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Introduction

Consider a set of polynomials {F1, . . . , Fs} ⊆ K[X1, . . . , Xn], K a field, and consider its set
of zeros

V (F1, . . . , Fs) = {P ∈ Kn|Fi(P ) = 0, i = 1, . . . , s}.

The set of points V (F1, . . . , Fs) is an algebraic set or a variety of Kn
, K the algebraic

closure of K. Actually, this set of points is the same as V (a), where a is the ideal in
K[X1, . . . , Xn] generated by the set of polynomials {F1, . . . , Fs}. An algebraic set is said to
be irreducible if it can not be expressed as the union of two proper algebraic subsets, and it
is said to be reducible otherwise. If we consider a reducible algebraic set and we write it as
union of irreducible algebraic subsets, these are the irreducible components (or simply the
components).

We will consider an algebraic curve (that is, an algebraic set of dimension 1) in the affine
space C2 or C3 and our aim is to find its irreducible components, i.e. the polynomials defining
them.
In both affine spaces, the decomposition of a curve exists and is unique, in the sense that
there is a finite number of irreducible components which are uniquely determined. We are
interested in developing a practical method to construct this decomposition.

In mathematics, we often deal with geometric problems in higher dimensional spaces by
means of induction: that is, once the problem is solved in a “smaller” space, you can solve
the problem also in a “bigger” space through the known properties of the small one.
This is what we plan to do, we will bring back the problem of decomposing a curve in C3 to
the problem of decomposing a curve in C2.

Nevertheless, at a first sight, the situation in C3 is dramatically different from the situation
in C2.

C2 : a curve C is an algebraic set of dimension 1, so it is defined by a principal ideal:

V (a) = C with a = (f(X, Y )) ⊆ C[X, Y ].

Then, C is irreducible if and only if f(X, Y ) is irreducible in C[X, Y ]. The problem
of decomposing C in its irreducible components C1, . . . ,Cs is then equivalent to the
problem of computing the factorization of f(X, Y ) in C[X, Y ].
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C3 : a curve C is not defined by a single polynomial, we need 2 (or more). In this case,
the decomposition of C in C1, . . . ,Cs is equivalent to the primary decomposition of
the ideal a, such that V (a) = C .

In the thesis we will study the decomposition of curves defined by rational polynomials.

The problem of absolute factorization (and rational factorization) was studied by many
authors, who proposed more and more performing algorithms (see [45], [46] for a survey on
the history of the subject).
On the contrary, the problem of computing the primary decomposition of an ideal a of
C[X1, . . . , Xn] was tackled with different techniques (see for instance [21] and the refe-
rences therein) and the research in this field is in continuous progress (for example, the case
of 0-dimensional ideals, see [23]). However, there is not yet an efficient strategy for the
general case. Two of the most recent strategies for curves in C3 rely on the reduction to the
case of a set of points on a plane and use numerical computations (see [29], [73]).
In fact, it is computationally advantageous to solve the problem passing from an algebraic
set of dimension 1 in C3 to an algebraic set of dimension 0 in C2. Indeed passing from a
curve in C3 to a curve in C2 would require hard computations.

Nevertheless, this is exactly what we will do: once studied an absolute factorization algo-
rithm for bivariate polynomials, we will try to use the same techniques for a curve in C3 by
projection on a generic plane; the technique of generic projection and absolute factorization
is “classical”, but we will be able to speed up computations since our techniques are modular.

In Chapter 1, we study the problem for n = 2 , so we deal with the computation of the
absolute factorization of a rational polynomial. This problem was extensively studied in the
recent years (see [15], [68], [72], [16] and the references therein), but we focus here on
Trager-Traverso Algorithm (see [24], [44], [78] and Section 1.2 with Algorithm 1). On the
one hand the idea is to follow the same strategy, on the other one to improve it: we will
exploit modular computations in order to obtain faster and better results. Indeed using this
tool, we are able to describe an absolute irreducibility test (Algorithm 2) and then develop
modular techniques (Section 1.4) in order to have an absolute factorization algorithm (Algo-
rithm 4). Its main aim is the same as Trager-Traverso’s one, but it gets sharper results (in the
sense of the degree of the algebraic extension).
The absolute irreducibility test is based on some properties of the Newton polytope of the
polynomial. The absolute factorization algorithm constructs an algebraic extension of Q
which contains the coefficients of the absolute factors and has minimal degree. This is ob-
tained through a careful choice of a prime integer p which ensures that we have a primitive
element of the algebraic extension needed in Qp, the field of p-adic numbers (Lemma 1.4.9).
Relying on randomness, we can say that generally this choice of p gives a good reduction of
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f(X, Y ), i. e. the factorization of f(X, Y ) modulo p is a p-adic approximation of its absolute
factorization. We then use Hensel lifting to obtain a more precise p-adic approximation of
a primitive algebraic element and we finally construct a univariate polynomial defining the
algebraic extension using the LLL algorithm.
In the appendix (Chapter A and B) we summarize the main definitions and properties con-
cerning the LLL algorithm and the field of p-adic numbers.

In Chapter 2 we underline the main differences and similarities between the cases n = 2

and n = 3: to do this, we start with some basic definitions and properties about the primary
decomposition of an ideal and the affine Hilbert function. We consider a complete intersec-
tion ideal a and we define the rational, the algebraic and the conjugated components for a
primary decomposition, in parallel with the absolute factorization of a polynomial. Using
Hilbert function, we have also the definitions of degree and multiplicity of a primary com-
ponent.
After this, we exactly state the output of our decomposition algorithm for a curve in C3,
which is the same one of other existing algorithms ([29], [73]). For each irreducible alge-
braic component we would like to construct a separator polynomial (Definition 2.2.6): it is
a polynomial defining an algebraic surface which contains a component but not the other
ones. Furthermore, we point out the problem of having a bound on the degree of a separator
polynomial; if we could have such a bound, we could use it inside a numerical algorithm of
decomposition to avoid extra and unnecessary computations.

In Chapter 3 we focus on bounds on the degree of a separator polynomial using algebraic
geometry invariants and arguments existing in literature. We look for such a bound in three
different ways: through a plane section, a particular case of the classical Lifting Problem in
codimension 2 (Section 3.2); through the regularity of the ideal (Section 3.3) and through
the generic initial ideal (Section 3.4).
The Lifting Problem in codimension 2 is a classical one in algebraic geometry. Although the
case of curves in the 3-dimensional space is completely solved, the problem is still open in
higher dimensions. Laudal’s generalized trisecant lemma and the following improvements
(see [50], [76], [38]) give a lower bound on the degree of a separator polynomial, by com-
puting the generic plane section. About the Lifting Problem, we also briefly resume some
original results concerning the positivity of the second Chern Class of a reflexive sheaf (Sec-
tion 3.2.1), which is one of the directions of investigation to prove Mezzetti’s conjecture
(Conjecture 3.2.1).
The regularity is a well-known invariant for ideals, which bounds not only the degrees of the
minimal generators of the ideal, but also their syzygies. Using the regularity, we can bound
the degree of a separator polynomial in several ways: with the degree of the component and
in particular cases with the regularity of the plane section or with a linear function in the
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degrees of the generators of the ideal a; we use results in [37], [58], [11], [17].
Finally, the generic initial ideal is a monomial ideal which has combinatorial features reflec-
ting invariants of the ideal, such as its saturation or the regularity itself (see [35]). Then the
generic initial ideal of a component immediately gives the desired bound on the degree of
the separator polynomial.

Since any of the “classical” bounds in Chapter 3 is not actually practical or useful for our
purposes, we expose in Chapter 4 an obvious strategy to find the primary decomposition of
an ideal (or at least its primary components which are also prime). This strategy uses generic
projections (which were first used in [41], but still effective, e.g [72]). Projections allow
us to bring back the problem of decomposition of a 3-dimensional curve to the problem of
factoring a bivariate polynomial. Then, by means of Hilbert dimension (to match couples of
factors coming from two different projections) and of quotient ideals (to take off embedded
points, which are actually in the singular locus of the ideal), we can get the ideals defining
the prime components of a (that is, primary components of multiplicity 1). This exact strate-
gy is illustrated in Algorithms 7 and 6. Actually, a “generic projection” is obtained through
a generic change of coordinates and a projection on a coordinate plane (in practice, the com-
putation of a resultant).
Unfortunately, this strategy is not advantageous from the computational point of view, so we
again use modular computations to make this strategy faster.
In Section 4.2 we show that we can rely on randomness (just like we do for absolute factori-
zation) to avoid a bad prime p: in other words, if we just choose a prime p ensuring that an
algebraic α is in Qp, then we are “almost” sure that an ideal a ⊆ Q(α)[X1, . . . , Xn] can be
reduced modulo p preserving its affine Hilbert function.
The results of Section 4.2 hold for ideals in a polynomial ring with n indeterminates, but we
apply them to the irreducible components of a complete intersection ideal in Q[X, Y, Z]: we
adapt the algorithms of Section 4.1 to the modular computations; in particular, we by-pass
the problems of computing the bivariate rational resultants and the bivariate absolute facto-
rizations. Modular computations also speed up the computations of Hilbert dimensions and
quotient ideals. As output of Algorithm 10 we obtain modular ideals whose Hilbert function
are the same as the Hilbert functions of the prime components of a. These Hilbert functions
obviously give us practical bounds on the degrees of the separator polynomials of each com-
ponent.
In Section 4.3.2 we explicitly apply the modular strategy on an example: we further shorten
the computations looking at the primality of the degrees of the factors in the modular fac-
torization of resultants, using the consequences of Lemma 1.1.4. In this way we avoid to
change the prime p if not necessary and we reduce the number of resultants and factoriza-
tions to compute.
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Even if Algorithm 10 does not return the rational separator polynomials, but only their mo-
dular images, it is quite promising: indeed, we try to compute the primary decomposition of
the ideal of Section 4.3.2 using the Maple routine conceived to do this, PrimaryDecom-
position: it could not achieve the result on our example, nor on the rational or on the
correct algebraic extension, because of problems in the memory allocation.

The practical bounds that we obtain can be used inside a numerical algorithm. In Section
4.4 we investigate how to use modular techniques in a different way on the decomposition
algorithm presented in Section 4.1: we assume that we are able to compute the projection
on a generic plane and a bivariate absolute factorization (by means of a rational factorization
algorithm and an absolute one, such as Algorithm 4). After matching the couples of factors,
for the prime components we can compute the quotient ideal with respect to an equation of
the singular locus via modular Groebner Basis. We adapt the techniques described in [1] to
the computation of a quotient ideal with respect to a principal ideal in Algorithm 11.
Finally, we remark that in order to conclude Algorithm 10 with the lifting of the modular
separator polynomials, we would need a generalization of Hensel lifting for rational ideals.
The problem is quite easy to state (see Section 4.4.2) and we have some hints to solve it co-
ming from the knowledge of Groebner Basis along the computations: assuming that we have
a “good prime” p, we know that the possible monomials appearing with non-zero coefficient
in a separator polynomial are in a known finite set. Nevertheless this conditions seem not be
sufficient to lift the modular separator polynomials: we failed to lift the separator polyno-
mials in the easy situation of a complete intersection ideal with purely rational components
(Example 4.4.1).

In the conclusions, we summarize the achieved results, the possible improvements of
the algorithms we have designed and how we could generalize them to higher dimensional
problems.
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Chapter 1

Absolute factorization of a rationally
irreducible polynomial

This chapter is an extended version of [5].

1.1 Absolute Factorization

Assume that the curve C we wish to decompose is reduced and rationally irreducible, that
is: the defining polynomial f(X, Y ) is not reducible over Q[X, Y ].

We now recall the basic definitions and properties of the absolute factorization of a biva-
riate polynomial, following the approach of [15].

Definition 1.1.1. Let A be a domain. We say that A is a unique factorization domain (UFD
for short) if for all a ∈ A \ {0} we can write a = u · p1 · · · ps where u is a unit, p1, . . . , ps

are irreducible in A and this decomposition is unique up to reordering and multiplication by
units.

If A is a UFD, then A[X] is a UFD.
If k is a field, then k[X1, . . . , Xn] is a UFD: for all f ∈ k[X1, . . . , Xn], there exists

f = f1 · · · fs (factorization), with fi irreducible in k[X1, . . . , Xn] and this decomposition is
unique up to reordering and multiplication by constant factors.

Definition 1.1.2. Let K = k be the algebraic closure of the field k, and f ∈ k[X1, . . . , Xn].
The factorization of f in K[X1, . . . , Xn] is called the absolute factorization of f .

Just to fix this idea, we can consider a very simple example.

Example 1.1.3. Consider the bivariate polynomial f = X2 − 3Y 2. f is irreducible in
Q[X, Y ] but it is reducible in Q[X, Y ]:

X2 − 3Y 2 = (X −
√

3Y )(X +
√

3Y ) ∈ Q[X, Y ].
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Actually, in this case, we do not need the whole algebraic closure of the field of rational num-
bers: the coefficients of the absolute factors are in the simple algebraic extension Q(

√
3).

It is interesting to point out from Example 1.1.3, that the two factors of f have the same
monomials and their coefficients are conjugate over Q.
The next lemma generalizes this remark.

Lemma 1.1.4 (Fundamental Lemma). Let K be a perfect field and K be its algebraic closure.
Let f ∈ K[X, Y ] be a monic and irreducible polynomial in K[X, Y ].

f(X, Y ) = Y n + an−1(X)Y n−1 + · · ·+ a0(X) with deg(ai(X)) ≤ n− i.

Let f = f1 · · · fs be the factorization of f into irreducible polynomials fi ∈ K[X, Y ].
Denote by L = K(α) the extension of K generated by all the coefficients of f1. Then each fi
can be written as:

fi(X, Y ) = Y m + bm−1(αi, X)Y m−1 + · · ·+ b0(αi, X), (1.1.1)

with bk ∈ K[Z,X], degX(bk) ≤ m − k, and where α1, . . . , αs are the different conjugates
over K of α = α1.

Proof. We can suppose that each fi is monic in Y , because f is monic in Y .
We set fi(X, Y ) = Y ni + a

(i)
ni−1(X)Y ni−1 + · · · + a

(i)
0 (X) with a(i)

k (X) ∈ K[X] and
degX(a

(i)
k (X)) ≤ ni − k. Let L be the field generated by all the coefficients of f1; since the

field K is perfect, by the primitive element theorem we can set L = K(α); α is an algebraic
number over K and we denote by α1 = α, α2, . . . , αl its l different conjugates over K, and
by σ1, . . . , σl the automorphism of L fixing K such that σi(α) = αi.

Now we prove that l ≤ s. Let M be the extension of K generated by the coefficients of
f1, . . . , fs; M is a finite extension of K, and we have C ⊇ M ⊇ L ⊇ K. We can extend
to M all the σi. Then we extend σi to M[X, Y ], and we denote this map by σ̃i. We have
σ̃i(f) = σ̃i(f1) · · · σ̃i(fs) = f . Since K[X, Y ] is a UFD, there exists an index j0 such that
σ̃i(f1) = fj0 . Furthermore, if σ̃i(f1) = σ̃j(f1) then σ̃i = σ̃j . So the map

evf1 : {σ̃1, ..., σ̃k} → {f1, ..., fs}
σ̃i 7→ σ̃i(f1)

is injective and l ≤ s.
If l < s we get an absurd result. Indeed, consider F =

∏l
i=1 σ̃i(f1); this polynomial

divides f so if we prove that F ∈ K[X, Y ], we are done.
Write f1(X, Y ) =

∑
a,b ca,b(α)XaY b where ci,j(T ) ∈ K[T ]. Thus

F (X, Y ) =
l∏

i=1

(
∑
a,b

ci,j(αi)X
aY b).
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The coefficient of XaY b is written∑
i1+···+ik=a
j1+···+jk=b

ci1,j1(α1) · · · cik,jk(αk).

It is a symmetric polynomial in α1, · · · , αk, so it is an element of K; we deduce that
F (X, Y ) ∈ K[X, Y ].

Corollary 1.1.5. Consider f ∈ K[X, Y ] polynomial, irreducible in K[X, Y ].

• the number of absolute factors s of f is equal to the degree extension [L : K];

• [L : K] divides tdeg f ;

• the absolute factorization of a bivariate polynomial is completely described by one
absolute factor and a representation of the algebraic extension L of K.

Example 1.1.6. We consider the absolute factorization

f = X2 − 3Y 2 = (X −
√

3Y )(X +
√

3Y ) ∈ Q[X, Y ].

Assume that we just know f1 = X −
√

3Y .
We can observe that the field extension generated by f1 is Q(

√
3).

Furthermore, [Q(
√

3) : Q] = 2, which corresponds to the number of absolute factors, so we
have two automorphism of Q(

√
3) fixing Q:

σ1(
√

3) =
√

3 σ2(
√

3) = −
√

3.

If we apply σ2 on f1 we exactly obtain f2 = X +
√

3Y .

1.2 Trager-Traverso Algorithm

One can obtain the absolute factorization of a bivariate rational polynomial using one of the
most popular programs in mathematics, Maple [54], using the command AFactor.

Example 1.2.1. We can ask Maple to compute the absolute factorization of the polynomial
f of Example 1.1.3.

evala(AFactor(X^2-3*Y^2));

gives

(X-RootOf(Z^2-3)Y)(X+RootOf(Z^2-3)Y)

3



which exactly means X2 − 3Y 3 = (X − αY )(X + αY ), with α root of Z2 − 3.

Unfortunately, this Maple command is efficient for bivariate polynomials of degree≤ 15.
Our challenge is to describe an algorithm having good performances on polynomials of much
higher degree, 200 or more.

The algorithm implemented in Maple is Trager-Traverso Algorithm (or TKTD Algo-
rithm, acronym for Trager-Kaltofen-Traverso-Dvornicich, see [24], [44], [78]), it consists
of 4 steps.

Algorithm 1 Trager-Traverso algorithm
Input: f(X, Y ) ∈ Z[X, Y ] rationally irreducible.
Output: f1(X, Y ) absolute factor of f(X, Y ).

1: Fix an integer value a of X such that discY f(a) 6= 0.
2: Consider a root b of the polynomial q(Y ) = f(a, Y ).
3: Compute a factorization of f in Q(b)[X, Y ] and take f1(X, Y ) as the factor such that
f1(a, b) = 0.

4: return The absolute factor f1(X, Y ) of f(X, Y ).

Observe that the computation in Step 3 of Algorithm 1 does not provide a complete ab-
solute factorization, but splits the polynomials into (at least) two factors in L[X, Y ] with
L = Q[t]/q(t).

Remark 1.2.2. We present a simplified version of Trager-Traverso algorithm: its complete
form takes as input a multivariate polynomial which may be rationally reducible.

Step 1 of Algorithm 1 relies on the following theorem.

Theorem 1.2.3 (Hilbert’s irreducibility theorem). Let f(T1, . . . , Tr, X1, . . . , Xs) be an irre-
ducible polynomial in Q[T1, . . . , Tr, X1, . . . , Xs]. Then almost all points (t1, . . . , tr) ∈ Qr

are such that f(t1, . . . , tr, X1, . . . , Xs) is irreducible in Q[X1, . . . , Xs].

In other words, Hilbert’s irreducibility theorem states that if we specialize some of the
variables of a rational polynomial with random values in Q, then this specialization generally
preserves the irreducible factors of the polynomial.

In Step 1 of Algorithm 1, we find a simple solution of f .

Definition 1.2.4. Let K be the algebraic closure of the field K, and let (a, b) ∈ K2
. We say

that (a, b) is a simple solution of f(X, Y ) ∈ K[X, Y ] when f(a, b) = 0 and either ∂f
∂X

(a, b)

or ∂f
∂Y

(a, b) is non-zero.

Theorem 1.2.5. Let (a, b) be a simple solution of f(X, Y ). Then one absolute factor of
f(X, Y ) belongs to K(a, b)[X, Y ].
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The above theorem was demonstrated independently in [44] and [24].

In Step 3 of Algorithm 1, it is supposed that we have an algorithm of factorization on
K(b). Supposing that we have this kind of algorithm for algebraic extensions of Q, there is a
bottleneck: the algebraic extension Q(b) is often too big!
More precisely, the degree of the extension used is [Q(b) : Q] = deg f . We have just seen
(Corollary 1.1.5) that the degree of the extension Q(α) generated by the coefficients of one
absolute factor divides tdeg f .

So, even if the algorithm is correct, the computations may take a lot of time (since we
look for the coefficients of the absolute factors in a non-minimal field extension) and give
non-optimal outputs (since the coefficients of the polynomial in the output will be expressed
as roots of f(a, Y )).

Example 1.2.6 ([65], page 15). Consider f = Y 10 − 2X2Y 4 + 4X6Y 2 − 2X10 ∈ Q[X, Y ].
We choose a = 1, obtaining f(1, T ) = T 10 − 2T 4 + 4T 2 − 2 which is square-free. Let b be
a root of f(1, T ).

Factoring f(X, Y ) on Q(b), we have the absolute factor

F (X, Y ) = Y 5 + (b5 + b7 + 2b− 2b3 + b9)Y 2X + (−2b+ 2b3 − b5 − b7 − b9)X5.

Actually, the absolute factors of f are contained in an extension of Q of degree 2 instead of
10. If we are able to reconstruct this much smaller extension, the computation of the absolute
factor will be much faster (and its presentation much better).

Indeed, an absolute factor of f(X, Y ) is

G = Y 5 −
√

2XY 2 +
√

2X5 ∈ Q(
√

2)[X, Y ].

Our main aim is to be able to find a better and smaller field extension in which we can
factor f(X, Y ), namely the one with smaller degree.

1.3 Absolute irreducibility test and Newton Polytope

Before starting the computations of an absolute factorization algorithm, it is wise to check
“quickly” if the polynomial is absolutely irreducible, in order to avoid useless computa-
tions. Actually, we would like to test a sufficient condition on the polynomial f(X, Y ): if
it is satisfied, then we do not need to actually perform the factorization algorithm since the
polynomial is absolutely irreducible.

The absolute irreducibility test that we are going to present is based on properties of the
Newton polytope of a polynomial that we now review.
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Definition 1.3.1. Let f(X, Y ) =
∑

i,j ci,jX
iY j ∈ K[X, Y ]. The Newton polytope of f ,

denoted by Pf , is the convex hull in R2 of all the points (i, j) with ci,j 6= 0.
A point (i, j) is a vertex of Pf if it is not on the line segment of any other two points of the

polytope.

We refer to [30] for basic results on absolute irreducibility and Newton polytopes and
also for an interesting short history on the subject which goes back to the famous Eisenstein
criterion.

Definition 1.3.2. Denote by (i1, j1), . . . , (il, jl) ∈ Z2 the vertexes of Pf . We say that condi-
tion (C) is satisfied when gcd(i1, j1, . . . , il, jl) = 1.

Proposition 1.3.3 (Absolute irreducibility criterion). Let f(X, Y ) be an irreducible polyno-
mial in K[X, Y ]. If condition (C) is satisfied then f is absolutely irreducible.

Our statement in Proposition 1.3.3 bears similarities with one of Gao’s result [30]; but it
differs since Gao assumed that Pf should be contained in a triangle when we assume that
f is irreducible in K[X, Y ]. Although, our condition seems a strong theoretical hypothesis,
in practice we can check it very quickly thanks to the algorithms developed in [8] and [52].
The advantage of our criterion is that it applies to a larger variety of polytopes.

In order to prove Proposition 1.3.3, we introduce the Minkowski sum and its properties
concerning polytopes.

Definition 1.3.4. If A and B are two subsets of the vector space Rn, we define their Min-
kowski sum as

A+B = {a+ b|a ∈ A, b ∈ B}.

Lemma 1.3.5. Let f, g, h ∈ K[X1, X2, . . . , Xn] with f = gh. Then Pf = Pg + Ph.

Proof. See [63], Theorem V I .

In particular (see [70]) if we sum up s times the same convex polytope A, then we have
that

A+ · · ·+ A︸ ︷︷ ︸
s−times

= s · A,

where s · A = {s · v|v ∈ A}. Furthermore the vertexes {v1, . . . , vl} of s · A are exactly
vi = s · wi, where {w1, . . . , wl} is the set of vertexes of A.

We now consider the irreducible polynomial f(X, Y ) ∈ K[X, Y ] and its absolute factors
f1, . . . , fs in K[X, Y ]. Observe that thanks to Lemma 1.1.4, we have that Pfi = Pfj for every
couple of indexes i, j ∈ {1, . . . , s}.

We can then easily prove Proposition 1.3.3.
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Proof of Proposition 1.3.3. Suppose that f is not absolutely irreducible. Let f1, . . . , fs be
the absolute factors of f . For what concerns the Newton polytopes, we have that

Pf = Pf1 + · · ·+ Pfs = s · Pf1 .

Suppose in particular that the vertexes of Pf1 are {(i1, j1), . . . , (il, jl)}. Then we have that
the vertexes of Pf are {(s · i1, s · j1), . . . , (s · il, s · jl)}. But then condition (C) does not
hold.

Corollary 1.3.6. The number of absolute irreducible factors of a rationally irreducible poly-
nomial f(X, Y ) ∈ Z[X, Y ] divides gcd(i1, j1, . . . , il, jl).

Proof. This is a consequence of the proof of Proposition 1.3.3.

Remark 1.3.7. This irreducibility criterion first appeared in [14], but with a different proof
of Proposition 1.3.3, involving the definition of an appropriate term order.

In Proposition 1.3.3, we established the validity of our criterion. There is a natural ques-
tion arising: Does situation (C) happens frequently ?

When the polynomial f is dense, then the coordinates of the vertexes of Pf are (0, 0),
(n, 0), (0, n), thus condition (C) is not satisfied and we cannot apply our test. However
when f is sparse, in “most” cases, the Newton polytope is not the triangle of the previous
situation and a direct use of Proposition 1.3.3 can quickly detect if f is absolutely irreducible.

In the case of dense polynomials, modular computations are used to force a sparsity con-
dition on a reduced polynomial modulo some prime p. For that purpose, we recall Noether’s
irreducibility theorem (see [60] or [69], Chapter V , Theorem 2A) and an easy consequence
concerning the reduction modulo a prime integer.

Theorem 1.3.8 (Noether’s irreducibility Theorem). Let f(X1, . . . , Xn be a polynomial in
K[X1, . . . , Xn], K a field. Suppose that the total degree of f is at most d > 0 and f is given
by

f(X1, . . . , Xn) =
∑

i1+···+in≤d

aii...inX
i1
1 · · ·X in

n .

There exist forms g1, . . . , gs in variables Aii...in , (i1 + · · ·+ in ≥ d such that the polynomial
f(X1, . . . , Xn) is reducible over K (algebraic closure of K) or of degree < d if and only if

gj(ai1...in) = 0 1 ≤ j ≤ s.

The forms gj depend only on n and d, and are independent of the field K, in the sense that
if K has characteristic 0, they are fixed forms with rational integer coefficients. If K has
characteristic p 6= 0, then they are obtained by reducing the integral coefficients modulo p.
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As a consequence we have the following proposition

Proposition 1.3.9. Let f(X, Y ) ∈ Z[X, Y ] and f(X, Y ) = f mod p ∈ Fp[X, Y ]. If
tdeg (f) = tdeg (f) and f is absolutely irreducible, then f is absolutely irreducible.

Now, even if f is dense, the idea is to choose p in order to force f to be sparse ; then apply
the test to f instead of applying it to f .

Let a1, . . . , ak be the coefficients corresponding to the vertexes of Pf and L = [p1, . . . , pl]

be the list of the primes dividing at least one of the ai. Remark that:

∀pi ∈ L, Pf 6= P f mod pi .

Thus even when f is dense, if the coefficients a1, . . . , ak are not all equal to 1, we can get
polynomials f mod pi such that P f mod pi is not the triangle with vertexes (0, 0), (0, n),
(n, 0).

