
HAL Id: tel-00561299
https://theses.hal.science/tel-00561299

Submitted on 1 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Soft Tissue Modelling on GPU for Medical
Simulation
Olivier Comas

To cite this version:
Olivier Comas. Real-time Soft Tissue Modelling on GPU for Medical Simulation. Modeling and
Simulation. Université des Sciences et Technologie de Lille - Lille I, 2010. English. �NNT : �. �tel-
00561299�

https://theses.hal.science/tel-00561299
https://hal.archives-ouvertes.fr

Thesis submitted to obtain the title of

Doctor of Philosophy

Doctoral School of Engineering Science

Field: Computer Science

Real-time Soft Tissue Modelling on
GPU for Medical Simulation

Prepared by Olivier COMAS at

INRIA Lille, SHAMAN team and CSIRO ICT Brisbane, AEHRC

Defended on the 16th of December 2010

Jury:

Advisor: Stéphane COTIN - INRIA (SHAMAN team), Lille, France

Reviewers: Thomas Sangild SØRENSEN - University of Aarhus, Denmark

Georges DUMONT - ENS Cachan - Bretagne, Rennes, France

Examiners: Tamy BOUBEKEUR - Telecom ParisTech, Paris, France

Christian DURIEZ - INRIA (SHAMAN team), Lille, France

President: Laurent GRISONI - INRIA (MINT team), Lille, France

ACKNOWLEDGMENTS

First of all, I would like to warmly thank Sébastien Ourselin. Back in 2007, he

accepted me for doing a PhD in his lab (e-Health Research Centre, Brisbane,

Australia) and gave me the opportunity to work on state-of-the-art topics like

GPGPU programming for instance. He also thought that developing a fast shell-

based finite element model for soft tissues would make a great PhD topic. And

after the completion of my PhD, I must say that he was right. So thanks a lot Seb

for all your help and support during the 9 months we worked together and even

beyond. Thank you as well for all the good wines you brought at each BBQ we

did in Brisbane. And yes, Australians can be proud of their wine. Last but not

least, thanks for not doing anything to compromise the success of my PhD once

you were at UCL. I very much appreciated this and I will not forget it. Merci pour

tout Seb.

I would now like to express my deep and sincere gratitude to my supervisor,

Stéphane Cotin. I greatly appreciated to work with you during these three years.

Your great understanding of the field and your logical way of thinking have been

of great value for me. You never hesitated to take some time, and lots of it, to dis-

cuss the problems I had during my PhD. Thanks for being genuinely concerned

with the success of my PhD. Sometimes you even sat with me in front of my com-

puter, participated for hours to brainstormings on a white board or stayed for a

long time on the phone when I was physically in Australia. One could think that

it is a natural thing to do for a supervisor. But when you talk with other PhD stu-

dents, you quickly come to realise that this is not the case, and far from it. You

also helped me facing the other kind of problems I had during my PhD, the ones

I cannot discuss freely here. And it was very much appreciated. I also always felt

respected and considered as an actual researcher, so thanks a lot for that. Lastly,

thanks for being Mr. Peanuts and ’forcing’ us to shoot instead of going home ;-) I

really hope that we will keep working together in the future. Anyway, we can still

have Mojitos when we meet for conferences. Un immense merci à toi Stéphane.

I wish to thank Clément Forest and Luc Soler for sharing their passion of

medical simulation during my master’s internship. This certainly encouraged

me to carry on in the field to obtain a PhD. And thanks Luc to introduce me to a

few people when I needed to find a PhD supervisor.

I would also like to thank Claude Puech to introduce me to Stéphane Cotin

at the time where I was still looking for a PhD supervisor in France. This was

not easy to find a good supervisor and someone willing to work through a col-

i

ii

laboration with Australia. And thank you Noémie to put me in contact with your

father.

I warmly thank Thomas Sangild Sørensen and Georges Dumont for having

accepted to read my manuscript and review the work carried out during my PhD.

This was a substantial amount of work so thank you both for taking the time to

do it.

I would also like to thank Tamy Boubekeur, Christian Duriez and Laurent

Grisoni to be part of my jury. Thank you all for coming to Lille and attending my

defence.

And thank you Laurent for having accepted to be my supervisor (even if it

was only on paper) for the first year while Stéphane was finishing his HDR in

order to be able to officially supervise PhD students in France.

I am also very grateful to Zeike Taylor for his fantastic help at the beginning of

my PhD. Thanks for sharing your knowledge with me and for your collaboration.

It was much appreciated. All the best to you.

During this work, I was lucky enough to carry out my PhD between two differ-

ent countries: Australia and France. I really enjoyed working in an international

environment and during the 3 years of my PhD I came across many great peo-

ple. Between my colleagues, my flatmates and my friends’ flatmates, I encoun-

tered people coming from so many countries: Australia, Austria, Belgium, Brazil,

Canada, China, Colombia, Czech Republic, Denmark, Fiji, France, Germany, In-

dia, Ireland, Japan, Malaysia, Mauritius, The Netherlands, New Zealand, Peru,

Romania, Russia, Scotland, South Africa, South Korea, Spain, Sweden, Switzer-

land, United States and Vietnam (my apologies if I forgot some of them). It was

such a wonderful and enriching experience. I met most of them while I was in

Australia and to date, I probably spent the best times of my life in Brisbane, going

out with all this wonderful bunch of people.

First, I would like to thank Josh Passenger, my team leader in Brisbane. Since

the very first moments, you really made me feel welcome. You took the time to

sit with me and explain everything to me. Even though my English skills were

quite limited at the time, you had the patience to listen to me. So thanks a lot for

that Josh. And the best of luck to you for the future. It has been a great pleasure

to work with you. And thanks for the many invites to your place for BBQs. In

particular, thanks for inviting me at your place for New Year’s eve in 2007 when

I was alone. I appreciated the gesture. It was very nice of you. I wish you had

drunk even more though because you seem to remember too many things ;-)

Thanks to everyone else in the colonoscopy team that I had the chance to

work with: Mario Cheng (thanks for all the profound and less profound discus-

sions we had over the years... and I will try to remember to keep a safe distance

with any BBQ if you are around ;-)), David Hellier (good luck at ILM and say hi to

iii

Yoda for me please), Hans de Visser (maybe the Netherlands will win the World

Cup one day, keep hoping anyway), David Conlan (take care of Homer Simpson,

he is getting a bit tense lately), Hans Frimmel, Christoph Russ (thanks for the

map regarding the plans of Germany to remove France out of the world and I

hope we will have soon the occasion to have a few more tequila shots together

buddy), Sebastian Bauer, Brendon Evans, Tobias Reichl, William Romero (good

luck for finding a PhD), Daan Broekhuizen and Alex Bilger (ready for a Karmeliet

anytime you want mate).

But the lab did not have only one team and I get to interact with a lot

more people (by alphabetical order): Oscar Acosta (good luck with your new

life in France), Elsa Angelini (why do I have the feeling that our roads will cross

again around a few drinks), Vincent Doré, Jason Dowling, Jurgen Fripp, Sankalp

Khanna, Marion O’Connor (thanks for your kindness and if you need anything

when you come to France, just do not hesitate to ask me... even if you need

to practice your pool skills ;-)), John O’Dwyer, Christine Pejakovic, Eric Pierre,

David Raffelt, Parnesh Raniga, Kaikai Shen, Chris Stanbridge (try running the

Brisbane 10K race next year ;-)), Deanne Vickers and Di Xiao.

Special thanks to the old Brissie bunch for all the good times we had back in

2007 and 2008: Erik Bonner, Diego Cantor Rivera, Zim Chan, Mario Cheng, Ro-

muald Jolivot, Aleš Neubert and Chris Russ. I think we all remember this period

deeply. And of course, a big thanks to Maria Alejandra Zuluaga (congrats again

for your PhD) and Fernando Yepes Calderón. I cannot wait for more "little bread,

little cheese and little wine".

And special thanks to all my party friends in 2010: Cyril Bousquet (one day I

will defeat you at foosball... maybe), Sunil Chand (thank you so much for making

us feel home when we were in Fiji, I hope that we will have the occasion to do

the same for you in France one day), Ilaria Croci (all the best for your PhD), Zoé

Dubois Dit Laroy (see you soon in Europe for more beers Zoé), Jean-Baptiste Fiot

(best of luck for your PhD buddy... and yes I can sell my LATEX 2ε template to you

if you need it ;-)), Périne Hocquet & Alex Bilger (all the best to the two of you

for your new life in Lille), Rémy Le Padellec (maybe one day you will succeed a

Centurion ;-)), Hugo Leroux (please keep entertaining us with more "Hugotises"

;-)), Timothy O’Sullivan (best of luck on your boat, it sounds awesome), Virginie

Rubio & Jérôme Cargnino (enjoy your trip through Australia guys) and Shane

Smith (thanks for the nitrous mate). Such many good times together, so many

parties. It was such a great help during this PhD. And I am sure that we will keep

seeing each other and I cannot wait for it.

I would also like to thank Elsa Garcia for all the hours we spent talking (and

laughing) about all sorts of things. You were a great support during the last year

of my PhD, and the writing of my manuscript in particular. Merci beaucoup pour

ton amitié Elsa. Take care and all the best to you.

iv

I probably should mention the many good times we had playing foosball as

well, or the Friday Challenges and Christmas’ parties. Finally, I wish to thank

some of my flatmates over the years: Jeff Mitchell (thanks for your kindness and

all the great discussions we had and I hope we will keep in touch... Please, come

visit me in France some time, you are more than welcome my friend), Clau-

dia Gonzales, Mark Wei Shi, and Tatjana Temnjakova and Ludmilla Zweigart for

hours talking around a tea and some chocolate at our good old Milton’s house.

In a nutshell, I had a fantastic time in Brisbane during my PhD. So thanks

everyone for that. Sincerely. I will always feel something special about Australia,

its kangaroos, its barbies, its beers and its "no worries mate".

But Brisbane is only half of the story. I also spent half of my time in Lille

(France). And I would like to warmly thank everyone from the team there and

everyone I came across while I was in Lille. It is such an awesome bunch of peo-

ple. I have worked in a great atmosphere all the time and it really makes a dif-

ference. This made me realise how the frontier between colleagues and friends

may be thin sometimes. So ladies and gentlemen, a big round of applause for:

Jérémie Allard (thanks for all the times where I was stuck and you solved my

problem in 10 seconds), Stéphane Cotin, Hadrien Courtecuisse (good luck with

the writing of your manuscript), Juan-Pablo De-la Plata Alcalde (I hope that one

day we will get to see Madrid with you, we could even see El Clasico maybe),

Jean-Philippe Deblonde (thanks for the numerous endless discussions and best

of luck to you with all your projects), Jérémie Dequidt (maybe one day you will

switch from Canon to Sony ;-)), Christian Duriez (thanks for all your help during

the last 2 years of my PhD and I hope we will keep collaborating... and of course,

good luck for your HDR hehe), Anne Rejl (thank you for handling so efficiently

all the work I gave you over the years), Jérémy Ringard (I will keep looking for

you name in all movie’s credits), Frédérick Roy (enjoy your time in Korea and try

to get back from the war alive), Julien Vandaële (keep taking days off for the rest

of us), Johann Vandromme (all the best of luck to the three of you. I keep believ-

ing in you for finishing one day) and Yiyi Wei (good luck for the end of your PhD

and thanks for helping us picking food when we were all in China). Thanks for

all "4pm breaks", futsal games, CS shootings, the welshs we have eaten and the

karmeliet we have drunk.

I would also like to thank Pierre-Jean Bensoussan (good luck for SOFA Nova

P.J.), Mario Sanz Lopez (see you soon in Lille buddy), Chi-Thanh Nguyen (plenty

of courage for dealing with French paperwork), Igor Peterlik, and thanks to our

two future ophthalmologists: Nadia Boubchir and Elodie Dumortier.

A very special thanks to the famous Bernard for his full collaboration and

hard work without complaining. And a thought for his friend, John Noears, who

was tragically abducted in awful circumstances... I did not forget about you.

v

A big thanks to my two awesome flatmates in Lille: Clémence Bodocco and

Laudine Bonnet. I loved living with you guys and I hope we will stay in touch.

Merci à vous les filles !

A huge thank you to all my friends for their great support over the years. In

particular, I would like to thank Florian Charbois, Pierre Lestanguet and Mick-

aël Midou for your thousands of emails in Chuck. Talking with you guys almost

every day is probably the greatest help I had for surviving my PhD. Un énorme

merci pour ça. I also wish to thank Cécile Bastard (thanks again for all the info on

the technique of elastography... et merci Nounou pour toutes les glaces qu’on a

prises à Berthillon lors de nos ballades "accidentelles" sur l’île de la cité à Paris),

Sophie Godé, Priscille Florent, Noémie Puech (je sais même pas comment te re-

mercier pour toutes les fois où j’ai squatté chez toi, un grand merci à toi maman

!), Lucille Rivat (and Lucille Mollon at the beginning of my PhD ;-)) and Vincent

Vechambre. I enjoyed seeing you every week-end I could when I was visiting

France. Lastly, I would like to thank Marie Brunault for her early support.

Finally, I would like to thank my family for their unconditional support: Nico

& Momo (merci pour venir à ma soutenance et merci d’être venu me voir en

Australie, c’était super sympa), Diline & Tony, Primols, Mica (merci également

d’être venu à ma soutenance, c’était vraiment cool d’avoir fait le déplacement, et

désolé pour la grippe que tu as chopé par la même occasion), Dada and Angèle. I

also wish to thank Annie & Jean, my grandma & Dédé. And of course, my parents.

They let me choose the studies that I wanted and they did everything they could

so I can achieve my goal. I will never be able to thank them enough for that. En

résumé, un immense merci à toute ma famille pour m’avoir soutenu pendant

cette thèse, même si ils ne comprenaient pas toujours grand chose à ce que je

faisais et qu’ils liront probablement jamais cette thèse :-)

My apologies to the people that I have unintentionally forgotten.

ABSTRACT

Real-time soft tissue modelling on GPU for medical simulation

Abstract: Modelling the deformation of anatomical structures in real-time is a

crucial problem in medical simulation. Because their shape and their constitu-

tion greatly differ, a unique model cannot deal with the variousness of the me-

chanical behaviours. Hence, we identified two major types of structures in hu-

man body, they can be either solid (brain, liver, prostate etc.) or hollow (colon,

blood vessels, stomach etc.).

Our answer to this problematic is twofold. Our first contribution is an ef-

ficient GPU implementation of a non-linear, anisotropic and viscoelastic finite

element model for solid organs. Our second contribution is a framework for real-

time modelling of thin anatomical structures via a parallelisable co-rotational

shell finite element formulation and a method to mesh a complex surface with

curved shell elements.

Although the two soft tissue models are based on continuum mechanics for

greater accuracy, they may both be employed to simulate the deformation of

entire organs in real-time. Finally, their implementation into the open source

framework SOFA will provide worldwide researchers with new models to assist

in enhancing the realism of medical simulators.

Keywords: Medical simulation, soft tissue modelling, finite element method,

GPU, TLED, shell, co-rotational méthod

vii

RÉSUMÉ

Simulation en temps réel de tissus mous sur GPU pour la simulation
médicale

Résumé: Modéliser la déformation de structures anatomiques en temps réel est

un problème crucial en simulation médicale. En raison des grandes différences

existantes dans leur forme et leur constitution, un modèle unique est insuffisant

face à la variété des comportements mécaniques. Par conséquent, nous avons

identifié deux principaux types de structures: les organes pleins (cerveau, foie,

prostate etc.) et les organes creux (colon, vaisseaux sanguins, estomac etc.).

Notre réponse à cette problématique est double. Notre première contri-

bution est une implémentation GPU d’un modèle éléments finis qui est non-

linéaire, anisotropique et viscoélastique pour les structures pleines. Notre sec-

onde contribution est un environnement pour modéliser en temps réel les struc-

tures fines via un modèle parallèlisable et co-rotationnel utilisant des éléments

coques et une approche pour mailler une surface complexe avec des éléments

coques courbes.

Bien que les deux modèles de tissus soient basés sur la mécanique con-

tinue pour une meilleure précision, ils sont tous les deux capables de simuler

la déformation d’organes en temps réel. Enfin, leur implémentation dans

l’environnement open source SOFA permettra la diffusion de ces deux modèles

afin de participer à l’amélioration du réalisme des simulateurs médicaux.

Mots-clés: Simulation médicale, modélisation de tissus mous, méthode des

éléments finis, GPU, TLED, coques, méthode co-rotationnelle

ix

LIST OF PUBLICATIONS

Below is a partial list of my publications. Only the publications which were pro-

duced while I was working on my PhD between 2007 and 2010 are listed.

Journals

[1] Z. Taylor, O. Comas, M. Cheng, J. Passenger, D. Hawkes, D. Atkinson and

S. Ourselin. On modelling of anisotropic viscoelasticity for soft tissue sim-

ulation: Numerical solution and GPU execution. Medical Image Analysis,

vol. 13, no. 2, pages 234–244, 2009

Refereed conference papers

[2] O. Comas, C. Duriez and S. Cotin. Shell Model for Reconstruction and Real-

Time Simulation of Thin Anatomical Structures. In Proceedings of MICCAI,

pages 371–379, Bejing, China, 2010b

[3] O. Comas, S. Cotin and C. Duriez. A Shell Model for Real-Time Simulation

of Intra-ocular Implant Deployment. In Proceedings of ISBMS 2010, pages

160–170, Phoenix, United States, 2010a

[4] J. Passenger, D. Conlan, H. de Visser, M. Cheng, O. Comas, J. Borda, C. Russ,

J. Taylor and O. Salvado. Harnessing the GPU for Surgical Training and Pre-

operative Planning. In NVIDIA GPU Developers Summit 2009, page 33, San

Jose, California, USA, 2009

[5] Z. Taylor, O. Comas, M. Cheng, J. Passenger, D. Hawkes, D. Atkinson and

S. Ourselin. Modelling anisotropic viscoelasticity for real-time soft tissue

simulation. In Proceedings of MICCAI, pages 703–710, New York, USA,

2008a

[6] O. Comas, Z. Taylor, J. Allard, S. Ourselin, S. Cotin and J. Passenger. Efficient

nonlinear FEM for soft tissue modelling and its GPU implementation within

the open source framework SOFA. In Proceedings of ISBMS 2008, pages 28–

39, London, United Kingdom, 2008

[7] H. De Visser, O. Comas, D. Conlan, S. Ourselin, J. Passenger and O. Salvado.

Deforming a High-Resolution Mesh in Real-Time by Mapping onto a Low-

Resolution Physical Model. In Proceedings of ISBMS 2008, pages 135–146,

London, United Kingdom, 2008

xi

xii

[8] J. Passenger, H. de Visser, O. Comas, C. Russ, S. Riek, M. Watson and O. Sal-

vado. GPU programming - New frontiers for surgical simulation. In In Pro-

ceedings of SimTect 2008, Brisbane, Australia, 2008

Other conference papers

[9] H. de Visser, D. Conlan, O. Comas, M. Cheng, G. Wallis, C. Zupanc, J. Pas-

senger and O. Salvado. Surgical Training using the Colonoscopy Simulation.

In ICT Centre Conference, Sydney, Australia, 2010

[10] D. Conlan, J. Passenger, O. Comas and O. Salvado. Implementing a GPU

based Spatial Hash Generator. In ICT Centre Conference, Sydney, Australia,

2008

[11] O. Comas, M. Cheng, Z. Taylor and S. Ourselin. A new frontier for surgery

simulation: implementing a GPU physical model with CUDA. In ICT Centre

Conference, Sydney, Australia, 2007

CONTENTS

Contents xiii

List of Figures xvi

List of Tables xvii

I Introduction 1

1 Introduction to medical simulation 3
1.1 General context . 3

1.2 Challenges in computer-based simulation 5

1.3 Our contributions . 7

2 Background in continuum mechanics for soft-tissue modelling 9
2.1 Introduction . 10

2.2 Description of motion . 10

2.3 Analysis of deformation . 12

2.4 Strain measures . 15

2.5 Stress . 19

2.6 Constitutive equations . 22

2.7 Tissue characterisation . 28

3 A practical approach of the finite element method 33
3.1 Introduction . 34

3.2 Discretisation . 36

3.3 Derivation of element equations . 41

3.4 Assembly of element equations . 45

3.5 Solution of global problem . 47

II Solid structure modelling 57

4 Modelling the deformation of solid objects in real-time 59
4.1 Introduction: the problem . 60

4.2 Techniques based on geometry . 61

4.3 Techniques relying on physics . 65

4.4 Techniques based on continuum mechanics 71

xiii

xiv Contents

4.5 Conclusion . 82

5 The total Lagrangian explicit dynamics algorithm 85

5.1 Description of the TLED algorithm 86

5.2 Anisotropic and viscoelastic constitutive equations 93

5.3 Constitutive update procedure for explicit analyses 97

5.4 Conclusion . 99

6 GPU implementation of TLED 101

6.1 Summary of the TLED formulation 102

6.2 General-purpose computation on GPU 103

6.3 Implementation into SOFA . 107

6.4 Results . 115

6.5 Discussion . 123

6.6 Conclusion . 126

III Hollow structure modelling 127

7 Modelling the deformation of hollow objects in real-time 129

7.1 Introduction: the problem . 130

7.2 Mass-spring models . 131

7.3 Techniques relying on the derivation of a bending energy 133

7.4 Techniques based on continuum mechanics 134

7.5 Conclusion . 137

8 A co-rotational triangular shell FEM model 139

8.1 Model description . 140

8.2 Mechanical interactions with the curved surface of shells 142

8.3 Implementation . 143

8.4 Comparison with an analytical result 151

8.5 Application to implant deployment simulation in cataract surgery . 152

8.6 Discussion . 155

8.7 Conclusion . 156

9 Physics-based reconstruction using shell elements 157

9.1 Techniques of mesh simplification . 158

9.2 Our method . 159

9.3 Discussion . 163

9.4 Conclusion . 163

Contents xv

IV Conclusion 165

10 Conclusion and perspectives 167
10.1 Summary of contributions . 167

10.2 Discussion . 169

10.3 Perspectives . 171

A The weighted residual method 173

References 175

LIST OF FIGURES

2.1 Transformation of a volume element under a deformation mapping. . 14

2.2 Tetrahedral element in Cartesian coordinates. 20

2.3 Relationship between strain and stress 24

2.4 Characteristics of viscoelastic materials 29

2.5 Magnetic resonance elastography of a liver 31

3.1 Approximation of the area under a curve 35

3.2 Error introduced by the division into elements 36

3.3 Natural coordinates of a hexaedron . 39

3.4 Natural coordinates of a tetrahedron . 40

3.5 Illustration of a sparse matrix for a 2D finite element problem 51

4.1 Deformation of objects by free-form deformation 62

4.2 Shape matching technique . 63

4.3 Squeezing of a duck using shape matching 64

4.4 Penguins animation with fast lattice shape matching 64

4.5 Deformation of a 2D chain . 65

4.6 Applications of modal analysis . 67

4.7 Undesired anisotropy with mass-spring models 69

4.8 Hepatic surgery simulator . 73

4.9 The three steps in performing a cut . 74

4.10 Deformation of cylinders . 75

4.11 Simulation of eye surgery . 77

4.12 Simulation of a gummy bear . 78

6.1 Multi-model representation in SOFA . 108

6.2 CUDA architecture . 110

6.3 Stress comparison with analytical solution for a pure shear of a cube . 117

6.4 Stress comparison with analytical solution for a pure shear of a cube

at various strain rate . 117

6.5 Deformation patterns of transversely isotropic models compared

with that of an isotropic model . 119

6.6 Finite element computed reaction forces on the end faces of the cube

models over time. 120

6.7 GPU solution times for different constitutive models 121

6.8 Real-time demo at MICCAI 2007 . 122

6.9 Computational timings within SOFA . 123

xvi

6.10 Deformation of a liver using TI and TIV models 124

7.1 Illustration of the key difference between plate and shell theory 131

7.2 Deformation of a sheet hanging by two adjacent corners 132

7.3 A 400% stretched fabric square . 132

7.4 Comparison between real footage and simulation of a hat dropped on

a table . 134

7.5 Simulation of complete garments that have large bending stiffness . . 135

7.6 A shirt shown with different material properties 136

7.7 Different types of folds on a garment’s sleeve 136

8.1 The different degrees of freedom of a triangular thin plate in bending . 141

8.2 Subdivision of the shell for rendering and collision detection 143

8.3 Concept of mappings in SOFA . 147

8.4 Visual artifacts using triangle subdivisions 149

8.5 Steps of cataract surgery . 153

8.6 Lens implant and its mesh . 154

8.7 Folding of intra-ocular implant . 154

8.8 Lens imlant . 155

9.1 Meshing of a cylinder with shell elements 160

9.2 Meshing of a liver with shell elements . 160

9.3 Meshing of an aneurysm with shell elements 161

9.4 Computation time on meshes of 200, 400, 600, 800 and 1000 elements. 161

9.5 Simulation of an angioplasty procedure 162

LIST OF TABLES

3.1 Element connectivity information . 46

8.1 Test of our shell model with the bending of a square plate 152

8.2 Physical parameters of the intra-ocular implant 153

xvii

Part I

Introduction

1

C
H

A
P

T
E

R

1
INTRODUCTION TO MEDICAL SIMULATION

1.1 General context

Virtually everyone knows this situation where a close relative has to go to the

hospital, either for a simple routine check or a serious surgery. Hospitals are

meant to be re-insuring, a refuge where people’s health improves, where people

get fixed. Obviously, patient safety is a critical concern in the medical indus-

try. Yet, patients have been known to suffer injuries or even death due to errors

of judgement or a lack of care and training. As an example, a report published

in 2000 by the Institute of Medicine in the United States (Kohn et al., 2000) de-

scribed two studies carried out in the 1990s based on large samples of hospi-

tal admissions. They found that the proportion of hospital admissions experi-

encing an adverse event, defined as causes of injuries by medical management,

were 2.9 and 3.7%, respectively. The proportion of these events attributable to

errors (that is, preventable adverse events, in other words medical errors) was

58 and 53%, respectively. Even when using the lower estimate, deaths due to

preventable adverse events in 1997 in the US (44000) exceeded the deaths at-

tributable to motor vehicle accidents (43458), breast cancer (42297) or AIDS

(16516). Because many errors go unreported, detailed statistics on medical er-

rors are fairly scarce (hospitals usually do not attempt to emphasize errors). Nev-

ertheless, the problem is real. And this is not surprising, elaborate skills have

to be mastered in the medical field. Moreover, achieving a high degree of per-

sonal competence is sometimes not sufficient as various members of staff must

learn how to work as a team. In fact, one of the recommendations of this re-

port (Kohn et al., 2000) was to establish interdisciplinary team training programs

for providers that incorporate proven methods of training, such as simulation.

However, dispensing an appropriate training in such a complex and hazardous

environment is very challenging. Because healthcare is a high risk industry (like

aviation or military), training in the real world is too costly and dangerous. Con-

sequently, various approaches were applied for teaching and training of medical

3

4 Chapter 1. Introduction to medical simulation

practicians over history of healthcare.

The most basic form of medical simulators are simple models of human

anatomy. Hundreds of years ago, representations in clay and stone were al-

ready used to demonstrate clinical features of disease states and their effects on

humans. Models have been found from many cultures and continents. Nowa-

days, similar passive models are still used to help students learn the anatomy. In

medical schools, live animals are also used for teaching physiology and surgery

classes. Dogs, pigs, goats and sheep are commonly used in medical training. The

exercises essentially consist in anaesthetising the animal and practicing surgi-

cal techniques. They may also be severely injured to teach participants how to

treat and manage various traumatic injuries. If animal training allows a better

realism than passive models, this type of training is being progressively aban-

doned because of both the prohibitive cost and obvious ethical reasons. Alter-

natives include active models of human patients that attempt to reproduce liv-

ing anatomy or physiology. The first example was created in the early 1960s by

Asmund Laerdal for training in mouth to mouth ventilation. This simulator of

a dying victim not breathing and lacking a heart beat, became known as called

Resusci-Anne and had been widely used for CPR training thanks to an internal

spring attached to the chest wall (Cooper and Taqueti, 2004). In the mid-1960s,

Sim One became the first mannequin controlled by a computer. The chest was

moved with breathing, the eyes blinked and the pupils could dilate for instance.

But the computer technology was too expensive for commercialisation at the

time and only one mannequin was built. Over time, computerised mannequins

have substantially improved and today such systems are essentially integrated

into training centres that aim at recreating the operating room environment.

Scenarios can be created to expose medical professionals to diverse clinical sit-

uations with the goal of improving the communication between staff members.

Rare but critical clinical situations that may require specialised training can also

be simulated. Another approach to medical training, that may also be combined

with computerised mannequins, is the use of computer-based simulators. Such

systems provide an elegant solution for medical training since they can offer a re-

alistic and configurable training environment. Computer-based simulators ap-

pear as an ideal tool to assess students’ skills since virtually every parameter of

the simulation can be measured and recorded. Increasing computational power

and growing interest for the field over the last decade led to the rapid develop-

ment of reasonably sophisticated simulation systems. Yet, computer-based sim-

ulators still face numerous challenges.

1.2. Challenges in computer-based simulation 5

1.2 Challenges in computer-based simulation

Because computer-based simulators are entirely virtual, the possibilities are

almost infinite. The ideal simulator will ultimately feature a patient-specific

anatomy obtained through a medical imaging technique (such as MRI or CT).

It will also consider the actual properties of the anatomical structures of this

given patient, to take into account both the variability in mechanical proper-

ties across patients and potential alterations due to diseases. Indeed, diseased

organs are often much stiffer than healthy structures and this will affect the over-

all mechanical behaviour. The physiology relevant to the simulated procedure

(motion caused by breathing, heart beat, blood flow, etc.) will have to be faith-

fully reproduced as well. Such a patient-specific simulator capable of replicat-

ing human physiology and pathologies would be a great instrument for medical

training. Not only it would constitute an invaluable tool for teaching to medical

students but it would also enable experts clinicians to practice rare and com-

plex cases that they would otherwise never encounter before facing them in real

life. Moreover, a highly realistic simulator would also allow planning of complex

surgical procedures and per-operative guidance.

While substantial progress was accomplished during the past ten years,

much remains to be done. In fact, the research described in this PhD fits in this

context of computed-based simulation. Medical simulation can be broken up

into different areas of research, all are very challenging.

Photo-realistic rendering: first, the scene needs to look real. A rendered image

can be understood in terms of a number of visible features that we want

to reproduce in a simulated image: colours, brightness, shadows, reflec-

tion, transparency, refraction, diffraction, etc. Therefore, a series of fairly

complex calculations is required for all visible structures within each image

(usually displayed at 30Hz).

Collision detection involves algorithms to check for collision between solids.

Without them, tools could go through organs and other obstacles during

the simulation. The collision detection algorithm has to find all intersec-

tions between the objects at each time step of the simulation.

Contact modelling: once the collision between two objects has been detected, a

variety of responses to this contact may be formulated. The two solids may

rebound away from each other, slide (with or without friction), or settle

into relative static contact. This step must also be carried out at each time

step.

Anatomical structure modelling and haptic feedback: the simulator must also

take into account the physics involved in the deformation of anatomical

6 Chapter 1. Introduction to medical simulation

structures. Indeed, when a pressure is exerted on a given organ, the latter

must deform and react according to its mechanical properties. The force

created by this interaction may be sent back to the user through a so-called

haptic device. This device provides the user with a sense of touch so he can

feel the forces and vibrations due to the contact. The force feedback must

take place at a very high frequency (often between 500 and 1000Hz) for a

smooth sense of touch.

Although each of these steps alone is computationally demanding, the whole

simulation process must be computed in real-time or close to real-time. Real-

time means that one second of simulation corresponds to one second of real

life. In that regard, a lot of work remains to be done in all these areas of research.

Along with the increase in computational power, medical simulators endeavour

to achieve the highest degree of realism possible. Of particular interest to us in

this PhD is the accurate modelling of the deformation of anatomical structures

in real-time.

In the area of biomechanics, approaches for modelling anatomical structures

became more elaborate and less approximative. These different approaches

may be classified into three main categories: (1) geometrically based techniques,

(2) approaches physically motivated and (3) methods based on the equations of

continuum mechanics. Techniques based on geometry tolerate a degradation

of realism as long as the result looks realistic and are typically used in the game

industry. As an example, the technique of shape matching proposed by Müller

et al. (2005) makes use of a simple particle system without particle-particle in-

teractions, but including response to collisions with the environment and in-

cluding external forces such as gravity. But the most popular technique applied

in simulation is the mass-spring system (Terzopoulos et al., 1991; Provot, 1995;

Mosegaard and Sørensen, 2005). In this method, the geometry is described by

a network of masses connected together by springs. The system of equations is

solved using Newton’s second law. Finally, the most computationally demanding

techniques are the one relying on the equations of continuum mechanics. These

equations are regarded as the most accurate mathematical description available

for modelling the deformation of a continuum. The finite element method is a

numerical procedure that allows to solve the partial differential equations pro-

vided by continuum mechanics (Cotin et al., 1999). With the continual growth

in computational power, finite element formulations applied to medical simu-

lation become more elaborate (Sagar et al., 1994; Felippa, 2000; Debunne et al.,

2001; Miller et al., 2007). For instance, they tend to employ more accurate con-

stitutive laws to better describe the complex mechanical behaviour of organs.

Yet, few biomechanical models can be computed in real-time and many ap-

proximations are still in use in medical simulation. Even though the mechanical

1.3. Our contributions 7

behaviour of most organs is known to be non-linear, anisotropic and viscoelas-

tic (Fung, 1993), simple linear models are often employed in medical simula-

tors. The resulting deformation of these organs is rather inaccurate and the force

feedback provided to the user is not correct. Moreover, most of the proposed

models are concerned with the mechanical behaviour of solid organs despite

the fact that many thin and hollow anatomical structures may be found in the

human body. To our knowledge, no model based on continuum mechanics was

suggested in medical simulation to simulate the deformation of thin structures.

Therefore, new algorithms are required for both type of structures. More elabo-

rate models are suitable to better describe the complex behaviour of solid struc-

tures (with greater accuracy) and physics-based models are needed to model

thin anatomical structures, all within the context of a real-time environment.

1.3 Our contributions

Through this PhD, we followed the trend of using more elaborate models capable

of describing with great accuracy the mechanical behaviour of anatomical struc-

tures. Moreover, we strived to develop efficient formulations to model entire or-

gans in real-time. Our work emerged from the following observation: the shape

and the internal nature of the anatomical structures greatly differ. In the light of

this statement, we believe that a unique model cannot deal with the variousness

of the mechanical behaviours encountered in the human body. We identified

two major types of structures in human body, they can be either solid (brain,

liver, prostate etc.) or hollow (colon, blood vessels, stomach etc.). Consequently,

this PhD thesis lies in two parts: solid structure modelling and hollow struc-

ture modelling. The first part deals with the first GPU implementation of a non-

linear, anisotropic and viscoelastic finite element procedure. The second part

introduces a framework for real-time modelling of thin anatomical structures

via a parallelisable co-rotational shell finite element formulation and a method

to mesh a complex surface with curved shell elements. In both cases, their im-

plementation in the open source framework SOFA are presented. By providing

these new models to the medical simulation community, we hope to assist in

enhancing the realism of medical simulators.

C
H

A
P

T
E

R

2
BACKGROUND IN CONTINUUM MECHANICS

FOR SOFT-TISSUE MODELLING

As seen in the previous chapter, realistic modelling of organ deformation is a chal-

lenging research field that opens the door to new clinical applications including:

medical training and rehearsal systems, patient-specific planning of surgical pro-

cedures and per-operative guidance based on simulation. In all these cases the

clinician needs fast updates of the deformation model to obtain a real-time dis-

play of the computed deformations. If for medical training devices the haptic feed-

back from touching organs merely needs to feel real, the accuracy of the informa-

tion provided to the clinician in the cases of planning or per-operative guidance

is crucial. Therefore, a substantial comprehension of the mechanics involved and

a knowledge of the physical properties of anatomical structures are both manda-

tory in our quest to realistically model the deformation of organs. This chapter

will start by introducing the main concepts of continuum mechanics that are fun-

damental to study the mechanical response of organs. It will then present mathe-

matical models able to describe the different mechanical aspects of materials and

briefly discuss the mechanical characterisation of tissues.

9

10 Chapter 2. Background in continuum mechanics for soft-tissue modelling

2.1 Introduction

In our everyday life, matter appears smooth and continuous: from the wood

used to build your desk to the water you drink. But this is just illusion. The

concept that matter is composed of discrete units has been around for millen-

nia. In fact, we know with certainty that our world is composed of microscopic

atoms and molecules separated by empty space since the beginning of the twen-

tieth century (Lautrup, 2005). However, certain physical phenomena can be pre-

dicted with theories that pay no attention to the molecular structure of materi-

als. Consider for instance the deformation of the horizontal board of a bookshelf

under the weight of books. The bending of the shelf can be modelled without

considering its molecular composition. The branch of physics in which mate-

rials are treated as continuous is known as continuum mechanics. Continuum

mechanics studies the response of materials to different loading conditions. In

this theory, matter is assumed to exist as a continuum, meaning that the matter

in the body is continuously distributed and fills the entire region of space it occu-

pies (Lai et al., 1996). This assumption is generally valid if the length scales of in-

terest are large compared with the length scales of discrete molecular structure,

but whether the approximation of continuum mechanics is actually justified in

a given situation is merely a matter of experimental test.

Modelling anatomical structures requires an understanding of the deforma-

tion and stresses caused by the different interactions that occur during med-

ical procedures. A sufficient knowledge of continuum mechanics is therefore

essential to follow the rest of this manuscript. Continuum mechanics can be

divided into two main parts: general principles common to all media (analysis

of deformation, strain and stress concepts) and constitutive equations defining

idealised materials. This chapter will not only deal with those two aspects but

will also discuss the different aspects of the mechanical behaviour that we find

in anatomical structures. Note that this chapter will mostly follow the notation

used by Bonnet and Wood (1997) and Reddy (2007). The interested reader may

refer to these books for more details.

2.2 Description of motion

Let us consider a body B of known geometry in a three-dimensional Euclidean

space R3. For a given geometry and loading, B will undergo a set of macroscopic

changes which is called deformation. The region of space occupied by the body

at a given time t is termed a configuration. A change in the configuration of

a continuum body results in a displacement. The displacement of a body has

two components: a rigid-body displacement and a deformation. A rigid-body

displacement consists of a simultaneous translation and rotation of the body

2.2.1. Lagrangian description 11

without changing its shape or size. In contrast, a change in shape and/or size

of the body from an initial configuration κ0 to a new configuration κ is called

a deformation. This new configuration κ may be designated by the current or

deformed configuration.

Let us now consider a given particle of the body that we call X . What we will

call particle in the following is in fact an infinitesimal volume of material. We de-

note the position it occupies in the initial configuration X and note its position in

the deformed configuration x, both expressed in the chosen frame of reference.

The mapping χ defined as the following:

χ : Bκ0 → Bκ (2.1)

is called the deforming mapping of the body B from κ0 to κ. When analysing

the deformation of a continuous body, it is necessary to describe the evolution

of configurations through time. Its mathematical description follows one of the

two approaches: the material description or the spatial description. The mate-

rial description is known as Lagrangian description whereas the spatial descrip-

tion is called Eulerian description. These two approaches are detailed next.

2.2.1 Lagrangian description

In the Lagrangian description, the position and physical properties of the par-

ticles are referred to a reference configuration κR , often chosen to be the unde-

formed configuration κ0. Consequently, the current coordinates (x ∈ κ) depend

on the reference coordinates (X ∈ κ0):

x =χ(X, t), χ(X,0) = X, (2.2)

and a typical variable φ defined over the body is expressed in terms of the coor-

dinates X and time t :

φ=φ(X, t). (2.3)

Let us consider a particle X whose position in the reference configuration is

X. From (2.3), we note that the value of φ associated with this fixed particle X

changes over time. Hence, the Lagrangian description focuses its attention on

the particles of the continuous body and it is usually used in solid mechanics.

2.2.2 Eulerian description

In contrast, the Eulerian description is interested in changes at fixed locations.

This time, the motion and φ are described with respect to the current position

(x ∈ κ):

φ=φ(x, t), X = X(x, t). (2.4)

12 Chapter 2. Background in continuum mechanics for soft-tissue modelling

For a fixed value of x ∈ κ, φ(x, t) gives the value of φ associated with the particle

occupying the position x ∈ κ, which may very well be a different particle for each

new time t . Because a change in time t implies that a different value φ is ob-

served at the same spatial location x ∈ κ, now probably occupied by a different

particle, the Eulerian description is focused on a spatial position. This approach

is convenient for the study of fluid flow where the kinematic property of greatest

interest is the rate at which change is taking place rather than the shape of the

body of fluid at a reference time (Spencer, 1980). Because we are only interested

in the study of solid bodies, the Lagrangian description will be used in the rest of

the text.

2.2.3 Displacement field

The displacement u of a particle X is called displacement vector and its expres-

sion in the Lagrangian description is given by the following:

u(X, t) = x(X, t)−X. (2.5)

A displacement field is a vector field of all displacement vectors for all parti-

cles in the body. Thus, the deformed configuration κ may be obtained from

the undeformed configuration κ0 by merely adding the displacement field: κ0:

χ(X, t) = X+u(X).

2.3 Analysis of deformation

2.3.1 Deformation gradient tensor

The displacement field tells us how a particle displaces from the reference to

the deformed configuration. More interestingly, we would like to know how a

material line would deform (stretch and rotation) within this displacement field.

Since the length of a material line dX can change when going to the deformed

configuration as well as its orientation, we can say that dX deforms into dx. We

now seek the relation existing between dx in the deformed configuration and dX
of the reference configuration.

Consider two particles P1 and P2 in a continuous body separated by an in-

finitesimal distance dX:

dX = XP2 −XP1 . (2.6)

After deformation, the two particles have deformed to their current positions

given by the mapping χ (2.1) as:

xP1 =χ(XP1 , t) and xP2 =χ(XP2 , t). (2.7)

Using (2.6) the distance dx between P1 and P2 can then be expressed as:

dx = xP2 −xP1 =χ(XP1 +dX, t)−χ(XP1 , t). (2.8)

2.3.2. Change of volume 13

The deformation gradient F can be defined as:

F =
∂χ

∂X
(2.9)

and the vector dx can then be obtained in terms of dX as:

dx = FdX. (2.10)

Note that F transforms vectors from the reference configuration into vectors in

the current configuration and is therefore a second-order tensor.

Knowing that χ(X, t) is of course x, the deformation gradient may also be

written as:

F =
∂x

∂X
=∇0x =∇0u+ I, (2.11)

where ∇0 is the gradient operator with respect to X and u the displacement vec-

tor. In indicial notation in a Cartesian coordinate system, (2.11) can be explicited

as:

[F] =

























∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

























. (2.12)

2.3.2 Change of volume

At this point, we have seen how a deformation can affect a vector. We will now

look into its effect on volumes. Our motivation comes from the need to write

global equilibrium statements that involve integrals over volumes. Let us con-

sider a volume in the reference configuration formed by three non-coplanar line

elements dX(1), dX(2) and dX(3) as can be seen on Fig. 2.1.

The three vectors after deformation dx(1), dx(2) and dx(3) can be obtained

with:

dx(i) = FdX(i), i = 1,2,3. (2.13)

The volume of the parallelepiped that we will note dV can be calculated using

the triple product between the three vectors:

dV = dX(1) ·dX(2) ×dX(3) = (N̂1 · N̂2 × N̂3)d X (1)d X (2)d X (3)

= d X (1)d X (2)d X (3), (2.14)

14 Chapter 2. Background in continuum mechanics for soft-tissue modelling

Figure 2.1: Transformation of a volume element under a deformation mapping.

where N̂i is the unit vector along dXi . Similarly, we can compute the correspond-

ing volume in the deformed configuration by:

d v = dx(1) ·dx(2) ×dx(3)

= (F · N̂1) · (F · N̂2)× (F · N̂3)d X (1)d X (2)d X (3) by (2.13)

= detFd X (1)d X (2)d X (3). (2.15)

The determinant of F is called the Jacobian and it is denoted by J = detF. There-

fore, the relation between the deformed volume d v and the undeformed volume

dV may be written as:

d v = JdV. (2.16)

It is worth noting that the Jacobian J has the physical meaning of being the local

ratio of current to reference volume of a material volume element.

2.3.3 Change of surface

For similar reasons, let us find the relation between an element of area in the

reference configuration dA which becomes da in the deformed configuration.

Considering an arbitrary material line dL in the reference configuration and not-

ing d l the same line after deformation, the reference and current volumes are

given respectively by:

dV = dL ·dA (2.17)

and dv = d l ·da. (2.18)

Using (2.16) which relates the reference and deformed volumes and recalling

that d l = FdL, we have:

J dL ·dA = (FdL) ·da. (2.19)

Since this expression is valid for any vector dL and by using the property a ·b =
aT b, the sought relation between an element of area in the reference configu-

ration dA and its corresponding area da in the deformed configuration may be

2.3.4. Volumetric and isochoric components 15

expressed as:

da = J F−T dA. (2.20)

2.3.4 Volumetric and isochoric components

We recall that the Jacobian J has the physical meaning of being the local ratio

of current to reference volume of a material volume element. Therefore, if J =
1 the volume does not change locally during the deformation and the latter is

qualified as isochoric at this given particle P . If J = 1 everywhere in the body, the

deformation of the body is isochoric.

