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Abstract

In order to understand the behavior of materials in the presence of impurities during

the solidification process, it was required to develop appropriate methodologies for

an analysis and an effective control of the topological changes of the microstructures

(e.g., the formation of dendrites) during the different phases of transformation. The

objective of this thesis is to build a relevant model of solidification of binary alloys

under the action of magnetic fields, to analyze the obtained systems, from a theoretical

and a numerical point of view, and finally, to develop an optimal control method to

control the dynamics of the solidification front by the action of magnetic fields.

Initially, we have described the physics of the problem and the fundamental laws

necessary for modeling, then we built a new model of phase field, which takes into ac-

count the influence of the action of magnetic field on the movement of the solidification

front. The model thus developed is characterized by the coupling of three systems: one

of magnetohydrodynamic type, a second of Boettinger Warren-convection type (rep-

resenting the evolution of the solidification front and the concentration of the binary

mixture) and a third representing the evolution of the temperature. The equations

of the complete system describing the model, in a domain Ω ⊂ Rn, n ≤ 3, are time-

dependent, nonlinear, coupled and anisotropic. In a second part, we have performed

the theoretical analysis of the model in the two-dimensional, isothermal and isotropic

case. We have obtained results of existence, regularity, stability and uniqueness of the

solution, under certain conditions on nonlinear operators of the system. Finally, we

have developed a nonlinear optimal control method : the magnetic field (which acts

multiplicatively) plays the role of the control, and the observation is the desired state

of the dynamics of the front. We have proved the existence of an optimal solution

and obtained the sensitivity of the operator solution and the optimality conditions by

introducing an adjoint problem.

The theoretical part of the thesis is supplemented by an important numerical

work. The analysis and numerical simulations have been conducted on the com-

plete two-dimensional nonlinear (isotropic and anisotropic) problem. We used, for

xi



xii Abstract

discretization, the method of lines which consists to consider separately the spatial

and temporal discretization. The spatial discretization is performed by using a mixed

finite elements scheme and the resolution of the obtained algebraic differential sys-

tem is performed by using the DASSL solver. The discretization of the domain is

performed by unstructured triangular meshes. In the realistic case, they correspond

to a non-uniform mesh that is very fine in area of the dendrite and at the interface.

We have obtained error estimates for the different state variables of the model and

analyzed the robustness and stability of the approximation schemes. This numerical

code has been validated on various examples, and gives excellent results. Then we

have used the code to treat a realistic problem, namely the dendritic solidification

of a binary alloy Nickel-Copper, and to analyze the influence of magnetic fields on

the development of dendrites. The results show the effectiveness of the approach to

reproduce the experimental observations.



Résumé

La compréhension du comportement des matériaux en présence d’impuretés, durant le

processus de solidification, nécessite le développement de méthodologies appropriées

pour une analyse et un contrôle efficace des changements topologiques des microstruc-

tures (par exemple, la formation des dendrites) au cours des différentes phases de

transformation. L’objectif de cette thèse est de construire un modèle pertinent de

solidification d’alliages binaires sous l’action de champs magnétiques, d’analyser les

systèmes issus du modèle mathématique ainsi developpé, d’un point de vue théorique

et numérique, et enfin de développer une méthode de contrôle optimal afin de contrôler

la dynamique du front de solidification par l’action du champs magnétiques.

Dans un premier temps, nous avons décrit la physique du problème et les lois

fondamentales nécessaires à la modélisation, puis nous avons construit un nouveau

modèle de champ de phase, qui tient compte de l’influence de l’action du champ mag-

nétique sur le mouvement du front de solidification. Le modèle ainsi développé est

caractérisé par le couplage de trois systèmes : un de type magnétohydrodynamique, un

second de type Warren-Boettingger avec convection (représentant l’évolution du front

de solidification et la concentration du mélange binaire) et un troisième représen-

tant l’évolution de la température. Les équations du système complet décrivant le

modèle, dans un domaine Ω ⊂ Rn, n ≤ 3, sont évolutives, non linéaires, couplées

et anisotropes. Dans une seconde partie, nous avons effectué l’analyse théorique du

modèle développé dans le cas isotherme et isotrope en dimension deux. Nous avons

obtenu des résultats d’existence, de régularité, de stabilité et d’unicité d’une solution,

sous certaines conditions sur des opérateurs non linéaires du système. Enfin, nous

avons développé une méthode de contrôle optimal non linéaire : le champ magnétique

(qui intervient sous forme multiplicative) joue le rôle de contrôle, et l’observation est

l’état désiré de la dynamique du front. Nous avons démontré l’existence d’une solution

optimale et obtenu la sensibilité de l’opérateur solution et les conditions d’optimalité

en introduisant un problème adjoint.

xiii



xiv Résumé

Cette partie théorique de la thèse est complétée par un important travail numérique.

L’analyse et les simulations numériques ont été menées sur le problème complet bi-

dimensionnel non linéaire (isotrope et anisotrope). Nous avons utilisé pour la discréti-

sation la méthode des lignes qui consiste à considérer séparément la discrétisation tem-

porelle et spatiale. La discrétisation spatiale est effectuée par un schéma d’éléments

finis mixtes et le système différentiel algébrique obtenu est résolu par l’utilisation du

solveur DASSL. La discrétisation du domaine est effectuée par des mailles triangulaires

non structurées. Dans le cas réaliste, elles correspondent à un maillage non uniforme

et très fin dans la zone de la dentrite et au niveau de l’interface. Nous avons obtenu

des estimations d’erreur pour les différentes variables d’état du modèle et analysé

la robustesse et la stabilité des schémas d’approximation. Ce code numérique a été

validé sur différents exemples, et donne d’excellents résultats. Ensuite, nous avons

exploité le code pour traiter un problème réaliste, à savoir la solidification dendritique

d’un alliage binaire Nickel-Cuivre, et analyser l’influence de champs magnétiques sur

l’évolution des dendrites. Les résultats obtenus montrent l’efficacité de l’approche à

reproduire les observations expérimentales.



Introduction

La solidification (ou congélation) est le processus par lequel un métal pur ou un

mélange de deux ou plusieurs métaux sous forme liquide se transforme en solide par

refroidissement (cas classique), par augmentation de la pression, ou bien par une com-

binaison des deux. En présence d’impuretés dans les métaux, lors du processus de

solidification, des cristaux ramifiés en forme d’arbre, appelés dendrites, commencent

à se générer autour de ces impuretés. Les microstructures des dendrites ainsi générées

durant ce processus, déterminent les futures propriétés du matériau (solidifié). De

plus, ce front de solidification est en général instable (très sensible aux variations

de gradient de température ou de composition chimique, ceux-ci jouant un rôle im-

portant dans la croissance). Par conséquent, l’observation et l’analyse de ce front de

solidification ont un grand intérêt scientifique et industriel. Afin d’améliorer la qualité

et les propriétés des mélanges, le défi industriel majeur réside dans la possibilité de

contrôler la structure du métal ainsi que ses défauts. C’est pour cette raison que les

scientifiques tentent de mâıtriser la croissance et la structure des dendrites pendant le

processus de solidification, afin d’obtenir les propriétés désirées pour les métaux (ou

alliages) considérés.

Dans la littérature, il existe deux types d’approche pour modéliser ce phénomène

de solidification. La première est le modèle de surface libre de Stefan entre les phases

liquide et solide, qui tient compte de la diffusion de chaleur dans chaque phase et

l’échange de chaleur latente à l’interface des phases. Les équations satisfaites par les

variables thermodynamiques, comme la température et la composition du système,

sont formulées et résolues de façon indépendante pour chaque phase. Les conditions

aux limites au niveau de l’interface solide-liquide sont basées classiquement sur les lois

de conservation (de l’énergie). Pour plus de détails, on peut consulter, par exemple,

le livre de A. Visintin [9].

La seconde approche est la méthode de champ de phase, qui, contrairement à

l’approche classique de Stefan (qui impose beaucoup de contraintes), traite le sys-

tème dans son ensemble. Dans cette approche, les équations décrivent à la fois les

1



2 Introduction

phases liquide et solide et l’interface liquide/solide, par l’introduction d’une variable

d’état supplémentaire dite de champ de phase ψ, un paramètre d’ordre abstrait qui

représente la transition de phase à chaque point de l’espace et à chaque instant (1).

Cette nouvelle variable ψ prend des valeurs constantes dans la phase liquide, par ex-

emple 0, et dans la phase solide, par exemple 1, et permet une transition entre ces

deux phases avec une variation régulière mais rapide entre 0 et 1. Cette modélisation

évite en particulier un traitement numérique spécifique de l’interface solide/liquide,

tout en reproduisant les principaux mécanismes physiques de la transition de phase

entre les deux phases. En effet, l’interface apparait naturellement dans ce modèle

par l’introduction de l’équation de champ de phase, ce qui permet ainsi la résolution

numérique du modèle à l’aide de schémas classiques. En outre, cette approche permet

également de prendre en compte naturellement différents phénomènes physiques, tels

que l’élasticité ou l’électromagnétisme.

Les modèles de champ de phase sont devenus un outil important pour simuler,

lors du processus de solidification d’alliage binaire, la formation et la croissance des

dentrites. Ils ont fait l’objet de très nombreux travaux aussi bien d’un point de

vue mathématique que numérique, voir par exemple, A. A. Wheeler et al. [1], A.

Belmiloudi [6]-[8], G. Caginalp [19], J. Rappaz [34], P. Laurencot [49] S. L. Wang

[57]. On peut noter l’existence de solutions analytiques pour ce type de modèle, mais

cela reste limité à des cas très simples. Dans le cas de situations réalistes où le sys-

tème est fortement non linéaire et très complexe, la simulation numérique est un outil

nécessaire, voire indispensable; il joue un rôle important dans la compréhension et

l’analyse de la formation des microstructures des dendrites. Dans ce cadre, on peut

citer différents travaux de simulations de la croissance dendritique de métaux purs

ou mélangés, par exemple, les travaux de B. Kaouil et al. [10], D. Kessler [14], J. A.

Warren and W. J. Boettinger [24], J. C Ramirez and C. Beckermann et al. [25]-[26],

M. Grujicic et al. [39], O. Kruger [46], R. Kobayashi [53], T. Takaki et al. [58]. De

plus, ces dix dernières années, la méthode de champ de phase a été étendue pour

inclure l’effet de la convection sur la croissance des dendrites. Cela a été motivé par le

fait que pendant des expériences de solidification, on a observé un impact significatif

du mouvement dans le liquide sur la formation et l’évolution de la microstructure

dendritique. Pour des travaux sur les simulations des modèles de champs de phase

intégrant la convection, on peut citer par exemple dans le cas de modèles pour la so-

lidification d’un métal pur: D. M. Anderson et al. [15] qui ont développé un modèle en

(1) Ce paramètre peut être comparé à la fonction indicatrice de phase utilisée dans les techniques
numériques traitant les interfaces comme des surfaces de discontinuité.
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utilisant des équations de Navier-Stokes et en supposant que la viscosité et la densité

sont des fonctions dépendant du champ de phase (les deux phases sont traitées comme

deux fluides); R. Tonhardt et G. Amberg [56], et Tong X. et al. [61] qui ont donné des

modèles par l’introduction de la convection naturelle en utilisant les équations de type

Navier-Stokes et en forçant la vitesse à être nulle dans la phase solide. Pour d’autres

modèles, on peut citer, par exemple, les travaux de N. Al-Rawahi et G. Tryggvason

[44, 45], et E. Bansch et A. Schmidt [16].

Récemment, il a été observé expérimentalement que le mouvement du fluide et

sa direction peuvent être contrôlés en appliquant des champs magnétiques ou des

courants électriques pendant le processus de solidification, afin d’améliorer la qualité

et les propriétés des métaux. Par exemple, Mingjun Li et al. [40]-[41] ont montré

expérimentalement que les dendrites secondaires dans le matériau peuvent devenir

plus fines, plus homogènes et équiaxes par l’application de champs magnétiques ou de

courants électriques durant la solidification. Malheureusement, ils n’ont pas discuté

l’effet du champ magnétique ou du courant électrique sur la structure elle-même des

dendrites. Il est donc nécessaire maintenant d’analyser les effets et les influences du

champ magnétique (ou du courant électrique) sur la dynamique et la structure des

dendrites. D’autres applications de l’influence des champs magnétiques (ou courants

électriques) sur le comportement des matériaux, ont été étudiées : on peut citer, par

exemple, pour des écoulements MHD, H. Ben Hadid et al. [21]-[22]; dans le cadre

des semi-conducteurs et la croissance des cristaux, A. Belmiloudi [8], M. Gunzberger

et al. [38], M. Watanabe et al. [42], V. Galindo et al. [59] et pour les processus de

solidification, J. K. Roplekar et J. A. Dantzig [29], J. Rappaz et R. Touzani [35], P.

J. Prescott [48].

Dans cette thèse, nous avons développé un modèle de champ de phase pour anal-

yser l’effet du champ magnétique sur la dynamique des dendrites lors de la solidifica-

tion d’un mélange binaire. Considérons un alliage de deux composants A et B dans

un domaine spatial Ω, le système est caractérisé par un couplage entre l’équation

de la concentration relative du composant B avec le respect du mélange, l’équation

du champ de phase, l’équation de l’énergie et le système d’écoulement magnétohy-

drodynamique qui décrit le mouvement dans la phase liquide sous l’effet du champ

magnétique dans un environnement non-isotherme. Le point de départ de notre tra-

vail est le modèle à deux dimensions de J. A. Warren et W. J. Boettinger [24], dont

les variables d’état sont la fonction de champ de phase et la concentration. Dans le

présent travail, nous avons tout d’abord généralisé les modèles de J. A. Warren et W.



4 Introduction

J. Boettinger [24] et de M. Grujicic et al. [39] (en tenant compte des différentes ob-

servations expérimentales, citées précédemment), en incluant l’effet de la convection

dans les équations de champ de phase, de la concentration et de l’énergie ainsi qu’en

introduisant un système d’écoulement magnétohydrodynamique qui tient compte des

effets du champ magnétique. Ensuite, nous avons discuté différentes situations et

étudié théoriquement et numériquement le modèle développé précédemment. Plus

précisément, le travail de la thèse est organisé comme suit.

Dans le chapitre 1, nous décrivons tout d’abord la physique du problème, en-

suite nous donnons les lois fondamentales nécessaires à la modélisation et enfin nous

construisons un nouveau modèle de champ de phase, dans un environnement non-

isotherme, qui tient compte de l’influence de l’action du champ magnétique sur le

mouvement du front de solidification. Le modèle ainsi développé est caractérisé par

le couplage de trois systèmes. Le premier est un système de type magnétohydrody-

namique défini par des équations de type Navier-Stokes incompressible et des approx-

imations de Boussinesq couplées à l’électromagnétisme (qui représente le mouvement

dans la phase liquide sous l’action d’un champ magnétique). Le second est un système

de type Warren-Boettinger avec convection (non linéaire de type transport-diffusion)

qui représente l’évolution de la fonction de champ de phase et de la concentration

au cours du processus de solidification. Le troisième est un système d’énergie (non

linéaire de type transport-diffusion) qui représente l’évolution de température durant

le processus de solidification. Les équations du système complet décrivant le modèle,

dans un domaine Ω ⊂ Rn, n ≤ 3, sont évolutives, non linéaires, couplées et anisotrope.

Les variables d’état du modèle sont u, p, ψ, c et T , où, pour x dans Ω et à l’instant t,

u(x, t) et p(x, t) représentent la vitesse et la pression dans le système de type mag-

nétohydrodynamique; ψ(x, t) est la variable de champ de phase dont la valeur varie

entre 0 (quand le système est dans une phase solide) et 1 (quand le système est dans

une phase liquide), sur une fine couche qui sépare les deux phases; c(x, t) représente

la concentration relative qui varie également entre 0 et 1; T (x, t) représente la tem-

pérature du système. Nous avons examiné différents cas particuliers de notre modèle

à savoir, le cas isotrope, l’environnement isotherme, le cas anisotrope-isotherme et le

cas de la dimension deux.

Dans le chapitre 2, nous avons effectué l’analyse mathématique du modèle développé

dans le cas isotherme et isotrope en dimension deux. Nous avons obtenu des résul-

tats d’existence, de régularité, de stabilité et d’unicité d’une solution (u, p, ψ, c), sous

certaines conditions de Lipschitz et de bornitude sur des opérateurs non linéaires du

système. Le résultat d’existence est prouvé par l’utilisation d’une méthode de type
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Faedo-Galerkin. Pour obtenir l’unicité et la stabilité en fonction des données, nous

avons été amené à obtenir une régularité très fine de la solution. Plus précisément,

nous avons prouvé, entre autres, la régularité suivante

u ∈ L2
(

0, Tf ,
(
H2(Ω)

)2
)
∩ L∞

(
0, Tf ,

(
H1

0 (Ω)
)2
)
,

∂u

∂t
∈ L2

(
0, Tf ;

(
L2(Ω)

)2
)
,

ψ ∈ L2
(
0, Tf , H

3(Ω)
)
∩ L∞

(
0, Tf , H

2(Ω)
)
,

∂ψ

∂t
∈ L2(0, Tf ;H

1(Ω)),

c ∈ L2
(
0, Tf , H

2(Ω)
)
∩ L∞

(
0, Tf , H

1(Ω)
)
,

∂c

∂t
∈ L2(0, Tf ;L

2(Ω)),

où Tf est le temps final et Ω ⊂ R2.

Dans le chapitre 3, nous avons effectué l’analyse numérique des modèles dévelop-

pés dans le cas isotherme et bi-dimensionnel c’est-à-dire le cas isotherme-isotrope

(TDII) et le cas isotherme-anisotrope (TDIA). Nous avons développé un schéma

numérique pour résoudre ces modèles et étudié la convergence et la stabilité du schéma

d’approximation pour ces deux modèles. La discrétisation en espace est effectuée

en utilisant des éléments finis mixtes et nous avons utilisé le solveur DASSL pour

intégrer numériquement le système différentiel non linéaire obtenu après discretisa-

tion. Pour étudier la convergence espace-temps du schéma numérique développé,

nous avons considéré différents types d’éléments finis mixtes. Pour étudier la stabilité

du schéma, nous avons généré des perturbations dans les équations du modèle par

l’introduction d’une fonction aléatoire, dont les valeurs varient entre 0 et 1, multi-

pliée par un paramètre qui contrôle le pourcentage d’erreur aléatoire. Cette stabilité

a été étudié en augmentant progressivement le pourcentage d’erreur jusqu’à 40%.

La convergence, les estimations d’erreurs et la stabilité du schéma ont été validés

numériquement sur différents exemples. Cette analyse a montré, entre autres, la sta-

bilité du schéma et l’adéquation entre les estimations d’erreurs numériques et les esti-

mations d’erreurs théoriques. Pour mettre en œuvre le schéma numérique, nous avons

utilisé les logiciels COMSOL Multiphysics version 3.4 et MatLab version (2007a). Le

couplage entre Matlab et Comsol s’est avéré indispensable pour nous permettre d’une

part d’introduire l’opérateur différentiel d’anisotropie et les termes aléatoires dans les

modèles, d’autres part pour analyser la convergence et étudier les estimations d’erreurs

espace-temps, et enfin pour mettre en oeuvre le problème de contrôle qui est en cours

de test et de validation.

Le but du chapitre 4 est d’analyser numériquement l’influence du champ magné-

tique sur la dynamique et la structure des dendrites durant la solidification de l’alliage

binaire Nickel-Cuivre (Ni-Cu) dans le cas de données réalistes et du modèle complet

(TDIA). Pour cela, nous avons tout d’abord adimensionalisé le système, et ensuite
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réduit le modèle, par l’élimination du système de la magnétohydrodynamique et des

termes de convection, afin de valider notre approche en comparant les résultats du

modèle réduit avec ceux de Warren et Boettinger, et Grujicic et al. Pour analyser

l’influence du champ magnétique, nous avons simulé dans un premier temps le mod-

èle (TDIA) sans champ magnétique et ensuite, nous avons considéré l’influence de

trois fonctions de champ magnétique à savoir deux champs magnétiques constants

classiques d’angle 90◦ et 45◦, et un champ magnétique variable. Nous n’avons pas

observé d’influence significative du champ magnétique d’angle 90◦ sur la forme des

dendrites, contrairement au champ magnétique d’angle 45◦; par contre le champ mag-

nétique variable déforme considérablement la structure de la dentrite. Nous avons

aussi observé que la direction du mouvement du liquide a été complètement modifiée

sous l’action des champs magnétiques exercés. On peut conclure que l’application

du champ magnétique influence considérablement la dynamique et la structure des

dendrites, ainsi que la direction du mouvement du liquide. Ces observations sont en

accord avec les études expérimentales développées, par exemple, par Prescott [48].

Cette dernière analyse a motivé le travail du chapitre 5.

Le chapitre 5 concerne le contrôle de la dynamique du front de solidification par

l’action du champ magnétique, en utilisant la théorie du contrôle optimal, la fonction

de champ magnétique jouant le rôle de variable de contrôle. Pour les problèmes de

contrôle associés aux modèles de champ de phase, on peut citer K. H. Hoffman et al.

[36], où les auteurs ont étudié le contrôle optimal de la solidification des matériaux

purs; A. Belmiloudi et al. [6]-[8], où les auteurs ont étudié les problèmes de contrôle

robuste et de stabilisation du front lors d’une solidification non isotherme de matéri-

aux purs et d’une solidification isotherme d’alliages binaires, en tenant compte de

l’influence des bruits et des fluctuations. Pour des problèmes de contrôle en utilisant

le champ magnétique comme variable de contrôle, on peut citer, par exemple dans le

cadre de matériaux semiconducteur fondu et le processus de croissance d’un cristal par

méthode Czochralski, M. Gunzburger et al. [38], où les auteurs ont étudié le contrôle

du gradient de température dans le cristal durant ce processus et A. Belmiloudi [8],

où l’auteur a analysé la stabilisation de la dynamique durant ce processus en tenant

compte des fluctuations et des impuretés du matériau.

Le problème de contrôle non linéaire traité dans cette thèse diffère des problèmes

examinés par les auteurs cités précédemment, par la nature du système d’équations

du modèle considéré qui inclut, en plus du système concentration-champ de phase,

un système de type magnétohydrodynamique augmenté de nouveaux opérateurs non

linéaires qui intègrent entre autres le champ magnétique B sous la forme non linéaire
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suivante (u×B)×B + a(ψ)B où u est la vitesse et ψ est le paramètre de champ de

phase. Le problème de contrôle a été formulé dans le cadre du modèle (TDII), ensuite

l’existence d’une solution optimale a été analysée et les conditions d’optimalité ont

été obtenues.





Chapter 1

Modeling Solidification and

Melting Problems

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Physical Laws . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Evolution Equation for Phase-Field Variable . . . . . . . 12

1.3.1 Two dimensional case . . . . . . . . . . . . . . . . . . . . . 20

1.4 Energy and Concentration Equations . . . . . . . . . . . 25

1.5 Evolution Equations for the Melt Flow . . . . . . . . . . 29

1.6 Mathematical Models . . . . . . . . . . . . . . . . . . . . . 32

1.6.1 Isothermal-Anisotropic Case . . . . . . . . . . . . . . . . . . 33

1.6.2 Two Dimensional Isothermal-Anisotropic Case . . . . . . . 34

1.6.3 Two dimensional Isothermal and Isotropic Case . . . . . . . 35

9



10 Modeling Solidification and Melting Problems

1.1 Introduction

Application of the phase-field methods and other diffusive interface methods of solid-

ification has been limited to the problems where the transport of heat and/or solute

is by diffusion only. But, when the solid crystal (or seed) grows in a solidification

process, the size, morphology, growth rate etc. of the crystal may be affected by

any motion in the melt. This motion in a melt is therefore important and cannot

be ignored. Such melt flows may occur due to, for example, temperature gradients,

concentration gradients, buoyancy-driven flow, natural convection due to the release

of latent heat from the growing crystal etc. In this chapter we shall derive the model

problem which describes the solidification of a binary alloy in the presence of flow in

the liquid phase. The commencing point of the present work is the two dimensional

model of solidification of binary alloy of J. A. Warren, W. J. Boettinger [24] and M.

Grujicic [39]. In the present work this model will be extended subsequently to include

the effects of convection in the phase-field, concentration and energy equations and

also the equations of melt flow in the presence of a magnetic field, applied to the entire

domain, will be included.

In the first section 1.1 we shall give the general physical laws used to derive the evo-

lution equations of the phase field, concentration, energy density and melt flow. In

the section 1.2 we shall derive the equation of phase field explicitly which is based on

the entropy functional analogous to Wang et al.[57]. In the section 1.3 we shall give

the derivation of evolution equations of concentration and energy which are derived

using the theory of irreversible processes. And in the section 1.4, we shall derive the

equations of the melt flow using the incompressible Navier-Stokes equations with the

Boussinesq approximations and the entire set of model equations will be given in the

section 1.5. Finally, we shall give the two dimensional isothermal and isotropic model

in the section 1.6.

1.2 Physical Laws

Let Ω be a closed bounded region in Rn, where n is the number of space dimension,

with a piecewise smooth boundary Γ = ∂Ω. Initially the region Ω is occupied by a

binary alloy of the solute B in the solvent A, which is considered as incompressible

electrically conducting fluid.

At time t, the position of the system is described by the phase field variable ψ(x, t)

which takes values in the interval [0, 1] where the values ψ = 0 and ψ = 1 correspond
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to the pure solid and pure liquid phases respectively (see the Fig. 1.1), concentration

c(x, t) which is the mole fraction of solute B in the solvent A, energy density e(x, t)

and the velocity field u(x, t). The governing equations for the and concentration

Figure 1.1: Solidification of a binary alloy.

c(x, t) will be derived by using conservation laws of the energy and concentration

respectively as
De(x, t)

Dt
+ div(Je) = 0, (1.1)

Dc(x, t)

Dt
+ div(Jc) = 0, (1.2)

where D/Dt = ∂/∂t + u · ∇ is the material time derivative and Je and Jc are the

conserved fluxes of energy and concentration respectively. These equations depend

on the entropy functional, denoted by S(ψ, c, e), which will be used to construct the

expressions for the fluxes of energy density and concentration respectively.

As the phase field variable ψ(x, t) is not a conserved quantity therefore the most

appropriate form of the evolution equation for the phase field is (as in [24])

Dψ(x, t)

Dt
= Mψ

δS(ψ, c, e)

δψ
, (1.3)

where Mψ > 0 is the interfacial mobility parameter and operator δ denotes variational

derivative and S(ψ, c, e) is the entropy functional which will be given later. The phase

field variable ψ(x, t) varies smoothly in the interval (0, 1) and its value in the solid

phase is 0 and in the liquid phase is 1.
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The governing equation for the velocity field u(x, t) will be derived by using the

conservation of momentum and mass as

ρ
Du(x, t)

Dt
= div(~σ) + ρBf , (1.4)

div(u(x, t)) = 0, (1.5)

where ρ is the density of the fluid, ~σ is the stress tensor, u(x, t) is the velocity of the

fluid and Bf is the body force.

In the next section, the detailed derivation of the evolution equation for the phase-field

variable ψ(x, t) is given.

1.3 Evolution Equation for Phase-Field Variable

To derive the evolution equation for the phase-field variable ψ(x, t) that indicates

the phase of the material at each point (x, t), we demand that the entropy of an

irreversible system always increases locally for a system where the internal energy

and concentration are conserved, the entropy is represented by the functional [24]

S(ψ, c, e) =

∫
Ω

(
s(ψ, c, e)− ε2θ

2
|∇ψ|2

)
dx, (1.6)

where s(ψ, c, e) is an entropy density, e(x, t) is the internal energy, ψ(x, t) is the phase-

field variable and c(x, t) is the mole fraction of solute B in the solvent A. The second

term in the integrand is a gradient entropy term analogous to the gradient energy term

in the free energy, where the parameter εθ is the interfacial energy parameter which

represents the gradient corrections to the entropy density. Here, we have omitted the

gradient corrections in the concentration c(x, t) and energy density e(x, t).

Now we need to take variational derivative of the functional S(ψ, c, e) in the sense of

distribution. Let X be a topological space and U is an open set in X. Then variational

derivative of equation (1.6) at ψ ∈ U in the direction of ξ ∈ D(U) is〈
δS(ψ, c, e)

δψ
, ξ

〉
D′(U),D(U)

=

〈
∂s(ψ, c, e)

∂ψ
, ξ

〉
D′(U),D(U)

−
〈
∂

∂ψ

(
ε2θ
2
|∇ψ|2

)
, ξ

〉
D′(U),D(U)

, (1.7)

where D′(U) is the space of distributions corresponding to the space D(U) of test

functions on U with compact support.

Consider now the term

I =

〈
∂

∂ψ

(
ε2θ
2
|∇ψ|2

)
, ξ

〉
D′(U),D(U)

=

∫
Ω

∂

∂ψ

(
ε2θ
2
|∇ψ|2

)
ξdx
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Figure 1.2: Early stages of dendrites of the Fe-Si during the solidification provided by

Andrew Fairbank (University of Wollongong Australia)

and carrying out the differentiation in the integrand on the right hand side of the

above equation with respect to ψ, we have

I =

∫
Ω

(
εθ |∇ψ|2

∂εθ
∂ψ
· ξ + ε2θ∇ψ · ∇ξ

)
dx.

Since εθ is a function of θ, therefore applying the chain rule and using divergence

theorem, we arrive at

I =

∫
Ω

(
εθ |∇ψ|2

∂εθ
∂θ

∂θ

∂ψ
· ξ − div

(
ε2θ∇ψ

)
ξ

)
dx. (1.8)

Therefore the variational derivative of S can be given as

δS

δψ
=
∂s

∂ψ
+ div

(
ε2θ∇ψ

)
− A

(
εθ, ε

′
θ,
∂θ

∂ψ
,∇ψ

)
, (1.9)

where ε′θ = ∂εθ/∂θ and A
(
εθ, ε

′
θ,

∂θ
∂ψ
,∇ψ

)
= εθε

′
θ
∂θ
∂ψ
|∇ψ|2.

Now we shall compute the derivative of the entropy density s(ψ, c, e) with respect to

ψ, i.e. ∂s/∂ψ using free energy density f(ψ, c, T ).

As we know from the basic thermodynamics that the free energy density can be defined

by

f(ψ, c, T ) = e(ψ, c, T )− Ts(ψ, c, e),
1

T
=
∂s

∂e
(ψ, c, e),

 (1.10)
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where e(ψ, c, T ) and s(e, ψ, c) are the internal energy density and entropy density of

the binary alloy and T (x, t) is the temperature at any point in the time-space domain.

