ambiguity between the two

positive and negative extrema of CCF which are close (in absolute value), but one of them is

numerically greater. To be confident how significant one of the extrema is greater than the

other, the confidence interval of each CCF value is needed.

The confidence interval of MODWT cross-correlation (6.11) is estimated [88] (appendix H,

page 157) for non-stationary fractionally differenced signals (for the definition please refer to

[88]). For the non-stationary signals studied here, this property does not hold. Furthermore the

estimation of the distribution of maximum MODWT cross-correlation for non-stationary signals

is complicated. As such to test the reliability of time lags calculated in (6.12) a statistical

jackknife method is used as follows.

Nw windows starting at random in the range [1, T −W ] are considered where T and W are

the length of selected time series (about one hour) and the length of each window (20 minutes),

respectively. The window length is considered large enough to include large number of IED time

intervals. The time lag is estimated (6.12) for each of randomly chosen windows providing Nw

time lag values. These Nw time lag values form a histogram-based probability distribution. For

each edge of DCG between node pairs (a, b), a, b ∈ V, this histogram is estimated and denoted

as p̂τ∗ab(u). The time lag which has the greatest probability is defined as:

τ̄∗ab = arg max
u

(p̂τ∗ab(u)) (6.13)

For each node pair (a, b), we test if the Nw time lag values are significantly non-equal to zero.

If the time lag values are significantly equal to zero then τ̄∗ab is set to zero, and we conclude

that the direction of the edge between node pairs (a, b) cannot be estimated. For the statistical

test a bootstrap method with Nb repetitions is used. We compare the τ̄∗ab values with the τ∗ab
estimated (6.12) between signals of length T . The percentage of similar time lags (τ̄∗ab× τ∗ab > 0)

over number of edges of DCG is in the range [78 95]% for different frequency bands.

Consequently, (6.12) can provide reliable estimation of the most probable time lag between

signal pairs of DCG edges if it is calculated for long enough signals and if τmax is selected

properly. A discussion on the choice of τmax is brought in section 9.2, page 87.
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6.4 Conclusion

Our formal coupling measure is MMCC which is calculated between signal pairs (MODWT

coefficients) during IED and non-IED time intervals for DCG calculation and between signal

pairs (MODWT coefficients) during the whole selected time period studied for time causality

estimation.

DCG provides a statistically reliable method for identification of brain regions involved in in-

terictal events and their relationships. The causal evaluation of these relationships is provided by

dDCG. DCG is statistically reliable due to the large number of IED and non-IED time intervals

and using permutation based multiple testing. Since DCG includes discriminated connections

between IED and non-IED time intervals, its interpretation is easier than the graphs related to

either IED or non-IED time interval.

Although in this work DCG is applied on the iEEG recordings of epileptic patients, it may

generally be used for other applications. DCG can identify the connections whose statistical

properties change between two states. Here these two states are IED and non-IED, but they

might be two other states like task and rest. As such using DCG, the brain regions involved in

the interested task and their relationships might be identified (see section 11.2, page 117).

dDCG include both source and sink nodes. To distinguish between source and sink nodes, in

the next chapter we explain how to characterize the nodes of dDCG.



Chapter 7

Identification of `IED regions

7.1 Introduction

For each frequency band, DCG and eventually dDCG are calculated. Now we need to quantify

the nodes of each dDCG to measure the strength of source and sink nodes. The usual graph

measures do not include enough information for this purpose. Furthermore, once the dDCGs

are characterized for source and sink detection, a data mining tool is needed to extract the in-

formation from the multi-dimensional or multi-frequency graph measure values (associated with

different objective functions). A classic solution is to use single objective optimization methods.

These methods provide a single solution for each objective function (related to graph measure

values of each frequency band), while we need to optimize the multiple objective functions

simultaneously to provide a set of solutions.

In this chapter, we explain how using lagged mutual information and the digraph structure

can be informative for characterization of digraphs for the purpose of source and sink detec-

tion. Furthermore, we explain how multi-objective optimization method [148,149] can solve the

problem of classic methods especially single objective optimization methods for the estimation

of leading IED regions using multi-dimensional graph measure values.

This chapter is organized as follows. First we introduce two new digraph measures to charac-

terize the dDCG, then a multiple graph analysis method based on multi-objective optimization

is explained for the estimation of leading IED regions.

7.2 Characterization of dDCG

Nodes of dDCG are related to IED events including source and sink nodes. A source is defined

as a node which has high emittance contribution to the rest of digraph. Our aim is to quantify

the relevance of each node as a source or to measure the emittance contribution of each node

to the rest of digraph. Classic digraph measures like local efficiency, global efficiency [80], out-

degree, and in-degree [76] are not designed for this purpose and therefore do not provided enough

information to identify the source and sink nodes. Here we propose two new measures:

1. Local information denoted as LI;

65
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2. Total global efficiency denoted as Etglob.

LI measures the amount of information which passes through each node locally that is the

difference between outgoing and incoming information, based on lagged mutual information and

the digraph structure. This measure is introduced for the purpose of source and sink node

detection from digraphs. Positive LI value for a node shows that the node emits information

more than it receives which leads to its emittance contribution. The emittance contribution

reveals the strength of a source node. Conversely negative LI value shows that the node receives

more information than it emits which leads to the strength of a sink node.

One disadvantage of most of classic measures for the detection of source and sink nodes is

that these measures consider only incoming connections. Here we wondered if including the

effect of incoming paths in global efficiency may improve its precision. To this end we proposed

total global efficiency. In Etglob, we consider both outgoing and incoming paths in order to study

the effect of incoming paths, in addition to outgoing ones on the characterization of source and

sink nodes.

In the following we explain these new digraph measures.

7.2.1 Local information LI

We propose a new index to measure the amount of information that passes through each node

locally which we called local information (LI). LI of each node depends on two types of knowl-

edge:

1. Outgoing and incoming connections incident the node (dDCG structure)

2. The amount of information which is carried by each of these connections. The amount

of information of each connection is calculated based on lagged mutual information (MI)

between the signal pairs observed at the two ends of the connection.

Using this knowledge, LI measures the outgoing information minus incoming information of

each node.

Let Da and Db be two random variables with probability density functions (PDF) pa(u),

pb(v) and joint PDF pab(u, v). The MI between Da and Db is defined as:

MI(Da, Db) =

∫ ∫
dudvpa,b(u, v) log

pa,b(u, v)

pa(u)pb(v)
. (7.1)

We assume samples of time series da = [da[1] . . . da[T ]]T and db = [db[1] . . . db[T ]]T as the

observations of Da and Db. By partitioning the supports of da and db into bins of finite size

and assuming ergodicity, MI (7.1) can be approximated as the finite sum:

MI(Da, Db) ≈MIbinned(da,db) ≡
∑
ij

p̂ab(i, j)log
p̂ab(i, j)

p̂a(i)p̂b(j)
(7.2)

where p̂a(i), p̂b(j), and p̂ab(i, j) are estimated probabilities obtained by relative frequencies. In

the following MIbinned(da,db) is simplified by MI(da[k], db[k − τ ]), which emphasizes on the
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shift τ between the two time series da = [da[k + 1] . . . da[k + T ]]T and db = [db[k + 1− τ ] . . .

db[k + T − τ ]]T .

The local information of the node a, a ∈ V, denoted as LI[a], is then defined as:

LI[a] =
∑

Va→b

MI(da[k], db[k − τ∗ab])−
∑

Vb→a

MI(da[k], db[k − τ∗ab]) (7.3)

where Va→b = {b ∈ V − {a} | τ∗ab < 0}. In Vb→a, nodes a and b have the reverse relationships,

i.e. τ∗ab > 0. In theory, LI of the source or sink nodes are positive or negative, respectively and

greater values demonstrate higher emittance contribution or higher strength of a source node.

LI[a] is zero when in and out information flows are equal.

LI can be interpreted as the total degree (outdegree minus indegree, section 3.7.1, page

22) of a weighted digraph in which the weight related to the edge from node a to node b is

the lagged mutual information (7.3) between the signal pairs associated with nodes a and b

(MI(da[k], db[k − τ∗ab])). This weight can represent the amount of information carried by the

edge.

To know the accuracy of LI estimation, its variance is estimated by jackknife resampling

method. For each connected node of dDCG, we calculate the LI (7.3) for Nw windows. Let W

be the window length and T the number of samples of the whole processed signal. The start

time of each window is a random number in the range [1, T −W ]. The standard deviation of

LI for each connected node, is approximated as the standard deviation of Nw recomputed LI

values.

7.2.2 Total global efficiency

To consider the incoming paths (in addition to the outgoing ones) in global efficiency, the total

global efficiency is defined as an extension of classic global efficiency.

Here we remind the definition of path and shortest path length matrix. A path from node a

to node b (or outgoing path of a, or incoming path of b) is an ordered sequence of non-repeated

edges and nodes connecting node a to node b [17]. The shortest path length between nodes a

and b is the minimum number of edges traversed to get from a to b.

Shortest path length matrix of dDCG, G = (V,E) is denoted as LG = [lab], where lab is the

shortest path length from node a to node b. If any path does not exist from a to b, then lab =∞.

The information about outgoing paths of node a are in the ath row of LG, and the information

about its incoming paths are in the ath column of LG. For each node a of dDCG, we define the

total global efficiency as:

Etglob[a] =
1

N − 1

∑
b∈V,b 6=a

(
1

lab
− 1

lba

)
(7.4)

Etglob[a] is in the range [−1, 1]. High positive values of Etglob[a] shows that we may reach from

node a to the rest of digraph easier than reaching from the rest of digraph to this node. The

low negative values show the inverse relationship.
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As an example, we calculated the total global efficiency for the nodes of the sample digraph

defined in section 3.6, page 21. The total global efficiency (Etglob = [Etglob[1], . . . , Etglob[7]]T )

for the nodes of digraph G depicted in Figure 3.1 is equal to Etglob = [0.2,−0.4,−0.75, 0.2, 0.3,

0.05, 0.3]T . Nodes 5, and 7 have higher positive values than other nodes. It can be seen in Figure

3.1 that these nodes have more outgoing paths than incoming ones. On the other hand node

3 has very low total global efficiency which shows that we can easily reach from other nodes of

the digraph to node 3, while it is impossible to access the rest of digraph from this node.

7.2.3 Comparison of new measures with usual digraph measures

Global efficiency (Eglob), local efficiency (Eloc), and total degree (ktot) were defined in section

3.7, page 22. The efficiency of these usual digraph measures [76,80] are quantitatively compared

with the two new measures. To evaluate the comparison, each of digraph measures is used for

the characterization of dDCGs related to different frequency bands to estimate the `IED regions

for five patients. The `IED regions based on the different measures are compared with visually

inspected seizure onset zones by the epileptologist. Though the SOZ is theoretically the region

to be removed in candidates to resective surgery, it is not easy to be defined in many patients

partly because of the difficulties regarding recording seizure periods. Thus it is valuable to

wonder if one can predict the SOZ by estimating the IED regions.

LI measure outperforms other usual measures and Etglob in the detection of source and sink

nodes (section 10.1, page 95). Since Eglob and ktot measures provide more comparable results to

LI, here we focus on advantages and disadvantages of LI measure over these two measures.

LI can be interpreted as the ktot of a weighted digraph in which the weight related to each

edge is the amount of information carried by the edge (section 7.2.1, page 66). Accordingly,

Eglob can be interpreted as the kout of a weighted digraph, except the weight of the edge between

nodes a and b is the inverse of the shortest path length between these nodes. Another difference

between Eglob, ktot and LI is that Eglob takes into account the higher-order neighborhood (global

properties) while ktot and LI consider the first-order neighborhood (local properties). Finally,

Eglob and ktot are deterministic measures, while LI is a stochastic measure and needs to be

estimated correctly. We estimate the accuracy of LI by the estimation of its empirical standard

deviation using jackknife resampling method (section 7.2.1, page 66).

Advantages LI measure has several advantages over Eglob as follows.

1 LI evaluates each node based on its outgoing and incoming connections and the information

which is carried by each of these connections. Therefore, in addition to the structure of the

digraph, LI uses the information extracted from signal pairs associated with each node pair,

while Eglob only uses the structure of the digraph. Consequently, the sensitivity of LI is

supposed to be less than Eglob to the minor changes in the digraph structure.

2 LI measure evaluates the amount of information of both outgoing and incoming connections

which increases its efficiency in the definition of source and sink nodes, while Eglob considers
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neither the incoming paths, nor the amount of information related to each edge. A node

with high Eglob may have negative, zero, or positive LI value because in addition to outgoing

connections it may receive several incoming connections as well. Moreover, each outgoing

or incoming edge may carry different amounts of information. Hence contrary to Eglob, LI

measure has the potential to be used for distinguishing between source, transit and sink nodes.

To analyze an IED related digraph like dDCG, this information is valuable to characterize the

role of different brain regions. Although being the patients seizure-free after resective surgery

is very valuable, currently there is no way to determine if the removed area is too large. If

this is the case, more conservative surgery can be preferred and distinguishing between source,

transit and sink regions can be valuable for this purpose.

3 LI is more suited for ranking the `IED nodes (section 10.1.4, page 103) than Eglob. The

node which has greater amount of positive local information is more relevant to a source.

Consequently LI which is designed for measuring the emittance contribution is more skilled

in ranking the `IED nodes than Eglob.

Compared with ktot, LI measure is preferred since LI is a weighted version of ktot, whose

weights are the amounts of information. Thus, for source and sink definition, LI is more suitable

than ktot.

Disadvantage The main disadvantage of LI over Eglob and ktot is the computation load.

Furthermore, LI is more time consuming since for a proper estimation of mutual information

including the variance, a long period (about one hour with sampling rate equal to 512 Hz) of

signal pairs is supposed to be selected. We compare the computation time for Eglob, ktot and LI

for example for the dDCG related to patient 3 in 4-8 Hz (Figure 10.1 in section 10.1.4, page 100).

This digraph includes 29 nodes and 62 edges. On a shared 3 GHz, 4 core Xeon 64 bits processor,

the computation times for Eglob and ktot are equal to 0.6 seconds, while it is 9.7 minutes for LI.

7.3 Multiple graph analysis

7.3.1 Introduction

dDCG provides sparser graphs comparing to separated IED and non-IED complex graphs and

may provide simpler interpretation, but still concluding to leading IED regions from the dDCGs

of different frequency bands needs careful analysis. Proposed LI measure characterizes the multi-

frequency dDCG nodes to quantitatively identify the source nodes of each frequency band. The

aim is to estimate the source nodes or leading IED regions from multi-dimensional graph measure

values associated with different objective functions. For this purpose, different available methods

can be considered as follows.

1. A simple method that one can consider is clustering method like k-means (appendix A,

page 123). As such, the source nodes or leading IED regions can be defined as the cluster
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including the nodes which have similar measure values in all of frequency bands. This

method has several problems: 1) the number of clusters should be determined, 2) labeling

the clusters cannot be automatic, because the data does not include this level of informa-

tion, 3) clustering is not suited for the extraction of source nodes from multi-dimensional

measure values. The preference between different dimensions is unknown. Thus two nodes

that each has a maximum value in one of the dimensions (not the same dimensions for the

two nodes) will not be in the same cluster while both can be important.

2. The second method can be single-objective optimization. This method results in a unique

solution for a single objective function. As such a set of individual optimum solutions

of each objective (related to each frequency band) can be provided which is not efficient.

Furthermore, in our application the preference between different objectives (related to

different frequency bands) is unknown, consequently there is no preference between the

individual optimum solutions of each objective.

3. The third method can be scalarization of multiple objective functions into a single objective

function. We can define a single objective function like Euclidean norm over the measure

values of different frequency bands. This method provides a single solution. Moreover this

solution depends on the importance of the objective functions. Either, the importance of

all of the objective functions can be assumed equally which is not necessarily true or one

can consider some weights for different objectives. However since the preference between

objective functions is unknown, this method is not suitable.

Here, we propose a multiple graph analysis method using multi-objective optimization (in

the following we recall it Pareto method) [148,149,197–199]. In the next section we explain how

this method solves the above problems of classic methods. The optimum source nodes obtained

using this method are the estimated leading IED regions.

7.3.2 Multi-objective optimization

Multi-objective optimization method [148,149] considers different objectives simultaneously and

provides a set of optimum solutions or a set of alternatives with different trade-offs, instead of

one single solution for a single-objective function as in single-objective optimization problems.

The set of optimal solutions are called Pareto front or Pareto optimum solutions.

Pareto front is the set of non-dominated solutions, i.e. the solutions which do not dominate

each other. Dominance can roughly be defined for two nodes X and Y as follows. Regardless

the dimensions which nodes X and Y have equal LI values, node X dominates node Y if its LI

values of all of other dimensions are greater than related values for Y . The detailed definition

of dominance will be given in section 7.4.1, page 73. Here, we illustrate the explained aspect

with an example shown in Figure 7.1. Let us consider the case of two objectives: LI values of

two frequency levels j1 and j2, which both are to be maximized.

Node A represents a solution with great LI value in frequency level j2, but low LI value in

frequency level j1. On the other hand, point B represents the converse situation. When the



Identification of `IED regions 71

preference between frequency levels j1 and j2 is unknown, one cannot choose a unique solution

between A and B. In other words there is no dominance or priority between solutions that

one is better than the other in one objective, but worse in another objective. In the illustrated

example, the set of nodes A, B, C, and F construct the Pareto front, since there is no other

node which dominates these nodes and moreover these nodes do not dominate each other. In

other words the Pareto front is the set of non-dominated nodes.

In Figure 7.1, node D is an example of non-Pareto-front node. If we compare node D with

node B or F , again there is no preference between them (none of them dominate the other one).

However, there exist other nodes (A, C, and E) that have greater values of LI in both frequency

levels, and thus dominate node D. Another non-Pareto-front node is node E. By comparing

node C with node E, node C has greater value of LI in frequency level j1 and equal LI value

in frequency level j2, thus node C dominates node E.

To show one example of the differences between multi-objective optimization methods and

classic methods like scalarizing the multiple objective functions (the third method explained in

section 7.3.1, page 69), we assume that the search space includes only three nodes C, E, and

F . For the scalarization method, we assume using Euclidean norm over graph measure values of

different frequency bands. Based on Euclidean norm, node C has the greatest norm and nodes

E and F have equal norms. Here we compare the optimum solutions for these two methods

assuming two following cases:

1. Node C does not exist in the search space: if node C did not exist, then the set of optimum

solutions based on scalarization and multi-objective optimization would include both nodes

E and F . In scalarization, nodes E and F are selected since both have equal norms and in

multi-objective optimization, these nodes are selected since there is no preference between

them and moreover there is no other node dominating these nodes.

2. Node C exists in the search space: if node C existed, then the set of optimum solutions

based on scalarization would include only node C since it has the greatest norm. Con-

versely, the set of optimum solutions based on multi-objective optimization would include

nodes C and F since these nodes do not dominate each other and there is no other node

dominating these nodes. Node E is not a Pareto-front node because node C dominates

this node.

Multi-objective optimization includes three stages:

1. Model building

2. Optimization

3. Decision making.

First the model including the formulation of the optimization problem with specifying decision

variables, and objectives are explained. Second the optimization or the algorithm which finds
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Figure 7.1: Multi-objective optimization.

the optima of the optimization problem is described. Third since the Pareto optimum solutions

have no preference to each other, the decision making methods are specified to rank the optimal

solutions. In the following, we explain these three stages in the way we applied for solving our

problem.

7.4 Application of multi-objective optimization method for the

estimation of `IED nodes

This section includes two main subsections as follows.

