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cette thèse, pour son aide et pour ses conseils.

Je remercie Iain Duff et Sivan Toledo d’avoir accepté de rapporter cette thèse,
d’avoir pris le soin de formuler des retours extrêmement constructifs et d’avoir été mem-
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également accepté de participer au jury en plus de tous les précieux conseils promulgués.
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l’équipe Graal. Merci à Yves et Anne pour les parties de pétanque, à Eddy pour sa
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Introduction

Solving sparse systems of linear equations is central in many simulation applications.
Because of their robustness and performance, direct methods can be preferred to iterative
methods, especially in an industrial context. However, they require a large amount of
memory because the factorization of a sparse matrix A leads to factors with an amount
of non-zeros much larger than in the original matrix. Even if the memory of modern com-
puters keeps increasing, applications always require to solve larger and larger problems
which still need more memory than available. Furthermore, some types of architectures
have a limited amount of memory per processor or per core. The use of out-of-core solvers,
where the disk is used to extend the physical memory, is then compulsory. In this disser-
tation, we study out-of-core direct methods from both a theoretical and a practical point
of view. We focus on two classes of direct methods, so-called multifrontal and supernodal
algorithms, and introduce the main concepts we rely on in Chapter 1.

Part I: Models and algorithms for out-of-core serial sparse direct
methods

In Part I, we study those methods in a sequential out-of-core context. A critical
parameter in out-of-core is the I/O volume, which corresponds to the amount of traffic
between disk and memory. In the context of multifrontal methods, we propose models
to compute and represent the I/O volume in Chapter 2. We then design algorithms to
schedule the tasks of the multifrontal algorithm in a way that limits that I/O volume
in chapters 3 and 4. In Chapter 3, we consider the classical multifrontal method and
show that minimizing the I/O volume on the stack of temporary data is different from
minimizing the overall size of the stack; we propose a new algorithm that minimizes
the I/O volume. The results of Chapter 3 are used as a basis for Chapter 4, which
addresses a more general variant of the multifrontal method that we call flexible allocation
scheme [44]. In this variant task allocation can be anticipated and this significantly
reduces the working storage and the I/O volume compared to classical approaches. We
show that the minimization of the I/O volume is NP-complete with this allocation scheme
and propose an efficient heuristic based on practical considerations. In Chapter 5, we
propose memory management algorithms for our models that could be used as a basis to
build a new serial out-of-core code.

The last chapter of Part I is dedicated to the study of out-of-core supernodal methods

1



2 CONTENTS

and corresponds to the work done during a 6-month visit at the Lawrence Berkeley Na-
tional Laboratory under the supervision of Xiaoye S. Li, in the group of Esmond G. Ng.
We present an out-of-core prototype for the serial version of SuperLU and propose contri-
butions to address the problem of I/O volume minimization in the context of supernodal
methods.

Part II: A parallel out-of-core multifrontal solver

In Part II, we consider a particular method, the multifrontal algorithm, that we push
as far as possible in a parallel context. Starting (in Chapter 7) from a preliminary study
on the memory behaviour of an existing in-core solver, MUMPS, we design a robust out-
of-core extension that allows to process significantly larger problems by storing factors
on disk with a high efficiency (Chapter 8). We propose different I/O mechanisms and
study their impact on performance. We also show the limits of our method in terms
of scalability. To address that problem, we then study two complementary aspects. A
first approach consists in studying the behaviour of our out-of-core code if temporary
data were also processed on disk (Chapter 9). This study illustrates both the bottlenecks
related to the current implementation and the intrinsic limits of the method. A second
approach consists in rethinking the whole schedule of the factorization (Chapter 10) to
limit the memory usage. We show that this latter approach allows us to process large
problems with a very good memory scalability.

All along this dissertation, our approaches are validated on large matrices from dif-
ferent application fields. Note that we focus on the factorization step since the solution
step is the object of a separate study [8]. Concerning the multifrontal method, we will
assume that frontal matrices - which are dense matrices corresponding to the elementary
tasks but may represent a large amount of memory - can fit in core memory and go as
far as possible in this context. We show that we can process very large problems doing
so, especially in parallel.



Chapter 1

Introduction to the field

1.1 Direct methods for the factorization of sparse matri-

ces

We are interested in solving the following linear system whose unknown is x:

Ax = b. (1.1)

A is a sparse matrix of order N (A = (aij)1≤i,j≤N), and x and b are column vectors. A
matrix is sparse when the number NZ of nonzero values is small compared to the number
of entries (NZ ≪ N2).

Direct methods are based on the Gaussian elimination and proceed in two steps: the
factorization and the solution steps. In the factorization step, matrix A is decomposed
under the form

A = LU, (1.2)

where L is a lower triangular matrix whose diagonal values are equal to 1 and U is an
upper triangular matrix. The solution step then consists in solving in order two triangular
systems: Ly = b and Ux = y. One of the motivations of a two-step process is that the
solution step is far less costly than the factorization step. Thus, when solving a succession
of linear systems with the same matrix A but varying right-hand sides, only the solution
step has to be repeated whereas the costly decomposition is performed once.

We admit that decomposition (1.2) exists if the matrix is invertible (non-singular)
even if it means swapping some columns. Matrices L and U verify: aij = (LU)ij, for
each (i, j) in {1; ...;N}2. Considering the respective triangular structures of L and U , it

comes: aij =
∑min(i,j)

k=1 likukj. Because lii ≡ 1, we finally have:

{
aij =

∑i−1
k=1 likukj + uij if i ≤ j

aij =
∑j−1

k=1 likukj + lijujj if i > j
(1.3)

3



4 CHAPTER 1. INTRODUCTION TO THE FIELD

We deduce the following expression of the factors (remark that the notations i and k
have been swapped):

Ij

{

ukj = akj −
∑k−1

i=1 lkiuij for each k in {1; ...; j}
lkj =

1
ujj

(akj −
∑j−1

i=1 lkiuij) for each k in {j + 1; ...;N} (1.4)

which allows their computation by iteratively applying Ij for j = 1 to N . We present in
Figure 1.1 the data involved during an iteration. Computations are performed column
by column. Each column j (terms ukj or lkj in Formula (1.4)) depends on the columns
i, i = 1, . . . , j − 1 (term lki in Formula (1.4)).

1 2 3 4 5 6 7 8 9 10

���
���
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���
���
���
���
���
���
���
���
���
���
���
���
���
���
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���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����

Updating data

Updated data

Figure 1.1: Iteration I4.

Depending on some properties of the matrix, the decomposition can be simplified:
an LDLT decomposition can be performed with a symmetric matrix and a LLT decom-
position (or Cholesky decomposition) with a symmetric positive-definite matrix. In this
dissertation, we will focus on the factorization step. Although we will present results
related to LU, LDLT and LLT factorizations, we will use the LU formulation (except
when stated otherwise) to present the concepts that are common to the three methods.

1.1.1 Sparsity, fill-in and reordering

To reduce the storage requirement and the amount of computation, sparse direct
methods aim at storing and computing only nonzero values. Usually the L and U factors
are denser than the original matrix A (they have more nonzero values). This phenomenon
is called fill-in. Indeed, Expression 1.4 shows that a nonzero entry lij (or uij) in the factors
can appear even if aij is equal to 0, when there exists k in {1; ...; min{i, j}} such that lik
and ukj are nonzeros. Figure 1.2 illustrates fill-in. Fill-in increases the number of nonzero
values. These new nonzero values in turn induce more computation. Said differently, fill-
in increases the memory requirement as well as the number of operations and is critical.
Many studies have been done to reduce the amount and the effects of fill-in. They consist
in permuting the rows/columns of the matrix and are called ordering algorithms.

Algorithms on the structure of sparse matrices can be viewed as operations on graphs
since the structure of a general sparse matrix is equivalent to a graph. Let G(A) be
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the directed graph of a sparse matrix A (with nonzero diagonal entries) as follows. The
vertex set of G(A), the graph associated with A, is V = {1; 2; ...;N} and there is an edge
< i, j > from i to j (for i 6= j) if and only if the entry aij is nonzero.

The problem which consists in finding the optimum ordering of the variables to min-
imize the amount of computation being NP-complete [72], the use of heuristics is re-
quired. In practice these heuristics are performed on the graph associated with the ma-
trix. Among all the possible heuristics, here are two main classes of ordering algorithms
that apply to the symmetric case.

– Some heuristics are based on local criteria to decide which variable to eliminate first.
They are called bottom-up approaches. For instance, Minimum Degree algorithm
consists in eliminating the variable which has the lowest degree of connectivity in
the graph associated with the matrix at each iteration. Approximate Minimum
Degree [5] (AMD) and Multiple Minimum Degree [54] (MMD) libraries implement effi-
cient variants of this algorithm. Another approach consists in selecting the variable
which induces a minimum fill at each iteration. Approximate Minimum Fill [57]
(AMF) and Multiple Minimum Fill [62] (MMF) libraries implement variants of this
algorithm.

– Some heuristics are based on a more global approach (top-down approach). They
consist in partitioning the graph associated with the matrix recursively. Nested
dissections [38, 37] belong to this class of heuristics.

Some other heuristics are hybrid between these two schemes. The graph associated
with the matrix is recursively partitioned down to a certain granularity and then local
heuristics are performed on the obtained partitions. METIS [51] and PORD [69] libraries
implement hybrid approaches.

Finally, some heuristics are specific to the unsymmetric case. Column Approximate
Minimum Degree [24] (COLAMD) for instance is a variant of AMD for the unsymmetric case.

a
b

c
d

e
f

g
h

i
j

fill-in

F =A =

a
b

c
d

e
f

g

h

i
j

initial matrix

Figure 1.2: Fill-in. Matrix F contains lij and uij values after factorization.
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1.1.2 Elimination trees and pivoting

The sparse structure of the factors depends on the order of elimination of the variables.
However the elimination of a column does not impact all the following columns but
only part of them, depending on their respective sparse structures. Said differently, the
computation of some columns may be independent of the computation of some other
columns. The study of these dependencies between columns is essential in sparse direct
factorization as they are used to manage several phases of the factorization [56, 39].
Formula (1.4) provides these dependencies that we express as a binary relation→ on the
set of columns {1; ...;N} in Definition 1.1:

Definition 1.1. Column j explicitly depends on Column i (noted i→j) if and only if
there exists some k in {i+ 1; ...;N} such that lkiuij 6= 0.

The transitive closure
+−→ of → expresses whether a column i must be computed

before a column j: i
+−→j if and only if column i must be computed before column j. This

information can be synthesized with a transitive reduction
−−→ of → (or of

+−→): column i
must be computed before column j if and only if there is a path in the directed graph

associated with
−−→ from i to j. This statement would be true for any of the relations

→,
+−→ or

−−→, but
−−→ presents the advantage to be the most compact way to code this

information [2].

The graph associated with
−−→ reflects some available freedom to reorder the variables

without changing the sparse structure of the factors. Because the dependencies respect
the initial ordering (i→j implies that i < j), there is no directed cycle in the graph of
dependencies. A directed graph without directed cycle is called a directed acyclic graph,
or, dag for short [3]. We can thus introduce the notion of descendant and ancestor

between columns as follows: i descendant of j ⇔ j ancestor of i ⇔ i
+−→j. Although an

arbitrary directed graph may have many different transitive reductions, a dag only has
one. Thus the transitive reduction of the graph of dependencies is unique [2].

Symmetric elimination tree

In the symmetric (LLT or LDLT ) case, the transitive reduction of the graph of explicit
dependencies is a tree and is called symmetric elimination tree [68, 56]. As we will heavily
rely on this property in this dissertation, we briefly provide a proof.

Lemma 1.1. For i > j, i→j if and only if lji 6= 0.

Proof. According to Definition 1.1, in the symmetric case, i→j if and only if there exists
some k in {i + 1; ...;N} such that lkilji 6= 0. Thus i→j implies lji 6= 0. Conversely, if
lji 6= 0, then ljilji 6= 0 and so lkilji 6= 0 with k = j. �

Lemma 1.2. Let be i < j < k. The statements i→j and i→k imply j→k.
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Proof. From Lemma 1.1, we have lji 6= 0 and lki 6= 0, which imply that lkilji 6= 0. Thus
Formula 1.4 states that lkj 6= 0 (except in case of numerical cancellation). �

Property 1.1. The transitive reduction of the graph of dependencies is a tree (if the
matrix is irreducible, a forest in general).

Proof. We have to show that there is no cycle (neither directed nor undirected) in the
transitive reduction of the considered graph. As we have already seen that there is
no directed cycle (it is a dag) we suppose to the contrary that there is an undirected
cycle whose column of smallest index is i. Then there exist two other columns j and k
(i < j < k) in this cycle such that i→j and i→k. Lemma 1.2 implies j→k. Subsequently
i→k is reduced by the pair (i→j,j→k) and cannot be part of the reduced graph. This is
a contradiction. �

Figure 1.3 illustrates the different stages of the construction of the symmetric elimi-
nation tree.
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Figure 1.3: Construction of the symmetric elimination tree of the matrix presented in
Figure 1.2.

Liu shows in [56] that the graph associated with → is exactly the graph associated
with the triangular factor (G(LT )) and that the symmetric elimination tree is thus the
transitive reduction of G(LT ). He furthermore explains how to compute the structure of
L (i.e. G(LT )) from the the symmetric elimination tree (i.e. the transitive reduction of
G(LT )) and from the structure of the original matrix (A). The motivation is that the
structure of the elimination tree is more compact and thus most efficient to traverse than
the structure of the factor itself. Therefore, the computation of G(LT ) is enhanced by
the use of its transitive reduction which is maintained during the computation of G(LT ).
In this sense, the symmetric elimination tree characterizes the structure of the triangular
factor.

Some unsymmetric methods use a symmetric pattern to handle unsymmetric matrices.
The structure of the initial matrix is symmetrized according to the structure of A+AT :
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each initial structural zero in the pattern of A that is nonzero in A + AT is filled with
a numerical zero value. These methods can thus rely on the symmetric elimination tree
too. For instance MUMPS [9, 10] is based on this approach.

Unsymmetric elimination dags

In the unsymmetric case, the transitive reduction of the graph of explicit dependencies
does not correspond to the graph of a special matrix involved in the decomposition. How-
ever, Gilbert and Liu have generalized the notion of elimination tree to the unsymmetric
case in [39]: for unsymmetric matrices, the nonzero structure of the lower and upper
triangular factors can be characterized by the elimination dags that are the respective
transitive reductions of G(LT ) and G(U). Indeed, they explain how to efficiently deduce
the structure of the factors from these elimination dags and from the original matrix
(similarly to the structure of L that could be deduced from the symmetric elimination
tree for a symmetric matrix). Intuitively, the motivation for the use of these elimination
structures is the need to handle two factored matrices (L and U) which are structurally
different yet closely related to each other in the filled pattern. These elimination struc-
tures are used for instance in unsymmetric methods such as the distributed memory
version of SuperLU [53].

Pivoting

In practice, some factorization methods do not respect the initial ordering. Floating
point storage and arithmetic are not exact. Thus rounding errors may accumulate and
prevent from computing an accurate solution. This phenomenon is called numerical insta-
bility. In particular, the division by a small diagonal value (ujj in Formula 1.4) will lead
to elements of large magnitude, inducing rounding errors when added to small numbers.
This is why some methods allow to swap the diagonal variable (and the corresponding
row) with another variable (and its corresponding row) of greater value. This swapping
may modify the sparse structure of the factors and thus the graph of dependencies. A
classical method of pivoting is the partial pivoting [42] which consists in swapping the di-
agonal variable with the variable of the column which has the largest magnitude. Another
method called threshold pivoting only swaps the diagonal variable if its value divided by
the largest value of the column is lower than a given threshold.

Column elimination tree

Some methods aim at anticipating such possible structural change. They are based on
a so-called column elimination tree which is the appropriate analogue of the symmetric
elimination tree that takes into account all potential partial pivoting [40]. The column
elimination tree is the symmetric elimination tree of ATA (provided that there is no
cancellation in computing ATA). Note that ATA does not need to be explicitly formed
and that the column elimination tree can be computed in time almost linear in the number
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of nonzero values of the original matrix A [25, 40]. For instance, the serial version of
SuperLU [25] is based on this approach.

In this dissertation, we will not discuss further methods based on elimination dags
but only methods based on an elimination tree defined as follows:

Definition 1.2. The elimination tree - or etree for short - will implicitly refer to:
– the symmetric elimination tree for symmetric direct methods;
– the symmetric elimination tree of the symmetrized matrix for unsymmetric direct
methods with symmetric structure;

– the column elimination tree for unsymmetric direct methods with unsymmetric
structure.

1.1.3 Left-looking, right-looking and multifrontal methods

There are two main types of operations occurring during the factorization algorithm.
Using the notations of [29], we will call the first one Facto. It divides the part of the
column below the diagonal by a scalar. In the second one, a column updates another
column. We will call this operation Update. Considering that A is overwritten by the
factors so that eventually A = L+U − I, we more formally have the following definitions
(that stand thanks to Formula (1.4)):

– Facto(Aj): Aj(j + 1 : n)← Aj(j + 1 : n)/ajj;
– Update(Ai,Aj): Aj(i+ 1 : n)← Aj(i+ 1 : n)− aij.Ai(i+ 1 : n);

where Ak is the column k of A.

There are N operations of type Facto during the whole factorization, where N is the
order of the matrix. These operations have to be performed according to the dependencies
of the elimination tree: the parent node has to be processed after all its children. Said
differently, Facto(Aj) has to be performed after Facto(Ai) if j parent of i (i.e. if

i
−−→j). And there is an effective Update(Ai,Aj) operation between any pair of columns

(i, j) such that Column j explicitly depends on Column i (i.e. such that i→j). Any
Update(Ai,Aj) operation has to be performed after Facto(Ai) and before Facto(Aj).
We will note Update(∗,Aj) an update of column j and Update(Ai,∗) an update from
column i.

In spite of these constraints of dependency, the structure of the elimination tree pro-
vides some flexibility and freedom to schedule the computations. Indeed, any topological
traversal [56] of the elimination tree respects the dependencies between Facto opera-
tions. We will see the interest of exploiting this freedom in chapters 3 and 4. Moreover,
once the scheduling of the Facto operations is fixed, there is still some flexibility to
schedule the Update operations. Among all their possible schedules, there are two main
types of algorithms: left-looking and right-looking methods. Left-looking algorithms delay
the Update operations as late as possible: all the Update(∗,Aj) are performed just
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before Facto(Aj). On the opposite, right-looking algorithms perform the Update op-
erations as soon as possible: all the Update(Ai,∗) operations are performed just after
Facto(Ai). Algorithms 1.1 and 1.2 respectively illustrate left-looking and right-looking
factorizations. Note that Algorithm 1.1 exactly corresponds to applying iteration Ij from
Formula 1.4 for j = 1 to N .

for j = 1 to N do
foreach i such that i→j (j explicitly depends on i) do

Update(Ai,Aj) ;

Facto(Aj) ;

Algorithm 1.1: General left-looking factorization algorithm.

for i = 1 to N do
Facto(Ai) ;
foreach j such that i→j (j explicitly depends on i) do

Update(Ai,Aj) ;

Algorithm 1.2: General right-looking factorization algorithm.

We will see how to further exploit that freedom in our context in Chapter 6, related
to the study of out-of-core supernodal methods.

The multifrontal method [31, 34] is a variant of the right-looking method. The columns
are still processed one after another but theUpdate operations are not directly performed
between the columns of the matrix. Instead, the contribution of a column i to a column j
(j having to be updated by i) is carried through the path from i to j in the elimination tree.
To do so, an Update operation is performed in several steps and temporary columns are
used to carry the contributions. This mechanism makes the multifrontal method slightly
more complex than the previous ones. This is why we restrict the presentation of the
method to the symmetric case. When processing a node i, some temporary columns are
used on top of Ai. These temporary columns store the contributions from the descendants
of column i and from column i itself to the ancestors. In general, not all the ancestors
of column i will have to receive a contribution but only the ones that explicitly depend
on column i (columns j such that i→j). With each such ancestor j is associated a
temporary column T i

j that is used when processing column i. These columns are set
to zero (Init(T i

j )) at the beginning of the process of i. Then the contribution stored
in the temporary columns associated with any child k of i is carried into Ai and the
different temporary columns associated with i. This operation is called Assemble. If
the destination column is i, then Assemble is of the form Assemble(T k

i ,Ai) and consists
in adding the temporary column T k

i associated with child k of i from Ai. Otherwise, the
destination column is a temporary column T i

k associated with i; the Assemble operation
is of the form Assemble(T k

j ,T
i
j ) and consists in adding T k

j to T i
j . Algorithm 1.3 describes

the whole algorithm:
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for i = 1 to N do
foreach j such that i→j (j explicitly depends on i) do

Init(T i
j ) ;

foreach k such that k
−−→i (k child of i) do

Assemble(T i
k,Ai) ;

foreach j such that j > i and k→j (j explicitly depends on k) do
Assemble(T k

j ,T
i
j ) ;

Facto(Ai) ;
foreach j such that i→j (j explicitly depends on i) do

Update(Ai,T
i
j ) ;

Algorithm 1.3: General multifrontal factorization algorithm for symmetric matri-
ces.

The symmetric multifrontal method can be described in terms of operations on dense
matrices. With each node (column) i of the elimination tree is associated a dense matrix,
called frontal matrix or front, that is square and that contains the union of the column Ai

and the temporary columns T i
j updated by Ai. Column Ai is the factor block of frontal

matrix i; the temporary columns constitute a contribution block that will be handed to
the parent. The following tasks are performed at each node i of the tree:

(MF-1) allocation of the frontal matrix in memory; gather entries of column i of
matrix A into the first column of the front;

(MF-2) assembly of contribution blocks coming from the child nodes into that frontal
matrix;

(MF-3) partial factorization of the factor block of the frontal matrix, and update of
the remaining part.

This algorithm generalizes to the unsymmetric factorization of symmetrized matrices
as we now explain. The factor associated with node i is then the arrowhead constituted
by the union of column i and row i of the frontal matrix; the contribution block is the re-
maining square part. Figure 1.4(a) illustrates the association of the frontal matrices with
the nodes of the elimination tree on a symmetrized matrix. For unsymmetric multifrontal
factorizations, we refer the reader to [23, 14].

Let us reconsider the three algorithms presented above (left-looking, right-looking and
multifrontal methods) according to their data access pattern. We illustrate their be-
haviour with the elimination tree presented in Figure 1.5. In all three methods, the nodes
are processed one after the other, following a topological ordering of the elimination tree.
In the case of the left-looking method, when the current node (circled in the figure) is
processed, all its descendants (the nodes of the subtree rooted at the current node) are
possibly accessed. More accurately, the descendants that have an explicit dependency on
the current node update it. In the right-looking method, on the contrary, all its ancestors
(the nodes along the path from the current node to the root of the tree) are possibly
accessed. Again, only the nodes which explicitly depend on the current node are actually
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Figure 1.4: Frontal matrices associated with the elimination tree (left) or to the assembly
tree (right) of the matrix presented in Figure 1.2. The black part of the frontal matrices
correspond to their factor block and the white part to their contribution block (that has
to be assembled into their respective parent).

updated. In the multifrontal method, only the children nodes are accessed (to assemble
the contributions blocks).

left-looking right-looking multifrontal

Figure 1.5: Data access pattern for the left-looking, right-looking and multifrontal meth-
ods.

1.1.4 Supernodes and assembly tree

The idea of a supernode[17, 32] is to group together columns of the on-going updated
matrix with the same nonzero structure so that they can be treated as a dense matrix
for storage and computation. A supernode is a range of contiguous columns of L with
the same nonzero structure below their diagonal. When the vertices of the elimination
tree are supernodes and not anymore single columns, the term assembly tree [17] is used.
Coming back to the matrix presented in Figure 1.2, we can pick out three supernodes:
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(d,e), (f,g) and (h,i,j). The assembly tree corresponding to this matrix is then given in
Figure 1.6.

h,i,j

d,e

b c

a

f,g

Figure 1.6: Assembly tree corresponding to the matrix presented in Figure 1.2.

In the case of the multifrontal method, the use of supernodes impact the structure of
the frontal matrices: their factor block is no longer constituted of a single column (and
row) but contains as many columns (and rows) as there are nodes in the supernodes.
Figure 1.4(b) illustrates the impact of the use of supernodes on the pattern of the frontal
matrices.

In practice, supernodes are used in the implementation of sparse direct solvers, what-
ever the method (left-looking, right-looking or multifrontal). Here is a non exhaustive
list of such solvers: SuperLU [25], PaSTiX [48], UMFPACK [23], TAUCS 1, Oblio [28], PAR-
DISO [65, 66], PSPASES [47], HSL library [49], SPOOLES [15], WSMP [46] and MUMPS [9, 10].

Some of these solvers implement a parallel distributed version of the factorization
algorithm with different approaches related to the type of scheduling used. For instance,
PaSTiX [48] and SuperLU_DIST [53] use a fully static scheduling policy. On the contrary,
MUMPS is based on a partial static mapping of the tasks that dynamic decisions complement
in order to balance the load and improve the reactivity.

Because most modern sparse direct methods are based on supernodes, we should
consider any actual method as supernodal. However, we have seen that the multi-
frontal method does not exactly perform its computation on the supernodes (the group
of columns of the on-going updated matrix) but on frontal matrices that also involve the
use of temporary data (the contribution blocks). In this dissertation, we will restrictively
call supernodal methods methods that directly perform their computation between su-
pernodes, de facto excluding multifrontal methods. Part I of the dissertation discusses
all these methods in our context. Multifrontal methods will be studied in chapters 2, 3,
4 and 5. Supernodal methods will be separately studied in Chapter 6. In Part II, we will
explore further one of these methods - the multifrontal method - in order to process very
large problems in the parallel case.

1. www.tau.ac.il/~stoledo/taucs/

www.tau.ac.il/~stoledo/taucs/
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Figure 1.7: Storage hierarchy.

1.2 Out-of-core sparse direct methods

Even on modern supercomputers, some applications - among which sparse direct
solvers - may require an amount of memory larger than the one available on the tar-
get platform. If no specific treatment is performed, the application cannot succeed and
is said to run out-of-memory. However modern systems can overcome this limit by using
other units of storage like disks to extend the main memory and thus allowing the ap-
plication to end up successfully. Such a process is said to be out-of-core and this design
is motivated by economic reasons, disks being much cheaper than core memory. Fig-
ure 1.7(a) illustrates the out-of-core architecture. In a way, disks are just part of a set
of units of storage that form a large and global virtual memory. From the application
interface point of view, this storage is contiguous and any part of it can be addressed
uniformly.

But this simple view masks a hierarchy of storage, as illustrated in Figure 1.7(b).
The management of the data transfers between the different layers of storage is shared
between three entities: the application, the hardware and the operating system. In a
classical architecture, the application decides of data transfers between virtual memory
and registers (possibly through the delegation of that work to compilers). The hardware
is in charge of caching data in fast units of memory using strategies based on temporal and
spatial locality paradigms. Indeed recently accessed data are likely to be re-accessed in a
near future, as well as data that are close (in the virtual address space) to these recently
accessed data. Finally, the operating system (possibly relying on hardware mechanisms)
controls data transfers between main memory and disks according to the same paradigms.

Considering that main memory is a cache for virtual memory, one may note that
the operating system and the hardware control all the layers of cache. To fully benefit
from these potential cache effects, the application has in turn to be cache-friendly or,
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said differently, has to respect the locality paradigms as much as possible. Because
sparse direct methods have already been highly optimized to fit caches (see the methods
referred in Section 1.1.4) and because - as said above - the out-of-core problem is just
a particular problem of cache management, we may wonder whether it makes sense to
specifically study out-of-core direct methods. We provide here three motivations:

– The amount of main memory (usually several gigabytes) is much larger than the
amount of cache memory (several megabytes maximum). Such a ratio implies that
the data structures that have to fit in the caches are not the same (and the subse-
quent mechanisms have to add one to another).

– Contrary to the data traffic between the different layers of cache memory and be-
tween cache memory and main memory, it is possible to explicitly control the data
moves between disks and main memory.

– The amount of available virtual memory on supercomputers is usually not much
larger than the available physical memory. One of the reasons is that the admin-
istrators may prefer to prevent users from running applications that may swap be-
cause the slow down induced may cause poor exploitation of the platform. Explicit
out-of-core techniques allow use of all the available space on disks.

In the following we present a state-of-the-art of out-of-core sparse direct methods.
We can distinguish between two main classes of methods: the ones based on a virtual
memory mechanism - succinctly presented in Section 1.2.1 - and the ones that explicitly
perform the I/O’s at the application level - that we present in sections 1.2.2 to 1.2.5.

1.2.1 Approaches based on virtual memory

Paging (or swapping) consists in delegating the management of the out-of-core treat-
ment to the system: it handles an amount of memory greater than the physical memory
available and is composed of memory pages either in physical memory or on disk. Some
authors have developed their own paging mechanism in Fortran [60]. When only relying
on the system, paging mechanisms do not usually exhibit high performance [21, 61] be-
cause they have no particular knowledge of the memory access pattern of the application.
However, through paging monitoring [20] the application can adapt the paging activity
to the particularities of its memory access scheme at the level of the operating system
kernel. The application can then define the priority of a page to be kept in memory and
specify which pages are obsolete so that they can be freed. This improvement can reach a
performance 50 % higher than the LRU (Least Recently Used) policy used by the system.
However, this approach is too closely related to the operating system and not adapted
when designing portable codes.

Another possible approach would consist in mapping parts of memory to files using
C primitives such as mmap. Again, it is difficult to obtain portable code and attain good
performance (even if some mechanisms like the madvise system call can help).

More recently Scott and Reid have proposed an out-of-core Cholesky code based on
the multifrontal method in [59]. They rely on a virtual memory management system [60]
running in the user space which consists in a virtual array that can be addressed by
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the application. This array is divided into pages that are all of the same size. These
pages can be either physically in memory or on disk. If room for a new page is required
in the buffer, by default the page that was least recently accessed is written to disk (if
necessary) and is overwritten by the new page. They adapt to the out-of-core case a
variant of the multifrontal method that aims at reducing the storage requirement for the
active memory and that was first introduced in [44]. We will discuss this multifrontal
variant, called flexible multifrontal method, in Chapter 4.

1.2.2 Work of Liu

Liu proposed in [55] an algorithm to determine the tree traversal that minimizes the
working storage requirement for the multifrontal method when the factors are processed
out-of-core. He also suggests that the same algorithm should cut down the amount of
I/O traffic when the working storage requirement has to be processed out-of-core. We
will discuss this statement in Chapter 3.

1.2.3 Work of Rothberg and Schreiber

In [61] Rothberg and Schreiber propose several out-of-core direct methods for the
Cholesky factorization. As the multifrontal method fits well the in-core case, they first
propose an out-of-core multifrontal factorization, named MF. In the multifrontal method,
the factors are not re-used during the factorization step. Therefore, they write them to
disk as they are computed while the contribution blocks and the current frontal matrix
remain in memory. However it may happen that those data cannot be held in memory
either. The authors then identify the largest subtrees, called domains, in the elimina-
tion tree that can fit in memory (see Figure 1.8(a)). During the postorder traversal of
the elimination tree, these subtrees are processed with the contribution blocks and the
current frontal matrix held in core. Once the factorization of a domain is complete, the
contribution block of its root node is written to disk. Once all the domains have been
factored, the remaining part of the elimination tree, called multisector is processed in
turn. When a supernode is processed, its frontal matrix may or may not fit in core. To
deal with this possibility, it is divided into panels, i.e., a set of adjacent matrix columns
such that each panel might fit in half of the memory. These out-of-core frontal matrices
are themselves factored with a left-looking approach. A panel is processed in three steps:
(i) the panels associated to the contribution blocks of the children are read from disk and
added to the current panel, (ii) each previous panel of the same frontal matrix is read
back from disk and updates the current panel and (iii) the current panel is factored and
written to disk. This method is robust as it never runs out-of-memory: at any time, at
most two panels are together in memory.

However, when the frontal matrices do not fit in memory, they notice that this method
induces a large volume of I/O which limits the efficiency of the factorization. They
propose a hybrid approach between the multifrontal and left-looking methods to limit this



1.2. OUT-OF-CORE SPARSE DIRECT METHODS 17

volume. The domains are still processed with the multifrontal method whereas the multi-
sector is processed with a left-looking factorization. The size of the panels is adapted to
fit the memory requirements of the left-looking method for which the elementary data to
process is not anymore a frontal matrix but a supernode (smaller). A panel of a supernode
of the multisector is processed as follows. It is initialized according to the nonzero entries
of the original matrix. The previous panels are read one by one (not regarding whether
they belong to a supernode of a domain or of the multisector) and update the current
panel. The current panel is then factored in core and written to disk. Since the size of
the panel is adapted to fit the memory requirements of the left-looking factorization, this
method is called pruned panel, left-looking (PPLL for short). Note that the multifrontal
method applied on the domains is modified not to compute the updates from domain
nodes to multisector nodes (which will be directly performed between supernodes with a
left-looking method). They consider a variant of this hybrid method, called pruned panel,
left-looking with updates (PPLLu for short), where the frontal matrix of the root of each
domain is written to disk. This time, a regular multifrontal method is applied on the
domains. When a panel in the multisector is factored, the updates from the domains
are performed thanks to the use of the contribution blocks of the roots of the domains
that are read back from disk. An experimental validation allowed them to show that
this latter approach usually induces less I/O on very large problems and has a higher
efficiency than the other ones.

Domains

Multi−sector

(a) MF, PPLL and PPLLu

Panels
(b) LL-RL

Figure 1.8: Partitioning of the elimination tree for some out-of-core direct approaches.

1.2.4 Work of Toledo et al.

With various coauthors, Toledo has intensively contributed to the field of the out-of-
core numerical linear algebra and out-of-core sparse direct solvers over the past ten years.
Gilbert and Toledo designed a solver [41] for unsymmetric matrices (LU factorization).
They also rely on a partition of the elimination tree into panels. Conceptually, in their
case, a panel is a group of consecutive (in the postorder) columns (see Figure 1.8(b)) that
can fit together in memory and that are written to disk once processed. They factorize the
panels one after the other. To be processed, a panel is loaded into memory. The columns
from previous panels that have to update columns of this panel are read back from disk
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and the updates are performed. Because only columns that are on a single root-to-leaf
path in the elimination tree may update each other, they notice that it is possible not to
store all of a panel simultaneously. This property allows us to build wider panels and thus
to induce less I/O. As we will discuss further in Chapter 6, this technique requires the
use of a hybrid left-looking/right-looking method (left-looking between panels and right-
looking within a panel). For the same purpose - getting wider panels and inducing less I/O
- they offer the possibility to store the columns in the panel using a compressed format:
since only nonzero values are stored, the panels are larger and the I/O volume decreases.
Because they statically compute the partitioning of the elimination tree into panels before
the numerical factorization step, they need to forecast the size of the panels. However
partial pivoting (that may occur during the numerical factorization) modifies the forecast
sparse structure of the factors and thus of the panels. This is why the authors compute
an upper bound (based on [40]) on the number of nonzero values in the columns of the
sparse factors instead. This upper bound takes into account any possible future change
of the structure due to partial pivoting. To handle partial pivoting, part of the symbolic
factorization is performed dynamically and interleaved with numerical factorization. In
state-of-the-art left-looking in-core codes like SuperLU, this work is usually performed
with a depth first search traversal of the pruned graph of L [25]. Because this might be
costly and/or difficult to implement in an out-of-core process, Gilbert and Toledo instead
use a priority queue (implemented thanks to a binary heap) to find columns of L that
must update the current panel and row lists to find columns in the panel that must be
updated.

The main drawback of Gilbert and Toledo’s approach is that they do not use su-
pernodes but individual column-column updates which is a serious bottleneck to achieve
high-performance. Moreover, compressing the panels in a sparse format requires perform-
ing scatter-gather operations. This extra symbolic work counter-balances the advantage
of decreasing the I/O volume obtained with compressed panels. To overcome these two
drawbacks, Toledo and Uchitel proposed a variant of this code in [71]. Their main im-
provement is the use of supernode-panel updates (that are a variant of [25] using BLAS-3

operations). On the other hand, they no longer use compressed panels and require that
a panel fully fits in-core. This leads to narrower panels which are a bottleneck on the
volume of I/O. Although they could reach a high efficiency on matrices of intermediate
size, their experimental results showed a limited efficiency on very large problems.

The choice of giving up a left-looking/right-looking factorization comes from exper-
imental results presented in [63] which showed the limited improvement on efficiency
brought by this hybrid approach. The method presented in [63] is itself another (previous
to [71]) extension of [41] proposed by Rotkin and Toledo for the Cholesky case. Because
no dynamic pivoting occurs in a Cholesky (LLT ) factorization, the structures can be fully
forecast before the numerical factorization step. This allows us to decrease the overhead
due to scatter-gather operations. Subsequently BLAS-3 operations (supernode-supernode
updates in their case) can be efficiently used with compressed panels.

This latter work was extended to the symmetric indefinite (LDLT ) factorization by
Meshar, Irony and Toledo in [58]. Their main improvement is the management of nu-
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merical pivoting. The authors handle the subsequent dynamic evolution of the structure
of the sparse factors with a dynamic partitioning of the elimination tree into panels that
occurs during the numerical factorization step. Their pivot-search strategy is a less ex-
haustive variant of [16, 30] that can lead to more delayed pivots and thus increase the
risk of running out of memory. However, they balance this handicap thanks to a more
tolerant pivot-admissibility criterion. Indeed, they use a stability threshold (equal to
0.001) lower than the one of [16, 30] that induces less delays in the columns of the current
supernode (but may induce numerical instability). The main features of all these works
are summarized in Table 1.1. We will discuss further out-of-core supernodal approaches
in Chapter 6.

Type of factorization LU LLT LDLT

Coauthors, year [ref.] Gilbert, 99 [41] Uchitel, 07 [71] Rotkin, 04 [63] Meshar, Irony, 06 [58]
Compressed panels

√
(optional) ∅ √ √

(?)
BLAS level 1 3 (supernode-panel) 3 (supernode-supernode) 2-3 (DSYTRF variant)
LL-RL

√ ∅ √
(optional) ∅

Pivoting
√ √ ∅ √

(1-by-1 and 2-by-2)
Dynamic symbolic facto.

√
(priority queues)

√
(priority queues) ∅ √

Dynamic partitioning ∅ ∅ ∅ √

Table 1.1: Main features of Toledo et al. work on out-of-core direct methods.

1.2.5 Work of Dobrian and Pothen

In [27] Dobrian compares the efficiency (in terms of I/O volume and internal memory
traffic) of the left-looking, right-looking and multifrontal methods (in the sequential case
too). Thanks to analytical results (for model problems) and experimental ones from
simulations (for irregular problems), he shows that the multifrontal method is a good
choice even when the available core size is small. However, this method is not well
suited for matrices whose peak of active memory is larger than the volume of factors. He
concludes that to achieve good performance on a large range of problems, the solver should
provide several algorithmic options including left-looking, right-looking and multifrontal
as well as hybrid approaches.

1.2.6 Summary

Although both [61] and [63] insist on the problem of large frontal matrices arising
in multifrontal methods, note that those large dense frontal matrices can be processed
out-of-core (as done in [1]) and that in a parallel context, this may be less critical since a
frontal matrix can be distributed over several processors. For this reason and also because
multifrontal methods with factors and contribution blocks on disks allow to treat large
problems (though not arbitrarily large), we aim at studying further the potential of the
multifrontal method in chapters 3 and 4. Even though supernodal methods have been
intensively studied, several points remain to be improved. First, the supernodal method
that minimizes the I/O volume is an open problem (although [63] provides contributions
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in that direction). Next, in the LU case, to our best knowledge, the codes that use
efficient (cache-friendly) kernels of computations had difficulties to keep a high efficiency
when processing very large problems: this illustrates the fact that the out-of-core problem
is not the same as the cache problem but - on the contrary - brings one more degree of
complexity. Finally, algorithms that aim at partitioning the matrix into panels have not
been intensively studied and the choice of bottom-up approaches - that have been used
so far - may not be suited. Chapter 6 discusses these issues.

1.3 I/O mechanisms

I/O mechanisms are essential for out-of-core applications as their own performance
directly impacts the application’s performance. We give below an overview of some
existing I/O tools.

C library. Several C standard I/O routines are known to be efficient. The read/write
functions allow one to read from or write to a file descriptor. To perform non
sequential (random) file accesses, the lseek function can be used. It allows one to
set the file offset for the file descriptor given as an argument. However, if the file
descriptor is a shared memory object (as can occur in a multi-threaded environment)
the result of read is unspecified. In particular, the section in between lseek and read
calls has to be in mutual exclusion. Moreover, because of a lack of synchronization,
I/O cannot be optimized at the kernel level (for instance it is not possible to use
RAID [22] acceleration). The same type of problem occurs with the write routine.
The pread/pwrite functions are equivalent to read/write, except that they read from
a given position in the file without changing the file pointer. The management of the
offset is directly handled by the kernel which takes care of the synchronizations and
may optimize actual disk accesses. Finally the fread/fwrite functions allow to read
from or write to a binary stream. All these functions are buffered at the system
level which is not convenient in an out-of-core environment where duplication of
information is usually not wished. However, it can still be useful in environments
on which the other functions are not available.

Building a complete efficient asynchronous I/O mechanism based on those system
calls is not immediate because a robust communication scheme between an I/O
thread that manages disk accesses and the computational thread has to be built.

The new Fortran 2003 library includes an asynchronous I/O API as a standard.
But this is too recent to be portable.

AIO. AIO is a POSIX asynchronous I/O mechanism. It should be optimized at the
kernel level of the target platform and then permits high performance. However,
its availability and portability are not so good.

MPI-IO. The Message Passing Interface MPI has an efficient I/O extension MPI-IO [70]
that handles I/O in a parallel environment. However, this extension aims at man-
aging parallel I/O applications which is not our target in this dissertation: disks
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are there to extend the memory of each process and we are not planning to share
out-of-core files between several processes.

FG. The FG [19] framework for high-performance computing applications aims at mak-
ing I/O designing more efficient. It allows the developer to use an efficient asyn-
chronous buffered I/O mechanism at a high level. However we will not use it at
the moment because it manages concurrent I/O threads whereas, in our case, I/O
threads do not interfere with each other.

Different file access modes. By default, system caches (pagecache) may be used by
the operating system to speed-up I/O requests. The management of the pagecache
is system-dependent and not under user control (it is usually managed with a LRU

policy and its size may vary dynamically). Depending on whether the data is copied
to the pagecache or written to disk (for example when the pagecache is flushed),
the performance of I/O operations may vary. In order to enforce a synchroniza-
tion between the pagecache and the disk, the O SYNC flag can be specified when
opening a file. However, the user still has no control on the size of the pagecache
in this context: depending on the pagecache management policy, the behaviour of
the user-space applications may be perturbed by the virtual memory mechanisms.

One way to avoid the caching at the system level consists in using direct I/O. This
feature exists in various operating systems. In our experimental environment, it can
be activated by specifying the O DIRECT flag when opening the file. Note that
data must be aligned in memory when using direct I/O mechanisms: the address
and the size of the buffer must be a multiple of the page size and/or of the cylinder
size. The use of direct I/O operations ensures that a requested I/O operation is
effectively performed and that no caching is done by the operating system.

In the code used in the experiments in Part II, we decided to implement two I/O
mechanisms: one based on the standard C I/O library and one based on AIO. However,
since AIO was not portable on several of our target computers, we will only discuss results
obtained with the standard C I/O library.

