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toujours été à l’écoute malgré son emploi de temps chargé, et aussi pour la patience infinie
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a.s. almost surely

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying Modulation

BTS Base station

cdf Cumulative Distribution Function

CDMA Code Division Multiple Access

CST Conventional superimposed training

dB Decibels

DDST Data-Dependent Superimposed Training

DFT Discrete Fourier Transform

DML Deterministic Maximum Likelihood

EM Expectation Maximization algorithm

FA-ML Maximum Likelihood with Finite Alphabet Constraints

GML Gaussian Maximum Likelihood
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i.i.d. Independent and Identically Distributed

IDFT Inverse Discrete Fourier Transform

LMMSE Linear minimum mean square error
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MIMO Multiple Input Multiple Output

MMSE Minimum Mean Square Error

MSE Mean Square Error
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ℑ() Imaginary part
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()
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()
T
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E Statistical expectation

det() Determinant operator for matrices
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Tr Trace operator
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f (k) k-th Derivative of Function f

A−1 The inverse of matrix A

A# The pseudo inverse of matrix A

IN Identity matrix of size N



Résumé

L’analyse de performance des systèmes de communication numérique est essentielle à plusieurs
égards. Elle permet à titre d’exemple, de trouver les éléments déterminants de leurs perfor-
mances, et aussi de guider la conception des systèmes futurs. Trouver des formules explicites
qui traduisent de façon fidèle le comportement de ces systèmes est l’un des sujets de recherche
les plus étudiés depuis quelques années. C’est dans ce contexte que nous situons notre travail
dans la première et la deuxième partie du présent rapport. Nous nous intéressons en premier
lieu aux performances en terme de taux d’erreur binaire et de probabilité de coupure des sys-
tèmes utilisant des séquences d’apprentissage pour l’estimation du canal. En nous basant sur
les résultats théoriques obtenus, nous proposons aussi des stratégies optimales pour l’allocation
de puissance. En second lieu, nous nous intéressons aux performances des systèmes utilisant le
filtre LMMSE dans un contexte multi-utilisateur. Nous montrons que le SINR converge vers
une Gaussienne dont on calcule la moyenne et la variance. Pour estimer de façon précise le taux
d’erreur binaire et la probabilité de coupure, nous utilisons la distribution Gamma généralisée
dont nous ajustons les paramètres de telle façon à ce que ses trois premiers moments égalisent
les trois premiers moments asymptotiques. Nous montrons par simulations que cette approche
permet une bonne approximation du taux d’erreur binaire et de la probabilité de coupure même
pour des systèmes à dimensions réduites.

D’un autre côté, avec des applications de plus en plus exigeantes en terme de débit, la
tendance actuelle est de chercher de nouvelles méthodes pour réduire au maximum le nombre
de symboles pilotes. A cet égard, les méthodes d’estimation aveugle ont été souvent avancées
compte tenu de leur avantage majeur par rapport aux schémas classiques, à savoir la suppres-
sion de la séquence d’apprentissage. Cependant, l’implémentation pratique de ces méthodes se
heurte à de nombreuses difficultés ayant trait à leur sensibilité à la surestimation de l’ordre et
à leur complexité, souvent perçue comme élevée. D’autres méthodes connues sous le nom de
méthodes semi-aveugles ont été proposées. Parmi elles, se trouvent des méthodes qui combinent
de façon linéaire via un coefficient dit de régularisation, un critère aveugle à un critère moin-
dre carré issu de la séquence d’apprentissage. Le choix du coefficient de régularisation est fait
de telle sorte à optimiser l’erreur quadratique moyenne asymptotique, pour laquelle plusieurs
chercheurs, confortés par les résultats des simulations supposent l’existence d’un seul minimum.
Néanmoins, aucune preuve théorique de ce constat n’a été établi. C’est dans ce contexte que
s’inscrivent nos contributions dans la dernière partie de notre rapport. S’agissant des méth-
odes aveugles, nous proposons une méthode d’estimation robuste à la surestimation de l’ordre,
et dont l’implémentation pourrait s’appuyer sur des algorithmes adaptatifs de faible complex-
ité. Nous menons aussi une étude théorique sur la robustesse des méthodes aveugles basées
sur la norme ℓp. Plus explicitement, nous apportons des preuves théoriques qui témoignent de
l’efficacité de l’utilisation de la norme ℓp pour robustifier les méthodes aveugles. Concernant les
méthodes semi-aveugles utilisant le principe de régularisation, deux contributions ont été ap-
portées. La première porte sur la preuve de la quasi-convexité de l’erreur quadratique moyenne
asymptotique. Elle confirme la conjecture déjà énoncée sur l’existence d’un unique coefficient
de régularisation optimal. En ce qui concerne la deuxième contribution, nous proposons de sub-
stituer le coefficient de régularisation par une matrice de régularisation. Contrairement à toute
attente, l’optimisation de l’erreur quadratique moyenne est plus facile dans ce cas, et aboutit à



une forme explicite de la matrice de régularisation optimale.

Mots-clés: Analyse de performance, système MIMO, Système multi-utilisateur, Méthodes
d’estimation aveugle, Norme ℓp, Méthodes d’estimation semi-aveugle



Introduction

General context and motivations
Over the last decades, wireless communication systems have changed dramatically. While the

first generation systems were analog and tailored for voice communications, second-generation
systems, namely GSM, employ digital transmission and enable both voice and low-data rate
services. With the extensive growth of Internet, new applications involving multimedia services
emerged with the third generation systems. To meet the new performance requirements, these
latter employ advanced technologies.

One of the major challenges of advanced broadband technologies is to combat the experienced
channel fading. While narrow-band channels were valid for modelling first generation systems,
they became totally irrelevant for second and third generation systems. As a matter of fact,
when operating over broad bandwidths, the channel delay spread becomes higher than the
sampling period, and as such, the received signal is the superposition of all echo signals arising
due to multi-path propagation. To combat fading and to further increase the data rate for
future systems, the use of MIMO techniques has been pushed forward by many theoretical
studies. The work of Telatar, showing the great potential of MIMO channels in increasing
the system capacity is considered as one of the most important findings in this area. It has
spawned an intensive effort to study the statistics of the Shannon mutual information, for more
practical (correlated) MIMO channels including the so called Kronecker correlated channels,
generally spatially correlated channels and general variance profile channels. Such analysis
provides insights about the maximum number of bits that can be transmitted reliably over
a given channel. Nevertheless, the data rates stipulated by the mutual information are not
achievable in practice. The best that we know, is that there exists an optimal strategy for which
the data rate will be maximum. Therefore, other performance indexes, like the BER or the
outage probability might be more appropriate especially for sub-optimum strategies. Despite
there practical relevance, the study of such performance indexes was limited to very specific
situations where the statistics of the post processing SINR could be derived for finite system
dimensions. The general case which allows for correlated channel models or imperfect channel
estimation was either not investigated or worked out under non-realistic assumptions. This
motivates our research work in the two first parts to develop new techniques allowing closed-
form derivations for BER and outage probability metrics.

Apart from performance analysis issues, another attractive area of research regarding channel
estimation and equalization strategies have spurred the interest of many researchers. To improve
the system spectral efficiency, blind methods have been often pushed forward. Nevertheless, their
use in practice was limited to specific applications where pilot symbols are unavailable. This
is principally attributed to several practical considerations pertaining their high computational
complexity as well as their sensitivity towards channel order overmodeling. That’s why, a major
effort is now devoted to improve the robustness of blind equalization methods.

On the other hand, training based techniques were thus preferred for their low complexity
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and their good channel estimation quality. The price to be paid, is a reduced spectral efficiently
owing to the transmission of known symbols during the training period. Beyond finding solutions
for the practical difficulties experienced by blind techniques, the research trend is now to look
forward combined blind and training based methods, referred to as semi-blind techniques, in
order to enhance the channel estimation quality or to shorten as much as possible the training
periods.
Contributions and organization We organize our report into three parts. The first part deals
with the performance analysis of training based systems. After a brief overview on channel
models, we investigate in the second chapter, the performance in terms of BER and outage
probability of three training based schemes: the time division multiplexing scheme as well as
two superimposed training schemes based on the simultaneous transmission of pilot and data
symbols. When imperfect channel estimation is taken into account, the statistics of the post-
processing SNR has no closed-form expressions for finite size dimensions, and thus the outage
probability and the BER expressions cannot be derived, either. To deal with this difficulty, we
will rather study the case where the system dimensions grow to infinity at the same pace. In
this asymptotic regime, we will show that closed-form expressions for the BER and the outage
probability exist, and are accurate even for usual system dimensions. In a second step, we
determine the optimal power allocation between data and training that minimizes the BER and
the outage probability metrics.

The second part addresses also issues regarding asymptotic performance analysis, but in the
context of multi-user systems. After a brief overview on the random matrix theory tools in
chapter 3, we study in chapter 4 the asymptotic behaviour of the SINR at the output of the
LMMSE receiver. While perfect channel knowledge is now assumed, our approach encompasses
general channel variance profiles , thereby making the derived results apply for a large variety
of systems ranging from (receive) correlated MIMO systems to CDMA uplink and downlink
based systems. Nevertheless, the obtained asymptotic results could not help to yield accurate
approximations for the BER and outage probability. To get insights about these performance
metrics, we propose in chapter 5 to use an approximation based on the Generalized Gamma
distribution.

As for the third part, two main issues are raised. The first one aims at solving the sensitivity
of the blind methods to channel order overmodeling. More explicitly, After presenting a brief
overview on blind system identification methods in chapter 6, we develop in chapter 7, nonzero
delay blind equalization method that combines high performance with robustness to channel
order overmodeling. In chapter 8, we focus on blind subspace based methods using ℓp quasi
norms. We provide for the first time well founded arguments that supports the use of ℓp quasi
norms to improve the robustness of subspace based methods.

The second issue deals with regularized semi-blind channel estimation. In these techniques,
the regularizing scalar plays a key role in the MSE performance. It is set numerically so as
to minimize the asymptotic MSE, the uniqueness of its minimum being only conjectured but
never proved. In our work, we establish for the first time in chapter 9 the uniqueness of the
asymptotic MSE in regularized channel estimation techniques. In a second step, we present
in chapter 10 a new method based on matrix regularization. We prove that interestingly not
only better performance is obtained but also the optimal regularizing matrix has closed-form
expression.
Publications
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Introduction

At the start of 21st century, wireless mobile communication systems have witnessed an important
growth that leaded to higher data rate and better spectral efficiency. This growth is particularly
attributed to the emergence of MIMO systems, allowing the Shannon mutual information to
increase linearly with the minimum number of transmit and receive antennas, [98]. However, the
good performance of MIMO systems requires a priori knowledge of the channel at the receiver.
In many practical systems, the receiver estimates the channel by time division multiplexing
training symbols with the data. This option is commonly used in current digital communication
systems for its low complexity and its good performance in terms of channel estimation quality.
However, it might be not the optimal option in terms of bandwidth utilization since during
the training period, no data can be transmitted. An other alternative is to transmit data and
training simultaneously. This option is referred to as superimposed training, and in contrast to
the time division multiplexed training technique, is efficient in terms of bandwidth utilization.
However, since data act as an additive source of noise, channel estimation quality is severely
affected. To deal with this problem, Ghogho et al proposed in [40] to distort the transmitted
data symbols so that they become orthogonal to the pilot symbols. This scheme is referred to
as data-dependent superimposed training (DDST) and was shown by simulations to outperform
the conventional scheme.

In this part, we propose to study the aforementioned training design schemes in terms of
BER and outage probability, while using linear receivers. Previous works have dealt with perfor-
mance analysis issues by either assuming perfect channel knowledge or making some unrealistic
assumptions about the decorrelation of the noise and the channel estimation error. Without
these assumptions, performance analysis for finite size systems, is not possible.

To circumvent this difficulty, we carry out performance analysis in the asymptotic regime.
More precisely, we consider the case where the sample size N , the number of transmitting
antennas K and the number of receiving antennas M go to infinity, but with constant ratios, i.e.
K
N → c1 and M

K → c2. For the time-division multiplexed training (TDMT) scheme, we assume
on top of that, that the training and data frame sizes denoted by N1 and N2 converge to infinity
with constant ratio, i.e. N2

N1
→ r. Working with the asymptotic regime, allows us to simplify the

derivations and at the same time, we observe that the obtained results apply as well to usual
sample and antenna-array sizes.

We divide this part into two chapters. The first one, looks over previous works regarding
training based schemes, while the second one derives under the asymptotic regime closed-form
expressions for the bit error rate and outage probability for the three aforementioned training
based schemes. Optimal power allocation that optimize the bit error rate and outage probability
indexes are also provided.
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Chapter 1

Overview on training based
techniques

In this chapter, we briefly review the main characteristics of fading channels encountered in
wireless communication systems. To estimate these channels at the receiver side, several train-
ing strategies have been proposed. They are briefly reviewed in this chapter, as well as, the
performance indexes that are used to compare between them.

1.1 Fading Channel

In a wireless communication system, the received signal may experience fluctuations that affect
its envelope and its phase. These fluctuations, referred to as fading, are essentially caused by two
physical phenomena. The first one is related to the mobility of the transmitter, resulting in a shift
in the frequency of the transmitted signal. This phenomenon is known as the Doppler spread.
The second phenomenon is related to the multiple reflections experienced by the transmitted
wave. Indeed, signals may be reflected by various scatterers like buildings, trees, objects, etc...,
in such a way that the transmitted wave travel to the receiver via different paths. The maximum
delay of the significant multipath component is referred to as the maximum delay spread. All
these fluctuations induce frequency and time variations to the fading channel. To characterize
these variations, we often define the following parameters:

• The coherence time which measures the period of time over which the fading is essentially
invariant (the time duration over which the time correlation function taken at the same
frequency is above a certain threshold). The coherence time Tc is often related to the
channel Doppler spread fd by:

Tc ≃
1

fd
If the signal time duration Tc is smaller than the channel’s coherence time Tc, the fading
is said to be slow, otherwise it is considered to be fast.

• The coherence bandwidth which represents the frequency bandwidth over which the fading
is essentially invariant (the bandwidth over which the frequency correlation function taken
at the same time is above a certain threshold). The coherence bandwidth Bc is often
related to the maximum delay spread τmax by:

Bc ≃
1

τmax

8
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The coherence time and the coherence bandwidth characterizes the nature of fading.

• Slow/Fast fading channel: if the symbol time duration Ts is smaller than the channel’s
coherence time, the channel fading is said to be slow, otherwise, it is considered to be
fast. For slow fading channels, many successive symbols undergo the same particular fade
level, thus leading to burst errors. Nevertheless, fewer training symbols per unit time are
required to estimate the channel at the receiver side.

• Flat/frequency selective fading channel: If the transmitted signal bandwidth is much
smaller than the channel’s coherence bandwidth Bc, the channel fading is said to be flat
otherwise it is considered to be frequency selective.

1.2 Channel Model

1.2.1 Single Input Single Ouput channel (SISO)

During the coherence time period, the channel between two antennae is often modeled as a linear
filter characterized by the following finite length impulse response:

h(t) =
L∑

l=1

hlδ(t− τl) (1.1)

where hl and τl correspond to the random channel attenuations and delays, respectively. For
flat fading channel, (1.1) becomes:

h(t) = h0δ(t)

Consequently, the received signal y is given by:

y(t) = h ∗ s(t) = h0s(t) + v(t)

where s(t) denotes the transmitted symbol at time t, and v(t) is the additive Gaussian noise.

1.2.2 Multiple Input Multiple Output Channel (MIMO)

For MIMO systems, the channel impulse response observed at the m-th receiving antenna is
given by:

hm(t) =
K∑

k=0

Lk∑

l=0

hk,mδ(t− l)

where K denotes the number of transmitting antennae and Lk denotes the channel order corre-
sponding to the kth transmitting antenna, (See fig. 1.1). The received signal observed by the
m-th antenna is given by:

ym(t) =
K∑

k=0

Lk∑

l=0

hk,msk(t− l) + vm(t)

where sk(t) denotes the transmitted signal by the k-th antenna at time t and vm(t) is the noise
experienced at the mth receiving antenna.
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.

RXTX

h11 = [h11(0), · · · , h11(L1)]

h12 = [h12(0), · · · , h12(L1)]

h21 = [h21(0), · · · , h21(L1)]

h22 = [h22(0), · · · , h22(L1)]

.

Figure 1.1: Block diagram of a 2× 2 MIMO frequency selective fading channel

Hence, over the M receiving antennae, the received signal at time t is given by:

y(t) =



y1(t)
...

yM (t)


 =

K∑

k=1

Lk∑

l=0

hk(l)sk(t− l) + v(t) (1.2)

where hk(l) = [hk,1(l), · · · , hk,M (l)]T represents the channel response vector between the kth
transmit antenna and the M receiving antenna. For sake of simplicity, let assume that all the
channels have the same order L, i.e. Lk = L for all k. Then (1.2) becomes:

y(t) =
K∑

k=1

[hk(0), · · · ,hk(L)]




sk(t)
...

sk(t− L)


+ v(t)

=
K∑

k=1

Hk




sk(t)
...

sk(t− L)


+ v(t)

where

Hk = [hk(0), · · · ,hk(L)] =



h11(0) · · · h1k(L)

...
...

hMk(0) · · · hMk(L)


 .

Let assume that the channel is constant over N consecutive symbols which implies that the
coherence time is greater than NTs. Stacking N successive observations into vector y =
[y(n), · · · ,y(n−N)], we get:

y =
K∑

k=1

IN (Hk)sk + v (1.3)

where sk = [sk(n), · · · , sk(n−N − L+ 1)]T, v = [v(n), · · · ,v(n−N + 1)]T and IN (Hk) is
the MN × (N + L) block Toeplitz matrix with first line block [hk(0), · · · ,hk(L),0, · · · ,0] and
first column block

[
hT
k (0) 01×M(N−1)

]T
. Denote by IN (H) = [IN (H1), · · · ,IN (HK)] and

s = [sT1 , · · · , sTK ]T, (1.3) becomes:
y = IN (H)s+ v. (1.4)
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1.2.3 MIMO flat fading channel

For MIMO flat fading channels, only the first path is considered. The observed signal at the
mth antenna is therefore given by:

ym(t) =
K∑

k=1

hmksk(t) + vm(t)

where hmk represents the fading coefficient between the k-th transmitting antenna and the m-th
receiving antenna, (See fig.1.2)

.

TX RX

h11

h22

h21
h12

.

Figure 1.2: Block diagram of a 2× 2 MIMO flat fading channel

The output of the M receiving antenna is therefore given by:

y(t) = Hs(t) + v(t) (1.5)

where H is the M ×K channel gain matrix given by:

H =



h11 · · · h1K
...

. . .
...

hM,1 · · · hM,K




Assuming that the channel is constant over N successive time symbols, we get:

Y = HS+V

where Y, S and V gather the N last observations of the signal vectors y(t), s(t) and v(t), i.e
Y = [y(n), · · · ,y(n−N + 1)], S = [s(n), · · · , s(n−N + 1)] and V = [v(n), · · · ,v(n−N + 1)].

1.3 Selective fading vs flat fading channels

Unlike frequency selective fading channels, flat fading channels allow low-complexity detection
since symbols can be retrieved easily by inverting the channel matrix. The data detection for
frequency selective fading channels can be performed optimally using the viterbi algorithm with
a complexity that is exponential with the number of paths.

In practice, the propagation environment might be rich with scatterers. This is the case
for instance of urban and indoor environments. The channel is then highly frequency selective.
However, it may be possible to get effective flat fading channels through the adding of some
signal processing. This is, for instance, the case of the OFDM technology which transforms the
multipath fading channel into parallel flat fading channels.
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On the other hand, frequency selective channels offer better diversity, since each symbol is
being transmitted through many paths. If one path undergoes a severe fading, we can expect
that other paths will have enough energy to carry the transmitted symbol. For this reason, in
practice, OFDM is used in conjunction with channel coding techniques, to overcome the incurred
loss in multipath diversity [28].

The following table summarizes the advantages and drawbacks of frequency selective and
flat fading channels:

Flat Fading channel Frequency selective channel

✔Low complexity ✗ High complexity

✗Loss of multipath diversity ✔ Multipath diversity

Table 1.1: Comparison between frequency selective and flat fading channels

1.4 Training design techniques for flat fading channels

1.4.1 Time Divison multiplexed training for flat fading channels

Time-Division Multiplex Training (TDMT) is the most commonly used technique for channel
estimation, [20]. Because of its simplicity, it has been used in many practical communication
systems, e.g., in Global System for Mobile Communications (GSM) [89]. Although accurate
channel estimation can be obtained with low-computational-complexity receivers, this technique
results in a low bandwidth efficiency, especially when a large number of pilots is required.

For flat fading channels, the transmission for TDMT schemes has two phases (See fig.1.3):

1. First phase : In the first phase, each transmitting antenna sends N1 pilot symbols. Let
Y1 = [y1, · · · ,yN1 ] be the received data matrix within N time slots, then Y1 writes as:

Y1 = HPt +V1

where V1 is the M×N1 Gaussian noise matrix whose entries are i.i.d. with zero mean and
variance σ2

v , and Pt is the K ×N1 pilot matrix. It has been proved in [56] that the Mean
Square Error (MSE) of the channel estimation is minimized subject to a fixed training
power σ2

Pt
, when the pilot matrix satisfies:

PtP
H
t = N1σ

2
Pt
IK .

2. Second Phase: In the second phase, N2 data symbols with power σ2
s are sent by each

antenna so that the received signal Y2 = [yN1+1, · · · ,yN ] writes as:

Y2 = HS+V2,

where S is the K × N2 data matrix with i.i.d. data symbols of power σ2
s and V2 is the

M ×N2 additive noise matrix.
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.

Pilot

Data .

Figure 1.3: Time-multiplexed training scheme

Pilot

Data

Figure 1.4: Superimposed training scheme

1.4.2 Superimposed training (ST)

Recently, superimposed training (ST) has evolved as a new promising alternative to TDMT
schemes due to its high bandwidth efficiency. Indeed, it consists in transmitting pilot and data
symbols simultaneously at the same time and on the same frequency domains, fig. 1.4.

More explicitly, the received signal for flat fading channels could be expressed as :

Y = HS+V

where S = W + P, (W and P are respectively data and pilot symbols) Since during channel
estimation, data symbols act as a source of noise, channel estimation is affected. To mitigate
the cross-correlation between training and data symbols, the first proposed (ST) schemes use
periodic pilot sequence that ensures cyclostationarity of the transmitted signals. This assumes a
long data sequence, in order to ensure approximately a zero cross correlation between data and
pilots. In the literature, the performance of the superimposed training in terms of maximum
mutual information has been investigated. It has been shown that even after power allocation
optimization, the ST scheme entails a gain over the TDMT scheme only in special scenarios
(many receive antennas and/or short coherence time). In other scenarios, the ST scheme suffers
from high channel estimation errors and its gain over the TDMT scheme is often lost, [13, 27].

1.4.3 Alternatives to Conventional superimposed training

Because of the low performance of the conventional ST scheme, many alternatives have been
proposed. Among them, we cite principally:

1. Orthogonal affine precoding: Affine precoders were first proposed in [70] and investigated
again in [68], [80] and [81]. They were principally proposed for frequency selective channels
and can be classified into two classes:

• The first class concerns block transmissions with cyclic prefix and was mainly studied
by Giannakis et al in [81, 80] for SISO systems and then by Scaglione et al in [108,
110, 109] for MIMO systems. In this class, the transmitted data vector w is precoded
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by a tall matrix F. This latter is devised so that the transmitted signal sequence Fw
is orthogonal to the training sequence. The channel and symbol estimation are then
decoupled.

• The second class concerns block transmissions without cyclic prefix. In this case, the
orthogonality between signal and training sequences cannot be obtained by using the
previously described precoding. Instead, a source data matrix W is first built from
the source data vectors w and then post-multiplied by a fat ( more columns than
rows) precoder matrix F thus yielding SF. This technique was proposed for SISO
systems in the work of [85] and has been recently generalized for MIMO systems in
[102].

2. Data-dependent superimposed training (DDST): In Affine precoding schemes, the intro-
duced redundancy serves essentially to ensure the orthogonality between data and training
sequences. The increasing of the diversity gain can be also obtained but only when the
redundancy is higher than a certain threshold. Motivated by this consideration, Ghogho
et al [40] propose to use a square rank-deficient precoder matrix in order to improve the
bandwidth efficiency utilization. Symbol recovery is still possible by virtue of the finite al-
phabet property of the data symbols. This technique was proposed for flat fading channels
[40] and also for frequency selective channels [39, 41].

1.5 Performance indexes

The performance of digital communication systems can be measured by using many indexes.
Among them, we can cite:

• Signal to Noise Ratio: is measured at the output of the receiver and as such is directly
related to the data detection process.

• Outage probability: Outage occurs when the received power is less than the receiver’s
sensitivity. The probability of such event, is given by the probability that the output SNR
falls below a certain threshold depending on the receiver’s sensitivity.

• Bit error rate: Of the commonly known performance indexes, the bit error rate is the one
that is most revealing about the system behaviour and the one most often used to evaluate
the quality of service in communication systems. On the other hand, it is among the most
difficult to compute.

1.6 Optimal Power allocation

The power allocation between training and data has a great impact on the system performance.
On the one hand, to achieve high quality channel estimate, a high proportion of power needs to
be spent for training transmission, which leaves little power to data. On the other hand, if too
little power is given to training, the channel estimation will be poor, thus affecting the system
performance. In the literature, many works propose to optimize the power allocation so as to
minimize the mutual information [56, 107] or to maximize the SNR [81].
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1.7 Conclusion

In this chapter, we have presented the most important characteristics of fading channels encoun-
tered in wireless communication systems. We have also reviewed the training design techniques
that are used to combat fading channels. The definition and the significance of the most perti-
nent performance indexes are also provided. These performance indexes will be used in the next
chapter to make a performance comparison between three training based schemes.



Chapter 2

Performance Analysis of Training
based techniques

As mentioned in the previous chapter, the most known non-blind training based techniques
can be classified into two categories: superimposed training (ST) and time-division multiplexed
training (TDMT). While the TDMT based schemes use training periods where no data is trans-
mitted, their ST counterparts, transmit data and training simultaneously. The price to be paid
is a poor channel estimation quality for conventional ST schemes or a distortion on the data
symbols for data-dependent superimposed training (DDST) based schemes.

2.1 Performance Analysis of Time-Division multiplexed train-
ing

Although the TDMT scheme was proposed a long time ago, many questions related to the bit er-
ror rate performance and the allocation of power between training and data remain unanswered.
While issues related to the capacity and the mutual information have been widely investigated
in previous works, performance indexes like the bit error rate and the outage probability have
not been enough studied. The few works that have focused on this issue, have been based on
unrealistic assumptions like the uncorrelation between the noise and the channel estimation er-
ror, [112, 2]. These assumptions make calculations feasible for fixed size dimensions, but are far
away from being realistic. To make derivations possible while keeping realistic conditions, we
will relax the assumption of finite size dimensions by allowing the system dimensions to grow to
infinity at the same rate. We show that in this case, closed-form expressions for the BER and
outage probability are possible and are accurate even for usual system dimensions.

2.1.1 Channel estimation

We recall that for the TDMT scheme, the receiver performs the channel estimation by using
only the received symbols corresponding to the training period. Assume that N1 symbols have
been devoted to training, we have:

Y1 = HPt +V1

where Y is the M×N1 received matrix, and H is the M×K channel matrix with i.i.d. centered
entries with variance 1

K . The entries of the additive Gaussian noise matrix V1 are also assumed
to be i.i.d. with zero mean and variance σ2

v . Assuming that the receiver estimates the channel

16
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in the least square (LS) sense, the channel estimate is thus given by:

Ĥt = Y1P
H
t (PtP

H
t )

−1

= H+V1P
H
t (PtP

H
t )

−1

= H+∆Ht

where ∆Ht = V1P
H
t (PtP

H
t )

−1 and the index t refers to the TDMT scheme.
Thus, the mean square error writes as:

MSEt = Mσ2
vTr

(
(PtP

H
t )

−1
)
. (2.1)

As it has been already mentioned in chapter 1 section 1.4.1, the optimal training matrix that
minimizes the MSE under a constant training energy N1σ

2
Pt

should satisfy:

PtP
H
t = N1σ

2
Pt
IK ,

where σ2
Pt

denotes the amount of power devoted to the transmission of a pilot symbol. The
optimal minimum value for the MSEt is then given by:

MSEt =
KMσ2

v

Nσ2
Pt

.

2.1.2 Data Detection

In the data transmission phase, the linear receiver uses the channel estimate in order to retrieve
the transmitted data. Let Y2 denotes the M ×N2 received matrix corresponding to data, then
Y2 can be expressed as:

Y2 = HS+V2

where V2 is independent of V1 but with entries being identically distributed as that of V1.
After channel inversion, the estimated data matrix is given by:

Ŝ =
(
Ĥt

)#
Y2. (2.2)

where
(
Ĥt

)#
denotes the pseudo-inverse matrix of H.

Assuming that the channel estimation error is small, the pseudo-inverse of the estimated
matrix can be approximated by the linear part of the Taylor expansion as [69, Theorem 5, page
174]: (

Ĥt

)#
= H# −H# (∆Ht)H

# +H#
(
H#

)H

∆Ht

(
IM −HH#

)
(2.3)

Substituting H# by (HHH)−1HH in (2.3), we obtain:
(
Ĥt

)#
= H# −H# (∆Ht)H

# + (HHH)−1∆HH
t Π (2.4)

where Π = IM −H (HHH)−1HH is the orthogonal projector on the null space of H. Hence, the
zero-forcing estimate of the transmitted matrix can be expressed as:

Ŝ = S−H#∆HtS+
(
H# −H#∆HtH

#
)
V2 + (HHH)−1 (∆Ht)

HΠV2.

Consequently, the effective post-processing noise ∆S = Ŝ− S could be written as:

∆S = −H#∆HtS+
(
H# −H#∆HtH

# + (HHH)−1 (∆Ht)
HΠ
)
V2.
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2.1.3 Performance Analysis for the TDMT scheme

For finite system dimensions, the performance analysis of the TDMT scheme is difficult. Instead,
we will work under the asymptotic regime whenN1, N2,M andK grow to infinity with a constant
rate, K

N1+N2
→ c1 with 0 < c1 < 1, M

K → c2 and N2
N1
→ r. Next, the notation K → +∞, will

refer to this asymptotic regime. Let us now recall the main assumptions:

A1. The channel matrix H is independent from the noise, it has i.i.d. complex Gaussian
centered entries with variance 1

K .

A2. Matrices V1 and V2 are independent. Their entries are i.i.d. complex Gaussian with zero
mean and variance σ2

v.

A3. The entries of the data matrix S are assumed to be i.i.d. They are also bounded and
independent from H and the noise matrices V1 and V2.

A4. The training matrix Pt verifies: PtP
H
t = N1σ

2
Pt
IK .

2.1.3.1 Bit error rate performance

In order to evaluate the bit error rate performance, we need to analyse the asymptotic behaviour
of the post-processing noise observed at each entry of matrix ∆S. Using the ’characteristic func-
tion’ approach, we can prove that conditioned on the channel, the noise behaves asymptotically
like a Gaussian random variable. This result is stated in the following theorem but its proof is
postponed in appendix A.1.

Theorem 2.1. Under assumptions A1, A2, A3 and A4 and conditioned on the channel, the
post-processing noise experienced by the i-th antenna at each time k, ∆S(i, k), for the TDMT
scheme behaves in the asymptotic regime as a Gaussian random variable:

E

[
eℜ(z∗∆S(i,k))

]
− e−

σ2
sδt

[

(HH
H)

−1
]

i,i
|z|2

4 −−−−−→
K→+∞

0

where

δt = c1(1 + r)
σ2
v

σ2
P

+
σ2
v

σ2
s

+
c1(1 + r)(c2 + 1)σ4

v

σ2
sσ

2
P (c2 − 1)

.

The gaussianity of the post-processing noise being verified in the asymptotic case, we can
derive the bit error rate for QPSK constellation and Gray encoding as [87]:

BER = EQ(
√
x) (2.5)

where the expectation is taken with respect to the probability density function of the post
processing SNR at the i-th branch γt defined as:

γt =
1

δt

[
(HHH)−1

]
i,i

.

From [46] and [113], we know that 1

[(HHH)−1]
i,i

is a weighted chi-square distributed random

variable with 2(M −K + 1) degrees of freedom, whose density function is given by:

f(x) =
KM−K+1xM−Ke−Kx

(M −K)!
1[0,+∞[,



2.1. Performance Analysis of Time-Division multiplexed training 19

where 1[0,+∞[ is the indicator function corresponding to the interval [0,+∞[. Hence, the prob-
ability density function of γt is given by:

fγt(x) =
(Kδt)

M−K+1xM−K exp(−Kδtx)

(M −K)!
1[0,+∞[ (2.6)

Plugging (2.6) into (2.5), we get:

BER =
(Kδt)

M−K+2

(M −K)!

∫ +∞

0
xM−K exp(−Kδtx)Q(

√
x)dx (2.7)

To compute (2.7), we use the following integral function:

J(m, a, b) =
am

Γ(m)

∫ +∞

0
exp(−ax)xm−1Q(

√
bx)dx. (2.8)

The BER is therefore equal to:

BER = J(M −K + 1,Kδt, 1). (2.9)

The integral in (2.8) has been shown to have, for c > 0 the following closed-form expression,
[99]:

J(m, a, b) =

√
c/πΓ(m+ 1

2)

2(1 + c)m+ 1
2Γ(m+ 1)

2F1(1,m+
1

2
;m+ 1;

1

1 + c
), c =

b

2a

where 2F1(p, q;n, z) is the Gauss hyper-geometric function [49]. If c = 0 equivalently b = 0, it is
easy to note that J(m, a, 0) is equal to 1

2 . When m is restricted to positive integer values, the
above equation can be further simplified to [115]:

J(m, a, b) =
1

2

[
1− µ

m−1∑

k=0

(
2k

k

)(
1− µ2

4

)k
]

(2.10)

where µ =
√

c
1+c . Plugging (2.10) into (2.9), we get:

BER =
1

2

[
1− µt

M−K∑

k=0

(
2k

k

)(
1− µ2

t

4

)k
]

(2.11)

where µt =
√

1
2Kδt+1 .

2.1.3.2 Outage Probability

Outage probability is the probability that the post-processing SNR γt falls below a certain
threshold. It is therefore given by:

P [γt ≤ γs] =

∫ γ

0

(Kδt)
M−K+1xM−K exp(−Kδtx)

(M −K)!
dx (2.12)

=

∫ Kδtγs

0

xM−K

(M −K)!
exp(−u)du (2.13)

=
1

(M −K)!
γ (M −K + 1,Kδtγs) (2.14)

where γ(a, x) is the lower incomplete Gamma function defined as, [49]:

γ(a, x) =

∫ x

0
ta−1 exp(−t)dt.



2.2. Performance analysis for superimposed training based schemes 20

2.1.3.3 Optimal Power allocation

Referring to the expressions of outage probability and BER, we can easily see that the optimal
amount of power allocated to data and pilot for the TDMT scheme is the one that minimizes
δt. Let c̃1 = (1 + r)c1, then minimizing δt with respect to σ2

s and σ2
Pt

under the constraint that
N1σ

2
Pt

+N2σ
2
s = (N1 +N2)σ

2
T (σ2

T being the mean energy per symbol), we get:

σ2
s =

(1 + r)σ2
T

√
r
(
(1 + r)σ2

T + c̃1σ2
v(c2+1)
c2−1

)

r

(√
r
(
(1 + r)σ2

T + c̃1σ2
v(c2+1)
c2−1

)
+

√
c̃1(
(
(1 + r)σ2

T + rσ2
v(c2+1)
c2−1

)) , (2.15)

σ2
Pt

=

r(1 + r)σ2
T

√
c̃1

(
(1 + r)σ2

T + rσ2
v(c2+1)
c2−1

)

r

(√
r
(
(1 + r)σ2

T + c̃1σ2
v(c2+1)
c2−1

)
+

√
c̃1

(
(1 + r)σ2

T + rσ2
v(c2+1)
c2−1

)) . (2.16)

2.2 Performance analysis for superimposed training based schemes

An other alternative to TDMT based schemes, is to send the training and data sequences at
the same time. Since data is transmitted all the time, these schemes allow efficient bandwidth
utilization, but may suffer from the interference caused by the training sequence. In this line, our
work aims to assess the performance of ST based schemes and to compare it with that of TDMT
based schemes. We particularly focus on the performance of conventional and data-dependent
superimposed training based schemes.

2.2.1 System model for superimposed training based schemes

2.2.1.1 Conventional superimposed training (CST)

In the first CST based schemes, the pilot matrix is added to data without any precoding. The
transmitted matrix is then given by:

S = W +P

where the entries of W are assumed to be i.i.d. with variance σ2
wc

and independent from the
training matrix P. The total power per transmitted symbol σ2

T is given by:

σ2
T = σ2

wc
+ σ2

Pc

where σ2
Pc

is the power of each entry of matrix P. (Note that the subscript ’c’ stands for
’conventional’.)

2.2.1.2 Data-dependent superimposed training DDST:

In [40], M. Ghogho et al propose to introduce a linear distortion to the data matrix at the
transmitter so as to ensure the orthogonality between data and training sequences. It is suggested
to add a perturbation matrix to the data matrix that is given by:

E = −WJ

where J = c11 1
c1

⊗ IK , (We assume that 1
c1

= N
K is integer valued).
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The received signal at each block is therefore given by:

Y = HW (IN − J) +HP+V

Hence, the total transmitted power is split between training and data as follows:

σ2
T = σ2

wd︸︷︷︸
data power

− c1σ
2
wd︸ ︷︷ ︸

distortion power

+ σ2
Pd︸︷︷︸

training power

, (2.17)

where σ2
wd

and σ2
Pd

denote the data and training powers, respectively, for the DDST scheme.
(Note that subscript ’d’ stands for ’data-dependent’.)

In the DDST scheme, The design of the training matrix should meet the following conditions:

{
PPH = Nσ2

Pd
IK

PHP = Nσ2
Pd
J.

It is easy to verify that under these conditions, the training matrix P is orthogonal to the matrix
IN−J [that is (IN−J)PH = 0]. Therefore, when multiplying the received signal on the right side
by PH (this matrix multiplication is considered in the LS channel estimation as shown next), the
obtained result is independent from the unknown data. A possible training matrix that fulfills
the aforementioned requirements is given in [40] as:

P(k, n) =
√
σ2
Pd

exp (2πkn/K) .

2.2.2 Channel estimation

We derive in this section the MSE values of the LS channel estimates for the conventional and
data-dependent ST schemes.

2.2.2.1 Channel estimation for the CST based scheme

The receiver estimates the channel by treating HW as an additive noise term. Hence the LS
channel matrix estimate is given by :

Ĥc = YPH (PPH)−1 = H+HWPH (PPH)−1 +VPH (PPH)−1 .

Let ∆Hc = Ĥc−H denote the channel estimation error matrix. Thus, the MSE is given by:

MSEc = Tr (E [∆Hc∆HH
c ]) = Tr

(
(PPH)−1

) (
σ2
wc
Tr(HHH) +Mσ2

v

)
. (2.18)

Similarly to the TDMT case, the training matrix which minimizes the MSE subject to a
fixed training power must verify:

PPH = Nσ2
P IK .

Thus, the expression for the MSE becomes:

MSEc =
K

Nσ2
Pc

(
σ2
wc
Tr(HHH) +Mσ2

v

)
.

Note that the estimation errors always exist even if the additive noise is not present. This is due
to the presence of the unknown data that acts like an extra source of noise during the channel
estimation step.
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2.2.2.2 Channel estimation for the DDST scheme

The channel LS estimate is obtained by multiplying Y by PH (PPH)−1, thus giving:

Ĥd = YPH (PPH)−1 = H+VPH (PPH)−1 = H+∆Hd,

where ∆Hd = VPH (PPH)−1 denotes the channel estimation error matrix for the DDST scheme.
Thus, the MSE has the following expression:

MSEd = Mσ2
vTr

(
(PPH)−1

)
=

KMσ2
v

Nσ2
Pd

. (2.19)

Note that for an equal data and total power allocation, i.e σ2
wc

= σ2
wd

and σ2
wc

+σ2
Pc

= σ2
wd
−

c1σ
2
wd

+ σ2
Pd
, the channel estimation error corresponding to the data dependent superimposed

training scheme is lower than that of the conventional scheme, i.e MSEd < MSEc.

2.2.3 Data detection

In the following, we determine for both schemes the post-processing noise at the output of the
linear zero-forcing detector, and establish theorems about its asymptotic behaviour. The proof
of the theorems will need extra assumptions that we shall first mention:

A5. The entries of W are zero-mean circular i.i.d. complex bounded random variables uncorre-
lated from the noise V with variance σ2

wc
for the CST scheme (resp. σ2

wd
for the DDST scheme).

A6. The entries of V are zero-mean circular i.i.d. complex random Gaussian variables with
power σ2

v.

A7. The entries of the training matrix P verifies:

P(k, n) = σ2
P exp (2πkn/K) , k ∈ {1, · · · ,K} and n ∈ {1, · · · , N}

where σ2
P = σ2

Pc
when the CST scheme is considered. (resp. σ2

P = σ2
Pd

when the DDST scheme
is considered.)

2.2.3.1 Data detection for the CST scheme

For the conventional superimposed training, the zero-forcing estimate of the transmitted data
matrix writes as:

Ŵc =
(
Ĥc

)# (
Y − ĤcP

)
=
(
Ĥc

)#
H (W +P) +

(
Ĥc

)#
V −P. (2.20)

Assuming that the channel estimation error is small, the pseudo-inverse of the estimated matrix
can be approximated by the linear part of the Taylor expansion as:

(
Ĥc

)#
= H# −H# (∆Hc)H

# + (HHH)−1∆HH
cΠ. (2.21)

Substituting (2.21) into (2.20), the zero-forcing estimate of the transmitted matrix can be further
expressed as:

Ŵc =
(
IK −H#∆Hc

)
(W +P) +

(
IK −H#∆Hc

)
H#V + (HHH)−1∆HH

cΠV −P.
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Hence, the effective post-processing noise ∆Wc = Ŵc −W could be written as:

∆Wc = −H#∆Hc (W +P) +
(
IK −H#∆Hc

)
H#V + (HHH)−1∆HH

cΠV,

The asymptotic behavior of each entry of the noise matrix is given by the following theorem:

Theorem 2.2. Under assumptions A1, A6, A5 and A7, the post-processing noise experienced
by the i-th antenna at each time k, [∆Wc]i,k,behaves asymptotically as a Gaussian mixture
random variable, i.e.,

E

[
exp

(
ℜs∗ [∆Wc]i,k

)]
−

Q∑

i=1

pi exp (ℜ (s∗(αi + θ))) exp


−
|s2|σ2

wc

(
δc

[
(HHH)−1

]
i,i

+ τc

)

4


 −−−−→K→∞

0

(2.22)

where : δc = (1− c1)
σ2
v

σ2
wc

+
c1σ

2
v

σ2
Pc

+
c1σ

4
v(c2 + 1)

(c2 − 1)σ2
Pc
σ2
wc

τc =
c1σ

2
v

σ2
P (c2 − 1)

+
c1σ

2
wc

σ2
P

θ = c1(c2 − 1)
σ2
vh̃ipj

σ2
P

and Q is the cardinal of the set of all possible values of W i = c1
∑ 1

c1
l=1 [W]i,l, and pi is the

probability that W i takes the value αi.