1. Classic (deterministic) multi-objective optimization method : in this subsection, we explain

how the classic (deterministic) multi-objective optimization method is used for the esti-

mation of `IED nodes. To this end, two optimization algorithms are used: 1) the classic

Pareto optimization algorithm, and 2) the new neighbor-Pareto optimization algorithm.

2. New statistical multi-objective optimization method : in this subsection, we introduce a

new statistical multi-objective optimization method in comparison with the deterministic

multi-objective optimization method.

7.4.1 Multi-objective optimization method (deterministic)

Model building

The local information measure defined in (7.3) is calculated for the connected dDCG nodes of

all of frequency levels, forming a matrix LI = [LIj [n]] ∈ RN×J , n = 1, . . . , N , j = 1, . . . , J . We

denote LIj [:] the jth column of matrix LI including the LI values of all of the nodes in each

frequency level j. The row n of the matrix LI, denoted LI:[n] is a J−dimensional feature vector

including the local information values of node n in all of J frequency levels.
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The multi-objective optimization problem has the following form:

maximize
{
LIj=1[n], LIj=2[n], . . . , LIj=J [n]

}
(7.5)

consisting of J objective functions that are aimed to be maximized simultaneously. Generally

the objective values (objective function values) are the functions of the decision vector (variable).

In our application the objective vector and decision vector are the same. The decision vector

LI:[n] belongs to the search space P ⊂ RJ .

In the following, two optimization algorithms to find the set of optimum solutions are ex-

plained.

Optimization

Here, two Pareto optimization algorithms are explained which the first one is the classic Pareto

optimization algorithm and the second one is the new neighbor-Pareto optimization algorithm.

We introduce the neighbor-Pareto optimization algorithm by improving the classic one to include

the neighbor nodes of Pareto front in the set of optimum solutions.

Pareto optimization algorithm: Roughly speaking, a Pareto optimal set is a subset of N

nodes whose LI:[n] is significantly large. More precisely the Pareto optimal set denoted as D(P )

can be obtained from the following Pareto optimization algorithm. Let consider N J-dimensional

decision vectors, LI:[n] as N nodes in the search space P .

1. Initialize D(P ) with LI:[n0], n0 can be any node.

2. Compare LI:[n] ∈ P , n 6= n0 with the members of D(P ) using the following conditions.

In the first iteration the only member of D(P ) is node n0.

(a) If LI:[n] ≥ LI:[n0] for all of j levels, and LI:[n] > LI:[n0] for at least one level j, then

node n dominates node n0 and thus LI:[n0] is replaced with LI:[n]1.

(b) Else if LI:[n] > LI:[n0] for at least one level j, then LI:[n] is added to D(P ), since

there is no preference between nodes n and n0.

3. Increment n and go to previous step till n reaches to N .

4. The members of D(P ) are the Pareto optimal solutions denoted as LI:[n∗] which build the

Pareto front or estimated `IED nodes.

The block representation of the above algorithm is demonstrated in Figure 7.2.

Neighbor-Pareto optimization algorithm: A margin can be assumed for the Pareto front.

To identify this margin, we test the neighborhood of the Pareto optimal solutions during the

optimization process. The neighborhood test in terms of the normalized square distance between

a pair of decision vector is defined as:

1Please note that in the two inequalities, one of them is a strict inequality
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initialize

D(P ):

LI:[n0] ∈ D(P )

∀n0 ∈
D(P )
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yes

LI:[n0] is
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with LI:[n]

∃j LI:[n] > LI:[n0]

no

yes
LI:[n] ∈ D(P )

no

increment

n till n ≤ N

D(P ) include

Pareto-front

solutions

Figure 7.2: The block representation of the Pareto optimization algorithm in multiple graph
analysis.

‖LI:[n]− LI:[n0]‖22
‖LI:[n]‖2 ‖LI:[n0]‖2

≤ ε (7.6)

where ε is a small positive value and ‖·‖2 refers to Euclidean distance. The normalized distance

is simply the square Euclidean distance between a pair of decision vectors divided by the norms

of each of decision vectors. As such the normalized distance is adapted to each node pair, i.e.

thicker margin is assumed for the nodes which have greater norms.

Using the neighborhood test, the Pareto optimization algorithm can be improved to include

the neighbor nodes of Pareto front in the set of optimum solutions. In part (a) of second step of

Pareto optimization algorithm, the neighborhood test is added to see if node n0 is a neighbor of

node n. If node n dominates node n0 and the neighborhood test is true, then non-dominant node

(n0) can be kept as the member of D(P ) since it is in the neighborhood of the dominant node

n. Accordingly an extra condition should be added in the second step to do the neighborhood

test for the case node n0 dominates node n. The improved algorithm called as neighbor-Pareto

optimization is as follows:

1. Initialize D(P ) with LI:[n0], n0 can be any node.

2. Compare LI:[n] ∈ P , n 6= n0 with the members of D(P ) using the following conditions.

In the first iteration the only member of D(P ) is node n0.

(a) If LI:[n] ≥ LI:[n0] for all of j levels, and LI:[n] > LI:[n0] for at least one level j, then
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i. If
‖LI:[n]−LI:[n0]‖22
‖LI:[n]‖2 ‖LI:[n0]‖2

> ε, LI:[n0] is replaced with LI:[n], since node n dominates

node n0.

ii. Else if
‖LI:[n]−LI:[n0]‖22
‖LI:[n]‖2 ‖LI:[n0]‖2

≤ ε, LI:[n] is added to D(P ) (node n0 is not rejected)

since although node n dominates node n0, node n0 is in the neighborhood of node

n.

(b) Else if LI:[n] > LI:[n0] for at least one level j, then LI:[n] is added to D(P ), since

there is no preference between nodes n and n0.

(c) Else if
‖LI:[n]−LI:[n0]‖22
‖LI:[n]‖2 ‖LI:[n0]‖2

≤ ε then LI:[n] is added to D(P ), since node n is in the

neighborhood of node n0.

3. Increment n and go to previous step till n reaches to N .

4. The members of D(P ) are the neighbor-Pareto optimal solutions (LI:[n∗]).

The block presentation of this algorithm is depicted in Figure 7.3.

In part (b) of Figure 7.4 a typical Pareto front (LI:[n∗]) according to the Pareto optimization

algorithm is demonstrated. The LI:[n] for all of the nodes of dDCG are shown in part (a). Each

LI:[n] is demonstrated by a pentagon which is related to an electrode lead. The pentagons of

electrode leads related to one electrode are depicted in unique color. In part (c), the neighbor-

Pareto optimal solutions are demonstrated. It can be seen that the pentagon related to electrode

c is not considered in part (b) since one of the nodes related to electrode a dominated this node.

However the node related to electrode c is included in the neighbor-Pareto optimal solutions

since it is in the neighborhood of one of the nodes related to electrode a (according to the

neighborhood test).

The Pareto optimal solutions are a subset of neighbor-Pareto optimal solutions. The neighbor-

Pareto optimization algorithm is less conservative compared to Pareto optimization algorithm,

i.e. it includes the nodes which are in the neighborhood of Pareto-front nodes. However in

neighbor-Pareto optimization algorithm the parameter ε is added. This parameter is associated

with the thickness of the margin. If ε is set equal to zero, both optimization algorithms provide

the same optimum solutions.

Decision making: ranking the estimated `IED nodes

There is no preference between the Pareto-front solutions. To rank the solutions according to

their relevance, a post-optimal technique or some decision-making considerations are required.

Here we focus on two usual techniques [148]:

1. Compromise programming

2. Utility functions.

In the following we explain these methods and the way we applied here.
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Figure 7.3: The block representation of the neighbor-Pareto optimization algorithm in multiple
graph analysis. The difference between this algorithm and Pareto optimization algorithm (Figure
7.3) is that in the former the nodes in the neighborhood of Pareto-front solutions are also included

using the neighborhood test (
‖LI:[n]−LI:[n0]‖22
‖LI:[n]‖2 ‖LI:[n0]‖2

≤ ε).
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Compromise programming: In compromise programming method [200], we select a solution

from Pareto front which locates closer to an ideal point. The ideal point is composed of the

individual best values of each dimension that is usually infeasible solution. The definition of

ideal point and the distance measure is application-dependent and different definitions can be

considered. Here, we compute the ideal point, z = [z1, . . . , zJ ] as:

zj = maxn∈N∗(LI
j [n])

N∗ = {n|LI:[n] ∈ D(P )}
(7.7)

then we rank LI:[n∗] according to their increasing distances (Euclidean distance) to z:

d(LI:[n∗], z) = (
J∑
j=1

∣∣LIj [n∗]− zj∣∣2)
1
2 . (7.8)

The Pareto-front solution with the smaller value of d(LI:[n∗], z) is preferred.

Utility functions: The solution which maximizes the utility function has the most relevance.

Equivalently the multiple objective functions are reduced to a single objective of maximizing the

utility function. The definition of utility function is problem-dependant [148]. Here, we use a

utility function U(LI:[n∗]) which allows to order the LI:[n∗] vectors by comparing their norms,

e.g.

U1(LI:[n∗]) = ‖LI:[n∗]‖1 =
∑J

j=1 LI
j [n∗]

U2(LI:[n∗]) = ‖LI:[n∗]‖∞ = max1≤j≤J(LIj [n∗])
(7.9)

The solution with greater utility function (norm) value deserves greater attention.

7.4.2 Statistical multi-objective optimization method

The statistical multi-objective optimization method has the same concept of classic (determin-

istic) multi-objective optimization method in a statistical context, i.e. instead of comparing two

deterministic scalar values, we compare two random variables or the realizations related to these

random variables.

Here we explain more details about the statistical multi-objective optimization method. The

LI value of each node n at each frequency band is assumed to be a random variable which

its realizations are denoted as vector LIj [n, :] ∈ R1×Nw . To calculate this vector, and for each

window the local information of the node in the related dDCG is calculated using jackknife

method (for the details of jackknife method refer to section 7.2.1, page 66). The LI values of all

of the nodes in all of frequency bands form a matrix LI = [LIj [n,m]] ∈ RN×J×Nw , n = 1, . . . , N ,

j = 1, . . . , J , m = 1, . . . , Nw. We assume LI:[n, :] belongs to the search space P ⊂ RJ×Nw as

the decision matrix of node n which includes the LI values of Nw windows in J frequency levels

for node n.
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The multi-objective optimization problem can be in the following form:

maximize
{
LIj=1[n, :], LIj=2[n, :], . . . , LIj=J [n, :]

}
(7.10)

consisting of J objective vectors that are aimed to be maximized simultaneously.

The optimization algorithm is applied on N J ×Nw decision matrices in the search space P .

For comparing two nodes say n and n0 in the second step of the Pareto optimization algorithm,

a statistical test based on permutation is applied between vectors LI j [n, :] and LIj [n0, :]. We

test the alternative hypothesis that the LI related to node n and n0 are not equal at frequency

level j against the null hypothesis that they are equal. If the null hypothesis is rejected and

the related t-value is positive, the LI of node n is significantly greater than LI of node n0 at

frequency level j, otherwise it is smaller. If the null hypothesis is not rejected, the LI of nodes

n and n0 are equal at frequency level j. The D(P ) of the output of the optimization algorithm

includes the statistically significant Pareto optimal solutions.

7.5 Conclusion

In this chapter, we introduced two new digraph measures for the detection of source and sink

nodes from digraphs: local information (LI) and total global efficiency. Comparison of LI with

usual measures as well as total global efficiency revealed that LI is more informative and skilled

for the definition of source and sink nodes (see section 10.1, page 95) since it considers incoming

connections as well as outgoing ones and the information which is carried by each connection.

The multiple graph analysis method based on multi-objective optimization [148,149] is used

to extract the information from multi-dimensional or multi-frequency digraph measure values.

Using multi-objective optimization method, the multiple objective functions related to digraph

measure values of different frequency bands are optimized simultaneously to provide a set of

optimum solutions. We found multi-objective optimization method [148, 149] more useful than

classic methods for the estimation of leading IED regions using multi-dimensional measure values.

In this method, two optimization algorithms are used. The first algorithm is the classic Pareto

optimization and the second one is the new neighbor-Pareto optimization. The Pareto optimal

solutions are a subset of neighbor-Pareto optimal solutions since the latter includes the nodes

in the neighborhood of Pareto front as well as Pareto-front nodes. Both of these algorithms can

be used for identification of 1) strong `IED regions using Pareto optimization algorithm and 2)

less strong `IED regions using neighbor-Pareto optimization algorithm.
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(a) bipolar iEEG channels

(b) Pareto front (Pareto optimization algorithm)
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(c) neighbor-Pareto optimum solutions (neighbor-Pareto optimization algorithm)

Figure 7.4: The demonstration of five dimensional local information measure vectors (a) LI:[n],
n ∈ {1, 2, . . . , N}, (b) LI:[n∗] (Pareto optimization algorithm), and (c) LI:[n∗] (neighbor-Pareto
optimization algorithm) related to P1 in web plot. The five dimensions correspond to five frequency
bands from 2 to 64 Hz. The pentagons related to electrode leads of one electrode are depicted
with the same color.
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Chapter 8

Data and parameters

8.1 Introduction

In this chapter, the protocol of iEEG recordings, the parameters of the patients’ iEEG, and the

parameters of the method are reported.

Part III includes two other chapters as follows:

1. dDCG

2. Estimated `IED regions.

Chapter 9 (dDCG) is devoted to the dDCG results, choice of the parameters and the reliability

of DCG. In chapter 10 (estimated `IED regions), we report the results of the estimated `IED

regions and their reliability. Furthermore we compare our method with other classic methods.

8.2 Data

The iEEG recordings were obtained from five patients suffering from focal epilepsy. The type of

epilepsy of the patients are brought in Table 8.1. The patients underwent pre-surgery evaluations

with the iEEG recordings [15,201]. They are seizure free after resective surgery. Eleven to fifteen

semi-rigid multi-lead intracerebral electrodes with 0.8 mm diameter were bilaterally implanted

in suspected seizure origins based on clinical considerations. The multi-lead electrodes (Dixi,

Besançon, France) include 5, 10, 15 or 18 leads. Each lead has 2 mm length and the leads are

evenly spaced with inter-space of 1.5 mm. The iEEG recordings were performed using an audio-

video-EEG monitoring system (Micromed, Treviso, Italy) with a maximum of 128 channels

and sampled at 512 Hz. The electrode leads were recognized on the patient’s implantation

scheme, and localized in the Montreal Neurological Institute (MNI) atlas. As an example,

the implantation scheme of patient 3 (P3) is brought in Figure 8.1. Bipolar derivations were

considered between adjacent leads within each electrode, i.e. each recording site is referenced to

its nearest neighbor (bipolar montage) [202]. For simplicity, these adjacent bivariate derivations

are represented as ei instead of ei+1 − ei. Bipolar montage in iEEG provides higher local
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precision compared to common reference which one remote site is used as reference for all of the

channels [203–205].

The 50 Hz is removed by a 5th-order notch Butterworth filter with 3dB lower, and upper

band stop frequencies equal to 48 Hz and 52 Hz, respectively.

(a) Sagittal view (b) Coronal view

Figure 8.1: Implantation scheme of the iEEG electrodes for P1 (a) Sagittal view; (b) Coronal
view.

Table 8.1: Types of epilepsy of the patients. L/R:left/right; T:temporal; midInsG: middle short
gyrus of insula.

patient focal epilepsy

P1 LT
P2 LT
P3 LT
P4 RT
P5 RmidInsG

Table 8.2: Parameters of the patients’ iEEG. N : number of the bipolar channels; T : length
of the original (non segmented) iEEG signal (minutes); Nc: number of possible connections; Ll:
number of IED or non-IED time intervals.

P1 P2 P3 P4 P5 mean

N 104 105 111 109 100 106
T (minutes) 61 56 42 90 66 55.44
Nc 5356 5460 6105 5886 4950 5551
L1 298 614 223 160 223 304
L2 143 200 195 183 148 174

8.3 Parameters

The parameters of the patients’ iEEG and method are reported in Tables 8.2 and 8.3, respec-

tively.
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Table 8.3: Parameters of the method. τmax: maximum number of time lags (samples) examined
in cross-correlation function analysis; fs: Sampling rate (Hz); Np: Number of permutations;
Nw: number of windows in jackknife method; Nb: number of bootstrap repetitions in jackknife
method; W : length of each window (minutes) in jackknife method; SP: statistical multi-objective
optimization method.

Method parameter

Wavelet filter ‘la8’
Number of wavelet levels 5
False positive error (α) 0.05
αfw (familywise α) 0.05
τmax for DCG (samples) 27
τmax for dDCG (samples) 100
fs (Hz) 512
Np for DCG 106

Np for SP 104

Nw 100
Nb 104

W for reliability test of τ∗ (minutes) 20
W for reliability test of LI and SP (minutes) 33
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Chapter 9

dDCG

In this chapter, first the resulted dDCGs are presented. Next the choice of parameter τmax in

DCG calculation and time causality estimation are discussed. Finally the reliability of DCG is

explained.

9.1 Results

The frequency contribution of IED time intervals from the iEEG recordings studied here is

mostly in the range [2 60] Hz (section 6.2.1, page 52). Therefore, the dDCGs are calculated for

five frequency bands in this range: 2-4, 4-8, 8-16, 16-32, and 32-64 Hz. These frequency bands

can be assigned to EEG rhythms as following: 2-4 Hz: delta, 4-8 Hz: theta, 8-16 Hz: alpha,

16-32 Hz: beta, and 32-64 Hz: gamma. The related directed DCGs are shown in Figures 9.1

and 9.2 for iEEG analysis of P2 and P3, respectively. The nodes are iEEG bipolar channels

(bivariate derivations of the leads of each electrode) and edges represent connections between

nodes. The solid and dashed lines show the positive and negative connections, respectively

(defined in section 6.2.3, page 57).

9.2 Choice of τmax

The variation of calculated MMCC (6.5)-(6.6) for different time windows (IED or non-IED time

intervals) can be due to the estimation error and to the variability of the signal pair couplings

between two brain regions in time and frequency. Since our signals are non-stationary, the es-

timation of the variance of MMCC is very complicated. To overcome this difficulty, we used

multiple testing based on permutation to estimate the distribution of the test statistic (6.8)

related to MMCC providing a reliable procedure for detecting the statistically significant con-

nections (section 6.2.3, page 58). For a better estimation of MMCC, we studied experimentally

the effect of the different parameters on the variance of MMCC estimation (appendix G, page

151).

In the following, first we explain the effect of maximum number of time lags (τmax ≥ |τ |) in

MMCC estimation [59,206], and how τmax is experimentally chosen for the calculation of DCG.
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(a) 2-4 Hz (b) 4-8 Hz

(c) 8-16 Hz (d) 16-32 Hz

(e) 32-64 Hz

Figure 9.1: dDCG related to (a) 2-4 Hz, (b) 4-8 Hz, (c) 8-16 Hz, (d) 16-32 Hz, and (e) 32-64
Hz for P2. The nodes are iEEG bipolar channels and edges represent connections between nodes.
The solid and dashed lines show the positive and negative connections, respectively. The location
of nodes do not correspond to their real spatial locations for a better visualization of the graphs.
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(a) 2-4 Hz (b) 4-8 Hz

(c) 8-16 Hz (d) 16-32 Hz

(e) 32-64 Hz

Figure 9.2: dDCG related to (a) 2-4 Hz, (b) 4-8 Hz, (c) 8-16 Hz, (d) 16-32 Hz, and (e) 32-64
Hz for P3. The nodes are iEEG bipolar channels and edges represent connections between nodes.
The solid and dashed lines show the positive and negative connections, respectively. The location
of nodes do not correspond to their real spatial locations for a better visualization of the graphs.
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Next, the choice of this parameter in time causality estimation is discussed.