1.4 Experimental environment

1.4.1 Software environment

In order to experiment and validate the algorithms proposed in this dissertation, we
have used two sparse direct solvers:

MUMPS. The MUMPS library allows for the solution of large sparse linear systems with sym-
metric positive definite matrices, general symmetric matrices and general unsym-
metric matrices with symmetrized structure. It handles real and complex arith-
metics in both single and double precisions. MUMPS implements a multifrontal
method and relies on a symmetric elimination tree. It offers a serial and a parallel
version. The serial version will be instrumented to model an out-of-core behaviour
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of the multifrontal methods. We present the related results in chapters 2, 3 and 4.
The parallel version is based on a distributed memory asynchronous algorithm.
The purpose of Part II is to study and extend this code in order to process ma-
trices as large as possible in an out-of-core context. A strength of this software is
the large panel of provided features that are compatible with each other. On the
other hand, maintaining these functionalities in an out-of-core context represents
a major difficulty. For instance, one may wonder how to handle 2x2 pivoting in
an asynchronous distributed memory out-of-core environment. MUMPS is available
from the http://graal.ens-lyon.fr/MUMPS/ and http://mumps.enseeiht.fr/

webpages.

SuperLU. SuperLU is a general purpose library for the direct solution of large, sparse,
unsymmetric systems of linear equations. It supports both real and complex data
types, in single or double precision. The SuperLU package comes in three different
flavours: a sequential version, a version for shared memory parallel machines and a
version for distributed memory environments. In this dissertation Section 6, we will
focus on the sequential version to illustrate our study of supernodal methods in an
out-of-core context. This version implements a supernodal left-looking factorization
and relies on a column elimination tree. It handles partial pivoting which consists
in using as a pivot the largest absolute value of the column being factored. This re-
quires to swap the row of the selected pivot with the one that matches the diagonal.
Therefore, partial pivoting prevents to forecast the structure of the factors before
performing the actual numerical step, which turns out to be a major difficulty in
an out-of-core context as we will see in Section 6. SuperLU is available from the
http://crd.lbl.gov/~xiaoye/SuperLU webpage.

As discussed in Section 1.1.1, ordering algorithms have a strong impact on the ef-
ficiency of the factorization. As one may presage, it is also the case in an out-of-core
context. This is why we aim at testing our algorithms with different ordering libraries.
We will see for instance in Chapter 3 that the impact on the I/O volume of our algorithms
varies depending on whether the ordering algorithm provides a well balanced elimination
tree. An ordering may be directly interfaced with the solver. MUMPS is interfaced with
Approximate Minimum Degree (AMD), Approximate Minimum Fill (AMF), PORD, METIS
and SCOTCH. SuperLU allows the use of natural ordering, a Multiple Minimum Degree
(MMD) applied to the structure of ATA, Multiple Minimum Degree (MMD) applied to the
structure of AT + A and Column Approximate Minimum Degree (COLAMD). Note that
COLAMD is particularly designed for unsymmetric matrices with unsymmetric structure
when partial pivoting is needed. It does not require the explicit formation of ATA, usu-
ally gives comparable orderings to MMD on ATA, and is faster. The main reason why MUMPS
and SuperLU do not interface the same orderings is that MUMPS processes matrices with
symmetric structure whereas SuperLU allows one to handle an unsymmetric structure.
Another possibility for testing an ordering library consists in performing the ordering
phase in an environment independent from the direct solver, to record the result into a
file and to reuse this file as an entry to a direct solver. Both MUMPS and SuperLU allow
this feature. This latter method is furthermore required to perform reproducible experi-

http://graal.ens-lyon.fr/MUMPS/
http://mumps.enseeiht.fr/
http://crd.lbl.gov/~xiaoye/SuperLU
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ments and get comparable results between different experiments. Indeed, some ordering
libraries like METIS use random algorithms and thus do not necessarily provide identical
results from one execution to another.

1.4.2 Hardware environment

During the experiments, we have used different types of hardware platforms. The use
of different architectures allows for a better validation. Particular attention has been paid
to using different configurations of the I/O system: disks local to the processor, local to
the node or remote disks. Here are the three main computers used.

PSMN/FLCHP. This platform is a cluster of Linux dual-processors at 2.6 GHz from
PSMN/FLCHP 2 with 4 GB of memory and one disk for each node of 2 processors.
In order to have more memory per process and avoid concurrent disk accesses, only
one processor is used on each node. With this configuration, the disks are thus local
to the processors (one disk per processor). The observed bandwidth is 50 MB /
second per node, independently of the number of nodes, and the filesystem is ext3.

IDRIS. This machine is an IBM SP system from IDRIS 3 composed of several nodes of
either 4 processors at 1.7 GHz or 32 processors at 1.3 GHz. On this machine, we have
used from 1 to 128 processors with the following memory constraints: we can access
1.3 GB per processor when asking for 65 processors or more, 3.5 GB per processor
for 17-64 processors, 4 GB for 2-16 processors, and 16 GB on 1 processor. The
I/O system used is the IBM GPFS [67] filesystem. With this filesystem we observed
a maximal I/O bandwidth of 108 MBytes per second (using direct I/O to ensure
that the I/O’s are effectively performed, without intermediate copy). However, it
is not possible to write files to local disks with the configuration of this platform.
This results in performance degradations when several processors simultaneously
write/read an amount of data to/from the filesystem: the bandwidth decreases by
a factor of 3 on 8 processors and by a factor of 12 on 64 processors when each
processor writes one block of 500 MBytes. This filesystem is thus not optimal for
parallel performance issues. However we chose to also run on this platform because
it has a large number of processors, allows to run large problems in-core on which
we can compare out-of-core and in-core performance, and gives a feedback on a
widespread parallel filesystem.

Borderline. This machine is an IBM System x3755 using AMD Opteron 2218 dual-core
processors at 2.6 GHz. It is composed of 10 nodes. Each node has 4 processors (8
cores), 32 GB of memory, and a local disk. The machine uses a Myri-10G network.

2. Pôle Scientifique de Modélisation Numérique/Fédération Lyonnaise de Calcul Haute Performance
3. Institut du Développement et des Ressources en Informatique Scientifique
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1.4.3 Test problems

We now briefly present the test problems we will use in the dissertation. The main test
problems are gathered in Table 1.2. Some other test problems that are punctually used
are not presented in this table. However, all these test problems come from standard
collections (Parasol collection 4, University of Florida sparse matrix collection 5), or
from MUMPS users. Publicly available matrices from MUMPS users are available on the
gridtlse.org website (Tlse collection).

Matrix Order nnz Type nnz(L|U) Flops Description
(×106) (×109)

AUDIKW_1 943695 39297771 SYM 1368.6 5682 Crankshaft model (Parasol collection).
BRGM 3699643 155640019 SYM 4483.4 26520 Ground mechanics model from Brgm (Tlse

collection).
CONESHL_mod 1262212 43007782 SYM 790.8 1640 Cone with shell and solid element from

Samtech (Tlse collection).
CONESHL2 837967 22328697 SYM 239.1 211.2 Provided by Samtech (Tlse collection).
CONV3D64 836550 12548250 UNS 2693.9 23880 Provided by Cea-Cesta;

generated using Aquilon

(http://www.enscpb.fr/master/aquilon).
GUPTA3 16783 4670105 SYM 10.1 6.3 Linear programming matrix (AA’), Anshul

Gupta (Univ. Florida collection).
MHD1 485597 24233141 UNS 1222.8 8500 Unsymmetric magneto-hydrodynamic 3D

problem, provided by Pierre Ramet.
SHIP_003 121728 4103881 SYM 61.8 80.8 Ship structure (Parasol collection).
SPARSINE 50000 799494 SYM 207.2 1414 Structural optimization, CUTEr (Univ.

Florida collection).
TWOTONE 120750 1224224 UNS 27.3 33.5 AT&T,harmonic balance method, two-tone.

More off-diag nz than onetone (Univ. Florida
collection).

QIMONDA07 8613291 66900289 UNS 556.4 45.7 Circuit simulation problem provided by
Reinhart Schultz, Qimonda AG (Tlse col-
lection).

ULTRASOUND80 531441 330761161 UNS 981.4 3915 Propagation of 3D ultrasound waves, pro-
vided by M. Sosonkina.

XENON2 157464 3866688 UNS 97.5 103.1 Complex zeolite, sodalite crystals, D. Ronis
(Univ. Florida collection).

Table 1.2: Main test problems. Size of factors (nnz(L|U)) and number of floating-point
operations (Flops) computed with METIS.

4. http://www.parallab.uib.no/parasol
5. http://www.cise.ufl.edu/research/sparse/matrices/

gridtlse.org
http://www.enscpb.fr/master/aquilon
http://www.parallab.uib.no/parasol
http://www.cise.ufl.edu/research/sparse/matrices/
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Chapter 2

On the volume of I/O: Case study with
the multifrontal method

In this chapter, we introduce the fundamental notions we will deal with in the whole
dissertation. We study them in the context of the out-of-core multifrontal method. The
particularity of this method, that makes it specially interesting to study, is that data are
accessed with a stack mechanism, as we explain in Section 2.1. The volume of I/O is
the amount of traffic between disks and core memory. Reducing the volume of I/O is
critical in out-of-core applications because disk accesses are very slow compared to core
memory accesses. The volume of I/O is thus a possible bottleneck on efficiency. However,
some I/O are necessary when the amount of storage required to process a sparse matrix
is larger than the amount of core memory available on the platform used. The volume
of I/O is thus closely related to the amount of core memory and to the evolution of the
storage requirement. In Section 2.2, we explain how to deduce the (minimum) volume of
I/O from the evolution in time of the storage requirement. We then show how this volume
evolves depending on the available memory. We isolate a key property that characterizes
this evolution and which is also worth studying to get familiar with the notion of I/O
volume. Some notations are introduced in Section 2.3. In Section 2.4, we explain how to
compute the (minimum) I/O volume using a formulation based on the elimination tree
of the matrix. This result is used to instrument a direct solver based on the multifrontal
method, MUMPS. In Section 2.5, we use this instrumented solver to illustrate the impact
of the available memory on the I/O volume with experiments on real-life matrices. We
finally discuss several possible models and their respective limits in Section 2.6.

2.1 Out-of-core multifrontal methods

In the multifrontal method, the frontal matrices are processed one after the other
following a postorder of the elimination tree. A postorder tree traversal allows for a LIFO

(Last In First Out) access to the contribution blocks. We illustrate this property on the
elimination tree given in Figure 2.1. Nodes 1, 2, 3, 4, 5 are factored. Next, the frontal

27
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matrix of node 6 is allocated. The contribution blocks of nodes 5 and 4 (in that order)
are assembled into that frontal matrix which can in turn be factored. The contributions
blocks of nodes 6, 3, 2 and 1 are assembled into the frontal matrix of node 7 which is
finally factored. Thanks to their LIFO access, the contribution blocks can be managed

1

7

63

4 5

2

Figure 2.1: Postorder numbering of an elimination tree.

with a stack mechanism: when a frontal matrix is allocated, the contribution blocks of
its children are popped (and assembled in the frontal matrix); the frontal matrix is then
factored and its own contribution block is pushed into the stack.

Figure 2.2 represents the frontal matrix of a node in the tree. The fully summed block
is factored and will not be re-used before the solution step. The non-fully summed block
cannot be factored yet but will be updated and used later at the parent node, after it
has been replaced by a Schur complement or contribution block. Because factors are not
re-accessed during the factorization step, they can be written to disk as soon as possible
in order to free some storage. In this context, the core memory only contains contribution
blocks waiting to be assembled and the current frontal matrix.

Together, the current frontal matrix and the stack of contribution blocks constitute
what is called the active memory in the literature. However, because this active memory
may represent an amount of data larger than the available core memory, it may have to
be processed out-of-core too. Part of this active memory may thus have to be stored on
disks. This is why we prefer to call it active storage, the active memory being in our
context the part of the active storage that is kept in main memory.

summed
block

block
Fully summed

Contribution

block, or Schur

complement

Non fully

U

L

Figure 2.2: Frontal matrix before (left) and after (right) the partial factorization of step
(MF-3) in the structurally unsymmetric case. In an out-of-core context, the L and U
factor blocks are written to disk whereas the contribution block may be stacked in core
memory.
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In a limited memory environment, one drawback of multifrontal methods comes from
large dense matrices that give a lower bound on the minimum core memory requirements.
However, those dense matrices may fit in memory, or they can be treated with an out-
of-core process. Apart from these dense matrices, the out-of-core multifrontal method
follows a write-once/read-once scheme, which is an interesting property when studying
the volume of I/O. In this dissertation, we assume that frontal matrices fit in core memory.

2.1.1 Assumptions related to out-of-core multifrontal methods

Assumption 2.1. We assume that:

– Factors are written to disk as soon as computed;
– contribution blocks are processed out-of-core when the core memory is full, possibly
partially;

– the active frontal matrix is held in-core;
– the original matrix has been ordered by some fill-reducing ordering.

This implies that the volume of I/O for the factors is constant and that there is no
I/O for the frontal matrices. Therefore, in this chapter, the volume of I/O will only refer
to the volume of I/O performed on the stack of contribution blocks.

2.1.2 Variants of the multifrontal method

In this dissertation we consider several variants of the multifrontal method that we
briefly introduce here and which correspond to different existing and/or possible imple-
mentations of the method. A first set of variants is related to the assembly scheme of the
first contribution block that is assembled into the frontal matrix of the parent. Here are
the possible corresponding schemes:

– The classical assembly scheme: the memory for the frontal matrix cannot overlap
with the one of the stack of contribution blocks at a given instant as illustrated in
Figure 2.3(b). This scheme is implemented for instance in the MA41 solver [14, 50].

– The last-in-place assembly scheme: the memory of the frontal matrix at the parent
node is allowed to overlap with the contribution block of the last child processed
(which is the first one assembled) as illustrated in Figure 2.3(c). To do so, the
first contribution block assembled is expanded in place to form the frontal matrix.
We save space by not summing the memory of the contribution block of that child
with the memory of the frontal matrix of the parent. This scheme is available for
example in a code like MA27 [30].

– The max-in-place assembly scheme: we overlap the memory for the frontal matrix
of the parent with the memory of the child having the largest contribution block
(even if that child is not processed last). This is a new variant of in-place assembly;
we will describe it more accurately in Section 3.3.
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a b c d e
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(a) Assembly tree.

contribution blocks

abcde

f
(b) Classical assembly: the memory
for the frontal matrix f of the parent
does not overlap with the memory of
the stack of contribution blocks.

contribution blocks

abcde

f
(c) In-place assemblies: the memory
for the frontal matrix f of the parent is
allowed to overlap with the memory of
the first contribution block assembled.

Figure 2.3: An assembly tree and the corresponding memory state at the moment of the
allocation of the frontal matrix of its root node depending on the assembly scheme.

Another possible variation (that combines to the previous one) is related to the mo-
ment when the frontal matrix of the parent is allocated. We will discuss two such cases
in this dissertation:

– The terminal allocation scheme: the memory for the frontal matrix is allocated
after all the children have been processed.

– The flexible allocation scheme: the memory of the frontal matrix can be allocated
earlier in order to assemble (and thus consume) the contribution blocks of some
children on the fly.

In this chapter, we focus on the multifrontal method with a classical assembly scheme
and a terminal allocation of the frontal matrix. In Chapter 3 we will focus on the terminal
allocation case in the context of which we examine the three possible assembly schemes
quoted above. Chapter 4 will discuss those three assembly schemes in the context of the
flexible allocation variant. Chapter 5 presents several memory management algorithms
that fit the different possible combinations of assembly and allocation schemes (max-in-
place assembly scheme with terminal allocation, last-in-place with flexible allocation, and
so on).

2.2 Impact of the available core memory and of the evo-

lution of the active storage on the I/O volume

Because the contribution blocks are produced once and accessed once, they will be
written and read to/from disk at most once. This property gives an upper bound on the
I/O volume equal to the sum of sizes of all the contribution blocks. However, we wish
to limit this amount (that may be huge) by using as much of the available core memory
as possible and performing I/O only when necessary. Said differently, we want to reach
Objective 2.1:

Objective 2.1. Given a postorder of the elimination tree and an amount of available
core memory M0, our purpose is to find the I/O sequence that minimizes the I/O volume
on the contribution blocks (the I/O volume on the factors being constant).



2.2. EVOLUTION OF THE ACTIVE STORAGE, CORE MEMORY AND I/O VOLUME 31

The amount of core memory and the I/O volume thus appear to be related one to
the other. To go further in the understanding of the notion of I/O volume, it is thus
appealing to relate the evolution of the I/O volume to the evolution of the core memory.
Said differently:

Objective 2.2. Can we characterize the (optimum) volume of I/O as a function of the
available core memory M0 ?

Actually, Objective 2.1 is easy to reach. Indeed, as we have mentioned, the contri-
bution blocks are managed with a stack mechanism. In this context, a minimum I/O
volume on the contribution blocks is obtained by writing the bottom of the stack first
since the application will need it last. Property 2.1 states this result in other words:

Property 2.1. For a given postorder of the elimination tree and a given amount of
available core memory M0, the bottom of the stack should be written first when some I/O
is necessary and this results in an optimum volume of I/O.

Therefore, we can assume in the rest of the dissertation (in the context of the mul-
tifrontal method) that the I/O’s on the stack of contribution blocks are performed with
respect to Property 2.1.

In particular, we can deduce the following result that aims at answering to Objec-
tive 2.2:

Property 2.2. For a given postorder of the elimination tree, the (optimum) volume of
I/O on the contribution blocks as a function of the available memory M0 (V

I/O = f(M0))
is a piece-wise affine function; the steepness of each piece is an integer multiple of −1
whose absolute value decreases when the value of M0 increases.

The proof of this property being technical, we report it in Appendix B and prefer to
illustrate this behaviour here on simple examples.

In Figure 2.4(a), the storage requirement for the application increases from S = 0 to
S = 4 (GB, say), which corresponds to a total amount of push operations of 4, followed by
a total amount of pop operations of 4. We use the notation (push, 4), (pop, 4) to describe
this sequence of memory accesses. If M0 > 4 (for example, M0 = 4.5) no I/O is necessary.
If M0 = 2, the storage increases from S = 0 to S = 2 without I/O, then the bottom
of the stack is written to disk (2 units of I/O) in order to free space in memory for the
2 GB produced when S increases from 2 to 4. The storage then decreases to 2 when the
top of the stack is accessed, and the 2 units of data that were written to disk have to
be read again when the storage decreases from 2 to 0. Counting only write operations,
the volume of I/O obtained for M0 = 2 is 2. When M0 further decreases, the volume of
I/O will increase from 2 to a maximum value of 4. We see that on such a sequence, the
volume of I/O will be equal to max(4 −M0, 0), which corresponds to an affine function
of steepness −1.

If we now consider the sequence of Figure 2.4(b), which can be represented as (push,4);
(pop,4); (push,4); (pop,4), there are two peaks of stack storage, with no common data
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Figure 2.4: Evolution of the storage requirement of a stack (top) and I/O volume as a
function of the available memory (bottom) on four examples (a, b, c and d).

between the two peaks. Therefore, for M0 = 2 (say), we will perform 2 units of I/O
for the first peak, and 2 units of I/O for the second peak. Overall, the volume of I/O
obtained is 2×max(4−M0, 0) (piecewise affine function of steepness −2).

Let us now take a slightly more complex example: sequence (push,4); (pop,2); (push,1);
(pop,3) from Figure 2.4(c). In that case, we start doing I/O again when the physical
memory available M0 becomes smaller than the storage requirement, equal to 4. If M0 =
2, then the first peak of storage S = 4 will force us to write 2 GB from the bottom
of the stack. Then the storage requirement decreases until S = 2. When S increases
again and reaches the second peak S = 3, the bottom of the stack is still on disk and
no supplementary I/O is necessary. Finally S decreases to 0 and the bottom of the
stack (2 GB) that was written will be read from disk and consumed by the application.
For this value of M0 (2), the volume of I/O (written) is only equal to 2. In fact if
M0 > 1 the second peak has no impact on the volume of I/O. Said differently, even
if there are two peaks of storage equal to 4 GB and 3 GB, 2 GB are shared by these
two peaks and this common amount of data can only be processed out-of-core once. By
trying other values of M0, one can observe that the volume of I/O, V I/O(M0), is equal
to max(4−M0, 0) +max(1−M0, 0): we first count the volume of I/O resulting from the
largest peak (max(4−M0, 0)) and then only count new additional I/O resulting from the
second peak (max(1 −M0, 0)). Note that the value 1 in the latter formula is obtained
by subtracting 2 (volume of storage common to both peaks) to 3 (value of the peak).
Again we have a piecewise affine function; its steepness is −1 when M0 > 1 and −2
when M0 ≤ 1. We finally consider Figure 2.4(d). In that case, we obtain exactly the
same result as in the previous case, with a volume of I/O equal to max(4−M0, 0) when
M0 ≥ 1 to which we must add max(1 −M0, 0) when M0 < 1 for the I/O corresponding
to data only involved in the first peak.

We summarize this behaviour. When the available memory M0 becomes slightly
smaller than the in-core threshold, if the available memory decreases by 1 GB (say), the
volume of I/O will increase by 1 GB (steepness−1). This corresponds to a line of equation
y(M0) = peak storage−M0, which represents a lower bound for the actual volume of I/O.
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For smaller values of the available memory, reducing the available memory of 1 GB may
increase the volume of I/O by 2 GB, 3 GB or more.

In the following section we introduce some notations that we use next to give a formal
way of forecasting the volume of I/O in the multifrontal method. Experiments on real
matrices will then be discussed in Section 2.5.

2.3 Notations

Before discussing further the volume of I/O, we introduce some general notation. In a
limited memory environment, we define M0 as the amount of core memory. As described
above, the multifrontal method is based on a tree in which a parent node is allocated
in memory after all its child subtrees have been processed. When considering a generic
parent node and its n children numbered j = 1, . . . , n, we note:

– cb / cbj, the storage for the contribution block of the parent node / of child j (note
that cb = 0 for the root of the tree);

– m / mj, the storage of the frontal matrix associated with the parent node / to its
jth child (note that m ≥ cbj, mj ≥ cbj, and that mj − cbj is the size of the factors
produced by child j);

– S / Sj, the storage required to process the subtree rooted at the parent / at child
j (note that if Sj ≤M0, no I/O is necessary to process the subtree rooted at j);

– A / Aj, the core memory effectively used to process the subtree rooted at the parent
/ at child j (note that Aj = min(Sj,M0));

– V I/O / V
I/O
j the volume of I/O required to process the subtree rooted at node j

given an available memory of size M0.

2.4 Formal expression of the I/O volume

We now compute the volume of I/O on the stack of contribution blocks under As-
sumption 2.1. Recall we rely on a terminal allocation multifrontal method with a classical
assembly scheme.

When processing a child j, the contribution blocks of all previously processed children
have to be stored. Their memory size is added to the storage requirements Sj of the
considered child, leading to a global storage equal to Sj+

∑j−1
k=1 cbk. After all the children

have been processed, the frontal matrix (of size m) of the parent is allocated, requiring a
storage equal to m +

∑n
k=1 cbk. Therefore, the storage required to process the complete

subtree rooted at the parent node is given by the maximum of all theses values, that is:

S = max

(

max
j=1,n

(Sj +

j−1
∑

k=1

cbk),m+
n∑

k=1

cbk

)

(2.1)
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Knowing that the storage requirement S for a leaf node is equal to the size of its frontal
matrix m, applying this formula recursively (as done in [55]), allows us to determine the
storage requirement for the complete tree.

In our out-of-core context, we now assume that we are given a core memory of size
M0. If S > M0, some I/O will be necessary and the amount of data that must be written
to disk is given by Property 2.1. As discussed in Section 2.2, the bottom of the stack
should be written first.

To simplify the discussion we first consider a set of subtrees and their parent, and
suppose that Sj ≤ M0 for all children j. The volume of contribution blocks that will
be written to disk corresponds to the difference between the storage requirement at the
moment when the peak S is obtained and the amount M0 of memory available to process
it. Indeed, each time an I/O is done, an amount of temporary data located at the bottom
of the stack is written to disk. Furthermore, data will only be reused (read from disk)
when assembling the parent node. More formally, the expression of the volume of I/O
V I/O, using Formula (2.1) for the storage requirement, is:

V I/O = max

(

0,max(max
j=1,n

(Sj +

j−1
∑

k=1

cbk),m+
n∑

k=1

cbk)−M0

)

(2.2)

As each contribution written is read once, V I/O will refer to the volume of data written.

We now suppose that there exists a child j such that Sj > M0. We know that the

subtree rooted at child j will have an intrinsic volume of I/O V
I/O
j (recursive definition

based on a bottom-up traversal of the tree). Furthermore, we know that the memory
for the subtree rooted at child j cannot exceed the physical memory M0. Thus, we will

consider that it uses a memory exactly equal to M0 (Aj
def
= min(Sj,M0)), and that it

induces an intrinsic volume of I/O equal to V
I/O
j . With this definition of Aj as the active

memory, i.e. the amount of core memory effectively used to process the subtree rooted
at child j, we can now generalize Formula (2.2). We obtain:

V I/O = max

(

0,max(max
j=1,n

(Aj +

j−1
∑

k=1

cbk),m+
n∑

k=1

cbk)−M0

)

+
n∑

j=1

V
I/O
j (2.3)

To compute the volume of I/O on the complete tree, we recursively apply Formula (2.3) at
each level (knowing that V I/O = 0 for leaf nodes). The volume of I/O for the factorization
is then given by the value of V I/O at the root.

2.5 Experiments on real problems

Figure 2.5 presents the active storage requirement as a function of time during the
numerical factorization. This experiment corresponds to a sequential execution of the
multifrontal solver MUMPS (see Section 1.4.1) in which we monitored the evolution of the
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Figure 2.5: Evolution of the active storage during the numerical factorization of two
matrices: GUPTA3 and QIMONDA07. The storage for the factors is 1.01× 107 (real entries)
for GUPTA3, and 5.58× 108 for QIMONDA07.

active storage. We use two matrices to illustrate two very different behaviours: GUPTA3
and QIMONDA07 (see Table 1.2). For GUPTA3, we observe several large peaks of storage,
that have similar orders of magnitudes. Between each peak, the storage almost reaches
0; this means that there is no hope to keep common data in core memory between those
peaks. For the QIMONDA07 matrix, there is really only one (relatively small) peak of active
storage. As done earlier for simpler cases (see Figure 2.4), it is interesting to relate such
shapes of storage evolution to the I/O volumes. Because there are several large peaks of
storage in the first case, we expect the steepness of the function providing the I/O volume
to grow significantly when the available memory decreases. On the opposite, we expect
a situation similar to the one of Figure 2.4(a) for the second case, with an I/O volume
curve of steepness -1 for a wide range of core memory values. We report in Figure 2.6 the
I/O volume computed thanks to Formula (2.3) (MUMPS is used to generate the tree data
structure associated with each matrix) as a function of the available memory for several
matrices extracted from Table 1.2. The graphs corresponding to GUPTA3 and QIMONDA07

confirm the above expectations regarding the steepness of the curves obtained.

For all problems the results also confirm that the geometrical shape obtained is a
piecewise affine function (as discussed in Section 2.2). When the available memory is
large, the I/O curve matches the line of equation y(M0) = peak storage −M0; when the
available memory becomes smaller, the volume of I/O increases faster and the steepness
of the curve increases.

Another interesting phenomenon is that, for most matrices, the volume of I/O for the
contribution blocks remains reasonable in comparison to the volume of I/O for the factors.
Two extreme cases are, again, QIMONDA07 and GUPTA3. As seen earlier, the evolution of
the active storage for the QIMONDA07 matrix (arising from circuit simulation) implies that
the I/O volume never exceeds the straight line of equation y(M0) = peakstorage − M0

(at least in the memory range where one frontal matrix fits in memory). Furthermore,
it represents less than 1% of the volume of factors. Thus treating the stack out-of-core
would be cheap. However, the peak storage (29 MB) is so small compared to the volume



36 CHAPTER 2. ON THE VOLUME OF I/O

of factors (7.2 GB) that treating the stack out-of-core is not necessary: once factors are on
disk, the stack can be kept in-core. On the contrary, with the GUPTA3 matrix (arising from
a linear programming problem), the peak storage is larger than the size of the factors,
and the volume of I/O is even larger because there are many peaks (increased steepness).
Another remark we can make on the GUPTA3 matrix is that the frontal matrices are small;
subsequently with an out-of-core management of the contribution blocks, we can process
it with a very little amount of core memory (compared to the memory required to process
it with an in-core stack) . . . at the cost of performing a huge amount of I/O (up to 11.2
times the volume of factors).

As a conclusion, for most matrices, the volume of I/O on the contribution blocks
remains reasonable (but not negligible), even when the amount of available memory is
small. However, some extreme cases may either be processed with an in-core stack even
with a small amount of memory (QIMONDA07 matrix) or, on the contrary, induce a huge
amount of I/O (compared to other metrics of the matrix) when only a small amount
of memory is available (GUPTA3 matrix). To limit the impact of I/O’s on efficiency,
they have to overlap with computations. We explain in the following section that it
is not always possible and propose several models to handle the assembly step of the
multifrontal method in an out-of-core context.

2.6 Models for an out-of-core assembly scheme

Processing the contribution blocks out-of-core not only means that they have to be
written to disk but also that they have to be read back and assembled into their parent.
In other words, an out-of-core assembly scheme is required. Figure 2.7 illustrates the
different schemes we have modeled for the out-of-core assembly of a frontal matrix:

– All-CB scheme. In this scheme, all the contribution blocks of the children must
be available in core memory before the frontal matrix of the parent is assembled.
The assembly step (consisting of extend-add operations) is identical to the in-core
case, the only difference is that contribution blocks may have been stored to disk
earlier.

– One-CB out-of-core scheme. In this scheme, during the assembly of an active
frontal matrix, the contribution blocks of the children may be loaded one by one in
core memory (while the other ones remain on disk).

– Only-Parent out-of-core scheme. In this scheme, we authorize all the contri-
bution blocks from children to stay on disk: they may be loaded in memory row
by row (or block of rows by block of rows) without being fully copied from disk to
memory.

These schemes can be viewed as an extension of a scheme where only factors are processed
on disk:

– Factors-on-disk scheme. In this reference scheme, only factors are on disk and
the whole active storage remains in core memory. Note the implementation of such
a scheme is described (in the parallel context) in Chapter 8.
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In the All-CB scheme, all the data required can be prefetched before performing the
assembly step of the parent node. This should allow to perform computations (extend-add
operations) at a high rate as in the in-core case. On the contrary, for the Only-Parent

and One-CB schemes, the assembly operations have to be interrupted by I/O. Moreover,
the volume of extend-add operations is proportional to the number of data assembled. If
those data are read from disk, we thus have to expect that subsequent I/O’s cannot fully
overlap with computation. The disk throughput then becomes a bottleneck inducing an
overhead on the execution time.

On the other hand, the choice of the use of an assembly scheme determines the min-
imum amount of core memory required to process a matrix. Said differently, memory
schemes have different memory requirements: each scheme has its own domain of appli-
cability, corresponding to the memory range for which the factorization succeeds when
the scheme is applied. Such a domain is defined by the lowest value for which the scheme
succeeds (because then any larger value will lead to a successful factorization too). We
have reported these domains in Figure 2.6: The Only-Parent scheme can be applied if
the largest frontal matrix fits in memory. The whole represented part of the graph in
Figure 2.6 matches this criterion. The One-CB domain of applicability is included in the
Only-Parent one. Its leftmost limit is represented by a vertical plain line in Figure 2.6.
The All-CB domain of applicability is included in the One-CB one. Its leftmost limit is
represented by a vertical dashed line in Figure 2.6.

This figure shows that the Only-Parent scheme has a significantly wider range of
applicability than the other ones. It usually makes it possible to factorize matrices with
an amount of memory around 25 % smaller than the One-CB scheme and 50 % smaller
than the All-CB scheme. We also notice that the gap to the All-CB scheme can be huge
on some matrices that induce a large stack (GUPTA3 matrix, for example).

Note that when several schemes can be applied for a given amount of available memory,
they induce the same amount of I/O. This is due to the fact that the contribution blocks
are managed with a stack mechanism. Let us take the example of the One-CB and All-

CB schemes to illustrate this property. For both schemes, write operations are the same:
when a new frontal matrix is allocated, we may need to write some contribution blocks
to disk; those contribution blocks are the ones at the bottom of the stack and the volume
written does not depend on the assembly scheme. When assembling a frontal matrix, the
required contribution blocks are at the top of the stack. Either they are in memory, and
in this case they can be assembled directly, or they are on disk, in which case no other
contribution block from other part of the tree is in memory. In the latter case, they will
be read one by one (One-CB) or all at once (All-CB), but the volume read is the same.
Consequently, a single curve can represent the volume of I/O of all schemes; only the
domain of applicability of each scheme changes, as presented in Figure 2.6.

To summarize, the study of the applicability of these different schemes shows that
it is important to implement all the mechanisms: indeed, on one hand, to significantly
limit the memory requirements, it is important to have the possibility to perform a On-

ly-Parent assembly step; on the other hand, it is also important to assemble frontal
matrices with a One-CB or even a All-CB scheme when memory allows for it so that read
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operations can be prefetched. This study is also a basis for Chapter 9 in which we will
discuss the possible extension of these models to the parallel case.
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Figure 2.6: Volume of I/O (y-axis) related to the active storage divided by the volume
of factors depending on the available memory M0 (x-axis, expressed in number of
real entries), for several problems. A lower bound for each curve is given by the dashed
line of equation y(M0) = (peak storage−M0)/volume of factors. The vertical plain (resp.
dashed) line represents the minimum amount of memory necessary for processing the
matrix with a One-CB (resp. All-CB) scheme. The minimum memory for the Only-Pa-

rent scheme corresponds to the leftmost part of the curves.
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Chapter 3

Reducing the I/O volume in the
multifrontal method: Terminal
allocation

The efficiency of the factorization of a sparse matrix strongly depends on the order
of elimination of its variables. Sparse matrices are thus usually pre-processed to order
the variables. These ordering algorithms (some of which have been introduced in Sec-
tion 1.1.1) usually aim at decreasing the fill-in and thus reduce the storage requirement
(as well as the amount of computation). Obviously, these pre-processsing techniques are
even more important in an out-of-core context. However, once the variables have been
ordered, there is still some freedom to reorder them without impacting the structure of
the sparse factors. It is the case for instance, as introduced in Section 1.1.2, for any
reordering that respects the dependencies of the elimination tree. More formally, an
equivalent reordering [56] P of the (ordered) matrix A is a permutation matrix such that
the filled graph of A has the same structure as that of PAP T . It is known that equivalent
orderings require the same amount of arithmetic for the sparse Cholesky decomposition of
their permuted matrices (see for example [33]). Therefore, equivalent orderings result in
the same storage for the factors and the same computational costs. They thus represent
an excellent tool to improve some other metrics without decreasing the quality of the
original ordering.

A natural class of equivalent orderings is the one of topological orderings [56]. A
topological ordering on a rooted tree is one that numbers the children nodes before their
parent nodes. Said differently, it is an ordering that respects the dependencies of the
elimination tree. They offer some freedom in the tree traversal that can be exploited to
decrease the amount of active storage required to process a matrix with the multifrontal
method. Among the topological orderings, the postorder traversals are closely associated
with the multifrontal method since they allow us to manage the contribution blocks with
a stack mechanism. In [55], Liu proposed a postorder traversal that minimizes the active
storage. In the multifrontal method with factors on disk (see Algorithm 3.1) this technique
makes it possible to process larger problems. Liu suggested at the end of [55] that

41
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foreach node N in the tree (postorder traversal) do
alN (x): Allocate memory (of size x) for the frontal matrix associated with N ;
if N is not a leaf then

asN (y): Assemble contribution blocks from children (of total size y);

fN (z): Perform a partial factorization of the frontal matrix of N writing factors
(of size z) to disk on the fly;

Algorithm 3.1: Multifrontal method with factors on disk.

minimizing the active storage is also well adapted when the stack of contribution blocks
is processed out-of-core (as in the previous chapter). This conjecture raises the following
question: is the minimization of the active storage equivalent to the minimization of the
volume of I/O ? Here are thus the assumptions and objective of this chapter. We rely
on Assumption 2.1 and Property 2.1. We have seen in Chapter 2 that the use of this
property results in an optimum volume of I/O for a given postorder of the elimination
tree. In this chapter, we aim at reaching Objective 3.1:

Objective 3.1. Given an amount of available core memory M0, our purpose is to find
the postorder that minimizes the I/O volume on the contribution blocks.

We consider this problem in the context of the multifrontal method with terminal
allocation and study the variants of the assembly scheme that have been introduced in
Section 2.1.2: the classical , last-in-place and max-in-place assembly schemes.

We show that minimizing the storage requirements is different from minimizing the
volume of I/O. For each variant of the allocation scheme, we present an algorithm that
minimizes the storage requirement, called MinMEM (since it allows us to process a given
problem with less memory); then, we describe a new algorithm called MinIO that, de-
pending on the physical memory available, aims at finding the postorder that minimizes
the I/O volume. We show that MinIO algorithms can generate a volume of I/O arbitrarily
lower than MinMEM algorithms on contrived examples. We then show on real-life problems
that these MinIO algorithms may significantly reduce the volume of I/O compared to the
MinMEM approaches that focus on the storage requirements (such as [55]).

The chapter is organized as follows. In Sections 3.1 and 3.2, we explain how to find the
postorder tree traversal that minimizes the volume of I/O induced by the classical and
last-in-place schemes, respectively. In Section 3.3, we discuss the new variant of the in-
place algorithm: the max-in-place scheme. We then show in Section 3.4 that the volume
of I/O induced by MinMEM may be arbitrarily larger than the volume induced by MinIO.
Section 3.5 illustrates the difference between MinMEM and MinIO on matrices arising from
real-life problems, and shows the interest of the new in-place variant we propose.
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3.1 Classical assembly scheme

In this section, we consider the multifrontal method with a classical assembly scheme.
We first show on an illustrative example that minimizing the I/O volume is different
from minimizing the storage requirement. This remark motivates our new algorithm that
minimizes the I/O volume.

3.1.1 Illustration of the impact of different postorders

Let us consider the elimination tree of Figure 3.1(left). Its root node (e) has two
children (c) and (d). The frontal matrix of (e) requires a storage me = 5. The contri-
bution blocks of (c) and (d) require a storage cbc = 4 and cbd = 2, while the storage
requirements for their frontal matrices are mc = 6 and md = 8, respectively. (c) has
itself two children (a) and (b) with characteristics cba = cbb = 3 and ma = mb = 4. We
assume that the core memory available is M0 = 8.

a b

c d

e

cba = 3 cbb = 3

cbc = 4 cbd = 2

me = 5

ma = 4 mb = 4

mc = 6 md = 8

Sequence a-b-c-d-e

Storage: S = 12

I/O: V I/O = 8

⇒ Memory minimized

Sequence d-a-b-c-e

Storage: S = 14

I/O: V I/O = 7

⇒ I/O minimized

Figure 3.1: Influence of the postorder on the storage requirement and on the volume of
I/O (with M0 = 8).

To respect a postorder traversal, there are two possible ways to process this tree: (a-
b-c-d-e) and (d-a-b-c-e). (Note that (a) and (b) are identical and can be swapped.) We
now describe the memory behaviour and I/O operations in each case. We first consider
the postorder (a-b-c-d-e). (a) is first allocated (ma = 4) and factored (we write its factors
of size ma − cba = 1 to disk), and cba = 3 remains in memory. After (b) is processed,
the memory contains cba + cbb = 6. A peak of storage Sc = 12 is then reached when the
frontal matrix of (c) is allocated (because mc = 6). Since only 8 (GigaBytes, say) can be
kept in core memory, this forces us to write to disk a volume of data equal to 4. Thanks
to the postorder and the use of a stack, these 4 units of data are the ones that will be
re-accessed last; they correspond to the bottom of the stack. During the assembly process
we first assemble contributions that are in memory, and then read 4 units of data from
disk to assemble them in turn in the frontal matrix of (c). Note that (here but also more
generally), in order to fit the memory requirements, the assembly of data residing on disk
may have to be performed by panels (interleaving the read and assembly operations).
After the factors of (c) of size mc − cbc = 2 are written to disk, its contribution block
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cbc = 4 remains in memory. When the leaf node (d) is processed, the peak of storage
reaches cbc +md = 12. This leads to a new volume of I/O equal to 4 (and corresponding
to cbc). After (d) is factored, the storage requirement is equal to cbc + cbd = 6 among
which only cbd = 2 is in core (cbc is already on disk). Finally, the frontal matrix of the
parent (of size me = 5) is allocated, leading to a storage cbc + cbd +me = 11: after cbd
is assembled in core (into the frontal matrix of the parent), cbc is read back from disk
and assembled in turn. Overall the volume of data written to (and read from) disk 1 is

V
I/O
e (a-b-c-d-e)= 8 and the peak of storage was Se(a-b-c-d-e)= 12.

When the tree is processed in order (d-a-b-c-e) (see Figure 3.2(b)), the storage re-
quirement successively takes the values md = 8, cbd = 2, cbd + ma = 6, cbd + cba = 5,
cbd + cba + mb = 9, cbd + cba + cbb = 8, cbd + cba + cbb + mc = 14, cbd + cbc = 6,
cbd+ cbc+me = 11, with a peak Se(d-a-b-c-e)= 14. Nodes (d) and (a) can be processed
without inducing I/O, then 1 unit of I/O is done when allocating (b), 5 units when
allocating (c), and finally 1 unit when the frontal matrix of the root node is allocated.

We obtain V
I/O
e (d-a-b-c-e)= 7.

We observe that the postorder (a-b-c-d-e) minimizes the peak of storage and that
(d-a-b-c-e) minimizes the volume of I/O. This shows that minimizing the peak of storage
is different from minimizing the volume of I/O.

All the process described above is illustrated in Figure 3.2, which represents the evolu-
tion of the storage in time for the two postorders (a-b-c-d-e) and (d-a-b-c-e) (figures 3.2(a)
and 3.2(b), respectively). The storage increases when memory is allocated for a new
frontal matrix of size x (alN (x)); it decreases when contribution blocks of size y are as-
sembled into the frontal matrix of their parent (asN (y)) and when factors of size z are
written to disk (fN (z)). When the storage is larger than the available memory M0, this
means that part of the stack is on disk. The core window is shaded in the figure, so that
the white area below the core window corresponds to the volume of data on disk. Finally
write and read operations on the stack are noted wx and ry, where x and y are written
and read sizes, respectively. We can see that each time the storage is about to exceed
the upper bound of the core window, a write operation is necessary. The volume of data
read from disk depends on the size of the contribution blocks residing on disk that need
to be assembled.

3.1.2 Optimum postorder tree traversal

We have just seen that minimizing the I/O volume is different from minimizing the
storage requirement. We now exhibit an algorithm that computes a postorder traversal
minimizing the I/O volume.

We have presented in the previous chapter how to compute the volume of I/O. It
results from Formula (2.3) that minimizing the volume of I/O is equivalent to minimizing

1. We do not count I/O for factors, that are independent from the postorder chosen: factors are
systematically written to disk in all variants considered.
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Figure 3.2: Evolution of the storage requirement S when processing the sample tree of
Figure 3.1 with the two possible postorders, and subsequent I/O operations. Notations
alN (x), asN (y) and fN (z) were introduced in Algorithm 3.1.

the expression maxj=1,n(Aj +
∑j−1

k=1 cbk), since it is the only term sensitive to the order
of the children.

