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CHAPTER 1 
MOTIVATION  

 
 
 
 
 
 
 

“One of the biggest problems the world must confront and 
solve is the unification of every field: politics, economics, 
demographics, religion, sociology, …”   

 

Pietro Ubaldi (1886–1972), Italian-Brazilian philosopher. 
In chapter 16 of “God's Law”. 
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Bioelectronics, which is not a recent research field, aims to provide tools for the im-

provement of human life. The 18th century marks the beginning of studies in “animal electric-

ity”. Luigi Galvani (1737 – 1798) is one of the most popular pioneers (Foccacia07). He trav-

eled across Europe with an interesting public demonstration: an electrical source was con-

nected to dead frog’s legs and: Surprise! They moved. Electricity was creating animation, 

“life”. In the 20th century, Electronics emerged as a technology-based science that deals with 

methods to convey information and control devices by the use of the electrical flow.  

Bioelectronics is the application of electronics knowledge and tools to biology and 

medicine. It is a multidisciplinary field, related to biology, medicine, physiology, physics, 

chemistry, mathematics, etc. These sciences interact, mixing, evolving, and allowing us to 

explore, control and, hopefully, improve human life.  

At the beginning of this thesis, I will start by citing some of the tools designed in 

bioelectronics. Some are commercially available, e.g.: 

1) Neural stimulator: this tool improves comfort. For example, it helps to control 

chronic pain (by stimulation of the spinal cord), control and treat chronic depression, reduce 

epileptic seizures (by stimulation of the vagus nerve), and treat urinary incontinence (by 

stimulation of the sacral nerve) (Nsanze05). 

2) Brain stimulator: this tool stimulates the basal ganglia and reduces the motor dys-

functions in Parkinson disease. Nowadays, prostheses are based on open-loop systems (fixed 

stimulation patterns). They are functional, but the next generation stimulator will take into 

account the level of disorder and adapt the stimulation pattern. It decreases neural damage and 

increases battery and device lifetime (Robert09).  

3) Cochlear Prostheses: this tool restores auditory function. It is based on the stimu-

lation of the spiral ganglion or auricular nerve, depending on which system is still functional 

in the patient. The next generation prostheses will stimulate directly the cortex hearing area 

(Loeb03). 

Examples of prototype tools (near to commercial use) are: 

4) Neuromuscular Reanimation: this tool reanimates muscular movement, normally 

by the stimulation of a motor neuron. Modern prostheses use multiple sensors to integrate the 

natural feedbacks. (Loeb01).  
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5) Brain machine interface: this tool acquires and processes the activity of the brain. 

The machine “reads” the mind to interface brain activity with computers, robots or artificial 

limbs. (Nicolelis01) 

And in the domain of academic research, we can cite: 

6) Visual prostheses: this tool tries to stimulate the retina, the optical nerve, or the 

visual cortex. A main issue with these prostheses is the number of cells involved in the image 

processing. For example: a healthy retina owns about 100 million photoreceptors, the optical 

nerve has about a million axons, and about 70 % of the brain is involved with image process-

ing (comprehension, memory, association, …). So the number and the density of stimulating 

channels are challenging issues (Weiland05). 

7) Determination of insulin needs: the electrical activity of Pancreatic Beta Cells 

conveys information about the needs on insulin. These cells are intrinsic biosensors more per-

formant than standard chemical sensors, as, unlike glucose, they also take into account hor-

monal and activity levels. Processing Beta cells electrical activity may be the basics for a new 

generation of implants for insulin control in diabetes (Raoux10).  

8) Cognitive prostheses: Some experiments partially simulate and interface with 

small and low complexity neural networks. For example, (Beger05) presents a substitution of 

a part of hippocampus. Further prostheses would offer remedies for the cognitive and memory 

loss accompanying Alzheimer’s disease, the speech and language deficits resulting from 

stroke, and the impaired ability to execute skilled movements following trauma to brain re-

gions responsible for motor control. This may be a starting point for the “memory prosthe-

ses”. 

This is succinct and non-exhaustive list of bioelectronics’ applications (a longer list 

is presented in (Bontorin06)). Some characteristics of these systems are common, such as 

natural-artificial interface, large-scale and high-density channels, large amount of data, real-

time processing. 

Hynet, or hybrid (living-artificial) networks, are extremely demanding systems when 

considering the pre-cited characteristics. Hynet are real-time, closed-loop systems with a liv-

ing and an artificial part. During my thesis project, I designed and used a Hynet. I focused on 

improving its spatiotemporal performances to offer a performing experimental platform to 

examine the intrinsic dynamics of electrogenic cells’ circuitry. This is done by the conscien-
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tious and high integration of electronics functions on the acquisition chain, to create “intelli-

gent” multielectrode arrays. 

Chapter 2 (Introduction) introduces the definitions and basic aspects to understand 

space-time aspects on hybrid living-artificial systems. Chapter 3 (Hynet) describes the initial 

real-time closed-loop system based on cultured neural networks. Chapter 4 (Preamplifier) 

shows how to increase the number and the density of acquisition channels. Chapter 5 (Detec-

tor) proposes a solution to filter useless data and maintain the real-time feature while increas-

ing the number of channels and amount of data. Chapter 6 (Conclusion) opens the field to 

further works and concludes the dissertation. 





 

 

 
 

CHAPTER 2 
INTRODUCTION 

 
 
 
 
 
 
 

“In which we begin not to understand” 

 

Gaston Leroux (1868-1927), French journalist and writer. 

In “The Yellow House Mystery”. 
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This dissertation presents my work on the development of a particular type of hybrid 

system, the Hybrid Network. I define a Hybrid Network (Hynet) (Fig 2.01) as a real-time 

closed-loop “Hybrid System”. 

A “Hybrid system” has two parts: a living one and an artificial one. “Closed-loop” 

means that these two parts communicate with each other in bidirectional mode, and that each 

one receives controlling inputs from the other. “Real-time” means that this communication is 

fast enough to avoid damage (loss or delay) on the data flow. 

When these three characteristics are effective, the artificial and the living parts form 

a network, named a Hynet. We will see how a Hynet proves to be an efficient and adaptable 

experimental support to explore the dynamics and the adaptation process of electrogenic cells. 

This introduction is divided into two parts. The first part shows the bottom-up design 

of a Hynet for a neural network. The second part presents a top-down view of the main design 

characteristics of the Hynet. 

 
Figure 2.01 Characteristics of a Hynet. A real-time closed-loop system for interactions between living 
and artificial elements.  

I. Hynet: bottom-up approach 

A. Natural neural network 
In a neural network, the basic element is the neuron. A neuron is an electrogenic cell 

from the nervous system. It processes and transmits information by electrochemical signaling. 

For this work, we use biophysical point models for the neurons. 

 
 

Figure 2.02. An electrogenic cell, the neuron, and its anatomical parts: dendrites, soma, axon, and 
axon terminals. 



Chapter 2  Introduction 
 

 

  Guilherme BONTORIN   
 

10 

Anatomically, a neuron is composed of (Fig .02):  

- dendrites: the branched projections of a neuron that act to conduct the electro-

chemical stimulation received from other neural cells to the soma. 

- soma: the cell body, which contains the nucleus. 

- axon: a long, slender projection of a nerve cell, or neuron, that conducts electrical 

impulses away from the neuron's cell body or soma. 

- axon terminals: branched projections of a neuron that act to conduct the electro-

chemical stimulation to other cells. 

The neural information is represented by electrochemical potential between the in-

side and the outside of the neuron. 

At the resting equilibrium, the intracellular medium has an excess of potassium ions 

(K+) and the extracellular one has an excess of sodium ions (Na+). This misbalance of charges 

is maintained by: (a) the impermeability of the cell membrane to these ions and (b) an active 

(energy consuming) exchange of those ions by a pump (Fig. 2.03). At the resting point the 

membrane potential is about – 65 mV (the reference is the extracellular medium).  

 
Figure 2.03. The cell membrane and some of its channels. The active pumps maintain a resting poten-
tial on the membrane. They transport the sodium (Na+) and potassium (K+) ions opposite to the gradi-
ent of concentration. It creates a potential energy across the membrane that is used by the ions to cross 
opened channels. 

The cell membrane contains ion channels. They are selective to a determined type of 

ion. For example, the sodium channels pass only sodium ions, only under certain conditions 

on the membrane potential. The transfer of ions tends to restore the potential equilibrium 

(against the misbalance). At the resting point (Fig 2.04.A), sodium and potassium channels 

are closed. 
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If the electrical potential increases above the threshold, the sodium channels open 

(Fig 2.04.B). Sodium ions migrate into the cell and the membrane potential increases quickly 

(depolarization). 

The increase of cell potential makes sodium channels close (Fig 2.04.C), and potas-

sium channels open (Fig 2.04.C’). Potassium ions migrate out of the cell and as a conse-

quence the membrane potential decreases. The low potential closes the potassium channel 

(Fig 2.04.D, hyperpolarization). Finally, the active pump slowly brings the membrane poten-

tial to the resting point.  

This process generates an electrochemical wave, called an action potential or a spike. 

A cell presenting an action potential is said to be firing or spiking. I will use the verbs fire and 

spike in the rest of the text. 

The action potential carries the information. Generated at the soma, this process is 

repeated through the axon until its terminations. Here, this information will be transmitted to 

other neurons.  

 

 
Figure 2.04. Action potential (or spike) generation. The potential energy across the membrane is used 
to transport the sodium and potassium ions through their respective channels. The sequential opening 
and closing of sodium and potassium channels creates the action potential. 
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Once the action potential reaches the axon terminals, it passes to another neuron 

through a synapse (Fig 2.05). Information passes by synapses, from the presynaptic neuron to 

the postsynaptic one. 

 
Figure 2.05. Synapse. The space between the presynaptic axonal terminals and the postsynaptic den-
drites. 

There are three different kinds of synapses: a. electrical, b. chemical, and c. neuro-

muscular. We will only cite chemical synapses in the context of our project (Fig 2.06). The 

mechanism involved in chemical synapses is the release of neurotransmitters, triggered by a 

presynaptic cell, to receptors on the postsynaptic cell. The process is the following:  

When the presynaptic cell spikes, its membrane depolarization induces calcium 

channels to open, increasing the Ca++ concentration inside the cell. This concentration induces 

vesicles, which are filled with neurotransmitters, to fuse with the cell membrane. This expels 

the neurotransmitters inside the synaptic cleft (the narrow space between the presynaptic and 

the postsynaptic neurons). Some of these neurotransmitters bind chemical receptors on the 

postsynaptic cell membrane. These active receptors hyperpolarize or depolarize the postsyn-

aptic cell, and eventually trigger a spike.  
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Figure 2.06. A chemical synapse. Expulsed vesicles by the presynaptic neuron liberate chemical sub-
stances sensed by the postsynaptic neuron receptors, and induce changes in the membrane voltage. 

If an action potential in the presynaptic neuron causes a depolarization of the post-

synaptic membrane, the synapse is called excitatory. The synapse is also said to “conserve” 

the signal, and “facilitate” the formation of an action potential in the postsynaptic neuron (the 

potential is closer to the spiking threshold level). 

Also, if the firing of the presynaptic neuron causes the hyperpolarization of the post-

synaptic membrane, this synapse is called inhibitory. We also say that this synapse is in oppo-

sition to the signal, and prevents the formation of an action potential in the postsynaptic neu-

ron (the potential is further from the spiking threshold level). 

The potential in the postsynaptic membrane changes according to the income of elec-

trochemical information. If the membrane potential exceeds the threshold, an action potential 

is created (a neuron spikes or fires). 

In addition to the inhibitory/excitatory categories, synapses can differ in their effi-

ciency. More “efficient” synapses have more effect (more depolarization or more hyperpo-

larization) on the postsynaptic membrane. This efficiency is coded by the “synaptic weight”. 

Synaptic weights change in the course of the neural network’s life, by complex biological 

mechanisms of learning or plasticity (Gerstner02, Hebb49). 

Each neuron has one or more presynaptic neurons. We consider synapses to transmit 

“information”, coded as the variation in the membrane potential, by a hyperpolarization or a 

depolarization. Once the membrane potential exceeds a spiking threshold, an action potential 

is generated as described above. Each neuron can also be presynaptic to other neurons, so the 

data can in turn be transmitted to other neurons depending on synaptic weights, resulting in a 

global network handling information transmission. 



Chapter 2  Introduction 
 

 

  Guilherme BONTORIN   
 

14 

B. Artificial part: closing the loop in real-time 
The artificial part communicates with the living network to form a living-artificial 

closed-loop. The artificial part tasks are: to acquire the activity of the living part, to process 

the data, and to apply the relevant stimulation pattern (Fig 2.07) 

 
Figure 2.07. The data flow in the Hynet closed-loop blocks: living part, acquisition, signal processing, 
and stimulation. 

Based on these three tasks, different declinations appear in the literature (Table 2.1), 

depending on the application. 

(Chapin99) designed a Hynet to determine whether simultaneously recorded motor 

cortex neurons can be used for real-time device control. In this experiment, rats were trained 

to position a robot arm and obtain water by thinking on pressing a lever. 

(Reger00) developed a Hynet between a brain of a lamprey and a small mobile robot. 

The mobile robot acted as an artificial body that delivers sensory information to the neural 

tissue and received command signals from it. The purpose of this system was to investigate 

the behavioral, computational and neurobiological mechanisms of sensory-motor learning. 

(Jung01) presented a Hynet between a lamprey’s spinal cord and an integrated circuit 

that mimicked the spinal motor pattern generation. The artificial part succeeded in establish-

ing a persistent and stable oscillation similar to the natural one.  

(Le Masson02) reconstructed a thalamocortical circuit using hardware and software 

neuron models connected to an in vitro preparation. The resulting experiments show that 

combining the gain control of feedback inhibition and the modulation of membrane excitabil-

ity enables thalamic circuits to finely tune the gating of spike transmission from sensory or-

gans to the cortex. 

(Carmena03) demonstrated that primates can learn to reach and grasp virtual objects 

by controlling a robot arm through a closed-loop brain–machine interface (BMI). Using visual 

feedback, monkeys succeeded in producing robot reach-and-grasp movemented even when 

their arms did not move. 
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(Nowotny03) demonstrated that spike-timing dependent plasticity (STDP) enhanced 

synchronization (or entrainment) in a Hynet composed of a spike generator, a dynamic clamp 

emulating an excitatory plastic synapse, and a chemically isolated neuron from the Aplysia 

abdominal ganglion.  

(Oprisan04) showed a Hynet composed of one bursting biological neuron and one 

bursting model neuron coupled using the dynamic clamp. The aim was to determine why ele-

ments of central pattern generators phase lock in a particular pattern in given conditions. 

(Berger05) presented a biomimetic system with silicon neurons which function was 

to process information transmission between cortical brain regions, in the context of replacing 

the CA3 region of a Hippocampal slice. 

(Whittington05) presented a Hynet that controlled and analyzed cardiac culture on 

planar MicroElectrode Arrays (MEA). Its aim was to study cardiac cell physiology, to im-

prove the speed and accuracy of traditional open-loop stimulation protocols, pharmacological 

screening, and to improve biosensors based on acquiring electrical activity of cardiac cultures.  

(Potter06) presented an interesting setup with embryonic rat neurons deposited on 

MEAs. The neural culture controlled external devices, such as virtual robots, actual robots or 

drawing robotic arms. The setup was also a tool for fundamental research in the burst control, 

stimuli efficiency, or plasticity and learning. 

(Novelino07) showed a Hynet where embryonic rat neurons cultured on MEA were 

connected to a robot, simulating an “embodiment”. The aim was to study the biological neural 

processes of learning and adapting to unpredicted situations, the underlying computational 

properties, and the information coding. 

The Hynet systems we designed in our group are related to three applications. The 

first one is the Hynet, for Hybrid Neural Network. The living part of Hynet is composed of 

embryonic rat neurons on an MEA compose the living part. The artificial part processes the 

data from the culture and sends electrical stimuli. This setup is a basis for the study of com-

plex learning and plasticity rules. It is detailed in the next chapter of this document.  

The second one is the Wave-Hynet, for the study of the functional influence of elec-

tromagnetic waves, such as those generated on Global System Mobile (GSM) at 1.8 GHz, on 

neural networks. We are also looking for the therapeutical influence of waves therapeutically. 
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The third one is the Gluc-hynet where the living part consists of pancreatic beta cells 

on MEAs. This system processes the electrical activity of the cells (used as complex glucose 

bio-sensors) to evaluate online the insulin need. 

In all these systems, the purpose of creating a hybrid network is to integrate the arti-

ficial and the living parts within a single cellular network. Consequently, the artificial part 

must “listen to” and “talk to” the living part “coherently”. By coherent, we mean that the sys-

tem must avoid any data flow damage (loss or unacceptable delay). 

Real-time is our key word for optimizing communication. (Joseph88) defines a real-

time system as a system whose computations and actions satisfy defined time constraints. 

This time constraint is represented by a deadline (DL), which is defined by the application. 

(Burns01) defines two different DL for real-time systems. They are: (a) the Soft DL: this DL 

that can be missed without compromising the system’s integrity; (b) the Hard DL: this DL’s 

failure implies an error, and compromises definitely the task. These two deadlines are defined 

to determine the minimal performances of the processing system (Lu02). 

The way the cells encode significant information defines the useful bandwidth of the 

signal. Through the Nyquist-Shannon theorem, we find the minimum sampling frequency and 

its respective period. Within this sampling period (i.e. within the time step between 2 acquisi-

tions) the online data processing must be executed in order to ensure real-time. 

The closed-loop period is the time taken by the system between the acquisition and 

the related feedback answer. This corresponds to a hard deadline (DL) and missing it implies 

an error.  

To illustrate soft deadlines in Hynet, we can mention the monitoring of acquired 

data: even if real-time monitoring is highly appreciated, a delay will not compromise the in-

tegrity of the experiment. This is a soft DL and missing it will only result in a warning. 

This summarizes the main required aspects of a Hynet: hybrid living-artificial, clo-

sed-loop and real-time. From this global vision, we need to better analyze specific parts of the 

system in order to design and to implement. 

II. Design: Top-down specifications 
In all bioelectronics systems, the developer’s specifications spread to both, biological 

and electronics fields. Concerning biology, global solutions are: in vivo or in vitro experi-

ments, acute slice or dissociate cultures, and intracellular or extracellular interfaces. From the 
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electronics point of view, rough implementation categories are: software or hardware, discrete 

components or integrated circuits (IC), and digital or analog. 

A. Biology 
The first specification to define is in vivo vs. in vitro. “In vivo” occurs when the elec-

tronics device is connected to cells in a living body. “In vitro” happens when the cells are 

extracted or cultured externally and maintained in a physiological medium. The main advan-

tages of in vivo are that the cell environment is close to normal; they are embodied in their 

functional system and act as input/output access to that system. But the disadvantages are the 

animal stress, the eventual anesthesia, and the body aggression by unnatural materials. On the 

other hand in vitro has the advantages of: cheaper maintenance, easier handling, and shorter 

access to cells. However the drawback is the absence of in vivo elements, such as physiologi-

cal regulations and antibodies. 