9.2.1 Choice of τmax in the estimation of MMCC

Generally, in cross-correlation computation (6.5), τmax is suggested to be large enough to include

the true lag between a signal pair. Contrarily, increasing the number of time shifts (τmax), in-

flates the confidence interval of correlation estimation for non-stationary fractionally differenced

signals [88] (appendix H, page 157). Although non-stationary signals do not hold this particu-

lar property in this work, the experimental results for MMCC estimation confirmed the above

statement, i.e. increase of maximum number of time lags, or decrease of number of samples

may increase the variance of MMCC estimation. Here we explain our experimental results for

non-stationary signals.

The similarity percentage is defined as the normalized sum of common number of significant or

non-significant t-values over number of possible connections. The similarity percentage between

DCGs based on τmax = 27 and 100 samples (the reason of these choices are explained later in

this section) are compared for two patients (P1 and P2). Contrary to τmax = 100, less empirical

variance of MMCC and more number of connections is provided by τmax = 27, especially for

lower frequencies where the similarity percentage decreases for both patients. The empirical

variance is the variance of estimated MMCC of different IED or non-IED time intervals along

the processed time signal. One reason for increase of variance can be the decrease of the number

of samples especially in lower frequencies where the number of independent samples decreases.

Eventually a proper selection of τmax can be the smallest maximum number of time lags

examined in cross-correlation analysis including the true lag [206]. Satisfying this condition

requires the physiological knowledge about the time lags between interictal events recorded

from different recording electrode leads. The duration of propagation of action potentials along

axons can be assumed less than 40 msec and multi-synaptic transmission within a cortical region

may lead to a delay less than 30 msec. As in EEG the post-synaptic potentials are recorded, the

delay between IEDs can be assumed as the propagation delay of action potentials (maximum 40

msec) plus the synaptic delay (maximum 30 msec) based on [207]. 70 msec can be considered as

the maximum delay of a direct connection. However the connections are not necessarily direct

which this increases the upper limit of the time lag. This physiological lag between recorded

IED events from different brain regions can be at most 100-200 msec i.e. about 50-100 samples

with fs = 512 Hz, typically less than 50 msec i.e. about 25 samples based on [22].

In the calculation of DCG (section 6.2, page 51), the aim is to estimate the maximum coupling

between each signal pair during IED and non-IED time intervals. In this step, the smallest

maximum number of time lags examined in cross-correlation analysis including the assumed

true lag (about 25 samples) [22] is selected equal to 27 samples. Although we observe high

similarity percentages between DCGs-based 27 and 100 samples and almost similar final results

(estimated `IED regions), we prefer τmax = 27. Using τmax = 27 provides more probable

connections (less conservative) and less time consuming procedure in the calculation of DCG.

We prefer to be less conservative and more powerful in the calculation of DCG to identify as
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many discriminated connections as possible. Once such connections are found, a higher level

processing (section 6.3, page 61 and chapter 7, page 65) is adopted to extract nodes with optimum

emittance contribution.

9.2.2 Choice of τmax in the estimation of time causality

The time lag in which the absolute maximum of cross-correlation function occurs (6.12) is

considered as the time causality between underlying signals. For the estimation of time causality,

the cross-correlation is calculated between MODWT coefficients pair of the whole length of

selected data for processing (infinitely long signals). The mean of the length of selected data for

processing (Table 8.2) over all of patients is 55.44 minutes or 1 703 117 samples. Large number

of samples is considered for a better estimation of MMCC.

The histogram of the τ∗ab for the edges of DCG (a, b ∈ V) related to P1 for two different

values of τmax (16 samples and 100 samples) are compared in Figure 9.3 for 2-4 Hz and 4-8 Hz.

Each bar of these histograms demonstrates the number of edges which their τ∗ab is equal to the

time sample of the bin (the width of each bin is equal to one time sample) over the number of

edges of the graph. The two peaks of each side of the histograms may demonstrate the number

of edges that their direction could not be estimated. In the histograms related to τmax = 16

samples (parts (c) and (d) of Figure 9.3), the two peak bars at 16 and -16 are corresponded to

59% and 30% of the edges for 2-4 HZ and 4-8 Hz, respectively. It shows that for example in 4-8

Hz, we could not estimate the direction of the edges for 30% of them. These percentages for

τmax = 100 samples is equal to 5% and 1% for 2-4 Hz and 4-8 Hz, respectively. In the estimation

of `IED regions, the direction of the edges which their τ∗ab is equal to τmax are not considered.

Increasing the τmax up to the physiological constraint provides more information to estimate

the τ∗ab. The estimated `IED regions for all of the patients are compared for τmax = 27 and

100 samples. The more the histogram of τ∗ab (based on τmax = 100 samples) is concentrated on

lower time delay values, the less the estimated `IED regions are changed between τmax = 27

and 100 samples. In detail, the set of `IED regions are not changed for P3, P4, and P5, while

this result is changed for P1 and P2. For P1 and P2, the `IED regions based on τmax = 27

samples include the result related to τmax = 100 samples plus two extra regions. One of the

extra regions related to τmax = 27 samples for P1 is not removed during surgery. Since all of

the patients are seizure-free after resective surgery, this result reveals the decrease of precision of

the method for τmax = 27 (for P1). The `IED regions related to τmax = 27 include the results

related to τmax = 100 since only in lower frequencies, most of the directions of the edges are

affected by changing the τmax. Note that `IED regions are estimated considering the LI values

of dDCG of all of frequency bands.

By using τmax = 27 samples, we cannot determine the time causality for a part of the edges

of DCG (no maximum cross-correlation can be found in the range [−τmax τmax]), therefore the

estimation of `IED regions would be based on the rest of the edges of DCG. In other words

dDCG based on τmax = 100 samples has more common number of edges with DCG compared

to τmax = 27 samples. Therefore, the dDCG used for the estimation of `IED regions based on
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τmax = 100 samples is more similar to its related DCG. Consequently, in the time causality

estimation, we chose τmax = 100 samples that is the upper limit of physiological time lag [22].

(a) 2-4 Hz, τmax = 100 samples (b) 4-8 Hz, τmax = 100 samples

(c) 2-4 Hz, τmax = 16 samples (d) 4-8 Hz, τmax = 16 samples

Figure 9.3: The histogram of τ∗ab values of the edges of DCG for τmax = 16 samples for (a) 2-4
Hz and (b) 4-8 Hz. The histogram related to τmax = 100 samples for (c) 2-4 Hz and (d) 4-8 Hz.

9.3 Reliability of DCG

In this section the reliability of DCG based on the effect of large balanced and unbalanced

number of IED and non-IED time intervals and different sets of IED time intervals are explained.

Furthermore the significance of each edge of DCG is described.
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9.3.1 Effect of large balanced and unbalanced number of IED and non-IED

time intervals

The effect of large balanced and unbalanced (section 6.2.3, page 58) number of time intervals

(L1 and L2) in multiple testing is verified by comparing the DCG constructed with unbalanced

number of time intervals and ten (an arbitrary choice) DCGs with random balanced number of

time intervals. The balanced number of time intervals is fixed equal to the smaller number of

IED and non-IED time intervals (min(L1, L2)). Say L2 = min(L1, L2), therefore L2 IED time

intervals are chosen randomly among L1 IED time intervals and the related DCG is constructed.

We repeated this procedure ten times. The similarity percentage is calculated between the orig-

inal DCG-based unbalanced number of time intervals and ten recalculated DCG-based balanced

number of time intervals. The mean of these ten percentages for P1 at frequency band equal to

4-8 Hz is 97.2%± 0.3. This result shows that the large unbalanced number of time intervals is

not problematic for the permutation test [144].

9.3.2 Effect of different sets of IED time intervals

To verify the reliability of DCGs for different random sets of IED time intervals, the similarity

percentage between each pair of ten recalculated DCGs (ten recalculated DCG-based balanced

number of time intervals in previous paragraph) is obtained. The mean of these 45 similarity

percentages for the same patient and frequency band is 96.9%± 0.25.

9.3.3 Significance of each edge of DCG

In DCG, an edge is inserted if the couplings of the related signal pairs change significantly

between IED and non-IED time intervals. To test the significance of the couplings between

signal pairs during IED or non-IED time intervals, we do a pretest before the multiple testing

(Figure 6.6, section 6.2.3, page 57). The couplings of each connection (cl:n) are tested to see if

they are greater than a threshold equal to 0.3 with the following test:{
Hn

0 : µln ≤ 0.3

Hn
1 : µln > 0.3

(9.1)

where µln is the average of cl:n (the nth column of matrix Cl). The bootstrap method is used

for the estimation of p-values for 1000 repetitions and false positive rate (α) is set equal to 0.05.

The connections whose couplings are significantly greater than the threshold for both IED and

non-IED states are entered the multiple testing to define the DCG connections. The resulted

DCG is compared with the DCG based on multiple testing without the pretest. The similarity

percentages between these two DCGs for P1 and P2 in different frequency bands are reported

in Table 9.1.

These similarity percentages show that most of the connections of the DCG have significantly

large couplings in both IED and non-IED time intervals. However DCG is designed to detect the

connections which their couplings change significantly between IED and non-IED time intervals,



94 dDCG

Table 9.1: Significance of each edge of DCG. The effect of adding a pretest before multiple testing
in the procedure of DCG inference (section 6.2.3, page 57).

Similarity percentage 2-4 4-8 8-16 16-32 32-64

P1 96.83 92.53 94.45 97.65 99.27
P2 100 99.95 99.54 99.69 99.87

consequently based on the results of Table 9.1, the pretest is not necessary and will not be used.



Chapter 10

Estimated `IED regions

Once the dDCGs related to different frequency bands are obtained, we need to quantify the

nodes of the dDCGs for the estimation of the `IED regions. To this end two new measures

(local information and total global efficiency) are proposed (see section 7.2, page 65). In this

chapter first these new measures are compared with classic measures. Since comparison between

estimated `IED regions based on local information revealed more informative and efficient results

compared to other graph measures studied, we used this measure for quantification of dDCGs

and eventually for the estimation of `IED regions. Second, the reliability of estimated `IED

regions based on the choice of maximum time lag is explained. Third, the estimated `IED

regions based on Pareto and neighbor-Pareto optimization algorithms in the multiple graph

analysis method are compared. Finally, we compared the estimated `IED regions based on local

information (using Pareto optimization algorithm) with other methods of SOZ detection. Two

methods are considered in this comparison. The first method is SOZ detection based on visually

inspection and second method is SOZ detection using induced ictal iEEG recoding by stimuli [1].

To summarize, in this chapter we explain about the following issues:

1. Comparison of estimated `IED regions based on different digraph measures

2. The reliability of estimated `IED regions based on the choice of maximum time lag

3. Comparison between the estimated `IED regions based on Pareto and neighbor-Pareto

optimization algorithms

4. Comparison of estimated `IED regions with other methods of SOZ detection.

10.1 Comparison of estimated `IED regions based on different

digraph measures

In this section the efficiency of usual digraph measures [5, 76, 80] like global efficiency (Eglob),

local efficiency (Eloc), and total degree (ktot) are compared with two proposed measures: local

information (LI) and total global efficiency (Etglob).
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For each patient, five dDCGs related to five frequency bands (J = 5) from 2-64 Hz (2-4, 4-8,

8-16, 16-32, and 32-64 Hz) are obtained. These 25 dDCGs (5 dDCGs for each of 5 patients) are

characterized with five digraph measures (three classic ones and two proposed measures).

For any measure studied, we associate matrix Q ∈ RJ×N = [q1,q2, . . . ,qN ], so that each

column qn = [q1[n], q2[n], . . . , qJ [n]]T , n = {1, . . . , N} corresponds to the measure values of

node n for J different frequency bands. Eglob, Etglob, Eloc, ktot, and LI are calculated for each

of dDCGs. The negative Etglob, negative ktot, and negative LI values are set to zero since we

are not interested in sink nodes. LI values are normalized to their maximum.

For the estimation of `IED regions based on each measure, the multi-objective optimization

method [148,149] is applied on matrix Q of each measure. To evaluate the efficiency of different

digraph measures for the detection of source and sink nodes, the estimated `IED regions based

on different digraph measures are compared with visually inspected SOZ (vSOZ) by the epilep-

tologist (details are explained in section 10.4.1, page 110). Though the SOZ is theoretically the

region to be removed in candidates to resective surgery, it is not easy to be defined in many

patients partly because of the difficulties regarding recording seizure periods. Thus it is valuable

to wonder if one can predict the SOZ by estimating the `IED regions.

The estimated `IED regions for five patients are presented in Table 10.1. The vSOZs are also

reported for comparison. For each patient, the column labels correspond to either `IED regions

estimated by digraph measures or the vSOZs of the patient.

The resected regions always include the vSOZ, and all of the patients are seizure free after

the resective surgery. Therefore measures which suggest `IED nodes congruent with vSOZ

are preferred, i.e. more number of common regions (true positives, or TP), smaller number

of uncommon regions (false negatives, or FN), and smaller number of `IED regions which are

not included in vSOZ (false positives, or FP). The precision and the sensitivity defined as

(#TP)/(#TP + #FP), and (#TP)/(#TP + #FN), respectively are reported in Tables 10.2 and

10.3. The number of regions is denoted by #. Although both FP and FN are aimed to be

minimized, due to the existing trade off between these errors, we prefer the measures providing

less FP compared to FN. In fact FP indicate normal brain regions that are wrongly detected as

SOZ which has the risk of removing normal regions in resective surgery. Conversely, FN show

the missed SOZ which has the risk of a second surgery supposing the presurgery evaluations

are based on only estimated `IED regions. However, the presurgery evaluations are based on

different complementary clinical knowledge including iEEG, fMRI, semiology, etc. Estimated

`IED regions are aimed to provide the information extracted from iEEG analysis based on

the functional connectivity related to interictal events. Therefore since `IED regions provide

complementary information for conducting the resection, we prefer to estimate the `IED regions

with minimum FP to increase the precision of the estimation in comparison with its sensitivity.

Furthermore, although in this study all patients being seizure free after surgery reveals that

resected regions (based on vSOZ) included the essential regions generating the seizures, currently

there is no way to determine how large were the removed regions during surgery. Therefore it

is valuable to study the properties of the uncommon nodes between vSOZ and the set of esti-

mated `IED nodes (FN) based on different measures to analyze their properties more profoundly.
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LI measure is designed for source and sink node detection from digraphs, while Eglob, Eloc,

and ktot are not exactly suited for this purpose. In the following we explain about the comparison

results of LI measure with each of these usual measures.

10.1.1 Local efficiency

The estimated `IED regions based on Eloc are consistent with vSOZ for P2, P3 and P4, while this

is not true for P1 and P5. For P1, the estimated `IED based on Eloc includes the vSOZ with the

addition of five other regions (FP): {anterior cingulate gyrus, anterior superior temporal gyrus,

insular cortex, white matter mesial frontal, frontal operculum}. For avoiding long Table, we do

not report all of `IED regions detected by Eloc for P1 in the Table 10.1. The local efficiency

measure was not applicable for P5 due to great sparseness of related graphs. Here we explain

the reason of this sparseness. P5 is a very specific patient, treated for right operculo-insular

cavernous malformation after the first resective surgery. After nine years, the patient got reflex

seizures [208]. The iEEG recordings for the second presurgery evaluations include extensive

sampling of the insular, opercular and temporal cortices. The SOZ is recognized visually in

middle short gyrus of right insula and this region is removed in the second resective surgery.

The patient is seizure free after this surgery. dDCG of this patient from iEEG recordings before

second surgery include one edge between two adjacent electrode leads in middle short gyrus of

right insula in the three frequency bands: 8-16, 16-32 and 32-64 Hz. For such sparse digraphs,

Eloc is not applicable.

The definition of Eloc as the evaluation of the efficiency of the connections between the first-

order outgoing neighbors of each node is not well suited for the source and sink node detection.

Indeed a node with high Eloc may not be a good candidate for a source node. Furthermore, Eloc

considers neither the incoming paths nor the amount of information of each edge. Finally, this

measure may suggest regions that should not be removed during surgery (P1), which reduces its

precision. Although Eloc is highly sensitive, we prefer the other measures with higher precision.

10.1.2 Total degree

For most of the patients (all of the patients except P4), all of the `IED regions based on ktot are

included in the set of related vSOZ which leads to high mean precision over patients. However

this measure provides a smaller number of related vSOZ than LI (less TP) which makes it less

powerful. Total degree considers both outgoing and incoming connections, but without weights

(the amount of information). Two nodes with the same ktot may have different amounts of

local information (Table 10.4, first and second columns), since connections may carry different

amounts of information. To benefit from such knowledge (amount of information), LI measure

was introduced.
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Table 10.1: Comparison between visually inspected seizure onset zones (vSOZ) and estimated
leading IED (`IED) regions for five patients (P1 to P5) based on different measures: Eglob: global
efficiency; Etglob: total global efficiency; Eloc: local efficiency; ktot: total degree; LI: local informa-
tion. For each patient, the column labels correspond to either `IED regions estimated by digraph
measures or the vSOZ of the patient. Each cross shows that the region related to its column is
detected by the digraph measure related to its row or by the vSOZ. amyg: amygdala; ant/post/m:
anterior/posterior/mesial; CG: cingulate gyrus; entCx: entorhinal cortex; fusi: fusiform gyrus;
HC: hippocampus; Ins: insula; midInsG: middle short gyrus of insula; pHcG: parahippocampal
gyrus; T: temporal; TP: temporal pole.

P1 antHC postHC amyg pHcG mTP

Eglob × × ×
Etglob × × ×
Eloc

1 × × × × ×
ktot × ×
LI × × ×
vSOZ × × × × ×
P2 antHC postHC amyg pHcG Ins fusi

Eglob ×
Etglob × × × ×
Eloc × × ×
ktot × ×
LI ×
vSOZ × × × ×
P3 antHC postHC pHcG TP postT4

Eglob × × ×
Etglob × × × ×
Eloc × × ×
ktot × ×
LI × ×
vSOZ × × ×
P4 antHC postHC amyg entCx mTP antCG postT1 T4

Eglob × × × × ×
Etglob × × × × × × × ×
Eloc × × ×
ktot × × ×
LI × × × ×
vSOZ × × × × ×
P5 midInsG

Eglob ×
Etglob ×
Eloc NA
ktot ×
LI ×
vSOZ ×
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Table 10.2: Precision of different digraph measures for five patients. NA: not applicable.

Precision Eglob Eloc ktot Etglob LI

P1 1 0.5 1 1 1
P2 1 1 1 0.5 1
P3 1 1 1 0.5 1
P4 0.8 1 1 0.62 1
P5 1 NA 1 1 1

mean 0.96 0.88 1 0.72 1

Table 10.3: Sensitivity of different digraph measures for five patients. NA: not applicable.

Sensitivity Eglob Eloc ktot Etglob LI

P1 0.6 1 0.4 0.6 0.6
P2 0.25 0.75 0.5 0.5 0.25
P3 1 1 0.67 0.67 0.67
P4 0.8 0.6 0.6 1 0.8
P5 1 NA 1 1 1

mean 0.73 0.84 0.63 0.75 0.66

Table 10.4: Comparison of Eloc, Eglob, Etglob, ktot = kout−kin, and LI values of node 46 located
in left parahippocampal gyrus of P3. LI values are normalized to their absolute maximum.