Theorem 3.1. (Liu, 86) Given a set of values (xi, yi)i=1,...,n, the minimal value of
maxi=1,...,n(xi +

∑i−1
j=1 yj) is obtained by sorting the sequence (xi, yi) in decreasing order

of xi − yi, that is, x1 − y1 ≥ x2 − y2 ≥ . . . ≥ xn − yn.

Thanks to Theorem 3.1 (proved in [55]), we deduce that we should process the children
nodes in decreasing order of Aj−cbj = min(Sj,M0)−cbj. (This implies that if all subtrees
require a storage Sj > M0 then MinIO will simply order them in increasing order of cbj.)
An optimal postorder traversal of the tree is then obtained by applying this sorting at
each level of the tree, constructing Formulas (2.1) and (2.3) from bottom to top. We will
name MinIO this algorithm.

Note that, in order to minimize the peak of storage, we can also apply Theorem 3.1
but, in this case, to the term Sj +

∑j−1
k=1 cbk of Formula (2.1). This leads to ordering

the children in decreasing order of Sj − cbj rather than Aj − cbj [45, 55]. Therefore,
on the example from Section 3.1.1, the subtree rooted at (c) (Sc − cbc = 12 − 4 = 8)
had to be processed before the subtree rooted at (d) (Sd − cbd = 8 − 2 = 6). The
corresponding algorithm (that we name MinMEM and that leads to the postorder (a-b-c-d-
e)) is different from MinIO (that leads to (d-a-b-c-e)): minimizing the storage requirement
is thus different from minimizing the I/O volume; it may induce a volume of I/O larger
than needed.

3.2 In-place assembly of the last contribution block

In this variant (used in MA27 [30] and its successors, for example) of the classical
multifrontal algorithm, the memory of the frontal matrix of the parent is allowed to
overlap with (or to include) that of the contribution block from the last child. The
contribution block from the last child is then expanded (or assembled in-place) in the
memory of the parent. Since the memory of a contribution block can be large, this scheme
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can have a strong impact on both storage and I/O requirements. In this new context,
the storage requirements needed to process a given node (Formula (2.1)) becomes:

S = max




max

j=1,n
(Sj +

j−1
∑

k=1

cbk),m+

n-1
∑

k=1

cbk




 (3.1)

The main difference with Formula (2.1) comes from the in-place assembly of the last
child (see the boxed superscript in the sum in Formula (3.1)). In the rest of the paper we
will use the term last-in-place to denote the memory management scheme where an in-
place assembly scheme is used for the contribution block coming from the last child. Liu
has shown[55] that Formula (3.1) could be minimized by ordering children in decreasing
order of max(Sj,m)− cbj.

In an out-of-core context, the use of this in-place scheme induces a modification of the
amount of data that has to be written to/read from disk. As previously for the memory
requirement, the volume of I/O to process a given node with n children (Formula (2.3))
becomes:

V I/O = max




0,max(max

j=1,n
(Aj +

j−1
∑

k=1

cbk),m+

n-1
∑

k=1

cbk)−M0




+

n∑

j=1

V
I/O
j

Once again, the difference comes from the in-place assembly of the contribution block
coming from the last child. Because m +

∑n−1
k=1 cbk = maxj=1,n(m +

∑j−1
k=1 cbk), this

formula can be rewritten as:

V I/O = max

(

0,max
j=1,n

(max(Aj,m) +

j−1
∑

k=1

cbk)−M0

)

+
n∑

j=1

V
I/O
j (3.2)

Thanks to Theorem 3.1, minimizing the above quantity can be done by sorting the
children nodes in decreasing order of max(Aj,m)− cbj, at each level of the tree.

3.3 In-place assembly of the largest contribution block

In order to further reduce the storage requirement (in comparison to Equation (3.1)),
one possibility is to overlap the memory of the parent with the largest child contribution
block. Compared to Equation (2.1) corresponding to the classical scheme, cbmax must be
subtracted from the term m +

∑

j cbj. Since cbmax is a constant that does not depend
on the order of children, minimizing the storage (MinMEM) is done by using the same
tree traversal as for the classical scheme (decreasing order of Sj − cbj). We call this new
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scheme max-in-place as it constitutes a natural extension to the in-place assembly scheme
from the previous section. We will see how the memory management can be adapted in
Chapter 5.

In an out-of-core context, it is not immediate or easy to generalize MinIO to this
max-in-place variant. Indeed, it may happen that the largest contribution block, if it
does not correspond to the last child, had to be written to disk. In such a case it is
better to have an in-place assembly of the contribution block of the last child (which is
in memory) rather than of the largest contribution. Therefore, we propose to only apply
the max-in-place strategy on parts of the tree that can be processed in-core. This is done
in the following way: we first apply MinMEM + max-in-place in a bottom-up process to the
tree. As long as this leads to a storage smaller than M0, we keep this approach to reduce
the intrinsic in-core memory requirements. Otherwise, we switch to MinIO + last-in-place
to process the current family and any parent family. In the following we name MinIO +
max-in-place the resulting heuristic.

3.4 Theoretical comparison of MinMEM and MinIO

Theorem 3.2. The volume of I/O induced by MinMEM (or any memory-minimization
algorithm) may be arbitrarily larger than the volume induced by MinIO.

Proof. In the following, we provide a formal proof for the classical and last-in-place
assembly schemes, but it also applies to the strategies defined in Section 3.3 for the max-
in-place scheme (which is identical to last-in-place on families where I/O are needed).
Let M0 be the core memory available and α(> 2) an arbitrarily large real number. We
aim at building an assembly tree (to which we may associate a matrix, see the beginning
of Section 3.1) for which:

– S (MinIO) > S (MinMEM) and
– the I/O volume induced by MinMEM (or any memory minimization algorithm), V I/O

(MinMEM), is at least α times larger than the one induced by MinIO, V I/O (MinIO) -
i.e. V I/O(MinMEM)/V I/O(MinIO) ≥ α.

ca b

r

cb{a|b|c} = M0/2
m{a|b|c} = M0

cbr = M0/3

S0(MinMEM) = 2M0

mr = M0/2

(a) T0

r

l

r

cbr = M0/3

cbl = ǫ.M0

cbr = M0/3Sk(MinMEM) = 2M0

Sk+1(MinMEM) = 2M0

mr = M0/2

ml = M0

mr = M0/2

Tk

(b) Tk 7→ Tk+1

Figure 3.3: Recursive construction of an assembly tree illustrating Theorem 3.2.

We first consider the sample tree T0 of Figure 3.3(a). It is composed of a root node (r)
and three leaves (a), (b) and (c). The frontal matrices of (a), (b), (c) and (r) respectively
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require a storage ma = mb = mc = M0 and mr = M0/2. Their respective contribution
blocks are of size cba = cbb = cbc = M0/2 and cbr = M0/3. Both for the classical
and last-in-place assembly schemes, it follows that the storage required to process T0 is

S0(MinMEM)
def
= Sr(MinMEM) = 2M0, leading to a volume of I/O V

I/O
0

def
= V

I/O
r = M0. We

now define a set of properties Pk, k ≥ 0, as follows.

Property Pk: Given a subtree T , T has the property Pk if and only if: (i) T is of
height k+1; (ii) the peak of storage for T is S(MinMEM) = 2M0; and (iii) the frontal matrix
at the root (r) of T is of size mr = M0/2 with a contribution block of size cbr = M0/3.

By definition, T0 has property P0. Given a subtree Tk which verifies Pk, we now
build recursively another subtree Tk+1 which verifies Pk+1. To proceed we root Tk and
a leaf node (l) to a new parent node (r), as illustrated in Figure 3.3(b). The frontal
matrix of the root node has characteristics mr = M0/2 and cbr = M0/3, and the leaf
node (l) is such that ml = Sl = M0 and cbl = ǫM0. The value of ǫ is not fixed yet but we
suppose ǫ < 1/10. The active memory usage for Tk and (l) are Ak = min(Sk,M0) = M0

and Al = min(Sl,M0) = M0. Because all trees Tk (including T0) verify the constraints
defined at the beginning of Section 3.1, it is possible to associate a matrix to each of these
trees. MinMEM processes such a family in the order (Tk-l-r) because Sk − cbk > Sl − cbl.
This leads to a peak of storage equal to Sk+1(MinMEM) = 2M0 (obtained when processing
Tk). Thus Tk+1 verifies Pk+1. We note that MinMEM leads to a volume of I/O equal to

V
I/O
k+1 (MinMEM) = M0/3 + V

I/O
k (MinMEM) (Formulas (2.3) and (3.2) for the classical and

last-in-place, respectively).

Since Sk(MinIO) is greater than or equal to Sk(MinMEM), we can deduce that MinIO

would process the family in the order (l-Tk-r) because Al−cbl > Ak−cbk (or max(Al,mr)−
cbl > max(Ak,mr)−cbk in the last-in-place case). In that case, we obtain a peak of storage

Sk+1(MinIO) = ǫM0+Sk(MinIO) and a volume of I/O V
I/O
k+1 (MinIO) = ǫM0+V

I/O
k (MinIO).

Recursively, we may build a tree Tn by applying n times this recursive procedure.
As S0(MinIO) = 2M0, we deduce that Sn(MinIO) = (2 + nǫ)M0 which is strictly greater

than Sn(MinMEM) = 2M0. Furthermore, because V
I/O
0 (MinMEM) = V

I/O
0 (MinIO) = M0, we

conclude that V
I/O
n (MinMEM) = nM0/3 +M0 while V

I/O
n (MinIO) = nǫM0 +M0. We thus

have: V
I/O
n (MinMEM)/V

I/O
n (MinIO) = (1+n/3)/(1+nǫ). Fixing n = ⌈6α⌉ and ǫ = 1/⌈6α⌉

we finallyget: V
I/O
n (MinMEM)/V

I/O
n (MinIO) ≥ α.

We have shown that the I/O volume induced by MinMEM, V I/O (MinMEM), is at least α
times larger than the one induced by MinIO. To conclude we have to show that it would
have been the case for any memory-minimization algorithm (and not only MinMEM). This
is actually obvious since the postorder that minimizes the memory is unique: (l) has to
be processed after Tk at any level of the tree.

�
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3.5 Experimental results

In this section we test the behaviour of the strategies presented in Sections 3.1, 3.2,
and 3.3 on 30 matrices, numbered from 1 to 30: AUDIKW_1, BCSSTK, BMWCRA_1, BRGM,
CONESHL_MOD, CONV3D_64, GEO3D-20-20-20, GEO3D-50-50-50, GEO3D-80-80-80, GEO3D-20-

50-80, GEO3D-25-25-100, GEO3D-120-80-30, GEO3D-200-200-200, GUPTA1, GUPTA2, GUPTA3,
MHD1, MSDOOR, NASA1824, NASA2910, NASA4704, SAYLR1, SHIP_003, SPARSINE, THERMAL,
TWOTONE, ULTRASOUND3, ULTRASOUND80, WANG3 and XENON2. These matrices are from the
Parasol 2, University of Florida 3 or TLSE 4 collections. Matrices GEO3D*, BRGM and
CONV3D_64 come from Geosciences Azur, BRGM, and CEA-CESTA (code AQUILON), respec-
tively.

We used several ordering heuristics – AMD [6], AMF [57], METIS [52] and PORD [69], that
result in different task dependency graphs (or assembly trees) for a given matrix and
impact the computational complexity. The volumes of I/O were computed by instru-
menting the analysis phase of the MUMPS solver [13]. The matrices have a size from very
small up to very large (a few million equations) and can lead to huge factors (and storage
requirements). For example, the factors of matrix CONV3D_64 with AMD ordering represent
53 GB of data.

As previously mentioned, the I/O volume depends on the amount of core memory
available. Figure 3.4 illustrates this general behaviour on a sample matrix, TWOTONE

ordered with PORD, for the 3 assembly schemes presented above, for both MinMEM and
MinIO. For all assembly schemes and algorithms used, we first notice that exploiting all
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Figure 3.4: I/O volume on matrix TWOTONE with PORD ordering as a function of the core
memory available, for the 3 assembly schemes presented above, for both MinMEM and
MinIO algorithm. The vertical bar represents the size of the largest frontal matrix.

the available memory is essential to limit the I/O volume. Before discussing the results
we remind the reader that the I/O volumes presented are valid under the hypothesis that

2. http://www.parallab.uib.no/parasol
3. http://www.cise.ufl.edu/research/sparse/matrices/
4. http://www.gridtlse.org

http://www.parallab.uib.no/parasol
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.gridtlse.org
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the largest frontal matrix may fit in core. With a core memory lower than this value
(i.e. the area on the left of the vertical bar in Figure 3.4), the I/O volumes presented
are actually lower bounds on the effective I/O volume: they are computed as if we
could process the out-of-core frontal matrices with a read-once write-once scheme. They
however remain meaningful because the extra I/O cost due to the specific treatment
of frontal matrices will be independent of the assembly scheme used. We first notice
that the last-in-place assembly schemes strongly decrease the amount of I/O compared
to the classical assembly scheme of Section 3.1. In fact, using an in-place assembly
scheme is very useful in an out-of-core context: on most of our matrices, we observed
that it divides the I/O volume by more than 2. With the classical assembly scheme we
observe (on matrix TWOTONE) that MinIO and MinMEM produce the same I/O volume (their
graphs are identical). Let us come back to Formula (2.3) to explain this behaviour. We

have minimized max
(

maxj=1,n(Aj +
∑j−1

k=1 cbk),m+
∑n

k=1 cbk

)

by minimizing the first

member because the second one is constant; unfortunately on this particular matrix the
second term is generally the largest and there is nothing to gain. In other words, the
larger the frontal matrices (m in the formula) compared to the other metrics (contribution
blocks cbk and active memory requirements for the subtrees Aj), the lower the probability
that reordering the children will impact the I/O volume. From our set of matrices,
we have extracted four cases (one for each ordering strategy) for which the gains are
significant and we report them in Figure 3.5(a). To better illustrate the gains resulting
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Figure 3.5: I/O volume obtained with MinMEM divided by the one obtained with MinIO.
For each matrix/ordering, the filled (right) part of the curve matches the area where
the amount of core memory is larger than the size of the largest frontal matrix, whereas
the dotted (left) part matches the area where this amount is lower. For each matrix,
we normalized the memory (x-axis) to the in-core minimum requirement (of the given
assembly scheme). Note that the y-scales differ.

from the MinIO algorithm, we analyze the I/O ratios as a function of the amount of core
memory available (in percentage of the core memory requirements). For instance, the
point (x = 80%, y = 1.3) (obtained for both BCSSTK and BMWCRA) means that MinMEM

leads to 30% more I/O than MinIO when 80% of the in-core memory requirement is
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provided. Values lower than 1 are not possible because MinIO is optimal.

We now focus on the in-place assembly scheme (described in Section 3.2). Rather
than showing the graphs obtained for our whole collection of matrices, we again decided
to present four cases in Figure 3.5(b) (one for each ordering strategy) for which MinIO

was significantly more efficient than MinMEM: the I/O volume was for instance divided
by more than 2 for a large range of core memory amounts on the MHD1-AMF matrix. An
extensive study has shown that the largest profits from MinIO are obtained when matrices
are pre-processed with orderings which tend to build irregular assembly trees:AMF, PORD
and - to a lesser extent - AMD (see [45] for more information on the impact of ordering on
tree topologies). This is because on such trees, there is a higher probability to be sensitive
to the order of children. We show in Figure 3.6(a) by how much the MinIO algorithm
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Figure 3.6: Impact of max-in-place assembly scheme.

with a max-in-place assembly scheme improved the MinIO last-in-place one, again on
four matrices of the collection (one for each ordering heuristic) for which we observed
large gains. We observe in Figure 3.6(a) that the last-in-place and max-in-place MinIO

schemes induce the same volume of I/O when the available core memory decreases: the
ratio is equal to 1. This is because, in this case, the MinIO heuristic for the max-in-place
assembly variant switches to the last-in-place scheme (as explained in Section 3.3) and
has exactly the same behaviour since the switch happens very early.

Finally, Figure 3.6(b) shows that the peak of storage (critical for the in-core case) is
significantly decreased. This allows us to interpret the right-extreme parts of the curves in
Figure 3.6(a) which tend to (or are equal to) infinity: the max-in-place assembly scheme
does not induce I/O but the last-in-place scheme does.



52CHAPTER 3. REDUCING THE I/O VOLUME IN THE TERMINAL MULTIFRONTAL METHOD

Objective function
Assembly scheme Algorithm Memory minimization I/O minimization
classical MinMEM • Optimum

([45], adapting[55])
• Arbitrarily bad in theory

• Reasonable in most cases
MinIO • Not suited • Optimum

last-in-place MinMEM • Optimum[55] • Arbitrarily bad in theory
• Bad in practice on some ir-
regular assembly trees

MinIO • Not suited • Optimum
max-in-place MinMEM • Optimum • Not suited

MinIO • Optimum • Efficient heuristic

Table 3.1: Summary. Contributions of this chapter are in bold.

3.6 Conclusion

Table 3.1 summarizes the contributions of this chapter. We have recalled the existing
memory-minimization algorithms for the classical and last-in-place assembly schemes.
We have shown that these algorithms are not optimal to minimize the I/O volume and
that they can be arbitrarily bad. Therefore, we have proposed optimal algorithms for the
I/O volume minimization and have shown that significant gains could be obtained on real
problems (especially with the last-in-place assembly scheme). We have also presented a
new assembly scheme (which consists in extending the largest child contribution into the
frontal matrix of the parent) and a corresponding postorder which is optimal to minimize
memory. This new assembly scheme leads to a very good heuristic when the objective is
to minimize the I/O volume.

This work can be particularly important for large-scale problems (millions of equa-
tions) in limited-memory environments. It is applicable for shared-memory solvers relying
on threaded BLAS libraries. In a parallel distributed context, it will help to limit the mem-
ory requirements and to decrease the I/O volume in the serial (often critical) parts of
the computations. Orderings from tree rotations [56] form another important class of
equivalent reorderings that might also be interesting to investigate: with tree rotations,
an arbitrary node can become the root of the tree, modifying both the shape of the tree
and the storage or I/O requirements.

In the next chapter, we will use these results to reconsider the problem of the minimiza-
tion of the I/O volume in the context of the flexible allocation scheme, where the parent
node is allowed to be allocated even when some children still have to be processed [44].



Chapter 4

Reducing the I/O volume in the
multifrontal method: Flexible allocation
scheme case

In the previous chapter we have studied the multifrontal method as it is implemented
in most multifrontal solvers. Because the frontal matrix is allocated after all the children
have been processed, the allocation scheme of that multifrontal method was said to be
terminal . However, it is possible to improve its memory behaviour by modifying the mo-
ment when the frontal matrix is allocated. In the past, this freedom has been exploited to
further decrease the storage requirement [44]. The allocation scheme of the frontal matrix
is then said to be flexible. In this chapter, we briefly restate the results obtained in the
previous chapter to take into account this terminology. They are then used as a basis to
reduce the I/O volume in the flexible context. As we did in the previous chapter, we first
focus on the classical assembly scheme (sections 4.1 to 4.5) before extending the results
to the in-place cases (Section 4.6). In those sections, we consider the I/O minimization
problem from a theoretical point of view, aiming at studying its complexity and possible
variations. We then present an algorithm motivated by practical considerations which
aims at limiting the I/O volume (Section 4.7). We finally discuss the reduction of the
I/O volume due to our algorithm on real-life matrices (Section 4.8).

4.1 Restating results of Chapter 3

Considering a so-called family composed of a parent node, with a frontal matrix of
size m, and its set of n children that produce contribution blocks of size cbi, i = 1, . . . , n,
we have seen that the storage requirement to process the tree rooted at the parent with
a classical assembly scheme is:

Sterminal = max

(

max
j=1,n

(Sterminal
j +

j−1
∑

k=1

cbk),m+
n∑

k=1

cbk

)

(4.1)
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(where Sterminal
j is recursively the storage for the subtree rooted at child j) and can be

minimized by sorting the children in decreasing order of Sterminal
j − cbj. By applying

this formula and this ordering at each level of the tree, we obtain the volume of I/O for
the complete tree, together with the tree traversal. Starting from (4.1), we have shown
in the previous chapter that for a given amount of available memory, M0, the volume
of I/O (=volume written=volume read) associated with the temporary storage of the
multifrontal method is

V terminal = max

(

0,max(max
j=1,n

(min(Sterminal
j ,M0) +

j−1
∑

k=1

cbk),m+
n∑

k=1

cbk)−M0

)

+
n∑

j=1

V terminal
j

(4.2)

which is minimized by sorting the children in decreasing order of

min(Sterminal
j ,M0)− cbj

at each level of the tree and gives an optimal tree traversal to minimize the I/O volume.

4.2 Flexible parent allocation

With the terminal allocation scheme, steps (MF-1), (MF-2) and (MF-3) (as presented
in Section 1.1.3) for a parent node are only performed when all children have been pro-
cessed. However, the main constraint is that the partial factorization (step (MF-3)) at the
parent level must be performed after the assembly (step (MF-2)) of all child contribution
blocks into the parent. Thus, the allocation of the parent node (step (MF-1)), and the
assembly of the contribution blocks of some children can be performed (and the corre-
sponding contribution block freed) without waiting that all children have been processed.
This flexibility has been exploited by [44] to further reduce the storage requirement for
temporary data. Let us assume that the parent node is allocated after p children have
been processed, and that the memory for the pth child overlaps with the memory for the
parent. The storage required for a parent in this flexible scheme is then given by:

Sflexible = max



 max
j=1, p

(Sflexible
j +

j−1
∑

k=1

cbk),m+

p
∑

k=1

cbk,m+ max
j=p+1,n

Sflexible
j



 (4.3)

When the parent is allocated, all the contribution blocks from its factored children are
assembled and discarded. From that point on, each child that is factored sees its con-
tribution block immediately assembled and its memory is released. [44] shows how to
choose the point (split point) where the parent should be allocated and how to order the
children so that the storage requirement Sflexible is minimized.

Now, if the amount of storage Sflexible is larger than the available core memory M0,
then some disk storage has to be used. In that case, rather than minimizing Sflexible, it
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becomes more relevant to minimize the volume of I/O V flexible obtained with the flexible
multifrontal method: this is the objective of the chapter. To limit the volume of I/O,
minimizing Sflexible can appear like a good heuristic. In [59], the authors have done so,
adapting [44] with respect to some additional constraints imposed by their code. However,
by computing the volume of I/O formally, we can show the limits of a memory-minimizing
approach when aiming at decreasing the I/O volume: similarly to the terminal allocation
case, minimizing the volume of I/O in the flexible allocation scheme is different from
minimizing the storage requirement.

4.3 Volume of I/O in a flexible multifrontal method

The main difference compared to Formula (4.2) is that with a flexible allocation
scheme, a child j processed after the parent allocation (j > p) may also generate I/O.
Indeed, if this child cannot be processed in-core together with the frontal matrix of the
parent, then part of that frontal matrix (or that whole frontal matrix) has to be written
to disk in order to make room and process the child with a maximum of available mem-
ory. This possible extra-I/O corresponds to underbrace (a) of Formula (4.4). After that,
the factor block of the frontal matrix of child j is written to disk and its contribution
block is ready to be assembled into the frontal matrix of the parent. However, we assume
that we cannot easily rely on a simple property to find which rows of the contribution
block, if any, can be assembled into the part of the frontal matrix available in memory
(we will discuss this assumption in Section 4.6). Therefore this latter frontal matrix is
fully re-loaded into memory (reading back from disk the part previously written). This
operation may again generate I/O: if the contribution block of child j and the frontal
matrix of its parent cannot fit together in memory, a part of cbj has to be written to disk,
then read back (panel by panel) and finally assembled. This second possible extra-I/O is
counted in underbrace (b) of Formula (4.4). All in all, and using the storage definition
from Formula (4.3), the volume of I/O required to process the subtree rooted at the
parent node is given by:

V flexible =max




0,max




 max

j=1, p

(

min(Sflexible
j ,M0) +

j−1
∑

k=1

cbk

)

,m+

p
∑

k=1

cbk




−M0






+
n∑

j=p+1

(

max(0,m+min(Sflexible
j ,M0)−M0)

)

︸ ︷︷ ︸

(a)

+
n∑

j=p+1

(max(0,m+ cbj −M0))

︸ ︷︷ ︸

(b)

+
n∑

j=1

V flexible
j

(4.4)

Again, a recursion gives the I/O volume for the whole tree.

With the terminal allocation scheme, the I/O volume (on a parent node and its n
children) is minimized by sorting the children in an appropriate order (see Chapter 3).
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With the flexible scheme, one should moreover determine the appropriate split point,
i.e. the best value for p. In other words, the flexible I/O volume is minimized when
together (i) the children processed before the parent allocation are correctly separated
from the ones processed after and (ii) each one of this set is processed in an appropriate
order. Exploring these n.n! combinations is not always conceivable since some families
may have a very large number n of children (more than one hundred for instance for
the GUPTA3 matrix). However, we have shown in the previous chapter that an optimal
order among the children processed before the parent allocation is obtained when they
are sorted in decreasing order of min(Sflexible

j ,M0) − cbj . Moreover, the I/O volume
on the children processed after the allocation is independent of their relative processing
order. Said differently, these two remarks mean that (ii) is actually immediate when (i)
is determined. Therefore we only have to determine to which set (before or after the
parent allocation) each child belongs to. Solving the initial problem finally consists in
reaching Objective 4.1 on the children of a family:

Objective 4.1. Given an amount of available core memory M0, our objective is to min-
imize the I/O volume on the contribution blocks by determining the children that should
be processed before (and the ones that should be processed after) the parent allocation.

However this still makes an exponential (2n) number of possibilities to explore and
motivates to further reduce the complexity.

4.4 Reducing the complexity (discrimination process)

To further reduce the complexity, we consider a family and we are interested in finding
some children for which we can easily decide whether they should be processed before
or after the parent allocation. To do so, we compare the impact on the I/O volume of
processing a given child j before and after the allocation of the parent node. Because
the I/O volume on its own subtree (the term V flexible

j in Formula (4.4)) is independent
on the way of processing the considered family, we do not need to take this amount into
account; we suppose it equal to 0 and we introduce the following definition:

Definition 4.1. The contribution of a child to the I/O volume of a family is the addi-
tional I/O volume of the family due to the child compared to the case when the family
does include that child.

Property 4.1 identifies some children that should be processed before the parent allo-
cation:

Property 4.1. The children that satisfy m+Sflexible
j ≤M0 should be processed after the

parent allocation.

Proof. We are considering a child j that can be processed in core memory along with
the frontal matrix of its parent node (m + Sflexible

j ≤ M0). Ordering this child after the
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parent allocation does not induce any additional I/O ((a) and (b) are both 0 in (4.4)).
On the other hand, its contribution to the I/O volume might be positive if it is processed
before the parent allocation. Clearly, we should thus process this child after the parent
allocation (at least we lose nothing if we process it after the parent allocation). �

We now aim at finding some children that should be processed before the parent
allocation. Lemma 4.1 gives an upper bound on the contribution to the I/O volume
of a child processed before the parent allocation. This upper bound is then used in
properties 4.2 and 4.3 to identify some children that should be processed before the
parent allocation.

Lemma 4.1. The contribution (see Definition 4.1) to the I/O volume of a child j pro-
cessed before the parent allocation is at most equal to cbj.

Proof. Computing the exact contribution of a child is not trivial. However an upper
bound is easily obtained by assuming that the child is the first one processed: this
might be suboptimal and thus constitutes an upper bound compared to the best possible
configuration with the constraint to process the child before the parent allocation. We
number the initial children from 1 to n and we renumber the additional child 0 (j = 0).
According to the first term of Formula (4.4), the I/O volume on the children processed
before the parent allocation V before with this configuration satisfies:

V before

= max

(

0,max

(

max
j= 0 ,p

(

min(Sflexible
j ,M0) +

∑j−1

k= 0
cbk

)

,m+
∑p

k= 0
cbk

)

−M0

)

= max

(

0,max

(

max
j= 1 ,p

(

min(Sflexible
j ,M0) +

∑j−1

k= 0
cbk

)

,m+
∑p

k= 0
cbk

)

−M0

)

= max

(

0,max

(

max
j= 1 ,p

(

min(Sflexible
j ,M0) +

∑j−1

k= 1
cbk

)

,m+
∑p

k= 1
cbk

)

+ cb0 −M0

)

≤ max

(

0,max

(

max
j= 1 ,p

(

min(Sflexible
j ,M0) +

∑j−1

k= 1
cbk

)

,m+
∑p

k= 1
cbk

)

−M0

)

+ cb0

Note that the first equality stands because min(Sflexible
0 ,M0)−M0 is bounded by 0. �

Property 4.2. The children that satisfy Sflexible
j ≥ M0 − m + cbj should be processed

before the parent allocation.

Proof. (Proof by contradiction.) We assume to the contrary that there exists an optimum
configuration which contains a minimum number of children after the parent allocation,
including a child j that satisfies Sflexible

j ≥ M0 −m + cbj. The contribution to the I/O
volume of this child when processed after the parent allocation is given by underbraces (a)
and (b) in Formula (4.4). Since the term related to underbrace (b) is nonnegative,
underbrace (a) provides a lower bound of its contribution to the I/O volume if that
child is processed after the parent allocation. That contribution is at least equal to m (if
Sflexible
j ≥ M0) – which is greater than cbj, or to Sflexible

j −M0 +m (if Sflexible
j ≤ M0) –

which is also greater than cbj. On the other hand, treating that child before the parent
allocation would lead to a maximum additional volume of I/O equal to cbj according
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to Lemma 4.1. We can thus move it back to the set of children processed before the
parent allocation without increasing the I/O volume, contradicting our assumption that
the number of children after the parent allocation is minimal. �

Property 4.3. The children that both satisfy Sflexible
j ≥ 2(M0 −m) and m + cbj > M0

should be processed before the parent allocation.

Proof. (Proof by contradiction.) We assume to the contrary that there exists an optimum
configuration which contains a minimum number of children after the parent allocation,
including a child j that both satisfies Sflexible

j ≥ 2(M0 − m) and m + cbj > M0. If
this child is processed after the parent allocation, its contribution is equal to the sum of
the amounts expressed by underbraces (a) and (b) in Formula (4.4). Noticing that the
term related to underbrace (b) is now positive (since m + cbj > M0) the contribution

is equal to: (m + Sflexible
j − M0) + (m + cbj − M0). We can rewrite this amount as

Sflexible
j − (2(M0 −m)) + cbj which is at least equal to cbj since we have assumed that

Sflexible
j ≥ 2(M0 − m). According to Lemma 4.1, the contribution is thus larger than

if the child is processed after the parent allocation. We can again move it back to the
set of children processed before the parent allocation without increasing the I/O volume,
which is a contradiction to the fact that the number of children after the parent allocation
should be minimal. �

All in all, as one can see in Algorithm 4.1, it is straightforward to decide whether a
child has to be processed before or after the parent allocation as soon as one of the three
above properties applies to it. Indeed, the verification of these conditions is independent
of the metrics of the siblings. Definition 4.2 discriminates those children:

Definition 4.2. A child is said to be fixed if one of the properties 4.1, 4.2 or 4.3 applies to
it. It is unfixed otherwise. We call discrimination the process that classifies the children
between fixed and unfixed ones.

For a given family, if all the children are fixed , Objective 4.1 is reached. In all cases,
any positive number of fixed children represents a partial answer to the question raised
by that objective. In this sense, the discrimination process constitutes a straightforward
first step of an algorithm that aims at reaching the above objective.

This step is actually very important since the decision problem associated with this
minimization problem is NP-complete. In other words, given an arbitrary target amount
of I/O V target

I/O , there is no deterministic polynomial algorithm that can consistently decide

whether there exists a partition of the children inducing a volume of I/O lower than or
equal to V target

I/O (except if P = NP). Compared to the exponential exploration needed to
solve this NP-complete problem, the cheap step that the discrimination process represents
is essential if it can discard some children. We present a proof of the NP-completeness
of the decision problem (Section 4.5) followed by a heuristic (Section 4.7) based on the
discrimination process and motivated by a study on real-life matrices.
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Input: A family composed of a parent node and n children.
Output: An array position() of size n notifying whether a child j (1 ≤ j ≤ n)

should be processed before, after the parent allocation or whether it is
still unfixed.

foreach child j from 1 to n do

if m+ Sflexible
j ≤M0 then

position(j)← before ; % Property 4.1

else if Sflexible
j ≥M0 −m+ cbj then

position(j)← after ; % Property 4.2

else if Sflexible
j ≥ 2(M0 −m) and m+ cbj > M0 then

position(j)← after ; % Property 4.3

else
position(j)← unfixed ;

Algorithm 4.1: Discrimination process. A child j which satisfies position(j) =
before or position(j) = after is fixed .

Note that the study on real matrices presented in sections 4.7 and 4.8 can be
read independently of (or before) the theoretical aspects discussed in sections 4.5
and 4.6.

4.5 Minimizing the I/O volume in the flexible multi-

frontal method is NP-complete

In this section we show that the decision problem related to Objective 4.1 is NP-
complete.

4.5.1 Intuition

To have an intuition on the difficulty to solve Objective 4.1, we consider a family and
a partition of its n children (not necessarily optimal). Let us imagine that the children
that are ordered before the parent allocation are such that each of them has a larger
contribution to the I/O volume (in the sense of Definition 4.1) than if it was processed
after the parent allocation. This implies that moving anyone of those children after the
parent allocation will decrease the I/O volume. However, it can happen that processing
all of them after the parent allocation is not optimal. We suppose for instance that we are
given a memoryM0, that the parent node of the family has a frontal matrix of sizem = M0

2

and that there are 4 children, each of them satisfying cbj =
M0

5
and Sflexible

j = 6M0

10
. We

moreover suppose that all the children are processed before the parent allocation in the
given initial partition. Because the maximum in the first term of Formula (4.4) is obtained
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when the parent is allocated, the I/O volume related to this family is equal to:

V flexible = V before = m+
4∑

k=1

cbk −M0 =
3M0

10
(4.5)

The contribution to the I/O volume of any child j is thus here exactly equal to cbj =
M0

5

whereas it would only be equal to m+ Sflexible
j −M0 =

M0

10
if it were processed after the

parent allocation. It is thus interesting to move anyone of those children after the parent
allocation. But moving all of them leads to a total I/O volume equal to V flexible = 4M0

10

which is larger than the initial I/O volume expressed in Formula (4.5). The reason is
that after we have moved one child, the I/O volume on the children processed before the
parent allocation is now equal to V before = m +

∑3
k=1 cbk −M0 =

M0

10
. Moving a second

child thus cannot decrease this amount of more than M0

10
as V before is nonnegative (see

Formula (4.4): V before = max(0, . . .)). If we move a second child, V before becomes equal
to 0 and there is no interest to move a third (or a fourth) child after the parent allocation.
In fact, moving a third child after the parent allocation would induce an additional I/O
volume of M0

10
(the contribution of the child when processed after the parent allocation)

and this amount would not be balanced anymore by a decrease of V before (which is already
at its minimum, 0).

All in all, this situation can be viewed as follows. We have some items (children
initially ordered before the parent allocation) that we can embed into a knapsack (we
move them after the parent allocation). Each item has a value (the decrease obtained on
the total I/O volume if the corresponding child is moved alone after the parent allocation).
But the knapsack has a limited weight (the I/O volume does not decrease anymore after
we have moved too many children). The objective is to embed a maximum total value
(to decrease as much as possible the total I/O volume) into the knapsack (by moving
children after the parent allocation). This problem is exactly the Knapsack Problem
which is known to be NP-complete [35]. However, in our case, we have to imagine that
we can try to embed one more item that spills out from the knapsack. Indeed, if we
come back to the above example, when moving a second child after the parent allocation,
we can still decrease V before of M0

10
but not of M0

5
anymore. The situation is like if the

knapsack was almost full (V before is not equal to 0 yet but it would be the case if we moved
one more child); therefore, we would not fully benefit from the last item we embed. As
an image, we can think that the part of it that spills out will be wasted (not useful), but
still has to be carried and thus represents an inconvenient.

We formalize the problem of a knapsack that can spill out and show that it is NP-
complete in Section 4.5.2. This preliminary result will be used in Section 4.5.3 to perform
a natural reduction of the decision problem related to Objective 4.1 from it.
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4.5.2 Preliminary result: the problem of a knapsack that can spill
out is NP-complete

We consider the optimization problem of a knapsack that can spill out. It derives
its name from the following maximization problem of the best choice of essentials that
can fit into one bag to be carried on a trip. Given a set of items, each with a cost and
a value, determine the number of each item to include in a collection so that the total
cost is less than a given limit and the total value is as large as possible. Contrary to the
classical knapsack problem, the cost is considered here as an inconvenient (an additional
weight for instance) that we have to subtract from its value: we might want to carry less
items if their cumulated interests measured by their values is not large enough compared
to their cumulated inconvenient measured by their costs. Moreover, we can embed one
more item that only partially fits in the bag. For this item we will only benefit from the
part that fits in the bag (we will only count the corresponding part of its value) but we
will have to carry the entire item (we will pay its entire cost). We assume that the value
of each item is larger than its cost (otherwise such an object would never be subject to
being included). The situation is formalized in Problem 4.1:

Problem 4.1 (Knapsack-Spill-Opt). We have n kinds of items (1, . . . , n). Each item
j has a value pj and a cost cj such that: 0 ≤ cj ≤ pj. We moreover assume that the
capacity V of the bag is limited: 0 ≤ V ≤ ∑n

i=1 pi − maxni=1 pi. We aim at maximizing
the algebraic benefit ∆B, whose expression is ∆B = min(

∑

j∈S pj, V )−∑j∈S cj, subject
to S ⊂ {1; . . . ;n}.

The decision problem form of the knapsack that can spill out is the question: Can an
algebraic benefit (value minus cost) of at least K be achieved?

Problem 4.2 (Knapsack-Spill-Dec). We have n items (1, . . . , n). Each item j
has a value pj and a cost cj such that: 0 ≤ cj ≤ pj. We moreover assume
that the capacity V of the bag is limited: 0 ≤ V ≤ ∑n

i=1 pi − maxni=1 pi. Can
we achieve an algebraic benefit K? Or, formally, is the following assertion true:

(∃S ⊂ {1; . . . ;n})
(

min(
∑

j∈S pj, V )−∑j∈S cj ≥ K
)

?

Lemma 4.2. Problem Knapsack-Spill-Dec is NP-complete.

Proof. To prove this result, we consider the Partition problem – which is known to be
NP-complete [35] – formulated as follows:

Problem 4.3 (Partition). Given n positive integer numbers (x1, . . . , xn) of half-sum X =
∑n

j=1
xj

2
, is there a subset S such that

∑

j∈S xj = X?

The idea of the proof is to show that Partition can be reduced in polynomial time to
Knapsack-Spill-Dec. The details are provided in Appendix C (Section C.1). �
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4.5.3 Proof of the NP-completeness

We now show that the decision problem related to Objective 4.1 is NP-complete.

Problem 4.4 (Flex-MinIO-Dec). We consider a family composed of a parent node and
n children numbered from 1 to n. We are given a core memory of size M0. The parent
node has a frontal matrix of size m that can fit in core memory: m ≤ M0. The size
of the contribution block of each child j is lower than the size of the frontal matrix of
its parent (0 ≤ cbj ≤ m) and than the storage requirement of the subtree rooted at j

(cbj ≤ Sflexible
j ). Does there exist a subset S of the children such that ordering those

children after the parent allocation and the other ones before induces an I/O volume
V flexible (as expressed in Formula (4.4)) lower than or equal to a given value V target

I/O .

Theorem 4.1. Problem Flex-MinIO-Dec is NP-complete.

Proof. First, Flex-MinIO-Dec belongs to NP. If we are given a subset S of the children
such that ordering those children after the parent allocation and the other ones before
induces an I/O volume lower than or equal to V target

I/O , we can check in polynomial time
in the size of the instance that we can arrange the children such that they indeed induce
an I/O volume less than or equal to V target

I/O . To do so, we order the p children processed

before the parent allocation according to their decreasing order of min(Sflexible
j ,M0)−cbj;

we evaluate the total I/O volume and compare it to V target
I/O . This verification requires a

maximum number of operations proportional to n log (n).

To prove the NP-completeness of Flex-MinIO-Dec, we show that Knapsack-Spill-Dec
can be polynomially reduced to Flex-MinIO-Dec. We consider an arbitrary instance I1
of Knapsack-Spill-Dec composed of a bag of capacity V ; n items numbered from 1 to
n of respective values and costs equal to pi and ci, 1 ≤ i ≤ n; an algebraic benefit K
to achieve. We build an instance I2 of Flex-MinIO-Dec as follows. We consider a core
memory M0 = 2(

∑n
i=1 pi − V ) and a size for the frontal matrix of the parent equal to

m = M0

2
. We define n children with characteristics cbi = pi, S

flexible
i = ci +m, 1 ≤ i ≤ n.

We define a target I/O volume V target
I/O = m +

∑n
i=1 cbi −M0 −K. The construction of

I2 is polynomial (and even linear) in the size of I1. I2 is effectively an instance of Flex-
MinIO-Dec since m ≤ M0 and 0 ≤ cbi ≤ m, cbi ≤ Sflexible

i , 1 ≤ i ≤ n. Indeed, the first
inequality stands because m = M0

2
. To show that the two other inequalities are valid, we

only need to show that cbi ≤ m, 1 ≤ i ≤ n since Sflexible
i ≥ m. This result is obtained

by definition of Knapsack-Spill-Dec which states that pj ≤
∑n

i=1 pi − V, 1 ≤ j ≤ n and
which exactly means here that cbi ≤ m, 1 ≤ j ≤ n.

We now consider a child j (1 ≤ j ≤ n) and show that it satisfies the following
supplementary properties:

1. cbj ≤M0 −m;

2. Sflexible
j ≥M0 −m;

3. Sflexible
j ≤M0 −m+ cbj;
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4. Sflexible
j ≤M0;

5. Sflexible
j ≤ m+ cbj.

Indeed, by construction of I2, Inequality 1 is equivalent to pj ≤
∑n

i=1 pi−V , Inequality 2
is equivalent to ci ≥ 0 and inequalities 3 and 5 are equivalent to ci ≤ pi. They are thus
true by definition of Knapsack-Spill-Dec. Inequality 3 implies Inequality 4 since cbj ≤ m.

These properties simplify the expression of the I/O volume and actually re-
flect the intuition presented in Section 4.5.1 as we now explain. Inequality 1
means that if a child is processed after the parent allocation, it will not in-
duce I/O to assemble its contribution block in the parent node (underbrace (b)
is zero in Formula (4.4)). Inequality 5 implies that the maximum in expression

max
(

maxj=1,p

(

min(Sflexible
j ,M0) +

∑j−1
k=1 cbk

)

,m+
∑p

k=1 cbk

)

is obtained with the sec-

ond term m+
∑p

k=1 cbk. Inequalities 2 and 4 imply that underbrace (a) in Formula (4.4)

is simplified to
∑n

j=p+1

(

m+ Sflexible
j −M0

)

. All in all, if we note S the subset of children

that are processed after the parent allocation, the I/O volume on the family is equal to:

V flexible(S) = max

(

0,m+
∑

k/∈S

cbk −M0

)

+
∑

j∈S

(

m+ Sflexible
j −M0

)

(4.6)

The contribution to the I/O volume of a child j processed before the parent allocation is
thus equal to cbj while m+

∑

k/∈S cbk −M0 ≥ cbj. Its contribution if processed after the

parent allocation is equal to m+ Sflexible
j −M0. We assume that initially all the children

are processed before the parent allocation. While m+
∑

k/∈S cbk−M0 ≥ cbj, the algebraic

benefit to move this child after the parent allocation is thus equal to cbj+M0−m−Sflexible
j .