We can also prove that conditioning on the fact that [W]i,k = (ǫ1 + ǫ2)

√
σ2
wc

2 where ǫ1 = ±1
and ǫ2 = ±1 the post-processing noise satisfies:

E

[
exp

(
ℜ
(
s∗ [∆Wc]i,k

))
| [Wc]i,k = (ǫ1 + ǫ2)

√
σ2
wc

2

]
−

Q
′

∑

i=1

p
′

i exp

(
ℜ
(
s∗(−c1(ǫ1 + ǫ2)

√
σ2
wc

2
+ α

′

i + θ)

))

× exp


−
|s2|σ2

wc

(
δc

[
(HHH)

−1
]
i,i

+ τc

)

4


 −−−−→K→∞

0 (2.23)

where Q′
is the cardinal of the set of all possible values of W i = c1

∑ 1
c1

−1

l=1 [W]i,l and p
′
i is the

probability that W i takes the value α
′
i.

Proof. See Appendix A.2.

Remark 2.1. The presence of the term θ makes the derivation of the BER difficult. By simula-
tions, we have seen that this term, has a little impact and thus in the following, we will assume
that the distribution of the post-processing noise behaves satisfies:

E

[
exp

(
ℜ
(
s∗ [∆Wc]i,k

))
| [Wc]i,k = (ǫ1 + ǫ2)

√
σ2
wc

2

]
−

Q
′

∑

i=1

p
′

i exp

(
ℜ
(
s∗(−c1(ǫ1 + ǫ2)

√
σ2
wc

2
+ α

′

i)

))

× exp


−
|s2|σ2

wc

(
δc

[
(HHH)

−1
]
i,i

+ τc

)

4


 ≃ 0 (2.24)
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2.2.3.2 Data detection for the DDST scheme

For the DDST scheme, we consider a zero-forcing receiver which, prior to inverting the channel
matrix, cancels the contribution of the training symbols by right-multiplying Y by (I− J).
Thus, the zero-forcing estimate is given by:

Ŵd =
(
Ĥd

)#
Y (I− J)

=
(
H# −H#∆HdH

# + (HHH)−1∆HH
dΠ
)
HW (I− J)

+
(
H# −H#∆HdH

# + (HHH)−1∆HH
dΠ
)
V (I− J)

=
(
I−H#∆Hd

)
W (I− J) +

(
H# −H#∆HdH

#
)
V (I− J)

+ (HHH)−1∆HH
dΠV (I− J)

= W (I− J)−H#∆HdW (I− J) +
(
H# −H#∆HdH

#
)
V (I− J) + (HHH)−1∆HH

dΠV(I− J)

= W +
(
−WJ−H#∆HdW (I− J) +

(
H# −H#∆HdH

#
)
V (I− J)

)
(2.25)

+ (HHH)−1∆HH
dΠV (I− J) (2.26)

Hence,

∆Wd = −WJ−H#∆HdW (I− J)+
(
H# −H#∆HdH

#
)
V (I− J)+(HHH)−1∆HH

dΠV (I− J)

(2.27)
The asymptotic distribution of [∆Wd]i,k is given by the following lemma:

Theorem 2.3. Under assumptions A1, A6, A5 and A7 the post-processing noise experienced
by the i-th antenna at each time k behaves asymptotically as a Gaussian mixture random variable,
i.e,

E

[
exp

(
ℜ
(
s∗ [∆Wd]i,k

))]
−

Q∑

i=1

pi exp (ℜ (s∗αi)) exp


−
|s|2δdσ2

wd

[
(HHH)−1

]
i,i

4


 −−−−→

K→∞
0

(2.28)

where :

δd = (1− c1)

(
c1σ

2
v

σ2
Pd

+
σ2
v

σ2
wd

+
c1σ

4
v(c2 + 1)

(c2 − 1)σ2
Pd
σ2
wd

)
(2.29)

and Q is the cardinal of the set of all possible values of
[
W
]
i,k

= c1
∑ 1

c1
k=1 [W]i,k, and pi is the

probability that
[
W
]
i,k

takes the value αi.

We can also prove that conditioning on the fact that [W]i,k = ǫ1

√
σ2
wd

2 + ǫ2

√
σ2
wd

2 where
ǫ1 = ±1 and ǫ2 = ±1 the post-processing noise satisfies:

E

[
exp

(
ℜ
(
s∗ [∆Wd]i,k

))
| [W]i,k = (ǫ1 + ǫ2)

√
σ2
w

2

]
−

Q
′

∑

i=1

p
′

i exp

(
ℜ
(
s∗

(
−c1 (ǫ1 + ǫ2)

√
σ2
wd

2
+ α

′

i

)))

(2.30)

× exp


−
|s|2δdσ2

wd

[
(HHH)

−1
]
i,i

4


 −−−−→

K→∞
0 (2.31)
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where Q′
is the cardinal of the set of all possible values W i = c1

∑ 1
c1

−1

l=1 [W]i,l, and p
′
i is the

probability that W i takes the value α
′
i.

Proof. See Appendix A.3.

2.2.4 Bit error rate performance

The assumption of the gaussianity of the post processing noise has been always assumed. For
time division multiplexed training, this assumption is well-founded, since the post-processing
noise, converges to a Gaussian distribution in the asymptotic regime, (See theorem 2.1). More-
over, for conventional cases, which do not take into account the imperfect channel estimation,
the asymptotic gaussianity of the post-processing noise holds in case of additive Gaussian noise.

In the superimposed training case, the distortion caused by the presence of data symbols
affects the distribution of the post-processing noise which becomes asymptotically Gaussian
mixture distributed. To assess the system performance in this particular case, we will start
from the elementary definition of the bit error rate. Let ∆Wi,k denotes the post processing
noise experienced at the i-th antenna at time k ( ∆Wi,k = [∆Wc]i,k for the CST scheme and
∆Wi,k = [∆Wd]i,k for the DDST scheme).

As it has been previously shown, ∆Wi,k behaves as a Gaussian mixture random variable. Let

σ2
∞ be the asymptotic variance of ∆Wi,k, i.e, σ

2
∞ = σ2

wd
δd

[
(HHH)−1

]
i,i

for the DDST scheme

and σ2
∞ = σ2

wc

(
τc + δc

[
(HHH)−1

]
i,i

)
for the CST scheme.

Using the symmetry of the transmitted data, the BER expression at the ith branch, under
QPSK constellation and for a given channel realization is given by:

BERi =
1

2
P

[
ℜ
(
Ŵi,k

)
> 0|ℜ (Wi,k) = −

√
σ2
w

2

]
+

1

2
P

[
ℜ
(
Ŵi,k

)
< 0|ℜ (Wi,k) =

√
σ2
w

2

]

=
1

2
P

[
ℜ (∆Wi,k) >

√
σ2
w

2
|ℜ (Wi,k) = −

√
σ2
w

2

]
+

1

2
P

[
ℜ (∆Wi,k) < −

√
σ2
w

2
|ℜ (Wi,k) =

√
σ2
w

2

]

In the asymptotic regime,

[
ℜ (∆Wi,k) |ℜ [W]i,k = ǫ

√
σ2
w

2

]
converges to a mixed Gaussian dis-

tribution with the probability density function:

f(x) =
1√
πσ2∞

√
Q′∑

s=1

ps exp(−
(x+ c1ǫ

√
σ2
w

2 −ℜ(αs))
2

σ2∞
)

Hence, conditioned on the channel, the asymptotic bit error rate can be approximated by:

BERi,∞ =
1

2

1√
πσ2∞

∫ +∞
√

σ2
w
2

√
Q′∑

s=1

p
′
s exp


−

(x− c1

√
σ2
w

2 −ℜ(αs))
2

σ2∞


 dx

+
1

2

1√
πσ2∞

∫ −
√

σ2
w
2

−∞

√
Q′∑

s=1

p
′
s exp


−

(x+ c1

√
σ2
w

2 −ℜ(αs))
2

σ2∞


 dx
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Finally, the proposed approximation of the BER can be obtained by averaging with respect to
the channel realization H, thus giving:

BER∞ = E
1

2

√
Q′∑

s=1

p
′
sQ



√

σ2
w

σ2∞
(1− c1)−

ℜ(αs)√
σ2∞
2


+

1

2

√
Q′∑

s=1

p
′
sQ



√

σ2
w

σ2∞
(1− c1) +

ℜ(αs)√
σ2∞
2




For QPSK constellations, it can be shown that
√
Q′ = 1

c1
, where 1

c1
= N

K is assumed to be
integer. Moreover, the set S of the values taken by ℜ(αs) can be given by:

S =

{
ℜ(αs) = c1

√
σ2
w

2
(
1

c1
− 2s− 1), s ∈

{
0, · · · , 1

c1
− 1

}}
.

with probability ps =
(

1
c1

−1

s
)

2
1
c1

−1
.

Let γ = σ2
w

σ∞
( γ = 1

τc+δc[(HHH)−1]
i,i

for the CST scheme and γ = 1
δd(HHH)−1 for the DDST

scheme) then, the BER expression becomes:

BER∞ = E

1
c1

−1∑

s=0

( 1
c1−1
s

)

2
1
c1

−1
Q(2sc1

√
γ) (2.32)

where the expectation is taken over the distribution of γ. Expression (2.32) will be used to
evaluate and compare the performance in terms of BER of the superimposed training based
schemes. For the CST scheme, giving a closed form expression for (2.32) is not easy, we will
provide instead a numerical estimation based on Taylor expansion of the error function.

2.2.4.1 BER for the DDST scheme

For the DDST scheme, the expectation in (2.32) is taken over the distribution of γ = γd =
1

δd[(HHH)−1]
i,i

given by:

fγd(x) =
(Kδd)

M−K+1xM−K

(M −K)!
exp (−Kδdx)

The computation of the Bit error rate can be treated similarly to the TDMT scheme, thus
leading to:

BER∞ =
1

2
1
c1

−1

1
c1

−1∑

s=0

( 1
c1
− 1

s

)
J(M −K + 1,Kδd, 4s

2c21)

Using (2.10), it can be possible to derive the following closed-form expression:

BER∞ =
1

2
1
c1

1
c1

−1∑

s=0

( 1
c1
− 1

s

)[
1− µs

M−K∑

k=0

(
2k

k

)(
1− µ2

s

4

)k
]

(2.33)

where µs =

√
2s2c21

Kδd+2s2c21
.
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2.2.4.2 BER for the CST scheme

Unlike the DDST scheme, the CST scheme does not seem to have a straightforward closed-form
expression for the BER. Indeed, as compared to the DDST and TDMT based schemes, the
variable over which the expectation is taken is not proportional to 1

[(HHH)−1]
i,i

.

For the CST scheme, the expectation in (2.32) is taken over the distribution of γc =
1

τc+δc[(HHH)−1]
i,i

, given by:

fγc(x) =
(Kδc)

M−K+1xM−K

(M −K)!(1− τcx)M−K+2
exp

(
− Kδcx

1− τcx

)
1{

0≤x≤ 1
τc

} (2.34)

Whenever straightforward closed-form expressions for the BER do not exist, numerical methods
have often been a good alternative to approximate the BER. A class of these methods is based
on approximating the error function Q(x) by a function series, [6, 78, 36]. In our case, we opt
for using a Taylor expansion for Q(x) given by:

Q(x) = Q(x0) +

∞∑

n=1

dnQ

dxn |x0

(x− x0)
n

n!
(2.35)

where x0 is the point around which the Taylor expansion is made. Our choice is accounted for
by the fact that, in the considered case, all moments of

√
γc can be computed in closed-forms.

Actually, let r be a positive real, then the rth moment of γc is given by [49, page 348]:

E [γrc ] =

(
Kδc
τc

)M−K
2

(M −K)!τ rc
exp

(
Kδc
2τc

)
Γ(M −K + r + 1)W−M+K−2r

2
,−1−M+K

2
(
Kδc
τc

) (2.36)

where Wλ,µ(z) denotes the Whittaker function defined in [49]. To approximate the bit error
rate, we will substitute Q(x) in (2.32) by its Taylor expansion given by (2.35), and permute the
infinite sum and the expectation operator, thus yielding:

BER∞ =

1
c1

−1∑

s=0

( 1
c1

−1
s

)

2
1
c1

−1

[
Q(2sc1E

√
γc) +

∞∑

n=1

dnQ

dxn |2sc1E
√
γc

(2sc1)
n
E(
√
γc − E

√
γc)

n

n!

]
(2.37)

The next step is remove the infinite sum in (2.37) by truncating at a given order J depending
on the desired accuracy, thus leading to:

BER∞ ≃
1
c1∑

s=0

( 1
c1
k

)

2
1
c1

[
Q(2sc1E

√
γc) +

J∑

n=1

dnQ

dxn |2sc1E
√
γc

(2sc1)
n
E(
√
γc − E

√
γc)

n

n!

]
(2.38)

All the deterministic quantities in (2.38) can be numerically computed. Hereafter, we show
how this can be done:

• The nth derivative of Q(x) can be expressed as:

dnQ

dxn
=

(−1)n exp(−x2/2)√
2π

Hn−1(x)

where Hn(x) denotes the Hermite Polynomial with order n given by:

Hn(x) = (−1)n exp(x2/2) dn

dxn
exp(−x2/2)
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• The central moments of
√
γc can be evaluated by using the non-central moments of γ. In

fact, the expansion of the expression of the central moment of
√
γc is given by :

E [(
√
γc − E

√
γc)

n] =

n∑

m=0

(
n

m

)
Eγ

m
2
c (−1)n−m (E

√
γc)

n−m (2.39)

and thus can be computed using (2.36)

2.2.4.3 BER Performance comparison

Though a closed-form expression for the BER does not exist for the CST scheme, we can still
make performance comparison between both schemes, based on the distribution of the post-
processing noise.

Actually, one can observe that for equal data power allocation, σ2
w satisfying :

σ2
w + σ2

Pc
= σ2

w (1− c1) + σ2
Pd

= σ2
T ,

we have:
δc(σ

2
w) ≥ δd(σ

2
w)

and hence:

1

τc + δc

[
(HHH)−1

]
i,i

≤ 1

δd

[
(HHH)−1

]
i,i

≤ max
0≤σ2

w≤σ2
T

1

δd

[
(HHH)−1

]
i,i

This result proves that, for any data power allocation, the DDST scheme outperforms the
conventional one in terms of BER. As a consequence, for an equal total power allocation, the
DDST scheme with optimal power allocation outperforms the conventional one in terms of BER.

2.2.5 Outage probability performance

At the output of the zero-forcing receiver, we define the SNR as the ratio between the power
signal σ2

w and the power of the post-processing noise. Using straightforward but tedious calcu-
lations, it is easy to show that the entries of the post-processing noise matrix for the CST and
DDST schemes satisfy:

E

[
| [∆Wc]i,k |2

]
− σ2

w

(
c1 + τc + δc (H

HH)−1
)
≃ 0 (2.40)

E

[
| [∆Wd]i,k |2

]
− σ2

w

(
c1 + δd (H

HH)−1
)
−−−−−→
K→+∞

≃ 0 (2.41)

Let γ̃c and γ̃d denote the post-processing SNR for the CST and DDST schemes. Then, using
(2.40) and (2.41), we can easily check that:

γ̃c −
1

c1 + τc + δc (HHH)−1 ≃ 0 almost surely

γ̃d −
1

c1 + δd (HHH)−1 ≃ 0 almost surely
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The pdf of the asymptotic equivalents of γ̃c and γ̃d has the same shape as that of γc given by
(2.34). The approximation for the outage probability can be then obtained by integrating (2.34),
thus giving:

P [γ̃ ≤ x] ≃





1

(M −K)!
γ(M −K + 1,

Kδx

1− τ̃x
) if 0 ≤ x ≤ 1

τ̃

1 if x ≥ 1

τ̃

(2.42)

(2.43)

where δ = δc, τ̃ = c1 + τc (resp. δ = δd, τ̃ = c1) refer to the CST scheme (resp. to the DDST
scheme).

2.2.6 Optimal power allocation

So far, we have provided approximations of the BER and outage probabilities for CST and
DDST schemes. As it has been previously shown, these approximations, depend on the power
allocated to data and training, in addition to other parameters. While the system has no control
over the noise power or the number of transmitting and receiving antennas, it still can optimize
the power allocation in such a way to minimize the performance indexes. Next, we provide, for
CST and DDST schemes, the optimal data and training power amounts that minimize the BER
and outage probabilities, under the constraint of a constant total power.

2.2.6.1 Optimum allocation for minimizing the BER

2.2.6.1.1 Optimization of the power allocation for the DDST scheme For the DDST
scheme, we can deduce from (2.32) that maximizing γd leads to minimize the BER. To maximize
γd, we need to optimize δd as a function of σ2

w and under the constraint that σ2
Pd

+(1− c1)σ
2
wd

=

σ2
T . After straightforward calculations, we can find that the optimal values for σ2

wd
and σ2

Pd
are

given by:

σ2
wd

=

√
(1− c1)

(
σ2
T + c1(c2+1)σ2

v

c2−1

)
σ2
T

(1− c1)

(√
(1− c1)

(
σ2
T + c1(c2+1)σ2

v

c2−1

)
+
√

c1σ2
T + c1(c2+1)(1−c1)σ2

v

c2−1

) , (2.44)

σ2
Pd

=

√
c1σ2

T + c1(c2+1)(1−c1)σ2
v

c2−1 σ2
T√

(1− c1)
(
σ2
T + c1(c2+1)σ2

v

c2−1

)
+
√
c1σ2

T + c1(c2+1)(1−c1)σ2
v

c2−1

. (2.45)

2.2.6.1.2 Optimization of the power allocation for the CST scheme In the CST
scheme, the values of σ2

wc
and σ2

Pc
that minimize δc may not be optimal in the sense that they do

not necessarily minimize the BER, given that τc depends on the data power σ2
wc
. However, since

in practice the data block size N is much higher than the number of transmitting antennae, the
effect of τc could be neglected and as such a suboptimal power allocation would be the one that
minimizes δc. The corresponding values of σ2

w,c and σ2
P,c are given by:
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σ2
w,c =

√
(1− c1)σ2

T + c1(c2+1)σ2
v

c2−1 σ2
T√

c1σ2
T + c1(c2+1)σ2

v

c2−1 +
√
(1− c1)σ2

T + c1(c2+1)σ2
v

c2−1

, (2.46)

σ2
P,c =

√
c1σ2

T + c1(c2+1)σ2
v

c2−1 σ2
T√

(1− c1)σ2
T + c1(c2+1)σ2

v

c2−1 +
√
c1σ2

T + c1(c2+1)σ2
v

c2−1

(2.47)

2.3 Simulation results

Despite being valid only for the asymptotic regime, our results are found to yield a good accuracy
even for very small system dimensions. In this section, we present simulation results that
compares between all the aforementioned described training based schemes. More particularly,
we carry out simulations that compare the DDST scheme with its TDMT and CST counterparts.

2.3.1 Performance comparison between DDST and TDMT based schemes

In this section, except when mentioning, we consider a 2 × 4 MIMO system (K = 2, M = 4)
with a data block size N = 32.

2.3.1.1 Bit error rate performance

Fig. 2.1 plots the empirical and theoretical BER under QPSK constellation for N = 32, K = 2
and M = 4 for the TDMT and DDST based schemes. All comparisons are conducted in the
context when both schemes have the same total energy. The number of training symbols is set
to N1 = 2 (N2 = 30) for the TDMT scheme. For low SNR values (SNR below 6 dB), both
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Figure 2.1: Theoretical and empirical BER for the TDMT and DDST based schemes.

schemes achieve approximatively the same BER performance, and therefore, the DDST scheme
outperforms its TDMT counterpart in terms of data rate, since it has a better bandwidth
efficiency. For high SNR values, the noise caused by the data distortion is higher than the
additive Gaussian noise, thus affecting the performance of the DDST scheme.
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2.3.1.2 Applications

To compare the efficiency of the TDMT and DDST schemes, we consider applications in which
the BER should be below a certain threshold, say 10−2. This may be the case for instance of
circuit-switched voice applications. Note that for non-coded systems, a target BER of 10−2 is
commonly used.

2.3.1.2.1 Application 1 In this scenario, we set the SNR ,
σ2
T

σ2
v
to 15 dB. We then vary the

ratio c1 =
K
N from 0.01 to 0.5. Since we consider K = 2 and M = 4, N = K/c1 varies also with

c1. For each value of c1 we compute the BER by using (2.11) and (2.33). Fig. 2.2 illustrates
the obtained results. We note that the DDST scheme may be interesting for low values of c1
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Figure 2.2: BER with respect to c1 when K = 2, M = 4 and SNR=15 dB

(say below 0.125), i.e., for long enough frames. For small frames (high distortion ratio c1), the
distortion of the data becomes too high thus reducing the interest of the DDST scheme.

2.3.1.2.2 Application 2 In this experiment, we also consider a scenario where the BER
should be below 10−2. Using (2.15), (2.16) and (2.11), we determine the minimum number
of required training symbols to meet the BER lower bound requirement. We then, plot the
corresponding ratio r = N2

N1
with respect to the SNR. We note that if the SNR is below 2 dB, the

BER requirement could not be achieved. This is to be compared with the DDST scheme where
the SNR should be set at least to 10.5 dB so as to meet the BER lower bound requirement as it
can be shown in fig. 2.3. Moreover, for a SNR more than 8.5 dB, the minimum number of pilot
symbols for channel identification (equal to K) is sufficient to meet the BER requirement.

2.3.1.3 Outage probability performance

In this experiment, we set the SNR to 10dB. Fig. 2.4 shows the outage probability for respectively
short (N = 32) and long frame (N = 128). In the legend ’TDMT’ and ’DDST’ refer to the
outage probability values obtained from (2.14) for the TDMT scheme and (2.42) and (2.43)
for the DDST scheme, whereas ’TDMT empirical’ and ’DDST empirical’ are the empirical
cumulative distribution functions of γt and γd. We note that for high distortion (N = 32), the
gain of the TDMT scheme over the DDST scheme is much larger that the observed one for small
distortion (N = 128).
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Figure 2.3: Required r versus SNR for BER ≤ 10−2.
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(a) Short frame (N = 32)
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(b) Long frame (N = 128)

Figure 2.4: Outage probability for TDMT and DDST based schemes for short and long frames

2.3.2 Performance comparison between DDST and CST based schemes

The objective of this section is to validate the theoretical performance analysis for the CST
scheme and to compare it with that of the DDST scheme. In all our simulations, we set σ2

T = 1
and consider two simulation contexts corresponding respectively to the cases for long and short
transmitted frames:

• In the first context, we consider a MIMO system using K = 2 transmit antennas and
M = 4 receive antennas. The data block size N is set to N = 1024.

• In the second context, we consider a MIMO system using K = 4 transmit antennas and
M = 8 received antennas. The data block size is set to N = 64.

Except when mentioned, the power allocation for the CST and DDST schemes are set according
to (2.44),(2.45) and (2.46),(2.47).
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2.3.2.1 Bit error rate performance

Fig. 2.5 displays the empirical and theoretical BER for the CST and DDST schemes for both
contexts. We note that the gain in performance achieved by the DDST scheme is more significant
in the case of short frames than that in the case of long frames.
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(a) Short frame (N = 64)

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

 

 
CST Theoretical
CST Empirical
DDST Empirical
DDST Theoretical

(b) Long frame (N = 1024)

Figure 2.5: BER for the CST and DDST schemes for short and long frames

2.4 Conclusion

In this chapter, we have carried out theoretical studies on BER and outage probability for three
training based schemes, namely, the basic time division multiplexed training scheme, and two
superimposed training based schemes. To make derivations possible, the asymptotic regime
where all the system dimensions grow to infinity with a constant pace has been considered. For
each scheme, we have derived closed-form approximations for the BER and outage probability.
We have also determined optimal power allocations of power between data and training in order
to minimize the BER or the outage probability.
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Appendix A

Proof of results in chapter 2

This appendix provides the proofs of the derived results in chapter 2.

A.1 Proof of theorem 2.1

In the sequel, we propose to determine the asymptotic distribution of the post-processing noise
of each entry of the matrix ∆S. Actually the (i, j) entry of ∆S is given by:

(∆S)i,j = −h
#
i ∆Htsj + h#

i

(
IK −∆HtH

#
)
v2,j + h̃i(∆Ht)

HΠv2,j

where h#
i and h̃i denote respectively the ith row of H# and (HHH)−1, and sj and v2,j denote

jth columns of S and V2, respectively. Conditioned on H, V1 and S, (∆S)i,j is a Gaussian

random variable with mean equal to −h#
i ∆Htsj and variance

σ2
s,K = σ2

v

(
h#
i − h#

i ∆HtH
# + h̃i(∆Ht)

HΠ
)((

h#
i

)H

−
(
H#

)H

∆HH
t

(
h#
i

)H

+Π∆Ht

(
h̃i

)H)

Since our proof will be based on the ’characteristic function’ approach, we shall first recall the
expression of the characteristic function for complex random variables:

Theorem A.1. Let Xn be a complex Gaussian random variable with mean mX,n and variance
σ2
X,n, such that E(Xn − mX,n)

2 = 0. Then, Xn can be seen as a two-dimensional random
variable corresponding to its real and imaginary parts. The characteristic function of Xn is
therefore given by:

E [exp (ℜ(z∗Xn))] = exp (ℜ (z∗mX,n)) exp

(
−1

4
|z|2σ2

X,n

)
.

Applying TheoremA.1, the conditional characteristic function of (∆S)i,j can be written as:

E

[
exp

(
ℜ
(
z∗ (∆S)i,j

))
|V1,H,S

]
= exp

(
−ℜ

(
z∗h#

i ∆Htsj

))
exp

(
−1

4
|z|2σ2

s,K

)
. (A.1)

To remove the condition expectation on V1 and S, one should prove that σ2
s,K converges almost

surely to a deterministic quantity. Actually, σ2
s,K can be expanded as follows:

σ2
s,K = σ2

vh
#
i

(
h#
i

)H

+ σ2
vh

#
i ∆Ht (H

HH)−1 (∆Ht)
H
(
h#
i

)H

− 2σ2
vℜ
(
h#
i ∆Ht (H

HH)−1
(
h#
i

)H)

+ σ2
vh̃i∆HH

t Π∆Ht

(
h̃i

)H

.
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Let

Aσ,K = σ2
vh

#
i ∆Ht (H

HH)−1 (∆Ht)
H
(
h#
i

)H

Bσ,K = σ2
vh̃i∆HH

t Π∆Ht

(
h̃i

)H

ǫσ,K = h#
i ∆Ht (H

HH)−1
(
h#
i

)H

.

The limiting behaviour of Aσ,K can be derived by using the following known results describing
the asymptotic behaviour of an important class of quadratic forms:

Lemma A.1. [3, Lemma 2.7] Let x = [X1, · · · , XN ]T be a N × 1 vector where the Xn are
centered i.i.d. complex random variables with unit variance. Let A be a deterministic N × N
complex matrix. Then, for any p ≥ 2 there exists a constant Cp depending on p only such that:

E

∣∣∣∣
1

N
xHAx− 1

N
Tr(A)

∣∣∣∣
p

≤ Cp

Np

((
E|X1|4Tr (AAH)

)p/2
+ E|X1|2pTr

(
(AAH)p/2

))
(A.2)

Noticing that Tr (AAH) ≤ N‖A‖2 and that Tr
(
(AAH)p/2

)
≤ N‖A‖p, we obtain the simpler

inequality:

E

∣∣∣∣
1

N
xHAx− 1

N
Tr(A)

∣∣∣∣
p

≤ Cp

Np/2
‖A‖p

((
E|X1|2

)p/2
+ E|X1|2p

)
(A.3)

Hence, if A and x have respectively finite spectral norm and finite eigth moment, we can con-
clude, using Borel-Cantelli lemma, about the almost convergence of the quadratic form 1

N xHAx,
thus yielding the following corollary:

Corollary A.1. Let x = [x1, · · · , xN ]T be a N × 1 vector where the entries xi are centered i.i.d.
complex random variables with unit variance and finite eight order. Let A be a determinsitic
N ×N complex matrix with bounded spectral norm. Then,

1

N
xHAx− 1

N
Tr(A) −→ 0 almost surely.

By corollary A.1, the asymptotic behavior of Aσ,K is then given by:

Aσ,K −
σ2
v

[
(HHH)−1

]
i,i

N1σ2
P

Tr (HHH)−1 −→ 0 almost surely.

Since 1
KTr (HHH)−1 converges asymptotically to 1

c2−1 as the dimensions go to infinity [105], we
get:

Aσ,K −
c1(1 + r)σ4

v

(c2 − 1)σ2
P

[
(HHH)−1

]
i,i
−→ 0.

Note that TheoremA.1 can be applied since the smallest eigenvalue of the Wishart matrix (HHH)
are almost surely uniformely bounded away from zero by (1−√c2)2 > 0, [92].

Before determining the limiting behavior of Bσ,K , we shall need the following lemma:
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Lemma A.2. Let Y =
(

1√
K
yi,j

)M,K

i=1,j=1
be a M ×K with Gaussian i.i.d entries. Then, in the

asymptotic regime given by:

M,K →∞ such that
M

K
→ c2 > 1

we have: [
(YHY)−2

]
i,i
− c2

c2 − 1

([
(YHY)−1

]
i,i

)2

→ 0

Proof. Without loss of generality, we can restrict our proof to the case where i = 1. Let
y1, · · · ,yK denote the columns of Y. Matrix YHY is then given by:

YHY =



yH
1y1 yH

1y2 · · · yH
1yK

...
...

yH
Ky1 yH

Ky2 · · · yH
KyK




Let vy =

[[
(YHY)−1

]
1,2

, · · · ,
[
(YHY)−1

]
1,K

]
. Then, using the formula of the inverse of block

matrices, we get:

vy = −
[
(YHY)−1

]
1,1

yH
1 Ỹ

(
ỸHỸ

)−1

where Ỹ = [y2, · · · ,yK ].
On the other hand,

[
(YHY)−2

]
1,1

=

([
(YHY)−1

]
1,1

)2

+ vyv
H
y

=

([
(YHY)−1

]
1,1

)2(
1 + yH

1 Ỹ
(
ỸHỸ

)−2
ỸHy1

)

Using corollary A.1, we have:

yH
1 Ỹ

(
ỸHỸ

)−2
ỸHy1 −

1

K
Tr
(
ỸHỸ

)−1
→ 0 almost surely.

Since 1
KTr

(
ỸHỸ

)−1
tends to 1

c2−1 almost surely, we get the desired result.

We are now in position to deal with the term Bσ,K . Using corollary A.1, we get:

Bσ,K −
σ4
v(M −K)

N1σ2
P

[
(HHH)−2

]
i,i
→ 0 almost surely

Hence,

Bσ,K −
σ4
vc1(c2 − 1)(1 + r)

σ2
P

[
(HHH)−2

]
i,i
→ 0 almost surely

Using lemma A.2, we get that:

Bσ,K −
σ4
vc1c2(1 + r)

σ2
P

([
(HHH)−1

]
i,i

)2

→ 0 almost surely
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It can be shown that
[
(HHH)−1

]
i,i

converge almost surely to 1
c2−1 , (its inverse is the mean of

independent random variables [113] ), then:

Bσ,K −
σ4
vc1c2(1 + r)

σ2
P (c2 − 1)

[
(HHH)−1

]
i,i
→ 0 almost surely

To prove the almost sure convergence to zero of ǫσ,K , we will be based on the following result,
about the asymptotic behaviour of weighted averages:

Theorem A.2. Almost sure convergence of weighted averages [5] Let a = [a1, · · · , aN ]T be a
sequence of N × 1 deterministic real vectors with supN

1
N aT

NaN < +∞. Let xN = [x1, · · · , xN ]
be a N×1 real random vector with i.i.d. entries, such that Ex1 = 0 and E|x1| < +∞. Therefore,
1
N aT

NxN converges almost surely to zero as N tends to infinity.

This theorem was proved in [5] for real variables. Since we are interested in the asymptotic
convergence of the real part of ǫσ,K , it can be possible to transpose our problem into the real

case. Indeed, let x = VH
1h

#
i and a = PH

t (H
HH)−1 h#

i , then ℜ (ǫσ,K) is given by:

ℜ (ǫσ,K) =
1

N1σ2
P

ℜ(xHa)

Let ar,xr (resp. ai,xi) denote respectively the real parts (resp. imaginary parts) of a and x,
then

ℜ (ǫσ,K) =
1

N1σ2
P

aT
rxr − aT

i xi

Referring to theorem A.2, the convergence to zero of ℜ (ǫσ,K) is ensured if 1
2N1

(aT
r ar + aT

i ai) =
1

2N1
‖a‖22is finite. This is almost surely true, since:

1

N1σ2
P

‖a‖22 =
1

N1σ2
P

Tr
(
PH

t (H
HH)−1 h#

i

(
h#
i

)H

(HHH)−1 h#
i

)

= h#
i (HHH)−2

(
h#
i

)H

< ‖ (HHH)−2 ‖2
[
(HHH)−1

]
i,i

This leads to
σ2
s,K − σ̃2

s,K −→ 0 almost surely.

where σ̃2
s,K is given by:

σ̃2
s,K = σ2

v

[
(HHH)−1

]
i,i

+
c1(c2 + 1)(1 + r)σ4

v

(c2 − 1)σ2
P

[
(HHH)−1

]
i,i
.

Substituting σ2
s,K by its asymptotic equivalent in (A.1), we get:

E

[
exp

(
ℜ
(
z∗ (∆S)i,j

))
|H,S

]
−E

[
exp

(
−ℜ

(
z∗h#

i ∆Htsj

))
|S,H

]
exp

(
−1

4
|z|2σ̃2

s,N

)
−→ 0 almost surely.

Also conditioning on S and H, h#
i ∆Htsj is a Gaussian random variable with zero mean and

variance

σ2
m,K =

σ2
v

N1σ2
P

h#
i sj

H (PtP
H
t )

−1 sj (hi)
# .
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Since 1
K sj

Hsj −→ σ2
s almost surely, we get that σ2

m,K converges almost surely to σ̃2
m,K where

σ̃2
m,K =

c1(1 + r)σ2
vσ

2
s

σ2
P

[
(HHH)−1

]
i,i
,

Using the fact that the characteristic function of h#
i ∆Htsj is

E

[
exp

(
−ℜ

(
z∗h#

i ∆Htsj

))
|S,H

]
= exp

(
−1

4
|z|2σ2

m,K

)
,

we obtain that conditionally on the channel:

E

[
exp

(
ℜ
(
z∗ (∆S)i,j

))]
− exp

(
−1

4
|z|2

(
σ̃2
m,K + σ̃2

s,K

))
−→ 0 almost surely.

We end up the proof by noticing that σ̃2
m,K + σ̃2

s,K = σ2
sδt

[
(HHH)−1

]
i,i
.

A.2 Proof of theorem 2.2

For the conventional scheme, the effective post-processing noise writes as:

∆Wc = −H#∆Hc (W +P) +
(
IK −H#∆Hc

)
H#V + (HHH)−1∆HH

cΠV

Substituting ∆Hc by its value, we get:

∆Wc = −WPH (PPH)−1W −WPH (PPH)−1P−H#VPH (PPH)−1W −H#VPH (PPH)−1P

+H#V −WPH (PPH)−1H#V −H#VPH (PPH)−1H#V + (HHH)−1 (PPH)−1PVHΠV

Denote by wi, w̃i the i th column and row of W. Also, denote by pj , vj , h
#
i and h̃i the j th

column of P and V and the i th rows of H# and (HHH)−1, respectively. Then, [∆Wc]i,j can
be written as:

[∆Wc]i,j = −w̃iP
H (PPH)−1wj − w̃iP

H (PPH)−1 pj − h#
i VPH (PPH)−1wj − h#

i VPH (PPH)−1 pj

+h#
i vj − w̃iP

H (PPH)−1H#vj − h#
i VPH (PPH)−1H#vj + h̃i (PPH)−1PVHΠvj

Hereafter, we will derive the asymptotic distribution for the random variable [∆Wc]i,j . Similarly
to the TDMT case, we will be based on the ’characteristic function approach’. We refer the reader
to theorem A.1 in A.1 for the expression of the characteristic function.

Conditioning on vj , w̃i and wj , [∆Wc]i,j is Gaussian distributed, since it involves a linear
combination of independent Gaussian random variables. Hence, the conditional characteristic
function of [∆Wc]i,j writes as:

E

(
exp

(
ℜ (z∗ [∆Wc)]i,j

)
|vj , w̃i,wj

)
= exp

(
smN − |z|2σ2

N/2
)

where

mN = −w̃iP
H (PPH)−1wj − w̃iP

H (PPH)−1 pj − h#
i vjp

H
j (PPH)−1wj − h#

i vjp
H
j (PPH)−1 pj

+ h#
i vj − w̃iP

H (PPH)−1H#vj − h#
i vjp

H
j (PPH)−1H#vj + h̃i (PPH)−1 pjv

H
j Πvj

σ2
N = E

[∣∣∣h#
i VjP

H
j (PPH)−1wj + h#

i VjP
H
j (PPH)−1 pj + h#

i VjP
H
j (PPH)−1H#vj

+h̃i (PPH)−1PjV
H
j Πvj

∣∣∣
2
|vj , w̃i,wj

]
,
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where Pj and Vj being the P and V matrices with the j th column removed.

σ2
N = XN +A+ YN + ZN + 2ℜ(ǫN,1) + 2ℜ(ǫN,2) + 2ℜ(ǫN,3),

where:

XN = E

[
h#
i VjP

H
j (PPH)−1wjw

H
j (PPH)−1PjV

H
j

(
h#
i

)H

|vj , w̃i,wj

]

A = E

[
h#
i VjP

H
j (PPH)−1 pjp

H
j (PPH)−1PjV

H
j

(
h#
i

)H]

YN = E

[
h#
i VjP

H
j (PPH)−1H#vjv

H
j

(
H#

)H

(PPH)−1PjV
H
j

(
h#
i

)H

|vj , w̃i,wj

]

ZN = E

[
h̃i (PPH)−1PjV

H
j Πvjv

H
j ΠVjP

H
j (PPH)−1 h̃H

i |vj , w̃i,wj

]

ǫN,1 = E

[
h#
i VjP

H
j (PPH)−1wjp

H
j (PPH)−1PjV

H
j

(
h#
i

)H

|vj , w̃i,wj

]

ǫN,2 = E

[
h#
i VjP

H
j (PPH)−1H#vjw

H
j (PPH)−1PjV

H
j

(
h#
i

)H

|vj , w̃i,wj

]

ǫN,3 = E

[
h#
i VjP

H
j (PPH)−1 pjv

H
j

(
H#

)H

(PPH)−1PjV
H
j

(
h#
i

)H

|vj , w̃i,wj

]

A is a determinsitic quantity which can be computed easily as follows:

A = σ2
v

[
(HHH)−1

]
i,i
Tr
(
PH

j (PPH)−1 pjp
H
j (PPH)−1Pj

)

= σ2
v

[
(HHH)−1

]
i,i
pH
j (PPH)−1 pj

(
1− pH

j (PPH)−1 pj

)

One can prove easily that for our particular choice of the matrix P, we have pH
j pj = Kσ2

P .
Therefore,

A = σ2
v

[
(HHH)−1

]
i,i
c1 (1− c1) (A.4)

The remaining task now is to determine the limiting behavior of the introduced random quan-
tities. For that, we will sequentially determine almost sure limits for the random variables XN ,
YN and ZN and prove the almost sure convergence to zero of ǫN,1, ǫN,2 and ǫN,3.

1. Limiting behavior of XN . Computing the expectation with respect to the probability
density function of Vj , we can prove that:

XN = σ2
v

[
(HHH)−1

]
i,i
wH

j (PPH)−1PjP
H
j (PPH)−1wj

XN is therefore a quadratic form expression with respect to wj . Hence, the limiting
behavior of XN can be derived by using the result about the almost sure convergence of
quadratic forms that has been stated in A.1. Indeed, using corollary A.1, it is easy to see
that XN satisfies:

XN −
c1σ

2
vσ

2
wc

σ2
P

[
(HHH)−1

]
i,i
−−−−→
K→∞

0 (A.5)

2. Limiting behavior of YN : By the same way, we compute first the expectation with respect
to Vj , thus leading to:

YN = σ2
v

[
(HHH)−1

]
i,i
vH
j

(
H#

)H

(PPH)−1PjP
H
j (PPH)−1H#vj .



