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Abstract – The competitiveness of manufacturing companies strongly depends on the productivity of machines 
and production processes. To guarantee a high level of productivity, downtimes occurring due to faults have to 
be kept as short as possible. This necessitates efficient fault detection and isolation (FDI) methods. In this work, 
a model-based FDI method for the widely used class of industrial closed-loop Discrete Event Systems is 
proposed. The considered systems consist of the closed-loop of plant and controller. Based on the comparison of 
observed and modeled system behavior, it is possible to detect and to isolate faults. Unlike most known methods 
for FDI in Discrete Event Systems, this work proposes working with a model of the fault-free behavior rather 
than working fault models. Inspired by the concept of residuals known from FDI in continuous systems, a new 
approach for fault isolation based on fault-free Discrete Event System models is developed. The key of any 
model-based diagnosis method is to have an accurate model of the considered system. Since manual model-
building can be very difficult for large industrial systems, an identification approach for this class of systems is 
introduced. Based on an already existing monolithic identification algorithm, a distributed adaptation is 
developed which allows treating large, concurrent systems. The key of the proposed approach is an automatic 
decomposition of a given closed-loop Discrete Event System using an optimization approach which analyzes 
observed system behavior. The methods developed in this thesis are applied to a mid-sized laboratory system and 
to an industrial winder to show their scalability.  
 
Zusammenfassung – Die Wettbewerbsfähigkeit von Industrieunternehmen hängt maßgeblich von der 
Produktivität der eingesetzten Anlagen und Produktionsprozesse ab. Um ein hohes Maß an Produktivität zu 
garantieren, müssen durch Fehler verursachte Standzeiten so kurz wir möglich gehalten werden. Dazu werden 
effiziente Methoden zur Fehlererkennung und Fehlerisolierung (FDI: fault detection and isolation) benötigt. In 
der vorliegenden Arbeit wurde ein modellbasiertes FDI-Verfahren für die weit verbreitete Klasse 
ereignisdiskreter Closed-Loop Systeme entwickelt. Die betrachteten Systeme bestehen aus dem geschlossenen 
Kreis von Steuerung und Prozess. Durch den systematischen Vergleich von aktuell beobachtetem und durch das 
Systemmodell erwartetem Verhalten können Fehler in Echtzeit erkannt und isoliert werden. Im Unterschied zu 
den meisten aus der Literatur bekannten FDI-Verfahren für Ereignisdiskrete Systeme wird in dieser Arbeit ein 
Modell des fehlerfreien Systemverhaltens an Stelle von Modellen des Fehlerverhaltens verwendet. Angelehnt an 
das von kontinuierlichen Systemen bekannte Fehlerisolierungsprinzip der Residuen wurde ein neuer Ansatz zur 
Fehlerisolierung in Ereignisdiskreten Systemen entwickelt. Der wichtigste Bestandteil von modellbasierten 
Diagnoseverfahren ist ein genaues Systemmodell. Da die Modellbildung „von Hand“ für Systeme im 
industriellen Maßstab meist zu aufwendig und teuer ist, wurde ein Identifikationsverfahren für die betrachtete 
Systemklasse entwickelt. Ausgehend von einem bereits existierenden monolithischen Identifikationsalgorithmus 
wurde ein verteiltes Identifikationsverfahren eingeführt, das für komplexe industrielle Anlagen mit ausgeprägten 
Nebenläufigkeiten geeignet ist. Kern des Verfahrens ist die automatische Dekomposition eines Closed-Loop 
Systems in nebenläufige Teilsysteme. Dies geschieht mit Hilfe eines Optimierungsansatzes, der beobachtetes 
Systemverhalten analysiert und durch Minimierung einer Gütefunktion eine optimale Systemunterteilung 
erreicht. Die in dieser Arbeit entwickelten Methoden wurden sowohl im Labormaßstab, als auch im 
Industriemaßstab erfolgreich getestet.  
 
 
Résumé – La compétitivité des entreprises manufacturières dépend fortement de la productivité des machines et 
des moyens de production. Pour garantir un haut niveau de productivité il est indispensable de minimiser les 
temps d'arrêt dus aux fautes ou dysfonctionnements. Cela nécessite des méthodes efficaces pour détecter et isoler 
les fautes apparues dans un système (FDI). Dans cette thèse, une méthode FDI à base de modèles est proposée. 
La méthode est conçue pour la classe des systèmes à événements discrets industriels composés  d’une boucle 
fermée du contrôleur et du processus. En comparant les comportements observés et attendus par le modèle, il est 
possible de détecter et d’isoler des fautes. A la différence de la plupart des approches  FDI des systèmes à 
événements discrets, une méthode basée sur des modèles du comportement normal au lieu de modèles des 
comportements fautifs est proposée. Inspiré par le concept des résidus bien connu pour le diagnostic des 
systèmes continus, une nouvelle approche pour l’isolation des fautes dans les systèmes à événements discrets a 
été développée. La clé pour l’application des méthodes FDI basées sur des modèles est d’avoir un modèle juste 
du système considéré.  Comme une modélisation manuelle peut être très laborieuse et coûteuse pour des 
systèmes à l’échelle industrielle, une approche d’identification pour les systèmes à événements discrets en 
boucle fermée est développée. Basée sur un algorithme connu pour l’identification des modèles monolithiques, 
une adaptation distribuée est proposée. Elle permet de traiter de grands systèmes comportant un haut degré de 
parallélisme. La base de cette approche est une décomposition du système en sous systèmes. Cette 
décomposition est automatisée en utilisant un algorithme d’optimisation analysant le comportement observé du 
système. Les méthodes conçues dans cette thèse ont été mises en œuvre sur une étude de cas et sur une 
application d’échelle industrielle.  
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1 Introduction

1.1 Motivation

An increasing competition among manufacturing companies leads to growing demands
on productivity of technical systems such as industrial production facilities. An impor-
tant issue to increase productivity is to improve the availability of a system by reducing
downtimes due to faults. Two main strategies are possible to achieve minimal down-
times. The �rst one is to perform preventive maintenance with the aim of changing
critical system components before a malfunctioning due to wear and tear appears. The
limits of this strategy are faults that appear suddenly and are not predictable based
on experience with the concerning hardware. The second maintenance strategy is to
perform necessary repair actions after a failure1 has occurred as quickly and as precisely
as possible to reestablish a running system. For such concerted repair actions it is cru-
cial to gather precise information about faults in the system by using fault diagnosis
techniques.
Various fault diagnosis techniques for technical systems have been proposed by the

scienti�c community. Examples for these approaches are data-driven, knowledge-based
and model-based diagnosis methods. In this work, the class of model-based approaches
is focused in particular. A method yielding a model-based diagnosis technique for a
widely used class of closed-loop Discrete Event Systems (DES) is proposed. The con-
sidered systems consist of a closed-loop of controller and plant as depicted in �gure 1.1.
The plant represents the physical facilities of the system like conveyors, cylinders or
valves as well as products treated in the system. In the controller an algorithm is ex-
ecuted implementing a control strategy. The controller uses sensor information given
by its input signals to determine appropriate output signals to control the actuators of
the plant. In the considered class of systems, the signals exchanged between plant and
controller are discrete with only two possible values (binary coding). During a running
system evolution like a production cycle it is possible to get information of the system
state by analyzing these signals. Industrial closed-loop DES typically have many input
and output signals which lead to a signi�cant complexity when analyzing the system
behavior.
In the case of model-based diagnosis, the information gathered by capturing the

exchanged signals is used to compare the current system evolution with a modeled
behavior. Based on the comparison of expected (modeled) and observed behavior it is
possible to detect faults and to determine the necessary information to start concerted
repair actions. Model-based diagnosis approaches can be divided in two classes. The
�rst class uses models containing the fault-free behavior as well as the behavior in

1A de�nition to distinguish between the notions fault and failure will be given in section 2.3
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1 Introduction

Figure 1.1: Industrial closed-loop Discrete Event System

the case of given faults. If a faulty behavior is observed, it is checked which fault
has to be assumed in the model such that it can reproduce the observation. The
second class works with models only representing the fault-free system behavior. Using
this class, fault detection is based on the assumption that the fault-free model cannot
reproduce an observed faulty behavior. If the model cannot reproduce the observation,
a fault is detected. The advantage of the second class of approaches is that it is not
limited to faults that have been anticipated in the underlying model. The diagnosis
approach presented in this work belongs to this second class of model-based methods.
The approach addresses the two main aspects of implementing a model-based diagnosis
method which are model building and the development of appropriate fault detection
and isolation algorithms.
Before a model-based diagnosis method can be implemented, the model has to be

built. For industrial systems, model building can be very laborious and expensive due
to parameters like system size and complexity. Another general problem when building
a system model is that engineers familiar with a given technical system often do not
have the necessary knowledge of appropriate modeling formalisms to build models for
fault diagnosis. Hence, it is advantageous to automate the model building process as far
as possible in order to facilitate the implementation of model-based diagnosis methods.
A generic way to obtain models is to use identi�cation methods working on a given
data base of observed system evolutions. In this work, identi�cation algorithms are
developed leading to appropriate models for online fault diagnosis. The algorithms
contain well-de�ned degrees of freedom which allow adjusting the identi�ed models for
diagnosis purposes.

1.2 Contributions of the thesis

The thesis contains two main contributions: Identi�cation of fault-free models for
closed-loop DES and fault detection and isolation procedures for diagnosis using the
identi�ed models.

Identi�cation: In (Klein, 2005) an identi�cation method for closed-loop DES is pre-

2



1.3 Organization

sented. It delivers a monolithic automaton modeling the fault-free system behavior.
The identi�cation algorithm works with a free parameter k to balance model size and
model accuracy. The �rst contribution of the present thesis is a reformulation of the
algorithm of (Klein, 2005) to be less restrictive. Guidelines are developed to properly
choose the free identi�cation tuning parameter to get an appropriate model for fault
diagnosis purposes. It is shown that the monolithic approach comes to its limits when
systems with a high degree of concurrency have to be treated like it is often the case
in industrial systems. For these system, using the identi�ed monolithic automaton for
fault diagnosis leads to an unacceptably high number of false alerts. To overcome this
problem, a distributed identi�cation approach is presented that consists of building
partial models for di�erent subsystems. It is explained how the resulting automata net-
work signi�cantly reduces the number of false alerts and how the partial automata can
be synchronized to improve their fault detection capability. Since determining appro-
priate subsystems is a demanding task, an approach to automatically �nd an optimal
partitioning is developed. The partitioning approach uses meta-heuristic optimization
methods to minimize an objective function representing desired characteristics of the
system to be partitioned.

Fault detection and isolation: A literature review revealed that most of the existing
model-based diagnosis approaches for DES are based on models containing fault-free
and faulty system behavior. To use the identi�ed fault-free models for fault diagnosis
of closed-loop DES, a fault isolation strategy has been developed inspired by residuals

known from diagnosis in continuous systems. Generic fault symptoms for the considered
system class are presented and in a �rst step formalized for the monolithic model. Based
on these formalized fault symptoms, it is possible to isolate faults in the considered class
of closed-loop DES. In the case of fault diagnosis with the identi�ed automata network,
it is shown that the distributed models not only reduce the number of false alerts but
also have a poorer fault detection capability than the monolithic automaton. Hence, a
behavioral tolerance is integrated into the identi�ed automata network as an additional
degree of freedom to systematically balance fault detection capability and number of
false alerts. The generic fault symptoms are then formalized for the distributed models
and the additional degree of freedom which allows fault detection and isolation in the
distributed framework.

1.3 Organization

In chapter 2 a literature review on the state of the art in diagnosis and identi�cation
of DES is conducted. After a short introduction to DES theory di�erent diagnosis
techniques are analyzed. Special emphasis is given to model-based diagnosis methods for
DES. Two classes of approaches are presented: Methods working with models containing
the fault-free system behavior as well as the behavior in case of given faults on the
one hand, and approaches working with fault-free models only on the other hand. The
literature review also focuses on the question how to obtain appropriate DES models for
fault diagnosis. Recent developments in the �eld of identi�cation of DES are evaluated.

3



1 Introduction

Since the thesis is based on some important results from (Klein, 2005), Klein's mono-
lithic identi�cation approach is presented in chapter 3. The behavior of the considered
closed-loop DES is de�ned using a formal language. This language is the data base for
the identi�cation of a monolithic automaton. Some improvements of the identi�cation
algorithm are proposed and several guidelines for determining reasonable values for the
free identi�cation parameter are developed. In order to show the limits of the approach,
a case study is treated. The considered laboratory facility is introduced and serves as
reference application in the following chapters. Based on the case study it is shown
that in some cases the monolithic model leads to an unacceptably high number of false
alerts.
In chapter 4 it is shown that the number of false alerts can be signi�cantly reduced by

dividing a system into concurrent subsystems. It is explained how distributed identi�-
cation of partial automata building an automata network can be carried out. A formal
proof shows that under some assumptions the behavior of the identi�ed automata con-
tains the complete fault-free system behavior although it had not (yet) been completely
observed. This leads to a reduction of the number of false alerts. Implications of the
results for real systems are shown by means of the case study introduced in chapter 3.
For the identi�cation of partial automata in chapter 4 it is necessary to determine

appropriate subsystems. In chapter 5 it is �rst shown how such a system partitioning
can be achieved manually. Since the necessary system knowledge for this approach
is not always available, a method to automatically perform an optimal partitioning
based on meta-heuristic optimization algorithms is developed. It is shown how desired
characteristics of the partitioned system can be approximated giving formal objective
functions for the optimization algorithms. An approach to systematically integrate
limited physical system knowledge in the automatic system partitioning is also presented
which allows improving the quality of the resulting partition. Results of the approach
are given for the case study introduced in chapter 3.
Chapter 6 presents fault detection and isolation procedures for the monolithic and

for the distributed models. In the �rst part (section 6.1), the monolithic model is
considered. Probabilistic measures to assess the fault detection capability of a given
model are introduced. Generic fault symptoms are developed and formalized inspired
by residuals known from diagnosis in continuous systems. Using these residuals it is
possible to isolate faults having occurred in the system. Several examples for fault
detection and isolation are treated for the case study from chapter 3. In section 6.2
the results from chapter 6.1 are systematically adapted for the identi�ed distributed
models. For several faults introduced in the case study system the performance of the
method is shown.
In chapter 7 the presented methods are applied to an industrial production facility.

The results show that the combination of identi�cation and diagnosis methods allows
implementing an e�cient fault diagnosis system even for large systems with reasonable
e�orts.
The thesis is concluded by a summary and an outlook in English and extended

summaries in French and German.
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2 Existing diagnosis and identi�cation

approaches for Discrete Event Systems

2.1 Industrial closed-loop Discrete Event Systems

In this work the fault diagnosis and model identi�cation problem in a widely used
class of industrial closed-loop systems is addressed. The considered systems consist of
controller and plant. In the plant, a set of discrete sensors measures certain process
values and delivers them to the controller using the controller inputs. The controller
executes a control algorithm and determines appropriate discrete actuator settings in
the plant. Commands to actuators in the plant are transfered via controller output
signals. Typical sensors and actuators in an industrial closed-loop DES are discrete
position or level sensors as well as pneumatic or hydraulic cylinders and conveyor belts.

Figure 2.1: Industrial closed-loop Discrete Event System

The behavior of such systems can be observed by analyzing the signals exchanged
between controller and plant. In the considered class of systems these signals are binary.
From an external point of view, a change in value of a signal can be considered as an
event. The occurrence and the order of these events are determined by the system
dynamics.

For the implementation of e�cient fault diagnosis methods for the considered system
class it is necessary to have a formal description of the system behavior. In the next
section it will be shown how a sequence of events (changes in value of signals) can be
interpreted as a formal language. It will be explained how the dynamics of a given
system can be represented using two established formalisms: Automata and Petri nets.
After this introduction to DES, several existing diagnosis and identi�cation approaches
are presented and evaluated.
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2.2 Introduction to Discrete Event Systems

2.2.1 Describing a system by its language

Discrete Event Systems (DES) are a widely used formalism to describe the behavior of
systems from di�erent technical domains like manufacturing, transportation or commu-
nication. According to (Cassandras and Lafortune, 2006) a DES is de�ned as follows:

De�nition 1 (Discrete Event System, (Cassandras and Lafortune, 2006)). A Discrete

Event System is a discrete-state, event-driven system, that is, its state evolution depends
entirely on the occurrence of asynchronous discrete events over time.

An example of the evolution of a DES is given in �gure 2.2. It can be seen that the
system is in di�erent states at di�erent times and exhibits an event trace. The events
occur asynchronously and can (but do not have to) lead to a new DES state. The set
of event traces that can be exhibited by a DES is called the system language.

De�nition 2 (Language, (Cassandras and Lafortune, 2006)). A language de�ned over
an event set E is a set of �nite-length strings formed from events in E.

Figure 2.2: Evolution of a DES

According to (Cassandras and Lafortune, 2006) the language generated by a DES can
be considered with di�erent levels of abstraction. The most detailed level is to describe
a system with a stochastic timed language. Determining this language for a given DES
necessitates deep system knowledge like probability distribution functions to express
the time between successive event occurrences. The stochastic timed language contains
all possible event paths of a system with statistical information about them. A system
description with a higher level of abstraction is given by the timed language. Compared
to the stochastic timed language it does not contain any statistical information about
the event traces. The highest level of abstraction is to use the untimed language. It
consists of all possible event traces of a system without any timing information and
thus mainly delivers information about the order of event occurrences. This work is
focused on untimed language to describe a DES behavior. Hence the notion language

always refers to the untimed language unless other meanings are explicitly indicated.
In technical domains the language of a given system is usually not known and must

be approximated using e�cient formalisms. In the next two sections two of these
formalisms are introduced: Automata and Petri Nets. Both are capable of generating
a language and thus can be used to model a given system. These system models can
be constructed manually by considering causal relations of physical components or by
an analysis of observed sample event traces. The second approach is referred to as
identi�cation.
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2.2.2 Automata

Automata are an e�cient formalism to describe the language of a DES. Unlike in system
theory for continuous systems, in the DES domain there does not exist a standard
system description like the state space model using di�erential equations (Franklin et al.,
2001). According to its precise use, many authors propose adapted models for di�erent
purposes (e.g. (Alur, 1999) for veri�cation with timed automata or (Schroder, 2002)
for fault diagnosis with stochastic automata). Nevertheless, the concept of automata
can be shown using the following basic de�nition often referred to in literature:

De�nition 3 (Deterministic automaton, (Cassandras and Lafortune, 2006)). A Deter-
ministic Automaton, denoted by G, is a six-tuple

G = (X,E, f,Γ, x0, Xm)

where X is set of states, E is the �nite set of events associated with G, f : X ×E → X

is the transition function: f(x, e) = y means that there is a transition labeled by event
e from state x to state y; in general f is a partial function on its domain. Γ : X → 2E

is the active event function; Γ(x) is the set of all events e for which f(x, e) is de�ned
and it is called the active event set of G at x. x0 is the initial state and Xm ⊆ X is the
set of marked (or �nal) states.

The language generated by the Deterministic Automaton is built by event traces that
occur when the automaton performs a state trajectory starting in its initial state x0. If
the state trajectory ends in one of the marked states xm ∈ Xm, the trace is part of the
marked language:

De�nition 4 (Languages generated and marked, (Cassandras and Lafortune, 2006)).
The language generated by G = (X,E, f,Γ, x0, Xm) is

L(G) := {s ∈ E∗ : f(x0, s) is de�ned}.

The language marked by G is

Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm}.

E∗ denotes the Kleene-closure of E and is the set of all �nite strings of elements of
E including the empty string ε.
Figure 2.3 shows an automaton modeling a valve. It has the two states V C for valve

closed and V O for valve open. When the automaton is in its initial state V C and then
changes to the state V O the event open_valve is produced. Hence the language of
the system 'valve' can be produced with the automaton performing a state trajectory.
In the automaton in �gure 2.3 state V C is marked. Hence, each marked event trace
s ∈ Lm(G) must end in this state.
A common strategy to model a system is to use di�erent automata Gi to represent

the system components and to combine these component models to a global system
model. In (Cassandras and Lafortune, 2006) di�erent composition approaches like
parallel or synchronous composition to combine several automata are given. Applying
these composition algorithms it is possible to build a complex system model based on
relatively simple component models.
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Figure 2.3: Automaton modeling a valve

2.2.3 Petri Nets

A second important modeling formalism for DES are Petri nets. They are especially
suited for modeling systems with a high degree of concurrency in a compact manner.
Like for automata, there exist many de�nitions of Petri nets and their according evo-
lution rules. An example that is often referred to in literature is the labeled Petri net.
The necessary de�nitions are taken from (Cassandras and Lafortune, 2006):

De�nition 5 (Marked Petri net, (Cassandras and Lafortune, 2006)). A Petri net graph
PN is a weighted bipartite graph

PN = (P, T,A, w, x)

where P is the �nite set of places, T is the �nite set of transitions, A ⊆ (P×T )∪(T×P )
is the set of arcs from places to transitions and from transition to places in the graph,
w : A → {1, 2, 3, . . .} is the weight function on the arcs and x is a marking of the set
of places P . x = [x(p1), x(p2), . . . , x(pn)] ∈ N

n is the row vector associated with x and
contains the number of tokens in each place.

The marked Petri net only represents the structure of the Petri net. In order to create
a language, the Petri net must have well de�ned dynamics which are given in the next
de�nition:

De�nition 6 (Petri net dynamics, (Cassandras and Lafortune, 2006)). The state tran-
sition function f : N×T → N

n of Petri net (P, T,A, w, x) is de�ned for transition tj ∈ T
if and only if

x(pi) ≥ w(pi, tj) for all pi ∈ I(tj)
with I(tj) representing the set of input places of transition tj. If f(x, tj) is de�ned,
then we set x′ = f(x, tj), where

x′(pi) = x(pi)− w(pi, tj) + w(tj, pi), i = 1, . . . , n.

With this de�nition, a transition function is only de�ned if all of the input places
have at least as many tokens as the weight function delivers for the arc connecting the
input place and the transition. In this case, the transition is enabled. If an enabled
transition tj �res, the input place pi loses as many tokens as the weight function value
is of the arc from pi to tj. If pi is an output place of tj, it gains as many tokens as
the weight function value of the arc from tj to pi. After the de�nition of the Petri
net dynamics it is possible to determine a token �ow in the net. In order to create a
language when performing the token �ow according to de�nition 6 it is necessary to
label the transitions in the Petri net with events:
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De�nition 7 (Labeled Petri net, (Cassandras and Lafortune, 2006)). A labeled Petri
net N is an eight-tuple

N = (P, T,A, w,E, ℓ,x0,Xm)

where P , T , A, w are given in de�nition 5, E is the event set for transition labeling,
ℓ : T → E is the transition labeling function, x0 ∈ N

n is the initial state of the net (i.e.
the number of initial tokens in each place) and Xm ⊆ N

n is the set of marked states
(i.e. �nal number of tokens in each place) of the net.

The notion 'marked states' is analogous to the marked states in de�nition 3. The
language generated by the labeled Petri net is built by event traces that occur during a
token �ow starting in the initial setting x0. If the �ow ends in one of the marked states
xm ∈ Xm, the trace is part of the marked language:

De�nition 8 (Languages generated and marked, (Cassandras and Lafortune, 2006)).
The language generated by labeled Petri net N = (P, T,A, w,E, ℓ,x0,Xm) is

L(N) := {ℓ(s) ∈ E∗ : s ∈ T ∗ and f(x0, s) is de�ned}.

The language marked by N is

Lm(N) := {ℓ(s) ∈ L : s ∈ T ∗ and f(x0, s) ∈ Xm}.

An example of a Petri net modeling a queuing system is given in �gure 2.4. For the
Petri net in the �gure, the weight function is assumed to have the value 1 for each
arc. In �gure 2.4 the net is shown in two situations. On the left, the queue is empty
and waits for costumers. On the right, the Petri net is shown after some events have
occurred. The Petri net contains three events a (customer arrives), s (service starts)
and c (service completes and customer departs), three transitions and three places.
Place Q represents the queue, place I represents the condition 'server idle' and place
B a busy server. Event a can occur spontaneously like a customer. When a appears
a token is added to place Q to represent a customer in the queue. If the server is idle
(x(I) = 1) the transition with the label s can �re which adds a token to place B and
removes a token from Q. The marking of the Petri net on the right side of �gure 2.4
can be obtained after the event trace {a, s, a, a, c, s, a} and represents two customers
waiting in the queue and one being treated by the server. It can be seen that the Petri
net compactly expresses the fact that event a can occur at each time concurrently with
the other two events since neither s nor c has an in�uence on a.

Automata and Petri nets are closely related. If the number of reachable Petri net
markings is �nite, an equivalent automaton can be created by a the construction of a
reachability graph (Murata, 1989).
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Figure 2.4: Sample Petri net

2.3 Diagnosis of Discrete Event Systems

2.3.1 Fault diagnosis in industrial systems

Introduction

Industrial systems have the purpose to perform a given production task in a given time
and at given costs. Duration and costs of a production task are an important factor for
the competitiveness of a manufacturing company. Only if both factors are minimized,
the industrial facility reaches a high degree of productivity which has a positive e�ect
on the competitiveness of a company. Duration and costs of a production process are
increased if faults prevent the system from running in a normal mode. Faults often
lead to so called 'downtimes' during which the system is not running and needs to
be repaired. In order to minimize system downtimes, it is necessary to quickly get
precise information about a fault after it occurred. The process of determining this
information is referred to as fault diagnosis and consists of the following three steps
(Chen and Patton, 1998):

• Fault detection is a decision � either that something is wrong or that everything
works under normal conditions

• Fault isolation is the determination of the location of the fault (e.g. which sensor
or actuator is faulty)

• Fault identi�cation determines the size and the type or nature of the fault.

The approaches developed in this work are focused on fault detection and fault iso-
lation. After a fault has been detected and isolated (i.e. the faulty component has
been determined), the fault identi�cation step will be left to the user and his technical
experience. Since in large industrial facilities, faulty components are most often directly
replaced instead of being repaired on-site, the exclusion of fault identi�cation does not
represent an important limitation.
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In the �eld of fault diagnosis for technical systems, the two terms 'fault' and 'failure'
are often used to describe a malfunctioning. In order to distinguish the two notions, two
de�nitions taken from (ANSI/IEEE100, 1997) are given. A component fault is de�ned
as follows:

Fault: A physical condition that causes a device, a component, or an
element to fail to perform in a required manner, for example, a short-circuit,
a broken wire, an intermittent connection.

A fault does not necessarily lead to an unavailable system. In case of fault tolerant sys-
tems it is possible to implement a 'work around' using inherent redundancy to prevent
the system from failing (Blanke et al., 2006). The term to describe that the system
operation is no longer possible is 'failure' (ANSI/IEEE100, 1997):

A failure is the termination of the ability of an item to perform a required
function.

Hence, it is possible to avoid system failures by the early detection of faults.
Diagnosis approaches for technical systems are based on the assumption that a fault

leads to some measurable or visible abnormality in a system parameter. This abnor-
mality is referred to as fault symptom (ANSI/IEEE100, 1997).

Diagnosis principles

Fault diagnosis systems analyze measurements of a considered system and apply spe-
ci�c algorithms to deliver information about faults in the system (Korbicz et al., 2004).
Various methods have been proposed by the scienti�c community and implemented in
industrial applications. Most of the approaches can be classi�ed in three groups (Pa-
padopoulos and McDermid, 2001): Rule-based expert systems, data-driven approaches
and model-based approaches.

Rule-based expert systems use speci�c system knowledge of an expert to perform
the diagnosis task. For this reason it is necessary to formalize the available system
knowledge to make it accessible for diagnosis algorithms. A possible formalization
are IF-THEN-ELSE rules which can be evaluated using forward or backward chaining
of rules (Papadopoulos and McDermid, 2001). In this process one or more rules are
triggered by some deviation of a system parameter. Triggered rules can again trigger
other rules in a chain. If no more rules can be triggered the resulting information
(so-called facts) is supposed to contain the necessary data about the fault. Other
possibilities to formalize the expert knowledge are summarized in (Venkatasubramanian
et al., 2003) and (Isermann, 2006). Expert systems have successfully been applied to
processes that can be characterized by a small number of rules. Larger systems often
lead to inconsistencies and incompleteness among the rules which degrades the quality
of the diagnosis system (Papadopoulos and McDermid, 2001). Another disadvantage
is that expert systems need a considerable e�ort to apply them to new systems due to
their high degree of individuality.

Data-driven approaches for fault diagnosis rely on the analysis of measured system
data and the extraction of special features. An example for this class of approaches
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is trend analysis (Dash and Venkatasubramanian, 2000). For a given set of faults, ex-
pected trends in sensor measurements must be stored in a knowledge data base. (Dash
and Venkatasubramanian, 2000) propose seven general trend types (so called primitives
like a monotonic increasing or a constant signal value) to classify di�erent faults. Dur-
ing online fault diagnosis sensor measurements are analyzed using appropriate �lters
to identify signi�cant trends that correspond to a given setting of primitives. During
this process, fault detection time and robustness of the method must be balanced: The
analyzed measurement must be long enough to avoid misinterpreting 'normal' noise as
a trend but short enough to detect real trends indicating a fault as quickly as required.
Instead of using simple trend types like the primitives of (Dash and Venkatasubrama-
nian, 2000) it is also possible to use more complex data characterizations like patterns
(Papadopoulos and McDermid, 2001).
The third class of diagnosis approaches is model-based. The idea of model-based

methods is to compare the observed system behavior with the expected behavior de-
�ned by a system model. Figure 2.5 shows this principle. A possible fault detection
policy within this framework is to detect if the observed system output and the pre-
dicted system output di�er signi�cantly. Model-based methods can be divided in two
subclasses (Isermann, 2006): Methods using models of the nominal system behavior
only and methods using explicit fault models.

Figure 2.5: Principle of model-based diagnosis

Using models of the nominal system behavior only, it is possible to detect faults if
they lead to system behavior that cannot be reproduced by the model. In the case
of continuous systems, fault diagnosis is often performed using special residuals where
measured and modeled signals are systematically compared (Isermann, 2006). If given
thresholds are exceeded, a fault is detected. Considering the precise evolution of the
residuals it is also often possible to isolate a fault. Another approach for working with
fault-free models is given by (Reiter, 1987) in the �eld of arti�cial intelligence: Like in
the case of continuous systems, a fault is detected if the measured behavior cannot be
reproduced by the model. To determine a set of fault candidates, the minimal set of
components is calculated that has to be considered as faulty to explain the deviation.
Especially if detailed system knowledge about the e�ects of faults on the system be-

havior is available, it is an established approach to explicitly model the faulty behavior.
In this case, online fault diagnosis is performed by comparing measured signals with
di�erent scenarios of the model output. If in one scenario the observation is consistent
with an explicitly modeled faulty behavior, it is possible to precisely identify the ac-
cording fault. Examples for this approach are given in (Sampath et al., 1996) for DES
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or (Isermann, 2006) for continuous systems.
The decision for an appropriate diagnosis principle for a given application may always

be in�uenced by personal preferences of the responsible engineer. However, there are
some important arguments leading to model-based approaches as the preferable prin-
ciple for closed-loop DES. Since industrial closed-loop DES are usually large systems,
the application of rule-based expert systems is not possible. Capturing the necessary
knowledge for diagnosis with consistent rules needs a considerable e�ort which may
often be too expensive. Data-driven approaches mainly rely on the analysis of trends or
patterns in the measured system data. For continuous signals for example, it is possible
to de�ne trends by an analysis of the signal amplitude. In event sequences emitted by
closed-loop DES such an analysis is not possible. Although there exist approaches to
determine event frequency or event patterns (Ghallab, 1996) they are proposed with
a special background: their aim is to process abstract high-level data like the occur-
rence of alarm events in SCADA (Supervisory Control and Data Acquisition) or in
telecommunication systems (Cordier and Dousson, 2000). In these applications there
already exist diagnosis entities creating a huge amount of status or alarm messages
that have to be preprocessed and �ltered before given to a human system operator.
Hence, data-driven approaches are not adapted for working on the external behavior of
closed-loop DES which is de�ned by sensor readings and actuator settings. Model-based

approaches in contrast are suitable to represent the external closed-loop DES behavior
since appropriate modeling formalisms exist (see sections 2.2.2 and 2.2.3). The advan-
tage of model-based methods in DES is their notion of state. Since closed-loop DES
are dynamical systems, the decision if a given event must be considered as a fault often
depends on the current system state. Using DES-models like automata or Petri nets,
the system state can be e�ciently represented which allows tolerating an event in one
system state and detecting a fault upon observation of the same event in another state.
Another advantage of model-based methods is that once the models are obtained (man-
ually or by identi�cation) they can be reused for other purposes like formal veri�cation
(Machado et al., 2006) or re-engineering (Frey and Younis, 2004) to further improve
system dependability.

2.3.2 Model-based diagnosis with fault models

Diagnosis with observer automata

One of the most prominent model-based diagnosis methods for DES is the diagnoser
approach of (Sampath et al., 1996). The aim of this approach is to decide if an unob-

servable event (usually a fault) has occurred only taking into account strings consisting
of observable events. The �rst step of the method is to build models of the system com-
ponents and of the algorithm controlling the system behavior. The models are built
using �nite automata (de�nition 3). During the modeling process the normal behavior
and the behavior in case of given faults must be explicitly included in each component
model. In the approach it is assumed that the event set E of a system can be divided
into observable (Eo) and unobservable events (Eu) leading to E = Eo ∪ Eu.
As an example, a simple system consisting of a valve, a controller and a �ow sensor is
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considered. In the example it is assumed that under normal (i.e. fault-free) conditions
a liquid �ows through a pipe connected to the valve if the valve has been opened by the
controller. Figure 2.6 shows the according automata models of valve and controller. The
normal behavior of the valve is the same as in the example in �gure 2.3. Additionally,
there are two states representing the valve after the occurrence of a fault. The state
SC represents the valve under a 'stuck close' fault and state SO models 'stuck open'.
For the controller no faults are modeled. Controller and valve are synchronized using
the observable events open_v and close_v. The occurrence of a fault in the valve is
represented by one of the unobservable events fail_close or fail_open. In the example
it is assumed that the stuck open fault can only occur when the valve is open whereas
the stuck close fault can occur when the valve is open and closed.

Figure 2.6: Models of valve and controller

After the component models have been built, the global system model can be obtained
by parallel composition. In (Cassandras and Lafortune, 2006) the parallel composition
of two automata G1 and G2 of the type given in de�nition 3 is de�ned as follows:

De�nition 9 (Parallel composition). The parallel composition of G1 and G2 is the
automaton

G1||G2 := Ac(X1 ×X2, E1 ∪ E2, f,Γ1||2, (x01, x02), Xm1 ×Xm2)

where

f((x1, x2), e) :=





(f1(x1, e), f2(x2, e)) if e ∈ Γ1(x1) ∩ Γ2(x2)

(f1(x1, e), x2) if e ∈ Γ1(x1)\E2

(x1, f2(x2, e)) if e ∈ Γ2(x2)\E1

unde�ned otherwise

and thus

Γ1||2(x1, x2) = (Γ1(x1) ∩ Γ2(x2)) ∪ (Γ1(x1)\E2) ∪ (Γ2(x2)\E1)
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The Ac operation delivers the accessible part of the automaton, i.e. only states
reachable by a state trajectory starting in the initial state are part of Ac(G).
After the parallel composition procedure, common events of two automata (events

that belong to E1 and E2) can only occur if the two automata both execute the accord-
ing event simultaneously. Events belonging only to one of the two automata are not
synchronized and can thus occur whenever it is possible.
Figure 2.7 shows the result of the parallel composition of valve and controller au-

tomata from �gure 2.6. Since both automata contain the events open_v and close_v,
in the parallel composition these events can only occur if they are enabled in both of the
underlying automata. The states of the parallel composition in �gure 2.7 also contain
additional information of the �ow sensor in the valve-controller example. This sensor
indicates if there is �ow in the pipe that is connected to the valve. In the approach
of (Sampath et al., 1996) it is necessary to add the sensor information to the parallel
composition states manually.

Figure 2.7: Parallel composition of valve and controller automata

The next step of the (Sampath et al., 1996) approach is to include the sensor infor-
mation into the events of the parallel composition. Each observable event eo is replaced
by < eo, h(x

′) > where h(x′) denotes the sensor value of the following state that is
reached when eo is produced. For each unobservable event at a transition it is checked
if the sensor has the same value in the source state x1 and the target state x2. In
this case, the unobservable event eu between these two states is replaced by < eu >.
If the sensor value di�ers between source and target state, the according transition is
removed and an additional state is added to the automaton. This state can be reached
from the source state x1 producing the unobservable event < eu >. The new state can
be left to the target state x2 using a transition with the newly created observable event
< h(x1) → h(x2) >. On the left side of �gure 2.8 the parallel composition after the
inclusion of the sensor information in the events is shown. The black state has been
added to the automaton following the procedure described above.
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The automaton still contains the unobservable events fail_close and fail_open
modeling the occurrence of a fault. Since the aim of the (Sampath et al., 1996) ap-
proach is to analyze only observable events to �nd faults in the system, a special diag-
noser automaton is derived. The diagnoser depicted on the right side of �gure 2.8 is
constructed according to the procedure given in (Sampath et al., 1996). It only contains
observable events and estimates the current system states. In each of its states, a set
of possible current model states is given which can be reached by the event sequence
observed so far. The according state number is given with a so called 'fault label'. For
each state in the system model in the left side in �gure 2.8, it must be decided if this
state is a normal state (label N) or if it is a fault state (label Fi). In the example,
F1 represents the fault 'valve stuck close' and F2 represents 'valve stuck open'. In the
initial diagnoser state e.g. two model states are given as possible state estimates. Both
states x1 and x4 can be the actual system state if no event has yet been observed: The
�rst possibility is that no event occurred in the system. In this case x1 is the actual
(and initial) state. The other possibility is that the unobservable event < fail_close >
has occurred which led to a transition from x1 to x4.

Figure 2.8: Modi�ed parallel composition and diagnoser automaton

One of the main features of the diagnoser approach of (Sampath et al., 1996) is the
possibility to determine if a given fault is diagnosable with the derived diagnoser. In
(Cassandras and Lafortune, 2006) diagnosability is de�ned as follows:

De�nition 10 (Diagnosability according to (Cassandras and Lafortune, 2006)). Un-
observable event ed is not diagnosable in live language L(G) if there exist two strings
sN and sY in L(G) that satisfy the following conditions: (i) sY contains ed and sN does
not; (ii) sY is of arbitrary long length after ed; and (iii) P (sN) = P (sY ). When no such
pair of strings exists, ed is said to be diagnosable in L(G). P (sN) denotes the projection
of the string sN to the alphabet of observable events Eo. This operation removes each
event in string sN which is not part of Eo.
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The notion 'live language' refers to a language without terminating strings. An au-
tomaton without deadlock states is capable of generating a live language. De�nition 10
means that a fault which leads to the unobservable event ed is only diagnosable if each
observable event sequence following ed can eventually be distinguished from any other
event sequence of the system language. Hence, the observable part of the system behav-
ior after fault ed must be distinguishable from any other string that can occur without
ed. In (Sampath et al., 1996) an algorithm is given to test if a given set of faults is
diagnosable with the derived diagnoser.

The diagnoser approach of (Sampath et al., 1996) has been modi�ed and improved
in many ways. In (Debouk et al., 2000) a decentralized architecture using a set of di-
agnosers to observe a system is proposed. The principle of the architecture is depicted
in �gure 2.9. In the decentralized approach it is assumed that the global system in-
formation is distributed at several sites. At each site only a subset of events can be
observed. In the distributed diagnoser framework, for each site an own diagnoser has
to be constructed according to the procedure explained above. With this approach it is
possible to limit the size of the automata used for online-fault diagnosis since the local
diagnosers are typically much smaller than a diagnoser for the complete system. Since
each local diagnoser has only limited access to the necessary system information, it can
be necessary to implement communication between the diagnosers or communication
with a coordinator.

Figure 2.9: Distributed diagnoser architecture (Debouk et al., 2000)

A second major improvement of the diagnoser approach of (Sampath et al., 1996) is
to include information of event timing into the system models. With this approach it is
possible to �nd faults leading to a changed timed system behavior or to deadlocks. In
(Hashtrudi Zad et al., 2005) a theoretical framework for timed diagnosis is introduced.
The main idea is to represent time by a repeatedly occurring event, the so-called 'tick'.
With this special event it is possible to include e.g. the expected number of 'ticks'
between two regular events in the component models. The enhanced system models
can then be processed like in the approach of (Sampath et al., 1996) to construct the
diagnoser.

A combination of the distributed and the timed approach summarized above is pro-
posed in (Philippot et al., 2007) and (Sayed-Mouchaweh et al., 2008). This approach
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is especially well suited for diagnosis in manufacturing systems which are a special
class of closed-loop discrete event systems introduced in section 2.1. Like in the clas-
sical diagnoser approach from (Sampath et al., 1996) the �rst step of the method is
to build models for the plant components. As a di�erence to the classical diagnoser
approach, only the fault-free system behavior must be modeled. In (Philippot, 2006)
it is explained how so called 'plant elements' can be obtained in a systematic way by
composing models of the actuator and of the sensor behavior of each component. The
component models have to be synchronized with the control algorithm to represent the
desired controlled behavior. In (Philippot et al., 2005) a procedure to extract the rele-
vant part of the control algorithm for each component model from the control algorithm
is proposed. A formal description of the control algorithm must be available in form
of a GRAFCET (GRAphe Fonctionnel de Commande Etapes/Transitions) which is a
special speci�cation language for automation systems (IEC, 2002). After the composi-
tion of component models and the according parts of the control algorithm to automata
models, timing information of the event occurrences must be added. For each state in
the controlled component models, valid time windows for the occurrence of the follow-
ing events must be determined. The result of this step are timed controlled component
models of the normal system behavior. These models are the basis for the construction
of the distributed diagnosers. Following special rules, some faulty behavior is added
to the controlled component models. Based on these enhanced models, diagnosers are
derived which monitor the according component during system operation. In �gure
2.10 a part of such a diagnoser is depicted. Even without a formal de�nition of the
model semantics its working principles can be seen.

Figure 2.10: Part of a diagnoser from (Philippot, 2006)

The depicted diagnoser is derived from a model of a double acting cylinder with
two positions (position sensor a0 for the initial position and position sensor a1 for the
extended position). In each diagnoser state, the controller input/output values of the
cylinder sensors and actuators are given (second line). In state x2 the input/output
setting is 1010 which means that the cylinder is in its initial position (�rst value of
the setting is 1 which means that the according position sensor is activated) and has
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been ordered to extend (third value of the setting is 1 which means that the according
actuator has been started by event ↑A+). The next expected action is the cylinder
leaving its home position which leads to event ↓a0. In the third line of diagnoser state
x2 a time window for the occurrence of ↓a0 after ↑A+ is given. If the maximum waiting
time is exceeded, the diagnoser goes to state x14 which allows concluding that one of the
faults with labels F3 or F4 must have occurred (defect at sensor a0 of actuator defect).
Since for each component an own diagnoser monitors the system, a global coordinator
decides if a fault message must be issued to the system operator.

Diagnosis with state estimation algorithms

A common characteristic of the methods sketched in the former section is their working
principle based on observer automata. For diagnosis it is necessary to have a current
state in the diagnoser during system monitoring since the diagnoser states contain the
state estimation for the considered system. Hence, system and diagnosers must be
started synchronously which can be di�cult. To overcome this problem, in (Neidig
and Lunze, 2006) a state observation algorithm directly working on the system model
is proposed. It starts with a given initial state estimate. If no information about the
system state is available, it is possible to start with the complete state space of the
system model as initial state estimation. The currently measured system data must
be given to the algorithm. Based on the current state estimation it determines which
model states can be reached with the measured system data. These states become the
new estimate. If models containing the fault-free and some faulty system behavior are
to be used, for each model state it is to decide a priori if it represents a faulty or a
fault-free behavior. Based on this information it is possible to decide if the current state
estimate contains faulty states. Hence, the state observation algorithm can be used as
a diagnosis procedure which replaces the diagnoser introduced in the former section.
Since the state estimation algorithm derives the current state estimate 'on the �y', it is
more demanding in terms of calculation time compared to evaluation of the diagnoser
automaton. As the diagnoser can be constructed o�ine, it is possible to perform more
complex calculations for its construction.

Like the classical diagnoser approach, the method using a state estimation algorithm
has been modi�ed and improved in many ways. In (Supavatanakul et al., 2006) it
is shown that this approach can be adapted to timed models. For this purpose the
state estimation algorithm also considers the time intervals between measured system
signals and integrates this information in the state estimation procedure. In (Neidig and
Lunze, 2006) an approach for coordinated diagnosis of automata networks similar to the
distributed approaches for the diagnoser method is proposed. Since in some technical
applications it is possible to give an initial state estimation with probability values for
each state in the estimate, the method has also been extended to stochastic systems
(Neidig and Lunze, 2005). For this adaptation a stochastic model of the considered
system is necessary.

Similar to the diagnoser approach and its derivatives, it is possible to decide if a
given fault can be diagnosed with the available models (diagnosability) using the state
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estimation approach.