Example 1.3.10. f(X, Y ) = Y 3 + X3 + 5X2 + 3Y + 2. Figure 1.1 clearly illustrates the
effect of a reduction modulo p.
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Figure 1.1: Newton polytopes of f and f mod 2

Therefore, thanks to Proposition 1.3.3 and Proposition 1.3.9, absolute irreducibility can be
tested with a Las Vegas strategy (i.e. the output of the algorithm is always correct). However
the output can be “I don’t know”. More precisely (see Algorithm 2):
For each p ∈ L, test the absolute irreducibility of f mod p ∈ Fp[X, Y ] with Proposition
1.3.3, and conclude with Proposition 1.3.9.

A last task is to deal with polynomials whose coefficients are 0, 1 or −1 like f(X, Y ) =

Xn + Y n + 1, because in that case the Newton polytope gives no information, even when
one looks at the modular reduction f mod p. The natural strategy is to perform a linear
change of coordinates in order to obtain, after reduction, a polynomial satisfying condition
(C). This is applied in Algorithm 3.
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Algorithm 2 Modular Absolute irreducibility Test
Input: f(X, Y ) ∈ Z[X, Y ], irreducible in Q[X, Y ].
Output: “f is absolutely irreducible” or “I don’t know”.

1: Compute Pf and the list L of the primes dividing a coefficient corresponding to a vertex
of Pf .

2: test:=false: i := 1:
3: while test=false and i ≤ |L| do
4: p := L[i]

5: if tdeg (f mod p) = tdeg (f) then
6: Compute Pf mod p

7: if f mod p satisfies condition (C) and f mod p is irreducible in Fp[X, Y ] then
8: test:=true;
9: end if

10: end if
11: i := i+ 1

12: end while
13: if test = true then
14: return “f is absolutely irreducible”
15: else
16: return “I don’t know”
17: end if

Algorithm 3 Modular Absolute irreducibility Test with change of coordinates
Input: f(X, Y ) ∈ Z[X, Y ], irreducible in Q[X, Y ].
Output: “f is absolutely irreducible” or “I don’t know”.

1: for p prime between 2 and 101 do
2: for (a, b) ∈ F2

p do
3: fa,b(X, Y ) = f(X + a, Y + b) mod p

4: if deg(fa,b) = deg(f) and fa,b satisfies condition (C) then
5: if fa,b is irreducible in Fp[X, Y ] then
6: return “f is absolutely irreducible”
7: end if
8: end if
9: end for

10: end for
11: return “I don’t know”.
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Modular computation is performed in Fp where p is a prime between 2 and some value,
here fixed to 101.

Algorithms 2 and 3 generalize a test given by J.-F. Ragot in [66].
Fact: Let f(X, Y ) ∈ K[X, Y ] be an irreducible polynomial in K[X, Y ]. If there exists

(a, b) ∈ K2 such that f(a, b) = 0 and
∂f

∂X
(a, b) 6= 0 or

∂f

∂Y
(a, b) 6= 0, then f is absolutely

irreducible.
Ragot’s algorithm tests if f mod p has a simple root in Fp. Remark that f has a simple

root if and only if after a linear change of coordinates, which brings this root at the origin,
the Newton polytope of f has at least one of the points (1, 0) and (0, 1) as vertex while (0, 0)

is not a vertex.
In that case, condition (C) is satisfied; thus Ragot’s test is weaker than our test.

1.4 Modular Factorization

We aim to build a factorization algorithm by extending the analysis and strategy developed
for the previous irreducibility test. We keep the notations introduced in Section 1.1 and
specially in Lemma 1.1.4.
Our main task is describing an algebraic extension L = Q(α) of Q which contains the
coefficients of an absolute factor f1 of f . We remark again that this is the same that one can
obtain through Trager-Traverso algorithm, but the extension we will find is “smaller” then
Trager-Traverso’s one, and so more suitable for the computation of the factorization.

1.4.1 Algebraic extensions and primitive elements

Since Q is a separable field, we know that for any algebraic extension of Q, there is a
primitive element generating it. Let us see that, for a general choice of (x0, y0) ∈ Z2,
L = Q(f1(x0, y0)).

Lemma 1.4.1. Let f(X, Y ) ∈ Z[X, Y ] be a rationally irreducible polynomial of degree n.
Let f1(X, Y ) be an absolute factor of f(X, Y ), deg f1(X, Y ) = m.
For almost all (x0, y0) ∈ Z2 we have L = Q(f1(x0, y0)).

More precisely, the following estimate on the probability holds:

P
(
{(x0, y0) ∈ S2 | L = Q(f1(x0, y0))}

)
≥ 1− n(s− 1)

2|S|
with s := n/m,

where S is a finite subset of Z.

Proof. We denote by ai,j the coefficients of f1, so L = Q(ai,j). Let {σl}l=1,...,s be the set of
independent automorphisms of L fixing Q.
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Hence we have:
∀u 6= v,∃(i, j) such that σu(ai,j) 6= σv(ai,j). (∗)

We consider D(X, Y ) =
∏

u6=v

(∑
i,j

(
σu − σv

)
(ai,j)X

iY j
)

.
Property (∗) implies thatD(X, Y ) 6= 0. Then there exists (x0, y0) ∈ Z2 such thatD(x0, y0) 6=
0. This means: for all u 6= v, σu

(
f1(x0, y0)

)
6= σv

(
f1(x0, y0)

)
. Thus f1(x0, y0) is a primitive

element of L and this gives the desired result.
The probability statement is a direct consequence of Zippel-Schwartz’s lemma, applied to

D(X, Y ), whose degree is bounded by (ms(s− 1))/2 = (n(s− 1))/2.

Instead of looking for the extension generated by all the coefficients of the absolute factors
f1, Lemma 1.4.1 allows us to consider the simple extension of Q generated by the algebraic
number f1(x0, y0), with (x0, y0) integers chosen randomly in a big enough finite subset of Z.

Remark 1.4.2. The polynomialD(X, Y ) in the proof of Lemma 1.4.1 is connected to another
interesting polynomial: the discriminant, with respect to Z, of the 3-variate polynomial
F (X, Y, Z) =

∏s
j=1(Z − fj(X, Y )). The discriminant with respect to Z of F (X, Y, Z) is

the square of D(X, Y ). F has coefficient in Z because its coefficients are invariant when we
permute the fj’s.

1.4.2 Choice of p

We would like to speed up the computations reducing the coefficients of f(X, Y ) ∈ Z[X, Y ]

modulo a prime integer p and performing factorizations modulo p.
We have to carefully choose which are the primes p giving us significant results with

respect to the absolute factorization of f .

Theorem 1.4.3 (Chebotarev’s density theorem). Let q(T ) be a monic irreducible polynomial
of degree s with integer coefficients, with root α, let K = Q(α), let L be the normal closure
of K, and let P be a partition (s1, s2, . . . , sr) of s, i.e., an ordered set of positive integers
s1 ≥ s2 ≥ · · · ≥ sr with s = s1 + s2 + · · ·+ sr.
We say that a prime integer is unramified (over the number field K) if it does not divide
the discriminant of q(T ). Let S denote the set of unramified primes for q(T ). Consider the
set SP of unramified primes for which q(T ) factors as q1(T )q2(T ) · · · qr(T ) mod p, where
qi(T ) is irreducible modulo p and has degree si. Also define the density δ(SP ) of primes in
SP as follows:

δ(SP ) = lim
N→∞

#{p ∈ SP : p ≤ N}
#{p ∈ S : p ≤ N}

.

Now consider the Galois group Gal(L/Q) of the number field K. Since this is a subgroup
of the symmetric group on s elements, every element of Gal(L/Q) can be represented as a
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permutation of s letters, which in turn has a unique representation as a product of disjoint
cycles. Now consider the set of elements Gal(L/Q)P of Gal(L/Q) which are a product of
disjoint cycles of length s1, s2, . . . , sr.

Then δ(SP ) = #Gal(L/Q)P
#Gal(L/Q)

.

Example 1.4.4 ([75]). Consider the rationally irreducible polynomial

f = X4 + 3X2 + 7X + 4.

Its discriminant is 17689 = 72 · 192, so if we consider all the prime numbers p smaller then
1000, excluding 7 and 19, we have the following percentages of primes p giving a certain
splitting patterns for f mod p:

Splitting pattern Number of primes p Percentage
1, 3 112 67.5%

2, 2 44 26.5%

1, 1, 1, 1 10 6%

We can then predict that, if we take a random prime p smaller than 1000, different from
7 and 19, the probability to have splitting pattern (1, 3) modulo p is 2/3, while for (2, 2)

and (1, 1, 1, 1) the predicted probability is respectively 1/4 and 1/12. We would also assign
probability 0 to the splitting patterns (1, 1, 2) and (4).

Actually, these probabilities are correct: indeed, the Galois group of f is the alterna-
ting group A4, which has 12 elements: the identity which correspond to the splitting pattern
(1, 1, 1, 1), 8 permutations that are a product of disjoint cycles of lengths (1, 3) and 3 ele-
ments which are a product of disjoint cycles (2, 2). Chebotarev’s density theorem validates
the probabilities obtained.

If we apply Chebotarev’s density Theorem to the minimal polynomial q(T ) of α =

f1(x0, y0), then we know that there are infinite primes p such that q(T ) splits modulo p

with at least one linear factor (since the identity permutation has cyclic structure (1, . . . , 1)).
Rephrasing, if we choose the partition P = (s1, . . . , sr−11), the probability that a random
unramified prime p is in SP is ≥ 1

#Gal(L/Q)
.

However, this is not sufficient for our purposes, we need to find a way to choose a p which
ensures a factorization of the minimal polynomial of α with at least one linear factor. Such
a prime ensures that also f(X, Y ) factors modulo p, but we have to pay attention also to the
fact that the chosen p preserves the number of absolute factors of f .

Definition 1.4.5. We say that the prime integer p gives a bad reduction of f(X, Y ) if the
number of absolute factors of f(X, Y ) mod p differs from the number of absolute factors
of f(X, Y ); otherwise, we say that p gives a good reduction.
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Proposition 1.4.6. Let f(X, Y ) be a rationally irreducible polynomial, monic in Y . Then
there is a finite number of prime integers p giving a bad reduction of f(X, Y ).

Furthermore, if d(X) = discY (f(X, Y )), d1(X) = square-free part of d(X), D =

discX(d1(X)), then the set of prime integers p giving a bad reduction of f is contained
in the set of prime divisors of D.

Proof. The finiteness of the set of p giving bad reductions comes from a theorem of E.
Noether (see [60]). For the characterization using D, we can say with other words that
f(X, Y ) has a good reduction mod p if d(X) and d(X) mod p have the same number of
distinct roots. For the proof of this fact, see [79]. Finally, for another proof, see [84].

Example 1.4.7. Consider the bivariate polynomial f(X, Y ) = −20X2 + 73XY + 80Y 2 −
29X + 85Y − 84. f is rationally irreducible and absolutely irreducible, but if we choose
p = 7,

f(X, Y ) = (X + 6Y )(X + 4Y + 6) mod p.

The constant D of Proposition 1.4.6 is in this case 282403520 and so the primes giving bad
reductions are included in the set {2, 5, 7, 139, 907}.

Lemma 1.4.8. Let f(X, Y ) ∈ Z[X, Y ], and letB be a positive integer. There exists (x0, y0) ∈
Z2 and p ∈ Z prime such that p divides f(x0, y0) and p doesn’t divide B.

Proof. We can reduce to the case of one variable and use the classical argument of Dirichlet
for proving that the set of prime numbers is infinite.

Consider the polynomial f(X) ∈ Z[X], deg f ≥ 1. Consider x1 such that the constant
term c := f(x1) is not zero.

Set f̃(X) = f(X − x1), so c is the constant term of f̃(X). Consider f̃(cBX) = c(1 +

BXq(X)), where q(X) ∈ Z[X] is not zero (otherwise degf < 1). We can find x0 ∈ Z,
x0 6= 0 such that Bx0q(x0) 6= 0. Then, a prime p dividing 1 + Bx0q(x0) does not divide B
and we are done.

Thanks to this lemma, we know that there exists a point (x0, y0) ∈ Z2 such that there is a
p dividing f(x0, y0) and not dividing the constant D of Lemma 1.4.6. We can then rely on
randomness to avoid a p giving a bad reduction or we can proceed in a deterministic way,
computing the integer D and choosing a p not dividing D.

The next step in the choice of p is to force f(X, Y ) to factor in Z/pZ[X, Y ], in order to
have an “image” modulo p of an absolute factor of f .

Lemma 1.4.9. Let M(T ) ∈ Z[T ] be a polynomial and p a prime number such that p divides
M(0), p does not divide the discriminant of q(T ) and p > deg(M).
Then there exists a root in Qp of M(T ), considered as a polynomial in Qp[T ].
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Proof. SinceM(0) = 0 mod p and p - disc(q(T )), 0 is also a root ofM1(T ) = M(T )
gcd(M(T ),M ′(T ))

in Fp. As p > deg(M), we have M ′
1(0) 6= 0 in Fp and we can lift this root in Qp by Hensel’s

liftings. This gives a root of M1(T ) in Qp, thus a root of M(T ) in Qp.

Lemma 1.4.9 allows us to consider a number field Q(α) as a subfield of Qp, for a well-
chosen prime p. Indeed, if q(T ) is the minimal polynomial of α, then with a big enough
integer c we can find a prime number p such that the polynomial q(T + c) satisfies the
hypothesis of Lemma 1.4.9. Thus we can consider α + c in Qp, then Q(α) ⊂ Qp. Later we
will consider the modular factorization of f(X, Y ). We can consider it as an “approximate”
factorization of f in Q(α) with the p-adic norm (see Chapter B of the Appendix for some
details on the field of p-adic numbers). Then this factorization gives information about the
absolute factorization.

We then have a strategy to choose a prime p such that the factorization of f mod p is a
first approximation of the absolute factorization of f , that is

f mod p = F ·G mod p with degF = deg f1.

We can choose a point with integer coordinates (x0, y0). We know that for a general choice
of this point, α = f1(x0, y0) generates the algebraic extension of Q in which there are the
coefficients of one of the absolute factors of f . The minimal polynomial of α is q(T ) =∏s

i=1(T − αi).
Now we observe that f(x0, y0) = f1(x0, y0) · · · fs(x0, y0) = α1 · · ·αs with α1 = α. This
means that f(x0, y0) is equal to the constant term of the minimal polynomial of α.
So, we will choose a random point with integer coefficients (x0, y0) and a prime p dividing
f(x0, y0). If p is big enough to respect the hypothesis of Lemma 1.4.9 applied to q(T ), we
have a root of q(T ) in Qp and so we also have an absolute factor of f whose coefficients are
in Qp (since the coefficients of f1 depend only on α).
This means that f mod p splits as F ·G mod p with deg f1 = degF . Relying on the good
behaviour of a general point (x0, y0) (Lemma 1.4.1) and the good behaviour of a general
prime p with respect to good reductions (Proposition 1.4.6), we have that f mod p = F ·G
mod p is a p-adic approximation of the factorization f = f1 · (f2 · · · fs).

1.4.3 Recognition strategy

We assume that we chose a good prime p, such that tdeg (f) = tdeg (f mod p) and f

mod p factors as f(X, Y ) = F (1)(X, Y ) · G(1)(X, Y ) mod p where F (1) is exactly the
image modulo p of an absolute factor f1 of f .

In order to find the splitting field of f(x0, Y ), relying on Proposition 1.4.1, we need to
compute q(T ), the minimal polynomial with integer coefficients of α := f1(x0, y0).
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Starting from a factorization f(x0, Y ) = F (1)(x0, Y )G(1)(x0, Y ) mod p, we lift it
through Hensel Lifting (Theorem B.5.1) to the level of accuracy pλ. We then consider the
p-adic approximation α := F (λ)(x0, y0) of α. Using a “big enough” level of accuracy λ, we
can compute the minimal polynomial of α from α.

We denote with ‖ · ‖ the Euclidean norm of a polynomial (that is of its vector of coeffi-
cients) and with ‖ · ‖∞ the norm at infinity.

Lemma 1.4.10. [[81], Lemma 16.20] Let f, g ∈ Z[X] have positive degrees n1, n2 respec-
tively, and suppose that u ∈ Z[X] is nonconstant, monic, and divides both f and g modulo
m for some m ∈ N with ‖f‖n2‖g‖n1 < m.
Then gcd(f, g) ∈ Z[X] is nonconstant.

Proof. Suppose that gcd(f, g) = 1 in Q[X]. Then there exist s, t ∈ Z[X] such that sf +

tg = res(f, g) mod m, by [81], Corollary 6.21. Since u divides both f and g modulo m,
it divides res(f, g) modulo m. But u is monic and nonconstant, and thus res(f, g) = 0

mod m. Since |res(f, g)| < ‖f‖n2‖g‖n1 < m, by [81], Theorem 6.23, it follows that
res(f, g) is zero. This contradiction to our assumption shows that gcd(f, g) ∈ Q[x] is
nonconstant. By [81], Corollary 6.10, the gcd of f and g in Z[X] is also nonconstant.

Proposition 1.4.11. Consider α = F (λ)(x0, y0), 0 ≤ α ≤ pλ − 1 constructed above, a
positive integerQ bounding the size of the coefficients of q(T ),Q ≥ ‖q(T )‖∞, and a positive
integer λ ≥ logp(2

s2/2(s+ 1)sQ2s).
Then we can compute the minimal polynomial q(T ) of α using the LLL algorithm on an

integer lattice whose basis is given using α and pλ.

Proof. We apply the same construction of [81], Section 16.4, for detecting rational factors
of univariate polynomials.

We consider the polynomials

{T i(T − α)|i = 0, . . . , s− 1} ∪ {pλ}.

We write as usual

T i(T − α) = T i+1 − αT i =
s∑
j=0

tjT
j,

where, in this case, tj 6= 0 for j ∈ {i+1, i} and tj = 0 otherwise. Then the associated vector
for the polynomial T i(T − α) is

bi = (ts, . . . , t0).

For the constant polynomial pλ, we associate the vector b̃ = (0, . . . , 0, pλ). We can con-
struct the (s+ 1)× (s+ 1) matrix B whose columns are the bi, i = 0, . . . , s− 1 and b̃:

15



B =



1 0 0 0 . . . 0 0 0

−α 1 0 0 . . . 0 0 0

0 −α 1 0 . . . 0 0 0

0 0 −α 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 0 0

0 0 0 0 . . . −α 1 0

0 0 0 0 . . . 0 −α pλ


If we consider a point g of the integer lattice Λ(B) ⊆ Rs+1 generated by the columns of

the matrix B, we can write its components with respect to the standard basis of Rs+1

g =
s−1∑
i=0

gibi + g̃b̃ = (gs−1, gs−2 − αgs−1, . . . , g0 − αg1, g̃p
λ − αg0),

and associate a polynomial:

G(T ) = gs−1T
s + (gs−2 − αgs−1)T s−1 + · · ·+ (g0 − αg1)T + g̃pλ − αg0 =

= S(T )(T − α) + g̃pλ with S(T ) =
s−1∑
i=0

giT
i.

So if g ∈ Λ(B), the associated polynomialG(T ) has degree≤ s and it is divisible by (T−α)

modulo pγ .
The vice versa holds: if G(T ) is a polynomial of degree at most s and G(T ) mod pλ is

divisible by (T − α), then we can write

G(T ) = S∗(T )(T − α) +R∗(T )pγ with degS∗(T ) ≤ s− 1 and degR∗(T ) ≤ s.

Using Euclidean division, we obtain R∗(T ) = S∗∗(T )(T − α) + Rpγ with degS∗∗ ≤ s− 1

and R a costant. We define S(T ) := S∗(T ) + pγS∗∗(T ). We then have that

G(T ) = S(T )(T − α) +Rpγ,

that is, G(T ) can be written as a point of the lattice Λ(B).
So if we consider the matrix B and we apply the LLL algorithm, we obtain as first vector

of the reduced basis a “short”vector representing a polynomialG(T ) with “small” norm such
that G(T ) has degree s and G(T ) mod pλ is divisible by (T − α). Using the hypothesis
λ ≥ logp(2

s2/2(s + 1)sQ2s) we can apply Lemma 1.4.10: we then have that q(T ) and G(T )

have a non-constant gcd. But since q(T ) is irreducible and deg q(T ) = degG(T ), we have
that q(T ) = G(T ).
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Remark 1.4.12. Another lattice, inspired by [83], Lecture IX , Section 6, and [47], allows
us to compute the minimal polynomial q(T ) of α starting from its p-adic approximation α.

Consider the lattice Λ(A) in Rs+2 generated by the columns a0, a1, . . . , as−1, as, ã of the
matrix

A =



c cα cα2 · · · cαs−1 cαs cpλ

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0


with c >> 0 positive integer.

If q(T ) =
∑s

i=0 qiT
i is the minimal polynomial of α, Q ≥ ‖q(T )‖∞, choose λ ≥

logp(2
s2/2(s + 1)sQ2s) (as in Lemma 1.4.11), and c ≥ 2(s+1)/2

√
s+ 1Q. Then the vec-

tor
∑s

i=0 qiai is the smallest vector in the lattice Λ(A). Indeed, observe that any vector
~γ ∈ Λ(A) such that

c(γ0 + γiα + · · ·+ γsα
s + γ̃pλ) 6= 0

has euclidean norm bigger than the euclidean norm of q(T ). Furthermore, thanks to the
choice of λ, if ~γ is such that c(γ0 + γiα+ · · ·+ γsα

s + γ̃pλ) = 0, using the same arguments
used in the proof of Lemma 1.4.11, then the polynomial

∑s
i=0 γiT

i is an integer multiple of
q(T ) and obviously its euclidean norm is bigger than the one of q(T ).
Then, if we apply the LLL algorithm to Λ(A), the short vector found must respect inequality
i) of Lemma A.3.5, so its first component has to be 0 and thanks to the choice of λ, we have
a polynomial which has a root in α. Since it has degree s, its primitive part is q(T ).

To establish the level of accuracy λ in Proposition 1.4.11 (and to fix c in Remark 1.4.12),
we need a bound on the size of the coefficients of the minimal polynomial of α, q(T ). Re-
member that

q(T ) =
s∏
i=1

(T − αi) = T s + σ1(α̃) + · · ·+ σs−1(α̃)T + σs(α̃),

where σi(α̃) is the i-th symmetric function in the α = α1, α2, . . . , αs.
Observe that

|σk(α̃)| ≤
∑
τ∈Sk

|ατ(1)| · · · |ατ(k)| ≤
∑
τ∈Sk

m∏
j=1

|yτ(1)
j | · · ·

m∏
j=1

|yτ(k)
j |,

where fl(x0, Y ) =
∏m

j=1(Y − y(l)
j ) and f(x0, Y ) =

∏s
i=1 fl(x0, Y ).
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As a bound on the coefficients of f(x0, Y ) gives a bound on the y(l)
j ([81]), a bound on

the coefficients of f(x0, Y ) gives a bound for ‖q(T )‖∞.
In practice, for “early detection”, we rely on Proposition 1.4.11 replacing Q by

Q1 = ‖f(x0, Y )‖∞.

Remark 1.4.13. We are not assuming that f(X, Y ) is monic, so we have to face two pro-
blems:

1. Leading coefficient problem: we cannot apply Hensel lifting in its “classical” form,
because we need to have a factorization f(x0, Y ) = f1(x0, Y )h(x0, Y ) mod p in
which f1(x0, Y ) or h(x0, Y ) is monic;

2. in practical use of this construction of the minimal polynomial of α, we will avoid
to lift the factorization until the level γ of Proposition 1.4.11 (this bound is usually
very pessimistic): however, in this way we are not sure that the primitive part of the
polynomial G(T ) is actually q(T ). We then need a quick method to check if we found
a good candidate to define the field extension or if we have to lift the factorization to a
higher level of accuracy.

Consider f(x0, Y ) =
∑n

i=0 φiY
i.

For what concerns the leading coefficient problem, we can simply consider the “modi-
fied” linear Hensel Lifting (see [31], Algorithm 6.1). In this way we can lift the factorization
modulo p, but the coefficients involved in the computations are bigger, since actually we lift
a factorization of φn · f(x0, Y ), obtaining a factor that we call f̃1(Y ).

For what concerns the second problem, we have to understand how the roots of a factor
of f(x0, Y ) are in connection with the coefficients of q(T ) and f̃1(Y ). We call qs the leading
coefficient of the polynomial q(T ).

If f1(Y ) is the true factor of f(x0, Y ), then the product of its roots is simply β :=

(−1)deg f̃1(Y )f̃1(y0)/φn.
Then the product of the conjugated of β is simply q(0)/qs, but this is also the product of

all the roots of f(x0, Y ). So we have the following relation q(0)
qs

= (−1)s f(x0,y0)
φn

.
When we apply the LLL algorithm to

∧
(B) we can then proceed as follows: if the ob-

tained polynomial G(T ) satisfies

G(0)

Gs

= (−1)s
f(x0, y0)

φn
with Gs leading coefficient of G(T ) (1.4.1)

then we will try to factor f(x0, Y ) in the algebraic extension defined by the primitive part of
G(T ), that is Q[T ]/p.p.G(T ). If G(0)/Gs 6= (−1)sf(x0, y0)/φn, then we have to rise the
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level of approximation of the Hensel lifting and then apply again LLL to the new lattice and
test again.

In this way we have a necessary condition that can help us to recognize the minimal
polynomial of α.

1.5 Absolute factorization algorithm

We use the results and methods of the previous section to compute an absolute factor f1 of f
(i.e. a representation of the field L of its coefficient and the coefficients).

To ease the presentation, we rely on the practical evidence that for random integer value
x0, f(x0, Y ) is irreducible. In Section 1.5.2 we will present a variant using a weaker condi-
tion.

Proposition 1.5.1. Algorithm 4 gives a correct answer.

Proof. Since it is a Las Vegas algorithm, Algorithm 4 is probably fast and always correct but
the answer can be “I don’t know”. So we just have to check that a given positive answer is
correct.

The starting point of the algorithm, as in the irreducibility test, is to determine a prime p
such that the reduction modulo p kills the evaluation of f on an integer point (x0, y0). Then
the constant term of the minimal polynomial of α := f1(x0, y0) vanishes modulo p. Such
a p is easily found. However we rely on randomness to expect with a good probability that
L = Q(α) and that f has good reduction modulo p (using Proposition 1.4.6 and Lemma
1.4.9).

In Algorithm 4, we inserted some checks and a loop to change p if it is an “unlucky”
choice. The algorithm can be made deterministic (but less efficient) by considering a large
testing set for (x0, y0) and take p not dividing the constant of Lemma 1.4.6, to avoid bad
reduction. We would be able to do this thanks to Lemma 1.4.8.

The output of the algorithm, the factor f1, is irreducible in L[X, Y ]. Indeed, f1(x0, Y ) =

F1(x0, Y ) and F1(x0, Y ) is irreducible in L[Y ] because of the irreducibility of f(x0, Y ) in
the Preprocessing Step. Furthermore, the extension L is minimal. Indeed, at the end of the
algorithm we have degY f1 = m, deg q = s and s · m = n (see the definition of s in Step
2).

1.5.1 Parallel version of the Algorithm

In step (17) of Algorithm 4 we perform a factorization of f(x0, Y ) in the polynomial ring
L[Y ]. Then in Step (21) we use Hensel liftings to reconstruct the factor f1. If we use parallel
calculus in these steps, we can perform (m + 1) Lagrange interpolations to reconstruct the
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Algorithm 4 Absolute Factorization algorithm
Input: f(X, Y ) ∈ Z[X, Y ], irreducible in Q[X, Y ]of degree n, a finite subset S of Z2.
Output: q(T ) ∈ Q[T ] minimal polynomial of α defining the algebraic extension L =

Q(α) = Q[T ]/q(T ) and f1(X, Y ) ∈ L[X, Y ] an absolute irreducible factor of f , or “I
don’t know”
Preprocessing: Choose randomly (x0, y0) ∈ S2, such that f(x0, Y ) is irreducible.