2-4 4-8 8-16 16-32 32-64

Eloc 0.02 0 0 0 0
Eglob 0.5 0.35 0 0 0.06
Etglob 0.04 -0.05 -0.33 -0.20 -0.12

kout − kin 12− 12 5− 5 0− 3 0− 1 1− 3
LI -0.67 -0.09 -0.08 -0.02 -0.01
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10.1.3 Total global efficiency

The total global efficiency is designed to add the information of incoming paths to the knowledge

extracted from outgoing ones. Although it was introduced to refine the global efficiency, the

results of this measure are not satisfactory: despite the inclusion of the proposed regions based

on this measure in vSOZ, it provides additional regions that do not correspond to the related

vSOZ. In other words, although adding the information of incoming paths has increased the

sensitivity of total global efficiency in comparison with global efficiency, this information does

not increase its precision (Tables 10.2 and 10.3).

This result shows that considering the incoming paths in addition to the outgoing ones in

global efficiency is not sufficient for increasing its precision in source and sink node detection.

Consequently, a node with high total global efficiency may not be a good candidate for a source

node.

10.1.4 Global efficiency

Global efficiency and LI, both seem to have congruent results with vSOZ (Tables 10.1-10.3),

but LI can provide more information about the emittance contribution of the nodes than global

efficiency, since Eglob does not take into account the incoming paths and the information carried

by each edge.

Source and sink node detection

The differences between LI and global efficiency is highlighted in the nodes with both several

outgoing and incoming connections and with negative or zero amount of local information, i.e.

incoming information is greater or approximately equal to outgoing information. For such nodes,

LI values are negative or zero, while Eglob can be high if we reach from these nodes to the rest of

digraph through the short-length outgoing paths. To show one example of such nodes, we focus

on the iEEG analysis of P3. In this patient, node 46 located in left parahippocampal gyrus is

included in the estimated `IED nodes by Eglob, while it is not estimated by LI. Here we explain

the details about this node in the dDCG of different frequency bands. We analyze the role of

node 46 based on comparing its different measure values (Table 10.4).

We remind that Eglob, Eloc, Etglob, ktot (kout−kin) and LI are in the range [0, 1], [0, 1], [−1, 1],

[−(N−1), N−1], and [−∞,∞] respectively. For comparing the values of different measures, LI

values are normalized to their absolute maximum (range [−1, 1]) in Table 10.4. The subgraph of

node 46 (G46+) from dDCG of P3 in 4-8 Hz (Figure 10.1) is depicted in Figure 10.2. Node 46 has

five outgoing and five incoming connections in this frequency band. The incoming and outgoing

information are approximately equal which leads to low LI value. Furthermore we can get to 23

nodes among 29 nodes from node 46 through short-length outgoing paths, which gives relatively

high Eglob comparing to other nodes of the digraph in this frequency band. Besides from 20

nodes of the digraph, we can also get to node 46 through short-length incoming paths. Global

efficiency considers outgoing paths, therefore this measure is blind to the knowledge about the
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(a)

(b)

Figure 10.1: (a) dDCG for P3 in 4-8 Hz, (b) digraph of (a) plotted in real chan-
nel coordinates superimposed on the 3D anatomical mesh (sagittal view). The Figure
of part (b) is added for an anatomical representation to show where the graph and es-
pecially the three important regions of the dDCG (anterior/posterior hippocampus and
parahippocampal gyrus) are located in the brain, while the details of the dDCG can
be seen in part (a). These three regions are enclosed with circles in parts (a) and
(b). The 3D rotatable version of Figure of part (b) is available at http://www.gipsa-
lab.inpg.fr/∼ladan.amini/mes images/dDCGPatient3scale4 8Hz.fig. The Matlab software is
needed to see this rotatable Figure. ant/post/bas/m: anterior/posterior/basal/mesial; CG: cin-
gulate gyrus; Cx: cortex; F: frontal; HC: hippocampus; Ins: insula; orbiF: orbitofrontal; pHcG:
parahippocampal gyrus; T: temporal; TP: temporal pole. 12: antCG; 21: orbFCx; 28-33: Ins-
mF1; 39: TP; 46-54: antbasT; 57-61: postbasT; 67-71: antHC; 79-83: postHC; 91-92: postT4; 98:
antT1. All of bipolar channels are located in left side of the brain except bipolar electrode lead 1
(right antHC).
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orbFCx 21

Ins 28Ins 32

pHcG 47

pHcG 48

pHcG 49

pHcG 51 antHC 67

postHC 79

antT1 98pHcG 46

Figure 10.2: Directed subgraph of node 46 located in parahippocampal gyrus (G46+) from the
dDCG related to P3 in 4-8 Hz (Figure 10.1). Each node is represented by its number of bipolar
electrode lead and the related brain region. ant/post: anterior/posterior; pHcG: parahippocampal
gyrus; Ins: insula; orbiF: orbitofrontal; Cx: cortex; T: temporal; HC: hippocampus.
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incoming paths and specially to the amount of information related to each connection, while LI

value is based on the outgoing minus incoming amount of information.

Node 46 is selected as a source node by the multiple digraph analysis based on Eglob while LI

of this node (Table 10.4) shows that it may not be considered as a source node. Comparing LI

values with other usual measure values reveals that node 46 might be mostly a transit node than

a source one. A transit node exerts approximately all of the information it receives. However

distinguishing between source and transit nodes is challenging and might not be easy to be

explored neither by Eglob nor by visual inspection.

To end with, Eglob is not as precise as LI in source node detection since the incoming con-

nections and the amount of information are not considered.

Ranking

Another advantage of LI over Eglob lies in ranking the estimated `IED nodes in terms of measure

values. To explain this issue, we focus on the results of iEEG analysis of P2. This patient is

chosen since the related `IED nodes based on Eglob and LI are the same: nodes 70, 71, and

72 located in left anterior hippocampus (Table 10.1). Eglob and LI values of these nodes are

reported in Table 10.5 for different frequency bands. Eglob and LI values are normalized to their

maximum (negative values of LI are set to zero before normalization). To rank the estimated

`IED nodes, one way can be to order the `1 norm of related measure values. `1 norm is calculated

for qn, n ∈ {estimated `IED nodes} as:
∑J

j=1 q
j [n], where qj [n] are nonnegative real numbers.

Normalized `1 norm values of Eglob and LI for `IED nodes related to P2 are reported in Table

10.6. The greater the `1 norm the more reliable the `IED node. As can be seen in Table 10.6,

the ranking based on Eglob and LI is not the same. Considering the incoming connections and

the amount of information lead to smaller LI values for node 70, therefore this decreases the

relevance of this node to the emittance contribution. Conversely, Eglob of this node is high since

the incoming paths and the importance of the edges are not considered which leads to its high

relevance.

To easily compare the values of Eglob and LI for the estimated `IED nodes (reported in Table

10.5), these measure values are demonstrated in Figure 10.3. In Figure 10.3, the web plot of q70,

q71, and q72 for Eglob and LI and for J = 5 are depicted. The pentagons related to nodes 70, 71,

and 72 are depicted in solid, dashed and dotted lines, respectively. More expanded pentagons

can refer to greater values of `1 norm. Based on Eglob, node 70 has the greatest `1 norm, while

node 72 has the greatest `1 norm based on LI measure. To conclude, LI measure is preferred

to be used for ranking the leading IED nodes than Eglob. This ranking can be valuable for the

presurgery evaluations where there are several `IED nodes located in different brain regions.

10.1.5 Conclusion

We compared classic digraph measures with introduced LI measure for the source and sink

node detection of digraphs. The comparison is evaluated using estimated `IED regions from

dDCGs of different frequency bands. The estimated `IED regions based on different measures
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(a) Eglob

(b) LI

Figure 10.3: The demonstration of five dimensional measure vectors q70, q71, and q72 related to
P2 for (a) Eglob and (b) LI in web plot. The five dimensions correspond to five frequency bands
from 2 to 64 Hz.
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Table 10.5: Comparison between Eglob and LI values of the three `IED nodes related to P2 in
different frequency bands.

2-4 4-8 8-16 16-32 32-64

Eglob

70 0.68 0.58 0.69 0.67 1
71 0.85 0.68 0.74 0.69 0.38
72 0.85 0.72 0.92 0.73 0.25

LI
70 0 0 0 0.08 0.09
71 1 0.26 0 0.10 0
72 0.7 0.48 0.27 0.04 0

Table 10.6: Comparison between ranking estimated `IED nodes based on Eglob and LI using `1
norm for P2.

Eglob `1 norm LI `1 norm

source1 70 1 72 1
source2 72 0.96 71 0.9
source3 71 0.92 70 0.12

are compared with visually inspected SOZ by epileptologist. In this perspective, LI measure

is more informative in comparison with usual measures and Etglob for the purpose of source

and sink node detection. However, comparing the values of different measures like Eglob, Kout,

Kin, and LI provides complementary characterizing information based on different definitions

for more profound analysis of the role of each node in the digraph and their specifications.

For source and sink distinction, Eglob and ktot outperform the conventional measures and

Etglob. Etglob does not increase the precision of Eglob in the estimation of `IED regions, which

shows that including the incoming paths may not be sufficient without considering the amount

of information of each edge. However, LI is preferred in comparison with Eglob and ktot, since it

is more informative and skilled for the source and sink node detection and ranking the estimated

`IED nodes. The power of LI relies on taking into account the amount of information carried

by each edge and considering incoming connections in addition to outgoing ones.

10.2 Reliability of estimated `IED regions for the choice of τmax

In this section we explain the effect of maximum time lag (τmax) selection in DCG calculation

and time causality estimation on the estimated `IED regions.

10.2.1 Choice of τmax in DCG calculation

LI measure values may change for two dDCGs based on τmax = 27 and 100 samples (in DCG

calculation) due to the minor changes of the topology of DCG, but nodes with relative high LI

values are mostly consistent between these two graphs. Consequently the related `IED regions

are mostly similar. However as explained in section 9.2.1 (page 90), τmax is set to 27 samples to

provide less time consuming and less conservative method for DCG calculation.
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In Figure 10.4, we demonstrate the LI values for all of the nodes of P1 in different frequency

bands for dDCGs based on τmax = 27 and 100 samples in dashed and solid lines, respectively.

Note that τmax is set equal to 100 samples in the estimation of time causality (section 9.2.2,

page 91) in both dDCGs of all of frequency bands.

Figure 10.4: Comparison of LI measure values between dDCG based on τmax = 27 and 100
samples (in DCG calculation) for P1. Note that τmax is set equal to 100 samples in the estimation
of time causality (section 9.2.2, page 91). Nodes with relative high LI values are consistent in the
two dDCGs, in spite of minor changes in the topology of the DCGs especially in lower frequencies.

10.2.2 Choice of τmax in the estimation of time causality

Here we report the result of estimated `IED regions based on the choice of τmax = 27 and

100 samples in time causality estimation (Table 10.7). The estimated `IED regions based on

τmax = 27 and 100 samples are the same for P3, P4, and P5. For P2, τmax = 27 provides more
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common regions between estimated `IED regions and vSOZ while for P1, it provides an extra

region in the estimated `IED regions which is not included in the related vSOZ and not even

removed during surgery. This result shows that τmax = 27 is not a proper choice which decreases

the precision of `IED detection for P1 even if it increases the sensitivity of `IED detection for P2.

As explained in section 9.2.2 (page 91), by choosing τmax = 27 samples, we cannot estimate the

time causality for a part of DCG connections especially in lower frequencies and thus the related

DCG and dDCG may have less number of common connections. Therefore for τmax = 27, the

`IED detection would be based on a dDCG which is far from its related DCG. As such τmax is

set to 100 samples in time causality selection.

Table 10.7: Comparison between vSOZ and estimated `IED regions for five patients (P1 to P5)
based on two choices of τmax (27 and 100 samples) in the time causality estimation. For each
patient, the column labels correspond to either `IED regions estimated based on τmax = 27 or
τmax = 100, or the vSOZ of the patient. Each cross shows that the region related to its column
is detected based on the τmax related to its row or by the vSOZ. amyg: amygdala; ant/post/m:
anterior/posterior/mesial; CG: cingulate gyrus; entCx: entorhinal cortex; fusi: fusiform gyrus;
HC: hippocampus; Ins: insula; midInsG: middle short gyrus of insula; pHcG: parahippocampal
gyrus; T: temporal; TP: temporal pole.

P1 antHC postHC amyg pHcG mTP Ins

τmax = 27 × × × × ×
τmax = 100 × × ×
vSOZ × × × × ×
P2 antHC postHC amyg pHcG

τmax = 27 × × ×
τmax = 100 ×
vSOZ × × × ×
P3 antHC postHC pHcG

τmax = 27 × ×
τmax = 100 × ×
vSOZ × × ×
P4 antHC postHC amyg entCx mTP

τmax = 27 × × × ×
τmax = 100 × × × ×
vSOZ × × × × ×
P5 midInsG

τmax = 27 ×
τmax = 100 ×
vSOZ ×

10.3 Comparison of estimated `IED regions based on Pareto

and neighbor-Pareto optimization algorithms

Here we compare the results of estimated `IED regions based on Pareto and neighbor-Pareto

optimization algorithms in multiple graph analysis (section 7.3.2, page 70). In neighbor-Pareto
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optimization algorithm, the nodes in the neighborhood of Pareto-front nodes are also considered.

Here we report the estimated `IED regions based on Pareto and neighbor-Pareto optimization

algorithms in Table 10.8. The parameter ε of neighbor-Pareto optimization algorithm is set

equal to 0.3 in this Table. The normalized square distance,
‖LI:[n]−LI:[n0]‖22
‖LI:[n]‖2 ‖LI:[n0]‖2

in this algorithm is

normalized in the range [0, 100]. For ε = 0, the neighbor-Pareto optimization algorithm performs

the same as Pareto optimization algorithm. For P2, P4, and P5 the estimated `IED regions

are the same for both Pareto and neighbor-Pareto optimization algorithms and the results of

neighbor-Pareto algorithm does not change for different values of ε in the range [0, 0.6]. For each

of P1 and P3, one extra region which is included in the related vSOZ is obtained by neighbor-

Pareto optimization compared to Pareto optimization. These extra regions are obtained for

0.3 ≤ ε ≤ 0.6 in neighbor-Pareto optimization or equivalently the Pareto and neighbor-Pareto

optimization algorithms provide the same results for P1 and P3 for 0 ≤ ε < 0.3.

Both of the algorithms provide consistent `IED regions with the related vSOZs, while since

neighbor-Pareto algorithm provides the neighbor nodes of Pareto front in addition to Pareto-front

nodes, it provides more common number of regions with vSOZ. However Pareto optimization

algorithm is parameter independent in comparison with neighbor-Pareto algorithm although

the latter one is not very sensitive to its parameter ε. It is useful to apply both of these al-

gorithms: Pareto optimization algorithm for the identification of strong leading IED regions

(Pareto front) and neighbor-Pareto optimization algorithm for less strong ones (neighbor-Pareto

optimal solutions excluding Pareto front). Such high-level information can be useful to identify

the importance of each of visually detected SOZs.

We also compared estimated `IED regions based on multi-objective optimization and statisti-

cal multi-objective optimization methods. The parameters of the statistical method are given in

Table 8.3. For the estimation of `IED regions based on the statistical method, the LI values are

tested to exclude the nodes which their related LI values are significantly equal to zero before

the application of optimization algorithm. The estimated `IED regions based on these methods

provide mostly similar results for different patients. This result confirms the significance of LI

values for the nodes of dDCG.

We prefer the multiple-objective optimization method in comparison with the statistical one

since it has less computational load and time and moreover provides mostly similar `IED regions.

10.4 Comparison of estimated `IED regions with other methods

of SOZ detection

The resective surgical procedure is aimed at removing the SOZ without creating neurological

deficits. The best way to detect SOZ is to record seizures from iEEG recordings. However,

recording ictal EEG is time-consuming and requires an enormous effort when seizures are infre-

quent. Moreover, very long (several weeks) recording periods may increase the risk of compli-
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Table 10.8: Comparison between vSOZ and estimated `IED regions for five patients (P1 to P5)
based on Pareto and neighbor-Pareto optimization algorithms in multiple graph analysis (section
7.3.2, page 70). For each patient, the column labels correspond to either `IED regions estimated by
Pareto or neighbor-Pareto optimization algorithm, or the vSOZ of the patient. Each cross shows
that the region related to its column is detected by the algorithm related to its row or by the vSOZ.
amyg: amygdala; ant/post/m: anterior/posterior/mesial; CG: cingulate gyrus; entCx: entorhinal
cortex; fusi: fusiform gyrus; HC: hippocampus; Ins: insula; midInsG: middle short gyrus of insula;
pHcG: parahippocampal gyrus; T: temporal; TP: temporal pole.

P1 antHC postHC amyg pHcG mTP

neighbor-Pareto × × × ×
Pareto × × ×
vSOZ × × × × ×
P2 antHC postHC amyg pHcG

neighbor-Pareto ×
Pareto ×
vSOZ × × × ×
P3 antHC postHC pHcG

neighbor-Pareto × × ×
Pareto × ×
vSOZ × × ×
P4 antHC postHC amyg entCx mTP
neighbor-Pareto × × × ×
Pareto × × × ×
vSOZ × × × × ×
P5 midInsG

neighbor-Pareto ×
Pareto ×
vSOZ ×
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cations like brain hemorrhage and infection [127–130]. Eventually, the number of seizures can

be too limited, non-representative of usual seizures of a patient. Thus, obtaining statistically

reliable results from studying seizure time intervals could be difficult. Consequently, other ap-

proaches based on interictal analysis for the prediction of SOZs by estimating the `IED regions

remain warranted.

There are several studies [1, 8, 9, 12, 13, 22–24, 127, 132, 133, 209] for analysis of interictal pe-

riods to predict the SOZ from iEEG or ECoG. Comparison of different methods using different

recordings is difficult due to the different resolution of recordings and different evaluation mea-

sures adapted to each method and related results. However, the results of previous studies and

our findings are encouraging toward using the information of quantitative analysis of interictal

periods for delinition of epileptogenic zone. Here, we compare the estimated `IED regions with

two methods using the iEEG recordings of common patients (five and three common patients

for first and second method, respectively).

1. SOZ detection by visual inspection (vSOZ)

2. SOZ detected by [1] from induced ictal periods by electrical stimuli (eSOZ)

In the following, we report the results of comparison of estimated `IED regions with vSOZ

and eSOZ.

10.4.1 SOZ detection by visual inspection

Repeated electrical stimulation of the cortex during iEEG recording may induce transient

changes of neural network properties which may be associated with increased likelihood of epilep-

tic events in patients [210]. This clinical exam is performed for pre-surgical evaluations in the

epilepsy department of Grenoble university hospital (CHUG), Grenoble, France [211]. In this

center, one of the methods of SOZ detection is based on visual inspection of pathological brain

excitability (how a region is responsive to stimulations) during single pulse or repetitive stim-

uli [15]. In the classic method of vSOZ detection, SOZs are defined as the regions where the first

electrophysiological changes detected at ictal onset (spontaneous ictal period). For the vSOZs

reported in this work, the spontaneous ictal periods are used and induced ictal periods are used

as a complementary tool.

