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Abstract

In order to understand the behavior of materials in the presence of impurities during
the solidification process, it was required to develop appropriate methodologies for
an analysis and an effective control of the topological changes of the microstructures
(e.g., the formation of dendrites) during the different phases of transformation. The
objective of this thesis is to build a relevant model of solidification of binary alloys
under the action of magnetic fields, to analyze the obtained systems, from a theoretical
and a numerical point of view, and finally, to develop an optimal control method to
control the dynamics of the solidification front by the action of magnetic fields.

Initially, we have described the physics of the problem and the fundamental laws
necessary for modeling, then we built a new model of phase field, which takes into ac-
count the influence of the action of magnetic field on the movement of the solidification
front. The model thus developed is characterized by the coupling of three systems: one
of magnetohydrodynamic type, a second of Boettinger Warren-convection type (rep-
resenting the evolution of the solidification front and the concentration of the binary
mixture) and a third representing the evolution of the temperature. The equations
of the complete system describing the model, in a domain 2 C R", n < 3, are time-
dependent, nonlinear, coupled and anisotropic. In a second part, we have performed
the theoretical analysis of the model in the two-dimensional, isothermal and isotropic
case. We have obtained results of existence, regularity, stability and uniqueness of the
solution, under certain conditions on nonlinear operators of the system. Finally, we
have developed a nonlinear optimal control method : the magnetic field (which acts
multiplicatively) plays the role of the control, and the observation is the desired state
of the dynamics of the front. We have proved the existence of an optimal solution
and obtained the sensitivity of the operator solution and the optimality conditions by
introducing an adjoint problem.

The theoretical part of the thesis is supplemented by an important numerical
work. The analysis and numerical simulations have been conducted on the com-

plete two-dimensional nonlinear (isotropic and anisotropic) problem. We used, for

X1



xil Abstract

discretization, the method of lines which consists to consider separately the spatial
and temporal discretization. The spatial discretization is performed by using a mixed
finite elements scheme and the resolution of the obtained algebraic differential sys-
tem is performed by using the DASSL solver. The discretization of the domain is
performed by unstructured triangular meshes. In the realistic case, they correspond
to a non-uniform mesh that is very fine in area of the dendrite and at the interface.
We have obtained error estimates for the different state variables of the model and
analyzed the robustness and stability of the approximation schemes. This numerical
code has been validated on various examples, and gives excellent results. Then we
have used the code to treat a realistic problem, namely the dendritic solidification
of a binary alloy Nickel-Copper, and to analyze the influence of magnetic fields on
the development of dendrites. The results show the effectiveness of the approach to

reproduce the experimental observations.



Résumé

La compréhension du comportement des matériaux en présence d’impuretés, durant le
processus de solidification, nécessite le développement de méthodologies appropriées
pour une analyse et un controle efficace des changements topologiques des microstruc-
tures (par exemple, la formation des dendrites) au cours des différentes phases de
transformation. L’objectif de cette these est de construire un modele pertinent de
solidification d’alliages binaires sous l'action de champs magnétiques, d’analyser les
systemes issus du modele mathématique ainsi developpé, d’un point de vue théorique
et numérique, et enfin de développer une méthode de controle optimal afin de controler
la dynamique du front de solidification par I’action du champs magnétiques.

Dans un premier temps, nous avons décrit la physique du probleme et les lois
fondamentales nécessaires a la modélisation, puis nous avons construit un nouveau
modele de champ de phase, qui tient compte de I'influence de ’action du champ mag-
nétique sur le mouvement du front de solidification. Le modele ainsi développé est
caractérisé par le couplage de trois systemes : un de type magnétohydrodynamique, un
second de type Warren-Boettingger avec convection (représentant 1’évolution du front
de solidification et la concentration du mélange binaire) et un troisieme représen-
tant 1’évolution de la température. Les équations du systeme complet décrivant le
modele, dans un domaine 2 C R" n < 3, sont évolutives, non linéaires, couplées
et anisotropes. Dans une seconde partie, nous avons effectué ’analyse théorique du
modele développé dans le cas isotherme et isotrope en dimension deux. Nous avons
obtenu des résultats d’existence, de régularité, de stabilité et d'unicité d’une solution,
sous certaines conditions sur des opérateurs non linéaires du systeme. FEnfin, nous
avons développé une méthode de controle optimal non linéaire : le champ magnétique
(qui intervient sous forme multiplicative) joue le role de controle, et 1'observation est
I’état désiré de la dynamique du front. Nous avons démontré I’existence d’une solution
optimale et obtenu la sensibilité de 'opérateur solution et les conditions d’optimalité

en introduisant un probleme adjoint.

xiil



xiv Résumé

Cette partie théorique de la these est complétée par un important travail numérique.
L’analyse et les simulations numériques ont été menées sur le probleme complet bi-
dimensionnel non linéaire (isotrope et anisotrope). Nous avons utilisé pour la discréti-
sation la méthode des lignes qui consiste a considérer séparément la discrétisation tem-
porelle et spatiale. La discrétisation spatiale est effectuée par un schéma d’éléments
finis mixtes et le systeme différentiel algébrique obtenu est résolu par 'utilisation du
solveur DASSL. La discrétisation du domaine est effectuée par des mailles triangulaires
non structurées. Dans le cas réaliste, elles correspondent a un maillage non uniforme
et tres fin dans la zone de la dentrite et au niveau de l'interface. Nous avons obtenu
des estimations d’erreur pour les différentes variables d’état du modele et analysé
la robustesse et la stabilité des schémas d’approximation. Ce code numérique a été
validé sur différents exemples, et donne d’excellents résultats. Ensuite, nous avons
exploité le code pour traiter un probleme réaliste, a savoir la solidification dendritique
d’un alliage binaire Nickel-Cuivre, et analyser I'influence de champs magnétiques sur
I’évolution des dendrites. Les résultats obtenus montrent l'efficacité de 'approche a

reproduire les observations expérimentales.



Introduction

La solidification (ou congélation) est le processus par lequel un métal pur ou un
mélange de deux ou plusieurs métaux sous forme liquide se transforme en solide par
refroidissement (cas classique), par augmentation de la pression, ou bien par une com-
binaison des deux. En présence d’impuretés dans les métaux, lors du processus de
solidification, des cristaux ramifiés en forme d’arbre, appelés dendrites, commencent
a se générer autour de ces impuretés. Les microstructures des dendrites ainsi générées
durant ce processus, déterminent les futures propriétés du matériau (solidifié). De
plus, ce front de solidification est en général instable (tres sensible aux variations
de gradient de température ou de composition chimique, ceux-ci jouant un role im-
portant dans la croissance). Par conséquent, 'observation et I’analyse de ce front de
solidification ont un grand intérét scientifique et industriel. Afin d’améliorer la qualité
et les propriétés des mélanges, le défi industriel majeur réside dans la possibilité de
controler la structure du métal ainsi que ses défauts. C’est pour cette raison que les
scientifiques tentent de maitriser la croissance et la structure des dendrites pendant le
processus de solidification, afin d’obtenir les propriétés désirées pour les métaux (ou
alliages) considérés.

Dans la littérature, il existe deux types d’approche pour modéliser ce phénomene
de solidification. La premiere est le modele de surface libre de Stefan entre les phases
liquide et solide, qui tient compte de la diffusion de chaleur dans chaque phase et
I’échange de chaleur latente a l'interface des phases. Les équations satisfaites par les
variables thermodynamiques, comme la température et la composition du systeme,
sont formulées et résolues de facon indépendante pour chaque phase. Les conditions
aux limites au niveau de l'interface solide-liquide sont basées classiquement sur les lois
de conservation (de I’énergie). Pour plus de détails, on peut consulter, par exemple,
le livre de A. Visintin [9)].

La seconde approche est la méthode de champ de phase, qui, contrairement a
I'approche classique de Stefan (qui impose beaucoup de contraintes), traite le sys-

teme dans son ensemble. Dans cette approche, les équations décrivent a la fois les



2 Introduction

phases liquide et solide et I'interface liquide/solide, par 'introduction d’une variable
d’état supplémentaire dite de champ de phase 1, un parametre d’ordre abstrait qui
représente la transition de phase & chaque point de l'espace et & chaque instant (V.
Cette nouvelle variable v prend des valeurs constantes dans la phase liquide, par ex-
emple 0, et dans la phase solide, par exemple 1, et permet une transition entre ces
deux phases avec une variation réguliere mais rapide entre 0 et 1. Cette modélisation
évite en particulier un traitement numérique spécifique de I'interface solide/liquide,
tout en reproduisant les principaux mécanismes physiques de la transition de phase
entre les deux phases. En effet, l'interface apparait naturellement dans ce modele
par 'introduction de I’équation de champ de phase, ce qui permet ainsi la résolution
numérique du modele a I’aide de schémas classiques. En outre, cette approche permet
également de prendre en compte naturellement différents phénomenes physiques, tels
que I'élasticité ou I'électromagnétisme.

Les modeles de champ de phase sont devenus un outil important pour simuler,
lors du processus de solidification d’alliage binaire, la formation et la croissance des
dentrites. Ils ont fait 'objet de tres nombreux travaux aussi bien d'un point de
vue mathématique que numérique, voir par exemple, A. A. Wheeler et al. [1], A.
Belmiloudi [6]-[8], G. Caginalp [19], J. Rappaz [34], P. Laurencot [49] S. L. Wang
[57]. On peut noter l'existence de solutions analytiques pour ce type de modele, mais
cela reste limité a des cas tres simples. Dans le cas de situations réalistes ou le sys-
teme est fortement non linéaire et tres complexe, la simulation numérique est un outil
nécessaire, voire indispensable; il joue un réle important dans la compréhension et
I’analyse de la formation des microstructures des dendrites. Dans ce cadre, on peut
citer différents travaux de simulations de la croissance dendritique de métaux purs
ou mélangés, par exemple, les travaux de B. Kaouil et al. [10], D. Kessler [14], J. A.
Warren and W. J. Boettinger [24], J. C Ramirez and C. Beckermann et al. [25]-[26],
M. Grujicic et al. [39], O. Kruger [46], R. Kobayashi [53], T. Takaki et al. [58]. De
plus, ces dix dernieres années, la méthode de champ de phase a été étendue pour
inclure I'effet de la convection sur la croissance des dendrites. Cela a été motivé par le
fait que pendant des expériences de solidification, on a observé un impact significatif
du mouvement dans le liquide sur la formation et 1’évolution de la microstructure
dendritique. Pour des travaux sur les simulations des modeles de champs de phase
intégrant la convection, on peut citer par exemple dans le cas de modeles pour la so-

lidification d'un métal pur: D. M. Anderson et al. [15] qui ont développé un modele en

(1) Ce parametre peut étre comparé & la fonction indicatrice de phase utilisée dans les techniques

numériques traitant les interfaces comme des surfaces de discontinuité.
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utilisant des équations de Navier-Stokes et en supposant que la viscosité et la densité
sont des fonctions dépendant du champ de phase (les deux phases sont traitées comme
deux fluides); R. Tonhardt et G. Amberg [56], et Tong X. et al. [61] qui ont donné des
modeles par I'introduction de la convection naturelle en utilisant les équations de type
Navier-Stokes et en forgant la vitesse a étre nulle dans la phase solide. Pour d’autres
modeles, on peut citer, par exemple, les travaux de N. Al-Rawahi et G. Tryggvason
[44, 45], et E. Bansch et A. Schmidt [16].

Récemment, il a été observé expérimentalement que le mouvement du fluide et
sa direction peuvent étre controlés en appliquant des champs magnétiques ou des
courants électriques pendant le processus de solidification, afin d’améliorer la qualité
et les propriétés des métaux. Par exemple, Mingjun Li et al. [40]-[41] ont montré
expérimentalement que les dendrites secondaires dans le matériau peuvent devenir
plus fines, plus homogenes et équiaxes par I’application de champs magnétiques ou de
courants électriques durant la solidification. Malheureusement, ils n’ont pas discuté
I'effet du champ magnétique ou du courant électrique sur la structure elle-méme des
dendrites. Il est donc nécessaire maintenant d’analyser les effets et les influences du
champ magnétique (ou du courant électrique) sur la dynamique et la structure des
dendrites. D’autres applications de I'influence des champs magnétiques (ou courants
électriques) sur le comportement des matériaux, ont été étudiées : on peut citer, par
exemple, pour des écoulements MHD, H. Ben Hadid et al. [21]-[22]; dans le cadre
des semi-conducteurs et la croissance des cristaux, A. Belmiloudi [8], M. Gunzberger
et al. [38], M. Watanabe et al. [42], V. Galindo et al. [59] et pour les processus de
solidification, J. K. Roplekar et J. A. Dantzig [29], J. Rappaz et R. Touzani [35], P.
J. Prescott [48].

Dans cette these, nous avons développé un modele de champ de phase pour anal-
yser l'effet du champ magnétique sur la dynamique des dendrites lors de la solidifica-
tion d'un mélange binaire. Considérons un alliage de deux composants A et B dans
un domaine spatial €2, le systeme est caractérisé par un couplage entre I'équation
de la concentration relative du composant B avec le respect du mélange, 1’'équation
du champ de phase, I’équation de I’énergie et le systeme d’écoulement magnétohy-
drodynamique qui décrit le mouvement dans la phase liquide sous l'effet du champ
magnétique dans un environnement non-isotherme. Le point de départ de notre tra-
vail est le modele a deux dimensions de J. A. Warren et W. J. Boettinger [24], dont
les variables d’état sont la fonction de champ de phase et la concentration. Dans le

présent travail, nous avons tout d’abord généralisé les modeles de J. A. Warren et W.
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J. Boettinger [24] et de M. Grujicic et al. [39] (en tenant compte des différentes ob-
servations expérimentales, citées précédemment), en incluant l'effet de la convection
dans les équations de champ de phase, de la concentration et de I’énergie ainsi qu’en
introduisant un systeme d’écoulement magnétohydrodynamique qui tient compte des
effets du champ magnétique. Ensuite, nous avons discuté différentes situations et
étudié théoriquement et numériquement le modele développé précédemment. Plus
précisément, le travail de la these est organisé comme suit.

Dans le chapitre 1, nous décrivons tout d’abord la physique du probleme, en-
suite nous donnons les lois fondamentales nécessaires a la modélisation et enfin nous
construisons un nouveau modele de champ de phase, dans un environnement non-
isotherme, qui tient compte de l'influence de I'action du champ magnétique sur le
mouvement du front de solidification. Le modele ainsi développé est caractérisé par
le couplage de trois systemes. Le premier est un systeme de type magnétohydrody-
namique défini par des équations de type Navier-Stokes incompressible et des approx-
imations de Boussinesq couplées a I’électromagnétisme (qui représente le mouvement
dans la phase liquide sous ’action d’'un champ magnétique). Le second est un systeme
de type Warren-Boettinger avec convection (non linéaire de type transport-diffusion)
qui représente 1’évolution de la fonction de champ de phase et de la concentration
au cours du processus de solidification. Le troisieme est un systeme d’énergie (non
linéaire de type transport-diffusion) qui représente 1’évolution de température durant
le processus de solidification. Les équations du systeme complet décrivant le modele,
dans un domaine €2 C R", n < 3, sont évolutives, non linéaires, couplées et anisotrope.
Les variables d’état du modele sont u, p, v, c et T', ou, pour x dans €2 et a l'instant ,
u(x,t) et p(x,t) représentent la vitesse et la pression dans le systeme de type mag-
nétohydrodynamique; ¥ (x,t) est la variable de champ de phase dont la valeur varie
entre 0 (quand le systeme est dans une phase solide) et 1 (quand le systeme est dans
une phase liquide), sur une fine couche qui sépare les deux phases; ¢(x, t) représente
la concentration relative qui varie également entre 0 et 1; T'(x,t) représente la tem-
pérature du systeme. Nous avons examiné différents cas particuliers de notre modele
a savoir, le cas isotrope, I’environnement isotherme, le cas anisotrope-isotherme et le
cas de la dimension deux.

Dans le chapitre 2, nous avons effectué I’analyse mathématique du modele développé
dans le cas isotherme et isotrope en dimension deux. Nous avons obtenu des résul-
tats d’existence, de régularité, de stabilité et d’unicité d’une solution (u, p,, ¢), sous
certaines conditions de Lipschitz et de bornitude sur des opérateurs non linéaires du

systeme. Le résultat d’existence est prouvé par 'utilisation d’une méthode de type
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Faedo-Galerkin. Pour obtenir 1'unicité et la stabilité en fonction des données, nous
avons été amené a obtenir une régularité tres fine de la solution. Plus précisément,

nous avons prouvé, entre autres, la régularité suivante

ue L (o,Tf, (HQ(Q))2> nL> (0,Tf, (H&(Q))Q) , g—‘: € L2 (o,Tf; (L2(Q))2> ,
¢ e L*(0,Ty, H*(Q)) N L™ (0, Ty, H* (), %—f € L*(0,Ty; H' (),
c€ L*(0,Ty, H*(Q)) N L (0, Ty, H'(Q)) , % € L*(0,Ty; L*()),

ot T est le temps final et  C R?.

Dans le chapitre 3, nous avons effectué ’analyse numérique des modeles dévelop-
pés dans le cas isotherme et bi-dimensionnel c’est-a-dire le cas isotherme-isotrope
(TDII) et le cas isotherme-anisotrope (TDIA). Nous avons développé un schéma
numérique pour résoudre ces modeles et étudié la convergence et la stabilité du schéma
d’approximation pour ces deux modeles. La discrétisation en espace est effectuée
en utilisant des éléments finis mixtes et nous avons utilisé le solveur DASSL pour
intégrer numériquement le systeme différentiel non linéaire obtenu apres discretisa-
tion. Pour étudier la convergence espace-temps du schéma numérique développé,
nous avons considéré différents types d’éléments finis mixtes. Pour étudier la stabilité
du schéma, nous avons généré des perturbations dans les équations du modele par
I'introduction d’une fonction aléatoire, dont les valeurs varient entre 0 et 1, multi-
pliée par un parametre qui controle le pourcentage d’erreur aléatoire. Cette stabilité
a été étudié en augmentant progressivement le pourcentage d’erreur jusqu’a 40%.
La convergence, les estimations d’erreurs et la stabilité du schéma ont été validés
numériquement sur différents exemples. Cette analyse a montré, entre autres, la sta-
bilité du schéma et I’adéquation entre les estimations d’erreurs numériques et les esti-
mations d’erreurs théoriques. Pour mettre en ceuvre le schéma numérique, nous avons
utilisé les logiciels COMSOL Multiphysics version 3.4 et MatLab version (2007a). Le
couplage entre Matlab et Comsol s’est avéré indispensable pour nous permettre d’'une
part d’introduire 'opérateur différentiel d’anisotropie et les termes aléatoires dans les
modeles, d’autres part pour analyser la convergence et étudier les estimations d’erreurs
espace-temps, et enfin pour mettre en oeuvre le probleme de controle qui est en cours
de test et de validation.

Le but du chapitre 4 est d’analyser numériquement l'influence du champ magné-
tique sur la dynamique et la structure des dendrites durant la solidification de I'alliage
binaire Nickel-Cuivre (Ni-Cu) dans le cas de données réalistes et du modele complet

(TDIA). Pour cela, nous avons tout d’abord adimensionalisé le systéme, et ensuite
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réduit le modele, par I’élimination du systeme de la magnétohydrodynamique et des
termes de convection, afin de valider notre approche en comparant les résultats du
modele réduit avec ceux de Warren et Boettinger, et Grujicic et al. Pour analyser
I'influence du champ magnétique, nous avons simulé dans un premier temps le mod-
¢le (TDIA) sans champ magnétique et ensuite, nous avons considéré I'influence de
trois fonctions de champ magnétique a savoir deux champs magnétiques constants
classiques d’angle 90° et 45°, et un champ magnétique variable. Nous n’avons pas
observé d’influence significative du champ magnétique d’angle 90° sur la forme des
dendrites, contrairement au champ magnétique d’angle 45°; par contre le champ mag-
nétique variable déforme considérablement la structure de la dentrite. Nous avons
aussi observé que la direction du mouvement du liquide a été completement modifiée
sous l'action des champs magnétiques exercés. On peut conclure que I'application
du champ magnétique influence considérablement la dynamique et la structure des
dendrites, ainsi que la direction du mouvement du liquide. Ces observations sont en
accord avec les études expérimentales développées, par exemple, par Prescott [48].
Cette derniere analyse a motivé le travail du chapitre 5.

Le chapitre 5 concerne le controle de la dynamique du front de solidification par
I’action du champ magnétique, en utilisant la théorie du controle optimal, la fonction
de champ magnétique jouant le role de variable de contréle. Pour les problemes de
controle associés aux modeles de champ de phase, on peut citer K. H. Hoffman et al.
[36], ou les auteurs ont étudié le controle optimal de la solidification des matériaux
purs; A. Belmiloudi et al. [6]-[8], ou les auteurs ont étudié les problemes de controle
robuste et de stabilisation du front lors d’une solidification non isotherme de matéri-
aux purs et d'une solidification isotherme d’alliages binaires, en tenant compte de
I'influence des bruits et des fluctuations. Pour des problemes de controle en utilisant
le champ magnétique comme variable de controle, on peut citer, par exemple dans le
cadre de matériaux semiconducteur fondu et le processus de croissance d’un cristal par
méthode Czochralski, M. Gunzburger et al. [38], ou les auteurs ont étudié le controle
du gradient de température dans le cristal durant ce processus et A. Belmiloudi [§],
ou l'auteur a analysé la stabilisation de la dynamique durant ce processus en tenant
compte des fluctuations et des impuretés du matériau.

Le probleme de contréle non linéaire traité dans cette these differe des problemes
examinés par les auteurs cités précédemment, par la nature du systeme d’équations
du modele considéré qui inclut, en plus du systeme concentration-champ de phase,
un systeme de type magnétohydrodynamique augmenté de nouveaux opérateurs non

linéaires qui integrent entre autres le champ magnétique B sous la forme non linéaire
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suivante (u x B) x B + a(1)B ou u est la vitesse et ¢ est le parametre de champ de
phase. Le probleme de controle a été formulé dans le cadre du modele (TDII), ensuite
I'existence d’une solution optimale a été analysée et les conditions d’optimalité ont

été obtenues.
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10 Modeling Solidification and Melting Problems

1.1 Introduction

Application of the phase-field methods and other diffusive interface methods of solid-
ification has been limited to the problems where the transport of heat and/or solute
is by diffusion only. But, when the solid crystal (or seed) grows in a solidification
process, the size, morphology, growth rate etc. of the crystal may be affected by
any motion in the melt. This motion in a melt is therefore important and cannot
be ignored. Such melt flows may occur due to, for example, temperature gradients,
concentration gradients, buoyancy-driven flow, natural convection due to the release
of latent heat from the growing crystal etc. In this chapter we shall derive the model
problem which describes the solidification of a binary alloy in the presence of flow in
the liquid phase. The commencing point of the present work is the two dimensional
model of solidification of binary alloy of J. A. Warren, W. J. Boettinger [24] and M.
Grujicic [39]. In the present work this model will be extended subsequently to include
the effects of convection in the phase-field, concentration and energy equations and
also the equations of melt flow in the presence of a magnetic field, applied to the entire
domain, will be included.

In the first section 1.1 we shall give the general physical laws used to derive the evo-
lution equations of the phase field, concentration, energy density and melt flow. In
the section 1.2 we shall derive the equation of phase field explicitly which is based on
the entropy functional analogous to Wang et al.[57]. In the section 1.3 we shall give
the derivation of evolution equations of concentration and energy which are derived
using the theory of irreversible processes. And in the section 1.4, we shall derive the
equations of the melt flow using the incompressible Navier-Stokes equations with the
Boussinesq approximations and the entire set of model equations will be given in the
section 1.5. Finally, we shall give the two dimensional isothermal and isotropic model

in the section 1.6.

1.2 Physical Laws

Let €2 be a closed bounded region in R™, where n is the number of space dimension,
with a piecewise smooth boundary I' = 0f). Initially the region 2 is occupied by a
binary alloy of the solute B in the solvent A, which is considered as incompressible
electrically conducting fluid.

At time ¢, the position of the system is described by the phase field variable 1 (x,t)

which takes values in the interval [0, 1] where the values ¢» = 0 and ¢ = 1 correspond
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to the pure solid and pure liquid phases respectively (see the Fig. 1.1), concentration
¢(x,t) which is the mole fraction of solute B in the solvent A, energy density e(x,t)

and the velocity field u(x,t). The governing equations for the and concentration

psi=1 psi=0
Liquid Solid
(A+B) (A+B)

Figure 1.1: Solidification of a binary alloy.

c(x,t) will be derived by using conservation laws of the energy and concentration

respectively as

—Degz’ ) +div(J,) =0, (1.1)
Dc(x,t) : B
D + div(J,) =0, (1.2)

where D/Dt = 0/0t +u -V is the material time derivative and J. and J. are the
conserved fluxes of energy and concentration respectively. These equations depend
on the entropy functional, denoted by S(v, ¢, e), which will be used to construct the
expressions for the fluxes of energy density and concentration respectively.
As the phase field variable 1(x,t) is not a conserved quantity therefore the most
appropriate form of the evolution equation for the phase field is (as in [24])

Dy(x,t) _ ¢M, (1.3)
Dt oY
where My, > 0 is the interfacial mobility parameter and operator ¢ denotes variational
derivative and S(1, ¢, €) is the entropy functional which will be given later. The phase
field variable 1¥(x,t) varies smoothly in the interval (0,1) and its value in the solid

phase is 0 and in the liquid phase is 1.
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The governing equation for the velocity field u(x,t) will be derived by using the

conservation of momentum and mass as

div(u(x,t)) = 0, (1.5)

where p is the density of the fluid, & is the stress tensor, u(x, t) is the velocity of the
fluid and By is the body force.
In the next section, the detailed derivation of the evolution equation for the phase-field

variable 1 (x,t) is given.

1.3 Evolution Equation for Phase-Field Variable

To derive the evolution equation for the phase-field variable ¥ (x,t) that indicates
the phase of the material at each point (x,t), we demand that the entropy of an
irreversible system always increases locally for a system where the internal energy

and concentration are conserved, the entropy is represented by the functional [24]

Stv.c0) = [ (stvnee) = 2 19uf) ax (16)

where s(1, ¢, €) is an entropy density, e(x, t) is the internal energy, ¥ (x, t) is the phase-
field variable and ¢(x, t) is the mole fraction of solute B in the solvent A. The second
term in the integrand is a gradient entropy term analogous to the gradient energy term
in the free energy, where the parameter ¢y is the interfacial energy parameter which
represents the gradient corrections to the entropy density. Here, we have omitted the
gradient corrections in the concentration ¢(x,t) and energy density e(x,t).

Now we need to take variational derivative of the functional S(1, ¢, e) in the sense of
distribution. Let X be a topological space and U is an open set in X. Then variational
derivative of equation (1.6) at ¢ € U in the direction of £ € D(U) is

<5S(w,c,e) 5> _ <8s(¢,c,e> f>
ot 7 D' (U),D(U) op D'(U),D(U)

5 (Bvere) <)
(= (2L , : L7
<a¢(2| o)) (.7)

where D’(U) is the space of distributions corresponding to the space D(U) of test
functions on U with compact support.

Consider now the term

0 [é 0 [é
R, LA e
<8¢(2| o)) /Qaw 219y ) dx
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Figure 1.2: Early stages of dendrites of the Fe-Si during the solidification provided by
Andrew Fairbank (University of Wollongong Australia)

and carrying out the differentiation in the integrand on the right hand side of the

above equation with respect to 1, we have

= | <€9|V¢|2 0 €+63W-V§> dx.
Q

Since €y is a function of 6, therefore applying the chain rule and using divergence

theorem, we arrive at

2 869 00
I= /Q (69 V| 90 90 & — div (V) € | dx. (1.8)
Therefore the variational derivative of S can be given as
0S  0Os 9 00
— = — —A by — 1.
5¢ aw + d 'U( GVL/)) <697697 aw7vw) ) ( 9)

where €, = 0¢y /00 and A (69, €, W,Vw) = eeeggz V|2,

Now we shall compute the derivative of the entropy density s(¢, ¢, e) with respect to
1, i.e. 0s/0Y using free energy density f(v,c, T).
As we know from the basic thermodynamics that the free energy density can be defined

by

f('ll), C, T) - €(¢, c, T) T5(¢a c, 6),
1 (1.10)
7= Pee),
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where e(¢, ¢, T) and s(e, v, c) are the internal energy density and entropy density of
the binary alloy and T'(x, t) is the temperature at any point in the time-space domain.

Taking differential of the above equation we have

df (¢, e, T) =de(p, ¢, T) — Tds(¢, c,e) — s(i, ¢, e)dT

or
df (0, e,T) = de(, e, T) — T (a de + gz(w n a—dc) — dT.

Using the definition of the temperature (i.e., 1/T = ds/0e), the above equation takes

the form 5 5
df (e, e, T) = —Tﬁdw T;dc — sdT. (1.11)
Also as we know that
of of of
df(¢,e,T) = awdw—l— de + 8TdT (1.12)

Comparing equation (1.11) and (1.12), we have the following relations

88(¢7C> 6) _ _laf(djvcv T)

ST (1.13)
63(1/560, e) _ _%(9]“(1/500, T)’ (1.14)
% = —s(¢,c,e). (1.15)

An explicit relation of the free energy density f(1,¢,T) of a binary alloy is given in
[24] as

f(¢7ca T) = (1 _C)IUA<¢7€7 T) +C/“LB(77Z)’Ca T>’ (116)
where pa(¢,c,T) and pup(v,c,T) are the corresponding chemical potentials of the

two constituent species, and are defined by

Bl & T) = a9, T) + )P + {-in(1 = ), (1.17)
(. T) = f(0,T) + M@)(1 = 02 + 7 ln(o) (1.13)

where f4(¢,T) and fg(1,T) are the free energy densities for substances A and B
respectively, R is the universal gas constant, V,, is the molar volume and A(¢)) the
regular solution interaction parameter associated with the enthalpy of mixing and is

assumed to be
A(Y) = As +p() (AL — As),
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where the parameters Ag and A, are the enthalpies of mixing of the solid and liquid
respectively.

Here it is assumed that the solution is ideal [24], therefore the parameters Ag and Ap,
are assumed to be zero and hence A (1) = 0.

Now using the basic thermodynamic, the relationship for the free energy density of

the pure substance can be given as

fr, T)=er(¢,T)—Ts;(v,T), I=ADB. (1.19)

where ef(1,T') is the internal energy density and s;(i,T) is the entropy density of
the pure substance I where I = A, B.

The internal energy density for each substance is assumed to have the form in [24] as

er (ZD,T) = 6[75(T) +p('¢)(6[7L(T) — 6]75(T)), I = A, B (120)

where er ¢(T") and e; (T') are the solid and liquid internal energies of the pure sub-

stances I where I = A, B, and are further defined as
ers(T) =ers(TH) + CLT - TY), (1.21)
eri(T) = erp(Ty) + CL(T = T,), (1.22)

where T/, is the melting temperature, C and C{ are the heat capacities of solid and
liquid and e;s(TY) and e; (T!)) are the internal energies of solid and liquid at the
melting temperature respectively of the substance I, where I = A, B.

The factor p() should be selected here in the way that it is 0 in the solid phase to
recover the internal energy density of solid and 1 in the liquid phase to obtain the
internal energy density of the liquid for the pure substance I, that is, it should satisfy

the following conditions
p(0) =p(1) =0
p() >0, V¢ €]0,1[ (1.23)

We shall elucidate further the choice of p(1)) below.

The latent heat of each pure substance is defined as
L[ = €[’L<TT{1) — eI’S(T#I), I = A, B. (124)

Supposing that heat capacities are identical (i.e. CL = Ct = () for solid and liquid
phase of each substance, we can write the final form of the internal energy densities
of each substance using equations (1.21), (1.22) and (1.24) as

er (0, 1) = ers(T,) + Co(T = T,) +p(¥)Lr, I=AB. (1.25)
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Now using equation (1.15), the equation (1.19) can be written as

1, T) =e;(v,T) +T%(¢ T), 1=A-LB.

or

af[(w, ) f](waT)—i_eI(waT):O? [:AaB

The above equation can further be written as

0 (f/T)

T2
oT

+ Gj(w,T) =0

and dividing by T2, we get

Ofy/T) | er(w.T)

oT 7 0

Integrating above equation with respect to T from T to T7,, we have

1 1 T eg (4,
T—T{Lff(@/%Té) - Tfl(¢vT) +/T el<72 T)dT

tmwnzT(Lm“@ S >>

According to equation (1.25), we have

ﬁwJU:T<Aquﬂ»+@g;ﬂm+mw d4~—ﬁw,)>-

=0,

or

Simplifying above equation, we arrive at

T T

fr,T) = %f}W,Té) +ers(TE) (1 - T_I) + O Th (F _ 1)

I
+L]p<¢) (1 - T—T;> + C'[Tln <T?m) s

J1(,T) = %ff(%ﬂi) + (er,s(T})) — CiTY + Lip(v)) <1 - %)
— O/ Tin ( TTI) (1.26)

Now the expression fr(1,T1) is left only to be determined to achieve the final form

of the free energy density of each substance. The choice of f(v,T?) is dependent on
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the phase field variable ¥ as we should have the free energy density of the substance
I in the solid phase at 1) = 0 and in the liquid phase at ¢» = 1. Also the free energy
density should be symmetric at the melting temperature with respect to ¥ = 1/2.
Thus the free energy density fr(1, T) that follow these conditions can be chosen as
a function g(¢) of class C?([0, 1], R) which satisfy the following conditions

9(0) = g(1) =0,
g”(d}) :/(,) it ¢ € {07 1/27 1} ) (1.27)
g9"(0), g"(1) > 0,
9() = g(1 —¥).
This function is being chosen in [24] as
g(¥) = *(1 = v)?, (1.28)

which is a double well polynomial function of the minimum degree that satisfy the
properties defined in equation (1.27). More details about the choice and properties
of the function g(¢) can be found in [24], [14]. Therefore the form of f;(¢, T1) is

assumed to be
f1(,Ty) = T, Wi (1 — )?, (1.29)

where W is the constant which control the height of the well and is defined as
307

Wp=
' Vet

where o7 is the solid-liquid interface energy, T, is the melting temperature and d; is

[=A,B. (1.30)

the interface thickness of the pure substance I. The graph of the f;(1, T%) is given in
the Fig. 1.3. Note that, to show that the minima of f;(¢,T7) lie only in the interval
[0, 1], we have taken the domain interval as [-0.5,1.5] for f;(, T) in the figure.

Now we shall determine an expression for p(¢) by demanding that the only stable
states of the system are the solid and liquid states and there are only two minima of
the free energy density f;(¢),T) at v = 0 and 1) = 1 for any temperature T'(x, ).
Differentiating equation (1.26) with respect to ¢ and using equation (1.29), we have

Ofi(,T)
P

T

= WiTq () + Lp' (¥) (1 - ﬁ) ’

where g'() = 0g(¢)/0¢ and p'(¢) = Op(¢) /0.
As ¢'(0) = ¢’(1) = 0, we note from the above equation that 0f;/0y is zero at ¢» =0
and ¢» = 1 only if p'(0) = p/(1) = 0 for any temperature T'(x,t). To ensure that
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Figure 1.3: The graph of fr(v,T1)

the only minima of the free energy density f;(,T) are at ¢y = 0 and ¢ = 1 for any
temperature, the function p(v) is required to fulfill the following conditions along with
the conditions defined earlier and that it is of the class C?([0,1], R)

p(0) =0, p(1)=1,

p'(0) =p'(1) =0,

p"(0) =p"(1) =0,

() >0, Vi € (0,1).

