Keywords:

The competitiveness of manufacturing companies strongly depends on the productivity of machines and production processes. To guarantee a high level of productivity, downtimes occurring due to faults have to be kept as short as possible. This necessitates efficient fault detection and isolation (FDI) methods. In this work, a model-based FDI method for the widely used class of industrial closed-loop Discrete Event Systems is proposed. The considered systems consist of the closed-loop of plant and controller. Based on the comparison of observed and modeled system behavior, it is possible to detect and to isolate faults. Unlike most known methods for FDI in Discrete Event Systems, this work proposes working with a model of the fault-free behavior rather than working fault models. Inspired by the concept of residuals known from FDI in continuous systems, a new approach for fault isolation based on fault-free Discrete Event System models is developed. The key of any model-based diagnosis method is to have an accurate model of the considered system. Since manual modelbuilding can be very difficult for large industrial systems, an identification approach for this class of systems is introduced. Based on an already existing monolithic identification algorithm, a distributed adaptation is developed which allows treating large, concurrent systems. The key of the proposed approach is an automatic decomposition of a given closed-loop Discrete Event System using an optimization approach which analyzes observed system behavior. The methods developed in this thesis are applied to a mid-sized laboratory system and to an industrial winder to show their scalability.

Zusammenfassung

-Die Wettbewerbsfähigkeit von Industrieunternehmen hängt maßgeblich von der Produktivität der eingesetzten Anlagen und Produktionsprozesse ab. Um ein hohes Maß an Produktivität zu garantieren, müssen durch Fehler verursachte Standzeiten so kurz wir möglich gehalten werden. Dazu werden effiziente Methoden zur Fehlererkennung und Fehlerisolierung (FDI: fault detection and isolation) benötigt. In der vorliegenden Arbeit wurde ein modellbasiertes FDI-Verfahren für die weit verbreitete Klasse ereignisdiskreter Closed-Loop Systeme entwickelt. Die betrachteten Systeme bestehen aus dem geschlossenen Kreis von Steuerung und Prozess. Durch den systematischen Vergleich von aktuell beobachtetem und durch das Systemmodell erwartetem Verhalten können Fehler in Echtzeit erkannt und isoliert werden. Im Unterschied zu den meisten aus der Literatur bekannten FDI-Verfahren für Ereignisdiskrete Systeme wird in dieser Arbeit ein Modell des fehlerfreien Systemverhaltens an Stelle von Modellen des Fehlerverhaltens verwendet. Angelehnt an das von kontinuierlichen Systemen bekannte Fehlerisolierungsprinzip der Residuen wurde ein neuer Ansatz zur Fehlerisolierung in Ereignisdiskreten Systemen entwickelt. Der wichtigste Bestandteil von modellbasierten Diagnoseverfahren ist ein genaues Systemmodell. Da die Modellbildung "von Hand" für Systeme im industriellen Maßstab meist zu aufwendig und teuer ist, wurde ein Identifikationsverfahren für die betrachtete Systemklasse entwickelt. Ausgehend von einem bereits existierenden monolithischen Identifikationsalgorithmus wurde ein verteiltes Identifikationsverfahren eingeführt, das für komplexe industrielle Anlagen mit ausgeprägten Nebenläufigkeiten geeignet ist. Kern des Verfahrens ist die automatische Dekomposition eines Closed-Loop Systems in nebenläufige Teilsysteme. Dies geschieht mit Hilfe eines Optimierungsansatzes,

Introduction 1.Motivation

An increasing competition among manufacturing companies leads to growing demands on productivity of technical systems such as industrial production facilities. An important issue to increase productivity is to improve the availability of a system by reducing downtimes due to faults. Two main strategies are possible to achieve minimal downtimes. The rst one is to perform preventive maintenance with the aim of changing critical system components before a malfunctioning due to wear and tear appears. The limits of this strategy are faults that appear suddenly and are not predictable based on experience with the concerning hardware. The second maintenance strategy is to perform necessary repair actions after a failure1 has occurred as quickly and as precisely as possible to reestablish a running system. For such concerted repair actions it is crucial to gather precise information about faults in the system by using fault diagnosis techniques.

Various fault diagnosis techniques for technical systems have been proposed by the scientic community. Examples for these approaches are data-driven, knowledge-based and model-based diagnosis methods. In this work, the class of model-based approaches is focused in particular. A method yielding a model-based diagnosis technique for a widely used class of closed-loop Discrete Event Systems (DES) is proposed. The considered systems consist of a closed-loop of controller and plant as depicted in gure 1.1. The plant represents the physical facilities of the system like conveyors, cylinders or valves as well as products treated in the system. In the controller an algorithm is executed implementing a control strategy. The controller uses sensor information given by its input signals to determine appropriate output signals to control the actuators of the plant. In the considered class of systems, the signals exchanged between plant and controller are discrete with only two possible values (binary coding). During a running system evolution like a production cycle it is possible to get information of the system state by analyzing these signals. Industrial closed-loop DES typically have many input and output signals which lead to a signicant complexity when analyzing the system behavior.

In the case of model-based diagnosis, the information gathered by capturing the exchanged signals is used to compare the current system evolution with a modeled behavior. Based on the comparison of expected (modeled) and observed behavior it is possible to detect faults and to determine the necessary information to start concerted repair actions. Model-based diagnosis approaches can be divided in two classes. The rst class uses models containing the fault-free behavior as well as the behavior in Figure 1.1: Industrial closed-loop Discrete Event System the case of given faults. If a faulty behavior is observed, it is checked which fault has to be assumed in the model such that it can reproduce the observation. The second class works with models only representing the fault-free system behavior. Using this class, fault detection is based on the assumption that the fault-free model cannot reproduce an observed faulty behavior. If the model cannot reproduce the observation, a fault is detected. The advantage of the second class of approaches is that it is not limited to faults that have been anticipated in the underlying model. The diagnosis approach presented in this work belongs to this second class of model-based methods. The approach addresses the two main aspects of implementing a model-based diagnosis method which are model building and the development of appropriate fault detection and isolation algorithms.

Before a model-based diagnosis method can be implemented, the model has to be built. For industrial systems, model building can be very laborious and expensive due to parameters like system size and complexity. Another general problem when building a system model is that engineers familiar with a given technical system often do not have the necessary knowledge of appropriate modeling formalisms to build models for fault diagnosis. Hence, it is advantageous to automate the model building process as far as possible in order to facilitate the implementation of model-based diagnosis methods. A generic way to obtain models is to use identication methods working on a given data base of observed system evolutions. In this work, identication algorithms are developed leading to appropriate models for online fault diagnosis. The algorithms contain well-dened degrees of freedom which allow adjusting the identied models for diagnosis purposes.

Contributions of the thesis

The thesis contains two main contributions: Identication of fault-free models for closed-loop DES and fault detection and isolation procedures for diagnosis using the identied models.

Identication: In [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] an identication method for closed-loop DES is pre-2 1.3 Organization sented. It delivers a monolithic automaton modeling the fault-free system behavior.

The identication algorithm works with a free parameter k to balance model size and model accuracy. The rst contribution of the present thesis is a reformulation of the algorithm of [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] to be less restrictive. Guidelines are developed to properly choose the free identication tuning parameter to get an appropriate model for fault diagnosis purposes. It is shown that the monolithic approach comes to its limits when systems with a high degree of concurrency have to be treated like it is often the case in industrial systems. For these system, using the identied monolithic automaton for fault diagnosis leads to an unacceptably high number of false alerts. To overcome this problem, a distributed identication approach is presented that consists of building partial models for dierent subsystems. It is explained how the resulting automata network signicantly reduces the number of false alerts and how the partial automata can be synchronized to improve their fault detection capability. Since determining appropriate subsystems is a demanding task, an approach to automatically nd an optimal partitioning is developed. The partitioning approach uses meta-heuristic optimization methods to minimize an objective function representing desired characteristics of the system to be partitioned.

Fault detection and isolation: A literature review revealed that most of the existing model-based diagnosis approaches for DES are based on models containing fault-free and faulty system behavior. To use the identied fault-free models for fault diagnosis of closed-loop DES, a fault isolation strategy has been developed inspired by residuals known from diagnosis in continuous systems. Generic fault symptoms for the considered system class are presented and in a rst step formalized for the monolithic model. Based on these formalized fault symptoms, it is possible to isolate faults in the considered class of closed-loop DES. In the case of fault diagnosis with the identied automata network, it is shown that the distributed models not only reduce the number of false alerts but also have a poorer fault detection capability than the monolithic automaton. Hence, a behavioral tolerance is integrated into the identied automata network as an additional degree of freedom to systematically balance fault detection capability and number of false alerts. The generic fault symptoms are then formalized for the distributed models and the additional degree of freedom which allows fault detection and isolation in the distributed framework.

Organization

In chapter 2 a literature review on the state of the art in diagnosis and identication of DES is conducted. After a short introduction to DES theory dierent diagnosis techniques are analyzed. Special emphasis is given to model-based diagnosis methods for DES. Two classes of approaches are presented: Methods working with models containing the fault-free system behavior as well as the behavior in case of given faults on the one hand, and approaches working with fault-free models only on the other hand. The literature review also focuses on the question how to obtain appropriate DES models for fault diagnosis. Recent developments in the eld of identication of DES are evaluated.

Since the thesis is based on some important results from [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF]), Klein's monolithic identication approach is presented in chapter 3. The behavior of the considered closed-loop DES is dened using a formal language. This language is the data base for the identication of a monolithic automaton. Some improvements of the identication algorithm are proposed and several guidelines for determining reasonable values for the free identication parameter are developed. In order to show the limits of the approach, a case study is treated. The considered laboratory facility is introduced and serves as reference application in the following chapters. Based on the case study it is shown that in some cases the monolithic model leads to an unacceptably high number of false alerts.

In chapter 4 it is shown that the number of false alerts can be signicantly reduced by dividing a system into concurrent subsystems. It is explained how distributed identication of partial automata building an automata network can be carried out. A formal proof shows that under some assumptions the behavior of the identied automata contains the complete fault-free system behavior although it had not (yet) been completely observed. This leads to a reduction of the number of false alerts. Implications of the results for real systems are shown by means of the case study introduced in chapter 3.

For the identication of partial automata in chapter 4 it is necessary to determine appropriate subsystems. In chapter 5 it is rst shown how such a system partitioning can be achieved manually. Since the necessary system knowledge for this approach is not always available, a method to automatically perform an optimal partitioning based on meta-heuristic optimization algorithms is developed. It is shown how desired characteristics of the partitioned system can be approximated giving formal objective functions for the optimization algorithms. An approach to systematically integrate limited physical system knowledge in the automatic system partitioning is also presented which allows improving the quality of the resulting partition. Results of the approach are given for the case study introduced in chapter 3.

Chapter 6 presents fault detection and isolation procedures for the monolithic and for the distributed models. In the rst part (section 6.1), the monolithic model is considered. Probabilistic measures to assess the fault detection capability of a given model are introduced. Generic fault symptoms are developed and formalized inspired by residuals known from diagnosis in continuous systems. Using these residuals it is possible to isolate faults having occurred in the system. Several examples for fault detection and isolation are treated for the case study from chapter 3. In section 6.2 the results from chapter 6.1 are systematically adapted for the identied distributed models. For several faults introduced in the case study system the performance of the method is shown.

In chapter 7 the presented methods are applied to an industrial production facility. The results show that the combination of identication and diagnosis methods allows implementing an ecient fault diagnosis system even for large systems with reasonable eorts.

The thesis is concluded by a summary and an outlook in English and extended summaries in French and German.

2 Existing diagnosis and identication approaches for Discrete Event Systems The behavior of such systems can be observed by analyzing the signals exchanged between controller and plant. In the considered class of systems these signals are binary. From an external point of view, a change in value of a signal can be considered as an event. The occurrence and the order of these events are determined by the system dynamics.

For the implementation of ecient fault diagnosis methods for the considered system class it is necessary to have a formal description of the system behavior. In the next section it will be shown how a sequence of events (changes in value of signals) can be interpreted as a formal language. It will be explained how the dynamics of a given system can be represented using two established formalisms: Automata and Petri nets. After this introduction to DES, several existing diagnosis and identication approaches are presented and evaluated.

Introduction to Discrete Event Systems

2.2.1 Describing a system by its language Discrete Event Systems (DES) are a widely used formalism to describe the behavior of systems from dierent technical domains like manufacturing, transportation or communication. According to [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] a DES is dened as follows:

Denition 1 (Discrete Event System, [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]). A Discrete Event System is a discrete-state, event-driven system, that is, its state evolution depends entirely on the occurrence of asynchronous discrete events over time.

An example of the evolution of a DES is given in gure 2.2. It can be seen that the system is in dierent states at dierent times and exhibits an event trace. The events occur asynchronously and can (but do not have to) lead to a new DES state. The set of event traces that can be exhibited by a DES is called the system language.

Denition 2 (Language, [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]). A language dened over an event set E is a set of nite-length strings formed from events in E. According to [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] the language generated by a DES can be considered with dierent levels of abstraction. The most detailed level is to describe a system with a stochastic timed language. Determining this language for a given DES necessitates deep system knowledge like probability distribution functions to express the time between successive event occurrences. The stochastic timed language contains all possible event paths of a system with statistical information about them. A system description with a higher level of abstraction is given by the timed language. Compared to the stochastic timed language it does not contain any statistical information about the event traces. The highest level of abstraction is to use the untimed language. It consists of all possible event traces of a system without any timing information and thus mainly delivers information about the order of event occurrences. This work is focused on untimed language to describe a DES behavior. Hence the notion language always refers to the untimed language unless other meanings are explicitly indicated.

In technical domains the language of a given system is usually not known and must be approximated using ecient formalisms. In the next two sections two of these formalisms are introduced: Automata and Petri Nets. Both are capable of generating a language and thus can be used to model a given system. These system models can be constructed manually by considering causal relations of physical components or by an analysis of observed sample event traces. The second approach is referred to as identication.

Automata

Automata are an ecient formalism to describe the language of a DES. Unlike in system theory for continuous systems, in the DES domain there does not exist a standard system description like the state space model using dierential equations [START_REF] Franklin | Feedback Control of Dynamic Systems[END_REF]. According to its precise use, many authors propose adapted models for dierent purposes (e.g. [START_REF] Alur | Timed automata[END_REF] for verication with timed automata or [START_REF] Schroder | Modelling, State Observation, and Diagnosis of Quantised Systems[END_REF] for fault diagnosis with stochastic automata). Nevertheless, the concept of automata can be shown using the following basic denition often referred to in literature: Denition 3 (Deterministic automaton, [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]). A Deterministic Automaton, denoted by G, is a six-tuple

G = (X, E, f, Γ, x 0 , X m)
where X is set of states, E is the nite set of events associated with G, f : X × E → X is the transition function: f (x, e) = y means that there is a transition labeled by event e from state x to state y; in general f is a partial function on its domain. Γ : X → 2 E is the active event function; Γ(x) is the set of all events e for which f (x, e) is dened and it is called the active event set of G at x. x 0 is the initial state and X m ⊆ X is the set of marked (or nal) states.

The language generated by the Deterministic Automaton is built by event traces that occur when the automaton performs a state trajectory starting in its initial state x 0 . If the state trajectory ends in one of the marked states x m ∈ X m , the trace is part of the marked language: Denition 4 (Languages generated and marked, [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]).

The language generated by G = (X, E, f, Γ, x 0 , X m) is L(G) := {s ∈ E * : f (x 0 , s) is dened}.

The language marked by G is L m (G) := {s ∈ L(G) : f (x 0 , s) ∈ X m }.

E * denotes the Kleene-closure of E and is the set of all nite strings of elements of E including the empty string ε.

Figure 2.3 shows an automaton modeling a valve. It has the two states V C for valve closed and V O for valve open. When the automaton is in its initial state V C and then changes to the state V O the event open_valve is produced. Hence the language of the system 'valve' can be produced with the automaton performing a state trajectory. In the automaton in gure 2.3 state V C is marked. Hence, each marked event trace s ∈ L m (G) must end in this state.

A common strategy to model a system is to use dierent automata G i to represent the system components and to combine these component models to a global system model. In [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] dierent composition approaches like parallel or synchronous composition to combine several automata are given. Applying these composition algorithms it is possible to build a complex system model based on relatively simple component models. A second important modeling formalism for DES are Petri nets. They are especially suited for modeling systems with a high degree of concurrency in a compact manner. Like for automata, there exist many denitions of Petri nets and their according evolution rules. An example that is often referred to in literature is the labeled Petri net. The necessary denitions are taken from [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]:

Denition 5 (Marked Petri net, [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]). A Petri net graph P N is a weighted bipartite graph P N = (P, T, A, w, x)

where P is the nite set of places, T is the nite set of transitions, A ⊆ (P ×T)∪(T ×P) is the set of arcs from places to transitions and from transition to places in the graph, w : A → {1, 2, 3, . . .} is the weight function on the arcs and x is a marking of the set of places P . x = [x(p 1), x(p 2), . . . , x(p n)] ∈ N n is the row vector associated with x and contains the number of tokens in each place.

The marked Petri net only represents the structure of the Petri net. In order to create a language, the Petri net must have well dened dynamics which are given in the next denition:

Denition 6 (Petri net dynamics, [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]). The state transition function f : N×T → N n of Petri net (P, T, A, w, x) is dened for transition t j ∈ T if and only if

x(p i) ≥ w(p i , t j) for all p i ∈ I(t j)

with I(t j) representing the set of input places of transition t j . If f (x, t j) is dened, then we set x ′ = f (x, t j), where

x ′ (p i) = x(p i) -w(p i , t j) + w(t j , p i), i = 1, . . . , n.

With this denition, a transition function is only dened if all of the input places have at least as many tokens as the weight function delivers for the arc connecting the input place and the transition. In this case, the transition is enabled. If an enabled transition t j res, the input place p i loses as many tokens as the weight function value is of the arc from p i to t j . If p i is an output place of t j , it gains as many tokens as the weight function value of the arc from t j to p i . After the denition of the Petri net dynamics it is possible to determine a token ow in the net. In order to create a language when performing the token ow according to denition 6 it is necessary to label the transitions in the Petri net with events: Denition 7 (Labeled Petri net, [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]). A labeled Petri net N is an eight-tuple N = (P, T, A, w, E, ℓ, x 0 , X m) where P , T , A, w are given in denition 5, E is the event set for transition labeling, ℓ : T → E is the transition labeling function, x 0 ∈ N n is the initial state of the net (i.e. the number of initial tokens in each place) and X m ⊆ N n is the set of marked states (i.e. nal number of tokens in each place) of the net.

The notion 'marked states' is analogous to the marked states in denition 3. The language generated by the labeled Petri net is built by event traces that occur during a token ow starting in the initial setting x 0 . If the ow ends in one of the marked states x m ∈ X m , the trace is part of the marked language: Denition 8 (Languages generated and marked, [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]).

The language generated by labeled Petri net N = (P, T, A, w, E, ℓ, x 0 , X m) is L(N) := {ℓ(s) ∈ E * : s ∈ T * and f (x 0 , s) is dened}.

The language marked by N is L m (N) := {ℓ(s) ∈ L : s ∈ T * and f (x 0 , s) ∈ X m }.

An example of a Petri net modeling a queuing system is given in gure 2.4. For the Petri net in the gure, the weight function is assumed to have the value 1 for each arc. In gure 2.4 the net is shown in two situations. On the left, the queue is empty and waits for costumers. On the right, the Petri net is shown after some events have occurred. The Petri net contains three events a (customer arrives), s (service starts) and c (service completes and customer departs), three transitions and three places. Place Q represents the queue, place I represents the condition 'server idle' and place B a busy server. Event a can occur spontaneously like a customer. When a appears a token is added to place Q to represent a customer in the queue. If the server is idle (x(I) = 1) the transition with the label s can re which adds a token to place B and removes a token from Q. The marking of the Petri net on the right side of gure 2.4 can be obtained after the event trace {a, s, a, a, c, s, a} and represents two customers waiting in the queue and one being treated by the server. It can be seen that the Petri net compactly expresses the fact that event a can occur at each time concurrently with the other two events since neither s nor c has an inuence on a.

Automata and Petri nets are closely related. If the number of reachable Petri net markings is nite, an equivalent automaton can be created by a the construction of a reachability graph [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]. Industrial systems have the purpose to perform a given production task in a given time and at given costs. Duration and costs of a production task are an important factor for the competitiveness of a manufacturing company. Only if both factors are minimized, the industrial facility reaches a high degree of productivity which has a positive eect on the competitiveness of a company. Duration and costs of a production process are increased if faults prevent the system from running in a normal mode. Faults often lead to so called 'downtimes' during which the system is not running and needs to be repaired. In order to minimize system downtimes, it is necessary to quickly get precise information about a fault after it occurred. The process of determining this information is referred to as fault diagnosis and consists of the following three steps [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]:

• Fault detection is a decision either that something is wrong or that everything works under normal conditions

• Fault isolation is the determination of the location of the fault (e.g. which sensor or actuator is faulty)

• Fault identication determines the size and the type or nature of the fault.

The approaches developed in this work are focused on fault detection and fault isolation. After a fault has been detected and isolated (i.e. the faulty component has been determined), the fault identication step will be left to the user and his technical experience. Since in large industrial facilities, faulty components are most often directly replaced instead of being repaired on-site, the exclusion of fault identication does not represent an important limitation.

In the eld of fault diagnosis for technical systems, the two terms 'fault' and 'failure' are often used to describe a malfunctioning. In order to distinguish the two notions, two denitions taken from (ANSI/IEEE100, 1997) are given. A component fault is dened as follows:

Fault: A physical condition that causes a device, a component, or an element to fail to perform in a required manner, for example, a short-circuit, a broken wire, an intermittent connection.

A fault does not necessarily lead to an unavailable system. In case of fault tolerant systems it is possible to implement a 'work around' using inherent redundancy to prevent the system from failing [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF]. The term to describe that the system operation is no longer possible is 'failure' (ANSI/IEEE100, 1997):

A failure is the termination of the ability of an item to perform a required function.

Hence, it is possible to avoid system failures by the early detection of faults.

Diagnosis approaches for technical systems are based on the assumption that a fault leads to some measurable or visible abnormality in a system parameter. This abnormality is referred to as fault symptom (ANSI/IEEE100, 1997).

Diagnosis principles

Fault diagnosis systems analyze measurements of a considered system and apply specic algorithms to deliver information about faults in the system [START_REF] Korbicz | Fault Diagnosis: Models, Articial Intelligence, Applications[END_REF]. Various methods have been proposed by the scientic community and implemented in industrial applications. Most of the approaches can be classied in three groups [START_REF] Papadopoulos | Automated safety monitoring: A review and classication of methods[END_REF]: Rule-based expert systems, data-driven approaches and model-based approaches.

Rule-based expert systems use specic system knowledge of an expert to perform the diagnosis task. For this reason it is necessary to formalize the available system knowledge to make it accessible for diagnosis algorithms. A possible formalization are IF-THEN-ELSE rules which can be evaluated using forward or backward chaining of rules [START_REF] Papadopoulos | Automated safety monitoring: A review and classication of methods[END_REF]. In this process one or more rules are triggered by some deviation of a system parameter. Triggered rules can again trigger other rules in a chain. If no more rules can be triggered the resulting information (so-called facts) is supposed to contain the necessary data about the fault. Other possibilities to formalize the expert knowledge are summarized in [START_REF] Venkatasubramanian | A review of process fault detection and diagnosis Part III: Process history based methods[END_REF] and [START_REF] Isermann | Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance[END_REF]. Expert systems have successfully been applied to processes that can be characterized by a small number of rules. Larger systems often lead to inconsistencies and incompleteness among the rules which degrades the quality of the diagnosis system [START_REF] Papadopoulos | Automated safety monitoring: A review and classication of methods[END_REF]. Another disadvantage is that expert systems need a considerable eort to apply them to new systems due to their high degree of individuality.

Data-driven approaches for fault diagnosis rely on the analysis of measured system data and the extraction of special features. An example for this class of approaches is trend analysis [START_REF] Dash | Challenges in the industrial applications of fault diagnostic systems[END_REF]. For a given set of faults, expected trends in sensor measurements must be stored in a knowledge data base. [START_REF] Dash | Challenges in the industrial applications of fault diagnostic systems[END_REF] propose seven general trend types (so called primitives like a monotonic increasing or a constant signal value) to classify dierent faults. During online fault diagnosis sensor measurements are analyzed using appropriate lters to identify signicant trends that correspond to a given setting of primitives. During this process, fault detection time and robustness of the method must be balanced: The analyzed measurement must be long enough to avoid misinterpreting 'normal' noise as a trend but short enough to detect real trends indicating a fault as quickly as required. Instead of using simple trend types like the primitives of [START_REF] Dash | Challenges in the industrial applications of fault diagnostic systems[END_REF] it is also possible to use more complex data characterizations like patterns [START_REF] Papadopoulos | Automated safety monitoring: A review and classication of methods[END_REF].

The third class of diagnosis approaches is model-based. The idea of model-based methods is to compare the observed system behavior with the expected behavior dened by a system model. Figure 2.5 shows this principle. A possible fault detection policy within this framework is to detect if the observed system output and the predicted system output dier signicantly. Model-based methods can be divided in two subclasses [START_REF] Isermann | Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance[END_REF]: Methods using models of the nominal system behavior only and methods using explicit fault models. Using models of the nominal system behavior only, it is possible to detect faults if they lead to system behavior that cannot be reproduced by the model. In the case of continuous systems, fault diagnosis is often performed using special residuals where measured and modeled signals are systematically compared [START_REF] Isermann | Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance[END_REF]. If given thresholds are exceeded, a fault is detected. Considering the precise evolution of the residuals it is also often possible to isolate a fault. Another approach for working with fault-free models is given by [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF] in the eld of articial intelligence: Like in the case of continuous systems, a fault is detected if the measured behavior cannot be reproduced by the model. To determine a set of fault candidates, the minimal set of components is calculated that has to be considered as faulty to explain the deviation.

Especially if detailed system knowledge about the eects of faults on the system behavior is available, it is an established approach to explicitly model the faulty behavior. In this case, online fault diagnosis is performed by comparing measured signals with dierent scenarios of the model output. If in one scenario the observation is consistent with an explicitly modeled faulty behavior, it is possible to precisely identify the according fault. Examples for this approach are given in [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] for DES or [START_REF] Isermann | Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance[END_REF] for continuous systems.

The decision for an appropriate diagnosis principle for a given application may always be inuenced by personal preferences of the responsible engineer. However, there are some important arguments leading to model-based approaches as the preferable principle for closed-loop DES. Since industrial closed-loop DES are usually large systems, the application of rule-based expert systems is not possible. Capturing the necessary knowledge for diagnosis with consistent rules needs a considerable eort which may often be too expensive. Data-driven approaches mainly rely on the analysis of trends or patterns in the measured system data. For continuous signals for example, it is possible to dene trends by an analysis of the signal amplitude. In event sequences emitted by closed-loop DES such an analysis is not possible. Although there exist approaches to determine event frequency or event patterns [START_REF] Ghallab | On chronicles: Representation, on-line recognition and learning[END_REF] they are proposed with a special background: their aim is to process abstract high-level data like the occurrence of alarm events in SCADA (Supervisory Control and Data Acquisition) or in telecommunication systems [START_REF] Cordier | Alarm driven monitoring based on chronicles[END_REF]. In these applications there already exist diagnosis entities creating a huge amount of status or alarm messages that have to be preprocessed and ltered before given to a human system operator. Hence, data-driven approaches are not adapted for working on the external behavior of closed-loop DES which is dened by sensor readings and actuator settings. Model-based approaches in contrast are suitable to represent the external closed-loop DES behavior since appropriate modeling formalisms exist (see sections 2.2.2 and 2.2.3). The advantage of model-based methods in DES is their notion of state. Since closed-loop DES are dynamical systems, the decision if a given event must be considered as a fault often depends on the current system state. Using DES-models like automata or Petri nets, the system state can be eciently represented which allows tolerating an event in one system state and detecting a fault upon observation of the same event in another state. Another advantage of model-based methods is that once the models are obtained (manually or by identication) they can be reused for other purposes like formal verication [START_REF] Machado | A generic approach to build plant models for DES verication purposes[END_REF] or re-engineering [START_REF] Frey | A re-engineering approach for PLC programs using nite automata and UML[END_REF]) to further improve system dependability.

Model-based diagnosis with fault models

Diagnosis with observer automata

One of the most prominent model-based diagnosis methods for DES is the diagnoser approach of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF]. The aim of this approach is to decide if an unobservable event (usually a fault) has occurred only taking into account strings consisting of observable events. The rst step of the method is to build models of the system components and of the algorithm controlling the system behavior. The models are built using nite automata (denition 3). During the modeling process the normal behavior and the behavior in case of given faults must be explicitly included in each component model. In the approach it is assumed that the event set E of a system can be divided into observable (E o) and unobservable events (E u) leading to

E = E o ∪ E u .
As an example, a simple system consisting of a valve, a controller and a ow sensor is considered. In the example it is assumed that under normal (i.e. fault-free) conditions a liquid ows through a pipe connected to the valve if the valve has been opened by the controller. After the component models have been built, the global system model can be obtained by parallel composition. In [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] the parallel composition of two automata G 1 and G 2 of the type given in denition 3 is dened as follows:

Denition 9 (Parallel composition). The parallel composition of G 1 and G 2 is the automaton

G 1 ||G 2 := Ac(X 1 × X 2 , E 1 ∪ E 2 , f, Γ 1||2 , (x 01 , x 02), X m1 × X m2) where f ((x 1 , x 2), e) :=            (f 1 (x 1 , e), f 2 (x 2 , e)) if e ∈ Γ 1 (x 1) ∩ Γ 2 (x 2) (f 1 (x 1 , e), x 2) if e ∈ Γ 1 (x 1)\E 2 (x 1 , f 2 (x 2 , e)) if e ∈ Γ 2 (x 2)\E 1 undened otherwise
and thus

Γ 1||2 (x 1 , x 2) = (Γ 1 (x 1) ∩ Γ 2 (x 2)) ∪ (Γ 1 (x 1)\E 2) ∪ (Γ 2 (x 2)\E 1)
The Ac operation delivers the accessible part of the automaton, i.e. only states reachable by a state trajectory starting in the initial state are part of Ac(G).

After the parallel composition procedure, common events of two automata (events that belong to E 1 and E 2) can only occur if the two automata both execute the according event simultaneously. Events belonging only to one of the two automata are not synchronized and can thus occur whenever it is possible.

Figure 2.7 shows the result of the parallel composition of valve and controller automata from gure 2.6. Since both automata contain the events open_v and close_v, in the parallel composition these events can only occur if they are enabled in both of the underlying automata. The states of the parallel composition in gure 2.7 also contain additional information of the ow sensor in the valve-controller example. This sensor indicates if there is ow in the pipe that is connected to the valve. In the approach of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] it is necessary to add the sensor information to the parallel composition states manually. The next step of the [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] approach is to include the sensor information into the events of the parallel composition. Each observable event e o is replaced by < e o , h(x ′) > where h(x ′) denotes the sensor value of the following state that is reached when e o is produced. For each unobservable event at a transition it is checked if the sensor has the same value in the source state x 1 and the target state x 2 . In this case, the unobservable event e u between these two states is replaced by < e u >.

If the sensor value diers between source and target state, the according transition is removed and an additional state is added to the automaton. This state can be reached from the source state x 1 producing the unobservable event < e u >. The new state can be left to the target state x 2 using a transition with the newly created observable event < h(x 1) → h(x 2) >. On the left side of gure 2.8 the parallel composition after the inclusion of the sensor information in the events is shown. The black state has been added to the automaton following the procedure described above.

The automaton still contains the unobservable events f ail_close and f ail_open modeling the occurrence of a fault. Since the aim of the [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] approach is to analyze only observable events to nd faults in the system, a special diagnoser automaton is derived. The diagnoser depicted on the right side of gure 2.8 is constructed according to the procedure given in [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF]. It only contains observable events and estimates the current system states. In each of its states, a set of possible current model states is given which can be reached by the event sequence observed so far. The according state number is given with a so called 'fault label'. For each state in the system model in the left side in gure 2.8, it must be decided if this state is a normal state (label N) or if it is a fault state (label F i). In the example, F 1 represents the fault 'valve stuck close' and F 2 represents 'valve stuck open'. In the initial diagnoser state e.g. two model states are given as possible state estimates. Both states x 1 and x 4 can be the actual system state if no event has yet been observed: The rst possibility is that no event occurred in the system. In this case x 1 is the actual (and initial) state. The other possibility is that the unobservable event < f ail_close > has occurred which led to a transition from x 1 to x 4 .

Figure 2.8: Modied parallel composition and diagnoser automaton One of the main features of the diagnoser approach of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] is the possibility to determine if a given fault is diagnosable with the derived diagnoser. In [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] diagnosability is dened as follows:

Denition 10 (Diagnosability according to [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]). Unobservable event e d is not diagnosable in live language L(G) if there exist two strings s N and s Y in L(G) that satisfy the following conditions: (i) s Y contains e d and s N does not; (ii) s Y is of arbitrary long length after e d ; and (iii) P (s N) = P (s Y). When no such pair of strings exists, e d is said to be diagnosable in L(G). P (s N) denotes the projection of the string s N to the alphabet of observable events E o . This operation removes each event in string s N which is not part of E o .

The notion 'live language' refers to a language without terminating strings. An automaton without deadlock states is capable of generating a live language. Denition 10 means that a fault which leads to the unobservable event e d is only diagnosable if each observable event sequence following e d can eventually be distinguished from any other event sequence of the system language. Hence, the observable part of the system behavior after fault e d must be distinguishable from any other string that can occur without e d . In [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] an algorithm is given to test if a given set of faults is diagnosable with the derived diagnoser.

The diagnoser approach of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] has been modied and improved in many ways. In [START_REF] Debouk | Coordinated decentralized protocols for failure diagnosis of discrete event systems[END_REF] a decentralized architecture using a set of diagnosers to observe a system is proposed. The principle of the architecture is depicted in gure 2.9. In the decentralized approach it is assumed that the global system information is distributed at several sites. At each site only a subset of events can be observed. In the distributed diagnoser framework, for each site an own diagnoser has to be constructed according to the procedure explained above. With this approach it is possible to limit the size of the automata used for online-fault diagnosis since the local diagnosers are typically much smaller than a diagnoser for the complete system. Since each local diagnoser has only limited access to the necessary system information, it can be necessary to implement communication between the diagnosers or communication with a coordinator. Figure 2.9: Distributed diagnoser architecture [START_REF] Debouk | Coordinated decentralized protocols for failure diagnosis of discrete event systems[END_REF] A second major improvement of the diagnoser approach of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] is to include information of event timing into the system models. With this approach it is possible to nd faults leading to a changed timed system behavior or to deadlocks. In [START_REF] Hashtrudi Zad | Fault diagnosis in discrete-event systems: Incorporating timing information[END_REF] a theoretical framework for timed diagnosis is introduced. The main idea is to represent time by a repeatedly occurring event, the so-called 'tick'. With this special event it is possible to include e.g. the expected number of 'ticks' between two regular events in the component models. The enhanced system models can then be processed like in the approach of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] to construct the diagnoser.

A combination of the distributed and the timed approach summarized above is proposed in [START_REF] Philippot | Unconditional decentralized structure for the fault diagnosis of discrete event systems[END_REF] and [START_REF] Sayed-Mouchaweh | Decentralized diagnosis based on Boolean discrete event models: application on manufacturing systems[END_REF]. This approach is especially well suited for diagnosis in manufacturing systems which are a special class of closed-loop discrete event systems introduced in section 2.1. Like in the classical diagnoser approach from [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF] the rst step of the method is to build models for the plant components. As a dierence to the classical diagnoser approach, only the fault-free system behavior must be modeled. In [START_REF] Philippot | Contribution au diagnistic décentralisé des systèmes à événements discrets : application aux systèmes manufacturiers[END_REF] it is explained how so called 'plant elements' can be obtained in a systematic way by composing models of the actuator and of the sensor behavior of each component. The component models have to be synchronized with the control algorithm to represent the desired controlled behavior. In [START_REF] Philippot | Diagnostic des SED par modélisation multi-outils[END_REF] a procedure to extract the relevant part of the control algorithm for each component model from the control algorithm is proposed. A formal description of the control algorithm must be available in form of a GRAFCET (GRAphe Fonctionnel de Commande Etapes/Transitions) which is a special specication language for automation systems (IEC, 2002). After the composition of component models and the according parts of the control algorithm to automata models, timing information of the event occurrences must be added. For each state in the controlled component models, valid time windows for the occurrence of the following events must be determined. The result of this step are timed controlled component models of the normal system behavior. These models are the basis for the construction of the distributed diagnosers. Following special rules, some faulty behavior is added to the controlled component models. Based on these enhanced models, diagnosers are derived which monitor the according component during system operation. In gure 2.10 a part of such a diagnoser is depicted. Even without a formal denition of the model semantics its working principles can be seen.

Figure 2.10: Part of a diagnoser from [START_REF] Philippot | Contribution au diagnistic décentralisé des systèmes à événements discrets : application aux systèmes manufacturiers[END_REF] The depicted diagnoser is derived from a model of a double acting cylinder with two positions (position sensor a0 for the initial position and position sensor a1 for the extended position). In each diagnoser state, the controller input/output values of the cylinder sensors and actuators are given (second line). In state x 2 the input/output setting is 1010 which means that the cylinder is in its initial position (rst value of the setting is 1 which means that the according position sensor is activated) and has been ordered to extend (third value of the setting is 1 which means that the according actuator has been started by event ↑A+). The next expected action is the cylinder leaving its home position which leads to event ↓a0. In the third line of diagnoser state x 2 a time window for the occurrence of ↓a0 after ↑A+ is given. If the maximum waiting time is exceeded, the diagnoser goes to state x 14 which allows concluding that one of the faults with labels F 3 or F 4 must have occurred (defect at sensor a0 of actuator defect). Since for each component an own diagnoser monitors the system, a global coordinator decides if a fault message must be issued to the system operator.

Diagnosis with state estimation algorithms

A common characteristic of the methods sketched in the former section is their working principle based on observer automata. For diagnosis it is necessary to have a current state in the diagnoser during system monitoring since the diagnoser states contain the state estimation for the considered system. Hence, system and diagnosers must be started synchronously which can be dicult. To overcome this problem, in [START_REF] Neidig | Unidirectional coordinated diagnosis of automata networks[END_REF] a state observation algorithm directly working on the system model is proposed. It starts with a given initial state estimate. If no information about the system state is available, it is possible to start with the complete state space of the system model as initial state estimation. The currently measured system data must be given to the algorithm. Based on the current state estimation it determines which model states can be reached with the measured system data. These states become the new estimate. If models containing the fault-free and some faulty system behavior are to be used, for each model state it is to decide a priori if it represents a faulty or a fault-free behavior. Based on this information it is possible to decide if the current state estimate contains faulty states. Hence, the state observation algorithm can be used as a diagnosis procedure which replaces the diagnoser introduced in the former section. Since the state estimation algorithm derives the current state estimate 'on the y', it is more demanding in terms of calculation time compared to evaluation of the diagnoser automaton. As the diagnoser can be constructed oine, it is possible to perform more complex calculations for its construction.