Taking differential of the above equation we have

df(ψ, c, T ) = de(ψ, c, T )− Tds(ψ, c, e)− s(ψ, c, e)dT,

or

df(ψ, c, T ) = de(ψ, c, T )− T
(
∂s

∂e
de+

∂s

∂ψ
dψ +

∂s

∂c
dc

)
− sdT.

Using the definition of the temperature (i.e., 1/T = ∂s/∂e), the above equation takes

the form

df(ψ, c, T ) = −T ∂s
∂ψ

dψ − T ∂s
∂c

dc− sdT. (1.11)

Also as we know that

df(ψ, c, T ) =
∂f

∂ψ
dψ +

∂f

∂c
dc+

∂f

∂T
dT. (1.12)

Comparing equation (1.11) and (1.12), we have the following relations

∂s(ψ, c, e)

∂ψ
= − 1

T

∂f(ψ, c, T )

∂ψ
, (1.13)

∂s(ψ, c, e)

∂c
= − 1

T

∂f(ψ, c, T )

∂c
, (1.14)

∂f(ψ, c, T )

∂T
= −s(ψ, c, e). (1.15)

An explicit relation of the free energy density f(ψ, c, T ) of a binary alloy is given in

[24] as

f(ψ, c, T ) = (1− c)µA(ψ, c, T ) + cµB(ψ, c, T ), (1.16)

where µA(ψ, c, T ) and µB(ψ, c, T ) are the corresponding chemical potentials of the

two constituent species, and are defined by

µA(ψ, c, T ) = fA(ψ, T ) + λ(ψ)c2 +
RT

Vm
ln(1− c), (1.17)

µB(ψ, c, T ) = fB(ψ, T ) + λ(ψ)(1− c)2 +
RT

Vm
ln(c), (1.18)

where fA(ψ, T ) and fB(ψ, T ) are the free energy densities for substances A and B

respectively, R is the universal gas constant, Vm is the molar volume and λ(ψ) the

regular solution interaction parameter associated with the enthalpy of mixing and is

assumed to be

λ (ψ) = λS + p(ψ)(λL − λS),
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where the parameters λS and λL are the enthalpies of mixing of the solid and liquid

respectively.

Here it is assumed that the solution is ideal [24], therefore the parameters λS and λL

are assumed to be zero and hence λ (ψ) = 0.

Now using the basic thermodynamic, the relationship for the free energy density of

the pure substance can be given as

fI(ψ, T ) = eI(ψ, T )− TsI(ψ, T ), I = A,B. (1.19)

where eI(ψ, T ) is the internal energy density and sI(ψ, T ) is the entropy density of

the pure substance I where I = A,B.

The internal energy density for each substance is assumed to have the form in [24] as

eI (ψ, T ) = eI,S(T ) + p(ψ)(eI,L(T )− eI,S(T )), I = A,B. (1.20)

where eI,S(T ) and eI,L(T ) are the solid and liquid internal energies of the pure sub-

stances I where I = A,B, and are further defined as

eI,S(T ) = eI,S(T Im) + CI
S(T − T Im), (1.21)

eI,L(T ) = eI,L(T Im) + CI
L(T − T Im), (1.22)

where T Im is the melting temperature, CI
S and CI

L are the heat capacities of solid and

liquid and eI,S(T Im) and eI,L(T Im) are the internal energies of solid and liquid at the

melting temperature respectively of the substance I, where I = A,B.

The factor p(ψ) should be selected here in the way that it is 0 in the solid phase to

recover the internal energy density of solid and 1 in the liquid phase to obtain the

internal energy density of the liquid for the pure substance I, that is, it should satisfy

the following conditions

p(0) = p(1) = 0

p′(ψ) > 0, ∀ ψ ∈ ]0, 1[. (1.23)

We shall elucidate further the choice of p(ψ) below.

The latent heat of each pure substance is defined as

LI = eI,L(T Im)− eI,S(T Im), I = A,B. (1.24)

Supposing that heat capacities are identical (i.e. CI
S = CI

L = CI) for solid and liquid

phase of each substance, we can write the final form of the internal energy densities

of each substance using equations (1.21), (1.22) and (1.24) as

eI (ψ, T ) = eI,S(T Im) + CI(T − T Im) + p(ψ)LI , I = A,B. (1.25)
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Now using equation (1.15), the equation (1.19) can be written as

fI(ψ, T ) = eI(ψ, T ) + T
∂fI
∂T

(ψ, T ), I = A,B.

or

T
∂fI
∂T

(ψ, T )− fI(ψ, T ) + eI(ψ, T ) = 0, I = A,B.

The above equation can further be written as

T 2∂ (fI/T )

∂T
+ eI(ψ, T ) = 0

and dividing by T 2, we get

∂ (fI/T )

∂T
+
eI(ψ, T )

T 2
= 0.

Integrating above equation with respect to T from T to T Im, we have

1

T Im
fI(ψ, T

I
m)− 1

T
fI(ψ, T ) +

∫ T I
m

T

eI(ψ, τ)

τ 2
dτ = 0,

or

fI(ψ, T ) = T

(∫ T I
m

T

eI(ψ, τ)

τ 2
dτ +

1

T Im
fI(ψ, T

I
m)

)
.

According to equation (1.25), we have

fI(ψ, T ) = T

(∫ T I
m

T

eI,S(T Im) + CI(τ − T Im) + p(ψ)LI
τ 2

dτ +
1

T Im
fI(ψ, T

I
m)

)
.

Simplifying above equation, we arrive at

fI(ψ, T ) =
T

T Im
fI(ψ, T

I
m) + eI,S(T Im)

(
1− T

T Im

)
+ CIT

I
m

(
T

T Im
− 1

)
+LIp(ψ)

(
1− T

T Im

)
+ CIT ln

(
T Im
T

)
,

or

fI(ψ, T ) =
T

T Im
fI(ψ, T

I
m) +

(
eI,S(T Im)− CIT Im + LIp(ψ)

)(
1− T

T Im

)
−CIT ln

(
T

T Im

)
. (1.26)

Now the expression fI(ψ, T
I
m) is left only to be determined to achieve the final form

of the free energy density of each substance. The choice of fI(ψ, T
I
m) is dependent on
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the phase field variable ψ as we should have the free energy density of the substance

I in the solid phase at ψ = 0 and in the liquid phase at ψ = 1. Also the free energy

density should be symmetric at the melting temperature with respect to ψ = 1/2.

Thus the free energy density fI(ψ, T
I
m) that follow these conditions can be chosen as

a function g(ψ) of class C2([0, 1], R) which satisfy the following conditions

g(0) = g(1) = 0,

g′(ψ) = 0 iff ψ ∈ {0, 1/2, 1} ,
g′′(0), g′′(1) > 0,

g(ψ) = g(1− ψ).

 (1.27)

This function is being chosen in [24] as

g(ψ) = ψ2(1− ψ)2, (1.28)

which is a double well polynomial function of the minimum degree that satisfy the

properties defined in equation (1.27). More details about the choice and properties

of the function g(ψ) can be found in [24], [14]. Therefore the form of fI(ψ, T
I
m) is

assumed to be

fI(ψ, T
I
m) = T ImWIψ

2(1− ψ)2, (1.29)

where WI is the constant which control the height of the well and is defined as

WI =
3σI√
2T ImδI

, I = A,B. (1.30)

where σI is the solid-liquid interface energy, T Im is the melting temperature and δI is

the interface thickness of the pure substance I. The graph of the fI(ψ, T
I
m) is given in

the Fig. 1.3. Note that, to show that the minima of fI(ψ, T
I
m) lie only in the interval

[0, 1], we have taken the domain interval as [-0.5,1.5] for fI(ψ, T
I
m) in the figure.

Now we shall determine an expression for p(ψ) by demanding that the only stable

states of the system are the solid and liquid states and there are only two minima of

the free energy density fI(ψ, T ) at ψ = 0 and ψ = 1 for any temperature T (x, t).

Differentiating equation (1.26) with respect to ψ and using equation (1.29), we have

∂fI(ψ, T )

∂ψ
= WITg

′(ψ) + LIp
′(ψ)

(
1− T

T Im

)
,

where g′(ψ) = ∂g(ψ)/∂ψ and p′(ψ) = ∂p(ψ)/∂ψ.

As g′(0) = g′(1) = 0, we note from the above equation that ∂fI/∂ψ is zero at ψ = 0

and ψ = 1 only if p′(0) = p′(1) = 0 for any temperature T (x, t). To ensure that



18 Modeling Solidification and Melting Problems

−0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

Figure 1.3: The graph of fI(ψ, T
I
m)

the only minima of the free energy density fI(ψ, T ) are at ψ = 0 and ψ = 1 for any

temperature, the function p(ψ) is required to fulfill the following conditions along with

the conditions defined earlier and that it is of the class C2([0, 1], R)

p(0) = 0, p(1) = 1,

p′(0) = p′(1) = 0,

p′′(0) = p′′(1) = 0,

p′(ψ) > 0, ∀ ψ ∈ (0, 1) .

 (1.31)

Here it is chosen to have the form [24]

p(ψ) = ψ3
(
10− 15ψ + 6ψ2

)
, (1.32)

which satisfy the conditions defined in equation (1.31). More details about the choice

and properties of the function p(ψ) can be found in [14], [46]. The graph of the

function p(ψ) is given in the Fig. 1.4. Note that, to show the behavior of the function

p(ψ) well within the interval [0, 1], we have taken the domain interval as [-0.5,1.5].

Thus the final form of the free energy density for the substance I, where I = A,B,

can be given as

fI(ψ, T ) = WITg(ψ) +
(
eI,S(T Im)− CIT Im + LIp(ψ)

)(
1− T

T Im

)
−CIT ln

(
T

T Im

)
. (1.33)

Now using equations (1.16)-(1.18) in the equation (1.13), we have

∂s

∂ψ
= − 1

T

∂

∂ψ

{
(1− c)

(
fA(ψ, T ) +

RT

Vm
ln(1− c)

)}
+

1

T

∂

∂ψ

{
c

(
fB(ψ, T ) +

RT

Vm
ln(c)

)}
,
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Figure 1.4: The graph of function p(ψ).

where λ(ψ) = 0.

Making use of equation (1.33) and carrying out the differentiation with respect to ψ,

the above equation becomes

∂s

∂ψ
= − 1

T
(1− c)

(
WAg

′(ψ)T + p′(ψ)LA

(
1− T

TAm

))
− 1

T
c

(
WBg

′(ψ)T + p′(ψ)LB

(
1− T

TBm

))
.

As p′(ψ) = 30g(ψ), thus we have

∂s

∂ψ
= −(1− c)

{
WAg

′(ψ) + 30g(ψ)LA

(
1

T
− 1

TAm

)}
−c
{
WBg

′(ψ)T + 30g(ψ)LB

(
1

T
− 1

TBm

)}
.

The above equation can be written as

∂s

∂ψ
= −(1− c)HA(ψ, T )− cHB(ψ, T ), (1.34)

where

HA(ψ, T ) = WAg
′(ψ) + 30g(ψ)LA

(
1

T
− 1

TAm

)
, (1.35)

HB(ψ, T ) = WBg
′(ψ) + 30g(ψ)LB

(
1

T
− 1

TBm

)
, (1.36)
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with g′(ψ) = ∂g(ψ)/∂ψ.

Substituting equation (1.34) into the equation (1.9) and then the resulting equation

in the equation (1.3), we obtain the following equation

Dψ

Dt
= Mψ

(
div
(
ε2θ∇ψ

)
− (1− c)HA(ψ, T )− cHB(ψ, T )

−A
(
εθ, ε

′
θ,
∂θ

∂ψ
,∇ψ

))
, (1.37)

which is the general equation of phase-field, where the operators A and div (ε2θ∇ψ) are

left to be calculated. We can compute these operators by introducing the operator εθ.

If we assume that the interface thickness δA = δB = δ in the constants defined

in equation (1.30) and that the solidification process is isotropic (i.e., εθ = ε0 is a

constant), then the equation (1.37) simplifies and takes the form as

Dψ

Dt
= Mψε

2
0

(
∆ψ − λ1(c)

δ2
g′(ψ)− 1

δ
λ2(c)p′(ψ)

)
, (1.38)

where

ε20 = 3
√

2(σA + σB)δ/Tm,

Tm = (TAm + TBm )/2,

λ1(c) = (1− c)λ1A + cλ1B,

λ2(c) = (1− c)λ2A + cλ2B,

 (1.39)

with

λ1A =
σA

(σA + σB)

Tm
TAm

, λ1B =
σB

(σA + σB)

Tm
TBm

,

λ2A =
LATm

3
√

2(σA + σB)

(
1

T
− 1

TAm

)
, λ2B =

LBTm

3
√

2(σA + σB)

(
1

T
− 1

TAm

)
.

1.3.1 Two dimensional case

In two dimensions, the parameter εθ is assumed to be anisotropic and is defined as

[24]

εθ = ε0η = ε0(1 + γ0coskθ), (1.40)

where anisotropic means that εθ is dependent on the direction of the solid-liquid

interface, γ0 is the anisotropic amplitude, k the mode number, ε0 is a constant and

θ = arctan

(
ψy
ψx

)
, (1.41)
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is the angle between the local interface normal and a designated base vector of the

crystal lattice, subscripts x and y are used to denote the partial derivatives with

respect to spatial coordinates, that is, ψx = ∂ψ/∂x and ψy = ∂ψ/∂y.

The anisotropy plays an important role in modeling the dendritic solidification process.

In fact, for example, for the metal alloys, the form of dendrites is usually symmetric

and has four major dendrite arms and minor arms around them (see e.g., Fig. 1.2).

In the solidification model, the mode number k, in the anisotropy function εθ, usually

represent the dendrite arms. If we want to obtain a dendrite with four arms, we fix

the value of k equal to 4. Its value depends on the form of dendrites obtained in a

particular alloy.

To compute the operators A and div (ε2θ∇ψ), we shall restart from the equation (1.8)

given by

I =

∫
Ω

(
εθ |∇ψ|2

∂εθ
∂θ

∂θ

∂ψ
· ξ + div

(
ε2θ∇ψ

)
ξ

)
dx. (1.42)

Now taking derivative of equation (1.41) with respect to ψ in the direction of ξ, we

get
∂θ

∂ψ
· ξ =

∂

∂ψ

(
arctan

(
ψy
ψx

))
· ξ,

∂θ

∂ψ
· ξ =

1

1 +
(
ψy

ψx

)2

(
ψxξy − ψyξx

ψ2
x

)
,

∂θ

∂ψ
· ξ =

ψxξy − ψyξx
|∇ψ|2

. (1.43)

Substituting equation (1.43) in the equation (1.42), we arrive at

I =

∫
Ω

(
εθε
′
θ

(
ψxξy − ψyξx
|∇ψ|2

)
|∇ψ|2 − ε2θ∇ψ · ∇ξ

)
dx,

where ε′θ = ∂εθ/∂θ.

Simplifying above equation, we have

I =

∫
Ω

(εθε
′
θψxξy − εθε′θψyξx) dx−

∫
Ω

ε2θ (ψxξx + ψyξy) dx.

The above equation can further be written as

I =

∫
Ω

(
∂

∂y
(εθε

′
θψxξ)− ξ

∂

∂y
(εθε

′
θψx)−

∂

∂x
(εθε

′
θψyξ) + ξ

∂

∂x
(εθε

′
θψy)

)
dx

−
∫

Ω

(
∂

∂x

(
ε2θψxξ

)
− ξ ∂

∂x

(
ε2θψx

)
+

∂

∂y

(
ε2θψyξ

)
− ξ ∂

∂y

(
ε2θψy

))
dx.
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Simplification of above equation yields

I =

∫
Ω

(
∂

∂x
(εθε

′
θψy)−

∂

∂y
(εθε

′
θψx)−

(
∂

∂x

(
ε2θψx

)
+

∂

∂y

(
ε2θψy

)))
ξdx

+

∫
Ω

(
∂

∂y

(
εθε
′
θψxξ + ε2θψyξ

)
− ∂

∂x

(
εθε
′
θψyξ − ε2θψxξ

))
dx,

or

I =

∫
Ω

(
∂

∂x
(εθε

′
θψy)−

∂

∂y
(εθε

′
θψx)−∇ ·

(
ε2θ∇ψ

))
ξdx

+

∫
Ω

(
∂

∂y

((
εθε
′
θψx + ε2θψy

)
ξ
)
− ∂

∂x

((
εθε
′
θψy − ε2θψx

)
ξ
))

dx.

Since ξ = 0 on the boundary, therefore the second term in the above equation vanishes

I =

∫
Ω

(
∂

∂x
(εθε

′
θψy)−

∂

∂y
(εθε

′
θψx)−∇ ·

(
ε2θ∇ψ

))
ξdx. (1.44)

According to equation (1.44), the equation (1.7) takes the form〈
δS

δψ
, ξ

〉
D′(U),D(U)

=

〈
∂s

∂ψ
, ξ

〉
D′(U),D(U)

−
∫

Ω

(
∂

∂x
(εθε

′
θψy)−

∂

∂y
(εθε

′
θψx)−∇ ·

(
ε2θ∇ψ

))
ξdx.

Thus we have the variational derivative of equation (1.6) as

δS

δψ
=
∂s

∂ψ
− ∂

∂x
(εθε

′
θψy) +

∂

∂y
(εθε

′
θψx) +∇ ·

(
ε2θ∇ψ

)
.

As εθ = ε0η, the above equation becomes

δS

δψ
=
∂s

∂ψ
+ ε20∇ ·

(
η2∇ψ

)
− ε20

∂

∂x
(ηη′ψy) + ε20

∂

∂y
(ηη′ψx) , (1.45)

where η′ = ∂η/∂θ and ε0 is a constant.

Carrying out the partial derivatives of x and y in the above equation, we have

δS

δψ
=
∂s

∂ψ
+ ε20∇ ·

(
η2∇ψ

)
− ε20

(
ηη′ψxy + ηψy

∂η′

∂x
+ η′ψy

∂η

∂x

)
+ε20

(
ηη′ψyx + ηψx

∂η′

∂y
+ η′ψx

∂η

∂y

)
.

Since ψxy = ψyx, therefore the above equation simplifies as

δS

δψ
=
∂s

∂ψ
+ ε20∇ ·

(
η2∇ψ

)
− ε20

(
ηψy

∂η′

∂x
+ η′ψy

∂η

∂x

)
+ε20

(
ηψx

∂η′

∂y
+ η′ψx

∂η

∂y

)
.
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As η is function of θ, therefore applying chain rule, we have

δS

δψ
=
∂s

∂ψ
+ ε20∇ ·

(
η2∇ψ

)
− ε20

(
ηψy

∂η′

∂θ

∂θ

∂x
+ η′ψy

∂η

∂θ

∂θ

∂x

)
+ε20

(
ηψx

∂η′

∂θ

∂θ

∂y
+ η′ψx

∂η

∂θ

∂θ

∂y

)
.

Differentiating equation (1.41) with respect to x and y respectively, we get

∂θ

∂x
=
ψxψxy − ψyψxx
|∇ψ|2

,
∂θ

∂y
=
ψxψyy − ψyψyx
|∇ψ|2

. (1.46)

Making use of equation (1.46) in the previous equation, we have

δS

δψ
=
∂s

∂ψ
+ ε20∇ ·

(
η2∇ψ

)
− ε20ηη′′ψy

(
ψxψxy − ψyψxx
|∇ψ|2

)
−ε20 (η′)

2
ψy

(
ψxψxy − ψyψxx
|∇ψ|2

)
+ ε20ηη

′′ψx

(
ψxψyy − ψyψyx
|∇ψ|2

)
+ε20 (η′)

2
ψx

(
ψxψyy − ψyψyx
|∇ψ|2

)
,

or

δS

δψ
=
∂s

∂ψ
+ ε20∇ ·

(
η2∇ψ

)
− ε20ηη′′

(
ψxψyψxy − ψ2

yψxx

|∇ψ|2

)
−ε20 (η′)

2

(
ψxψyψxy − ψ2

yψxx

|∇ψ|2

)
+ ε20ηη

′′
(
ψ2
xψyy − ψxψyψyx
|∇ψ|2

)
+ε20 (η′)

2

(
ψ2
xψyy − ψxψyψyx
|∇ψ|2

)
. (1.47)

Now consider the following term

I1 = ∇ ·
(
η2∇ψ

)
.

By employing the Green’s identity (∇ · (f1∇f2) = f1∆f2 +∇f1 · ∇f2) , we have

I1 = η2∆ψ +∇η2 · ∇ψ.

The above equation can be written as

I1 = η2∆ψ + 2η∇η · ∇ψ.

Since η is the function of θ, therefore by using chain rule we arrive at

I1 = η2∆ψ + 2ηη′∇θ · ∇ψ.
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According to equation (1.46), the above equations becomes

I1 = η2∆ψ +
2ηη′

|∇ψ|2
(ψx (ψxψxy − ψyψxx) + ψy (ψxψyy − ψyψyx)) . (1.48)

Making use of equation (1.48) in the equation (1.47), we have

δS

δψ
=
∂s

∂ψ
+ ε20

(
η2∆ψ +

2ηη′

|∇ψ|2
(ψx (ψxψxy − ψyψxx) + ψy (ψxψyy − ψyψyx))

)
−ε20ηη′′

(
ψxψyψxy − ψ2

yψxx

|∇ψ|2

)
− ε20 (η′)

2

(
ψxψyψxy − ψ2

yψxx

|∇ψ|2

)
+ε20ηη

′′
(
ψ2
xψyy − ψxψyψyx
|∇ψ|2

)
+ ε20 (η′)

2

(
ψ2
xψyy − ψxψyψyx
|∇ψ|2

)
.

Simplification of the above equation yields

δS

δψ
=
∂s

∂ψ
+ ε20η

2∆ψ + ε20ηη
′
(

2ψxψy

|∇ψ|2
(ψyy − ψxx) +

2ψxy

|∇ψ|2
(
ψ2
x − ψ2

y

))
+
ε20ηη

′′

|∇ψ|2
(
−2ψxψyψxy + ψ2

yψxx + ψ2
xψyy

)
+
ε20 (η′)2

|∇ψ|2
(
−2ψxψyψxy + ψ2

yψxx + ψ2
xψyy

)
,

or

δS

δψ
=
∂s

∂ψ
+ ε20η

2∆ψ + ε20ηη
′
(

2ψxψy

|∇ψ|2
(ψyy − ψxx) +

2ψxy

|∇ψ|2
(
ψ2
x − ψ2

y

))
+
ε20
(
ηη′′ + (η′)2)
|∇ψ|2

(
−2ψxψyψxy + ψ2

yψxx + ψ2
xψyy

)
.

Using equation (1.41), we can easily have

cosθ =
ψx
|∇ψ|

, sinθ =
ψy
|∇ψ|

,

cos2θ =
ψ2
x − ψ2

y

|∇ψ|2
, sin2θ =

2ψxψy

|∇ψ|2
. (1.49)

With the help of relations (1.49) and multiplying and dividing the last term of the

above equation by 2 and rearranging the terms, we obtain

δS

δψ
=
∂s

∂ψ
+ ε20η

2∆ψ + ε20ηη
′ (sin2θ (ψyy − ψxx) + 2ψxycos2θ)

+
ε20
(
ηη′′ + (η′)2)

2

(
−4ψxψyψxy

|∇ψ|2
+
ψ2
yψxx + ψ2

yψxx + ψ2
xψyy + ψ2

xψyy

|∇ψ|2

)
.
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Adding and subtracting ψ2
xψxx and ψ2

yψyy in the last term of the above equation and

then factorizing the terms, we arrive at

δS

δψ
=
∂s

∂ψ
+ ε20η

2∆ψ + ε20ηη
′ (sin2θ (ψyy − ψxx) + 2ψxycos2θ)

−
ε20
(
ηη′′ + (η′)2)

2

(
4ψxψyψxy

|∇ψ|2
− (ψxx + ψyy)−

(
ψ2
x − ψ2

y

)
(ψyy − ψxx)

|∇ψ|2

)
,

According to equation (1.49), the above equation takes the form

δS

δψ
=
∂s

∂ψ
+ ε20η

2∆ψ + ε20ηη
′ (sin2θ (ψyy − ψxx) + 2ψxycos2θ)

−
ε20
(
ηη′′ + (η′)2)

2
(2ψxysin2θ −∆ψ − (ψyy − ψxx) cos2θ) . (1.50)

Now using equation (1.34) in the equation (1.50) and then substituting the result-

ing equation in the equation (1.3), we finally get

Dψ

Dt
= Mψ

(
ε20η

2∆ψ − (1− c)HA(ψ, T )− cHB(ψ, T )
)

−
Mψε

2
0

(
ηη′′ + (η′)2)

2
{2ψxysin2θ −∆ψ − (ψyy − ψxx) cos2θ}

+Mψε
2
0ηη

′ {sin2θ (ψyy − ψxx) + 2ψxycos2θ} , (1.51)

which is the final form of the evolution equation for the phase-field ψ(x, t) in two

dimensions, where we assume Mψ be a positive constant.

In the next section, we shall present the derivation of the concentration and energy

density equations which are coupled to the phase-field equation.

1.4 Energy and Concentration Equations

As described earlier the evolution equations for the concentration c(x, t) and the

energy density e(x, t) are given by following normal conservation laws

Dc

Dt
= −div (Jc) , (1.52)

De

Dt
= −div (Je) , (1.53)

where D/Dt = ∂/∂t + u · ∇ is the material time derivative, Jc and Je are the

diffusional and heat flux respectively.

The fluxes Jc and Je can be expressed by the irreversible linear laws as [24]

Jc = Mc∇
δS(ψ, c, e)

δc
, (1.54)
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Je = Me∇
δS(ψ, c, e)

δe
, (1.55)

where the parameter Mc and Me are assumed to be positive and are related to the

A-B inter diffusion coefficient and the heat conductivity, respectively and S(ψ, c, e) is

the entropy functional which is defined by equation (1.6).

As observed by Warren and Boettinger [24] that the effects of the terms ∇T in the

concentration equation (1.52) and ∇c in the energy equation (1.53) to be the small

corrections. Therefore in the derivation of the concentration equation, we shall assume

that the temperature T (x, t) is constant and in the derivation of equation of energy,

the concentration c(x, t) will be assumed fixed.

To advance further we need to take the variational derivatives of S with respect to

concentration c(x, t) and the energy density e(x, t). The variational derivatives of

S(ψ, c, e) (in the sense of distribution) with respect to c and e can easily be given

using equation (1.6) as
δS(ψ, c, e)

δc
=
∂s(ψ, c, e)

∂c
, (1.56)

δS(ψ, c, e)

δe
=
∂s(ψ, c, e)

∂e
. (1.57)

According to the previously given relation (1.14) and using the basic thermodynam-

ics, the two variational derivatives appearing in equations (1.56) and (1.57) can be

expressed as
∂s(ψ, c, e)

∂c
= − 1

T (x, t)

∂f(ψ, c, T )

∂c
, (1.58)

∂s(ψ, c, e)

∂e
=

1

T (x, t)
. (1.59)

By employing equations (1.16), (1.58) and (1.56), the equation (1.54) takes the form

Jc = Mc∇
(
−µB(ψ, c, T )− µA(ψ, c, T )

T (x, t)

)
.

Since temperature T (x, t) is assumed to be constant in the derivation of the concen-

tration equation therefore the above equation can be written as

Jc = −Mc

T
∇ (µB(ψ, c, T )− µA(ψ, c, T )) .

With the help of equations (1.17) and (1.18), the above equation takes the form

Jc = −Mc

T
∇
(
fB(ψ, T ) +

RT

Vm
ln(c)

)
+
Mc

T
∇
(
fA(ψ, T ) +

RT

Vm
ln(1− c)

)
.
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Carrying out the differentiation in the above equation, we have

Jc = −Mc

T

(
∇fB(ψ, T ) +

RT

Vm

1

c
∇c
)

+
Mc

T

(
∇fA(ψ, T ) +

RT

Vm

1

1− c
(−∇c)

)
.

Making use of equation (1.33), we obtain

Jc =
Mc

T

(
−WBTg

′(ψ)∇ψ − p′(ψ)LB

(
1− T

TBm

)
∇ψ
)

+
Mc

T

(
WATg

′(ψ)∇ψ + p′(ψ)LA

(
1− T

TAm

)
∇ψ
)

+
Mc

T

(
−RT
Vm

1

c
∇c− RT

Vm

1

1− c
(∇c)

)
,

or

Jc = Mc

(
−WBg

′(ψ)− p′(ψ)LB

(
1

T
− 1

TBm

))
∇ψ

+Mc

(
WAg

′(ψ) + p′(ψ)LA

(
1

T
− 1

TAm

))
∇ψ

+Mc

(
− R

Vm

1

c
∇c− R

Vm

1

1− c
(∇c)

)
.

Using equations (1.35) and (1.36) in the above equation, we have

Jc = −McHB(ψ, T )∇ψ +McHA(ψ, T )∇ψ

−Mc
R

Vm

(
1

c
+

1

1− c

)
∇c.

Further simplification of the above equation yields

Jc = Mc (HA(ψ, T )−HB(ψ, T ))∇ψ − McR

Vmc(1− c)
∇c. (1.60)

Also as the comparison of equation (1.60) with the Fick’s first law in a single-phase

system (where ∇ψ = 0 ) establishes the relation given below [24]

Mc = D(ψ)
Vmc(1− c)

R
, (1.61)

where D(ψ) = DS + p(ψ) (DL −DS) is the A-B inter diffusion coefficient.

Substituting equation (1.61) into the equation (1.60), we obtain

Jc = D(ψ)
Vmc(1− c)

R
(HA(ψ, T )−HB(ψ, T ))∇ψ −D(ψ)∇c. (1.62)
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Finally substituting equation (1.62) into the equation (1.52), we have

Dc

Dt
= div

(
D(ψ)

(
∇c+

c(1− c)Vm
R

(HB(ψ, T )−HA(ψ, T ))∇ψ
))

. (1.63)

Equation (1.63) represents the final form of the evolution equation for the mole frac-

tion (concentration) of the solute.

If we assume that the interface thickness δA = δB = δ, the above equation takes

the form

Dc

Dt
= div (D(ψ)∇c) + div

(
α0D(ψ)c(1− c)

{1

δ
λ′1(c)g′(ψ)

+λ′2(c)p′(ψ)
}
∇ψ
)
, (1.64)

where

α0 =
3
√

2Vm
RTm

(σA + σB), (1.65)

with λ′1(c) = ∂λ(c)/∂c, λ′2(c) = ∂λ(c)/∂c, where λ1(c) and λ2(c) are defined in equa-

tion (1.39).