1: Choose a prime p dividing f(x0, y0) such that tdeg (f mod p) = tdeg (f).
2: Factorize f in Fp[X, Y ].
3: if f mod p is irreducible and satisfies an absolute irreducibility test then
4: return “f is absolutely irreducible”, f1 := f and q(T ) := T

5: else
6: if f mod p is irreducible and not absolutely irreducible then
7: go to the Preprocessing step.
8: else
9: f = F ·G where F is one of the irreducible factor in Fp[X, Y ] with smallest degree

m, check that s := tdeg (f)
m

is an integer else go to the Preprocessing step.
10: end if
11: end if
12: Lift the factorization to f(x0, Y ) = F (λ)(x0, Y )G(λ)(x0, Y ) mod pλ ; λ is chosen ac-

cording to Proposition 1.4.11 and Remark 1.4.13.
13: Define α := F (λ)(x0, y0) ∈ Z/pλZ. Find, using the lattice described in section 1.4.3 and

the LLL algorithm, the polynomial q(T ).
14: if q(T ) does not satisfy (1.4.1) then
15: go back to step 12 and double λ.
16: end if
17: Denote by α a root of q(T ) (i.e. the command RootOf in Maple) then factorize

f(x0, Y ) in Q(α)[Y ] = L[Y ] and denote by F1(x0, Y ) a factor with degree m and with
F1(x0, y0) = α.

18: if there is not such a factor then
19: go to the Preprocessing step.
20: end if
21: Perform m X-adic Hensel liftings on f(x0, Y ) = F1(x0, Y )F2(x0, Y ) to determine a

candidate for f1(X, Y ) in L[X, Y ] and check that it divides f(X, Y ).
22: if it does not divide f(X, Y ) then
23: go to the Preprocessing step.
24: else
25: return q(T ) and f1(X, Y )

26: end if.
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factor f1. We have to assume that in the factorization of f(x0, Y ) in L[Y ] there is only one
factor of degree m. This is not always verified, for instance if the extension L is normal we
may have several factors of the same degree m.

We write the absolute factor f1 as

f1(X, Y ) = Y m +
m−1∑
k=0

∑
i+j=k

a
(1)
i,jX

iY j = Y m +
m−1∑
j=0

bj(α,X)Y j,

where bj(Z,X) ∈ Q[Z,X] of degree ≤ m− j and α is a root of the polynomial q(T ) found
in step (4).

We then want to find the polynomials bj(α,X).
We substitute steps from (17) to (21) of Algorithm 4 with the procedure of Algorithm 5.

Algorithm 5 Parallel Version of Algorithm 4
1: Denote by α a root of q(T ) (i.e. the command RootOf in Maple).
2: Choose points x1, . . . , xm ∈ Z, xi 6= x0 for i = 1, . . . ,m such that f(xi, Y ) is rationally

irreducible.
3: Compute the factorization of f(xi, Y ) in L[Y ] and choose F1,0(Y ) form the factorization

of f(x0, Y ) as in step 17 of the algorithm and F1,j(Y ) a factor of minimal degree m in
the factorization of f(xj, Y ).

4: Write F1,j(Y ) as

F1,j =
m∑
i=0

γi,jY
j with γj ∈ L.

5: Construct the polynomials bj(α,X) of degree j using Lagrange interpolation [9, Section
3.1] on the set of nodes γ0,j, . . . , γj,j , obtaining a candidate for f1(X, Y ).

6: if it does not divide f(X, Y ) then
7: go to the Preprocessing step
8: end if

The advantage of Algorithm 5 is that in this way this part of the algorithm can be naturally
parallelized and does not saturate the memory.

1.5.2 Hilbert’s Irreducibility Theorem

In the preprocessing step we check that f(x0, Y ) is irreducible. This situation happens very
often in practice. With a more theoretical point of view, we know that there exists an infi-
nite number of x0 ∈ Z such that f(x0, Y ) is irreducible, thanks to Hilbert’s irreducibility
theorem. There exist bounds for this theorem but unfortunately they are very big, see [20].

Here we now use a weaker condition on the choice of (x0, y0) that allows us to reconstruct
the factor f1(X, Y ) even if f(x0, Y ) is not rationally irreducible.
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Choose an integer point (x0, y0) ∈ Z2 such that x0 is not a root of the polynomial ∆(X) =

discY (f(X, Y )) and choose an integer p such that ∆(x0) mod p 6= 0. With this choice of
(x0, y0) we are sure that the univariate polynomial f(x0, Y ) has no multiple roots in Q nor
in Fp.

We do not assume that f(x0, Y ) is rationally irreducible. We compute the factorization
modulo p

f(X, Y ) = F (X, Y ) ·G(X, Y ) ∈ Fp[X, Y ] degF = m.

Thanks to the choice of p as in Step (1) of Algorithm 4, F (X, Y ) is generically equal modulo
p to the researched absolute factor f1(X, Y ) of f .

After applying step (17), we get the following factorization

f(x0, Y ) = ψ1(Y ) · · ·ψr(Y ) ∈ Q(α)[Y ] (1.5.1)

and need to find the set of indexes I ⊆ {1, . . . , r} such that∏
i∈I

ψi(Y ) = f1(x0, Y ). (1.5.2)

We reduce modulo p the equalities (1.5.1) and (1.5.2). We obtain that j ∈ I if and only if ψj
mod p divides F (x0, Y ) mod p.

1.6 Examples and practical complexity

We tested our algorithm on several examples, using (probably non-optimal) routines imple-
mented in Maple 10.

We focused on the construction of the minimal polynomial q(T ) of α, that is on the
construction of the splitting field Q(α); in fact the last part of the algorithm (X-adic Hensel
lifting or Lagrange interpolation) depends strongly on the used software.

The procedures, data and Maple files of several examples are available at
http://math.unice.fr/∼cbertone/

Here we list some remarks about both the strong and the weak points of our algorithm
arising from the computed examples.
• In general the algorithm is quite fast: it took around 30 sec (factorization modulo p, Hensel
lifting, construction of the minimal polynomial) to compute the polynomial q(T ) starting
from a polynomial of degree 200, with 10 absolute factors of degree 20 each.
• If possible, it seems to be a good idea to choose a ”small” prime p (in this way we can gain
some time in the modular factorization). If the integers dividing f(x0, y0) are quite big, it
may be better to go back to the preprocessing step.
• On some examples of high degree, most of the time is spent for the construction of the
minimal polynomial from the approximation α. In our tests, we used the LLL function of
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Maple, but we may speed up this part of the computation using faster algorithms for LLL
(for example, see [59] and [71]).
• For the computation of the p-adic Hensel Lifting, we implemented a small procedure in
Maple, both for the linear and the quadratic one, which can deal also with non-monic poly-
nomials ([81], Algorithm 15.10).

Benchmark

We consider random polynomials g1 ∈ Q[X, Y, Z] and g2 ∈ Q[Z], of degrees d1 and d2 resp.
both rationally irreducible. We compute f(X, Y ) = ResZ(g1, g2). In this way we obtain an
irreducible polynomial f(X, Y ) ∈ Q[X, Y ], monic in Y , of degree d1 · d2 with d2 absolutely
irreducible factors each of degree d1.

The polynomials g1 and g2 used are listed in the file “Polynomials.mws”.

Here we summarize the time needed to obtain q(T ), the minimal rational polynomial of
α, such that the absolute factors of f(X, Y ) are in L[X, Y ], L = Q(α) = Q[T ]/q(T ) and we
made a few remarks about the strategy one may adopt (for instance the choice of the prime).

In almost all of the examples, we computed the Hensel lifting both with the linear and the
quadratic algorithm, this is why we always chose as level of accuracy a power of 2.

In the first 2 examples, we also computed the factorization of f(x0, Y ) in Q(α).
In the first example, we computed the factor f1(X, Y ) using Lagrange Interpolation.
To repeat the examples, one need to change at the beginning of each Maple file the loca-

tion of the file “proc.txt”, in which there are (non-optimal) implementations for linear and
quadratic Hensel Lifting (for non monic polynomials) and a procedure to compute the mini-
mal polynomial of a p-adic approximation of α using the LLL algorithm, using the lattice of
Proposition 1.4.11.

The names of kind “Example1.2.mws” refer to the Maple files on the webpage.

Example 1.6.1. f(X, Y ) rational irreducible polynomial of degree 50 with 5 absolute fac-
tors of degree 10.

We needed 1.5 sec to construct the example and factor f(0, 0). We constructed the mini-
mal polynomial defining the field extension for 2 different choices of p.

Example1.1.mws: we chose p = 11.
• Time to factor f(X, Y ) mod p: 0.131 sec.
The estimation of the level of accuracy that ensures the correct computation of q(T ) was

in this case 338; we chose to lift the factorization to the level p256.
• Time to lift the factorization f(0, Y ) = g1(0, Y )g2(0, Y ) mod p to a factorization

mod p256, using:
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Linear Hensel Lifting: less than 1 sec
Quadratic Hensel Lifting: less than 0.07 sec.
• Time to find the minimal polynomial of α through its approximation mod p256 using

LLL: 0.22 sec.

We can complete the algorithm using the procedure in Algorithm 5:
we chose 10 nodes x1 . . . , x10 randomly and factor the polynomials f(xj, Y ) in Q(α)[Y ];
the longest of these factorization took about 219 sec. Then we used Lagrange Interpolation
and obtained f1(X, Y ).
Example1.3.mws: if we use the software Pari GP, applying the function polred() to the ob-
tained polynomial q(T ), we get q1(Z) which defines the same algebraic extension as q(T )

but has smaller coefficients. In this way, the factorization of f(0, Y ) in Q(α) took only 8 sec,
but the computation of the polynomial q1(Z) in Pari GP took more than 360 sec!

Example 1.6.2. f(X, Y ) rational irreducible polynomial of degree 400 with 20 absolute
factors of degree 20.

We needed around 1260 sec to construct the example and factor f(0, 0).

Example6.1.mws: we chose p = 53259165137.
• Time to factor f(X, Y ) mod p: 1924 sec.
The estimation of the level of accuracy that ensures the correct computation of q(T ) was

in this case 398; we chose to lift the factorization to the level p256.
• Time to lift the factorization f(0, Y ) = g1(0, Y )g2(0, Y ) mod p to a factorization

mod p256, using
Linear Hensel Lifting: less than 365 sec
Quadratic Hensel Lifting: less than 39 sec.
• Time to find the minimal polynomial of α through its approximation mod p256 using

LLL: 1024 sec.

In order to compare the time needed for the construction of q(T ) computing modulo a
“small” prime, we considered also the case with p = 89 dividing f(−1, 0). In this case we
obtained (Example6.2.mws):
• Time to factor f(X, Y ) mod p: 127 sec.
The estimation of the level of accuracy that ensures the correct computation of q(T ) is in

this case 2194; we choose to lift the factorization to the level p1024.
• Time to lift the factorization f(0, Y ) = g1(0, Y )g2(0, Y ) mod p to a factorization

mod p1024, using
Linear Hensel Lifting: 737 sec
Quadratic Hensel Lifting: 24 sec.
• Time to find the minimal polynomial of α through its approximation mod p1024 using

LLL: 520 sec.
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For the detail of other examples, see http://math.unice.fr/∼cbertone/
In the following table we resume the timings of a few more examples.

• n = tdeg (f), s=number of absolute factors of f , m = n/s=degree of an absolute
factor of f ;

• p= prime integer, λ = level of accuracy of Proposition 1.4.11, λ̃ =chosen level of
accuracy;

• T1 = time to factor f(X, Y ) mod p, T2 =time to lift the factorization to pλ̃, T3 =time
to find the minimal polynomial of α.

Example n s m p λ λ̃ T1 T2 T3

Example 1.1 50 5 10 11 338 256 0.13 s 0.07 s 0.22 s
Example 1.2 50 5 10 307 141 128 0.13 s 0.08 s 0.4 s
Example 2.1 100 10 10 7 1105 512 3.4 s 0.3 s 2.25 s
Example 2.2 100 10 10 655379 160 128 6.2 0.4 s 5.7 s
Example 3.1 150 15 10 7 2246 1024 10 s 1.08 s 21 s
Example 4.1 200 10 20 47 853 512 33 s 2.8 s 14 s
Example 4.2 200 10 20 114041 282 256 128 s 3.8 s 30 s
Example 5 200 20 10 7682833 457 256 68 s 3.8 s 220 s

Example 6.1 400 20 20 53259165137 398 256 1924 s 39 s 1024 s
Example 6.2 400 20 20 127 2194 1024 127 s 24 s 520 s
Example 7 100 20 5 7 3029 2048 0.64 s 1.25 s 205 s
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Chapter 2

Decomposition of curves in the
3-dimensional space

After the investigations of Chapter 1 concerning the decomposition of an algebraic curve in
C2, we now face the problem of decomposing an algebraic curve of C3. We would like in
this chapter to make clear what we are looking for. The geometric setting of our problem is
quite simple:

Given (through polynomial equations) an algebraic curve C of C3, we look for
its irreducible components C1, . . . ,Cm:

C = C1 ∪ · · · ∪ Cm.

We will consider the case were all the Ci’s are curves (not points).

From the algebraic viewpoint, the problem is the following:
we deal with an ideal a in the polynomial ring Q[X, Y, Z]; dimR/a = 1 (see Definition
2.1.12) and a has pure dimension 1 (see Definition 2.2.1). The ideal a is not assumed to be
prime nor radical, and we would like to find the equations defining the irreducible compo-
nents of the curve C = V (a).

It is well-known that the algebraic equivalent of this geometric decomposition is the com-
putation of the primary decomposition of an ideal. Nevertheless, for lack of a complete
reference, we prefer to recall the main definitions and properties and to establish explicitly
the connection between the geometric viewpoint and the algebraic one. For the algebraic
part, a very precise reference is [2], Chapter 4.
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2.1 Primary Decomposition and Affine Hilbert function

Definition 2.1.1. A proper ideal q in a ring R is primary if the following condition holds:

xy ∈ q and x /∈ q⇒ y ∈
√
q.

An ideal q is primary if and only if R/q 6= 0 and all its zero divisors are nilpotent. Every
prime ideal is obviously primary.

Proposition 2.1.2 ([2], Proposition 4.1). Let q be a primary ideal in R. Then p =
√
q is the

smallest prime ideal containing q; we say that q is p-primary.

Definition 2.1.3. A primary decomposition of an ideal a in R is an expression of a as a finite
intersection of primary ideals:

a =
r⋂
i=1

qi. (2.1.1)

If moreover

1. qi 6⊇
⋂
i 6=j qj;

2. the prime ideals pi =
√
qi are all distinct,

then the primary decomposition (2.1.1) is said to be minimal (or irredundant, or reduced, or
normal). Any primary decomposition can be reduced to a minimal one (see [2], page 52).

Remark 2.1.4. In general, a primary decomposition may not exist, this is why in the general
theory of primary decomposition we may sometimes need to assume that an ideal is decom-
posable. Actually, this is not the case if we work with a polynomial ring: in this case all
ideals have a primary decomposition (Lasker-Noether Decomposition Theorem).

Theorem 2.1.5 ([2], Theorem 4.5.). Let a be a decomposable ideal and let a =
⋂r
i=1 qi

be a minimal primary decomposition of a. Let pi =
√
qi (1 ≤ i ≤ n). Then the pi’s are

independent of the particular decomposition of a.

In practice, a primary decomposition is the algebraic equivalent of the geometric decom-
position of a variety: but a primary decomposition carries (like the factorization of a poly-
nomial) many information, such as the degree of the different components of the algebraic
variety defined by a, their multiplicities and also the embedded components of a (for the
exact definition degree and multiplicity, see Definitions 2.1.14 and 2.1.15).

Example 2.1.6. Consider the ideal a = (X2, XY ) in R = K[X, Y ]. A minimal primary de-
composition is a = q1 ∩ q2, where q1 = (X), q2 = (X,X2Y ) and

√
q2 = p2 = (X, Y ). The

ideal q1 is prime, so
√
q1 = p1. So the prime ideals associated to a are p1, p2. Furthermore,

observe that p1 ⊆ p2; we have
√
a = p1 ∩ p2 = p1, but a is not a primary ideal.
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The prime ideals pi in Theorem 2.1.5 are said to belong to a, or to be associated with
a. The minimal elements of the set {p1, . . . , pr} are called the minimal or isolated prime
ideals belonging to a. The others are called embedded prime ideals. In the example above,
p2 = (X, Y ) is embedded.

The names “isolated” and “embedded” come from geometry. The ideal a gives rise to a
variety W ⊆ Kn. The minimal primes pi correspond to the irreducible components of W
which are not included in other ones and the embedded primes correspond to subvarieties of
these, i.e., components embedded in the subvarieties defined by the minimal primes. Thus
in Example 2.1.6 the variety defined by a is the line X = 0 and the embedded prime ideal
p = (X, Y ) corresponds to the origin (0, 0).

A set Σ of prime ideals belonging to a is said to be isolated if it satisfies the following
condition: if p′ is a prime ideal belonging to a and p′ ⊆ p for some p ∈ Σ, then p′ ∈ Σ.

Theorem 2.1.7 ([2], Theorem 4.10). Let a be a decomposable ideal, let a =
⋂
qi be a

minimal primary decomposition of a, and let {pi1 , . . . , pim} be an isolated set of prime ideals
of a. Then qi1 ∩ · · · ∩ qim is independent of the decomposition.

Corollary 2.1.8. The isolated primary components of a (i.e., the primary components qi

corresponding the minimal prime ideals pi) are uniquely determined by a.

On the contrary, the embedded primary components (i.e., the primary components corre-
sponding to embedded primes) are not unique.

Example 2.1.9. Consider the ideal a of Example 2.1.6. The primary decomposition a =

q1 ∩ q2 is not the unique one; we also have a = (X)∩ (X2, X + Y ), which is a minimal pri-
mary decomposition too. Remark that the associated primes are the same, but the embedded
primary component changes.

Considering the parallelism between the factorization of f(X, Y ) ∈ Q[X, Y ] in C[X, Y ],
and the primary decomposition of an ideal a ⊆ Q[X, Y, Z] in C[X, Y, Z], it is natural to talk
about degree and multiplicity of a component. We can define them through the Affine Hilbert
function.

Definition 2.1.10. Let K be a field and a an ideal of the polynomial ringR = K[X1, . . . , Xn]

standard graded.
We first define 〈R≤i〉, the vector space generated by all the polynomials ofR of degree≤ i.

The K-vector space 〈a≤i〉 is the vector subspace of 〈Ri≤i〉 which consists of the polynomials
of a of degree ≤ i. Since a≤i = R≤i ∩ a, we can view the vector space R≤i/a≤i as a vector
subspace of R/a. In the following we shall frequently use this identification.

The map HF a
R/a : Z→ Z defined by

HF a
R/a(i) = dimK(〈R≤i〉/〈a≤i〉)
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for i ∈ Z is called the affine Hilbert function of R/a.

Definition 2.1.11. The power series HSaR/a(z) =
∑

i≥0HF
a
R/a(i)z

i ∈ Z[[z]] is called the
affine Hilbert series of R/a.

The affine Hilbert series of R/a is of the form

HSaR/a(z) =
HNa

R/a(z)

(1− z)n+1
,

with a polynomial HNa
R/a(z) ∈ Z[z] which is called the affine Hilbert numerator of R/a

(see [49],Part b) of Proposition 5.6.7 and Theorem 5.2.20).
We can simplify this fraction by cancelling (1 − z) as often as possible and obtain a

representation HSaR/a(z) =
hna

R/a
(z)

(1−z)h+1 with a polynomial hnaR/a(z) ∈ Z[z] and 0 ≤ h ≤ n.

Definition 2.1.12. Let a be a proper ideal in R , and let HSaR/a(z) =
hna

R/a
(z)

(1−z)h+1 be the simpli-
fied Hilbert series of R/a.
The number dim(R/a) := h is called the dimension of R/a.

Definition 2.1.13. Let a be a proper ideal in R.

1. The uniquely determined integer valued polynomial HP a
R/a(t) ∈ Q[t] such that

HP a
R/a(i) = HF a

R/a(i) for all integers i >> 0

is called the affine Hilbert polynomial of R/a.

2. The affine regularity index index of R/a is

ρ(R/a) = min{i ∈ Z|HF a
R/a(j) = HP a

R/a(j) for all j ≥ i}.

Definition 2.1.14. Let a be a proper ideal in R, consider its affine Hilbert polynomial
HP a

R/a(t) ∈ Q[t]. The degree of R/a is (dim(R/a)!) · (lcoeff(HP a
R/a(t)).

We will often use some abuse of notations, writing dim a for dim(R/a) or we will often
say “the degree of a” meaning the degree of R/a.

Finally, once defined the degree of an ideal, we can define the multiplicity of a primary
component. Here we state the proper algebraic definition, but it corresponds to the intuitive
idea that the multiplicity is “how many times the component should be counted”.

Definition 2.1.15. Let q ∈ R be a p-primary ideal. Then the multiplicity of q in p is
deg(p)/ deg(q).
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2.2 Setting of the problem and main aim

After the general definitions and properties of primary decomposition of the previous section,
we now state the precise hypothesis in which we want to work and the main aim of an
algorithm of decomposition of a curve.

Definition 2.2.1. An ideal a has pure dimension 1 if all its associated primes pi have dimen-
sion 1.

In other words, if an ideal a has pure dimension 1, then there are no embedded primes.
Thanks to Corollary 2.1.8, all the primary components of a are uniquely determined and so
in this case the primary decomposition is unique.

If we consider a complete intersection curve C , defined by the ideal a = (F,G) ∈
Q[X, Y, Z], then C has pure dimension 1. This can be seen as a consequence of the Affine
Dimension Theorem ([40], Chapter II, Proposition 7.1).

Definition 2.2.2. Consider a = (F,G) ⊆ Q[X, Y, Z].
We say that the minimal primary decomposition of a in Q[X, Y, Z]

a =
s⋂
j=1

qi, qi ∈ Q[X, Y, Z]

is the rational primary decomposition of a.
Furthermore, we consider the primary decomposition of each primary component qi in
C[X, Y, Z]:

qi =

ri⋂
j=1

q
(j)
i ⊆ C[X, Y, Z].

We say that qi (resp. V (qi)) is a rational component of a (resp. of V (a)). If ri = 1, we say
that qi (resp. V (qi)) is purely rational.

Consider a non-purely rational component qi of a. Let Li be the smallest normal algebraic
extension of Q such that q(1)

i has a set of generators in Li[X, Y, Z]. Consider the Galois group
of Li over Q, Gal(Li/Q).

For every σ ∈ Gal(Li/Q), starting from q
(1)
i , with

√
q

(1)
i = p

(1)
i , we can define an ideal

in the following way

q
(1)
i = (f1(αi, X, Y, Z), . . . , fl(αi, X, Y, Z))→

→ σ(q
(1)
i ) = (f1(σ(αi), X, Y, Z), . . . , fl(σ(αi), X, Y, Z)).

Obviously, the definition of σ(q
(1)
i ) is independent from the chosen set of generators of q(1)

i ,
q

(1)
i and σ(q

(1)
i ) have the same dimension and it is straightforward that the ideal σ(q

(1)
i ) is
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σ(p
(1)
i )-primary. Finally, if τ, σ ∈ Gal(Li/Q), τ 6= σ, then τ(q

(1)
i ) 6= σ(q

(1)
i ) and τ(p

(1)
i ) 6=

σ(p
(1)
i ).

We now show that actually the ideals σ(q
(1)
i ) are the primary components of qi in Q[X, Y, Z].

Lemma 2.2.3. With the previously used notations, consider qi a non-purely rational compo-
nent of a = (F,G), Li the smallest normal algebraic extension of Q such that q(1)

i has a set
of generators in Li[X, Y, Z], Gal = Gal(Li/Q). The minimal primary decomposition of qi
is

qi =
⋂

σ∈Gal

σ
(
q

(1)
i

)
, (2.2.1)

and in particular ri = [Li : Q].

Proof. σ(qij) is σ(pij)-primary. So
⋂
σ∈Gal σ

(
q

(1)
i

)
is a primary decomposition of an ideal

b.
Furthermore, it is a minimal primary decomposition. Thanks to the definition of the

ideals through the automorphism of Li, all the associated primes σi(p
(1)
i ) are distinct; for

what concerns redundant primary components, for any σ ∈ Gal, since Li is the minimal
normal algebraic extension containing a set of generators of q(1)

i , then there is f ∈ q
(1)
i such

that
∏

τ 6=σ τ(f) is not in σ(q
(1)
i ).

We now consider the associated primes of qi in the decomposition over Li[X, Y, Z] and
the natural homomorphism Q[X, Y, Z] → Li[X, Y, Z]. We can apply [2], Exercise 13 of
Chapter 5: the set of prime ideals {p(j)

i } is the same as the set of prime ideals of Li[X, Y, Z]

whose contraction is pi. Then Gal acts transitively on the set {p(j)
i }j=1,...,ri , that is

{p(j)
i }j=1,...,ri = {σ(p

(1)
i )}σ∈Gal.

So
⋂
σ∈Gal σ

(
q

(1)
i

)
is a minimal primary decomposition of qi; since qi is a primary

component of dimension 1 of the complete intersection a, all its primary components in
Li[X, Y, Z] are of dimension 1 and there are no embedded components, so thanks to Corol-
lary 2.1.8, we have that this decomposition is the unique one.

Lemma 2.2.4. Consider a = (F,G) ⊆ Q[X, Y, Z]. Then the minimal primary decomposi-
tion of a is

a =
r⋂
i=1

 ⋂
σ∈Gal(Li/Q)

σ
(
q

(1)
i

) . (2.2.2)

Proof. Since all of this ideals are primary, we just need to show that the decomposition is
minimal.

Condition 1 of Definition 2.1.3 about minimality is straightforward from Lemma 2.2.3.
For what concerns Condition 2, we just have to point out that if there is p̃ associated to qi

and qj , i 6= j, then thanks to the choice of the extensions, we have Li = Lj and so pi = pj .
But this contradicts the minimality of the rational primary decomposition of a.
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Up to relabelling the automorphisms of Gal(Li/Q), we can rewrite (2.2.2) as

a =
r⋂
i=1

(
ri⋂
j=1

q
(j)
i

)
, (2.2.3)

with ri = [Li : Q], q(j)
i = σj

(
q

(1)
i

)
.

Definition 2.2.5. Writing the primary decomposition of a as in (2.2.3), for i such that ri ≥ 2,
we say that q(j)

i (resp. V (q
(j)
i )) is an algebraic component of a (resp. of V (a)).

We can finally fix our purpose.

Given a non-prime ideal a = (F,G) ⊆ Q[X, Y, Z] , we write its primary
decomposition as in (2.2.3). Then, there are polynomials

Q
(j)
i ∈ Li[X, Y, Z], i = 1, . . . , s, j = 1, . . . , ri, and P ∈ Q[X, Y, Z]

such that

• Li minimal normal algebraic extension containing q
(1)
i , ri = [Li : Q],

• Q(j)
i ∈ q

(j)
i , Q

(j)
i /∈ a,

• Q(j)
i = σ(Q

(1)
i ) for some σ ∈ Gal(Li/Q),

• Q(j)
i /∈ q

(l)
m ∀(i, j) 6= (m, l),

• P =
∏s

i=1

(∏ri
j=1Q

(j)
i

)
∈ a.