When dealing with incompressible and nearly incompressible materials it is

necessary to separate the volumetric from the isochoric components of the de-

formation. Such a separation must ensure that the isochoric component F̂ does

not imply any change in volume. This condition can be achieved by choosing F̂
as:

F̂ = J−1/3F. (2.21)

Indeed,

det F̂ = det(J−1/3F)

= (J−1/3)3 detF

= J−1 J

= 1. (2.22)

The deformation gradient F can now be expressed in terms of the volumetric

and isochoric component J and F̂ as:

F = J 1/3F̂. (2.23)

2.4 Strain measures

The length of a material curve from the reference configuration can change

when displaced to a curve in the deformed configuration. If all the curves do

not change length, it is said that a rigid body displacement occurred. The con-

cept of strain is used to evaluate how much a given displacement differs locally

from a rigid body displacement (Lubliner, 2006). Therefore, although we know

how to transform vectors from the reference configuration into vectors in the

current configuration using the deformation gradient, it is more useful to find a

measure of the change in length of dX. Many measures of strains can be defined

and the most common ones will now be introduced.

16 Chapter 2. Background in continuum mechanics for soft-tissue modelling

2.4.1 Cauchy-Green deformation tensors

Let us consider two particles P1 and P2 in the neighbourhood of each other, sep-

arated by dX in the reference configuration. In the deformed configuration P1

and P2 occupy the positions P̃1 and P̃2 and they are separated by dx. We are in-

terested in the change of distance between the two points P1 and P2 as the body

deforms.

The squared distances between P1 and P2 and P̃1 and P̃2 are respectively

given by:

(dS)2 = dX ·dX (2.24)

(d s)2 = dx ·dx = (FdX) · (FdX)

= (FdX)T (FdX) = (dXT FT)(FdX) = dXT (FT FdX)

= dX · (FT FdX). (2.25)

using the property that the dot product between two vectors a and b can also be

expressed as the simple product between the transpose of a and b (a ·b = aT b).

We define the right Cauchy-Green deformation tensor C as:

C = FT F. (2.26)

Thus, the change of distance between the two points P1 and P2 after deformation

of the continuous body may be written as:

(d s)2 = dX · (CdX). (2.27)

By definition, C is a symmetric second-order tensor. The transpose of C is de-

noted B and is called the left Cauchy-Green deformation tensor:

B = FFT . (2.28)

2.4.2 Green-Lagrange strain tensor

Using (2.24) and (2.27), the difference in the squared lengths between the refer-

ence and the current configuration may be evaluated as:

(d s)2 − (dS)2 = dX · (CdX)−dX ·dX

= dX · (C− I)dX. (2.29)

Let us define the Green-Lagrange strain tensor E as:

E =
1

2
(C− I) (2.30)

so we can write:

(d s)2 − (dS)2 = 2dX ·EdX. (2.31)

2.4.3. Cauchy and Euler tensor 17

By definition, the Green-Lagrange strain tensor is a symmetric second-order

tensor. Moreover, we observe that the change in squared lengths is zero if and

only if the Green-Lagrange strain tensor E = 0. Using (2.11), the Green strain

tensor may be expanded as the following:

E =
1

2
(FT F− I)

=
1

2

[

(∇0u+ I)T (∇0u+ I)− I
]

=
1

2

[

(∇0u)T +∇0u+ (∇0u)T (∇0u)
]

. (2.32)

The Green strain tensor can be expressed in terms of its components in any

coordinate system. In particular, in the Cartesian coordinate system (X1, X2, X3)

the components Ei j of E are the following:

Ei , j =
1

2

(

∂ui

∂X j
+

∂u j

∂X i
+

∂uk

∂X i

∂uk

∂X j

)

, i = 1,2,3. (2.33)

The components E11, E22 and E33 are called normal strains and it can be shown

that they are in fact the ratio of the change in length to the original length along

each of the three unit vectors. The components E12, E23 and E13 are called shear

strains and they can be interpreted as a measure of the change in angle between

line elements that were perpendicular to each other in the undeformed config-

uration.

2.4.3 Cauchy and Euler tensor

The change in the squared lengths during the body deformation can also be ex-

pressed relative to the current length. The length dS can be written in terms of

dx as:

(dS)2 = dX ·dX = dx · (F−T F−1)dx = dx · B̃dx (2.34)

where B̃ = F−T F−1 is called the Cauchy strain tensor. B̃ is in fact the inverse of

the left Cauchy-Green tensor B introduced previously.

In a similar way we defined the Green strain tensor, we can write the change

in the squared lengths but relative to the current length:

(d s)2 − (dS)2 = 2dx ·edx. (2.35)

where e is called Almansi-Hamel strain tensor or simply Euler strain tensor.

2.4.4 Principal strains and invariants

The components εi j of the strain tensor depend on the coordinate system at the

point under consideration. However, the strain tensor itself is a physical quan-

tity and as such, it is independent of the coordinate system chosen to represent

18 Chapter 2. Background in continuum mechanics for soft-tissue modelling

it. Certain operations on strain tensors give the same result independently of the

coordinate system chosen to represent the components of strain. As an example,

a vector is a simple tensor of rank one. In three dimensions, it has three compo-

nents. The value of these components will depend on the coordinate system

chosen to represent the vector, but the length of the vector is a physical quantity

(a scalar) and is independent of the coordinate system chosen to represent the

vector. Similarly, every second rank tensor (such as the strain tensors) has three

independent invariant quantities associated with it. One set of such invariants

are the principal strains of the strain tensor, which are just the eigenvalues of the

strain tensor. Because they are independent of any coordinate system, they are

very convenient to define strain energy density functions (see section 2.6.5). The

most commonly used invariants are:

I1 = tr (ε)

I2 =
1

2

{

tr (ε2)− [tr (ε)]2
}

(2.36)

I3 = det (ε).

It can be shown that in the coordinate system (p1,p2,p3) formed by the three

eigenvectors, the expression of the strain tensor is:

ε=







ε1 0 0

0 ε2 0

0 0 ε3






. (2.37)

Since there are no shear strain components in this particular coordinate sys-

tem, the principal strains represent the maximum and minimum stretches of an

elemental volume. Because of the obvious simplicity of the strain tensor’s ex-

pression, this coordinate system is often used in mechanics to derive and solve

equations.

2.4.5 Infinitesimal strain tensor

In some cases, it is possible to simplify the expression of the Green strain tensor

defined in (2.32). Indeed, when the displacement gradients are small (that is,

|∇u| ≪ 1) we can neglect the non-linear terms in the definition. In the case of

infinitesimal strains, the Green-Lagrange strain tensor and the Eulerian strain

tensor are approximately the same and can be approximated by the infinitesimal

strain tensor denoted ε and is given by:

ε=
1

2

[

∇u+ (∇u)T
]

. (2.38)

Its Cartesian components εi j are the following:

εi j =
1

2
(
∂ui

∂X j
+
∂u j

∂Xi
). (2.39)

2.5. Stress 19

The strain quantities defined in the previous sections are non-linear expres-

sions in terms of the mapping χ and will lead to non-linear governing equations.

In solid mechanics, whenever the hypothesis is acceptable, it is common prac-

tice to assume that the displacements are small and the infinitesimal strain ten-

sor is then used as a measure of the deformation.

2.5 Stress

Stress is a measure of the intensity of the internal forces acting between particles

of a deformable body across imaginary internal surfaces. These internal forces

are produced between the particles in the body as a reaction to external forces

applied on the body. The SI unit for stress is pascal (symbol Pa), which is equiv-

alent to one newton (force) per square metre (unit area). As with strain, stress

can be measured per unit of deformed area (section 2.5.1) or undeformed area

(sections 2.5.2 and 2.5.3). In general, the stress is not uniformly distributed over

the cross section of a material body, and consequently the stress at a point on a

given area is different from the average stress over this entire area. Therefore, it

is necessary to define the stress not over a given area but at a specific point in the

body. The stress at a point in a three-dimensional continuum is fully defined by

nine quantities, three per plane, on three mutually perpendicular planes at the

point. The stress tensor is defined as the second-order tensor which components

are these nine quantities.

2.5.1 Cauchy stress

The Euler-Cauchy’s stress principle states that on any surface (real or imaginary)

that divides the body, the action of one part of the body on the other is equivalent

to the system of distributed forces and couples on the surface dividing the body

(Truesdell and Toupin, 1960). With that consideration in mind, let us consider a

plane S that passes through an arbitrary internal point P which has a unit normal

vector n. This plane separates the body into two regions and we are interested in

the forces applied by one region onto the other. First we will introduce the true

stress, defined as the stress in the deformed configuration χ measured per unit

area of the deformed configuration. The force ∆f(n) acting on a small element

of area ∆a in a continuous medium depends not only on the size of the area but

also depends on the orientation of this area n. The Cauchy stress vector at P on S

can be defined as:

t(n) = lim
∆a→0

∆f(n)

∆a
. (2.40)

This equation means that the stress vector depends on its location in the body

and the orientation of the plane on which it is acting. In general, the stress vector

is not perpendicular to that plane and it can be separated into two components:

20 Chapter 2. Background in continuum mechanics for soft-tissue modelling

one component normal to the plane called normal stress and one component

tangent to the plane named shear stress. Since t depends on n but is not in the

direction of n, it may be interesting to look into the relationship between t and

n.

In the following we make use of a Cartesian coordinate system and we con-

sider an infinitesimal tetrahedron as shown on Fig. 2.2. We note −t1, −t2, −t3

Figure 2.2: Tetrahedral element in Cartesian coordinates.

and t the stress vectors in the outwards directions on the faces of the tetrahe-

dron whose areas are respectively ∆a1, ∆a2, ∆a3 and ∆a. For the mass m inside

the tetrahedron, we have by Newton’s second law:

∑

F = t∆a − t1∆a1 − t2∆a2 − t3∆a3 +∆vf = ma, (2.41)

where f is the force per unit volume acting on the body, ∆v the volume of the

tetrahedron and a the acceleration. The areas ∆a1, ∆a2 and ∆a3 being the

projections of ∆a, they are related to ∆a in the Cartesian coordinate system

(e1,e2,e3) by:

∆ai = (n ·ei)∆a, i = 1,2,3. (2.42)

Dividing (2.41) by ∆a, using (2.42) and noting that ∆v/∆a → 0 when the tetrahe-

dron shrinks to a point yields:

t = (n ·e1)t1 + (n ·e2)t2 + (n ·e3)t3

= n · (e1t1 +e2t2 +e3t3). (2.43)

We define the Cauchy stress tensor σ= e1t1 +e2t2 +e3t3 and we have:

t(n) = n ·σ. (2.44)

2.5.2. First Piola-Kirchhoff stress tensor 21

The stress vector t represents the vectorial stress on a plane whose normal is

n. As we demonstrated, the stress tensor is a property of the medium that is

independent of n. It represents the current force per unit of deformed area: df =
td a =σ ·da.

The matrix form of (2.44) in a Cartesian coordinate system is given by:






t1

t2

t3






=







σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33













n1

n2

n3






. (2.45)

The Cauchy stress tensor is used for stress analysis of material bodies expe-

riencing small deformations. This stress is basically defined as force/(unit de-

formed area). The strain measure that is appropriate to use with the Cauchy

stress tensor is therefore the infinitesimal strain tensor (see section 2.4.5). In-

deed, because the Cauchy stress tensor is defined by unit of deformed area, it

is not appropriate for analysing materials undergoing large deformation where

the area in the deformed configuration is often unknown. Consequently, we re-

quire alternative stress tensors based on the reference configuration. We will

introduce two new stress measures: the first Piola-Kirchhoff stress tensor and

the second Piola-Kirchhoff stress tensor.

2.5.2 First Piola-Kirchhoff stress tensor

We know that the Cauchy stress tensor represents the current force per unit of

deformed area: df = t(n)d a = σ ·da. We state that we can find a stress vector T
over the area element dA in the underformed configuration which results in the

same total force.

df = t(n)d a = T(N)d A. (2.46)

The two stress vectors have the obviously the same direction but different mag-

nitudes since they are not applied to the same area.

In a similar way we defined the Cauchy stress σ with t(n) =σ·n, we introduce

a stress tensor P such that T(n) = P ·N. We call P the first Piola-Kirchhoff stress

tensor and gives the current force per unit undeformed area.

The relation between the first Piola-Kirchhoff stress tensor and the Cauchy

stress tensor can be obtained as follows. From (2.46) we have:

T =
d a

d A
t. (2.47)

Using df = td a and the relation (2.20) between dA and da, we have:

T = J t F−T . (2.48)

Finally we can express the first Piola-Kirchhoff stress tensor P as

P = J σF−T . (2.49)

22 Chapter 2. Background in continuum mechanics for soft-tissue modelling

2.5.3 Second Piola-Kirchhoff stress tensor

Let us consider the stress tensor S resulting in the force dF in the undeformed

area dA which corresponds to the force df in the deformed area da. We define

this stress tensor S as the second Piola-Kirchhoff stress tensor.

dF = SdA. (2.50)

In other words, the second Piola-Kirchhoff stress tensor gives the transformed

current force per unit undeformed area. Similar to the relationship (2.13) be-

tween dx and dX, the force df is related to the force dF via the deformation gra-

dient tensor:

dF = F−1 df

= F−1 (PdA)

= SdA. (2.51)

Therefore, the second Piola-Kirchhoff stress tensor is related to the first Piola-

Kirchhoff stress tensor as follows:

S = F−1P = J F−1σF−T . (2.52)

2.5.4 Principal stresses and invariants

In the same way that we defined principal strains in section 2.4.4 and like any

second-rank tensor, the stress tensor has at least three invariants and we can

find a coordinate system (n1,n2,n3) in which the expression of the stress tensor

is:

σ=







σ1 0 0

0 σ2 0

0 0 σ3






. (2.53)

This result means that at every point in a stressed body there are at least three

planes called principal planes, with normal vectors n1, n2 and n3 called principal

directions (in fact, the eigenvectors), where the corresponding stress vector is

perpendicular to the plane and where there are no normal shear stresses. The

three stresses normal σ1, σ2 and σ3 to these principal planes are called principal

stresses.

2.6 Constitutive equations

So far, all the relations that we have established are valid for every continuum.

Indeed, the derivations carried out so far made no mention of any material.

Therefore, we know that these relations are not sufficient to describe the re-

sponse of a material to a given loading. Moreover, because the stresses result

2.6.1. Elasticity 23

from the deformation of the material, they may be expressed in terms of some

measure of this deformation such as the strain. This relationship, which obvi-

ously depends on the type of material under consideration, is what we call a

constitutive equation. Constitutive equations are an attempt to mathematically

characterise the behaviour of materials observed from experimental results.

Naturally, the relationship between strain and stress is conditioned by the

constitution of the material of interest. Because the mechanics involved in ma-

terials can be quite complex (tissue mechanics in particular), many simplify-

ing assumptions are required to derive a constitutive equation. In practice, a

given constitutive equation can only cover a subset of the actual mechanical be-

haviour and could not possibly model all aspects of tissue behaviour under any

type of loading accurately. For instance, some tissues behave very differently un-

der small loads as compared to large loads. The behaviour may also depends on

loading rates and damage may even occur under large loads. Moreover, not only

constitutive equations need to deal with the complexity of material mechanics

but they must remain simple enough to measure all the included material con-

stants experimentally. This section will now introduce the most common con-

stitutive models relevant to soft-tissue modelling.

2.6.1 Elasticity

If under applied loads a material stores but does not dissipate energy, and it

returns to its original shape when the loads are removed, we call that material

elastic. The work done by the stress is generally dependent on the deformation

path. However, for elastic materials the stress does not depend on the path of

deformation and therefore the state of stress in the deformed configuration is

determined only by the state of deformation. It means that the stress does not

depend on the time taken to achieve the deformation or the rate at which the

state of deformation is reached.

In addition, if there exists a strain energy density function U0(ε) such that

σ=
∂U0

∂ε
, (2.54)

the material is said to be hyperelastic. However, for incompressible materials the

stress tensor is not completely determined by the deformation. The hydrostatic

pressure1 affects the stress and the above equation is then written as:

σ=−pI+
∂U0

∂ε
, (2.55)

1pressure exerted by a fluid at equilibrium due to the force of gravity

24 Chapter 2. Background in continuum mechanics for soft-tissue modelling

where p is the hydrostatic pressure. In order to develop a mathematical model

of an hyperelastic material, U0 is expanded in Taylor’s series about ε= 0:

U0 =C0 +Ci jεi j +
1

2!
Ĉi j klεi jεkl +

1

3!
Ĉi j kl mnεi jεklεmn + . . . , (2.56)

where C0, Ci j and Ĉ are material stiffnesses. The form of U0 may varied for dif-

ferent materials. A material is said to be linear if the relationship between strain

and stress is also linear (see Fig. 2.3). Based on this definition, U0 is a cubic

or higher-order function of the strains for non-linear materials whereas U0 is a

quadratic function of strain for linear materials. We will start by discussing lin-

ear materials for the case of infinitesimal deformations (sections 2.6.2 to 2.6.4).

Consequently, we will not make any distinction between the various measures

of stress and strain and use σ and ε for stress and strain tensors respectively.

Strain

Stress

Linear Non-linear

Figure 2.3: The relationship between strain and stress is often non-linear (blue). However, it may

be approximated as a linear relationship for small deformations (red).

2.6.2 Linear materials: generalised Hooke’s law

The linear constitutive model for infinitesimal deformations is called the gener-

alised Hooke’s law. To derive the relation between stress and strain for a linear

material, we assume the quadratic form of U0:

U0 =C0 +Ci jεi j +
1

2!
Ĉi j klεi jεkl . (2.57)

From there and using (2.54) it can be shown that there exists some coefficients

Ci j kl such as:

σi j =Ci j klεkl . (2.58)

The Ci j kl are the coefficients of the fourth-order tensor C that relates the second-

order tensors of strain and stress. The 81 scalar components of this fourth-order

2.6.3. Orthotropic materials 25

tensor (= 34) can be reduced to 21 independent coefficients using existing sym-

metries. Recalling that both strain and stress tensors are symmetric yields:





















σ11

σ22

σ33

σ23

σ13

σ12





















=





















C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1123 C2223 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212









































ε11

ε22

ε33

ε23

ε13

ε12





















. (2.59)

2.6.3 Orthotropic materials

Further reduction in the number of independent stiffness parameters can be

achieved using the so-called material symmetry. This symmetry is due to the

internal structure of the material, that is the arrangement of molecules (crystal-

lographic form). We note that the symmetry under discussion is a directional

property and not a positional property. Thus, a material may have certain elas-

tic symmetry at every point of a material body and the properties may vary from

point to point. Positional dependence of material properties is what we called

the inhomogeneity of the material.

Orthotropic materials are characterised by three mutually orthogonal planes

of material symmetry, that is, three mutually orthogonal preferred directions. In

this case, the number of coefficients is reduced to 9 and the stress-strain relation

for an orthotropic material is the following:





















σ11

σ22

σ33

σ23

σ13

σ12





















=





















C1111 C1122 C1133 0 0 0

C1122 C2222 C2233 0 0 0

C1133 C2233 C3333 0 0 0

0 0 0 C2323 0 0

0 0 0 0 C1313 0

0 0 0 0 0 C1212









































ε11

ε22

ε33

ε23

ε13

ε12





















. (2.60)

Most often, the material properties are determined in a laboratory in terms

of the engineering constants such as Young’s modulus, shear modulus, and so

on. These constants are measured using simple tests like uni-axial tension test

or pure shear test. Because of their direct and obvious physical meaning, en-

gineering constants are used in place of the more abstract stiffness coefficients

Ci j kl . Therefore, we will now reformulate (2.60) with respect to those engineer-

ing constants. Noting Ei the Young’s modulus in the direction xi and Gi j the

26 Chapter 2. Background in continuum mechanics for soft-tissue modelling

shear moduli in the xi −x j plane, it can be shown that:





















ε11

ε22

ε33

ε23

ε13

ε12





















=







































1

E1
−
ν21

E2
−
ν31

E3
0 0 0

−
ν12

E1

1

E2
−
ν32

E3
0 0 0

−
ν13

E1
−
ν23

E2

1

E3
0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1

G12



























































σ11

σ22

σ33

σ23

σ13

σ12





















. (2.61)

2.6.4 Isotropic materials

A material is said isotropic if its properties are independent of directions. There-

fore, we have the following relations:

E1 = E2 = E3 = E , G12 =G13 =G23 =G , ν12 = ν23 = ν13 = ν. (2.62)

The stress-strain relations may be written:

σi j =
E

1+ν
εi j +

νE

(1+ν)(1−2ν)
εkkδi j . (2.63)

where the summation of repeated indices is implied (Einstein’s notation) and δi j

is the Kronecker delta2. The inverse relations are:

εi j =
1+ν

E
σi j −

ν

E
σkkδi j , (2.64)

recalling that G = E/[2(1+ν)].

2.6.5 Non-linear materials

For most materials, the linear relation between stress and strain is only valid for

small deformation. Beyond a certain threshold, Hooke’s law is no longer valid.

Note that it does mean that the material is not elastic, it may well recover all its

deformation after removal of the loads. However, materials often exhibit an elas-

tic threshold in the non-linear range after which permanent deformation occurs.

This range of deformation is qualified of plastic.

The strain energy density function takes different forms for different mate-

rials. It is often expressed as a linear combination of unknown coefficients (de-

termined experimentally) and principal invariants of Green strain tensor E, left

2δi j is equal to 1 if i = j and to 0 if i 6= j

2.6.6. Viscoelastic materials 27

Cauchy-Green strain tensor B and deformation gradient tensor F (see section

2.4.4 for more information on invariants). The constitutive equations of two

well-known non-linear elastic materials (Mooney-Rivlin and neo-Hookean) will

now be introduced.

Mooney-Rivlin

The Mooney-Rivlin model was proposed by Melvin Mooney and Ronald Rivlin

in two independent papers in 1952. For an incompressible Mooney-Rivlin ma-

terial, the strain energy density function U0 is taken as a linear function of the

principal invariants of the left Cauchy-Green strain tensor B and is written as:

U0 =C1(IB −3)+C2(I IB −3), (2.65)

where C1 and C2 are two constants and IB and I IB are the two principal invari-

ants of B. For those materials, it can be shown that the stress tensor has the form

σ=−pI+αB+βB−1, (2.66)

where ρ is the material density and α and β are given by

α= 2ρ
∂U0

∂IB
= 2ρC1, β=−2ρ

∂U0

∂I IB
=−2ρC2. (2.67)

The Mooney-Rivlin incompressible model is often used to represent the be-

haviour of rubber-like materials.

Neo-Hookean

The neo-Hookean model was proposed by Ronald Rivlin in 1948. It can be de-

rived from the Mooney-Rivlin model in the special case where C2 = 0 in the strain

energy density function. Therefore, we have:

U0 =C1(IB −3). (2.68)

and the constitutive equation for the stress may be written as:

σ=−pI+2ρC1B. (2.69)

The neo-Hookean model provides a reasonable approximation of rubber-like

material for moderate strains.

2.6.6 Viscoelastic materials

We know that materials for which the mechanical behaviour depends solely on

the state of deformation are called elastic. In contrast, the mechanical behaviour

28 Chapter 2. Background in continuum mechanics for soft-tissue modelling

of viscous materials is only a function of the current rate of deformation (like

honey for instance). Viscoelastic materials have elements of both of these prop-

erties and, as such, exhibit time dependent strain. Depending on the change of

strain rate versus stress inside a material the viscosity can be categorised as hav-

ing a linear or non-linear response. When a material exhibits a linear response

it is categorised as a Newtonian material. In this case the stress is linearly pro-

portional to the strain rate. If the material exhibits a non-linear response to the

strain rate, it is categorised as a Non-Newtonian material.

Viscoelastic materials present a few characteristics (see Fig. 2.4):

1. if the stress is held constant, the strain increases with time (creep)

2. if the strain is held constant, the stress decreases with time (relaxation)

3. the effective stiffness depends on the rate of application of the load

4. if cyclic loading is applied, hysteresis occurs, leading to a dissipation of

mechanical energy

In other words, the resistance of a viscoelastic material to a given force de-

pends on the velocity to which this force is applied.

2.7 Tissue characterisation

If continuum mechanics does teach us how to model idealised continuous struc-

tures, modelling soft tissues remains very complex. Indeed, in practice soft tis-

sues are complex structures: they do not consist of a simple continuous piece

of material, they are made of various constituents. Mechanical properties of

soft tissues not only depends on the properties of these constituents, but how

they are arranged relative to each other. This elaborate arrangement often leads

to material properties for the global structure that are non-homogeneous, non-

linear, anisotropic and even viscoelastic.

As we know, the constitutive equations are used to define idealised materials,

which represent different aspects of the mechanical behaviour of natural mate-

rials. However, in practice, no real material is known to behave exactly as one

of these mathematical models. In particular, few biological tissues obey Hooke’s

law. If because of their high stiffness (and therefore small deformations) corti-

cal bones are accurately described by a linear model, Hooke’s law becomes in-

sufficient to describe the mechanical behaviour of the liver with precision for

instance. In fact, in vivo experiments conducted by Melvin et al. (1973) sug-

gest that mechanical behaviour of liver is non-linear and viscoelastic. The brain

also appears to be non-linear and viscoelastic (Miller and Chinzei, 1997). The

2.7. Tissue characterisation 29

Time

Strain

Constant stress

(a) Creep

Time

Stress

Constant strain

(b) Relaxation

Strain

Stress

Fast loading

Slow loading

(c) Rate-dependent

Strain

Stress

Loading

UnloadingD
iss
ip
at
io
n

(d) Hysteresis

Figure 2.4: Characteristics of viscoelastic materials

liver has the additional property of anisotropy, more precisely, it is transversely

isotropic according to Chui et al. (2007).

These various mechanical aspects of materials make realistic modelling of

anatomical structures fairly challenging. The development of algorithms that

allow the interactive computation of the deformation of soft tissues is very diffi-

cult. Therefore, in medical simulation, where modelling must occur in real-time

or close to real-time, very often simplifications have to be made and only the key

characteristics of the material that are relevant for the objective of the simulation

are considered and simulated. Experiments have to be performed to check the

relevancy of the chosen constitutive model and to determine its parameters. At

last, an optimised implementation of the model is required to perform in real-

time.

One of the main obstacles in developing realistic organ models is the lack of

30 Chapter 2. Background in continuum mechanics for soft-tissue modelling

data on the material properties of live organ tissues. Measuring and character-

ising in vivo organ properties is a highly challenging task, but is a requirement

for realistic organ modelling. Indeed, as we have seen in sections 2.60 and 2.6.5,

constitutive equations require the experimental determination of material con-

stants. Organ models with incorrect material properties will affect training in

surgical simulator systems (Sedef et al., 2006). Some devices exist for inert mate-

rials which allow the measure of Young’s modulus, shear modulus and Poisson’s

ratio. However, the same measures are much more difficult to obtain for living

tissues. In particular, experiments confirmed the important differences between

in vitro and in vivo measures, as demonstrated by Kerdok et al. (2006) with the

viscoelastic properties of the liver for instance. Absence of blood perfusion and

difference in temperature are two of most important factors to explain these dif-

ferences. Obviously, in vivo constraints are very heavy and developing experi-

ments and devices for in vivo measures of soft tissue is a very complex task. The

preparation of samples and their testings (tensile, compression, thermal effects,

rate of loading etc.) are not straightforward procedures.

A non-invasive technique called elastography was introduced recently to

measure Young’s modulus. The first device based on this technique was com-

mercialised by Echosens in 2003 (Bastard, 2009). The techniques of elastogra-

phy may be classified in two categories: static and dynamic elastography. In

static elastography, a quasi-static constraint is applied onto the surface of the

tissue and its deformation is measured. If the constraint is known, the Young’s

modulus may be obtained via Hooke’s law. Dynamic elastography relies on shear

waves propagation in the tissue. Shear waves are generated by an acoustic driver

and the displacement caused by the waves is determined by ultrasounds, mag-

netic resonance imaging (MRI) or optical tomography. As an example, magnetic

resonance elastography is a quantitative technique which allow the generation

of maps describing the shear modulus within the tissues (see Fig. 2.5). However,

elastography is still in development and only a few techniques of elastography

are actually used clinically. In the future, elastography might be able to provide a

map of the material properties of tissues which may be used as input data for any

computational model. This technique would be a step towards patient-specific

simulation. As diseased organs are often much stiffer than healthy structures,

the integration of these data would greatly increase the fidelity of the simula-

tion.

Yet, precise characterisation of soft tissue is not sufficient to achieve a good

simulation. The development of a simplified or optimised version of the model

suitable for real-time computation is also mandatory. As we will see in chapter

4 and 7, numerous models are available in the literature to describe physics of

objects, from fairly simple and naive approaches to more complex and thorough

representations. However, the most common technique to solve equations of

2.7. Tissue characterisation 31

Figure 2.5: Magnetic resonance elastography of the liver in a healthy volunteer and a patient

with cirrhosis. Image courtesy of Talwalkar et al. (2007).

continuum mechanics is the finite element method. Moreover, since the two

main contributions of this thesis deal with finite element methods formulations,

the general principles of this method will be detailed in the next section.

C
H

A
P

T
E

R

3
A PRACTICAL APPROACH OF THE FINITE

ELEMENT METHOD

The previous chapter explained in details how physics of anatomical structures

could be described by continuum mechanics. When an organ is submitted to a

force, the first effect of this application is a change in the organ’s shape. This defor-

mation can be measured using different strain tensors. By modelling the mechan-

ical aspects of the material with an appropriate constitutive law, we can then de-

duce the stress tensor (or internal forces) at each point within the organ. The next

step is to apply Newton’s second law (law of conservation of momentum), which

yields a partial differential equation at every point of the volume. The finite el-

ement method is a numerical procedure that allows to turn an infinite number

of partial differential equations into a finite number of algebraic equations. The

method follows different steps. We will first begin by describing the subdivision of

the domain into smaller sub-domains into which local simpler equations are de-

rived. We will then discuss how all the local equations are summed over the whole

domain which eventually leads to the global solution.

33

34 Chapter 3. A practical approach of the finite element method

3.1 Introduction

3.1.1 A numerical method

One of the most important things engineers and scientists do is to model physi-

cal phenomena. Using assumptions concerning how the phenomena works and

using the appropriate laws of physics governing the process, they can derive

a mathematical model, often characterised by complex differential or integral

equations relating various quantities of interest. However, because of the com-

plexities in the geometry and complex boundary conditions found in real life

problems, they cannot analytically solve these equations. A few decades ago, the

only possible approach was to drastically simplify them, which was not always

sufficient to find an approximate solution. Nowadays, in practice, most of the

problems are solved using numerical methods. Indeed, with suitable mathemat-

ical models and numerical methods, computers can help solving many practical

problems of engineering. Numerical methods typically transform differential

equations governing a continuum to a set of algebraic equations of a discrete

model of the continuum that are to be solved using computers (Reddy, 1993).

The finite element method (FEM) is the most popular numerical procedure that

is used to approximately solve differential equations, especially in continuum

mechanics.

3.1.2 The basic ideas of FEM

The finite element method begins by dividing the structure into small pieces,

manageable regions, called elements. The collection of all these elements makes

up a mesh which approximates the problem geometry. Why is this a good idea?

If we can expect the solution for an engineering problem to be very complex,

it is mostly due to the complex geometry, on which a global solution is diffi-

cult to figure out. If the problem domain can be divided (meshed) into small

elements, the solution within an element is easier to approximate (MacDonald,

2007). Over each finite element, the unknown variables are approximated using

known functions. These functions can be linear or higher-order polynomial ex-

pressions that depend on the geometrical locations (nodes) used to define the

finite element shape. The governing equations are integrated over each finite el-

ement using linear algebra techniques and the solution over the entire domain

problem is obtained by summing (assembling) the solution of each element.

Thus, the finite element method transforms an infinite number of differential

equations (one can be defined at any point of the continuum) into a finite num-

ber of algebraic equations (depending on the chosen number of elements).

This approach may be compared to trying to find the area under a curve. We

know that we can find the exact solution for the area under the curve by inte-

3.1.2. The basic ideas of FEM 35

gration. However, sometimes the function describing the curve is not known,

or is difficult to integrate. One method to obtain an approximate solution is to

break up the area into a series of rectangles and add the areas of all rectangles

(see Fig. 3.1). It is worth nothing that the solution accuracy can be increased by

reducing the width of the rectangles to better follow the curve.

Figure 3.1: Approximation of the area under a curve by adding the areas of all rectangles (left

Rieman sum for this example).

It is crucial to keep in mind that approximations occur at different stages

during finite element analysis. The division of the whole domain into finite el-

ements may not be exact (see Fig. 3.2), introducing error in the domain being

modelled. The second stage is when element equations are derived. As men-

tioned earlier, the unknowns of the problem are approximated using the idea

that any continuous function can be represented by a linear combination of

known functions and undetermined coefficients. Algebraic relations between

the undetermined coefficients are then obtained by satisfying the governing

equations over each element. There are a few types of approach for establishing

these equations but, without going into details, the mathematical foundations

of all these approaches are energy principles or the weighted residual methods

(see Appendix A), which both lead to integrals during the process. Therefore, the

second stage creates two sources of error: the representation of the solution by

a linear combination of functions and the evaluation of the integrals. Finally, er-

rors are introduced when solving the assembled system of algebraic equations.

36 Chapter 3. A practical approach of the finite element method

Domain

(a) (b) (c)

Figure 3.2: The division of the domain (a) into elements is not always perfect (b). The discretisa-

tion error may be reduced by using smaller elements (c). However, this improvement is obtained

to the detriment of computational efficiency as the number of algebraic equations to solve will

increase.

3.2 Discretisation

3.2.1 Meshing process

The first step in the finite element method is to create a mesh of the domain to

study. Mesh generation is a very important task and can be very time consum-

ing. The domain has to be meshed properly into elements of specific shapes.

All the elements together form the entire domain of the problem without any

gap or overlapping. For example, triangles or quadrilaterals can be used in two

dimensions, and tetrahedra and hexahedra in three dimensions. Information,

such as element connectivity, must be created during the meshing process for

later use in the formulation of the FEM equations. The number of elements into

which the domain is divided in a problem depends mainly on the geometry of

the domain and on the desired accuracy of the solution. Usually, the number

of elements increases with the complexity of the geometry. For instance, if one

part of the domain is thinner (see Fig. 3.2 (c)), the size of the elements must

be reduced in order to tile this particular part, which increases the total num-

ber of elements, and hence the number of algebraic equations to solve. How-

ever, adding elements is sometimes desirable. Indeed, increasing the number

of elements tends to get an approximate solution closer to the exact analytical

solution (as reducing the width of the rectangles allows for a better approxima-

tion of the area under the curve). Elements are classically added in the particu-

lar regions of interest for a given problem, if this information is known a priori.

A trade-off between accuracy and computational time must be found. This is

3.2.2. Solution interpolation 37

why the meshing process on the problem domain must be carried out carefully.

One needs to create a mesh which gives an accurate enough solution for the de-

sired application while restraining the computational time according to the time

constraints of the problem. As an example, finding the maximum load that can

sustain a bridge in structural mechanics demands a high degree of accuracy, no

matter how much time it is needed to compute the solution. Conversely, organ

deformation in medical training simulators must be computed at an interactive

rate so that no apparent delay can be observed between the manipulation of a

given organ and its deformation. It does not mean that precision is not required,

simply that the time constraints will necessarily limit the accuracy of the solu-

tion.

3.2.2 Solution interpolation

As we have seen, the finite element method is based on finding an approximate

solution over each simple element rather than the whole domain. Any contin-

uous function f may be approximated by a linear combination of known func-

tions φi and undetermined coefficients ci :

f ≈ f̃ =
n
∑

i=1

ciφi . (3.1)

Moreover, the approximation solution ue within the element Ωe must fullfill cer-

tain conditions of continuity in order to be convergent to the actual solution u as

the number of elements is increased. The finite element method approximates

the solution by the following polynomial expression:

ue (x) =
n
∑

i=1

ue
i ψ

e
i (x) (3.2)

where Ωe is a one-dimensional element1, x a position within this element, ue
i

are the values of the solution u at the nodes and ψe
i
(x) the approximation func-

tions over the element. This particular form will be assumed for brevity but the

interested reader may refer to Reddy (1993) for demonstration. Note that ue
i

plays the role of the undetermined coefficients and ψe
i

the role of approxima-

tion functions. Writing the approximation in terms of the nodal values of the

solution is necessitated by the fact that we require the solution to be the same

at points common to the elements in order to connect the approximate solution

from each element and form a continuous solution over the whole domain. The

approximation ψe
i

can be linear or higher-order polynomial expressions and are

called interpolation functions. Depending on the degree of polynomial approxi-

mation used to represent the solution, additional nodes may be identified inside

1For the sake of simplicity, all derivations are carried out in 1D but remain valid for each component in

higher dimensions.

38 Chapter 3. A practical approach of the finite element method

the element. It is worth noting that the type of interpolation directly affects the

accuracy of the solution. In other words, finding the solution to the problem

consists of merely figuring out the values of the sought variable at every node of

the mesh. Its value at any other point of the domain may then be deducted by

interpolation within elements.

The next logical question is how to derive the interpolation functions ψe
i

for

a given element. Their derivation depends only on the geometry of the element

and the number and location of the nodes. The number of nodes must be equal

to the number of terms in the polynomial expansion. Therefore each element

contains a single interpolation function for each of its nodes. As stated by in-

terpolation theory, each interpolation function is required to be equal to 1 at its

corresponding node, and 0 at all other nodes:

ψe
i (x j) = δi j =

{

1 if i = j

0 if i 6= j
(3.3)

where x j is the position of node j . From there, we can state that the interpolation

function at node i may be written as:

ψe
i (x) =Ci

n−1
∏

i 6= j

(x −x j) (3.4)

where j are the indices of the other nodes and Ci is a constant to be determined

such as:

ψe
i (xi) = 1. (3.5)

This function is zero at all nodes except the i th node. It is worth noting that such

a definition for the interpolation functions ψe
i

used in (3.2) yields:

ue (x j) =
n
∑

i=1

ue
i ψ

e
i (x j) = ue

j (3.6)

as expected.

Since elements over the whole domain are generally not identical (different

shapes), this process of determining all interpolation functions can become fas-

tidious. We will now introduce a general method for defining interpolation func-

tions which allows for arbitrary element shapes (subject to a given topology). To

this end, we discuss the concept of element natural coordinates.

3.2.3 Natural coordinates

The natural coordinate system allows us to map every element into a typical and

simpler element. As an example, an 8-node hexahedron element is shown in

3.2.4. Geometry interpolation 39

Fig. 3.3 as it appears in the global (x1, x2, x3) and natural (ξ1,ξ2,ξ3) coordinate

systems. While in its natural coordinate system the element is a regular aligned

cube, in the global coordinate system the element may assume any admissible

arbitrary form. Essentially, admissible means that the element must not be too

distorted, and must certainly not fold back on itself. Another example is given

Fig. 3.4 with a tetrahedral element. The components of each node has a simple

expression in natural coordinates, usually 0,1 or −1 and the centre of the coor-

dinate system is taken at one of the nodes or at the centre of the element.

(a) (b)

Figure 3.3: Hexahedral element as it appears in the global coordinate system (a) and its natural

coordinate system (b).

The use of the natural coordinate system has several advantages (Biswas

et al., 1976). Not only the interpolation functions can be derived only once per

type of element in the mesh, but their expression is also much simpler, regard-

less of the actual element shape. Consequently, the element equations and the

derived element matrices get to be simplified too. However, we now need to

switch between the natural and global coordinate systems before solving the

equations on the whole domain. Indeed, it is necessary to account for the di-

versity of element shapes within the mesh. Solving the element equations ex-

pressed into the natural coordinate system would not yield the expected result

for the whole domain.

3.2.4 Geometry interpolation

Let us assume a relation between the global coordinate x and the natural coor-

dinate ξ in the following form:

x = f (ξ) (3.7)

40 Chapter 3. A practical approach of the finite element method

(a) (b)

Figure 3.4: Tetrahedral element as it appears in the global coordinate system (a) and its natural

coordinate system (b).

where f is assumed to be a one-to-one correspondence (that is, a bijective func-

tion). This function may be seen as a transformation between the natural shape

of the element and its arbitrary shape within the actual mesh, it describes a

change in geometry. It is natural to think of approximating the geometry in a

similar way that we approximated the solution in section 3.2.2. Hence, the trans-

formation defined by (3.7) may also be written as

x =
m
∑

i=1

xe
i ψ̂

e
i (ξ) (3.8)

where xe
i

is the global coordinate of the i th node of the element Ωe , m the num-

ber of nodes for the element and ψ̂e
i
(ξ) are the interpolation functions of degree

m −1. Thus, we have a linear transformation when m = 2 and the relation be-

tweeen x and ξ is quadratic when m = 3. The interpolation functions ψ̂e
i
(ξ) are

called shape functions because they are used to express the geometry or shape

of the element.

Remark. It is worth noting that (3.8) can be easily extended to three-dimensional

problems. Let us consider a Cartesian coordinate system and we denote the po-

sition of node i xi = [xi 1, xi 2, xi 3]T . The position of a point x = [x1, x2, x3]T within

the element may then be interpolated by applying (3.8) to each component of

3.2.5. A particular case: isoparametric elements 41

the position:

x1 =
m
∑

i=1

xi 1ψ̂
e
i (ξ)

x2 =
m
∑

i=1

xi 2ψ̂
e
i (ξ) (3.9)

x3 =
m
∑

i=1

xi 3ψ̂
e
i (ξ)

If we construct the vector x̂e of all nodal positions xi of the element, we can de-

fine a shape function matrix H such as:

x = Hx̂e (3.10)

where H is a 3×m matrix built from sub-matrices Hi

Hi =







ψ̂e
i

0 0

0 ψ̂e
i

0

0 0 ψ̂e
i






i = 1,2, . . . ,m. (3.11)

3.2.5 A particular case: isoparametric elements

Most of the time, we choose to interpolate the solution and the element geom-

etry with the same interpolation functions. In this case, the elements are said

to be isoparametric. Under this configuration, natural coordinates appear as pa-

rameters that define the shape functions. Note that the shape functions describe

the geometry and the solution with the same degree of interpolation. Because

isoparametric elements are very common in practice, the use of the phrase shape

functions is often extended to denote the interpolation functions employed to

approximate the solution.

3.3 Derivation of element equations

Let us sum up where we are into the finite element analysis process so far. The

whole domain has been divided into sub-domains, smaller, that we call ele-

ments, for which the solution to be sought will be simpler to find. We know

how to approximate the solution within each of these elements using a linear

combination of shape functions. And we even have a method to simplify the

expression of these shape functions using natural coordinates.

3.3.1 Strong and weak forms

The next step is therefore to derive the element equations themselves. Obviously

these equations depend on the type of problem that we seek to solve. From now

42 Chapter 3. A practical approach of the finite element method

on, we will only consider the context of continuum mechanics since our overall

goal is the modelling of organ deformation. However, a similar approach can

be used in the other fields of physics. In continuum mechanics, applying New-

ton’s second law yields a partial differential system of equations. Such equations

are called strong forms. The strong form, in contrast to a weak form, requires

strong continuity on the dependent field variables, such as displacements (Liu

and Quek, 2003). Indeed, the functions defining these field variables have to be

differentiable up to the order of the partial differential equations that exist in

the strong from. While the finite element method can be used to find an ap-

proximated solution for a strong form, the method usually works well only with

regular geometry and boundary conditions.

Consequently, a weak form is often created using energy principles or

weighted residual methods. The weak form is frequently an integral form and

requires a weaker continuity on the field variables. Hence, a formulation based

on a weak form usually produces a set of discretised system equations that give

much more accurate results, especially for problems of complex geometry. For

this reason, the weak form is usually preferred over the strong form for obtaining

an approximate solution of a practical engineering problem.

3.3.2 Time dependence

In all the equations of the finite element method that we derived so far, we have

not taken time into account. For some problem, this is not an issue, the motion

is sufficiently slow to assume that the dynamic effects (such as damping effect)

are neglectable. However, this assumption is not always valid, particularly in our

case where we want to model organ deformation. The deformation obviously

depends on time. Finite element models of time-dependent problems can be

developed in two alternatives ways (Reddy, 1993):

(a) coupled formulation in which the time t is an additional coordinate along

with the spatial coordinate x

(b) decoupled formulation where time and spatial variations are assumed to be

separable.

Thus, the approximation of the solution u takes one of these two forms:

u(x, t) ≈ ue (x, t) =
n
∑

i=1

ûe
i ψ̂

e
i (x, t) (coupled formulation) (3.12)

u(x, t) ≈ ue (x, t) =
n
∑

i=1

ue
i (t)ψe

i (x) (decoupled formulation) (3.13)

where ψ̂e
i
(x, t) are time-space interpolation functions, ûe

i
are the nodal values

that are independent of x and t , ψe
i
(x) are the usual interpolation functions in

3.3.3. Dynamic system of equations 43

spatial coordinate x only and the nodal values ue
i

(t) are functions of time t only.

Coupled finite element formulations are not common and they have not been

adequately studied. Hence, we consider the decoupled formulation only. Of

course, the assumption that the time and spatial variations are separable is not

valid in general. However, with sufficiently small time steps, it is possible to ob-

tain accurate solutions nevertheless.