According to Inequality 3, this amount is positive, which means that moving this child
after the parent allocation will decrease the I/O volume. The point is that we are not
sure that we should move all the children since the total value we can save is bounded by
the initial I/O volume where all the children are processed before the parent allocation
and which is equal to m+

∑n
k=1 cbk−M0. Therefore we might have to make a choice and

this represents the difficulty of the problem. Formally, we note ∆V flexible (S) the I/O vol-
ume that we save by processing the children of S after the parent allocation compared to
an initial configuration where all the children are processed before the parent allocation:
∆V flexible(S) = m+

∑n
k=1 cbk−M0−V flexible(S). This amount can be viewed as an alge-

braic benefit of moving the children of S after the parent allocation and can be rewritten

as: ∆V flexible(S) = min
(
∑

j∈S cbj,m+
∑n

k=1 cbk −M0

)

−∑j∈S (m+ Sflexible
j −M0).

Therefore, for a given subset S, the assertion V flexible(S) ≤ V target
I/O is equivalent to

∆V flexible(S) ≤ m +
∑n

k=1 cbk −M0 − V target
I/O , thus to ∆V flexible(S) ≤ K, and finally to

min
(
∑

j∈S pj, V
)

−∑j∈S (cj) ≤ K. Thus, any subset S is a solution to I1 if and only if it

is a solution to I2, which implies that I1 has a solution if and only if I2 has a solution. �
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4.5.4 Another difficulty which also makes the problem NP-complete

To prove that Problem Flex-MinIO-Dec is NP-complete in Section 4.5.3, we have built
families for which it is interesting to process any single child after the parent allocation
but not all of them and this implied a difficult choice. The point was that after a cer-
tain number of children were moved after the parent allocation, the children remaining
before the parent allocation could be processed altogether in core. They did not con-
tribute to the I/O volume anymore and there was thus no point to move them after the
parent allocation. Hence, the difficulty was related to the fact that the treatment of the
children ordered before the parent allocation changed from an out-of-core to an in-core
management depending on the children that were moved.

In this section, we show that this is not the only difficulty. This result is important
since the understanding of the difficulties conditions the development of heuristics more
than the knowledge itself that the problem is NP-complete. To do so, we propose another
proof to Theorem 4.1 in which the optimum configurations of the considered instances
of Problem Flex-MinIO-Dec are known to require an out-of-core process. We exhibit
that the versatility of the position at which the peak of storage is reached among the
children processed before the parent allocation also represents a difficulty (that adds to
the previous one). Another interest of this second proof is that it can be applied as it
is both to the classical and in-place cases whereas the previous one is not immediately
adaptable to the in-place case. Again, we reduce Knapsack-Spill-Dec to Flex-MinIO-Dec.
The proof is based on the following lemma:

Lemma 4.3. We are given a family processed in an optimum configuration (that mini-
mizes the I/O volume) and we consider the evolution of the storage requirement before the
parent is allocated. We assume that children satisfying Property 4.1 have been moved to
be processed after the allocation of the parent. The peak related to this storage is obtained
either on the last child p or on a child j which satisfies Sflexible

j > cbj +M0 −m.

Proof. (Proof by contradiction.) We assume to the contrary that the peak of storage
is reached on a child j0 such that j0 < p and Sflexible

j0
≤ cbj0 + M0 − m. According to

Formula (4.3), the peak is equal to maxj=1,p

(

Sflexible
j +

∑j−1
k=1 cbk

)

and thus to Sflexible
j0

+
∑j0−1

k=1 cbk because of our assumption. We now consider child j0+1 which is also processed
before the parent allocation since j0+1 ≤ p. Property 4.1 does not apply to it (otherwise
it would be processed after the parent allocation in our optimum configuration); hence
it satisfies: Sflexible

j0+1 > M0 − m. Because moreover we have M0 − m ≥ Sflexible
j0

− cbj0
by assumption, we obtain by transitivity that Sflexible

j0+1 > Sflexible
j0

− cbj0 and thus that

Sflexible
j0+1 +

∑j0
k=1 cbk > Sflexible

j0
+
∑j0−1

k=1 cbk, contradicting our assumption. �

Lemma 4.3 provides an intuition of the difficulty related to the versatility of the peak
of storage. Let us imagine that we have n+1 children (1 ≤ j ≤ n+1) that do not satisfy
Sflexible
j > cbj + M0 − m and that they are ordered after a child (which we number 0)

that does satisfy this assertion. We moreover imagine that we know that children 0 and
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n+1 should not be processed after the parent allocation in an optimum configuration and
we wonder which children among the n other ones should be processed after the parent
allocation. According to Lemma 4.3, the peak of storage can only be obtained on child 0
or on child n+ 1. We suppose that the peak is initially obtained on child n+ 1. As long
as the peak remains obtained on that child, it may be interesting to move some children
after the parent allocation since the peak of storage may still decrease. But as soon as
the peak of storage is obtained on child 0, there is no point to move any additional child
after the parent allocation. We thus have had to make a choice between these children;
and this choice might represent a difficulty. We provide a new proof of the polynomial
reduction of Knapsack-Spill-Dec to Flex-MinIO-Dec which formalizes this intuition.

New proof of Theorem 4.1. We consider an arbitrary instance I1 of Knapsack-Spill-Dec
composed of a bag of capacity V ; n items of respective values and costs equal to pi and
ci, 1 ≤ i ≤ n; an algebraic benefit K to achieve. Even if it implies to renumber the items,
we suppose that they are ordered according to their increasing value of pi − ci. We build
an instance I2 of Flex-MinIO-Dec as follows. We consider that the frontal matrix of the
parent has a size m =

∑n
i=1 pi − V + maxni=1 ci. We define the amount of core memory

M0 = 2m+ pn − cn. We consider n+ 2 children numbered from 0 to n+ 1 of respective
contribution block of size cbi and respective storage requirement of size Sflexible

i . We define
cbi = pi, S

flexible
i = ci +M0 −m, 1 ≤ i ≤ n. We define Sflexible

0 = M0 and cb0 = minn
i=1 pi;

Sflexible
n+1 = maxni=1 ci+M0−m and cbn+1 = Sflexible

n+1 −Sflexible
n + cbn. We consider a target

I/O volume V target
I/O = Sflexible

n+1 +
∑n

k=0 cbk −M0 −K.

The construction of I2 is polynomial in the size of I1: its complexity is bounded by
the renumbering step of the children which requires a maximum number of operations
proportional to n log (n). We first prove that I2 is effectively an instance of Flex-MinIO-
Dec. The assertion m ≤ M0 stands because pn ≥ cn and cbi ≤ m (1 ≤ i ≤ n) comes
from the two following inequalities: pj ≤

∑n
i=1 pi − V and maxni=1 ci ≥ 0. Child 0

clearly satisfies the constraints of the multifrontal method. For child n+ 1, the assertion
0 ≤ cbn+1 ≤ m is not immediate and we show it later.

Children of index j such that 1 ≤ j ≤ n + 1 satisfy the five additional properties
mentioned in the proof of Section 4.5.3 except that the last one is reversed and we note
it 5’:

5’. Sflexible
j ≥ m+ cbj.

Indeed, Let j be a child such that 1 ≤ j ≤ n. Inequality 1 is equivalent to: pj ≤∑n
i=1 pi − V + maxni=1 ci + pn − cn. Inequalities 2, 3 and 4 are established as in the

proof of Section 4.5.3. Inequality 5’ is equivalent to pj − cj ≤ pn − cn which is true
according to the renumbering of the children. We now consider child n + 1 and prove
that the remaining assertion 0 ≤ cbn+1 ≤ m stands. First, we have cbn+1 ≥ 0 since
child n satisfies Inequality 3 and because maxni=1 ci ≥ 0. Second, we have cbn+1 ≤
pn + maxni=1 ci ≤ m respectively because child n satisfies Inequality 2 and then because
maxni=1 pi ≤

∑n
i=1 pi−V . We now show that the five inequalities also apply to child n+1.

Inequality 1 stands as we have: cbn+1 ≤ m ≤ M0 − m. Inequality 2 is immediate.
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Inequalities 3 and 5’ for child n+1 are respectively equivalent to inequalities 3 and 5’ for
child n by definition of cbn+1. Inequality 4 comes from Inequality 3.

Again, these properties simplify the expression of the I/O volume. Inequality 5’
(which is reversed compared to Section 4.5.3) implies that the maximum in expression

max
(

maxj=0,p

(

min(Sflexible
j ,M0) +

∑j−1
k=0 cbk

)

,m+
∑p

k=0 cbk

)

is now obtained with the

first term of the outer maximum. We assume that children 0 and n + 1 are not subject
to be processed after the parent allocation (we justify this assumption later). According
to Lemma 4.3, Inequality 3 moreover implies that this maximum is obtained on the last
child processed before the parent allocation, n+ 1, or on child 0 (which does not satisfy
Inequality 3). If we note S the subset of the children {1, . . . n} that are processed after
the parent allocation, the I/O volume on the family is thus equal to:

V flexible(S) = max



0, Sflexible
n+1 +

∑

k∈{0,... n}\S

cbk −M0



+
∑

j∈S

(

m+ Sflexible
j −M0

)

(4.7)

We note ∆V flexible (S) the I/O volume that we save by processing the children of S
after the parent allocation compared to an initial configuration where all the children are
processed before the parent allocation. This initial configuration would induce an I/O vol-
ume equal to V flexible(∅) = Sflexible

n+1 +
∑n

k=0 cbk−M0. Therefore, we have: ∆V flexible(S) =
min

(
∑

j∈S cbj, S
flexible
n+1 +

∑n
k=0 cbk −M0

)

−∑j∈S (m+ Sflexible
j −M0). For a given sub-

set S, the assertion V flexible(S) ≤ V target
I/O is equivalent to ∆V flexible(S) ≤ Sflexible

n+1 +
∑n

k=0 cbk −M0 − V target
I/O , thus to ∆V flexible(S) ≤ K, and finally to min

(
∑

j∈S pj, V
)

−
∑

j∈S (cj) ≤ K. Thus, any subset S is a solution to I1 if and only if it is a solution to I2,
which implies that I1 has a solution if and only if I2 has a solution.

We end up the proof with the justification of the fact that children 0 and n + 1 are
not subject to be processed after the parent allocation. It is immediate for child 0 since
Property 4.2 applies to it. We assume that child n + 1 is processed after the parent
allocation in an optimum configuration and we exhibit another configuration in which
child n+ 1 is processed before the parent allocation without increasing the I/O volume.
Indeed, if p is the last child processed before the parent allocation (thus p 6= n + 1), we
exchange p and n+ 1 (p is moved after the parent allocation and n+ 1 before). We can
assume that p > 0 (otherwise it is immediate to verify that we can move back any child
towards the set of children processed before the parent allocation without increasing the
I/O volume); hence: Sflexible

n+1 ≥ Sflexible
p . This exchange leads to an increase of the storage

required to process the children before the parent allocation of Sflexible
n+1 −Sflexible

p and thus

to a maximum increase of Sflexible
n+1 −Sflexible

p on the I/O volume related to those children.
On the other hand, the exchange induces a decrease on the I/O volume of the children
that are processed after of exactly Sflexible

n+1 −Sflexible
p . The total volume is thus lower than

or equal to the original volume before exchange. �
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4.6 In-place assembly schemes

In this section, we show that the results obtained in the previous sections apply to
the in-place assembly schemes.

4.6.1 In-place assembly before the parent allocation

As in the previous chapter, the expression of the storage requirement Sflexible and
of the induced volume of I/O V flexible are modified. Again, the difference comes from

the child that is assembled in-place. In the last-in-place case, the term
∑ p

k=1 cbk in

formulas (4.3) and (4.4) becomes
∑ p-1

k=1 cbk. In the max-in-place case, this term becomes
∑p

k=1 cbk − maxpk=1 cbk. We provide for instance the expression of Sflexible and V flexible

for the last-in-place assembly scheme:

Sflexible = max




max

j=1,p
(Sflexible

j +

j−1
∑

k=1

cbk),m+

p-1
∑

k=1

cbk,m+ max
j=p+1,n

Sflexible
j




 (4.8)

V flexible = max




0,max




max

j=1,p

(

min(Sflexible
j ,M0) +

j−1
∑

k=1

cbk

)

,m+

p-1
∑

k=1

cbk




−M0






+
n∑

j=p+1

(

max(0,m+min(Sflexible
j ,M0)−M0)

)

+
n∑

j=p+1

(max(0,m+ cbj −M0))

+

p
∑

j=1

V flexible
j

(4.9)

For the two in-place assembly schemes, properties 4.1, 4.2 and 4.3 remain valid and
they can be proved exactly as in Section 4.4. Nevertheless, we provide an intuition for
that. Property 4.1 is valid since a child that can be processed in core memory along with
the frontal matrix of its parent does not induce I/O when processed after the parent allo-
cation; this is true for all the assembly schemes. Properties 4.2 and 4.3 provide sufficient
conditions to identify some children that should be processed before the parent alloca-
tion. These conditions allow us to compare the contribution to the I/O volume depending
on whether those children are processed before or after the parent allocation. With an
in-place assembly scheme, the contribution to the I/O volume of a child processed before
the parent allocation is decreased or remains equal compared to the classical assembly
scheme. On the other hand, it does not change if that child is processed after the parent
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allocation. Therefore, if these two properties are valid with the classical assembly scheme,
they are “even more true” – if we may say so – with an in-place assembly schemes.

Theorem 4.1 remains valid for the two in-place assembly schemes. This means that
Problem Flex-MinIO-Dec is NP-complete whichever assembly scheme is used. The proof
presented in Section 4.5.3 is not immediate to extend to the in-place assembly schemes.
In that latter proof, we could simplify the expression of the I/O volume thanks to the
fact that Inequality 5 ensured that the peak of storage before the parent allocation was
lower than (or equal to) the storage required at the moment of the allocation. However
Inequality 5 is not sufficient to ensure this property with an in-place assembly scheme.
Intuitively, the probability that the peak of storage is reached at the moment of the
parent allocation is lower with an in-place scheme since the purpose of such a scheme is
precisely to limit this amount. On the contrary, in the proof presented in Section 4.5.4,
the storage requirement at the moment of the allocation is lower than the peak of storage
before allocation. This time, if it is true with a classical assembly scheme, intuitively, it is
also true with an in-place assembly scheme. Formally, Inequality 5’ is sufficient to ensure
this property independently of the assembly scheme used and the proof can be applied
as it was presented in Section 4.5.4. Nevertheless, to be accurate, we moreover need to
notice that the children processed before the parent allocation follow the same order as
in the classical assembly scheme. It is obvious with a max-in-place assembly scheme. For
the last-in-place assembly scheme, this is due to the fact that max(Sflexible

j ,m) = Sflexible
j

stands (which is immediate with the definition of Sflexible
j in Instance I2). Therefore,

ordering the children that are processed before the parent allocation according to their
decreasing value of Sflexible

i -cbi (which is the case since the items of I1 are ordered in
increasing value of pi − ci) still leads to an optimum configuration.

4.6.2 In-place assembly after the parent allocation

An in-place assembly scheme consists in assembling in-place a contribution block (the
last one produced or the largest one) into the frontal matrix of the parent at the moment
of its allocation. In a flexible context, once a child j ordered after the parent allocation
(j > p) has been processed, its contribution block is in memory ready to be assembled.
However, we have assumed in Section 4.3 that we had to fully re-load the frontal matrix
of the parent into memory before performing the assembly of the child. This operation
generated extra-I/O on the contribution blocks which was counted in underbrace (b) of
Formula (4.4). The reason for this assumption was that, in general, we cannot easily
find which rows of the contribution block, if any, can be assembled into the part of the
frontal matrix available in memory. However, in static codes where the sizes and the
indices of the variables of the frontal matrices are known in advance, we can avoid the
I/O volume corresponding to underbrace (b). In the worst case, we can for example
read the rows of the parent one-by-one. When reading row i of the parent, if the next
row of the contribution block has to be assembled into row i, we assemble it and free it;
otherwise, we read row i+ 1, i+ 2, . . . until we can assemble and free the current row of
the contribution block. The key properties for this to be possible are that:
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– indices of the parent and of the contribution blocks are sorted in a compatible order;
– a frontal matrix can fit in core;
– a row of a contribution block is smaller than a row of a frontal matrix.

So, intuitively, even if the ncb rows of the contribution block must be assembled in the
last ncb rows of the frontal matrix, we have enough memory to read rows of the parent
without overwriting unassembled rows of the contribution block. (At worse, we may need
a workspace corresponding to one row of the front.)

We name this mechanism in-place-realloc scheme. It can be combined with any of the
classical , last-in-place and max-in-place assembly schemes. Without underbrace (b), we
let the reader check that Properties 4.1 and 4.2 still stand as they are. However, Prop-
erty 4.3 does not apply anymore. Intuitively, we are more likely to process children after
the parent allocation with the use of an in-place-realloc method. Finally, Theorem 4.1 ap-
plies to the in-place-realloc schemes. Indeed, in the proofs of both sections 4.5.3 and 4.5.4,
the term related to underbrace (b) is already equal to zero as ensured by Inequality 1.

4.7 A Heuristic based on the discrimination process

We now study the I/O volume minimization from a pragmatic point of view. We focus
on the in-place allocation since it is likely to reduce the I/O volume over the classical
approach. More specifically, we study a last-in-place allocation scheme without in-place-
realloc (introduced in Section 4.6.2) since in-place-realloc is not general enough (it does
not easily apply to codes that handle a dynamic structure).

We have shown in Section 4.5 that the minimization of the I/O volume on a family
requires an algorithm whose complexity may be exponential with the number of children
(except if P = NP). In this context, the straightforward discrimination process presented
in Section 4.4 is thus essential if it can discard enough children from the exploration
required to reach Objective 4.1. To measure the relevance of this process, we have applied
it to the matrices of Table 1.2 for different possible values of available memory M0. We
have noticed that, in practice, the number of fixed children is often large and that, for
many matrices, most families have no (or almost no) unfixed children. We illustrate this
typical behaviour with matrix TWOTONE in Figure 4.1(a). This matrix has families which
contain up to 108 children. Performing an exhaustive exploration involves 2108 possible
combinations for one such single family. However, after the discrimination process, fixed
children are discarded and no family has more than one unfixed children. Therefore, for
each family, at most only 2 (21) combinations actually have to be tested. In this case,
representative of most of our experimental results, the discrimination process combined
with a single test is thus sufficient to reach Objective 4.1.

Nonetheless, some matrices may have a few families with a large number of unfixed
children. We illustrate this behaviour with a case that leads to families with many unfixed
children, GUPTA3, as shown in Figure 4.1(b). Indeed, one family keeps having 54 unfixed
children. For that family, it remains 254 possible partitions. Although this number is
far lower than the initial number of 2119 possibilities, an exhaustive exploration is not
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(a) TWOTONE matrix - PORD ordering M0=7572632 (b) GUPTA3 matrix - METIS ordering M0=684686

Figure 4.1: Distribution of the families as a function of their total and unfixed number
of children. After the discrimination process (see Algorithm 4.1) has been applied, most
families appear to have few (or no) unfixed children.

conceivable in practice and justifies the use of an approximation algorithm that will
explore a subset of these combinations. However, among the 28 families inducing I/O,
21 families have no unfixed children and only 3 families have strictly more than 4 unfixed
children (respectively 7, 13 and 54). If we consider that it is acceptable to explore up to
24 combinations for each family (which seems reasonable to us), this means that we can
find the optimum combination for 25 of the 28 families that compose this matrix whereas
the approximation algorithm will have to be used for only 3 families. Therefore, the
quality of the approximation will not impact dramatically the total volume of I/O, the
essential of the optimization being performed by the discrimination step. This is why we
propose the following greedy heuristic to perform the approximation that only considers
a number of combinations bounded by the number of unfixed children plus one. We start
from a partition where the fixed children are sorted according to the discrimination step
and where the unfixed children are positioned before the split point. In other words, the
children that satisfy m+ Sflexible

j ≤M0 are positioned after the split point (according to
Property 4.1) whereas all the other ones are positioned before. Then, we iteratively select
the child that is responsible for the peak of storage before the split point and we move it
after the split point until one move does not decrease the volume of I/O anymore. We
name Flex-MinIO this two-step algorithm.

4.8 Experimental results

In order to evaluate the impact of this flexible allocation scheme on the volume of I/O,
we compare the results of our heuristic (Flex-MinIO) both to the terminal allocation
scheme with the IO-minimizing algorithm of Chapter 3 (that was named MinIO and
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that we rename Term-MinIO) and to the flexible allocation scheme with the memory-
minimizing algorithm of [44] (Flex-MinMEM).

The volumes of I/O were computed by instrumenting the analysis phase of MUMPS.
We experimented several ordering heuristics and present results with both METIS [51] and
PORD [69]. We present results related to four test problems extracted from Table 1.2 (see
Section 1.4.3) for which we have observed significant gains. Figure 4.2 shows the evolution
of the volume of I/O with the available memory. When a large amount of memory is
available (right part of the graphs), the flexible allocation schemes (both Flex-MinMEM

and Flex-MinIO) induce a small amount of I/O compared to the terminal allocation
scheme (Term-MinIO). Indeed, with such an amount of memory, many children can be
processed after the allocation of their parent without inducing any I/O (or inducing a
small amount of I/O): the possible extra-I/O’s corresponding to underbraces (a) and (b)
of Formula (4.4) are actually equal (or almost equal) to zero for those children.

When the amount of available memory is small (left part of the graphs), the memory-
minimizing algorithm (Flex-MinMEM) induces a very large amount of I/O compared to the
I/O-minimization algorithms (both Flex-MinIO and Term-MinIO). Indeed, processing a
child after the parent allocation may then induce a very large amount of I/O (M0 is small
in underbraces (a) and (b) of Formula (4.4)) but memory-minimization algorithms do
not take into account the amount of available memory to choose the split point.

Finally, when the amount of available memory is intermediate, the heuristic we have
proposed (Flex-MinIO) induces less I/O than the two other approaches. Indeed, accord-
ing to the memory, not only does the heuristic use a flexible allocation scheme on the
families for which it is profitable, but it can also adapt the number of children to be
processed after the parent allocation.

4.9 Conclusion

In this chapter, we have studied the I/O minimization problem in the context of
the flexible multifrontal method and proved that it is NP-complete. In particular, it is
interesting to notice that the I/O minimization problem is more complex than the mini-
mization of the storage requirement which is polynomial [44]. However we have proposed
an algorithm that provides a configuration which most of the time does minimize the I/O
volume at no cost more than sorting the children of the family. We have shown that the
practical impact on the I/O volume may be significant. In particular, an experimental
study has shown that an algorithm which aims at minimizing the storage in the context
of the multifrontal method can lead to dramatically huge I/O volumes. Said differently,
it is even more critical to use an I/O-minimization algorithm in the flexible context than
it was with a terminal allocation scheme compared to an algorithm that would aim at
minimizing the storage.

An extension to the flexible allocation scheme could consist in allocating the frontal
matrix of the parent more than once. Each time, a range of contribution blocks is assem-
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Figure 4.2: I/O volume on the stack of contribution blocks as a function of the core
memory available for the three heuristics with the use of an last-in-place assembly scheme.
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bled, and the frontal matrix is written back to disk when necessary. It is only read again
when enough contribution blocks have been computed. However, this multiple allocation
scheme does not allow us to decrease the I/O volume and is also NP-complete as we
prove in Appendix C (Section C.2).

We have shown that the results presented in this chapter apply to all the considered
assembly schemes (classical , last-in-place and max-in-place ones). We have furthermore
discussed how to handle the in-place allocation in the flexible context and proposed a new
scheme (named in-place-realloc) to further limit the I/O volume on the children processed
after the parent allocation.
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Chapter 5

Memory management schemes for
multifrontal methods

In this chapter we aim at providing new memory management algorithms, adapted
to the different multifrontal schemes presented in the previous chapters. We show that
our models can lead to a reasonable implementation during the numerical factorization,
without extra copies or complicated garbage collection mechanisms: we show that those
can be avoided by relying on simple stack mechanism.

The different memory-minimization and I/O-minimization algorithms presented in
chapters 3 and 4 compute a particular postorder traversal of the elimination tree. With
a flexible allocation scheme (Chapter 4), they also compute the positions of the parent
allocations. These algorithms can be applied during the analysis phase of a sparse direct
solver, i.e. during a preliminary step performed before the numerical factorization. Then
the numerical factorization relies on this traversal and should respect the forecast optimal
metrics (memory usage, I/O volume). We suppose that a traversal has been given (thanks
to one of the algorithms presented in the previous chapters) and we present memory
management algorithms that match the different assembly schemes we have considered
for both the terminal and flexible allocation schemes. Remember that we consider that
the factors are written to disk on the fly. As soon as a block of the frontal matrix is
factored it can be written to disk, possibly asynchronously. Thus we only have to store
temporary frontal matrices and contribution blocks. We assume that those are stored in
a preallocated contiguous workarray W of maximum size M0, the available core memory.
In this workarray, we manage one or two stacks depending on our needs, as illustrated in
Figure 5.1.

The chapter is organized as follows. We first describe mechanisms corresponding to
an in-core management of the contribution blocks in Section 5.1. Those mechanisms can
be applied when the storage requirement is smaller than the available memory M0. In
Section 5.2, we generalize those mechanisms in the case of an out-of-core storage of the
contribution blocks that do not fit in memory.

75
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Left Stack Right StackFree block

Bottom Top Top Bottom

Right Stack

Top Bottom

Free block

Figure 5.1: Subdivision of the main workarray, W , into one stack (left) or two stacks
(right) of contribution blocks. The free block can be used to store the temporary frontal
matrices.

5.1 In-core stack memory

In this section, we assume that the contribution blocks are processed in core. We first
recall memory management algorithms that are used in existing multifrontal codes in
Section 5.1.1. In Section 5.1.2, we then more specifically explain how to handle our new
max-in-place assembly scheme (see the previous chapter). We generalize those algorithms
to the multifrontal method with a flexible allocation in Section 5.1.3.

5.1.1 Recalling the classical and last-in-place assembly schemes

The classical and last-in-place approaches with a terminal allocation are already used
in existing multifrontal codes. We recall them in this section in order to introduce notions
that we will use in the rest of the chapter. We have seen in Chapter 2 that, since we
have a postorder traversal, the access to the contribution blocks has the behaviour of a
stack (in general, one uses the stack on the right of W ). In other words, thanks to the
postorder:

Property 5.1. If the contribution blocks are stacked when they are produced, each time
a frontal matrix is allocated, the contribution blocks from its children are available at the
top of the stack.

For example, at the moment of allocating the frontal matrix of node (6) in the tree
of Figure 5.2, the stack contains, from bottom to top, cb1, cb2, cb3, cb4, cb5. The frontal
matrix of (6) is allocated in the free block on the left of W , then cb5 and cb4 (in that
order) are assembled into it and removed from the stack. Once the assembly of the
parent is finished, the frontal matrix is factored, the factors are written to disk, and the
contribution block (cb6) is moved to the top of the stack.

The only difference between the classical and the last-in-place assembly schemes is
that in the last-in-place case, the memory for the frontal matrix of the parent is allowed
to overlap with the memory of the child available at the top of the stack as was illustrated
in Figure 2.3(c). In the example of Figure 5.2, this means that if the free block on the left
of the workarray is not large enough for the frontal matrix of (6), that frontal matrix is
allowed to overlap with the memory of the contribution block of (5), of size cb5, leading
to significant memory gains. The contribution block of the child is expanded into the
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memory of the frontal matrix of the parent, and the contribution blocks from the other
children are then assembled normally.

1

7

63

4 5

22

4

Figure 5.2: Example of a tree with 7 nodes. Nodes in bold correspond to the nodes with
the largest contribution block among the siblings. (This property will only be used in
Section 5.1.2.)

5.1.2 In-place assembly of the largest contribution block

We have introduced in Chapter 3 (Section 3.3) a new in-place assembly scheme and
we now propose a memory management mechanism that matches this scheme. This
max-in-place assembly scheme consists in overlapping the memory of the parent with
the memory of the largest child contribution block. For this to be possible, the largest
contribution block must be available in a memory area contiguous to the free block where
the frontal matrix of the parent will be allocated. By using a special stack for the largest
contribution blocks (the one on the left of W , see Figure 5.1), Property 5.1 also applies
to the largest contribution blocks. Thus, when processing a parent node,

– the largest child contribution block is available at the top of the left stack and can
overlap with the frontal matrix of the parent; and

– the other contribution blocks are available at the top of the right stack, just like in
the classical case.

This is illustrated by the tree of Figure 5.2. When traversing that tree, we first stack
cb1 on the right of W , then stack cb2 (identified as the largest among its siblings) on the
left of W , then cb3 on the right, cb4 on the left, and cb5 on the right. When node (6) is
processed, the workarray W contains:

cb2 cb4 Free block cb5 cb3 cb1

The memory for the frontal matrix of (6) can overlap with cb4 so that cb4 is assembled in-
place; cb5 is then assembled normally. Note that the same type of situation will occur for
the root node (7): cb2 (now available at the top of the left stack) will first be assembled
in-place, the cb6, cb3 and cb1 (in that order) will be assembled from the right stack.

We name AlgoIC_maxinplace() the corresponding memory management algorithm.
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5.1.3 Flexible allocation of the frontal matrices

5.1.3.1 Classical and last-in-place assembly schemes

We now consider the flexible multifrontal method as discussed in Chapter 4. In this
method, the frontal matrix of a parent is allowed to be allocated before all the children
have been processed. This implies that several frontal matrices may be in core at the same
time. We assume that a classical assembly scheme is used. On the example of Figure 5.3,
we assume that the frontal matrix f7 of node (7) is allocated after the treatment of
node (3) and that the frontal matrix f6 of node (6) is allocated after the treatment of
node (4).

1

7

63

4 5

22

4

Figure 5.3: Reconsidering the example of Figure 5.2 with a flexible allocation. The arrows
indicate the position at which the frontal matrices of the parents are allocated. Nodes
in bold correspond to the nodes with the largest contribution block among the siblings
processed before a parent allocation (this property will only be used in Section 5.1.3.2).

When processing node (5), both f7 and f6 have been allocated in memory, although
they cannot be factored yet. Similarly to the contribution blocks, we have the property
that frontal matrices are accessed with a Lifo (Last In First Out) scheme: on our exam-
ple, frontal matrices f7 and f6 are allocated in this order but f6 is factored and released
before f7. It is thus natural to store the frontal matrices in a stack too. Again, it is possi-
ble to manage both stacks in a single array and this approach allows for an overlapping of
the stacks: i)one of the stack may be large when the other is small and vice-versa; ii)the
frontal matrix may overlap with the last contribution block in the last-in-place case). We
suppose that the right stack is used for the contribution blocks, and, this time, the left
stack is used for the frontal matrices.

We now illustrate the use of those two stacks on our example. After node (7) has
been allocated, the contribution blocks of nodes (1), (2) and (3) are assembled and
released. Then, node (4) is factored and produces a contribution block. At this time,
the workarray W contains:

f7 Free block cb4

The frontal matrix of node (6) is then allocated in the left stack. Remark that it is
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allowed to overlap with cb4 in the last-in-place scheme. Assuming no overlap between f6
and cb4, the workarray W contains:

f7 f6 Free block cb4

The contribution block of node (4) is assembled into f6 and released. Next; node (5) is
processed; its contribution block is assembled into f6 and released. Node (6) is factored;
its contribution block is assembled into f7 and released. Ultimately, node (7) factored.

5.1.3.2 Max-in-place assembly scheme

The mechanism of the previous section is not immediate to adapt to the max-in-place
scheme. Indeed, as explained in Section 5.1.2, this latter scheme requires a supplementary
stack for storing the largest contribution block among the siblings processed before the
parent allocation of each family. All in all, three stacks would be required: one for the
frontal matrices, one for the largest contribution blocks and one for the other contribution
blocks. The difficulty is that it is not straightforward to manage three stacks within a
single workarray. However, it is possible to merge the stack of the largest contribution
blocks with the one of the frontal matrices into a single common stack as we now explain.
We already know that both the largest contribution blocks and the frontal matrices
follow a Lifo data access pattern. It remains to check that (i) a largest contribution
block produced before a frontal matrix is released after that frontal matrix and that (ii)
a largest contribution block produced after a frontal matrix is released before. When a
subtree has been processed, all the frontal matrices and contribution blocks related to
other nodes than its root node have been released. Therefore, we only have to check that
(i) and (ii) stand for the nodes that compose a family (we do not need to investigate the
data related to the nodes inside the subtrees of the children). Let us consider a family.
A number of p children are processed before the parent allocation. One of them, say j0
(j0 ≤ p), provides the largest contribution block. This block is pushed on top of the left
stack of the workarray W . When child p has been processed, this contribution block is
still on the top of the left stack and can be extended in-place to constitute the frontal
matrix. Contribution blocks from children j, j ≤ p, j 6= j0 are assembled from the right
stack. Then, the children j, j > p (and their subtrees) are processed in the available space
and their contribution block are assembled into the frontal matrix on the fly. Next, the
frontal matrix is factored, produces a contribution block that is either pushed on the left
(if it is in turn the largest of its siblings) or on the right (otherwise). For instance, with
the tree of Figure 5.3, the workarray W is as follows before the allocation of f7:

cb2 Free block cb3 cb1

Then f7 overlaps with cb2 which is on top of the left stack as required. After node (4)
is processed, the left stack contains f7 and cb4; f6 is allocated, overlapping with cb4; f5
is allocated and factored; cb5 is stored in the right stack and assembled into f6, and so
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on. Overall, the left stack was used for the frontal matrices and cb2 and cb4 and the right
stack was used for the other contribution blocks.

We name AlgoIC_flex_maxinplace() the corresponding memory management algo-
rithm.

5.2 Out-of-core stacks

We now consider the out-of-core contexts of chapters 3 and 4. This assumes that the
contribution blocks, and thus the different stacks, may be processed out-of-core (only the
active frontal matrix has to be kept in core). When the free space vanishes, Property 2.1
suggests that the bottom of the stack(s) should be written to disk in priority. Therefore,
the question of how to reuse the corresponding workspace arises. We give a first natural
answer to this question in Section 5.2.1, but it has some drawbacks and does not apply
to all cases. Based on information that can be computed during the analysis phase, we
then propose in sections 5.2.2 and 5.2.3 an original approach that greatly simplifies the
memory management for all the considered assembly schemes.

5.2.1 Cyclic memory management

In the classical and last-in-place cases with a terminal allocation, only one stack is
required. In order for new contribution blocks (stored at the top of the stack) to be able
to reuse the space available at the bottom of the stack after write operations, a natural
approach consists in using a cyclic array. From a conceptual point of view, the cyclic
memory management is obtained by joining the end of the memory zone to its beginning,
as illustrated in Figure 5.4. In this approach, the decision to free a part of the bottom of
the stack is taken dynamically, when the memory is almost full. We illustrate this on the
sample tree of Figure 3.1 processed in the postorder (d-a-b-c-e) with a classical assembly
scheme. After processing nodes (d) and (a), one discovers that I/O has to be performed
on the first contribution block produced (cbd) only at the moment of allocating the frontal
matrix of (b), of size mb = 4 (see Figure 5.5(a)).

A significant drawback of this approach is that a specific management has to be
applied to the border, especially when a contribution block or a frontal matrix is split on
both sides of the memory area (as occurs for frontal matrix mb in Figure 5.5(a)).

With a max-in-place scheme or with any assembly scheme based on a flexible alloca-
tion, the out-of-core extension is not as natural because of the existence of two stacks.
One may decide to move the two stacks against each other as illustrated in Figure 5.6(a).
As the bottom of the stacks is written to disk first, the corresponding freed space may be
reused only if (at least) one stack is shifted in its whole. Such a memory copy may be a
large overhead for efficiency. On the contrary, one may decide to move the two stacks in
the same direction (see Figure 5.6(b)). In this case, I/O will be required as soon as the
top of a stack reaches the bottom of the other one. But the relative speed of movement of
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StackR

topR

Free

(a) Workarray

StackR

topR

Free

(b) Cyclic workarray

Figure 5.4: Folding a linear workarray (left) into a cyclic workarray (right).

cba = 3

cbd = 2
(mb = 4)

(a) Dynamic cyclic approach

cbd = 2

(b) Top-down approach

Figure 5.5: Memory state while processing the tree of Figure 3.1 in the postorder (d-a-b-
c-e). The size of the workarray is M0 = 8. With a dynamic approach (left), one discovers
that I/O will be performed on cbd only before dealing with node (b). With the approach
of Section 5.2.2 (right), we know a priori that cbd must be fully written to disk thanks
to the analysis phase.

each stack within the circular memory area is not controlled (it is dictated by the given
postorder tree traversal). As a consequence, one stack might reach the bottom of the
other one and imply I/O on recently produced contribution blocks while keeping older
contribution blocks in its own bottom. This would break the rule which states that the
oldest contribution blocks are written to disk first and would prevent one to minimize
the volume of I/O. To avoid this overhead on the volume of I/O, one should shift again
one whole stack, which may be in turn an overhead for efficiency. In any case, this might
imply a drop of efficiency.

In the next subsections, we propose another approach which avoids the use of a cyclic
stack for the classical and last-in-place cases, and allows to efficiently handle the other
cases where two stacks are required.
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StackL StackR

topL topR
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(a) Opposite directions
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FreeFree

(b) Same directions

Figure 5.6: Two possibilities for a cyclic out-of-core double stack mechanism.

5.2.2 Using information from the analysis: terminal allocation
scheme

In order to minimize the I/O volume in the previous approach, a contribution block
is only written to disk when the memory happens to be full: the decision of writing a
contribution block (or a part of it) is taken dynamically. However, a better approach
can be adopted. We explain it by listing some properties, each new property being the
consequence of the previous one. We focus for the moment one the terminal allocation
scheme.

Property 5.2. While estimating the volume of I/O, the analysis phase can forecast
whether a given contribution block will have to be written to disk or not.

This property results from forecasts done during the analysis phase. When considering
a parent node with n child subtrees, the volume of I/O V

I/O
family performed on the direct

children of that parent node is given by the first member (the recursive amount of I/O
on the subtrees is not counted) of Formulas (2.3) and (3.2) respectively for the classical
and in-place cases. For example,

V
I/O
family = max

(

0,max(max
j=1,n

(Aj +

j−1
∑

k=1

cbk),m+
n∑

k=1

cbk)−M0

)

(5.1)

in the classical assembly scheme with a terminal allocation. Given V
I/O
family and knowing

that we are going to write the contribution blocks produced first in priority, one can easily
determine if the contribution block cbj of the jth child must be written to disk:

– if
∑j

i=1 cbi ≤ V
I/O
family, the volume of I/O for that family is not reached even when

cbj is included; therefore, cbj must be entirely written to disk;

– if
∑j−1

i=1 cbi < V
I/O
family <

∑j
i=1 cbi, then cbj should be partially written to disk and

the volume written is V
I/O
family −

∑j−1
i=1 cbi;
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– otherwise, cbj fully remains in-core.

In the tree of Figure 3.1 processed in the order (d-a-b-c-e), the volume of I/O for the
family defined by the parent (e) and the children (d) and (c) is equal to 3. According
to what is written above, this implies that cbd = 2 must be entirely written to disk, and
that 1 unit of I/O must be performed on cbc.

Property 5.3. Because the analysis phase can forecast whether a contribution block (or
part of it) will be written to disk, one can also decide to write it (or part of it) as soon as
possible, that is, as soon as the contribution block is produced. This will induce the same
overall I/O volume.

Thanks to Property 5.3, we will assume in the following that:

Assumption 5.1. We decide to write all the contribution blocks which have to be written
as soon as possible.

This is illustrated in Figure 5.5(b): as soon as the contribution block of node (d)
(cbd) is produced, we know that it has to be written to disk and we may decide to write
it as soon as possible, i.e., before processing node (a).

Property 5.4. Each time a contribution block has to be written, it is alone in memory:
all the previous contribution blocks are already on disk.

In other words, it is no longer required to write the bottom of a stack, as it was
suggested in Property 2.1. A slightly stronger property is the following:

Property 5.5. If a subtree requires some I/O, then at the moment of processing the first
leaf of that subtree, the memory is empty.

This is again because we should write the oldest contribution blocks first and those
have been written as soon as possible. A corollary from the two previous properties is
the following:

Property 5.6. When we stack a frontal matrix on a non-empty stack, we will never write
it. Otherwise, we would have written the rest of the stack first. In particular, if a given
subtree can be processed in-core with a memory S ≤ M0, then at the moment of starting
to process this subtree, the contiguous free block of our workarray W is necessarily at least
as large as S.

It follows that by relying on Assumption 5.1 a cyclic memory management is not
needed anymore: a simple stack is enough for the classical and last-in-place assembly
schemes based on a terminal parent allocation, and a simple double stack is enough for
all the other cases (max-in-place assembly scheme or any assembly scheme with a terminal
allocation).
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Application to the max-in-place terminal scheme

We now illustrate this approach on the out-of-core max-in-place variant of Section 3.3
with a terminal allocation. We recall that the heuristic we have proposed in Section 3.3
switches to a last-in-place approach for subtrees involving I/O. Therefore, a double stack
will only be needed when processing in-core subtrees.

We assume that the analysis phase has identified in-core subtrees (processed with
MinMEM + max-in-place) and out-of-core subtrees (processed with MinIO + last-in-place).
We also assume that the contribution blocks that must be written to disk have been
identified. The numerical factorization is then illustrated by Algorithm 5.1. It is a top-
down recursive formulation, more natural in our context, which starts with the application
of AlgoOOC_maxinplace_rec() on the root of the tree. A workarray W of size M0 is used.
We rely on the in-core memory management algorithm described in Section 5.1.2 for the
max-in-place assembly scheme that we named AlgoIC_maxinplace().

% W: workarray of size M0

% n: number of child subtrees of tree T
for j = 1 to n do

if the subtree Tj rooted at child j can be processed in-core in W then
% We know that the free contiguous block in W is large enough

thanks to Property 5.6

AlgoIC_maxinplace(Tj) (Apply the max-in-place approach - see
Section 5.1.2);

else
% Some I/O are necessary on this subtree, therefore W is empty

(Property 5.5)

% We do a recursive call to AlgoOOC_maxinplace_rec(), using all

the available workspace

AlgoOOC_maxinplace_rec(subtree Tj) ;

Write cbj to disk or stack it (decision based on Property 5.2 and
Assumption 5.1);

Allocate frontal matrix of the parent node; it can overlap with cbn;
for j = n downto 1 do

Assemble cbj in the frontal matrix of the root of T (reading from disk the part
of cbj previously written, if any, possibly by panels);

Factorize the frontal matrix; this step produces a contribution block (except for
the root node);

Algorithm 5.1: AlgoOOC_maxinplace_rec(tree T ).