We then would like to find
for every primary component of a, its degree and multiplicity (with respect to
the associated prime)
for i from 1 to s, a polynomial Mi(T ) ∈ Q[T ], monic, degMi(T ) = [Li : Q],
such that Li ' Q[T ]/Mi(T ) and a polynomial Qi ∈ Q[X, Y, Z] such that

Qi =

ri∏
j=1

Q
(j)
i

where Q(1)
i ∈ q

(1)
i ⊆ Q(αi)[X, Y, Z], Q(j)

i = σj(Q
(j)
i ).

Definition 2.2.6. With the above notations, we say that Qi (resp. Q(j)
i ) is a separator poly-

nomial for the rational component qi (resp. for the algebraic component q(j)
i ) of a.
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2.3 Related works

The aim for a decomposition algorithm for curves we established is actually the same that
we can found in [29] and in [73] (and the related [72] and [74]). All of this algorithms are
“numerical”, in the sense that they use floating-point computation and not symbolic one.
There is an underlying common technique in this papers: considering a generic plane sec-
tion of the curve C , that is a finite set of points, one can get the degrees of the components
and their multiplicity. More precisely, in order to obtain the degrees and multiplicities of
all the algebraic components of C , in [29] there is a zero-sum criterion, which generalizes
the strategy of [68] for absolute factorization, while in [73], the points of the generic plane
section are divided according to the decomposition of the curve in irreducible components
using homotopy continuation methods.
Finally, in both approaches the authors construct a polynomial defining an hypersurface
which can isolate a component from the others (in our language, a separator polynomial).
In both cases, since the knowledge of the generic plane section of a component is not enough
to construct a separator polynomial (see Section 3.2), the authors “move” the plane they used
to cut the variety in order to get more points and conditions on the separator polynomial. The
result is a polynomial of degree equal to the degree of the component itself.
Beyond the limits of these algorithms concerning the degrees of the considered curves and
the needed precision to have correct outputs, we also point out a particular aspect that we
wish to improve: the degree of the separator polynomial found through the techniques in
[29] and [73] is the degree of the associated component; actually, we would like to find a
separator polynomial with a lower degree, or at least a bound on this degree better than the
degree of the component itself, using for instance the Hilbert function of the component.

There is another group of papers ([51] and the references therein) using a more symbolic
approach to the problem. Instead of using the plane sections, the authors use lifting fibers,
that is the input and output of a decomposition algorithm are encoded in a computationally
efficient way, that is straight-line programs (see [33]).
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Chapter 3

Bounds on the degree

We consider an ideal a ⊆ Q[X, Y, Z] complete intersection: a = (F,G) with degF = d1

and degG = d2.
We would like to find a bound on the degree of a separator polynomial for each irreducible

component of C .
In the next sections, we will sometimes pass to consider a curve C of the affine N -

dimensional space CN as a curve of the projective space PN . This means that if the ideal
a ⊆ C[X1, . . . , XN ] defines C in the sense that V (a) = C , we can consider the curve C

in PN homogenizing a set of generators of a with a new variable X0 and then saturating the
obtained ideal with respect to X0 (see [49], Proposition 4.3.5). If we use a term ordering
on the variables, we always assume that the homogenizing variable is the smallest one. If
we consider the polynomial ring K[X, Y, Z], we denote the homogenizing variable with W .
From now on, with R we mean the polynomial ring K[X1, . . . , XN ] or K[X, Y, Z] (K = C
or Q), and with R we mean the polynomial ring R[X0] or R[W ].

When we use the language of sheaves and cohomology, we refer to [40] for definitions
and properties.

For computational purposes, we always assume that we performed a generic change of
coordinates in the following way: we consider the homogenized ideal a in R and perform a
generic linear change of coordinates. If needed, we go back to the affine space substituting
1 to the homogenizing variable. In this way we avoid problems with irreducible components
at infinity of the curve.

3.1 Guide-line example

We consider an explicit example of an ideal a ⊆ Q[X, Y, Z] defining a complete intersection
curve C of C3 with two irreducible components. This example is quite simple, since in this
case all the components are purely rational.
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Example 3.1.1. We consider the complete intersection a = (F,G) ⊆ Q[X, Y, Z] with

F (X, Y, Z) = X3 + 2X2Z + 3XY Z − 16X2Y − 48Y 2X − 36Y 3,

G(X, Y, Z) = 5X2Z + 64X2Y + 96Y 2X + 16X3 + 12XY Z + 9Y 2Z + 54Y 3.

The primary decomposition of a is
a = q1 ∩ q2,

with q1 prime, C1 = V (q1) reduced curve of degree 5,
√
q2 = (X, Y ) so V (q2) is a line, with

multiplicity 4.

3.2 The Lifting Problem

The simpler idea one can think of in order to find separator polynomials is getting informa-
tion from the generic plane section of the curve:
if a ∈ C[X, Y, Z], we can consider a generic plane H ∈ C3 defined by the equation
h ∈ C[X, Y, Z] and consider the ideal a + (h), which corresponds to the intersection of the
curve C with the plane H . This is actually the starting point of the Algorithms described in
[73] and [29]. Actually, both these algorithms use some information further than the generic
plane section of the curve (for instance the Taylor expansion to a given degree of the curve
around a point of the section); we may say that they use some “fat” plane section. Usually
the degree of the Taylor expansion used (and of the separator polynomial constructed) is the
degree of the curve itself. It is interesting to find a better (lower) bound on the degree of a
separator polynomial.

The datas we have to find a separator polynomial (or at least its degree) are at the moment

• F,G ∈ Q[X, Y, Z];

• the sets of points Ci ∩H , H general hyperplane, with #{Ci ∩H} = deg Ci.

Given a ⊆ Q[X, Y, Z] such that V (a) = C curve of C3, we can consider a generic plane
H and compute the points in V (a + (h)), with V (h) = H .

Assume that we are able to compute a partition of the set of points V (a+(h)) = C ∩H =

{pj}j∈J such that:
Ci ∩H = Pi = {pij}j=1,...,deg Ci .

We can for instance, use the method of [29].
For each i, we can find a minimal non negative integer ti such that(

ti + 2

2

)
− 1 > deg Ci (3.2.1)
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Then we can find a curve lying on the plane H which interpolates the points of Ci ∩ H .
If the points are not in general position, then the minimal degree for a curve of H containing
{Ci ∩H} may be smaller than the ti of equation (3.2.1).

Once that we have found the equation of such a curve, Q(0)
i , we may think that we should

just “lift” this curve to a surface of the same degree containing the whole curve Ci. Beyond
the problems of interpolation about this lifting, there are irreducible curves such that the
minimal degree containing the general plane section is smaller than the minimal degree of a
surface containing the curve. In literature this is a classical problem, the Lifting Problem.

Its precise statement, for varieties of codimension 2 in the projective space of dimension
N is as follows:

Let X be a nondegenerate reduced and irreducible variety of codimension 2
and degree d in PN and Y be its generic hyperplane section. The lifting problem
consists in finding numerical conditions involving d,N and a positive integer t,
implying that any (or at least one) hypersurface of H of degree t containing Y
can be lifted to a hypersurface of degree t containing X .

We point out the cohomological aspect of this lifting problem. It is interesting because
the cohomology groups we will now look at will be found again in the next section.
The key point of the problem is that if we consider the curve Ci in the projective space P3

and we consider the sheafification ICi of the homogeneous ideal of Ci in P3 we have the
exact sequences

0→ ICi(t− 1)→ ICi(t)→ ICi∩H(t)→ 0

0→ H0ICi(t− 1)→ H0ICi(t)→ H0ICi∩H(t)→ H1ICi(t− 1)→ H1ICi(t)

If a degenerate curve of H of degree t contains Ci ∩ H but no surfaces of P3 of degree
t contain Ci, then the map H0ICi(t) → H0ICi∩H(t) is not surjective or, in other words, the
map H1ICi(t− 1)→ H1ICi(t) has a non trivial kernel. We will see later that this problem,
using language of sheaves and cohomology, will keep on troubling us in the search for a
bound on the degree on the separator polynomial.

At the moment there is no a numerical general condition ensuring the lifting of the hy-
perplane section which work for any N , but there is a conjecture proposed by Mezzetti in
[56]:

Conjecture 3.2.1. If d > t2−(N−3)t+

(
N − 2

2

)
+1 thenX is contained in a hypersurface

of degree t.

This conjecture is true for “small” values of N , but almost nothing is known about higher
N ’s without adding some hypothesis on X . Here we list some of the main results.
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ForN = 3, that is for curves in P3, the conjecture is proved by Laudal’s generalized trisecant
lemma ([50]), in which the author obtained a first weaker bound d > t2 + t. This bound was
later improved by Gruson and Peskine ([38]) and Strano ([76]), with two different methods,
getting the better bound d > t2 + 1.
For N = 4, the bound d > t2 − t + 2 is proved by Mezzetti in [56] in the general setting,
but with some further hypothesis the bound was already proved by Mezzetti and Raspanti in
[57].
For N = 5, the bound d > t2 − 2t+ 4 is proved by Valenzano in [80] in the general setting,
while for the case t > 5 it was already proved by Mezzetti in [56].
For N = 6, the bound d > t2 − 3t+ 7 is proved by Roggero in [67].
For N = 7, the bound d > t2 − 4t + 11 is not yet proved in the general case; with a further
assumption on a cohomology group of X , it is proved by Roggero in [67].
For any N , the conjecture is proved by Roggero in [67] using an additional hypothesis on
the vanishing of a cohomology group of the plane section of X , improving the results by
Tortora in [77].

Example 3.2.2. If we consider the curve C1 of degree 5 of Section 3.1.1 as a curve in P3,
the plane section C1 ∩ H is made up of 5 points, which lie on a conic curve of H , but the
sufficient condition d > t2 + 1 in this case does not hold. Indeed, the curve C1 does not lie
on a quadric surface of P3: the minimal free resolution of the ideal a is

0→ R(−6)→ R3(−4)⊕R2(−5)→ R4(−3)⊕R(−4)→ a→ 0.

Mezzetti’s conjecture was inspired by Gruson and Peskine’s proof of the bound for curves,
[38].
Gruson and Peskine’s method, in the general case of a codimension 2 subvariety X of PN ,
brings back the problem to the positivity of a Chern Class. Indeed, with the hypothesis that
H0IX(t) = 0 (that is X is not contained in any hypersurface of degree t), they define an
injective morphism of sheaves from ΩH(1) (the cotangent bundle of H shifted in degree) to
I∆(s) (with I∆ ideal sheaf of S, S hypersurface of H containing Y ). The kernel of this map
is a reflexive sheaf N :

0→ N → ΩH(1)→ I∆(t)→ 0.

The second Chern class of N (1) is t2 − (N − 1)t+
(
N
2

)
+ 1− δ, where δ ≥ d is the degree

of the closed subscheme ∆ of S. So the problem turns to finding hypothesis on a reflexive
sheaf on PN in order to have its second Chern class to be non-negative.

3.2.1 Positivity of Chern classes of reflexive sheaves

There are clear and complete results on the positivity of the Chern classes for what concerns
vector bundles (see [27], Example 12.1.7). A reflexive sheaf is in some sense a “more gen-
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eral” coherent sheaf than a vector bundle: a reflexive sheaf on PN is a vector bundle except
along a closed subset of PN of codimension ≥ 3.

We studied the positivity of the Chern classes (in particular of the first and second one)
of a reflexive sheaf F on PN in [6] and [7], putting them in connection with some invariant
sequences of integers of the sheaf.
In [6], after defining a injective morphism ⊕n−1

i=1OPN (ai) → F , for a maximal sequence
(a1, . . . , an) of integers, we are able to show, using induction on the rank of F and combi-
natorial properties on the number of global sections of the involved sheaves, the following
bounds for the first and second Chern class c1(F) and c2(F) of F :

If F is not a direct sum of line bundles and it has a proper subsheaf isomorphic
to ⊕ni=1OPN (ai) where a1 ≥ · · · ≥ an ≥ 0, then:

c1(F) ≥
n∑
i=1

ai + 1 and c2(F) ≥
∑
i<j

aiaj +
∑
i 6=2

ai + 1.

Moreover

c1(F) ≥
n∑
i=1

ai + 2 and c2(F) ≥
∑
i<j

aiaj +
∑
i 6=2

ai + 2,

unless F has a short free resolution of the type:

0→ OPN (β − 1)→ ⊕ni=1OPN (ai)⊕OPN (β)→ F → 0,

where β depends on c2(F) and the integers ai.

Furthermore, some results about positivity of c1(F) and c2(F) are obtained using weaker hy-
potheses on the maximal sequence (a1, . . . , an) but assuming that F has a particular splitting
type. Finally, we also investigate c3(F), but there we need completely different techinques
(for instance, hypotheses on the homological dimension of the sheaf and on the codimension
of its singular locus).

In [7], instead of using the sequence (a1, . . . , an) of a reflexive sheaves, we generalize the
inequalities of [6] to torsion-free sheaves using the splitting type of the sheaf F , which is a
well-known invariant of a coherent sheaf (see [62]).

Let F be a torsion free sheaf on PN and st(F) = (b1, . . . , bn), b1 ≥ · · · ≥ bn, be
its splitting type. Then

c2(F) ≥ c2(⊕OPN (bi)).

Actually, the starting point for the above result is the inequality about the dimension of the
0-th cohomology group:

h0(F) ≤ h0(⊕OPN (bi)).
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It is a classical technique (see [39], Theorem 2.3) to write the Euler characteristic of a
coherent sheaf F (which involves the dimensions of the cohomology groups hiF) as a poly-
nomial in the Chern classes of the sheaf itself. In [39] this is applied to a coherent sheaf of
rank n on P3, but the technique can be extended to a sheaf of any rank on PN . We explicitly
carried out the computation of this polynomial for χ(F) in [4].
Actually what we prove in [7] is something more precise than the simple positivity of the
two differences h0(⊕OPN (bi)) − h0F and c2(F) − c2(⊕OPN (bi)); in fact we obtain lower
bounds for them that involve the maximal free subsheaves of F and of its restriction FH to
general linear subspaces H in PN .
Interesting consequences of these results are a generalization of Schwartzenberger’s inequal-
ity for rank 2 semistable vector bundles and a simple, self-included proof of a splitting crite-
rion for torsion-free sheaves, generalizing Horrock’s splitting criterion.

3.3 A bound using regularity

If we consider the case of an ideal a = (F,G) ∈ Q[X, Y, Z], at the moment we know that
the degree qi of the separator polynomial Qi is greater or equal to ti, that is the minimal
degree of a curve of the plane containing Ci ∩H . Furthermore, if deg Ci > t2i + 1, then Ci is
contained in a surface of degree ti, but if deg Ci ≤ t2i +1, we need to upper bound the degree
of a surface containing Ci, possibly using degF = d1 and degG = d2.

If we assume that the separator polynomial we are looking for is a minimal generator of
qi such that qi is a primary component of a and V (qi) = Ci, then a rough way to bound the
degrees of the minimal generators of an ideal is the regularity.

In order to deal with regularity of an ideal, in this section we will keep on writing a for
the homogenization of a in the polynomial ring C[X, Y, Z,W ] if there is no ambiguity.

Definition 3.3.1. Let m = (X, Y, Z,W ) be the maximal ideal in C[X, Y, Z,W ]. For a

homogeneous ideal, we define the numbers

ai(a) := max{µ|H i
m(a)µ 6= 0},

bi(a) := max{µ|Torim(a,C)µ 6= 0}.

With these notations, the Castelnuovo-Mumford regularity has the two following equivalent
definitions

reg(M) = max
i
{ai(a) + i} = max

j
{bj(a)− j}.

As an alternative, we can consider the minimal free resolution of a

0→ E4 → E3 → E2 → E1 → E0 → a→ 0
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where Ei = ⊕βij=1R(−cij).
We then have a third definition for regularity of a

reg(a) = max{cij − i}.

This last definition enlightens clearly why we should use regularity to bound the degree of a
separator polynomial: the regularity bounds not only the degrees of the minimal generators
of a, but also the degrees of the generators of the minimal syzygies of a. So if we are looking
for a separator polynomial which is also a minimal generator of the ideal a, its degree is
bounded by the regularity of the ideal.
We want to underline that, while the bounds given by the Lifting Problem concern only
the case of curves when N = 3, the regularity obviously bounds the degree of a minimal
generator of a, ideal of K[X1, . . . , Xn] such that dim a = 1 (affine dimension).

Unluckily, the best bound on the regularity of the ideal a = I(C ) associated to a reduced,
irreducible and non-degenerate curve C in P3 is

reg (a) ≤ deg C − 1.

This bound was originally proved by Castelnuovo for smooth curves in [10] and then for
reduced curves by Gruson, Lazersfeld and Peskine [37].

Using the notations of Section2.2, at the moment we have that, if qi has multiplicity one
in the primary decomposition (that is qi =

√
qi),

degQi = qi ≤ deg Ci − 1 = #{Ci ∩H} − 1, (3.3.1)

with H general plane.
If we use for instance the zero-sums method of [29], we can actually compute this bound.

But if we want to have a bound on the degrees qi’s before starting our computations, we have
at the moment just

qi ≤ d1 · d2 − 1. (3.3.2)

Example 3.3.2. For the curve C1 of Example 3.1.1, the bound (3.3.1) is sharp for what
concerns the regularity of the ideal I(C1); for our purposes, we point out that the regularity
is a good way to bound the degree of a separator polynomial of C1 but actually we can hope
to find better, since the minimal degree of a generator of C1 is 3 < reg (I(C1)).

It may be interesting to underline the role of H1ICi , which is similar to the one pointed
out for the Lifting Problem.

In [58], Mumford shows that Castelnuovo’s results in [10] have other powerful conse-
quences, starting from the definition of Castelnuovo-Mumford regularity for sheaves:
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Definition 3.3.3. A coherent sheaf F on PN is m-regular if H i(m− i) = 0 for i = 0, . . . , N .
The minimal m for which F is m-regular its the regularity of the sheaf.

For our purposes, one of the most interesting properties concerning regularity of sheaves
is the following:

Let I be an ideal sheaf in PN and H a general hyperplane. IH := I ⊗ OH
and let m1 := reg(IH) Then

reg(I) ≤ m1 + h1I(m1 − 1).

Again the first cohomology group causes the “problems” to connect the regularity of
the curve to the regularity of its hyperplane section , as it causes problems to lift curves
containing the hyperplane section of Ci to surfaces containing Ci.
So, if we were able to verify that h1ICi(m1 − 1) = 0, then we immediately have that the
regularity of Ci is equal to the regularity of its generic plane section (Ci is assumed to be
reduced, irreducible and non-degenerate). But we can not hope to be able to compute the
dimension of this cohomology group for a component Ci if we only know the equations
defining the complete intersection C and the points of Ci ∩H .

Many authors quested for bounds on the regularity of an ideal a using the degrees of the
defining equations of the ideal: see for instance [3], [12], [13].

In particular, for our aims, the main theorem of [11] gives a linear bound in the degrees
of the generators of a with some hypothesis on the singularities of the primary components
of a.

Theorem 3.3.4 ([11], Theorem 4.4). Consider R = K[X0, . . . , Xn] and a ⊆ R be a homo-
geneous ideal with homogeneous generators of degrees d1 > · · · > ds.
Consider r ≤ s and b ⊆ R, an intersection of isolated primary components of codimension
r of a. Let S and Z be the projective schemes defined by b and a respectively and assume
that,

1. Z has at most isolated singularities on S,

2. S does not meet the other components of Z.

Then
reg (b) ≤ (dimproj b)(d1 + · · ·+ dr − r − 1) + 1.

In our setting, assume that we consider a ideal ofR.Let qi be a primary component of a of
(affine) dimension 1. Then, if qi has multiplicity 1, then qi respects condition 1 of Theorem
3.3.4.
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Condition 2 of Theorem 3.3.4 is never satisfied for complete intersection curves in P3: in
fact if a defines a curve in P3 and a is not prime, then any irreducible component of the curve
meets another one since the curve is connected. For a non-complete intersection ideal a in
K[X, Y, Z,W ], if a primary component b satisfies 1 and 2 of Theorem 3.3.4, then reg b ≤
2(d1 + d2− 2) + 1 = 2d1 + 2d2− 3, where d1 and d2 are the highest degree of the generators
of a.
For an ideal a defining a curve in PN , N ≥ 4, if a primary component b satisfies 1 and 2 of
Theorem 3.3.4, then we have that

reg (b) ≤ 2(
N−2∑
i=1

di −N − 1).

This bound is much better than (3.3.2) since it is linear in the degrees of the polynomials
defining ideal a, but in practice it is not that useful, since we need to know a priori that the
component V (b) does not intersect the other components of the curve.

Finally, for what follows, it is useful to see a bound on the regularity of a curve involving
another invariant of the curve itself. We will be able to give a clear meaning to this in the
next section.

Definition 3.3.5. For any homogeneous ideal a ⊆ R, we let HR/a(t) := dimk R/at be the
Hilbert function of R/a.
For t >> 0, HR/a(t) = PR/a(t) where PR/a(X) ∈ K[X] is the Hilbert polynomial of R/a.
The regularity of HR/a is ρR/a = min{t|HR/a(t) = PR/a(t)∀t ≥ t}.

If a = I(C ) is the defining ideal of a curve C ∈ PN , we simply write ρC for ρR/a.

Proposition 3.3.6 ([17], Proposition 3.4). Let d1 ≥ · · · ≥ dN−1 be degrees for which there
exists a complete intersection Y ⊆ PN of type (d1, . . . , dN−1) containing C . So

1. reg(I(C )) ≤ max{ρC + 1,
∑N−1

i=1 di −N + 2};

2. if C ∩H , with H generic plane, is not a complete intersection of type (d1, . . . , dN−1)

(e.g. if deg(C ) <
∑N−1

i=1 di), then reg(I(C )) ≤ max{ρC + 1,
∑N−1

i=1 di −N + 1}.

We want to underline the fact that this bound holds for curves in PN , also for a non-
equidimensional curve. We then are interested in studying methods to compute ρC and this
is what we will see in the next section.

3.4 Generic Initial Ideal

As we have just said, it is not easy to deal with the regularity of an ideal. Anyway there
is simple computational tool which allows us to compute not only the regularity but also
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another interesting invariant if we look at our curves in PN (instead of remaining in the
affine space CN ). We now work in the polynomial graduated ring R = C[X0, X1, . . . , Xn]

with maximal ideal m = (X0, X1, . . . , Xn).

Definition 3.4.1. A homogeneous ideal a ⊆ R is saturated if (a : m) = a.
The saturation of a is

asat =
⋃
k≥0

(a : mk).

a is m-saturated if ad = asatd for all d ≥ m.
The satiety of a is the smallest m for which a is m-saturated.

Proposition 3.4.2. An ideal a is m-regular if and only if a is m-saturated and its sheafifica-
tion I(a) is m-regular.

Proof. See [35], Proposition 2.6 page 139.

From now on we will consider the polynomials in R with th DegRevLex term order with
any order on the variables such that X0 is the smallest one.

Xa > Xb ⇐⇒
∑

ai >
∑

bi or ai = bi for i > i0 and ai0 < bi0 .

Theorem 3.4.3. [Galligo’s Theorem, [35], Theorem 1.27 page 129]
Fix any monomial order and let a be a homogeneous ideal in R. There is a Zariski open

subset U ⊆ GL(N +1) fixed by the invertible lower triangular matrices and with non trivial
intersection with the subgroup upper triangular matrices with 1’s on the diagonal and there
is a monomial ideal a ⊆ R , such that in(g(a)) = a for all g ∈ U .

We will call in(g(a)) generic initial ideal of a, briefly gin(a).

If we make the computational effort to write down gin(a), then we immediately have a
lot of information about the regularity and satiety of the ideal a.

For a, b ideals, we write ab meaning the quotient a + b/b.

Properties 3.4.4 ([35], Theorem 2.30 page 146).

1. sat(a) is the degree of the highest generator of gin(a) involving X0; reg(a) is the
degree of the highest generator of gin(a);

2. a is saturated if no generator of gin(a) involves X0;

3. for a general hyperplane H , gin(aH) = (gin(a))X0;

4. for a general hyperplane H , reg(a) = max{sat(a), reg(aH)}.
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If we consider a curve C in C3 and we consider I(C ) ⊆ C[X, Y, Z], homogenizing a
set of generators with W and saturating with respect to this new variable, we obtain the
homogeneous ideal a; we keep on writing C for the curve V (a) ⊆ P3. We can then give a
representation of gin(a), “drawing” it in a 3-dimensional space. In fact, a is saturated and
so the monomial generators of its generic initial ideal does not contain the smallest variable,
W (Property 3.4.4, 2.).

We now define in a proper way the concept of stair of an ideal.

Definition 3.4.5. Let a be a homogeneous ideal in C[X0, . . . , Xn] and consider gin(a) =

(m1, . . . ,mr). The stair of the ideal a is the set of monomials m which are not divided by the
mi’s, that is

E := {m |mi - m, i = 1, . . . , r}.

There is a simple and very nice characterization for the stair of a complete intersection.
In the following theorem we consider a graded ring R with n indeterminates; we use the
DegRevLex term-order with an ordering on variables such that X > Y are the biggest ones.

Theorem 3.4.6 ([28]). If we consider a complete intersection homogeneous ideal (F,G) ⊆
R with degF = d1 and degG = d2, d1 ≥ d2, then the generic initial ideal with respect to
the DegRevLex order is

gin(F,G) = (Xd2 , Xd2−1Y d1−d2+1, . . . , XY d1+d2−3, Y d1+d2−1)

and in particular we have that lt(g(F )) = Xd1−1Y d2−d1−1 and lt(g(G)) = Xd1 , with g in
the Zariski open subset of U of 3.4.3.

Example 3.4.7. Considering the ideal a of Example 3.1.1, gin(a) = (X3, X2Y,XY 3, Y 5)

and gin(C1) = (X3, X2Y,XY 2, Y 3, X2Z2). We represent their stairs in Figure 3.1.

The stair of an ideal a is a basis for the vector space R/g(a) = R/in(g(a)) = R/gin(a)

for g ∈ U ⊆ GL(N + 1), so we can actually compute the Hilbert function of a from its stair.
Furthermore, for any curve C ⊆ P3, we have that gin(I(C )H) = gin(I(C ))W (Property

3.4.4, 3.), but since I(C ) is saturated, gin(I(C )H) = gin(I(C )). On the other hand, if we
consider the general planeH defined by Z = 0, we have that I(C )H is not saturated (as ideal
in C[X, Y,W ]). Its saturation is exactly I(C ∩H) and then we have that gin(I(C ∩H)) ⊇
gin(I(C )H) in C[X, Y,W ] and so the opposite inclusion of stairs.
We finally observe that the stair of I(C ∩ H) is exactly the one we obtain looking at the
monomials in X and Y when the exponent of Z is “big enough” (looking at Figure 3.1, the
dashed part obtained considering monomial with the exponent of Z bigger than 2).

If C = V (F,G) = C1 ∪ · · · ∪Cs, then E(I(Ci)) ( E(I(C )). This may help us to bound
the degree of a minimal generator of the ideal I(Ci), but it is still not sufficient.
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Figure 3.1: gin(I(C )) and gin(I(C1))

In fact the inclusion E(Ci) ( E(C ) gives us a bound about the generators of the generic
initial ideal I(Ci) containing only X and Y , but we cannot say anything about the degree of
the generators of gin(I(Ci)) containing Z.

Finally, if a ⊆ Q[X, Y, Z] and we consider its homogenization in C[X, Y, Z,W ] (keeping
on using a to denote it), gin(a) allows us not only to compute the Hilbert function, but also
the Hilbert Polynomial and the regularity of the Hilbert function.