A.2. Proof of theorem 2.2 41

Using corollary A.1, we get:

YN −
σ4
v

Nσ2
P

[
(HHH)−1

]
i,i
Tr (HHH)−1 +

σ4
v

N2σ4
P

pH
j (H

HH)−1 pj −−−−→
K→∞

0 almost surely

Since the spectral norm of (HHH)−1 is bounded almost surely [3], the last term in the
above equation could be shown to converge to zero almost surely. Hence, we get:

YN −
σ4
v

Nσ2
P

[
(HHH)−1

]
i,i
Tr (HHH)−1 −−−−→

K→∞
0 almost surely

Knowing that 1
KTr (HHH)−1 converges to 1

c2−1 almost surely, we obtain:

YN −
c1σ

4
v

(c2 − 1)σ2
P

[
(HHH)−1

]
i,i
−−−−→
K→∞

0 almost surely (A.6)

3. Limiting behaviour of ZN :

Computing the expectation with respect to the probability distribution of Vj , we get:

ZN = E

[
h̃i(PPH)−1PjV

H
j Πvjv

H
j ΠVjP

H
j (PPH)−1h̃H

i

]

= σ2
vv

H
j Πvjh̃i(PPH)−1PjP

H
j (PPH)−1h̃H

i

=
σ2
vv

H
j Πvj

Nσ2
P

(
h̃ih̃

H
i −

1

Nσ2
P

h̃ipjp
H
j h̃

H
i

)

=
σ2
vv

H
j Πvj

Nσ2
P

([
(HHH)−2

]
i,i
− 1

Nσ2
P

h̃ipjp
H
j h̃

H
i

)

Using corollary A.1, we get that
vH
j Πvj

Nσ2
P

− (M−K)σ2
v

Nσ2
P

→ 0 almost surely. Also, from A.2, we

get that:
[
(HHH)−2

]
i,i
− c2

(c2−1)2

[
(HHH)−1

]
i,i
→ 0 almost surely. Also using the same

technique as in lemma A.2, we can prove that: 1
Nσ2

P

h̃ipjp
H
j h̃

H
i → 0 almost surely. This

implies that:

ZN −
c1c2σ

4
v

(c2 − 1)σ2
P

[
(HHH)−1

]
i,i
→ 0 almost surely. (A.7)

4. Almost sure convergence to zero of ℜ(ǫN,1), ℜ(ǫN,2) and ℜ(ǫN,3). Computing the expec-
tation with respect to Vj , we get:

ǫN,1 =
σ2
v(1− c1)

Nσ2
P

[
(HHH)−1

]
i,i
pH
j wj

ǫN,2 =
σ2
v

Nσ2
P

[
wH

j H
#vj −

1

Nσ2
P

wH
j pjp

H
j H

#vj

]

ǫN,3 =
(1− c1)σ

2
v

Nσ2
P

vH
j

(
H#

)H

pj

To prove the almost sure convergence to zero of all these terms, we will be based, in
the same way as in the TDMT case, on theorem A.2 about the asymptotic behaviour of
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weighted averages: We will prove the almost sure convergence of ℜ(ǫN,3). For ℜ(ǫN,1) and
ℜ(ǫN,2), the proof is quite similar.

Let gj = H#vj − 1
Nσ2

P

pjp
H
j H

#vj ,then ǫN,3 can be given as:

ǫN,2 =
σ2
v

Nσ2
P

wH
j gj

Let wj,r, gj,r and wj,i, gj,i be respectively the real and imaginary parts of wj and gj .
Then

ℜǫN,2 =
σ2
v

Nσ2
P

(wT
r gr −wT

i gi) .

According to theorem A.2, we need only to prove that 1
2N (gT

r gr + gT
i gi) = 1

2N ‖g‖22 is
bounded to conclude about the almost sure convergence to zero of ℜ(ǫN,2). This is almost
surely true, since:

1

2N
‖g‖22 ≤

1

N
vH
j

(
H#

)H

H#vj +
1

N2σ2
P

vH
j

(
H#

)H

pjp
H
j pjp

H
j H

#vj (A.8)

Using Corollary A.1, the right hand side in (A.8) is almost surely equivalent to 1
N σ2

vTr (H
HH)−1+

c1
N pH

j (H
HH)−1 pj . The spectral norm of (HHH)−1 is almost surely bounded, hence so is

1
2N ‖g‖22.

From (A.4), (A.5), (A.6) and (A.7), it ensues that:

σ2
N − σ̃2

N −−−−→
K→∞

0 almost surely

where

σ̃2
N =

(
c1(1− c1)σ

2
v +

c1σ
2
vσ

2
wc

σ2
P

+
c1(c2 + 1)σ4

v

(c2 − 1)σ2
P

)[
(HHH)−1

]
i,i

Hence, almost surely, the following convergence holds:

E

[
exp

(
ℜ
(
z∗ [∆Wc]i,j

))
|vj , w̃i,wj

]
−E [exp (ℜ (z∗mN )) |vj , w̃i,wj ] exp

(
−1

4
||z|2|σ̃2

N

)
−−−−→
K→∞

0

(A.9)
This finishes the first part of the proof. It remains now to work out the characteristic function
of the random variable mN . We note that mN can be written as the sum of MN,1, MN,2, MN,3

and MN,4 where:

MN,1 = −w̃iP
H (PPH)−1wj − w̃iP

H (PPH)−1 pj

MN,2 = −h#
i vjpj

H (PPH)−1wj − h#
i vjpj

H (PPH)−1H#vj

MN,3 = −h#
i vjpj

H (PPH)−1 pj + h#
i vj − w̃iP

H (PPH)−1H#vj

MN,4 = h̃i (PPH)−1 pjv
H
j Πvj

Since MN,1 does not depend on vj , we have:

E [exp(ℜ (z∗mN ))|w̃i,wj ] = exp (ℜ (z∗MN,1))E [exp (ℜ (z∗MN,2 + z∗MN,3)) |w̃i,wj ] (A.10)

To determine the characteristic function of mN , we will next sequentially:
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• Prove that MN,2 converges to zero in probability,

• Find an asymptotic equivalent of the characteristic function of MN,3 +MN,4,

• Determine an asymptotic equivalent of the characteristic function of MN,1.

1. Convergence in probability of MN,2: MN,2 can be decomposed into the sum of two terms:

MN,2 = MN,2,1 +MN,2,2

where

MN,2,1 = −h#
i vjp

H
j (PPH)−1wj

MN,2,2 = −h#
i vjp

H
j (PPH)−1H#vj

To prove the convergence of MN,2 to zero, we need only to show that MN,2,1 and MN,2,2

converge to zero in probability. This can be verified, by showing that the second moment
of MN,2,1 and MN,2,2 converge to zero in the asymptotic regime. Actually, we have:

E
[
|MN,2,1|2

]
= E

[∣∣∣h#
i vjp

H
j (PPH)−1wj

∣∣∣
2
]

= σ2
v

[
(HHH)−1

]
i,i
Tr
(
pH
j (PPH)−2 pj

)

=
Kσ2

v

N2σ2
P

[
(HHH)−1

]
i,i

−−−−→
K→∞

0

To compute the second moment of MN,2,2, we shall need the following lemma

Lemma A.3. Let x be a N ×1 complex random vector with circular complex i.i.d entries.
Let y be a N × 1 deterministic vector, and A be a N ×N deterministic matrix then:

E [xTAxxHAHx∗] = κ
N∑

i=1

|Ai,i|2 + 2
(
E|x1|2

)2
Tr(AAH)

where κ = E|x1|4 − 2
(
E|x1|2

)2
.

Proof.

E [xTAxxHAHx∗] = E

∑

i,j,k,l

xiAi,jxjx
∗
kA

∗
lkx

∗
l

=

N∑

i=1

E|x1|4|Ai,i|2 + 2
(
E|x1|2

)2 ∑

i,j,i 6=j

Ai,jA
∗
j,i

=
(
E|x1|4 − 2

(
E|x1|2

)2) N∑

i=1

|Ai,i|2 + 2
(
E|x1|2

)2∑

i,j

Ai,jA
∗
j,i

= κ
N∑

i=1

|Ai,i|2 + 2
(
E|x1|2

)2
Tr (AAH)
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We are now in position to compute E|MN,2,2|2. Since v has Gaussian entries, E|v1|4 −
2
(
E|v1|2

)2
= 0. Using lemma A.3, we get:

E|MN,2,2|2 = 2σ4
vTr

((
h#
i

)T

pH
j (PPH)−1H#

(
H#

)H

(PPH)−1 pjh
#
i

)

=
2σ4

v

N2σ2
P

pH
j (H

HH)−1 pjTr(
(
h#
i

)T

hi)

=
2σ4

v

N2σ2
P

pH
j (H

HH)−1 pj

[
(HHH)−1

]
i,i

≤ 2Kσ4
v

N2
‖ (HHH)−1 ‖22

−−−−→
K→∞

0

2. Asymptotic equivalent of the characteristic function of MN,3 +MN,4:

Conditioned on wi, MN,3 is a Gaussian random variable with zero mean. Hence, the
characteristic function of MN,3 is given by:

E [exp (ℜ(z∗MN,3)) |w̃i] = exp

(
−1

4
|z|2σ2

M

)

where σ2
M is given by:

σ2
M = E

[
h#
i vjp

H

j (PPH)
−1

pjp
H

j (PPH)
−1

pjv
H

j

(
h#
i

)
H
]
+ E

[
h#
i vjv

H

j

(
h#
i

)
H
]

+ E

[
w̃iP

H (PPH)
−1

H#vjv
H

j

(
H#

)H
(PPH)

−1
Pw̃H

i

]
− 2Eℜ

(
h#
i vjp

H

j (PPH)
−1

pjv
H

j

(
h#
i

)
H
)

− 2Eℜ
(
w̃iP

H (PPH)
−1

H#vjv
H

j

(
h#
i

)
H
)
+ 2Eℜ

(
w̃iP

H (PPH)
−1

H#vjp
H

j (PPH)
−1

pjv
H

j

(
h#
i

)
H
)

= σ2
vTr

(
pH

j (PPH)
−1

pjp
H

j (PPH)
−1

pjh
#
i

(
h#
i

)
H
)
+ σ2

v

[
(HHH)

−1
]
i,i

+ σ2
vw̃iP

H (PPH)
−1

(HHH)
−1

(PPH)
−1

w̃H

i − 2c1σ
2
v

[
(HHH)

−1
]
i,i
− 2σ2

vℜ
(
w̃iP

H (PPH)
−1

H#
(
h#
i

)
H
)

+ 2σ2
vc1ℜ

(
w̃iP

H (PPH)
−1

H#
(
h#
i

)
H
)

= σ2
v(1− c1)

2
[
(HHH)

−1
]
i,i

+ σ2
vw̃iP

H (PPH)
−1

(HHH)
−1

(PPH)
−1

w̃H

i

Using corollaryA.1, we can prove that:

σ2
v

N2σ4
P

w̃iP
H (HHH)−1Pw̃H

i −
σ2
vσ

2
wc

Nσ2
P

Tr (HHH)−1 −−−−→
K→∞

0 almost surely.

Since 1
KTr (HHH)−1 −−−−→

K→∞
1

c2−1 almost surely, we get:

σ2
v

N2σ4
P

w̃iP
H (HHH)−1Pw̃H

i −−−−→
K→∞

c1σ
2
vσ

2
wc

σ2
P (c2 − 1)

Also using theorem A.2, we can prove by the same way as before that ℜ
(
w̃iP

H (PPH)−1H#
(
h#
i

)H)

converge almost surely to zero. Consequently;

σ2
M − σ̃2

M −−−−→
K→∞

0 almost surely
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where

σ̃2
M = σ2

v (1− c1)
2
[
(HHH)−1

]
i,i

+
c1σ

2
vσ

2
wc

σ2
P (c2 − 1)

An asymptotic equivalent for the characteristic function of MN,3 can be therefore given
by:

E [exp (ℜ (z∗MN,3))]− exp

(
−|z|

2

4
σ̃2
M

)
−−−−→
K→∞

0 almost surely.

Let us now deal with the term MN,4. We decompose MN,4 as

MN,4 =
h̃ipj√
Nσ2

P


 vjΠvj√

Nσ2
P

− (M −K)σ2
v√

Nσ2
P


+

(M −K)σ2
vh̃ipj

Nσ2
P

.

One can see that the right hand side converges to zero in distribution, since
h̃ipj√
Nσ2

P

con-

verges to zero in probability. Hence, we get:

MN,4 − c1(c2 − 1)
σ2
vh̃ipj

σ2
P

→ 0. in probability.

Consequently, MN,4 +MN,3 satisfies:

E [exp (ℜ(z∗(MN,3 +MN,4)))]− exp(−|z|
2

4
σ̃2
M ) exp

(
ℜ
(
z∗c1(c2 − 1)

σ2
vh̃ipj

σ2
P

))
→ 0

Since MN,2 converges to zero in probability, we can prove by using Slutsky theorem, that:

E [exp (ℜ (z∗MN,3 + z∗MN,2))]− exp

(
−|z|

2

4
σ̃2
M

)
exp (ℜ (z∗θ)) −−−−→

K→∞
0 almost surely.

(A.11)

where θ = c1(c2 − 1)
σ2
vh̃ipj

σ2
P

3. Asymptotic equivalent of the characteristic function of MN,1 To determine an asymptotic
equivalent of the characteristic function of MN,1, we first decompose MN,1 as the sum of
two terms, MN,1,1 and MN,1,2 where,

MN,1,1 = −w̃iP
H (PPH)−1wj

MN,1,2 = −w̃iP
H (PPH)−1 pj

Note that w̃i and wj are not independent since they share in common the variable wi,j ,
but for sake of simplicity, we assume that they are independent, the final result remaining
the same since the contribution of the term wi,j converges to zero almost surely.

Consequently, conditioned on w̃i, the characteristic function of MN,1 writes as:

E [exp (ℜ (z∗MN,1)) |w̃i] = E [exp (ℜ (z∗MN,1,1)) |w̃i] exp (ℜ (z∗MN,1,2)) . (A.12)

Using the CLT theorem for martingales, it can be shown that MN,1,1 behaves asymptot-
ically like a Gaussian random variable. More particularly, we can show that under some
conditions, a bilinear form converges in distribution to a Gaussion random variable. For
that, we will use the CLT theorem for martingales, which can be stated as follows.
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Theorem A.3. For each n ∈ N, let {ξn,j , j = 0, · · · , n} be a martingale difference array
with respect to a filtration {Fnj}, for which,

• ∑j ξ
2
nj → 1 in probability,

• maxj |ξnj | → 0 in probability,

• supn Emaxj ξ
2
nj <∞

Then
∑

j ξnj converges in distribution to N (0, 1) as n→∞.

Based on theorem A.3, we will prove the following result about the convergence in distri-
bution of a bilinear form:

Theorem A.4. Let x be a N × 1 complex random vector with i.i.d. entries with zero
mean and unit variance and with bounded entries. A be a sequence of deterministic K×N
matrices with bounded spectral norm, and such that the maximum of the entries of A are
of order O(

√
N), i.e, there exists a constant Cm and CM such that:

Cm√
N
≤ |Ai,j | ≤

CM√
N

.

y be a sequence of K×1 random vectors independent from x, with independent and bounded
entries. Then, in the asymptotic regime defined as N →∞,K →∞ and K

N → c1 we have:

√
1

Tr (AHA)
xHAHy −→ N (0, 1) in distribution

Proof. To prove theorem A.4, we need to compute, the characteristic function given by:

Φ(z) = E

[
exp

(
ℜ
(

z∗√
Tr(AHA)

xHAHy

))]
(A.13)

Theorem A.3 being valid for real random variables, we should transform our problem into
the real case. Let z1, z2, x1, x2, y1, y2, A1 and A2 be real variables defined as:

z = z1 + z2

x = x1 + x2

y = y1 + y2

AH = A1 + A2

Then, after some straighforward calculations, we can show that:

ℜ (z∗xHAHy) = xT
rAzyr (A.14)

where,

xr = [xT
1 xT

2 ]
T

yr = [yT
1 yT

2 ]
T

Az =

[
z1A1 − z2A2 −z1A2 − z2A1

−z1A2 − z2A1 −z1A1 + z2A2

]
.
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Besides, one can easily prove that:

Tr (AT
zAz) = 2(z21 + z2) (Tr(A1A

T
1 ) + Tr (A2A

T
2 )) = 2(z21 + z22)Tr (A

HA) (A.15)

Plugging (A.14) into (A.13), we get:

Φ(z) = E

[
exp

(

√
2(z21 + z22)√
Tr(AzAT

z )
(xT

rAzyr)

)]
(A.16)

Let ãi,z denotes the ith row of Az. Then the random variable 2
Tr(AzAT

z )
xT
rAzyr can be

decomposed into the sum of 2N random variables as follows:

2√
Tr(AzAT

z )
xT
rAzyr =

2√
Tr(AzAT

z )

2N∑

i=1

xr,iãi,zyr

where xr,i denotes the ith element of vector xr.

Consider the increasing filtration Fi = σ (yr, xr,1, · · · , xr,i) , i ∈ {1, · · · , N}. Denote Ei the
conditional expectation with respect to Fi, that is, Ei = E [.|Fi]. By convention, F0 is the
trivial σ−field, i.e E0 = E.

Let ξi =
2√

Tr(AzAT
z )
xr,iãi,zyr. Then, it is obvious that (ξi)1≤i≤N is adapted to the filtration

(Fi)1≤i≤N . Moreover, since, Ei−1(ξi) = 0, ξi is a difference martingale sequence.

To prove the CLT, we need to check the three conditions in theorem A.4: Let us prove
that

∑2N
i=1 ξ

2
i → 1 in probability. We have:

2N∑

i=1

ξ2i =
4

Tr(AzAT
z )

yT
r

(
2N∑

i=1

ãT
i,zai,zx

2
r,i

)
yr

Since xr,i are bounded random variables, the spectral norm of
∑2N

i=1 ã
T
i,zai,zx

2
r,i is bounded.

Moreover, one can easily check that Tr(AzA
T
z ) is of order N . Therefore, using corollary

A.1, we get:
2N∑

i=1

ξ2i −
2

Tr(AzAT
z )

(
ãi,zã

T
i,zx

2
r,i

)
−−−−→
K→∞

0 almost surely.

Using theoremA.2, we can prove that:

2

Tr(AzAT
z )

2N∑

i=1

(
ãi,zã

T
i,z(x

2
r,i −

1

2
)

)
−−−−→
K→∞

0almost surely.

Since
∑2N

i=1 ãi,zã
T
i,z = Tr(AzA

T
z ), we have:

2N∑

i=1

ξ2i − 1 −−−−→
K→∞

0 almost surely.

It remains now to show that maxj |ξn,j | converges to zero in probability. For that, we will
make use of Hoeffding inequality which can be stated as follows:
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Theorem A.5. Hoeffding inequality Let X1, · · · , Xn be n independent random variables
with zero mean. Assume that the Xi are almost surely bounded, that there exists b and a
such that

P(Xi ∈ [a, b]) = 1.

Then, for the sum of these variables

S =
n∑

i=1

Xi

we have the inequality:

P (|S| ≥ t) ≤ 2 exp

(
− 2t2

n(b− a)2

)

Since the entries of ãi,z are of order
1√
N

and that of yr and xr are bounded,
4√

Tr(AzAT
z )
ãi,j,syj,r

is of order O( 1
N ), ãi,j,s and yj,r being the jth entries of ãi,z and yr. Therefore, there exists

a constant C such that:

| 4√
Tr(AzAT

z )
ãi,j,syj,r| ≤

C

N

Applying Hoeffding inequality, we get that:

P (|ξj | > t) ≤ 2 exp

(
−2Nt2

8C2

)

Using the union bound inequality, we deduce, that,

P

(
max

j
|ξj | > t

)
≤ 4N exp

(
−2Nt2

8C2

)

−−−−→
N→∞

0

To conclude about the CLT, we need to verify that supn Emaxj ξ
2
j ≤ ∞. This is true, since,

all the variables are bounded. This shows that, under the assumption of our theorem, we
have

2√
Tr(AzAT

z )
xT
rAzyr −−−−→

K→∞
N (0, 1).

The characteristic function (A.16) converges to:

Φ(z)− exp(−|z|
2

4
) −−−−→

K→∞
0

We are now in position to determine the asymptotic behavior of MN,1,1. Applying theorem
A.4, we can prove that:

E [jℜ(z∗MN,1,1)] −−−−→
K→∞

exp(−c1σ
4
wc

4σ2
P

)
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For our particular choice of the pilot matrix P, we can show that MN,1,2 involves the sum
of N

K = 1
c1

random entries of c1w̃i, therefore, in the asymptotic regime MN,1 behaves in
the asymptotic regime as a Gaussian mixture random variable, i.e:

E [exp (ℜ (z∗MN,1))]−
Q∑

i=1

pi exp(ℜ(z∗αi)) exp

(
−c1|z|2σ4

wc

4σ2
P

)
−−−−→
K→∞

0

where Q is the cardinal of the set of all possible values of Wi,k = c1
∑ 1

c1
k=1Wi,k, and pi is

the probability that Wi,k takes the value αi.

Using (A.9),(A.10) and (A.11) , we conclude that:

E

[
exp

(
ℜ
(
z∗ [∆Wc]i,j

))]
−

Q∑

i=1

pi exp(ℜ(z∗(αi+θ)) exp

(
−c1|z|2σ4

wc

4σ2
P

)
exp(−|z|2 σ̃

2
M + σ̃2

N

4
) −−−−→

K→∞
0

Substituting σ̃2
N and σ̃2

M by their expression, we get after simplification:

E

[
exp

(
ℜ
(
z∗ [∆Wc]i,j

))]
−

Q∑

i=1

pi exp(ℜ(z∗(αi+θ))) exp


−
|z|2σ2

wc

(
τc + |z|2δc

[
(HHH)−1

]
i,i

)

4




where

δc = (1− c1)
σ2
v

σ2
wc

+
c1σ

2
v

σ2
P

+
c1σ

4
v(c2 + 1)

(c2 − 1)σ2
Pσ

2
wc

τc =
c1σ

2
v

σ2
P (c2 − 1)

+
c1σ

2
wc

σ2
P

.

A.3 Proof of theorem 2.3

For the DDST scheme, the post-processing noise matrix ∆Wd is given by:

∆Wd = −WJ−H#∆HdW (IN − J) +
(
H# −H#∆HdH

#
)
V (IN − J)

+ (HHH)−1∆HH
dΠV (IN − J)

= −WJ−H#∆HdW (IN − J) +H#V (IN − J)−H#∆HdH
#V (IN − J)

+ (HHH)−1∆HH
dΠV (IN − J) .

Hence,

(∆Wd)i,j = −w̃iJj − h#
i VPH (PPH)

−1
W (ej − Jj) + h#

i V (ej − Jj)− h#
i VPH (PPH)

−1
H#V (ej − Jj)

+ h̃i (PPH)
−1

PVHΠV (ej − Jj)

where ej and Jj denotes the jth columns of IN and J, respectively and w̃i denotes the ith row
of the matrix W.

Let v1 = V (ej − Jj), and v2 = vec(V (PPH)−1PH)
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The vector [vT
1 ,v

T
2 ]

T is a Gaussian vector. Since E [v1v
H
2 ] = 0, we conclude that v1 and v2

are independent. Then v1 and V2 = V (PPH)−1PH are also independent. Moreover, E [v1v
H
1 ] =

σ2
v

(
1− K

N

)
IN .

Conditioning on V2, H and W, (∆Wd)i,j is a Gaussian random variable with mean equal

to −w̃iJj − h#
i V2W (ej − Jj) and variance σ2

wd,N
equal to:

σ2
wd,N

= E

[(
h#
i − h#

i V2H
# + h̃iV

H

2Π
)
v1v

H

1

((
h#
i

)
H

−
(
H#

)H
VH

2

(
h#
i

)
H

+ΠV2h̃
H

i

)
|V2

]

= E

[
h#
i v1v

H

1

(
h#
i

)
H
]
+ E

[
h#
i V2H

#v1v
H

1

(
H#

)H
VH

2

(
h#
i

)
H
]
− 2E

[
ℜ
(
h#
i V2H

#v1v
H

1

(
h#
i

)
H
)]

+ σ2
v(1−

K

N
)h̃iV

H

2ΠV2(h̃i)
H

= (1− K

N
)σ2

v

[
(HHH)

−1
]
i,i

+ σ2
v(1−

K

N
)h#

i V2 (H
HH)

−1
VH

2

(
h#
i

)
H

− 2(1− K

N
)σ2

vℜ
(
h#
i V2H

#
(
h#
i

)
H
)

+ σ2
v(1−

K

N
)h̃iV

H

2ΠV2(h̃i)
H

Using the same techniques as before, it can be proved that:

(1− K

N
)σ2

vh
#
i V2 (H

HH)−1VH
2

(
h#
i

)H

− c1(1− c1)σ
4
v

(c2 − 1)σ2
P

[
(HHH)−1

]
i,i
→ 0 almost surely.

and also that,

ℜ
(
h#
i V2H

#
(
h#
i

)H)
−→ 0 almost surely.

On the other hand, we have:

σ2
v(1− c1)h̃iV

H
2ΠV2

(
h̃i

)H

− c1σ
4
v(1− c1)(M −K)

Nσ2
P

[
(HHH)−2

]
i,i
→ 0 almost surely.

Since
[
(HHH)−2

]
− c2

c2−1

[
(HHH)−1

]2
i,i
→ 0 by lemma A.2, we get that:

σ2
v(1− c1)h̃iV

H
2ΠV2

(
h̃i

)H

− σ4
v(1− c1)c1c2
(c2 − 1)

[
(HHH)−1

]
i,i
→ 0.

Therefore,
σ2
wd,N

− σ̃2
wd,N

−→ 0 almost surely

where,

σ̃2
wd,N

=

(
σ2
v(1− c1) +

c1(c2 + 1)(1− c1)σ
4
v

(c2 − 1)σ2
Pd

)[
(HHH)−1

]
i,i
.

Consequently,

E

[
exp

(
ℜ
(
z∗ (∆W)i,j

))
|H,W,V2

]
= E

[
exp

(
−ℜ

(
z∗w̃iJj + z∗h#

i V2W (ej − Jj)
))
|W,v2

]

× exp

(
−1

4
|z|2σ̃2

wd,N

)
.

Conditioning on W and H, w̃iJj +h#
i V2W (ej − Jj) is a Gaussian random variable with mean

equal to w̃iJj and variance σ2
wm,N given by:

σ2
md,N

= E

[
h#
i V2W (ej − Jj)

(
eH
j − JH

j

)
WHVH

2

(
h#
i

)H

|W,H
]

=
σ2
v

Nσ2
Pd

[
(HHH)−1

]
i,i

(
eH
j − JH

j

)
WWH (ej − Jj) .
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Using corollary A.1, we can easily prove that:

σ2
md,N

− σ̃2
md,N

−→ 0 almost surely,

where

σ̃2
md,N

=
(1− c1)σ

2
wd
σ2
v

σ2
Pd

[
(HHH)−1

]
i,i
.

Conditioning only on H, the conditional characteristic function satisfies:

E

[
exp

(
ℜ
(
z∗ (∆Wd)i,j

))
|H
]
− E [exp (−jℜ (z∗w̃iJj))] exp

(
−1

4
|z|2

(
σ̃2
wd,N

+ σ̃2
md,N

))
−→ 0.

Giving the structure of the matrix J, w̃iJj involves the average of 1
c1

symmetric independent
and identically distributed discrete random variables, and therefore,

E [exp (−jℜ (z∗w̃i))] =
Q∑

i=1

pi exp (ℜ (z∗αi))

where Q is the set of all possible values of Wi,k = c1
∑ 1

c1
i=1Wi,k and pi is the probability that

Wi,k takes the value αi. Consequently;

E

[
exp

(
ℜ
(
z∗ (∆Wd)i,j

))
|H
]
=

Q∑

i=1

pi exp (ℜ (z∗αi)) exp

(
−1

4
|z|2

(
σ̃2
md,N

+ σ2
wd,N

))
.

We conclude the proof by noting that

σ̃2
md,N

+ σ2
wd,N

= σ2
wd

[
(HHH)−1

]
i,i
δd.



Part II

Performance analysis for multi-user
receivers using random matrix

theory
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Introduction

In almost current digital communication applications, the channel is common to several trans-
mitters, which have to comply with a predefined access protocol. A non comprehensive list
of examples includes mobile phones transmissions to a base station, communication between
an access point and terminals, or ground stations communicating with a satellite. To ensure
the system flexibility with respect to the demand of users and to avoid outages, carrying out
performance analysis that evaluate certain performance metric is often of great interest.

The early results on performance analysis of multi-user systems were conducted for academic
contexts, where it is possible to get closed-form derivations. However, for practical situations
taking into account general correlated channels, it is often impossible to get simple closed form-
expressions. For this reason, the evaluation of the system performance has been often conducted
by using massive Monte-Carlo simulations, which may not allow us to understand the effect of
system parameters on the overall performance.

An other approach to evaluate the system performance is to consider the asymptotic case,
when the system parameters grow to infinity with constant ratios. In such case, the mutual
information has been shown to converge to a Gaussian random variable for the so called Kro-
necker correlated channels, [53, 97], for generally spatially correlated channels [76] and for general
variance profile channels [55].

In this part, we will provide a framework for the evaluation of system performance for multi-
user MIMO systems in the asymptotic regime. More explicitly, we will study the asymptotic
behavior (asymptotic approximation and distribution) of the SNR at the output of the Wiener
LMMSE receiver, under the assumption of perfect channel knowledge. In our study, we consider
many variance profiles, where the entries of the channel matrix are assumed to be non i.i.d. This
makes our results apply for a large variety of systems ranging from MIMO systems to CDMA
uplink and downlink based systems. Unfortunately, this asymptotic analysis was found to fail
to accurately estimate some performance metrics such as the BER and the outage probability.
Indeed, the Gaussian distribution is unsuitable to approximate these metrics, since it allows
negative values and its third central moment is zero, where the SNR is always positive and has
nonzero third moment. To accurately approximate the BER and the outage probability, we
propose to use the Generalized Gamma distribution instead of the Gaussian distribution.

This part is organized as follows: First, we review in chapter 3 recent mathematical results
in the field of random matrix theory. Then, we present in chapter 4 the asymptotic results
pertaining the fluctuations of the SINR. Finally, we devote chapter 5 to explain our method
based on the Generalized Gamma approximation.

Notations: Along this part, except when mentioning, N will denote the size of the received
vector while K will denote the number of interfering users. Moreover, the channel matrix will
be denoted by Σ.
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Chapter 3

A brief Overview of random matrix
theory

This chapter presents a general overview of recent developments of random matrix theory. In
particular, It provides preliminary mathematical results that pave the way for the understanding
of the two forthcoming chapters. For the sake of illustration, numerical results are given and
used to draw some conclusions about the validity of the mathematical results.

3.1 Random matrix theory developments

Random matrix theory has matured into a field of applications in many disciplines of physics,
engineering and mathematics. It was first introduced in 1928 by Wishart with the work on fixed-
sizes matrices with Gaussian entries. The first asymptotic results on the limiting eigenvalue
distributions of symmetric matrices were obtained by Wigner, and had found applications in
nuclear physics. Since then, a great number of physicians have been interested in asymptotic
spectral properties of random matrices, and very recently, there is an increasing interest in
random matrix theory for the field of digital communications. Hereafter, we define some matrices
that have retained a great attention in random matrix theory and we provide the obtained results
that discussed their asymptotic behavior.

3.1.1 Resolvent and Gram matrices

Resolvent and Grammatrices play an important role in randommatrix theory. IfΣ = (Σn,k)
N,K
n=1,k=1

denotes a N ×K random matrix then, ΣΣH and Q(z) = (ΣΣH − zρIN )−1 are said to be the
Gram and resolvent matrices corresponding to Σ.

Since the size of the considered matrices is allowed to grow to infinity, the variance of the
entries of Σ is often normalized by 1

K so as to ensure a finite energy per row and column of Σ.
In other words, it is often assumed that:

Σn,k =
σn,kWn,k√

K

where (Wn,k)
N,K
n=1,k=1 is a sequence of i.i.d. random variables with zero mean and variance 1, and

(σn,k, 1 ≤ n ≤ N, 1 ≤ k ≤ K) is a bounded sequence of positive real numbers referred to as vari-
ance profile.

According to the structure of σn,k, three kind of variance profiles can be distinguished:
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• The variance profile is said to be separable if there exist positive sequences dn and d̃k such
that:

σ2
n,k = dnd̃k.

• The variance profile is said to be limit if there exists a continuous function σ2(x, y) defined
on [0, 1]2 such that:

σ2
n,k = σ2(n/N, k/K)

• If the variance profile is not separable, it is said to be general.

3.1.2 Asymptotic results for resolvent matrices

While results for the statistics of the resolvent matrix with fixed dimensions are often cumber-
some and provide little insights, a number of powerful and appealing theorems in the asymptotic
case offer simple expressions that approximate the spectral properties by deterministic function-
als. These results are of great interest in the digital communication field, since the resolvent
matrix is very often encountered in performance metric expressions. For instance, in MIMO
systems, the Shannon’s mutual information is, in most cases, expressed as:

I(ρ) = E log det(IN + ρΣΣH)

where ρ represents the SNR andΣ the channel matrix. The expression of the mutual information
can be further worked out to yield:

I(ρ) =

N∑

n=1

E log(1 + ρλi)

where λi are the eigenvalues of the Gram matrix ΣΣH. The resolvent matrix appears also in
the MSE expression for the LMMSE receiver, given by, [105, equation (1.7)]:

MSE =
1

K
Tr(IN + ρHHH)−1

which can be further expressed as:

MSE =
1

K

K∑

i=1

1

1 + ρλi(HHH)

3.1.2.1 Limit spectral measure

From the examples mentioned above, it emerges clearly that knowing asymptotic properties on
the spectrum of the Gram matrix HHH, may help the understanding of the asymptotic behavior
of certain performance metrics.

For that, we need to define an empirical function of eigenvalues of the Gram matrix and study
its asymptotic behavior. The random quantity that is often considered is called the empirical
spectral measure and is defined on the Borel sets of R+ as:

µn(A) =
1

K

K∑

i=1

δλi
(A)

where δλi
(A) = 1 if λi ∈ A and δλi

(A) = 0 if λi /∈ A.



3.1. Random matrix theory developments 56

Asymptotic limits of the empirical spectral measure have been extensively investigated in
many previous works. It has been shown that when the entries of Σ are zero mean with limit
variance profile, the empirical distribution converges weakly to a limiting spectral measure µ
that can be characterized via a functional equation, [45]. On the other hand, in case the entries
of Σ are non-centered, the existence of a limiting spectral measure of the Gram matrix ΣΣH is
not guaranteed except in some specific cases, [54].

3.1.2.2 Deterministic equivalents

Since the limiting spectral measure of Gram matrices does not always exist, [54] investigates
on ”non limit” deterministic equivalents that dictates the asymptotic behaviour of the spectral
measure. Such deterministic equivalents are shown to be unique and to always exist for any
variance profile, [54].

Hereafter, we recall their definition for general and separable variance profiles as well as some
of their properties. But first, we shall introduce the following quantities:

Definition 3.1. Let (σ2
n,k, 1 ≤ n ≤ N, 1 ≤ k ≤ K) be a general variance profile. Based on this

variance profile, we define the following diagonal matrices:

Dk = diag
(
σ2
1k, · · · , σ2

Nk

)
, 1 ≤ k ≤ K

D̃n = diag
(
σ2
n1, · · · , σ2

nK

)
, 1 ≤ n ≤ N

In case the variance profile is separable, matrices Dk and D̃n are written as:

Dk = d̃kD and D̃n = dnD̃

where D and D̃ are the diagonal matrices:

D = diag(d1, . . . , dN ), D̃ = diag(d̃1, . . . , d̃K) . (3.1)

Definition 3.2. A complex function t(z) belongs to class S if :

• t(z) is analytical in the upper half C+ = {z ∈ C;ℑ(z) > 0}
• t(z) ∈ C+ for all z ∈ C+

• ℑ(z)|t(z)| is bounded over the upper half plane C+.

We are now in position to introduce the deterministic equivalents for general and separable
variance profiles : When the general variance profile is considered, the unique deterministic
equivalents are the solution of N +K system of equations:

Theorem 3.1. [54, Theorem 2.4] Assume that the entries of the Gram matrix Σ are centered,
then he system of N +K functional equations:





tn,K(z) =
−1

z
(
1 + 1

KTr(D̃n(K)T̃K(z))
) , 1 ≤ n ≤ N

t̃k,K(z) =
−1

z
(
1 + 1

KTr(Dk(K)TK(z))
) , 1 ≤ k ≤ K

(3.2)

where
TK(z) = diag(t1,K(z), . . . , tN,K(z)), T̃K(z) = diag(t̃1,K(z), . . . , t̃K,K(z))

admits a unique solution (T, T̃) among the diagonal matrices for which the tn,K ’s and the t̃k,K ’s
belong to class S. Moreover, functions tn,K(z) and t̃k,K(z) admit an analytical continuation over
C− R+ which is real and positive for z ∈ (−∞, 0).
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Moreover, T and T̃ can be computed numerically in an iterative way (Algorithm 1):

Algorithm 1 Iterative computation of T(z) and T̃(z)

T← 0N×N // Initialization of T
T̃← 0K×K// Initialization of T̃
ǫ← 10−3

repeat
Ti ← T // Previous value of T
T̃i ← T̃ // Previous value of T̃
for n = 1 to N do
T(n, n)← − 1

z(1+ 1
K
Tr(D̃nT̃i))

end for
for k = 1 K do
T̃(k, k)← − 1

z(1+ 1
K
Tr(DkT

i))
end for

until ‖T−Ti‖
Ti > ǫ

In [54], diagonal matrices T and T̃ are shown to reproduce the asymptotic behavior of
resolvent matrices Q(z) = (ΣΣH − zIN ) and Q̃(z) = (ΣHΣ− zIK). By asymptotic, we mean
that both K and N go to +∞, their ratio being bounded below and above as follows:

K → +∞, lim inf
K

N
> 0 and sup

K

N
< +∞ . (3.3)

In the sequel, the notation “K → +∞” will refer to (3.3).

Under some mild assumptions, the quantities 1
KTrS (Q(z)−T(z)) and 1

KTrS
(
Q̃(z)− T̃(z)

)

converge almost surely to zero as K → +∞, where S is a test matrix with spectral bounded
norm. More explicitly, this result can be stated as:

Theorem 3.2. Let Σ a N ×K random matrix, with entries verifying that:

Σn,k =
σn,kWn,k√

K

where Wn,k are i.i.d. complex random variables with zero mean, EW 2
1,0 = 0 and E|W1,0|2 = 1

and E|W1,0|8 < +∞. Assume also that the variance profile is bounded, i.e. there exists a real
number σmax < +∞ such that:

sup
K≥1

max
1≤n≤N
0≤k≤K

|σnk(K)| ≤ σmax .

then, for every sequence SK of N × N diagonal matrices and every sequence S̃K of K × K
diagonal matrices with

sup
K

max
(
‖SK‖, ‖S̃K‖

)
< +∞ ,

the following limits hold true almost surely:

lim
K→+∞

1

K
Tr SK (QK(z)−TK(z)) = 0, ∀z ∈ C− R+,

lim
K→+∞

1

K
Tr S̃K

(
Q̃K(z)− T̃K(z)

)
= 0, ∀z ∈ C− R+ .
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In case the variance profile is separable, the N + K system of equations in theorem 3.1
simplifies to a system of two equations:

Theorem 3.3. [54] Assume σ2
nk(K) = dn(K)d̃k(K). The system of two functional equations





δ(z) = 1
KTr

(
D
(
−z(IN + δ̃(z)D)

)−1
)

δ̃(z) = 1
KTr

(
D̃
(
−z(IK + δ(z)D̃)

)−1
) (3.4)

admits a unique solution (δ, δ̃) ∈ S2. Moreover, letting z = −ρ ∈ (−∞, 0), the system admits a
unique point-wise solution (δ(−ρ), δ̃(−ρ)) such that δ(−ρ) > 0, δ̃(−ρ) > 0.

Moreover, in the separable variance profile case, the matrix functions T and T̃ defined by
theorem 3.1 are given by

T = −1

z
(I+ δ̃D)−1 andT̃ = −1

z
(I+ δD̃)−1. (3.5)

Similarly to the diagonal matrices T and T̃, δ and δ̃ can be computed iteratively as the fixed
point of a 2 dimensional system of equations (algorithm 2).

Algorithm 2 Iterative computation of δ and δ̃

δ ← 0// Initialization of δ
δ̃ ← 0// Initialization of δ̃
ǫ← 10−3

repeat
δi ← δ
δ̃i ← δ̃
T← −1

z (IN + δ̃iD)−1

T̃← −1
z (IK + δiD̃)−1

δ ← 1
KTr(DT)

δ̃ ← 1
KTr(D̃T̃)

until |δ−δi|
δi

> ǫ

3.2 Numerical results

In this section, we study some numerical aspects regarding the number of required iterations
for the computation of the deterministic equivalents, as well as their accuracy for finite size
dimensions. We consider the separable case, with σ2

i,j = exp(−i/N) exp(−j/K).

3.2.1 Number of iterations

The computation of the deterministic equivalents is in general performed by using the aforemen-
tioned algorithms algorithm. 1 and algorithm. 2 with the exception of some particular cases
where closed-form expressions for the deterministic equivalents exist. In this section, we eval-

uate the number of required iterations in algorithm. 2. Fig. 3.1 plots |δ−δi|
δi

for each iteration
for K = 16, N = 16 and ρ = 1. We note that only few iterations are required to reach the
convergence.
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Figure 3.1: Required number of iterations

3.2.2 Accuracy of the deterministic equivalents

The almost sure convergence of 1
KTr(Q(−ρ)) to 1

KTr(T(−ρ)) stated in theorem 3.1 guarantees,
that as long as the matrix dimensions N and K are large enough, the deterministic equiv-
alent 1

KTr(T(−ρ)) reproduces accurately the asymptotic behaviour of the random quantity
1
KTr(Q(−ρ)). Nevertheless, it so happens in some cases that the values of N and K that yield
a good accuracy, should reach higher values than those observed in usual cases. This is partic-
ularly the case when ρ is close to zero and N

K approaches 1. Actually, in such case, the least
eigenvalue of matrix ρIN +ΣΣH is too small and thereby the largest eigenvalue of the resolvent
matrix becomes too high. As a consequence, the error on the approximation of the trace of the
resolvent matrix may be also high. A more rigorous discussion in a similar issue can be found
in [35].
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Figure 3.2: Accuracy of the deterministic equivalents

Fig. 3.2 plots the error 1
K |Tr(Q)−Tr(T)|, averaged over 10000 iterations, with respect to ρ

for two scenarios corresponding respectively to K = 16, N = 8 and K = N = 16. We note that
as ρ tends to zero, the scenario K = N = 16 exhibits higher errors. At the same level of error,
values of K and N in the case K = N need to be much higher than those in the case K = 2N .
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Fig. 3.3 illustrates well this issue.
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Figure 3.3: Accuracy of the deterministic equivalents for K = N and K = 2N

3.3 Conclusion

This chapter provides a brief overview of recent developments in random matrix theory. In
particular, new results about a class of deterministic equivalents approximating the resolvent
matrix are presented, and numerical algorithms that allows their computation are described.
It has been shown that only few number of iterations are required to get convergence, which
is to be compared with the other alternative based on highly massive Monte Carlo iterations.
Simulations proves also that the accuracy of the deterministic equivalents is almost guaranteed
even for finite sizes, except in some special cases, in which it is required to get to higher system
dimensions.



