Contributions to the theory of sliding mode control

Vincent Brégeault

december, 3rd 2010

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Introduction to sliding mode control
- 2 Adaptive sliding mode control
- Introduction to higher order sliding mode control
- Introduction to time optimal control
- 5 Variable structure and time optimal control
 - Conclusion

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	Vss+Toc	Conclusion
00000					

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Considered system
- Classical SMC
- Equivalent control
- Chattering

2 Adaptive sliding mode control

- Introduction to higher order sliding mode control
- Introduction to time optimal control
- 5 Variable structure and time optimal control
 - 6 Conclusion

Intro SMC ●○○○○	Adaptive SMC 00000	Intro HOSMC	Intro TOC	vss+тос 000000000	Conclusion
Considere	ed system				4

SISO uncertain non linear system under canonical controllability form

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3 \\ &\vdots \\ \dot{x}_n &\in \psi(\mathbf{x}, t) + \left[-C(\mathbf{x}, t), C(\mathbf{x}, t) \right] + \left[\Gamma_m(\mathbf{x}, t), \Gamma_M(\mathbf{x}, t) \right] u \\ y &= x_1 \end{aligned}$$

 $[-C(\mathbf{x}, t), C(\mathbf{x}, t)]$ is a matched perturbation, $[\Gamma_m(\mathbf{x}, t), \Gamma_M(\mathbf{x}, t)]$ an uncertainty on the gain.

•
$$0 < \Gamma_m(\mathbf{x}, t) \leqslant \Gamma_M(\mathbf{x}, t) < \infty$$

• $C(\mathbf{x},t) < \Gamma_m(\mathbf{x},t)u_M$

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	VSS+TOC	Conclusion
Classical	I sliding mo	de control	000	00000000	
[Utkin, 1	1992, Utkin	et al., 1999]		5

• Design a sliding hyperplane defined by

$$\{\mathbf{x} \text{ so that } \sigma(\mathbf{x}) = x_n + a_{n-1}^* x_{n-1} + \ldots + a_1^* x_1 = 0\}$$

Intro SM C	Adaptive SMC	Intro HOSMC	Intro TOC	vss+toc	Conclusion
00000	00000	00000000	000	00000000	
Classical	sliding mo	de control			
[Utkin, 1	1992, Utkin	et al., 1999]			5

• Design a sliding hyperplane defined by

$$\{\mathbf{x} \text{ so that } \sigma(\mathbf{x}) = x_n + a_{n-1}^* x_{n-1} + \ldots + a_1^* x_1 = 0\}$$

◆□> <畳> <目> <目> <目> <目> <</p>

• and a control law $u = -u_M \operatorname{sign}(\sigma(\mathbf{x}))$ which forces the system to the sliding surface in finite time

Intro SM C	Adaptive SMC	Intro HOSMC	Intro TOC	vss+toc	Conclusion
00000	00000	00000000	000	00000000	
Classica	l sliding mo	de control			
[Utkin,]	1992, Utkin	et al., 1999]			5

• Design a sliding hyperplane defined by

$$\{\mathbf{x} \text{ so that } \sigma(\mathbf{x}) = x_n + a_{n-1}^* x_{n-1} + \ldots + a_1^* x_1 = 0\}$$

• and a control law $u = -u_M \operatorname{sign}(\sigma(\mathbf{x}))$ which forces the system to the sliding surface in finite time

The actual control is discontinuous, but 2 useful continuous controls :

• Nominal control : If perturbations are not taken into account, *u_{nom}* can be computed *in advance* :

$$\dot{\mathbf{x}}_n = \psi(\mathbf{x}, t) + \Gamma u_{nom} = -\sum_{i=1}^{n-1} a_i \mathbf{x}_{i+1}$$

$$u_{nom}(\mathbf{x}) = \frac{\sum_{i=1}^{n-1} a_i x_i - \psi(\mathbf{x}, t)}{\Gamma(\mathbf{x}, t)}$$

 $\ensuremath{\mathsf{Use}}$: add nominal control to reduce amplitude of discontinous control :

$$u = u_{nom} - u_M \operatorname{sign}(\sigma)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

The actual control is discontinuous, but 2 useful continuous controls :

 Nominal control : If perturbations are not taken into account, unom can be computed in advance :

$$\dot{\mathbf{x}}_n = \psi(\mathbf{x}, t) + \Gamma u_{nom} = -\sum_{i=1}^{n-1} a_i \mathbf{x}_{i+1}$$

$$u_{nom}(\mathbf{x}) = \frac{\sum_{i=1}^{n-1} a_i x_i - \psi(\mathbf{x}, t)}{\Gamma(\mathbf{x}, t)}$$

 $\ensuremath{\mathsf{Use}}$: add nominal control to reduce amplitude of discontinous control :

$$u = u_{nom} - u_M \operatorname{sign}(\sigma)$$

 Equivalent control : If perturbations are taken into account, u_{eq} can be known afterwards, by filtering.
 Use : observer, suppress discontinuity, dimension amplitude of control

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+тос	Conclusion
○○○●○	00000	000000000	000	000000000	
Chatterin	g				7

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

- time delay, neglected (fast) dynamics
- measurement/observation noise

Intro SMC ○○○●○	Adaptive SMC 00000	Intro HOSMC	Intro TOC 000	vss+тос 000000000	Conclusion
Chattering	g				7

- time delay, neglected (fast) dynamics
- measurement/observation noise

Some ways to reduce it :

• use saturation function instead of sign (boundary layer)

Intro SMC ○○○●○	Adaptive SMC 00000	Intro HOSMC 00000000	Intro TOC	vss+тос 000000000	Conclusion
Chatterin	g				7

- time delay, neglected (fast) dynamics
- measurement/observation noise

Some ways to reduce it :

- use saturation function instead of sign (boundary layer)
- use knowledge of the plant (nominal control)