Model-based diagnosis with Petri nets

The diagnosis approaches presented so far are working with di�erent forms of automata
to model the considered system. The system is usually modeled by composing compo-
nent models represented by automata. During this process, model building for large
systems often leads to the state space explosion problem which is the result of the
numerous combined component behaviors captured within a composed model. An ap-
proach to avoid the state space explosion problem is to use Petri nets which are able
to represent the system state in a distributed way. An overview of fault diagnosis
approaches using Petri nets is given in (Pia Fanti and Seatzu, 2008). In Petri net
approaches, the models used for system monitoring (Petri net diagnosers) inherit the
structure of the underlying system. Some places or transitions in the system model are
assumed to be non-measurable. For non-measurable places this means that the number
of tokens is not known. Non-measurable transitions on the other hand can �re without
being noticed. The diagnosis problem consists in determining the distribution of tokens
in the Petri net over measurable and non-measurable places (or the according �ring
sequence of non-measurable transitions) only taking into account measurable system
information. Like in the case of diagnosis with automata, Petri net approaches for
monolithic and distributed models exist.

In (Genc and Lafortune, 2003) a Petri net approach assuming that all places of
the system model are non-measurable is proposed. It is based on the class of labeled
Petri nets introduced in de�nition 7 with an event set consisting of observable and
unobservable (fault) events. Events are associated with transitions. The diagnosis
problem is to determine which unobservable events can have occurred based on an
analysis of observable events. The diagnoser Petri net in this approach inherits the
complete structure of the Petri net modeling the system (including the structure of the
faulty behavior). Meanwhile the dynamics of the system are de�ned by observable and
unobservable events, the Petri net diagnoser evolves only based on observable events.
Based on the observable events it determines which states could have been reached in
the system if some unobservable events occurred. Figure 2.11 shows a system model and
its Petri net diagnoser. Transitions with unobservable events are gray. Although the
Petri net diagnoser in the right part of the �gure has the same structure as the system
model on the left, its state is de�ned in a di�erent way. Each diagnoser state represents
several possible system markings each represented by the distribution of another token
symbol. The marking with the •-symbol (p1 and p2) represents the system state like
depicted on the left side of the �gure. Starting from this system state it is possible
that the unobservable event g occurs leading to the marking p3 and p2. This system
state is represented by the �-symbols. If the unobservable event g occurred twice, the
resulting marking is p5 and p2 which is represented by the distribution of the +-symbol
in the diagnoser state. Using this principle, a diagnoser Petri net state contains each
possible system state that is reachable by the emitted series of observable events and
arbitrary occurrences of unobservable events. The Petri net diagnoser can be calculated
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o�ine. If the underlying Petri net model is very large and complex, the calculation of
the diagnoser leads to the state space explosion problem since each possible state of the
underlying Petri net must be enumerated. Like in the case of automaton diagnosers, this
problem is addressed using a distributed approach with communicating Petri diagnosers
for di�erent system components (Genc and Lafortune, 2007).

Figure 2.11: Petri net diagnoser according to (Genc and Lafortune, 2003)

The calculation of the Petri net diagnosers can result in very large models with
considerable memory demands which can be an obstacle for online application. Another
drawback common to the diagnoser approach using observer automata is that Petri net
diagnoser and system must be started synchronously to assure an accurate initial state
estimation. Instead of the o�ine calculation of the Petri net diagnoser, in (Dotoli
et al., 2009) it is proposed to determine the possible marking online solving an integer
linear programming problem (ILP). The ILP is formulated using constraints for �ring
sequences in the given net structure that must be ful�lled to reproduce the online
observation with the model. These constraints are formulated with matrix equations
using e.g. reformulations of the state transition equation x′ = f(x, tj) (see de�nition 6
of the Petri net dynamics). For each fault considered in the model an ILP has to be
solved maximizing the occurrence of the concerning fault event under the constraint that
the trajectory is valid according to the Petri net structure and dynamics and produces
the observed event sequences. If the ILP admits a solution > 0 for a given fault, the
occurrence of this fault is a possible explanation for the observed event sequence: a
�ring sequence of observable and unobservable events exists reproducing the observed
sequence and containing the considered fault. If non of the ILPs belonging to the
faults included in the Petri net model leads to a solution > 0, it is concluded that
the behavior is normal. The approach of (Dotoli et al., 2009) reduces the amount of
necessary memory to store the diagnoser model at cost of increased calculation time.
Since for solving ILPs there does not exist a polynomial algorithm, the model structure
has to keep to some constraints (like representing an acyclic state machine) to guarantee
that the ILPs can be solved fast enough to be applied online. However, for large systems
this approach does not admit solutions in a short time such that it could be applied
online.
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2.3.3 Model-based diagnosis with fault-free models

After the presentation of the major works on diagnosis with fault models for DES, in
this chapter methods on diagnosis with fault-free models are investigated. In (Reiter,
1987) a very general theory for diagnosis with a fault-free system description is given.
The method is situated in the �eld of Arti�cial Intelligence (AI) and is working on an
abstract system description which can be given in di�erent kinds of logic. A system is
described as set of components interacting according to a system description:

De�nition 11 (System (Reiter, 1987)). A system is a pair (SD,COMPONENTS)

where:

1. SD, the system description, is a set of �rst order sentences;

2. COMPONENTS, the system components, is a �nite set of constants.

The system description can be given in any suitable logic like �rst-order, dynamic
or temporal logic. For fault detection it is checked if the current system observation
OBS is consistent with the system description SD and with the assumption that each
component is working normally. To denote that a component ci is not abnormal (AB)
the formulation AB(ci)|ci ∈ COMPONENTS is used. Hence, it is checked if

SD ∪ (AB(c1), . . . , AB(cn)) ∪OBS

is consistent. If this consistency check fails, a fault is detected. This procedure is
similar to the comparison of observed and modeled behavior in model-based diagnosis
approaches. In the approach of (Reiter, 1987), diagnosis is considered as a conjecture

that certain system components are faulty and some are normal. The aim of diagnosis
is to estimate the set of faulty components as precisely as possible. This is done using
the the Principle of Parsimony:

The Principle of Parsimony. A diagnosis is a conjecture that some mini-
mal set of components are faulty.

This heuristic expresses the idea that there is usually a higher probability for a given
component to be fault-free than to be faulty. Hence, in case of fault detection, it
is reasonable to determine a minimal set of components which have to be assumed
abnormal (AB(ci)) to restore consistency of observation and system description. This
consideration results in the following de�nition for the term diagnosis:

De�nition 12 (Diagnosis (Reiter, 1987)). A diagnosis for (SD,COMPONENTS,OBS)

is a minimal set ∆ ⊆ COMPONENTS such that

SD ∪OBS ∪ {AB(c)|c ∈ ∆} ∪ {AB(c)|c ∈ COMPONENTS\∆}

is consistent.
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Several approaches to determine the minimal set ∆ containing the diagnosed com-
ponents exist. A straightforward approach is to systematically generate all subsets
∆ ⊆ COMPONENTS, starting with minimal set cardinality �rst, and testing the
consistency of system description, observation and assumed malfunctioning compo-
nents. In (Reiter, 1987) the diagnosis approach is applied to digital circuits using �rst
order logic.

The approach of (Reiter, 1987) has not been developed for DES although they can also
be represented using logic descriptions. An approach for model-based diagnosis based
on fault-free models explicitly developed for DES is given in (Pandalai and Holloway,
2000). It has been proposed for diagnosis in manufacturing systems with discrete sensors
and actuators. The main idea of the method is to monitor the timing and sequencing of
events generated by the considered system. The nominal (fault-free) system behavior
is modeled using condition templates. A condition template is determined by a set of
rules starting from an initial triggering event: based on the initial event occurrence,
a set of expectations is determined that contains possible following events with an
appropriate timing interval. If one of the expected events occurs within a valid time
interval, new expectations are created according to the rules given in the condition
template. An expectation is given in the form (t, e, C, w) where t is a time, e an event,
C a consequence and w a tag (label of the expectation). t is the time stamp when the
triggering event e occurs. The consequence C is a pair (e′, τ), where e′ is an event and
τ is a time interval.

During system monitoring a set of expectations is maintained online. Following the
rules in the condition template, expectations are added or removed from the expecta-
tion set after the occurrence of the according events. Two scenarios for fault detection
exist in this framework: Either non of the events in an expectation occurred within
the speci�ed time periods, or an event occurs that was not expected by any of the
active expectations. In the sense of (Reiter, 1987) the event which cannot be explained
by one of the expectations representing the system description is considered as fault
event. Assuming the component related with the suspected event to be faulty restores
consistency of observation and system description. In �gure 2.12 an example of sys-
tem monitoring using condition templates is given. Two expectations are depicted:
(2, e1, {(e2, [2, 4]), (e3, [6, 8])}, w1) on the top and (9, e3, {(e5, [3, 5])}, w2) on the bottom.
The �rst two elements in expectation w1 indicate that event e1 occurred at time t = 2.
The gray shaded zones indicate the time intervals τ when the occurrence of e2 or e3 is
expected during fault-free system behavior. The expectation is satis�ed if e2 appears
at time interval 4 ≤ t ≤ 6 or if e3 appears at time interval 8 ≤ t ≤ 10. If e3 appears,
the next expectation w2 is triggered waiting for event e5 at time interval 12 ≤ t ≤ 14.
In the example, the occurrence of event e2 (dashed arc) is not expected by expectation
w1. Hence, it is inferred that e2 occurred (to late) due to a fault.

Modeling the nominal system behavior with the framework from (Pandalai and Hol-
loway, 2000) is not a standard tool in DES-theory. However, the authors present a
method to systematically derive the condition templates from timed automata repre-
senting the nominal system behavior.
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Figure 2.12: Graphical representation for template

2.3.4 Conclusion

In section 2.3.1 it has been explained that model-based approaches for diagnosis in
closed-loop DES are preferable to rule-based expert systems or data-driven methods.
Since model-based approaches derive information from the estimated system state, they
allow a dynamic analysis of the external DES-behavior.

A common feature of diagnosis methods using explicit fault models is the diagnos-
ability property: it is possible to check if a given (and modeled) fault can be diagnosed
using the available models. Although this is an important advantage, it has to be kept
in mind that the diagnosability property strongly depends on the quality of the system
model. It only checks if a modeled fault can be diagnosed if the system behaves exactly
like supposed in the model. For approaches using fault models, it is necessary to build
models of the nominal and the faulty system behavior in form of automata or Petri
nets. The determination of the nominal and the faulty behavior usually necessitates
the deep knowledge of a system expert. This expert is not necessarily familiar with
the modeling formalisms for DES. Even if it is possible to build the necessary models,
none of the methods give guidelines of how to modify existing models in the case of
failed diagnosability tests. Especially if distributed approaches are used to overcome
the state space explosion problem, there are no guidelines of how to choose appropriate
partial models. Some approaches propose model libraries with frequently used compo-
nent models to facilitate model-building (Philippot et al., 2007). Although this may
considerably reduce the e�ort to build component models, in most industrial systems
there exist some non-standard components which have to be analyzed and modeled sep-
arately. Another important problem is the modeling process for the control algorithm.
For this purpose it is necessary to have a formal description of the algorithm (e.g. as a
GRAFCET). This is often not the case for existing industrial facilities where controller
programs are rarely well documented. Another general problem for this class of meth-
ods is the fact that only faults explicitly considered in the model can be diagnosed. As
a conclusion, methods working with fault-models are well adapted if diagnosability has
to be guaranteed for some faults (e.g. safety related issues) and if there are su�cient
�nancial means for detailed and exact model-building. To the best knowledge of the
author, none of the diagnosis methods of this class has yet been successfully applied to
a system at industrial scale.
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In the second class of model-based methods working with fault-free models, the notion
of diagnosability does not exist. Faults can be detected if they lead to a deviation from
the modeled nominal behavior. It is not possible to guarantee that a given fault can be
diagnosed using fault-free models. In general, fault diagnosis tends to be less precise
using fault-free models since the models contain less knowledge. If the e�ect of a fault
is not explicitly part of the model, the diagnosis information must be derived from the
comparison of expected fault-free (modeled) and observed behavior. As explained in the
approach of (Reiter, 1987), there may be several possible ways to explain this di�erence.
An important advantage of approaches with fault-free models is that model-building
is usually less laborious since only the fault-free behavior has to be represented. It
is even possible to get the necessary fault-free models by identi�cation. In the case
of industrial closed-loop DES it is possible to observe the considered system during
normal operation and to identify a DES-model based on the observed data. Although
diagnosis with fault-free models has some disadvantages since diagnosability for given
faults cannot be guaranteed, it o�ers a way to implement a diagnosis system without
expensive model-building if identi�cation methods are used. For many closed-loop DES
at industrial scale it represents the only way to come to a diagnosis system since model-
building would quickly exceed �nancial and organizational limits.

2.4 Identi�cation of Discrete Event Systems

2.4.1 Limits of manual model-building and aims of identi�cation

A key issue for model-based methods is the determination of appropriate models. Two
main approaches are possible: manual model-building and identi�cation. In case ofman-

ual model-building, the models are built by a human expert formalizing his knowledge
about the causal structure and the behavior of the considered system in an appropriate
mathematical form. Identi�cation on the other hand refers to the systematic analysis
of monitored system behavior and the algorithmic construction of a mathematical de-
scription which approximates the observed data. The core of an identi�cation method
is an identi�cation algorithm.
Building a model manually necessitates knowledge of the considered system. De-

pending on the application, it is often possible to get an approximative model without
a detailed analysis of the considered system. However, for the construction of exact
models it is essential to have a deep understanding of the system to be modeled. An
advantage of manual model-building is the possibility to gain deeper insights in the
system structure and dynamics since inconsistencies in the system knowledge become
visible when it is formalized in a model. Beyond the use in diagnosis systems, the
improved system knowledge can be useful for many purposes like the development of
control algorithms.
Many model-based techniques guarantee the correctness of certain results or their

capability to perform a certain task. Model-checkers for formal veri�cation for exam-
ple guarantee that the complete modeled system behavior is analyzed to determine if
given speci�cations hold (Bérard et al., 2001). A second example has been given in
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section 2.3.2: It has been shown that some diagnosis methods are able to determine if
a given fault is diagnosable using the available models. If it is diagnosable, the meth-
ods guarantee its detection and correct indication. Since model-based methods cannot
evaluate if a given model represents the considered system in an appropriate way, guar-
anteed features are only as good as the given models. It depends on the modeling
engineer to make sure that the model is appropriate for the given purposes. An impor-
tant question in this context is the correct level of abstraction. As an example for the
consequences of this question we consider the di�erent models of a valve in �gure 2.13.
The leftmost automaton has two states representing the valve in the opened and in
the closed position. In this model it is assumed that the valve directly changes from
opened to closed or vice versa when the according event occurs. The automaton in
the middle of �gure 2.13 has an additional state to represent the valve being between
opened and closed. The rightmost model �nally has four states. State B1 represents
the valve moving from the closed position to the opened position whereas B2 models
the valve moving from opened to closed. Each of the three models represents the valve
behavior at a di�erent level of abstraction. In the leftmost automaton intermediate
states between valve open and valve close are not considered which may be su�ciently
accurate for a given purpose. In the rightmost model, there is a more detailed repre-
sentation of the valve behavior at cost of model size. If the more detailed model is e.g.
used in the diagnoser approach, the parallel composition of plant models and controller
algorithms becomes larger which also leads to a larger diagnoser automaton. The choice
of an adapted level of abstraction is not obvious since the resulting model size has to
balanced with the required model accuracy.

Figure 2.13: Di�erent levels of abstractions for the valve model

Most model-based techniques require the model to be in a prede�ned form like dif-
ferential equations in time-continuous systems or a certain type of automaton or Petri
net in discrete event systems. A person with a su�cient degree of system knowledge
is not necessarily familiar with the mathematical tools to build the model in the re-
quired form. Hence, it is often necessary to coordinate specialists from the domain of
the considered system (e.g. mechanical engineers, chemists, etc.) with specialist of the
model domain (e.g. control engineers) which poses an organizational challenge. The
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deployment of several specialists also leads to important economical charges which may
lead to the decision that the application of model-based methods for a given scenario
is too expensive.
For many applications it is possible to decrease the cost for model-building and even to

increase model accuracy using identi�cation methods. For identi�cation it is necessary
to observe the considered system for a certain time to get samples of its behavior.
Based on the collected data, (van Schuppen, 2004) de�nes system identi�cation as the
selection of a model such that the observed data can be reproduced as accurately as
necessary. The required accuracy is given by an approximation criterion.
Using identi�cation methods to determine the models for model-based techniques has

an important advantage: If it is possible to prove certain properties of an identi�cation
method, the resulting identi�ed models have some guaranteed qualities. If an identi�ca-
tion algorithm guarantees some degree of accuracy with respect to the collected system
data, this leads to a more objective model evaluation than in the case of manually built
models always depending on the competence of the modeling engineer.
Another advantage of identi�ed models of closed-loop DES is that they directly repre-

sent the closed-loop of plant and controller. Manually built models usually only contain
the idealized behavior of plant components and the control algorithm (e.g. in the di-
agnoser approach of (Sampath et al., 1996)). An identi�ed model on the other hand
represents the control algorithm executed in the controller as it leads to the observed
system behavior. Special e�ects resulting from the controller hardware (e.g. delays of
I/O cards) or the execution procedure of the algorithm (like cyclic program execution
in industrial controllers) are thus often better represented using identi�ed models since
these e�ects are usually not considered in manual model building (Roth et al., 2010).
Hence, identi�ed models are often closer to the real system behavior than manually
built ones.
In discrete event systems, the aim of identi�cation is to build a model approximating

the original system language LOrig1. The basis for each identi�cation approach is the
observed language LObs which represents a (more or less complete) sample of the original
system language LObs ⊆ LOrig. It is supposed that the original system language is fault-
free. The longer the observation horizon, the more likely a convergence of LObs to LOrig
is. Once a model has been identi�ed on the basis of LObs, it creates a language which
is referred to as the identi�ed language LIdent. If the original system language has
been completely observed (LObs = LOrig) and a given identi�cation algorithm delivers
a model which exactly reproduces the observed language (LIdent = LObs) the aim of
identi�cation is perfectly met since LIdent = LOrig.
Figure 2.14 shows the relation of LOrig, LObs and LIdent in a general case. The area

with the bold line represents LOrig and contains the observed language LObs as a subset.
In �gure 2.14, the identi�ed language is a superset of the observed language which is a
reasonable minimal demand on an identi�ed model used for diagnosis: it should be able
to reproduce the already observed behavior of the considered system since it is fault-free.

1The precise de�nition of the term language often varies from one approach to another. Here, a

language can be understood like introduced in de�nition 2. The considerations of this section also

hold for the languages de�ned in the following chapters.
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Usually, it cannot be guaranteed that an identi�ed model only produces the observed
language. Hence, LIdent is a superset of LObs with some part of the set LIdent\LObs
possibly contained in the original language LOrig. If an identi�ed model contains an
important amount of the language L = LIdent∩LOrig, this increases the model accuracy.
The identi�ed language which is not part of the original system language is called
exceeding language LExc = LIdent\LOrig. The exceeding language generally decreases
the model accuracy since each word of this language can be exhibited by the identi�ed
model but is not part of the original system language.

Figure 2.14: Relation of original, observed and identi�ed languages

If it cannot be guaranteed that the original language is completely included in the
identi�ed language (LOrig@@⊆LIdent), it is also possible that some part of the original
language cannot be reproduced by the identi�ed model. The non-reproducible language
LNR represents the part of the original system language that has not been observed and
that is not part of the identi�ed behavior (LNR = LOrig\LIdent). An accurate model
minimizes the two languages LNR and LExc such that LIdent ≈ LOrig.

For the decision if an identi�ed model is appropriate for fault detection purposes, the
exceeding language LExc and the non-reproducible language LNR play a key role. If a
system is diagnosed with the identi�ed model and it exhibits a word w /∈ LIdent a fault
can be detected, since model and observation are not consistent (see section 2.3.3). In
case that an exhibited word is part of the exceeding language (w ∈ LExc = LIdent\LOrig),
the word represents a fault (w /∈ LOrig) which cannot be detected since it is part of
the exceeding behavior. In this case, the identi�ed model erroneously contains a faulty
word. To minimize the number of undetectable faults, it is necessary to minimize the
exceeding language LExc.

If the system exhibits a word which is part of the non-reproducible language w ∈
LNR = LOrig\LIdent, a fault is detected, since w /∈ LIdent. This fault detection is a false
alert since the exhibited word is part of the original system language LOrig. A reduction
of the number of such false alerts can be achieved by minimizing the non-reproducible
language LNR.

In the remainder of this chapter, di�erent identi�cation methods from the DES-
domain are presented and it is discussed if the identi�ed models meet the accuracy
constraints of diagnosis systems.
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2.4.2 Identi�cation of �nite automata

The �rst approaches for identi�cation of DES have their origin in the computer science
community and date back to the sixties and seventies of the last century. In (Klein,
2005) an overview of these methods is given and they are evaluated for identi�cation of
closed-loop DES. The approaches from this time can be divided in two main categories.
Methods like (Biermann and Feldman, 1972), (Kella, 1971) or (Veelenturf, 1978) work
on the basis of observed input and output sequences of the considered system and con-
struct a Mealy or Moore automaton (Lee and Varaiya, 2002) to represent the observed
data. The aim of these methods is to determine an automaton which is able to simu-
late2 the observed language given by the captured input/output sequences. A frequent
aim within this class of methods is to determine a minimal automaton which satis�es
this constraint. The second class of methods like (Booth, 1967) aims at identifying
completely speci�ed automata using test sequences to excite the considered system.
Completely speci�ed automata are capable of producing an output sequence to each
possible input sequence (Tornambe, 1996). For identi�cation of industrial DES with
physical components, the second class of methods is principally not adapted. The rea-
son is that the application of various test input sequences is not possible for industrial
closed-loop DES where valid system trajectories are prede�ned by the controller in the
loop. Forcing the system to perform each possible trajectory quickly leads to critical
situations.
In (Klein, 2005) it is shown that the methods proposed by the computer science

community do not meet the requirements of models for online fault detection in in-
dustrial systems. These methods have not been designed for identi�cation of systems
with interaction of physical components and a controller like in the case of industrial
closed-loop DES (see 2.1). Closed-loop DES exhibit a behavior without any input if the
signals exchanged between controller and plant are considered as system output. From
an external point of view they are event generators. The approaches summarized in
(Klein, 2005) do not identify event generators but transducers which produce an output
sequence upon the reception of an input sequence. Hence, they are not appropriate for
modeling a closed-loop DES.
The early computer science methods summarized in (Klein, 2005) are based on var-

ious identi�cation algorithms that process observed sequences and determine a model
in a deterministic way. In (Baron et al., 2001b) and (Baron et al., 2001a), an identi�-
cation approach that determines an automaton in a non-deterministic way is proposed.
The key idea is to use genetic algorithms as an optimization technique to determine an
optimal automaton structure which is able to reproduce the observed sequences. Ge-
netic algorithms belong to the class of evolutionary, heuristic optimization approaches
(Michalewisz and Fogel, 2000).
An important question when applying the evolutionary approaches to a technical op-

timization problem is how to represent possible solutions such that they can be treated
like the genome in biological evolution. Figure 2.15 shows a Moore automaton from
(Baron et al., 2001b) and a part of its representation as a 'genome'. The automaton is

2A language LA simulates a language LB if LA ⊇ LB holds.
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coded in a vector that can be divided in quintuples representing the di�erent states of
the automaton. The �rst entry of each quintuple contains the output of the state. The
following four entries represent the states which are reached via a transition with a par-
ticular input (e.g. in the second following state entry of state 1 there is a 2, which means
that from state 1, state 2 can be reached by input b (2)). Using genetic algorithms,
two parent genomes have to be combined to determine new solutions. This procedure
is not explicitly given in (Baron et al., 2001a) or (Baron et al., 2001b). Nevertheless,
it is clear that two vectors like the one shown in �gure 2.15 can be combined in di�er-
ent ways. One possibility is to randomly chose the quintuples describing the states of
the new solution from one of the parents and to combine them to a new vector. The
same approach is possible when choosing the precise values for the quintuple entries of
state outputs or transitions leading to certain states. The concept of mutating a given
solution can also be implemented following these ideas.

Figure 2.15: Example for the coding of a Moore automaton (Baron et al., 2001b)

For the assessment of a solution determined by recombination or mutation, it is
necessary to determine its �tness. In (Baron et al., 2001b) an approach to determine
the �tness by an analysis of the observed input/output sequence (only one such sequence
in considered). Starting with the �rst I/O-pair, the length of the subsequence which
is accepted by an automaton represented by a solution is determined. Solutions with
higher �tness and thus longer accepted I/O sequences are more likely to be selected for
reproduction which �nally leads to a set of solutions with automata that are likely to
accept an important part of the observed I/O sequence.
Although this approach is an interesting technique for identi�cation of DES and

shows the potential of optimization techniques in this �eld, the identi�ed models are
not well adapted for fault detection purposes. If the observed I/O sequence repre-
sents the fault-free behavior of the considered system, the identi�ed (fault-free) model
should contain this sequence to avoid false alerts (see section 2.4.1). Due to its non-
deterministic nature, the approach of (Baron et al., 2001b) cannot guarantee that the
observed sequence is completely accepted by the identi�ed automata. It is also im-
possible to generally guarantee a certain accuracy of the identi�ed model. In terms of
section 2.4.1, it cannot be guaranteed that the exceeding language LExc and the non re-
producible language LNR are minimized. Hence, the models identi�ed with the (Baron
et al., 2001b) approach are not appropriate for fault detection purposes.
An automaton-based identi�cation approach explicitly developed for fault diagnosis
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in DES is proposed in (Supavatanakul et al., 2006). The approach has been developed
for diagnosis in continuous systems with a quantized I/O and state space. The ampli-
tude of each continuous I/O signal is divided in intervals. If an I/O passes the limits of
such an interval, an event is generated. It is assumed that continuous state signals are
available and can also be quantized. The idea is to identify a timed automaton based
on the quantized I/O and state signals for the normal and for some faulty behavior.
The quantized state signals determine the state space of the timed automaton. To get
the necessary samples of the faulty system behavior it must be possible to introduce
faults and to observe the resulting behavior. For each fault, an own timed automaton
is identi�ed. The set of identi�ed automata is used for online fault diagnosis by ana-
lyzing which automaton can reproduce the currently observed system behavior. If the
observation can only be reproduced by an automaton identi�ed on the basis of some
faulty system behavior, a fault is detected.
The class of automata used in (Supavatanakul et al., 2006) is similar to Mealy au-

tomata with inputs and outputs associated to transitions. Additionally, the timed

behavior is de�ned by time intervals added to the transitions. A transition can only
�re if the automaton clock is within this time interval. If x1 is the current state of
the automaton in �gure 2.16 and the current clock value is 5, it is possible that the
transition from x1 to x2 �res reading the input a = 1 and producing the output b = 2

since the current value of the automaton clock is within the given time interval. The
transition to x3 cannot �re since the clock already exceeded its time interval.

Figure 2.16: Example for a timed automaton

The principle of the (Supavatanakul et al., 2006) identi�cation approach can be seen
in �gure 2.17. In the example, two input signals a and c and two output signals b and
d exist. In this simpli�ed example, the state signals are equal to the input and output
signals. Three timed sequences can be seen that are used to identify the automaton in
the upper part of �gure 2.17. Each sequence starts with the same setting of I/O values
de�ning state x1. In the �rst sequence, a = 1/b = 1 occurs after four time units leading
to the I/O value setting de�ning state x2. Hence, x1 and x2 are connected. The time
interval at the transition between x1 and x2 after sequence 1 is [4, 4]. The rest of the
�rst sequence is processed following the same principle: if an I/O value setting occurs
that is not yet represented by an own state, a new state is created and connected to the
state representing the former setting. Time intervals of newly created states contain
the number of elapsed time units since the last I/O change as single value. After the
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analysis of sequence 1, the automaton consists of the state trajectory x1, x2, x3 and
x4. Processing the second sequence does not lead to an enlarged state space, since
the occurring I/O value settings are already part of the automaton. Since the timed

behavior of this trajectory di�ers from the �rst one, the time intervals of the automaton
are adapted. a = 1/b = 1 for example occurs after eight time units. Hence, the interval
of the transition from x1 to x2 is rede�ned to [4, 8]. The analysis of the remaining part
of sequence 2 and of sequence 3 leads to the automaton shown in �gure 2.17.

Figure 2.17: Example for the (Supavatanakul et al., 2006) approach

Although the approach of (Supavatanakul et al., 2006) has been successfully applied
to a benchmark system, its use poses some problems. The �rst problem is that it is
necessary to identify fault-free and faulty system behavior. In large closed-loop DES
it is not possible to arti�cially introduce each possible fault at each possible time to
deliver the necessary observed system data. Hence, it is di�cult to guarantee that
the identi�ed models contain the whole possible faulty and fault-free system behavior.
The second problem of the approach is related to the determination of time interval
limits. The limits are determined by the shortest and the longest state duration. If a
maximum time limit is �xed to 10 time units, a behavior occurring after 11 time units
will not be recognized. It is di�cult to decide if the shortest and longest durations have
already been observed or if more extreme values are possible for the considered faulty
or non-faulty scenarios.
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2.4.3 Identi�cation of Petri nets

Apart from identifying �nite automata to represent a DES language, various approaches
to determine Petri nets based on observed event sequences exist. In (Pia Fanti and
Seatzu, 2008) an overview of the most important ones is given. In this section, two
representative approaches for the main ideas of Petri net identi�cation are explained.
The �rst idea is to use rules for a systematic construction of a Petri net from observed
sequences. The second idea is to solve an integer linear programming problem over
structural constraints such that the identi�ed Petri net can reproduce the observed
event sequences.

An approach which is representative for the �rst class of methods is given in (Meda-
Campana and Lopez-Mellado, 2005). The approach works with interpreted Petri nets
(IPN, see section 2.3.2). An IPN can be seen as a labeled Petri net where the events asso-
ciated to the transitions represent the system input and a special function ϕ determines
the output based on the marking of the IPN. The IPN has unobservable and observ-
able places. The data base for the approach of (Meda-Campana and Lopez-Mellado,
2005) are sequences of observed transitions and place markings. The idea is to build so-
called cyclic m-words beginning and ending with the same marking ϕ(X) of observable
places. For each pair of transitions in two observedm-words like w1 = t1, t2, t3, t4, t5 and
w2 = t3, t1, t2, t4, t5 it is determined if they are dependent or concurrent. Two transitions
ti, tj are dependent if there exists a place pk such that there is an arc leading from ti
to pk and if there is an arc leading from pk to tj. If two transitions always occur in the
same order, they are possibly dependent (like t4 and t5 in w1 and w2). Two transitions
ti, tj are concurrent if they can occur in di�erent orders like t2 and t3 in w1 and w2.
Figure 2.18 shows an example for the identi�cation approach of (Meda-Campana and
Lopez-Mellado, 2005). The shaded Petri net places are supposed to be unobservable.
The leftmost Petri net is the (unknown) original DES to be identi�ed. The Petri net
in the middle is constructed upon evaluation of the m-word w1 = t1, t2, t3, t4, t5. In the
example, the resulting system markings ϕ(X) are not shown, but can be derived from
the original Petri net in the left of �gure 2.18. After an analysis of w1, various pairs
of transitions are supposed to be dependent (e.g. t1, t2 or t2, t3). Since two dependent
transitions must always be connected by a place, the resulting Petri net is a simple
chain of places and transitions. The resulting marking ϕ(X) between t2 and t3 leads
to the conclusion that no observable place contains a token. As a consequence, the
unobservable place p6 is added. Place p5 from the original Petri net is not added to the
identi�ed model since t2 and t5 are no direct successors. Hence, there is no dependency
which must be translated by a place between the two transitions.

After the observation of w2 = t3, t1, t2, t4, t5, the Petri net structure is altered. Com-
paring w1 and w2, it can be concluded that t1, t3 and t2, t3 are concurrent since they
occur in di�erent orders. The concurrency of t2, t3 shows that the two transitions are
not dependent like assumed after analyzing w1. Hence, place p6 can be removed such
that t2 and t3 can �re concurrently. In (Meda-Campana and Lopez-Mellado, 2005) it
is shown, that if a su�ciently large and divers set of words has been observed, the
identi�ed model becomes more and more similar to the original system.
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Figure 2.18: Example for the (Meda-Campana and Lopez-Mellado, 2005) approach

The approach of (Meda-Campana and Lopez-Mellado, 2005) poses two problems.
The �rst one is its inability to guarantee the accuracy of the identi�ed model. Model 2
in �gure 2.18 e.g. can also generate the word w3 = t3, t4, t1, t5, t2 which is not part of
the original system language speci�ed by the left most Petri net. The second problem
arises from the concurrency analysis. Each pair of transitions must be kept in memory
to analyze if it already occurred in di�erent orders. If a system with many transitions
and a huge number of long m-words is to be identi�ed, the concurrency check can
signi�cantly decrease the performance of the identi�cation algorithm.
A di�erent identi�cation approach is proposed in (Dotoli et al., 2008). The approach

works with so-called λ-free labeled Petri nets which have a di�erent semantic as the
Petri nets de�ned in section 2.2.3. The di�erence is the explicit de�nition of the pre-
and post-incidence matrices Pre and Post:

De�nition 13 (Petri net according to (Dotoli et al., 2008)). A Petri net is a bipartite
graph described by the four-tuple PN = (P, T,Pre,Post) where P is a set of places
with cardinality m, T is a set of transitions with cardinality n, Pre : P × T → N

m×n

and Post : P ×T → N
m×n are the pre- and post-incidence matrices, respectively, which

specify the arcs connecting places and transitions. More precisely, for each p ∈ P and
t ∈ T element Post(p, t) (Pre(p, t)) is equal to a natural number indicating the arc
multiplicity if an arc going from p to t (from t to p) exists, and it equals 0 otherwise.

The state of a Petri net is determined by its current marking M : P → N
m assigning

to each place of the net a nonnegative number of tokens. A Petri net place can be
observable or unobservable. Observable places are part of the output vector y. A Petri
net system < PN,M0 > is a net PN with an initial marking M0. The incidence matrix
of the Petri net is de�ned as C = Post − Pre. A transition tj ∈ T is enabled at a
marking M if and only if for each pre-place p of tj (Pre(p, tj) > 0), M(p) ≥ Pre(p, tj)

holds. The incoming places of tj must have enough tokens to enable a �ring of the
according transition. If transition tj �res, it produces a new marking given by M′ =

M+C~tj where ~tj is the n-dimensional �ring vector corresponding to the j-th canonical
basis vector. A sequence of �ring transitions is de�ned as σ = tβ1 , tβ2 , . . . , tβh . The Petri
net system can generate a language using a labeling function λ : T → E which assigns
to each transition t ∈ T a symbol ei ∈ E. The labeling function is called λ-free if the
same label ei ∈ E may be associated to more than one transition while no transition
may be labeled with the empty string ε. λ(σ) denotes the event sequences produced
during the �ring sequence σ. The language L(PN,M0) is de�ned by the output of
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sequences of transition �rings starting in M0.
The data basis of the identi�cation approach of (Dotoli et al., 2008) is an observed

sequence w = eα1eα2 . . . eαh
∈ L and the corresponding output vectors y. Before the

identi�cation algorithm starts, an upper bound m for the cardinality of the place set
P and an upper bound n for the the transitions set T must be given. Additionally,
the labeling function λ has to be prede�ned. With this information it is possible to
determine the �ring sequence σ = tα1

β1
tα2
β2
, . . . , tαh

βh
with λ(σ) = w. The idea of (Dotoli

et al., 2008) is to identify a Petri net using integer linear programming. It is shown that
each Petri net being capable of producing the observed data with at most m places and
n transitions must satisfy the following constraint:

ξ(w,y, λ, T,m) =





Pre,Post ∈ N
m×n

Mi ∈ N
m with i = 0, . . . , h

PostT~1m×1 +PreT~1m×1 ≥ ~1n×1

Post · ~1n×1 +Pre · ~1n×1 ≥ ~1m×1

∀tαi

βi
∈ σ with λ(σ) = w : Pre ·~tαi

βi
≤Mi−1

∀tαi

βi
∈ σ with λ(σ) = w : (Post−Pre) ·~tαi

βi
= Mi −Mi−1

where ~1m×n is the matrix of dimensions m×n with each element being 1. The �rst two
elements of the constraint assure that the resulting PN system has at most m places
and n transitions. The constraint PostT~1m×1 +PreT~1m×1 ≥ ~1n×1 makes sure that the
Petri net does not have transitions that are not connected to any place. Analogously,
Post · ~1n×1 + Pre · ~1n×1 ≥ ~1m×1 assures that the Petri net does not have any places
which are not connected to at least one transition. The �fth constraint makes sure that
each transition in the �ring sequence is enabled by its preceding marking. The last
constraint represents the fact that two successive markings must be calculated by the
incidence matrix and the corresponding transitions Mi = Mi−1 + (Post−Pre) ·~tαi

βi
.

This constraint represents the necessary condition of a Petri net which is able to repro-
duce the observed data. Generally, there are many Petri nets for which ξ(w,y, λ, T,m)

holds. To select one solution, it is possible to use a metric which can be minimized by
the integer linear programming problem solver. In (Dotoli et al., 2008), the following
function is given as an example:

φ(Pre,Post,M0) = ~aT ·Pre · ~b+ ~cT ·Post · ~d+ ~eT ·M0

where the vectors ~a, ~b,~e ∈ N
m and ~b, ~d ∈ N

n are free parameters to adjust the metric
to a given purpose. One possibility is for example to chose the parameters such that
the resulting Petri net has a minimal number of initial tokens and arcs:

φ(Pre,Post,M0) = ~11×m · (Pre+Post) · ~1n×1 + ~11×m ·M0

In this case, both optimization objectives have the same weight. After formulation of
the optimization objectives and constraints, the identi�cation problem can be solved
with an integer linear programming problem solver (ILP solver).
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The advantage of the optimization approach is that it guarantees the completeness
of the identi�ed models: the constraint assures that each observed sequence is part of
the identi�ed language. A disadvantage is that for large systems an ILP solver takes
long to admit a solution. The second main disadvantage is that the formulation of the
objective function is not trivial. If several objectives have to be met (e.g. model size
and accuracy), it is a di�cult problem to �nd appropriate parameters for the objective
function.
Nevertheless, other approaches with the same main idea like (Giua and Seatzu, 2005)

show that using optimization techniques to solve the identi�cation problem for DES is
a promising approach.

2.4.4 Discussion

The general considerations in section 2.4.1 showed that special accuracy demands for
identi�ed models exist if they are to be used for online fault detection. The �rst
constraint is that the observed part of the original system language must be reproducible
by the identi�ed model. It was shown that this minimizes the number of false alerts
during online fault diagnosis with an identi�ed model. Except of the optimization-
based automaton identi�cation from (Baron et al., 2001b), all presented methods deliver
models which are able to completely reproduce the observed system data. The second
main constraint is that the identi�ed language should not contain an important part
of sequences not being part of the original system language. This special constraint is
not met by any of the presented identi�cation methods. It is not possible to restrict
the identi�ed language in a well de�ned way such that the necessary accuracy can be
guaranteed.
For automata and for Petri nets two main identi�cation ideas can be distinguished.

The �rst idea is to use rules coded in an algorithm which processes the observed system
data. These approaches (like (Supavatanakul et al., 2006) for automata or (Meda-
Campana and Lopez-Mellado, 2005) for Petri nets) deliver a model in a deterministic
way since the available system data is always treated in the same manner. The second
major approach for identi�cation of DES is to use optimization techniques like (Baron
et al., 2001b) for automata or (Dotoli et al., 2008) for Petri nets. The identi�cation
objective must be formalized in an objective function which is given to an optimiza-
tion algorithm. A challenge in optimization-based identi�cation is the choice of an
appropriate �tness function which needs a considerable expertise of the optimization
method and of the mathematics describing the identi�cation problem. The outcome of
the optimization approaches can vary if heuristic optimization techniques like genetic
algorithms or heuristic solvers for integer linear programming problems are used. An-
other important drawback of identi�cation methods based on optimization techniques
is that they are expensive in calculation time. Although it has been shown that they
work with academic examples or small case studies (Dotoli et al., 2006), they have not
been applied to real-world systems.
Since non of the presented methods guarantees the necessary accuracy for model-

based fault diagnosis in closed-loop DES, an identi�cation method especially suited for
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this domain has been proposed in (Klein, 2005). The method delivers a model in form of
a monolithic automaton which guarantees some important accuracy and completeness
properties. Under some conditions, the method delivers an appropriate model for online
fault diagnosis. The model is determined by a deterministic identi�cation algorithm
which will be introduced in the next chapter. It is the basis for the presented work.
In chapter 5 the idea of using optimization approaches for identi�cation in DES will
be embraced to improve the algorithm from (Klein, 2005). The resulting distributed
identi�cation will thus combine the idea of using deterministic identi�cation algorithms
and the idea of using optimization techniques.
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Discrete Event Systems

3.1 Model class

In the previous chapter it has been explained that none of the existing identi�cation
methods delivers a model which is appropriate for online fault diagnosis in industrial
closed-loop DES. One of the main reasons is that the identi�ed models do not appro-
priately represent the special characteristics of this class of systems. As explained in
section 2.1, a closed-loop DES consists of a plant and a controller as shown in �g-
ure 3.1. In the remaining part of this work, the notion closed-loop DES always refers
to the fault-free system if not stated otherwise. The system characteristics have an im-
portant in�uence on the choice of an appropriate model class and are discussed before
an identi�cation algorithm is given.

Figure 3.1: Structure of the considered systems

Observable events produced in a closed-loop DES are displayed in the data exchanged
between controller and plant. This data is considered as the system output in this
work. In �gure 3.1, the output is represented by the symbol uDES. The original system
language LOrig (see section 2.4.1) consists of sequences of output symbols uDES. Since
a closed-loop system does not have any inputs but exhibits an event-driven series of
outputs, it can be interpreted as a non-deterministic autonomous event generator. The
controller of the closed-loop DES is usually designed as a deterministic subsystem: if
the controller is in a given state and a controller input sequence is applied several
times from that state, the result are identical controller output sequences. For the
plant, this property of determinism does not hold. Applying the same sequence of
actuator commands several times to the plant being in a given state does not necessarily
reproduce exactly the same sequence of delivered sensor signals. The varying sequences
of sensor signals are the result of physical components like motors, cylinders or valves
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that do not always react exactly in the same way. If two or more components are
triggered simultaneously, the order of the reaction may change from one triggering to
another depending on external in�uences like friction or mechanical constraints. These
in�uences are not predictable and must be considered as non-determinisms. Coupling a
deterministic and a non deterministic system as in �gure 3.1 leads to a non-deterministic
closed loop system.
If no information about the controller algorithm or the plant structure is used, a closed

loop DES can be seen as a non-deterministic autonomous black-box. An appropriate
way to represent the observable behavior of such systems are �nite state machines
that re�ect the characteristics of a black-box event generator. This necessitates the
introduction of the notion of 'state' for the description of the system behavior. In
�gure 3.2, a possible �nite state machine representation for the considered closed-loop
DES is shown. The �gure contains a non-deterministic autonomous event generator
determining the future evolution and the external behavior. The consequences of an
event are given in the following de�nition:

De�nition 14 (Event produced by a closed-loop DES). An event produced by a closed-
loop DES leads to a new current system state xDES. With the notation xDES(j), the
current state after the occurrence of the j-th event is denoted.

The current system state produces an output uDES via the function Λ and is deter-
mined by the last system state without considering any input data by the function FN .
In case of closed-loop DES, the system state xDES represents the combined state of
controller and plant.

Figure 3.2: Autonomous state-based event generator

Formally, the current system state is determined using a non-deterministic function
FN : XDES → 2X

DES

with 2X
DES

representing the powerset1 of the DES state space
XDES.

De�nition 15 (External behavior of closed-loop DES). The external behavior of a
closed-loop DES is described by its current state xDES(j) ∈ FN(xDES(j − 1)) and its
output uDES(j) = Λ(xDES(j)) which can be observed after the j-th event. If there are
several next state candidates (

∣∣FN(xDES(j − 1))
∣∣ > 1)2 the current state xDES(j) is

chosen non-deterministically from the set FN(xDES(j − 1)) upon the occurrence of the
j-th event. xDES0 denotes the initial system state.

1Example for the powerset of A = {a, b, c} : 2A = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
2With |Set|, the set cardinality is denoted
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From this de�nition it follows directly that each event is translated into a new system
output uDES. It is assumed that a new system output di�ers from its predecessor (only
observable events are considered):

Assumption 1 (Distinguishable system outputs). It is assumed that the j-th event
leads to a state with a new output such that uDES(j) 6= uDES(j − 1).

In (Klein, 2005) a model which is able to represent a system like in �gure 3.2 is
de�ned as a Non-Deterministic Autonomous Automaton with Output (NDAAO).