Now we shall derive the evolution equation for the energy. For this, first, the internal

energy density of a binary alloy can be expressed using a rule of mixture as (e.g., [24],

[39])

e(ψ, c, T ) = (1− c)eA(ψ, T ) + c eB(ψ, T ). (1.66)

Making use of equation (1.59) into the equation (1.55) we get

Je = Me∇
(

1

T (x, t)

)
,

or

Je = Me

(
− 1

T 2
∇T (x, t)

)
. (1.67)

Now substituting equations (1.66) and (1.67) in the equation (1.53), we have

D

Dt
((1− c)eA(ψ, T ) + c eB(ψ, T )) = −∇ ·

(
Me

(
− 1

T 2
∇T (x, t)

))
.

Since concentration c(x, t) is considered constant in the derivation of the energy equa-

tion, therefore the above equation take the form

(1− c)DeA(ψ, T )

Dt
+ c

DeB(ψ, T )

Dt
= −∇ ·

(
Me

(
− 1

T 2
∇T (x, t)

))
.
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By using equation (1.25) and setting Me = KT 2, where K the thermal conductivity,

the above equation becomes

(1− c)
(
CA

DT

Dt
+ LA

Dp(ψ)

Dt

)
+ c

(
CB

DT

Dt
+ LB

Dp(ψ)

Dt

)
= ∇ · (K∇T ) .

Applying chain rule and re-arranging the above equation, we have

((1− c)CA + cCB)
DT

Dt
+ ((1− c)LA + cLB) p′(ψ)

Dψ

Dt
= ∇ · (K∇T ) .

Further the above equation can be written as (p′(ψ) = 30g(ψ))

C
DT (x, t)

Dt
+ 30L g(ψ)

Dψ(x, t)

Dt
= ∇ · (K∇T (x, t)) , (1.68)

where

C = (1− c)CA + cCB,

L = (1− c)LA + cLB,

K = (1− c)KA + cKB,

with KA and KB, the thermal conductivities of substances A and B respectively.

Equation (1.68) represents the final form of the evolution equation for the temperature

field T (x, t).

Next section is devoted to the derivation of the equations of melt flow which is coupled

to the equations of phase-field, concentration and energy equations in the presence of

a magnetic field.

1.5 Evolution Equations for the Melt Flow

As elucidated earlier that the evolution equations for the melt flow will be derived

from the laws of conservation of momentum and mass. The domain Ω is initially

occupied by the binary alloy of the substances A and B which is incompressible

and electrically conducting fluid subject to applied magnetic field Bm on the entire

domain. The motion of the fluid is initially driven by the buoyancy force. Since the

fluid is electrically conducting and also there is a applied magnetic field, therefore

when the fluid start moving there would be electric current and in addition to the

applied magnetic field, there will be induced magnetic field produced by the electric

currents in the liquid metal. This will give rise to the Lorentz force which acts on the

fluid so that an extra body force term F will appear in the Navier-stokes equations.

The Lorentz force in such a flow is given by as

F = ρeE + J×Bm, (1.69)
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where ρe is the electric charge density, E the electric field intensity, J is the current

density and Bm = B+b is the sum of applied magnetic field B and induced magnetic

field b.

We assume that the walls of the domain are electric insulators and the magnetic

Reynolds number is sufficiently small that the induced magnetic field b is negligible

as compared to the imposed magnetic field B (see e.g., [54]).

The current density J appeared in equation (1.69) can be defined by the Ohm’s law

for the moving medium as

J = ρeu + σe(E + u×B), (1.70)

where σe is electrical conductivity and u is the velocity of the fluid.

Since electric field is a conservative field, therefore we can express it as a gradient of

a scalar function φ as

E = −∇φ, (1.71)

where ∇ is the gradient operator, φ is the potential function and negative sign shows

that the electric field intensity always decreases from higher to lower potential.

Thus the equations (1.69) and (1.70) together with equation (1.71) takes the form

F = −ρe∇φ+ σe(−∇φ+ u×B)×B, (1.72)

J = ρeu + σe(−∇φ+ u×B). (1.73)

In addition to the Ohm’s law, the current density J is governed by the conservation

of electric current

div(J) = 0. (1.74)

This equation can be used to calculate the potential function φ appearing in the

Lorentz force F. Taking the divergence on both sides of the equation (1.73), we have

div(J) = div(ρeu) + div(σe(−∇φ+ u×B)).

Since electric charged density ρe and electrical conductivity σe are assumed to be

constant here and using equation (1.74), we have

ρediv(u) + σediv(−∇φ+ u×B) = 0,

Using incompressibility condition i.e., div(u) = 0, we arrive at

∆φ = div(u×B), (1.75)
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where ∆ is the Laplace operator.

From the above equation, we can calculate the potential function φ under the influence

of magnetic field applied in any direction. Therefore with the help of this potential

along with the magnetic field we can calculate the Lorentz force F defined in equation

(1.72).

Also note that to derive equations for the melt flow, we shall assume the Boussinesq

approximations, as is often done in the heat and/or solute transfer problems. This will

lead us to neglect the density variations with respect to temperature and/or concen-

tration everywhere except in the gravitational force term in the momentum equation,

and also neglecting the temperature variations of the other material properties.

Also as we know that the phase-field variable ψ(x, t) is 0 in the solid phase and 1 in the

liquid phase and there is no motion in the solid phase, therefore equations of the melt

flow should give us the zero velocity in the solid region of the domain. To include this

fact in the equations of melt flow, we have multiplied the boussinesq approximation

term and Lorentz force term by functions a1(ψ) and a2(ψ). These functions are chosen

in way that they are 0 at ψ(x, t) = 0 and 1 at ψ(x, t) = 1, so that the Boussinesq

approximation term and Lorentz force term become zero in the solid region and the

equations of the melt flow together with the zero initial and boundary conditions give

the zero velocity in the solid region of the domain. Also to include the effects on the

velocity with respect to the phase change at the solid/liquid interface, we have added

an additional term f(ψ) in the melt flow equations which will also be chosen so that

it is zero at ψ(x, t) = 0. The melt flow equations can be given using incompressible

Navier-stokes equations as

ρ0
Du

Dt
= div(~σ) + a1(ψ) (−βTT (x, t)− βcc(x, t)) G

+a2(ψ)σe(−∇φ+ u×B)×B + αf(ψ), (1.76)

div(u) = 0. (1.77)

Which is a magnetohydrodynamic type system with u = (u1, u2, u3) is the velocity,

ρ0 is the mean density of the fluid, βT and βc are the thermal and solutal expansion

coefficients, G = (0, 0,−g) is the gravity vector, T(x,t) is the temperature, c(x, t) is

the concentration (mole fraction of the substance B in A) and ~σ is the stress tensor

which is defined as

~σ = −pI + µ
(
∇u + (∇u)tran

)
(1.78)

where p is the pressure, I is the unit tensor, µ is the dynamic viscosity, and tran

represents the usual transpose of a matrix.
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Remark: The functions a1(ψ) and a2(ψ) in the equation (1.76) can be chosen, for

example, as

a1(ψ) = ψ, a2(ψ) =
ψ(1 + ψ)

2
. (1.79)

In the next section we shall give all equations that governs the solidification process

of the binary alloy.

1.6 Mathematical Models

In this section, we shall summarize the entire set of governing equations that model the

solidification process of a binary alloy in a non-isothermal environment in the presence

of motion in the liquid phase with the magnetic field effect. The equations that model

this phenomenon are the phase-field equation (1.37), concentration equation (1.63),

energy equation (1.68) and the magnetohydrodynamic system (1.75-1.77) which are

given below

Dψ

Dt
= Mψ

(
div
(
ε2θ∇ψ

)
− (1− c)HA(ψ, T )− cHB(ψ, T )

−A
(
εθ, ε

′
θ,
∂θ

∂ψ
,∇ψ

))
on Q, (1.80)

Dc

Dt
= div

(
D(ψ)

(
∇c+

c(1− c)Vm
R

(HB(ψ, T )−HA(ψ, T ))∇ψ
))

on Q, (1.81)

C
DT

Dt
+ 30L g(ψ)

∂ψ

∂t
= ∇ · (K∇T ) on Q, (1.82)

ρ0
Du

Dt
= div(~σ) + a1(ψ) (−βTT (x, t)− βcc(x, t)) G

+a2(ψ)σe(−∇φ+ u×B)×B + αf(ψ) on Q, (1.83)

div(u) = 0 on Q, (1.84)

~σ = −pI + µ
(
∇u + (∇u)tran

)
, (1.85)

∆φ = div(u×B) on Q, (1.86)

where all the variables and parameters are defined in the respective sections of the

derivation of the equations.

In the next subsection, the developed model will be restricted to the isothermal case.
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1.6.1 Isothermal-Anisotropic Case

An isothermal process is a process in which the temperature of the system remains

unchanged i.e. there is no change in the temperature in the whole process. Therefore

in the isothermal case of our model the temperature T (x, t) is assumed to be constant

in the whole model. Therefore we shall not consider the evolution equation for the

temperature in this case. The model problem in this case reduces to

Dψ

Dt
= Mψ

(
div
(
ε2θ∇ψ

)
− (1− c)H̃A(ψ)− cH̃B(ψ)

−A
(
εθ, ε

′
θ,
∂θ

∂ψ
,∇ψ

))
on Q, (1.87)

Dc

Dt
= div

(
D(ψ)

(
∇c+

c(1− c)Vm
R

(
H̃B(ψ)− H̃A(ψ)

)
∇ψ
))

on Q, (1.88)

ρ0
Du

Dt
= div(~σ)− a1(ψ)βcc(x, t)G

+a2(ψ)σe(−∇φ+ u×B)×B + αf(ψ) on Q, (1.89)

div(u) = 0 on Q, (1.90)

~σ = −pI + µ
(
∇u + (∇u)tran

)
, (1.91)

∆φ = div(u×B) on Q, (1.92)

where H̃I(ψ) = HI(ψ, T ), I = A,B.

We suppose that the physical system where solidification process takes place is a closed

system, that is, there is no phase and concentration exchange across the boundary and

that the velocity in the liquid phase along the boundary is negligible. Therefore we

have enclosed the geometry of the problem by posing Neumann boundary conditions

for the phase-field and concentration equations and no-slip condition for the flow

equations alongwith the initial conditions given below

(u, ψ, c) (t = 0) = (u0, ψ0, c0) in Ω, (1.93a)

u = 0,
∂ψ

∂n
= ∇ψ · n = 0,

∂c

∂n
= ∇c · n = 0 on Σ = (0, Tf )× ∂Ω, (1.93b)

where Tf is the final time, n is the unit outward normal and Ω is a sufficiently regular

and open domain in dimension Rn with n ≤ 3.

Next we shall reduce our model problem defined above to the two dimensional case

in an isothermal environment.



34 Modeling Solidification and Melting Problems

1.6.2 Two Dimensional Isothermal-Anisotropic Case

In a two dimensional case, we work in the XZ-plane and suppose that the applied

magnetic field B is parallel to the plane. Thus the equation (1.75) reduces to

∆φ = 0, (1.94)

which is valid in the melt as well as in the neighboring solid media. This condi-

tion alongwith the electrically insulating conditions on the boundary implies that the

unique solution is ∇φ = 0, and therefore the electric field vanishes everywhere. In

such situations, the equation related to u2 component of velocity and the electric po-

tential equation (1.75) in the magnetohydrodynamic system will be decoupled from

other equations. Therefore equation (1.73) reduces to

J = σe(u×B), (1.95)

and the Lorentz force defined in the equation (1.72) takes the form

F = σe (u×B)×B. (1.96)

Using equations (1.95), (1.96) and the equation (1.51) the model problem in two

dimensions for the isothermal anisotropic case reduces to the following form

ρ0
Du

Dt
= −∇p+ µ∆u + a1(ψ)βcc(x, t)G

+a2(ψ)σe(u×B)×B + αf(ψ) on Q, (1.97)

div(u) = 0 on Q, (1.98)

Dψ

Dt
= Mψ

(
ε20η

2∆ψ − (1− c)H̃A(ψ)− cH̃B(ψ)
)

−
Mψε

2
0

(
ηη′′ + (η′)2)

2
{2ψxysin2θ −∆ψ − (ψyy − ψxx) cos2θ}

+Mψε
2
0ηη

′ {sin2θ (ψyy − ψxx) + 2ψxycos2θ} on Q, (1.99)

Dc

Dt
= div

(
D(ψ)

(
∇c+

c(1− c)Vm
R

(
H̃B(ψ)− H̃A(ψ)

)
∇ψ
))

on Q, (1.100)

where, for simplicity, we denote x = (x, y), u = (u, v) and B = (B1, B2) and to

simplify further the notation, we write the above mentioned problem in the following
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form

ρ0
Du

Dt
= −∇p+ µ∆u + A1(ψ, c) + b(ψ)(u×B)×B on Q, (1.101a)

div(u) = 0, on Q, (1.101b)

Dψ

Dt
= γ(η)∆ψ − A2(ψ, c)− A4(η, η′, η′′,∇ψ,∇(∇ψ)) on Q, (1.101c)

Dc

Dt
= div (D(ψ)∇c) + div (A3(ψ, c)∇ψ) on Q, (1.101d)

with the initial and boundary conditions

(u, ψ, c) (t = 0) = (u0, ψ0, c0) in Ω, (1.102a)

u = 0,
∂ψ

∂n
= 0,

∂c

∂n
= 0 on Σ = (0, Tf )× ∂Ω, (1.102b)

where γ(η) = Mψε
2
0η

2, b(ψ) = σea2(ψ) and

A1(ψ, c) = a1(ψ)βcc(x, t)G + αf(ψ),

A2(ψ, c) = Mψ

(
(1− c)H̃A(ψ)− cH̃B(ψ)

)
,

A3(ψ, c) =
c(1− c)Vm

R

(
H̃B(ψ)− H̃A(ψ)

)
,

A4(η, η′, η′′,∇ψ,∇(∇ψ)) =
Mψε

2
0

(
ηη′′ + (η′)2)

2
{2ψxysin2θ −∆ψ − (ψyy − ψxx) cos2θ}

−Mψε
2
0ηη

′ {sin2θ (ψyy − ψxx) + 2ψxycos2θ} .

Further in the next subsection, we shall give a isotropic case of the above defined

model.

1.6.3 Two dimensional Isothermal and Isotropic Case

In the model derived above the interfacial energy parameter ε = ε0η is assumed to

be anisotropic. In this case the process of solidification is dependent on the direction

of the solid/liquid interface. In an isotropic case this parameter does not depend

on the direction of the solid/liquid interface and is assumed to be constant, i.e. η is

constant, therefore the operator A4 will become zero and the process of solidification

is homogeneous in all directions in this case. In the isothermal and isotropic case our

model problem will be reduced to take the following form
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ρ0
Du

Dt
= −∇p+ µ∆u + A1(ψ, c) + b(ψ)(u×B)×B on Q, (1.103a)

div(u) = 0 on Q, (1.103b)

Dψ

Dt
= ε1∆ψ − A2(ψ, c) on Q, (1.103c)

Dc

Dt
= div (D(ψ)∇c) + div (A3(ψ, c)∇ψ) on Q, (1.103d)

where ε1 = γ(η = 1).

The initial and boundary conditions are defined same as in (1.93)

(u, ψ, c) (t = 0) = (u0, ψ0, c0) in Ω, (1.104a)

u = 0,
∂ψ

∂n
= 0,

∂c

∂n
= 0 on Σ = (0, Tf )× ∂Ω. (1.104b)

In the next chapter, we shall present the existence, uniqueness and regularity of the

solutions of the problem (1.103) under some assumptions on the non-linear operators.
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2.1 Introduction

In this chapter, we shall present the existence, regularity and stability results of the

two dimensional isothermal-isotropic case of our model problem defined by (1.103)

using some a priori results, elliptic estimates and by posing some conditions on the

non-linear operators. In section 2.2, we shall define some fundamental spaces to be

used in the rest of the chapter. In section 2.3, we shall present the assumptions made

on the non-linear operators and the weak formulation of the model problem will be

given in the section 2.4. In section 2.5 and 2.6, we shall provide the proofs of theorem

which shows the existence, regularity and uniqueness of the problem.

2.2 Definitions and Notations

Let Ω be a fixed bounded and open domain in R2 and Γ = ∂Ω denotes its boundary

which is supposed to be sufficiently regular.

For p ∈ [1,+∞] , we denote by Lp(Ω) the space of p-integrable functions with the

norm

‖v‖Lp(Ω) =

(∫
Ω

|v(x)|p2 dx
)1/p

, if p <∞

‖v‖L∞(Ω) = sup
x∈Ω

ess |v(x)|2 , if p =∞

In particular for p = 2, the space L2(Ω) is a Hilbert space with the inner product

(u, v) =

∫
Ω

u(x) · v(x) dx, ∀ u, v ∈ L2(Ω)

and we shall denote the norm of L2(Ω) as

|v| =
(∫

Ω

|v(x)|22 dx
)1/2

where | · |2 is the usual Euclidean norm.

For an integer m > 0 and 1 ≤ p ≤ ∞, the Sobolev space of order (m, p), denoted

by Wm,p(Ω), is defined as the space of functions in the space Lp(Ω) whose derivatives

upto order ≤ m are also in Lp(Ω), that is

Wm,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) ∀α ∈ Nn such that [α] ≤ m}

where α = (α1, ..., αj, ..., αn) and [α] =
∑n

i αi, together with the norm

‖v‖Wm,p(Ω) =

∑
[α]≤m

‖Dαv‖pLp(Ω)

1/p

, if 1 ≤ p <∞
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and

‖v‖Wm,∞(Ω) = max
[α]≤m

‖Dαv‖L∞(Ω)

In particular, if p = 2, the Sobolev space Wm,2(Ω), denoted by Hm(Ω), is a Hilbert

space for the following scalar product

(u, v)Hm(Ω) =
∑

[α]≤m

(Dαu,Dαv)

where (·, ·) is the scalar product of L2(Ω). We shall denote the norm of Hm(Ω) as

‖v‖Hm(Ω) =

∑
[α]≤m

‖Dαv‖2
L2(Ω)

1/2

Further if m = 1, the space H1(Ω) can be defined as

H1(Ω) =
{
v ∈ L2(Ω) | ∇v ∈ L2(Ω)

}
with the scalar product defined as

(u, v)H1(Ω) =

∫
Ω

u(x)v(x)dx +

∫
Ω

∇u(x) · ∇v(x)dx

and the norm on H1(Ω) is denoted by

‖v‖ =
(
|v(x)|2 + |∇v(x)|2

)1/2

Let D(Ω) (or D(Ω)) be the space of C∞ functions with compact support contained

in Ω (or Ω). The closure of D(Ω) in Wm,p(Ω) is denoted by Wm,p
0 (Ω) (or Hm

0 (Ω) if

p = 2).

In particular, the space H1
0 (Ω) is defined as

H1
0 (Ω) =

{
v ∈ H1(Ω) | v = 0 on Γ

}
with the scalar product defined as

(u, v)H1
0 (Ω) =

∫
Ω

∇u(x) · ∇v(x)dx

and the norm on H1
0 (Ω) is defined by ‖v(x)‖H1

0 (Ω) = |∇v(x)| .
The dual space of the space H1

0 (Ω) is denoted by H−1(Ω) with the norm defined by

‖f‖H−1(Ω) = sup
v∈H1

0 (Ω)

∣∣∣< f, v >H−1(Ω),H1
0 (Ω)

∣∣∣
‖v‖
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Let U be a Banach space and 1 ≤ p ≤ +∞ and −∞ ≤ a < b ≤ +∞, then Lp(a, b;U)

is the space of Lp functions v from (a, b) into U which is a Banach space with the

norm

‖v‖Lp(a,b;U) =

(∫ b

a

‖v‖pU dt
)1/p

, if p <∞

and

‖v‖L∞(a,b;U) = sup
t∈(a,b)

ess ‖v‖U , if p = +∞

Now we shall define some basic spaces which will be used frequently in the study of

our problem.

H =
{

v ∈
(
L2(Ω)

)2 | div(v) = 0
}

V =
{

v ∈
(
H1(Ω)

)2 | div(v) = 0, v = 0 on Γ
}

H2
0 =

{
v ∈ H2(Ω) | ∂v

∂n
= 0

}
H = H × L2(Ω)× L2(Ω), V = V ×H1(Ω)×H1(Ω)

We then define the Leray projection P to be the orthogonal projection of (L2(Ω))
2

onto

H. Using divergence theorem it can easily be proven that any gradient is orthogonal

to H, therefore if we apply P to the equation (1.103a), the pressure term will be

eliminated and we shall left with a evolutionary parabolic equation.

Also note that the vector triple product of three vectors f = (f1, f2), g = (g1, g2),

h = (h1, h2) ∈ R2 is defined by

(f× g)× h =

(
f2g1h2 − f1g2h2

f1g2h1 − f2g1h1

)
. (2.1)

2.3 Assumptions

We state the following assumptions for the operators A1, D, A2 and A3 in the problem

(1.103) (see [6], [8]).

(H1) A1(x, t, ·) is a Caratheodory function from Q × R2 into R2. For almost all

(x, t) ∈ Q, A1(x, t, ·) is a Lipschitz positive and bounded function with

0 < a0 ≤ |A1(x, t, r)|2 ≤ a1, ∀ r ∈ R2 and a.e. (x, t) ∈ Q.
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(H2) A2(x, t, ·) and A3(x, t, ·) are the Caratheodory functions from Q × R2 into R.

For almost all (x, t) ∈ Q, A2(x, t, ·) and A3(x, t, ·) are Lipschitz positive and

bounded functions with

0 < ãi ≤ Ai(x, t, r) ≤ ai, ∀ i = 2, 3, ∀ r ∈ R2 and a.e. (x, t) ∈ Q.

(H3) D(x, t, ·) is a Caratheodory function fromQ×R into R. For almost all (x, t) ∈ Q,
D(x, t, ·) is Lipschitz positive and bounded function with

0 < D0 ≤ D(x, t, r) ≤ D1, ∀ r ∈ R and a.e. (x, t) ∈ Q.

(H4) b(x, t, ·) is a Caratheodory function from Q×R into R. For almost all (x, t) ∈ Q,
b(x, t, ·) is Lipschitz positive and bounded function with

0 < b0 ≤ b(x, t, r) ≤ b1, ∀ r ∈ R and a.e. (x, t) ∈ Q.

(H5) B ∈
{
B ∈ (L2(Ω))

2 | B1 ≤ |B|2 ≤ B2

}
⊂ (L∞(Q))2 .

For the sake of simplicity, we shall write A1(ψ, c), Ai(ψ, c), D(ψ) and b(ψ) in stead

of A1(x, t, ψ, c), Ai(x, t, ψ, c), D(x, t, ψ) and b(x, t, ψ), i = 2, 3, respectively.

2.4 Weak Formulation

In this section we shall derive the weak formulation of the problem (1.103) together

with the initial and boundary conditions (1.93). Applying Leray projection P onto

the equation (1.103a), we obtain

ρ0

(
∂u

∂t
+B(u,u)

)
= µP∆u + PA1(ψ, c) + P (b(ψ) ((u×B)×B)) , (2.2a)

∂ψ

∂t
+ (u · ∇)ψ = ε1∆ψ − A2(ψ, c), on Q (2.2b)

∂c

∂t
+ (u · ∇)c = div(D(ψ)∇c) + div(A3(ψ, c)∇ψ), on Q (2.2c)

together with the initial and boundary conditions

(u, ψ, c) (t = 0) = (u0, ψ0, c0) , in Ω (2.3a)

u = 0,
∂ψ

∂n
= ∇ψ · n = 0,

∂c

∂n
= ∇c · n = 0, on Σ = (0, Tf )× ∂Ω (2.3b)

where B(u,u) = P(u · ∇)u and Tf is the final time. Now we define bilinear forms

au : V × V → R
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defined by

au(u,v) = µ

∫
Ω

∇u · ∇v dx, ∀ u,v ∈ V,

and

aψ : H1(Ω)×H1(Ω)→ R

defined by

aψ(ψ, φ) = ε1

∫
Ω

∇ψ · ∇φ dx, ∀ ψ, φ ∈ H1(Ω),

and a trilinear form as

bu : V × V × V → R

defined by

bu(u; v,w) = ρ0

2∑
i=1

2∑
j=1

∫
ui(∂ivj)wj dx, ∀ u,v,w ∈ V.

Also note that bu(u,v,w) = ρ0(B(u,v),w) and

bψ : V ×H1(Ω)×H1(Ω)→ R

defined by

bψ(u;ψ, φ) =
2∑
i=1

∫
ui(∂iψ)φ dx, ∀ u ∈ V, ψ, φ ∈ H1(Ω),

and in the same manner, we define

bc(u; c, z) =
2∑
i=1

∫
ui(∂ic)z dx, ∀ u ∈ V, c, z ∈ H1(Ω).

Multiplying equation (2.2a) by v ∈ V , equation (2.2b) by φ ∈ H1(Ω) and equation

(2.2c) by z ∈ H1(Ω), and then integrating the resulting equations over Ω, we obtain

ρ0

(
∂u

∂t
,v

)
+ bu (u,u,v) = µ(∆u,v) + (A1(ψ, c),v)

+ (b(ψ)((u×B)×B),v) , (2.4)(
∂ψ

∂t
, φ

)
+ bψ(u, ψ, φ) = ε1(∆ψ, φ)− (A2(ψ, c), φ), (2.5)

(
∂c

∂t
, z

)
+ bc (u, c, z) =

∫
Ω

div(D(ψ)∇c)z dx

+

∫
Ω

div(A3(c, ψ)∇ψ)z dx. (2.6)
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Consider the integral∫
Ω

div(v · ∇u) dx =

∫
Ω

∇u · ∇v dx +

∫
Ω

v ·∆udx,

by using the divergence theorem on the left-hand-side of the above equation, we have∫
Γ

(v · ∇u) · n dΓ =

∫
Ω

∇u · ∇v dx +

∫
Ω

v ·∆udx,

since v = 0 on the boundary Γ, therefore we get∫
Ω

v ·∆udx = −
∫

Ω

∇u · ∇v dx. (2.7)

Similarly we can easily derive using ∇ψ · n = 0 that∫
Ω

φ∆ψ dx = −
∫

Ω

∇ψ · ∇φ dx. (2.8)

Consider the following integral∫
Ω

div(zD(ψ)∇c) dx =

∫
Ω

D(ψ)∇c · ∇z dx +

∫
Ω

zdiv(D(ψ)∇c)dx,

applying divergence theorem on the left-hand-side of the above equation, we get∫
Γ

zD(ψ)∇c · n dΓ =

∫
Ω

D(ψ)∇c · ∇z dx +

∫
Ω

zdiv(D(ψ)∇c)dx,

since ∇c · n = 0, then∫
Ω

zdiv(D(ψ)∇c)dx = −
∫

Ω

D(ψ)∇c · ∇z dx. (2.9)

Similarly, we have the following result (using ∇ψ · n = 0),∫
Ω

zdiv(A3(ψ, c)∇ψ)dx = −
∫

Ω

A3(ψ, c)∇ψ · ∇z dx. (2.10)

Now making use of equations (2.7)-(2.10) in the equations (2.4)-(2.6), we arrive at

ρ0

(
∂u

∂t
,v

)
+ au(u,v) + bu(u; u,v) =

∫
Ω

A1(ψ, c) · v dx

+

∫
Ω

b(ψ)((u×B)×B) · v dx,(
∂ψ

∂t
, φ

)
+ aψ(ψ, φ) + bψ(u, ψ, φ) = −

∫
Ω

A2(ψ, c)φ dx,(
∂c

∂t
, z

)
+ bc(u, c, z) +

∫
Ω

D(ψ)∇c · ∇z dx

+

∫
Ω

A3(ψ, c)∇ψ · ∇z dx = 0, ∀ (v, φ, z) ∈ V

(u, ψ, c) (t = 0) = (u0, ψ0, c0) ,



(2.11)
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which is the final form of the weak formulation of the problem (1.103).

Before proving the existence and uniqueness, we shall give some lemmas.

Lemma 1 (i) Elliptic Estimate: Let k ∈ N and v ∈ H2(Ω) satisfy ∆v ∈ Hk(Ω)

and ∂v
∂n

= 0 on the boundary Γ. Then v ∈ Hk+2(Ω) and we have the following

estimate: there exists a constant C > 0 independent of v such that

‖v‖Hk+2(Ω) ≤ C
(
‖∆v‖Hk(Ω) + ‖v‖Hk(Ω)

)
.

(ii) Gagliardo-Nirenberg’s inequality: There exist a constant C > 0 such that

‖v‖Lp(Ω) ≤ C ‖v‖θHq(Ω) ‖v‖
1−θ
L2(Ω) ∀ v ∈ Hq(Ω),

where 0 ≤ θ < 1 and p = 2n
n−2θq

, with the exception that if q−n/2 is a nonnegative

integer then θ is restricted to zero.

(iii) For any set Ω ⊂ R2, we have

‖v‖L4(Ω) ≤ C ‖v‖1/2

L2(Ω) ‖∇v‖
1/2

L2(Ω) ∀ v ∈ H1
0 (Ω).

For the proof of this lemma, see, e.g., [23] and [55]. �

Lemma 2 For any open set Ω, then the trilinear forms have the following properties

(i) For all u ∈ V, v ∈ (H1
0 (Ω))

2
and ψ, c ∈ H1(Ω)

b(u, v, v) = 0, b(u, ψ, ψ) = 0, b(u, c, c) = 0.

(ii) For all u ∈ V, v,w ∈ (H1
0 (Ω))

2
, ψ, φ ∈ H1(Ω) and c, z ∈ H1(Ω).

b(u, v,w) = −b(u,w, v), b(u, ψ, φ) = −b(u, φ, ψ), b(u, c, z) = −b(u, z, c).

where u = (u1, u2), v = (v1, v2), w = (w1, w2).

Proof: (i) As we know that the trilinear form b(u,v,v) can be expressed as

b(u,v,v) =
2∑

i,j=1

∫
Ω

ui(∂ivj)vjdx.

Consider the following integral now∫
Ω

ui(∂ivj)vjdx =

∫
Ω

ui∂i

(
v2
j

2

)
dx.
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Using divergence theorem and as u = 0 on Γ, therefore we have∫
Ω

ui(∂ivj)vjdx = −1

2

∫
Ω

∂iui
(
v2
j

)
dx.