5.2. OUT-OF-CORE STACKS 85

5.2.3 Using information from the analysis: flexible allocation scheme

We now explain how to generalize the mechanism to a flexible allocation scheme.
Similarly to what was done with the terminal allocation scheme, one can determine a
priori if the contribution block cbj of a child j processed before the parent allocation
(j < p) must be written to disk. This is an adaptation of Property 5.2. In the flexible
case, assuming this time (for example) that we have a last-in-place scheme before the

parent allocation, V
I/O
family can be computed as follows:

V
I/O
family = max



0,max( max
j=1, p

(min(Sj,M0) +

j−1
∑

k=1

cbk),m+

p −1
∑

k=1

cbk)−M0



 (5.2)

As before, knowing that oldest contribution blocks must be written to disk in priority, cbj
will have to be written to disk, possibly partially, if

∑j
i=1 cbi < V

I/O
family. In that case, we

decide to write cbj to disk as soon as possible. Therefore, Property 5.6 (and the previous
ones) still hold. Our memory management algorithm will also rely on two new properties
that we state below.

Property 5.7. We consider a family involving some I/O, using either a a classical or
last-in-place assembly scheme. Before processing the first subtree of this family, we know
that the memory is empty (Property 5.5). When the parent of the family is allocated, the
contribution blocks of the children already processed are either on disk or available in the
right stack ( classical or last-in-place assembly schemes). In particular cbp is available on
the top of that stack.

Property 5.8. Considering a family involving I/O, once the the contribution blocks from
the children j ≤ p have been assembled in the frontal matrix of the parent, that frontal
matrix is alone in memory.

Property 5.8 is a direct consequence of Property 5.7.

We now consider a child j processed after the parent allocation (j > p). According to
Property 4.2, we know that such a subtree can be processed in-core alone (Sflexible

j < M0).
However, if it does not fit together with the frontal matrix of its parent (Sj +m > M0),
a part of the frontal matrix equal to Sj +m −M0 has to be written to disk in order to
make room for the subtree rooted at j. This subtree is then processed in-core. If we
are not considering an in-place-realloc scheme (see Section 4.6), then we might have to
write part of the contribution block if it does not fit together with the frontal matrix
of the parent (i.e. if m + cbj > M0). Finally the part of the frontal matrix that had
been written to disk (if any) is read back and the contribution block is assembled into it
(possibly requiring to read the part that had been written to disk).

A top-down recursive formulation of this flexible out-of-core approach is given in
Algorithm 5.2. This algorithm assumes that the analysis phase has identified in-core
subtrees and that those subtrees are processed with the combination (MinMEM + flexible +
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max-in-place), named AlgoIC_flex_maxinplace() in Section 5.1.3.2). The analysis phase
has also identified out-of-core subtrees and we decide to use the combination (MinIO +
flexible + last-in-place), as this corresponds to the heuristic from Section 3.3. To simplify
the presentation of the algorithm, we consider that we are in the in-place-realloc case;
this implies that no I/O is required on the contribution blocks processed after the parent
allocation. We first apply AlgoOOC_flex_maxinplace_rec() on the root of the tree, and
a workarray W of size M0 is used.

Note that only one stack (on the right ofW ) is manipulated in Algorithm 5.2, although
more stacks are used temporarily when applying AlgoOOC_flex_maxinplace_rec(). This
is because

1. the stack of frontal matrices is empty (thanks to Property 4.2);

2. the heuristic from Section 3.3 uses the max-in-place scheme only on in-core families,
not out-of-core ones.

However, we still have freedom to use another stack on the left ofW if needed, for example
to isolate the largest contribution block. Although that child may need to be written to
disk, depending on the other peaks, it could happen that the part of it that is still in
memory at the moment of allocating the frontal matrix of the parent is larger than the
contribution block of the last child. In such a case it would make sense to overlap the
frontal matrix of the parent with that contribution rather than the one of the last child.
This is prospective work since the previous chapters do not provide an optimal order
of the children in that case. However, we just insist here on the fact that our memory
management algorithms can handle such cases.

5.3 Conclusion

In this chapter, we have proposed memory management algorithms that fit the dif-
ferent multifrontal methods presented in the previous chapters. We have exhibited that
all these schemes could be managed with simple stack mechanisms. Table 5.1 sums up
how to organize the data in the in-core case depending on the variant of the multifrontal
method considered.

We have then proposed models to extend these mechanisms in an out-of-core context.
The originality of these out-of-core memory management algorithms is that they allow to
avoid complicated garbage collections thanks to information computed during the analysis
phase and can lead to a reasonable implementation. In particular, we have shown that a
cyclic memory management is not necessary.

In static multifrontal solvers that do respect the forecast metrics, the algorithms
we have described can be implemented as presented. In dynamic codes (allowing for
dynamic pivoting, for example) that do not respect exactly the forecast metrics, a specific
treatment (emergency I/O, . . . ) will be required when the storage effectively used by a
subtree is larger than was forecast. Another possibility consists in relaxing the forecast
metrics, although this implies extra, possibly unnecessary, I/O.
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% W: workarray of size M0

% n: number of child subtrees of tree T
% p: position of the parent allocation

% This algorithm is only called on subtrees that do not fit in memory

for j = 1 to p do
if the subtree Tj rooted at child j can be processed in-core in W then

% We know that the free contiguous block in W is large enough

thanks to Property 5.6

AlgoIC_flex_maxinplace(Tj) ;

else
% Some I/O are necessary on this subtree, therefore W is empty

(Property 5.5)

% We do a recursive call to AlgoOOC_flex_maxinplace_rec(),

using all the available workspace

AlgoOOC_flex_maxinplace_rec(subtree Tj) ;

Write cbj to disk or stack it (decision based on Property 5.2 and
Assumption 5.1, but using Formula (5.2)) at the right of W ;

% Thanks to Property 5.7:

Allocate the frontal matrix of the root of T , of size m (say), at the left of the
workspace (in W (1 : m)); it can overlap with cbp because we decided to use a
last-in-place scheme on out-of-core families;
for j = p downto 1 do

Assemble cbj in the frontal matrix of the root of T (reading from disk the part
of cbj previously written, if any, possibly by panels);

% The frontal matrix of the parent is alone in memory (Property 5.8)

for j = p+ 1 to n do
% We know that Sj ≤M0 thanks to Property 4.2

if the subtree Tj rooted at child j can be processed in-core with its parent in W
then

Write an amount m+ Sj −M0 units of the parent frontal matrix;

% A free contiguous block of size Sj is now available in memory

AlgoIC_flex_maxinplace(Tj) ;
Assemble cbj into the frontal matrix of the root of T (reading from disk the
part of the parent frontal matrix previously written, if any);

Factorize the frontal matrix; this step produces a contribution block (except for
the root node) that we stack on the right of W ;

Algorithm 5.2: AlgoOOC_flex_maxinplace_rec(tree T ). An in-place-realloc
scheme is used after the parent allocation, and a max-in-place (resp. last-in-place)
is used before the parent allocation for the in-core (resp. out-of-core) parts.
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Data
Allocation scheme Assembly scheme Left stack Right stack

terminal
classical ∅ all CB’s
last-in-place ∅ all CB’s
max-in-place largest CB’s other CB’s

flexible
classical fronts all CB’s
last-in-place fronts all CB’s
max-in-place fronts + largest CB’s other CB’s

Table 5.1: Summary of the in-core management of data (other than the current frontal
matrix). Front is used for frontal matrix and CB is used for contribution block.



Chapter 6

A study of out-of-core supernodal
sparse direct methods 1

In this chapter we study out-of-core supernodal unsymmetric factorizations with par-
tial pivoting. Their evaluation is done with respect to several metrics, including the
volume of I/O, the spatial locality of disk accesses and the overhead due to indirections.
Although many of the discussed algorithms have already been proposed and/or imple-
mented by different authors, we aim at showing the impact of the algorithmic decisions
on the different metrics with a formal comparative evaluation.

The purpose of this study is to exhibit a fast algorithm which computes an efficient
schedule of the operations before starting the out-of-core numerical factorization. In
Section 6.1, we present our assumptions and discuss our degrees of freedom. We then
present schedules which minimize the amount of required core memory in Section 6.2.
These methods are reused as building blocks for out-of-core factorizations in Section 6.3
where we aim at minimizing the I/O volume. Out-of-core methods require to group su-
pernodes into subsets such that the supernodes of a same subset are processed together
in core memory [41]. Such a subset will be named SuperPanel in this dissertation. This
partitioning of the supernodes of the matrix (or equivalently of the nodes of the elimina-
tion tree) into SuperPanels significantly impacts the I/O volume. We present partitioning
algorithms that aim at limiting that I/O volume in Section 6.4.

This study has led to the development of a prototype for an out-of-core extension of
SuperLU that we present in Section 6.5.

1. The work presented in this chapter has been done during a stay at the Lawrence Bekeley National
Laboratory under the direction of Xiaoye S. Li in the group of Esmond G. Ng.
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6.1 Assumptions on models for out-of-core supernodal

algorithms

We focus on supernodal algorithms at the exclusion of multifrontal methods as ex-
plained in the introduction (Section 1.1.4). We adopt the following definition:

Assumption 6.1. Supernodal algorithms can only store and work on supernodes.

We recall the freedom offered by supernodal methods in terms of scheduling of elemen-
tary operations. The elementary operations performed by supernodal methods are Facto
and Update operations (see Section 1.1.3). Assemble-like operations are excluded be-
cause they use intermediate data-structures. We consider that the columns of the original
matrix have been reordered (thanks to one of the algorithms presented in Section 1.1.1)
and that we have to respect the induced dependencies. The dependencies between Facto

operations are provided through the elimination tree: any topological traversal [56] of the
elimination tree respects the dependencies between Facto operations. The choice of
a topological traversal thus represents a first degree of freedom. The second degree of
freedom is provided by the choice of the schedule of the Update operations. Left-looking
algorithms delay the Update operations as late as possible whereas right-looking algo-
rithms perform the Update operations as soon as possible. However, Update(Ai,Aj)
only needs to be performed after Facto(Ai) and before Facto(Aj). This flexibility of-
fers a lot of possible schedules among which left-looking and right-looking are only two
particular cases.

In order to compare the behaviour of a supernodal method with another, we moreover
consider that all the factors are written to disk during the factorization step (and thus
read back during the solution step) as stated in Assumption 6.2.

Assumption 6.2. All the factors have to be on disk after the factorization step. There-
fore, the I/O volume related to the first write of the supernodes is constant and we do not
count it.

Writing the factors to disk also makes sense from an engineering point of view. Indeed,
it allows a strict separation of the out-of-core factorization and solution steps, which would
make it possible for the end-user to perform the solution step long after the factorization
in a different UNIX process.

In addition to the I/O volume related to the first write of supernodes, some supple-
mentary I/O’s have to be performed when the updating supernode could not be kept
in-core until the updated supernode was loaded in memory. Therefore, the schedule of
the Update operations impacts the I/O volume. However, remember that we focus in
this chapter on unsymmetric factorizations with partial pivoting. In this context, neither
the structure of the sparse factors nor the exact dependencies can be known without per-
forming the actual numerical factorization. This is explained in sections 1.1.2 and 1.4.1.
In particular, it is not possible to forecast the supernodes that a given supernode will
update. Because the purpose is to decide of the schedule of the operations before starting
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the numerical factorization, we need to rely on an approximation. An optimistic approx-
imation would consist in betting that few rows will be swapped so that we may rely on
the initial ordering. A pessimistic approximation would consist in considering the depen-
dencies of ATA which takes into account all potential numerical pivoting [40]. However,
in both cases, the computation and the storage of the whole graph of dependencies might
be costly whereas we want a fast algorithm. This is why we rely on a more compact
structure, faster to traverse: the elimination tree. On the other hand, the elimination
tree does not provide information on the explicit dependencies. We only know that two
nodes that are not on the same root-to-leaf path will never update each other. Thus we
make the following coarse approximation:

Assumption 6.3. Each supernode updates all its ancestor supernodes.

Of course a tighter approximation could be considered but, besides relying on a com-
pact structure, this approach presents two other interests. First, it models the worst case
in terms of computation, storage requirements and I/O volume and the study of the worst
case seems interesting to us for a first approach. Second, this assumption can be relaxed
during the numerical step so that only the necessary updates are actually performed.
Indeed, recall that the purpose of our models is to schedule the operations before starting
the actual factorization. Although we may dynamically adapt the initial forecast as done
in [58] for the LDLT case, it it is still helpful to compute a good initial schedule.

6.2 Minimum core problem - W1/R0 scheme

Objective 6.1. Adapting the terminology of [27] 2, our minimum core problem consists in
determining the supernodal method that minimizes the amount of core memory required
to perform the factorization of a given sparse matrix. We consider a Write Once /
Read Zero scheme (W1/R0) where factors are on disk at the end of the factorization
(Assumption 6.2). In particular, any factor written (and freed from memory) should not
be accessed again.

In order to reach Objective 6.1, we need to find a schedule of the Facto and Update

operations which minimizes the amount of core memory with a W1/R0 scheme. Note
that [27] answers a closely related question: a complexity analysis and simulations on
different classes of sparse matrices show that the right-looking method is usually the most
efficient method for the Write Once / Read Once scheme (W1/R1) scheme; but the author
does not focus on the W1/R0 scheme as we do here. We formally show in the following that,
under assumptions 6.1, 6.2 and 6.3, a right-looking method does minimize the minimum
core problem whereas the left-looking method is not suited.

Proposition 6.1. If the elimination tree is a chain, all the supernodes have to be together
in memory at a given instant.

2. In the context of Dobrian’s approach, the minimum core problem is related to in-core processes.
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Proof. Otherwise there would exist two distinct supernodes i and j such that the allo-
cation of j is performed after having written and released i from memory. Because a
W1/R0 scheme is used, i is not read again; thus i and j are never in core together. On the
other hand Assumption 6.3 requires either that i updates j (if j is ancestor of i) or that
j updates i (if i is ancestor of j). Both configurations require to have i and j together in
memory, which is a contradiction. �

Corollary 6.1. The minimum core required for a general elimination tree is at least equal
to the maximum storage of a root-to-leaf path.

Proof. Proposition 6.1 applies to any root-to-leaf path (a chain from the root node to a
leaf node) and in particular to the one that requires the maximum storage. �

Proposition 6.2. The minimum core for a right-looking method is equal to the maximum
storage of all root-to-leaf paths.

Proof. We exhibit a right-looking method which satisfies this criterion. The elimination
tree with a postorder traversal. When a supernode is processed, its ancestors are loaded
in memory if they are not loaded yet. As soon as all its ancestors have been updated, the
current supernode is written to disk and freed from memory. Figure 6.1 illustrates the
corresponding memory behaviour on a sample elimination tree. Nodes 1, 3, 7 and 15 (we
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(a) Processing node 1 (b) Processing node 2 (c) Processing node 9 (d) Processing node 14

Node being processed
Nodes in memory
Node on disk
Node not yet loaded

Figure 6.1: Different stages of a W1/R0 right-looking factorization. At any time during
the postorder traversal, no more than one root-to-leaf path has to be held in core.

use a postorder numbering) are loaded in memory. Node 1 is factored and updates its
ancestors {3, 7, 15} as shown in Figure 6.1(a). It is then written to disk and freed from
core memory. Node 2 is loaded in memory (see Figure 6.1(b)) and updates its ancestors.
It is written to disk and node 3 is processed. And so on. For instance, when node 9 is
loaded in memory (see Figure 6.1(c)), nodes 1 to 8 are on disk; nodes 10, 14, and 15 are
in memory; nodes 11, 12 and 13 have not been loaded yet. Note that a free operation
could be delayed until a new node has to be loaded. For instance, node 2 could have been
freed after node 3 has been processed. �
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Corollary 6.2. The right-looking method (is the supernodal method which) minimizes
the minimum core problem.

Proof. Immediate from Corollary 6.1 and Proposition 6.2. �

Proposition 6.3. The left-looking method requires an amount of memory equal to the
storage of all supernodes in the tree.

Proof. The root is an ancestor of all the other nodes of the elimination tree. According to
Assumption 6.3, all those nodes have thus to update it. With a left-looking method, those
updates have to be performed when the root node is processed, i.e., last. Therefore, no
node could have been freed from memory until the process of the root. At that moment,
all the nodes are together in memory. Figure 6.2 illustrates the corresponding memory

Node being processed
Nodes in memory

Figure 6.2: Memory state when the root node is being processed in a W1/R0 left-looking
factorization. All the nodes have been loaded but none of them could be freed from
memory.

state on a sample elimination tree when processing the root node of the tree. �

Note that, if we do not rely on Assumption 6.3 anymore, the right-looking method is
still natural to apply with a W1/R0 scheme: the same memory management mechanism
as the one proposed in the proof of Proposition 6.2 and illustrated in Figure 6.1 can be
used. The W1/R0 schemes studied in this section are reused in the following as building
blocks for hybrid out-of-core schemes.

6.3 Combining left-looking and right-looking methods to

limit the I/O volume

As already discussed, in an out-of-core context, limiting the volume of I/O is crucial.
In [27], the author studies the minimization of the I/O volume for different classes of
matrices. Simulations show that when the core memory available becomes small, the
right-looking method usually induces far more I/O than both left-looking and multifrontal
methods. This means that there is a gap between the case where a large amount of
memory is available - for which the right-looking method has a very good behaviour and
is even optimum if we assume that each node updates its ancestors - and the case where
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the available memory becomes small - for which a pure right-looking method seems to be
inadequate. In other words, locally, the right-looking method is efficient but not globally
(if the available memory is small compared to the storage required).

To handle this gap, Dobrian suggested in the conclusion of [27] to implement different
out-of-core methods (left-looking, right-looking and multifrontal). An analysis step would
then automatically decide which algorithm to apply, depending on the characteristics of
the matrix and on the available memory. However, such an automatic algorithm might
not be as adaptative as it appears. Indeed the algorithm finally applied is either a pure
left-looking or a pure right-looking approach but does not benefit from the advantages
of both methods. This remark motivates the construction of a hybrid algorithm locally
based on the right-lookingmethod but using a left-looking approach at a higher level. Such
a hybrid algorithm has been separately introduced and implemented for unsymmetric
factorizations in [41]. The main drawback of that approach, as stated by its authors and
recalled in Section 1.2.4, is that updates are not actually performed between supernodes
but between columns. In [63], the authors implemented that algorithm for the Cholesky
factorization, enhanced thanks to the use of supernodes.

Out-of-core hybrid algorithms such as [41, 63] rely on a partition of the elimination
tree into disjoint subgraphs so that each subgraph is a connected subgraph which could
be processed with a W1/R0 approach if it were alone. We name SuperPanel 3 such a sub-
graph. In [63], the authors consider that the updates between SuperPanels are performed
with a left-looking method. They study the combination of those left-looking updates
between SuperPanels with two inner methods: either a left-looking or a right-looking ap-
proach is applied within the SuperPanels. The authors have compared the impact on the
I/O volume and on the efficiency of their methods. Besides the practical impact, their
work constitutes an important contribution to model the I/O volume in the context of
supernodal methods. The purpose of this section is to propose a model to study the I/O
volume when updates between SuperPanels are performed with a right-looking approach
and to compare the effects on I/O volume to the left-looking approach. We also consider
that the inner factorization of a SuperPanel can be performed either with a left-looking
or with a right-looking method. All in all, still relying on assumptions 6.1, 6.2 and 6.3,
we aim at addressing Objective 6.2:

Objective 6.2. How can we combine left-looking and right-looking methods to minimize
the volume of I/O?

We will consider four variants, following a terminology“outer method / inner method”.
The inner method (i.e. the method applied within a SuperPanel) will always refer to one
of the W1/R0 scheme presented in Section 6.2. The method that we call“inner right-looking
method” refers to the one described in Figure 6.1 and allows for large SuperPanels that
do not have to be fully kept in core (only a root-to-leaf path of the SuperPanel has
to remain in core). The method that we call “inner left-looking method” refers to the
one described in Figure 6.2 and requires to keep the entire SuperPanel in memory. In

3. The term subtree or cold subtree was used in [63].
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the following subsections we first consider a right-looking approach between SuperPanels
(right-looking/right-looking and right-looking/left-lookingmethods), then a left-looking one
(left-looking/right-looking and left-looking/left-looking methods) and finally we compare
them. Note that, besides the volume of I/O, we will also take into consideration the
spatial locality of the I/O’s.

6.3.1 Right-looking approach between SuperPanels

With a right-looking approach between SuperPanels, the processing of a SuperPanel
consists in:

(i) loading this SuperPanel in memory;
(ii) factorizing it;
(iii) updating the ancestor nodes which are not part of this SuperPanel.
We name outer ancestors the ancestor nodes involved in step (iii).

Definition 6.1. An outer ancestor of a SuperPanel is a node on the path from the
SuperPanel up to the root of the elimination tree which is not part of the SuperPanel.
This definition more generally applies to any connected subgraph.

An outer ancestor is updated as follows. First it is temporarily loaded in memory.
Note that we neglect the corresponding I/O the first time it is updated because we
consider that it is small compared to the rest in that case (it only contains parts of the
initial matrix). Then the numerical updates are applied to it, and it is written back to
disk. To decrease the I/O volume, each outer ancestor receives the contributions of all
the updating nodes currently in memory in the SuperPanel and already factored. Of
course, in general, all the outer ancestors cannot fit in core together with the current
SuperPanel.

Right-looking approach inside SuperPanels (RL-RL)

Let us consider the case where a SuperPanel is processed with a (W1/R0) right-looking
scheme. Following the terminology “outer method/ inner method”, the overall algorithm
corresponds to a right-looking/right-looking (RL-RL) approach. Because a SuperPanel is
processed with a W1/R0 right-looking scheme, not all the nodes of the SuperPanel are
simultaneously in core (as discussed in Section 6.2). Thus each outer ancestor has to
be updated before an updating factored node can be freed from memory. Noticing that
two leaves of the same SuperPanel are never together in core in the case of a W1/R0

right-looking inner factorization, we conclude that an updated node has to be read and
written back to disk as many times as there are leaves in the SuperPanel. This is stated
as Property 6.1.

Property 6.1. During the treatment of a SuperPanel with a RL-RL scheme, each outer
ancestor has to be read and written back to disk as many times as there are leaves in the
SuperPanel.
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We illustrate this property on a sample tree: we now consider the elimination tree
previously given in Figure 6.1 as a subtree of a larger elimination tree, as shown in
Figure 6.3(a). We suppose that 4 nodes can fit in a SuperPanel, which corresponds to
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Figure 6.3: Partitioning of a subtree of an elimination tree into connected subgraphs that
update simultaneously some outer ancestors , when 4 nodes can fit in a SuperPanel. With
a RL-RL approach, as many such subgraphs as leaves are required (even though the whole
subtree fits in a single SuperPanel). In the RL-LL case, the subgraphs exactly match the
SuperPanels (but the SuperPanels are smaller).

the largest root-to-leaf path of the considered subtree. Thus, the subtree constitutes
a single SuperPanel (as we use a W1/R0 right-looking approach within the SuperPanel).
After node 1 (in the postorder) is factored, it has to be written to disk and freed from
memory to make room for loading node 2. At this moment, node 1 is the only node
fully factored. It has updated its ancestors within the SuperPanel (nodes 3, 7, and 15,
which are kept in memory) but not the outer ancestors yet. However, it has to update
them too before being freed from memory because a right-looking updating scheme is
also used at the outer level. Therefore these outer ancestors are loaded in memory
(possibly blocks by blocks), updated by node 1 and written back to disks. Afterwards,
nodes 2 and 3 are factored. As they only have to be freed from memory when the next
leaf is loaded (node 4), they can update the outer ancestors together. Then node 4
alone has to update the outer ancestors since it has to make room for node 5 as soon
as processed. Nodes 5, 6 and 7 can then be factored and update together the outer
ancestors . And so on. As illustrated in Figure 6.3(b) here is the partition of the subtree
into subgraphs: {{1}, {2, 3}, {4}, {5, 6, 7}, {8}, {9, 10}, {11}, {12, 13, 14, 15}}. Finally the
subtree is partitioned into 8 connected subgraphs (one per leaf node), each of them
simultaneously updating the outer ancestors . Suppose that there are 100 outer ancestors
to update, it implies a volume of I/O on the outer ancestors equal to 800 (reads and
writes of a node) during the process of the considered subtree.

Left-looking approach inside the SuperPanel (RL-LL)

We now consider the case where a SuperPanel is processed with a W1/R0 left-looking
approach (the one of Section 6.2). The global scheme corresponds to a right-looking/left-
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looking (RL-LL) algorithm. As stated in Section 6.2, with the inner left-looking method,
all the nodes of the SuperPanel are factored and are altogether in core at the moment
of processing the root node (see Figure 6.2). Thus each outer ancestor is updated only
once during the treatment of the SuperPanel. We state this result in Property 6.2.

Property 6.2. During the treatment of a given SuperPanel with a RL-LL scheme, each
outer ancestor is read and written back to disk once.

On the other hand, the SuperPanels obtained with a W1/R0 left-looking inner method
are smaller (all the nodes of the SuperPanel have to fit in core together). That might lead
to perform more I/O. For instance, if the available memory allows the storage of 4 nodes,
the sample tree given in Figure 6.1 can be processed in core with a right-looking approach
but requires an out-of-core process if a left-looking approach is applied. In the latter case,
it will have to be partitioned into several SuperPanels - each one holding a maximum
of 4 nodes. We now consider this tree as a subtree of a larger elimination tree as in
Figure 6.3(a) and we measure the volume of I/O on the outer ancestors . One may notice
that a possible (naive) partition is the one resulting from the right-looking/right-looking
partitioning into connected subgraphs that simultaneously update the outer ancestors .
On our sample tree, this means that the partition of Figure 6.3(b) (which determines the
volume of I/O on the outer ancestors of a RL-RL method) can be used as a partition into
SuperPanels for the RL-LL method. Note that, in that case, both the RL-LL and RL-RL

schemes lead to the same volume of I/O. Therefore, we have:

Property 6.3. Processing a subtree with a RL-LL scheme leads to a volume of I/O on
the outer ancestors of this subtree equal to or smaller than the one induced with a RL-RL

scheme.

Another possible partitioning of this subtree into SuperPanels (with a left-looking inner
method) is given in Figure 6.3(c): {{1, 2, 3}, {4, 5, 6}, {8, 9, 10}, {11, 12, 13}, {7, 14, 15}}.
Here the subtree is partitioned into 5 SuperPanels, each of them simultaneously updating
the outer ancestors . Suppose again that there are 100 outer ancestors to update, it
implies a volume of I/O on the outer ancestors equal to 500 (reads and writes of a
node) while processing the considered subtree. To be comparable to the right-looking
inner scheme, the volume of I/O furthermore has to include the I/O due to the fact
that the subtree is constituted of several SuperPanels. This overhead represents an extra
volume equal to 8 units of I/O performed on SuperPanel 5 (which is composed of nodes
{7, 14, 15}) while processing the leaf SuperPanels. For instance, when processing the leaf
SuperPanel {8, 9, 10}, nodes 14 and 15 have to be updated because they are not in core
at this moment. All in all, it leads to a volume of I/O equal to 508 which is far smaller
than the 800 units for a right-looking/right-looking factorization. As a conclusion, the
right-looking/left-looking approach locally generates a large amount of I/O but induces a
smaller asymptotic volume of I/O than the right-looking/right-looking approach.
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Spatial locality of disk accesses - outer right-looking approaches

Finally, let us focus on the spatial locality of disk accesses. The pattern of these
accesses is independent of the inner factorization since they are performed above the
current SuperPanel. The following statements are thus valid for both RL-RL and RL-

LL algorithms. Let us consider Figure 6.4. When processing the SuperPanels within

N1 N2

N3

T1 T2

Figure 6.4: Spatial locality of disk accesses with a RL outer scheme.

Subtree T1, nodes N1 and N3 are updated; they thus have to be read from disk and
written back, possibly several times. When processing the SuperPanels within T2, this
time, nodes N2 and N3 are updated and have to be read and written back. Which node
among N1 and N2 should be the predecessor of N3 on disk ? If it is N1, then there is no
locality for the disk accesses between N2 and N3, which is likely to slow down the process
of T2. On the other hand, if it is N2, there is no locality between N1 and N3, which is
likely to slow down the process of T1. Some dynamic schemes of allocation of data on
disks might improve this I/O behaviour, but there is no obvious - to us - way to get a
good spatial locality of disk accesses with an outer right-looking scheme.

In a nutshell, first, with a right-looking approach between SuperPanels, an inner W1/R0
right-looking factorization of the SuperPanels is likely to induce a large amount of I/O.
This is especially the case when the number of nodes that can fit in a SuperPanels is
small compared to the number of nodes of the elimination tree, i.e., when the available
memory is small compared to the memory required to store the sparse factors. An inner
left-looking approach allows for a better scalability in terms of volume of I/O. However,
the subsequent SuperPanels are smaller and this also represents a non negligible amount
of I/O either. Second, in both cases, there is no possible organization of the data on disk
that allow contiguous disk accesses.

6.3.2 Left-looking approach between SuperPanels

With a left-looking approach between SuperPanels, the treatment of a SuperPanel
consists in:
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(i) loading the SuperPanel in memory;
(ii) updating it with the nodes of the subtrees below this SuperPanel;
(iii) factorizing the SuperPanel, writing it to disk and releasing it from memory.

We name outer subtrees the subtrees involved in step (ii).

Definition 6.2. An outer subtree of a SuperPanel is a subtree whose root is a child of
a leaf node of the SuperPanel. This definition more generally applies to any connected
subgraph.

Notice that we will not consider the I/O involved in step (i) because the first time a
SuperPanel is accessed, it only contains parts of the initial matrix, which is either already
in-core, or is small compared to the factors.

Right-looking approach inside SuperPanels (LL-RL)

Let us consider the case where a SuperPanel is itself processed with a (W1/R0) right-
looking scheme. The overall algorithm thus corresponds to a left-looking/right-looking
(LL-RL) approach. Because a SuperPanel is processed with a W1/R0 right-looking scheme,
not all the nodes of the SuperPanel are simultaneously in core (see again Figure 6.1).
Thus (i), (ii) and (iii) are interleaved. The SuperPanel is processed with an inner postorder
traversal. Each time a leaf of the SuperPanel is processed, it is loaded in memory along
with the nodes on the path up to the root of the SuperPanel (partial step (i)). When
the node processed is the parent of an outer subtree, nodes within the outer subtree
update the SuperPanel (partial step (ii)). This update step consists in loading the nodes
of the subtree (possibly block by block) into memory, updating ancestor nodes within
the SuperPanel and releasing the updating nodes from memory (they do not have to be
written back to disk since they have not been modified). The currently processed node is
then factored, updates its ancestors within the SuperPanel, is written to disk and released
from memory (partial step (iii)). We illustrate this process on a sample tree: we consider
the elimination tree of Figure 6.1 as a subgraph of a larger elimination tree on top of
several subtrees, as in Figure 6.5. The subtrees have already been factored (left-looking
outer scheme) and are now on disk (a W1/R0 inner approach was applied in the subtrees).
A W1/R0 right-looking factorization is performed within the SuperPanel. The SuperPanel
is processed in postorder. Leaf node 1 is loaded in memory along with its root-to-leaf
path (nodes 3, 7 and 15). The nodes of subtree T1 are loaded in memory, block by block.
Each time such a block is in core, it updates nodes {1, 3, 7, 15}. When all the blocks of the
subtree have performed their update on the current root-to-leaf path of the SuperPanel,
node 1 is factored and updates in turn its ancestors {3, 7, 15}. Figure 6.5(a) illustrates
this step. It is then written to disk and freed from core memory. Node 2 is then loaded in
memory (see Figure 6.5(b)) and the same process is applied with Subtree T2. And so on.
For instance, when node 9 is loaded in memory (see Figure 6.5(c)) (nodes 1 to 8 are on
disk), subtrees T3 and T4 perform their out-of-core updates onto nodes 9, 10, 14, and 15.
All in all, the subtrees have been read exactly once. Property 6.4 generalizes this result.
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Figure 6.5: Different stages of the process of a SuperPanel with an out-of-core left-
looking/right-looking factorization.

Property 6.4. During the treatment of a given SuperPanel with an outer left-looking
scheme, the outer subtrees have to be read exactly once.

Left-looking approach inside SuperPanels (LL-LL)

We consider now the case where a SuperPanel is itself processed with a (W1/R0)
left-looking scheme. The overall algorithm thus corresponds to a left-looking/left-looking
(LL-LL) approach. In this case, steps (i), (ii) and (iii) do not require to be interleaved
anymore. Indeed, after step (i), all the nodes of the SuperPanel are in core and can
thus be updated by a node in any subtree of the SuperPanel (ii). When all the nodes
of the SuperPanel have been updated by the nodes in the outer subtrees , the inner fac-
torization is performed and finally the SuperPanel is written to disk (iii). We compare
this approach to the left-looking/right-looking one on the sample tree of Figure 6.5. Be-
cause all the nodes of a SuperPanel have to simultaneously fit in core (Proposition 6.3),
if the available memory only allows for the storage of 4 nodes, the subgraph considered
in Figure 6.6(a) now has to be partitioned into five SuperPanels (whereas it could be
held in a single SuperPanel with a left-looking/right-looking approach). We number them
according to their postorder traversal. These five SuperPanels are processed with a left-
looking approach between themselves. SuperPanel 1 is updated by subtrees T1 and T2

(see Figure 6.6(b)). SuperPanel 2 is then processed as in the W1/R0 case and thus does not
induce I/O (it does not have out-of-core subtrees). SuperPanel 3 is updated by subtrees
T3 and T4 (see Figure 6.6(c)). SuperPanel 4 does not induce I/O. Finally SuperPanel 5 is
processed, receiving out-of-core contributions of all the outer subtrees (that thus have to
be read a second time) as well as the ones of SuperPanels 1 to 4 (see Figure 6.6(d)). All
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Figure 6.6: Different stages of the process of a subgraph (corresponding to five different
LL-LL SuperPanels) with an out-of-core left-looking/left-looking factorization.

in all, to process the same subgraph, the left-looking/left-looking method induces twice
as much I/O as the left-looking/right-looking one (bad scalability) plus some I/O inside
the subgraph (bad local behaviour) - from SuperPanels 1, 2, 3 and 4 to SuperPanel 5.
Property 6.5 states this result.

Property 6.5. The out-of-core left-looking/left-looking factorization induces at least as
much I/O as the out-of-core left-looking/right-looking factorization.

Spatial locality of disk accesses - outer left-looking approaches

We now show that the disk accesses related to the treatment of each SuperPanel
can be performed sequentially in the context of an outer left-looking approach. Indeed,
SuperPanels are processed one after the other according to a postorder traversal between
SuperPanels. After a SuperPanel has been processed, it is written to disk. Therefore,
SuperPanels are written in the same order as they are processed. Let us consider a given
SuperPanel. With a postorder traversal between SuperPanels, its outer subtrees are
constituted of the most recently processed SuperPanels; their corresponding supernodes
are thus the most recently written data. Therefore, they represent contiguous data on
disk and can thus be accessed sequentially. Under Assumption 6.3, those data are exactly
the ones that have to update the current SuperPanel.
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In a nutshell, with a left-looking approach between SuperPanels, an inner W1/R0 left-
looking factorization of the SuperPanels is likely to induce a large amount of I/O. On
the contrary, the (W1/R0) right-looking inner factorization is natural to apply in this case
and induces a limited amount of I/O. Moreover, in both cases, the disk accesses can be
performed sequentially.

6.3.3 Comparison

Outer
method

Inner
method

Size of
SuperPanels

Volume of I/O
Spatial locality of

disk accesses

RL
RL Large Bad scalability No obvious

localityLL Small Bad local be-
haviour

LL
RL Large Good Sequential (for

each SuperPanel)LL Small Bad local be-
haviour and scala-
bility

Table 6.1: Comparison of different out-of-core factorization schemes.

The main characteristics of the different out-of-core factorization schemes are sum-
marized in Table 6.1. It appears that hybrid methods (RL-LL and LL-RL) induce a more
scalable volume of I/O than methods which use the same kernel for the inner and outer
factorizations (RL-RL and LL-LL). A natural question is thus the following one: are the
RL-LL and LL-RL methods equivalent ? The answer is no for at least three reasons:

– the LL-RL allows for large SuperPanels (since it is based on an inner W1/R0 right-
looking method);

– the LL-RL method is a Write Once / Read Many scheme (W1/RM) scheme whereas
the RL-LL one follows a Write Many / Read Many scheme (WM/RM);

– only the LL-RL method provides a natural spatial locality for disk accesses.
These remarks in turn lead to wonder whether LL-RL induces less I/O than RL-LL?

Again the answer is no and Figure 6.7 provides a counterexample. We consider a subtree
composed of two supernodes: a child node of size 100 and a parent node of size 10. We
assume that the amount of available memory is equal to M0 = 100, which thus represents
the maximum size of a SuperPanel. Therefore, the child node occupies all the memory
and a SuperPanel can include at most one node. With a RL-LL method, the child node
is loaded in memory and factored. The parent node is then updated. It is loaded block
by block in memory. Each time a block is loaded, it is updated by the child node and
written to disk. When all the blocks have been updated, the child node is written to
disk. The parent node is read back from disk, factored and written back to disk. This
makes an I/O volume of 10 units of read and 10 units of write. On the contrary, with
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a LL-RL method, the child node is loaded in memory, factored and directly written to
disk. Then, the parent node is loaded in memory. The child node is read back block by
block to update the parent node. When all the updates have been performed, the parent
node is factored and written to disk. In this case, an amount of 100 units of I/O (read
operations) has been performed.

10

100

M0 = 100

Figure 6.7: V I/O(RL− LL) = 20. V I/O(LL− RL) = 100.

However, in practice, the size of a column is small compared to the size of a Super-
Panel. For instance, five thousands columns, such that each one contains one hundred
thousands nonzero values, would fit in 4 GB of core memory. Furthermore the number
of columns that a supernode include can be limited by splitting large supernodes (this is
what we do in practice as we will see in Section 6.5). Therefore, we can do the following
assumption:

Assumption 6.4. The size of a supernode is small compared to the size of a SuperPanel.

With this assumption, a good approximation to compute the I/O volume, consists in
considering that a node cannot be split into two different SuperPanels. Indeed, in the case
of a SuperPanel of 5000 nodes of the same size, this approximation would impact the I/O
volume related to the SuperPanel with a maximum relative error equal to 1/5000. An
equivalent approximation consists in counting the number of nodes rather than summing
the sizes of the supernodes, even if it means that a supernode represents as many nodes
as it has nonzero values. With this assumption, we have the following result:

Property 6.6. LL-RL induces at most half the I/O volume as RL-LL.

Proof. Rather than a formal proof, we give the intuition and explain it on two examples.
The idea is that, if we are given an elimination tree with a RL-LL partition, we can
reverse the partition to form a LL-RL partition which decreases the I/O volume by at
least a factor 2. Recall that we do not count the I/O’s related to the first write (see
Assumption 6.2) of a SuperPanel. We do not count either the I/O’s when a panel is
loaded in memory for the first time since that only involves parts of the initial matrix
(see the related discussion at the beginning of Section 6.3.2). Both cases will be mentioned
below as “not counted”.

We first consider an elimination tree which is a chain and a RL-LL partition of it as
illustrated in Figure 6.8(a)(left). The chain is composed of 9 nodes. From bottom to
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Figure 6.8: Reversing a RL-LL partition into a LL-RL partition. Numerical values repre-
sent the number of nodes that are written due to a SuperPanel.

top, the three SuperPanels, SP1, SP2 and SP3, are respectively composed of 4, 2 and
3 nodes. With a RL-LL factorization, SP1 is factored first. It has to update SP2 and
SP3; therefore those SuperPanels are loaded in memory (block by block), updated, and
written to disk. This requires writing 5 nodes (the corresponding read operation are not
counted, see above). SP1 is written to disk (not counted) and released from memory.
SP2 is read back from disk - 2 nodes are read -, loaded in memory and factored. SP2

has to update SP3. To do so, SP3 is read (block by block) and written back. This step
requires reading and writing 3 more nodes. SP2 is written to disk and released. SP3 is
loaded in memory - 3 nodes are read -, factored and written to disk (not counted). Note
that, though the first read operation on SP3 occurs later, it is due to the fact that SP1

initially had updated it. Therefore, that read operation is related to the process of SP1.
With this reasoning, one can see that SP1 requires to read and write 5 nodes and that
SP2 requires reading and writing 3 nodes: the number of read and written nodes due to a
SuperPanel is equal to the number of its outer ancestors . All in all, the total I/O volume
is equal to V I/O(RL− LL) = 16 (8 for read operations and 8 for write operations). On
the other hand, we can reverse the partition to form a LL-RL partition as illustrated in
Figure 6.8(a)(right). With SP1, we associate SP

′

1 with the same number of nodes, but
which includes the nodes of the top of the chain this time. From top to bottom, we then
associate SP

′

2 with SP2, with the same number of nodes, and SP
′

3 with SP3, with the
same number of nodes. The point is that the number of read operations implied by SP

′

i

(1 ≤ i ≤ 3) is equal to the number of read and write operations implied by SPi. Indeed,
with a LL-RL factorization, SP

′

3 is processed first. It is loaded in memory (not counted),
factored, written to disk (not counted) and released from memory. SP

′

2 is then loaded
in memory (not counted). It is updated by SP

′

3 which requires to be read back from
disk (block by block). A number of 3 nodes are read. SP

′

2 is factored, written to disk
(not counted) and released from memory. SP

′

1 is loaded in memory (not counted) and
has to be updated by SP

′

3 and SP
′

2. Both these SuperPanels are on disk and need to be
read back (block by block), which represents a read of 5 nodes. When all the updates
are performed, SP

′

1 is factored and written to disk (not counted). One can see that the
number of read operations due to a SuperPanel is equal to the number of nodes in its
outer subtrees . All in all, 8 nodes have been read: V I/O(LL− RL) = 8.

We now consider a more general elimination tree and a RL-LL partition of it, as
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illustrated in Figure 6.8(b)(left). SP1 requires reading and writing 4 nodes (number of
outer ancestors), and SP2 also. SP3 requires reading and writing 1 node (it has only
one outer ancestor). All in all, V I/O(RL− LL) = 18 (9 for read operations and 9 for
write operations). Let us reverse the partition into a LL-RL partition as illustrated in
Figure 6.8(b)(right). We associate with both SP1 and SP2 a single SuperPanel SP

′

1.
The number of nodes (7) in the outer subtree of SP

′

1 is lower than or equal to the sum
of the number of outer ancestors of SP1 and SP2 (4 + 4). Therefore, the number of
read operations (7) due to SP

′

1 is lower than or equal to the number of read and write
operations of the RL-LL approach due to both SP1 and SP2 (4 + 4 read operations, 4 + 4
write operations). We associate SP

′

2 with SP3. SP
′

2 has a no outer subtree and therefore
will not induce I/O with a LL-RL scheme. All in all, V I/O(LL− RL) = 7. Note that we
could reverse the partition because SP

′

2 is processed with an inner W1/R0 right-looking
scheme: therefore, only 3 (the height of the SuperPanel) nodes need to fit together in
memory. �

In the following, we discard right-looking outer factorizations and focus on LL-RL and
LL-LL methods.

6.4 I/O volume reduction partitioning algorithms

In the previous section, we have shown that left-looking methods (especially the LL-RL
method) are the most suitable when aiming at limiting the I/O volume in our context.
However, the I/O volume depends on the partition of the elimination tree into SuperPan-
els. In this section, we rely on assumptions 6.1, 6.2, 6.3 and have the following objective:

Objective 6.3. Given an amount of core memory M0, our purpose is to find the partition
of the elimination tree that minimizes the I/O volume.