Like the classical diagnoser approach, the method using a state estimation algorithm has been modied and improved in many ways. In [START_REF] Supavatanakul | Diagnosis of timed automata: Theory and application to the damadics actuator benchmark problem[END_REF] it is shown that this approach can be adapted to timed models. For this purpose the state estimation algorithm also considers the time intervals between measured system signals and integrates this information in the state estimation procedure. In [START_REF] Neidig | Unidirectional coordinated diagnosis of automata networks[END_REF] an approach for coordinated diagnosis of automata networks similar to the distributed approaches for the diagnoser method is proposed. Since in some technical applications it is possible to give an initial state estimation with probability values for each state in the estimate, the method has also been extended to stochastic systems [START_REF] Neidig | Decentralised diagnosis of automata networks[END_REF]. For this adaptation a stochastic model of the considered system is necessary.

Similar to the diagnoser approach and its derivatives, it is possible to decide if a given fault can be diagnosed with the available models (diagnosability) using the state estimation approach.

Model-based diagnosis with Petri nets

The diagnosis approaches presented so far are working with dierent forms of automata to model the considered system. The system is usually modeled by composing component models represented by automata. During this process, model building for large systems often leads to the state space explosion problem which is the result of the numerous combined component behaviors captured within a composed model. An approach to avoid the state space explosion problem is to use Petri nets which are able to represent the system state in a distributed way. An overview of fault diagnosis approaches using Petri nets is given in [START_REF] Pia Fanti | Fault diagnosis and identication of discrete event systems using petri nets[END_REF]. In Petri net approaches, the models used for system monitoring (Petri net diagnosers) inherit the structure of the underlying system. Some places or transitions in the system model are assumed to be non-measurable. For non-measurable places this means that the number of tokens is not known. Non-measurable transitions on the other hand can re without being noticed. The diagnosis problem consists in determining the distribution of tokens in the Petri net over measurable and non-measurable places (or the according ring sequence of non-measurable transitions) only taking into account measurable system information. Like in the case of diagnosis with automata, Petri net approaches for monolithic and distributed models exist.

In [START_REF] Genc | Distributed diagnosis of discrete-event systems using petri nets[END_REF] a Petri net approach assuming that all places of the system model are non-measurable is proposed. It is based on the class of labeled Petri nets introduced in denition 7 with an event set consisting of observable and unobservable (fault) events. Events are associated with transitions. The diagnosis problem is to determine which unobservable events can have occurred based on an analysis of observable events. The diagnoser Petri net in this approach inherits the complete structure of the Petri net modeling the system (including the structure of the faulty behavior). Meanwhile the dynamics of the system are dened by observable and unobservable events, the Petri net diagnoser evolves only based on observable events. Based on the observable events it determines which states could have been reached in the system if some unobservable events occurred. Figure 2.11 shows a system model and its Petri net diagnoser. Transitions with unobservable events are gray. Although the Petri net diagnoser in the right part of the gure has the same structure as the system model on the left, its state is dened in a dierent way. Each diagnoser state represents several possible system markings each represented by the distribution of another token symbol. The marking with the •-symbol (p 1 and p 2) represents the system state like depicted on the left side of the gure. Starting from this system state it is possible that the unobservable event g occurs leading to the marking p 3 and p 2 . This system state is represented by the -symbols. If the unobservable event g occurred twice, the resulting marking is p 5 and p 2 which is represented by the distribution of the +-symbol in the diagnoser state. Using this principle, a diagnoser Petri net state contains each possible system state that is reachable by the emitted series of observable events and arbitrary occurrences of unobservable events. The Petri net diagnoser can be calculated oine. If the underlying Petri net model is very large and complex, the calculation of the diagnoser leads to the state space explosion problem since each possible state of the underlying Petri net must be enumerated. Like in the case of automaton diagnosers, this problem is addressed using a distributed approach with communicating Petri diagnosers for dierent system components [START_REF] Genc | Distributed diagnosis of place-bordered Petri nets[END_REF].

Figure 2.11: Petri net diagnoser according to [START_REF] Genc | Distributed diagnosis of discrete-event systems using petri nets[END_REF] The calculation of the Petri net diagnosers can result in very large models with considerable memory demands which can be an obstacle for online application. Another drawback common to the diagnoser approach using observer automata is that Petri net diagnoser and system must be started synchronously to assure an accurate initial state estimation. Instead of the oine calculation of the Petri net diagnoser, in [START_REF] Dotoli | On-line fault detection in discrete event systems by petri nets and integer linear programming[END_REF] it is proposed to determine the possible marking online solving an integer linear programming problem (ILP). The ILP is formulated using constraints for ring sequences in the given net structure that must be fullled to reproduce the online observation with the model. These constraints are formulated with matrix equations using e.g. reformulations of the state transition equation x ′ = f (x, t j) (see denition 6 of the Petri net dynamics). For each fault considered in the model an ILP has to be solved maximizing the occurrence of the concerning fault event under the constraint that the trajectory is valid according to the Petri net structure and dynamics and produces the observed event sequences. If the ILP admits a solution > 0 for a given fault, the occurrence of this fault is a possible explanation for the observed event sequence: a ring sequence of observable and unobservable events exists reproducing the observed sequence and containing the considered fault. If non of the ILPs belonging to the faults included in the Petri net model leads to a solution > 0, it is concluded that the behavior is normal. The approach of [START_REF] Dotoli | On-line fault detection in discrete event systems by petri nets and integer linear programming[END_REF] reduces the amount of necessary memory to store the diagnoser model at cost of increased calculation time. Since for solving ILPs there does not exist a polynomial algorithm, the model structure has to keep to some constraints (like representing an acyclic state machine) to guarantee that the ILPs can be solved fast enough to be applied online. However, for large systems this approach does not admit solutions in a short time such that it could be applied online.

Model-based diagnosis with fault-free models

After the presentation of the major works on diagnosis with fault models for DES, in this chapter methods on diagnosis with fault-free models are investigated. In [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF] a very general theory for diagnosis with a fault-free system description is given. The method is situated in the eld of Articial Intelligence (AI) and is working on an abstract system description which can be given in dierent kinds of logic. A system is described as set of components interacting according to a system description: Denition 11 (System [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF]). A system is a pair (SD, COM P ON EN T S)

where:

1. SD, the system description, is a set of rst order sentences; 2. COM P ON EN T S, the system components, is a nite set of constants.

The system description can be given in any suitable logic like rst-order, dynamic or temporal logic. For fault detection it is checked if the current system observation OBS is consistent with the system description SD and with the assumption that each component is working normally. To denote that a component

c i is not abnormal (AB) the formulation AB(c i)|c i ∈ COM P ON EN T S is used. Hence, it is checked if SD ∪ (AB(c 1), . . . , AB(c n)) ∪ OBS
is consistent. If this consistency check fails, a fault is detected. This procedure is similar to the comparison of observed and modeled behavior in model-based diagnosis approaches. In the approach of [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF], diagnosis is considered as a conjecture that certain system components are faulty and some are normal. The aim of diagnosis is to estimate the set of faulty components as precisely as possible. This is done using the the Principle of Parsimony:

The Principle of Parsimony. A diagnosis is a conjecture that some minimal set of components are faulty. This heuristic expresses the idea that there is usually a higher probability for a given component to be fault-free than to be faulty. Hence, in case of fault detection, it is reasonable to determine a minimal set of components which have to be assumed abnormal (AB(c i)) to restore consistency of observation and system description. This consideration results in the following denition for the term diagnosis: Denition 12 (Diagnosis [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF]). A diagnosis for (SD, COM P ON EN T S, OBS) is a minimal set ∆ ⊆ COM P ON EN T S such that

SD ∪ OBS ∪ {AB(c)|c ∈ ∆} ∪ {AB(c)|c ∈ COM P ON EN T S\∆} is consistent.
Several approaches to determine the minimal set ∆ containing the diagnosed components exist. A straightforward approach is to systematically generate all subsets ∆ ⊆ COM P ON EN T S, starting with minimal set cardinality rst, and testing the consistency of system description, observation and assumed malfunctioning components. In [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF] the diagnosis approach is applied to digital circuits using rst order logic.

The approach of [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF] has not been developed for DES although they can also be represented using logic descriptions. An approach for model-based diagnosis based on fault-free models explicitly developed for DES is given in [START_REF] Pandalai | Template languages for fault monitoring of timed discrete event processes[END_REF]. It has been proposed for diagnosis in manufacturing systems with discrete sensors and actuators. The main idea of the method is to monitor the timing and sequencing of events generated by the considered system. The nominal (fault-free) system behavior is modeled using condition templates. A condition template is determined by a set of rules starting from an initial triggering event: based on the initial event occurrence, a set of expectations is determined that contains possible following events with an appropriate timing interval. If one of the expected events occurs within a valid time interval, new expectations are created according to the rules given in the condition template. An expectation is given in the form (t, e, C, w) where t is a time, e an event, C a consequence and w a tag (label of the expectation). t is the time stamp when the triggering event e occurs. The consequence C is a pair (e ′ , τ), where e ′ is an event and τ is a time interval.

During system monitoring a set of expectations is maintained online. Following the rules in the condition template, expectations are added or removed from the expectation set after the occurrence of the according events. Two scenarios for fault detection exist in this framework: Either non of the events in an expectation occurred within the specied time periods, or an event occurs that was not expected by any of the active expectations. In the sense of [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF] the event which cannot be explained by one of the expectations representing the system description is considered as fault event. Assuming the component related with the suspected event to be faulty restores consistency of observation and system description. In gure 2.12 an example of system monitoring using condition templates is given. Two expectations are depicted:

(2, e 1 , {(e 2 , [2, 4]), (e 3 , [6, 8])}, w 1) on the top and (9, e 3 , {(e 5 , [3, 5])}, w 2) on the bottom. The rst two elements in expectation w 1 indicate that event e 1 occurred at time t = 2. The gray shaded zones indicate the time intervals τ when the occurrence of e 2 or e 3 is expected during fault-free system behavior. The expectation is satised if e 2 appears at time interval 4 ≤ t ≤ 6 or if e 3 appears at time interval 8 ≤ t ≤ 10. If e 3 appears, the next expectation w 2 is triggered waiting for event e 5 at time interval 12 ≤ t ≤ 14.

In the example, the occurrence of event e 2 (dashed arc) is not expected by expectation w 1 . Hence, it is inferred that e 2 occurred (to late) due to a fault. Modeling the nominal system behavior with the framework from [START_REF] Pandalai | Template languages for fault monitoring of timed discrete event processes[END_REF] is not a standard tool in DES-theory. However, the authors present a method to systematically derive the condition templates from timed automata representing the nominal system behavior. Since model-based approaches derive information from the estimated system state, they allow a dynamic analysis of the external DES-behavior.

A common feature of diagnosis methods using explicit fault models is the diagnosability property: it is possible to check if a given (and modeled) fault can be diagnosed using the available models. Although this is an important advantage, it has to be kept in mind that the diagnosability property strongly depends on the quality of the system model. It only checks if a modeled fault can be diagnosed if the system behaves exactly like supposed in the model. For approaches using fault models, it is necessary to build models of the nominal and the faulty system behavior in form of automata or Petri nets. The determination of the nominal and the faulty behavior usually necessitates the deep knowledge of a system expert. This expert is not necessarily familiar with the modeling formalisms for DES. Even if it is possible to build the necessary models, none of the methods give guidelines of how to modify existing models in the case of failed diagnosability tests. Especially if distributed approaches are used to overcome the state space explosion problem, there are no guidelines of how to choose appropriate partial models. Some approaches propose model libraries with frequently used component models to facilitate model-building [START_REF] Philippot | Unconditional decentralized structure for the fault diagnosis of discrete event systems[END_REF]. Although this may considerably reduce the eort to build component models, in most industrial systems there exist some non-standard components which have to be analyzed and modeled separately. Another important problem is the modeling process for the control algorithm. For this purpose it is necessary to have a formal description of the algorithm (e.g. as a GRAFCET). This is often not the case for existing industrial facilities where controller programs are rarely well documented. Another general problem for this class of methods is the fact that only faults explicitly considered in the model can be diagnosed. As a conclusion, methods working with fault-models are well adapted if diagnosability has to be guaranteed for some faults (e.g. safety related issues) and if there are sucient nancial means for detailed and exact model-building. To the best knowledge of the author, none of the diagnosis methods of this class has yet been successfully applied to a system at industrial scale.

In the second class of model-based methods working with fault-free models, the notion of diagnosability does not exist. Faults can be detected if they lead to a deviation from the modeled nominal behavior. It is not possible to guarantee that a given fault can be diagnosed using fault-free models. In general, fault diagnosis tends to be less precise using fault-free models since the models contain less knowledge. If the eect of a fault is not explicitly part of the model, the diagnosis information must be derived from the comparison of expected fault-free (modeled) and observed behavior. As explained in the approach of [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF], there may be several possible ways to explain this dierence. An important advantage of approaches with fault-free models is that model-building is usually less laborious since only the fault-free behavior has to be represented. It is even possible to get the necessary fault-free models by identication. In the case of industrial closed-loop DES it is possible to observe the considered system during normal operation and to identify a DES-model based on the observed data. Although diagnosis with fault-free models has some disadvantages since diagnosability for given faults cannot be guaranteed, it oers a way to implement a diagnosis system without expensive model-building if identication methods are used. For many closed-loop DES at industrial scale it represents the only way to come to a diagnosis system since modelbuilding would quickly exceed nancial and organizational limits.

Identication of Discrete Event Systems

Limits of manual model-building and aims of identication

A key issue for model-based methods is the determination of appropriate models. Two main approaches are possible: manual model-building and identication. In case of manual model-building, the models are built by a human expert formalizing his knowledge about the causal structure and the behavior of the considered system in an appropriate mathematical form. Identication on the other hand refers to the systematic analysis of monitored system behavior and the algorithmic construction of a mathematical description which approximates the observed data. The core of an identication method is an identication algorithm.

Building a model manually necessitates knowledge of the considered system. Depending on the application, it is often possible to get an approximative model without a detailed analysis of the considered system. However, for the construction of exact models it is essential to have a deep understanding of the system to be modeled. An advantage of manual model-building is the possibility to gain deeper insights in the system structure and dynamics since inconsistencies in the system knowledge become visible when it is formalized in a model. Beyond the use in diagnosis systems, the improved system knowledge can be useful for many purposes like the development of control algorithms.

Many model-based techniques guarantee the correctness of certain results or their capability to perform a certain task. Model-checkers for formal verication for example guarantee that the complete modeled system behavior is analyzed to determine if given specications hold [START_REF] Bérard | Systems and Software Verication[END_REF]. A second example has been given in section 2.3.2: It has been shown that some diagnosis methods are able to determine if a given fault is diagnosable using the available models. If it is diagnosable, the methods guarantee its detection and correct indication. Since model-based methods cannot evaluate if a given model represents the considered system in an appropriate way, guaranteed features are only as good as the given models. It depends on the modeling engineer to make sure that the model is appropriate for the given purposes. An important question in this context is the correct level of abstraction. As an example for the consequences of this question we consider the dierent models of a valve in gure 2.13. The leftmost automaton has two states representing the valve in the opened and in the closed position. In this model it is assumed that the valve directly changes from opened to closed or vice versa when the according event occurs. The automaton in the middle of gure 2.13 has an additional state to represent the valve being between opened and closed. The rightmost model nally has four states. State B1 represents the valve moving from the closed position to the opened position whereas B2 models the valve moving from opened to closed. Each of the three models represents the valve behavior at a dierent level of abstraction. In the leftmost automaton intermediate states between valve open and valve close are not considered which may be suciently accurate for a given purpose. In the rightmost model, there is a more detailed representation of the valve behavior at cost of model size. If the more detailed model is e.g. used in the diagnoser approach, the parallel composition of plant models and controller algorithms becomes larger which also leads to a larger diagnoser automaton. The choice of an adapted level of abstraction is not obvious since the resulting model size has to balanced with the required model accuracy. A person with a sucient degree of system knowledge is not necessarily familiar with the mathematical tools to build the model in the required form. Hence, it is often necessary to coordinate specialists from the domain of the considered system (e.g. mechanical engineers, chemists, etc.) with specialist of the model domain (e.g. control engineers) which poses an organizational challenge. The deployment of several specialists also leads to important economical charges which may lead to the decision that the application of model-based methods for a given scenario is too expensive.

For many applications it is possible to decrease the cost for model-building and even to increase model accuracy using identication methods. For identication it is necessary to observe the considered system for a certain time to get samples of its behavior. Based on the collected data, [START_REF] Van Schuppen | System theory for system identication[END_REF] denes system identication as the selection of a model such that the observed data can be reproduced as accurately as necessary. The required accuracy is given by an approximation criterion.

Using identication methods to determine the models for model-based techniques has an important advantage: If it is possible to prove certain properties of an identication method, the resulting identied models have some guaranteed qualities. If an identication algorithm guarantees some degree of accuracy with respect to the collected system data, this leads to a more objective model evaluation than in the case of manually built models always depending on the competence of the modeling engineer.

Another advantage of identied models of closed-loop DES is that they directly represent the closed-loop of plant and controller. Manually built models usually only contain the idealized behavior of plant components and the control algorithm (e.g. in the diagnoser approach of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF]). An identied model on the other hand represents the control algorithm executed in the controller as it leads to the observed system behavior. Special eects resulting from the controller hardware (e.g. delays of I/O cards) or the execution procedure of the algorithm (like cyclic program execution in industrial controllers) are thus often better represented using identied models since these eects are usually not considered in manual model building [START_REF] Roth | Identication of discrete event systemsimplementation issues and model completeness[END_REF]. Hence, identied models are often closer to the real system behavior than manually built ones.

In discrete event systems, the aim of identication is to build a model approximating the original system language L Orig1 . The basis for each identication approach is the observed language L Obs which represents a (more or less complete) sample of the original system language L Obs ⊆ L Orig . It is supposed that the original system language is faultfree. The longer the observation horizon, the more likely a convergence of L Obs to L Orig is. Once a model has been identied on the basis of L Obs , it creates a language which is referred to as the identied language L Ident . If the original system language has been completely observed (L Obs = L Orig) and a given identication algorithm delivers a model which exactly reproduces the observed language (L Ident = L Obs) the aim of identication is perfectly met since L Ident = L Orig .

Figure 2.14 shows the relation of L Orig , L Obs and L Ident in a general case. The area with the bold line represents L Orig and contains the observed language L Obs as a subset. In gure 2.14, the identied language is a superset of the observed language which is a reasonable minimal demand on an identied model used for diagnosis: it should be able to reproduce the already observed behavior of the considered system since it is fault-free.

Usually, it cannot be guaranteed that an identied model only produces the observed language. Hence, L Ident is a superset of L Obs with some part of the set L Ident \L Obs possibly contained in the original language L Orig . If an identied model contains an important amount of the language L = L Ident ∩L Orig , this increases the model accuracy. The identied language which is not part of the original system language is called exceeding language L Exc = L Ident \L Orig . The exceeding language generally decreases the model accuracy since each word of this language can be exhibited by the identied model but is not part of the original system language. If it cannot be guaranteed that the original language is completely included in the identied language (L Orig@ @ ⊆L Ident), it is also possible that some part of the original language cannot be reproduced by the identied model. The non-reproducible language L N R represents the part of the original system language that has not been observed and that is not part of the identied behavior (L N R = L Orig \L Ident). An accurate model minimizes the two languages L N R and L Exc such that L Ident ≈ L Orig .

For the decision if an identied model is appropriate for fault detection purposes, the exceeding language L Exc and the non-reproducible language L N R play a key role. If a system is diagnosed with the identied model and it exhibits a word w / ∈ L Ident a fault can be detected, since model and observation are not consistent (see section 2.3.3). In case that an exhibited word is part of the exceeding language (w ∈ L Exc = L Ident \L Orig), the word represents a fault (w / ∈ L Orig) which cannot be detected since it is part of the exceeding behavior. In this case, the identied model erroneously contains a faulty word. To minimize the number of undetectable faults, it is necessary to minimize the exceeding language L Exc .

If the system exhibits a word which is part of the non-reproducible language w ∈ L N R = L Orig \L Ident , a fault is detected, since w / ∈ L Ident . This fault detection is a false alert since the exhibited word is part of the original system language L Orig . A reduction of the number of such false alerts can be achieved by minimizing the non-reproducible language L N R .

In the remainder of this chapter, dierent identication methods from the DESdomain are presented and it is discussed if the identied models meet the accuracy constraints of diagnosis systems.

Identication of nite automata

The rst approaches for identication of DES have their origin in the computer science community and date back to the sixties and seventies of the last century. In [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] an overview of these methods is given and they are evaluated for identication of closed-loop DES. The approaches from this time can be divided in two main categories. Methods like [START_REF] Biermann | Synthesis of nite-state machines from samples of their behavior[END_REF], [START_REF] Kella | Sequential Machine Identication[END_REF] or [START_REF] Veelenturf | Inference of Sequential-Machines from Sample Computations[END_REF] work on the basis of observed input and output sequences of the considered system and construct a Mealy or Moore automaton [START_REF] Lee | Structure and Interpretation of Signals and Systems[END_REF] to represent the observed data. The aim of these methods is to determine an automaton which is able to simulate2 the observed language given by the captured input/output sequences. A frequent aim within this class of methods is to determine a minimal automaton which satises this constraint. The second class of methods like [START_REF] Booth | Sequential Machines and Automata Theory[END_REF] aims at identifying completely specied automata using test sequences to excite the considered system. Completely specied automata are capable of producing an output sequence to each possible input sequence [START_REF] Tornambe | Discrete-Event System Theory: An Introduction[END_REF]. For identication of industrial DES with physical components, the second class of methods is principally not adapted. The reason is that the application of various test input sequences is not possible for industrial closed-loop DES where valid system trajectories are predened by the controller in the loop. Forcing the system to perform each possible trajectory quickly leads to critical situations.

In [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] it is shown that the methods proposed by the computer science community do not meet the requirements of models for online fault detection in industrial systems. These methods have not been designed for identication of systems with interaction of physical components and a controller like in the case of industrial closed-loop DES (see 2.1). Closed-loop DES exhibit a behavior without any input if the signals exchanged between controller and plant are considered as system output. From an external point of view they are event generators. The approaches summarized in [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] do not identify event generators but transducers which produce an output sequence upon the reception of an input sequence. Hence, they are not appropriate for modeling a closed-loop DES.

The early computer science methods summarized in [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] are based on various identication algorithms that process observed sequences and determine a model in a deterministic way. In [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF] and (Baron et al., 2001a), an identication approach that determines an automaton in a non-deterministic way is proposed. The key idea is to use genetic algorithms as an optimization technique to determine an optimal automaton structure which is able to reproduce the observed sequences. Genetic algorithms belong to the class of evolutionary, heuristic optimization approaches [START_REF] Michalewisz | How to Solve it: Modern Heuristics[END_REF].

An important question when applying the evolutionary approaches to a technical optimization problem is how to represent possible solutions such that they can be treated like the genome in biological evolution. Figure 2.15 shows a Moore automaton from [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF] and a part of its representation as a 'genome'. The automaton is coded in a vector that can be divided in quintuples representing the dierent states of the automaton. The rst entry of each quintuple contains the output of the state. The following four entries represent the states which are reached via a transition with a particular input (e.g. in the second following state entry of state 1 there is a 2, which means that from state 1, state 2 can be reached by input b (2)). Using genetic algorithms, two parent genomes have to be combined to determine new solutions. This procedure is not explicitly given in (Baron et al., 2001a) or [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF]. Nevertheless, it is clear that two vectors like the one shown in gure 2.15 can be combined in dierent ways. One possibility is to randomly chose the quintuples describing the states of the new solution from one of the parents and to combine them to a new vector. The same approach is possible when choosing the precise values for the quintuple entries of state outputs or transitions leading to certain states. The concept of mutating a given solution can also be implemented following these ideas.

Figure 2.15: Example for the coding of a Moore automaton [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF] For the assessment of a solution determined by recombination or mutation, it is necessary to determine its tness. In [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF] an approach to determine the tness by an analysis of the observed input/output sequence (only one such sequence in considered). Starting with the rst I/O-pair, the length of the subsequence which is accepted by an automaton represented by a solution is determined. Solutions with higher tness and thus longer accepted I/O sequences are more likely to be selected for reproduction which nally leads to a set of solutions with automata that are likely to accept an important part of the observed I/O sequence.

Although this approach is an interesting technique for identication of DES and shows the potential of optimization techniques in this eld, the identied models are not well adapted for fault detection purposes. If the observed I/O sequence represents the fault-free behavior of the considered system, the identied (fault-free) model should contain this sequence to avoid false alerts (see section 2.4.1). Due to its nondeterministic nature, the approach of [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF] cannot guarantee that the observed sequence is completely accepted by the identied automata. It is also impossible to generally guarantee a certain accuracy of the identied model. In terms of section 2.4.1, it cannot be guaranteed that the exceeding language L Exc and the non reproducible language L N R are minimized. Hence, the models identied with the [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF] approach are not appropriate for fault detection purposes.

An automaton-based identication approach explicitly developed for fault diagnosis in DES is proposed in [START_REF] Supavatanakul | Diagnosis of timed automata: Theory and application to the damadics actuator benchmark problem[END_REF]. The approach has been developed for diagnosis in continuous systems with a quantized I/O and state space. The amplitude of each continuous I/O signal is divided in intervals. If an I/O passes the limits of such an interval, an event is generated. It is assumed that continuous state signals are available and can also be quantized. The idea is to identify a timed automaton based on the quantized I/O and state signals for the normal and for some faulty behavior.

The quantized state signals determine the state space of the timed automaton. To get the necessary samples of the faulty system behavior it must be possible to introduce faults and to observe the resulting behavior. For each fault, an own timed automaton is identied. The set of identied automata is used for online fault diagnosis by analyzing which automaton can reproduce the currently observed system behavior. If the observation can only be reproduced by an automaton identied on the basis of some faulty system behavior, a fault is detected.

The class of automata used in [START_REF] Supavatanakul | Diagnosis of timed automata: Theory and application to the damadics actuator benchmark problem[END_REF] is similar to Mealy automata with inputs and outputs associated to transitions. Additionally, the timed behavior is dened by time intervals added to the transitions. A transition can only re if the automaton clock is within this time interval. If x 1 is the current state of the automaton in gure 2.16 and the current clock value is 5, it is possible that the transition from x 1 to x 2 res reading the input a = 1 and producing the output b = 2 since the current value of the automaton clock is within the given time interval. The transition to x 3 cannot re since the clock already exceeded its time interval. The principle of the [START_REF] Supavatanakul | Diagnosis of timed automata: Theory and application to the damadics actuator benchmark problem[END_REF] identication approach can be seen in gure 2.17. In the example, two input signals a and c and two output signals b and d exist. In this simplied example, the state signals are equal to the input and output signals. Three timed sequences can be seen that are used to identify the automaton in the upper part of gure 2.17. Each sequence starts with the same setting of I/O values dening state x 1 . In the rst sequence, a = 1/b = 1 occurs after four time units leading to the I/O value setting dening state x 2 . Hence, x 1 and x 2 are connected. The time interval at the transition between x 1 and x 2 after sequence 1 is [4,4]. The rest of the rst sequence is processed following the same principle: if an I/O value setting occurs that is not yet represented by an own state, a new state is created and connected to the state representing the former setting. Time intervals of newly created states contain the number of elapsed time units since the last I/O change as single value. After the analysis of sequence 1, the automaton consists of the state trajectory x 1 , x 2 , x 3 and x 4 . Processing the second sequence does not lead to an enlarged state space, since the occurring I/O value settings are already part of the automaton. Since the timed behavior of this trajectory diers from the rst one, the time intervals of the automaton are adapted. a = 1/b = 1 for example occurs after eight time units. Hence, the interval of the transition from x 1 to x 2 is redened to [4,8]. The analysis of the remaining part of sequence 2 and of sequence 3 leads to the automaton shown in gure 2.17.

Figure 2.17: Example for the [START_REF] Supavatanakul | Diagnosis of timed automata: Theory and application to the damadics actuator benchmark problem[END_REF] approach Although the approach of [START_REF] Supavatanakul | Diagnosis of timed automata: Theory and application to the damadics actuator benchmark problem[END_REF] has been successfully applied to a benchmark system, its use poses some problems. The rst problem is that it is necessary to identify fault-free and faulty system behavior. In large closed-loop DES it is not possible to articially introduce each possible fault at each possible time to deliver the necessary observed system data. Hence, it is dicult to guarantee that the identied models contain the whole possible faulty and fault-free system behavior. The second problem of the approach is related to the determination of time interval limits. The limits are determined by the shortest and the longest state duration. If a maximum time limit is xed to 10 time units, a behavior occurring after 11 time units will not be recognized. It is dicult to decide if the shortest and longest durations have already been observed or if more extreme values are possible for the considered faulty or non-faulty scenarios.

Identication of Petri nets

Apart from identifying nite automata to represent a DES language, various approaches to determine Petri nets based on observed event sequences exist. In [START_REF] Pia Fanti | Fault diagnosis and identication of discrete event systems using petri nets[END_REF] an overview of the most important ones is given. In this section, two representative approaches for the main ideas of Petri net identication are explained. The rst idea is to use rules for a systematic construction of a Petri net from observed sequences. The second idea is to solve an integer linear programming problem over structural constraints such that the identied Petri net can reproduce the observed event sequences.

An approach which is representative for the rst class of methods is given in [START_REF] Meda-Campana | Identication of concurrent discrete event systems using petri nets[END_REF]. The approach works with interpreted Petri nets (IPN, see section 2.3.2). An IPN can be seen as a labeled Petri net where the events associated to the transitions represent the system input and a special function ϕ determines the output based on the marking of the IPN. The IPN has unobservable and observable places. The data base for the approach of (Meda-Campana and Lopez-Mellado, 2005) are sequences of observed transitions and place markings. The idea is to build socalled cyclic m-words beginning and ending with the same marking ϕ(X) of observable places. For each pair of transitions in two observed m-words like w 1 = t 1 , t 2 , t 3 , t 4 , t 5 and w 2 = t 3 , t 1 , t 2 , t 4 , t 5 it is determined if they are dependent or concurrent. Two transitions t i , t j are dependent if there exists a place p k such that there is an arc leading from t i to p k and if there is an arc leading from p k to t j . If two transitions always occur in the same order, they are possibly dependent (like t 4 and t 5 in w 1 and w 2). Two transitions t i , t j are concurrent if they can occur in dierent orders like t 2 and t 3 in w 1 and w 2 . Figure 2.18 shows an example for the identication approach of (Meda-Campana and [START_REF] Meda-Campana | Identication of concurrent discrete event systems using petri nets[END_REF]. The shaded Petri net places are supposed to be unobservable. The leftmost Petri net is the (unknown) original DES to be identied. The Petri net in the middle is constructed upon evaluation of the m-word w 1 = t 1 , t 2 , t 3 , t 4 , t 5 . In the example, the resulting system markings ϕ(X) are not shown, but can be derived from the original Petri net in the left of gure 2.18. After an analysis of w 1 , various pairs of transitions are supposed to be dependent (e.g. t 1 , t 2 or t 2 , t 3). Since two dependent transitions must always be connected by a place, the resulting Petri net is a simple chain of places and transitions. The resulting marking ϕ(X) between t 2 and t 3 leads to the conclusion that no observable place contains a token. As a consequence, the unobservable place p 6 is added. Place p 5 from the original Petri net is not added to the identied model since t 2 and t 5 are no direct successors. Hence, there is no dependency which must be translated by a place between the two transitions.

After the observation of w 2 = t 3 , t 1 , t 2 , t 4 , t 5 , the Petri net structure is altered. Comparing w 1 and w 2 , it can be concluded that t 1 , t 3 and t 2 , t 3 are concurrent since they occur in dierent orders. The concurrency of t 2 , t 3 shows that the two transitions are not dependent like assumed after analyzing w 1 . Hence, place p 6 can be removed such that t 2 and t 3 can re concurrently. In [START_REF] Meda-Campana | Identication of concurrent discrete event systems using petri nets[END_REF] it is shown, that if a suciently large and divers set of words has been observed, the identied model becomes more and more similar to the original system. The approach of (Meda-Campana and Lopez-Mellado, 2005) poses two problems. The rst one is its inability to guarantee the accuracy of the identied model. Model 2 in gure 2.18 e.g. can also generate the word w 3 = t 3 , t 4 , t 1 , t 5 , t 2 which is not part of the original system language specied by the left most Petri net. The second problem arises from the concurrency analysis. Each pair of transitions must be kept in memory to analyze if it already occurred in dierent orders. If a system with many transitions and a huge number of long m-words is to be identied, the concurrency check can signicantly decrease the performance of the identication algorithm.

A dierent identication approach is proposed in [START_REF] Dotoli | Real time identication of discrete event systems using Petri nets[END_REF]. The approach works with so-called λ-free labeled Petri nets which have a dierent semantic as the Petri nets dened in section 2.2.3. The dierence is the explicit denition of the preand post-incidence matrices Pre and Post:

Denition 13 (Petri net according to [START_REF] Dotoli | Real time identication of discrete event systems using Petri nets[END_REF]). A Petri net is a bipartite graph described by the four-tuple P N = (P, T, Pre, Post) where P is a set of places with cardinality m, T is a set of transitions with cardinality n, Pre : P × T → N m×n and Post : P × T → N m×n are the pre-and post-incidence matrices, respectively, which specify the arcs connecting places and transitions. More precisely, for each p ∈ P and t ∈ T element Post(p, t) (Pre(p, t)) is equal to a natural number indicating the arc multiplicity if an arc going from p to t (from t to p) exists, and it equals 0 otherwise.

The state of a Petri net is determined by its current marking M : P → N m assigning to each place of the net a nonnegative number of tokens. A Petri net place can be observable or unobservable. Observable places are part of the output vector y. A Petri net system < P N, M 0 > is a net PN with an initial marking M 0 . The incidence matrix of the Petri net is dened as C = Post -Pre. A transition t j ∈ T is enabled at a marking M if and only if for each pre-place p of t j (Pre(p, t j) > 0), M(p) ≥ Pre(p, t j) holds. The incoming places of t j must have enough tokens to enable a ring of the according transition. If transition t j res, it produces a new marking given by M ′ = M + C t j where t j is the n-dimensional ring vector corresponding to the j-th canonical basis vector. A sequence of ring transitions is dened as σ = t β 1 , t β 2 , . . . , t β h . The Petri net system can generate a language using a labeling function λ : T → E which assigns to each transition t ∈ T a symbol e i ∈ E. The labeling function is called λ-free if the same label e i ∈ E may be associated to more than one transition while no transition may be labeled with the empty string ε. λ(σ) denotes the event sequences produced during the ring sequence σ. The language L(P N, M 0) is dened by the output of sequences of transition rings starting in M 0 .

The data basis of the identication approach of [START_REF] Dotoli | Real time identication of discrete event systems using Petri nets[END_REF] is an observed sequence w = e α 1 e α 2 . . . e α h ∈ L and the corresponding output vectors y. Before the identication algorithm starts, an upper bound m for the cardinality of the place set P and an upper bound n for the the transitions set T must be given. Additionally, the labeling function λ has to be predened. With this information it is possible to determine the ring sequence σ = t α 1

β 1 t α 2 β 2 , . . . , t α h β h with λ(σ) = w.
The idea of [START_REF] Dotoli | Real time identication of discrete event systems using Petri nets[END_REF] is to identify a Petri net using integer linear programming. It is shown that each Petri net being capable of producing the observed data with at most m places and n transitions must satisfy the following constraint:

ξ(w, y, λ, T, m) =                        Pre, Post ∈ N m×n M i ∈ N m with i = 0, . . . , h Post T 1 m×1 + Pre T 1 m×1 ≥ 1 n×1 Post • 1 n×1 + Pre • 1 n×1 ≥ 1 m×1 ∀t α i β i ∈ σ with λ(σ) = w : Pre • t α i β i ≤ M i-1 ∀t α i β i ∈ σ with λ(σ) = w : (Post -Pre) • t α i β i = M i -M i-1
where 1 m×n is the matrix of dimensions m × n with each element being 1. The rst two elements of the constraint assure that the resulting P N system has at most m places and n transitions. The constraint Post T 1 m×1 + Pre T 1 m×1 ≥ 1 n×1 makes sure that the Petri net does not have transitions that are not connected to any place. Analogously, Post • 1 n×1 + Pre • 1 n×1 ≥ 1 m×1 assures that the Petri net does not have any places which are not connected to at least one transition. The fth constraint makes sure that each transition in the ring sequence is enabled by its preceding marking. The last constraint represents the fact that two successive markings must be calculated by the incidence matrix and the corresponding transitions

M i = M i-1 + (Post -Pre) • t α i β i .
This constraint represents the necessary condition of a Petri net which is able to reproduce the observed data. Generally, there are many Petri nets for which ξ(w, y, λ, T, m) holds. To select one solution, it is possible to use a metric which can be minimized by the integer linear programming problem solver. In [START_REF] Dotoli | Real time identication of discrete event systems using Petri nets[END_REF], the following function is given as an example:

φ(Pre, Post, M 0) = a T • Pre • b + c T • Post • d + e T • M 0
where the vectors a, b, e ∈ N m and b, d ∈ N n are free parameters to adjust the metric to a given purpose. One possibility is for example to chose the parameters such that the resulting Petri net has a minimal number of initial tokens and arcs:

φ(Pre, Post, M 0) = 1 1×m • (Pre + Post) • 1 n×1 + 1 1×m • M 0
In this case, both optimization objectives have the same weight. After formulation of the optimization objectives and constraints, the identication problem can be solved with an integer linear programming problem solver (ILP solver).

The advantage of the optimization approach is that it guarantees the completeness of the identied models: the constraint assures that each observed sequence is part of the identied language. A disadvantage is that for large systems an ILP solver takes long to admit a solution. The second main disadvantage is that the formulation of the objective function is not trivial. If several objectives have to be met (e.g. model size and accuracy), it is a dicult problem to nd appropriate parameters for the objective function.

Nevertheless, other approaches with the same main idea like [START_REF] Giua | Identication of free-labeled petri nets via integer programming[END_REF] show that using optimization techniques to solve the identication problem for DES is a promising approach.

Discussion

The general considerations in section 2.4.1 showed that special accuracy demands for identied models exist if they are to be used for online fault detection. The rst constraint is that the observed part of the original system language must be reproducible by the identied model. It was shown that this minimizes the number of false alerts during online fault diagnosis with an identied model. Except of the optimizationbased automaton identication from [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF], all presented methods deliver models which are able to completely reproduce the observed system data. The second main constraint is that the identied language should not contain an important part of sequences not being part of the original system language. This special constraint is not met by any of the presented identication methods. It is not possible to restrict the identied language in a well dened way such that the necessary accuracy can be guaranteed.

For automata and for Petri nets two main identication ideas can be distinguished. The rst idea is to use rules coded in an algorithm which processes the observed system data. These approaches (like [START_REF] Supavatanakul | Diagnosis of timed automata: Theory and application to the damadics actuator benchmark problem[END_REF] for automata or [START_REF] Meda-Campana | Identication of concurrent discrete event systems using petri nets[END_REF] for Petri nets) deliver a model in a deterministic way since the available system data is always treated in the same manner. The second major approach for identication of DES is to use optimization techniques like [START_REF] Baron | Identication of evolutionary sequential systems -part 2: genetic simulation experiments[END_REF] for automata or [START_REF] Dotoli | Real time identication of discrete event systems using Petri nets[END_REF] for Petri nets. The identication objective must be formalized in an objective function which is given to an optimization algorithm. A challenge in optimization-based identication is the choice of an appropriate tness function which needs a considerable expertise of the optimization method and of the mathematics describing the identication problem. The outcome of the optimization approaches can vary if heuristic optimization techniques like genetic algorithms or heuristic solvers for integer linear programming problems are used. Another important drawback of identication methods based on optimization techniques is that they are expensive in calculation time. Although it has been shown that they work with academic examples or small case studies [START_REF] Dotoli | On-line identication of discrete event systems: a case study[END_REF], they have not been applied to real-world systems.