Therefor we have

2∑
i,j=1

∫
Ω

ui(∂ivj)vjdx = −1

2

2∑
j=1

∫
Ω

div(u)
(
v2
j

)
dx.

Since u ∈ V , therefore we obtain the required result

b(u,v,v) = 0.

The proofs of other two properties can be obtained by using similar arguments.

(ii) If we replace v by v + w in the first property of (i), we obtain

b(u,v + w,v + w) = b(u,v,v) + b(u,v,w)

+b(u,w,v) + b(u,w,w).

Making use of result (i), we get

b(u,v,w) = −b(u,w,v).

Similarly we can prove the other two properties. �

Lemma 3 Let assumptions (H1) − (H5) are satisfied, then for sufficiently regular

(u, ψ, c) we have for all i = 2, 3

(i) |∇A1(x, t, ψ, c)|2 ≤ C (1 + |∇ψ|2 + |∇c|2) ,

(ii) |∇Ai(x, t, ψ, c)|2 ≤ C (1 + |∇ψ|2 + |∇c|2),

(iii) |∇D(x, t, ψ)|2 ≤ C (1 + |∇ψ|2) ,

(iv) |∇b(x, t, ψ)|2 ≤ C (1 + |∇ψ|2) .

Proof : As we can write

∇ (A1(x, t, ψ, c)) = A′1x(x, t, ψ, c) + A′1ψ(x, t, ψ, c)∇ψ + A′1c(x, t, ψ, c)∇c,

by taking absolute on both sides, we have

|∇ (A1(x, t,u, ψ, c))|2 ≤ |A
′
1x(x, t, ψ, c)|2 +

∣∣A′1ψ(x, t, ψ, c)
∣∣
2
|∇ψ|2

+ |A′1c(x, t, ψ, c)|2 |∇c|2 ,
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since A1 ∈ W 1,∞, therefore we have

|∇ (A1(x, t,u, ψ, c))|2 ≤ C (1 + |∇ψ|2 + |∇c|2) .

And by using the same technique, we can easily obtain the remaining three results

(ii), (iii) and (iv) (see for similar results [6]). �

Lemma 4 Let the hypothesis (H1)−(H5) are satisfied and Xm,n = (um,n, ψm,n, cm,n)

be a sequence converging to X = (u, ψ, c) in L2(0, Tf ;H) strongly and in L2(0, Tf ;V)

weakly. Then we have the following convergence results

(i) A1(ψm,n, cm,n)→ A1(ψ, c), in Lp(Q) strongly ∀ p ∈ [1,∞),

(ii) Ai(ψm,n, cm,n)→ Ai(ψ, c), i = 2, 3, in Lp(Q) strongly ∀ p ∈ [1,∞),

(iii) D(ψm,n)→ D(ψ), in Lp(Q) strongly ∀ p ∈ [1,∞),

(iv) D(ψm,n)∇cm,n ⇀ D(ψ)∇c, in Lp(Q) weakly ∀ p ∈ [1, 2),

(v) A3(ψm,n, cm,n)∇ψm,n ⇀ A3(ψ, c)∇ψ, in Lp(Q) weakly ∀ p ∈ [1, 2),

Proof : The proofs of the first three parts and the last two parts of the this lemma

are similar, therefore we provide only the proofs of first and last part.

(i) Let v ∈ Lq(Q), for q ∈ (1,+∞) and consider

Im,n =

∫
Q

(A1(ψm,n, cm,n)−A1(ψ, c)) vdxdt,

or we can write

|Im,n| ≤
∫
Q
|A1(ψm,n, cm,n)−A1(ψ, c)|2 |v|2 dxdt,

and by using Hölder’s inequality, we arrive at

|Im,n| ≤ ‖A1(ψm,n, cm,n)−A1(ψ, c)‖Lp(Q) ‖v‖Lq(Q) ,

with 1/p+ 1/q = 1 and 1 ≤ p <∞. Consider now

‖A1(ψm,n, cm,n)−A1(ψ, c)‖pLp(Q) =

∫
Q
|A1(ψm,n, cm,n)−A1(ψ, c)|p2 dxdt,

=

∫
Q
|A1(ψm,n, cm,n)−A1(ψ, c)|p−1

2 |A1(ψm,n, cm,n)−A1(ψ, c)|2 dxdt.

As we know that A1 is bounded (see hypothesis (H1)− (H5)), therefore we have

‖A1(ψm,n, cm,n)−A1(ψ, c)‖pLp(Q) ≤ 2a1

∫
Q
|A1(ψm,n, cm,n)−A1(ψ, c)|2 dxdt.
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and also A1 is Lipschitz function, therefore we can write

‖A1(ψm,n, cm,n)−A1(ψ, c)‖pLp(Q) ≤ c1

(∫
Q

(
|ψm,n − ψ|2 + |cm,n − c|2

)
dxdt

)1/2

.

The above inequality can be written as

‖A1(ψm,n, cm,n)−A1(ψ, c)‖pLp(Q) ≤ c2

(
‖ψm,n − ψ‖L2(Q) + ‖cm,n − c‖L2(Q)

)
.

As Xm,n = (um,n, ψm,n, cm,n) converges strongly to X = (u, ψ, c) in L2(0, Tf ; H),

therefore

‖A1(ψm,n, cm,n)−A1(ψ, c)‖pLp(Q) −→ 0, as m,n→∞.

and consequently

|Im,n| −→ 0, as m,n→∞.

This proves the result.

(v) Let φ ∈ Lq(Q) wih 1/p+ 1/q = 1, p ∈ [1, 2) and consider

Km,n =

∫
Q

(A3(ψm,n, cm,n)∇ψm,n − A3(ψ, c)∇ψ) φ dxdt,

adding and subtracting the term A3(ψ, c)∇ψm,n, we obtain

Km,n =

∫
Q

(A3(ψm,n, cm,n)− A3(ψ, c))∇ψm,n φ dxdt

+

∫
Q

(∇ψm,n −∇ψ)A3(ψ, c) φ dxdt.

As ψm,n converges weakly to ψ in L2(0, Tf , H
1(Ω)), therefore second term in the above

expression tends to zero as m,n → ∞. Let K′m,n denotes the first term in the above

expression

K′m,n =

∫
Q

(A3(ψm,n, cm,n)− A3(ψ, c)) ∇ψm,n φ dxdt,

or ∣∣K′m,n∣∣ ≤ ∫
Q
|A3(ψm,n, cm,n)− A3(ψ, c)| |∇ψm,n|2 |φ| dxdt,

and using Hölder’s inequality, we have∣∣K′m,n∣∣ ≤ ‖A3(ψm,n, cm,n)− A3(ψ, c)‖Ls(Q) ‖∇ψm,n‖L2(Q) ‖φ‖Lq(Q) ,
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with 1/s+ 1/2 + 1/q = 1 and s ≥ 2, and

‖A3(ψm,n, cm,n)− A3(ψ, c)‖sLs(Q) =

∫
Q
|A3(ψm,n, cm,n)− A3(ψ, c)|s2 dxdt

=

∫
Q
|A3(ψm,n, cm,n)− A3(ψ, c)|s−2

2 |A3(ψm,n, cm,n)− A3(ψ, c)|22 dxdt.

Since A3 is bounded function (see hypothesis (H1)− (H5)), therefore we have

‖A3(ψm,n, cm,n)− A3(ψ, c)‖sLs(Q) ≤ 2a3

∫
Q
|A3(ψm,n, cm,n)− A3(ψ, c)|22 dxdt,

also as A3 is Lipschitz function, therefore we can write

‖A3(ψm,n, cm,n)− A3(ψ, c)‖sLs(Q) ≤ 2c0

∫
Q

(
|ψm,n − ψ|22 + |cm,n − c|22

)
dxdt.

The above inequality can be written as

‖A3(ψm,n, cm,n)− A3(ψ, c)‖sLs(Q) ≤ 2c0

(
‖ψm,n − ψ‖2

L2(Q) + ‖cm,n − c‖2
L2(Q)

)
.

As Xm,n = (um,n, ψm,n, cm,n) converges to X = (u, ψ, c) in L2(0, Tf ,H) strongly and

weakly in L2(0, Tf ,V), therefore K′m,n → 0 as m,n→∞ and hence

|Km,n| −→ 0, as m,n→∞.

This completes the proof. �

2.5 Existence and Regularity of the Solution

Theorem 1 Let the assumptions (H1)−(H5) are satisfied and (u0, ψ0, c0) ∈ H, then

there exists a triplet (u, ψ, c) such that

(u, ψ, c) ∈ L∞(0, Tf ,H) ∩ L2(0, Tf ,V),(
∂u

∂t
,
∂ψ

∂t
,
∂c

∂t

)
∈ L2(0, Tf ,V

′),

which is the solution of the problem (2.11).

Proof : We shall employ the Bubnov-Galerkin method to prove the existence of the

problem (2.11). We shall approximate the system equations by projecting them onto

finite dimensional subspaces. Since the boundary data in the problem (1.103) for

velocity is different from the boundary data for the phase-field and concentration
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equations, therefore we have to project the velocity equation onto m dimensional sub-

space and the phase-field and concentration equation onto the n dimensional subspace,

then take the limit first in n and then in m. For this consider a sequence (λi)i≥1 of the

eigenvalues of the self adjoint operator −∆ with the homogeneous Dirichlet boundary

conditions such that 0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · and the corresponding eigen

functions (wi)i≥1, that satisfies

−∆wi = λiwi in
((
H1

0 (Ω)
)2
)′

and wi ∈
(
H1

0 (Ω)
)2
,

(∇wi,∇wj) = (−∆wi,wj) = λi(wi,wj) ∀ wi,wj ∈
(
H1

0 (Ω)
)2
. (2.12)

Also the eigen functions satisfy (wi,wj) = δij and (∇wi,∇wj) = λiδij for i 6= j,

i, j ≥ 1. Furthermore, the eigenfunctions are smooth functions and form complete

orthogonal basis in both (L2(Ω))
2

and (H1
0 (Ω))

2
. We denote by Vm, the finite di-

mensional vector space generated by the eigenfunctions (wi)1≤i≤m. Then the union⋃
m≥1 Vm is dense in both (L2(Ω))

2
and (H1

0 (Ω))
2
.

Consider again a sequence (µk)k≥1of the eigenvalues of the operator −∆ with the ho-

mogeneous Neumann boundary conditions such that 0 = µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · ·
and the corresponding eigenfunctions (ek)k≥1 that is

−∆ek = µkek in (H1(Ω))′ and ek ∈ H1(Ω). (2.13)

The eigenfunctions (ek)k≥1 satisfy (ek, el) = δkl and (∇ek,∇el) = 0 for k 6= l, k, l ≥
1. Moreover the eigenfunctions are smooth functions and (ek)k≥1 form a complete

orthogonal basis in both L2(Ω) andH1(Ω). LetWn be the finite vector space generated

by (ek)k≥1. Then
⋃
n≥1Wn is dense in L2(Ω) and also in H1(Ω).

Now we define the L2, H1
0 and H1-orthogonal projectors on the spaces Vm and Wn

respectively. Let Pm be the L2-orthogonal projector onto the space Vm, such that

∀v ∈ (L2(Ω))
2

(Pmv− v,w)L2(Ω) = 0, ∀w ∈ Vm, (2.14)

and Pm to be the H1
0 -orthogonal projector on Vm, we should have ∀v ∈ (H1

0 (Ω))
2

that

(∇(Pmv− v),∇w) = 0, ∀w ∈ Vm. (2.15)

Let Ln be the L2-orthogonal projections onto the space Wn, such that ∀φ ∈ L2(Ω)

(Lnφ− φ, ϕ)L2(Ω) = 0, ∀ϕ ∈ Wn, (2.16)

and Ln to be the H1-orthogonal projector on Wn, we should have ∀φ ∈ H1(Ω) that

(∇(Lnφ− φ),∇ϕ) = 0, ∀ϕ ∈ Wn. (2.17)
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Using the above relations we can easily prove the following relations. For all v ∈
(L2(Ω))

2
and φ ∈ L2(Ω),

‖Pmv‖L2(Ω) ≤ C ‖v‖L2(Ω) ,

‖Lnφ‖L2(Ω) ≤ C ‖φ‖L2(Ω) .

}
(2.18)

For v ∈ (H1
0 (Ω))

2
,

‖∇(Pmv)‖L2(Ω) ≤ C ‖∇v‖L2(Ω) , (2.19)

and for all φ ∈ H1(Ω), we have

‖∇(Lnφ)‖L2(Ω) ≤ C ‖∇φ‖L2(Ω) . (2.20)

Moreover, if v ∈ (H2(Ω))
2

and φ ∈ H2
0 (Ω), we can easily prove that

‖∆(Pmv)‖L2(Ω) ≤ C ‖∆v‖L2(Ω) ,

‖∆(Lnφ)‖L2(Ω) ≤ C ‖∆φ‖L2(Ω) ,

}
(2.21)

where C > 0 is a constant which is independent of m and n.

Applying the projections Pm on the first and Ln on the second and third equations of

the system (2.11) respectively, we have ∀(wi, ek) ∈ Vm ×Wn,

ρ0

(
∂um,n
∂t

,wi

)
+ au(um,n,wi) + bu(um,n; um,n,wi)

=

∫
Ω

A1(ψm,n, cm,n) ·wi dx +

∫
Ω

b(ψ)((um,n ×B)×B) ·wi dx, (2.22)

(
∂ψm,n
∂t

, ek

)
+ aψ(ψm,n, ek) + bψ(um,n, ψm,n, ek)

= −
∫

Ω

A2(ψm,n, cm,n)ek dx, (2.23)

(
∂cm,n
∂t

, ek

)
+ bc(um,n, cm,n, ek) +

∫
Ω

D(ψm,n)∇cm,n · ∇ek dx

+

∫
Ω

A3(ψm,n, cm,n)∇ψm,n · ∇ek dx = 0, (2.24)

(um,n, ψm,n, cm,n) (t = 0) = (um,n0 , ψm,n0 , cm,n0 ) , (2.25)

where (Pmu0, Lnψ0, Lnc0) = (um,n0 , ψm,n0 , cm,n0 ) which satisfy

(um,n0 , ψm,n0 , cm,n0 )→ (u0, ψ0, c0) in H as m,n→ ∞, (2.26)
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where the Bubnov-Galerkin approximation can be given for each m,n ≥ 1, as

um,n(·, t) =
m∑
i=1

um,ni (t)wi,

ψm,n(·, t) =
n∑
i=1

ψm,nk (t)ek,

cm,n(·, t) =
n∑
i=1

cm,nk (t)ek.


(2.27)

Now multiplying equations (2.22), (2.23) and (2.24) respectively by um,ni (t), ψm,nk (t)

and cm,nk (t) and then taking sum over i and k, where i = 1 to m, k = 1 to n, we obtain

ρ0

(
∂um,n
∂t

,um,n

)
+ au (um,n,um,n) + bu (um,n,um,n,um,n)

=

∫
Ω

A1(ψm,n, cm,n) · um,n dx +

∫
Ω

b(ψ)((um,n ×B)×B) · um,ndx,

(
∂ψm,n
∂t

, ψm,n

)
+ aψ(ψm,n, ψm,n) + bψ(um,n, ψm,n, ψm,n)

= −
∫

Ω

A2(ψm,n, cm,n)ψm,n dx,

(
∂cm,n
∂t

, cm,n

)
+ bc(um,n, cm,n, cm,n) +

∫
Ω

D(ψm,n)∇cm,n · ∇cm,n dx

+

∫
Ω

A3(ψm,n, cm,n)∇ψm,n · ∇cm,n dx = 0.

Making use of Lemma (2), the above equations takes the form

ρ0

(
∂um,n
∂t

,um,n

)
+ au (um,n,um,n) =

∫
Ω

A1(ψm,n, cm,n) · um,n dx

+

∫
Ω

b(ψ)((um,n ×B)×B) · um,ndx,

(
∂ψm,n
∂t

, ψm,n

)
+ aψ(ψm,n, ψm,n) = −

∫
Ω

A2(ψm,n, cm,n)ψm,n dx,

(
∂cm,n
∂t

, cm,n

)
+

∫
Ω

D(ψm,n)∇cm,n · ∇cm,n dx

+

∫
Ω

A3(ψm,n, cm,n)∇ψm,n · ∇cm,n dx = 0.
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The above equations can further be written as

ρ0

2

d

dt
|um,n|2 + µ |∇um,n|2 =

∫
Ω

A1(ψm,n, cm,n) · um,n dx

+

∫
Ω

b(ψ)((um,n ×B)×B) · um,ndx, (2.28)

1

2

d

dt
|ψm,n|2 + ε1 |∇ψm,n|2 = −

∫
Ω

A2(ψm,n, cm,n)ψm,n dx, (2.29)

1

2

d

dt
|cm,n|2 +

∫
Ω

D(ψm,n) |∇cm,n|22 dx

= −
∫

Ω

A3(ψm,n, cm,n)∇ψm,n · ∇cm,n dx, (2.30)

and by using the hypothesis (H1)− (H5), in the above equations, we obtain

ρ0

2

d

dt
|um,n|2 + µ |∇um,n|2 ≤ a1

∫
Ω

|um,n|2 dx + b1

∫
Ω

|um,n|2 |um,n|2 dx,

1

2

d

dt
|ψm,n|2 + ε1 |∇ψm,n|2 ≤ a2

∫
Ω

|ψm,n| dx,

1

2

d

dt
|cm,n|2 +D0

∫
Ω

|∇cm,n|22 dx ≤ a3

∫
Ω

|∇ψm,n|2 |∇cm,n|2 dx.

Using Hölder’s inequality, the above inequalities take the form

ρ0
d

dt
|um,n|2 + 2µ |∇um,n|2 ≤ c1 |um,n|2 + c2 |um,n| ,

d

dt
|ψm,n|2 + 2ε1 |∇ψm,n|2 ≤ c3 |ψm,n| ,

d

dt
|cm,n|2 + 2D0 |∇cm,n|2 ≤ c4 |∇ψm,n| |∇cm,n| .

Further by Young’s inequality, we have for δ1 > 0

ρ0
d

dt
|um,n|2 + 2µ |∇um,n|2 ≤ c5 + c6 |um,n|2 , (2.31)

d

dt
|ψm,n|2 + 2ε1 |∇ψm,n|2 ≤ c7 + |ψm,n|2 , (2.32)

d

dt
|cm,n|2 + 2D0 |∇cm,n|2 ≤

c2
4

4δ1

|∇ψm,n|2 + δ1 |∇cm,n|2 . (2.33)

Multiplying the inequality (2.33) by δ2 on both sides, we get

δ2
d

dt
|cm,n|2 + 2δ2D0 |∇cm,n|2 ≤

c2
4δ2

4δ1

|∇ψm,n|2 + δ2δ1 |∇cm,n|2 ,
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choosing δ1 = D0 and δ2 = 4ε1D0

c24
, the above inequality takes the form

δ2
d

dt
|cm,n|2 + 2δ2D0 |∇cm,n|2 ≤ ε1 |∇ψm,n|2 + δ2D0 |∇cm,n|2 . (2.34)

Adding the inequalities (2.31),(2.32) and (2.34), we obtain

d

dt

(
ρ0 |um,n|2 + |ψm,n|2 + δ2 |cm,n|2

)
+ 2µ |∇um,n|2 + ε1 |∇ψm,n|2

+δ2D0 |∇cm,n|2 ≤ c8 + c6 |um,n|2 + |ψm,n|2 ,

and since |cm,n|2 ≥ 0, therefore the above inequality takes the form

d

dt

(
ρ0 |um,n|2 + |ψm,n|2 + δ2 |cm,n|2

)
+ 2µ |∇um,n|2 + ε1 |∇ψm,n|2

+δ2D0 |∇cm,n|2 ≤ c9

(
1 + |um,n|2 + |ψm,n|2 + |cm,n|2

)
. (2.35)

From the above relation, we can deduce that

d

dt

(
ρ0 |um,n|2 + |ψm,n|2 + δ2 |cm,n|2

)
≤ c9

(
1 + |um,n|2 + |ψm,n|2 + |cm,n|2

)
.

Let c10 = min(ρ0, 1, δ2) and c11 = c9/c10, then we have

d

dt

(
|um,n|2 + |ψm,n|2 + |cm,n|2

)
≤ c11

(
1 + |um,n|2 + |ψm,n|2 + |cm,n|2

)
.

Using Gronwall’s lemma, the inequality (2.18), the equation (2.26) and as (u0, ψ0, c0) ∈
H, therefore we have

|um,n(t)|2 + |ψm,n(t)|2 + |cm,n(t)|2 ≤ c12, ∀ t ∈ (0, Tf ).

We can simplify the above expression as

|Xm,n(t)|2 ≤ c12, ∀ t ∈ (0, Tf ),

where Xm,n = (um,n, ψm,n, cm,n). Thus we conclude that

‖Xm,n‖L∞(0,Tf ;H) ≤ c12. (2.36)

This implies that Xm,n = (um,n, ψm,n, cm,n) is uniformly bounded in L∞(0, Tf ; H).

Now integrating equation (2.35) over (0, t) for all t ∈ (0, Tf ), we have∫ t

0

d

ds

(
ρ0 |um,n|2 + |ψm,n|2 + δ2 |cm,n|2

)
ds+ 2µ

∫ t

0

|∇um,n|2 ds

+ε1

∫ t

0

|∇ψm,n|2 ds+ δ2D0

∫ t

0

|∇cm,n|2 ds

≤ c9

∫ t

0

(
1 + |um,n|2 + |ψm,n|2 + |cm,n|2

)
ds,
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or we can write the above inequality as

(
ρ0 |um,n(t)|2 + |ψm,n(t)|2 + δ2 |cm,n(t)|2

)
+ 2µ

∫ t

0

|∇um,n|2 ds

+ε1

∫ t

0

|∇ψm,n|2 ds+ δ2D0

∫ t

0

|∇cm,n|2 ds

≤ c9

∫ t

0

(
1 + |um,n|2 + |ψm,n|2 + |cm,n|2

)
ds

+
(
ρ0 |um,n(0)|2 + |ψm,n(0)|2 + δ2 |cm,n(0)|2

)
.

From above inequality, we can deduce that

2µ

∫ t

0

|∇um,n|2 ds+ ε1

∫ t

0

|∇ψm,n|2 ds+ δ2D0

∫ t

0

|∇cm,n|2 ds

≤ c9

∫ t

0

(
1 + |um,n|2 + |ψm,n|2 + |cm,n|2

)
ds

+c13

(
ρ0 |u0|2 + |ψ0|2 + δ2 |c0|2

)
,

and according to (2.18), (2.36) and as (u0, ψ0, c0) ∈ H, we have∫ t

0

(
2µ |∇um,n|2 + ε1 |∇ψm,n|2 + δ2D0 |∇cm,n|2

)
ds ≤ c14, ∀ t ∈ (0, Tf )

or

min(2µ, ε1, δ2D0)

∫ Tf

0

(
|∇um,n|2 + |∇ψm,n|2 + |∇cm,n|2

)
dt ≤ c15.

We can write above inequality as∫ Tf

0

|∇Xm,n|2 dt ≤ c16.

Therefore we have the following result

‖∇Xm,n‖2
L2(0,Tf ;H) ≤ c16. (2.37)

Also as we know that

‖Xm,n‖2 = |Xm,n|2 + |∇Xm,n|2 .

Integrating above equation over (0, Tf ) and using the results (2.36) and (2.37), we

conclude that ∫ Tf

0

‖Xm,n‖2 dt ≤ c17.

Thus we have

‖Xm,n‖L2(0,Tf ;V) ≤ c17. (2.38)
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This implies that Xm,n is uniformly bounded in L2(0, Tf ; V). From the results (2.36)

and (2.38), we conclude that Xm,n is uniformly bounded in L∞(0, Tf ; H)∩L2(0, Tf ; V).

That is

‖Xm,n‖L∞(0,Tf ;H)∩L2(0,Tf ;V) ≤ c18. (2.39)

This result makes it possible to extract a subsequence from Xm,n, also denoted by

Xm,n, which converges weak star toward X = (u, ψ, c) in L∞(0, Tf ; H) and converges

weakly toward X in L2(0, Tf ; V).

Now from equations (2.22)-(2.24), we have ∀(v, φ, z) ∈ Vm ×Wn ×Wn,

ρ0

(
∂um,n
∂t

,v

)
= −µ

∫
Ω

∇um,n · ∇vdx− bu (um,n,um,n,v)

+ (A1(ψm,n, cm,n),v) + (b(ψm,n)((um,n ×B)×B),v) ,(
∂ψm,n
∂t

, φ

)
= −bψ(um,n, ψm,n, φ)− ε1

∫
Ω

∇ψm,n · ∇φdx−
∫

Ω

A2(ψm,n, cm,n)φ dx,

(
∂cm,n
∂t

, z

)
= −bc(um,n, cm,n, z)−

∫
Ω

D(ψm,n)∇cm,n · ∇z dx

−
∫

Ω

A3(ψm,n, cm,n)∇ψm,n · ∇z dx,

and using hypothesis (H1)− (H5), we arrive at

ρ0

∣∣∣∣(∂um,n
∂t

,v

)∣∣∣∣ ≤ µ

∫
Ω

|∇um,n|2 |∇v|2 dx + |bu (um,n,um,n,v)|

+a1

∫
Ω

|v|2 dx + b1

∫
Ω

|um,n|2 |v|2 dx,∣∣∣∣(∂ψm,n∂t
, φ

)∣∣∣∣ ≤ |bψ(um,n, ψm,n, φ)|+ ε1

∫
Ω

|∇ψm,n|2 |∇φ|2 dx + a2

∫
Ω

|φ|2 dx,

∣∣∣∣(∂cm,n∂t
, z

)∣∣∣∣ ≤ |bc(um,n, cm,n, z)|+D1

∫
Ω

|∇cm,n|2 |∇z|2 dx

+a3

∫
Ω

|∇ψm,n|2 |∇z|2 dx.

By Hölder’s inequality, we have

ρ0

∣∣∣∣(∂um,n
∂t

,v

)∣∣∣∣ ≤ µ |∇um,n| |∇v|+ |bu (um,n,um,n,v)|

+c18 |v|+ b1 |um,n| |v| ,∣∣∣∣(∂ψm,n∂t
, φ

)∣∣∣∣ ≤ |bψ(um,n, ψm,n, φ)|+ ε1 |∇ψm,n| |∇φ|+ c19 |φ| ,
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, z

)∣∣∣∣ ≤ |bc(um,n, cm,n, z)|+D1 |∇cm,n| |∇z|

+a3 |∇ψm,n| |∇z| ,

As |v| ≤ ‖v‖ , ∀ v ∈ V and |φ| ≤ ‖φ‖, |∇φ| ≤ ‖φ‖ , ∀ φ ∈ H1(Ω) by the definition of

Sobolev norm. The above inequalities take the form

ρ0

∣∣∣∣(∂um,n
∂t

,v

)∣∣∣∣ ≤ µ |∇um,n| ‖v‖+ |bu (um,n,um,n,v)|

+c18 ‖v‖+ b1 |um,n| ‖v‖ , (2.40)∣∣∣∣(∂ψm,n∂t
, φ

)∣∣∣∣ ≤ |bψ(um,n, ψm,n, φ)|+ ε1 |∇ψm,n| ‖φ‖+ c19 ‖φ‖ , (2.41)

∣∣∣∣(∂cm,n∂t
, z

)∣∣∣∣ ≤ |bc(um,n, cm,n, z)|+D1 |∇cm,n| ‖z‖

+a3 |∇ψm,n| ‖z‖ . (2.42)

Now as (according to Lemma (2))

|bu (um,n,um,n,v)| = |bu (um,n,v,um,n)| ,

≤
∫

Ω

|um,n|2 |∇v|2 |um,n|2 dx.

By employing the Hölder’s inequality and then Gagliardo-Nirenberg’s inequality, the

above inequality takes the form

|bu (um,n,um,n,v)| ≤ ‖um,n‖2
L4(Ω) |∇v| ≤ c20 ‖um,n‖ |um,n| ‖v‖ ,

and using the inequality (2.36), we obtain

|bu (um,n,um,n,v)| ≤ c21 ‖um,n‖ ‖v‖ . (2.43)

Similarly we can derive that

|bc (um,n, cm,n, z)| ≤ c22 ‖um,n‖1/2 ‖cm,n‖1/2 ‖z‖ . (2.44)

and

|bψ (um,n, ψm,n, φ)| ≤ c23 ‖um,n‖1/2 ‖ψm,n‖1/2 ‖φ‖ . (2.45)

Using the results (2.43), (2.44) and (2.45) in the inequalities (2.40)-(2.42), we arrive

at

ρ0

∣∣∣∣(∂um,n
∂t

,v

)∣∣∣∣ ≤ µ |∇um,n| ‖v‖+ c21 ‖um,n‖ ‖v‖

+c18 ‖v‖+ b1 |um,n| ‖v‖ ,
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, φ

)∣∣∣∣ ≤ c23 ‖um,n‖1/2 ‖ψm,n‖1/2 ‖φ‖+ ε1 |∇ψm,n| ‖φ‖+ c19 ‖φ‖ ,

∣∣∣∣(∂cm,n∂t
, z

)∣∣∣∣ ≤ c22 ‖um,n‖1/2 ‖cm,n‖1/2 ‖z‖+D1 |∇cm,n| ‖z‖

+a3 |∇ψm,n| ‖z‖ ,

the above inequalities can be written as

ρ0

∣∣∣∣(∂um,n
∂t

,v

)∣∣∣∣ ≤ (µ |∇um,n|+ c21 ‖um,n‖+ c18 + b1 |um,n|) ‖v‖ ,∣∣∣∣(∂ψm,n∂t
, φ

)∣∣∣∣ ≤ (
c23 ‖um,n‖1/2 ‖ψm,n‖1/2 + ε1 |∇ψm,n|+ c19

)
‖φ‖ ,

∣∣∣∣(∂cm,n∂t
, z

)∣∣∣∣ ≤ (
c22 ‖um,n‖1/2 ‖cm,n‖1/2 +D1 |∇cm,n|+ a3 |∇ψm,n|

)
‖z‖ .