Here it is chosen to have the form [24]

p(¥) = ¢* (10 — 15¢) + 6¢7) (1.32)

which satisfy the conditions defined in equation (1.31). More details about the choice
and properties of the function p(y) can be found in [14], [46]. The graph of the
function p(v)) is given in the Fig. 1.4. Note that, to show the behavior of the function

(1.31)

p(10) well within the interval [0, 1], we have taken the domain interval as [-0.5,1.5].
Thus the final form of the free energy density for the substance I, where I = A, B,

can be given as

T
fr(, T) = WiTg(¥) + (er,s(Ty,) — CiTy, + Lip(1)) (1 - ﬁ)
T
Now using equations (1.16)-(1.18) in the equation (1.13), we have

g_; _ _%% {(1 —¢) (wa,T) + };—:l”ﬂ - C>) }

%% {c <f3(¢,T) 4 f;—fm(c)) } ,
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Figure 1.4: The graph of function p(v).

where A(¢) = 0.
Making use of equation (1.33) and carrying out the differentiation with respect to 1,

the above equation becomes

g_z — —%(1 —c) (WAQ/W)T +p/(¢)LA <1 - T%i}))
e (ng%wT +0'(0)Ls (1 - T%)) -
As p'(¢) = 30¢(¢), thus we have

oo = (=a {wagw) +s0ata (1 - ) |
e {WBg’<w)T + 309(¢) L (% - T%) } .

The above equation can be written as

0s

% =—(1—=c)Ha(),T) — cHg(x), T), (1.34)
where
, 11
HA(,T) = Wag'(6) + 30g(6) L (:7 - T—) | (1.35)

Ha,T) = Wag/ () + 309(0) L 7 = 7 ) (1.36)
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with g/(1) = dg(1)/0.
Substituting equation (1.34) into the equation (1.9) and then the resulting equation

in the equation (1.3), we obtain the following equation

%f — M, (dw (VY) — (1= ) Ha(y, T) — cHp(¥, T)
90
_A(€07€07 %,Vw)>, (1.37)

which is the general equation of phase-field, where the operators A and div (¢2V1)) are

left to be calculated. We can compute these operators by introducing the operator €.

If we assume that the interface thickness 64 = dp = ¢ in the constants defined
in equation (1.30) and that the solidification process is isotropic (i.e., g = €y is a

constant), then the equation (1.37) simplifies and takes the form as

D1 (o) 1 ,
20— (a0 - 20) - D), (1.38)
where
€2 =3v2(o4+05)5) T,
T =(TA+T5)/2
)\1(0) = (1 — C))\lA + C)\lBa
)\2<C) = (1 — C))\QA + C)\gB,
with
Aia = o4 = A\p= 75 -

o LaTw <1 1) W LT, (1 1)
T 3Voat+op) \T  TA) T 3\ 20u+op) \T  TH)
1.3.1 Two dimensional case

In two dimensions, the parameter ¢y is assumed to be anisotropic and is defined as
[24]
€9 = €on = €o(1 + yocoskh), (1.40)

where anisotropic means that €, is dependent on the direction of the solid-liquid

interface, 7, is the anisotropic amplitude, £ the mode number, ¢, is a constant and

0 = arctan (%) : (1.41)
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is the angle between the local interface normal and a designated base vector of the
crystal lattice, subscripts  and y are used to denote the partial derivatives with
respect to spatial coordinates, that is, ¢, = dv¢/0x and 1, = 0¢/0y.

The anisotropy plays an important role in modeling the dendritic solidification process.
In fact, for example, for the metal alloys, the form of dendrites is usually symmetric
and has four major dendrite arms and minor arms around them (see e.g., Fig. 1.2).
In the solidification model, the mode number £, in the anisotropy function ¢y, usually
represent the dendrite arms. If we want to obtain a dendrite with four arms, we fix
the value of k equal to 4. Its value depends on the form of dendrites obtained in a
particular alloy.

To compute the operators A and div (e3V1)), we shall restart from the equation (1.8)
given by

_ 206000 o i (&2
I—/Q<69|VL/J| 20 90 § + div (egwj)g) dx. (1.42)

Now taking derivative of equation (1.41) with respect to ® in the direction of &, we

% €= i (arctcm (ﬁ>) €
oy C N (o ’

get

%&-: 1 <¢z§y_1/}y§x)
0 . (%)2 ¥
% L wa:gy - %fx
3¢ T (1.43)

Substituting equation (1.43) in the equation (1.42), we arrive at

7= /Q <ege'9 (%) IV|* — V1) - vg) dx,

where €, = Jep/00.
Simplifying above equation, we have

I - /Q (6063@%&; - 696/9%&) dX - /Qﬁg (@Z)xgx + ¢y€y) dX.

The above equation can further be written as

0 0 0

0
- (8_y (eociin) = &5 (eaciba) = 5 (enepth) + €5 <eee’9wy>) ix

9 0 0 0
_/Q (% (ngxf) - 5% (ngac) + a_y (Ezwyf) o ga_y (ngy)> dx.
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Simplification of above equation yields

0 0 0 )
7= /Q (% (eoegtby) — ay (eoeota) — (% (e5z) + B (e?,@by))) ¢dx
—1—/9 (aay (6069@%5 + €9¢y€) 8 (eeegwyf 69@/):05)) dx,

or

7= [ (5 o) = 5 () = - (670) ) e
o o
+/Q <3_y ((€9€0¢w + €9¢y) 5) T or ((69591% - 69%) 5)) dx

Since £ = 0 on the boundary, therefore the second term in the above equation vanishes

9 )
I = /Q <8_x (€o€hry) — ay (€o€hrpz) — V- (egw)) gdx. (1.44)

According to equation (1.44), the equation (1.7) takes the form

(55 e = (0°4)
0"/ prony.owy 0"/ prny.ow

0 0
—/Q (% (eaegthy) — y (egepthy) — V - (63V¢)) &dx.

Thus we have the variational derivative of equation (1.6) as

0S  0Os 0 0 9
50 0p  or (eacpthy) + oy = (eocghs) + V- (V).
As €y = ¢y, the above equation becomes
0S  0Os 2 9 5 0 / 2 0 /
-~ S S — 1.4
5o = au eV (V) eoax(nnwy)ﬂoay(nnwm), (1.45)

where ' = 0n/00 and ¢ is a constant.
Carrying out the partial derivatives of x and y in the above equation, we have
0S  0Os on' on
w = % + €V - (772vl/)) — € (Wl’%y + 77%& + 7]’%%
on’ an
2 / et / 0
+€ (nn Vya + N By 1Y )
Since 1y = 1y, therefore the above equation simplifies as

05 _9s 2 ) o . On
= o+ AV (PV0) & (G 05

of 0
+€5 (nwxa—z +1 %a—z> :
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As 7 is function of 0, therefore applying chain rule, we have

05 _0s 9 on' 00 on 06
50 = oy TV (V) - @%wa 30 ou

o' 90 9 0
@%wa %wa>

Differentiating equation (1.41) with respect to x and y respectively, we get

@ o %«%y - %Q%I % o wxwyy - wywygg .

ox vo? 9y Vol (1.46)
Making use of equation (1.46) in the previous equation, we have
@ — ﬁ 2 2 2N (¢xwxy B ¢y¢m>
s o +e&V - ( V¢) €N Yy |V¢|2
2. 1\2 %%y — ¢y¢xr> 2 (I/Jacwyy - ¢y1/}yz>
€ (M) Yy ( ‘vw|2 + €nm Yy |VQ/J‘2
2 /N2 %%y - @Z}ywyx)
+€0 (77) w;c ( |V'¢|2 5
or
05 — ﬁ 2 2 2, <wx'¢ywxy - %%x)
5?/1 o TV ( V¢) ol |V¢|2
2 /N2 ¢x¢y¢xy - ¢Z¢zx) 2 " (%26%;; - ¢x¢ywyaz)
€ (1) ( VP + e T
2 (. N2 ¢g¢yy - ¢x¢y¢yw>
+e5 (') ( Vol : (1.47)
Now consider the following term
I =V - (n*Vy).

By employing the Green’s identity (V - (fiV f2) = filfo + V f1 -V f2), we have
T, = * Ay + Vn? - V.

The above equation can be written as
T, = n* A + 2nVn - V.

Since 7 is the function of 6, therefore by using chain rule we arrive at

T, = * Ay + 291 VO - V.
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According to equation (1.46), the above equations becomes

=AY+ —— \V"éff\ (% (Yathay — ythaa) + 1y (Yathyy — Yytdya)) - (1.48)

Making use of equation (1.48) in the equation (1.47), we have

0S  Os
@ - @ ( 1/1 +——= |v¢| (¢$ (¢m¢wy ¢y¢xm) + % (¢x¢yy - ¢y¢ym)))
2 " 2bilﬂvb?!z/}ffﬁy - ¢§wmm> 2 N2 (%%%11 - ¢Z¢mz)
€M ( S € (1) VP
2 " wi%y - %%%z) 2 /N2 (wgwyy - wx%%x)
+enm ( ’V¢’2 +e () ‘vw‘g .

Simplification of the above equation yields

53 68 2 2¢aj¢y 2,¢xy 2 2
5o~ g T AV F <W Wy =)+ 1g (4 _%))
2 "
+ f%i;jlg (—2%%%;/ + ¢§wz‘x + ¢§¢yy)
e (') 2 2
+ |V,¢|2 (—wawyw;py + wywzz + wxwyy) )
or
5_3 Os 2 2951y _ 21/}”3?4_ 2 _ g2 )
50 " gy T AV e <|vw|2 W =) H1g 2 Wa=v)
2 " N2
: <m|7v;_‘2(77 ) ) (_2wx¢y¢wy + ¢§¢M + wi%ly) ’

Using equation (1.41), we can easily have

v B
V|’ V|’
2 2
_ 2,
L fy, sin20 = 4 wg.
Vi Vi
With the help of relations (1.49) and multiplying and dividing the last term of the

above equation by 2 and rearranging the terms, we obtain

oS 0s ;.
@ = % -+ (2)772A1/1 + 637777 (SWLQQ (¢yy - ¢xz) + 27/’36@/60320)

6(2) (7777// + (77/>2> ( 4%%%;, ¢§¢ww + 77Z)§1/}a:a? + ¢g¢yy + ¢§¢yy)
+ - 2 + X :
2 IV VY|

cosl =

cos20 =

(1.49)
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Adding and subtracting v21),, and w;wyy in the last term of the above equation and

then factorizing the terms, we arrive at

0S  Os
w 8¢ + eon? Ay + egm (sin26 (Vyy — Vuz) + 2005y c0520)
e (" + () [ Aatdytay (s ) (¥2 —¥2) (dyy — Yua)
2 Vl? " Vo ’
According to equation (1.49), the above equation takes the form
0S  0Os
5 = 59 + een® A + egnn’ (sin20 (Y — ey) + 204,c0520)

/ 12
_ <l 2+ (r)’) (2000 5in20 — Atp — (1 — V) c0520) . (1.50)

Now using equation (1.34) in the equation (1.50) and then substituting the result-

ing equation in the equation (1.3), we finally get

D My (P2 — (1~ ) HA(0.T) — el (0, T))
- Myed (" + (1))
2

{240y 51m20 — Atp — (yy — ) c0s20}
+Myeann’ {51120 (1, — hes) + 204,c0520} (1.51)

which is the final form of the evolution equation for the phase-field ¥ (x,t) in two
dimensions, where we assume M, be a positive constant.
In the next section, we shall present the derivation of the concentration and energy

density equations which are coupled to the phase-field equation.

1.4 Energy and Concentration Equations

As described earlier the evolution equations for the concentration ¢(x,t) and the

energy density e(x,t) are given by following normal conservation laws

Dc ,
D_t = —dwv (JC) N (152)
De ,
Ft = —div (Je) 5 (153)

where D/Dt = 0/0t + u - V is the material time derivative, J. and J. are the
diffusional and heat flux respectively.

The fluxes J. and J. can be expressed by the irreversible linear laws as [24]
3S(1, ¢, e)

Jc:Mc )
v oc

(1.54)
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J. = Mev%’ec’e), (1.55)

where the parameter M, and M, are assumed to be positive and are related to the
A-B inter diffusion coefficient and the heat conductivity, respectively and S(v, ¢, e) is
the entropy functional which is defined by equation (1.6).

As observed by Warren and Boettinger [24] that the effects of the terms V7' in the
concentration equation (1.52) and Ve in the energy equation (1.53) to be the small
corrections. Therefore in the derivation of the concentration equation, we shall assume
that the temperature T'(x,t) is constant and in the derivation of equation of energy,
the concentration c¢(x,t) will be assumed fixed.

To advance further we need to take the variational derivatives of S with respect to
concentration c¢(x,t) and the energy density e(x,t). The variational derivatives of
S(1,¢,e) (in the sense of distribution) with respect to ¢ and e can easily be given

using equation (1.6) as

0S(,ee)  Os(¢,c,e)

dc T 9 (1.56)
55(@070» 6) _ aS(’QZ),C, 6)
7 (1.57)

According to the previously given relation (1.14) and using the basic thermodynam-
ics, the two variational derivatives appearing in equations (1.56) and (1.57) can be

expressed as

ds(,c,e) 1 0f(¢,e,T)
dc  T(x0) de (1.58)
ds(p,ce) 1
5 =T D) (1.59)

By employing equations (1.16), (1.58) and (1.56), the equation (1.54) takes the form

_:u3<¢7 ¢, T) — MA(¢7 ¢, T>>
T(x,t) '

JC:MCV(

Since temperature T'(x,t) is assumed to be constant in the derivation of the concen-

tration equation therefore the above equation can be written as

M.

Jo=— T \Y (MB(wacv T) - MA<77ZJ7Ca T)) :

With the help of equations (1.17) and (1.18), the above equation takes the form

o= =5 (falen 1) + (o)

Vin

Mg (fA(w,T) + gma - c)> .

T
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Carrying out the differentiation in the above equation, we have

M, RT 1
Jo=— T <Vf3(¢,T) + V—mEVC)

M, RT 1
2 (V) + ).

Making use of equation (1.33), we obtain

3= (~watd Ve~ p)La (1- 75 ) Vo)
+A74f (WATg’(¢)v¢ + 1 (¥)La (1 - T%) w)
M. RT 1 RT 1
i) (‘v—zw‘ V1 _CWC)) ’
or
J.=M Wgsg (1)L ! !
=M (~Wad (0) = #0)Ls (1~ 73 ) ) V0

Using equations (1.35) and (1.36) in the above equation, we have

Jo=—MHp(¢, T)Vp + M. Ha(, T)V
Yl (1 T ) ve.

c 1l-c
Further simplification of the above equation yields

M.R

C Ve(1—¢) ve

Jo = M (Ha(4,T) = Hp(¢,T)) Vi

(1.60)

Also as the comparison of equation (1.60) with the Fick’s first law in a single-phase

system (where Vi) = 0 ) establishes the relation given below [24]

Vine(1l —¢)

Mc:D(¢) R )

where D(¢) = Dg + p(v) (D, — Dg) is the A-B inter diffusion coefficient.

Substituting equation (1.61) into the equation (1.60), we obtain

Vine(l —¢)

(HA(w7 T) - HB(wa T)) Viﬂ - D<w)vc

(1.61)

(1.62)
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Finally substituting equation (1.62) into the equation (1.52), we have

Dec
Dt

(1—10)V,,

— div (D(w (Vc—i— < o (Hp(.T) = Ha(, 1) w)> . (1.63)

Equation (1.63) represents the final form of the evolution equation for the mole frac-

tion (concentration) of the solute.

If we assume that the interface thickness 4 = dp = 9, the above equation takes

the form
D 1
Sr = div (DW)Ve) +div(aoD(@)e(1 = ) 5Xi(0)g (v)
AP () V), (1.64)
where /3
ap = SR;Zm (04 +05), (1.65)
with X (c) = 0A(c)/0c, Ny(c) = OA(c)/Oc, where Ai(c) and As(c) are defined in equa-
tion (1.39).

Now we shall derive the evolution equation for the energy. For this, first, the internal
energy density of a binary alloy can be expressed using a rule of mixture as (e.g., [24],
[39])

e(,e,T) = (1 —clea(,T) +cep(v,T). (1.66)

Making use of equation (1.59) into the equation (1.55) we get

3. = M, (—%w(x, t)) | (1.67)

Now substituting equations (1.66) and (1.67) in the equation (1.53), we have

D

(1= dea(w.T) 4 e en(u, 7)) = =+ (M, (~ 75 970x0)) )

Since concentration ¢(x, t) is considered constant in the derivation of the energy equa-

tion, therefore the above equation take the form

(1— C)%@ +e %@ __v. (Me (—%VNX, t))) |
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By using equation (1.25) and setting M, = KT?, where K the thermal conductivity,

the above equation becomes

-0 (2D L P (0,20 1,200

):V-(KVT).

Applying chain rule and re-arranging the above equation, we have

(1 —)Ca+cCh) % T (1 =e)La+ cLB)p'(w)% = V- (KVT).
Further the above equation can be written as (p'(1) = 30g(%))
DT(x,1) Dy(x,t)
CTIf +30L g(w)Tt =V .- (KVT(x,t)), (1.68)

where

C = (1-¢)Cy+cCh,
L= (1 —C)LA+CLB,
K = (1—C)KA+CKB,

with K4 and Kp, the thermal conductivities of substances A and B respectively.
Equation (1.68) represents the final form of the evolution equation for the temperature
field T'(x,t).

Next section is devoted to the derivation of the equations of melt flow which is coupled
to the equations of phase-field, concentration and energy equations in the presence of

a magnetic field.

1.5 Evolution Equations for the Melt Flow

As elucidated earlier that the evolution equations for the melt flow will be derived
from the laws of conservation of momentum and mass. The domain €2 is initially
occupied by the binary alloy of the substances A and B which is incompressible
and electrically conducting fluid subject to applied magnetic field B,, on the entire
domain. The motion of the fluid is initially driven by the buoyancy force. Since the
fluid is electrically conducting and also there is a applied magnetic field, therefore
when the fluid start moving there would be electric current and in addition to the
applied magnetic field, there will be induced magnetic field produced by the electric
currents in the liquid metal. This will give rise to the Lorentz force which acts on the
fluid so that an extra body force term F will appear in the Navier-stokes equations.

The Lorentz force in such a flow is given by as

F=pE+JxB,, (1.69)
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where p. is the electric charge density, E the electric field intensity, J is the current
density and B,, = B+ b is the sum of applied magnetic field B and induced magnetic
field b.

We assume that the walls of the domain are electric insulators and the magnetic
Reynolds number is sufficiently small that the induced magnetic field b is negligible
as compared to the imposed magnetic field B (see e.g., [54]).

The current density J appeared in equation (1.69) can be defined by the Ohm’s law

for the moving medium as
J=pu+o0.(E+uxB), (1.70)

where o, is electrical conductivity and u is the velocity of the fluid.
Since electric field is a conservative field, therefore we can express it as a gradient of

a scalar function ¢ as
E = -Vo, (1.71)

where V is the gradient operator, ¢ is the potential function and negative sign shows
that the electric field intensity always decreases from higher to lower potential.
Thus the equations (1.69) and (1.70) together with equation (1.71) takes the form

F=—-pVo+0.(—Vop+uxB) x B, (1.72)

J=pu+o0.(—Vo+uxB). (1.73)

In addition to the Ohm’s law, the current density J is governed by the conservation

of electric current
div(J) = 0. (1.74)

This equation can be used to calculate the potential function ¢ appearing in the

Lorentz force F. Taking the divergence on both sides of the equation (1.73), we have
div(J) = div(peu) + div(o.(—V¢o +u x B)).

Since electric charged density p. and electrical conductivity o, are assumed to be

constant here and using equation (1.74), we have
pediv(u) + o.div(—Ve +u x B) =0,
Using incompressibility condition i.e., div(u) = 0, we arrive at

A¢ = div(u x B), (1.75)
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where A is the Laplace operator.

From the above equation, we can calculate the potential function ¢ under the influence
of magnetic field applied in any direction. Therefore with the help of this potential
along with the magnetic field we can calculate the Lorentz force F defined in equation
(1.72).

Also note that to derive equations for the melt flow, we shall assume the Boussinesq
approximations, as is often done in the heat and/or solute transfer problems. This will
lead us to neglect the density variations with respect to temperature and/or concen-
tration everywhere except in the gravitational force term in the momentum equation,
and also neglecting the temperature variations of the other material properties.

Also as we know that the phase-field variable ¢)(x, t) is 0 in the solid phase and 1 in the
liquid phase and there is no motion in the solid phase, therefore equations of the melt
flow should give us the zero velocity in the solid region of the domain. To include this
fact in the equations of melt flow, we have multiplied the boussinesq approximation
term and Lorentz force term by functions a1 (1) and a(¢)). These functions are chosen
in way that they are 0 at ¥(x,t) = 0 and 1 at ¥(x,t) = 1, so that the Boussinesq
approximation term and Lorentz force term become zero in the solid region and the
equations of the melt flow together with the zero initial and boundary conditions give
the zero velocity in the solid region of the domain. Also to include the effects on the
velocity with respect to the phase change at the solid/liquid interface, we have added
an additional term f(¢)) in the melt flow equations which will also be chosen so that
it is zero at 1 (x,t) = 0. The melt flow equations can be given using incompressible

Navier-stokes equations as

po = div(3) + () (~BrT(x, 1) — fuelre 1)) G
+as(Y)o.(—Vo +u x B) x B+ af(¢), (1.76)
div(u) = 0. (1.77)

Which is a magnetohydrodynamic type system with u = (uq,us, u3) is the velocity,
po is the mean density of the fluid, Sr and . are the thermal and solutal expansion
coefficients, G = (0,0, —g) is the gravity vector, T(x,t) is the temperature, c(x,t) is
the concentration (mole fraction of the substance B in A) and & is the stress tensor
which is defined as

¢ =—pl+ p (Vu+ (Vu)"") (1.78)

where p is the pressure, I is the unit tensor, p is the dynamic viscosity, and tran

represents the usual transpose of a matrix.
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Remark: The functions a;(¢)) and ay(%)) in the equation (1.76) can be chosen, for

example, as

(1 +9)

() =9, al)=—7— (1.79)

In the next section we shall give all equations that governs the solidification process

of the binary alloy.

1.6 Mathematical Models

In this section, we shall summarize the entire set of governing equations that model the
solidification process of a binary alloy in a non-isothermal environment in the presence
of motion in the liquid phase with the magnetic field effect. The equations that model
this phenomenon are the phase-field equation (1.37), concentration equation (1.63),
energy equation (1.68) and the magnetohydrodynamic system (1.75-1.77) which are

given below

2 = My (div (€396) — (1= VAW, T) = el (0 T)
a0
—A(eg, % 5g w)) on Q, (1.80)
e = div (D) (Ve Lo 10, 7) — Ha(w. 1) 90) ) on @, (181)
DT oy
Oy +30L g(¥) 5 = V- (KVT) on Q, (1.82)
po%ltl = div(7) + a1 (V) (—=BrT(x,t) — Bec(x,1)) G
+as(Y)oe(—Vo +u x B) x B+ af(y)) on Q, (1.83)
div(u) =0 on Q, (1.84)
¢ =—pl+ p (Vu+ (Vu)"), (1.85)
A¢p =div(u x B) on Q, (1.86)

where all the variables and parameters are defined in the respective sections of the
derivation of the equations.

In the next subsection, the developed model will be restricted to the isothermal case.
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1.6.1 Isothermal-Anisotropic Case

An isothermal process is a process in which the temperature of the system remains
unchanged i.e. there is no change in the temperature in the whole process. Therefore
in the isothermal case of our model the temperature 7'(x,t) is assumed to be constant
in the whole model. Therefore we shall not consider the evolution equation for the

temperature in this case. The model problem in this case reduces to

%f = M, (dw (V) — (1 — ) Ha(t) — cHp (1)
.00
—A(eg, % 5 w)) on Q, (1.87)
g—j — div (D(w) (Vc—l— w <ﬁ3(¢) . ﬁA(¢)> w)) on Q, (1.88)
po% — div(5) — ay () fuc(x, )G

+as(¥)o.(—=Vo+uxB) x B+ af(yy) on Q, (1.89)
div(u) =0 on Q, (1.90)
¢ =—pl+p(Vu+ (Vu)"™), (1.91)
A¢p =div(u x B) on Q, (1.92)

where H;(v) = H;(¢,T), I = A, B.

We suppose that the physical system where solidification process takes place is a closed
system, that is, there is no phase and concentration exchange across the boundary and
that the velocity in the liquid phase along the boundary is negligible. Therefore we
have enclosed the geometry of the problem by posing Neumann boundary conditions
for the phase-field and concentration equations and no-slip condition for the flow

equations alongwith the initial conditions given below

(u7 w7 C) (t = O) = <u07¢07 CO) in Q? (1933)
0, 2 vpn=0 L oven—0 onn=(0.7)x00  (1.93b)
u=0 --= n=0 - =Vcn=0 onX=(0T; , .

where T is the final time, n is the unit outward normal and €2 is a sufficiently regular
and open domain in dimension R" with n < 3.
Next we shall reduce our model problem defined above to the two dimensional case

in an isothermal environment.
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1.6.2 Two Dimensional Isothermal-Anisotropic Case

In a two dimensional case, we work in the XZ-plane and suppose that the applied

magnetic field B is parallel to the plane. Thus the equation (1.75) reduces to
A¢ =0, (1.94)

which is valid in the melt as well as in the neighboring solid media. This condi-
tion alongwith the electrically insulating conditions on the boundary implies that the
unique solution is V¢ = 0, and therefore the electric field vanishes everywhere. In
such situations, the equation related to us component of velocity and the electric po-
tential equation (1.75) in the magnetohydrodynamic system will be decoupled from

other equations. Therefore equation (1.73) reduces to
J=o0.(uxB), (1.95)
and the Lorentz force defined in the equation (1.72) takes the form
F =0.(uxB) x B. (1.96)

Using equations (1.95), (1.96) and the equation (1.51) the model problem in two

dimensions for the isothermal anisotropic case reduces to the following form

P = Vpt s () e, G
+az(¢)oe(u x B) x B+ af(y)) on Q, (1.97)
div(u) =0 on Q, (1.98)
D ~ -
DU — My (2 — (1~ ) Ha(w) — cAls(e)
7 12
_Myeg (77772 + (7)) (200, 5in20 — Atp — (1 — ) c0526}
+Myeinn' {sin20 (¥y, — ee) + 2004,c0820} on Q, (1.99)
Dc (1—10)Vy,

— div (D(w) (Vc + = (ﬁB(zp) . ﬁA(zp)) vw)) on Q, (1.100)

Dt R

where, for simplicity, we denote x = (z,y), u = (u,v) and B = (B, By) and to

simplify further the notation, we write the above mentioned problem in the following
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form
po%  _Vp+ pAut As () + () (ux B) x B on Q, (1.101a)
div(u) =0, on Q, (1.101b)
DU A — Aslatc) — Al VU, V() o0 Q (L101c)
g—j — div (D(Y)Ve) + div (As(, )Vi)  on Q, (1.101d)

with the initial and boundary conditions

(ua ’QZ), C) (t = O) = (u0>¢07 CO) in Q7 (11023“)
—0, g ony = (0.7)) x 09 (1.102b)
R . P '

where (1) = Myegn?, b(y) = oeaz(y) and

As(,€) = a1 () Beex, )G + af(v),
Aalth,¢) = My (1= ) Ha(w) = els(v))

Ayt e) = L= (1) — iaw)),
M. 2 " N2
Au(n, 1", Vb, V (V) = —20 (””2 + 1)) (22, 5i120 — A — (thy, — ) 0520}

—Myeann’ {5in20 (1 — as) + 205,c0520} .

Further in the next subsection, we shall give a isotropic case of the above defined

model.

1.6.3 Two dimensional Isothermal and Isotropic Case

In the model derived above the interfacial energy parameter ¢ = ¢yn is assumed to
be anisotropic. In this case the process of solidification is dependent on the direction
of the solid/liquid interface. In an isotropic case this parameter does not depend
on the direction of the solid/liquid interface and is assumed to be constant, i.e. 7 is
constant, therefore the operator A4 will become zero and the process of solidification
is homogeneous in all directions in this case. In the isothermal and isotropic case our

model problem will be reduced to take the following form
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po% =—Vp+pAu+ A;(¢,¢) +b(¥)(ux B) x B on Q, (1.103a)
div(u) =0 on Q, (1.103b)
Dy
E = €1A'w — AQ(’I/}, C) on Q, (1103C)
g—; = div (D(y)Ve) + div (A3(¢,¢)Vy) on Q, (1.103d)

where €; = y(n = 1).

The initial and boundary conditions are defined same as in (1.93)

(uu ¢7 C) (t = O) = (u07 1/}07 CO) in Q7 (1104&)
—0, 20, g onn = (0,7y) x 090 (1.104b)
u=0 - =0 o =0 on2=(0T; . .

In the next chapter, we shall present the existence, uniqueness and regularity of the

solutions of the problem (1.103) under some assumptions on the non-linear operators.



Chapter 2

Existence, Regularity and Stability
Results

Contents
2.1 Imtroduction . ... ....... ... 0 0., 38
2.2 Definitions and Notations . .. ... ... ... ...... 38
2.3 Assumptions . ... ... ... 0 e e e 40
2.4 Weak Formulation . . . ... ................. 41
2.5 Existence and Regularity of the Solution . ... ... .. 48
2.6 Stability and Uniqueness . . . . . . . .. ... 91

37



38 Ezxistence, Regularity and Stability Results

2.1 Introduction

In this chapter, we shall present the existence, regularity and stability results of the
two dimensional isothermal-isotropic case of our model problem defined by (1.103)
using some a priori results, elliptic estimates and by posing some conditions on the
non-linear operators. In section 2.2, we shall define some fundamental spaces to be
used in the rest of the chapter. In section 2.3, we shall present the assumptions made
on the non-linear operators and the weak formulation of the model problem will be
given in the section 2.4. In section 2.5 and 2.6, we shall provide the proofs of theorem

which shows the existence, regularity and uniqueness of the problem.

2.2 Definitions and Notations

Let Q be a fixed bounded and open domain in R? and I' = 99 denotes its boundary
which is supposed to be sufficiently regular.
For p € [1,+00], we denote by LP(2) the space of p-integrable functions with the

norm
1/p
ol = [ 00Bax) it p<oc
0]l o ) = sup ess [v(x)],, if p=oo
pdS

In particular for p = 2, the space L*(Q) is a Hilbert space with the inner product

(u,v) = / u(x) -v(x) dx, Yu,ve L*Q)

Q

and we shall denote the norm of L?(Q

) as
ol = ([ 1ot ax) "

where | - |, is the usual Euclidean norm.
For an integer m > 0 and 1 < p < oo, the Sobolev space of order (m,p), denoted
by W™P(Q), is defined as the space of functions in the space LP(£2) whose derivatives

upto order < m are also in LP(2), that is
WmP(Q) ={v e LP(Q) : D € LP(Q) Yo € N" such that [o] < m}
where a = (o, ..., @j, ..., o) and [a] = D7 o, together with the norm
1/p

HUHW’”’P(Q) = Z HDO"UHZ)(Q) , if1<p<oo

[a]<m
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and

HUHWMO(Q) = [Iaf]lgﬁ ||DaU||Loo(Q)

In particular, if p = 2, the Sobolev space W™?(€2), denoted by H™(f2), is a Hilbert

space for the following scalar product
(s V) () = Z (D%u, D)
[a]<m
where (-, ) is the scalar product of L*(€2). We shall denote the norm of H™() as

1/2

H™(Q) — Z | D UHL2(Q)

[a]<m

0]

Further if m = 1, the space H'(€2) can be defined as
H'(Q) ={veLl*(Q)| Vve L*(Q)}

with the scalar product defined as
(W V) i) = / u(x)v(x)dx+/Vu(x) - Vo(x)dx
Q Q
and the norm on H'() is denoted by

ol = (Jox) 2 + [Vox)P) 2

Let D(2) (or D(Q)) be the space of C* functions with compact support contained
in Q (or Q). The closure of D(Q) in W™?(Q) is denoted by W;P(Q2) (or HF () if

p=2).
In particular, the space H} () is defined as

Hy(Q) ={veH' () |v=00nT}
with the scalar product defined as
(u,v) HA© / Vu(x) - Vo(x)dx

and the norm on Hg(€) is defined by [[v(x)| 1) = [Vv(x)].
The dual space of the space Hj () is denoted by H () with the norm defined by

‘< [2v >p-10),110)

1/l z-10) = sup
HEH®) veHE () o]l
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Let U be a Banach space and 1 < p < 400 and —oo < a < b < +o0, then LP(a,b;U)

is the space of LP functions v from (a,b) into U which is a Banach space with the

norm
b 1/p
lhsianer = ([ Wllpae) . irp<oo
a
and
HUHLoo(a,b;U) = sup ess[vl,;, if p=+o0
te(a,b)

Now we shall define some basic spaces which will be used frequently in the study of
our problem.

H= {v e (LX) | div(v) = o}
V= {v € (HI(Q))2 | div(v) =0, v=0on F}
ov
H? = H(Q) | —=0
i={oem@) 5 -0}
H=HxL*Q)x L*(Q), V=VxH(Q)x H(Q)
We then define the Leray projection IP to be the orthogonal projection of (LQ(Q))2 onto
H. Using divergence theorem it can easily be proven that any gradient is orthogonal
to H, therefore if we apply P to the equation (1.103a), the pressure term will be
eliminated and we shall left with a evolutionary parabolic equation.

Also note that the vector triple product of three vectors f = (fi, f2), & = (91, 92),
h = (hy, hy) € R? is defined by

fagiha — f1g2ho
f h= . 2.1
( - g) - ( fig2hi — fagiha > ( )

2.3 Assumptions

We state the following assumptions for the operators Ay, D, Ay and A3 in the problem
(1.103) (see [6], [8]).

(H1) A;(x,t,-) is a Caratheodory function from Q x R? into R% For almost all
(x,t) € Q, Ay(x,t,-) is a Lipschitz positive and bounded function with

0 <ap < |Ai(x,t,1)], <a;, VreR?andae. (x,t) € Q.
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(H2) As(x,t,-) and As(x,t,-) are the Caratheodory functions from Q x R? into R.
For almost all (z,t) € Q, As(x,t,-) and As(x,t,-) are Lipschitz positive and

bounded functions with
0<a; <Aix,t,r)<a;, Vi=23, VrecR*andae. (x,t) € Q.
(H3) D(x,t,-) is a Caratheodory function from QxR into R. For almost all (z,t) € Q,
D(x,t,-) is Lipschitz positive and bounded function with

0< Dy < D(x,t,r) <Dy, VreRanda.e. (x,t) € Q.

(H4) b(x,t,-) is a Caratheodory function from Q xR into R. For almost all (z,t) € Q,

b(x,t,-) is Lipschitz positive and bounded function with

0<by <b(x,t,r)<by, VreRandae. (x,t) € Q.

(H5) B € {Be (LX) | B <|Bl,< B} C (L2(Q))".

For the sake of simplicity, we shall write A;(v,c), Ai(¢,¢), D(1) and b(¢)) in stead
of Aj(x,t,1,¢), Aj(x,t,1,¢), D(x,t,v) and b(x,t,1), i = 2,3, respectively.