De�nition 16 (Non-deterministic autonomous automaton with output (NDAAO)).
NDAAO = (X,Ω, f, λ, x0) with X �nite set of states, Ω output alphabet, f : X → 2X

non-deterministic transition function, λ : X → Ω output function and x0 the initial
state3.

An NDAAO is able to describe a closed-loop DES like in �gure 3.2 if it can produce the
same external behavior and if it follows the same dynamics. It is obvious that the �rst
condition holds if the current NDAAO state is determined using the condition x(j) ∈
f(x(j− 1)) which corresponds to xDES(j) ∈ FN(xDES(j− 1)) and if the current output
u(j) is calculated with u(j) = λ(x(j)) which corresponds to uDES(j) = Λ(xDES(j)).
The NDAAO dynamics are similar to the closed-loop DES dynamics if they are de�ned
in accordance with de�nition 15:

De�nition 17 (Next-state rule NDAAO). An NDAAO state x(j) can be the successor
of the last current state x(j − 1) if and only if x(j) ∈ f(x(j − 1)). If there are several
next state candidates (|f(x(j − 1))| > 1) the new actual state x(j) is chosen non-
deterministically from the set f(x(j − 1)).

To formulate an identi�cation algorithm which delivers an NDAAO for a given closed-
loop DES it is necessary to de�ne the data basis which is used for identi�cation. This
data base is given by the language4 of the closed-loop DES observed during a certain
amount of system evolutions. In manufacturing systems such an evolution can be a
production cycle that is carried out by the system.
When the closed-loop DES performs an evolution, sequences of outputs u can be

observed. The identi�cation is carried out on the basis of p di�erent system evolutions.
Since each change in value of the output u is considered as the result of an event, the
output after the j-th event is given by the next de�nition:

De�nition 18 (System output). The j-th output in the h-th of p system evolutions is
de�ned as uh(j).

The sequence that is observed when an evolution is performed is built by the outputs
u in the order of their occurrence.
3The NDAAO-de�nition in (Klein, 2005) also contains a �nal state. After some modi�cations in the

identi�cation algorithm (see section 3.2), this state is no longer necessary.
4The language de�nitions in this section are modi�ed versions of the de�nitions in (Klein, 2005) but

follow the same ideas.
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3 Monolithic Identi�cation of Closed-Loop Discrete Event Systems

De�nition 19 (Observed sequence). If during the h-th system evolution lh outputs uh
have been observed, the sequence is denoted as σh = (uh(1), uh(2), . . . , uh(lh)). The set
of all observations is denoted as Σ = {σ1, . . . , σp}.

Assumption 2 (Initial system output). It is assumed that each observed sequence
starts with the same output symbol: σi(1) = σj(1) holds ∀σi, σj ∈ Σ.

Based on the observed sequences it is possible to de�ne the language of the considered
systems.

De�nition 20 (Observed word set and language). The words of length q observed
during p di�erent system evolutions are denoted as

W q
Obs =

⋃

σh∈Σ




|σh|−q+1⋃

j=1

(uh(j), uh(j + 1), . . . , uh(j + q − 1))


 .

|σh| denotes the length of the h-th observed sequence. With the observed word set the
observed system language of length n is de�ned as

LnObs =
n⋃

i=1

W i
Obs

The language thus consists of sequences of output symbols.

Remark 1. From de�nition 20 and assumption 1 it follows directly that for two suc-
cessive (uh(j), uh(j + 1)) ∈ LnObs it holds: uh(j) 6= uh(j + 1).

Assumption 3 (Asymptotic convergence of LnObs to L
n
Orig). It is assumed that the ob-

served language LnObs is exhibited by the system such that it (asymptotically) converges
to the complete original system language LnOrig (which is assumed to be �nite) when
increasing the number of observed evolutions h.

Despite the autonomous nature of the considered class of systems we assume that
with a growing observation time the original language is more and more completely
exhibited and can thus be observed. Since di�erent system evolutions are supposed
to be similar (not necessarily equal), the observed language is supposed to converge
to the original system language with rising observation time like sketched in �gure 3.3
although it can take many evolutions to reach convergence. When the case study system
and the industrial application are treated, it will be shown that the assumed evolution
of the observed language cardinality is realistic for existing closed-loop DES.
The aim of identi�cation is to determine a model which is able to approximate the

system language. Hence, the language of the NDAAO must also be de�ned.

De�nition 21 (Word set and language of the NDAAO). The set of words of length n
generated from a state x(i) is de�ned as:

W n=1
x(i) = {w ∈ Ω1 | w = λ(x(i))}
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3.2 Identi�cation algorithm

Figure 3.3: Assumed evolution of the observed language cardinality

and

W n>1
x(i) = {w ∈ Ωn |

(
w = (λ(x(i)), λ(x(i+ 1)), . . . , λ(x(i+ n− 1)))∧

x(j + 1) ∈ f(x(j))∀i ≤ j < i+ n− 1
)
}

The language generated by the NDAAO is given by

LnIdent =
n⋃

i=1

⋃

x∈X

W i
x

If the output alphabet Ω consists of the observed outputs uDES, the NDAAO can
reproduce the observed system language by performing state trajectories. With def-
inition 20 and 21, the observed language LnObs and the identi�ed language LnIdent are
pre�x-closed (Cassandras and Lafortune, 2006).
The purpose of the identi�ed NDAAO is to be used in online fault-diagnosis. It will

be used as a model of the fault-free system behavior. This motivates the following
assumption:

Assumption 4 (Fault-free observation). For the use of an identi�ed NDAAO in online
fault diagnosis, it is assumed that the observed system language LnObs is a subset of the
fault-free original system language LnOrig.

3.2 Identi�cation algorithm

Based on the de�nitions of the former section, it is possible to give an identi�cation
algorithm that builds an NDAAO by an analysis of the observed language. The original
version of the following algorithm has been given in (Klein, 2005). In this section, a
modi�ed version is introduced. The main di�erence is that the reformulated algorithm
is no longer restricted to system evolutions starting and ending with the same system
output.
In order to adjust the model accuracy with respect to the observed system language,

the identi�cation algorithm has a free parameter k. It de�nes the length of words
which is used as identi�cation data base. The higher k is chosen, the more reliably
the identi�ed model can reproduce the observed system language. In section 3.3 it will
be shown that the parameter helps to guarantee important accuracy and completeness
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3 Monolithic Identi�cation of Closed-Loop Discrete Event Systems

properties of the identi�ed model. The question how to chose an appropriate value for
k will be discussed in section 3.4.
The �rst step of the identi�cation procedure is to modify the observed sequences.

The �rst output symbol in each sequence is duplicated k − 1 times:

σkh(i) =

{
σh(1) for 1 ≤ i ≤ k

σh(i− k + 1) for k < i ≤ k + |σh| − 1
(3.1)

|σh| denotes the length of the sequence σh. Equation 3.1 is applied to each sequence
σh ∈ Σ resulting in Σk = {σk1 , . . . , σkp}. On the basis of Σk, the modi�ed word sets of
length k and k + 1 are determined according to de�nition 20:

W k
Obs,Σk =

⋃

σk
h
∈Σk




|σk
h
|−k+1⋃

i=1

(uh(i), uh(i+ 1), . . . , uh(i+ k − 1))


 (3.2)

W k+1
Obs,Σk =

⋃

σk
h
∈Σk




|σk
h
|−k⋃

i=1

(uh(i), uh(i+ 1), . . . , uh(i+ k))


 (3.3)

W k
Obs,Σk and W k+1

Obs,Σk are the data basis for algorithm 1 which identi�es an NDAAO.
For the algorithm, we de�ne an operator wq〈a..b〉 to deliver the substring from position
a to position b in word wq:

wq〈a..b〉 := (u(a), u(a+ t), . . . , u(b))∀1 ≤ t < b− a (3.4)

with wq ∈ W q
Obs : w

q = (u(1), . . . , u(q)) and a ≥ 1, b ≤ q

As a special case, we de�ne that with wq〈a〉 it is possible to determine the symbol at
the position a in wq.
If w6 = ABCDEF and a = 2, b = 4, w6〈a..b〉 = BCD.
In the �rst step of the identi�cation algorithm, the state space of the NDAAO is

created. For each word wk ∈ W k
Obs,Σk a state x is built and its output function is

associated with this word (λ(x) := wk). After this step, the automaton consists of
isolated, non-connected states. The states get connected in step 2. In this step, the
transition function is built on the basis of W k+1

Obs,Σk . For each word wk+1 in this set the
�rst k-long subsequence wk+1〈1..k〉 and the last k-long subsequence wk+1〈2..k + 1〉 are
determined with the operator from equation 3.4. From step 1, for each substring there
exists exactly one state which has this string as output. The two according states x and
x′ are selected and get connected such that the state representing the �rst substring gets
the state of the second substring added to its successor states (f(x) := f(x)∪ x′). Due
to step 1, each state has a word of length k as output. In step 3, the state representing
the sequence with the k − 1-times duplicated �rst output symbols becomes the initial
state. By assumption 2, each observed sequence starts with the same output. With
step 1, there is only one state representing the k − 1-times duplicated �rst output
symbols. For the construction of the automaton language according to de�nition 21
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3.2 Identi�cation algorithm

such that it reproduces the language of the closed-loop DES, it is only necessary to
have a single output symbol as state output. Hence, in step 4 the output function of
the states is reassigned with the last 'letter' of the output word (λ(x) := λ(x)〈|λ(x)|〉)5.
To reduce the state space, in the last step of the identi�cation algorithm, equivalent
states are merged. According to (Cassandras and Lafortune, 2006), two automaton
states x1, x2 are equivalent if ∀n : Lnx1 = Lnx2 . In (Klein, 2005) it is shown that this
condition is ful�lled for two NDAAO-states if they are associated with the same output,
i.e. λ(x1) = λ(x2) and if they have the same set of following states, i.e. f(x1) = f(x2).
A procedure to merge equivalent states is given in algorithm 2.

Algorithm 1 Monolithic identi�cation algorithm

Require: Parameter k, observed word sets W k
Obs,Σk and W k+1

Obs,Σk

1: X := {(∀wk ∈ W k
Obs,Σk)(∃!x) ∧

(
λ(x) := wk, f(x) := {}

)
}

2:
(
∀(x, x′, wk+1) ∈ X×X×W k+1

Obs,Σk

)
|
(
λ(x) = wk+1〈1..k〉∧ λ(x′) = wk+1〈2..k+1〉

)
do

f(x) := f(x) ∪ x′
3: x0 := x ∈ X|

(
λ(x) = wk and wk〈i〉 = σ1(1)(∀1 ≤ i ≤ k)

)

4: (∀x ∈ X) : λ(x) := λ(x)〈|λ(x)|〉
5: Merge equivalent states in X with algorithm 2

Algorithm 2 performs for each state xi in the NDAAO state space the following
operations: First, a set of equivalent states is built in line 2. Each state in Xxi,Eq

has the same output and the same following states like the considered state xi. The
equivalent states will be removed from the state set. Hence, in the loop in line 3 and 4,
each state xpre that has one of the equivalent states as following state is updated such
that its transition function no longer contains one of the states that will be removed.
Instead, the currently considered state xi is added to their transition function. In line 6
it is checked if the set of equivalent states was empty (the currently considered state xi
does not have equivalent states). If yes, the next state from the state set is considered
in line 1. If Xxi,Eq is not empty, the states in this set are removed from X in line 7 and
the algorithm starts again. It now considers the updated state set that does no longer
contain the equivalent states of xi from the former run of the algorithm. In (Klein,
2005) is is shown that merging of equivalent states does not in�uence the language
created by the identi�ed NDAAO.
The principles of the algorithms are now shown with an example. It is assumed

that the following three sequences have been observed: σ1 = (A,B,C,D,E,A), σ2 =

(A,D,B,C,D,A,C,A) and σ3 = (A,D,B,C, F,D,E,B). For the example, the iden-
ti�cation parameter k is chosen to k = 2. First, equation 3.1 is applied to the three
sequences to duplicate the �rst output symbol k − 1 times. The result is

σk=2
1 = (A,A,B,C,D,E,A)

σk=2
2 = (A,A,D,B,C,D,A,C,A)

σk=2
3 = (A,A,D,B,C, F,D,E,B)

5|w| denotes the length of word w: |ABC| = 3. Since λ(x) is a word of length k until this step,

λ(x) := λ(x)〈|λ(x)|〉 selects the last letter of this word and takes it as new state output.
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Algorithm 2 State merging algorithm
Require: State space X
1: for all xi ∈ X do

2: Xxi,Eq := {(x′ ∈ X\xi)|
(
λ(xi) = λ(x′) ∧ f(xi) = f(x′)

)
}

3: for all (xpre ∈ X)|(∃xeq ∈ Xxi,Eq) ∧ (xeq ∈ f(xpre)) do
4: f(xpre) := (f(xpre)\xeq) ∪ xi
5: end for

6: if Xxi,Eq 6= {} then
7: X := X\Xxi,Eq

8: Restart Algorithm with new X

9: end if

10: end for

The next step is to determine W k
Obs,Σk and W k+1

Obs,Σk according to equations 3.2 and 3.3.
The results are

W 2
Obs,Σ2 = {AA,AB,BC,CD,DE,EA,EB,AD,DB,DA,AC,CA,CF, FD}

and

W 3
Obs,Σ2 = {AAB,ABC,BCD,CDE,DEA,DEB,AAD,ADB,

DBC,CDA,DAC,ACA,BCF,CFD,FDE}

At this point, the necessary data for algorithm 1 is available. Figure 3.4 shows the
result of step 1 and 2. For each word in W 2

Obs,Σ2 , a state has been created. Based on
W 3
Obs,Σ2 , the states have been connected. State x0 for example has been connected to

states x1 and x6 because of the words w3 = AAB and w3 = AAD. w3 = AAB was
divided in the two substrings w3〈1..k〉 = w3〈1..2〉 = AA and w3〈2..k + 1〉 = w3〈2..3〉 =
AB. Hence, states x0 with λ(x0) = AA and x1 with λ(x1) = AB have been connected.
In step 4 of algorithm 2 the output function is rede�ned. The new output function is
the last letter of former state output. In �gure 3.4, the state outputs are replaced by
the bold/italic letters.

Figure 3.4: Identi�ed NDAAO after step 2 and 3

The resulting automaton is then given to the state merging algorithm. It is deter-
mined that states x1 and x7 as well as x5 and x10 have the same output and following
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Figure 3.5: The identi�ed NDAAO after merging of equivalent states

states. Hence, they are equivalent and can be merged. The resulting automaton is
given in �gure 3.5.
The identi�ed automaton in �gure 3.5 can produce the following ten sequences start-

ing in x0 and ending in x5 or x13:

σNDAAO1 = (A,B,C,D,E,A) σNDAAO2 = (A,B,C, F,D,E,A)

σNDAAO3 = (A,B,C,D,A,C,A) σNDAAO4 = (A,D,B,C, F,D,E,A)

σNDAAO5 = (A,D,B,C,D,E,A) σNDAAO6 = (A,D,B,C,D,A,C,A)

σNDAAO7 = (A,B,C,D,E,B) σNDAAO8 = (A,D,B,C,D,E,B)

σNDAAO9 = (A,B,C, F,D,E,B) σNDAAO10 = (A,D,B,C, F,D,E,B)

Three of these sequences correspond to observed ones: σNDAAO1 = σ1, σNDAAO6 = σ2
and σNDAAO10 = σ3.

3.3 Important properties of the identi�ed automaton

An NDAAO identi�ed with algorithm 1 has some important properties which make the
automaton appropriate for online fault diagnosis. The �rst important property is an
accuracy guarantee which has already been shown in (Klein, 2005): For a given value
of the identi�cation parameter k, the identi�ed NDAAO is (k + 1)-complete (Moor
et al., 1998), i.e. ∀n ≤ k + 1, LnIdent = LnObs. This guarantees that the automaton
minimizes the exceeding language of length k+ 1 and thus reduces the number of non-
detectable faults (see section 2.4.1). This property will be shown in theorem 4 on the
following pages. Since the algorithm of (Klein, 2005) has been modi�ed, it is necessary
to show that the reformulated algorithm also guarantees the model accuracy. The
second important property refers to model completeness. It will be shown in theorem 5
that under some conditions, an NDAAO identi�ed with a given paramter k simulates
the complete original system language Ln≥kOrig: L

n≥k
Ident ⊇ Ln≥kOrig.

For the following proofs it is advantageous to work with the identi�ed NDAAO with-
out merging of equivalent states. Hence, it is assumed that the identi�ed NDAAO was

not given to the state merging algorithm. Since in (Klein, 2005) it has been shown that
merging of equivalent states does not a�ect the automaton language, the proofs for
the automaton without merged states also hold for the automaton after algorithm 2.
The following lemmas are necessary to proof theorem 4 and 5. As a �rst step we
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show that for each observed word of length k a state trajectory in the automaton
exists which reproduces the observed word. The notation x(i), . . . , x(i + n − 1) de-
notes a sequence of states. If the output function λ is applied to the sequence, the
result is the word of length n produced when the states of the sequence are passed:
λ(x(i), . . . , x(i+ n− 1)) = λ(x(i)), . . . , λ(x(i+ n− 1)).

Lemma 1. In an NDAAO identi�ed with parameter k, for each observed word of length
n ≤ k a state trajectory exists which reproduces this word:

(∀wn ∈ LkObs)∃λ(x(i), . . . , x(i+ n− 1)) = wn|
(
x(j + 1) ∈ f(x(j))∀i ≤ j < i+ n− 1

)

In other words: The identi�ed language simulates the observed language of length k:
LkIdent ⊇ LkObs.

For the proof the following de�nition is helpful:

De�nition 22. The function λ̃(x) delivers the word of length k used in step 1 of
algorithm 1 for the creation of the state. It represents the state output before it has
been replaced by the last output symbol of the word in step 4. The function can only
be applied to an NDAAO which has not been given to the state merging algorithm.

In the example of the former section, λ̃(x) delivers the state outputs depicted in
�gure 3.4 (e.g. AB for λ̃(x1)). The function λ̃(x) delivers a unique word for each state,
since the automaton is considered without merging of equivalent states.

Proof of lemma 1. We proof that for each observed word of length k a state trajectory

(∀wk ∈ LkObs)∃λ(x(i), . . . , x(i+ k − 1)) = wk|
(
x(j + 1) ∈ f(x(j))∀i ≤ j < i+ k − 1

)

exists. The existence of shorter state trajectories wn≤k ∈ LkIdent follows directly from
the de�nition of the observed word set.
From equations 3.1 and 3.2 it follows that6

(∀wk ∈ LkObs)(∃vk1 , . . . , vkk ∈ W k
Obs,Σk)|

vk1〈k〉 = wk〈1〉, vk2〈k − 1..k〉 = wk〈1..2〉, . . . , vkk〈1..k〉 = wk〈1..k〉

From steps 1 and 2 of algorithm 1 it follows that states representing vk1 , . . . , v
k
k are

connected such that

λ̃(x(i)) = vk1 ,

λ̃(x(i+ 1)) = vk2 and x(i+ 1) ∈ f(x(i)),
. . . ,

λ̃(x(i+ k − 1)) = vkk and x(i+ k − 1) ∈ f(x(i+ k − 2))

6For the de�nition of the 〈k〉 operator (e.g. v〈k〉) see equation 3.4 on page 44
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since from equation 3.3 it follows that (∀vki , vki+1 ∈ vk1 , . . . , vkk)(∃wk+1 ∈ W k+1
Obs,Σk)|wk+1 =

vki 〈1..k〉vki+1〈k〉 (concatenation of the sequences vki 〈1..k〉 and vki+1〈k〉) and (∀vk ∈ W k
Obs,Σk)

(∃!x)|λ̃(x) = vk. Hence, there exists a trajectory which reproduces the observed word
wk when the state outputs are assigned to the last letter of the strings vk1 , . . . , v

k
k (step 3

of the identi�cation algorithm).

In the next lemma it is shown that each state x in the automaton is only reachable
by a state trajectory of length n ≤ k if it produces a word wn = λ̃(x)〈k−n+1..k〉 (the
last n symbols of the word wk = λ̃(x)).

Lemma 2. We consider each state trajectory of length n ≤ k reaching state x(i+n−1)
in an NDAAO identi�ed with parameter k:

(x(i), . . . , x(i+ n− 1))|x(j + 1) ∈ f(x(j))∀i ≤ j < i+ n− 1

The state x(i+ n− 1) is only reachable by producing the word

λ̃(x(i+ n− 1))〈k − n+ 1..k〉 = wn ∈ LkIdent

Proof of lemma 2. From step 4 of the algorithm it follows that wn〈n〉 = λ̃(x(i + n −
1))〈k〉. From step 2 of the identi�cation algorithm, it follows that f(x(i+n−2)) is only
updated with x(i+n−1) if λ̃(x(i+n−2))〈2..k〉 = λ̃(x(i+n−1))〈1..k−1〉. This makes
sure that wn〈n−1〉 = λ̃(x(i+n−2))〈k〉. This principle can be continued: f(x(i+n−3))
is only updated with x(i + n − 2) if λ̃(x(i + n − 3))〈2..k〉 = λ̃(x(i + n − 2))〈1..k − 1〉.
Hence, wn〈n − 3〉 = λ̃(x(i + n − 3))〈k〉. This consideration can be repeated until the
initial state x(i) of the trajectory is reached with wn〈k − n + 1〉 = λ̃(x(i))〈k〉. This
shows that state x(i + n − 1) is only reachable by state trajectories of length n ≤ k if
they produce the word

λ̃(x(i+ n− 1))〈k − n+ 1..k〉 = wn ∈ LkIdent

The next lemma says that an NDAAO state can only be reached by a trajectory
producing a word of length n ≤ k that is part of the observed language. It is a
continuation of lemma 2.

Lemma 3. We consider each state trajectory of length n ≤ k reaching state x(i+n−1):

(x(i), . . . , x(i+ n− 1))|x(j + 1) ∈ f(x(j))∀i ≤ j < i+ n− 1

The state x(i+ n− 1) is only reachable by producing the word

λ̃(x(i+ n− 1))〈k − n+ 1..k〉 = wn ∈ LkObs
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Proof of lemma 3. If a word wn≤k /∈ LkObs with λ(x(i), . . . , x(i+n−1)) = wn≤k|x(j+1) ∈
f(x(j))∀i ≤ j < i + n− 1 exists, it follows from lemma 2 that a state must exist with
λ̃(x(i + n − 1))〈k − n + 1..k〉 = wn≤k /∈ LkObs. Step 1 of the identi�cation algorithm
makes sure that only states with λ̃(x) = wk ∈ W k

Obs,Σk exist. Due to equation 3.2
W k
Obs,Σk can be divided in two subsets: The �rst subset is W k

Obs. From lemma 2 follows
that states representing a word of this set can only be reached by producing a wn≤k =
λ̃(x(i + k − 1))〈k − n + 1..k〉 ∈ LkObs because (∀wk ∈ W n

Obs)(∃!x)|λ̃(x) = wk. The
second subset of W k

Obs,Σk consists of words resulting from duplicating the �rst symbol
of the observed sequences up to k − 1 times (equation 3.1): W k

Dupl,Σk = W k
Obs,Σk\W k

Obs.

From assumption 1 and de�nition 20 it follows that wk+1 ∈ W k+1
Obs,Σk cannot end with

wk+1〈k − 1〉 = wk+1〈k〉. Hence, there are no two successive states with λ(x(i − 1)) =

λ(x(i)). With lemma 2 it follows that a state with λ̃(x) = wk ∈ W k
Obs,Σk can only be

reached by a state trajectory of length n ≤ k producing the pairwise varying symbols
wn = wk〈k−n+1〉, . . . , wk〈k〉 with λ̃(x) = wk. It follows that the arti�cially introduced
words inW k

Obs,Σk resulting from duplicating the �rst observed output symbol up to k−1
times cannot be reproduced by the automaton. This leads to the conclusion that only
words wn≤k ∈ LkObs can be produced.

Lemma 3 has important consequences for model accuracy and performance of the
model as an observer in online diagnosis. As a �rst direct use, the lemma will be used
to proof the next theorem:

Theorem 4 (k + 1-completeness). For a given value of the identi�cation parameter
k, the identi�ed NDAAO is (k + 1)-complete in the sense of (Moor et al., 1998), i.e.
∀n ≤ k + 1, LnIdent = LnObs.

Theorem 4 means that the NDAAO identi�ed with a given value of the parameter k
represents exactly the set of observed words of length lower of equal to k + 1 and thus
minimizes the exceeding language of length k + 1. The following proof shows that this
property holds for the automaton identi�ed with algorithm 1.

Proof of theorem 4. For a given word wk ∈ LkObs, it follows from the proof of lemma 1
that a state trajectory exists with λ(x(i), . . . , x(i+k−1)) = wk. From lemma 3 it follows
that the state x(i + k − 1) cannot be reached by any other word than the considered
observed wk. Due to step 2 of the identi�cation algorithm, from state x(i+ k− 1) it is
only possible to reach a state x(i + k) with λ̃(x(i + k − 1))λ(x(i + k)) = wk+1 ∈ Lk+1

Obs

(λ̃(x(i + k − 1))λ(x(i + k)) is the concatenation of the words λ̃(x(i + k − 1)) and
λ(x(i+ k))). Hence, the automaton can only produce words wk+1 ∈ Lk+1

Obs .

With the proof of lemma 4 follows that algorithm 1 delivers a model that is as accurate
as the algorithm from (Klein, 2005) but is not restricted to system evolutions starting
and ending with the same output symbol. This theorem shows that for a given k, the
exceeding language LkExc of the identi�ed NDAAO can be eliminated. Like shown in
section 2.4.1 this minimizes the number of non-detectable faults.
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In the next theorem7, it is stated that the identi�ed language simulates the original
system language of arbitrary length if the condition Lk+1

Orig = Lk+1
Obs holds for a given

value of the identi�cation parameter k.

Theorem 5. If Lk+1
Orig = Lk+1

Obs , then L
k+n
Ident ⊇ Lk+nOrig with n ≥ 1 for an NDAAO identi�ed

with parameter k.

Proof of theorem 5. Lk+1
Ident ⊇ Lk+1

Orig since the identi�ed NDAAO is k + 1 complete.
For k + 2 it holds: ∀wk+2 ∈ Lk+2

Orig a decomposition akb1c1 = d1e1fk = s1ukv1 =

wk+2|akb1, e1fk, ukv1 ∈ Lk+1
Orig = Lk+1

Obs exists. Each state trajectory producing ak ends in

the same state x(i) (lemma 3 and step 1 of algorithm 1: (∀ak ∈ W k
Obs,Σk)(∃!x)|λ̃(x) =

ak). In step 2 of the algorithm, this state is connected with x(i + 1)|λ̃(x(i + 1)) = uk.
Each state trajectory producing uk ends in the same state x(i+1) which gets connected
to x(i + 2)|λ̃(x(i + 2)) = fk. Since there is a trajectory leading to state x(i) and x(i),
x(i+ 1) and x(i+ 2) are in one trajectory, it follows that ∀wk+2 ∈ Lk+2

Orig there exists a
trajectory of states producing this word. It is obvious that for larger values than k + 2

∀wk+n ∈ Lk+nOrig there is always an appropriate decomposition into already observed sub-
strings of Lk+1

Orig = Lk+1
Obs to �nd a trajectory of connected states like presented above.

Hence, it follows that Lk+nIdent ⊇ Lk+nOrig if L
k+1
Orig = Lk+1

Obs holds.

Based on the consideration from section 2.4.1, Theorem 5 shows that it is possible to
eliminate the non-reproducible language Ln≥k+1

NR if it is possible to state Lk+1
Orig = Lk+1

Obs .
This minimizes the number of false alerts during online fault diagnosis with the identi�ed
model. In the next section it is shown how it can be decided if Lk+1

Orig = Lk+1
Obs holds for

a given value of k.

3.4 Parameterization of the identi�cation algorithm

3.4.1 Meaning of the identi�cation tuning parameter

In this section new results concerning the role of the identi�cation tuning parameter k
are presented. It is shown how the identi�cation parameter helps to distinguish non-
equivalent states of a closed-loop DES leading to identical outputs.
In a closed-loop DES it is possible that di�erent states lead to the same output

symbol uDES but have di�erent fault-free following behaviors. As an example, �gure 3.6
is considered. The �gure shows a conveyor as typical part of a manufacturing system.
The conveyor and its controller can be treated like a closed-loop DES. The closed-loop
system of plant (conveyor) and controller exhibits the input/output (I/O) values of
the controller as measurable system output uDES. The current controller I/O vector
consisting of the controller I/Os is thus considered as system output uDES (a formal
de�nition of the controller I/O vector as system output will be given in de�nition 24 in
section 4.2.1). The conveyor has three position sensors P1, P2 and P3. The according
controller-inputs are the �rst three elements of the I/O vector. If the position sensors
detect a parcel, they return the value 1, else they return 0. The conveyor can be started

7This theorem was not shown for the algorithm of (Klein, 2005)

51



3 Monolithic Identi�cation of Closed-Loop Discrete Event Systems

by setting an actuator to 1. Figure 3.6 shows the parcel in two di�erent positions
(position I and position II). It can be seen that the two positions lead to the same
system output (C) but have a di�erent fault-free following behavior: In position I, P2
is expected to change its value (leading to vector D) and in position II, P3 is expected
to change its value (leading to vector E). The two underlying closed-loop DES states
are thus not equivalent although they lead to the same output vector: According to
(Cassandras and Lafortune, 2006), two states are only equivalent if they have the same
output and if the language starting in them is equal.

Figure 3.6: Conveyor example

An accurate model should be able to distinguish the two situations although they
are represented by the same I/O vector. An automaton that can distinguish between
the two non-equivalent system states is given in the right of �gure 3.7. Position I
corresponds to state x2 and position II belongs to state x4. If the two non-equivalent
closed-loop DES states are not represented by two di�erent states in an automaton like
in the left part of �gure 3.7, the following situation can arise: A fault lets the system
perform the sequence BCE which is not part of the fault-free behavior. BCE is a fault
symptom since the parcel must pass sensor P2 before it reaches P3 which is represented
by I/O vector E. The automaton on the left has a state trajectory which leads to the
generated word BCE (x1, x2 and x4). The reason is that x2 can produce the following
behavior of both underlying non-equivalent closed-loop DES states. BCE is part of the
exceeding behavior which makes the detection of the considered fault impossible with
the automaton in the left of �gure 3.7. If a model in form of an automaton is built
manually, an intuitive way to achieve high accuracy is to represent only equivalent DES
states with one automaton state. Two automaton states are intuitively connected if the
represented DES states can occur successively.

Figure 3.7: Automata for the conveyor example

If a model is built by identi�cation, the decision if two identical output symbols uDES

belong to two di�erent closed-loop DES states must be made based on an analysis of

52



3.4 Parameterization of the identi�cation algorithm

the observed system data. In the example in �gure 3.6 it can be seen that using the
preceding I/O vector of position I and II allows distinguishing the two underlying closed-
loop DES states: If vector C occurs due to position I, it must be the successor of vector
B. If C is caused by position II, it must follow vector D.
In the identi�cation algorithm from section 3.5.3, the parameter k allows integrating

knowledge concerning the preceding system outputs in an NDAAO state. In lemma 3
it is shown that an NDAAO state is only reachable by a state trajectory producing an
output sequence that corresponds to the word of length n ≤ k given by the concerning
state output λ̃(x). In the identi�cation algorithm, two NDAAO states are only con-
nected if they share the same memory of length k. If k is chosen such that it is possible
to distinguish two non-equivalent closed-loop DES states with the same output by their
preceding sequences of length k, the identi�cation algorithm does not represent them
with the same automaton state. In this case it is made sure that each automaton state
can only produce the fault-free following behavior of one closed-loop DES state. Any
other possibly faulty following behavior cannot be produced. This minimizes the num-
ber of non-detectable faults during online fault diagnosis. In the example of �gure 3.6
it is su�cient to chose k = 2 since the non-equivalent closed-loop DES states with the
same output are distinguishable by considering sequences of length two.

3.4.2 Discussion on an upper bound for the identi�cation

parameter

In section 2.4.1 it has been explained that the performance of a model in online di-
agnosis is determined by the minimization of the exceeding and the non-reproducible
behavior. It has been explained that the exceeding behavior refers to non-detectable
faults and the non-reproducible behavior corresponds to false alerts. Choosing a large
value for k improves the distinction of non-equivalent closed-loop DES states by a model
state which consequently leads to a reduced exceeding behavior. In this section it is
shown that in most practical cases this reduction comes at cost of an increased non-
reproducible behavior which is closely related to the number of false alerts: a word of
the non-reproducible language is part of the normal system behavior but it cannot be
reproduced by the (fault-free) model during online diagnosis (see section 2.4.1). Hence,
a false alert is risen. It will be concluded that in practical applications, an upper bound
for the identi�cation parameter k exists.
In (Blanke et al., 2006) it is shown that for fault diagnosis it is crucial to have a

complete model of the considered system. In terms of language theory, a model is
complete if its language simulates the fault-free language of the considered system. In
theorem 5 it has been shown that the identi�ed language Lk+nIdent simulates the original
system language Lk+nOrig for n ≥ k if Lk+1

Obs = Lk+1
Orig holds. The following considerations

will show that for large values of k it is often not possible to state Lk+1
Obs = Lk+1

Orig.
Figure 3.8 shows a typical evolution of the observed language of a closed-loop system.

The data is taken from a case study which is treated in section 3.5. It is shown how
the set cardinality of the observed language LnObs evolves after several observed system
evolutions. It can be seen that the cardinality of the language of length n = 1 converges
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to a stable level after 10 observed system evolutions. From the graph it can also be seen
that L2

Obs takes longer than L
1
Obs to converge to a stable level. Until the 15th system

evolution, the curve representing |L2
Obs| has a positive gradient. Generally, it can be

observed that the set cardinality of LnObs for larger values of n takes longer to converge
to a stable level than in the case of smaller n. The evolution of the observed system
language is very similar to the evolution sketched in �gure 3.3 on page 43 which was
shown to illustrate assumption 3 stating that the observed system language converges
to the original language with growing observation time.

Figure 3.8: Typical evolution of the observed language

If assumption 3 holds, the following consideration can be made: If after a phase of
growth, |LnObs| is not augmented for a su�ciently long time, it is a reasonable heuristic
to assume that |LnObs| will not grow in the future. If LnObs does no longer grow, it has
converged to LnOrig: The system has exhibited each wn ∈ LnOrig which is possible during
normal operation.

Assumption 5 (Complete observation). If the set cardinality of LnObs strongly con-
verges to a stable level for a signi�cant number of system evolutions, it is assumed that
LnObs ≈ LnOrig.

The signi�cant number of system evolutions mentioned in the assumption is a pa-
rameter of the representativeness of the observed data sample. It must be decided by
the user if the signi�cant number is reached.
If an identi�ed NDAAO is to be used for online fault diagnosis, the parameter k

must be chosen such that Lk+1
Obs ≈ Lk+1

Orig to get a complete model simulating the original
system language of length n ≥ k + 1 (theorem 5). If the NDAAO is identi�ed on an
incomplete data basis Lk+1

Obs ⊆ Lk+1
Orig, it is likely that the system exhibits new words

wk+1 ∈ Lk+1
Orig that have not yet been observed and are thus not part of the identi�ed

language since from theorem 4 it follows that Lk+1
Ident = Lk+1

Obs . These new fault-free words
are not reproducible by the identi�ed model and thus lead to erroneous fault detection.
Each not yet observed fault-free word wk+1 ∈ Lk+1

Orig leads to fault detection since it is
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not part of the model language. It follows that it is not possible to chose a too large
value for the identi�cation parameter k since this leads to a high number of false alerts.
k can only be chosen to a value such that assumption 5 holds for Ln=k+1

Obs . In �gure 3.8
the convergence criterion allows for example stating Ln=3

Obs ≈ Ln=3
Orig. In this case, k can

be chosen to k = n− 1 = 2.

3.4.3 Discussion on a lower bound of the identi�cation

parameter

In the former section it has been shown that the upper bound for the identi�cation
parameter k is determined by the convergence of the observed language. Generally, it
can be said that a small value for k delivers a model leading to a small number of false
alerts whereas a large value for k increases the sensitiveness to faults (reduction of the
exceeding language) but also leads to a higher tendency for false alerts. In �gure 3.8
it can be seen that for larger values of n, it may also be possible to state that LnObs is
rather completely observed although the convergence for lower values is clearer. Hence,
in some cases it is possible to choose a relatively large value for k which still leads
to a rather complete data base for identi�cation. To judge if the higher tendency for
false alerts when increasing k is acceptable since the model accuracy is signi�cantly
increased, a measure for the positive e�ects of increasing k is introduced.

In section 3.4.1 it is explained that an NDAAO state x can represent several closed-
loop DES states {xDES1 , xDES2 , . . . , xDESi } with di�erent valid following states. If k
is chosen such that the model is complete (it can reproduce the complete fault-free
original system language), the NDAAO state leads to states representing the successors
of {xDES1 , xDES2 , . . . , xDESi }. Hence, the transition function of the NDAAO state x yields
more states than each single transition function of one of the represented DES states.
If the considered system is in state xDES1 and a fault occurs, it is possible that this fault
leads to a following behavior which is valid in another system state xDES2 but not in
xDES1 . Since the NDAAO represents the system being in xDES1 with the same state that
represents xDES2 , the faulty behavior can be reproduced. The NDAAO state cannot
distinguish between the system states xDES1 and xDES2 . Hence, if a following behavior
is valid in xDES2 , it is also supposed to be valid in xDES1 .

This consideration shows that if by increasing k it is possible to make the approxi-
mation of DES states by NDAAO states less ambiguous, the fault detection capability
of the identi�ed model can be improved. As an example of this e�ect, the identi�ed
automata in �gure 3.9 are considered. The data basis for the identi�cation is given
by the following two observed sequences. They are supposed to be the only possible
fault-free sequences of the closed-loop DES:

σ1 = (A,B,C,D,B,C,D,E, F,G,H)

σ2 = (A,B,E, F,G,H)
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with

σ1 = Λ((
A

xDES0 ,
B

xDES1 ,
C

xDES2 ,
D

xDES3 ,
B

xDES4 ,
C

xDES5 ,
D

xDES6 ,
E

xDES7 ,
F

xDES8 ,
G

xDES9 ,
H

xDES10 ))

σ2 = Λ((
A

xDES0 ,
B

xDES1 ,
E

xDES11 ,
F

xDES12 ,
G

xDES13 ,
H

xDES14 ))

denoting the underlying closed-loop DES states of the observed sequences. On top of
each state its output Λ(xDES) is written. It can be seen that Λ(xDES1 ) = Λ(xDES4 ) = B:
xDES1 and xDES4 have the same output but are not equivalent since their following
behavior di�ers: In contrast to xDES1 , from xDES4 it is not possible to produce BCDB.

Figure 3.9: Example for the transition gap measure

In �gure 3.9, the identi�ed automata for di�erent values of k are given. The automa-
ton structure varies when increasing k. If the observed system is in state xDES3 with
Λ(xDES3 ) = D, the automaton at k = 1 represents this situation with x3. From state
xDES3 , the only valid following behavior leads to the observation of B (see σ1). If a
fault occurs leading to a non-valid following behavior E, this can be reproduced by the
automaton with the actual state x3. It cannot distinguish between the DES states xDES3

and xDES6 (with Λ(xDES3 ) = Λ(xDES6 ) = D). Since from xDES6 , E is a valid following
behavior, the fault cannot be detected due to its behavior being part of the model.
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Figure 3.9 shows that increasing k to k = 2 changes the automaton structure. It
can be seen that the automaton identi�ed with k = 1 contains an exceeding word
w3 = DBE which by theorem 4 is not part of the automaton identi�ed with k = 2 (since
Lk+1
Ident = Lk+1

Obs ). Although increasing k to k = 2 thus improves the overall accuracy,
the automaton identi�ed with k = 2 still contains a state representing two di�erent
non-equivalent system states: x3 still models xDES3 and xDES6 . Hence, a fault leading
to the output E from xDES3 can still not be detected. Increasing k to k = 3 does not
change this situation since the algorithm yields the same automaton structure. Only
if k is chosen to k = 4, the automaton state x3 models only xDES3 since it is possible
to distinguish between xDES3 and xDES6 by considering their three predecessors. With
k = 4, x3 has only one possible following state. Hence, the fault leading to E from
xDES3 can be detected, because E is no longer an accepted following behavior of x38.
A closer look at the example shows that not only x3 representing xDES3 but the whole
trajectory x2, x3 representing xDES2 , xDES3 and xDES5 , xDES6 was duplicated such that the
new trajectories at k = 4 represent only one of the underlying DES-trajectories.
If NDAAO trajectories represent less DES trajectories, this leads generally to a lower

number of states with multiple leaving transitions. Since the duplicated NDAAO tra-
jectory does no longer have to represent the di�erent following behaviors of two DES
trajectories (to assure the completeness of the model), the number of leaving transi-
tions of the last state in the two new NDAAO trajectories is reduced. If this e�ect
takes place, the number of transitions is thus not as quickly augmented as the number
of states when increasing k. In the following de�nition, the di�erence of states and
transitions of an NDAAO is introduced.

De�nition 23 (Transition-state gap). The transition-state gap of an NDAAO identi�ed
with parameter k is de�ned as

Gap(NDAAO, k) = |f(X)| − |X|

It is the di�erence of the number of transitions (denoted as |f(X)|) and the number of
states (|X|) of an NDAAO identi�ed with parameter k.

In table 3.1 the evolutions of the number of states and transitions and of the Gap-
function is depicted for the example. Increasing k from k = 1 to k = 3 adds the same
number of states and transitions. If k is chosen to k = 4, more states than transitions
are added which is a strong indicator that an NDAAO trajectory representing two
DES trajectories at k = 3 has been split to two NDAAO trajectories. Hence, the
Gap-function is decreased at k = 4.
The preceding considerations show that a decreasedGap-function is a strong indicator

that the representation of DES trajectories has become less ambiguous by increasing
k. It is a possibility to get information about the representation of non-equivalent
DES states although the original DES states are not known in the case of black-box

identi�cation. Hence, the following heuristic set of rules to determine an appropriate

8This holds if an appropriate state estimation algorithm is used, delivering x3 as unique estimate.

Such an algorithm is introduced in chapter 6.1
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k |X| |f(x)| Gap(NDAAO, k)

1 8 9 1

2 9 10 1

3 9 10 1

4 11 11 0

Table 3.1: Number of states and transitions

value for k is proposed if k cannot be chosen upon a priori knowledge. Since the rules
make use of the transition-state gap, it is necessary to identify models with di�erent
values for k before they can be applied. The rules have thus to be understood as an a
posteriori heuristic.

Rule 1: If it is not possible to determine a value k ≥ 1 such that Lk+1
Obs ≈ Lk+1

Orig

can be stated due to the convergence of Lk+1
Obs to a stable level, it is necessary

to increase the observation horizon and to collect more data. Each value
k ≥ 1 for which Lk+1

Obs ≈ Lk+1
Orig holds is an appropriate value to identify a

model eliminating the non-reproducible system language. This leads to a
minimum number of false alerts if the model is used for online diagnosis
purposes.

Rule 2: If Lk+1
Obs ≈ Lk+1

Orig holds for several k but with lower con�dence if k is
increased, k should only be augmented if the transition-state gap decreases
signi�cantly.

Choosing k with these rules is a compromise between a low number of false alerts
and high model accuracy which leads to an increased fault detection capability.

3.5 Case study: Fischertechnik laboratory facility

3.5.1 System description

To demonstrate the impact of the proposed methods for existing closed-loop DES, a
case study has been treated. It will be used as a running example in the following
chapters. The considered system is a laboratory facility at the institute of automatic
control, University of Kaiserslautern. It has typical characteristics of an industrial
manufacturing process. The purpose of the system depicted in �gure 3.10 is to treat
work pieces that are stored in the feeder (left most station). The system is controlled
using a Siemens S300 PLC (Programmable Logic Controller) with 15 inputs and 15
outputs. The controller inputs and the corresponding sensors can be seen in �gure
3.10. Inputs written in italic are connected to sensors with a speci�c technology that
delivers a logical 0 if they detect something and a logical 1 if they do not detect anything.
The outputs are given in table 3.2. If they are set to 1, the according actuator gets
activated. The I/O names are labeled with I1.2 etc. to indicate the second input that
belongs to the �rst machine and O2.4 for the fourth output of the second station.
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Figure 3.10: Laboratory system

A system evolution consists of the treatment of a given number of work pieces that
are stored in the feeder. As a �rst scenario, it is supposed that two work pieces are
to be treated. At the beginning of a system evolution the feeder pushes the �rst work
piece to the conveyor. Then it is transported to the drilling machine (station 1). In the
drilling station the work piece is stopped and two holes are drilled. As soon as the �rst
work piece has been treated in the �rst station it is transported to the vertical milling
machine (station 2) and the next piece is taken from the feeder. The �rst work piece
gets treated by the vertical milling machine (each of the three milling tools is applied to
the piece successively) and the second one by the drilling station. After the treatment
at the vertical milling machine has been �nished, the work piece gets transported to
the horizontal milling station (station 3). The second work piece moves from station 1
to station 2. When the �rst work piece has been treated in station 3, it is stored in
the last station at the right side in �gure 3.10. This process continues until both work
pieces have been treated by each of the three stations.