We first formalize the expression of the I/O volume with a left-looking outer approach
in Section 6.4.1. We then minimize the I/O volume when the elimination tree is a chain in
Section 6.4.2. Next, we present an optimum partitioning algorithm for the LL-RL method
in Section 6.4.3. We finally study the LL-LL method in Section 6.4.4.

6.4.1 I/O volume induced with a left-looking approach between Su-
perPanels

We recall that, according to Assumption 6.2, all the nodes are at least written to disk
once. We do not count the I/O volume due to the first write of a node but only the extra-
I/O volume with respect to this amount. With a left-looking outer method, those I/O’s are
only due to read operations. We consider a node N and we note |N| its number of nonzero
values. We denote by #SP(N) the number of SuperPanels above N. For each of those
SuperPanels, N has to be read once, as we have seen when discussing Figure 6.8(a)(right).
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The volume of I/O related to node N is thus equal to: V
I/O
N = |N|×#SP(N). This amount

represents the number of nonzero entries of node N that have to be read from disk during
the whole factorization. The total I/O volume is obtained by summing those amounts
for each node in the elimination tree:

V I/O =
∑

N∈etree

V I/O(N) =
∑

N∈etree

|N| ×#SP(N). (6.1)

6.4.2 Partitioning a chain

We assume that the elimination tree is a chain. Let us consider the following greedy
partitioning algorithm. Initially, we consider a partition P composed of a single empty
SuperPanel SPcurrent. We traverse the chain from top to bottom. When traversing a
node N, we include it in the current SuperPanel SPcurrent if it can fit in core memory
together with the other nodes of SPcurrent. Otherwise, N is put into a new SuperPanel
which is added to the partition and becomes the current SuperPanel. Algorithm 6.1
describes this partitioning algorithm.

Input: A chain representing the elimination tree; an amount M0 of core memory.
Output: A partition P of the chain into SuperPanels.
% Init: The partition P is composed of a single empty SuperPanel

SPcurrent (thus of size 0).
SPcurrent← ∅;
SizeSPcurrent← 0;
P ← {SPcurrent};
foreach node N in the chain, from top to bottom do

if |N|+ SizeSPcurrent ≤M0 then
SPcurrent← SPcurrent ∪ {N};
SizeSPcurrent← SizeSPcurrent + |N|;

else
SPcurrent← {N};
SizeSPcurrent← |N|;
P ← P ∪ {SPcurrent};

Algorithm 6.1: Partitioning of a chain with an outer left-looking method.

We consider a node N. One may notice that the number of SuperPanels on top of N,

#SP(N), is minimized when Algorithm 6.1 is applied. As furthermore Algorithm 6.1 is
independent of the node considered, it minimizes Formula (6.1).

Property 6.7. Algorithm 6.1 finds the partition of a chain which minimizes the volume
of I/O.

We illustrate our algorithm on the chain of Figure 6.8(a)(right). We assume that
4 nodes can fit together in core and we apply Algorithm 6.1. Initially, the partition
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contains a single empty SuperPanel. We traverse the chain from top to bottom. The
first four nodes are added to the current SuperPanel. The fifth node cannot fit in the
current SuperPanel. Therefore, a second SuperPanel is created, which will fit the four
next nodes. A third SuperPanel has to be created to fit the ninth node. Figure 6.9(a)
represents the resulting partition. With such a partition, the I/O volume (read) is equal
to V I/O = 5: the node at the bottom will have to be read twice and the four nodes in
the second SuperPanel will have to be read once.

4 ∗ 1

1 ∗ 2

(a) Chain

4 ∗ 1

1 ∗ 2

N0

(b) LL-RL (partial partition)

6 ∗ 1

4 ∗ 2

(c) LL-RL

Figure 6.9: Partitioning of an elimination tree into SuperPanels. Numerical values rep-
resent the volume of I/O (read) due to the nodes of a SuperPanel. The memory is equal
to M0 = 4 (nodes).

6.4.3 Left-looking/right-looking approach

We now consider a general elimination tree processed with a LL-RL method. Let N0

be a node of the elimination tree. The number of SuperPanels on top of N0, #SP(N0), is
minimized when Algorithm 6.1 is applied to the chain composed of the nodes above N0.
For instance, we can apply this mechanism to node N0 of Figure 6.9(b) with a core memory
of M0 = 4 (nodes). Such a construction, of course, depends on the node considered (N0 in
our example). Intuitively, we are building SuperPanels in priority along the path from the
root of the elimination tree down to node N0 and this path is favoured. However, with an
inner W1/R0 right-looking method, we recall that not all the nodes of a SuperPanel need to
fit together in memory but only the nodes along a single root-to-leaf path (see Figure 6.5).
Therefore, with a top-down partitioning, a node can be added to the SuperPanel of its
parent if and only if it can fit together with the nodes on the path from itself up to
the root of the SuperPanel. In particular, this decision is independent of the possible
inclusion of its siblings.

Algorithm 6.1 can thus be adapted as we now explain. Initially, we consider an empty
partition, P . We traverse the elimination tree in reverse postorder (top-down traversal).
A node N is added to SuperPanel SPparent to which belongs its parent if it can fit in core
together with the nodes along the path from N to the root of SPparent. Otherwise, N is
included in a new SuperPanel and this SuperPanel is added to the partition. Algorithm 6.2
describes this partitioning algorithm. Note that we use an explicit mapping of the nodes
to their SuperPanel because we need to access to the mapping of a parent node.
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Input: The parent structure (parent() array) of the elimination tree; an amount
M0 of core memory.

Output: The mapping of the nodes (mapping() array) of the elimination tree to
the index of their SuperPanel.

Data: mempath() array: mempath(N) is the amount of memory required to fit the
nodes along the path from N up to the root of the SuperPanel containing N.

% Init: The root node Nroot of the elimination tree is mapped to a

SuperPanel of index equal to 0. The current number of SuperPanels,

numberSP, is initially equal to 1.
mapping(Nroot)← 0;
mempath(Nroot)← |Nroot|;
numberSP← 1;
foreach node N different from the root in reverse postorder (top-down traversal)
do

myparent← parent(N);
if |N|+mempath(myparent) ≤M0 then

mapping(N)← mapping(myparent);
mempath(N)← |N|+mempath(myparent);

else
mapping(N)← numberSP;
mempath(N)← |N|;
numberSP← numberSP + 1;

Algorithm 6.2: Partitioning of an elimination tree into SuperPanels with a LL-RL

method.
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If we consider any node N of the elimination tree, the number of SuperPanels on top
of N, #SP(N), is equal to the number of nodes that we would have got by applying Algo-
rithm 6.1 to the chain from the root node of the elimination tree down to N. Therefore,
Algorithm 6.2 minimizes #SP(N). As furthermore this latter algorithm is independent
of node N, it minimizes Formula (6.1).

Property 6.8. Algorithm 6.2 provides the partition of a general elimination tree which
minimizes the volume of I/O in a left-looking/right-looking context.

Figure 6.9(c) illustrates Algorithm 6.2 when assuming that 4 nodes can fit together in
core. With the resulting partition, the I/O volume (read) is equal to V I/O = 10: the node
at the bottom will have to be read twice and the nodes in the intermediate SuperPanel
will have to be read once.

6.4.4 Left-looking/left-looking approach

Minimizing the I/O volume with a left-looking/left-looking method is NP-complete

With an inner W1/R0 left-looking method, all the nodes of a SuperPanel have to fit
together in memory (remember Figure 6.6). Therefore, the inclusion of a node into a
SuperPanel depends on the inclusion of its siblings. We may have to choose which siblings
are added to the SuperPanel. Such a choice may be difficult if one aims at minimizing
the I/O volume. We prove that the associated decision problem is NP-complete in the
special case of an elimination tree of height equal to 1 (and the general problem is thus NP-
complete too). In this case, I/O’s are exactly performed when the root node is updated
by nodes that are not in its SuperPanel. If we note S the subset of children that are in the
SuperPanel of the root node, the amount of data read is then equal to V I/O =

∑

i/∈S si.
We name Panelize-LLLL-H1-Dec this decision problem where H1 denotes a height equal
to 1.

Problem 6.1 (Panelize-LLLL-H1-Dec). We consider an elimination tree composed of a
root node and n children numbered from 1 to n. We are given a core memory of size
M0 (the number of nonzero values that can fit in a SuperPanel). Node i (1 ≤ i ≤ n)
has a nonnegative size si (the number of nonzero values). Does there exist a subset S
of children such that all these children can fit in the same SuperPanel as the parent
(s0+

∑

i∈S si ≤M0) and that the subsequent I/O volume is lower than or equal to V target
I/O

(
∑

i/∈S si ≤ V target
I/O ) ?

This problem can be reduced in polynomial time to the Subset-Sum decision problem
formulated as follows:

Problem 6.2 (Subset-Sum-Dec). We have n items (1, . . . , n). Each item i has a non-
negative size xi. Is there a subset S of these items such that their sum is at least equal
to a positive integer L and at most equal to a positive integer U (L ≤∑i∈S xi ≤ U)?
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Note that Subset-Sum is usually formulated in the special case where L = U for which
it remains NP-complete [35].

Property 6.9. Panelize-LLLL-H1-Dec is NP-complete.

Proof. First, Panelize-LLLL-H1-Dec belongs to NP. Let us assume we are given a subset
S of the children such that all these children can fit in the same SuperPanel as the parent
and that the subsequent I/O volume is lower than or equal to V target

I/O . The amounts

s0 +
∑

i∈S si and
∑

i/∈S si can be computed in time linear with the size of the instance.
Therefore, one may verify that S is a solution in linear time too.

x1 x2 x3 x4 x5 xn

s0

s1 s2 s3 s4 s5 sn

Figure 6.10: Instancing Panelize-LLLL-H1-Dec (right) from Subset-Sum-Dec (left). The
surrounded area represents a possible solution.

For proving the NP-completeness of Panelize-LLLL-H1-Dec, we show that Subset-
Sum-Dec can be polynomially reduced to Panelize-LLLL-H1-Dec. We consider an arbi-
trary instance I1 of Subset-Sum-Dec composed of n items (1, . . . , n) such that each item
i has a nonnegative size xi. We are also given a lower bound L and an upper bound U .
We build an instance I2 of Panelize-LLLL-H1-Dec as follows. We consider an elimination
tree composed of a root node and n children. The root node has a size s0 equal to any
positive value (for instance s0 = 100). The children are of size si = xi (1 ≤ i ≤ n). The
amount of core memory is equal to M0 = s0 + U . We define an upper bound on the I/O
volume equal to V target

I/O =
∑n

i=1 si − L. The construction of I2 is polynomial (and even

linear) in the size of I1. We now show that any subset S of {1; ...;n} is a solution to I1
if and only if it is a solution to I2 (which implies that I1 has a solution if and only if
I2 has a solution). Let S be a subset of {1; ...;n}. The assertion L ≤ ∑i∈S xi ≤ U is

equivalent to
∑n

i=1 si − V target
I/O ≤∑i∈S si ≤ M0 − s0 and thus to:

∑

i/∈S xi ≤ V target
I/O and

s0 +
∑

i∈S xi ≤M0. �

Approximation

The problem can again be simplified with the approximation related to Assump-
tion 6.4. As explained in Section 6.3.3, under this assumption, a good approximation
indeed consists in counting the number of nodes rather than summing their sizes, even if
it means that a supernode represents as many nodes as it has nonzero values. With this
approximation, Panelize-LLLL-H1-Dec can be solved in time linear with the size of the
instance. The volume of I/O is minimized with any subset of child nodes of cardinality
equal to M0− s0 that form a connected subgraph when put together with the root node.
Indeed, the number of nodes read is then equal to the number of children that are not
part of the root SuperPanel: V I/O =

∑n
i=1 si−M0+s0. Figure 6.11 illustrates this result.
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Figure 6.11: Instance of Panelize-LLLL-H1 under Assumption 6.4 with n = 7,
(si)i=0,1,...,n = (3, 4, 3, 6, 1, 2, 3, 4) and M0 = 11. Any root SuperPanel that holds 8 child
nodes (for instance the one represented by the surrounded area) minimizes the I/O vol-
ume: 15 nodes have to be read.

Heuristic

However, Panelize-LLLL-H1 is related to an elimination tree of height equal to 1. We
now explain that the I/O minimization problem is not immediately solved when consid-
ering a general elimination tree, even with Assumption 6.4. We consider the elimination
tree of Figure 6.12(a) and the related naive partition of Figure 6.12(b). With this par-
tition, the I/O volume is equal to: V I/O(k) =

∑k
i=1 k(i− 1) = k2(k − 1)/2 = Θ(k3).

Figure 6.12(b) provides a better partition which leads to a volume of I/O equal to:
V I/O(k) = (k − 1)k = Θ(k2). The impact of the partitioning algorithm is thus critical
when aiming at limiting the I/O volume.

kk

(a) Elimination tree

kk

(b) Naive partitioning

kk

(c) Maximum weighted diving

Figure 6.12: Different top-down LL-LL partitions of the same elimination tree with M0 =
k nodes.

Both those partitions can be obtained with a top-down partitioning algorithm as we
now explain. Initially, the partition is formed of a single SuperPanel under construc-
tion. Then, one of its children can be added to the SuperPanel. In the naive case
(Figure 6.12(b)), its right child is (arbitrarily) chosen. On the contrary, the maximum
weighted diving algorithm (Figure 6.12(c)) chooses the right child because it has itself
more descendants. Therefore, by selecting that child, we are likely to reduce the number
of ancestor SuperPanels of many nodes and thus the I/O volume. Whereas the naive
partitioning algorithm chooses an arbitrary node at each step, the maximum weighted
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diving algorithm extends the current SuperPanel with the node which has the largest
number of children (see Figure 6.13).

Figure 6.13: On-going top-down LL-LL partitioning of the elimination tree of Figure 6.12.
The surrounded area represents the first SuperPanel under construction. At this step,
the SuperPanel can be extended with one of the four colored nodes. The arrow points to
the node that will be selected with the maximum weighted diving algorithm since it has
more descendants than its competitors.

We now summarize our results on LL-LL partitioning. From Section 6.4.2, we know
that top-down traversals should be applied to outer left-looking partitioning algorithms.
We have then exhibited that on a given level of the elimination tree, the choice of the
children nodes that are added to the parent SuperPanel is difficult (the related decision
problem is NP-complete). However, we have noticed that a random greedy choice actually
leads to a quasi-optimum I/O volume on a tree of height one. On general elimination
trees, we have exhibited that the good question is: “how to dive”. We have shown that a
“bad” diving criterion can lead to an I/O volume arbitrarily larger than the one obtained
with a “good” diving. This consideration has led us to propose a heuristic which consists
in greedily selecting the node which has the largest number of descendants. In practice,
we have to take into consideration the size of the nodes. We define the size of a subtree
as the sum of the sizes of the nodes that compose the subtree. The selected node in
our greedy algorithm thus becomes the one which is the root of the subtree of largest
size. The heuristic is composed of two steps. A first step computes the weight of the
nodes with a bottom-up traversal of the elimination tree: the weight of a node is the
size of the subtree rooted at it. The weight() array is then used in the second step to
perform a greedy maximum weighted top-down traversal which builds the SuperPanels.
Algorithm 6.3 describes this second step. The first step is clearly linear with the number n
of nodes. The second step is bounded by a number of operations proportional to n log(n)
operations: n nodes are inserted into an ordered list of size bounded by n.

6.5 Preliminary prototype implementation

This study led us to develop a prototype implementation for an out-of-core extension
of SuperLU. The purpose was to confirm that the in-core kernel of computation of SuperLU
could effectively be extended to the models discussed in this chapter. Because SuperLU is
based on a left-looking method, we have implemented a left-looking/left-looking method.
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Input: The children structure (children() array) of the elimination tree (retrieves
the set of child nodes of a given node); the weight (weight() array) of the
nodes of the elimination tree; an amount M0 of core memory.

Output: A partition P of the elimination tree into SuperPanels.
Data: A stack holds the roots of the SuperPanels not traversed yet. This stack is

managed with the usual push (push_root()) and pop (pop_root())
operations. The is_roots_stack_empty() operation checks whether the
stack is empty.

Data: An ordered list holds the nodes that are candidate to be added to the
current SuperPanel. The nodes are maintained in decreasing order of their
respective weight(). The insert_cands() operation inserts a set of nodes
into that list. The first element of the list (the one with the maximum
weight) can be retrieved with the extract_first_cand() operation. The
is_candidates_list_empty() operation checks whether the list is empty.

% Init: The partition P is initially empty and the root node Nroot

of the elimination tree is pushed into the stack of the roots of

future SuperPanels.

P ← ∅;
push_root(Nroot) ;
while ! is_roots_stack_empty() do

insert_cand(pop_root()) ;
SPcurrent← ∅;
SizeSPcurrent← 0;
P ← P ∪ {SPcurrent};
while ! is_candidates_list_empty() do
N ← extract first cand()
if |N|+ SizeSPcurrent ≤M0 then

SPcurrent← SPcurrent ∪ {N};
SizeSPcurrent← SizeSPcurrent + |N|;
insert_cands(children(N))

else
push_root(N) ;

Algorithm 6.3: Partitioning of an elimination tree with a LL-LL method with a
maximum weighted diving traversal.
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This prototype does not perform actual I/O’s but memory copies to a special area instead.
The data access pattern of our prototype being the same as the one of an actual out-of-
core left-looking/left-lookingmethod, this allowed us to valid our approach. The prototype
clearly constitutes a preliminary validation step before incorporating an I/O layer.

To increase the number of nodes that they can contain, SuperPanels only store nonzero
values in a compressed structure. However, the columns of the SuperPanels need to be
scattered into dense arrays when they are updated or factored (with respect to the in-core
scheme of SuperLU). We explain in Section 6.5.1 how we have handled those scatter/gather
operations. We then explain in Section 6.5.2 how we have adapted the symbolic factoriza-
tion of SuperLU to our out-of-core context. Finally, Section 6.5.3 presents the numerical
factorization step.

6.5.1 Reducing the scatter-gather overhead - HyperNodes

To exploit memory locality, SuperLU factors several (say w of them) columns at a time
so that one updating supernode (r : s) (from column r to column s) can be used to update
as many of the w columns as possible. The authors refer to these w consecutive columns
as a panel. The row structure of these columns may not be correlated in any fashion, and
the boundaries between panels may be different from those between supernodes [26]. Two
types of updates occur. If the supernode is not part of the panel, supernode-panel updates
are performed. Otherwise (within the panel), supernode-column updates are performed
(sup-col algorithm). A data structure called sparse accumulator (SPA for short) is used
to scatter the updates and hold the w columns of the active panel. It consists of an n by
w full array (where n is the order of the matrix) and allows random access to the entries
of the active panel.

In the in-core version of SuperLU, the factorization of a panel is processed all at once:
the columns corresponding to the panel are scattered into the SPA, all required updates
are performed and finally the data in the SPA are gathered into storage for L and U .
In an out-of-core context, the updating supernodes may have been written to disk and
released from memory if they are not part of the same SuperPanel. Therefore, they have
to be read back from disk to perform the updates. If they cannot fit altogether in core
memory with the current SuperPanel, they have to be read block by block. Each time
a block is loaded in memory, the corresponding updates are performed on the columns
of the SuperPanel which have to be alternately scattered and gathered into the SPA. If
the memory attributed for the updating blocks is small, the number of scatter/gather
operations may become large and represent a critical overhead on the efficiency. We
denote HyperNode (HN for short) a group of supernodes that are loaded together in
memory to perform those updates. Note that the boundaries between HyperNodes may
be different from those between SuperPanels and there is a balance to find between the
memory allocated for the current SuperPanel and the one for the current HyperNode.
The first one will impact the I/O volume (as discussed in sections 6.3 and 6.4) whereas
the second one will impact the extra number of scatter/gather operations.
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6.5.2 Symbolic factorization - out-of-core depth-first-search

The symbolic factorization is the process that determines the nonzero structure of the
triangular factors L and U from the nonzero structure of the matrix A. In turn, this
process determines which columns of L will update each column j of the factors: those
columns r for which urj 6= 0. As already discussed, partial pivoting requires interleaving
numerical and symbolic factorization.

In the in-core version of SuperLU, a symbolic factorization occurs for each (core)
panel [26]. In an out-of-core context, a partial symbolic factorization of the panel has
to be performed each time a HyperNode is loaded in memory. We have adapted the
symbolic factorization so that it limits its search of updating supernodes to the current
HyperNode. Once the partial symbolic factorization related to a given HyperNode is
finished, the subscripts of the nonzeros values of the columns of the current panel are
gathered. They will be reused to initiate the next partial symbolic factorization of the
panel with the next HyperNode.

6.5.3 Out-of-core numerical factorization - left-looking/left-looking
method

We have developed a left-looking/left-looking factorization based on SuperLU as fol-
lows. Initially, we apply Algorithm 6.3 to partition the elimination tree into SuperPanels.
The numerical factorization then processes the SuperPanels, one after the other. When a
SuperPanel is processed, its sparse compressed data-structure is loaded in memory. The
SuperPanel has to receive contributions from outer subtrees . Because those outer sub-
trees may not altogether fit in-core, they are read block by block. Such a block (called
HyperNode, see Section 6.5.1) is constituted of several supernodes. For each HyperNode,
we investigate all the columns of the current SuperPanel, (core) panel by (core) panel.
The current panel is scattered into a sparse accumulator (SPA); a partial symbolic fac-
torization (see Section 6.5.2) is performed and the supernodes of the HyperNode that
require to update some columns of the panel perform their update as in the in-core case.
If the HyperNode overlaps with the SuperPanel, the inner factorization of the panel is
performed. Otherwise, nonzero values of the sparse accumulator are gathered back into
the compressed structure of the SuperPanel to make room in the SPA for the next panel.
This method corresponds to Algorithm 6.4.

6.5.4 Preliminary validation

We have validated our prototype on several matrices of intermediate size of Table 1.2.
Note that we have had to turn off some features of the in-core version of SuperLU [26]
(relaxed supernodes, symmetric pruning). Also, we recall that the prototype does not
explicitly perform the I/O’s but does memory copies instead.
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foreach SuperPanel SP in order do
Push the (forecast) sparse nonzero structure of SP into memory;
foreach HyperNode HN descendant of SP do

Read HN from disk;
for j = first column(SP) to last column(SP) step w do

if HN is the first HyperNode processed for SP then
Scatter j : j + w − 1 columns from A into the SPA ;

else
Scatter j : j + w − 1 columns from SP into the SPA ;

Symbolic factor: determine which supernodes of HN will update any of
A(:,j:j+w-1);
foreach updating supernode (r : s) of HN ((r : s) < j) in topological
order do

Apply triangular solves to A(r:s,j:j+w-1) using L(r:s,r:s);
foreach row block B in L(s+1:n,r:s) do

for jj = j to j + w − 1 do
Multiply B.U(r:s,jj), and scatter into SPA(:,jj);

if HN overlaps SP then
Inner factor: Apply the sup-col algorithm on columns and
supernodes within the SPA ;
Write the SPA to disk;

else
Gather the SPA into SP

Release HN from memory;

Release SP from memory;

Algorithm 6.4: Out-of-core left-looking/left-looking algorithm. A is the on-going
updated matrix.
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We have also implemented Algorithm 6.2. Clearly, that latter algorithm is specif-
ically designed for a left-looking/right-looking method whereas we have implemented a
left-looking/left-looking approach. However, the partition of the elimination tree into Su-
perPanels that it computes can be used with a left-looking/left-looking factorization if
memory usage allows for it. This should allow us to compare the practical impact on
I/O volume of left-looking/left-looking and left-looking/right-looking methods when top-
down partitioning algorithms are applied ([63] presents such a comparison for bottom-up
partitioning algorithms).

6.6 Conclusion

In this chapter, we have proposed models to study the problem of the minimization
of the I/O volume in the context of supernodal methods. We could generalize to the
sparse case - with our assumptions - a result known in the context of dense factoriza-
tion: left-looking algorithms allow us to perform significantly less I/O than right-looking
algorithms. To prove this result, we have considered an existing hybrid method (left-
looking/right-looking) proposed and implemented in [41, 63] and compared it with other
possible combinations of left-looking and right-looking methods. We have then addressed
the problem of I/O minimization for two specific methods (left-looking/right-looking and
left-looking/left-looking); we have exhibited an optimum algorithm for the first one (under
our specific assumptions) and proposed a heuristic for the second one after showing that
it is NP-complete.

We have had to rely on assumptions that are clearly strong. It would be interesting
to pursue this study with weaker assumptions in order to have more general results.
However, note that although our models are based on strong assumptions, the proposed
algorithms apply to (and have been implemented for) the general case for which they
remain interesting heuristics. In particular, it would be interesting to compare in practice
the effects on the volume of I/O and on the efficiency of the factorization of top-down
partitioning algorithms to bottom-up approaches that have been used in the past [63].

This study has led us to develop a prototype out-of-core extension of SuperLU. This
prototype is based on a method (left-looking/left-looking) that had already been success-
fully implemented by different authors [41, 63]. However, our approach is novel in several
respects. HyperNodes might help to limit the scatter/gather overhead due to the use
of compressed SuperPanels. The out-of-core depth first-search algorithm extends in a
natural way the symbolic factorization of SuperLU. The data access pattern of the left-
looking/left-looking method has been adapted to respect the constraints of a complex
in-core solver, SuperLU. Currently, our prototype only performs memory copies instead
of I/O’s. This has allowed us to validate all the proposed mechanisms. We plan to
incorporate a robust I/O layer in the prototype in order to assess the efficiency of our
approach.
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Chapter 7

Preliminary study

In Part I, we have proposed models and algorithms for sparse direct methods in the
serial case. We have studied several models for different methods and presented their
respective advantages and limits. In this part, we extend this work to the parallel case.
However, instead of considering the large panel of models studied in the serial case, we
focus on a particular method that we aim at studying as far as possible in order to process
problems as large as possible. Indeed, we focus on the distributed memory multifrontal
method. A distributed memory environment allows the use of a large amount of memory
distributed among several processors. Contrary to the serial case, in this context, frontal
matrices can be scattered over the processors and do not represent a major bottleneck for
memory. This consideration and the fact that the multifrontal method can be an efficient
parallel approach [11] motivate the development of an out-of-core parallel multifrontal
solver in a distributed environment. We illustrate our study with a fully asynchronous
parallel multifrontal solver for distributed memory architectures, MUMPS [9, 10].

As already discussed, in the multifrontal method, the factors produced during the
factorization step are not re-used before the solution step. It is thus natural to write them
on disk as in the serial case. In this chapter, we present a preliminary study which aims
at evaluating by how much the core memory usage can be reduced by writing the factors
to disk during the numerical factorization step. We first describe the parallel multifrontal
method as it is implemented in MUMPS. We then explain how we have instrumented this
software to perform our study and we present experimental results.

7.1 Parallel scheme for the multifrontal method

MUMPS is based on a parallel multifrontal method which applies to matrices with sym-
metric (or symmetrized) structure. As explained in Chapter 1, the symmetric structure
allows the natural use of an assembly tree, obtained by merging nodes of the elimination
tree whose corresponding columns belong to the same supernode [17]. We recall that in
the multifrontal approach, the factorization of a matrix is done by performing a succession
of partial factorizations of small dense matrices called frontal matrices, associated with
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the nodes of the tree and that the tree is processed from bottom to top. Once a partial
factorization is done, a contribution block is passed to the parent node. When factors
are kept in core, the elimination algorithm uses three areas of storage that can overlap
in time: one for the factors, one for the contribution blocks, and another one for the
current frontal matrix [7]. Whereas a postorder traversal of the assembly tree is applied
for serial executions and ensures that the contribution blocks can be accessed with a stack
mechanism (as seen in Chapter 2, Section 2.1); for parallel executions, task scheduling
does not allow a strict postorder and the management of the contribution blocks differs
from a pure stack mechanism. During the tree traversal, the amount of storage required
for the factors always grows whereas the amount of active storage required varies; when
the partial factorization of a frontal matrix is performed, a contribution block is stacked,
increasing the size of the stack; on the other hand, when the frontal matrix is formed and
assembled, the contribution blocks of the children nodes are discarded and the size of the
stack decreases. We still call active storage the area containing both the active frontal
matrices 1 and the contribution blocks waiting to be assembled. The active memory is
the part of the active storage held in core memory.
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Figure 7.1: Example of the distribution
of an assembly tree over four processors.
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Figure 7.2: Distribution of the processors
on a parallel node in the unsymmetric
and symmetric cases.

From the parallel point of view, the parallel asynchronous multifrontal method as
implemented in MUMPS uses a combination of static and dynamic scheduling approaches.
Indeed, a first partial mapping is done statically (see [12]) to map some of the tasks to
the processors. Then, for parallel tasks corresponding to large frontal matrices of the
assembly tree, a master task corresponds to the elimination of the so-called fully summed
rows, while dynamic decisions are done at runtime to select the slave processors in charge
of updating the rest of the frontal matrix (see Figures 7.1 and 7.2). Once the slave
processors are chosen, the elimination process uses a 1D pipelined factorization, in which
the master repeatedly updates a block of rows, then sends it to the (slave) processors
in charge of updating their share of the frontal matrix. Therefore, the fully summed
part of the frontal matrix is only treated by one processor, the one responsible for the
master task whereas the rest of the frontal matrix - and thus the associated memory - is
scattered among several processors, each of them receiving a slave task to process. Note
that those dynamic scheduling decisions are taken to balance workload, possibly under

1. In parallel, it may happen that more than one matrix is active on a given processor.
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memory constraints [13]. In order to limit the amount of communication, the nodes
at the bottom of the tree are statically merged into subtrees (see Figure 7.1), each of
them being processed sequentially on a given processor. There are usually slightly more
subtrees than processors. Finally, the root of the tree must be factored completely and
is processed thanks to a static 2D cyclic factorization [18]. Because of the dynamic and
asynchronous nature of the approach, it often happens that at a given time, a processor
has been selected to work on slave tasks of two (or more) different nodes in the tree. The
processor will then alternate between work corresponding to the different active slave
tasks depending on the messages it receives. Note that these dynamic aspects make the
behaviour of the application complex and difficult to forecast without performing actual
executions.

7.2 Instrumentation

Because the code is dynamic and asynchronous, the storage requirement of the factor-
ization cannot be forecast. To make sense, such a simulation thus needs to be performed
during a real execution of the numerical factorization step rather than during the sym-
bolic factorization step. However, the factorization of the matrices we wish to process
precisely requires a large amount of memory possibly larger than the amount available
on the computer used (otherwise we could systematically process them in-core and this
study would not be very relevant). Therefore, we simulated an out-of-core treatment of
the factors in MUMPS: we free the corresponding memory as soon as each factor is com-
puted. Of course the solution step cannot be performed as factors are definitively lost,
but freeing them allows us to analyze real-life problems on a wide range of processors.

We measure the size of the new peak of memory (which actually corresponds to the
peak of active storage) and compare it to the one we would have obtained with an in-core
factorization (i.e. the total storage peak). In a distributed memory environment, we are
interested in the maximum peak obtained over all the processors as this value represents
the memory bottleneck.

7.3 Experimental results

In Figure 7.3, we present the typical storage requirements observed of the parallel
multifrontal method for a large sparse matrix of 943695 equations, called AUDIKW_1 (see
Table 1.2). We have also reported the peak of storage for the factors. We notice that it
is often close to the peak of total storage. This justifies the fact that it is not relevant to
treat only the active storage out-of-core since it would not lead to large memory gains.

For a small number of processors, we observe that the active storage is much smaller
than the total storage. In other words, if factors are written to disk as soon as they are
computed, only the active storage remains in-core and the memory requirements decrease
significantly (up to 80 % in the sequential case).
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On the other hand, when the number of processors increases, the required amount
of active storage decreases more slowly than the required amount of total storage as
shown in Figure 7.4 for our four main test problems. For example, on 64 processors,
the active storage peak reaches between 50 and 70 percent of the peak of total storage.
In conclusion, on platforms with small numbers of processors, an out-of-core treatment
of the factors will allow us to process significantly bigger problems; the implementation
of such a mechanism is the object of Chapter 8. Nevertheless, either in order to further
reduce memory requirements on platforms with only a few processors or to have significant
memory savings on many processors, we may have to treat both the factors and the active
storage with an out-of-core scheme. We will study this possibility in Chapter 8.

Note that we have been focussing in this discussion on the number of real entries in the
factors, in the active storage, and in the total storage. The ratios presented in Figure 7.4
only consider the number of reals used for the numerical factorization. To be more precise,
we should also take care of the amount of storage due to the integer workspace (indices
of the frontal matrices, tree structure, mapping information,. . . ) and the communication
buffers. Table 7.1 provides the size in Megabytes of the different storage areas in the
multifrontal code MUMPS, for 1 processor and 32 processors: integers for active storage
and factors, integer arrays to store the tree, the mapping and various data structures,
communication buffers at the application level to manage asynchronous communications.

We observe that communication buffers, that depend on the largest estimated message
sent from one processor to another, also use a significant amount of memory in parallel
executions. Once factors will be processed out-of-core, the memory required for this buffer
will become a bottleneck to process very large problems. To overcome this limit, we will
show in Chapter 10 (Section 10.5) the effects of subdividing large messages into series of
smaller ones.
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Factors and
active storage

Other data
structures
(tree, . . . )

Comm.
buffers

Initial
matrix (1)

Total
Matrix

Integers Reals

AUDIKW_1
1P 98 11839 26 0 479 12443
32P 8 758 33 264 33 1097

CONESHL_MOD
1P 107 7160 34 0 526 7828
32P 9 314 44 66 24 458

CONV3D64
1P 83 (2) (2) 0 157 (2)
32P 7 927 32 286 9 1260

ULTRASOUND80
1P 51 8858 16 0 401 9326
32P 4 348 19 75 19 464

Table 7.1: Average memory (MegaBytes) per processor for the different memory areas.
Those numbers are the ones estimated during the analysis step of the solver, and they are
used to allocate the memory at the factorization step. (1) This corresponds to a copy of
the initial matrix that is distributed (with some redundancy) over the processors. (2) For
these values, an integer overflow occurred in the statistics computed by MUMPS.

Although the memory for the integer indices corresponding to active storage and
factors is small compared to the memory for real entries, the algorithms presented in
this dissertation could also be applied to the integers, and processing them out-of-core
is also a possibility. A copy of the initial matrix is distributed over the processors in a
special format (so called arrowhead format) for the assemblies occurring at each node of
the tree. Some parts of this initial matrix are replicated on several processors to allow
some tasks to be mapped dynamically. Once a node is assembled, the corresponding part
of the initial matrix could be discarded. This is another possible improvement. However,
we will not deal with these two possible improvements in the dissertation since they are
not critical enough (for the moment).

In any case, for the four large matrices studied, we observe that the storage corre-
sponding to real entries for factors and active storage is predominant, and that reducing
it is a priority. This is the objective of the following chapter.
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Chapter 8

A robust parallel code with factors on
disk

We present in this chapter a new robust out-of-core code based on MUMPS in which
computed factors are stored on disk during the factorization step. The motivation for
storing the factors on disk is that, in the multifrontal method, factors produced are not re-
used before the solution step. According to the study presented in our preliminary study
(Chapter 7), we expect to significantly decrease the memory requirements on a small
number of processors and to obtain a reasonable memory reduction on larger numbers of
processors.

The efficiency of low-level I/O mechanisms directly affects the performance of the
whole application. First, we discuss direct and buffered I/O mechanisms at the system
level (Section 8.1) and we present synchronous and asynchronous approaches that we
have implemented at the application level (Section 8.2). We then compare the behaviour
of those I/O mechanisms on several test matrices in the sequential case (Section 8.3)
and in the parallel case (Section 8.4). Throughout this study, we aim at showing that
we can reach the expected memory reductions (from our preliminary study) with a high
performance of the factorization by managing asynchronism of the I/O’s at the appli-
cation level. We will also show that I/O buffering at the operating system level makes
performance results difficult to reproduce and to interpret. More generally our study
illustrates several drawbacks from default I/O mechanisms that have not been taken into
consideration in the past.

In this chapter, the factors are written as soon as they are computed (possibly via
a buffer) and only the active storage remains in-core. We recall that we use the C I/O
library to perform the I/O’s between core memory and disks (see Chapter 1, Section 1.3).
When reporting memory usage, we focus on real data (factors, temporary active mem-
ory), excluding storage for integers and symbolic datastructures (which is comparatively
negligible). Parallel executions (Section 8.4) rely on the dynamic scheduling strategy pro-
posed in [13] (see Section 7.1). The results presented in this chapter have been obtained
using METIS (see Section 1.1.1) - if not stated otherwise.
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8.1 Direct and buffered (at the system level) I/O mech-

anisms

By default, when a write operation is requested, modern systems copy data into a
system buffer (named pagecache) and effectively perform the disk access later, using an
asynchronous mechanism. Thanks to that mechanism (hidden to the user), the apparent
cost of the write operation is in many cases only equal to the cost of a memory copy.
However, in the context of a high-performance out-of-core application, such a mechanism
suffers four major drawbacks:

1. As the allocation policy for the system buffer (pagecache) is not under user control
(its size may vary dynamically), the size of the remaining memory is neither con-
trolled nor even known; this is problematic since out-of-core algorithms precisely
rely on the size of the available memory. Subsequently, one may exploit only part
of the available memory or, on the contrary, observe swapping and even run out of
memory.

2. The system is well adapted to general purpose applications and not necessarily
optimized for I/O-intensive applications: for example, it is better to avoid the
intermediate copy to the pagecache when a huge stream of data must be written to
disk.

3. The management of the pagecache is system-dependent (it usually follows an LRU

policy). As a consequence, the performance of I/O operations vary (for instance,
the I/O time can increase if the system needs to partially flush the pagecache). This
is particularly problematic in the parallel context, where load balancing algorithms
will not be able to take this irregular and unpredictable behaviour into account.

4. The last drawback is related to performance studies: when analyzing the perfor-
mance of an out-of-core code, one wants to be sure that I/O’s are effectively per-
formed (otherwise, and even if the code asks for I/O, one may be measuring the
performance of an in-core execution). We insist on this point because this has rarely
been done in other studies related to sparse out-of-core solvers. The only authors
we are aware of who have taken these types of issues into account are Rothberg and
Schreiber [61]: in order to get sensible and reproducible results, they dynamically
add artificial delays in their code when the time for a read or write operation is
observed to be smaller than the physical cost of a disk access.

The use of direct I/O mechanisms allows one to bypass the pagecache. The four
previous drawbacks are then avoided: we are sure that I/O’s are performed; no hidden
additional memory is allocated (the pagecache is not used in this case); we explicitly
decide when disk accesses are performed; and the I/O costs become stable (they only
depend on the latency and the bandwidth of the disks). Direct I/O’s are available on
most modern computers and can be activated with a special flag when opening the file
(O DIRECT in our case). However data must be aligned in memory when using direct
I/O mechanisms: the address and the size of the written buffer both have to be a mul-
tiple of the page size and/or of the cylinder size. In order to implement such a low-level
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mechanism, we had to rely on an intermediate aligned buffer, that we write to disk when
it becomes full. The size of that buffer has been experimentally tuned to maximize band-
width: we use a buffer of size 10 MB, leading to an approximate bandwidth of respectively
90 MB/s and 50 MB/s on the IBM and Linux platforms (described later). Furthermore,
asynchronism must be managed at the application level to allow for overlapping between
I/O’s and computations.

8.2 Synchronous and asynchronous approaches (at the

application level)

The purpose of this study is to highlight the drawbacks of the use of system buffers
(or pagecache) and to show that efficiency may be achieved with direct I/O. To reach
this objective, the management of the asynchronous I/O’s (allowing overlapping) has to
be transferred from the system level to the application level. In order to analyze the
behaviour of each layer of the code (computation layer, I/O layer at the application level,
I/O layer at the system level) we have designed several I/Omechanisms at the application
level:

Synchronous I/O scheme. In this scheme, the factors are directly written to disk (or
to the pagecache) with a synchronous scheme. We use standard C I/O routines:
either fread/fwrite (to read from or write to a binary stream), read/write (to read
from or write to a file descriptor), or pread/pwrite when available (to read from or
write to a file descriptor at a given offset).

Asynchronous I/O scheme. In this scheme, we associate with each MPI process of
the application an I/O thread in charge of all the I/O operations for that process.
This allows us to overlap I/O operations with computations 1. The I/O thread
uses the standard POSIX thread library (pthreads). The computation thread pro-
duces (computes) factors that the I/O thread consumes (writes to disk) according
to a producer-consumer paradigm. Each time a block of factors is produced, the
computation thread posts an I/O request: it inserts the request into a queue of
pending requests in a critical section. The I/O thread loops endlessly: at each it-
eration it waits for requests that it handles using a FIFO strategy. Symmetrically,
the I/O thread informs the computation thread of its advancement with a second
producer-consumer paradigm. This time the I/O thread produces the finished re-
quests (inserts them into the queue of finished requests). The computation thread
consumes the finished requests by removing them from the queue when checking for
their completion. This second mechanism is independent of the first one. The whole
synchronization mechanism is illustrated in Figure 8.1. Note that we limited our
description to the case where only one I/O thread is attached to each computational
thread. It could be interesting to use multiple I/O threads to improve overlapping

1. Modern systems use the direct memory access (DMA) feature which allows an efficient overlapping
of computation and I/O’s even when only one processor is used.
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on machines with several hard disks per processor, or with high performance parallel
filesystems.

Computational
 thread

I/O thread

Queue of 
 pending requests 

Queue of 
finished requests

Disk

  Synchro

I/O

  Synchro

Figure 8.1: Asynchronous I/O scheme.

Together with the two I/O mechanisms described above, we designed a buffered I/O
scheme. This approach relies on the fact that we want to free the memory occupied by
the factors (at the application level) as soon as possible, i.e., without waiting for the
completion of the corresponding I/O. Thus, we introduced a buffer into which factors can
be copied before they are written to disk. We implemented a double buffer mechanism
in order to overlap I/O operations with computations: the buffer is divided into two
parts in such a way that while an asynchronous I/O operation is occurring on one part,
computed factors can be stored in the other part. In our experiments, the size of the
buffer (half a buffer in fact) is set to the size of the largest estimated factor among the
nodes of the tree. Note that the asynchronous scheme always requires a buffer in order
to free the factors from main memory. Furthermore, the buffer is not necessary in the
synchronous scheme and implies an extra copy. Therefore, we only present results with
the buffered asynchronous scheme (that we name asynchronous scheme and abbreviate as
Asynch.) and with the non-buffered synchronous one (that we name synchronous scheme
and abbreviate as Synch.). When the pagecache is used together with the synchronous
scheme (at the application level), asynchronism is managed at the system level; when
direct I/O mechanisms are applied together with the asynchronous scheme, asynchronism
only occurs at the application level.

8.3 Sequential Performance

Because the behaviour of our algorithms on a platform with remote disks might be
difficult to interpret, we first validate our approaches on machines with local disks. For
these experiments, we use the cluster of dual-processors from PSMN/FLCHP presented
in Section 1.4.2. Because this machine has a smaller memory, the factorization of some
of the largest test problems swapped or ran out of memory. We first present results
concerning relatively small problems because they allow us to highlight the perturbations
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induced by the pagecache and because we have an in-core reference for those problems.
We then discuss results on larger problems. Table 8.1 reports the results.