Since non of the presented methods guarantees the necessary accuracy for modelbased fault diagnosis in closed-loop DES, an identication method especially suited for this domain has been proposed in [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF]. The method delivers a model in form of a monolithic automaton which guarantees some important accuracy and completeness properties. Under some conditions, the method delivers an appropriate model for online fault diagnosis. The model is determined by a deterministic identication algorithm which will be introduced in the next chapter. It is the basis for the presented work. In chapter 5 the idea of using optimization approaches for identication in DES will be embraced to improve the algorithm from [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF]. The resulting distributed identication will thus combine the idea of using deterministic identication algorithms and the idea of using optimization techniques.

3 Monolithic Identication of Closed-Loop Discrete Event Systems

Model class

In the previous chapter it has been explained that none of the existing identication methods delivers a model which is appropriate for online fault diagnosis in industrial closed-loop DES. One of the main reasons is that the identied models do not appropriately represent the special characteristics of this class of systems. As explained in section 2.1, a closed-loop DES consists of a plant and a controller as shown in gure 3.1. In the remaining part of this work, the notion closed-loop DES always refers to the fault-free system if not stated otherwise. The system characteristics have an important inuence on the choice of an appropriate model class and are discussed before an identication algorithm is given. Observable events produced in a closed-loop DES are displayed in the data exchanged between controller and plant. This data is considered as the system output in this work. In gure 3.1, the output is represented by the symbol u DES . The original system language L Orig (see section 2.4.1) consists of sequences of output symbols u DES . Since a closed-loop system does not have any inputs but exhibits an event-driven series of outputs, it can be interpreted as a non-deterministic autonomous event generator. The controller of the closed-loop DES is usually designed as a deterministic subsystem: if the controller is in a given state and a controller input sequence is applied several times from that state, the result are identical controller output sequences. For the plant, this property of determinism does not hold. Applying the same sequence of actuator commands several times to the plant being in a given state does not necessarily reproduce exactly the same sequence of delivered sensor signals. The varying sequences of sensor signals are the result of physical components like motors, cylinders or valves that do not always react exactly in the same way. If two or more components are triggered simultaneously, the order of the reaction may change from one triggering to another depending on external inuences like friction or mechanical constraints. These inuences are not predictable and must be considered as non-determinisms. Coupling a deterministic and a non deterministic system as in gure 3.1 leads to a non-deterministic closed loop system.

If no information about the controller algorithm or the plant structure is used, a closed loop DES can be seen as a non-deterministic autonomous black-box. An appropriate way to represent the observable behavior of such systems are nite state machines that reect the characteristics of a black-box event generator. This necessitates the introduction of the notion of 'state' for the description of the system behavior. In gure 3.2, a possible nite state machine representation for the considered closed-loop DES is shown. The gure contains a non-deterministic autonomous event generator determining the future evolution and the external behavior. The consequences of an event are given in the following denition: Denition 14 (Event produced by a closed-loop DES). An event produced by a closedloop DES leads to a new current system state x DES . With the notation x DES (j), the current state after the occurrence of the j-th event is denoted.

The current system state produces an output u DES via the function Λ and is determined by the last system state without considering any input data by the function F N . In case of closed-loop DES, the system state x DES represents the combined state of controller and plant. Formally, the current system state is determined using a non-deterministic function

F N : X DES → 2 X DES with 2 X DES representing the powerset 1 of the DES state space X DES .
Denition 15 (External behavior of closed-loop DES). The external behavior of a closed-loop DES is described by its current state x DES (j) ∈ F N (x DES (j -1)) and its output u DES (j) = Λ(x DES (j)) which can be observed after the j-th event. If there are several next state candidates (F N (x DES (j -1)) > 1)2 the current state x DES (j) is chosen non-deterministically from the set F N (x DES (j -1)) upon the occurrence of the j-th event. x DES 0 denotes the initial system state.

From this denition it follows directly that each event is translated into a new system output u DES . It is assumed that a new system output diers from its predecessor (only observable events are considered):

Assumption 1 (Distinguishable system outputs). It is assumed that the j-th event leads to a state with a new output such that u DES (j) = u DES (j -1).

In [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] a model which is able to represent a system like in gure 3.2 is dened as a Non-Deterministic Autonomous Automaton with Output (NDAAO).

Denition 16 (Non-deterministic autonomous automaton with output (NDAAO)).

N DAAO = (X, Ω, f, λ, x 0) with X nite set of states, Ω output alphabet, f : X → 2 X non-deterministic transition function, λ : X → Ω output function and x 0 the initial state 3 .
An NDAAO is able to describe a closed-loop DES like in gure 3.2 if it can produce the same external behavior and if it follows the same dynamics. It is obvious that the rst condition holds if the current NDAAO state is determined using the condition x(j) ∈ f (x(j -1)) which corresponds to x DES (j) ∈ F N (x DES (j -1)) and if the current output u(j) is calculated with u(j) = λ(x(j)) which corresponds to u DES (j) = Λ(x DES (j)).

The NDAAO dynamics are similar to the closed-loop DES dynamics if they are dened in accordance with denition 15: Denition 17 (Next-state rule NDAAO). An NDAAO state x(j) can be the successor of the last current state x(j -1) if and only if x(j) ∈ f (x(j -1)). If there are several next state candidates (|f(x(j -1))| > 1) the new actual state x(j) is chosen nondeterministically from the set f (x(j -1)).

To formulate an identication algorithm which delivers an NDAAO for a given closedloop DES it is necessary to dene the data basis which is used for identication. This data base is given by the language4 of the closed-loop DES observed during a certain amount of system evolutions. In manufacturing systems such an evolution can be a production cycle that is carried out by the system.

When the closed-loop DES performs an evolution, sequences of outputs u can be observed. The identication is carried out on the basis of p dierent system evolutions. Since each change in value of the output u is considered as the result of an event, the output after the j-th event is given by the next denition: Denition 18 (System output). The j-th output in the h-th of p system evolutions is dened as u h (j).

The sequence that is observed when an evolution is performed is built by the outputs u in the order of their occurrence.

Denition 19 (Observed sequence). If during the h-th system evolution l h outputs u h have been observed, the sequence is denoted as σ h = (u h (1), u h (2), . . . , u h (l h)). The set of all observations is denoted as Σ = {σ 1 , . . . , σ p }.

Assumption 2 (Initial system output). It is assumed that each observed sequence starts with the same output symbol:

σ i (1) = σ j (1) holds ∀σ i , σ j ∈ Σ.
Based on the observed sequences it is possible to dene the language of the considered systems.

Denition 20 (Observed word set and language). The words of length q observed during p dierent system evolutions are denoted as

W q Obs = σ h ∈Σ   |σ h |-q+1 j=1 (u h (j), u h (j + 1), . . . , u h (j + q -1))   .
|σ h | denotes the length of the h-th observed sequence. With the observed word set the observed system language of length n is dened as

L n Obs = n i=1 W i

Obs

The language thus consists of sequences of output symbols.

Remark 1. From denition 20 and assumption 1 it follows directly that for two successive (u h (j), u h (j + 1)) ∈ L n Obs it holds: u h (j) = u h (j + 1).

Assumption 3 (Asymptotic convergence of L n

Obs to L n Orig). It is assumed that the observed language L n Obs is exhibited by the system such that it (asymptotically) converges to the complete original system language L n Orig (which is assumed to be nite) when increasing the number of observed evolutions h.

Despite the autonomous nature of the considered class of systems we assume that with a growing observation time the original language is more and more completely exhibited and can thus be observed. Since dierent system evolutions are supposed to be similar (not necessarily equal), the observed language is supposed to converge to the original system language with rising observation time like sketched in gure 3.3 although it can take many evolutions to reach convergence. When the case study system and the industrial application are treated, it will be shown that the assumed evolution of the observed language cardinality is realistic for existing closed-loop DES.

The aim of identication is to determine a model which is able to approximate the system language. Hence, the language of the NDAAO must also be dened.

Denition 21 (Word set and language of the NDAAO). The set of words of length n generated from a state x(i) is dened as:

W n=1 x(i) = {w ∈ Ω 1 | w = λ(x(i))}
W n>1 x(i) = {w ∈ Ω n | w = (λ(x(i)), λ(x(i + 1)), . . . , λ(x(i + n -1)))∧ x(j + 1) ∈ f (x(j))∀i ≤ j < i + n -1 }
The language generated by the NDAAO is given by

L n Ident = n i=1 x∈X W i x
If the output alphabet Ω consists of the observed outputs u DES , the NDAAO can reproduce the observed system language by performing state trajectories. With definition 20 and 21, the observed language L n Obs and the identied language L n Ident are prex-closed [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF].

The purpose of the identied NDAAO is to be used in online fault-diagnosis. It will be used as a model of the fault-free system behavior. This motivates the following assumption:

Assumption 4 (Fault-free observation). For the use of an identied NDAAO in online fault diagnosis, it is assumed that the observed system language L n Obs is a subset of the fault-free original system language L n Orig .

Identication algorithm

Based on the denitions of the former section, it is possible to give an identication algorithm that builds an NDAAO by an analysis of the observed language. The original version of the following algorithm has been given in [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF]. In this section, a modied version is introduced. The main dierence is that the reformulated algorithm is no longer restricted to system evolutions starting and ending with the same system output.

In order to adjust the model accuracy with respect to the observed system language, the identication algorithm has a free parameter k. It denes the length of words which is used as identication data base. The higher k is chosen, the more reliably the identied model can reproduce the observed system language. In section 3.3 it will be shown that the parameter helps to guarantee important accuracy and completeness properties of the identied model. The question how to chose an appropriate value for k will be discussed in section 3.4.

The rst step of the identication procedure is to modify the observed sequences. The rst output symbol in each sequence is duplicated k -1 times:

σ k h (i) = σ h (1) for 1 ≤ i ≤ k σ h (i -k + 1) for k < i ≤ k + |σ h | -1 (3.1)
|σ h | denotes the length of the sequence σ h . Equation 3.1 is applied to each sequence

σ h ∈ Σ resulting in Σ k = {σ k 1 , . . . , σ k p }.
On the basis of Σ k , the modied word sets of length k and k + 1 are determined according to denition 20:

W k Obs,Σ k = σ k h ∈Σ k   |σ k h |-k+1 i=1 (u h (i), u h (i + 1), . . . , u h (i + k -1))   (3.2) W k+1 Obs,Σ k = σ k h ∈Σ k   |σ k h |-k i=1 (u h (i), u h (i + 1), . . . , u h (i + k))   (3.3) W k Obs,Σ k and W k+1
Obs,Σ k are the data basis for algorithm 1 which identies an NDAAO. For the algorithm, we dene an operator w q a..b to deliver the substring from position a to position b in word w q : w q a..b := (u(a), u(a + t), . . . , u(b))∀1 ≤ t < b -a (3.4) with w q ∈ W q Obs : w q = (u(1), . . . , u(q)) and a ≥ 1, b ≤ q As a special case, we dene that with w q a it is possible to determine the symbol at the position a in w q .

If w 6 = ABCDEF and a = 2, b = 4, w 6 a..b = BCD.

In the rst step of the identication algorithm, the state space of the NDAAO is created. For each word w k ∈ W k Obs,Σ k a state x is built and its output function is associated with this word (λ(x) := w k). After this step, the automaton consists of isolated, non-connected states. The states get connected in step 2. In this step, the transition function is built on the basis of W k+1

Obs,Σ k . For each word w k+1 in this set the rst k-long subsequence w k+1 1..k and the last k-long subsequence w k+1 2..k + 1 are determined with the operator from equation 3.4. From step 1, for each substring there exists exactly one state which has this string as output. The two according states x and x ′ are selected and get connected such that the state representing the rst substring gets the state of the second substring added to its successor states (f(x) := f (x) ∪ x ′). Due to step 1, each state has a word of length k as output. In step 3, the state representing the sequence with the k -1-times duplicated rst output symbols becomes the initial state. By assumption 2, each observed sequence starts with the same output. With step 1, there is only one state representing the k -1-times duplicated rst output symbols. For the construction of the automaton language according to denition 21 such that it reproduces the language of the closed-loop DES, it is only necessary to have a single output symbol as state output. Hence, in step 4 the output function of the states is reassigned with the last 'letter' of the output word (λ(x) := λ(x) |λ(x)|)5 . To reduce the state space, in the last step of the identication algorithm, equivalent states are merged. According to [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF], two automaton states [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] it is shown that this condition is fullled for two NDAAO-states if they are associated with the same output, i.e. λ(x 1) = λ(x 2) and if they have the same set of following states, i.e. f (x 1) = f (x 2). A procedure to merge equivalent states is given in algorithm 2.

x 1 , x 2 are equivalent if ∀n : L n x 1 = L n x 2 . In
Algorithm 1 Monolithic identication algorithm Require: Parameter k, observed word sets

W k Obs,Σ k and W k+1 Obs,Σ k 1: X := {(∀w k ∈ W k Obs,Σ k)(∃!x) ∧ λ(x) := w k , f (x) := {} } 2: ∀(x, x ′ , w k+1) ∈ X × X × W k+1 Obs,Σ k | λ(x) = w k+1 1..k ∧ λ(x ′) = w k+1 2..k + 1 do f (x) := f (x) ∪ x ′ 3: x 0 := x ∈ X| λ(x) = w k and w k i = σ 1 (1)(∀1 ≤ i ≤ k) 4: (∀x ∈ X) : λ(x) := λ(x) |λ(x)| 5: Merge equivalent states in X with algorithm 2
Algorithm 2 performs for each state x i in the NDAAO state space the following operations: First, a set of equivalent states is built in line 2. Each state in X x i ,Eq has the same output and the same following states like the considered state x i . The equivalent states will be removed from the state set. Hence, in the loop in line 3 and 4, each state x pre that has one of the equivalent states as following state is updated such that its transition function no longer contains one of the states that will be removed. Instead, the currently considered state x i is added to their transition function. In line 6 it is checked if the set of equivalent states was empty (the currently considered state x i does not have equivalent states). If yes, the next state from the state set is considered in line 1. If X x i ,Eq is not empty, the states in this set are removed from X in line 7 and the algorithm starts again. It now considers the updated state set that does no longer contain the equivalent states of x i from the former run of the algorithm. In [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] is is shown that merging of equivalent states does not inuence the language created by the identied NDAAO.

The principles of the algorithms are now shown with an example. It is assumed that the following three sequences have been observed:

σ 1 = (A, B, C, D, E, A), σ 2 = (A, D, B, C, D, A, C, A) and σ 3 = (A, D, B, C, F, D, E, B).
For the example, the identication parameter k is chosen to k = 2. First, equation 3.1 is applied to the three sequences to duplicate the rst output symbol k -1 times. The result is

σ k=2 1 = (A, A, B, C, D, E, A) σ k=2 2 = (A, A, D, B, C, D, A, C, A) σ k=2 3 = (A, A, D, B, C, F, D, E, B)
Algorithm 2 State merging algorithm Require: State space X 1: for all x i ∈ X do 2:

X x i ,Eq := {(x ′ ∈ X\x i)| λ(x i) = λ(x ′) ∧ f (x i) = f (x ′) } 3: for all (x pre ∈ X)|(∃x eq ∈ X x i ,Eq) ∧ (x eq ∈ f (x pre)) do 4: f (x pre) := (f (x pre)\x eq) ∪ x i 5:
end for 6:

if X x i ,Eq = {} then 7: At this point, the necessary data for algorithm 1 is available. Figure 3.4 shows the result of step 1 and 2. For each word in W 2

X := X\X x i ,
Obs,Σ 2 , a state has been created. Based on

W 3
Obs,Σ 2 , the states have been connected. State x 0 for example has been connected to states x 1 and x 6 because of the words w 3 = AAB and w 3 = AAD. w 3 = AAB was divided in the two substrings w 3 1..k = w 3 1..2 = AA and w 3 2..k + 1 = w 3 2..3 = AB. Hence, states x 0 with λ(x 0) = AA and x 1 with λ(x 1) = AB have been connected. In step 4 of algorithm 2 the output function is redened. The new output function is the last letter of former state output. In gure 3.4, the state outputs are replaced by the bold/italic letters. The resulting automaton is then given to the state merging algorithm. It is determined that states x 1 and x 7 as well as x 5 and x 10 have the same output and following The identied automaton in gure 3.5 can produce the following ten sequences starting in x 0 and ending in x 5 or x 13 :

σ N DAAO 1 = (A, B, C, D, E, A) σ N DAAO 2 = (A, B, C, F, D, E, A) σ N DAAO 3 = (A, B, C, D, A, C, A) σ N DAAO 4 = (A, D, B, C, F, D, E, A) σ N DAAO 5 = (A, D, B, C, D, E, A) σ N DAAO 6 = (A, D, B, C, D, A, C, A) σ N DAAO 7 = (A, B, C, D, E, B) σ N DAAO 8 = (A, D, B, C, D, E, B) σ N DAAO 9 = (A, B, C, F, D, E, B) σ N DAAO 10 = (A, D, B, C, F, D, E, B)
Three of these sequences correspond to observed ones:

σ N DAAO 1 = σ 1 , σ N DAAO 6 = σ 2
and σ N DAAO 10 = σ 3 .

Important properties of the identied automaton

An NDAAO identied with algorithm 1 has some important properties which make the automaton appropriate for online fault diagnosis. The rst important property is an accuracy guarantee which has already been shown in [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF]: For a given value of the identication parameter k, the identied NDAAO is (k + 1)-complete [START_REF] Moor | Supervisory control of hybrid systems via l-complete approximations[END_REF]

, i.e. ∀n ≤ k + 1, L n Ident = L n
Obs . This guarantees that the automaton minimizes the exceeding language of length k + 1 and thus reduces the number of nondetectable faults (see section 2.4.1). This property will be shown in theorem 4 on the following pages. Since the algorithm of [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] has been modied, it is necessary to show that the reformulated algorithm also guarantees the model accuracy. The second important property refers to model completeness. It will be shown in theorem 5 that under some conditions, an NDAAO identied with a given paramter k simulates the complete original system language L n≥k Orig :

L n≥k Ident ⊇ L n≥k
Orig . For the following proofs it is advantageous to work with the identied NDAAO without merging of equivalent states. Hence, it is assumed that the identied NDAAO was not given to the state merging algorithm. Since in [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] it has been shown that merging of equivalent states does not aect the automaton language, the proofs for the automaton without merged states also hold for the automaton after algorithm 2. The following lemmas are necessary to proof theorem 4 and 5. As a rst step we show that for each observed word of length k a state trajectory in the automaton exists which reproduces the observed word. The notation x(i), . . . , x(i + n -1) denotes a sequence of states. If the output function λ is applied to the sequence, the result is the word of length n produced when the states of the sequence are passed:

λ(x(i), . . . , x(i + n -1)) = λ(x(i)), . . . , λ(x(i + n -1)).
Lemma 1. In an NDAAO identied with parameter k, for each observed word of length n ≤ k a state trajectory exists which reproduces this word:

(∀w n ∈ L k Obs)∃λ(x(i), . . . , x(i + n -1)) = w n | x(j + 1) ∈ f (x(j))∀i ≤ j < i + n -1
In other words: The identied language simulates the observed language of length k:

L k Ident ⊇ L k Obs .
For the proof the following denition is helpful:

Denition 22. The function λ(x) delivers the word of length k used in step 1 of algorithm 1 for the creation of the state. It represents the state output before it has been replaced by the last output symbol of the word in step 4. The function can only be applied to an NDAAO which has not been given to the state merging algorithm.

In the example of the former section, λ(x) delivers the state outputs depicted in gure 3.4 (e.g. AB for λ(x 1)). The function λ(x) delivers a unique word for each state, since the automaton is considered without merging of equivalent states.

Proof of lemma 1. We proof that for each observed word of length k a state trajectory

(∀w k ∈ L k Obs)∃λ(x(i), . . . , x(i + k -1)) = w k | x(j + 1) ∈ f (x(j))∀i ≤ j < i + k -1
exists. The existence of shorter state trajectories w n≤k ∈ L k Ident follows directly from the denition of the observed word set.

From equations 3.1 and 3.2 it follows that 6

(∀w k ∈ L k Obs)(∃v k 1 , . . . , v k k ∈ W k Obs,Σ k)| v k 1 k = w k 1 , v k 2 k -1..k = w k 1..2 , . . . , v k k 1..k = w k 1..k
From steps 1 and 2 of algorithm 1 it follows that states representing

v k 1 , . . . , v k k are connected such that λ(x(i)) = v k 1 , λ(x(i + 1)) = v k 2 and x(i + 1) ∈ f (x(i)), . . . , λ(x(i + k -1)) = v k k and x(i + k -1) ∈ f (x(i + k -2))
6 For the denition of the k operator (e.g. v k) see equation 3.4 on page 44 since from equation 3.3 it follows that (∀v

k i , v k i+1 ∈ v k 1 , . . . , v k k)(∃w k+1 ∈ W k+1 Obs,Σ k)|w k+1 = v k i 1..k v k i+1 k (concatenation of the sequences v k i 1..k and v k i+1 k) and (∀v k ∈ W k Obs,Σ k) (∃!x)| λ(x) = v k .
Hence, there exists a trajectory which reproduces the observed word w k when the state outputs are assigned to the last letter of the strings v k 1 , . . . , v k k (step 3 of the identication algorithm).

In the next lemma it is shown that each state x in the automaton is only reachable by a state trajectory of length n ≤ k if it produces a word w n = λ(x) k -n + 1..k (the last n symbols of the word w k = λ(x)).

Lemma 2. We consider each state trajectory of length n ≤ k reaching state x(i+n-1) in an NDAAO identied with parameter k:

(x(i), . . . , x(i + n -1))|x(j + 1) ∈ f (x(j))∀i ≤ j < i + n -1
The state x(i + n -1) is only reachable by producing the word

λ(x(i + n -1)) k -n + 1..k = w n ∈ L k Ident Proof of lemma 2. From step 4 of the algorithm it follows that w n n = λ(x(i + n - 1)) k . From step 2 of the identication algorithm, it follows that f (x(i + n -2)) is only updated with x(i + n -1) if λ(x(i + n -2)) 2..k = λ(x(i + n -1)) 1..k -1 . This makes sure that w n n-1 = λ(x(i+n-2)) k . This principle can be continued: f (x(i+n-3)) is only updated with x(i + n -2) if λ(x(i + n -3)) 2..k = λ(x(i + n -2)) 1..k -1 .
Hence, w n n -3 = λ(x(i + n -3)) k . This consideration can be repeated until the initial state x(i) of the trajectory is reached with w n k -n + 1 = λ(x(i)) k . This shows that state x(i + n -1) is only reachable by state trajectories of length n ≤ k if they produce the word

λ(x(i + n -1)) k -n + 1..k = w n ∈ L k Ident
The next lemma says that an NDAAO state can only be reached by a trajectory producing a word of length n ≤ k that is part of the observed language. It is a continuation of lemma 2. Lemma 3. We consider each state trajectory of length n ≤ k reaching state x(i+n-1):

(x(i), . . . , x(i + n -1))|x(j + 1) ∈ f (x(j))∀i ≤ j < i + n -1
The state x(i + n -1) is only reachable by producing the word

λ(x(i + n -1)) k -n + 1..k = w n ∈ L k Obs Proof of lemma 3. If a word w n≤k / ∈ L k Obs with λ(x(i), . . . , x(i+n-1)) = w n≤k |x(j+1) ∈ f (x(j))∀i ≤ j < i + n -1 exists, it follows from lemma 2 that a state must exist with λ(x(i + n -1)) k -n + 1..k = w n≤k / ∈ L k Obs .
Step 1 of the identication algorithm makes sure that only states with λ

(x) = w k ∈ W k Obs,Σ k exist. Due to equation 3.2 W k
Obs,Σ k can be divided in two subsets: The rst subset is W k Obs . From lemma 2 follows that states representing a word of this set can only be reached by producing a

w n≤k = λ(x(i + k -1)) k -n + 1..k ∈ L k Obs because (∀w k ∈ W n Obs)(∃!x)| λ(x) = w k . The second subset of W k
Obs,Σ k consists of words resulting from duplicating the rst symbol of the observed sequences up to k -1 times (equation 3.1):

W k Dupl,Σ k = W k Obs,Σ k \W k Obs .
From assumption 1 and denition 20 it follows that w k+1 ∈ W k+1

Obs,Σ k cannot end with w k+1 k -1 = w k+1 k . Hence, there are no two successive states with λ(x(i -1)) = λ(x(i)). With lemma 2 it follows that a state with λ

(x) = w k ∈ W k
Obs,Σ k can only be reached by a state trajectory of length n ≤ k producing the pairwise varying symbols

w n = w k k -n+1 , . . . , w k k with λ(x) = w k . It follows that the articially introduced words in W k
Obs,Σ k resulting from duplicating the rst observed output symbol up to k -1 times cannot be reproduced by the automaton. This leads to the conclusion that only words w n≤k ∈ L k Obs can be produced.

Lemma 3 has important consequences for model accuracy and performance of the model as an observer in online diagnosis. As a rst direct use, the lemma will be used to proof the next theorem:

Theorem 4 (k + 1-completeness). For a given value of the identication parameter k, the identied NDAAO is (k + 1)-complete in the sense of [START_REF] Moor | Supervisory control of hybrid systems via l-complete approximations[END_REF], i.e.

∀n ≤ k + 1, L n Ident = L n Obs .
Theorem 4 means that the NDAAO identied with a given value of the parameter k represents exactly the set of observed words of length lower of equal to k + 1 and thus minimizes the exceeding language of length k + 1. The following proof shows that this property holds for the automaton identied with algorithm 1.

Proof of theorem 4. For a given word w k ∈ L k Obs , it follows from the proof of lemma 1 that a state trajectory exists with λ(x(i), . . . , x(i+k-1)) = w k . From lemma 3 it follows that the state x(i + k -1) cannot be reached by any other word than the considered observed w k . Due to step 2 of the identication algorithm, from state

x(i + k -1) it is only possible to reach a state x(i + k) with λ(x(i + k -1))λ(x(i + k)) = w k+1 ∈ L k+1 Obs (λ(x(i + k -1))λ(x(i + k))
is the concatenation of the words λ(x(i + k -1)) and λ(x(i + k))). Hence, the automaton can only produce words w k+1 ∈ L k+1

Obs .

With the proof of lemma 4 follows that algorithm 1 delivers a model that is as accurate as the algorithm from [START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] but is not restricted to system evolutions starting and ending with the same output symbol. This theorem shows that for a given k, the exceeding language L k Exc of the identied NDAAO can be eliminated. Like shown in section 2.4.1 this minimizes the number of non-detectable faults.

In the next theorem7 , it is stated that the identied language simulates the original system language of arbitrary length if the condition L k+1 Orig = L k+1 Obs holds for a given value of the identication parameter k.

Theorem 5. If L k+1 Orig = L k+1 Obs , then L k+n Ident ⊇ L k+n Orig with n ≥ 1 for an NDAAO identied with parameter k. Proof of theorem 5. L k+1 Ident ⊇ L k+1 Orig since the identied NDAAO is k + 1 complete. For k + 2 it holds: ∀w k+2 ∈ L k+2 Orig a decomposition a k b 1 c 1 = d 1 e 1 f k = s 1 u k v 1 = w k+2 |a k b 1 , e 1 f k , u k v 1 ∈ L k+1 Orig = L k+1
Obs exists. Each state trajectory producing a k ends in the same state x(i) (lemma 3 and step 1 of algorithm 1:

(∀a k ∈ W k Obs,Σ k)(∃!x)| λ(x) = a k). In step 2 of the algorithm, this state is connected with x(i + 1)| λ(x(i + 1)) = u k .
Each state trajectory producing u k ends in the same state x(i + 1) which gets connected to

x(i + 2)| λ(x(i + 2)) = f k .
Since there is a trajectory leading to state x(i) and x(i), x(i + 1) and x(i + 2) are in one trajectory, it follows that ∀w k+2 ∈ L k+2

Orig there exists a trajectory of states producing this word. It is obvious that for larger values than k + 2

∀w k+n ∈ L k+n
Orig there is always an appropriate decomposition into already observed substrings of

L k+1 Orig = L k+1
Obs to nd a trajectory of connected states like presented above. Hence, it follows that

L k+n Ident ⊇ L k+n Orig if L k+1 Orig = L k+1
Obs holds. Based on the consideration from section 2.4.1, Theorem 5 shows that it is possible to eliminate the non-reproducible language

L n≥k+1 N R if it is possible to state L k+1 Orig = L k+1
Obs . This minimizes the number of false alerts during online fault diagnosis with the identied model. In the next section it is shown how it can be decided if

L k+1 Orig = L k+1
Obs holds for a given value of k.

Parameterization of the identication algorithm

Meaning of the identication tuning parameter

In this section new results concerning the role of the identication tuning parameter k are presented. It is shown how the identication parameter helps to distinguish nonequivalent states of a closed-loop DES leading to identical outputs.

In a closed-loop DES it is possible that dierent states lead to the same output symbol u DES but have dierent fault-free following behaviors. As an example, gure 3.6 is considered. The gure shows a conveyor as typical part of a manufacturing system. The conveyor and its controller can be treated like a closed-loop DES. The closed-loop system of plant (conveyor) and controller exhibits the input/output (I/O) values of the controller as measurable system output u DES . The current controller I/O vector consisting of the controller I/Os is thus considered as system output u DES (a formal denition of the controller I/O vector as system output will be given in denition 24 in section 4.2.1). The conveyor has three position sensors P1, P2 and P3. The according controller-inputs are the rst three elements of the I/O vector. If the position sensors detect a parcel, they return the value 1, else they return 0. The conveyor can be started by setting an actuator to 1. Figure 3.6 shows the parcel in two dierent positions (position I and position II). It can be seen that the two positions lead to the same system output (C) but have a dierent fault-free following behavior: In position I, P2 is expected to change its value (leading to vector D) and in position II, P3 is expected to change its value (leading to vector E). The two underlying closed-loop DES states are thus not equivalent although they lead to the same output vector: According to [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF], two states are only equivalent if they have the same output and if the language starting in them is equal. An accurate model should be able to distinguish the two situations although they are represented by the same I/O vector. An automaton that can distinguish between the two non-equivalent system states is given in the right of gure 3.7. Position I corresponds to state x 2 and position II belongs to state x 4 . If the two non-equivalent closed-loop DES states are not represented by two dierent states in an automaton like in the left part of gure 3.7, the following situation can arise: A fault lets the system perform the sequence BCE which is not part of the fault-free behavior. BCE is a fault symptom since the parcel must pass sensor P2 before it reaches P3 which is represented by I/O vector E. The automaton on the left has a state trajectory which leads to the generated word BCE (x 1 , x 2 and x 4). The reason is that x 2 can produce the following behavior of both underlying non-equivalent closed-loop DES states. BCE is part of the exceeding behavior which makes the detection of the considered fault impossible with the automaton in the left of gure 3.7. If a model in form of an automaton is built manually, an intuitive way to achieve high accuracy is to represent only equivalent DES states with one automaton state. Two automaton states are intuitively connected if the represented DES states can occur successively.

Figure 3.7: Automata for the conveyor example If a model is built by identication, the decision if two identical output symbols u DES belong to two dierent closed-loop DES states must be made based on an analysis of the observed system data. In the example in gure 3.6 it can be seen that using the preceding I/O vector of position I and II allows distinguishing the two underlying closedloop DES states: If vector C occurs due to position I, it must be the successor of vector B. If C is caused by position II, it must follow vector D.

In the identication algorithm from section 3.5.3, the parameter k allows integrating knowledge concerning the preceding system outputs in an NDAAO state. In lemma 3 it is shown that an NDAAO state is only reachable by a state trajectory producing an output sequence that corresponds to the word of length n ≤ k given by the concerning state output λ(x). In the identication algorithm, two NDAAO states are only connected if they share the same memory of length k. If k is chosen such that it is possible to distinguish two non-equivalent closed-loop DES states with the same output by their preceding sequences of length k, the identication algorithm does not represent them with the same automaton state. In this case it is made sure that each automaton state can only produce the fault-free following behavior of one closed-loop DES state. Any other possibly faulty following behavior cannot be produced. This minimizes the number of non-detectable faults during online fault diagnosis. In the example of gure 3.6 it is sucient to chose k = 2 since the non-equivalent closed-loop DES states with the same output are distinguishable by considering sequences of length two.

Discussion on an upper bound for the identication parameter

In section 2.4.1 it has been explained that the performance of a model in online diagnosis is determined by the minimization of the exceeding and the non-reproducible behavior. It has been explained that the exceeding behavior refers to non-detectable faults and the non-reproducible behavior corresponds to false alerts. Choosing a large value for k improves the distinction of non-equivalent closed-loop DES states by a model state which consequently leads to a reduced exceeding behavior. In this section it is shown that in most practical cases this reduction comes at cost of an increased nonreproducible behavior which is closely related to the number of false alerts: a word of the non-reproducible language is part of the normal system behavior but it cannot be reproduced by the (fault-free) model during online diagnosis (see section 2.4.1). Hence, a false alert is risen. It will be concluded that in practical applications, an upper bound for the identication parameter k exists.

In [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF] it is shown that for fault diagnosis it is crucial to have a complete model of the considered system. In terms of language theory, a model is complete if its language simulates the fault-free language of the considered system. In theorem 5 it has been shown that the identied language L k+n Ident simulates the original system language L k+n Orig

for n ≥ k if L k+1 Obs = L k+1
Orig holds. The following considerations will show that for large values of k it is often not possible to state L k+1 Obs = L k+1 Orig . Figure 3.8 shows a typical evolution of the observed language of a closed-loop system. The data is taken from a case study which is treated in section 3.5. It is shown how the set cardinality of the observed language L n Obs evolves after several observed system evolutions. It can be seen that the cardinality of the language of length n = 1 converges to a stable level after 10 observed system evolutions. From the graph it can also be seen that L 2

Obs takes longer than L 1 Obs to converge to a stable level. Until the 15th system evolution, the curve representing |L 2

Obs | has a positive gradient. Generally, it can be observed that the set cardinality of L n

Obs for larger values of n takes longer to converge to a stable level than in the case of smaller n. The evolution of the observed system language is very similar to the evolution sketched in gure 3.3 on page 43 which was shown to illustrate assumption 3 stating that the observed system language converges to the original language with growing observation time. Obs strongly converges to a stable level for a signicant number of system evolutions, it is assumed that

L n Obs ≈ L n
Orig . The signicant number of system evolutions mentioned in the assumption is a parameter of the representativeness of the observed data sample. It must be decided by the user if the signicant number is reached.

If an identied NDAAO is to be used for online fault diagnosis, the parameter k must be chosen such that L k+1 Obs ≈ L k+1 Orig to get a complete model simulating the original system language of length n ≥ k + 1 (theorem 5). If the NDAAO is identied on an incomplete data basis L k+1 Obs ⊆ L k+1 Orig , it is likely that the system exhibits new words

w k+1 ∈ L k+1
Orig that have not yet been observed and are thus not part of the identied language since from theorem 4 it follows that L k+1 Ident = L k+1 Obs . These new fault-free words are not reproducible by the identied model and thus lead to erroneous fault detection.

Each not yet observed fault-free word w k+1 ∈ L k+1

Orig leads to fault detection since it is 54 not part of the model language. It follows that it is not possible to chose a too large value for the identication parameter k since this leads to a high number of false alerts. k can only be chosen to a value such that assumption 5 holds for L n=k+1 Obs . In gure 3.8 the convergence criterion allows for example stating L n=3 Obs ≈ L n=3 Orig . In this case, k can be chosen to k = n -1 = 2.

Discussion on a lower bound of the identication parameter

In the former section it has been shown that the upper bound for the identication parameter k is determined by the convergence of the observed language. Generally, it can be said that a small value for k delivers a model leading to a small number of false alerts whereas a large value for k increases the sensitiveness to faults (reduction of the exceeding language) but also leads to a higher tendency for false alerts. In gure 3.8 it can be seen that for larger values of n, it may also be possible to state that L n Obs is rather completely observed although the convergence for lower values is clearer. Hence, in some cases it is possible to choose a relatively large value for k which still leads to a rather complete data base for identication. To judge if the higher tendency for false alerts when increasing k is acceptable since the model accuracy is signicantly increased, a measure for the positive eects of increasing k is introduced.

In section 3. , it is also supposed to be valid in x DES 1 . This consideration shows that if by increasing k it is possible to make the approximation of DES states by NDAAO states less ambiguous, the fault detection capability of the identied model can be improved. As an example of this eect, the identied automata in gure 3.9 are considered. The data basis for the identication is given by the following two observed sequences. They are supposed to be the only possible fault-free sequences of the closed-loop DES:

σ 1 = (A, B, C, D, B, C, D, E, F, G, H) σ 2 = (A, B, E, F, G, H) with σ 1 = Λ((A x DES 0 , B x DES 1 , C x DES 2 , D x DES 3 , B x DES 4 , C x DES 5 , D x DES 6 , E x DES 7 , F x DES 8 , G x DES 9 , H x DES 10)) σ 2 = Λ((A x DES 0 , B x DES 1 , E x DES 11 , F x DES 12 , G x DES 13 , H x DES 14))
denoting the underlying closed-loop DES states of the observed sequences. On top of each state its output Λ(x DES) is written. It can be seen that Λ(x DES .9 shows that increasing k to k = 2 changes the automaton structure. It can be seen that the automaton identied with k = 1 contains an exceeding word w 3 = DBE which by theorem 4 is not part of the automaton identied with k = 2 (since

L k+1 Ident = L k+1
Obs). Although increasing k to k = 2 thus improves the overall accuracy, the automaton identied with k = 2 still contains a state representing two dierent non-equivalent system states: x 3 still models x DES If NDAAO trajectories represent less DES trajectories, this leads generally to a lower number of states with multiple leaving transitions. Since the duplicated NDAAO trajectory does no longer have to represent the dierent following behaviors of two DES trajectories (to assure the completeness of the model), the number of leaving transitions of the last state in the two new NDAAO trajectories is reduced. If this eect takes place, the number of transitions is thus not as quickly augmented as the number of states when increasing k. In the following denition, the dierence of states and transitions of an NDAAO is introduced.

Denition 23 (Transition-state gap). The transition-state gap of an NDAAO identied with parameter k is dened as

Gap(N DAAO, k) = |f (X)| -|X|
It is the dierence of the number of transitions (denoted as |f (X)|) and the number of states (|X|) of an NDAAO identied with parameter k.

In table 3.1 the evolutions of the number of states and transitions and of the Gapfunction is depicted for the example. Increasing k from k = 1 to k = 3 adds the same number of states and transitions. If k is chosen to k = 4, more states than transitions are added which is a strong indicator that an NDAAO trajectory representing two DES trajectories at k = 3 has been split to two NDAAO trajectories. Hence, the Gap-function is decreased at k = 4.