2.4 Weak Formulation

In this section we shall derive the weak formulation of the problem (1.103) together
with the initial and boundary conditions (1.93). Applying Leray projection P onto
the equation (1.103a), we obtain

" (g_‘; ; B(u,u>) = uPAu+PA(d.c) + P(b(¥) (ux B) x B)),  (22a)
O (V) = 620 A ), on Q (2.2b)
% + (u-V)e = div(D(y)Ve) + div(As(v, c) V), on Q (2.2¢)

together with the initial and boundary conditions

(uv ¢a C) (t = 0) = (u07¢07 CO) 9 in (23&)
0, 2 pn—0, X en—0, o= (0.T)x00  (2.3b)
u=\=u, 31’1_ n=2=u, an— c-n=4y, on = y L f .

where B(u,u) = P(u- V)u and 77} is the final time. Now we define bilinear forms

a,:VxV =R
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defined by
a,(u,v) = u/ Vu-Vvdx, VuvelV,
Q
and
ay : H'(Q) x H'(Q) - R
defined by

a¢<w,¢>=q/0vww dx, V.6 H(Q),

and a trilinear form as

by : VXV xV =R
defined by

2 2
by(u;v,w) = pOZZ/ui(aivj)wj dx, Yuv,welV.

i=1 j=1

Also note that b, (u, v, w) = po(B(u, v),w) and
by 1V x HY(Q) x H'(Q) - R
defined by
2
bolw,6) =3 [wlOwlo dx, VeV, v.oe HI(Q)
i=1
and in the same manner, we define

2
be(u;c, z) = Z/uz(&c)z dx, YueV,c z€ H(Q).
i=1

Multiplying equation (2.2a) by v € V, equation (2.2b) by ¢ € H'(Q) and equation
(2.2¢) by z € H'(Q2), and then integrating the resulting equations over €2, we obtain

Po (%,v) + b, (u,u,v) = p(Au,v) + (A (¢, ¢),v)
+ (b(¢¥)((ux B) x B),v), (2.4)
(%7 (b) +by(u, 9, 0) = e1(A¢, ¢) — (A2(¥, ¢), 9), (2.5)

(%,z) +b.(u,c,z) = /Qdiv(D(l/z)Vc)z dx
+ /Q div(As(c,¥)V)z dx. (2.6)
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Consider the integral

/div(v-Vu) dX:/Vu-Vvdx—l—/v-Audx,
Q Q

Q

by using the divergence theorem on the left-hand-side of the above equation, we have

/(V~Vu)'ndF:/Vu'Vvdx+/V-Audx,
r Q

Q

since v = 0 on the boundary I', therefore we get

/ v Audx = — / Vu- Vv dx. (2.7)
Q Q

Similarly we can easily derive using Vi - n = 0 that

/QQSA@D dx = — /Q Vi - Vo dx. (2.8)

Consider the following integral

/Q div(=D(1)Ve) dx — /Q D(W)Ve - V= dx + / ~div(D()Ve)dx,

Q

applying divergence theorem on the left-hand-side of the above equation, we get

/FzD(wvc-ndr: /QDw)vc-Vz dx—i—/zdiv(D(w)Vc)dx,

0
since Ve - n = 0, then
/deiv(D(@/))Vc) / D(¢)Ve-Vz dx. (2.9)
Similarly, we have the following result (using Vi - n = 0),
/Q sdiv(As (v, ¢) Vib)dx = — /Q As(, €) Vb - V= dx. (2.10)
Now making use of equations (2.7)-(2.10) in the equations (2.4)-(2.6), we arrive at
<?;tl )+au(uv)+b(uuv /A1 ) - v dx
+ [ ) xB) < B) v dx
ov ¢5 ay (1, §) + by(u, 9, ¢) = —/QAz(@/%C)cb dx,

— z) be(u,c, z) —i—/QD(w)Vc-Vz dx

3

(2.11)

+
+ | A3(¢, o)V -Vzdx=0, VY (v,0,2) €V
(ua w: C) (t = O) = <u07¢07 CO) )




44 Ezxistence, Regularity and Stability Results

which is the final form of the weak formulation of the problem (1.103).

Before proving the existence and uniqueness, we shall give some lemmas.

Lemma 1 (i) Elliptic Estimate: Let k € N and v € H*(Q) satisfy Av € H*(Q)
and g—:’l = 0 on the boundary I'. Then v € H*2(Q) and we have the following

estimate: there exists a constant C > 0 independent of v such that
[ollmeesay < C (1800 + Mol )
(1) Gagliardo-Nirenberg’s inequality: There exist a constant C' > 0 such that

0 1-6
”UHLp(Q) < C HUHHq(Q) HUHL2(Q) Vue H(Q),

where 0 < 0 <1 andp = with the exception that if g—n/2 is a nonnegative

29 )
integer then 0 is restmcted to zero.

(iii) For any set Q C R?, we have
[l < Cllvllig IVollke Vv e Hy).
For the proof of this lemma, see, e.g., [23] and [55]. O
Lemma 2 For any open set ), then the trilinear forms have the following properties
(i) For allueV, ve (HYQ))? and ¢, c € H'(Q)
b(u,v,v) =0, b(u,¥,¥) =0, blu,c,c)=0.
(ii) For allueV, v,we (HX(Q)), ¥, € H(Q) and ¢,z € H().

b(u, v, w) = —b(u, w, v), blu,v,d) =—b(u,,v), blu,c, z)=—b(u,zc).

where u = (uy,uz), v= (v1,v2), w= (wy,wy).

Proof: (i) As we know that the trilinear form b(u, v, v) can be expressed as

2
b(u,v,v) Z/ (Ov;j)v,dx.

1,7=1

Consider the following integral now

2
/ui(aivj)vjdx = /Uzaz (EJ) dx.

Q Q
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Using divergence theorem and as u = 0 on I, therefore we have

/Ui(aivj)vjdx = —%/@ui (sz> dx.
Q

Q
Therefor we have
2

(] Jj=1

/ (D503 )y dx — —% > / div(u) (v?) dx.

Since u € V', therefore we obtain the required result

b(u,v,v) =0.

The proofs of other two properties can be obtained by using similar arguments.

(ii) If we replace v by v + w in the first property of (i), we obtain

b(u,v+w,v+w)=>b(u,v,v)+bu,v,w)
+b(u, w,v) + b(u, w, w).

Making use of result (i), we get
b(u,v,w) = —b(u,w,v).
Similarly we can prove the other two properties. [l

Lemma 3 Let assumptions (H1) — (H5) are satisfied, then for sufficiently reqular
(u, ), c) we have for all i =2,3

(i) [VA(z,t, 0.0, < C(1+[Ve|,+[Vely),
(i) [VAi(z 1, 9,c)l, < C1+[V]y,+[Vely),
(iii) |VD(zt,9)l, < C(1+[Vi]y),
(w) |Vb(z,t,¢)], < C(1+|Vyy).
Proof: As we can write
V(Ai(x,t,1,¢)) = AL (x,1,7,¢) + Al (x, 1,9, ) Vi + Al (x, 1,9, ¢) Ve,
by taking absolute on both sides, we have

IV (AL(x, 8,9, 0)]y < AL(x 0, 0)ly + |ALy (x5, 0], [V,
+ |A/10<X7 tvdja C)|2 |VC|2 )
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since A; € W therefore we have
V(A% w9, 0))l, < C(1+[Vily+[Vely).

And by using the same technique, we can easily obtain the remaining three results

(i), (iii) and (iv) (see for similar results [6]). O

Lemma 4 Let the hypothesis (H1) — (H5) are satisfied and Xy, = (Wnns Ymons Crmn)
be a sequence converging to X = (u,v, ¢) in L*(0,Ty; H) strongly and in L*(0,T}; V)

weakly. Then we have the following convergence results
(i) A1(Ymon, Cmn) — A1(, ), in LP(Q) strongly ¥V p € [1, 00),
(1) Ai(Vmns Cmn) — Ai(,¢), i =2,3, in LP(Q) strongly V p € [1,00),
(111) D(Ymn) — D(¥), in LP(Q) strongly V p € [1,00),
(1v) D(Ymn)Vemn — D()Ve, in LP(Q) weakly ¥ p € [1,2),

(v) As(Vmns Conn) Vi — As(¥, )V, in LP(Q) weakly ¥ p € [1,2),

Proof: The proofs of the first three parts and the last two parts of the this lemma
are similar, therefore we provide only the proofs of first and last part.
(1) Let v € L1(Q), for ¢ € (1,+00) and consider

Im,n = / (Al (wm,ny Cm,n) - Al (1/1, C)) Vdth,
Q
or we can write
’Im7n| < / |A1(1/}m,n7 Cm,n) - A1(¢, C)|2 |V‘2 dth7
Q

and by using Hélder’s inequality, we arrive at

Zinnl < AL, Cmn) — A1<¢ac)||Lp(Q) ||V||Lq(g) ,

with 1/p+1/¢ =1 and 1 < p < co. Consider now
”Al(wm,nu Cm,n) — Al (% C)Hip(g) = / ’Al(wm,ny Cm,n) - Al (1/}7 C)‘g dthv
Q

= /Q |A1 (¢m,na Cm,n) - Al('lvD) C)|§71 |A1(wm,n7 Cm,n) - Al (1/Ja C)|2 dxdt.

As we know that A; is bounded (see hypothesis (H1) — (H5)), therefore we have

|‘A1(¢m,n7 Cm,n) - A1<w7 C)HZP(Q) S 2@1/ |A1(wm,n7 Cm,n) - Al(w7 C)|2 dxdt.
Q
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and also A is Lipschitz function, therefore we can write

1/2
||A1(¢m,n7 Cm,n) - Al(r(/)a C)Hip(g) S C1 (/; (|7/)m,n - /l/}|2 + |Cm,n - C|2) dth) .
The above inequality can be written as

||A1(77Z}m,na Cm,n) - Al(% C)Hip(g) < ¢ (me,n - ¢||L2(Q) + “Cm,n - C”Lz(Q)) .

As X, = (W, Yo, Cmyn) converges strongly to X = (u,%,¢) in LZ(O,Tf;H),

therefore
[A1(Yrmn, Cmn) — Ar(¥, )70y — 0, asm,n — oo.
and consequently
Znn| — 0, asm,n — oo.

This proves the result.
(v) Let ¢ € L9(Q) wih 1/p+1/qg=1, p € [1,2) and consider

Ko = /Q (A ) Vi — As(,€) V) 6 dxct,
adding and subtracting the term As(4), )V n, We obtain
Konn = /Q (As(Yrmms Cmm) — As(,€)) Vibpn ¢ dxdt
+ /Q (VZ/Jm,n — V) A3(), ¢) ¢ dxdt.

As by, ,, converges weakly to ¢ in L*(0, Ty, H'(£2)), therefore second term in the above
expression tends to zero as m,n — oo. Let K, , denotes the first term in the above

expression

K:;n,n = / (A3(Vmins Cmm) — A3(¥,¢)) Vb, n ¢ dxdt,
Q

or
Koal = [ s ) = As0.0)| [Vl o] it
Q
and using Holder’s inequality, we have

‘IC;YL,”‘ S ||A3(1/Jm,n7 Cm,n) - A3<'¢, C)

1@ IV¥mall2(0) 191l ooy
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with 1/s+1/2+1/g=1and s > 2, and

”A?)(wm,n; Cm,n) - A3<w, C)|

1:(0) = /Q | A3 (Vs Cmm) — A3, )5 dxdt
= / | A3 (Vs Cmm) — Az(10, )32 | A3 (Vs Cmm) — Az, ¢) |5 dxdt.
Q
Since Ajz is bounded function (see hypothesis (H1) — (Hb5)), therefore we have

HA?’(wm,na cm,n) - A3 (w, C)

s 2
Lo < 2a3 /Q | As(Vmn, Cmn) — As(¥, €) |5 dxdt,
also as Ajz is Lipschitz function, therefore we can write

HAS (wm,ny Cm,n) - Ag(@b, C)

s 2 9
(@) < QCO/Q (Iomn = bl5 + |emn — cl3) dxdt.
The above inequality can be written as

’|A3(wm,n7 Cm,n) - Ag (1/1, C)

S 2 2
L) < 260 <me,n = VIl + leman = CHLQ(Q)) '

As X = (Wnn, Yins Cmon) converges to X = (u, ¢, ¢) in L*(0, Ty, H) strongly and

weakly in L?(0, T}, V), therefore K/ . — 0 as m,n — oo and hence

m,n

\Kimn| — 0, asm,n — oo.

This completes the proof. O

2.5 Existence and Regularity of the Solution

Theorem 1 Let the assumptions (H1)— (Hb) are satisfied and (ug, 1o, co) € H, then
there exists a triplet (u, 1), c) such that

(u, 1, c) € L=(0, Ty, H) N L*(0, Ty, V),

du O dc\
(§7E7§> €L (07Tf7 V))

which is the solution of the problem (2.11).

Proof: We shall employ the Bubnov-Galerkin method to prove the existence of the
problem (2.11). We shall approximate the system equations by projecting them onto
finite dimensional subspaces. Since the boundary data in the problem (1.103) for

velocity is different from the boundary data for the phase-field and concentration
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equations, therefore we have to project the velocity equation onto m dimensional sub-
space and the phase-field and concentration equation onto the n dimensional subspace,
then take the limit first in n and then in m. For this consider a sequence (\;);>1 of the
eigenvalues of the self adjoint operator —A with the homogeneous Dirichlet boundary
conditions such that 0 < A\; < Ay < -+ < \; < -+ and the corresponding eigen

functions (w;);>1, that satisfies

— Aw; = Aw; in ((H&(Q))Q)' and w; € (HL ()2,

2

(Vwi, Vw;) = (—Aw;, wy) = N(wi, wy) YV wg,w; € (Hg(Q))". (2.12)

Also the eigen functions satisty (w;, w;) = §;; and (Vw;, Vw,) = \;§;; for i # 7,
7,7 > 1. Furthermore, the eigenfunctions are smooth functions and form complete
orthogonal basis in both (L%(Q))* and (HL())*. We denote by V,,, the finite di-
mensional vector space generated by the eigenfunctions (W;)i<i<m. Then the union
U, ,~; Vi is dense in both (L2(2))* and (H(2))*.

Consider again a sequence (fu),>10f the eigenvalues of the operator —A with the ho-
mogeneous Neumann boundary conditions such that 0 = p; < o < --- <y < -+

and the corresponding eigenfunctions (ey)x>1 that is
— Aey, = puper  in (HY(Q)) and e, € HY(Q). (2.13)

The eigenfunctions (ex)r>1 satisty (ex,e;) = 0k and (Veg, Ve,) = 0 for k # 1, k, 1 >
1. Moreover the eigenfunctions are smooth functions and (ex)r>1 form a complete
orthogonal basis in both L?(Q) and H'(Q2). Let 1, be the finite vector space generated
by (ex)k>1. Then |, -, W, is dense in L*(£2) and also in H*(Q2).
Now we define the LE, H} and H!'-orthogonal projectors on the spaces V,, and W,
respectively. Let P,, be the L2-orthogonal projector onto the space V,,, such that
Vv e (L3(Q))

(Pnv =V, W)20) =0, YweEV,, (2.14)

and P, to be the Hl-orthogonal projector on V,,, we should have Vv € (HL(Q))?
that
(V(Ppv —v),Vw) =0, YweV,,. (2.15)

Let L, be the L?-orthogonal projections onto the space W, such that V¢ € L?(Q)
and L, to be the H'-orthogonal projector on W,,, we should have V¢ € H*(2) that

(V(Lnop — 9),V) =0, YpeW,. (2.17)
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Using the above relations we can easily prove the following relations. For all v €
(L*(9))* and ¢ € LX(Q),
HPmVHLQ(Q) < ”VHLQ(Q) 5 (2.18)
[Lndl 120y < Clloll 2y -
For v € (HY(Q))?,
IV(Pav)lia@) < ClIVVIa) (2.19)
and for all ¢ € H*(Q2), we have
(2.20)

IV(Lad)lr2@) < ClIVOllraq) -

Moreover, if v € (H2(Q))* and ¢ € H2(Q), we can easily prove that

||A(va)||L2(Q)
CllA] g »

[ALnd) 120

where C' > 0 is a constant which is independent of m and n.
Applying the projections P, on the first and L,, on the second and third equations of

IA A

the system (2.11) respectively, we have V(w;, ex) € V,,, x W,,,

a m,n
pO ( 4 ’ 7Wi) + au(um,nawi> + bu(um,n;um,nawi)

ot
= / Ay (Yimn, Cmn) - Wi dx + / b(¢)((upmn x B) x B) - w; dx, (2.22)
Q Q
O
( qgt’ ;ek) + a1/1(wm,n7 ek) + bw(um,nu wm,na ek)
= — / AZ(wm,na cm,n)ek dX, (223)
Q
OCmn
(—77 ek) + bc(um,nu Cm,n, ek) + / D(’l/}m,n)vcm,n : vek dx
ot ;
+/ As(Vmny Cmn) Vimn - Ve dx =0, (2.24)
Q
(um,n7 wm,na cm,n) (t = 0) = (ughhna Qﬂgm» ng) ) (225)
where (P, ug, L,to, Lnco) = (ug"", 00", ¢g™) which satisfy
(2.26)

(u(T)n’nﬂ/J()n’naCBn’n) - (u0,¢0,00) in H as m,n — oo,
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where the Bubnov-Galerkin approximation can be given for each m,n > 1, as

\

mn
umn 7 u Wl?

¢mn 7 Z@Z) 6}67 (227)

Com (1) = Z A (t)ep.
=1 7
Now multiplying equations (2.22), (2.23) and (2.24) respectively by w; " (t), 1" (t)

and ¢;""(t) and then taking sum over ¢ and k, where i = 1 to m, k = 1 to n, we obtain

ot
= / Ay (Ymm, Cmn) - W dX + / b(Y) (W X B) X B) - u,, dx,
Q Q

a m,n
po< Ao, 7umn> + ay (Wns W) + by (Winns Wiy W)

I
ot

) ¢m,n> + CL¢ (¢m,na ¢m,n) + bw(um,na ¢m,na wm,n)
_/ A2<¢m,n; cm,n)l/}m,n dX,
Q

0 m,n
( Cat’ 7Cm,n) + bc(um,na Cm,n, Cm,n) + / D(’me’n>ch7n . chvn dx
Q

+/ A3(¢m,n> Cmm)vwm,n . ch,n dx = 0.
Q

Making use of Lemma (2), the above equations takes the form

a m,n
Po 4 7 y Umon +au(umn7umn):/A1<wmnacmn)'umn dX
at ) ) ) Q ) ) )

[ B0 B) X B)

( O

71/}m,n + az!)(qu)m,na 77Z)m,n> = _/ AQ(wm,nv Cm,n)l/}m,n dX7
ot )

<acm7n7cm n) + / D(qu)m n)vcmn : vcmn dx
ot ) T g TR Ve ’

+/ A3(wm,na Cm,n>vwm,n : vcm,n dx = 0.
Q
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The above equations can further be written as

’ mn‘ +,u|vumn‘ /Al ¢mnacmn) umnd

2 dt
= [ 80 < B) x B) -t 2.9
Q
1d 9 9
2dt Wm,n’ +eé |Vwm,n’ = - A2(1/’m,m Cm,n)¢m,n dx, (2'29)
Q
1 d

_/ A3<¢m,m Cm,n)vwm,n : vcm,n dX, (230)
Q
and by using the hypothesis (H1) — (H5), in the above equations, we obtain

pzodt |umn| +,u’vumn’ <a1/ ’um,n‘z dX+b1/ ’um,n‘2|um,n|2 dX,
Q Q

th ’wmn’ +61|Vwmn| < GQ/‘wmn‘ dX

th @2 +D0/|chn\2 dx < ag/\vwmn| Vernl, dx.

Using Holder’s inequality, the above inequalities take the form

dt ‘umn’ +2N|vumn| <Cl |umn| +62’umn|

d
E |¢m,n|2 + 2‘51 ’v¢m,n|2 S Cc3 ’wm,n| )

d
% |Cm,n|2 + 2DO |vcm,n|2 S Cq |V77Z)m,n| |ch,n| .

Further by Young’s inequality, we have for é; > 0

d
pOE |um,n‘2 +2:u|vum,n|2 < ¢ +06|um,n|2; (231)
d 2 2 2
E |wm,n| + 261 |v¢m,n| S Cr + |77Z)m,n| ) (232)
d 2 2 Ci 2 2
— |mnl|” +2Do |Vemnl” < — [Vmanl” + 01 [Vema|™ . (2.33)
dt 40,

Multiplying the inequality (2.33) by d2 on both sides, we get

d
52% |Cm,n|2 + 252D0 |ch,n|2 |V¢m n| + 6251 |ch n|
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choosing 0; = Dy and 9, = %, the above inequality takes the form
4

d
62% |cm,n‘2 + 252D0 |vcm,n|2 S €1 |V¢m,n|2 + 52D0 |ch,n|2 . (234)

Adding the inequalities (2.31),(2.32) and (2.34), we obtain

2 0y [emn|?) + 20 [Vgn|* + €1 V|

d
E (pO |um,n|2 + |7~pm,n

+52D0 |vcm,n|2 S Cg + Ce |um,n|2 + |wm,n|2 )

and since |cm,n]2 > 0, therefore the above inequality takes the form

2 0y [emnl?) + 20 [Vgnl* + €1 [Vl

d
E (pO |um,n|2 + |wm,n
+52D0 |vcm,n|2 S Cg (1 + |um,n|2 + |¢m,n|2 + |Cm,n|2) . (235)

From the above relation, we can deduce that

d
% (pO ’um,n|2 + ’wm,n’2 + 52 |Cm,n‘2) S Co (1 + |um,n‘2 + |¢m,n|2 + ’Cm,n|2) .
Let ¢19 = min(po, 1,02) and ¢17 = ¢9/c19, then we have

d
7
Using Gronwall’s lemma, the inequality (2.18), the equation (2.26) and as (ug, ©g, ¢y) €

‘um,n|2 + ‘wm,n‘2 + ’Cm,n‘z) S C11 (1 + ‘um,nyz + ‘wm,n|2 + ‘Cm,n‘2) .

H, therefore we have
W (O + [ ()] + lemn )] < 12, V€ (0,Ty).
We can simplify the above expression as
Xpn®)* < c1a, YVt (0,Ty),
where X, n = (W, Ymn, Cmon). Thus we conclude that
”Xm,nHLoo(o,Tf;H) < 2. (2.36)

This implies that X, , = (Wn.n, Ym.n, Cm,n) is uniformly bounded in L*(0, 7y; H).
Now integrating equation (2.35) over (0,¢) for all £ € (0,7%), we have

t d t
/ 7 (po \um,nlz + \wm,n\Q + 0y ]cmynﬁ) ds + 2u/ \Vum,n|2 ds
0 0

t t
+e1 / V|’ ds + 65Dy / IVemnl| ds
0 0

t
< c9/ (L + Wl + [rmn]” + [mn]?) ds,
0
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or we can write the above inequality as
2 2 2 ' 2
(90 O+ o O + B2 e ) +20 [ [V s
0
t t
+€1 / |V’17Z)m7n|2 ds + (SQDO/ |VCm7n|2 ds
0 0

¢
< e / (14 [tnn? + [Gn? + [emnl?) ds
0
+ (PO |um7n(0)|2 + |¢m,n(0)|2 + 09 |Cm,n(0)|2) .

From above inequality, we can deduce that
t t t
2,u/ IVnl” ds + € / IV n|? ds + 52D0/ IVemanl® ds
0 0 0

t
< o [ (Ut Ral? [l + emal?) s
0
+ers (po [uol” + [l + 62 [col”) |

and according to (2.18), (2.36) and as (uy, %o, co) € H, we have

t
/ (20 [V o) + €1 [Vl + 02D [Vemn|*) ds < cua, YVt € (0,Ty)
0
or
Ty
mm(2u, €1, 52D0> / (|Vum7n|2 + |V'¢m’n‘2 + |ch,n|2) dt < Ci5.
0

We can write above inequality as

Ty
/ |VXm7n‘2 dt S Ci6-
0
Therefore we have the following result

||VXm7n||i,2(07Tf;H) < C16- (237)

Also as we know that
HXm,n”2 = ’Xm,n‘2 + |VXm,n|2-

Integrating above equation over (0,77) and using the results (2.36) and (2.37), we

conclude that .
¥
| 1%l < e
0

Thus we have
||va”||L2(O,Tf;V) S Ci7. (238)
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This implies that X, ,, is uniformly bounded in L*(0,T}; V). From the results (2.36)
and (2.38), we conclude that X, ,, is uniformly bounded in L>(0, Ty; H)NL2(0,T}; V).
That is

mﬂlHLOO(O,Tf;H)ﬁLz(O,Tf;V) < Cis

X (2.39)

This result makes it possible to extract a subsequence from X,,,, also denoted by
Xn.ns which converges weak star toward X = (u, ¢, ¢) in L*(0,7; H) and converges
weakly toward X in L*(0,Ty; V).

Now from equations (2.22)-(2.24), we have ¥(v, ¢, z) € V,,, x W,, x W,

ot
+ (Al (wm,m Cm,n)v V) + (b(wm,n)((umm X B) X B)a V) )

My p
Po ( bl 7V) = _,u/ vum,n -Vvdx — b, (um,na Win,ns V)
Q

(Wm,n

ot ) ) = _bdl(um,na wm,na ¢) — € /g; vwm,n ' V(bdX - /§2A2<wm,n7 Cm,n)¢ dX’

<8cm7n72> - _bc(um ns Cm n7z) - / D(¢m n)vcmn - Vz dx
ot e o

_/ A3('¢m,n7 Cm,n)vwm,n -Vz dx,
Q

and using hypothesis (H1) — (H5), we arrive at

a m,n
( U, V)‘ < u/|vum,n|2|vV|2dx+ybu (W s U s V)|
Q

£o It

—|—a1/\vl2dx+b1/ U]y | V], d,
Q Q

OV
‘( %t’ 7¢)‘ < ‘bw(um,nawm,na(ﬁ)’_FEl/vam7n‘2‘v¢‘2dx+a2/‘¢|2dx’
Q Q

OCmm, B
ot '’

By Holder’s inequality, we have

S |bc(um,nacm,naz)|+D1/ |ch,n|2|vz|2dx
Q

+a3/ IV, V2, dx.
Q

Po It

a m,n
( U, v)‘ < [Vt [9V] + [bu (s W, V)|

+c1s | V] + by [um | V],

Omm
‘ ( Qg{ 7¢> ‘ < |b¢(um,nawm,na ¢)‘ + € ]V%W\ ’v¢’ + ¢19 ‘¢| ,
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a m,n
(%522 < Il 2+ D1 [Vl 74
+as V|| V2],

As|v| < |lv|, Vv eV and |g| <|ol, Ve < ||¢]l, V¢ € H' () by the definition of

Sobolev norm. The above inequalities take the form

Oy,
< | V> ‘ < u ’vum,n’ HV“ + |bu (um7n,um,n,v)|

pO at ?

+ewg [V + by [l V][ (2.40)
Mmn
22 6)| < B s )+ €1 (Ve 6] +erolloll, (2.41)
Imn
(2525|214 D1 [Vl 1
+a3 |Vl |12 - (2.42)
Now as (according to Lemma (2))
‘bu (um,na W, n, V)| = |bu (um,na v, um,n)| 5

< / [ninly [VV]y [l dx.
Q

By employing the Hélder’s inequality and then Gagliardo-Nirenberg’s inequality, the

above inequality takes the form
100 (W W V)| < Wl VY] < oo [l Wl V]
and using the inequality (2.36), we obtain
[bu (W s W, V)| < Con [t | [ V] (2.43)

Similarly we can derive that

1/2 Y212l (2.44)

|bc(um,nacm,naz)| S 022||um,n|| ”Cm,nH

and
b6 (W, Y O) < s [l | 101 (2.45)
Using the results (2.43), (2.44) and (2.45) in the inequalities (2.40)-(2.42), we arrive

at

£o

oy,
(Zv) | < sl 190+ ol 1

s VI 4 01 [w IV
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O
(%o <
OCm.n
(%)

the above inequalities can be written as

V2 [l 101l + €1 Vbl 101 + 1o 1611,

Plemall 121l + Dy [Vempl I12]

+as |v¢m,n| “Z” )

) 1V

Y2 [l + €1 [Vl + 10 ) 19

JED

Dividing above set of relations respectively by ||v|, ||¢] and ||z||, we get

(5| = (

OCrmom
‘( | Z)‘ < (o [l lemall 7 + Dy

ot

aumn

Po B ’ < 1| V| + o1 [[Wmn|| + c1s + b1 [Wmn!,
t v

a m,n

H 77/} 1/ ||wm,n”1/2 + €1 |vwm,n| + C19,
(HY(®
8cm,n 1/2 1/2
815 S C22 ||um,n|| ||Cm,n|| + Dl |vcm,n| + as |V77Z)m,n| )
(HY(2))'

where V' and (H'(Q2))" are the corresponding dual spaces of V and H* () respectively.

By employing Young’s inequality, the above inequalities take the form

Oy
o[ Zmal| <oy (14 .
V/
O
HW < e (1 )
(HL(9))
OCmn
| < a1t + e+ V0]
(HL(Q))

Making use of the result (2.39), we can easily arrive at

Tf
/
0

dt < cor,
V/
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a m,n
/ w dt S Ca8,
(Hl(ﬂ))/
a m,n
/ ¢ dt S Co9.
(H'(Q))
We can write
/Tf Xy |17 p
- t < C30-
0 at V/
This implies that
aan
H : S C30- (246)
ot L2(0,T; V')

This shows that 8X£‘” = <au£’", awa’:;’", 065;") is uniformly bounded in L* (0, T}; V').

Now we define the space

X
W, = {X S L2(O,Tf;V), aa_t S LQ(O,Tf;V/)} .

According to [55], the injection of Wy into L*(0,Ty; H) is compact.
From equation (2.39) and (2.46), we conclude that X,,, , is uniformly bounded in W,

therefore we can extract from X, ,,, a subsequence also denoted by X, ,,, such that
X — X weakly in L*(0,T; V),

Xmn — X strongly in L*(0,Ty; H),

where X, = (Wnn, Yinon, Cmn) and X = (u, 9, ¢).
Now we shall prove that X = (u, 1, ¢) is the solution of the problem (2.11).
In order to pass limit in equations (2.22)-(2.25), we consider ¢ € C" ([0, T%]) such that

p(T7) = 0.
Multiplying equations (2.22)-(2.24) by ¢(t) and then integrating with respect to ¢ over
(0,Tf), we have V (v, ¢,2) € V,, x W, x W,,,

T /9 Ty Ty
po/ o dt+/ ay (W, V) dt+/ bu (W, WU, V) dt
0 ot 0 7 0 | |

Ty Ty
- / (Ar (s o), V) i+ / (b(tnn) (W % B) x B), ov) .

T 8 m,n Ty
/o ( %t’ ’W)) dt*/o @y (Y, ) dt
Ty
- _/0 /QAQ(Q/}Tn,nvcm,n)QO(b dth7
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Ty OCcmn Ty
cpz | dt + As(Vmms Cnn) Vb - V(pz)dxdt
0 ot 0o Ja

Ty Ty
—1—/ be(Wn )y Coms 02)dt + / / D () Vemn - V(pz)dxdt = 0,
0 o Ja

and integrating the first terms of the above equations by parts with respect to ¢, and

using ¢(7y) = 0, we have

Ty Ty Ty
— po / (W, V) dt + / Ay (W, V) dt + / by (W s Wy V) dt
0 0 0

- / (AW ) V) i+ / T (0(mn) (W % B) x B), o) dt
)

Ty Ty
‘}/ (¢mm~#¢wﬁ+—/" (s 90 dt
0 0

T,
- / f / Aot )b dxdt + (U, 5(0)8) |
0 Q

Ty Ty
- / (Crn, ©'2) dt + / / A3(Vmns Cnn) Vb - V(pz)dxdt
0 0 Q

Ty Ty
+/ be(Wrny Crnms 02)dE —|—/ /D(wm,n)ch,n -V (pz)dxdt
0 0o Jo
= (co™", ¢(0)z).

It is easy to pass the limit in the linear terms and for the nonlinear terms we use
Lemma 4 and equation (2.26), therefore applying limit (m,n — oo) in the above

equations, we get
Ty Ty Ty
- po/ (u, 'v)dt —1—/ a, (u, pv) dt —l—/ by (u,u, v) dt
0 0 0

- [ vt [T o)< B) x B v ar
+(ug, p(0)v), (2.47)

Ty Ty
—/ WWWﬁ+/ ay (0, o) dt
0 0

:_AfA@Wmeme%w@@, (2.48)
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T T
—/0 f(c, ©'z) dt+/0 f/QAg(v,D,c)V@D-V(apz)dxdt

Ty Ty
+/ be(u, ¢, pz)dt + / / D()Vc - V(pz)dxdt
0 o Ja
= (co,(0)2) . (2.49)
Assuming that ¢ € D(0,7}), we can deduce that (u, 1), ¢) verifies the problem (2.11)
in the distribution sense on (0, T%).
Finally, it remains to verify the initial conditions. For this, multiplying each equation

in problem (2.11) by ¢(¢) and integrating with respect to ¢ over (0,7%) and then
comparing the resulting equations with the equations (2.47)-(2.49), we finally obtain

that (u, 1, c)(t = 0) = (uo, %o, co)- O

Theorem 2 Let (ug, 1o, co) € (HE())* x HY(Q)x L2(Q), and the assumptions (H1)—
(Hb5) are satisfied. Then there exist a triplet of functions (u, 1, c) satisfying

we 12 (0, Ty (HA(Q)*) 0 ' (0, T (L3(92)°)
b e L0, Ty H* () N HY(0,Ty; L*(Q))
c € L*(0,Ty; H(Q)) N L*(0,Ty; (H'(2)))

which is a solution of the problem (2.11).

Proof: Multiplying equation (2.22) by A; and then using equation (2.12), we have

ot
— (A1 (Ymms Cmm)s AW;) — (0(Vimn) (W X B) X B), Aw;) (2.50)

— Do (aum’", Awi> — u/ Vu,,., - V(AW;) dx — by (Wm0, Wi, AW;)
Q

and again multiplying the above equation by w;""(t) on both sides and taking sum

over i = 1,2,---m, we obtain by using (2.27) that

— po (%m’naﬁum n) / Vi V(Atp) dX = by (W, Wy At n)

— (0(mn) (W x B) x B), Ay, )
- (Al <wm,n7 Cm,n)a Aum,n) . (2.51)

According to equation (2.12), we have

(81;72771 ) Aumvn) - (v aum7n I Vum,n)7
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further simplification yields

aumn 1d 2
" A . |
( ot um,n) 2 dt /(‘2 ‘Vum,n‘g dx

Therefore we can write

8um7n . 1 d 2
( o ,Aumm) =5y Vu,,.| - (2.52)

Consider the following integral

/ div (Vi , - Aly,,) dx = / (Vi - VA, + \Aum,n@) dx,
0 Q

and applying divergence theorem on the left-hand-side of the above equation, we get

/Vumm‘ . Aum’n n dX e / Vum,n . VAumm dX + / |Aum7n|§ dX
r Q Q

As u™" = 0 on the boundary I" and the relations (2.12) and (2.18) reduce the above
inequality as

/ Vi, - VAU, dx = — |Au,,,|°. (2.53)
0
Using equations (2.52)-(2.53) in the equation (2.51), we obtain
d 2 2 _
pO% ‘vum,n‘ + 2,“ ’Aum,n| - 2bu (um,na Wyn, Aum,n)

=2 (b(Ymn) (W x B) x B), Auy, )
_2 (Al (¢m,n7 Cm,n)y Aum,n) 3

or we can write

d
po: IV |+ 200 [ A P < (260 (Wi U, Aty )|
+ 2 (b(wm,n)((um,n x B) x B), Aum,n)’
+ |2 (Al (wm,m Cm,n)a Aum,n)| .