But this very “easy” way to compute the regularity of the Hilbert function of an ideal
also says that in general we cannot hope to find a nice bound on the regularity of a primary
component b of a = (F,G) if we only know a: in fact the bound of Proposition 3.3.6 clearly
says that the regularity of the Hilbert function plays a key role in bounding the regularity of
the ideal, but actually we cannot detect a priori in which cases the degrees of the generators
of a are sufficient to bound the regularity.

Example 3.4.8. We again consider the complete intersection curve of Example 3.1.1, its
stair and the stair of its irreducible component C1 (Example 3.4.7).

Computing the Hilbert function and the Hilbert polynomial of I(C1) from the generic
initial ideal of C1, we have ρC1 = 3. In this case the bound on regularity of Proposition 3.3.6
holds using the value d1 + d2− 1 which actually bounds the regularity of C1, while ρC1 does
not. Again, this is not the sharpest bound we hope for, since the regularity of C1 is 4 and the
minimal degree of a generator of I(C1) is 3; furthermore, there is no way to compute ρC1

directly from a, so a priori we do not know if d1 + d2 − 1 actually bounds the regularity of
I(C1).
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3.5 Practical bounds

In the end of this chapter, we will summarize the previously discussed bounds for the de-
gree of the minimal generator of a primary component of a complete intersection ideal in
Q[X, Y, Z], pointing out if this bound holds for the non-complete intersection case, for
curves in higher dimensional spaces and which computations are necessary (assuming, if
suitable, that we performed a generic change of coordinates).

Given a = (F,G) ⊆ Q[X, Y, Z], we will use (as previously) the notations d1 = degF ,
d2 = degG; we will write a ⊆ Q[X, Y, Z,W ] considering the homogenization of F and G
and saturating with respect to W the ideal they generate. The degree of a separator polyno-
mial of Ci is qi.

Bounds using the Lifting Problem

We compute the set of points of P = V (a + (h)) where h ∈ Q[X, Y, Z] is a generic linear
form defining a plane H . We compute the partition of the set P (using for instance the
technique in [29]), obtaining Pi = {pij}j=1,...,degCi = Ci ∩H .

Assume that the component Ci is reduced and non-degenerate. Let ti be the minimal
degree of a curve of the plane H containing the set of points Pi. One of the following holds
([50], [38], [76]):

• qi = ti,

• qi ≤ deg Ci ≤ t2i + 1.

The same holds for any ideal a ⊆ C[X, Y, Z] with dim a = 1.
The results about the Lifting problem for higher dimensional spaces do not concern the

case of curves.

Bounds using regularity

For a reduced component Ci of V (a) we have ([37]):

• qi ≤ d1d2 − 1.

The same holds for any ideal a, assuming that d1 and d2 are the highest degrees of its gene-
rators.

If we know the degree of the irreducible component Ci, then

• qi ≤ deg Ci − 1.
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If we know thatm1 is the regularity of the generic plane section of Ci and that h1ICi(m1−
1) = 0, then ([58])

• qi ≤ m1.

If Ci is reduced and we are able to compute ρCi , regularity of the Hilbert function of a
component Ci of C , then ([17])

• qi ≤ max{ρCi , d1 + d2 − 1}

This is true also for a reduced component Ci of the complete intersection curve C ⊆ PN :
qi ≤ max{ρC + 1,

∑N−1
i=1 di −N + 2}

If we consider a ⊆ C[X1, . . . , XN ], with N ≥ 3 and a non-complete intersection or
N ≥ 4, if we are able to verify that the primary component qi has multiplicity one and V (qi)

does not meet the other components of the curve V (a), then we have ([11])

• qi ≤ 2(
∑N−2

i=1 di −N − 1)

with di’s degrees of the generators of a, d1 ≥ · · · ≥ dr.

Bounds using the Generic Initial Ideal

If Ci is a reduced component of C and we are able to compute gin(I(Ci)H), with H general
hyperplane in P3, then ([35])

• qi ≤ max{deg(mij)},

where (mi1, . . . ,miki) is the monomial basis of gin(I(Ci)H). The same bound holds for the
reduced component of any curve in PN .

In particular, for a complete intersection curve in P3, we find the same bound of [17].
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Chapter 4

Decomposition of a complete intersection
in C3

In the first part of this chapter, we will present an exact technique combining generic projec-
tion and absolute factorization. This technique is simple and immediate from the geometric
point of view, it was first showed on the beginning of the XX-th century (see [41]). For lack
of a complete and accessible reference, we will present in an exhaustive way this strategy
and then modify it using modular techniques.

4.1 An exact strategy: Projection and Colon Ideals

Given an ideal a = (F,G) ⊆ Q[X, Y, Z] defining a curve in C3, we will now show an “exact”
strategy to obtain the ideals defining the components, in particular for the ones of multiplicity
1. This strategy is “exact” in the sense that it uses symbolic computations and not numerical
floating-points approximations, and it is quite intuitive. Actually this strategy is exact but
not useful in practice: the computations needed are quite long and hard to perform. Anyway,
we will investigate this method in details since later (Section 4.2) we will adapt this strategy
giving up the exact computations to gain fastness, but preserving some information about the
irreducible and reduced components, namely their Hilbert Function.

Part of the following lemmas and proposition can be found in [73], but here we detail the
proofs for the case n = 3.

Definition 4.1.1. A linear projection is a surjective affine map:

π : C3 → C2

P = (x, y, z) 7→ (L1(P ), L2(P )) with Li(X, Y, Z) = ai0 + ai1X + ai2Y + ai3Z.

(4.1.1)
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In a similar way, we can define a projection for the projective space, considering

πL : P3 \ L→ P2

P = [W : X : Y : Z] 7→ (L0(P ), L1(P ), L2(P ))
(4.1.2)

with Li(W,X, Y, Z) = ai0W + ai1X + ai2Y + ai3Z. L is the point of intersection of the
linear equations Li and it is the center of the projection.
Two projections π1 and π2 from P3 to P2 are equivalent if they have the same center L.

The geometric meaning of the projection is the following one:
once chosen the center L and a P2 ⊂ P3 such that L ∩ P2 = ∅, then for any P ∈ P3 \ L,
we consider the linear space generated by P and L, that we denote with 〈P,L〉. We then
consider P2 ∩ 〈P,L〉 that is a point P ′ on P2 and we define in this way πL(P ) = P ′.
In general, we can consider CN ⊂ PN thinking of CN as PN\H , whereH is the hyperplane at
infinity. The projections πL : P3 \ L→ P2 which are extensions of projections π : C3 → C2

are exactly the ones whose center is on the hyperplane H .
We now consider a projection π : C3 → C2 and we restrict it to a curve C of C3. It

is not always true that πC is proper (the preimage of a compact subset is a compact): for
instance, the projection of the hyperbola defined by the ideal (XY − 1, Z = 0) on the the
plane {X = 0} is the Y -axis without the origin, so the restriction of π to the hyperbola is
not proper.

Proposition 4.1.2 ([73], Lemma 5.1). Let C be a curve in C3 all of whose irreducible com-
ponents are of dimension 1. For a general linear projection π : C3 → C2, the map πC is
proper and generically one-to-one.
In particular π(C ) is a closed subvariety of C2 of degree equal to the degree of C .

Proof. Without loss of generality, we can assume that C is irreducible.
The properness of πC follows from Noether Normalization Theorem (see [25], Theorem

13.3).
Let C be the closure in P3 of C in the complex topology. C is a 1-dimensional subvariety

of P3 and C is a Zariski open subset of C .
As pointed out above, a linear projection π : C3 → C2 is the restriction of a projection
πP : P3 → P2 whose center P lies on the hyperplane at infinity H , H := P3 \ C3.
Let ∆ be the diagonal of C × C . We can define an algebraic map φ : C × C \ ∆ → H:
(P1, P2) is sent to the intersection of H with the projective line passing through P1 and P2.

Suppose now that all of the projections πP with P ∈ H \ C are not generically one to
one, then we can conclude that the fiber of φ over each point of H \ (C \ C ) is at least
1-dimensional.
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Then we have

2·1 = dim(C×C ) = dim(C×C \∆) ≥ 1+dimφ(C×C \∆) ≥ 1+dim(H\(C \C )) = 1+2

But this is contradictory, so the dimension of the generic fiber of φ is less than 1, and so
there is a Zariski open set of H \ (C \C ) such that the associated projections are generically
one-to-one.

For what concerns the degree, it is sufficient to prove for a generic linear projection in
projective space. Indeed, deg C = deg C , deg π(C ) = deg π(C ) and π(C ) = π(C ).

Let V be the subvariety of π(C ) obtained as the union of the singular points of π(C ) and
the image under π of the ramification locus of π. If we consider a general line L, L meets
π(C ) transversely in deg(π(C )) points contained in π(C )\V . Then the 2-dimensional linear
space π−1(L) meets C transversely in deg C points contained in the regular points of C .

Corollary 4.1.3. Let π : C3 → H be a projection, with H plane in C3.

1. If Ci and Cj are two distinct irreducible components of C , then π(Ci) 6= π(Cj);

2. If we consider a generic linear projection, C is irreducible if and only if the polynomial
defining π(C ) is absolutely irreducible;

3. If D(T1, T2) is the polynomial defining the projection D := π(C ) and we consider
ts absolute factorization D = Dm1

1 · · ·Dmc
c , then c is exactly the number of distinct

irreducible components of C , mi is the multiplicity of the component Ci and degDi

its degree.

We now assume that we performed a generic linear change of coordinates in the sense
that we homogenize F and G with respect to a new variable W , we make a generic linear
change of coordinates and then we go back to the affine space, putting W = 1; in this way
we can consider the projections on the coordinates planes to be generic and avoid problems
with components at infinity.

We consider the projection π1 : C3 → H1, with H1 the plane defined by the equation
Y = 0. We call D1 the projection of the curve C on H1. This is a curve in the plane
and its decomposition is equivalent to the absolute factorization of the bivariate polynomial
D1(X,Z) defining D1 in the planeH1. Furthermore, the components of D1 are in one-to-one
correspondence with the irreducible components of C .

IfD1 = Dm1
11 · · ·Dmc

1c , each factorD1j defines in C3 a ruled surface, a cylinder, containing
the component Cj . We can then start considering the ideal (F,G,D

mj
1j ). But V (F,G,D

mj
1j )

contains not only the component Cj , but also the points of the sets V (D
mj
1j ) ∩ Ck for k 6= j.

We pass again to consider the problem from the algebraic point of view, using the primary
decomposition of an ideal, whose main definitions and properties were already recalled in
Section 2.1.
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Consider the ideal a = (F,G) ⊆ Q[X, Y, Z], assume that we performed a generic change
of coordinates with integer coefficients and consider its primary decomposition

a =
c⋂
i=1

qi,

where each primary ideal qi ∈ C[X, Y, Z] is an algebraic component of a.
Thanks to the generic change of coordinates, we can consider the projection on the co-

ordinate plane H1 (of equation Y = 0) as a generic one and compute the polynomial D1

representing the projection of C on H1 through a resultant: D1 = ResY (F,G). We com-
pute the absolute factorization of D1, so that each absolute factor Dmj

1j is the equation of a
cylinder containing an irreducible component of V (a)

If we consider the ideal a+(D
mj
1j ) = (F,G,D

mj
1j ), we have that its primary decomposition

is

a + (Dmi
1j ) =

s⋂
i=1

(
qi + (D

mj
1j )
)

where, by construction,D1j is absolutely irreducible, so the ideal qi+(D
mj
1j ) is (pi + (D1j))-

primary.
Thinking of the corresponding varieties V (qi) and V (D

mj
1j ), the ideal qi + (D

mj
1j ) is:

• (1) when V (qi) ∩ V (D
mj
1j ) = ∅;

• an ideal of dimension 0 when V (qi) ∩ V (D
mj
1j ) is a finite set of points;

• an ideal of dimension 1 if V (qi) ∩ V (D
mj
1j ) contains the irreducible component Cj

(and in this case we write i = j). Obviously in this case qj + (D
mj
1j ) = qj and

pj + (D
mj
1j ) = pj

Finally, the ideal a + (D
mj
1j ) “describes” the component Cj with some extra points. In

order to avoid these extra points, we can repeat the same procedure with another generic
projection π2 from C3 onto the plane H2. Thanks to the generic coordinates chosen, we can
use again a coordinate plane and a resultant, choosing H2 defined by the equation Z = 0. If
we consider π2(C ) = D2, the polynomial defining D2 on H2 is again a bivariate polynomial
D2 = ResZ(F,G). We compute its absolute factorization and we obtain another cylinder
containing Cj , defined by the factor D2j .

Remark 4.1.4. Actually, in the absolute factorizations of D1 and D2 there may be several
factors with the same degrees and multiplicity. For instance, this happens when one of the
components Cj is a non-purely rational component (see Definition 2.2.2).

In order to match the factors defining the cylinders containing the same component, we
can look at the Hilbert dimension of the ideal (F,G,D

mj
1j , D

mi
2i ). This dimension is 1 if
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and only if Dmj
1j and Dmi

2i contain the same irreducible component of C ; this follows from
Corollary 4.1.3, 1.

In order to find the correct couples (D
mj
1j , D

mj
2j ), we will not compute all of the Hilbert

dimensions of the ideals a + (D
mj
1j ) + (Dmi

2i ). We will compute the Hilbert dimension only
for the couples such that degD1j = degD2i and mj = mi. Furthermore, we get an almost
certain probabilistic check by considering a generic plane section: that is, we can look for
the couples Dmj

1j , D
mi
2i such that the ideal (F,G,D

mj
1j , D

mi
2i ) with one variable specialized

(e.g. X = x0 ∈ Z) is zero-dimensional and nonempty (see Algorithm 7).

Once that we matched Dmj
1j and Dmj

2j (after re-indexing of the factors), the variety defined
by aj = a+ (D

mj
1j ) + (D

mj
2j ) is “almost” Cj: we will still have some extra points, “embedded

points”, which are in V (D1j)∩V (D2j)∩Ck for k 6= j. Actually these points are in Cj ∩Ck,
for k 6= j.

Lemma 4.1.5. Consider two general projections π1 and π2 from C3 to the planesH1 andH2,
H1, H2 non-parallel. Consider two distinct curves C1 and C2. If there are points P1 ∈ C1

and P2 ∈ C2 such that we have

π1(P1) = π1(P2) π2(P1) = π2(P2).

Then P1 = P2 is a point in C1 ∩ C2.

Proof. We can write π1(P ) = (L
(1)
1 (P ), L

(1)
2 (P )) and π2(P ) = (L

(2)
1 (P ), L

(2)
2 (P )) with

L
(j)
i = a

(j)
i0 + a

(j)
i1 X + a

(j)
i2 Y + a

(j)
i3 Z. Remark that since a projection is a surjective map,

L
(j)
1 6= L

(j)
2 , j = 1, 2, and since the planes are not parallel the matrix whose rows are the four

vectors (a
(j)
i1 , a

(j)
i2 , a

(j)
i3 ) has rank 3.

P1 and P2 have the same image under π1 and π2 if and only if L(j)
i (P1) = L

(j)
i (P2),

i, j ∈ {1, 2}. We obtain 4 equations of kind

a
(j)
i1 (x1 − x2) + a

(j)
i2 (y1 − y2) + a

(j)
i3 (z1 − z2) = 0, Pl = (xl, yl, zl), l = 1, 2.

The unique solution to this system of equations (since we assumed that H1 and H2 are not
parallel) is the trivial one, and so we have that P1 = P2 is a point of C1 ∩ C2.

So, for the moment, we have an ideal such that its set of zeros contains the variety Cj

but has some embedded points, the set P; we now show that this finite set of points is also
contained in the zeros of the singular locus of aj (Definition 4.1.6).
Considering again primary decompositions, for what concerns aj we have that:

aj = a + (D
mj
1j ) + (D

mj
2j ) =

l⋂
i=1

(qi + (D
mj
1j ) + (D

mj
2j )) (4.1.3)
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where qi + (D
mj
1j ) + (D

mj
2j ) is a (pi + (D1j) + (D2j))-primary ideal.

For i = j, pj + (D1j) + (D2j) = pj has dimension 1 and its set of zeros is the component
Cj . For i 6= j, qi + (D1j) + (D2j) has dimension 0 (or −1, if the associated set of zeros is
empty).

In particular, the points of Cj ∩ Ck, with j 6= k correspond to the primary components of
aj of dimension 0. This components are in the singular locus of C[X, Y, Z]/a.

Here we just recall the algebraic definition of singular locus and the useful Jacobian cri-
terion.

Definition 4.1.6. Let a be an ideal of K[X1, . . . , Xn], K perfect field, a = (f1, . . . , fs). A
prime ideal p containing a is in the singular locus of K[X1, . . . , Xn]/a if the localization of
K[X1, . . . , Xn]/a at p is not a regular local ring.

With an abuse of notation, we will say “singular locus of a” for the singular locus of
K[X, Y, Z]/a.

Proposition 4.1.7 ([25], Corollary 16.20). Let a be an ideal of K[X1, . . . , Xn], K perfect
field, a of pure codimension c, a = (f1, . . . , fs). Let J be the ideal generated by the c × c-
minors of the Jacobian Matrix (∂fi/∂Xj). Then J defines the singular locus of a: a prime p
contains J if and only if p is in the singular locus of a.

We can then compute easily the equations defining the singular locus of a:

• Compute the jacobian matrix of the ideal (F,G);

• Compute M1,M2,M3, the 2× 2 minors of the jacobian matrix;

• The singular locus of the curve is defined by V (M1,M2,M3).

We are then interested in considering aj and removing the “embedded” primary compo-
nents corresponding to P ⊆ V (M1,M2,M3).

We can do this for the irreducible components obtained from irreducible factors of multi-
plicity 1 through the computation of a colon ideal.

In general, for a1, a2 ideals in a ring R:

(a1 : a2) = {f ∈ R|f · a2 ⊆ a1}

If we consider an ideal generated by an element of R, we will simply write (a : f) instead of
(a : (f)).

Lemma 4.1.8 ([2], Lemma 4.4.). Let q be a p-primary ideal, f an element of R. Then

1. if f ∈ q then (q : f) = (1);
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2. if f /∈ q then (q : f) is p-primary, and therefore
√

(q : f) = p;

3. if f /∈ p then (q : f) = q.

Proposition 4.1.9. In the previous setting, if D1j, D2j are factors of multiplicity one of D1

andD2 resp., such that the set of zeros of aj := a+(D1j)+(D2j) contains Cj , then (aj : M1)

is exactly pj , the prime ideal defining the irreducible component Cj of C = V (F,G).

Proof. Consider the primary decomposition of aj obtained by the primary decomposition of
(F,G):

aj = a + (D1j) + (D2j) =
⋂

(qi + (D1j) + (D2j)) .

Consider
√
qi = pi. For i 6= j, if V (qi+(D1j)+(D2j)) is not empty, then qi+(D1j)+(D2j)

is in the singular locus of a; then M1 ∈ pi + (D1j) + (D2j).
For i = j, M1 /∈ pj + (D1j) + (D2j) = pj since we assumed that the multiplicity of Cj is 1.

So, using Lemma 4.1.8, we have immediately that ((qi + (D1j) + (D2j)) : M1) is the
ideal (1) for all i 6= j, while for j, ((qj + (D1j) + (D2j)) : M1) = (qj : M1) = pj .

Remark 4.1.10. Proposition 4.1.9 applies only for components of multiplicity 1 (that is, for
factors in the absolute factorization of multiplicity 1).
In fact, if we consider an ideal aj = a + (D

mj
1j ) + (D

mj
2j ),mj ≥ 2, we have that this ideal

contains the singular locus of (F,G), soM1 ∈ aj and (using Lemma 4.1.8), (aj : M1) = (1).

For components of multiplicity greater than 1, we may “clean” at least a part of the
embedded points which are zeroes of the ideal aj in the following way:

• First, we use the described strategy for the components of multiplicity one, obtain-
ing the set of prime ideals {pi1 , . . . , piv} which are the ideals for the irreducible and
reduced components {Ci1 , . . . ,Civ}

• since we can not use the colon ideal with respect to a generator of the singular locus,
we then compute

b := (· · · ((aj : fi1) : fi2) · · · : fiv),

for fij ∈ pij .

In this way, we can already “clean” some of the embedded points. For the other points, for
any component of multiplicity ≥ 2 we should consider the corresponding D1j and compute
again some “nested” colon ideals, starting from b, with respect to the D1i, i 6= j.
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4.1.1 Algorithm and discussion

In this section we will summarize the strategy of projection and quotient, writing down the
main algorithm (Algorithm 6) and an auxiliary one to match the couples Dmj

1j , D
mi
2i (Algo-

rithm 7).
In Algorithm 7 if V (F,G,D

mj
1i , D

mi
2i ) is a finite set of points, then a general plane section

is empty, so the Hilbert Dimension of (F (x0, Y, Z), G(x0, Y, Z), D
mj
1i (x0, Z), Dmi

2i (x0, Y ))

is generically −1.
In Algorithm 6, the Preprocessing Step allows us to consider the projections on the coor-

dinate planes Z = 0 and Y = 0 as generic projections. We can apply the strategy presented
in Section 4.1 using these projections which are easily computed through the resultant.

Algorithm 6 is exact, but in practice the computations are too hard: we did not manage
to perform Algorithm 6 at Steps 2 (because of the computation and factorization of the
resultant) and 6 (because of the saturation) with a standard workstation.

In the following section we will show that we can perform all these computations modulo
a well-chosen prime integer p. The ouputs of the adapted versions of Algorithms 6 and 7
will be no more exact, but they will have some useful information about the ideals of the
irreducible and reduced components, in particular their Hilbert functions.

This will be possible observing that the practical computations of the problematic steps of
Algorithm 6 are actually obtained through Groebner Basis. We will show that a good choice
of p will preserve the Groebner Basis and so the Hilbert functions of the ideals computed.
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Algorithm 6 Exact Decomposition of a complete intersection
Input: a = (F,G) ∈ Q[X, Y, Z].
Output: The number of irreducible components of dimension 1, their degrees and multi-

plicities.
If the multiplicity of the component is 1, a system of generators of the ideal; if the
multiplicity of the component is ≥ 2, two surfaces “isolating” the component from the
other ones.

1: Preprocessing: Perform a generic integer change of coordinates on F and G.
2: Perform the absolute factorization of D1 := ResY (F,G) and D2 := ResZ(F,G):

D1 = Dm1
11 · · ·Dms

1s , D2 = Dm1
21 · · ·Dms

2s .

3: Match the D1j’s and D2i’s through Algorithm 7 in such a way that (after re-numbering
of the factors) aj = (F,G,D

mj
1j , D

mj
2j ) contains a component.

4: if mi is 1 then
5: Compute the Jacobian matrix of (F,G) and a minor of size 2× 2, S.
6: Compute a

(S)
j the quotient of aj with S.

7: end if
8: return for every j: degD1j,mj, aj (if mj ≥ 2 ) or degD1j ,mj , a

(S)
ij = I(Cj) (if

mj = 1).
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Algorithm 7 Matching of factors through Hilbert Dimension
Input: F,G and the absolute factors {Dmj

1j (X,Z)}j=1,...,c, {D
mj
2j (X, Y )}j=1,...,c of

D1(X,Z) and D2(X, Y ) respectively.
Output: L := [(D

mj
1j , D

mj
2j )]j=1,...,c with Dmj

1j and Dmj
2j containing the same component Cj

of C .
1: L := empty list, x0 ∈ Z randomly chosen integer
2: for i from 1 to c do
3: j := 1

4: while j ≤ c do
5: if degD1i = degD2j and mi = mj . then
6: Compute the Hilbert Dimension h of the ideal

(F (x0, Y, Z), G(x0, Y, Z), Dmi
1i (x0, Z), D

mj
2j (x0, Y ))

7: if h=0 then
8: add the couple (Dmi

1i , D
mj
2j ) to the list L, j := c+ 1

9: else
10: j:=j+1
11: end if
12: end if
13: end while
14: end for
15: Re-number the factors of D2 in such a way that the couples in L are of the form

(Dmi
1i , D

mi
2i )

16: return L
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4.2 Good reductions

We are interested in preserving some properties of an ideal a in R = L[X1, . . . , Xn] (L is a
simple algebraic extension of Q) “modulo” a well-chosen p. In particular, we would like the
reduction modulo p to give us a bound on the degrees of the minimal generators of a.

We use the definitions about the affine Hilbert function at the end of Section 2.1 and we
now complete them.

For a polynomial ring K[X1, . . . , Xn], we will denote with Tn the monoid of monomials
in K[X1, . . . , Xn] and with XI = xi11 · · · , xinn , ij ∈ N a monomial. A term ordering σ

on Tn is degree compatible if for any couple of monomials XI ,XJ , XI ≥σ XJ implies
degXI ≥ degXJ .

Once fixed a term order σ on Tn, for a polynomial g ∈ K[X1, . . . , Xn], we denote with
LMσ(g) (or simply LM(g) if there is no ambiguity) the maximal monomial with respect to
σ appearing in g with non-zero coefficient.

Proposition 4.2.1. Let σ be a degree compatible term ordering on Tn.

1. For every i ∈ Z, we have HF a
R/a(i) =

∑i
j=0HFR/LMσ(a)(j). In particular, we have

HF a
R/a(i) = HF a

R/LMσ(a)(i) for all i ∈ Z.

2. Let W be a homogenizing indeterminate, and let R = K[X1, . . . , Xn,W ] be standard
graded. Then we have HF a

R/a(i) = HFR/ahom(i) for all i ∈ Z.

Proof. See [49], Proposition 5.6.3.

Proposition 4.2.1 gives us the practical way to compute the affine Hilbert function of a:
chosen a degree compatible term ordering σ we can compute the initial ideal of a, homoge-
nize it and then compute the Hilbert function of R/LM(a)hom.

Then we can bring back our problem about the choice of a good pwith respect to the affine
Hilbert function to the choice of a good pwith respect to LMσ(a), through the following well
known property of Groebner Basis.

Theorem 4.2.2 (Macaulay’s Basis Theorem). Let K be a field, let R = K[X1, . . . , Xn] be a
polynomial ring over K, letM ⊆ Rs be aR-submodule, and let σ be a module term ordering
on Tn〈e1, . . . , es〉. We denote the set of all terms in Tn〈e1, . . . , es〉/LMσ(M) by B.
Then the residue classes of the elements of B form a basis of the K-vector space Rs/M .

Let a = (f1, . . . , fs) ⊆ L[X1, . . . , Xn] be an ideal. L is a normal algebraic extension of
Q of degree s: L ' Q(α), where α is an algebraic number such that its minimal polynomial
is q(T ) ∈ Q[T ], deg q(T ) = s and q(T ) =

∑s
i=1(T −σi(α)) where σi are the automorphism

of L fixing Q, σi(α) = αi are the conjugates of α over Q.
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We can write q(T ) as a polynomial with integer coefficients and primitive.
Consider a prime integer p such that q(T ) splits in Z/pZ = Fp in the following way: q(T ) =

(T − βp) · S(T ) where degS(T ) = s− 1, 0 ≤ βp ≤ p− 1 and gcd((T − βp), S(T )) = 1.
We then define the following map, from the extension ring Z[α] of Z to the finite field

Fp = Z/pZ:

ψp : Z[α]→ Fp
α 7→ βp

a ∈ Z 7→ a mod p.

(4.2.1)

This definition on the generators obviously extend to a homomorphism of rings, well-
defined because of the choice of p and consequently of βp.

We can then extend this homomorphism to the polynomials:

ψp : Z[α][X1, . . . , Xn]→ Rp = Fp[X1, . . . , Xn]

f =
m∑
d=0

∑
i+j+k=d

aijkX
iY jZk 7→ f̃ =

m∑
d=0

∑
i+j+k=d

ψp(aijk)X
iY jZk.