3.5.2 Data collection for identi�cation and online diagnosis

As explained in section 3.1, the proposed identi�cation method works on the basis of
signals exchanged between controller and plant. The data collection method chosen
for the case study works with a standard communication processor that is part of the
PLC. When controlling the system evolution, the PLC performs the following three
steps cyclically: reading the inputs, executing the program in order to determine the
new output setting and �nally writing the outputs. As depicted in �gure 3.11, the
transfer of the newly determined I/O values in form of an I/O vector takes place at
the end of the second step (program execution). At the same time when the newly
determined outputs get transfered to the output card of the PLC, the new I/O vector
is sent to a standard PC using the communication processor via a UDP-connection.
The languages de�ned in section 3.1 are thus based on an alphabet which consists of
the set of I/O vectors exhibited by the system. Since the I/O vectors are captured at
the end of the PLC cycle and are thus sampled, it is possible to have multiple I/Os
changing their value between two I/O vectors. This method can be applied to each
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I/O Description I/O Description

O1.2 drilling machine (station 1) mo-
tor up

O2.2 vertical milling machine (sta-
tion 2) motor up

O1.3 drilling machine motor down O2.3 vertical milling machine motor
down

O1.4 drilling machine drilling motor O2.4 vertical milling machine milling
motor

O1.5 drilling machine conveyor on O2.5 vertical milling machine conveyor
on

O2.7 change milling head
O3.0 horizontal milling machine (sta-

tion 3) motor back
O3.1 horizontal milling machine motor

front
O3.2 horizontal milling machine motor

up
O3.3 horizontal milling machine motor

down
O3.4 horizontal milling machine

milling motor
O3.5 horizontal milling machine con-

veyor on

Table 3.2: Controller outputs of the case study

system with a controller that is able to send data via an Ethernet data link which is a
common feature of almost all industrial controllers today. A detailed description of the
data collection procedure and its consequences on the collected data is given in (Roth
et al., 2010).

Figure 3.11: PLC cycle with data collection

3.5.3 Identi�cation of monolithic models

In �gure 3.8 on page 54, the evolution of the observed language LnObs for the case study
for n up to n = 10 has already been shown. In the former sections it has been explained
that for identi�cation of an NDAAO, k should be chosen such that LnObs ≈ LnOrig with
n = k + 1 which by assumption 5 is expressed by the convergence of |LnObs| to a stable
level. It can be seen that for lower values of n, the language converges very quickly
and can thus reliably be considered as completely observed. For larger values of n, the
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convergence can also be observed, but cannot as reliably be stated as in the case of a
lower n. In order to decide if the higher tendency for false alerts induced by increasing k
is acceptable due to an increased fault detection capability of the model, in �gure 3.12,
the Gap-function of de�nition 23 is depicted for several values of k. It can be seen that
the function decreases signi�cantly when k is increased from k = 1 to k = 2. Hence,
this is a strong indicator that the model accuracy is improved since the number of
ambiguous DES state representations is decreased. It can be seen that at k = 4, the
Gap-function decreases again. Since this decrease is not very important, the quality of
the model is not signi�cantly improved by increasing k to k = 4. Increasing k beyond
k = 4 does not lead to a falling gap-function. Based on the available data and the
evolution of the Gap-function, it is thus a reasonable decision to chose k = 2 for the
identi�cation algorithm.

Figure 3.12: Evolution of the Gap-function

The automaton identi�ed with k = 2 has 121 states and 163 transitions. Parts
of automata identi�ed with k = 1 and k = 2 can be seen in �gure 3.13. Since the
whole I/O vector is too large to be depicted in each state, only the I/Os changing their
value when taking a given transition are shown. The complete state output can be
reconstructed from the knowledge of the output of x0 in each automaton: In x0, all
I/Os have the value 0 except of the following ones: I1.3, I2.3, I3.1 and I3.3 are 1. The
notation of changing I/O values in �gure 3.13 is formalized in chapter 6.1. Basically,
I1.4_1 O1.5_1 between x0 and x1 means that I1.4 and I1.5 change from 0 to 1. Due to
the data collection procedure explained in section 3.5.2, several I/Os can change their
value from one vector to a following vector. I1.4_0 means that the corresponding input
changes its value from 1 to 0.
Both automata in �gure 3.13 represent the start of the system evolution. First, the

automaton identi�ed with k = 1 is considered. From x0 to x1 the �rst work piece is
pushed on the conveyor and gets transported to station 1 (x2). Then a �rst hole is
drilled into the work piece. After this, the work piece is moved on until the position
sensor I1.5 changes its value (x8). The conveyor stops again and a second hole is drilled
(x8 to x11). When the tool is back at its top position, the work piece is moved on to
the next station, which is represented by x2. Here it can be seen that the identi�ed
automaton cannot distinguish between the work piece being in the middle of I1.4, I1.5
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and between the work piece being in the middle of I1.5 and I2.4. This represents a
model inaccuracy. An exceeding behavior of length three can be produced when the
automaton models the work piece moving from I1.4 to I1.5 but arriving at I2.4 instead
of I1.5 (state trajectory x1, x2, x12 instead of trajectory x1, x2, x3). If a fault occurs
leading to the I/O vector of x12, when the work piece is between I1.4 and I1.5, it cannot
be detected.

Figure 3.13: Parts of identi�ed automata for the case study

This inaccuracy can be omitted by increasing k to k = 2. Where the automaton
identi�ed with k = 1 loops back to x2, the more accurate NDAAO at k = 2 represents
the work piece being between I1.5 and I2.4 with an own state (x12). At k = 2 the
non-equivalent system states describing the work piece between I1.4 and I1.5 on the
one hand and I1.5 and I2.4 on the other hand are distinguishable by analyzing their
predecessors. Since several other states are also split from k = 1 to k = 2, this explains
the falling Gap-function in �gure 3.12. This shows that choosing k = 2 leads to model
which is signi�cantly more accurate than at k = 1 with a data base that can reasonably
be considered as completely observed.
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Discrete Event Systems

4.1 Limits of monolithic identi�cation

In the former chapter it has been shown that an important precondition for the iden-
ti�cation of a closed-loop DES is to state that the original system language can be
considered as completely observed. In assumption 5 it has been explained that for this
purpose, the convergence of the observed language to a stable level is a suitable indica-
tor. In �gure 3.8 the evolution of the observed system language for the case study from
section 3.5 has been shown. The observed system evolutions consist of the treatment
of two work pieces which led to the convergence of the observed language LnObs even
for relatively large values of n. If the number of work pieces to be treated is increased
to three, the observed system language does not converge as quickly as with two work
pieces.

Figure 4.1: Observed language of the case study with three work pieces

Figure 4.1 shows the evolution of the set cardinality of LnObs for this case. Although
more system evolutions than in the case of treating two work pieces have been observed
(100 versus 60 evolutions), only |L1

Obs| converges to a stable level. This convergence
takes 50 evolutions whereas the convergence of |L1

Obs| with two work pieces only took
10 evolutions. In the former chapter it has been explained that the convergence of the
observed system language to a stable level is crucial to get a complete model. Without
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a complete model simulating the whole fault-free system language the number of false
alerts during online fault diagnosis can become unacceptably high. The reason for the
longer growing phase of |L1

Obs| is the higher degree of concurrency induced by increasing
the number of work pieces to be treated.
If three work pieces are to be treated in the case study system, the three stations

depicted in �gure 3.10 work simultaneously when the third work piece has been pushed
on the �rst conveyor and the �rst two work pieces are treated by the second and the
third station. Like in the case of Petri nets as shown in �gure 4.2, a part of the behavior
is not synchronized and can be executed in di�erent orders. First, the leftmost Petri
net is considered. It consists of two parallel branches. After the occurrence of event a,
the following two sequences are possible:

s1 = abcde s2 = acbde

In this case, the events b and c can be generated concurrently. Event d can only occur
when b and c both have occurred. If concurrency is increased like in the rightmost Petri
net in �gure 4.2, the number of possible generated event sequences is increased. The
Petri net with three parallel branches can generate the following six evolutions:

s1 = abcde s2 = abdce s3 = acbde

s4 = acdbe s5 = adbce s6 = adcbe

In this case the events b, c and d can be generated concurrently after the occurrence of
a. This example shows that increasing concurrency in the system increases the original
system language.

Figure 4.2: Example for concurrent behavior

In the case study, the simultaneous treatment of three work pieces in three stations
also increases concurrency: After a work piece has arrived at a station, the station
behavior is independent from the behavior of the other stations. Like in the Petri net
example, the combined behavior of such concurrent subsystems (represented by indi-
vidual branches in the Petri net) leads to a large number of possible global system
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behaviors. If the global behavior of such concurrent systems is considered, it is a direct
consequence that it takes the system longer to exhibit a signi�cant part of its original
system language since the size of the original language increases with augmenting con-
currency. Hence, the observed language takes longer to converge to a stable level as
depicted in �gure 4.1.
A possible solution for the problem of a non-converging observed language is to

consider subsystems with a lower degree of internal concurrency. In the rightmost Petri
net in �gure 4.2 such a subsystem could consist of two of the three parallel branches.
For the case study system, a subsystem could consist of the two left most stations.
Figure 4.3 shows the evolution of the observed language if only the �rst two stations
are considered. Considering only two stations, the maximum number of work pieces
treated in parallel is two. It can be seen that the concerning observed system language
converges signi�cantly faster than in �gure 4.1 where the complete system is considered.
Since the model for the �rst two stations can be identi�ed on the basis of a converged
observed language Lk+1

Obs ≈ Lk+1
Orig (e.g. with k = 2), the precondition of theorem 5 is

ful�lled which leads to a minimized number of false alerts during online fault diagnosis.

Figure 4.3: Observed language of a subsystem consisting of the �rst two stations treat-
ing three work pieces

In many practical applications, the same phenomenon as in the case study system
treating three work pieces can be observed: The observed system language does not
converge to a stable level, which does not allow identifying a suitable model for online
fault diagnosis. To overcome this problem, it is possible to divide the system in subsys-
tems with converging observed languages. The question of how to choose appropriate
subsystems is treated in chapter 5. In the remaining part of this chapter an approach
is proposed to identify subsystem models of a closed-loop DES. It will be shown that
ful�lling the precondition Lk+1

Obs ≈ Lk+1
Orig for each single subsystem comes at cost of an

increased global exceeding language which is a disadvantage for online diagnosis. To
limit the global exceeding system behavior, an approach to systematically restrict the
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combined behavior of an identi�ed automata network is presented.

4.2 Identi�cation of partial closed-loop DES

4.2.1 De�nition of partial closed-loop DES

As explained in section 3.5, the data base for identi�cation is determined by collecting
the signals exchanged between controller and plant. These signals can be grouped in
an I/O vector:

De�nition 24 (Controller I/O vector). Given r di�erent controller inputs I1, ..., Ir
and s di�erent controller outputs O1, ..., Os, the controller I/O vector u = (IO1, ...,

IOm) with m = r + s is given by IOi = Ii ∀ i = 1, .., r and IOr+i = Oi ∀ i = 1, .., s.
m = |u| denotes the length of the vector (number of controller I/Os). The controller
I/Os can have the values 1 or 0.

In the following, the controller I/O vector u is considered as the closed-loop DES
output uDES introduced in section 3.1. The controller I/O vector is the output of the
complete system. If the system is divided into subsystems, only parts of the complete
I/O vector are considered in each subsystem. To determine the I/Os which are to be
considered in a subsystem, a mapping function is introduced:

De�nition 25 (Subsystems and I/O-mapping function). The closed-loop DES consists
of several subsystems syst. The function y(syst) assigns a set of controller I/Os to each
subsystem. The number of subsystems is de�ned as Nsys.

The output of the t-th subsystem syst is determined by the partial I/O vector which
contains the I/Os from the set y(syst).

De�nition 26 (Partial controller I/O vector). Given the controller I/O vector u ac-
cording to de�nition 24: The partial controller I/O vector is de�ned as usyst = (IO1,

..., IOm) with IOi = − (don't care symbol) if IOi /∈ y(syst) and IOi taken from u if
IOi ∈ y(syst).

Figure 4.4 shows the principle of the previous de�nitions. The global I/O vector of
the complete system consists of �ve controller I/Os. The function y(sys1) assigns IO2,
IO3 and IO5 to the �rst subsystem whereas IO1, IO3 and IO4 are assigned to the
second subsystem. It can be seen that an I/O can be part of several subsystems. I/Os
which are not part of the considered subsystem are replaced by the don't care symbol
'-'.
Like the de�nition of the global observed system language LnObs on the basis of the

observed system output u, it is possible to de�ne the partial observed system language
based on the partial system output usyst .

De�nition 27 (Observed partial language). The observed partial system language of
the t-th subsystem LnObs,syst is de�ned according to de�nition 20 considering the partial
I/O vector usyst as observed system output.
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Figure 4.4: Division of the global I/O vector into two subsytems

Remark 2. Corresponding to assumption 1, it is assumed that the j-th partial I/O vec-
tor usyst(j) is created by the j-th event in the underlying subsystem. Hence, usyst(j) 6=
usyst(j + 1) also holds for the partial system language.

On the basis of the observed partial system language Lk+1
Obs,syst

a partial NDAAOt for
the t-th subsystem is identi�ed with the approach of chapter 3. It is obvious that the
NDAAOt is k+1-complete with respect to Lk+1

Obs,syst
. If the subsystems are chosen such

that Lk+1
Obs,syst

converges to a stable level, the identi�ed partial automaton is an appro-
priate fault detection model to minimize the number of false alerts when observing the
considered subsystem. In the next section the combined behavior of several NDAAOt

representing several subsystems syst will be derived. This enables an evaluation of the
fault detection capability of a set of partial automata representing the subsystems of a
given global system.

4.2.2 Composition of partial closed-loop DES

After the identi�cation of a partial automaton for each subsystem, the combined au-
tomaton behavior represents the identi�ed language LnIdent. In �gure 4.5 two identi�ed
NDAAO are shown (the function J is introduced in de�nition 28). They build an au-
tomata network representing the considered closed-loop DES. Each automaton has a
partial I/O vector as state output and is able to reproduce an identi�ed partial language
LnIdent,syst . To determine the language of the automata network, the partial automata
must synchronously perform state trajectories. The resulting outputs consisting of par-
tial I/O vectors can then be combined to the global model output. To implement the
synchronization of several NDAAOt, the NDAAO cross product is introduced in this
section. It is an adaptation of the parallel composition from (Cassandras and Lafortune,
2006) to the automaton of type NDAAO given in de�nition 16.
A �rst step for the construction of the NDAAO cross product is the following de�ni-

tion. It de�nes the result of combining two partial I/O vectors from di�erent subsys-
tems.

De�nition 28 (Join function for two partial I/O vectors). Given two partial I/O vec-
tors usys1 and usys2 with the same number of I/Os (|usys1 | = |usys2 |). The join function
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Figure 4.5: Two partial NDAAOs with a combined output

J (usys1 , usys2) delivers a vector with |usys1 | elements. The i-th vector element is ad-
dressed with J (usys1 , usys2) [i]:

J (usys1 , usys2) [i] =





usys1 [i] if usys1 [i] = usys2 [i]

usys2 [i] if usys1 [i] = − ∧ usys2 [i] 6= −
usys1 [i] if usys1 [i] 6= − ∧ usys2 [i] = −
c if − 6= usys1 [i] 6= usys2 [i] 6= −

∀i = 1, . . . , |usys1 |, with usys1 [i] denoting the i-th IO of the partial vector usys1 .

The I/Os at each position of the two partial I/O vectors are compared. If one of them
is overwritten by the don't care symbol '-' since it does not belong the the according
subsystem, the value of the other vector is taken. If one of the compared I/Os is 1 and
the other one is 0, c for contradiction is written at the position of the according I/O.
For the join function the associative law holds:

J(λ(xsys1), λ(xsys2), λ(xsys3)) = J(λ(xsys1), J(λ(xsys2), λ(xsys3))) (4.1)

In �gure 4.5, the join function of two state outputs is given as an example. From this
de�nition it follows directly that a valid state combination {xsys1 , . . . , xsysn} of n partial
automata modeling a system state must ful�ll the following condition with m denoting
the dimension of the I/O vector:

J(λ(xsys1), . . . , λ(xsysn))[i] 6= c ∀1 ≤ i ≤ m (4.2)

The reason is that the output of the considered closed-loop DES cannot contain the
contradiction symbol c.
The language of an automata network is determined by the combined evolution of the

underlying automata. In (Cassandras and Lafortune, 2006), the parallel composition is
introduced as an appropriate operation to determine the combined behavior of inter-
acting subsystems with private and common events. Private events are only related to
one subsystem whereas common events are shared by several subsystems. The parallel
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composition of automata synchronizes common events. A common event can only be
executed if the underlying automata execute it synchronously. Private events can be
executed whenever possible. Subsystems with partial I/O vectors as system output are
a typical example for systems with private and common events. I/Os considered in
two subsystems are related to common events. If such an I/O changes its value in one
subsystem, this must also happen in the second subsystem such that a valid system
output according to equation 4.2 is possible. I/Os considered in one subsystem only,
refer to private events. These I/Os can change their value independently since they
are replaced by the don't care symbol '-' in the other subsystems. In de�nition 9 sec-
tion 2.3.2, the parallel composition has been introduced for the 'standard'-automaton
used in the diagnoser approach. In the following, an adaptation of this composition
procedure to automata of the NDAAO-type is given. The operation will be denoted as
'automata cross product' or 'parallel composition' in the rest of the work.
The composition of two partial NDAAO1 and NDAAO2 is given in the following

de�nition:

De�nition 29 (Cross product or parallel composition of two partial NDAAO). The
cross product

NDAAO|| = NDAAO1||NDAAO2 = (X||, J(Ω1,Ω2), f||, λ||, x||0)

of two partial NDAAO1 and NDAAO2 with output alphabets Ω1 and Ω2 consisting of
partial I/O vectors of the same length is an NDAAO according to de�nition 16. The
single elements are given by the following equations:
State space:

X|| := {(x1, x2) ∈ X1 ×X2|c /∈ J(λ(x1), λ(x2))} (4.3)

State output:

∀(x1, x2) ∈ X|| : λ||((x1, x2)) := J(λ(x1), λ(x2)) (4.4)

Transition function:

∀(x1, x2) ∈ X|| : f||((x1, x2)) := {(x′1, x′2) ∈ X|||
(
(x′1, x

′
2) ∈ {x1 ∪ f1(x1)}×

{x2 ∪ f2(x2)} ∧ c /∈ J(λ(x′1), λ(x′2)) ∧ (x′1, x
′
2) 6= (x1, x2)

)
} (4.5)

Initial state:
x||0 = (x10 , x20) (4.6)

In equation 4.3, the cross product of the underlying NDAAO state spaces is built.
X|| consists of this cross product except of state combinations leading to a non-valid
combined state output. Equation 4.4 assigns to each state of X|| the combined partial
I/O vectors of the underlying partial NDAAO states. In equation 4.5 the transition
function of the cross product states is derived. Each cross product state (x1, x2) is
connected to the state (x′1, x

′
2) if x′1 is either a successor of x1 or x1 itself and if x′2
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is either a successor of x2 or x2 itself. (x1, x2) is only connected to following states
with valid outputs according to equation 4.2. This implements the synchronization of
common I/Os. (x1, x2) is not connected to itself (no self-loop). In equation 4.6, the
initial state is determined as the state with the underlying initial NDAAO states. If
more than two NDAAO have to be synchronized, the cross product operation can be
applied successively. Like in the case of the parallel composition from (Cassandras and
Lafortune, 2006), it is possible to build the cross product of several NDAAO by applying
the operation of de�nition 29 successively (associative law of the parallel composition):

NDAAO1||NDAAO2||NDAAO3 = (NDAAO1||NDAAO2)||NDAAO3 (4.7)

An interesting property of the cross product language is given in the following theo-
rem:

Theorem 6 (Completeness of the cross product of identi�ed automata). We consider
a closed-loop DES which is divided in Nsys subsystems. If the Nsys partial systems are
identi�ed such that Lk+nIdent,sysi

⊇ Lk+nOrig,sysi
∀1 ≤ i ≤ Nsys, it follows that L

k+n
Ident||

⊇ Lk+nOrig

for the language of the cross product.

This means that even if the complete system language cannot be considered as com-
pletely observed, it is possible to simulate it by the language of the cross product if the
underlying partial languages can be considered as completely observed: According to
theorem 5, Lk+nIdent,sysi

⊇ Lk+nOrig,sysi
holds if k was choosen such that Lk+1

Obs,sysi
= Lk+1

Orig,sysi
.

For the proof, the de�nition of two functions is necessary. The �rst function replaces a
substring consisting of equal symbols by a string of length 1, containing the considered
symbol.

De�nition 30 (Replace equal substrings function). Given a word wn of length n. The
function wm≤n

res = RemEqual(wn) replaces each substring w2
sub ∈ wn|w2

sub〈1〉 = w2
sub〈2〉

with1 w2
sub〈1〉. This operation is repeated until the resulting word wm≤n

res no longer
contains a w2

sub with w
2
sub〈1〉 = w2

sub〈2〉.

For the word w5 = ABBBC, wm≤n
res = RemEqual(wn) delivers w3

res = ABC. The
next function is the projection of an I/O vector to a subset of I/Os. It replaces each
I/O in the vector by the don't care symbol '-' if it is not part of a given I/O set.

De�nition 31 (I/O vector projection). Given an I/O vector u(j) and a set of I/Os
IOSet. The function IOProjIOset(u(j)) replaces the value of each IO ∈ u|IO /∈ IOSet
by the don't care symbol '-'.

With IOSet = y(syst) it is possible to derive the partial I/O vector of the t-th partial
subsystem syst from the I/O vector of the global system usyst = IOProjy(syst)(u) (with
y(syst) from de�nition 25).

1Like in chapter 3, wn〈i〉 addresses the i-th symbol (or letter) of the word wn. This is not to be

confused with the use of the u[i] operation on single I/O vectors u to get the i-th I/O.
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Proof of theorem 6. We proof the theorem for a closed-loop DES which is divided in
two subsystems sys1 and sys2. The extension to more than two subsystems is straight
forward. Each wk+nOrig ∈ Lk+nOrig can be seen as the result of two partial words wn1≤k+n

Orig,sys1
∈

Lk+nOrig,sys1
, wn2≤k+n

Orig,sys2
∈ Lk+nOrig,sys2

of the two subsystems with

wn1≤k+n
Orig,sys1

= RemEqual(IOProjy(sys1)(w
k+n
Orig))

wn2≤k+n
Orig,sys2

= RemEqual(IOProjy(sys2)(w
k+n
Orig))

If an I/O vector is part of the original language, replacing all I/Os by '-' if they do not
belong to the given subsystem leads to a partial I/O vector being part of the original
subsystem language. From the precondition it follows that for the partial systems
Lk+nIdent,sys1

⊇ Lk+nOrig,sys1
and Lk+nIdent,sys2

⊇ Lk+nOrig,sys2
holds. Hence, wn1

Orig,sys1
∈ Lk+nIdent,sys1

and wn2
Orig,sys2

∈ Lk+nIdent,sys2
. From this it follows that for each wn1

Orig,sys1
and wn2

Orig,sys2

a state trajectory exists in the automaton that has been identi�ed for the according
subsystem, producing the original word. In equation 4.3, X|| is constructed such that a
cross product state exists for each combination of two partial automata states leading to
a valid system output. Hence, for each combination of substrings w1

Orig,sys1
∈ wn1

Orig,sys1

and w1
Orig,sys2

∈ wn2
Orig,sys2

such that J(w1
Orig,sys1

, w1
Orig,sys2

) ∈ wk+nOrig, a cross product
state exists with J(w1

Orig,sys1
, w1

Orig,sys2
) as output. In equation 4.5, two cross product

states x||1 with λ||(x||1) = wk+nOrig〈j〉 and x||2 with λ||(x||2) = wk+nOrig〈j+1〉 are connected if
at least one of the underlying partial automaton states of x||1 has one of the underlying
partial automaton states of x||2 as successor. Since for each wn1

Orig,sys1
and wn2

Orig,sys2
a

state trajectory exists in the partial automaton of the according subsystem, the cross
product contains a trajectory reproducing wk+nOrig.

From theorem 6 it follows that it is possible to identify an automata network which
simulates the complete original system language although even L1

Obs (of the global
system language) does not converge. The precondition is that the language of each of
the considered subsystems converges as explained in section 4.1. Since the identi�ed
automata network is able to reproduce the complete original system language although
LnObs ⊂ LnOrig (∀n ≥ 1), the number of false alerts during online diagnosis can be
signi�cantly reduced compared to the monolithic approach.
A disadvantage of the distributed approach is the increased exceeding language lead-

ing to a larger number of non-detectable faults. In the monolithic approach it was
possible to guarantee that the exceeding language Lk+1

Exc is minimized. Although this
property still holds for each of the identi�ed partial automata, it can no longer be guar-
anteed for the language of the complete automata network. Even if each of the partial
automata produces a subsystem word which has been observed before, the combination

of fault-free subsystem words is not necessarily a word of the fault-free original system
language. As an example to illustrate this phenomenon, the two partial automata in
�gure 4.6 are considered. They are identi�ed for two subsystems considering the �rst
two and the last two I/Os of the global I/O vector. The identi�cation was carried out on
the basis of the partial languages built with σ1 in �gure 4.6 according to de�nition 27.
The identi�cation parameter was chosen to k = 1.
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Figure 4.6: Example for exceeding behavior of an automata network

In the example, the second I/O is common to both of the partial automata. The
observed sequence σ1 which was the basis for the identi�cation of the partial automata
is depicted on the right of the automata network. The language of the automata network
is de�ned by the cross product according to de�nition 29. The resulting automaton is
depicted in �gure 4.7.

Figure 4.7: Cross product of the example

In the example it is supposed that under fault-free conditions, the underlying closed-
loop DES can only exhibit the sequence σ1. Any other sequence should thus not be
part of the identi�ed network. Suppose that a fault leads to the sequence

σF = (



1

0

0


 ,



1

1

0


 ,



0

0

1


 ,



1

0

1


 ,



0

0

1


)

Since the automata network (and thus the cross product) can perform a combined
state evolution resulting in this sequence (x0, x1, x2, x0, x2 for automaton 1 and x0, x1, x2
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for automaton 2), the fault cannot be detected. The sequence σF is part of the cross
product language since it can be produced by a combined evolution of the partial
automata.
The example shows that it is necessary to restrict the behavior of the automata

network to prevent faulty behaviors from being part of the automata network language.
In the next section it will be shown how the automata network can be restricted to
producing only the observed global behavior and a well speci�ed amount of unobserved
behavior.

4.3 Restriction of an identi�ed automata network

If the identi�ed models are used for online fault detection, the current behavior of the
system is compared with the model behavior. Only if both behaviors di�er, a fault
can be detected2. In order to reduce the number of non-detecable faults (faults with a
behavior which can be reproduced by the model), the automata network language has
to be systematically restricted. The restriction is performed based on a reduction of
the cross product language. The �rst step is to determine the observed part of the cross
product language. This part of the language is part of the original system language and
should thus not be suppressed. To determine the observed part of the cross product
language, a transition observation function is introduced:

De�nition 32 (Transition observation function). The transition observation function
Θ : X × X → {true, false} assigns to each pair (x1, x2) of NDAAO states true if a
transition from x1 to x2 has been observed. If the transition has not been observed, the
function assigns the value false. The decision is based on the set of observed sequences
Σ = {σ1, . . . , σp}3. Θ(x1, x2) is unde�ned if x2 /∈ f(x1).

In the case of an identi�ed monolithic NDAAO, the value of Θ is true for each transi-
tion in the automaton since in algorithm 1 states are only connected if their outputs have
been observed successively. If the cross product of several identi�ed partial automata is
considered, transitions exist which do not correspond to an observed sequence. These
transitions have their origin in the unsynchronized behavior of the underlying partial
automata. The transition observation function can be determined with algorithm 3.
The idea is to reproduce each observed sequence starting from the initial state of the
cross product. If it is necessary to pass from a state x||1 to a state x||2 to reproduce
the observed sequences, Θ(x||1, x||2) is assigned to true. Otherwise, Θ(x||1, x||2) is set to
false.
At the beginning of algorithm 3, each transition is declared unobserved. For each

observed sequence the following operations are performed: If the �rst I/O vector of
a sequence is considered, the initial state of the cross product is taken as the current
state x||(j) (line 4 and 5). If the considered I/O vector is not the �rst one in the

2A more detailed description of the online diagnosis process using the identi�ed models will be given

in chapter 6
3see de�nition 19
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Algorithm 3 Determination of the observed cross product
Require: Cross product NDAAO||, observed sequences Σ = {σ1, . . . , σp}
1: ∀(x||1, x||2) ∈ X|| ×X|||x||2 ∈ f(x||1) : Θ(x||1, x||2) := false

2: for each σh ∈ Σ do

3: for each uh(j) ∈ σh = (uh(1), uh(2), . . . , uh(lh)) do

4: if j = 1 (uh(j) is the �rst vector in σh) then
5: Current state x||(j) = x||0
6: else

7: x||(j) := x|||
(
x|| ∈ f||(x||(j − 1)) ∧ λ||(x||) = uh(j)

)

8: Θ(x||(j − 1), x||(j)) := true

9: end if

10: end for

11: end for

sequence, the new current state x||(j) to reproduce the sequence is determined in line 7.
The next state x||(j) is a following state of the former current state x||(j − 1) and
has the considered I/O vector as output. From step 2 of algorithm 1 (the monolithic
identi�cation algorithm) it follows that a state in an identi�ed automaton does not
have several following states with the same output. Hence, there is always only one
state ful�lling the condition in line 7 of algorithm 3. In line 8, the transition between
x||(j− 1) and x||(j) is declared observed. If each sequence has been treated, the part of
the cross product which corresponds to the observed system behavior can be obtained
by applying Θ to the transitions in the automaton.
Figure 4.8 shows an example for the determination of the Θ function. It is the cross

product from the last example. Based on the analysis of the observed sequence σ1, Θ is
determined with algorithm 3. The transitions with the solid lines have the Θ value true
since they must be passed to reproduce the observed sequence. The transitions with
the dashed lines are part of the cross product, but are not part of a state trajectory
reproducing the observed sequence σ1.
If the cross product performs a state trajectory containing unobserved transitions,

this can lead to a word of the exceeding language LnExc = LnIdent\LnOrig. Since the
combined behavior of the underlying partial automata resulting in the considered tra-
jectory has not been observed before, it potentially represents a fault symptom. At the
same time it is possible that a trajectory containing unobserved transitions represents
a word of the original fault-free system language LnOrig which has not yet been seen. It
should thus be accepted in order to avoid a false alert. A possible way to systematically
parameterize the necessary trade-o� between producing a certain amount of unknown
behavior and avoiding a too important exceeding language is to count the number of
unobserved transitions in a trajectory of the cross product. Hence, the restriction of
the cross product language is possible by giving an upper limit of allowed unobserved
transitions. This approach is based on the assumption that faults typically lead to a
longer abnormal behavior. This assumption is common to most model-based diagno-
sis methods (e.g. the necessary deviant behavior to determine a diagnosis with the
diagnoser approach of (Sampath et al., 1996), see chapter 2.3). The upper limit of
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4.3 Restriction of an identi�ed automata network

Figure 4.8: Example for an observed cross product

accepted unobserved behavior can be de�ned manually using an additional automaton
of the NDAAO-type with a Θ function. The automaton can be seen as an additional
parameter to in�uence the language of the identi�ed model. The purpose of the au-
tomaton is to be run in a synchronized way with the identi�ed system model containing
observed and unobserved transitions and to serve as a counter:

De�nition 33 (Tolerance speci�cation). The tolerance speci�cation is an

NDAAOTol = (XTol,ΩTol, fTol, λTol, xTol0)

with XTol �nite set of states, ΩTol = {OK,Fault, -} output alphabet, fTol : XTol → 2XTol

non-deterministic transition function, λTol : XTol → ΩTol output function and xTol0 the
initial state. In the output alphabet, OK represents a situation where the trajectory
of the synchronized system model is accepted as fault-free. If the NDAAOTol is in a
state with the output Fault, the trajectory of the synchronized model is considered
as a fault. '-' represents an undecided situation. For the tolerance speci�cation, the
transition observation function Θ must be de�ned manually for each transition.

The tolerance speci�cation automaton has to be built manually. A possible imple-
mentation is given in �gure 4.9 and will be explained after the following de�nition. To
restrict the automaton network behavior, the tolerance speci�cation automaton is run
in a synchronized way with the cross product according to the following rule:

De�nition 34 (Evolution rule for the cross product synchronized with a tolerance
speci�cation). The cross product can only change its current state x||(j) to x||(j+1), if
there is a following state xTol(j + 1) of the current tolerance speci�cation state xTol(j)
for which Θ(x||(j), x||(j + 1)) = Θ(xTol(j), xTol(j + 1)) holds. If such xTol(j + 1) and
x||(j + 1) exist, they become the next current states of the tolerance speci�cation and
the cross product respectively. If no such states exist, the cross product cannot proceed
to another state.
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4 Distributed Identi�cation of Closed-Loop Discrete Event Systems

In the tolerance speci�cation a transition must be taken which has the same Θ-value
like the transition in the cross product. If an appropriate transition does not exist, the
cross product cannot enter the according state.
The language of the cross product generated synchronized with the tolerance speci�-

cation contains two pieces of information. The �rst information is obtained by building
the sequences of I/O vectors generated by state trajectories in the cross product. The
second information is that for each of these sequences the output of the �nal state of the
tolerance speci�cation is known. Hence, it is known if a given sequence is considered as
fault-free ('OK'), undecided ('-') or faulty ('Fault') by the tolerance speci�cation.
With de�nition 34 it follows that a valid tolerance speci�cation automaton that is

able to restrict the cross product language must be conform to the following two rules:
1. Each state in the tolerance speci�cation has at most two following states:

∀xTol ∈ XTol : |f(xTol)| ≤ 2 (4.8)

2. Two following states do not have the same Θ value. This makes sure that the
state evolution rule in de�nition 34 can be correctly applied since the choice of the next
current tolerance speci�cation state is always unambiguous:

(
∀xTol ∈ XTol ∧ ∀xTol1 , xTol2 ∈ f(xTol)

)
: Θ(xTol, xTol1) 6= Θ(xTol, xTol2) (4.9)

Figure 4.9 shows an example of a tolerance speci�cation automaton. When synchro-
nized with a cross product according to de�nition 34, it tolerates passing one unobserved
cross product transition (Θ-value is false). After the occurrence of a second unobserved
transition, the tolerance speci�cation automaton is in the state with the output 'Fault'.
This state does not have any leaving transition. Hence, the evolution of the cross
product is blocked according to de�nition 34.

Figure 4.9: Example for the tolerance speci�cation automaton

As an example of the e�ect of the tolerance speci�cation we consider again the faulty
sequence

σF = (



1

0

0


 ,



1

1

0


 ,



0

0

1


 ,



1

0

1


 ,



0

0

1


)

Reproducing σF , the cross product in �gure 4.8 passes two unobserved transitions:
after the trajectory x0x0 → x1x1 → x2x2 with exclusively observed transitions, the
trajectory x2x2 → x0x2 → x2x2 to reproduce the last three I/O vectors in σF contains
two unobserved transitions. If the tolerance speci�cation is run in a synchronized way,
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4.3 Restriction of an identi�ed automata network

the two unobserved transitions lead it to the state with the output 'Fault' which declares
that the considered sequence is not part of the fault-free behavior. With the tolerance
speci�cation it is thus possible to de�ne the amount of not yet known global system
behavior which is considered as a fault symptom although each partial behavior is
known. With the tolerance speci�cation of �gure 4.9, the following sequence σ2 would
not be considered as a fault since it leads to only one unobserved transition in the
trajectory x0x0 → x0x2 → x0x0 in �gure 4.8.

σ2 = (



1

0

0


 ,



0

0

0


 ,



1

0

0


)

The tolerance speci�cation allows to balance the number of false alerts and the sensi-
tiveness to faults. In the example it was decided that sequences leading to only one yet
unknown transition in the cross product are probably part of the fault-free behavior
whereas a higher number of unobserved transitions is not acceptable as fault-free be-
havior. Choosing an appropriate structure of the tolerance speci�cation automaton is
a degree of freedom to adjust the model to a given system and the available observed
system language. In section 4.4 it will be shown how an analysis of the observed system
language can help to determine an appropriate tolerance speci�cation. Nevertheless,
the choice of the tolerance speci�cation will always depend on the preferences of the
user.
The approach of constructing the cross product (and to derive the observed part of it)

has an important disadvantage if it is to be applied to large systems: building the cross
product of several partial automata can lead to the state space explosion problem.
According to (Bérard et al., 2001), the state space resulting from composing several
automata with state spaces X1, X2, . . . , Xn can reach up to |X1| × |X2| × · · · × |Xn|
states. For practical implementation, this poses two problems. The �rst problem is
that the procedure to obtain the cross product from de�nition 29 can take very long.
The second problem is that for diagnosis purposes, the resulting cross product must
usually be handled online. If the resulting automaton is too large, it can be di�cult
to apply diagnosis procedures to the model in real time. Since the described approach
is based on the distinction between the observed and the unobserved part of the cross
product, it is not necessary to build and maintain the complete cross product. In the
remainder of this section it is shown how it is possible to only construct the observed
part of the cross product explicitly and to derive the unobserved part implicitly when
it is necessary to produce a given part of the unobserved cross product language. The
algorithms are an improved version of the procedures given in (Roth et al., 2009a).
The �rst step of the proposed approach is to directly build the observed part of

the cross product based on the available observed sequences Σ = {σ1, . . . , σp} and the
identi�ed partial automata. The observed cross product resulting from algorithm 4 is
an NDAAOObs|| with the output alphabet ΩObs|| = X1 × X2 × · · · × Xn: The output
alphabet (and thus the state outputs) consist of state combinations from the n partial
automata from which the observed cross product is built. With this de�nition of the
state outputs it is possible to determine for each NDAAOObs||-state the underlying state

77



4 Distributed Identi�cation of Closed-Loop Discrete Event Systems

combination of the partial automata by applying the state output function λObs||. With
the join-function from de�nition 28, it is possible to get the I/O vector corresponding
to the combination of partial automaton states represented by a given observed cross
product state.
In contrast to the construction of the cross product NDAAO||, in algorithm 4 not

each combination of partial NDAAO states leads to the creation of a new state in
NDAAOObs||. Only combinations which are necessary to reproduce the already observed
behavior (I/O vector sequences) are considered. For each of these combinations a state
in the observed cross product is built. By successively analyzing the observed sequences
and 'playing' the partial automata, the observed cross product states are connected in
the necessary order. The resulting automaton only contains the observed substructure
of the cross product from de�nition 29.

Algorithm 4 Direct construction of the observed cross product
Require: Set of identi�ed partial automata {NDAAO1, . . . ,NDAAOn} and observed

sequences Σ = {σ1, . . . , σp} according to de�nition 19
1: Initialize NDAAOObs|| with XObs|| = {}
2: Create initial state xObs||0 |λObs||(xObs||0) := {x1_0, . . . , xn_0} ∧ fObs||(xObs||0) := {}
3: for each σh ∈ Σ do

4: for each uh(j) ∈ σh = (uh(1), uh(2), . . . , uh(lh)) do

5: if j = 1 (uh(j) is the �rst vector in σh) then
6: Initialize current states x1(1) := x1_0, . . . , xn(1) := xn_0 in the partial au-

tomata
7: Initialize current state in the observed cross product: xObs||(1) := xObs||0
8: else

9: for each NDAAOi ∈ {NDAAO1, . . . ,NDAAOn} do
10: xi(j) := xi|

(
xi ∈ {xi(j − 1) ∪ fi(xi(j − 1)} ∧ c /∈ J(λ(xi), uh(j))

)

11: end for

12: if ∃xObs|| ∈ XObs|||λObs||(xObs||) = {x1(j), . . . , xn(j)} then
13: fObs||(xObs||(j − 1)) := {fObs||(xObs||(j − 1)) ∪ xObs||}
14: else

15: Create new xObs|||
(
λObs||(xObs||) = {x1(j), . . . , xn(j)}, fObs||(xObs||) = {}

)

16: fObs||(xObs||(j − 1)) := {fObs||(xObs||(j − 1)) ∪ xObs||}
17: end if

18: xObs||(j) = xObs|||λObs||(xObs||) = {x1(j), . . . , xn(j)} (either found in line 12 or
created in line 15)

19: end if

20: end for

21: end for

In line 1 of algorithm 4, the observed cross product NDAAOObs|| is initialized with
an empty state space. In the next step, the initial observed cross product state is
constructed. Its output function is set to the set of initial states of the underlying partial
automata. Starting in line 3, the observed sequences are analyzed. At the beginning
of each sequence, the partial automata are initialized by setting their current state
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to the initial partial automaton state (e.g. for the �rst partial automaton NDAAO1:
x1(1) = x1_0). The observed cross product is also initialized by setting its current state
xObs||(1) to its initial state xObs||0 . This is always done when the �rst I/O vector of a
sequence is treated (line 4 to 7). If the considered I/O vector is not the �rst one in the
sequence, the algorithm proceeds in line 9. From line 9 to line 11, the current state of
each partial NDAAO is determined. A partial NDAAO state becomes the new current
state xi(j) if it is either the former current state xi(j − 1) or one of its successor states
(xi ∈ {xi(j− 1)∪ fi(xi(j− 1)}). Additionally, it must have an output that corresponds
to the considered I/O vector uh(j). Since in the partial automaton NDAAOi not all
I/Os are considered (I/Os not belonging to the according subsystem are replaced by
'-' symbols in de�nition 26), the state outputs and the I/O vector of the sequence are
compared with the join-function4. If the join-function returns 'c' (contradiction) for
the comparison of at least one I/O value, the state output and the I/O vector di�er in
at least one I/O considered in the partial NDAAOi. Hence, if c /∈ J(λ(xi), uh(j)), the
state output of the partial automaton can reproduce its part of the current I/O vector.
The states from the set xi ∈ {xi(j−1)∪fi(xi(j−1))} have di�erent state outputs due

to step 2 of algorithm 1. Hence, for each NDAAOi there is always a unique state ful�lling
the condition in line 10. In line 12 it is checked if the observed cross product already
contains a state with the newly determined combination of current partial automaton
states as output. If so, the former current state of the observed cross product xObs||(j−1)
gets this state as a following state. If not, a new state is created. Its output function
is set to the combination of current partial automaton states. In line 16, the newly
created state is added to the set of following states of the former current observed cross
product state. Finally, in line 18, the current state is set to the newly determined state
and the next I/O vector is considered.
An example for the result of algorithm 4 is given in �gure 4.10. On top of the

�gure, the observed sequence σ1 and two partial automata identi�ed based on this
sequence are shown. In the �rst step of algorithm 4 the initial state of the observed cross
product is built. Its output is set to the initial states of the underlying partial automata
x0x0. When sequence σ1 is treated, the partial automata perform the combined state
trajectory x0x0, x1x1, x2x2, x0x0 and x2x0. For each of these combinations a state in
the observed cross product is built. The observed cross product states are connected
according to the combined state trajectory of the underlying partial automata. The
result is the automaton in the bottom of �gure 4.10.
In the observed cross product, each transition has been observed since it has been

created upon an analysis of the observed sequences. Hence, the transition observation
function Θ can be set true for the complete automaton structure. In order to apply the
tolerance speci�cation to de�ne a certain amount of accepted unobserved behavior, it
is necessary to add unobserved transitions to the observed cross product. This is done
in the next algorithm. The result is the permissive observed cross product:

De�nition 35 (Permissive observed cross product (POCP)). The permissive observed
cross product is a 6-tuple POCP = (XPOCP ,ΩPOCP , fPOCP , λPOCP , xPOCP0 ,ΘPOCP )

4See de�nition 28.
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Figure 4.10: Example for algorithm 4

with XPOCP the state space, ΩPOCP the output alphabet, fPOCP : XPOCP → 2XPOCP

the transition function, λPOCP : XPOCP → ΩPOCP the output function and xPOCP0

the initial state of the automaton. ΘPOCP : XPOCP × XPOCP → {true, false} is the
transition observation function.

Based on the observed cross product resulting from algorithm 4, the POCP is con-
structed with algorithm 5. At the beginning of the algorithm, the output alphabet of
the observed cross product is assigned to the POCP output alphabet. Additionally,
the symbol ε is added to ΩPOCP to represent each non-observed combination of partial
automata. In the next steps the basic state space, the basic transition function and
the output function are constructed by assigning XObs|| to XPOCP , fObs|| to fPOCP and
λObs|| to λPOCP . Then, the transition observation function is de�ned. Since until this
moment the POCP only contains the observed cross product, ΘPOCP is assigned to
true for each pair of states that is connected by a transition. In step 5 a new state xε
with the empty letter ε as output is created and in step 6 added to the state space.
In the next step, xε gets the complete state space as following states. Hence, there is
a transition from xε to each other state in XPOCP as well as a self-loop to xε itself.
The state xε is added to the POCP state space to represent the unobserved part of
the cross product. In the next step, the transition function of the states in XPOCP

except of the formerly created xε is enlarged. Each state is connected to each other
state. There are no self-loops added. In the last part of the algorithm the transition
observation function is completely de�ned. For each transition in the POCP with an
unde�ned ΘPOCP function, ΘPOCP is set to false since the transition was not part of
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the observed cross product.