Making use of hypothesis (H1) — (H5), the above inequality takes the form
d 2 Au,,,|* < |20 A
pO% |Vum,n| + 2,“/’ um,n| =~ |2 u (um,mum,m um,n)|
$20ies [ ol [t dx
Q

+2a3/ |Auy, |, dx,
Q
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and by employing Holder’s inequality, the above inequality becomes

p()dt |Vumn| + 2,u |Aumn| < |Qb (um,n;um,n7Aum,n)|
+2b1¢1 (W | | AW, 4]

+26L302 ]Aum,n] .
Further by Young’s inequality

d
pﬂa |Vum,n|2 + 2;“ |Aum,n|2 S |2bu (um ns Um N Aum n)|
3blc1

| mn| + 5 |AumN|

L3
%%+§m%ﬂ? (2.54)

Consider now

1200 (U s U s Aty )| < 2 / Wl [Vt [Attnl, d.
Q

Using [55], we have

|2bu(um7n7 um,n7 Aum,”) |

< 203 [ W " [ | 1|2 | At | | At ]

and simplifying above inequality, we get

1/2 3/2

|26u(um,n> um,na Aum,n)| S 203 |um,n| ||umn|| |Aumn|

By applying Young’s inequality with p = 4/3 and ¢ = 4, the above inequality takes
the following form

729¢4
163

1260 (Wi s Wiy Aty )| < §|Aum,n|2 + | [ ]| (2.55)
According to the inequality (2.55), the inequality(2.54) becomes

d ) > _ T29¢
7. m,n A m,n mn mn
po gy Nl 1 At € G2t

3blc1 | 3azcs
and with the help of relation (2.39), we arrive
d 2 2 7290304
BN m,n A m,n m,n
oy Tl + 118t < T
+3b?cf 3a302

u u
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3b2c2c, 3a2c2
1M1 5 Z 2 and cr =

7290§C4

W , We have

Let cg =

d
po% Hum,n”2 +u |Aum7n|2 < ¢+ oy ||um,n||4 . (2.56)

From the above inequality, we can deduce that

d
po= [l <o + o7 [[mn | [l |
or

d

- Hum,nH2 < s+ 0 Hum,nH2 Hum,nH2 :

dt

Using Gronwall’s lemma, we arrive at

¢
o (o [ (o)1 ds)
0
¢ ¢
+08/ exp (09/ ||um7n(7')||2d7') ds,
0 s

and with the help of relations (2.19), (2.39) and as uy € (HL(2))*, therefore we have

2 K
[ n (@) < flug™

(DI < a0, VEE (0, Ty).
Thus we can conclude that

||um,n||L00(0,Tf;V) S C10- (257)

This shows that u,,, is uniformly bounded in L>(0,T; V).
By integrating the inequality (2.56) over (0,t) for all ¢ € (0,7%), we have

t d t t
po/ —Hum,nszs—i-,u/ ]Aum,nl2 ds < c6t—|—07/ Hum’nH‘lds,
0 ds 0 0

or

t ¢
Po ||um,n(t)||2 + ,u/ |Aum,n|2 ds < cet + 07/ Hum,n||4 ds + po ||um,n(0)H2 .
0 0

From the above inequality, we can deduce that
t t
M/ |Aum,n|2 ds < cet + 07/ Humm“4d3 + po ||um,n(0)||2 , Vte(0,Ty)
0 0
Making use of results (2.19), (2.57) and as uy € (HL(Q))? , we obtain

Ty
/ |Aum7n|2 dt S C11.
0
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This implies that

AN s [ < an, (2.58)

(0,Ty;H)
which shows that Aw,,, is uniformly bounded in L?*(0,7; H). Therefore using the
relation (2.39) and the elliptic estimate, we can deduce that

||um7n||L2(0’Tf;H2(Q)) < ¢po. (2.59)

Now multiplying equation (2.22) by du; " (t) /0t and then taking sum overi = 1,2,--- ,m,

we have

Oy O va(u O b (w u O
Lo 8t ) 815 U m,mn» at u m,ny Ym,n; at

oy,

8 m,n
== (Al(d]m,nacm,n); (975’ ) + (b(wm,n)((um,n X B) X B)7 I;t’ > )

and by employing Green’s formula, we arrive at

ou,, 2 Ot
Po| =5, 2dt |Vum"| £l (um,n,um,m
- <b(¢m n)((um” X B) x B aumm
, , ot
ou
A m,n
+ ( 1 (Umms Cmn), ot
or
aumn 2 /J/ d 9 aUm’n
, (il < |b
Po| =5, yap |Vl < o (um’"’um’m ot )‘
a m,n
N ’ <b(wm7n)<<um,n x B) x B), = )‘

My
+ ‘ (Al (wm,na Cm,n)7 8—15’) ‘ .

Using hypothesis (H1) — (H5), the above inequality takes the form

8umn 2 12 d 2 aumn
— —— |V m,n < bu m,n; mna—7
POl ™o 3t |V Hmas tmans =
ou ou
+b1013/ |um,n] T dX—l-CLg/ L dX,
Q 2l ot |, ol ot |,

with the help of Holder’s inequality, the above inequality becomes

My |
ot

+ —— |Vumn|

po 2 di

+bic13 W0
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and further by Young’s inequality, we arrive at

Oy,

ot

’ pd 2
__an <
Po +2dt|u’|_

2.2
3a3ciy | po

2.60
2 T (2.60)

As we know that
ou ou
bu (um,na U n, ﬂ) = ,00/ Wi,n vum,nﬂ an
Q

and employing Holder’s inequality, we can write

O,
bu <um,n7um,n,7)’ < polmall gy IVUmall o) |5,

o5
=]
3
3

and making use of Sobolev injections, we obtain

o,

bu <um,n7 U n, T) ’ < PoC15 ||um,7l

| ||um,n||H2(Q)

According to the relation (2.57), we have

Oy,

ou
by, <um,n7 U n, 7) ‘ < PoCi6 ||um,n||H2(Q) -

ot

)

and with the help of Young’s inequality, we arrive at

aumn £o
bu m,mn» mna—’ S -
(u’ Hmans oy )‘ 6

3pocis
2

o, 2
ot

2
Hum,anﬂ(Q)' (2.61)

By the relation (2.61), the inequality (2.60) takes the form

oy,
ot

bty
2p0
3pocts
2

3a3c3,
2p0

Lo
2

2
d
Lnd

2
2 dt [+

IVu,,.|> <

2
Hum,n |H2(Q) )

and the relation (2.57) reduces the above inequality to the following form

2
Po % +Hi’vu 2 < 3b%c%3017 + 3a§C%4
2 ot 2dt en - 2/)0 2p0
3pocis

2
+T Hum,n“H2(Q) :
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3b2c2,c 3a3c?, 3poc?
Let ¢35 = max ( 109397 | 2%5%4 2P9%6 ) then

200 2p0 2
2
po | Oy, pd 2 ;
S | T Vu,,.|" < e (1 + Hum,nHHz(Q)) :

Integrating with respect to time over (0,¢) for all ¢t € (0,7}), we have

po [ O [y [ (1 2 o) d
5 ; £l 5—1—5 ; %| um,n| S = (18 . ( +Hum7nHH2(Q)> S5
or
t 2 t
£o aum,n 1% 2 2
) Narr ds—i—§|Vum,n(t)| < C18/0 <1+Hum,nHH2(Q)> ds
1V, 002, Ve (0,Ty).

2
From above inequality we can deduce that
Ty ,
ds < CIS/ (14 o) ds
0

2 IV (O

1y 2

Po aum,n

2 Jo

According to the relations (2.19) and (2.59) and as ug € (H2(Q))?, we finally get

2

Tr 19

Po Umn

0 dt < ego,

2 ), | ot =

this implies that
8 m,n

’ Hm, < e (2.62)

Ot 21y

This shows that BUgZ’" is uniformly bounded in L?(0,T}; H).

Let us define the following space
v

ot

We deduce from the relations (2.59) and (2.62) that when uy € (HL(€2))?, then the se-
quence u,, ,, is uniformly bounded in (W;)* . Since the embedding of H2() into H'(£2)
is compact, we conclude (W5)? is compactly embedded into L2(0, Ty; H'(2)),(see e.g.

W, = {v € L*(0,Ty; H*(Q)), € L*(0,Ty; L2(Q))} . (2.63)

[55]). Therefore there exists a subsequence of the sequence u,, ,,, also denoted by u,, ,,,
such that as m — oo we have

W, — u, strongly in L*(0,Ty; (Hl(Q))Z),

U, — u, weakly in L*(0,T}; (HQ(Q))Z),

aum,n N Ju . 2 . 2 2
ey T weakly in L*(0,Ty; (L*(Q2))7).
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Therefore we conclude that
u e L0, Ty; (H*(9))*) N H'Y(0,Ty; (L3(2))).

Now Multiplying equation (2.23) by py on both sides and using equation (2.13), we
get

) <a¢m,n

at ,Aek) — €1 / Vi/)m,n . VAekdx — bw(um’n, wm,na Aek)
Q

:/Ag(wmm,cm,n)Aek dx. (2.64)
Q

Again multiplying above equation by v, " (¢) on both sides and then taking sum over
k, where k =1,2,--- ,n, we obtain by using relation (2.27)

e
ot

,Awmvn) / Vibun - VAGnd% — b(ts s s At
_ / Ao (Umn Crnn) At . (2.65)
Q

Consider the following integral

. 77ZJmn _/ a,lvbm,n / a¢m,n
/de( BT V¢mn) dx = L ot Ay, ndx + QV BT Vb, ndx,

and by employing divergence theorem on the left-hand-side of the above equation, we

8770771,71 o 8@/% n awm,n
/F 57 Vb 0 dl = /Q T A+ /Q v< 5 ) Vthpmndx.

have

Since V), , - n = 0, therefore we have

aqu)m,n _ 8¢m,n
/Q A i = /Q v( L ) Vi i,

or

Mmn
—A d ——— d
/Q ot YmndX = 2dt/ [Vimaly dx.
The above equation can further be written as
M
= A d 2.
| T At = =5 5 (V. (2.66)

Consider again the following integral

/dz’v (VA 1) dx:/Vwm,n-VAlpm,ndx—l—/ | A nl? dx,
0 Q 0
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and by divergence theorem, we arrive at

/ Ay Vibp -1 dl = / Vthmn - VAU, ndx + / | Aty | dx.
N Q Q

Since V), », - n = 0, therefore we have

/ vwm,n . VAwm,ndx = _/ |Awm,n|2 an
Q Q

the above equation can be written as

/ Vb VAU ndx = — | Ay, o] (2.67)
Q
Making use of equations (2.66)-(2.67) in equation (2.65), we arrive at
d
% |V77Z)m,n|2 + 261 |A¢m,n|2 - 2/ A2(¢m,n> cm,n)A¢m,n dx
Q
+Qb'¢)(um,n7 ¢m,m A¢m,n)u

or

d
IV mal? 426 |80 < 2 [ 1AsGmns oo | Al
+ 126y (W s Yy At )] - (2.68)

Consider the term
24t Vi A < 2 [ Ny [Vl [0l
by employing Holder’s inequality, we have
|26¢<um,m¢m,m Atppn)| <2 ||um,n||L4(Q) vam,nHL‘l(Q) |Athy ] -
According to the Lemma 1, we can write

‘2b¢(um,n7 wm,n; Awm,n”
S C21 Hum,nH ‘Vwm,n’1/2 vam,n”l/2 |Awm,n‘ )

and with the help of Young’s inequality, we obtain

2
C 2
126y (W s Yinns An)| < Eill||um,n|| IVl IVl

€1 2
_Amna
+ | Al
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The relation (2.57) reduces the above inequality to the following form
1260 (W, s D) < 22 [V [Vonl] + \A¢mn|
By the definition of Sobolev norm, the above inequality can be written as
1260 (s Vs Atomn)| < 23 [Vl mnl oy + 5 1A0manl
and using elliptic estimate (see Lemma 1), we have
1260 (Wnins Vs Btbm)| < 21| Vbl (Wil + 18]} + 5 [ Al

or

|2b1jz(um,n7 ¢m,n7 A¢m,n>| S Coyq |V77Z)m,n| |77Z}m,n| + Coq |vwm,n| |A77Z}m,n|
€1 2
— | Atpnl” .
+2 A

By the Young’s inequality, we arrive at

2 1 2
’26w<um,na wm,na Awm,n)‘ S % ’vwm,n‘2 + - |wm,n|2 + i4 vam,n‘Q

|A¢mn| +2 |A¢mn|
and simplification of the above inequality yields
‘wa(um,na ¢m,n7 Awm,n)’ =~ C5 ‘Vwm n’ + = |wm n| + ‘Awm n| (269)
Using hypothesis (H1) — (H5) and (2.69), the inequality (2.68) takes the form
d 1
G170l 261 Mol < 20s [ |0l 2 [l 4 5 il
Q
€1 2
o A m,n|
+ (At
and then (by using Young’s inequality)
d 2 2
% |V77Dm,n| + 2‘51 ‘Awm,n| >~ Co + |Awm n‘ + Ca5 |Vwm n|
|¢mn| + 2 |A¢mn|

According to the relation (2.36), the above inequality takes the form

d
It |V¢m,n|2 + € |A77Dm,n|2 < Crtcs |V1/)m,n|2 . (2.70)
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From the above inequality we can deduce that

T
Making use of Gronwall’s lemma, we arrive at
Vman()]? < [Vomn(0)]* €' + cos, V€ [0,Ty].
Since 1y € H'(Q2), therefore using the relation (2.19), we finally obtain
Vmn() < e, YVt (0,Ty).

Thus we have
||vwmv"||L°°(0,Tf;L2(Q)) S Caog.

This shows that Vi, , is uniformly bounded in L>(0, Ty; L*(f2)). Therefore with the

help of above inequality and the result (2.39) we can easily have

me,nHLoo 0,T¢;HL(Q S C30- (271)
(0.Ty;H'(2))

This shows that 1, , is uniformly bounded in L>(0, Ty; H'(2)).
Now integrating the relation (2.70) with respect to time over (0,¢) for all ¢ € (0,T%),

we have
t d t t
/ d_ |V¢m,n|2 dS + €1 / |A¢m,n|2 dS S CSlt + Co5 / |v¢m,n|2 dS,
o as 0 0

or

t t
Vin (B + 61 / AdynPds < co1 + cas / Vnnl? ds + |V n(0)2
0 0

from above inequality, we can write

t t
61/ |AYyn)®ds < 031t+025/ IVhmnl’ ds + |Vmn(0))*, Yt € (0,T)).
0 0

According to the relations (2.20), (2.71) and as ¢y € H'(2), the above inequality

reduces to .
61/ |A¢m’n|2d8 S C39, Vite (07Tf)
0

or

Ty )
/ |AYmn|”ds < cs3.
0
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Thus we have the following result

”Awm,n“L2(07TﬁL2(Q)) S C33.-

Therefore with the help of the above inequality, elliptic estimate and the relation
(2.39), we can easily prove that

H¢m:nHL2(O,Tf;H2(Q)) S C34. (272)

This implies that v, ,, is uniformly bounded in L*(0, Tj; H*(2)).
Multiplying equation (2.23) by 0y, "" /0t on both sides and then taking sum over F,
where k = 1,2, -+ | n, we obtain by using relation (2.27)

(awmm 8wm”)<+ 1 [ VT b s )

ot ot ot

Omn
= A m,ny Cm,n — dX,
R

and the above equation can further be written as

o | i
' at 2 dt ‘vwm n’ /S; A2 (wm,na Cm,n) 8t dx
M.
_bw(um,na wm,ny 7),
or
O |

Do |”
ot

2dt/|vwmn’2dx < /|A2 wmnycmn "
a¢mm

+‘bw(um,na¢m,nv 8t ) .

Using hypothesis (H1) — (H5), the above inequality takes the form

8¢m,n 87ﬂm,n 3¢m,n
’ at 2 dt |v¢mn| /Q 875 dX+ ‘blb(um,nawm,m 8t ) )
and then

a’@Z}m n 8¢m n

3 < -

2 ’ 8t + 61 |V'¢m n| ‘wa(um,n, wm,m at )
0 m,n
+C35 lé?; . (273)

Consider now

8¢mn
ot

awm n

Y

‘261/1 (um,m wm,m

/mmﬂwww2
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and employing the Holder’s inequality, we have

M Omn
’2b¢(um7n7 wm,na T) -~ 2 Hum,n”[A(Q) vam’ﬂHL‘l(Q) 7 .
According to the Lemma 1, we can write
8@Z}m,n awm,n

‘ 2b¢ (um,rw ¢m,n7

< es6 [[umll ||¢m,n||H2(Q) ’

ot ) ot

and with the help of the relation (2.57) and Young’s inequality, we arrive at
2

I )
ot

‘thb(um,na wm,na (274)

1|0y
2 mn
< c37 ||¢m,n||H2(Q) + 5 ‘ ot

Using the inequality (2.74) into the inequality (2.73), we arrive at

awm,n 2 d 2 awm,n 2
9 ‘ 5 + 615 |v¢m,n| < c35 ot + c37 ||wm,n||H2(Q)
1|9 ?

2| Ot

Applying Young’s inequality on the first term of the right-hand-side of the above
inequality and then simplifying we get

awm,n
ot

2
d
+ 61% ‘V¢m,n’2 S C38 + C37 me,nHEZ(Q) )

and integrating over (0,t) for all ¢ € (0,7%), we have

t
J
With the help of the relation (2.72), we conclude that

t
J
/ " Omn

o | Ot

Since 1y € H'(Q) and using the result (2.19), we have

/Tf
0

aQ/Jm,n
or

2 t t
d
d¢+el/ d—iwm,nﬁds < c39+c37/ [mn 52 s
o @S 0

877Dm,n
or

2 t d
d7'+61/ _|vwm,n|2d5 S C40,
o ds

or
2

dr + €1 |V1/Jm7n(t)|2 < cq0+ € |V¢6”’”|2.

2

0
Voo dr < ecq,

or
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or

S Cq1- (2 75)
L2(0,Ty;L% ()

Hﬁwmn

This shows that 2% s uniformly bounded in L*(0, Tf; L*(2)).
From equations (2.72) and (2.75), we can deduce that if g € H'(2) then 1y, , is uni-
formly bounded in W, (defined in (2.63)). As we know that the embedding of H?(Q)
in H'(Q) is compact, therefore we conclude that W, is compactly embedded into
L*(0,Ty; H'(2)), (see e.g., [55]). Therefore we can extract from t, ,, a subsequence

also denoted by 9, ,, such that, as m,n — oo we have

Ymn — ¥ strongly in L2(0,Tf; HI(Q)),
Vmn — U weakly in L*(0,Ty; H*()),
N OV

— L*(0,Ty; L*(
S8 weakly in 12(0, Ty (@)

and therefore we conclude that
Y € L*(0,Ty; H*(Q)) N H'Y (0, Ty; L*(K2)).

We can then pass easily limit, m,n — oo in the problem (2.22)-(2.25) and verify that
(u, 1, c) satisfy the problem (2.11). O

Theorem 3 Let (uo, 0o, co) € (HL(Q))? x HZ(Q) x HYQ), and the assumptions
(H1) — (H5) are satisfied. Then there exist a triplet of functions (wu,,c) satisfy-
ng
we 12 (0, Ty (HA(Q))") 0 ' (0, T (L3(9)*)
v € L*(0, Ty H(Q)) N HY(0,Ty; H' (),
c € L*(0,Ty; H*() N H(0,Ty; L*(Q)),

which is a solution of the problem (2.11).

Proof: Multiplying equation (2.23) by u? on both sides and using equation (2.13),

we get

<8¢m,n

5t ,A2€k) + € /Q Vimm - VAZe,dx + by (Wi, Vi A%ey)

= —/A2(¢m7n,cm7n)A26k dx, (2.76)
Q
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again multiplying above equation by ;" on both sides and then taking sum over F,

where k =1,2,--- ,n, we obtain by using the relation (2.27)

(%mn

8t A/l/) ) + €1 / V@Dm,n : VAlende + bw(um,na ¢m,na A¢?7n)
Q

—/&wmwmmwmw (2.77)
Q

where ¢)"" = Ay, ,. Consider the following integral

/Q div (%mnw ) - /Q (M’””A@u /Q v (a%?v") VYT,

and employing the divergence theorem on the left-hand-side of the above equation,

we have

L dl = A n) V.
/pﬁt Vet n d /Qa ¢dd+/ﬂv( at)wd dx

According to the relations (2.13) and (2.27), we have V""" - n = 0 on the boundary

I, therefore we get

8szm,n m,n _ 877Dm,n m,n
/Q o A dx = /g)v( o ) Vo dx. (2.78)

Consider again
a¢m n m,n
A ) )
—l—/ﬂ ( BT ) P, dx,
and applying the divergence theorem, we have
a m,n m,n a m,n m,n
o (B mon = [[9 (552 v
awm n m,n
A : ’ .
—l—/Q ( T ) P, dx
Since V (M’”") ‘n=0on I (according to (2.27)), therefore we have

adjm,n m,n _ 8¢m n m,n
[7 (P ) v = [ a (%5 i i

and the above equation can further be written as

8¢m,n m,n
/Qv( o )-wd dx = Zdtw "2, (2.79)
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From the equations (2.78) and (2.79), we conclude that

awm,n m,n _ 1d m,n|2
/Q I A dx = S (2.80)

Consider the following integral

/ div (Vi AP dx = / Vihn - VAYT™ dx + / Aty n AP dx,
Q Q Q

by employing divergence theorem on the left-hand-side of the above equation, we get

/ Vi Apg™" - dl = / Vi - VA" dx + / At AU .
r Q Q

As we know that V,,, - n = 0 on the boundary I', thus we have

/ Vb - VAP dx = — / At o AP dx. (2.81)
Q Q

Consider again

/ div (Awm’nVngL’n) dx = / Awm,nAl/}g%n dx + / V(A1/Jm,n> : vw;ﬂ,n(bg
Q Q 0

and using the divergence theorem, we have

/ Aoy VU™ 11 dT — / At n AU dx + / Ve dx.
T Q Q

Since V" -n = 0 on I, therefore

/ Aty AU dx = — |V (2.82)
Q

From equations (2.81) and (2.82), we can deduce that

/ Vihn - VAY™ dx = |V (2.83)
Q

Making use of equations (2.80) and (2.83) in equation (2.77), we obtain

1d

5 1P 90 = = [ Aa(Wi )0 dx
Q

_bdf(um,na wm,m A¢21,n>’

and by applying the Green’s theorem on the first term of right-hand-side of the above

equation, we obtain
1d m,n |2 m,n |2 m,n
2dt g "1+ e VYT = | VAU, Cmn) - Vibg™" dx
Q

_bw(um,'m ¢m,n7 Al/};n’n)
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From the above equation,we have

d L m,n m,n
at WP+ 260 [V < 2/Q (VA (Y, Cmn) |y VUL, dx
+ 126y (W s Yinns APy ")] - (2.84)

Consider now

/de'v (W - Vi) - ng“”) dx = /(umn . Vwm,n)Awdm’”dX

Q

+/ V(W - Vb)) - VYT dX,
Q

and then (using divergence theorem)

/ (W - Vo) - VO™ -1 dD = / (W V) A" dx
N

Q

—I—/ V(W - Vimn) - V" dx.
Q

Since V1), - n = 0 on the boundary I', therefore we obtain

\/(umm . v¢m’">A¢?’ndX == / v(umm : v¢m,n) : Vl/JgL’nan
Q

Q

and we can write the above equation as

by (Wi, Yy AVG") = = / (Vi - Vi + V(Viimnn) - W) - V7" dx,

Q

then
1250 (s s AT < 2 / IVt nl,y [Vbmnl, [V, dx
2 / 1V (Vo) [l [V, dx,

and (using Holder’s inequality), we have

260 (W, s Py A" < 2Vl ) [Vmonll ) [V
+2 Hum,n||L4(Q) "V(V¢m,n)"L4(Q) [Vepg".

Making use of Lemma 1, the above inequality takes the form
|2bw(um,na wm,na Aw;ﬂ,n)’

< e [V [Vt ol [V [Vl [0
03 [ || [V (T ) [ [V (Vo) | (V05
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According to the relations (2.57), (2.71) and the definition of Sobolev norm, the above

inequality takes the form

m,n 1/2 1/2 m,n
120 (W, Vrm s AVT™)] < 3 [Vl |2 [V |2 [0
1/2 1/2 m,n
e [Ymall 13 o) IV Gmanll g3y V5]

and then with the help of Young’s inequality, we arrive at
mon 303
126 (s P AN < 52 [Vl [Vl - ]vw "’
3c €1 myn|2
+2_; ||¢m,n”H2(Q) ||V¢m,n”H2(Q) + E ‘V¢d | :
Let c5 = 3c2/2€; and cg = 3ci/2¢1, we have

1205 (W Yrs AUT™)| < 5 || Vl| | Vo] + IV@DZ‘”I
+Cs me,n“}p(g) vam,nHIﬂ

and using elliptic estimate, we have

1200 (s U AU S 5 [Vt [Tl + 5 [V
e Il ey (Vehnd [V,

or

126y (W s Yy DY) <05 (| Vg | vamn\|+ [V
+cr ||¢m,n||H2 |v¢m,n|
+or [ Ymnll g2y |V1/12n’n| :

By the Young’s inequality, we obtain
c?
126 (W, Wom s AUT)| < 2 [V mall® + 5 IIV¢mnH +2 |vw "’
C7 2 2
+5 ||¢m,n||H2(Q) + 5 ’vwm,n|
3c2

2
+2_€1 me,nH]ﬁ(Q) ’ (2-85)

Consider again the following integral

[—2 /Q IV A (s o)y [V, dix
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and according to the Lemma 3, the above equation takes the form
I < 209/ (14 [Vemnly + [VUmnly) V5", dx.
Q
By using Holder’s and then Young’s inequality, we get
€ m,n
I < cio(1+ Vel + [Vmal?) + 51 [V (2.86)
and employing the inequalities (2.85) and (2.86) in the relation (2.84), we arrive at
d m,n m,n m,n
2 0P 26 (VU< e (L [Vemal® + Vi) + e VO
‘3 2 1 2 2 1 2
+E V.l + ) IV mnll” + cs H@Z)m,nH[p(Q) + 2 IVthmnl”
Simplification of above inequality gives
d m,n m,n
g 1 e Vet < e (L4 Vel + [Vibmal)
1 2 Cg 2
- V m.n PN V m,n
45 1Vl + 2 [Vt
2 1 2
From the above inequality (2.87), we can deduce that
d m,n |2 2 2 1 2
S < a0 (L [Vemal + [Vmal®) + 5 [4mal
Cg 2 2 1 2
+§ [V |” + cs me,nH[ﬁ(Q) + ) [V thmn|” -
Integrating above inequality over (0,t) for t € (0,7y), we have
‘d 2 ! 2 2
/ 7 [ ds < 010/ (1+ [Vemnl™ + [ Vmn|®) dr
o as 0
1 [ 2 Cg ! 2
+= | ||Vl dr+ =2 [ [Vl dr
2 Jo 2 Jo
t 5 1 t 5
+Cg/ memHH?(Q) d7—+§/ |V¢m7n‘ dr.
0 0

The results (2.39), (2.59) and (2.72) reduces the above inequality to the following

form '
/ d_ |¢2n,n(s>’2 dS S C11, V t e (O,Tf)
0 S

and
W@ < e+ [W0))F, Ve (0,Ty).
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Making use of the relation (2.21) and since ¢y € HZ(2), we have
WO < cn,  YEE(0,T)).
From the above inequality, we conclude that

||7vbcrln7n(t)||Loo(0,Tf;L2(Q)) < 2. (2.88)

This shows that ;" = Aty , is uniformly bounded in L>°(0, Ty; L*(€2)). From equa-
tion (2.71) and (2.88), we conclude that 1, ,, is uniformly bounded in L>(0, Ty; H%(12)).
This implies that

||¢m,n||Loo(o,Tf;H2(Q)) < as. (2.89)

Again by integrating the inequality (2.87) over (0,¢) for all ¢ € (0,7%), we have

/ d—\wd’ |2d8+61/ V" *ds < clo/ (1+\ch,n|2+lvwm7n\2) ds
o as 0 0
I 2 C% ! 2
+5 [ IVemal“ds+ 2 | [Vl ds
2 Jo 2 Jo

t 1 t
ves [ Womalipyds+ 5 [ 1Vmal*ds,
0 2 Jo
or
2 ! 2 ! 2 2
e (0) —l—el/ Ve ds < 010/ (14 [Vemnl? + [Vibyn]?) ds
0 0
I 2 c ! 2
b5 [ IVl s+ 5 [ [Tl ds +
0 0
t 1 t
2 2 m,n 2
o [ Wl ds 5 [ IVl s + 070"
From the above inequality, we can deduce that
! 2 ! 2 2 1 [ 2
61/ VYT ds < cw/ (1+ [Vemanl™ + [Vl )ds+§/ IVmnll” ds
0 0 0
C% ! 2 ! 2
5 [ 19l st cs [ ol ds
0 0
1

t
45 [ Wl ds + 6 O
0

and according to the relations (2.89), (2.71), (2.38) and as vy € HZ({2), we conclude
that

¢
/ IV (s) P ds < e, Yt € (0,T)).
0
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This implies that
This shows that V"™ is uniformly bounded in L*(0,T}; L*(2)). Therefore using

equation (2.72), (2.89) and the above inequality, we can conclude that v, , is uni-
formly bounded in L*(0, Ty, H*(2)) N L*(0, Ty; H3($2)). That implies

[$mnll oo 0,7, 2020730y S €150 (2.90)

Now multiplying equation (2.76) by 0" /0t on both sides and then taking sum over
k, where kK =1,2,---  n, we obtain by using relation (2.27)

(O DU w;zm B o
(%52 957) [ S Pt 550
oy

= [ As(Ymn, Cmm dx. 2.91
| A ma) (291)

Consider the following integral

/d a¢m,n av77Z)m,n d _/ awmm 8A,¢}m,nd
U\ T o =), o

awm,n avwm,n
+ /Q V( T ) T dx.

By using divergence theorem, we have

D OV Y (/éw%na¢ /’ On |
: —.-ndl = dx —| dx.
/Fat a " o ot ot +Qvat2x
Since avg;% -n = 0 on the boundary I'; therefore we have

(2.92)

O 0" | O |
/Q o or X7 ‘v ot

Again consider the integral

/de <v¢mn ) /v¢mn~ ( Yo )d +/A¢mn (;n dx,

and by the divergence theorem, we have (sinceAiy,,, = ¥;"™")

/me,na% ndF:/vamm'V( )d +/¢m" i

As we know that V,,,, - n = 0 on the boundary I', therefore we have

/v¢mn- (w )dX: thw "2 (2.93)
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Consider now the following integral
, OVYn Py
/Qd“} (AQ(wm,na Cm,n) al/; 7 ) dx = /§2A2<wm,n7 Cm,n) zgdt dx
6 m,n
—i—/ VAs(Vmns Cmm) - V Y, dx,
Q ot
and employing the divergence theorem, we have
oV opr"
A T ondl= | A d_gq
/1“ 2(¢m,na cm,n) 8t n /Q 2(¢m,n7 Cm,n) 675 X
a m,n
" / V As Gy o) - V22
Q ot
Since 8vgtm‘" -n = 0 on the boundary I'; therefore we have
8 m,n a mon
/ Ag (W ) 22 i — —/ V Ay (s o) - VO e (2.94)
Q ’ ’ at Q ’ ’ 62‘:
Making use of equations (2.92)-(2.94) in equation (2.91), we obtain
Wona|* 1. d 2 oy
: P ’ =b m,ny Ymmny — o,
‘V ot | Fzalvel = be | W Ymns =5
a m,n
—/ VAs(Ymns Cmn) - V Y, dx,
Q ot
or
a,lvbm n 2 d m,n |2 aw;nm
2 : N ’ < |20 m,ny Ymmnys T o,
R I O
M
+2 |VA2(77Z)m ny Cm n)|2 V— | dx. (295)
Q ’ ’ ot |,

Consider the following integral

. az/)m,n o 8w;n7n
/de ((umm vwm,n) \V4 ot )dX—/Q(um,n Vwm,n) ot dx

al/Jm n
ot

+/ V(nn - Voman) -V dx,
Q

Making use of the divergence theorem, we have

M B "
/F(umm Vomn) -V Y ndF—/Q(um,n Vimn) Ay dx

I n
ot

dx.

+/ v(um,n : vwm,n) -V
Q
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As Vi, ,, -1 = 0 on the boundary I, therefore we obtain

gy D
/Q (i~ Vi) P = /Q V(0 Vi) -V

or

Ovi™ M
b¢(um’n7 wm’”’ ,(g—dt) = - /;2 (Vumm . V¢m7n) . v %t’ dX

+/ (V(Vhn) - W n) - VLR g
o : : ot

/ IV, ,l,

2 / nnly [V (V)] [V

and then

oy Oy
ot

9¢mn

dx

2

dx,

2

’2bw(um,n7 ¢m,n7

8wmm
ot

and with the help of the Holder’s inequality, we have

oy
ot

2 [ nll paay2 IV (Vmn) | 1) |V

MWn
< 2 Hvum,nHM(Q) vam,nHLzl(Q) VW

awm,n
ot

‘wa(um,na wm,na

According to the Lemma 1, the above inequality takes the form

oy

) aQ/Jm,n
ot

ot
3¢mn

\Y

’2b¢(um,n7wm,n7 S C16”um,nHH2(Q "¢m:n’|H2(Q)

terr [l [V (T4l \

Using Young’s inequality, we arrive at

oYy

2
5¢Cis

2
‘wa<um,mwm,m 81& ) = 4 Hum,n||H2(Q) me:nHH%Q)
2 awmn 2 56%7 2 2
- V . m,n Vv m,n )
#2924 20 V(T

and by the definition of Sobolev norm and the results (2.57) and (2.90), the above

inequality takes the form

Ny 2
’2b¢(um,n7 ¢m,n7 8t ) ) S Ci18 ||um,n||H2(Q)
2| mn|? )
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Consider the following integral

a¢m,n
ot

\Y dx,

2

[1 = 2/ |VA2<1/}m,nacm,ﬂ)’2
Q

According to the Lemma 3, we have

Imn

—/ =2 d
Vat X,

2

]1 S 2020/ <1+|ch,n|2+|vwm,n|2)
Q

and using Holder’s inequality, we get

OV
ot |

I, < 2c¢y (1 + ‘ch,n| + |V¢m,n’) ‘V

Applying the Young’s inequality, the above inequality takes the form

awm,n
ot

2

3
I < 56 (14 |Vemul” + [ Vimal?) + = ‘V

b}

Substitution of the relations (2.96) and (2.97) in the inequality (2.95) gives

81/1 n 2 d m,n|2 2
2’v8—? T [$a™ 1" = as [l )
O | 2
+ ‘v 5 | T 9 Vmallyz o)

+5¢2 (1 + |Vemnl” + [Vmal?)

or

Ibmn
ot

2
d m,n |2 2 2
‘v + 61% |77Z)d ’ | S C18 ||um,n||H2(Q) + C19 ||vwm,n||H2(Q)

+5¢2 (14 [Vemal” + [Vomnl?) -
The relation (2.90) reduces the above inequality to

o,
ot

2
d m,n|2 2 2
‘v P P < ens bl + e[Vl 2o

+Ca1 (1 + |ch,n|2) .