Intro SMC ○○○●○	Adaptive SMC 00000	Intro HOSMC 00000000	Intro TOC	vss+тос 000000000	Conclusion
Chatterin	g				7

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

- time delay, neglected (fast) dynamics
- measurement/observation noise

Some ways to reduce it :

- use saturation function instead of sign (boundary layer)
- use knowledge of the plant (nominal control)
- use asymptotic convergence observer

Intro SMC ○○○●○	Adaptive SMC 00000	Intro HOSMC 00000000	Intro TOC	vss+тос 000000000	Conclusion
Chatterin	g				7

- time delay, neglected (fast) dynamics
- measurement/observation noise

Some ways to reduce it :

- use saturation function instead of sign (boundary layer)
- use knowledge of the plant (nominal control)
- use asymptotic convergence observer
- add dynamics in the control

Intro SMC ○○○●○	Adaptive SMC 00000	Intro HOSMC 00000000	Intro TOC	vss+тос 000000000	Conclusion
Chatterin	g				7

- time delay, neglected (fast) dynamics
- measurement/observation noise

Some ways to reduce it :

- use saturation function instead of sign (boundary layer)
- use knowledge of the plant (nominal control)
- use asymptotic convergence observer
- add dynamics in the control

Adding a dynamic can be done, for example :

• extending the sytem : u is a new state variable, \dot{u} is the new control

Intro SMC ○○○●○	Adaptive SMC 00000	Intro HOSMC 00000000	Intro TOC	vss+тос 000000000	Conclusion
Chatterin	g				7

- time delay, neglected (fast) dynamics
- measurement/observation noise

Some ways to reduce it :

- use saturation function instead of sign (boundary layer)
- use knowledge of the plant (nominal control)
- use asymptotic convergence observer
- add dynamics in the control

Adding a dynamic can be done, for example :

• extending the sytem : u is a new state variable, \dot{u} is the new control

• using the super twisting algorithm

Intro SMC ○○○●○	Adaptive SMC 00000	Intro HOSMC	Intro TOC	vss+тос 000000000	Conclusion
Chatterin	g				7

- time delay, neglected (fast) dynamics
- measurement/observation noise

Some ways to reduce it :

- use saturation function instead of sign (boundary layer)
- use knowledge of the plant (nominal control)
- use asymptotic convergence observer
- add dynamics in the control

Adding a dynamic can be done, for example :

- extending the sytem : u is a new state variable, \dot{u} is the new control
- using the super twisting algorithm
- adapting the amplitude

Intro SM C	Adaptive SMC	Intro HOSMC	Intro TOC	Vss+Toc	Conclusion
00000	00000	00000000	000	00000000	
Conclus	ion				8

2 design steps = 2 questions :

• Sliding surface : It sets the dynamics of the system in sliding mode. Which one to choose ?

◆□> <畳> <目> <目> <目> <目> <<=>

Intro SM C	Adaptive SMC	Intro HOSMC	Intro TOC	Vss+Toc	Conclusion
00000	00000	00000000	000	00000000	
Conclus	ion				8

2 design steps = 2 questions :

- Sliding surface : It sets the dynamics of the system in sliding mode. Which one to choose ?
- Reaching law : Discontinuous = robust, but chattering.
 How to reduce the chattering while keeping (most of) the robustness ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	Vss+Toc	Conclusion

Introduction to sliding mode control

2 Adaptive sliding mode control

- Control law
- Worst case and enhancement
- Electropneumatic benchmark
- Test of the adaptive control

Introduction to higher order sliding mode control

- Introduction to time optimal control
- 5 Variable structure and time optimal control

6 Conclusion

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+toc	Conclusion
00000	0000	00000000	000	00000000	
Other a	daptive appr	roches			10

◆□> <畳> <目> <目> <目> <目> <<=>

 Fuzzy logic : do not garantee precision [Munoz and Sbarbaro, 2000, Tao et al., 2003] or overestimate the amplitude [Huang et al., 2008]

Intro SMC 00000	Adaptive SMC ●0000	Intro HOSMC	Intro TOC 000	vss+toc 000000000	Conclusion
Other a	daptive appr	roches			10

- Fuzzy logic : do not garantee precision [Munoz and Sbarbaro, 2000, Tao et al., 2003] or overestimate the amplitude [Huang et al., 2008]
- increase amplitude, then use equivalent control : [Lee and Utkin, 2007]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+toc	Conclusion
00000	0000	00000000	000	00000000	
Other a	daptive appr	roches			10

- Fuzzy logic : do not garantee precision [Munoz and Sbarbaro, 2000, Tao et al., 2003] or overestimate the amplitude [Huang et al., 2008]
- increase amplitude, then use equivalent control : [Lee and Utkin, 2007]
- This approach : boundary layer [Plestan et al., 2010, Plestan et al., ture]

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Theorem

The control law $u = -K(t) \operatorname{sign}(\sigma)$ is stable when amplitude K(t) varies as $\dot{K} = \begin{cases} \bar{K}|\sigma|\operatorname{sign}(|\sigma| - \delta(t)) & \text{if } K > 0 \text{ or } \operatorname{sign}(|\sigma| - \delta(t)) > 0\\ 0 & \text{if } K = 0 \text{ and } \operatorname{sign}(|\sigma| - \delta(t)) \leqslant 0 \end{cases}$

 $K(t) \searrow \text{ if } \sigma \in [-\delta(t); \delta(t)] \text{ and} \ K(t) \nearrow \text{ outside}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Theorem