Chapter 4

Asymptotic performance of Linear
receivers for multi-user systems

In the context of multi-user systems, the LMMSE receiver is often encountered. It is, indeed,
the optimal linear receiver, in the sense that it achieves the lowest level of interference. It is
thus of interest to analyse the SINR at its output, namely its first and second moments as well
as its asymptotic distribution. While the first moment has been extensively investigated in the
separable case [23] and also in the general variance profile case [104], the fluctuations of the
SINR around its asymptotic approximation have not been studied, aside from some particular
cases, when the entries of the channel are i.i.d. [103], or when the variance profile of the channel
is separable [83].

In this chapter, we show that the fluctuations of the SINR for the general profile case,
converge in distribution to the Gaussian law in the asymptotic regime, and that their variance
decreases as 1

K where K is the dimension of the transmitted signal. We organize this chapter as
follows: after a brief overview of mutli-user systems, first order results, whose presentation and
understanding is compulsory to state the Central Limit Theorem (CLT) are recalled. The CLT
which represents our main contribution is then provided. Finally, simulations and numerical
illustrations are presented. Note that for the sake of clarity, we will keep the same notations as
those in the previous chapter.

4.1 Multi-user systems

In many communication applications, it is of great economic interest to serve as much users
as possible. Such situation can be encountered in cellular systems where a base station (BTS)
serves many mobile terminals or also in radio and television broadcasting. The multi-access
communication encompasses not only the case of a common receiver for all users (Uplink Link)
but also the case of several receivers, each of which is interested in only one stream (Downlink
Link). Fig. 4.1 illustrates these two configurations for cellular telephony:

In practice, the downlink transmissions are synchronized, in the sense that the BTS sends
the data to the users at the same time. On the other hand, synchronizing transmissions in the
uplink link requires closed-loop timing control or providing the transmitters with access to a
common clock (such as the Global Positioning System), thus increasing the design of the uplink
link. However, for sake of simplicity, the synchronization is often assumed at both links.
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Base station

Mobile 

(a) Downlink Link

Base station

Mobile 

(b) Uplink Link

Figure 4.1: Downlink and Uplink configurations for cellular telephony

4.1.1 Multiple access methods

As mentioned in the previous section, the access to the radio channel in many communication
applications is shared between several users. Since channel resources are limited, only a finite
number of users could be supported simultaneously, the maximum being stipulated by the chan-
nel capacity. In order to serve as much users as possible, multiple access techniques that control
the access to the radio channel, are regularly employed. Among these techniques, we can cite:

1. Frequency division multiple acess (FDMA): In FDMA, the total available bandwidth is
shared between users, in such a way that users can access to the channel simultaneously
but at different frequency ranges.

2. Time division multiple acess (TDMA): In TDMA, the time is divided into slots. Only one
user is allowed to either transmit or receive in a slot. In practice, FDMA is usually used
in conjunction with TDMA, (eg GSM).

3. Code division multiple access (CDMA): In CDMA, each user can send data at any time
and by using the over-whole available bandwidth. Indeed, it is assigned a unique codeword
which multiples the narrow-band message signal. More explicitly, At each time n, the
symbol sk(n) corresponding to the k-th user is premultipled by a spreading sequence c =
[c1, · · · , cN ], thus yielding the vector [c1sk(n), · · · , cNsk(n)]. Codewords between users
being orthogonal, the receiver can eliminate interference and detect the user message signal.
Fig. 4.2 illustrate the three aforementioned multiple access techniques.

The major advantage of CDMA over FDMA and TDMA techniques is its soft capacity, in
the sense that there is no hard limit on the number of served users. This is to be compared with
FDMA and TDMA systems where new users are rejected if no more free time/frequency slots
are available. If a new user is added to a CDMA system, interference increases, but the user
can still communicate as long as its SINR is above a certain threshold. This proves again the
interest of studying the behavior of the SINR, an issue that is handled in the sequel.
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(a) TDMA (b) FDMA (c) CDMA

Figure 4.2: Multiple access schemes

4.1.2 System model and LMMSE receiver

We consider multi-user applications, where the N dimensional received signal can be expressed
as:

r = Σs+ n (4.1)

s = [s0, s1, · · · , sK ]T is the random vector of transmitted symbols by K + 1 users, satisfying
EssH = IK+1, the noise n is an independent AWGN, with covariance matrix EnnH = ρIN ,
where ρ > 0 and Σ are assumed to be known. The entries of Σ are assumed to verify:

Σn,k =
σn,kWn,k√

K
(4.2)

where Wn,k are i.i.d. random variables. To detect the symbol s0 corresponding to the first user,
the LMMSE estimator is often proposed. It consists in searching the best filter g that minimizes
the quadratic mean square error between ŝ = gHr. In other words, g is given by:

g = min
f
‖fHr− s0‖2

Partition the channel matrix Σ = [y Y], where y is the first column of Σ and matrix Y has
dimension N ×K, then vector g is given by:

g = (ΣΣH + ρIN )−1 y (4.3)

Write the received vector r as r = s0y + rin where s0y is the relevant term and rin represents
the so-called interference plus noise term, then the SINR is given by :

βK =
|gHy|2

E|gHrin|2
(4.4)

Plugging (4.3) into (4.4), one can prove that the SINR βK is given by the well-known expression:

βK = yH (YYH + ρIN )−1 y. (4.5)

4.1.2.1 Possible Applications

Model (4.1) holds in many cases, including:

• CDMA transmissions on flat fading channels in the uplink direction : In this case, matrix
Σ is given by :

Σ = VP1/2 (4.6)
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where V is the N × (K+1) signature matrix assumed here to have random i.i.d. elements
with mean zero and variance N−1, and where P = diag(p0, . . . , pK) is the users powers
matrix. In this case, the variance profile is separable with dn = 1 and d̃k = K

N pk. Note
that elements of V are not Gaussian in general.

• Cellular MC-CDMA transmissions on frequency selective channels. In the uplink direction,
the matrix Σ is written as:

Σ = [H0v0 · · · HK+1vK+1] , (4.7)

where Hk = diag(hk(exp(2π(n − 1)/N); 1 ≤ n ≤ N) is the radio channel matrix of
user k in the discrete Fourier domain (here N is the number of frequency bins) and V =
[v0, · · · ,vK ] is the N × (K + 1) signature matrix with i.i.d. elements as in the CDMA
case above. Modeling this time the channel transfer functions as deterministic functions,
we have σ2

nk = K
N |hk(exp(2π(n− 1)/N))|2.

In the downlink direction, we have

Σ = HVP1/2 (4.8)

where H = diag(h(exp(2π(n − 1)/N); 1 ≤ n ≤ N) is the radio channel matrix in the
discrete Fourier domain, the N × (K + 1) signature matrix V is as above, and P =
diag(p0, . . . , pK) is the matrix of the powers given to the different users. Model (4.8)
coincides with the separable variance profile model with dn = K

N |h(exp(2π(n − 1)/N))|2
and dk = pk.

Aside from CDMA based systems, model (4.1) is valid in the case of multiple antenna transmis-
sions with K+1 distant sources sending their signals toward an array of N antennas. The corre-
sponding transmission model is r = Ξs+n where Ξ = 1√

K
HP

1
2 , matrix H is a ×(K+1) random

matrix with complex Gaussian elements representing the radio channel P = diag (p0, · · · , pK) is
the deterministic matrix of the powers given to the different sources, and n is the usual AWGN
noise satisfying EnnH = ρIN . Partition Ξ = [x X], then the SINR β at the output of the
LMMSE estimator for the first element of vector s in the transmission model r = Ξs is:

β = xH (XXH + ρIN )−1 x.

Note that in this case, the entries of X and x are not necessarily independent since those of
H are not. The assumption about the independence of entries of X was mentioned above
when introducing the system model and is necessary to perform computations, since standard
matrix theory tools are based in general on resolvent matrices stemming from matrices with i.i.d.
random entries. Moreover, vector x should be also independent from X for technical purposes
also.

In case the columns ofH are independent and have the same eigenspace, one can further work
out the expression of βK and introduce new variables that verifies the independence assumption.
Let hk be the kth column of H and Ck its covariance matrix given by Ck = Ehkh

H
k . Denote

by Ck = UkΛkU
H
k a spectral decomposition of Ck where Λk = diag (λn,k; 1 ≤ n ≤ N) is the

matrix of eigenvalues. Since all matrices Ck have the same eigenspace, we can assume that
matrices U0, · · · ,UK are all equal to some matrix U a case considered, for instance, in [64]
(note that sometimes they are all identified with the Fourier N×N matrix [64]). Let Σ = UHΞ,
then matrix Σ is described by (4.2) where Wn,k are standard Gaussian i.i.d., and σ2

n,k = λn,kpk.
Partition Σ = [y Y] the the SINR βK is given by:

βK = xH (XXH + ρIN )−1 x = yH (YYH + ρIN )−1 y
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It is also worth to say a few words about the particular separable case, which occurs when
Λ0 = · · · = ΛK = diag (λ1, · · · , λN ). In practice, this model corresponds to the well-known
Kronecker model with correlations at reception [31] which can be expressed as:

Ξ =
1√
K

Ψ
1
2WP (4.9)

where matrix Ψ is the N ×N Hermitian non-negative matrix that captures the correlations at
the receiver and W is a random matrix with i.i.d. standard Gaussian elements.

This model coincides with the separable variance profile model with dn = λn and d̃k = pk.

4.2 Main assumptions

The expression of the SINR being established, we are now in position to present the first and
second order results. But first, let us state the main assumptions.

A1. The entries Σn,k satisfy the same model as in chapter 3, i.e, Σn,k =
σn,kWn,k√

K
. Moreover,

Wn,k are i.i.d. with EW1,0 = 0, EW 2
1,0 = 0, E|W1,0|2 = 1 and E|W1,0|8 < +∞.

A2. There exists a real number σmax < +∞ such that

sup
K≥1

max
1≤n≤N
0≤k≤K

|σnk(K)| ≤ σmax .

Similarly to chapter 3, denote by Dk and D̃n the diagonal matrices given by:

Dk = diag
(
σ2
1k(K), · · · , σ2

Nk(K)
)
, 0 ≤ k ≤ K (4.10)

D̃n = diag
(
σ2
n1(K), · · · , σ2

nK(K)
)
, 1 ≤ n ≤ N (4.11)

Then, the following assumptions may be considered in what follows:

A3. The variance profile satisfies

lim inf
K≥1

min
0≤k≤K

1

K
TrDk(K) > 0 .

Since E|W1,0|2 = 1, one has E|W1,0|4 ≥ 1. The following is needed:

A4. At least one of the following conditions is satisfied:

E|W1,0|4 > 1 or lim inf
K

1

K2
Tr

(
D0(K)

K∑

k=1

Dk(K)

)
> 0 .

Assumptions A1 and A2 are required to be able to use Theorem 3.2, while assumption A3 is
technical and has already appeared in [55]. Assumption A4 is necessary to get a non-vanishing
variance Θ2

K in Theorem 4.3.
Similarly to chapter 3, we consider the following asymptotic regime:

K →∞, , lim inf
K

N
> 0 and sup

K

N
< +∞.

and refer to it as K →∞.
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4.3 First order results

From (4.5), it comes out that the SINR can be modeled as a quadratic form, and thus its
behaviour can be studied by relying on well-known results in Random Matrix Theory. Let us
first rewrite the SINR as:

βK =
1

K
wH

0D
1
2
0 (YYH + ρI)−1D

1
2
0w0 =

1

K
wH

0D
1
2
0Q(−ρ)D

1
2
0w0 (4.12)

where the N×1 vector w0 is given by w0 = [W1,0, · · · ,WN,0] and the diagonal matrixD0 is given
by (4.10). Recall that w0 and Q are independent and that ‖D0‖ ≤ σ2

max by A2. Furthermore,
one can easily notice that ‖Q(−ρ)‖ = ‖ (YYH + ρI)−1 ‖ ≤ 1

ρ .
Denote by EQ the conditional expectation with respect to Q, i.e., EQ = E (.|Q). From

inequality (A.2) in appendix A.1, there exists a constant C > 0 for which:

EEQ

∣∣∣∣βK −
1

K
TrD0Q(−ρ)

∣∣∣∣
4

≤ C

K2

(
N

K

)2

E‖D0Q‖4
(
(E|W1,0|4)2 + E|W1,0|8

)

≤ C

K2

(
N

K

)2(σ2
max

ρ

)4 (
(E|W1,0|4)2 + E|W1,0|8

)

= O
(

1

K2

)
.

By the Borel-Cantelli Lemma, we therefore have

βK −
1

K
Tr(D0Q(−ρ)) −−−−−→

K→+∞
0 a.s.

Using this result, simply apply Theorem 3.2 with S = D0 (recall that ‖D0‖ ≤ σ2
max) to obtain:

Theorem 4.1. Let βK = 1
KTr(D0TK(−ρ)) where Tk is given by Theorem 3.1 Assume A1 and

A2. Then,
βK − βK −−−−−→

K→+∞
0 a.s.

Theorem 4.1 can be adapted to the separable case. We recall that in this case, Dk = d̃D
and D̃n = dnD̃, where D and D̃ are given by:

D = diag (d1, · · · , dN ) , D̃ = diag
(
d̃1, · · · , d̃K

)
. (4.13)

Noting D0 = d̃0D and that δK(−ρ) given by (3.4) coincides with 1
KTr(DT), we get:

Theorem 4.2. Assume that σ2
n,k = dnd̃k and that A1 and A2 hold true. Then,

βK

d̃0
− δK(−ρ) −−−−→

K→∞
0 a.s.

where δK(−ρ) is given by (3.4) in Theorem 3.3.
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4.4 Second order results: the CLT theorem

Beyond the convergence βK − βK → 0, a natural question arises regarding the accuracy of βK
for finite values of K. A first answer to this question consists in evaluating the MSE of the
SINR E|βK − βK |2 for large K. A further problem is the computation of outage probability,
that is the probability for βK −βK to be below a certain level. Both problems can be addressed
by establishing a Central Limit Theorem for βK − βK , an issue that will be dealt with in this
section.

Our approach in proving the CLT theorem is simple and powerful. It is based on the
approximation of βK by the sum of a martingale difference sequence and on the use of the CLT
for martingales, [11]. We note that apart from the large random matrix theory context, such a
technique has been used in [10] to establish a CLT on general quadratic forms of the type zHAz
where A is a deterministic matrix and z is a random vector with i.i.d. elements. Hereafter, we
state the CLT for the SINR βK . Its proof is postponed to appendix B.1.

Theorem 4.3. 1. Assume that A2, A3 and A4 hold true. Let AK and ∆K be the K ×K
matrices

AK =

[
1

K

1
KTrDℓDmT(−ρ)2
(
1 + 1

KTrDℓT(−ρ)
)2

]K

ℓ,m=1

and (4.14)

∆K = diag

((
1 +

1

K
TrDℓT(−ρ)

)2

; 1 ≤ ℓ ≤ K

)
,

where T is defined in Theorem 3.1. Let gK be the K × 1 vector

gK =

[
1

K
TrD0D1T(−ρ)2, · · · , 1

K
TrD0DKT(−ρ)2

]T
.

Then the sequence of real numbers

Θ2
K =

1

K
gT(IK −A)−1∆−1g + (E|W1,0|4 − 1)

1

K
TrD2

0T(−ρ)2 (4.15)

is well defined and furthermore

0 < lim inf
K

Θ2
K ≤ lim sup

K
Θ2

K < +∞ .

2. Assume in addition A1. Then the sequence βK = yH(YYH + ρI)−1y satisfies

√
K

ΘK

(
βK − βK

)
−−−−−→
K→+∞

N (0, 1)

in distribution where βK = 1
KTrD0TK is defined in the statement of Theorem 4.1.

Two remarks, which are worth pointing out, arise from Theorem 4.3. First, one can make a

comparison the MSE related to the SINR βK : MSE(βK) = E
(
βK − βK

)2
, with the MSE related

to Shannon’s mutual information per transmit dimension I(ρ) = 1
K log det (I+ ρΣΣH), (studied

in [55], [77] for instance):

MSE(βK) ∝ O
(

1

K

)
while MSE(I) ∝ O

(
1

K2

)
.



4.5. Application: MC-CDMA and multi-antenna based systems 68

The second point is about the achievability of the minimum of the MSE. Recall that the variance
writes :

Θ2
K =

1

K
gT(IK −A)−1∆−1g + (E|W1,0|4 − 1)

1

K
TrD2

0T
2 .

As E|W1,0|2 = 1, one clearly has E|W1,0|4−1 ≥ 0 with equality if and only if |W1,0| = 1 with prob-
ability one. Moreover, we shall prove in the sequel (Section B.1.2) that lim infK

1
KTrD0T

2
K > 0.

Therefore (E|W1,0|4 − 1) 1
KTrD2

0T
2 is non-negative, and is zero if and only if |W1,0| = 1 with

probability one. As a consequence, Θ2
K is minimum with respect to the distribution of the Wnk

if and only if these random variables have their values on the unit circle. In the context of
CDMA and MC-CDMA, this is the case when the signature matrix elements are elements of a
PSK constellation. In multi-antenna systems where model (4.1) holds (see next chapter), the
Wnk’s are frequently considered as Gaussian, thus inducing a penalty on the SINR asymptotic
MSE with respect to the unit norm case.

In the separable case, Θ2
K = d̃20Ω

2
K where Ω2

K is given by the following corollary.

Corollary 4.1. Assume that A2 is satisfied and that σ2
nk = dnd̃k. Assume moreover that

min

(
lim inf

K

1

K
Tr(D(K)), lim inf

K

1

K
Tr(D̃(K))

)
> 0 (4.16)

where D and D̃ are given by (4.13). Let γ = 1
KTrD2T2 and γ̃ = 1

KTrD̃2T̃2. Then the sequence

Ω2
K = γ

(
ρ2γγ̃

1− ρ2γγ̃
+
(
E|W1,0|4 − 1

))
(4.17)

satisfies 0 < lim infK Ω2
K ≤ lim supK Ω2

K < +∞. If, in addition, A1 holds true, then:

√
K

ΩK

(
βK

d̃0
− δK

)
−−−−−→
K→+∞

N (0, 1)

in distribution.

Note that condition (4.16) is the counterpart of Assumption A3 in the case of a separable
variance profile and suffices to establish 0 < lim infK(1− ρ2γγ̃) ≤ lim supK(1− ρ2γγ̃) < 1, (see
for instance [53]), hence the fact that 0 < lim infK Ω2

K ≤ lim supK Ω2
K < +∞. The remainder of

the proof of Corollary 4.1 is postponed to Appendix B.2.

4.5 Application: MC-CDMA and multi-antenna based systems

We provide in this section a more explicit expression for δK which will be used in the simulations
section to illustrate the SINR behaviour for the separable MIMOModel (4.9) and for MC-CDMA
downlink model (4.8). By combining the tow equation in system (3.4) in Theorem 3.3, it turns
out that δ = δK(ρ) is the unique solution of the implicit equation:

δ =
1

K

N−1∑

n=0

dn

ρ+ 1
K dn

∑K
k=1

pk
1+pkρ

. (4.18)

Recall that in the case of the separable MIMO model (4.9), dn = λn and d̃k = pk, while in the
case of MC-CDMA downlink model (4.8), dn = K

N |h(exp(2π(n − 1)/N))|2 and d̃k = pk again.
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Here d̃0 = p0 is the power of the user of interest (user 0), and therefore, βK

d̃0
is the normalized

SINR of this user. Notice that δK(ρ) is almost the same for all users, hence the normalized SINRs
for all users are close to each other for large K. Their common deterministic approximation is
given by (4.18) which is the discrete analogue of the integral equation (16) in [22].

As a direct application of Corollary 4.1, we can also provide expressions of γ and γ̃ for the

MIMO and MC-CDMA models. Using (3.1) and the fact that T(−ρ) = 1
ρ

(
I+ δ̃(−ρ)D

)−1
and

T̃(−ρ) = 1
ρ

(
I+ δ(−ρ)D̃

)−1
(See (3.5) in chapter 3), we get:

γ =
1

K

N−1∑

n=0

(
dn

ρ+ ρdnδ̃

)2

=
1

K

N−1∑

n=0

(
dn

ρ+ 1
K dn

∑K
k=1

pk
1+pkδ

)2

γ̃ =
1

K

K∑

k=1

(
pk

ρ+ ρpkδ

)2

4.6 Simulation results

In all simulations, the ratio N
K is set to 2. The SNR is defined as SNR , 1

ρ . Besides the power
of the user of interest p0 is set to 1.

4.6.1 The general (non necessarily separable) case

In this section, the accuracy of the Gaussian approximation is verified by simulation. In order to
validate the results of Theorems 4.1 and 4.3 for practical values of K, we consider the example of
a MC-CDMA transmission in the uplink direction. We recall that K is the number of interfering
users in this context. In the simulation, the discrete time channel impulse response of user k
is represented by the vector with L = 5 coefficients gk = [gk,0, . . . , gk,L−1]

T. These coefficients
are assumed i.i.d. random variables with the complex Gaussian law CN (0, 1/L). We assume
that a power control algorithm fixes the power received from user k to the value Pk. Setting the
number of frequency bins to N , the channel matrix Hk for this user in the frequency domain (see

Eq. (4.7)) is Hk = diag(hk(exp(2ıπ(n−1)/N)) where hk(z) =
√
Pk

‖gk‖
∑L−1

l=0 gk,lz
−l, and ‖gk‖ is the

Euclidean norm of gk. Concerning the distribution of the user powers Pk, we assume that these
are arranged into five power classes with powers P, 2P, 4P, 8P and 16P with relative frequencies
given by the following table: The user of interest (User 0) is assumed to belong to Class 0, and

Table 4.1: Power classes and relative frequencies

Class 1 2 3 4 5

Power P 2P 4P 8P 16P

Relative frequency 1
8

1
4

1
4

1
8

1
4

the Signal over Noise Ratio P/ρ for this user is set to 10 dB. In Figure 4.3, the evolution of
KE(βK − β̄K)2/Θ2

K (where E(βK − β̄K)2 is measured by simulation) is shown with respect to
K. We note that this quantity is close to one for values of K as small as K = 8. In Figure 4.4,
K is set to K = 64, and the SINR normalized MSE is plotted with respect to the SINR. This
figure also shows that the Gaussian approximation yields a highly accurate estimation of the
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Figure 4.4: SINR normalized MSE vs SNR
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normalized MSE. Figure 4.5 shows the histogram of
√
K(βK− β̄K)/ΘK for N = 16 and N = 64.

This figure gives an idea of the similarity between the distribution of
√
K(βK − β̄K)/ΘK and

N (0, 1). More rigorously, Figure 4.6 quantifies this similarity through a Quantile-Quantile test.
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Figure 4.5: Histogram of
√
K(βK − β̄K) for N = 16 and N = 64.

4.6.2 The separable case

In order to test the results of Theorem 4.2 and Corollary 4.1, we consider the following MIMO
model with exponentially decaying correlation at reception:

Σ =
1√
K

Ψ1/2WP1/2

where Ψ = [am−n]
N−1
m,n=0 with 0 < a < 1 is the covariance matrix that accounts for the correla-

tions at the receiver side, P = diag (p0, · · · , pK) is the matrix of the powers given to the different
users and W is a N × (K + 1) matrix with Gaussian standard iid elements. Let Pu denote the
vector containing the interfering users’ powers. We set Pu (up to a permutation) to:

Pu =





[4P 5P ] if K = 2
[P P 2P 4P ] if K = 4
[P P 2P 2P 2P 4P 4P 4P 8P 16P 16P 16P ] if K = 12

if K = 2p(7 ≥ p ≥ 3), we assume that the interfering users are arranged into 5 classes according
to their powers as shown in Table4.1. We set the SNR to 10dB and a to 0.1. We investigate in
this section the accuracy of the Gaussian approximation in predicting the outage probability. In
Fig.4.7, we compare the empirical 1% outage SIR with that given by the central limit theorem.
We note that the Gaussian approximation tends to under estimate the 1% outage SIR. We
also note that it yields a good accuracy for small values of α and for enough large values of N
(N ≥ 64).
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Figure 4.6: Q-Q test for
√
K(βK − β̄K), N = 16 and N = 64; in red dash doted line, 45 degree

line.

4.7 Conclusion

This chapter establishes the asymptotic normality of the SINR at the output of the LMMSE
receiver. The novelty of our approach is that it enables to address general variance profiles,
corresponding to a wide range of systems, ranging from CDMA to MIMO based techniques.
Simulations have been presented and have shown that the Gaussian approximation is valid, as
long as the system dimensions are large enough. However, it has been shown that it cannot be
suitable for computing outage probabilities for MIMO systems, since very large system dimen-
sions are required. To approximate performance metrics, like the BER and outage probability,
another technique should be used. This will be the subject of the next chapter.



4.7. Conclusion 73

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−8

−6

−4

−2

0

2

4

6

8

α

S
IN

R
 in

 d
B

N=16

Empirical
Theoretical

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

8

α

S
IN

R
 in

 d
B

N=32

Empirical
Theoretical

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

α

S
IN

R
 in

 d
B

N=64

Empirical
Theoretical

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

7

8

9

α

S
IN

R
 in

 d
B

N=128

Empirical
Theoretical

Figure 4.7: Comparison of the empirical and theoretical 1% outage SIR
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Appendix B

Proof of results in chapter 4

This appendix is devoted to the proof of theorem 4.3 and Corollary 4.1 in chapter 4.

B.1 Proof of theorem 4.3

In this section, we provide the details of the proof of Theorem 4.3. We begin with mathematical
preliminaries.

B.1.1 Preliminaries

The following lemma gathers useful matrix results, whose proofs can be found in [58]:

Lemma B.1. Assume X = [xij ]
N
i,j=1 and Y are complex N ×N matrices. Then

1. For every i, j ≤ N , |xij | ≤ ‖X‖. In particular, ‖diag(X)‖ ≤ ‖X‖.

2. ‖XY‖ ≤ ‖X‖ ‖Y‖.

3. For ρ > 0, the resolvent (XXH + ρI)−1 satisfies ‖(XXH + ρI)−1‖ ≤ ρ−1.

4. If Y is Hermitian non-negative, then |Tr(XY)| ≤ ‖X‖Tr(Y).

LetX = UΛVH be a spectral decomposition ofX whereΛ = diag(λ1, . . . , λn) is the matrix of

singular values of X. For a real p ≥ 1, the Schatten ℓp-norm of X is defined as ‖X‖p = (
∑

λp
i )

1/p
.

The following bound over the Schatten ℓp-norm of a triangular matrix will be of help (for a proof,
see [10], [79, page 278]):

Lemma B.2. Let X = [xij ]
N
i,j=1 be a N × N complex matrix and let X̃ = [xij1i>j ]

N
i,j=1 be the

strictly lower triangular matrix extracted from X. Then for every p ≥ 1, there exists a constant
Cp depending on p only such that

‖X̃‖p ≤ Cp‖X‖p .

The following lemma lists some properties of the resolvent Q and the deterministic approx-
imation matrix T. Its proof is postponed to Appendix B.1.4.

Lemma B.3. The following facts hold true:

75
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1. Assume A2. Consider matrices TK(−ρ) = diag(t1(−ρ), . . . , tN (−ρ)) defined by Theorem
3.1. Then for every 1 ≤ n ≤ N ,

1

ρ+ σ2
max

≤ tn(−ρ) ≤
1

ρ
. (B.1)

2. Assume in addition A1 and A3. Let QK(−ρ) = (YYH + ρI)−1 and let matrices SK be as
in the statement of Theorem 3.2. Then

sup
K

E |Tr SK(QK −TK)|2 <∞ . (B.2)

B.1.2 Proof of Theorem 4.3–(1)

We introduce the following notations. Assume that X is a real matrix, by X < 0 we mean
Xij ≥ 0 for every element Xij . For a vector x, x < 0 is defined similarly. In the remainder of
this appendix, C = C(ρ, σ2

max, lim inf N
K , sup N

K ) < ∞ denotes a positive constant whose value
may change from line to line.

The following lemma, which directly follows from [55, Lemma 5.2 and Proposition 5.5], states
some important properties of the matrices AK defined in the statement of Theorem 4.3.

Lemma B.4. Assume A2 and A3. Consider matrices AK defined by (4.14). Then the following
facts hold true:

1. Matrix IK −AK is invertible, and (IK −AK)−1 < 0.

2. Element (k, k) of the inverse satisfies
[
(IK −AK)−1

]
k,k
≥ 1 for every 1 ≤ k ≤ K.

3. The maximum row sum norm of the inverse satisfies lim supK
∣∣∣∣∣∣(IK −AK)−1

∣∣∣∣∣∣
∞ <∞.

Due to Lemma B.4–(1), Θ2
K is well defined. Let us prove that lim supK Θ2

K <∞. The first
term of the right-hand side of (4.15) satisfies

1

K
gT(IK −AK)−1∆−1g ≤ ‖g‖∞‖(IK −AK)−1∆−1g‖∞

≤ ‖g‖∞
∣∣∣∣∣∣(IK −AK)−1

∣∣∣∣∣∣
∞ ‖∆

−1g‖∞ ≤ ‖g‖2∞
∣∣∣∣∣∣(IK −AK)−1

∣∣∣∣∣∣
∞ (B.3)

due to
∣∣∣∣∣∣∆−1

∣∣∣∣∣∣
∞ ≤ 1. Recall that ‖T‖ ≤ ρ−1 by Lemma B.3–(1). Therefore, any element of g

satisfies
1

K
TrD0DkT

2 ≤ N

K
‖D0‖‖Dk‖‖T‖2 ≤

N

K

σ4
max

ρ2
(B.4)

by A2, hence supK ‖g‖ ≤ C. From Lemma B.4–(3) and (B.3), we then obtain

lim sup
K

1

K
gT(IK −AK)−1∆−1g ≤ C. (B.5)

We can prove similarly that the second term in the right-hand side of (4.15) satisfies supK((E|W1,0|4−
1) 1

KTrD2
0T(−ρ)2) ≤ C. Hence lim supK Θ2

K <∞.
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Let us prove that lim infK Θ2
K > 0. We have

1

K
gT(IK −AK)−1∆−1g

(a)

≥ 1

K
gTdiag

(
(IK −AK)−1

)
∆−1g

(b)

≥ 1
(
1 + N

K
σ2
max
ρ

)2
1

K

K∑

k=1

(
1

K
TrD0DkT

2

)2

(c)

≥ 1
(
1 + N

K
σ2
max
ρ

)2

(
1

K2
Tr D0

(
K∑

k=1

Dk

)
T2

)2

(d)

≥ 1
(
1 + N

K
σ2
max
ρ

)2
(ρ+ σ2

max)
4

(
1

K2
Tr D0

K∑

k=1

Dk

)2

≥ C

(
1

K2
Tr D0

K∑

k=1

Dk

)2

,

where (a) follows from the fact that (IK−AK)−1 < 0 (Lemma B.4–(1), and the straightforward

inequalities ∆−1 < 0 and g < 0), (b) follows from Lemma B.4–(2) and ‖∆‖ ≤ (1 + N
K

σ2
max
ρ )2,

(c) follows from the elementary inequality n−1
∑

x2i ≥ (n−1
∑

xi)
2, and (d) is due to Lemma

B.3–(1). Similar derivations yield:

(E|W1,0|4 − 1)
1

K
TrD2

0T ≥ E|W1,0|4 − 1

(ρ+ σ2
max)

2

(
1

K
TrD0

)2

≥ C(E|W1,0|4 − 1)

by A3. Therefore, if A4 holds true, then lim infK Θ2
K > 0 and Theorem 4.3–(1) is proved.

B.1.3 Proof of Theorem 4.3–(2)

Recall that the SINR βK is given by Equation (4.12). The random variable
√
K

ΘK
(βK − βK) can

therefore be decomposed as

√
K

ΘK
(βK − βK) =

1√
KΘK

(
wH

0D
1/2
0 QD

1/2
0 w0 − Tr(D0Q)

)
+

1√
KΘK

(Tr(D0(Q−T)))

= U1,K + U2,K . (B.6)

Thanks to Lemma B.3–(2) and to the fact that lim infK Θ2
K > 0, we have EU2

K,2 < CK−1 which
implies that UK,2 → 0 in probability as K →∞. Hence, in order to conclude that

√
K

ΘK
(βK − βK) −−−−→

K→∞
N (0, 1) in distribution ,

it is sufficient by Slutsky’s theorem to prove that U1,K → N (0, 1) in distribution. The remainder
of the section is devoted to this point.

Remark B.1. Decomposition (B.6) and the convergence to zero (in probability) of U2,K yield the
following interpretation: The fluctuations of

√
K(βK−βK) are mainly due to the fluctuations of
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vector w0. Indeed the contribution of the fluctuations1 of 1
KTrD0Q, due to the random nature

of Y, is negligible.

Denote by En the conditional expectation En[ · ] = E[ · ‖ Wn,0,Wn+1,0, . . . ,WN,0,Y]. Put

EN+1[ · ] = E[ · ‖ Y] and note that EN+1(w
H
0D

1/2
0 QD

1/2
0 w0) = TrD0Q. With these notations

at hand, we have:

U1,K =
1

ΘK

N∑

n=1

(En − En+1)
wH

0D
1/2
0 QD

1/2
0 w0√

K

△
=

1

ΘK

N∑

n=1

Zn,K . (B.7)

Consider the increasing sequence of σ−fields

FN,K = σ(WN,0,Y) , · · · , F1,K = σ(W1,0, · · · ,WN,0,Y) .

Then the random variable Zn,K is integrable and measurable with respect to Fn,K ; moreover
it readily satisfies En+1Zn,K = 0. In particular, the sequence (ZN,K , . . . , Z1,K) is a martingale
difference sequence with respect to (FN,K , · · · ,F1,K). The following CLT for martingales is the
key tool to study the asymptotic behaviour of U1,K :

Theorem B.1. Let XN,K , XN−1,K , . . . , X1,K be a martingale difference sequence with respect
to the increasing filtration GN,K , . . . ,G1,K . Assume that there exists a sequence of real positive
numbers s2K such that

1

s2K

N∑

n=1

E
[
X2

n,K‖Gn+1,K

]
−−−−→
K→∞

1

in probability. Assume further that the Lyapunov condition holds:

∃α > 0,
1

s
2(1+α)
K

N∑

n=1

E |Xn,K |2+α −−−−→
K→∞

0 ,

Then s−1
K

∑N
n=1Xn,K converges in distribution to N (0, 1) as K →∞.

Remark B.2. This theorem is proved in [11], gathering Theorem 35.12 (which is expressed
under the weaker Lindeberg condition) together with the arguments of Section 27 (where it is
proved that Lyapunov’s condition implies Lindeberg’s condition).

In order to prove that

U1,K =
1

ΘK

N∑

n=1

Zn,K −−−−→
K→∞

N (0, 1) in distribution , (B.8)

we shall apply Theorem B.1 to the sum 1
ΘK

∑N
n=1 Zn,K and the filtration (Fn,K). The proof is

carried out into four steps:

1In fact, one may prove that the fluctuation of 1
K
TrD0(Q−T) are of order K, i.e. TrD0(Q−T) asymptotically

behaves as a Gaussian random variable. Such a speed of fluctuations already appears in [55], when studying the
fluctuations of the mutual information.
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Step 1 We first establish Lyapunov’s condition. Due to the fact that lim infK Θ2
K > 0, we

only need to show that

∃ α > 0,
N∑

n=1

E|Zn,K |2+α −−−−→
K→∞

0 . (B.9)

Step 2 We prove that VK =
∑N

n=1 En+1Z
2
n,K satisfies

VK −
((

E|W1,0|4 − 2
)

K
Tr
(
D2

0(diag(Q))2
)
+

1

K
Tr(D0QD0Q)

)
−−−−→
K→∞

0 in probability .

(B.10)

Step 3 We first show that

1

K
TrD2

0(diag(Q))2 − 1

K
TrD2

0T
2 −−−−→

K→∞
0 in probability. (B.11)

In order to study the asymptotic behaviour of 1
KTr(D0QD0Q), we introduce the random vari-

ables Uℓ =
1
KTr(D0QDℓQ) for 0 ≤ ℓ ≤ K (the one of interest being U0). We then prove that

the Uℓ’s satisfy the following system of equations:

Uℓ =
K∑

k=1

cℓkUk +
1

K
TrD0DℓT

2 + ǫℓ, 0 ≤ ℓ ≤ K, (B.12)

where

cℓk =
1

K

1
KTrDℓDkT(−ρ)2

(
1 + 1

KTrDkT(−ρ)
)2 , 0 ≤ ℓ ≤ K, 1 ≤ k ≤ K (B.13)

and the perturbations ǫℓ satisfy E|ǫℓ| ≤ CK− 1
2 where we recall that C is independent of ℓ.

Step 4 We prove that U0 =
1
KTrD0QD0Q satisfies

U0 =
1

K
TrD2

0T
2 +

1

K
gT (I−A)−1∆−1g + ǫ (B.14)

with E|ǫ| ≤ CK− 1
2 . This equation combined with (B.10) and (B.11) yields

∑
n En+1Z

2
n,K−Θ2

K →
0 in probability. As lim infK Θ2

K > 0, this implies 1
ΘK

∑
n En+1Z

2
n,K → 1 in probability, which

proves (B.8) and thus ends the proof of Theorem 4.3.

WriteB = [bij ]
N
i,j=1 = D

1/2
0 QD

1/2
0 and recall from (B.7) that Zn,K = 1√

K
(En−En+1)w

H
0Bw0.

We have

Enw
H
0Bw0 =

n−1∑

ℓ=1

bℓℓ +
N∑

ℓ1,ℓ2=n

W ∗
ℓ10Wℓ20bℓ1ℓ2 .

Hence

Zn,K =
1√
K

(
(
|Wn0|2 − 1

)
bnn +W ∗

n0

N∑

ℓ=n+1

Wℓ0bnℓ +Wn0

N∑

ℓ=n+1

W ∗
ℓ0bℓn

)
. (B.15)
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Step 1: Validation of the Lyapunov condition The following inequality will be of help
to check Lyapunov’s condition.

Lemma B.5 (Burkholder’s inequality). Let Xk be a complex martingale difference sequence
with respect to the increasing sequence of σ–fields Fk. Then for p ≥ 2, there exists a constant
Cp for which

E

∣∣∣∣∣
∑

k

Xk

∣∣∣∣∣

p

≤ Cp


E

(∑

k

E
[
|Xk|2‖Fk−1

]
)p/2

+ E

∑

k

|Xk|p

 .

Recall Assumption A1. Eq. (B.15) yields:

|Zn,K |4 ≤ 1

K2

(
|Wn0|2 + 1

ρσ2
max

+ 2

∣∣∣∣∣Wn0

N∑

ℓ=n+1

Wℓ0bnℓ

∣∣∣∣∣

)4

≤ 23

K2



( |Wn0|2 + 1

ρσ2
max

)4

+ 24

∣∣∣∣∣Wn0

N∑

ℓ=n+1

Wℓ0bnℓ

∣∣∣∣∣

4

 (B.16)

where we use the fact that |bnn| ≤ (ρσ2
max)

−1 (cf. Lemma B.1–(1)) and the convexity of x 7→ x4.
Due to Assumption A1, we have:

E
(
|Wn0|2 + 1

)4 ≤ 23
(
E|Wn0|8 + 1

)
<∞ . (B.17)

Considering the second term at the right-hand side of (B.16), we write

E

∣∣∣∣∣Wn0

N∑

ℓ=n+1

Wℓ0bnℓ

∣∣∣∣∣

4

= E |Wn0|4 E
∣∣∣∣∣

N∑

ℓ=n+1

Wℓ0bnℓ

∣∣∣∣∣

4

,

(a)

≤ C


E

(
N∑

ℓ=n+1

(E|Wℓ0|2)|bnℓ|2
)2

+
N∑

ℓ=n+1

(E|Wℓ0|4)(E|bnℓ|4)


 ,

(b)

≤ C


E

(
N∑

ℓ=n+1

|bnℓ|2
)2

+
N∑

ℓ=n+1

E|bnℓ|2

 ,

where (a) follows from Lemma B.5 (Burkholder’s inequality), the filtration being FN,K , . . . ,
Fn+1,K and (b) follows from the bound |bnℓ|4 ≤ |bnℓ|2max |bnℓ|2 ≤ |bnℓ|2(σ2

maxρ
−1)2 (cf. Lemma

B.1–(1)). Now, notice that

N∑

ℓ=n+1

|bnℓ|2 <
N∑

ℓ=1

|bnℓ|2 =
[
D

1/2
0 QD0QD

1/2
0

]
nn
≤ ‖D1/2

0 QD0QD
1/2
0 ‖ ≤

σ4
max

ρ2
.

This yields E|Wn0
∑N

ℓ=n+1Wℓ 0bnℓ|4 ≤ C. Gathering this result with (B.17), getting back to
(B.16), taking the expectation and summing up finally yields:

N∑

n=1

E|Zn,K |4 ≤
C

K
−−−−→
K→∞

0

which establishes Lyapunov’s condition (B.9) with α = 2.
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Step 2: Proof of (B.10) Eq. (B.15) yields:

En+1Z
2
n,K =

1

K

(
(
E|W1,0|4 − 1

)
b2nn + En+1

(
W ∗

n0

N∑

ℓ=n+1

Wℓ0bnℓ +Wn0

N∑

ℓ=n+1

W ∗
ℓ0bℓn

)2

+2bnn
(
EW ∗

1,0|W1,0|2
) N∑

ℓ=n+1

Wℓ0bnℓ + 2bnn
(
EW1,0|W1,0|2

) N∑

ℓ=n+1

W ∗
ℓ0bℓn

)
.

Note that the second term of the right-hand side writes:

En+1

(
W ∗

n0

N∑

ℓ=n+1

Wℓ0bnℓ +Wn0

N∑

ℓ=n+1

W ∗
ℓ0bℓn

)2

= 2
N∑

ℓ1,ℓ2=n+1

Wℓ10W
∗
ℓ20bnℓ1bℓ2n .

Therefore, VK =
∑N

n=1 En+1Z
2
n,K writes:

VK =

(
E|W1,0|4 − 1

)

K

N∑

n=1

b2nn +
2

K

N∑

n=1

N∑

ℓ1,ℓ2=n+1

Wℓ10W
∗
ℓ20bnℓ1bℓ2n

+
2

K
ℜ
(
(
EW ∗

1,0|W1,0|2
) N∑

n=1

bnn

N∑

ℓ=n+1

Wℓ0bnℓ

)
,

where ℜ denotes the real part of a complex number. We introduce the following notations:

R = (rij)
N
i,j=1

△
= (bij1i>j)

N
i,j=1 and ΓK =

1

K

N∑

n=1

bnn

N∑

ℓ=n+1

Wℓ0bnℓ .