If we consider a = (f1, . . . , fs) ⊆ Q(α)[X1, . . . , Xn], we can assume that the chosen
generators are primitive and are in Z[α][X, Y, Z]; we define ã = (f̃1, . . . , f̃s) ⊆ Rp.

Remark 4.2.3. Observe that the definition of ã is independent on the chosen set of generators
of a, that is

if a = (f1, . . . , fs) = (f ′1, . . . , f
′
l ) then (f̃1, . . . , f̃s) = (f̃ ′1, . . . , f̃

′
l )

as ideals in Rp.

Example 4.2.4. Consider the ideal

a = (3Y 2 − 2
√

3ZX, 3Y X −
√

3
√

2Z, 2X2 −
√

2Y ).

This set of generators has coefficients in the algebraic extension Q(
√

2 +
√

3), which is
normal, [Q(

√
2+
√

3) : Q] = 4, the minimal polynomial of
√

2+
√

3 is q(T ) = T 4−10T 2+1.
Consider now p = 23:

q(T ) = (T + 21) · (T + 12) · (T + 2) · (T + 11) mod p.

We consider the homomorphism ψp such that ψp(
√

2 +
√

3) = 21. With this definition of ψp,
we have that: ψp(

√
2
√

3) = 11, ψp(
√

2) = 5, ψp(
√

3) = 16.
So ã = (3Y 2 + 14ZX, 3Y X + 12Z, 2X2 + 18Y ).
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In order to compare a and ã, we fix a term order, we compute a Groebner Basis of a in
Q(α)[X1, . . . , Xn], {g1, . . . , gr}, with respect to σ. We multiply each gi with a scalar ci such
that ci · gi ∈ Z[α][X1, . . . , Xn] and ci · gi is primitive. We keep on writing gi for ci · gi and
we define ã using this system of generators: ã := (g̃1, . . . , g̃s) ⊆ Rp.

Actually, from now on, when we consider a set of generators of an ideal, we assume that
the generators have integer coefficients and are primitive.

Definition 4.2.5. We say that the integer prime p gives a good reduction of the ideal a if the
affine Hilbert function of a is the same as the affine Hilbert function of ã.

Theorem 4.2.2 gives a necessary condition for a prime integer p to preserve the affine
Hilbert function of a: if p preserves HF a

R/a then p also preserves LMσ(a) with respect to a
degree-compatible term order σ.

We will show that a finite number of primes p does not satisfy a necessary condition.

Lemma 4.2.6. Consider α algebraic number on Q, [Q(α) : Q] = s, L1, . . . , LN non-zero
elements of Z[α], Li =

∑s−1
j=0 a

(i)
j α

j . There is a finite number of prime integers p such that
ψp(Li) = 0 for some i.

Proof. We will proceed by contradiction.
Suppose that there are infinite prime integers p such that ψp maps to zero one or more of

the Li’s. In particular there is an index ı̃ such that Lı̃ is mapped to zero by infinite maps ψp.
Denote Lı̃ with L̃. We can define the polynomial L̃(T ) =

∑s−1
j=0 a

(ı̃)
j T

j .
If deg L̃(T ) = 0, then we have a contradiction: there is only a finite number of ψp map-

ping the constant L̃ to zero, because there is only a finite number of p’s dividing it.
If d = deg L̃(T ) ≥ 1, we can consider a prime p such that ψp(L̃) = 0 and p ≥

‖L̃(T )‖s‖q(T )‖d, where q(T ) minimal polynomial of α; we can choose such a p since the
set of p’s we are looking at is supposed to be infinite. But: ψp(L̃) = L̃(βp) mod p =

0. This means that both L̃(T ) and q(T ) can be divided by (T − βp) modulo p. But
since p ≥ ‖L̃(T )‖s‖q(T )‖d, deg

(
gcd(L̃(T ), q(T ))

)
≥ 1 (applying Lemma 1.4.10). Since

deg L̃(T ) < deg q(T ), this contradicts the fact that q(T ) is irreducible.

Lemma 4.2.7. Let a be an ideal in Q(α)[X1, . . . , Xn], σ a term order andG = {g1, . . . , gr}a
Groebner Basis of a with respect to σ.
If ψp does not map to 0 any of the leading coefficients of the polynomials in G, then G̃ =

{g̃1, . . . , g̃r} is a Groebner Basis of ã with respect to σ.

Proof. Since G is a system of generators for the ideal a, then G̃ is a system of generators for
ã.
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Consider g ∈ a and its representation with respect to the basis G (eventually multiplying for
c ∈ Z, to eliminate the denominators):

g =
r∑
i=1

aigi, ai ∈ R.

Then we have the corresponding representation of g̃ with respect to the basis G̃:

g̃ =
r∑
i=1

ãig̃i.

We have that LM(g̃) = maxi=1,...,r{LM(ãig̃i)}, where the max is taken with respect to σ.
Since LM(ãig̃i) = LM(ãi)LM(g̃i) for every i and ψp does not map to zero the lead-

ing coefficients of the polynomials in the Groebner basis, we immediately have LM(g̃) ∈
(LM(g̃1), . . . , LM(g̃s)) and so G̃ is a Groebner Basis for ã.

Theorem 4.2.8. Let a be an ideal in R = Q(α)[X1, . . . , Xn]. Then for a finite number of
prime integers p, we have that

HF a
R/a(i) 6= HF a

Rp/ã(i) for some i.

Proof. We fix a degree compatible term order σ and consider the Groebner Basis G =

{g1, . . . , , gr} of a. Thanks to Proposition 4.2.1, if LM(a) 6= LM(ã) thenHF a
R/a 6= HF a

Rp/ã
.

We apply Lemma 4.2.7: there is only a finite number of primes p such that the initial ideals
of a and ã are different.

Corollary 4.2.9. There is a finite number of prime integers p such that dim a 6= dim ã.

4.3 Modular Algorithms

We use the results of Section 4.2 on the exact strategy of decomposition presented in Section
4.1. We develop an algorithm which given an ideal of Q[X, Y, Z] defining a curve C in
C3, gives back the number of irreducible components, their degrees, their multiplicities, the
algebraic extension in which the non-rational components are defined and the affine Hilbert
functions of the components of multiplicity 1.

Remark 4.3.1. In Step 7 of Algorithm 10 we wrote down the modular factorization grouping
together the modular factors Dij corresponding to a rational factor di. This is not really
necessary for the execution of the algorithm, but it is possible looking at the multiplicities and
degrees and in case of ambiguities, computing also the rational factorization of D2(x0, Y )

and using Algorithm 8.
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Algorithm 8 Partition of modular factors
Input: d(Z) rational factor of D(x0, Z), an integer p and D(X,Z) =

∏l
i=1Di(X,Z)

mi mod p.
Output: M set of modular factors corresponding to d(Z).

1: M := empty list, i := 1, δ := 1

2: while i ≤ l do
3: if mi = multiplicity of d(Z) in the rational factorization of D(X,Z) then
4: if Di(x0, Z) mod p divides d(Z) mod p then
5: add Di(X,Z) to M
6: δ = δ ·Di(x0, Z) mod p

7: if δ = d(Z) mod p then
8: i := l + 1

9: end if
10: end if
11: end if
12: i := i+ 1

13: end while

14: return M

Algorithm 9 Matching of modular factors through affine Hilbert Dimension
Input: D

(1)
ij (X,Z) modular factor of D1(X,Z) and {D(2)

k (X,Y ) mod p}k=1,...,m modular factors of
D2(X,Z).

Output: ãi1 = (F,G,D
(1)
i1 (X,Z)mi , D

(2)
i1 (X,Z)mi) mod p with Hilbert dimension 1

1: k := 1

2: while k ≤ m do
3: if deg(D(2)

k (x0, Y )) = deg(D
(1)
ij (x0, Z)) then

4: if Hilbert Dimension of (F (x0, Y, Z), G(x0, Y, Z), D
(1)
ij (x0, Z)

mi , D
(2)
k (x0, Z)

mk) mod p is 0

then
5: renumber the modular factor putting D(2)

i1 (X,Y ) := D
(2)
k (X,Y )

6: k := m+ 1

7: else
8: k := k + 1

9: end if
10: end if
11: end while

12: return ãi1 = (F,G,D
(1)
i1 (X,Z)mi , D

(2)
i1 (X,Z)mi) mod p.
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Algorithm 10 Modular Algorithm for affine Hilbert Function

Input: a = (F,G) ∈ Q[X,Y, Z], Z ⊆ Z finite set.
Output: The degree and multiplicity of at least one irreducible component C1 of the curve V (a), the number

of conjugates component and if C1 has multiplicity 1, its affine Hilbert function.
1: Preprocessing: Perform a generic integer change of coordinates on F and G, with coefficients in Z;

choose (x0, y0, z0) ∈ Z3.
2: Compute D1(x0, Z) := ResZ(F (x0, Y, Z), G(x0, Y, Z)) and

D2(x0, Y ) := ResY (F (x0, Y, Z), G(x0, Y, Z))

3: Compute the rational factorization:D1(x0, Z) = d
(1)
1 (Z)m1 · · · d(1)s (Z)ms

4: for i from 1 to s do
5: Choose a prime integer p dividing d(1)i (x0, z0).
6: Compute D1(X,Z) := ResY (F,G) mod p and D2(X,Y ) := ResZ(F,G) mod p

7: Compute the modular factorizations:

Dk =

 r1∏
j=1

D
(k)
1j

m1

· · ·

 rs∏
j=1

D
(k)
sj

ms

mod p, k = 1, 2

8: Apply Algorithm 9 to the rational factor d(1)i (Z) and the modular factors of D1(X,Z), obtaining the
set of modular factors D(1) of D1(X,Z)and to the rational factor d(2)i (Z) and the modular factors of
D2(X,Y ), obtaining the set of modular factors D(2)of D2(X,Y ).

9: if ri ≥ 2 then
10: Choose D(1)

ij (X,Z) mod p ∈ D(1) of minimal degree such that ri =
deg d

(1)
i (Z)

degD
(1)
ij (X,Z)

∈ Z (∗)

11: Consider D(1)
ij (X,Z) and compute the polynomial defining Q(αi) using Proposition 1.4.11 with

Q = ‖F‖d2‖G‖d1 , s = ri

12: Apply Algorithm 9 to match the modular factor D(1)
ij (X,Z) with a modular factor of D2(X,Y )

obtaining ãi1 = (F,G,D
(1)
i1 (X,Z)mi , D

(2)
i1 (X,Z)mi) mod p (after re-labelling of the factors)

13: if mi is 1 then
14: Compute the Jacobian matrix of (F,G) mod p and a minor of size 2× 2, S̃.
15: Compute ã

(S̃)
i the saturation of ãi with respect to S̃.

16: end if
17: end if
18: end for
19: return s number of rational components

for every i = 1, . . . , s: ri number of non-rational components in Ci, degD
(1)
ij (X,Z) degree of the non-

rational component, mi multiplicity of the non-rational component;

if mi = 1, p and ã
(S̃)
i mod p ideal modulo p of a non-rational component of Ci having the same Hilbert

function as I(Ci); if mi ≥ 2 p and D(1)
i1 (X,Z)mi , D

(2)
i1 (X,Z)mi image modulo p of 2 separator polyno-

mials for Ci
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Remark 4.3.2. We did not present a non-modular version of Algorithm 8, since all the algo-
rithms presented in Section 4.1.1 are not actually used. We insert this further procedure to
avoid useless computations in the calling of Algorithm 9 in Step 8 of Algorithm 10.
In order to speed up the computations in Algorithm 9, we use the fact that a generic plane
section of a finite set of points in C3 is empty. We also assume that the Hilbert dimension of
the empty set is −1.

4.3.1 Proof of Algorithm 10

We can apply the results of Section 4.2 to the decomposition strategy explained in Section
4.1 and the Algorithms of Section 4.1.1 and adapt them to modular computations. Again,
we deal with an ideal a = (F,G) ⊆ Q[X, Y, Z] defining a curve C = V (a). For all the
notations used, we refer to Algorithms 8, 9 and 10.

In Step 1, as in Algorithm 6, we perform a generic change of coordinates; thanks to this,
two projections on the coordinate planes are “generic” in the sense of Proposition 4.1.2: the
components of projected curve are in one-to-one correspondence with the components of the
curve itself (see also Corollary 4.1.3). Furthermore, consider the factors of the polynomial
whose set of zeroes is the projected curve and the primary components of the ideal defining
the curve: factors and primary components are in one-to-one correspondence and the degree
and multiplicity of one factor is the degree and multiplicity of the corresponding primary
component (in the sense of Definition 2.1.14 and 2.1.15).

In order to apply the modular techniques for absolute decomposition of polynomials de-
veloped in Chapter 1, we have to be careful because we do not have one hypothesis: the
Input of Algorithm 4 is a rationally irreducible polynomial. This is not our situation.
Indeed, assume that we are able to compute D1(X,Z) = ResY (F,G). This bivariate poly-
nomial in general is not rationally irreducible; furthermore it is not advantageous to compute
the bivariate rational factorization of D1.
We rely on Hilbert’s Irreducibility Theorem (Theorem 1.2.3): for infinite integer special-
ization of one variable, a rationally irreducible factor of the polynomial D1 stays rationally
irreducible. This means that if

D1(X,Z) = d
(1)
1 (X,Z)m1 · · · d(1)

s (X,Z)ms ∈ Q[X,Z]

then for infinite x0 ∈ Z the rational factorization of D1(x0, Z) is exactly

D1(x0, Z) = d
(1)
1 (x0, Z)m1 · · · d(1)

s (x0, Z)ms ∈ Q[Z].

In order to compute this rational univariate factorization without the computational effort
of computing D1(X,Z), in Step 2 we simply specialize one variable of F and G and then
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compute the resultant:

ResY (F (x0, Y, Z), G(x0, Y, Z)) = D1(x0, Z).

Since we are considering a generic projection, a rational factor d(1)
i (X,Z) of D1(X,Z)

corresponds to a rational component of the curve (in the sense of Definition 2.2.2), while
each absolute factor of d(1)

i (X,Z) corresponds to an irreducible component.

Once computed in Step 3 the univariate rational factorization, we then proceed in order to
“break” the non-rational components.
We consider the i-th factor of the rational factorization of D1(x0, Z), that is d(1)

i (Z) which
has multiplicity mi. If the corresponding factor d(1)

i (X,Z) of the bivariate rational factoriza-
tion of D1(X,Z) is not absolutely irreducible, then its absolute factors have coefficients in
some algebraic extension Q(αi). Using Lemma 1.4.1, we can assume that the algebraic ex-
tension Q(αi) is generically generated by the evaluation of one absolute factor in an integer
point, (x0, z0) ∈ Z2.
We choose an integer prime p dividing di(z0) (Step 5). We rely on randomness in order to
avoid a p giving a bad reduction of d(1)

i (X,Z) (and of D1(X,Z)). If the chosen p is big
enough we can rely on Lemma 1.4.9: this means that if we factor D1(X,Z) modulo this
prime p, the rationally irreducible factor d(1)

i (X,Z) splits (if it is not absolutely irreducible).
The homomorphism ψp of (4.2.1) is implicitly defined.
Actually we do not compute D1(X,Z) nor D2(X, Y ): in fact, in Step 6 we compute directly
the modular resultants ResY (F,G) mod p and ResZ(F,G) mod p and then the modular
factorizations (Step 7).

If the rational factor d(1)
i (X,Z) is absolutely irreducible, then the corresponding modular

factor is simply D(1)
i1 (X,Z)m1 mod p, that is ri = 1. In this case, we can stop here and

repeat this part of the process for the next rational factor.
If d(1)

i (X,Z) is absolutely reducible, then ri ≥ 2 (thanks to the choice of p according to
Lemma 1.4.9): in Step 8 we group the modular factors corresponding to d

(1)
i (Z) and we

choose a modular factor among them having minimal degree which divides deg d
(1)
i (Z); we

assume that this factor is D(1)
i1 (X,Z).

In Step 12 we look for the corresponding modular factor ofD2,D(2)
ij (X, Y ), using Algorithm

9, obtaining the ideal ãi1 = (F,G,D
(1)
i1 (X,Z), D

(2)
i1 (X, Y )) mod p with Hilbert dimension

1. Corollary 4.2.9 certifies that ãi1 = ψ(ai1), where ai1 = (F,G,D
(1)
i1 (X,Z), D

(2)
i1 (X, Y )) is

the ideal in (4.1.3).

Furthermore, just like in Algorithm 4, Step 13, in Step 11 we can use the techniques of
Section 1.4.3. In particular, we can apply Proposition 1.4.11 using Q ≥ ‖ResZ(F,G)‖ ≥
‖F‖deg(G)‖G‖deg(F ). The degree of the polynomial we wish to construct is si = deg di(Z)

degD
(1)
i1

. It

is not necessary to lift the whole modular factorization of D1(X,Z) modulo p in order to
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have the p-adic approximation of α to the desired degree of accuracy. It is sufficient to lift
the modular factorization di(Z) = D

(1)
i1 (x0, Z) ·

(∏r1
j=2D

(1)
ij (x0, Z)

)
.

Once defined the ideal ãi1 = (F,G,D
(1)
i1 (X,Z)mi , D

(2)
i1 (X, Y )mi) mod p (re-ordering

the indexes) with affine Hilbert dimension 1, if the multiplicity mi is 1, we can keep on
following Steps 5 and 6 of Algorithm 6: we compute the Jacobian Matrix of (F,G) mod p

and consider one of its (2×2)-minors, S̃. We compute the colon ideal of ãi1 with S̃, obtaining
ã

(S̃)
i1 .

We need to show that for infinite primes p the colon ideal modulo p has the same affine
Hilbert function of the colon ideal in Q(α)[X, Y, Z], that is ψp(a

(S)
i1 ) = ã

(S̃)
i1 (with a

(S)
i1 the

ideal of Proposition 4.1.9).
First of all, observe that ãi1 and the corresponding non-modular ideal ai1 have the same
Hilbert function for all but a finite number of integers p (thanks to Theorem 4.2.8).
Furthermore, we can assume that we compute Jacobian matrix of a and a minor S and then
reduce modulo p. For what concerns the colon ideal, the actual computation is performed
using a Groebner Basis (see Section 4.4.1 for the details). This means that again we can
apply Lemma 4.2.7 and so there is only a finite number of prime p such that ψp(a

(S)
11 ) and

ã
(S)
11 differ.

Remark 4.3.3. Actually, Algorithm 10 is a Las-Vegas one, just like Algorithm 4: in fact, in
the Preprocessing Step, we have to assume that the coefficients for the generic change of
coordinates are taken in a finite set S1 ∈ Z and the point (x0, y0, z0) is in S3

2 , S2 ⊆ Z finite
set.
With this assumption, we have to modify the Preprocessing Step of Algorithm 10:

Preprocessing: Perform a generic integer change of coordinates on F and G, with coef-
ficients in S1 finite subset of Z; choose (x0, y0, z0) ∈ S3

2 , S2 finite subset of Z3.

Furthermore, we have to insert the following small loop in Step 10:

if deg D̃1 6= (degF ) · (degG) or deg D̃2 6= (degF ) · (degG) then
if not all primes dividing di(z0) have already been used then

go back to Step 5 and change p
else

go back to the Preprocessing Step
end if

end if

If all the integers in S1 and S2 are used without ending the Algorithm, then the Algorithm
returns “I can not compute the irreducible components”.
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4.3.2 Tricks on an example

Consider the complete intersection ideal a = (F,G) with

F :=−2566702905942050X4Z4+459256557993984X2Y 4Z2−43055302311936X2Y 3Z3+149908695810048X2Y 2Z4+

−6979668148224X2Y Z5+6071229709824X2Z6−3503849472Z8−42050955749032480X4Z3+

−10266811623768200X3Z4+7348104927903744X2Y 4Z−803698976489472X2Y 3Z2+3607675539554304X2Y 2Z3+

−186713130663936X2Y Z4+195165738909696X2Z5+918513115987968XY 4Z2−86110604623872XY 3Z3+

+299817391620096XY 2Z4−13959336296448XY Z5+12142459419648XZ6−168184774656Z7+

−153165621418742832X4Z2−168203822996129920X3Z3+29392419711614976X2Y 4−1294770487689216X2Y 3Z+

+28848282705543168X2Y 2Z2−2969746688299904X2Y Z3−14335675247912668X2Z4+14696209855807488XY 4Z+

−1607397952978944XY 3Z2+7215351079108608XY 2Z3−373426261327872XY Z4+390331477819392XZ5+

+459256557993984Y 4Z2−43055302311936Y 3Z3+169137821712384Y 2Z4−9871924445184Y Z5+

+4283168847360Z6+156192183008469632X4Z−612662485674971328X3Z2+19034255810101248X2Y 3+

+77148501872836608X2Y 2Z−26269071740640768X2Y Z2−260503407032577912X2Z3+58784839423229952XY 4+

−2589540975378432XY 3Z+57696565411086336XY 2Z2−5939493376599808XY Z3−8137727248288936XZ4+

+7348104927903744Y 4Z−803698976489472Y 3Z2+4069174561210368Y 2Z3−274458050691072Y Z4+

+209669071610880Z5−35411347230556448X4+624768732033878528X3Z−76439088940073148X2Y 2+

−135717859082331792X2Y Z−837794589252510608X2Z2+38068511620202496XY 3+154297003745673216XY 2Z+

−52538143481281536XY Z2−184599168072895984XZ3+3010058973609984Y 4+6641580791169024Y 3Z+

+27619879438268416Y 2Z2−3314693704751488Y Z3−1290430395206738Z4−141645388922225792X3+

+52319931666594104X2Y+925556148166809200X2Z−152878177880146296XY 2−271435718164663584XY Z+

−450264207155078560XZ2+69333885671964672Y 3+44942962614968320Y 2Z−21960926297551616Y Z2+

−50543547879625656Z3−209591503386136124X2+104639863333188208XY+601574832265861344XZ+

−100413940824686780Y 2−112229039722104464Y Z−77719642153201576Z2−135892228927820664X+

+52319931666594104Y+144595233124461040Z−32534767233353884.

G:=12580089921X4Y 2−125947381476X4Y Z+315235085764X4Z2−56061591552X2Y 4+5255774208X2Y 3Z+

−18299401344X2Y 2Z2+705303684X2Y Z3−738880698X2Z4+427716Z6−23984732562X4Y+120063301636X4Z+

+50320359684X3Y 2−503789525904X3Y Z+1260940343056X3Z2+14015397888X2Y 3−147599659008X2Y 2Z+

+6812660448X2Y Z2−11930741496X2Z3−112123183104XY 4+10511548416XY 3Z−36598802688XY 2Z2+

+1410607368XY Z3−1477761396XZ4+13686912Z5+11432100241X4−95938930248X3Y+

+480253206544X3Z+13588239750X2Y 2−504452464808X2Y Z+1838507201030X2Z2+28030795776XY 3+

−295199318016XY 2Z+13625320896XY Z2−23861482992XZ3−56061591552Y 4+5255774208Y 3Z+

−18299401344Y 2Z2+985906308Y Z3−579022170Z4+45728400964X3−96421675372X2Y+

+711716717848X2Z−73464239868XY 2−1325877808XY Z+1155133715948XZ2+14015397888Y 3+

−147599659008Y 2Z+11302302432Y Z2−11124929784Z3+67851322438X2−965490248XY+

+462927022608XZ−3289947071Y 2+141804814796Y Z+263814330226Z2+44245842948X+

+23501987438Y+111400209668Z+10690821233;

The complete intersection curve C = V (a) has degree 48.
We perform a generic linear change of coordinates and we compute

r := ResZ(F (0, Y, Z), G(0, Y, Z)),

which has degree 48 and factors over the rationals (in less than 1 second) as:
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• d(1)
1 (Y ) factor of degree 8 and multiplicity 1;

• d(1)
2 (Y ) factor of degree 24 and multiplicity 1;

• d(1)
3 (Y ) factor of degree 2 and multiplicity 1;

• d(1)
4 (Y ) factor of degree 14 and multiplicity 1.

So, using Definition 2.2.2, the complete intersection a has 4 rational components qi, all of
multiplicity 1, with degrees given by deg d

(1)
i (Y ) (thanks to Corollary 4.1.3).

We then choose p1 = 10639 which divides the constant term of d(1)
1 (Y ).

The computations ofD1(X,Z) = ResY (F,G) mod p1,D2(X, Y ) = ResZ(F,G) mod p1

and their modular factorization take about 10 seconds.
The rational factor of degree 8 further splits modulo p1 in 2 factors of degree 4 each. Observe
that also the other rational factors splits as a product of two modular factors; in particular,
we have that the rational factor of degree 14 splits in 2 modular factors of degree 7 each and
the rational factor of degree 2 splits in 2 modular factors of degree 1 each. Since the de-
grees of this modular factors are prime numbers, they can not further split (thanks to Lemma
1.1.4) and we can compute the Hilbert function of these components too without changing
the prime p1.

We can match the factors of degree 4 in the factorizations of D1(X,Z) and D2(X, Y )

through the Hilbert dimension of a generic plane section and consider the ideals ãi =

(F,G,D
(1)
i , D

(2)
i ) mod p1, i = 1, 2.

We then compute a 2×2 minor S of the Jacobian matrix of a and compute the quotient ideals

ã1 : S mod p1 ã2 : S mod p1

and this takes less than 25 seconds. In this way we obtain the Hilbert functions of two
irreducible components C1 and C2 of C .

The same for the modular factors of degree 7: we match them through the Hilbert function
of a generic plane section obtaining ã3, ã4, compute the quotient with respect to S in about
280 seconds (this is due to the higher degree of the generators of ã3, ã4) and get the Hilbert
function of the components C3 and C4 of C .

Finally, we match the modular factors of degree 1. Since the two matched modular factors
of degree 1 completely describe a line, we do not need to define ã5 and ã6 and then saturate,
it is sufficient to directly consider the two ideals defined by the matched couples of factors.

The only modular factors left are the ones of degree 12. Since we chose p1 in order to
split the modular factor of degree 8 with at least one linear factor, it is possible that these
two factors are of degree higher than the degree of an absolute factor of the rational factor of
degree 24.

We can proceed in the following way:
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• we choose p2 = 967 dividing the constant term of d(1)
2 (Y );

• we compute the resultants modulo p2 and their modular factorization.

In this case, we have that the rational factor of degree 24 splits in two modular factors of
degree 12 each. This means that we can compute the Hilbert function of these non-rational
components also modulo p1, since it gives the correct splitting.

After matching the factors, we can then compute also the two quotients

ã7 : S mod p1, ã8 : S mod p1,

obtaining also the Hilbert functions of the two components left, C7 and C8.
Finally, using the techniques of Algorithm 4 we can compute the polynomialM(T ) defin-

ing the algebraic extension Q(α) where we have a set of generators for any q
(j)
i of the abso-

lute decomposition of a:

M(T ) =− 11082580163010933885760964673707390010509584T 2+

+ 131690318266668290292419184878452927887495960T+

− 296645178942198181191338887504771569326650425.

Obviously, since degM(T ) = 2, we can easily find a better presentation of the extension
Q(α) computing the roots of M(T ): we obtain that the extension of Q we need can be
generated by

√
2.

Summing up, we obtained that the complete intersection curve a = (F,G) ⊆ Q[X, Y, Z]

has the rational primary decomposition

a = q1 ∩ q2 ∩ q3 ∩ q4

with deg q1 = 8, deg q2 = 24, deg q3 = 2 and deg q4 = 14 and all the primary components
of multiplicity one.