The preceding considerations show that a decreased Gap-function is a strong indicator that the representation of DES trajectories has become less ambiguous by increasing k. It is a possibility to get information about the representation of non-equivalent DES states although the original DES states are not known in the case of black-box identication. Hence, the following heuristic set of rules to determine an appropriate Choosing k with these rules is a compromise between a low number of false alerts and high model accuracy which leads to an increased fault detection capability.

3.5 Case study: Fischertechnik laboratory facility

System description

To demonstrate the impact of the proposed methods for existing closed-loop DES, a case study has been treated. It will be used as a running example in the following chapters. The considered system is a laboratory facility at the institute of automatic control, University of Kaiserslautern. It has typical characteristics of an industrial manufacturing process. The purpose of the system depicted in gure 3.10 is to treat work pieces that are stored in the feeder (left most station). The system is controlled using a Siemens S300 PLC (Programmable Logic Controller) with 15 inputs and 15 outputs. The controller inputs and the corresponding sensors can be seen in gure 3.10. Inputs written in italic are connected to sensors with a specic technology that delivers a logical 0 if they detect something and a logical 1 if they do not detect anything. The outputs are given in table 3.2. If they are set to 1, the according actuator gets activated. The I/O names are labeled with I1.2 etc. to indicate the second i nput that belongs to the rst machine and O2.4 for the fourth o utput of the second station. Figure 3.10: Laboratory system A system evolution consists of the treatment of a given number of work pieces that are stored in the feeder. As a rst scenario, it is supposed that two work pieces are to be treated. At the beginning of a system evolution the feeder pushes the rst work piece to the conveyor. Then it is transported to the drilling machine (station 1). In the drilling station the work piece is stopped and two holes are drilled. As soon as the rst work piece has been treated in the rst station it is transported to the vertical milling machine (station 2) and the next piece is taken from the feeder. The rst work piece gets treated by the vertical milling machine (each of the three milling tools is applied to the piece successively) and the second one by the drilling station. After the treatment at the vertical milling machine has been nished, the work piece gets transported to the horizontal milling station (station 3). The second work piece moves from station 1 to station 2. When the rst work piece has been treated in station 3, it is stored in the last station at the right side in gure 3.10. This process continues until both work pieces have been treated by each of the three stations.

Data collection for identication and online diagnosis

As explained in section 3.1, the proposed identication method works on the basis of signals exchanged between controller and plant. The data collection method chosen for the case study works with a standard communication processor that is part of the PLC. When controlling the system evolution, the PLC performs the following three steps cyclically: reading the inputs, executing the program in order to determine the new output setting and nally writing the outputs. As depicted in gure 3.11, the transfer of the newly determined I/O values in form of an I/O vector takes place at the end of the second step (program execution). At the same time when the newly determined outputs get transfered to the output card of the PLC, the new I/O vector is sent to a standard PC using the communication processor via a UDP-connection. The languages dened in section 3.1 are thus based on an alphabet which consists of the set of I/O vectors exhibited by the system. Since the I/O vectors are captured at the end of the PLC cycle and are thus sampled, it is possible to have multiple I/Os changing their value between two I/O vectors. This method can be applied to each system with a controller that is able to send data via an Ethernet data link which is a common feature of almost all industrial controllers today. A detailed description of the data collection procedure and its consequences on the collected data is given in [START_REF] Roth | Identication of discrete event systemsimplementation issues and model completeness[END_REF].

Identication of monolithic models

In gure 3.8 on page 54, the evolution of the observed language L n Obs for the case study for n up to n = 10 has already been shown. In the former sections it has been explained that for identication of an NDAAO, k should be chosen such that L n Obs ≈ L n Orig with n = k + 1 which by assumption 5 is expressed by the convergence of |L n Obs | to a stable level. It can be seen that for lower values of n, the language converges very quickly and can thus reliably be considered as completely observed. For larger values of n, the convergence can also be observed, but cannot as reliably be stated as in the case of a lower n. In order to decide if the higher tendency for false alerts induced by increasing k is acceptable due to an increased fault detection capability of the model, in gure 3.12, the Gap-function of denition 23 is depicted for several values of k. It can be seen that the function decreases signicantly when k is increased from k = 1 to k = 2. Hence, this is a strong indicator that the model accuracy is improved since the number of ambiguous DES state representations is decreased. It can be seen that at k = 4, the Gap-function decreases again. Since this decrease is not very important, the quality of the model is not signicantly improved by increasing k to k = 4. Increasing k beyond k = 4 does not lead to a falling gap-function. Based on the available data and the evolution of the Gap-function, it is thus a reasonable decision to chose k = 2 for the identication algorithm. Both automata in gure 3.13 represent the start of the system evolution. First, the automaton identied with k = 1 is considered. From x 0 to x 1 the rst work piece is pushed on the conveyor and gets transported to station 1 (x 2). Then a rst hole is drilled into the work piece. After this, the work piece is moved on until the position sensor I1.5 changes its value (x 8). The conveyor stops again and a second hole is drilled (x 8 to x 11). When the tool is back at its top position, the work piece is moved on to the next station, which is represented by x 2 . Here it can be seen that the identied automaton cannot distinguish between the work piece being in the middle of I1.4, I1.5 and between the work piece being in the middle of I1.5 and I2.4. This represents a model inaccuracy. An exceeding behavior of length three can be produced when the automaton models the work piece moving from I1.4 to I1.5 but arriving at I2.4 instead of I1.5 (state trajectory x 1 , x 2 , x 12 instead of trajectory x 1 , x 2 , x 3). If a fault occurs leading to the I/O vector of x 12 , when the work piece is between I1.4 and I1.5, it cannot be detected. This inaccuracy can be omitted by increasing k to k = 2. Where the automaton identied with k = 1 loops back to x 2 , the more accurate NDAAO at k = 2 represents the work piece being between I1.5 and I2.4 with an own state (x 12). At k = 2 the non-equivalent system states describing the work piece between I1.4 and I1.5 on the one hand and I1.5 and I2.4 on the other hand are distinguishable by analyzing their predecessors. Since several other states are also split from k = 1 to k = 2, this explains the falling Gap-function in gure 3.12. This shows that choosing k = 2 leads to model which is signicantly more accurate than at k = 1 with a data base that can reasonably be considered as completely observed.

4 Distributed Identication of Closed-Loop Discrete Event Systems 4.1 Limits of monolithic identication

In the former chapter it has been shown that an important precondition for the identication of a closed-loop DES is to state that the original system language can be considered as completely observed. In assumption 5 it has been explained that for this purpose, the convergence of the observed language to a stable level is a suitable indicator. In gure 3.8 the evolution of the observed system language for the case study from section 3.5 has been shown. The observed system evolutions consist of the treatment of two work pieces which led to the convergence of the observed language L n Obs even for relatively large values of n. If the number of work pieces to be treated is increased to three, the observed system language does not converge as quickly as with two work pieces. Obs for this case. Although more system evolutions than in the case of treating two work pieces have been observed (100 versus 60 evolutions), only |L 1

Obs | converges to a stable level. This convergence takes 50 evolutions whereas the convergence of |L 1

Obs | with two work pieces only took 10 evolutions. In the former chapter it has been explained that the convergence of the observed system language to a stable level is crucial to get a complete model. Without a complete model simulating the whole fault-free system language the number of false alerts during online fault diagnosis can become unacceptably high. The reason for the longer growing phase of |L 1

Obs | is the higher degree of concurrency induced by increasing the number of work pieces to be treated.

If three work pieces are to be treated in the case study system, the three stations depicted in gure 3.10 work simultaneously when the third work piece has been pushed on the rst conveyor and the rst two work pieces are treated by the second and the third station. Like in the case of Petri nets as shown in gure 4.2, a part of the behavior is not synchronized and can be executed in dierent orders. First, the leftmost Petri net is considered. It consists of two parallel branches. After the occurrence of event a, the following two sequences are possible:

s 1 = abcde s 2 = acbde
In this case, the events b and c can be generated concurrently. Event d can only occur when b and c both have occurred. If concurrency is increased like in the rightmost Petri net in gure 4.2, the number of possible generated event sequences is increased. The Petri net with three parallel branches can generate the following six evolutions:

s 1 = abcde s 2 = abdce s 3 = acbde s 4 = acdbe s 5 = adbce s 6 = adcbe
In this case the events b, c and d can be generated concurrently after the occurrence of a. This example shows that increasing concurrency in the system increases the original system language. In the case study, the simultaneous treatment of three work pieces in three stations also increases concurrency: After a work piece has arrived at a station, the station behavior is independent from the behavior of the other stations. Like in the Petri net example, the combined behavior of such concurrent subsystems (represented by individual branches in the Petri net) leads to a large number of possible global system behaviors. If the global behavior of such concurrent systems is considered, it is a direct consequence that it takes the system longer to exhibit a signicant part of its original system language since the size of the original language increases with augmenting concurrency. Hence, the observed language takes longer to converge to a stable level as depicted in gure 4.1.

A possible solution for the problem of a non-converging observed language is to consider subsystems with a lower degree of internal concurrency. In the rightmost Petri net in gure 4.2 such a subsystem could consist of two of the three parallel branches. For the case study system, a subsystem could consist of the two left most stations. Figure 4.3 shows the evolution of the observed language if only the rst two stations are considered. Considering only two stations, the maximum number of work pieces treated in parallel is two. It can be seen that the concerning observed system language converges signicantly faster than in gure 4.1 where the complete system is considered. Since the model for the rst two stations can be identied on the basis of a converged observed language L k+1 Obs ≈ L k+1

Orig (e.g. with k = 2), the precondition of theorem 5 is fullled which leads to a minimized number of false alerts during online fault diagnosis. In many practical applications, the same phenomenon as in the case study system treating three work pieces can be observed: The observed system language does not converge to a stable level, which does not allow identifying a suitable model for online fault diagnosis. To overcome this problem, it is possible to divide the system in subsystems with converging observed languages. The question of how to choose appropriate subsystems is treated in chapter 5. In the remaining part of this chapter an approach is proposed to identify subsystem models of a closed-loop DES. It will be shown that fullling the precondition L k+1 Obs ≈ L k+1 Orig for each single subsystem comes at cost of an increased global exceeding language which is a disadvantage for online diagnosis. To limit the global exceeding system behavior, an approach to systematically restrict the combined behavior of an identied automata network is presented. In the following, the controller I/O vector u is considered as the closed-loop DES output u DES introduced in section 3.1. The controller I/O vector is the output of the complete system. If the system is divided into subsystems, only parts of the complete I/O vector are considered in each subsystem. To determine the I/Os which are to be considered in a subsystem, a mapping function is introduced: Denition 25 (Subsystems and I/O-mapping function). The closed-loop DES consists of several subsystems sys t . The function y(sys t) assigns a set of controller I/Os to each subsystem. The number of subsystems is dened as N sys .

Identication of partial closed-loop DES

The output of the t-th subsystem sys t is determined by the partial I/O vector which contains the I/Os from the set y(sys t).

Denition 26 (Partial controller I/O vector). Given the controller I/O vector u according to denition 24: The partial controller I/O vector is dened as

u syst = (IO 1 , ..., IO m) with IO i = -(don't care symbol) if IO i / ∈ y(sys t) and IO i taken from u if IO i ∈ y(sys t).
Figure 4.4 shows the principle of the previous denitions. The global I/O vector of the complete system consists of ve controller I/Os. The function y(sys 1) assigns IO 2 , IO 3 and IO 5 to the rst subsystem whereas IO 1 , IO 3 and IO 4 are assigned to the second subsystem. It can be seen that an I/O can be part of several subsystems. I/Os which are not part of the considered subsystem are replaced by the don't care symbol '-'.

Like the denition of the global observed system language L n Obs on the basis of the observed system output u, it is possible to dene the partial observed system language based on the partial system output u syst .

Denition 27 (Observed partial language). The observed partial system language of the t-th subsystem L n Obs,syst is dened according to denition 20 considering the partial I/O vector u syst as observed system output. Remark 2. Corresponding to assumption 1, it is assumed that the j-th partial I/O vector u syst (j) is created by the j-th event in the underlying subsystem. Hence, u syst (j) = u syst (j + 1) also holds for the partial system language.

On the basis of the observed partial system language L k+1 Obs,syst a partial NDAAO t for the t-th subsystem is identied with the approach of chapter 3. It is obvious that the NDAAO t is k + 1-complete with respect to L k+1 Obs,syst . If the subsystems are chosen such that L k+1 Obs,syst converges to a stable level, the identied partial automaton is an appropriate fault detection model to minimize the number of false alerts when observing the considered subsystem. In the next section the combined behavior of several NDAAO t representing several subsystems sys t will be derived. This enables an evaluation of the fault detection capability of a set of partial automata representing the subsystems of a given global system.

Composition of partial closed-loop DES

After the identication of a partial automaton for each subsystem, the combined automaton behavior represents the identied language L n Ident . In gure 4.5 two identied NDAAO are shown (the function J is introduced in denition 28). They build an automata network representing the considered closed-loop DES. Each automaton has a partial I/O vector as state output and is able to reproduce an identied partial language L n Ident,syst . To determine the language of the automata network, the partial automata must synchronously perform state trajectories. The resulting outputs consisting of partial I/O vectors can then be combined to the global model output. To implement the synchronization of several NDAAO t , the NDAAO cross product is introduced in this section. It is an adaptation of the parallel composition from [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] to the automaton of type NDAAO given in denition 16.

A rst step for the construction of the NDAAO cross product is the following denition. It denes the result of combining two partial I/O vectors from dierent subsystems.

Denition 28 (Join function for two partial I/O vectors). Given two partial I/O vectors u sys 1 and u sys 2 with the same number of I/Os (|u sys 1 | = |u sys 2 |). The join function Figure 4.5: Two partial NDAAOs with a combined output J (u sys 1 , u sys 2) delivers a vector with |u sys 1 | elements. The i-th vector element is addressed with J (u sys 1 , u sys 2) [i]:

J (u sys 1 , u sys 2) [i] =            u sys 1 [i] if u sys 1 [i] = u sys 2 [i] u sys 2 [i] if u sys 1 [i] = -∧ u sys 2 [i] = - u sys 1 [i] if u sys 1 [i] = -∧ u sys 2 [i] = - c if -= u sys 1 [i] = u sys 2 [i] = - ∀i = 1, . . . , |u sys 1 |, with u sys 1 [i]
denoting the i-th IO of the partial vector u sys 1 .

The I/Os at each position of the two partial I/O vectors are compared. If one of them is overwritten by the don't care symbol '-' since it does not belong the the according subsystem, the value of the other vector is taken. If one of the compared I/Os is 1 and the other one is 0, c for contradiction is written at the position of the according I/O. For the join function the associative law holds:

J(λ(x sys 1), λ(x sys 2), λ(x sys 3)) = J(λ(x sys 1), J(λ(x sys 2), λ(x sys 3))) (4.1)
In gure 4.5, the join function of two state outputs is given as an example. From this denition it follows directly that a valid state combination {x sys 1 , . . . , x sysn } of n partial automata modeling a system state must fulll the following condition with m denoting the dimension of the I/O vector:

J(λ(x sys 1), . . . , λ(x sysn))[i] = c ∀1 ≤ i ≤ m (4.2)
The reason is that the output of the considered closed-loop DES cannot contain the contradiction symbol c.

The language of an automata network is determined by the combined evolution of the underlying automata. In [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF], the parallel composition is introduced as an appropriate operation to determine the combined behavior of interacting subsystems with private and common events. Private events are only related to one subsystem whereas common events are shared by several subsystems. The parallel composition of automata synchronizes common events. A common event can only be executed if the underlying automata execute it synchronously. Private events can be executed whenever possible. Subsystems with partial I/O vectors as system output are a typical example for systems with private and common events. I/Os considered in two subsystems are related to common events. If such an I/O changes its value in one subsystem, this must also happen in the second subsystem such that a valid system output according to equation 4.2 is possible. I/Os considered in one subsystem only, refer to private events. These I/Os can change their value independently since they are replaced by the don't care symbol '-' in the other subsystems. In denition 9 section 2.3.2, the parallel composition has been introduced for the 'standard'-automaton used in the diagnoser approach. In the following, an adaptation of this composition procedure to automata of the NDAAO-type is given. The operation will be denoted as 'automata cross product' or 'parallel composition' in the rest of the work.

The composition of two partial NDAAO 1 and NDAAO 2 is given in the following denition:

Denition 29 (Cross product or parallel composition of two partial NDAAO). The cross product

NDAAO || = NDAAO 1 ||NDAAO 2 = (X || , J(Ω 1 , Ω 2), f || , λ || , x || 0)
of two partial NDAAO 1 and NDAAO 2 with output alphabets Ω 1 and Ω 2 consisting of partial I/O vectors of the same length is an NDAAO according to denition 16. The single elements are given by the following equations:

State space:

X || := {(x 1 , x 2) ∈ X 1 × X 2 |c / ∈ J(λ(x 1), λ(x 2))} (4.3)
State output:

∀(x 1 , x 2) ∈ X || : λ || ((x 1 , x 2)) := J(λ(x 1), λ(x 2)) (4.4)
Transition function:

∀(x 1 , x 2) ∈ X || : f || ((x 1 , x 2)) := {(x ′ 1 , x ′ 2) ∈ X || | (x ′ 1 , x ′ 2) ∈ {x 1 ∪ f 1 (x 1)}× {x 2 ∪ f 2 (x 2)} ∧ c / ∈ J(λ(x ′ 1), λ(x ′ 2)) ∧ (x ′ 1 , x ′ 2) = (x 1 , x 2) } (4.5)
Initial state:

x || 0 = (x 1 0 , x 2 0) (4.6)
In equation 4.3, the cross product of the underlying NDAAO state spaces is built. X || consists of this cross product except of state combinations leading to a non-valid combined state output. Equation 4.4 assigns to each state of X || the combined partial I/O vectors of the underlying partial NDAAO states. In equation 4.5 the transition function of the cross product states is derived. Each cross product state

(x 1 , x 2) is connected to the state (x ′ 1 , x ′ 2) if x ′ 1 is either a successor of x 1 or x 1 itself and if x ′ 2
is either a successor of x 2 or x 2 itself. (x 1 , x 2) is only connected to following states with valid outputs according to equation 4.2. This implements the synchronization of common I/Os. (x 1 , x 2) is not connected to itself (no self-loop). In equation 4.6, the initial state is determined as the state with the underlying initial NDAAO states. If more than two NDAAO have to be synchronized, the cross product operation can be applied successively. Like in the case of the parallel composition from [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF], it is possible to build the cross product of several NDAAO by applying the operation of denition 29 successively (associative law of the parallel composition):

NDAAO 1 ||NDAAO 2 ||NDAAO 3 = (NDAAO 1 ||NDAAO 2)||NDAAO 3 (4.7)
An interesting property of the cross product language is given in the following theorem:

Theorem 6 (Completeness of the cross product of identied automata). We consider a closed-loop DES which is divided in N sys subsystems. If the N sys partial systems are identied such that L k+n Ident,sys i ⊇ L k+n Orig,sys i ∀1 ≤ i ≤ N sys , it follows that L k+n Ident || ⊇ L k+n Orig for the language of the cross product.

This means that even if the complete system language cannot be considered as completely observed, it is possible to simulate it by the language of the cross product if the underlying partial languages can be considered as completely observed: According to theorem 5, L k+n Ident,sys i ⊇ L k+n Orig,sys i holds if k was choosen such that L k+1 Obs,sys i = L k+1 Orig,sys i . For the proof, the denition of two functions is necessary. The rst function replaces a substring consisting of equal symbols by a string of length 1, containing the considered symbol. With IOSet = y(sys t) it is possible to derive the partial I/O vector of the t-th partial subsystem sys t from the I/O vector of the global system u syst = IOProj y(syst) (u) (with y(sys t) from denition 25).

Proof of theorem 6. We proof the theorem for a closed-loop DES which is divided in two subsystems sys 1 and sys 2 . The extension to more than two subsystems is straight forward. Each w k+n Orig ∈ L k+n Orig can be seen as the result of two partial words w n 1 ≤k+n Orig,sys 1 ∈ L k+n Orig,sys 1 , w n 2 ≤k+n Orig,sys 2 ∈ L k+n Orig,sys 2 of the two subsystems with

w n 1 ≤k+n
Orig,sys 1 = RemEqual(IOProj y(sys 1) (w k+n Orig))

w n 2 ≤k+n Orig,sys 2 = RemEqual(IOProj y(sys 2) (w k+n Orig))

If an I/O vector is part of the original language, replacing all I/Os by '-' if they do not belong to the given subsystem leads to a partial I/O vector being part of the original subsystem language. From the precondition it follows that for the partial systems Orig,sys 1 and w n 2 Orig,sys 2 a state trajectory exists in the partial automaton of the according subsystem, the cross product contains a trajectory reproducing w k+n Orig .

L k+n Ident,sys 1 ⊇ L k+n Orig,
From theorem 6 it follows that it is possible to identify an automata network which simulates the complete original system language although even L 1

Obs (of the global system language) does not converge. The precondition is that the language of each of the considered subsystems converges as explained in section 4.1. Since the identied automata network is able to reproduce the complete original system language although

L n Obs ⊂ L n
Orig (∀n ≥ 1), the number of false alerts during online diagnosis can be signicantly reduced compared to the monolithic approach.

A disadvantage of the distributed approach is the increased exceeding language leading to a larger number of non-detectable faults. In the monolithic approach it was possible to guarantee that the exceeding language L k+1 Exc is minimized. Although this property still holds for each of the identied partial automata, it can no longer be guaranteed for the language of the complete automata network. Even if each of the partial automata produces a subsystem word which has been observed before, the combination of fault-free subsystem words is not necessarily a word of the fault-free original system language. As an example to illustrate this phenomenon, the two partial automata in gure 4.6 are considered. They are identied for two subsystems considering the rst two and the last two I/Os of the global I/O vector. The identication was carried out on the basis of the partial languages built with σ 1 in gure 4.6 according to denition 27. The identication parameter was chosen to k = 1. In the example, the second I/O is common to both of the partial automata. The observed sequence σ 1 which was the basis for the identication of the partial automata is depicted on the right of the automata network. The language of the automata network is dened by the cross product according to denition 29. The resulting automaton is depicted in gure 4.7. In the example it is supposed that under fault-free conditions, the underlying closedloop DES can only exhibit the sequence σ 1 . Any other sequence should thus not be part of the identied network. Suppose that a fault leads to the sequence

σ F = (  1 0 0   ,   1 1 0   ,   0 0 1   ,   1 0 1   ,   0 0 1  )
Since the automata network (and thus the cross product) can perform a combined state evolution resulting in this sequence (x 0 , x 1 , x 2 , x 0 , x 2 for automaton 1 and x 0 , x 1 , x 2 for automaton 2), the fault cannot be detected. The sequence σ F is part of the cross product language since it can be produced by a combined evolution of the partial automata.

The example shows that it is necessary to restrict the behavior of the automata network to prevent faulty behaviors from being part of the automata network language.

In the next section it will be shown how the automata network can be restricted to producing only the observed global behavior and a well specied amount of unobserved behavior.

Restriction of an identied automata network

If the identied models are used for online fault detection, the current behavior of the system is compared with the model behavior. Only if both behaviors dier, a fault can be detected2 . In order to reduce the number of non-detecable faults (faults with a behavior which can be reproduced by the model), the automata network language has to be systematically restricted. The restriction is performed based on a reduction of the cross product language. The rst step is to determine the observed part of the cross product language. This part of the language is part of the original system language and should thus not be suppressed. To determine the observed part of the cross product language, a transition observation function is introduced: Denition 32 (Transition observation function). The transition observation function Θ : X × X → {true, f alse} assigns to each pair (x 1 , x 2) of NDAAO states true if a transition from x 1 to x 2 has been observed. If the transition has not been observed, the function assigns the value f alse. The decision is based on the set of observed sequences

Σ = {σ 1 , . . . , σ p } 3 . Θ(x 1 , x 2) is undened if x 2 / ∈ f (x 1).
In the case of an identied monolithic NDAAO, the value of Θ is true for each transition in the automaton since in algorithm 1 states are only connected if their outputs have been observed successively. If the cross product of several identied partial automata is considered, transitions exist which do not correspond to an observed sequence. These transitions have their origin in the unsynchronized behavior of the underlying partial automata. The transition observation function can be determined with algorithm 3. The idea is to reproduce each observed sequence starting from the initial state of the cross product. If it is necessary to pass from a state x ||1 to a state x ||2 to reproduce the observed sequences,

Θ(x ||1 , x ||2) is assigned to true. Otherwise, Θ(x ||1 , x ||2) is set to f alse.
At the beginning of algorithm 3, each transition is declared unobserved. For each observed sequence the following operations are performed: If the rst I/O vector of a sequence is considered, the initial state of the cross product is taken as the current state x || (j) (line 4 and 5). If the considered I/O vector is not the rst one in the Algorithm 3 Determination of the observed cross product Require: Cross product NDAAO || , observed sequences Σ = {σ 1 , . . . , σ p }

1: ∀(x ||1 , x ||2) ∈ X || × X || |x ||2 ∈ f (x ||1) : Θ(x ||1 , x ||2) := f alse 2: for each σ h ∈ Σ do 3: for each u h (j) ∈ σ h = (u h (1), u h (2), . . . , u h (l h)) do 4: if j = 1 (u h (j) is the rst vector in σ h) then 5: Current state x || (j) = x ||0 6: else 7: x || (j) := x || | x || ∈ f || (x || (j -1)) ∧ λ || (x ||) = u h (j) 8: Θ(x || (j -1), x || (j)) := true 9: end if 10:
end for 11: end for sequence, the new current state x || (j) to reproduce the sequence is determined in line 7. The next state x || (j) is a following state of the former current state x || (j -1) and has the considered I/O vector as output. From step 2 of algorithm 1 (the monolithic identication algorithm) it follows that a state in an identied automaton does not have several following states with the same output. Hence, there is always only one state fullling the condition in line 7 of algorithm 3. In line 8, the transition between x || (j -1) and x || (j) is declared observed. If each sequence has been treated, the part of the cross product which corresponds to the observed system behavior can be obtained by applying Θ to the transitions in the automaton.

Figure 4.8 shows an example for the determination of the Θ function. It is the cross product from the last example. Based on the analysis of the observed sequence σ 1 , Θ is determined with algorithm 3. The transitions with the solid lines have the Θ value true since they must be passed to reproduce the observed sequence. The transitions with the dashed lines are part of the cross product, but are not part of a state trajectory reproducing the observed sequence σ 1 .

If the cross product performs a state trajectory containing unobserved transitions, this can lead to a word of the exceeding language L n Exc = L n Ident \L n Orig . Since the combined behavior of the underlying partial automata resulting in the considered trajectory has not been observed before, it potentially represents a fault symptom. At the same time it is possible that a trajectory containing unobserved transitions represents a word of the original fault-free system language L n Orig which has not yet been seen. It should thus be accepted in order to avoid a false alert. A possible way to systematically parameterize the necessary trade-o between producing a certain amount of unknown behavior and avoiding a too important exceeding language is to count the number of unobserved transitions in a trajectory of the cross product. Hence, the restriction of the cross product language is possible by giving an upper limit of allowed unobserved transitions. This approach is based on the assumption that faults typically lead to a longer abnormal behavior. This assumption is common to most model-based diagnosis methods (e.g. the necessary deviant behavior to determine a diagnosis with the diagnoser approach of [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF], see chapter 2.3). The upper limit of accepted unobserved behavior can be dened manually using an additional automaton of the NDAAO-type with a Θ function. The automaton can be seen as an additional parameter to inuence the language of the identied model. The purpose of the automaton is to be run in a synchronized way with the identied system model containing observed and unobserved transitions and to serve as a counter:

Denition 33 (Tolerance specication). The tolerance specication is an NDAAO T ol = (X T ol , Ω T ol , f T ol , λ T ol , x T ol 0) with X T ol nite set of states, Ω T ol = {OK, Fault, -} output alphabet, f T ol : X T ol → 2 X T ol non-deterministic transition function, λ T ol : X T ol → Ω T ol output function and x T ol 0 the initial state. In the output alphabet, OK represents a situation where the trajectory of the synchronized system model is accepted as fault-free. If the NDAAO T ol is in a state with the output Fault, the trajectory of the synchronized model is considered as a fault. '-' represents an undecided situation. For the tolerance specication, the transition observation function Θ must be dened manually for each transition.

The tolerance specication automaton has to be built manually. A possible implementation is given in gure 4.9 and will be explained after the following denition. To restrict the automaton network behavior, the tolerance specication automaton is run in a synchronized way with the cross product according to the following rule: Denition 34 (Evolution rule for the cross product synchronized with a tolerance specication). The cross product can only change its current state x || (j) to x || (j + 1), if there is a following state x T ol (j + 1) of the current tolerance specication state x T ol (j) for which Θ(x || (j), x || (j + 1)) = Θ(x T ol (j), x T ol (j + 1)) holds. If such x T ol (j + 1) and x || (j + 1) exist, they become the next current states of the tolerance specication and the cross product respectively. If no such states exist, the cross product cannot proceed to another state.

In the tolerance specication a transition must be taken which has the same Θ-value like the transition in the cross product. If an appropriate transition does not exist, the cross product cannot enter the according state.

The language of the cross product generated synchronized with the tolerance specication contains two pieces of information. The rst information is obtained by building the sequences of I/O vectors generated by state trajectories in the cross product. The second information is that for each of these sequences the output of the nal state of the tolerance specication is known. Hence, it is known if a given sequence is considered as fault-free ('OK'), undecided ('-') or faulty ('Fault') by the tolerance specication.

With denition 34 it follows that a valid tolerance specication automaton that is able to restrict the cross product language must be conform to the following two rules:

1. Each state in the tolerance specication has at most two following states:

∀x T ol ∈ X T ol : |f (x T ol)| ≤ 2 (4.8)
2. Two following states do not have the same Θ value. This makes sure that the state evolution rule in denition 34 can be correctly applied since the choice of the next current tolerance specication state is always unambiguous:

∀x T ol ∈ X T ol ∧ ∀x T ol 1 , x T ol 2 ∈ f (x T ol) : Θ(x T ol , x T ol 1) = Θ(x T ol , x T ol 2)
(4.9) Figure 4.9 shows an example of a tolerance specication automaton. When synchronized with a cross product according to denition 34, it tolerates passing one unobserved cross product transition (Θ-value is f alse). After the occurrence of a second unobserved transition, the tolerance specication automaton is in the state with the output 'Fault'. This state does not have any leaving transition. Hence, the evolution of the cross product is blocked according to denition 34.

σ F = (  1 0 0   ,   1 1 0   ,   0 0 1   ,   1 0 1   ,   0 0 1  )
Reproducing σ F , the cross product in gure 4.8 passes two unobserved transitions: after the trajectory x 0 x 0 → x 1 x 1 → x 2 x 2 with exclusively observed transitions, the trajectory x 2 x 2 → x 0 x 2 → x 2 x 2 to reproduce the last three I/O vectors in σ F contains two unobserved transitions. If the tolerance specication is run in a synchronized way, the two unobserved transitions lead it to the state with the output 'Fault' which declares that the considered sequence is not part of the fault-free behavior. With the tolerance specication it is thus possible to dene the amount of not yet known global system behavior which is considered as a fault symptom although each partial behavior is known. With the tolerance specication of gure 4.9, the following sequence σ 2 would not be considered as a fault since it leads to only one unobserved transition in the trajectory x 0 x 0 → x 0 x 2 → x 0 x 0 in gure 4.8.

σ 2 = (  1 0 0   ,   0 0 0   ,   1 0 0  )
The tolerance specication allows to balance the number of false alerts and the sensitiveness to faults. In the example it was decided that sequences leading to only one yet unknown transition in the cross product are probably part of the fault-free behavior whereas a higher number of unobserved transitions is not acceptable as fault-free behavior. Choosing an appropriate structure of the tolerance specication automaton is a degree of freedom to adjust the model to a given system and the available observed system language. In section 4.4 it will be shown how an analysis of the observed system language can help to determine an appropriate tolerance specication. Nevertheless, the choice of the tolerance specication will always depend on the preferences of the user.

The approach of constructing the cross product (and to derive the observed part of it) has an important disadvantage if it is to be applied to large systems: building the cross product of several partial automata can lead to the state space explosion problem. According to [START_REF] Bérard | Systems and Software Verication[END_REF], the state space resulting from composing several automata with state spaces X 1 , X 2 , . . . , X n can reach up to

|X 1 | × |X 2 | × • • • × |X n |
states. For practical implementation, this poses two problems. The rst problem is that the procedure to obtain the cross product from denition 29 can take very long. The second problem is that for diagnosis purposes, the resulting cross product must usually be handled online. If the resulting automaton is too large, it can be dicult to apply diagnosis procedures to the model in real time. Since the described approach is based on the distinction between the observed and the unobserved part of the cross product, it is not necessary to build and maintain the complete cross product. In the remainder of this section it is shown how it is possible to only construct the observed part of the cross product explicitly and to derive the unobserved part implicitly when it is necessary to produce a given part of the unobserved cross product language. The algorithms are an improved version of the procedures given in (Roth et al., 2009a).

The rst step of the proposed approach is to directly build the observed part of the cross product based on the available observed sequences Σ = {σ 1 , . . . , σ p } and the identied partial automata. The observed cross product resulting from algorithm 4 is an NDAAO Obs|| with the output alphabet

Ω Obs|| = X 1 × X 2 × • • • × X n :
The output alphabet (and thus the state outputs) consist of state combinations from the n partial automata from which the observed cross product is built. With this denition of the state outputs it is possible to determine for each NDAAO Obs|| -state the underlying state combination of the partial automata by applying the state output function λ Obs|| . With the join-function from denition 28, it is possible to get the I/O vector corresponding to the combination of partial automaton states represented by a given observed cross product state.

In contrast to the construction of the cross product NDAAO || , in algorithm 4 not each combination of partial NDAAO states leads to the creation of a new state in NDAAO Obs|| . Only combinations which are necessary to reproduce the already observed behavior (I/O vector sequences) are considered. For each of these combinations a state in the observed cross product is built. By successively analyzing the observed sequences and 'playing' the partial automata, the observed cross product states are connected in the necessary order. The resulting automaton only contains the observed substructure of the cross product from denition 29.

) := {x 1_0 , . . . , x n_0 } ∧ f Obs|| (x Obs|| 0) := {} 3: for each σ h ∈ Σ do 4: for each u h (j) ∈ σ h = (u h (1), u h (2), . . . , u h (l h)) do 5: if j = 1 (u h (j) is the rst vector in σ h) then 6:
Initialize current states x 1 (1) := x 1_0 , . . . , x n (1) := x n_0 in the partial automata for each NDAAO i ∈ {NDAAO 1 , . . . , NDAAO n } do 10:

x i (j) := x i | x i ∈ {x i (j -1) ∪ f i (x i (j -1)} ∧ c / ∈ J(λ(x i), u h (j))
11:

end for 12:

if ∃x Obs|| ∈ X Obs|| |λ Obs|| (x Obs||) = {x 1 (j), . . . , x n (j)} then 13:

f Obs|| (x Obs|| (j -1)) := {f Obs|| (x Obs|| (j -1)) ∪ x Obs|| } 14: else 15: Create new x Obs|| | λ Obs|| (x Obs||) = {x 1 (j), . . . , x n (j)}, f Obs|| (x Obs||) = {} 16: f Obs|| (x Obs|| (j -1)) := {f Obs|| (x Obs|| (j -1)) ∪ x Obs|| } 17:
end if 18:

x Obs|| (j) = x Obs|| |λ Obs|| (x Obs||) = {x 1 (j), . . . , x n (j)} (either found in line 12 or created in line 15)

19:

end if 20:

end for 21: end for In line 1 of algorithm 4, the observed cross product NDAAO Obs|| is initialized with an empty state space. In the next step, the initial observed cross product state is constructed. Its output function is set to the set of initial states of the underlying partial automata. Starting in line 3, the observed sequences are analyzed. At the beginning of each sequence, the partial automata are initialized by setting their current state to the initial partial automaton state (e.g. for the rst partial automaton NDAAO 1 :

x 1 (1) = x 1_0). The observed cross product is also initialized by setting its current state x Obs|| (1) to its initial state x Obs|| 0 . This is always done when the rst I/O vector of a sequence is treated (line 4 to 7). If the considered I/O vector is not the rst one in the sequence, the algorithm proceeds in line 9. From line 9 to line 11, the current state of each partial NDAAO is determined. A partial NDAAO state becomes the new current state x i (j) if it is either the former current state x i (j -1) or one of its successor states (x i ∈ {x i (j -1) ∪ f i (x i (j -1)}). Additionally, it must have an output that corresponds to the considered I/O vector u h (j). Since in the partial automaton NDAAO i not all I/Os are considered (I/Os not belonging to the according subsystem are replaced by '-' symbols in denition 26), the state outputs and the I/O vector of the sequence are compared with the join-function4 . If the join-function returns 'c' (contradiction) for the comparison of at least one I/O value, the state output and the I/O vector dier in at least one I/O considered in the partial NDAAO i . Hence, if c / ∈ J(λ(x i), u h (j)), the state output of the partial automaton can reproduce its part of the current I/O vector.

The states from the set x i ∈ {x i (j -1)∪f i (x i (j -1))} have dierent state outputs due to step 2 of algorithm 1. Hence, for each NDAAO i there is always a unique state fullling the condition in line 10. In line 12 it is checked if the observed cross product already contains a state with the newly determined combination of current partial automaton states as output. If so, the former current state of the observed cross product x Obs|| (j-1) gets this state as a following state. If not, a new state is created. Its output function is set to the combination of current partial automaton states. In line 16, the newly created state is added to the set of following states of the former current observed cross product state. Finally, in line 18, the current state is set to the newly determined state and the next I/O vector is considered.

An example for the result of algorithm 4 is given in gure 4.10. On top of the gure, the observed sequence σ 1 and two partial automata identied based on this sequence are shown. In the rst step of algorithm 4 the initial state of the observed cross product is built. Its output is set to the initial states of the underlying partial automata x 0 x 0 . When sequence σ 1 is treated, the partial automata perform the combined state trajectory x 0 x 0 , x 1 x 1 , x 2 x 2 , x 0 x 0 and x 2 x 0 . For each of these combinations a state in the observed cross product is built. The observed cross product states are connected according to the combined state trajectory of the underlying partial automata. The result is the automaton in the bottom of gure 4.10.

In the observed cross product, each transition has been observed since it has been created upon an analysis of the observed sequences. Hence, the transition observation function Θ can be set true for the complete automaton structure. In order to apply the tolerance specication to dene a certain amount of accepted unobserved behavior, it is necessary to add unobserved transitions to the observed cross product. This is done in the next algorithm. The result is the permissive observed cross product: Denition 35 (Permissive observed cross product (POCP)). The permissive observed cross product is a 6-tuple POCP = (X P OCP , Ω P OCP , f P OCP , λ P OCP , x P OCP 0 , Θ P OCP) with X P OCP the state space, Ω P OCP the output alphabet, f P OCP : X P OCP → 2 X P OCP the transition function, λ P OCP : X P OCP → Ω P OCP the output function and x P OCP 0 the initial state of the automaton. Θ P OCP : X P OCP × X P OCP → {true, f alse} is the transition observation function.