The control law $u = -K(t) \operatorname{sign}(\sigma)$ is stable when amplitude K(t) varies as $(\overline{K}|\sigma|\operatorname{sign}(|\sigma| - \delta(t)))$ if K > 0 or side

$$\mathcal{K} = \begin{cases} \mathcal{K}|\sigma|\operatorname{sign}(|\sigma| - \delta(t)) & \text{if } \mathcal{K} > 0 \text{ or } \operatorname{sign}(|\sigma| - \delta(t)) > 0 \\ 0 & \text{if } \mathcal{K} = 0 \text{ and } \operatorname{sign}(|\sigma| - \delta(t)) \leqslant 0 \end{cases}$$

$$egin{array}{ll} K(t) &\searrow ext{if } \sigma \in [-\delta(t); \delta(t)] ext{ and } K(t)
earrow ext{outside.} \ \delta(t) ext{ must be} \end{array}$$

- as small as possible, for precision
- bigger than amplitude of chattering (depending on K(t))

Theorem

The control law $u = -K(t) \operatorname{sign}(\sigma)$ is stable when amplitude K(t) varies as $\dot{K} = \begin{cases} \bar{K}|\sigma|\operatorname{sign}(|\sigma| - \delta(t)) & \text{if } K > 0 \text{ or sign} \end{cases}$

$$= \begin{cases} \bar{K}|\sigma|\operatorname{sign}(|\sigma| - \delta(t)) & \text{if } K > 0 \text{ or } \operatorname{sign}(|\sigma| - \delta(t)) > 0\\ 0 & \text{if } K = 0 \text{ and } \operatorname{sign}(|\sigma| - \delta(t)) \leqslant 0 \end{cases}$$

$$egin{array}{ll} K(t)\searrow ext{if }\sigma\in [-\delta(t);\delta(t)] ext{ and }\ K(t)\nearrow ext{outside.}\ \delta(t) ext{ must be} \end{array}$$

- as small as possible, for precision
- bigger than amplitude of chattering (depending on K(t))

If θ majorant of delay

$$\delta(t) \geqslant 2\Gamma_M \theta \, K(t)$$

Consider the system as LTI, because $sign(\sigma)$ constant.

$$\begin{cases} \dot{\sigma} = -\Gamma_m K + C \\ \dot{\kappa} = \bar{\kappa} \sigma \end{cases} \quad \Leftrightarrow \quad \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \begin{bmatrix} C \\ 0 \end{bmatrix}$$

◆□> <畳> <目> <目> <目> <目> <<=>

Consider the system as LTI, because $sign(\sigma)$ constant.

$$\begin{cases} \dot{\sigma} = -\Gamma_m K + C\\ \dot{K} = \bar{K}\sigma \end{cases} \quad \Leftrightarrow \quad \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \begin{bmatrix} C\\ 0 \end{bmatrix}$$

Majorant : $\sigma_M = \frac{C}{\sqrt{\bar{K}\Gamma_m}}$

◆□> <畳> <目> <目> <目> <目> <<=>

Consider the system as LTI, because $sign(\sigma)$ constant.

$$\begin{cases} \dot{\sigma} = -\Gamma_m K + C \\ \dot{K} = \bar{K}\sigma \end{cases} \quad \Leftrightarrow \quad \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \begin{bmatrix} C \\ 0 \end{bmatrix}$$

Majorant : $\sigma_M = \frac{C}{\sqrt{\bar{K}\Gamma_m}}$

・ロト ・(日)・ (日)・ (日)・ (日)・

Add a linear term : $u = -K(t) \operatorname{sign}(\sigma) - K_I \sigma$

The majorant of
$$\sigma$$
 become : $\sigma_M = \frac{C}{\sqrt{\bar{K}\Gamma_m}} e^{-\frac{\kappa_{l^{\pi}}}{\sqrt{4\bar{\kappa}\Gamma_m - \kappa_l^2}}}$

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	V\$\$+TOC	Conclusion
00000	000●0	000000000	000	000000000	
Electrop	neumatic be	enchmark			13

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	VSS+TOC	Conclusion
00000	00000	000000000	000	000000000	
Electrop	neumatic be	enchmark			13

System :

$$\dot{p}_{P} = \frac{krT}{V_{P}(y)} [\phi_{P}(p_{P}) + \psi_{P}(p_{P}, \operatorname{sign}(u_{P}))u_{P} - \frac{S}{rT}p_{P}v]$$

$$\dot{p}_{N} = \frac{krT}{V_{N}(y)} [\phi_{N}(p_{N}) + \psi_{N}(p_{N}, \operatorname{sign}(u_{N}))u_{N} + \frac{S}{rT}p_{N}v]$$

$$\dot{v} = \frac{1}{M} [S(p_{P} - p_{N}) - F_{f} - F]$$

$$\dot{y} = v$$

Outputs :

- position : y (relative degree 3)
- mean of pressures : $\frac{p_P + p_N}{2}$ (relative degree 1) (control stiffness or consumption of air)

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+toc	Conclusion

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Introduction to sliding mode control

Adaptive sliding mode control

Introduction to higher order sliding mode control

- Definitions
- Errors
- Homogeneity
- Examples of second order algorithms
- Proof of convergence of the super twisting

Introduction to time optimal control

5 Variable structure and time optimal control

Conclusion

Intro SMC 00000	Adaptive SMC 00000	Intro HOSMC ●○○○○○○○○	Intro TOC	V\$\$+TOC 000000000	Conclusion
Definitior	ns [Levant,	1993]			16

Definition (Ideal n-order sliding mode)

The sliding variable σ and its n-1 successive derivatives are continuous and reach 0, in the *absence* of chattering.

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+тос	Conclusion
00000	00000	●○○○○○○○○	000	000000000	
Definition	ns [Levant,	1993]			16

Definition (Ideal n-order sliding mode)

The sliding variable σ and its n-1 successive derivatives are continuous and reach 0, in the *absence* of chattering.

Definition (Real n-order sliding mode)

Precision in $\mathcal{O}(\tau^n)$, in the presence of a source of chattering of amplitude majored by τ . Usually time delay, measurement error $\tau = \sqrt[n]{\epsilon}$.