3.3.3 Dynamic system of equations

The space-time decoupled finite element formulation of time-dependent prob-

lems involves two steps:

1. Spatial approximation. The solution u is first approximated by expressions

of the form (3.13) while keeping the time-dependent term during the finite

element model derivation. This step leads to a set of ordinary differential

equations in time.

2. Temporal approximation. The system of ordinary differential equations is

then approximated in time where different schemes may be used to assess

the time derivatives. This step yields a set of algebraic equations for ue
i

at

discrete time tk+1 = (k +1)∆t where ∆t is the time increment and k > 0 an

integer.

At the end of this two-step approximation, we have a continuous spatial solution

at discrete intervals in time:

u(x, tk) ≈ ue (x, tk) =
n
∑

i=1

ue
i (tk)ψe

i (x) with k = 0,1, . . . (3.14)

The construction of the weak form using either energy principles or weighted

residual methods will not be detailed here. The reader may easily find it in

dozens of textbooks. By substituting (3.14) in the weak form, we obtain the fi-

nite element equations of equilibrium in matrix form:

Me Üe +De U̇e +Ke (Ue) ·Ue = Re , (3.15)

where Me is a constant mass matrix, De is a constant damping matrix, Ke (Ue)

is the stiffness matrix, which is a function of nodal displacements Ue , and Re

are externally applied loads. All matrices are expressed at the level of individual

elements (which is the reason for the superscript e).

3.3.4 Static system of equations

Under some assumption, (3.15) may be simplified. For instance, let us consider

the problem of finding the maximum load that a desk can sustain. It is fair to

44 Chapter 3. A practical approach of the finite element method

say that strain and stress within the structure does not fluctuate over time: the

system is in an equilibrium state. At all times, the sum of all forces applied on the

system is equal to zero. Therefore, we can assume that the equations describing

the structure do not depend on time: the problem is said to be static. Static

analyses assume that loading of a body occurs slowly enough that inertial and

damping terms may be neglected. In this case, the static system of equations can

be easily obtained by merely dropping out the dynamics terms in (3.15). Indeed,

the static case may just be seen as a special case of the dynamic equations and

the static equations are:

Ke (Ue) ·Ue = Re . (3.16)

3.3.5 A few words on the matrices involved

Mass matrix

The mass matrix M for the whole domain may be computed by summing the

mass contributions from every elements:

M =
∑

e

Me , (3.17)

where Me is the mass of element Ωe given by:

Me =
∫

V e
ρe HT HdV (3.18)

where ρ the mass density, V e the volume of the element and H is the shape func-

tion matrix defined by (3.10). This integral may be evaluated using a procedure

of numerical integration and generally results in a band mass matrix (non-zero

entries are confined to a diagonal band, comprising the main diagonal and more

diagonals on either side). This method for computing the mass matrix is called

variational mass lumping.

However, it is very common in finite element analysis to use a diagonal mass

matrix. The most common way of achieving this is to define the diagonal en-

tries with the sum of the corresponding rows and then set all other values to 0.

The physical interpretation of this is lumping all of the mass in the volume sur-

rounding a node at the node itself. A diagonal mass matrix may offer significant

computational and storage advantages. First, it is easily inverted, since the in-

verse of a diagonal matrix is also diagonal. And a diagonal mass matrix can also

be stored simply as a vector. Therefore, such a matrix may be built by directly

computing the mass of each element and assigning an equal proportion of this

to each of the element’s nodes. This method is named direct mass lumping. The

mass me of element Ωe is given by:

me = ρe

∫

V e
dV , (3.19)

3.4. Assembly of element equations 45

which is integrated over the element using a numerical method. Each diagonal

component of the mass matrix then receives a contribution of me /m.

Damping matrix

In a similar way to the mass matrix, a damping matrix may be defined by sum-

ming the damping contributions from every elements:

D =
∑

e

De , (3.20)

where De is the damping of element Ωe given by:

De =
∫

V e
κe HT HdV (3.21)

where κe is a damping parameter. In practice, the components of damping ma-

trices are difficult to determine experimentally. Therefore, it is common to em-

ploy the Rayleigh damping. The Rayleigh damping assumes that the damping

may be written in the form of:

De =αMe +βKe , (3.22)

whereα andβ are coefficients defining mass and stiffness proportional damping

components. However, for systems with large degrees of freedom, it is difficult

to guess meaningful values of α and β. Chowdhury and Dasgupta (2003) have

proposed a method to calculate these coefficients. In practice, further assump-

tions may only lead to include the mass proportional component (β= 0), which

yields a diagonal damping matrix if a diagonal mass matrix is used.

Stiffness matrix

The expression of the stiffness matrix depends on the chosen strain tensor as

well as the appropriate constitutive model for the material. Its general form can-

not be explicited. However, it can be demonstrated that Ke may be written as

Ke =
∫

V e
BT E BdV , (3.23)

where E is a material matrix, which only depends on the constitutive model cho-

sen, and B is the strain-displacement matrix defined as the derivatives of the

shape functions (see Liu and Quek (2003); Belytschko et al. (2000) for details).

3.4 Assembly of element equations

We have now derived the equations for each element. However, since the ele-

ment is physically connected to its neighbours, the resulting algebraic equations

46 Chapter 3. A practical approach of the finite element method

will contain more unknowns than the number of algebraic equations. In other

words, elements share vertices. The deformation of an element induces the de-

formation of its neighbours. Thus, it becomes necessary to put the elements

together to eliminate the extra unknowns, to model this interaction between el-

ements. The assembly of the global stiffness matrix should be carried out as

soon as the element matrices are computed, rather than waiting until the ele-

ment coefficients of all elements are computed. This would require storage of

the coefficients for each element. Instead, we can perform the assembly while

we calculate the element matrices.

The assembly operation is actually quite simple. Let us consider an exam-

ple with stiffness matrices for an one-dimensional problem. We assume that we

have three two-node elements. And we suppose the element connectivity in-

formation given by Table 3.1, which provides the global node number for each

local node number within an element. We also assume the following stiffness

Elements 1 2

1 1 2

2 2 3

3 3 4

Table 3.1: Element connectivity information

matrices for the three elements:

K1 =
[

−1 2

3 1

]

, K2 =
[

5 2

−2 1

]

and K3 =
[

3 1

2 −1

]

(3.24)

The assembled matrix is a square matrix of dimension number of nodes × num-

ber of degrees of freedom. In our case, the global matrix is therefore a 4×4 and

is assembled in the following manner:

K =











−1 2 0 0

3 1+5 2 0

0 −2 1+3 1

0 0 2 −1











(3.25)

In other words, the global matrix is merely a rewriting on the whole domain of

the element stiffness matrices, which are expressed with respect to local node

numbers, in terms of global node numbers. In addition to constructing the

global mass and damping matrices (as shown in section 3.3.5), this process leads

to the following global system of equations:

MÜ+DU̇+K(U) ·U = R. (3.26)

The same set of equations was established at the element level in section 3.3.3

but we may note that the same system is also valid for the whole domain.

3.5. Solution of global problem 47

3.5 Solution of global problem

The complete and global system of equations has now been established. In this

section, we will examine the techniques commonly used for solving these equa-

tions. In the general case of a dynamic system of equations, the equations are

not yet algebraic and still depends on derivatives of the unknown displacements

with respect to time. Therefore, an additional step needs to be performed be-

fore using a solver by integrating the equations over time. As we will see shortly,

the different methods of time integration are classified into two main schemes:

explicit or implicit integration. We begin by introducing the simplest method,

the Euler method to explain the concept of an explicit method. Then the central

difference method will be detailed. We then describe a few implicit methods,

allowing us to highlight the relative advantages of the two types of methods. Fi-

nally, the static case will be solved by emphasizing the similarities with implicit

systems through the critical step of linearisation of the governing equations (Be-

lytschko et al., 2000).

3.5.1 Explicit time integration

The Euler method

We want to approximate the solution of the following differential equation:

U̇t = f (t ,Ut). (3.27)

Note that we restrict ourselves to first-order differential equations (meaning that

only the first derivative of Ut appears in the equation, and no higher derivatives).

However, a higher-order equation can easily be converted to a system of first-

order equations by introducing extra variables. For example, the second-order

equation Üt = −Ut can be rewritten as two first-order equations: U̇t = Vt and

V̇t =−Ut . By solving equations like (3.27), we will therefore be able to integrate

the global system of equations over time.

We start by replacing the derivative U̇t by the finite difference approximation:

U̇t ≈
Ut+∆t −Ut

∆t
, (3.28)

which gives:

Ut+∆t ≈ Ut +∆t U̇t (3.29)

And substituting the last relation in (3.27) yields:

Ut+∆t ≈ Ut +∆t f (t ,Ut) (3.30)

This formula is usually applied in a recursive scheme. We choose a time step ∆t

and we construct the sequence of time t n = n∆t . Using (3.30), we can approxi-

48 Chapter 3. A practical approach of the finite element method

mate the exact solution Ut n
at each time step by Un :

Un+1 = Un +∆t f (t n ,Un). (3.31)

This method is called Euler method and is said to be explicit because the new

value Un+1 is defined in terms of variables from the previous time step Un .

The central difference method

The central difference method is one of the most popular explicit methods in

computational mechanics. This method is based on central difference formulas

for the velocity and acceleration. Let us the time t of the simulation be subdi-

vided into time steps ∆t . Let us denote by Ut , U̇t and Üt the matrices of nodal

displacements, velocities and accelerations, respectively, at time t . The central

difference method makes use of the following finite differences approximations

for acceleration and velocity:

Üt =
1

(∆t)2

(

Ut−∆t −2Ut +Ut+∆t
)

(3.32)

U̇t =
1

2∆t

(

Ut+∆t −Ut−∆t
)

. (3.33)

One of the key advantage of the method is that the stifness term in (3.26) may be

computed from

K(U) ·U = F(U) =
∑

e

F̃e , (3.34)

where F̃e are the global nodal force contributions due to stresses in element Ωe .

F̃ may be computed using strain-displacement equations, the constitutive equa-

tion and the element connectivity. Therefore, let us assume that all nodal forces

Ft at time t are known.

By subtituting (3.32) and (3.33) into (3.26) we obtain:
(

M

(∆t)2
+

D

2∆t

)

Ut+∆t = Rt −Ft +
2M

(∆t)2
Ut +

(

D

2∆t
−

M

(∆t)2

)

Ut−∆t . (3.35)

Both the right-hand side of the equation and the factor in front Ut+∆t may be

evaluated, which gives the nodal displacements for the next time step. The entire

update can be accomplished without solving any system of equations provided

that the mass matrix M and the damping matrix D are diagonal. As we have seen

in section 3.3.5, these approximations are often used in practice. And this is the

characteristic of an explicit method: the time integration of the general system

of equations for finite element model does not require the solution of any equa-

tions. This is a key point because it gives explicit methods a tremendous com-

putational advantage. However, explicit methods are only conditionally stable.

If the time step exceeds a critical value, the solution may be erroneous. This crit-

ical time step depends on the mesh and the material properties. It will decrease

with mesh refinement and increasing stiffness of the material.

3.5.2. Implicit time integration 49

3.5.2 Implicit time integration

The backward Euler method

The problem that we wish to solve is the same than the one we introduced with

the Euler method, which we reproduce here for convenience:

U̇t = f (t ,Ut). (3.36)

This time, instead of using (3.28), we approximate the derivative U̇t by:

U̇t ≈
Ut −Ut−∆t

∆t
. (3.37)

The update expression for yn then becomes:

Un+1 = Un +∆t f (t n+1,Un+1). (3.38)

The backward Euler method is an implicit method, meaning that we have to

solve an equation to find Un+1. Of course, it costs time to solve this equation

and this cost must be taken into consideration when we select the time integra-

tion method to use. The advantage of implicit methods is that they are usually

more stable for solving a stiff equation, meaning that larger steps can be used.

The Runge-Kutta method

The accuracy of backward Euler method can be improved by making the solu-

tion depends on more values. The 4th order Runge-Kutta method gives the fol-

lowing update equation:

Un+1 = Un +
1

6
∆t (k1 +2k2 +2k3 +k4) , (3.39)

where :

k1 = f (t n ,Un)

k2 = f (t n +
1

2
∆t ,Un +

1

2
∆t k1)

k3 = f (t n +
1

2
∆t ,Un +

1

2
∆t k2)

k4 = f (t n +∆t ,Un +∆t k3)

This method is a fourth-order method because the total accumulated error has

order ∆t 4. It may be seen as a generalisation of the backward Euler method

(Press et al., 1992). Again, we have to solve an equation to find Un+1.

50 Chapter 3. A practical approach of the finite element method

3.5.3 Static solutions

First, we recall the general system of equations in static introduced in section

3.3.4, which is also valid for the whole system:

K(U) ·U = R. (3.40)

The situation is similar to implicit time integration methods for dynamic sys-

tems by the fact that we also have to solve a set of algebraic equations to find

the nodal displacements. In the general case, the equations are non-linear and

therefore quite difficult to solve. A suitable solver for this kind of system is, for

instance, the Newton-Raphson method. In essence, this method consists of ob-

taining linear equations instead. This process is called linearisation. One may

refer to (Belytschko et al., 2000) for more details.

However, if the problem is linear, the stiffness matrix does not depend on the

displacement and the resolution is facilitated. The unknown displacements may

be computed by:

U = K−1 R. (3.41)

Many techniques are available in the literature to solve this type of system, and

a few of them are introduced in the next section.

3.5.4 Solvers

We will now examine the techniques commonly used for solving linear systems

of algebraic equations. Note that this is only the most classical approaches and

the list is obviously not exhaustive. Two categories of techniques are in oppo-

sition: direct or iterative solvers (Press et al., 2002). In any case, we seek the

solution for the unknown solution x of the following system of linear equations:

Ax = b. (3.42)

The system may already be linear by nature, or been linearised using techniques

such as Newton-Raphson methods. At this point in the discussion, we are there-

fore only interested in solving a linear system of equations. If the matrix A is

squared, which is the case in finite element methods, the problem may be writ-

ten as follows:

x = A−1 b. (3.43)

However, only solvers relevant to the context of finite element methods will

be discussed. Indeed the matrix A takes a specific form in problems solved by

finite element methods. The matrix A is sparse. A sparse matrix is merely a ma-

trix populated mainly with zeros. An example is given by Fig. 3.5 for a finite

element problem in two dimensions. Because of the peculiar structure of the

matrix involved in finite element computations, methods have been specifically

3.5.4. Solvers 51

Figure 3.5: Illustration of a sparse matrix for a two-dimensional finite element problem. Each

non-zero elements of the matrix is represented in black. Image courtesy of Oleg Alexandrov.

designed to take advantage of this structure. Indeed, it is wasteful to use general

methods of linear algebra on such problems, because most of the arithmetic op-

erations devoted to solving the set of equations or inverting the matrix involve

zero operands. Furthermore, it is wasteful to reserve storage for zero elements.

Direct solvers

As their name is suggesting, direct solvers make an attempt into finding a solu-

tion directly by inverting the matrix A. They execute in a predictable number of

operations. We will now introduce a few direct methods in the context of finite

element methods.

LU decomposition. The LU decomposition is a matrix decomposition which

writes a matrix as the product of a lower triangular matrix and an upper triangu-

lar matrix. In other words, A may be written as:

A = LU, (3.44)

where L is lower triangular (has elements only on the diagonal and below) and

U is upper triangular (has elements only on the diagonal and above). As an ex-

52 Chapter 3. A practical approach of the finite element method

ample, for the case of a 4×4 matrix A, we have:











a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44











=











α11 0 0 0

α21 α22 0 0

α31 α32 α33 0

α41 α42 α43 α44





















β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44











(3.45)

By subtituting (3.44) into (3.42) we obtain:

Ax = (LU)x = L(Ux) = b. (3.46)

Therefore, we can solve (3.42) by first solving the vector y such that:

Ly = b (3.47)

and then solving

Ux = y. (3.48)

The advantage of breaking up one linear set of equations into two successive

ones is that the solution of a triangular set of equations is quite trivial. Indeed,

(3.47) can be solved by:























y1 =
b1

α11

yi =
1

αi i

[

bi −
i−1
∑

j=1

αi j y j

]

i = 2,3, . . . , N .

(3.49)

for a N ×N matrix A. We then solve (3.48) in a similar way:



















xN =
yN

βN N

xi =
1

βi i

[

yi −
N
∑

j=i+1

βi j x j

]

i = N −1, N −2, . . . ,1.

(3.50)

Cholesky decomposition. Cholesky decomposition allows to write a symmetric

and definite positive matrix as the product of a lower triangular matrix with

strictly positive diagonal entries by the transpose:

A = LLT , (3.51)

where L is lower triangular with strictly positive diagonal entries. In general,

Cholesky decompositions are not unique. Similarly to LU decomposition, a

Cholesky decomposition may be used to break one set of equations into two

successive but simpler systems.

3.5.4. Solvers 53

Iterative solvers

An iterative method attempts to solve the system of equations by finding suc-

cessive approximations to the solution starting from an initial guess. In the case

of a system of linear equations, the two main classes of iterative methods are

the stationary iterative methods, and the more general Krylov subspace meth-

ods. Stationary iterative methods solve a linear system with an operator approx-

imating the original one and based on a measurement of the error in the result

(called the residual), form an equation of correction for which this process is re-

peated. While these methods are simple to derive, convergence is only guaran-

teed for a limited class of matrices. Examples of stationary iterative methods are

the Jacobi method and Gauss-Seidel method. Krylov subspace methods work by

forming an orthogonal basis of the sequence of successive matrix powers times

the initial residual (the Krylov sequence). The approximations to the solution

are then formed by minimising the residual over the subspace formed. The typ-

ical method in this class is the conjugate gradient method (CG). In practice, for

large system of equations (as often encountered in finite element analysis), di-

rect methods would take too much time and an iterative solvers is commonly

used.

The Gauss-Seidel method. For this method, convergence is only guaranteed if

the matrix is either diagonally dominant, or symmetric and positive-definite. In

a similar way than the LU decomposition, we start by decomposing the matrix A
into a lower triangular component L∗ and a strictly upper triangular component

U:

A = L∗+U. (3.52)

The system of linear equations (3.42) may be rewritten as:

L∗x = b−Ux (3.53)

The Gauss-Seidel method is an iterative technique that solves the left-hand side

of the expression for x using previous values for x on the right-hand side. That

is:

xn+1 = L−1
∗ (b−Uxn). (3.54)

Similarly to the LU decomposition method, we take advantage of the triangu-

lar form of L∗. The components of xn+1 can be computed sequentially in the

following manner:

xn+1
i =

1

ai i

[

bi −
∑

j>i

ai j xn
j −

∑

j<i

ai j xn+1
j

]

i = 1,2, . . . , N . (3.55)

The procedure is usually continued until the changes made by an interation are

below a given threshold.

54 Chapter 3. A practical approach of the finite element method

The conjugate gradient method. The simplest class of conjugate gradient

method is based on the idea of minimising the quadratic function:

f (x) =
1

2
xT A x−bT x+ c. (3.56)

Indeed, if the matrix A is symmetric and positive-definite, f (x) is minimised by

the solution to Ax = b (Shewchuk, 1994). The minimisation is carried out by

generating a succession of search directions pk and improved minimisers xk .

At each stage a quantity αk is found that minimises f (xk +αk pk), and xk+1 is

set equal to the new point xk +αk pk . The pk and xk are built up in such a way

that xk+1 is also the minimiser of f over the whole vector space of directions

already taken, that is the space formed by the basis of vector p1,p2, . . . ,pk . After

N iterations, you arrive at the minimiser over the entire vector space, that is, the

solution to our linear system of equations.

Later, the biconjugate gradient method was introduced as a generalisation

of the ordinary conjugate gradient to solve systems where the matrix A was not

necessarily symmetric and positive-definite (see Belytschko et al. (2000) for de-

tails).

Pre-conditioners. Unfortunately, it is common for the matrix A not to be well

conditioned. Consequently, the convergence of the chosen iterative method is

often slow. In order to achieve an accelerated convergence, we may use a pre

conditioner. Although the formation and the study of pre-conditioners are out of

the scope of this PhD thesis, pre-conditioners are a key element for solving sys-

tems of equations. To be effective, a pre conditioner P should be a good approx-

imation of A and the following preconditioned system must be easier to solve

than the original system (3.42):

P−1Ax = P−1b. (3.57)

Two criteria should also be considered when forming a pre conditioner: (1) the

ease with which it may be evaluated and (2) its memory requirements. The eas-

iest pre-conditioner would be the identity since P−1 = I in this case. Of course,

such a conditioner leads to the resolution of the original system and is there-

fore totally useless. In contrast, the choice of P = A leads to the solution of the

system (3.42) in one single iteration. In practice, an optimal pre-conditioner is

to be found between these two extremes to minimise the number of iterations

required by the solver while keeping the evaluation of the pre-conditioner sim-

ple. Finding a good pre-conditioner for all types of problems is difficult. A pre-

conditioner is only useful if the overall time spent on both the formation of P
and the resolution of (3.57) is less than the time spent at solving (3.42) alone.

3.5.4. Solvers 55

One of the simplest pre-conditioner is the Jacobi pre-conditioner where the

pre-conditioner is chosen to be the diagonal of the matrix A. This choice is ef-

ficient in cases where A is diagonally dominant. Sparse approximations of LU

or Cholesky decompositions may also be used as pre-conditioners (see sections

3.5.4 and 3.5.4 for more details).

Part II

Solid structure modelling

57

C
H

A
P

T
E

R

4
MODELLING THE DEFORMATION OF SOLID

OBJECTS IN REAL-TIME

Modelling the deformation of solid organs is a crucial problem in medical simula-

tion. If the finite element method is classically used in mechanical engineering for

its ability to solve the equations of continuum mechanics fairly accurately, its de-

velopment in medical simulation was more progressive. The main reason for this

is that the finite element method is computationally demanding and not easily

compatible with time constraints required in interactive simulation. Therefore,

other methods were developed to allow faster computations, at the cost of larger

approximations of course. Over time, along with the increase in computational

power, methods became more elaborate and less approximative. These different

approaches may be grouped into three main categories: (1) geometrically based

techniques, (2) approaches physically motivated and (3) methods actually based

on the equations of continuum mechanics. In this chapter, we will review the most

classic methods applied to modelling of solid objects with a particular emphasis

on medical simulation.

59

60 Chapter 4. Modelling the deformation of solid objects in real-time

4.1 Introduction: the problem

The challenges faced by the field of medical simulation were reviewed in the in-

troductory chapter (see chapter 1). Hence, we know that at the very least, the de-

formation of solid organs must appear physically realist in medical simulators.

In addition, this objective has to be achieved within heavy time constraints. In-

deed, although each step of a simulation alone (deformation of organs, collision

detection, contacts processing or visualisation) is computationally demanding,

the whole simulation process must be computed in real-time or close to real-

time. Of particular interest to us is the accurate modelling of the deformation of

anatomical structures. The best mathematical model for predicting the defor-

mation of a continuous structure is provided by continuum mechanics. If the

finite element method is classically used in mechanical engineering for its abil-

ity to solve the equations of continuum mechanics fairly accurately, its develop-

ment in medical simulation was more progressive. The main reason for this is

that the finite element method is computationally very demanding and not eas-

ily compatible with the time constraints required in interactive simulation. Very

often simplifications have to be made. Since medical simulation may find appli-

cations in various areas (such as medical training, patient-specific planning or

per-operative guidance), the requirements in terms of accuracy as well as time

constraints may be different. Consequently, a range of models has been devel-

oped over time to suit all usages.

For instance, the correctness of deformation is crucial for patient-specific

planning and per-operative guidance. Let us give an example where simulation

can lead the surgeon towards its goal during surgery: the removal of a brain tu-

mour. Prior surgery, images of the patient’s brain were acquired and the tumour

was localised. To access the brain during surgery, the surgeon must first drill a

hole into the patient’s skull. However, drilling a hole releases intra-cranial pres-

sure and this change in internal pressure deforms the brain. This phenomenon

is called brain shift. The overall deformation is quite complex and the displace-

ments depend on local elasticity of the brain, the size and the location of the

tumour. Removing the tumour relies heavily on knowing the spatial relation be-

tween the patient’s brain and the images acquired prior to surgery. And because

the brain deforms during surgery, the location and the shape of the tumour will

no longer match those of the images acquired. Therefore, a large brain shift, if

not corrected, will result in inaccuracies in the surgical procedure and has the

potential to cause damage to normal tissue. A solution is to accurately model

the mechanical response of the patient’s brain to predict the actual deformation

and hence keep the knowledge of the tumour’s location. If the accuracy is ob-

viously of prime importance in this situation, computation of the deformation

does not necessarily need to be carried out in real-time, a reasonable delay is

4.2. Techniques based on geometry 61

acceptable (a couple of minutes).

Conversely, when medical simulation is applied to training, such a precision

in terms of deformation is not always required. A visually realistic deformation

is often sufficient for an inexperienced physician to learn the appropriate ges-

tures required for a given medical procedure. However, in some cases, the feel

of touch can be very important to master the procedure. For instance, during a

colonoscopy procedure, force feedbacks give precious information about what

type of loop is forming during the colonoscope’s insertion and the physician

can then react accordingly to prevent loop formations. Consequently, a good

colonoscopy simulator is required to provide accurate force feedbacks. If the

contact forces were not reproduced to the operator, he would never be able to

learn how to detect loop forming. Obviously, the computation of a realistic force

to be returned demands an appropriate mechanical modelling of all structures.

In contrast of per-operative guidance, medical training demands real-time com-

putations of the deformations.

If the reasons differ, the need for modelling the mechanical response of or-

gans with precision remains. However, strong time constraints often limit the

complexity of the modelling and affects the overall accuracy. Because of this

trade-off, various approaches were proposed over the years to fit into real-time

constraints and may be grouped into three main categories: (1) geometrically

based techniques, (2) approaches physically motivated (usually relying on New-

ton’s second law) and (3) methods actually based on the equations of continuum

mechanics.

4.2 Techniques based on geometry

4.2.1 Free-form deformation

The first needs to deforming solid objects came from for the field of solid mod-

elling. The goal was to allow the designer to shape an object into the form he

wishes in a similar way that clay is manipulated by a sculptor’s hands. Sederberg

and Parry (1986) introduced a technique called free-form deformation based on

the paper of Barr (1984). It involves a mapping from R
3 to R

3 through a ten-

sor product trivariate Bernstein polynomial. The deformed shape of the object

is interpolated using control points as in the case of Bézier curves and surface

patches (see Fig. 4.1).

The capability of locally applying deformations makes the technique strongly

analogous to sculpting with clay, which was the sought target. Although the au-

thors do not give details on computational efficiency, their work constitutes the

beginnings of deformable solid objects.

Coquillard later developed the idea of extended free-form deformation (Co-

62 Chapter 4. Modelling the deformation of solid objects in real-time
Dallas, August 18-22 Vo lume 20, N u m b e r 4, 1986

Fig 2. Deformed Plastic

Mathematically, the FFD is defined in terms of a

tensor product trivariate Bernstein polynomial. We begin

by imposing a local coordinate system on a parallelpiped

region, as shown in Figure 3. Any point X has (s,t,u)

coordinates in this system such that

X = X 0 ÷ s S * t T * uU.

The (s.t,u) coordinates of X can easily be found using

linear algebra. A vector solution is

T×U (X - X0) SXU-(X - X0) S×T-(X - i0) (l)

8=- T X U . S , t= S X U . T , u= S×T.U

Note that for any point interior to the parallelpiped that

0 < s <1, 0 < t < l and O < u < l .

•
U

xo

Fig. 4 Undisplaced Control Points

direction. In Figure 4, I=1, m=2, and n=3. The control

points are indicated by small white diamonds, and the red

bars indicate the neighboring control points. These

points lie on a lattice, and their locations are defined

i -J-T * -~--U
P , , ~ = X o + ' ~ s * m m "

The deformation is specified by moving the P,:~ from their

undisplaced, lattieial positions. The deformation function

is defined by a trivariate tensor product Bernstein polyno-

mial. The deformed position X¢ d of an arbitrary point X

is found by first computing its (8,t,u) coordinates from

equation (1), and then evaluating the vector valued

trivariate Bernstein polynomial:

, f i l l " (rn'l ,__do{hi X.,= z.,V' | . IH- s) '- , , ,[~v'/ . Ifl-t)•-,t,[1-u)'-%*V,,kJl(2)
,~o ('J" . o t ~ J" k

where x ~ is a vector containing the Cartesian coordi-

nates of the displaced point, and where P,~ is a vector

containing the Cartesian coordinates of the control point.

Fig. 3 8,t,u Coordinate System

We next impose a grid of control points P,j~ on the

parallelpiped. These form t+l planes in the s direction,

m¢l planes in the T direction, and n÷l planes in the u Fig. 5 Control Points in Deformed Position

153

(a)

Dallas, August 18-22 Vo lume 20, N u m b e r 4, 1986

Fig 2. Deformed Plastic

Mathematically, the FFD is defined in terms of a

tensor product trivariate Bernstein polynomial. We begin

by imposing a local coordinate system on a parallelpiped

region, as shown in Figure 3. Any point X has (s,t,u)

coordinates in this system such that

X = X 0 ÷ s S * t T * uU.

The (s.t,u) coordinates of X can easily be found using

linear algebra. A vector solution is

T!U (X - X0) SXU-(X - X0) S!T-(X - i0) (l)

8=- T X U . S , t= S X U . T , u= S!T.U

Note that for any point interior to the parallelpiped that

0 < s <1, 0 < t < l and O < u < l .

•
U

xo

Fig. 4 Undisplaced Control Points

direction. In Figure 4, I=1, m=2, and n=3. The control

points are indicated by small white diamonds, and the red

bars indicate the neighboring control points. These

points lie on a lattice, and their locations are defined

i -J-T * -~--U
P , , ~ = X o + ' ~ s * m m "

The deformation is specified by moving the P,:~ from their

undisplaced, lattieial positions. The deformation function

is defined by a trivariate tensor product Bernstein polyno-

mial. The deformed position X¢ d of an arbitrary point X

is found by first computing its (8,t,u) coordinates from

equation (1), and then evaluating the vector valued

trivariate Bernstein polynomial:

, f i l l " (rn'l ,__do{hi X.,= z.,V' | . IH- s) '- , , ,[~v'/ . Ifl-t)•-,t,[1-u)'-%*V,,kJl(2)
,~o ('J" . o t ~ J" k

where x ~ is a vector containing the Cartesian coordi-

nates of the displaced point, and where P,~ is a vector

containing the Cartesian coordinates of the control point.

Fig. 3 8,t,u Coordinate System

We next impose a grid of control points P,j~ on the

parallelpiped. These form t+l planes in the s direction,

m¢l planes in the T direction, and n÷l planes in the u Fig. 5 Control Points in Deformed Position

153

(b)

Figure 4.1: Let us imagine that the objects that we want to deform (spheres and cubes) are placed

into a transparent parallelepiped (a). Control points are indicated by small white diamonds.

The free-form deformation technique offers to compute the deformation of the objects from the

positions of the control points (b). Image courtesy of Sederberg and Parry (1986)

quillart, 1990) and animated free-form technique (Coquillart and Jancéne, 1991).

The idea of free-form deformation with lattices of arbitrary topology was intro-

duced by MacCracken and Joy (1996). Finally, Schein and Elber (2004) presented

a technique to facilitate the incorporation of discontinuities in a model while

deforming it.

4.2.2 Shape matching

One field particularly interested in modelling deformable objects in a very ef-

ficient way is the game industry. Of course, for games we are more attracted by

computational efficiency and extreme stability features than accuracy to physics

laws. Most of the time, we can tolerate a degradation of realism as long as the re-

sult looks realistic. Müller et al. (2005) developed a technique with this idea in

mind called shape matching. We start with a set of particles with masses mi in an

initial configuration where we denote by x0
i

the initial positions of the particles.

No connectivity information is required. The particles are simulated as a simple

particle system without particle-particle interactions, but including response to

collisions with the environment and including external forces such as gravity.

The positions in the deformed configuration are noted xi . The method consists

of finding a set of points gi which minimises the difference between the two sets

x0
i

and xi . The first step is to find the rotation matrix R and the translation vectors

t and t0 such that
∑

i

mi (R(x0
i − t0)+ t−xi)2 (4.1)

4.2.2. Shape matching 63

is minimal. The optimal translation vectors t and t0 turn out to be the centre of

mass of the initial shape and actual shape, that we will note x0
c and xc , respec-

tively. The optimal rotation matrix is found by first finding the optimal linear

transformation A. The optimal rotation is eventually obtained through the rota-

tional part of A after a polar decomposition. Finally, the goal positions gi can be

computed as follows:

gi = R(x0
i −x0

c)+xc . (4.2)

Once the goal positions are known, they are used to integrate the positions of

the particules:



















vi (t +h) = vi (t)+α
gi (t)−xi (t)

h
+h

fext(t)

mi

xi (t +h) = xi (t)+hvi (t +h)

(4.3)

where α is a parameter between 0 and 1 which simulates stiffness. Because the

method in this basic form is not suitable for objects undergoing large deforma-

tions, it is then extended to linear and quadratic deformations by replacing R in

(4.2) with combinations of the form βA+ (1−β)R where β is an additional pa-

rameter. Linear transformation can represent shear and stretch while quadratic

transformation add twist and bending. Of course, this technique is not physi-

cally realistic. But this is beyond the point. This method allows the authors to

simulate hundreds of deformable objects at an interactive rate with an uncondi-

tional stability (see Fig. 4.2). Another illustration of this stability is shown Fig. 4.3.

Figure 4.2: Shape matching allows to simulate hundreds of deformable objects in real-time. Im-

age courtesy of Müller et al. (2005).

Later, Rivers and James (2007) extended the technique to regular lattices with

embedded geometry. From a surface mesh to be deformed, they start by vox-

elising the model to construct a lattice of cubic cells containing the mesh. The

embedded mesh is then deformed using trilinear interpolation of lattice ver-

tex positions. A particle is placed at each vertex of the lattice and associated

64 Chapter 4. Modelling the deformation of solid objects in real-time

Figure 4.3: A duck model is squeezed to demonstrate the stability of the shape matching tech-

nique. Although the flat shape of the duck is not physically plausible, this example exposes the

impressive ability of the approach to recover from highly deformed or inverted configurations.

Image courtesy of Müller et al. (2005)

with a shape matching region. Their technique of fast lattice shape matching

allows them to compute per-region transformations in an efficient manner (see

Fig. 4.4).

(a) (b)

Figure 4.4: (a) 150 cartoon penguins deforming dynamically using fast lattice shape matching

(b). Deformed lattices consisting of 150 particles per penguin (22500 particles). The penguins

can be deformed at 25 frames per second on a Pentium4 3.4GHz. Image courtesy of Rivers and

James (2007).

One limitation of fast lattice shape matching is that small features of a geom-

etry yield an explosion of the runtime cost. Indeed, a small surface feature may

4.3. Techniques relying on physics 65

require fine sampling in order to be deformed independently from non-adjacent

material, but this fine sampling must be applied to the whole object. Therefore,

Steinemann et al. (2008) further improved the technique by allowing dynamic

adaptive selection of levels of detail through the use of an octree-based hierar-

chical sampling. Their technique also handles efficient topological changes.

Although realism is not a crucial feature for game-like environments, other

models based on laws of physics were created for other applications.

4.3 Techniques relying on physics

4.3.1 3D Chainmail algorithm

The 3D Chainmail was introduced by Gibson (1997) as a fast algorithm for de-

forming solid objects. Rather than carrying out complex computations on a low

resolution geometry (as opposed to FEM techniques), the main idea is to take

advantage of the original data resolution (of a CT scan for instance) but perform

simple deformation calculation for each element. In this algorithm, each vol-

ume element is linked to its six nearest neighbours. If a link between two nodes

is stretched to its limit, displacements are transferred to its neighbouring links. It

works in a very similar way to a chain and is illustrated by Fig. 4.5. The chain mail

complexity of FEM remains a bottleneck for interactive
soft tissue modeling.

Other techniques that have been used to model soft tissue

include: free-form deformatiorF Z; active surfaces? or ac-

tive cubes3; using a “zone of influence” to predefine the
effect that displacement of a given node point will have on

neighbming node+; and using implicit surfaces to model
soft substances. These techniques are useful because of

their speed but they have limited accuracy for modeling
complex tissues and object structures.

DEFORMATION SYSTEM

A system for interactive manipulation of deformable ob-

jects has been implemented. The system consists of five
procedures: 1) an interactive control loop that monitors

selection and control of the object 2) the 3D Chair&W

algorithm which stretches or contracts the object when a
selected element is moved; 3) an elastic relaxation algo-

rithm which adjusts relative element positions to minimize

the system energy; 4) collision detection to check for colli-

sions and prevent interpenetration of objects; and 5) ren-

dering of the deformed object for visual feedback.

Data Structures
Inthis implementation, the object data structure consists of
the ob~ct size, its type or classifhtiom a pointer to the

object elements, and the deformation and elasticity pa-

rameters (which are assumed to be constant throughout the
object in this implementation). Volume element data

structures consist of a element color (r,g,b), a position vec-

tor (x,yz), and pointers to the six nearest neighbors: top,
bottom, front, back, Ieft, and right. An additional data

structure keeps track of previous positions of moved ek -

ments. This structure is used for fast backtracking after a

collision is detected or after reaching an object cont3guE-

tion that is not permitted.

ControlLoop
The system consists of two phases: an initialization phase
to read in and initialize data structures; and an X-Event

control loop that continuously monitors and responds to

user inputs. Button clicks and releases are used to select

and deselect elements in the object. If an element is se-

lected, mouse movements control displacements of the =-

lected element. The largest possible step is taken towards

the desired position if the desired position results in an ob-

ject that is not permissible (due to collisions with other ob-
jects or the boundaries of the virtual space). The user inter-

face monitors changes in the deformation parameters,
changes in rendering engines, and termination of the ses-
sion.

Object Deformation: 3D ChainMail

The large number of elements in a vohunetic object poses
a signifkant challenge for interactive applications that

model physically realistic object deformation. One ap-

proach is to perform FEM calculations on a lower resolu-

tion grid’”. However, this does not take advantage of the

high resolution data produced by medical scanners. Here,

we introduce an algorithm that uses the original data reso-

lution but performs relatively simple deformation calcula-

tions for each element. When the volume is manipulated,

the object stretches or contracts to satisfy maximum and

minimum aUowabIe distances between neighbming ele-

ments. The movement of each element depends ordy on

the positions of its nearest neighbors, allowing fast propa-

gation of the deformation through the volume. Because the

motion constraints are similar to those of a set of linked

elements in a chain, this algorithm has been dubbed 3D

dx

dx

)
maxinnlly s~dmd lmxilmlly

Figure 1. Deformation of a ID chain when the selected

link is moved to the right by dx

BB
relaxed

EEl
Figure2. Deformationof 2D chain mail when the selected

link is moved.

In the 3D ChainMail algorithm, volume elements are linked

to their six nearest neighbors. When one node of the

structure is pulled or pushed, neighboring links absorb the
movement by taking up slack in the structure. If a link

between two nodes is stretched or compressed to its limit,

displacements are transferred to its neighboring links. In
this way, small displacements of a selected point in a rela-
tively slack system result in only local deformations of the

system, while displacements in a system that is already

stretched or compressed to its limit causes the whole sys-

150

Figure 4.5: Deformation of a 2D chain mail when the link indicated by an arrow is moved. Image

courtesy of Gibson (1997).

algorithm is then followed by an elastic relaxation, which relaxes the shape of the

deformed object approximated by the chain mail algorithm. This step consists

66 Chapter 4. Modelling the deformation of solid objects in real-time

of minimising an elastic energy measure within the object to insure that the cal-

culated deformation is a minimum energy configuration.

This method was extended by Schill et al. (1998) to integrate inhomogeneous

and anisotropic behaviour. This extension of the chain mail algorithm allows

the authors to simulate the vitreous humour in the eye during a vitrectomy pro-

cedure. However, the main drawback of this algorithm is that it does not model

volume preservation, an important characteristic of many tissues in the human

body.

4.3.2 Modal analysis

Modal analysis was first introduced to the graphics community by Pentland and

Williams (1989) as a fast method for approximating deformation. Modal anal-

ysis is the process of taking the non-linear description of a system, finding a

good linear approximation, and then finding a coordinate system that diago-

nalises the linear approximation. This process transforms a complicated sys-

tem of non-linear equations into a simple set of decoupled linear equations that

may be individually solved analytically (Hauser et al., 2003). Moreover, because

each decoupled equation may be solved analytically, stability concerns due to

the choice of a time integration procedure are eliminated. The linearised system

of equations may be written as:

MÜ+DU̇+KU = R. (4.4)

where M is the mass matrix, D is the damping matrix, K is the stiffness matrix and

R are the externally applied loads. Modal decomposition refers to the process

of diagonalising equation (4.4). By using Rayleigh damping (see discussion on

damping in section 3.3.5), (4.4) may be rewritten as:

K(U+α1U̇)+M(α2U̇+ Ü) = R, (4.5)

where α1 and α2 are the Rayleigh coefficients. We denote W the solution to the

generalised eigenproblem Kx+λMx = 0 and Λ the diagonal matrix of eigenval-

ues, then (4.5) may be expressed as:

Λ(Z+α1Ż)+ (α2Ż+ Z̈) = G, (4.6)

where Z = W−1U is the vector of modal coordinates and G = WT U is the external

force vector in the modal coordinate system. Each row of this equation now

corresponds to a single scalar differential equation:

z̈i + (α1λi +α2)żi +λi zi = gi . (4.7)

The analytical solutions to each equations are well known and are the following:

zi = c1e tω+
i + c2e tω−

i (4.8)

4.3.2. Modal analysis 67

where c1 and c2 are complex constants and ωi is the complex frequency given

by:

ω±
i =

−(α1λi +α2)±
√

(α1λi +α2)2 −4λi

2
. (4.9)

The main advantage of modal analysis is the possibility to model only the nec-

essary modes. Indeed if the eigenvalue λi associated with a particular mode is

large, then the force required to cause a discernible displacement of that mode

will also be large. Similarly, some displacements may be too small to be detected.

Removing those modes from the computation will not change the appearance of

the resulting simulation while substantially reducing the computational cost.

James and Pai (2002) went even further by using graphics hardware to reduce

CPU costs to a minimum. In particular, they use modal analysis to model hu-

man skin and secondary tissues in a laparascopic surgical simulation to allow

the CPU to focus on more complex tissue models and user contact interactions

(see Fig. 4.6). The technique is fairly efficient as it allows pre-computations of

the vibration modes.

(a) (b)

Figure 4.6: (a) A jumping motion that leads to significant thigh and belly vibrations of human

skin when rendered with modal analysis. (b) The same hardware accelerated technique is ap-

plied to secondary tissues in a laparoscopic simulation to ease the CPU of computations. Image

courtesy of James and Pai (2002).

Although modal analysis significantly accelerates the simulation, it gener-

ates noticeable artefacts when applied to large deformations due to the step of

linearisation. It can produce unnatural results with deformations of large am-

plitude. Choi and Ko (2005) proposed to overcome this limitation by taking the

rotational component of the deformation into account at each node. Barbič

and James (2005) make use of modal analysis to build a deformation basis from

68 Chapter 4. Modelling the deformation of solid objects in real-time

modal derivatives. It allows them to simulate large deformations of solid objects

with non-linear material.

4.3.3 Mass-spring model

A classic technique for modelling a deformable object is the mass-spring system.

In this method, the geometry is described by a network of masses connected

together by springs. The force F exerted onto each mass by the spring may be

computed with:

Fspring =−kx, (4.10)

where k is the spring stiffness constant, x represents the stretch of the spring

from its rest position. From our experience, we know that a mass attached to a

single spring has a tendency to oscillate. If no appropriate measure is taken, a

network of springs will a fortiori oscillate as well. To prevent the system from

oscillating, a damper is also added between each couple of masses. The force

created by the damper acts to reduce the velocity and may be expressed as:

Fdamper =−d ẋ (4.11)

where d is the damping constant and ẋ the derivative of x with respect to time.

The damper added between each couple of masses allows to model friction and

reduce the amplitude of the oscillations. Applying Newton’s second law
∑

F =
mẍ yields the standard differential equation for a mass-spring system:

mẍ =−d ẋ−kx. (4.12)

For complex systems with more than one spring attached to each mass, the

right-hand side of the equation (4.12) becomes more complex as it needs to be

repeated and adjusted for each spring. The easiest way to solve a complex mass-

spring system iteratively, is to first calculate the total force currently acting on

each mass by summing all forces currently exerted by all springs attached to this

mass (using (4.10) and (4.11)). Dividing the total force by the mass gives the cur-

rent acceleration of each mass (by (4.12)). This equation must be numerically

solved for each mass, either by explicit or implicit methods. A discussion of in-

tegration methods for mass-spring models can be found in Shinya (2005).

Mass-spring systems have been extensively used and are still very popular.