Based on the observed cross product resulting from algorithm 4, the POCP is constructed with algorithm 5. At the beginning of the algorithm, the output alphabet of the observed cross product is assigned to the POCP output alphabet. Additionally, the symbol ε is added to Ω P OCP to represent each non-observed combination of partial automata. In the next steps the basic state space, the basic transition function and the output function are constructed by assigning X Obs|| to X P OCP , f Obs|| to f P OCP and λ Obs|| to λ P OCP . Then, the transition observation function is dened. Since until this moment the POCP only contains the observed cross product, Θ P OCP is assigned to true for each pair of states that is connected by a transition. In step 5 a new state x ε with the empty letter ε as output is created and in step 6 added to the state space. In the next step, x ε gets the complete state space as following states. Hence, there is a transition from x ε to each other state in X P OCP as well as a self-loop to x ε itself. The state x ε is added to the POCP state space to represent the unobserved part of the cross product. In the next step, the transition function of the states in X P OCP except of the formerly created x ε is enlarged. Each state is connected to each other state. There are no self-loops added. In the last part of the algorithm the transition observation function is completely dened. For each transition in the POCP with an undened Θ P OCP function, Θ P OCP is set to f alse since the transition was not part of the observed cross product. The POCP can now be run in parallel with its underlying network of partial NDAAO and a given tolerance specication to restrict the network behavior. The principle is shown in gure 4.12. The automata network can perform any combined state trajectory leading to a valid model output5 . The POCP evolves following the automata network. It tries to perform a state trajectory reproducing the current trajectory in the automata network. For each new state combination produced by the network, the POCP tries to nd a state x P OCP that has the current combination of partial NDAAO states as output. If the network trajectory has state combinations which are not represented by a POCP state, the POCP takes the state with the empty symbol ε as output instead. By analyzing the transitions passed in the POCP (observed or unobserved ones), the tolerance specication evolves such that it passes the same type of transitions. For each combined state trajectory of the automata network it can thus be decided if it is accepted as fault-free or if it is considered as a fault from the output of the reached state in the tolerance specication. In denition 36 the combined evolution of partial automata, POCP and tolerance specication is formally described.

Denition 36 (Evolution rule for the POCP in parallel with a tolerance specication and a network of partial NDAAO). Let the n partial NDAAO be in the combined state {x 1 (j), . . . , x n (j)} with c / ∈ J(λ 1 (x 1 (j)), . . . , λ n (x n (j))). If a POCP state x P OCP with λ P OCP (x P OCP) = {x 1 (j), . . . , x n (j)} exists, this state is the current POCP state x P OCP (j). If such a state does not exist, the state with the empty output ε is the current POCP state: x P OCP (j) = x|λ P OCP (x) = ε. The n partial NDAAO can move from their current state combination {x 1 (j), . . . , x n (j)} to another state combination {x 1 (j + 1), . . . , x n (j + 1)} with c / ∈ J(λ 1 (x 1 (j + 1)), . . . , λ n (x n (j + 1))) if ∀1 ≤ a ≤ n either x a (j) = x a (j + 1) or x a (j + 1) ∈ f a (x a (j)) holds6 . The POCP evolves according to the following rule:

If (∃x ′ P OCP ∈ X P OCP)| λ P OCP (x ′ P OCP) = {x 1 (j + 1), . . . , x n (j + 1)} :

x P OCP (j + 1) := x ′ P OCP else x P OCP (j + 1) := x P OCP |λ P OCP (x P OCP) = ε

The tolerance specication moves from its current state x T ol (j) to a following state x T ol (j + 1) with

x T ol (j +1) ∈ f T ol (x T ol (j))∧Θ P OCP (x P OCP (j), x P OCP (j +1)) = Θ T ol (x T ol (j), x T ol (j +1))

If such a state does not exist, the model consisting of POCP, partial automata and tolerance specication cannot proceed to another state.

With the evolution rule of denition 36, the language of the automata network restricted by the POCP and the tolerance specication has two elements. The I/O vector sequences building the identied language are determined by applying the join-function to the partial state outputs from the set of current partial NDAAO states. If an I/O vector sequence is generated by the restricted automata network, the combined state trajectory leads to a trajectory in the POCP consisting of observed and unobserved transitions. Since the tolerance specication evolves in a synchronized way by Figure 4.12: Principle of the restricted automata network with the POCP the transition observation function Θ T ol , the combined state trajectory leading to the given I/O vector sequence results in a certain state in the tolerance specication. From the output of this state, it can be decided if the considered I/O vector sequence is considered as fault-free (state output is 'OK'), not faulty in the sense of undecided ('-') of faulty ('Fault').

With the tolerance specication it is thus possible to explicitly dene the amount of yet unseen automata network behavior which is considered as fault-free. Hence, it is possible to deal with a certain amount of new system behavior without directly detecting a fault which avoids a large number of false alerts. The presented approach allows accepting some behavior which is similar but not equal to the already known behavior. The tolerance specication denes the degree of similarity to some known fault-free behavior which makes a given behavior not be considered as faulty. This concept is well known in the eld of diagnosis of continuous systems. Models of continuous systems do not perfectly reproduce signal values. It is thus necessary to dene tolerance limits to decide if the dierence between the measured and the modeled signal value is a fault symptom. The tolerance specication can be understood as the denition of these limits for the identied automata network.

The fact that each accepted behavior must consist of the combination of fault-free subsystem behaviors (dened by the partial automata) is an important advantage: it avoids considering any arbitrary behavior as similar to the fault-free behavior. Only behaviors which consist of correct partial behaviors can be tolerated. In section 6.2, a fault detection policy will be presented which makes use of this advantage: Observed behavior which cannot be explained by a combination of fault-free subsystem behavior dened by the partial automata will be directly considered as a fault. If the observed behavior consists of unknown combined subsystem behavior, the tolerance specication will be evaluated.

Remark 3 (Subsystem granularity). The advantage of not considering any unknown behavior as similar to the fault-free behavior becomes less important if the number of subsystems is increased which usually leads to smaller subsystems. If each I/O gets its own subsystem (as an extreme example for system partitioning), the resulting partial automata will consist of two states: one state represents IO i = 0 and one state represents IO i = 1. It is obvious that this makes fault detection on the subsystem level impossible: The subsystems do not contain any other I/O which would make it possible to determine if IO i changed its value to early or to late. The lower the number of subsystems is and the larger the subsystems in terms of I/Os belonging to them are, the more likely it is that a faulty behavior is already refused on the subsystem level. Hence, it can be concluded that the number of subsystems should be kept as small as possible.

Distributed identication of the case study system

The distributed identication approach has been applied to the case study system from chapter 3.5. The subsystems have been chosen as shown in gure 4.13 based on apriori knowledge. In each subsystem the controller I/Os belonging to one of the machine tools with the according conveyor have been grouped. Each subsystem consists of components with a direct physical relation like the single machine tools and the conveyor in front of them. The position sensor between the rst two machine tools is assigned to both subsystems since it belongs to both of the conveyors. The same consideration holds for the sensor between the second and the third machine tool. A detailed description of how to choose appropriate subsystems based on a priori knowledge or by analyzing the observed system language will be given in chapter 5.

For each subsystem depicted in gure 4.13 the observed language is depicted in gure 4.14. It can be seen that each subsystem language directly converges to a stable level. The reason for this fast convergence is the purely sequential behavior of each machine tool. Each subsystem leads to exactly the same sequence of partial I/O vectors in each observed system evolution. In section 4.1 it was explained that the aim of the distributed identication approach is to determine a model which is able to reproduce the complete global system behavior although the observed global language has not yet converged to a stable level (see gure 4.1 on page 63 for the evolution of the global Figure 4.13: Laboratory system with subsystems system language). With the result of theorem 6 it is thus possible to identify partial automata for each of the subsystems which build an automata network simulating the complete fault-free system behavior. The necessary condition of theorem 6 is fullled since each subsystem language converges.

In order to validate the presented approach, the identication data base is divided in two parts. The rst 70 observed system evolutions determine the new identication database. The remaining 30 observed evolutions represent a part of the not yet seen original system language. In gure 4.1 (page 63) it can be seen that during these last evolutions the observed language grows even for small values of n. It will be tested if the identied automata network in conjunction with the POCP and an appropriately chosen tolerance specication is able to reproduce the language represented by the last 30 observed evolutions although the model has only been identied on the basis of the rst 70 observed evolutions. For the distributed approach it is necessary to identify a partial automaton for each subsystem. Figure 4.14 shows that following the considerations of subsection 3.4.3, high values for the identication parameter k are possible since even for high values of k,

L k+1

Obs can be considered as completely observed in each subsystem. In order to determine an appropriate value for the parameter k, gure 4.15 shows the transition gap-function from denition 23 for each subsystem. It can be seen that in each case increasing k to k = 2 leads to a signicantly decreased value in the gap function. Following the considerations in chapter 3.4.3, k = 2 is a reasonable choice for each partial automaton of the subsystems. The partial automata are thus identied based on the rst 70 system evolutions with parameter k = 2. Since in none of the partial languages of length k + 1 new words are observed in the last 30 evolutions, theorem 6 assures that the automata network is able to reproduce the complete global original system language. Consequently, it could be validated successfully that the (unrestricted) cross product of the automata network indeed contains each new word having been observed during the last 30 evolutions.

After identication of the partial NDAAO representing the subsystems, the next step is to construct the upper structure in the pyramid-schema in gure 4.12 to implement the automata network restriction. In section 4.3, two possible ways to determine this upper structure have been shown. The rst one consists of the explicit construction of the cross product from which the observed part is derived. Constructing the cross product according to the procedure given in denition 29 leads to an automaton with 2565 states. The construction takes 5.7 seconds 7 . Deriving the observed cross product based on the rst 70 observed evolutions according to algorithm 3 takes 0.2 seconds.

The alternative approach presented in the former section consists in directly constructing the observed cross product from the observed evolutions and the identied partial automata according to algorithm 4. Applying the algorithm using the identied automata network and the rst 70 evolutions takes 1.5 seconds and leads to an automaton with 229 states. Based on this automaton, algorithm 5 constructs the POCP within a few milliseconds.

It can be seen that the second approach delivers the necessary models faster than the rst one (1.5 in contrast to 5.7 seconds). More important than the gain in calculation time is the reduced size of the automaton. In the rst approach it is necessary to manage an automaton with 2565 states during online diagnosis whereas in the second approach only the partial automata with 17, 15 and 15 states as well as the POCP with 230 states (229 plus the 'joker'-state added during algorithm 5) have to be handled online to generate the system language.

The last step of the distributed identication approach is the determination of the tolerance specication. It must be determined how many unobserved transitions in the POCP are tolerated without considering a generated word as a fault. Increasing the tolerance helps avoiding false alerts but comes at risk of erroneously considering faulty words as fault-free. Finding the right balance depends on the preferences of the user. In many cases the main focus may be to avoid false alerts as far as possible but to choose the tolerance specication as restrictive as possible. In order to assess the necessary number of tolerated unobserved POCP transitions, gure 4.16 is helpful. The gure considers the evolution of the observed cross product constructed during algorithm 4 (direct construction of the observed cross product). On the abscissa the observed system evolutions8 are given. On the ordinate the number of new observed transitions created by analyzing each new sequence in algorithm 4 is depicted. It can be seen that during the rst evolutions many new transitions are created since the automata network performs many new combined state trajectories. During the last ten evolutions, between zero and three new transitions are added to the observed cross product (see the zoom in gure 4.16). This implies that in future system evolutions only a few new combined state trajectories in the automata network are necessary to reproduce the observation. A possible choice for the tolerance specication is thus to accept for example one new combined movement of the automata network leading to one unobserved transition in the POCP. Evolutions like the 62th one would thus not lead to fault detection. An appropriate translation of this into a tolerance specication automaton is given in the right part of gure 4.16.

In order to evaluate the eciency of the choice of the tolerance specication, the last 30 observed system evolutions have been reproduced with the automata network and the POCP according to denition 36. Before an evolution is reproduced, each partial automaton, the POCP and the tolerance specication are reset to their initial state. Reproducing 17 of 30 evolutions was possible by ending in the OK-state of the tolerance specication. The reproduction of seven evolutions ended in the undecided state. One unobserved transition was necessary to reproduce the according observations. In six evolutions, the reproduction ended in the fault state of the tolerance specication. Note that in each of the evolutions the partial automata were able to reproduce their partial language. Only the combined network trajectory was not accepted by the tolerance specication. This test shows that the number of false alerts (which occurred in 6 from 30 evolutions) is acceptable.

Figure 4.17: Eciency of the tolerance specication tolerating one unobserved network trajectory

If the number of tolerated unknown network trajectories is increased to two, the number of false alerts can be decreased. Figure 4.18 shows the resulting number of fault detections. It can be seen that the number of evolutions ending in the 'Fault'-state of the tolerance specication is decreased to four. To compare the eciency of the distributed and the monolithic model in terms of avoiding false alerts, a monolithic NDAAO has been identied on the basis of the rst 70 system evolutions. The identication tuning parameter was set to k = 1 (although gure 4.1 shows that the according observed language does not converge). With the monolithic automaton it was not possible to reproduce 13 of 30 remaining system evolutions which corresponds to 13 false alerts. This shows that using the distributed approach it is possible to decrease this number signicantly (in this case from 13 to 4). The fact that the combined evolution according to denition 36 leads to false alerts shows that adding the upper structure in the pyramid (gure 4.12) increases the sensitiveness to faults. Global system behavior with an important dierence to already observed behavior is considered as a fault although it consists of valid subsystem trajectories. Faults leading to this kind of behavior can be detected with the pyramid structure but not with partial automata only. Increasing the number of tolerated unknown network trajectories like in the case of gure 4.18 decreases the number of false alerts, but also weakens the fault detection capability since a larger part of the cross product language can be generated in this scenario.

5 Partitioning of Discrete Event Sub-Systems

Characteristics of appropriate subsystems for diagnosis purposes

In the former chapter it has been shown that the eciency of the identication approach can be signicantly increased by dividing a given system in subsystems. Dividing a system in subsystems is also a very common technique if models are built manually. In section 2.3.2, it has been shown that the model-building process of the diagnoser approach relies on the construction of component models (e.g. for the valve in gure 2.6) which can be interpreted as subsystems. The question of how to determine the subsystems in the diagnoser approach refers to choosing the correct events for the component models. In [START_REF] Philippot | Unconditional decentralized structure for the fault diagnosis of discrete event systems[END_REF] it is proposed to choose components such that they contain one actuator (and the according actuator events) and its associated sensors (and the according sensor events). The idea is to represent causal relations in the single component models. For diagnosis purposes this kind of representation is advantageous since many faults lead to acausal system behavior which cannot be reproduced by a model representing fault-free causal relations. In section 4.2 it has been explained that choosing appropriate subsystems for closed-loop DES refers to selecting appropriate controller I/Os for each subsystem. Controller outputs are usually associated with actuators whereas controller inputs are associated with sensors. The following example shows how the representation of causal relations in a subsystem model facilitates diagnosis.

In gure 5.1 a double acting cylinder is shown. The cylinder has the two position sensors Pos1 and Pos2 which are connected to the rst two inputs of the controller (they are the rst two I/Os in the controller I/O vector). The actuator is connected to the two controller outputs Extend and Retract (the last two I/Os in the controller I/O vector). In the example it is supposed that the position sensors deliver 1 if they detect something and that actuators start an action upon receiving 1 from the controller. In the gure, two parts of partial automata representing possible subsystems1 are shown. In the rst subsystem, the two position sensors are represented. The leftmost partial automaton represents the behavior of the two sensors when the cylinder is extended: Pos1 changes its value to 0 and upon arrival of the cylinder at the extended position Pos2 changes its value to 1. In the example we consider the following fault: position sensor Pos1 is damaged such that it changes its value from 1 to 0 without the cylinder being extended. This produces the following faulty sequence:

σ F = (     1 0 0 0      ,      0 0 0 0     )
If only the I/Os of the rst subsystem are considered, the sequence is:

σ F Subsystem1 = (     1 0 - -      ,      0 0 - -     )
This sequence can be reproduced by the leftmost partial automaton by moving from the rst state to the second state. Hence, the fault cannot be detected. This situation changes if the second subsystem consisting of Pos1 and Extend is considered. A part of the system behavior is modeled by the rightmost partial automaton in gure 5.1. If only the I/Os Pos1 and Extend are considered, σ F results in

σ F Subsystem2 = (     1 - 0 -      ,      0 - 0 -     )
This sequence cannot be reproduced by the rightmost automaton. Hence, the fault can be detected. The second subsystem is more appropriate for detecting the fault at Pos1 since it covers the causal relation between the controller output Extend and the sensor Pos1. Since Pos1 should only change its value if Extend already changed its value before, a change in value at Pos1 without setting Extend before can be detected. The causal relation between Pos1 and Extend implies a required event order during 92 5.2 Partitioning based on a priori expert knowledge fault-free behavior. This precise order is not captured in the rst but in the second subsystem.

The reason for dividing a given system into subsystems in the distributed identication approach is to reduce the number of false alerts during online fault diagnosis. In chapter 4 it has been explained that an important requirement for the subsystems is to have a converging observed subsystem language. As shown in theorem 6, this leads to a minimized number of false alerts during online diagnosis with the identied model since the distributed model is able to produce words of the original global system language which have not been observed before. If the subsystems are build such that they exclusively contain I/Os with causal relations, this often leads to sequential subsystem behavior. Most often, an actuator only inuences a limited number of sensors in a well dened order (like in the position sensors of the double acting cylinder). As lined out in section 4.1, sequential behavior leads to a manageable size of the subsystem language resulting in fast convergence. In the next section, some guidelines of how to choose appropriate subsystems based on a priori knowledge are given. Since this knowledge is often not available, section 5.3 presents an approach to automatically divide a given system into subsystems with weak internal concurrency by analyzing the observed system language. It is shown how (possibly partial) knowledge about causal relations in the considered system can be integrated to improve the result of the automated partitioning. In the last part of the chapter, the presented partitioning approach is applied to the case study system.

Partitioning based on a priori expert knowledge

In chapter 4 it has been explained that subsystems must be chosen such that the original subsystem language can be completely observed within a small number of system evolutions which leads to a converging observed subsystem language. The Petri net example in section 4.1 showed that increasing the concurrency in a system increases the size of the original system language. The larger the original system language is, the more system evolution it takes to observe a signicant part of it. Hence, the observed language of subsystems with a low degree of internal concurrency typically converges faster than the language of subsystems with many concurrent parts. The challenge when dividing a system manually is to determine subsystems such that they lead to weakly concurrent internal subsystem behavior.

A possible way to get the necessary information for manual partitioning of a closedloop DES is to analyze its specication. A widely used specication language for closedloop DES in industry is Grafcet (Graphe Fonctionnel de Commandes, Etapes, Transitions) of SFC (Sequential Function Chart) (IEC, 2002). With this tool it is possible to explicitly code that two (or more) sequences of actions can be executed simultaneously. Figure 5.2 shows an example for a Grafcet with two parallel sequences of actions. It can be seen that after step 10, two parallel branches exist. Hence, the sequences in the two branches are to be executed in parallel. The sequences in two parallel branches are usually related to disjunct sets of controller I/Os. Hence, it is possible to assign 93 the controller I/Os from one branch to subsystem 1 and from the other branch to subsystem 2. Since the sequence in one branch is purely sequential, the resulting subsystem language is supposed to be small which is positive for a quick convergence of the observed subsystem language. A possible strategy to determine subsystems from a Grafcet is thus to determine substructures with a sequential execution like in one of several parallel branches. Controller I/Os which are activated (outputs) or checked (inputs) in a sequential substructure can be grouped in a subsystem.

Figure 5.2: Example for a Grafcet

A second possibility to determine subsystems is to use human observations of the given system. For the case study system of gure 4.13 (page 85) for example, it can be observed that even during the parallel treatment of three work pieces the behavior of a machine tool and the conveyor in front of it is purely sequential. If the rst machine tool and its conveyor are observed in detail, it can be seen that a new action in the subsystem only starts if the former action already nished: The drilling tool is only moved down if the work piece has stopped at the according position. This means that the conveyor must be stopped before the drilling tool is started. The conveyor is only reactivated when the drilling tool nished its task and has been moved back in its initial station. Hence, the according controller I/Os should be grouped in one subsystem.

Figure 4.13 shows that the position sensors between two conveyors are always associated with two subsystems. This is a consequence of the considerations from section 5.1. The value of the sensor between two conveyors can be inuenced by the actuators of both conveyors: The conveyor in the left of the sensor can move a work piece to the sensor and the conveyor in the right of the sensor can transport a work piece away. Since it is advantageous for diagnosis purposes to cover causal relations in the subsystems, the sensors are associated to both subsystems.

Determining appropriate subsystems manually always requires expert knowledge. For large systems this knowledge is not easily available. The same problem like described in section 2.4.1 arises: System experts with the necessary knowledge to divide the system in subsystems are often not familiar with discrete event dynamics and concepts like 'concurrency'. Hence, it is dicult to use their knowledge for the partitioning approach. The second problem is that the necessary system analysis is a time consuming and expensive task.

To apply the distributed identication approach even if the system cannot be partitioned manually, in the next section an automatic approach working on the observed system language is introduced. It is capable of working with very few system knowledge but also allows integrating expert knowledge concerning causal relations to improve the diagnosis capability of the identied models.

Automatic partitioning based on observed data

Analysis of the solution space

The problem of dividing a closed-loop DES in subsystems can be formalized as the determination of the I/O-mapping function y(sys t) from denition 25. The set y(sys t) contains the I/Os which are considered in the partial I/O vector of the t-th subsystem. In order to evaluate possible strategies to perform the system partitioning automatically, it is helpful to determine the size of the solution space. The question of how many dierent possibilities exist to divide a set of m controller I/Os in n dierent subsystems is a combinatorial problem. If the closed-loop DES has three controller I/Os {IO 1 , IO 2 , IO 3 } which are to be partitioned in two non-empty, disjunct sets (subsystems), the following three possibilities exist:

y(sys 1) = {IO 1 , IO 2 } y(sys 1) = {IO 1 , IO 3 } y(sys 1) = {IO 1 } y(sys 2) = {IO 3 } y(sys 2) = {IO 2 } y(sys 2) = {IO 2 , IO 3 }
The number of possible disjunct partitions is given by the Stirling number of the second kind [START_REF] Riordan | An Introduction to Combinatorial Analysis[END_REF]:

S(m, n) = 1 n! n i=0 (-1) i n i (n -i) m
(5.1) with m denoting the number of I/Os according to denition 24 and n denoting the number of non-empty subsystems. In case of 30 I/Os and three disjunct partitions (three subsystems and three identied partial automata), this leads to 2.06•10 14 possible solutions. Only a few of these possible solutions represent an appropriate partitioning for the distributed identication approach. The size of the solution space necessitates a search technique that avoids testing each possible solution. In the following sections a heuristic optimization approach is used to nd an optimal solution. Like in the case of genetic algorithms the optimization technique does not test each possible solution but only some subspace of the complete solution space.

Using optimization techniques for identication of discrete event systems is a known approach as explained in section 2.4.2 and 2.4.3. The new idea in this work is to combine an optimization approach with a classical algorithmic identication method. The optimization approach is used for preprocessing of the observed language. The construction of the model itself is carried out with the algorithmic approach of chapter 4. Since the determination of the model structure is not performed with the optimization approach, this computationally heavy task is solved more eciently than in existing optimization approaches for DES identication. It will be shown that the approach delivers results for real world systems in a reasonable time.

Using an optimization approach necessitates the formulation of optimization criteria. Since the aim is to minimize the internal concurrency in the subsystems, special measures are introduced in the next section. They formalize two phenomena which are strongly related to concurrency and which can be observed when analyzing the observed data. The aim is to use the measures as optimization criteria to choose appropriate subsystems.

Manifestation of concurrency in the observed system language

Existing approaches

Analyzing observed event sequences to discover concurrency is a research area in the eld of software (re-)engineering. A possible application is the development of an information system for a complex business process. The classical way is to have the system analyzed by a designer building a model coding the causal relations and concurrent structures of the business process. Like in the case of closed-loop DES, modeling is an expensive and laborious task. Several attempts have been made to systematically analyze observed event sequences and to determine causal and concurrent structures.

In [START_REF] Maruster | Discovering process models by rule set induction[END_REF] ve metrics for the analysis of event sequences are introduced. The most interesting ones are the causality metric CM and the so called XY and Y X metrics. The causality metric CM is based on the assumption that when rst event x and shortly later event y occur it is possible that x causes the occurrence of y. CM is calculated by parsing the collected event sequences. If y occurs n events after x, CM is incremented with the factor δ n , where δ is the so called causality factor (δ ∈ [0.0, 1.0]). The factor δ is a free parameter that must be chosen upon a priori knowledge. If the event order is inverse (y occurs n events before x), CM is decreased by δ n . After processing each event sequence, CM is divided by the minimum of the overall frequency of x and y (number of event occurrences). If CM is near to 0, there is no causal relation between x and y. Hence, they can be considered as concurrent.

The XY and Y X metric is used to distinguish so called exclusive and parallel relations. A relation is called exclusive if the event x never appears directly before or directly after the event y. The XY and Y X metrics are dened as

XY = |X > Y | min(|X|, |Y |) (5.2) Y X = |Y > X| min(|X|, |Y |) (5.3) |X > Y | (|Y > X|)
denotes the number of occurrences of the string xy (yx) and |X| (|Y |) denotes the number of occurrences of x (y). If XY and Y X are near to zero the events x and y are supposed to be exclusive. If both metrics have relatively high values at the same time, x and y are supposed to be concurrent. The metrics of [START_REF] Maruster | Discovering process models by rule set induction[END_REF] allow comparing two arbitrary events and to get information about their causal or concurrent relation. A problem is that each event has to be compared with each other event. If many events and long sequences are to be treated, calculating the metrics can become computationally dicult.

A very similar approach is presented in [START_REF] Cook | Discovering models of behavior for concurrent workows[END_REF]. Among other metrics, the authors use the notion of entropy to measure the information carried by an event. The entropy is indicated by the so called conditional probability of occurrence:

P (S) =
Occur(S) Occur(P ref ix(S))

(5.4) where Occur(S) denotes the number of occurrences of sequence S and P ref ix(S) denotes the sequence S with the last event removed. The entropy can be measured with P (S) as follows: If the event y always occurs after the event x, P (xy) = 1.0 and for all other events ε, P (xε) = 0.0. The direct following behavior of x is deterministic. Hence, the entropy is 0. If any other event occurs as often after x as it does y, the entropy increases until it reaches 1.0 indicating that the following behavior of x is completely random. In this case, P (S) is very small (near 0). In [START_REF] Cook | Discovering models of behavior for concurrent workows[END_REF], a special formula to precisely calculate the entropy based on P (S) is given. It allows calculating the entropy based on observed event sequences. On the other hand, the entropy resulting from dierent concurrent model structures is calculated. An example is the so called fork structure. It describes the case of the Petri net in gure 5.3. After the occurrence of x, both y and z can occur due to the concurrent structure. Ideally, yz and zy occur with the same frequency (P(xyz) = P(xzy)) in the observed event sequences. For this case, the entropy is calculated with a special formula derived in [START_REF] Cook | Discovering models of behavior for concurrent workows[END_REF]. If the entropy calculated with P(xyz) and P(xzy) determined from the analysis of the observed event sequences is near to the pre-calculated value it can be concluded that a fork-style concurrency is present.

Although both approaches deliver some useful metrics to measure concurrency in event traces, they are not appropriate for closed-loop DES. The main problem is that they cannot directly be applied to I/O vector sequences. The result would be an information about the degree of concurrency of several I/O vectors. This is not the necessary information for partitioning of the closed-loop DES. The interesting question is to determine controller I/Os which behave concurrently. This would necessitate a new denition of the event sequences for closed-loop DES. A straight forward approach [START_REF] Maruster | Discovering process models by rule set induction[END_REF] nor the approach of [START_REF] Cook | Discovering models of behavior for concurrent workows[END_REF]) is able to process this kind of event sequences. The second problem with the described approaches is that both deliver a variety of metrics (e.g. the comparison with dierent concurrent structures like the one shown in gure 5.3) which have to be analyzed in their entirety. This makes it dicult to formulate an optimization criterion since dierent measures have to be considered in parallel. Hence, it necessary to introduce new measures which are appropriate for closed-loop DES.

Language growth

The rst measure is directly related to the precondition for the completeness of the identied distributed models. The distributed model is complete if for each of the subsystems sys i , L k+n Ident,sys i ⊇ L k+n Orig,sys i holds (theorem 6). Assumption 5 says that this can be stated if the according language converges to a stable level.

Denition 37 (Observed language up to the h-th system evolution). L n,h Obs,sys i denotes the observed language of length n from subsystem sys i constructed according to denition 20 on the basis of the rst h (of p) observed sequences: Σ = {σ 1 , . . . , σ h }. The observed sequences are built on the basis of the partial I/O vectors of subsystem sys i according to denition 26.

If the observed language does not converge to a stable level, the following equation holds:

|L n,h Obs,sys i | -|L n,h-1 Obs,sys i | > 0 (5.5)
Since the h-th observed sequence contains at least one partial I/O vector that has not been seen before, the cardinality of the language L n,h

Obs,sys i is larger than the cardinality of L n,h-1 Obs,sys i . This eect allows formulating a measure for the convergence of the observed language for an I/O partitioning given by the I/O mapping function y.

J 1 (y) = 1 N sys ∀sys i p h=2 (√ h(|L n,h Obs,sys i | -|L n,h-1 Obs,sys i |))
(5.6) with p denoting the overall number of observed sequences an N sys denoting the number of subsystems (according to denition 25 on page 66). If for a given partitioning y, there is a high degree of concurrency in one of the subsystems sys i , then the according language growth will be important and thus lead to high values of J 1 (y). In equation 5.6 the running index h starts at h = 2. The result is that the rst dierence build in the measure is the language growth between the rst and the second sequence. The rst sequence can add an arbitrary number of new words to the language without having an inuence on the measure. This reects the fact that in the case of perfectly sequential subsystem behavior it is possible to observe the complete language during the rst system evolution. This eect has already been shown for the subsystems chosen upon a priori knowledge in the case study system (see gure 4.14 on page 85). Starting the running index h at h = 2 avoids the measure being inuenced by the new words in the rst sequence which dene the minimum of the observed language necessary to identify perfectly sequential subsystem behavior. The factor √ h adds more weight to new words occurring at later observed system evolutions. The earlier an observed language converges to a stable level, the more condently can be stated that it has been completely observed. Hence, words leading to an early language growth are less negative then words leading to a growth during the last observed evolutions. During tests with the optimization method, the factor √ h delivered better results than simply multiplying with h. By division with the number of subsystems, the optimization criterion is normalized. For the approach presented in section 5.3.3 this facilitates determining dierent numbers of subsystems with the same set of optimization parameters.

Since the measure of equation 5.6 will be used as an optimization criterion, it should be possible to calculate it as fast as possible to increase the eciency of the optimization approach. The measure basically consists of building and counting the observed words of length 1..n. According to denition 20, a new word in the word set W 1

Obs automatically leads to new words in the sets W j Obs ∀1 < j ≤ n. More generally, a new word in W m<n Obs automatically leads to new words in the sets W j Obs , ∀m < j ≤ n. Since it is not possible to have new words w m with m < n in L n Obs without leading to new words w n , it is sucient to consider the sets W n,h Obs,sys i and W n,h-1 Obs,sys i in equation 5.6:

J 1 (y) = 1 N sys ∀sys i p h=2 (√ h(|W n,h Obs,sys i | -|W n,h-1 Obs,sys i |))
(5.7)

This avoids building and counting words with length lower than n. Since this saves computation time, J 1 (y) is more appropriate for the optimization approach. If the observed language of the case study system is considered (without partitioning in subsystems), the calculation of J 1 (y) takes 4400ms whereas the calculation of J 1 (y) takes only 2500ms for L 3

Obs and W 3 Obs respectively. Since the calculation has to be carried out up to several thousand times during optimization, this gain in calculation time is interesting.

Branching degree

The second measure is related to the structure of an automaton identied on the basis of observed system data. Figure 5.4 shows an example. In the right part of the gure a part of the reachability graph of a Petri net is shown. It can be seen that the three parallel branches of the Petri net lead to a state with three leaving transitions (state 2). Since after the occurrence of a the events b or c or d can be produced, the reachability graph contains three following transitions in state 2. If event b was produced, the automaton is in state 3. In this state both events c or d can be produced due to concurrency. Hence, state 3 has two leaving transitions. This shows that concurrency typically leads to several possible behaviors which are reected by states with several leaving transitions in the reachability graph of an underlying Petri net. If for a given closed-loop DES an NDAAO is identied with algorithm 1, the resulting automaton can be seen as an approximation of the reachability graph of a Petri net representing the considered system. Hence, concurrency in the system is represented by states with several leaving transitions. As an example we consider the following three observed sequences:

σ 1 = (     1 0 0 1      ,      0 1 0 1      ,      0 1 1 0     ); σ 2 = (     1 0 0 1      ,      1 0 1 0      ,      0 1 1 0     ); σ 3 = (     1 0 0 1      ,      0 1 1 0     )
Applying algorithm 1 with k = 1 to the three sequences leads to the automaton in gure 5.5 on the left. It can be seen that the initial state has three leaving transitions that are necessary to reproduce the dierent observed sequences. In the example we assume that the global system consists of two concurrent subsystems: The rst subsystem consists of the rst two I/Os of the I/O vector and the second subsystem consists of the remaining two I/Os. It can be seen that the I/Os of the subsystems change their values concurrently leading two three possible following behaviors of the rst state. In one following behavior the rst subsystem leads to earlier I/O changes (σ 1). In the next case, the second subsystem evolves faster (σ 2) and in the third case, both systems evolve simultaneously (σ 3).

If for each subsystem an own partial automaton is identied, the resulting automata do not have states with several leaving transitions as depicted in gure 5.5 on the right. Since the subsystem behavior is sequential, the initial states of the partial automata have only one leaving transition. This shows that reducing concurrency has a direct eect Denition 38. The branching degree BD of the NDAAO sys i identied for subsystem sys i is dened as

BD(NDAAO sys i) = ∀x∈X 0 if |f (x)| ≤ 1 |f (x)| -1 if |f (x)| > 1
The function (conditionally) counts for each state of the NDAAO identied for subsystem sys i the leaving transitions. Only states with more than one leaving transition (|f(x)| > 1) contribute to this measure since this represents possible concurrent behavior. For states with several leaving transitions, we subtract one from the number of transitions. This is done since one following transition in a state does not represent concurrency. In the example of gure 5.5, the monolithic model has a BD of 2 since only the rst state contributes to the measure and has three leaving transitions. Each partial automaton on the right of gure 5.5 has a BD of 0 since due to the purely sequential subsystem behavior each state has at most one leaving transition.

The branching degree is an absolute measure since it is not normalized to the size of the automaton. It only considers states with several possible following behaviors but ignores states with only one leaving transition. A normalization to the size of the automaton (e.g. to the state space) could lead to a situation where the branching degrees of two automata with a diering number of states are not the same even if both automata contain the same number of states with more than one leaving transition. In this case, the automata reect the same degree of concurrency and should thus lead to the same value for BD. Hence, the automata in gure 5.6 have the same branching degree (BD = 2) although one automaton has more states. The long state trajectory before state 7 is ignored by the measure since it reects sequential behavior. The same holds for the states A and B in the second automaton. The non-normalization is an important property of the measure since the optimal solution for I/O partitioning can lead to subsystems resulting in automata of dierent size. (5.8) with NDAAO sys i denoting the automaton identied with a given parameter k for subsystem sys i .

It is possible to have BD > 0 and thus J 2 (y) > 0 although there is no concurrency in the system. If several 'decisions' exist in the system (e.g. large OR small work piece), it is possible to have several following states in a given identied automaton to reect the dierent possible conditional (and not concurrent) behaviors. The same eect happens if the identication parameter k is not chosen large enough as explained in section 3.4.3. This can lead to states in the identied automaton approximating several closed-loop DES states. Such an automaton state can have several leaving transitions to represent each possible following behavior of the represented DES states. During the optimization approach presented in the next sections, the aim is to nd a y leading to a minimized J 2 (y). It is not necessary to reach branching degree of zero. Hence we can cope with BD min > 0.

A heuristic optimization approach: Simulated Annealing

As explained in section 5.3.1, partitioning a given closed-loop DES into appropriate subsystems is a combinatorial problem. With the measures introduced in section 5.3.2 it is possible to evaluate if a possible partitioning y represents a useful solution. The immense size of the solution space (equation 5.1) makes it impossible to systematically evaluate each solution. A possible way to solve combinatorial problems without analyzing the complete solution space is to use so called metaheuristic approaches like simulated annealing [START_REF] Michalewisz | How to Solve it: Modern Heuristics[END_REF]. Simulated annealing is an optimization algorithm inspired by the annealing process in metallurgy. In metallurgy, a possible way to inuence material properties is to heat them to above their crystallization temperature. Due to the heat, atoms become unstuck from their initial positions (corresponding to a local minimum of the internal energy) and wander randomly to other positions with other degrees of energy. Slow cooling gives them the chance to reach congurations with lower internal energy than the initial one. If the atoms reach positions with a lower internal energy, this relieves internal stresses which improves the cold working properties of the metal. The simulated annealing algorithm simulates this process. If it is well parameterized, it is more ecient than classical gradient descent methods due to its capability of leaving a local minimum.

Algorithm 6 shows a possible implementation for simulated annealing. It is a slightly modied version of the algorithm in [START_REF] Michalewisz | How to Solve it: Modern Heuristics[END_REF]. In the rst step, the metaphorical temperature is set to the initial temperature T 0 . The initial temperature T 0 is a free variable which must be chosen by the user. In the next step, a rst solution for the I/O mapping function y c (c for current) is chosen. It randomly assigns all I/Os to subsystems. A description of this function will be given in the next two sections. In line 3, the main optimization loop starts. First, a new solution y new is chosen. A detailed implementation for choosing y new on the basis of y c is given in the next section. In the next step, the new solution is compared to the current solution. The function J(y) implements one of the tness functions J 1 or J 2 from the former section. If the new solution y new leads to a lower value of the optimization criterion, y new becomes the new current solution y c . In this case, the optimization algorithm works like a gradient descent method. If the new solution is not better than y c it is decided probabilistically if the new solution nevertheless becomes the current one. This helps to avoid getting stuck in a local minimum. The probabilistic choice is based on a calculation considering the current temperature and the dierence between the tness of y c and y new . In line 7, J(y c) -J(y new) can only be negative or zero, since J(y c) ≤ J(y new). The dierence is divided by the current temperature. Although the temperature is decreased during each repetition of the optimization loop, it keeps a positive value. Hence, the dierence divided by T is always a negative number or zero leading to the exponential function always returning a value in the interval (0, 1]. A given dierence J(y c) -J(y new) leads to a larger result of the exponential function in an early cycle of the optimization algorithm (large T) than in a later cycle with a decreased T . The new solution becomes the current one if the result of the exponential function is larger than a randomly chosen number of the interval [0, 1). This makes accepting a worse solution y new as the new solution y c more probable if the dierence J(y c) -J(y new) is small and the temperature is still high. In line 10, the temperature is decreased with the cooling rate CR (with 0 < CR < 1). The algorithm stops if the predened lower bound of the temperature T min is reached.

Since it is possible to accept a worse solution y new as the current solution, it is reasonable to save each analyzed solution with the according tness value in a list. It is possible that the probabilistic nature of the algorithm leads to a nal solution which is not the best one analyzed so far. In this case, the best solution from the list can be taken.