Theorem

If there is a real n^{th} order sliding mode, then $\sigma = \mathcal{O}(\tau^n)$, $\dot{\sigma} = \mathcal{O}(\tau^{n-1})$, ..., $\sigma^{(n-1)} = \mathcal{O}(\tau)$

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	V\$\$+TOC	Conclusion
00000	00000	O●OOOOOOO	000	000000000	
Error due	to time de	elay			17

Theorem ([Levant, 1993])

lf

- $\sigma^{(n)}$ is continuous and bounded on an interval au
- σ remains in a viciny of 0

then $\sigma = \mathcal{O}(\tau^n)$

Example

A classical sliding mode is

- ullet first order with respect to the sliding variable σ
- n^{th} order with respect to x_1 for chattering due to pure time delay

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

If the state is known with the precision

$$\boldsymbol{\epsilon} = [\mathcal{O}(\boldsymbol{\epsilon}) \ \mathcal{O}(\boldsymbol{\epsilon}^{\frac{1}{2}}) \ \dots \ \mathcal{O}(\boldsymbol{\epsilon}^{\frac{1}{n-1}}) \ \mathcal{O}(\boldsymbol{\epsilon}^{\frac{1}{n}})]^{\mathrm{T}}$$

for example, if it comes from a differentiator such as [Levant, 2003].

For a classical sliding mode, the error is $\sigma(\Delta \mathbf{x}) = \lambda_1 \Delta x_1 + \ldots + \lambda_{n-1} \Delta x_{n-1} + \Delta x_n$ $= \lambda_1 \mathcal{O}(\epsilon) + \lambda_2 \mathcal{O}(\epsilon^{\frac{1}{2}}) + \ldots$ $+ \lambda_{n-1} \mathcal{O}(\epsilon^{\frac{1}{n-1}}) + \mathcal{O}(\epsilon^{\frac{1}{n}})$ $= \mathcal{O}(\epsilon^{\frac{1}{n}}) = \mathcal{O}(\tau)$

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+тос	Conclusion
00000	00000	○○○●○○○○○	000	000000000	
Homogen	eity [Baccio	otti and Ros	sier, 2001,	Levant, 200	5] 19

Example

• Linear system : homogeneous with degree 0 : $f(\kappa \mathbf{x}) = \kappa f(\mathbf{x})$

Definition

A vector field $\mathbf{f} \in \mathbb{R}^n$ is homogeneous of degree q by the dilation $d_{\kappa}(x_1, \ldots, x_n) \to (\kappa^{m_1} x_1, \ldots, \kappa^{m_n} x_n)$, with $m_i > 0$ and $\kappa > 0$ if $\mathbf{f}(d_{\kappa} \mathbf{x}) = \kappa^q d_{\kappa} \mathbf{f}(\mathbf{x})$

Example • Linear system : homogeneous with degree 0 : $f(\kappa \mathbf{x}) = \kappa f(\mathbf{x})$

Definition

A vector field $\mathbf{f} \in \mathbb{R}^n$ is homogeneous of degree q by the dilation $d_{\kappa}(x_1, \ldots, x_n) \to (\kappa^{m_1} x_1, \ldots, \kappa^{m_n} x_n)$, with $m_i > 0$ and $\kappa > 0$ if

$$\boldsymbol{f}(d_{\kappa}\mathbf{x}) = \kappa^{q} d_{\kappa} \boldsymbol{f}(\mathbf{x})$$

Definition (Equivalent definition)

The differential equation

$$\dot{\mathbf{x}} = \boldsymbol{f}(\mathbf{x})$$

is invariant with respect to the transformation $(t, \mathbf{x}) \rightarrow (\kappa^{-q} t, d_{\kappa} \mathbf{x})$.

Example

• Linear system : homogeneous with degree 0 : $f(\kappa \mathbf{x}) = \kappa f(\mathbf{x})$

Definition

A vector field $\mathbf{f} \in \mathbb{R}^n$ is homogeneous of degree q by the dilation $d_{\kappa}(x_1, \ldots, x_n) \to (\kappa^{m_1} x_1, \ldots, \kappa^{m_n} x_n)$, with $m_i > 0$ and $\kappa > 0$ if

$$\boldsymbol{f}(d_{\kappa}\mathbf{x}) = \kappa^{q} d_{\kappa} \boldsymbol{f}(\mathbf{x})$$

Definition (Equivalent definition)

The differential equation

$$\dot{\mathbf{x}} = \boldsymbol{f}(\mathbf{x})$$

is invariant with respect to the transformation $(t, \mathbf{x}) \rightarrow (\kappa^{-q} t, d_{\kappa} \mathbf{x})$.

Example

• Linear system : homogeneous with degree 0 : $f(\kappa \mathbf{x}) = \kappa f(\mathbf{x})$

 Pure chain of integrators : homogeneous with degree -1 and weights n,n - 1,...,1. Homogeneity kept with a suitable homogeneous control

Definition (Contractivity)

[Levant, 2005] A differential inclusion is contractive iff there exist 2 compacts D_1 and D_2 and a time T > 0 so that

- $d_\kappa D_1 \in D_1$ for $\kappa < 1$,
- D_2 belong to the interior of D_1 and contain the origin,
- all the trajectories starting in D_1 reach D_2 at the time T.

Definition (Contractivity)

[Levant, 2005] A differential inclusion is contractive iff there exist 2 compacts D_1 and D_2 and a time T > 0 so that

- $d_\kappa D_1 \in D_1$ for $\kappa < 1$,
- D_2 belong to the interior of D_1 and contain the origin,
- all the trajectories starting in D_1 reach D_2 at the time T.

ション ふむ くり くり くち くち くち くち くち くち く

Theorem

[Levant, 2005] For a homogeneous system with a negative degree, the following properties are equivalent :

Asymptotic stability \Leftrightarrow finite time stability \Leftrightarrow Contractivity.