Each of the rational primary ideals further decomposes as

qi = q
(1)
i ∩ q

(2)
i ,

with q
(j)
i ⊆ Q(

√
2)[X, Y, Z], q(2)

i = σ
(
q

(1)
i

)
, where σ(

√
2) =

√
2.

Using the Maple command PrimaryDecomposition (whose algorithm is based on
[32]), we could not obtain the primary decomposition of a over the rationals: the memory
allocation failed (reaching more than 2.5 GB) after more than 2 hours of computations. This
Maple command can also give a primary decomposition using as coefficient field an alge-
braic extension of the rationals, but one needs to know a priori which is the right extension
in which the primary components further split. Even with this further information about
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the decomposition, PrimaryDecomposition in Maple caused a problem with memory
allocation (reaching about 2.3 GB), after computing for more than 1 hour.

We used Singular ([36]), another computer algebra system for polynomial computations.
We tried to obtain the rational primary decomposition of a using primdecGTZ and the
primary decomposition over Q[X, Y, Z] using absprimdecGTZ (which are based on [32],
the algorithms are described in [22]). In both cases we stopped the computations after 2
hours, without obtaining the primary decomposition.

We would like to compare our results (from the point of view of the obtained information
and timings) with another library, Jean-Charles Faugere’s F7, but we could not find either a
distribution or an exhausting documentation on it.

4.4 Other modular strategies

The algorithms of Section 4.3 are a sort of “black box” which predicts the Hilbert function
of the reduced and irreducible components of the curve defined by the ideal a = (F,G) ⊆
Q[X, Y, Z]. From this, we can immediately obtain a bound on the degree of a separator poly-
nomial for each component and use it to reduce the computations of a numerical algorithm
of decomposition.

After applying Algorithm 10 to the ideal a, we obtain for each rational primary component
qi:

Pi ∈ Z/pZ[X, Y, Z], Pi ∈ qi mod p,

and P i ∈ (a : qi) such that

PiP i mod p ∈ a mod p, Pi, P i /∈ a mod p,

that is

(PiP i = ηF + µG) mod p. (4.4.1)

If qi is a rational component of a of multiplicity 1, then we can choose Pi mod p of minimal
degree among the generators of qi mod p; if the multiplicity of qi is ≥ 2, then we will take
Pi = D

(1)
i1 (X,Z) mod p.

Can we reconstruct from the polynomial Pi mod p and from (4.4.1), a separator polyno-
mial for each rational component of a? In other words, can we lift modulo p an ideal (or at
least a polynomial of an ideal) and then recognize the rational coefficients from their p-adic
approximations?

The last part of this question is the only one which has a complete answer: if we have
a positive integer N bounding the size of the numerators and of the denominators of the
coefficients of the separator polynomials, then we can use the recognition of Farey fractions
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to reconstruct the rational from its p-adic approximation (see Section B.6). The bound N
allows us to choose the appropriate level of p-adic approximation λ to recognize the rational
we look for among the possible rational numbers which have the same first λ p-adic digits.
So, if we were able to lift a polynomial which is in a given ideal, we would be done.

Actually we can look at this problem of lifting arising from the computation modulo p
of the Hilbert function of the irreducible and reduced components of a curve of C3, as a
generalization of the Hensel lifting for a univariate factorization.
Obviously, one may think to generalize the Hensel step (Algorithm 14) to the modular fac-
torization of a multivariate polynomial: geometrically, it is equivalent to keep on working
with objects of codimension 1, but in an affine space of higher dimension. Our point of
view, is instead to keep on working on objects of small dimension (1, not 0 as in the case of
univariate polynomials) in an affine space of higher dimension.

It is not possible to directly apply the same arguments and construction of the Hensel
Step, simply because we do not have an algebraic hypothesis which is absolutely necessary
in the univariate lifting: the two modular univariate factors are coprime (that is, by means of
Euclidean division we have a Bezout’s identity of kind su+ tv ≡ 1 mod p). Even if we fix
a term order generalizing the Euclidean division to multivariate polynomials, we do not have
a Bezout’s identity of kind sP1 + tP 1 ≡ 1 mod p, since in general the ideal (F,G, P1, P 1)

mod p is not (1).

4.4.1 An exact modular strategy

The problem of lifting p-adically a polynomial was already investigated in a particular set-
ting: since modular computations are faster, it is convenient to pass from computations on
the rational numbers to computations modulo p to obtain a Groebner Basis.

The basic idea is: during the execution of Buchberger algorithm, many S-polynomials
are computed before reaching the Groebner Basis and the coefficients of these intermediate
polynomials may grow to enormous size; we can then perform Buchberger algorithm using
modular arithmetic for a well-chosen prime p, and then lift the reduced (and so unique)
modular Groebner Basis to the rational one.

In [1], the investigation of [82] and [64] has been carried on: in [82] for the first time
there was the computation of a Groebner Basis passing through modular computations, but
assuming that we could choose a priori a “lucky prime” p; in [64] the notion of “lucky prime”
is more clearly investigated.
In [1], the author gives some characterizations of “lucky prime” for a rational ideal a =

(f1, . . . , fm) in Q[X1, . . . , Xn] and a method to distinguish a lucky prime from an unlucky
one. So, even if probabilistically, a lucky prime can be chosen. After this, the reduced
modular Groebner Basis of a is computed. Finally, the author describes a method to lift this
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reduced modular basis.
This method bears similarities with the Hensel lifting, in the sense that it works on a modular
information (the Groebner Basis) and a rational one (the set of generators {f1, . . . , fm} of
a), as in the Hensel lifting we know on the one hand the modular factors and on the other
one the rational polynomial.
If a bound on the size of the numerators and denominators of the rational coefficients of the
Groebner Basis is known, then it can be used to choose the level of lifting; finally Farey
fractions recognition (Algorithm 15) gives the rational coefficients needed. This method can

be used in our problem, combining it with the absolute factorization algorithm of Chapter 1.
In fact, we can follow Algorithm 6 until Step 3, computing the absolute bivariate factorization
of D1 = ResY (F,G) and D2 = ResZ(F,G) and the algebraic extensions of Q involved. If
we multiply again the absolute factors in order to have the rational factorizations, we can
match the rational factors through Algorithm 7. Then, for any rational component of a of
multiplicity one, we would like to compute(

(F,G,D
(1)
i , D

(2)
i ) : S

)
, (4.4.2)

where S is a 2 × 2 minor of the Jacobian matrix of a. For this computations (which is
a Groebner Basis, as pointed out in the proof of Algorithm 10), we can use the modular
techniques of [1]. But actually with a small change, we can use the technique of lifting in a
more convenient way for the computation of the quotient ideal.

In general, if we consider an ideal a ⊆ Q[X1, . . . , XN ] and M ∈ Q[X1, . . . , XN ], the
standard technique to compute the quotient ideal (a : M) is to bring the problem back to the
computation of an intersection, since

M(a : M) = a ∩ (M),

(as proved in [19], Chapter 4, Section 4, Theorem 11). The computation of an intersection
of ideals is again performed using a Groebner Basis: if a = (f1, . . . , fr), then

a ∩M = (tf1, . . . , tfr, (1− t)M) ∩Q[X1, . . . , XN ].

If we use the technique of [1], we then compute the reduced modular Groebner Basis using
an elimination order for the variable t of an ideal in N + 1 variables, and then lift it to the
rationals.
Both the term order and the number of variables are not advantageous, so we will proceed in
a different way.

Assuming that we have chosen a lucky prime p, we compute the reduced modular Groeb-
ner Basis of (tf1, . . . , tfr, (1− t)M) with an elimination term order for t; we obtain

(MG1, . . . ,MGs, polynomials containing t ) mod p.
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Then, we consider the ideal (MG1, . . . ,MGs) mod p and we compute its reduced modular
Groebner Basis with respect to a term order more convenient for the computations (for in-
stance, DegRevLex), obtaining the modular Groebner Basis MGp. We write MGp since the
polynomials in the basis have the form MG; we keep on writing Gp = {G1, . . . , Gs} . We
can apply the lifting technique of [1], Section 6.2, keeping track of the fact that the Groebner
Basis we look for will be of kind (Mg1, . . . ,Mgs).

In the following Algorithm we use the matrix notation of [1], where F is the matrix whose
columns are the generators of a and Gp is the matrix whose columns are the polynomials in
the reduced modular Groebner Basis Gp.

Algorithm 11 Lifting modular Groebner Basis for a quotient ideal
Input: a = (f1, . . . , fr) ⊆ Q[X1, . . . , XN ], MGp modular Groebner Basis of M(a : M)

with respect to a term order σ, A bound on the size of the numerators and denominators
of the rational Groebner Basis of (a : M).

Output: G = (g1, . . . , gs) rational reduced Groebner Basis of (a : M)

1: i := 2, G(1) := Gp, Λ(1) such that MGp = Λ(1)F mod p,
2: while pi ≤ A do

3: G′ =
1

pi−1

(
Λ(i−1)F

M
−G(i−1)

)
4: Λ′ = 0

5: Reduce G′ with respect to G(1): G′ = ΓG(1) +G′′

6: G(i) = G(i−1) + piG′′, Λ(i) = Λ(i−1) − ΓΛ(1)

7: i := i+ 1

8: end while
9: Use Algorithm 15 to reconstruct the rational coefficients of G from G(i)

10: return G reduced rational Groebner Basis of (a : M).

Proof of Algorithm 11. We simply observe that at each recursion of Steps 3-7 we want to
have G(i) and Λ(i) such that

MG(i) ≡ Λ(i)F mod pi, (4.4.3)

and G(i) is a reduced Groebner Basis.
It is straightforward to verify that congruence (4.4.3) is satisfied by G(i) and Λ(i) con-

structed at each recursion. Furthermore G(i) is the reduced Groebner Basis of (a : M)

modulo pi thanks to the reduction in Step 5.
Finally, given the bound A, we can use the algorithm for the recognition of Farey fraction

(Algorithm 15).

We can then adapt Algorithm 6 in another way: after computing the resultants in Step 2,
we can use an algorithm of bivariate rational factorization and then Algorithm 4 to obtain
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the absolute factorization of the resultant; then we can compute the quotient ideal in Step 6
of Algorithm 6 using Algorithm 11.

4.4.2 Lifting Ideals

In Section 4.4.1 we show how an efficient bivariate factorization algorithm and modular
computations on Groebner Basis can construct separator polynomials of minimal degree (in
the sense that we can choose in (4.4.2) D(1)

i and D(2)
i of minimal degree).

Anyway, our wish is to directly lift the modular separator polynomials that we obtain
at the end of Algorithm 10, starting from the modular identity (4.4.1). A priori, fixing Pi
mod p, P i mod p which are not in a mod p, there is only a finite number of monomials
which can appear with non-zero coefficient in the reduced form of Pi, P i with respect to a;
the other information we have is that, on the contrary, PiP i ∈ a, and so the leading monomial
of PiP i with respect to a certain term order is a multiple of a monomial in the initial ideal of
a.

Nevertheless, this information does not seem to be sufficient to obtain the lifting of PiP i

mod p, as shown in the following example.

Example 4.4.1. Consider the complete intersection ideal a generated by

F = 2X2 + Y X + 4X − Y − Z + 2,

G = ZY X − 4Y X + 2Y 2 − 6ZX − ZY − Z2 − 4Y − 10Z.

Applying Algorithm 10, we obtain that a has only purely rational components, namely: q1

and q2 of degree and multiplicity 1 and q3 of degree 4 and multiplicity 1.
More precisely, using p = 127, we obtain (in generic coordinates)

P
(0)
3 mod p =ZY X + 11ZY 2 + 9Z2X + 94Z2Y + 31Z3 + 69Y X + 111Y 2+

+ 83ZX + 90ZY + 117Z2 + 56X + 46Y + 52Z + 6,

P
(0)

3 mod p := ZX + 55X + 66Z2 + 93Z + 35ZY + 8 + 115Y.

We consider the linear system coming from the equality

(P
(0)
3 + P

(1)
3 )(P

(0)

3 + pP
(1)

3 ) mod p2 = (η(0) + pη(1))F + (µ(0) + pµ(1))G mod p2,

whose unknowns are the coefficients of P (1)
3 , P

(1)

3 , η(1), µ(1). If we try to solve the linear
system, we have not a unique solution for it. The same happens if we consider the linear
system arising from the equalities

P3iP 3i mod p2 = ηiF + µiG mod p2,
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where {P3i mod p} is a set of generators of q3 modulo p. Also in this case there are infinite
solutions for the linear system.

So, even if there is a finite number of choices for the monomials appearing with non-zero
coefficient in the reduced form of P3 mod p2 with respect to a (and the same for P 3, η, µ

mod p2) and a finite number of choices for the coefficients of P (1)
3 which are modulo p,

we need to find other conditions, further then (4.4.2), which gives a unique solution to the
problem.

Example 4.4.1 is quite simple: the complete intersection considered has small degree, the
primary components are all rational and prime. Despite this simple setting, the p-adic lifting
of the separator polynomials is not easy at all.
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Conclusions and future work

In this thesis, we have tried to solve in an explicit and constructive way the following pro-
blem:

Given an algebraic curve in an affine space Cn, defined by rational polynomials,
find the equations defining its irreducible components.

We have studied the problem for n = 2 and n = 3.
For the case of a curve in C2, we have developed an absolute irreducibility test and an ab-
solute factorization algorithm, using as main tools modular computations and p-adic ap-
proximations for algebraic numbers, with the LLL algorithm to recognize the approximated
algebraic numbers. We tested the absolute factorization algorithm on many examples, using
Maple; we could deal with high degree polynomials (up to 400); such high degrees were so
far out of reach of all other absolute factorization algorithm; furthermore the computations
in our tests are very fast on polynomials of middle degrees (about 100).

For what concerns curves in the affine space C3, we have drawn a parallel between the
primary decomposition of an ideal and the absolute factorization of a polynomial, fixing it
through definitions and properties. After that, we have investigated some bounds coming
from algebraic geometry on the degree of a separator polynomial. We have then proved
that modular computations generically preserve the Hilbert function of an ideal. This, with
the classical technique of projection and quotient, gives us a modular algorithm that com-
putes the Hilbert function of all the prime components of a complete intersection ideal in
Q[X, Y, Z]. We can use these results as a bound on the degree of a separator polynomial,
helping a numerical algorithm in order to avoid extra and unnecessary computations. We
have also adapted an existing algorithm for the computations of modular Groebner Basis;
with the absolute factorization algorithm we have constructed, this gives another complete
strategy to obtain the separator polynomials of the irreducible components.

In the next future, we would like to implement Algorithm 4. An efficient implementation
will need good p-adic andX-adic Hensel liftings. We expect, in a near future, that the library
Mathemagix [55] will provide optimized implementations of these routines. It will also be
useful to have a “nice” presentation of the field extension, that is to consider a polynomial
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q(T ) such that L ' Q[T ]/q(T ) and q(T ) has as small as possible coefficients. This will
require the use of the PolRed Algorithm ([18]). Another point to improve is the parallel
version of the algorithm, in order to be able to deal also with normal extensions of Q.
We would also like to further investigate the techniques of p-adic approximation, in order
to lift the modular bivariate factorization and recognize the algebraic coefficients directly,
avoiding the specialization of variables and the subsequent X-adic Hensel lifting.

Concerning the decomposition of curves in the 3-dimensional space, we would like to
improve it, namely to be able to lift the modular separators polynomials to separators in
Q(α)[X, Y, Z]; this will be a generalization of the classical Hensel Lifting for modular fac-
torizations. Another objective is the generalization of these techniques to curves which are
not complete intersections. For this last problem, an obvious method is to compute the pro-
jection of the curves by using a generic change of coordinates, computing the resultants of
all the couples of generators and considering the great common divisor of these resultants;
however, we hope to do better, avoiding hard computations.

Furthermore, we would like to generalize the modular techniques of factorization to the
decomposition of hypersurfaces in the n-dimensional affine space (that is, to absolute fac-
torization of polynomials in n variables). The classical technique for multivariate absolute
factorization is to specialize variables, use bivariate factorization (relying on Bertini’s The-
orem) and then perform X-adic Hensel liftings to reconstruct the multivariate factors. We
expect that through modular techniques one can avoid the specialization of variables and the
X-adic Hensel liftings, developing for the multivariate case too techniques of p-adic approx-
imation and recognition of the coefficients.

Finally, once developed tools for curves in higher dimensions and for non-complete inter-
section curves in C3, we wish to investigate the decomposition of varieties of dimension m
in the n-dimensional affine space, since the results about good reductions (see Section 4.2)
hold for polynomial rings with n indeterminates and the technique of projection on linear
hyperspaces stays true in higher dimension (see [73]).
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Appendix A

The LLL algorithm

Since the LLL algorithm is one of the main tools we used to reconstruct an algebraic number
from its p-adic approximation, we recall here the main definitions and properties of integer
lattices and present the LLL algorithm. For the omitted proofs, see [83], Chapter 8 and 9.

A.1 Lattices

Fix d ≥ 1. Let S ⊆ Rd be a non-empty finite set. The lattice Λ generated by S is the set of
integer linear combinations of the elements in S,

Λ = Λ(S) := {m1u1 +m2u2 + · · ·+mkuk : k ≥ 1, ui ∈ S,mi ∈ Z}.

The set S is called a generating set for the lattice Λ. If S has the minimum cardinality among
generating sets for Λ, we call S a basis of Λ. The cardinality of a basis of Λ is the dimension,
dim Λ, of Λ.

Even for d = 1, the dimension of a lattice can be arbitrarily large or even infinite. But
in our applications, it is sufficient to restrict Λ to the case where u1, . . . , uk are linearly
independent as real vectors. In this case, 1 ≤ k ≤ d. Looking at S as an ordered sequence
(u1, · · · , uk) of vectors, we let

A = [u1, . . . , uk] ∈ Rd×k

denote a d × k real matrix of rank k, and write Λ(A) instead of Λ(S). We say Λ(A) is
full-dimensional if and only if k = d.

A lattice Λ with only integer coordinates, Λ ∈ Zd, is called an integer lattice. The simplest
example of a lattice is the unit integer lattice Λ = Zd. A basis for this lattice is the set S =

{e1, . . . , ed} of elementary vectors in Rd (equivalently, the identity matrix I = [e1, . . . , ed] is
a basis).
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We examine the conditions for two bases A,B to generate the same lattice. If U is a k×k
real non-singular matrix, we can transform a basis A to AU .

Definition A.1.1. A square matrix U ∈ Ck×k is unimodular if detU = 1. A real, integer,
etc, unimodular matrix is one whose entries are all real, all integer, etc.

A unimodular matrixU represents a unimodular transformation of lattice bases,A 7→ AU .
Note that the inverse of a (real or integer, respectively) unimodular matrix is still (real or
integer) unimodular.

Theorem A.1.2. Let A,B ∈ Rd×k be two bases. Then Λ(A) = Λ(B) if and only if there
exists an integer unimodular matrix U such that A = BU .

Definition A.1.3. The determinant of a lattice Λ is given by

det Λ := det
√
ATA

where A is any basis with Λ(A) = Λ.

By definition, the determinant of a lattice is always positive. Using Theorem A.1.2, it
is easy to show that det Λ is well-defined: if A = BU for some unimodular matrix U

(this demonstration does not depend on U being integer) then detATA = detUTBTBU =

det(UT ) det(BTB) det(U) = detBTB. Geometrically, det Λ is the smallest volume of a
parallelepiped formed by k independent vectors of Λ (k = dimΛ). For instance, the unit
integer lattice has determinant 1. Another example is the lattice Λ(u, v) where u = (2, 1)T ,
v = (3, 2)T . Actually this lattice is the whole space Z2. Note that det[u, v] = 1.

It is easy to check that given any basis A = [a1, . . . , an], the following transformations of
A are unimodular transformations:

(i) multiplying a column of A by −1:

A = [a1, . . . , ai−1,−ai, ai+1, . . . , an];

(ii) adding a constant multiple c of one column to a different column:

A = [a1, . . . , aj, . . . , ai + caj, . . . , an];

(iii) permuting two columns of A:

A = [a1, . . . , aj−1, ai, aj+1, . . . , ai−1, aj, ai+1, . . . , an].
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It is important that i 6= j in (ii). We call these the elementary column operations.
If c in (ii) is an integer, then (i), (ii) and (iii) form the elementary integer column operations.
There is clearly an analogous set of elementary row operations. Together with the column
ones, they are called the elementary unimodular transformations.
The unimodular matrices corresponding to the elementary transformations are called ele-
mentary unimodular matrices.

A fundamental result is that the group of unimodular matrices in Zn×n can be generated
by the following three matrices (see [42],Theorem 3.1 page 382):

U0 =



−1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


, U1 =



0 0 0 · · · 0 (−1)n−1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


,

U2 =



1 1 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


.

It is easy to see that U0, U1, U2 are each a product of elementary unimodular transfor-
mations. A matrix is unimodular if ad only if it is a product of the elementary unimodular
transformations.

Let |u| denote the (Euclidean) length of u ∈ Rd: |u| := ‖u‖2 =
√∑d

i1
ui, in our general

notation. When d = 2, this coincides with the absolute value of u as a complex number. The
unit vector along direction u is û := u/|u|. The scalar product of u, v is denoted by 〈u, v〉.

We have the basic inequality

| 〈u, v〉 | ≤ |u| · |v|.

Remark that the zero vector 0 is always an element of a lattice. We define u ∈ Λ to be
a shortest vector in Λ if it has the shortest length among the non-zero vectors of Λ. More
generally, we call a sequence (u1, u2, . . . , uk), k ≥ 1, of vectors a shortest k-sequence of Λ

if for each i = 1, . . . , k, ui is a shortest vector in the set Λ(u1, u2, . . . , ui−1). We call a vector
a k-th shortest vector if it appears as the k-th entry in some shortest k-sequence.
We will not distinguish u from−u when discussing shortest vectors. A fundamental compu-
tational problem in lattices is to compute another basis B for a given lattice Λ(A) consisting
of “short” vectors.
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A.2 Gram-Schmidt Orthogonalization

Let A = [a1, . . . , am] ∈ Rn×m be a lattice basis, 1 ≤ m ≤ n. The matrix A is orthogonal
if for all 1 ≤ i < j ≤ m, 〈ai, aj〉 = 0. There is a well-known strategy to convert A into an
orthogonal basis A∗ = [a∗1, . . . , a

∗
m]:

Algorithm 12 Gram-Schmidt Procedure
Input: A = [a1, . . . , am].
Output: A∗ = [a∗1, . . . , a

∗
m] orthogonal matrix

1: a∗1 := a1.
2: for for i from 2 to m do
3: for for j from 1 to i− 1 do
4: µij :=

〈ai,a∗j〉
〈a∗j ,a∗j〉

5: end for
6: a∗i := ai −

∑i−1
j=1 µija

∗
j

7: end for
8: return A∗ = [a∗1, . . . , a

∗
m]

If we think of the case m = 2, 3, there is a clear way to visualize what happens when we
substitute ai with a∗i : we are projecting ai on the vectors space generated by the a∗j , j < i,
and then we take the vector a∗i as the difference of ai with this projection. The resulting
matrix A∗ is orthogonal (one can prove this by induction on m).

We call A∗ is the Gram-Schmidt version of A. We say that two bases are Gram- Schmidt
equivalent if they have a common Gram-Schmidt version.

Starting from the equation in Step 6 of Algorithm 12, we can define µii := 1 and so
ai =

∑i
j=1 µija

∗
j .

In matrix form, A = A∗MT , where A∗ = [a1, . . . , am] and MT is the transpose of a lower
diagonal matrix

M =



1 0 0 · · · 0

µ21 1 0 · · · 0

µ31 µ32 1 · · · 0
...

...
...

. . .
...

µm1 µm2 µm3 · · · 1


.

The determinant of M is 1 and so the Gram-Schmidt version of A is a unimodular transfor-
mation of A. However, M need not be an integer matrix.

The number

δ(A) :=
‖a1‖‖a2‖ · · · ‖am‖

det(ATA)
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is called the (orthogonality) defect of A. Note that δ(A) ≥ 1. Intuitively, it measures how far
is A from its Gram-Schmidt version. We can then investigate the following problem: given
a basis A, find another basis B with Λ(A) = Λ(B) such that δ(B) is minimized.

A.3 The LLL algorithm

We now present the LLL algorithm, whose main aim is, given a lattice Λ(A), find another
basis of the lattice almost orthogonal. The basis found with LLL algorithm has another
useful property: one vector of the new basis is almost as short as the shortest vector in Λ(A).

A.3.1 Weakly reduced bases

A first step towards constructing bases with small defects, we introduce the concept of a
weakly reduced basis.
Given a basis B = [b1, . . . , bm], we know that its Gram-Schmidt version B∗ = [b1, . . . , bm]

has no defect: δ(B∗) = 1. Although B and B∗ are related by a unimodular transformation
M , unfortunately M is not necessarily integer.

So we would like to transform B via an integer unimodular matrix into some B =

[b1, . . . , bm] that is as close as possible to the Gram-Schmidt version. To make this precise,
recall that for i = 1, . . . ,m,

bi =
i∑

j=1

µijb
∗
j (A.3.1)

where µij =
〈bi,b∗j〉
〈b∗j ,b∗j〉

, and µii = 1.

We say that B is weakly reduced if in the relation (A.3.1), the µij’s satisfy the constraint

|µij| ≤
1

2
, (1 ≤ j < i ≤ m).

Weakly reduced bases are as close to its Gram-Schmidt version as one can hope for, using
only the elementary unimodular transformations but without permuting the columns. Let us
consider how to construct such bases.

If B is not weakly reduced, there is a pair of indexes (i0, j0), 1 ≤ j0 < i0 ≤ m, such that

|µi0j0 | >
1

2
.

Pick (i0, j0) to be the lexicographically largest such pair: if |µij| > 1/2 then (i0, j0) ≥Lex
(i, j), i.e., either i0 > i or i0 = i, j0 ≥ j. Let

c0 = bµi0j0e
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be the integer closest to µi0j0 . Note that c0 6= 0. Consider the following unimodular
transformation: we replace B = [b1, . . . , bi0 , . . . , bm] with B = [b1, . . . , bi0 , . . . , bm]. where

bi =

bi if i 6= i0

bi0 − c0bj0 if i = i0.

We call the B → B transformation a weak reduction step. We observe that B and B are
Gram- Schmidt equivalent. So we may express B in terms of its Gram-Schmidt version
(which is still B∗ = [b∗1, . . . , b

∗
m]) thus:

bi =
i∑

j=1

µijb
∗
j .

where it is easy to check that

µij =

〈
bi, b

∗
j

〉〈
b∗j , b

∗
j

〉 =

µij if i 6= i0

µij − c0µj0j if i = i0

In particular,

|µi0j0| = |µi0j0 − c0| ≤
1

2
.

As usual, µj0j = 0 if j > j0. Hence, if (i, j) is any index such that (i, j) >Lex (i0, j0) then
µij = µij so |µij| ≤ 1

2
. This immediately gives the following:

Lemma A.3.1 (Weak Reduction). Given any basis B ∈ Rn×m, we can obtain a weakly
reduced basis B where Λ(B) = Λ(B) by applying at most

(
m
2

)
weak reduction steps to B

A.3.2 Reduced basis

Let us impose a restriction on weakly reduced basesB. A weakly reduced basisB is reduced
if in addition it satisfies

‖b∗i ‖2 ≤ 2‖bi+1‖2

for i = 1, . . . ,m− 1, where B∗ = [b∗1, . . . , b
∗
m] is the Gram-Schmidt version of B. Actually

reduced bases have bounded defect.

Lemma A.3.2. If B = [b1, . . . , bm] is a reduced basis then its defect is bounded: δ(B) ≤
2

1
2(m2 ).