The quantitative comparison of results between vSOZ, estimated `IED regions computed by

our method, and removed regions during resective surgery are brought in Table 10.9 for the five

patients (P1 to P5). The different quantitative measures are as follows. First, dis (mm) is the

average of minimum distances between `IED and vSOZ nodes, in which the proximity of the

`IED nodes to vSOZ nodes is measured. The average of dis over five patients is 6.4 mm. This

indicates the accuracy of agreement between vSOZ and estimated `IED regions. Second, ovp

(%) is the average percentage of number of `IED nodes which are in the neighborhood (≤ 1.5

cm) of at least one of the vSOZ nodes. The large percentage of ovp reveals that a large number

of `IED nodes are in the neighbourhood of at least one of vSOZ nodes. Third, ovp2 (%) shows a

similar percentage as ovp except ovp2 considers the vSOZ nodes which are in the neighborhood
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of at least one of the `IED nodes. We found an average of 84.4% and 84.8% over patients for

ovp and ovp2, respectively.

10.4.2 Conclusion

All of the five patients are completely seizure-free after surgery and the estimated `IED regions

are included in the resected regions for all of the patients. This result confirms that `IED regions

can be valuable in pre-surgery evaluations while regions related to late secondary propagated

activity (sink nodes) might not be necessary to be removed [12,22,23].

10.4.3 SOZ detected by [1] from induced ictal periods by electrical stimuli

David et al. [1] proposed two indices to measure the brain excitability and plasticity using 1

Hz stimulation-induced evoked responses of iEEG recordings from implanted patients to detect

the SOZs. Brain excitability and plasticity (changes of intrinsic properties of neural networks)

are approximated for all of electrode leads. The eSOZs were defined as the set of electrode

leads which their both excitability and plasticity measure values are greater than their related

thresholds. To optimize the selection of threshold related to each measure, three parameters

are considered: 1) sensitivity: the probability over patients in which at least one electrode lead

is chosen; 2) accuracy: the average over patients of selected electrode leads with the minimum

distance to SOZ; 3) the average number of electrode leads used for SOZ detection over patients.

The comparison between the `IED regions estimated from interictal periods and eSOZ pro-

posed by [1] from induced ictal periods of iEEG recordings is brought in Table 10.9.

• P2 : We compare the activation map of eSOZ based on excitability and plasticity indices

with the activation map related to `IED regions for P2. To obtain each activation map, a

N -dimensional vector, v, is assumed for N electrode leads. For electrode lead n which its

index value (excitability or plasticity) is greater than the threshold, v[n] is set to one, oth-

erwise v[n] = 0. For the activation map of eSOZ based on the multiplication of excitability

and plasticity indices, the related v[n] is set similarly. We wonder if multiplication of these

two measures can provide useful information since the regions which have both high ex-

citability and plasticity are interested. For the activation map of estimated `IED regions,

v[n] is set to one for the estimated `IED electrode leads and zero for other electrode leads.

The activation map is the interpolation of the values of v[n] at the 3D electrode lead

positions, overlaid on MR images.

The activation map of estimated `IED regions, eSOZs based on excitability, plasticity and

the multiplication of excitability and plasticity are demonstrated for iEEG analysis of P2

in Figure 10.5. The color bar of each map indicates the different intensities used in the

map. Regions in brighter intensities have higher contribution in the related method. All

of the maps (parts (a)-(d)) are plot in the same coordinates (coordinates of electrode lead

72) for better comparison. Parts (a) to (c) of Figure 10.5 are associated with the activation
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map of eSOZs based on excitability, plasticity, and their multiplication, respectively. In

part (d) the activation map of estimated `IED regions is demonstrated.

The eSOZs based on excitability and plasticity measures individually are {left anterior/post-

erior hippocampus, left parahippocampal gyrus} and {left anterior/posterior hippocam-

pus, left amygdala}, respectively [1]. Thus the eSOZs upon both of these measures are

{left anterior/posterior hippocampus}. The estimated `IED regions and vSOZ defined by

epileptologist are {left anterior hippocampus} and {left anterior/posterior hippocampus,

parahippocampal gyrus, amygdala}, respectively. {left anterior/posterior hippocampus,

parahippocampal gyrus, amygdala, temporal pole} are resected during surgery and pa-

tient is seizure free after surgery. Since it is unknown how large the removed region was,

using complementary information like estimated `IED regions or eSOZ might be helpful

toward more conservative brain surgery resection.

• P1-P5 : eSOZ and `IED regions are compared in Table 10.9 for three common patients

(P1 to P3). There are more common regions between estimated `IED regions and vSOZ

than between vSOZ and eSOZ for P1 and P3. For example for P3, eSOZ, vSOZ, and

estimated `IED regions are {anterior hippocampus}, {anterior/posterior hippocampus,

parahippocampal gyrus}, and {anterior/posterior hippocampus}, respectively. For two

other patients, P4 and P5, this comparison was not possible. P4 recently underwent

surgery and eSOZ results were not available. The SOZ of P5 cannot be defined by the

eSOZ method since no seizure occurred by stimuli during iEEG recordings. Conversely, our

method estimate the vSOZ correctly (middle short gyrus of insula) without using seizure

periods, instead using IED and non-IED time intervals. This patient (P5) has the most

focused vSOZ and resected region among all of the patients.

10.4.4 Conclusion

The proposed method estimates the `IED regions, congruent with vSOZ, requiring simpler,

faster, and less expensive iEEG recording comparing to eSOZ method which requires

induced seizure periods. For the patients in whom no seizure occurs during the stimuli,

the estimated `IED regions can be valuable.
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Figure 10.5: Activation map of eSOZs based on (a) excitability, (b) plasticity, (c) multiplication
of excitability and plasticity and (d) activation map of estimated leading IED regions, overlaid on
magnetic resonance (MR) image for P2. Part (e) shows the electrode lead locations (blue dots)
overlaid on the map of estimated leading IED regions. The red star locates at the position of
electrode lead number 72 that is located in left anterior hippocampus. The color bar of each map
specifies the different intensities used in the map, zero is dark red, and one corresponding to white.
For each activation map a N -dimensional vector, v[n] is considered. v[n] is set to one for the eSOZ
electrode leads and zero for other electrode leads. The map presents the interpolation of v[n]
values at their 3D electrode lead positions, overlaid on MR images. The difference between maps
is in the intensity change of corresponding interpolated v[n] values. Regions showing in brighter
colors, have greater contribution in the related method like left interior hippocampus in (d). All
of the maps (part (a)-(d)) are plot in the same coordinate.



Chapter 11

Conclusions and Future Works

11.1 Conclusions

Drug resistant epileptic patients are recommended to do the surgery and the aim of this surgery

is to remove SOZ without creating new neurological deficits. Recording seizures are difficult

since they are not frequent in most of the patients. Therefore few number (1-2) of seizures are

not sufficient for a statistical reliable analysis. A solution is to try to predict SOZ by estimating

the IED regions from interictal analysis of iEEG recordings. There are several studies for this

purpose [1,8–10,12,13]. Since the problem is complicated, still prediction of SOZ by estimating

IED regions is an open issue.

In this work we estimated the leading IED regions to help the epileptologists for the presurgery

evaluations as a complementary information to EEG, fMRI, and semiology knowledge. To

estimate the leading IED regions, we proposed a new reliable graph analysis method called

Differential Connectivity Graph (DCG). DCG, the main original contribution of this work,

was designed to identify the discriminated connections between two functional states. The

connections whose statistical properties change significantly between two functional brain states

construct DCG. As such, the effect of brain functions which are common between the two states

are decreased.

DCG was implemented, tested and evaluated for differentiating between IED and non-IED

states to extract the connections related to IEDs by decreasing the effect of common events like

background activity, and its volume conduction effect. Therefore DCG provides sparser graph

compared to separated IED and non-IED complex graphs providing simpler interpretation.

DCG is statistically reliable due to large number of IED and non-IED time intervals and

using multiple testing based on permutation [144]. One of our contributions in this work is

the application of permutation methods [144] for the graph inference. Permutation methods

are powerful tools for identification of statistically significant tests (connections) assuming less

assumptions about the underlying data contrary to other multiple testing methods which assume

standard test statistic distributions. As such permutation method provides reliable identification

of significantly discriminated connections of DCG. Moreover, contrary to threshold based graph

inference methods, DCG is threshold independent.

115
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Our two other contributions are as follows:

1. Introducing a new directed graph measure, LI for detection of source and sink nodes.

LI measures the information which passes through each node locally (local information).

This measure uses the outgoing and incoming connections of each node (digraph structure)

and the information that is carried by each of these connections using lagged mutual

information.

2. Proposing a multiple graph analysis to extract the information from the graph measure

values of multiple graphs using multi-objective optimization method [148]. We found multi-

objective optimization method very useful for extracting the information from measure

values of the nodes of multiple graphs. In multi-objective optimization methods, different

objectives whose preferences are not necessarily known can be optimized simultaneously

providing a set of optimum solutions. As such the quantifications of multiple graphs can

be summarized to the set of optimum nodes considering all of the graphs simultaneously.

Furthermore, in the multi-objective optimization method applied in this work, we pro-

posed a new optimization algorithm termed as neighbor-Pareto optimization to include

the neighbor nodes of Pareto front in addition to the Pareto front.

iEEG

signals

Wavelet

transform

scale 1
dDCG

Graph

quantifi-

cation

scale J
dDCG

Graph

quantifi-

cation

scale 2
dDCG

Graph

quantifi-

cation

Multiple

graph

analysis

estimated

leading

IED

regions

Figure 11.1: The block representation of the proposed method for iEEG analysis. The iEEG
recordings are decomposed to different frequency bands (associated with different scales) using
wavelet transform. Next for each scale the related directed DCG (dDCG) is obtained and the
nodes of each graph is quantified. Finally the leading IED regions are estimated by multiple graph
analysis using the graph measure values of all of the nodes of dDCGs.

Figure 11.1 summarizes the main blocks of the proposed iEEG analysis method. In this

method, DCG was obtained for different frequency bands (associated with different scales). The

direction of the edges of DCG were estimated by the estimation of the time causality between

signal pairs related to each edge. Directed DCG (dDCG) nodes include source and sink nodes

involved in the epileptic events. By characterization of dDCG nodes by local information and
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using multi-objective optimization method on these measure values in all of frequency bands,

the leading IED nodes were estimated.

The efficiency of LI in comparison with other usual measures (global efficiency, local effi-

ciency, outdegree, and indegree) was studied by comparing the leading IED regions based on

different measures with visually inspected SOZs (vSOZ). In this perspective, LI is more in-

formative and skilled compared to other classic measures for the detection of source and sink

nodes since these usual measures are not well suited for this purpose. However comparing the

measure values of different measures provides complementary characterizing information based

on different definitions for more profound analysis of the role of each node. The advantage of LI

over usual measures for source and sink detection is that it considers incoming connections as

well as outgoing ones. Moreover LI considers the information which is carried by each of these

connections.

The new neighbor-Pareto optimization algorithm in multi-objective optimization considers

the regions in the neighborhood of Pareto front as well as Pareto front. The estimated `IED

regions based on classic Pareto optimization and our new neighbor-Pareto optimization algo-

rithm provide the same precision in the detection of the related vSOZs of each patient, while

neighbor-Pareto optimization provides more common number of regions with vSOZs. However

in the neighbor-Pareto optimization, the parameter ε should be chosen, while Pareto optimiza-

tion algorithm is parameter independent. We prefer to apply both of these algorithms: Pareto

optimization for identification of strong leading IED regions (Pareto front) and neighbor-Pareto

optimization for identification of less strong ones (neighbor-Pareto optimal solutions excluding

Pareto front). Such high-level information can be useful to identify the importance of each

vSOZ.

The proposed method was applied on iEEG recording of five epileptic patients. We could

provide statistically reliable leading IED regions using both IED and non-IED time intervals

(without using seizure periods) congruent with visually inspected SOZ by the epileptologist and

also with SOZ reported by [1] from induced ictal periods by electrical stimuli of iEEG recordings

of the same patients. Moreover, estimated leading IED regions are all included in the removed

regions (column remR of Table 10.9, section 10.4.1, page 110) during resective surgery. All of the

patients being seizure free after resective surgery, one can conclude that estimated leading IED

regions may present reliable information for the surgeon which should be useful for presurgical

evaluations. Thus, the proposed method can provide efficient and repeatable analysis from iEEG

recordings of epileptic patients.

11.2 Future works

Here is the list of the perspectives.

1. A simple perspective which leads to a fully automatic method is to replace the visual IED

and non-IED labeling with automatic methods.

2. We are interested in considering large number of patients including the patients with
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primary failure surgery results and secondary seizure-free surgery output to test the per-

formance of the method for difficult cases.

Although successful resective surgery or being the patients seizure-free is very valuable,

currently there is no way to determine if the removed area is too large. Inclusion of

estimated leading IED regions in the removed regions could be an argument toward more

conservative surgery. To study about this perspective, we need to consider a clinical survey

on large number of patients for a confident conclusion.

3. In the present method we are able to study the regions which the iEEG electrodes cover.

Due to the difficulties of invasive electrodes, only limited suspected epileptic zones can be

studied [14]. A very challenging perspective is to design an inverse model for localizing

epileptic regions from non-invasive scalp EEG recordings.

4. In this work the idea of DCG was used for the estimation of leading IED regions, we think

that DCG can be used for other applications, e.g. for identifying the source nodes related

to a special task.

More precisely, if we are interested in discriminating between one task (T1) and rest

(instead of rest, a second task (T2) can be considered), the DCG can be extracted from

couplings between signal pairs during T1 and rest. As such, we assume that DCG includes

the discriminated connections between T1 and rest and its nodes include either sources or

sinks related to T1. Using LI measure and multiple graph analysis, the source nodes related

to T1 can be estimated. The procedure explained is the same procedure demonstrated in

Figure 11.1, except the estimated leading IED regions should be replaced with the leading

regions related to T1. It is important to mention that large number of time intervals

related to T1 and rest are needed for statistically reliable results.

5. To estimate the directions of the edges of DCG, further investigations seem useful for

comparing the current method of time causality estimation with other methods like transfer

entropy.

6. In this work, we evaluated the efficiency of LI based on comparison of estimated leading

IED regions related to underlying measure with visually inspected SOZ. We are interested

in evaluating the efficiency of LI theoretically with other usual measures.
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Appendix A

Sparse differential connectivity graph

of scalp EEG for epileptic patients

A.1 Abstract

The aim of the work is to integrate the information modulation of the inter-relations between

EEG scalp measurements of two brain states in a connectivity graph. We present a sparse

differential connectivity graph (SDCG) to distinguish the effectively modulated connections

between epileptiform and non-epileptiform states of the brain from all the common connections

created by noise, artifact, unwanted background activities and their related volume conduction

effect. The proposed method is applied on real epileptic EEG data. Clustering the extracted

features from SDCG may present valuable information about the epileptiform focus and their

relations.

A.2 Introduction

Connectivity analysis using scalp EEG or fMRI data have been done based on different measures

in the literature. The prominent among these measures are synchronization likelihood [212], cor-

relation coefficients [20, 85], coherence [213], and Granger causality [214]. Furthermore, several

types of evidences have been suggested in the literature proposing some measures to characterize

topographical properties of the networks [5,20,80,215]. There are also interests in simultaneous

EEG and fMRI connectivity [215,216].

In this paper, we present a sparse differential connectivity graph (SDCG) to study the relation

between electrodes in two brain states based on the maximal overlap discrete wavelet transform

(MODWT) [217], wavelet correlation estimation [20, 218] by means of connectivity measure,

and multiple hypothesis t-test. In particular we address whether it is possible to benefit from

connectivity graphs on scalp EEG for characterization of epileptiform sources.

The paper is organized as follows. In Section A.3, we describe the background, and the

proposed approach. Section A.4 is devoted to the experimental results of the proposed method.

Concluding remarks are presented in Section A.5.
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A.3 Material and methods

A.3.1 Epilepsy

In epilepsy an area of the brain begins to discharge abnormally during a sudden and recurrent

attack called seizure. Between two seizures, interictal epileptiform discharges (IED) may appear

in the EEG measurements. The IEDs are waves or complexes (defined by International Fed-

eration of Societies for Electroencephalography and Clinical Neurophysiology (IFSECN), 1974)

discriminated from background activity. Since the appearance of IED has low probability, their

quantitative analysis is rather challenging.

A.3.2 MODWT correlation estimation

In this purpose, wavelet correlation [218] is used as a measure of connectivity. The estima-

tion of this measure is carried out utilizing the maximal overlap discrete wavelet transform

(MODWT) [217], which is similar to discrete wavelet transform, but the signal is not subsam-

pled and instead the filters are upsampled at each scale. Suppose ds1j [k] and ds2j [k] are the jth

level MODWT coefficients of two stochastic processes with zero-mean stationary Gaussian back-

ward differences (s1[k] and s2[k]) [88]. The MODWT estimator of the correlation coefficient of

s1[k] and s2[k] at scale j is:

ρ̂s1s2(j) =

ˆCov
{
d

(s1)
j [k], d

(s2)
j [k]

}
√

ˆV ar(d
(s1)
j [k]) ˆV ar(d

(s2)
j [k])

(A.1)

where ˆCov and ˆV ar are the estimations of covariance and variance respectively. This correla-

tion coefficient estimation is asymptotically normally distributed with characterized confidence

interval [88].

A.3.3 Proposed method

The flowchart of the proposed method is shown in Fig. A.1.

Figure A.1: Flowchart of the proposed method. The EEG preprocessing (top), graph computa-
tion and characterization (bottom).
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1. EEG data preprocessing: Since our final project is simultaneous EEG and fMRI anal-

ysis, the EEG data was recorded inside the MR scanner. The first preprocessing step is to

remove the MR artifacts using the method introduced in [219]. Next the expert neurologist

labels the cleaned data by determining the start and end time points of IED occurrences

as IED labels and time intervals without any IED as Non-IED labels. At the end, the 2-4

Hz MODWT coefficients of cleaned data are segmented using these labels.

We have experimentally found 2-4 Hz wavelet coefficients as the best representing features

of IED signals. The advantages of wavelet cross-correlation over Fourier cross-correlation

has been cited in [218]. Moreover low frequency trends of the EEG data, which have un-

wanted effects on correlation estimation, can be easily removed by wavelet decomposition.

2. Graph computation and characterization:

MODWT Correlation estimation: The MODWT cross-correlation based connectiv-

ity measure [88] is used to calculate the correlation coefficients between each pair channels

of IED (Non-IED) segments denoted as cIED
l [k] (cNon-IED

l [k])∈ R1×NC , k = {1, 2, . . . , NC},
l = {1, 2, . . . , NL} where NC , and NL are respectively number of possible connections, and

number of IED (Non-IED) labels. The matrix of row concatenation of cIED
l [k] (cNon-IED

l [k])

vectors, i.e. wavelet correlation of all the connections and all the time IED (Non-IED) la-

bels are denoted as IIED[k] (INon-IED[k]).

Reference sensitivity reduction and multiple hypothesis t-test (MHT): By thresh-

olding matrix of wavelet correlation, IIED[k] (INon-IED[k]) the common connectivity graph

[20] for IED (Non-IED) state will be obtained (two separate graphs for each state). These

common graphs have several problems in our application: (1) To obtain a sparse graph,

thresholding is needed, and the graph depends on the thresholding; (2) The neighborhood

nodes are connected due to the volume conduction effect; (3) Comparing two separate con-

nectivity graphs of two brain states to determine the distinguished connections is rather

challenging. These problems are solved by applying multiple hypothesis t-test between

IIED[k] and INon-IED[k]. For each connection a t-test upon the following hypothesis is

carried out:

{
Ht

0 : µt1 = µt2
Ht

1 : µt1 6= µt2
(A.2)

where t = 1, . . . , NC , and µi is the mean of IED (i = 1) and Non-IED (i = 2) groups. The

non-zero t−values construct the SDCG. The positive and negative t−values are separated

for better analysis. The positive (negative) t−values construct positive (negative) t−value
graph. A connection in positive (negative) t − value graph shows the increase of wavelet

correlations in IED (Non-IED) time intervals.