Algorithm 5 Construction of the permissive observed cross product
Require: Observed cross product NDAAOObs||

1: Output alphabet: ΩPOCP := ΩObs|| ∪ ε with ε being the empty output
2: Basic state space: XPOCP := XObs||, xPOCP0 = xObs||0
3: Basic transition function / output function: fPOCP := fObs||, λPOCP := λObs||
4: Transition observation function: ∀x ∈ XPOCP : ΘPOCP (x, fPOCP (x)) := true

5: Create state with empty output: xε : λPOCP (xε) := ε, fPOCP (xε) = {}
6: Enlarged state space: XPOCP := XPOCP ∪ xε
7: Following states of xε: fPOCP (xε) := XPOCP

8: Enlarged transition function: ∀(x 6= xε) ∈ XPOCP : fPOCP (x) := XPOCP\x
9: Complete de�nition of the transition observation function:

10: for each x ∈ XPOCP do

11: for each x′ ∈ fPOCP (x) do
12: if ΘPOCP (x, x

′) not de�ned then

13: ΘPOCP (x, x
′) := false

14: end if

15: end for

16: end for

Figure 4.11 shows the POCP created by algorithm 5 based on the observed cross
product from �gure 4.10. The black state represents the state xε added during the
algorithm. It can be seen that each state is reachable by each other state by a transi-
tion. If this transition was already existent after the construction of the observed cross
product (algorithm 4), the according ΘPOCP value is true. If a transition has been
added during algorithm 5, the according ΘPOCP value is false.

Figure 4.11: Example for a POCP

The POCP can now be run in parallel with its underlying network of partial NDAAO
and a given tolerance speci�cation to restrict the network behavior. The principle is
shown in �gure 4.12. The automata network can perform any combined state trajectory
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leading to a valid model output5. The POCP evolves following the automata network.
It tries to perform a state trajectory reproducing the current trajectory in the automata
network. For each new state combination produced by the network, the POCP tries
to �nd a state xPOCP that has the current combination of partial NDAAO states as
output. If the network trajectory has state combinations which are not represented by
a POCP state, the POCP takes the state with the empty symbol ε as output instead.
By analyzing the transitions passed in the POCP (observed or unobserved ones), the
tolerance speci�cation evolves such that it passes the same type of transitions. For
each combined state trajectory of the automata network it can thus be decided if it is
accepted as fault-free or if it is considered as a fault from the output of the reached
state in the tolerance speci�cation. In de�nition 36 the combined evolution of partial
automata, POCP and tolerance speci�cation is formally described.

De�nition 36 (Evolution rule for the POCP in parallel with a tolerance speci�cation
and a network of partial NDAAO). Let the n partial NDAAO be in the combined
state {x1(j), . . . , xn(j)} with c /∈ J(λ1(x1(j)), . . . , λn(xn(j))). If a POCP state xPOCP
with λPOCP (xPOCP ) = {x1(j), . . . , xn(j)} exists, this state is the current POCP state
xPOCP (j). If such a state does not exist, the state with the empty output ε is the
current POCP state: xPOCP (j) = x|λPOCP (x) = ε. The n partial NDAAO can move
from their current state combination {x1(j), . . . , xn(j)} to another state combination
{x1(j + 1), . . . , xn(j + 1)} with c /∈ J(λ1(x1(j + 1)), . . . , λn(xn(j + 1))) if ∀1 ≤ a ≤ n

either xa(j) = xa(j + 1) or xa(j + 1) ∈ fa(xa(j)) holds6. The POCP evolves according
to the following rule:

If (∃x′POCP ∈ XPOCP )|
(
λPOCP (x

′
POCP ) = {x1(j + 1), . . . , xn(j + 1)}

)
:

xPOCP (j + 1) := x′POCP

else xPOCP (j + 1) := xPOCP |λPOCP (xPOCP ) = ε

The tolerance speci�cation moves from its current state xTol(j) to a following state
xTol(j + 1) with

xTol(j+1) ∈ fTol(xTol(j))∧ΘPOCP (xPOCP (j), xPOCP (j+1)) = ΘTol(xTol(j), xTol(j+1))

If such a state does not exist, the model consisting of POCP, partial automata and
tolerance speci�cation cannot proceed to another state.

With the evolution rule of de�nition 36, the language of the automata network re-
stricted by the POCP and the tolerance speci�cation has two elements. The I/O vector
sequences building the identi�ed language are determined by applying the join-function
to the partial state outputs from the set of current partial NDAAO states. If an
I/O vector sequence is generated by the restricted automata network, the combined
state trajectory leads to a trajectory in the POCP consisting of observed and unob-
served transitions. Since the tolerance speci�cation evolves in a synchronized way by

5A valid model output is determined by applying the join-function to the partial state outputs. If c

is not part of the join-function, the combined output is valid
6Each partial NDAAO must either stay in its current state or it takes the next state from the following

states of the current state
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Figure 4.12: Principle of the restricted automata network with the POCP

the transition observation function ΘTol, the combined state trajectory leading to the
given I/O vector sequence results in a certain state in the tolerance speci�cation. From
the output of this state, it can be decided if the considered I/O vector sequence is
considered as fault-free (state output is 'OK'), not faulty in the sense of undecided ('-')
of faulty ('Fault').

With the tolerance speci�cation it is thus possible to explicitly de�ne the amount of
yet unseen automata network behavior which is considered as fault-free. Hence, it is
possible to deal with a certain amount of new system behavior without directly detecting
a fault which avoids a large number of false alerts. The presented approach allows
accepting some behavior which is similar but not equal to the already known behavior.
The tolerance speci�cation de�nes the degree of similarity to some known fault-free
behavior which makes a given behavior not be considered as faulty. This concept is well
known in the �eld of diagnosis of continuous systems. Models of continuous systems do
not perfectly reproduce signal values. It is thus necessary to de�ne tolerance limits to
decide if the di�erence between the measured and the modeled signal value is a fault
symptom. The tolerance speci�cation can be understood as the de�nition of these limits
for the identi�ed automata network.
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The fact that each accepted behavior must consist of the combination of fault-free
subsystem behaviors (de�ned by the partial automata) is an important advantage: it
avoids considering any arbitrary behavior as similar to the fault-free behavior. Only
behaviors which consist of correct partial behaviors can be tolerated. In section 6.2, a
fault detection policy will be presented which makes use of this advantage: Observed
behavior which cannot be explained by a combination of fault-free subsystem behavior
de�ned by the partial automata will be directly considered as a fault. If the observed
behavior consists of unknown combined subsystem behavior, the tolerance speci�cation
will be evaluated.

Remark 3 (Subsystem granularity). The advantage of not considering any unknown

behavior as similar to the fault-free behavior becomes less important if the number
of subsystems is increased which usually leads to smaller subsystems. If each I/O
gets its own subsystem (as an extreme example for system partitioning), the resulting
partial automata will consist of two states: one state represents IOi = 0 and one state
represents IOi = 1. It is obvious that this makes fault detection on the subsystem
level impossible: The subsystems do not contain any other I/O which would make it
possible to determine if IOi changed its value to early or to late. The lower the number
of subsystems is and the larger the subsystems in terms of I/Os belonging to them are,
the more likely it is that a faulty behavior is already refused on the subsystem level.
Hence, it can be concluded that the number of subsystems should be kept as small as

possible.

4.4 Distributed identi�cation of the case study

system

The distributed identi�cation approach has been applied to the case study system from
chapter 3.5. The subsystems have been chosen as shown in �gure 4.13 based on apriori
knowledge. In each subsystem the controller I/Os belonging to one of the machine tools
with the according conveyor have been grouped. Each subsystem consists of components
with a direct physical relation like the single machine tools and the conveyor in front
of them. The position sensor between the �rst two machine tools is assigned to both
subsystems since it belongs to both of the conveyors. The same consideration holds for
the sensor between the second and the third machine tool. A detailed description of
how to choose appropriate subsystems based on a priori knowledge or by analyzing the
observed system language will be given in chapter 5.
For each subsystem depicted in �gure 4.13 the observed language is depicted in �g-

ure 4.14. It can be seen that each subsystem language directly converges to a stable
level. The reason for this fast convergence is the purely sequential behavior of each ma-
chine tool. Each subsystem leads to exactly the same sequence of partial I/O vectors
in each observed system evolution. In section 4.1 it was explained that the aim of the
distributed identi�cation approach is to determine a model which is able to reproduce
the complete global system behavior although the observed global language has not yet
converged to a stable level (see �gure 4.1 on page 63 for the evolution of the global
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Figure 4.13: Laboratory system with subsystems

system language). With the result of theorem 6 it is thus possible to identify partial
automata for each of the subsystems which build an automata network simulating the
complete fault-free system behavior. The necessary condition of theorem 6 is ful�lled
since each subsystem language converges.
In order to validate the presented approach, the identi�cation data base is divided

in two parts. The �rst 70 observed system evolutions determine the new identi�cation
database. The remaining 30 observed evolutions represent a part of the not yet seen
original system language. In �gure 4.1 (page 63) it can be seen that during these last
evolutions the observed language grows even for small values of n. It will be tested if
the identi�ed automata network in conjunction with the POCP and an appropriately
chosen tolerance speci�cation is able to reproduce the language represented by the last
30 observed evolutions although the model has only been identi�ed on the basis of the
�rst 70 observed evolutions.

Figure 4.14: Observed language of the subsystems
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For the distributed approach it is necessary to identify a partial automaton for each
subsystem. Figure 4.14 shows that following the considerations of subsection 3.4.3, high
values for the identi�cation parameter k are possible since even for high values of k,
Lk+1
Obs can be considered as completely observed in each subsystem. In order to determine

an appropriate value for the parameter k, �gure 4.15 shows the transition gap-function
from de�nition 23 for each subsystem. It can be seen that in each case increasing k
to k = 2 leads to a signi�cantly decreased value in the gap function. Following the
considerations in chapter 3.4.3, k = 2 is a reasonable choice for each partial automaton
of the subsystems.

Figure 4.15: Transition gap for the subsystems of the case study

The partial automata are thus identi�ed based on the �rst 70 system evolutions with
parameter k = 2. Since in none of the partial languages of length k + 1 new words are
observed in the last 30 evolutions, theorem 6 assures that the automata network is able
to reproduce the complete global original system language. Consequently, it could be
validated successfully that the (unrestricted) cross product of the automata network
indeed contains each new word having been observed during the last 30 evolutions.
After identi�cation of the partial NDAAO representing the subsystems, the next step

is to construct the upper structure in the pyramid-schema in �gure 4.12 to implement
the automata network restriction. In section 4.3, two possible ways to determine this
upper structure have been shown. The �rst one consists of the explicit construction
of the cross product from which the observed part is derived. Constructing the cross
product according to the procedure given in de�nition 29 leads to an automaton with
2565 states. The construction takes 5.7 seconds7. Deriving the observed cross product

71.8 GHz, 2 GB RAM
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based on the �rst 70 observed evolutions according to algorithm 3 takes 0.2 seconds.

The alternative approach presented in the former section consists in directly con-
structing the observed cross product from the observed evolutions and the identi�ed
partial automata according to algorithm 4. Applying the algorithm using the identi�ed
automata network and the �rst 70 evolutions takes 1.5 seconds and leads to an au-
tomaton with 229 states. Based on this automaton, algorithm 5 constructs the POCP
within a few milliseconds.

It can be seen that the second approach delivers the necessary models faster than the
�rst one (1.5 in contrast to 5.7 seconds). More important than the gain in calculation
time is the reduced size of the automaton. In the �rst approach it is necessary to
manage an automaton with 2565 states during online diagnosis whereas in the second
approach only the partial automata with 17, 15 and 15 states as well as the POCP with
230 states (229 plus the 'joker'-state added during algorithm 5) have to be handled
online to generate the system language.

The last step of the distributed identi�cation approach is the determination of the
tolerance speci�cation. It must be determined how many unobserved transitions in
the POCP are tolerated without considering a generated word as a fault. Increasing
the tolerance helps avoiding false alerts but comes at risk of erroneously considering
faulty words as fault-free. Finding the right balance depends on the preferences of the
user. In many cases the main focus may be to avoid false alerts as far as possible
but to choose the tolerance speci�cation as restrictive as possible. In order to assess
the necessary number of tolerated unobserved POCP transitions, �gure 4.16 is helpful.
The �gure considers the evolution of the observed cross product constructed during
algorithm 4 (direct construction of the observed cross product). On the abscissa the
observed system evolutions8 are given. On the ordinate the number of new observed
transitions created by analyzing each new sequence in algorithm 4 is depicted. It can
be seen that during the �rst evolutions many new transitions are created since the
automata network performs many new combined state trajectories. During the last
ten evolutions, between zero and three new transitions are added to the observed cross
product (see the zoom in �gure 4.16). This implies that in future system evolutions
only a few new combined state trajectories in the automata network are necessary to
reproduce the observation. A possible choice for the tolerance speci�cation is thus to
accept for example one new combined movement of the automata network leading to
one unobserved transition in the POCP. Evolutions like the 62th one would thus not
lead to fault detection. An appropriate translation of this into a tolerance speci�cation
automaton is given in the right part of �gure 4.16.

In order to evaluate the e�ciency of the choice of the tolerance speci�cation, the last
30 observed system evolutions have been reproduced with the automata network and
the POCP according to de�nition 36. Before an evolution is reproduced, each partial
automaton, the POCP and the tolerance speci�cation are reset to their initial state.
Reproducing 17 of 30 evolutions was possible by ending in the OK-state of the tolerance
speci�cation. The reproduction of seven evolutions ended in the undecided state. One

8Each evolution is an I/O vector sequence in Σ = {σ1, . . . , σp}

87



4 Distributed Identi�cation of Closed-Loop Discrete Event Systems

Figure 4.16: New observed transitions per evolution in algorithm 4 and the derived
tolerance speci�cation

unobserved transition was necessary to reproduce the according observations. In six
evolutions, the reproduction ended in the fault state of the tolerance speci�cation. Note
that in each of the evolutions the partial automata were able to reproduce their partial
language. Only the combined network trajectory was not accepted by the tolerance
speci�cation. This test shows that the number of false alerts (which occurred in 6 from
30 evolutions) is acceptable.

Figure 4.17: E�ciency of the tolerance speci�cation tolerating one unobserved network
trajectory

If the number of tolerated unknown network trajectories is increased to two, the
number of false alerts can be decreased. Figure 4.18 shows the resulting number of fault
detections. It can be seen that the number of evolutions ending in the 'Fault'-state of the
tolerance speci�cation is decreased to four. To compare the e�ciency of the distributed
and the monolithic model in terms of avoiding false alerts, a monolithic NDAAO has
been identi�ed on the basis of the �rst 70 system evolutions. The identi�cation tuning
parameter was set to k = 1 (although �gure 4.1 shows that the according observed
language does not converge). With the monolithic automaton it was not possible to
reproduce 13 of 30 remaining system evolutions which corresponds to 13 false alerts.
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This shows that using the distributed approach it is possible to decrease this number
signi�cantly (in this case from 13 to 4).

Figure 4.18: E�ciency of the tolerance speci�cation tolerating two unobserved network
trajectories

The fact that the combined evolution according to de�nition 36 leads to false alerts
shows that adding the upper structure in the pyramid (�gure 4.12) increases the sen-
sitiveness to faults. Global system behavior with an important di�erence to already
observed behavior is considered as a fault although it consists of valid subsystem tra-
jectories. Faults leading to this kind of behavior can be detected with the pyramid
structure but not with partial automata only. Increasing the number of tolerated un-
known network trajectories like in the case of �gure 4.18 decreases the number of false
alerts, but also weakens the fault detection capability since a larger part of the cross
product language can be generated in this scenario.
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Sub-Systems

5.1 Characteristics of appropriate subsystems for

diagnosis purposes

In the former chapter it has been shown that the e�ciency of the identi�cation approach
can be signi�cantly increased by dividing a given system in subsystems. Dividing a sys-
tem in subsystems is also a very common technique if models are built manually. In
section 2.3.2, it has been shown that the model-building process of the diagnoser ap-
proach relies on the construction of component models (e.g. for the valve in �gure 2.6)
which can be interpreted as subsystems. The question of how to determine the subsys-
tems in the diagnoser approach refers to choosing the correct events for the component
models. In (Philippot et al., 2007) it is proposed to choose components such that they
contain one actuator (and the according actuator events) and its associated sensors
(and the according sensor events). The idea is to represent causal relations in the single
component models. For diagnosis purposes this kind of representation is advantageous
since many faults lead to acausal system behavior which cannot be reproduced by a
model representing fault-free causal relations. In section 4.2 it has been explained that
choosing appropriate subsystems for closed-loop DES refers to selecting appropriate
controller I/Os for each subsystem. Controller outputs are usually associated with
actuators whereas controller inputs are associated with sensors. The following exam-
ple shows how the representation of causal relations in a subsystem model facilitates
diagnosis.
In �gure 5.1 a double acting cylinder is shown. The cylinder has the two position

sensors Pos1 and Pos2 which are connected to the �rst two inputs of the controller
(they are the �rst two I/Os in the controller I/O vector). The actuator is connected to
the two controller outputs Extend and Retract (the last two I/Os in the controller I/O
vector). In the example it is supposed that the position sensors deliver 1 if they detect
something and that actuators start an action upon receiving 1 from the controller. In
the �gure, two parts of partial automata representing possible subsystems1 are shown.
In the �rst subsystem, the two position sensors are represented. The leftmost partial
automaton represents the behavior of the two sensors when the cylinder is extended:
Pos1 changes its value to 0 and upon arrival of the cylinder at the extended position
Pos2 changes its value to 1. In the example we consider the following fault: position

1Following the considerations of (Philippot et al., 2007), the cylinder would not be divided into sub-

systems since its actuator has an in�uence on both position sensors. In the example we nevertheless

divide it in two subsystems to show the impact on diagnosis
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Figure 5.1: Double acting cylinder with paritial NDAAOs

sensor Pos1 is damaged such that it changes its value from 1 to 0 without the cylinder
being extended. This produces the following faulty sequence:

σF = (




1

0

0

0


 ,




0

0

0

0


)

If only the I/Os of the �rst subsystem are considered, the sequence is:

σFSubsystem1
= (




1

0

−
−


 ,




0

0

−
−


)

This sequence can be reproduced by the leftmost partial automaton by moving from
the �rst state to the second state. Hence, the fault cannot be detected. This situation
changes if the second subsystem consisting of Pos1 and Extend is considered. A part
of the system behavior is modeled by the rightmost partial automaton in �gure 5.1. If
only the I/Os Pos1 and Extend are considered, σF results in

σFSubsystem2
= (




1

−
0

−


 ,




0

−
0

−


)

This sequence cannot be reproduced by the rightmost automaton. Hence, the fault
can be detected. The second subsystem is more appropriate for detecting the fault at
Pos1 since it covers the causal relation between the controller output Extend and the
sensor Pos1. Since Pos1 should only change its value if Extend already changed its
value before, a change in value at Pos1 without setting Extend before can be detected.
The causal relation between Pos1 and Extend implies a required event order during
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fault-free behavior. This precise order is not captured in the �rst but in the second
subsystem.

The reason for dividing a given system into subsystems in the distributed identi�ca-
tion approach is to reduce the number of false alerts during online fault diagnosis. In
chapter 4 it has been explained that an important requirement for the subsystems is
to have a converging observed subsystem language. As shown in theorem 6, this leads
to a minimized number of false alerts during online diagnosis with the identi�ed model
since the distributed model is able to produce words of the original global system lan-
guage which have not been observed before. If the subsystems are build such that they
exclusively contain I/Os with causal relations, this often leads to sequential subsystem
behavior. Most often, an actuator only in�uences a limited number of sensors in a well
de�ned order (like in the position sensors of the double acting cylinder). As lined out in
section 4.1, sequential behavior leads to a manageable size of the subsystem language
resulting in fast convergence. In the next section, some guidelines of how to choose
appropriate subsystems based on a priori knowledge are given. Since this knowledge
is often not available, section 5.3 presents an approach to automatically divide a given
system into subsystems with weak internal concurrency by analyzing the observed sys-
tem language. It is shown how (possibly partial) knowledge about causal relations in
the considered system can be integrated to improve the result of the automated parti-
tioning. In the last part of the chapter, the presented partitioning approach is applied
to the case study system.

5.2 Partitioning based on a priori expert knowledge

In chapter 4 it has been explained that subsystems must be chosen such that the orig-
inal subsystem language can be completely observed within a small number of system
evolutions which leads to a converging observed subsystem language. The Petri net
example in section 4.1 showed that increasing the concurrency in a system increases
the size of the original system language. The larger the original system language is, the
more system evolution it takes to observe a signi�cant part of it. Hence, the observed
language of subsystems with a low degree of internal concurrency typically converges
faster than the language of subsystems with many concurrent parts. The challenge
when dividing a system manually is to determine subsystems such that they lead to
weakly concurrent internal subsystem behavior.

A possible way to get the necessary information for manual partitioning of a closed-
loop DES is to analyze its speci�cation. A widely used speci�cation language for closed-
loop DES in industry is Grafcet (Graphe Fonctionnel de Commandes, Etapes, Transi-
tions) of SFC (Sequential Function Chart)(IEC, 2002). With this tool it is possible to
explicitly code that two (or more) sequences of actions can be executed simultaneously.
Figure 5.2 shows an example for a Grafcet with two parallel sequences of actions. It
can be seen that after step 10, two parallel branches exist. Hence, the sequences in the
two branches are to be executed in parallel. The sequences in two parallel branches
are usually related to disjunct sets of controller I/Os. Hence, it is possible to assign
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the controller I/Os from one branch to subsystem 1 and from the other branch to
subsystem 2. Since the sequence in one branch is purely sequential, the resulting sub-
system language is supposed to be small which is positive for a quick convergence of
the observed subsystem language. A possible strategy to determine subsystems from
a Grafcet is thus to determine substructures with a sequential execution like in one
of several parallel branches. Controller I/Os which are activated (outputs) or checked
(inputs) in a sequential substructure can be grouped in a subsystem.

Figure 5.2: Example for a Grafcet

A second possibility to determine subsystems is to use human observations of the
given system. For the case study system of �gure 4.13 (page 85) for example, it can be
observed that even during the parallel treatment of three work pieces the behavior of
a machine tool and the conveyor in front of it is purely sequential. If the �rst machine
tool and its conveyor are observed in detail, it can be seen that a new action in the
subsystem only starts if the former action already �nished: The drilling tool is only
moved down if the work piece has stopped at the according position. This means that
the conveyor must be stopped before the drilling tool is started. The conveyor is only
reactivated when the drilling tool �nished its task and has been moved back in its initial
station. Hence, the according controller I/Os should be grouped in one subsystem.
Figure 4.13 shows that the position sensors between two conveyors are always associ-

ated with two subsystems. This is a consequence of the considerations from section 5.1.
The value of the sensor between two conveyors can be in�uenced by the actuators of
both conveyors: The conveyor in the left of the sensor can move a work piece to the
sensor and the conveyor in the right of the sensor can transport a work piece away. Since
it is advantageous for diagnosis purposes to cover causal relations in the subsystems,
the sensors are associated to both subsystems.
Determining appropriate subsystems manually always requires expert knowledge. For

large systems this knowledge is not easily available. The same problem like described in
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section 2.4.1 arises: System experts with the necessary knowledge to divide the system
in subsystems are often not familiar with discrete event dynamics and concepts like
'concurrency'. Hence, it is di�cult to use their knowledge for the partitioning approach.
The second problem is that the necessary system analysis is a time consuming and
expensive task.
To apply the distributed identi�cation approach even if the system cannot be parti-

tioned manually, in the next section an automatic approach working on the observed
system language is introduced. It is capable of working with very few system knowledge
but also allows integrating expert knowledge concerning causal relations to improve the
diagnosis capability of the identi�ed models.

5.3 Automatic partitioning based on observed data

5.3.1 Analysis of the solution space

The problem of dividing a closed-loop DES in subsystems can be formalized as the
determination of the I/O-mapping function y(syst) from de�nition 25. The set y(syst)
contains the I/Os which are considered in the partial I/O vector of the t-th subsystem.
In order to evaluate possible strategies to perform the system partitioning automat-
ically, it is helpful to determine the size of the solution space. The question of how
many di�erent possibilities exist to divide a set of m controller I/Os in n di�erent sub-
systems is a combinatorial problem. If the closed-loop DES has three controller I/Os
{IO1, IO2, IO3} which are to be partitioned in two non-empty, disjunct sets (subsys-
tems), the following three possibilities exist:

y(sys1) = {IO1, IO2} y(sys1) = {IO1, IO3} y(sys1) = {IO1}
y(sys2) = {IO3} y(sys2) = {IO2} y(sys2) = {IO2, IO3}

The number of possible disjunct partitions is given by the Stirling number of the second
kind (Riordan, 2002):

S(m,n) =
1

n!

n∑

i=0

(−1)i
(
n

i

)
(n− i)m (5.1)

with m denoting the number of I/Os according to de�nition 24 and n denoting the
number of non-empty subsystems. In case of 30 I/Os and three disjunct partitions
(three subsystems and three identi�ed partial automata), this leads to 2.06·1014 possible
solutions. Only a few of these possible solutions represent an appropriate partitioning
for the distributed identi�cation approach. The size of the solution space necessitates a
search technique that avoids testing each possible solution. In the following sections a
heuristic optimization approach is used to �nd an optimal solution. Like in the case of
genetic algorithms the optimization technique does not test each possible solution but
only some subspace of the complete solution space.
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Using optimization techniques for identi�cation of discrete event systems is a known
approach as explained in section 2.4.2 and 2.4.3. The new idea in this work is to
combine an optimization approach with a classical algorithmic identi�cation method.
The optimization approach is used for preprocessing of the observed language. The
construction of the model itself is carried out with the algorithmic approach of chapter 4.
Since the determination of the model structure is not performed with the optimization
approach, this computationally heavy task is solved more e�ciently than in existing
optimization approaches for DES identi�cation. It will be shown that the approach
delivers results for real world systems in a reasonable time.

Using an optimization approach necessitates the formulation of optimization crite-
ria. Since the aim is to minimize the internal concurrency in the subsystems, special
measures are introduced in the next section. They formalize two phenomena which are
strongly related to concurrency and which can be observed when analyzing the observed
data. The aim is to use the measures as optimization criteria to choose appropriate
subsystems.

5.3.2 Manifestation of concurrency in the observed system

language

Existing approaches

Analyzing observed event sequences to discover concurrency is a research area in the �eld
of software (re-)engineering. A possible application is the development of an information
system for a complex business process. The classical way is to have the system analyzed
by a designer building a model coding the causal relations and concurrent structures of
the business process. Like in the case of closed-loop DES, modeling is an expensive and
laborious task. Several attempts have been made to systematically analyze observed
event sequences and to determine causal and concurrent structures.

In (Maruster et al., 2003) �ve metrics for the analysis of event sequences are intro-
duced. The most interesting ones are the causality metric CM and the so called XY
and Y X metrics. The causality metric CM is based on the assumption that when �rst
event x and shortly later event y occur it is possible that x causes the occurrence of
y. CM is calculated by parsing the collected event sequences. If y occurs n events
after x, CM is incremented with the factor δn, where δ is the so called causality factor
(δ ∈ [0.0, 1.0]). The factor δ is a free parameter that must be chosen upon a priori
knowledge. If the event order is inverse (y occurs n events before x), CM is decreased
by δn. After processing each event sequence, CM is divided by the minimum of the
overall frequency of x and y (number of event occurrences). If CM is near to 0, there
is no causal relation between x and y. Hence, they can be considered as concurrent.

The XY and Y X metric is used to distinguish so called exclusive and parallel re-
lations. A relation is called exclusive if the event x never appears directly before or
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directly after the event y. The XY and Y X metrics are de�ned as

XY =
|X > Y |

min(|X|, |Y |) (5.2)

Y X =
|Y > X|

min(|X|, |Y |) (5.3)

|X > Y | (|Y > X|) denotes the number of occurrences of the string xy (yx) and |X|
(|Y |) denotes the number of occurrences of x (y). If XY and Y X are near to zero the
events x and y are supposed to be exclusive. If both metrics have relatively high values
at the same time, x and y are supposed to be concurrent.
The metrics of (Maruster et al., 2003) allow comparing two arbitrary events and to

get information about their causal or concurrent relation. A problem is that each event
has to be compared with each other event. If many events and long sequences are to
be treated, calculating the metrics can become computationally di�cult.
A very similar approach is presented in (Cook et al., 2004). Among other metrics,

the authors use the notion of entropy to measure the information carried by an event.
The entropy is indicated by the so called conditional probability of occurrence:

P (S) =
Occur(S)

Occur(Prefix(S))
(5.4)

where Occur(S) denotes the number of occurrences of sequence S and Prefix(S) de-
notes the sequence S with the last event removed. The entropy can be measured with
P (S) as follows: If the event y always occurs after the event x, P (xy) = 1.0 and for all
other events ε, P (xε) = 0.0. The direct following behavior of x is deterministic. Hence,
the entropy is 0. If any other event occurs as often after x as it does y, the entropy
increases until it reaches 1.0 indicating that the following behavior of x is completely
random. In this case, P (S) is very small (near 0). In (Cook et al., 2004), a special for-
mula to precisely calculate the entropy based on P (S) is given. It allows calculating the
entropy based on observed event sequences. On the other hand, the entropy resulting
from di�erent concurrent model structures is calculated. An example is the so called
fork structure. It describes the case of the Petri net in �gure 5.3. After the occurrence
of x, both y and z can occur due to the concurrent structure. Ideally, yz and zy occur
with the same frequency (P(xyz) = P(xzy)) in the observed event sequences. For this
case, the entropy is calculated with a special formula derived in (Cook et al., 2004).
If the entropy calculated with P(xyz) and P(xzy) determined from the analysis of the
observed event sequences is near to the pre-calculated value it can be concluded that a
fork-style concurrency is present.
Although both approaches deliver some useful metrics to measure concurrency in

event traces, they are not appropriate for closed-loop DES. The main problem is that
they cannot directly be applied to I/O vector sequences. The result would be an
information about the degree of concurrency of several I/O vectors. This is not the
necessary information for partitioning of the closed-loop DES. The interesting question
is to determine controller I/Os which behave concurrently. This would necessitate a
new de�nition of the event sequences for closed-loop DES. A straight forward approach
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Figure 5.3: Example for a fork style concurrency

would be to de�ne the change in value of a single I/O as an event and to generate event
sequences from I/O vector sequences. Since more than one I/O can change its value
between two I/O vectors, the result would be events occurring at the same time. Neither
the approach of (Maruster et al., 2003) nor the approach of (Cook et al., 2004) is able to
process this kind of event sequences. The second problem with the described approaches
is that both deliver a variety of metrics (e.g. the comparison with di�erent concurrent
structures like the one shown in �gure 5.3) which have to be analyzed in their entirety.
This makes it di�cult to formulate an optimization criterion since di�erent measures
have to be considered in parallel. Hence, it necessary to introduce new measures which
are appropriate for closed-loop DES.

Language growth

The �rst measure is directly related to the precondition for the completeness of the
identi�ed distributed models. The distributed model is complete if for each of the
subsystems sysi, L

k+n
Ident,sysi

⊇ Lk+nOrig,sysi
holds (theorem 6). Assumption 5 says that this

can be stated if the according language converges to a stable level.

De�nition 37 (Observed language up to the h-th system evolution). Ln,hObs,sysi denotes
the observed language of length n from subsystem sysi constructed according to de�-
nition 20 on the basis of the �rst h (of p) observed sequences: Σ = {σ1, . . . , σh}. The
observed sequences are built on the basis of the partial I/O vectors of subsystem sysi
according to de�nition 26.

If the observed language does not converge to a stable level, the following equation
holds:

|Ln,hObs,sysi | − |L
n,h−1
Obs,sysi

| > 0 (5.5)

Since the h-th observed sequence contains at least one partial I/O vector that has not
been seen before, the cardinality of the language Ln,hObs,sysi is larger than the cardinality

of Ln,h−1
Obs,sysi

. This e�ect allows formulating a measure for the convergence of the observed
language for an I/O partitioning given by the I/O mapping function y.

J1(y) =
1

Nsys

∑

∀sysi

p∑

h=2

(
√
h(|Ln,hObs,sysi | − |L

n,h−1
Obs,sysi

|)) (5.6)

with p denoting the overall number of observed sequences an Nsys denoting the number
of subsystems (according to de�nition 25 on page 66). If for a given partitioning y,
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there is a high degree of concurrency in one of the subsystems sysi, then the according
language growth will be important and thus lead to high values of J1(y). In equation 5.6
the running index h starts at h = 2. The result is that the �rst di�erence build in the
measure is the language growth between the �rst and the second sequence. The �rst
sequence can add an arbitrary number of new words to the language without having
an in�uence on the measure. This re�ects the fact that in the case of perfectly se-
quential subsystem behavior it is possible to observe the complete language during the
�rst system evolution. This e�ect has already been shown for the subsystems chosen
upon a priori knowledge in the case study system (see �gure 4.14 on page 85). Starting
the running index h at h = 2 avoids the measure being in�uenced by the new words
in the �rst sequence which de�ne the minimum of the observed language necessary to
identify perfectly sequential subsystem behavior. The factor

√
h adds more weight to

new words occurring at later observed system evolutions. The earlier an observed lan-
guage converges to a stable level, the more con�dently can be stated that it has been
completely observed. Hence, words leading to an early language growth are less nega-
tive then words leading to a growth during the last observed evolutions. During tests
with the optimization method, the factor

√
h delivered better results than simply mul-

tiplying with h. By division with the number of subsystems, the optimization criterion
is normalized. For the approach presented in section 5.3.3 this facilitates determining
di�erent numbers of subsystems with the same set of optimization parameters.
Since the measure of equation 5.6 will be used as an optimization criterion, it should

be possible to calculate it as fast as possible to increase the e�ciency of the optimization
approach. The measure basically consists of building and counting the observed words of
length 1..n. According to de�nition 20, a new word in the word set W 1

Obs automatically
leads to new words in the sets W j

Obs ∀1 < j ≤ n. More generally, a new word in Wm<n
Obs

automatically leads to new words in the setsW j
Obs, ∀m < j ≤ n. Since it is not possible

to have new words wm with m < n in LnObs without leading to new words wn, it is
su�cient to consider the sets W n,h

Obs,sysi
and W n,h−1

Obs,sysi
in equation 5.6:

J̃1(y) =
1

Nsys

∑

∀sysi

p∑

h=2

(
√
h(|W n,h

Obs,sysi
| − |W n,h−1

Obs,sysi
|)) (5.7)

This avoids building and counting words with length lower than n. Since this saves
computation time, J̃1(y) is more appropriate for the optimization approach. If the
observed language of the case study system is considered (without partitioning in sub-
systems), the calculation of J1(y) takes 4400ms whereas the calculation of J̃1(y) takes
only 2500ms for L3

Obs and W 3
Obs respectively. Since the calculation has to be carried

out up to several thousand times during optimization, this gain in calculation time is
interesting.

Branching degree

The second measure is related to the structure of an automaton identi�ed on the basis
of observed system data. Figure 5.4 shows an example. In the right part of the �gure
a part of the reachability graph of a Petri net is shown. It can be seen that the three
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parallel branches of the Petri net lead to a state with three leaving transitions (state 2).
Since after the occurrence of a the events b or c or d can be produced, the reachability
graph contains three following transitions in state 2. If event b was produced, the
automaton is in state 3. In this state both events c or d can be produced due to
concurrency. Hence, state 3 has two leaving transitions. This shows that concurrency
typically leads to several possible behaviors which are re�ected by states with several
leaving transitions in the reachability graph of an underlying Petri net.

Figure 5.4: Part of a reachability graph

If for a given closed-loop DES an NDAAO is identi�ed with algorithm 1, the resulting
automaton can be seen as an approximation of the reachability graph of a Petri net
representing the considered system. Hence, concurrency in the system is represented by
states with several leaving transitions. As an example we consider the following three
observed sequences:

σ1 = (




1

0

0

1


 ,




0

1

0

1


 ,




0

1

1

0


); σ2 = (




1

0

0

1


 ,




1

0

1

0


 ,




0

1

1

0


); σ3 = (




1

0

0

1


 ,




0

1

1

0


)

Applying algorithm 1 with k = 1 to the three sequences leads to the automaton in
�gure 5.5 on the left. It can be seen that the initial state has three leaving transitions
that are necessary to reproduce the di�erent observed sequences. In the example we
assume that the global system consists of two concurrent subsystems: The �rst subsys-
tem consists of the �rst two I/Os of the I/O vector and the second subsystem consists
of the remaining two I/Os. It can be seen that the I/Os of the subsystems change their
values concurrently leading two three possible following behaviors of the �rst state. In
one following behavior the �rst subsystem leads to earlier I/O changes (σ1). In the
next case, the second subsystem evolves faster (σ2) and in the third case, both systems
evolve simultaneously (σ3).
If for each subsystem an own partial automaton is identi�ed, the resulting automata

do not have states with several leaving transitions as depicted in �gure 5.5 on the right.
Since the subsystem behavior is sequential, the initial states of the partial automata have
only one leaving transition. This shows that reducing concurrency has a direct e�ect
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Figure 5.5: Result of monolithic and distributed identi�cation

on the identi�ed automata. To measure this e�ect, the following de�nition introduces
the branching degree:

De�nition 38. The branching degree BD of the NDAAOsysi identi�ed for subsystem
sysi is de�ned as

BD(NDAAOsysi) =
∑

∀x∈X

{
0 if |f(x)| ≤ 1

|f(x)| − 1 if |f(x)| > 1

The function (conditionally) counts for each state of the NDAAO identi�ed for sub-
system sysi the leaving transitions. Only states with more than one leaving transition
(|f(x)| > 1) contribute to this measure since this represents possible concurrent be-
havior. For states with several leaving transitions, we subtract one from the number
of transitions. This is done since one following transition in a state does not represent
concurrency. In the example of �gure 5.5, the monolithic model has a BD of 2 since
only the �rst state contributes to the measure and has three leaving transitions. Each
partial automaton on the right of �gure 5.5 has a BD of 0 since due to the purely
sequential subsystem behavior each state has at most one leaving transition.
The branching degree is an absolute measure since it is not normalized to the size

of the automaton. It only considers states with several possible following behaviors
but ignores states with only one leaving transition. A normalization to the size of
the automaton (e.g. to the state space) could lead to a situation where the branching
degrees of two automata with a di�ering number of states are not the same even if both
automata contain the same number of states with more than one leaving transition. In
this case, the automata re�ect the same degree of concurrency and should thus lead to
the same value for BD. Hence, the automata in �gure 5.6 have the same branching
degree (BD = 2) although one automaton has more states. The long state trajectory
before state 7 is ignored by the measure since it re�ects sequential behavior. The same
holds for the states A and B in the second automaton. The non-normalization is an
important property of the measure since the optimal solution for I/O partitioning can
lead to subsystems resulting in automata of di�erent size.
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Figure 5.6: Example for the non-normalization of the branching degree

A measure for the concurrency of a given I/O partitioning y can be calculated by
summing up the branching degrees of partial NDAAO identi�ed for the subsystems:

J2(y) =
∑

∀sysi

(BD(NDAAOsysi) (5.8)

with NDAAOsysi denoting the automaton identi�ed with a given parameter k for sub-
system sysi.
It is possible to have BD > 0 and thus J2(y) > 0 although there is no concurrency in

the system. If several 'decisions' exist in the system (e.g. large OR small work piece), it
is possible to have several following states in a given identi�ed automaton to re�ect the
di�erent possible conditional (and not concurrent) behaviors. The same e�ect happens
if the identi�cation parameter k is not chosen large enough as explained in section 3.4.3.
This can lead to states in the identi�ed automaton approximating several closed-loop
DES states. Such an automaton state can have several leaving transitions to represent
each possible following behavior of the represented DES states. During the optimization
approach presented in the next sections, the aim is to �nd a y leading to a minimized

J2(y). It is not necessary to reach branching degree of zero. Hence we can cope with
BDmin > 0.

5.3.3 A heuristic optimization approach: Simulated Annealing

As explained in section 5.3.1, partitioning a given closed-loop DES into appropriate
subsystems is a combinatorial problem. With the measures introduced in section 5.3.2
it is possible to evaluate if a possible partitioning y represents a useful solution. The
immense size of the solution space (equation 5.1) makes it impossible to systematically
evaluate each solution. A possible way to solve combinatorial problems without an-
alyzing the complete solution space is to use so called metaheuristic approaches like
simulated annealing (Michalewisz and Fogel, 2000). Simulated annealing is an opti-
mization algorithm inspired by the annealing process in metallurgy. In metallurgy, a
possible way to in�uence material properties is to heat them to above their crystalliza-
tion temperature. Due to the heat, atoms become unstuck from their initial positions
(corresponding to a local minimum of the internal energy) and wander randomly to
other positions with other degrees of energy. Slow cooling gives them the chance to
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reach con�gurations with lower internal energy than the initial one. If the atoms reach
positions with a lower internal energy, this relieves internal stresses which improves the
cold working properties of the metal. The simulated annealing algorithm simulates this
process. If it is well parameterized, it is more e�cient than classical gradient descent
methods due to its capability of leaving a local minimum.

Algorithm 6 shows a possible implementation for simulated annealing. It is a slightly
modi�ed version of the algorithm in (Michalewisz and Fogel, 2000). In the �rst step, the
metaphorical temperature is set to the initial temperature T0. The initial temperature
T0 is a free variable which must be chosen by the user. In the next step, a �rst solution
for the I/O mapping function yc (c for current) is chosen. It randomly assigns all I/Os
to subsystems. A description of this function will be given in the next two sections.
In line 3, the main optimization loop starts. First, a new solution ynew is chosen. A
detailed implementation for choosing ynew on the basis of yc is given in the next section.
In the next step, the new solution is compared to the current solution. The function
J(y) implements one of the �tness functions J̃1 or J2 from the former section. If the
new solution ynew leads to a lower value of the optimization criterion, ynew becomes the
new current solution yc. In this case, the optimization algorithm works like a gradient
descent method. If the new solution is not better than yc it is decided probabilistically

if the new solution nevertheless becomes the current one. This helps to avoid getting
stuck in a local minimum. The probabilistic choice is based on a calculation considering
the current temperature and the di�erence between the �tness of yc and ynew. In line 7,
J(yc) − J(ynew) can only be negative or zero, since J(yc) ≤ J(ynew). The di�erence
is divided by the current temperature. Although the temperature is decreased during
each repetition of the optimization loop, it keeps a positive value. Hence, the di�erence
divided by T is always a negative number or zero leading to the exponential function
always returning a value in the interval (0, 1]. A given di�erence J(yc)− J(ynew) leads
to a larger result of the exponential function in an early cycle of the optimization
algorithm (large T ) than in a later cycle with a decreased T . The new solution becomes
the current one if the result of the exponential function is larger than a randomly chosen
number of the interval [0, 1). This makes accepting a worse solution ynew as the new
solution yc more probable if the di�erence J(yc)−J(ynew) is small and the temperature
is still high. In line 10, the temperature is decreased with the cooling rate CR (with
0 < CR < 1). The algorithm stops if the prede�ned lower bound of the temperature
Tmin is reached.

Since it is possible to accept a worse solution ynew as the current solution, it is
reasonable to save each analyzed solution with the according �tness value in a list. It
is possible that the probabilistic nature of the algorithm leads to a �nal solution which
is not the best one analyzed so far. In this case, the best solution from the list can be
taken.

An important part of the optimization algorithm is the determination of possible solu-
tions. In the next two sections, two approaches for determining a new I/O partitioning
based on a current solution are presented.
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Algorithm 6 Simulated annealing
Require: initial temperature T0, minimum temperature Tmin, cooling ratio CR
1: T := T0 initialize temperature
2: select current solution yc at random
3: repeat

4: select a new solution ynew
5: if J(yc) > J(ynew) then

6: yc := ynew
7: else if random([0, 1)) < e

J(yc)−J(ynew)
T then

8: yc := ynew
9: end if

10: T := T ∗ CR
11: until T < Tmin

5.3.4 Minimal knowledge solution

The question of how to select possible solutions in algorithm 6 is closely related to the
degree of available a priori knowledge. First, we assume that the available knowledge
only allows de�ning the necessary number of subsystems. If this knowledge is not
available, the number of subsystems can be increased bit by bit until the optimization
algorithm admits an acceptable solution.
At the beginning of algorithm 6, an initial I/O partition has to be determined as

�rst solution yc. A common way to get a �rst solution for simulated annealing is to
determine it with a random approach if no better knowledge is available. Algorithm 7
shows the implementation for the partitioning problem. First, it assigns empty sets to
each subsystem. Via the random-function, a subsystem is selected randomly from the
set of all subsystems. This allows assigning each controller I/O IOi randomly to one
of the subsystems. The algorithm terminates if each subsystem contains at least the
prede�ned minimal number of I/Os.