Twisting algorithm

$$u = \begin{cases} -\alpha_m \operatorname{sign}(\sigma_1) & \operatorname{si} \sigma_1 \sigma_2 < 0\\ -\alpha_M \operatorname{sign}(\sigma_1) & \operatorname{si} \sigma_1 \sigma_2 \ge 0 \end{cases}$$

with α_m and α_M so that

Suboptimal algorithm

$$u = \begin{cases} -\alpha_m \operatorname{sign}(\sigma_1) & \operatorname{si} \sigma_1 \sigma_2 < 0\\ -\alpha_M \operatorname{sign}(\sigma_1) & \operatorname{si} \sigma_1 \sigma_2 \ge 0 \end{cases}$$

$$u(t) = \lambda(t)u_M \operatorname{sign}(\sigma_1(t) - \frac{\sigma_1(t_M)}{2})$$

with
$$\lambda(t) = \begin{cases} 1 & \text{if } |\sigma_1(t)| \ge \sigma_1(t_M) \\ \lambda^* & \text{if } |\sigma_1(t)| < \sigma_1(t_M) \end{cases}$$

and t_M , the last moment the state reaches the σ_1 axis $(\sigma_2 = 0)$.

$$\lambda^* \in]0;1] \cap]0, \frac{3\Gamma_m}{\Gamma_M}[u_M > \max(\frac{C}{\lambda^*\Gamma_m}, \frac{4C}{3\Gamma_m - \lambda^*\Gamma_M})]$$

Super twisting algorithm

$$u(t) = u_{l}(t) + \lambda_{1}\sqrt{L}\sqrt{|\sigma_{1}|}\operatorname{sign}(\sigma_{1})$$

$$\dot{u}_{l}(t) = \lambda_{2}L\operatorname{sign}(\sigma_{1})$$
(1)

with
$$L = \frac{C}{\Gamma_m}$$
 and
• $\lambda_2 > 1$
• $\lambda_1 > \sqrt{-2\lambda_2 + 2\sqrt{\lambda_2^2 + 2\lambda_2 + 2}}$

Common values : $\lambda_2 = 1.1$ et $\lambda_1 = 2$.

• Original proof [Levant, 1998] : numerical, gives the smallest coefficients, but tied to super twisting

• Original proof [Levant, 1998] : numerical, gives the smallest coefficients, but tied to super twisting

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

• Majorant based proof [Davila et al., 2005] : quite small coefficients, more easily extendable to similar control laws

- Original proof [Levant, 1998] : numerical, gives the smallest coefficients, but tied to super twisting
- Majorant based proof [Davila et al., 2005] : quite small coefficients, more easily extendable to similar control laws
- Lyapunov based proofs [Moreno and Osorio, 2008] : more easily extendable to other control laws, but large coefficients

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Original proof [Levant, 1998] : numerical, gives the smallest coefficients, but tied to super twisting
- Majorant based proof [Davila et al., 2005] : quite small coefficients, more easily extendable to similar control laws
- Lyapunov based proofs [Moreno and Osorio, 2008] : more easily extendable to other control laws, but large coefficients

Steps of the proof

• Homogeneity : only need to study the trajectory in one half plane : stable iff $\|\sigma_f\| < \|\sigma_0\|$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Original proof [Levant, 1998] : numerical, gives the smallest coefficients, but tied to super twisting
- Majorant based proof [Davila et al., 2005] : quite small coefficients, more easily extendable to similar control laws
- Lyapunov based proofs [Moreno and Osorio, 2008] : more easily extendable to other control laws, but large coefficients

${\small Steps \ of \ the \ proof}$

• Homogeneity : only need to study the trajectory in one half plane : stable iff $\|\sigma_f\| < \|\sigma_0\|$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

study only the worst case

- Original proof [Levant, 1998] : numerical, gives the smallest coefficients, but tied to super twisting
- Majorant based proof [Davila et al., 2005] : quite small coefficients, more easily extendable to similar control laws
- Lyapunov based proofs [Moreno and Osorio, 2008] : more easily extendable to other control laws, but large coefficients

${\small Steps \ of \ the \ proof}$

• Homogeneity : only need to study the trajectory in one half plane : stable iff $\|\sigma_f\| < \|\sigma_0\|$

- study only the worst case
- simplify the differential equation to obtain analytical results

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	Vss+Toc	Conclusion

- Introduction to sliding mode control
- 2 Adaptive sliding mode control
- Introduction to higher order sliding mode control
 - Introduction to time optimal control
 - Open loop control
 - Closed loop control
 - Compute the implicit equation

5 Variable structure and time optimal control

Conclusion

ショット 本語 マ 本語 キ 本語 キ ふる キ

• is a bang bang control with finite number of switchings

- is a bang bang control with finite number of switchings
- this control sequence is unique

The time optimal control: [Athans and Falb, 1966, Boltjanski, 1969]

- is a bang bang control with finite number of switchings
- this control sequence is unique

Theorem (Feldbaum's theorem)

[Athans and Falb, 1966, Boltyanski and Gorelikova, 1997]

• Order n system with n real poles \Rightarrow at most n phases (n - 1 switchings)

Theorem

The time optimal closed loop control has the form

$$v = -v_M \operatorname{sign}(f_{v_M}(\mathbf{x}))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

 $f_{v_M}(x)=0$ is the equation of a switching surface computed for an amplitude of control $v_M.$

Theorem

The time optimal closed loop control has the form

$$v = -v_M \operatorname{sign}(f_{v_M}(\mathbf{x}))$$

 $f_{v_M}({\bf x})=0$ is the equation of a switching surface computed for an amplitude of control v_M .

In general, switching surface eq sliding surface \Leftrightarrow set of trajectories of the system

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

Theorem

The time optimal closed loop control has the form

$$v = -v_M \operatorname{sign}(f_{v_M}(\mathbf{x}))$$

 $f_{v_M}({\bf x})=0$ is the equation of a switching surface computed for an amplitude of control v_M .