Dividing above set of relations respectively by ‖v‖ , ‖φ‖ and ‖z‖ , we get

ρ0

∥∥∥∥∂um,n
∂t

∥∥∥∥
V ′
≤ µ |∇um,n|+ c21 ‖um,n‖+ c18 + b1 |um,n| ,∥∥∥∥∂ψm,n∂t

∥∥∥∥
(H1(Ω))′

≤ c23 ‖um,n‖1/2 ‖ψm,n‖1/2 + ε1 |∇ψm,n|+ c19,

∥∥∥∥∂cm,n∂t

∥∥∥∥
(H1(Ω))′

≤ c22 ‖um,n‖1/2 ‖cm,n‖1/2 +D1 |∇cm,n|+ a3 |∇ψm,n| ,

where V ′ and (H1(Ω))
′
are the corresponding dual spaces of V and H1(Ω) respectively.

By employing Young’s inequality, the above inequalities take the form

ρ0

∥∥∥∥∂um,n
∂t

∥∥∥∥
V ′
≤ c24 (1 + ‖um,n‖) ,∥∥∥∥∂ψm,n∂t

∥∥∥∥
(H1(Ω))′

≤ c25 (1 + ‖um,n‖+ ‖ψm,n‖) ,

∥∥∥∥∂cm,n∂t

∥∥∥∥
(H1(Ω))′

≤ c26 (‖um,n‖+ ‖cm,n‖+ |∇ψm,n|) .

Making use of the result (2.39), we can easily arrive at

ρ0

∫ Tf

0

∥∥∥∥∂um,n
∂t

∥∥∥∥2

V ′
dt ≤ c27,
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∫ Tf

0

∥∥∥∥∂ψm,n∂t

∥∥∥∥2

(H1(Ω))′
dt ≤ c28,∫ Tf

0

∥∥∥∥∂cm,n∂t

∥∥∥∥2

(H1(Ω))′
dt ≤ c29.

We can write ∫ Tf

0

∥∥∥∥∂Xm,n

∂t

∥∥∥∥2

V′
dt ≤ c30.

This implies that ∥∥∥∥∂Xm,n

∂t

∥∥∥∥
L2(0,Tf ;V′)

≤ c30. (2.46)

This shows that ∂Xm,n

∂t
=
(
∂um,n

∂t
, ∂ψm,n

∂t
, ∂cm,n

∂t

)
is uniformly bounded in L2 (0, Tf ; V

′).

Now we define the space

W1 =

{
X ∈ L2(0, Tf ; V),

∂X

∂t
∈ L2(0, Tf ; V

′)

}
.

According to [55], the injection of W1 into L2(0, Tf ; H) is compact.

From equation (2.39) and (2.46), we conclude that Xm,n is uniformly bounded inW1,

therefore we can extract from Xm,n, a subsequence also denoted by Xm,n, such that

Xm,n ⇀ X weakly in L2(0, Tf ; V),

Xm,n −→ X strongly in L2(0, Tf ; H),

where Xm,n = (um,n, ψm,n, cm,n) and X = (u, ψ, c).

Now we shall prove that X = (u, ψ, c) is the solution of the problem (2.11).

In order to pass limit in equations (2.22)-(2.25), we consider ϕ ∈ C1 ([0, Tf ]) such that

ϕ(Tf ) = 0.

Multiplying equations (2.22)-(2.24) by ϕ(t) and then integrating with respect to t over

(0, Tf ), we have ∀ (v, φ, z) ∈ Vm ×Wn ×Wn,

ρ0

∫ Tf

0

(
∂um,n
∂t

, ϕv

)
dt+

∫ Tf

0

au (um,n, ϕv) dt+

∫ Tf

0

bu (um,n,um,n, ϕv) dt

=

∫ Tf

0

(A1(ψm,n, cm,n), ϕv) dt+

∫ Tf

0

(b(ψm,n)((um,n ×B)×B), ϕv) dt,

∫ Tf

0

(
∂ψm,n
∂t

, ϕφ

)
dt+

∫ Tf

0

aψ(ψm,n, ϕφ)dt

= −
∫ Tf

0

∫
Ω

A2(ψm,n, cm,n)ϕφ dxdt,
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0

(
∂cm,n
∂t

, ϕz

)
dt+

∫ Tf

0

∫
Ω

A3(ψm,n, cm,n)∇ψm,n · ∇(ϕz)dxdt

+

∫ Tf

0

bc(um,n, cm,n, ϕz)dt+

∫ Tf

0

∫
Ω

D(ψm,n)∇cm,n · ∇(ϕz)dxdt = 0,

and integrating the first terms of the above equations by parts with respect to t, and

using ϕ(Tf ) = 0, we have

− ρ0

∫ Tf

0

(um,n, ϕ
′v) dt+

∫ Tf

0

au (um,n, ϕv) dt+

∫ Tf

0

bu (um,n,um,n, ϕv) dt

=

∫ Tf

0

(A1(ψm,n, cm,n), ϕv) dt+

∫ Tf

0

(b(ψm,n)((um,n ×B)×B), ϕv) dt

+(um,n0 , ϕ(0)v),

−
∫ Tf

0

(ψm,n, ϕ
′φ) dt+

∫ Tf

0

aψ(ψm,n, ϕφ)dt

= −
∫ Tf

0

∫
Ω

A2(ψm,n, cm,n)ϕφ dxdt+ (ψm,n0 , ϕ(0)φ) ,

−
∫ Tf

0

(cm,n, ϕ
′z) dt+

∫ Tf

0

∫
Ω

A3(ψm,n, cm,n)∇ψm,n · ∇(ϕz)dxdt

+

∫ Tf

0

bc(um,n, cm,n, ϕz)dt+

∫ Tf

0

∫
Ω

D(ψm,n)∇cm,n · ∇(ϕz)dxdt

= (cm,n0 , ϕ(0)z) .

It is easy to pass the limit in the linear terms and for the nonlinear terms we use

Lemma 4 and equation (2.26), therefore applying limit (m,n → ∞) in the above

equations, we get

− ρ0

∫ Tf

0

(u, ϕ′v) dt+

∫ Tf

0

au (u, ϕv) dt+

∫ Tf

0

bu (u,u, ϕv) dt

=

∫ Tf

0

(A1(ψ, c), ϕv) dt+

∫ Tf

0

(b(ψ)((u×B)×B), ϕv) dt

+(u0, ϕ(0)v), (2.47)

−
∫ Tf

0

(ψ, ϕ′φ) dt+

∫ Tf

0

aψ(ψ, ϕφ)dt

= −
∫ Tf

0

∫
Ω

A2(ψ, c)ϕφ dxdt+ (ψ0, ϕ(0)φ) , (2.48)
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−
∫ Tf

0

(c, ϕ′z) dt+

∫ Tf

0

∫
Ω

A3(ψ, c)∇ψ · ∇(ϕz)dxdt

+

∫ Tf

0

bc(u, c, ϕz)dt+

∫ Tf

0

∫
Ω

D(ψ)∇c · ∇(ϕz)dxdt

= (c0, ϕ(0)z) . (2.49)

Assuming that ϕ ∈ D(0, Tf ), we can deduce that (u, ψ, c) verifies the problem (2.11)

in the distribution sense on (0, Tf ).

Finally, it remains to verify the initial conditions. For this, multiplying each equation

in problem (2.11) by ϕ(t) and integrating with respect to t over (0, Tf ) and then

comparing the resulting equations with the equations (2.47)-(2.49), we finally obtain

that (u, ψ, c)(t = 0) = (u0, ψ0, c0). �

Theorem 2 Let (u0, ψ0, c0) ∈ (H1
0 (Ω))

2×H1(Ω)×L2(Ω), and the assumptions (H1)−
(H5) are satisfied. Then there exist a triplet of functions (u, ψ, c) satisfying

u ∈ L2
(

0, Tf ;
(
H2(Ω)

)2
)
∩H1

(
0, Tf ;

(
L2(Ω)

)2
)

ψ ∈ L2(0, Tf ;H
2(Ω)) ∩H1(0, Tf ;L

2(Ω))

c ∈ L2(0, Tf ;H
1(Ω)) ∩ L2(0, Tf ; (H1(Ω))′)

which is a solution of the problem (2.11).

Proof : Multiplying equation (2.22) by λi and then using equation (2.12), we have

− ρ0

(
∂um,n
∂t

,∆wi

)
− µ

∫
Ω

∇um,n · ∇(∆wi) dx− bu (um,n,um,n,∆wi)

= − (A1(ψm,n, cm,n),∆wi)− (b(ψm,n)((um,n ×B)×B),∆wi) , (2.50)

and again multiplying the above equation by um,ni (t) on both sides and taking sum

over i = 1, 2, · · ·m, we obtain by using (2.27) that

− ρ0

(
∂um,n
∂t

,∆um,n

)
− µ

∫
Ω

∇um,n · ∇(∆um,n) dx− bu (um,n,um,n,∆um,n)

= − (b(ψm,n)((um,n ×B)×B),∆um,n)

− (A1(ψm,n, cm,n),∆um,n) . (2.51)

According to equation (2.12), we have(
∂um,n
∂t

,∆um,n

)
= −(∇∂um,n

∂t
,∇um,n),
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further simplification yields(
∂um,n
∂t

,∆um,n

)
= −1

2

d

dt

∫
Ω

|∇um,n|22 dx.

Therefore we can write (
∂um,n
∂t

,∆um,n

)
= −1

2

d

dt
|∇um,n|2 . (2.52)

Consider the following integral∫
Ω

div (∇um,n ·∆um,n) dx =

∫
Ω

(
∇um,n · ∇∆um,n + |∆um,n|22

)
dx,

and applying divergence theorem on the left-hand-side of the above equation, we get∫
Γ

∇um,n ·∆um,n · n dx =

∫
Ω

∇um,n · ∇∆um,n dx +

∫
Ω

|∆um,n|22 dx.

As um,n = 0 on the boundary Γ and the relations (2.12) and (2.18) reduce the above

inequality as ∫
Ω

∇um,n · ∇∆um,n dx = − |∆um,n|2 . (2.53)

Using equations (2.52)-(2.53) in the equation (2.51), we obtain

ρ0
d

dt
|∇um,n|2 + 2µ |∆um,n|2 = 2bu (um,n,um,n,∆um,n)

−2 (b(ψm,n)((um,n ×B)×B),∆um,n)

−2 (A1(ψm,n, cm,n),∆um,n) ,

or we can write

ρ0
d

dt
|∇um,n|2 + 2µ |∆um,n|2 ≤ |2bu (um,n,um,n,∆um,n)|

+ |2 (b(ψm,n)((um,n ×B)×B),∆um,n)|
+ |2 (A1(ψm,n, cm,n),∆um,n)| .

Making use of hypothesis (H1)− (H5), the above inequality takes the form

ρ0
d

dt
|∇um,n|2 + 2µ |∆um,n|2 ≤ |2bu (um,n,um,n,∆um,n)|

+2b1c1

∫
Ω

|um,n|2 |∆um,n|2 dx

+2a3

∫
Ω

|∆um,n|2 dx,
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and by employing Hölder’s inequality, the above inequality becomes

ρ0
d

dt
|∇um,n|2 + 2µ |∆um,n|2 ≤ |2bu (um,n,um,n,∆um,n)|

+2b1c1 |um,n| |∆um,n|
+2a3c2 |∆um,n| .

Further by Young’s inequality

ρ0
d

dt
|∇um,n|2 + 2µ |∆um,n|2 ≤ |2bu (um,n,um,n,∆um,n)|

+
3b2

1c
2
1

µ
|um,n|2 +

µ

3
|∆um,n|2

+
3a2

3c
2
2

µ
+
µ

3
|∆um,n|2 . (2.54)

Consider now

|2bu(um,n,um,n,∆um,n)| ≤ 2

∫
Ω

|um,n|2 |∇um,n|2 |∆um,n|2 dx.

Using [55], we have

|2bu(um,n,um,n,∆um,n)|
≤ 2c3 |um,n|1/2 ‖um,n‖1/2 ‖um,n‖1/2 |∆um,n|1/2 |∆um,n| ,

and simplifying above inequality, we get

|2bu(um,n,um,n,∆um,n)| ≤ 2c3 |um,n|1/2 ‖um,n‖ |∆um,n|3/2 .

By applying Young’s inequality with p = 4/3 and q = 4, the above inequality takes

the following form

|2bu(um,n,um,n,∆um,n)| ≤ µ

3
|∆um,n|2 +

729c4
3

16µ3
|um,n|2 ‖um,n‖4 . (2.55)

According to the inequality (2.55), the inequality(2.54) becomes

ρ0
d

dt
‖um,n‖2 + µ |∆um,n|2 ≤

729c4
3

16µ3
|um,n|2 ‖um,n‖4

+
3b2

1c
2
1

µ
|um,n|2 +

3a2
3c

2
2

µ
,

and with the help of relation (2.39), we arrive

ρ0
d

dt
‖um,n‖2 + µ |∆um,n|2 ≤

729c4
3c4

16µ3
‖um,n‖4

+
3b2

1c
2
1c5

µ
+

3a2
3c

2
2

µ
.
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Let c6 =
3b21c

2
1c5
µ

+
3a2

3c
2
2

µ
and c7 =

729c43c4
16µ3 , we have

ρ0
d

dt
‖um,n‖2 + µ |∆um,n|2 ≤ c6 + c7 ‖um,n‖4 . (2.56)

From the above inequality, we can deduce that

ρ0
d

dt
‖um,n‖2 ≤ c6 + c7 ‖um,n‖2 ‖um,n‖2 ,

or
d

dt
‖um,n‖2 ≤ c8 + c9 ‖um,n‖2 ‖um,n‖2 .

Using Gronwall’s lemma, we arrive at

‖um,n(t)‖2 ≤ ‖um,n0 ‖
2 exp

(
c9

∫ t

0

‖um,n(s)‖2 ds

)
+c8

∫ t

0

exp

(
c9

∫ t

s

‖um,n(τ)‖2 dτ

)
ds,

and with the help of relations (2.19), (2.39) and as u0 ∈ (H1
0 (Ω))

2
, therefore we have

‖um,n(t)‖2 ≤ c10, ∀t ∈ (0, Tf ).

Thus we can conclude that

‖um,n‖L∞(0,Tf ;V ) ≤ c10. (2.57)

This shows that um,n is uniformly bounded in L∞(0, Tf ;V ).

By integrating the inequality (2.56) over (0, t) for all t ∈ (0, Tf ), we have

ρ0

∫ t

0

d

ds
‖um,n‖2 ds+ µ

∫ t

0

|∆um,n|2 ds ≤ c6t+ c7

∫ t

0

‖um,n‖4 ds,

or

ρ0 ‖um,n(t)‖2 + µ

∫ t

0

|∆um,n|2 ds ≤ c6t+ c7

∫ t

0

‖um,n‖4 ds+ ρ0 ‖um,n(0)‖2 .

From the above inequality, we can deduce that

µ

∫ t

0

|∆um,n|2 ds ≤ c6t+ c7

∫ t

0

‖um,n‖4 ds+ ρ0 ‖um,n(0)‖2 , ∀ t ∈ (0, Tf )

Making use of results (2.19), (2.57) and as u0 ∈ (H1
0 (Ω))

2
, we obtain∫ Tf

0

|∆um,n|2 dt ≤ c11.
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This implies that

‖∆um,n‖L2(0,Tf ;H) ≤ c11, (2.58)

which shows that ∆um,n is uniformly bounded in L2(0, Tf ;H). Therefore using the

relation (2.39) and the elliptic estimate, we can deduce that

‖um,n‖L2(0,Tf ;H2(Ω)) ≤ c12. (2.59)

Now multiplying equation (2.22) by ∂um,ni (t)/∂t and then taking sum over i = 1, 2, · · · ,m,

we have

ρ0

(
∂um,n
∂t

,
∂um,n
∂t

)
+ au

(
um,n,

∂um,n
∂t

)
+ bu

(
um,n,um,n,

∂um,n
∂t

)
=

(
A1(ψm,n, cm,n),

∂um,n
∂t

)
+

(
b(ψm,n)((um,n ×B)×B),

∂um,n
∂t

)
,

and by employing Green’s formula, we arrive at

ρ0

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
µ

2

d

dt
|∇um,n|2 + bu

(
um,n,um,n,

∂um,n
∂t

)
=

(
b(ψm,n)((um,n ×B)×B),

∂um,n
∂t

)
+

(
A1(ψm,n, cm,n),

∂um,n
∂t

)
,

or

ρ0

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
µ

2

d

dt
|∇um,n|2 ≤

∣∣∣∣bu(um,n,um,n,
∂um,n
∂t

)∣∣∣∣
+

∣∣∣∣(b(ψm,n)((um,n ×B)×B),
∂um,n
∂t

)∣∣∣∣
+

∣∣∣∣(A1(ψm,n, cm,n),
∂um,n
∂t

)∣∣∣∣ .
Using hypothesis (H1)− (H5), the above inequality takes the form

ρ0

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
µ

2

d

dt
|∇um,n|2 ≤

∣∣∣∣bu(um,n,um,n,
∂um,n
∂t

)∣∣∣∣
+b1c13

∫
Ω

|um,n|2

∣∣∣∣∂um,n
∂t

∣∣∣∣
2

dx + a3

∫
Ω

∣∣∣∣∂um,n
∂t

∣∣∣∣
2

dx,

with the help of Hölder’s inequality, the above inequality becomes

ρ0

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
µ

2

d

dt
|∇um,n|2 ≤

∣∣∣∣bu(um,n,um,n,
∂um,n
∂t

)∣∣∣∣
+b1c13 |um,n|

∣∣∣∣∂um,n
∂t

∣∣∣∣+ a3c14

∣∣∣∣∂um,n
∂t

∣∣∣∣ ,
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and further by Young’s inequality, we arrive at

ρ0

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
µ

2

d

dt
|∇um,n|2 ≤

∣∣∣∣bu(um,n,um,n,
∂um,n
∂t

)∣∣∣∣
+

3b2
1c

2
13

2ρ0

|um,n|2 +
ρ0

6

∣∣∣∣∂um,n
∂t

∣∣∣∣2
+

3a2
3c

2
14

2ρ0

+
ρ0

6

∣∣∣∣∂um,n
∂t

∣∣∣∣2 . (2.60)

As we know that

bu

(
um,n,um,n,

∂um,n
∂t

)
= ρ0

∫
Ω

um,n · ∇um,n
∂um,n
∂t

dx,

and employing Hölder’s inequality, we can write∣∣∣∣bu(um,n,um,n,
∂um,n
∂t

)∣∣∣∣ ≤ ρ0 ‖um,n‖L4(Ω) ‖∇um,n‖L4(Ω)

∣∣∣∣∂um,n
∂t

∣∣∣∣ ,
and making use of Sobolev injections, we obtain∣∣∣∣bu(um,n,um,n,

∂um,n
∂t

)∣∣∣∣ ≤ ρ0c15 ‖um,n‖ ‖um,n‖H2(Ω)

∣∣∣∣∂um,n
∂t

∣∣∣∣ .
According to the relation (2.57), we have∣∣∣∣bu(um,n,um,n,

∂um,n
∂t

)∣∣∣∣ ≤ ρ0c16 ‖um,n‖H2(Ω)

∣∣∣∣∂um,n
∂t

∣∣∣∣ ,
and with the help of Young’s inequality, we arrive at∣∣∣∣bu(um,n,um,n,

∂um,n
∂t

)∣∣∣∣ ≤ ρ0

6

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
3ρ0c

2
16

2
‖um,n‖2

H2(Ω) . (2.61)

By the relation (2.61), the inequality (2.60) takes the form

ρ0

2

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
µ

2

d

dt
|∇um,n|2 ≤

3b2
1c

2
13

2ρ0

|um,n|2 +
3a2

3c
2
14

2ρ0

+
3ρ0c

2
16

2
‖um,n‖2

H2(Ω) ,

and the relation (2.57) reduces the above inequality to the following form

ρ0

2

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
µ

2

d

dt
|∇um,n|2 ≤

3b2
1c

2
13c17

2ρ0

+
3a2

3c
2
14

2ρ0

+
3ρ0c

2
16

2
‖um,n‖2

H2(Ω) .
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Let c18 = max
(

3b21c
2
13c17

2ρ0
+

3a2
3c

2
14

2ρ0
,

3ρ0c216
2

)
, then

ρ0

2

∣∣∣∣∂um,n
∂t

∣∣∣∣2 +
µ

2

d

dt
|∇um,n|2 ≤ c18

(
1 + ‖um,n‖2

H2(Ω)

)
.

Integrating with respect to time over (0, t) for all t ∈ (0, Tf ), we have

ρ0

2

∫ t

0

∣∣∣∣∂um,n
∂s

∣∣∣∣2 ds+
µ

2

∫ t

0

d

ds
|∇um,n|2 ds ≤ c18

∫ t

0

(
1 + ‖um,n‖2

H2(Ω)

)
ds,

or

ρ0

2

∫ t

0

∣∣∣∣∂um,n
∂s

∣∣∣∣2 ds+
µ

2
|∇um,n(t)|2 ≤ c18

∫ t

0

(
1 + ‖um,n‖2

H2(Ω)

)
ds

+
µ

2
|∇um,n(0)|2 , ∀ t ∈ (0, Tf ).

From above inequality we can deduce that

ρ0

2

∫ Tf

0

∣∣∣∣∂um,n
∂s

∣∣∣∣2 ds ≤ c18

∫ Tf

0

(
1 + ‖um,n‖2

H2(Ω)

)
ds

+
µ

2
|∇um,n(0)|2 .

According to the relations (2.19) and (2.59) and as u0 ∈ (H1
0 (Ω))

2
, we finally get

ρ0

2

∫ Tf

0

∣∣∣∣∂um,n
∂t

∣∣∣∣2 dt ≤ c19,

this implies that ∥∥∥∥∂um,n
∂t

∥∥∥∥
L2(0,Tf ;H)

≤ c20. (2.62)

This shows that ∂um,n

∂t
is uniformly bounded in L2(0, Tf ;H).

Let us define the following space

W2 =

{
v ∈ L2(0, Tf ;H

2(Ω)),
∂v

∂t
∈ L2(0, Tf ;L

2(Ω))

}
. (2.63)

We deduce from the relations (2.59) and (2.62) that when u0 ∈ (H1
0 (Ω))

2
, then the se-

quence um,n is uniformly bounded in (W2)2 . Since the embedding of H2(Ω) into H1(Ω)

is compact, we conclude (W2)2 is compactly embedded into L2(0, Tf ;H
1(Ω)),(see e.g.

[55]). Therefore there exists a subsequence of the sequence um,n, also denoted by um,n,

such that as m→∞ we have

um,n → u, strongly in L2(0, Tf ;
(
H1(Ω)

)2
),

um,n ⇀ u, weakly in L2(0, Tf ;
(
H2(Ω)

)2
),

∂um,n
∂t

⇀
∂u

∂t
, weakly in L2(0, Tf ;

(
L2(Ω)

)2
).
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Therefore we conclude that

u ∈ L2(0, Tf ;
(
H2(Ω)

)2
) ∩H1(0, Tf ;

(
L2(Ω)

)2
).

Now Multiplying equation (2.23) by µk on both sides and using equation (2.13), we

get

−
(
∂ψm,n
∂t

,∆ek

)
− ε1

∫
Ω

∇ψm,n · ∇∆ekdx− bψ(um,n, ψm,n,∆ek)

=

∫
Ω

A2(ψm,n, cm,n)∆ek dx. (2.64)

Again multiplying above equation by ψm,nk (t) on both sides and then taking sum over

k, where k = 1, 2, · · · , n, we obtain by using relation (2.27)

−
(
∂ψm,n
∂t

,∆ψm,n

)
− ε1

∫
Ω

∇ψm,n · ∇∆ψm,ndx− bψ(um,n, ψm,n,∆ψm,n)

=

∫
Ω

A2(ψm,n, cm,n)∆ψm,n dx. (2.65)

Consider the following integral∫
Ω

div

(
∂ψm,n
∂t
∇ψm,n

)
dx =

∫
Ω

∂ψm,n
∂t

∆ψm,ndx +

∫
Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,ndx,

and by employing divergence theorem on the left-hand-side of the above equation, we

have ∫
Γ

∂ψm,n
∂t
∇ψm,n · n dΓ =

∫
Ω

∂ψm,n
∂t

∆ψm,ndx +

∫
Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,ndx.

Since ∇ψm,n · n = 0, therefore we have∫
Ω

∂ψm,n
∂t

∆ψm,ndx = −
∫

Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,ndx,

or ∫
Ω

∂ψm,n
∂t

∆ψm,ndx = −1

2

d

dt

∫
Ω

|∇ψm,n|22 dx.

The above equation can further be written as∫
Ω

∂ψm,n
∂t

∆ψm,ndx = −1

2

d

dt
|∇ψm,n|2 . (2.66)

Consider again the following integral∫
Ω

div (∇ψm,n∆ψm,n) dx =

∫
Ω

∇ψm,n · ∇∆ψm,ndx +

∫
Ω

|∆ψm,n|2 dx,
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and by divergence theorem, we arrive at∫
Γ

∆ψm,n∇ψm,n · n dΓ =

∫
Ω

∇ψm,n · ∇∆ψm,ndx +

∫
Ω

|∆ψm,n|2 dx.

Since ∇ψm,n · n = 0, therefore we have∫
Ω

∇ψm,n · ∇∆ψm,ndx = −
∫

Ω

|∆ψm,n|2 dx,

the above equation can be written as∫
Ω

∇ψm,n · ∇∆ψm,ndx = − |∆ψm,n|2 . (2.67)

Making use of equations (2.66)-(2.67) in equation (2.65), we arrive at

d

dt
|∇ψm,n|2 + 2ε1 |∆ψm,n|2 = 2

∫
Ω

A2(ψm,n, cm,n)∆ψm,n dx

+2bψ(um,n, ψm,n,∆ψm,n),

or

d

dt
|∇ψm,n|2 + 2ε1 |∆ψm,n|2 ≤ 2

∫
Ω

|A2(ψm,n, cm,n)|2 |∆ψm,n|2 dx

+ |2bψ(um,n, ψm,n,∆ψm,n)| . (2.68)

Consider the term

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ 2

∫
Ω

|um,n|2 |∇ψm,n|2 |∆ψm,n| dx,

by employing Hölder’s inequality, we have

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ 2 ‖um,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∆ψm,n| .

According to the Lemma 1, we can write

|2bψ(um,n, ψm,n,∆ψm,n)|
≤ c21 ‖um,n‖ |∇ψm,n|1/2 ‖∇ψm,n‖1/2 |∆ψm,n| ,

and with the help of Young’s inequality, we obtain

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ c2
21

ε1
‖um,n‖2 |∇ψm,n| ‖∇ψm,n‖

+
ε1
4
|∆ψm,n|2 ,
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The relation (2.57) reduces the above inequality to the following form

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ c22 |∇ψm,n| ‖∇ψm,n‖+
ε1
4
|∆ψm,n|2 .

By the definition of Sobolev norm, the above inequality can be written as

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ c23 |∇ψm,n| ‖ψm,n‖H2(Ω) +
ε1
4
|∆ψm,n|2 ,

and using elliptic estimate (see Lemma 1), we have

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ c24 |∇ψm,n| (|ψm,n|+ |∆ψm,n|) +
ε1
4
|∆ψm,n|2 ,

or

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ c24 |∇ψm,n| |ψm,n|+ c24 |∇ψm,n| |∆ψm,n|
+
ε1
4
|∆ψm,n|2 .

By the Young’s inequality, we arrive at

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ c2
24

2
|∇ψm,n|2 +

1

2
|ψm,n|2 +

c2
24

ε1
|∇ψm,n|2

+
ε1
4
|∆ψm,n|2 +

ε1
4
|∆ψm,n|2 ,

and simplification of the above inequality yields

|2bψ(um,n, ψm,n,∆ψm,n)| ≤ c25 |∇ψm,n|2 +
1

2
|ψm,n|2 +

ε1
2
|∆ψm,n|2 . (2.69)

Using hypothesis (H1)− (H5) and (2.69), the inequality (2.68) takes the form

d

dt
|∇ψm,n|2 + 2ε1 |∆ψm,n|2 ≤ 2a2

∫
Ω

|∆ψm,n| dx + c25 |∇ψm,n|2 +
1

2
|ψm,n|2

+
ε1
2
|∆ψm,n|2 ,

and then (by using Young’s inequality)

d

dt
|∇ψm,n|2 + 2ε1 |∆ψm,n|2 ≤ c26 +

ε1
2
|∆ψm,n|2 + c25 |∇ψm,n|2

+
1

2
|ψm,n|2 +

ε1
2
|∆ψm,n|2 .

According to the relation (2.36), the above inequality takes the form

d

dt
|∇ψm,n|2 + ε1 |∆ψm,n|2 ≤ c27 + c25 |∇ψm,n|2 . (2.70)
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From the above inequality we can deduce that

d

dt
|∇ψm,n|2 ≤ c27 + c25 |∇ψm,n|2 .

Making use of Gronwall’s lemma, we arrive at

|∇ψm,n(t)|2 ≤ |∇ψm,n(0)|2 ec25t + c28, ∀ t ∈ [0, Tf ].

Since ψ0 ∈ H1(Ω), therefore using the relation (2.19), we finally obtain

|∇ψm,n(t)|2 ≤ c29, ∀ t ∈ (0, Tf ).

Thus we have

‖∇ψm,n‖L∞(0,Tf ;L2(Ω)) ≤ c29.

This shows that ∇ψm,n is uniformly bounded in L∞(0, Tf ;L
2(Ω)). Therefore with the

help of above inequality and the result (2.39) we can easily have

‖ψm,n‖L∞(0,Tf ;H1(Ω)) ≤ c30. (2.71)

This shows that ψm,n is uniformly bounded in L∞(0, Tf ;H
1(Ω)).

Now integrating the relation (2.70) with respect to time over (0, t) for all t ∈ (0, Tf ),

we have ∫ t

0

d

ds
|∇ψm,n|2 ds+ ε1

∫ t

0

|∆ψm,n|2 ds ≤ c31t+ c25

∫ t

0

|∇ψm,n|2 ds,

or

|∇ψm,n(t)|2 + ε1

∫ t

0

|∆ψm,n|2 ds ≤ c31 + c25

∫ t

0

|∇ψm,n|2 ds+ |∇ψm,n(0)|2 ,

from above inequality, we can write

ε1

∫ t

0

|∆ψm,n|2 ds ≤ c31t+ c25

∫ t

0

|∇ψm,n|2 ds+ |∇ψm,n(0)|2 , ∀ t ∈ (0, Tf ).

According to the relations (2.20), (2.71) and as ψ0 ∈ H1(Ω), the above inequality

reduces to

ε1

∫ t

0

|∆ψm,n|2 ds ≤ c32, ∀ t ∈ (0, Tf )

or ∫ Tf

0

|∆ψm,n|2 ds ≤ c33.
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Thus we have the following result

‖∆ψm,n‖L2(0,Tf ;L2(Ω)) ≤ c33.