Note in particular that R is the strictly lower triangular matrix extracted from D
1/2
0 QD

1/2
0 . We

can now rewrite VK as:

VK =

(
E|W1,0|4 − 1

)

K
Tr
(
D2

0(diag(Q))2
)
+

2

K
wH

0RRHw0 + 2ℜ
(
ΓKEW ∗

1,0|W1,0|2
)
. (B.18)

We now prove that the third term of the right-hand side vanishes, and find an asymptotic
equivalent for the second one. Using Lemma B.1, we have:

EN+1|ΓK |2 =
1

K2

N∑

n,m=1

bnnbmm

N∑

ℓ=1

bnℓb
∗
mℓ1ℓ>n1ℓ>m =

1

K2
Tr (diag(B)RHRdiag(B))

=
1

K2
Tr
(
D

1/2
0 diag(Q)D

1/2
0 RHRD

1/2
0 diag(Q)D

1/2
0

)

≤ 1

K2
‖D0‖2‖Q‖2Tr(RHR) ≤ 1

K2
‖D0‖2‖Q‖2Tr(B2) ≤ 1

K2
‖D0‖4‖Q‖2Tr(Q2)

≤ 1

K
‖D0‖2‖Q‖4 ≤ 1

K

σ4
max

ρ4
−−−−→
K→∞

0 .

In particular, E|ΓK |2 → 0 and

ℜ
((
EW ∗

1,0|W1,0|2
)
ΓK

)
−−−−→
K→∞

0 in probability . (B.19)
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Consider now the second term of the right-hand side of Eq. (B.18). We prove that:

1

K
wH

0RRHw0 −
1

K
Tr(RRH) −−−−→

K→∞
0 in probability. (B.20)

By lemma A.1 ((A.2)) in appendix A.1

E

(
1

K
wH

0RRHw0 −
1

K
Tr(RRH)

)2

≤ C

K2
(E|W1,0|4)Tr(RRHRRH) .

Notice that Tr(RRHRRH) = ‖R‖44 where ‖R‖4 is the Schatten ℓ4-norm of R. Using Lemma
B.2, we have:

‖R‖44 ≤ C‖D1/2
0 QD

1/2
0 ‖44 ≤ NC‖D1/2

0 QD
1/2
0 ‖4 ≤ N

Cσ8
max

ρ4
.

Therefore,

E

(
1

K
wH

0RRHw0 −
1

K
Tr(RRH)

)2

≤ C
N

K2
−−−−→
K→∞

0

which implies (B.20). Now, due to the fact that B = BH, we have

2

K
TrRRH =

2

K

N∑

n=1

N∑

ℓ=n+1

|bnℓ|2

=
1

K

N∑

n,ℓ=1

|bnℓ|2 −
1

K

N∑

n=1

|bnn|2

=
1

K
TrD0QD0Q−

1

K
TrD2

0(diag(Q))2 (B.21)

Gathering (B.18–B.21), we obtain (B.10). Step 2 is proved.

Step 3: Proof of (B.11) and (B.12) We begin with some identities. WriteQ(z) = [qij(z)]
N
i,j=1

and Q̃(z) = [q̃ij(z)]
K
i,j=1. Denote by yk the column number k of Y and by ξn the row number

n of Y. Denote by Yk the matrix that remains after deleting column k from Y and by Yn the
matrix that remains after deleting row n from Y. Finally, write Qk(z) = (Yk

(
Yk
)H − zI)−1

and Q̃n(z) = (YH
nYn− zI)−1. The following formulas can be established easily (see for instance

[58, §0.7.3. and §0.7.4]):

qnn(−ρ) =
1

ρ(1 + ξnQ̃n(−ρ)ξH
n)

, q̃kk(−ρ) =
1

ρ(1 + yH
kQk(−ρ)yk)

, (B.22)

Q = Qk −
Qkyky

H
kQk

1 + yH
kQkyk

(B.23)

Working out (B.23), it is possible to show the asymptotic equivalence between 1
KTr(D2

0 (diag(Q)))2

and 1
KTrD2

0T
2, but before going further, we shall state the following lemma which will be proved

in section B.1.5.

Lemma B.6. The following hold true:
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1. (Rank one perturbation inequality) The resolvent Qk(−ρ) satisfies |TrA(Q−Qk)| ≤
‖A‖/ρ for any N ×N matrix A.

2. Let Assumptions A1–A3 hold. Then,

max
1≤n≤N

E(qnn(−ρ)− tn(−ρ))2 ≤
C

K
. (B.24)

The same conclusion holds true if qnn and tn are replaced with q̃kk and t̃k respectively.

We are now in position to prove (B.11). First, notice that:

E
∣∣q2nn − t2n

∣∣ = E |qnn − tn| (qnn + tn)

≤
√
E(qnn − tn)2

√
E(qnn + tn)2 ≤ 2

ρ

√
E(qnn − tn)2 . (B.25)

Now,

1

K
E
∣∣TrD2

0(diag(Q)2 −T2)
∣∣ ≤ 1

K

N∑

n=1

σ4
0,nE

∣∣q2nn − t2n
∣∣ ≤ σ4

maxN

K
max

1≤n≤N
E
∣∣q2nn − t2n

∣∣

≤ 2σ4
maxN

ρK

√
max

1≤n≤N
E(qnn − tn)2 −−−−→

K→∞
0 ,

where the last inequality follows from (B.25) together with Lemma B.6–(2). Convergence (B.11)
is established.

We now establish the system of equations (B.12). Our starting point is the identity

Q = T+T(T−1 −Q−1)Q = T+
ρ

K
T diag(TrD̃1T̃, . . . ,TrD̃N T̃)Q−TYYHQ .

Using this identity, we develop Uℓ =
1
KTrD0QDℓQ as

Uℓ =
1

K
TrD0QDℓT+

ρ

K2
TrD0QDℓTdiag(TrD̃1T̃, . . . ,TrD̃N T̃)Q− 1

K
TrD0QDℓTYYHQ

△
= X1 +X2 −X3 . (B.26)

Lemma B.3–(2) with S = D0DℓT yields:

X1 =
1

K
TrD0DℓT

2 + ǫ1 (B.27)

where E|ǫ1| ≤
√

Eǫ21 ≤ C/K. Consider now the term X3 = 1
K

∑K
k=1TrD0QDℓTyky

H
kQ. Using

(B.22) and (B.23), we have

yH
kQ =

(
1− yH

kQyk

1 + yH
kQyk

)
yH
kQk = ρ q̃kk y

H
kQk .

Hence

X3 =
ρ

K

K∑

k=1

q̃kky
H
kQkD0QDℓTyk

=
ρ

K

K∑

k=1

t̃ky
H
kQkD0QDℓTyk +

ρ

K

K∑

k=1

(q̃kk − t̃k)y
H
kQkD0QDℓTyk

△
= X ′

3 + ǫ2 . (B.28)
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By Cauchy-Schwarz inequality,

E|ǫ2| ≤
ρ

K

K∑

k=1

√
E(q̃kk − t̃k)2

√
E(yH

kQkD0QDℓTyk)2 .

We have E(yH
kQkD0QDℓTyk)

2 ≤ σ8
maxρ

−6
E‖yk‖4 ≤ C. Using in addition Lemma B.6–(2), we

obtain

E|ǫ2| ≤
C√
K

.

Consider X ′
3. From (B.22) and (B.23), we have Q = Qk − ρq̃kkQkyky

H
kQk. Hence, we can

develop X ′
3 as

X ′
3 =

ρ

K

K∑

k=1

t̃ky
H
kQkD0QkDℓTyk −

ρ2

K

K∑

k=1

t̃kq̃kky
H
kQkD0Qkyky

H
kQkDℓTyk

△
= X4 +X5 . (B.29)

Consider X4. Notice that yk and Qk are independent. Therefore, by Lemma A.1 in appendix
A.1, we obtain

yH
kQkD0QkDℓTyk =

1

K
TrDkQkD0QkDℓT+ ǫ3 =

1

K
TrDkQD0QDℓT+ ǫ3 + ǫ4

where Eǫ23 < CK−1 by Ineq. (A.3) in appendix A.1. Applying twice Lemma B.6–(1) to ǫ4 =
1
K (TrDkQkD0QkDℓT−TrDkQD0QDℓT) yields |ǫ4| < CK−1. Note in addition that

∑
t̃kDk =

diag(TrD̃1T̃, . . . ,TrD̃N T̃). Thus, we obtain

X4 =
ρ

K2
Tr

(
K∑

k=1

t̃kDk

)
QD0QDℓT+ ǫ5

= X2 + ǫ5 , (B.30)

where ǫ5 = ǫ3 + ǫ4, which yields E|ǫ5| ≤ CK− 1
2 .

We now turn to X5. First introduce the following random variable:

ǫ6 = t̃kq̃kky
H
kQkD0Qkyky

H
kQkDℓTyk − t̃kq̃kk

(
1

K
TrDkQkD0Qk

)(
1

K
TrDkQkDℓT

)

Then

|ǫ6| ≤
1

ρ2
yH
kQkD0Qkyk

∣∣∣∣yH
kQkDℓTyk −

1

K
TrDkQkDℓT

∣∣∣∣

+
1

ρ2

∣∣∣∣yH
kQkD0Qky

H
k −

1

K
TrDkQkD0Qk

∣∣∣∣
1

K
TrDkQkDℓT

and one can prove that E|ǫ6| < CK− 1
2 with help of Lemma A.1 in appendix A.1, together with

Cauchy-Schwarz inequality. In addition, we can prove with the help of Lemma B.6 that:

t̃kq̃kk

(
1

K
TrDkQkD0Qk

)(
1

K
TrDkQkDℓT

)
= t̃2k

(
1

K
TrDkQD0Q

)(
1

K
TrDkQDℓT

)
+ ǫ7

= t̃2k

(
1

K
TrDkQD0Q

)(
1

K
TrDkDℓT

2

)
+ ǫ7 + ǫ8
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where ǫ7 and ǫ8 are random variables satisfying E|ǫ7| < CK− 1
2 by Lemma B.6, and maxk,ℓ E|ǫ8| ≤

maxk,ℓ
√
E|ǫ8|2 ≤ CK− 1

2 by Lemma B.3–(2). Using the fact that ρ2t̃2k = (1 + 1
KTrDkT)−2, we

end up with

X5 = −
ρ2

K

K∑

k=1

t̃2k

(
1

K
TrDkQD0Q

)(
1

K
TrDkDℓT

2

)
+ ǫ9 = −

K∑

k=1

cℓkUk + ǫ9 (B.31)

where cℓk is given by (B.13), and where E|ǫ9| < CK− 1
2 .

Plugging Eq. (B.27)–(B.31) into (B.26), we end up with Uℓ =
∑K

k=1 cℓkUk+
1
KTrD0DℓT

2+ǫ

with E|ǫ| < CK− 1
2 . Step 3 is established.

Step 4 : Proof of (B.14) We rely on results of Section B.1.2, in particular on Lemma B.4.
Define the following (K + 1)× 1 vectors:

u = [Uk]
K
k=0, d =

[
1

K
TrD0DkT

2

]K

k=0

, ǫ = [ǫk]
K
k=0 ,

where the Uk’s and ǫk’s are defined in (B.12). Recall the definition of the cℓk’s for 0 ≤ ℓ ≤ K
and 1 ≤ k ≤ K, define cℓ 0 = 0 for 0 ≤ ℓ ≤ K and consider the (K + 1) × (K + 1) matrix
C = [cℓk]

K
ℓ,k=0.

With these notations, System (B.12) writes

(IK+1 −C)u = d+ ǫ . (B.32)

Let α = 1
KTrD2

0T
2 and β = (1 + 1

KTrD0T)2. We have in particular

d =

[
α

g

]
, C =

[
0 1

KgT∆−1

0 AT

]

(recall that A, ∆ and g are defined in the statement of Theorem 4.3).
Consider a square matrix X which first column is equal to [1, 0, . . . , 0]T, and partition X as

X =

[
1 xT

01

0 X11

]
. Recall that the inverse of X exists if and only if X−1

11 exists, and in this case

the first row [X−1]0 of X−1 is given by

[
X−1

]
0
=
[
1 − xT

01X
−1
11

]

(see for instance [58]). We now apply these results to the system (B.32). Due to (B.32), U0 can
be expressed as

U0 = [(I−C)−1]0(d+ ǫ) .

By Lemma B.4–(1), (IK −AT )−1 exists hence (I−C)−1 exists,

[
(IK+1 −C)−1

]
0
=

[
1

1

K
gT∆−1(IK −AT )−1

]
,

and

U0 = α+
1

K
gT∆−1

(
I−AT

)−1
g + ǫ0 +

1

K
gT∆−1

(
I−AT

)−1
ǫ′

with ǫ′ = [ǫ1, . . . , ǫK ]T . Gathering the estimates of Section B.1.2 together with the fact that

‖Eǫ‖∞ ≤ CK− 1
2 , we get (B.14). Step 4 is established, so is Theorem 4.3.
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B.1.4 Proof of Lemma B.3

Let us establish (B.1). The lower bound immediately follows from the representation

tn =
1

ρ+ 1
K

∑K
k=1

σ2
nk

1+ 1
K

∑N
ℓ=1 σ

2
ℓk
tℓ

(a)

≥ 1

ρ+ σ2
max

where (a) follows from A2 and tℓ(−ρ) ≥ 0. The upper bound requires an extra argument: As
proved in [54, Theorem 2.4], the tn’s are Stieltjes transforms of probability measures supported

by R+, i.e. there exists a probability measure µn over R+ such that tn(z) =
∫ µn(dt)

t−z . Thus

tn(−ρ) =
∫ ∞

0

µn(dt)

t+ ρ
≤ 1

ρ
,

and (B.1) is proved.
We now briefly justify (B.2). We have E |TrS(Q−T)|2 = E |TrS(Q− EQ)|2+|TrS(EQ−T)|2.

In [55, Lemma 6.3] it is stated that supK E |TrS(Q− EQ)|2 <∞. Furthermore, in the proof of
[55, Theorem 3.3] it is shown that supK K‖EQ−T‖ <∞, hence |TrS(EQ−T)| ≤ K‖S(EQ−
T)‖ ≤ K‖EQ−T‖‖S‖ <∞ by Lemma B.1–(2). The result follows.

B.1.5 Proof of Lemma B.6

The proof of Part 1 can be found in [55, Proof of Lemma 6.3] (see also [93, Lemma 2.6]). Let
us prove Part 2. Using the system of equations (3.2) defining matrices T and T̃ and (B.22), we
get:

|qnn(−ρ)− tn(−ρ)| =
1

ρ(1 + 1
KTrD̃nT̃)(1 + ξnQ̃nξ

∗
n)

∣∣∣∣ξnQ̃nξ
∗
n −

1

K
TrD̃nT̃

∣∣∣∣

≤ 1

ρ

∣∣∣∣ξnQ̃nξ
∗
n −

1

K
TrD̃nT̃

∣∣∣∣ .

Hence,

E(qnn − tn)
2 ≤ 2

ρ
E

(
ξnQ̃nξ

∗
n −

1

K
TrD̃nQ̃

)2

+
2

ρK2
E

(
TrD̃n(Q̃− T̃)

)2
≤ C

K

by Lemma A.1 and Lemma B.3–(2), which proves (B.24).

B.2 Proof of Corollary 4.1

Recall that in the separable case, Dk = d̃kD and D̃n = dnD̃. Let d̃ be the K × 1 vector
d̃ = [d̃k]

K
k=1. In the separable case, Eq. (4.15) is written

Θ2

d̃20
=

1

Kd̃20
gT (I−A)−1∆−1g + γ(E|W1,0|4 − 1) , (B.33)

where γ is defined in statement of the corollary. Here, vector g and matrix A are given by

g = γd̃0d̃ and A =

[
1

K

1
KTrDℓDmT2

(
1 + 1

KTrDℓT
)2

]K

ℓ,m=1

=
γ

K
∆−1d̃d̃T .
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By the matrix inversion lemma [58], we have

1

Kd̃20
gT (I−A)−1∆−1g =

γ2

K
d̃T
(
∆− γ

K
d̃d̃T

)−1
d̃

=
γ2

K
d̃T

(
∆−1 +

γ

K

1

1− γ
K d̃T∆−1d̃

∆−1d̃d̃T∆−1

)
d̃ .

Noticing that

1

K
d̃T∆−1d̃ =

1

K

K∑

k=1

d̃2k(
1 + 1

KTrDkT
)2 =

ρ2

K

K∑

k=1

d̃2k t̃
2
k = ρ2γ̃ ,

we obtain
1

Kd̃20
gT (I−A)−1∆−1g = γ

ρ2γγ̃

1− ρ2γγ̃
.

Plugging this equation into (B.33), we obtain (4.17).



Chapter 5

Performance analysis for LMMSE
detectors on general correlated

MIMO channels

As we have seen in the previous chapter, the Gaussian approximation of the SINR leads to accu-
rate 1% outage probabilites only in the case where the system dimensions are beyond 64. Such
situation may be encountered in the case of CDMA based systems, but is hardly experienced
when dealing with MIMO systems. The asymptotic BER based on the sole Gaussian approx-
imation is also inaccurate for small system sizes and tends to under-estimate the experienced
real value, [30]. The reasons behind this is that the Gaussian distribution allows negative values
and has a zero central third moment, while the SINR is always positive and has a non zero third
moment.

A more precise approximation of the BER or the outage probability is expected if one chooses
to approximate the SINR probability distribution with a distribution 1) which is supported by
R+ and 2) which is adjusted to the first three moments of the SINR instead of the first tow
moments needed by the Gaussian approximation.

In this line of thought, Li, Paul, Narasimhan and Cioffi [82] proposed to use alternative
parametrized distributions (Gamma and Generalized Gamma distributions) whose parameters
are set to coincide with the asymptotic moments of the output SINR. This approach was derived
for (transmit) correlated channels and asymptotic moments were provided for the special case of
uncorrelated or equi-correlated channels. For the general correlated channel case, only limiting
upper bounds for the first three asymptotic moments were provided. Based on Random Matrix
Theory, and especially on the Gaussian mathematical tools elaborated in [53] and further used
in [34], we derive closed-form expressions for the first three moments, generalizing the work of
[82] to a general (receive) correlated channel. Using the generalized Gamma approximation,
we provide closed-form expressions for the BER and numerical approximations for the outage
probability.

We organize this chapter as follows: First, we present the system model and derive the
SINR expression. Then, we review the Generalized Gamma approximation before providing
the asymptotic central moments in the next section. Finally, we discuss in the last section the
simulation results.

88
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5.1 System Model

We consider an uplink transmission system, in which a base station equipped with N correlated
antennas detects the symbols of a given user of interest in the presence of K interfering users.
The N dimensional received signal writes:

r = Σs+ n

where s = [s0, · · · , sK ]T is the transmitted complex vector signal with size K + 1 satisfying
EssH = IK+1, and Σ is the N × (K + 1) channel matrix. We assume that this matrix writes as

Σ =
1√
K

Ψ
1
2WP

1
2 ,

where Ψ a N ×N Hermitian nonnegative matrix that captures the correlations at the receiver,
P = diag (p0, · · · , pK) is the deterministic matrix of the powers allocated to the different users
and W = [w0, · · · ,wK ] (wk being the kth column) is a N × (K + 1) complex Gaussian matrix
with centered unit variance (standard) independent and identically distributed (i.i.d) entries.

To detect symbol s0 and to mitigate the interference caused by users 1, . . . ,K, the base
station applies the LMMSE estimator. Along the same lines as in the previous chapter, one can
prove that the experienced SINR is given by:

βK = yH

(
1

K
Ψ

1
2W̃P̃W̃HΨ

1
2 + ρIN

)−1

y,

with P̃ = diag (p1, · · · , pK) and W̃ = [w1, · · · ,wK ]. Let Ψ = UDUH be a spectral decomposi-
tion of Ψ. Then, βK writes:

βK =
p0
K

wH
0UD

1
2

(
1

K
D

1
2UHW̃P̃W̃HUD

1
2 + ρIN

)−1

D
1
2UHw0 ,

=
p0
ρK

zHD
1
2

(
1

Kρ
D

1
2ZD̃ZHD

1
2 + I

)−1

D
1
2 z

where: z = UHw0 (resp. Z = UHW̃) is a N × 1 vector with complex independent standard
Gaussian entries (resp. N ×K matrix with independent Gaussian entries).

The asymptotic behaviour of the SINR βK has been studied in the previous chapter. The first
and second deterministic moments, have been shown to admit deterministic approximations as
K,N →∞, the ratio being bounded below by a positive constant and above by a finite constant.
As it will be shown later, a deterministic approximation of the third central moment is required
for the BER and outage probability approximation.

5.2 Bit Error Rate and outage probability approximations

5.2.1 A quick reminder of the generalised Gamma distribution

Recall that if a random variable X follows a generalized gamma distribution G(α, b, ξ), where α
and b are respectively referred to as the shape and scale parameters, then:

EX = αb, var(X) = αb2 and E(X − EX)3 = (ξ + 1)αb3 .
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The probability density function (pdf) of the generalized Gamma distribution with parameters
(α, b, ξ) does not have a closed form expression but its moment generating function (MGF) writes
[38]:

MGF(s) =





exp( α
ξ−1(1− (1− bξs)

ξ−1
ξ )) if ξ > 1,

(1− sb)−α , s < 1
b if ξ = 1,

exp( α
1−ξ ((1− bξs)

ξ−1
ξ − 1)) if ξ > 1.

5.2.2 BER approximation

Under QPSK constellations with Gray encoding and assuming that the noise at the LMMSE
output is Gaussian, the BER is given by:

BER = EQ(
√
βK)

where Q(x) = 1√
2π

∫∞
x e−t2/2 dt and the expectation is taken over the distribution of the SINR

βK . Based on the asymptotic normality of the SINR, [103] and [86] proposed to use the limiting
BER value given by:

BER =
1√
2π

∫ ∞
√

βK

e−t2/2dt,

where βK denotes an asymptotic deterministic approximation of the first moment of βK . It was
shown however in [82] that this expression is inaccurate since a Gaussian random variable allows
negative values and has a zero third moment while the output SINR is always positive and has
a non-zero third moment for finite system dimensions. To overcome these difficulties, Li et al.
[82] approximate the BER by considering first that the SINR follows a Gamma distribution with
scale α and shape b, these parameters being tuned by equating the first two moments of the
Gamma distribution with the first two asymptotic moments of the SINR. However, the third
asymptotic moment was shown to be different from the third moment of the Gamma distribution
which only depends on the scale α and shape b. In light of this consideration, Li et al. [82] refine
this approximation and consider that the SINR follows a generalized Gamma distribution which
is adjusted by assuming that its first three moments equalize with the first three asymptotic
moments of the SINR. As expected, this approximation has proved to be more accurate than
the Gamma approximation, and so will be the one considered in this chapter. Next, we briefly
review this technique, which we will rely on to provide accurate approximations for the BER
and outage probability.

Let E∞(βK), var∞(βK) and S∞(βK) denote respectively the deterministic approximations
of the asymptotic central moments of βK . Then, the parameters ξ, α and b are determined by
solving:

E∞(βK) = αb, var∞(βK) = αb2 and S∞(βK) = (ξ + 1)αb3,

thus giving the following values:

α =
(E∞(βK))2

var∞(βK)
, β =

var∞(βK)

E∞(βK)
and ξ =

S∞(βK)E∞(βK)

(var∞(βK))2
− 1.

Using the MGF, one can evaluate the BER by using the following relation [94], that holds for
QPSK constellation:

BER =
1

π

∫ π
2

0
MGF

(
− 1

2 sin2 φ

)
dφ. (5.1)
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Note that similar expressions for the BER exist for other constellations and can be derived by
plugging the following identity involving the function Q(x) [94]:

Q(x) =
1

π

∫ π
2

0
exp

(
− x2

2 sin2 θ

)
dθ

into the BER expression.

5.2.3 Outage probability approximation

Only the moment generation function (MGF) has a closed form expression. Knowing the MGF,
one can compute numerically the cumulative distribution function by applying the saddle point
approximation technique [17]. Denote by K(y) = log(MGF(y)) the cumulative generating func-
tion, by y the threshold SINR and by ty the solution of K ′(ty) = y. Let w0 and u0 be given
by: w0 = sign(ty)

√
2 (tyy −K(ty)) and u0 = ty

√
K”(ty). The saddle point approximate of the

outage probability is given by:

Pout = Φ(w0) + φ(w0)

(
1

w0
− 1

u0

)
, (5.2)

where Φ(x) =
∫ x
−∞

1√
2π
e−t2/2 dt and φ(x) = 1√

2π
e−x2/2 denote respectively the standard normal

cumulative distribution function and probability distribution function.
So far, we have presented the technique that will be used in simulations for the evaluation

of the BER and outage probability. This technique is heavily based on the computation of the
three first asymptotic moments of the SINR βK , an issue that is handled in the next section.

5.3 Asymptotic moments

The first and second moments, being computed in the previous chapter, we devote this section to
the asymptotic approximation of the third central moment. Our approach relies on the work in
[53], from which several notations and results are borrowed. For the reader convenience, we will
recall the required assumptions and some modified definitions for the deterministic equivalents.

5.3.1 Assumptions

Recall from Section 5.1 the various definitions K,N,D, D̃. In the following, we assume that
both K and N go to +∞, their ratio being bounded below and above as follows:

0 < ℓ− = lim inf
K

N
≤ ℓ+ = lim sup

K

N
< +∞ .

In the sequel, the notation K → ∞ will refer to this asymptotic regime. We will frequently
write DK and D̃K to emphasize the dependence in K, but may drop the subscript K as well.
Assume the following mild conditions:

A1. There exist real numbers dmax <∞ and d̃max <∞ such that:

sup
K
‖DK‖ ≤ dmax and sup

K
‖D̃K‖ ≤ d̃max,

where ‖DK‖ and ‖D̃K‖ are the spectral norms of DK and D̃K .

A2. The normalized traces of DK and D̃K satisfy:

inf
K

1

K
Tr(DK) > 0 and inf

K

1

K
Tr(D̃K) > 0.
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5.3.2 Asymptotic moments computation

In this section, we provide closed form expressions for the first three asymptotic moments. But,
first, we shall recall the definitions for the deterministic quantities that will be considered. Note
that these definitions are different from those presented in chapter 3.

Proposition 5.1. (cf. [53]) For every integer K and any t > 0, the system of equations in
(δ, δ̃) 




δK = 1
KTrDK

(
I+ tδ̃KDK

)−1
,

δ̃K = 1
KTrD̃K

(
I+ tδKD̃K

)−1
,

admits a unique solution
(
δK(t), δ̃K(t)

)
satisfying δK(t) > 0, δ̃K(t) > 0.

Let T and T̃ be the N ×N and K ×K diagonal matrices defined by:

T =
(
I+ tδ̃KD

)−1
and T̃ =

(
I+ tδKD̃

)−1
.

Note that in particular: δ = 1
KTrDT and δ̃ = 1

KTrD̃T̃. Define also γ and γ̃ as γ = 1
KTrD2T2

and γ̃ = 1
KTrD̃2T̃2. Finally, replace t by 1

ρ and introduce the following deterministic quantities:

Ω2
K =

γ

ρ2

(
γγ̃

ρ2 − γγ̃
+ 1

)
,

νK =
2ρ3

K (ρ2 − γγ̃)3

[
TrD3T3 − γ3

ρ3
TrD̃3T̃3

]
.

As usual, the notation αK = O(βK) means that αK(βK)−1 is uniformly bounded as K → ∞.
Then, the first three asymptotic moments are given by the following theorem:

Theorem 5.1. Assuming that the matrices D and D̃ satisfy the conditions stated in A1 and
A2, then the following convergences hold true:

1. First asymptotic moment :

δK
ρ

= O(1) and E

(
βK
p0

)
− δK

ρ
−−−−→
K→∞

0,

2. Second asymptotic moment :

ΩK = O(1) and KE

(
βK
p0
− E

(
βK
p0

))2

− Ω2
K −−−−→

K→∞
0,

3. Third asymptotic moment:

νK = O(1) and K2
E

(
βK
p0
− E

(
βK
p0

))3

− νK −−−−→
K→∞

0.

The two first items of the theorem are proved in the previous chapter and can be also found
in [63] (beware that the notations used in this article are the same as those in [53] and slightly
differ from those used in [63]). Proof of the third item of the theorem is postponed to the
appendix.

One can note that the third asymptotic moment is of order O(K−2). This is in accordance
with the asymptotic normality of the SINR, where the third moment of

√
K(βK − E(βK)) will

vanish, as this quantity becomes closer to a Gaussian random variable. However, its value
remains significant for small dimension systems.
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5.4 Simulation results

In our simulations, we consider a MIMO system in the uplink direction. The base station is
equipped with N receiving antennas and detects the symbols transmitted by a particular user
in the presence of K interfering users. We assume that the correlation matrix Ψ is given by

Ψ(i, j) =
√

K
N a|i−j| with 0 ≤ a < 1. Recall that P̃ is the matrix of the interfering users’ powers.

We set P̃ (up to a permutation of its diagonal elements) to:

P̃ =

{
diag([4P 5P ]) if K = 2
diag([P P 2P 4P ]) if K = 4

,

where P is the power of the user of interest. For K = 2p with 3 ≤ p ≤ 5, we assume that the
powers of the interfering sources are arranged into five classes as in Table 5.4. We investigate

Table 5.1: Power classes and relative frequencies

Class 1 2 3 4 5

Power P 2P 4P 8P 16P

Relative frequency 1/8 1/4 1/4 1/8 1/4

the impact of the correlation coefficient a on the accuracy of the asymptotic moments when
the input SNR is set to 15dB for N = K (Fig. 5.1) and N = 2K (Fig. 5.2). In these

figures, the relative error on the estimated first three moments |µ∞−µ|
µ ( µ∞ and µ denote

respectively the asymptotic and empirical moment ) is depicted with respect to the correlation
coefficient a. These simulations show that when the number of antennas is small, the asymptotic
approximation of the second and third moments degrades for large correlation coefficients (a close
to 1). Despite these discrepancies for a close to 1, simulations show that the BER and the outage
probability are well approximated even for small system dimensions. Indeed, Figure 5.3 shows
the evolution of the empirical BER and the theoretical BER predicted by (2.5) versus the input
SNR for different values of a, K and N . In Figure 5.4, the saddle point approximate of the outage
probability given by (5.2) is compared with the empirical one. In both Figures 5.3 and 5.4, 2000
channel realizations have been considered, and in Fig. 5.4, the input SNR has been set to 15
dB. These figures show that even for small system dimensions, the BER is well approximated
for a wide range of SNR values. For high SNR values, the proposed approximation tends to
underestimate the bit error rate. A possible reason might be that the first three moments are
not sufficient to estimate accurately the bit error rate (BER). To get a more accurate bit error
rate value, one should go beyond these moments and take into account the values of higher order
moments.

The outage probability is also well approximated except for small values of the SNR threshold
that are likely to be in the tail of the asymptotic distribution.

5.5 Conclusion

This chapter addresses the problem of BER and outage probability approximations for MIMO
systems based on LMMSE receiver. Based on an asymptotic analysis, the BER and the outage
probability can be shown to converge to deterministic values. However, for usual cases, these
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Figure 5.1: Absolute value of the relative error when N = K
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Figure 5.2: Absolute value of the relative error when N = 2K
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values are not accurate, and cannot be used to get reliable approximations for these performance
metrics. The reason behind these discrepancies is that the Gaussian distribution allows negative
values and have zero third central moment, whereas the SINR is always positive and so is its third
moment. To get around this problem, we employ the Generalized Gamma distribution instead
the Gaussian one, and tune its three parameters in such away to equalize its three central
moments, with the asymptotic ones. Our main contribution was to compute the asymptotic
third moment, since the two first ones have been provided in the previous chapter. Simulations
show that our method is efficient in approximating the BER and outage probability for a wide
range of SNR values.
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Figure 5.3: BER vs input SNR
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(c) N = 2K = 4 and a = 0
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Figure 5.4: Outage Probability vs SNR threshold
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Appendix C

Proof of results in chapter 5

In the sequel, we shall heavily rely on the results and techniques developed in [53]. In the sequel,
D and D̃ are respectively N × N and K × K diagonal matrices which satisfy A1 and A2, Z
is a N ×K matrix whose entries are i.i.d. standard complex Gaussian, X is a N ×K matrix
defined by:

X = D
1
2ZD̃

1
2 .

We shall often write X = [x1, · · · ,xK ] where the xj ’s are X’s columns. We recall hereafter the
mathematical tools that will be of constant use in the sequel.

C.1 Notations

Define the resolvent matrix H by:

H =

(
t

K
D

1
2ZD̃ZHD

1
2 + IN

)−1

=

(
t

K
XXH + IN

)−1

.

We introduce the following intermediate quantities:

β(t) =
1

K
Tr(DH), α(t) =

1

K
Tr(DEH) and

o
β= β − α .

Matrix R̃(t) = diag (r̃1, · · · , r̃K) is a K ×K diagonal matrix defined by:

R̃(t) =
(
I+ tα(t)D̃K

)−1
.

Let α̃ = 1
KTr(D̃R̃). Then, matrix R(t) = diag (r1, · · · , rN ) is a N ×N matrix defined by:

R(t) = (I+ tα̃(t)D)−1 .

C.2 Mathematical Tools

The results below, of constant use in the proof of Theorem 5.1, can be found in [53].
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C.2.1 Differentiation formulas

∂Hpq

∂Xij
= − t

K
[XHH]jq Hpi = −

t

K

[
xH
j H
]
q
Hpi. (C.1)

∂Hpq

∂Xij

= − t

K
[HX]pj Hiq = −

t

K
[Hxj ]pHiq (C.2)

C.2.2 Integration by parts formula for Gaussian functionals

Let Φ be a C1 complex function polynomially bounded together with its derivatives, then:

E [XijΦ(X)] = did̃jE

[
∂ Φ(X)

∂Xij

]
. (C.3)

C.2.3 Poincaré-Nash inequality

Let X and Φ be as above, then:

Var(Φ(X)) ≤
N∑

i=1

K∑

j=1

did̃jE

[∣∣∣∣
∂Φ(X)

∂Xij

∣∣∣∣
2

+

∣∣∣∣
∂Φ(X)

∂Xij

∣∣∣∣
2
]
. (C.4)

C.2.4 Deterministic approximations and various estimations

Proposition C.1. Let (AK) and (BK) be two sequences of respectively N×N and K×K diag-
onal deterministic matrices whose spectral norm are uniformly bounded in K, then the following
hold true:

1

K
Tr(AR) =

1

K
Tr(AT) +O(K−2),

1

K
Tr(BR̃) =

1

K
Tr(BT̃) +O(K−2).

Proposition C.2. Let (AK), (BK) and (CK) be three sequences of N ×N , K ×K and N ×N
diagonal deterministic matrices whose spectral norm are uniformly bounded in K. Consider the
following functions:

Φ(X) =
1

K
Tr

(
AH

XBXH

K

)
, Ψ(X) =

1

K
Tr

(
AHDH

XBXH

K

)
.

Then,

1. the following estimations hold true:

varΦ(X), varΨ(X), var(β) and var

(
1

K
TrAHCH

)
are O(K−2) .

2. the following approximations hold true:

E [Φ(X)] =
1

K
Tr
(
D̃T̃B

) 1

K
Tr (ADT) +O(K−2), (C.5)

E [Ψ(X)] =
1

1− t2γγ̃

(
1

K2
Tr
(
D̃T̃B

)
Tr(AD2T2)− tγ

K2
Tr
(
D̃2T̃2B

)
Tr(ADT)

)
+O(K−2),

(C.6)

E
1

K
Tr [AHDH] =

1

1− t2γγ̃

1

K
Tr(ADT2) +O(K−2). (C.7)
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Proofs of Propositions C.1 and C.2 are essentially provided in [53]. In the same vein, the
following proposition will be needed.

Proposition C.3. Let (AK), (BK) and (CK) be three sequences of N ×N , K ×K and N ×N
diagonal deterministic matrices whose spectral norm are uniformly bounded in K. Consider the
following function:

ϕ(X) =
1

K
Tr

[
CHAHAH

XBXH

K

]
.

Then varϕ(X) = O(K−2) and var
(
1
KTrAHAHAH

)
= O(K−2) .

Proof of Proposition C.3 is essentially the same as the proof of Proposition C.2-1). It is
provided for completeness and postponed to appendix C.4.

C.3 End of proof of Theorem 5.1

We are now in position to complete the proof of Theorem 5.1. Using the notations of [53], the
SINR writes:

βK =
tp0
K

zHD
1
2H(t)D

1
2 z,

where t = 1
ρ . Hence, the third moment is given by:

E (βK − EβK)
3
=

(tp0)
3

K3
E

(
zHD

1

2HD
1

2 z− ETrDH
)3

,

=
(tp0)

3

K3
E

(
zHD

1

2HD
1

2 z− TrDH+TrDH− ETrDH
)3

,

=
(tp0)

3

K3

[
E

(
zHD

1

2HD
1

2 z− TrDH
)3

+ 3E
(
zHD

1

2HD
1

2 z− TrDH
)2

(TrDH− ETrDH)

+3E
(
zHD

1

2HD
1

2 z− TrDH
)
(TrDH− ETrDH)

2
+ E (TrDH− ETrDH)

3
]
,

=
(tp0)

3

K3

[
E

(
zHD

1

2HD
1

2 z− TrDH
)3

+ 3E
(
zHD

1

2HD
1

2 z− TrDH
)2

(TrDH− ETrDH)

+E (TrDH− ETrDH)
3
]

(C.8)

In order to deal with the first term of the right-hand side of (C.8), notice that if M is a
deterministic matrix and x is a standard Gaussian vector, then:

E (xHMx− TrM)3 = Tr(M3)E
(
|x1|2 − 1

)3

(such an identity can be easily proved by considering the spectral decomposition of M). Hence,

E

(
zHD

1
2HD

1
2 z− TrDH

)3
= ETr (DH)3 E

(
|Z11|2 − 1

)3
,

= 2ETr (DHDHDH) .

The second term of the right-hand side of (C.8) is uniformly bounded in K. Indeed:

3E
(
zHD

1
2HD

1
2 z− Tr(DH)

)2
= 3E

(
|Z11|2 − 1

)2
TrDHDH (TrDH− ETrDH) ,

≤ 3
√
var (TrDHDH)

√
var (TrDH)
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which isO(1) according to Proposition C.2. It remains to deal with E (TrDH− ETrDH)3, which
can be proved to be uniformly bounded in K using concentration results for the spectral measure
of random matrices [52] (see also [82, eq.(86)-(87)], where details are provided). Consequently,
we end up with the following approximation:

K2
E (βK − EβK)3 =

(tp0)
3

K
E
(
|Z11|2 − 1

)3
ETrDHDHDH+O

(
K−1

)

which is deterministic but still depends on the distribution of the entries via the expecta-
tion operator E. The rest of the proof is devoted to provide a deterministic approximation
of ETr (DHDHDH) depending on γ, γ̃, T and T̃.

Note that H = I− t
KHXXH, thus:

[HDHDH]pp = [HDHD]pp − t

[
HDHDH

XXH

K

]

pp

,

= [HDHD]pp −
t

K

K∑

j=1

[HDHDHxj ]pXpj . (C.9)

Let us deal with the second term of (C.9). We have:

E
1

K
[HDHDHxj ]pXpj =

1

K

N∑

k=1

E

(
[HDHDH]pk XkjXpj

)
.

Using the integration by part formula (C.3), we get:

E [HDHDHxj ]pXpj =
N∑

k=1

dkd̃jδ(p− k)E [HDHDH]pk +
N∑

k=1

dkd̃jE


Xpj

N∑

ℓ,m=1

∂ [HpℓdℓdmHℓmHmk]

∂Xkj


 ,

= dpd̃jE [HDHDH]pp −
t

K

N∑

k,ℓ,m=1

dkd̃jdmdℓE
[
Xpj [Hxj ]pHkℓHℓmHmk

]

− t

K

N∑

k,ℓ,m=1

dkd̃jdmdℓE
[
XpjHpℓ [Hxj ]ℓHkmHmk

]

− t

K

N∑

k,ℓ,m=1

dkd̃jdmdℓE
[
HpℓHℓm [Hxj ]mHkk

]
.

= dpd̃jE [HDHDH]pp −
t

K
d̃jE

[
[Hxj ]pXpjTr (DHDHDH)

]

− t

K
d̃jE

[
[HDHxj ]pXpjTr (DHDH)

]
− t

K
d̃jE

[
[HDHDHxj ]pXpjTr (DH)

]
.

Substituting in the last term 1
KTrDH =

o
β +α where

o
β= β − α, we get:

E [HDHDHxj ]pXpj = dpd̃jE [HDHDH]pp −
t

K
d̃jE

[
[Hxj ]pXpjTr (DHDHDH)

]

− t

K
d̃jE

[
[HDHxj ]pXpjTr (DHDH)

]
− td̃jE

[
[HDHDHxj ]pXpj

o
β

]

− td̃jE
[
[HDHDHxj ]pXpj

]
α.
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Therefore, we have:
(
1 + tαd̃j

)
E

[
[HDHDHxj ]p Xpj

]
= dpd̃jE [HDHDH]pp −

t

K
E

[
[Hxj ]p Xpj d̃jTr [DHDHDH]

]

− t

K
d̃jE

[
[HDHxj ]p XpjTr [DHDH]

]
− td̃jE

[
[HDHDHxj ]p Xpj

o

β

]
.

Multiplying the right hand and the left hand sides by r̃j =
1

1+tαd̃j
, we get:

E [HDHDHxj ]pXpj = r̃jdpd̃jE [HDHDH]pp −
t

K
r̃jE

[
[Hxj ]pXpj d̃jTr [DHDHDH]

]

− t

K
d̃j r̃jE

[
[HDHxj ]pXpjTr [DHDH]

]
− td̃j r̃jE

[
[HDHDHxj ]pXpj

o
β

]
. (C.10)

Plugging (C.10) into (C.9), we obtain:

E [HDHDH]pp = E [HDHD]pp −
K∑

j=1

t

K
r̃jdpd̃jE [HDHDH]pp +

t2

K2

K∑

j=1

r̃jE [Hxj ]p Xpj d̃jTr [DHDHDH]

+
t2

K2

K∑

j=1

d̃j r̃jE [HDHxj ]p Xp,jTr [DHDH] +
t

K

K∑

j=1

d̃j r̃jE [HDHDHxj ]p Xp,j

o

β,

= E [HDHD]pp − tα̃dpE [HDHDH]pp +
t2

K2
ETr(DHDHDH)

[
HXR̃D̃XH

]
pp

+
t2

K2
ETr [DHDH]

[
HDHXD̃R̃XH

]
pp

+
t2

K
E

o

β
[
HDHDHXD̃R̃XH

]
pp

.