The second choice is about: acute slice or dissociated culture. Acute slices maintain 

the cells in the same network configuration as is the living body. However they have a short 

life time. This is the case of studies on the hippocampus network. On the other hand, dissoci-

ated cultures are more relevant to studies on learning and plasticity. In this case the cells are 

separated at the beginning of the experiments and are expected to reconnect and build a net-

work over a long period of time (days or weeks).  

Finally, a standard configuration choice is the intracellular vs. extracellular interface. 

An intracellular electrode pierces the cell. This access provides a measure of the neuron mem-

brane voltage with a good signal to noise ratio (SNR), but connections are restricted to a small 

number (a few units) and a limited duration (a few hours). Extracellular electrodes acquire the 

signal through capacitive coupling, without perforating the cellular membrane. This increases 

the cell lifetime and the duration of the experiment (a few weeks, even months). Classical 

technological solutions for extracellular electrodes are Multi Electrodes Arrays (MEAs) 

which provide multiple access points to the biological preparation (from tens to thousands).  

Extracellular acquisitions present two essential drawbacks. The first one is low am-

plitude. The intracellular activity potential amplitude is in the 100 mV range for neurons and 

20 mV for β-cells. But extracellular potentials are in the ± 100 µV range for neurons. 

(Harrison07a, Chay97). The second one is high noise level, when compared to the signal am-

plitude. Low amplitude signals are more sensitive to noise, as noise can more easily hide the 
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signal. One issue is the DC offset (extremely low frequency signal) that is in the range of 

100 mV (Harrison07a). The other issue is that the quality of extracellular measurement highly 

depends on the relative localization of the electrodes and the cells. These drawbacks can be 

handled by a careful design of electronics for conditioning and processing the cell’s signal. 

In experiments, the biological context is mostly defined by the specifications of the 

considered applications. In our case, we need to consider a Hynet with neurons and with β-

cells, and the most sensitive specifications are: a. the number and the density of access points; 

b. the duration of the experiment. 

Large scale is vital to study neurons and β-cells in their network functionality and in 

the context of plasticity and learning (Morin05, Chao05). For example, (Palti96) highlights 

that the whole islet of β-cells acts as a unit to determine the needs on insulin. Also, 

(Wagenaar06) shows the complexity of the study of learning and plasticity at the network 

level and the importance of apparatus for multisite acquisition. 

High resolution is another important feature: knowing the activity of a single indi-

vidual (cell or small part) is fundamental to determine its contribution on the collectivity (i.e. 

population, network, islet…). High spatial resolution is the base to the study of signal propa-

gation inside the collectivity and inside the individual (Streit06, Georgopoulus86). 

Long-term is necessary for the study of plasticity in networks, in the context of cells 

embodiment or for statistic coherence. Even if short experiments provide insights for the 

study on cell-to-cell plasticity, the network evolution has to be considered over long dynamics 

and “inertia” (Potter06, Bakkum04). 

These three characteristics, large scale, high resolution, and long-term, imply using 

extracellular access to biological cells. In vitro experiments are always preferred for initial 

studies on a given topic, because of their simplicity in terms of technology but also on terms 

of ethics compared to in vivo experiments. In the case of studies at the cell network level, we 

prefer dissociated cells; and for the study of an already-shaped network or functional unit, we 

privilege acute slices.  

For the experiments described in this manuscript, all the living parts are in vitro 

preparations, of dissociated cultures, and with extracellular access (Fig 2.08). 
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Figure 2.08. Potential solutions for the biological part of a Hynet and our final choice. 

B. Electronics 
The artificial part of a Hynet can be implemented in different forms. The first choice 

to make is between software and hardware. It corresponds to the way the instructions or 

commands are described. Software implies a high level of description that is implemented on 

standard hardware, usually a program (software) running in a computer (standard hardware). 

This solution has the advantages of: reconfigurability, development time, and price.  

The use of custom hardware increases the performances of the system (silicon area, 

power consumption, computing speed), but it also increases the development cost and time. 

A custom hardware implementation can be based on discrete components, configur-

able IC (such as FPGA – field programmable gate array), semi-custom IC, and full-custom 

IC. These solutions respectively present increasing performances and higher development 

costs. 

Lastly, the signal can be coded and processed in digital or analog mode. The digital 

implementation of values and time are discrete. The digital noise comes from two aspects. 

First, the number of bits determines the signal resolution. Second, the synchronization and 

technological performances define the minimum delays. Both determine the value and time 

resolutions. In the case of analog implementation, values and time are continuous. One wire 

conveys the signal, independently of the resolution. Physical laws of hardware elements (tran-

sistors) are used to implement processing equations. The processing is naturally real-time if 

the dynamics of the equations are correctly replicated by physics. Noise comes from physical 

characteristics such as thermal fluctuation. This limits the resolution of the signal. Even with 

computer assisted design, the analog development time and cost are higher than the digital 

one. 
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Table 2.1 Examples of Hynets and their Biological and Electronics Implementation 

Author Cells Interface Feedback Computing 

Chapin 1999 in vivo extracellular visual digital 

Reger 2000 in vitro, acute extracellular discrete hardware digital 

Jung 2001 in vitro, acute intracellular integrated hardware analog 

Le Masson 2002 in vitro, dissociated intracellular integrated hardware analog 

Carmena 2003 in vivo extracellular visual digital 

Nowotny 2003 in vitro, dissociated intracellular software digital 

Oprisan 2004 in vitro, dissociated intracellular software digital 

Berger 2005 in vitro, acute extracellular integrated hardware digital 

Whittington 2005 in vitro, dissociated extracellular software digital 

Potter 2006 in vitro, dissociated extracellular software and discrete 
hardware digital 

Novelino 2007 in vitro, dissociated extracellular software digital 

This work 2010 in vitro, dissociated extracellular software digital and analog 

 

Technological choices for the artificial part of a Hynet are mostly a matter of finding 

a good compromise between the expected (necessary) performances and the development 

time and cost. Our purpose is to discuss our choices to fulfill Hynet’s needs: the acquisition of 

electrogenic living cells’activity and the processing of the data in real-time (Fig. 2.09) 

 
Figure 2.09. Potential solutions for the electronics part of a Hynet. In order to increase the perform-
ances of a system, the development time and cost may also increase. 

In the next chapter, we present our Hynet system, and its performance as a hybrid (li-

ving-artificial) real-time closed-loop. This system presents a low development time and cost: 

analog hardware is limited to a minimum. Chapter 4 (Preamplifier) presents a solution to in-

crease the number and the density of the acquisition channel, with a full-custom integrated 
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preamplifier. Therefore, we achieve a large-scale and high-density acquisition and we in-

crease the amount of raw data. In Chapter 5 (Detector), we intend to keep the system’s real-

time feature. The solution is to process the data on-line and in analog mode. The last Chapter 

(Conclusion) concludes and presents perspectives for the next generation of Hynets 

(Fig. 2.10). 

 
Figure 2.10. Hynet configurations related to next chapters of this manuscript:  3 – Hynet, 4 – Pream-
plifier, and 5 – Detector. By increasing the development time and cost, we increased the performances 
of the original Hynet. 





 

 

 
 

CHAPTER 3 
HYNET 

 
 
 
 
 
 
 

“If we knew what it was we were doing, it would not be 
called research, would it?” 

 

Albert Einstein (1879-1955), Swiss-American theoretical 
physicist. 
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This chapter presents my contribution to the Hynet system developed during this the-

sis project. The parts of the closed-loop system are: bioware, hardware, and software. The 

data flow starts at the bioware level, passing through the hardware to the software. A friendly 

user interface guides the user to configure the experiment. The online software processes the 

data and eventually sends the relevant stimulation. This command passes through the hard-

ware back to the bioware.  

The number of acquisition channels on the bioware is limited by the commercial 

hardware used for the first amplification and by the software data processing. At the begin-

ning of my project, the Hynet system was under development. The hardware part was under 

test and the software part partially written. I participated in both; the hardware validation and 

the software design. I entirely realized the work presented on section II.B (Closing the loop). 

I. System parts 
The two parts, artificial and living, of the hybrid network (Hynet) communicate in 

bidirectional mode with each other: each provides outputs and receives controlling inputs 

from the other. The hardware and software parts of the artificial system run the bioware data 

acquisition, its processing, and the generation of feedback stimulation patterns. In this section, 

the three components of Hynet are: bioware, hardware, and software (Fig. 3.01). 

 
Figure 3.01. The Hynet closed-loop. The bidirectional communication path between the bioware and 
the software passes through the hardware.  

A. Bioware 
The first component of the system is the biological material that provides the signal 

for acquisition and is electrically stimulated. 

In the case of Hybrid Neural Networks (Garenne10), we use dissociated rat embry-

onic cortical cell cultures. Each MEA is plated with approximately 105 cells. After plating, the 

cells naturally tend to interconnect and create a complex neural network covering the MEA. 

The culture generally exhibits spontaneous spikes and bursts after 10-12 div (days-in vitro). In 

the case of insulin delivery control (Raoux10), we use cloned ß-cells from mice. They are 
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cultivated for 6 div before the acquisition. The cells are routinely kept healthy and active for 

more than 3 months. 

B. Hardware 
The second stage of the system is implemented on hardware, as a bridge between the 

bioware and the software. With the exception of the MCS (MultiChannel System™) suite 

(detailed later), all elements are custom made and assembled into a customized rack. This 

rack controls analog and digital signals, and it has an independent power supply and electrical 

references from those of the culture and of the computer. Hardware elements consist of a se-

ries of boards plugged into a modular and autonomous rack that conveys buses of shared data. 

All boards are configurable and work in real-time. 

C. Software 
The software is programmed in C++ and runs in a Windows XPTM environment. It 

contains four basic parts, three of which are graphical user interfaces (GUIs) that work offline 

and offer visual supports to control and monitor the experiment. The fourth one is the Real-

time Application (ReTA) which recovers the information from the GUIs and from the hard-

ware, and pilots the hardware. ReTA is the heart of the software part, and as such must be 

monitored to work in real-time. 

II. The Closed-loop  
We detail in this section the tasks of the artificial part of the Hynet (Fig. 3.02). They 

are: A. the acquisition of biological data, B. the data processing resulting in decisions and 

stimulation patterns to close the loop, and C. the generation of electrical stimulation signals.  

 
Figure 3.02. Detailed view of the Hynet closed-loop. The acquisition begins by the MultiChannel Sys-
tems (MCS) suite, with 60 analog channels. Signals are amplified by the ACQ boards and digitized by 
the DIGI board. The PCI board conveys the digitized signals to the software domain. The Real-Time 
Application (ReTA) processes the data and can pass it to other processing units by a TCP/IP commu-
nication. The stimulation flow starts at the software level, initiated by an external processing unit or by 
the ReTA. The PCI board sends the control commands serially to the DIGI board. The Stimulation 
Trigger (STT) and Stimulation boards (STIM) convert the digital signals into 30 analog signals that 
are applied to the culture by the channels of the MCS Suite.  
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A. Acquisition 
The hardware unit measures electrical signals from the cultures on the MEAs and 

conveys them to the software. Incoming analog signals have a low amplitude (10 ~ 100µV, 

mainly in the 100 Hz – 10 kHz bandwidth) and a high noise level (up to 1 mV in lower fre-

quencies and about 10 µVrms in the 100 Hz – 10 kHz band). The hardware outputs digital sig-

nals, with a 12 bit resolution and 40 kHz sampling frequency per acquisition channel. The 

hardware is composed of: the MCS suite, and boards identified as ACQ boards, DIGI boards 

and a PCI board (Fig. 3.02).  

1) MCS suite: The bioware is plated on a multielectrode array, MEA200-30 from 

MultiChannelsSystems (MCS) (diameter 30µm; interelectrode distance is 200µm). The 60-

electrode signals are available as parallel analog outputs of the MEA200-30. This MEA is 

inserted in the MEA1060 preamplifier from MCS, with a voltage gain of 1200. The preampli-

fier is connected to the BBMEA breakout box (for physical connections) from MCS. This 

system provides an easy access to the 60 recording analog channels (MEA System User Man-

ual ref.06). 

2) ACQ board: we designed these boards to filter, isolate optically, and amplify the 

analog signals from bioware. Each ACQ board manages 4 channels with a high-pass filter 

(0.1 Hz cut-off frequency) and an individually controlled gain tunable between 1 and 12 700. 

The gain’s control signal uses a serial i2c protocol (Inter-Integrated Circuit (Irazabal03)). For 

a complete 60-channel recording system, 15 ACQ boards are necessary. The amplified signals 

are conveyed to an analog bus. 

3) DIGI board: this controls a subset of the rack’s channels. More precisely, it man-

ages: 

3.a) the digitalization of the biological signals. The board is equipped with a Xilinx® 

FPGA (configurable digital circuit) that controls 2 Analog-to-Digital Converters (ADC). Each 

ADC converts each one of the 8 channels with a resolution of 12 bits and sampling frequency 

of 40 kHz. This sampling rate is specified to ensure a high quality reconstruction of the neu-

rons dynamics for offline processing. Furthermore, as the A/D conversion is implemented 

within the rack, no analog signal is conveyed inside the digital environment of the computer, 

which limits the noise.  

3.b) the data transfer between the rack boards and the computer PCI (Peripheral 

Component Interconnect) board. The acquisition data is transferred in parallel mode, as it may 
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correspond to a large data flow if all channels are active; stimulation data, which is more 

sparse, is transferred serially. Both are clocked at 16MHz. 

3.c) the control of the i2c bus, that manages the data, control and clock signals for the 

acquisition boards (ACQ) and for the stimulation boards (STIM and STT detailed further).  

Each DIGI board controls 16 acquisition channels and 8 stimulation channels. For a 

60 acquisition and 30 stimulation channels Hynet system, 4 boards would be necessary.  

4) PCI board: this board is the bridge between the rack and computer’s PCI (Periph-

eral Component Interconnect) bus. The necessary data transfer rate for a 60 channels Hynet is 

approximately 5 MiB/s, (with 12 bits - 40 kHz sampling per channel), well below the 

133 MiB/s (133.220 bytes per second) of the PCI transfer protocol. The PCI driver module is 

written in C++ and runs on Windows XPTM. 

The hardware we developed for the Hynet is not competitive with current commer-

cial system (MEA System User Manual ref.06, BioMEA ref.09) in terms of static perform-

ances; but although individual boards process less channels, the user can customize the ex-

periment thanks to the modular architecture and the boards’ configurability (Bontorin07a). 

However the real benefit of the system lies in the real-time features of the processing 

(including the software) that are not present in commercial systems. 

The biological signals are available to the software, which is designed as a Real-

Time Application (ReTA). Its functions are: 

1) Raw signal monitoring: data from 60 channels can be displayed in real-time on the 

computer screen (Fig. 3.03.A). A zoomed view can also be selected for a single channel 

(Fig. 3.03.C). 

2) Events detection: three types of patterns are extracted from the raw neural data: 

spikes, bursts, and stimulus artifacts. 

A spike is a short electrical depolarization of a cell membrane. Extracellular spikes 

often reach amplitudes of 50µV eil (equivalent input level). After hardware processing, noise 

amplitudes are estimated to be about 15µV eil. Thanks to this level difference between spikes 

and noise, spikes can be detected by thresholding the signal, but the optimum threshold AC 

and DC may differ over the channels or even evolve over time.  
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ReTA presents two techniques to set the threshold. The first one is to define it as a 

fixed voltage value, defined by the user (for example by looking at the monitored signal). The 

second use the standard deviation (SD) of the signal as an estimation of the noise. The thresh-

old is defined as a multiple (n) of SD. “n” is normally set in between 3 and 5, in order to avoid 

spike detection errors (false negative or false positive detection). 

In order to present less than 1 ‰ of false positive decisions (the system interprets 

noise as a spike), “n” is usually set to be larger than 3. The maximum value is 5, after which 

the false negative decisions (true spikes are not detected) are too frequent (Garenne10). SD is 

continuously updated on line. 

For our application, a “burst” is a pattern of N spikes on the same channel in a tem-

poral window of duration W. For example, if a channel has three or more spikes (N = 3) in 

less than 10 ms (W = 10), this event is considered to be a burst. Both values, N and W, are 

programmable by the user before the experiment. 

To implement burst detection, we create at the start of the experiment a circular 

buffer for each channel where a burst detection is required. Taking into account the sampling 

frequency (f) of the acquisition, the number of elements of a buffer is (W.f). After each acqui-

sition sampling, the buffer is updated; depending on the values of the first element and the 

new element, the total number of spikes (S) is changed; the first element is overwritten by the 

new element; and the pointers of last and first elements are increased. If the total number of 

spikes in the buffer reaches the number of spikes in a burst (S ≥ N), a burst is validated for the 

current timestamp. 

Stimulus artifacts are detected by a simple thresholding method. Biologically effec-

tive stimulations generate artifacts that saturate the acquisition channel. Consequently, the 

threshold is relatively easy to fix before the experiment. 

3) Events detection monitoring: The three types of events can be monitored online. 

The events evolution over time is indicated by color coding (Fig. 3.03.B). Inactivated chan-

nels are white. Once an event is detected, the corresponding channel passes immediately to 

red, and then progressively lightens: it provides visual information about signal propagation in 

the culture. 

4) Statistics computing: the online detected events are also used to compute statistics, 

such as instantaneous firing rate (IFR), inter-burst interval histogram (IBI), inter-spike inter-
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val histogram (ISI), and post-stimulus-time histogram (PSTH). These statistics are commonly 

used in neurophysiology experiments. They are also plotted online (Fig. 3.03 D and E). 

5) Storage: All the data are stored on the hard disk for offline analysis. The raw sig-

nal is stored in a 12 bits format, and a transtyping operation is done to save space disk. Events 

and Statistics are stored as timestamps in a text file.  

6) Channels selection: To optimize the computational load, the user can configure 

processing on an individual channel. Useless channels can be deactivated, keeping more re-

sources for ReTA or other real-time programs running on the same machine.  

7) TCP/IP interface: In order to share the information with other programs, a TCP/IP 

(Transmission Control Protocol/Internet Protocol) interface is included in ReTA. The pack-

ages are configurable: they provide the timestamps and statistics of a selected event. 

  
A B 

   
C D E 

Figure 3.03. Real-time monitoring of neural bursting activities induced by stimulations. (A) 60 raw 
signals in 1-second windows. (B) Bursts detection figure on the 60 channels; white: no burst detected; 
grey: burst detected within the last 0.25 s. (C) A zoomed view of one channel. We highlighted the 
stimulus and evoked burst. (D) Inter-Spike Interval (ISI) and (E) Post-Stimulus Timing Histogram 
(PSTH) for one channel. IFR stands for Instantaneous Firing Rates, IBI stands for Inter-Burst inter-
vals; IFR and IBI are not presented here. 
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B. Closing the loop with the software 
Our methodology to configure the closed-loop experiment comprises four software 

steps (Fig. 3.04):  

 
Figure 3.04. Four steps to describe a closed loop experiment. The first step (Condition Descriptor) is 
the definition of the acquisition pattern that triggers a stimulation. The second (Pattern Descriptor) is 
the definition of the stimulation signal. The third (Linker) associates the relevant channels with the 
previous descriptions. The last step (ReTA) reads this configuration and processes on-line the data to 
and from the PCI.  