And this is not surprising because they are easy to implement and computation-

ally efficient. Of course, they have drawbacks. But as we will see shortly, various

recent works attempt to circumvent them. One limitation often mentioned is

the difficulty to derive spring stiffnesses from elastic properties (Young’s modu-

lus and Poisson’s ratio). To overcome this deficiency, Lloyd et al. (2007) mention

two ways of obtaining the parameters of a mass-spring model. The first one con-

sists in varying the parameters until the behaviour of the system is similar to the

4.3.3. Mass-spring model 69

one obtained through the experiments or the one obtained with the Finite Ele-

ment Method (Bianchi et al., 2004). The second way consists in establishing an

analytical reasoning for calculating the constants of the mass-spring model. For

instance, starting from the definition of Young’s modulus, Poisson’s ration, shear

and bulk modulus, Baudet et al. (2007) apply simple tests to their mass-spring

model to find the most appropriate stiffnesses. Lloyd et al. (2007) proposes a lin-

earisation of the mass-spring equations with the aim of equating the linearised

stiffness matrix to the stiffness matrix of a linear finite element method. By fol-

lowing the same method, San Vicente et al. (2009) derived a mass-spring model

equivalent to a linear finite element model for maxillofacial surgery simulation.

Because they do not derive from the equations of continuum mechanics,

mass-spring models have a limited capacity to model the various aspects of

a material like anisotropy, viscoelasticity etc. Even worse, according to Bour-

guignon and Cani (2000), if all springs are set to the same stiffness, the mesh ge-

ometry may generate undesired anisotropy as shown in Fig. 4.7. However, some

works tried to take advantage of this feature by giving directions of interest to

their model by specifically designing the mesh to align springs on specific direc-

tions. For instance, it was used by Miller (1988) to animate the motion of snakes

and worms. It was also used by Ng-Thow-Hing and Fiume (1997) in their muscle

model where some of the springs were aligned with the muscle fibres and more

recently by Magjarevic et al. (2009) for modelling the mechanical behaviour of

the myocardial tissue. More details on controlling anisotropy in mass-spring

systems may be found in Bourguignon and Cani (2000).

A mass-spring model may also be enhanced to feature viscoelasticity. In-

deed, Stiles and Alexander (1972) proposed a viscoelastic mass-spring system to

test hypotheses on the mechanical response of muscles. Much more recently,

Tamura et al. (2005) introduced a method to simulate viscoelastic material using

a mass-spring system. They use a large number of particles to create a randomly

connected mesh to mimic the structure of polymeric materials and hence their

viscoelascity characteristics. Basafa and Farahmand (2010) went even further

and extended a mass-spring system to simulate non-linear viscoelastic defor-

mations of soft tissue for laparoscopic surgery. They tune their parameters by a

simple optimisation procedure to fit the mechanical response obtained on a set

of experimental data.

Terzopoulos et al. (1991) even designed a mass-spring system that experi-

ence transitions from solid to liquid. Nodes are connected by springs in a hexa-

hedral lattice and each of them has an associated temperature. Spring stiffnesses

decreased with the increase in temperature. The diffusion of heat through the

material is computed by using a discretised form of the heat equation. When the

melting point is reached, the stiffness is set to zero and the node is detached from

this particular spring. Once a node is freed from all his neighbouring springs, it

70 Chapter 4. Modelling the deformation of solid objects in real-time

a b
(a)

a b
(b)

Figure 4.7: The two meshes are undergoing a downward pull at their bottom. While the tetra-

hedral mass-spring system (a) shows signs of anisotropy, the hexahedral mesh (b) with springs

aligned along the gravity does not. Image courtesy of Bourguignon and Cani (2000).

becomes an independent glop of fluid and its behaviour is then modelled using

a discrete fluid model.

Early 2000s, the rapid increase in the performance of graphics hardware,

coupled with recent improvements in its programmability, have made graphics

hardware a compelling platform for computationally demanding tasks in a wide

variety of application domains. Researchers and developers have become inter-

ested in harnessing this power for general-purpose computing, an effort known

collectively as GPGPU (for General-Purpose computing on Graphics Processing

Units). A survey of GPGPU algorithms and techniques was written by Owens

et al. (2007).

Mosegaard et al. (2005); Mosegaard and Sørensen (2005) were probably the

first to implement a mass-spring model on GPU in medical simulation. For the

first time, the whole simulation of was performed on the GPU (physics, inter-

action and visualisation) and they used their framework in a congenital cardiac

surgery simulation. They compared two implementations: the first one explic-

itly defines the connectivity between springs using a connectivity texture while

the second one implicitly determines at runtime that springs are connected

when they are neighbours. They were able to compute 188 iterations per second

on a 42745 particule model of a pig heart. Depending on the size of the model

and the type of implementation, the authors achieved speed-ups between 10

and 30 × over their CPU implementation.

4.4. Techniques based on continuum mechanics 71

Taking advantage of the GPU to reach a substantial speed-up is usually not

straightforward. One must understand the limitations inherent in its design and

devise algorithms accordingly. With this idea in mind, Sørensen and Mosegaard

(2006) reviewed the most important concepts and data structures required to

realise two popular deformable models on the GPU: the spring-mass model and

the finite element model. In 2008, Rasmusson et al. investigated performance

and optimisation strategies between the two GPU languages OpenGL and CUDA

for their mass-spring-damper model. More recently, Leon et al. (2010) presented

a GPU implementation of a mass-spring model with a nearly 80× speedup over

serial execution and 20× speedup over CPU-based parallel execution.

If mass-spring systems are quite versatile and easy to implement, the most

complete mathematical formalism available to describe the mechanical be-

haviour of a solid is provided by continuum mechanics. Consequently, it feels

natural to derive computational models from the equations of continuum me-

chanics and a few techniques based on these equations will now be introduced.

4.4 Techniques based on continuum mechanics

4.4.1 The finite element method

The finite element method brings accuracy a step further. The method will not

be explained here since it was already discussed with great details in chapter 3.

This is the method of first choice for modelling deformable objects with preci-

sion as it is directly derived from the most complete theory available for describ-

ing the mechanical response of a continuum. Different kind of analysis may be

carried out with the finite element method. As seen in section 3.3, an analysis

may be either static (that is, the transient response is ignored) or dynamic (more

general). In all analyses, the deformation of the body at a point is described by

some measure of strain. If this measure is chosen to be linear (see section 2.4.5

for details), the analysis is said to be geometrically linear. In general, we consider

this assumption to be valid for strain less than 10%. In contrast, geometrically

non-linear analyses make use of a non-linear strain tensor to measure the de-

formation and thus may handle large deformations. Another characteristic of

an analysis is whether the relationship between strain and stress (the constitu-

tive model) is assumed to be linear or non-linear. The analysis is qualified as

materially linear or non-linear, respectively.

Because of its complexity, the finite element method is substantially more

computationally expensive than the ones introduced so far. And this has been a

problem in computer graphics and interactive simulation for many years. So re-

searchers came up with simplifying assumptions and ideas to make the compu-

tations more efficient. Over time, with the increase in computational power, the

72 Chapter 4. Modelling the deformation of solid objects in real-time

simplifications were progressively relaxed and the observed tendency for real-

time simulation is now towards more and more complete finite element meth-

ods. In this section, we will describe this evolution in the use of finite element

methods for interactive simulation.

The use of the finite element method in computer graphics was pioneered

by Terzopoulos et al. (1987) for simulations of elastic deformations. They de-

rived a geometrically non-linear strain tensor from differential geometry the-

ory. Obviously, the computations were not carried out in real-time but this tech-

nique allows Terzopoulos et al. to calculate the interaction between solid and

deformable models in a physically realistic manner.

In order to speed up the computations, linear strain measures started to be

used (see section 2.4.5). For instance, Gourret et al. (1989) make use of a linear

finite element method to model the deformation of grasped objects. The equa-

tions are however solved in static for simplicity. An approach to solve the system

of equations in dynamic in a reasonable amount of time is to decrease the num-

ber of elements. This reduction must be compensated by the use of high-order

elements, that is the degree of the shape functions used in the interpolation of

the solution is higher to maintain the overall accuracy. This approach was ap-

plied to an elaborate model of a muscle by Chen and Zeltzer (1992) and to mod-

elling skin in a simulator of plastic surgery by Pieper et al. (1992) where they both

use 20-node brick elements. Yet, finite element modelling remained very com-

putationally expensive and the interactivity required for medical simulators was

still to be reached.

In 1996, Bro-Nielsen and Cotin developed a real-time finite element method

formulation by introducing three improvements. The first one is to compress the

stiffness matrix of the volumetric system into a matrix with the same complexity

as a surface model of the same object. This technique is called condensation.

The deformation is solved only at surface points while still taking the volumet-

ric nature of the object into account. The second improvement concerns the

fact that they explicitly pre-compute the inverse of the stiffness matrix and use

matrix vector multiplication with this matrix to achieve a low calculation time.

Finally, they exploit the sparse structure of the force vector. They showed the

efficiency of their method by modelling a leg with 700 nodes at 20 frames per

second.

Later, James and Pai (1999) had another idea to improve the speed of the

computation. They based their model on boundary integrals and the boundary

element method, used for the first time in computer graphics. The method con-

sists of calculating only boundary displacements and forces. Unfortunately, the

authors do not provide the performance of their framework.

Cotin et al. (1999) took advantage of the superposition principle which ap-

4.4.1. The finite element method 73

plies to linear problems. Their idea was to approximate the deformation of

a solid object with a linear combination of pre-computed states. In addition,

they enhanced the formulation by adding a non-linear radial component. This

method was applied to compute the deformation of liver in a hepatic surgery

simulator (see Fig. 4.8). Their approach substantially improved the computa-

tional time for a finite element model as it allowed them to compute the posi-

tions and the forces of a 1500 node liver at 300Hz. An important drawback em-

phasised by the authors themselves is the impossibility to simulate tissue cut-

ting. Indeed, the large pre-computations associated with this method are de-

pendent of the geometry of the mesh and therefore cannot be updated in real-

time.

Figure 4.8: Images of a hepatic surgery simulator. The liver model contains about 1500 nodes.

The simulation was performed at 50Hz for the visual feedback and 300Hz for force feedback.

Image courtesy of Cotin et al. (1999).

Besides real-time computation of soft tissue, another major concern for

medical simulators is the ability to cutting through soft tissue models. Mor and

Kanade (2000) proposed a technique to generate a minimal set of new elements

to replace intersected tetrahedra along the path formed by the cut. The method

do not wait for the cut to be completed for splitting an element, instead, a min-

imal subdivision of a partially cute tetrahedron is generated. The authors used

a very small time step to insure the stability of the soft tissue model and their

simulations were not real-time. In addition, their method can create very small

elements and the model can become unstable. This occurs because the stiffness

matrices for the small elements are quite large, and even small displacements

can generate very large forces.

Cotin et al. (2000) proposed a hybrid model allowing real-time cutting. They

combined a quasi-static precomputed model, which is very efficient but does

not allow topology changes, with a tensor-mass model which requires more

computation but authorises cutting. The key idea is to separate a same structure

into two parts: one susceptible to be cut during the surgery procedure and one

that will not be submitted to any topological change. While the former will be

74 Chapter 4. Modelling the deformation of solid objects in real-time

simulated with the tensor-mass model, the deformation of the latter will be com-

puted using the precomputed model. Since both linearly elastic models follow

the same physical law, the combination of these two models should behave ex-

actly as a global, linearly elastic model. To achieve this goal, Cotin et al. describe

how to impose the additional boundary conditions at the connection nodes for

the global model to be consistent in terms of forces and displacements. The ef-

ficiency of this hybrid model was demonstrated by simulating an hepatectomy

(removing of one of the eight anatomical segments of the liver). They reported

the simulation (allowing deformation and cutting) of a mesh with more than

8000 tetrahedra in real-time.

Serby et al. (2001) described a new approach to cutting with finite element

models. The central idea is not to introduce new nodes/elements but to displace

the existing ones to account for the topological changes introduced by a cut.

They also added a step of homogenisation of the mesh to avoid tiny elements.

Thus, the problem of decreasing element size is minimised and consequently

the stability of the solution of the equations of motion is increased.

Cutting is a problem for all techniques pre-computing the inverse of the stiff-

ness matrix. Indeed, topological changes require updates of this matrix, which is

too computationally heavy to be done in real-time. Nienhuys and van der Stap-

pen (2001) avoid the pre-computations by approximating the inverse at runtime

with an iterative algorithm (Conjugate Gradient). Moreover, instead of subdivid-

ing each tetrahedron to make the cut appear where the user performed it, they

adapt the mesh locally so that there are always triangles on the scalpel path, and

perform the cut along those triangles (see Fig. 4.9). If the approach is interest-

ing, the authors reported a lag between the scalpel and the realised cut. In addi-

tion, repositioning the nodes within the mesh can easily generate degeneracies,

which have to be eliminated. In his PhD thesis, Lee (2010) presented techniques

to update the precomputed inverse of the stiffness matrix rather than recomput-

ing it, which is much more efficient. The proposed technique was also extended

to integrate the concept of condensation, increasing computational efficiency

and reducing memory requirements.

As we know, the assumption of linearity is usually only valid for very small

deformations and strains. If this is often an acceptable trade-off between the

visual deformation result and the speed of the system, research was carried out

to handle large deformations. However, since geometrically non-linear analy-

ses are highly computationally demanding, another approach was found which

allows large deformation while still relying on a linear strain measure: the co-

rotational methods . A very complete description of the co-rotational approach

is given by Felippa (2000). As explained in section 2.4, an appropriate strain mea-

sure is a tensor which only measures the deformation applied to the object. This

4.4.1. The finite element method 75

(a) Surface selection (b) Node snapping (c) Dissect

Figure 4.9: The three steps in performing a cut (represented here in 2D). Image courtesy of Nien-

huys and van der Stappen (2001).

is the case of the Cauchy-Green or Green tensors for instance. Those strain met-

rics only measures deformation, they are invariant with respect to rigid-body

transformations applied. However, geometrically linear analyses make use of

the infinitesimal strain tensor, which is only an approximation of the Green ten-

sor. Consequently, this linearised strain measure is not invariant with respect to

rigid-body transformations. In particular, the error brought by the approximated

(linear) strain measure increases with the rotation of the element. This error in

the measure creates ghost forces which over-deforms the simulated object (see

Fig. 4.10). The idea behind co-rotational methods is the decomposition of the

motion into a rigid-body and deformational components. In other words, the

deformation of each element may be seen as measured in a coordinate system

which follows the rigid-body motion of the element, hence cancelling the part of

the error due to the rotation in the strain measure. Consequently, co-rotational

formulations allow large displacements and rotations (since the rigid-body mo-

tion is not considered) as long as the strain remains small (the strain measure is

still linear).

Among the firsts to apply this technique to static analyses are Argyris et al.

(1964) and Wempner (1969). Although the birth of co-rotational methods is not

very clear (Felippa and Haugen, 2005), Belytschko and Hsieh (1973) had a similar

thinking and introduced the so-called convected coordinates for solving dynamic

equations. However, while the spirit is the same than co-rotational methods,

convected coordinates forms a curvilinear system that fits the change of metric

as the body deforms, therefore the convected metric necessarily encompasses

deformations. In other words, the decomposition in rigid-body and deforma-

tional components is not exact. During the last decade, the co-rotational ap-

proach has regained interest in the computer graphics community.

In contrast of Müller et al. (2002) who discretised the rotation field at each

vertex, Hauth and Strasser (2004) determined the rotation at the level of the ele-

ment. If Müller et al.’s technique of stiffness warping yields ghost forces due to

inaccuracies in the determination of the rotation field, Hauth and Strasser made

76 Chapter 4. Modelling the deformation of solid objects in real-time

Figure 4.10: A geometrically linear finite element model (green) is compared to a co-rotational

finite element model (yellow). While still using a simple linear strain measure, the co-rotational

formulation is not sensitive to rotations and thus does not over-deform.

use of the polar decomposition of the deformation gradient to extract the exact

rotation. They also applied this formulation in a hierarchical finite element set-

ting where the coarse level is computed with a non-linear strain tensor and the

finer levels are computed with a co-rotational method. In addition, they exam-

ined the error that is arising from using the co-rotational approximation instead

of a non-linear strain tensor. They measured that the co-rotational approxima-

tion induces an error of about 5−20% but can give a speedup of about a factor

seven or more.

Pouliquen et al. (2005) addressed the simulation of human fingers with hap-

tic feedback. During the grasping task, the deformable finger pads undergo large

rotations while their deformation remains small. Using a co-rotational approach

for modelling the finger pads allows them to efficiently compute the contact

forces between the deformable pads and the rigid object to be grasped.

If co-rotational approaches increase accuracy in the strain measure, all the

examples we have seen so far make use of a linear constitutive law. Yet, the

mechanical behaviour of soft tissue is known to be non-linear, viscoelastic and

often anisotropic (Fung, 1993). Moreover, Misra et al. (2007) demonstrated a

noticeable difference between the force feedbacks provided by linear and non-

linear tissue models. One of the first materially non-linear finite element for-

mulation used in medical simulation was probably the work of Sagar et al.

(1994). While developing a teleoperated micro-surgical robot for eye surgery,

they wanted to provide a virtual environment has part of the system for training.

Since the cornea is anisotropic and non-linearly elastic and undergoes large de-

formations, they have used large deformation elasticity theory with orthotropic

and non-linear material properties in the finite element model. Coupled with a

4.4.1. The finite element method 77

detailed visual model of the eye, the simulation produces a fair level of realism

with a performance greater than 10Hz (see Fig. 4.11).

5

(a)

6

Figure 10: Surgical virtual environment including micro-tools and
(b)

Figure 4.11: (a) Exterior view of the model showing the eye and the eyelashes. (b) Surgical virtual

environment including micro-tools and guidance information. Image courtesy of Sagar et al.

(1994).

Keeve et al. (1998) compared a fully (geometrically and materially) non-linear

finite element model with a mass-spring model to compute the deformation of

skin after bone realignment in a craniofacial surgery simulator. The efficiency

of the mass-spring model gives the ability to the surgeon to realise interactive

simulation of the resulting tissue changes and to improve his planning process.

The best precision was given by the finite element model which could be used

off-line to verify the chosen surgical procedure.

The first geometrically non-linear finite element model running in real-time

was reported by Debunne et al. (2001). They provided an adaptive method for

animating viscoelastic deformable objects in a guaranteed frame rate. As the

object moves and deforms, the sampling is refined to concentrate the computa-

tional load into the regions that deform the most (see Fig. 4.12). They reported

animating a few hundred points in real-time at a frequency higher than 300Hz.

In the same spirit, Wu et al. (2001) applied an adaptive meshing technique to

provide sufficient detail where required while minimising unnecessary compu-

tation. They included both Mooney-Rivlin and Neo-Hookean material models

and used the non-linear Cauchy-Green tensor. In addition to the local mesh re-

finement technique, they used mass lumping and an explicit time integration to

deform a liver model of 1210 tetrahedra in real-time.

Still in 2001, Picinbono et al. proposed to use a non-linear model only where

the displacements are larger than a given threshold, the remaining part of the

object still uses linear elasticity.

78 Chapter 4. Modelling the deformation of solid objects in real-time

g dy-
nteed
time
large-
s par-

tetrahedral
condi-

coarse. As
concen-
most.
hat is

demon-
esses

adaptive
amped
or sev-
t of a
he dy-
aptic

Figure 1: Our real-time multiresolution model allows for a wide
range of applications, from virtual surgery simulators (top: liverFigure 4.12: The approach of Debunne et al. (2001) makes use of a local refinement technique to

ensure high physical fidelity while bounding the global computation load to guarantee real-time

simulation with a geometrically non-linear and visco-elastic finite element model.

Recently, research on non-linear finite element and more elaborate consti-

tutive models increased significantly. For instance, Pathmanathan et al. (2004)

used a fully non-linear model to predict deformation of breast under compres-

sion during mammography. However, they were not interested in real-time.

Zhong et al. (2005) claimed achieving real-time with their non-linear finite ele-

ment method using an interpolation approach but do not give any figure. Sedef

et al. (2006) proposed a viscoelastic model to simulate the deformation of a liver.

They calculate the deformation in real-time by carrying out the computations

in static and using the superposition principle. However, their approach used

a linear strain measure, which limits their system to small deformations. Yan

et al. (2007) claimed to compute their non-linear finite element model in real-

time using a technique of graded mesh but do not give any information on their

performance.

In 2007, Miller et al. proposed the total Lagrangian explicit dynamics (TLED)

algorithm, a very efficient fully non-linear formulation. The algorithm is based

on the finite element method using the total Lagrangian formulation, where

stresses and strains are measured with respect to the original configuration.

This choice allows for pre-computing of most spatial derivatives before the com-

4.4.1. The finite element method 79

mencement of the time-stepping procedure. The authors reported that the av-

erage number of floating-point operations per element per time step is 35%

lower than for the similar implementation of the algorithm based on updated

Lagrangian formulation. They were able to compute the deformation of a hex-

ahedral mesh of 6000 elements in about 16ms for a time step of 1ms. If they

could not achieve real-time computations, their work constituted a step towards

the simulation of entire organs in real-time.

Finally, Taylor and Hawkes (2007) presented an efficient constitutive update

procedure for viscoelastic models suitable for simulation of soft tissues at large

strains and varying strain rates. The procedure is formulated for use in explicit

dynamic finite element algorithms like the TLED algorithm. The procedure is

based on a class of visco-hyperelastic constitutive models developed from purely

hyperelastic strain energy functions by introducing relaxation terms and ex-

pressing in convolution integral form. The resulting constitutive equations are

separated into rate-dependent and -independent terms, with the former being

designated as state variables to be stored and updated at each time step also.

These are converted to a differential form, which upon integration in time yields

the required incremental update formula. They showed the validity of the pro-

cedure with a series of numerical examples.

The finite element method is very computationally demanding. However,

by nature, very similar computations are carried out for each element. Conse-

quently, the finite element method is a good candidate for being implemented

on parallel architectures. Thus, Székely et al. (2000) implemented a fully non-

linear formulation for an 8-processor machine. However, the dedicated hard-

ware was not yet assembled and functional at the time so they did not provide

any measure of performance.

Early 2000s, the rapid increase in the performance of graphics hardware,

coupled with recent improvements in its programmability, have made graphics

hardware a compelling platform for computationally demanding tasks in a wide

variety of application domains. Researchers and developers have become inter-

ested in harnessing this power for general-purpose computing, an effort known

collectively as GPGPU (for General-Purpose computing on Graphics Processing

Units). A survey of GPGPU algorithms and techniques was written by Owens

et al. (2007).

To the best of our knowledge, Rumpf and Strzodka (2001) were the first ones

to leverage the power of GPUs to solve partial differential equations. They es-

tablished a correspondence between common mathematical operations and

OpenGL operations and structures. Thus, as an example, a vector is represented

as a RGBA color vector in a color image on the graphics card. They decided to

implement an iterative solver for a linear system of equations, which we find at

80 Chapter 4. Modelling the deformation of solid objects in real-time

the core of most finite element codes. Using this hardware accelerated solver,

they solved the linear heat equations and presented an anisotropic diffusion

model for image processing. They obtained promising results but noted the

hardware restrictions that forced them to approximate all non-linear functions

by linear ones in the implementation of the anisotropic diffusion. Although a

complete hardware accelerated finite element method implementation was yet

to be done, Rumpf and Strzodka definitely stepped towards the right direction.

Wu and Heng (2004) proposed the first application of GPU in medical sim-

ulation. They were able to achieve an interactive frame rate with topology

changes in surgical simulation. Not only they used the condensation technique

for merely calculating the surface nodes in the non-operation parts, but they

implemented the conjugate gradient solver onto GPU. Indeed, entering 2003,

the full IEEE floating point precision data type supported in shaders and texture

stages allows the GPU to be applied into more general applications. The con-

jugate gradient solver includes three primary operations: multiplication of the

sparse matrix and the vector, addition of two vectors and the sum-reduction op-

eration. The core component is the multiplication of the sparse matrix and the

vector. Therefore, they migrated this part of calculation from the CPU into the

fragment processor of the GPU, to take advantage of the fragment processor in

its efficient manipulation of the local texture memory on the mathematical cal-

culation. The performance of their method on the GPU is up to 2.15 times faster

than the CPU implementation.

In 2007, Taylor et al. introduced the first GPU implementation of a fully non-

linear finite element method (more details in Taylor et al. (2008b)). They refor-

mulated the TLED algorithm presented by Miller et al. (2007) to accommodate

with the limited hardware possibilities of GPUs. In particular, the main restric-

tion when using graphics-based GPU execution is the inability to scatter, which

necessitated reformulation of force summation as a gather in their implemen-

tation. It is worth noting that the entire finite element method implementation

was ported to GPU. They reported significant solution speed gains up to 16.8×
over the CPU implementation. Thus, they were able to compute a simple cube

model with up to 16000 tetrahedral elements in real-time.

4.4.2 Meshless methods

If the finite element method is a robust method and widely used in engineer-

ing, the method has a few shortcomings (Liu and Gu, 2005). First, the creation

of a mesh is compulsory and producing a good quality mesh is both difficult

and time consuming. Second, the stresses obtained in FEM are often discon-

tinuous at the interfaces of the elements. Special techniques are required in a

post-processing stage to recover accurate stresses. In addition, under large de-

4.4.2. Meshless methods 81

formations, considerable loss in accuracy in FEM results can arise from the el-

ement distortions. The origin of these problems is the use of elements. Conse-

quently, the idea of getting rid of the elements and the mesh has emerged and

the concept of meshless methods was born. Instead, meshless methods use a set

of nodes scattered within the problem domain. They do not form a mesh, mean-

ing it does not require any a priori information on the relationship between the

nodes for the interpolation of the unknown variables. In theory, this should fa-

cilitate topological changes, a feature fairly desirable in surgery simulation. It

is worth noting though that meshless methods are still in their developing stage

and are not as mature as finite element formulations. We will now briefly re-

view the research carried out in soft tissue modelling for medical simulation

that makes use of meshless method. A complete review and details on mesh-

less methods are beyond the scope of this thesis.

A meshless method was introduced for the first time for modelling soft tissue

in medical simulation by De et al. (2001). They use the so-called method of finite

spheres (MFS). Nodal points are only sprinkled locally around the surgical tool

tip and not over the whole domain. The interpolation is performed by functions

that are non-zero only on spheres surrounding the nodes. A point collocation

technique is used to generate the discrete equations. The authors qualitatively

compared the method of finite spheres with the finite element technique from

a commercial package and the displacement profile was similar in both cases.

They were able to achieve a computational rate of about 100Hz when 34 spheres

where used. Real-time haptic rates of about 1kHz was then obtained using a

force extrapolation technique.

Lim and De (2004) used the same technique of finite spheres introduced by

De et al. to model soft tissue but they added progressive cutting, without the

generation of new primitives. As the cut progresses, the nearest vertex to the

intersection point of the tool is snapped to the tool path. Then, they observed

that the prescribed boundary condition changes on only a very small portion as

the tool interacts with the organ. Rather than solving the entire problem over

and over again, they proposed instead to make incremental corrections, which

results in an accelerated solution procedure.

Meshless methods were then introduced to computer graphics by ?. In each

step, they compute the spatial derivatives of the displacement field using a mov-

ing least squares (MLS) procedure. From these derivatives, they obtain strains,

stresses and elastic forces at each simulated point. In addition, they proposed

techniques for modelling and animating a point-sampled surface that dynam-

ically adapts to deformations of the underlying volumetric model. They used

a non-linear measure of strain with a linear constitutive model. They reported

real-time simulation of models exhibiting elastic, plastic, melting and flowing

82 Chapter 4. Modelling the deformation of solid objects in real-time

effects.

Horton et al. (2006) tested meshless methods for surgical simulation. They

proposed a total Lagrangian explicit dynamics algorithm using a non-linear ma-

terial formulation. They applied the method on an example of brain shift and

compared their results with a commercial finite element code. The shape func-

tions are created from a cloud of unconnected nodes using the element free

Galerkin method. They were interested in the displacement of the centre of

mass for the brain and found the absolute displacement differences between

the two algorithm are less than 0.85mm which is the resolution of the MRIs in

their study. The same team kept investigating and testing the technique. How-

ever, they used moving least squares procedure for creating the shape functions

instead of the element free Galerkin method. They also realised experimental in-

dentations (Horton et al., 2007) and provided more extensive comparisons with

a finite element method (Horton et al., 2010).

Another example of application is the used of the technique called moving

particle semi-implicit method (MPS) by Chhatkuli et al. (2009). They applied

this method to simulate the deformation of lung and a tumour inside the left

lung during inspiration. The lung tissues were considered to be homogeneous,

isotropic and viscoelastic. They compared their results with the experimental

CT taken at the end of inspiration and found out that the deformation predicted

by numerical simulation matches reasonably well with the experimental results.

Recently, Zhu et al. (2010) proposed a framework based on point-based sim-

ulation techniques to model organ deformations realistically in a laparoscopic

simulator. They combined a new strain-stress tensor computation scheme with

smoothed particle hydrodynamics (SPH) method. The parameters of the tensor

relating strain and stress were determined through mechanical experiments.

The main advantage of meshless methods is of course in the absence of a

mesh. This advantage of not having to go through the complex process of mesh-

ing was often claimed by meshless methods partisans. It also allows much easier

cutting as it saves the cost of a computationally demanding re-meshing around

the cut. Yet, in contrast of finite element methods, meshless techniques are

young and still in development. Boundary conditions are an aspect of the nu-

merical solution of partial equations where meshless methods have many diffi-

culties for instance. According to Horton et al. (2010), if meshless methods are

accurate in terms of overall reaction forces, they are not as good with individ-

ual displacements or forces. Therefore the authors suggest to use a meshless

algorithm to fill the interior sections of an organ (where a local discrepancy has

minor consequences) and use the finite element method for the boundary. As a

conclusion, if meshless methods are promising, the technique does not seem as

mature as the finite element method for modelling soft tissues.

4.5. Conclusion 83

4.5 Conclusion

Modelling the deformation of solid organs is a crucial problem in medical simu-

lation. If the finite element method is classically used in mechanical engineering

for its ability to solve the equations of continuum mechanics fairly accurately,

its development in medical simulation was more progressive. The main rea-

son for this is that the finite element method is computationally demanding and

not easily compatible with time constraints required in interactive simulation.

Therefore, other methods were developed to allow faster computations, at the

cost of larger approximations of course. Following the state of the art presented

in this chapter, we can highlight a few trends in medical simulation.

Firstly, over time (along with the increase in computational power) models

used to describe anatomical structures became more elaborate and less approx-

imative. Medical simulators become more concerned with the accuracy of their

deformation. While they used to only cover a subset of their actual mechanical

behaviour, simulators now began to reproduce most aspects of tissue behaviour

under various types of loading (non-linearity, anisotropy and viscoelasticity) as

described by Fung (1993).

Secondly, we observe a tendency towards implementations on parallel archi-

tectures, and GPUs in particular. Despite limited hardware possibilities, GPUs

allow speedups up to orders of magnitude. Of course, such a gain is not straight-

forwardly obtained and often necessitates a substantial re-write of the algorithm

to achieve an optimal result. But in environments with real-time constraints

such as medical simulators, hardware acceleration through the use of GPUs is

definitely an interesting path to follow.

At last, we can identify two types of anatomical structures in human body.

They can be either solid (brain, liver, prostate etc.) or hollow (colon, blood ves-

sels, stomach etc.). Despite this assertion, it is worth mentioning that all the

models presented so far were applied to solid organ modelling. Indeed, in the

medical simulation community, much more attention is allotted to solid organs

and the modelling of this type of structure is better understood.

We recall that one of the challenge faced by the field of medical simulation is

to model the deformation of organs in a physically realistic manner. In addition,

this objective has to be achieved within heavy time constraints. To answer this

problem for solid organs, our idea is to combine the two recent trends observed

in medical simulation: more elaborate biomechanical models and GPU acceler-

ation. Our contributions towards this issue will be presented in the two following

chapters. Since specific approaches are required for simulating the deformation

of thin anatomical structures, this problem will be tackled from chapter 7.

C
H

A
P

T
E

R

5
THE TOTAL LAGRANGIAN EXPLICIT DYNAMICS

ALGORITHM

In 2007, Miller et al. proposed the total Lagrangian explicit dynamics (TLED)

algorithm, a very efficient fully non-linear formulation. We also wanted to ex-

tend the simple non-linear TLED formulation by adding the constitutive up-

date procedure for viscoelastic models introduced by Taylor and Hawkes and

an anisotropic constitutive formulation as well. A crucial advantage of this en-

hanced TLED algorithm is that the computations are conducted at the element

level and therefore the algorithm can be easily parallelised. This work eventually

yields a very efficient GPU-based non-linear, viscoelastic and anisotropic formu-

lation for modelling solid organs in medical simulation. This chapter aims at

describing the TLED algorithm in details, as well as introducing the viscoelastic-

ity and anisotropy extensions. Their GPU implementations will be the object of

the next chapter.

85

86 Chapter 5. The total Lagrangian explicit dynamics algorithm

5.1 Description of the TLED algorithm

5.1.1 Key ideas

The total Lagrangian explicit dynamics (TLED) algorithm was first introduced to

the field of medical simulation by Miller et al. (2007). More details on this finite

element method formulation may also be found in Bathe (1995). It is worth not-

ing that the finite element analysis carried out by the TLED algorithm is dynamic

and fully non-linear (geometrically and materially). Let us begin by exposing the

key ideas of the approach.

The deformation of a body may be described by two different kind of descrip-

tion: Lagrangian or Eulerian (see section 2.2). Because the Lagrangian descrip-

tion focuses its attention on the particles of the continuous body, it is usually

used in solid mechanics. In the Lagrangian description, the position and phys-

ical properties of the particles are referred to a reference configuration. For the

great majority of commercial finite element programs, the reference configura-

tion is the previous configuration, that is the one at the end of the previous time

step. In this case, where all variables are referred to the previous configuration,

the formulation is called updated Lagrangian. The advantage of this approach is

the simplicity of the incremental strain description. The disadvantage is that all

derivatives with respect to spatial coordinates must be recomputed in each time

step, because the reference configuration is changing. The reason for this choice

is historical, at the time of solver development the memory was expensive and

caused more problems than actual speed of computations (Miller et al., 2007).

The first key idea of the TLED algorithm is to refer all variables to the unde-

formed configuration. This type of formulation is said to be total Lagrangian.

Because of this, the choice of the second Piola-Kirchhoff stress tensor as a mea-

sure of stress is required. The strain measure that is work-conjugate with the

second Piola-Kirchhoff stress is the Green-St.Venant strain tensor. That is, the

work of stress increments on the strain increments gives an accurate expression

for work (Ji et al., 2010). We should note that all derivatives in the definition of the

Green tensor are with respect to the initial and undeformed configuration. The

decisive advantage is that all derivatives are calculated with respect to the unde-

formed configuration and therefore can be precomputed. This is at the cost to

a more complex strain-displacement matrix due an initial displacement effect

in the incremental strain (Bathe, 1995). However, the TLED algorithm performs

significantly fewer mathematical operations in each time step.

The second crucial idea is to use the central difference method for an explicit

time integration of dynamic equilibrium equations. The advantage is that the

stiffness term K(U).U of the system of equations may be computed from:

K(U) ·U = F(U) =
∑

e

F̃e , (5.1)

5.1.2. Computation of element nodal forces 87

where F̃e are the global nodal force contributions due to stresses in element Ωe .

This implies that the stiffness matrix does not need to be assembled since ele-

ment nodal force contributions can be computed at the element level instead,

which is a decisive computational advantage.

We will first explain how to compute element nodal forces based on the de-

formation gradient and a neo-Hookean constitutive model. We will then show

how to use these element nodal forces to calculate the unknown displacements

for each node of the model (Taylor, 2006).

5.1.2 Computation of element nodal forces

We adopt the notation of Bathe with respect to indication of the relevant con-

figuration of the body: a left superscript indicates the configuration in which a

quantity occurs and, when applicable, a left subscript indicates the configura-

tion with respect to which the quantity is measured. We note the coordinates of

a point t x at time t.

The deformation gradient

As we know, a fundamental measure of deformation is the deformation gradient

tensor t
0X and we recall that it may be written as:

t
0X =

∂t x

∂0x
. (5.2)

This tensor describes the stretches and rotations that the material fibres have

undergone from time 0 to time t . In order to compute the element deforma-

tion gradients, we first compute derivatives of displacements ui , j with respect

to global coordinates. Since we use a total Lagrangian framework, the deriva-

tives are referred to the undeformed configuration and we have:

t
0ui , j =

∂t ui

∂0x j
=

N
∑

a=1

∂ha

∂0x j

t uai , (5.3)

where ha is the shape function associated with node a and N the number of

nodes of the element. If we define a matrix t
0∂ux of displacements derivatives

t
0∂ux =















t
0u1,1

t
0u1,2

t
0u1,3

t
0u2,1

t
0u2,2

t
0u2,3

t
0u3,1

t
0u3,2

t
0u3,3















(5.4)

The deformation gradient may be obtained from the displacement derivatives

with:
t
0X = t

0∂ux+ I. (5.5)

88 Chapter 5. The total Lagrangian explicit dynamics algorithm

The Green-Lagrange strain tensor

From the deformation gradient we may obtain the right Cauchy-Green deforma-

tion tensor t
0C:

t
0C = t

0XT t
0X, (5.6)

and then yields the Green-Lagrange strain tensor t
0E:

t
0E =

1

2
(t

0C− I), (5.7)

where I is the rank 2 identity tensor.

Constitutive equations and evaluation of stress

We know that the stresses result from the deformation of the material and they

may be expressed in terms of some measure of this deformation such as the

strain. The constitutive equations, which depends on the material under consid-

eration, relate the stresses to the strain. As we have seen in section 2.6.1, hypere-

lastic materials are a general class of materials in which the constitutive relation-

ship is expressed in the form of a strain energy density function t
0W . In such ma-

terials, the stresses are obtained by differentiating this energy density function

with respect to the appropriate strain measure (that is energetically conjugate).

In a total Lagrangian framework, the appropriate stress and strain measures are

second Piola-Kirchhoff stress t
0S and Green-Lagrange strain t

0E. Consequently,

the stress may be computed from:

t
0S =

∂t
0W

∂t
0E

. (5.8)

The form of the strain energy function depends on the chosen material. For

the TLED algorithm we choose a neo-Hookean material already described sec-

tion 2.6.5. For a compressible neo-Hookean material, the strain energy density

is given by:

t
0W =

1

2
µ(t

0I1 −3−2lnt J)+
1

2
λ(t J −1)2, (5.9)

where t
0I1 is the first invariant of the right Cauchy-Green deformation tensor t

0C
given by t

0I1 = tr (t
0C) and t J = det (t

0X) = det (t
0C)2 is the Jacobian. Then, using

the chain rule we have:
∂t

0W

∂t
0E

=
∂t

0W

∂t
0C

∂t
0C

∂t
0E

. (5.10)

Noting that

∂t
0C

∂t
0E

= 2 by (5.7), (5.11)

5.1.2. Computation of element nodal forces 89

Therefore, we may evaluate the stress from:

t
0S = 2

∂t
0W

∂t
0C

, (5.12)

which we can then expressed as the following:

t
0S = 2

(

∂t
0W

∂t
0I1

∂t
0I1

∂t
0E

+
∂t

0W

∂t J

∂t J

∂t
0E

)

. (5.13)

It may be shown that this yields:

t
0Si j =µ(δi j −t

0 C−1
i j)+λt J (t J −1)t

0C−1
i j . (5.14)

Element nodal forces

For a given element at time t , the global nodal force contributions F̃ due to

stresses in the element may be computed from:

t F̃ =
∫

0V

t
0Bt

L

t
0Ŝd 0V , (5.15)

where t
0Ŝ is the vector form of the second Piola-Kirchhoff stress given by:

t
0Ŝ =

[

t
0S11

t
0S22

t
0S33

t
0S12

t
0S23

t
0S13

]T
, (5.16)

t
0BT

L is the strain-displacement matrix and d 0V is the initial (undeformed) vol-

ume of the element. The strain-displacement matrix BL relates the strains in

an element to the element’s nodal displacements. If an implicit analysis is per-

formed, the strain-displacement matrix is used in the assembly of the stiffness

matrix. In explicit analyses it is used to compute element nodal force contri-

butions according to (5.15). In geometrically linear analyses, we assume that

the displacements are infinitesimally small so that the geometry of an element

does not change over time and the strain-displacement matrix is constant. Con-

versely, because geometrically non-linear analyses (such as carried out by the

TLED algorithm) take the change of geometry of the elements into account, the

strain-displacement matrix BL = t
0BL varies. However, the strain-displacement

matrix at time t may be computed by transforming a linear matrix t
0BL0 using

the deformation gradient. We begin by defining the linear matrix as:

t
0BL0 =

[

0B(1)
L0 0B(2)

L0
. . . 0B(N)

L0

]

, (5.17)

90 Chapter 5. The total Lagrangian explicit dynamics algorithm

where N is the number of nodes per element and the submatrix 0B(a)
L0

are given

by:

0B(a)
L0

=





















0ha,1 0 0

0 0ha,2 0

0 0 0ha,3

0ha,2 0ha,1 0

0 0ha,3 0ha,2

0ha,3 0 0ha,1





















a = 1,2, . . . , N . (5.18)

The subscripted comma denotes partial differentiation such as:

0ha,i =
∂ha

∂0xi
. (5.19)

The full strain-displacement matrix (accounting for initial displacement effect)

is then computed via
t
0B(a)

L
= t

0B(a)
L0

t
0XT . (5.20)

We note that the linear strain-displacement matrix is composed of derivatives

of shape functions with respect to the original undeformed coordinates of the

body. These derivatives are therefore constant and may be precomputed, afford-

ing the total Lagrangian formulation a significant computational advantage.

5.1.3 Computation of node displacements

We recall that the dynamic system of equations describing a deformable solid is

the following (see section 3.26):

MÜ+DU̇+K(U) ·U = R. (5.21)

where M is a constant mass matrix, D is a constant damping matrix, Ke (Ue) is

the stiffness matrix, which is a function of nodal displacements U, and R are

externally applied loads. And we seek the unknown displacements U.

Mass and damping matrices

The mass matrix for the system may be computed by summing contributions

from individual elements:

M =
∑

e

Me , (5.22)

where Me is the mass contribution from element Ωe given by:

Me =
∫

0Ve

ρe HT Hd 0V. (5.23)

5.1.3. Computation of node displacements 91

Following the total Lagrangian framework, we observe that the expression is

integrated over the undeformed volume and the mass density ρe of the unde-

formed configuration is also used. We then diagonalise the mass matrix by ap-

plying the technique of mass lumping as explained in section 3.3.5. Therefore,

the mass matrix may be built by directly computing the mass of each element

and assigning an equal proportion of this to each of the element’s nodes. In other

words, if the mass of element Ωe is me then for every node a which is attached

to this element, the ath diagonal component Maa of the global mass matrix will

receive a contribution of me /N where N is the number of nodes per element.

The complete matrix is compiled by summing contributions from all elements.

We also employ a Rayleigh damping from which we only consider the mass-

proportional component to obtain a diagonal damping matrix. Consequently, D
is computed from:

D =αM. (5.24)

Gathering of nodal forces

As stated early in this chapter, the stiffness matrix of (5.21) may be obtained from

K(U).U = F(U) =
∑

e

F̃e . (5.25)

The previous section detailed how to calculate element nodal forces F̃e . For each

node we can now add the element force contributions up from all elements at-

tached to this node. Gathering those nodal force contributions allows us to com-

pute the stiffness term of the equilibrium equations t F. Therefore, (5.21) may be

re-written as the following:

Mt Ü+Dt U̇+ t F = t R. (5.26)

Explicit time integration

The remaining step is the time integration of (5.26) to find out the expression of
t U. For this, we employ the explicit central difference method described page 48.

We assume that all displacements, velocities and accelerations for the current

time step is known and we seek a formula for computing displacements at time

t +∆t . Let us remind (3.35) for convenience:
(

M

(∆t)2
+

D

2∆t

)

Ut+∆t = Rt −Ft +
2M

(∆t)2
Ut +

(

D

2∆t
−

M

(∆t)2

)

Ut−∆t . (5.27)

By using diagonalised mass and damping matrices, this expression may be rear-

ranged to give a formula for updating displacements component-wise:

t+∆t Ui =
t Ri − t Fi + 2Mi i

∆t 2
tUi +

(

Di i

2∆t
− Mi i

∆t 2

)

t−∆tUi

Di i

2∆t
+ Mi i

∆t 2

(5.28)

92 Chapter 5. The total Lagrangian explicit dynamics algorithm

Let us define the following vectors:

Ai =
1

Di i

2∆t
+ Mi i

∆t 2

(5.29)

Bi =
2Mi i

∆t 2

Di i

2∆t
+ Mi i

∆t 2

=
2Mi i

∆t 2
Ai (5.30)

Ci =
Di i

2∆t
− Mi i

∆t 2

Di i

2∆t
+ Mi i

∆t 2

=
Di i

2∆t
Ai −

Bi

2
, (5.31)

Equation (5.28) may be rewritten as:

t+∆t Ui = Ai (t Ri − t Fi)+Bi
tUi +Ci

t−∆tUi . (5.32)

It is worth noting that the coefficient vectors A, B and C can be precomputed.

Of crucial importance in explicit analyses is the restriction on time step sizes

imposed by stability constraints. As mentioned, the central difference method

is only stable if ∆t <∆tcr . Essentially, stability requires that the time step be not

larger than the time required for a dilatational wave to propagate through the

smallest element. In linear analyses this translates into the following formula

for ∆tcr :

∆tcr =
Le

c
, (5.33)

where Le is the smallest characteristic element length (roughly interpreted as the

smallest edge length) in the assembly, and c is the dilatational wave speed of the

material, given by

c =

√

E(1−ν)

ρ(1+ν)(1−2ν)
, (5.34)

where E is Young’s modulus and ν is Poisson’s ratio. If non-linear analyses (either

geometric or material) are conducted, a somewhat smaller time step must be

employed since c will change with deformation, and in particular will generally

increase. Additionally, the presence of damping necessitates a further decrease

in the limit. Nonetheless, (5.34) may be used to estimate ∆tcr .