Integrating over (0,t) for all ¢ € (0,7%), we have

/ "o W
0

v@s

t t
—1—019/ ||wm,n||§,2(mds+cﬂ/ (1+ [Vennl?) ds.
0 0

2 t
s+ OF < s [ ol ds-+ 1057 OF
0

(2.97)
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From above inequality, we can deduce that

/ "o MW
0

\%

2 t
2 m,n 2
el ds < e [l ds+ 07 7(0)

t t
+019/ vam,n“iﬂ(g) ds —+ o / (1 + |ch7n‘2) ds.
0 0

As ¢ € HZ(2) and using the relations (2.39), (2.59) and (2.90), we have

Ty
/0 V 078 dS S Co9,
and this implies that
HVM < e (2.98)
Ot Mraozpae)

This shows that V <8¢"é—’t"(t)> is uniformly bounded in L*(0,Ty; L?*(©2)). As we have
already seen that v, ,, is uniformly bounded in H'(0, Ty; L*(Q2)), and now by equation
(2.98), we can conclude that 1y, , is uniformly bounded in H'(0,T}; H*(Q)). That is

||¢mvn||H1(0,Tf;H1(Q)) < cos. (299)

Multiplying now equation (2.24) on both sides by u; and then using relations (2.13)
and (2.27), we have

B (acan;’n ) Acm,n> B bc(“m,n7 Cm,n» Acm,n) - / D(wm,n)vcm,n : V<Acm:n)dx
Q

- / AS(wm,m Cm,n)vwm,n . V(Acmjn)dx = 0.
Q

Employing Green’s formula and as V¢, , - n = 0, the above equation takes the form

1
_i |ch,n|2 - bc(um,n7 Cm,n; AC’m,n) + / d’L’U (D(¢m,n)vcm,n) ACm,ndx

2dt Q
—l—/gdiv (As(Vmns Cmn) Vmn) Al ndx = 0.
Simplifying above equation, we have
GVl 42 [ D) A = 2l B
_2/QVD(¢m,n) - Vemn At ndx — 2/QA3(wm,n;Cm,n)Awm,nAcm,ndX

9 / V Ay (s o) - Vb n Ay . (2.100)
Q
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Consider
2t o S| < 2 [ [aly Vel [l .
Q

and with the help of the Holder’s inequality, we have

2 |bc(um,na Cm,n) ACm,n)| S 2 ||um,n||L4(Q) ||vcm,n||L4(Q)
Using Gagliardo-Nirenberg’s inequality (see Lemma 1), we have
2 |bc(um,n7 Cm,n» AC’m,n)| S 2624 ||um,n|| |vcm,n|% ||ch,n||% |Acm,n| )

and then applying Young’s inequality, the above inequality takes the form

D
1Al

4c2
2 |b0(um,mcm,mAcm,n>| < D24 |U-m,n|2 HumnH |vcm,n| chm,nH + 1
0

According to the relation (2.57), we obtain
Do 2
2 ’bc(um,na Cm,n, ACm,n)l S Ca5 |vcm,n’ chm,nH + I ‘Acmﬂ‘ :

Since [[Vemull < c26 [[Cmnll 2 (g, thus we have

2 |bc(um,n7 Cm,na Acm,n)‘ S Ca7 ’vcm,n’ Hcm,nHH2(Q) + IO ‘Acm,n‘Q )

and using elliptic estimate, the above inequality takes the form

D
2 |bc(um,’m Cm,na ACm,n)l S Ca8 |ch,n| (|Acm,n| + |Cm,n|) + IO |Acm,n|2 )

or
2 |be(Wn s Conny Almn)| < 28 [Vemm| |ACmn| + cos |Cmnl |Vemnl + |Acmn|
By the Young’s inequality, we have
2 1be(Wnny Conny ACmn)| < 28 |V ol +—|A L |V Con

L1
2

2 2
— |Acmal”.
’ + 4 | C ’ |
The above inequality can be simplified as

2 |be(Wmns Cmny Almn)| < 029\chn\ + = |mn] + |Acmn| (2.101)
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Making use of the relation (2.101) in the inequality (2.100), we have
d 2 2 2 1 2
— |Vemnl"+2 | D(Ymn) |Acmnl” dx < ca9|Vemnl™ + = [Cmnl
dt Q 2
D
5 | Aemql + 2/ VD ()5 [V rmnly | Ao | dx
Q
42 [ At ) [y [ ] dx
Q
42 [ 1V AU )l [Vl [
Q
Using hypothesis (H1) — (H5) and the Lemma 3, we arrive at
d 2 2 2 1 2
_’vcmn’ +2DO ’Acmn’ dX S 029|chn’ +_‘Cmn|
dt ’ Q ’ ’ 2
Dy 2
+7 |Acm.n|” + 2c30 (1 + \V¢mn|2) (Vemmly |[Acm | dx
Q
+2a3/ | Aty nly | Al n| dx
Q
12 / (14 [Vl + Vemanly) [Vennly [Acn] dx.
Q
Applying the Holder’s inequality, we arrive at

d 1
E |ch,n|2 + 2D0 |ACm7n|2 S Co9 |ch7n|2 + 5 |Cm,n’2

D
+70 |Acm,n|2 + 2030 ’vcm,nl ’Acm,n’ + 2&3 |Awm7n| ‘Acm,n‘
+2631 ’Vwm,n| ‘Acm,n| + 2631 ||vwm,n||i4(g) ‘Acm,n‘
+es2 [[Vemnll paay IVmnll L2y [ACmnl

and further by the Young’s inequality, we have

d 1
% ‘chn|2 + 2D0 ]Acmn]2 S Cog ’VCmn|2 + 5 ’Cmn|2

D 12¢2
== |Acmn| + 30 |V mn| + 5 |Acmn|
12a 120
3mwm+— mmu+—D“Nwm2
0

2
+—2 |Acomal” + 2¢31 vam,nHm(Q) |Acmnl
+C32 chm,nHM(Q) vam,nHm(Q) | Acmn] -
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As ||V1/1m7n||L4(Q) < ¢33 me,n”Hz(Q), then the above inequality takes the form

d 3D 1
-, ’vcm,n 2 + 2DO ‘Acm,n‘2 S _0 |Acm,n|2 + C33 ’VCm,n|2 + - ’cm,n‘2
dt 4 2
12@% 2 2 2 2
+ Dy ’A¢m,n| + 12¢5; |v¢m,n| + 2c3 me,nl‘jp(g) |Acm,n|
+C32 ”vcm,nHUL(Q) ||¢m,n||H2(Q) |Acm,n| ) (2-102)

and using Gagliardo-Nirenberg’s inequality in the last term of the above inequality
(2.102) we have

€32 chm,nHL4(9) me,nH}ﬂ(Q) |Acmal <
1 1
C34 "¢m7n||H2(Q) |ch,n|2 chm,n”2 |Acm,n| )

As [Vemal < essllemnll gogq) and with the help of Young’s inequality, the above

inequality becomes

Dy
|L4(Q) ||V¢m,n||L4(Q) |Acm,n| < E

+c36 | Vmn

2
Crmn|

C32 ||ch,n

2
|H2(Q) ’vcﬂ%nl HcmanHQ(Q) .

Making use of the relation (2.89), we get

2
C32 ||ch,n |L4(Q) ||v¢m,n||L4(Q) |Acm,n| S Y. |Acm,n|

+c37 Vel ||Cm,nHH2(Q) :

According to the elliptic estimate, the above inequality becomes

Dy 2
C32 chm,nHL4(9) vam,nHL‘l(Q) ‘Acmm‘ < E |Acmv"|
+638 |vcm,n| (|Acm,n| + |Cm,n|) ’

and then by the Young’s inequality, we have

Dy 2

|L4(Q) ||V1/’m,n||L4(Q) |Acmal < 12 | Acm,nl
3c2q

Dy

C32 chm,n

2

D
|vcm,n 2 + 1_20 |Acm,”

P
1
+62ﬁ |ch7n|2 + 5 |cm7n|2.

Simplifying the above inequality, we have
Dy 2
C32 ||ch,n||L4(Q) ||v¢m,nl|L4(Q) |Acm,n| S F |Acm,n|

1
+cs0 | Vemnl” + 5 ] - (2.103)
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Using Gagliardo-Nirenberg’s inequality, we have

1 1
2031 ||V¢m,nHL4(Q) |Acm,n| S C40 |V’lpm,n|2 ”V’lpm,nH 2 |Acm,n| .

Applying the Young’s inequality and using the relation (2.89), the above inequality

takes the form

2
2031 ||v¢mvn||L4(Q) |Acm,n| S Cq41 ||¢m,n||H2(Q) + —

As we know that [Vima| < caz [[Ymnll g2y and ||V,

have

| S ”szm,nHHz(Q), thus we

D
2¢31 || Vhmn ) + 1—20 |Acmal”. (2.104)

|L4(Q) |Acmnl < casl|[Vmn

Using the inequalities (2.103) and (2.104) in the inequality (2.102), we obtain

d
E |ch,n|2 + 2DO |Acm,n|2 S DO |Acm,n|2 + C33 |ch,n|2 + |Cm,n|2

12a3 124

A mn2 V mn2

+p [Amal” + 5 Vil
12¢, 2 2

+ DO |‘wm,nHH2(Q)+C39lvcm,n‘ .

Since ’vwm,n‘ S Caq me,nHH%Q) and ‘Awm,n’ S C45 me,nHH2(Q) ) thus we have

d
E |vcm,n|2 + DO |Acm,n|2 S C46 |vcm,n

2 lemnl® + car ||¢m,n||§12(9) 7

According to the relations (2.39) and (2.89), the above inequality takes the form

%) (2.105)

d
- IVemnl? + Do |Acmal® < cis (14 |Vemn

From the above inequality, we can deduce that

d
— Vemnl® < cas (14 |[Vemnl®)
dt
and with the help of Gronwall’s lemma and the relation (2.19), we can easily get
|VCm7n<t)’2 < C49, Vite (O,Tf)

this implies that
”chvn”lfx’(O,Tf;LQ(Q)) S C49. (2106)
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This shows that V¢, , is uniformly bounded in L>(0, Ty; L*(©2)). Thus from relations
(2.106) and (2.39), we can deduce that ¢, ,, is uniformly bounded in L>(0,T; H*(Q)).
ie.,

lemnll oo o,rym10y) < Co0- (2.107)

Now integrating the inequality (2.105) over (0,t) for all ¢ € (0,7), we have

t g ¢ ¢
/ —|chn|2d8—|—D0/ |Acmn|2d5 < 048/ (1+|chn]2) ds
0 ds 7 0 ’ 0 ’
or
t t
|ch7n(t)|2+Dg/ |Acm,n|2ds < 048/ (1—|—|ch7”|2) d8—|—|ch7n(0)|2.
0 0

From the above inequality, we can deduce that
Dy /t |Acmal’ds < cys /Ot (L+ |Vemnl?) ds + | Ve (0)]?,
0
Making use of (2.107) and as ¢y € H'(Q2), we can easily arrive at
Dy /t |Acmal’ds < 51, Y te(0,Ty).
0

Thus we have

1ACmnll 202120 = Co2- (2.108)
This shows that Ac,,, is uniformly bounded in L?(0,T}; L*(2)). Using the results
(2.107), (2.108) and elliptic estimate, we can deduce that ¢, is uniformly bounded
in L2(0, Ty; H2(Q)), that is

”Cm,nHB(o,Tf;H?(Q)) < Cs3e (2.109)

Now multiplying equation (2.24) by dc,"" /0t on both sides and then taking sum over

k, where £ =1,2,--- ,n, we obtain
Oc oc Oc dc
m,n m,n b m,n D o S m,n d
< 8t ) 8t ) + c(um,nucm,n7 675 )'f’/ﬂ (¢ , )VC , V( at ) X

8mn
+/ A3(¢mnacmn)v¢mn . V( Cm, )dX: O7
Q ’ ’ ' ot

and by applying Green’s formula and as Ve, ,-n = 0 on I', the above equation takes

the form
2
ag’;’” bWy oy ™ ac’”" / D(t0) Acmnacgg”dx
8cmn acmn

0cm "y

/VA?) 7pmnacmn) Vwmn dx.
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Using hypothesis (H1) — (H5) and the Lemma 3, we have

2
OCm.n

ot

6cm7n

OCm.m
bc (um,m Cmmns —q,

d
ot X

) +D1/ |Acm,n|

OCmn,

ot

8cm s

+C54/ (1 + |V¢mn| ) |chn|2
Q

dx + a3/ | AU |

8cm n

+055/ (1 + |vcm,n|2 + |V¢m,n| ) |V77Z)mn|2 dx.
Q

and with the help of the Holder’s inequality, we have

2
OCmn

ot

8cm n
ot

OCmn
ot
OCmn
ot
OCm

ot

= Hum,nH[A(Q) chm,nHM(Q) + D1 [Acy, ]

8t +a3|Awmn’

+C55‘Vwmn| +C55 ||vwmn||L4

OCm

ot

)

+C56 chm,nHin(Q) |vwm,n|L4(Q)

and using Gagliardo-Nirenberg’s inequality, we have

OCmn

8t

2
1| 0cmm
< 57 HumnH ||vcm7n||H2(Q) chm,nH2 ot
OCcmn
ot
OCmon,
ot

+D; |Acmn| +C54|V0mn|

CL3 |A¢m,n|

8cm n

+CS5 vam n‘ + Cs8 ‘V¢m,n’ vam,nH

OCm.n

ot

+Cs9 Hcm,nHH2(Q) me,nHHQ(Q)

Further by the Young’s inequality, we have

2 2

OCmn

ot

70%7 2 2 acmm
= 5 [, Hcm,nHH2(Q) + 14| ot
1 ‘(%mm

7054
V mn T4
Vel + 37 |51

7054

2

7D? Omn 2
+_ |A mnl

ot

14

2
3cm n

ot

2 2

0cm7n

7058
+ﬁ‘m

OCmn
ot

OCm.n,

m+ﬁ‘&

IV mnl* IV4mnll* +

14

2
7059

2 2
+T H m,nHH2(Q) me,nHHZ(
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Making use of the relations (2.57), (2.107) and (2.89), we finally arrive at
1

2
Integrating above inequality over (0,7) and using the result (2.109), we have

/Tf
0

2
OCmn

< ¢e0 + Co1 Hcm,n”ip(g) :

2
dt < Cg2.

OCm

ot

Thus we have

a m,n
‘ Em, S Cg2. (2110)
Ot Ml 20y:22)
This shows that 865;’" is uniformly bounded in L?(0,Ty; L*(£2)). Thus from the results

(2.109) and (2.110), we can deduce that if ¢ € H'(Q2) then ¢, , is uniformly bounded
in W, (defined by (2.63)). Since the embedding of H*(Q) in H'(Q) is compact,
therefore we conclude that W, is compactly embedded into L*(0,Ty; H'(Q)), (see
e.g., [65]). Therefore we can extract from ¢, ,, a subsequence also denoted by ¢;,p,
such that, as m,n — oo we have

Cmn — ¢ strongly in L*(0,Ty; H'(Q)),

Cmm — ¢ weakly in L*(0,Ty; H*(Q)),
OCmm, N Oc , 9 9
oy g weakly in L*(0,Ty; L*(%2)),

therefore we conclude that

c € L*(0,T; H*(Q)) N HY(0,Ty; L*(Q)).

We can then pass easily limit, m,n — oo, to the problem (2.22)-(2.25) and verify that
(u, 7, ¢) satisfy the problem (2.11). O

2.6 Stability and Uniqueness

Theorem 4 Let assumptions (H1) — (H5) be fulfilled. Let (w1, o1, o1, B1) and

(2, o2, Coz, Ba) be two functions from (HL(Q))? x H2(Q) x HY(Q) x (L2(Q))>. If
(u1,1,c1) and (ug, s, c2) are two solutions of the problem (2.11) with the given
data (ug1, o1, o1, B1) and (uge, Yoz, coa, Ba) respectively, then we have the following

estimate
lwn = wally + 11 = Gllfy + ller = calllyy < do(lutor = w1
+ (1901 — %2”?{2(9) + ||cor — CQQH%l(Q) + || By — BgHiQ(Q) ) (2.111)
where dy is constant and W} = L>=(0,Ty, L*(Q)) N L*(0, Ty, H(Q), i = 1,2,
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Proof: Let (uy,1,c1) and (ug, s, c2) be two solutions of the problem (2.11) with
the given data (ug1, %01, co1, B1) and (ugg, 12, co2, B2) respectively. We denote u =
u; — Uy, ¥ =1 — Py, c=c; — ¢z, Ug = Ugy — Ug2, Yo = o1 — Vo2, Co = Co1 — Coz and
B = B; — B,. Then the triplet (u,, ¢) is a solution of the following problem

0
Po <8_12;1’V) + au(u7 V) + bu(u17u17v) - bu(UQ,UQ,V)

= (b(¢1) (w1 x By) x By) = b(2)((uz2 x By) x By), v)

+ (A1 (Y1, ¢1) — Ar (o, ¢2), V), (2.112)
G
(Ev ¢) + a¢(¢, ¢) + bd)(ub wla ¢) - bw(u% ¢2> ¢)
—— [ (Aaltr,) = An(vm,c2)) 6 ax, (2113)
dc
as bc 5 5 - bc 5 5 D \V4 -V d
<8t’z) + b.(uy, cq, 2) (ug, co, 2) —I—/ﬂ (1)Vey - Vz dx
—/ D('Lpg)VCQ -Vzdx+ / Ag(lpl,cl)Vd}l -Vz dx
Q Q
—/ Ag(wg, CQ)V@Z)Q -Vzdx = 0, (2114)
Q
(u7¢7 C) (t - O) = (uo,?/fo, CO)' v (V7 ¢7 Z) eV (2115)

Consider now the term

(u; - Vuy) - vdx — / (ug - Vuy) - vdx,
Q

bu(ul,ul,V) - bu(u2,112,V) = /

Q

adding and subtracting the term / (uy - Vuy) vdx, we have
Q

(u; —up) - Vuyv dx + / uy - V(u; — up) v dx,

bu(ulaulyv) - bu(ug,ug,v) = /
0

Q

thus we have
by(uy,uy,v) — by(ug,us, v) = b,(u,uy,v) + b, (ug,u, v). (2.116)
Similarly, we can derive

bw(u1,¢1, ¢) — b¢(u2a o, ¢) = bw(u, Y1, ¢) + bw(u% Y, ¢)7} (2'117)

bc(ub Cy, Z) - bc<u27 Ca, Z) = bc(u7 C1, Z) + bc(u27 C, Z)'
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Consider the term

b(¥h1)((ur x By) x B1) — b(12)((uz x By) x By),

adding and subtracting the terms b(¢)((u; x By) X By), b(¢1)((uy x B1) x Bs) and
b(¢1)((uz x Bg) x By) in the above expression and simplifying, we have

b(th1)((u1 x By) x By) — b(1h2)((uz X Bz) x By)
= b(¢1) (w1 X By) x B) 4+ b(¢)1)((u x By) x By)
+0(¢1)((ug x B) x By) + (b(01) — b(12))((uz x By) x By),

the above equation can further be written as

b(¥1)((ur x By) X By) — b(¢2)((uz x By) x By)
= b(¥1){((u1 x B1) x B) + ((u x By) x By)
+((uz x B) x Ba) } 4 (b(¢1) — b(12))((uz x By) x By). (2.118)

Making use of equations (2.116)-(2.118) in the equations (2.112)-(2.114) and adding

and subtracting the terms / D(12)Ve; - Vzdx and / A3 (19, c2)Vihy - Vzdx in equa-
Q Q

tion (2.114), we obtain

00 (88_1;’ V) + ay(u,v) + by, (u,uy, v) + by (uz, u, v)
_ (A1(¢1,c1) _ Al(wg,@),v> + <b(1p1)((u1 x By) X B),v>
+(b(¢1)((u x B1) x Bg),v> n <b(w1)(u2 x B) x B2,v>
+((000) = b)) (w2 x By) x Bo),v),  (2.119)
oY

(E, (b) + ay (Y, @) + by (u, 11, @) + by(uz, 1, @)

= - /Q (Ag(Vr1,c1) — As(1h2, c2)) ¢ dx, (2.120)
dc
(E’Z> + be(u, 1, 2) + be(ug, ¢, 2) +/ (D(¢)1) — D(12)) Vey - Vz dx
Q
"’/ D(19)Ve - Vz dx~|—/ (As(1, c1) — Az(12, c2)) Vipy - Vz dx
Q Q

"‘/ Ag(lpg, CQ)Vi/} -Vzdx =0. (2121)
Q



94 Ezxistence, Regularity and Stability Results

Now setting (v, ¢, z) = (u, 1, ¢) in the equations (2.119)-(2.121), we have

o (88_1;’ u) + a,(u,u) + b, (u,ug,u) + b,(uz, u,u)
_ (A1(¢1, ¢) — A1(¢2,c2),u) + (bwl)((u1 x B) x B),u>
+(b(w1)(u x By) x Bg,u) + (bwl)(u2 % B) x By, u)

+((bwn) = () (w2 x By) x By), u).,

0
(a_qf, ¢) + ay (¥, 1) + by (a,¥1,9) + by(ug, ¥, )

- /Q (Aa(t1, 1) — Ao(thz, ¢2)) ¥ dx,

ot’
+/ D(¢2)VC -Ve dX+/ (A3(’lb1, Cl) — Ag(lpg,Cg)) le - Ve dx
Q Q

(@ ) 0, c1,0) bz, ¢, 0) + /Q (D) = D(t)) Ver - Ve dx

—|—/ As(thg, o)V - Ve dx = 0,
Q

since bu<u27u7 U) = bw(u2a¢7¢) = bc<u27c7 C) = 0 and bw(u7 ¢17¢) = _b’;ZJ(uvwaqu)l))
the above equations takes the form

po d

> |u|2+u/|Vu\§dx+bu(u,u1,u): (Aslwr,e) = A, ¢2),u)
Q

+<b(z/11)((u1 x By) % B),u) + (b(wl)(u x By) x BQ,u>
+<b<¢1)(u2 X B) X B2711> + ((b(wl) - b(%)) ((U2 x By) x B2),11)a

d
3 o a1 | 9uliax = byt i)
__ / (Aa(r, €1) — Ao(ta, c2)) i,
Q
3 e+ [ D) IVeliax + bfw,n0) = = [ Aalua, )90 Ve dx

~ [ (D)~ D) Ver - Ve ax
_ /Q (A3(Y1, ¢1) — Az(e, ¢2)) Viiy - Ve dx,
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and using hypothesis (H1) — (H5), the above equations takes the form
po d
S Val < o [ July (Vi fuly s+ di [ (][]l dx
wds [ Julyfuly [Blydx + ds [ fuf}dx
Q Q
s [ Pl fly[Blydx s [ 61l [,
Q Q

1d

37 0+ alVO < do [ (10l + fe) [wldx+ [ [uly [Vl 4] dx

1d
—— c]2+D0\V0|2 < /|u\2\V01\2\c| dx—i—ag/ V|, [V, dx

s / ] [Verly Vel dx + ds / (0] + [el) Ve, | Vel dx.

Let v = u/po. As ¢y € L*>(0, Ty, H*(R2)) C L>*(Q) and using Holder’s inequality, we

have

d 2 2 2
ol 20 [Vul < 2 [ulf} g (V| +ds (ful [l + fal ]
+dio [[u1l| oy 1l ooy Bl + din [z gy [[all paq) [BI
2
+diz [uf” + diz [[¥] 1o [[all paq) [u2] (2.122)

d
= [ 426 VO < dua (I0F° + el [9]) + 21l ) Tl V01, (2.123)

SVl +2D0 Vel < 2 ullagey lell ey V] +dis [V [
g / ]V erly [Vely dx + di / (0] +1e) [V, [Velydx.  (2124)
Since uy € L*(0,7%; V) and using Gagliardo-Nirenberg’s inequality, we have
2|[ullfaq V| < dis|ul[Vul,

Further with the help of Young’s inequality, we obtain

v

1 |Vul® (2.125)

d2

2 2
o R
As uy € L*(0,Ty; V), and using Gagliardo-Nirenberg’s inequality, we get

1/2 1/2
g [ 1y 1l oy o] < g ]| [l [V /2.
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Again by using Young’s inequality

1
ol >+ = |Vu\ (2.126)

As uy € L>(0,Ty; V) and applying Gagliardo-Nirenberg’s inequality, we have

d? 9
dis |WHL4(Q) ”u”yl(m up| < % [ol"+ —

1/2 1/2
do [l s ey Il oy IBI < dao [l [Vul'"? B

and then (using Young’s inequality), we arrive at

d;
dho ([l sy 0l oy Bl < 20! I+ !V I+ !B\ (2.127)

Similarly we can derive that

d4
dy [[us|| o) lull o) Bl < 21! I+ !V P+ 5 !B\ (2.128)

Also as ¢; € L>(0,Ty; H'(2)), thus we have
2[[all gy llell paey [Varl < daz[lull paqy llell gy

According to the Sobolev injection (H'(Q2) C L*(Q)), and as [Jull, < doz|Vu| we
have

2l iy llell ooy Vel < da [Vl el )

the above inequality can further be written as

1/2
2 [[ull pagey llell oy [Ver] < daa [V] (Jef” +[Vel)
Applying the Young’s inequality, we have
D
2 2 0 2
2 [ull sy el IVl < das (1> + [Vul?) + 22 [Vl (2129)

Since ¢ € H*(Q)) C L>(), therefore we obtain

d16/9|¢||Vcl|2|VC|2dX < dis ||¢||LOO(Q)/Q|V01|2|VC|2dX

Using Sobolev injection (H%(2) € L>(€2)) and Holder’s inequality, we arrive at

o [ 101 19e1ls [ Velydx < das [0l V][
Q

Since ¢; € L>(0,Ty; H'()) and according to the elliptic estimate, we can write

o [ 161 Verly[Velydx < dar (1201 + [¥]) el
Q
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and with the help of Young’s inequality, the above inequality becomes
D
o [ 10119exly IVelydx < ds (180F +[u?) + 2 [0ef (2130)
Q
Now using Holder’s inequality, we have

dis [ (1014 Ie) [V, Vel dx <
iz (100200 + el oy ) 191l gy Ve

since ¢y € L>®(0,Ty; H*(Q)) and using Gagliardo-Nirenberg’s inequality, we finally
get

dis [ 101+ 1) [Vl [Velydx < o (] + 1 el ) 196l

The above inequality can further be written as

1 1 1
iz / (1] + 1)) [Vl [Velydx < dso (I + Jel? (lel? +1¥el?) ) Vel

or
dir [ (1014 Iel) [V, Vel dx <
dso ([l [V7e| + [el [ Vel + el [ Vel )
and applying the Young’s formula, we have
d17/ﬂ(|¢|+IC\)\Vw1|2|VC\2dx < da1 (|0)° +|cf?) +%]VC|2. (2.131)

Making use of the inequalities (2.125)-(2.131) in the the relations (2.122)-(2.124), we

have

d o 2 i o dy | 2 2
— < == =
o lul” + v |Vu|” < V lu|” +do (|¢0] |u| + || Ju]) + ™ lul” + |B|

P8R g a4 G g
4y 2 4y

d

i |¢|2 +2¢; !VW < dyy (|1/1|2 + |c| |1/)|) + dsg [u| [V,

3D,

d 2 2
— + 2Dy |V <
a1 2DVl < =

Vel + das (e|” + |Vul]?) + dis Vo] [V
+dag (|AY|* + [9%) + da1 ([[0]° +|e?) -
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By the Young’s formula, the above inequalities takes the following form
d
J v [Vu* < dsg (Juf + [0l + o) + |BP + ||¢||
d
1+ 26 [V < daa (Ju + [l + |ef”) + e [V,
d | o 2 2 2 dis
—_— C| +D0|VC| S d25 (’C' +|Vu] )+—|V'Lp|
dt Dy

+dos (| AV + [9]?) + day (|01 + |ef) -

The above inequalities can further be written as

d
2l v [Vul* < dys (Jul” + [0+ |el?) + B, (2.132)
d
U+ [V < da (laf* + [0 +[el?) (2.133)
d
T el* + Do [Vel* < dsg (IVul’ + |AG[* + el + [[9]]%) (2.134)

Now we shall estimate |At|. For this setting ¢ = —At in equation (2.113), we obtain

@f A¢) —el/Vw V(AY)dx = by (uy, 11, AY) — by (g, ¥y, A1)

+/ (Az(th1, e1) — Ag(th2, ca)) At dx,
Q

Making use of equation (2.117) and Green’s formula, we have

1d

57 VUL e |G = by (w4, A) = by(ug, ¥, AY)

+/Q (Az(th1, e1) — Ag(th, ) At dx,
and then using hypothesis (H1) — (H5), we get
th CIVel + e [AyP /Q luf, [V, |Av| dx
+ [l Pvliataxs [ Qo1+ i e a
with the help of the Holder’s inequality, we have

d
7 [VI” + 261 [A¢]° < 2|l pagqy V1 gy 1A%
+2[[ua sy VO s [AY]+ 2 ([0 + [e]) [Ad]
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According to the Lemma 1, we arrive at

d
72 |Vl 426 |AGP < dgs [u] [Vl 2|V | |AY)
dlsg V| V|72 [0 [A] +2 (ju] + Je]) [Av]
Since ¢y € L>(0,Ty, H*(Q2)) and uy € L>(0,Ty,V), therefore the above inequality
takes the form
d
7 VO 260 (A" < dao [u]'? [Vl |AG] + da [Vl (V)2 |AY)
+2 (9] + lel) [Ad]
and using Young’s formula, we arrive at

2
d41

d
VO + 20 [A) < 40|u||V|+ Al + 2 Vel [V

TlAvf 4 = (|w\ + el > T 1Ay,
The above inequality can further be written as

d d3
T Vo * + 26 [AY[* < Eilo | [Vul + daz [0 91| 520

361

4
o (I + |e*) + = |Ay[,

and using elliptic estimate, we can write

d dj
g Vel +2a A0 < 2 uf [Vl + dag [[¢] (0] + [Av))

361

4
o (11 + [e*) + = Ay,

again by applying the Young’s formula, we have

luf” + = !V 1+ 47er| + = Iw!
361

d
7 VO + 26 [ Ay <

2y2
s WH + 2 |A"¢! +— (W +el*) + == 1Ay

Simplifying above inequality, we arrive at

IV@DI +e |AY[?

oo+ |Vu|

+dua |[¥])* + — |C|2-
€1
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Consequently

d v
y Vo> + e [AY)P < dys (Jul* + 0] + |e]?) + 5 Vul?. (2.135)
Now adding the relations (2.132),(2.133) and (2.135), we arrive at
d 2 2 v Vul? \VaE A2
© (P + 1) + 2 19ul + e [V + 0 A0
< dug (Jul” + [[]* + |ef) + B[
Let &1 = min(v/2, € ), then the above inequality takes the form
d
= ([ + 1) + 61 (IVuf* + [Av[* + [Vy[)
< dyg (Ju* + [[9[* + |c*) + B[, (2.136)

Multiplying inequality (2.134) by d2 > 0 and then adding the resulting inequality with
(2.136), we finally arrive at

d
7 (1P + [0+ 021ef) + b1 ([Val’ + [AY [+ [V[*) + 0. D0 Vel
< dag (Jul* + |01 + [ef?) + B + dadsg ([Vul” + |AG[° + [e* + [[4]°)

Choosing dy = 01/2d37, the above inequality takes the form

d d

o (1l 101+ 021ef) + 5 (IVuf® + [A¢[?) + 6, [ Ve[ + 6, Do | Ve
o

< dag (Ju” + [¢IP + [e") + 1B + 5 (Ie” + [017)

and simplifying above inequality we arrive at
d )
o ([l 101+ 021ef) + 5 (IVuf* + [AU[) + 6, [ Ve[ + 6, Do | Ve
< dyr (Ju]* + [0)* + |c]*) +|BJ. (2.137)

From the above inequality (2.137), we can deduce that

d
o (P + 9l + 82 ) < dar (ul* + [0]]° + [) + B,

and using Gronwall’s lemma and the relation (2.115), we have

() + (9@ + e < das( ool + 1ol +leof + B ), ¥t € (0,77)
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therefore we have
”u(t)||Loo(o,Tf,L2(Q)) + ||1/’(t)||Loo(o,Tf,H1(Q)) + ||C(t)||L°°(O,Tf,L2(Q))
< dasJuol* + [voll” + [eo + B[*).  (2138)
Now integrating the inequality (2.137) over (0,t) for all ¢ € (0,7%), we have

o1

t t
2/ (\Vu|2+\Az/1\2)ds+61/ IVy|? ds
0 0

(la(F + [ @)1 + 82 [e()]*) +

t t t
+(52D0/ |Ve[*ds < d47/ (Juf” + [[9]1 + |ef?) ds +/ IBJ? ds
0 0 0
+ ([(0)]* + [l (0)[|* + 62 [(0)[*) -
From the above inequality, we can deduce that

t t t
% (|Vu|2+\Aw\2)ds+61/ |w|2ds+52D0/ IVe|® ds
0 0 0
t t
< d47/ ([a)? + 11> + [e?) ds+/ IB|? ds
0 0
+ ([u(0))* + [ (O)[* + 62 |(0)[*) ,

and according to the relation (2.138), we arrive at

5 t t t
51 (IVul? + |Ay) ds+61/ |w|2ds+52D0/ IVe|® ds
: 2 02 2 tO 2
< dyg ((!u(o)] + ||¥(0)||” + 62 |c(0)] )+/ |B| ds). (2.139)
0

From the relations (2.138) and (2.139), we can easily have

[a(®) 3y + 1By + @l < do( ol

+ [%oll20y + llcollzri @y + 1Bll72g) ) (2.140)

Asu =u; —uy, Y =1 =), ¢ = c1 — 2, Ug = Ug1 — Ug2, Yo = Y1 — Y02, Co = Co1 — Co2

and B = B; — B,, therefore we can write
Juy — ‘12H2M + [l — %Hiv; + [ler — Cz”ivll < dO( o1 = o271 g
+ |vor — Y2l T2y + llcor — cozll gy + IIB1 — Ball72q) ) (2.141)
which is the required result. O

Corollary 1 The solution of the problem (2.11) is unique.
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Proof: If we assume in the Theorem 4 that the given data is same i.e., uyp; = upg,
1/}01 = ¢02, Cor = Cp2 and B1 = Bg. Then we obtain (u,¢,0) = (0,0,0) and we
conclude that (uy, %1, c1) = (g, 99, c2). Therefore the solution of the problem (2.11)

is unique. Il
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3.1 Introduction

This chapter is dedicated to the numerical simulations, stability and convergence
of the numerical scheme developed to solve the problems (1.101) and (1.103). We
shall explain in detail the numerical scheme for the problem (1.103), whereas for
the problem (1.101), the numerical scheme can be modified accordingly by including
the operator Ay(n,n',n", v, Vi, V(V1)) arising due to the anisotropy factor n in the
equation (1.101c) of the problem (1.101). To study the convergence and stability, we
have added functions F,(x,t), Fy,(x,t) and F.(x,t) on the right-hand-side of the both
problems. We choose the values of the constants (see Table 3.1) for the phase-field and
concentration equations in our models as given in [24] and the constants associated
with the flow equations are chosen by keeping in view the properties of substances A
(Copper (Cu) in the present case) and B (Nickel (Ni) in the present case). We have

Property Name Symbol | Unit Nickel (A) Copper (B)
Melting temperature T K 1728 1358
Latent heat L J/m? 2350 x 10° 1758 x 10°
Diffusion coeff. liquid Dy, m?/s 107 107
Diffusion coeff. solid Dg m?/s 10713 10713
Linear kinetic coeff. 6] m/K/s| 33x1073 3.9 x 1073
Interface thickness ) m 8.4852 x 1078 | 6.0120 x 1078
Density p Kg/m? 7810 8020
viscosity U Pa-s | 4110 x107% | 0.597 x 107°
Surface energy o J/m? 0.37 0.29
Electrical conductivity Oc S/m 14.3 x 10° 59.6 x 10°
Molar volume Vin m3 7.46 x 1076 7.46 x 1076
Magnetic-field By Tesla 100 100
Mode Number k N/A 4 4
Anisotropy Amplitude Yo N/A 0.04 0.04

Table 3.1: Physical values of constants

dealt with several examples with known exact solution to study the convergence and
stability of the numerical scheme (developed in the next section) for both problems
(1.101) and (1.103). We shall present only two examples for the isotropic problem
(1.103) and one example for the anisotropic problem (1.101) to validate our approach.

In the section (3.2), we shall explain in detail the numerical scheme and give the
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space discretization and the general form of the differential-algebraic systems for both
problems (1.101) and (1.103). Then we present briefly the time discretization of these
problems (details can be found in appendix A). In the section (3.3), we shall expli-
cate the implementation of the developed scheme in the computer softwares Comsol
Multiphysics and MatLab. In the next section 3.4, we shall provide examples for the

isotropic case (1.103) and anisotropic case (1.101) to validate our approach.

3.2 Discretization of the Problem

This section elucidates the discretization of the problems (1.101) and (1.103), both
in time and space. We shall give details of space discretization only for the problem
(1.103) whereas the space discretization of the problem (1.101) can be obtained in a
similar manner by including the operator A4(n,n',n", 1, Vb, V(V)) arising due to
the anisotropy factor 7.

For this, we define the variational formulation of the problem (1.103) as

Po (au ) + ay(u,v) + b, (u;u,v) + ¢, (v,p) — (A1(, ¢), v)

E,V
—(0(¥)((uxB) xB),v) = (Fy,v),
—Cp (u7Q> = 07
o9 _
ot 7¢> + a¢(’¢,¢) + b¢(u>¢a ¢) + (A2(¢7C)a ¢) - (F1Z}7¢) ) (31)
dc

x ) +be(u,¢.2) + (D(¥)Ve, V)

+ (A3(¥, )V, Vz) = (F.,2), V (v,q,0,2) E W XH X M x M,
(11, ¢7 C) (t = O) = (u07¢07 CO) ) b

where ¢, (u,p) = — (div(u),p) and W, H and M are defined as

W:{ve (HY(Q))* | v="0on r}, M = H'(Q) (3.2)

H= {qeLQ(Q) \/quXZO}. (3.3)

Remark: The condition / qdx = 0 on the pressure is imposed in order to assure
Q

the uniqueness of the pressure because the pressure is defined within a class of equiv-

alence, regardless of a time-dependent function. We can impose also other conditions

on the pressure, in accordance on its regularity, e.g., the pressure is zero on part of
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the boundary, etc.