1) The first step is to run the Condition Descriptor that configures the events in the 

acquisition that launch a stimulation pattern. A pattern can be launched: (a) continuously 

and/or periodically during all the experiment; (b) only at the beginning of the experiment (e.g. 

for a training or calibration task); (c) in response to a manual user request (e.g. by clicking a 

button); (d) in response to requests from another program, received through a TCP/IP inter-

face; the purpose of this feature is to allow ReTA to interact with other programs; or (e) if a 

condition in the acquisition is reached. The condition in the acquisition can be defined as a 

complex input pattern. This pattern is defined by a sequence of time intervals (∆T). Each in-

terval has a quantity of spikes, bursts or statistics (N) and a test (equal, greater, lower). 

Fig. 3.05.A shows the window of our Condition Descriptor. Fig. 3.05.B shows a complex 

condition based on a spike detection. These patterns are stored in a file, which can be stored in 

a library.  
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A 

 
B 

Figure 3.05. The Condition Descriptor.  A. The GUI window and B. An example of condition setting. 
Three information compose one elementary condition: the data we are looking for (spike or statistics), 
the logical test (equal, less, greater, …), and the time interval ∆T. Each complex condition is com-
posed of one or more basic conditions. In this example the complex condition is composed of 3 ele-
mentary conditions. The first is the detection of more than 10 spikes over ∆T1; the second is the detec-
tion of exactly 3 spikes over ∆T2, and the last is the detection of at least 1 and less than 10 spikes over 
∆T3. During the acquisition, a theoretical window sweeps the signal to look for the condition. 

A special input condition is the timer, whose Timer Descriptor block accounts for a 

delay (constant or random). It can be combined with conditions and/or stimuli pattern. 

Fig. 3.06 shows the GUI to configure the timer. 
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Figure 3.06. Timer Descriptor: the GUI window.  The user can chose between a fixed time interval 
and a Poisson distribution for the timing of events. 

2) The second step uses the Pattern Descriptor and configures the stimulation pat-

terns. The basic element of the pattern is the pulse. Bipolar voltage pulses, starting with the 

positive cycle, have been reported in the literature to be efficient (with respect to measure-

ments of the responsiveness of neuronal cultures) and secure (considering the mean life time 

of neuronal cells) (Wagenaar04, Merrill05). Four parameters are tunable in a bipolar pulse: 

the positive (V+) and the negative (V-) voltage levels, and the positive (TV+) and the nega-

tive (TV-) widths. The pulse width varies from 50 µs to 3.27 s, with a 50 µs step, and the 

pulse levels range varies from 0 to ±10 V, with a 4 mV step. In a second level of abstraction, 

pulses can be repeated inside a “group”. Two parameters are configurable in a group: the 

number of pulses and the pulse period. The last level of abstraction is the pattern, composed 

of the repetition of groups with a defined group period. Fig. 3.07 presents A. the GUI for the 

configuration of the stimuli pattern and B. the associated stimulation signal and its parame-

ters. These patterns are stored in a file, which can also be stored in a library. 
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Figure 3.07 The Pattern Descriptor.  A. The GUI window and B. Example of a stimulation pattern 
and its parameters. Four parameters are tunable in a bipolar pulse: the positive (V+) and the negative 
(V-) voltage levels, the positive (TV+) and the negative (TV-) time widths. Two parameters are con-
figurable in a group: the number of pulses and the pulse period. The last level of abstraction is the 
pattern, composed of the repetition of groups with a defined group period. 
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3) The third step uses the Linker and defines the relationships between the conditions 

defined in step 1, the pattern described in step 2 and the stimulation channel. With this modu-

lar configuration, experiments can be designed with a reuse methodology, based on library 

elements (conditions, stimulation patterns from previous experiments). Logical AND, OR, 

and PIPE conditions, timers, and/or patterns are programmed at this stage. Fig. 3.08 presents 

A. the GUI for the linker and B. an example of linking. 

 
A 

 
B 

Figure 3.08. The Linker.  A. The GUI window. B. An example of linking. The library elements from 
the previous steps (conditions, stimulation patterns and timers) are linked using logical functions 
AND, OR, PIPE conditions and the channels numbers. The Linker also relates the acquisition patterns 
(left part of the figure) to the stimulation patterns (right part of the figure).  

4) The last step is the launching of the real-time application (ReTA). It interprets the 

command files of the Linker, launches the different threads and circular FIFOs, establishes the 

TCP/IP communication, and drives the PCI (Peripheral Component Interconnect) card. 

Fig. 3.09 presents the command window of the main GUI of the ReTA , effectively closing the 
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loop of the experiment. In the center of the window, a panel displays the number of detected 

conditions (from step 1) or sent stimulations (from step 2) from and to the hardware. 

 
Figure 3.09. The command window of the ReTA application closing the loop. The left part of the win-
dow presents the current status of the loop and its parameters. In the center box, the number of condi-
tions detected or stimulations launched are updated in real-time. This interface generates and reads 
reports of the experiments (right part of the window). 

C. Stimulation 
After the Acquisition hardware and the Software, the Stimulation hardware com-

pletes the closed loop pathway. 

The Stimulation hardware is the bridge back from the software to the bioware. The 

first blocks of the Stimulation hardware is the same PCI and DIGI boards as described for the 

acquisition. The DIGI board controls two types of boards used for stimulation: the Stimula-

tion Trigger (STT) boards and Stimulation (STIM) boards (Fig 3.02): 

1) Stimulation Trigger (STT) Boards: these are in charge of triggering the stimulation 

signal (a biphasic stimulation pulse as described in the previous section). They provide indi-

vidual trigger sequences for each channel. An i2c local bus controls this process. The result-

ing stimulation patterns can be configured by: the number of pulses in a group; number of 

groups in a pattern; periods of pulses and groups (Fig. 3.07.B), as configured in the step 2 of 

the software. Each STT board triggers 2 STIM boards, corresponding to 8 stimulation chan-

nels. A 32-channel stimulation setup requires 4 STT boards.  

2) Stimulation (STIM) Boards: these generate analog stimulation signals, which are 

applied to the MEA electrodes. Each board individually controls 4 stimulation channels. For a 
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32-channel stimulation system, 8 boards are necessary. Individual cables for each channel 

convey signals to the MCS suite.  

The MCS suite is the same suite as the one used by the acquisition flow. The MEA 

has a parallel access for the acquisition and the stimulation of each of the electrode sites. The 

user configures the distribution of the stimulation channels among the 60 electrodes by on-

board hardware switches.  

We intentionally limited the number of stimulation channels to 30, as single stimula-

tions are proven to already have an effect on a population of neurons distributed covering 

more than one channel. In any case, the number of stimulation channels could easily be in-

creased on our system by adding more DIGI, STT, and STIM boards. 

III. Time performances 

A. Acquisition 
In extracellular measurements, as is the case of MEAs, the typical data bandwidth is 

about 3 kHz for spike detection (Henze00), which implies a Shannon frequency of 6 kHz 

(Shannon49). We chose to run our system with a minimum 10 kHz sampling rate (and then a 

period of 100 µs), to ensure a correct reconstruction of biological signals in real-time. A 

higher sampling rate (e.g. 40 kHz) would give more information about spike shapes, which is 

not a priority for the experiments we plan. 

Thanks to its tunable architecture, our acquisition system can provide different out-

puts changing its processing delay. We present the delays related to different experiments (A 

to E in Fig. 3.10), going from 25 µs (A) to 60 µs (E). 

The simplest experiment (A) consists of an offline analysis. In this case, only the raw 

data storage and monitoring must be in real time. The mean delay is 25µs (A). In this case the 

sampling frequency can be tuned to 40 kHz, increasing detail in the spike waveform. 

Adding other real-time processes increases the delay. The most resource demanding 

online detection (event detection on all channels in a 10 ms burst window) adds 15 µs (B). 

One statistic function requires 15 µs (C). 

The delay to send data to the TCP/IP layer is 5 µs on average. Raw data is not sent 

because it is too resource demanding. If event detections (D) and statistics (E) are sent, the 

process delays are, respectively, 45 µs and 60 µs. 
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In the most complex experiment, all the information (event and statistic) is sent to the 

TCP/IP layer with a mean delay of 60 µs. If we stick to the initial specification, for real-time, 

of a 100µs global delay, 40 µs are still available for user-defined additional functions. 

 
Figure 3.10 Data propagation delays of the acquisition chain as described in Fig. 3.02 for different 
experimental configurations (A to E). The simplest experiment’s delay is 25 µs for real-time raw data 
storage and monitoring (A). The most complex analysis requires 60 µs (E). 

B. Stimulation 
Stimuli can originate from three different sources: (a) offline data programmed be-

fore the beginning of the experiment; (b) user action; and (c) requests from another program 

received by the TCP/IP interface. In terms of timing, (a) and (b) are directly implemented 

from the ReTA. For (c) we must take into account the time necessary for ReTA to access the 

data from the TCP/IP layer. Once the ReTA “knows” that it must launch a pattern, the mean 

time for processing through the PCI driver is about 5 µs. With 1 µs more, the data pass the 

PCI bus and access the DIGI boards. These delays suppose a PC with only ReTA running be-

sides the Operating System (OS): the PCI bus must be permanently available for the Hynet. In 

any case, these delays are controlled and all buffers are monitored (software access to internal 

registers and timings). If the delay for a task is too long, a warning/error sequence is launched. 

From DIGI boards to STIM and STT boards, the programming time is 5 µs (fixed de-

lay). Analog signals are transferred from the STIM boards to the cultures, with propagation 

delays that are negligible when compared to digital ones. The total delay for the stimulation 

chain is therefore 16 µs on average (Fig. 3.11). 
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Figure 3.11 Propagation delays for the stimulation chain (as described Fig 3.03). The total mean de-
lay, from the command in the TCP/IP layer to the biological cells, is 16 µs. 

C. Closed-Loop 
“Real-time” in a Hynet system is a strict constraint: it implies that within the time 

step between 2 acquisitions, all the online processing on the available data has been executed 

(and has generated a consequent stimulation). The “closed-loop period” is the time taken by 

the system between the acquisition and the related feedback stimulation. This period should 

not bypass the maximum sampling period. 

The propagation times across the modules of Hynet are summarized in Fig. 3.12. The 

software environment is Windows XPTM running on a Bi-Xeon, 4 GB RAM, 3 GHz PC. 

Measurements were made individually for each block. 

A 10 kHz sampling frequency corresponds to a 100 µs period available for the loop. 

By summing the digital modules’ delays (as the analog ones are negligible), we obtain a 

closed-loop period of 46 µs. In this case, we have the simplest acquisition chain (25 µs), a 

closing loop sequence (5 µs), and the simplest stimulation chain (16 µs). More than 50 µs are 

then available for the software at each time step, to close the loop. 

 
Figure 3.12. Data propagation delays of the complete Hynet closed-loop. The minimum closed-loop 
processing period is 46 µs. For our specification (10 kHz sampling frequency), more than 50 µs are 
then available for the software during each period to close the loop. 
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Into this time interval of 50 µs, the ReTA can process a complex experiment as de-

scribed in section II.B (Closing the loop with the software). The processing time for the clos-

ing loop depends on the complexity of the task. For example, we have applied on all 60 chan-

nels a condition composed of two terms. The first one is a spike firing rate between 2 and 10 

in a time interval of 20 ms; the second term is a resting time (no spikes) during the following 

20 ms. If the condition is fulfilled by any of the 60 channels, the system triggers a stimulus in 

all of the 30 stimulation channels. The average computation time for this test is 26 µs. 

IV. Discussion 
This Hynet system conveys fewer channels than current commercially available sys-

tems from Multichannel Systems or BioLogic Science instruments (MEA System User Man-

ual ref.06, BioMEA ref.09). Its great advantage is the real-time closed-loop. This feature is 

until now only present in research laboratories, with an equivalent number of acquisition, and 

similar (double) stimulation channels (Potter06, Novelino07). 

To increase the number of acquisition channels, we integrated the preamplifier func-

tion, which is one of the factors that limit large-scale acquisition. The next chapter presents 

this integration. 



 

 

 
 

CHAPTER 4 
PREAMPLIFIER 

 
 
 
 
 
 
 

“Perplexity is the beginning of knowledge.” 

 
 

Kahlil Gibran (1883 - 1931), Lebanese-American poet, phi-
losopher, and artist. 
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The previous chapter describes our closed-loop system working in real-time with a 

user-friendly interface. This system uses commercially available items, the MEA (MultiElec-

trode Array) and the preamplifier, both from MCS (Multichannel systems). 

The use of commercial components speeds up the design process of the system. Until 

2005, commercially available amplifiers and MEAs were limited to 60 channels, and our sys-

tem had the strong advantage of processing these 60 channels in a real-time closed-loop. 

The IMT Institute, in Neuchâtel (Switzerland), has the expertise in designing high-

density large-scale MEAs (Imfeld08b). I was supervised by IMT during the second third of 

my PhD project, and was able to design a new preamplifier compatible with more-than-four-

thousand-electrode MEAs. In this chapter, I describe this design and show how we can use it 

to upgrade our Hynet system, enhancing therefore the electrodes’ spatial resolution 

(Fig. 4.01).  

 
 

A B 
Figure 4.01. Location of the preamplifier. A. The closed-loop architecture from the previous chapter, 
with its Bioware, Hardware, and Software parts (Figs. 2.07 and 3.01). B. Detail of the amplifier in-
put/output: inputs are microvolt signals from the extracellular electrodes; outputs are in the millivolt 
range. 

I fully designed and tested this preamplifier, as an upgrade to the system presented in 

(Imfeld08b) with improvements on different items: schematic, layout, technology, etc. 

I. Design 
This section discusses the design of a low noise preamplifier ASIC for a large-scale 

high-density MEA (MultiElectrode Array). We define: the input signals, the characteristics of 

MEAs and the APS (Active Pixel Sensor) approach, the Operational Amplifier (OPA) (high 

cutoff frequency and stability, low cutoff frequency and feedback circuit), and the power con-

sumption and layout. We will discuss noise issues related to each of the previous items. We 

end this section with the post-fabrication specifications of our device. 
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A. Input Signal 
The signal applied to the input of the amplifier is composed of: (a) EAP – extracellu-

lar action potentials; (b) LFP – local field potentials; (c) EEI – electrode electrolyte interface 

potentials; and (d) SA – stimuli artifacts. 

EAP appear mostly in the frequency range from 0.1 kHz to 10 kHz. LFP appear in 

the range from 1 Hz to 100 Hz. EAP and LFP come from the activity of the electrogenic cells 

(Harrison08) and carry the meaningful information in the signal. EEI create a near-to-DC po-

tential difference between the solid electrode and the electrolyte solution. This potential varies 

spatially, from electrode to electrode, and temporally (Robinson 68). For example, in a gold 

recording site in buffered saline solution, the offset voltage can be as high as ± 50 mV 

(Wise75). This is extremely large compared to EAP signals in the range of 100 µV or LFP 

signals in the range of 1 mV (Harrison07a). 

SA depend on the external application of stimulation signals. Commonly used stim-

uli are in the range of the 1 V, which represents the largest signal range processed by the am-

plifier. After a stimulus, the EEI take several milliseconds to evacuate the accumulated charge 

(Merrill05, Wagenaar04). 

EEI and SA appear in low frequency bands (<< 0.1 Hz) and its harmonics may hide 

the information (EAP and LFP). The amplifier must take this into account.  

In an MEA a reference electrode imposes the reference voltage, as illustrated in 

Fig. 4.02.A. This electrode has a large area and low resistance (Jochum09).  

B. MultiElectrode Arrays (MEAs) with Active Pixel Sensors (APSs) 
Between 1970 and 1980, the first Multielectrode arrays (MEAs) (Thomas72, Pine80) 

were developed providing a new tool for investigating cellular networks. MEAs proved their 

usefulness in studies for: pharmacology (Sttet03, Chiappalone03, Guenther06), propagation in 

cardiac cells (Rohr04), population coding (Puchalla05), activity patterning (Jimbo99, 

Wagenaar06b, Chiappalone06), and plasticity and learning (Wagenaar06a, Stegenga09, 

Ide2010). 

An MEA is a bidimensional matrix of metallic electrodes engraved over a biocom-

patible substrate; on which cells are deposited or cultured over the MEA surface. A schematic 

representation is shown in Fig. 4.02.A (inspired from (Pine06)). Fig. 2B shows a picture of a 

commercial MEA device. 
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A B 

Figure 4.02. A Passive MEA. A. Schematic representation of the main elements. The glass ring keeps 
the medium and the cell culture on the passive electrodes. The medium contains nutrients to keep the 
culture alive. The signal measured by the external amplifier is an extracellular potential with an ex-
tremely low amplitude. A reference wire provides a reference potential for external use. B. Picture of 
an MEA60 from Ayanda™ Biosystems SA. It has 60 electrodes, each with an area of 40x40 µm2 and 
an inter-electrode distance of 200µm. 

Classical MEAs, such as the one in Fig. 4.02, are passive. They convey the signal 

from each electrode to an external amplifier. They include typically 30-160 electrodes with an 

inter-electrode spacing of 100-500 µm (Multichannel Systems, Panasonic, Ayanda). The sig-

nal amplitude is too low for direct multiplexing. Connectivity from the electrode to the ampli-

fier is therefore a main issue. 

The Active Pixel Sensor (APS) is an approach to reduce the distance between the 

measurement electrode (pixel) and the preamplifier (Fossum93). This technique originates 

from image sensing devices (Willemin01). When adapting this technique to MEAs (Berdond-

ini05, Imfeld08b), we obtain active electrodes (or pixels), as Fig. 4.03 shows. The APS solu-

tion moves the limiting factor for electrode density, from the connectivity to the amplifier’s 

size. In other words, reducing the amplifier area per channel increases the density of elec-

trodes. 

  
A B 

Figure 4.03. An MEA with the APS (Active Pixel Sensor) approach. A. MEA schematic: the signal is 
amplified as close as possible to the culture, and is delivered to the user with an optimal signal to noise 
ratio. The integrated circuit is reported or engraved on the MEA’s substrate and the bounding must be 
protected from the medium. B. Active pixel schematic: this element is specific to each electrode. The 
preamplifier is as close as possible to the culture, as well as its analog outputs and digital control in-
puts.  
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C. Operational Amplifier (OPA), High cutoff frequency and stability 
The low amplitude of cellular signals is resolved by the implementation of an ampli-

fier with a large gain. For this propose we design an Operational Amplifier (OPA) using a 

standard and low cost CMOS (Complementary Metal-Oxide-Semiconductor) process.  

(Bontorin07b) establishes a simple rule of thumb from the literature: the gain for a 

neural amplifier should be in the range of 1000 V/V for off-chip processing, and 100 V/V for 

on-chip processing (see Appendix I for the complete publication). This work also presents a 

first simulation study of circuit elements that strongly inspired the design of the current OPA.  