An important part of the optimization algorithm is the determination of possible solutions. In the next two sections, two approaches for determining a new I/O partitioning based on a current solution are presented. T := T * CR 11: until T < T min

Minimal knowledge solution

The question of how to select possible solutions in algorithm 6 is closely related to the degree of available a priori knowledge. First, we assume that the available knowledge only allows dening the necessary number of subsystems. If this knowledge is not available, the number of subsystems can be increased bit by bit until the optimization algorithm admits an acceptable solution.

At the beginning of algorithm 6, an initial I/O partition has to be determined as rst solution y c . A common way to get a rst solution for simulated annealing is to determine it with a random approach if no better knowledge is available. Algorithm 7 shows the implementation for the partitioning problem. First, it assigns empty sets to each subsystem. Via the random-function, a subsystem is selected randomly from the set of all subsystems. This allows assigning each controller I/O IO i randomly to one of the subsystems. The algorithm terminates if each subsystem contains at least the predened minimal number of I/Os. Apart from determining an initial solution it is also necessary to continuously construct new solutions when applying the optimization algorithm. Although simulated annealing has some non-deterministic characteristics, it is not reasonable to take completely random samples from the solution space. In the case of nding appropriate subsystems it can be assumed that having a good solution, it is more ecient to look for a better solution in the close 'neighborhood' of the original solution than considering the complete search space. If for example 90% of the I/Os have been assigned appropriately in a given solution y c , it is more likely to get a good solution y new by only altering the assignement of a few I/Os than rejecting the complete solution and determining a new one e.g. with algorithm 7. Algorithm 8 shows a way to alter an existing solution. First, the old solution is copied to the new one. Then, a predined number of I/Os is randomly chosen. The solution dierence sD is a paramter which denes how close the new and the old solution are. It denes the number of I/Os for which the according subsystem will be altered. Each randomly selected I/O is erased from its subsystem. In lines 6 and 7, a new subsystem randSys is chosen randomly and the selected I/O is added to randSys. If the procedure leads to a forbidden solution (with at least one subsystem consisting of less than minIO I/Os) the algorithm starts again. It is obvious that the choice of the solution dierence parameter sD has a direct inuence on the performance of the optimization approach. If it has a too small value, algorithm 8 is not able to determine a new solution varying enough to leave a local minimum. If sD is too large, it is dicult to come close to a minimum since the new solutions will be situated far away in the search space. Hence, it is crucial to properly choose sD. It can be necessary to perform dierent optimization runs with various values for sD to get a suciently good solution. The practical experience gained throughout this work showed that sD = 3 is a good starting value for systems with up to 200 controller I/Os.

Integrating knowledge about causal relations

The minimal knowledge approach presented in the former section does not allow considering any structural information of the closed-loop DES. In many practical cases, some limited system knowledge is available. The knowledge considered in this section is the (possibly partial) knowledge of causal relations of actuators and sensors in the 105 plant. As described in section 5.1, covering causal relations makes a model more appropriate for fault diagnosis purposes. It is thus preferable to integrate this knowledge if available. The idea of the algorithms in this section is to assign controller I/Os always together with causally inuenced I/Os to subsystems.

The knowledge about causal actuator sensor relations belongs to the system expert domain. Since a system expert is usually not familiar with DES modeling or identication techniques, it is necessary to develop a tool to formalize this knowledge. An intuitive way to capture the knowledge is to enumerate for each actuator the sensors which can be inuenced by it. In terms of the controller I/O vector, this can be implemented by a function assigning a set of controller inputs to each controller output: Denition 39 (Causal I/O map). The function CausalM ap : IO → 2 IO assigns to each controller input a set of controller outputs.

If no other information is given, we assume that for the initial implementation of the function it holds ∀IO i ∈ u : CausalM ap(IO i) = {} with u denoting the controller I/O vector. To capture the causal actuator sensor relations, a system expert has to ll the function CausalM ap like depicted in gure 5.7. In the gure on the left, only the output part of the controller I/O vector is shown whereas on the right only the inputs are given. The expert has to assign the relation of outputs and inputs. Setting a given controller output (and thus starting or stopping an actuator) at dierent internal states of a closed-loop DES may not always inuence the same sensors (controller inputs). It is nevertheless preferable to enumerate all inputs which are potentially inuenced by setting a controller output in order to capture the actuator sensor relations as completely as possible. An example for such an actuator sensor relation is a conveyor with three position sensors like in gure 3.6 on page 52. If the conveyor is transporting a work piece, it depends on the actual work piece position which position sensor is inuenced next. Since the actuator of the conveyor potentially inuences each position sensor, the according controller output should be related to each input leading to a position sensor. Like shown in gure 5.7, it is thus possible to assign several inputs to a single output. It can also be seen that some controller inputs are inuenced by several controller outputs. On the other hand it is possible that the expert cannot determine a set of inuencing outputs for each input or vice versa.

Another aspect of building the causal I/O map is covered by the following assumption: Assumption 6. It is assumed that ∀IO i ∈ u the following condition holds:

if CausalM ap(IO i) = {} then ∀IO j ∈ u : IO i / ∈ CausalM ap(IO j)
By assumption 6 it is made clear that each I/O inuencing at least one other I/O is not itself inuenced. The assumption is always met if the only possible inuence captured in CausalM ap is from controller outputs to controller inputs like in gure 5.7.

Considering the information captured in the causal I/O map, it is necessary to modify the algorithms determining initial and next solutions. First, a modied version of The next step is to modify algorithm 8 to determine a next solution during optimization. Algorithm 10 follows the same principles like algorithm 8 but also considers the causal I/O map. At the beginning of the algorithm, the current solution is copied to the new one. Then, an I/O set is built containing each I/O which is not causally inuenced by any other I/O. If assumption 6 is met, the set is built such that each I/O is either directly part of it or it is causally inuenced by some I/O in IOSet. From this set sD I/Os are randomly chosen. sD is the solution dierence introduced in the former section. From line 5 to line 9, the randomly selected I/Os and the according causally inuenced I/Os (dened by the causal I/O map) are taken from their initial subsystem. Together with their inuenced I/Os, they are added to a new randomly chosen subsystem. The algorithm stops if each subsystem has at least the predened minimum number of I/Os. y new := y c 3: In dierence to algorithm 8, algorithm 10 does not only transfer single I/Os to other subsystems. If an I/O IO i is given to a new subsystem, any I/O inuenced by IO i (which consequently is part of CausalM ap(IO i)) is also transfered. The algorithm assures that causal relations are maintained when exploring the solution space. As explained in section 5.1, I/Os with a causal relation are typically not concurrent. Hence, the presented approach is usually not an obstacle of nding subsystems with low internal concurrency but a help.

IOSet := {IO i ∈ u|∀IO j ∈ u : IO i / ∈ CausalM
Apart from the advantages of capturing causal relations in the subsystems explained is section 5.1, the approach presented in this section has another positive impact on diagnosis: If several I/Os are inuenced by more than one other I/O, the resulting subsystems can have overlapping I/Os. Since overlapping I/Os automatically restrict the combined automata network behavior (and thus the exceeding network behavior), they have a positive inuence on the fault detection capability of an identied distributed model.

Partitioning of the case study system

Evaluation criteria

Before the optimization approach to divide a closed-loop DES can be evaluated with the case study system, it is necessary to dene evaluation criteria. The aim is to provide means to systematically compare an automatically determined set of subsystems with a predened 'good' solution. This makes use of the fact that for the case study system the necessary expert knowledge to nd an appropriate solution is available. The better the similarity of the optimization results of the case study system to the predened solution is, the more can be trusted in the method if it is applied to systems with few available knowledge. The knowledge of a good partitioning for the case study system is thus only used for evaluation purposes and not during the automatic determination of the partitioning.

The similarity of an automatically found solution to a predened one can be given by two criteria:

1. Absolute number of controller I/Os shared by an automatically generated and a predened subsystem.

2. Number of I/Os shared by an automatically generated and a predened subsystem in relation to the number of I/Os in the predened subsystem.

In the rst criterion, the cardinality of the intersection of a predened and an automatically generated subsystem is calculated:

EC 1 (sys aut , sys predef) = |sys aut ∩ sys predef |
(5.9)

with sys aut and sys predef denoting an automatically chosen and a predened subsystem respectively. The higher EC 1 is, the more similar both subsystems are. This criterion only counts positive matches. Wrongly assigned I/Os are ignored but decrease the quality of the automatically found solution. The second criterion helps to overcome this problem since it relates the number of correctly assigned I/Os with the total number of I/Os in the predened subsystem:

EC 2 (sys aut , sys predef) = EC 1 (sys aut , sys predef) max(|sys predef |, |sys aut |) × 100%

(5.10) Equation 5.10 delivers the proportion of correctly assigned I/Os. The following example shows how the criteria are used to compare two solutions y aut and y predef consisting of several subsystems. Table 5.1 shows two solutions y aut and y predef as well as the resulting values for the evaluation criteria. Comparing the predened subsystem sys III and the automatically determined sys B for example shows that they share two I/Os (EC 1 = 2) leading to EC 2 = 67%. So far, the criteria have only been used to compare two given subsystems. The original aim of the evaluation criteria is to compare two solutions for the partitioning problem, each consisting of several subsystems. The comparison of two solutions necessitates combining the results of several subsystem comparisons. In table 5.1, the dierent possibilities to compare the subsystems of the predened and the automatically determined solution are shown. To compare the two solutions it is for example possible to compare sys I with sys A , sys II with sys B and sys III with sys C . Overall, six possible ways to compare the subsystems of the both solutions exist. To determine the similarity of several subsystem pairs, the resulting values for EC 1 and EC 2 have to be combined. The combination of the rst criterion (referred to as EC 1) is the sum of the single values of the subsystem comparisons. For the rst row in table 5.2 we get:

EC 1 = EC 1 (sys I , sys A)+EC 1 (sys II , sys B)+EC 1 (sys III , sys C) = 0+1+0 = 1 (5.11) Automatically generated y aut (sys A) = y aut (sys B) = y aut (sys C) = {IO 6 , IO 9 } {IO 1 , IO 3 , IO 7 , IO 8 } {IO 2 , IO 4 , IO 5 } EC 1 EC 2 EC 1 EC 2 EC 1 EC 2 Predened y predef (sys I) = 0 0% 1 50% 1 50% {IO 1 , IO 2 } y predef (sys II) = 1 25% 1 25% 2 50% {IO 3 , IO 4 , IO 5 , IO 6 } y predef (sys III) = 1 33% 2 67% 0 0% {IO 7 , IO 8 , IO 9 }
Table 5.1: Example for the evaluation criteria

The combination of the second criterion (referred to as EC 2) is calculated by the sum of EC 2 for the single subsystems. To keep a meaningful percentage (below 100%), the sum is divided by the number of subsystem comparisons. For the rst line in table 5.2 we get:

EC 2 = EC 2 (sys I , sys A) + EC 2 (sys II , sys B) + EC 2 (sys III , sys C) 3 = 25% 3 = 8.3%
(5.12) Table 5.2 shows for all possibilities the resulting combined criteria. It can be seen that three comparison orders lead to the same EC 1 value. To decide which one represents the best similarity, EC 2 is considered. It can be seen that the last combination leads to the highest values in both EC 1 and EC 2 . It is obvious that the comparison order has a strong inuence on the result of comparing two solutions. In the following, we will always take the comparison order leading to the highest value in EC 1 . EC 2 will also be given to serve as an additional indicator for the similarity (see e.g. gure 5.10). If several orders leading to the same EC 1 exist, the one with the highest EC 2 will be taken as basis for the comparison. This makes sure that the most similar predened and automatically generated subsystems are compared. In section 4.4, the system partitioning determined with a priori knowledge has been explained. It is depicted in gure 4.13 on page 85. In the following sections, this solution will be used as a reference for the automatically determined ones.

Comparisons / Criteria

Partitioning with minimal knowledge

In this section the minimal knowledge approach from section 5.3.4 is applied to the case study system. For the determination of the optimization results in this chapter, the initial temperature T 0 in algorithm 6 was set to T 0 = 1000. The cooling ratio was set to CR = 0.99 and T min was set to T min = 0.43 leading to about 1000 iterations in the algorithm. The solution dierence sD for algorithm 8 was set to sD = 3. The minimal number of I/Os in a subsystem IOM in was set to 3.

In order to show that it is possible to get meaningful results even if the a priori knowledge does not allow predening the necessary number of subsystems, the optimization approach has been carried out with two, three and four subsystems. Figure 5.8 shows the evolution of the optimization criterion J 1 (y) for dierent numbers of subsystems. The observed word sets of length n = 2 have been analyzed. The gures show J 1 (y) for the currently accepted solution. It can be seen that due to the stochastic nature of simulated annealing, the algorithm temporarily accepts worse solutions especially during early optimization cycles where the temperature is still high. At the end, each optimization converges to a stable value. It can be seen that J 1 (y) is decreased signicantly from 123.98 to 19.44 when the number of subsystems is increased from two to three. Since further increasing the number of subsystems to four does not lead to a signicant improvement of J 1 (y), it can be concluded that three is an appropriate number for the subsystems. Using the second optimization criterion leads to similar results. The necessary identication of partial NDAAOs was parameterized with k = 2. Figure 5.9 shows the evolution of the optimization criterion J 2 (y) for dierent numbers of subsystems. Again, it can be seen that the solution with three subsystems is better than the solution with two subsystems. Increasing the number of subsystems to four does not have a signicant eect. The solution with three subsystems converges to J 2 (y) = 3. This indicates that there are at maximum three states in the automata identied for the subsystems with more than one leaving transition. The partial automata thus represent the sequential subsystem behavior. In the next chapter it will become clear that a low number of leaving transitions signicantly improves the fault isolation techniques based on the identied models.

The calculation of both optimization criteria can be parallelized. Once a new solution y has been determined during the optimization algorithm, each subsystem is analyzed separately. In case of J 1 (y), the subsystem language is counted and in case of J 2 (y) the partial NDAAO are identied and analyzed. This makes it possible to calculate the results for the subsystems in parallel : For J 2 (y) it is e.g. possible to identify partial NDAAO for each subsystem independently and to sum up the branching degree results for the single subsystems. This allows exploiting the parallel computing capabilities of modern computers. Using an Intel R Core TM 2 Duo CPU (two CPU cores with 1.8GHz) leads to a reduction of the optimization time of about 30%. The duration of each optimization run can be seen in the gures. To analyze the similarity of automatically determined and predened good solutions, gure 5.10 depicts the values J 1 (y) and J 2 (y) in some selected optimization cycles. The results are taken from the optimization yielding three subsystems. The gure also shows the evaluation criteria dening the similarity to the predened solution. The reference solution is the one shown in gure 4.13 on page 85. It can be seen that in both cases solutions occurring at later cycles are more similar to the reference solution than early ones (high values of EC 1 and EC 2). The gure shows that there is a strong relation between a low value of the optimization criteria and the similarity to the reference solution. This allows being condent about the potential of the optimization approach: Since the automatic approach delivers very useful results for the case study, it is very probable that it also performs in this way when similar systems are considered where no sucient knowledge to a priori dene a partitioning solution is available. In gure 5.11, the resulting subsystem partition for both optimization criteria is shown. It can be seen that both criteria lead to very similar results which are close to the reference solution. The language growth criterion leads to some wrongly assigned I/Os (e.g. I3.0 in a subsystem with mainly I/Os from the rst machine tool). Although using the branching degree criterion led to a better solution, this was not always the case. Starting the optimization algorithm several times always led to similar but mostly not equal solutions. The main dierence between the automatically determined and the predened solutions are the missing synchronization I/Os due to the next solution algorithm from section 5.3.4. Modifying algorithm 8 such that it assigns several I/Os to subsystems is possible from a theoretical point of view. Practical experiences with such a modied algorithm showed that this makes the solution space too large. It was not possible nding acceptable solutions. In the following section, it will be shown that using knowledge about causal relations helps to overcome this problem.

Partitioning with knowledge about causal relations

As shown in section 5.3.5, it is possible to use knowledge of causal actuator sensor relations to improve the results of the automated partitioning approach. First, it is necessary to dene the causal map function according to denition 39 on page 106. Figure 5.12 shows the causal actuator sensor relations of the case study systems. It contains all I/Os from table 3.2 and gure 3.10 (page 59). It can be seen that some actuators like O1.4 (drilling motor) do not have an inuence on any sensor. Others like O1.5 (conveyor in front of the drilling machine) have an inuence on several controller inputs. Some sensors like I2.4 (position sensor between drilling and vertical milling machine) are inuenced by several controller outputs.

Figure 5.12: Causal actuator sensor relations of the case study system Based on the actuator sensor map given in gure 5.12, the optimization approach is applied. Like in the former section, the initial temperature T 0 in algorithm 6 was set to T 0 = 1000. The cooling ratio was set to CR = 0.99 and T min was set to T min = 0.43 leading to about 1000 iterations in the algorithm. In this section, algorithm 10 is used to determine the next solution during the optimization. The solution dierence sD was set to sD = 3 and IOM in was set to 3. Figure 5.13: Evolution of the optimization criteria using causal knowledge (for the determination of three subsystems)

The qualitative results of determining two, three and four subsystems are similar to the ones shown for the minimal knowledge solution. Hence, only the case of nding three subsystems is considered. Figure 5.13 shows the evolution of the optimization criteria. Like in the former section, the optimization criteria are successfully minimized. It can be seen that using the branching degree criterion is slightly faster than using language growth.

Figure 5.14 shows that the approach using knowledge about causal relations also delivers results which are similar to the reference solution. The main dierence to the minimal knowledge approach is that the resulting subsystems share several I/Os. Figure 5.15 shows the resulting partitions of the optimization. It can be seen that both criteria deliver close approximations to the reference solution. The only I/O which is wrongly assigned is O3.4. The solutions using causal knowledge both lead to the same synchronization I/Os. For the case study system the causal knowledge is completely available. The results from the former section show that even if this knowledge is not completely available, the optimization approach delivers useful results. Treating the case study system with the optimization approach showed that it is possible to obtain subsystems such that the precondition of theorem 6 is met. This makes sure that using the distributed models for fault diagnosis it is possible to signicantly reduce the number of false alerts compared to the monolithic approach. The fact that the optimization approach delivered for the case study solutions which are very close to a solution dened based on a priori knowledge shows that the method has a considerable potential.

6 Fault Detection and Isolation 6.1 Fault detection and isolation with the identied fault-free monolithic model 6.1.1 Overview of the proposed method

After the chapters dealing with identication of fault-free system models in the rst part of the work, chapter 6 addresses detecting and isolating faults based on the identied models. First, a method to work with the monolithic system model is presented in section 6.1. This approach is then adapted to the identied distributed models in section 6.2. Figure 6.1 shows the online monitoring scheme using the monolithic system model. The model is run in an evaluator which tries to nd a trajectory corresponding to the observed system behavior. If such a trajectory exists, there is no deviation between observed and modeled behavior. Hence, no fault is detected. If the evaluator is not able to reproduce the observed system behavior, a deviation exists and leads to fault detection. A deeper analysis of the deviation allows isolating the fault. As explained in section 2.3, most of the known diagnosis methods for DES work with a model of the fault-free and the faulty behavior. Since in the case of the presented identied models only the the fault-free behavior is captured, a new approach has to be developed.

In continuous system theory, working with so-called residuals is a well-known technique to use fault-free system models for online fault diagnosis. [START_REF] Isermann | Trends in the application of model-based fault detection and diagnosis of technical processes[END_REF]

dene residuals as follows:

A residual is a fault indicator, based on a deviation between measurements and model-based computation.

In the upper part of gure 6.2 this principle is depicted for continuous systems. The deviation between a measured signal evolution (dashed line) and the signal evolution computed using a model (solid line) is quantied. Analyzing this quantication, it is possible to detect and isolate faults in the observed system. Figure 6.2 also shows measurements of a DES and a (standard) automaton modeling the considered system. The observation of the DES is given by an event sequence as shown in the lower part of the gure. The expected event trace can be derived from the automaton modeling the system. The observed sequence a, b can be reproduced by the state trajectory 0, 4, 5. When event c is observed, the sequence is no longer reproducible with the given automaton. It can be seen that the observed event c was unexpected and the event d was missed. This makes it highly probable that one of these events is related to the detected fault. The presented approach focuses on the analysis of the dierence between measured and expected DES behavior. Two generic fault symptoms will be considered in the following: Faults leading to observed but unexpected events and faults that lead to missed events. The idea is related to the principle of Parsimony of [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF] (see page 22) where diagnosis is understood as conjecture of a minimal set of components that has to be assumed to be faulty to explain the current observation. The aim of the fault isolation method is to determine controller I/Os which are related to a faulty component. If for example a position sensor does not change its value due to a fault, we want to isolate the controller I/O related to this sensor. With this information, the maintenance personnel does not have to check each sensor and actuator but only those which are related to reported potentially faulty I/Os. Especially if large industrial facilities are considered, this signicantly reduces the time to start the necessary repair actions.

The models dened so far create a language based on controller I/O vectors. To determine single I/Os which are possibly related to a fault, it is necessary to distinguish the behavior of single I/Os during the evolution of an observed or modeled I/O vector sequence. The next section introduces appropriate functions which deliver the necessary information.

E = {IO i _0, IO i _1, IO i _ε ∀1 ≤ i ≤ m}
with m denoting the number of controller I/Os in the system.

Edge(IO

i (j), IO i (k)) =        IO i _1 if IO i (j) = 0 and IO i (k) = 1 IO i _0 if IO i (j) = 1 and IO i (k) = 0 IO i _ε if IO i (j) = IO i (k)
delivers the resulting edge of the i-th I/O from the comparison of its values from the controller I/O vectors u(j) and u(k). The NDAAO as part of the evaluator As explained in section 2.3, the rst step in diagnosis is fault detection. In our case, fault detection is performed using the NDAAO as fault-free system model. Figure 6.1 shows that the model is used in the evaluator to reproduce the observed system output.

Instead of Edge(IO

i (j), IO i (k)) we also write Edge(u(j)[i], u(k)[i]), i.e.
A more detailed view of this procedure is given in gure 6.5. The part with dashed lines will be introduced in the next sections. The current I/O vector u(t) exhibited by the closed-loop DES is given to the evaluator. Following algorithm 11, the evaluator tries to determine the current state of the NDAAO. The main idea of this algorithm is to determine a current state estimation following the observed evolution set.

X t-1 1: if | X t-1 | > 0: then 2: X t := {x ∈ X| ∃x pre ∈ X t-1 ∧ x ∈ f (x pre) ∧ ES(λ(x pre), λ(x)) = ES(λ(x pre), u(t)) } 3: else 4: X t := {x ∈ X|λ(x) = u(t)} 5: end if X t-1 := X t 6: return X t
states of state x. The algorithm checks if the former state estimation X t-1 contains at least one state. If the observation is being initialized or after a fault has been detected, this set is empty. In case of an empty estimation (| X t-1 | = 0), the evaluator determines each NDAAO state with the observed I/O vector as output as potential current state (see line 4 of algorithm 11) and adds it to the current state estimation X t . If the former state estimation X t-1 was not empty, the algorithm checks the observed evolution set of I/O edges in order to determine the current state estimation. Each NDAAO state that can be reached by the observed edges starting in one of the states from the former state estimate X t-1 is added to the current state estimation X t . During fault-free system operation the state estimate is unambiguous (| X t-1 | = 1) and the next current state of the NDAAO is the successor of the last current state that can be reached by producing the observed evolution. The resulting state estimation X t of the evaluator as well as the observed I/O vector u(t) are given to the analyzer where the fault detection policy and the fault isolation operations are implemented. The fault detection policy is given by

F D(X t) = f ault if | X t | = 1 OK if | X t | = 1 (6.1)
A fault is detected if the evaluator cannot determine an unambiguous state estimation. Figure 6.6 shows an example of the state estimation and fault detection process. In the lower part of the gure, the NDAAO is depicted. In the part 'observation' an observed I/O vector sequence is shown. Between NDAAO states and between I/O vectors, the resulting edges are given. It is assumed that the algorithm starts without a dened initial NDAAO state x 0 like it is the case if the start of the diagnosis procedure is not synchronized with the start of the closed-loop DES. After the observation of the rst I/O vector, the evaluator algorithm goes to line 4 since | X t-1 | = 0. The evaluator determines the NDAAO states with λ(x) = u(t) and adds them to X t . State x 1 and state x 3 have the rst observed I/O vector as output. The fault detection policy returns 'fault' since the state estimation is not unambiguous. This changes as soon as the next I/O vector is observed which leads to IO 1 _0. Starting from x 1 or x 3 only x 2 can be reached by producing the same evolution set. Hence, the state estimation only contains one state (line 2 of algorithm 11) which makes the fault detection policy declare 'OK'.

121

The state estimation proceeds with the next observed I/O vectors by determining the state trajectory x 3 , x 4 . When the last I/O vector is observed, the resulting edge IO 1 _0 cannot been produced by leaving state x 4 . Hence, the state estimation from line 2 in algorithm 11 results in an empty set which leads to fault detection. During the initial phase of the observation, a fault is detected until the state estimation becomes unambiguous. This can be avoided if an initial NDAAO state x 0 is given and the start of the diagnosis process and the closed-loop DES are synchronized. Theorem 7 (Eciency of the state estimation algorithm). Given is an NDAAO identied with parameter k according to algorithm 1. If algorithm 11 is used to estimate the current NDAAO state starting with an empty estimate | X t | = {}, the observation of a fault-free I/O vector sequence of length k which is part of the identied language,

w k ∈ L k Ident is sucient to determine an unambiguous state estimate | X t | = 1.
Proof of theorem 7. If the identication tuning parameter k was chosen such that L k Ident ⊇ L k Orig can be stated according to assumption 5, each fault-free I/O vector sequence of lenght k builds a word w k ∈ L k Ident . From line 1 of algorithm 1 on page 45 it follows that exactly one state exists with1 λ(x) = w k . Lemma 2 makes sure that this state can only be reached by producing the word w k . Algorithm 11 determines all state trajectories producing w k . Since each trajectory must end in the same state, the state estimate is unambiguous after processing w k . This shows that too high a value for the identication tuning parameter k can be a disadvantage if the initial state is not given. Nevertheless, in most practical cases the algorithm will admit a solution in less than k I/O vectors. The worst case only appears if several states exist with the same I/O vector as output. If only one state exists with the rst I/O vector of the observed w k as output, line 4 of algorithm 11 already delivers an unambiguous state estimate.

Probabilistic evaluation of the NDAAO fault detection capability

After the denition of the fault detection procedure and the according policy it is possible to evaluate the capability of a given NDAAO to detect faults. If no fault is currently detected, the current state estimate is unambiguous (| X t-1 | = 1) and thus consists of exactly one current NDAAO state. The principle of the evaluator algorithm 11 is to nd a next NDAAO state by analyzing the leaving transitions of the current state. If the observed evolution set can be reproduced by taking one of the transitions of the current state, the according target state becomes the new current state. If a fault leads to an I/O vector producing one of these evolution sets, it is thus not possible to detect it. In the following, an upper bound and an estimate for the probability of accepting an I/O vector induced by a fault are derived.

First, we dene three probabilistic events:

• F : Fault leading to an altered behavior of at least one controller I/O in the next I/O vector

• E i : An I/O vector resulting from i edges occurs

• A: An I/O vector does not lead to fault detection in the evaluator algorithm (it can be reproduced by one of the following states of the current state)

With this denition of F , faults are only considered if they are potentially detectable by analyzing the next occurring I/O vector. Sooner or later most faults fall in this category even if they are not immediately detectable upon their appearance: Either they lead to a change in value of an I/O which is not expected or they prevent an I/O from changing its value although this is expected. Using these basic events, the probability of accepting an I/O vector induced by a fault is given by

P (A/F) = m i=1 P (A ∩ E i |F) (6.2)
with m denoting the number of controller I/Os. P (A∩E i |F) is the probability of A∩E i under the condition F [START_REF] Papoulis | Probabilistic, Random Variables and Stochastic Processes[END_REF] which means the probability of accepting an I/O vector resulting from i edges under the condition that there is a fault leading to an altered behavior of at least one controller I/O in the considered I/O vector.

This equation can be rewritten as follows:

m i=1 P (A ∩ E i |F) = m i=1 P (A ∩ E i |F)P (F)P (E i ∩ F) P (F)P (E i ∩ F) (6.3) = m i=1 P (A ∩ E i ∩ F)P (E i |F) P (E i ∩ F) (6.4) = m i=1 P (A|E i ∩ F)P (E i |F) (6.5) ≈ m i=1 P (A|E i)P (E i |F) (6.6) 123
The last equation holds since P (A|E i) ≈ P (A|E i ∩ F): Usually there is only a very small number of I/O vectors which is valid in a given situation. If a suciently large I/O vector is taken, E i ≈ F ∩ E i since most of the I/O vectors resulting from i edges are faulty most of the time.

The two remaining probabilities P (A|E i) and P (E i |F) can be estimated. P (A|E i) denotes the probability of accepting an I/O vector under the condition that it is the result of i edges. To get this probability, the following function is dened: Denition 43 (Number of transitions with i edges). The function

LT rans(x, i) = ∀x ′ ∈f (x) 1 if |ES(λ(x), λ(x ′))| = i 0 else
delivers the number of following states x ′ of a given state x which are reached by producing exactly i edges in the according evolution set.

A conservative estimate for P (A|E i) is the probability of accepting an I/O vector resulting from i edges from the NDAAO state with the most leaving transitions with exactly i edges:

P (A|E i) ≤ max ∀x∈X (LT rans(x, i)) m i (6.7) m i
is the binomial coecient of the number of controller I/Os m and the number of edges i. The binomial coecient gives the number of possible I/O vectors resulting from i edges: In a given I/O vector there are m i possible ways to choose i I/Os and to alter them such that a new I/O vector is created. With max ∀x∈X (LT rans(x, i)), the maximum number of transitions leaving one state in the NDAAO and producing exactly i edges is given. The coecient gives the probability that an arbitrary I/O vector resulting from i edges is accepted in the NDAAO state with the most transitions with i edges.

It is also possible to replace P (A|E i) with the following equation instead of using the conservative estimate from equation 6.7:

P (A|E i) ≈ ∀x∈X LT rans(x,i) |X| m i (6.8)
In this equation the average number of transitions leaving an NDAAO state and leading to i edges is calculated. This average number is then divided by the number of possible I/O vectors resulting from i edges. If each NDAAO is equally likely to be the current state when a faulty I/O vector occurs, this represents the probability of accepting the I/O vector.

The second remaining probability in equation 6.6 is P (E i |F). It denotes the probability that a faulty I/O vector is the result from i edges. It can be interpreted as the expected part of faults leading to an I/O vector with i edges. Usually, the precise value for P (E i |F) can only be roughly estimated. In the following, we assume that P (E i |F) can be conservatively estimated by an educated guess keeping to the following considerations: It is reasonable to expect a large portion of faults leading to only a few edges and to only have a small portion of faults leading to many edges (e.g. 80% leading to one edge, 10% leading to two edges etc.). This is based on the principle of Parsimony (see page 22) were diagnosis is understood as a conjecture that some minimal set of components is faulty. Following this principle, it can be assumed that a fault typically aects only a small number of components and thus I/Os.

The result of the preceding considerations are an upper bound and an expected average for the probability of accepting an I/O vector induced by a fault:

m i=1 P max (A ∩ E i |F) ≤ m i=1 max ∀x∈X (LT rans(x, i)) m i • P (E i |F) (6.9) m i=1 P (A ∩ E i |F) ≈ m i=1    ∀x∈X LT rans(x,i) |X| m i • P (E i |F)   
(6.10)

where P (E i |F) has to be determined by an educated guess. For the example in gure 6.7 the two measures are calculated. The according values for P (E i |F) are dened in table 6.1. As a conservative estimate, we assume that only faults leading to one or two edges can occur. It is obvious that using the automaton in gure 6.7, faults leading to three edges can certainly be detected since it does not have a transition with three edges. Since this portion of faults is also added to the expected portion of faults leading to one or two edges, table 6.1 is a conservative estimate. In systems with many controller I/Os, it is especially conservative to assume a larger expected portion of faults with few edges: The weight of faults with many edges in the two probabilities is relatively low since the binomial coecient m i of controller I/Os and edges becomes very large if 1 ≪ i ≪ m.

It can be seen that state x 4 has the most leaving transitions with one edge. The result is max ∀x∈X (LT rans(x, 1)) 6.11) For faults leading to two edges (here, x 1 must be considered) we get max ∀x∈X (LT rans(x, 2)) The average probability can also be estimated (also assuming the values from table 6.1 for P (E i |F)). The result is

3 1 P (E 1 |F) = 3 3 • 0.8 = 0.8 (
3 2 P (E 2 |F) = 2 3 • 0.2 = 0.013 (
P ≈ 5 7 3 • 0.8 + 2 7 3 • 0.2 = 0.21
The estimate for the average probability of erroneously accepting a faulty I/O vector is about 21%.

The two measures have a certain similarity with the notion of diagnosability from denition 10 on page 16. The notion diagnosability refers to the capability of a model including fault-free and faulty behavior to detect a given (and modeled) fault in a nite number of steps. It is thus some kind of guarantee that certain faults can always be detected. This guarantee only holds if a system behaves exactly as captured in the model when the considered fault occurs. The measures introduced in this section are helpful to assess how accurately the fault-free and the faulty behavior can be distinguished by a model. Although they do not guarantee that some given fault can eventually be detected, they give an estimate for the probability of accepting an I/O vector induced by a fault. If this probability is very low, the given model is appropriate for fault detection purposes. Using conservative assumptions for P (E i |F), the two probabilities are thus helpful to assess the fault detection capability of a given NDAAO. Precise values for the case study system will be given at the end of this chapter.

Residuals as generic fault symptoms

Unexpected behavior

After a fault has been detected by the analyzer using equation 6.1, the next step is to determine which sensor, actuator or hardware part of the plant is possibly aected. Since sensors and actuators are directly connected to controller I/Os, we want to give a small number of I/Os that could be related to the fault. In the following two subsections, four residuals will be introduced that formalize generic fault symptoms. In order to calculate the residuals, the state estimation before a fault was detected is supposed to be unambiguous (| X t-1 | = 1). Hence, only one NDAAO state was formerly considered as possible current state. If this condition does not hold, the residuals are not calculated.

The rst class of residuals has the aim to isolate faults that led to an observed behavior that was unexpected in the given context. The current context is dened by the last estimated current state x in the automaton. The rst residual is dened as

Res1(x, u(t)) = ES(λ(x), u(t))\ ∀x ′ ∈f (x)
ES(λ(x), λ(x ′)) (6.13) With ES(λ(x), u(t)), the rising and falling edges are determined that are observed when comparing the I/O vector of the last estimated current state and the I/O vector that led to fault detection. This set represents what actually happened when the fault was detected.

∀x ′ ∈f (x) ES(λ(x), λ(x ′)) represents the union of the sets of rising and falling edges when the last estimated current state and each of its direct successor states (x ′ ∈ f (x)) are considered. It represents the expected behavior. The set dierence of the observed (ES(λ(x), u(t))) and the expected (∀x ′ ∈f (x) ES(λ(x), λ(x ′))) behavior is built in the residual equation to get the unexpected I/O behavior. In Res1, the expected behavior is given by the union of each possible following behavior of the last estimated current state. A stricter formulation of the expected behavior is used in the second residual:

Res2(x, u(t)) = ES(λ(x), u(t))\ ∀x ′ ∈f (x) ES(λ(x), λ(x ′)) (6.14)
Instead of a union over the expected behavior of the possible following states, an intersection is used. The intersection delivers the edges that must be observed no matter which following state in the model is taken. It is obvious that Res1 ⊆ Res2 since ∀x ′ ∈f (x) ES(λ(x), λ(x ′)) ⊇ ∀x ′ ∈f (x) ES(λ(x), λ(x ′)). Figure 6.8 shows an example for unexpected behavior that led to fault detection (instead of the I/O vectors only the edges between two states are given): from the estimated current NDAAO state x 1 it is not possible to take a transition that has exactly the observed falling edges IO 3 _0 and IO 4 _0. Hence a fault is detected. The result of Res1 is:

Res1(x, u(t)) = {IO 3 _0, IO 4 _0}\ {IO 1 _0, IO 2 _1, IO 4 _0} ∪ {IO 1 _0, IO 2 _1} = {IO 3 _0}
This result means that IO 3 _0 was unexpected in the current context. This implies that the system operator should check the sensor or actuator that is connected with IO 3 . However, it is possible that the fault cannot be found at this component. If this is the case, Res2 should be calculated in order to use a stricter formulation of the expected behavior. In Res1 each possible following behavior is subtracted from the observation. Using Res2 only the behavior that must occur no matter which regular following behavior is considered:

Res2(x, u(t)) = {IO 3 _0, IO 4 _0}\ {IO 1 _0, IO 2 _1, IO 4 _0} ∩ {IO 1 _0, IO 2 _1} = {IO 3 _0, IO 4 _0}
This result implies that the occurrence of a change in value of IO 4 is not always expected in the current context. Hence, it is another possible fault candidate.

Missed behavior

In contrast to an observed but unexpected behavior it is also possible that a faulty component can be isolated by determining a missed event. Set operations that help to isolate an expected but unobserved behavior are given by the third and the fourth residual.

Res3(x, u(t)) = ∀x ′ ∈f (x) ES(λ(x), λ(x ′))\ES(λ(x), u(t)) (6.15)
Res3 is the set dierence of the edges that are expected no matter which following state is taken (∀x ′ ∈f (x) ES(λ(x), λ(x ′))) and the edges that have been observed (ES(λ(x), u(t))). Each rising or falling edge that must occur when the estimated current state is left but has not been observed is part of Res3. The expected behavior is represented by the intersection of each possible following behavior. It is also possible to give a less strict formulation of the expected behavior by using the union operation instead of the intersection: Especially if industrial closed-loop DES with many controller I/Os are considered, the residuals can help to get a relatively small set of I/Os that could be related to the fault. A maintenance operator can then check the possibly faulty sensors or the related actuators. Actuators are related to a sensor if their activation or deactivation can have an inuence on the sensor value like explained for the causal I/O map of denition 39 on page 106. It is also possible to reduce the set of fault candidates by further analyzing Figure 6.9: Example for a missed behavior the system behavior following fault detection. A special state estimation algorithm has been proposed for this purpose in (Roth et al., 2009c).

Res4(x, u(t)) = ∀x ′ ∈f (x) ES(λ(x), λ(x ′))\ES(λ(x),
6.1.4 Monolithic fault detection and isolation of the case study system Treating the case study with the monolithic diagnosis approach necessitates a monolithic NDAAO. As shown in section 3.5, it is possible to identify a complete model with k = 2 for the case study system if a system evolution consists of treating two work pieces. This scenario is considered in this chapter. It is clear that even for the case study system it is not possible to test the method for each possible fault. The presented examples have been chosen such that they represent typical examples for faulty behavior.