In general, switching surface \neq sliding surface \Leftrightarrow set of trajectories of the system

Lemma ([Brégeault and Plestan, 2009])

For systems with real poles only,

switching surface \Leftrightarrow trajectories of the system driven by a time optimal control with at most n-1 phases

Function
$$[x_1, \ldots x_k]^{\mathrm{T}} = \boldsymbol{f}_k(s, \tau_1, \ldots, \tau_k)$$

Theorem ([Brégeault and Plestan, 2009])

 $\forall k \leq n, f_k$, is a bijection between $\{-1; +1\} \times \mathbb{R}^{+^k}$ and \mathcal{R}_k .

 \Rightarrow Equation of the switching surface : $x_n - x_{n_S}(x_1, \dots, x_{n-1}, v_M) = 0$ for systems in canonical controllability form

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Function
$$[x_1, \ldots x_k]^{\mathrm{T}} = \boldsymbol{f}_k(s, \tau_1, \ldots, \tau_k)$$

Theorem ([Brégeault and Plestan, 2009])

 $\forall k \leq n$, \mathbf{f}_k , is a bijection between $\{-1; +1\} \times \mathbb{R}^{+^k}$ and \mathcal{R}_k .

 \Rightarrow Equation of the switching surface : $x_n - x_{n_S}(x_1, \dots, x_{n-1}, v_M) = 0$ for systems in canonical controllability form

 \Rightarrow Algorithm to compute the switching surface step by step, one dimension at a time

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Function
$$[x_1, \ldots x_k]^{\mathrm{T}} = \boldsymbol{f}_k(s, \tau_1, \ldots, \tau_k)$$

Theorem ([Brégeault and Plestan, 2009])

 $\forall k \leq n, f_k$, is a bijection between $\{-1; +1\} \times \mathbb{R}^{+^k}$ and \mathcal{R}_k .

 \Rightarrow Equation of the switching surface : $x_n - x_{n_S}(x_1, \dots, x_{n-1}, v_M) = 0$ for systems in canonical controllability form

 \Rightarrow Algorithm to compute the switching surface step by step, one dimension at a time

For pure chains of integrators :

The time optimal switching surface is homogeneous of degree -1. So, $f_{v_M}(\mathbf{x}) = \|\mathbf{x}\|_H f_{v_M}(\frac{\mathbf{x}}{\|\mathbf{x}\|_H})$ \Rightarrow reduces the dimension of the set of points by 1 and increases preci

 \Rightarrow reduces the dimension of the set of points by 1, and increases precision near the origin.

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+toc	Conclusion

- Introduction to sliding mode control
- 2 Adaptive sliding mode control
- Introduction to higher order sliding mode control
- Introduction to time optimal control

5 Variable structure and time optimal control

- Parametrization of the system
- Control law
- Proof of stability
- Asymptotic precision
- Examples
- General case : VSS
- Reduction of the chattering
- Example

◆□> <畳> <目> <目> <目> <目> <<=>

Reference system : totally known LTI system...

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{v} \Leftrightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \vdots \\ \dot{x}_n \in \sum_{i=1}^n a_i x_i + \mathbf{v} \end{cases}$$

Reference system : totally known LTI system...

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{v} \Leftrightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \vdots \\ \dot{x}_n \in \sum_{i=1}^n a_i \, x_i + \mathbf{v} \end{cases}$$

... because all the uncertainties are in the new virtual control

$$v \in [-C'; C'] + [\Gamma_m; \Gamma_M]u$$

so that $-C' + \Gamma_m u_M > 0$.

Reference system : totally known LTI system...

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{v} \Leftrightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \vdots \\ \dot{x}_n \in \sum_{i=1}^n a_i x_i + \mathbf{v} \end{cases}$$

... because all the uncertainties are in the new virtual control

$$v \in [-C'; C'] + [\Gamma_m; \Gamma_M]u$$

so that $-C' + \Gamma_m u_M > 0$.

If
$$u = \pm u_M$$
, $|v| \ge \Gamma_m u_M - C' > 0$

 $\Gamma_M u_M + C$ $-\Gamma_m u_M - C$ -0 $-\Gamma_m u_M + C$ $-\Gamma_M u_M - C$

We can theoretically generate any control within $[-(\Gamma_m u_M - C'); \Gamma_m u_M - C']$ thanks to high frequency switching (equivalent control).

Prove the stability of the switching surface : Time optimal switching surface $\Leftrightarrow \tau_n(\mathbf{x}) = 0$

Intro SMC 00000	Adaptive SMC 00000	Intro HOSMC	Intro TOC	vss+тос ००●०००००	Conclusion
ldeal slid	ing mode				32

Prove the stability of the switching surface : Time optimal switching surface $\Leftrightarrow \tau_n(\mathbf{x}) = 0$ Lyapunov function: $\tau_n(\mathbf{x})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Prove the stability of the switching surface : Time optimal switching surface $\Leftrightarrow \tau_n(\mathbf{x}) = 0$ Lyapunov function: $\tau_n(\mathbf{x})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Nominal case (pure time optimal) : $\tau_n(\mathbf{x}(t)) = \tau_n(t=0) - t$ $\Rightarrow \dot{\tau}_n = -1$

Prove the stability of the switching surface : Time optimal switching surface $\Leftrightarrow \tau_n(\mathbf{x}) = 0$ Lyapunov function: $\tau_n(\mathbf{x})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Nominal case (pure time optimal) : $\tau_n(\mathbf{x}(t)) = \tau_n(t=0) - t$ $\Rightarrow \dot{\tau}_n = -1$

Real case (with uncertainties) :

The direction of the control $\mathbf{b}_{V_N} \operatorname{sign}(f_{v_N}(\mathbf{x}))$ is so that τ_n decreases as fast as possible.