Hence,

(1 + tα̃dp)E [HDHDH]pp = E [HDHD]pp +
t2

K2
ETr [DHDHDH]

[
HXR̃D̃XH

]
pp

+
t2

K2
ETr [DHDH]

[
HDHXD̃R̃XH

]
pp

+
t2

K
E

o
β
[
HDHDHXD̃R̃XH

]
pp

.

Multiplying the left and right hand sides by rp =
1

1+tα̃dp
, we get:

E [HDHDH]pp = rpE [HDHD]pp +
t2

K2
rpETr [DHDHDH]

[
HXR̃D̃XH

]
pp

+
t2

K2
rpETr [DHDH]

[
HDHXD̃R̃XH

]
pp

+
t2

K
rpE

o
β
[
HDHDHXD̃R̃XH

]
pp
.

(C.11)

Multiplying by dp, summing over p and dividing by K, we obtain:

E
1

K
Tr [DHDHDH] = E

1

K

K∑

p=1

dp [HDHDH]pp ,

=
1

K

K∑

p=1

rpdpE [HDHD]pp +
t2

K3
ETr (DHDHDH) Tr

(
DRHXR̃D̃XH

)

+
t2

K3
ETr (DHDH) Tr

(
DRHDHXD̃R̃XH

)

+
t2

K2
E

o
β Tr

(
DRHDHDHXD̃R̃XH

)
,

△
= χ1 + χ2 + χ3 + χ4, (C.12)
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where:

χ1 =
1

K
ETr (DRHDHD) ,

χ2 =
t2

K
ETr (DHDHDH)

1

K
Tr

(
DRH

XD̃R̃XH

K

)
,

χ3 =
t2

K
ETr (DHDH)

1

K
Tr

(
DRHDH

XD̃R̃XH

K

)
,

χ4 =
t2

K
E

o
β Tr

(
DRHDHDH

XD̃R̃XH

K

)
.

According to Proposition C.2, var 1
KTr

(
DRHDHDHXD̃R̃XH

K

)
is of order O(K−2). Simi-

larly, var(β) = O(K−2). Hence, using Cauchy-Schwartz inequality, we get the estimation
χ4 = O(K−2). It remains to work out the expressions involved in χ1, χ2 and χ3 by remov-
ing the terms with expectation and replacing them with deterministic equivalents.

Since var 1
KTr

(
DRHXD̃R̃XH

K

)
= O(K−2) by Proposition C.2 and var( 1

KTrDHDHDH) =

O(K−2) by Proposition C.3, we have:

χ2 =
t2

K
ETr (DHDHDH)E

(
1

K
Tr

[
DRH

XD̃R̃XH

K

])
+O(K−2),

(a)
=

t2

K
ETr (DHDHDH)

1

K
Tr
(
D̃T̃D̃R̃

) 1

K
Tr (DRDT) +O(K−2),

(b)
=

t2

K
ETr (DHDHDH) γγ̃ +O(K−2) . (C.13)

where (a) follows from Proposition C.2-2) and (b), from Proposition C.1. Similar arguments
yield:

χ3 =
t2

K
ETr (DHDH)E

(
1

K
Tr

[
DRHDH

XD̃R̃XH

K

])
+O(K−2),

=
t2γ

(1− t2γγ̃)2

[
1

K
Tr
(
D̃T̃D̃R̃

) 1

K
Tr
(
DRD2T2

)
− tγ

K
Tr
(
D̃2T̃2D̃R̃

) 1

K
Tr(DRDT)

]
+O(K−2) ,

=
t2γ

(1− t2γγ̃)2

[
γ̃

K
Tr(D3T3)− tγ2

K
Tr(D̃3T̃3)

]
+O(K−2) (C.14)

and

χ1 =
1

1− t2γγ̃

1

K
Tr
(
D2RDT2

)
+O(K−2)

=
1

1− t2γγ̃

1

K
Tr(D3T3) +O(K−2). (C.15)

Plugging (C.14), (C.13) and (C.15) into (C.12), we obtain:

1

K
ETr(DHDHDH) =

1

K(1− t2γγ̃)3
TrD3T3 − t3γ3

K(1− t2γγ̃)3
TrT̃3D̃3 +O(K−2).
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Hence,

K2
E

(
βK
p0
− E

βK
p0

)3

=
ρ3

K (ρ2 − γγ̃)3

[
TrD3T3 − γ3

ρ3
TrD̃3T̃3

]
E

(
|Z11|2 − 1

)3
+O

(
1

K

)
,

=
2ρ3

K (ρ2 − γγ̃)3

[
TrD3T3 − γ3

ρ3
TrD̃3T̃3

]
+O

(
1

K

)
.

The fact that νK = 2ρ3

K(ρ2−γγ̃)3

[
TrD3T3 − γ3

ρ3
TrD̃3T̃3

]
is of order O(1) is straightforward and its

proof is omitted. Proof of Theorem 5.1 is completed.

C.4 Proof of Proposition C.3

The proof mainly relies on Poincaré-Nash inequality. Using the Poincaré-Nash inequality, we
have:

var(ϕ(X)) ≤
N∑

i=1

K∑

j=1

did̃jE

∣∣∣∣
∂ϕ

∂Xij

∣∣∣∣
2

+
N∑

i=1

K∑

j=1

did̃jE

∣∣∣∣
∂ϕ

∂Xij

∣∣∣∣
2

.

We only deal with the first term of the last inequality (the second term can be handled similarly).
We have ϕ(X) = 1

K2

∑N
p,r,s,t=1

∑K
u=1 cppHprArrHrsAssHstXtuBuuX

∗
pu. After straightforward

calculations using the differentiation formula (C.1), we get that:

∂ϕ

∂Xij
= φ

(1)
ij + φ

(2)
ij + φ

(3)
ij + φ

(4)
ij ,

where:

φ
(1)
ij = − t

K3
[XHHAHAHXBXHCH]ji , φ

(2)
ij = − t

K3
[XHHAHXBXHCHAH]ji ,

φ
(3)
ij = − t

K3
[XHHXBXHCHAHAH]ji , φ

(4)
ij =

1

K2
[BXHCHAHAH]ji .

Hence,
∣∣∣ ∂ϕ
∂Xij

∣∣∣
2
≤ 4

(∣∣∣φ(1)
ij

∣∣∣
2
+
∣∣∣φ(2)

ij

∣∣∣
2
+
∣∣∣φ(3)

ij

∣∣∣
2
+
∣∣∣φ(4)

ij

∣∣∣
2
)

and

N∑

i=1

K∑

j=1

did̃jE

[∣∣∣∣
∂ϕ

∂Xij

∣∣∣∣
2
]
≤ 4t2

K6
ETr

(
DHCXBXHHAHAHXD̃XHHAHAHXBXHCH

)

+
4t2

K6
ETr

(
DHAHCXBXHHAHXD̃XHHAHXBXHCHAH

)

+
4t2

K6
ETr

(
DHAHAHCXBXHHXD̃XHHXBXHCHAHAH

)

+
4

K4
ETr

(
DHAHAHCXBD̃BXHCHAHAH

)
.
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We only prove that the first term of the right hand side is of order K−2; the other terms being
handled similarly. Using Cauchy-Schwartz inequality, we get:

4

N∑

i=1

K∑

j=1

did̃jE
∣∣φ1

ij

∣∣2 ≤ 4t2dmax‖H‖2‖C‖2
K6

ETr
(
(HA)2HXD̃XHH (AH)2 (XBXH)2

)
,

≤ 4t2

K6
dmax‖H‖2‖C‖2

(
ETr (HA)2HXD̃XHH (AH)2 (HA)2HXD̃XHH (AH)2

) 1
2

×
(
ETr (XBXH)4

) 1
2

≤ 4t2

K2
dmax‖H‖8‖C‖2‖A‖4

√√√√
E
1

K

(
XD̃XH

K

)2
√

E
1

K

(
XBXH

K

)4

,

where the first inequality follows by using the fact that |TrAB| ≤ ‖B‖Tr (A), A being hermi-
tian non-negative matrix and the second follows by applyig twice Cauchy-Schwartz inequalities:
Tr (AB) ≤

√
Tr (AAH)

√
Tr (BBH) and EXY ≤

√
EX2

√
EY 2. We end up the proof of the first

statement by using the fact that 1
KE

[
1
KTr

(
1
KXBKXH

)n]
is uniformly bounded in K whenever

BK is a sequence of diagonal matrices with uniformly bounded spectral norm and n is a given
integer.

The second statement follows from the resolvent identity:

1

K
TrAHAHAH =

1

K
TrAHAHA− t

K
TrAHAHAHXXH.

According to the first part of the proposition,

var

(
1

K
TrAHAHAHXXH

)
= O(K−2) .

Now, TrAHAHA = TrA2HAH and var 1
KTrA2HAH = O(K−2) by Proposition C.2-1).

Hence, applying inequality var(X+Y ) ≤ var(X)+var(Y )+2
√
var(X)var(Y ) yields the desired

result. Proof of Proposition C.3 is completed.
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Introduction

Blind equalization techniques can be classified into two categories. One is the indirect blind
approach for which a priori estimation of the channel is required. The other approach namely,
the direct blind method, estimates the optimum linear equalizer by using the second order
statistics of the data without involving any estimation of the channel filter.

Unlike training based techniques, blind methods do not rely on any pilot symbols, thereby
allowing higher spectral efficiency. However, the practical implementation of blind methods still
faces several challenges that are yet to be fulfilled. As a matter of fact, most of the conventional
blind methods involves high computational complexity and are too sensitive to channel order
over-estimation. Finding out solutions that are robust to the estimation errors of the channel
order while keeping a low-complexity is one of the most active research topics in the area of
blind channel equalization. Among the most recent findings in this direction, two works have
retained our attention.

• The first work proposes a direct blind method based on the truncation of the covariance
matrix [60]. This method exhibits a high robustness to channel order over-estimation, and
can be implemented by using low complexity adaptive algorithms. Nevertheless, being
based on zero delay equalization, this method is too sensitive to the variance of the first
channel coefficient.

• The second work deals with the use of the ℓp quasi-norms for making conventional blind
methods more robust to channel order over-estimation [9]. This was only shown by using
simulations, but have not been so far theoretically investigated.

In between the blind and the training based techniques, we have the class of semi-blind methods
which jointly exploit the blind and the training based criteria or any side information about the
system. Since more information is used, this class of method, exhibits better channel estimation
quality. These methods can be optimal, in the sense that they minimize a maximum likelihood
criteria, or also suboptimal and thus involves lower computational complexity. In this part, we
consider suboptimal semi-blind regularized techniques, in which the blind criterion is linearly
combined with the training based one by using a regularizing coefficient [15]. The setting of
this coefficient is highly determinant on the obtained channel estimation quality. In light of
this consideration, the work in [15] has proposed to set the regularizing coefficient so as to
minimize the asymptotic mean square error. It was conjectured that no local minima exists,
and thus the optimal regularizing coefficient is unique. Moreover, it is estimated by using
iterative optimization algorithms since it does not have a closed-form expression, in general.
Our contributions in this part concern blind and semi-blind techniques. For blind methods, our
work has been mainly to:

• extend the truncation covariance based blind method to nonzero delay equalization
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• and to provide well founded arguments that justify the relevance of the use of ℓp quasi-
norms in conventional blind methods.

These contributions are covered by chapter 7 and 8. As for semi-blind techniques, we prove in
chapter 9 the quasi-convexity of the asymptotic MSE, thereby establishing the existence of a
unique minimum. In chap 10, we propose to use a regularizing matrix instead of a regularizing
constant. Interestingly, in this case, we show that a closed-form expression of the optimal
regularizing matrix exists, thereby avoiding the need of iterative optimization algorithms.

Notations: Along this part, except when mentioning, N , L and M denote respectively the
number of receiving antenna, the channel order and the window size.



Chapter 6

Overview of Blind and semi-blind
channel estimation techniques

This chapter presents an overview on both indirect blind and semi-blind channel estimation
techniques. It is organized as follows: after presenting the system model, we provide an overview
of linear prediction and subspace based methods. Then, we make a brief literature review on
optimal and suboptimal semi-blind techniques. Finally, we end up our chapter by providing
some numerical results about subspace and linear prediction techniques.

6.1 Blind equalization techniques

In this chapter, we only review indirect blind techniques. We leave the details about direct blind
methods to the next chapter, where we enhance the performance of a recently proposed method
by extending it to the case of nonzero delay equalization. Before presenting the indirect blind
methods, we shall introduce the system model.

We consider a N ×K MIMO system, for which the received signal vector is given by:

y(k) = [H(z)] s(k) + b(k), k ∈ Z (6.1)

=
L∑

l=0

H(l)s(k − l) + b(k) (6.2)

where H(k) are the N ×K unknown system parameters, while s(k) and b(k) represent respec-
tively the unknown K input process and the additive Gaussian noise.

Let yM (k) = [yT(k),yT(k − 1), · · · ,yT(k −M + 1)]T, where M is the size of the sliding
window.

Reformulating (6.2) in a matrix form, we will get:

yM (k) = IM (h)sM (k) + bM (k)

where IM (h) is a NM ×K(M + L) block-Toeplitz matrix given by:

IM (H) =




H(0) H(1) · · · H(L) 0 · · · · · · 0
0 H(0) H(1) · · · H(L) 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 H(0) H(1) · · · H(L)



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and sM (k) = [sT(k), · · · , sT(k −M + 1− L)]T, bM (k) = [bT(k), · · · ,bT(k −M + 1)]T and h =
vec
(
[HT(0), · · · ,HT(L)]T

)
. Let YM be the data matrix given by all vector yM (k), i.e.,

YM = [yM (M), · · · ,yM (n)] = IM (h)SM +BM

where s = [sT(1− L), · · · , sT(n)] and SM is the K(M +L)× (n−M +1) block Toeplitz matrix
given by:

SM =




s(M) · · · s(k)
s(M − 1) · · · s(k − 1)

...
...

...
s(1− L) · · · s(k −M + 1− L)




Assume that both the channel input signal and the channel noise are white with zero mean with
variances equal to 1 and σ2

b . The channel output covariance matrix is therefore given by:

RM = E [yM (k)yH
M (k)] (6.3)

= IM (h)IH
M (h) + σ2

b IMN (6.4)

In practice, the covariance matrix is estimated as:

R̂M =
1

n−M + 1

n∑

k=M

yM (k)yH
M (k) (6.5)

=
1

n−M + 1
YMYH

M (6.6)

6.2 Indirect blind equalization techniques

6.2.1 Subspace based methods

The first use of blind methods for digital communications can be traced back to the work of Y.
Sato where a simple linear equalizer for Pulse Amplitude Modulation symbols is described [91].
Nevertheless, it was not until 1980 that the principle of blind deconvolution techniques were first
established in [7].

In particular, it was revealed in [7] that second order statistics are not sufficient to identify
non-minimum phase signals. Since the channel of a SISO system is likely to be nonminimum
phase, the identification problem was first addressed using higher order statistics of the channel
output [42, 43]. This translates into slow-convergence for online methods or unreasonable data
length required for off-line methods.

For this reason, the proposal of Tong et al [101], showing how to identify the channel by the
sole use of second-order statistics was considered as a major contribution. Their method relies
on oversampling the received signal thus leading to the so-called fractionally-spaced equalization.

Soon after, came the work of Moulines [75] et al , proving that under some mild technical
assumptions, a SIMO channel transfer function can be retrieved by using a singular value de-
composition (SVD) of the covariance matrix. It was shown later that this problem corresponds
to the estimation of a minimal polynomial basis of a rational subspace, a problem often encoun-
tered in multivariate linear system theory [62]. By borrowing the tools of multivariate system
theory, the subspace method was finally extended to MIMO systems in [74].

Let us now go into the details of this method. As previously mentioned, the covariance matrix
can be decomposed into two orthogonal subspaces, namely the signal subspace corresponding to
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nonzero singular values of I(h) and the noise subspace corresponding to the null space of I(h).
Actually, by assuming that NM ≥ K(M + L) and that the channels have no zeros in common,
we have Rank(I(h) = K(M + L). Let λ0 ≥ λ1 ≥ · · · ≥ λMN−1 denote the eigenvalues of RM .
We have:

λi > σ2 for i = 0, · · · ,K(M + L)− 1

λi = σ2 for i = K(M + L), · · · ,MN − 1

The covariance matrix RM can be expressed as:

RM = Usdiag
(
λ0, · · · , λK(M+L)−1

)
UH

s + σ2UbU
H
b

where the columns of the matrix Us span the signal subspace, while the columns of Ub span its
orthogonal complement referred to as noise subspace. The subspace based technique consists in
determining the factorization YM = IM (h)SM that minimizes the distance between the vector
space Range(YM ) and Range(I(h)) and under the constraint that IM (h) is block-Toeplitz. In
other words, the subspace channel estimate is given by:

ĥ = argmin
h

min
A
‖IM (h)−UsA‖. (6.7)

Minimizing first over A, we get that the minimum is obtained when:

A = Û#
s IM (h)

so that (6.7) becomes:

ĥ = argmin
h
‖IM (h)−ΠsubIM (h)‖2

= min
h
‖ΠsubIM (h)‖2

where Πsub = UbU
H
b is the orthogonal projection matrix onto the noise subspace. Let us split

the projection matrix Πsub into M matrices such that Πsub = [Π0,Π1, · · · ,ΠM−1]. Each matrix
Πi is NM ×N . We have, then:

‖ΠsubIM (h)‖2 = ‖D(Πsub)



H(0)
...

H(L)


 ‖2,

where

D(Πsub) =




Π0 0
. . .

... Π0

ΠM−1
...

. . .

0 ΠM−1




(6.8)

The subspace channel estimate can be then derived by solving;

ĥ = min
‖h‖=1

hHQh. (6.9)
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where
Q =

(
IK ⊗D(Πsub)

H
)
(IK ⊗D(Πsub)) . (6.10)

Note that the subspace method allows to identify the channel H(z) up to an invertible matrix
ambiguity matrix R. However, in many practical cases, the ambiguity matrix could be fur-
ther simplified by referring to other assumptions such as having a channel matrix with known
structure.

6.2.2 Linear Prediction based methods

The concept of linear prediction for SIMO systems was first introducted by Slock et al in [95],
where a linear prediction approach was provided, when the channel order is known and the
number of receiving antenna is equal to 2. This approach was afterwards generalized in [73],
to encompass arbitrary number of receiving antennas and unknown channel order. The basic
idea behind the generalized method arises from the observation that the system output can by
fully described by an auto-regressive (AR) process, under some mild assumptions regarding the
channel conditions.

In contrast to blind subspace and cross relation based methods which tend to exhibit high
sensitivity if the channel order is incorrectly estimated, the linear prediction technique is found
to be robust to channel order over-estimation [73, 72]. We provide hereafter insights about the
linear prediction algorithm. For simplicity, we will consider the noiseless case, (when b(k) = 0).

The principle of the linear prediction algorithm is tighly related to the generalized Bezout
identity, [62]. This identity says that, if the channel is such that H(z) is full rank, i.e.,

Rank(H(z)) = K ∀z 6= 0

then there exists a K ×M filter G(z) such that

G(z)H(z) = IK .

This implies that:
[G(z)]y(k) = s(k)

In [73], it has been shown that y(k) is a finite AR process with order less than L. Moreover, its
innovation noise is given by: i(k) = H(0)s(k). Therefore, there exists a linear prediction filter
P = [P1, · · · ,PM ] such that:

y(k) = −
M∑

i=1

Piy(k − i) +H(0)s(k)

Since the innovation noise is orthogonal to the space spanned by H = [y(k − 1), · · · ,y(k −M)],
the filter coefficient Pi can be determined as the ones that verify :

E ([P(z)]y(k) [yH(k − 1), · · · ,yH(k −M)]) = 0

where P(z) = IN +
∑M

i=1Piz
−i i.e,

[P1, · · · ,PM ] = − [R(1), · · · ,R(M)]R#
M−1 (6.11)

whereR(i) = E [y(k)yH(k − i)] andRM−1 = [yH(k − 1), · · · ,yH(k −M)]H [yH(k − 1), · · · ,yH(k −M)].



6.2. Indirect blind equalization techniques 114

Also, by virtue of the orthogonality of the innovation noise and the space H, the covariance
of the innovation noise is the same as its covariance with the received signal y(k) :

D = E [i(k)iH(k)] = E [i(k)yH(k)] = H(0)HH(0) (6.12)

Hence, the zero delay martix H(0) can be determined up to a nonsingular matrix ambiguity by
using the covariance matrix of the innovation noise. The latter quanitity may be estimated by
expanding the expression of the innovation noise, thus leading to:

D = E [i(k)yH(k)] = R(0) +
M∑

i=1

PiR
H(i) (6.13)

To sum up, the linear prediction algorithm consists in the following steps:

• First the linear prediction filter is estimated using (6.11).

• Matrix D is then derived using (6.13), H(0) can be determined up to an ambiguity matrix.

• Finally, the channel filter H(z) is obtained by using the following equality:

P(z)H(z) = H(0) (6.14)

As a matter of fact, (6.14) is equivalent to:

δ(P)



H(0)
...

H(L)


 =




H(0)
0
...
0




where δ(P) denotes the N(M + L+ 1)×N(L+ 1) block-Toeplitz matrix given by:

δ(P) =




IN 0

P1
. . .

...
. . .

. . .

PM
...

. . . IN
. . .

... P1

. . .
...

0 PM




.

Denote by Πlin the orthogonal projector on the null column space spanned by D. Therefore, we
have:

Πlin ⊗ δ(P)



H(0)
...

H(L)


 = 0

thus giving:
IK ⊗ (Πlin ⊗ δ(P))h = 0 (6.15)

Once the channel is estimated, the recovering of the transmitted sequence can be performed
by the viterbi equalizer in case optimal symbol detection is considered, or alternatively by means
of suboptimal equalization techniques like MMSE or zero forcing.
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MMSE equalizer The MMSE equalizer with delay τ is the one that performs the projection
of s(k − τ) on the space spanned by the received signal vectors. For SIMO systems, it can be
expressed as:

vτ = argmin
v

E (‖s(k − τ)− vHyM (k)‖) = R−1
M gτ (6.16)

where gτ is the vector given by :

gτ = E(yM (k)s∗(k − τ))I(h)(:, τ + 1)

Zero forcing equalizer When the window size is large enough, matrix I(h) is invertible.
The zero forcing equalizer with delay τ can be thus given by the τ + 1 column of the pseudo
inverse matrix of I(h). It has actually the following expression:

vτ = Usdiag
(
(λ0 − σ2)−1, · · · , (λM+L−1 − σ2)−1

)
UH

sI(h)(:, τ + 1) (6.17)

In case the first channel coefficient is too low, the equalization process tends to estimate the τ+1
delay signal sequence instead of the τ delay signal. If the delay is set at τ , the equalizer will fail
to yield a good estimate of the channel. An appropriate solution would be to consider that the
estimation is performed up to a certain unknown delay. In practice this issue can be dealt with
by a priori synchronization process. It might be relevant to always consider the effective delay
that minimizes the errors between the equalized signal and the delay source signal sequences.

6.3 Semi-blind estimation techniques

In practice, all the digital communication systems based on coherent detection use known sym-
bols for either synchronization or channel estimation purposes. Future generation of commu-
nication systems do not seem to do without the transmission of these known symbols, either.
Using only blind methods for channel estimation seem to be far in advance of the current state-
of-the-art in the areas of communication technologies. Another interesting alternative consists in
using all the information that one can get from the received frame. Since both data and training
symbols are taken into account, this alternative is referred to as semi-blind channel estimation.
It can yield optimal channel estimates if we use all the information that we can get about the
channel. Such information is available from the received symbols corresponding to the training
and data periods.

We assume hereafter that each frame is composed of a training period, corresponding to
the transmission of m training symbols, and a data period, in which n + M data symbols are
transmitted. We add in general L samples so as to ensure that observations depend either on
data or training symbols.

The received vector corresponding to training and data samples, is then given by:

yn+m+L = In+m+L(h)sn+m+L + bn+m+L

where yn+m+L = [yT(n+m+ L), · · · ,yT(1)]T.

6.3.1 Optimal methods

In the literature, four methods that take different initial assumptions have been considered as
optimal. They are:
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1. Deterministic Maximum Likelihood (DML) [33] : In DML both the channel and the un-
known symbols are considered as deterministic unknowns. Assuming that the noise is
Gaussian, the DML criterion for SIMO systems can be written as:

min
h,sI
‖yn+m+L − In+m+L(h)s‖

where sI are the unknown symbols in vector s.

2. Gaussian Maximum Likelihood (GML) [32] : In GML, the input uknown symbols are
assumed to be Gaussian distributed, whereas the channel and the noise variance are the
parameters to be estimated. The GML criterion is determined by maximizing the proba-
bility density function of the observations.

3. Maximum Likelihood with finite alphabet constraints on the input symbols [88] FA-ML:
The FA-ML considers that the unknown input symbols are deterministic and belong to a
finite alphabet. The FA-ML criterion is then similar to that of DML and is given by:

min
h,sI∈A

‖yn+m+L − In+m+L(h)s‖

where the elements of sI are now constrained to belong to the finite alphabet A.

4. Stochastic Maximum Likelihood (SML) [25, 8] : SML considers that the unknown input
symbols are i.i.d random variables with zero mean and with values belonging to a discrete
alphabet. The parameters to be estimated are the channel and the noise variance. The
SML criterion is obtained by maximizing the conditional probability of the observations
given the unknown input symbols. It is given by:

min
h,σ2

b

∑

sI∈A
exp

[
− 1

σ2
b

‖yn+m+L − In+m+L(h)s‖2
]

where σ2
b is the variance to be estimated. The direct optimization of the SML is highly

expensive in terms of computing time. The Expectation-Maximization (EM) iterative
algorithm was proposed to solve the SML criterion by using the Hidden Markov Model
framework. The E-M algorithm was shown to converge to the SML solution provided a
good initialization. In the semi-blind case, the initialization can be taken as the one given
by the least square estimate.

6.3.2 Suboptimal methods

Among all these methods, the SML technique is the one that fits the best to the theoretical
SIMO model. However from a practical point of view, the implementation of the E-M algorithm
induces a high computational complexity that grows exponentially with the channel length and
the receiving antenna-array size.

A suboptimal alternative consists in minimizing a weighted sum of the training and the blind
cost functions. It was proposed in [48] and was referred to as regularized semi-blind channel
estimation method. This technique exhibits low computational complexity, but its performance
is strongly influenced by the tunining of the regularizing constant. Based on an asymptotic
analysis, the work in [15] proposes to set the regularizing constant in such a way to minimize
the asymptotic channel estimation error, while the asymptotic regime refers to m,n growing to
infinity at the same rate. More insights about this method will be provided in chapter 10.
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6.4 Numerical results

The linear prediction and subspace based method have different strengths and weaknesses re-
garding several practical issues. For instance, the linear prediction technique is sensitive to the
power of the first coefficient but is robust to channel order over-estimation, while its subspace
counterpart exhibit high errors when the channel is over-estimated but outperforms the linear
prediction technique in case the channel order is known. Hereafter, we investigate on these prac-
tical issues by using simulations. We consider a SIMO model with N = 4, L = 3, M = 11 and
n = 600. We measure the experienced MSE in the symbol estimation, when using the MMSE
equalizer described by (6.16). Moreover, in all experiments, we use BPSK constellation and we
set the SNR to 15 dB.

6.4.1 Sensitivity to the power of the first channel coefficient

Fig. 6.1 shows the experienced MSE in dB for linear prediction and subspace based methods
with respect to the variance of the first channel coefficient. For the subspace based method, the
three delays τ = 0, τ = 1 and τ = 2 have been considered. As for the linear prediction method,
only the delay τ = 0 is investigated, since the performance of this method depends to a large
extent on the zero delay equalizer. The other equalizers exhibit almost the same performance.
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Figure 6.1: Sensitivity to the variance of h(0)

We note that both methods are sensitive to the variance of the first coefficient but the linear
prediction is the one that exhibits the largest errors.

6.4.2 Channel order over-estimation

Fig. 6.2 displays the MSE for the linear prediction and subspace based method with respect to
the overestimated channel order. We note that the linear prediction method is robust to channel
order over-estimation, whereas the subspace based method, exhibits a high MSE even when the
channel order is overestimated by 1 or 2 taps.
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Figure 6.2: Sensitivity to the channel order over-estimation

6.5 Conclusion

In this chapter, we have reviewed a selection of well known results about subspace and linear
prediction methods. We have particularly pointed out practical considerations regarding the
high sensitivity of subspace based methods to channel order over-estimation and that of linear
prediction techniques to the variance of the first channel coefficient. We have also reviewed
semi-blind techniques, which can be regarded as intermediate solutions between training and
blind based techniques.



Chapter 7

Blind Nonzero Delay MMSE
Equalizer for SIMO FIR Systems

Despite being proposed several decades ago, blind methods failed so far to be commercially
deployed for civil communication products. This is attributed to several practical difficulties,
limiting their use in practice to specific applications where training data is unavailable. Actually,
several blind methods and in particular indirect blind approaches are based on singular value
decompositions of the output correlation matrix, thus making their real-time implementation
difficult, [114]. They also require a-priori reliable channel order estimation, otherwise symbol
detection is not possible.

On the other hand, direct blind methods, can be implemented by using adaptive algorithms
that exhibit low-cost computational complexity, thereby making them more appropriate for real-
time implementations. However, the major challenge that still faces the research community is
to make them robust to channel order over-modeling while ensuring a reasonable complexity.

Many previous works investigated this issue. The techniques proposed so far either require
the estimation of several equalizers like the mutually referenced filter based method [29], or
involve the estimation of a unique equalizer such as linear prediction based techniques [24, 114].
The latter methods are robust to channel order overmodeling but their adaptive implementations
are either expensive (e.g RLS like) or slowly convergent (e.g. LMS like).

Later, new methods based on the truncation of the covariance matrix have been proposed [60,
61]. These techniques yield zero delay equalizers through performing an appropriate truncation
to the covariance matrix. Despite their high robustness to channel overmodeling, these methods
do not always yield satisfactory results, since they involve zero delay equalization and thus are
sensitive to the value of the first channel coefficient.

In this chapter, we propose to generalize the methods in [60] to nonzero delay equalization.
We show by using simulations that our method allows significant performance improvement,
while maintaining robustness to channel order over-modeling.

7.1 System model

We consider the discrete time (SIMO) model, with N outputs, given by:

y(k) =
L∑

l=0

h(l)s(k − l) + b(k)

119
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where s(k) denotes the transmitted symbol sequence and h(l) refers to the N ×1 channel vector
corresponding to the l-th tap. b(k) denotes the white noise sequence with variance σ2

b . Stacking
M successive observations of the received signal y(k) into a single vector, we get:

yM (k) = [yT(k), · · · ,yT(k −M + 1)]T

= IM (h)sM (k) + bM (k)

where sM (k) = [s(k), · · · , s(k −M − L+ 1)]T and bM (k) = [bT(k), · · · ,bT(k −M + 1)]T. The
matrix IM (h) is the NM ×M + L block-Toeplitz matrix given by:

IM (h) =



h(0) · · · h(L) 0

. . .
. . .

0 h(0) · · · h(L)


 . (7.1)

In the sequel, we will consider the following additive assumptions:

A1. The transmitted signal s(k) is assumed to be an independent and identically distributed
zero mean unit power process.

A2. The polynomial h(z) =
∑L

k=0 hkz
−k verifies:

h(z) 6= 0 for all z 6= 0,

or equivalently, the sub-channels corresponding to the receiving antennas do not share any zero
in common.

7.2 Problem statement: MMSE equalization

We recall hereafter the equalization technique that has been proposed in [60]. The main features
of this technique are its highest robustness to channel overmodeling and also its low computa-
tional complexity as compared to other proposed techniques.

As we will see below, this method is based on the fact that the τ -delay MMSE equalizer
belongs to a certain vector space that depends solely on the covariance matrix, and whose
dimension is equal to τ + 1. As a consequence, if τ = 0, the zero-delay MMSE equalizer can be
estimated up to a scalar ambiguity.

For the reader’s convenience, we provide in the sequel an overview on the main results derived
in [60]. Let us first recall that the τ -delay linear MMSE equalizer (τ ∈ {0, · · · ,M + L − 1}) is
the optimal linear filter that extracts s(k − τ) in the least square sense.

More explicitly, the linear MMSE equalizer vector vτ is given by:

vτ = argmin
v

E
(
‖s(k − τ)− vHyM (k)‖2

)
,

which leads to:
vτ = R−1

M gτ , (7.2)

where
RM = E (yM (k)yH

M (k)) = IM (h)IH
M (h) + σ2

b IMN

and
gτ = E (yM (k)s∗(t− τ)) = IM (h)(:, τ + 1).
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The covariance matrix RM is estimated in practice as:

R̂M =
1

n

n∑

k=1

yM (k)yH
M (k)

where n denotes the sample size. One can note that the linear MMSE equalizer belongs to the
signal subspace, i.e., Range(IM (h)) and thus can be written as:

vτ = Wṽτ ,

where W denotes the signal subspace basis vectors. Along the same lines as in [60], we can
prove the following result:

Theorem 7.1. Let RM,τ be the matrix given by the last MN − (τ + 1)N rows of RM . Then,
assuming A1, A2, and that M > L+1+τ , the kernel of matrix WHRH

M,τRM,τW has dimension
τ + 1 and contains all the t-delay equalizers vt, t ∈ {0, · · · , τ}.

The proof of this theorem has not been provided before, but it relies on the same technique
used in [60]. For the sake of completeness, we provide hereafter the proof of this theorem:

Proof. Let RM = WΓWH + σ2
bUUH be the eigenvalue decomposition of RM , where W and

U are the eigenvectors that span, respectively, the signal and the noise subspace. Since, the
columns of W and U are orthogonal, we have:

RMW = WΓ.

Hence, Range(RMW) = Range(W) = Range(IM (h)). Therefore, there exists a nonsingular
matrix P such that RMW = IM (h)P.

As a consequence,

RM,τW =
[
0(M−τ−1)N×τ+1 IM−τ−1(h)

]
P.

We end up the proof by noting that if M − τ − 1 > L, IM−τ−1(h) is full column rank [75] and
thus dim(null(RM,τW)) = τ + 1.

Example: Zero Delay Equalizer
Let v0 denote the zero delay equalizer. There exists a vector ṽ0 such that v0 = Wṽ0, with

RMWṽ0 = g0 =




h(0)
0
...
0


 .

Let RM,0 be the matrix given by the last MN −M rows of RM . The following result has been
shown in [60] and can be easily deduced from Theorem 7.1.

Corollary 7.1. Assuming that M > L+ 1, the solution of

RM,0Wṽ = 0,

is unique and corresponds to the desired zero-delay equalizer vector v0 up to a scalar ambiguity.



7.3. NonZero delay equalization 122

In other words, this result states that the zero delay equalizer can be determined as the
intersection line between the range space ofW and the kernel of the matrixRM,0. The algorithm
that has been proposed in [60] can be summarized into the following steps:

Algorithm 3 SIMO blind MMSE equalization algorithm

R̂M ←− 1
n

∑n
k=1 yM (k)yH

M (k)

[W,Γ]←− eigs(R̂M ,M + L)
T←− R̂M (N + 1 : end, :)W
Q←− THT
ṽ0 the least eigenvector of Q
v←−Wṽ0

In the nonzero delay case, this intersection becomes a vector space of dimension τ + 1, that
contains all the t delay equalizers, t ∈ {0, · · · , τ}. The main issue is how to select in this vector
space the direction of the desired τ delay equalizer. In [60], a two-step approach is proposed: first,
the zero delay equalizer is estimated and the transmitted symbols are decoded by performing a
hard decision on the equalized signal. After that, the estimated symbols are reused to reestimate
a nonzero delay equalizer according to (7.2).

However, one may expect that this technique will not provide good performance, since as
soon as the result of the first step is bad, all the process that comes after, will be affected.

7.3 NonZero delay equalization

The performance of the zero delay equalizer is poor when the energy of the first channel coefficient
h(0) is low. In average, the nonzero delay equalizer has better performance since it depends on
more than one channel tap and thus can benefit from the channel path diversity. Motivated by
this well known result [84], we propose in this section to extend the work of [60] to the nonzero
delay case.

Let Fτ denote the vector space given by the intersection between the kernel of RM,τ and the
range of W, and Bτ = {ṽ0, · · · , ṽτ} a basis of Fτ . Then, obviously, we have Fτ−1 ⊂ Fτ . More
particularly, a basis of Fτ could be given as the union of Bτ−1 and another vector ṽτ which
cannot be written as a linear sum of elements of Bτ−1.

The difficulty here is to select the right direction ṽτ , which corresponds to the τ -delay
equalizer. To solve this problem, we will make use of an approximate orthogonality relation
between the equalizer vectors, which is accurate as long as the mean square symbol estimation
error is low. Indeed, since vH

t yM (k) ≃ s(k − t) and vH
t′yM (k) ≃ s(k − t′), and since the input

symbols are i.i.d, we get:

0 = E
(
s(k − t)s∗(k − t′)

)
≃ vH

t RMvt′ . (7.3)

More explicitely, if RM = WΓWH + σ2
bUUH denotes the eigenvalue decomposition of R,

then, since vt belongs to the range space of W, (7.3) is equivalent to:

vH
t WΓWHvt′ ≃ 0.

Let v̆τ = Γ
1
2WHvτ , i.e, vτ = WHΓ

−1
2 v̆τ , then, it is clear that v̆τ is approximatively orthogonal

to v̆τ ′ , for τ ′ 6= τ . By performing the variable change v̆τ = Γ
1
2WHvτ , the desired direction
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can be selected to be the one that is orthogonal to the range space of Fτ−1. To sum up, our
algorithm consists in the following steps:

Algorithm 4 Proposed algorithm: Non zero-delay equalizer for SIMO systems

R̂M ←− 1
n

∑n
k=1 yM (k)yH

M (k) // Estimation of the covariance matrix

[W,Γ]←− eigs
(
R̂M ,M + L

)
// Estimation of the signal subspace

Tτ ←− R̂M,τWΓ− 1
2

E = [e0, · · · , eτ ] ←− eigs (TH
τTτ , τ + 1, 0) // Estimation of the τ + 1 least eigenvectors of

TH
τTτ

Tτ−1 ←− R̂M,τ−1WΓ− 1
2

F = [f0, · · · , fτ−1] ←− eigs
(
TH

τ−1Tτ−1, τ, 0
)
// Estimation of the τ least eigenvectors of

TH
τ−1Tτ−1

v̆τ = eigs(EHFFHE) // Selection of the direction that is contained in the range of E and that
is orthogonal to the range of F

vτ ←−WHΓ− 1
2 v̆τ

Before going further, some remarks should be pointed out:

Remark 7.1. One can note that if τ = 0, our algorithm will be reduced to the following steps:

• Computation of the autocorrelation matrix.

• Estimation of T0 = R0WΓ− 1
2 and v̆0 the least eigenvector of TH

0T0. The zero delay
equalizer is therefore given by:

v0 = WHΓ− 1
2 v̆0.

Remark 7.2. In case of channel overmodeling, the matrix Γ− 1
2 plays an important role in

ensuring the robustness of the proposed method. Indeed, at moderate or high SNR, it discards
the eigenvectors that lie in the noise subspace because they are weighted by 1

σb
.

Remark 7.3. In this work, we did not seek efficiency in terms of computational cost. Indeed,
we can use the relation between Tτ and Tτ−1 to eliminate one of the SVDs and reduce the
algorithm’s complexity. Also, as in [60], we can use efficient subspace tracking techniques in an
adaptive scheme in order to reach linear or close to linear complexity per iteration.

7.4 Simulation results

In all our simulations, we consider a SIMO model with N = 4 receiving antennas and L+1 = 4
channel coefficients chosed randomly according to the Rayleigh distribution. The input signal is
drawn from the BPSK constellation and the temporal window M is set to 11. We measure the
system performance by using the mean square error (MSE) given by:

MSE = 1− E
|̂sHs|2
‖s‖2‖ŝ‖2 .
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Figure 7.1: Sensitivity to the variance of h(0).

7.4.1 Sensitivity to the variance of h(0)

For small values of the first channel coefficient, the equalization process tends to estimate the
τ +1 delay signal sequence. Therefore, as mentioned in chapter 6, we consider that our method
estimates the transmitted sequence up to a certain unknown delay. This assumes that a priori
synchronization process has been used to properly estimate the effective delay corresponding to
the one that errors between the equalized signal and the delay source signal sequences. Moreover,
we expect that even for a non zero delay equalizer, our method should exhibit some sensitivity
towards the variance of the first channel coefficient, because the matrices Tτ and Tτ−1 may
have low singular values thus introducing wrong directions.

Fig. 7.1 displays the MSE of our algorithm, and compares it with that of the algorithm in
[60]. The MSE vs the variance of the channel σ2

h0
is represented for different values of τ .We note

that when the variance of h(0) is too low, the proposed algorithm exhibits a small degradation
in the mean square error performance, as compared to the algorithm in [60]. Besides, for τ = 0
and very low channel coefficient variance σ2

h0
= 0.01, our algorithm is able to switch to the delay

τ = 1, thus explaining its good performance in this case.

7.4.2 Robustness to channel order overmodeling

We investigate in this section the robustness of our algorithm to channel order overmodeling. Fig.
7.2 compares the MSE with respect to the estimated channel order for the proposed equalization
process (when τ = 2) and the zero-delay equalizer that is proposed in [60], when the SNR is set
to 0 dB and 10 dB, respectively. We note that like the zero delay equalizer, our algorithm is
robust to the channel order overestimation, even at low SNR values.

7.4.3 Effect of the delay

In this section, we investigate the effect of the equalizer delay on the MSE performance of our
algorithm. Fig. 7.3 displays the MSE with respect to the equalizer delay at different SNR values.
We can see that gain of almost 6 dB in MSE can be otained by increasing the equalizer delay.
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Figure 7.2: Evaluation of the robustness of the proposed algorithm.

Moreover, as expected, when τ is set higher than L+1 = 4, the performance enhancement is not
significant, in other words, the wide range of gain is approximately achieved when τ ≥ L+ 1.
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Figure 7.3: MSE with respect to the equalizer delay for different SNR values.