The OPA gain is defined by its components’ arrangements and sizing. Some well-

known solutions are incompatible with a high density MEA, including: (a) the use of external 

components (Obeid03); (b) the ratio of integrated passive components (resistances (Patter-

son04, Mohseni04, Haidong04) or capacitors (Olsson02)); (c) the product of a transistor 

transconductance and a resistance (Dabrowski04, Lee06, Sacristan07); and (d) the ratio of 

transistor transconductances (Holleman07, Eversmann03, Gosselin03, Irazoqui03).  

A solution compatible with multichannel integration is to base the gain on the prod-

uct of a transistor’s transconductance and a transistor’s drain-source resistance. The transis-

tor’s polarization can be in the subthreshold (Uranga04, Harrison03a) or in the conducting 

region (Berdondini05, Parthasarathy06). We chose the second, due to the robustness for mis-

matching and for technological dispersion inherent to the CMOS fabrication process. 

This classical operational amplifier architecture, as shown in Fig. 4.04, is composed 

of two stages. The first stage is a differential pair and the second stage a common-source, both 

with active charges. This ensures a gain of over 100 V/V.  

We note that mismatch and dispersion effects are limited in over-threshold configu-

rations. However, the use layout techniques, such as common centroïd and dummy transistors 

for the sensitive differential pair, reduce the effects to acceptable values (Okada00). 

A Miller’s capacitor is placed between the outputs of both stages. It creates a domi-

nant pole with two functions: (a) to ensure a good phase margin and (b) to determine the high 

cutoff frequency. To ensure the stability of the closed-loop amplifier, we chose a minimal 

phase margin of 60 degrees for all the OPA configurations. For the low pass filter there is a 

compromise: a lower high cutoff frequency will reduce the noise and signal’s bandwidth. For 

simple threshold detection of neural spikes, a frequency band in the range of 0-3 kHz 
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(Henze00) is enough. But more complex detection or clustering functions require processing 

higher frequencies, e.g. (Nemadic05). We chose to set the high cut-off frequency to at least 

10 kHz. 

We chose not to insert a third stage, as classically implemented in an OPA, in order 

to reduce area and power consumption. This stage usually ensures a high slew rate and a good 

current gain, but introduces harmonic distortion. As our amplifier will be used with a high 

impedance load (multiplexer, activity detector), this third stage is unnecessary (Bontorin07b, 

Palmisano01). All stages in the OPA work in class A in order to provide a good linearity, par-

ticularly important for LFP processing (Jochum09).  

In the circuit, the OPA provides the gain and the high cutoff frequency. The feedback 

circuit provides the low cutoff frequency and input impedance. 

 
Figure 4.04: Schematic of the operational amplifier (OPA). We use a two-stages OPA, with a current 
source (Ibias) and a Miller’s capacitor (Cc). Differential inputs (+ and -) are amplified through the 
single-ended output (Out).  

D. Low cutoff frequency  
EEI and SA have amplitudes much larger than the information signals (EAP and 

LFP). They can saturate the amplifier or, at the very least, hide EAP and LFP. They must be 

filtered before or in the amplifying stage. Fortunately, EEI and SA have lower frequencies 

than LFP and EAP.  

A quick solution is to filter the signal using a high-pass filter. There are essentially 

two different ways to build a high pass filter: (a) blocking (Demosthenous05, Aziz05, 

Harrison03a, Olsson02) or (b) subtracting (Perelman05, Parthasarathy06, Jochum06, 

Gosselin07b) the low frequency. (a) requires large capacitors, that degrade the input imped-

ance and then the signal quality. The use of an active subtraction in (b) can reduce to some 
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extent the area of the total amplifier (Jochum06, Gosselin07b), but not enough for our specifi-

cations. 

A second solution is to design an amplifier with a low gain at low frequencies (Ira-

zoqui03, Berdondini05). The simplest example of this solution is actually our OPA. Without 

more circuitry, it presents already a low gain at low frequencies. However, high amplitude 

EEI or SA potentials can saturate the OPA, especially when its power supply voltage is set 

low to insure low power. 

A third solution, sometimes called stabilization, consists of scattering low frequency 

currents through a resistance (Chandran99, Dabrowski04, Mohseni04). This resistance must 

have a high value at EAP and LFP frequencies.  

A fourth solution is chopper modulation (Nielsen04, Denison07, Gosselin04). This 

consists of modulating the signal to higher frequencies, e.g. 200kHz. There are two advan-

tages in handling higher frequencies: (a) the CMOS’s 1/f noise is lower; (b) a filter needs 

smaller time constants. Once amplified, the signal is demodulated. The architecture is quite 

complex and synchronization can be an issue. The additional elements (modulator, demodula-

tor, …) increase the silicon area, thus decreasing the density. 

A fifth solution is to adapt some classical offset canceling techniques (Enz96). Some 

examples of this are: the correlated double sampling (CDS) (Aziz05, Wey90), auto-zeroing 

(AZ) (Chan07), and digitally controlled DC voltage (DCDV) (Perelman05, Mojarradi03). In 

classical offset canceling techniques, the output of the signal is sampled and a feedback re-

sponse cancels the offset. In CDS, the offset is sampled and reduced for each signal samples. 

In AZ, the offset is sampled in a calibration phase, stored in a capacitor, and subtracted in 

continuous mode. In DCDV the offset is computed from the already digitalized data. 

This latter solution is a very good compromise between high integration and low fre-

quency filtering. Therefore, we chose to adapt this latter solution in our feedback circuitry 

(Fig. 4.05).  
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Figure 4.05. The OPA and its feedback circuit. The OPA detailed in the previous figure is inserted into 
the feedback circuit. In the amplifying operation, S1 and S2 are open. The Output signal is the ampli-
fication of the electrode’s voltage. In the calibration phase, S2 is closed. Both of the OPA’s inputs are 
set to Vref (0.5 x Vdd), reducing OPA’s offset and EEI (electrolyte-electrode interface) effects. Cf 
stores the circuit’s operating point for the amplification mode. The switch S1 is closed in the event of 
a stimulus on a nearby pixel. 

The switch S1 is closed in the event of a stimulation in the neighborhood of the pixel. 

This grounds the input of the amplifier, which can help in two ways: (a) by providing a low 

impedance path for the SA, reducing the electrode’s discharging (or recovering) time (Pot-

ter06); (b) by reducing the interference of the stimulus in the acquisition chain. (Jimbo03) 

uses a more sophisticated process of sampling and holding the EEI before and after the stimu-

lus. This is useful for the stimulus efficiency but not for the recording (Grumet00). 

The switch S2 sets the state of the amplifier. In the calibration phase, it is closed. The 

closed-loop drives both OPA inputs to the same potential, Vref ± the amplifier’s offset. In the 

amplification phase, S2 is open. The feedback capacitor stores this polarization point from the 

calibration phase. 

The transistor M1 acts as a DC level shifter between the amplifier and the OPA in-

puts. It cancels the effect of the EEI potential, which is of the order of ±100 mV according to 

(Harrison08). The calibration phase is repeated (every 20 s) to resample the EEI potential and 

refresh the capacitor’s voltage. 

E. Noise considerations 
The most important characteristic of the preamplifier is its performance regarding 

noise. In this section we consider applying a low noise constraints to the design. In particular, 

we describe the influence of low noise constraints on the points already presented in sections 

A to D, as well as on some new points.  
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1) Input Signal: It has very low amplitude, e.g. EAP and LFP are in the range of 

hundreds of microvolts. It is therefore very sensitive to all noise sources. The EEI potential 

depends on the concentration of ions on the surface of the electrode, which may change over 

time. 

2) Between the EEI and the amplifier input there is a conductor material. This no-

null resistance generates noise. This path is also an antenna and induces interference with the 

environment. The APS approach reduces the effect of these noise sources by reducing the 

electrode-amplifier distance. 

3) Setting a high gain for the OPA is useful because: the noise influence of further 

stages is reduced (Friis formula) and, once the signal is high enough, it is more robust to noise 

coupling. Another way to reduce the global noise is to limit the signal bandwidth, without 

loosing EAP and LFP information. 

4) The transistor M1’s size has been chosen in order to obtain a good compromise 

between area, input impedance, and gain (see Fig. 4.05). Alternative methods are: (a) optical 

coupling (Bontorin07a); (b) using a fully differential circuit; (c) capacitor coupling (Harris-

son03). (a) We have no information on the use of optical coupling in an integrated amplifier 

for our application field. (b) A fully differential amplifier occupies the double area of a single 

ended amplifier. Therefore, (a) and (b) are area consuming and do not directly resolve the low 

cutoff frequency. (c) may solve the low cutoff frequency issue, but will also deteriorate the 

input impedance. High input impedance is helpful in two ways: (i) reducing the signal deterio-

ration by impedance division (Heer04, Berdondini05); and (ii) reducing the influence of fluc-

tuations in the EEI impedance and potential (Robinson68). 

Other design aspects that have a strong influence on noise performance are: power 

supply noise, power consumption and silicon area. 

5) The power supply is a noise source that interferes with signals over the entire cir-

cuit. The most sensitive point is the OPA, or, more precisely its second stage: the common 

source (Steyaert90). A special effort is require in layout design at this point, for reducing 

power supply noise’s influence (Ott88). The feedback and the first stage of the OPA are more 

robust. In the first stage, the supply noise affects simultaneously both branches of the differ-

ential pair, cancelling or reducing its effects. A similar phenomenon occurs between the sam-

pling capacitor and the current source in the feedback. 
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6) Noise performance may be improved at the cost of increasing power and silicon 

area. Higher biasing current and/or larger transistors reduce thermal and flicker noise. Some 

design techniques, e.g. reducing parasitic resistance or coupling, increase noise performances 

as well as the silicon area (Ott88, Jimmin94). 

Finally, we designed a preamplifier compatible with the APS architecture (see sche-

matic in Fig. 4.05), in a pixel with a maximum area of 40x40 µm2. This area is a good com-

promise between electronics performance and acquisition density. The amplifier’s gain is at 

least 100 V/V, with a high cutoff frequency of about 10 kHz. EEI potential rejection is at least 

± 100 mV. The power budget is 30 µA from a 1.8 V voltage source.  

II - Measurements 
A prototype Integrated Circuit (IC) was fabricated in UMC (United Microelectronics 

Corp, subcontracted foundry at IMT Neuchâtel) 0.18 µm CMOS technology, using Cadence 

CAD (Computer Aided Design) tools in full-custom mode. Fig. 4.06 shows A. the layout fab-

rication masks and B. a picture of the test board. The IC contains three different versions of 

the amplifier. We show in this section the detailed performances of the best one, alpha. The 

IC also includes mini-arrays designed for the study of coupling phenomena between the chan-

nels, in wet and dry measurements. They are the subject of further analysis, not presented in 

this thesis. 

Three experimental protocols were considered for the measurements: (a) dry meas-

urements, which characterize the amplifier, (b) dry measurements simulating wet measure-

ments (with a biologically realistic artificial input), and (c) wet measurements (with a real 

biological input) for the final validation. 

A. Dry measurements 
The main characteristic of an amplifier is its gain. Fig. 4.07 shows the gain and 

phase, with both switches (S1 and S2) open. They are representative of a low-pass filter, non-

inverting amplifier, with the cutoff frequency (- 3 dB and 45 degrees) at 10kHz. 
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A 

 
B 
 

Figure 4.06. The Integrated Circuits (IC) design. A. The layout for mask fabrication. The IC integrates 
3 preamplifier’s versions: alpha, beta, and gamma. Each of the three preamplifiers is arranged in four 
different configurations, according to the amplifier environment and its input. Regarding its environ-
ment, the amplifier can be: isolated (for detailed electrical analysis) or in arrays (for studying the 
channel’s coupling). For the input, the amplifier can have: an electrical pin (for dry measurements) or 
an electrode on the top layer of the circuit (for wet measurements). B. A picture of the Printed Circuit 
Board (PCB) specifically designed to test our IC. It presents analog and digital inputs and outputs to 
investigate all the IC’s functionalities and characteristics. 
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Figure 4.07. Characteristics of the alpha preamplifier: gain and phase. This non-inverting active low-
pass filter has a cutoff frequency of 10kHz; its gain is 50 dB in the bandwidth. 

The amplifier’s equivalent input noise is 10 µVrms, in the 1 Hz–10 kHz band. The 

power noise rejection is 40 dB at 1 kHz. This validates the low-noise feature of our amplifier. 

Its slew-rate is high, even without the third current amplifier of a classical OPA. The output 

load is a raw amplifier and an activity detector (ref detector), with a total equivalent load of 

50 pF. The input impedance is very large (over a teraohm at 1 kHz). This increases the ro-

bustness of the preamplifier against EEI noise and variations. Table 4.1 summarizes the elec-

trical characteristics of the best amplifier (alpha) among the 3 versions implemented. 

Table 4.1 Main electrical characteristics of the alpha amplifier. 

Characteristic Measurement 
Gain 300 V/V (49 dB) 

Equivalent Input Noise 10 µVrms (1 - 10kHz) 

DC rejection @ input ± 430 mV 

High Cutoff frequency 10 kHz 

Slew Rate 1 V/µs 

Total Harmonic Distortion < - 30dB (1 kHz, 300 µVrms) 

Power supply noise rejection > 40dB 

Input impedance > 1 TΩ (f < 100 kHz) 

Consumption 45 µW mean 

Surface 1300 µm2 
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Table 4.2 shows the main differences between the three versions of amplifier we im-

plemented. They have different feedback circuitry, on the current source and on the capacitor. 

We can observe changes in the gain, bandwidth, surface, and DC rejection. Other electrical 

characteristics are equivalent. 

The design of the Beta amplifier mainly reduces the gain of the feedback current 

source. This reduces DC input rejection, slightly increases the area and does not present any 

real advantage. The Gamma’s design mainly reduces the feedback capacitor and its total area. 

This widens the amplifiers’ bandwidth and, consequently, increases the equivalent input 

noise. This design illustrates the consequences of capacitor reduction on amplifier’s perform-

ance and justifies our choice of alpha as the most performant amplifier. 

Table 4.2 Comparison of Alpha, Beta and Gamma amplifiers characteristics. 

Amplifier Gain (V/V) High Cutoff  
Frequency (kHz) Surface (µm2) DC rejection 

(mV) 
Alpha 300 10 1300 430 

Beta 150 17 1400 340 

Gamma 250 30 1000 430 
 

Lastly, Table 4.3 compares the main performances of the three amplifiers to others in 

the literature. Some amplifiers present a better noise performance, but a larger silicon area. 

This reduces the acquisition density, which is not relevant for our application. Other amplifi-

ers have lower power consumption, which is crucial for implanted devices in medical applica-

tions. In our case, MEAs’ power budget is more generous. 
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Table 4.3 Comparison of characteristics for Alpha, Beta, Gamma and literature amplifiers. 

Reference Technology 
(µm) 

Gain 
(V/V) 

Bandwidth 
(Hz) 

Noise 
(µVrms) 

Power 
(µW) 

Area 
(µm2) 

Harrison 2003a 1.5 CMOS  100 0.025 - 7.2k 2.2 80 160 000 

Rieger 2003 0.8 BiCMOS 100 dc -15k 0.3 1300 300 000 

Ananth 2004 BiCMOS 100 10 - 10k 9.7 122 125 000 

Mohseni 2004 1.5 CMOS 100 50 - 9k 8 115 107 000 

Patterson 2004 1.5 CMOS 200 10 - 7.3k 9 52 160 000 

Heer 2005 0.6 CMOS 10 5 - 5k 6 160 18 000 

Olsson 2005 3 CMOS 100 100 - 9.9k 9 68 177 000 

Ananth 2006 0.5 CMOS 1200 10 - 7k 5.6 33 3 200 000 

Chua-Chin 2006 0.35 CMOS 7000 100 -7k 7 1500 151 000 

Gosselin 2006 0.18 CMOS 450 100 - 9.2k 5 8.4 64 000 

Blum2007 0.35 CMOS 50 30-3k 4.77 100 32 000 

Holleman 2007 0.5 BiCMOS 60 0.3 - 7.5k 3.6 0.8 46 000 

Ming 2007 1.5 CMOS 100 0.01- 4k 3.6 27.2 201 000 

Samsukha 2007 0.5 CMOS 80 25 - 15k 1 160 130 000 

Imfeld 2008b 0.35 CMOS 100 dc - 12k 11 83 1 600 

MooSung 2008 0.35 CMOS 50 dc - 11k 5.5 170 120 000 

Bottino 2009 0.35 CMOS 100 0.25 - 2.6k 5.7 4.5 130 000 

Gamma 2010 0.18 CMOS 250 dc - 30k 12 45 1 000 

Beta 2010 0.18 CMOS 150 dc - 17k 10 45 1 400 

Alpha 2010 0.18 CMOS 300 dc - 10k 10 45 1 300 

B. Dry measurements simulating wet measurements  
This section presents the performance of our amplifier with predefined (simulated) 

input signals. An MEA-SG (Signal Generator), from MultiChannel Systems™ (MCS), pro-

duces signals simulating neural activity (MEA-Signal Generator ref.08). The signal is firstly 

amplified by the MEA-1060 from MCS and then attenuated by a resistive divider on the elec-

tronic test-bench board, to simulate non-amplified neural signals applied to our amplifier (Fig. 

4.08). In this experiment, the module MEA-160 only connects our amplifier to the Signal 

Generator MEA-SG (or to the MEA200-30 in the case of the next section C. Wet measure-

ments). 
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Figure 4.08. Schematic of the experiment for dry simulating wet measurements. An MEA-SG (Signal 
Generator), from MultiChannel Systems™ (MCS), generated signals that simulate neural activity 
(MEA-Signal Generator ref.08). The signal is firstly amplified by the MEA-1060 from MCS and af-
terwards attenuated by a resistive divider on the electronic test-bench board, to simulate non-amplified 
neural signals being applied to our amplifier (MEA User System Manual ref.06). The “MCS signal” 
label indicates where the signal “MCS” (see examples in Fig. 4.09) is measured. The label “Our sig-
nal” indicates the point where the signal “Our Amplifier” (Fig. 4.09) is measured. 

Fig. 4.09.A shows examples of amplifier outputs, for input spikes in the EAP fre-

quency range. Fig. 4.09.B shows the amplifier output of a mainly-LFP range signal, the ERG 

(ElectroRetinoGraphy). In both figures we compare the amplification of a signal with the 

MCS acquisition chain and the amplification with our amplifier. 

  
A  B 

Figure 4.09. Comparison between the signals amplified with the MCS chain and our amplifier, as 
described in Fig. 4.08. Top plot: MCS amplifier output; Bottom plot: Our amplifier output. A. Artifi-
cial EAP. The reduction of the first spike amplitude in the bottom plot comes from the double filtering 
in high frequencies (10 kHz) by the processing chain. B. Artificial LFP. Plots are similar. In the 
graphs, the voltage axis is the output signal divided by the gain of each chain. Therefore, both signal 
are shown at a level equivalent to the input of amplifier.  