At rst, the identied NDAAO is evaluated with the probabilistic measures from section 6.1.2. For the case study, the a priori probability P (E i |F) denoting the probability that a faulty I/O vector is the result from i edges is dened in table 6.2. It is conservatively assumed that the portion of faults leading to an I/O vector with one edge is 80%. Another conservativism is not to consider faults leading to more than three edges (see page 124 for an explanation on why this is conservative). Calculating the upper bound and the average probability for accepting an I/O vector induced by a fault results in

m i=1 P max (A ∩ E i |F) ≤ 3 30 1 • P (E 1 |F) + 2 30 2 • P (E 2 |F) + 2 30 3 • P (E 3 |F) ≤ 0.0807 m i=1 P (A ∩ E i |F) ≈ 0.58 30 1 • P (E 1 |F) + 0.15 30 2 • P (E 2 |F) + 0.31 30 3 • P (E 3 |F) ≤ 0.0151
The calculation shows that in the worst case there is a probability of 8.07% for accepting an I/O vector induced by a fault. If each NDAAO state is expected to be equally likely to be the current automaton state during online monitoring, the probability is only 1.51%. These low values show that the automaton is appropriate for fault detection purposes. number of edges i 1 2 3

P (E i |F)
0.8 0.15 0.05 Table 6.2: Denition of P (E i |F) for the case study

The rst example is a fault at the sensor that is connected with the controller input I3.3. The fault that has been introduced articially is a short circuit that causes the sensor to switch its signal from 1 to 0. The fault has been introduced when the rst work piece was treated by the second machine (vertical milling). At the same time, the second work piece gets drilled in the rst station. The short circuit has been produced when milling with the second of the three tools in station 2 started and the milling head left the top position. This situation is depicted in gure 6.10. After the observation of I2.2_1 indicating that the milling head just left its home position, the evaluator algorithm delivers state x 18 as single state estimate. Hence, no fault is detected. Then the falling edge I3.3_0 is observed that occurs due to the fault. The evaluator algorithm does not nd a following state of x 18 that can be reached by this edge. Since X t is empty, a fault is detected due to equation 6.1. Consequently the residuals are applied with x = x 18 as the former unique estimate. The second example is a fault at the sensor that is connected to I2.4. This sensor detects if a work piece is at the left most position of station 2 (I2.4 = 1). The articially introduced fault prevents the sensor from switching back to 0 when the work piece has left the leftmost position. The fault was introduced when the rst work piece gets transported from station 2 to station 3 and the second work piece from station 1 to station 2. Figure 6.11 shows the described situation. The evaluation algorithm (algorithm 11) determines x 49 as the actual estimate when the second work piece arrives at position I2.4 and produces the rising edge I2.4_1. Now, the fault prevents I2.4 from switching again to 0 when the work piece leaves the position due to the start of the conveyor (O2.5_1). The fault is detected when the rising edge of I3.5 and its corresponding output changes are observed before I2.4 changed back to 0: The sensors detect the arrival of the rst work piece in front of machine tool 3 before I2.4 switched back to 0 which never happened during fault-free system evolutions. The residuals are calculated:

Res1(x, u(t)) = {I3.3_0} Res2(x, u(t)) = {I3.3_0} Res3(x, u(t)) = {}
Res1(x, u(t)) = {I3.5_1, O3.3_1, O3.4_1, O3.5_0} Res2(x, u(t)) = {I3.5_1, O3.3_1, O3.4_1, O3.5_0} Res3(x, u(t)) = {I2.4_0, O1.5_0} Res4(x, u(t)) = {I2.4_0, O1.5_0}
In this case, Res1 and Res2 do not isolate the fault since they show the observed behavior that is not responsible for the fault. The controller input that is related to the blocked sensor is isolated by both Res3 and Res4 since it is a missed behavior.

A fault that leads to exactly the same symptoms is a defect at the motor of the conveyor in front of the vertical milling machine (O2.5). If the conveyor motor does not start due to the motor fault, the symptoms are comparable: The sensor that is connected to I2.4 does not change its value since the conveyor does not transport the work piece away from the left most position of station 2. Hence, if Res3 or Res4 report a missing change in value at a sensor, it is reasonable to not only check the according sensor but also the actuators that have a direct inuence on this sensor It can be seen that the residuals do not only contain controller inputs but also controller outputs. They are set if a controller input leads to a fullled logical condition in the control program. Although outputs reported in the residuals are usually not directly related to the fault, they can be useful to decide whether the fault candidates reported by Res1 and Res2 or the candidates of Res3 and Res4 should be analyzed rst. If controller inputs appear in Res1 or Res2, they are supposed to be unexpected. Indeed, the fault-free system model did not expect their change in value at the time of their observation. Nevertheless, if a change in value of an input together with changes in value of controller outputs are observed, it is possible that this was not completely unexpected: The controller program was in an internal state where it waited for the change in value of the input and thus triggered some outputs upon its observation. Given a situation like in the second example, this can help to decide that the observed change in value of I3.5 was not unexpected by the controller since it was in an internal state that allowed setting corresponding outputs. In the example scenario it was actually expected that the work piece eventually arrives in front of station 3 which leads to the observation of I3.5_1 and the according output setting to stop the conveyor and start the third machine tool. Hence, the candidates delivered by Res3 and Res4 should be checked rst which delivers the right fault candidate. If the identied distributed models are to be used for online fault detection and isolation, the method introduced in the former section must be adapted. The general idea of using the monolithic and the distributed model is the same: The faults are isolated by determining unexpected and missed behavior. In the distributed model (pyramid structure in gure 6.12) two scenarios for fault detection exist: Firstly, a fault can be detected if the current observation is not reproducible by one of the partial automata.

Secondly, the tolerance specication can reach the fault state if the combined behavior of the partial automata exceeds the predened amount of acceptable unknown behavior. For both cases, appropriate isolation techniques will be proposed in the next section. Figure 6.12 shows the adapted evaluator scheme for the distributed model. It shows the data ow during online monitoring. The precise working principle of the block 'evaluator' is explained in the following. The fault isolation techniques implemented in the block 'analyzer' are given in the next section. It can be seen that the information given to the analyzer are the current state of the tolerance specication, the current state of the POCP and T Obs . T Obs corresponds to a trajectory of I/O vectors observed in case of a fault. It contains each vector observed after the tolerance specication left the OK-state. The required variables are calculated with algorithm 12. It is assumed that the tolerance specication has only one state with the fault label F . For the tolerance specication structure, equations 4.8 and 4.9 from page 76 must hold. From line 1 to line 8, the algorithm determines for each partial automaton the current state corresponding to the observed partial I/O vector u sys i (t) 2 . The according state must be the former current state itself or one of its successor states (i.e. taken from the set {x i (t -1) ∪ f (x i (t -1))}) 3 . If it is not possible to determine a new current state in the i-th partial automaton, the state x i (t) is not dened and a fault must be detected. In this case, the current state of the tolerance specication is set to the fault state (line 6) to indicate fault detection. In line 9 it is analyzed if the current tolerance specication state represents fault detection. If not, from line 10 to line 14 the next POCP state is determined like in denition 36. In the rst case (the condition in line 10 holds) a POCP state exists representing the newly determined states of the partial automata since this combination has been seen during the identication phase. This state becomes the next POCP state. During the construction of the POCP it is made sure that at maximum one POCP state exists for each observed state combination in the automata network (see algorithm 5 on page 81). Each POCP state is connected with all other POCP states. In the second case (line 13), the POCP does not have an according state since the current network situation has not yet been seen. Hence, the joker state with the empty output ε becomes the new current POCP state. In line 15 the next tolerance specication state is determined. Like in denition 36 it must be reached by the same kind of transition as taken in the POCP: If the POCP took an observed transition, the tolerance specication also takes an observed one. If the POCP took an unobserved transition, the tolerance specication also takes an unobserved transition. The functions Θ P OCP and Θ T ol deliver the necessary information about observed and unobserved transitions following denition 32.

In line 17 it is analyzed if the tolerance specication just left the OK-state. In this case, the observed sequence T Obs is initialized. It will be used for fault isolation in the next section. If the tolerance specication performed a trajectory from an undecided state to another undecided state or to the fault state (checked in line 20), the new observed I/O vector is added to T Obs . In this case, T Obs had been initialized before. The algorithm returns the current partial automata states, the current states of tolerance specication and of the POCP and the sequence of I/O vectors observed since the tolerance specication left the OK state. x i (t) not dened 6:

if ∃x ′ i ∈ {x i (t -1) ∪ f (x i (t -1))}|λ i (x ′ i) = u sys i (t)
x T ol (t) := x T ol |λ T ol (x T ol) = F 7: end if 8: end for 9: if λ T ol (x T ol) = F then 10: if ∃x ′ P OCP ∈ X P OCP |λ P OCP (x ′ P OCP) = {x 1 (t), . . . , x Nsys (t)} then 11:

x P OCP (t) := x ′ P OCP 12: else 13:

x P OCP (t) := x P OCP |λ P OCP (x P OCP) = ε 14: end if 15:

x T ol (t) := x ′ T ol | x ′ T ol ∈ f T ol (x T ol (t -1)) ∧Θ P OCP (x P OCP (t -1), x P OCP (t)) = Θ T ol (x T ol (t -1), x ′ T ol) 16: end if 17: if λ T ol (x T ol (t -1)) = OK ∧ λ T ol (x T ol (t)) = OK then 18:
T Obs := (u(t -1), u(t))

19: end if 20: if λ T ol (x T ol (t -1)) = OK ∧ λ T ol (x T ol (t)) = OK then 21:

add u(t) to the sequence T Obs 22: end if 23: return {x 1 (t), . . . , x Nsys (t)}, x T ol (t), x P OCP (t), T Obs Algorithm 12 shows that both scenarios leading to fault detection result in the tol-erance specication state with the fault label: If a partial NDAAO was not able to reproduce its partial observation, the tolerance specication is set to the fault state in line 6. If the POCP performs an unacceptable number of unobserved transitions, the tolerance specication will nally be led to its fault state in line 15. Hence, the fault detection policy depends on the current state of the tolerance specication only:

F D(x T ol (t)) = f ault if λ T ol (x T ol (t)) = F OK if λ T ol (x T ol (t)) = F (6.17)
A fault is detected if the current state of the tolerance specication is the fault state. After a fault has been detected, the model can be reinitialized considering I/O vectors following fault detection4 : For each partial NDAAO, algorithm 11 from page 121 has to be applied using each new I/O vector until each partial automaton has a unique state estimate. If the fault was detected by a partial NDAAO, this allows reinitializing the according automaton. If the fault was detected by the POCP, this procedure simply determines the new current states in the automata network. After a valid state has been determined for each partial automaton, it can be checked whether a POCP state representing the current network situation exists. If yes, this POCP state becomes the current POCP state and the tolerance specication is reset to the OK state. If no POCP state representing the current network situation exists, it must be continued to use algorithm 11 for each partial automaton until a state combination is reached which is represented by a POCP state. As soon as a POCP state is found, algorithm 12 can restart analyzing the following system behavior with the tolerance specication reset to its OK state.

Analogously to the considerations for the monolithic model, it is also possible to estimate the probability for accepting an I/O vector induced by a fault with the distributed model. The probabilities introduced in section 6.1.2 can be used on the basis of the cross product of the partial automata: The cross product denes the maximum behavior which is accepted by the automata network without restriction by the POCP. It can thus be used as a conservative reference for the fault detection capabilities. In section 6.2.3, the according values for the case study system will be given.

Residuals for the distributed model

The fault isolation technique for the distributed model follows the same principle as fault isolation with the monolithic model. The idea is to compare observed and expected I/O behavior after a fault was detected and to determine I/Os with an unexpected or missed behavior. In contrast to the monolithic model, it is not sucient to compare only the currently observed I/O vector with the expected ones. In the distributed model it is possible that the fault was detected due to an unaccepted combined automata network behavior. Such a behavior makes the tolerance specication leaving its OK state and nally reaching the fault state. Generally, several I/O vectors can have occurred until the tolerance specication reaches its fault state. This sequence contains behaviors which caused fault detection. It is thus necessary to analyze the complete observed sequence since the time when the normal behavior (dened by the OK state of the tolerance specication) was left. Algorithm 12 delivers this sequence with T Obs . It represents the observed system behavior. Based on T Obs = (u(t -n), u(t -n + 1), . . . , u(t)) (6.18) with n denoting the number of I/O vectors after the tolerance specication left its OK state, it is possible to determine the set of observed edges. They are the union of the observed edges between two successive I/O vectors in the observed trajectory:

ES T (T Obs) = ES(u(t -n), u(t -n + 1)) ∪ • • • ∪ ES(u(t -1), u(t)) (6.19)
with ES from denition 42. Equation 6.19 is an adaptation of the evolution set for analyzing sequences of I/O vectors.

Like in the monolithic case, the observed edges have to be compared with the expected ones. They can be calculated on the basis of expected network trajectories. The expected network trajectories can be derived from the POCP by only taking observed transitions (with Θ = true) since they dene fault-free behavior observed during the identication phase. For the analysis of expected edges it is necessary to determine the I/O vectors resulting from a POCP trajectory. The following function determines the I/O vector which is the combined output of a partial automata state combination represented by a POCP state. J P OCP (x P OCP) = J(λ 1 (x 1), λ 2 (x 2), ..., λ Nsys (x Nsys))|{x 1 , x 2 , ..., x Nsys } = λ P OCP (x P OCP) (6.20) It makes use of the join-function from denition 28 on page 68. The partial I/O vectors being the output of the underlying partial automata states are combined. During the construction of the POCP it was made sure that only state combinations leading to a valid I/O vector are represented by a POCP state (see algorithm 4 on page 78).

As shown in equation 6.18, the observed I/O vector sequence consists of n vectors. This means that after the OK state in the tolerance specication was left, n I/O vectors have been observed. To compare the observed and the expected behavior, the POCP trajectories of length n are determined which could have occurred if no fault had been detected. They start in state x P OCP (t-n) which was the current POCP state before the tolerance specication left its OK state. The trajectories only take observed transitions because this represents a known fault-free network behavior. In the following equation, each POCP trajectory starting in x P OCP (t -n) and only taking observed transitions (Θ P OCP = true) is determined. Using the adapted join-function from equation 6.20, the resulting expected I/O vector sequences of length n are determined:

Ψ Exp (x P OCP (t -n)) = {J P OCP (x P OCP (t -n)), . . . , J P OCP (x P OCP (t))| Θ P OCP (x P OCP (j), x P OCP (j + 1)) = true (∀t -n ≤ j < t)} (6.21) Based on T Obs containing the observed behavior and on Ψ Exp (x P OCP (t -n)) containing the expected behavior, residuals like in the former section are introduced. It is possible to apply the modied evolution set function ES T from equation 6.19 to each expected I/O vector sequence ψ ∈ Ψ to determine the set of expected edges.

First, the unexpected behavior is determined.

Res5(Ψ Exp (x P OCP (t -n)), T Obs) = ES T (T Obs)\ ∀ ψ∈ Ψ Exp (x P OCP (t-n))
ES T (ψ) (6.22)

Res5 takes the observed edges and subtracts the union of the edges occurring in the expected I/O vector sequences. The union contains each edge that would have been occurred in any of the expected behaviors. The resulting edges in Res5 were not expected in any known network trajectory and consequently are possible fault locations. Hence, Res5 follows the same idea like Res1. Like in the case of Res1, it is also possible to subtract the intersection of edges in the expected behavior:

Res6(Ψ Exp (x P OCP (t -n)), T Obs) = ES T (T Obs)\ ∀ ψ∈ Ψ Exp (x P OCP (t-n))
ES T (ψ) (6.23)

In this case, only the edges expected in each possible network trajectory are subtracted from the observed ones. Res6 is thus less strict than Res5. If it was not possible to determine the fault among the candidates in Res5, it can be reasonable to analyze the additional information of Res6.

Using the set operations, it is also possible to determine the missed behavior as second generic fault symptom.

Res7(Ψ Exp (x P OCP (t -n)), T Obs) = ∀ ψ∈ Ψ Exp (x P OCP (t-n))
ES T (ψ)\ES T (T Obs) (6.24)

In this case, the intersection of the edges occurring during expected network trajectories is taken. From this set, the observed edges are subtracted. The remaining edges should have occurred in each network trajectory but have not been observed in the I/O vector sequence leading to fault detection. It is also possible to formulate a less strict version of this residual by considering the union of the expected edges:

Res8(Ψ Exp (x P OCP (t -n)), T Obs) = ∀ ψ∈ Ψ Exp (x P OCP (t-n))
ES T (ψ)\ES T (T Obs) (6.25)

Res8 usually contains more edges than Res7. If the fault cannot be found among the edges in Res7, the additional edges in Res8 can be taken into consideration.

The following example shows that the residuals can be used in both possible fault detection scenarios: They can be applied if a partial NDAAO was not able to reproduce the observed behavior and if the fault was detected because the combined network behavior exceeded the predened acceptable amount of yet unknown behavior. First, fault detection by a partial NDAAO is considered. Figure 6.13 shows the considered scenario. In the example, only the edges occurring between two states are shown. In the POCP, the state output 2A means the combination of state 2 and state A in the partial automata. From the construction of the POCP follows that all POCP states are interconnected. If the transition is not given in the Figure 6.13: Example for fault isolation in the distributed framework gure, it is unobserved (Θ P OCP = f alse). The rst partial NDAAO cannot reproduce the observed edge b_1. As a consequence, algorithm 12 sets the tolerance specication to the fault state in line 6 which leads to fault detection. In line 17 and 18 it is noticed that the tolerance specication just left the OK state. Consequently, the observed trajectory is initialized with the former and the currently observed I/O vector. Applying the modied evolution set function to T Obs leads to:

ES T (T Obs) = {b_1}
In the next step it is necessary to determine the expected behavior with Ψ(x P OCP (t-1)) according to equation 6.21: Each expected POCP sequence with the length of T Obs which would not have led to fault detection is calculated. Two possible evolutions exist: 1A → 1B and 1A → 2B. They lead to the edges {c_1, d_1} for the rst evolution and {a_1, c_1, d_1} for the second evolution. Applying the residuals leads to:

Res5 = {b_1}\({c_1, d_1} ∪ {a_1, c_1, d_1}) = {b_1} Res6 = {b_1}\({c_1, d_1} ∩ {a_1, c_1, d_1}) = {b_1} Res7 = ({c_1, d_1} ∩ {a_1, c_1, d_1})\{b_1} = {c_1, d_1} Res8 = ({c_1, d_1} ∪ {a_1, c_1, d_1})\{b_1} = {a_1, c_1, d_1}
The analysis of Res5 and Res6 shows that b_1 occurred unexpectedly which allows isolating the fault. Res7 = {c_1, d_1} shows that two edges have been expected but not observed. Res8 additionally contains the edge a_1 because it can occur in one trajectory (1A → 2B).

In the second example, we assume that an I/O vector sequence was observed leading to the trajectory 1A → 2A → 2B in the POCP. This is only possible by taking two unobserved transitions which leads the tolerance specication to the fault state. The observed edges in this case are ES T (T Obs) = {a_1, c_1, d_1}. In the POCP, two possible trajectories starting in 1A with length |T Obs | exists: 1A → 1B → 2B and 1A → 2B → 2C. The according expected edges are {a_1, c_1, d_1} for the rst trajectory and {a_1, c_1, c_0, d_1} for the second trajectory. The residuals result in:

Res5 = {a_1, c_1, d_1}\({a_1, c_1, d_1} ∪ {a_1, c_1, c_0, d_1}) = {} Res6 = {a_1, c_1, d_1}\({a_1, c_1, d_1} ∩ {a_1, c_1, c_0, d_1}) = {} Res7 = ({a_1, c_1, d_1} ∩ {a_1, c_1, c_0, d_1})\{a_1, c_1, d_1} = {} Res8 = ({a_1, c_1, d_1} ∪ {a_1, c_1, c_0, d_1})\{a_1, c_1, d_1} = {c_0}
This can be interpreted as follows: None of the observed edges were unexpected since Res5 and Res6 return empty sets. Since Res8 returns {c_0}, it can be concluded that c_0 was expected in some regular trajectories but has not been observed. The fault is thus probably related to I/O c which did not change its value.

Distributed fault detection and isolation of the case study system

The fault isolation method for distributed models has been applied to the case study system. The same scenario as in section 4.4 is considered: The system has to treat three work pieces which leads to a high degree of concurrency. One of the main advantages of the method is its capability to compensate for some consequences of inappropriate I/O partitioning. The partitioning process by expert knowledge or by the optimization approach does not always lead to subsystems which allow ecient fault detection and isolation for each I/O. An example for subsystem partitioning with an inappropriately assigned I/O is given in gure 6.14. It can be seen that the I/O I2.2 (sensor at the top position of the second machine tool) is assigned to the subsystem with the I/Os from the third machine tool although it is not related to any of its I/Os. Although even worse scenarios are possible, the presented example is signicant since it represents a situation where a sensor is not assigned to the same subsystem as its inuencing actuators. Figure 6.14: First scenario for distributed fault isolation For the partitioning scenario in gure 6.14 a distributed model consisting of three partial automata (each identied with k = 2) and the POCP has been identied using the same data base as in section 4.4. The tolerance specication is given in gure 6.15. Dierently to the specications used in section 4.4, it is possible to regain the OK state after some unknown behavior has been observed. If for example one unknown transition was taken, it is possible to get back to the OK state after the successive observation of two already known transitions in the POCP. This is based on the consideration that the observation of several new transitions is probably an acceptable behavior if the system quickly returns to normal operation. If three unobserved POCP transitions are taken successively (or only interrupted by one or two observed POCP transitions), a fault is detected.

Before a rst example is shown, the probability for accepting an I/O vector induced by a fault is calculated for the cross product of the three partial automata using equations 6.9 and 6.10 from page 125. Considering the cross product of the three partial automata refers to using the partial automata without any restriction by a tolerance specication. The probabilities are thus conservative estimates for the fault detection capabilities of the partial automata in conjunction with POCP and tolerance specication. The a priori probability P (E i |F) denoting the probability that a faulty I/O vector is the result from i edges is dened in table 6.2 on page 130. The resulting values are This shows that the distributed model is already appropriate for fault detection purposes even if the network restriction is not considered. A monolithic automaton identied with k = 1 on the same data base yields with 5.3% and 2% values which are not signicantly better. The fault considered in the rst scenario is related to I2.2. At the beginning of a system evolution, I2.2 has the value 0 since the machine tool is at its top position (I2.2 is inverted as explained in section 3.5). When the rst work piece is processed in the rst machine tool, a fault is introduced which makes the input change its value from 0 to 1 without the second machine tool leaving its home position. The partial automaton containing I2.2 does not detect a fault because it is waiting for exactly this rising edge. A part of the concerning automaton is shown in gure 6.16. It is the automaton containing I2.2 but mainly consisting of I/Os from the third subsystem (third machine tool). During normal system behavior, the partial automaton expects I2.2_1 before any change in value of its remaining I/Os: The rst work piece has to be treated in the second machine tool before it is transported to the third one and can inuence any of the other I/Os in the automaton. Treating a work piece in the second machine tool leads to a rising edge of I2.2 when the milling head is moved down. The partial automaton does not detect that this time the change in value of I2.2 occurs too early due to the fault. The fault is nally detected since it leads to an unknown sequence of state combinations in the automata network when the rst work piece is treated in the rst machine and the partial automaton for the third subsystem is in state x 1 . After the POCP performed three unknown transitions, the tolerance specication is led to the fault state and a fault is detected (see algorithm 12). It can be seen that the rising edge at I2.2 is part of Res5 and Res6 which indicates that it occurred unexpectedly. Res7 and Res8 contain the behavior which was expected but did not occur. It can be seen that exclusively I/Os from the rst machine tool are aected. This is due to the fact that usually the rst machine tool must nish treating the work piece before a rising edge at I2.2 can occur. Since I2.2 is part of the rst residuals, it is possible to nd the fault. Generally, the repair crew must check each I/O contained in one of the residuals. Compared to the total number of 30 I/Os in the system, they still render a relatively sharp fault isolation. The system operator can again use the strategy described in section 6.1.4 to decide which I/O to check rst: Res5 and Res6 only contain I2.2 without any change in value of a controller output. Hence, the controller did not expect or react to the change in value of I2.2. This is an indicator that I2.2 should be checked with priority.

m i=1 P max (A ∩ E i |F) ≤ 3 30 1 • P (E 1 |F) + 3 30 2 • P (E 2 |F) + 3 30 3 • P (E 3 |F) ≤ 0.081 8.1% m i=1 P (A ∩ E i |F) ≈ 1.40 30
As a second example, we consider a fault leading to a missed I/O behavior. The according I/O partitioning is given in gure 6.17. It is again a wilfully non-perfect solution: In this scenario the I/O belonging to the sensor at the bottom position of the third machine tool (I3.3) is assigned to the subsystem exclusively containing the I/Os from the second station. Figure 6.17: Second scenario for distributed fault isolation In the second example, the system is working without fault until the rst work piece is transported to the third machine. When the work piece arrives in front of the tool, the milling head is moved down to the bottom position (I3.3). The sensor changes its value correctly from 1 to 0 (inverted sensor). At this point, a fault is introduced which prevents the input from switching back to 1 when the milling head is moved up after the work piece has been treated. The fault leads to a trajectory consisting of three unobserved POCP transitions which leads the tolerance specication automaton to the fault state. Applying the residuals leads to the following result:

Res5(Ψ Exp (x P OCP (t -n)), T Obs) = {} Res6(Ψ Exp (x P OCP (t -n)), T Obs) = {I2.2_1, O2.2_0, O2.7_1, I2.6_1, I1.5_0, O1.3_1, O1.4_1, I1.5_0} Res7(Ψ Exp (x P OCP (t -n)), T Obs) = {I3.3_1} Res8(Ψ Exp (x P OCP (t -n)), T Obs) = {I3.3_1, I1.2_1}
None of the observed edges was completely unexpected since Res5 delivers an empty set. A large set of rising and falling edges have been observed but are not expected in each trajectory of POCP transitions of length |T Obs | not leading to fault detection. The faulty I/O I3.3 is part of Res7. The rising edge of I3.3 is expected in any fault-free POCP trajectory but has not been observed. Since Res5 is empty and Res7 contains exactly one I/O, it is a reasonable choice to rst investigate the state of the sensor connected with I3.3 before any other I/O is considered. The example shows that the missed I/O behavior can be isolated with the distributed models although none of the partial automata detects a fault.

Treating the case study it was possible to show that even faults concerning inappropriately assigned I/Os can be isolated using information of the POCP. Hence, even if the automated partitioning approach does not always lead to 'perfect' results, the upper structure of POCP and tolerance specication allows using the resulting models for fault diagnosis purposes.

7 Industrial Application 7.1 Presentation of the system In the former chapters the proposed method has been successfully applied to a laboratory case study system. In order to assess the scalability of the method, an industrial production system has been treated. The considered system is a winder used in a production facility producing nonwovens. It is installed in a factory of Freudenberg Vliesstoe KG in Kaiserslautern.

Freudenberg Vliesstoe is part of the Freudenberg group. It is a family-owned group of companies developing and producing seals, vibration control technology components, lters, nonwovens, release agents and specialty lubricants as well as mechatronic products. The Freudenberg group employs more than 30000 people in 55 countries and has a balance sheet total of more than 4.6 billion euros [START_REF] Freudenberggroup | Annual report 2009[END_REF]. The factory located in Kaiserslautern is partially dedicated to nonwovens production. Nonwovens are a special fabric which is made from long bers, bonded together by chemical, mechanical or heat treatment. Typical elds of use are industrial or automotive lters, medical applications like adhesive plaster or bandages and personal hygiene like diapers. A schematic view of the nonwovens production process is given in gure 7.1. The nonwoven fabric is usually built on the basis of some granulate which in a rst step is melted in an extruding process. The melted material is transported to so called spinning jets which stretch and mix single laments to a web structure. The criss-crossed bres are welded together by passing through hot rotating cylinders (the calender). The resulting nonwoven fabric is transported to a winder where it is winded on a coil and where the coils are handled. The system considered in this chapter is the winding machine at the end of the 145 production process depicted in gure 7.2. The machine winds the fabric on a coil until the desired length is reached. At this point, the incoming fabric is cut and the full coil is taken to a lifting post where it gets manually wrapped. An important feature of the winding machine is its storage: When the coil is wrapped on the lifting post, it is not necessary to stop the remaining production process. The incoming fabric is stored in a storage until an empty coil is installed in the winder. The whole winder is controlled by a Siemens 135U PLC with 336 digital inputs and 256 digital outputs. The PLC has been equipped with an appropriate communication processor such that the same data link as described in section 3.5.2 for the case study system can be used. Since only with a properly working winder it is possible to continuously produce nonwoven fabric, there is a considerable interest in reducing the necessary time to detect and locate faults in order to restore a functioning production as fast as possible after some fault occurred. Using model-based fault detection techniques based on a manually built model is not possible due to two important obstacles. The rst one is the complexity and size of the plant (among other components, the winder contains 20 drives and 38 cylinders of dierent types). The second one is that the controller program is not available in a formalized form which would allow translating it in a nite state machine and applying e.g. the method of [START_REF] Philippot | Unconditional decentralized structure for the fault diagnosis of discrete event systems[END_REF]. Motivated by these obstacles, the identication-based method presented in this work was chosen to build a fault detection and isolation system.

Software implementation

To facilitate the installation of the identication based diagnosis system, dierent software tools have been developed. Figure 7.3 shows the structure of the software. It can be seen that the data collection and the diagnosis tools are run online which leads to realtime constraints. Procedures related to the identication process can be run oine 146 7.3 Data analysis and are thus less time critical. More details on the software used online will be given in section 7.5. The software scheme shows where the user has to generate dierent inputs. Since not all controller I/Os are relevant for diagnosis, the interesting I/Os must be dened. An example for I/Os which can be ignored are inputs delivering the length of the winded fabric in a binary format or controller outputs connected to lamps or displays. If available, it is also possible to dene the causal actuator sensor relations to improve the results of the partitioning approach. When the system has been divided into subsystems, it is necessary to choose appropriate values for the identication parameter k for each subsystem. If the distributed diagnosis procedure is to be applied, the tolerance specication must also be dened.

The software allows visualizing the evolution of the observed system language and the evolution of the optimization algorithm. System partitioning and distributed identication result in a model le in form of an xml-le containing the identied partial automata as well as the POCP. All steps explained in the following sections have been carried out using this software scheme.

Data analysis

Before the data can be captured, it is necessary to determine controller I/Os which are not relevant for diagnosis. A rst analysis resulted in a set of 134 relevant controller I/Os. Figure 7.4 shows the evolution of the observed language L n Obs for 1 ≤ n ≤ 3. It can be seen that even after the observation of 562 system evolutions, L 2

Obs does not converge. Hence, it is not possible to state L n Obs = L n Orig for any n ≥ 2 as required in 147 assumption 5 on page 54 to allow the identication of a monolithic automaton with the minimal value k = 1. Two possibilities exist to deal with this situation: The rst one is to increase the system observation time and to record more evolutions. Since collecting 562 evolutions already took more than one week, this approach was not possible. Hence, the second possibility was chosen: Dividing the system into subsystems and working with the distributed model.

Figure 7.4: Evolution of the observed language of the complete winder A rst partitioning for the considered system was possible by treating the lifting station separately. With the help of system experts it could be determined that this station (with 20 controller I/Os) works almost independently from the remaining winding process. The evolution of the observed language up to length three is shown in gure 7.5 on the left. It can be seen that the language of length three of the lifting station converges and thus allows the identication of an NDAAO based on the observed data with k = 2 since L k+1

Obs ≈ L k+1 Orig can be stated. A higher value for k seems not to be reasonable since L 4

Obs does not converge as good as L 3 Obs . Additionally, it was possible to roughly analyze the functioning of the lifting station: The most ambiguous situation in terms of distinguishing non-equivalent system states with the same output is comparable to the conveyor example from section 3.4.1. Hence, it could be decided that k = 2 is a good compromise between model accuracy and model completeness (to avoid false alerts). The resulting NDAAO has 55 states and 86 transitions. Using a 1.8 GHz processor with 2 GB RAM, the identication could be carried out in 33 seconds. Since the language of the remaining system does not converge for any n (see gure 7.5 on the right), further partitioning is required. Since only few expert knowledge was Figure 7.5: Evolution of the observed languages for the lifting station and the remaining system available, the optimization approach from chapter 5 was chosen to divide the remaining systems into subsystems.

Distributed identication

Although only limited expert knowledge was available to divide the remaining system into subsystems, it was possible to partially determine causal actuator sensor relations (see section 5.1) with acceptable eort by analyzing the documentation of the machine and by consulting the knowledge of the system operators. The remaining system without the lifting station contains 41 controller outputs and 73 controller inputs. For 26 of the outputs it was possible to determine at least one causally inuenced controller input. From the 73 controller inputs, 35 could be determined which are causally inuenced by at least one of the controller outputs. For the remaining I/Os it was not possible to get any information concerning causal relations. It was thus possible to partially dene the causal I/O map from denition 39 on page 106. With this knowledge, the data-based partitioning approach using the knowledge of causal actuator sensor relations from section 5.3.5 was applied to the system. For the winding process, the optimal number of subsystems could not be determined using apriori knowledge. Hence, the optimization was rst carried out for two subsystems. As optimization criterion, J 1 (y) from equation 5.7 on page 99 (language growth) was taken. Words of length n = 2 have been considered. The optimization was parameterized with an initial temperature of T 0 = 1000 and the minimal temperature T min = 8.04×10 -14 leading to 3000 optimization runs with a cooling rate of CR = 0.99. The solution dierence dening how many I/Os have to change their subsystem from one optimization cycle to another has been chosen to sD = 3. Since for many controller outputs the according causal inuences could be determined, sD = 3 often leads to slightly more than three I/Os changing their subsystem (see section 5.3.5). Using a PC equipped with a 2.83GHz Intel R Core TM 2 Quad Core CPU with 3.25 GB RAM, the partitioning took 30 hours. Figure 7.6 shows the evolution of the observed languages for the resulting subsystems. It can be seen that the languages show a better conver-gence than the languages depicted in gure 7.5 on the right. In order to compare the curves, it is helpful to build the gradient for the language L n Obs . The gradient for the observed language of length n in the last 100 observed system evolutions is built using the following equation:

∆ L = |L n,562 Obs | -|L n,462 Obs | 100 (7.1) with L n,462
Obs denoting the observed language up to the 462-th system evolution according to denition 37. The gradient is built for the last 100 evolutions since it was decided that for the given application, 100 evolutions are a signicant number (see assumption 5 on page 54) to reasonably assess the completeness of the observation. The according values for ∆ L of L 2 Obs can be seen in table 7.1. During the last 100 observed system evolutions, the complete system language (without lifting station) produced 2.42 new words of length two on average in each evolution. If this trend is prolonged in the future, it can be expected that a monolithic system model would lead to two to three false alerts in each evolution on average. If the resulting subsystems are considered, it can be seen that the according value of ∆ L is decreased to 0.07 and 0.25 respectively. It can thus be expected that using partial automata identied for the subsystems signicantly reduces the number of false alerts since the expected number of non reproducible words is signicantly reduced.

Scenario complete system subsystem 1 subsystem 2 ∆ L 2.42 0.07 0.25 Table 7.1: ∆ L for the complete system language of length two (without lifting station) and two automatically determined subsystems

If the number of expected false alerts is to be further decreased, it is possible to continue system partitioning. Since concurrency in the two subsystems has already been reduced, it is a straight forward approach to take the two determined subsystems as basis for the next partitioning. Each of the two subsystems was given to the partitioning algorithm which was parameterized like in the former case. Since the subsystems are smaller than the complete system, the number of optimization cycles could be reduced to 1000 (with T min = 4.3 × 10 -5). The optimization approach to split each subsystem in two new subsystems took 7 hours. The languages of the resulting four subsystems (two for each of the former subsystems) is shown in gure 7.7. The values for the gradient of L 2 Obs of the four subsystems are given in table 7.2. It can be seen that dividing subsystem 1 into subsystems A and B yields ∆ L = 0.06 and ∆ L = 0. Since the gradient of subsystem A is not signicantly smaller than the gradient of subsystem 1, it can be concluded that dividing subsystem 1 is not reasonable. Indeed, the expected number of non-reproducible words of length 2 for subsystem 1 with 0.06 for each evolution on average (six new words in 100 evolutions) is already acceptably low.

If subsystem C and D are considered, it can be seen that the gradient of subsystem C is almost zero. Since the gradient of subsystem D is only 0.12 (compared to 0.25 for subsystem 2), it can be concluded that dividing subsystem 2 is a reasonable choice since this reduces the number of expected false alerts signicantly (almost 50%). In remark 3 on 84 it has been explained that the number of subsystems should be kept as small as possible to sharply distinguish fault-free and faulty behavior. Hence, it was decided that subsystem C and D are not to be further divided. The resulting automata network thus consists of subsystem 1, subsystem C and subsystem D.

Considering the data captured for the industrial application, it can be seen that the convergence of the observed language is not as good as it is in the case study 151 7.5 Using the model online number of edges i 1 2 3

P (E i |F) 0.9 0.05 0.05 7.5 Using the model online An online diagnosis system using the identied models has been installed at the Freudenberg production facility. The diagnosis program exploiting the models is running on a PC which is also hosting a data base and a web server. The results of the diagnosis algorithm are written to the data base were they can be accessed via the web server.

The web server also allows integrating the diagnosis system into the existing SCADA (supervisory control and data acquisition) system. Figure 7.8 shows the principle. To use the identied models for online diagnosis, the tolerance specication must be designed. It was decided that it is reasonable to accept two successive unknown combined network trajectories as fault-free. After the observation of a third unknown trajectory, a fault should be detected. If after less than two unknown trajectories normal behavior follows, the specication should regain the OK state. To follow this requirement, the tolerance specication from gure 7.9 has been chosen. Observing 200 fault-free system evolutions with the partial automata, the identied POCP and this tolerance specication led to 41 evolutions with a false alert. After each fault, the automata network, the POCP and the tolerance specication have been reinitialized as described in section 6.2.1. This showed that each evolution ended without a second false alert. To compare the distributed and the monolithic approach, the monolithic automaton has also been used to observe the 200 system evolutions. The result are 91 evolutions with at least one false alert. The total number of false alerts was 216. This shows that the distributed approach signicantly reduces the number of false alerts.

To evaluate if the number of false alerts can be further reduced, the less restrictive tolerance specication from gure 7.10 was considered. It accepts an unknown network 7.5 shows the number of false alerts using dierent models. Using the tolerance specication 1 from gure 7.9 reduces the number of false alerts signicantly when compared with the monolithic model. Since false alerts are not totally removed, the distributed model is still sensitive to unknown behavior. In the industrial application, it was not possible to articially introduce faults due to the high risk of causing damage in the system. Although the diagnosis system is currently running at the production site of Freudenberg, no real faults occurred until the end of the evaluation time. Nevertheless, the low values for the probability of accepting an I/O vector induced by a fault allows being condent about the fault detection capability of the model.

Conclusion

Summary

The aim of the presented work was the development of a generic model-based diagnosis method which can be applied to the class of closed-loop discrete event systems. Reviewing existing approaches known from literature revealed that two main principles for model-based diagnosis exist: The rst one is to use models containing the fault-free as well as the faulty system behavior. In this context, the models must usually be built manually and can only handle faults predened during the modeling phase. The second possibility for model-based diagnosis is to use models of the fault-free system behavior only. The diagnosis principle is to detect a fault as soon as the current observation cannot be reproduced by the fault-free system model. It has been shown that using fault-free system models has a major advantage for the application to large systems: Since they only contain fault-free behavior, it is possible to construct them using identication methods working on data captured during fault-free system evolutions. Since the considered class of industrial closed-loop DES is usually hard to model manually, the second approach has been chosen in this work.