Direct I/O Direct I/O P.C. P.C. IC
Matrix Synch. Asynch. Synch. Asynch.
SHIP_003 43.6 36.4 37.7 35.0 33.2
XENON2 45.4 33.8 42.1 33.0 31.9
AUDIKW_1 2129.1 [2631.0] 2008.5 [3227.5] (*)
CONESHL2 158.7 123.7 144.1 125.1 (*)
QIMONDA07 152.5 80.6 238.4 144.7 (*)

Table 8.1: Elapsed time (seconds) for the sequential factorization using direct I/O mech-
anisms or the pagecache (P.C.) for both the synchronous (Synch.) and asynchronous
(Asynch.) approaches, and compared to the in-core case (IC) on a machine with local
disks (PSMN/FLCHP).
(*) The factorization ran out of memory. [2631.0] Swapping occurred.

For problems small enough so that the in-core factorization succeeds (top of Table 8.1),
we have measured average bandwidths around 300 MB/s when relying on the pagecache,
whereas the disk bandwidth cannot exceed 60 MB/s (maximum physical bandwidth).
This observation highlights the perturbations caused by the system pagecache; such per-
turbations make the performance analysis unclear. Moreover, the system can in these
cases allocate enough memory for the pagecache so that it needs not perform the ac-
tual I/O’s. When an I/O is requested, only a memory copy from the application to the
pagecache is done. This is why the factorization is faster when using the pagecache: this
apparent efficiency comes from the fact that the execution is mostly performed in-core.
In other words, a performance analysis of an out-of-core code using the system pagecache
(it is the case of most out-of-core solvers) makes sense only when performed on matrices
which require a memory significantly larger than the available physical memory. This
illustrates the fourth drawback from Section 8.1.

However, when direct I/O mechanisms are used with the asynchronous out-of-core
scheme for these relatively small problems, the factorization remains efficient (at most
10% slower than the in-core one). The slight overhead compared to the asynchronous out-
of-core version relying on the pagecache results from the cost of the last I/O. After the
last factor (at the root of the tree) is computed, the I/O buffer is written to disk and the
factorization step waits for this last I/O without any computation to overlap it. When
using direct I/O, this last I/O is performed synchronously and represents an explicit
overhead for the elapsed time of the factorization. On the contrary, when the pagecache
is used, only a memory copy is performed: the system may perform the effective I/O later,
after the end of the factorization. For some larger matrices (CONESHL2 or QIMONDA07),
the results show that we have a very good behaviour of the asynchronous approach based
on direct I/O, even when the last I/O is included.

In the case of the AUDIKW_1 matrix, the asynchronous approaches swapped because
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of the memory overhead due to the I/O buffer. Note that even in this case, the ap-
proach using direct I/O has a better behaviour. More generally, when comparing the two

Direct I/O P.C.
Asynch. Asynch.

1674 [2115]

Table 8.2: Elapsed time (seconds) for the factorization of matrix AUDIKW_1 when the
ordering strategy PORD is used. Platform is PSMN/FLCHP. [2115] Swapping occurred.

asynchronous approaches to each other on reasonably large matrices, we notice a higher
overhead of the pagecache-based one, because it consumes extra memory hidden to the
application. To further illustrate this phenomenon, we use the PORD [69] ordering (see
Table 8.2), which reduces the memory requirements in comparison to METIS for matrix
AUDIKW_1. We observe that the asynchronous scheme allows a factorization in 1674 sec-
onds when based on direct I/O, without apparent swapping. However, when using the
pagecache, the factorization requires 2115 seconds: the allocation of the pagecache makes
the application swap and produces an overhead of 441 seconds. This illustrates the first
drawback (introduced in Section 8.1).

Let us now discuss the case of the matrix of our collection that induces the most I/O-
intensive factorization, QIMONDA07. For this matrix, assuming a bandwidth of 50 MB/s,
the time for writing factors (85 seconds) is greater than the time for the in-core factor-
ization (estimated to about 60 seconds). We observe that the system (columns “P.C.” of
Table 8.1) does not achieve a good performance (even with the buffered asynchronous
scheme at the application level that avoids too many system calls). Its general policy
is not designed for such an I/O-intensive purpose. On the other hand, the use of direct
I/O mechanisms with an asynchronous scheme is very efficient. I/O’s are well overlapped
by computation: the factorization only takes 80.6 seconds during which 60 seconds (esti-
mated) of computation and 78.8 seconds (measured) of disk accesses are performed (with
a measured average bandwidth of 53.8 MB/s). This illustrates the second drawback of the
use of the pagecache: we have no guarantee of its robustness in an I/O-intensive context,
where I/O should be performed as soon as possible rather than buffered for a while and
then flushed. (Note that the synchronous approach with direct I/O mechanisms is not
competitive because computation time and I/O time cumulate without possible overlap.)

To confirm these results on another platform, Table 8.3 reports the performance ob-
tained on the IBM machine, where remote disks are used. Again we see that even with
remote disks, the use of direct I/O coupled with an asynchronous approach is usually at
least as efficient as any of the approaches coupled with the use of the pagecache and that
relying only on the pagecache (P.C., Synch.) is usually not enough. Finally, note that for
matrix AUDIKW_1 the performance is sometimes better with the out-of-core approach than
with the in-core approach (2149.4 seconds in-core versus 2111.1 seconds for the system-
based asynchronous approach and 2127.0 seconds for the direct I/O approach). This
comes from machine-dependent (in-core) cache effects resulting from freeing the factors



8.4. PARALLEL PERFORMANCE 133

Direct I/O Direct I/O P.C. P.C. IC
Matrix Synch. Asynch. Synch. Asynch.
AUDIKW_1 2243.9 2127.0 2245.2 2111.1 2149.4
CONESHL_MOD 983.7 951.4 960.2 948.6 922.9
CONV3D64 8538.4 8351.0 [[8557.2]] [[8478.0]] (*)
ULTRASOUND80 1398.5 1360.5 1367.3 1376.3 1340.1
BRGM 9444.0 9214.8 [[10732.6]] [[9305.1]] (*)
QIMONDA07 147.3 94.1 133.3 91.6 90.7

Table 8.3: Elapsed time (seconds) on the IBM machine for the factorization (sequential
case) using direct I/O’s or the pagecache (P.C.) for both the synchronous (Synch.) and
asynchronous (Asynch.) approaches, and compared to the in-core case (IC), for several
matrices.
(*) The factorization ran out of memory.
[[8857.2]] Side effects (swapping, . . . ) of the pagecache management policy.

from main memory and always using the same memory area for active frontal matrices:
a better locality is obtained in the out-of-core factorization code.

8.4 Parallel Performance

Table 8.4 gives the results obtained in the parallel case on our cluster of dual-
processors. We can draw conclusions similar to the sequential case. For large matrices
(see results for CONESHL_MOD and ULTRASOUND80), the use of the asynchronous approach
relying on direct I/O has a good behaviour: we achieve high performance without using
the pagecache and avoid its possible drawbacks. In the I/O-dominant case (QIMONDA07
matrix), the pagecache has again serious difficulties to ensure efficiency (second and third
drawbacks).

We observe that the execution sometimes swaps (CONESHL_MOD on 1 processor or
ULTRASOUND80 on 4 processors) because of the additional space used for the I/O buffer
at the application level. This leads to a slowdown so that the benefits of asynchronism
are lost. In this asynchronous case, when comparing the system and the direct I/O
approaches, it appears that the additional memory used by the operating system (the
pagecache) leads to a larger execution time, probably coming from a larger number of
page faults (extra memory for the pagecache and first drawback).

Provided that enough data are involved, the out-of-core approaches appear to have a
good scalability, as illustrated, for example, by the results on matrix CONESHL_MOD. The
use of local disks allows to keep a good efficiency for parallel out-of-core executions.

We now present results on a larger number of processors, using the IBM machine at
IDRIS. Note that the I/O overhead is more critical in the parallel case as the delay from
one processor has repercussions on other processors waiting for it (third drawback). We
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Direct I/O Direct I/O P.C. P.C. IC
Matrix #P Synch. Asynch Synch Asynch
CONESHL_MOD 1 4955.7 [5106.5] 4944.9 [5644.1] (*)

2 2706.6 2524.0 2675.5 2678.8 (*)
4 1310.7 1291.2 1367.1 1284.9 (*)
8 738.8 719.6 725.6 724.7 712.3

ULTRASOUND80 4 373.2 [399.6] 349.5 [529.1] (*)
8 310.7 260.1 275.6 256.7 (*)

QIMONDA07 1 152.5 80.6 238.4 144.7 (*)
2 79.3 43.4 88.5 57.1
4 43.5 23.1 42.2 31.1 [750.2]
8 35.0 21.1 34.0 24.0 14.6

Table 8.4: Elapsed time (seconds) for the factorization on 1, 2, 4, and 8 processors using
direct I/O mechanisms or the pagecache (P.C.), for both the synchronous (Synch.) and
asynchronous (Asynch.) approaches, and compared to the in-core case (IC) on a machine
with local disks (PSMN/FLCHP).
(*) The factorization ran out of memory. [750.2] Swapping occurred.

show in Table 8.5 (for matrix ULTRASOUND80) that we can achieve high performance using
direct I/O’s with an asynchronous scheme. When the number of processors becomes very

I/O mode Scheme 1 2 4 8 16 32 64 128
Direct I/O Synch. 1398.5 1247.5 567.1 350.9 121.2 76.9 44.6 36.5
Direct I/O Asynch. 1360.5 (*) 557.4 341.2 118.1 74.8 45.0 33.0
P.C. Synch. 1367.3 1219.5 571.8 348.8 118.5 69.6 44.8 90.0
P.C. Asynch. 1376.3 (*) 550.3 339.2 109.4 73.8 45.2 30.0

IC 1340.1 (*) (*) 336.8 111.0 64.1 40.3 29.0

Table 8.5: Elapsed time (seconds) for the factorization of the ULTRASOUND80 matrix using
direct I/O mechanisms or the pagecache (P.C.), for both the synchronous (Synch.) and
asynchronous (Asynch.) approaches, and compared to the in-core case (IC) for various
numbers of processors of the IBM machine.
(*) The factorization ran out of memory.

large (64 or 128) the average volume of I/O per processor is very small for this test problem
(15.3 MB on 64 processors, 7.7 MB on 128) and the average time spent in I/Omode is very
low (less than 2.4 seconds) even in the synchronous scheme. Therefore, the synchronous
approach with direct I/O, which does not allow overlapping of computations and I/O’s
is not penalized much. Concerning the comparison of the asynchronous approach with
direct I/O to the system approach, performance are similar. However, when we have a
critical situation, the use of the system pagecache may penalize the factorization time, as
observed on 128 processors in the synchronous case. In Table 8.6, we report the results
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obtained on one large symmetric matrix. We observe here that it is interesting to exploit
asynchronism at the application level, both for the direct I/O approach and for the system
(pagecache) approach.

I/O mode Scheme 1 2 4 8 16 32 64 128
Direct I/O Synch. 983.7 595.3 361.3 158.2 69.8 41.6 26.9 21.5
Direct I/O Asynch. 951.4 549.5 340.5 156.9 65.7 41.5 24.7 16.3
P.C. Synch. 960.2 565.6 358.8 159.0 68.2 41.8 28.1 18.9
P.C. Asynch. 948.6 549.6 336.6 153.7 65.8 40.4 26.8 16.1

IC 922.9 (*) 341.4 162.7 64.3 39.8 20.7 14.7

Table 8.6: Elapsed time (seconds) for the factorization of the CONESHL_MOD matrix using
direct I/O mechanisms or the pagecache (P.C.) for both the synchronous (Synch.) and
asynchronous (Asynch.) approaches, and compared to the in-core case (IC), for various
numbers of processors of the IBM machine.
(*) The factorization ran out of memory.

8.5 Discussion

Overlapping of I/O’s and computations allows us to achieve high performance both
when asynchronism is ensured at the system level (pagecache) and when it is managed
at the application level (and uses the direct I/O approach). However, we have shown
that in critical cases (either when a high ratio I/O/computation is involved - as for
matrix QIMONDA07 - or when a huge amount of I/O is required - as for matrix CONV3D64)
the asynchronous scheme using direct I/O is more robust than the schemes using the
pagecache. Similar difficulties of the system approach for read operations have also been
shown in [8]. Furthermore, notice that even when the system approach has a good
behaviour, we have observed that it often achieves better performance when used with a
buffered asynchronous scheme at the application level: calling I/O routines (system calls)
too frequently decreases performance.

To conclude this chapter, let us mention the memory gains that can be obtained when
storing the factors to disk. For a small number of processors, the memory requirements of
the application decrease significantly (more than 90% on some problems in the sequential
case, as shown in column “1 processor” of Table 8.7). When the number of processors
increases (16 or more), an out-of-core execution usually allows us to save between 40%
and 50% of memory, as reported in Table 8.7. Note that in some cases, the amount of
memory saved can be much larger, as illustrated by the QIMONDA07 matrix.

In the rest of this dissertation, the code presented in this chapter will be referred
to as Factors-on-disk. This corresponds to the nomenclature previously introduced in
Chapter 2 (Section 2.6).
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Matrix 1 processor 16 processors 32 processors 64 processors 128 processors
OOC IC OOC IC OOC IC OOC IC OOC IC

AUDI_KW_1 2299 12188 909 1402 589 742 272 353 179 212
CONESHL_MOD 1512 7228 343 780 167 313 103 176 61 96
CONV3D64 6967 (17176) 1047 1849 540 930 265 471 148 251
QIMONDA07 29 4454 6 283 5 143 4 72 (*) (*)
ULTRASOUND80 1743 8888 339 662 178 323 92 176 52 92

Table 8.7: Average space effectively used for scalars (in MBytes) per processor, for sequen-
tial and parallel executions on various numbers of processors, in the out-of-core (OOC)
and in-core (IC) cases, for some large matrices. The IBM machine was used.
(*) The analysis ran out of memory. (17176) Estimated value from the analysis phase
(the numerical factorization ran out of memory).



Chapter 9

Effects of a parallel out-of-core stack
on memory

In the previous chapter we have presented a scheme in which factors are processed
out-of-core. Either to reduce more efficiently the memory requirements on large numbers
of processors, or to process even larger problems, one may also need to process the active
storage on disk. In this chapter, we evaluate the interest of storing the contribution
blocks out-of-core. Our motivation is that the problem of managing the active storage
out-of-core in a parallel asynchronous context is novel and needs to be studied before any
real-life implementation. In addition, the dynamic and asynchronous schemes used in
the parallel multifrontal method (at least as implemented in the MUMPS solver) make the
behaviour difficult to forecast. It is thus natural to evaluate the gains that can be expected
from such a parallel out-of-core method. To reach this objective, we extend the models
introduced in Chapter 2 (Section 2.6) to the parallel case. We use these models to better
understand the memory limitations of the approach and to identify the bottlenecks to
treat arbitrarily large problems. Note that treating problems as large as possible (topic of
this section) is a completely different issue from achieving good performance (as discussed
in the previous section).

9.1 Models to manage the contribution blocks on disk

in a parallel context

We extend to the parallel context the different out-of-core models of assembly schemes
introduced in Chapter 2 (Section 2.6, Figure 2.7): All-CB, One-CB, Only-Parent. As in
the serial case, we rely on Assumption 2.1 from Chapter 2. In particular, because we
assume that frontal matrices can be held in-core (but they can be scattered over several
processors), we maintain the write-once/read-once property. However, in parallel, the
stack mechanism to manage the contribution blocks is not maintained anymore since the
dynamic and asynchronous behaviour of the factorization does not guarantee that each

137
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processor performs a postorder traversal of the assembly tree.

Our aim is to evaluate the memory reduction allowed by our models. To assess the
memory requirements, we have instrumented our parallel solver (the one from the previous
chapter, Factors-on-disk) with a layer that simulates I/Os on the contribution blocks.
The idea is to assume that a contribution block is written to disk as soon as it is computed.
Then we assume that it is read back when needed (for the assembly of the parent node)
depending on the assembly scheme used. Data are at most written once and read once
and a counter holds the size of the memory used for each scheme: (i) the counter is
increased when a new task is allocated or when a contribution block is “read” from disk;
(ii) the counter is decreased when a factor block or a contribution block is “written” to
disk, or when a contribution block is freed (because it has been assembled into the frontal
matrix of the parent).

In parallel, when a contribution block is produced, the mapping of the parent node
may not be known (dynamic scheduling). Therefore, the contribution block stays on the
sender side until the master of the parent node has decided about the mapping of its
slave tasks. In our model, we assume that this contribution block is written to disk on
the sender side (thus decreasing the counter), until the information on where to send it
is known. At the reception of such a contribution, if the task (master or slave part of a
frontal matrix) depending on the contribution has already been allocated on the receiver,
the considered processor consumes it on the fly.

This count is performed during the parallel numerical factorization step of a real ex-
ecution: indeed, the memory requirements measured thanks to this mechanism exactly
correspond to those we would obtain if contribution blocks were effectively written to
disk. And contrary to the serial case, they cannot be forecast with a symbolic factoriza-
tion. Clearly our main goal is to study the potential of a parallel out-of-core multifrontal
method that stores temporary active storage to disk in terms of reduction of the core
memory requirements. To reach this objective, a full implementation of the I/O mecha-
nisms for each assembly scheme (together with the associated memory management for
each scheme) is not necessary.

9.2 Analysis of the memory needs of the different

schemes

We report in Figure 9.1 a comparison of the memory peaks obtained when using
our different assembly schemes for several large test problems (two symmetric ones and
two unsymmetric ones). These test problems are representative of the behaviour we
observed on the other matrices from Table 1.2. The top curve (Factors-on-disk), used
as a reference, corresponds to the memory requirements of the code from the previous
chapter, where factors are processed out-of-core but where the whole active storage is
kept in core memory; the other ones have been obtained with the instrumentation of
that code described above. We observe that the strategies for managing the contribution
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blocks out-of-core provide a reduction of the memory requirement that scales similarly
to the Factors-on-disk version. We also notice that the peak of core memory for the
All-CB assembly scheme is often close to the one of the Factors-on-disk code. On
the other hand, we observe that the One-CB scheme significantly decreases the memory
requirements, and that the Only-Parent scheme further reduces the memory needed
for the factorization. The relative gain observed with the Only-Parent scheme is large
enough to conclude that it is worthwhile applying this scheme, in spite of the possible
overhead on efficiency (and complexity) due to the need to be able to interleave I/O
operations with assembly operations on small blocks of rows. It represents the minimal
memory requirement that can be reached with our model, in which active frontal matrices
are kept in-core.

Finally notice that the memory requirement measured for each scheme corresponds
to specific tasks (subtrees, master tasks, slave tasks, see Section 7.1) that have been
allocated to the processor responsible for the peak of memory. In the next section, we
analyze the content of the memory when the peak is reached in order to understand the
critical features of the parallel multifrontal method that can affect it.

9.3 Analysing how the memory peaks are obtained

We now analyze in more detail which types of tasks cause the peaks for each strategy.
Table 9.1 shows the state of the memory when the peak is reached on the processor
responsible for the peak, in the case of an execution on 64 processors for the AUDIKW_1

problem. Note that, based on load balancing criteria, the dynamic scheduler may allocate
several tasks to one processor (each type of task is defined in Section 7.1). We notice that
for the Only-Parent and One-CB out-of-core schemes as well as for the active memory in-
core case, the memory peak is reached when a subtree is processed (more precisely when
the root of that subtree is assembled). In the Only-Parent case, the processor also has a
slave task activated. For the All-CB scheme, the peak is reached because the scheduler
has allocated simultaneously too many slave tasks (3) to one processor, reaching together
42.97% of its memory. Note that it was also responsible for a master task but its size
is less important (5.93%). Similarly to matrix AUDIKW_1, we have indeed studied the
memory state for almost all the problems presented in Table 1.2, on various numbers of
processors. Rather than presenting all the results, we preferred to only present here the
main phenomena observed on a representative example. We nevertheless give another
example for an unsymmetric matrix (CONV3D64) in Table 9.2.

For the symmetric problems (AUDIKW_1, but also SHIP_003, CONESHL2, CONESHL_MOD,
for example), between 8 and 128 processors, the peak is reached 1 when the root of a
sequential subtree is assembled; this occurs for all out-of-core schemes. Sometimes a slave

1. Except that (i) for the CONESHL_MOD problem on 64 processors the peak for the Only-Parent scheme
arises when the root of the overall tree is processed; and (ii) for the AUDIKW_1 problem on 64 processors,
the peak for the All-CB scheme is reached early in the factorization process (22% of the factorization
time is then elapsed) while one single processor is simultaneously responsible for three slave tasks.
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Memory ratio of the active tasks Memory ratio of
Scheme master tasks slave tasks sequential subtrees the contribution blocks
Stack in-core 0% 0% 27, 11%∗ 72, 89%
All-CB 5, 93% 42, 97%∗ 0% 51, 10%
One-CB 0% 0% 75, 10%∗ 24, 90%
Only-Parent 0% 48, 32% 51, 63%∗ 0, 04%

Table 9.1: Memory state of the processor that reaches the global memory peak when
the peak is reached, for each out-of-core scheme and for the stack in-core case, on the
AUDIKW_1 problem with 64 processors. Symbol ∗ in a column refers to the last task
activated before obtaining the peak, which is thus responsible for it. When a sequential
subtree is responsible for the peak, we observed that it is (here) at the assembly step
of its root; so the numerical value reported in the corresponding column represents the
amount of memory of the frontal matrix of the root of this subtree.

Memory ratio of the active tasks Memory ratio of
Scheme master tasks slave tasks sequential subtrees the contribution blocks
Stack in-core 0% 40.19%∗ 0% 59.81%
All-CB 0% 65.71%∗ 0% 34.29%
One-CB 38.89% 46.27%∗ 0% 14.84%
Only-Parent 47.82% 52.06%∗ 0% 0.12%

Table 9.2: Memory state of the processor that reaches the global memory peak when
the peak is reached, for each out-of-core scheme and for the stack in-core case, on the
CONV3D64 problem with 64 processors. Symbol ∗ in a column refers to the last task
activated before obtaining the peak, which is thus responsible for it.
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Figure 9.1: Memory behaviour (maximum memory requirement per processor) with dif-
ferent assembly schemes and various numbers of processors for several large problems
(METIS is used as reordering technique).

task may still be held in memory when the peak arises (and it can then represent between
25 and 75 % of the memory of the active tasks on the processor). For CONESHL2, a smaller
symmetric problem, this behaviour remains globally true but it is less systematic (except
for the Only-Parent scheme for which it remains systematic). Indeed, the main reason is
that the memory of the active tasks is low compared to the one of the contribution blocks;
the memory peak may thus arise just because we get one or several large contribution
blocks.

For the unsymmetric problems (CONV3D64, ULTRASOUND80), on many processors (from
16 to 128), the peak is generally obtained because of a large master task. This is increas-
ingly true when we tend to the Only-Parent scheme. With fewer processors (less than 8),
the assembly of a root of a subtree is more often responsible for the peak. Nevertheless,
these effects are sometimes hidden when many (2 up to 6) tasks are simultaneously active.
For example, on 64 processors with the All-CB scheme, for the CONV3D64 problem, the
peak is obtained while a processor has four slave tasks simultaneously in memory.
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Thanks to parallelism, memory needs of a particular task can be parcelled out over
many processors. Ideally, platforms with an arbitrarily large number of processors should
thus enable the factorization of arbitrarily large problems. However, in order to be
efficient, some tasks are sequential and become the memory bottleneck when the other
ones are parallelized.

First, in MUMPS, to bound the number of communications, the nodes at the bottom
of the tree are aggregated into subtrees which are treated sequentially (see Figure 7.1).
Such a subtree may then be critical in terms of memory, its peak (usually arising when
its root is performed) being the memory bottleneck of the whole factorization step. We
observed it was particularly true for symmetric problems.

Next, the processor responsible for a master task treats sequentially all the fully
summed rows of the corresponding frontal matrix (only the blocks matching the Schur
complement can be distributed over several processors). This way, with a large number
of processors, their treatment becomes critical. Figure 7.2 shows that the memory needs
corresponding to master tasks are more important for unsymmetric cases than for sym-
metric ones. On the range of processors used, the limiting factor observed is indeed the
treatment of master tasks for unsymmetric problems and the one of the subtrees in the
symmetric case.

9.4 Decreasing the memory peaks

It results from the previous section that in order to decrease the memory needs, the
size of the master tasks has to be limited for the unsymmetric problems whereas the
size of the subtrees has to be diminished for the symmetric ones. Furthermore, applying
together these two approaches could further improve scaling. On a limited number of
processors, the number of simultaneous active tasks should moreover be bounded.

Concerning large master tasks, we can use the splitting algorithm of [9]. Since the
factorization of the pivot rows of a frontal matrix is performed by a single (master)
processor, we replace the frontal matrix in the assembly tree by a chain of frontal matrices
with less pivot rows, as illustrated in Figure 9.2. This limits the granularity of master
tasks, at the cost of increasing the cost of assemblies from children to parents.

Concerning the size and the topology of the subtrees, they are currently based on
load balancing criteria. For the symmetric problems, we have modified the corresponding
threshold by hand to diminish the size of the subtrees. As shown in Figure 9.3(a) for the
AUDIKW_1 problem, we can save up to more than 40% on large symmetric problems. In
particular, the One-CB scheme, which (as shown above) is a good balance between perfor-
mance and memory, saves more than 20% at every execution on the range of processors
used (8 - 64). Note that decreasing the size of the subtrees allows us to decrease the global
memory peak not only because (in most cases) it was obtained when processing a root
of a subtree but also (sometimes) because decreasing the granularity of these sequential
tasks allows a better load balancing when processing the tasks just above these in the
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Figure 9.2: Tree before and after the subdivision (or splitting) of a frontal matrix with a
large pivot block.

assembly tree. For the AUDIKW_1 problem on 64 processors, this second reason (and only
this one) explains the saving of 23% of memory with the All-CB scheme (Figure 9.3(a)).

For the unsymmetric matrices, we have split the largest master tasks. The corre-
sponding node is replaced by a chain of nodes. Figure 9.3(c) shows that for the CONV3D64
problem we get important savings (from 8.5 up to 27.8%) except on 64 processors for
which we did not manage to get a good tuning.

When we split master tasks of unsymmetric matrices, we have observed that the new
memory peak then sometimes arises when a subtree is processed. Thus, we have tried
to both split large master tasks and reduce the size of the subtrees. For the CONV3D64

problem, with the One-CB strategy on 32 processors, splitting the master tasks allows us
to process the problem with a memory of 69 million reals per processor, that is a 8.5%
saving (see Figure 9.3(c)); but additionally decreasing the size of the subtrees makes it
possible to treat it with 62 millions of reals which represents this time a 17.8% saving.
Reciprocally, splitting the master tasks of the symmetric problems after reducing their
subtrees sizes allowed us to increase the memory savings in several cases. The AUDIKW_1
problem illustrates this phenomenon for which on 32 processors 23.2% of memory is then
saved instead of 12.4% without splitting. Nevertheless, with these memory improvements
a new problem arises: the elapsed time for the factorization step increases. For example,
for the CONV3D64 problem on 32 processors with the Only-Parent strategy, splitting
does allow us to save 23% but we then observed an overhead of 20% on the elapsed
factorization time (418.8s → 496.9s). We face a key point of the future work: decreasing
memory requirements while keeping good performance. Indeed, in the current scheme
implemented, the mapping of the chain of nodes built when splitting nodes with a large
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Figure 9.3: Memory savings for two symmetric problems, 9.3(a) and 9.3(b) cases (resp.
for two unsymmetric problems, 9.3(c) and 9.3(d) cases ), obtained by decreasing the size of
the subtrees (resp. by splitting the master tasks), for several stack memory management
schemes, on various numbers of processors. METIS is used to permute the matrices.

master task implies a communication overhead.

9.5 Conclusion

In this chapter, we have studied the effect on the core memory of storing the contribu-
tion blocks to disk. The results show some potential of the parallel out-of-core multifrontal
method: it seems that the intrinsic limits of the sequential multifrontal method become
much less critical thanks to parallelism. In the two cases (symmetric and unsymmetric),
we have modified thresholds of load balancing constraints to save memory. The thresh-
olds have been tuned specifically for each case. New criteria and algorithms based on
memory constraints now have to be designed to determine the size of the subtrees and
granularity of tasks. Furthermore, all scheduling decisions should be adapted to fit the
out-of-core scheme and avoid too many simultaneously active tasks.

In the next chapter, we will tackle the problem of memory scalability from a different
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point of view. Rather than modifying some parameters of an existing mapping, we will
rethink the mapping and scheduling aspects to focus on memory scalability, even when
the stack is processed in core.
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Chapter 10

Improving the memory scalability

In the previous chapter, we have assessed the potential of a parallel method that
processes the contribution blocks out-of-core. Another approach consists in keeping the
contribution blocks in-core and limiting the peak active storage (contribution blocks and
active frontal matrices). Even if the contribution blocks were processed out-of-core, re-
ducing the peak of storage would bound the I/O volume. We already know the postorder
traversal that minimizes this peak in the serial case (see [45], [55] or Section 3.1.2). In the
parallel case, we would ideally like to divide this amount of memory by the number p of
processors used to perform the factorization. We formalize that intuition with the notion
of memory efficiency. Let Sseq be the amount of storage required to process a given ma-
trix in sequential mode, Savg(p) the average amount of storage (among all the processors)
required to process that matrix with p processors, Smax(p) the maximum amount (among
all the processors) of storage required to process that matrix with p processors.

Definition 10.1. The memory efficiency on p processors is defined as: e(p) = Sseq

p×Smax(p)
;

the average memory efficiency is defined as: eavg(p) =
Sseq

p×Savg(p)

A perfect memory scalability on p processors corresponds to a memory efficiency equal
to e(p) = 1. It is obtained when (i) the average memory efficiency is equal to eavg(p) = 1
and (ii) the memory peaks on the different processors are equal.

10.1 Proportional mapping and memory scalability

10.1.1 Practical study on real-life matrices

In practice, the average memory efficiency of the Factors-on-disk code from Chap-
ter 8, based on MUMPS, is significantly lower than the ideal value of 1 as illustrated in
Table 10.1. One obvious reason for this suboptimal scalability is that the dynamic sched-
uler allows several tasks to be active simultaneously [13] on a given processor: those
tasks occupy some memory and the processor works on them alternatively, depending on

147



148 CHAPTER 10. IMPROVING THE MEMORY SCALABILITY

Number p of processors 16 32 64 128
AUDI_KW_1 0.16 0.12 0.13 0.10

CONESHL_MOD 0.28 0.28 0.22 0.19
CONV3D64 0.42 0.40 0.41 0.37
QIMONDA07 0.30 0.18 0.11 -

ULTRASOUND80 0.32 0.31 0.30 0.26

Table 10.1: Average memory efficiency eavg (p) of the Factors-on-disk code from Chap-
ter 8. METIS ordering was used. These results have been derived from Table 8.7 (out-of-
core part).

r

cb1 = 43 cb2 = 43 cb3 = 43
S1 = 182 S2 = 115 S3 = 115

S = 225

T1 T2 T3

W1 = 1516 W2 = 580 W3 = 566

Figure 10.1: Zoom on the top of the elimination tree of matrix ULTRASOUND80. The root r
has 3 children. Each child i (1 ≤ i ≤ 3) is root of a subtree Ti. Each subtree Ti

represents Wi Gflops. The other numeric values are in millions of reals. They represent
the sequential storage requirements for the whole elimination tree (S) or for the subtrees
(Si, 1 ≤ i ≤ 3); the frontal matrices associated with the roots of each subtree Ti produces
a contribution block of size cbi.

message receptions. However, we have constrained the dynamic schedulers to avoid such
situations, and have observed that the average memory requirement was not significantly
improved when the tasks are processed one after another. For instance, on 32 processors,
matrix ULTRASOUND80 would require 139 MB per processor doing so. It is lower than the
original 178 MB but still represents a low average memory efficiency (eavg(32) = 0.39).

We now explain this gap. To ensure coarse-grain parallelism and achieve high per-
formance, parallel multifrontal methods partly rely on proportional mapping [36]. That
top-down algorithm is performed during the analysis step and aims at mapping the pro-
cessors onto the nodes of the elimination tree. Even if the proportional mapping in a code
like MUMPS is relaxed, let us consider what happens with a strict proportional mapping.
Initially, all the processors are mapped on the root of the elimination tree. The children
then recursively inherit a subset of the processors that are mapped on their parent. The
number of processors mapped on a child is proportional to the amount of work related
to the subtree rooted at this child. The root of the elimination tree associated with
matrix ULTRASOUND80 has 3 children as illustrated in Figure 10.1. Initially, p = 32 pro-
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cessors are mapped on that root. A maximum average memory efficiency corresponds to
an average memory peak equal to 7.0 million reals per processor (serial peak of storage,
S, divided by p). According to the proportional mapping algorithm, the three children
respectively inherit p1 = 18.4, p2 = 6.9 and p3 = 6.7 processors (the sum is equal to 32),
proportionally to the workload Wi of the subtree Ti whose child i is root. Subtree T1 has
a sequential peak of storage equal to S1 = 182 million reals. At best, if T1 is processed
with an optimum memory efficiency with respect to that subtree, the average memory
peak will be equal 9.9 million reals per processor (S1/p1). This amount is greater than
the 7.0 million reals per processor required to process the whole tree with an optimum
average memory. Similarly, at best, subtrees T2 and T3 can be respectively processed
with 17.7 and 17.1 million reals per processor. Therefore, the average peak of storage per
processor on the whole tree will be far greater than 7.0 million reals per processor and
the optimum average memory efficiency cannot be reached.

One may think the reason is that proportional mapping is performed proportionally to
workload but not to storage requirement. Let us apply this latter variant of proportional
mapping to matrix ULTRASOUND80 with 32 processors. Each subtree Ti inherits a number
of processors proportional, this time, to its storage requirement Si. We obtain p1 = 14.1,
p2 = 9.0 and p3 = 8.9. Therefore, at best, each subtree can be processed with 12.9
million reals per processor (Si/pi). This amount is equal for each subtree but remains
significantly greater than the amount of 7.0 million reals per processor required to process
the whole tree with an optimum average memory. We conclude that the partitioning of
the processors mapped on the parent into disjoint subsets of processors is in itself a
drawback to memory efficiency.

On the other hand, let us assume that all the processors are mapped on each subtree
and that we process the subtrees one after the other. All the processors are mapped on
subtree T1 (p1 = 32). It can thus optimally be processed with an average memory per
processor equal to 5.7 million reals (S1/p1). Then, its contribution block is scattered on
those 32 processors when processing T2, again with all the processors (p2 = 32). When the
second subtree is processed, the contribution block of the first subtree has to be kept in
memory. It can thus optimally be processed with an average memory per processor equal
to 4.9 million reals ((cb1 + S2)/p2). Similarly, T3 is processed with p3 = 32 processors
with the contribution blocks of the first two subtrees distributed in the memories of the
different processors. Subtree T3 can thus optimally be processed with an average memory
per processor equal to 6.3 million reals ((cb1+cb2+S3)/p3). At no time, the critical value
of 7.0 million reals has been exceeded. That amount is finally reached when the root is
processed and a memory efficiency equal to 1 is obtained.

10.1.2 Quantification of the sub-optimality of proportional mapping

Let us consider an elimination tree similar to a perfect binary tree, that is a tree in
which every node has two children except leaf nodes which are all at the same depth
(see Figure 10.2(a)). We assume that the tree is processed with p = 2k processors. We
assume that the nodes that are at a depth lower than or equal to k have contribution
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d=0

d=1

d=2

d=3

d=4

(a) Elimination tree (b) Postorder traversal (c) Traversal induced by propor-
tional mapping

Figure 10.2: A perfect binary elimination tree (a) and possible traversals (b,c). Data in
memory when the peak is reached during the tree traversal are colored. There are p of
them in (c) and only log(p) of them in (b). The arrow points to the node on which the
peak is reached with a postorder traversal (b).

blocks of the same size, cb, and frontal matrices of same size, m = 2×cb. We furthermore
assume that the subtrees at depth d = k require a storage Sk ≥ 2× cb. With a postorder
traversal, the storage required to process the whole tree is equal to Sseq = k × cb + Sk

(see Figure 10.2(b)).

If all the processors are mapped on each node and that they synchronously follow
a postorder traversal, the memory efficiency is equal to 1. On the other hand, if we
assume that a proportional mapping has been applied, each subtree at depth d = k is
processed on a different processor (which means that p = 2k). The peak of memory of
each processor is thus equal to Sk (see Figure 10.2(c)) and the memory efficiency is then

equal to eavg(p) =
Sseq

p×Sk
= k×cb+Sk

p×Sk
≤ k/2+1

p
= O(log(p)/p).

In practice, the largest frontal matrices and contribution blocks are often at the top
of the elimination tree. Therefore, the proportional mapping may not induce such a poor
memory efficiency in all cases.

10.2 A memory-aware mapping algorithm

In the previous section we have shown that proportional mapping was usually a draw-
back to reach a high memory efficiency and that an optimum average memory efficiency
is obtained with a postorder traversal of the elimination tree. This postorder traversal
requires all the processors to be mapped on each node. Each node is processed in parallel
but the nodes are processed one by one. The structure of the elimination tree is not used
to ensure coarse-grain parallelism anymore. Clearly the exclusive use of such a fine-grain
parallelism is a major bottleneck to achieve reasonable performance.

We now assume that we are given an amount M0 of memory per processor. If that
amount is greater than or equal to Sseq/p, the matrix can be processed with p processors
by following the same postorder traversal as in the sequential case. But we can also use
the available memory to locally perform some proportional mapping when possible. The
purpose is to favour coarse-grain parallelism (between paths of the elimination tree) to
fine-grain parallelism (on a single node). An equivalent objective is to limit the number
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of processors per node as long as the memory constraint is respected and the workload is
balanced.

We adapt the proportional mapping algorithm as follows. We assume that a prelim-
inary bottom-up traversal of the elimination tree has computed the storage requirement
Si and the number of floating points operations Wi of each subtree Ti (1 ≤ i ≤ nsbtr).
Our memory-aware mapping algorithm is then applied before starting the numerical fac-
torization. It traverses the nodes of the elimination tree from top to bottom. Initially, all
the nodes are mapped on the root of the elimination tree. The children then recursively
inherit a subset of the p processors that are mapped on their parent. We first try to
perform a proportional mapping step: the number of processors mapped on a child is
proportional to the amount of work of the subtree rooted at this child. We then check
whether each subtree Ti respects the memory constraints (Si/pi ≤M0):

– If all the subtrees respect the memory constraints, we partition the set of processors
mapped on the parent into disjoint subsets (

∑nsbtr

i=1 pi = p), according to the pro-
portional mapping. The subtrees will be processed in parallel during the numerical
factorization and will inherit the same memory constraint M0.

– Otherwise, each subtree inherits all the processors of its parent (∀i, pi = p) and the
subtrees will be processed one by one during the numerical factorization, following
a local postorder. In that case, when a subtree Tj is processed during the numerical
factorization, the contribution blocks of the previous siblings (1 ≤ i < j) have to
be kept in memory. We take into account this memory consumption by modifying
M0 for the next levels: M0 ← M0 − (

∑j−1
i=1 cbi)/p. This means that each one of

the p processors inherits on average a part cbi/p of its previous sibling contribution
blocks. The new value of M0 will be recursively used for the tests at the lower levels
of subtree Tj.

This algorithm ensures that, for a given an amount of memory M0 ≥ Sseq/p, we
obtain a mapping such that the effective average storage used in the actual factorization
satisfies: Savg(p) ≤ M0. However, at this point, we have no control on the memory
unbalance related to the size of the master tasks (see Section 7.1) which means that
Smax(p) may be greater than M0. Therefore, we take into account a possible unbalanced
memory distribution with a tolerance parameter, t > 1: the actual check consists in
verifying whether Si/pi ≤ M0/t is true. In practice, we must provide M0 ≥ t × Sseq/p.
If the effective memory imbalance (Smax(p)/Savg(p)) is lower than t, we will use less
memory than M0 (Smax(p) < M0). The parameter t will be determined experimentally
(see below).

10.3 First experiments

We have implemented the memory-aware mapping algorithm described above within
MUMPS. We have also modified the dynamic schedulers of MUMPS to respect the constraints
imposed by our mapping algorithm. Indeed, the subtrees that inherit all the processors
of their parent in the memory-aware algorithm have to be processed according to a local
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postorder traversal. Therefore, we have prevented the activation of more than one node
at a time on a given processor and we have implemented dynamic mechanisms (slave
selection strategy, task selection) that force us to follow the expected traversal. We
illustrate the effects of our algorithm on memory usage with matrix ULTRASOUND80 on 32
processors. The results presented in this section have been obtained on the Borderline
machine (see Section 1.4.2 of Chapter 1).

In a first experiment, we have used a tolerance parameter t = 3.0 and a memory
M0 = 5× Sseq/p = 35.2 million reals. The factorization successfully ran with an average
effectively used memory equal to 11.8 million reals. However, the memory usage of all
processors was unbalanced: the most loaded processor used 34.8 million reals. The ratio
Smax(p)/Savg(p) = 2.95 remained lower than the tolerance parameter t = 3.0. The fac-
torization would have failed with a tolerance parameter t < 2.95. Indeed, the unbalanced
distribution of memory usage is due to large master tasks on which our algorithm has
no control. As discussed before, the algorithm succeeds if the effective ratio between
the maximum memory usage and the average memory usage is lower than the tolerance
parameter; we need: Smax(p)/Savg(p) < t. Said differently, our algorithm maximizes the
average memory efficiency eavg(p) but the memory efficiency itself, e(p), will be bounded
by 1/2.95. This is not very satisfactory since, in practice, e(p) is the critical parameter.

To overcome this drawback, we have split large frontal matrices into chains of nodes
(see Figure 9.2 and the related discussion in Section 9.4). We have ensured that the size
of the master part of each resulting node of a chain is bounded by the value: 1/3×Sseq/p.
This is is clearly a strong constraint but it is used here to assess whether the splitting of
master tasks can resolve the problem of memory balancing. We now apply our algorithm
after that preliminary splitting step. To take into account the expected improvement on
the memory balancing, we use a lower tolerance parameter t = 2.5. We also expect to
be able to go further in the memory reduction and take in entry an amount of memory
M0 = 3×Sseq/p = 21.1 million reals. The factorization step successfully ran. An average
effective space of 8.79 million reals was used and the maximum effective space used was
equal to 8.96 million reals. We obtained an almost perfect memory balance as illustrated
by the distribution of the memory peaks in Figure 10.3. All the processors have reached
their peaks when processing the same node, except processor 1 which was master of the
node. Thanks to the initial splitting, master tasks are not a bottleneck for memory
anymore.

The maximum memory peak of 8.96 million reals corresponds to a memory of 72 MB
and a memory efficiency equal to e(32) = 0.8. This amount of memory is much lower
than the 178 MB obtained with the Factors-on-disk code of Chapter 8 (see Table 8.7).
Furthermore, the relaxation parameter t = 2.5 can be decreased since in practice the
ratio Smax(p)/Savg(p) is almost equal to 1.

Figure 10.4 presents the impact of the available memory M0 on the average number
of processors per node. We recall that coarse-grain parallelism is obtained when that
number is small. For each node, we divide the number of processors of the new mapping
by the number of processors of the proportional mapping. We compute this ratio for
all the nodes at a given depth and report the average value obtained at each depth.
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on 32 processors.