Algorithm 7 Determine initial solution with minimal knowledge
Require: number of subsystems Nsys, global I/O vector u, minimal number of I/Os in

a subsystem minIO

1: repeat

2: ∀t ∈ 1, . . . , Nsys : y(syst) := {}
3: for all IOi ∈ u do

4: randSys := random({sys1, . . . , sysNsys
})

5: y(randSys) := y(randSys) ∪ IOi

6: end for

7: until ∀t ∈ 1, . . . , Nsys : |y(syst)| ≥ minIO

Apart from determining an initial solution it is also necessary to continuously con-
struct new solutions when applying the optimization algorithm. Although simulated
annealing has some non-deterministic characteristics, it is not reasonable to take com-
pletely random samples from the solution space. In the case of �nding appropriate
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subsystems it can be assumed that having a good solution, it is more e�cient to look
for a better solution in the close 'neighborhood' of the original solution than consid-
ering the complete search space. If for example 90% of the I/Os have been assigned
appropriately in a given solution yc, it is more likely to get a good solution ynew by
only altering the assignement of a few I/Os than rejecting the complete solution and
determining a new one e.g. with algorithm 7. Algorithm 8 shows a way to alter an
existing solution. First, the old solution is copied to the new one. Then, a predi�ned
number of I/Os is randomly chosen. The solution di�erence sD is a paramter which
de�nes how close the new and the old solution are. It de�nes the number of I/Os for
which the according subsystem will be altered. Each randomly selected I/O is erased
from its subsystem. In lines 6 and 7, a new subsystem randSys is chosen randomly and
the selected I/O is added to randSys. If the procedure leads to a forbidden solution
(with at least one subsystem consisting of less than minIO I/Os) the algorithm starts
again.

Algorithm 8 Determine next solution with minimal knowledge
Require: Existing solution yc, number of subsystems Nsys, global I/O vector u, mini-

mal number of I/Os in a subsystem minIO, solution di�erence sD
1: repeat

2: ynew := yc
3: IOSet := {sD randomly chosen I/Os from the global I/O vector}
4: for all IOi ∈ IOSet do
5: ynew(sys)|IOi ∈ ynew(sys) : ynew(sys) := ynew(sys)\IOi

6: randSys := random({sys1, . . . , sysNsys
})

7: ynew(randSys) := ynew(randSys) ∪ IOi

8: end for

9: until ∀t ∈ 1, . . . , Nsys : |ynew(syst)| ≥ minIO

It is obvious that the choice of the solution di�erence parameter sD has a direct
in�uence on the performance of the optimization approach. If it has a too small value,
algorithm 8 is not able to determine a new solution varying enough to leave a local
minimum. If sD is too large, it is di�cult to come close to a minimum since the
new solutions will be situated far away in the search space. Hence, it is crucial to
properly choose sD. It can be necessary to perform di�erent optimization runs with
various values for sD to get a su�ciently good solution. The practical experience gained
throughout this work showed that sD = 3 is a good starting value for systems with up
to 200 controller I/Os.

5.3.5 Integrating knowledge about causal relations

The minimal knowledge approach presented in the former section does not allow con-
sidering any structural information of the closed-loop DES. In many practical cases,
some limited system knowledge is available. The knowledge considered in this section
is the (possibly partial) knowledge of causal relations of actuators and sensors in the
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plant. As described in section 5.1, covering causal relations makes a model more appro-
priate for fault diagnosis purposes. It is thus preferable to integrate this knowledge if
available. The idea of the algorithms in this section is to assign controller I/Os always
together with causally in�uenced I/Os to subsystems.
The knowledge about causal actuator sensor relations belongs to the system expert

domain. Since a system expert is usually not familiar with DES modeling or identi-
�cation techniques, it is necessary to develop a tool to formalize this knowledge. An
intuitive way to capture the knowledge is to enumerate for each actuator the sensors
which can be in�uenced by it. In terms of the controller I/O vector, this can be imple-
mented by a function assigning a set of controller inputs to each controller output:

De�nition 39 (Causal I/O map). The function CausalMap : IO → 2IO assigns to
each controller input a set of controller outputs.

If no other information is given, we assume that for the initial implementation of
the function it holds ∀IOi ∈ u : CausalMap(IOi) = {} with u denoting the controller
I/O vector. To capture the causal actuator sensor relations, a system expert has to �ll
the function CausalMap like depicted in �gure 5.7. In the �gure on the left, only the
output part of the controller I/O vector is shown whereas on the right only the inputs
are given. The expert has to assign the relation of outputs and inputs. Setting a given
controller output (and thus starting or stopping an actuator) at di�erent internal states
of a closed-loop DES may not always in�uence the same sensors (controller inputs). It
is nevertheless preferable to enumerate all inputs which are potentially in�uenced by
setting a controller output in order to capture the actuator sensor relations as completely
as possible. An example for such an actuator sensor relation is a conveyor with three
position sensors like in �gure 3.6 on page 52. If the conveyor is transporting a work
piece, it depends on the actual work piece position which position sensor is in�uenced
next. Since the actuator of the conveyor potentially in�uences each position sensor, the
according controller output should be related to each input leading to a position sensor.
Like shown in �gure 5.7, it is thus possible to assign several inputs to a single output. It
can also be seen that some controller inputs are in�uenced by several controller outputs.
On the other hand it is possible that the expert cannot determine a set of in�uencing
outputs for each input or vice versa.
Another aspect of building the causal I/O map is covered by the following assumption:

Assumption 6. It is assumed that ∀IOi ∈ u the following condition holds:

if CausalMap(IOi) 6= {} then ∀IOj ∈ u : IOi /∈ CausalMap(IOj)

By assumption 6 it is made clear that each I/O in�uencing at least one other I/O is not
itself in�uenced. The assumption is always met if the only possible in�uence captured
in CausalMap is from controller outputs to controller inputs like in �gure 5.7.
Considering the information captured in the causal I/O map, it is necessary to modify

the algorithms determining initial and next solutions. First, a modi�ed version of
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Figure 5.7: Example for the assignments in a causal map

algorithm 7 to determine an initial solution is presented with algorithm 9. At the
beginning of the algorithm, empty I/O sets are assigned to each subsystem. In line 3
the �rst inner loop starts. It considers each controller I/O which in�uences at least
one other I/O. In line 4 and 5 the according I/O and the I/Os which are in�uenced
by it are assigned to a randomly chosen subsystem. If the causal relations are not
completely known, some controller outputs exist with CausalMap(IOi) = {}. It is also
possible that some controller inputs exists which are not part of any actuator sensor
relation covered in the causal I/O map. The expression in line 7 determines this group
of controller I/Os. In line 8 and 9, the considered I/Os are assigned to a randomly
chosen subsystem. The algorithm is repeated until each subsystem contains at least
the prede�ned minimum number of I/Os.

Algorithm 9 Determine initial solution with a causal I/O map
Require: number of subsystems Nsys, global I/O vector u, minimal number of I/Os in

a subsystem minIO, causal I/O map CausalMap

1: repeat

2: ∀t ∈ 1, . . . , Nsys : y(syst) := {}
3: for all {IOi ∈ u|CausalMap(IOi) 6= {}} do
4: randSys := random({sys1, . . . , sysNsys

})
5: y(randSys) := y(randSys) ∪ IOi ∪ CausalMap(IOi)

6: end for

7: for all {IOi ∈ u|CausalMap(IOi) = {} ∧ IOi /∈ (CausalMap(IOj)∀IOj ∈ u)}
do

8: randSys := random({sys1, . . . , sysNsys
})

9: y(randSys) := y(randSys) ∪ IOi

10: end for

11: until ∀t ∈ 1, . . . , Nsys : |y(syst)| ≥ minIO

The next step is to modify algorithm 8 to determine a next solution during opti-
mization. Algorithm 10 follows the same principles like algorithm 8 but also considers
the causal I/O map. At the beginning of the algorithm, the current solution is copied
to the new one. Then, an I/O set is built containing each I/O which is not causally
in�uenced by any other I/O. If assumption 6 is met, the set is built such that each I/O
is either directly part of it or it is causally in�uenced by some I/O in IOSet. From
this set sD I/Os are randomly chosen. sD is the solution di�erence introduced in the
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former section. From line 5 to line 9, the randomly selected I/Os and the according
causally in�uenced I/Os (de�ned by the causal I/O map) are taken from their initial
subsystem. Together with their in�uenced I/Os, they are added to a new randomly
chosen subsystem. The algorithm stops if each subsystem has at least the prede�ned
minimum number of I/Os.

Algorithm 10 Determine next solution with a causal I/O map
Require: Existing solution yc, number of subsystems Nsys, global I/O vector u, mini-

mal number of I/Os in a subsystem minIO, solution di�erence sD, causal I/O map
CausalMap

1: repeat

2: ynew := yc
3: IOSet := {IOi ∈ u|∀IOj ∈ u : IOi /∈ CausalMap(IOj)}
4: IOSubSet := {sD randomly chosen I/Os from IOSet}
5: for all IOi ∈ IOSubSet do
6: ynew(sys)|IOi ∈ ynew(sys) : ynew(sys) := ynew(sys)\(IOi ∪ CausalMap(IOi))

7: randSys := random({sys1, . . . , sysNsys
})

8: ynew(randSys) := ynew(randSys) ∪ IOi ∪ CausalMap(IOi)

9: end for

10: until ∀t ∈ 1, . . . , Nsys : |ynew(syst)| ≥ minIO

In di�erence to algorithm 8, algorithm 10 does not only transfer single I/Os to other
subsystems. If an I/O IOi is given to a new subsystem, any I/O in�uenced by IOi

(which consequently is part of CausalMap(IOi)) is also transfered. The algorithm
assures that causal relations are maintained when exploring the solution space. As
explained in section 5.1, I/Os with a causal relation are typically not concurrent. Hence,
the presented approach is usually not an obstacle of �nding subsystems with low internal
concurrency but a help.
Apart from the advantages of capturing causal relations in the subsystems explained

is section 5.1, the approach presented in this section has another positive impact on
diagnosis: If several I/Os are in�uenced by more than one other I/O, the resulting sub-
systems can have overlapping I/Os. Since overlapping I/Os automatically restrict the
combined automata network behavior (and thus the exceeding network behavior), they
have a positive in�uence on the fault detection capability of an identi�ed distributed
model.

5.4 Partitioning of the case study system

5.4.1 Evaluation criteria

Before the optimization approach to divide a closed-loop DES can be evaluated with
the case study system, it is necessary to de�ne evaluation criteria. The aim is to provide
means to systematically compare an automatically determined set of subsystems with
a prede�ned 'good' solution. This makes use of the fact that for the case study system
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the necessary expert knowledge to �nd an appropriate solution is available. The better
the similarity of the optimization results of the case study system to the prede�ned
solution is, the more can be trusted in the method if it is applied to systems with few
available knowledge. The knowledge of a good partitioning for the case study system
is thus only used for evaluation purposes and not during the automatic determination
of the partitioning.
The similarity of an automatically found solution to a prede�ned one can be given

by two criteria:

1. Absolute number of controller I/Os shared by an automatically generated and a
prede�ned subsystem.

2. Number of I/Os shared by an automatically generated and a prede�ned subsystem
in relation to the number of I/Os in the prede�ned subsystem.

In the �rst criterion, the cardinality of the intersection of a prede�ned and an automat-
ically generated subsystem is calculated:

EC1(sysaut, syspredef ) = |sysaut ∩ syspredef | (5.9)

with sysaut and syspredef denoting an automatically chosen and a prede�ned subsystem
respectively. The higher EC1 is, the more similar both subsystems are. This criterion
only counts positive matches. Wrongly assigned I/Os are ignored but decrease the
quality of the automatically found solution. The second criterion helps to overcome this
problem since it relates the number of correctly assigned I/Os with the total number
of I/Os in the prede�ned subsystem:

EC2(sysaut, syspredef ) =
EC1(sysaut, syspredef )

max(|syspredef |, |sysaut|)
× 100% (5.10)

Equation 5.10 delivers the proportion of correctly assigned I/Os. The following example
shows how the criteria are used to compare two solutions yaut and ypredef consisting of
several subsystems. Table 5.1 shows two solutions yaut and ypredef as well as the resulting
values for the evaluation criteria. Comparing the prede�ned subsystem sysIII and the
automatically determined sysB for example shows that they share two I/Os (EC1 = 2)
leading to EC2 = 67%.
So far, the criteria have only been used to compare two given subsystems. The

original aim of the evaluation criteria is to compare two solutions for the partitioning
problem, each consisting of several subsystems. The comparison of two solutions ne-
cessitates combining the results of several subsystem comparisons. In table 5.1, the
di�erent possibilities to compare the subsystems of the prede�ned and the automati-
cally determined solution are shown. To compare the two solutions it is for example
possible to compare sysI with sysA, sysII with sysB and sysIII with sysC . Overall,
six possible ways to compare the subsystems of the both solutions exist. To determine
the similarity of several subsystem pairs, the resulting values for EC1 and EC2 have to
be combined. The combination of the �rst criterion (referred to as EC1) is the sum of
the single values of the subsystem comparisons. For the �rst row in table 5.2 we get:

EC1 = EC1(sysI , sysA)+EC1(sysII , sysB)+EC1(sysIII , sysC) = 0+1+0 = 1 (5.11)
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Automatically generated
yaut(sysA) = yaut(sysB) = yaut(sysC) =

{IO6, IO9} {IO1, IO3, IO7, IO8} {IO2, IO4, IO5}
EC1 EC2 EC1 EC2 EC1 EC2

P
re
de
�n

ed

ypredef (sysI) = 0 0% 1 50% 1 50%{IO1, IO2}
ypredef (sysII) = 1 25% 1 25% 2 50%{IO3, IO4, IO5, IO6}
ypredef (sysIII) = 1 33% 2 67% 0 0%{IO7, IO8, IO9}

Table 5.1: Example for the evaluation criteria

The combination of the second criterion (referred to as EC2) is calculated by the sum
of EC2 for the single subsystems. To keep a meaningful percentage (below 100%), the
sum is divided by the number of subsystem comparisons. For the �rst line in table 5.2
we get:

EC2 =
EC2(sysI , sysA) + EC2(sysII , sysB) + EC2(sysIII , sysC)

3
=

25%

3
= 8.3%

(5.12)
Table 5.2 shows for all possibilities the resulting combined criteria. It can be seen that
three comparison orders lead to the same EC1 value. To decide which one represents
the best similarity, EC2 is considered. It can be seen that the last combination leads
to the highest values in both EC1 and EC2. It is obvious that the comparison order
has a strong in�uence on the result of comparing two solutions. In the following, we
will always take the comparison order leading to the highest value in EC1. EC2 will
also be given to serve as an additional indicator for the similarity (see e.g. �gure 5.10).
If several orders leading to the same EC1 exist, the one with the highest EC2 will be
taken as basis for the comparison. This makes sure that the most similar prede�ned
and automatically generated subsystems are compared.

Comparisons / Criteria EC1 EC2

sysI ←→ sysA, sysII ←→ sysB, sysIII ←→ sysC 1 8.3%
sysI ←→ sysA, sysII ←→ sysC , sysIII ←→ sysB 4 39%
sysI ←→ sysB, sysII ←→ sysA, sysIII ←→ sysC 2 25%
sysI ←→ sysB, sysII ←→ sysC , sysIII ←→ sysA 4 44.3%
sysI ←→ sysC , sysII ←→ sysB, sysIII ←→ sysA 3 36%
sysI ←→ sysC , sysII ←→ sysA, sysIII ←→ sysB 4 47.3%

Table 5.2: Example for the combined evaluation criteria

In section 4.4, the system partitioning determined with a priori knowledge has been
explained. It is depicted in �gure 4.13 on page 85. In the following sections, this
solution will be used as a reference for the automatically determined ones.
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5.4.2 Partitioning with minimal knowledge

In this section the minimal knowledge approach from section 5.3.4 is applied to the case
study system. For the determination of the optimization results in this chapter, the
initial temperature T0 in algorithm 6 was set to T0 = 1000. The cooling ratio was set
to CR = 0.99 and Tmin was set to Tmin = 0.43 leading to about 1000 iterations in the
algorithm. The solution di�erence sD for algorithm 8 was set to sD = 3. The minimal
number of I/Os in a subsystem IOMin was set to 3.
In order to show that it is possible to get meaningful results even if the a priori knowl-

edge does not allow prede�ning the necessary number of subsystems, the optimization
approach has been carried out with two, three and four subsystems. Figure 5.8 shows
the evolution of the optimization criterion J̃1(y) for di�erent numbers of subsystems.
The observed word sets of length n = 2 have been analyzed. The �gures show J̃1(y)

for the currently accepted solution. It can be seen that due to the stochastic nature
of simulated annealing, the algorithm temporarily accepts worse solutions especially
during early optimization cycles where the temperature is still high. At the end, each
optimization converges to a stable value. It can be seen that J̃1(y) is decreased sig-
ni�cantly from 123.98 to 19.44 when the number of subsystems is increased from two
to three. Since further increasing the number of subsystems to four does not lead to
a signi�cant improvement of J̃1(y), it can be concluded that three is an appropriate
number for the subsystems.

Figure 5.8: Determination of two, three and four subsystems with 'language growth'

Using the second optimization criterion leads to similar results. The necessary iden-
ti�cation of partial NDAAOs was parameterized with k = 2. Figure 5.9 shows the evo-
lution of the optimization criterion J2(y) for di�erent numbers of subsystems. Again, it
can be seen that the solution with three subsystems is better than the solution with two
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subsystems. Increasing the number of subsystems to four does not have a signi�cant
e�ect. The solution with three subsystems converges to J2(y) = 3. This indicates that
there are at maximum three states in the automata identi�ed for the subsystems with
more than one leaving transition. The partial automata thus represent the sequential
subsystem behavior. In the next chapter it will become clear that a low number of
leaving transitions signi�cantly improves the fault isolation techniques based on the
identi�ed models.
The calculation of both optimization criteria can be parallelized. Once a new solution

y has been determined during the optimization algorithm, each subsystem is analyzed
separately. In case of J̃1(y), the subsystem language is counted and in case of J2(y) the
partial NDAAO are identi�ed and analyzed. This makes it possible to calculate the
results for the subsystems in parallel : For J2(y) it is e.g. possible to identify partial
NDAAO for each subsystem independently and to sum up the branching degree results
for the single subsystems. This allows exploiting the parallel computing capabilities of
modern computers. Using an Intel R©CoreTM2 Duo CPU (two CPU cores with 1.8GHz)
leads to a reduction of the optimization time of about 30%. The duration of each
optimization run can be seen in the �gures.

Figure 5.9: Determination of two, three and four subsystems with 'branching degree'

To analyze the similarity of automatically determined and prede�ned good solutions,
�gure 5.10 depicts the values J̃1(y) and J2(y) in some selected optimization cycles. The
results are taken from the optimization yielding three subsystems. The �gure also shows
the evaluation criteria de�ning the similarity to the prede�ned solution. The reference
solution is the one shown in �gure 4.13 on page 85. It can be seen that in both cases
solutions occurring at later cycles are more similar to the reference solution than early
ones (high values of EC1 and EC2). The �gure shows that there is a strong relation
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between a low value of the optimization criteria and the similarity to the reference
solution. This allows being con�dent about the potential of the optimization approach:
Since the automatic approach delivers very useful results for the case study, it is very
probable that it also performs in this way when similar systems are considered where
no su�cient knowledge to a priori de�ne a partitioning solution is available.

Figure 5.10: Evaluation of the results of the minimal knowledge approach

Figure 5.11: Result of the partitioning with the minimal knowledge approach

In �gure 5.11, the resulting subsystem partition for both optimization criteria is
shown. It can be seen that both criteria lead to very similar results which are close to
the reference solution. The language growth criterion leads to some wrongly assigned
I/Os (e.g. I3.0 in a subsystem with mainly I/Os from the �rst machine tool). Although
using the branching degree criterion led to a better solution, this was not always the
case. Starting the optimization algorithm several times always led to similar but mostly
not equal solutions. The main di�erence between the automatically determined and
the prede�ned solutions are the missing synchronization I/Os due to the next solution
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algorithm from section 5.3.4. Modifying algorithm 8 such that it assigns several I/Os
to subsystems is possible from a theoretical point of view. Practical experiences with
such a modi�ed algorithm showed that this makes the solution space too large. It was
not possible �nding acceptable solutions. In the following section, it will be shown that
using knowledge about causal relations helps to overcome this problem.

5.4.3 Partitioning with knowledge about causal relations

As shown in section 5.3.5, it is possible to use knowledge of causal actuator sensor
relations to improve the results of the automated partitioning approach. First, it is
necessary to de�ne the causal map function according to de�nition 39 on page 106.
Figure 5.12 shows the causal actuator sensor relations of the case study systems. It
contains all I/Os from table 3.2 and �gure 3.10 (page 59). It can be seen that some
actuators like O1.4 (drilling motor) do not have an in�uence on any sensor. Others like
O1.5 (conveyor in front of the drilling machine) have an in�uence on several controller
inputs. Some sensors like I2.4 (position sensor between drilling and vertical milling
machine) are in�uenced by several controller outputs.

Figure 5.12: Causal actuator sensor relations of the case study system

Based on the actuator sensor map given in �gure 5.12, the optimization approach is
applied. Like in the former section, the initial temperature T0 in algorithm 6 was set
to T0 = 1000. The cooling ratio was set to CR = 0.99 and Tmin was set to Tmin = 0.43

leading to about 1000 iterations in the algorithm. In this section, algorithm 10 is used
to determine the next solution during the optimization. The solution di�erence sD was
set to sD = 3 and IOMin was set to 3.

Figure 5.13: Evolution of the optimization criteria using causal knowledge (for the de-
termination of three subsystems)
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The qualitative results of determining two, three and four subsystems are similar to
the ones shown for the minimal knowledge solution. Hence, only the case of �nding three
subsystems is considered. Figure 5.13 shows the evolution of the optimization criteria.
Like in the former section, the optimization criteria are successfully minimized. It can
be seen that using the branching degree criterion is slightly faster than using language
growth.
Figure 5.14 shows that the approach using knowledge about causal relations also

delivers results which are similar to the reference solution. The main di�erence to
the minimal knowledge approach is that the resulting subsystems share several I/Os.
Figure 5.15 shows the resulting partitions of the optimization. It can be seen that both
criteria deliver close approximations to the reference solution. The only I/O which is
wrongly assigned is O3.4. The solutions using causal knowledge both lead to the same
synchronization I/Os.

Figure 5.14: Evaluation of the results of the causal knowledge approach

Figure 5.15: Result of the partitioning with causal knowledge
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For the case study system the causal knowledge is completely available. The results
from the former section show that even if this knowledge is not completely available,
the optimization approach delivers useful results. Treating the case study system with
the optimization approach showed that it is possible to obtain subsystems such that the
precondition of theorem 6 is met. This makes sure that using the distributed models for
fault diagnosis it is possible to signi�cantly reduce the number of false alerts compared
to the monolithic approach. The fact that the optimization approach delivered for
the case study solutions which are very close to a solution de�ned based on a priori
knowledge shows that the method has a considerable potential.

116



6 Fault Detection and Isolation

6.1 Fault detection and isolation with the identi�ed

fault-free monolithic model

6.1.1 Overview of the proposed method

After the chapters dealing with identi�cation of fault-free system models in the �rst part
of the work, chapter 6 addresses detecting and isolating faults based on the identi�ed
models. First, a method to work with the monolithic system model is presented in
section 6.1. This approach is then adapted to the identi�ed distributed models in
section 6.2.
Figure 6.1 shows the online monitoring scheme using the monolithic system model.

The model is run in an evaluator which tries to �nd a trajectory corresponding to the
observed system behavior. If such a trajectory exists, there is no deviation between
observed and modeled behavior. Hence, no fault is detected. If the evaluator is not
able to reproduce the observed system behavior, a deviation exists and leads to fault
detection. A deeper analysis of the deviation allows isolating the fault.

Figure 6.1: Online monitoring of closed-loop DES with an NDAAO

As explained in section 2.3, most of the known diagnosis methods for DES work with
a model of the fault-free and the faulty behavior. Since in the case of the presented
identi�ed models only the the fault-free behavior is captured, a new approach has to
be developed.
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In continuous system theory, working with so-called residuals is a well-known tech-
nique to use fault-free system models for online fault diagnosis. (Isermann and Balle,
1997) de�ne residuals as follows:

A residual is a fault indicator, based on a deviation between measurements
and model-based computation.

In the upper part of �gure 6.2 this principle is depicted for continuous systems. The
deviation between a measured signal evolution (dashed line) and the signal evolution
computed using a model (solid line) is quanti�ed. Analyzing this quanti�cation, it is
possible to detect and isolate faults in the observed system. Figure 6.2 also shows
measurements of a DES and a (standard) automaton modeling the considered system.
The observation of the DES is given by an event sequence as shown in the lower part
of the �gure. The expected event trace can be derived from the automaton modeling
the system. The observed sequence a, b can be reproduced by the state trajectory 0,
4, 5. When event c is observed, the sequence is no longer reproducible with the given
automaton. It can be seen that the observed event c was unexpected and the event d
was missed. This makes it highly probable that one of these events is related to the
detected fault. The presented approach focuses on the analysis of the di�erence between
measured and expected DES behavior. Two generic fault symptoms will be considered
in the following: Faults leading to observed but unexpected events and faults that lead
to missed events. The idea is related to the principle of Parsimony of (Reiter, 1987) (see
page 22) where diagnosis is understood as conjecture of a minimal set of components
that has to be assumed to be faulty to explain the current observation.

Figure 6.2: Residuals in continuous and in discrete event systems

The aim of the fault isolation method is to determine controller I/Os which are
related to a faulty component. If for example a position sensor does not change its
value due to a fault, we want to isolate the controller I/O related to this sensor. With
this information, the maintenance personnel does not have to check each sensor and
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actuator but only those which are related to reported potentially faulty I/Os. Especially
if large industrial facilities are considered, this signi�cantly reduces the time to start
the necessary repair actions.
The models de�ned so far create a language based on controller I/O vectors. To

determine single I/Os which are possibly related to a fault, it is necessary to distinguish
the behavior of single I/Os during the evolution of an observed or modeled I/O vector
sequence. The next section introduces appropriate functions which deliver the necessary
information.

6.1.2 I/O driven system monitoring

De�nition of the I/O behavior

In section 3.1 it has been shown that a closed-loop DES evolution leads to an I/O vector
sequence. If the considered system or its model produce a new I/O vector, this is the
result of at least one I/O changing its value. If a binary I/O changes its value, an edge
can be observed (see �gure 6.3):

De�nition 40 (Edges). For each controller I/O IOi there exist three edges: IOi_0 to
indicate a change from 1 to 0 (falling edge), IOi_1 to indicate a change from 0 to 1
(rising edge) and IOi_ε to indicate no change in value:

E = {IOi_0, IOi_1, IOi_ε ∀1 ≤ i ≤ m}

with m denoting the number of controller I/Os in the system.

Figure 6.3: Rising edge of an I/O

In order to determine the edges appearing if two arbitrary I/O vectors are considered,
an edge function is de�ned:

De�nition 41 (Edge function). Let IOi(j), IOi(k) be the i-th controller I/O in the
j-th and k-th I/O vector.

Edge(IOi(j), IOi(k)) =





IOi_1 if IOi(j) = 0 and IOi(k) = 1

IOi_0 if IOi(j) = 1 and IOi(k) = 0

IOi_ε if IOi(j) = IOi(k)

delivers the resulting edge of the i-th I/O from the comparison of its values from the
controller I/O vectors u(j) and u(k).
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Instead of Edge(IOi(j), IOi(k)) we also write Edge(u(j)[i], u(k)[i]), i.e. we address
the i-th controller I/O of vector u with u[i]. Since more than one I/O can change its
value when new I/O vectors are produced, we de�ne the evolution set that summarizes
the edges 'between' two I/O vectors:

De�nition 42 (Evolution set).

ES(u(j), u(k)) =
m⋃

i=1

{Edge(u(j)[i], u(k)[i]) ∈ E\IOi_ε}

determines the set of rising and falling edges between two I/O vectors u(j) and u(k).

Figure 6.4 shows an example for the evolution set resulting from the comparison of
two I/O vectors.

Figure 6.4: Example for the evolution set

The NDAAO as part of the evaluator

As explained in section 2.3, the �rst step in diagnosis is fault detection. In our case,
fault detection is performed using the NDAAO as fault-free system model. Figure 6.1
shows that the model is used in the evaluator to reproduce the observed system output.
A more detailed view of this procedure is given in �gure 6.5. The part with dashed

lines will be introduced in the next sections. The current I/O vector u(t) exhibited by
the closed-loop DES is given to the evaluator. Following algorithm 11, the evaluator
tries to determine the current state of the NDAAO. The main idea of this algorithm is
to determine a current state estimation following the observed evolution set.

Figure 6.5: Structural scheme for fault detection and isolation with the NDAAO

λ(x) determines the output of an NDAAO state according to de�nition 16 and ES is
the evolution set according to de�nition 42. f(x) contains the set of possible following
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Algorithm 11 Evaluator algorithm

Require: New observed I/O vector u(t) and former state estimation X̃t−1

1: if |X̃t−1| > 0: then
2: X̃t := {x ∈ X|

(
∃xpre ∈ X̃t−1∧
x ∈ f(xpre) ∧ ES(λ(xpre), λ(x)) = ES(λ(xpre), u(t))

)
}

3: else

4: X̃t := {x ∈ X|λ(x) = u(t)}
5: end if

X̃t−1 := X̃t

6: return X̃t

states of state x. The algorithm checks if the former state estimation X̃t−1 contains at
least one state. If the observation is being initialized or after a fault has been detected,
this set is empty. In case of an empty estimation (|X̃t−1| = 0), the evaluator determines
each NDAAO state with the observed I/O vector as output as potential current state
(see line 4 of algorithm 11) and adds it to the current state estimation X̃t. If the former
state estimation X̃t−1 was not empty, the algorithm checks the observed evolution set of
I/O edges in order to determine the current state estimation. Each NDAAO state that
can be reached by the observed edges starting in one of the states from the former state
estimate X̃t−1 is added to the current state estimation X̃t. During fault-free system
operation the state estimate is unambiguous (|X̃t−1| = 1) and the next current state of
the NDAAO is the successor of the last current state that can be reached by producing
the observed evolution.
The resulting state estimation X̃t of the evaluator as well as the observed I/O vector

u(t) are given to the analyzer where the fault detection policy and the fault isolation
operations are implemented. The fault detection policy is given by

FD(X̃t) =

{
fault if |X̃t| 6= 1

OK if |X̃t| = 1
(6.1)

A fault is detected if the evaluator cannot determine an unambiguous state estima-
tion. Figure 6.6 shows an example of the state estimation and fault detection process.
In the lower part of the �gure, the NDAAO is depicted. In the part 'observation' an
observed I/O vector sequence is shown. Between NDAAO states and between I/O vec-
tors, the resulting edges are given. It is assumed that the algorithm starts without a
de�ned initial NDAAO state x0 like it is the case if the start of the diagnosis procedure
is not synchronized with the start of the closed-loop DES. After the observation of the
�rst I/O vector, the evaluator algorithm goes to line 4 since |X̃t−1| = 0. The evaluator
determines the NDAAO states with λ(x) = u(t) and adds them to X̃t. State x1 and
state x3 have the �rst observed I/O vector as output. The fault detection policy returns
'fault' since the state estimation is not unambiguous. This changes as soon as the next
I/O vector is observed which leads to IO1_0. Starting from x1 or x3 only x2 can be
reached by producing the same evolution set. Hence, the state estimation only contains
one state (line 2 of algorithm 11) which makes the fault detection policy declare 'OK'.
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The state estimation proceeds with the next observed I/O vectors by determining the
state trajectory x3, x4. When the last I/O vector is observed, the resulting edge IO1_0

cannot been produced by leaving state x4. Hence, the state estimation from line 2 in
algorithm 11 results in an empty set which leads to fault detection. During the initial
phase of the observation, a fault is detected until the state estimation becomes unam-
biguous. This can be avoided if an initial NDAAO state x0 is given and the start of the
diagnosis process and the closed-loop DES are synchronized.

Figure 6.6: Example for state estimation and fault detection

For an NDAAO identi�ed with a given identi�cation tuning parameter k, it is possible
to give an upper bound for the number of successively observed fault-free controller I/O
vectors to determine an unambiguous state estimate |X̃t| = 1:

Theorem 7 (E�ciency of the state estimation algorithm). Given is an NDAAO iden-
ti�ed with parameter k according to algorithm 1. If algorithm 11 is used to estimate
the current NDAAO state starting with an empty estimate |X̃t| = {}, the observation
of a fault-free I/O vector sequence of length k which is part of the identi�ed language,
wk ∈ LkIdent is su�cient to determine an unambiguous state estimate |X̃t| = 1.

Proof of theorem 7. If the identi�cation tuning parameter k was chosen such that LkIdent
⊇ LkOrig can be stated according to assumption 5, each fault-free I/O vector sequence of
lenght k builds a word wk ∈ LkIdent. From line 1 of algorithm 1 on page 45 it follows that
exactly one state exists with1 λ̃(x) = wk. Lemma 2 makes sure that this state can only
be reached by producing the word wk. Algorithm 11 determines all state trajectories
producing wk. Since each trajectory must end in the same state, the state estimate is
unambiguous after processing wk.

This shows that too high a value for the identi�cation tuning parameter k can be a
disadvantage if the initial state is not given. Nevertheless, in most practical cases the
algorithm will admit a solution in less than k I/O vectors. The worst case only appears
if several states exist with the same I/O vector as output. If only one state exists with
the �rst I/O vector of the observed wk as output, line 4 of algorithm 11 already delivers
an unambiguous state estimate.

1λ̃(x) represents wk being the state output in step 1 of the identi�cation algorithm before being

replaced by its last letter (see de�nition 22 on page 48)
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Probabilistic evaluation of the NDAAO fault detection capability

After the de�nition of the fault detection procedure and the according policy it is possi-
ble to evaluate the capability of a given NDAAO to detect faults. If no fault is currently
detected, the current state estimate is unambiguous (|X̃t−1| = 1) and thus consists of
exactly one current NDAAO state. The principle of the evaluator algorithm 11 is to
�nd a next NDAAO state by analyzing the leaving transitions of the current state. If
the observed evolution set can be reproduced by taking one of the transitions of the
current state, the according target state becomes the new current state. If a fault leads
to an I/O vector producing one of these evolution sets, it is thus not possible to detect
it. In the following, an upper bound and an estimate for the probability of accepting
an I/O vector induced by a fault are derived.
First, we de�ne three probabilistic events:

• F : Fault leading to an altered behavior of at least one controller I/O in the next
I/O vector

• Ei: An I/O vector resulting from i edges occurs

• A: An I/O vector does not lead to fault detection in the evaluator algorithm (it
can be reproduced by one of the following states of the current state)

With this de�nition of F , faults are only considered if they are potentially detectable
by analyzing the next occurring I/O vector. Sooner or later most faults fall in this
category even if they are not immediately detectable upon their appearance: Either
they lead to a change in value of an I/O which is not expected or they prevent an
I/O from changing its value although this is expected. Using these basic events, the
probability of accepting an I/O vector induced by a fault is given by

P (A/F ) =
m∑

i=1

P (A ∩ Ei|F ) (6.2)

with m denoting the number of controller I/Os. P (A∩Ei|F ) is the probability of A∩Ei
under the condition F (Papoulis and Unnikrishna, 2002) which means the probability
of accepting an I/O vector resulting from i edges under the condition that there is a
fault leading to an altered behavior of at least one controller I/O in the considered I/O
vector.
This equation can be rewritten as follows:

m∑

i=1

P (A ∩ Ei|F ) =
m∑

i=1

P (A ∩ Ei|F )P (F )P (Ei ∩ F )
P (F )P (Ei ∩ F )

(6.3)

=
m∑

i=1

P (A ∩ Ei ∩ F )P (Ei|F )
P (Ei ∩ F )

(6.4)

=
m∑

i=1

P (A|Ei ∩ F )P (Ei|F ) (6.5)

≈
m∑

i=1

P (A|Ei)P (Ei|F ) (6.6)

123



6 Fault Detection and Isolation

The last equation holds since P (A|Ei) ≈ P (A|Ei ∩ F ): Usually there is only a very
small number of I/O vectors which is valid in a given situation. If a su�ciently large
I/O vector is taken, Ei ≈ F ∩ Ei since most of the I/O vectors resulting from i edges
are faulty most of the time.
The two remaining probabilities P (A|Ei) and P (Ei|F ) can be estimated. P (A|Ei)

denotes the probability of accepting an I/O vector under the condition that it is the
result of i edges. To get this probability, the following function is de�ned:

De�nition 43 (Number of transitions with i edges). The function

LTrans(x, i) =
∑

∀x′∈f(x)

{
1 if |ES(λ(x), λ(x′))| = i

0 else

delivers the number of following states x′ of a given state x which are reached by
producing exactly i edges in the according evolution set.

A conservative estimate for P (A|Ei) is the probability of accepting an I/O vector
resulting from i edges from the NDAAO state with the most leaving transitions with

exactly i edges :

P (A|Ei) ≤
max
∀x∈X

(LTrans(x, i))
(
m

i

) (6.7)

(
m

i

)
is the binomial coe�cient of the number of controller I/Os m and the number of

edges i. The binomial coe�cient gives the number of possible I/O vectors resulting from
i edges: In a given I/O vector there are

(
m

i

)
possible ways to choose i I/Os and to alter

them such that a new I/O vector is created. With max
∀x∈X

(LTrans(x, i)), the maximum

number of transitions leaving one state in the NDAAO and producing exactly i edges is
given. The coe�cient gives the probability that an arbitrary I/O vector resulting from
i edges is accepted in the NDAAO state with the most transitions with i edges.
It is also possible to replace P (A|Ei) with the following equation instead of using the

conservative estimate from equation 6.7:

P (A|Ei) ≈

∑
∀x∈X

LTrans(x,i)
|X|

(
m

i

) (6.8)

In this equation the average number of transitions leaving an NDAAO state and leading
to i edges is calculated. This average number is then divided by the number of possible
I/O vectors resulting from i edges. If each NDAAO is equally likely to be the current
state when a faulty I/O vector occurs, this represents the probability of accepting the
I/O vector.
The second remaining probability in equation 6.6 is P (Ei|F ). It denotes the proba-

bility that a faulty I/O vector is the result from i edges. It can be interpreted as the
expected part of faults leading to an I/O vector with i edges. Usually, the precise value
for P (Ei|F ) can only be roughly estimated. In the following, we assume that P (Ei|F )
can be conservatively estimated by an educated guess keeping to the following consid-
erations: It is reasonable to expect a large portion of faults leading to only a few edges
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and to only have a small portion of faults leading to many edges (e.g. 80% leading to
one edge, 10% leading to two edges etc.). This is based on the principle of Parsimony
(see page 22) were diagnosis is understood as a conjecture that some minimal set of
components is faulty. Following this principle, it can be assumed that a fault typically
a�ects only a small number of components and thus I/Os.

The result of the preceding considerations are an upper bound and an expected
average for the probability of accepting an I/O vector induced by a fault:

m∑

i=1

Pmax(A ∩ Ei|F ) ≤
m∑

i=1

(
max
∀x∈X

(LTrans(x, i))
(
m

i

) · P (Ei|F )
)

(6.9)

m∑

i=1

P (A ∩ Ei|F ) ≈
m∑

i=1




∑
∀x∈X

LTrans(x,i)
|X|

(
m

i

) · P (Ei|F )


 (6.10)

where P (Ei|F ) has to be determined by an educated guess. For the example in
�gure 6.7 the two measures are calculated. The according values for P (Ei|F ) are
de�ned in table 6.1. As a conservative estimate, we assume that only faults leading
to one or two edges can occur. It is obvious that using the automaton in �gure 6.7,
faults leading to three edges can certainly be detected since it does not have a transition
with three edges. Since this portion of faults is also added to the expected portion of
faults leading to one or two edges, table 6.1 is a conservative estimate. In systems with
many controller I/Os, it is especially conservative to assume a larger expected portion
of faults with few edges: The weight of faults with many edges in the two probabilities
is relatively low since the binomial coe�cient

(
m

i

)
of controller I/Os and edges becomes

very large if 1≪ i≪ m.

It can be seen that state x4 has the most leaving transitions with one edge. The
result is

max
∀x∈X

(LTrans(x, 1))
(
3
1

) P (E1|F ) =
3

3
· 0.8 = 0.8 (6.11)

For faults leading to two edges (here, x1 must be considered) we get

max
∀x∈X

(LTrans(x, 2))
(
3
2

) P (E2|F ) =
2

3
· 0.2 = 0.013 (6.12)

If equation 6.11 and 6.12 are summed up, the result is Pmax(A∩Ei|F ) ≤ 0.813 indicating
that there is an upper bound of about 81% for the probability of accepting an I/O vector
induced by a fault.

number of edges i 1 2
P (Ei|F ) 0.8 0.2

Table 6.1: De�nition of P (Ei|F ) for the example
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Figure 6.7: Example for the probability measures

The average probability can also be estimated (also assuming the values from table 6.1
for P (Ei|F )). The result is

P ≈
5
7

3
· 0.8 +

2
7

3
· 0.2 = 0.21

The estimate for the average probability of erroneously accepting a faulty I/O vector
is about 21%.
The two measures have a certain similarity with the notion of diagnosability from

de�nition 10 on page 16. The notion diagnosability refers to the capability of a model
including fault-free and faulty behavior to detect a given (and modeled) fault in a �nite
number of steps. It is thus some kind of guarantee that certain faults can always be
detected. This guarantee only holds if a system behaves exactly as captured in the model
when the considered fault occurs. The measures introduced in this section are helpful
to assess how accurately the fault-free and the faulty behavior can be distinguished
by a model. Although they do not guarantee that some given fault can eventually be
detected, they give an estimate for the probability of accepting an I/O vector induced
by a fault. If this probability is very low, the given model is appropriate for fault
detection purposes. Using conservative assumptions for P (Ei|F ), the two probabilities
are thus helpful to assess the fault detection capability of a given NDAAO. Precise
values for the case study system will be given at the end of this chapter.

6.1.3 Residuals as generic fault symptoms

Unexpected behavior

After a fault has been detected by the analyzer using equation 6.1, the next step is
to determine which sensor, actuator or hardware part of the plant is possibly a�ected.
Since sensors and actuators are directly connected to controller I/Os, we want to give a
small number of I/Os that could be related to the fault. In the following two subsections,
four residuals will be introduced that formalize generic fault symptoms. In order to
calculate the residuals, the state estimation before a fault was detected is supposed to
be unambiguous (|X̃t−1| = 1). Hence, only one NDAAO state was formerly considered
as possible current state. If this condition does not hold, the residuals are not calculated.
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The �rst class of residuals has the aim to isolate faults that led to an observed
behavior that was unexpected in the given context. The current context is de�ned by
the last estimated current state x̃ in the automaton. The �rst residual is de�ned as

Res1(x̃, u(t)) = ES(λ(x̃), u(t))\
⋃

∀x′∈f(x̃)

ES(λ(x̃), λ(x′)) (6.13)

With ES(λ(x̃), u(t)), the rising and falling edges are determined that are observed when
comparing the I/O vector of the last estimated current state and the I/O vector that
led to fault detection. This set represents what actually happened when the fault was de-
tected.⋃

∀x′∈f(x̃)ES(λ(x̃), λ(x
′)) represents the union of the sets of rising and falling edges

when the last estimated current state and each of its direct successor states (x′ ∈ f(x))
are considered. It represents the expected behavior. The set di�erence of the observed
(ES(λ(x̃), u(t))) and the expected (

⋃
∀x′∈f(x̃)ES(λ(x̃), λ(x

′))) behavior is built in the
residual equation to get the unexpected I/O behavior. In Res1, the expected behavior
is given by the union of each possible following behavior of the last estimated current
state. A stricter formulation of the expected behavior is used in the second residual:

Res2(x̃, u(t)) = ES(λ(x̃), u(t))\
⋂

∀x′∈f(x̃)

ES(λ(x̃), λ(x′)) (6.14)

Instead of a union over the expected behavior of the possible following states, an inter-
section is used. The intersection delivers the edges that must be observed no matter
which following state in the model is taken. It is obvious that Res1 ⊆ Res2 since⋃

∀x′∈f(x̃)ES(λ(x̃), λ(x
′)) ⊇ ⋂∀x′∈f(x̃)ES(λ(x̃), λ(x

′)). Figure 6.8 shows an example for
unexpected behavior that led to fault detection (instead of the I/O vectors only the
edges between two states are given): from the estimated current NDAAO state x1 it is
not possible to take a transition that has exactly the observed falling edges IO3_0 and
IO4_0. Hence a fault is detected. The result of Res1 is:

Res1(x̃, u(t)) = {IO3_0, IO4_0}\
(
{IO1_0, IO2_1, IO4_0} ∪ {IO1_0, IO2_1}

)

= {IO3_0}

This result means that IO3_0 was unexpected in the current context. This implies
that the system operator should check the sensor or actuator that is connected with
IO3. However, it is possible that the fault cannot be found at this component. If
this is the case, Res2 should be calculated in order to use a stricter formulation of the
expected behavior. In Res1 each possible following behavior is subtracted from the
observation. Using Res2 only the behavior that must occur no matter which regular
following behavior is considered:

Res2(x̃, u(t)) = {IO3_0, IO4_0}\
(
{IO1_0, IO2_1, IO4_0} ∩ {IO1_0, IO2_1}

)

= {IO3_0, IO4_0}

This result implies that the occurrence of a change in value of IO4 is not always expected
in the current context. Hence, it is another possible fault candidate.