Some important observations arise from (5.33) and (5.34). Firstly, since the

stiffness of soft tissues is very much smaller than that of common engineering

materials (E ≈ 3×103 Pa for brain tissue versus ≈ 2×1011 Pa for steel), the allow-

able time step is much larger for analysis of the former. This is a key reason for

the expediency of explicit time integration for analysis of soft tissues. Secondly,

soft tissues are generally considered to be incompressible, leading to ν ≈ 0.49

commonly being employed. However, if this value can be relaxed even further,

significant increases in ∆tcr are possible. As an example, for a given Le a mate-

rial with E = 3000Pa and ν = 0.45 allows a time step of more than double that

5.2. Anisotropic and viscoelastic constitutive equations 93

of a material with ν = 0.49. Of course, lowering the Poisson’s ratio introduces

inaccuracies, but for some applications (interactive medical simulation for in-

stance) it may be that this is acceptable. Finally, it must be highlighted that ∆tcr

is proportional to Le . If the element size is decreased (by using a finer mesh, or

by analysing very small objects), inexorably ∆tcr is also reduced.

5.2 Anisotropic and viscoelastic constitutive equations

5.2.1 An extension to the TLED algorithm

An attractive feature of explicit analyses is the relative ease with which arbitrar-

ily complicated constitutive models may be incorporated. This arises from the

fact that element stresses are computed directly from strains in the course of

the procedure. Additionally, there is no requirement for computation of tan-

gent matrices as in implicit or quasi-static procedures, since there is no involve-

ment of Newtonian iterations. While the developments above incorporated a hy-

perelastic constitutive formulation (neo-Hookean), thus accommodating non-

linearity of the strain-related tissue stress response, the formulation was inten-

tionally simple nonetheless since the focus was on validation of the computa-

tional framework. Two further key features of the response of most biological

tissues are time- (and rate-)dependence and anisotropy (Fung, 1993).

Time-dependence manifests itself in many aspects of the mechanical re-

sponse. Soft tissues under constant load generally exhibit creep, while those

under constant deformation exhibit stress relaxation. Additionally, most tis-

sues appear stiffer at higher loading velocities. In particular, so-called visco-

hyperelastic models based on strain energy functions with time-dependent pa-

rameters have been shown to reproduce both the time-dependent and large

strain aspects of the response (Miller and Chinzei, 1997; Miller, 2000; Nava et al.,

2008).

Anisotropic mechanical response may arise, for example, from the presence

of a highly organised micro-structure such as those of connective tissues. These

are predominantly composed of collagen or elastin fibres embedded in an amor-

phous matrix (Fung, 1993), and may be considered as fibre reinforced compos-

ites in some cases. Alternatively, the presence of vasculature and other func-

tional components means even non-load bearing organs may exhibit directional

dependence (Picinbono et al., 2003; Prange and Margulies, 2002). Whereas

isotropic constitutive models may be formulated in terms of the usual princi-

pal strain invariants (as used in (5.9) for a neo-Hookean material), directional

dependence requires inclusion of so-called pseudo-invariants of strain and ma-

terial direction.

In order to model such soft-tissue features with the explicit TLED formula-

94 Chapter 5. The total Lagrangian explicit dynamics algorithm

tion without significant performance penalties, an efficient constitutive update

procedure involving time integration of the relevant hereditary equations is re-

quired. We address this problem by presenting a procedure similar to that de-

veloped by Poon and Ahmad (1998) for analysis of anisotropic linear viscoelastic

models. This was also adapted by Taylor et al. (2007b) for solution of their fibre

composite-based micro-structural model. In these cases the rate independent

responses were based on linear elasticity, rather than a hyperelastic formulation

suitable for large deformations. In the present work we begin with a class of

anisotropic visco-hyperelastic models, and develop a constitutive update pro-

cedure for explicit analyses based on these.

5.2.2 Visco-hyperelasticity

Large recoverable deformations and the time- and rate-dependence of the

mechanical response of soft-tissues have led to the formulation of visco-

hyperelastic constitutive models in which an underlying hyperelastic formula-

tion is augmented by time dependent (viscoelastic) material parameters. Mod-

els of this type are well known in the continuum mechanics community, and

provide a kinematically consistent basis for modelling non-linear materials at

large deformations.

For such materials the constitutive response is defined in terms of a time-

dependent Helmholtz free energy (strain energy) function Ψ̂, expressed in the

form of a convolution integral:

Ψ̂(Ψ, t) =
∫t

0
α(t − s)

∂Ψ

∂s
d s, (5.35)

where t is time and Ψ is the underlying hyperelastic strain energy function. The

relaxation functions α(t) commonly assume the form of a Prony series:

α(t) =α∞+
N
∑

i=1

αi e−t/τi , (5.36)

where α∞, αi and τi are positive real constants. Such forms for the relaxation

functions have a physical interpretation, namely that of a generalised Maxwell

model (Holzapfel, 1996). If we impose the condition

(

α∞+
N
∑

i=1

αi

)

= 1 (5.37)

we may rewrite(5.36) as

α(t) = 1−
N
∑

i=1

αi (1−e−t/τi), (5.38)

5.2.3. Hyperelastic response 95

which will be of use in subsequent sections.

The required stress S may be obtained via differentiation with respect to strain:

S = 2
∂Ψ̂(Ψ, t)

∂C
=

∫t

0
α(t − s)

(

2
∂

∂s

∂Ψ

∂C

)

d s =
∫t

0
α(t − s)

∂Φ

∂s
d s, (5.39)

where C is the right Cauchy-Green deformation tensor, and we have introduced

Φ
de f
= 2∂Ψ/∂C as the instantaneous hyperelastic stress response.

Models of this form have been presented by Miller and co-workers for analy-

sis of brain tissue (Miller and Chinzei, 1997, 2002) and of liver and kidney (Miller,

2000). They were shown to model the tissue responses to compressive (and in

the case of brain, tensile) loading at strain rates varying over two orders of mag-

nitude very well. We next consider evaluation of the hyperelastic stress response

Φ.

5.2.3 Hyperelastic response

We firstly consider the case of isotropic materials, from which anisotropic for-

mulations follow. We then consider the standard cases of transverse isotropy

and orthotropy, which may be viewed as arising from, for example, the presence

of mutually orthogonal reinforcing fibre phases. In considering these cases we

encompass constitutive equations which have been proposed for a wide variety

of biological tissues.

Isotropic materials

For isotropic materials the strain energy is a function of strain only, hence Ψ =
Ψ(C). In this work we consider strain energy functions with separated isochoric

(volume preserving) and volumetric components (Holzapfel et al., 2000):

Ψ(C) =Ψ
i so(C̄)+Ψ

vol (J) =Ψ
i so(Ī1, Ī2)+Ψ

vol (J), (5.40)

where J is the Jacobian determinant, C̄ = J 2/3C is the modified right Cauchy-

Green deformation, and Ī1 = tr C̄ and Ī2 =
[

(tr C̄)2 − tr (C̄2)
]

/2 are invariants of

C̄. The hyperelastic stress Φ then also consists of isochoric and volumetric com-

ponents:

Φ=Φ
i so +Φ

vol , (5.41)

where

Φ
vol = 2

∂Ψvol (J)

∂C
= J

dΨ
vol (J)

d J
C−1, (5.42)

96 Chapter 5. The total Lagrangian explicit dynamics algorithm

and

Φ
i so = 2

∂Ψi so(C̄)

∂C
= J−2/3DevΦ̄, (5.43)

where Dev(•) = (•)− (1/3)[(•) : C]C−1 is the referential configuration deviatoric

operator for a second order tensor (Holzapfel et al., 2000), and

Φ̄= 2
∂Ψi so(C̄)

∂C̄
= γ̄1I+ γ̄2C̄, (5.44)

with

γ̄1 = 2

(

∂Ψi so

∂Ī1

+ Ī1
∂Ψi so

∂Ī2

)

and γ̄2 =−2
∂Ψi so

∂Ī2

. (5.45)

Transversely isotropic materials

Transversely isotropic materials are characterised by a single preferred direction

a0 in the reference configuration; the mechanical response is isotropic in the

plane orthogonal to this direction. The strain energy is then a function of both

C and a structure tensor A0
de f
= a0⊗a0, where ⊗ denotes a tensor product. Analo-

gous to the isotropic case, we consider strain energy functions of the form

Ψ(C,A0) =Ψ
i so(Ī1, Ī2, Ī4, Ī5)+Ψ

vol (J), (5.46)

where Ī4 = a0 · C̄a0 and Ī5 = a0 · C̄2a0 are pseudo-invariants of C̄ and A0.

As can be seen transversely isotropic strain energy functions (5.46) differ from

isotropic ones (5.40) only in the form of the isochoric term. Therefore the vol-

umetric and isochoric stresses Φ
vol and Φ

i so remain as in (5.42) and (5.43) but

with Φ̄ given by

Φ̄= γ̄1I+ γ̄2C̄+ γ̄4A0 + γ̄5(a0 ⊗ C̄a0 + C̄a0 ⊗a0), (5.47)

with

γ̄a = 2
∂Ψi so

∂Īa

, a = 4,5. (5.48)

Orthotropic materials

Orthotropic materials are characterised by three mutually orthogonal preferred

directions, which we identify with unit vectors a0 and b0 (and corresponding

structure tensors A0 and B0), in the reference configuration. We need specify

only two vectors, since the direction orthogonal to these naturally emerges as a

preferred direction also. Orthotropic strain energy functions are then of the form

Ψ(C,A0,B0) =Ψ
i so(Ī1, Ī2, Ī4, Ī5, Ī6, Ī7)+Ψ

vol (J), (5.49)

5.2.4. Recapitulation 97

where Ī6 = b0 · C̄b0 and Ī7 = b0 · C̄2b0 are pseudo-invariants of C̄ and B0. In a

similar manner to the transversely isotropic case we obtain Φ
vol and Φ

i so from

(5.42) and (5.43), with Φ̄ now given by

Φ̄= γ̄1I+ γ̄2C̄+ γ̄4A0 + γ̄5(a0 ⊗ C̄a0 + C̄a0 ⊗a0)

+γ̄6B0 + γ̄7(b0 ⊗ C̄b0 + C̄b0 ⊗b0)
(5.50)

where

γ̄a = 2
∂Ψi so

∂Īa

, a = 6,7. (5.51)

5.2.4 Recapitulation

For a visco-hyperelastic material stress may be obtained from (5.39). This form

is general in the sense that any underlying hyperelastic response may be used,

including the anisotropic formulations described (5.40), supplemented with

(5.42), (5.43), and (5.44) is the general form of an isotropic hyperelastic stress

response, defined in terms of invariants. Transversely isotropic or orthotropic

models may be produced by substituting (5.44) for (5.47) or (5.50), respectively.

The specification of particular forms of Ψvol and Ψ
i so would be motivated by

the particular tissue/material under analysis, and may stem from phenomeno-

logical or micro-structural considerations. Finally we note that for separated

isochoric and volumetric hyperelastic functions as used here, viscoelastic terms

may be applied to either or both independently.

5.3 Constitutive update procedure for explicit analyses

Use of the above visco-hyperelastic models within the TLED algorithm (or any

other explicit dynamic finite element procedure) requires a constitutive update

scheme involving time integration of (5.39).

5.3.1 Stress update equations

We proceed by restating (5.39) and using (5.38):

S =
∫t

0

[

1−
N
∑

i=1

αi (1−e(s−t)/τi)

]

∂Φ

∂s
d s. (5.52)

This may be separated into rate-dependent and -independent terms as

S =Φ−
N
∑

i=1

Υi , (5.53)

where

Υi =
∫t

0
αi

(

1−e(s−t)/τi
) ∂Φ

∂s
d s, i ∈ [1, N] (5.54)

98 Chapter 5. The total Lagrangian explicit dynamics algorithm

are rate-dependent terms associated with each term in the Prony series.

In an incremental analysis we require the stress at the current increment given

the deformation state and history of the material. Adding superscripts to indi-

cate time increments the stress may be updated using

Sn =Φ
n −

N
∑

i=1

Υ
n
i . (5.55)

The instantaneous terms Φ
n may be computed directly from the (known) cur-

rent deformation Cn . The main difficulty is then computation of the incremental

rate-dependent terms Υ
n
i

. Following Poon and Ahmad (1998), our strategy is to

maintain each Υ
n
i

as a separate state variable to be updated at each increment

also.

5.3.2 State variable update equations

Our approach is to convert the integral equation (5.54) into a rate form which

may then be numerically integrated to produce an incremental update formula

for Υn
i

. We note that (5.54) is of the form

y(t) =
∫t

0
f (t , s)d s. (5.56)

Poon and Ahmad (1998) provide the following formula for differentiating such

equations with respect to t :

ẏ = f (t , t)+
∫t

0
ḟ (t , s)d s. (5.57)

Applying this formula to (5.54) we obtain

f (t , t) =αi

(

1−e(t−t)/τi
) ∂Φ

∂s

= 0 (5.58)

and

ḟ (t , s) =
d

d t

[

αi

(

1−e(s−t)/τi
) ∂Φ

∂s

]

=αi e(s−t)/τi
∂Φ

∂s

1

τi
, (5.59)

leading to the required rate form for Υi :

Υ̇i =
1

τi

∫t

0
αi e(s−t)/τi

∂Φ

∂s
d s

=
1

τi
(αiΦ−Υi). (5.60)

5.3.3. Summary 99

Equation (5.60) may be integrated using a convenient numerical method. In

particular the unconditionally stable backward Euler method suggested by Poon

and Ahmad (1998) yields the following formula for Υn
i

:

Υ
n
i =

(

αiΦ
n

τi
+
Υ

n−1
i

∆t

)

/

(

1

∆t
+

1

τi

)

= AΦn +BΥ
n−1
i , (5.61)

where ∆t is the time step size, and A = ∆tαi /(∆t +τi) and B = τi /(∆t +τi) are

constant coefficients.

5.3.3 Summary

The constitutive update procedure consists of

1. Updating state variables (one for each Prony term) via (5.61).

2. Updating stresses via (5.55).

Assuming a constant time step size ∆t , the coefficients A and B may be precom-

puted.

5.4 Conclusion

The main advantage of the TLED is that the average number of floating-point

operations per element per time step is 35% lower than for the similar imple-

mentation of the algorithm based on updated Lagrangian formulation (Miller

et al., 2007). Coupled with the use of an explicit integration scheme that elimi-

nates the need for an iterative equation solving, the work of Miller et al. (2007)

constituted a step towards the simulation of entire organs in real-time. However,

explicit analyses impose a critical time step for the simulation to remain stable

(see detailed discussion about the critical time step in section 6.5.1 page 123).

A constitutive update procedure for anisotropic and visco-hyperelastic ma-

terials has also been presented. The procedure allows the incorporation of these

elaborate mechanical properties with only a small additional computational

cost.

A crucial benefit of this enhanced TLED algorithm is that the computations

are conducted at the element level and therefore the algorithm can be easily

parallelised. Hence, in 2007 Taylor et al. re-formulated the TLED algorithm

to propose the first GPU implementation of a fully non-linear finite element

method. However, restrictions due to using a graphics-based API necessitated

re-formulation of the force summation in their implementation. With the re-

lease by NVIDIA of a new graphics card architecture along with a new and more

100 Chapter 5. The total Lagrangian explicit dynamics algorithm

flexible non-graphics API specially designed for general-purpose GPU, we de-

cided to investigate the re-implementation of the TLED for this new architecture

with the idea of a more straightforward and efficient implementation in mind.

We also improved the model by including the anisotropic and viscoelastic fea-

tures in the GPU implementation. This implementation is detailed in the fol-

lowing chapter.

C
H

A
P

T
E

R

6
GPU IMPLEMENTATION OF TLED

The previous chapter introduced the TLED algorithm in details as well as en-

hancements with a viscoelastic and anisotropic formulation. If the TLED algo-

rithm had already been implemented on GPU by Taylor et al. (2007a), restric-

tions due to using a graphics-based API and the limited hardware possibilities

of GPUs necessitated reformulation of the force summation in their implementa-

tion. With the release by NVIDIA of a new graphics card architecture along with

a new and more flexible non-graphics API specially designed for general compu-

tation on GPU, we decided to investigate the re-implementation of the TLED for

this new architecture with the aim to achieve a more straightforward and efficient

implementation. The aim was also to enhance the GPU-based implementation of

the TLED with a viscoelastic and anisotropic formulation. This chapter will de-

scribe the implementation of this non-linear, viscoelastic and anisotropic finite

element method algorithm in the open source framework SOFA.

101

102 Chapter 6. GPU implementation of TLED

6.1 Summary of the TLED formulation

A complete description of the TLED algorithm for soft tissue simulation was

given in the previous chapter. However, let us remind the main steps of the

algorithm before tackling the implementation. Briefly, the algorithm consists

of a pre-computation phase in which element shape function derivatives ∂h
(and other quantities) and the system mass matrix M are calculated, followed

by a time-loop in which incremental solutions for the node displacements U are

found. During each step of the time-loop we:

1. Apply loads (displacements and/or forces) and boundary conditions to rel-

evant nodal degrees of freedom

2. For each element compute

(a) deformation gradient X and right Cauchy-Green deformation tensor C

(b) linear strain-displacement matrix BL

(c) second Piola-Kirchhoff stress S

(d) element nodal forces F̃, and add these forces to the total nodal forces F

3. For each node compute new displacements U using the central difference

method.

The nodal force contributions F̃ from each element are obtained

F̃ =
∫

0V
Bt

L Ŝd 0V , (6.1)

where 0V is the initial volume of the element and Ŝ is the vector form of the

stress tensor S. This integral is generally evaluated numerically, for example us-

ing Gaussian quadrature. For reduced integration 8-node hexahedral elements

we obtain

F̃ = 8Bt
L Ŝ J (6.2)

where J is the Jacobian determinant. For 4-node tetrahedral elements we obtain

F̃ =V Bt
L Ŝ. (6.3)

The above equations make no assumption concerning the constitutive model

employed. The deformation state F in each element is known, allowing stresses

S to be computed from any valid constitutive equation.

6.2. General-purpose computation on GPU 103

6.2 General-purpose computation on GPU

6.2.1 Goal and motivation

Graphics processing units (GPU) functionality has, traditionally, been very lim-

ited. In fact, for many years the GPU was only used to accelerate certain parts of

the graphics pipeline. A GPU is essentially a special purpose hardware designed

to accelerate each stage of the geometry pipeline, the process of matching image

data or a computer model to the pixels on the computer’s screen. Initially, GPU

could only run two kinds of program: vertex and pixel shaders. Vertex shaders

are run once for each vertex given to the graphics processor. The purpose is

to transform each vertex’s 3D position in virtual space to the 2D coordinate at

which it appears on the screen. Vertex shaders can manipulate properties such

as position, color, texture coordinate and normal vector. Pixel shaders are func-

tions that compute color and other attributes of each pixel. They range from al-

ways outputting the same color, to applying a lighting value, to doing shadows,

specular highlights or translucency for instance.

Eventually, vertex and pixel shaders became programmable to enable game

programmers to generate even more realistic effects. Programmable pixel

shaders allow the programmer to substitute, for example, a lighting model

other than those provided by default by the graphics card. Shaders have en-

abled graphics programmers to create lens effects, displacement mapping and

depth of field. This evolution of GPU’s hardware and the increasing pro-

grammable capability naturally lead to use GPUs for non-graphics applications.

The term GPGPU (General-purpose computation on graphics processing units)

was coined by Mark Harris in 2002 when he recognised an early trend of using

GPUs for non-graphics applications. However, capabilities of GPU’s were still

fairly limited for non-graphics applications at this time.

Things dramatically changed in 2007 when the two types of shaders were uni-

fied. While early shader models used very different instruction sets for vertex

and pixel shaders, unified shader models have almost the same capabilities. An

unified shader architecture allows more flexible use of the graphics rendering

hardware. The computing units of the GPU can run vertex or pixel shaders ac-

cording to work loads. Along with unified shader models, a new type of shader

was created: geometry shaders. They are executed after vertex shaders and can

generate new graphics primitives, such as points, lines and triangles.

GPUs may be seen as high-performance many-core processors that can be

used to accelerate a wide range of applications. An example (given by Sanford

Russell from NVIDIA) to think about to illustrate the difference between a tra-

ditional CPU and a GPU is this: if you were looking for a word in a book, and

handed the task to a CPU, it would start at page 1 and read it all the way to the

104 Chapter 6. GPU implementation of TLED

end, because it’s a serial processor. It would be fast, but would take time because

it has to go in order. A GPU, which is a parallel processor, would tear the book

into a thousand pieces and read it all at the same time. Even if each individual

word is read more slowly, the book may be read in its entirety quicker, because

words are read simultaneously.

In addition to an increasing programmability, it is easy to understand why

the development of GPGPU is soaring. GPU is now used in imaging, finance,

signal processing, simulation, audio and video processing, astronomy, weather

forecasting, molecular modelling, cryptography, quantum mechanics and many

other fields. A fairly recent review of GPGPU algorithms may be found in Owens

et al. (2007). This is therefore not surprising that research has been carried out to

leverage the power of GPUs to solve partial differential equations of continuum

mechanics via the computationally expensive finite element method. Indeed,

we have already insisted on the strong time constraints demanded by the field

of medical simulation and the path towards GPGPU is natural. A non-exhaustive

review of algorithms implemented on GPU in the context of medical simulation

was given chapter 4 (page 79).

Before introducing our own GPU implementation of the TLED formulation,

we will discuss the different GPU programming languages at our disposal.

6.2.2 Programming languages for GPUs

Interface with a GPU has traditionally been via a graphic application program-

ming interface (API) such as OpenGL or DirectX. OpenGL is an open standard

API that provides a number of functions for the rendering of 2D and 3D graph-

ics and is available on most modern operating systems including but not limited

to Windows, Mac OS X and Linux. It was initially designed by Silicon Graphics

Inc. and now managed by the technology consortium Khronos group. DirectX

is a proprietary API that provides functions to render three dimensional graph-

ics, and uses hardware acceleration if it is available on the graphics card. It was

designed by Microsoft for use on the Windows platform.

Because OpenGL and DirectX are both low-level APIs and include many ir-

relevant functionality from a GPGPU perspective, higher level languages were

designed to give developers more direct control of the graphics pipeline without

having to use assembly language or hardware-specific languages.

Graphics API

OpenGL (version 1.5 and newer) provides shader language based on the C pro-

gramming language called OpenGL shading language (GLSL). In the DirectX API

(DirectX 9 and newer), shaders are programmed with the high level shader lan-

guage (HLSL). Cg is another high-level shading language developed by NVIDIA

6.2.2. Programming languages for GPUs 105

in close collaboration with Microsoft and it is very similar to Microsoft’s HLSL

(Mark et al., 2003). However, the Cg compiler is not specific to a graphics API

and can output both OpenGL and DirectX shader programs.

These languages all share basic data types (float, integer, bool etc.) and also

feature vector and matrix data types that are based on the basic data types (like

float3 or float4x4 in Cg and vec3 or mat4 in GLSL) and standard library func-

tions are provided (vector and matrix multiplication, cross product etc.). In ad-

dition, they support loops and branching like if/else, while, and for. However,

because these languages are just an abstraction on the top of graphics API, there

are significant restrictions on what they can do. Specifically, shader programs

are unable to determine the destination of their outputs. They merely operate

on fragment data (color, texture coordinates, normal etc.) and return the modi-

fied fragment at the same location. Each shader is also executed independently

of its neighbours since no communication is allowed between processors. Note

that while this was made possible on recent hardware, these graphics API do not

take advantage of this feature and therefore this statement remains valid.

Memory storage is allowed through the use of textures, which essentially are

structured collections of floating point values arranged as arrays. Shaders can

read textures from any location and as many time as they like. As such it is a

concept very similar to regular arrays. However, the individual components of

textures consist of up to four floating point values in the form of a vector. This

comes from the fact that graphics processing units were initially designed to ma-

nipulate color images, so each component of a texture is in fact a vector holding

the red, green, blue and alpha (transparency) values for the given pixel. Textures

are therefore optimised for retrieving up to four floating point values in a single

read.

When it comes to writing to GPU memory though, things are a bit more lim-

ited. Indeed, in contrast to texture reads, shaders can only write once into tex-

tures (at the end of the set of instructions). Moreover, as stated earlier, shaders

can only write in predefined locations corresponding to their potential screen

location. Therefore, graphics API does not allow writing to random memory lo-

cations (this feature is called scattering). Nevertheless, shaders can have multi-

ple render targets. The write locations within each texture are still fixed though.

Non-graphics API

Eventually, non-graphics API were released to support the development of

GPGPU. The two major graphics card manufacturers first released their own API.

While the objective of hiding graphics aspects is the same, the approaches of

NVIDIA and ATI (now owned by AMD) are quite different.

In November 2006, NVIDIA released CUDA which consists of C language ex-

106 Chapter 6. GPU implementation of TLED

tensions. CUDA is fairly high level. Programs (called kernels) may be coded

as C functions and invoked directly without going through a render pass as with

graphics APIs. When called, kernels are executed N times in parallel by N threads

as opposed to only once like regular C functions. Memory management func-

tions analogous to standard C are also provided (memcpy, free etc.).

At the same time, ATI released CTM released a software development layer

aimed for low-level access (assembly-style language). Memory management

functions similar to graphics API are also provided. A year later, in December

2007, ATI released Stream SDK and added a new high-level language derived

from C, called ATI Brook+ which later evolved to ATI CAL (Compute Abstraction

Layer). In both cases, these APIs work solely on each manufacturer’s devices,

CUDA with NVIDIA cards and Stream SDK on ATI cards.

OpenCL is a more general framework for writing programs that execute

across heterogeneous platforms consisting of CPUs, GPUs, and other proces-

sors. It is not specific to a single type of hardware. OpenCL was initially devel-

oped by Apple and refined into an initial proposal in collaboration AMD (ATI),

IBM, Intel, and NVIDIA. Apple submitted this initial proposal to the Khronos

Group and the first release occurred in December 2008. AMD decided to sup-

port OpenCL instead of the now deprecated CTM in its Stream SDK.

The latest API to be released was DirectCompute from Microsoft. Direct-

Compute was released as part of DirectX11 in October 2009 and allows access

to general-purpose computing with a fairly low level language.

The choice of API

The first GPU implementation of the TLED algorithm was carried out by Tay-

lor et al. (2007a, 2008b). They used the Cg language and had to reformulate the

TLED algorithm presented to accommodate with the limited possibilities of this

graphics API. Indeed, the major difference between this parallel implementation

and a serial one is the writing of element nodal forces to memory at the end of a

first kernel and their subsequent retrieval and summation during a second ker-

nel. In a serial implementation nodal force contributions would most likely be

added to a global sum as they are computed, rather than stored and summed in

a second loop. But as stated earlier, this graphics API does not allow scattering,

that is writing to random memory locations. Because of this limitation, element

nodal forces cannot be directly added to the total nodal forces. Instead, the au-

thors had to reformulate force summation as a gather operation in their imple-

mentation. They reported significant solution speed gains up to 16.8× over the

CPU implementation. Thus, they were able to compute a simple cube model

with up to 16000 tetrahedral elements in real-time.

A major improvement was introduced with the release of CUDA. In theory,

6.3. Implementation into SOFA 107

CUDA allows scattered writes and this new feature could dramatically change

the GPU implementation of the TLED as the reformulation of the scatter as a

gather would no longer be useful. A single kernel would be sufficient and an

increase in performance is expected. Along with a more readable and simple

code, this is the main feature that made us choose the CUDA API to reimplement

the TLED algorithm.

In addition, we decided to develop our CUDA-based re-implementation of

the TLED algorithm within the international and open source framework SOFA.

We will show that this integration has a very limited cost in terms of performance

by comparing the SOFA version with a standalone implementation. By providing

an efficient and accurate non-linear FEM for soft tissue modelling to worldwide

researchers, we thus hope to assist in enhancing the realism of medical simula-

tors.

6.3 Implementation into SOFA

6.3.1 SOFA, an open source simulation framework

Objectives

The multi-disciplinary aspect of medical simulation requires the integration

within a single environment of solutions in areas as diverse as visualisation,

biomechanical modelling, haptic feedback and contact modelling. Although

their interaction is essential to design a realistic simulator, only few teams have

the sufficient resources to build such frameworks. This diversity of problems

creates challenges for researchers to advance specific areas, and leads rather

often to duplication of effort. The open source SOFA framework (Allard et al.,

2007) was created to overcome this issue by providing researchers with an ad-

vanced software architecture that facilitates the development of new algorithms

and simulators. SOFA has been mostly developed by INRIA (the French national

institute for research in computer science and control) and CIMIT (Center for

Integration of Medicine and Innovative Technology) and is primarily targeted at

real-time simulation with an emphasis on medical simulation. SOFA is highly

modular and flexible: it allows independently developed algorithms to inter-

act together within a common simulation while minimising the development

time required for integration. The overall goal is to develop a flexible framework

while minimising the impact of this flexibility on the computation overhead. To

achieve these objectives, SOFA proposes a new architecture that implements a

series of concepts described below.

108 Chapter 6. GPU implementation of TLED

SOFA architecture

High-level modularity. The SOFA architecture relies on the innovative notion

of multi-model representation where an object is explicitly decomposed into

various representations: Behaviour Model, Collision Model, Collision Response

Model, Visual Model and Haptic Model. Each representation can then be op-

timised for a particular task (biomechanics, collision detection, visualisation,

haptics) while at the same time improving interoperability by creating a clear

separation between the functional aspects of the simulation components. These

representations are then connected together via a mechanism called mapping.

Various mapping functions can be defined, and each mapping associates a set

of primitives of a representation to a set of primitives in the other representa-

tion (Fig. 6.1). For instance, a mapping can connect degrees of freedom in a

Behaviour Model to vertices in a Visual Model.

Visual

Model

Collision

Model

Haptic

Model

Mechanical

Model

Collision

Response

Mapping Mapping

MappingMapping

Figure 6.1: Multi-model representation in SOFA. The different representations are connected

through a series of mappings (in red). Examples of representations with a liver model are also

shown on the right.

Finer level modularity. In order to easily compare algorithms within SOFA, more

flexibility was added to the Behaviour Model by introducing an even finer level of

granularity. A series of generic primitives common to most physics-based simu-

lations have been defined: DoF, Mass, Force Field and Solver. The DoF compo-

6.3.2. CUDA description 109

nent describes the degrees of freedom, and their derivatives, of the object. The

Mass component represents its mass. The Force Field describes both internal

and external forces that can be applied to this object. The Solver component

handles the time step integration, i.e. advancing the state of the system from

time t to time t +∆t .

Scene-graph. Finally, another key aspect of SOFA is the use of a scene-graph to

organise and process the elements of a simulation. Each component is attached

to a node of a tree structure. This simple structure makes it easy to visit all or a

subset of the components in a scene, and dependencies between components

are handled by retrieving sibling components attached to the same node. During

the simulation loop, most computations can be expressed as a traversal of the

scene-graph. For instance, at each time step, the simulation state is updated

by processing all Solver components, which will then forward requests to the

appropriate components by recursively sending actions within its sub-tree.

These different functionalities and levels of abstraction allow the user to

switch from one component to another by simply editing an XML file, without

having to recompile. In particular this permits testing of different computational

models of soft tissue deformation, and to assess the pros and cons of various al-

gorithms within the same context.

6.3.2 CUDA description

GPUs achieve a high floating point capacity by distributing computation across

a high number of parallel execution threads. They perform optimally as single

instruction, multiple data devices. CUDA is a relatively new C API for compatible

NVIDIA GPUs. CUDA organises threads in two hierarchical levels: blocks, which

are groups of threads executed on one of the GPU’s multiprocessors, and grids,

which are groups of blocks launched concurrently on the device, and which all

execute the same kernel. Figure 6.2 represents this thread organisation.

CUDA allows developers to specify the number of threads per block in each

execution (the so-called execution configuration), effectively defining the distri-

bution of computational load across all processors. For a given kernel the block

dimensions are chosen to optimise the utilisation of the available computational

resources. Care should be taken at the multiprocessor level in balancing the

available memory required by the kernels with the ability to hide global mem-

ory latency. Since a finite amount of memory is available on a multiprocessor,

the memory requirements of a kernel will determine how many threads can run

concurrently on each. Importantly, CUDA’s use of time slicing allows more than

one block to be executed concurrently on a single multiprocessor, which has

important implications for hiding memory latency. If more than one block is

110 Chapter 6. GPU implementation of TLED

Figure 6.2: Each kernel is executed by CUDA as a group of threads within a grid. Image courtesy

of NVIDIA.

executing, the multiprocessor is able to switch processing between blocks while

others are stalled on memory accesses, whereas it has no option but to wait for

these if only one block is executing. Therefore for memory bandwidth bound

kernels it may be preferable to launch several smaller blocks on each multipro-

cessor rather than a single larger one if both configurations make the same use

of multiprocessor memory resources. While tools are available from NVIDIA for

estimating the optimal execution configuration, it has proved necessary to fine

tune the configuration experimentally for each kernel.

6.3.3. First implementation: scatter as a gather 111

6.3.3 First implementation: scatter as a gather

SOFA integration.

Implementing a biomechanical model in SOFA translates essentially into writ-

ing a new Force Field, that is describing the algorithm used to compute inter-

nal forces in the model. It merely comes down to creating a single C++ class

and changing the position reads and force writes to integrate the algorithm

into SOFA’s design. The pre-computation phase takes place in the initialisa-

tion method where relevant variables are computed and passed to an external C

function that allocates memory on the GPU and binds textures to it. During the

simulation loop, the Solver requests the computation of the forces by launching

the appropriate kernels on the GPU.

Kernel organisation.

Although CUDA allows scattered writes in theory, it offers no write conflict man-

agement between threads. Why is this a problem? The major steps of the TLED

algorithm are the following: (1) we compute the element nodal forces, that is

for each node of a given element, we calculate the force contribution that this

element has on this node; (2) we obtain the global force for each node by sum-

ming up the force contributions of all elements to which this node is attached;

(3) we compute the displacement for each node by integration using the central

difference method. In a serial implementation (CPU) we would do a loop on all

elements and for each element we compute all element nodal force contribu-

tions. We would then directly add the element force contributions computed

for each node into a global node array at the corresponding location for each

node of the current processed element. In a parallel implementation, many el-

ements are processed concurrently, in parallel. Inevitably, two elements sharing

a node may be processed in the same time and may therefore try to both write

their computed nodal force contribution into the exact same location in GPU’s

memory. At the time of this first implementation (2007), the result of concur-

rent writes was undefined. In fact, only one write was guaranteed to happen

and there was no way to know which one succeeded. Potential measures to ad-

dress this have proved extremely detrimental to performance. For this reason,

the kernel arrangement in our first CUDA implementation eventually ends up

to be essentially the same as the one used by Taylor et al. (2007a).

Consequently, the TLED CUDA implementation also relies on 2 kernels. The

first kernel operates over elements in the model and computes the element

stresses based on the current model configuration. It then converts these into

nodal force contributions, which are written to global memory. The second ker-

nel operates over nodes and reads the previously calculated element force con-

tributions and sums them for each node. The SOFA central difference solver

112 Chapter 6. GPU implementation of TLED

computes the displacements from the nodal forces. Therefore, due to the im-

practicability of scattered writes, the sum operation is reformulated as a gather

and the second kernel is needed to sum the nodal forces. The use of the de-

veloped viscoelastic constitutive update scheme necessitates storage of an addi-

tional array of state variables Υi .

Memory usage.

One efficient method for reading global memory data within kernels is texture

fetching. Textures may be bound to either cudaArrays or regions of linear mem-

ory. CudaArrays have been designed to achieve optimal fetching when the ac-

cess pattern has a high level of 2D locality. In the present application, the access

pattern among threads is essentially random (since unstructured meshes are

used) and our experiments have shown that texture fetching from linear mem-

ory is in fact fastest. Therefore all global memory precomputed variables were

accessed using this method.

In SOFA, the forces are stored on the GPU in global memory. Since this mem-

ory space is not cached, it is important to follow the appropriate access pattern

to obtain maximum memory bandwidth, especially given how costly accesses to

device memory are. A multiprocessor takes 4 clock cycles to issue one memory

instruction for a set of threads. When accessing global memory, there are, in ad-

dition, 400 to 600 clock cycles of memory latency. A suboptimal access pattern

would yield incoherent writes. The memory bandwidth would then be an order

of magnitude lower. In order to prevent this, a key feature of CUDA has been

used: shared memory. This is a very fast memory shared by all the processors

of a multiprocessor. Hence, the results of the second kernel are first copied to

shared memory and then moved to global memory. If the copies are well organ-

ised, it is possible to re-order the access to fulfil all the memory requirements

(for both shared and global) and thus reach the maximum bandwidth.

CPU-GPU interaction.

CPU-GPU interaction is generally a significant bottleneck in General Purpose

GPU applications due to the relatively low interface bandwidth and it is desirable

to minimise such interaction. However, interaction cannot be entirely removed

from the present implementation since, for example, the solver requires inputs

in the form of loaded nodes (which may change due to the interaction with the

user) and their displacements, and may need to provide outputs in the form of

reaction forces for haptic feedback. CUDA alleviates the problem somewhat by

allowing allocation of areas of page-locked host memory which are directly ac-

cessible by the GPU and therefore offer much higher bandwidth. In SOFA, all

transfers between CPU and GPU are made via this mechanism.

6.3.4. Second implementation: a better use of shared memory 113

Element technology.

We used both reduced integration 8-node hexahedral and 4-node (linear) tetra-

hedral elements. Tetrahedral meshes are easily generated and therefore widely

used in simulations. However, hexahedra are preferable both in terms of so-

lution accuracy and computational efficiency. Indeed, 4-node linear tetrahe-

dra are known to be susceptible to volumetric locking (Hughes, 2000). Yet, a

disadvantage of hexahedra is the difficulty in automatically generating hexa-

hedral meshes over arbitrary domains. Construction of hexahedral meshes is

time consuming and laborious, which fact is of even greater significance when

patient-specific simulations are considered. For this reason tetrahedral meshes

are widely used in simulations despite their short comings.

Another drawback of using hexahedra is the existence of so-called Hourglass

modes that have to be addressed to avoid deterioration of the solution (Flana-

gan and Belytschko, 1981). Techniques for suppressing these modes exist, but

naturally involve additional computations. However, for a given number of de-

grees of freedom (DOF), a hexahedral mesh can be built with far fewer elements

than a tetrahedral one. Since the majority of the calculations in explicit dynamic

analyses are performed per element, this results in reduced overall computation

time.

From a GPU perspective, hexahedral element computations are substantially

heavier and demand more memory resources than linear tetrahedral elements.

Most of the matrices (such as shape function derivatives and nodal displace-

ments) are twice as large for hexahedra, which necessitates twice as many tex-

ture fetches per element, and use of twice as many registers per thread. Similarly,

twice as many nodal forces per element are written to global memory. Addi-

tional variables associated with hourglass control are required also. Therefore,

on a per element basis hexahedra are significantly less efficient than tetrahedra,

especially for GPU execution where memory efficiency is crucial. Thus, we ob-

serve that the occupancy (GPU percentage usage) drops from 25% to only 8%

when using hexahedral elements. However, from the point of view of an entire

model the lower number of hexahedra required for a given number of degrees of

freedom still outweighs this element-wise inefficiency.

6.3.4 Second implementation: a better use of shared memory

Limitations of the previous implementation

The previous TLED algorithm has been extensively tested on regular meshes like

cubes. The model was purposely simple to test our new CUDA implementation.

However, the TLED algorithm was developed to compute the deformation of or-

gans. Thus, we started to assess our TLED implementation on an irregular mesh:

a liver. From a segmented liver obtained from IRCAD (Research institute against

114 Chapter 6. GPU implementation of TLED

digestive system cancer, France), we meshed the surface using a marching cube

technique (Lorensen and Cline, 1987). After smoothing it with Blender, a tetra-

hedral mesh has been generated with Tetgen, a free mesh generator. From there,

we realised that the TLED was highly non efficient with such a mesh. After an ex-

tensive analysis with the profiler provided by NVIDIA, we became able to explain

it. The liver mesh has a higher valency, meaning that each node has more ele-

ments attached than within a regular mesh like a cube. And on GPU, nodes are

processed in parallel by group of 32 threads (called a warp). But if the instruc-

tions are different within a warp, the warp is divergent and the computations are

serialised. With its higher valency, the liver mesh involves much more divergent

warps when the forces are added up. To give an idea of the difference, a cube (343

nodes and 1296 elements) is computed in 0.16ms when a liver mesh (399 nodes

and 1250 elements) is processed in 0.27ms. Based on the limitations discovered

when the TLED has been applied to this irregular mesh, we came up with a new

design, that we implemented and tested.

A single kernel approach

The main bottleneck of the previous implementation was adding up the forces

on each node in a second kernel after the computation of element force con-

tributions in a first kernel. The latter were stored in 4 different textures (8 for

the hexahedral formulation) and in order to add up the forces the second kernel

had to switch all the time between the correct textures within the warps, causing

them to diverge and slowing down substantially the overall process. Our idea

was therefore to use shared memory to avoid writing in global memory at the

end of the first kernel and prevent the warps to diverge. As explained before,

shared memory is a very fast memory shared by all the processors of a multi-

processor. And each block of threads is sent to a multiprocessor to be executed.

Obviously the amount of shared memory is finite, which limits the validity of

this new approach and the results in performance will depend on the hardware

(which may have different amount of shared memory).

In the pre-computation phase, nodes and elements are sorted by block to

leave enough space for storage in shared memory of the element force contri-

butions initially calculated at the end of the first kernel. We add nodes to a

block along with their unique elements until the shared memory is saturated.

Of course, in this approach some elements will be computed several times (be-

cause being into different blocks). Yet, storing the force contributions in shared

memory instead of global memory to read them later on via texture fetches may

outperform the need of computing several elements several times. However, the

efficiency of this single kernel approach depends on the nature of the mesh. Be-

cause the force contributions of all elements attached to a node must be even-

6.3.5. Third implementation: atomic writes 115

tually added up, this approach allows to avoid the numerous (slow) accesses to

global memory when the valency of the nodes is high (that is, nodes are attached

to many elements). This type of mesh is often encountered when dealing with

the complex shapes of anatomical structures. Therefore, where the first imple-

mentation showed its limits with complex meshes, this single kernel approach

has proven to be more computationally effective.

6.3.5 Third implementation: atomic writes

In April 2010, NVIDIA released a family of graphics cards based on a new GPU

architecture called Fermi. Among many new features and improvements over

previous generation, these cards added the capability of so-called atomic writes

for floats. The write operation is said to be atomic in the sense that it is guaran-

teed to be performed without interference from other threads. In other words,

no other thread can access this address until the operation is complete. The

concurrent writes are simply serialised in hardware. This feature allows us to

implement the TLED algorithm as we would on a CPU, using a single kernel for

all computations, and without the need to re-order the nodes and elements or-

ganisation as with the second implementation.

6.4 Results

We present a series of examples based on pure shear and compression of cube

models to demonstrate the validity of the constitutive update procedure and the

performance of the GPU-based implementation. We conclude with an exam-

ple of simulation of liver deformation, since as mentioned there is experimental

evidence that liver exhibits an anisotropic response (Chui et al., 2007). In each

case we used a transversely isotropic visco-hyperelastic model with elastic strain

energy components defined by

Ψ
i so =Ψ

I (Ī1)+Ψ
T I (Ī4)

=
µ

2
(Ī1 −3)+

η

2
(Ī4 −1)2, (6.4)

Ψ
vol =

κ

2
(J −1)2, (6.5)

where Ψ
I and Ψ

T I are isotropic and transversely isotropic components, respec-

tively, µ is the small strain shear modulus, κ is the bulk modulus, and η is a ma-

terial parameter with units of Pa. The isotropic component ΨI represents the

well known neo-Hookean model, while the anisotropic component ΨT I is the

same form used by Picinbono et al. (2003). Here the dependence of ΨT I on Ī5

is omitted and we include only Ī4 terms. This was done foremost for simplic-

ity, but is also a common practical feature of anisotropic models for soft tissues.

116 Chapter 6. GPU implementation of TLED

The main reason is the clear physical interpretation of Ī4 as the square of the

stretch λ 1 along the preferred direction a0 (Holzapfel et al., 2000), whereas Ī5

has a less clear physical meaning. It must be emphasised that this model is used

as an example only, and we make no claim concerning its appropriateness for

any particular tissue.

The instantaneous isochoric and volumetric responses are then given by

Φ
i so = J−2/3

[

µ

(

I+
I1

3
C−1

)

+η(Ī4 −1)

(

A0 +
I4

3
C−1

)]

, (6.6)

Φ
vol = κJ (J −1)C−1. (6.7)

We used viscoelastic isochoric terms only, with a single Prony series term for

simplicity. The complete stress response is then

S =Φ
vol +

∫t

0

[

1−α1

(

1−e(s−t)/τ1
)] ∂Φi so

∂τ
d s

=Φ
vol +Φ

i so(1−α1)+α1

∫t

0
e(s−t)/τ1

∂Φi so

∂τ
d s. (6.8)

Note that in this case the developed constitutive update procedure need only to

be employed for isochoric terms.