For the discretization of the problem (3.1) with respect to time ¢, we have used

back-ward difference Euler formula and for the space discretization we have used
the mixed finite elements for the flow equations and usual finite elements for the
concentration and phase-field equations. First, we shall give the space discretization
and then the time discretization of the problem (3.1).
Let h be a parameter of discretization such that 0 < h < hg < 1 and let W), H;, and
M,, are the finite element subspaces of W, H and M respectively associated with the
partition 7, of the domain €2 and the polynomials P;, P,_; and P, where [ is the degree
of the polynomials. We assume that the following conditions hold (see e.g.,[47])

(C1) T, VX =(u,v,c) € (HTHQ) ! NOW x M2) and V r € [1,]]

inf X=Xl £ ah" || X] 4 :
o IX =Xl Sl Xl

(C2) e, Vge H' () NH and V r € [1,]]

qhigflh lg —aqnll < coh” HQHHT(Q) :

(C3) 3 ¢ such that (InfSup condition)

inf  sup EpAVh: Gh) (Vi 4n)

Z C3. 34
an€Hn view, ||[Vall sl 34

(C4) Let Xon, = (uon, ton, con) be the approximation of Xo = (ug, 1o, ¢p) in Wy, x M3,
if Xo € (H™1(Q))* with r € [1,1], then

|| Xo — Xonl| + 1Xo — Xon| < esh™.

(C5) For all m,p,q and ¢ integers and V K € 7, with 0 < p,q < oo, we have

1Xnllmay < pr/amn e IXnllwen ey, ¥V Xn € Wi X M,
Xl € e B Xy Y X € Wy x M.

We define the space discretization of the problem (3.1) as follows.
Find (up, pr, ¥, cn) € Wi X Hp, X My, x M, such that Y(vy, qn, ©n, 2n) € Wi X Hp, X
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Mh X ./\/lh,
Po (%7‘%) + @y (Up, Vi) + by (Un, W, Vi) + ¢ (Vi 0R) — (A1 (¥n, ¢n), Vi)
— (b(¥n)((ap x B) x B),vp,) = (Fu, ), (3.5)
—¢p (Un, qn) = 0, (3.6)

0
(%’ 90h> + ay (n, on) + by (Wn, Y, on) + (A2(Vn, cn), n) = (Fy, on), (3.7)

(%, Zh) + be (up, cn, zn) + (D(Yr)Ven, V)
o+ (As(n, ) Veon, Vzn) = (Foo 2n) (3.8)

with the initial condition

(Wn, ¥, cn) (t = 0) = (Qon, Yon, con) , in Q (3.9)

Let @, for 1 <@ < M, g, for 2M +1 <1 < 2M + N and z;, for
OM + N +1<4i<2M+ N + M constitutes the basis of W,, H, and M, respec-
tively and

M M M 3\
U v
u, = Z WipPin = Z Uinp,, + Z Vin®.p s
=1 =1 =1

2M+N

Pn = Z Pin4in,

i=2M+1
2M+N+M (3.10)

Uy, = E VinZin,
i=2M+N+1
2M+N+2M

Ch = E CihZih-

i=2M+N+M+1 ),

where
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Substituting equation (3.10) in the equations (3.5)-(3.8) and simplifying, we arrive at

M
u u dulh

> <fih>fjh> T Z{a“ (90 ih? ‘P]h) + by (u’” Pl 90;h>

=1

_ (b(wh)((ﬂfh x B) x B),f}fh) }uih + Zfiﬁﬁl (qm, div(p" )) Din
_ (A1 (Vn, ch),fz‘})

M M
v v dvlh v v v v
+ Z Po <£ih’£jh> + Z{ (fih’ fjh> + bu (uha fih’fjh>
=1

_ (b(z/»h)((gfh x B) x B), g;h) }wh + (qm, dw(f;h)) Pin

— (Mmoo, ,) = (Fugt, +¢0,), 1<j<M

—_

2M+N

_ Z {(dw( )%h)um—i—(dw( )qjh)vih}zo, OM +1<j<2M+ N

1=2M+1

2M+N+M 2M+N+M

dp;
Z (zin, Zjn) ih-ir Z {% (2ins 2jn) + by (uhazz’hazjh)}¢ih

1=2M+N+1 i=2M+N-+1
—|—(A2(¢h,ch),zjh) = (F¢,Zjh), 2M+N+1 S] S 2M+N+M

2M+N+2M dea, 2M+N+2M
> (2 zn) d_; + Y {bc (un, 2in, 2jn)
i=2M+N+M+1 i=2M+N+M+1
2M+N+M

+(D(¢h)vzih,vzjh)}0ih+ Z (As(Yn, cn)Vzin, Vzjn) i

1=2M+N+1
= (Fo,zn), 2M + N+ M +1<j<2M + N 4 2M

The above equations can be written as

dy;
M —E+ Ay Ya+ L(Y) =R, Vit =0) = Yon, (3.11)
with
Yh = (ulh, weey UMNTRHy P1hy ---PNh, 1/)1h, ceey ¢]\7[h7 Clh--s CMh)trans s (312)
where “trans® denotes the usual transpose of a matrix and
My 00 0
M = 0 0 0 0 c R2M+N+2M,2M+N+2M (3_13)
0 0 Mss
0 0 0 My
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Ay 0 0 0 AN ol :
A Y c ]R +N+2M 2M+N+2M 314
(Yn) 0 0 A O (3.14)

0 0 A43 A44

and

(Mll)ji = pPo (fﬁh’f;ih> =+ po (E:h’£§h> )
(M33)ji = (2ins 2jn) » (M44)j,- = (2in, 2jn) - (3.15)

()= o (25 25,) o (25 5) + b (25 25) + b (25 25,)

— (b, x B) x B), ) — (Men)(2l, x B) x B). &)

(A12);; = (%h;div(f;h)) + (qih,div(g;?h)) ,
(Agl)ﬁ = (div(g?h),qjh> + <div(£;’h),qjh> )

(As3);; = ay (zin, zjn) + by (W, 2in, Zjn)

(Aaz) i = (As(vn, cn)Vain, Vzjn)

(Asa) j; = (D(Wn)Vzin, Vzjn) + be (U, 2in, Zjn)
and
trans
cvi)=(L o Ly o), (3.16)
with
(L1); = (Al(l/)h,ch),f?h) + <A1(¢h, Ch)>£§h> :
(Lg)] - (A2(¢h7 Ch)7 Z]h) )
and
trans
R:(&()m m) , (3.17)
with

(Fr); = <F“’£?h) * (F“’£§h> !
(Rs); = (Fy, zin),  (Ra); = (Fe, zjn) -
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Similarly we can derive, after the space discretization of the problem (1.101), the

following differential-algebraic system

dYy

Mr

+ AW Y+ L(Y,) =R, Yi(t=0) = Yo, (3.18)

where the matrices A, £ and R take into account on the non-linear anisotropy differ-
ential operator.

The equations (3.11) and (3.18) can be written in general form as

Y}
F(t7 th 8_th) - 07 Yh<t = 0) - }/Oh' (319)

For the resolution of the above equation, we have used the solver DASSL. For the time
discretization, we have used back-ward difference Euler’s formula and the resulting
non-linear systems are solved using Newton method. Further to solve the system of
algebraic equations, we employ the usual Gaussian elimination method. For more
details about the solver DASSL, see appendix A.

Before studying the convergence and stability of the numerical scheme (3.19), we shall

give postulated error estimates used to compare with the numerical error estimates.

3.2.1 Error Estimates

Let Y be a Banach space, we define the following spaces for 0 < p < 400

k 1/p
00,77, Y) = {u: (t1, 1) = Y such that [l v, = (TZ r\u@-rm) < oo}
i=1

0,73, Y) = {u (t1,,t4) = Y such that [u o, y) = max July < oo}

where u; = u(¢;) and t, = T}.
We postulate that the error estimates obtained by solving the problem (3.1) using

numerical scheme (3.19) are as below
1V = Ul 2@) < O+ ) (3.20)

lpn — p||Z2(O,Tf7L2(Q)) < CO(r* + hﬁ2) (3.21)

where U, = (uyp, ¥y, cp,) is the numerical approximate solution and ¥ = (u,%,¢) is
the known exact solution of the considered problem. These formulas are of order «
in time and of order (; and [, in space respectively, where 3;, i = 1,2, are greater

than 1 and less than minimum of the degree of the finite elements (polynomials) and
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the Sobolev space regularity of the solutions. Same type of error estimates can be
found in [3] and [17]. To achieve a reasonable convergence rate with respect to spatial
coordinates (i.e., (i, [32) we have to take 7 < h% i = 1,2 and for the convergence
rate with respect to time (i.e., ), we have to choose h% < 7,4 = 1,2 to attain the
optimal precision. To study the convergence of the numerical scheme (3.19), we shall
perform two type of computations. First, we shall compute the numerical convergence
error with respect to spatial step h using the finite elements as polynomials P, and
P; of degree 2 and 3 respectively. According to theoretical postulated errors (3.20)
and (3.21), we should obtain the error estimates 3; = 3,4, i = 1,2 for the Py and Ps
respectively. Next, we shall calculate numerically the convergence rate with respect
to time step 7 (using back-ward difference Euler formula). In this case the order of
convergence should be equal to 1 to verify that the convergence rates coincide with
the estimates speculated in (3.20) and (3.21).

3.3 Implementation details

This section elaborates the implementation of the numerical scheme (3.19) used to
solve problems (1.101) and (1.103) in Comsol Multiphysics 3.4 together with Matlab
2007a. Comsol Multiphysics is a simulations software that can be used to solve steady
and time dependent as well as linear and non-linear PDEs using finite element method
in 1 to 3 space dimensions and Lagrange elements of degree 1 to 3. The choice of
this package is motivated as it provides an interface with the MatLab to utilize its
graphical user interface with a lot of flexibility in mesh generation.

As described earlier in the section 3.2, we have used back-ward Euler’s difference
formula for the time discretization and the resulting non-linear fixed point systems
are then solved by Newton method. And for the space discretization we have used
mixed finite elements which satisfy the InfSup condition (Babuska-Brezis condition)
(3.4) for the Navier-Stokes type system and the usual finite elements for phase-field
and concentration equations. In order to solve the obtained non-linear differential-
algebraic system, we have used the solver DASSL (for more details about DASSL, see
appendix A).

Further in Comsol Multiphysics 3.4, we have used general Navier-Stokes equations
transient analysis mode together with the no-slip boundary conditions to develop
the magnetohydrodynamic systems by introducing the magnetic-field. Diffusion-
convection transient modes together with convective flux boundary conditions are used

to introduce the phase-field and concentration equations respectively of the problem
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(3.1) in two dimensions. Two kinds of finite elements (P, and P3) are used to study
the convergence of the model alongwith the sequence of unstructured meshes which
are elaborated below.

To check the stability of the numerical scheme (3.19), we have multiplied the right-
hand-side of each equation of problems (1.101) and (1.103) by a random function
randfn = (1 — € randf) whose value varies between 0 and 1 and € is the parameter
used to fix the percentage of random error. This function creates perturbation in the
numerical scheme, we have verified the stability of the numerical scheme by increasing
the percentage of random error up to 40%. The 3D plot of random function randfn
is given in the Fig. 3.1. And to study the stability, P, finite elements are used for the
velocity u, phase-field variable 1) and concentration ¢ and P, finite elements are used
for the pressure p.

The implementation of the numerical scheme in Comsol to study the convergence and
stability of the models (1.101) and (1.103) is not evident, especially to introduce the
anisotropy function, random function and by considering the real physical parame-
ters, we have used some of the MatLab functions. To study the convergence of the
numerical scheme for both models with respect to spatial and time coordinates, we
have written computer programs in MatLab (connected with the Comsol) to imple-
ment a Loop for the successive changes in the spatial and time steps to obtain the
convergence rates and the corresponding error curves.

In the next section, we shall present convergence and stability of the numerical scheme
(3.19) for the problems (1.101) and (1.103) by considering various examples with

known exact solutions.

3.4 Numerical Examples: Error Estimates and Sta-
bility

We present in this section, the convergence and stability of the numerical scheme
(3.19) by considering examples with known exact solutions. In order to validate our
approach for the isotropic and anisotropic cases (1.101) and (1.103) respectively, first
we shall present two examples for the isotropic case and then we shall give one example

for the anisotropic case.
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Figure 3.1: Random function randfn.

3.4.1 Isotropic Case: Example 1

For simplicity, we assume that the final time is Ty = 1, unless otherwise specified.
The domain is a square region 2 = [0,27] x [0,27] in R?. We have considered the
exact solution of the problem (1.103) as

tea(2,9,1) = (et sin(a (1= o)1= 2,
2 2 Y \2
Ve (2, y,1) = —We sin(x)cos(x)y“ (1 — %) ,

pew(xa Y, t) = elitCOéﬁ(y)? B =

el—t

Ver (2,9, 1) =T(cos(m)cos(y) +1),

8
Caal9,0) = e (L= )P cosy) + 1)
where Ue; = (Ues, Ver) and the corresponding data F,, Fy, and F. is calculated an-
alytically by substituting the exact solution in the problem (3.1). The expressions
for F,,, F, and F; are given in appendix C. Then we have computed the numeri-
cal solution (u,p,?,c) of the problem (3.1) and compared it to the exact solution

(uGCC? DPex; ¢€$’ Cex) glven abOVe.
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3.4.1.1 Test Meshes

To investigate the convergence of the numerical scheme (3.19), we build a sequence of
five meshes with a decreasing step h with respect to spatial coordinates (see Fig. 3.2).

The mesh statistics are given in the following Table 3.2. where No. of B. elements is

Domain No. | step size h | No. of Elements | No. of B. elements
1 0.8 270 8
2 0.7 338 9
3 0.6 534 11
4 0.4 1082 16
5 0.2 4380 32

Table 3.2: Mesh Statistics

abbreviated for the number of boundary elements.

3.4.1.2 Error Analysis

We shall present now the experiments made to investigate the performance of the
method. We have performed two types of computations to check the convergence of
the numerical scheme (3.19).

The first is to check the spatial convergence rate, in which, a small time step 7 is
fixed as compared to the spatial step size h and we have varied the spatial step size
h as described in the Table 3.2 of mesh statistics. To calculate the rates 3; and [s,
we have used Py — Py and P35 — Py mixed finite elements for the velocity u(x,?) and
pressure p(X,t) respectively and for the phase-field 1(x,¢) and concentration c¢(x,t),
The
estimates for (3; and (5 are given in the Table 3.3 and Table 3.4 respectively. And the

we have used Py and P3, where P;, [ = 2,3 is the polynomial of degree [.

corresponding error curves for the velocity u(x,t), pressure p(x,t), phase-field ¢ (x, t)

and concentration c(x,t) are given in the Fig. 3.3. In Fig. 3.3, we give the plots of

Table 3.3: Order of convergence 3; for u and (5 for p.

— Py — Py | P3 — Py
Gy foru | 2.6201 | 3.8730
By for p | 1.9207 | 3.0646
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Figure 3.3: Error curves of norm L,(Q) for the velocity u, pressure p, phase-field ¢

and concentration ¢ with respect to h.
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Figure 3.4: Error curves of norm L,(Q) for the velocity u, pressure p, phase-field ¢

and concentration ¢ with respect to t.

— P, P,
3, for ¥ | 2.7001 | 3.7501
B, for ¢ | 2.9278 | 3.8739

Table 3.4: Order of convergence f3; for ¢) and c.

the log10 of the norm Ly(Q) of velocity u, pressure p, phase field ¢ and concentration
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¢ versus logl0 of the step h to obtain the approximations of the parameters (3; and
[ given in the formulas (3.20) and (3.21). We observe that the slopes of the error
curves for the velocity u, phase-field ¢ and concentration ¢ are approximately equal
to 3 and 4 in case of Py and Pj finite elements respectively and the slopes of the error
curves for the pressure p are approximately equal to 2 and 3 in case of P; and IPs finite
elements respectively. This shows that our numerical error estimates agree with the
theoretical postulated error estimates given by (3.20) and (3.21).

The second computations have been made to test the temporal convergence rate, in
which, a small spatial step h is fixed and the convergence rate « is computed with
respect to t for the same pattern of the finite elements as we have used in the first
case. The estimates for a with respect to time are given in the Table 3.5. And the
corresponding error curves for the velocity u(x, t), pressure p(x,t), phase-field 1(x, t)
and concentration c¢(x,t) are given in the Fig. 3.4. The Fig. 3.4 shows the plots of the

— | Py —P | P3— Py
foru | 1.1494 | 1.1446
for ¢ | 1.0558 | 1.0496
for ¢ | 1.0602 | 1.0565
forp | 1.0733 | 1.0634

Table 3.5: Order of convergence a.

log10 of the norm Ly(Q) of velocity u, pressure p, phase field ¢ and concentration ¢
versus logl0 of the step 7 to obtain an approximation of the convergence rate o with
respect to time. We note that the slopes of the error curves for the velocity u, phase-
field ¢ and concentration ¢ are nearly equal to 1 in case of Py and IP3 finite elements
respectively and the slopes of the norm Ly (Q) of the pressure p are also approximately
equal to 1 in case of P, and P, elements respectively. From this we conclude that the
numerical error estimates are in good agreement with the theoretical postulated errors
defined by (3.20) and (3.21).

3.4.1.3 Stability Analysis

To study the stability of our model, as mentioned earlier in the section (3.3), we have
multiplied the right hand side terms Fy,, F;, and F. by a term (1 — e randfn) to create
perturbations in the numerical scheme (3.19), where randfn is a random function
which takes values in the interval [0, 1] and € is a parameter which is used to fix the

percentage of the random error. The three dimensional plot of the random function
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randfn is given in the Fig. 3.1. To verify that our model is stable against pertur-
bations, we have performed three types of computations. First, for different values
of the ¢, we have computed the norm Ly(Q) between the exact solution, denoted by
O = (Ue, Dex, Ver, Cex ), and the perturbed solution, denoted by @, = (u, pe, e, ce),
that is

B(@, ~ ®0) = [0 Bl o (322)

In Fig. 3.5, the curves of the Norm L,(Q), defined by (3.22), for the velocity u,

0.35 T T T T T T T 25

o Elp-p,)
0.3
201

0.25F

0.2r

0.151

0.1F

0.05F

0

0 0.05 0.1 015 02 025 03 035 04 0 0.05 0.1 015 02 025 03 035 04
e e

Figure 3.5: Error curves of E(®, — &, ) versus e.

pressure p, phase-field variable 1) and concentration ¢ versus e are shown for ¢ =
0.01,0.05,0.1,0.15, 0.2,0.3,0.4. We found that the error curves are straight lines with

linear dependence of error with respect to €, i.e.,
E(®. —®.,) =~ Ce (3.23)

where C' represents the slopes of the error curves given in the Table 3.6. Second,

Slope | £ (CI)E - (I)ea:) E ((I)e - (I)app>
My 0.1701 0.1754
My 0.8638 0.8818
me 0.4341 0.4375
my 52.9718 52.8359

Table 3.6: Slopes of Norm E(®, — ®.,) and E(P, — $ypp).
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we have computed the norm Ly(Q) between the approximate solution, denoted by
Dopp = (Wapp, Papps Yapp, Capp), and the perturbed solution for different values of the e,
that is

E(®c — gpp) = || P — (I)appHLQ(Q) (3.24)

Note that approximate solution ®,,, is a solution of the model problem (3.1) with
out random error i.e., in this case € = 0. The Fig. 3.6 shows the curves of the norm
E(®, — ®,)), defined by (3.24), of the velocity u, pressure p, phase-field variable 1
and concentration ¢ versus € for values of the e taken same as in the first case. Again
we found that the error curves are straight lines with a linear dependence of error
with respect to € as we have found in the first case. The slopes of the error curves are
given in Table 3.6. We observe also that the slopes are approximately same for the
both cases.

Third, we have solved the model repetitively by increasing the random error and

0.4 T T T T T T T 25

—o—E(PPy)

20F

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
e

Figure 3.6: Error curves of E(®, — ®,,,) versus e.

present the solution curves of the velocity u(x, t), pressure p(x, t), phase-field 1(x, t)
and concentration ¢(x,t) on a part of the domain for different values of the € to verify
that our model is stable against the perturbations generated by a random function
randfn. We can see in Fig. 3.7 that the solution curves of the model remains stable
and it does not become unstable by increasing the random error.

In Fig. 3.7, we have given the solution of the velocity u(x,t) at time t =1, y = /2
and z varies from 0 to 27, pressure p(x,t) at time t = 1, x = 27 and y varies from
0 to 2w, phase-field ¥ (x,t) at time t = 1, x = 27 and y varies from 0 to 27 and

concentration ¢(x,t) at time ¢t = 1, y = 7/2 and x varies from 0 to 27 for the different
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Figure 3.7: Solution curves for the different values of e.

values of the random error ¢ = 0.01,0.05,0.1,0.15,0.2,0.3,0.4. Also note that the

solution corresponding the ¢ = 0.00 is the approximate solution ®,,, of the model

with out random error.

3.4.2 Isotropic Case: Example 2

We choose another example to verify that the convergence and stability of problem

(3.1) is not specific to Example 1. In this example, same type of computations have

been made as in the Example 1. Here, the domain is a square region Q2 = [0, 1] x [0, 1]

in R? and the final time is fixed Ty = 1. The exact solution is taken as

Uep (2,7, 1) = dme't2?(1 — x)?sin(27y)cos(2my),

Ver (7,9, 1) = —2e"1w(22” — 3z + 1)sin’(27y),
1

Pea(T,y,t) = € teos(2mx), B =-—=(1,1),

V2
Yerl,9,1) = 3¢~ (cos(2m2) + cos(2my) +2).
Cea(,,t) = 8" (2*(1 = 2)* + y*(1 — y)*).
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The corresponding data F,, Fy and F is calculated analytically by substituting the
exact solution (Uey, Pes, Yex Cer) In the system (3.1). The expressions for F,,, Fy, and

F, are given in appendix C.

3.4.2.1 Test Meshes

To study the convergence of the model problem (3.1), a sequence of five meshes with
a decreasing spatial step h is considered (see Fig. 3.8). The mesh statistics is given in
the Table 3.7, where No. of B. Elements is abbreviated for the number of boundary

Domain No. | step size h | No. of Elements | No. of B. elements
1 0.2 106 5
2 0.15 200 7
3 0.1 434 10
4 0.05 1712 20
5 0.01 42904 100

Table 3.7: Mesh Statistics

elements.

3.4.2.2 Error Analysis

We present here the numerical experiments made to obtain the error estimates defined
in (3.20) and (3.21). Like previous Example 1, we have made two types of computa-
tions also in this example. The first one is to check the spatial convergence rate, in
which, a small time step 7 is taken as compared to the spatial step size h which is var-
ied according to the Table 3.7 of mesh statistics. We have calculated the rate (3 using
the Py and P3 for the phase-field ¥ (x, t) and concentration ¢(x,t) and for the velocity
u(x,t) and pressure p(x,t), we have used the P, — P; and P53 — P, finite elements to
calculate the convergence rates 3, and (35 respectively. Then the estimates for the (3,
and [y are calculated and given in the Table 3.8 and Table 3.9 respectively. And the
corresponding error curves of the Norm L9(Q) of the velocity u(x,t), pressure p(x,t),
phase-field ¥ (x,t) and concentration c(x,t) are given in the Fig. 3.9.  In Fig. 3.9,
we present the plots of the logig of the Norm Lo(Q) of the velocity u(x,t), pressure
p(x,t), phase-field ¥ (x,t) and concentration c(x,t) versus logio(h). We observe that
the slopes of the error curves of velocity u(x,t), phase-field 1(x,t) and concentration

c(x,t) are approximately equal to 3 and 4 in case of Py and P finite elements and the
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Figure 3.8: Meshes used for Convergence study.
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Figure 3.9: Error curves of norm Lo(Q) for the velocity u, pressure p, phase-field 1

and concentration ¢ with respect to h.

" S
-14 -135 -13 -125 -12 -115 -11 -1.05 -1 -0.95 -14 -135 -13 -125 -12 -115 -11 -1.05 -1 -0.95
log,(® log, (h)

Figure 3.10: Error curves of norm Ly(Q) for the velocity u, pressure p, phase-field

and concentration ¢ with respect to t.

- Py—P | Ps— P
By for u | 2.7501 | 4.1783
By for p | 1.8426 | 2.8381

Table 3.8: Order of convergence 3; for u and J; for p.

slopes of the error curve of the pressure p are approximately equal to 2 and 3 in case
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- P, P,
B, for ¥ | 2.8001 | 4.1868
By for ¢ | 2.8449 | 4.2376

Table 3.9: Order of convergence 3, for ¢) and c.

of P; and Py finite elements respectively. We notice that the numerical error estimates
are approximately equal to the postulated error estimates (3.20) and (3.21).

Second is to investigate the convergence rate with respect to time, in which, small

- Py — Py | P3 — Py
for u | 0.8501 | 0.9100
for ¢ | 0.9377 | 0.9259
for ¢ | 0.9554 | 0.9456
for p | 0.9512 | 0.9189

Table 3.10: Order of convergence «.

spatial step size h is used as compared to the time steps 7. Same type of finite el-
ements are used as in the first case. The estimates of « are calculated and given
in the Table 3.10 and corresponding error curves of the norm Ly(Q) for the velocity
u(x,t), pressure p(x,t), phase-field ¥ (x,t) and concentration c(x,t) are given in the
Fig. 3.10. In Fig. 3.10, the plots of logio of the norm Ls(Q) of the velocity u(x,t),
pressure p(x, t), phase-field ¢(x, t) and concentration c¢(x, t) versus logio(7) are given.
We note that the slopes of the error curves are nearly equal to 1 in both kinds of finite

elements which coincide with the theoretical postulated errors in (3.20) and (3.21).

3.4.2.3 Stability Analysis

The stability of the model problem (3.1) is studied also on the same pattern as in
Example 1. A random function randfn, which takes values between 0 and 1, is used
to create perturbations in the model problem and a parameter € is used to fix the
percentage of the random error. The plot of the function randfn is given in the Fig.
3.1. Here also, we have made three kind of computations to check the stability of
our model problem as in Example 1. First, we have computed the Norm E (&, — ®,,)
given in equation (3.22). The plots of the curves of Norm E (&, — ®.,) for the velocity

u(x, t), pressure p(x,t), phase-field ¥)(x, t) and concentration c(x,t) versus € are given
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in the Fig. 3.11. Again we observe that the error curves are straight lines with the

linear dependence of error with respect to e, i.e.,
E(® . —®.,) =~ Ce (3.25)

where C' represents the slopes of the error curves and are given in the Table 3.11.

Secondly, the norm E (@, — ®,,,) given in equation (3.24) is computed for the velocity

Slope | E (O, — O.p) | E (P — Pypp)
Mu 0.0628 0.0628
My 0.1276 0.1277
M 0.1021 0.1028
my, 1.4738 1.4913

Table 3.11: Slopes of norm E(®, — ®.,) and E(®, — ypp).

0.06 T T T T T T T 0.7

——E(urug)

Figure 3.11: Error curves of E(®, — ®.,) versus e.

u(x, t), pressure p(x,t), phase-field ¥ (x, t) and concentration ¢(x,t). The error curves
are given in the Fig. 3.12 for random error same as in the first case, and the slopes
of the error curves are given in the Table 3.11. We again found that the error curves
are straight lines with the linear dependence of error with respect to € and the slopes
in the first and second cases are approximately same.

Third, to check the stability of our model (3.1), we have generated the perturbations
in the model with help of a random function randfn and solved the model by gradually
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Figure 3.12: Error curves of E(®, — ®,,,) versus e.

increasing the random error upto 40% and the solution curves of velocity u(x,t),
pressure p(x,t), phase-field 1(x,t) and concentration ¢(x,t) for different values of the
€ are given in the Fig. 3.13. We observe that as we increase the percentage of the
random error, i.e. €, the solution is more perturbed, but it does not become unstable.

In Fig. 3.13, we have given the solution of the velocity u(x,t) at time ¢t = 1,
r = 1/2 and y varies from 0 to 1, pressure p(x,t) at time ¢t = 1, y = 1/2 and =
varies from 0 to 1, phase-field ¥ (x,t) at time t = 1, x = 1/2 and y varies from 0
to 1 and concentration c¢(x,t) at time t = 1, y = 1/2 and z varies from 0 to 1 for
the different values of the random error € = 0.01,0.05,0.1,0.15,0.2,0.3,0.4. Also note
that the solution corresponding the ¢ = 0.00 is the approximate solution of the model

with out random error.
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Figure 3.13: Solution curves for the different values of e.

3.4.3 Anisotropic Case: Example 3

As described earlier, the numerical scheme to solve the problem (1.101) can be given by
revising appropriately the scheme (3.19) and introducing the operator A, (7], n,n", 0,
Vw,V(V@/))) arising due to the anisotropy factor 7 in the equation (1.101c). In
this section,we shall give an example of the isothermal-anisotropic model (1.101) to
study the convergence and stability of the numerical scheme (3.19). The functions
F.(x,t), Fy(x,t) and F.(x,t) added on the right hand side in this case will also
be modified and are calculated analytically by substituting (Ues, Pes; Yer, Cez) in the
model (1.101) which are given in the appendix C. In this example, same type of
computations have been made as in the Examples 1 and 2. The domain is a square
region 2 = [0,1] x [0,1] in R? and the final time is fixed Ty = 1. The exact solution
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is taken same as in the Example 2 and is given again by

Uee (7,7, 1) = dre!t2?(1 — x)?sin(27my)cos(2my),

—2e' (207 — 3w + 1)sin?(2my),
1

ez, y,t) = e leos(2nz), B=—(1,1),

ez 2r). B= (L)

1
Veal0,1) = 1~ cos(2mr) + cos(2my) +2)
Cea(m,y,t) = 8N (2*(1 —2)* +4°(1 — y)?).

Vez (2,9, 1)

Same type of meshes, equation modes and boundary conditions have been used to

solve the system (1.101) as in the Example 2 (see Example 2 for details).

3.4.3.1 Error Analysis

We present here the numerical experiments made to obtain the error estimates in
(3.20) and (3.21). We have calculated the rate 3, and [ which are given in the Table
3.12 and Table 3.13 respectively. And the corresponding error curves of the Norm

Py Ps

-0.7 -1.05 -1 -095 -09 -08 -08 -075 -0.7 -0.65
log,(h) 10g,,()

Figure 3.14: Error curves of norm Ly(Q) for the velocity u, pressure p, phase-field 1)

and concentration ¢ with respect to h.

Ly(Q) of the velocity u(x,t), pressure p(x,t), phase-field ¢ (x,t) and concentration
c(x,t) are given in the Fig. 3.14. The error estimates in this case are also in good
accordance with the theoretical postulated error (3.20) and (3.21).

Second, the estimates of o are computed and given in the Table 3.14 and the

corresponding error curves of the Norm Ly (Q) for the velocity u(x, t), pressure p(x, t),
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Figure 3.15: Error curves of norm Ly(Q) for the velocity u, pressure p, phase-field

and concentration ¢ with respect to t.

— p-P PP,
B, for u | 2.7664 | 4.0303
By for p | 2.3462 | 3.4302

Table 3.12: Order of convergence (3; for u and [, for p.

— Py Py
By for ¢ | 2.8972 | 4.0681
0By for ¢ | 2.9670 | 4.1189

Table 3.13: Order of convergence (3, for ¥ and c.

— | Po—=Py | P3— Py
foru | 0.9011 0.9152
for ¢ | 0.9821 | 0.9856
for ¢ | 0.9792 | 0.9815
for p | 1.0032 | 0.9944

Table 3.14: Order of convergence «.

phase-field ¥ (x,t) and concentration ¢(x,t) are given in the Fig. 3.15. We note that
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the slopes of the error curves are nearly equal to 1 in all kinds of finite elements which

coincide with the theoretical error estimates in (3.20) and (3.21).

3.4.3.2 Stability Analysis

The stability of the numerical scheme is studied also on the same pattern as in Example
2 (see Example 2 for details). First, we have computed the norm Ly(Q) given in
equation (3.22). The plots of the curves of norm Ly(Q) for the velocity u(x,t),
pressure p(x,t), phase-field ¢)(x, t) and concentration ¢(x, t) are given in the Fig. 3.16.
Again we observe that the error curves are straight lines with the linear dependence
of error with respect to € and the slopes of these lines are given in the Table 3.15.

Second, the norm Ly(Q) given in equation (3.24) is computed for the velocity u(x, t),

0.06 T T T T T T T 0.7

—x— E(ue—u )

Figure 3.16: Error curves of E(®. — ®,) versus e.

Slope | E(®. — O.p) | E (P — Pypp)
Mu 0.0628 0.0635
My 0.1283 0.1347
Me 0.1018 0.1065
my 1.4877 1.4236

Table 3.15: Slopes of norm E(®, — ®.,) and E(®, — ).

pressure p(x,t), phase-field ¥ (x,t) and concentration ¢(x,t). The error curves are

given in the Fig. 3.17 for different percentage of the random errors and the slopes of
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the error curves are given in the Table 3.15. We again found that the error curves are
straight lines with linear dependence of error with respect to € and the slopes of the
lines in the first and second cases are approximately same.

Third, the solution curves of velocity u(x,t), pressure p(x, t), phase-field ¥ (x,t) and

0.7

0.61

0.5

0.4r

0.3f

0.2

0.1r

Figure 3.17: Error Curves of E(®, — ®,,,) versus e.

concentration ¢(x, t) for different values of the € are given in the Fig. 3.18. We observe
that as we increase the percentage of the random error, i.e. €, the solution is more
perturbed, but it does not become unstable.

In Fig. 3.18, we have given the solution of the velocity u(x,t) at time t = 1,
x = 1/2 and y varies from 0 to 1, pressure p(x,t) at time t = 1, y = 1/2 and =
varies from 0 to 1, phase-field ¥(x,t) at time ¢t = 1, x = 1/2 and y varies from 0
to 1 and concentration ¢(x,t) at time ¢ = 1, y = 1/2 and x varies from 0 to 1 for
the different values of the random error € = 0.01,0.05,0.1,0.15,0.2,0.3,0.4. Also note
that the solution corresponding the ¢ = 0.00 is the approximate solution of the model

with out random error.
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Figure 3.18: Solution curves for the different values of e.

3.5 Conclusion

We have studied the convergence and stability of the numerical scheme (3.19) for
the two dimensional isothermal-isotropic and isothermal-anisotropic models (1.103)
and (1.101) respectively. We have noticed that in both cases, the numerical scheme
is convergent with respect to both spatial and time coordinates and the numerical
error estimates are in good accordance with the postulated theoretical error estimates
(3.20) and (3.21). Further the developed scheme is stable against the perturbations
generated by the inclusion of a random function randfn (see Fig. 3.1) in the models.
We have noticed that the solution of the models does not become unstable and the
error increases linearly as we increase the percentage of the random error in the models.