C. Wet measurements 
The last test of the amplifier is with a real biological signal. In pancreatic cells, 

changes in the spiking activity reveal a changing glucose concentration; the system acts as a 

glucose sensor. We use rat pancreatic ß-cells (INS-1E) from an insulinoma cell line cultivated 

on MEA (Merglen04). All experiments were conducted between passages 67 and 82. INS-1E 

cells were seeded at 200’000 to 300’000 cells/MEA with a complete medium containing 11 

mM of glucose and were maintained at 37°C and 95 % O2 in an incubator for 5-7 days. The 

medium was replaced 24 to 48 h before recordings by a medium containing 5.5 mM of glu-
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cose. Fig. 4.10 presents the schematic data flow for the wet measurements. The MEA-SG 

from the dry simulating wet measurement is replaced by the cell culture and the MEA200-30 

from MCS (electrodes diameter 30 µm; inter-electrode distance 200 µm). The recordings 

(Fig. 4.11) show the spontaneous activity (without external stimuli) of the cells in a hypergly-

cemic medium (15 mM). 

 
Figure 4.10. Schematic data flow for wet measurements. The cell culture is plated on a multielectrode 
array, MEA200-30 from MultiChannelsSystems (MCS). The signal is firstly amplified by the MEA-
1060 from MCS and afterwards attenuated by a resistive divider on the electronic board, to simulate 
non-amplified neural signals applied to our amplifier (MEA System User Manual ref.06). The label 
“Our signal” indicates the point where the signal “Our Amplifier” (Fig. 4.11) is measured. 

  
A B 

Figure 4.11. Recordings of pancreatic ß-cells activity in a hyperglycemic (15 mM) medium. In the 
graphs, the voltage axis is the output signal divided by the gain of each chain. Therefore, signals are 
shown at a level equivalent to the one at the amplifier’s input. All signals presents a high quality am-
plification, with an acceptable noise lovel. A. Zoom on a single spike. B. Another recording with a 
different time scale and a regular spiking activity. 

III. Discussion 
We designed an amplifier that will be integrated into an acquisition system based on 

an APS (active pixel sensor) MEA. Such a device is chosen to increase the density of acquisi-

tion channels. In this case, the limiting factor is traditionally the connectivity of passive MEA 

(conductors and signal degradation) is replaced by the amplifier performances (noise and sili-

con area). Comparing to the system described in (Imfeld08b), our new amplifier decreases the 

pitch of each electrode from 40 µm to 36 µm, increases the gain (from 100 to 300), and re-

duces the power consumption per pixel (almost by a factor of 2, as the power supply voltage 
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passes from 3.3 to 1.8 V). The noise performance is slightly better, but is difficult to charac-

terize, as the difference between the noise mean values is smaller than the measurement error.  

If we compare our amplifier to others in the literature (Table III), some of them pre-

sent a better noise performance, but with a larger silicon area. The great advantage of our am-

plifier is its high integration level, which increases the acquisition density. 

Still comparing with the literature, other amplifiers have much lower power con-

sumption, which is essential for long-term implanted devices. Large power consumption has 

three consequences for such devices: heat and damage on living tissue, larger batteries are 

required, and a lower implantation lifetime. In our case, MEAs are flexible. Firstly, in vitro 

cells require often an external heating (temperature regulation), which consumes more power 

than the amplifiers. Secondly, the power supply is usually external, which is more powerful 

than battery-based systems. Thirdly, long-term experiments in vitro last at most for months 

(Potter06 and Merglen04), and the cells’ death determines the end of the experiment. 

Compared to the passive MEA approach, the APS method provides a much higher 

density. For example, the MEA60 from Ayanda (Fig.4.02) (AyandaSystems ref.) has a pitch 

of 240 µm. Our amplifier has a pitch of 36 µm. This increases by almost 45 times the acquisi-

tion density (from 240x240 µm2 to 36x36 µm2). 

It is worth mentioning that the technique for eliminating the DC level can be extrapo-

lated to reduce also the LFP signals, providing to the user only EAP (spikes). This requires a 

careful study and modeling, which is currently ongoing in our group. 

Considering high frequencies, the use of the Miller capacitor for the high cutoff fre-

quency may also be extrapolated to reduce the EAP frequencies, keeping only the LFP com-

ponents. This method may increase the amplifier surface, deteriorate the power supply noise 

rejection, reduce slew-rate, and increase power consumption. However, by working on the 

schematic and on the layout, we can reduce these drawbacks. 

Finally, increasing the density and the scale of the system is useful in many applica-

tions, as already illustrated in the Introduction section. But this also increases the amount of 

data. In many applications, such as Hynets (previous chapter), brain-machine interfaces 

(Nicolelis09), or motor rehabilitation systems (Loeb01), the data must imperatively be proc-

essed in real-time, which becomes an issue with large data flows. A solution is to detect activ-

ity on-line and discard useless data from the raw signal, as presented in the next chapter. 



 

 

 
 

CHAPTER 5 
DETECTOR 

 
 
 
 
 
 
 

 “I consider that a man's brain originally is like a little 
empty attic, and you have to stock it with such furniture as 
you choose. A fool takes in all the lumber of every sort that 
he comes across, so that the knowledge, which might be use-
ful to him, gets crowded out, or at best is jumbled up with a 
lot of other things, so that he has a difficulty in laying his 
hands upon it.” 

 

Sherlock Holmes, fictional British detective,  

Conan Doyle (1859-1930) Scottish physician and writer. 

In “A Study in Scarlet”. 
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The Hynet presented in chapter 3 (Hynet) has spatial performances limited by the use 

of commercial MEAs (MultiElectrode Array). Combining the APS (Active Pixel Sensor) ap-

proach and our new preamplifier, presented in chapter 4 (Preamplifier), potentially increases 

the channel density for the acquisition of biological signals. However, it also increases the 

amount of data to be processed. In order to maintain real-time operation, the processing per-

formances of the system must progress at least proportionally.  

With this in mind, I present the implementation of an “Intelligent Pixel” (iP) in this 

chapter. Such a pixel includes 3 items: electrode, preamplifier, and spike detector. One iP (Fig 

5.01) replaces one acquisition channel as presented in the previous Hynet (system developed 

at the IMS laboratory). It will be used also in the system developed in IMT to perform real-

time spike detection while keeping its large-scale and high-density features. The iP is de-

signed in order to improve signal quality, acquisition density, and real-time data processing. 

 
Figure 5.01. The Intelligent Pixel (iP) schematic. It integrates an Electrode, a Preamplifier, and an 
Activity Detector for each acquisition channel. Electronics parts are integrated under the electrode, as 
close as possible to the culture, in an Active Pixel Sensor (APS) approach. The preamplifier amplifies 
the analog biological signal. The active pixel provides the amplified biological output to the user and 
to the detector. The iP includes the active pixel and the activity detector. The activity detector gener-
ates a digital output that indicates the detected information timing. Digital signals control the Intelli-
gent Pixel.  

I. Design 
The important specifications for our spike detector are: robustness under the varia-

tions in the biological signal, an area and power consumption that are compatible with high-

density and large-scale implementation, and, as mentioned earlier, real-time data processing 

for a closed-loop integration. Section A provides information about the variability of the sig-

nal. Section B comments on the existing detection methods and their performances. Finally, 

section C shows the schematic of our detection circuit.  
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A. Signal 
In the previous chapter, we presented some characteristics of biological signals. In 

this section, we detail some points that are more specific to spike detection. 

Electrogenic cells have different spike waveforms. Differences can be found even in 

the same cell species. For example, a neuron can present different activity patterns, or even 

different spiking waveforms, depending on spatial location, or the afferent and efferent cells. 

Patterns also change over time (Fee96).  

The EEI (Electrolyte-Electrode Interface) presents spontaneous current and voltage 

fluctuations. They originate from energy dissipation on conductors and electrochemical inter-

actions. This noise is associated with white, 1/f and 1/f2 noise for, respectively, thermal noise 

in conductors, mass transfer process dominated by diffusion, and mass transfer dominated by 

electrical fields (Hassibi04). 

Variations and noise complicate the development of an activity detector based on 

pattern, filtering or frequency-time components. 

On the other hand, most of the signal variability for spike sorting is located near to its 

peaks, either positive or negative, in a time segment of about 0.5 ms. Longer acquisitions of 

one single spike increase slightly the spike sorting performance. For example, a 1.3 ms seg-

ment increases the mutual entropy of the recording by one bit (out of ten) if compared with 

the 0.5 ms (Fee96). These are the main characteristics that guided us to choose the processing 

methodology for our spike detector. 

B. Detection method 
We can sort all the existing methods for spike detection (reviewed e.g. in (Le-

wicki94) or (Bashashati07)) by looking at their constitutive blocks. The first one is the pre-

processing block, which either accentuates the activity or attenuates the noise. The second one 

is the decision block, which decides the “information moment” by comparison with a thresh-

old or by clustering. The third one is the adaptation block (also called calibration or learning). 

It takes into account the variations of the biological signal and adapts the processing parame-

ters of the two previous blocks for an optimal performance (Fig. 5.02). We will see that the 

second block is the most sensitive in the detection process. Table I reviews the characteristics 

of state-of-the-art detection circuits. 
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Figure 5.02. The activity detection circuit and its constituting blocks. The Biological Signal is applied 
to the Preprocessing block, which either accentuates the activity or attenuates the noise; the Decision 
block decides the “information moment”; the Adaptation block adapts the parameters of the two pre-
vious blocks for an optimal performance and outputs the Activity Detected. 

 

Table 5.1. Activity detectors from the literature. 

Blocks Costs (/ch) 
Reference 

Preprocessing Decision Adaptation 
Signal Size  

(mm2) 
Power 
(µW) 

Rogers 2005 Wavelet Th. None Analog 0.056 1 

Wavelet a Th. None Digital 0.117 0.71 
Oweiss 2007 

Wavelet b Th. None Digital 0.040 0.87 

Imfeld 2008a Wavelet Th. Coeff Digital N/A N/A 

Zviagintsev 20006 PC Cl. Vector Digital N/A N/A 

Haas 2007 TM Th. None Analog N/A N/A 

Gosselin 2009 NEO Th. None Analog 0.07 0.78 

Moo Sung 2009 NEO Th. None Digital N/A 1000 c 

Olsson 2005 None Th. None Digital 0.078 75 

Sodagar 2007 None Th. None Digital N/A 197 

Horiuchi 2004 None Th. None Analog 0.091 0.8 

Harrison 2003a None Th. SD Analog 0.094 57 d 

This None Th. SD Analog 0.0035 e 100 
 
We identify in each reference the preprocessing, decision, and adaptation methods, the signal repre-
sentation, and costs per channel (/ch). Preprocessing methods include: wavelet, PC (Principal Compo-
nents), TM (Template Matching), NEO (Nonlinear Energy Operator), or no preprocessing. The deci-
sion is necessary and is normally by threshold (Th), but PC uses clustering (Cl) to divide the multidi-
mensional space. The adaptation block is not mandatory. In the case of Wavelets, the filter coefficients 
can be updated. In the case of PC, the vectors may be computed to optimize clustering. The threshold 
can be adapted with an online estimation of the Standard Deviation (SD) of noise in the signal. In each 
of the detectors, the signal can be represented in analog or digital mode. Caption: a pipeline imple-
mentation; b sequential implementation; c consumption without the spike sorting; d consumption 
without the peak detector; e area without the capacitor, as its value is set according to the experiment. 
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In the literature, we find the following preprocessing techniques: wavelet transform, 

principal components analysis, template matching, energy-based transform, and no preproc-

essing other than the analog pre-amplification. 

Wavelet transform (WT) is based on the convolution of the signal with a family of 

curves. This family is derived from the scaling and the translation operations applied to a pre-

defined waveform, the mother wavelet. The performance of this preprocessing relies on the 

choice of the “mother wavelet”. Currently, no wavelet seems to be adapted to all biological 

signals (Wenshan09). Principal Components Analysis (PCA) is based on the decomposition 

of the signal in an ordered set of orthogonal basis vectors. These vectors must be chosen to 

reveal the largest variation on the spike waveform (Zumsteg05, Donoho94). Template 

matching (TM) is based on the measurement of dissimilarity with waveforms used as refer-

ences. However, the dissimilarity measurement is still a controversial method for detection 

(Thakur07). 

These three methods demand highly complex computing for the convolution, for the 

clustering phase or for the dissimilarity measurement. They are efficient only if the spike 

waveform is known a priori and is mostly constant, which is rarely the case (Fee96, 

Wood04). They are very well adapted to offline software preprocessing, where real-time per-

formances are not relevant by definition. They can barely be adapted for real-time applica-

tions while maintaining high-density performances on a complete system, taking also into 

account the fact that each pixel must have its own preprocessing block. 

Energy-based systems estimate the instantaneous signal square. The most com-

monly used algorithm is the Non-Linear Operator (NEO), first presented by (Kaiser90), which 

is less complex than previously presented algorithms (Gosselin09). Nevertheless, (Obeid04) 

compares its performances to other methods, and concludes that a simple absolute operation 

on the signal before the detection is as efficient as Energy-based preprocessing. 

Finally, we consider no preprocessing. This simple technique is used for example in 

(Harrison03a, Olsson02). It is obviously the option with the least processing complexity and 

can be highly integrated. We chose this method for our spike detection. A double thresholding 

(positive and negative) can substitute the absolute operation used on other preprocessing tech-

niques, and achieve performances comparable to NEO (Obeid04). 

The second block is the decision. It is the core of the detector, as it discriminates the 

activity. For multiple signals (multidimensional) preprocessing, e.g. PCA, the most adapted 
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method is clustering, as it defines regions into the mathematical space where there is activity. 

In the case of one-dimensional signals, the threshold technique is normally sufficient, the “ac-

tivity” being found when the signal exceeds a threshold value. In this case, the most critical 

point for the detector performance is the choice of the threshold values. For a raw (not pre-

processed) spiking signal, the optimal threshold value seems to be between 3 and 5 times the 

standard deviation of the signal (N*SD). Into this range [3:5], high values for N reduce the 

false positive error (detection of non-existing spikes) and low values reduce the false negative 

one (non-detection of existing spikes) (Garenne10). Depending on the application, the user 

defines the relative tolerance to theses errors and set precisely N. 

A dynamic threshold is optimal for taking into account noise and signal variations 

over time (along the experiment) and over the space (from one channel to an other). This is 

the role of the third block, the adaptation one. PCA detectors must use this block to define 

the vector basis and optimal clustering. We use this block to compute in real-time an estima-

tion of the standard deviation of the signal and dynamically update the detection threshold. 

Finally, the signal can be processed, digitally or analogically. Both solutions are pre-

sent in the literature (Table 5.01). The digital implementation has the advantage of a shorter 

development time. However, it requires the conversion of an Analog to Digital Converter 

(ADC). In this case: (a) the resolution is fixed by the number of bits; (b) the commutation 

time of logic gates limits the time resolution, and, of course, (c) these two characteristics are 

strongly linked to the area and power consumption factors (Walden99). 

The analog processing does not require such a conversion. The data processing is 

naturally both continuous and in real-time, as the microelectronic component’s kinetics are 

speeder than the signal’s kinetics. The signal is also conveyed in one single wire and the reso-

lution is limited by the signal to noise (S/N) ratio. A careful design of analog ICs allow us for 

obtaining high resolution in both: time and value, even when the silicon area is very limited.  

To summarize, considering again Fig. 5.02, we made the following choices for our 

detector: no preprocessing (first block). The detection of the second block is based on thresh-

olding of the raw signal from the preamplifier. The third block estimates the standard devia-

tion (SD) of the raw signal and computes the adapted threshold level N*SD. All data process-

ing is analog, configurable using either digital or analogical parameters. Thanks to the adapta-

tion block, the system is able to deal with the signal variation. These choices privilege the 
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integration scale and the processing speed, i.e., the spatiotemporal performances of the Intel-

ligent Pixel.  

C. The Circuit 
From the specifications presented in the last section, we obtain the detector sche-

matic as presented Fig. 5.03. The thresholding element executes the detection, and is specific 

for each channel. The raw signal from the amplifier is compared with the adapted threshold 

from the adaptation element, which is more complex and therefore more area consuming than 

the detector. In order to increase the acquisition density, this circuit can be deported from the 

pixel. To reduce even more the consumption and total silicon area, it can be shared among 

neighboring pixels. However this last solution has the consequence that the threshold adapta-

tion will no large be related to a single pixel, but to a group of pixels. 

Simple voltage comparators compose the thresholding circuit, as shown in Fig. 5.04. 

The output is a digital signal stating the presence or absence of activity; one bit is reserved for 

the positive threshold exceeding and one bit for the negative one. 

The adaptation circuit estimates the standard deviation (SD) of the signal noise. Ex-

perimental tests in (Fee96) confirm that the biological noise is white, which means that the 

probability of the signal being higher than its standard deviation is 16 %. In a recording that is 

considerably long compared to the desired event, this probability can be extrapolated as the 

percentage of time that the signal is higher than its standard deviation. This principle is also 

used by (Harrison03a). Using this mathematical approach, the signal is higher than its – SD 

84 % of the time (Fig. 5.05.A).  

 
Figure 5.03. The activity detector. The analog biological signal is thresholded by the decision block. 
The result is a one-bit digital signal detecting the presence or absence of activity. The threshold is 
computed based on the estimated Standard Deviation (SD) of the biological signal multiplied by N. N 
is a digital input set by the user. The adaptation block uses also an analog voltage (Duty) as an input to 
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compute SD. The decision part is specific to each pixel but the adaptation may be deported and/or 
shared, respectively, to increase the acquisition density and/or to reduce area and power consumption. 

 
Figure 5.04. The decision circuit. The biological signal is compared to two different thresholds. One 
comparator identifies the signals above the Positive Threshold and gives an output as Up Detection. 
The comparator identifies the signals below the Negative Threshold and gives an output as Down De-
tection. Together, these two comparators perform the mathematical absolute operator.  

Fig. 5.05.B shows the block diagram of the SD computing component. The first 

comparator creates a digital image of the periods when the input signal is higher than + SD 

(or – SD for the negative threshold). The duty cycle is then computed and compared with the 

requested level, 16 % for + SD and 84 % for – SD. The output of the block is N*SD that will 

be used as a positive or a negative threshold by the decision module. 

Fig. 5.05.C details the schematic of the electronics circuit of Fig. 5.05.B. The same 

non-latched electronics comparator of the decision block makes the first comparison between 

the raw signal and the estimated sigma. A low pass filter computes the duty cycle and a dif-

ferential pair compares the actual duty cycle with the target voltage value. 

The detector’s inputs are: the analog raw signal from the preamplifier Vin, two ana-

log references Vduty and Vref, and the digital code for N, in order to set the threshold to 

N*SD. Vduty comes along with +SD or -SD. Vduty is 0.84 x Vdd or 0.16 x Vdd for, respec-

tively, + SD or – SD. Vref is set to 0.5 x Vdd. In our test chip, these parameters are applied on 

input pins. N is an integer encoded on two bits and defines the thresholding factor, in the 

range [1:5]. The N value is used to multiplex the corresponding N*SD tension value from the 

resistive bridge to the threshold output.  