The rst contribution of the thesis is thus in the eld of identication. An existing monolithic identication algorithm for the considered class of systems has been improved and a new completeness property has been shown. For the choice of the identication tuning parameter k, new results have been reported. It has been explained how the identication parameter helps to avoid representing several non-equivalent systems states by only one automaton state. Although the monolithic identication approach is capable of delivering very accurate models, it has some shortcomings when systems with a high degree of concurrency are to be treated. For these systems it is often not possible to observe the complete fault-free system behavior in a reasonably short time. The result are many non-reproducible fault-free behaviors leading to false alerts when using the monolithic model for fault diagnosis. To overcome this problem, a new distributed identication method has been developed. The idea is to divide the system into subsystems and to systematically accept a certain amount of unknown combined subsystem behavior. The approach is based on the heuristic that a certain amount of unknown global behavior resulting from a combination of regular subsystem evolutions can often be accepted as fault-free because it is similar to the known fault-free behavior. The acceptable amount of new behavior can be given by a tolerance specication automaton. The key of the distributed approach is the division of a given system into appropriate subsystems. A method to automatically perform this partitioning based on observed system behavior only and a minimum of system knowledge has been proposed. It uses an optimization technique to solve the combinatorial problem of assigning controller I/Os to subsystems. Since the aim is to get subsystems with weak internal concurrency, optimization criteria to estimate the concurrency in a given subsystem have been introduced.

For the use of the identied models for fault detection and isolation, a method inspired by the concept of residuals known from continuous systems has been proposed. It derives parts of the controller I/O vector which are possibly related to a detected fault following the principle of Parsimony introduced by [START_REF] Reiter | A theory of diagnosis from rst principles[END_REF]. For both, the monolithic and the distributed model, residuals have been dened. Using set operations on the observed and expected I/O behavior, the residuals are able to determine unexpected and missed behaviors. The formulation of residuals for missed and unexpected behavior can be understood as the formalization of fault symptoms. Two probabilistic measures to assess the fault detection capability of a given model have been given.

The methods introduced in this work have been applied to a laboratory case study system. The results show that both identication of appropriate models as well as fault detection and isolation of various tested faults are possible. The scalability of the developed approach has been shown with an industrial application. It has been shown that the distributed models signicantly reduce the number of false alerts compared to the use of the monolithic model.

Outlook

For future work several interesting directions exist. The most interesting question is if it is possible to integrate the timed behavior in the proposed method. This would allow detecting and isolating faults leading to a deviant timed behavior and deadlocks. Since the described approach is identication based, a promising way could be to use statistical methods to derive minimum and maximum state durations for the identied models. If the timed behavior can be determined on the subsystem level, it is an interesting question to analyze how the timed subsystem behavior restricts the automata network behavior. It is possible that it restricts the network behavior such that the restriction using the methods from chapter 4 can be relaxed.

Another interesting question is online updating of the system model. If during online diagnosis a non-reproducible behavior has been identied as fault-free by the system operator, this behavior should be included into the model. For the monolithic model, an appropriate online updating algorithm has been proposed in [START_REF] Roth | An FDI method for manufacturing systems based on an identied model[END_REF]. Since in most practical cases the distributed model will be used, the development of an appropriate adaptation for the partial models and the POCP is an interesting question.

The identication procedures introduced in this work have been explicitly designed to deliver appropriate models for fault detection purposes. Since the models describe the functioning of the system under normal conditions, other model-based techniques like re-engineering or validation and verication may also be possible with the identied models. In this context it is an interesting question to nd formal requirements of other model-based techniques and to check if the identication methods from this work deliver appropriate models. 9 Extended summaries in German and French Pour chaque sous-système un automate peut être identié avec l'algorithme d'identication monolithique. Les automates forment un réseau. Si les langages observés des soussystèmes convergent tous vers les langages originaux, le langage créé par le réseau d'automates est un simulateur pour le langage original du système entier : L k+1 Ident ⊇ L k+1 Orig . C'est-à-dire : le réseau d'automates peut reproduire tout le comportement du bon fonctionnement du système entier même si ce comportement a été observé seulement de manière partielle. Par conséquent il est possible de réduire le nombre de fausses alertes de manière signicative par rapport aux résultats obtenus avec le modèle monolithique.

La capacité à produire le langage original non encore observé s'accompagne du phénomène que le réseau d'automates produit plus de séquences de sorties qui représentent des fautes dans le système. Il existe des fautes qui mènent à une situation dans lequel chaque automate partiel trouve une trajectoire pour reproduire la séquence de sortie de son sous-système. Aucun des automates partiels n'est capable de détecter une telle faute. La faute est caractérisée par un comportement combiné des sous-systèmes qui n'est pas acceptable. C'est pourquoi le comportement combiné du réseau d'automates doit être surveillé. La gure 9.8 montre le principe de cette surveillance : au dessus du réseau d'automates se trouve une structure composée d'un Permissive Observed Cross Product (POCP) et d'une spécication de tolérance qui ont été introduits dans ce travail. Le POCP contient des informations sur les trajectoires du réseau d'automates observées pendant la phase d'apprentissage. Ces trajectoires peuvent être considérées non fautives puisqu'elles ont été observées pendant des évolutions du système sans fautes. Avec le POCP il est possible de décider si une trajectoire du réseau d'automates est connue ou bien si elle n'a pas encore été observée et est donc susceptible de représenter une faute. A l'aide de la spécication de tolérance il est possible de limiter la part du comportement inconnu qui est acceptée comme normale et qui ne mène pas à la détection d'une faute. La spécication de tolérance est un automate qui doit être déni a priori. Avec cette spécication il est par exemple possible de dénir qu'une trajectoire inconnue de longueur deux peut être tolérée mais qu'à partir d'une longueur trois une faute doit être détectée. La spécication de tolérance permet d'équilibrer le nombre de fausses alertes et la précision du modèle par rapport aux comportements fautifs. Avec la structure décrite, il est possible de détecter des fautes à deux niveaux : au niveau du réseau d'automates il est possible qu'un automate ne soit pas capable de reproduire le comportement de son sous-système et au niveau de la spécication de tolérance il est possible qu'un comportement combiné des sous-systèmes dépasse la limite dénie.

Après qu'une faute ait été détectée il est nécessaire de déterminer sa cause. Dans ce contexte, les systèmes de taille industrielle exigent une localisation de la faute. Ces systèmes comportent souvent quelques centaines d'actionneurs et de capteurs. C'est pourquoi il est indispensable de déterminer un ensemble limité de candidats de fautes, c'est-à-dire un ensemble de composants du système qui ont montré un comportement anormal. Dans la classe des SED en boucle fermée du contrôleur et du processus, la localisation de ces composants peut être réalisée en donnant des entrées ou des sorties (E/S) du contrôleur qui ont montré un comportement non reproductible. Puisque les E/S du contrôleur sont directement connectées avec les actionneurs ou les capteurs, il est souvent possible de trouver un composant défectueux en analysant un petit ensemble Un concept bien connu pour le diagnostic des systèmes continus est d'utiliser des résidus pour déterminer des signaux qui divergent du comportement normal [START_REF] Isermann | Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance[END_REF]. Les résidus consistent en des procédures de calcul pour quantier la diérence entre le comportement observé et le comportement attendu (modélisé). Basée sur ce concept, une nouvelle méthode pour déterminer la diérence entre le comportement attendu et le comportement observé d'E/S du contrôleur a été conçue dans ce travail. Pour le modèle monolithique et pour le modèle composé du réseau d'automate, du POCP et de la spécication de tolérance, des procédures de calculs ont été développés pour déterminer les E/S qui montrent un comportement inattendu ou qui ne montrent pas un comportement attendu par le modèle. A l'aide de ces procédures il est possible de déterminer un ensemble limité d'E/S qui sont potentiellement reliées à un composant fautif.

An de juger si un modèle donné est bien adapté au diagnostic en ligne, deux mesures probabilistes ont été dénies. Elles permettent d'estimer la probabilité qu'un comportement fautif peut être reproduit par le modèle et par conséquent n'est pas détectable.

Une application industrielle de la méthode développée dans ce travail a été traitée an de montrer que l'approche est applicable à l'échelle industrielle. Dans le cadre d'une coopération avec un fabriquant de textile non-tissé, un système de diagnostic pour un enrouleur industriel a été implémenté. Il a été possible de montrer que l'identication distribuée basée sur des sous-systèmes obtenue avec l'approche d'optimisation permet de créer de bons modèles avec relativement peu de données. Il a également été montré que l'application du réseau d'automates avec POCP et spécication de tolérance réduit le nombre de fausses alertes de manière signicative sans pour autant que la capacité à détecter des fautes soit trop fortement dégradée. Observed partial language of subsystem sys t L n,h

Obs,syst

Observed partial language of subsystem sys t based on the rst h of p system evolutions

2. 1

 1 Industrial closed-loop Discrete Event Systems In this work the fault diagnosis and model identication problem in a widely used class of industrial closed-loop systems is addressed. The considered systems consist of controller and plant. In the plant, a set of discrete sensors measures certain process values and delivers them to the controller using the controller inputs. The controller executes a control algorithm and determines appropriate discrete actuator settings in the plant. Commands to actuators in the plant are transfered via controller output signals. Typical sensors and actuators in an industrial closed-loop DES are discrete position or level sensors as well as pneumatic or hydraulic cylinders and conveyor belts.

Figure 2 . 1 :

 21 Figure 2.1: Industrial closed-loop Discrete Event System

Figure 2 . 2 :

 22 Figure 2.2: Evolution of a DES

Figure

 Figure 2.3: Automaton modeling a valve

Figure 2

 2 Figure 2.4: Sample Petri net

Figure 2 . 5 :

 25 Figure 2.5: Principle of model-based diagnosis

 Figure 2.6 shows the according automata models of valve and controller. The normal behavior of the valve is the same as in the example in gure 2.3. Additionally, there are two states representing the valve after the occurrence of a fault. The state SC represents the valve under a 'stuck close' fault and state SO models 'stuck open'. For the controller no faults are modeled. Controller and valve are synchronized using the observable events open_v and close_v. The occurrence of a fault in the valve is represented by one of the unobservable events f ail_close or f ail_open. In the example it is assumed that the stuck open fault can only occur when the valve is open whereas the stuck close fault can occur when the valve is open and closed.

Figure 2 . 6 :

 26 Figure 2.6: Models of valve and controller

Figure 2

 2 Figure 2.7: Parallel composition of valve and controller automata

Figure 2 .

 2 Figure 2.12: Graphical representation for template

Figure 2 .

 2 Figure 2.13: Dierent levels of abstractions for the valve model

Figure 2 .

 2 Figure 2.14: Relation of original, observed and identied languages

Figure 2 .

 2 Figure 2.16: Example for a timed automaton

Figure 2 .

 2 Figure 2.18: Example for the (Meda-Campana and Lopez-Mellado, 2005) approach

Figure 3 . 1 :

 31 Figure 3.1: Structure of the considered systems

Figure 3

 3 Figure 3.2: Autonomous state-based event generator

Figure 3 . 3 :

 33 Figure 3.3: Assumed evolution of the observed language cardinality

Figure 3

 3 Figure 3.4: Identied NDAAO after step 2 and 3

Figure 3 . 5 :

 35 Figure 3.5: The identied NDAAO after merging of equivalent states

Figure

 Figure 3.6: Conveyor example

Figure 3

 3 Figure 3.8: Typical evolution of the observed language

 output but are not equivalent since their following behavior diers: In contrast to x DES 1 , from x DES 4 it is not possible to produce BCDB.

Figure 3

 3 Figure 3.9: Example for the transition gap measure

Figure 3

 3 Figure3.9 shows that increasing k to k = 2 changes the automaton structure. It can be seen that the automaton identied with k = 1 contains an exceeding word w 3 = DBE which by theorem 4 is not part of the automaton identied with k = 2 (since

3 and x DES 6 .

 6 Hence, a fault leading to the output E from x DES 3 can still not be detected. Increasing k to k = 3 does not change this situation since the algorithm yields the same automaton structure. Only if k is chosen to k = 4, the automaton state x 3 models only x DES 3 since it is possible to distinguish between x DES 3 and x DES 6 by considering their three predecessors. With k = 4, x 3 has only one possible following state. Hence, the fault leading to E from x DES 3 can be detected, because E is no longer an accepted following behavior of x 3 8 . A closer look at the example shows that not only x 3 representing x DES 3 but the whole trajectory x 2 , x 3 representing x DES 2 that the new trajectories at k = 4 represent only one of the underlying DES-trajectories.

Figure 3 .

 3 Figure 3.11: PLC cycle with data collection

Figure 3 .

 3 Figure 3.12: Evolution of the Gap-function

Figure 3 .

 3 Figure 3.13: Parts of identied automata for the case study

Figure 4

 4 Figure 4.1: Observed language of the case study with three work pieces

Figure 4

 4 Figure 4.2: Example for concurrent behavior

Figure 4

 4 Figure 4.3: Observed language of a subsystem consisting of the rst two stations treating three work pieces

 4.2.1 Denition of partial closed-loop DESAs explained in section 3.5, the data base for identication is determined by collecting the signals exchanged between controller and plant. These signals can be grouped in an I/O vector:Denition 24 (Controller I/O vector). Given r dierent controller inputs I 1 , ..., I r and s dierent controller outputs O 1 , ..., O s , the controller I/O vector u = (IO 1 , ..., IO m) with m = r + s is given by IO i = I i ∀ i = 1, .., r and IO r+i = O i ∀ i = 1, .., s. m = |u| denotes the length of the vector (number of controller I/Os). The controller I/Os can have the values 1 or 0.

Figure 4

 4 Figure 4.4: Division of the global I/O vector into two subsytems

Denition 30 (

 30 Replace equal substrings function). Given a word w n of length n. The function w m≤n res = RemEqual(w n) replaces each substring w 2 sub ∈ w n |w 2 sub 1 = w 2 sub 2 with 1 w 2 sub 1 . This operation is repeated until the resulting word w m≤n res no longer contains a w 2 sub with w 2 sub 1 = w 2 sub 2 . For the word w 5 = ABBBC, w m≤n res = RemEqual(w n) delivers w 3 res = ABC. The next function is the projection of an I/O vector to a subset of I/Os. It replaces each I/O in the vector by the don't care symbol '-' if it is not part of a given I/O set. Denition 31 (I/O vector projection). Given an I/O vector u(j) and a set of I/Os IOSet. The function IOProj IOset (u(j)) replaces the value of each IO ∈ u|IO / ∈ IOSet by the don't care symbol '-'.

Figure 4 . 6 :

 46 Figure 4.6: Example for exceeding behavior of an automata network

Figure 4 . 7 :

 47 Figure 4.7: Cross product of the example

Figure 4

 4 Figure 4.8: Example for an observed cross product

Figure 4 . 9 :

 49 Figure 4.9: Example for the tolerance specication automaton

 in the observed cross product: x Obs|| (1) := x Obs|| 0

Figure 4 .

 4 Figure 4.10: Example for algorithm 4

Figure 4 .

 4 Figure 4.11 shows the POCP created by algorithm 5 based on the observed cross product from gure 4.10. The black state represents the state x ε added during the algorithm. It can be seen that each state is reachable by each other state by a transition. If this transition was already existent after the construction of the observed cross product (algorithm 4), the according Θ P OCP value is true. If a transition has been added during algorithm 5, the according Θ P OCP value is f alse.

Figure 4 .

 4 Figure 4.11: Example for a POCP

Figure 4 .

 4 Figure 4.14: Observed language of the subsystems

Figure 4 .

 4 Figure 4.15: Transition gap for the subsystems of the case study

Figure 4 .

 4 Figure 4.16: New observed transitions per evolution in algorithm 4 and the derived tolerance specication

Figure 4 .

 4 Figure 4.18: Eciency of the tolerance specication tolerating two unobserved network trajectories

Figure 5 . 1 :

 51 Figure 5.1: Double acting cylinder with paritial NDAAOs

Figure 5 . 3 :

 53 Figure 5.3: Example for a fork style concurrency

Figure 5 . 4 :

 54 Figure 5.4: Part of a reachability graph

Figure 5 . 5 :

 55 Figure 5.5: Result of monolithic and distributed identication

Figure 5 . 6 :

 56 Figure 5.6: Example for the non-normalization of the branching degree

Algorithm 6

 6 Simulated annealingRequire: initial temperature T 0 , minimum temperature T min , cooling ratio CR 1: T := T 0 initialize temperature 2: select current solution y c at random 3

Algorithm 7

 7 Determine initial solution with minimal knowledge Require: number of subsystems N sys , global I/O vector u, minimal number of I/Os in a subsystem minIO 1: repeat 2: ∀t ∈ 1, . . . , N sys : y(sys t) := {} 3: for all IO i ∈ u do 4: randSys := random({sys 1 , . . . , sys Nsys }) ∀t ∈ 1, . . . , N sys : |y(sys t)| ≥ minIO

Algorithm 8

 8 Determine next solution with minimal knowledge Require: Existing solution y c , number of subsystems N sys , global I/O vector u, minimal number of I/Os in a subsystem minIO, solution dierence sD 1{sD randomly chosen I/Os from the global I/O vector} 4: for all IO i ∈ IOSet do 5: y new (sys)|IO i ∈ y new (sys) : y new (sys) := y new (sys)\IO i 6: randSys := random({sys 1 , . . . , sys Nsys }) 7: y new (randSys) := y new (randSys) ∪ IO i 8: end for 9: until ∀t ∈ 1, . . . , N sys : |y new (sys t)| ≥ minIO

Figure 5 . 7 :

 57 Figure 5.7: Example for the assignments in a causal map

Figure 5 . 8 :

 58 Figure 5.8: Determination of two, three and four subsystems with 'language growth'

Figure 5 . 9 :

 59 Figure 5.9: Determination of two, three and four subsystems with 'branching degree'

Figure 5 .

 5 Figure 5.10: Evaluation of the results of the minimal knowledge approach

Figure 5 .

 5 Figure 5.14: Evaluation of the results of the causal knowledge approach

Figure 6 . 1 :

 61 Figure 6.1: Online monitoring of closed-loop DES with an NDAAO

Figure 6 . 2 :

 62 Figure 6.2: Residuals in continuous and in discrete event systems

 6.1.2 I/O driven system monitoring Denition of the I/O behavior In section 3.1 it has been shown that a closed-loop DES evolution leads to an I/O vector sequence. If the considered system or its model produce a new I/O vector, this is the result of at least one I/O changing its value. If a binary I/O changes its value, an edge can be observed (see gure 6.3): Denition 40 (Edges). For each controller I/O IO i there exist three edges: IO i _0 to indicate a change from 1 to 0 (falling edge), IO i _1 to indicate a change from 0 to 1 (rising edge) and IO i _ε to indicate no change in value:

Figure 6 . 3 :

 63 Figure 6.3: Rising edge of an I/O

 we address the i-th controller I/O of vector u with u[i]. Since more than one I/O can change its value when new I/O vectors are produced, we dene the evolution set that summarizes the edges 'between' two I/O vectors: Denition 42 (Evolution set). ES(u(j), u(k)) = m i=1 {Edge(u(j)[i], u(k)[i]) ∈ E\IO i _ε} determines the set of rising and falling edges between two I/O vectors u(j) and u(k).

Figure 6 .

 6 Figure 6.4 shows an example for the evolution set resulting from the comparison of two I/O vectors.

Figure 6 . 4 :

 64 Figure 6.4: Example for the evolution set

Figure 6

 6 Figure 6.5: Structural scheme for fault detection and isolation with the NDAAO

Figure 6 . 6 :

 66 Figure 6.6: Example for state estimation and fault detection

Figure 6 . 7 :

 67 Figure 6.7: Example for the probability measures

Figure 6 . 8 :

 68 Figure 6.8: Example for an unexpected behavior

 Res4(x, u(t)) = {I1.5_1, I2.3_0, O1.3_1, O1.4_1, O1.5_1, O2.2_1, O2.3_0}Res1 and Res2 both result in the same unexpected edge that is caused by the fault.Res3 results in an empty set and Res4 shows a union of the legal following behavior of state x 18 . In this case, Res3 and Res4 do not isolate the fault. Res1 and Res2 provide the correct fault candidate.

Figure 6 .

 6 Figure 6.10: Example for a fault at I3.3

Figure 6 .

 6 Figure 6.11: Example for a fault at I2.4

Figure 6 .

 6 Figure 6.12: Evaluator structure for the distributed model

 then

Figure 6 .

 6 Figure 6.15: Tolerance specication for the case study system

Figure 6 .

 6 Figure 6.16: Part of the automaton identied for the third subsystem

Figure 7

 7 Figure 7.1: Schematic view of a nonwovens production line

Figure 7 . 2 :

 72 Figure 7.2: Winder of the nonwovens production line

Figure 7 . 3 :

 73 Figure 7.3: Structure of the identication software

Figure 7 . 6 :

 76 Figure 7.6: Evolution of the observed language for two automatically determined subsystems

Figure 7 . 7 :

 77 Figure 7.7: Evolution of the observed language for four automatically determined subsystems

Figure 7 . 8 :

 78 Figure 7.8: Online diagnosis setup

Figure 7 . 9 :

 79 Figure 7.9: First tolerance specication for the industrial application

Figure 7 .

 7 Figure 7.10: Second tolerance specication for the industrial application

9. 1

 1 Abbildung 9.1: Ereignisdiskretes closed-loop System

Figure 9

 9 Figure 9.5: Systèmes à événements discrets en boucle fermée

Figure 9 . 6 :

 96 Figure 9.6: Principe du diagnostic basé sur des modèles

Figure 9 . 7 :

 97 Figure 9.7: Convergence du langage observé

Figure 9

 9 Figure 9.8: Surveillance du réseau d'automates

 Abbreviation Explanation Page DES Discrete Event System NDAAO Non-Deterministic Autonomous Automaton with Output POCP Permissive Observed Cross Product

 length n of a closed-loop DES L Ident Identied language of a closed-loop DES (language of the DES model) L n Ident Identied language of length n of a closed-loop DES W n Ident Identied words of length n of a closed-loop DES L Exc Exceeding language of a closed-loop DES(L Exc = L Ident \L Orig) L N R Non-reproducible language of a closed-loop DES (L N R = L Orig \L Ident) u DESOutput of a closed-loop DES

 next state function of closed-loop DES Λ Output function of a closed-loop DES (u DES = Λ(x DES)) f Non-deterministic transition function of an NDAAO λ Output function of an NDAAO λ Output function of an identied NDAAO until step 4 of algorithm 1combine two partial I/O vectors (delivers 'c' for I/Os which are contradictory) f || Non-deterministic transition function of an NDAAO cross product λ || Output function of an NDAAO cross product RemEqual Replace equal substrings function (with w 5 = ABBBC, RemEqual(w 5)=ABC) IOProj IOSet I/O vector projection to the I/O list IOSet (is applied to an I/O vector: Each I/O not belonging to IOSet is replaced by '-') Θ Transition observation function (true if a transition has been observed during identication) f T ol Transition function of a tolerance specication λ T ol Output function of a tolerance specication Θ T ol Transition observation function for the tolerance specication f Obs|| Transition function of the observed cross product λ Obs|| Output function of the observed cross product (delivers the combination of underlying partial automata states of a given x Obs||) f P OCP Transition function of the permissive observed cross product λ P OCP Output function of the permissive observed cross product (delivers the combination of underlying partial automata states of a given x P OCP or ε if it is the 'joker'-state) Θ P OCP Transition observation function for the POCP CausalM ap Causal actuator sensor map Edge Edge function (to get the rising or falling edge when comparing two controller I/O values) ES Evolution set (to get the rising or falling edges between two I/O vectors) F D Fault detection policy to decide if a fault is detected ES T Evolution set for the distributed model (to get the rising or falling edges in an I/O vector trajectory) J P OCP Join function for the POCP Ψ Determines the expected trajectories in the POCP 169

 The next step is to determine W k Obs,Σ k and W k+1 Obs,Σ k according to equations 3.2 and 3.3.

		Eq
	8:	Restart Algorithm with new X
	9:	end if
	10: end for
	The results are

W 2 Obs,Σ 2 = {AA, AB, BC, CD, DE, EA, EB, AD, DB, DA, AC, CA, CF, F D} and W 3 Obs,Σ 2 = {AAB, ABC, BCD, CDE, DEA, DEB, AAD, ADB, DBC, CDA, DAC, ACA, BCF, CF D, F DE}

 4.1 it is explained that an NDAAO state x can represent several closedloop DES states {x DES Hence, the transition function of the NDAAO state x yields more states than each single transition function of one of the represented DES states. If the considered system is in state x DES 1 and a fault occurs, it is possible that this fault leads to a following behavior which is valid in another system state x DES

	1 is chosen such that the model is complete (it can reproduce the complete fault-free , x DES 2 , . . . , x DES i } with dierent valid following states. If k
	original system language), the NDAAO state leads to states representing the successors
	of {x DES 1	, x DES 2	, . . . , x DES i	}. 2	but not in
	x DES 1	. Since the NDAAO represents the system being in x DES 1	with the same state that
	represents x DES 2	, the faulty behavior can be reproduced. The NDAAO state cannot
	distinguish between the system states x DES 1	and x DES 2	. Hence, if a following behavior
	is valid in x DES 2	

 Table3.1: Number of states and transitions value for k is proposed if k cannot be chosen upon a priori knowledge. Since the rules make use of the transition-state gap, it is necessary to identify models with dierent values for k before they can be applied. The rules have thus to be understood as an a posteriori heuristic.Rule 1: If it is not possible to determine a value k ≥ 1 such that L k+1 Obs ≈ L k+1 Orig can be stated due to the convergence of L k+1Obs to a stable level, it is necessary to increase the observation horizon and to collect more data. Each value k ≥ 1 for which L k+1 Obs ≈ L k+1 Orig holds is an appropriate value to identify a model eliminating the non-reproducible system language. This leads to a minimum number of false alerts if the model is used for online diagnosis purposes.Orig holds for several k but with lower condence if k is increased, k should only be augmented if the transition-state gap decreases signicantly.

	k |X| |f (x)| Gap(N DAAO, k) 1 8 9 1
	2	9	10	1
	3	9	10	1
	4 11	11	0
	Rule 2: If L k+1 Obs ≈ L k+1			

Table 3 .

 3

	I/O Description			I/O Description
	O1.2 drilling machine (station 1) mo-	O2.2 vertical milling machine (sta-
	tor up			tion 2) motor up
	O1.3 drilling machine motor down	O2.3 vertical milling machine motor
				down
	O1.4 drilling machine drilling motor	O2.4 vertical milling machine milling
				motor
	O1.5 drilling machine conveyor on	O2.5 vertical milling machine conveyor
				on
				O2.7 change milling head
	O3.0 horizontal milling machine (sta-	O3.1 horizontal milling machine motor
	tion 3) motor back		front
	O3.2 horizontal milling machine motor	O3.3 horizontal milling machine motor
	up			down
	O3.4 horizontal	milling	machine	O3.5 horizontal milling machine con-
	milling motor			veyor on

2: Controller outputs of the case study

 sys 1 and L k+n Ident,sys 2 ⊇ L k+n Orig,sys 2 holds. Hence, w n 1 Orig,sys 2 ∈ L k+n Ident,sys 2 . From this it follows that for each w n 1Orig,sys 1 and w n 2Orig,sys 2 a state trajectory exists in the automaton that has been identied for the according subsystem, producing the original word. In equation 4.3, X || is constructed such that a cross product state exists for each combination of two partial automata states leading to a valid system output. Hence, for each combination of substrings w 1Orig,sys 1 ∈ w n 1 Orig,sys 2 ∈ w n 2Orig,sys 2 such that J(w 1Orig,sys 1 , w 1 Orig,sys 2) ∈ w k+n Orig , a cross product state exists with J(w 1 Orig,sys 1 , w 1 Orig,sys 2) as output. In equation 4.5, two cross product states x || 1 with λ || (x || 1) = w k+n Orig j and x || 2 with λ || (x || 2) = w k+n Orig j + 1 are connected if at least one of the underlying partial automaton states of x || 1 has one of the underlying partial automaton states of x || 2 as successor. Since for each w n 1

	and w n 2	Orig,sys 1 ∈ L k+n Ident,sys 1
	and w 1	Orig,sys 1

 Algorithm 4 Direct construction of the observed cross product Require: Set of identied partial automata {NDAAO 1 , . . . , NDAAO n } and observed sequences Σ = {σ 1 , . . . , σ p } according to denition 19 1: Initialize NDAAO Obs|| with X Obs|| = {} 2: Create initial state x Obs|| 0 |λ Obs|| (x Obs|| 0

 Algorithm 5 Construction of the permissive observed cross product Require: Observed cross product NDAAO Obs|| 1: Output alphabet: Ω P OCP := Ω Obs|| ∪ ε with ε being the empty output 2: Basic state space: X P OCP := X Obs|| , x P OCP 0 = x Obs|| 0 3: Basic transition function / output function: f P OCP := f Obs|| , λ P OCP := λ Obs|| 4: Transition observation function: ∀x ∈ X P OCP : Θ P OCP (x, f P OCP (x)) := true 5: Create state with empty output: x ε : λ P OCP (x ε) := ε, f P OCP (x ε) = {} 6: Enlarged state space: X P OCP := X P OCP ∪ x ε 7: Following states of x ε : f P OCP (x ε) := X P OCP 8: Enlarged transition function: ∀(x = x ε) ∈ X P OCP : f P OCP (x) := X P OCP \x 9: Complete denition of the transition observation function: 10: for each x ∈ X P OCP do

	11: 12:	for each x ′ ∈ f P OCP (x) do if Θ P OCP (x, x ′) not dened then
	13:	Θ P OCP (x, x ′) := f alse
	14:	end if
	15:	end for
	16: end for

 Algorithm 10 Determine next solution with a causal I/O map Require: Existing solution y c , number of subsystems N sys , global I/O vector u, minimal number of I/Os in a subsystem minIO, solution dierence sD, causal I/O map

	CausalM ap
	1: repeat
	2:

 ap(IO j)} until ∀t ∈ 1, . . . , N sys : |y new (sys t)| ≥ minIO

	4:	IOSubSet := {sD randomly chosen I/Os from IOSet}
	5: 6:	for all IO i ∈ IOSubSet do
	9:	end for
	10:	

y new (sys)|IO i ∈ y new (sys) : y new (sys) := y new (sys)\(IO i ∪ CausalM ap(IO i)) 7: randSys := random({sys 1 , . . . , sys Nsys }) 8: y new (randSys) := y new (randSys) ∪ IO i ∪ CausalM ap(IO i)

 EC 1 EC 2 sys I ←→ sys A , sys II ←→ sys B , sys III ←→ sys C I ←→ sys A , sys II ←→ sys C , sys III ←→ sys B 4 39% sys I ←→ sys B , sys II ←→ sys A , sys III ←→ sys C 2 25% sys I ←→ sys B , sys II ←→ sys C , sys III ←→ sys A I ←→ sys C , sys II ←→ sys B , sys III ←→ sys A 3 36% sys I ←→ sys C , sys II ←→ sys A , sys III ←→ sys B

	1	8.3%
	4	44.3%
	4	47.3%
	Table 5.2: Example for the combined evaluation criteria

sys sys

 Table 6.1: Denition of P (E i |F) for the example

			6.12)
	If equation 6.11 and 6.12 are summed up, the result is P max (A∩E i |F) ≤ 0.813 indicating that there is an upper bound of about 81% for the probability of accepting an I/O vector
	induced by a fault.	
	number of edges i 1	2
	P (E i |F)	0.8 0.2

 Res4, the result of Res4 is usually less restrictive than Res3, i.e. it contains more elements. The example of gure 6.9 illustrates Res3 and Res4. The observation of the edge IO 3 _0 leads to fault detection from x 1 , the estimated current NDAAO state. Applying the residuals results in Res3 = {IO 1 _0} and Res4 = {IO 1 _0, IO 2 _1}. The same procedure as explained for Res1 and Res2 should be started: First, the component connected with IO 1 should be checked. If the repair team does not nd a fault at this component, it should proceed with checking IO 2 which is additionally part of

	u(t))	(6.16)
	Since Res3 ⊆ Res4.	

 Algorithm 12 Evaluator algorithm for the distributed model Require: New observed I/O vector u(t), current state combination of the N sys partial NDAAO i {x 1 (t -1), . . . , x Nsys (t -1)}, current state x P OCP (t -1) of the POCP, current state x T ol (t -1) of the tolerance specication 1: for all partial NDAAO i |1 ≤ i ≤ N sys do

2:

Table 7 .

 7 4: Assertion of P (E i |F)

 Observed sequence during the h-th system evolution Controller I/O vector (precise denition of u h (j) for closedloop DES) Initial state of a tolerance specicationΩ T olOutput alphabet of a tolerance specication NDAAO Obs|| Observed cross product X Obs|| State space of the observed cross product x Obs|| 0 Initial state of the observed cross product Ω Obs|| Output alphabet of the observed cross product (state combinations of the underlying partial automata) State space of the permissive observed cross product x P OCP Initial state of the permissive observed cross product Ω P OCP Output alphabet of the permissive observed cross product (state combinations of the underlying partial automata)

	Variable	Explanation	Page
	σ h		
	IO i	Controller I/O	
	sys t	t-th subsystem	
	y(sys t)	I/O mapping function (assigns a set of controller I/Os to sub-	
		system sys t)	
	N sys	Number of subsystems	
	u syst	Partial controller I/O vector (I/O which are not part of sys t	
		are replaced by '-')	
	NDAAO ||	NDAAO cross product	
	X ||	State space of an NDAAO cross product	
	x || 0	Initial state of an NDAAO cross product	
	NDAAO T ol	Tolerance specication automaton	
	X T ol	State space of a tolerance specication	
	x T ol 0		
	X P OCP		
	EC 1 , EC 2	Evaluation criteria	
	E	Set of controller I/O edges	
	X t , X t-1	Current and former states estimation	
	T Obs	Observed trajectory after the tolerance specication left its	
		OK state	
	10.3 Functions	
	X DES	Closed-loop DES state space	
	x DES Function	State of a closed-loop DES Explanation	Page
	x DES 0	Initial state of a closed-loop DES	
			167

X State space of an NDAAO x 0 Initial state of an NDAAO Ω Output alphabet of an NDAAO u h (j) j-th output of in the h-th of p system evolutions Σ Set of all observed sequences u

A denition to distinguish between the notions fault and failure will be given in section

2.3

The precise denition of the term language often varies from one approach to another. Here, a language can be understood like introduced in denition

The considerations of this section also hold for the languages dened in the following chapters.

2.4 Identication of Discrete Event Systems

A language L A simulates a language L B if L A ⊇ L B holds.

Example for the powerset of A = {a, b, c} :

A = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} 2 With |Set|, the set cardinality is denoted

The NDAAO-denition in[START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF]) also contains a nal state. After some modications in the identication algorithm (see section 3.2), this state is no longer necessary.

The language denitions in this section are modied versions of the denitions in[START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF] but follow the same ideas.

|w| denotes the length of word w: |ABC| = 3. Since λ(x) is a word of length k until this step, λ(x) := λ(x) |λ(x)| selects the last letter of this word and takes it as new state output.

This theorem was not shown for the algorithm of[START_REF] Klein | Identication of Discrete Event Systems for Fault Detection Purposes[END_REF]

, E is a valid following behavior, the fault cannot be detected due to its behavior being part of the model.

This holds if an appropriate state estimation algorithm is used, delivering x 3 as unique estimate.Such an algorithm is introduced in chapter 6.1

Like in chapter 3, w n i addresses the i-th symbol (or letter) of the word w n . This is not to be confused with the use of the u[i] operation on single I/O vectors u to get the i-th I/O.

A more detailed description of the online diagnosis process using the identied models will be given in chapter 6

see denition 19

See denition 28.

A valid model output is determined by applying the join-function to the partial state outputs. If c is not part of the join-function, the combined output is valid

Each partial NDAAO must either stay in its current state or it takes the next state from the following states of the current state

1.8 GHz, 2 GB RAM

Each evolution is an I/O vector sequence in Σ = {σ 1 , . . . , σ p }

Following the considerations of(Philippot et al.,

2007), the cylinder would not be divided into subsystems since its actuator has an inuence on both position sensors. In the example we nevertheless divide it in two subsystems to show the impact on diagnosis

λ(x) represents w k being the state output in step 1 of the identication algorithm before being replaced by its last letter (see denition

on page 48)

According to denition 26, the partial I/O vector only contains the I/Os of the i-th subsystem

From step 2 of algorithm 1 (the monolithic identication algorithm) it follows that a state in an identied automaton does not have several following states with the same output.

This is important for applications where even with the distributed approach it is not possible to completely eliminate false alerts

Computers & Chemical Engineering, 27(3):327346.

Acknowledgements

The work that resulted in this thesis could not have been accomplished without several persons' assistance, support, and encouragement.

First of all, I would like to thank my doctoral advisors, Professor Lothar Litz and Professor Jean-Jacques Lesage for the opportunity to perform my work at their institutes. I am grateful for their guidance, advice, encouragement and for the intellectual freedom they have given to me during this work. They gave me the opportunity to experience both, the French and the German cultures of research.

Besides to Professor Lothar Litz and Professor Jean-Jacques Lesage, my sincere thanks go to the other members of the evaluation board: Professor Birgit Vogel-Heuser from Technische Universität München, Professor Janan Zaytoon from Université de Reims Champagne-Ardenne, and to the chairman Professor Wolfgang

Scenario subsystem A subsystem B subsystem C subsystem D ∆ L 0.06 0.0 0.02 0.12 Table 7.2: ∆ L for the partial system language of length two of four automatically determined subsystems system treated so far. The main reason is that for the industrial application not each precondition perfectly holds. In chapter 3 it was explained that the considered class of systems is supposed to be an autonomous closed-loop of controller and plant. However, the winder can not be considered as completely autonomous since some of its procedures are triggered by the personnel of the facility using various buttons. Since not each operating crew is following exactly the same procedures, this can be considered as a source of disturbance which makes it hard to observe the complete system behavior.

Nevertheless, it can be seen that after having divided the system into subsystems, the observed language of each subsystem rather clearly converges to a stable level.

On the basis of the four subsystems, partial automata have been identied. Except of the lifting station with k = 2, the partial identication was carried out with k = 1 since only L 2

Obs converged good enough to state L k+1

Obs ≈ L k+1

Orig for each subsystem such that theorem 5 and theorem 6 hold. Table 7.3 shows the number of states and transitions for each partial automaton. It also contains information about a monolithic automaton identied for the whole system (with k = 1). On the basis of the four partial automata, the POCP has been identied. The resulting automaton has 2167 states. The construction took 14 minutes on a PC with 2.83GHz Intel R Core TM 2 Quad Core CPU with 3.25 GB RAM.

To assess the fault detection capability of the identied automata network, the probability for accepting an I/O vector induced by a fault is calculated for the cross product of the partial automata using equations 6.9 and 6.10 from page 125. The a priori probability P (E i |F) denoting the probability that a faulty I/O vector is the result from i edges is dened in table 7.4 by a conservative estimate. The resulting values are

This shows that the distributed model is already relatively well appropriate for fault detection purposes even without restricting the network behavior. A monolithic automaton identied with k = 1 yields with 2.98% and 0.6% better values but leads to a signicantly larger number of false alerts.