Clearly, we see that our memory-aware algorithm exploits the available memory to limit
the average number of processors per node. One interesting point of Figure 10.4 is the
square of coordinates (1, 1). It means that with an available memory of M0 = 8/32 ×
Sseq, we can apply a local proportional mapping on the root r of matrix ULTRASOUND80.
Therefore, the 3 child subtrees of r (see Section 10.1.1) can be processed in parallel. At
depth 2 (square of coordinates (2, 1.9)), some nodes then require more processors than
the proportional mapping because of the memory constraints. The point corresponding
to the “plus symbol” of coordinates (4, 18.1) shows that with a very limited memory
(M0 = 1/32 × Sseq), our algorithm strongly diverges from the proportional mapping on
the top of the elimination tree (depth 4). Finally let us notice that the bottom of the
elimination tree (depth d > 10) can be processed with the same degree of parallelism in
all cases: the memory-aware algorithm has exploited the fact that, on that matrix, the
bottom of the tree is not critical for memory.

10.4 Discussion

We have presented an algorithm which builds and follows the sequence that allows as
much coarse-grain parallelism as possible while respecting the memory constraints. This
sequence is built at the analysis step and is strictly respected during the parallel numerical
factorization step. Nevertheless, the memory usage varies in time (see Figure 2.5 in
Chapter 2). Therefore, we could temporarily exploit the free memory to deviate from the
initial sequence and dynamically balance the workload. For example, we may start some
tasks if memory allows it and we are sure that we do not take too many risks: decisions
that enable to respect present memory constraints may lead the execution to run out-of-
memory later on. This situation is similar to deadlock avoidance algorithms [64] except
that in our context the critical resource is the memory. The sequence that we have
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exhibited represents in deadlock avoidance algorithms what is called a safe sequence.

10.5 Other memory reductions

The out-of-core functionality has strongly reduced the memory requirements for the
real space used in MUMPS. Therefore, some other workspace that used to be small compared
to the real space became significant and their size had to be reduced. The work presented
in this section is joint work with all the MUMPS development team.

I/O buffers

We have mentioned in Chapter 8 that our Factors-on-disk code requires large buffers
to perform asynchronous I/O’s. The drawback of that approach was that the size of the
I/O buffers was dependent on the size of the frontal matrices and could be huge (see
column Factor block of Table 10.2). Initially, the elementary written data was the factor
part of each matrix. We have divided that factor part into panels of fixed size. The
work consisted in rethinking the I/O layer to manage panels. We have obtained three
advantages from that:

– The buffer size has been strongly reduced when asynchronism is managed at the
application level (see column Panel of Table 10.2);

– I/O’s can be overlapped with computations during the factorization of a frontal ma-
trix whereas they used to be overlapped only between the factorizations of different
frontal matrices.

– The L and U factors can be written to independent files. This allows a better data
access during the solution step and strongly reduces the efficiency of that step which
is even more sensitive to I/O’s than the factorization phase.

Out-of-core elementary data
Matrix #procs Factor block Panel

AUDIKW_1 1 1067.1 12.8
AUDIKW_1 32 155.5 12.8

CONESHL_MOD 1 1292.8 13.8
CONESHL_MOD 32 125.1 10.6

CONV3D64 1 3341.5 40.2
CONV3D64 32 757.6 40.2

ULTRASOUND80 1 1486.6 20.4
ULTRASOUND80 32 208.3 20.4

Table 10.2: Size of the I/O buffers (MB) with an asynchronous factorization.

Limiting the size of the communication buffers

We have noticed in our preliminary study (see Table 7.1) that communication buffers
became critical in a parallel out-of-core context. For instance, matrix CONV3D64 used
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to require 1260 MB (all included) per processor with the in-core version of MUMPS on 32
processors. Among those 1260 MB, 286 MB were dedicated to the communication buffers.
That amount was defined with respect to the largest message that could possibly be sent
during the factorization. It was thus dependent on the size of the problem and on the
number of processors. With the Factors-on-disk code from Chapter 8, the total space
required to perform the factorization has been decreased to 800 MB per processor. The
size of the communication buffers thus represents 35% of the total memory used.

The communication messages have been split into packets of smaller messages of fixed
size. Table 10.3 shows the effects on memory. This communication scheme has required
the introduction of some new synchronizations. However, experimental results have shown
that they do not induce a significant overhead on performance.

Communication scheme
Matrix Original scheme New scheme

AUDIKW_1 264 4.2
CONESHL_MOD 66 3.7
CONV3D64 286 16.1
ULTRASOUND80 75 8.2

Table 10.3: Size of the communication buffers (MB) on 32 processors.

In-place allocation in the serial subtrees

We have also implemented a last-in-place scheme (see Section 2.1.2) where the last
child is allowed to overlap with the frontal matrix of the parent. This allowed us to
decrease the memory requirements for the serial subtrees by an amount usually approxi-
mately equal to 15% on average.

10.6 Conclusion

To conclude, we have proposed an algorithm that allows us to scale the memory
space used for the active storage. Together with the other memory reductions presented
in Section 10.5, our new code is ready to process very large matrices. The novelty of
our algorithm is that it exploits the available memory to allow for as much coarse-grain
parallelism as possible. This coarse-grain parallelism should lead to good performance by
limiting the amount of communication.

Currently, our algorithm induces an average overhead on performance of a factor 3
compared to the original Factors-on-disk code. We need to further investigate and
understand the reasons for this slow down. In all cases, we think that the splitting of
master tasks is responsible for a large part of that overhead. In the current code, splitting
is performed before our memory-aware mapping algorithm. One possible improvement
would consist in interleaving mapping and splitting to limit the number of split nodes as
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a function of the number of mapped processors. Another improvement (that could be in
addition to the previous one) would consist in rethinking the communication scheme of
split nodes. The idea would consist in mapping the same processors to the same rows of
each node of the chain.

A detailed performance study then needs to be carried out knowing that there are
also possibilities for improvement with respect to the discussion of Section 10.4. This
could lead to improvements in the mapping algorithm and in the dynamic schedulers. All
in all, even if the performance could be improved, this approach already provides a very
good memory scalability and should allow the solution of very large problems. This is a
very important result from the point of view of applications.



Conclusion

In this dissertation we have addressed both theoretical (Part I) and practical (Part II)
issues related to out-of-core sparse direct methods. These parts have progressed in par-
allel.

Part I has investigated the difficulties of storing temporary data on disk. To study
the out-of-core multifrontal method, we had to start by modeling the I/O volume and
understanding its behaviour. We have then shown that minimizing the I/O volume is
different from minimizing the peak storage, even in the most simple cases where the data
access pattern follows a stack mechanism. We have proposed algorithms to minimize the
I/O volume for many variants of the multifrontal method, including terminal and flexible
allocations, classical and in-place assembly schemes, as well as new assembly schemes
(max-in-place, in-place-realloc). We have provided all the ingredients to design a serial
out-of-core multifrontal solver that minimizes the I/O volume related to the stack of
contribution blocks; this includes memory management algorithms that should allow an
efficient implementation. Furthermore, the proposed algorithms can improve the serial
parts of parallel solvers based on a multifrontal method such as MUMPS.

Concerning supernodal methods, we have generalized to the sparse case (under specific
assumptions) a well known result from dense factorization: left-looking algorithms allow
us to perform significantly less I/O than right-looking algorithms. To prove this result,
we have considered an existing hybrid method (left-looking/right-looking) proposed and
implemented in [41, 63] and compared it with other possible combinations of left-looking
and right-looking methods. We have then addressed the problem of I/O minimization
for two specific methods (left-looking/right-looking and left-looking/left-looking); we have
exhibited an optimum algorithm for the first one (under our specific assumptions) and
proposed a heuristic for the second one after showing that it is NP-complete. This study
has led us to develop a prototype out-of-core extension of SuperLU. The purpose has been
to build an out-of-core-friendly data access pattern that respects as much as possible the
original in-core version of SuperLU. Currently, our prototype performs memory copies
instead of I/O’s. We plan to incorporate a robust I/O layer in the prototype in order to
assess the actual efficiency of our method.

157
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All in all, the results presented in Part I tend to show that the I/O-minimization
problem is more complex than the memory minimization problem: in contexts where the
memory could be minimized with greedy algorithms, we have had to employ heuristic
approaches in order to limit the volume of I/O since the associated decision problem
was proved to be NP-complete. Although we have shown that the I/O minimization was
NP-complete both in the context of the (flexible) multifrontal methods and the one of
the supernodal methods (left-looking/left-looking approach), we think that the practical
difficulty for reducing the I/O volume is not the same for these two classes of direct meth-
ods. Indeed, for the multifrontal methods, we could exhibit algorithms that are optimum
in (most) practical cases. On the contrary, supernodal methods provide more freedom in
the data access pattern and we could only address the I/O minimization problem under
specific assumptions; the minimization of the I/O volume without those restrictive as-
sumptions remains an open problem. In all cases, the proposed algorithms apply in (and
have been implemented for) the general case for which they remain interesting heuristics.
In particular, it seems to us that top-down partitioning algorithms of the elimination tree
into SuperPanels should be preferred to bottom-up approaches that have been used so
far [63].

In Part II, we have presented a robust parallel out-of-core direct solver that stores
computed factors on disk. It allows us to handle problems significantly larger than an in-
core solver. The out-of-core factorization achieves a high efficiency: we have shown that
it could be almost as fast as the in-core one on our platforms. We have also highlighted
several drawbacks of the I/O mechanisms generally used in other out-of-core sparse direct
solvers (which in general implicitly use system buffers): memory overhead that can result
in excessive swapping activity, extra cost due to intermediate memory copies, dependency
on the system policy and non reproducibility of the results. We have then proposed a
robust and efficient I/O layer, which uses direct I/O’s together with an asynchronous
approach at the application level. This avoids the drawbacks of the system buffers and
allows one to achieve good (and reproducible) performance. On a limited number of
processors, storing factors on disk clearly allows us to solve much larger problems. With
more processors (16 to 128), because the active storage does not scale as well as the
factors, the core memory usage is only reduced by a factor of two, on average. This
parallel out-of-core code is already used by several academic and industrial groups, and
enables them to solve problems much larger than before, especially when the number
of processors is limited. All the functionalities available in MUMPS may be used in this
new out-of-core code (LU or LDLt factorization, pivoting strategies, out-of-core solution
step [8], . . . ). In order to go further in the memory reduction, we have then studied two
complementary aspects: storing the contribution blocks on disk and totally rethinking
the mapping and the scheduling of the tasks.

To study a possible out-of-core storage of the contribution blocks, we have proposed
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in Chapter 9 several models for the assembly step of parallel multifrontal methods. We
have instrumented our solver (that stores factors to disk), performed parallel executions
and measured the memory requirements for each model. This analysis showed that the
most complex assembly scheme would be the most useful to implement. We have also
identified some key parameters related to the management of parallelism (granularity of
subtrees and of master tasks) that can impact the memory usage.

Based on those results, we have decided in Chapter 10 to first rethink the mapping
and scheduling strategies. Our purpose has been to achieve a good scalability of the
storage associated with contribution blocks. This is useful in the existing code that stores
factors on disks and would reduce the I/O volume when contribution blocks are on disk.
We have first shown that maximizing coarse-grain parallelism (ensured by proportional
mapping) and minimizing the memory usage are two contrary objectives. We have then
proposed an algorithm that achieves a very high memory scalability at the cost of being
restricted to fine-grain parallelism. Finally, we have proposed an algorithm that exploits
the available memory to maximize coarse-grain parallelism as long as it respects the
memory constraints. Combined with other memory reductions (sizes of the I/O and
communication buffers, size of the serial subtrees), our memory-aware algorithm has
proved to significantly reduce the memory usage on large matrices and is ready to process
very large ones. Our scalable out-of-core direct solver particularly fits the requirements
of architectures which have a huge number of cores but a limited amount of memory per
core (e.g. Blue Gene).

All in all, Part II has shown that parallel multifrontal methods could allow us to
process large problems with a high efficiency. In particular, we have seen that parallelism
allows us to efficiently handle frontal matrices - that are a major drawback to serial
out-of-core multifrontal methods [61, 63]. Our main perspectives are related to the work
of Chapter 10. Now that first experiments have validated the interests of our approach
(scalability, usage of extra-memory for coarse-grain parallelism), we plan to design new
dynamic schedulers that exploit the actual variations of memory consumption. In periods
of low memory usage, they would be authorized to diverge from the initial schedule in
order to balance the load whereas they would strictly follow that schedule when memory
becomes fully used. We expect that, in an out-of-core context, load balancing will have
to take into consideration the possible delays due to I/O’s. One advantage of the initial
schedule is that it has been computed to guarantee the respect of the memory constraints.
If we want to maintain that property for asynchronous dynamic executions, we need to
employ techniques similar to deadlock avoidance algorithms (where the critical resource
would be the memory). Finally, an extensive performance analysis will then have to be
performed. After that, we hope to provide a robust software version of that work to
MUMPS users.

The study presented in Chapter 10 has also shown that the lack of memory requires
to schedule the tasks of a parallel execution with respect to a sequence that is close to the
one followed in the serial case. Therefore, we hope to be able to adapt other results from
Part I to the parallel factorization. More generally, this thesis has shown that memory can
be used to limit the I/O volume, to ensure coarse-grain parallelism and to dynamically
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balance the workload. As a longer term perspective, based on the study of Chapter 9,
all these results have to be combined to extend the code of Chapter 10 to the out-of-core
management of the stack of contribution blocks.

At last, now that the numerical out-of-core factorization allows us to treat very large
problems with a good memory scalability, the memory bottleneck on a large number of
processors may be the analysis step which remains serial. To overcome this limit, that
step has to be performed in parallel too [4, 43].
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[48] Pascal Hénon, Pierre Ramet, and Jean Roman. PaStiX: A High-Performance Parallel
Direct Solver for Sparse Symmetric Definite Systems. Parallel Computing, 28(2):301–
321, January 2002. 13

[49] HSL. A collection of Fortran codes for large scale scientific computation, 2000. 13

[50] HSL. A collection of Fortran codes for large scale scientific computation, 2004. 29

[51] G. Karypis and V. Kumar. MeTiS – A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices – Version 4.0. University of Minnesota, September 1998. 5, 71

[52] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–302, 1999. 49

[53] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Transactions on Mathe-
matical Software, 29(2), 2003. 8, 13

[54] J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimination.
ACM Transactions on Mathematical Software, 11(2):141–153, 1985. 5



BIBLIOGRAPHY 167

[55] J. W. H. Liu. On the storage requirement in the out-of-core multifrontal method
for sparse factorization. ACM Transactions on Mathematical Software, 12:127–148,
1986. 16, 34, 41, 42, 45, 46, 52, 147

[56] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal
on Matrix Analysis and Applications, 11:134–172, 1990. 6, 7, 9, 41, 52, 90

[57] Esmond G. Ng and Padma Raghavan. Performance of greedy heuristics for sparse
Cholesky factorization. SIAM Journal on Matrix Analysis and Applications, 20:902–
914, 1999. 5, 49

[58] S. Toledo O. Meshar, D. Irony. An out-of-core sparse symmetric-indefinite factor-
ization method. ACM Transactions on Mathematical Software, 32(3):445–471, 2006.
18, 19, 91

[59] John K. Reid and Jennifer A. Scott. An out-of-core sparse Cholesky solver. Technical
Report RAL-TR-2006-013, Rutherford Appleton Laboratory, 2006. Revised March
2007. 15, 55

[60] John K. Reid and Jennifer A. Scott. HSL OF01, a virtual memory system in Fortran.
Technical report, Rutherford Appleton Laboratory, 2006. 15

[61] E. Rothberg and R. Schreiber. Efficient methods for out-of-core sparse Cholesky
factorization. SIAM Journal on Scientific Computing, 21(1):129–144, 1999. 15, 16,
19, 128, 159

[62] Edward Rothberg and Stanley C. Eisenstat. Node selection strategies for bottom-
up sparse matrix ordering. SIAM Journal on Matrix Analysis and Applications,
19(3):682–695, 1998. 5

[63] V. Rotkin and S. Toledo. The design and implementation of a new out-of-Core
sparse Cholesky factorization method. ACM Transactions on Mathematical Software,
30(1):19–46, 2004. 18, 19, 94, 117, 157, 158, 159

[64] C. Sánchez, H. B. Sipma, Z. Manna, and C. D. Gill. Efficient distributed deadlock
avoidance with liveness guarantees. In Proceedings of the 6th ACM & IEEE Inter-
national conference on Embedded software, October 22-25, 2006, South Korea, pages
12–20. 153
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Appendix B

On the shape of the I/O graphs:
Formalization

In this appendix we prove Property 2.2 that has been presented and discussed in
Chapter 2.

Let us first consider the more general context of any out-of-core application where
data is produced and consumed with a stack mechanism (last data produced is consumed
first). We use the term memory for all data relative to the application (that data may be
either in core memory or on disk); and we define a memory access as an access to either
the core memory or the disk (which implies in this second case a given amount of I/O).
We have the following result:

Theorem B.1. Given an out-of-core application which accesses the memory as a stack
which is empty both initially and eventually; given a sequence of memory accesses, the
optimum volume of I/O V I/O as a function of the available memory M0 (V I/O = f(M0))
is a piecewise affine function; the steepness of each piece is an integer multiple of −1
whose absolute value decreases when the value of M0 increases.

Proof. The hypothesis that the stack is empty both initially and eventually implies that
all data are reused; so any data written to disk will have to be read back. Therefore the
volume of writes is equal to the volume of reads and we only count the write operations.

Let us focus on the evolution of the amount of memory (M) relative to the amount
of memory accesses (Maccessed). At the beginning, the amount of memory is zero (stack
initially empty). When (say) 1 MB of data is pushed, both the amount of data accessed
Maccessed (x axis) and the amount of memory M (y axis) increase by 1 MB. When (say)
1 MB of data is popped, the amount of data accessed still increases by 1 MB while the
amount of memory decreases by 1 MB. Geometrically, the function M = f(Maccessed) is
a piecewise affine function for which each piece has a steepness equal to 1 (pushes) or
−1 (pops); its graph is composed of a succession of peaks and hollows as one can see in
Figure B.1. At the end, the amount of memory is zero (stack eventually empty).

169
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A memory access may be defined as a pair (T,Q) where T is the type of access (push
or pop) and Q is the amount of data involved (in MB). From a memory point of view,
if n is the number of accesses, such an application is then exactly defined by a sequence
S = ((Ti, Qi))i∈{1;...;n} that verifies the two following properties:

(∀j ∈ {1; ...;n})(
∑

i∈{1;...;j}|Ti=push

Qi ≥
∑

i∈{1;...;j}|Ti=pop

Qi) (B.1)

∑

i∈{1;...;n}|Ti=push

Qi =
∑

i∈{1;...;n}|Ti=pop

Qi (B.2)

Moreover, even if it means packing consecutive accesses of same type we may suppose
without loss of generality that pushes and pops are alternated. Then, we can define a local
peak Pi (resp. a local hollow) as two successive memory accesses (push, Qpush), (pop, Qpop)
(resp. (pop, Qpop), (push, Qpush) ), in this order. We define P as the (ordered) set of peaks.
Note that P also defines the sequence S.

For a given amount of available physical memory M0, the (minimum) volume of I/O
can be directly computed with a greedy algorithm on the sequence S as shown in Algo-
rithm B.1. Each time the memory required exceeds M0 (after Ti = push), we write the
bottom of the stack to disk. When a pop operation is performed, we read the bottom of
the stack only when needed. As earlier, note that since the volume written and read are
equal, we only take write operations into account, so that V I/O represents the volume of
data written to disk.

Input: S = ((Ti, Qi))i∈{1;...;n}: Sequence of memory accesses
Input: M0: Memory available
Output: V I/O: I/O volume
% Initialization:

current mem← 0 ;
i← 1 ;
while i ≤ n do

if Ti = push then
% Memory required is current_mem+Qi but only M0 is available

% Write the overhead to disk

V I/O ← V I/O +max(current mem+Qi −M0, 0) ;
current mem← min(current mem+Qi,M0) ;

else
% Ti = pop
% We do not count read operations

current mem← min(current mem−Qi, 0) ;

i← i+ 1

Algorithm B.1: I/O volume computation of a sequence of memory accesses S with
an available memory M0.
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However the continuity of V I/O with respect to M0 does not appear obviously with
this approach. That is why we first carry out a transformation independent from M0

which will bring to light the true potential sources of I/O.

We revisit the examples of Figure 2.4 to illustrate Algorithm B.1, starting with the
sequence (push,4); (pop,4) (see first picture of Figure B.2(a)). If M0 > 4 (for example
M0 = 4.5), no I/O will be necessary. If M0 = 2, applying Algorithm B.1 will lead to
a volume of I/O equal to 2. If now M0 = 0.5, we obtain a volume of I/O equal to
3.5. When the physical memory available M0 decreases, we observe that the maximum
volume of I/O that we can obtain is 4. We say that we have a potential of I/O equal
to 4. Indeed on such a sequence the volume of I/O will be equal to max(4 −M0, 0). If
we now consider sequence (b) ((push,4); (pop,4); (push,4); (pop,4)) there are two peaks
which constitute two potential sources of I/O. In that case the volume of I/O is equal to
2×max(4−M0, 0). The potentials of I/O corresponding to the two peaks of memory are
both equal to 4.

As shown in the two examples above, with each peak i in P we have associated
a potential of I/O Poti, leading to an overall volume of I/O equal to V I/O(M0) =
∑

i∈P max(Poti −M0, 0).

Let us now take a slightly more complex example: sequence (push,4); (pop,2); (push,1);
(pop,3) from Figure B.2(c). In that case, we again start doing I/O when the physical
memory available M0 becomes smaller than 4. If M0 = 2, then the first peak M = 4 will
force us to write 2 MB from the bottom of the stack. Then the memory M decreases
until M = 2. When M increases again until reaching the second peak M = 3, the bottom
of the stack is still on disk and no supplementary I/O is necessary. Finally M decreases
to 0 and the bottom of the stack (2 MB) that was written will be read from disk and
consumed by the application. For this value of M0 (2), the volume of (written) I/O is
only equal to 2 MB. In fact if M0 > 1 the second peak has no impact on the volume of
I/O. In this example, even if there are two peaks of sizes 4 MB and 3 MB, we can indeed
notice that 2 MB are shared by these two peaks. This common amount of data can
only be processed out-of-core once. By trying other values of M0, we would see that the
volume of I/O V I/O(M0) is in fact equal to max(4−M0, 0) +max(1−M0, 0). Therefore
we associate a potential of I/O of 4 with the first peak but a potential of I/O of only 1 to
the second. Indeed the potential of I/O for the second peak is obtained by subtracting
2 (data common to the two peaks, for which I/O is only performed once) to 3 (value of
the second peak).

We now describe more precisely the process consisting in replacing peaks by potentials
of I/O. Each potential of I/O is equal to the maximum volume of I/O due to each peak.
The key point is that each data accessed is attributed to one peak and only one as follows.
The first potential source of I/O, corresponding to the highest peak, is selected first and
receives a potential of I/O equal to the memory of this peak. Data corresponding to this
peak will be written to disk at most once. But part of these data is shared with other
peaks. That is why we carry out a transformation consisting in subtracting data shared
with other peaks from these other peaks.
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Formally, this subtraction process is described by the operation S ′ ← Subtract(S, Pi)
from Algorithm B.2. For any value of M0, it is such that V I/O(S,M0) =
max(Poti −M0, 0) + V I/O(S ′,M0), where Poti =

∑i
j=1Qpushj

−∑i−1
j=1 Qpopj is the po-

tential associated with Pi. Recall that for this relation to hold, we have to choose Pi as
the one that corresponds to the largest volume of memory (or potential), i.e. the one first
responsible of I/O when M0 decreases. For instance, in example (d) from Figure B.2,
applying this subtraction to the peak associated with a memory of 3 MB (instead of the
one associated with a memory of 4 MB) would give an incorrect volume of I/O equal to
max(3−M0, 0) +max(2−M0, 0) (instead of max(4−M0, 0) +max(1−M0, 0)), whereas
I/O clearly starts occurring as soon as M0 is smaller than 4 MB. Algorithm B.2 is further
explained in the caption of Figure B.1 where we unroll it on a more general example.
Algorithm B.3 now applies recursively the transformation to the new sequence (after the
suitable subtractions). At the end, we have got a series of potentials (Poti)i∈P - that
we keep in the same order as the peaks they are associated with for a better readability.
We call the result of this recursive transformation the potential transform. By construc-
tion, and as we have seen on the examples, the volumes of I/O for each potential are
cumulated, and the total volume of I/O is thus given by:

V I/O(M0) =
∑

i∈P

max(Poti −M0, 0). (B.3)

To achieve the proof, let us notice that the transformation is independent fromM0 and
so a potential Poti too. Thus the function M0 7→ max(Poti −M0, 0) is a piecewise affine
with steepness -1 for M0 < Poti and 0 for larger values of M0. Finally, M0 7→ V I/O(M0),
as the sum of such functions is a piecewise affine function whose pieces have a steepness
of decreasing (in absolute value) negative integer values. �

For each example from Figure B.2, we unroll the algorithm and successively replace
the largest peak by a potential of I/O equal to the memory associated with that peak.
We represent each potential of I/O obtained by a vertical bar. At the end of the trans-
formation, all the peaks have been replaced by their respective potentials as shown in the
third picture of the figure.

Finally (for each example), the subsequent volume of I/O is illustrated by the fourth
series of pictures of Figure B.2. This result may be interpreted from a geometric point of
view. The steepness of the graph of the function V I/O(M0) for a given value M0 is the
number of potentials crossed by the horizontal line M0. For instance, with sequences (c)
and (d) (that have the same potential transform), if the amount M0 of available memory
is more than 4 (say equal to 4.5), the corresponding horizontal line (says 4.5) does not
cross any potential: no I/O is required. If M0 is between 1 and 4 (says 2), the horizontal
line (say 2) crosses one potential: the steepness is one. In other words, locally, the volume
of I/O grows as fast as the memory decreases. Finally, when M0 is less than 1 (say 0.5),
the horizontal line (say 0.5) crosses two potentials: the steepness is two. The volume of
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I/O grows twice as fast as the physical memory available decreases.

Input: S = (P1, . . . , Pn): The sequence of memory accesses as a list of local peaks
Input: Ph = (push, Qpushh

), (pop, Qpoph
): A local peak to subtract from the

sequence
Output: S ′: Sequence of memory accesses after subtraction of peak Ph

% Recompute potential of Ph

Poth ←
∑h

i=1 Qpushi
−∑h−1

i=1 Qpopi % Pop Ph from the sequence:

S ′ ← S \ Ph;
pos current peak ← h;
% Step (1) - Decrease peaks prior to Ph and sharing data with it:

current hollow ← Poth −Qpushh
;

lower hollow ← current hollow ;
% While there are data shared with other peaks

while lower hollow > 0 do
% Look for the previous peak

pos current peak ← pos current peak − 1;
% Evaluate its local hollow

current hollow = current hollow +Qpoppos current peak
−Qpushpos current peak

;

% If there is shared data with h
if current hollow < lower hollow then

% Subtract shared data from current peak

Qpushpos current peak
← Qpushpos current peak

+ lower hollow − current hollow;

% Update lower_hollow value

lower hollow ← current hollow;

% Step (2) - Decrease peaks that are after Ph and that share data

with Ph:

. . . ;
% similar to step (1) except that we decrease Qpop values

. . . ;

Algorithm B.2: Subtraction of a peak from a sequence of memory accesses: S ′ ←
Subtract(S,Ph). Only the treatment of the peaks before Ph are examined (step (1));
peaks after Ph would be processed similarly (step (2), not presented).
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Figure B.1: Illustration of Algorithm B.2 on a toy sequence of memory accesses and
the subtraction of its highest peak, Ph. Initially the highest peak is subtracted and
current hollow and lower hollow are equal to A. Next current hollow = B but
lower hollow does not change because B > A. When current hollow = D, an amount of
data equal to A−D is subtracted from the push operation that follows and the value of
lower hollow is set to D. Then current hollow = E but lower hollow does not change
as E > D. Finally current hollow is equal to F and this induces the subtraction of an
amount of data equal to D−F from the corresponding peak (and from the push operation
that follows F ). Note that we only illustrated the process for peaks that are before the
subtracted peak (point (1) of the algorithm).

Input: S = (P1, . . . , Pn): sequence of memory accesses as a list of local peaks
Output: T : Potential transform as a list of potentials
% Initialization

T = ∅;
% Main loop

while S 6= ∅ do
% Find the highest local peak Ph, of potential Poth:

Poth = maxh=1..n

∑h
i=1 Qpushi

−∑h−1
i=1 Qpopi ;

% Add its potential to the list of potentials:

T ← Poth :: T ;
% Subtract Ph from S:
S ← Subtract(S,Ph);

Algorithm B.3: Computing the potential transform of a sequence of memory ac-
cesses: Transform(S)

We consider the multifrontal method with a classical assembly scheme and a terminal
allocation as presented in Chapter 2 and now prove Property 2.2 that we recall here and
that can be considered as a corollary of Theorem B.1:

Property 2.2. For a given postorder of the etree, the (optimum) volume of I/O on
the contribution blocks as a function of the available memory M0 (V I/O = f(M0)) is a
piece-wise affine function; the steepness of each piece is an integer multiple of −1 whose
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Figure B.2: Computing the potential transform and deducing the I/O volume: four
instructive examples. On each column, corresponding to a given sequence of memory
accesses, the transformation is unrolled on the first three pictures (the potentials are the
vertical bars) and the deduced I/O volume V (as a function of the memory available M0)
is given by the fourth one (the lower bound function “peak - M0” is there represented
with dashed line).
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absolute value decreases when the value of M0 increases.

Proof. In this proof, we show that the active storage of the multifrontal factorization can
match the memory as defined in Theorem B.1.

In practice, we do not have a pure stack mechanism in the multifrontal factorization: a
frontal matrix is first allocated; the contribution blocks of the children are then consumed;
the frontal matrix is factored and its factors are stored to disk; and finally the contribution
block of the active frontal matrix is moved to the top of the stack.

However, the key point is that we may assess that the whole active storage is accessed
as a stack without modifying the volume of I/O. Indeed, when a frontal matrix is just
factored, we may consider that we pop this complete frontal matrix as well as all the
contribution blocks of its children and that we finally push its own contribution block.
Because we have the assumption that a frontal matrix holds in-core, this involves the
same amount of I/O as the real mechanism of the method.

Therefore, considering that (i) we may assess that the active storage is accessed as a
stack, that (ii) the active storage is empty both initially and eventually (any contribution
block or frontal matrix will be reused during the factorization step and popped), that (iii)
the sequence of accesses does not depend on M0 (the postorder is given), and that (iv) the
volume of I/O performed is minimum (use of Property 2.1), we can apply Theorem B.1.

�

Note that the potential transform also easily gives the volume of accesses to the active
storage: it is the sum of the potentials and it is also equal to the volume of I/O when
M0 tends to 0. However this model can only be applied to our application if M0 remains
larger than the largest frontal matrix. When a frontal matrix cannot fit in-core (because
its size is larger than M0) we have no more guarantee that we may respect a read-once
/ write-once scheme. For such values of M0, the volume of I/O computed with this
model becomes a lower bound of the actual volume of I/O. Subsequently, the sum of the
potentials becomes a lower bound on the amount of data accessed.



Appendix C

Complements to Chapter 4

In this appendix, we prove two results related to Chapter 4. In Section C.1, we prove
that the decision problem associated with a knapsack that can spill out is NP-complete.
In Section C.2, we show the use of a multiple allocation does not improve the I/O volume
compared to a flexible allocation scheme and that it does not reduce the complexity of
the I/O minimization problem either.

C.1 The decision problem associated with a knapsack

that can spill out is NP-complete

In this section, we prove Lemma 4.2 which is used in Chapter 4 to show that the
decision problem associated with the minimization of the I/O volume of the multifrontal
method with a flexible allocation scheme is NP-complete. The proof consists in a reduc-
tion from Partition to Knapsack-Spill-Dec. We recall those two decision problems and
propose a proof of our lemma.

Problem 4.2 (Knapsack-Spill-Dec). We have n items (1, . . . , n). Each item j
has a value pj and a cost cj such that: 0 ≤ cj ≤ pj. We moreover assume
that the capacity V of the bag is limited: 0 ≤ V ≤ ∑n

i=1 pi − maxni=1 pi. Can
we achieve an algebraic benefit K? Or, formally, is the following assertion true:

(∃S ⊂ {1; . . . ;n})
(

min(
∑

j∈S pj, V )−∑j∈S cj ≥ K
)

?

Problem 4.3 (Partition). Given n positive integer numbers (x1, . . . , xn) of half-sum

X =
∑n

j=1
xj

2
, is there a subset S such that

∑

j∈S xj = X?

Lemma 4.2. Problem Knapsack-Spill-Dec is NP-complete.

Proof. First, Knapsack-Spill-Dec belongs to NP. If we are given a subset S whose algebraic
benefit is greater than or equal to K, we can evaluate in polynomial time in the size of

the instance that amount min
(
∑

j∈S pj, V
)

−∑j∈S cj and check that it is indeed greater

than or equal to K.

177
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To prove the NP-completeness of Knapsack-Spill-Dec, we show that Partition can
be polynomially reduced to Knapsack-Spill-Dec. We consider an arbitrary instance I1

of Partition with integer numbers (x1, . . . , xn) of half-sum X =
∑n

j=1
xj

2
. We assume

maxni=1 xi ≤ X (otherwise we know there is no solution). We build an instance I2 of
Knapsack-Spill-Dec as follows. We consider n items of respective value pi and respective
cost ci such that: pi = 2xi, ci = xi, 1 ≤ i ≤ n. We also let V = 2X and K = X. The
construction of I2 is polynomial (and even linear) in the size of I1. I2 is effectively an
instance of Knapsack-Spill-Dec since pi ≥ ci and 0 ≤ V ≤ ∑n

i=1 pi −maxni=1 pi. Indeed,
the first inequality stands because 2xi ≥ xi and the second one can be established as
follows:

n
max
i=1

pi = 2
n

max
i=1

xi ≤ 2X = 4X − 2X =
n∑

j=1

pj − V.

Finally, I1 has a solution if and only if I2 has a solution. First, let S be a solution of
I1:
∑

j∈S xj = X. We deduce that S is also a solution of I2 as follows:

min

(
∑

j∈S

pj, V

)

−
∑

j∈S

cj = min(2X, 2X)−X = X = K ≥ K.

Let now S be a solution of I2: min
(
∑

j∈S pj, V
)

−∑j∈S cj ≥ K. We reword this

statement with equivalent forms in the following formulas:
∑

j∈S

pj ≥
∑

j∈S

cj +K & V ≥
∑

j∈S

cj +K (C.1)

2
∑

j∈S

xj ≥
∑

j∈S

xj +X & 2X ≥
∑

j∈S

xj +X (C.2)

∑

j∈S

xj ≥ X &
∑

j∈S

xj ≤ X (C.3)

Hence,
∑

j∈S xj = X; which exactly means that S is a solution to I1. �

C.2 Multiple allocation

The flexible allocation was initially designed in [44] to decrease the storage require-
ment by exploiting the freedom that we have to decide of the moment of the parent
allocation. The purpose of this chapter is to extend this freedom to the out-of-core case
in order to limit the I/O volume. We have assumed that, as in the in-core case, once
the frontal matrix of the parent has been allocated (after child p has been processed),
each supplementary child (j > p) is assembled into the parent on the fly. As explained
in Section 4.3, if such a child cannot be processed in-core together with the frontal ma-
trix of the parent, then part of that frontal matrix (or that whole frontal matrix) has
to be written to disk in order to make room and process the child with a maximum of
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available memory. If we want to perform the assembly on the fly, we need to read back
the frontal matrix from disk. However, in an out-of-core context, we might prefer not to
read it back directly but waiting to have accumulated more contribution blocks before
performing their assembly. For instance, if we have a family that contains 20 children, we
might imagine to process them 5 by 5, or, said differently, consuming the accumulated
contribution blocks each time 5 children have been processed. We name such a mecha-
nism a multiple allocation scheme. This mechanism may appear as a natural extension
to the flexible allocation scheme. Let us consider a family composed of n children. We
assume that the frontal matrix of the parent is allocated q times on this family. We
note Sk the subset of the children which are processed between the (i− 1)th and the ith

allocation; their contribution blocks are thus all assembled into the parent at the moment
of the ith allocation. The subsets S1,. . . , Sq form a disjoint union of the set {1, . . . , n}
of children: {1, . . . , n} = ∐q

k=1 Sk. A flexible allocation is exactly a multiple allocation
for which S2,. . . ,Sq are singletons. In this sense, the multiple allocation generalizes the
flexible allocation. However, the use of a multiple allocation does not improve the I/O
volume compared to a flexible allocation scheme as we now show.

Lemma C.1. Let us consider a family processed with a given multiple allocation con-
figuration (we are provided the decomposition of the children (Sk)k=1,q) and one subset
Sk composed of at least two children. If the last child processed in Sk cannot fit in core
with the parent, then we can move the first child to subset S1 without increasing the total
volume of I/O.

Proof. We name k1 the first child of subset Sk. If we remove this child from the subset,
it is immediate to see that the peak of storage related to the treatment of the children
of Sk decreases of at least cbk1 . Since the last child of Sk cannot fit in core with the
parent, the decrease of the peak of storage exactly corresponds to a decrease of the I/O
volume of the same amount. In other words, the contribution of k1 to the I/O volume of
Sk is as least equal to cbk1 . On the other hand, according to Lemma 4.1, the maximum
contribution to the I/O volume of this child is equal to cbk1 if it is processed before the
first parent allocation, i.e., in S1 . Therefore, moving the child from Sk to S1 does not
increase the I/O volume. �

Theorem C.1. The use of a multiple allocation does not improve the I/O volume com-
pared to a flexible allocation scheme.

Proof. We exhibit an algorithm which takes in entry a family and a multiple allocation
configuration (given by the decomposition of the children (Sk)k=1,q) inducing an I/O
volume V multiple and which computes a flexible allocation configuration (expressed as the
subset S of the children that have to be processed after the parent allocation) inducing
an I/O volume V flexible lower than or equal to V multiple. To do so, we consider a subset Sk

(k > 1) and we reduce it to a singleton without increasing the I/O volume, the outputS
being the union of these singletons. First, let us notice that Property 4.1 can be expressed
as follows in a multiple allocation context: any child j that would fit in core with the
parent (it verifies Smultiple

j +m ≤ M0 if we note Smultiple
j the storage required to process
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the subtree whose root is j) should be processed in a singleton (since it does not induce
I/O this way). Therefore, even if it requires a first step which discards such children, we
can assume that all the children verify: Smultiple

j + m > M0. In particular, we suppose

that Sk is composed of nk children processed in the order k1, k2, . . . , knk
and we thus have

Smultiple
knk

+m > M0. According to Lemma C.1, we can move children k1, k2, . . . , knk
− 1 to

S1 without increasing the I/O volume. The subset Sk has been reduced to a singleton
without increasing the I/O volume, which ends up the proof. �

Even if the multiple allocation does not allow to improve the I/O volume compared
to a flexible allocation, this scheme could remain interesting if it allowed to find an
optimum solution for the I/O minimization problem more easily than in the flexible case.
However, the related decision problem, Multiple-MinIO-Dec, remains NP-complete as we
now prove.

Theorem C.2. Problem Multiple-MinIO-Dec is NP-complete.

Proof. We let the reader check that Multiple-MinIO-Dec belongs to NP and we show that
it is NP-hard. To do so, we assume to the contrary that there exists an algorithm A1

that can solve Problem Multiple-MinIO-Dec in polynomial time in the size of the instance
given in entry. Let I1 be an instance of Flex-MinIO-Dec from which we canonically build
an instance I2 of Multiple-MinIO-Dec. We apply A1 to I1 followed by the algorithm
presented in the proof of Theorem C.1 (that we name A2). Algorithm A2 also has a
complexity polynomial (even linear) in the size of the instance and thus A2 ◦ A1 too.
But, according to the proof of Theorem C.1, A2 ◦ A1 solves Flex-MinIO-Dec. This is a
contradiction. �

In-place assembly schemes

Theorems C.1 and C.2 apply to both last-in-place and max-in-place schemes: the
proofs presented in this section are independent of the assembly scheme before the parent
allocation.

Lastly, these theorems also apply to the in-place-realloc scheme as we now explain.
When the algorithm presented in the proof of Theorem C.1 is applied, the children that
are processed after the parent allocation of the final flexible family correspond to the
ones that are processed at the moment of a parent allocation or reallocation of the initial
family. Therefore, the extra-I/O volume due to the parent allocations will be reduced of
the same amount in both configurations.





Résumé :
La factorisation d’une matrice creuse est une approche robuste pour la résolution de systèmes
linéaires creux de grande taille. Néanmoins, une telle factorisation est connue pour être coû-
teuse aussi bien en temps de calcul qu’en occupation mémoire. Quand l’espace mémoire né-
cessaire au traitement d’une matrice est plus grand que la quantité de mémoire disponible sur
la plate-forme utilisée, des approches dites hors-mémoire (out-of-core) doivent être employées :
les disques étendent la mémoire centrale pour fournir une capacité de stockage suffisante. Dans
cette thèse, nous nous intéressons à la fois aux aspects théoriques et pratiques de telles factori-
sations hors-mémoire. Les environnements logiciel MUMPS et SuperLU sont utilisés pour illustrer
nos discussions sur des matrices issues du monde industriel et académique. Tout d’abord, nous
proposons et étudions dans un cadre séquentiel différents modèles hors-mémoire qui ont pour
but de limiter le surcoût dû aux transferts de données entre la mémoire et les disques. Pour ce
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posons de nouveaux schémas de gestion mémoire s’accommodant aux contraintes hors-mémoire.
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tifrontale, que nous poussons aussi loin que possible dans un contexte parallèle hors-mémoire.
Suivant une démarche pragmatique, nous montrons que les techniques hors-mémoire permettent
de résoudre efficacement des systèmes linéaires creux de grande taille. Quand seuls les facteurs
sont stockés sur disque, une attention particulière doit être portée aux données temporaires, qui
restent en mémoire centrale. Pour faire décrôıtre efficacement l’occupation mémoire associée à
ces données temporaires avec le nombre de processeurs, nous repensons l’ordonnancement de la
factorisation parallèle hors-mémoire dans son ensemble.
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Abstract:
Factorizing a sparse matrix is a robust way to solve large sparse systems of linear equations.
However such an approach is known to be costly both in terms of computation and storage.
When the storage required to process a matrix is greater than the amount of memory available
on the platform, so-called out-of-core approaches have to be employed: disks extend the main
memory to provide enough storage capacity. In this thesis, we investigate both theoretical and
practical aspects of such out-of-core factorizations. The MUMPS and SuperLU software packages
are used to illustrate our discussions on real-life matrices. First, we propose and study various
out-of-core models that aim at limiting the overhead due to data transfers between memory and
disks on uniprocessor machines. To do so, we revisit the algorithms to schedule the operations of
the factorization and propose new memory management schemes to fit out-of-core constraints.
Then we focus on a particular factorization method, the multifrontal method, that we push as
far as possible in a parallel out-of-core context with a pragmatic approach. We show that out-
of-core techniques allow to solve large sparse linear systems efficiently. When only the factors
are stored on disks, a particular attention must be paid to temporary data, which remain in
core memory. To achieve a high scalability of core memory usage, we rethink the whole schedule
of the out-of-core parallel factorization.
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