The detector also includes switches to stop the adaptation in the case where the input 

signal is interrupted, e.g. in a calibration phase of the preamplifier. In such a case, S1 is closed 

and S2 is open. In normal use, S1 is open and S2 is closed.  
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A 

 
B 

 
C 

Figure 5.05 The adaptation block. A. The mathematical illustration of the Standard Deviation (SD) 
estimation. The probability for a white noise to be over its positive SD is 16 %, and 84 % for its nega-
tive SD. B. The Block diagram. The SD is dynamically estimated in a closed-loop. The Biological 
Signal is compared to the estimated SD. The duty cycle of the resulting signal is computed and the SD 
is updated according to the deviation from the target: the positive SD has a target of 0.16 for the duty 
cycle, while the negative SD has a target of 0.84. C. Schematic of the adapted positive threshold 
(N*SD) circuit. A simple comparator compares the biological signal and the estimated SD. A passive 
low pass filter (C and Rc) computes the duty cycle. A differential pair compares the duty cycle to the 
target (Vduty). The differential pair’s load provides multiple threshold values. Finally, controlled by 
the digital value N, a multiplexer defines N*SD. S1 and S2 switches can stop the adaptation if the 
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input signal is unavailable. In such a case, S1 is closed and S2 is open. In normal use, S1 is open and 
S2 is closed.  

The last parameter depends on the targeted application. EAP and LFP are different in 

their frequency spectrum and thus require a different time constant (TC) for the low pass fil-

ter. For EAP detection, TC must be in the range of some milliseconds. LFP requires some 

hundreds (or even thousands) of milliseconds. Our architecture is compatible, in theory, with 

both, by changing the filtering cutoff frequency (Rc and C). 

In the literature, (Harrison03a) presents a close detector’s architecture, as it uses also 

an estimated SD to adapt the threshold. However, our system has two major advantages. The 

first is the use of a double thresholding in the decision block, which improves the detection 

and further sorting of spikes (see figure 5.11.B below). The second is the tunability of the 

adaptation block, with the possibility of choosing the factor N (see Fig. 5.11.B below) and the 

time constant of the low pass filter (see Fig. 5.09.B).  

II. Measurements 
A prototype Integrated Circuit (IC) was fabricated in UMC (United Microelectronics 

Corp, subcontracted foundry at IMT Neuchâtel) 0.18 µm CMOS technology, using Cadence 

CAD (Computer Aided Design) tools in full-custom mode. Figure 5.06 shows A. the layout 

fabrication masks and B. a picture of the test board. The IC includes three versions of the 

detector associated with three versions of the preamplifier, resulting in 9 different versions of 

the “intelligent” pixel. The three amplifiers are as described in the previous chapter (4.  Pre-

amplifier): alpha, beta and gamma. The three detectors differ on the adaptation circuit. Posi-

tive and Negative compute the positive and negative thresholds, respectively. Kappa has the 

same architecture as Positive, except for the resistances on the resistor bridge, which are 

smaller; as is the surface of the whole detector. At the end, Kappa has a larger power con-

sumption (almost 10 times higher) for a limited reduction in area (15 %). This solution was 

discarded. 
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A 

 
B 

Figure 5.06. The IC design. A. The layout drawing. The IC presents three different detectors: positive, 
negative, and kappa. They are all complete, each one with its own decision and adaptation blocks. The 
positive and the negative detectors are identical except for the multiplier sign. The Kappa detector has 
the same architecture as the positive one, but a different multiplier. Each version of the detector is 
associated with three versions of the preamplifier (alpha, beta, and gamma). Lastly, the IC presents 
five different configurations. Three of them have dry inputs, i.e. electrical pins. They are: a preampli-
fier alone, a detector alone, and an Intelligent Pixel (preamplifier + detector) with adaptation. The 
other two have wet inputs, i.e., a top electrode in contact with the culture. They are: a preamplifier 
alone and an Intelligent Pixel with the adaptation. B. The electrical test bench. This presents analog 
and digital inputs and outputs to access all the IC’s functionalities.  
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Three experimental protocols were considered for the measurements: (a) dry meas-

urements, which characterize the detector circuitry, (b) dry measurements simulating wet 

measurement (with biologically-realistic computed inputs), and (c) wet measurements (with 

biological signal inputs) for the final validation. 

In the prototype version of the detector, the low pass filter capacitor is not integrated, 

to allow us adapt the cut-off frequency to the input signal. Further studies will define the op-

timum cutoff frequency and the corresponding capacitor for each activity (spike, burst, or 

LFP) of each cell (neuron, beta-cell, or etc.). 

Table 5.2 Characteristics of the detector. 

Characteristic Measurement 
Comparator 

Input offset < 450 µV 

Frequency > 2 MHz 

Delay < 0.2 µs 

Area 150 µm2 

Power 27 µW 

Decision 

Area 300 µm2 

Power 54 µW 

Adaptation 

Area 3200 µm2 a 

Power 45 µW 

Intelligent Pixel 

Area 1600 µm2 

Power 100 µW 

Intelligent Pixel + Adaptation 

Area 4800 µm2 a 

Power 145 µW 
 

a area without the capacitor. Its value is set according to the experiment. 
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A. Dry measurements 
Table 5.2 shows the results of the dry measurement of the detector’s performances. 

We separated the results for the 3 parts: comparator, decision, and adaptation; and for 2 con-

figurations of the Intelligent Pixel: with or without integrated adaptation.  

As described previously, the decision sub-circuit is composed of two comparators. 

The adaptation sub-circuit has one comparator, a multiplier, and a low pass filter. Compara-

tors are therefore key elements for the circuit and we measured their characteristics such as 

the input offset, the input impedance, the output slew rate, and the maximal commutation fre-

quency. 

In order to test the adaptation module, we use as an input a sine wave (1 kHz) with a 

3-Hz amplitude modulation. This modulation is reflected by the dynamic change of + 5*SD 

(Fig. 5.07). 

 
Figure 5.07. Test of the adaptation. The input signal is a sine wave with an amplitude modulation. 
This is an easy way to simulate evolution of the noise in the signal. The N*SD threshold (here N=5) 
adapts to the “noisy” signal. The adaptation must be slow to prevent false adaptations in the case of 
many consecutives spikes. 

B. Dry simulating wet measurements  
This section presents the performance of our amplifier with predefined (simulated) 

input signals. We use an MEA-SG (Signal Generator), from MultiChannel Systems (MCS), to 

generate signals that simulatie neural spikes (MEA-Signal Generator ref.08). The signal is 

pre-amplified by the MEA-1060 from MCS and then attenuated by a resistive divider on the 

electronic test-bench board, to simulate non-amplified neural signals applied to our amplifier 
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(previous chapter). The amplified signal is then applied to the detector (Fig. 5.08). In this ex-

periment, the module MEA-160 only connects our amplifier to the Signal Generator MEA-SG 

(or to the MEA200-30 in the case of the next section C. Wet measurements). 

 
Figure 5.08. Schematic of the experiment for dry simulating wet measurements. MEA-SG (Signal 
Generator), from MultiChannel Systems™ (MCS), generates signals that simulate neural activity (ref 
MEA-Siganal Generator ref.08). The signal is firstly amplified by the MEA-1060 from MCS (MEA 
System User Manual ref.06) and secondly attenuated by a resistive divider on the electronic board, to 
simulate non-amplified neural signals applied to our amplifier. The preamplifier’s output is presented 
as the biological signal (label Input Signal) to the detector. The detector’s output is a 1-bit signal indi-
cates the presence of activity. The threshold is also an output of the detector. 

Fig. 5.09 shows the measurement of artificial spikes (EAP frequency range) ampli-

fied and detected. Fig. 5.09.A presents a down detection (– SD) of three spikes in a noisy sig-

nal. The threshold remains almost unchanged, as expected. Fig. 5.09.B presents an easy to 

detect signal with a high signal to noise ratio. The threshold presents small changes, detecting 

the beginning of a LFP signal. This adaptation would be interesting if the spikes were super-

imposed on the LFP signal. As the LFP signal is short, the threshold returns to the previous 

value, as expected. 

 
 

A B 
Figure 5.09. Test of the detector with dry simulating wet signals. In the graphs, the voltage axis is the 
output signal divided by the gain of each chain. Therefore, signals are shown at a level equivalent to 
the output of MEA-SG. We plotted the input (Artificial Signal), the dynamic threshold (Threshold) 
and the detector’s output. A. A noisy signal. The down detector detects three spikes. In the presence of 
a constant energy noise, the threshold has an almost constant value. B. A low noise signal, with easy 
decision. The threshold is dynamically modified following the LFP length. 
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C. Wet measurements 
The last test of the amplifier is with a real biological signal. We use rat pancreatic ß-

cells (INS-1E) from an insulinoma cell line cultivated on the MEA (Merglen04). All experi-

ments were conducted between passages 67 and 82. INS-1E cells were seeded at 200’000 to 

300’000 cells/MEA with a complete medium containing 11 mM of glucose and were main-

tained at 37°C and 95 % O2 in an incubator for 5-7 days. The medium was replaced 24 to 48 

h before recordings by a medium containing 5.5 mM of glucose. Fig. 5.10 presents the sche-

matic data flow for the measurements. The MEA-SG from the dry simulating wet measure-

ment is substituted by the cell culture and the MEA200-30 from MCS (diameter 30µm; inte-

relectrode distance is 200µm). The recordings (Fig.11) show the spontaneous activity (with-

out external stimuli) of the cells in a hyperglycemic medium (15 mM). 

Table 5.3 summarizes the detector’s configuration for the measurements presented in 

the previous sections (Fig. 5.07, 5.09, and 5.11): positive or negative detection (SD, – SD), 

the factor N, and the time constant of the low pass filter in the adaptation block. 

 
Figure 5.10. Schematic of the experiment for wet measurements. The experiment set-up is identical to 
Fig. 5.08 except that the inputs that are real biological signals. 

  
A B 

Figure 5.11. Recordings of pancreatic ß-cell activity in a hyperglycemic (15 mM) medium. In the 
above graphs, the voltage axis is the output signal divided by the gain of each chain. Therefore, both 
signals are shown at a level equivalent to the one at the amplifier’s input. A. A Zoom on the detection 
of a single spike. As the peak of the spike is above the threshold, the up output of the detector is acti-
vated. The noise energy of the signal is constant, and so is the threshold. B. Another recording with a 
larger recording window. The signal looks noisier, but this is due to the time window. The threshold is 
almost constant, as is the noise energy. In this case, if N were to be set to 5, the last spike would not be 
detected. The choice of N = 4 is well adapted for such a signal.  
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Table 5.3 Detector’s settings for each series of measurements. 

Figure Detection Factor N Time Constant (ms) 

7 Positive 5 1 

9A Negative 4 0.5 

9B Negative 3 0.3 

11A Positive 4 0.5 

11B Positive 3 0.5 
 

For Fig. 5.07, the detector’s low pass filter’s Time Constant (TC) was chosen to have 

a higher value than in other measurements. This value is still the lowest value that allows the 

computation of the variations in such an input signal. Indeed, this figure shows the worst-case 

scenario for the adaptor. N is chosen to be high purely to show the variations. In Fig. 5.09, N 

has an arbitrary value. In Fig. 5.09.B, the TC is intentionally lower than in the other cases to 

present a visible threshold variation. Of course, if this behavior were unpleasant, the chosen 

TC would be as high as others. Fig. 5.11 A presents arbitrary values. Fig. 5.11.B presents a 

low N and an up detection. It highlights two advantages. First, thanks to the tunability of N, 

the lower spike can be detected. Second, as the up threshold detects only half of the activity, 

this experiment illustrates the importance of the double detection, as the single up detection 

detects only half of the activity.  

III. Discussion 
The measurements we presented validate the functionality of the spike detector. It is 

easier to go deeper into its performances, if we consider separately: (a) the decision module, 

(b) the adaptation module, and (c) the detector usage.  

A. The decision module 
The comparator remains the critical element of the decision module. The lack of 

latches avoids any clocking and associated noise, which could compromise the quality of the 

whole pixel, as well as disturb the analog signal directly on the amplifier’s output. The great 

disadvantage of a non-latched comparator is its reduced working frequency, which is not an 

issue in our application. 
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The input offset is the most sensitive characteristic for the comparator: any mismatch 

between the two inputs of the comparator can result in a wrong decision and induce detection 

errors. Even if a careful design can reduce the offset (Enz96), this problem concerns both ana-

log and digital implementations. Actually, in digital devices, the offset problem does not oc-

curs directly in the detector, but it is indirectly presented in the previous step, the analog to 

digital converter. 

To really quantify this error, we need to analyze its equivalent input value. Our com-

parator has an input offset lower than 0.5 mVpp. As the signal presented at its input is ampli-

fied with a 300 gain (alpha preamplifier, from previous chapter), it results in a maximum 

equivalent input offset error of around 1 µV. Such an error is admissible, since it is much 

lower than the preamplifier’s one. 

B. Adaptation module  
Regarding the adaptation module, one key point is the low pass filter. This module 

allows the user to define a time constant by choosing a capacitor. The particular case of a sig-

nal presenting both LFP and EAP is particularly interesting. Two points of view can be con-

sidered: first, the LFP signal (lower frequencies) can be considered as “noise” that disturbs the 

spike detection. In this case, the LFP can be subtracted from the global signal. In our system 

this is done by two elements. The first element is the preamplifier (previous chapter), which is 

able to filter the LFP low frequencies. The second is the adaptation block, which can adapt the 

threshold by following the LFP frequencies. The Figure 9B is a short example. 

The second point of view concerns applications in which the LFP signal must be de-

tected. Even if the detection principle remains the same for the LFP, such a signal is com-

posed of lower frequencies and the meaningful signal is longer in time. Therefore, the band-

width reduction is not as significant as it is in the case of spike detection. Our detector is not 

previewed for LFP. Such a detection as the data compression is insufficient and a low cutoff 

frequency would require more consumption in power and surface, which is not coherent with 

our initial specifications. 

C. The Detector 
We intend our detector to be as close as possible to the electrode and to be able to de-

termine the timing of useful information. The spike detection enables the transmission of only 
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active data, discarding the inter-spike signal early in the processing chain. To illustrate quanti-

tatively this, we propose two examples.  

A neural signal has a maximum spiking rate of 100 Hz and its spike waveform cov-

ers around 2 ms per spike (Moxon00, Zviagintsev06). Considering these numbers, the data is 

useless for over 80 % of the time. For a high precision spike sorting, the use of this detector 

can reduce the amount of transmission by a factor of 5, simply by discarding useless data. In a 

more radical approach, (Fee96) found out that only about 0.5 ms would be necessary for spike 

sorting. If we consider this approximation, the useful information can be found 5 % of the 

time and our detector would reduce the signal bandwidth by a factor of 20. 

We can also consider applications where only spike stamping is important, such as in 

AER (Address-Event Representation) neuromorphic devices (Indiveri06). In this particular 

case, the real-time transmitted event can be coded using only one bit.  

We conclude that, even in extreme configurations, our detector can optimize systems 

with a large number of parallel channels in order to guarantee real-time performance. 

More than the time performance, the tunable performance of our detector allows 

multiple experiments. The N parameter, which multiplies the standard deviation (SD) to de-

termine the threshold, is an integer. If necessary, the circuit can be modified to compute ra-

tional multiples of SD (N*SD/K), by simply changing the Vduty to the equivalent of SD/K, 

and leaving N as an integer. In this case, the Vduty is used as a fine setting for the threshold 

computing. 

We are also working on a procedure to define the optimal time constant depending 

on the application. Our goal is to propose a software interface listing a choice of cells (neuron, 

beta-cells, myocardium…) and of activities (spikes, EAP, LFP, burst + spikes) , and have the 

system automatically tune the time constant for the low pass filter by selecting one capacitor 

among a pre-implemented bank of capacitors. 

Another alternative is to use the estimation of SD as the estimation of the instantane-

ous energy of the signal, by choosing a small time constant for the low pass filter. 





 

 

 
 

CHAPTER 6 
CONCLUSION 

 
 
 
 
 
 
 

“An expert is a man who has made all the mistakes which 
can be made in a very narrow field.” 

 

Niels Bohr (1885-1962), Danish physicist. 
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We have essentially presented in this thesis two elements I designed. The first one is 

a real-time closed-loop hybrid system (or Hynet). The second one is a device that will im-

prove the spatiotemporal performances in systems in charge of the acquisition of the biologi-

cal electrical signal. Both are promising tools to help the evolution of bioelectronics systems, 

for investigations in biology or applications in medical science. 

I. The Hynet 
The Hynet carries out a bidirectional communication between a cell culture and an 

artificial system. The artificial system eventually mimics biological networks, using for ex-

ample neuromimetic circuits as developed in our group (Renaud10), but such a configuration 

was not considered during this thesis. Communication in the Hynet is possible through multi-

ple parallel channels, using the multielectrode interface. The transmission delay in the closed-

loop is low enough to allow a 10 kHz sampling rate and still leave time for processing reac-

tion stimuli, whilst ensuring real-time. The Graphical User Interface (GUI) provides a friendly 

and portable interface. 

The Hynet system design is intended to be highly tunable. Different types of experi-

ments are currently being conducted using the Hynet: we are investigating plasticity mecha-

nisms in cortical neural networks (Bontorin07a), we are studying cultured neural networks 

exposed to electromagnetic waves (PEPS08), and we are exploring the dependence to glucose 

of the electrical activity of pancreatic beta-cells (Raoux10). 

In studies on plasticity in neural networks, the role of the artificial part is to evaluate 

the relationship between the evolution of the network dynamics and a “consistent” feedback. 

By consistent feedback, we mean that the biological network is informed in real-time about 

the actual sensory consequences of its activity, just like an “unprogrammed” living organism 

embedded into the real world. In this “brain-in-a-box” paradigm, the biological brain is in 

communication with the “outside body”. Two essential features are necessary for the experi-

mental set-up in this project: (i) real-time biological signal processing and real-time commu-

nication (already functional in Hynet); and (ii) feedback functions to drive a dissociated net-

work to adapt its evoked responses to stimuli in a learning-like process. Thus, we can use the 

Hynet to invest bioinspired learning and plasticity functions at the network and at the cellular 

level.  
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The second series of experiments using the Hynet system aims to study the influence 

of electromagnetic fields on neural networks. Cultured cortical preparations are exposed to 

repetitive and controlled fields (using a custom exposition system in which an MEA is em-

bedded) that reproduce Bluetooth or other GSM microwaves. For such an experiment, the 

artificial part (presently computed by software) is a network of conductance-based neurons. 

The Hynet helps us to investigate the evolution of activity and connectivity of biological cells, 

while the artificial neural network has inhibitory or excitatory actions to control or cancel this 

evolution. It may also be useful for investigating therapeutic usage of electromagnetic waves, 

although this is not its primary goal. 

The third series of experiments, a study of electrical activity of beta-cells of the pan-

creas, could be useful in providing give a key to a better life for diabetics. The fundamental 

study on the behavior of such cells shows that the firing rate represents the glucose concentra-

tion and is modulated by agents such as the GLP–1 (Glucagon-like Peptide-1). This new 

model will help us to develop our understanding of the electrical code used by these cells to 

translate glucose/nutrient/hormone signals into precisely adapted secretion of insulin. A glu-

cose sensor that reacts in real time, which is capable of taking hormones and other nutrients 

into account and of detecting hypo/hyperglycemia, represents an important need and chal-

lenge for life expectancy, life quality and medical costs of a growing number of diabetic. 