6.4.1 Pure shear of a cube

The first example involved shearing of a unit cube model. We imposed a ramped

loading such that the displacements u of the loaded nodes at time t were given

by u = r t , where r is the loading speed, and we chose the x-direction to be

the preferred material direction (a0 = [100]). Since the deformation is homo-

geneous only a single element was required to reproduce the stresses exactly.

Moreover an analytical solution is available with which numerical results may

be compared (Taylor et al., 2009). Four independent nonzero stress terms are

produced.

In Fig. 6.3 we demonstrate the effects of material anisotropy independent

of viscoelastic effects by plotting the limiting instantaneous (hyperelastic) stress

curves, produced by setting the relaxation parameter α1 = 0. Fig. 6.3(a) shows

curves for the anisotropic model, while Fig. 6.3(b) shows curves for an equivalent

isotropic model (i.e. with η = 0). Firstly we confirm that the FE solutions (data

marks) match the analytical solutions (solid curves) very accurately. Secondly

we observe that the anisotropic term significantly affects both the magnitude

and shape of the stress curves. In particular the S11 curve which is coincident

with the S33 curve in the isotropic model actually changes sign when anisotropy

is introduced. The other curves exhibit a more pronounced stiffening for the

anisotropic case.
1Strictly, Ī4 = J−2/3λ2

6.4.1. Pure shear of a cube 117

0 0.1 0.2 0.3 0.4 0.5
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

u (m)

S
ij
 (
P
a
)

S
11

S
22

S
33

S
12

0 0.1 0.2 0.3 0.4 0.5
−3000

−2000

−1000

0

1000

2000

3000

4000

u (m)

S
ij
 (
P
a
)

S
11

S
22

S
33

S
12

(a) (b)

Figure 6.3: Instantaneous stress curves for pure shear deformation of (a) the anisotropic model

compared with those of (b) an isotropic model. Solid lines correspond to the analytical solution,

while markers indicate the FE solution.

In Fig. 6.4 we demonstrate the effect of loading rate on the complete vis-

coelastic model by plotting the S11 component for strain rates of 2.5 s−1,0.25 s−1,

and 0.025 s−1, plus the bounding instantaneous and equilibrium responses. The

strain rate-dependence introduced by the model (and commonly observed in

biological tissues) is clearly shown. Additionally the close match between the an-

alytic and numerical solutions demonstrates the validity of the developed con-

stitutive update scheme.

0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

1400

u (m)

S
1
1
 (
P
a
)

∞

2.5s
−1

0.25s
−1

0.025s
−1

0
+

Figure 6.4: S11 curves for pure shear deformation of the anisotropic viscoelastic model at varying

strain rates. Curves for strain rates of 2.5 s−1,0.25 s−1, and 0.025 s−1 are given (as labelled), along

with the bounding instantaneous and equilibrium responses. The latter two are labelled ∞ and

0+, respectively, indicating that they correspond to strain rates approaching these values. Solid

lines correspond to the analytical solution, while markers indicate the FE solution.

118 Chapter 6. GPU implementation of TLED

6.4.2 Compression of a cube

The second example involved compression of a cube of edge length 0.1m (com-

parable to some human organs). The cube was imagined to be fixed to opposing

load platens and free on the remaining four faces. Compression was applied

along the x-axis. A stress-relaxation type test protocol was simulated, in which

the cube was compressed by 30% in 0.5 seconds and the compression was held

for a further 4.5 seconds. We demonstrate the effects of anisotropy on the defor-

mation response by comparing the deformed shapes of anisotropic models with

a0 = [010]
de f
= ay

0 and a0 = [0 1p
2

1p
2

]
de f
= ay z

0 with that of an isotropic model (with

η= 0).

Figure 6.5(a) shows the undeformed cube, while Fig. 6.5(b) shows the de-

formed isotropic model. With no preferred direction the lateral expansion was

uniform. In Fig. 6.5(c) the increased y-direction stiffness of the first anisotropic

model lead to a much reduced expansion in this direction (vertical in the image),

and an accompanying increase in the orthogonal z-direction. For the second

anisotropic model the direction defined by y = z was stiffened, and Fig. 6.5(d)

shows the resulting reduced expansion along this axis and the increased orthog-

onal expansion.

The end face reaction force history for each model is shown in Fig. 6.6. A dis-

tinct decay curve resulting from stress relaxation, and similar to that commonly

noted in biological tissues (Fung, 1993), was observed. The increased stiffness

afforded by the anisotropic models (albeit in an orthogonal direction to the load-

ing) result in greater reaction forces than the isotropic model.

6.4.3 GPU performance

General GPU performance

Next, we assessed the computational performance of the GPU implementation

and efficiency of the constitutive update scheme by measuring computation

times for a range of mesh densities. Using the cube geometry as above we gen-

erated models with mesh sizes ranging from 3993 DOF (1331 nodes, 1000 hex-

ahedral elements) to 177957 DOF (59319 nodes, 54872 hexahedral elements).

We compared the GPU solution times for a single time step with those of a

CPU-based implementation developed using C++. The test machine included

an Intel Core2Duo 2.4GHz CPU, 2GB RAM, and an NVIDIA GeForce 8800GTX

GPU. Three constitutive models were considered: the transversely isotropic vis-

coelastic model (TIV), TIV minus the viscoelastic terms (TIE), and TIE minus

the anisotropy terms (NHE). Comparison of times for TIV and TIE indicates the

computational load introduced by the developed viscoelastic constitutive up-

6.4.3. GPU performance 119

(a) (b)

(c) (d)

Figure 6.5: Deformation patterns of transversely isotropic models compared with that of an

isotropic model: (a) the undeformed cube, (b) the deformed isotropic model, (c) the deformed

anisotropic model with a0 = ay
0 , (d) the deformed anisotropic model with ay z

0 . Colour maps in-

dicate relative magnitude of lateral displacement ((u2
y +u2

z)1/2).

date scheme. Comparison of times for TIE and NHE indicates the computa-

tional load introduced by material anisotropy. Figure 6.7 shows the results of the

experiments.

In Fig. 6.7(a) and Fig. 6.7(b) it can be seen that GPU solution affords signifi-

cant speed improvements over CPU solution for all constitutive models. Addi-

tionally it appears that solution times are little affected by the introduction of the

more complex constitutive models, and importantly by the use of the developed

constitutive update scheme. This is borne out in Fig. 6.7(d), where we observe

that the maximum solution time ratio for model TIE to model NHE (anisotropy

versus isotropy) was 1.013, and that of model TIV to model TIE (viscoelastic ver-

sus elastic) was 1.043. The largest total solution time increase for an anisotropic

viscoelastic model compared with an isotropic hyperelastic one was 5.1% We

conclude that the key features of anisotropy and viscoelasticity may be included

120 Chapter 6. GPU implementation of TLED

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

t (sec)

F
 (

N
)

Isotropic

Anisotropic 1

Anisotropic 2

Figure 6.6: Finite element computed reaction forces on the end faces of the cube models over

time. Curves are labelled according to the constitutive model used, where Anisotropic 1 refers

to the transversely isotropic viscoelastic model with a0 = ay
0 and Anisotropic 2 refers to the case

of a0 = ay z
0 . Note that in this figure both markers and solid lines correspond to finite element

solutions.

in simulations at very little additional computational cost. Referring to Fig. 6.7(c)

we observe a maximum speed improvement for GPU solution over CPU solution

of 56.3×.

Fig. 6.7(b) also shows the decreasing critical time steps ∆tcr with increasing

model sizes (which results from the decreasing element sizes), using liver-like

and brain-like materials. We define liver-like materials to be those described

by model TIV with material parameters quoted at the beginning of the section,

whereas brain-like materials are those described by model NHE with material

parametersµ= 1006.71Pa and Poisson’s ratio ν= 0.45. The intersections of these

curves with the solution time curves provide an estimate of the real-time capac-

ity of the implementation. This is discussed further in section 6.5.1.

This GPU implementation of the TLED algorithm was demonstrated publi-

cally at MICCAI 2007 during the talk given by Zeike Taylor (Taylor et al., 2007a). A

non-linear finite element analysis of a cube featuring brain-like properties was

solved in real-time at 1430Hz using 55566 tetrahedral elements (see Fig. 6.8).

Performance within SOFA

The efficiency and the side-effects of porting the algorithm into the flexible SOFA

framework need to be measured. Therefore the performance has been assessed

by comparing the computational time of the algorithm running within and out-

side SOFA. NVIDIA provides a tool to check the GPU implementation by eval-

6.4.3. GPU performance 121

0 2 4 6 8 10 12 14 16 18

x 10
4

0

20

40

60

80

100

120

Model size (DOF)

T
im

e
 (

m
s)

TIV

TIE

NHE

(a)

0 2 4 6 8 10 12 14 16 18

x 10
4

0

0.5

1

1.5

2

2.5

Model size (DOF)

T
im

e
 (

m
s)

TIV

TIE

NHE

!t
cr

 (brain)

!t
cr

 (liver)

(b)

0 2 4 6 8 10 12 14 16 18

x 10
4

0

10

20

30

40

50

60

Model size (DOF)

R
a
ti

o
s

o
f

so
lu

ti
o

n
 t

im
e
s

(c)

0 2 4 6 8 10 12 14 16 18

x 10
4

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Model size (DOF)

R
a
ti

o
s

o
f

so
lu

ti
o

n
 t

im
e
s

TIV/TIE

TIE/NHE

TIV/NHE

(d)

Figure 6.7: (a), (b) show CPU and GPU solution times, respectively, for a single time step for each

constitutive model as a function of model size, (c) shows the ratio of CPU to GPU solution times

for model TIV, and (d) shows ratios of GPU solution times for the constitutive models: TIV to TIE,

TIE to NHE, and TIV to NHE. (b) also shows the critical time steps ∆tcr for each model size using

liver-like and brain-like properties.

uating many variables during the execution like for instance timings, counts of

inconsistent reads and writes or GPU occupancy. We used this tool to carry out

two measures:

1. GPU time only estimates the GPU computational time.

2. CPU time allows the evaluation of the execution time with the additional

overhead due to the framework.

The tests were performed on a simple test scene featuring a cube under grav-

ity. Hexahedral meshes with different resolutions from 1331 to 29791 nodes

were used and the results are presented in Fig. 6.9. In our standalone implemen-

tation, the second kernel not only accumulates nodal forces but also adds gravity

and updates positions based on the central difference integration scheme. These

122 Chapter 6. GPU implementation of TLED

at

to

ve

or

ce

cs

g

d

se

ments s) A (ms)

Figure 6.8: Non-linear finite element algorithm solved in real-time at 1430 Hz with 55566 ele-

ments. A strain between 0 and 40% is periodically applied to one face whilst the opposite face

is fixed. The material properties were the following: cube’s edge = 10cm, Young modulus = 3000

Pa, Poisson’s ratio = 0.45, density = 1000kg .m−3 and the time step was 0.7ms. The normal for

each vertex was computed in real-time for a proper lightning and a skin texture was applied.

operations are split into separated components in SOFA, in order to introduce

more flexibility (such as applying additional forces or changing the integration

algorithm). While this introduces no noticeable difference on a CPU-based sim-

ulation, when using the GPU it is more costly due to overheads in the CUDA API

for the additional kernel launches. Although it reduces the performance by 8.4%

for large meshes, this could be optimised away by adding a kernel specific to a

given combination of components.

6.4.4 Simulation of liver deformation

Finally, we performed simulations of manipulation of a liver model in order to

demonstrate the feasibility of the procedure with more realistic organ geome-

tries. The model geometry was based on the liver mesh available in the SOFA

framework, which we smoothed and re-meshed to improve uniformity of ele-

ment sizes and node valencies. A mesh of 748 nodes and 2428 tetrahedral ele-

ments was solvable in real-time. For anisotropic models a preferred material di-

rection a0 = [010] was used, corresponding to the vertical direction in Fig. 6.10.

We note that in a real organ the preferred direction likely varies depending on

the local vasculature and orientation of lobules (Chui et al., 2007), but in the ab-

6.5. Discussion 123

(a)

1331 9261 19 683 29 791

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

Standalone GPU

SOFA GPU

Standalone CPU

SOFA CPU

Nodes

Time (ms)

(b)

Figure 6.9: (a) FEM mesh of cube with 29791 nodes deformed under a uniformed load. (b) Com-

parison of GPU computational timings and CPU overheads between the SOFA and standalone

implementations for different mesh sizes.

sence of experimental data for the present specimen the mentioned direction

was assumed throughout. Moreover, on this point we note that different pre-

ferred directions may be specified for each element in the mesh, if such data are

available.

The Von Mises equivalent stress distributions resulting from stretching the

model with and without inclusion of viscoelasticity are compared in Fig. 6.10.

For the viscoelastic case (Fig. 6.10, right image) the model is depicted several

seconds after the completion of the stretch, so that stresses had reached an ap-

proximately steady state. The stress dissipation introduced by the viscoelastic

model is clearly evident, and for example would result in significantly altered

virtual tool reaction forces.

6.5 Discussion

6.5.1 Critical time step

As already emphasised in section 5.1.3 page 92, the use of an explicit integration

scheme imposes that the solution time remains below the critical time step. This

critical time step depends on two kind of criterion: the size of the elements (due

to the choice of the mesh) and the material’s properties (Young’s modulus and

Poisson’s ratio).

124 Chapter 6. GPU implementation of TLED

(a) (b) (c)

Figure 6.10: Deformation of a liver model using the TI model (b) and the TIV model (c). The

undeformed mesh is shown in (a). Colour maps indicate the relative Von Mises equivalent stress

magnitude.

The first factor leads to a strong constraint on the quality of the mesh.

Indeed, meshing a complex shape with good and uniform elements is not a

straightforward task and rather often bad and very small elements are created.

In such a case, the critical time step for the whole simulation would be small

even if there is only a single small element in the mesh. As an example, the liver

mesh used in the section 6.4.4 had to be smoothed and re-meshed properly with

great care to allow a decent simulation.

Material’s properties also have an influence on the determination of a criti-

cal time step. If the critical time step may be fairly large for very soft tissue (like

brain), it is already divided by 2 when modelling liver. As we have seen, the value

of the Poisson’s ratio may be relaxed from 0.49 to 0.45 for instance. If it allows

a time step twice as large, this relaxation introduces inaccuracies. If this is cer-

tainly acceptable for medical training simulators, the demand in precision for

surgical planning or per-operating assistance would probably prevent such an

approximation.

In a nutshell, additional care must be taken to produce quality meshes and

the range of materials that may be used while maintaining interactive compu-

tations is limited when using an explicit time integration scheme. However, it

allows a huge gain in speed for very soft tissue when the compromises on mate-

rial’s properties are acceptable for the desired application, as with medical sim-

ulators used for training. For the interested reader, a more thorough discussion

on the critical time step of explicit analyses may be found in Taylor et al. (2008b).

6.5.2 Handling contacts

The present work was entirely concerned with numerical solution of constitu-

tive models in explicit FE analyses, however an equally important issue from

the point of view of interactive simulation is the modelling of interaction be-

6.5.2. Handling contacts 125

tween organs and virtual tools, and its possible impact on ∆tcr and the stabil-

ity of the simulation. Explicit time integration schemes are known to be more

sensitive to contacts than implicit schemes. While this is beyond the scope of

the present work, we note that a range of contact formulations are available,

with two main types in common use: penalty methods and kinematic constraint

methods. Penalty methods involve use of fictitious contact springs at interfaces,

effectively to penalise interpenetration of opposing surfaces. If excessively stiff

springs are used, ∆tcr may indeed be reduced. According to LS-Dyna documen-

tation (Hallquist, 2006), except in extreme conditions (that is from explosive or

high speed impacts, or imposition of very large forces on highly constrained ob-

jects), spring stiffnesses of the same order of magnitude as the material stiffness

are suitable and the effect on ∆tcr is therefore minimal. However, in practice,

we observed that spring stiffnesses greater than the material stiffness are often

required to prevent any penetration of the two objects, which results in an unsta-

ble system. Kinematic constraint methods involve (loosely) direct relocation of

penetrating nodes back to the outside surface of the penetrated body, and have

no effect on ∆tcr . In theory, these may be especially useful for modelling inter-

action between soft tissues and stiff (effectively rigid) surgical tools. It is worth

nothing that the computational cost of either variety has not been investigated

here.

Even if a stable contact modelling could be achieved, one element of crucial

importance has been omitted so far: the collision detection process. Indeed, be-

fore even handling the interaction between two objects, their interaction needs

to be detected. Because the time step must be very small when using an explicit

time integration scheme (often around one millisecond or less), the collision de-

tection algorithm must also be run at the same frequency. The problem is that no

collision detection algorithm is fast enough to execute at 1000Hz or more with

objects of reasonable sizes. Of course, one could choose to detect the collisions

at a lesser frequency but the risks of penetration would substantially increase.

One notable exception is the interaction between a soft deformable object and a

fixed rigid surface where the collision detection is rapid.

One possible extension to enhance the stability is to monitor the critical time

step of the simulation. Indeed, we know an approximation of this critical time

step and we recall its expression here for convenience:

∆tcr =
Le

c
, (6.9)

where Le is the smallest characteristic element length (roughly interpreted as

the smallest edge length) in the assembly, and c is the dilatational wave speed

of the material which depends on material properties (such as Young’s modulus

and Poisson’s ratio). More details on the critical time step were given page 92.

If c is constant for a given material, Le varies over time during the simulation,

126 Chapter 6. GPU implementation of TLED

in particular when contacts occur. Maintaining the time step of the simulation

below the monitored critical time step would insure the stability of the simula-

tion. However, by possibly reducing the time step of the simulation, real-time

computations can no longer be guaranteed.

6.6 Conclusion

As we showed in the last two chapters, the TLED algorithm is a very efficient

fully non-linear finite element formulation. We also added viscoelasticity and

anisotropy features with minimal impact on its performance. In particular, its

GPU implementation allows non-linear analyses of structures in real-time using

a high number of elements as never before.

However, the use of an explicit integration scheme imposes substantial con-

straints which limits TLED’s range of applications. More specifically, the usage

of the TLED algorithm in very interactive environments (as in the manipulation

of a liver with a tool) is not recommended. The collision detection would either

become the bottleneck of the simulation (if run at every time step) or fail to pro-

vide accurate detection of contacts (otherwise). In addition, the TLED algorithm

is also not appropriate to simulate the deformation of rigid object as the critical

time step would be too small to allow real-time computations. In contrast, TLED

excels for computing the deformation of soft tissues when the boundary condi-

tions are controlled. As an example, the TLED algorithm may efficiently provide

brain shift predictions as the interaction of the brain with the fixed skull is deter-

mined beforehand and rapid collision detection can be achieved in this case.

Hence, provided that the application is appropriate, the TLED algorithm is an

efficient and accurate algorithm to model the deformation of solid soft anatom-

ical organs. While the first GPU implementation of the TLED was carried out

by Taylor et al. (2007a) in the Cg language, my efficient re-implementation in

CUDA led to a threefold increase in performance. Overall, we observe a max-

imum speed improvement for GPU solution over CPU solution of up to 56.3×.

My collaboration with Zeike Taylor continued and we enhanced the formula-

tion by adding anisotropy and viscoelasticity. My contribution was once again

to implement these enhancements on GPU. To the best of our knowledge, this

work constitutes the first GPU implementation of a non-linear, anisotropic and

viscoelastic finite element procedure. This formulation was eventually imple-

mented in the open source framework for medical simulation SOFA and will be

released publicly with the upcoming 1.0 release of SOFA. Over the course of my

PhD, this work has led to three main publications (Comas et al., 2008; Taylor

et al., 2008a, 2009).

Part III

Hollow structure modelling

127

C
H

A
P

T
E

R

7
MODELLING THE DEFORMATION OF HOLLOW

OBJECTS IN REAL-TIME

The human body is composed of various deformable anatomical structures and

finding appropriate soft-tissue models for all these type of structures is challeng-

ing. In the previous two chapters, we described an efficient non-linear FEM for-

mulation for simulating the deformation of solid organs (like brain, liver, prostate

etc.). But there is also a need to simulate the deformation of hollow organs, whose

volume is negligible compared to their surface area, such as colon, blood vessels,

stomach etc. The solid models previously mentioned are not appropriate and spe-

cific approaches are required for these thin anatomical structures. In this chap-

ter, we will review diverse techniques applied for the simulation of thin objects.

These different approaches may be grouped into three main categories: (1) mass-

spring models, (2) approaches which derive a non-physical bending energy and

(3) methods based on the equations of continuum mechanics. Although very few

models have been proposed for simulating the deformation of thin anatomical

structures in the field of medical simulation, we will try to emphasize medical ap-

plications whenever possible.

129

130 Chapter 7. Modelling the deformation of hollow objects in real-time

7.1 Introduction: the problem

The human body is composed of various deformable anatomical structures. A

key challenge of soft-tissue modelling is the variousness of the mechanical be-

haviours. The shape and the internal structure may be very different from one

organ to another. For instance, the liver is a solid organ composed of four lobes,

each one made up of units called lobules. Each lobule consists of a central vein

surrounded by liver cells and constitutes the end of a dense network of blood

vessels. This particular internal structure has a strong influence on the mechan-

ical properties of the liver. In contrast, the colon is a long and hollow organ.

It consists of four sections which all have different shapes and material prop-

erties. Consequently, it seems unrealistic to use a unique model for all tissues.

Yet, most of previous works focus on volumetric models that are able to capture

the behaviour of solid organs. In fact in the field of medical simulation, very

few models have been proposed for simulating, in real-time, the deformation of

thin anatomical structures whose volume is negligible compared to their surface

area. Examples include hollow structures, such as the wall of blood vessels, or

membranes, such as the Glisson’s capsule surrounding the liver. It is also of par-

ticular interest to us for modelling the colon in our colonoscopy simulator and

for simulating the deployment of the implant in cataract surgery.

An obvious modelling for thin structures is to apply the same methods than

with solid objects. For instance, Holzapfel et al. (2002) proposed a very com-

plex 3-layer model of an arterial wall for simulating an angioplasty procedure.

Their model is non-linear and anisotropic along fibres placed according to his-

tology. They also model diseased part of the vessel through a hardening param-

eter which adds plasticity. However, they discretised their geometric model with

eight-node brick elements. Another example is given by Aloisio et al. (2004) who

assume that the blood flow in the vessels may be considered as incompressible

and the artery consequently becomes a solid body and can be modelled as a

solid deformable object. If this approach can work, about a dozen of elements

is required within the thickness of the structure for the system to be numerically

stable. Consequently, many elements are needed to model thin structures and

real-time performance is difficult to achieve. Hence, specific models for thin

objects were developed.

Indeed, numerous models are available in the literature to describe physics

of thin objects, from fairly simple and naive approaches to more complex and

thorough representations. Continuum mechanics provides many formulations

able to accurately describe stresses occurring within thin objects. Most of

them fall into one of the following two categories: plate theory or shell the-

ory. Those theories have been a subject of interest in the mechanical commu-

nity for decades. The difference between these two kinds of structures is very

7.2. Mass-spring models 131

well explained by Liu and Quek (2003) and can be summarised by the fact that

plate bending elements can only carry transversal loads while shells can un-

dergo more complex deformations. For instance, if we consider the horizontal

board of a bookshelf, that board can be approximated as a plate structure and

the transversal loads are the weight of the books. A typical deformation of the

board is illustrated in Fig. 7.1 (a). Conversely, a shell structure can carry loads in

all directions, and therefore can undergo bending, twisting and membrane (that

is, in-plane) deformation (see Fig. 7.1 (b)).

Wednesday, 18 November 2009

(a) Plate theory

Wednesday, 18 November 2009

(b) Shell theory

Figure 7.1: Illustration of a key difference between various models of thin objects. While thin

plate theory allows to describe bending (a), it cannot represent more complex deformations such

as twist (b) which is captured by shell theory.

Development of a satisfactory physical model that runs in real-time but pro-

duces visually convincing animation of thin objects has been a challenge in

Computer Graphics, particularly in the area of cloth modelling. Rather than

resorting to shell theory which relies on continuum mechanics, most of works

have relied on discrete formulations. We will first discuss early approaches based

on mass-spring models. Then we will present techniques relying on the deriva-

tion of a bending energy from geometric considerations. At last, we will in-

troduce approaches based on shell theory using the more computationally de-

manding finite element method.

7.2 Mass-spring models

Early approaches to thin objects modelling only considered in-plane deforma-

tion, and often relied on mass-spring models. This technique was already pre-

sented in section 4.3.3 so we only present their use for modelling thin struc-

tures. Provot (1995) improved a mass-spring model to take into account the

non-elastic properties of woven fabrics. Because of the high stiffness of textiles,

mass-spring models are particularly unstable when used to simulate cloth. The

author proposed a new method inspired from dynamic inverse procedure. Un-

132 Chapter 7. Modelling the deformation of hollow objects in real-time

der certain conditions and because of the linear law employed in a mass-spring

system, the fabrics may become super-elastic. Provot suggested to set a thresh-

old on the deformation rate to correct this super-elasticity (see Fig. 7.2).

(a) Initial position (b) Uncorrected (c) Corrected

Figure 7.2: Deformation of a sheet hanging by two adjacent corners. Images courtesy of Provot

(1995).

To improve the computational efficiency, Hutchinson et al. (1996) presented

a mechanism for adaptively refining the network of mass-springs to concentrate

efforts only where it is needed. When potential inaccuracies are detected, the

object is locally refined in the affected region, and the simulation may carry on.

Oshita and Makinouchi (2001) used a sparse triangular mesh and an interpola-

tion to generate a dense mesh. And Georgii and Westermann (2005) made use of

GPU acceleration and compared two different implementations for modelling

cloth patches.

A limitation of mass-spring models that we often hear is the difficulty to de-

rive spring stiffness from elastic properties (Young’s modulus and Poisson’s ra-

tio). With this drawback in mind, Volino and Magnenat-Thalmann (1997) im-

proved a mass-spring system by allowing the modelling of Young’s modulus and

Poisson’s ratio (see Fig. 7.3). They also added a correction technique relying on

the control of damping and velocities to ensure the stability of their model.

Other works have considered adding bending through angular springs. For

instance, Wang et al. (2007) successfully used a network of linear and angular

springs to describe bending and twisting of catheters and guide-wires in an in-

terventional radiology simulator.

More recently and in the field of medical simulation, Hammer et al. (2008)

employed a mass-spring model to simulate the mitral valve closure for surgical

planning. In their model, triangle sides are treated as linear springs and sides

shared by two triangles are treated as bending springs.

7.3. Techniques relying on the derivation of a bending energy 133

Fig. 4: A 400% stretched fabric square, with a values 0 (simple spring-mass system), 0.6, 1,

(transversal buckling).
Figure 7.3: A 400% stretched fabric square with various Poisson’s ratio. Image courtesy of Volino

and Magnenat-Thalmann (1997).

7.3 Techniques relying on the derivation of a bending energy

Another kind of approach is to geometrically derive a bending energy. Theses

approaches are more computationally demanding than mass-spring models but

allows for higher flexibility and accuracy. For instance, Baraff and Witkin (1998)

derived stretch, bending and shear energies geometrically. They also used an

adaptative time stepping based on detection of large stretches. Using an implicit

integration allows the authors to use large time steps and substantially increase

the stiffness with a limited impact on performance.

Among the geometry-based models, there is the noticeable work of Grinspun

et al. (2003) who introduced a discrete shell model. They designed a simple shell

model for triangle meshes by geometrically deriving membrane and bending en-

ergies. They applied geometric operators over piecewise-linear surfaces to de-

fine a discrete constitutive model, which results in simpler expressions than ten-

sorial derivations from shell theory. They applied their method to simulate the

deformation of common objects like beams, sheets of paper or hats (see Fig. 7.4).

Among the different models introduced recently we can also mention the

work of Choi et al. (2007) and Bridson et al. (2003). Choi et al. proposed a real-

time simulation technique for thin shells undergoing large deformations. The

authors adopt the energy functions from the discrete shells proposed by Grin-

spun et al. (2003). For real-time integration of the governing equation, they

adapted a modal analysis technique, called modal warping. The resulting sim-

ulations run in real-time even for large meshes, and the model can handle large

bending and/or twisting deformations with acceptable realism. Bridson et al.

followed the same energy approach to derive their bending model but improved

the resolution of the equations by suggesting a novel mixed implicit/explicit in-

tegration scheme. In particular, the explicit update for positions allows the au-

134 Chapter 7. Modelling the deformation of hollow objects in real-time

Figure 7.4: Comparison between real footage and simulation of a hat dropped on a table. Image

courtesy of Grinspun et al. (2003).

thors to modify velocities to enforce constraints and allows a strain limiting pro-

cedure which they used to create folds and wrinkles in their cloth simulation.

They also presented a post-processing method for treating cloth-character col-

lisions that preserves folds and wrinkles. Pabst et al. (2008) later improved the

bending modelling used by Bridson et al. to allow the integration of measured

material data.

Volino and Magnenat-Thalmann (2006) suggested an alternative somewhere

between mass-spring and geometrically derived approaches. They compute a

bending vector that represents the bending of the surface through a simple lin-

ear combination of particle positions and they distribute this vector as particule

forces according to the bending stiffness. The authors claimed much better ac-

curacy than mass-spring models (particularly when dealing with low curvature

and high bending stiffness) with similar computation time (see Fig. 7.5 for an

illustration).

A method to use thin shell dynamics with point sampled surfaces for efficient

animation was recently proposed by Wicke et al. (2005) where the curvature of

the shell is measured through the use of fibres. The fibres are used to approxi-

7.4. Techniques based on continuum mechanics 135

ust
oth

.
Fig.7: A fast model to simulate very efficiently complete garments Figure 7.5: The model of Volino and Magnenat-Thalmann allows the simulation of complete

garments with material that may have fairly large bending stiffness. Image courtesy of Volino

and Magnenat-Thalmann (2006).

mate the differential surface operators. Their method supports both elastic and

plastic deformations as well as fracturing and tearing of the material.

7.4 Techniques based on continuum mechanics

Following a similar train of thoughts than with solid objects, methods based on

continuum mechanics provide the most accurate solutions but are computa-

tionally very demanding. The mathematical framework of plate and shell theo-

ries is also fairly complex and deriving finite element methods from these theo-

ries is challenging. Their implementation is also far from being straightforward.

Nevertheless, we will now review a few examples of the application of shell the-

ory to simulation.

In 1991, Black et al. presented a materially non-linear shell finite element

model to simulate the leaflets of a bicuspid bioprosthetic heart valve. The re-

sults indicate that modelling bending has a strong influence on the accuracy of

the deformation. They concluded that models where only membrane stresses

are taken into account were likely to produce significant errors in the stress dis-

tribution.

Shell models are fairly common in the field of cloth modelling. For instance,

Eischen et al. (1996) applied fully non-linear shell theory for modelling fabrics.

The interested reader may also refer to their fairly complete review on the use

of shell finite element methods in cloth modelling. However, their attention was

towards the accuracy provided by shell theory and were not really interested in

fast solution times.

Shell finite element modelling followed the same trend than solid objects and

co-rotational formulations were introduced to simplify strain expressions while

136 Chapter 7. Modelling the deformation of hollow objects in real-time

allowing large rotations (but small strain, see page 74 for more details). For in-

stance, Etzmuss et al. (2003) used the linear Cauchy strain tensor but applied a

polar decomposition on the deformation gradient to allow large deformations.

The bending energy is separated from the membrane formulation and most of

material parameters were measured from experiments on actual pieces of cloth-

ing. As an example, the computation of a shirt consisting of 8300 triangles took

an average of less than 3s per animation frame with a time step of 0.02s (see an

illustration Fig. 7.6). While still being far from achieving real-time, the intention

of the authors was clearly to propose an efficiency model for cloth simulation.

(a) (b) (c)

Figure 7.6: A shirt shown with different material properties: (a) wool/viscose, (b) wool and (c)

polyester/polyacrylics/acetate. Image courtesy of Etzmuss et al. (2003).

Thomaszewski et al. (2006) based their model on the Kirchhoff-Love shell

theory and built a subdivision-based finite element formulation similar to Cirak

et al. (2000). They also employed a co-rotational framework to simulate wrin-

kles and folds of textiles (see Fig. 7.7). Although the rotation field is computed

for each vertex, they found that using the rotation obtained for the barycentre of

all vertices involved was sufficient. More recently, Allard et al. (2009) also used

a co-rotational finite element formulation to model the membrane of the lens

capsule in a cataract surgery simulator. The goal was to simulate the anisotropic

fracture propagation during capsulorhexis, the technique used to create a circu-

lar opening in the lens capsule. The formulation did not feature bending how-

ever.

Regarding medical applications, some attempts have been made to apply

complex shell finite element model to simulate anatomical structures. For in-

stance, Lim et al. (2005) used an asymmetrical shell element model to simu-

late the deformation of the mitral valve. The computation of the finite ele-

ment model was carried out with the commercial software ANSYS. Conti et al.

7.5. Conclusion 137

system.

Figure 7: Different types

(a) Under gravity

ferent types of folds on a garment’

(b) Torsion

on a garment’s sleeve gen-

(c) Compression

Figure 7.7: Different types of folds on a garment’s sleeve. Images courtesy of Thomaszewski et al.

(2006).

(2010) modelled the non-linear and anisotropic mechanical response of the aor-

tic leaflets during the entire cardiac cycle using a shell finite element model in

Abaqus FEA. However, these models are not designed for interactive simulation

and may need up to dozens of hours to be computed.

7.5 Conclusion

The human body is composed of various deformable anatomical structures and

finding appropriate soft-tissue models for all these type of structures is chal-

lenging. In the previous two chapters, we described an efficient non-linear FEM

formulation for simulating the deformation of solid organs. However, the solid

models previously mentioned are not appropriate and specific approaches are

required for thin anatomical structures. In this chapter, we reviewed diverse

techniques applied for the simulation of thin objects. It appears that few tech-

niques derived from continuum mechanics have been proposed for modelling

in real-time hollow structures in medical simulation.

Therefore, we seek to propose a solution for simulating the deformation of

thin anatomical structures in a physically realistic manner. In addition, this ap-

proach will have to be computable in real-time. Since Black et al. (1991) showed

that formulations with only membrane energy were likely to produce significant

errors in the stress distribution, this model is required to feature bending. Ide-

ally, this solution would be versatile and allow us to simulate thin objects with

various shapes and material properties with good accuracy. In this regard, meth-

ods derived from continuum mechanics are the most appropriate. In some situ-

ations, a thin plate model would not correctly capture the deformation of some

objects and therefore a shell formulation was retained for more flexibility. To the

best of our knowledge, no real-time shell finite element method was presented

in the field of medical simulation.

In the next chapter, we will first introduce our co-rotational triangular shell

138 Chapter 7. Modelling the deformation of hollow objects in real-time

finite element model and show how to efficiently apply this model to simulate

the implant deployment in cataract surgery (see chapter 8). In a second time,

we will present a technique to mesh complex anatomical shapes with curved

triangles, hence allowing us to model, in real-time, any anatomical structures

with our co-rotational shell FEM in an optimal way (see chapter 9).

C
H

A
P

T
E

R

8
A CO-ROTATIONAL TRIANGULAR SHELL FEM

MODEL

In the field of medical simulation, very few models have been proposed for simu-

lating, in real-time, the deformation of thin anatomical structures. In fact, to our

knowledge, no model based on the equations of continuum mechanics was de-

scribed and applied to simulating the deformation of objects. In this chapter, we

propose to rely on continuum mechanics to accurately describe the complex defor-

mations of the implant. Our approach extends the co-rotational method used in

finite element analysis of in-plane deformations to incorporate a bending energy.

We will first describe the model in details before discussing its implementation in

the open source framework SOFA. Lastly, this co-rotational shell FEM was applied

to the simulation of the lens deployment during cataract surgery. This simulation

also accounts for the complex contacts that take place during the injection phase.

139

140 Chapter 8. A co-rotational triangular shell FEM model

8.1 Model description

We propose to define a triangular shell element by combining a two-

dimensional in-plane membrane energy, with an off-plane energy for describing

bending and twist. To allow for real-time simulation, a computationally efficient

formulation is needed. We therefore propose to extend the co-rotational idea

introduced by Felippa (2000). Indeed, as we have seen in the previous chapters,

co-rotational approaches have been successfully applied to real-time simulation

over the last few years. They offer a good trade-off between computational ef-

ficiency and accuracy by allowing small deformations but large displacements.

We propose to improve and extend a plate model first introduced by Przemie-

niecki (1985) to a co-rotational formulation. Once combined with an in-plane

membrane formulation we obtain an accurate, yet computationally efficient,

shell finite element method featuring both membrane and bending energies.

8.1.1 Triangular elastic membrane

The computation of the triangular elastic membrane stiffness matrix can be de-

rived from previous works dealing with tetrahedral co-rotational elements (like

Müller and Gross, 2004, for instance). The element stiffness matrix Ke can be

computed as follows:

Ke =
∫

v
JχJT dV , (8.1)

where J is the strain-displacement matrix and χ embodies the material’s be-

haviour. The implant is very stiff and we therefore assume that the local de-

formations remain limited during the deployment and a linear constitutive law

is sufficient. Thus in the simple case of Hooke’s law we have:

χ=
E

12(1−ν2)







1 ν 0

ν 1 0

0 0 1
2

(1−ν)






(8.2)

The stiffness matrix in the global frame is eventually obtained using the ro-

tation matrix of the element: K = RKe RT where R describes the rotation of the

(triangular) element with respect to its initial configuration.

8.1.2 Triangular plate bending

To calculate the stiffness matrix for the transverse deflections and rotations

shown on Fig. 8.1, we start with the assumed deflection uz of the form

uz = c1 + c2x + c3 y + c4x2 + c5x y + c6 y2 + c7x3 + c8x y2 + c9 y3, (8.3)

where c1, . . . , c9 are constants. Equation 8.3 solves an issue of symmetry which

was observed with the deflection function proposed by Przemieniecki (1985).

8.1.2. Triangular plate bending 141

Figure 8.1: The different degrees of freedom u of a triangular thin plate in bending.

These constants can be evaluated in terms of the displacements and slopes at

the three corners of the triangular plate using

u = Cc (8.4)

where u = {u1u2 . . .u9} and c = {c1c2 . . .c9}. Matrix C derives from (8.4):

C =

































1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

1 x2 0 x2
2 0 0 x3

2 0 0

0 0 1 0 x2 0 0 0 0

0 −1 0 −2x2 0 0 −3x2 0 0

1 x3 y3 x2
3 x3 y3 y2

3 x2
3 x3 y2

3 y3
3

0 0 1 0 x3 2y3 0 2x3 y3 3y2
3

0 −1 0 −2x3 −y3 0 −3x2
3 −y2

3 0

































(8.5)

We used the following notations:

u1 = (uz)x1,y1 , u2 =
(

∂uz

∂y

)

x1,y1

, u3 =−
(

∂uz

∂x

)

x1,y1

u4 = (uz)x2,y2 , u5 =
(

∂uz

∂y

)

x2,y2

, u6 =−
(

∂uz

∂x

)

x2,y2

(8.6)

u7 = (uz)x3,y3 , u8 =
(

∂uz

∂y

)

x3,y3

, u9 =−
(

∂uz

∂x

)

x3,y3

(8.7)

We can calculate the strains from the flat-plate theory using:

exx =−z
∂2uz

∂x2
(8.8)

ey y =−z
∂2uz

∂y2
(8.9)

142 Chapter 8. A co-rotational triangular shell FEM model

ex y =−2z
∂2uz

∂x∂y
(8.10)

Hence, using the above equations and (8.3), we have






exx

ey y

ex y






=−z







0 0 0 2 0 0 6x 0 0

0 0 0 0 0 2 0 2x 6y

0 0 0 0 2 0 0 4y 0






c (8.11)

or symbolically e = Dc where D stands for the 3×9 matrix in (8.11), including the

pre-multiplying constant −z. Noting from (8.4) that c = C−1u, we have:

e = DC−1u = bu, (8.12)

where b = DC−1.

Knowing that the stiffness matrix Ke for an element is obtained from

Ke =
∫

v
bT

χbdV , (8.13)

where χ is the material matrix, the substitution of b into this expression yields

Ke = (C−1)T

∫

v
DT

χDdV C−1. (8.14)

Similarly to the membrane stiffness matrix, the bending stiffness matrix in

the global frame is eventually obtained using the rotation matrix of the element:

K = RKe RT . While the method to numerically compute the integral will be re-

viewed section 8.3.2, we first carry on with the theory by introducing how the

contacts are handled.

8.2 Mechanical interactions with the curved surface of shells

The practical interest of modelling complex behaviours such as bending and

twisting would remain fairly low for medical simulation if contacts and con-

straints were not handled properly. In our case the difficulty comes from dif-

ferent sources. First the collision detection must be carried out with the curved

surface of shell elements as opposed to the classic detection on plane triangles.

Then forces applied to a given triangle need to be distributed between linear

forces and torques onto its three vertices. As we will see, the same polynomial

interpolation function chosen to compute the bending energy in our FEM for-

mulation is also used to capture the interactions between the curved surface and

other objects.

In order to detect the collision with the bent surface, we have chosen the

subdivision approach. We first sample the flat surface of each element by recur-

sively dividing each triangle into four smaller ones and the deflection of each

8.3. Implementation 143

new vertex is computed using (8.3) according to the displacements and slopes

at the three vertices of the triangular element. This process of subdivision may

also allow us to render each shell as a curved triangle (Fig. 8.2 (a) and (b)) and

detect any collision with the curved surface of the shell using any of the classic

collision detection algorithms working on flat triangles.

Once a collision has been detected, it must be processed by distributing the

linear force received on the bent surface between the three vertices of the trian-

gle. First the linear part of the force is simply transmitted on each node using the

barycentric coordinates of the contact point’s projection onto the triangle.

The main difficulty is to convert the normal component of the force applied

to the bent surface into a torque at each of the three nodes (Fig. 8.2 (c)). Our ap-

proach is the following: during force computation, we use the change in orien-

tation measured at each node to compute the local deflection of each subvertex

within the triangle. Differentiating the formulation twice yields a relation be-

tween the torque applied at each node and the generated force in bending. We

therefore need to invert the latter formulation to convert a bending force into

torques at each vertex. Thus, we are able to transmit any force coming from in-

teractions with the curved surface of shells to the mechanical vertices used in

our FEM formulation.

F

f1
!1

f3

!3

f2

!2

(a) (b) (c)

Friday, 12 March 2010

Figure 8.2: (a) The triangle formed by the three vertices of the shell has been recursively sub-

divided 3 times and the deflection of each new vertex was computed according to the same

deflection function used in our shell FEM. (b) Sampling the actual surface of the shell allows

more accurate rendering and collision detection. (c) The shape function is used to distribute an

external force F onto the triangle nodes.

8.3 Implementation

The co-rotational shell formulation has been successfully implemented as a

Force Field component into the open-source framework SOFA (Allard et al.,

2007). A description of SOFA’s architecture was given in section 6.3.1. We will

now review the key points of the implementation.

144 Chapter 8. A co-rotational triangular shell FEM model

8.3.1 Evaluation of displacements

The computation of the stiffness matrix, and subsequently the internal forces,

starts with the measure of the displacements {u1u2 . . .u9} for every element. As

defined by (8.6), we need to measure the displacement along the z axis and the

rotations around local x and y axes for each vertex. For Przemieniecki (1985), the

deflection z is measured in the global frame. But in a co-rotational formulation, a

local frame is attached to each triangle and used to compute displacements and

forces. In this local frame (formed from the 3 vertices) the deflection is therefore

always null (hence, u1,u4,u7 are null). To evaluate the remaining rotations, we

first associate a quaternion at each vertex which embodies its frame (or its ori-

entation). In mathematics, quaternions are an extension of complex numbers

and may be written as follows:

q = w +xi + y j + zk with i 2 = j 2 = k2 =−1. (8.15)

For use in geometry, quaternions are often written as a sum of a scalar and a

vector:

q = w + (x, y, z) = cos(
α

2
)+usin(

α

2
), (8.16)

where u is a unit vector and α a scalar. If we denote by v a vector in R3, it can be

shown that the quaternion product qvq−1 yields a vector which is the rotation of

v by an angle α around the axis u. Quaternions require less storage than rotation

matrices and are known to be more numerically stable.

From there, our approach to measure the rotations around local x and y axes

is simple. At runtime and for each vertex, we compute the rotation that we need

to transform the z axis of the triangle’s frame into the z axis of the vertex’s frame.

The differences with the same quantities computed for the rest position during

the initialisation lead to the desired displacements.

8.3.2 Numerical integration

In practice, the integration of the integral in (8.14) must be carried out numeri-

cally using Gaussian quadrature, a numerical technique which allows to calcu-

late the value of an integral. The Gaussian quadrature states that the integral of a

function f over the area A of a triangular surface may be evaluated as a weighted

sum of function values at specific points within the area of integration (Cowper,

1973). In other words, we have

∫

A
f d A = A

n
∑

i=1

wi fi , (8.17)

where wi is a weight factor and fi is the evaluation of f at the integration point

i (also called Gauss points). The choice of the number and the locations of

8.3.3. Computation of stiffness matrix: summary 145

the integration points depends on the order of accuracy desired. We classically

choose 3 integration points located at the middle of each edge of the triangle, for

which the weight factors wi are 1/3. The required integration over the volume

is achieved by multiplying the result by the thickness t of the shell. Therefore,

(8.14) may be numerically evaluated as

Ke =
At

3
(C−1)T

3
∑

i=1

DT
i χDi C−1, (8.18)

where Di is the evaluation of the matrix D defined by (8.11) at each Gauss point

i .