Therefore with the help of the above inequality, elliptic estimate and the relation

(2.39), we can easily prove that

‖ψm,n‖L2(0,Tf ;H2(Ω)) ≤ c34. (2.72)

This implies that ψm,n is uniformly bounded in L2(0, Tf ;H
2(Ω)).

Multiplying equation (2.23) by ∂ψm,nk /∂t on both sides and then taking sum over k,

where k = 1, 2, · · · , n, we obtain by using relation (2.27)(
∂ψm,n
∂t

,
∂ψm,n
∂t

)
+ ε1

∫
Ω

∇ψm,n · ∇
∂ψm,n
∂t

dx + bψ(um,n, ψm,n,
∂ψm,n
∂t

)

=

∫
Ω

A2(ψm,n, cm,n)
∂ψm,n
∂t

dx,

and the above equation can further be written as∣∣∣∣∂ψm,n∂t

∣∣∣∣2 +
ε1
2

d

dt
|∇ψm,n|2 =

∫
Ω

A2(ψm,n, cm,n)
∂ψm,n
∂t

dx

−bψ(um,n, ψm,n,
∂ψm,n
∂t

),

or ∣∣∣∣∂ψm,n∂t

∣∣∣∣2 +
ε1
2

d

dt

∫
Ω

|∇ψm,n|22 dx ≤
∫

Ω

|A2(ψm,n, cm,n)|
∣∣∣∣∂ψm,n∂t

∣∣∣∣ dx
+

∣∣∣∣bψ(um,n, ψm,n,
∂ψm,n
∂t

)

∣∣∣∣ .
Using hypothesis (H1)− (H5), the above inequality takes the form∣∣∣∣∂ψm,n∂t

∣∣∣∣2 +
ε1
2

d

dt
|∇ψm,n|2 ≤ a2

∫
Ω

∣∣∣∣∂ψm,n∂t

∣∣∣∣ dx +

∣∣∣∣bψ(um,n, ψm,n,
∂ψm,n
∂t

)

∣∣∣∣ ,
and then

2

∣∣∣∣∂ψm,n∂t

∣∣∣∣2 + ε1
d

dt
|∇ψm,n|2 ≤

∣∣∣∣2bψ(um,n, ψm,n,
∂ψm,n
∂t

)

∣∣∣∣
+c35

∣∣∣∣∂ψm,n∂t

∣∣∣∣ . (2.73)

Consider now∣∣∣∣2bψ(um,n, ψm,n,
∂ψm,n
∂t

)

∣∣∣∣ ≤ 2

∫
Ω

|um,n|2 |∇ψm,n|2

∣∣∣∣∂ψm,n∂t

∣∣∣∣ dx,
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and employing the Hölder’s inequality, we have∣∣∣∣2bψ(um,n, ψm,n,
∂ψm,n
∂t

)

∣∣∣∣ ≤ 2 ‖um,n‖L4(Ω) ‖∇ψm,n‖L4(Ω)

∣∣∣∣∂ψm,n∂t

∣∣∣∣ .
According to the Lemma 1, we can write∣∣∣∣2bψ(um,n, ψm,n,

∂ψm,n
∂t

)

∣∣∣∣ ≤ c36 ‖um,n‖ ‖ψm,n‖H2(Ω)

∣∣∣∣∂ψm,n∂t

∣∣∣∣ ,
and with the help of the relation (2.57) and Young’s inequality, we arrive at∣∣∣∣2bψ(um,n, ψm,n,

∂ψm,n
∂t

)

∣∣∣∣ ≤ c37 ‖ψm,n‖2
H2(Ω) +

1

2

∣∣∣∣∂ψm,n∂t

∣∣∣∣2 . (2.74)

Using the inequality (2.74) into the inequality (2.73), we arrive at

2

∣∣∣∣∂ψm,n∂t

∣∣∣∣2 + ε1
d

dt
|∇ψm,n|2 ≤ c35

∣∣∣∣∂ψm,n∂t

∣∣∣∣+ c37 ‖ψm,n‖2
H2(Ω)

+
1

2

∣∣∣∣∂ψm,n∂t

∣∣∣∣2 .
Applying Young’s inequality on the first term of the right-hand-side of the above

inequality and then simplifying we get∣∣∣∣∂ψm,n∂t

∣∣∣∣2 + ε1
d

dt
|∇ψm,n|2 ≤ c38 + c37 ‖ψm,n‖2

H2(Ω) ,

and integrating over (0, t) for all t ∈ (0, Tf ), we have∫ t

0

∣∣∣∣∂ψm,n∂τ

∣∣∣∣2 dτ + ε1

∫ t

0

d

ds
|∇ψm,n|2 ds ≤ c39 + c37

∫ t

0

‖ψm,n‖2
H2(Ω) ds.

With the help of the relation (2.72), we conclude that∫ t

0

∣∣∣∣∂ψm,n∂τ

∣∣∣∣2 dτ + ε1

∫ t

0

d

ds
|∇ψm,n|2 ds ≤ c40,

or ∫ t

0

∣∣∣∣∂ψm,n∂τ

∣∣∣∣2 dτ + ε1 |∇ψm,n(t)|2 ≤ c40 + ε1 |∇ψm,n0 |2 .

Since ψ0 ∈ H1(Ω) and using the result (2.19), we have∫ Tf

0

∣∣∣∣∂ψm,n∂τ

∣∣∣∣2 dτ ≤ c41,
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or ∥∥∥∥∂ψm,n∂t

∥∥∥∥
L2(0,Tf ;L2(Ω))

≤ c41. (2.75)

This shows that ∂ψm,n

∂t
is uniformly bounded in L2(0, Tf ;L

2(Ω)).

From equations (2.72) and (2.75), we can deduce that if ψ0 ∈ H1(Ω) then ψm,n is uni-

formly bounded in W2 (defined in (2.63)). As we know that the embedding of H2(Ω)

in H1(Ω) is compact, therefore we conclude that W2 is compactly embedded into

L2(0, Tf ;H
1(Ω)), (see e.g., [55]). Therefore we can extract from ψm,n, a subsequence

also denoted by ψm,n, such that, as m,n→∞ we have

ψm,n → ψ strongly in L2(0, Tf ;H
1(Ω)),

ψm,n ⇀ ψ weakly in L2(0, Tf ;H
2(Ω)),

∂ψm,n
∂t

⇀
∂ψ

∂t
weakly in L2(0, Tf ;L

2(Ω)),

and therefore we conclude that

ψ ∈ L2(0, Tf ;H
2(Ω)) ∩H1(0, Tf ;L

2(Ω)).

We can then pass easily limit, m,n→∞ in the problem (2.22)-(2.25) and verify that

(u, ψ, c) satisfy the problem (2.11). �

Theorem 3 Let (u0, ψ0, c0) ∈ (H1
0 (Ω))

2 × H2
0 (Ω) × H1(Ω), and the assumptions

(H1) − (H5) are satisfied. Then there exist a triplet of functions (u, ψ, c) satisfy-

ing

u ∈ L2
(

0, Tf ;
(
H2(Ω)

)2
)
∩H1

(
0, Tf ;

(
L2(Ω)

)2
)
,

ψ ∈ L2(0, Tf ;H
3(Ω)) ∩H1(0, Tf ;H

1(Ω)),

c ∈ L2(0, Tf ;H
2(Ω)) ∩H1(0, Tf ;L

2(Ω)),

which is a solution of the problem (2.11).

Proof : Multiplying equation (2.23) by µ2
k on both sides and using equation (2.13),

we get (
∂ψm,n
∂t

,∆2ek

)
+ ε1

∫
Ω

∇ψm,n · ∇∆2ekdx + bψ(um,n, ψm,n,∆
2ek)

= −
∫

Ω

A2(ψm,n, cm,n)∆2ek dx, (2.76)
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again multiplying above equation by ψm,nk on both sides and then taking sum over k,

where k = 1, 2, · · · , n, we obtain by using the relation (2.27)(
∂ψm,n
∂t

,∆ψm,nd

)
+ ε1

∫
Ω

∇ψm,n · ∇∆ψm,nd dx + bψ(um,n, ψm,n,∆ψ
m,n
d )

= −
∫

Ω

A2(ψm,n, cm,n)∆ψm,nd dx (2.77)

where ψm,nd = ∆ψm,n. Consider the following integral∫
Ω

div

(
∂ψm,n
∂t
∇ψm,nd

)
dx =

∫
Ω

∂ψm,n
∂t

∆ψm,nd dx +

∫
Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,nd dx,

and employing the divergence theorem on the left-hand-side of the above equation,

we have∫
Γ

∂ψm,n
∂t
∇ψm,nd · n dΓ =

∫
Ω

∂ψm,n
∂t

∆ψm,nd dx +

∫
Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,nd dx.

According to the relations (2.13) and (2.27), we have ∇ψm,nd · n = 0 on the boundary

Γ, therefore we get∫
Ω

∂ψm,n
∂t

∆ψm,nd dx = −
∫

Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,nd dx. (2.78)

Consider again∫
Ω

div

(
∇
(
∂ψm,n
∂t

)
ψm,nd

)
dx =

∫
Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,nd dx

+

∫
Ω

∆

(
∂ψm,n
∂t

)
ψm,nd dx,

and applying the divergence theorem, we have∫
Γ

∇
(
∂ψm,n
∂t

)
ψm,nd · n dΓ =

∫
Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,nd dx

+

∫
Ω

∆

(
∂ψm,n
∂t

)
ψm,nd dx.

Since ∇
(
∂ψm,n

∂t

)
· n = 0 on Γ (according to (2.27)), therefore we have∫

Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,nd dx = −

∫
Ω

∆

(
∂ψm,n
∂t

)
ψm,nd dx,

and the above equation can further be written as∫
Ω

∇
(
∂ψm,n
∂t

)
· ∇ψm,nd dx = −1

2

d

dt
|ψm,nd |

2 . (2.79)
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From the equations (2.78) and (2.79), we conclude that∫
Ω

∂ψm,n
∂t

∆ψm,nd dx =
1

2

d

dt
|ψm,nd |

2 . (2.80)

Consider the following integral∫
Ω

div (∇ψm,n∆ψm,nd ) dx =

∫
Ω

∇ψm,n · ∇∆ψm,nd dx +

∫
Ω

∆ψm,n∆ψm,nd dx,

by employing divergence theorem on the left-hand-side of the above equation, we get∫
Γ

∇ψm,n∆ψm,nd · n dΓ =

∫
Ω

∇ψm,n · ∇∆ψm,nd dx +

∫
Ω

∆ψm,n∆ψm,nd dx.

As we know that ∇ψm,n · n = 0 on the boundary Γ, thus we have∫
Ω

∇ψm,n · ∇∆ψm,nd dx = −
∫

Ω

∆ψm,n∆ψm,nd dx. (2.81)

Consider again∫
Ω

div (∆ψm,n∇ψm,nd ) dx =

∫
Ω

∆ψm,n∆ψm,nd dx +

∫
Ω

∇(∆ψm,n) · ∇ψm,nd dx,

and using the divergence theorem, we have∫
Γ

∆ψm,n∇ψm,nd · n dΓ =

∫
Ω

∆ψm,n∆ψm,nd dx +

∫
Ω

|∇ψm,nd |
2
2 dx.

Since ∇ψm,nd · n = 0 on Γ, therefore∫
Ω

∆ψm,n∆ψm,nd dx = − |∇ψm,nd |
2 . (2.82)

From equations (2.81) and (2.82), we can deduce that∫
Ω

∇ψm,n · ∇∆ψm,nd dx = |∇ψm,nd |
2 . (2.83)

Making use of equations (2.80) and (2.83) in equation (2.77), we obtain

1

2

d

dt
|ψm,nd |

2 + ε1 |∇ψm,nd |
2 = −

∫
Ω

A2(ψm,n, cm,n)∆ψm,nd dx

−bψ(um,n, ψm,n,∆ψ
m,n
d ),

and by applying the Green’s theorem on the first term of right-hand-side of the above

equation, we obtain

1

2

d

dt
|ψm,nd |

2 + ε1 |∇ψm,nd |
2 =

∫
Ω

∇A2(ψm,n, cm,n) · ∇ψm,nd dx

−bψ(um,n, ψm,n,∆ψ
m,n
d ).
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From the above equation,we have

d

dt
|ψm,nd |

2 + 2ε1 |∇ψm,nd |
2 ≤ 2

∫
Ω

|∇A2(ψm,n, cm,n)|2 |∇ψ
m,n
d |2 dx

+ |2bψ(um,n, ψm,n,∆ψ
m,n
d )| . (2.84)

Consider now∫
Ω

div ((um,n · ∇ψm,n) · ∇ψm,nd ) dx =

∫
Ω

(um,n · ∇ψm,n)∆ψm,nd dx

+

∫
Ω

∇(um,n · ∇ψm,n) · ∇ψm,nd dx,

and then (using divergence theorem)∫
Γ

(um,n · ∇ψm,n) · ∇ψm,nd · n dΓ =

∫
Ω

(um,n · ∇ψm,n)∆ψm,nd dx

+

∫
Ω

∇(um,n · ∇ψm,n) · ∇ψm,nd dx.

Since ∇ψm,n · n = 0 on the boundary Γ, therefore we obtain∫
Ω

(um,n · ∇ψm,n)∆ψm,nd dx = −
∫

Ω

∇(um,n · ∇ψm,n) · ∇ψm,nd dx,

and we can write the above equation as

bψ(um,n, ψm,n,∆ψ
m,n
d ) = −

∫
Ω

(∇um,n · ∇ψm,n +∇(∇ψm,n) · um,n) · ∇ψm,nd dx,

then

|2bψ(um,n, ψm,n,∆ψ
m,n
d )| ≤ 2

∫
Ω

|∇um,n|2 |∇ψm,n|2 |∇ψ
m,n
d |2 dx

+2

∫
Ω

|∇(∇ψm,n)|2 |um,n|2 |∇ψ
m,n
d |2 dx,

and (using Hölder’s inequality), we have

|2bψ(um,n, ψm,n,∆ψ
m,n
d )| ≤ 2 ‖∇um,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∇ψ

m,n
d |

+2 ‖um,n‖L4(Ω) ‖∇(∇ψm,n)‖L4(Ω) |∇ψ
m,n
d | .

Making use of Lemma 1, the above inequality takes the form

|2bψ(um,n, ψm,n,∆ψ
m,n
d )|

≤ c1 |∇um,n|1/2 ‖∇um,n‖1/2 |∇ψm,n|1/2 ‖∇ψm,n‖1/2 |∇ψm,nd |
+c2 ‖um,n‖ |∇(∇ψm,n)|1/2 ‖∇(∇ψm,n)‖1/2 |∇ψm,nd | .
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According to the relations (2.57), (2.71) and the definition of Sobolev norm, the above

inequality takes the form

|2bψ(um,n, ψm,n,∆ψ
m,n
d )| ≤ c3 ‖∇um,n‖1/2 ‖∇ψm,n‖1/2 |∇ψm,nd |

+c4 ‖ψm,n‖1/2

H2(Ω) ‖∇ψm,n‖
1/2

H2(Ω) |∇ψ
m,n
d | ,

and then with the help of Young’s inequality, we arrive at

|2bψ(um,n, ψm,n,∆ψ
m,n
d )| ≤ 3c2

3

2ε1
‖∇um,n‖ ‖∇ψm,n‖+

ε1
6
|∇ψm,nd |

2

+
3c2

4

2ε1
‖ψm,n‖H2(Ω) ‖∇ψm,n‖H2(Ω) +

ε1
6
|∇ψm,nd |

2 .

Let c5 = 3c2
3/2ε1 and c6 = 3c2

4/2ε1, we have

|2bψ(um,n, ψm,n,∆ψ
m,n
d )| ≤ c5 ‖∇um,n‖ ‖∇ψm,n‖+

ε1
3
|∇ψm,nd |

2

+c6 ‖ψm,n‖H2(Ω) ‖∇ψm,n‖H2(Ω) ,

and using elliptic estimate, we have

|2bψ(um,n, ψm,n,∆ψ
m,n
d )| ≤ c5 ‖∇um,n‖ ‖∇ψm,n‖+

ε1
3
|∇ψm,nd |

2

+c7 ‖ψm,n‖H2(Ω) (|∇ψm,n|+ |∇ψm,nd |) ,

or

|2bψ(um,n, ψm,n,∆ψ
m,n
d )| ≤ c5 ‖∇um,n‖ ‖∇ψm,n‖+

ε1
3
|∇ψm,nd |

2

+c7 ‖ψm,n‖H2(Ω) |∇ψm,n|
+c7 ‖ψm,n‖H2(Ω) |∇ψ

m,n
d | .

By the Young’s inequality, we obtain

|2bψ(um,n, ψm,n,∆ψ
m,n
d )| ≤ c2

5

2
‖∇um,n‖2 +

1

2
‖∇ψm,n‖2 +

ε1
2
|∇ψm,nd |

2

+
c2

7

2
‖ψm,n‖2

H2(Ω) +
1

2
|∇ψm,n|2

+
3c2

7

2ε1
‖ψm,n‖2

H2(Ω) , (2.85)

Consider again the following integral

I = 2

∫
Ω

|∇A2(ψm,n, cm,n)|2 |∇ψ
m,n
d |2 dx,
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and according to the Lemma 3, the above equation takes the form

I ≤ 2c9

∫
Ω

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
|∇ψm,nd |2 dx.

By using Hölder’s and then Young’s inequality, we get

I ≤ c10

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
+
ε1
2
|∇ψm,nd |

2 , (2.86)

and employing the inequalities (2.85) and (2.86) in the relation (2.84), we arrive at

d

dt
|ψm,nd |

2 + 2ε1 |∇ψm,nd |
2 ≤ c10

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
+ ε1 |∇ψm,nd |

2

+
c2

5

2
‖∇um,n‖2 +

1

2
‖∇ψm,n‖2 + c8 ‖ψm,n‖2

H2(Ω) +
1

2
|∇ψm,n|2 .

Simplification of above inequality gives

d

dt
|ψm,nd |

2 + ε1 |∇ψm,nd |
2 ≤ c10

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
+

1

2
‖∇ψm,n‖2 +

c2
5

2
‖∇um,n‖2

+c8 ‖ψm,n‖2
H2(Ω) +

1

2
|∇ψm,n|2 . (2.87)

From the above inequality (2.87), we can deduce that

d

dt
|ψm,nd |

2 ≤ c10

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
+

1

2
‖∇ψm,n‖2

+
c2

5

2
‖∇um,n‖2 + c8 ‖ψm,n‖2

H2(Ω) +
1

2
|∇ψm,n|2 .

Integrating above inequality over (0, t) for t ∈ (0, Tf ), we have∫ t

0

d

ds
|ψm,nd |

2 ds ≤ c10

∫ t

0

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
dτ

+
1

2

∫ t

0

‖∇ψm,n‖2 dτ +
c2

5

2

∫ t

0

‖∇um,n‖2 dτ

+c8

∫ t

0

‖ψm,n‖2
H2(Ω) dτ +

1

2

∫ t

0

|∇ψm,n|2 dτ.

The results (2.39), (2.59) and (2.72) reduces the above inequality to the following

form ∫ t

0

d

ds
|ψm,nd (s)|2 ds ≤ c11, ∀ t ∈ (0, Tf )

and

|ψm,nd (t)|2 ≤ c11 + |ψm,nd (0)|2 , ∀ t ∈ (0, Tf ).
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Making use of the relation (2.21) and since ψ0 ∈ H2
0 (Ω), we have

|ψm,nd (t)|2 ≤ c12, ∀ t ∈ (0, Tf ).

From the above inequality, we conclude that

‖ψm,nd (t)‖L∞(0,Tf ;L2(Ω)) ≤ c12. (2.88)

This shows that ψm,nd = ∆ψm,n is uniformly bounded in L∞(0, Tf ;L
2(Ω)). From equa-

tion (2.71) and (2.88), we conclude that ψm,n is uniformly bounded in L∞(0, Tf ;H
2(Ω)).

This implies that

‖ψm,n‖L∞(0,Tf ;H2(Ω)) ≤ c13. (2.89)

Again by integrating the inequality (2.87) over (0, t) for all t ∈ (0, Tf ), we have∫ t

0

d

ds
|ψm,nd |

2 ds+ ε1

∫ t

0

|∇ψm,nd |
2 ds ≤ c10

∫ t

0

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
ds

+
1

2

∫ t

0

‖∇ψm,n‖2 ds+
c2

5

2

∫ t

0

‖∇um,n‖2 ds

+c8

∫ t

0

‖ψm,n‖2
H2(Ω) ds+

1

2

∫ t

0

|∇ψm,n|2 ds,

or

|ψm,nd (t)|2 + ε1

∫ t

0

|∇ψm,nd |
2 ds ≤ c10

∫ t

0

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
ds

+
1

2

∫ t

0

‖∇ψm,n‖2 ds+
c2

5

2

∫ t

0

‖∇um,n‖2 ds+

c8

∫ t

0

‖ψm,n‖2
H2(Ω) ds+

1

2

∫ t

0

|∇ψm,n|2 ds+ |ψm,nd (0)|2 .

From the above inequality, we can deduce that

ε1

∫ t

0

|∇ψm,nd |
2 ds ≤ c10

∫ t

0

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
ds+

1

2

∫ t

0

‖∇ψm,n‖2 ds

+
c2

5

2

∫ t

0

‖∇um,n‖2 ds+ c8

∫ t

0

‖ψm,n‖2
H2(Ω) ds

+
1

2

∫ t

0

|∇ψm,n|2 ds+ |ψm,nd (0)|2 ,

and according to the relations (2.89), (2.71), (2.38) and as ψ0 ∈ H2
0 (Ω), we conclude

that ∫ t

0

|∇ψm,nd (s)|2 ds ≤ c14, ∀ t ∈ (0, Tf ).
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This implies that

‖∇ψm,nd (s)‖L2(0,Tf ;L2(Ω)) ≤ c14.

This shows that ∇ψm,nd is uniformly bounded in L2(0, Tf ;L
2(Ω)). Therefore using

equation (2.72), (2.89) and the above inequality, we can conclude that ψm,n is uni-

formly bounded in L∞(0, Tf , H
2(Ω)) ∩ L2(0, Tf ;H

3(Ω)). That implies

‖ψm,n‖L∞(0,Tf ,H2(Ω))∩L2(0,Tf ;H3(Ω)) ≤ c15. (2.90)

Now multiplying equation (2.76) by ∂ψm,nk /∂t on both sides and then taking sum over

k, where k = 1, 2, · · · , n, we obtain by using relation (2.27)

−
(
∂ψm,n
∂t

,
∂ψm,nd

∂t

)
− ε1

∫
Ω

∇ψm,n · ∇
∂ψm,nd

∂t
dx− bψ(um,n, ψm,n,

∂ψm,nd

∂t
)

=

∫
Ω

A2(ψm,n, cm,n)
∂ψm,nd

∂t
dx. (2.91)

Consider the following integral∫
Ω

div

(
∂ψm,n
∂t

∂∇ψm,n
∂t

)
dx =

∫
Ω

∂ψm,n
∂t

∂∆ψm,n
∂t

dx

+

∫
Ω

∇
(
∂ψm,n
∂t

)
∂∇ψm,n
∂t

dx.

By using divergence theorem, we have∫
Γ

∂ψm,n
∂t

∂∇ψm,n
∂t

· n dΓ =

∫
Ω

∂ψm,n
∂t

∂ψm,nd

∂t
dx +

∫
Ω

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2
2

dx.

Since ∂∇ψm,n

∂t
· n = 0 on the boundary Γ, therefore we have∫

Ω

∂ψm,n
∂t

∂ψm,nd

∂t
dx = −

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 . (2.92)

Again consider the integral∫
Ω

div

(
∇ψm,n

∂ψm,nd

∂t

)
dx =

∫
Ω

∇ψm,n · ∇
(
∂ψm,nd

∂t

)
dx +

∫
Ω

∆ψm,n
∂ψm,nd

∂t
dx,

and by the divergence theorem, we have (since∆ψm,n = ψm,nd )∫
Γ

∇ψm,n
∂ψm,nd

∂t
· n dΓ =

∫
Ω

∇ψm,n · ∇
(
∂ψm,nd

∂t

)
dx +

∫
Ω

ψm,nd

∂ψm,nd

∂t
dx.

As we know that ∇ψm,n · n = 0 on the boundary Γ, therefore we have∫
Ω

∇ψm,n · ∇
(
∂ψm,nd

∂t

)
dx = −1

2

d

dt
|ψm,nd |

2 . (2.93)
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Consider now the following integral∫
Ω

div

(
A2(ψm,n, cm,n)

∂∇ψm,n
∂t

)
dx =

∫
Ω

A2(ψm,n, cm,n)
∂ψm,nd

∂t
dx

+

∫
Ω

∇A2(ψm,n, cm,n) · ∇∂ψm,n
∂t

dx,

and employing the divergence theorem, we have∫
Γ

A2(ψm,n, cm,n)
∂∇ψm,n
∂t

· n dΓ =

∫
Ω

A2(ψm,n, cm,n)
∂ψm,nd

∂t
dx

+

∫
Ω

∇A2(ψm,n, cm,n) · ∇∂ψm,n
∂t

dx.

Since ∂∇ψm,n

∂t
· n = 0 on the boundary Γ, therefore we have∫

Ω

A2(ψm,n, cm,n)
∂ψm,nd

∂t
dx = −

∫
Ω

∇A2(ψm,n, cm,n) · ∇∂ψm,n
∂t

dx. (2.94)

Making use of equations (2.92)-(2.94) in equation (2.91), we obtain∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 +
ε1
2

d

dt
|ψm,nd |

2 = bψ

(
um,n, ψm,n,

∂ψm,nd

∂t

)
−
∫

Ω

∇A2(ψm,n, cm,n) · ∇∂ψm,n
∂t

dx,

or

2

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 + ε1
d

dt
|ψm,nd |

2 ≤
∣∣∣∣2bψ (um,n, ψm,n,

∂ψm,nd

∂t

)∣∣∣∣
+2

∫
Ω

|∇A2(ψm,n, cm,n)|2

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣
2

dx. (2.95)

Consider the following integral∫
Ω

div

(
(um,n · ∇ψm,n) · ∇∂ψm,n

∂t

)
dx =

∫
Ω

(um,n · ∇ψm,n)
∂ψm,nd

∂t
dx

+

∫
Ω

∇(um,n · ∇ψm,n) · ∇∂ψm,n
∂t

dx,

Making use of the divergence theorem, we have∫
Γ

(um,n · ∇ψm,n) · ∇∂ψm,n
∂t

· n dΓ =

∫
Ω

(um,n · ∇ψm,n)
∂ψm,nd

∂t
dx

+

∫
Ω

∇(um,n · ∇ψm,n) · ∇∂ψm,n
∂t

dx.
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As ∇ψm,n · n = 0 on the boundary Γ, therefore we obtain∫
Ω

(um,n · ∇ψm,n)
∂ψm,nd

∂t
dx = −

∫
Ω

∇(um,n · ∇ψm,n) · ∇∂ψm,n
∂t

dx,

or

bψ(um,n, ψm,n,
∂ψm,nd

∂t
) = −

∫
Ω

(∇um,n · ∇ψm,n) · ∇∂ψm,n
∂t

dx

+

∫
Ω

(∇(∇ψm,n) · um,n) · ∇∂ψm,n
∂t

dx,

and then∣∣∣∣2bψ(um,n, ψm,n,
∂ψm,nd

∂t
)

∣∣∣∣ ≤ 2

∫
Ω

|∇um,n|2 |∇ψm,n|2

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣
2

dx

+2

∫
Ω

|um,n|2 |∇(∇ψm,n)|2

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣
2

dx,

and with the help of the Hölder’s inequality, we have∣∣∣∣2bψ(um,n, ψm,n,
∂ψm,nd

∂t
)

∣∣∣∣ ≤ 2 ‖∇um,n‖L4(Ω) ‖∇ψm,n‖L4(Ω)

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣
+2 ‖um,n‖(L4(Ω))2 ‖∇(∇ψm,n)‖L4(Ω)

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣ .
According to the Lemma 1, the above inequality takes the form∣∣∣∣2bψ(um,n, ψm,n,

∂ψm,nd

∂t
)

∣∣∣∣ ≤ c16 ‖um,n‖H2(Ω) ‖ψm,n‖H2(Ω)

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣
+c17 ‖um,n‖ ‖∇(∇ψm,n)‖

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣ .
Using Young’s inequality, we arrive at∣∣∣∣2bψ(um,n, ψm,n,

∂ψm,nd

∂t
)

∣∣∣∣ ≤ 5c2
16

4
‖um,n‖2

H2(Ω) ‖ψm,n‖
2
H2(Ω)

+
2

5

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 +
5c2

17

4
‖um,n‖2 ‖∇(∇ψm,n)‖2 ,

and by the definition of Sobolev norm and the results (2.57) and (2.90), the above

inequality takes the form∣∣∣∣2bψ(um,n, ψm,n,
∂ψm,nd

∂t
)

∣∣∣∣
2

≤ c18 ‖um,n‖2
H2(Ω)

+
2

5

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 + c19 ‖∇ψm,n‖2
H2(Ω) . (2.96)
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Consider the following integral

I1 = 2

∫
Ω

|∇A2(ψm,n, cm,n)|2

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣
2

dx,

According to the Lemma 3, we have

I1 ≤ 2c20

∫
Ω

(
1 + |∇cm,n|2 + |∇ψm,n|2

) ∣∣∣∣∇∂ψm,n∂t

∣∣∣∣
2

dx,

and using Hölder’s inequality, we get

I1 ≤ 2c20 (1 + |∇cm,n|+ |∇ψm,n|)
∣∣∣∣∇∂ψm,n∂t

∣∣∣∣ .
Applying the Young’s inequality, the above inequality takes the form

I1 ≤ 5c2
20

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
+

3

5

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 . (2.97)

Substitution of the relations (2.96) and (2.97) in the inequality (2.95) gives

2

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 + ε1
d

dt
|ψm,nd |

2 ≤ c18 ‖um,n‖2
H2(Ω)

+

∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 + c19 ‖∇ψm,n‖2
H2(Ω)

+5c2
20

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
,

or ∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 + ε1
d

dt
|ψm,nd |

2 ≤ c18 ‖um,n‖2
H2(Ω) + c19 ‖∇ψm,n‖2

H2(Ω)

+5c2
20

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
.