Even though this system is operational and useful, it is of great interest to increase 

the number and the density of acquisition channels in order to increase the details of the in-

formation or simply for parallel computing performances. For example, we proposed in a re-

cent project the development a screening device to measure on a single device and on multiple 

channels the insulin demand of pancreatic islets (by characterizing its electrical activity as 

shown in chapter 5 – Detector). We intend, however, to maintain the closed-loop real-time 

feature essentially for experiments that address the investigation of hybrid (living-artificial) 

neural networks.  

Thus, we proposed, developed and tested the Intelligent Pixel. 

II. The Intelligent Pixel 
The spatiotemporal performances of the Hynet systems are limited by two factors: 

the commercial MEA performance and the software data processing of raw signals. 
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Considering spatial density, we proposed a new preamplifier, inspired by the Active 

Pixel Sensor (APS) approach. In this approach, the preamplifier is as close as possible to the 

sensor, which minimizes noise interference in connections and in wires; the preamplifier gain 

is high enough for the signal to be processed on-chip or to be multiplexed to the device out-

puts. Integration density is also a key feature for these multi-channel devices. 

The integration of this new preamplifier into the previous system developed by the 

University of Neuchâtel (Imfeld08b) had the following advantages: it decreased the pitch of 

each electrode from 40 µm to 36 µm; it increased the gain (from 100 to 300); it reduced the 

power consumption per pixel (almost by a factor of 2, as the power supply voltage passes 

from 3.3 to 1.8 V); the noise figure is equivalent. 

Considering timing performances the new detector presents a simple and integrated 

way to process an increasing amount of data while respecting real-time constraints. The detec-

tor discards “non-informative” signals for each electrode, which is the case 80 % of the time 

(Moxon00, Zviagintsev06). If we consider the approximation of (Fee96), useful information 

can be found 5 % of the time. The detector can therefore reduce the amount of transmitted 

data by a factor of 5 or even 20, without losing information on the spikes’ occurrence.  

Considering the closed-loop implementation (Bontorin07a), integrating the preampli-

fier and detector means that transmitted data is compressed from 12 bits (digital conversion of 

the analog signal) to 1 bit for each channel. If we combine this gain by the supposed factor of 

5 on time compression, we can envisage a gain of 60 in terms of compared performance with 

commercial MEAs. In parallel, we showed that the delay to spike detection decreases from 

25 µs for less than 1 µs. If we create a “spatiotemporal” index this new pixel would improve 

the first Hynet system by a factor of 1500.  

The intelligent electrode was specifically designed to be tunable. The preamplifier 

low cut-off frequency can be tuned depending on the biological signal characteristics (LFP or 

EAP for example), as well as the detector parameters (N and Vduty), to define a compromise 

between false positive and negative detection errors. We can envisage the use of this Intelli-

gent Pixel to characterize cells variability and behavior, either individually or in networks. 

We expect the intensive use of intelligent MEAs to contribute to experiment data-

bases. We are developing a software user interface to help the user (usually a biologist) to 

optimize the pixels’ parameters for his own experiment by proposing predefined configura-

tions adapted to classical experimental protocols: type of cell (neuron, beta-cells, myocar-
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dium…) and of preparation (acute, culture), activity to be considered (EAP, LFP, …), re-

quested confidence level for the detection, etc… 

Finally, this co-supervised thesis project resulted in more than an association of the 

strong points of each participating research group: it resulted in a global improvement. The 

results for both teams and the perspective for future work are highly promising. Several thou-

sands of Intelligent Pixels will compose the future Intelligent MultiElectrode Array (iMEA) 

while the use of a novel Hynet with Intelligent Pixels is part of different projects in the Bor-

deaux group. These developments contribute to the expansion of Bioelectronics as a specific 

research field, as discussed in our conclusion section.  

Table 6.1 Review of major improvements provided to the research groups by this thesis project.  

Characteristic Place Before After 

Hynet 
Closing Loop FR No GUI 

Active Pixel 

Pitch (µm) SW 40 35 

Gain (V/V) SW 100 300 

Power (µW) SW 83 45 

SW CMOS 0.35 µm 
Technology 

FR Discrete 
CMOS 0.18 µm 

Detection 

FR Software Hardware 

SW Digital (FPGA) Analog & Chip Computing 

SW Offline Online 

Delay (µs) FR 25 < 1 
 

III. Bioelectronics 
 “A Framework for Bioelectronics” (Walker09) describes the outline of Bioelectron-

ics, its past success and future issues. Regarding history, we find: 

“The study of biology also has been transformed by electronics. In the late 1940s 

and early 1950s, understanding the molecular basis of nerve and muscle function was 

achieved with the use of high-impedance amplifiers. Those studies led to a new era of quanti-

tative biology and practical clinical neuroscience. The patch clamp, which allowed research-
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ers to measure the ionic current through single ion channels gave further insight into nerve 

action. These studies led directly to three Nobel Prizes and ultimately seven more. The elec-

tron microscope is also an example of applying electronics to biological problems. First dem-

onstrated in the 1930s and developed over the next decade, the electron microscope allowed 

scientists to visualize the miniscule world of cells at an entirely new level of detail. Much of 

modern cell biology is built on information captured from these indispensable tools.” 

And, further in the text, (Walker09) presents areas where electronics has a real im-

pact: 

“The nascent field of systems biology – using systems engineering approaches to 

analyze cellular function – is driving the development of new technology that can monitor 

multiple aspects of cellular behavior over many time points. Systems biology embodies a new 

perspective from which to view biological systems and knowledge culled from its approaches 

could lead to advances in medicine and security. However, significant investment is needed to 

develop tools and associated standards and metrology that can characterize and continuously 

monitor the states of cells at subcellular resolutions.” 

This thesis project was conducted in the same philosophy described in this “Frame-

work for Bioelectronics”. We provided the basis for enhanced MEA-based platforms, with 

real time capability to access complex biological networks in a closed loop. Relying on mi-

croelectronics advanced (but standardized) technologies, the iMEA will present strong spatio-

temporal performances for the accomplishment of the goals of Bioelectronics. 

Being confident in the future of Bioelectronics, our final expectation is that, during 

this century, neo-Galvanis will provide new electronics systems worldwide. They will present 

characteristics such as high density, large scale, real time, closed loop, and hybridation. These 

devices may be: neural stimulators, brain stimulators, cochlear prostheses, neuromuscular 

reanimates, brain machine interfaces, visual prostheses, diabetics health control systems, cog-

nitive prostheses, memory expansion keys, and others we cannot even imagine yet. All these 

are coming soon. 
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“- Do you think he is still alive? 

  - Of course, my son. None, no one in the entire world, 
could ham the joker.” 

 

Jostein Gaarder (1952 – ), Norwegian writer.  

In “The Solitaire Mystery”. 
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I. The first generations of preamplifiers 
 

The work presented in chapter 4 (Preamplifier) is the last generation of preamplifiers 

I have designed. In this appendix, I present a copy of an article describing the first generation. 

The work presented is, of course, strongly based on this first generation. These results are put 

apart only to clarity the presentation. 
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III. Résumé en Français 
Les travaux décrits dans cette thèse ont été menés au Laboratoire de l’Intégration du 

Matériau au Système (IMS) à Bordeaux et à l’Institut de MicroTechnique (IMT) à Neuchâtel 

sur une période allant d’octobre 2006 à septembre 2010. 

Mes travaux portent sur le développement et l’amélioration des performances spatio-

temporelles d’un système hybride (vivant - artificiel) appelé « Réseau Hybride » ou « Hynet » 

dans la version anglaise.  

A. Hynet 
« Hynet » est un système hybride bidirectionnel, à boucle fermée et à temps réel. 

Comme son nom l’indique, ce système contient deux parties : une partie vivante et 

une partie artificielle. Par boucle fermée, on entend que ces deux parties communiquent entre 

elles d’une manière bidirectionnelle et interagissent de la sorte. Temps réel signifie que les 

communications mises en jeu sont assez rapides pour qu’il n’y ait pas de préjudice quant au 

déroulement du traitement de données (ni perte, ni retards d’informations).  

Ainsi, le rôle de la partie de la partie artificielle (constituée par le matériel (Hard-

ware) et le logiciel (Software)) est d’acquérir l’activité de la partie vivante (appelée Bioware), 

de traiter les données enregistrées et d’appliquer la réponse adéquate sur forme de stimulus, 

dans un délai suffisamment petit pour que cette boucle respecte le critère temps réel (Fig. 

F.01). 

 
Figure F.01. La boucle Hynet. La communication bidirectionnelle entre le vivant (Bioware) et le logi-
ciel (Software) passe par le matériel (Hardware).  

La partie vivante peut, par exemple, être constituée par des neurones ou par des cel-

lules pancréatiques. Le matériel fait le lien entre le logiciel et le vivant. Le logiciel, à son tour, 

communique l’activité de la partie vivante à l’utilisateur et, en respectant les consignes fixées 

par ce dernier, commande la fermeture de la boucle temps réel. 
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Dans notre premier système, la chaîne d’acquisition débute par un bloc commercial 

de MultiChannel Systems™ (MCS), avec 60 canaux analogiques. Les signaux sont amplifiés 

par les cartes ACQ et numérisés par les cartes DIGI. La carte PCI dirige les signaux numéri-

ques vers le logiciel. L’application temps réel (ReTA) traite les données et peut les envoyer à 

un port TCP/IP. La chaîne de stimulation commence dans le logiciel, soit dans ReTA, soit par 

un processus externe. La carte PCI envoie les commandes à la carte DIGI. Celle-ci les trans-

met aux cartes STT et STM qui génèrent à leur tour la stimulation analogique sur 30 canaux. 

(Fig F.02) 

La configuration logicielle de la fermeture de boucle est composée de quatre étapes 

(Fig. F.03.A). La première est la définition des conditions d’acquisition, par le Condition 

Descriptor (Fig. F.03.B). La deuxième est la définition des stimuli de réponse, par le Pattern 

Descriptor (Fig. F.03.C). La troisième est l’association entre les éléments engendrés dans les 

deux premières étapes et chacun des canaux du MEA pelo Linker (Fig. F.03.D). Ces trois 

premiers logiciels (un pour chaque étape) fonctionnent sans les contraintes temps réel. La 

dernière étape est exécutée par ReTA, qui lit la configuration issue des trois premières étapes 

et l’exécute en temps réel.  

Dans « Hynet », le facteur temps réel est strict : il implique qu’entre deux échantil-

lons de l’acquisition, tout le traitement des données doit être effectué et la stimulation respec-

tive doit être générée. La période de boucle fermée est définie dans ce cas comme le temps 

utilisé par le système pour effectuer l’opération d’acquisition et l’opération de génération du 

stimulus. Cette période ne doit pas dépasser la période d’échantillonnage. 

Fig. F.04 résume le temps moyen de propagation dans les modules de notre 

« Hynet ». Une fréquence d’échantillonnage adéquate est, par exemple, 10 kHz. Cela corres-

pond à une période d’échantillonnage de 100 µs. Comme notre période de boucle fermée est 

de 46 µs, plus de 50 µs sont disponibles entre chaque échantillon, pour que le logiciel puisse 

fermer la boucle. 

 
Figure F.02. Détails de la boucle fermée.  
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A 

 
B 

 
C 

 
D 

Figure F.03. Le logiciel de fermeture de boucle. A. Les étapes pour la configuration d’une expérience. 
B. Un exemple de condition, constitué par trois conditions élémentaires. PA = potentiel d’action. C. 
Un stimulus avec ses paramètres. D. Un exemple de lien pour la boucle fermée. 
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Figure F.04. Délais de propagations des modules du Hynet. Analog=Analogique.  

B. Le Pixel Intelligent 
Notre premier « Hynet » présente une interface conviviale avec l’utilisateur. Par 

contre, ses performances spatiotemporelles sont limitées par : (a) l’utilisation des éléments 

commerciaux de MCS dans la partie matérielle et (b) le traitement des données dans le logi-

ciel. Notre solution pour dépasser ces limitations est la création d’un Pixel Intelligent (iP). 

Ce pixel est introduit dans la chaîne d’acquisition de notre système, au plus proche 

de la culture. Plus précisément au-dessous de celle-ci, notre électronique se trouve incrustée à 

l’intérieur de la matrice d’électrodes (MEA) qui est à la fois le support mécanique et l’accès 

électrique à la culture. (Fig. F.05) 

L’iP est constitué par : une électrode, un préamplificateur et un détecteur d’activité 

(Fig. F.06). Il est conçu pour améliorer la qualité du signal, la densité d’acquisition et le trai-

tement des données en temps réel. En outre, il remplace un canal complet d’acquisition de 

notre « Hynet ». 

  
A B 

Figure F.05. Location du pixel intelligent. A. À l’intérieur de la boucle fermée. B. Dans la matrice 
d’électrodes. 
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Figure F.06. Le pixel intelligent.  

Le préamplificateur est conçu suivant l’approche des capteurs à pixel actif, laquelle 

conduit à réduire la distance entre l’électrode de capture et le traitement des données. Cette 

approche permet également d’augmenter le nombre et la densité des points d’acquisition, car 

le signal est suffisamment amplifié pour être multiplexé et/ou traité in situ. 

Notre préamplificateur doit être capable d’amplifier un signal biologique très bruité 

par nature. Cela implique une conception soigneuse de l’étage amplification ainsi que du cir-

cuit de filtrage intégré à ce bloc. Au même temps, pour maintenir forte la densité d’électrodes, 

la surface de silicium doit demeurée très restreinte. Fig F.07 présente notre architecture com-

patible avec ces spécifications. 

 
Figure F.07. Le schéma électrique du préamplificateur.  

L’amplificateur opérationnel (OPA) contient un condensateur de Miller (Cc) qui est 

responsable de la fréquence de coupure haute. En mode amplification, les interrupteurs S1 et 

S2 sont ouverts. La sortie (Out) est l’image amplifiée de la tension présente sur l’électrode. 

Dans la phase de calibration, S2 est fermé. La tension de décalage de l’OPA et l’effet de 

l’interface électrolyte-électrode sont compensées ; ainsi, les deux entrées de l’OPA présentent 

la même tension Vref. Cf conserve le point de fonctionnement du circuit pour le mode ampli-

fication. S1 est fermé en cas de présence d’un stimulus sur une électrode voisine.  Notre pré-

amplificateur présente les caracteristiques suivantes (Table F.1). 
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Table F.1 Principales caractéristiques électriques du préamplificateur 

Caractéristique Mesure 
Gain 300 V/V (49 dB) 

Bruit équivalent en entrée 10 µVrms (1 - 10kHz) 

Rejection DC en entrée ± 430 mV 

Fréquence de Coupure Haute 10 kHz 

Vitesse de balayage 1 V/µs 

Distorsion Harmonique Totale < - 30dB (1 kHz, 300 µVrms) 

Réjection au bruit de l’alimentation > 40dB 

Impédance d’entrée > 1 TΩ (f < 100 kHz) 

Consommation 45 µW moyenne 

Surface 1300 µm2 
À fin de tester notre amplificateur, a été utilisé le MEA-SG (Génerateur de Signaux), 

de MCS. Ses signaux simulent l’activité neuronale. Le signal est premièrement amplifié par le 

MEA-1060 (produit MCS). Il est ensuite atténué par un pont résistif afin de simuler le signal 

non amplifié. L’étiquette “Signal MCS” (Figs. F.08.A) indique où le signal “MCS” (Figs. 

F.08.B et F.08.C) est mesuré. L’étiquette “Notre Signal” (Figs. F.08.A) indique où le signal 

“Notre Amplificateur” (Figs. F.08.B et F.08.C) est mesuré. 

 
A 

  
B C 

Figure F.08. Mesures avec des signaux neuronaux simulés. A. Schématique. B. Potentiel d’action 
extracellulaire artificiel. La réduction de l’amplitude du premier potentiel d’action est due au double 
filtrage des hautes fréquences. C. Potentiel des champs locaux. Les signaux de l’amplificateur MCS 
sont en haut et ceux de notre amplificateur sont en bas sur les figures B et C. Les signaux ont les am-
plitudes équivalentes à celles de l’entrée du préamplificateur. 



Appendix III Résumé en Français 
 

  Guilherme BONTORIN   
 

115 

Intégré dans un pixel actif, notre nouvel amplificateur a le potentiel d’augmenter la 

densité et le nombre de points d’acquisition. Pour maintenir le traitement temps réel, les per-

formances temporelles du traitement de données doivent être améliorées en conséquence. 

Notre solution est, bien évidement, l’usage du détecteur d’activité, présent dans l’iP. 

Comme le préamplificateur, il sera placé aussi proche de l’électrode que possible. Son rôle est 

de détecter les plages d’activité de la culture et, ainsi, d’ignorer les intervalles entre potentiels 

d’action. Le détecteur doit être robuste aux variations du signal biologique et avoir une sur-

face et une consommation compatibles avec un grand nombre et une forte densité 

d’électrodes.  

Le schéma électrique du circuit retenu est celui de la Fig. F.09. Un seuil est appliqué 

au signal biologique dans la partie décision. Le résultat est codé sur un bit confirmant le dé-

passement du seuil par le signal d’entrée. Ce seuil est défini comme un multiple (N) de l’écart 

type (SD) du signal biologique et est actualisé en permanence par le bloc d’adaptation. 

 
Figure F.09 Le schéma du detector 

La partie de décision doit impérativement être propre à chacun des pixels, mais la 

partie d’adaptation peut être déportée et commune à plusieurs pixels et cela à fin d’augmenter 

la densité d’intégration et de réduire la surface et la consommation. 

Finalement, la Table F.2 présente les caractéristiques du notre détecteur. 
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Table F.2 Caractéristiques du détecteur. 

Caractéristique Mesure 
Comparateur 

Tension de décalage < 450 µV 

Fréquence > 2 MHz 

Retard < 0.2 µs 

Surface 150 µm2 

Consommation 27 µW 

Décision 

Surface 300 µm2 

Consommation 54 µW 

Adaptation 

Surface 3200 µm2 a 

Consommation 45 µW 

Pixel Intelligent 

Surface 1600 µm2 

Consommation 100 µW 

Pixel Intelligent + Adaptation 

Surface 4800 µm2 a 

Consommation 145 µW 
 

a surface sans condensateur, car sa valeur est variable en fonction de l’expérience. 

Le test de chaque partie du détecteur est fait séparément. Premièrement, l’adaptation 

du seuil est testée en utilisant en entrée une sinusoïde modulée (Fig. F.10). L’adaptation doit 

être lente pour éviter de considérer certains potentiels d’actions comme bruit. 

 
Figure F.10. Test de l’adaptation.  
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Deuxièmement, la décision est testée avec de vrais signaux biologiques issus de cel-

lules Bêta du pancréas. L’activité spontanée des cellules Bêta est fonction de la concentration 

du glucose dans le milieu extracellulaire. 