To measure how close a basis B is to being reduced, we introduce a real function V (B)

defined as follows:

V (B) :=
m∏
i=1

Vi(B)
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where

Vi(B) :=
i∏

j=1

‖b∗j‖ =
√

det(BT
i Bi)

and Bi consists of the first i columns of B. Observe that Vi(B) depends only on the Gram-
Schmidt version of Bi. In particular, if B′ is obtained by applying the weak reduction step
to B, then V (B′) = V (B) since B′ and B are Gram-Schmidt equivalent. Since ‖bi‖ ≥ ‖b∗i ‖
for all i, we deduce that

V (B) =
n∏
i=1

‖b∗i ‖n−i+1 ≤
(

max
i
{‖bi‖}

)(n2)
.

Now suppose B = [b1, . . . , bm] is not reduced by virtue of the inequality

‖bi‖2 > 2‖bi+1‖2

for some i = 1, . . . ,m. It is natural to perform the following reduction step which exchanges
the i-th and (i+ 1)-st columns of B. Let the new basis be

C = [c1, . . . , cm]

with ci = bi+1, ci+1 = bi and cj = bj for j 6= i or i + 1. The choice of i for this reduction
step is not unique. Nevertheless V (B) is decreased.

Lemma A.3.3. If C is obtained from B by a reduction step and B is weakly reduced then

V (C) <

√
3

2
V (B).

We describe the LLL algorithm in Algorithm 13.

Algorithm 13 LLL Algorithm
Input: B ∈ Qn×m, a basis.
Output: A reduced basis B with Λ(B) = Λ(B).

1: B := weak-reduce(B).
2: while B is not reduced do
3: B := reduce-step(B).
4: B := weak-reduce(B).
5: end while
6: return B.

We use weak-reduce(B) to denote a function call that returns a weakly reduced basis
obtained by repeated application of the weak reduction step to B. Similarly, reduce-step(B)
denotes a function that applies a single reduction step to a weakly-reduced B.
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The algorithm stops after

log√3/2 V (C) = O
(
n2 log

(
d
(

max
i
{‖bi‖}

)))
= O(n2(s+ log n)),

reductions steps and gives a correct answer, with log ‖bi‖ = O(s+ log n).

A.3.3 Short vectors

Let B = [b1, . . . , bm] ∈ Rn×m be a basis and let ξ1 ∈ Λ = Λ(B) denote the shortest lattice
vector, ξ1 6= 0.

Using Minkowski’s Convex Body Theorem, we can show that if Λ is a full-dimensional
lattice, ‖ξ1‖ is bounded by

√
2n
π

det(Λ)1/n. We do not even have an efficient algorithm to
compute any lattice vector with length within this bound. But we can efficiently construct a
vector ξ whose length is bounded by a slightly larger constant.

Moreover, there is a bound on ‖ξ‖ involving the length of the shortest vector of Λ(B):
‖ξ‖/‖ξ1‖ ≤ 2(m−1)/2. Indeed, finding such a ξ is trivially reduced to the LLL-algorithm by
showing that ξ can be chosen from a reduced base.

Lemma A.3.4. Let B∗ = [b∗1, . . . , b
∗
m] be the Gram-Schmidt version of B. Then the shortest

vector ξ1 satisfies
‖ξ1‖ ≥ min

i=1,...,m
‖b∗i ‖.

We deduce from the above lemma:

Lemma A.3.5. Let B = [b1, . . . , bm] be a reduced basis and ξ1 be a shortest vector in Λ(B).

i) ‖b1‖ ≤ 2(m−1)/2‖ξ1‖,

ii) ‖b1‖ ≤ 2(m−1)/4(det Λ(B))1/m.

Thus we can use the LLL-algorithm to construct a short vector ξ satisfying both

‖ξ‖/‖ξ1‖ ≤ 2(m−1)/2 and ‖ξ‖ ≤ 2(m−1)/4(det(BTB))1/2m.

A.4 Brief history of the LLL algorithm

The LLL algorithm is named by Arjen Lenstra, Hendrik Lenstra and László Lovász, the
three authors of [53] where this algorithm first appeared in 1982.

This paper describes an algorithm for rational factorization of a univariate polynomial
which can be performed in polynomial time. The idea is to find a p- adic factor of the poly-
nomial (using modular computations and Hensel lifting) and establish a connection between
this p-adic approximation and the true factor by means of an integer lattice.
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The authors are interested in finding a short vector of an integer lattice, that is why they
present a lattice reduction algorithm, which is the (nowadays) well-known LLL algorithm.

In the following years this algorithm found many other applications, most of them in
number theory and cryptography: we may cite as examples the application to the knapsack
problem ([43]), the construction of minimal polynomial from a numeric approximation of
an algebraic number ([47]), and in general to all problems concerning the search for integer
relations between vectors.

Nevertheless the LLL algorithm has a bad complexity from the theoretical point of view.
A very recent paper, [61], modifies the LLL algorithm improving the complexity bound.

Also other algorithms to find integer relations between numeric approximations were de-
veloped, for instance the PSLQ algorithm (see [26]), which also works on a integer lattice,
but is not a lattice reduction algorithm; it is based on a partial sum of squares scheme imple-
mented using QR decomposition.
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Appendix B

p-adic numbers

If we start considering the field of rational numbers Q, we can get its completion according
to the “usual” norm (that is, the usual way to measure the distance between to numbers),
obtaining the field R. In a few words, we are adding to Q all the points of convergence of
Cauchy sequence with rational elements.

What happens if we change the usual way to measure distances?

B.1 p-adic absolute value

We start considering a field K and define what is an absolute value.

Definition B.1.1. An absolute value on K is a function

| · | : K→ R+

that satisfies the following conditions:

1. |x| = 0 if and only if x = 0;

2. |xy| = |x| · |y| for all x, y ∈ K;

3. |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

The absolute values is non-archimedean if it satisfies the additional condition

4. |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K;

otherwise, we will say that the absolute value is archimedean.

In what follows we are interested in two different kinds of absolute values defined on Q.
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Example B.1.2. Consider the absolute value

|x|∞ =

x if x ≥ 0

−x if x < 0

This absolute value is well-known, we are using the unusual notation with “∞” to avoid con-
fusion with the other absolute value we are interested in. This absolute value is archimedean.

Example B.1.3. Fix a prime integer p ∈ Z and consider a ∈ Z.
Let l be the highest integer such that pl divides a. Then the p-adic absolute value on

integers is
|a|p = p−l

In other words, the p-adic absolute value of a number measures how divisible it is by p:
the smallest is the absolute value, the highest is the divisibility.

We can naturally extend this absolute value on the integers to an absolute values on the
rational:
for every a

b
∈ Q such that gcd(a, b) = 1, there is a unique way to write it as

a

b
=
r

s
pl with gcd(r, s) = 1, p - r, s.

We can then define the p-adic absolute values of a
b
:∣∣∣a

b

∣∣∣
p

= p−l.

| · |p is a non-archimedean absolute value.

In what follows, we will keep on using the notation | · |∞ for the “usual” absolute value,
| · |p for the p-adic absolute value and simply | · | if we want to refer to an absolute value on
a field K.

Definition B.1.4. Let K be a field and | · | an absolute value on K. We define the distance
d(x, y) between two elements x, y ∈ K as

d(x, y) := |x− y|.

The function d(x, y) is called the metric induced by the absolute value. A metric d(x, y) has
the following properties:

1. for any x, y ∈ K, d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

2. for any x, y ∈ K, d(x, y) = d(y, x);

3. for any x, y, z ∈ K, d(x, z) ≤ d(x, y) + d(y, z).
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Lemma B.1.5. Let | · | be an absolute value on a field K an define a metric d(x, y) = |x−y|.
Then | · | is non-archimedean of and only if for any x, y, z ∈ K we have

d(x, z) ≤ max{d(x, y), d(y, z)}. (B.1.1)

The inequality (B.1.1) is called ultrametric inequality and a metric for which is true is
called ultrametric.

If we consider an ultrametric d(·, ·) on K we have some nice and curious consequences on
geometry and topology: for instance all the “triangles” are isosceles (see [34], section3.2).

If we define an open ball of center a radius r as

B(a, r) = {x ∈ K|d(x, a) < r} = {x ∈ K||x− a| < r}

then we have that with the topology inducted by the metric d(x, y), balls are at the same time
open and closed and every point contained in a ball is its center (see [34], section 2.3).

B.2 Completion

Definition B.2.1. Consider an absolute value | · | on a field K.

1. A sequence of elements xn ∈ K is a Cauchy sequence if for every ε > 0 one can find a
bound M such that we have |xn − xm| < ε whenever n,m ≥M ;

2. K is complete with respect to | · | if every Cauchy sequence of elements of K has a limit
in K;

3. a subset S ⊆ K is dense in K if every open ball around every element of K contains
an element of S.

The field of rational numbers Q is not complete nor with respect to the absolute value
| · |∞ or | · |p. The field of real numbers R is the completion of Q with respect to | · |∞.

How about the completion with respect to | · |p? We briefly recall the construction of the
completion of Qp, for details see [34], section 3.2.

• C = Cp(Q) := {(xn)|(xn) is a Cauchy sequence with respect to Q};

• we define on C a sum and a product such that C is a commutative ring with identity;

• we can include Q in C;

• N := {(xn) ∈ C| limn→∞ |xn|p = 0} is a maximal ideal in C;
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• finally, we define the field of p-adic numbers Qp to be the quotient of the ring C by its
maximal ideal N . Through the inclusion in C, Q can be included in Qp.

We can extend the absolute value | · |p to Qp.

Definition B.2.2. If λ ∈ Qp is an element of Qp and (xn) is any Cauchy sequence represent-
ing λ, we define

|λ|p = lim
n→∞

|xn|p.

The definition is compatible with the classes of equivalence of Qp (see [34], section 3.2).
Remark that the image of Q under | · |p is the same as the image of Qp under | · |p: this

means that for every λ ∈ Qp, λ 6= 0, there exist n ∈ Z such that |λ|p = p−n.

Proposition B.2.3.

1. The image of Q under the inclusion Q ↪→ Qp is a dense subset of Qp.

2. Qp is complete with respect to the absolute value | · |p.

B.3 Algebraic extensions

As we stated, the fields R and Qp solve the problem of convergence of Cauchy sequences in
Q, according to the way we are measuring distances.

There is one problem left: in the same way as R is not algebraically closed, Qp is neither.
For instance, if we are considering a prime p such that 2 is not a square in Qp, then we can
consider the extension K = Qp(

√
2).

In general, let K be a field containing Qp. This means that K is a vector space on Qp and
it is a finite extension if its dimension as vector space on Qp is finite. As usual, [K : Qp] =

dimQp K is the degree of extension of K on Qp.
We would like to define an absolute value | · | on K, obviously satisfying properties 1., 2.,

3. of definition B.1.1 and the extra one:

4. |λ| = |λ|p whenever λ ∈ Qp.

Assume that K is a normal extension on Qp. We then have a finite set of automorphism σ

of K fixing Qp (and the cardinality of this finite set is exactly [K : Qp] = n).
Then, we can define the norm of α ∈ K as

NK/Qp(α) =
n∏
i=1

σi(α).

Observe that NK/Qp(α) ∈ Qp.
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Theorem B.3.1. Let K a finite extension of Qp of degree n. The function | · | : K → R+

defined by
|x| = n

√
|NK/Qp(x)|p

is a non-archimedean absolute value which extends the p-adic absolute value on Qp.

This is the unique p-adic absolute value on K extending the p-adic absolute value on Qp

and K is complete with respect to this.

Example B.3.2. Consider Q7 and α root of q(T ) = T 2 − 2. The automorphisms of K =

Q7(α) fixing Q7 are σ1, the identity, and σ2(α) = −α. Then the p-adic absolute value on K
is

NK/Q7(a) = 2
√
|σ1(a)σ2(a)|7.

For instance, the p-adic absolute value of 1 + 5α in K is

NK/Q7(1 + 5α) = 2
√
|(1 + 5α)(1− 5α)|7 =

1

7
.

Obviously, if we compute the p-adic absolute values in K of a ∈ Q7, this is just its usual
p-adic absolute value; for instance, consider a = 4:

NK/Q7(4) = 2
√
|42|7 = 1.

B.4 p-adic expansions

Just like when we work with real numbers, we can approximate rational and algebraic num-
bers through their p-adic expansions.

We will show with some examples how this expansions can be computed to a certain
level of accuracy and in the next section we will show the theoretical foundations of these
techniques.

Example B.4.1. Consider the integer 27 and compute its 5-adic expansion

• the first digit is the remainder of the division 27/5, so the first digit is α0 = 3.

• the second digit is α1 ∈ {0, . . . , 4} such that |27− 3 · 50−α1 · 51|5 is maximal: in this
case α1 = 0.

• the third digit is α2 ∈ {0, . . . , 4} such that |27− 3 · 50 − 0 · 51 − α2 · 52|5 is maximal:
in this case α2 = 2.

So
27 = 3 · 50 + 0 · 51 + 2 · 52.

We will also use the notation 27 = 2035.
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Example B.4.2. We now compute using the same technique of example B.4.1 the 13-adic
expansion of 24/17.

• the first digit is α0 ∈ {0, . . . , 12} such that |24/17− α0|13 is maximal: α0 = 6.

• the second digit is α1 ∈ {0, . . . , 12} such that |24/17−6 ·130−α1 ·131|13 is maximal:
α1 = 5.

• the third digit is α2 ∈ {0, . . . , 12} such that |24/17− 6 · 130 − 5 · 131 − α2 · 132|13 is
maximal: α2 = 7.

Keeping on computing, we obtain

24

17
= . . . 7854785613.

It may be interesting to see that the behaviour of the usual decimal expansion of a ∈ Q
may not be the same of the behaviour of the p-adic expansion of the same a: that is, if from
a certain digit the decimal expansion of a is made up of 0’s (the decimal expansion is finite),
it may not happen for the p-adic expansion.

Example B.4.3. We now compute the 11-adic expansion of 1/5.

• the first digit is α0 ∈ {0, . . . , 10} such that |1/5− α0|11 is maximal: α0 = 9.

• the second digit is α1 ∈ {0, . . . , 10} such that |1/5− 9 · 110 − α1 · 111|11 is maximal:
α1 = 8.

• the third digit is α2 ∈ {0, . . . , 10} such that |1/5 − 9 · 110 − 8 · 111 − α2 · 112|11 is
maximal: α2 = 8.

Keeping on computing, we obtain

1

5
= . . . 88888911.

Remark that 1/5 has a finite expansion using decimal digits: 1/5 = 0.20000000 . . . ; while
using 11-adic expansion, there are infinite non-zero p-adic digits.

Also the inverse may happen: an infinite decimal expansion may correspond to a finite
p-adic expansion

Example B.4.4. We now compute the 7-adic expansion of 44/49. If we try, as in the previous
examples, to find the digits such that |44/49−

∑m
i=0 αi · 7i|7 is maximal, for m starting from

0, we will obtain αi = 0 for all i.
We have to try with negative powers of 7, so we look for digits wit a negative index.
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• the first digit is α−1 ∈ {0, . . . , 6} such that |1/5− α−1 · 7−1|7 is maximal: α−1 = 6.

• the second digit is α−2 ∈ {0, . . . , 10} such that |1/5−6 · ·7−1−α−2 ·7−2|7 is maximal:
α−2 = 2.

There are no more non-zero digits to compute, since

44

49
= 6 · 7−1 + 2 · 7−2.

So, the 7-adic expansion of 44/49 is

44

49
= 0.627

The last example is interesting for 2 different reasons.
First of all, we have an example of a rational number with infinite decimal expansion

44

49
= 0.897959183673469387755102040816326530612244

with a finite p-adic expansion.
Furthermore, the other examples were concerning rational numbers whose image in Qp is

actually a p-adic integer (it is ∈ Zp). Without using complicated details, we can see this just
observing the p-adic expansions: if the digits are on the left of the point (that is: we are using
only non negative powers of p to write the expansion), then the numbers are p-adic integers.
If there are non-zero digits on the right of the point, then the number is not a p-adic integer
(that is, we are using negative powers of p in the expansion).

Example B.4.5. The 5-adic expansion of 58/75 is

58

75
= . . . 313131313132.215

We are also able to compute p-adic expansion also for algebraic numbers, if p is “well-
chosen”. The idea is the same as in Lemma 1.4.9: we choose α algebraic number on Q and
if we have a prime p such that the minimal polynomial of α factors modulo p, with a linear
factor, then we can have a p-adic expansion of α.

Example B.4.6. Consider α, sum of a square root of 2 and a primitive cube root of the unity.
The minimal polynomial of α is q(T ) = T 4 − 2T 3 − T 2 + 2T + 7. We choose p = 31, since
q(T ) factors modulo p: it is a product of linear factors.

If we look for p-adic approximation of the roots of q(T ), then we look for p-adic numbers
γ such that the value q(γ) is minimal with respect to the p-adic absolute value. We then
proceed just like we did for rational numbers:
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• we look for α0 ∈ {0, . . . , 30}, first digit of the p-adic expansion, such that |q(α0)|31

is minimal; we find that four values have the same minimal absolute value: α0 ∈
{3, 14, 18, 29};

• we look for α1, the second digit, such that |q(α0 +α1 ·31)|31 is minimal; we find out the
following couples of (α0, α1) minimizing the absolute value: (3, 13), (14, 10), (18, 20)

and (29, 17).

Going on with the same technique, we find the p-adic approximations of the roots of the
polynomial q(T ) = T 4 − 2T 3 − T 2 + 2T + 7:

. . . (4)(9)(13)(3)31, . . . (21)(27)(10)(14)31, . . . (9)(3)(20)(18)31, . . . (26)(21)(17)(29)31.

It is clear that the first digit α0 is one of the roots of q(T ) mod p.

B.5 Hensel’s lifting

One of the most interesting tools linking polynomials in the field of p-adic numbers and
rational polynomials in Hensel’s Lemma. All the examples of the previous section are ac-
tually based on it. We first enunciate its original form, which is the theoretical tool hidden
in the examples of the previous sections, and then concentrate on a second form which is in
connection with rational polynomial factorization.

Theorem B.5.1 (Hensel’s Lemma). Let F (X) =
∑n

i=1 aiX
i be a polynomial with coeffi-

cients in Zp. Suppose there exists a p-adic integer α1 such that

F (α1) ≡ 0 mod pZp and F ′(α1) 6≡ 0 mod pZp

where F ′(X) is the derivative of F (X). Then there exists a p-adic integer α such that α ≡ α1

mod pZp and F(α) = 0.

We now show another version of Hensel’s Lemma, adapted to the case of polynomials in
Z[X]. Zp is the ring of p-adic integers.

Theorem B.5.2 (Hensel’s Lemma second form). Let p be a prime in Z and let a(X) ∈
Z[X] be a given polynomial. Let u(1)(X), w(1)(X) ∈ Z/pZ[X] be two relatively prime
polynomials over the field Z/pZ such that

a(X) = u(1)(X)w(1)(X) mod p.

Then there exist polynomials u(λ)(X), w(λ)(X) ∈ Zp[X]such that

a(X) = u(λ)(X)w(λ)(X) in Zp[X]
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and

u(λ)(X) ≡ u(1)(X) mod p, w(λ)(X) ≡ w(1)(X) mod p.

The proof of this version of Hensel’s Lemma (see [81], Theorem 15.11 and 15.12) is
constructive. We just show the construction of u(2)(X) and w(2)(X); the same construction
applies inductively.

Since u(1)(X), w(1)(X) ∈ Z/pZ[X] are relatively prime, there are s, t ∈ Z[X] such that
su(1) + tw(1) ≡ 1 mod p. We now compute

e = a− u(1)w(1), û = u(1) + te, ŵ = w(1) + se,

and find

a− ûv̂ = f − u(1)w(1) − u(1)se− w(1)te− ste2 =

= f − u(1)w(1) − (su(1) + tw(1))e− ste2 = (1− su(1) − tw(1))e− ste2 ≡ 0 mod p2,

since e ≡ 0 mod p and 1 − su(1) − tw(1) ≡ 0 mod p. Hence a ≡ ûŵ mod p2, so that
ûŵ is a factorization of a modulo p2. Proceeding inductively (and simultaneously lifting
the congruence su(λ) + tu(λ) ≡ 1 mod pλ), we can lift the factorization modulo arbitrary
powers of p.

Algorithm 14 Hensel Step
Input: a ∈ Z[X], p prime integer, u,w ∈ Z[X] relatively prime, w monic such that a = uw mod p,

deg a = deg u+ degw

s, t ∈ Z[X] such that su+ tw ≡ 1 mod p, deg s < degw, deg r < deg u,
Output: polynomials u∗, w∗, s∗, t∗ ∈ Z[X] such that

a(X) = u∗(X)w∗(X) mod p2 s∗u∗ + t∗w∗ ≡ 1 mod p2

with w∗ monic, u∗ ≡ u mod p,w∗ ≡ w mod p, s∗ ≡ s mod p, t∗ ≡ t mod p

deg u∗ = deg u, degw∗ = degw, deg s∗ < degw∗, deg t∗ < deg u∗.
1: b := a− uw mod p2

2: Compute the Euclidean division: sb = qw + r mod p2 with deg r < deg h

3: u∗ := u+ tb+ qu mod p2

4: w∗ := w + r mod p2

5: c := su∗ + tw∗ − 1 mod p2

6: Compute the Euclidean division: sc = dw∗ + e with deg e < degw∗

7: s∗ = s− e mod p2

8: t∗ = t− tc− du∗ mod p2

9: return u∗, w∗, s∗, t∗.
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B.6 Farey fractions

It is natural to ask: when we reduce a rational number a/bmodulo a prime p, obtaining c, can
we recover a/b from the knowledge of c and p? Or better, when we approximate p-adically
a rational number, how can we recover it?

Definition B.6.1. Let N be a positive integer. The reduced order-N Farey fractions are

FN =
{a
b
| gcd(a, b) = 1, 0 ≤ a ≤ N, 0 < |b| ≤ N

}
.

We now fix a prime integer p and N , the biggest positive integer such that

N ≤
√
p− 1

2
. (B.6.1)

There is a natural way to map the Farey fractions of order N into the finite field Fp :=

Z/pZ:

ϕp : FN → Fp
a

b
7→ (a mod p)(b−1 mod p).

Thanks to (B.6.1), ϕp is one-to-one mapping between FN and Fp, and so it is possible to
construct the inverse mapping. Actually, instead of considering a prime p, we can consider
m = pr and choose the biggest integer N such that

N ≤
√

(pr − 1)/2. (B.6.2)

It is possible to define ϕm and to look for the inverse mapping. For every c ∈ Fm, it is
possible to compute a/b ∈ FN such that ϕm(a/b) = c.

Algorithm 15 is fully described in [48], where it is proved that the algorithm stops and
that the couple (ai, bi) such that ai/bi ∈ FN is unique.

Example B.6.2. Consider the Farey fractions F17 and consider p = 625.
We consider ϕp(10/13) = 145 and we apply the algorithm to recover 10/13 starting with
the seed matrix [

625 0

145 1

]
.

The iterations are summarized in the following table

i qi ai bi

-2 - 625 0
-1 - 145 1
0 4 45 -4
1 3 10 13
2 4 5 -56
3 2 0 125
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Algorithm 15 Recognition of Farey fractions
Input: p prime integer, m = pr with r ≥ 1, N the biggest positive integer such that

N ≤
√

(pr − 1)/2, c ∈ Fm.
Output: a/b ∈ FN such that ϕm(a/b) = c.

1: Consider the seed matrix [
a−2 a−1

b−2 b−1

]
=

[
p 0

c 1

]
.

2: i := 1

3: while ai−1 6= 0 do
4: compute qi as the quotient the Euclidean division of ai−2 with respect to ai−1 and ai

as the non-negative remainder:

ai = ai−2 − qiai−1.

5: bi := bi−2 − qibi−1

6: i := i+ 1

7: end while
8: return the only couple (ai, bi) such that 0 ≤ ai ≤ N , 0 < |bi| ≤ N

The algorithm stops at i = 3, since a3 = 0. The only couple (ai, bi) such that ai/bi ∈ F17 is
(a1, b1) = (10, 13).

Obviously, Algorithm 15 can be used to recover from a p-adic expansion of a rational
number, once that we have a bound on the size of the numerator and denominator of the
rational we are looking for.

Example B.6.3. Consider p = 5, m = 625, we consider the first 4 digits of the p-adic
expansion of a rational number, c = 13145; assume also that the size of the numerator and
of the denominator of the fraction we are looking for is bounded by N = 17.
We can apply Algorithm 15 (N satisfies condition (B.6.2)), we obtain the following values in
the iterations

i qi ai bi

-2 - 625 0
-1 - 209 1
0 2 207 -2
1 1 2 3
2 103 1 -311
3 2 0 625

The couple (a1, b1) gives a fraction contained in FN , 2
3
.
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So if we have the first r digits of a p-adic expansion of a rational number and we know
that the size of its numerator and denominator is bounded by N satisfying (B.6.2) for pr,
then we can reconstruct the rational number through Algorithm 15.
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Algorithmes de Factorisation de Polynomes et de Décomposition de Courbes

Résumé

Les courbes algébriques affines sont un outil qui est appliqué dans plusieurs domains, par example le
CAGD. Elles sont définies par des polynômes, mais souvent elles ont plusieurs composantes irréductibles
distinctes. Dans cette thèse on développe des algorithmes efficaces pour la décomposition d’une courbe definie
par des polynômes rationelles.

Dans la première partie on présente un algorithme de factorisation absolue pour polynômes en deux vari-
ables (problème equivalent à la décomposition de courbes dans le plan). On part de l’algorithme existant
TKTD et on améliore la définition de l’extension de corps nécessaire à la factorisation, utilisant des techniques
modulaires et l’algorithme LLL pour identifier un nombre algébrique de son approximation p-adique.

Dans la deuxième partie on passe au problème de décomposer une courbe dans l’espace tridimensionel:
l’équivalent de la factorisation pour le cas du plan est la décomposition primaire d’un idéal pour le cas des
3 dimensions. D’abord on montre des bornes sur les degrées des surfaces qui séparent les différentes com-
posantes, utilisant des résultats classiques de géometrie algébrique, comme le "Lifting problem" ou la regularité
de Castelnuovo-Mumford. Après, on considère un algorithme de décomposition classique, mais pas efficace du
point de vue computationel, auquel on applique les techniques modulaires. On obtient un algorithme modulaire
qui donne la fonction d’Hilbert des composantes réduites de la courbe.

Les deux algorithmes principales ont été testés sur plusieurs examples et comparés avec le temps d’exécution

d’autres logiciels.

Polynomial Factorization and Curve Decomposition Algorithms

Abstract

Affine algebraic curves are a tool applied in different fields, for instance CAGD. They are defined using
polynomials, but they often have several different irreducible components. In this thesis we develop efficient
algorithms to decompose a curve defined by rational polynomials.

In the first part we present an absolute factorization algorithm for bivariate polynomials (this problem is
equivalent to the decomposition of a curve in the plane). We start from the existing algorithm TKTD and we
improve the definition of the algebraic extension needed for the factorization, using modular techniques and
the LLL algorithm to identify an algebraic number form its p-adic approximation.

In the second part we pass to the problem of decomposing a curve in the three-dimensional space: the
corresponding technique of the factorization for the case of the plan is the primary decomposition of an ideal
for the three-dimensional case. At first, we show some bounds on the degrees of the surfaces separating
the different components, using some classical results of algebraic geometry, as the "Lifting problem" or the
Castelnuovo-Mumford regularity. After this, we apply consider a classical algorithm of decomposition, which
is not efficient for computations, and we apply on it the modular techniques. We obtain a modular algorithm
giving the Hilbert function for the reduced components of the curve.

The two main algorithms were tested on several examples and compared with the executions times of other

softwares.