The relation (2.90) reduces the above inequality to∣∣∣∣∇∂ψm,n∂t

∣∣∣∣2 + ε1
d

dt
|ψm,nd |

2 ≤ c18 ‖um,n‖2
H2(Ω) + c19 ‖∇ψm,n‖2

H2(Ω)

+c21

(
1 + |∇cm,n|2

)
.

Integrating over (0, t) for all t ∈ (0, Tf ), we have∫ t

0

∣∣∣∣∇∂ψm,n∂s

∣∣∣∣2 ds+ ε1 |ψm,nd (t)|2 ≤ c18

∫ t

0

‖um,n‖2
H2(Ω) ds+ |ψm,nd (0)|2

+c19

∫ t

0

‖∇ψm,n‖2
H2(Ω) ds+ c21

∫ t

0

(
1 + |∇cm,n|2

)
ds.
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From above inequality, we can deduce that∫ t

0

∣∣∣∣∇∂ψm,n∂s

∣∣∣∣2 ds ≤ c18

∫ t

0

‖um,n‖2
H2(Ω) ds+ |ψm,nd (0)|2

+c19

∫ t

0

‖∇ψm,n‖2
H2(Ω) ds+ c21

∫ t

0

(
1 + |∇cm,n|2

)
ds.

As ψ ∈ H2
0 (Ω) and using the relations (2.39), (2.59) and (2.90), we have∫ Tf

0

∣∣∣∣∇∂ψm,n(s)

∂s

∣∣∣∣2 ds ≤ c22,

and this implies that ∥∥∥∥∇∂ψm,n(t)

∂t

∥∥∥∥
L2(0,Tf ;L2(Ω))

≤ c22. (2.98)

This shows that ∇
(
∂ψm,n(t)

∂t

)
is uniformly bounded in L2(0, Tf ;L

2(Ω)). As we have

already seen that ψm,n is uniformly bounded in H1(0, Tf ;L
2(Ω)), and now by equation

(2.98), we can conclude that ψm,n is uniformly bounded in H1(0, Tf ;H
1(Ω)). That is

‖ψm,n‖H1(0,Tf ;H1(Ω)) ≤ c23. (2.99)

Multiplying now equation (2.24) on both sides by µk and then using relations (2.13)

and (2.27), we have

−
(
∂cm,n
∂t

,∆cm,n

)
− bc(um,n, cm,n,∆cm,n)−

∫
Ω

D(ψm,n)∇cm,n · ∇(∆cm,n)dx

−
∫

Ω

A3(ψm,n, cm,n)∇ψm,n · ∇(∆cm,n)dx = 0.

Employing Green’s formula and as ∇cm,n · n = 0, the above equation takes the form

1

2

d

dt
|∇cm,n|2 − bc(um,n, cm,n,∆cm,n) +

∫
Ω

div (D(ψm,n)∇cm,n) ∆cm,ndx

+

∫
Ω

div (A3(ψm,n, cm,n)∇ψm,n) ∆cm,ndx = 0.

Simplifying above equation, we have

d

dt
|∇cm,n|2 + 2

∫
Ω

D(ψm,n) |∆cm,n|2 dx = 2bc(um,n, cm,n,∆cm,n)

−2

∫
Ω

∇D(ψm,n) · ∇cm,n∆cm,ndx− 2

∫
Ω

A3(ψm,n, cm,n)∆ψm,n∆cm,ndx

−2

∫
Ω

∇A3(ψm,n, cm,n) · ∇ψm,n∆cm,ndx. (2.100)
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Consider

2 |bc(um,n, cm,n,∆cm,n)| ≤ 2

∫
Ω

|um,n|2 |∇cm,n|2 |∆cm,n|2 dx,

and with the help of the Hölder’s inequality, we have

2 |bc(um,n, cm,n,∆cm,n)| ≤ 2 ‖um,n‖L4(Ω) ‖∇cm,n‖L4(Ω) |∆cm,n| .

Using Gagliardo-Nirenberg’s inequality (see Lemma 1), we have

2 |bc(um,n, cm,n,∆cm,n)| ≤ 2c24 ‖um,n‖ |∇cm,n|
1
2 ‖∇cm,n‖

1
2 |∆cm,n| ,

and then applying Young’s inequality, the above inequality takes the form

2 |bc(um,n, cm,n,∆cm,n)| ≤ 4c2
24

D0

|um,n|2 ‖um,n‖ |∇cm,n| ‖∇cm,n‖+
D0

4
|∆cm,n|2 .

According to the relation (2.57), we obtain

2 |bc(um,n, cm,n,∆cm,n)| ≤ c25 |∇cm,n| ‖∇cm,n‖+
D0

4
|∆cm,n|2 .

Since ‖∇cm,n‖ ≤ c26 ‖cm,n‖H2(Ω), thus we have

2 |bc(um,n, cm,n,∆cm,n)| ≤ c27 |∇cm,n| ‖cm,n‖H2(Ω) +
D0

4
|∆cm,n|2 ,

and using elliptic estimate, the above inequality takes the form

2 |bc(um,n, cm,n,∆cm,n)| ≤ c28 |∇cm,n| (|∆cm,n|+ |cm,n|) +
D0

4
|∆cm,n|2 ,

or

2 |bc(um,n, cm,n,∆cm,n)| ≤ c28 |∇cm,n| |∆cm,n|+ c28 |cm,n| |∇cm,n|+
D0

4
|∆cm,n|2 .

By the Young’s inequality, we have

2 |bc(um,n, cm,n,∆cm,n)| ≤ c2
28

D0

|∇cm,n|2 +
D0

4
|∆cm,n|2 +

c2
28

2
|∇cm,n|2

+
1

2
|cm,n|2 +

D0

4
|∆cm,n|2 .

The above inequality can be simplified as

2 |bc(um,n, cm,n,∆cm,n)| ≤ c29 |∇cm,n|2 +
1

2
|cm,n|2 +

D0

2
|∆cm,n|2 . (2.101)
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Making use of the relation (2.101) in the inequality (2.100), we have

d

dt
|∇cm,n|2 + 2

∫
Ω

D(ψm,n) |∆cm,n|2 dx ≤ c29 |∇cm,n|2 +
1

2
|cm,n|2

+
D0

2
|∆cm,n|2 + 2

∫
Ω

|∇D(ψm,n)|2 |∇cm,n|2 |∆cm,n| dx

+2

∫
Ω

A3(ψm,n, cm,n) |∆ψm,n|2 |∆cm,n| dx

+2

∫
Ω

|∇A3(ψm,n, cm,n)|2 |∇ψm,n|2 |∆cm,n| dx,

Using hypothesis (H1)− (H5) and the Lemma 3, we arrive at

d

dt
|∇cm,n|2 + 2D0

∫
Ω

|∆cm,n|2 dx ≤ c29 |∇cm,n|2 +
1

2
|cm,n|2

+
D0

2
|∆cm,n|2 + 2c30

∫
Ω

(
1 + |∇ψm,n|2

)
|∇cm,n|2 |∆cm,n| dx

+2a3

∫
Ω

|∆ψm,n|2 |∆cm,n| dx

+2c31

∫
Ω

(
1 + |∇ψm,n|2 + |∇cm,n|2

)
|∇ψm,n|2 |∆cm,n| dx.

Applying the Hölder’s inequality, we arrive at

d

dt
|∇cm,n|2 + 2D0 |∆cm,n|2 ≤ c29 |∇cm,n|2 +

1

2
|cm,n|2

+
D0

2
|∆cm,n|2 + 2c30 |∇cm,n| |∆cm,n|+ 2a3 |∆ψm,n| |∆cm,n|

+2c31 |∇ψm,n| |∆cm,n|+ 2c31 ‖∇ψm,n‖2
L4(Ω) |∆cm,n|

+c32 ‖∇cm,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∆cm,n| ,

and further by the Young’s inequality, we have

d

dt
|∇cm,n|2 + 2D0 |∆cm,n|2 ≤ c29 |∇cm,n|2 +

1

2
|cm,n|2

+
D0

2
|∆cm,n|2 +

12c2
30

D0

|∇cm,n|2 +
D0

12
|∆cm,n|2

+
12a2

3

D0

|∆ψm,n|2 +
D0

12
|∆cm,n|2 +

12c2
31

D0

|∇ψm,n|2

+
D0

12
|∆cm,n|2 + 2c31 ‖∇ψm,n‖2

L4(Ω) |∆cm,n|
+c32 ‖∇cm,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∆cm,n| .



2.5 Existence and Regularity of the Solution 87

As ‖∇ψm,n‖L4(Ω) ≤ c33 ‖ψm,n‖H2(Ω), then the above inequality takes the form

d

dt
|∇cm,n|2 + 2D0 |∆cm,n|2 ≤

3D0

4
|∆cm,n|2 + c33 |∇cm,n|2 +

1

2
|cm,n|2

+
12a2

3

D0

|∆ψm,n|2 + 12c2
31 |∇ψm,n|

2 + 2c31 ‖ψm,n‖2
H2(Ω) |∆cm,n|

+c32 ‖∇cm,n‖L4(Ω) ‖ψm,n‖H2(Ω) |∆cm,n| , (2.102)

and using Gagliardo-Nirenberg’s inequality in the last term of the above inequality

(2.102) we have

c32 ‖∇cm,n‖L4(Ω) ‖ψm,n‖H2(Ω) |∆cm,n| ≤

c34 ‖ψm,n‖H2(Ω) |∇cm,n|
1
2 ‖∇cm,n‖

1
2 |∆cm,n| ,

As ‖∇cm,n‖ ≤ c35 ‖cm,n‖H2(Ω) and with the help of Young’s inequality, the above

inequality becomes

c32 ‖∇cm,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∆cm,n| ≤
D0

12
|∆cm,n|2

+c36 ‖ψm,n‖2
H2(Ω) |∇cm,n| ‖cm,n‖H2(Ω) .

Making use of the relation (2.89), we get

c32 ‖∇cm,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∆cm,n| ≤
D0

12
|∆cm,n|2

+c37 |∇cm,n| ‖cm,n‖H2(Ω) .

According to the elliptic estimate, the above inequality becomes

c32 ‖∇cm,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∆cm,n| ≤
D0

12
|∆cm,n|2

+c38 |∇cm,n| (|∆cm,n|+ |cm,n|) ,

and then by the Young’s inequality, we have

c32 ‖∇cm,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∆cm,n| ≤
D0

12
|∆cm,n|2

+
3c2

38

D0

|∇cm,n|2 +
D0

12
|∆cm,n|2

+
c2

38

2
|∇cm,n|2 +

1

2
|cm,n|2 .

Simplifying the above inequality, we have

c32 ‖∇cm,n‖L4(Ω) ‖∇ψm,n‖L4(Ω) |∆cm,n| ≤
D0

6
|∆cm,n|2

+c39 |∇cm,n|2 +
1

2
|cm,n|2 . (2.103)
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Using Gagliardo-Nirenberg’s inequality, we have

2c31 ‖∇ψm,n‖L4(Ω) |∆cm,n| ≤ c40 |∇ψm,n|
1
2 ‖∇ψm,n‖

1
2 |∆cm,n| .

Applying the Young’s inequality and using the relation (2.89), the above inequality

takes the form

2c31 ‖∇ψm,n‖L4(Ω) |∆cm,n| ≤ c41 ‖ψm,n‖2
H2(Ω) +

D0

12
|∆cm,n|2 .

As we know that |∇ψm,n| ≤ c42 ‖ψm,n‖H2(Ω) and ‖∇ψm,n‖ ≤ ‖ψm,n‖H2(Ω) , thus we

have

2c31 ‖∇ψm,n‖L4(Ω) |∆cm,n| ≤ c43 ‖ψm,n‖2
H2(Ω) +

D0

12
|∆cm,n|2 . (2.104)

Using the inequalities (2.103) and (2.104) in the inequality (2.102), we obtain

d

dt
|∇cm,n|2 + 2D0 |∆cm,n|2 ≤ D0 |∆cm,n|2 + c33 |∇cm,n|2 + |cm,n|2

+
12a2

3

D0

|∆ψm,n|2 +
12c2

31

D0

|∇ψm,n|2

+
12c2

43

D0

‖ψm,n‖2
H2(Ω) + c39 |∇cm,n|2 .

Since |∇ψm,n| ≤ c44 ‖ψm,n‖H2(Ω) and |∆ψm,n| ≤ c45 ‖ψm,n‖H2(Ω) , thus we have

d

dt
|∇cm,n|2 +D0 |∆cm,n|2 ≤ c46 |∇cm,n|2 + |cm,n|2 + c47 ‖ψm,n‖2

H2(Ω) ,

According to the relations (2.39) and (2.89), the above inequality takes the form

d

dt
|∇cm,n|2 +D0 |∆cm,n|2 ≤ c48

(
1 + |∇cm,n|2

)
. (2.105)

From the above inequality, we can deduce that

d

dt
|∇cm,n|2 ≤ c48

(
1 + |∇cm,n|2

)
,

and with the help of Gronwall’s lemma and the relation (2.19), we can easily get

|∇cm,n(t)|2 ≤ c49, ∀ t ∈ (0, Tf )

this implies that

‖∇cm,n‖L∞(0,Tf ;L2(Ω)) ≤ c49. (2.106)
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This shows that ∇cm,n is uniformly bounded in L∞(0, Tf ;L
2(Ω)). Thus from relations

(2.106) and (2.39), we can deduce that cm,n is uniformly bounded in L∞(0, Tf ;H
1(Ω)).

i.e.,

‖cm,n‖L∞(0,Tf ;H1(Ω)) ≤ c50. (2.107)

Now integrating the inequality (2.105) over (0, t) for all t ∈ (0, Tf ), we have∫ t

0

d

ds
|∇cm,n|2 ds+D0

∫ t

0

|∆cm,n|2 ds ≤ c48

∫ t

0

(
1 + |∇cm,n|2

)
ds,

or

|∇cm,n(t)|2 +D0

∫ t

0

|∆cm,n|2 ds ≤ c48

∫ t

0

(
1 + |∇cm,n|2

)
ds+ |∇cm,n(0)|2 .

From the above inequality, we can deduce that

D0

∫ t

0

|∆cm,n|2 ds ≤ c48

∫ t

0

(
1 + |∇cm,n|2

)
ds+ |∇cm,n(0)|2 ,

Making use of (2.107) and as c0 ∈ H1(Ω), we can easily arrive at

D0

∫ t

0

|∆cm,n|2 ds ≤ c51, ∀ t ∈ (0, Tf ).

Thus we have

‖∆cm,n‖L2(0,Tf ;L2(Ω)) ≤ c52. (2.108)

This shows that ∆cm,n is uniformly bounded in L2(0, Tf ;L
2(Ω)). Using the results

(2.107), (2.108) and elliptic estimate, we can deduce that cm,n is uniformly bounded

in L2(0, Tf ;H
2(Ω)), that is

‖cm,n‖L2(0,Tf ;H2(Ω)) ≤ c53. (2.109)

Now multiplying equation (2.24) by ∂cm,nk /∂t on both sides and then taking sum over

k, where k = 1, 2, · · · , n, we obtain(
∂cm,n
∂t

,
∂cm,n
∂t

)
+ bc(um,n, cm,n,

∂cm,n
∂t

) +

∫
Ω

D(ψm,n)∇cm,n · ∇
(
∂cm,n
∂t

)
dx

+

∫
Ω

A3(ψm,n, cm,n)∇ψm,n · ∇
(
∂cm,n
∂t

)
dx = 0,

and by applying Green’s formula and as ∇cm,n ·n = 0 on Γ, the above equation takes

the form∣∣∣∣∂cm,n∂t

∣∣∣∣2 + bc(um,n, cm,n,
∂cm,n
∂t

) =

∫
Ω

D(ψm,n)∆cm,n
∂cm,n
∂t

dx

+

∫
Ω

∇D(ψm,n) · ∇cm,n
∂cm,n
∂t

dx +

∫
Ω

A3(ψm,n, cm,n)∆ψm,n
∂cm,n
∂t

dx

+

∫
Ω

∇A3(ψm,n, cm,n) · ∇ψm,n
∂cm,n
∂t

dx.
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Using hypothesis (H1)− (H5) and the Lemma 3, we have∣∣∣∣∂cm,n∂t

∣∣∣∣2 ≤ ∣∣∣∣bc(um,n, cm,n, ∂cm,n∂t
)

∣∣∣∣+D1

∫
Ω

|∆cm,n|
∣∣∣∣∂cm,n∂t

∣∣∣∣ dx
+c54

∫
Ω

(
1 + |∇ψm,n|2

)
|∇cm,n|2

∣∣∣∣∂cm,n∂t

∣∣∣∣ dx + a3

∫
Ω

|∆ψm,n|
∣∣∣∣∂cm,n∂t

∣∣∣∣ dx
+c55

∫
Ω

(
1 + |∇cm,n|2 + |∇ψm,n|2

)
|∇ψm,n|2

∣∣∣∣∂cm,n∂t

∣∣∣∣ dx.
and with the help of the Hölder’s inequality, we have∣∣∣∣∂cm,n∂t

∣∣∣∣2 ≤ ‖um,n‖L4(Ω) ‖∇cm,n‖L4(Ω)

∣∣∣∣∂cm,n∂t

∣∣∣∣+D1 |∆cm,n|
∣∣∣∣∂cm,n∂t

∣∣∣∣
+c54 |∇cm,n|

∣∣∣∣∂cm,n∂t

∣∣∣∣+ a3 |∆ψm,n|
∣∣∣∣∂cm,n∂t

∣∣∣∣
+c55 |∇ψm,n|

∣∣∣∣∂cm,n∂t

∣∣∣∣+ c55 ‖∇ψm,n‖2
L4(Ω)

∣∣∣∣∂cm,n∂t

∣∣∣∣
+c56 ‖∇cm,n‖L4(Ω) |∇ψm,n|L4(Ω)

∣∣∣∣∂cm,n∂t

∣∣∣∣ ,
and using Gagliardo-Nirenberg’s inequality, we have∣∣∣∣∂cm,n∂t

∣∣∣∣2 ≤ c57 ‖um,n‖ ‖∇cm,n‖H2(Ω) ‖∇cm,n‖
1
2

∣∣∣∣∂cm,n∂t

∣∣∣∣
+D1 |∆cm,n|

∣∣∣∣∂cm,n∂t

∣∣∣∣+ c54 |∇cm,n|
∣∣∣∣∂cm,n∂t

∣∣∣∣+ a3 |∆ψm,n|
∣∣∣∣∂cm,n∂t

∣∣∣∣
+c55 |∇ψm,n|

∣∣∣∣∂cm,n∂t

∣∣∣∣+ c58 |∇ψm,n| ‖∇ψm,n‖
∣∣∣∣∂cm,n∂t

∣∣∣∣
+c59 ‖cm,n‖H2(Ω) ‖ψm,n‖H2(Ω)

∣∣∣∣∂cm,n∂t

∣∣∣∣ .
Further by the Young’s inequality, we have∣∣∣∣∂cm,n∂t

∣∣∣∣2 ≤ 7c2
57

2
‖um,n‖2 ‖cm,n‖2

H2(Ω) +
1

14

∣∣∣∣∂cm,n∂t

∣∣∣∣2
+

7D2
1

2
|∆cm,n|2 +

1

14

∣∣∣∣∂cm,n∂t

∣∣∣∣2 +
7c2

54

2
|∇cm,n|2 +

1

14

∣∣∣∣∂cm,n∂t

∣∣∣∣2
+

7a2
3

2
|∆ψm,n|2 +

1

14

∣∣∣∣∂cm,n∂t

∣∣∣∣2 +
7c2

54

2
|∇ψm,n|2

+
1

14

∣∣∣∣∂cm,n∂t

∣∣∣∣2 +
7c2

58

2
|∇ψm,n|2 ‖∇ψm,n‖2 +

1

14

∣∣∣∣∂cm,n∂t

∣∣∣∣2
+

7c2
59

2
‖cm,n‖2

H2(Ω) ‖ψm,n‖
2
H2(Ω) +

1

14

∣∣∣∣∂cm,n∂t

∣∣∣∣2 .
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Making use of the relations (2.57), (2.107) and (2.89), we finally arrive at

1

2

∣∣∣∣∂cm,n∂t

∣∣∣∣2 ≤ c60 + c61 ‖cm,n‖2
H2(Ω) .

Integrating above inequality over (0, Tf ) and using the result (2.109), we have∫ Tf

0

∣∣∣∣∂cm,n∂t

∣∣∣∣2 dt ≤ c62.

Thus we have ∥∥∥∥∂cm,n∂t

∥∥∥∥
L2(0,Tf ;L2(Ω))

≤ c62. (2.110)

This shows that ∂cm,n

∂t
is uniformly bounded in L2(0, Tf ;L

2(Ω)). Thus from the results

(2.109) and (2.110), we can deduce that if c0 ∈ H1(Ω) then cm,n is uniformly bounded

in W2 (defined by (2.63)). Since the embedding of H2(Ω) in H1(Ω) is compact,

therefore we conclude that W2 is compactly embedded into L2(0, Tf ;H
1(Ω)), (see

e.g., [55]). Therefore we can extract from cm,n, a subsequence also denoted by cm,n,

such that, as m,n→∞ we have

cm,n → c strongly in L2(0, Tf ;H
1(Ω)),

cm,n ⇀ c weakly in L2(0, Tf ;H
2(Ω)),

∂cm,n
∂t

⇀
∂c

∂t
weakly in L2(0, Tf ;L

2(Ω)),

therefore we conclude that

c ∈ L2(0, Tf ;H
2(Ω)) ∩H1(0, Tf ;L

2(Ω)).

We can then pass easily limit, m,n→∞, to the problem (2.22)-(2.25) and verify that

(u, ψ, c) satisfy the problem (2.11). �

2.6 Stability and Uniqueness

Theorem 4 Let assumptions (H1)− (H5) be fulfilled. Let (u01, ψ01, c01,B1) and

(u02, ψ02, c02,B2) be two functions from (H1
0 (Ω))

2 × H2
0 (Ω) × H1(Ω) × (L2(Q))

2
. If

(u1, ψ1, c1) and (u2, ψ2, c2) are two solutions of the problem (2.11) with the given

data (u01, ψ01, c01,B1) and (u02, ψ02, c02,B2) respectively, then we have the following

estimate

‖u1 − u2‖2
W1

1
+ ‖ψ1 − ψ2‖2

W1
2

+ ‖c1 − c2‖2
W1

1
≤ d0

(
‖u01 − u02‖2

H1(Ω)

+ ‖ψ01 − ψ02‖2
H2(Ω) + ‖c01 − c02‖2

H1(Ω) + ‖B1 −B2‖2
L2(Q)

)
. (2.111)

where d0 is constant and W1
i = L∞(0, Tf , L

2(Ω)) ∩ L2(0, Tf , H
i(Ω), i = 1, 2.
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Proof : Let (u1, ψ1, c1) and (u2, ψ2, c2) be two solutions of the problem (2.11) with

the given data (u01, ψ01, c01,B1) and (u02, ψ02, c02,B2) respectively. We denote u =

u1− u2, ψ = ψ1−ψ2, c = c1− c2, u0 = u01− u02, ψ0 = ψ01−ψ02, c0 = c01− c02 and

B = B1 −B2. Then the triplet (u, ψ, c) is a solution of the following problem

ρ0

(
∂u

∂t
,v

)
+ au(u,v) + bu(u1,u1,v)− bu(u2,u2,v)

= (b(ψ1)((u1 ×B1)×B1)− b(ψ2)((u2 ×B2)×B2),v)

+ (A1(ψ1, c1)−A1(ψ2, c2),v) , (2.112)

(
∂ψ

∂t
, φ

)
+ aψ(ψ, φ) + bψ(u1, ψ1, φ)− bψ(u2, ψ2, φ)

= −
∫

Ω

(A2(ψ1, c1)− A2(ψ2, c2))φ dx, (2.113)

(
∂c

∂t
, z

)
+ bc(u1, c1, z)− bc(u2, c2, z) +

∫
Ω

D(ψ1)∇c1 · ∇z dx

−
∫

Ω

D(ψ2)∇c2 · ∇z dx +

∫
Ω

A3(ψ1, c1)∇ψ1 · ∇z dx

−
∫

Ω

A3(ψ2, c2)∇ψ2 · ∇z dx = 0, (2.114)

(u, ψ, c) (t = 0) = (u0, ψ0, c0). ∀ (v, φ, z) ∈ V (2.115)

Consider now the term

bu(u1,u1,v)− bu(u2,u2,v) =

∫
Ω

(u1 · ∇u1) · vdx−
∫

Ω

(u2 · ∇u2) · vdx,

adding and subtracting the term

∫
Ω

(u2 · ∇u1) vdx, we have

bu(u1,u1,v)− bu(u2,u2,v) =

∫
Ω

(u1 − u2) · ∇u1v dx +

∫
Ω

u2 · ∇ (u1 − u2) v dx,

thus we have

bu(u1,u1,v)− bu(u2,u2,v) = bu(u,u1,v) + bu(u2,u,v). (2.116)

Similarly, we can derive

bψ(u1, ψ1, φ)− bψ(u2, ψ2, φ) = bψ(u, ψ1, φ) + bψ(u2, ψ, φ),

bc(u1, c1, z)− bc(u2, c2, z) = bc(u, c1, z) + bc(u2, c, z).

}
(2.117)
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Consider the term

b(ψ1)((u1 ×B1)×B1)− b(ψ2)((u2 ×B2)×B2),

adding and subtracting the terms b(ψ1)((u1 ×B1)×B2), b(ψ1)((u2 ×B1)×B2) and

b(ψ1)((u2 ×B2)×B2) in the above expression and simplifying, we have

b(ψ1)((u1 ×B1)×B1)− b(ψ2)((u2 ×B2)×B2)

= b(ψ1)((u1 ×B1)×B) + b(ψ1)((u×B1)×B2)

+b(ψ1)((u2 ×B)×B2) + (b(ψ1)− b(ψ2))((u2 ×B2)×B2),

the above equation can further be written as

b(ψ1)((u1 ×B1)×B1)− b(ψ2)((u2 ×B2)×B2)

= b(ψ1)
{

((u1 ×B1)×B) + ((u×B1)×B2)

+((u2 ×B)×B2)
}

+ (b(ψ1)− b(ψ2))((u2 ×B2)×B2). (2.118)

Making use of equations (2.116)-(2.118) in the equations (2.112)-(2.114) and adding

and subtracting the terms

∫
Ω

D(ψ2)∇c1 · ∇zdx and

∫
Ω

A3(ψ2, c2)∇ψ1 · ∇zdx in equa-

tion (2.114), we obtain

ρ0

(
∂u

∂t
,v

)
+ au(u,v) + bu(u,u1,v) + bu(u2,u,v)

=
(
A1(ψ1, c1)−A1(ψ2, c2),v

)
+
(
b(ψ1)

(
(u1 ×B1)×B

)
,v
)

+
(
b(ψ1)

(
(u×B1)×B2

)
,v
)

+
(
b(ψ1)

(
u2 ×B

)
×B2,v

)
+
((
b(ψ1)− b(ψ2)

)(
(u2 ×B2)×B2

)
,v
)
, (2.119)

(
∂ψ

∂t
, φ

)
+ aψ(ψ, φ) + bψ(u, ψ1, φ) + bψ(u2, ψ, φ)

= −
∫

Ω

(A2(ψ1, c1)− A2(ψ2, c2))φ dx, (2.120)

(
∂c

∂t
, z

)
+ bc(u, c1, z) + bc(u2, c, z) +

∫
Ω

(D(ψ1)−D(ψ2))∇c1 · ∇z dx

+

∫
Ω

D(ψ2)∇c · ∇z dx +

∫
Ω

(A3(ψ1, c1)− A3(ψ2, c2))∇ψ1 · ∇z dx

+

∫
Ω

A3(ψ2, c2)∇ψ · ∇z dx = 0. (2.121)
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Now setting (v, φ, z) = (u, ψ, c) in the equations (2.119)-(2.121), we have

ρ0

(
∂u

∂t
,u

)
+ au(u,u) + bu(u,u1,u) + bu(u2,u,u)

=
(
A1(ψ1, c1)−A1(ψ2, c2),u

)
+
(
b(ψ1)

(
(u1 ×B1)×B

)
,u
)

+
(
b(ψ1)

(
u×B1

)
×B2,u

)
+
(
b(ψ1)

(
u2 ×B

)
×B2,u

)
+
((
b(ψ1)− b(ψ2)

)(
(u2 ×B2)×B2

)
,u
)
,

(
∂ψ

∂t
, ψ

)
+ aψ(ψ, ψ) + bψ(u, ψ1, ψ) + bψ(u2, ψ, ψ)

= −
∫

Ω

(A2(ψ1, c1)− A2(ψ2, c2))ψ dx,

(
∂c

∂t
, c

)
+ bc(u, c1, c) + bc(u2, c, c) +

∫
Ω

(D(ψ1)−D(ψ2))∇c1 · ∇c dx

+

∫
Ω

D(ψ2)∇c · ∇c dx +

∫
Ω

(A3(ψ1, c1)− A3(ψ2, c2))∇ψ1 · ∇c dx

+

∫
Ω

A3(ψ2, c2)∇ψ · ∇c dx = 0,

since bu(u2,u,u) = bψ(u2, ψ, ψ) = bc(u2, c, c) = 0 and bψ(u, ψ1, ψ) = −bψ(u, ψ, ψ1),

the above equations takes the form

ρ0

2

d

dt
|u|2 + µ

∫
Ω

|∇u|22 dx + bu(u,u1,u) =
(
A1(ψ1, c1)−A1(ψ2, c2),u

)
+
(
b(ψ1)

(
(u1 ×B1)×B

)
,u
)

+
(
b(ψ1)

(
u×B1

)
×B2,u

)
+
(
b(ψ1)

(
u2 ×B

)
×B2,u

)
+
((
b(ψ1)− b(ψ2)

)(
(u2 ×B2)×B2

)
,u
)
,

1

2

d

dt
|ψ|2 + ε1

∫
Ω

|∇ψ|22 dx− bψ(u, ψ, ψ1)

= −
∫

Ω

(A2(ψ1, c1)− A2(ψ2, c2))ψdx,

1

2

d

dt
|c|2 +

∫
Ω

D(ψ2) |∇c|22 dx + bc(u, c1, c) = −
∫

Ω

A3(ψ2, c2)∇ψ · ∇c dx

−
∫

Ω

(D(ψ1)−D(ψ2))∇c1 · ∇c dx

−
∫

Ω

(A3(ψ1, c1)− A3(ψ2, c2))∇ψ1 · ∇c dx,
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and using hypothesis (H1)− (H5), the above equations takes the form

ρ0

2

d

dt
|u|2 + µ |∇u|2 ≤ ρ0

∫
Ω

|u|2 |∇u1|2 |u|2 dx + d1

∫
Ω

(|ψ|+ |c|) |u|2 dx

+d2

∫
Ω

|u1|2 |u|2 |B|2 dx + d3

∫
Ω

|u|22 dx

+d4

∫
Ω

|u2|2 |u|2 |B|2 dx + d5

∫
Ω

|ψ| |u2|2 |u|2 dx

1

2

d

dt
|ψ|2 + ε1 |∇ψ|2 ≤ d6

∫
Ω

(|ψ|+ |c|) |ψ| dx +

∫
Ω

|u|2 |∇ψ|2 |ψ1| dx,

1

2

d

dt
|c|2 +D0 |∇c|2 ≤

∫
Ω

|u|2 |∇c1|2 |c| dx + a3

∫
Ω

|∇ψ|2 |∇c|2 dx

+d7

∫
Ω

|ψ| |∇c1|2 |∇c|2 dx + d8

∫
Ω

(|ψ|+ |c|) |∇ψ1|2 |∇c|2 dx.