Un MEA contient la culture cellulaire dans un milieu hyperglycémique. L’activité est 

premièrement amplifiée par l’amplificateur MEA-1060 de MCS et, ensuite, atténuée par un 

pont résistif afin de simuler un signal non amplifié à l’entrée de notre préamplificateur. Le 

signal amplifié est transmis au détecteur qui renvoie la présence ou non d’activité, signa codé 

sur un bit (Fig. F.11 A). 

Fig. F.11.B présente la détection d’un unique potentiel d’action. Quand ce dernier 

dépasse le seuil, la détection est effectuée. Fig. F.11.C montre un autre enregistrement. Si le 

seuil avait été choisi égal à 5 fois SD, le dernier potentiel d’action serait omis. Cette figure 

démontre l’intérêt de la double détection, positive et négative. 

 
A 

  
B C 

Figure F.11. L’enregistrement de l’activité des cellules Bêta du pancréas dans un milieu hyperglycé-
mique. A. Le schéma électrique du banc de mesures. B. La détection d’un seul potentiel d’action. C. 
Un autre enregistrement avec plusieurs potentiels d’action. 

C. Conclusion 
La co-direction de cette thèse a une synergie qui, en dépassant la simple association 

des domaines d’expertise particuliers, a conduit à une amélioration sensible de toutes les per-

formances du système (Table F.3). La réalisation d’une future matrice d’électrodes avec des 

milliers de pixels intelligents ainsi développés sera un moyen de faire avancer la recherche et 

les applications de la Bioélectronique, dans chacune des deux équipes et d’une manière globa-

lisée. 
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Table F.3 Résumé des principales améliorations apportées par ce travail à chacune des équipes. 

Caractéristique Pays Avant Après 
Hynet 

Fermeture de Boucle FR Natif GUI 

Pixel Actif 
Pitch (µm) CH 40 35 

Gain (V/V) CH 100 300 

Consommation (µW) CH 83 45 

CH CMOS 0.35 µm 
Technologie 

FR Discrète 
CMOS 0.18 µm 

Détection 
FR Logiciel Matériel 

Traitement 
CH Numérique  

(FPGA) 
Analogique  
& Intégré 

Retard (µs) FR 25 < 1 
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IV. Resumo em português 
O trabalho descrito neste manuscrito foi realizado no Laboratório da Integração do 

Material ao Sistema (IMS) em Bordeaux e no Instituto de Microtécnica (IMT) em Neuchâtel, 

de outubro de 2006 à setembro 2010.  

Ele tinha por objetivo o desenvolvimento e o aperfeiçoamento do desempenho espa-

ço-temporal de um sistema híbrido (vivo - artificial) chamado Rede Híbrida ou Hynet.  

A. Hynet 
Hynet é um sistema híbrido bidirecional, em laço fechado e tempo real. Como o seu 

nome indica, este sistema conta de duas partes: uma viva e uma artificial. Sendo um laço fe-

chado, as duas partes se comunicam bidirecionalmente, ou seja, a entrada de uma é alimenta-

da pela saída da outra. Enfim, o fator tempo real implica que as comunicações do sistema são 

suficientemente rápidas para que não haja degradação (por perda ou por atraso) do fluxo de 

dados. 

Neste contexto, a função da parte artificial (constituída pelo Hardware e pelo Softwa-

re) é a de adquirir a atividade elétrica da parte viva (também chamada Bioware), processar os 

dados coletados e aplicar a resposta adequada na forma de um estímulo elétrico. E isto num 

prazo de tempo suficientemente curto para que o laço funcione em tempo real (Fig. P.01). 

 
Figura P.01. O laço Hynet. A comunicação bidirecional entre o Bioware e o Software passa pelo 
Hardware.  

O Bioware pode ser constituído, por exemplo, de neurônios ou de células pancreáti-

cas. O Hardware estabelece a ligação entre o Bioware e o Software. Este último interage com 

o utilizador para que este configure o experimento e feche o laço em tempo real.  

No primeiro sistema, a cadeia de aquisição começa por um bloco comercial de MCS 

(MultiChannel System™), com 60 canais analógicos. Os sinais provenientes da cultura são 

amplificados pela carta ACQ e digitalizados pelas cartas DIGI. A carta PCI envia os sinais 

digitais ao Software. O programa em tempo real (ReTA) processa os dados podendo envia-los 
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à uma porta TCP/IP. A cadeia de estimulação começa no Software, seja no ReTA, seja por um 

processo externo. A carta PCI envia comandos às cartas DIGI, que a seu turno transmitem-nas 

às carta STT e STM. Estas duas últimas se encarregam de gerar estimulações elétricas em 30 

canais analógicos (Fig P.02). 

 
Figura P.02. Detalhes do laço fechado.  

A configuração do Software de fechamento de laço é constituída de três etapas (Fig. 

P.03.A). A primeira é a definição das condições na aquisição com o Condition Descriptor 

(Fig. P.03.B). A segunda é a definição dos estímulos que serão enviados como resposta, pelo 

Pattern Descriptor (Fig. P.03.C). A terceira é a associação dos elementos descritos nas etapas 

precedentes entre elas e com os respectivos canais, pelo Linker (Fig. P.04 .C). Estes três pro-

gramas (um para cada etapa) não precisam funcionar em tempo real. A última etapa é execu-

tada pelo ReTA, que lê a configuração descrita anteriormente e a executa em tempo real. 

Em um Hynet, o fator tempo real é restrito: ele determina que, entre duas amostras da 

aquisição, todo o processamento de dados deve ser executado e a respectiva estimulação ge-

rada. O período do laço fechado é definido como o tempo necessário para efetuar a aquisição 

e a estimulação. Este período não pode exceder o período de amostragem. 

Fig. P.04 resume o tempo médio de propagação dentro dos módulos do nosso Hynet. 

Uma freqüência adequada é, por exemplo, 10 kHz. Ela corresponde à um período de 100 µs. 

Do fato que nosso período de laço fechado é de 46 µs, mais de 50 µs são disponíveis entre 

cada amostragem para que o programa possa fechar o laço. 

 



Appendix IV Resumo em Português 
 

  Guilherme BONTORIN   
 

121 

 
A 

 
B 

 
C 

 
D 

Figura P.03. O programa de fechamento de laço. A. As etapas de configuração de um experimento. B. 
Um exemplo de condição, constituído de três condições elementares. PA = Potencial de Ação. C. Um 
estímulo com seus parâmetros. D. Um exemplo de ligações para o laço fechado. 

 
Figura P.04. Tempo de propagação dos módulos do Hynet. Analog=Analógico  
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B. Pixel Inteligente 
O primeiro Hynet apresenta uma interface convivial para com o utilizador. No entan-

to, o desempenho espaço-temporal do sistema é limitada: primeiro pelo uso de elementos co-

merciais de MCS e segundo pelo processamento de dados pelo software. Nossa solução para 

transpor estes limites é o Pixel Inteligente (iP). 

Este pixel é introduzido na cadeia de aquisição de nosso sistema, o mais próximo 

possível da cultura. Mais precisamente, embaixo desta. Nosso circuito eletrônico se encontra 

incrustado no interior da matriz de eletrodos. Esta atua como um suporte mecânico para o 

meio celular e como um acesso elétrico à cultura. (Fig. P.05). 

  
A B 

Figura P.05. Localização do pixel inteligente. A. No interior do laço fechado. B. Na matriz de eletro-
dos. 

O iP é constituído por: um eletrodo, um pré-amplificador, um detector de atividade 

(Fig. P.06). Ele é concebido para melhorar a qualidade do sinal, a densidade na aquisição e o 

processamento dados. Deste modo, ele substitui um canal completo da aquisição do nosso 

Hynet. 

O pré-amplificador é concebido seguindo o conceito de sensores à pixel ativo, o qual 

reduz a distância entre o eletrodo e o processamento de dados. Ele facilita igualmente o au-

mento do número e da densidade de pontos de aquisição, pois o sinal é suficientemente ampli-

ficado para ser multiplexado ou processado in situ. 

 
Figura P.06. O pixel inteligente.  
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Este amplificador deve ser capaz de amplificar um sinal biológico com muito ruído. 

Isto implica em uma concepção cuidadosa dos estágios de amplificação e filtragem. Ao mes-

mo tempo, para manter uma alta densidade de eletrodos, a superfície de silício que lhe é con-

sagrada é muito limitada. Fig. P.07 apresenta a arquitetura compatível com esta especifica-

ções.  

 
Figura P.07. Diagrama do pré-amplificador.  

O amplificador operacional (OPA) utilizado contém um capacitor de Miller (Cc), o 

qual é responsável pela freqüência de corte alta. No modo amplificação, os interruptores S1 e 

S2 estão abertos. A saída (Out) é a imagem amplificada da tensão presente no eletrodo. No 

modo calibração, S2 está fechado. A tensão de offset do OPA e os efeitos da interface eletro-

do-eletrólito são compensados, pois as duas entradas do OPA são à mesma referência Vref. Cf 

conserva o ponto de operação do circuito para o modo amplificação. S1 é fechado em caso de 

presença de um estímulo em um eletrodo vizinho. Nosso pré-amplificador apresenta as se-

guintes características (Tabela P.1) 

Tabela P.1 Principais características do pré-amplificador. 

Característica Medida 
Ganho 300 V/V (49 dB) 

Ruído equivalente na entrada 10 µVrms (1 - 10kHz) 

Rejeição DC na entrada ± 430 mV 

Freqüência de corte alta 10 kHz 

Velocidade de varredura 1 V/µs 

Distorção harmônica total < - 30dB (1 kHz, 300 µVrms) 

Rejeição ao ruído da alimentação > 40dB 

Impedância de entrada > 1 TΩ (f < 100 kHz) 

Consumação 45 µW média 

Superfície 1300 µm2 
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Com o intuito de testar nosso pré-amplificador, utilizamos o MEA-SG (Gerador de 

Sinais), de MCS, o qual simula a atividade neural. O sinal é primeiramente amplificado pelo 

MEA-1060 (também de MCS) e, em seguida, atenuado por uma ponte resistiva para simular 

um sinal não-amplificado. A etiqueta “Sinal MCS” (Figs. P.08.A) indica onde o sinal “MCS” 

(Figs. P.08.B et P.08.C) foi medido. A etiqueta “Nosso Sinal” (Figs. P.08.A) indica onde o 

sinal “Nosso Amplificador” (Figs. P.08.B et P.08.C) foi medido. 

 
 A 

  
B C 

Figura P.08. Medidas com sinais neurais simulados. A. Diagrama. B. Potencial da ação artificial. A 
redução da amplitude do sinal do primeiro potencial de ação é devida à dupla filtragem em alta fre-
qüência. C. Potencial de campo local. Os sinais do amplificador MCS são apresentados em cima e os 
do nosso amplificador, em baixo, nas figuras B e C. Os sinais apresentam as amplitudes equivalentes 
àquelas da entrada do pré-amplificador. 

Integrado em um pixel ativo, nosso amplificador tem o potencial para aumentar a 

densidade e o número de pontos de aquisição. Para manter o funcionamento em tempo real do 

sistema, as performances temporais do processamento de dados também devem ser melhora-

das.  

A solução proposta é, evidentemente, o uso do detector de atividades presente no iP. 

Do mesmo modo que o pré-amplificador, o detector é presente tão próximo quanto possível 

ao eletrodo. Sua função é de detectar os potenciais de ação e ignorar os intervalos entre estes. 

O detector deve ser robusto às variações do sinal biológico e ter consumo e superfície compa-

tíveis com um grande número e uma forte densidade de eletrodos. 
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O diagrama do circuito escolhido é o apresentado na Fig. P.09. Um limiar é aplicado 

ao sinal biológico na parte de decisão. O resultado é codificado em um bit afirmando um ex-

cesso ao limiar. Este limiar é definido como um múltiplo (N) do desvio padrão (SD) do sinal 

biológico e é atualizado em permanência pelo bloco de adaptação. 

 
Figure P.09 O diagrama do detector. 

O bloco de decisão deve imperativamente ser individual à cada pixel, mas a parte de 

adaptação pode ser deportada e comum a vários pixels no intuito de aumentar a densidade de 

eletrodos e diminuir a superfície e a consumação. 

Finalmente, a Tabela P.2 apresenta as características do nosso detector. 

O teste de cada parte do detector é efetuada separadamente. Primeiro, a adaptação do 

limiar é testada colocando uma entrada senoidal modulada (Fig. P.10). A adaptação se dá con-

forme o desejado, pois ela deve ser lenta para evitar a interpretação de sinais como ruído.  

 
Figure P.10. Teste da adaptação. 

Em seguida, a decisão é testada com sinais reais, provenientes de células Beta do 

pâncreas. A atividade espontânea dessas células é função da concentração de glicose do meio 

extracelular.  
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Tabela P.2 Características do detector. 

Característica Medida 
Comparador 

Offset de entrada < 450 µV 

Freqüência > 2 MHz 

Atraso < 0.2 µs 

Superfície 150 µm2 

Consumo 27 µW 

Decisão 

Superfície 300 µm2 

Consumo 54 µW 

Adaptação 

Superfície 3200 µm2 a 

Consumo 45 µW 

Pixel Inteligente 

Superfície 1600 µm2 

Consumo 100 µW 

Pixel Inteligente + Adaptação 

Superfície 4800 µm2 a 

Consumo 145 µW 
 

a superfície sem o capacitor, pois seu valor é ajustado conforme o experimento. 

Um MEA contém a cultura celular num meio hiperglicêmico. A atividade é primei-

ramente amplificada pelo MEA-1060 de MCS e, em seguida, atenuada, sempre para simular 

um sinal não amplificado na entrada do amplificador. O sinal é transmitido ao detector, o qual 

acusa a presença ou ausência de atividade, codificado em um bit (Fig. P.11.A). 

Fig. P.11.B apresenta a detecção de um potencial de ação. No momento em que o si-

nal excede o limiar, a detecção é efetuada. Fig. P.11.C mostra um outro registro. Se o limitar 

fosse escolhido como 5 vezes o SD, o último potencial teria sido ignorado. Esta figura tam-

bém demonstra o interesse de uma dupla detecção, positiva e negativa. 

C. Conclusão 
A co-orientação deste doutorado é uma sinergia que, mais do que uma simples asso-

ciação da experiência das duas equipes, conduziu à uma melhora sensível de todas as perfor-

mances dos sistemas de cada equipe (Tabela P.3). A realização de uma futura Matriz de Ele-
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trodos Inteligente, a partir da associação de milhares dos nossos pixel inteligentes, será um 

método de proporcionar avanços na pesquisa e nas aplicações da Bioeletrônica, em cada uma 

das equipes e de um jeito globalizado. 

 
A 

  
B C 

Figura P.11. Registro da atividade de células Beta do pâncreas em um meio hiperglicêmico. A. O 
diagrama do banco de medidas. B. A detecção de um potencial de ação. C. Um outro registro com 
vários potenciais de ação. 

Tabela P.3 Resumo das melhorias apresentadas neste trabalho para cada um dos grupos.  

Característica Lugar Antes Depois 
Hynet 

Fechamento de Laço FR Não GUI 

Pixel Ativo 
Pitch (µm) SW 40 35 

Ganho (V/V) SW 100 300 

Consumo (µW) SW 83 45 

SW CMOS 0.35 µm 
Tecnologia 

FR Discreta 
CMOS 0.18 µm 

Detecção 
FR Software Hardware 

Processamento 
SW Digital (FPGA) Analógica  

& Integrada 
Atraso (µs) FR 25 < 1 
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Intelligent multielectrode arrays: improving spatiotemporal performances in hybrid 
(living-artificial), real-time, closed-loop systems. Guilherme Bontorin, September 2010. 
 
Abstract: This thesis presents a promising new bioelectronics system, the Hynet. The Hynet 
is a Hybrid (living-artificial) Network, developed to study the long-term behavior of electro-
genic cells (such as Neurons or Beta-cells), both individually and in a network. It is based on 
real-time closed-loop communication between a cell culture (bioware) and an artificial proc-
essing unit (hardware and software). In the first version of our Hynet, we use commercial 
Multielectrode Arrays (MEA) that limits its spatiotemporal performances. A new Intelligent 
Multielectrode Array (iMEA) is therefore developed. This new analog/mixed integrated circuit 
provides a large-scale, high-density, and adaptive interface with the Bioware, which improves 
the real-time data processing and the low-noise acquisition of the extracellular signal. 
Keywords: Bioelectonics, Real Time, Closed-Loop, Hybrid Systems, LNA, High Density 
MultiElectrode Arrays (MEA), Neurons, Beta-cells, Analog ASICs. 
 
Matrice d’électrodes intelligentes : un outil pour améliorer les performances spatiotem-
porelles des systèmes hybrides (vivant-artificiel), en boucle fermée et en temps réel. 
 
Résumé : Cette thèse présente un système bioélectronique prometteur, l’Hynet. Ce Réseau 
Hybride (vivant-artificiel) est conçu pour l’étude du comportement à long terme des cellules 
électrogénératrices, comme les neurones et les cellules betas, en deux aspects : l’individuel et 
en réseau. Il est basé sur une boucle fermée et sur la communication en temps réel entre la 
culture cellulaire et une unité artificielle (Matériel, Logiciel). Le premier Hynet utilise des 
Matrices d’électrodes (MEA) commerciales qui limitent les performances spatiotemporelles 
du Hynet. Une nouvelle Matrice d’électrodes intelligente (iMEA) est développée. Ce nouveau 
circuit intégré, analogique et mixte, fournit une interface à forte densité, à forte échelle et 
adaptative avec la culture. Le nouveau système améliore le traitement des données en temps 
réel et une acquisition faible bruit du signal extracellulaire. 
Mots-clefs : Bioélectronique, Temps Réel, Boucle Fermée, Systèmes Hybrides, Matrice 
Multi-électrodes (MEA) à Forte Densité, CMOS, Détection des potentiels d’action, Neurones, 
Cellules Bêta, ASIC Analogique. 
 
Redes de eletrodos inteligentes: melhorando a performance espaço-temporal de sistemas 
híbridos (vivo e artificial), em laço fechado e em tempo real. 
 
Resumo: Esta dissertação de doutorado apresenta um sistema bioeletrônico auspicioso, o Hy-
net. Esta Rede Híbrida (viva e artificial), é concebida para o estudo do comportamento à lon-
go prazo de células eletrogeradoras (como neurônios ou células beta), em dois aspectos : 
individual e em redes. Ele é baseado na comunicação bidirecional, em laço fechado e em 
tempo real entre uma cultura celular (Bioware) e uma unidade artificial (Hardware ou Soft-
ware). O primeiro Hynet é concebido, mas o uso de Matrizes de Eletrodos (MEA) comerciais 
limita a performance do sistema. Finalmente, uma nova Matriz de Eletrodos Inteligente (i-
MEA) é desenvolvida. Este novo circuito integrado fornece uma interface adaptativa, em alta 
densidade e grande escala, com o Bioware. O novo sistema melhora o processamento de da-
dos em tempo real e a aquisição baixo ruído do sinal extracelular. 
Palavras chave: Bioeletrônica, Tempo Real, Laço Fechado, Sistemas Híbridos, LNA, Matriz 
de Multi-eletrodos em Alta Densidade, Detecção de Potencial de ação, Neurônios, Células 
Beta, Circuito Integrado Analógico. 
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