A problem regarding the effect of the EEG reference (EEG data of a specific reference is
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the subtraction of all the channels from that reference) is the sensitivity of the connectivity

graph to the reference. If we calculate the IIED [k] (INon-IED[k]) matrix for two different

references, the resulted graphs are not exactly the same, but not completely different. To

solve this problem, the IIED[k] (INon-IED[k]) matrix is calculated for all possible references.

Row concatenation of these matrices is denoted as RIED [k] (RNon-IED[k]). Then the MHT

is applied between RIED[k] and RNon-IED[k]. The resulted graph gives the significant robust

connections between the two brain states (IED and Non-IED) by considering the temporal

and spatial information.

Feature extraction and clustering: The nodes of the resulted SDCG are quantified

by global and local efficiency (GE and LE) [5,80]. High global efficiency of one node shows

that the node is connected to many nodes of the graph. Local efficiency of one node is

high when the neighbors of this node are highly connected. GE and LE are calculated for

all the nodes of positive and negative t − value graphs. The k -means method is utilized

to cluster the nodes (EEG electrodes) of the SDCG based on five features including GE,

LE of positive and negative t− value graphs and power t− values. We can calculate the

power of each electrode in IED and Non-IED time intervals in addition to correlations

between the electrodes. Power t− values are results of MHT between the powers of IED

and Non-IED time intervals in the related frequency band. The source cluster (cluster

including the electrodes close to the source) is labeled due to the physiological information

about the patient.

A.4 Results and discussion

The proposed method is applied on the real and simulated [220, 221] EEG data of epileptic

patients. Please refer to [219] for the protocol of the real data. In the SDCG of the simulated

data, the electrodes near the source receive IED signals (volume conduction effect related to IED

sources), hence the source electrodes (electrodes close to the source) have high LE in positive

t− value graph. Moreover, the GE of the source electrodes is high in negative t− value graph,

since the correlation between electrodes far from the source and source electrodes decreases

during IED time interval. Similar properties is experimented in the real data. Therefore, GE,

LE of positive and negative t− value graphs and power t− values (Section A.3) are selected to

cluster the electrodes. The source cluster obtained by clustering (k-means) in this 5-D feature

space for a real right frontal epilepsy data is shown in black in part (c) of Fig. A.2. The

positive, negative t − value graph connections, and the connections between the source cluster

electrodes are depicted in parts (a)-(c) of this figure, respectively. Solid (dashed) lines show

the positive (negative) t − value connections in part (c). Each positive (negative) t − value

connection indicates the increase of wavelet correlations during IED (Non-IED) time intervals.

The thickness of the connections is proportional to the absolute of t − values. The validity of

the results is proved in the simulated data in which the electrodes close to the true source are

detected. This result in real data is in accordance with the expert neurologist witness. Since
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(a) Positive t− value graph (b) Negative t− value graph

(c) Source electrode connections

Figure A.2: Sparse differential connectivity graph (SDCG) for right frontal epileptic patient.
(a) Positive ((b) negative) t − value graph connections show that the wavelet correlations of
IED (Non-IED) time intervals are significantly higher than Non-IED (IED) time intervals. The
thickness of the connections are proportional to the absolute of t − values. (c) The positive
(negative) t − value connections between source cluster electrodes are depicted in solid (dashed)
lines. The source electrodes are shown in black.

SDCG indicates the connections whose wavelet correlations changing during IED and Non-IED

time intervals, the noise, artifacts, background activity and their volume conduction effect are

removed. But the volume conduction of the IED sources exists which promotes clustering the

source electrodes as described above. Previous EEG connectivity studies suggested connectivity

analysis on EEG activities (results of applying linear inverse problem). However any inverse

problem method is based on some assumptions about the sources. The validity of the sources

are dependent on these assumptions and the problem of volume conduction exists. To avoid these

problems we applied connectivity analysis on the scalp EEG directly. However our aim is to

study the brain functionality during epileptic and non-epileptic states of the brain to determine

the related electrodes to the epileptiform sources from non-invasive EEG. This information is

valuable for the intracranial electrode insertion. For precise seizure focus localization, we will

apply the connectivity analysis on the intracranial EEG.
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A.5 Conclusion

The proposed connectivity graph indicates the significant distinguished connections between

two different brain states. By integrating complicated temporal information of EEG signal of

the epileptic patient into a sparse differential connectivity graph and clustering the extracted

features from the graph, we could determine the closer electrodes to the epileptiform sources.



Appendix B

MR artifact removal

B.1 Abstract

Integrating high spatial resolution of functional magnetic resonance imaging (fMRI) and high

temporal resolution of electroencephalogram (EEG) is promising in simultaneous EEG and fMRI

analysis, especially for epileptic patients. The EEG recorded inside a MR scanner is interfered

with MR artifacts. In this article, we propose new artifact reduction approaches and compare

them with the conventional image artifact reduction methods. Our proposed approaches are

based on generalized eigenvalue decomposition (GEVD) and median filtering. The proposed

methods are applied on experimental simultaneous EEG and fMRI recordings of an epileptic

patient. The results show considerable improvement over conventional MR artifact reduction

methods.

B.2 Introduction

Although simultaneous acquisition of EEG and fMRI may be essential for exploring the dynamics

and localization of neural activity, several artifacts interfere the resulting EEG. These artifacts

include: 1) MR artifacts, 2) RF pulse artifacts, and 3) Balistocardiogram (BCG) artifacts.

The MR artifact is caused by the switching of the magnetic filed gradients used in the image

acquisition, which induces unwanted voltages on the EEG recordings. The RF pulse artifact

is due to the time varying electromagnetic field pulses (RF pulses) used for excitation in MRI

recordings [222]. Although, the RF pulse has a very high frequency (in the order of several

megahertz); but it is nonlinearly rectified to low frequencies (below 100Hz), within the EEG

bandwidth. BCG artifact is caused by the micro motions of head EEG leads and wires within

the static magnetic field. These motions are related to the pulsatile blood-flow in the head.

Different methods have been proposed for removing MR artifacts. Sparse component decom-

position on the wavelet and discrete cosine basis [223], blind source extraction (BSE) followed

by averaging-and-subtraction [224], and adaptive finite impulse response (FIR) filtering [225],

are among these methods. Grouiller et al. [6] have compared some common methods such as

image artifact reduction (IAR) [7], independent component analysis (ICA), fMRI artifact slice

129
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template removal (FASTR), and filtering in the frequency domain using Fourier transform on

simulated and real data. IAR [7] is a conventional method based on subtraction of the averaging

artifact waveform followed by adaptive noise cancellation (ANC). FASTR is the combination of

principal component analysis (PCA) and IAR. Among the compared methods of [6], IAR was

shown to be the most effective method. This method is widely used for MR artifact removal in

the literature.

In this article, we propose new approaches for MR artifact reduction. The proposed methods

are based on generalized eigenvalue decomposition (GEVD) [226], [227], [228], [229], and median

filtering. In fact, EEG signals having MR artifacts have both stationary and non-stationary

properties at different time scales. MR artifacts include temporal structures that can be consid-

ered stationary. On the other hand, due to the switching of the magnetic field gradient, EEG

contaminated with MR artifact is non-stationary in the time domain. In this work, two repre-

sentations of MR artifact using this prior information have been utilized in an iterative GEVD

scheme, together with a median and low-pass filter to extract the MR artifact. The results of

the proposed method are compared with the IAR method over real simultaneous EEG and fMRI

of epileptic patients.

The organization of the paper is as follows. Section B.3, explains the GEVD and its appli-

cation in source separation. The proposed MR artifact reduction approaches are presented in

Section B.4. Section B.5 is devoted to the experimental results by reporting the results and quan-

titative comparison of the conventional IAR method and the proposed methods. Concluding

remarks are presented in Section B.6.

B.3 Review of Generalized Eigenvalue Decomposition

We assume zero-mean N -dimensional non-stationary observations x(t) that are mutually depen-

dent in different N channels1. We are interested in linear mixtures of the form y(t) = wTx(t)

that satisfy some measure of signal separability. For this, we define the following cost function:

J(w)
.
=
Eθ{y(θ)y(θ + τθ)}

Et{y2(t)}
(B.1)

where Et{·} represents averaging over t, and τ and τθ are respectively the time intervals and

the time-varying lags that are found from our a priori knowledge of the signal’s structure and

non-stationarity. By maximizing this cost function, we are looking for the y(t) with bounded

energy and with a maximal lagged correlation over specific time intervals (θ) and time-lags (τθ).

Equation (B.1) can be rewritten as follows:

J(w) =
wTBxw

wTCxw
(B.2)

where

Cx
.
= Et{x(t)x(t)T } (B.3)

1Such signals can for example be the output of a linear process of the form x(t) = As(t) +n where A ∈ RN×M
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and

Bx
.
= Eθ{x(θ)x(θ + τθ)

T } (B.4)

The matrix Cx is the covariance matrix of x(t), which is known to be symmetric and positive

definite. On the other hand, the matrix Bx is not generally symmetric and we need to make it

symmetric (Bx ← (Bx +BT
x )/2) for further use 2.

Equation (B.2) is in the form of the Rayleight quotient [229], and its maximum value is

achieved through the joint diagonalization of the matrix pair (Bx, Cx):{
WBxW

T = Λ

WCxW
T = I

(B.5)

where Λ is a diagonal matrix containing real generalized eigenvalues on its diagonal (in de-

scending order), and W = [w1, ...wN ] is the matrix containing the corresponding generalized

eigenvectors as its columns. The input signals may next be decomposed as follows:

y(t) = W Tx(t) (B.6)

where y(t) = [y1(t), ..., yN (t)]T has decorrelated components, with the first component maximiz-

ing defined quotient in (B.2).

B.4 Proposed MR Artifact Reduction Approaches

In Fig.B.1, a typical segment of EEG contaminated with MR artifacts of two channels is depicted.

MR artifacts are MR scanner dependent. MR artifact of the MR scanner used for our data are

repeated with a period of three seconds, with two seconds of activation in each period (magnetic

field gradient was on). A closer look at the MR artifacts of each period, shows sharp regular

peaks with dominant high amplitude that are repeated every 62-63 samples (indicated with

circles in Fig.B.1). Each peak is also surrounded by several smaller peaks.

In the previous Section, we noticed that the components extracted by GEVD are ranked

according to an order that depends on the statistics carried by the matrix Bx. The spatial

whiteness of the extracted components is guaranteed by the diagonalization of Cx. Here, our

objective is to use the above mentioned properties of the MR artifact structure to form the

matrix Bx, such that it contains the statistical properties of these artifacts. Therefore, since the

yi(t) calculated from (B.6) are sorted in descending order of their corresponding eigenvalues, the

MR artifacts are expected to be most concentrated in the first few components. In the following,

two models of MR artifact (Bx) using this prior information are presented.

a. First Statistical Measure

In the first approach, we first detect the dominant MR peaks from an arbitrary channel. Due to

2Note that here we are not concerned by the non-positive definiteness of Bx; since it is verified experimentally
that most of the eigenvalues has positive values and negative eigenvalues have significantly smaller absolute values
than the positive ones.
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the stationarity of these peaks, a robust method for detecting the peaks is a matched filter that

uses a typical MR artifact segment as its template filter. A window is considered around each

sharp peak of MR artifact. The resulted windowed segment is assumed to be stationary. Hence

the average of the correlation matrices of windowed segments of two proceeding peaks can be

a good model of statistical properties of MR artifact. In other words since the MR artifacts

of different channels are rather regular, the samples that are equally distanced from each peak

are highly correlated with one another. We can therefore, calculate the correlation between

the windows surrounding each peak as a statistical property of the MR artifacts. Carrying out

this procedure over the different channels, i.e., by considering each time sample of the different

channels as an N -dimensional vector, we can redefine the matrix Bx defined in (B.4) as follows:

Bx1 = Eθ{x(θ)x(θ + ∆pi)
T } (B.7)

where ∆pi = pi+1 − pi and θ ∈ {MR artifact time interval}. pi is the location of the i-th sharp

peak of the MR artifact in the original data.

b. Second Statistical Measure

In the first model, the covariance matrix Bx1 was calculated by direct vector-by-vector multipli-

cation of the samples of short windows of x(θ). According to Fig. B.1, each of these windows,

consists of a high-amplitude MR artifact peak and a few smaller peaks around it. Therefore, in

the statistical measure Bx1, each sample will have a contribution as strong as its energy. In other

words, the smaller peaks around the dominant peaks of MR artifact will have less influence on

the statistics of Bx1 and the GEVD procedure will make less attempt to remove such peaks from

the input signal. However, the strong and weak MR artifacts are somehow equally destructive

in EEG analysis. We can therefore attempt in equalizing the peaks before the calculation of our

statistical measure. This idea leads us to the following definition of the MR artifact covariance

matrix:

Bx2 = Eθ{[F(θ)⊗ x(θ)][F(θ)⊗ x(θ)]T } (B.8)

where the operator⊗ represents sample-by-sample multiplication, and θ ∈ {MR artifact time interval}.
F(θ) is a column of the matrix including weighting function in each row. The weighting func-

tion equalizes the peak amplitudes of the windowed segments. Bx2 is the average of weighted

windowed segments energies.

B.4.1 Nonlinear Median Filtering

The GEVD procedure provides a means of transforming the input data, into components that

are ranked according to their similarity with the MR artifacts. However, due to the linearity of

the transformation (B.6), the performance of this primary stage is limited and it can not fully

separate the MR artifacts from other components (including the EEG) except if the contami-

nated EEG signal perfectly satisfies a linear mixture (x = As + n), with a moderately low noise

and a sufficient number of observation channels. Here the model of contaminated EEG signal
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is rather complex as proved by our obtained results of applying linear ICA. Here we propose

the GEVD followed by a nonlinear denoising procedure that is applied to the first D (D < N)

components of the GEVD outputs while keeping the rest of (N − D) components unchanged.

This nonlinear denoising may indeed be applied to the original channels too (without the GEVD

procedure) that is our third proposed approach (Fig. B.2.c); but in this case we would not ben-

efit from the mutual information of the different channels. In fact, since the GEVD procedure

concentrates the energy of the MR artifacts in the first few components, the EEG (non-MR

artifact) components are less influenced by the nonlinear filtering when we apply this filter at

the output of the GEVD procedure.

In this study, a two-step moving window median (MWM) filter was used for nonlinear filtering.

Peaks such as the MR artifacts are less likely to pass the MWM filter and by subtracting the

output of the second MWM filter from the input signal, we can assure that the MR artifact peaks

are effectively removed, while the EEG components are least influenced. A theoretical study

of the MWM filter and its extensions may be found in [230]. As a rule of thumb, the median

filter window lengths should be wider than the width of the the MR artifacts. Therefore, the

first median filter highly attenuates the sharp peaks, while the second one (with a wider window

length) reduces the remaining peaks and smoothes the results. The MWM filter is further

followed by a low-pass filter, to suppress the possible out of band components introduced by

the nonlinear MWM filter and higher frequencies that are not interested in EEG analysis. After

applying the filtering procedure denoted above (Median-LPF) to the first D components of

GEVD, the D filtered and (N − D) unchanged components are back-projected to the input

space using the inverse of the decomposing matrix W T (Fig. B.2.a). The preprocessed data,

denoted by X in Fig. B.2, is the matrix including preprocessed EEG channels in each row.

Preprocessed data is contaminated EEG with MR artifact without dc and linear trend. To

detrend, the best straight-line fit is removed from each processed channel segment.

B.4.2 Iterative Denoising

Up to this point, we have improved the input signal quality by applying GEVD (using either

Bx1 or Bx2), the nonlinear filtering procedure, and the back-projection. As proposed in [231],

this procedure may be repeated in several iterations, each time over the output of the previous

run. This leads to a deflation procedure that removes one (or more) dimensions of the MR

artifacts in each iteration and is repeated until the residual signals are ‘sufficiently clean’. For

this, we need some measure of signal cleanness that can be used as the stopping criterion of the

iterative procedure. Due to the switching magnetic field gradient, we propose to use the ratio

between the signal energy of the MR artifact time intervals (θ) over the rest of data, i.e. when

the magnetic field gradient is off (θ̃)):

C = Ech
{Eθ{x̂2

ch(θ)}
Eθ̃{x̂2

ch(θ̃)}
}

(B.9)



134 MR artifact removal

where x̂(t) is the cleaned data of each channel in each iteration and Ech{·} is averaging over

channels. The iterative procedure is stopped when the normalized difference of cleaning criteria

between two iterations is less than a predefined threshold.

We hereby refer to this algorithm as Iterative GEVD. The overall flowchart of this algorithm

is depicted in Fig. B.2.a. Following, the two statistical measures defined in (B.7) and (B.8),

the iterative procedure can either be based on Bx1, which we call Iterative GEVD-Similarities

(IGS), or on Bx2, which we call Iterative GEVD-Weighted (IGW). The flowcharts of IGS and

IGW are depicted in Fig. B.2.b.

B.5 Experimental Results

B.5.1 Data

The recordings were made in the 3T scanner (3T Bruker BioSpin, Bruker Medizintechnik GmbH,

Ettlingen, Germany) utilizing an MR compatible EEG amplifier (SD32, Micromed, Treviso,

Italy) with 17 c-shaped electrodes positioned according to the 10/20 system (O1 and O2 were

not used for subjects’ comfort). The reference electrode was at Oz. A Gradient-Echo Echo

Planar Imaging (GE-EPI) sequence used for MR image acquisition [6]. The sampling rate of

EEG acquisition was 1024Hz. An anti-aliasing hardware low-pass filter with cut-off frequency

of 286.8Hz was applied. EEG signals were calibrated with a square wave of 100µV utilizing an

external calibrator plugged on all inputs. The epileptic patient was required to keep eyes closed

and relax during the experiment.

B.5.2 Results

Initially, the data were preprocessed for DC and trend removal. The three proposed approaches

were applied on the preprocessed data. For the first two approaches (IGS and IGW), as explained

before, the sharp peaks of the MR artifacts were detected using a matched filter (Fig. B.1). Next,

Cx, Bx1 and Bx2 were calculated according to the procedures explained in previous Sections.

In the IGS method Bx1 and Cx were jointly diagonalized, while in the IGW approach Bx2 and

Cx were jointly diagonalized. In each iteration of the proposed procedure, the first D = 3 of

the N = 15 components extracted by GEVD, were denoised by the nonlinear MWM filter. The

choice of D was based on empirical study of the output of the GEVD stage; the final results are

not very sensitive to the value of D > 3. In the nonlinear filtering step, the first and second

MWM window lengths used in the denoising were 20 and 40 samples (about 20ms and 40ms),

respectively, since the typical width of sharp MR artifact peaks are about 20ms. The low-pass

filter following the MWM filter was a first-order filter with a cut-off frequency of 45Hz, which

is close to the effective bandwidth of the EEG. Next, the filtered and unchanged components

were back-projected using the inverse of the decomposing matrix. This procedure was repeated

until the normalized difference of the cleaning criteria defined in (B.9) between two consecutive

iterations became less than 0.001. This limit was typically reached around 16 iterations. In Fig.
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B.3, a typical segment of contaminated EEG and the results of IGS and IGW are shown. For

comparison, the results of the Median-LPF and IAR [6,7] are added in Fig. B.3.

B.5.3 Evaluation Methods

By visual inspection (Fig. B.3), the proposed method outperforms the IAR method presented

in [6,7]. It is necessary to define an objective criterion for comparing the methods quantitatively.