As $\Gamma_m u_M - {\cal C}' \geqslant v_N$, au_n decreases at least as fast : $\dot{ au}_n \leqslant -1$

Prove the stability of the switching surface : Time optimal switching surface $\Leftrightarrow \tau_n(\mathbf{x}) = 0$ Lyapunov function: $\tau_n(\mathbf{x})$

Nominal case (pure time optimal) : $\tau_n(\mathbf{x}(t)) = \tau_n(t=0) - t$ $\Rightarrow \dot{\tau}_n = -1$

Real case (with uncertainties) :

The direction of the control $\mathbf{b}_{V_N} \operatorname{sign}(f_{v_N}(\mathbf{x}))$ is so that τ_n decreases as fast as possible.

As $\Gamma_m u_M - \mathcal{C}' \geqslant v_N$, au_n decreases at least as fast : $\dot{ au}_n \leqslant -1$

 \Rightarrow attractive surface \Rightarrow sliding mode

 \Rightarrow the system behaves like a LTI system subject to a time optimal control \Rightarrow stable $r_{\rm th}^{\rm th}$ order ideal sliding mode

 \Rightarrow stable n^{th} order ideal sliding mode.

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+тос	Conclusion
00000	00000	000000000	000	○○○●○○○○○	
Real slidir	ng mode				33

• Delays : n^{th} order sliding

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

- Delays : n^{th} order sliding
- Measurement/observation error : state reaches $S + \mathcal{E}$, with $\mathcal{E} = [\mathcal{O}(\epsilon) \ \mathcal{O}(\epsilon^{\frac{1}{2}}) \ \dots \ \mathcal{O}(\epsilon^{\frac{1}{n-1}}) \ \mathcal{O}(\epsilon^{\frac{1}{n}})]^{\mathrm{T}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

- Delays : *n*th order sliding
- Measurement/observation error : state reaches $S + \mathcal{E}$, with $\mathcal{E} = [\mathcal{O}(\epsilon) \ \mathcal{O}(\epsilon^{\frac{1}{2}}) \ \dots \ \mathcal{O}(\epsilon^{\frac{1}{n-1}}) \ \mathcal{O}(\epsilon^{\frac{1}{n}})]^{\mathrm{T}}$
- Shape of the surface : parametric equation of the surface : $(s, k_1\tau, k_2\tau, \dots, k_{n-1}\tau, 0)$ with small $\tau > 0$ Integrating the system with this control yields

$$\begin{aligned} x_i &= \alpha_i(s, v_N, k_2, \dots, k_{n-1})\tau^{n+1-i} + \mathcal{O}(\tau^{n+2-i}) \\ \dot{x}_n &= \sum_{i=1}^n a_i x_i + |v| \operatorname{sign}(f_{v_N}(\mathbf{x})) = \mathcal{O}(\tau) + |v| \operatorname{sign}(f_{v_N}(\mathbf{x})) \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Delays : *n*th order sliding
- Measurement/observation error : state reaches $S + \mathcal{E}$, with $\mathcal{E} = [\mathcal{O}(\epsilon) \ \mathcal{O}(\epsilon^{\frac{1}{2}}) \ \dots \ \mathcal{O}(\epsilon^{\frac{1}{n-1}}) \ \mathcal{O}(\epsilon^{\frac{1}{n}})]^{\mathrm{T}}$
- Shape of the surface : parametric equation of the surface : $(s, k_1\tau, k_2\tau, \dots, k_{n-1}\tau, 0)$ with small $\tau > 0$ Integrating the system with this control yields

$$\begin{aligned} x_i &= \alpha_i(s, v_N, k_2, \dots, k_{n-1})\tau^{n+1-i} + \mathcal{O}(\tau^{n+2-i}) \\ \dot{x}_n &= \sum_{i=1}^n a_i x_i + |v| \operatorname{sign}(f_{v_N}(\mathbf{x})) = \mathcal{O}(\tau) + |v| \operatorname{sign}(f_{v_N}(\mathbf{x})) \end{aligned}$$

$$\Rightarrow \quad \mathbf{x}_{\mathcal{S}} = [\mathcal{O}(\tau^n) \mathcal{O}(\tau^{n-1}) \dots \mathcal{O}(\tau)]^{\mathrm{T}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

System:

$$\dot{\sigma}_1 = \sigma_2$$

$$\dot{\sigma}_2 \in [-C; C] + [\Gamma_m; \Gamma_M] u$$

Control:

$$u = -u_M \operatorname{sign} \left(\sigma_2 + \sqrt{2v_N} \sqrt{|\sigma_1|} \operatorname{sign}(\sigma_1) \right)$$

with $v_N \leqslant \Gamma_m u_M - C$

System:

$$\dot{\sigma}_1 = \sigma_2$$

$$\dot{\sigma}_2 \in [-C; C] + [\Gamma_m; \Gamma_M] u$$

Control:

$$u = -u_M \operatorname{sign} \left(\sigma_2 + \sqrt{2v_N} \sqrt{|\sigma_1|} \operatorname{sign}(\sigma_1) \right)$$

with $v_N \leqslant \Gamma_m u_M - C$

2nd order sliding mode control with prescribed convergence law:

$$u = -u_M \operatorname{sign}\left(\sigma_2 + \beta \sqrt{|\sigma_1|} \operatorname{sign}(\sigma_1)\right)$$

with $\frac{\beta^2}{2} \leqslant \Gamma_m u_M - C$ [Levant, 2007]

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Intro SMC 00000	Adaptive SMC 00000	Intro HOSMC	Intro TOC 000	Vss+тос ○○○○○●○○	Conclusion
General L	TI systems a	and VSS	control		36

Theorem

The control

 $u = -u_M \operatorname{sign}(f_{v_N}(\mathbf{x}))$

with v_N the amplitude of the reference control chosen so that:

 $0 < v_N \leqslant \Gamma_m u_M - C'$

is a variable structure control which stabilizes the system in finite time. The convergence time is no greater than the corresponding time optimal control law with amplitude v_N .