8.3.3 Computation of stiffness matrix: summary

In practical terms, the different computations associated with each triangular

shell element can be described as follows:

1. Compute the rotation matrix R from global to triangle (local) frame

2. Compute the local displacement vector u = {v1, v2,0,u2,u3, v3, v4,0,u5,u6,

v5, v6,0,u8,u9} for each triangle, where (v1, v2), (v3, v4)and(v5, v6) are the

in-plane displacements on x and y local axes and ui were defined by (8.6).

As we are in a co-rotational framework, we recall that the normal displace-

ments u1,u4,u7 at each of the three nodes are null in the local frame of the

triangle.

3. Compute matrix Di at each Gauss point i

4. The strain-displacement matrix at each Gauss point i is computed with

Ji = Di C−1

5. Compute the local stiffness matrix Ke of the element as Ke =
3

∑

i=1

JiχJT
i

6. Transform the local element stiffness matrix into the global frame and add

it to the global stiffness matrix

8.3.4 Concept of mappings in SOFA

Let us explain the concept of mappings and mechanical mappings in SOFA. In

SOFA, the state of a simulated system can be described by the values and time

derivatives of its independent degrees of freedom (DOF) gathered in two vectors

x0 and v0. Geometry can be attached to the DOF for visualisation or contact

computation. We call it the shape. It is typically defined by points, such as trian-

gle vertices or sphere centres, and additional data such as triangle connectivity

146 Chapter 8. A co-rotational triangular shell FEM model

or sphere radii. We call these points the vertices. Their positions, velocities and

associated forces are stored in vectors x1 , v1 and f1, respectively. They are not

independent variables, since the positions and velocities are bound to the DOF

using kinematic operators which we call the mappings:

x1 = J1(x0)

v1 = J1v0

When the vertices and the DOF are the same, the mapping is the identity. Matrix

J1 = ∂x1

∂x0
encodes the linear relation between the DOF velocities and the shape ve-

locities. Due to linearity, the same relation holds on elementary displacements

d x. It also holds on accelerations, with an additional offset due to velocities

when the position mapping J is non-linear. In most cases, operators J and

J are the same, but in the case of rigid bodies, J is non-linear with respect to x

and it can not be written as a matrix.

When shapes collide, additional geometry can be necessary to model the

contact. For instance, when an edge intersects another one, a contact force is

applied to the intersection points. These points are defined by their barycentric

coordinates with respect to their edge vertices. Other relations can be used, de-

pending on the kind of geometrical primitives in contact. This additional geom-

etry requires another geometrical layer connected to the shape by a mapping, as

illustrated in Fig. 8.3.

Positions and velocities can be propagated top-down through our layer hier-

archy using the relations presented. In order to take the contact forces into ac-

count in the dynamics equation, we have to convert the contact forces applied to

the contact points to forces applied to the DOF, where our mechanical model is

applied. This requires an extension to the position and velocity mappings pre-

sented: we call it mechanical mapping. This is a general method to propagate

forces bottom-up through the layers of the geometrical hierarchy. Given forces

fn applied to a geometry layer n, we derive the equivalent force applied to its

parent layer n −1. Equivalent forces must have the same power. Thus, we have

to compute fn−1 such that:

vT
n−1 fn−1 = vT

n fn

The relation vn = Jn vn−1 allows us to rewrite the previous equation as

vT
n−1 fn−1 = vT

n−1 J T
n fn

Since this relation must hold for any velocity vn−1, we simplify it and get

fn−1 = J T
n fn (8.19)

This corresponds to the principle of virtual work.

8.3.5. Visualisation 147

Figure 8.3: Mappings from the DOFs to a contact point. Top: two simulated objects in contact

(red point). Bottom: hierarchy of geometrical layers. Positions and velocities are propagated

top-down. The contact force fc is accumulated in the contact layers. Forces are then propagated

bottom-up. Image courtesy of SOFA’s documentation.

8.3.5 Visualisation

Because shells have a curved surface, a specific rendering technique is required

to visualise the deformation in bending. Without any consideration, the shells

would appear flat (as simple triangles). Our idea is to make use of a higher res-

olution mesh whose deformation would be controlled by the underlying physi-

cal mesh of shells. In other words, a mapping was implemented to connect the

DOFs of our mechanical model to a set of vertices useful for rendering. In SOFA,

a mapping has only 2 methods: init(), which allows computations during the

initialisation phase, and apply() called at runtime and in charge of updating the

positions of the high resolution mesh according to the coarser mesh constituted

by the shell elements.

• init()

148 Chapter 8. A co-rotational triangular shell FEM model

During the initialisation phase, each vertex from the high resolution mesh

is projected onto the coarse mesh. Thus, for each vertex we find the closest

primitive (DOF, edge or triangle) on the coarse mesh and we take the list of

triangles attached to it. Then, the barycentric coordinates of the projected

point is computed within each triangle of this list.

• apply() deals with the relation between the DOFs and the vertices used for

rendering (shape vertices). The position of each vertex from the high reso-

lution mesh must be updated according to the underlying mesh. After the

initialisation phase, we have associated each rendering vertex to a trian-

gle and its barycentric coordinates within this triangle are known. There-

fore, we first start by computing the new position of the rendering vertex

by weighting the coordinates of each triangle’s vertex with the associated

barycentric weight. Hence, we obtain a new position in the plane of the

triangle. If we were to stop the procedure here, the shell elements would

still be rendered as flat triangles since all rendering vertex are located in

the plane of the triangles. Consequently, the additional step of computing

the deflection is required. We know that the deflection at any point of lo-

cal coordinates (x, y) may be computed from uz = c1 + c2x + c3 y + c4x2 +
c5x y +c6 y2+c7x3+c8x y2+c9 y3 as described by (8.3). Hence, we calculate

the local coordinates (x, y) of each rendering vertex within its associated

triangle. Moreover, we notice that the coefficients c = {c1c2 . . .c9} may be

evaluated using (8.4) from

c = C−1u, (8.20)

The deflection may therefore be computed for each vertex and added to

the in-plane position previously calculated.

It is worth noting that a high resolution mesh may be obtained by recursively

subdividing each triangle. However, in this case the vertices are closely related

to the structure of the mechanical mesh and rendering artefacts may appear. As

we can notice on Fig. 8.4, the quality of the visualisation may be improved by

using a totally different mesh.

8.3.6 Contacts with the curved surface of shells

If a specific rendering technique was developed to visualise the curved shape of

the shells, it is also essential to interact with it. Indeed, as explained section 8.2,

the force applied onto the curved surface of the shell must be processed by dis-

tributing the linear force received on the bent surface between the three vertices

of the triangle. Consequently, the mapping previously described is extended to

a mechanical mapping and two additional methods need to be implemented:

applyJ and applyJT.

8.3.6. Contacts with the curved surface of shells 149

(a) Subdivided triangles (b) Irregular grid

(c) Subdivided triangles (d) Irregular grid

Figure 8.4: In some situations, some rendering artifacts may appear when we use subdivided

triangles to render the shells (a,c). Using an irregular mesh which is not closely related to the

structure of the mechanical mesh reduces the impact (b,d).

• applyJ() encodes the linear relation between the DOF velocities and the

shape velocities as described in section 8.3.4. applyJ() basically embodies

the same computations than apply() except that the vector of displacement

u is different. Whereas the local displacement in rotation is measured from

the quaternions to create the vector u, this time the vector is directly ob-

tained from the angular velocities we had at each vertex (once converted

into the local frame). We therefore have a relation between the angular

velocities at each vertex and the velocity of the deflection in the direction

normal to each triangle.

• applyJT() must convert the contact forces applied to the contact points to

forces applied to the DOF. If the linear forces are easily distributed between

DOFs using barycentric coordinates, it also encodes the relation between

150 Chapter 8. A co-rotational triangular shell FEM model

the vertical force F applied onto the bent surface of the plate and the torque

at each DOF. We start by retrieving the normal component of the applied

force vector Fz. We project the application point of the force into the trian-

gle’s plane and compute its local coordinates (x, y). We create the polynom

P such as

P = Fz(1 x y x2 x y y2 x3 x y2 y3)T . (8.21)

The moments at each vertex are then obtained with

Ω= (C−1)T P. (8.22)

8.3.7 Allowing a curved rest configuration

In Przemieniecki (1985), the rest and initial configurations are both assumed to

be the flat one. The only way to have an initial deformed shape is to apply a

torque on the vertices of the shells. However, in this configuration we would

compute a displacement vector u that is not null, which leads to a bending en-

ergy. In order to define a curved rest configuration for our shells, we propose to

compute the bending energy between the initial and rest configuration during

the initialisation phase, and add the energy between the current and initial con-

figurations at runtime. Consequently, by separating initial and rest configura-

tions, it is possible to have an initial deformed shape without any initial bending

energy. In other words, we shifted the zero energy configuration.

8.3.8 Possible extension: parallel implementation on GPU

If we look closely at all the steps required to compute the local stiffness matrix

for each element (see section 8.3.3 for a summary), we can notice that the op-

erations carried out for a given shell element are independent of the other ele-

ments. This feature makes our co-rotational shell FEM implementation highly

parallelisable. One potential problem however, is the assembly of the global stiff-

ness matrix. Indeed, in a parallel implementation, many elements are processed

concurrently (that is, at the same time). Inevitably, two elements sharing a node

may be processed in the same time. Therefore, they may try to both write their

element contribution into the exact same location in the global stiffness matrix,

and therefore the same location in GPU’s memory. As with the TLED implemen-

tation described in chapter 6, there is two solutions. The first one would be to

re-order the elements organisation so that no concurrent writes will occur. Un-

fortunately, this re-organisation of the element reduces the number of elements

that can be processed in parallel. The second solution would be to take advan-

tage of a new GPU NVIDIA architecture called Fermi, which added the capability

atomic writes for floats. We recall that the write operation is said to be atomic in

the sense that it is guaranteed to be performed without interference from other

8.4. Comparison with an analytical result 151

threads. In other words, the concurrent writes are simply serialised in hardware.

Obviously, an additional overhead is to be expected.

Moreover, because shells are high-order (curved) elements, fewer elements

are needed to describe a given geometry with the same precision (as compared

to using flat triangles). Generally speaking, this constitutes a decisive compu-

tational advantage since fewer elements are required. However, GPUs are more

efficient when they tackle numerous but simple computations. Hence, a good

speedup over sequential CPU implementations is usually only achieved when

the number of elements involved becomes great enough. In contrast, the com-

putations for each shell element are quite heavy and the number of elements

used in the whole simulation is limited. Therefore, the conditions are not opti-

mal to obtain maximum speedups on GPU. A straightforward GPU implemen-

tation of our shell FEM formulation where each thread deals with the calcula-

tions of one element would not make use of all the GPU capacity (the occupancy

would not be maximal). If a reasonable improvement over the CPU implementa-

tion will probably be obtained nevertheless, the gain is likely to be smaller than

in the case of the TLED algorithm for instance. Other approaches will need to

be investigated to take full advantage of the GPU. For instance, computations

within an element could be distributed between several threads to increase the

occupancy of the GPU and hence the overall efficiency.

To conclude on a possible parallelisation of the algorithm, an optimal GPU

implementation is always a challenge to achieve. One needs to choose wisely the

type of memory to be used for each variable and optimise the access patterns.

While it seems that there is no major obstacle for a simple GPU implementation,

the best speedups will only be attained through more elaborate techniques of

parallelisation making full usage of the GPU. Although it will take some time,

our co-rotation shell FEM will eventually be ported to GPU.

8.4 Comparison with an analytical result

We compared our model with some theoretical results reported by Zhongnian

(1986) to assess its quality in modelling bending. The test that we carried out

uses a square shape mesh clamped on all four edges. A uniform load is then ap-

plied on the square and the maximum deflection zmax at the centre can be calcu-

lated. Several simulations are performed with increasing load values q (ranging

from 1 to 5 N/m2) and the following parameters were used:

• Young Modulus E = 1.092×106 Pa

• Poisson’s ratio ν= 0.3

• edge of the square L = 10m

152 Chapter 8. A co-rotational triangular shell FEM model

• thickness h = 0.1m

• pressure q is a uniformly distributed load per unit area

Using these particular values it can be shown that zmax = 0.126 q . The max-

imum deflection obtained in our simulations are reported in Table 8.1. In aver-

age we found zmax = 0.1248 q , resulting in a 0.93% error between our model and

theoretical results on that test.

q zmax

1 0.1218

2 0.2475

3 0.3747

4 0.5050

5 0.6374

Table 8.1: Comparison of our shell model with theoretical results in the case of the bending of a

square plate. An error of less than 1% was found between our simulation and theoretical results.

8.5 Application to implant deployment simulation in cataract
surgery

Cataract surgery consists in three main steps: capsulorhexis, phacoemulsifica-

tion, and implantation of an intra-ocular lens. Prior to starting the surgery, a vis-

coelastic fluid is introduced into the capsule to facilitate capsulorhexis creation

and provide protection during phacoemulsification. This fluid remains in the

capsule for the duration of the surgery, including the injection of the implant.

Capsulorhexis is the technique used to remove a part of the anterior lens cap-

sule. Phacoemulsification consists in using a surgical device which tip vibrates

at an ultrasonic frequency to emulsify the natural lens material and then aspi-

rate the fragments of the cortical material. After the removal of the diseased lens,

an intra-ocular lens is implanted into the eye, through a small incision (about

2mm) using a foldable intra-ocular lens (see Fig. 8.5). The foldable lens, usu-

ally made of acrylic material, is then implanted within the lens capsule through

the incision used during phacoemulsification. In some cases the implant can be

flipped or the hooks (also called haptics) can break. Therefore the simulation of

the insertion and deployment of the implant is crucial for achieving a successful

surgery.

To simulate the insertion and deployment of an intra-ocular lens, we first cre-

ated a triangulation of the lens surface. Particular care was given to the mesh, to

8.5. Application to implant deployment simulation in cataract surgery 153

(a) (b) (c)

Figure 8.5: (a) removal of the opacified lens by phacoemulsification. (b) insertion of the lens

implant which is folded inside the injection device and then deploys within the lens capsule. (c)

the lens in place in the capsule.

ensure that areas where large stresses occur contain a higher density of elements

(see Fig. 8.6). This was done by noting the constraints applied by the surgeon to

the haptics while inserting the implant within the injection device. During this

stage, the haptics are folded onto the implant body, leading to high stresses at

the junctions. The lens mesh contains 743 triangles and 473 nodes. Models of

the injection device and the entire eye anatomy were also created. Physical pa-

rameters of the lens implant have been provided by the manufacturer Alcon and

they are presented in Table 8.2.

Young’s modulus Poisson’s ratio Mass density

1MPa 0.42 1.2g/cm3

Table 8.2: Physical parameters of the intra-ocular implant (data obtained directly from Alcon at

our request)

The first difficulty is to obtain the folded geometry of the lens within the in-

jection device. This step is not important for the training process and does not

need to be interactive. Indeed the surgeon does not always have to prepare the

implant as some injection devices are readily available with a folded implant al-

ready in place. We simulate the folding process by first folding the haptics onto

the implant body. The body was then bent while keeping the haptics inside to

obtain the shape described in Fig. 8.7. The whole process was carried out by ap-

plying the necessary forces and boundary conditions on the body and haptics of

the implant. The folded implant was then placed into the injection device. The

simulation of the injection consists in pushing the intra-ocular implant within

the injection device into the lens capsule. During these stages of the simulation,

complex contacts occur and consist of self collisions of the lens as well as colli-

sions between the lens and the injector and later with the capsule. To solve the

contacts we use a direct solver. Indeed, since the mass of the implant was small

154 Chapter 8. A co-rotational triangular shell FEM model

compared to its stiffness, an iterative solver (such as conjugate gradient) needed

a lot of time to converge. As adhesions between the haptics and the body is often

observed in surgery, friction is also taken into account in the contact response

process.

(a) Real implant (b) Meshed model

Figure 8.6: An actual intra-ocular implant (a) and the triangular (b) mesh used in our simula-

tions. Notice the higher density of elements in areas where large deformations will take place.

Image of implant courtesy of Alcon.

Figure 8.7: Top: intermediary steps of the intra-ocular implant folding. Bottom: fully folded

implant ready to be placed into the injection device.

Results of our simulation are illustrated in Fig. 8.8. We can notice the pro-

8.6. Discussion 155

gressive deployment of the implant when it exits the injector. The shape of the

intra-ocular lens remains very close to that of a real one during all stages of the

simulation: within the injector, during the ejection phase, and when in place

within the capsule. Due to the high stiffness and low mass of the lens, a direct

sparse solver was used at each time step (dt = 0.01s) rather than an iterative

solver, resulting in a more accurate and more stable simulation, to the detriment

of computation times (about 5 FPS for the complete simulation, and about 10

FPS for the deformation only, on a 2.4 GHz processor).

Figure 8.8: Three steps of the simulation of the intra-ocular lens implant injection and its de-

ployment within the lens capsule. Top: images from a real cataract surgery, courtesy of Dr. Tarek

Youssef, ophthalmologist in Canada. Below: our simulation of the implant’s deployment.

8.6 Discussion

The finite element procedure that we propose was largely developed based on

physical understanding without the use of mathematical shell theories. Indeed,

our shell FEM was obtained by simply superimposing a plane stress and bend-

ing energies. According to Chapelle and Bathe (2003), this type of approach has

a limited level of accuracy. The effective study of shell structures clearly requires

a deep physical understanding of shell structural behaviours. The complexity

of the physical behaviours of shells requires advanced mathematical analyses

from theories that are still in development. The interested reader may refer to

the book of Chapelle and Bathe (2003) for more details on shell theory. If the

range of application of our shell formulation might be somewhat limited, we did

not find out any inconsistencies through our tests. We also need to keep in mind

that the accuracy required in medical simulation is not the same than the one

156 Chapter 8. A co-rotational triangular shell FEM model

demanded in structural analyses for instance. Moreover, the additional com-

plexity of a shell finite element formulation based on true shell theory may also

very well jeopardise our real-time constraints. Therefore, we do not think that

the use of this simple shell formulation significantly diminishes our contribution

to the field of medical simulation. Indeed, to our knowledge, our co-rotational

shell FEM is the first description of a shell finite element model applied to sim-

ulating the deformation of thin anatomical structures.

Nevertheless, a few improvements are conceivable. Large strain could be al-

lowed by using a non-linear strain tensor and more complex material laws (non-

linear, viscoelasticity, etc.) could also be added to our shell formulation. How-

ever, those changes are substantial and their implementations are not straight-

forward. In addition, it is not clear how the benefits would be the greatest:

whether from enhancing our model to a non-linear formulation or completely

changing to another model based on true shell theory (where membrane and

bending energies are not separated). The answer may depend on the type of

constraints applied on the object. Also (as already mentioned section 8.3.8), the

real-time capacity of our algorithm could be further improved by implementing

our shell FEM on GPU. Although an optimal parallel re-implementation is al-

ways challenging, we have already reviewed why there was no major obstacle to

a GPU implementation.

8.7 Conclusion

We proposed a co-rotational formulation for shell elements by extending a clas-

sical in-plane triangular finite element approach. This simple shell element can

efficiently handle both membrane, bending and twist forces. The validity of our

approach has been demonstrated though comparison with theoretical results.

It was then applied it to a rather complex application: the simulation of intra-

ocular lens implant deployment in a cataract surgery simulation. These results

are very encouraging and show the potential of such models. Examples include

the modelling of hollow anatomical structures (colon, stomach, etc.), the simu-

lation of cardiac valve leaflets, and blood vessels. This work on this co-rotational

shell FEM formulation was the object of one main publications (Comas et al.,

2010a).

So far, the mesh of the implant used in the cataract surgery simulation was

created manually. However, manually creating the mesh is not suitable if we

want to model the deformation of complex anatomical structures using shell el-

ements. Therefore, the first step is to describe the surface of the structure that

we want to simulate with curved patches. The goal is to create a mesh featuring

the optimal number of curved shell elements while staying as close as possible

to our targeted geometry. The following chapter deals with this problem.

C
H

A
P

T
E

R

9
PHYSICS-BASED RECONSTRUCTION USING

SHELL ELEMENTS

In the previous chapter, we proposed a co-rotational formulation for shell ele-

ments by extending a classical in-plane triangular finite element approach. This

simple shell element can efficiently handle both membrane and off-plane forces

(bending and twist). The validity of our approach has been demonstrated though

comparison with theoretical results. It was then applied it to a rather complex ap-

plication: the simulation of intra-ocular lens implant deployment in a cataract

surgery simulation. These results are very encouraging and show the potential of

such models. Examples include the modelling of hollow anatomical structures

(stomach, colon, etc.), the simulation of cardiac valve leaflets, and blood vessels.

However, to model the deformation of complex anatomical structures using shell

elements, the first step is to describe its surface with curved patches. In the next

section, we propose to study how to approximate the surface of anatomical struc-

tures with (curved) shell elements.

157

158 Chapter 9. Physics-based reconstruction using shell elements

9.1 Techniques of mesh simplification

9.1.1 Introduction: our motivation

Our idea is the following: while many flat triangles are required to describe

highly curved surfaces, fewer triangular shell elements are needed to describe

a given geometry with the same precision since they can be curved. Our goal

is to create a mesh featuring the optimal number of shell elements while stay-

ing as close as possible to our targeted geometry. Literature about volumetric

mesh generation algorithms is fairly dense. However, there are only a few that

are concerned about the generation of meshes over curved surfaces. One of the

most widely used techniques for the creation of surface meshes is the plane to

surface transformation method (Zienkiewicz and Phillips, 1971), mesh is first

generated on a two-dimensional domain and then mapped onto the surface. If

this method gives reasonably good meshes on smooth surfaces, the results are

usually quite poor with more complex curved surfaces. The finite elements may

be generated directly on the curved surfaces based on the advancing front tech-

nique (Lo, 1985; Lau and Lo, 1996). The main issue with this approach is that an

analytical description of the geometry is needed, which is not the case in med-

ical simulation. Another method consists of using an a priori error estimator to

build an adaptive mesh generation (Baumann and Schweizerhof, 1997). How-

ever, the tolerance of this indicator should be chosen depending on the desired

accuracy of the finite element solution. Therefore it requires some knowledge

about the problem in order to choose an effective tolerance. Béchet et al. (2002)

start from an existing triangular mesh created with a CAD (computer-aided de-

sign) software and refine and smooth the mesh based on element quality and

surface curvature. While all those methods allow their authors to get satisfac-

tory meshes over curved surfaces according to their needs, they all make use of

flat elements to mesh geometries and do not generate actual shells.

In fact, it is interesting to note that this process of meshing a curved sur-

face is similar to the reconstruction of the surface of objects in computer vi-

sion. Indeed, calculating curvature maps of 3D surfaces represented as digi-

tised data (point clouds or triangulated meshes) has been extensively studied.

One of the most common approach is to use continuous surface patches (Kolb

et al., 1995; Douros and Buxton, 2002). The surface is locally approximated by

an analytic representation called surface patch, usually chosen to be an implicit

surface. Tang and Medioni (1999) presented an elegant and non noise-sensitive

approach that infers sign and direction of principal curvatures directly from the

input and the authors used this information for coherent surface and curve ex-

traction from 3D data.

However, we need to realise that our situation is substantially different than

all previously mentioned geometrical approaches as we want to model the de-

9.2. Our method 159

formation of the structure. In that regard, the curvature of the surface has a

physical meaning: it represents the mid-surface of the shell. By keeping this

in mind, we propose an approach to mesh a curved surface based on the same

polynomial shape function (8.3) used in our co-rotational shell FEM.

9.2 Our method

9.2.1 A simple algorithm

In the following, we assume that we have a high resolution triangular mesh ob-

tained from a binary segmented image of the object we want to simulate (via a

Marching Cube algorithm for instance, Lorensen and Cline (1987)). We propose

a technique that can simplify the high resolution mesh of the object to be simu-

lated and approximate the surface of anatomical structures with shell elements

whose each surface is described by the shape function used in our shell formu-

lation. Thus, the first step in the process of generating a shell-based mesh is an

important decimation of the high resolution mesh, using quadric edge collapse

technique implemented in Meshlab or CGAL for instance. MeshLab is an open

source program for the processing and editing of unstructured 3D triangular

meshes. CGAL is also an open source project which aims to provide easy access

to efficient and reliable geometric algorithms in the form of a C++ library. The

algorithm of simplification tries as much as possible to preserve mesh bound-

aries and generates high quality triangular elements. We then apply a heuristic

method derived from the work of Saupin et al. (2007) with tetrahedral meshes

based on simple geometrical rules. For each node of the coarse mesh, we find

the three closest triangles on the high resolution mesh and we move the node

to the barycentre of the three centres of mass of those triangles. This technique

locally smooths the surface of the mesh while converging towards the desired

high resolution mesh.

At each iteration of this algorithm, we want to measure the error between

the curved surface of shells and the target. Indeed, we need to ensure that the

distance between the surface of our shell-based mesh and the targeted high res-

olution mesh will be minimal. An efficient technique for measuring the error

between two surfaces is the Hausdorff distance (Klein et al., 1996). As a reminder

the Hausdorff distance between two meshes is the maximum between the two

so-called one-sided Hausdorff distances:

dH(X ,Y) = max

{

sup
x∈X

inf
y∈Y

d(x, y),sup
y∈Y

inf
x∈X

d(x, y)

}

, (9.1)

where d() is the Euclidian distance between two points. The same technique of

subdivision used for rendering allows us to sample the actual surface described

160 Chapter 9. Physics-based reconstruction using shell elements

by the shells to compute the Hausdorff distance with the targeted high resolution

mesh.

By using the Hausdorff distance between two iterations, the process may be

stopped when the required precision has been reached. A simple example is

shown Fig. 9.1 to illustrate the method.

Figure 9.1: The target (a) is a high resolution cylinder mesh of 16,384 triangles and we start from

a very coarse mesh (12 triangles), rendered with flat triangles here (b). In (c) the coarse mesh

is rendered with shells and a one-sided Hausdorff distance colour map is applied to show the

initial error with the high resolution mesh. (d) One-sided Hausdorff distance colour map after

one iteration of our algorithm (48 shells).

9.2.2 Results on complex anatomical structures

Meshing of anatomical structures.

This approach has been applied to approximate more complex anatomical ge-

ometries with curved shell elements. Two examples are given with the Glis-

son’s capsule, which is the membrane surrounding the liver (Fig. 9.2) and an

aneurysm (Fig. 9.3). In each case, the error is computed through a Hausdorff

distance and expressed as a percentage of the diagonal of the object’s bounding

box.

Figure 9.2: (a) the targeted high resolution Glisson’s capsule mesh (8000 triangles). (b) the one-

sided Hausdorff distance error map after applying only one iteration of our algorithm to the

coarse mesh (1200 shells).

9.2.2. Results on complex anatomical structures 161

Figure 9.3: (a) the targeteted high resolution aneurysm mesh (28368 triangles). (b): the one-

sided Hausdorff distance error map on a mesh of 772 shells generated with our method.

Computation times.

We perform several tests on the aneurysm model at different resolutions to mea-

sure computation times. The shells are resisting to a uniform pressure load and

solved using a Conjugate Gradient (CG) iterative solver. The computation times

are reported in Fig. 9.4. Implicit integration allows for large time steps (40ms)

and the computation is real-time for 800 shell elements and a reasonable error

criterion (5%). When the computation time must be bounded (critical real-time

applications), one can fix the number of CG iterations to, for instance, 100 and

remains real-time for 1000 shell elements. However, in that case the accuracy of

the results is not checked.

Number of shells

Computation time (ms)

Not

real-time

1000

800

600

400

200

10 20 30 40 50

Conjugate gradient with
fixed 100 iterations

Conjugate gradient with
fixed 5% error criterion

Figure 9.4: Computation time on meshes of 200, 400, 600, 800 and 1000 elements.

.

162 Chapter 9. Physics-based reconstruction using shell elements

9.2.3 Coupling between tetrahedra and shells for advanced modelling

Structures in human body can be either solid (brain, liver, prostate etc.) or hol-

low (colon, blood vessels, stomach etc.). However, knowing how to model the

two kind of structures is not sufficient to reach a high degree of accuracy, real

life situations are more complex. As an example, the external surface of the liver

is covered by a layer of cells called Glisson’s capsule. Its interaction with the liver

plays an important role into the overall structure’s mechanical behaviour. There-

fore considering the interaction between solid and hollow objects is as crucial as

modelling the two structures separately.

An example of medical procedure to illustrate this point even further is an-

gioplasty. Angioplasty is the technique of mechanically widening a narrowed

or obstructed blood vessel, typically as a result of atherosclerosis. An empty and

collapsed balloon on a guide wire is passed into the narrowed locations and then

inflated to a fixed size. The balloon crushes the fatty deposits, so opening up the

blood vessel to improved flow. As a proof of concept, we tried to simulate an an-

gioplasty. Our preliminary results are presented on Fig. 9.5. The blood vessel is

modelled using the shell FEM formulation described in this paper and the fatty

deposits are simulated with a tetrahedral FEM method and are fixed to the in-

terior wall of the blood vessel. When the balloon inflates it crushes the deposits

and they then apply a pressure onto the curved surfaces of shells modelling the

interior wall. The forces are then distributed onto the mechanical nodes of the

blood vessel mesh as detailed in section 8.2, which widens the blood vessel as

expected.

(a) (b) (c) (d)

Friday, 12 March 2010

Figure 9.5: Simulation of an angioplasty procedure. (a, c): A collapsed stent is inserted into

the blood vessel simulated with our shell FEM formulation. The fatty deposits (in yellow) are

modelled with tetrahedral FEM. (b, d): The stent is crushing the fatty deposits which creates a

pressure onto the interior wall and widens the blood vessel.

9.3. Discussion 163

9.3 Discussion

Although we were able to mesh complex anatomical structures with a fairly

small number of shell elements, our approach could be further improved. In

our current implementation, if the error measured with the Hausdorff distance

is greater than a threshold (which is also difficult to choose), all triangular ele-

ments are subdivided into 4 new triangles and each of the new vertices is moved

towards the targeted geometry based on our heuristic algorithm. Obviously, this

is not optimal as the error between the two meshes may very well be local and

therefore the use of a global mesh refinement is not very suitable. The second

weakness is that we also do not check the quality of the elements during our

mesh process. If some elements are stretched from the heavy decimation, these

elements are not corrected during the process of re-meshing. Our algorithm

could even worsen the situation by splitting those stretched elements into four

smaller (and more stretched) elements. One solution for the latter issue would

be to enhance our algorithm with a relaxation phase where a repulsion force is

applied between each vertex (constrained to remain on the surface of the ob-

ject). This physical approach would allow a more even distribution of the ver-

tices across the surface and would contribute to obtain better quality elements

overall. Yet, meshing a surface with curved elements is a very complex problem

and still an active area of research. In contrast to all previous geometrical tech-

niques, we suggested a more physical approach consistent with our shell FEM

formulation and obtained good results in meshing complex anatomical struc-

tures.

9.4 Conclusion

Over the last two chapters, we proposed a complete framework for real-time

modelling of thin anatomical structures. The novelty of our method relies on

the combination of a shell finite element formulation and a geometric surface

reconstruction both based on the same polynomial interpolation function used

to describe the surface of shells. We also show how contacts and interactions

with the curved surfaces of shells can be handled using the same function. In

summary, these polynomial shape functions are used in three different ways in

our computational model:

(a) to approximate complex geometrical shapes

(b) to compute internal forces via a co-rotational shell FEM

(c) to compute contact forces onto a curved triangle

164 Chapter 9. Physics-based reconstruction using shell elements

We achieved our objectives to propose a versatile solution which can simu-

late, in real-time, thin objects with various shapes and material properties with

good accuracy. The efficiency of the method was illustrated through shell-based

reconstruction and real-time simulation of the deformations of various anatom-

ical structures and other thin objects (like an intra-ocular implant). We also pre-

sented preliminary results on the coupling between solid (tetrahedra) and thin

objects (shells) for the advanced modelling of anatomical structures via the sim-

ulation of an angioplasty procedure. This work on modelling thin anatomical

structures was the object of two main publications (Comas et al., 2010a,b).

Part IV

Conclusion

165

C
H

A
P

T
E

R

10
CONCLUSION AND PERSPECTIVES

10.1 Summary of contributions

The objective of this PhD was to propose soft tissue models for computing the

deformation of anatomical structures in real-time. Because the shape and the

internal nature of these structures greatly differ, a unique model cannot deal

with the variousness of the mechanical behaviours. Hence, we identified two

major types of structures in human body, they can be either solid (brain, liver,

prostate etc.) or hollow (colon, blood vessels, stomach etc.).

Most of previous works focused on volumetric models that are able to cap-

ture the behaviour of solid organs. Yet, many of these models had to compro-

mise on accuracy to achieve the real-time constraint demanded by medical sim-

ulation. Even though the best mathematical framework for predicting the defor-

mation of a continuous structure is provided by continuum mechanics, solving

these equations is a computationally very demanding task and simpler models

are often used in practice. And even when the finite element method is em-

ployed to solve the equations of continuum mechanics, linear strain measure

and simple constitutive laws are common and therefore does not constitute an

appropriate modelling of the complex mechanical behaviours of solid anatomi-

cal structures.

In contrast, much less research has been carried out for the modelling of hol-

low structures. In fact in the field of medical simulation, very few models have

been proposed for simulating, in real-time, the deformation of thin anatomical

structures whose volume is negligible compared to their surface area. Never-

theless, human body features many hollow structures and we feel that the need

for modelling hollow organs in medical simulation is equally important as with

solid organs.

Consequently, we strived to propose solutions to these two known problems

in the field of medical simulation.

167

168 Chapter 10. Conclusion and perspectives

Solid structure modelling.

We implemented the total Lagrangian explicit dynamics (TLED) algorithm on

GPU using CUDA. This finite element formulation is fully non-linear: it makes

use of a non-linear strain measure (which allows large deformations) and em-

bodies a non-linear constitutive law between strain and stress as characterised

by Fung (1993) for soft-tissues. While the first GPU implementation of the TLED

was carried out by Taylor et al. (2007a) in the Cg language, our efficient re-

implementation in CUDA led to a threefold increase in performance. Overall,

we observe a maximum speed improvement for GPU solution over CPU solu-

tion of up to 56.3x. My collaboration with Zeike Taylor continued and we en-

hanced the formulation by adding anisotropy and viscoelasticity. To the best of

our knowledge, this work constitutes the first GPU implementation of a non-

linear, anisotropic and viscoelastic finite element procedure. This formulation

was eventually implemented in the open source framework for medical simula-

tion SOFA and will be released publicly with the upcoming 1.0 release of SOFA.

Hollow structure modelling.

We proposed a framework for real-time modelling of thin anatomical structures.

We first designed a triangular shell element by combining a two-dimensional in-

plane membrane energy, with an off-plane energy for describing bending and

twist. We improved and extended a plate model first introduced by Przemie-

niecki (1985) to a co-rotational formulation to allow large displacements (but

small deformations). Once combined with an in-plane membrane formula-

tion we obtained an accurate, yet computationally efficient, shell finite element

method featuring both membrane and bending energies. To the best of our

knowledge, this co-rotational shell FEM is the first description of a shell finite

element method in the field of medical simulation. However, to model the de-

formation of complex anatomical structures using shell elements, the first step is

to describe its surface with curved patches. Indeed, while many flat triangles are

required to describe highly curved surfaces, fewer triangular shell elements are

needed to describe a given geometry with the same precision since they can be

curved. Therefore, we suggested a simple method to mesh a surface with curved

shell elements. The novelty of our method relies on the combination of a shell

finite element formulation and a geometric surface reconstruction both based

on the same polynomial interpolation function used to describe the surface of

shells. We also showed how contacts and interactions with the curved surfaces

of shells can be detected and handled using the same function.

10.2. Discussion 169

10.2 Discussion

10.2.1 Solid structures modelling

The TLED algorithm offers an accurate modelling for soft tissues and its GPU

implementation using CUDA is very efficient. Hence, real-time computations

can be achieved without any trade-off on the accuracy of the deformation. One

of the features allowing such an efficiency is the use of an explicit time integra-

tion scheme. If this permits significant computational advantage, the use of an

explicit integration scheme imposes that the time step of the simulation remains

below a critical time step. This critical time step depends on two kinds of crite-

ria: the size of the elements and the material’s properties (Young’s modulus and

Poisson’s ratio). Therefore, the meshing of the anatomical structures to be sim-

ulated must be accomplished with great care to insure well-shaped elements.

Even more restricting, the use of the TLED formulation is not suitable for mod-

elling stiff objects in real-time. Indeed, increasing the Young’s modulus trans-

lates into a lower critical time step, which necessitates an increase of the sim-

ulation’s frequency to enforce real-time. In some applications, the value of the

Poisson’s ratio may be relaxed from 0.49 to 0.45 for instance. However, if it allows

to double the critical time step, this relaxation introduces additional inaccura-

cies.

One of the most common critics we received for this work concerned the

poor ability of the TLED to handle stiff contacts. Indeed, interactions may im-

pact the critical time step resulting from the use of an explicit time integration

scheme and thus influence the overall stability of the simulation. The work car-

ried out during my PhD was entirely concerned with the numerical solution pro-

vided by the TLED formulation. Yet, while this is beyond the scope of the present

work, a range of contact formulations are available in commercial finite element

packages. According to their documentation, the impact on the critical time step

should be minimal. However, for a demonstration at an IT exhibition (CeBIT

Australia), we tried to setup an interaction between a virtual tool driven by a

haptic device and a cube with brain-like properties. If we managed to produce

an interesting demo for the exhibition, the system appeared fairly unstable. But

even if a stable contact modelling technique could be formulated, the actual lim-

iting factor is the collision detection process. Because the time step must be very

small when using an explicit time integration scheme (often around one mil-

lisecond or less), the collision detection algorithm must also be run at the same

frequency. The problem is that no collision detection algorithm is fast enough

to execute at 1000Hz or more with objects of reasonable sizes. One notable ex-

ception is the interaction with a fixed rigid surface where the collision detection

is rapid.

Consequently, this list of pros and cons limits the TLED’s range of applica-

170 Chapter 10. Conclusion and perspectives

tions. If its usage in very interactive environments is not suitable, the TLED

finite element algorithm is great at computing the deformation of soft tissues

when the boundary conditions are known and controlled. The TLED is also a

great algorithm for non-rigid registration problems found in image-guided ther-

apy (Modat et al., 2010). Indeed, intra-operative image registration must be fast

enough that the work flow of the surgical procedure is not interrupted. Hence,

provided that the application is appropriate, the TLED algorithm is an efficient

and accurate algorithm to model the deformation of solid soft anatomical or-

gans.

10.2.2 Hollow structures modelling

We achieved our objectives to propose a versatile solution which can simulate,

in real-time, thin objects with various shapes and material properties with good

accuracy. The efficiency of the method was illustrated through shell-based re-

construction and real-time simulation of the deformations of various anatom-

ical structures and other thin objects. Nevertheless, the use of a linear strain

measure limits the range of application to small deformations (and large dis-

placements). Moreover, the constitutive law was chosen to be the simple (lin-

ear) Hookean law, which it is known not to describe accurately the relationship

between strain and stress in soft tissues. However, those potential changes are

substantial and their implementations are not straightforward. In addition, it is

not clear from which method the benefits would be the greatest: whether from

enhancing our model to a non-linear formulation or completely changing to an-

other model based on true mathematical shell theory (where membrane and

bending energies are not separated). Our shell FEM could also be improved by

implementing the formulation on GPU. Although an optimal parallel implemen-

tation is always challenging, our method is highly parallelisable and there is no

major obstacle to an efficient GPU implementation.

Regarding our geometric surface reconstruction based on shells, we were

able to mesh complex anatomical structures with a fairly small number of shell

elements. However, the main drawback of our method is the lack of any as-

sessment of the quality of the elements created. Indeed, if some elements are

stretched from the heavy decimation, these elements are not corrected during

the process of re-meshing. Our algorithm could even worsen the situation by

splitting those stretched elements into four smaller (and more stretched) ele-

ments. Yet, meshing a surface with curved elements is a very challenging prob-

lem and still an active area of research. In contrast to all geometrical techniques

described in the literature, we presented a more physical approach consistent

with our shell FEM formulation and obtained good results in meshing complex

anatomical structures.

10.2.3. Use of GPU acceleration 171

10.2.3 Use of GPU acceleration

One of the strongest constraints in medical simulation is the demand for real-

time computations. This constraint is what makes all tasks in a simulator so

challenging (collision detection, contact and soft tissue modelling, haptic feed-

back, photo-realistic rendering etc.). In fact, this is at the origin of the multi-

tude of simplifications proposed in simulation for modelling the biomechanics

of anatomical structures. The lack of accuracy induced by these simplifications

is of great concern to us. In this PhD, a part ot the solution was to accelerate the

computations by using the GPU. While we have showed that this approach can

work very well, we need to keep in mind that GPU acceleration is not the ulti-

mate solution. Firstly, a standard is yet to be imposed in GPGPU. While OpenCL

is openly targeted as a multi-vendor and multi-platform API, its usage remains

very scarce nevertheless. In fact, the first experiments carried out within the

SOFA framework revealed that OpenCL is not as optimised as CUDA for instance

(up to twice as slow). Secondly, GPU programming is not simple to master. Al-

though we have seen many improvements in flexibility of programming over the

last 3 or 4 years, a strong understanding of the underlying GPU hardware is still

mandatory to create an optimal code. As an example, a GPU offers different

types of memory, all with distinct pros and cons (strict access patterns, latency,

limited size etc.), and choosing the best type of memory for each variable may

be rather challenging to say the least. But most importantly, GPU acceleration

is only interesting if the code is highly parallelisable. The difficulty is to devise

a model that combines (1) an excellent capability at predicting the deformation

of anatomical structures and (2) great parallel properties. Ideally, the parallelisa-

tion of the algorithm must be thought as part of the design process rather than

seen as two unconnected steps. Even when the code is greatly parallelisable, one

could face limited GPU hardware possibilities (as with concurrent writes for in-

stance). GPU acceleration is all but a straightforward process. One must often

accomplish a considerable amount of work to achieve a substantial gain.

10.3 Perspectives

Earlier this year, NVIDIA released a new GPU architecture called Fermi. Fermi

features several major innovations for GPGPU computing like cache (faster

memory access in some cases), unified address space (easier to run C and C++

programs), debugging support, faster atomic instructions, compliance with the

newly revised IEEE 754 floating point standard, three times the amount of shared

memory, etc. In theory, this series of improvement should boost the perfor-

mance of the second and third TLED implementations (see section 6.3.4) and

we should investigate and compare the efficiency of the three designs on this

172 Chapter 10. Conclusion and perspectives

new hardware.

In a short term perspective, our co-rotational shell FEM algorithm could also

be implemented on GPU. We already assessed in section 8.3.8 that there was no

major obstacle which would prevent a parallel implementation. Nevertheless,

an optimal GPU implementation will demand careful design to take full advan-

tage of the hardware.

Although the meshing of complex surfaces with curved shell elements was

not the heart of this PhD, our naïve approach could be enhanced by focusing

on element quality. One simple solution would be to add a relaxation phase

where a repulsion force is applied between each vertex (constrained to remain

on the surface of the object). This physical approach would allow a more even

distribution of the vertices across the surface and would contribute to obtain

better quality elements overall. While a more mathematical method (a derivative

of advancing front techniques for instance) could probably be formulated, the

problem is complex and could certainly account for another PhD.

Finally, all the contributions of this PhD could contribute to enhance the

complexity of anatomical structure modelling through combining solid and hol-

low structures. While we presented our findings on the coupling between solid

(tetrahedra) and thin objects (shells) via the simulation of an angioplasty proce-

dure, these results are still preliminary and much work remains to be done. In

particular, the validity of the interaction and the accuracy of the overall deforma-

tion of the blood vessel were not quantitatively evaluated. Another interesting

example of coupling would be the complete model of the liver. The relationship

between strain and stress within the parenchyma (functional part of the liver) is

known to be non-linear and anisotropic. Moreover, both the vascular network

within the tissue and the Glisson’s capsule have a strong influence on the over-

all mechanical behaviour of the liver. The contributions introduced in this PhD

thesis may offer a solution to this challenging problem. While the parenchyma

could be simulated with an algorithm such as the TLED (materially non-linear

and able to account for the anisotropy), the blood vessels and the Glisson’s cap-

sule could be described using our co-rotational shell FEM.

As a conclusion, the TLED algorithm and our co-rotational shell FEM are re-

spectively the first non-linear FEM for solid structures and the first model fea-

turing bending for hollow structures to be implemented into the open source

framework SOFA. Although they are based on continuum mechanics, they may

both be employed to simulate the deformation of entire organs in real-time.

By providing efficient FEM algorithms for all types of anatomical structures to

worldwide researchers, we thus hope to assist in enhancing the realism of med-

ical simulators.

A
P

P
E

N
D

I
X

A
THE WEIGHTED RESIDUAL METHOD

The method of weighted residuals is an approximation technique for solving dif-

ferential equations. A subclass of this method, the Galerkin method of weighted

residuals, is often used to derive the element equations for the finite element

method.