Therefore we can now study the real physical simulations with the real parameters.
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4.1 Introduction

In this chapter, we shall present physical simulations of the dendrite growth dur-
ing the solidification of a Ni-Cu (Nickel-Copper) binary mixture. To perform these
simulations, we consider the two dimensional isothermal-anisotropic model (1.97)-
(1.100). We further suppose that the interface thicknesses for both substances are
equal, i.e.,d4 = dp = 9, then the problem (1.97)-(1.100) reduces to

" (8—“ f(u v>u) — Vp b phu () fhe(x, )G

ot
+as(¥)o.(u x B) x B + af(y)) (4.1a)
div(u) = 0. (4.1b)
0 A A
6_25& + (u- V) = Myeg (772A1/1 - 15(20) g () — QEC)p/(lp))
2 " 12
_Mweo (an + () ) {waysinQQ — AY — (Yyy — VYuw) 00329}
—I—Mwegnn'{sin% (Vyy — Vaz) + 2@%00329} (4.1¢)
% 4 (u-V)e = div (D()Ve) + div (aOD(@b)c(l s (Xl@ J @)
~(p' (1)) V) (4.1d)
with the initial and boundary conditions
(11, ¢7 C) (t = O) = (u07 d}Oa CO) ) in Q. (42&)
w0, 0 20 ony=(0,7)) x 09 (4.2b)
" on 7 On R ‘ '

As we know that in the phase-field models the interface thickness ¢ between the solid-
liquid interface must be very small (upto order of 1078 or less), this restriction require
a very dense mesh in the simulations of dendrite growth such that the the mesh size
should be sufficiently less than the interface thickness, otherwise the simulations of
dendritic growth cannot be realized. Therefore to perform the simulations of the
dendritic growth in the phase-field models, large amount of computational effort or
data storage is required. To reduce this requirement, we have constructed two type
of meshes for the simulations (for more details see section 4.3). The second kind of
mesh contains less number of triangular elements than the first kind of mesh. We have
constructed the second kind of mesh in such a way that it does not effect considerably
the simulations results but it reduces remarkably the storage requirements and time

of execution of the simulations.
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First we have nondimensionalized our model (4.1). Second, we have solved a particular
case of this model by eliminating the magnetohydrodynamic type system (4.1a)-(4.1b)
and compared the results of numerical simulations with the results of the Warren-
Boettinger model [24]. Third, to observe the effect of convection only, on dendrite
growth, we have included the magnetohydrodynamic type system in our simulations
together with the equations of phase-field (4.1c) and concentration (4.1d) by exclud-
ing the magnetic-field. Finally we have included the magnetic field and solved the
complete set of equations by fixing all other parameters except the magnetic-field. In
order to analyze the effect of the magnetic field on the growth of dendrite during the
solidification process, we have considered various magnetic fields.

In the next section, we shall provide the non-dimensionalization of the model (4.1).

4.2 Non-dimensionalization of Model Problem

We have non-dimensionalize the model (4.1) by introducing the following dimension-

less quantities

. X -~ Dt L~ 12

x=7, i= —=, aki) = pou D),
BB 0D e, d®D) = cxb).

By

where x and 7 are the dimensionless spatial and time coordinates, @, ¥, and ¢ are
the dimensionless velocity-field, phase-field and concentration respectively, ¢ is the
characteristic length of the domain €, ¢2/D;, is the liquid diffusion time, Dy, is the
solutal diffusivity in liquid. Note that the phase-field is a mathematical quantity and

c is the relative concentration which are already dimensionless quantities. Using these
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adimensional relations, we get finally the dimensionless form of the model as

ou

Fr + (0 V)a = —Vp+ PrAa + PrRa.a,(¢)éeq

+Pr(Ha)2ay(4) (@ x B) x B + Krf() (4.32)
div(w) =

P @) e (w MO ) - pr))

e (m" + () ) {21L$y8m29 — At — (@yy - zﬁm> 00329}

O
—~
=~
w
o
~—

2
+eamn’ {sm?@ (l/iyy 1;;m> + Q@Exycos%} (4.3¢)
g—;f + (@ V)é = div (D(zﬁ)v ) + div (aOD(¢) (1-2) (Mgé) J(D)
~X (@ () Vi) (4:3d)
together with the initial and boundary conditions

(ﬁ,z/?,é) (f=0)= (ﬁo,zﬁo,éo) i (4.4a)

a0 Wy 9 _
u=0, o 0, o 0, on X = (0,Tf) x 0N. (4.4Db)

where Pr = v/Dy is the Prandtl number, Ra. = g3.0>/Dyv, is the solutal Rayleigh
number, Ha = (o./pov)** Byl is the Hartmann number and Kr = al®/pyD2, 6 = § /¢
is the adimensional interface thickness, 5\2 =)y, &g = o/l and €3 = Md,e% /Dy, are
the adimensional parameters. For model parameters, we have used physical values
of the binary mixture Ni-Cu as given in the Table 3.1. The density p, viscosity u,
and electrical conductivity o, are assumed to be constant in the liquid as well as
in the solid, therefore we are using average values of Ni and Cu for these constants
in the simulations. Also as it is observed experimentally that the dendrites in the
Ni-Cu alloy grow with four branches, therefore we have chosen the mode number k
in the anisotropic parameter n equal to 4. The adimensional space unit ¢ is chosen
as { = 2.8284 x 10~%m which gives the domain length equal to 8 and the domain as
Q = [—4,4] x [—4,4]. With this value of £, we have the adimensional 6 = 0.03 which
correspond to an interface thickness & of order 10~8m. Since the value of § is strongly
dependent on the size of mesh and as the mesh size should be sufficiently less than
the interface thickness 0 and we are using a coarse mesh for our simulations due to
technical difficulties in computations, therefore we fix the value of the adimensional

interface thickness as & = 0.05 for our simulations to ensure the mesh size less than
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the interface thickness. The adimensional final time is ¢ty = 0.13, which correspond to
the real physical final time of 1 ms, with the time step equal to 107°. Note that big
time steps and smaller interface values can create convergence problems during the
calculation of numerical solution of the problem.

Initially at the start of solidification, the initial condition is taken to be a circular

initial eed

Tig

Figure 4.1: Geometry of the problem.

seed of radius 0.2 at the center of the domain €2. Inside the circular seed the value of
1 is 0 and outside this seed the value of ¢ is 1 (see Fig. 4.1). The concentration ¢ in
the initial seed is equal to 0.482 and outside the seed it is taken as 0.497, i.e.,

0, 22+192<0.2,
t=0)= 4.5

v ) { 1, 2?2 +9%>0.2. (4:5)
and

0.482 2 2202
oft = )—{ Tty ! (4.6)

0497, 22+ y2>0.2.

The values of the initial concentration, inside and outside the initial seed, are given
different by different authors depending on the phase diagram of binary mixture Ni-Cu
(e.g., see [14], [24], [39]).

4.3 Implementation details

This section elaborate the implementation of the model problem (4.3) in COMSOL
Multiphysics and MatLab. As described earlier, we have used back-ward Euler’s
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difference formula for the time discretization and the resulting non-linear fixed point
systems are then solved by Newton method (see appendix A for details). For the space
discretization we have used mixed finite elements which satisfy the In fSup condition
(Babuska-Brezis condition) (3.4) for the magnetohydrodynamic type system (4.3a)-
(4.3b) and the usual finite elements for phase-field and concentration equations (4.3c)
and (4.3d) respectively. In order to solve the obtained linear system, we have used di-
rect method which is the usual Gaussian elimination method. The numerical scheme
used to solve the model problem is described in detail in section 3.2. Further in COM-
SOL Multiphysics, we have used Navier-Stokes equations mode together with no-slip
boundary conditions for the magnetohydrodynamic type system, diffusion-convection
transient mode together with convective flux boundary conditions for phase-field and
concentration equations in two dimensions. However the implementation of our model
(4.3) in the COMSOL is not evident. The major difficulty arises in the introduction
of anisotropic function and the initial conditions, therefore we have connected the
COMSOL with Matlab and used some of the Matlab functions to introduce these
functions.

As described earlier that to view the dendrite arms in the simulations of our model,
we need a dense mesh. For the coarse mesh, we cannot see the dendrite arms in the
simulations. Further, more we refine the mesh, more computer memory is required
for the resolution of the model. This makes our model computationally expensive. In
order to reduce this difficulty, we have constructed two types of structured meshes, the
first type of mesh is uniform everywhere in the domain and generated in a way that
first we have divided the domain, at first step, into eight triangles (see Fig. 4.2(a)),
at second step each of these eight triangles are further divided into four triangles (see
Fig. 4.2(c)), at third step we have divided each triangle further into four triangles and
so on. The final mesh used for the simulations is shown in the Fig. 4.2(e) in which
there are 128 x 128 nodes containing 32768 triangular elements.

The second type of mesh is generated in the similar way except that we have made a

square given by
Qint = {(z,y) € R? | 2,y belongs to square S} (4.7)

where S = L; NLy, NLs N L, such that

Li={(z,y) |y=—2x+4, 0 <z <4},
Ly={(z,y) ly=2+4, 0<z < -4},
Ly ={(z,y) |y=—2—4, 0<x < -4},
Li={(z,y) |ly=2—-4, 0<z <4}
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inside the domain €2 = [—4,4] x [—4, 4] and the triangles inside €;,; are divided two
times greater than the triangles outside €2;,,; (see Fig. 4.2). The final mesh used in
simulations has 128 x 128 nodes inside and 64 x 64 nodes outside the square €2;,; con-
taining 24576 triangular elements (see Fig. 4.2(f)). The second kind of mesh is used
to save the computational time and to reduce memory requirements without having
effect on the results.

We have used two types of mixed finite elements to solve the problem (4.3). First
is Py — Py for the magnetohydrodynamic type system and P, finite elements for the
phase-field and concentration equations respectively. Second is the P3 — Py for the
magnetohydrodynamic type system and IP3 for the phase-field and concentration equa-
tions of the problem (4.3). The adimensional time step is fixed as 10~° with the final
time equal to ty = 0.13 in each simulation unless otherwise mentioned. It is impor-
tant to mention that using (Py — P;) for the final time 0.13 and type-I mesh, it takes
approximately 29 hours and using type-II mesh takes approximately 18 hours to com-
plete one simulation. And using (P35 — Py) with type-IT mesh, it takes about 8 days
to execute one simulation using the hardware defined below.

To carry out all simulations we have used a Dell Laptop computer with 4GB of com-

puter memory and 2GH z core? dual processor with 64 — bit Vista windows.
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(a) Mesh type-I at first step.

(b) Mesh type-II at first step.

(¢) Mesh type-I at second
step.

(d) Mesh type-IT at second
step.

(e) Mesh type-I at final step
with 128 x 128 nodes.

(f) Mesh type-II at final step
with 64 x 64 nodes outside and
128 x 128 nodes inside ;..

Figure 4.2: Types of mesh used in simulations.
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4.4 Physical Simulations

In this section, we shall present simulations of our model problem (4.3) for different
cases. First, we shall solve the model for a particular case in which we eliminate the
magnetohydrodynamic type system (4.3a)-(4.3b), i.e., we consider only phase-field
and concentration equations (4.3c) and(4.3d) to execute the simulation. Second, we
shall present the simulations of our model by including the magnetohydrodynamic

type system and present the results obtained by introducing different magnetic fields.

4.4.1 Reduced Model (Warren-Boettinger type Model)

In the model problem (4.3), if we assume that there is no motion in the melt during the
solidification process, then the magnetohydrodynamic type system will be eliminated
from the model (4.3). Consequently the convection terms (u-V)v and (u-V)ec in
the phase-field and concentration equations (4.3c) and (4.3d) will also be eliminated
and these equations will become simple diffusion equations of Warren-Boettinger type
model [24]. Then we have solved these equations using P, finite elements and the
type-I mesh for 210053 degree of freedom. The plots of phase-field and concentration
and their contour plots are presented in the Fig. 4.3 and 4.4 respectively. We can
see that the dendrites obtained in this case are completely symmetric about z and
y — azis as expected in the simulations of the Warren-Boettinger model. It is to be
noted that, we have not obtained exactly same form of the dendrites as in Warren-
Boettinger model because we have used coarse mesh as compared to the mesh used

in the Warren-Boettinger simulations.
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Figure 4.3: Plots of phase-field variable.
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Figure 4.4: Plots of concentration.

4.4.2 Our Model

We incorporate here magnetohydrodynamic type system in the simulation of dendrite
growth and consider the complete set of the model equations (4.3). To investigate the
effect of convection on the dendrite growth, we have considered, first, the model (4.3)
with out magnetic field i.e., B = 0 and by assuming K = 0. The velocity-field, phase-
field and concentration and their contour plots for the first case, are given in Fig. 4.5,

4.6 and 4.7 respectively. We observe from results in this case that the magnitude of
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velocity is very small, therefore there is no significant change in the dendrite structure
due to the convection during the solidification process and it remains symmetric as
it was in the case of Warren-Boettinger type model. Note that in Fig. 4.5 and all
subsequent figures of velocity field, we have presented the plots of velocity times phase
field (i.e., u x ©) to show the velocity around the dendrite.

Second, to observe the effect of magnetic field on the dendrite growth, we have fixed
all other parameters and solved the problem (4.3) by varying magnetic field at angles
45°, 90° and a variable magnetic field. All these simulations are performed, first by
using Py finite elements for the velocity, phase-field and concentration and IP; for the
pressure. Type-I mesh, with 128 x 128 nodes, is used to solve the problem in all
cases except in the case where the magnetic field is applied to 90°. In this case, the
problem is solved using mesh type-II just to show that using second kind of mesh
does not effect the results considerably. Second we have executed these simulations
for the magnetic field applied at an angle 45° and variable magnetic field, using Pg
finite elements for the velocity, phase-field and concentration and P, for the pressure

and type-II mesh.

Max: 7.931e-3 4 Max: 7.626e-3
x107

o = N W N U O N

Figure 4.5: Plots of velocity-field.

4.4.2.1 Magnetic-Field at an Angle 45°

In Fig. 4.8, 4.9 and 4.10, the plots of velocity-field, phase-field and concentration and
their contour plots are presented by introducing magnetic field at an angle of 45°,
(i.e.,B = 1/v/2(1,1)) to solve the model problem (4.3) using type-I mesh and P,

finite elements for the velocity, phase-field and concentration and P, for the pressure.
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Figure 4.7: Plots of concentration.

We have observed that by the introduction of magnetic field, the magnitude of velocity

has increased and the dendrite tips grow more rapidly and collide with the boundary

of the domain and it is no more symmetric about x and y — axis while in the previous

cases the dendrite tips are far from the boundary with the same number of iterations

at the final adimensional time ¢ = 0.13. The form of the dendrite has been changed

significantly and it is now symmetric about the line y = x. This change in the form

of the dendrite is due to the introduction of magnetic field at an angle 45°.

Further we have solved the same model using IP3 finite elements for the velocity, phase-

field and concentration and Py for the pressure using type-II mesh and presented the
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results in Fig. 4.18. We observe in this case that the dendrite is more refined and
the secondary dendrite arms have also been started growing up along the primary
dendrite arms. We can also see the effect of magnetic field more clearly as the top
and right dendrite arms are smaller than the bottom and left dendrite arms. Also in
this case the dendrite arms are far from the boundary of the domain whereas in the
case where the finite elements were Py for the velocity, phase-field and concentration

and Py for the pressure, the dendrite arms collide with the boundary of the domain.
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Figure 4.8: Plots of velocity-field.
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Figure 4.9: Plots of phase-field variable.
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Figure 4.10: Plots of concentration.

4.4.2.2 Magnetic-Field at an Angle 90°

Next we have solved the model problem (4.3) by applying the magnetic field at an
angle of 90° (i.e., B = (0, 1)) and presented the results in Fig. 4.11, 4.12 and 4.13. We
observe that the form of dendrite has not been changed considerably, but the dendritic
arms along x — axis are little longer than the arms along the y — azis and it is now
symmetric only about the y — axis. We have verified this behavior of the dendrite
arms by applying the magnetic field at 0° and found that in this case the dendrite
arms along y — axis have grown up little larger than the dendrite arms along x — axis.
In this case our results are in good accordance with the observation of, for example
[48], who examined that the constant magnetic-field does not effect significantly the

inter-dendritic flows and micro-segregation during the solidification process.

4.4.2.3 Variable Magnetic-Field

In this case, we have introduce a variable magnetic field B = (cos(x), sin(y)) in the
model (4.3) and obtained the simulations using type-I mesh for Py finite elements
for the velocity, phase-field and concentration and Py for the pressure. The plots of
velocity-field, phase-field and concentration are given in Fig. 4.14, 4.15 and 4.16. We
found an irregular structure of dendrite in this case and notice that the magnitude
of velocity has also been increased greatly. We can see that the dendrite is no more
symmetric about any axis and it is deformed drastically by the introduction of variable
magnetic field. The left arm of the dendrite has grown up more than the right arm

and they have completely different shape from each other.



4.4 Physical Simulations 147

Velocity-field, Time=0.13 Max: 1.461 4 Contour plot of velocity, Time=0.13 Max: 1.145
1.4 . Ry

3 4 Min: 0.0116

Figure 4.11: Plots of velocity-field.
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Figure 4.12: Plots of phase-field variable.

Further we have solved the same problem using P5 finite elements for the velocity,
phase-field and concentration and Py for the pressure using type-II mesh and give the
results in Fig. 4.19. We can see that dendrite structure in this case has been changed
significantly, large secondary arms arise along the left arm of the dendrite whereas

along the other arms of the dendrite, the secondary arms have not grown up greatly.
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Figure 4.13: Plots of concentration.
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Figure 4.14: Plots of velocity-field.

4.4.3 Dendrite Comparison

Now we shall present comparison between the dendrites obtained by solving the
Warren-Boettinger type model and our model (4.3) with different magnetic-fields to
show the effect of magnetic-field on the structure of dendrite. For this we consider
only the simulations results obtained using Py finite elements for the velocity, phase-
field and concentration and IP; for the pressure. Also we consider only the contour
plots of phase-field at ¢y = 0.5 and final time ¢; = 0.13. In each of Fig. 4.17, we
have shown the plots of phase field for the Warren-Boettinger type model (WBTM)
and our model with magnetic-field at angles 45°, 90° and variable magnetic-field re-
spectively. In Fig. 4.17(a), we notice that the form of the dendrite for the WBTM is

symmetric about x and y — axis and by the application of magnetic-field at an angle
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Figure 4.15: Plots of phase-field.
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Figure 4.16: Plots of concentration.

45°, the form of the dendrite has been deformed, it is no longer symmetric along x
and y — axis, the top and right dendrite arms are smaller than the bottom and left
dendrite arms and it is symmetric about the line y = x. In Fig. 4.17(b), we can see
that by the introduction of magnetic-field at an angle 90°, the dendrite has grown up
little longer along x — azis. And in Fig. 4.17(c), we observe that by applying vari-
able magnetic-field, the form of dendrite is completely deformed and it is no longer
symmetric as it was in the WBTM.
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Figure 4.17: Comparison of dendrite obtained in WBTM and our model for different

magnetic fields.

4.5 Conclusion

We have presented the realistic numerical simulations for the anisotropic solidifica-
tion of binary alloys by considering an example of Ni-Cu mixture with real physical
parameters in this chapter. The simulations have been carried out by using two type
of structured meshes. The second type of mesh reduced the computational time and
storage requirements noticeably without having effect on the results. Also two types
of (mixed) finite elements are used in these simulations. Our main focus in these simu-
lations was the influence of magnetic-field on the structure of dendritic growth during

the solidification process. We have considered various types of magnetic-fields to show
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and concentration and P, for the pressure.

Contour plot of velocity-field, Time=0.13

F 22 <1 0 1 2 3 4

Max: 10.337

—
o

~ N W h U1 O N ® O

Min: 0.0519

(b) Contour velocity-field

Contour plot of concentration, Time=0.13

Max: 0556

(d) Contour phase-field

Contour plot of concentration, Time=0.13

4
Mn:0.473

Max: 0,556

4
Min:0.473

(f) Contour concentration

Figure 4.18: Plots of velocity, phase-field and concentration obtained for variable

magnetic field B = \%(1, 1) using type-II mesh and P3 for the velocity, phase-field

the influence on the dendrites. We have observed that the constant magnetic-field do

not have significant impact on the dendrites whereas the variable magnetic-field have
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Figure 4.19: Plots of velocity, phase-field and concentration obtained for variable

magnetic field B = (cos(z), sin(y)) using type-II mesh and PPs for the velocity, phase-

field and concentration and P, for the pressure.

deformed the dendrites considerably. Our results agree to the observations made by

[48].
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5.1 Introduction

The aim of this chapter is to study the optimal control of our model that governs the
solidification process of a binary alloy in the presence of motion in the liquid phase
with the magnetic field effect in an isothermal environment. As we have seen in the
realistic numerical simulations (see chapter 4) that the application of magnetic field
has a considerable effect on the evolution of dendrites and we can control the direc-
tion of motion of the melt during the solidification process. Our main focus in this
study is to control, by the action of magnetic-field, the desired dynamics of the melt.
Therefore we shall formulate the optimal control by considering the magnetic field as
a control variable. The cost function measures the distance between the calculated
and desired dynamics.

To study the optimal control, we have considered an adimensionalized problem (4.3)
given in the chapter 4. In order to take into account the influence of tempera-
ture on the magnetic-field, we decompose the operator f(¢)) in the problem (4.3)
as (1)) = Krf(y) + ray(1))B, where the second term in this operator correspond to
the fluctuations of solidification temperature on the magnetic-field. Further we have
reduced this model for the isotropic case, that is, the anisotropy 7 is assumed to be

constant, then we will have the following primal problem.

g—'; +(u-V)u=—Vp+aldu+ A (¥, c)
+b(¢)(u x B) x B+ kay(¢)B, on Q, (5.1a)
div(u) =0, on Q, (5.1b)
O (V)0 = A~ A(,d), o Q (5.10)
% +(u- Ve = div (D(0)Ve) + div (As(, V), on Q,  (5.1d)
(u,9,¢) (t =0) = (ug, %o, ), in €, (5.1e)
u=0, g—ﬁ:o, g—:l:o, on 3. (5.1f)

where in this section a = Pr, b(¢)) = Pr(Ha)?ay(¢)) and

A (¢, c¢) = PrRacai(¢)ceq + Krf(@/)), (5.2)
Aol ) = 2D gy + 224 (53

A0) = aaD(w)e(t = o) (g 0) - () ) (5.4
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We assume in the sequel that initial conditions satisfy the regularity:
2
(1o, o, co) € (Ho())" x Hg(Q) x H'(Q).

Then according to the Theorems 1 and 4, the problem (5.1) admits a unique solution
X = (u,9,c) €W = W] x Wy x W}, where W}, i=1,2, are defined in section 2.6.
The control problems related to the phase-field models have been studied by [36], in
which the authors examined the optimal control of the solidification of pure materials
due to thermal effects. Robust control and stabilization problems associated with so-
lidification of pure materials due to thermal effects and isothermal Warren-Boettinger
type model of binary mixtures in order to take into account the influence of noises in
the data have been studied by [6]-[8]. For the control problems using magnetic field as
a control variable, we can cite [38], in which the authors studied the optimal strategy
for the suppression of the turbulent motions in melt flows and [8] has discussed the
defects by stabilizing the melt flow motion during the growth process.

In the section 5.2, we shall present the formulation of the control problem and discuss
the existence of the optimal solutions. In the subsequent section (5.3), the optimality
conditions as well as the adjoint problem corresponding to the primal problem are

given.

5.2 Optimal Control Problem

In this section, we shall formulate the control problem and define the essential spaces
used in the optimal control. Further we shall define the cost functional and the give

the existences results.

5.2.1 Formulation of the problem and existence result

Let U be a space of controls which is assumed to be Hilbert space and let U, be its
non-empty closed subset which is taken as admissibility set of controls and is defined
by

U, = {B — (By, By) € (I*(€))* |0 < by < By < by < o0,

0<b’1§B2§b’2<oo}. (5.5)
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The optimal control, we consider is the following:
Find (X,B) € W x U, such that the following cost functional

Qaq 2 Q2 2
J(B) = ? ||11 — uobs||L2(Q) + ? ||¢ - ¢0b8||L2(Q)

as 2 5 2
5 lle = cansllzzo) + 5 IBllzg) (5.6)

is minimized subject to the problem (5.1),

3

where Zai > 0and a; > 0 for i = 1,2,3, and Xpps = (Weps, Yobs, Cops) € L2(Q) is
i=1

given and represent the target variable.

More precisely the problem is to find an optimal solution B € U, such that

J(B*) = inf J(B). (5.7)

Bel,

and X* is the solution of the problem (5.1), corresponding to B.

Further to study the optimal control of the problem (5.1) we need more assumptions
on the operators. Therefore in addition to the hypothesis (H1)-(H5), we suppose that
the operators A; (¢, ¢), Ax(1), ¢), A3(w, ¢), D(1), b(x)) and a;(v)) in the problem (5.1)
satisfy the following hypothesis

(H6) \A; is differentiable with respect to 1 and ¢ and its derivative is Lipschitz con-
tinuous a.e. in Q.

(H7) A; i = 2,3 are differentiable with respect to ¥ and ¢ and their derivatives are
Lipschitz continuous a.e. in Q.

(H8) D, band a; are differentiable with respect to 1) and their derivatives are Lipschitz

continuous a.e. in Q.
Now we shall give the existence result of the problem (5.7).

Theorem 5 Under the assumptions of Theorems 1 and /, the optimal control (5.7)

has at least one solution B* in U,.

Proof: It is easy to verify that minJ(B) is finite in U,, and thus, there exists a

minimizing sequence B,, in U, such that

lim J(B,)= inf J(B).

n—oo Bel,
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This implies the uniform boundedness of B,, in L?(Q) and therefore there is a subse-

quence, denoted also by, B,, such that
B, — B* weakly in L*(Q).

Similar to the proof of Proposition 11.16 in Belmiloudi [8], we can show that the
operator F is continuous from the weak topology of L?(Q) to the strong topology of
(L*(Q))*. Consequently

F(B,) — F(B*) strongly in (LZ(Q))4.
Since J is weakly lower semi-continuous, we have

J(B*) < lim inf J(B,,).

and then
J(B*) = P}QZEG J(B).
which achieves the proof. U

In the next section we shall discuss the differentiability and present optimality condi-

tions.

5.3 Optimality Conditions

We introduce now the following mapping: F : U, — VW, which maps the source term
B € U, into the corresponding solution X of (5.1) in W.

Before proceeding to the optimality conditions of the optimal solution, we shall give
the G-differentiability of the operator F.

Theorem 6 Under the assumptions of Theorems 1 and 4 and the hypothesis (H6)-
(H8), the function F is G-differentiable with respect to B, where its G-derivative

F(B):B — Y=F(B)- B,

with Y = (wy, wy, w3), is the unique solution in YW of the following linear problem
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an

W+(W1 Viu+ (u-V)w; = =Vr1 +a Aw,
—I—%-wg%- ( ) w3 + b (¥) wy ((ux B) x B)

+b(¢){<wl « B) xB+(uxB) « B + (ux B) xB}
+ra) (Y)Bws + kai(¢¥)B, on Q
div(wy) =0, on Q

3w2

875

OAoc)  DAu(,c) (5:8)
o T e W
S 4 (wy-V)e+ (u-V)ws = div (D'(w)wQVc + D(Q/J)Vw;;)
+div ((%j,c} wy + % ’LUg) Vi + A3y, ¢) ng) , on Q
(W1, ws,ws) (t =0)=(0,0,0), inQ
wi =0, O, =0, O =0. onX.
On On

Proof: The problem (5.8) is similar to the problem (5.1). By using a similar arguments

+ ( >w + (u . V)U)Q = EQA’U)Q —

375

as in the proof of Theorem 1 and the regularity of X, we can obtain the existence and
uniqueness of the solution Y € W of (5.8).

For more detail about the proof of the differentiability results of F, the reader is
referred to [6] and Chapter 11 in [8]. O

We present here a lemma which we need to give the optimality conditions.

Lemma 5 Let f, g, h and k € R% Then we have the following relation

((Fx g)xb) k= (gx (hx k) f
Proof: The vector triple product defined in the above expression is given explicitly by

(2.1). To prove the above result we consider the left-hand-side of the expression
((fx g) ><h> k=k- ((f>< g)xh
— (fxg)-(hxK)
= (hxk)-(fxg)
- (gx (hxk)) f.
which is the required expression. O

Theorem 7 Under the hypothesis of Theorem 6. Let B* € U, be an optimal control
defined by (5.6) and X* € W be the optimal state such that X* = F(B") is the
solution of (5.1). Then there exists a unique solution X = (@,,é) € W for the
following adjoint problem corresponding to the primal problem (5.1)
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o _
V)i (V)T a9V + eV = Vi +a At

ot
+b(¢*) (B* x (B* x @) 4+ a1(u” — up,) on Q
div(a) =0. on Q

—%-i’— (U V)Y =AY — % D+ V(W) ((u x BY) x B*) -1
+—8Ala<z:= D) G- p(ve - Vi —aA?’éZi’ vy v
oA OOV B oy ) @ o
_8_§ —(u"-V)é=div(D")Ve) — —3&) )Vl/J -Ve — —25912}*’6 ) W
—aAlgf* ) u+ az(c* — cops) on Q
with the final conditions
(ﬁ,z;,a) (t="Ty) = (0,0,0), inQ
and the boqndary conditions
u=0, g—ﬁ:O, %:O. on %
Furthermore, we have (V B € U,)
Ty
//<b(1/z*)((B* X @) X U+ @ x (0 x BY)) + ray (%)
0 Q
+8 B*) (B - B*)dxdt > 0. (5.10)

Proof: The problem (5.9) admits a unique solution X = (11,1, &) in W, since the
observation Xps = (Wops, Vobs, Cobs) € L*(Q). To prove this result, we change the vari-
ables of this problem by reversing the time variable, i.e., t = Ty —t where T} is the
final time, and we apply the same technique to obtain the existence and uniqueness
as in Theorems 1 and 4.

The cost functional J defined by (5.6) is composed of G-differentiable functions, con-
sequently J is G-differentiable and its G-derivative can be given by differentiating
(5.6) with respect to B in the direction B as

Ty
/ / — Upps) - W dxdt + o / / W) — ops ) Wo dxdt
0 Q
Ty Ty
+a3// — Cops) W3 dxdt + (3 // - B dxdt (5.11)
0 0
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where w = (w1, we, w3) = F'(B) - B is the solution of (5.8).
Now multiplying the first equation of (5.8) by a sufficiently regular function @, such
that 0 (7) = 0 on both sides and then integrating over Q, we have

T T T
//%-ﬁdxdt+//(w1~V)u'ﬁdxdt+//(u-V)w1'ﬁdxdt
0 Q

//V’/T udxdt—i—a//Awl u dxdt

S )

+//b(1p)w2((u><B)><B udxdt—l—// (w1 xB) xB

—1—(u><B)><B—|—(u><B)><B}«udxdt
Ty

+ kay (V)Bws + kay(¢)B ) udxdt.
[/ )

Using Green’s theorem and Lemma 5, the above equation takes the following form

Ty Ty
//% udxdt+//(Wl-V)u-ﬁdxdt+//(u-V)W1-ﬁdxdt
//ﬂ'dﬂ) ) dxdt — //wu ndth—l—a//Au wy dxdt

T
—affwl V- n dldt + // 8.A1 w’ . 2+8Ag(ép ‘) wg}-ﬁdxdt
0

+//<b,(¢)((u xB)xB) -+ HGQ(LD)Bﬁ) wy dxdt

Q

Ty
//b x (B x 1)) -w; dxdt
Q

+//<b(¢){(B X @) % u G x (ux B) |+ kay(0)a) - B dxdt

0 Q

o

+
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Integrating the first term of the above equation with respect to t and as a(7y) = 0,

w1(0) = 0 and using Lemma 2 , the above equation yields

Ty ~ Ty Ty
—//%—ltl-wl dxdt—l—//(Vu)trﬁ-wl dxdt—//(u-V)ﬁ-w1 dxdt
0 Q 0 © 0 0
Ty Ty Ty
://Wdiv(ﬁ)dxdt—//wﬁ-ndfdt+a//Aﬁ-w1dxdt
0 O
—a//wl Vit - ndthJr//aAl S8 wy dxdt
//8.41 ¥,<) -0 w3 dxdt+// x (B xu)) - w; dxdt

+/ 0059058 )

(5.12)

// B><u ><u+ﬁ><(u><B)}-dedt.

Multiplying now the third equation of (5.8) by a sufficiently regular function ¢, such
that @(Tf) = 0, on both sides and then integrating over Q, we have

//%J)dth+7/(W1'v)¢@Edth+7/(U~V)w2@dedt
B T Y Ve

Integrating the first term of the above equation with respect to ¢t and using &(Tf) =0,

wy(0) = 0 and Green’s formula, the above equation can finally be written as

//—w dxdz+//¢w Wy dxdt—//u waz dxdt
- 62//A¢ Wy dth—Eg//’wg V4 - n dldt (5.13)
Ty
8.4 9 As(
/ / 2( ¢ wq dxdt — 0/ / 2( ¢ wy dxdt,
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Multiplying now fourth equation of the problem (5.8) by a sufficiently regular function
¢, such that ¢(Ty) = 0, on both sides and then integrating over Q, we have

Ty Ty
//% cdxdt+//(Wl-V)c-édxdt—l—//(u-V)wg-6dxdt
0 Q 0 Q

- / / div (D' () w2 Ve + D() Vg ) - & dxdt (5.14)

//Ch ((aA3 )w2 " af‘%(g”@m) Vip + As(1), ¢) sz) - & dxdt.

Consider the following integral

//dw V)Ve ¢ we) dxdt = //dw )Ve wy) ¢ dxdt
//D’ Y)Ve - Ve wy dxdt.

0

By employing the divergence theorem and as Vc-n = 0, the above equation becomes

Ty

/ / div (D' ()Ve ws) é dxdt — / Q/ D($)Ve - Vé ws dxdt. (5.15)

Consider now the following integral

Ty o
//div (D(¥)Vws ¢) dxdt = //div (D(¢)Vws) ¢ dxdt
0 Q 0 Q
Ty
+ | | DW)Vws - VE dxdt.
[l

Using again the divergence theorem and using Vws - n = 0, we arrive at

Ty
//div(D( )Vws) ¢ dxdt = //D Y)Vws - Vé dxdt. (5.16)
0 O
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Again consider the following integral

//dw V)Veé ws) dxdt = //dw V)V é) wy dxdt
—l—//D(w)ng - Ve dxdt.
0 Q

Applying the divergence theorem on the left-hand-side of the above equation, we arrive

//D ) wyVeé-n dldt = //dw V)Ve) wy dxdt
+//D(1/1)Vw3 - Ve dxdt,
0 Q

at

and then

Ty Ty
/ / D(W)Vws - Vé dxdt — — / / div (D()VE) wy dxdt
0 Q 0 Q

Ty
+O/F/D(¢) wsVE - n dl'dt. (5.17)

Making use of equation (5.17) in equation (5.16), we obtain

Ty
//div (D(¢)Vws) ¢ dxdt = //dw V)Veé) wy dxdt
0 Q
—//D(¢) wyVé - n dUdt. (5.18)
0T

Similarly, we can derive the following equations

//dzv (A3(¢, c)Vws) € dxdt = //dw (A3(v,¢)VE) we dxdt

Tf

_ / / Ay, ¢) weVE - n dTdt, (5.19)

(U
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Ty Ty
//dz'v (aAg’w )w w2> ¢ dxdt = // 04s(v,€) . Vb wy dxdt
0 Q 0

o

Ty
8A3(¢, C) - )
+O/F/—V¢ ¢ we - m dl'dt, (5.20)

and

Ty

T
/ / div (%w w3> ¢ dxdt — / / 3“43 Ve Vi wy dxdt
0 Q 0

Ty
+//%V¢ ¢ ws - n dl'dt. (5.21)
0T

Using equations (5.15) and (5.18)-(5.21) in the equation (5.14) and then integrating
with respect to time ¢. We obtain, by using ¢(7) = 0 and w3(0) = 0,

Ty
//—wgdxdt—i-//ch w; dxdt — //u V)¢ ws dxdt
0
Ty
//D P)Ve - VE w, dxdt+//dw V)Veé) wy dxdt
0

T
/ / D(¥)ws Vé-n dldt — / / aA‘”’ w Ve wy dxdt (5.22)
0

Ty
//8/\3 ¥,<) Vi - Vé ws dxdt+//dw (As(, c) VE) wy dxdt
0

—//.Ag(w,c) wy Vé-mn dldt
0T
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In order to simplify equations (5.12), (5.13) and (5.22), we suppose that (ﬁ,i;,é)
satisfy the following system

i
V)t (Vo) a9V + éVe = —Vi+a At

ot
+b(¢)(B x (B x 1)) + a1(u—ums), onQ
div(a) =0, on Q

_% —(u- V)Y = eA¢ — 8“428(5’6) 1/~1+b’(1/1)((u x B) x B) -u
LA L D()Ve- Ve dAs(1), ¢ )W -
A . oo (5.23)
+div (Az(, )VeE) + kal (¥)Bu + as () — aps), on Q
“% (- V)e= div (DW)VE) 8“4?;2/”0) vy ve - 20
+8Agzb’ ) 'ﬁ+a3(c_cobs)7 on Q

8¢ oc
' In =0, n =0. onX

Making use of (5.23), the equations (5.12), (5.13) and (5.22) becomes

//(al(u—uobs) —zZ?W—avc - widxdt + 079/ 3A1 - nd,(¥)Bi
DA

—'(¥)((u x B) x 3 w2 dxdt — // wy dxdt  (5.24)

(ﬁ,z/?;) (t=T) =(0,0,0), inQ
0

_ //(b(¢){(B X @) x utix (ux B) 4 way (0)i) - B dxdr,

0 Q

Ty
// (¥ — ops) + V' () ((u x B) x B) - 1 3A1a($,6) i ZZVC \VLe
0

Q

0A(0,0)
o0

/ / OV - widxdt + / / 8“42 ¢ wy dxdt =0,

Vi - Ve + dw(Ag(w, V) + na’l(w)Bﬁ> wedxdt  (5.25)
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and

dc Oc

//CVC Wldxdt+// D' Ve - Ve +8A§$ )Vz/i - (5.26)

Ty
// (ag ¢ — Cobs) 8'/42(1/]’ C)@Z) + dA(Y, ) -ﬁ) wsdxdt
0

—dw (.Ag(w, c) Vc))wg dxdt =0.
Adding the respective sides of the equations (5.24), (5.25) and (5.26), we finally obtain

/ / — Upps) - W1 dxXdl + g / / W — hops ) Wo dxdt
0
Ty

+a3//(c Cobs) W3 dxdt = // B X 1) Xu
0 Q 0

+u x (u x B)} + kay (Y)a > B dxdt. (5.27)
According to (5.27), the equation (5.11) takes the form

’ B)-B://(b(w){(B X &) X Ut @ X (uxB)}+m1(¢)a+ﬁB) B dxdt.