Since there is no ground truth, measuring the performance of each method is challenging. A

first idea is to compare the signal with a reference which could be the signal acquired out of

scanner or the time segment without MR artifact. The EEG signal inside and outside of MR

scanner of a patient even with the same electrode locations are not necessarily similar. The

EEG itself is very non-stationary in the time domain, especially for epileptic patients, since

the IEDs (Interictal Epileptiform Discharges) appear spontaneously and the shape of IEDs are

different. Due to this problem, the EEG contaminated with MR artifact and cleaned signal were

compared. Comparable methods in the time domain were evaluated. The cleaned data were

segmented around each peak of the MR artifact. The similarity between each two proceeding

segments or all the segments was calculated. In other words, the periodicity of the cleaned data

around each peak was measured. The cleaned data preserves the periodicity under each peak

if the artifact removal method has not reduced MR artifact perfectly. In another method, the

similarity between cleaned and original data under each sharp peak was measured. The cleaned

data has some overshoots under each peak when the artifact removal method has not worked

efficiently. However, since these methods of evaluation were not consistent for different MR

artifact removal approaches, we compared spectral indexes of the EEG that are known to be

more consistent. The following three criteria were defined for this purpose:

F1 = 10log10Ech{Ei{P̂ (fpi)}
Ei{P (fpi)}}

F2 = 10log10Ech{Ei{ P̂ (fpi)
P (fpi)

}}

F3 = 10log10Ech{
Ei=17,34{P̂ (fpi)}
Ei=17,34{P (fpi)}}

(B.10)

where Ech{·} and Ei{·} are averages over channels and original data PSD peaks, respectively. P

and P̂ are the power spectral density (PSD) of the original and cleaned data, respectively. fpi

is an interval of 4Hz around the peak of the original data PSD in frequencies higher than 14Hz.

This range is chosen since the interested spikes or IEDs appear below 14Hz. Since the sampling

rate is not a multiple of the MR artifact frequencies, the energy of MR artifact frequencies can be

distributed among a few frequency bins of the PSD. Therefore, an interval of 4Hz is considered

around each PSD peak.

F1 and F2 calculate the PSD attenuation (in dB) of cleaned data around each peak of the

original data PSD (first row of Fig. B.4). The method that most attenuates the PSD peaks

of the MR artifact is preferred. Since sharp peaks are repeated in MR artifact every 62 or 63

samples and the sampling rate is 1024Hz, peaks around 16-17 Hz and their harmonics in the PSD

of the original data is related to MR artifact. Therefore, F3 measures the attenuation around
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Table B.1: Frequency domain evaluation results (in dB) at low and high frequency resolutions.
Orig-Out, IGS, IGW, Med-LPF, and IAR stand for original signal outside the MR scanner, It-
erative GEVD-similarities, Iterative GEVD-weighted, Median-low-pass filter and Image Artifact
Reduction [6], [7]

Frequency Low Resolution High Resolution

Method(dB) F1 F2 F3 F1 F2 F3

Orig-Out −34 −33 −23 −35 −30 −25
IGS −28 −27 −16 −28 −24 −17
IGW −27 −25 −14 −26 −23 −15
Med-LPF −26 −25 −13 −25 −22 −14
IAR −21 −23 −11 −20 −21 −12

peaks of 16Hz and 32Hz that are shown in Fig. B.4. The peaks in higher harmonics are not

considered in F3, because frequencies higher than 45Hz are not of interest in EEG analysis. PSD

of contaminated EEG, EEG signal out of MR scanner, and the processed signal by IGS, IGW,

Median-LPF, and IAR are depicted respectively from up to bottom in Fig. B.4. To compute

the PSD, the Discrete Fourier Transforms (DFT) of 0.5s windowed segments are calculated. To

compare the results in high frequency resolution, the same criteria (F1, F2, and F3) have been

utilized, but the PSD is computed by the DFT of 9s windowed segments. The window length is

chosen 9s since the gradient is switched on every 3 seconds. To measure how the cleaned data

is following this period, several periods (e.g., 3 periods) are needed.

F1, F2 and F3 in low and high frequency resolutions were calculated for IAR and the three

proposed methods. It is important to mention that the low-pass filter applied on the results

of the proposed methods utilized on the results of IAR method before F1-F3 calculation for

comparing all the methods equally. The calculations of F1-F3 were carried out over 50 different

30s EEG segments for an epileptic patient. The average of 50 calculations of F1-F3 are reported

in Table B.1. The method that better reduces the MR artifact has greater absolute values of

F1-F3 that is a necessary condition but not sufficient. Since the outer original signal has no

MR artifact (no PSD peaks after 14Hz), F1-F3 for the outer scanner signal has the maximum

absolute values that is the minimum resemblance to the contaminated EEG with MR artifact.

Hence the F1-F3 of the outer signal shows the minimum value in each column of Table B.1.

By comparing the results of Table B.1, it can be noticed that the proposed methods have

outperformed the conventional IAR method. Among, the proposed methods first IGS, second

IGW and third Median-LPF have better reduced the MR artifacts (using the defined criteria).

In the IGS method, components of GEVD are well amplified in the first few components. But

in the IGW the MR artifact is not extracted as good as the IGS method. The Median-LPF

method is very simple, but it does not consider the information between channels. It also does

not use the prior information as much as the first two methods. The PSD attenuation in MR

artifact peaks of the IGS method is comparable with the EEG acquired outside of the scanner.

This method has effectively mitigated MR artifacts from contaminated EEG.
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B.6 Conclusion

In simultaneous EEG and fMRI recording, MR artifact reduction is an important issue and the

development of an efficient artifact removal algorithm has significant effect on further processing.

We proposed three artifact removal methods. The performance of our proposed artifact removal

methods was evaluated on real epileptic patient data and appeared to outperform the conven-

tional IAR method. The IGS method has shown better performance in MR artifact reduction

compared to the other proposed methods. It is important to mention that as MR artifacts are

MR scanner dependent, our method has been customized to the MR scanner used for our data.

The presented algorithms were based on a linear model. Convolutive models will be studied in

the future work for this purpose.
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Figure B.1: Peak detection and windowing on MR Artifact of EEG signal. Peaks are shown
with circles.

Figure B.2: Flowchart of proposed MR artifact reduction algorithms. (a) Iterative GEVD; (b)
IGS and IGW, and (c) Median-low-pass filtering. D is the number of first few components in which
the MR artifact is most amplified.
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Figure B.3: Comparison of methods in reducing MR artifact from EEG signal. From up to
bottom, contaminated EEG signal with MR artifact, the processed signal by IGS, IGW, Med-
LPF, and IAR.

Figure B.4: Comparison of the PSDs. From up to bottom, PSD of contaminated EEG signal,
outer scanner EEG signal, and the processed signal by IGS, IGW, Med-LPF, and IAR.



140 MR artifact removal



Appendix C

Types of graphs

There are different types of graphs which we explain some of them in this appendix.

• Simple graph: in a simple graph between two nodes no more than one edge is allowed.

The edges are undirected and no loop (an edge with common ends) is permitted.

• Multi-graph: a graph in which more than one (directed or undirected) edge is allowed

between nodes. Moreover loops are allowed in multi-graphs.

• Undirected graph: a graph in which edges have no orientation.

• Directed graph (digraph): the edges of a directed graph have directions. Oriented graph is

a directed graph in which each edge is permitted to have a unique direction, i.e. between

nodes i and j only one direction exist.

• Cyclic and acyclic graph: cyclic graph is a digraph including closed loops of edges. Con-

versely, acyclic graph does not contain the loops of edges.

• Weighted graph: in a weighted graph all of the edges do not have the same importance.

To quantify this importance a weight (a number) is assigned to each edge.

• Dynamic graphs: these graphs may evolve over time which nodes and edges appearing or

disappearing.

Types of graphs in terms of connectivity

• Complete graph: A complete graph is a fully connected graph which includes the maximum

number of the possible edges.

• Connected and disconnected graphs: A path between nodes i and j is an ordered sequence

of non-repeated edges and nodes connecting node i to node j. A graph is called connected if

there exist at least one path connecting any node pairs, otherwise it is called disconnected.

A k-node connected (k-connected) or k-edge connected graph is a graph in which the

removal of some set of k nodes or of k edges makes it disconnected.
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• Strongly and weakly connected digraphs: For the digraphs if by replacing directed edges

with undirected ones the graph becomes connected then the digraph is called weakly

connected. If there exist one path from i to j and from j to i for every node pairs,

the graph is called strongly connected. Therefore an oriented graph cannot be strongly

connected, whereas it can be weakly connected or disconnected.
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Clustering coefficient and path

length

In this appendix, first we define the general definitions for graphs including adjacency matrix,

subgraph, and path. Next we explain clustering coefficient and path length for the graphs.

D.1 Adjacency matrix

Let us assume graph (undirected) U = (VU,EU), where VU and EU are the set of vertices (or

nodes) and the set of edges (or connections). The adjacency matrix, AU is symmetric as if there

is an edge between node pairs (i, j) then aij = aji = 1, otherwise aij = aji = 0. The complete

graph includes (N2 −N)/2 edges.

D.2 Subgraph

The subgraph of node i in graph U is defined as the graph of adjacent nodes of node i or

neighbors of node i, i.e. {j 6= i ∈ V| aij = aji = 1} denoted as Ui+ . When i is removed, the

subgraph is denoted as Ui− .

D.3 Path

A path from node i to node j is an ordered sequence of non-repeated edges and nodes connecting

node i to node j [17]. The shortest path length between nodes i and j is the minimum number

of edges traversed to get from i to j.

We assume the shortest path length matrix denoted as LU = [lij ], where lij is the shortest

path length between nodes i and j. LU is symmetric as the path from i to j is the same path

from j to i in graph U. If any path does not exist from i to j, then lij is equal to ∞.
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D.4 Clustering coefficient

Clustering coefficient is defined for connected graphs or strongly connected digraphs. The clus-

tering coefficient of node i in graph U is defined as:

C[Ui− ] =
order of Ui−

maximum possible number of edges in Ui−
=

order of Ui−

Ni×(Ni−1)
2

(D.1)

where Ui− is the subgraph of node i, i.e. the graph of the adjacent nodes of i if we remove i. Ni

is the number of nodes of Ui− . If Ui− is a complete graph then C[Ui− ] is maximum and equal

to 1. The clustering coefficient of graph U is defined as:

C[U] =
1

N

∑
i∈VU

C[Ui− ]. (D.2)

D.5 Path length

Similar to clustering coefficient, path length is also defined for connected graphs or strongly

connected digraphs. The path length P [U] of graph U is defined as the average of the shortest

path length lij between two arbitrary nodes i and j:

P [U] =
1

N(N − 1)

∑
i∈VU,i 6=j

lij (D.3)

P [U] can be divergent for a disconnected graph and oriented graphs. Latora et al. [80] proposed

local and global efficiency measures in terms of 1/lij in order to refine the problem of divergence.

The concept of local and global efficiency is related to clustering coefficient and path length,

respectively.



Appendix E

Graph classes

There are several graph classes which we explain some of them here. To define the graph classes,

we start with the definition of degree distribution.

E.1 Degree distribution

Distribution function p[k] [74, 76, 77] give the probability that a randomly selected node has

exactly k edges. p[k], k = 0, 1, . . . measures the proportions of nodes of the graph having degree

equal to k. p[k] is defined as:

p[k] =
nk
N

(E.1)

where nk and N are the number of nodes of the graph having degree of k and the size of the

graph, respectively. The n-moment of p[k] [74,76,77] can be defined as:

〈k〉n =
∑
k

knp[k] (E.2)

The first moment 〈k〉 is the average degree of graph.

E.2 Regular graph

In a regular graph all of the nodes have the same degree denoted as k. In a k-regular graph, the

degree of all of the nodes is equal to k. Similarly kout-regular and kin-regular digraphs can also

be defined.

E.3 Random graph

A random graph is a graph in which edges are distributed randomly. A simple random graph

has a bell-shaped Poisson degree distribution [73,75] as:

p[k] = e−〈k〉
〈k〉k

k!
. (E.3)
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Figure E.1: From left to right, an example of a 4-regular, small world and random graph with
the size of 20 are demonstrated. Rewiring with probability p is to change with probability p the
end of an edge from its neighborhood to another node in the graph chosen uniformly at random
with avoiding duplicate edges. By adding a few shortcuts to the regular graph (increasing the
rewiring probability p), its path length will be decreased, while keeping its clustering coefficient
high (small world network). By increasing the shortcuts or increasing the rewiring probability up
to p = 1, we decrease both the path length and clustering coefficient, which leads to a random
graph. This figure is taken from [5].

E.4 Small world network

In small world network there is a relatively short path between two nodes. A small world network

is a network with “small” path length and “large” clustering coefficient [5]. The regular graph

has high path length and high clustering coefficient. Because the neighbors of each node are

well connected while reaching a node from another can be through a long path. On the other

hand the random graph has low path length and low clustering coefficient. In random graphs

there are lots of shortcuts which shortens the paths to reach a node from another whereas the

neighbors of a node are not well connected. A small world network has low path length and

besides it has high clustering coefficient. An example of regular, small world and random graph

are demonstrated in Figure E.1 (from [5]).

E.5 Scale-free network

The degree distribution of the scale-free networks is no more Poisson, i.e. degrees are not

clustered around one characteristic average degree (scale). These networks have power-law tail

degree-distribution [17,74,232,233] as:

p[k] ∼ k−γ , γ > 1. (E.4)

where the degrees can span a wide range of values. Scale-free networks are a sub-class of small

world networks.



Appendix F

Multiple testing

Here we explain general concepts in multiple testing including the statistical hypothesis, test

statistic, significance level, p-value, and multiple test corection.

F.1 Statistical hypothesis and test statistic

Multiple testing methods are procedures to test Nv > 1 hypotheses simultaneously while con-

trolling an error rate [193,234].

We assume Nv dimensional observations X = [xmn], m = 1, . . . , No, n = 1, . . . , Nv, where

xm:, the mth row of matrix X ∈ RNo×Nv , contains Nv samples of mth observation. No and

Nv are the number of observations and variables, respectively. Let’s assume x1:, . . . , xNo: be

independent and identically distributed (i.i.d.).

In a one-sample multiple testing, we test:{
Hn

0 : µn = µ0
n

Hn
1 : µn 6= µ0

n

(F.1)

where n = 1 . . . Nv and Nv is the number of tests. µn is the mean of nth column of matrix X or

mean of x:n. µ0
n is the hypothesized null value. For example we can test if the coupling measure

values for No time intervals of Nv connections are significantly non-equal to zero (µ0
n = 0). H0

and H1 are called null and alternative hypotheses, respectively.

In two-sample multiple testing, we consider two populations l = 1 and l = 2. We assume Nv

dimensional observations Xl = [xlmn], m = 1, . . . , N l
o, n = 1, . . . , Nv, where N l

o is the number of

observations. xlm: is the mth row of matrix Xl ∈ RN l
o×Nv .

For the two-sample multiple testing we are interested to test:{
Hn

0 : µ1
n = µ2

n

Hn
1 : µ1

n 6= µ2
n

(F.2)

where n = 1 . . . Nv. µ
l
n is the mean of nth column of matrix Xl or mean of xl:n. A test statistic

(standardized or non standardized) is chosen depending on the probability model and the test

hypothesis. The test statistic is a quantity calculated from the data to decide about the rejection
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of H0. For example a standardized test statistic can be defined as:

tn =
µ̂1
n − µ̂2

n√
(σ̂1
n)2

N1
o

+ (σ̂2
n)2

N2
o

(F.3)

where µ̂ln and
(
σ̂ln
)2

are the estimated mean and variance of xl:n.

F.2 Significance level and p-value

Based on the distribution of test statistic (using predefined statistical distributions or estimated

by resampling methods) the p-values are calculated for each test.

The probability of falsely rejecting null hypothesis is Type I error rate or false alarm rate or

significance level denoted as α.

The p-value is the probability value of getting a test statistic value equal or greater than one

observed in the data assuming the null hypothesis is true. The p-value is compared with the α

of the test and if it is smaller than α then the null hypothesis of the test is rejected. p-value

provides how significant a test is. In other words p-value shows how likely the null hypothesis

is false. The smaller the p-value the more convincing the rejection of the null hypothesis. For

example for a test which its p-value is compared with α = 0.05, if the p-value is smaller than

0.05 then H0 is rejected at the 5% significance level.

F.3 Multiple test correction using familywise error rate (FWER)

If we do one test, the probability of the event of “making a Type I error” is equal to α. If we do

Nv tests, assuming the tests are independent, the probability of “making a Type I error” during

the Nv tests will be αNv . Similarly the probability of the event “not making a Type I error”

during Nv tests or family tests is (1− α)Nv . Therefore the probability of “making one or more

Type I errors” which is the complement of “not making Type I error” is:

αfw = 1− (1− α)Nv (F.4)

where αfw is familywise α and α is the per test α. For example for Nv = 10 tests, if the

probability of making a Type I error (α) is 0.05 then the probability of making at least one

Type I error for the whole family of Nv tests is αfw = 0.4. This is called α inflation in multiple

testing [235].

There are several methods for controlling the α inflation based on familywise error rate.

Here we explain a few methods of S̆idàk and Bonferonni [235, 236]. These methods introduce a

correction on α values in order to keep αfw fixed.

1. S̆idàk and Bonferonni corrections for independent tests:



Multiple testing 149

Equation (F.4) can be rewritten as:

α = 1− (1− αfw)1/Nv (F.5)

This equation is called S̆idàk equation [235,236] which shows that in order to obtain αfw

level, we need to adapt the α values used for each test. Since there is a fractional power

in (F.5), Bonferonni tried to simplify this equation by approximating the S̆idàk equation

with the first term of its Taylor expansion which is:

α ≈
αfw
Nv

(F.6)

S̆idàk and Bonferonni equations are linked as

α = 1− (1− αfw)1/Nv ≥
αfw
Nv

(F.7)

which shows that Bonferonni correction is more conservative and less powerful compared

to S̆idàk method. However (F.6) can be computed simpler than (F.5).

2. S̆idàk and Bonferonni corrections for non-independent tests: For non-independent tests,

the S̆idàk correction gives a lower bound [235,236]:

αfw ≤ 1− (1− α)Nv (F.8)

which can be rewritten as:

α ≥ 1− (1− αfw)1/Nv (F.9)

Based on this inequality the S̆idàk correction for non-independent tests can be approxi-

mated as:

α ≈ 1− (1− αfw)1/Nv (F.10)

which is conservative according to the inequality in (F.9). Sidàk and Bonferonni equations

are linked using previous Bonferonni approximation (F.6) as:

αfw ≤ 1− (1− α)Nv < Nvα (F.11)

The Bonferonni correction for non-independent test is approximated as (F.6).

Adjusted p-value based on FWER corrections

The p-values calculated based on the test statistic distribution (as we described in section F.2)

are termed as raw p-values and are denoted as p[n], n = 1, . . . , Nv. For a single test, the p-value

of each test is compared with α, if p-value is smaller than α then H0 is rejected. For multiple

test correction if we replace α with (F.10) assuming non-independent tests, then we have:

p[n] ≤ 1− (1− αfw)1/Nv . (F.12)
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If we rewrite this equation we obtain:

a[n] = 1− (1− p[n])Nv ≤ αfw, (F.13)

where a[n] is the adjusted p-value of each test based on Sidàk correction. For multiple testing

if a[n] is smaller than αfw then the null hypothesis of the nth test is rejected. Now the Type I

error rate for all of the tests are kept fixed equal to αfw.