127



6 Fault Detection and Isolation

Figure 6.8: Example for an unexpected behavior

Missed behavior

In contrast to an observed but unexpected behavior it is also possible that a faulty
component can be isolated by determining a missed event. Set operations that help
to isolate an expected but unobserved behavior are given by the third and the fourth
residual.

Res3(x̃, u(t)) =
⋂

∀x′∈f(x̃)

ES(λ(x̃), λ(x′))\ES(λ(x̃), u(t)) (6.15)

Res3 is the set di�erence of the edges that are expected no matter which follow-
ing state is taken (

⋂
∀x′∈f(x̃)ES(λ(x̃), λ(x

′))) and the edges that have been observed
(ES(λ(x̃), u(t))). Each rising or falling edge that must occur when the estimated cur-
rent state is left but has not been observed is part of Res3. The expected behavior is
represented by the intersection of each possible following behavior. It is also possible
to give a less strict formulation of the expected behavior by using the union operation
instead of the intersection:

Res4(x̃, u(t)) =
⋃

∀x′∈f(x̃)

ES(λ(x̃), λ(x′))\ES(λ(x̃), u(t)) (6.16)

Since Res3 ⊆ Res4, the result of Res4 is usually less restrictive than Res3, i.e. it con-
tains more elements. The example of �gure 6.9 illustrates Res3 and Res4. The observa-
tion of the edge IO3_0 leads to fault detection from x1, the estimated current NDAAO
state. Applying the residuals results in Res3 = {IO1_0} and Res4 = {IO1_0, IO2_1}.
The same procedure as explained for Res1 and Res2 should be started: First, the com-
ponent connected with IO1 should be checked. If the repair team does not �nd a fault
at this component, it should proceed with checking IO2 which is additionally part of
Res4.
Especially if industrial closed-loop DES with many controller I/Os are considered,

the residuals can help to get a relatively small set of I/Os that could be related to the
fault. A maintenance operator can then check the possibly faulty sensors or the related
actuators. Actuators are related to a sensor if their activation or deactivation can have
an in�uence on the sensor value like explained for the causal I/O map of de�nition 39
on page 106. It is also possible to reduce the set of fault candidates by further analyzing
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6.1 Fault detection and isolation with the identi�ed fault-free monolithic model

Figure 6.9: Example for a missed behavior

the system behavior following fault detection. A special state estimation algorithm has
been proposed for this purpose in (Roth et al., 2009c).

6.1.4 Monolithic fault detection and isolation of the case study

system

Treating the case study with the monolithic diagnosis approach necessitates a mono-
lithic NDAAO. As shown in section 3.5, it is possible to identify a complete model with
k = 2 for the case study system if a system evolution consists of treating two work

pieces. This scenario is considered in this chapter. It is clear that even for the case
study system it is not possible to test the method for each possible fault. The pre-
sented examples have been chosen such that they represent typical examples for faulty
behavior.
At �rst, the identi�ed NDAAO is evaluated with the probabilistic measures from sec-

tion 6.1.2. For the case study, the a priori probability P (Ei|F ) denoting the probability
that a faulty I/O vector is the result from i edges is de�ned in table 6.2. It is conserva-
tively assumed that the portion of faults leading to an I/O vector with one edge is 80%.
Another conservativism is not to consider faults leading to more than three edges (see
page 124 for an explanation on why this is conservative). Calculating the upper bound
and the average probability for accepting an I/O vector induced by a fault results in

m∑

i=1

Pmax(A ∩ Ei|F ) ≤
3(
30
1

) · P (E1|F ) +
2(
30
2

) · P (E2|F ) +
2(
30
3

) · P (E3|F )

≤ 0.0807
m∑

i=1

P (A ∩ Ei|F ) ≈
0.58(
30
1

) · P (E1|F ) +
0.15(
30
2

) · P (E2|F ) +
0.31(
30
3

) · P (E3|F )

≤ 0.0151

The calculation shows that in the worst case there is a probability of 8.07% for ac-
cepting an I/O vector induced by a fault. If each NDAAO state is expected to be
equally likely to be the current automaton state during online monitoring, the proba-
bility is only 1.51%. These low values show that the automaton is appropriate for fault
detection purposes.
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number of edges i 1 2 3
P (Ei|F ) 0.8 0.15 0.05

Table 6.2: De�nition of P (Ei|F ) for the case study

The �rst example is a fault at the sensor that is connected with the controller input
I3.3. The fault that has been introduced arti�cially is a short circuit that causes the
sensor to switch its signal from 1 to 0. The fault has been introduced when the �rst
work piece was treated by the second machine (vertical milling). At the same time, the
second work piece gets drilled in the �rst station. The short circuit has been produced
when milling with the second of the three tools in station 2 started and the milling head
left the top position. This situation is depicted in �gure 6.10. After the observation
of I2.2_1 indicating that the milling head just left its home position, the evaluator
algorithm delivers state x18 as single state estimate. Hence, no fault is detected. Then
the falling edge I3.3_0 is observed that occurs due to the fault. The evaluator algorithm
does not �nd a following state of x18 that can be reached by this edge. Since X̃t is empty,
a fault is detected due to equation 6.1. Consequently the residuals are applied with
x̃ = x18 as the former unique estimate.

Res1(x̃, u(t)) = {I3.3_0}
Res2(x̃, u(t)) = {I3.3_0}
Res3(x̃, u(t)) = {}
Res4(x̃, u(t)) = {I1.5_1, I2.3_0, O1.3_1, O1.4_1, O1.5_1, O2.2_1, O2.3_0}

Res1 and Res2 both result in the same unexpected edge that is caused by the fault.
Res3 results in an empty set and Res4 shows a union of the legal following behavior of
state x18. In this case, Res3 and Res4 do not isolate the fault. Res1 and Res2 provide
the correct fault candidate.

Figure 6.10: Example for a fault at I3.3

The second example is a fault at the sensor that is connected to I2.4. This sensor
detects if a work piece is at the left most position of station 2 (I2.4 = 1). The arti�cially
introduced fault prevents the sensor from switching back to 0 when the work piece
has left the leftmost position. The fault was introduced when the �rst work piece
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gets transported from station 2 to station 3 and the second work piece from station
1 to station 2. Figure 6.11 shows the described situation. The evaluation algorithm
(algorithm 11) determines x49 as the actual estimate when the second work piece arrives
at position I2.4 and produces the rising edge I2.4_1. Now, the fault prevents I2.4
from switching again to 0 when the work piece leaves the position due to the start
of the conveyor (O2.5_1). The fault is detected when the rising edge of I3.5 and its
corresponding output changes are observed before I2.4 changed back to 0: The sensors
detect the arrival of the �rst work piece in front of machine tool 3 before I2.4 switched
back to 0 which never happened during fault-free system evolutions. The residuals are
calculated:

Res1(x̃, u(t)) = {I3.5_1, O3.3_1, O3.4_1, O3.5_0}
Res2(x̃, u(t)) = {I3.5_1, O3.3_1, O3.4_1, O3.5_0}
Res3(x̃, u(t)) = {I2.4_0, O1.5_0}
Res4(x̃, u(t)) = {I2.4_0, O1.5_0}

In this case, Res1 and Res2 do not isolate the fault since they show the observed
behavior that is not responsible for the fault. The controller input that is related to
the blocked sensor is isolated by both Res3 and Res4 since it is a missed behavior.
A fault that leads to exactly the same symptoms is a defect at the motor of the

conveyor in front of the vertical milling machine (O2.5). If the conveyor motor does
not start due to the motor fault, the symptoms are comparable: The sensor that is
connected to I2.4 does not change its value since the conveyor does not transport the
work piece away from the left most position of station 2. Hence, if Res3 or Res4 report
a missing change in value at a sensor, it is reasonable to not only check the according
sensor but also the actuators that have a direct in�uence on this sensor
It can be seen that the residuals do not only contain controller inputs but also con-

troller outputs. They are set if a controller input leads to a ful�lled logical condition
in the control program. Although outputs reported in the residuals are usually not
directly related to the fault, they can be useful to decide whether the fault candidates
reported by Res1 and Res2 or the candidates of Res3 and Res4 should be analyzed
�rst. If controller inputs appear in Res1 or Res2, they are supposed to be unexpected.
Indeed, the fault-free system model did not expect their change in value at the time of
their observation. Nevertheless, if a change in value of an input together with changes
in value of controller outputs are observed, it is possible that this was not completely
unexpected: The controller program was in an internal state where it waited for the
change in value of the input and thus triggered some outputs upon its observation.
Given a situation like in the second example, this can help to decide that the observed
change in value of I3.5 was not unexpected by the controller since it was in an internal
state that allowed setting corresponding outputs. In the example scenario it was actu-
ally expected that the work piece eventually arrives in front of station 3 which leads to
the observation of I3.5_1 and the according output setting to stop the conveyor and
start the third machine tool. Hence, the candidates delivered by Res3 and Res4 should
be checked �rst which delivers the right fault candidate.
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Figure 6.11: Example for a fault at I2.4

6.2 Fault Detection and Isolation with the Identi�ed

Distributed Models

6.2.1 System monitoring with the distributed model

If the identi�ed distributed models are to be used for online fault detection and isolation,
the method introduced in the former section must be adapted. The general idea of
using the monolithic and the distributed model is the same: The faults are isolated
by determining unexpected and missed behavior. In the distributed model (pyramid
structure in �gure 6.12) two scenarios for fault detection exist: Firstly, a fault can be
detected if the current observation is not reproducible by one of the partial automata.
Secondly, the tolerance speci�cation can reach the fault state if the combined behavior
of the partial automata exceeds the prede�ned amount of acceptable unknown behavior.
For both cases, appropriate isolation techniques will be proposed in the next section.
Figure 6.12 shows the adapted evaluator scheme for the distributed model. It shows
the data �ow during online monitoring. The precise working principle of the block
'evaluator' is explained in the following. The fault isolation techniques implemented in
the block 'analyzer' are given in the next section. It can be seen that the information
given to the analyzer are the current state of the tolerance speci�cation, the current
state of the POCP and TObs. TObs corresponds to a trajectory of I/O vectors observed
in case of a fault. It contains each vector observed after the tolerance speci�cation left
the OK-state. The required variables are calculated with algorithm 12.
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Figure 6.12: Evaluator structure for the distributed model

Algorithm 12 only works if each of the partial automata is in a well de�ned current
state. Hence, it must be started with the set of initial partial NDAAO states. Upon
reception of a new I/O vector, the algorithm determines the new automata network
situation and derives the current states of the tolerance speci�cation and of the POCP.
It is assumed that the tolerance speci�cation has only one state with the fault label
F . For the tolerance speci�cation structure, equations 4.8 and 4.9 from page 76 must
hold. From line 1 to line 8, the algorithm determines for each partial automaton the
current state corresponding to the observed partial I/O vector usysi(t)

2. The according
state must be the former current state itself or one of its successor states (i.e. taken
from the set {xi(t− 1)∪ f(xi(t− 1))})3. If it is not possible to determine a new current
state in the i-th partial automaton, the state xi(t) is not de�ned and a fault must
be detected. In this case, the current state of the tolerance speci�cation is set to the
fault state (line 6) to indicate fault detection. In line 9 it is analyzed if the current
tolerance speci�cation state represents fault detection. If not, from line 10 to line 14
the next POCP state is determined like in de�nition 36. In the �rst case (the condition
in line 10 holds) a POCP state exists representing the newly determined states of the
partial automata since this combination has been seen during the identi�cation phase.
This state becomes the next POCP state. During the construction of the POCP it is
made sure that at maximum one POCP state exists for each observed state combination
in the automata network (see algorithm 5 on page 81). Each POCP state is connected
with all other POCP states. In the second case (line 13), the POCP does not have an
according state since the current network situation has not yet been seen. Hence, the
joker state with the empty output ε becomes the new current POCP state. In line 15 the
next tolerance speci�cation state is determined. Like in de�nition 36 it must be reached

2According to de�nition 26, the partial I/O vector only contains the I/Os of the i-th subsystem
3From step 2 of algorithm 1 (the monolithic identi�cation algorithm) it follows that a state in an

identi�ed automaton does not have several following states with the same output.

133



6 Fault Detection and Isolation

by the same kind of transition as taken in the POCP: If the POCP took an observed
transition, the tolerance speci�cation also takes an observed one. If the POCP took an
unobserved transition, the tolerance speci�cation also takes an unobserved transition.
The functions ΘPOCP and ΘTol deliver the necessary information about observed and
unobserved transitions following de�nition 32.
In line 17 it is analyzed if the tolerance speci�cation just left the OK-state. In this

case, the observed sequence TObs is initialized. It will be used for fault isolation in the
next section. If the tolerance speci�cation performed a trajectory from an undecided
state to another undecided state or to the fault state (checked in line 20), the new
observed I/O vector is added to TObs. In this case, TObs had been initialized before. The
algorithm returns the current partial automata states, the current states of tolerance
speci�cation and of the POCP and the sequence of I/O vectors observed since the
tolerance speci�cation left the OK state.

Algorithm 12 Evaluator algorithm for the distributed model
Require: New observed I/O vector u(t), current state combination of the Nsys partial

NDAAOi {x1(t − 1), . . . , xNsys
(t − 1)}, current state xPOCP (t − 1) of the POCP,

current state xTol(t− 1) of the tolerance speci�cation
1: for all partial NDAAOi|1 ≤ i ≤ Nsys do

2: if ∃x′i ∈ {xi(t− 1) ∪ f(xi(t− 1))}|λi(x′i) = usysi(t) then

3: xi(t) := x′i
4: else

5: xi(t) not de�ned
6: xTol(t) := xTol|λTol(xTol) = F

7: end if

8: end for

9: if λTol(xTol) 6= F then

10: if ∃x′POCP ∈ XPOCP |λPOCP (x′POCP ) = {x1(t), . . . , xNsys
(t)} then

11: xPOCP (t) := x′POCP
12: else

13: xPOCP (t) := xPOCP |λPOCP (xPOCP ) = ε

14: end if

15: xTol(t) := x′Tol|
(
x′Tol ∈ fTol(xTol(t− 1))

∧ΘPOCP (xPOCP (t− 1), xPOCP (t)) = ΘTol(xTol(t− 1), x′Tol)
)

16: end if

17: if λTol(xTol(t− 1)) = OK ∧ λTol(xTol(t)) 6= OK then

18: TObs := (u(t− 1), u(t))

19: end if

20: if λTol(xTol(t− 1)) 6= OK ∧ λTol(xTol(t)) 6= OK then

21: add u(t) to the sequence TObs
22: end if

23: return {x1(t), . . . , xNsys
(t)}, xTol(t), xPOCP (t), TObs

Algorithm 12 shows that both scenarios leading to fault detection result in the tol-
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erance speci�cation state with the fault label: If a partial NDAAO was not able to
reproduce its partial observation, the tolerance speci�cation is set to the fault state in
line 6. If the POCP performs an unacceptable number of unobserved transitions, the
tolerance speci�cation will �nally be led to its fault state in line 15. Hence, the fault
detection policy depends on the current state of the tolerance speci�cation only:

FD(xTol(t)) =

{
fault if λTol(xTol(t)) = F

OK if λTol(xTol(t)) 6= F
(6.17)

A fault is detected if the current state of the tolerance speci�cation is the fault state.
After a fault has been detected, the model can be reinitialized considering I/O vectors
following fault detection4: For each partial NDAAO, algorithm 11 from page 121 has to
be applied using each new I/O vector until each partial automaton has a unique state
estimate. If the fault was detected by a partial NDAAO, this allows reinitializing the
according automaton. If the fault was detected by the POCP, this procedure simply
determines the new current states in the automata network. After a valid state has
been determined for each partial automaton, it can be checked whether a POCP state
representing the current network situation exists. If yes, this POCP state becomes the
current POCP state and the tolerance speci�cation is reset to the OK state. If no
POCP state representing the current network situation exists, it must be continued to
use algorithm 11 for each partial automaton until a state combination is reached which
is represented by a POCP state. As soon as a POCP state is found, algorithm 12 can
restart analyzing the following system behavior with the tolerance speci�cation reset
to its OK state.
Analogously to the considerations for the monolithic model, it is also possible to

estimate the probability for accepting an I/O vector induced by a fault with the dis-
tributed model. The probabilities introduced in section 6.1.2 can be used on the basis
of the cross product of the partial automata: The cross product de�nes the maximum

behavior which is accepted by the automata network without restriction by the POCP.
It can thus be used as a conservative reference for the fault detection capabilities. In
section 6.2.3, the according values for the case study system will be given.

6.2.2 Residuals for the distributed model

The fault isolation technique for the distributed model follows the same principle as fault
isolation with the monolithic model. The idea is to compare observed and expected I/O
behavior after a fault was detected and to determine I/Os with an unexpected or missed
behavior. In contrast to the monolithic model, it is not su�cient to compare only the
currently observed I/O vector with the expected ones. In the distributed model it is
possible that the fault was detected due to an unaccepted combined automata network
behavior. Such a behavior makes the tolerance speci�cation leaving its OK state and
�nally reaching the fault state. Generally, several I/O vectors can have occurred until
the tolerance speci�cation reaches its fault state. This sequence contains behaviors

4This is important for applications where even with the distributed approach it is not possible to

completely eliminate false alerts
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which caused fault detection. It is thus necessary to analyze the complete observed
sequence since the time when the normal behavior (de�ned by the OK state of the
tolerance speci�cation) was left. Algorithm 12 delivers this sequence with TObs. It
represents the observed system behavior. Based on

TObs = (u(t− n), u(t− n+ 1), . . . , u(t)) (6.18)

with n denoting the number of I/O vectors after the tolerance speci�cation left its OK
state, it is possible to determine the set of observed edges. They are the union of the
observed edges between two successive I/O vectors in the observed trajectory:

EST (TObs) = ES(u(t− n), u(t− n+ 1)) ∪ · · · ∪ ES(u(t− 1), u(t)) (6.19)

with ES from de�nition 42. Equation 6.19 is an adaptation of the evolution set for
analyzing sequences of I/O vectors.
Like in the monolithic case, the observed edges have to be compared with the expected

ones. They can be calculated on the basis of expected network trajectories. The
expected network trajectories can be derived from the POCP by only taking observed
transitions (with Θ = true) since they de�ne fault-free behavior observed during the
identi�cation phase. For the analysis of expected edges it is necessary to determine
the I/O vectors resulting from a POCP trajectory. The following function determines
the I/O vector which is the combined output of a partial automata state combination
represented by a POCP state.

JPOCP (xPOCP ) = J(λ1(x1), λ2(x2), ..., λNsys
(xNsys

))|{x1, x2, ..., xNsys
} = λPOCP (xPOCP )

(6.20)
It makes use of the join-function from de�nition 28 on page 68. The partial I/O vectors
being the output of the underlying partial automata states are combined. During the
construction of the POCP it was made sure that only state combinations leading to a
valid I/O vector are represented by a POCP state (see algorithm 4 on page 78).
As shown in equation 6.18, the observed I/O vector sequence consists of n vectors.

This means that after the OK state in the tolerance speci�cation was left, n I/O vectors
have been observed. To compare the observed and the expected behavior, the POCP
trajectories of length n are determined which could have occurred if no fault had been
detected. They start in state xPOCP (t−n) which was the current POCP state before the
tolerance speci�cation left its OK state. The trajectories only take observed transitions
because this represents a known fault-free network behavior. In the following equation,
each POCP trajectory starting in xPOCP (t − n) and only taking observed transitions
(ΘPOCP = true) is determined. Using the adapted join-function from equation 6.20,
the resulting expected I/O vector sequences of length n are determined:

Ψ̂Exp(xPOCP (t− n)) = {JPOCP (xPOCP (t− n)), . . . , JPOCP (xPOCP (t))|
ΘPOCP (xPOCP (j), xPOCP (j + 1)) = true (∀t− n ≤ j < t)}

(6.21)

Based on TObs containing the observed behavior and on Ψ̂Exp(xPOCP (t−n)) containing
the expected behavior, residuals like in the former section are introduced. It is possible

136



6.2 Fault Detection and Isolation with the Identi�ed Distributed Models

to apply the modi�ed evolution set function EST from equation 6.19 to each expected
I/O vector sequence ψ̂ ∈ Ψ̂ to determine the set of expected edges.
First, the unexpected behavior is determined.

Res5(Ψ̂Exp(xPOCP (t− n)), TObs) = EST (TObs)\
⋃

∀ψ̂∈Ψ̂Exp(xPOCP (t−n))

EST (ψ̂) (6.22)

Res5 takes the observed edges and subtracts the union of the edges occurring in the
expected I/O vector sequences. The union contains each edge that would have been
occurred in any of the expected behaviors. The resulting edges in Res5 were not
expected in any known network trajectory and consequently are possible fault locations.
Hence, Res5 follows the same idea like Res1. Like in the case of Res1, it is also possible
to subtract the intersection of edges in the expected behavior:

Res6(Ψ̂Exp(xPOCP (t− n)), TObs) = EST (TObs)\
⋂

∀ψ̂∈Ψ̂Exp(xPOCP (t−n))

EST (ψ̂) (6.23)

In this case, only the edges expected in each possible network trajectory are subtracted
from the observed ones. Res6 is thus less strict than Res5. If it was not possible to
determine the fault among the candidates in Res5, it can be reasonable to analyze the
additional information of Res6.
Using the set operations, it is also possible to determine the missed behavior as

second generic fault symptom.

Res7(Ψ̂Exp(xPOCP (t− n)), TObs) =
⋂

∀ψ̂∈Ψ̂Exp(xPOCP (t−n))

EST (ψ̂)\EST (TObs) (6.24)

In this case, the intersection of the edges occurring during expected network trajectories
is taken. From this set, the observed edges are subtracted. The remaining edges should
have occurred in each network trajectory but have not been observed in the I/O vector
sequence leading to fault detection. It is also possible to formulate a less strict version
of this residual by considering the union of the expected edges:

Res8(Ψ̂Exp(xPOCP (t− n)), TObs) =
⋃

∀ψ̂∈Ψ̂Exp(xPOCP (t−n))

EST (ψ̂)\EST (TObs) (6.25)

Res8 usually contains more edges than Res7. If the fault cannot be found among the
edges in Res7, the additional edges in Res8 can be taken into consideration.
The following example shows that the residuals can be used in both possible fault

detection scenarios: They can be applied if a partial NDAAO was not able to reproduce
the observed behavior and if the fault was detected because the combined network
behavior exceeded the prede�ned acceptable amount of yet unknown behavior. First,
fault detection by a partial NDAAO is considered.
Figure 6.13 shows the considered scenario. In the example, only the edges occurring

between two states are shown. In the POCP, the state output 2A means the combination
of state 2 and state A in the partial automata. From the construction of the POCP
follows that all POCP states are interconnected. If the transition is not given in the
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Figure 6.13: Example for fault isolation in the distributed framework

�gure, it is unobserved (ΘPOCP = false). The �rst partial NDAAO cannot reproduce
the observed edge b_1. As a consequence, algorithm 12 sets the tolerance speci�cation
to the fault state in line 6 which leads to fault detection. In line 17 and 18 it is noticed
that the tolerance speci�cation just left the OK state. Consequently, the observed
trajectory is initialized with the former and the currently observed I/O vector. Applying
the modi�ed evolution set function to TObs leads to:

EST (TObs) = {b_1}

In the next step it is necessary to determine the expected behavior with Ψ̃(xPOCP (t−1))
according to equation 6.21: Each expected POCP sequence with the length of TObs
which would not have led to fault detection is calculated. Two possible evolutions exist:
1A→ 1B and 1A→ 2B. They lead to the edges {c_1, d_1} for the �rst evolution and
{a_1, c_1, d_1} for the second evolution. Applying the residuals leads to:

Res5 = {b_1}\({c_1, d_1} ∪ {a_1, c_1, d_1}) = {b_1}
Res6 = {b_1}\({c_1, d_1} ∩ {a_1, c_1, d_1}) = {b_1}
Res7 = ({c_1, d_1} ∩ {a_1, c_1, d_1})\{b_1} = {c_1, d_1}
Res8 = ({c_1, d_1} ∪ {a_1, c_1, d_1})\{b_1} = {a_1, c_1, d_1}

The analysis of Res5 and Res6 shows that b_1 occurred unexpectedly which allows
isolating the fault. Res7 = {c_1, d_1} shows that two edges have been expected but
not observed. Res8 additionally contains the edge a_1 because it can occur in one
trajectory (1A→ 2B).
In the second example, we assume that an I/O vector sequence was observed leading

to the trajectory 1A → 2A → 2B in the POCP. This is only possible by taking two
unobserved transitions which leads the tolerance speci�cation to the fault state. The
observed edges in this case are EST (TObs) = {a_1, c_1, d_1}. In the POCP, two
possible trajectories starting in 1A with length |TObs| exists: 1A → 1B → 2B and
1A → 2B → 2C. The according expected edges are {a_1, c_1, d_1} for the �rst
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trajectory and {a_1, c_1, c_0, d_1} for the second trajectory. The residuals result in:

Res5 = {a_1, c_1, d_1}\({a_1, c_1, d_1} ∪ {a_1, c_1, c_0, d_1}) = {}
Res6 = {a_1, c_1, d_1}\({a_1, c_1, d_1} ∩ {a_1, c_1, c_0, d_1}) = {}
Res7 = ({a_1, c_1, d_1} ∩ {a_1, c_1, c_0, d_1})\{a_1, c_1, d_1} = {}
Res8 = ({a_1, c_1, d_1} ∪ {a_1, c_1, c_0, d_1})\{a_1, c_1, d_1} = {c_0}

This can be interpreted as follows: None of the observed edges were unexpected since
Res5 and Res6 return empty sets. Since Res8 returns {c_0}, it can be concluded that
c_0 was expected in some regular trajectories but has not been observed. The fault is
thus probably related to I/O c which did not change its value.

6.2.3 Distributed fault detection and isolation of the case study

system

The fault isolation method for distributed models has been applied to the case study
system. The same scenario as in section 4.4 is considered: The system has to treat three
work pieces which leads to a high degree of concurrency. One of the main advantages
of the method is its capability to compensate for some consequences of inappropriate
I/O partitioning. The partitioning process by expert knowledge or by the optimization
approach does not always lead to subsystems which allow e�cient fault detection and
isolation for each I/O. An example for subsystem partitioning with an inappropriately
assigned I/O is given in �gure 6.14. It can be seen that the I/O I2.2 (sensor at the top
position of the second machine tool) is assigned to the subsystem with the I/Os from
the third machine tool although it is not related to any of its I/Os. Although even worse
scenarios are possible, the presented example is signi�cant since it represents a situation
where a sensor is not assigned to the same subsystem as its in�uencing actuators.

Figure 6.14: First scenario for distributed fault isolation

For the partitioning scenario in �gure 6.14 a distributed model consisting of three
partial automata (each identi�ed with k = 2) and the POCP has been identi�ed using
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the same data base as in section 4.4. The tolerance speci�cation is given in �gure 6.15.
Di�erently to the speci�cations used in section 4.4, it is possible to regain the OK state
after some unknown behavior has been observed. If for example one unknown transition
was taken, it is possible to get back to the OK state after the successive observation of
two already known transitions in the POCP. This is based on the consideration that the
observation of several new transitions is probably an acceptable behavior if the system
quickly returns to normal operation. If three unobserved POCP transitions are taken
successively (or only interrupted by one or two observed POCP transitions), a fault is
detected.
Before a �rst example is shown, the probability for accepting an I/O vector induced

by a fault is calculated for the cross product of the three partial automata using equa-
tions 6.9 and 6.10 from page 125. Considering the cross product of the three partial
automata refers to using the partial automata without any restriction by a tolerance
speci�cation. The probabilities are thus conservative estimates for the fault detection
capabilities of the partial automata in conjunction with POCP and tolerance speci�ca-
tion. The a priori probability P (Ei|F ) denoting the probability that a faulty I/O vector
is the result from i edges is de�ned in table 6.2 on page 130. The resulting values are

m∑

i=1

Pmax(A ∩ Ei|F ) ≤
3(
30
1

) · P (E1|F ) +
3(
30
2

) · P (E2|F ) +
3(
30
3

) · P (E3|F )

≤ 0.081 , 8.1%
m∑

i=1

P (A ∩ Ei|F ) ≈
1.40(
30
1

) · P (E1|F ) +
0.87(
30
2

) · P (E2|F ) +
0.94(
30
3

) · P (E3|F )

≤ 0.037 , 3.7%

This shows that the distributed model is already appropriate for fault detection pur-
poses even if the network restriction is not considered. A monolithic automaton iden-
ti�ed with k = 1 on the same data base yields with 5.3% and 2% values which are not
signi�cantly better.

Figure 6.15: Tolerance speci�cation for the case study system

The fault considered in the �rst scenario is related to I2.2. At the beginning of a
system evolution, I2.2 has the value 0 since the machine tool is at its top position (I2.2
is inverted as explained in section 3.5). When the �rst work piece is processed in the
�rst machine tool, a fault is introduced which makes the input change its value from 0

140



6.2 Fault Detection and Isolation with the Identi�ed Distributed Models

to 1 without the second machine tool leaving its home position. The partial automaton
containing I2.2 does not detect a fault because it is waiting for exactly this rising
edge. A part of the concerning automaton is shown in �gure 6.16. It is the automaton
containing I2.2 but mainly consisting of I/Os from the third subsystem (third machine
tool). During normal system behavior, the partial automaton expects I2.2_1 before
any change in value of its remaining I/Os: The �rst work piece has to be treated in
the second machine tool before it is transported to the third one and can in�uence
any of the other I/Os in the automaton. Treating a work piece in the second machine
tool leads to a rising edge of I2.2 when the milling head is moved down. The partial
automaton does not detect that this time the change in value of I2.2 occurs too early
due to the fault. The fault is �nally detected since it leads to an unknown sequence of
state combinations in the automata network when the �rst work piece is treated in the
�rst machine and the partial automaton for the third subsystem is in state x1. After
the POCP performed three unknown transitions, the tolerance speci�cation is led to
the fault state and a fault is detected (see algorithm 12).

Figure 6.16: Part of the automaton identi�ed for the third subsystem

Applying the residuals for the distributed model leads to the following result:

Res5(Ψ̂Exp(xPOCP (t− n)), TObs) = {I2.2_1}
Res6(Ψ̂Exp(xPOCP (t− n)), TObs) = {I2.2_1}
Res7(Ψ̂Exp(xPOCP (t− n)), TObs) = {I1.5_1, O1.3_1, O1.4_1, O1.5_0}
Res8(Ψ̂Exp(xPOCP (t− n)), TObs) = {I1.5_1, O1.3_1, O1.4_1, O1.5_0}

It can be seen that the rising edge at I2.2 is part of Res5 and Res6 which indicates
that it occurred unexpectedly. Res7 and Res8 contain the behavior which was expected
but did not occur. It can be seen that exclusively I/Os from the �rst machine tool are
a�ected. This is due to the fact that usually the �rst machine tool must �nish treating
the work piece before a rising edge at I2.2 can occur. Since I2.2 is part of the �rst
residuals, it is possible to �nd the fault. Generally, the repair crew must check each
I/O contained in one of the residuals. Compared to the total number of 30 I/Os in
the system, they still render a relatively sharp fault isolation. The system operator
can again use the strategy described in section 6.1.4 to decide which I/O to check �rst:
Res5 and Res6 only contain I2.2 without any change in value of a controller output.
Hence, the controller did not expect or react to the change in value of I2.2. This is an
indicator that I2.2 should be checked with priority.
As a second example, we consider a fault leading to a missed I/O behavior. The

according I/O partitioning is given in �gure 6.17. It is again a wilfully non-perfect
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solution: In this scenario the I/O belonging to the sensor at the bottom position of the
third machine tool (I3.3) is assigned to the subsystem exclusively containing the I/Os
from the second station.

Figure 6.17: Second scenario for distributed fault isolation

In the second example, the system is working without fault until the �rst work piece
is transported to the third machine. When the work piece arrives in front of the tool,
the milling head is moved down to the bottom position (I3.3). The sensor changes its
value correctly from 1 to 0 (inverted sensor). At this point, a fault is introduced which
prevents the input from switching back to 1 when the milling head is moved up after
the work piece has been treated. The fault leads to a trajectory consisting of three
unobserved POCP transitions which leads the tolerance speci�cation automaton to the
fault state. Applying the residuals leads to the following result:

Res5(Ψ̂Exp(xPOCP (t− n)), TObs) = {}
Res6(Ψ̂Exp(xPOCP (t− n)), TObs) = {I2.2_1, O2.2_0, O2.7_1, I2.6_1,

I1.5_0, O1.3_1, O1.4_1, I1.5_0}
Res7(Ψ̂Exp(xPOCP (t− n)), TObs) = {I3.3_1}
Res8(Ψ̂Exp(xPOCP (t− n)), TObs) = {I3.3_1, I1.2_1}

None of the observed edges was completely unexpected since Res5 delivers an empty
set. A large set of rising and falling edges have been observed but are not expected in
each trajectory of POCP transitions of length |TObs| not leading to fault detection. The
faulty I/O I3.3 is part of Res7. The rising edge of I3.3 is expected in any fault-free
POCP trajectory but has not been observed. Since Res5 is empty and Res7 contains
exactly one I/O, it is a reasonable choice to �rst investigate the state of the sensor
connected with I3.3 before any other I/O is considered. The example shows that the
missed I/O behavior can be isolated with the distributed models although none of the
partial automata detects a fault.
Treating the case study it was possible to show that even faults concerning inap-

propriately assigned I/Os can be isolated using information of the POCP. Hence, even
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if the automated partitioning approach does not always lead to 'perfect' results, the
upper structure of POCP and tolerance speci�cation allows using the resulting models
for fault diagnosis purposes.
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7 Industrial Application

7.1 Presentation of the system

In the former chapters the proposed method has been successfully applied to a labora-
tory case study system. In order to assess the scalability of the method, an industrial
production system has been treated. The considered system is a winder used in a
production facility producing nonwovens. It is installed in a factory of Freudenberg
Vliessto�e KG in Kaiserslautern.
Freudenberg Vliessto�e is part of the Freudenberg group. It is a family-owned group

of companies developing and producing seals, vibration control technology components,
�lters, nonwovens, release agents and specialty lubricants as well as mechatronic prod-
ucts. The Freudenberg group employs more than 30000 people in 55 countries and has
a balance sheet total of more than 4.6 billion euros (FreudenbergGroup, 2009). The
factory located in Kaiserslautern is partially dedicated to nonwovens production. Non-
wovens are a special fabric which is made from long �bers, bonded together by chemical,
mechanical or heat treatment. Typical �elds of use are industrial or automotive �lters,
medical applications like adhesive plaster or bandages and personal hygiene like dia-
pers. A schematic view of the nonwovens production process is given in �gure 7.1. The
nonwoven fabric is usually built on the basis of some granulate which in a �rst step is
melted in an extruding process. The melted material is transported to so called spin-
ning jets which stretch and mix single �laments to a web structure. The criss-crossed
�bres are welded together by passing through hot rotating cylinders (the calender). The
resulting nonwoven fabric is transported to a winder where it is winded on a coil and
where the coils are handled.

Figure 7.1: Schematic view of a nonwovens production line

The system considered in this chapter is the winding machine at the end of the
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production process depicted in �gure 7.2. The machine winds the fabric on a coil until
the desired length is reached. At this point, the incoming fabric is cut and the full coil
is taken to a lifting post where it gets manually wrapped. An important feature of the
winding machine is its storage: When the coil is wrapped on the lifting post, it is not
necessary to stop the remaining production process. The incoming fabric is stored in a
storage until an empty coil is installed in the winder. The whole winder is controlled
by a Siemens 135U PLC with 336 digital inputs and 256 digital outputs. The PLC has
been equipped with an appropriate communication processor such that the same data
link as described in section 3.5.2 for the case study system can be used.

Figure 7.2: Winder of the nonwovens production line

Since only with a properly working winder it is possible to continuously produce
nonwoven fabric, there is a considerable interest in reducing the necessary time to
detect and locate faults in order to restore a functioning production as fast as possible
after some fault occurred. Using model-based fault detection techniques based on a
manually built model is not possible due to two important obstacles. The �rst one is
the complexity and size of the plant (among other components, the winder contains 20
drives and 38 cylinders of di�erent types). The second one is that the controller program
is not available in a formalized form which would allow translating it in a �nite state
machine and applying e.g. the method of (Philippot et al., 2007). Motivated by these
obstacles, the identi�cation-based method presented in this work was chosen to build a
fault detection and isolation system.

7.2 Software implementation

To facilitate the installation of the identi�cation based diagnosis system, di�erent soft-
ware tools have been developed. Figure 7.3 shows the structure of the software. It can
be seen that the data collection and the diagnosis tools are run online which leads to
realtime constraints. Procedures related to the identi�cation process can be run o�ine
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and are thus less time critical. More details on the software used online will be given
in section 7.5.

Figure 7.3: Structure of the identi�cation software

The software scheme shows where the user has to generate di�erent inputs. Since not
all controller I/Os are relevant for diagnosis, the interesting I/Os must be de�ned. An
example for I/Os which can be ignored are inputs delivering the length of the winded
fabric in a binary format or controller outputs connected to lamps or displays. If avail-
able, it is also possible to de�ne the causal actuator sensor relations to improve the
results of the partitioning approach. When the system has been divided into subsys-
tems, it is necessary to choose appropriate values for the identi�cation parameter k for
each subsystem. If the distributed diagnosis procedure is to be applied, the tolerance
speci�cation must also be de�ned.
The software allows visualizing the evolution of the observed system language and

the evolution of the optimization algorithm. System partitioning and distributed iden-
ti�cation result in a model �le in form of an xml-�le containing the identi�ed partial
automata as well as the POCP. All steps explained in the following sections have been
carried out using this software scheme.

7.3 Data analysis

Before the data can be captured, it is necessary to determine controller I/Os which are
not relevant for diagnosis. A �rst analysis resulted in a set of 134 relevant controller
I/Os. Figure 7.4 shows the evolution of the observed language LnObs for 1 ≤ n ≤ 3.
It can be seen that even after the observation of 562 system evolutions, L2

Obs does not
converge. Hence, it is not possible to state LnObs = LnOrig for any n ≥ 2 as required in
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assumption 5 on page 54 to allow the identi�cation of a monolithic automaton with the
minimal value k = 1. Two possibilities exist to deal with this situation: The �rst one is
to increase the system observation time and to record more evolutions. Since collecting
562 evolutions already took more than one week, this approach was not possible. Hence,
the second possibility was chosen: Dividing the system into subsystems and working
with the distributed model.

Figure 7.4: Evolution of the observed language of the complete winder

A �rst partitioning for the considered system was possible by treating the lifting
station separately. With the help of system experts it could be determined that this
station (with 20 controller I/Os) works almost independently from the remaining wind-
ing process. The evolution of the observed language up to length three is shown in
�gure 7.5 on the left. It can be seen that the language of length three of the lifting
station converges and thus allows the identi�cation of an NDAAO based on the ob-
served data with k = 2 since Lk+1

Obs ≈ Lk+1
Orig can be stated. A higher value for k seems

not to be reasonable since L4
Obs does not converge as good as L3

Obs. Additionally, it was
possible to roughly analyze the functioning of the lifting station: The most ambiguous
situation in terms of distinguishing non-equivalent system states with the same output
is comparable to the conveyor example from section 3.4.1. Hence, it could be decided
that k = 2 is a good compromise between model accuracy and model completeness (to
avoid false alerts). The resulting NDAAO has 55 states and 86 transitions. Using a 1.8
GHz processor with 2 GB RAM, the identi�cation could be carried out in 33 seconds.
Since the language of the remaining system does not converge for any n (see �gure 7.5
on the right), further partitioning is required. Since only few expert knowledge was
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Figure 7.5: Evolution of the observed languages for the lifting station and the remaining
system

available, the optimization approach from chapter 5 was chosen to divide the remaining
systems into subsystems.

7.4 Distributed identi�cation

Although only limited expert knowledge was available to divide the remaining system
into subsystems, it was possible to partially determine causal actuator sensor relations
(see section 5.1) with acceptable e�ort by analyzing the documentation of the machine
and by consulting the knowledge of the system operators. The remaining system with-
out the lifting station contains 41 controller outputs and 73 controller inputs. For 26
of the outputs it was possible to determine at least one causally in�uenced controller
input. From the 73 controller inputs, 35 could be determined which are causally in-
�uenced by at least one of the controller outputs. For the remaining I/Os it was not
possible to get any information concerning causal relations. It was thus possible to par-
tially de�ne the causal I/O map from de�nition 39 on page 106. With this knowledge,
the data-based partitioning approach using the knowledge of causal actuator sensor
relations from section 5.3.5 was applied to the system.
For the winding process, the optimal number of subsystems could not be deter-

mined using apriori knowledge. Hence, the optimization was �rst carried out for two
subsystems. As optimization criterion, J̃1(y) from equation 5.7 on page 99 (language
growth) was taken. Words of length n = 2 have been considered. The optimization was
parameterized with an initial temperature of T0 = 1000 and the minimal temperature
Tmin = 8.04×10−14 leading to 3000 optimization runs with a cooling rate of CR = 0.99.
The solution di�erence de�ning how many I/Os have to change their subsystem from
one optimization cycle to another has been chosen to sD = 3. Since for many con-
troller outputs the according causal in�uences could be determined, sD = 3 often leads
to slightly more than three I/Os changing their subsystem (see section 5.3.5). Using a
PC equipped with a 2.83GHz Intel R©CoreTM2 Quad Core CPU with 3.25 GB RAM, the
partitioning took 30 hours. Figure 7.6 shows the evolution of the observed languages
for the resulting subsystems. It can be seen that the languages show a better conver-
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gence than the languages depicted in �gure 7.5 on the right. In order to compare the
curves, it is helpful to build the gradient for the language LnObs. The gradient for the
observed language of length n in the last 100 observed system evolutions is built using
the following equation:

∆L =
|Ln,562Obs | − |L

n,462
Obs |

100
(7.1)

with Ln,462Obs denoting the observed language up to the 462-th system evolution according
to de�nition 37. The gradient is built for the last 100 evolutions since it was decided
that for the given application, 100 evolutions are a signi�cant number (see assumption 5
on page 54) to reasonably assess the completeness of the observation.

Figure 7.6: Evolution of the observed language for two automatically determined
subsystems

The according values for ∆L of L2
Obs can be seen in table 7.1. During the last 100

observed system evolutions, the complete system language (without lifting station)
produced 2.42 new words of length two on average in each evolution. If this trend is
prolonged in the future, it can be expected that a monolithic system model would lead
to two to three false alerts in each evolution on average. If the resulting subsystems
are considered, it can be seen that the according value of ∆L is decreased to 0.07 and
0.25 respectively. It can thus be expected that using partial automata identi�ed for the
subsystems signi�cantly reduces the number of false alerts since the expected number
of non reproducible words is signi�cantly reduced.

Scenario complete system subsystem 1 subsystem 2
∆L 2.42 0.07 0.25

Table 7.1: ∆L for the complete system language of length two (without lifting station)
and two automatically determined subsystems

If the number of expected false alerts is to be further decreased, it is possible to
continue system partitioning. Since concurrency in the two subsystems has already been
reduced, it is a straight forward approach to take the two determined subsystems as
basis for the next partitioning. Each of the two subsystems was given to the partitioning
algorithm which was parameterized like in the former case. Since the subsystems are
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smaller than the complete system, the number of optimization cycles could be reduced
to 1000 (with Tmin = 4.3 × 10−5). The optimization approach to split each subsystem
in two new subsystems took 7 hours. The languages of the resulting four subsystems
(two for each of the former subsystems) is shown in �gure 7.7.