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Intro SMC 00000	Adaptive SMC 00000	Intro HOSMC	Intro TOC 000	Vss+тос ○○○○○●○○	Conclusion
General L	TI systems a	and VSS	control		36

Theorem

The control

 $u = -u_M \operatorname{sign}(f_{v_N}(\mathbf{x}))$

with v_N the amplitude of the reference control chosen so that:

 $0 < v_N \leqslant \Gamma_m u_M - C'$

is a variable structure control which stabilizes the system in finite time. The convergence time is no greater than the corresponding time optimal control law with amplitude v_N .

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Problem : The nominal control is neither continuous in time nor in space. \Rightarrow use of saturation or nominal control do not work

Problem : The nominal control is neither continuous in time nor in space. \Rightarrow use of saturation or nominal control do not work **Solution** : Add a dynamic : compute the time optimal switching surface for an LTI system of order n + 1, and the corresponding nominal dynamics of u and x_n .

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Problem : The nominal control is neither continuous in time nor in space. \Rightarrow use of saturation or nominal control do not work **Solution** : Add a dynamic : compute the time optimal switching surface for an LTI system of order n + 1, and the corresponding nominal dynamics of u and x_n .

Theorem

The control law using

• a super twisting of sliding variable
$$x_n - x_{n_{nom}}(x_1, \dots, x_{n-1})$$

coefficients $L = \frac{C + L_{\gamma} v_N}{\Gamma_m}$, $\lambda_1 = 1$, $\lambda_2 = 1.1$

stabilizes the system in finite time

Neglected first order dynamic (time constant: 10ms), and sinusoidal matched perturbation.

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	Vss+Toc	Conclusion

Introduction to sliding mode control

- 2 Adaptive sliding mode control
- Introduction to higher order sliding mode control
- Introduction to time optimal control
- 5 Variable structure and time optimal control
- 6 Conclusion

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+тос	Conclusion
00000	00000	000000000	000	000000000	
Conclusio	on				40

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Conclusion:

• Adaptive sliding mode

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+тос	Conclusion
00000	00000	000000000	000	000000000	
Conclusio	on				40

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Conclusion:

- Adaptive sliding mode
- Intermediate proof of convergence of the super twisting algorithm

Intro SMC 00000	Adaptive SMC 00000	Intro HOSMC 000000000	Intro TOC	VSS+TOC 000000000	Conclusion
Conclusio	n				40

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusion:

- Adaptive sliding mode
- Intermediate proof of convergence of the super twisting algorithm
- Algorithm to compute the time optimal control switching surface

Intro SMC 00000	Adaptive SMC 00000	Intro HOSMC 000000000	Intro TOC	vss+тос 000000000	Conclusion
Conclusio	n				40

- Adaptive sliding mode
- Intermediate proof of convergence of the super twisting algorithm
- Algorithm to compute the time optimal control switching surface
- New control law : VSS+TOC (HOSMC for real poles, VSS for complex poles, reduction of chattering for real poles)

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Intro SMC 00000	Adaptive SMC 00000	Intro HOSMC	Intro TOC 000	VSS+TOC 000000000	Conclusion
Conclusio	n				40

- Adaptive sliding mode
- Intermediate proof of convergence of the super twisting algorithm
- Algorithm to compute the time optimal control switching surface
- New control law : VSS+TOC (HOSMC for real poles, VSS for complex poles, reduction of chattering for real poles)

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Perspectives:

• Adaptive control for higher order sliding mode

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+тос	Conclusion
00000	00000	000000000	000	000000000	
Conclusio	n				40

- Adaptive sliding mode
- Intermediate proof of convergence of the super twisting algorithm
- Algorithm to compute the time optimal control switching surface
- New control law : VSS+TOC (HOSMC for real poles, VSS for complex poles, reduction of chattering for real poles)

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Perspectives:

- Adaptive control for higher order sliding mode
- Improve algorithms to compute the switching surfaces

Intro SMC	Adaptive SMC	Intro HOSMC	Intro TOC	vss+тос	Conclusion
00000	00000	000000000	000	000000000	
Conclusio	n				40

- Adaptive sliding mode
- Intermediate proof of convergence of the super twisting algorithm
- Algorithm to compute the time optimal control switching surface
- New control law : VSS+TOC (HOSMC for real poles, VSS for complex poles, reduction of chattering for real poles)

Perspectives:

- Adaptive control for higher order sliding mode
- Improve algorithms to compute the switching surfaces
- Take saturation into account in VSS+TOC smooth control laws

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Intro SMC 00000	Adaptive SMC 00000	Intro HOSMC	Intro TOC	VSS+TOC 000000000	Conclusion
Conclusio	n				40

- Adaptive sliding mode
- Intermediate proof of convergence of the super twisting algorithm
- Algorithm to compute the time optimal control switching surface
- New control law : VSS+TOC (HOSMC for real poles, VSS for complex poles, reduction of chattering for real poles)

Perspectives:

- Adaptive control for higher order sliding mode
- Improve algorithms to compute the switching surfaces
- Take saturation into account in VSS+TOC smooth control laws
- Extend VSS+TOC algorithms to MIMO or nonlinear cases

Bibliography

- Athans, M. and Falb, P. L. (1966). Optimal Control. An introduction to the theory and its applications. McGraw Hill. Lincoln library publications.
- Bacciotti, A. and Rosier, L. (2001).
 Liapunov functions and stability in control theory.
 Lecture notes in control and information sciences. Springer.

Boltjanski, V. G. (1969). *Mathematische Methoden der optimalen Steuerung*. Carl Hanser, 2. edition.

Boltyanski, V. and Gorelikova, S. (1997). Optimal synthesis for non oscillatory controlled objects. *Journal of Applied Analysis*, 3(1):1–21.

Brégeault, V. and Plestan, F. (2009).
 High order sliding mode control based on a time optimal control scheme.
 In ROCOND'09.

Brégeault, V., Plestan, F., Shtessel, Y., and Poznyak, A. (2010).