7.4.4 Iterative decoding

As we have previously mentioned, the proposed algorithm is somehow sensitive to the variance
of the first channel coefficient (see Fig. 7.1). In order to further enhance the bit error rate
performance, we propose to use iterative decoding that makes use of the estimated a posteriori
probabilities. Fig. 7.4 summarizes the iterative process. Given the τ delay equalizer estimate,
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we compute the variance of the noise σ̂2
n = 1−v̂H

τ R̂Mvτ . We also estimate the transmitted signal
sequence sk−τ , [s(M − τ), · · · , s(k − τ)] by vH

τYM (k), where YM (k) = [yM (M), · · · ,yM (k)].
For BPSK constellation, it can be easily shown that the a posteriori probability on the trans-
mitted bits is given by:

pk = APP(sk = 1) , P(sk = 1|ŝk) =
1

1 + exp(−2ŝk
σ̂2
k

)
.

The vector gτ can be estimated by using hard decision on the equalized signal as in [60].
However, this is not optimal in the sense that the non reliable entries will have the same contri-
bution as the reliable ones. Using the a posteriori probabilities, the vector gτ can be estimated
as:

ĝτ =
1

K

n∑

k=1

yM (k)E [ŝk−τ ]

=
1

K

n∑

k=1

yM (k) (2pk−τ − 1) .

Fig. 7.6 and Fig. 7.5 display the bit error rate performance of our algorithm for τ = 6 with the
soft iterative as well as the hard iterative processing [60]. Fig. 7.6 displays also the bit error rate
performance of the zero delay MMSE equalizer and shows that a large gain is obtained by using
our technique. In the legend ’ideal MMSE’ refers to the genie MMSE equalizer which exactly
knows the correlation matrix RM and the correlation vector gτ . We note that with soft iterative
processing, the performance of our algorithm can become very close to that of the ideal receiver.

Figure 7.4: Iterative decoding for BPSK constellation.
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Figure 7.5: Bit error rate with soft iterative processing.
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Figure 7.6: Bit error rate with hard iterative processing.

7.5 Conclusion

In this chapter, we have generalized a recently proposed zero delay blind equalization to arbitrary
delay equalization. Unlike the original method, our technique is much less sensitive to the
variance of the first channel coefficient and it inherits the same interesting properties regarding
the robustness to channel over-modeling. Moreover, by using an iterative decoding algorithm,
our technique can reach the performance of an ideal equalizer.



Chapter 8

Robustness of Blind subspace based
technique using ℓp quasi-norms

One of the most major shortcomings of blind methods is their sensitivity to channel order over-
modeling. As long as the channel order is correctly estimated, the channel can be uniquely
identified using blind methods, but once an error on the estimation of the channel order occurs,
identifiability is no longer possible for many existing blind methods. This is for instance the case
of conventional subspace-based methods, which are known to exhibit a significant sensitivity to
channel order over-modeling [74]. Actually, in the noiseless case, the channel can be identified as
the vector that spans the 1-dimensional kernel of a matrix denoted byQ that can be estimated by
using solely second-order statistics, (See chapter 6). But when the channel order is overestimated,
the kernel of the matrix Q is no longer a line, but rather a vector space whose dimension depends
on the overestimated order, thereby raising a new issue: how to estimate the right direction
among all the vectors that span the kernel of Q?

To deal with this problem, a large effort has been devoted to either add to conventional
subspace techniques a feature that estimates efficiently the channel order [47], or to propose new
methods that are robust to channel order over-modeling. In this context, a new technique for
blind channel estimation for sparse channels has been recently proposed. This technique takes
into account the sparsity criterion so as to select among all possible vectors, the vector that
exhibits the lowest ℓp, 0 < p ≤ 1 quasi-norm. It was noted that using this technique, cross
relation as well as blind deterministic maximum likelihood based methods become robust to
channel-order over-modeling as far as sparse channels are concerned [1, 9]. However, for non-
sparse channels, no results are available so far, to the best of our knowledge. Yet, we strongly
believe that introducing likewise a sparsity criterion shall enhance the channel identifiability
probability. Actually, in this case, one can note that over-modeling the channel is equivalent to
zero-padding the channel vector, thus making it artificially sparse. Moreover, as far as subspace
methods are concerned, it can be shown that the zero-padded channel vector is the one that
exhibits the most sparsity. In light of this consideration, we claim that selecting the vector
vector that minimizes the ℓp quasi-norm should often yield the desired channel vector response
(up to a scalar ambiguity).

In this chapter, we propose to study the robustness of subspace based methods using ℓp
quasi-norms for non-sparse channels. We derive necessary and sufficient condition for channel
identifiability when considering the ℓ1 norm as well as a sufficient condition when considering the
ℓp quasi-norm 0 < p < 1. Then, we derive lower bounds on the probability that these conditions
are satisfied. Using these lower bounds, we study the effect of the system parameters on the

128
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channel identifiability probability. For instance, we note that in the ℓ1 problem, increasing the
number of antennas improves significantly the channel identifiability probability, in contrast to
increasing the number of channel coefficients, which tends to reduce it.

8.1 System model and problem statement

We consider the same SIMO system model as in chapter 7.

yM (k) = IM (h)sM (k) + bM (k)

As it has been shown in chapter 6, the blind subspace estimator is given by:

ĥ = min
‖f‖2=1

fHQf ,

with
Q = D(Π)HD(Π)

where D(Π) has been defined in (6.8) in chapter 6. In case of channel over-modeling, the kernel
of matrix Q is a vector space with dimension equal to δ = L′ − L (L′ being the overestimated
order), which is spanned by the channel vector as well as all its δ − 1 delayed copies [74]. In
other words, the kernel is spanned by the following (δ+L+1)N × (δ+1) ( N being the number
of receiving antennas) block-Toeplitz matrix H:

H =




h0 · · · 0
...

. . .
...

hL
. . . h0

...
. . .

...
0 · · · hL




One can note that the columns of matrix H represent almost surely the sparsest vectors of the
kernel of matrix Q. In fact, any linear combination of vectors of H will yield almost surely
vectors that are less sparse as they contain less zeros. Hence, in the noiseless case, the channel
vector can be selected as the one that solves the following combinatorial optimization problem.

(P0) min
x,x1=1,Qx=0

‖x‖0 (8.1)

where x1 denotes the first entry of x, ‖.‖0 is the ℓ0 quasi-norm that returns the number of
coefficients where the vector is not equal to zero. However, solving (P0) requires generally an
intractable combinatorial search, thus reducing its interest for real-time applications.

An alternative is to consider the optimization problem:

(Pp) min
x,x1=1,Qx=0

‖x‖p (8.2)

where ‖x‖p denotes the ℓp quasi-norm: ‖x‖p = (
∑

i |xi|p)
1
p . It should be mentioned that this

approach has been extensively studied by the compressed sensing theory [19] and applied to many
fields like image processing [12] and communication systems [18, 44]. For all these applications,
the problem is usually put under the form:

min
x,Φx=y

‖x‖p
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where Φ is a matrix independently distributed from vector x. This is different from our case,
since matrix Q is a function of vector h. Therefore, all the theoretical results that have been
derived in compressed sensing theory should be adapted to our context, and cannot be applied
directly. This will be dealt with in next section.

8.2 Conditions for channel identifiability

Taking into account the structure of our problem, we can deduce that (Pp) is equivalent to:

min
s,s1=1

‖Hs‖pp ⇔ min
s
‖




h1
...
hL
...
0



+ H̃s‖pp

where H̃ is a (δ+L)N×δ block Toeplitz matrix having the same shape as H. Before proceeding,

we shall partition H̃ =

[
A

B

]
, whereA (resp. B) represents the firstNL (resp. the lastN(δ+1))

rows of H̃.

B =




hL hL−1 · · · hL−δ+1

0 hL
...

...
. . .

. . .
...

0 · · · 0 hL




A =




h0 0 · · · 0

h1
. . .

...
. . . h0

...
...

...
hL−1 hL−2 · · · hL−δ



.

These matrices will play a key role in formulating the channel identifiability conditions.

8.2.1 ℓ1 norm

Unlike the ℓp quasi-norm,(p < 1), the ℓ1 norm is convex. So in this case, it is possible to derive a
necessary and sufficient condition for channel identifiability, which can be stated by the following
theorem. For simplicity, we consider here the real case, i.e h ∈ R

N(L+1).

Theorem 8.1. Necessary and sufficient condition
Let v =

[
sign(h1)

T, · · · , sign(hL)
T
]T

and assume that L > δ ≥ 1, then the necessary and
sufficient condition for channel identifiability can be expressed as:

|vTAs|
‖Bs‖1

≤ 1 ∀s ∈ R
δ.
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Proof. The proof will rely on the following mathematical results about the optimization of convex
functions.

Definition 8.1. Let f : Rn → R be a real-valued function. The directional derivative of f at x0

is given by:

f ′(x0, y) = inf
t>0

f(x0 + ty)− f(x0)

t

Theorem 8.2. Let f be a convex function defined on a convex set X and x0 ∈ X be a point
where f is finite. Then x0 is a global minimum point of f if and only if the following conditions
holds:

f ′(x0,x− x0) ≥ 0 ∀x ∈ X

Let f(s) = ‖




h1
...
hL

0
0



+ H̃s‖. Then f(s) can be also given by:

f(s) = ‖h̃+As‖1 + ‖Bs‖1

where h̃ =



h1
...
hL


.

Using definition 8.1, the directional derivative of f at s = 0 is given by:

f ′(0,y) = inf
t>0

‖h̃+ tAy‖1 + t‖By‖1 − ‖h̃‖1
t

= vTAy + ‖By‖1

Using theorem 8.2, we conclude that 0 is a global minimum of f if and only if, for all y ∈ R
δ,

we have:
f ′(0,y) ≥ 0.

It can be easily verified that this condition holds if and only if:

|vTAy|
‖By‖1

≤ 1,

thus concluding the proof of theorem 8.1.

8.2.2 ℓp quasi-norm

Since the ℓp quasi-norm is a non-convex function, the problem might have many local minima.
Nevertheless, we still can find a sufficient condition that ensures that the channel can be identified
as a local minimum of (8.2). This result is stated in the following theorem:
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Theorem 8.3. Sufficient condition

Let v = p



sign(h1)

...
sign(hL)


 •



|h1|p−1

...
|hL|p−1


 where • denotes the Hadamard (element by element)

product. If the following condition is satisfied:

|vTAs|
‖Bs‖1

≤ 1 ∀s ∈ R
δ (8.3)

then the channel can be identified as a local minimum of (8.2).

Proof. To prove that (8.3) implies channel identifiability, it suffices to prove that there exists a
neighbourhood Vǫ for ǫ > 0 such that

‖h̃+Ax‖pp + ‖Bx‖pp ≥ ‖h̃‖pp

for all x ∈ Vǫ. Denote by h̃i the i-th entry of h̃ and by ei the vector with 1 on the i-th component
and 0 elsewhere. Let si = sign(h̃i). Then, it can be easy to see that:

|h̃i + eT
i Ax|p = ||h̃i|+ sie

T
i Ax|p

= |h̃i|p × |1 +
sie

T
i Ax

|h̃i|
|p

As a consequence, the Taylor approximation of |h̃i + eT
i Ax|p when x lies in a neighborhood of

0 can be given by:

|h̃i + eT
i Ax|p = |h̃i|p

(
1 + p

sie
T
i Ax

|h̃i|
+ p(p− 1)

|eT
i Ax|2
|h̃i|2

)
+ o(‖x‖3)

Hence,

|h̃i + eT
i Ax|p − |h̃i|p − psi|h̃i|p−1eT

i Ax

psi|h̃i|p−1eT
i Ax

−−−→
x→0

0

As a consequence, for all ǫ > 0 there exists a neighborhood Vǫ,i of 0 such that;

∣∣∣∣∣
|h̃i + eT

i Ax|p − |h̃i|p − psi|h̃i|p−1eT
i Ax

psi|h̃i|p−1eT
i Ax

∣∣∣∣∣ ≤ ǫ ∀x ∈ Vǫ,i

Therefore,
||h̃i|+ sie

T
i Ax|p ≥ |h̃i|p + p|h̃i|p−1sie

T
i Ax− ǫp|h̃i|p−1|sieT

i Ax|
Let Ṽǫ = ∩i={1,··· ,LN}, then for all x ∈ Ṽǫ, we have:

LN∑

i=1

||h̃i|+ sie
T
i Ax|p ≥

LN∑

i=1

|h̃i|p + p|h̃i|p−1sie
T
i Ax− ǫp|h̃i|p−1|sieT

i Ax| (8.4)

Without loss of generality, we can assume that
∑LN

i=1 p|h̃i|p−1sie
T
i Ax ≤ 0 since, if

∑LN
i=1 p|h̃i|p−1sie

T
i Ax ≥

0 it can be easily shown that for ǫ small enough, we have:

‖h̃+Ax‖p + ‖Bx‖pp ≥ ‖h̃‖pp.
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Let ǫ = ǫ
′ |∑LN

i=1 p|h̃i|p−1sie
T
i Ax|

∑LN
i=1 p|h̃i|p−1|eTi Ax| , where ǫ

′
> 0. Then (8.4) becomes:

LN∑

i=1

||h̃i|+ sie
T
i Ax|p ≥

LN∑

i=1

|h̃i|p + p|h̃i|p−1sie
T
i Ax− ǫ

′ |p
LN∑

i=1

|h̃i|p−1sie
T
i Ax|

Since
∑LN

i=1 p|h̃i|p−1sie
T
i Ax < 0,

LN∑

i=1

p|h̃i|p−1sie
T
i Ax = −|

LN∑

i=1

p|h̃i|p−1sie
T
i Ax|,

thus yielding:

LN∑

i=1

||h̃i|+ sie
T
i Ax|p ≥

LN∑

i=1

|h̃i|p − (1 + ǫ
′
)|

LN∑

i=1

p|h̃i|p−1sie
T
i Ax| (8.5)

On the other hand, as x tends to 0, we have
‖Bx‖pp
‖Bx‖1 tends to infinity. This implies that there

exists a neighborhood of 0, Vǫ
′ such that:

‖Bx‖pp ≥ (1 + ǫ
′
)‖Bx‖1∀x ∈ Vǫ′

Since by (8.3), ‖Bx‖1 satisfies:

‖Bx‖1 ≥ |
LN∑

i=1

p|h̃i|p−1sie
T
i Ax|

we get:

‖Bx‖pp ≥ (1 + ǫ
′
)‖Bx‖1 ≥ (1 + ǫ

′
)|

LN∑

i=1

p|h̃i|p−1sie
T
i Ax| (8.6)

Plugging (8.6) into (8.5), we have:

LN∑

i=1

||h̃i|+ sie
T
i Ax|p + ‖Bx‖pp ≥

LN∑

i=1

|h̃i|p ∀x ∈ Ṽǫ ∩ Vǫ
′

which concludes the proof of theorem 8.3.

8.3 Probabilistic Analysis

In this section we will study the effect of the system parameters on the channel identifiability
probability. We assume that the channel coefficients are drawn from the Gaussian distribution
with mean 0 and variance 1

L+1 . To determine a lower bound on the channel identifiability
probability, we will rely on the techniques derived in [51, 50]. Actually, in the same way as [51],
we recast the probability conditions in an other form as stated by the following theorem:

Theorem 8.4. Let d∗ be the value that minimizes :

min ‖d‖∞
subject to BTd = ATv

Then, the channel can be identified if and only if ‖d‖∞ ≤ 1.



8.3. Probabilistic Analysis 134

The new formulation given by theorem 8.4 is interesting in the sense that it allows geometric
interpretation of the channel identifiability condition. Indeed, it follows from theorem 8.4 that
the channel identifiability holds for a given channel realization if and only if there is a vector d
on the cube Q = [−1, 1]δN such that BTd = ATv, i.e, ATv belongs to the image of the cube
generated by BT. Since rank(B) = δ almost surely, the channel identifiability will hold if the
following conditions are satisfied:

• The image of the cube by BT contains a ball of radius α

• The vector ATv satisfies ‖ATv‖2 ≤ α.

Let P denote the probability that the channel identifiability holds and E1
α and E2

α be the
events given by:

E1
α = {The image of the cube by BTcontains a ball of radius α} ,

E2
α = {‖ATv‖2 ≤ α} .

Then, P can be lower bounded as:

P ≥ P

{⋃

α

E1
α ∩ E2

α

}
≥ max

α
P
(
E1

α ∩ E2
α

)
.

8.3.1 ℓ1 norm

In the following, we propose to determine a lower bound on the probability of the events E1
α and

E2
α, while considering the ℓ1 norm minimization. We will consider first the relatively easy case

δ = 1 and after that the more general case δ ≤ min(N,L − 1). For δ ≥ N , we have not been
able to derive a lower bound on the probability of channel identifiability, but we conjecture that
the effect of the system parameters remains the same.

Before going any further, let us, first, write the event E1
α in an other equivalent way [51]:

E1
α =

{
min
x

‖Bx‖1
‖x‖2

≥ α

}
.

8.3.1.1 Case when δ = 1

When δ = 1, it is easy to see that vTA is a real standard Gaussian random variable with mean
0 and variance LN

L+1 . Hence we have;

P
(
E2

α

)
= P (|vTA| ≤ α) (8.7)

= P
(
|vTA|2 ≤ α2

)
=

1√
π
γ

(
1

2
,
α2(L+ 1)

2LN

)
(8.8)

where γ(a, x) is the lower incomplete gamma function given by:

γ(a, x) =

∫ x

0
exp(−t)ta−1dt.

On the other hand, using standard concentration inequalities for normal variables [67], we show
that, for every ǫ ∈ [0, 1], we have :

P

(
‖hL‖1 ≥ N

√
2

π(L+ 1)
(1− ǫ)

)
≥ 1− exp

(
−Nǫ2

π

)
. (8.9)
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Since for δ = 1, the events E1
α and E2

α are independent, we get after combining (8.9) and (8.8),

and setting α = N
√

2
π(L+1)(1− ǫ), the following theorem:

Theorem 8.5. For δ = 1, the probability P that channel identifiability occurs is greater than:

P ≥ max
ǫ∈[0,1]

(
1− exp

(
−Nǫ2

π

))
1√
π
γ

(
1

2
,
2N

L
(1− ǫ)2

)
(8.10)

Remark 8.1. Under the assumption that the random variables ‖vTA‖2 and ‖hL‖1 = minx
‖Bx‖1
‖x‖2

are concentrated around their expected values with high probability (this assumption is valid
in general for standard random distributions), one can understand intuitively the effect of the
system parameters N and L on the probability for channel identifiability. Actually, given that

E‖hL‖1 = N
√

2
π(L+1) , we deduce that we can find, a ball of radius r1 of order O

(
N√
L

)
that is

contained in the image of the cube Q by BT with a high probability. In the same way, given that

the expected value of |vTA| is of the order O
(√

N
)
, we can find a ball of radius r2 = O

(√
N
)

that contains the vector vTA, with a high probability. Since channel identifiability occurs when
r1 ≥ r2, we deduce that as N increases, and L decreases, channel identifiability should be more
likely to occur.

8.3.1.2 Case when δ > 1 and δ ≤ min(L− 1, N)

When δ > 1, the problem becomes more difficult, since vTA is no longer Gaussian and minx
‖Bx‖1
‖x‖2

has no closed-form expression. Besides E1
α and E2

α are no longer independent, thus making our
computations less tighter. But, as we can see later, even if the lower bound probability is too
loose, one can still draw conclusions about the effect of the system parameters on the channel
identifiability probability.

Let us now deal with the probability of the event E1
α.

P
(
E1

α

)
=

{
min
x

‖Bx‖1
‖x‖2

≥ α

}
.

Since δ ≤ min(L− 1, N), it can be shown that:

min
x

‖Bx‖1
‖x‖2

≥ min
x

‖B̃x‖1
‖x‖2

(8.11)

where B̃ = [hL, · · · ,hL−δ+1]. Consequently,

P
(
E1

α

)
≥ P

{
min
x

‖B̃x‖1
‖x‖2

≥ α

}
. (8.12)

To determine a lower bound on the probability P
(
E1

α

)
, we will use the following result:

Theorem 8.6. [21] Let Φ be a N × δ Gaussian matrix, with iid entries, i.e, φi,j ∼ N (0, σ2) .
Let 1 > κ > 0 and choose η, ǫ > 0 such that κ = η+ǫ

1−ǫ . Then

‖Φx‖1 ≥ Nσ

√
2

π
(1− κ)‖x‖2
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holds uniformly for x ∈ R
δ with probability exceeding

1− (1 + 2/ǫ)δ exp

(
−η2N

2c2

)

where c = (31/40)
1
4 (1.13 +

√
π).

Applying theorem 8.6, we get that for every 1 ≥ κ > 0, and α∗ = N
√

2
π(L+1)(1− κ) we have

:

P
(
E1

α∗
)
≥ 1− (1 + 2/ǫ)δ exp

(
−η2N

2c2

)
(8.13)

where ǫ and η are positive reals satisfying κ = η+ǫ
1−ǫ .

Remark 8.2. Note that in contrast to ǫ, increasing η improves the lower bound probability.
Consequently, the values of η and ǫ can be set so as to maximize the lower bound probability.

According to Markov inequality, P
(
E2

α

)
can be written as:

P
(
E2

α∗
)
= P {‖ATv‖2 ≤ α∗}

≥ 1− E
(
‖ATv‖22

)

(α∗)2

≥ 1− Nδ(2L− δ + 1)

2 (α∗)2 (L+ 1)

≥ 1− πδ (2L− δ + 1)

4N (1− κ)2
. (8.14)

Using (8.9) and (8.14), the lower bound on the channel identifiability can be lower bounded by:

P ≥ max
κ,ǫ,η

κ= η−ǫ
1+ǫ

1− (1 + 2/ǫ)δ exp

(
−η2N

2c2

)
− πδ (2L− δ + 1)

4N (1− κ)2
. (8.15)

Although the provided bound is not tight, it provides information about the impact of the system
parameters on the channel identifiability probability. One can obviously see that increasing the
number of antennas N improves the channel identifiability probability, in contrast to the system
parameters L and δ which tend to decrease it.

8.3.2 ℓp quasi-norm

In this section, we will consider, only the case when δ = 1. Let hi = [hi,1, · · · , hi,N ] and
si,j = sign(hi,j)sign(hi−1,j). Then, the probability that E2

α is satified can be expressed as:

P
(
E2

α

)
= P





∣∣∣∣∣∣
p

L∑

k=1

N∑

j=1

|hi,j |p−1 |hi−1,j | si,j

∣∣∣∣∣∣
≤ α



 .

One can note that as p tends to zero, p

L∑

k=1

N∑

j=1

|hi,j |p−1 |hi−1,j | si,j converges almost surely to

zero, thus implying that P
(
E2

α

)
tends to one as p tends to zero.
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Let us deal with the complementary event of E2
α. According to Markov inequality, P

(
cE2

α

)

can be upper bounded by:

P
(
cE2

α

)
≤

E

∣∣∣∣∣∣
p

L∑

i=1

N∑

j=1

|hi,j |p−1|hi−1,j |si,j

∣∣∣∣∣∣

1
2

α
1
2

.

To remove the expectation on the Rademacher sequence (i.i.d random variables that get +1 or
-1 with equal probabilities) si,j , we will use the Kintchine’s inequality that can be stated as
follows:

Lemma 8.1. [37] Let x be a vector in R
n, and sj a Rademacher sequence. Then, we have:

E

√√√√√

∣∣∣∣∣∣

n∑

j=1

sjxj

∣∣∣∣∣∣
≤ C




n∑

j=1

x2j




1
4

where C =
Γ( 3

4
)

2
3
4 Γ( 3

2
)
.

Applying the Kintchine’s inequality, we get:

E

∣∣∣∣∣∣

L∑

i=1

N∑

j=1

|hi,j |p−1|hi−1,j |si,j

∣∣∣∣∣∣

1
2

≤ C
L∑

i=1

E




N∑

j=1

|hi,j |2(p−1)|hi−1,j |2



1
4

(8.16)

Since p < 1, x 7→ |x|p is a concave function when x > 0, we can therefore prove, using Jensen
inequality, that:

N∑

j=1

|hi,j |2(p−1)|hi−1,j |2 ≤




N∑

j=1

|hi−1,j |2



p


N∑

j=1

∣∣∣∣
hi−1,j

hi,j

∣∣∣∣
2



1−p

(8.17)

(a)

≤ p
N∑

j=1

|hi−1,j |2 + (1− p)
N∑

j=1

|hi−1,j |2
|hi,j |2

(8.18)

where the second inequality referred to as (a) follows from the fact that apbq ≤ pa+qb whenever
a and b are positive and p+ q = 1. Combining (8.16) and (8.18), we get :

E


p

L∑

i=1

∣∣∣∣∣∣

N∑

j=1

|hi,j |p−1|hi−1,j |si,j

∣∣∣∣∣∣




1
2

≤ C
√
p

L∑

i=1

E


p

N∑

j=1

|hi−1,j |2



1
4

+
√
p (1− p)

1
4

N∑

j=1

E

√
|hi−1,j |√
|hi,j |

≤ CL
√
p

(
2p

L+ 1

) 1
4 Γ(N/2 + 1

4)

Γ(N/2)
+

CLN
√
p(1− p)

1
4

π
Γ(3/4)Γ(

1

4
).

Consequently, for α = N
√

2
π(L+1)(1− ǫ)

P
(
E2

α

)
≥ 1− A1p

3
4√

1− ǫ
− A2

√
p (1− p)

1
4

√
1− ǫ

(8.19)
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where

A1 =
2

1
4LΓ(N/2 + 1/4)Γ(3/4)

Γ(N/2)
√
Nπ

1
4

A2 =
L(L+ 1)

1
4

√
NΓ(1/4)(Γ(3/4))2

π
5
4

.

We note that unlike A1, A2 tends to increase with N . Hence, the lower bound probability does
not always decrease with N . Combining (8.13) and (8.19), it can be proved that the channel
identifiability is lower bounded by:

P ≥ max
ǫ

(
1− exp(−Nǫ2

π
)

)(
1− A1p

3
4√

1− ǫ
− A2

√
p (1− p)1/4√
1− ǫ

)
. (8.20)

8.4 Simulation results

8.4.1 ℓ1 norm

We present here simulation results for the ℓ1 norm. Fig. 8.1 displays the effect of the system
parameters L and N on the lower bound probability that we have computed by maximizing
(8.10) numerically. We note that, as expected, increasing the number of antennas, tends to
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Figure 8.1: Impact of the system parameters L and N on the lower bound probability.

enhance the channel identifiability probability.

8.4.2 ℓp quasi-norm

For the ℓp quasi-norm, we study the effect of the parameter p on the lower bound probability.
We set the system parameters M and L to 6 and 3, and we vary p from 10−3 to 10−6. Fig. 8.2
displays the lower bound with respect to p. We note that as p tends to zero, the lower bound
probability increases.
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Figure 8.2: Lower bound probability with respect to p.

8.5 Conclusion

This chapter analyses the robustness of certain blind channel identification methods when us-
ing ℓp quasi-norms. Necessary and sufficient conditions of channel identifiability are provided.
Lower bounds on the channel identifiability probability are derived thereby providing some use-
ful insights on the impact of the number of sensors M , the channel length L and the quasi-norm
parameter p on the identifiability conditions.



Chapter 9

Quasi-convexity of the asymptotic
channel MSE in scalar regularized

semi-blind estimation

As we have seen in chapter 6, semi blind estimation techniques use jointly information from
data and training samples. An optimal semi-blind approach will be obtained if all the available
information about the channel parameter is taken into account. In the literature, different
methods using the Maximum likelihood criteria, have been proposed. Although being optimal,
these methods involve in general high computational complexity thus restricting their interest
to only theoretical issues.

Suboptimal approaches such as blind or training based techniques, retain only information
provided by the data or the training samples, to build one single criterion. In contrast to blind
estimation methods, training based techniques are more sensitive to noise and entail inefficient
bandwidth utilization. However, blind methods are more complex, estimate the channel only
up to a scalar ambiguity and are often non-robust to modelization errors (e.g channel order
overestimation errors). For these reasons, it might be interesting to combine linearly both criteria
so as to resolve the drawbacks inherent to blind and training based techniques. Such approaches
are referred to as regularized semi-blind techniques in reference to the regularizing constant
which parametrizes the channel estimate. Despite exhibiting low computational complexity as
compared to the EM algorithm used for SML technique (See section 6.3 in chapter 6), semi
blind approaches are strongly influenced by the tuning of the regularizing constant [15]. To
deal with this issue, the work in [15] proposes to set the regularizing constant to the value that
minimizes the asymptotic mean square error. The statement of the uniqueness of such minimum
has been mentioned in [16, 15] and supported by simulations. To the best of our knowledge, this
statement has not been proved in any previous work.

In this chapter, we demonstrate that the asymptotic MSE function is quasi-convex which
provides a guarantee that numerical optimization always leads to the unique desired optimal
weighing parameter value. Moreover, one can observe that regularized approaches has been
used in many other fields, [59, 1], and thus, we believe that the result given in this chapter
might be extended and adapted to other problems, where an optimal weighting coefficient is
needed.

140
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9.1 Expression of the Asymptotic MSE

In this section, we review the expression for the asymptotic MSE in regularized semi blind
methods. As mentioned earlier, semi blind methods employ in addition to training symbols, a
blind criterion that is based on the statistical properties of the received signal in the data period.
In most cases, this criterion can be put under the form:

min
‖h‖=1

hHQh

where h is the channel parameter and Q is a matrix that depends solely on the statistical
properties of the received signal.

Under some mild assumptions, it was shown in [15] that the asymptotic MSE is proportional
to:

MSE ∝ Tr
{
(I+ λQ)−1 (I+ λ2γM(h)) (I+ λQ)−1

}

where λ > 0 is the regularizing coefficient, γ = n
m (n and m being respectively the length of the

data and training sequences) and M(h) is a hermitian matrix that has the same row and column
space as Q (meaning that if Q = UDUH is the eigenvalue decomposition of Q, M(h) writes as
M(h) = UAUH, where A is a given hermitian matrix.). Using the eigenvalue decomposition
of Q it can be easily verified that the MSE is proportional to:

MSE ∝
∑

i

1 + λ2γai,i
(1 + λdi,i)2

(9.1)

where ai,i > 0 (resp. di,i > 0) denote the diagonal elements of A (resp. the non zero diagonal
elements of D).

To conclude about the quasi-convexity of the MSE, it amounts to demonstrating that of the
sum of quadratic fractions in the form

∑q
i=1

1+cix
2

(1+dix)2
defined on the positive real axis R+, ci and

di being strictly positive scalars. This issue will be dealt with in the sequel, but before, we shall
provide some mathematical preliminaries.

9.2 Mathematical preliminaries

For the reader convenience, we devote this section to recalling the definition and some useful
results about quasi-convex functions. We refer the reader to [14] for further information.

Definition 9.1. A real valued function f is said to be quasi-convex if its domain of definition
and all its sublevel sets:

Sα = {x ∈ domf |f(x) ≤ α}
for α ∈ R, are convex, where domf denotes the set over which the function f is defined.

Examples of quasi-convex functions To illustrate this concept, we provide in fig 9.1 some
examples of quasi-convex functions. One can see that a concave and also a non convex function
can be also quasi-convex. Like convex functions, quasi-convex functions satisfy a modified Jensen
inequality which is given by:

Theorem 9.1. A function f is quasi-convex if and only if domf is convex and for all x,
y ∈ dom(f) and 0 ≤ θ ≤ 1

f(θx+ (1− θ)y) ≤ max {f(x), f(y)} .
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Figure 9.1: Examples of quasi-convex functions

Clearly, the quasi-convexity generalizes the notion of convexity in the sense that the class
of quasi-convex functions is larger than and includes the class of convex functions. Also, in
most cases, quasi-convex functions inherit the nice properties of convex functions including the
absence of local minimum as stated in the following theorem.

Theorem 9.2. Let f be a quasi-convex function. Then every local minimum is a global minimum
or f is constant in a neighborhood of this local minimum.

Consequently, if a quasi-convex function f is non constant over any given interval (which
is the case for the sum of quadratic functions we consider), then each local minimum is also a
global minimum. Moreover, this global minimum (whenever it exists) is unique for real valued
functions. To prove the non existence of local minima besides the global one, we use often the
following second-order condition:

Theorem 9.3. Let f be a real function which is twice derivable. If f satisfies:

∀c such that f ′(c) = 0, f ′′(c) > 0,

then, f is quasi-convex, and each local minimum is a global minimum.

9.3 Quasi-convexity of the asymptotic MSE

The quasi-convexity of the asymptotic MSE is a by-product of the following theorem:

Theorem 9.4. Let ci, di be two sequences of q ∈ N
∗ striclty positive reals. Then the derivative

of

Fq(x) =

q∑

i=1

1 + cix
2

(1 + dix)2

has a unique positive zero x0 with F
(2)
q (x0) > 0. Consequently, Fq(x) is a quasi-convex function

when its domain of definition is restricted to R
+ and hence has a unique local (global) minimum

on the positive real axis.
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In the sequel we will omit the index q for notational simplicity so that Fq will be referred to
as F . To prove theorem 9.4, we proceed in the following steps:

• First, we show that the number of positive real values of F (k+1) is larger or equal than
that of F (k), where F (k) denotes the k-th derivative of F .

• We introduce the function Gk which has the same number of zeros as F (k) and prove that
it converges uniformly to G∞, over a compact set that contains all the zeros of F (k).

• Then we prove that G∞ has a unique positive zero in that compact set.

• By applying Hurwitz theorem [90], we conclude that for large values of k, Gk is zero only
once and thus will be also the case of F (k). Finally, we prove that the second derivative
of F is strictly positive when evaluated at the zero argument of F . Fig. 9.2 illustrates the
shape of function F and its first and second order derivatives for q = 3.
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Figure 9.2: Function F and its first and second order derivatives

The details of all these steps and their proofs will be provided in the next section.

9.4 Analysis and properties of F

As we have seen previously, the proof of our main theorem can be carried out in 4 steps, whose
proof are sequentially provided in the sequel:

9.4.1 Closed-form expressions for the derivatives of F

In this subsection, we provide a closed form expression for the k-th derivative of function F . We
also show that the number of zeros of the k-th derivative is increasing with k.

Lemma 9.1. The k-th derivative of F (x) (k > 0) can be put on the following expression :

F (k)(x) = (−1)k+1
q∑

i=1

bi,kx− ai,k
(1 + dix)k+2

(9.2)
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where ai,k and bi,k are sequences of positive reals given by:

{
bi,k = 2k!cid

k−1
i

ai,k = 2k!cid
k−1
i

(
k+1
2

di
ci
+ k−1

2di

)

Proof. See Appendix D.

Given the previous expressions of F (k), we are able to prove our first step result concerning
the increasing number of zeros of F (k). We have the following lemma:

Lemma 9.2. Let Zk denote the number of zeros of the k-th derivative of F given by (9.2). Then
Zk+1 ≥ Zk.

Proof. Let x1, · · · , xZk
denote the zeros of the k-th derivative F (k) in [0,∞[. Therefore, using

Rolle’s Theorem [26], F (k+1) has at least Zk − 1 zeros y1, · · · , yZk−1 where xi ≤ yi ≤ xi+1, i ∈
{1, · · · , Zk − 1}. Since limx→+∞ F (k)(x) = 0, there exist at least one zero of F (k+1) in

[
xZk

,∞
[
.

Consequently, the number of zeros of F (k+1) is at least equal to Z(k), i.e Zk+1 ≥ Zk.

9.4.2 Uniform equivalence of Gk

In this step, we introduce an alternative function Gk that has the same number of positive
valued zeros as F (k) and we provide its asymptotic equivalent expression. For that, let us start
by providing a useful approximation of coefficient ai,k that will be used later to build the function
Gk.

The Stirling formulae [57] provides us an equivalent 2 for k!:

k! ∼
√
2πk

(
k

e

)k

we can easily show that:

ai,k ∼
√
2πkk+

3
2 e−kcid

k−1
i

(
di
ci

+
1

di

)

∼
√
2πkk+

3
2 e−kcid

k+2
i

(
1

cid2i
+

1

d4i

)
. (9.3)

We recall that the overall quasi-convexity proof is based on studying the zeros of the function
F (k) as k goes to infinity. Actually, one can show3 that these zeros belong to the interval[
V k
min, V

k
max

]
, where V k

min = min
i∈{1,···q}

ai,k
bi,k

and V k
max = max

i∈{1,···q}

ai,k
bi,k

. A lower bound for V k
min and

an upper bound for V k
max can be easily computed and are given by:

V k
min ≥ kτmin (9.4)

V k
max ≤ kτmax (9.5)

2Equivalence here means that k!√
2πk( k

e
)k

1
−−−−→
k→∞

3Outside this interval, all the terms in the sum given by (9.2) have the same sign and hence F (k) cannot be
zero.
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where τmin = min
i∈{1,···q}

di
2ci

and τmax = max
i∈{1,···q}

di
ci

+
1

2di
. The difficulty that we face is that the

zeros of F (k) are of order k, thus making the analysis of the asymptotic behavior of function
F (k) somehow delicate. To deal with this difficulty, another function, denoted by Gk, and which
brings back those zeros to a given fixed interval is introduced. This function will be studied over
the interval of interest [τmin, τmax].

Function Gk is defined as:

Gk(x) = (−1)k+1

√
k

2π
ekxk+2F (k)(kx) (9.6)

One can easily note that over [τmin, τmax], Gk(x) have the same number of zeros as F (k).
Substituting F (k) by its expression in (9.2), Gk writes as:

Gk(x) =

√
k

2π
ekxk+2

q∑

i=1

kbi,kx− ai,k

(1 + kdix)
k+2

=

√
k

2π
ek

q∑

i=1

ai,k

(
kbi,k
ai,k

x− 1
)

kk+2dk+2
i

(
1

kdix
+ 1
)k+2

,

q∑

i=1

gi,k(x)

hi,k(x)

where gi,k(x) ,
√
kek√

2πdk+2
i kk+2

ai,k

(
kbi,k
ai,k

x− 1
)
and hi,k(x) = ( 1

kdix
+ 1)k+2.

In the following, we extend the domain of the function Gk to the rectangle R of C given by:

Rǫ = {z = x+ iy, x ∈ [τmin, τmax] ,−ǫ ≤ y ≤ ǫ}

where ǫ is a constant real that will be specified later. Over this domain, the asymptotic equivalent
of Gk is given by the following theorem:

Theorem 9.5. In the rectangle Rǫ, Gk converges uniformly to G∞ given by:

G∞(z) =

q∑

i=1

ci

(
1

cid2i
+

1

d4i

)
(V∞,iz − 1) e

− 1
diz

where V∞,i =
2

di
ci
+ 1

di

.

Proof. See Appendix D.2.

9.4.3 Zeros of the uniform limit of Gk

In this section, we prove that G∞ has a unique positive real zero. This is a by-product of the
following theorem:

Theorem 9.6. Let ai bi and αi three sequences of q strictly positive real scalars. Let f be the
function given by:

f(x) =

q∑

i=1

(aix− bi)e
−αix (9.7)

Then f admits a unique real positive zero.
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Proof. See Appendix D.3.

By defining f(z) = zG∞(1z ) and applying Theorem9.6, we conclude that G∞(z) has a unique
real positive zero.

9.4.4 Application of Hurwitz theorem

To prove that from a certain range of k Gk is zero only once at the real positive axis, we will
rely on the following known result in complex analysis, [90]:

Theorem 9.7. Let fk(z) be a sequence of analytic functions in a compact C. Assume that fk
converges uniformly to f in C. Assume also that f has no zeros on the frontier ∂C of C. Then,
there exists k0 ∈ N such that ∀k ≥ k0, f and fk have the same number of zeros in C.

Applying this theorem, we can deduce that, Gk will have a unique zero value in Rǫ as G∞,
where ǫ is chosen so that G∞ has no zeros on the frontier of Rǫ and has no complex zeros
besides its real positive zero. Since the number of zeros of Gk is increasing with respect to k,
we conclude that all Gk and hence all F (k) have only a unique positive zero.

Let xz be the unique positive zero argument of F (1). Since F (1) is negative in a neighborhood
of zero, and that F (1) has no zeros for x ≤ xz, F

(1) is negative in the interval [0, xz]. Therefore
the function F is decreasing in [0, xz].

Since F (1) is positive for large value of x, F (1) must change its sign at xz, and hence it is
positive in the interval [xz,∞[. Consequently, F is increasing in [xz,∞[.

To sum up, we have established that in [0, xz], F is decreasing and in [xz,∞[ F is increasing.
This guarantees that xz is a minimum for F and hence F (2)(xz) ≥ 0. In fact, F (2)(xz) is strictly
positive, since F (1)(xz) = 0 and lim

x→∞
F (1)(x) = 0 means that there exists yz ∈ ]xz,∞[ such that

F (2)(yz) = 0 and hence F (2)(xz) 6= 0 (because F (2) has a unique zero).

9.5 Conclusion

In this chapter, we have provided a rigorous proof for the quasi-convexity of the asymptotic
MSE of the regularized semi-blind channel estimate. More generally we have proved that any
function given by a finite sum of quadratic fractions 1+cx2

(1+dx)2
, c, d > 0 is a unimodal function over

R
+. As far as semi-blind estimation is considered, the previous result guarantees the absence

of non-desired local minima of the MSE function when optimized with respect to the weighting
coefficient. However, the optimal value of the regularizing scalar does not have closed-form
expression, and hence is estimated by using iterative numerical optimization. To avoid the use
of numerical algorithms, we propose in the next chapter a new technique where the regularizing
constant has closed-form expression.
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Appendix D

Proof of results of chapter 9

This appendix provides the proof of the results stated in chapter9.