Figure 7.7: Evolution of the observed language for four automatically determined
subsystems

The values for the gradient of L2
Obs of the four subsystems are given in table 7.2. It

can be seen that dividing subsystem 1 into subsystems A and B yields ∆L = 0.06 and
∆L = 0. Since the gradient of subsystem A is not signi�cantly smaller than the gradient
of subsystem 1, it can be concluded that dividing subsystem 1 is not reasonable. Indeed,
the expected number of non-reproducible words of length 2 for subsystem 1 with 0.06
for each evolution on average (six new words in 100 evolutions) is already acceptably
low.
If subsystem C and D are considered, it can be seen that the gradient of subsystem C

is almost zero. Since the gradient of subsystem D is only 0.12 (compared to 0.25 for
subsystem 2), it can be concluded that dividing subsystem 2 is a reasonable choice since
this reduces the number of expected false alerts signi�cantly (almost 50%). In remark 3
on 84 it has been explained that the number of subsystems should be kept as small
as possible to sharply distinguish fault-free and faulty behavior. Hence, it was decided
that subsystem C and D are not to be further divided. The resulting automata network
thus consists of subsystem 1, subsystem C and subsystem D.
Considering the data captured for the industrial application, it can be seen that

the convergence of the observed language is not as good as it is in the case study
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Scenario subsystem A subsystem B subsystem C subsystem D
∆L 0.06 0.0 0.02 0.12

Table 7.2: ∆L for the partial system language of length two of four automatically de-
termined subsystems

system treated so far. The main reason is that for the industrial application not each
precondition perfectly holds. In chapter 3 it was explained that the considered class of
systems is supposed to be an autonomous closed-loop of controller and plant. However,
the winder can not be considered as completely autonomous since some of its procedures
are triggered by the personnel of the facility using various buttons. Since not each
operating crew is following exactly the same procedures, this can be considered as a
source of disturbance which makes it hard to observe the complete system behavior.
Nevertheless, it can be seen that after having divided the system into subsystems, the
observed language of each subsystem rather clearly converges to a stable level.
On the basis of the four subsystems, partial automata have been identi�ed. Except of

the lifting station with k = 2, the partial identi�cation was carried out with k = 1 since
only L2

Obs converged good enough to state Lk+1
Obs ≈ Lk+1

Orig for each subsystem such that
theorem 5 and theorem 6 hold. Table 7.3 shows the number of states and transitions
for each partial automaton. It also contains information about a monolithic automaton
identi�ed for the whole system (with k = 1).

lifting station subsystem 1 subsystem C subsystem D monolith
|X| 55 165 94 91 2008
|f(X)| 86 307 160 150 3705

Table 7.3: Number of states and transitions for the winder

On the basis of the four partial automata, the POCP has been identi�ed. The
resulting automaton has 2167 states. The construction took 14 minutes on a PC with
2.83GHz Intel R©CoreTM2 Quad Core CPU with 3.25 GB RAM.
To assess the fault detection capability of the identi�ed automata network, the prob-

ability for accepting an I/O vector induced by a fault is calculated for the cross product
of the partial automata using equations 6.9 and 6.10 from page 125. The a priori prob-
ability P (Ei|F ) denoting the probability that a faulty I/O vector is the result from i

edges is de�ned in table 7.4 by a conservative estimate. The resulting values are
m∑

i=1

Pmax(A ∩ Ei|F ) ≤ 0.114 , 11.4% (7.2)

m∑

i=1

P (A ∩ Ei|F ) ≈ 0.034 , 3.4% (7.3)

This shows that the distributed model is already relatively well appropriate for fault
detection purposes even without restricting the network behavior. A monolithic au-
tomaton identi�ed with k = 1 yields with 2.98% and 0.6% better values but leads to a
signi�cantly larger number of false alerts.
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number of edges i 1 2 3
P (Ei|F ) 0.9 0.05 0.05

Table 7.4: Assertion of P (Ei|F )

7.5 Using the model online

An online diagnosis system using the identi�ed models has been installed at the Freuden-
berg production facility. The diagnosis program exploiting the models is running on a
PC which is also hosting a data base and a web server. The results of the diagnosis
algorithm are written to the data base were they can be accessed via the web server.
The web server also allows integrating the diagnosis system into the existing SCADA
(supervisory control and data acquisition) system. Figure 7.8 shows the principle.

Figure 7.8: Online diagnosis setup

To use the identi�ed models for online diagnosis, the tolerance speci�cation must
be designed. It was decided that it is reasonable to accept two successive unknown
combined network trajectories as fault-free. After the observation of a third unknown
trajectory, a fault should be detected. If after less than two unknown trajectories
normal behavior follows, the speci�cation should regain the OK state. To follow this
requirement, the tolerance speci�cation from �gure 7.9 has been chosen. Observing
200 fault-free system evolutions with the partial automata, the identi�ed POCP and
this tolerance speci�cation led to 41 evolutions with a false alert. After each fault, the
automata network, the POCP and the tolerance speci�cation have been reinitialized
as described in section 6.2.1. This showed that each evolution ended without a second
false alert. To compare the distributed and the monolithic approach, the monolithic
automaton has also been used to observe the 200 system evolutions. The result are 91
evolutions with at least one false alert. The total number of false alerts was 216. This
shows that the distributed approach signi�cantly reduces the number of false alerts.
To evaluate if the number of false alerts can be further reduced, the less restrictive

tolerance speci�cation from �gure 7.10 was considered. It accepts an unknown network
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Figure 7.9: First tolerance speci�cation for the industrial application

trajectory of length three before a fault is detected. Observing the same 200 fault-free
system evolutions results in 36 false alerts. It is thus not possible to signi�cantly reduce
the number of false alerts with the less restrictive speci�cation.

Figure 7.10: Second tolerance speci�cation for the industrial application

Table 7.5 shows the number of false alerts using di�erent models. Using the tolerance
speci�cation 1 from �gure 7.9 reduces the number of false alerts signi�cantly when
compared with the monolithic model. Since false alerts are not totally removed, the
distributed model is still sensitive to unknown behavior.

Model evolutions with false alerts total number of false alerts

Monolith 91 (45.5%) 216
Distr. + tol. spec. 1 41 (20.5%) 41
Distr. + tol. spec. 2 36 (18%) 36

Table 7.5: False alerts observing 200 fault-free system evolutions

In the industrial application, it was not possible to arti�cially introduce faults due
to the high risk of causing damage in the system. Although the diagnosis system is
currently running at the production site of Freudenberg, no real faults occurred until
the end of the evaluation time. Nevertheless, the low values for the probability of
accepting an I/O vector induced by a fault allows being con�dent about the fault
detection capability of the model.
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8.1 Summary

The aim of the presented work was the development of a generic model-based diagnosis
method which can be applied to the class of closed-loop discrete event systems. Re-
viewing existing approaches known from literature revealed that two main principles
for model-based diagnosis exist: The �rst one is to use models containing the fault-free
as well as the faulty system behavior. In this context, the models must usually be built
manually and can only handle faults prede�ned during the modeling phase. The second
possibility for model-based diagnosis is to use models of the fault-free system behavior
only. The diagnosis principle is to detect a fault as soon as the current observation
cannot be reproduced by the fault-free system model. It has been shown that using
fault-free system models has a major advantage for the application to large systems:
Since they only contain fault-free behavior, it is possible to construct them using iden-
ti�cation methods working on data captured during fault-free system evolutions. Since
the considered class of industrial closed-loop DES is usually hard to model manually,
the second approach has been chosen in this work.
The �rst contribution of the thesis is thus in the �eld of identi�cation. An existing

monolithic identi�cation algorithm for the considered class of systems has been im-
proved and a new completeness property has been shown. For the choice of the identi�-
cation tuning parameter k, new results have been reported. It has been explained how
the identi�cation parameter helps to avoid representing several non-equivalent systems
states by only one automaton state. Although the monolithic identi�cation approach
is capable of delivering very accurate models, it has some shortcomings when systems
with a high degree of concurrency are to be treated. For these systems it is often not
possible to observe the complete fault-free system behavior in a reasonably short time.
The result are many non-reproducible fault-free behaviors leading to false alerts when
using the monolithic model for fault diagnosis. To overcome this problem, a new dis-
tributed identi�cation method has been developed. The idea is to divide the system
into subsystems and to systematically accept a certain amount of unknown combined
subsystem behavior. The approach is based on the heuristic that a certain amount of
unknown global behavior resulting from a combination of regular subsystem evolutions
can often be accepted as fault-free because it is similar to the known fault-free behav-
ior. The acceptable amount of new behavior can be given by a tolerance speci�cation
automaton. The key of the distributed approach is the division of a given system into
appropriate subsystems. A method to automatically perform this partitioning based
on observed system behavior only and a minimum of system knowledge has been pro-
posed. It uses an optimization technique to solve the combinatorial problem of assigning
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controller I/Os to subsystems. Since the aim is to get subsystems with weak internal
concurrency, optimization criteria to estimate the concurrency in a given subsystem
have been introduced.
For the use of the identi�ed models for fault detection and isolation, a method in-

spired by the concept of residuals known from continuous systems has been proposed.
It derives parts of the controller I/O vector which are possibly related to a detected
fault following the principle of Parsimony introduced by (Reiter, 1987). For both, the
monolithic and the distributed model, residuals have been de�ned. Using set operations
on the observed and expected I/O behavior, the residuals are able to determine unex-
pected and missed behaviors. The formulation of residuals for missed and unexpected
behavior can be understood as the formalization of fault symptoms. Two probabilistic
measures to assess the fault detection capability of a given model have been given.
The methods introduced in this work have been applied to a laboratory case study

system. The results show that both identi�cation of appropriate models as well as
fault detection and isolation of various tested faults are possible. The scalability of the
developed approach has been shown with an industrial application. It has been shown
that the distributed models signi�cantly reduce the number of false alerts compared to
the use of the monolithic model.

8.2 Outlook

For future work several interesting directions exist. The most interesting question is
if it is possible to integrate the timed behavior in the proposed method. This would
allow detecting and isolating faults leading to a deviant timed behavior and deadlocks.
Since the described approach is identi�cation based, a promising way could be to use
statistical methods to derive minimum and maximum state durations for the identi�ed
models. If the timed behavior can be determined on the subsystem level, it is an
interesting question to analyze how the timed subsystem behavior restricts the automata
network behavior. It is possible that it restricts the network behavior such that the
restriction using the methods from chapter 4 can be relaxed.
Another interesting question is online updating of the system model. If during online

diagnosis a non-reproducible behavior has been identi�ed as fault-free by the system
operator, this behavior should be included into the model. For the monolithic model,
an appropriate online updating algorithm has been proposed in (Roth et al., 2009b).
Since in most practical cases the distributed model will be used, the development of an
appropriate adaptation for the partial models and the POCP is an interesting question.
The identi�cation procedures introduced in this work have been explicitly designed

to deliver appropriate models for fault detection purposes. Since the models describe
the functioning of the system under normal conditions, other model-based techniques
like re-engineering or validation and veri�cation may also be possible with the identi�ed
models. In this context it is an interesting question to �nd formal requirements of other
model-based techniques and to check if the identi�cation methods from this work deliver
appropriate models.
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9 Extended summaries in German and

French

9.1 Kurzfassung in deutscher Sprache

Die Wettbewerbsfähigkeit von Industrieunternehmen hängt maÿgeblich von der Produk-
tivität eingesetzter Betriebsmittel wie Anlagen und Maschinen ab. Ungeplante, durch
Fehler verursachte Stillstandszeiten müssen so kurz wie möglich gehalten werden. Dies
ist nur dann möglich, wenn die Ursachen für die Betriebsstörungen schnell gefunden
werden können. Eine Teildisziplin der Automatisierungstechnik befasst sich daher mit
der Frage, wie Fehler in technischen Systemen schnell detektiert und möglichst genau
lokalisiert werden können.
Zahlreiche industrielle Prozesse lassen sich dabei als ereignisdiskrete Systeme au�as-

sen, die aus einem geschlossenen Kreis von Steuerung und Steuerstrecke bestehen (siehe
Bild 9.1). Das Verhalten solcher closed-loop Systeme kann durch Betrachtung der zwi-
schen Steuerung und Strecke ausgetauschten Sensor- und Stellsignale analysiert werden.
Ziel der Arbeit ist es, für diese Klasse von Systemen einen generischen Diagnoseansatz
zu entwickeln.

Abbildung 9.1: Ereignisdiskretes closed-loop System

Die meisten bekannten Diagnosemethoden für technische Systeme lassen sich in die
Kategorien datenbasierte Ansätze, Expertensysteme oder modellbasierte Ansätze ein-
ordnen. Eine Analyse der drei Kategorien zeigt, dass modellbasierte Verfahren das
gröÿte Potential für den Einsatz in ereignisdiskreten closed-loop Systemen haben: Bei
modellbasierten Verfahren wird das aktuell beobachtete Systemverhalten mit dem Ver-
halten eines Referenzmodells verglichen (siehe Bild 9.2). Auf Basis des Vergleichs kann
entschieden werden, ob die aktuelle Situation im System durch einen Fehler hervor ge-
rufen wurde oder Ausdrck normalen Verhaltens ist. Modellbasierte Methoden sind für
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die betrachtete Systemklasse besonders gut geeignet, da mit Hilfe eines Modells die
Systemdynamik gut abgebildet werden kann. Ereignisdiskrete Modelle erlauben es ins-
besondere den Zustand eines Systems zu modellieren. Ein bestimmtes Systemverhalten
kann abhängig vom Systemzustand sowohl Folge normaler Funktion als auch von Fehl-
funktion sein. Durch Zustandsmodelle ist eine präzisere Beurteilung des beobachteten
Verhaltens möglich, als beispielsweise bei rein datenbasierten Verfahren.

Abbildung 9.2: Prinzip modellbasierter Diagnose

Aus der Literatur bekannte modellbasierte Diagnoseverfahren lassen sich in Methoden
mit Fehlermodellen und in Methoden ohne Fehlermodelle unterteilen. Bei Methoden mit
Fehlermodellen wird das beobachtete Verhalten mit dem modellierten Fehlerverhalten
verglichen. Ist das aktuell beobachtete Verhalten mit einem der modellierten Fehlerver-
halten konsistent, wird der betre�ende Fehler diagnostiziert. Der Schwachpunkt dieser
Ansätze ist, dass nur Fehler, deren Auswirkungen explizit modelliert wurden, erkannt
und diagnostiziert werden können. Methoden, die ohne Fehlermodelle arbeiten, um-
gehen diesen Nachteil. Bei dieser Klasse von Methoden wird ein Fehler immer dann
detektiert, wenn sich ein beobachtetes Verhalten nicht mit dem fehlerfreien Modell re-
produzieren lässt. Da die Modelle prinzipiell weniger Wissen enthalten als Modelle mit
explizit erfasstem Fehlerverhalten, ist das Finden der Fehlerursache oft schwerer als bei
Methoden mit Fehlermodellen.
Die zentrale Herausforderung bei der Anwendung modellbasierter Verfahren ist die

Modellgewinnung. Bei Systemen im industriellen Maÿstab ist das manuelle Modellieren
aufwändig und teuer. Daher wurde in dieser Arbeit der Ansatz der Modellidenti�ka-
tion verfolgt. Auf Basis von Systemdaten, die während fehlerfreier Systemevolutionen
aufgezeichnet wurden, wurde zunächst ein Modell in Form eines monolithischen Auto-
maten identi�ziert. Der nicht-deterministische autonome Automat mit Ausgabefunkti-
on funktioniert genau wie die betrachtete Klasse ereignisdiskreter closed-loop Systeme
als Ereignisgenerator. Ein bereits vorhandener Identi�kationsalgorithmus von (Klein,
2005) wurde in dieser Arbeit weiterentwickelt. Der Algorithmus arbeitet auf Basis von
Systemverhalten, das während fehlerfreier Systemevolutionen beobachtet wurde. Mit
Hilfe eines Tuningparameters k ∈ N

+ kann die Modellgenauigkeit justiert werden. Ein
mit dem Algorithmus identi�zierter Automat ist k + 1-vollständig. Dies bedeutet, dass
die Sprache1 des Automaten Lk+1

Ident exakt gleich der beobachteten Sprache der Länge
k + 1 ist, Lk+1

Ident = Lk+1
Obs . Führt ein Fehler während der Online-Diagnose mit dem iden-

ti�zierten Automaten zu einer Sequenz w /∈ Lk+1
Obs = Lk+1

Ident, ist somit garantiert, dass

1Eine Sprache Ln besteht aus Folgen bis zur Länge n von Ausgangssymbolen (hier Vektoren aus Ein-

und Ausgangssignalen der Steuerung)
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der Automat diese Sequenz nicht reproduzieren kann. Es ist daher gesichert, dass der
Fehler detektiert wird.
Eine wichtige Voraussetzung bei der Wahl eines geeigneten Wertes für k ist, dass

die beobachtete Sprache Lk+1
Obs der fehlerfreien Sprache des Systems Lk+1

Orig entspricht:
Lk+1
Obs = Lk+1

Orig. Ist dies nicht der Fall, tritt während der Online-Diagnose immer dann ein
Fehlalarm auf, wenn eine bisher unbekannte fehlerfreie Sequenz w ∈ Lk+1

Orig beobachtet
wird, die mit dem Automaten nicht reproduziert werden kann, da w /∈ Lk+1

Obs = Lk+1
Ident

gilt. Als Kriterium für Lk+1
Obs ≈ Lk+1

Orig kann die Konvergenz von Lk+1
Obs wie in Bild 9.3

angesehen werden: das System zeigt während der Lernphase mit wachsender Beobach-
tungszeit immer gröÿere Teile des möglichen fehlerfreien Verhaltens, das in das zu iden-
ti�zierende Modell überführt wird. Wenn das gesamte mögliche fehlerfreie Verhalten
während der Lernphase aufgetreten ist und damit in die beobachtete Sprache überführt
wurde, ist zu erwarten, dass diese nicht weiter wächst und gegen einen bestimmten Wert
konvergiert.

Abbildung 9.3: Konvergenz der beobachteten Sprache

Bei Systemen mit ausgeprägter Nebenläu�gkeit kann es sehr lange dauern, bis eine
Konvergenz der beobachteten Sprache festgestellt werden kann. Der Grund hierfür ist,
dass es für nebenläu�ge Prozesse sehr viele verschiedene kombinierte Verhalten gibt, die
während der Beobachtungsphase erfasst werden müssen. Die hohe Anzahl an Fehlalar-
men, die aus dem unvollständig beobachteten Verhalten resultieren, kann schnell dazu
führen, dass das Diagnosesystem unbrauchbar wird. Aus wirtschaftlichen Gründen ist
es für viele Systeme nicht möglich den Beobachtungshorizont ausreichend zu erweitern
bis Konvergenz der beobachteten Sprache eintritt. Um diesem Problem zu begegnen,
wurde in dieser Arbeit ein verteilter Identi�kationsansatz entwickelt. Kern des Ansat-
zes ist das Unterteilen des betrachteten Systems in Teilsysteme mit schwacher innerer
Nebenläu�gkeit. Sind die Teilsysteme geeignet gewählt, konvergieren die beobachteten
Teilsystemsprachen sehr viel schneller als dies für die globale Systemsprache der Fall
ist. Eine Möglichkeit eine geeignete Systemaufteilung zu ermitteln ist vorhandenes Sys-
temwissen zu nutzen. Da bei bestehenden industriellen Systemen das dafür notwendige
Wissen oft nicht vorhanden ist, wurde ein Ansatz entwickelt, der mit Hilfe einer Opti-
mierungsmethode (Simulated Annealing) basierend auf beobachteten Daten ein System
automatisiert in geeignete Teilsysteme unterteilt. Die Idee des Verfahrens ist es, auto-
matisiert verschiedene Teilsystemunterteilungen zu erstellen, die dann mit Hilfe eines
Optimierungskriteriums bewertet werden. Dazu wurden zwei Kriterien entwickelt, die es
erlauben den Grad an interner Nebenläu�gkeit einer gegebenen Systemunterteilung auf
Basis der aufgezeichneten Systemevolutionen näherungsweise zu bestimmen. Durch Mi-
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nimierung der internen Nebenläu�gkeit kann das Optimierungsverfahren selbst Systeme
im industriellen Maÿstab so unterteilen, dass eine Modellidenti�kation nach verhältnis-
mäÿig kurzer Beobachtungszeit möglich ist, da die Teilsystemsprachen konvergieren.

Für jedes der Teilsysteme wird ein Automat mit dem monolithischen Identi�kati-
onsalgorithmus erstellt. Die so identi�zierten Automaten bilden dann ein Automaten-
netz. Gilt für jede der beobachteten Teilsystemsprachen dass sie zur originalen Teilsys-
temsprache konvergiert, gilt für die Sprache des Gesamtsystems Lk+1

Ident ⊇ Lk+1
Orig (siehe

Theorem 6): das Netzwerk aus Automaten kann die gesamte fehlerfreie Systemsprache
reproduzieren, selbst wenn Teile davon bisher noch nicht beobachtet wurden. Damit
kann die Anzahl der Fehlalarme verglichen mit dem monolithischen Modell erheblich
reduziert werden.

Mit der Erzeugung der bisher noch nicht beobachteten fehlerfreien Sprache geht al-
lerdings auch einher, dass das Automatennetzwerk vermehrt Ausgangsfolgen erzeugen
kann, die im System nur durch Fehler verursacht werden. Manche Fehler führen bei-
spielsweise dazu, dass jeder der Teilautomaten eine passende Trajektorie �ndet, um die
durch den Fehler verursachte Ausgangsfolge seines Teilsystems zu reproduzieren. Da-
mit kann der Fehler von keinem der Teilautomaten detektiert werden. Der Fehler ist
dadurch gekennzeichnet, dass das kombinierte Teilsystemverhalten nicht zulässig ist.
Daher muss das kombinierte Verhalten des Automatennetzwerks überwacht werden.
Bild 9.4 zeigt das Prinzip der Überwachung: über den Teilautomaten, die die Aus-
gangsfolgen ihrer Teilsysteme reproduzieren, steht eine Struktur bestehend aus einem
in dieser Arbeit neu eigeführten Permissive Observed Cross Product (POCP) und ei-
ner ebenfalls neu de�nierten Toleranzspezi�kation. Das POCP enthält Informationen
darüber, welche kombinierten Trajektorien von Teilautomaten während der Lernphase
bereits beobachtet wurden und damit als fehlerfrei gelten können. Darüberhinaus ent-
hält das POCP zusätzliche Transitionen und einen Joker-Zustand, mit dem ermittelt
werden kann, ob eine gegebene kombinierte Teilautomatentrajektorie bisher noch nicht
beobachtet wurde und damit potentiell auf Grund eines Fehlers auftrat. Mit Hilfe der
Toleranzspezi�kation ist es möglich den Anteil an akzeptablem neuem kombiniertem
Verhalten der Teilautomaten zu de�nieren. Die Toleranzspezi�kation ist ein Automat,
der vom Nutzer vorgegeben werden muss. Damit ist es beispielsweise möglich festzu-
legen, dass eine bisher unbekannte kombinierte Teilsystemtrajektore der Länge zwei
toleriert wird, nach Auftreten einer dritten unbekannten Zustandskombination aber ein
Fehler detektiert werden soll. Dazu beobachten die Teilautomaten synchronisiert mit
dem POCP und der Toleranzspezi�kation das System. Die Toleranzspezikation erlaubt
es, die Anzahl an Fehlalarmen und die Fehlererkennungsschärfe des Modells auszubalan-
cieren. Fehler können damit auf zwei Ebenen erkannt werden: auf Ebene der Teilsysteme
ist es möglich, dass ein Automat das Teilsystemverhalten nicht reproduzieren kann und
auf Ebene der Toleranzspezi�kation ist es möglich, dass ein kombiniertes Teilsystem-
verhalten zur Fehlererkennung führt.

Nachdem ein Fehler detektiert wurde, ist der nächste Schritt das Bestimmen der
Fehlerursache. Bei Systemen im industriellen Maÿstab ist dazu eine Lokalisierung des
fehlerhaften Verhaltens unabdingbar. Solche Systeme bestehen oft aus mehreren hun-
dert Sensoren und Aktuatoren. Für eine schnelle Reparatur ist es daher wichtig eine
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Abbildung 9.4: Restriktion des Automatennetzwerks

begrenzte Menge an möglichen Fehlerquellen zu bestimmen. Dies kann beispielswei-
se in Form von Sensoren oder Aktuatoren erfolgen, die bei der Fehlererkennung ein
von der Norm abweichendes Verhalten gezeigt haben. In der betrachteten Klasse von
Systemen, bestehend aus Steuerung und Steuerstrecke im geschlossenen Kreis, kann
diese Fehlerlokalisierung dadurch erfolgen, dass die Ein- und Ausgänge (E/As) der
Steuerung bestimmt werden, die ein nicht reproduzierbares Verhalten gezeigt haben.
Da Steuerungs-E/As direkt mit Sensoren und Aktuatoren verbunden sind, kann durch
Angabe einer kleinen Menge an möglicherweise fehlerhaften E/As ein defektes Bauteil
meist schnell lokalisiert werden.
Bei der Diagnose kontinuierlicher Systeme ist der Einsatz sogenannter Residuen ein

weit verbreitetes Mittel, um diejenigen Signale zu ermitteln, die vom Normalverhalten
abweichen (Isermann, 2006). Residuen sind Rechenvorschriften, die den Unterschied
zwischen modelliertem (also erwartetem) und tatsächlich beobachtetem Verhalten quan-
ti�zieren. Ausgehend von dieser Idee wurde in dieser Arbeit eine Methode entwickelt,
die es erlaubt den Unterschied zwischen beobachtetem und erwartetem E/A-Verhalten
basierend auf Mengenoperationen zu bestimmen. Sowohl für den Diagnoseeinsatz des
monolitischen Automaten, als auch für die verteilte Struktur bestehend aus Automa-
tennetzwerk, POCP und Toleranzspezi�kation wurden geeignete Operationen de�niert,
die sowohl das unerwartete als auch das verpasste E/A-Verhalten bestimmen. Mit Hilfe
der so de�nierten Residuen kann eine relativ kleine Menge an Fehlerkandidaten in Form
von Steuerungs-E/As ermittelt werden.
Um beurteilen zu können, ob ein gegebenes Modell für die Online-Diagnose geeignet

ist, wurden zwei probabilistische Kenngröÿen entwickelt. Sie erlauben es einzuschätzen,
wie wahrscheinlich ein fehlerhaftes Verhalten vom Modell reproduziert und damit nicht
erkannt werden kann.
Um zu zeigen, dass die in der Arbeit entwickelten Methoden für industrielle Systeme

161



9 Extended summaries in German and French

eingesetzt werden können, wurde im Rahmen einer Industriekooperation ein Diagno-
sesystem für einen industriellen Wickler implementiert. Dabei konnte gezeigt werden,
dass insbesondere durch den Einsatz der verteilten Identi�kation auf Basis automatisch
generierter Teilsysteme die für die Diagnose notwendigen Modelle auch für groÿe Sys-
teme mit verhältnismäÿig wenig Lerndaten erzeugt werden können. Es konnte gezeigt
werden, dass durch den Einsatz der verteilten Modelle die Anzahl der Fehlalarme ver-
glichen mit dem Einsatz des monolithischen Modells signi�kant gesenkt wurde, ohne
dass die Fähigkeit zur Fehlererkennung übermäÿig beeinträchtigt ist.

9.2 Résumé en langue française

La compétitivité des entreprises manufacturières dépend fortement de la productivité
des machines et des moyens de production mis en ÷uvre. C'est pourquoi il est indis-
pensable de minimiser les temps d'arrêt dus aux fautes ou dysfonctionnements. A�n
d'atteindre un temps de réparation minimal, il est nécessaire d'acquérir rapidement des
informations sur la cause d'une faute apparue dans un système. Le développement de
méthodes de diagnostic dans le domaine de l'automatique est motivé par de tels besoins.
De nombreux systèmes industriels peuvent être considérés comme des systèmes à

événements discrets (SED). Ils peuvent souvent être représentés par une boucle fermée
entre le contrôleur et le processus (�gure 9.5). Le comportement de tels systèmes peut
être analysé en considérant les signaux échangés entre contrôleur et processus. Le but
de ce travail est de développer une approche de diagnostic générique pour cette classe
de systèmes.

Figure 9.5: Systèmes à événements discrets en boucle fermée

La plupart des approches de diagnostic pour les systèmes techniques peuvent être
classi�ées dans l'une des trois catégories suivantes : approches basées sur des données,
système expert ou approches basées sur des modèles. Une analyse de ces trois catégories
montre que les approches basées sur des modèles ont le potentiel le plus grand pour
être appliquées aux SED en boucle fermée : L'idée de ces approches consiste en la
comparaison du comportement observé avec le comportement attendu par un modèle de
référence (�gure 9.6). En comparant les deux comportements, il est possible de décider
si la situation actuelle du système est symptomatique d'une faute ou si elle représente le
bon fonctionnement. Les approches basées sur des modèles sont particulièrement bien
adaptées à la classe de systèmes considérée car un modèle permet de représenter la
dynamique d'un système. Avec les modèles pour les SED (automates, réseaux de Petri)
il est possible de modéliser l'état d'un système. Selon cet état, un comportement donné
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peut être soit le résultat du bon fonctionnement soit le résultat d'une faute. Utiliser des
modèles à état permet souvent de classi�er plus précisément un comportement observé
qu'en travaillant avec des approches basées sur des données ou avec des systèmes expert.

Figure 9.6: Principe du diagnostic basé sur des modèles

Dans la littérature scienti�que, on trouve deux types d'approches basées sur des mo-
dèles. Le premier type consiste en des méthodes utilisant un modèle qui contient à la
fois le comportement normal et le comportement fautif. Si un comportement observé est
conforme à un comportement fautif modélisé, la faute correspondante est détectée. L'in-
convénient de ce type de méthodes est que seules les fautes menant à un comportement
explicitement inclus dans le modèle peuvent être détectées et localisées. Le deuxième
type de méthodes permet d'éviter cet inconvénient. Il s'agit des approches basées sur
des modèles ne contenant que le comportement normal. Une faute est détectée dès qu'un
comportement observé ne peut pas être reproduit par le modèle. Cependant, dans ce
cas, les modèles contiennent moins de savoir sur le système et trouver la cause d'une
faute est souvent plus di�cile qu'avec des méthodes basées sur des modèles incluant les
comportements fautifs.
En travaillant avec des méthodes basées sur des modèles, un dé� important est la

construction des modèles. Modéliser manuellement des systèmes de taille industrielle est
coûteux. C'est pourquoi ce travail vise une approche d'identi�cation. Dans un premier
temps, l'identi�cation des automates monolithiques a été considérée. L'identi�cation
est basée sur des données du système observé pendant des évolutions sans fautes. Ce
type d'automate non-déterministe autonome avec fonction de sortie fonctionne comme
un générateur d'événements comparable à la classe de SED en boucle fermée. La pre-
mière contribution de ce travail est d'améliorer un algorithme d'identi�cation proposé
par (Klein, et al. 2005). Cet algorithme comporte un paramètre k ∈ N

+ pour ajuster
l'exactitude du modèle par rapport aux comportements observés. L'algorithme fournit
un automate qui est k+1-complet. C'est-à-dire son langage2 Lk+1

Ident est exactement égal
au langage observé de longueur k+1 : Lk+1

Ident = Lk+1
Obs . Si une faute mène à une séquence

w /∈ Lk+1
Obs , alors w /∈ Lk+1

Ident pendant le diagnostic en ligne avec le modèle identi�é, il est
ainsi garanti que l'automate ne peut pas reproduire cette séquence. Par conséquent il
est assuré que la faute est détectée.
Une condition importante pour bien choisir la valeur du paramètre k est la rela-

tion entre le langage observé Lk+1
Obs et le langage du bon fonctionnement du système

Lk+1
Orig. Après que les données du système aient été collectées, il est important d'avoir

2Un langage Ln est composée de séquences de symboles de sortie de longueur inférieure ou égale à n

(ici : de séquences de vecteurs d'entrées et sorties du contrôleur)
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une évolution de Lk+1
Obs qui permet de constater que Lk+1

Obs = Lk+1
Orig. C'est-à-dire il est

important d'avoir observé tous les comportements normaux possibles du système. Si
Lk+1
Obs ⊂ Lk+1

Orig, il y aura toujours une fausse alerte pendant le diagnostic en ligne quand
une séquence w ∈ Lk+1

Orig apparaîtra et ne pourra pas être reproduite par l'automate
car w /∈ Lk+1

Obs = Lk+1
Ident. La convergence de Lk+1

Obs vers Lk+1
Orig comme décrit dans la �-

gure 9.7 peut servir comme critère pour constater que Lk+1
Obs = Lk+1

Orig. Si le système est
observé su�samment longtemps, il montre de plus en plus de son langage orignal qui
peut ensuite être inclus dans le modèle. Si tout le comportement original (c'est-à-dire le
comportement du bon fonctionnement) est apparu pendant l'observation des données
pour l`identi�cation, on va constater que Lk+1

Obs ne croît plus même lorsque le temps d'ob-
servation continue d'augmenter. C'est-à-dire que si |Lk+1

Obs | (le cardinal de l'ensemble)
converge, il peut raisonnablement être envisagé que Lk+1

Obs = Lk+1
Orig.

Figure 9.7: Convergence du langage observé

Il a cependant été constaté pendant ce travail que cette convergence peut prendre très
longtemps pour des systèmes comportant un parallélisme prononcé. La raison est que
de tels systèmes sont capables de produire un très grand nombre de comportements qui
doivent être collectés pendant la phase d'observation du système. Une observation in-
complète des comportements du système mène à un grand nombre de fausses alertes qui
rend la méthode de diagnostic inutilisable. En raison de contraintes économiques, sou-
vent il n'est pas possible d'augmenter le temps d'observation jusqu'à ce que le langage
observé converge. Pour résoudre ce problème, une approche d'identi�cation distribuée
a été développée dans ce travail. L'idée de base de l'approche est de diviser un sys-
tème en sous-systèmes avec peu de parallélisme interne. Si les sous-systèmes ont été
soigneusement choisis, leurs langages observés convergent plus vite que le langage du
système global. Une possibilité pour trouver une partition appropriée est d'utiliser le
savoir des experts du système. Puisque dans beaucoup de systèmes industriels ce sa-
voir n'est pas disponible pour un coût raisonnable, une approche a été développée pour
obtenir automatiquement les sous-systèmes à partir du langage observé. L'approche uti-
lise la technique d'optimisation du recuit simulé. L'idée de cette approche est de créer
di�érentes partitions possibles du système et de les évaluer à l'aide de critères d'opti-
misation. Deux critères d'optimisation ont été développés et permettent de déterminer
approximativement le degré de parallélisme interne d'une partition donnée. En mini-
misant le parallélisme interne, l'approche d'optimisation peut même partitionner des
systèmes de taille industrielle a�n que les langages des sous-systèmes convergent. Par
conséquent cette méthode permet d'identi�er des modèles pour des systèmes industriels
après un temps d'observation relativement court.
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9.2 Résumé en langue française

Pour chaque sous-système un automate peut être identi�é avec l'algorithme d'identi�-
cation monolithique. Les automates forment un réseau. Si les langages observés des sous-
systèmes convergent tous vers les langages originaux, le langage créé par le réseau d'au-
tomates est un simulateur pour le langage original du système entier : Lk+1

Ident ⊇ Lk+1
Orig.

C'est-à-dire : le réseau d'automates peut reproduire tout le comportement du bon fonc-
tionnement du système entier même si ce comportement a été observé seulement de
manière partielle. Par conséquent il est possible de réduire le nombre de fausses alertes
de manière signi�cative par rapport aux résultats obtenus avec le modèle monolithique.

La capacité à produire le langage original non encore observé s'accompagne du phé-
nomène que le réseau d'automates produit plus de séquences de sorties qui représentent
des fautes dans le système. Il existe des fautes qui mènent à une situation dans lequel
chaque automate partiel trouve une trajectoire pour reproduire la séquence de sortie
de son sous-système. Aucun des automates partiels n'est capable de détecter une telle
faute. La faute est caractérisée par un comportement combiné des sous-systèmes qui
n'est pas acceptable. C'est pourquoi le comportement combiné du réseau d'automates
doit être surveillé. La �gure 9.8 montre le principe de cette surveillance : au dessus du
réseau d'automates se trouve une structure composée d'un Permissive Observed Cross
Product (POCP) et d'une spéci�cation de tolérance qui ont été introduits dans ce tra-
vail. Le POCP contient des informations sur les trajectoires du réseau d'automates
observées pendant la phase d'apprentissage. Ces trajectoires peuvent être considérées
non fautives puisqu'elles ont été observées pendant des évolutions du système sans
fautes. Avec le POCP il est possible de décider si une trajectoire du réseau d'automates
est connue ou bien si elle n'a pas encore été observée et est donc susceptible de repré-
senter une faute. A l'aide de la spéci�cation de tolérance il est possible de limiter la
part du comportement inconnu qui est acceptée comme normale et qui ne mène pas à la
détection d'une faute. La spéci�cation de tolérance est un automate qui doit être dé�ni
a priori. Avec cette spéci�cation il est par exemple possible de dé�nir qu'une trajectoire
inconnue de longueur deux peut être tolérée mais qu'à partir d'une longueur trois une
faute doit être détectée. La spéci�cation de tolérance permet d'équilibrer le nombre de
fausses alertes et la précision du modèle par rapport aux comportements fautifs. Avec
la structure décrite, il est possible de détecter des fautes à deux niveaux : au niveau du
réseau d'automates il est possible qu'un automate ne soit pas capable de reproduire le
comportement de son sous-système et au niveau de la spéci�cation de tolérance il est
possible qu'un comportement combiné des sous-systèmes dépasse la limite dé�nie.

Après qu'une faute ait été détectée il est nécessaire de déterminer sa cause. Dans
ce contexte, les systèmes de taille industrielle exigent une localisation de la faute. Ces
systèmes comportent souvent quelques centaines d'actionneurs et de capteurs. C'est
pourquoi il est indispensable de déterminer un ensemble limité de candidats de fautes,
c'est-à-dire un ensemble de composants du système qui ont montré un comportement
anormal. Dans la classe des SED en boucle fermée du contrôleur et du processus, la
localisation de ces composants peut être réalisée en donnant des entrées ou des sorties
(E/S) du contrôleur qui ont montré un comportement non reproductible. Puisque les
E/S du contrôleur sont directement connectées avec les actionneurs ou les capteurs, il
est souvent possible de trouver un composant défectueux en analysant un petit ensemble
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Figure 9.8: Surveillance du réseau d'automates

d'E/S potentiellement reliées à la faute détectée.
Un concept bien connu pour le diagnostic des systèmes continus est d'utiliser des

résidus pour déterminer des signaux qui divergent du comportement normal (Isermann,
2006). Les résidus consistent en des procédures de calcul pour quanti�er la di�érence
entre le comportement observé et le comportement attendu (modélisé). Basée sur ce
concept, une nouvelle méthode pour déterminer la di�érence entre le comportement
attendu et le comportement observé d'E/S du contrôleur a été conçue dans ce travail.
Pour le modèle monolithique et pour le modèle composé du réseau d'automate, du
POCP et de la spéci�cation de tolérance, des procédures de calculs ont été développés
pour déterminer les E/S qui montrent un comportement inattendu ou qui ne montrent
pas un comportement attendu par le modèle. A l'aide de ces procédures il est possible
de déterminer un ensemble limité d'E/S qui sont potentiellement reliées à un composant
fautif.
A�n de juger si un modèle donné est bien adapté au diagnostic en ligne, deux mesures

probabilistes ont été dé�nies. Elles permettent d'estimer la probabilité qu'un compor-
tement fautif peut être reproduit par le modèle et par conséquent n'est pas détectable.
Une application industrielle de la méthode développée dans ce travail a été traitée

a�n de montrer que l'approche est applicable à l'échelle industrielle. Dans le cadre d'une
coopération avec un fabriquant de textile non-tissé, un système de diagnostic pour un
enrouleur industriel a été implémenté. Il a été possible de montrer que l'identi�cation
distribuée basée sur des sous-systèmes obtenue avec l'approche d'optimisation permet
de créer de bons modèles avec relativement peu de données. Il a également été montré
que l'application du réseau d'automates avec POCP et spéci�cation de tolérance réduit
le nombre de fausses alertes de manière signi�cative sans pour autant que la capacité à
détecter des fautes soit trop fortement dégradée.
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10 Nomenclature

10.1 Abbreviations

Abbreviation Explanation Page
DES Discrete Event System
NDAAO Non-Deterministic Autonomous Automaton with Output 41
POCP Permissive Observed Cross Product

10.2 Variables

Variable Explanation Page
LOrig Original (fault-free) language of a closed-loop DES 28
LObs Observed language of a closed-loop DES 28
LnObs Observed language of length n of a closed-loop DES 42
LnObs,syst Observed partial language of subsystem syst 66
Ln,hObs,syst Observed partial language of subsystem syst based on the �rst

h of p system evolutions
98

W n
Obs Observed words of length n of a closed-loop DES 42

LIdent Identi�ed language of a closed-loop DES (language of the DES
model)

28

LnIdent Identi�ed language of length n of a closed-loop DES 43
W n
Ident Identi�ed words of length n of a closed-loop DES 43

LExc Exceeding language of a closed-loop DES (LExc =

LIdent\LOrig)
28

LNR Non-reproducible language of a closed-loop DES (LNR =

LOrig\LIdent)
28

uDES Output of a closed-loop DES 40
XDES Closed-loop DES state space 40
xDES State of a closed-loop DES 40
xDES0 Initial state of a closed-loop DES 40
X State space of an NDAAO 41
x0 Initial state of an NDAAO 41
Ω Output alphabet of an NDAAO 41
uh(j) j-th output of in the h-th of p system evolutions 41
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Variable Explanation Page
σh Observed sequence during the h-th system evolution 42
Σ Set of all observed sequences 42
u Controller I/O vector (precise de�nition of uh(j) for closed-

loop DES)
66

IOi Controller I/O 66
syst t-th subsystem 66
y(syst) I/O mapping function (assigns a set of controller I/Os to sub-

system syst)
66

Nsys Number of subsystems 66
usyst Partial controller I/O vector (I/O which are not part of syst

are replaced by '-')
66

NDAAO|| NDAAO cross product 69
X|| State space of an NDAAO cross product 69
x||0 Initial state of an NDAAO cross product 69
NDAAOTol Tolerance speci�cation automaton 75
XTol State space of a tolerance speci�cation 75
xTol0 Initial state of a tolerance speci�cation 75
ΩTol Output alphabet of a tolerance speci�cation 75
NDAAOObs|| Observed cross product 78
XObs|| State space of the observed cross product 78
xObs||0 Initial state of the observed cross product 78
ΩObs|| Output alphabet of the observed cross product (state combi-

nations of the underlying partial automata)
78

XPOCP State space of the permissive observed cross product 80
xPOCP Initial state of the permissive observed cross product 80
ΩPOCP Output alphabet of the permissive observed cross product

(state combinations of the underlying partial automata)
80

EC1, EC2 Evaluation criteria 109
E Set of controller I/O edges 119
X̃t, X̃t−1 Current and former states estimation 121
TObs Observed trajectory after the tolerance speci�cation left its

OK state
134

10.3 Functions

Function Explanation Page
FN Non-deterministic next state function of closed-loop DES 40
Λ Output function of a closed-loop DES (uDES = Λ(xDES)) 40
f Non-deterministic transition function of an NDAAO 41
λ Output function of an NDAAO 41
λ̃ Output function of an identi�ed NDAAO until step 4 of algo-

rithm 1, delivers a word
48
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10.3 Functions

Function Explanation Page
Gap Transition state gap 57
J Join function to combine two partial I/O vectors (delivers 'c'

for I/Os which are contradictory)
68

f|| Non-deterministic transition function of an NDAAO cross
product

69

λ|| Output function of an NDAAO cross product 69
RemEqual Replace equal substrings function (with w5 = ABBBC,

RemEqual(w5)=ABC)
70

IOProjIOSet I/O vector projection to the I/O list IOSet (is applied to an
I/O vector: Each I/O not belonging to IOSet is replaced by
'-')

70

Θ Transition observation function (true if a transition has been
observed during identi�cation)

73

fTol Transition function of a tolerance speci�cation 75
λTol Output function of a tolerance speci�cation 75
ΘTol Transition observation function for the tolerance speci�cation 75
fObs|| Transition function of the observed cross product 78
λObs|| Output function of the observed cross product (delivers the

combination of underlying partial automata states of a given
xObs||)

78

fPOCP Transition function of the permissive observed cross product 80
λPOCP Output function of the permissive observed cross product (de-

livers the combination of underlying partial automata states
of a given xPOCP or ε if it is the 'joker'-state)

80

ΘPOCP Transition observation function for the POCP 80
CausalMap Causal actuator sensor map 106
Edge Edge function (to get the rising or falling edge when compar-

ing two controller I/O values)
119

ES Evolution set (to get the rising or falling edges between two
I/O vectors)

120

FD Fault detection policy to decide if a fault is detected 121
EST Evolution set for the distributed model (to get the rising or

falling edges in an I/O vector trajectory)
136

JPOCP Join function for the POCP 136
Ψ̃ Determines the expected trajectories in the POCP 136
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10.4 Operators

Operator Explanation Page
() as x(j) State after the j-th event
() as u(j) Output after the j-th event
|Set| Set cardinality (e.g. |f(x)| for the number of following states

of x)
|V ector| Length of the vector (number of elements)
2Set Powerset of Set 40
〈..〉 Substring selection operator (with wq = ABCDEF follows

wq〈2..4〉 = BCD)
44

[ ] Selection of elements in a vector: u[i] selects the i-th element
of vector u

68
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