Let us suppose that we have a linear differential operator D acting on a func-

tion u to produce a function p:

D(u(x)) = p(x). (A.1)

We wish to approximate u by a function ũ, which is a linear combination of basis

functions chosen from a linearly independent set, that is:

u ≈ ũ =
n
∑

i=1

aiφi . (A.2)

Now, when substituted into the differential operator D , the result of the opera-

tion is not, in general, p(x). Hence, an error or residual will exist:

R(x) = D(ũ(x)−p(x)) 6= 0. (A.3)

The idea behind the weighted residual method is to force the residual to zero in

some average sense over the domain:

∫

X
R(x)Wi (x)d x = 0, i = 1,2, . . . ,n (A.4)

where the number of weight functions Wi is exactly equal to the number of un-

known constants ai in ũ. The result is a set of n algebraic equations for the un-

known constants ai . Depending on the choice for Wi , several sub-methods can

be derived: collocation, sub-domain, least squares, Ritz, Galerkin etc.

173

REFERENCES

[Allard et al., 2007] J. Allard, S. Cotin, F. Faure, P. j. Bensoussan, F. Poyer, C. Duriez,

H. Delingette and L. Grisoni. SOFA – an Open Source Framework for Medical

Simulation. In In Medicine Meets Virtual Reality (MMVR 15, 2007.

[Allard et al., 2009] J. Allard, M. Marchal and S. Cotin. Fiber-Based Fracture Model

for Simulating Soft Tissue Tearing. In Medicine Meets Virtual Reality (MMVR),

pages 13–18, IOS Press, 2009.

[Aloisio et al., 2004] G. Aloisio, L. De Paolis, A. Mongelli and L. Provenzano. Artery

Soft-Tissue Modelling for Stent Implant Training System. Journal of Systemics,

Cybernetics and Informatics, vol. 2, no. 4, 2004.

[Argyris et al., 1964] J. Argyris, S. Kelsey and H. Kamel. Matrix Methods of Structural

Analysis, A Precis of Recent Developments. Pergamon Press, 1964.

[Baraff and Witkin, 1998] D. Baraff and A. Witkin. Large steps in cloth simulation. In

Proceedings of SIGGRAPH, pages 43–54, ACM, New York, NY, USA, 1998.

[Barbič and James, 2005] J. Barbič and D. L. James. Real-Time Subspace Integration for

St. Venant-Kirchhoff Deformable Models. Proceedings of SIGGRAPH, vol. 24,

no. 3, pages 982–990, 2005.

[Barr, 1984] A. H. Barr. Global and local deformations of solid primitives. Proceedings

of SIGGRAPH, vol. 18, no. 3, pages 21–30, 1984.

[Basafa and Farahmand, 2010] E. Basafa and F. Farahmand. Real-time simulation of

the nonlinear visco-elastic deformations of soft tissues. International Journal of

Computer Assisted Radiology and Surgery, pages 1–11, 2010.

[Bastard, 2009] C. Bastard. Elastographie impulsionnelle quantitative : caractérisation

des propriétés viscoélastiques des tissus et application à la mesure de contact.

Ph.D. thesis, Université François Rabelais de Tours, 2009.

[Bathe, 1995] K.-J. Bathe. Finite Element Procedures. Prentice Hall, second ed., 1995.

[Baudet et al., 2007] V. Baudet, M. Beuve, F. Jaillet, B. Shariat and F. Zara. Integrating

Tensile Parameters in 3D Mass-Spring System. Tech. rep., LIRIS - CNRS, 2007.

[Baumann and Schweizerhof, 1997] M. Baumann and K. Schweizerhof. Adaptive

mesh generation on arbitrarily curved shell structures. Computers & Structures,

vol. 64, no. 1–4, pages 209–220, 1997.

175

176 References

[Béchet et al., 2002] E. Béchet, J.-C. Cuilliere and F. Trochu. Generation of a finite

element MESH from stereolithography (STL) files. Computer-Aided Design,

vol. 34, no. 1, pages 1–17, 2002.

[Belytschko and Hsieh, 1973] T. Belytschko and B. J. Hsieh. Non-linear transient finite

element analysis with convected co-ordinates. International Journal for Nu-

merical Methods in Engineering, vol. 7, no. 3, pages 255–271, 1973.

[Belytschko et al., 2000] T. Belytschko, W. K. Liu and B. Moran. Nonlinear Finite Ele-

ments for Continua and Structures. Wiley, first ed., 2000.

[Bianchi et al., 2004] G. Bianchi, B. Solenthaler, G. Székely and M. Harders. Simulta-

neous Topology and Stiffness Identification for Mass-Spring Models Based on

FEM Reference Deformations. In Proceedings of MICCAI, vol. 3217, pages 293–

301, 2004.

[Biswas et al., 1976] D. Biswas, K. S. Ram and S. S. Rao. Application of ‘natural coor-

dinate system’ in the finite element solution of multigroup neutron diffusion

equation. Annals of Nuclear Energy, vol. 3, no. 11-12, pages 465–469, 1976.

[Black et al., 1991] M. M. Black, I. C. Howard, X. Huang and E. A. Patterson. A three-

dimensional analysis of a bioprosthetic heart valve. Journal of Biomechanics,

vol. 24, no. 9, pages 793–795, 797–801, 1991.

[Bonnet and Wood, 1997] J. Bonnet and R. D. Wood. Nonlinear Continuum Mechanics

For Finite Element Analysis. Cambridge University Press, 1997.

[Bourguignon and Cani, 2000] D. Bourguignon and M.-P. Cani. Controlling Anisotropy

in Mass-Spring Systems. In Eurographics Workshop on Computer Animation

and Simulation, pages 113–123, Springer-Verlag, 2000.

[Bridson et al., 2003] R. Bridson, S. Marino and R. Fedkiw. Simulation of Clothing

with Folds and Wrinkles. In Symposium on Computer Animation, pages 28–36,

2003.

[Bro-Nielsen and Cotin, 1996] M. Bro-Nielsen and S. Cotin. Real-time Volumetric De-

formable Models for Surgery Simulation using Finite Elements and Condensa-

tion. In Computer Graphics Forum, pages 57–66, 1996.

[CGAL] CGAL. Computational Geometry Algorithms Library.

URL http://www.cgal.org/

[Chapelle and Bathe, 2003] D. Chapelle and K. J. Bathe. The finite element analysis of

shells - Fundamentals. Springer, 2003.

http://www.cgal.org/

References 177

[Chen and Zeltzer, 1992] D. T. Chen and D. Zeltzer. Pump it up: computer animation

of a biomechanically based model of muscle using the finite element method.

Proceedings of SIGGRAPH, vol. 26, no. 2, pages 89–98, 1992.

[Chhatkuli et al., 2009] S. Chhatkuli, H. Kojima, S. Koshizuka, and M. Uesaka. Mesh-

free Simulation of Lung Deformation during Inspiration. In World Congress on

Engineering and Computer Science, vol. 2, 2009.

[Choi and Ko, 2005] M. G. Choi and H.-S. Ko. Modal Warping: Real-Time Simulation

of Large Rotational Deformation and Manipulation. IEEE Transactions on Vi-

sualization and Computer Graphics, vol. 11, no. 1, pages 91–101, 2005.

[Choi et al., 2007] M. G. Choi, S. Y. Woo and H.-S. Ko. Real-Time Simulation of Thin

Shells. Computer Graphics Forum, vol. 26, no. 3, pages 349–354, 2007.

[Chowdhury and Dasgupta, 2003] I. Chowdhury and S. Dasgupta. Computation of

Rayleigh damping coefficients for large systems. The Electronic Journal of

Geotechnical Engineering, vol. 8, no. C, 2003.

[Chui et al., 2007] C. Chui, E. Kobayashi, X. Chen, T. Hisada and I. Sakuma. Trans-

versely isotropic properties of porcine liver tissue: experiments and constitutive

modelling. Medical and Biological Engineering and Computing, vol. 45, no. 1,

pages 99–106, 2007.

[Cirak et al., 2000] F. Cirak, M. Ortiz and P. Schröder. Subdivision Surfaces: A New

Paradigm For Thin-Shell Finite-Element Analysis. International Journal for

Numerical Methods in Engineering, vol. 47, no. 12, pages 2039–2072, 2000.

[Comas et al., 2007] O. Comas, M. Cheng, Z. Taylor and S. Ourselin. A new frontier for

surgery simulation: implementing a GPU physical model with CUDA. In ICT

Centre Conference, Sydney, Australia, 2007.

[Comas et al., 2008] O. Comas, Z. Taylor, J. Allard, S. Ourselin, S. Cotin and J. Passen-

ger. Efficient nonlinear FEM for soft tissue modelling and its GPU implemen-

tation within the open source framework SOFA. In Proceedings of ISBMS 2008,

pages 28–39, London, United Kingdom, 2008.

[Comas et al., 2010a] O. Comas, S. Cotin and C. Duriez. A Shell Model for Real-Time

Simulation of Intra-ocular Implant Deployment. In Proceedings of ISBMS 2010,

pages 160–170, Phoenix, United States, 2010a.

[Comas et al., 2010b] O. Comas, C. Duriez and S. Cotin. Shell Model for Reconstruc-

tion and Real-Time Simulation of Thin Anatomical Structures. In Proceedings

of MICCAI, pages 371–379, Bejing, China, 2010b.

178 References

[Conlan et al., 2008] D. Conlan, J. Passenger, O. Comas and O. Salvado. Implementing

a GPU based Spatial Hash Generator. In ICT Centre Conference, Sydney, Aus-

tralia, 2008.

[Conti et al., 2010] C. A. Conti, E. Votta, A. Della Corte, L. Del Viscovo, C. Bancone,

M. Cotrufo and A. Redaelli. Dynamic finite element analysis of the aortic root

from MRI-derived parameters. Medical Engineering & Physics, vol. 32, no. 2,

pages 212–221, 2010.

[Cooper and Taqueti, 2004] J. B. Cooper and V. R. Taqueti. A brief history of the devel-

opment of mannequin simulators for clinical education and training. Quality

and Safety in Health Care, vol. 13, no. Suppl 1, pages i11–i18, 2004.

[Coquillart, 1990] S. Coquillart. Extended free-form deformation: a sculpturing tool

for 3D geometric modeling. In Proceedings of SIGGRAPH, pages 187–196, ACM,

New York, NY, USA, 1990.

[Coquillart and Jancéne, 1991] S. Coquillart and P. Jancéne. Animated free-form de-

formation: an interactive animation technique. In Proceedings of SIGGRAPH,

pages 23–26, ACM, New York, NY, USA, 1991.

[Cotin et al., 1999] S. Cotin, H. Delingette and N. Ayache. Real-time elastic deforma-

tions of soft tissues for surgery simulation. IEEE Transactions On Visualization

and Computer Graphics, vol. 5, no. 1, pages 62–73, 1999.

[Cotin et al., 2000] S. Cotin, H. Delingette and N. Ayache. A hybrid elastic model for

real-time cutting, deformations, and force feedback for surgery training and

simulation. The Visual Computer, vol. 16, no. 8, pages 437–452, 2000.

[Cowper, 1973] G. R. Cowper. Gaussian quadrature formulas for triangles. Interna-

tional Journal for Numerical Methods in Engineering, vol. 7, no. 3, pages 405–

408, 1973.

[De et al., 2001] S. De, J. Kim and M. A. Srinivasan. A meshless numerical technique

for physically based real time medical simulations. In Medicine Meets Virtual

Reality (MMVR), vol. 81, pages 113–118, 2001.

[De Visser et al., 2008] H. De Visser, O. Comas, D. Conlan, S. Ourselin, J. Passenger

and O. Salvado. Deforming a High-Resolution Mesh in Real-Time by Mapping

onto a Low-Resolution Physical Model. In Proceedings of ISBMS 2008, pages

135–146, London, United Kingdom, 2008.

[de Visser et al., 2010] H. de Visser, D. Conlan, O. Comas, M. Cheng, G. Wallis, C. Zu-

panc, J. Passenger and O. Salvado. Surgical Training using the Colonoscopy

Simulation. In ICT Centre Conference, Sydney, Australia, 2010.

References 179

[Debunne et al., 2001] G. Debunne, M. Desbrun, M.-P. Cani and A. H. Barr. Dynamic

real-time deformations using space & time adaptive sampling. In Proceedings

of SIGGRAPH, pages 31–36, ACM, New York, NY, USA, 2001.

[DirectX] DirectX. SDK documentation.

URL http://msdn.microsoft.com/library/ee663275(VS.85).aspx

[Douros and Buxton, 2002] L. Douros and B. Buxton. Three-dimensional surface cur-

vature estimation using quadric surface patches. In Proceedings of Scanning,

2002.

[Eischen et al., 1996] J. W. Eischen, S. Deng and T. G. Clapp. Finite-Element Modeling

and Control of Flexible Fabric Parts. IEEE Comput. Graph. Appl., vol. 16, no. 5,

pages 71–80, 1996.

[Etzmuss et al., 2003] O. Etzmuss, M. Keckeisen and W. Strasser. A Fast Finite Element

Solution for Cloth Modelling. In PG ’03: Proceedings of the 11th Pacific Confer-

ence on Computer Graphics and Applications, page 244, 2003.

[Felippa, 2000] C. A. Felippa. A systematic approach to the element independent coro-

tational dynamics of finite elements. Tech. rep., Department of Aerospace En-

gineering Sciences and Center for Aerospace Structures. University of Col-

orado, 2000.

[Felippa and Haugen, 2005] C. A. Felippa and B. Haugen. A unified formulation of

small-strain corotational finite elements: I. Theory. Computer Methods in Ap-

plied Mechanics and Engineering, vol. 194, no. 21-24, pages 2285–2335, 2005.

[Flanagan and Belytschko, 1981] D. P. Flanagan and T. Belytschko. A uniform strain

hexahedron and quadrilateral with orthogonal hourglass control. Interna-

tional Journal for Numerical Methods in Engineering, vol. 17, no. 5, pages 679–

706, 1981.

[Fung, 1993] Y. C. Fung. Biomechanics: Mechanical Properties of Living Tissues.

Springer, second ed., 1993.

[Georgii and Westermann, 2005] J. Georgii and R. Westermann. Mass-spring systems

on the GPU. Simulation Modelling Practice and Theory, vol. 13, no. 8, pages

693–702, 2005.

[Gibson, 1997] S. F. Gibson. 3D chainmail: a fast algorithm for deforming volumetric

objects. In I3D ’97: Proceedings of the 1997 symposium on Interactive 3D graph-

ics, pages 149–154, ACM, New York, NY, USA, 1997.

http://msdn.microsoft.com/library/ee663275(VS.85).aspx

180 References

[Gourret et al., 1989] J.-P. Gourret, N. M. Thalmann and D. Thalmann. Simulation of

object and human skin formations in a grasping task. SIGGRAPH Comput.

Graph., vol. 23, no. 3, pages 21–30, 1989.

[Grinspun et al., 2003] E. Grinspun, A. N. Hirani, M. Desbrun and P. Schröder. Discrete

shells. In Proceedings of SIGGRAPH, pages 62–67, Eurographics Association,

Aire-la-Ville, Switzerland, Switzerland, 2003, ISBN 1-58113-659-5.

[Hallquist, 2006] J. O. Hallquist. LS-DYNA Theory Manual. Livermore Software Tech-

nology Corporation, Livermore, California, 2006.

[Hammer et al., 2008] P. E. Hammer, D. P. Perrinb, P. J. del Nidob and R. D. Howe.

Image-based mass-spring model of mitral valve closure for surgical planning.

In Proc. of SPIE Medical Imaging, vol. 6918, 2008.

[Hauser et al., 2003] K. K. Hauser, C. Shen and J. F. O’Brien. Interactive Deformation

Using Modal Analysis with Constraints. In Graphics Interface, pages 247–256,

CIPS, Canadian Human-Computer Commnication Society, 2003.

[Hauth and Strasser, 2004] M. Hauth and W. Strasser. Corotational Simulation of De-

formable Solids. Journal of WSCG, pages 137–145, 2004.

[Holzapfel et al., 2000] G. Holzapfel, T. Gasser and R. Ogden. A New Constitutive

Framework for Arterial Wall Mechanics and a Comparative Study of Material

Models. Journal of Elasticity, vol. 61, no. 1, pages 1–48, 2000.

[Holzapfel et al., 2002] G. Holzapfel, M. Stadler and C. Schulze-Bauer. A layer-specific

three-dimensional model for the simulation of balloon angioplasty using mag-

netic resonance imaging and mechanical testing. Annals of Biomedical Engi-

neering, vol. 30, pages 753–767, 2002.

[Holzapfel, 1996] G. A. Holzapfel. On large strain viscoelasticity: continuum formu-

lation and finite element applications to elastomeric structures. International

Journal for Numerical Methods in Engineering, vol. 39, no. 22, pages 3903–

3926, 1996.

[Horton et al., 2006] A. Horton, A. Wittek and K. Miller. Towards Meshless Methods for

Surgical Simulation. 2006.

[Horton et al., 2007] A. Horton, A. Wittek and K. Miller. Subject-specific biomechani-

cal simulation of brain indentation using a meshless method. In Proceedings of

MICCAI, pages 541–548, Springer-Verlag, Berlin, Heidelberg, 2007.

[Horton et al., 2010] A. Horton, A. Wittek, G. R. Joldes and K. Miller. A meshless Total

Lagrangian explicit dynamics algorithm for surgical simulation. International

References 181

Journal for Numerical Methods in Biomedical Engineering, vol. 26, no. 8,

pages 977–998, 2010.

[Hughes, 2000] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic

Finite Element Analysis. Dover Publications, 2000.

[Hutchinson et al., 1996] D. Hutchinson, M. Preston and T. Hewitt. Adaptive refine-

ment for mass/spring simulations. In Proceedings of the Eurographics workshop

on Computer animation and simulation ’96, pages 31–45, Springer-Verlag New

York, Inc., New York, NY, USA, 1996.

[James and Pai, 1999] D. L. James and D. K. Pai. ArtDefo: accurate real time deformable

objects. In Proceedings of SIGGRAPH, pages 65–72, ACM Press/Addison-Wesley

Publishing Co., New York, NY, USA, 1999.

[James and Pai, 2002] D. L. James and D. K. Pai. DyRT: dynamic response textures for

real time deformation simulation with graphics hardware. In Proceedings of

SIGGRAPH, pages 582–585, ACM, New York, NY, USA, 2002.

[Ji et al., 2010] W. Ji, A. M. Waas and Z. P. Bazant. Errors Caused by Non-Work-

Conjugate Stress and Strain Measures and Necessary Corrections in Finite Ele-

ment Programs. Journal of Applied Mechanics, vol. 77, no. 4, pages 044,504–5,

2010.

[Keeve et al., 1998] E. Keeve, S. Girod, R. Kikinis and B. Girod. Deformable Modeling

of Facial Tissue for Craniofacial Surgery Simulation. Computer Aided Surgery,

vol. 3, pages 3–228, 1998.

[Kerdok et al., 2006] A. E. Kerdok, M. P. Ottensmeyer and R. D. Howe. Effects of perfu-

sion on the viscoelastic characteristics of liver. Journal of Biomechanics, vol. 39,

no. 12, pages 2221–2231, 2006.

[Klein et al., 1996] R. Klein, G. Liebich and W. Straßer. Mesh Reduction with Error Con-

trol. In Visualization 96. ACM, pages 311–318, 1996.

[Kohn et al., 2000] L. T. Kohn, J. M. Corrigan and M. S. Donaldson. To Err Is Human:

Building a Safer Health System. Tech. rep., Committee on Quality of Health

Care in America, Institute of Medicine, 2000.

[Kolb et al., 1995] A. Kolb, H. Pottmann and H. peter Seidel. Fair Surface Reconstruc-

tion Using Quadratic Functionals. Computer Graphics Forum, vol. 14, no. 3,

pages 469–479, 1995.

[Lai et al., 1996] W. Lai, D. Rubin and E. Krempl. Introduction to Continuum Mechan-

ics. Butterworth-Heinemann, third ed., 1996.

182 References

[Lau and Lo, 1996] T. S. Lau and S. H. Lo. Finite element mesh generation over ana-

lytical curved surfaces. Computers & Structures, vol. 59, no. 2, pages 301–309,

1996.

[Lautrup, 2005] B. Lautrup. Physics of continuous matter: exotic and everyday phe-

nomena in the macroscopic world. Institute of Physics Publishing, 2005.

[Lee, 2010] B. Lee. Physically Based Modelling for Topology Modification and Defor-

mation in Surgical Simulation. Ph.D. thesis, University of Sydney, 2010.

[Leon et al., 2010] C. A. D. Leon, S. Eliuk and H. T. Gomez. Simulating soft tissues using

a GPU approach of the mass-spring model. Virtual Reality Conference (VR),

2010 IEEE, pages 261–262, 2010.

[Lim et al., 2005] K. Lim, J. Yeo and C. Duran. Three-dimensional asymmetrical model-

ing of the mitral valve: a finite element study with dynamic boundaries. J Heart

Valve Dis., vol. 14, no. 3, pages 386–392, 2005.

[Lim and De, 2004] Y. J. Lim and S. De. On the use of meshfree methods and a geometry

based surgical cutting algorithm in multimodal medical simulations. Proceed-

ings of the International Symposium on Haptic Interfaces for Virtual Environ-

ment and Teleoperator Systems (HAPTICS ’04), pages 295–301, 2004.

[Liu and Gu, 2005] G. Liu and Y. Gu. An Introduction to Meshfree Methods and Their

Programming. Springer, 2005.

[Liu and Quek, 2003] G. Liu and S. S. Quek. Finite Element Method: A Practical Course.

Butterworth-Heinemann, 2003.

[Lloyd et al., 2007] B. A. Lloyd, G. Székely and M. Harders. Identification of spring pa-

rameters for deformable object simulation. IEEE Transactions on Vizualisation

and Computer Graphics, pages 1081–1094, 2007.

[Lo, 1985] S. Lo. A new mesh generation scheme for arbitrary planar domains. Inter-

national Journal for Numerical Methods in Engineering, vol. 21, no. 8, pages

1403–1426, 1985.

[Lorensen and Cline, 1987] W. E. Lorensen and H. E. Cline. Marching cubes: A high

resolution 3D surface construction algorithm. Proceedings of SIGGRAPH,

vol. 21, no. 4, pages 163–169, 1987.

[Lubliner, 2006] J. Lubliner. Plasticity Theory. MacMillan Publishing Company, re-

vised ed., 2006.

[MacCracken and Joy, 1996] R. MacCracken and K. I. Joy. Free-form deformations with

lattices of arbitrary topology. In Proceedings of SIGGRAPH, pages 181–188,

ACM, New York, NY, USA, 1996.

References 183

[MacDonald, 2007] B. J. MacDonald. Practical Stress Analysis with Finite Elements.

Glasnevin Publishing, first ed., 2007.

[Magjarevic et al., 2009] R. Magjarevic, J. H. Nagel, J. Sloten, P. Verdonck, M. Nyssen,

J. Haueisen, O. Jarrousse, T. Fritz and O. Dösssel. A modified Mass-Spring sys-

tem for myocardial mechanics modeling. In 4th European Conference of the In-

ternational Federation for Medical and Biological Engineering, vol. 22, pages

1943–1946, Springer Berlin Heidelberg, 2009.

[Mark et al., 2003] W. R. Mark, R. S. Glanville, K. Akeley and M. J. Kilgard. Cg: a system

for programming graphics hardware in a C-like language. ACM Trans. Graph.,

vol. 22, no. 3, pages 896–907, 2003.

[Melvin et al., 1973] J. Melvin, R. Stalnaker and V. Roberts. Impact injury mechanisms

in abdominal organs. SAE Transactions, , no. 730968, pages 115–126, 1973.

[Meshlab] Meshlab. Visual Computing Lab ISTI - CNR.

URL http://meshlab.sourceforge.net/

[Miller, 1988] G. S. P. Miller. The motion dynamics of snakes and worms. In Proceedings

of SIGGRAPH, pages 169–173, ACM, New York, NY, USA, 1988.

[Miller, 2000] K. Miller. Constitutive modelling of abdominal organs. Journal of

Biomechanics, vol. 33, no. 3, pages 367 – 373, 2000.

[Miller and Chinzei, 1997] K. Miller and K. Chinzei. Constitutive modelling of brain

tissue: Experiment and theory. Journal of Biomechanics, vol. 30, no. 11-12,

pages 1115 – 1121, 1997.

[Miller and Chinzei, 2002] K. Miller and K. Chinzei. Mechanical properties of brain tis-

sue in tension. Journal of Biomechanics, vol. 35, no. 4, pages 483–490, 2002.

[Miller et al., 2007] K. Miller, G. Joldes, D. Lance and A. Wittek. Total Lagrangian ex-

plicit dynamics finite element algorithm for computing soft tissue deformation.

Communications in Numerical Methods in Engineering, vol. 23, no. 2, pages

121–134, 2007.

[Misra et al., 2007] S. Misra, A. M. Okamura and K. T. Ramesh. Force Feedback is No-

ticeably Different for Linear versus Nonlinear Elastic Tissue Models. In Proceed-

ings of the Second Joint EuroHaptics Conference and Symposium on Haptic In-

terfaces for Virtual Environment and Teleoperator Systems (WHC ’07), pages

519–524, IEEE Computer Society, Washington, DC, USA, 2007.

[Modat et al., 2010] M. Modat, Z. Taylor, G. Ridgway, J. Barnes, E. Wild, D. Hawkes,

N. Fox and S. Ourselin. Nonlinear Elastic Spline Registration: Evaluation with

http://meshlab.sourceforge.net/

184 References

Longitudinal Huntington’s Disease Data. In Proceedings of MICCAI, vol. 6204,

pages 128–139, Springer Berlin / Heidelberg, 2010.

[Mor and Kanade, 2000] A. B. Mor and T. Kanade. Modifying Soft Tissue Models: Pro-

gressive Cutting with Minimal New Element Creation. In Proceedings of MIC-

CAI, pages 598–607, Springer-Verlag, London, UK, 2000.

[Mosegaard and Sørensen, 2005] J. Mosegaard and T. Sørensen. GPU accelerated sur-

gical simulators for Complex Morphology. In IEEE Virtual Reality, pages 147–

153, 2005.

[Mosegaard et al., 2005] J. Mosegaard, P. Herborg and T. Sørensen. A GPU accelerated

spring-mass system for surgical simulation. In 13th Medicine Meets Virtual Re-

ality. Studies in Health Technology and Informatics, vol. 111, pages 342–348,

2005.

[Müller and Gross, 2004] M. Müller and M. Gross. Interactive Virtual Materials. In

Proceedings of Graphics Interface (GI 2004), pages 239–246, 2004.

[Müller et al., 2002] M. Müller, J. Dorsey, L. McMillan, R. Jagnow and B. Cutler. Stable

real-time deformations. In Proceedings of SIGGRAPH, pages 49–54, ACM, New

York, NY, USA, 2002.

[Müller et al., 2005] M. Müller, B. Heidelberger, M. Teschner and M. Gross. Meshless

deformations based on shape matching. ACM Trans. Graph., vol. 24, no. 3,

pages 471–478, 2005.

[Nava et al., 2008] A. Nava, E. Mazza, M. Furrer, P. Villiger and W. H. Reinhart. In vivo

mechanical characterization of human liver. Medical Image Analysis, vol. 12,

no. 2, pages 203–216, 2008.

[Ng-Thow-Hing and Fiume, 1997] V. Ng-Thow-Hing and E. Fiume. Interactive display

and animation of B-spline solids as muscle shape primitives. In Eurographics

Workshop on Animation and Simulation, pages 81–97, 1997.

[Nienhuys and van der Stappen, 2001] H.-W. Nienhuys and A. F. van der Stappen. A

Surgery Simulation Supporting Cuts and Finite Element Deformation. In Pro-

ceedings of MICCAI, vol. 2208, pages 145–152, Springer Berlin / Heidelberg,

2001.

[OpenGL Architecture Review Board et al., 2005] OpenGL Architecture Review Board,

D. Shreiner, M. Woo, J. Neider and T. Davis. OpenGL Programming Guide:

The Official Guide to Learning OpenGL. Addison-Wesley Professional, fith ed.,

2005.

References 185

[Oshita and Makinouchi, 2001] M. Oshita and A. Makinouchi. Real-time cloth simu-

lation with sparse particles and curved faces. Proceedings of the Fourteenth

Conference on Computer Animation, pages 220–227, 2001.

[Owens et al., 2007] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn and T. J. Purcell. A Survey of General-Purpose Computation on Graphics

Hardware. Computer Graphics Forum, vol. 26, no. 1, pages 80–113, 2007.

[Pabst et al., 2008] S. Pabst, S. Krzywinski, A. Schenk and B. Thomaszewski. Seams and

Bending in Cloth Simulation. In Workshop in Virtual Reality Interactions and

Physical Simulation VRIPHYS, 2008.

[Passenger et al., 2008] J. Passenger, H. de Visser, O. Comas, C. Russ, S. Riek, M. Wat-

son and O. Salvado. GPU programming - New frontiers for surgical simulation.

In In Proceedings of SimTect 2008, Brisbane, Australia, 2008.

[Passenger et al., 2009] J. Passenger, D. Conlan, H. de Visser, M. Cheng, O. Comas,

J. Borda, C. Russ, J. Taylor and O. Salvado. Harnessing the GPU for Surgical

Training and Preoperative Planning. In NVIDIA GPU Developers Summit 2009,

page 33, San Jose, California, USA, 2009.

[Pathmanathan et al., 2004] P. Pathmanathan, D. Gavaghan, J. Whiteley, S. M. Brady,

M. Nash, P. Nielsen and V. Rajagopal. Predicting Tumour Location by Simu-

lating Large Deformations of the Breast Using a 3D Finite Element Model and

Nonlinear Elasticity. pages 217–224, Springer Berlin / Heidelberg, 2004.

[Pentland and Williams, 1989] A. Pentland and J. Williams. Good vibrations: modal

dynamics for graphics and animation. Proceedings of SIGGRAPH, vol. 23,

no. 3, pages 207–214, 1989.

[Picinbono et al., 2003] G. Picinbono, H. Delingette and N. Ayache. Non-linear

anisotropic elasticity for real-time surgery simulation. Graph. Models, vol. 65,

no. 5, pages 305–321, 2003.

[Pieper et al., 1992] S. Pieper, J. Rosen and D. Zeltzer. Interactive graphics for plastic

surgery: a task-level analysis and implementation. In I3D ’92: Proceedings of

the 1992 symposium on Interactive 3D graphics, pages 127–134, ACM, New

York, NY, USA, 1992.

[Poon and Ahmad, 1998] H. Poon and M. F. Ahmad. A material point time integra-

tion procedure for anisotropic, thermo rheologically simple, viscoelastic solids.

Computational Mechanics, vol. 21, no. 3, pages 236–242, 1998.

[Pouliquen et al., 2005] M. Pouliquen, C. Duriez, C. Andriot, A. Bernard, L. Chodorge

and F. Gosselin. Real-Time Finite Element Finger Pinch Grasp Simulation. In

186 References

Proceedings of the First Joint Eurohaptics Conference and Symposium on Hap-

tic Interfaces for Virtual Environment and Teleoperator Systems (WHC ’05),

pages 323–328, IEEE Computer Society, Washington, DC, USA, 2005.

[Prange and Margulies, 2002] M. T. Prange and S. S. Margulies. Regional, Directional,

and Age-Dependent Properties of the Brain Undergoing Large Deformation.

Journal of Biomechanical Engineering, vol. 124, no. 2, pages 244–252, 2002.

[Press et al., 1992] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Nu-

merical Recipes in FORTRAN 77: The Art of Scientific Computing. Cambridge

University Press, second ed., 1992.

[Press et al., 2002] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Nu-

merical Recipes in C++: The Art of Scientific Computing. Cambridge University

Press, second ed., 2002.

[Provot, 1995] X. Provot. Deformation Constraints in a Mass-Spring Model to Describe

Rigid Cloth Behavior. In Graphics Interface ’95, pages 147–154, 1995.

[Przemieniecki, 1985] J. Przemieniecki. Theory of matrix structural analysis. McGraw-

Hill, 1985.

[Rasmusson et al., 2008] A. Rasmusson, J. Mosegaard and T. Sørensen. Exploring Par-

allel Algorithms for Volumetric Mass-Spring-Damper Models in CUDA. In

Biomedical Simulation, vol. 5104, pages 49–58, Springer Berlin / Heidelberg,

2008.

[Reddy, 1993] J. N. Reddy. Introduction to the Finite Element Method. McGraw-Hill,

second ed., 1993.

[Reddy, 2007] J. N. Reddy. An Introduction to Continuum Mechanics. Cambridge Uni-

versity Press, 2007.

[Rivers and James, 2007] A. R. Rivers and D. L. James. FastLSM: fast lattice shape

matching for robust real-time deformation. In Proceedings of SIGGRAPH,

page 82, ACM, New York, NY, USA, 2007.

[Rumpf and Strzodka, 2001] M. Rumpf and R. Strzodka. Using Graphics Cards for

Quantized FEM Computations. In Proceedings of IASTED Visualization, Imag-

ing and Image Processing Conference (VIIP’01), pages 193–202, 2001.

[Sagar et al., 1994] M. A. Sagar, D. Bullivant, G. D. Mallinson and P. J. Hunter. A virtual

environment and model of the eye for surgical simulation. In Proceedings of

SIGGRAPH, pages 205–212, ACM, New York, NY, USA, 1994.

References 187

[San Vicente et al., 2009] G. San Vicente, C. Buchart, D. Borro and J. Celigüeta. Max-

illofacial surgery simulation using a mass-spring model derived from contin-

uum and the scaled displacement method. International journal of computer

assisted radiology and surgery, vol. 4, no. 1, pages 89–98, 2009.

[Saupin et al., 2007] G. Saupin, C. Duriez and L. Grisoni. Embedded Multigrid Ap-

proach for Real-Time Volumetric Deformation. In International Symposium

on Visual Computing, vol. 4841, pages 149–159, Springer Berlin / Heidelberg,

2007.

[Schein and Elber, 2004] S. Schein and G. Elber. Discontinuous Free Form Deforma-

tions. In PG ’04: Proceedings of the Computer Graphics and Applications, 12th

Pacific Conference, pages 227–236, IEEE Computer Society, Washington, DC,

USA, 2004.

[Schill et al., 1998] M. A. Schill, S. F. F. Gibson, H.-J. Bender and R. Männer. Biome-

chanical Simulation of the Vitreous Humor in the Eye Using and Enhanced

ChainMail Algorithm. In Proceedings of MICCAI, pages 679–687, Springer-

Verlag, London, UK, 1998.

[Sedef et al., 2006] M. Sedef, E. Samur and C. Basdogan. Real-Time Finite-Element

Simulation of Linear Viscoelastic Tissue Behavior Based on Experimental Data.

IEEE Comput. Graph. Appl., vol. 26, no. 6, pages 58–68, 2006, ISSN 0272-1716.

[Sederberg and Parry, 1986] T. W. Sederberg and S. R. Parry. Free-form deformation of

solid geometric models. Proceedings of SIGGRAPH, vol. 20, no. 4, pages 151–

160, 1986.

[Serby et al., 2001] D. Serby, M. Harders and G. Székely. A New Approach to Cut-

ting into Finite Element Models. In Proceedings of MICCAI, pages 425–433,

Springer-Verlag, London, UK, 2001.

[Shewchuk, 1994] J. R. Shewchuk. An Introduction to the Conjugate Gradient Method

Without the Agonizing Pain. Tech. rep., Shool of Computer Science - Carnegie

Mellon University, 1994.

[Shinya, 2005] M. Shinya. Theories for Mass-Spring Simulation in Computer Graphics:

Stability, Costs and Improvements. IEICE - Trans. Inf. Syst., vol. E88-D, no. 4,

pages 767–774, 2005.

[Sørensen and Mosegaard, 2006] T. Sørensen and J. Mosegaard. An Introduction to

GPU Accelerated Surgical Simulation. Biomedical Simulation, pages 93–104,

2006.

[Spencer, 1980] A. Spencer. Continuum Mechanics. Longman Group Limited, 1980.

188 References

[Steinemann et al., 2008] D. Steinemann, M. A. Otaduy and M. Gross. Fast adaptive

shape matching deformations. In SCA ’08: Proceedings of the 2008 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, pages 87–94, Eu-

rographics Association, 2008.

[Stiles and Alexander, 1972] R. N. Stiles and D. M. Alexander. A viscoelastic-mass

model for muscle. Mathematical Biosciences, vol. 14, no. 3-4, pages 343–354,

1972.

[Székely et al., 2000] G. Székely, C. Brechbühler, J. Dual, R. Enzler, J. Hug, R. Hut-

ter, N. Ironmonger, M. Kauer, V. Meier, P. Niederer, A. Rhomberg, P. Schmid,

G. Schweitzer, M. Thaler, V. Vuskovic, G. Tröster, U. Haller and M. Bajka. Vir-

tual Reality-Based Simulation of Endoscopic Surgery. Presence: Teleoper. Vir-

tual Environ., vol. 9, no. 3, pages 310–333, 2000.

[Talwalkar et al., 2007] J. Talwalkar, M. Yin, J. Fidler, S. Sanderson, P. Kamath and

R. Ehman. Magnetic resonance imaging of hepatic fibrosis: Emerging clinical

applications. Hepatology, vol. 47, no. 1, 2007.

[Tamura et al., 2005] N. Tamura, N. Tsumura, T. Nakaguchi and Y. Miyake. Spring-

bead animation of viscoelastic materials. In Proceedings of SIGGRAPH, page 64,

ACM, New York, NY, USA, 2005.

[Tang and Medioni, 1999] C.-K. Tang and G. Medioni. Robust Estimation of Curvature

Information from Noisy 3D Data for Shape Description. In Proceedings of IEEE

ICCV, 1999.

[Taylor et al., 2007a] Z. Taylor, M. Cheng and S. Ourselin. Real-Time Nonlinear Finite

Element Analysis for Surgical Simulation Using Graphics Processing Units. Pro-

ceedings of MICCAI, pages 701–708, 2007a.

[Taylor et al., 2008a] Z. Taylor, O. Comas, M. Cheng, J. Passenger, D. Hawkes, D. Atkin-

son and S. Ourselin. Modelling anisotropic viscoelasticity for real-time soft tis-

sue simulation. In Proceedings of MICCAI, pages 703–710, New York, USA,

2008a.

[Taylor et al., 2009] Z. Taylor, O. Comas, M. Cheng, J. Passenger, D. Hawkes, D. Atkin-

son and S. Ourselin. On modelling of anisotropic viscoelasticity for soft tissue

simulation: Numerical solution and GPU execution. Medical Image Analysis,

vol. 13, no. 2, pages 234–244, 2009.

[Taylor, 2006] Z. A. Taylor. A synopsis of the total Lagrangian explicit dynamic finite

element algorithm. Not published, 2006.

References 189

[Taylor and Hawkes, 2007] Z. A. Taylor and D. J. Hawkes. Efficient large strain vis-

coelastic modelling of soft tissues using explicit dynamic finite element anal-

ysis. Communications in Numerical Methods in Engineering, vol. 00, pages

1–14, 2007.

[Taylor et al., 2007b] Z. A. Taylor, T. B. Kirk and K. Miller. Confocal arthroscopy-based

patient-specific constitutive models of cartilaginous tissues - I: development of

a microstructural model. Computer Methods in Biomechanics and Biomedical

Engineering, vol. 10, no. 4, pages 307–316, 2007b.

[Taylor et al., 2008b] Z. A. Taylor, M. Cheng and S. Ourselin. High-Speed Nonlinear Fi-

nite Element Analysis for Surgical Simulation Using Graphics Processing Units.

IEEE Transactions on Medical Imaging, vol. 27, no. 5, pages 650–663, 2008b.

[Terzopoulos et al., 1987] D. Terzopoulos, J. Platt, A. Barr and K. Fleischert. Elastically

Deformable Models. Computer Graphics, vol. 21, pages 205–214, 1987.

[Terzopoulos et al., 1991] D. Terzopoulos, J. Platt and K. Fleischer. Heating and melt-

ing deformable models. The Journal of Visualization and Computer Animation,

vol. 2, no. 2, pages 68–73, 1991.

[Thomaszewski et al., 2006] B. Thomaszewski, M. Wacker and W. Strasser. A consis-

tent bending model for cloth simulation with corotational subdivision finite

elements. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 107–116, Eurographics Associa-

tion, Aire-la-Ville, Switzerland, Switzerland, 2006, ISBN 3-905673-34-7.

[Truesdell and Toupin, 1960] C. Truesdell and R. Toupin. The classical field theories.

Flügge’s Handbuch der Physik, vol. 3, no. 1, pages 226–793, 1960.

[Volino and Magnenat-Thalmann, 1997] P. Volino and N. Magnenat-Thalmann. De-

veloping Simulation Techniques for an Interactive Clothing System. In VSMM

’97: Proceedings of the 1997 International Conference on Virtual Systems and

MultiMedia, page 109, IEEE Computer Society, Washington, DC, USA, 1997.

[Volino and Magnenat-Thalmann, 2006] P. Volino and N. Magnenat-Thalmann. Sim-

ple linear bending stiffness in particle systems. In SCA ’06: Proceedings of

the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation,

pages 101–105, Eurographics Association, Aire-la-Ville, Switzerland, Switzer-

land, 2006, ISBN 3-905673-34-7.

[Wang et al., 2007] F. Wang, L. Duratti, E. Samur, U. Spaelter and H. Bleuler. A

Computer-Based Real-Time Simulation of Interventional Radiology. In The

29th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (IEEE-EMBS), pages 1742–1745, 2007.

190 References

[Wempner, 1969] G. Wempner. Finite elements, finite rotations and small strains of

flexible shells. International Journal of Solids and Structures, vol. 5, no. 2, pages

117–153, 1969.

[Wicke et al., 2005] M. Wicke, D. Steinemann and M. Gross. Efficient Animation of

Point-Sampled Thin Shells. In Eurographics, vol. 24, 2005.

[Wu and Heng, 2004] W. Wu and P. A. Heng. A hybrid condensed finite element model

with GPU acceleration for interactive 3D soft tissue cutting. Comput. Animat.

Virtual Worlds, vol. 15, no. 3-4, pages 219–227, 2004.

[Wu et al., 2001] X. Wu, M. S. Downes, T. Goktekin and F. Tendick. Adaptive Nonlinear

Finite Elements for Deformable Body Simulation Using Dynamic Progressive

Meshes. In Computer Graphics Forum, pages 349–358, 2001.

[Yan et al., 2007] Z. Yan, L. Gu, P. Huang, S. Lv, X. Yu and X. Kong. Soft tissue defor-

mation simulation in virtual surgery using nonlinear finite element method. In

The 29th Annual International Conference of the IEEE EMBS, pages 3642–3645,

2007.

[Zhong et al., 2005] H. Zhong, M. P. Wachowiak and T. Peters. A real time finite ele-

ment based tissue simulation method incorporating nonlinear elastic behavior.

Comput Methods Biomech Biomed Engin., vol. 8, no. 3, pages 177–189, 2005.

[Zhongnian, 1986] X. Zhongnian. A simple and efficient triangular finite element for

plate bending. Acta Mechanica Sinica, vol. 2, no. 2, pages 185–192, 1986.

[Zhu et al., 2010] B. Zhu, L. Gu, X. Peng and Z. Zhou. A Point-Based Simulation Frame-

work for Minimally Invasive Surgery, vol. 5958, pages 130–138. Springer Berlin

/ Heidelberg, 2010.

[Zienkiewicz and Phillips, 1971] O. C. Zienkiewicz and D. V. Phillips. An automatic

mesh generation scheme for plane and curved surfaces by isoparametric co-

ordinates. International Journal for Numerical Methods in Engineering, vol. 3,

no. 4, pages 519–528, 1971.

	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction to medical simulation
	General context
	Challenges in computer-based simulation
	Our contributions

	Background in continuum mechanics for soft-tissue modelling
	Introduction
	Description of motion
	Analysis of deformation
	Strain measures
	Stress
	Constitutive equations
	Tissue characterisation

	A practical approach of the finite element method
	Introduction
	Discretisation
	Derivation of element equations
	Assembly of element equations
	Solution of global problem

	Solid structure modelling
	Modelling the deformation of solid objects in real-time
	Introduction: the problem
	Techniques based on geometry
	Techniques relying on physics
	Techniques based on continuum mechanics
	Conclusion

	The total Lagrangian explicit dynamics algorithm
	Description of the TLED algorithm
	Anisotropic and viscoelastic constitutive equations
	Constitutive update procedure for explicit analyses
	Conclusion

	GPU implementation of TLED
	Summary of the TLED formulation
	General-purpose computation on GPU
	Implementation into SOFA
	Results
	Discussion
	Conclusion

	Hollow structure modelling
	Modelling the deformation of hollow objects in real-time
	Introduction: the problem
	Mass-spring models
	Techniques relying on the derivation of a bending energy
	Techniques based on continuum mechanics
	Conclusion

	A co-rotational triangular shell FEM model
	Model description
	Mechanical interactions with the curved surface of shells
	Implementation
	Comparison with an analytical result
	Application to implant deployment simulation in cataract surgery
	Discussion
	Conclusion

	Physics-based reconstruction using shell elements
	Techniques of mesh simplification
	Our method
	Discussion
	Conclusion

	Conclusion
	Conclusion and perspectives
	Summary of contributions
	Discussion
	Perspectives

	The weighted residual method

	References