Similarly the adjusted p-values can be obtained for Bonferonni correction method as:

a[n] = Nvp[n]. (F.14)



Appendix G

Cross-correlation coefficient of

non-stationary signals

G.1 Introduction

In this appendix, firstly we discuss about the choice of maximum time lag in the MMCC es-

timation for simulated non-stationary signals. Secondly, we discuss about the choice of this

parameter for MMCC and time causality estimation for real non-stationary signals. Thirdly

we explain about the effect of byphasic signals on MMCC estimation. Finally, the concluding

remarks are brought.

G.2 The choice of maximum time lag

Here we discuss about MODWT cross-correlation and time causality estimation between non-

stationary simulated and real signal pairs.

G.2.1 Simulated data

Let’s consider two non-stationary time series x(t) and y(t) as following:
s(t) = sin(2π f

fs
t)

w(t) = c1 + exp−
(t−τ1)

2

2σ2

x(t) = s(t)w(t) + c2n(t)

y(t) = c3x(t− τ∗) + c4n1(t) + c5

(G.1)

where w(t) is a Gaussian window with mean and variance equal to τ1 and σ2, respectively. τ∗ is

the time causality between time series x and y. n and n1 are standard Gaussian noise. c{1,...,5}

are positive constants. f and fs are the frequency and sampling rate, respectively. The time

duration of s(t)w(t) is proportional to σ2. We assume djx and djy as the MODWT coefficients of

x and y at frequency level j, respectively. The cross-correlation coefficient (ρ̂(τ)) is estimated

(6.5) between djx and djy for different time shifts τ (|τ | ≤ τmax). τmax is the maximum time
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Figure G.1: Cross-correlation between MODWT coefficients of simulated signal pair for different
frequency bands are depicted in second (σ=10) and forth (σ = 50) columns. From second to last
row the frequency bands are 4-8 Hz, 8-16 Hz, 16-32 Hz, and 32-64 Hz, respectively. Temporal
signal pairs are indicated in the first row for σ = 10 (first column) and 50 (third column). Their
respective MODWT coefficients are demonstrated in odd columns.

shift. The values of simulated data parameters are reported in Table G.1.

Table G.1: Simulated data parameters.

Parameter f(Hz) fs(Hz) t(sec) τ∗,τ1 (sample) c1:5

value 6 512 0:2 25,500 0.025,0.02,2,0.05,0.3

Figure G.1, shows an example of signals in the form of x and y. The first row demonstrates

the temporal x and y and first and third columns correspond to σ equal to 10 and 50 samples,

respectively. djx and djy of frequency levels j=6:3 (4-8 Hz, 8-16 Hz, 16-32 Hz, and 32-64 Hz) are

shown in rows 2:5, respectively. Their respective cross-correlation functions (CCF) are depicted

in the second and forth columns. The CCF of djx and djy with σ = 10 are depicted for different

values of τmax in columns of Figure G.2. From first to forth columns, the CCF is depicted for

τmax less than τ∗=25 samples (20 samples), greater than τ∗ (27 and 100 samples) and adaptively

selection of τmax (this method is explained later in this section), respectively. The lag at which

the maximum of absolute CCF occurs is marked on the horizontal axis of images in Figures G.1

and G.2.

In order to provide proper MMCC estimation and true lag estimation performance, the correct

choice of τmax is important. The true lag (τ∗) between non-stationary signals, djx and djy, can
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Figure G.2: Cross-correlation between MODWT coefficients of simulated signal pair (Figure
G.1) are shown for τmax = 20, 27, 100, and adaptive selection of τmax from first to last columns,
respectively. From first to forth row the related frequency bands are 4-8 Hz, 8-16 Hz, 16-32 Hz,
and 32-64 Hz, respectively.

be greater or smaller than 1
f (sec) as these signals are not periodic. When τ∗ is greater than

fs
f (sample), the true lag can be missed by confining τmax to less than fs

f (sample). In the first

column of Figure G.2, it can be seen that the MMCC may not be properly estimated since

τmax is not large enough. Therefore, τmax is suggested to be big enough to include the true

lag. Contrarily, increasing the number of time shifts (τmax), may increase variance and bias of

cross-correlation for particular signals (Please see Appendices H and I).

In second (τmax = 27 samples) and third (τmax = 100 samples) columns of Figure G.2,

the true lag is obtained correctly which τmax includes the true lag. However τmax = 100 is

much greater than it is needed (τ∗ = 25 samples), which may increase the variance and bias

of MMCC estimation. To end with, the smallest maximum number of time lags examined in

cross-correlation analysis including the true lag (τ∗) can be a proper selection. Satisfying this

condition, requires the physiological knowledge about the time lags between underlying signals.

Here we explain an algorithm for an adaptive selection of τmax to deal with a physiological

range of time lags as following. Let’s assume the physiological constraint be the range [a, b]. We

initially start with τmax equal to lower limit of physiological range (a) and increase it iteratively

up to its upper limit (b). At each iteration we test if τmax is sufficiently large to obtain the

MMCC and the two nearest neighborhood extrema, otherwise τmax is increased. This procedure

continues till τmax reaches to b. The results of this adaptively selection of τmax is shown in
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Figure G.3: Cross-correlation between MODWT coefficients of a typical real signal pair for
different frequency bands. From second to last row the frequency bands are 2-4 Hz, 4-8 Hz, 8-16
Hz, 16-32 Hz, and 32-64 Hz, respectively. The temporal signal pair (first row) in a typical IED time
interval and wavelet coefficients (first column) of different frequency bands are depicted. CCF for
τmax = 27, 100 samples, and adaptive selection of τmax for the demonstrated IED time window are
shown in second to forth columns, respectively. Last column shows the CCF for the same signal
pair during the whole selected data for processing.

the last column of Figure G.2 for [a, b] = [25, 100] samples. It can be seen that using adaptive

method, the true lag is estimated correctly with an adaptive τmax associated to each frequency

level. However this method is computationally expensive and time consuming.

G.2.2 Real data

Here we demonstrate the effect of τmax on MMCC estimation for a typical real signal pair.

This signal pair belongs to two nodes located in left posterior hippocampus (node 40) and

left amygdala (node 13) for P1. In Figure G.3, the first row shows the temporal signal pair

related to nodes 40 (upper) and 13 (lower) during a typical IED time window. The first column

demonstrates the MODWT coefficients of this signal pair. Rows from 2 to 6 are related to the

frequency ranges 2-4 Hz, 4-8 Hz, 8-16 Hz, 16-32 Hz, and 32-64 Hz, respectively. The second to

forth columns show the CCF between the MODWT coefficients for τmax equal to 27 and 100

samples, and adaptively selection of τmax respectively. The fifth column is the CCF for the whole

length of selected data for processing. The physiological propagation delay (time causality) for

our application is reported as [25, 100] samples in [22]. For the demonstrated signal pair the

time causality (section 6.3, page 61) is almost the same for the different selection of τmax in the
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second to forth columns and second to fifth rows. The cross-correlation coefficients between the

signal pair is low in the 32-64 HZ frequency band (last row). This signal pair are connected in

the DCGs related to 2-4 Hz and 8-16 Hz and in the related dDCGs, node 13 causes node 40

according to the estimated time causalities in these frequency bands (second and forth rows of

last column).

Empirical variance of MMCC and time causality for different choices of τmax

The empirical variance of MMCC estimation is approximated as the standard deviation of es-

timated MMCC in different IED time intervals. Increase of τmax may increase the empirical

variance of MMCC estimation. The box plot of MMCC for the same signal pair of Figure G.3

for different IED time intervals are shown in Figure G.4(b). The box plot of MMCC is depicted

for τmax = 27 and 100 samples in purple and green colors, respectively. Columns one to five

correspond to frequency bands 2-4 Hz, 4-8 Hz, 8-16 Hz, 16-32 Hz, and 32-64 Hz, respectively.

Considering the box plot of different signal pairs for different patients, the empirical variance of

MMCC is increased for τmax = 100 compared to 27 samples specially for lower frequencies.

Figure G.4(a) shows the box plot of time causality. Purple and green box plots are associated

with τmax=27 and 100 samples, respectively. From first to last columns, the box plots are

depicted for different frequency bands (2-4 Hz, 4-8 Hz, 8-16 Hz, 16-32 Hz, and 32-64 Hz),

respectively. The median of time causalities for each frequency band is almost the same for

τmax = 27 ({ -22,-13,-8,-10,-13}) and 100 ({ -24,-13,-8,-11,-14}), while the empirical variance of

time causality (standard deviation of estimated time causality in different IED time intervals)

is increased for lower frequencies.

For τmax = 27 samples, if the MMCC does not occur in |τ | < τmax (the maximum of CCF

occurs at a time lag greater than 27 samples), no number is considered for the MMCC, i.e. the

true lag between underlying signals in the related frequency band is greater than τmax.

G.3 MMCC estimation of byphasic signals

The MODWT cross-correlation function between non-stationary time series including byphasic

signals may alternate in sign and tend to damp out with increasing time shift. The rate of

this damping is different in different time windows and frequency ranges, depending on the

underlying signals. In the time interval the two non-stationary signals stay in high correlation,

the CCF alternates in sign. By decreasing the time duration of the byphasic term, the damping

rate of CCF may increase. This issue is tested in the simulated data explained in section G.2.1,

page 151. The time duration of byphasic term (s(t)w(t)) is proportional to σ2. The decrease

of damping rate of CCF by increasing σ is shown in second row and even columns of Figure

G.1. σ is increased from second (σ = 10) to forth (σ = 50) column. For example, in second row

and even columns, the value of MMCC and neighborhood extrema are {1,0.75 } and {1,0.99 },
respectively, which shows high damping rate of CCF for σ = 10 rather than σ = 50.

In real data, the same alternation can be seen in CCF. One of the values of the alternating
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(a) ρmax (b) τ∗

Figure G.4: The box plot of (a) MMCC and (b) time causality (6.6) for τmax = 27 (purple) and
100 (green) samples. First to fifth columns corresponds to 2-4 Hz, 4-8 Hz, 8-16 Hz, 16-32 Hz and
32-64 Hz, respectively. Within box plots, the solid central line is the median of (a) ρmax and (b)
τ∗, and the edges of the box are the lower and upper quartiles (25th and 75th percentiles). The
whiskers extend from each end of the box to the extreme values within 1.5 times the interquartile
range. Outliers are the points out of this range that are shown by ’o’ sign.

peaks is numerically greater but to know the significance of the greater peak, the confidence

interval of each cross-correlation value should be studied. The related topic for the MMCC

and time causality estimation are discussed in section 9.2, page 87 and section 6.3.3, page 63,

respectively. Here we briefly summarize this issue in the next section.

G.4 Conclusion

The variance of MMCC estimation can be due to the non-stationarity of the couplings between

signal pair during different time intervals and the estimation error. Different parameters can

increase the estimation error like the maximum number of time lags, damping rate of CCF,

number of independent samples of wavelet coefficients (appendix H, page 157), significance

of CCF values, and correct choice of related frequency bands. Since the estimation of the

distribution of our test-statistic in terms of MMCC is difficult due to non-stationarity of signals,

in DCG calculation we used permutation-based multiple testing [193] (section 6.2.3, page 58)

which assumes less assumptions about the data while it is a powerful tool for identification of

significant discriminated connections. In time causality estimation, we considered long temporal

signals for a better estimation of MMCC and we tested the reliability of time causality using

jackknife methods (section 6.3.3, page 63).



Appendix H

MODWT cross-correlation between

non-stationary fractionally

differenced signals

Let’s assume x and y be the realizations of two stochastic processes whose rxth and ryth or-

der backward differences [88, 163, 170] are stationary Gaussian processes with zero mean. If

Nf > 2r, r = max(rx, ry) then djx and djy are the realizations of stationary processes with zero

mean where djx and djy are the MODWT coefficients of x and y, respectively. Nf is the length

of base wavelet filter. Whitcher [88] has shown that if Nf > 2r and
{
djx,d

j
y

}
is the realization of

a bivariate Gaussian stationary process with square integrable autospectra, then the MODWT

cross-correlation estimation ρ̂(djx,d
j
y, τ) (6.5) is asymptotically normally distributed with char-

acterized confidence interval. The approximate 100 (1-2p)% confidence interval of ρ̂(djx,d
j
y, τ)

is calculated as [88,170]:[
tanh

{
tanh−1(ρ̂(djx,d

j
y, τ))− Φ−1(1− p)√

T j − 3

}
, tanh

{
tanh−1(ρ̂(djx,d

j
y, τ)) +

Φ−1(1− p)√
T j − 3

}]
(H.1)

where p is set to 0.025 for the confidence interval at 95% confidence level. Φ−1 is the quantile

function of Gaussian distribution. T j is the length of independant samples of wavelet coefficients

at level j. T j= T
2j
−
[
(Nf − 2)(1− 2−j)

]
[88]. T is the length of temporal signal. Equation (H.1)

provides the confidence interval for τ = 0 which can be generalized [88] for arbitrary lag (τ)

by replacing T j with T j − τ . Increase of τmax or increase of 1√
(T j−τmax−3)

for constant T j ,

may increase the confidence interval of MODWT cross-correlation. This increase is greater for

smaller number of T j .

Increase of 1√
(T j0−τmax−3)

for different choices of τmax and for different length of T j0 is

shown in Figure H.1. T j0 is T j at a given frequency level j0. Since increase of τmax decreases

the number of samples of underlying signals in cross-correlation function analysis, therefore τmax

is generally preferred to be a function of length of underlying signals (T j0), like τmax = T j0
4 ,√

T j0 , or 10log10(T
j0

2 ) [84,186]. It can be seen that 1√
(T j0−τmax−3)

is less for τmax = 10log10(T
j0

2 )
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Figure H.1: Increase of confidence interval of cross-correlation estimation by increment of max-
imum number of time lags. This confidence interval is proportional to 1√

(T j0−τmax−3)
(H.1). T j0

and τmax are the number of independent samples at a given level j0 and maximum time lag ex-
amined in cross-correlation analysis. 1√

(T j0−τmax−3)
is depicted for different number of T j0 and

different choices of τmax.

rather than τmax = T j0
4 for shorter length signals. Two fixed choices (τmax = 27 and 100 sample)

are compared with the two former length-dependent choices of τmax. These choices correspond

to some physiological knowledge.



Appendix I

Bias of maximum cross-correlation

coefficient

Increasing τmax, and eventually increasing the number of comparisons between variables for

choosing the largest absolute cross-correlation between a pair of series out of 2τmax+1 computed

cross-correlation coefficients, may increase the bias of cross-correlation estimation [206,237].

Let {ρ(−τmax), . . . , ρ(0), . . . , ρ(τmax)} be the realizations of an independent, identically

distributed (i.i.d.) zero-mean and unit variance Gaussian random variable ρ(τ). The bias

of maximum cross-correlation estimation inflates by increasing the number of comparisons

(Nτ = 2τmax + 1) as [238]:

lim
Nτ→∞

P{ max
τ∈[−τmax,τmax]

|ρ(τ)| <
√

2log(Nτ )} → 1 (I.1)

where P is the probability.
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[27] A. Ozkaya and M. Korürek, “Estimating Short-Run And Long-Run Interaction

Mechanisms In Interictal State,” Journal of Computational Neuroscience, vol. 28, pp.

177–192, 2010, 10.1007/s10827-009-0198-7. [Online]. Available: http://dx.doi.org/10.

1007/s10827-009-0198-7

[28] G. E. Chatrian, L. Bergamini, M. Dondey, D. W. Klass, M. Lennox-Buchthal,

and I. Petersén, “A Glossary Of Terms Most Commonly Used By Clinical

Electroencephalographers,” Electroencephalography and Clinical Neurophysiology, vol. 37,

no. 5, pp. 538 – 548, 1974. [Online]. Available: http://www.sciencedirect.com/science/

article/B6SYX-482XHF9-167/2/bf55c776fc11a44dc87e7c9bf703d747
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[37] H. Berger, “Über Das Elektroenkephalogramm Des Menschen,” Archiv für Psychiatrie und

Nervenkrankheiten, vol. 87, pp. 527–570, 1929.

[38] B. N. Cuffin, “Effects Of Local Variations In Skull And Scalp Thickness On EEG’s And

MEG’s,” TBME, vol. 40, no. 1, pp. 42 –48, jan. 1993.

[39] O. Foerster and H. Altenburger, “Elektrobiologische Vorgänge An Der Menschlichen.”

Dtsch Z Nervenheilkd, vol. 135, pp. 277–88, 1935.

[40] C. Ajmone-Marsan and J. Van Buhen, “Epileptiform Activity In Cortical And Subcortical

Structures In The Temporal Lobe Of Man.” M. Baldwin and P. Bailey, Ed. Temporal lobe

epilepsy. Springfield, (IL): C. T. Charles, pp. 78–108, 1958.

[41] D. R. Nair, R. Burgess, C. C. McIntyre, and H. Lüders, “chronic Subdural Electrodes In
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terministic And Stochastic Methods: A Combined Strategy,” Acta Neurobiol Exp (Wars),

vol. 60, no. 1, pp. 87–108, 2000.

[157] D. Van De Ville, J. Britz, and C. M. Michel, “EEG Microstate Sequences In Healthy

Humans At Rest Reveal Scale-Free Dynamics,” Proceedings of the National Academy of

Sciences, pp. 1–6, 2010.

[158] D. Brunet, M. M. Murray, and C. M. Michel, “Spatiotemporal Analysis Of Multichannel

EEG: CARTOOL,” Comput Intell Neurosci, vol. 2011, pp. 1–15, 2011. [Online]. Available:

http://dx.doi.org/10.1155/2011/813870

[159] X. Li, J. Polygiannakis, P. Kapiris, K. Eftaxias, and X. Yao, “Fractal Spectral Analysis Of

Pre-Epileptic Seizures Phase: In Terms Of Criticality,” J Neural Eng, vol. 2, pp. 11–16,

2005.

[160] K. Indiradevi, E. Elias, P. Sathidevi, S. D. Nayak, and K. Radhakrishnan, “A

Multi-Level Wavelet Approach For Automatic Detection Of Epileptic Spikes In The

Electroencephalogram,” Computers in Biology and Medicine, vol. 38, no. 7, pp.

805 – 816, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/

B6T5N-4SR6FXJ-3/2/caf5cde2d68c3bb655e8e890a3eb87d2

[161] T. Conlon, H. Ruskin, and M. Crane, “Seizure Characterisation Using Frequency-

Dependent Multivariate Dynamics,” Computers in Biology and Medicine, vol. 39, no. 9,

http://www.sciencedirect.com/science/article/B6WD0-45BBW60-11/2/6bba2f0a5031e9ce41e7f52b1c4749d2
http://www.sciencedirect.com/science/article/B6WD0-45BBW60-11/2/6bba2f0a5031e9ce41e7f52b1c4749d2
http://www.sciencedirect.com/science/article/B6T3M-3V8TY6N-1/2/4662e6e10fb5ba3962faa0844a016616
http://www.sciencedirect.com/science/article/B6T3M-3V8TY6N-1/2/4662e6e10fb5ba3962faa0844a016616
http://dx.doi.org/10.1155/2011/813870
http://www.sciencedirect.com/science/article/B6T5N-4SR6FXJ-3/2/caf5cde2d68c3bb655e8e890a3eb87d2
http://www.sciencedirect.com/science/article/B6T5N-4SR6FXJ-3/2/caf5cde2d68c3bb655e8e890a3eb87d2


BIBLIOGRAPHY 175

pp. 760 – 767, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/

B6T5N-4WP4BJJ-1/2/eef11294fb8e1983ff6f8c4e17b97f3e
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