D.1 Proof of lemma 9.1

Lemma 9.1 can be proved easily by induction on k. For k = 1, we have:

F (1)(x) =

q∑

i=1

2cix(1 + dix)
2 − 2di(1 + cix

2)(1 + dix)

(1 + dix)4

=

q∑

i=1

(1 + dix)(2cix(1 + dix)− 2di(1 + cix
2))

(1 + dix)4

=

q∑

i=1

2
cix− di
(1 + dix)3

Let k ∈ N
∗. Assume that the result is true until order k. Hence, F (k) can be written as:

F (k)(x) = (−1)k+1
q∑

i=1

bi,kx− ai,k
(1 + dix)k+2

Therefore,

F (k+1)(x) = (−1)k+1

(
q∑

i=1

bi,k(1 + dix)
k+2

(1 + dix)2k+4

−(k + 2)di(1 + dix)
k+1(bi,kx− ai,k)

(1 + dix)2k+4

)

= (−1)k+1
q∑

i=1

bi,k + (k + 2)diai,k − (k + 1)dibi,kx

(1 + dix)k+3

= (−1)k+2
q∑

i=1

(k + 1)bi,kdix− (bi,k + (k + 2)diai,k)

(1 + dix)k+3

= (−1)k+2
q∑

i=1

bi,k+1x− ai,k+1

(1 + dix)k+3

148
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where bi,k+1 = (k + 1)bi,kdi and ai,k+1 = (bi,k + (k + 2)diai,k). Since bi,k = 2k!dk−1
i ci, we get

bi,k+1 = 2(k + 1)!dki ci.
Also,

ai,k+1 = bi,k + (k + 2)diai,k

= 2k!cid
k−1
i + 2k!(k + 2)dki ci

(
k + 1

2

di
ci

+
k − 1

2di

)

= 2(k + 1)!cid
k
i

(
1

(k + 1)di
+

k + 2

k + 1

(
k + 1

2

di
ci

+
k − 1

2di

))

= 2(k + 1)!cid
k
i

(
k

2di
+

k + 2

2

di
ci

)
.

D.2 Proof of theorem 9.5

In this lemma, we propose to find the uniform-limit function for the functionGk(z) =
∑n

i=1
hi,k(z)
gi,k(z)

in the rectangle Rǫ. For that, we will first begin by finding the uniform limit functions of hi,k
and gi,k.

Lemma D.1. In the rectangle Rǫ, the sequence of functions (hi,k)k converges uniformly to hi,∞
given by:

hi,∞(z) = e
1

diz

Also, the sequence of functions (gi,k)k converges uniformly to gi,∞ given by:

gi,∞ = ci

(
1

cid2i
+

1

d4i

)
(V∞,iz − 1)

where V∞,i = limk→∞
kbi,k
ai,k

= 2
di
ci
+ 1

di

.

Proof. The uniform convergence of hi,k to hi,∞ is a by-product of the following known result:

Lemma D.2. Over a compact set the sequence function (1 + z
n)

n converges uniformly to ez.

The uniform convergence of gi,k to gi,∞ is obtained by using the asymptotic equivalent of
ai,k given in (9.3).

The uniform convergence of hi,k to hi,∞ and of gi,k to gi,∞ does not ensure the uniform
convergence of

gi,k
hi,k

to
gi,∞
hi,∞

.

Other extra conditions are needed as it will be noticed in the following lemma:

Lemma D.3. Let fk and gk denote sequences of continuous functions over a compact C. Assume
that gk is bounded over C away from zero uniformly in k and in z, i.e there exists a constant
M such that:

∀k ∈ N, ∀z ∈ C |gk(z)| > M.

Assume also that fk and gk converge uniformly to f∞ and g∞. Then, fk
gk

converges uniformly

to f∞
g∞

over the compact C.
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Proof. Since fk and gk are continuous, their uniform limits f∞ and g∞ are also continuous.
Therefore, there exists constant reals Mf , Mg such that:

∀z ∈ C, |f∞(z)| ≤Mf and |g∞(z)| ≤Mg.

Since for all k ∈ N, |gk(z)| > M , we have |g∞(z)| > M To prove the uniform convergence of fk
gk

towards f∞
g∞

, it is sufficient to prove that sup
z∈C

∣∣∣∣
fk
gk
− f

g

∣∣∣∣ converges to zero as k tends to infinity.

We have:

sup
z∈C

∣∣∣∣
fk
gk
− f

g

∣∣∣∣ = sup
z∈C

∣∣∣∣
fkg − fgk

gkg

∣∣∣∣

≤ sup
z∈C

∣∣∣∣
fkg − fgk

M2

∣∣∣∣

≤ 1

M2

(
sup
z∈C
|fkg − fg|+ sup

z∈C
|fg − fgk|

)

≤ 1

M2

(
Mg sup

z∈C
|fk − f |+Mf sup

z∈C
|gk − g|

)
−−−→
k→∞

0

which proves that fk
gk

converges uniformly to f∞
g∞

.

Since |hi,k(z)| > 1 over Rǫ, hi,k satisfies the condition of lemma D.3. Applying this lemma
on the functions gi,k and hi,k, we prove that

gi,k
hi,k

converges uniformly to
gi,∞
hi,∞

. Consequently,

Gk(z) =
n∑

i=1

gi,k(z)

hi,k(z)
converges uniformly over Rǫ to G∞(z) =

n∑

i=1

gi,∞(z)

hi,∞(z)
.

D.3 Proof of Theorem 9.6

The proof is performed by induction on q. For q = 1, the result is straightforward. Let q ∈ N
∗

be a given integer, and assume that the result holds true for all k ≤ q, and all functions f of
the form given by (9.7). Assume that there exists ai, bi and αi three sequences of q + 1 strictly
positive real scalars such that the function

f(x) =

q+1∑

i=1

(aix− bi)e
−αix

admits more than one positive zero. Let x1 be the first smallest zero of f on R
+,

Without loss of generality, we can assume that all the αi are two by two different and that
αq+1 = min

1≤i≤q+1
αi. Since f is strictly negative in zero and is positive for large values of x, f

should change its sign at at least one zero. In the following we will consider only the case when
f changes its sign at x1. The other case could be treated in the same way. Let x2 be the second
smallest zero of f on R

+. Under this condition, we distinuish the following cases:

• f changes its sign at x1 and at x2.

• f changes its sign only at x1.
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For the both cases, we can prove that the second derivative of

gm(x) = e(αq+1− 1
m)xf(x)

=

q∑

i=1

(aix− bi)e
−(αi−αq+1+

1
m)x + (aq+1x− bq+1) e

− x
m , form ∈ N

∗

has three zeros. More particularly, we have the following:
Case 1: f changes its sign at x1 and at x2
Since f(0) < 0, f(x) < 0 for x ≤ x1. Therefore, for x ≥ x2 and in the vicinity of x2, f(x) < 0

for x ≥ x2. Since f(x) > 0 for x large enough, f should have a third zero x3 > x2.
For all integers m, we note that f and gm have the same number of zeros. Using Rolles

theorem, it can be proved that the derivative of gm which we denote g
(1)
m and which is given by:

g(1)m (x) =

q∑

i=1

[
−(αi − αq+1 +

1

m
)aix+ bi(αi − αq+1 +

1

m
) + ai

]
e−(αi−αq+1+

1
m
)x

+ aq+1e
− 1

m
x − 1

m
(aq+1x− bq+1) e

− x
m (D.1)

has at least three zeros, since g
(1)
m (x) tends to zero as x tends to infinity.

Also again by using the Rolle’s theorem, we conclude that the second derivative of gm denoted

by g
(2)
m (x) has at least two zeros.
Case 2: f changes its sign at only one zero In this case, we can also prove that the first

derivative of gm has three zeros. Actually, at x2, the first derivative of gm must be also zero,
since x2 is a local minimum for f and hence for gm. As gm tends to zero when x tends to infinity,

g
(1)
m has two zeros between ]x1, x2[ and ]x2,∞[. Consequently, in total, g

(1)
m has at least three

zeros, and therefore, the second derivative of gm has at least two zeros.

Taking the derivative of (D.1), g
(2)
m (x) writes as:

g(2)m (x) =

q∑

i=1

(αi − αq+1 +
1

m
)

[
ai(αi − αq+1 +

1

m
)x− 2ai − bi(αi − αq+1 +

1

m
)

]
e−(αi−αq+1+

1
m
)x

− 2

m
aq+1e

− 1
m
x +

1

m2
(aq+1x− bq+1)e

− x
m

Extending the definition domain of g
(2)
m to C

+ = {z = x+ iy, x > 0}, we note that for every

compact in C
+, g

(2)
m converges uniformly to g∞ given by:

g∞(z) =

q∑

i=1

(αi − αq+1) (ai(αi − αq+1)z − 2ai − bi(αi − αq+1)) e
−(αi−αq+1)z

Let C be the contour corresponding to the rectangle

Rǫ =

{
x+ iy, x ∈

[
inf
m,i

2ai + bi(αi − αq+1) +
1
m

ai(αi − αq+1 +
1
m)

, sup
m,i

2ai + bi(αi − αq+1) +
1
m

ai(αi − αq+1 +
1
m)

]
, y ∈ [−ǫ, ǫ]

}
,

ǫ is chosen such that |g∞| is bounded above zero in C and has no complex valued zeros. Then

referring to Hurwitz theorem, g∞ and g
(2)
m will have the same number of zeros in Rǫ for large

enough values of m, which is in contradiction with the induction assumption.



Chapter 10

Matrix regularized semi-blind
channel estimation techniques

As mentioned in previous chapters, the optimization of the regularizing constant in semi-blind
estimation techniques is mandatory, otherwise, the expected improvement in performance could
not be achieved. Given its impact on the channel estimation quality, the regularizing constant
has been proposed to be set in such a way that it minimizes the asymptotic MSE, [15]. Since the
optimal regularizing constant has no closed-form expression, [15] proposes to employ iterative
algorithms that converge to the optimal solution. On the other hand, [66] proposes to evaluate
the asymptotic MSE at finite discrete possible values for the regularizing constant and keep
thereafter the value that exhibits the least channel estimation error. In [111], an explicit formula
was given by assuming that the minimization of the semi-blind cost can be transformed into a
Weighted-Least-Square (WLS)[106] minimization problem.

In this chapter, we propose to use a regularizing matrix instead of a regularizing constant.
In contrast to preliminary predictions, the optimization of the proposed method is less com-
plicated and yields a closed-form expression for the regularizing matrix. It is also shown to
slightly outperform the conventional regularized scheme proposed in [15], while avoiding the
need for iterative computations. This technique will be first applied for SIMO systems, and
then generalized to the context of MIMO-OFDM.

10.1 Matrix regularized semi-blind estimation for SIMO sys-
tems

We consider a SIMO system with N receiving antennas, operating over a frequency selective
channel. We assume the following discrete time model:

y(k) =
L∑

l=0

hlsk−l + bk

where sk are assumed to be i.i.d complex circular random variables with Esk = 0 and E|sk|2 = 1.
During the training period, the received getsm samples y = [yT(1), · · · ,yT(m)]T that depend

on the training sequence. The vector y can be written as:

y = Sh+ b

152
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where b = [bT(1), · · · ,bT(m)]T, S = [S1, · · · ,Sm]T, ST
k = [s(k), · · · , s(k − L)] ⊗ IN and h =

[hT(0), · · · ,hT(L)]T. The least square estimate of h is therefore given by:

ĥ = (SHS)−1 SHy

= S#y

where it is assumed that the training sequence is properly chosen to avoid the degeneracy of
SHS.

Stacking M observations of vector y(k) into a NM × 1 vector yM (k), we will get:

yM (k) = IM (h)sM (k) + bM (k)

where IM (h) is the NM × L + M block-Toeplitz matrix given by (7.1). Let n denote the
length of the data sequence, and R̂M the estimated covariance matrix. The most common blind
estimation techniques evaluate the channel up to a scalar ambiguity by solving the following
minimization problem:

min
‖h‖=1

hHÂnh (10.1)

where Ân is an estimated matrix of A, A being a matrix that depends on the considered blind
estimation technique. Note that the matrix A is singular and h is the unique vector (up to a
scalar factor) generating its kernel.

10.1.1 Semi-blind estimation

In the conventional regularized semi-blind estimation technique, the blind criterion is combined
linearly with the training sequence criterion, thus leading to the following cost function:

C(f , α) = ‖y − Sf‖2 + αnfHÂnf , (10.2)

where α is a regularizing constant. The semi-blind estimator that minimizes (10.2) is given by:

ĥα(A) =
(
SHS+ αnÂn

)−1
SHy.

The optimization of the regularizing constant cannot be performed directly and requires in
general the use of iterative algorithms. In this work, we propose to minimize the following cost
function that is given by:

C(f ,Λ) = ‖y − Sf‖2 + nfHP̂nΛP̂nf , (10.3)

where Λ is a regularizing matrix assumed to be hermitian, and P̂n is an estimate of the or-
thogonal projector P onto the space spanned by the columns of A. In this case, the semi-blind
estimator that minimizes (10.3) is given by:

ĥΛ(A) =
(
SHS+ nP̂nΛP̂n

)−1
SHy.

Interestingly, we show in this chapter that a closed-form expression for the optimum regularizing
matrix Λ exists, thus avoiding the need for iterative algorithms.
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10.1.2 Asymptotic MSE

The expression of the asymptotic MSE has been derived in [15] when the subspace blind criterion
is considered.Hereafter, we show that, under some mild assumptions, the results established in
[15] can be extended to any blind method characterized by (10.1). In particular we can prove
along the same lines of [15], the following results:

Theorem 10.1. Let γ = limn→∞ n
m . For any matrix A that verifies:

• Ah = 0,

• δA , Ân −A = Op

(
n− 1

2

)
.

we have

ĥα(A)− h = (RSS + γαA)−1 (RSV − γαδAh) +Op(
1

n
),

ĥΛ(A)− h = (RSS + γPΛP)−1 (RSV − γδ (PΛP)h) +Op(
1

n
),

where RSS = 1
mSHS and RSV = 1

mSHv.

Theorem 10.2.
√
m
(
ĥα(A)− h

)
is asymptotically normal with covariance matrix Γα (h) given

by:

Γα(h) = (I+ αγA)−1


σ2

b I+ α2γ2 lim
n→∞
n
m
→γ

mCov(δAh)


(I+ αγA)−1. (10.4)

Also,
√
m
(
ĥΛ(A)− h

)
is asymptotically normal with covariance matrix ΓΛ (h) given by:

ΓΛ(h)=(I+ γPΛP)−1


σ2

b I+γ2lim
n→∞
n
m
→γ

mCov(δ(PΛPh))


(I+ γPΛP)−1. (10.5)

Proof. : The asymptotic normality can be proved along the same lines as in [15]. Then, the
expression for the covariance matrix is easily deduced from Theorem 10.1.

We can see from (10.5) that the asymptotic MSE expression depends on the covariance of
δPΛP. This quantity can be given as:

Theorem 10.3. The covariance matrix of δPΛPh is given by:

Covδ (PΛPh) = PΛA#Cov(δAh)A#ΛP+Op(
1

n2
).

Proof. Let P⊥ be the orthogonal projector onto the null space of A. Thus, P = I−P⊥. Using
standard perturbation formulae [96], we get:

P̂⊥ = P⊥ −P⊥δAA# −A#δAP⊥ +Op(‖δA‖2).

Assuming that δA = Op(
1√
n
), which is valid if Ân is related to R̂n through an infinitely differ-

entiable mapping, we get:

δPh = (P̂−P)h = A#δAh+Op(
1

n
),
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thus leading to:

Cov(δ(PΛP)h) = PΛCov(δPh)ΛP (10.6)

= PΛA#Cov(δAh)A#ΛP+Op(
1

n2
). (10.7)

Corollary 10.1. Let Σ∞ = γ
σ2
b

lim
n,→∞
n
m
→γ

mCov(δAh). Hence,

ΓΛ(h)=σ2
b (I+ γPΛP)−1

(
I+ γPΛA#Σ∞A#ΛP

)
(I+ γPΛP)−1.

10.1.3 Optimal regularizing matrix of Λ

In the following theorem, we give the closed-form expression for the optimal regularizing matrix
Λ that minimizes the trace of ΓΛ(h).

Theorem 10.4. Assuming that the rank of A#Σ∞A# is equal to the rank of A, the optimal
regularizing matrix Λ is given by:

Λ =
(
A#Σ∞A#

)#
.

Proof. : To determine the optimal regularizing matrix Λ, we optimize the asymptotic channel
estimation error first with respect to the eigenvalues of PΛP and then with respect to the
eigenvectors.
Optimization with respect to the eigenvalues

Consider the eigenvalue decomposition of PΛP = UHDU, whereD = diag(d1, · · · , dN(L+1)).
Without loss of generality, we assume that P has a unique zero eigenvalue, i.e, d1 = 0. Then,
we have:

Tr(ΓΛ(h)) =

N(L+1)∑

i=2

1 + γd2i
[
UA#Σ∞A#UH

]
i,i

(1 + γdi)
2 .

Through simple calculations, we can find that the derivative of Tr(ΓΛ(h)) is given by:

∂Tr(ΓΛ(h))

∂di
=

N(L+1)∑

i=2

di
[
UA#Σ∞A#UH

]
i,i
− 1

(1 + γdi)3
.

Hence, the gradient is equal to zero when di =
1

[UA#Σ∞A#UH]
i,i

. Moreover, one can easily show

that in this case, the Hessian matrix is strictly positive.
Consequently, the optimal eigenvalues of PΛP are given by:

di =
1

[UA#Σ∞A#UH]i,i
.

One can note that under the assumption that the rank of A#Σ∞A# is equal to that of A, we
have [

UA#Σ∞A#UH

]
i,i
6= 0 ∀ i ≥ 2.

Optimization with respect to the eigenvector basis
In the following we prove that the optimal basis of eigenvectors is the one that makes

UA#Σ∞A#UH diagonal. But before tackling the proof, we shall recall the following results:
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Definition 10.1. [71] For two vectors x, y ∈ R
n with descending ordered components x1 ≥

x2 · · · ≥ xn ≥ 0 and y1 ≥ y2 · · · ≥ yn ≥ 0, we say that x is weakly majorized by y and write
x �w y when:

m∑

k=1

xk ≤
m∑

k=1

yk for all m = 1, · · · , n.

Theorem 10.5. [71] Let A be a n × n hermitian matrix. Then the descending ordered vector
of diagonal entries of A is weakly majorized by the descending ordered vector of eigenvalues.

Definition 10.2. [71] A real-valued function f defined on R
n is said to be Schur-convex (resp.

Schur-concave) on R
n if x �w y =⇒ f(x) ≤ f(y) (resp. if x �w y =⇒ f(x) ≥ f(y) )

Proposition 10.1. If g : R→ R is convex (resp. concave) then

f(x1, · · · , xn) =
n∑

k=1

g(xk)

is Schur-convex (resp. Schur-concave) on R.

Substituting di by their optimal values, the asymptotic estimation error becomes:

TrΓΛ(h) =

N(L+1)∑

i=2

1

1 + γ

[UA#Σ∞A#UH]
i,i

. (10.8)

By proposition 10.1, x := (x1, · · · , xN(L+1)) :→
N(L+1)∑

i=1

1

1 + γ
xi

is Schur-concave since x →
1

1+ γ
x

is concave. Consider the eigenvalue decomposition of A#Σ∞A# = V∆VH then, according

to theorem 10.5, the vector of the diagonal elements of UA#Σ∞A#UH is weakly majorized by
the diagonal elements of ∆ = VHA#Σ∞A#V. Using the definition of Schur-Concave functions,
we conclude that the minimum of the channel estimation error is achieved when V = UH.
Consequently, the optimal regularizing matrix Λ =

(
A#Σ∞A#

)#
.

10.1.4 Application: subspace semi-blind optimal regularized estimation

In this section, we consider the case when the blind subspace criterion is considered. As we have
seen in section 6.2.1 chapter 6, the blind criterion can be expressed as:

hHQh

where Q = DH(Π)D(Π), D(Π) being defined by (6.8) (refer to chapter 6 for more details). In
this case, the covariance of δQh can be expressed as:

Theorem 10.6. [15] The covariance of δQh is given by:

Cov (δQh) =
σ2
b

n
M(h) +O( 1

n2
),

where
M(h) =

∑

|τ |≤M

D
H (Π)

[(
RΠM

(τ) + σ2
bRΦM

(τ)
)
⊗RΠ(τ)

]
D (Π) ,
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and

RΠ(τ) , ΠJτN
r Π, (10.9)

RΠM
(τ) , ΠT

MJτ
pΠ

∗
M , (10.10)

RΦM
(τ) , ΦT

MJτN
r Φ∗

M , (10.11)

ΠM , IM (h)H
[
IM (h)IM (h)H

]#
IM (h)H, (10.12)

ΦM ,
[
IM (h)IM (h)H

]#
IM (h), (10.13)

where Jp(τ) ,

[
... Ip−τ

0τ · · ·

]
for τ ≥ 0 and Jτ

p ,
(
J−τ
p

)T
if τ < 0. Moreover, we have in this

case:
Σ∞ = M(h).

10.1.5 Practical implementation

From the expression ofΣ∞, we note that the optimal value of Λ depends on the channel statistics
which are expressed through RΠ(τ) and also on the current channel value via the terms RΦM

(τ)
and RΠM

(τ). Assuming that the channel h has no zeros in common, we can assume that ΠM is
equal to the identity matrix thus removing the dependence of the term RΠM

(τ) on the channel.
To deal with the term RΦM

(τ), the work in [15] suggests to substitute the unkown channel
vector by an-other estimate, while the work in [65] and [66] proposes to just remove it since it
is of order σ4

b in the expression of the asymptotic channel estimation error and thus could be
removed as far as high SNR values are considered.

It has been shown that even for low SNR values, regularization is quite well performed while
considering this assumption. Therefore, in this article, we will assume that:

Σ∞ ≃ D
H (Π)M(h)D (Π) , (10.14)

where M(h) =
∑

|τ |≤M RΠM
(τ)⊗RΠ(τ). Also, we can prove that in this case, the optimal value

of Λ is given by:
Λ = QΣ#

∞Q.

To estimate Σ∞, we replace D (Π), RΠM
(τ) and RΠ(τ) by their respective estimates obtained

from the estimated covariance matrix. Since the estimate Σ̂∞ of Σ∞ is an ill-conditioned matrix,
we compute instead the following estimate given by:

Λ = Q̂n

(
Σ̂∞ + σ2

b IN(L+1)

)−1
Q̂n.

10.1.6 Simulation results

10.1.6.1 Asymptotic analysis

As it has been already mentioned, the derived asymptotic results hold in the asymptotic regime
defined as n → ∞ and m → ∞ while n

m → γ. In this section, we assess the accuracy of the
derived results for finite data and training periods. Our simulations are conducted in the cases
of small and also large training and data periods (n = 104, m = 26 and n = 1040, m = 260).
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For each case, we set the channel to a fixed value and estimate the Mean Square Error (MSE)
given by :

MSE = m‖ĥ− h‖2,
where the normalization by m is introduced in order to allow the comparison between the figures
pertaining to different choices for m and n. More particularly, we estimate the empirical MSE
for the least sqaure estimator and for both regularization-based estimators when the regularizing
coefficient or matrix is set to its theoretical value or is estimated through the minimization of
the channel matrix error. We compare these values to the theoretical MSE which is given by
the trace of Γα(h) or ΓΛ(h), depending on the considered estimator. Figs. 10.1 and 10.2 display
the obtained results. In the legend, ’Emp.MSE.conv.th.reg’ and ’Emp.MSE.conv.est.reg’ stand
for the empirical MSE for the conventional regularized estimator when setting the regularizing
coefficient to its optimal value and when estimating numerically the optimum regularizing coef-
ficient, respectively. ’The.MSE.conv.th.reg’ stands for the theoretical MSE of the conventional
regularized estimator when the regularizing coefficient is set to its theoretical optimum value,
and ’Emp.MSE.least.square’ stands for the training-based least square estimator. Similar nota-
tion is used for the optimum regularized estimator. We note that even for relatively small system
dimensions, optimizing the asymptotic results lead approximatively to the expected mean square
error.
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Figure 10.1: MSE vs SNR for small system dimensions (N = 4, n = 104, m = 26).

10.1.6.2 Bit error rate (BER)

In this section, we compare the BER performance of the least square based receiver with that of
the semi-blind regularization-based estimators and that of a genie receiver which knows exactly
the channel. We set the number of receiving sensors N to 6 and L to 4. We also assume
that the number of training symbols is equal to 26 and that of data symbols is equal to 464.
We consider the case when the channel coefficients are Rayleigh distributed with exponential
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Figure 10.2: MSE vs SNR for large system dimensions (N = 4, n = 1040, m = 260).

decaying profile (the decay factor is taken to be 0.2). Fig. 10.3 illustrates the BER obtained over
1000 realizations when a MLSE estimation of the data symbols is performed using the Viterbi
algorithm. In this context, we achieve almost the same performance as the conventional receiver
with a gain of 0.8 dB over the least square estimation.

10.1.6.3 Implementation complexity

It is mentioned in [15] that the localization of the optimal regularizing scalar α requires three
iterations, each of which needs the inversion of a matrix of order N(L + 1). However, the
proposed method requires only one iteration in which one inversion matrix of order N(L + 1)
is performed. Hence, we believe that our method exhibits lower complexity since it does not
require iterations.

10.2 Matrix regularized semi-blind estimation for MIMO-OFDM
systems

In this section, we extend the matrix regularized semi-blind estimation technique to the context
of MIMO-OFDM systems. Exceptionally, in this part, we may use different notations from those
considered earlier.

10.2.1 System model

We consider a MIMO-OFDM system with K transmitting antennas and N receiving antennas .
We assume that each OFDM symbol is composed ofQ subcarriers, obtained from the Inverse Dis-
crete Fourier Transform (IDFT). Let x(n, k) = [x1(n, k), · · · , xK(n, k)] be the n-th transmitted
sample of the k-th OFDM symbol after the IDFT module, and y(n, k) = [y1(n, k), · · · , yN (N, k)]
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Figure 10.3: BER vs SNR with semi-blind regularization.

be the received signal before the Discrete Fourier Transform (DFT) module. (see fig. 10.4).
Assuming that the channel length L is less than the cyclic prefix length µ, the linear convolution
between the channel and the transmitted signal is transformed into a circular convolution as
follows:

y(n, k) =

L∑

l=0

H(l)x(n− l, k) + b(n, k), n = 0, · · · , Q− 1 (10.15)

where H(l) is the N × K channel response matrix at time l and b(n, k) is the noise vector.
Moreover, if n < 0, due to the circular convolution, the value x(n, k) is set to x(Q + n, k) .
Let H = [HT(0), · · · ,HT(L)]T and h = vec(H). Stacking M + 1 observations y(n, k) in the
N(M + 1) vector yM (n, k) = [yT(n, k), · · · ,yT(n−M,k)]T, we get for M ≤ n ≤ Q− 1

yM (n, k) = IM (H)xM (n, k) + bM (n, k) (10.16)

where IM (H) is the (M + 1)N × (M + L+ 1)K block Toeplitz matrix with the first block row
given by [H(0), · · · ,H(L),0, · · · ,0].

10.2.2 Blind criterion

Assuming that E|x(n, k)|2 = 1 the covariance matrix of the received signal can be expressed as:

RM = EyM (n, k)yH
M (n, k) = IM (H)IH

M (H) + σ2
b I(M+1)N

where σ2
b denotes the noise variance. In practice, it is estimated as:

R̂M =
1

(Q−M)ng

Q−1∑

n=M

ng−1∑

k=0

yM (n, k)yH
M (n, k)
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Figure 10.4: System Model

where ng is the number of OFDM symbols in the considered frame.
In the same way as the case of SIMO systems, we will consider blind methods that are

based on the minimization problem of a given quadratic form. In particular, we assume that
the channel is evaluated up to a matrix ambiguity by solving:

min
‖h‖=1

hHB̂H
QB̂Qh

where B̂Q is an estimated matrix of B, B being a matrix that depends on the considered blind
technique.

10.2.3 Least square channel estimation

We assume that the channel estimation at the receiver side is conducted over ng OFDM symbols,
each OFDM symbol containing kp pilot samples (i.e pilot subcarriers). Obviously, the least-
square chanel estimation is possible only when np = ngkp ≥ (L+ 1)K.

For MIMO-OFDM systems, optimal pilot sequences and optimal pilot placement of the pilot
tones with respect to the MSE of the least-square channel estimate were derived in [4]. We
design our pilot sequence according to [4] as follows:

Let ỹi(k) denotes the kp × 1 frequency domain vector of pilot samples received at time k by
the i-th antenna and let ỹi = [ỹT

i (0), · · · , ỹT
i (ng − 1)]T. Then, ỹi satisfies:

ỹi = Ah̃i + b̃i

whereA is a np×(L+1)K matrix that depends on the pilot symbols and chosen to be orthogonal,

AHA = npI(L+1)K , b̃i is the noise vector with respect to the i-th receiving antenna and h̃i is
the channel vector response associated to the i-th receiving antenna given by:

h̃i = [hi,1(0), · · · , hi,1(L), · · · , hi,K(0), · · · , hi,K(L)]T
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Defining:

Y = [ỹ1, · · · , ỹN ] ,

H̃ =
[
h̃1, · · · , h̃N

]
,

Ṽ = [ṽ1, · · · , ṽN ] ,

we have
Y = AH̃+ Ṽ.

Let h̃ = vec(H̃) 4. The least-square estimate minimizes the following criterion:

min
h̃

‖vec(Y)− IN ⊗Ah̃‖2 = min
h
‖vec(Y)− Ãh‖2, (10.17)

where Ã = (IN ⊗A)E and h = vec(H), E being the permutation matrix that transforms h̃
into h.

10.2.4 Matrix regularized channel estimation

Similarly to the case of SIMO systems, we consider to minimize with respect to f the following
cost function:

C(f ,Λ) = ‖vec(Y − Ãf‖2 + (Qng)f
HP̂QΛP̂Qf

where P̂Q is the estimate of P, the orthogonal projector on the space spanned by BQ and Λ is
a hermitian regularizing matrix. The semi-blind channel estimate is theorefore given by:

ĥΛ =
(
ÃHÃ+QngP̃QΛP̂Q

)−1
AHvec(Y)

In the same way as previously mentioned, matrix Λ is chosen in such a way that it minimizes
the asymptotic MSE. By asymptotic, we mean that Qng and nP tend to infinity and

Kng

nP
→ γ.

Using the same approach as in the case of SIMO systems, it can be shown that the optimal
regularizing matrix is given by:

Λop =
(
B#

QΣ∞B#
Q

)#
(10.18)

where

Σ∞ =
1

σ2
b

lim
Qng→∞
Qng
np

→γ

QngCov(B̂Qh).

10.2.5 Semi-blind techniques based on Subspace and Linear prediction cri-
teria

We consider the subspace and linear prediction techniques described in 6.2.1 and 6.2.2 in chapter
6. Keeping the same notations as in chapter 6, matrix BQ is given by:

{
BQ = Bsub = IK ⊗D(Πsub) for the blind subspace criterion

BQ = Blin = IK ⊗ (Πlin ⊗ δ(P)) for the linear prediction criterion

(10.19)

(10.20)

4Note that h̃ and h are the same up to a permutation.
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Let Psub and Plin denote respectively the orthogonal projectors onto the column range space of
D(Πsub) and Πlin ⊗ δ(P). Denoting by P̂sub and P̂lin their estimates, the semi-blind channel
estimates based on the subspace and the linear prediction criteria are given by:





ĥsub =
(
ÃHA+Qng

(
IK ⊗ P̂sub

)
Λ
(
IK ⊗ P̂sub

))−1
ÃHvec(Y)

ĥlin =
(
ÃHA+Qng

(
IK ⊗ P̂lin

)
Λ
(
IK ⊗ P̂lin

))−1
ÂHvecY

(10.21)

(10.22)

To determine the optimal values for Λlin and Λsub, we need to compute Λ∞ for both blind
criteria. This can be carried out by following the same lines as in [65]. We obtain thus the
following theorem:

Theorem 10.7. The asymptotic covariance matrix of the channel estimation error δh = ĥ− h
is given by:

Cov(δh) = lim
Qng→∞
Qng
np

→γ

npE (δhδhH)

= σ2
bM

−1
(
INK(L+1) + γC

)
M−1

where:

M =
(
I(L+1)NK + γ (IK ⊗P)Λ (IK ⊗P)

)

C = (IK ⊗P)ΛB#Σ∞B#Λ (IK ⊗P)

and P = Psub (resp. P = Plin), B = Bsub (resp. B = Blin) and Σ∞ = Σ∞,sub (resp.
Σ∞ = Σ∞,lin) to refer to the subspace-based semi-blind estimator (resp. linear prediction-based
semi-blind estimator).

Let Jτ
p ,

[
... Ip−τ

0τ · · ·

]
for τ ≥ 0 and Jτ

p ,
(
J−τ
p

)T
if τ < 0.

For the linear prediction based estimator, we can prove that Σ∞ is given by:

Σ∞,lin = IK ⊗ diag
(
PlinPlin

H
,
(
IM+L−2 ⊗Plin

)
J lin

(
IM+L−2 ⊗Plin

H
))

+O(σ2)

where:

Plin = Πlin [IN P]

J lin =

(
M∑

k=−M

Jk
M+L−2 ⊗ Jk

M+1 ⊗ IN

)
.

For the subspace-based semi-blind estimator, Σ∞ is given by:

Σ∞,sub = IK ⊗
(

M∑

k=−M

Jk
M+1 ⊗Πsub

(
Jk
M+1 ⊗ IN

)
Πsub

)
+O(σ2).

Note that if we neglect the terms in O(σ2), we end-up with expressions that are independent
from the system parameters, h and σ2. Hence, the implementation of the optimal weighting
matrix in (10.18) can be achieved without resorting to iterative techniques.
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10.2.6 Simulations

In all the simulations described below, we consider a MIMO-OFDM system with K = 2 transmit
antennas and N = 4 receive antennas. The length of the cyclic prefix is 20, and the block size
M is equal to 10. We assume also a Rayleigh channel model with a L + 1 = 5 tap MIMO-FIR
filter where each tap is represented by a 2× 4 random matrix whose elements are i.i.d complex
Gaussian variables with zero mean and variance equal to 1

L+1 .
The empirical MSE is given by:

MSE =
1

NT

NT∑

k=1

‖ĥk − hk‖2,

where NT is the total number of Monte Carlo iterations.

10.2.6.1 Accuracy of the channel estimation error

In this experiment, we set the number of the subcarriers Q to 2048, of which 16 subcarriers
are devoted to training. We estimate empirically the MSE over NT = 100 iterations. Fig.
10.5 displays in the same graph the empirical MSE as well as the theoretical MSE for the
linear prediction and subspace-based semi-blind estimators. At low SNR, we observe that the
theoretical MSE underestimates the real MSE since it does not take into account the term of
order σ2 in the expression of Σ∞. However at moderate and high SNR, we obtain a good match
between theoretical and empirical results.
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Figure 10.5: Theoretical and empirical MSE versus SNR

10.2.6.2 Impact of channel overmodeling

In this experiment, the channel estimation performance in terms of MSE is investigated. The
simulation is undertaken based on 100 Monte Carlo runs of the transmission of ng = 4 OFDM
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symbols on Q = 512 subcarriers, of which np = 16 subcarriers are used for training. The channel
is set to be the same for all the SNR range. We propose to investigate the impact of the over-
modeling of the channel on the performance of the semi-blind estimators. We note that if the
estimated channel order L̂ is equal to L, the semi-blind subspace estimator outperforms the
linear prediction based estimator. But, once L̂ is greater than L, the linear prediction based
estimator becomes better, as we can see on fig. 10.6.
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Figure 10.6: Impact of channel overmodeling.

10.2.6.3 Mean square error with respect to the number of pilots

In this section, we investigate the impact of the number of pilots on the mean square error.
Fig. 10.7 compares the MSE of the least square channel estimator with that of the semi-blind
estimators, when the number of carriers Q is set to 256 and the SNR is set to 10 dB. We also
assume that the channel estimation is conducted over ng = 4 OFDM symbols. We note that for
equal MSE both the linear prediction and subspace estimator, employ at least 20 pilot symbols
less than the least square estimator, thereby saving 5 subcarriers per OFDM symbol.

10.2.6.4 Semi-blind estimation with iterative decoding

At the receiver side, we perform iterative symbol detection and channel decoding. The receiver
consists of a MIMO detector and a SISO channel decoder that exchange extrinsic soft information
with each oter, so as to maximize the aposteriori probabilities. We set the number of iterations
between the MIMO detector and the SISO decoder to 2, [100]. We assume that the binary
information data are encoded by a rate 1/2 NRNSC code with constraint length set to 5 defined
in octal form (037021). Throughout our simulations, we assume that each frame is composed of
ng = 4 OFDM symbols with Q = 512 subcarriers. We also consider 16 − QAM constellations

with Gray labeling and we assume that the channel length has been over-estimated, L̂ = 6. Fig.



10.3. Conclusion 166

nP

M
S
E

Subspace
Least Square
Linear Prediction

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

Figure 10.7: Impact of the number of pilots on the mean square error

10.8 displays the BER for the Least square and the two semi-blind based schemes. We note that
both semi-blind schemes achieve almost the same performance and outperform the least-square
based scheme by about 1dB.
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Figure 10.8: BER versus SNR

10.3 Conclusion

In this chapter, we have proposed a new regularization based method for semi-blind channel
estimation. Our technique is based on the use of a regularizing matrix instead of a scalar, thus
providing more degrees of freedom in the setting of the regularizing constant. Interestingly,
we show that in this case, a closed-form expression for the optimal regularizing matrix exists,
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thereby avoiding the need for iterative computations. Being initially proposed for SIMO systems,
our method has been then extended to the MIMO-OFDM context. As an application, we have
investigated the performance of subspace and linear prediction based estimators for which closed-
form expressions for the regularizing matrix has been provided.



Conclusion

In this thesis, three principal issues have been investigated. The first one deals with performance
analysis for training based systems while taking into account imperfect channel estimation.
In particular, we have made a performance comparison in terms of bit error rate and outage
probability between three training based schemes, namely, the time-division multiplexing scheme
and the conventional and the data-dependent superimposed training schemes. While closed-form
expressions for these performance indexes have been provided only in the asymptotic regime,
the conducted simulations strongly support their accuracy for usual system dimensions.

Still about performance analysis issues, we have established in the second part the asymptotic
normality of the SINR at the output of the LMMSE receiver, in the context of multi-user systems.
Our results apply for a large variety of systems ranging from (receive) correlated MIMO systems
to CDMA (uplink and downlink) based systems. This asymptotic analysis provides insights
about the asymptotic behaviour of the SINR but is not sufficient to accurately approximate the
BER and the outage probability. This can be principally attributed to the fact that the Gaussian
distribution allows negative values and has a zero central third moment, while the SINR always
takes positive values and thus has a non zero third moment. In light of this consideration,
we have proposed to approximate the distribution of the SINR by the Generalized Gamma
distribution and to tune its parameters in such a way that its first three moments equate the
first three asymptotic moments of the SINR.

The third part of our report have dealt with blind and semi-blind techniques. It is common
knowledge that most of the conventional blind methods yield a good performance as long as the
channel order is correctly estimated. Otherwise, the promised performance gains could not be
achieved. In this context, we have proposed a blind equalization technique that combines high
performance with robustness towards channel order over-modeling. The proposed technique is
the extension of an earlier method based on the truncation of the covariance matrix. Unlike
the original approach, our technique can handle non-zero delay equalization, thereby providing
higher performance while inheriting the same interesting properties regarding the robustness to
channel order over-modeling.

On the other hand, the use of ℓp quasi-norms has been found to confer robustness to subspace
blind techniques. Motivated by these interesting results, we have provided in our work theoretical
arguments that strongly support the efficiency of the ℓp quasi-norms and provide useful insights
on the impact of the number of sensors and the channel length on the identifiability condition.

The second issue dealt with in the third part of our report has concerned regularized semi-
blind techniques. For these methods, the setting of the regularizing coefficient can considerably
affect the channel estimation quality. As far as scalar regularization is considered, we have
proved that the asymptotic MSE has a unique minimum, thereby showing the existence of
only one optimal value for the regularizing coefficient. It should be noted that such result was
only observed by simulations but to the best of our knowledge has not been so far established.
As a matter of fact, the asymptotic MSE is not always convex and the eventual zeros of its
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derivative do not have in general closed-form expressions. The quasi-convexity of the MSE has
been conducted by using, in an original way, elementary tools of mathematical analysis.

The second problem that is faced in regularized semi-blind techniques is the optimization
process of the asymptotic MSE. Actually, while our proof establishes the existence of a unique
minimum, it does not tell us how to estimate it. In this regard, we propose to substitute the
regularizing scalar by a regularizing matrix. Interestingly, the optimal regularizing matrix is
unique and has a closed-form expression, thereby avoiding the need for iterative optimization
algorithms. Being first proposed for SIMO systems with subspace blind criterion, the proposed
matrix regularizing method has been extended in a second step to MIMO-OFDM systems using
subspace and linear prediction criteria.

Since a PHD thesis opens more problems than it solves, we end up our report by presenting
some perspectives. Like any other research work, our contribution does not pretend to be
exhaustive in any way. Many questions are deliberately left without answer because of lack of
time. Despite their importance, these questions are just briefly or not mentioned at all in the
present report, but could be pursued as possible research directions. Hereafter, we provide more
insights about these questions in the hope that they could serve to any interested reader.

1. First Part: In the first part of our report, the carried out performance analysis is only
valid for i.i.d Rayleigh channels. Such assumption significantly simplifies calculations but
hardly holds in practice. Extending our performance analysis to more complicated channel
models could be pointed out as a possible research direction.

2. Second Part: When only the asymptotic normality of the SINR can be established, we
show that accurate approximation of the BER and the outage probability can be obtained
by using generalized gamma approximation. Our work has focused on receive correlated
channels but it might be interesting to extend it to general channel profiles. Also, the bit
error rate approximation can be derived by using the Taylor approximation as in the first
part. Comparison between the two approaches (Taylor approximation and Generalized
Gamma approximation) could be a topic for a future work.

3. Third part: Several possible research directions can be further pursued. As for our pro-
posed robust blind MMSE method, future work should focus on implementing it using
adaptive algorithms. In addition, It might be interesting to make comparisons with other
robust blind techniques in terms of BER performance and computational complexity. Also,
Many issues related to our work about the ℓp quasi-norms should be further investigated.
Along our study, only the noiseless case has been considered. A more comprehensive work
should take into account the experienced Gaussian noise, and also investigate the MSE in
case the ℓp quasi-norm fails to correctly identify the channel. Although only non-sparse
channels have been investigated, we believe that it is not so difficult to extend our work
to the case of sparse channels.

Concerning our contributions on regularized semi-blind techniques, two issues need to be
further investigated.

• During our simulations, we have noticed that for usual system dimensions (small
available samples and relatively high window sizes), the estimation of some blind
variables (like the noise projector) may not be accurate. We have also noted that a
considerable gain can be achieved if these quantities are well estimated.

A possible way to improve their estimation is to assume that the sample and the
window sizes grow to infinity with a constant pace.
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• The major effort in the field of regularized semi-blind techniques has been widely
focused on estimating the channel. Semi-blind equalizer estimation techniques that
estimate directly the equalizer in the same way as direct blind methods, have not
been yet considered.
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