Since B* is an optimal solution of .J, we have
J(B*)-(B*-B) > 0,

and then
//(b(¢*)((B* x 0*) x u* +a* x (u* x BY)) + ka1 (v)u

" B*) (B - B*)dxdt > 0.

where X is the solution of (5.23) corresponding to the primal solution X* = F(B*).
This completes the proof. O

5.4 Remarks on the numerical implementation

In this section, we shall give remarks on the numerical resolution of the optimization
problem (5.7) by sequentially solving the primal problem (5.1) and the correspond-
ing adjoint problem (5.9) and updating the control by a Gradient based iterative
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algorithm. The individual primal and adjoint systems can be solved using same dis-
cretization and technique as given in Chapter 3. The main difficulty in the application
of this algorithm is to realize the reversed time directions of the primal problem in
the corresponding adjoint problem. Gradient algorithm for the resolution of the opti-
mization problem (5.7) can be described as follows.

We denote by k, the iteration index and By the numerical approximation of the
magnetic-field (control variable) at the kth iteration of the algorithm. The different

steps involved in this algorithm are described below
I Initialization: £ = 1 and By.

IT Resolution of the direct problem (5.1) with the source term By, gives X =
F(Bx).

IIT Resolution of the adjoint problem (5.9), by giving Xy, gives X.

IV Calculation of the Gradient expression of J at point By

J'(By) = b(%){(Bk X fy) X g + T X (g X Bk)} + way ()i + B

V Calculation of By
Bii1 = Br — A\ J (By).

VI If the gradient is sufficiently small (we have the convergence) then stop. Else by
setting k = k + 1, repeat from the second step until the required convergence is
achieved. The approximation of the optimal solution (B*, X*) is then given by
(B, Xy).

5.5 Conclusion

We have successfully formulated the optimal control of the problem (5.1) and estab-
lished the existence results and optimality conditions along with the adjoint problem.
Next we have introduced a Gradient algorithm for the numerical resolution of the
optimization problem (5.7). We are trying to implement this algorithm in Comsol to-
gether with MatLab. We have already succeeded to solve the coupled direct and the
corresponding adjoint problems. The major difficulty in the implementation of this
technique is that we have to substitute reversed time solution of the direct problem

for the resolution of the adjoint problem.






Conclusion

In this work, we have developed a new phase-field model that incorporate convection
together with the influence of magnetic-field. For the theoretical and numerical study,
we have considered the case of 2D isothermal solidification model. Then we have es-
tablished the existence, regularity, stability and uniqueness results for the isotropic
model. For the numerical simulations, we have worked with the isotropic case and the
general anisotropic model. We have developed a numerical scheme and demonstrated
the convergence and stability of the scheme for both isotropic and anisotropic models
with the help of various examples. The realistic numerical simulations has been car-
ried out by choosing the real physical parameters of the binary mixture Ni-Cu in order
to fit a realistic physical alloy. We have focused mainly the effect of magnetic-field
on the growth of dendrites during the solidification process by considering various
magnetic-fields (all other parameters remain fixed). We have found that the constant
magnetic-field does not effect considerably but the variable magnetic-field has a sig-
nificant effect on the structure of dendrites and on the dynamics of the melt flow.
These observations are in good agreement with the study made by [48].

Further we have formulated the optimal control for the isotropic model using the con-
trol in magnetic field. We have established the existence results of the optimal solution
and presented the optimality conditions together with adjoint problem corresponding
to the primal problem. Currently, we are working to implement the Gradient algo-
rithm, given in the chapter 5, in Comsol together with the MatLab.

Several questions remain open for the future investigations. The realistic physical sim-
ulations can be reviewed for the adaptive meshes. It also remains to investigate the
effect of different physical parameters, like interface thickness, anisotropy amplitude,
on the dendrite growth during the solidification process. Further, we can introduce
a stochastic noise at the interface to stimulate fluctuations at the interface in the
model which give rise to the realistic structure of dendrites observed in practical sit-
uations. The simulations can be broaden for the non-isothermal anisotropic case by

the inclusion of temperature equation. For the better understanding of magnetic-field
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influence on the microstructure of dendrites, the simulations can be extended to the

three dimensions.
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Appendix A: Description of DASSL

In this appendix, we shall describe the method used by time-dependent solver in
COMSOL Multiphysics 3.4 to solve the model problem. Time dependent solver in
COMSOL uses the program DASPK (and DASSL) written in computer language
Fortran by P. N. Brown et. al. [50], where DASPK is an extension of the program
DASSL written in Fortran by Linda R. Petzold [37]. We have used DASSL for the
resolution of our model, therefore we shall describe the program DASSL.

The program DASSL is developed for the numerical solution of the implicit systems

of differential /algebraic equations written in the form

F(ta yvy/) = 07 y<t0) = Yo. (1)

where F', y and ¢y’ are N dimensional vectors and 3’ represents the derivative with
respect to time. DASSL can solve two types of problems. The first type problems for
which it is not possible to solve for ¢’ explicitly to rewrite equation (.1) in the form
of a standard ODE system ¢y’ = f(¢,y). The second class of problems for which it
is possible in theory to solve for 3/, but is impractical to do so. The technique used
in DASSL to solve differential/algebraic equations is based on the idea of Gear [12]
in which the derivative in equation (.1) is replaced by the back-ward difference Euler
formula to obtain

Yn — Yn—1

The resulting equation is then solved using Newton’s method as
ml_ym G,y YUty 3
Un' = Yn (' =57 ) (-3)
where

oF 1 OF

“= oyt anay)

and m is the iteration index.
The techniques used in DASSL are the extension of this method. DASSL program
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uses a kth order variable back-ward Euler formula where k varies between 1 to 5.
Here variable order back-ward formula means that on each step DASSL chooses an
appropriate order k£ and the step size At,, depending upon the behavior of the solution.
Further details about the choice of step size and order will be given later. To explain
the algorithm used in DASSL, it is convenient to write the equation (.2) in simplified

form as
F(t,y,dyy + ) = 0. (.4)

where & is a constant which changes whenever the step size or order changes, B is
a vector which depends on the solution at the previous times and t, y, &, B are
evaluated at ¢,. The code DASSL solves the equation (.4) by using the modified

version of Newton method given by
Yt =y = 4G (Y™, day™ + B) = 0. (-5)

where the iteration matrix G takes now the form

orF . 1 OF
G = (3_y’ + ong—tna—y)

which is computed and factored and then it is used for as many steps as possible.
In the iteration matrix the value of the constant c; when G was last calculated is
generally different from the current value of the constant &; in equation (.5). If
the values of these constants differ significantly then the convergence of (.5) is not
guaranteed. And the constant 4 in (.5) is chosen to speed up the convergence when
ay # Qo as

2

1+ dy /o

(-6)

4=
The convergence rate of equation (.5) is estimated by

Ayt =y ym

P= =y 0
where the norms used in above error estimates are scaled norms which depend on
the error tolerances specified by the user. The iteration of the Newton method has
converged when

~

s
15

y" =y < 0.3 (.8)

If p > 0.9 or m > 4 and the iteration is still not converged, then the step size is

lowered and/or the iteration matrix based on the current calculations of y, ' and &s



Appendiz A 175

is computed and then step size again attempted. To chose the order of the back-ward
Euler formula the algorithm of DASSL estimates what the error would have been if
the last few steps had been taken at constant step size, at the current oder k, and
at k — 2, k—1 and k + 1. If the estimates at these steps increase as k increases
then the order k of the backward Euler formula is decreased otherwise the order is
increased. The new time step At,,1 is chosen such that the error estimate based on
taking constant step size At, at order k, ; satisfies the error test.

As Newton method converges more rapidly if the initial guess y° is accurate. DASSL
estimates an initial guess for y, by solving the polynomial which is interpolated by
the computed solution at the last k + 1, times i.e., t,,_1, t—2, -+, ty—(r4+1) at the cur-
rent time ¢,. And the initial guess for y/, is calculated by computing the derivative
of this polynomial at ¢,. After getting the initial guess y9, Newton method is used
to solve for y, as in (.5) except that now the derivative is computed by the kth order
back-ward Euler formula.

To solve the linear systems of equations Ax = b arising at each successive time step
of Newton iteration, DASSL uses a subroutine package LINPACK [28]. LINPACK is
a package that uses direct methods such as Gaussian elimination, Cholesky decompo-
sition, QR and singular value decomposition methods to solve the linear systems of

equations.






Appendix B: The expressions for
artificial right-hands-sides of
Example 1,2 and 3

The expressions for F,, F,, I}, and F, on the right-hand-side of example 1 are given
in this appendix.

- y y 1
Fu(x,t) = p(2—ﬂ_2€(t 1)szn2(x)y(1 — E) (1- ;) + 2_7r4€2(t sin®(x)
xy*(1 — %)2(1 — %)Zcos(a:) — %e(t Vsin(z)cos(z)y? (1
Yyl g Yya - Yy - Leen
27T) (27726 sin(#)(1 27T)(1 7T) 43
: Y Lo Y
xsan(x)y(l - ;) 27r36(t 1)szn2(x)y(1 — %)))
el y y, elV y
—pi(——cos*(z)y(1 — %) (1- ) sin®(z)y(1 — %)
(-1 (t-1)
AN 2 _YE 2 _Y
x (1 7r) —5sin (x)(1 7T) —5sin (x)(1 27r)
1 6(1E71) Y\ 2
—l—ﬁe(t l)sm2(m)y) — K (- 52 sin(z)cos(z)y*(1 — %)
1 y y
—2—7T26(t Dsin®(x)y(1 — ﬂ) (1- ;))
—%K eV (cos(z)cos(y) + 1)
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F,(x,t) = ﬁ(—#e(tl)sz’n(x)cos(:c)y%l — %)2 + #e(tl)shﬂ(]j)y(l B %) (1
-2) (—%ﬂe(t_”cosz(fﬂ)ym -5+ %ﬂe“—”sm?(x)yzu - L)Y
_%@(t—l)sm(m)COS(I)yQ(l _ %)2(_e(t—l)/w2sin(x)cos(x)y(1 _ %)2
+2Lﬁe(tl)sin(x)cos(a:)y2(1 — %))) — " Dgin(y) —
11(2e"7Y /x?sin(x)cos(x)y? (1 — %)2 B 6(;21) sin(x)cos(z) (1 — %)2
+2e7(:;1) sin(x)cos(z)y (1 — %) _ r;e(t_l)Sin(m)cos(m)yQ)
_QW—Igg’e(t—l)ﬁ(l - %)2(005@) +1) — K4(#6(t_1)8in2(:ﬁ)y(1 _ %)(1
) g el Dsin(aeos(r)y? (1~ L)) — Bl cos(a)eos(y) + 1),

1
Fy(x,t) :§e(t’1)(cos(:v)cos(y) +1) + e Deos(z)cos(y)

+y((1 - %e(t—l):ﬁ(l — %)%cos(y} +1)) (W, (e(t_l)(cos(x)cos(y) +1)

1 3
+§eg(t*1)(cos(a:)cos(y) +1)% — éeQ(t’I)(cos(x)cos(y) +1)?

+§LaTa62(t_1)(cos(z)cos(y) +1)*(1— %e(t_l) (cos(x)cos(y) + 1))2)
+%e(t1)x2(1 — %)Q(COS(Q/) + 1) (W (" (cos(z)cos(y) + 1)

1
+§e3(t_1)(cos(a:)cos(y) +1)* — ;ez(t_l) (cos(z)cos(y) +1)?)

4 LT cos(aeos(y) + 121 = 5 cos(a)eos(y) + 1))

Fc(x, t) = Flc(x, t) + Fgc(x, t).
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where

FlC(X, t) :%e(tl)xQ (1 — %)Q(COS(y) + 1) + %6@1)82'77[2(‘%)];(1 B %) (1
_%) (%e(t—l)x(l _ %)z(cos(y) 1) %e(t—l)$2(1 _ %) (cos(y) + 1)
£2(t-1)

. Y N2 T \2 .
— sin(x)cos(z)y* (1 — %) (1 - %) sin(y)
15

—(?(DL — Dg)e*"™V (cos(z)cos(y) + 1)2(1 - %e(t_l)(cos(x)cos(y) + 1))2

1 15
+a(Dg + §e3(t_1)(cos(x)cos(y) +1)*(10 — ?e(t_l)(cos(x)cos(y) +1)

+;e2(t1)(cos(x)cos(y) +1)?)(Dy, — Dg))

(1= 5501~ L) (cos(y)

1)) (Wh (e (cos(z)cos(y) + 1) + %e?’(tl)(cos(x)cos(y) Ly
—362<t-1>(cos(x)cos(y) L1 4 %Lbnew—”(cos(g;>cos(y) L1
—%e(t_l)(cos(x)cos(y) 1+ 1) = W (el (cos(x)cos(y) + 1)

1
+§e3(t_1)(cos(a:)cos(y) +1)* — gez(t_l)(cos(az)cos(y) +1)?)

)+

1
—7LaTae2(t_1)(cos(x)cos(y) +1)*(1— 5

+1))2)) (%le(tUsz’n(x)cos(y)(%e(tl)x(l - %)2(005(1;) +1)

2 x e2(t=1)
E=Dp2(1 — 2—)(cos(y) +1)) + —; cos(x)sin®(y)z” (1
7T m

expt=Y (cos(z)cos(y)

——)2) — (Ds + %eS(tl)(cos(x)cos(y) + 1)3(10 — ?e(tl) (cos(m)cos(y)
+1) + geg(t_l)(cos(x)cos(y) +1)*)(Dr, — Dg)) (%e(t_l)(l - %)2(003(9)
— a1~ D) (eos(y) +1) + —pe e (cos(y) + 1)

— et Ug2(1 — %)2005(34)).
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15
Fao(x,t) =—a (% (D = Ds) (e M —%>2<cos<y>+1>
%62(_ —i) (cos(y) + 1)?)e*= (cos(x)cos(y)

+1)2(1 — %e(t Y(cos(x)cos(y) + 1)) (W (e (cos(x)cos(y) + 1)

+;e3(t1)(cos(x)cos(y) +1)% — §62(“1)(605(95)005(1/) +1)?%)

2
15 1
+— 5 LyTye* Y (cos(x)cos(y) + 1)%(1 — Ee(t_l)(cos(x)cos(y) + 1))2

—W, (e (cos(x)cos(y) + 1) + ;e?’(tl)(cos(x)cos(y) +1)3

—geQ(t_l)(cos(x)cos(y) +1)%) — 1—25L T,e* =V (cos(x)cos(y) + 1)%(1
_%e(tl)(cos(x)cos(y) + 1))2) + (Ds + %63(t1)(cos(x)cos(y) +1)*(10 -
1256(t D(cos(x)cos(y) + 1) + ;eg(t_l) (cos(x)cos(y)

+1)2)(DL — Dg)) (%e(t_l)ﬁ(l — %)2(008@) +1)

—%ez(tl)x‘l(l — %)%cos(y) +1)%) (2(W, — Wa) (1 + 262@1) (cos(x)cos(y)

2

1
+1)" = 3¢V (cos(x)cos(y) + 1)) + 60(LyT}, — LoT) (ée(t_l) (cos(x)cos(y)

3
162("/’1) (cos(x)cos(y)

)
+1) + e 3D (cos(z)cos(y) +1)% —
D)yt + Ve

+aoe (Ds+ ; U eos(a)eos(y) + 1)*(10 = e (eos(a)eos(y) + 1)
+5e eos(a)eos(y) + 1) (D = Ds) (e a1 = 5 eos(y) + 1)

_ie2(t—1)x4(1 — %)4(003@) +1)%) (W (e(t_l)(cos(x)cos(y) +1)

+5M D cos()eos(y) +1)° — 2e cos(x)cos(y) +1)?)

P LT (cos()cos(y) + 1(1 — e cos(a)eos(y) + 1)
W (60D cos(a)cos(y) + 1) + 5D cos(a)eos(y) + 1)°
—;ez(t_l)(cos(x)cos(y) 1) - 1—25L T, (cos(z)cos(y)
F1)%(1 = 2elt D (cos(a)cos(y) + 1)) e Deos(z)cos(y).

2
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Right-hand-side expressions for the Example 2 are given below:

Fu(x,t) =

F, (X

(47T€(t_1) 2(1 — x)%sin(2my)cos(2my)
+4met V2?1 — z) sz’n(27ry)cos(27ry)(87re(t’1):c(1 — x)?sin(2my)cos(2my)
—8me"Va?(1 — z)sin(2my)cos(2my)) — 2e" V(22 — 3
+1) sin(2my)* (87> et V221 — 2)%cos(2my)? — 8 e(t_l):vQ(l
—x)2sm(27ry)2)) — 2" Vgin(2mz)T — u(87re(t’1)(1 — x)*sin(2my)cos(2my)
—327re(t_1):v(1 — x)sin(2my)cos(2my) + gmelt Y atsin(2my)cos(2my)
—64m3e Va2 (1 — x)Qcos(Zwy)sm(Zwy)) — %e(t_l) (cos(2mz) +
cos(2my) + 2) (—2e"Vx(22% — 3z + 1)sin(27y)?

—dret V21 — x)*sin(2my)cos(2my))

K.
—fe(t_l)(cos(%rx) + cos(2my) + 2),

) = p(—2e(t_1)x(2x2 — 3z + 1)sin(27y)* + 47re(t_1)x2(1

—x)Qsm(Zﬂy)cos@ﬁy) (—26(“1)(21:2 — 3z + 1)sin(27y)?
—2et" Yy (da — 3)sin(2my)?) + 16e2(t=1) 2 (22° — 3x
+1)28in(27ry)3cos(27ry)7r) - ,u(—4e(t_1)(4x — 3)sin(27y)?
—8e!Vysin(2my)? — 16e(t’1)x(2x2 — 3z + 1) cos(2my)*n?

+16e" Vr(22% — 3z + 1)sin(21y)*pi*) — 2K;3e* 7Y (cos(27x)
+cos(2my) + 2) (2*(1 — 2)* + y* (1 — y)?) — %e(t_l) (cos(2mz)
+cos(2my) + 2) (dmeVa?(1 — z)2sin(2my)cos(2my) + 2"V (227

K,
—3x + 1) sin(27my)?) — fe(t_l)(cos(%m) + cos(2my) + 2),
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1
Fy(x,t) :Ze(t’l)(cos(%m:) + cos(2my) + 2) — e(—e"Veos(2mz) 7

—eVeos(2my)m?) +v((1 = 8e D (2*(1 — x)? + (1

—y)g)) (Wa(%e(t_l)(cos(Zﬂx) + cos(2my) + 2) + %63@—1) (cos(27rx)

3
+cos(2my) + 2)3 - geQ(t_l)(cos(va) + cos(2my) + 2)?)

15 1
+§LaTae2(t_1)(cos(27m) + cos(2my) +2)*(1 — Ze(t_l) (cos(2mz)

—_

+cos(2my) + 2))2) +8e D (2%(1 — 2) + (1 — y)?) (Wb(§e(t’1) (cos(2mz)

1
— 3D (cos(2mx) + cos(2my) + 2)° — §€2(t—1) cos(2mx
16 Y 8

1
+cos(2my) + 2)2) + ngTbeQ(tl)(COS(Qﬂ'l‘) + cos(2my) + 2)*(1
1
—Ze(t_l)(cos(Qms) + cos(2my) + 2))2)),

+cos(2my) + 2) +

Fc(x, t) = Flc(x, t) + Fgc(x, t).
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where

Fie(x,t) =8¢V (2%(1 — 2)* + y*(1 — y)?) + 32me* V2% (1

—x)25in(27ry)cos(27ry)(2x(1 — 1) = 22°(1 — 2)) — 16>~ Vz (227
=3z 4 1) sin(2my)?*(2y(1 — y)* — 2y*(1 —y)) — (%(DL

—Ds)eQ(t_l) (cos(2mz) + cos(2my) + 2)2(1 — ie(t_l) (cos(2mz)
+cos(2my) + 2))2 + a(Ds + 6%163“_1) (cos(27z) + cos(2my) + 2)3(10

15 3
—Ze(t_l)(cos(%m) + cos(2my) + 2) + 562@—1) (cos(2mx) + cos(2my)
+2)") (D, — Ds)) (1 — 16D (2%(1 — 2)? + (1
1 1
—y)2)) (Wb(ﬁe(t_l)(cos(Qﬂx) + cos(2my) + 2) + E63@—1) (cos(2mz)

3
+cos(2my) + 2)3 — §e2(t*1) (cos(2mx) + cos(2my) + 2)2)
15

1
—I-ngTbeQ(t_l)(cos(Qﬂx) + cos(2my) + 2)*(1 — Ze(t_l)(cos@m:)

1
+cos(2my) + 2))2 - Wa(ée(t—l)(cos@wx) + cos(2my) + 2)

1 3
+1—663(t’1)(005(27rx) + cos(2my) + 2)* — geQ(t’l) (cos(2mz) + cos(2my)
15

+2)2) - §LaTa62(t_1)(COS(27TI) + cos(2my) 4+ 2)%(1 — }le(t_l) (cos(2mz)
+cos(2my) + 2))2)) (—4e*" Dsin(2rz)m(20(1 — z)* — 22°(1 — 7))

— 4>V sin(2my) 7 (2y(1 — y)? — 22(1 — y))) — (Ds
1 15
+6—463(t_1)(cos(27rx) + cos(2my) + 2)%(10 — Ze(t_l) (cos(2mz)

+eos(2my) +2) + geQ(tl)(cos(wa) + cos(2my) + 2)%) (Dy,

—Dg)) (8¢ (2(1 — 2)? — 8x(1 — z) + 227) + 8"V (2(1 — y)*
—8y(1 —y) +2y°)) — a(%(DL — D) (Se(t’l)(a:Q(l —z)* +y*(1 —y)?)
—64e2E D (221 — 2)? + 2(1 — y)2)2)e2(t_1) (cos(27x) + cos(2my) + 2)2(1

_;le(t—l) (cos(2mz) + cos(2my) + 2))2 (Wb(%e(t_l) (cos(2mx) + cos(27y)

1 3

+2) + 1—663(t_1) (cos(2mx) + cos(2my) + 2)3 - geQ(t_l)(cos(wa)
15

+cos(2my) + 2)%) + ngTbe(t — 1)*(cos(27z) + cos(2my)

1
+2)2(1 - Ze(tfl)(cos(%rx) + cos(2my) + 2))2.
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1 1
Fae(x,t) :—Wa(ée(t’l)(cos(wa) + cos(2my) + 2) + —e*7V (cos(27z)

16
3
+cos(2my) + 2)3 - geQ(t_l)(cos(%rx) + cos(2my) + 2)?)

1
—gLaTaez(t_l)(cos(wa) + cos(2my) 4+ 2)*(1 — Ze(t_l) (cos(2mz)

+cos(2my) + 2))2) + (Ds + 6%163“1) (cos(2mz) + cos(2my)
15

3
+2)3(10 — Ze(t_l)(cos(%rx) + cos(2my) +2) + §€2(t—1) (cos(2mx)
+cos(2my) + 2)2)(DL — Dg)) (8e!™Y
—6462(t_1)($2(1 _ I)2 + y2(1 . y)2)2)

3
g&2<t—1)(003(27rx) + cos(2my) + 2)* —

—~

2*(1—2)* +y*(1 - y)?)
2(Wy — W) (1 +

amnS

[\CJ V]

elt=l) (cos(2mz)
1
+cos(2my) + 2) + 60(LyT, — L T,) (ze(tﬂ) (cos(2mz)

1
— 30D (cos(2mx + cos(2my) + 2)3
32 Y

3 1
—1—662(t’1)(cos(27rx) + cos(2my) + 2)?))) (162(t’1)sz’n(27r:c)2772

1 1
+162(t_1)8in(2wy)27r2) —a(Dg+ 6—463(t_1) (cos(2mz)

15
+cos(2my) + 2)3(10 — Ze(t_l)(cos(%m') + cos(2my) + 2)

+cos(2my) + 2) +

—l—ge2(t_1)(cos(2mz) + cos(2my) +2)*) (D — Ds)) (8¢ D (2*(1 — z)?

+2(1 = 9)?) — 6420V (@ (1 — @) + (1 — 9)2)?)

1 1
X (Wb(ge(til)(COS(ZWm) + cos(2my) + 2) + 1—663“’1) (cos(2mz)

3
+cos(2my) + 2)3 - g(32(t—1)(00(9(27rx) + cos(2my) + 2)?)

15 1
+§LbTb62(t’1)(c08(2ﬂx) + cos(2my) 4+ 2)*(1 — Ze(tfl) (cos(2mz)

1
+cos(2my) + 2))2 - Wa(§e(t_1)(cos(27r:v) + cos(2my) + 2)

1 3
+1—663(t_1)(cos(27rx) + cos(2my) + 2)* — §€2(t—1) (cos(2mz)
15

+cos(2my) + 2)2) - gLaTaeQ(t’l) (cos(2mx) + cos(2my)

+2)%(1 — ie(t_l)(cos(%'m) + cos(2my) +2))°)

(—e(t_l)cos(%r:zc)w2 — e(t_l)cos(27ry)7r2).
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Now we shall give the expressions for the right-hand-side of the anisotropic problem
below:

Fu(x,t) = p(47re(t_1)x2(1 — x)*sin(27my)cos(2my)
+4reVa2(1 — )2sin(2my) cos(2my) (Sme V(1 — z)%sin(2my)cos(2my)
—8mel" Va2 (1 — z)sin(2my)cos(27y))
—2e V(222 — 3z + 1)sin(2my)? (872 Va?(1 — z)%cos(2my)?
—8r%et V(1 — x)2sin(2my) %)
—2e Vsin(2nz)m — p(8me V(1 — z)2sin(2my)cos(2my)
—32me" V(1 — z)sin(2my)cos(2my)

+8mel"Va?sin(2my)cos(2my) — 64" Va?(1 — x)?cos(2my) sin(2my))

K
— =LtV (cos(2mx) + cos(2my) + 2) (—2e" D (22® — 37 + 1)sin(2my)*

—Are Y21 — x)?sin(2my)cos(2my))

K.
— 26D (cos(2mx) + cos(2my) + 2)

F,(x,t) = p(—2e(t_1):z;(2x2 — 3z + 1)sin(27y)?
+4meVa?(1 — z)2sin(2my)cos(2my) — 2e47Y (22° — 3z
+1)sin®(2my) — 2e( V(4 — 3)sin®(2my)) + 162071 g2 (22°
-3z + 1)23in(27ry)3cos(27ry)7r)
—u(—4e(t’1)(4x — 3)sin(2my)? — 8e Vasin(2my)?
—16e""Vx(22% — 32 + 1)cos(2my)*n°
+16e* V(222 — 3z + 1)sin(2my)*n?) — 2Kt (cos(2mz)
+cos(2my) + 2) (% (1 — 2)* + y* (1 — y)?)

K
—f (=1 (cos(2mx) + cos(2my) + 2) (dmelVa? (1

—x)Qsm(27Ty)cos(27Ty) + 2et V(222 — 32 + 1)sin(2my)?)

K,
— 226t (cos(2m) + cos(2my) + 2)
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F¢ (X, t)

where

1
= Z—le(t’l)(cos(Qﬂx) + cos(2my) + 2) — 222V (1 — )2

sin(2my)cos(2my)sin(2nx) 4+ 2 Va(22% — 3z 4 1)sin(2my)>w

(2
—vep0(1 + yocos(kk * arctan(M))) (—e(t_l)cos(27rx)7r2

sin(2mx)
—eVeos(2my)m?) +v((1 — 8"V (2?(1 — 2) + y*(1 — y)?))
1
x (W (1/2"V (cos(2mx) + cos(2my) + 2) + 1—663(“1) (cos(2mz)
3
+cos(2my) + 2) -3¢

15
+§LaTa€2(t_l)(COS<27TI) + cos(2my) + 2)*(1

D (cos(2mz) + cos(2my) + 2)%)

—%e“‘”(cos(?m;) + cos(2my) + 2))2) +8e" D (2*(1 — z)?
+y2(1 —y)?) (Wy(1/2e"V (cos(2mz) + cos(2my) + 2)

1 3
+1—663(t’1)(cos(27rx) + cos(2my) + 2)% — §e2(t*1) (cos(2mz)

15
+cos(2my) + 2)2) + ngTbe%—l) (cos(2mz) + cos(2my)
1
+2)2(1 — L—le(t’l)(cos(ch) + cos(2my) + 2))2))

1ep02 (1 + vocos(kk * arctcm( in(2ry) )))okk?

1 sin(2mx)

2

sin(2ry ))+ epO2 /{:stm(k:ka’rctan(M))Q)

sin(2nx)
x (e Deos(2mx)n® + e Veos(2my)n® — (—eVeos(2my) 7

+€(t71)003(27rx)7r2) cos (2 * arctan (%) ) )

+vep0? (1 + Yocos (/{:l{; * arctan(%)))

)
cos (k/mrctan ( sin(2ra)

SIOTY) ) i (2arctan (2T

xyok:k:sm(k’karctan( sin(2rx)

sin(2mz)
x (—e"Veos(2my)n? + e Veos(2mz)w?)

FC(X, t) = Flc(x, t) + FQC(X, t).
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Fio(x,t) =8¢V (@*(1 — 2)* + y*(1 — y)?) + 32me* V(1 — 2)%sin(2my)
xcos(2my)(2z(1 — z)* — 22°(1 — 2)) — 1662(t_1).1'(2$2 — 3z

+1)sin(2my)*(2y(1 — y)> — 2°(1 — y)) — (185

1
X (cos(2mz) + cos(2my) + 2)* (1 — Ze(t_l) (cos(2mx) + cos(2my)

(Dy, — Dg)e*"™

1
+2))2 + a(Ds + —*"D(cos(2mx) + cos(2my) + 2)*(10

64
—%e(t_l) (cos(2mx) + cos(2my) + 2) + 2 20=1 (cos(2r)
+cos(2my) + 2) )(Dr — Dg)) x (1 — 16"V (2%(1 — 2)* + *(1

—y) ) (Wb(—e N )(005(27m) + cos(2my) + 2) + %eg(t_l)

x (cos(2mx) + cos(2my) + 2)* — : 2071 (cos(2mz) + cos(2my)
+2)2) + %LbTbez(t_l)(cos(Qﬂx) + cos(2my) 4+ 2)%(1 — }Le(t_l)
X (cos(2mx) 4 cos(2my) + 2))2 — W, (1/2¢"D (cos(2n)
+cos(2my) + 2) + %eg(tl)(cos@my) + cos(2my) + 2)°
—262“_1)(005(2%@ + cos(2my) + 2)%) — %LaTaew_l) (cos(2mz)
+cos(2my) + 2)2(1 — ie(tl)(cos(%r:c) + cos(2my) + 2))2))
(—462(t_1)sin(27m)7r(2x(1 —z)?—22°(1 —x2)) — 421

1
x sin(2my)m(2y(1 — y)2 — 2y2(1 — y))) (Ds + 6—46 3(t-1)
151

X (cos(2mz) + cos(2my) +2)* (10 — (cos(2mz) + cos(2my)

+2) + : 2D (cos(2mz) + cos(2my) + 2)*)(Dr, — Ds)) (Se(t_l)
x(2(1 — x)* = 8x(1 — x) + 22%) + 8"V (2(1 — y)? — 8y(1 — y)
+2y%)) — a(%(DL — Dg) (8" V(a?(1 — 2)* + y*(1 — y)?)

—64e2 V(221 — 2)* + (1 — y)2)2)62(t_1) (cos(2mz) + cos(2my)

L, D o(t-D)
+2)7(1 - (cos(2mz) 4 cos(2my) + 2)) (Wb(

+cos(2my) + 2).

(cos(2mz)
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FQC (X, t)

=— 3V (cos(2mx) + cos(2my) + 2)°

16
3 15
—562(t_1)(cos(27rx) + cos(2my) + 2)%) + ngTbez(t_l)(cos(wa)

1
+cos(2my) +2)%(1 — Ze(t_l)(cas(2ﬁx) + cos(2my) + 2))2

1
—W,(1/2e"" Y (cos(2mz) + cos(2my) + 2) + Eeg(t’l)(cos(wa) + cos(2my)
15

— §LaTa€2(t_1)(COS(27TZE)

+cos(2my) + 2)*(1 — %le(tl)(cos(ch) + cos(2my) + 2))2)

3
+2)° = 2e*™(cos(2mz) + cos(2my) +2)°%)

1
+(Ds + — 2D (cos(2mx) + cos(2my) + 2)3(10 — 15/4e "V (cos(2mz)

64
+cos(2my) + 2) + 26 =V (cos(2mz) + cos(2my) +2)?) (Dy,
—Dg)) (8eV(z?(1 — z)? + 9*(1 — y)?) — 6421 (z*(1 — z)?
21— ))) (W — W) (1 + Zez(t_l)(cos(%m) + cos(2my) + 2)?
—3/2e""V(cos(2mx) + cos(2my) + 2)) + 60(Ly T,
—L,T,) (ie(t_l) (cos(2mz) + cos(2my) + 2) + 1/32¢%0 (cos(2mz)
+cos(2my) + 2)3 —3/16e*"7Y (cos(2mx) + cos(2my)

+2)2))) (%626_1)3@'”(27&7)2”2 + %62(2& 1)31”(27@)2 2) — oz(Ds

1
+6—463(t*1)(c05(27r:1:) + cos(2my) + 2)*(10 — 15/4e"Y (cos(2rx)

+cos(2my) + 2) + zez(t Y(cos(2mz) + cos(2my) + 2)%) (Dy,
—Ds)) (8eV(22(1 — z)® + (1 — y)?) — 6421 (*(1 — z)?
+y°(1 —y)?) )(Wb(l/Qe(t_l)(cos(wa) + cos(2my) + 2)

1 3
—I—Ee?’(t_l)(cos(%m) + cos(2my) + 2)® — 3¢ et (cos(2mx) + cos(2my)
15 1
+2)2) + ngTbez(t’l)(cos(%m) + cos(2my) + 2)*(1 — Ze(tfl) (cos(2mz)

+cos(2my) + 2))2 — W,(1/2e“Y (cos(2mx) + cos(2my) + 2)

1 3
+—e3 Y (cos(2mx) + cos(2my) + 2)% — 3¢ et (cos(2mx) + cos(2my)

16
2y 19 2(t—1) 2 L -
+2)7) — §LaTae (cos(2mz) + cos(2my) +2)*(1 — 7 (cos(2mz)

+cos(2my) + 2))2) (—e(t_l)cos(27rar;)7r2 — e(t_l)cos(Zwy)w2).
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