Let ν = µ/ρ0. As ψ1 ∈ L∞(0, Tf , H
2(Ω)) ⊂ L∞(Q) and using Hölder’s inequality, we

have

d

dt
|u|2 + 2ν |∇u|2 ≤ 2 ‖u‖2

L4(Ω) |∇u1|+ d9

(
|u| |ψ|+ |u| |c|

)
+d10 ‖u1‖L4(Ω) ‖u‖L4(Ω) |B|+ d11 ‖u2‖L4(Ω) ‖u‖L4(Ω) |B|

+d12 |u|2 + d13 ‖ψ‖L4(Ω) ‖u‖L4(Ω) |u2| , (2.122)

d

dt
|ψ|2 + 2ε1 |∇ψ|2 ≤ d14

(
|ψ|2 + |c| |ψ|

)
+ 2 ‖ψ1‖L∞(Q) |u| |∇ψ| , (2.123)

d

dt
|c|2 + 2D0 |∇c|2 ≤ 2 ‖u‖L4(Ω) ‖c‖L4(Ω) |∇c1|+ d15 |∇ψ| |∇c|

+d16

∫
Ω

|ψ| |∇c1|2 |∇c|2 dx + d17

∫
Ω

(|ψ|+ |c|) |∇ψ1|2 |∇c|2 dx. (2.124)

Since u1 ∈ L∞(0, Tf ;V ) and using Gagliardo-Nirenberg’s inequality, we have

2 ‖u‖2
L4(Ω) |∇u1| ≤ d18 |u| |∇u| ,

Further with the help of Young’s inequality, we obtain

2 ‖u‖2
L4(Ω) |∇u1| ≤

d2
18

ν
|u|2 +

ν

4
|∇u|2 (2.125)

As u2 ∈ L∞(0, Tf ;V ), and using Gagliardo-Nirenberg’s inequality, we get

d13 ‖ψ‖L4(Ω) ‖u‖L4(Ω) |u2| ≤ d19 ‖ψ‖ |u|1/2 |∇u|1/2 .
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Again by using Young’s inequality

d13 ‖ψ‖L4(Ω) ‖u‖L4(Ω) |u2| ≤
d2

19

2
‖ψ‖2 +

1

4ν
|u|2 +

ν

4
|∇u|2 . (2.126)

As u1 ∈ L∞(0, Tf ;V ) and applying Gagliardo-Nirenberg’s inequality, we have

d10 ‖u1‖L4(Ω) ‖u‖L4(Ω) |B| ≤ d20 |u|1/2 |∇u|1/2 |B| ,

and then (using Young’s inequality), we arrive at

d10 ‖u1‖L4(Ω) ‖u‖L4(Ω) |B| ≤
d4

20

4ν
|u|2 +

ν

4
|∇u|2 +

1

2
|B|2 . (2.127)

Similarly we can derive that

d11 ‖u2‖L4(Ω) ‖u‖L4(Ω) |B| ≤
d4

21

4ν
|u|2 +

ν

4
|∇u|2 +

1

2
|B|2 . (2.128)

Also as c1 ∈ L∞(0, Tf ;H
1(Ω)), thus we have

2 ‖u‖L4(Ω) ‖c‖L4(Ω) |∇c1| ≤ d22 ‖u‖L4(Ω) ‖c‖L4(Ω) .

According to the Sobolev injection (H1(Ω) ⊂ L4(Ω)), and as ‖u‖V ≤ d23 |∇u| we

have

2 ‖u‖L4(Ω) ‖c‖L4(Ω) |∇c1| ≤ d24 |∇u| ‖c‖H1(Ω) ,

the above inequality can further be written as

2 ‖u‖L4(Ω) ‖c‖L4(Ω) |∇c1| ≤ d24 |∇u|
(
|c|2 + |∇c|2

)1/2
.

Applying the Young’s inequality, we have

2 ‖u‖L4(Ω) ‖c‖L4(Ω) |∇c1| ≤ d25

(
|c|2 + |∇u|2

)
+
D0

4
|∇c|2 . (2.129)

Since ψ ∈ H2(Ω) ⊂ L∞(Ω), therefore we obtain

d16

∫
Ω

|ψ| |∇c1|2 |∇c|2 dx ≤ d16 ‖ψ‖L∞(Ω)

∫
Ω

|∇c1|2 |∇c|2 dx

Using Sobolev injection (H2(Ω) ⊂ L∞(Ω)) and Hölder’s inequality, we arrive at

d16

∫
Ω

|ψ| |∇c1|2 |∇c|2 dx ≤ d26 ‖ψ‖H2(Ω) |∇c1| |∇c|

Since c1 ∈ L∞(0, Tf ;H
1(Ω)) and according to the elliptic estimate, we can write

d16

∫
Ω

|ψ| |∇c1|2 |∇c|2 dx ≤ d27 (|∆ψ|+ |ψ|) |∇c| ,
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and with the help of Young’s inequality, the above inequality becomes

d16

∫
Ω

|ψ| |∇c1|2 |∇c|2 dx ≤ d28

(
|∆ψ|2 + |ψ|2

)
+
D0

4
|∇c|2 (2.130)

Now using Hölder’s inequality, we have

d17

∫
Ω

(|ψ|+ |c|) |∇ψ1|2 |∇c|2 dx ≤

d17

(
‖ψ‖L4(Ω) + ‖c‖L4(Ω)

)
‖∇ψ1‖L4(Ω) |∇c| ,

since ψ1 ∈ L∞(0, Tf ;H
2(Ω)) and using Gagliardo-Nirenberg’s inequality, we finally

get

d17

∫
Ω

(|ψ|+ |c|) |∇ψ1|2 |∇c|2 dx ≤ d29

(
‖ψ‖+ |c|

1
2 ‖c‖

1
2

)
|∇c| .

The above inequality can further be written as

d17

∫
Ω

(|ψ|+ |c|) |∇ψ1|2 |∇c|2 dx ≤ d30

(
‖ψ‖+ |c|

1
2

(
|c|

1
2 + |∇c|

1
2

))
|∇c| ,

or

d17

∫
Ω

(|ψ|+ |c|) |∇ψ1|2 |∇c|2 dx ≤

d30

(
‖ψ‖ |∇c|+ |c| |∇c|+ |c|

1
2 |∇c|

3
2

)
,

and applying the Young’s formula, we have

d17

∫
Ω

(|ψ|+ |c|) |∇ψ1|2 |∇c|2 dx ≤ d31

(
‖ψ‖2 + |c|2

)
+
D0

4
|∇c|2 . (2.131)

Making use of the inequalities (2.125)-(2.131) in the the relations (2.122)-(2.124), we

have

d

dt
|u|2 + ν |∇u|2 ≤ d2

18

ν
|u|2 + d9 (|ψ| |u|+ |c| |u|) +

d4
20

4ν
|u|2 + |B|2

+
d4

21

4ν
|u|2 + d12 |u|2 +

d2
19

2
‖ψ‖2 +

1

4ν
|u|2

d

dt
|ψ|2 + 2ε1 |∇ψ|2 ≤ d14

(
|ψ|2 + |c| |ψ|

)
+ d32 |u| |∇ψ| ,

d

dt
|c|2 + 2D0 |∇c|2 ≤

3D0

4
|∇c|2 + d25

(
|c|2 + |∇u|2

)
+ d15 |∇ψ| |∇c|

+d28

(
|∆ψ|2 + |ψ|2

)
+ d31

(
‖ψ‖2 + |c|2

)
.
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By the Young’s formula, the above inequalities takes the following form

d

dt
|u|2 + ν |∇u|2 ≤ d33

(
|u|2 + |ψ|2 + |c|2

)
+ |B|2 +

d2
19

2
‖ψ‖2 ,

d

dt
|ψ|2 + 2ε1 |∇ψ|2 ≤ d34

(
|u|2 + |ψ|2 + |c|2

)
+ ε1 |∇ψ|2 ,

d

dt
|c|2 +D0 |∇c|2 ≤ d25

(
|c|2 + |∇u|2

)
+
d2

15

D0

|∇ψ|

+d28

(
|∆ψ|2 + |ψ|2

)
+ d31

(
‖ψ‖2 + |c|2

)
.

The above inequalities can further be written as

d

dt
|u|2 + ν |∇u|2 ≤ d35

(
|u|2 + ‖ψ‖2 + |c|2

)
+ |B|2 , (2.132)

d

dt
|ψ|2 + ε1 |∇ψ|2 ≤ d36

(
|u|2 + ‖ψ‖2 + |c|2

)
, (2.133)

d

dt
|c|2 +D0 |∇c|2 ≤ d37

(
|∇u|2 + |∆ψ|2 + |c|2 + ‖ψ‖2) . (2.134)

Now we shall estimate |∆ψ| . For this setting φ = −∆ψ in equation (2.113), we obtain

−
(
∂ψ

∂t
,∆ψ

)
− ε1

∫
Ω

∇ψ · ∇(∆ψ)dx = bψ(u1, ψ1,∆ψ)− bψ(u2, ψ2,∆ψ)

+

∫
Ω

(A2(ψ1, c1)− A2(ψ2, c2)) ∆ψ dx,

Making use of equation (2.117) and Green’s formula, we have

1

2

d

dt
|∇ψ|2 + ε1 |∆ψ|2 = bψ(u, ψ1,∆ψ)− bψ(u2, ψ,∆ψ)

+

∫
Ω

(A2(ψ1, c1)− A2(ψ2, c2)) ∆ψ dx,

and then using hypothesis (H1)− (H5), we get

1

2

d

dt
|∇ψ|2 + ε1 |∆ψ|2 ≤

∫
Ω

|u|2 |∇ψ1|2 |∆ψ| dx

+

∫
Ω

|u2|2 |∇ψ|2 |∆ψ| dx +

∫
Ω

(|ψ|+ |c|) |∆ψ| dx,

with the help of the Hölder’s inequality, we have

d

dt
|∇ψ|2 + 2ε1 |∆ψ|2 ≤ 2 ‖u‖L4(Ω) ‖∇ψ1‖L4(Ω) |∆ψ|
+2 ‖u2‖L4(Ω) ‖∇ψ‖L4(Ω) |∆ψ|+ 2 (|ψ|+ |c|) |∆ψ| .
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According to the Lemma 1, we arrive at

d

dt
|∇ψ|2 + 2ε1 |∆ψ|2 ≤ d38 |u|1/2 |∇u|1/2 ‖∇ψ1‖ |∆ψ|

+d39 |∇u2| |∇ψ|1/2 ‖∇ψ‖1/2 |∆ψ|+ 2 (|ψ|+ |c|) |∆ψ| .

Since ψ1 ∈ L∞(0, Tf , H
2(Ω)) and u2 ∈ L∞(0, Tf , V ), therefore the above inequality

takes the form

d

dt
|∇ψ|2 + 2ε1 |∆ψ|2 ≤ d40 |u|1/2 |∇u|1/2 |∆ψ|+ d41 |∇ψ|1/2 ‖∇ψ‖1/2 |∆ψ|

+2 (|ψ|+ |c|) |∆ψ| ,

and using Young’s formula, we arrive at

d

dt
|∇ψ|2 + 2ε1 |∆ψ|2 ≤

d2
40

ε1
|u| |∇u|+ ε1

4
|∆ψ|2 +

d2
41

ε1
|∇ψ| ‖∇ψ‖

+
ε1
4
|∆ψ|2 +

4

ε1

(
|ψ|2 + |c|2

)
+
ε1
4
|∆ψ|2 .

The above inequality can further be written as

d

dt
|∇ψ|2 + 2ε1 |∆ψ|2 ≤

d2
40

ε1
|u| |∇u|+ d42 ‖ψ‖ ‖ψ‖H2(Ω)

+
4

ε1

(
|ψ|2 + |c|2

)
+

3ε1
4
|∆ψ|2 ,

and using elliptic estimate, we can write

d

dt
|∇ψ|2 + 2ε1 |∆ψ|2 ≤

d2
40

ε1
|u| |∇u|+ d43 ‖ψ‖ (|ψ|+ |∆ψ|)

+
4

ε1

(
|ψ|2 + |c|2

)
+

3ε1
4
|∆ψ|2 ,

again by applying the Young’s formula, we have

d

dt
|∇ψ|2 + 2ε1 |∆ψ|2 ≤

d4
40

2νε21
|u|2 +

ν

2
|∇u|2 +

d2
47

2
‖ψ‖2 +

1

2
|ψ|2

+
d2

43

ε1
‖ψ‖2 +

ε1
4
|∆ψ|2 +

4

ε1

(
|ψ|2 + |c|2

)
+

3ε1
4
|∆ψ|2 .

Simplifying above inequality, we arrive at

d

dt
|∇ψ|2 + ε1 |∆ψ|2 ≤

d4
40

2νε21
|u|2 +

ν

2
|∇u|2

+d44 ‖ψ‖2 +
4

ε1
|c|2 .
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Consequently

d

dt
|∇ψ|2 + ε1 |∆ψ|2 ≤ d45

(
|u|2 + ‖ψ‖2 + |c|2

)
+
ν

2
|∇u|2 . (2.135)

Now adding the relations (2.132),(2.133) and (2.135), we arrive at

d

dt

(
|u|2 + ‖ψ‖2)+

ν

2
|∇u|2 + ε1 |∇ψ|2 + ε1 |∆ψ|2

≤ d46

(
|u|2 + ‖ψ‖2 + |c|2

)
+ |B|2 .

Let δ1 = min(ν/2, ε1), then the above inequality takes the form

d

dt

(
|u|2 + ‖ψ‖2)+ δ1

(
|∇u|2 + |∆ψ|2 + |∇ψ|2

)
≤ d46

(
|u|2 + ‖ψ‖2 + |c|2

)
+ |B|2 . (2.136)

Multiplying inequality (2.134) by δ2 > 0 and then adding the resulting inequality with

(2.136), we finally arrive at

d

dt

(
|u|2 + ‖ψ‖2 + δ2 |c|2

)
+ δ1

(
|∇u|2 + |∆ψ|2 + |∇ψ|2

)
+ δ2D0 |∇c|2

≤ d46

(
|u|2 + ‖ψ‖2 + |c|2

)
+ |B|2 + δ2d37

(
|∇u|2 + |∆ψ|2 + |c|2 + ‖ψ‖2)

Choosing δ2 = δ1/2d37, the above inequality takes the form

d

dt

(
|u|2 + ‖ψ‖2 + δ2 |c|2

)
+
δ1

2

(
|∇u|2 + |∆ψ|2

)
+ δ1 |∇ψ|2 + δ2D0 |∇c|2

≤ d46

(
|u|2 + ‖ψ‖2 + |c|2

)
+ |B|2 +

δ1

2

(
|c|2 + ‖ψ‖2) ,

and simplifying above inequality we arrive at

d

dt

(
|u|2 + ‖ψ‖2 + δ2 |c|2

)
+
δ1

2

(
|∇u|2 + |∆ψ|2

)
+ δ1 |∇ψ|2 + δ2D0 |∇c|2

≤ d47

(
|u|2 + ‖ψ‖2 + |c|2

)
+ |B|2 . (2.137)

From the above inequality (2.137), we can deduce that

d

dt

(
|u|2 + ‖ψ‖2 + δ2 |c|2

)
≤ d47

(
|u|2 + ‖ψ‖2 + |c|2

)
+ |B|2 ,

and using Gronwall’s lemma and the relation (2.115), we have

|u(t)|2 + ‖ψ(t)‖2 + |c(t)|2 ≤ d48

(
|u0|2 + ‖ψ0‖2 + |c0|2 + |B|2

)
, ∀ t ∈ (0, Tf )
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therefore we have

‖u(t)‖L∞(0,Tf ,L2(Ω)) + ‖ψ(t)‖L∞(0,Tf ,H1(Ω)) + ‖c(t)‖L∞(0,Tf ,L2(Ω))

≤ d48

(
|u0|2 + ‖ψ0‖2 + |c0|2 + |B|2

)
. (2.138)

Now integrating the inequality (2.137) over (0, t) for all t ∈ (0, Tf ), we have

(
|u(t)|2 + ‖ψ(t)‖2 + δ2 |c(t)|2

)
+
δ1

2

∫ t

0

(
|∇u|2 + |∆ψ|2

)
ds+ δ1

∫ t

0

|∇ψ|2 ds

+δ2D0

∫ t

0

|∇c|2 ds ≤ d47

∫ t

0

(
|u|2 + ‖ψ‖2 + |c|2

)
ds+

∫ t

0

|B|2 ds

+
(
|u(0)|2 + ‖ψ(0)‖2 + δ2 |c(0)|2

)
.

From the above inequality, we can deduce that

δ1

2

∫ t

0

(
|∇u|2 + |∆ψ|2

)
ds+ δ1

∫ t

0

|∇ψ|2 ds+ δ2D0

∫ t

0

|∇c|2 ds

≤ d47

∫ t

0

(
|u|2 + ‖ψ‖2 + |c|2

)
ds+

∫ t

0

|B|2 ds

+
(
|u(0)|2 + ‖ψ(0)‖2 + δ2 |c(0)|2

)
,

and according to the relation (2.138), we arrive at

δ1

2

∫ t

0

(
|∇u|2 + |∆ψ|2

)
ds+ δ1

∫ t

0

|∇ψ|2 ds+ δ2D0

∫ t

0

|∇c|2 ds

≤ d48

((
|u(0)|2 + ‖ψ(0)‖2 + δ2 |c(0)|2

)
+

∫ t

0

|B|2 ds
)
. (2.139)

From the relations (2.138) and (2.139), we can easily have

‖u(t)‖2
W1

1
+ ‖ψ(t)‖2

W1
2

+ ‖c(t)‖2
W1

1
≤ d0

(
‖u0‖2

H1(Ω)

+ ‖ψ0‖2
H2(Ω) + ‖c0‖2

H1(Ω) + ‖B‖2
L2(Q)

)
. (2.140)

As u = u1−u2, ψ = ψ1−ψ2, c = c1−c2, u0 = u01−u02, ψ0 = ψ01−ψ02, c0 = c01−c02

and B = B1 −B2, therefore we can write

‖u1 − u2‖2
W1

1
+ ‖ψ1 − ψ2‖2

W1
2

+ ‖c1 − c2‖2
W1

1
≤ d0

(
‖u01 − u02‖2

H1(Ω)

+ ‖ψ01 − ψ02‖2
H2(Ω) + ‖c01 − c02‖2

H1(Ω) + ‖B1 −B2‖2
L2(Q)

)
. (2.141)

which is the required result. �

Corollary 1 The solution of the problem (2.11) is unique.
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Proof: If we assume in the Theorem 4 that the given data is same i.e., u01 = u02,

ψ01 = ψ02, c01 = c02 and B1 = B2. Then we obtain (u, ψ, c) = (0, 0, 0) and we

conclude that (u1, ψ1, c1) = (u2, ψ2, c2). Therefore the solution of the problem (2.11)

is unique. �
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3.1 Introduction

This chapter is dedicated to the numerical simulations, stability and convergence

of the numerical scheme developed to solve the problems (1.101) and (1.103). We

shall explain in detail the numerical scheme for the problem (1.103), whereas for

the problem (1.101), the numerical scheme can be modified accordingly by including

the operator A4(η, η′, η′′, ψ,∇ψ,∇(∇ψ)) arising due to the anisotropy factor η in the

equation (1.101c) of the problem (1.101). To study the convergence and stability, we

have added functions Fu(x, t), Fψ(x, t) and Fc(x, t) on the right-hand-side of the both

problems. We choose the values of the constants (see Table 3.1) for the phase-field and

concentration equations in our models as given in [24] and the constants associated

with the flow equations are chosen by keeping in view the properties of substances A

(Copper (Cu) in the present case) and B (Nickel (Ni) in the present case). We have

Property Name Symbol Unit Nickel (A) Copper (B)

Melting temperature Tm K 1728 1358

Latent heat L J/m3 2350× 106 1758× 106

Diffusion coeff. liquid DL m2/s 10−9 10−9

Diffusion coeff. solid DS m2/s 10−13 10−13

Linear kinetic coeff. β m/K/s 3.3× 10−3 3.9× 10−3

Interface thickness δ m 8.4852× 10−8 6.0120× 10−8

Density ρ Kg/m3 7810 8020

viscosity µ Pa · s 4.110× 10−6 0.597× 10−6

Surface energy σ J/m2 0.37 0.29

Electrical conductivity σe S/m 14.3× 106 59.6× 106

Molar volume Vm m3 7.46× 10−6 7.46× 10−6

Magnetic-field B0 Tesla 100 100

Mode Number k N/A 4 4

Anisotropy Amplitude γ0 N/A 0.04 0.04

Table 3.1: Physical values of constants

dealt with several examples with known exact solution to study the convergence and

stability of the numerical scheme (developed in the next section) for both problems

(1.101) and (1.103). We shall present only two examples for the isotropic problem

(1.103) and one example for the anisotropic problem (1.101) to validate our approach.

In the section (3.2), we shall explain in detail the numerical scheme and give the
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space discretization and the general form of the differential-algebraic systems for both

problems (1.101) and (1.103). Then we present briefly the time discretization of these

problems (details can be found in appendix A). In the section (3.3), we shall expli-

cate the implementation of the developed scheme in the computer softwares Comsol

Multiphysics and MatLab. In the next section 3.4, we shall provide examples for the

isotropic case (1.103) and anisotropic case (1.101) to validate our approach.

3.2 Discretization of the Problem

This section elucidates the discretization of the problems (1.101) and (1.103), both

in time and space. We shall give details of space discretization only for the problem

(1.103) whereas the space discretization of the problem (1.101) can be obtained in a

similar manner by including the operator A4(η, η′, η′′, ψ,∇ψ,∇(∇ψ)) arising due to

the anisotropy factor η.

For this, we define the variational formulation of the problem (1.103) as

ρ0

(
∂u

∂t
,v

)
+ au(u,v) + bu(u; u,v) + cp (v, p)− (A1(ψ, c),v)

− (b(ψ)((u×B)×B),v) = (Fu,v) ,

−cp (u, q) = 0,(
∂ψ

∂t
, φ

)
+ aψ(ψ, φ) + bψ(u, ψ, φ) + (A2(ψ, c), φ) = (Fψ, φ) ,(

∂c

∂t
, z

)
+ bc(u, c, z) + (D(ψ)∇c,∇z)

+ (A3(ψ, c)∇ψ,∇z) = (Fc, z) , ∀ (v, q, φ, z) ∈ W ×H×M×M,

(u, ψ, c) (t = 0) = (u0, ψ0, c0) ,



(3.1)

where cp (u, p) = − (div(u), p) and W , H and M are defined as

W =
{

v ∈
(
H1(Ω)

)2 | v = 0 on Γ
}
, M = H1(Ω) (3.2)

H =

{
q ∈ L2(Ω) |

∫
Ω

qdx = 0

}
. (3.3)

Remark: The condition

∫
Ω

qdx = 0 on the pressure is imposed in order to assure

the uniqueness of the pressure because the pressure is defined within a class of equiv-

alence, regardless of a time-dependent function. We can impose also other conditions

on the pressure, in accordance on its regularity, e.g., the pressure is zero on part of
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the boundary, etc.

For the discretization of the problem (3.1) with respect to time t, we have used

back-ward difference Euler formula and for the space discretization we have used

the mixed finite elements for the flow equations and usual finite elements for the

concentration and phase-field equations. First, we shall give the space discretization

and then the time discretization of the problem (3.1).

Let h be a parameter of discretization such that 0 < h < h0 < 1 and let Wh, Hh and

Mh are the finite element subspaces ofW , H andM respectively associated with the

partition Th of the domain Ω and the polynomials Pl, Pl−1 and Pl where l is the degree

of the polynomials. We assume that the following conditions hold (see e.g.,[47])

(C1) ∃ c1, ∀ X = (u, ψ, c) ∈ (Hr+1(Ω))
4 ∩ (W ×M2) and ∀ r ∈ [1, l]

inf
Xh∈Wh×M2

h

‖X−Xh‖ ≤ c1h
r ‖X‖Hr+1(Ω) .

(C2) ∃ c2, ∀ q ∈ Hr(Ω) ∩H and ∀ r ∈ [1, l]

inf
qh∈Hh

‖q − qh‖ ≤ c2h
r ‖q‖Hr(Ω) .

(C3) ∃ c3 such that (InfSup condition)

inf
qh∈Hh

sup
vh∈Wh

cp(vh, qh)

‖vh‖ |qh|
≥ c3. (3.4)

(C4) Let X0h = (u0h, ψ0h, c0h) be the approximation of X0 = (u0, ψ0, c0) inWh×M2
h,

if X0 ∈ (Hr+1(Ω))
4

with r ∈ [1, l], then

h ‖X0 −X0h‖+ |X0 −X0h| ≤ c4h
r+1.

(C5) For all m, p, q and k integers and ∀ K ∈ Th with 0 < p, q ≤ ∞, we have

‖Xh‖Wm,q(K) ≤ c4 h
n/q−n/p+k−m ‖Xh‖W k,p(K) , ∀ Xh ∈ Wh ×M2

h,

‖Xh‖Wm,q(Ω) ≤ c4 h
n/q−n/p+k−m ‖Xh‖W k,p(Ω) , ∀ Xh ∈ Wh ×M2

h.

We define the space discretization of the problem (3.1) as follows.

Find (uh, ph, ψh, ch) ∈ Wh×Hh×Mh×Mh such that ∀(vh, qh, ϕh, zh) ∈ Wh×Hh×
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Mh ×Mh,

ρ0

(
∂uh
∂t

,vh

)
+ au (uh,vh) + bu (uh,uh,vh) + cp (vh, ph)− (A1(ψh, ch),vh)

− (b(ψh)((uh ×B)×B),vh) = (Fu,vh) , (3.5)

−cp (uh, qh) = 0, (3.6)(
∂ψh
∂t

, ϕh

)
+ aψ (ψh, ϕh) + bψ(uh, ψh, ϕh) + (A2(ψh, ch), ϕh) = (Fψ, ϕh) , (3.7)(

∂ch
∂t

, zh

)
+ bc (uh, ch, zh) + (D(ψh)∇ch,∇zh)

+ (A3(ψh, ch)∇ψh,∇zh) = (Fc, zh) , (3.8)

with the initial condition

(uh, ψh, ch) (t = 0) = (u0h, ψ0h, c0h) , in Ω (3.9)

Let ϕih for 1 ≤ i ≤M , qih for 2M + 1 ≤ i ≤ 2M +N and zih for

2M +N + 1 ≤ i ≤ 2M +N + M̃ constitutes the basis of Wh, Hh and Mh respec-

tively and

uh =
M∑
i=1

uihϕih =
M∑
i=1

uihϕ
u

ih
+

M∑
i=1

vihϕ
v

ih
,

ph =
2M+N∑
i=2M+1

pihqih,

ψh =
2M+N+M̃∑
i=2M+N+1

ψihzih,

ch =
2M+N+2M̃∑

i=2M+N+M̃+1

cihzih.



(3.10)

where

uih =

(
uih

vih

)
, ϕu

ih
=

(
ϕih

0

)
, ϕv

ih
=

(
0

ϕih

)
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Substituting equation (3.10) in the equations (3.5)-(3.8) and simplifying, we arrive at

M∑
i=1

ρ0

(
ϕu
ih
, ϕu

jh

) duih
dt

+
M∑
i=1

{
au

(
ϕu
ih
, ϕu

jh

)
+ bu

(
uh;ϕ

u

ih
, ϕu

jh

)
−
(
b(ψh)((ϕ

u
ih
×B)×B), ϕu

jh

)}
uih +

∑2M+N
i=2M+1

(
qih, div(ϕu

jh
)
)
pih

−
(
A1(ψh, ch), ϕ

u
jh

)
+

M∑
i=1

ρ0

(
ϕv
ih
, ϕv

jh

) dvih
dt

+
M∑
i=1

{
au

(
ϕv
ih
, ϕv

jh

)
+ bu

(
uh, ϕ

v

ih
, ϕv

jh

)
−
(
b(ψh)((ϕ

v
ih
×B)×B), ϕv

jh

)}
vih +

∑2M+N
i=2M+1

(
qih, div(ϕv

jh
)
)
pih

−
(
A1(ψh, ch), ϕ

v
jh

)
=
(
Fu, ϕ

u
jh

+ ϕv
jh

)
, 1 ≤ j ≤M

−
2M+N∑
i=2M+1

{(
div(ϕu

ih
), qjh

)
uih +

(
div(ϕv

ih
), qjh

)
vih

}
= 0, 2M + 1 ≤ j ≤ 2M +N

2M+N+M̃∑
i=2M+N+1

(zih, zjh)
dψih
dt

+
2M+N+M̃∑
i=2M+N+1

{
aψ (zih, zjh) + bψ (uh, zih, zjh)

}
ψih

+ (A2 (ψh, ch) , zjh) = (Fψ, zjh) , 2M +N + 1 ≤ j ≤ 2M +N + M̃

2M+N+2M̃∑
i=2M+N+M̃+1

(zih, zjh)
dcih
dt

+
2M+N+2M̃∑

i=2M+N+M̃+1

{
bc (uh, zih, zjh)

+ (D(ψh)∇zih,∇zjh)
}
cih +

2M+N+M̃∑
i=2M+N+1

(A3(ψh, ch)∇zih,∇zjh)ψih

= (Fc, zjh) , 2M +N + M̃ + 1 ≤ j ≤ 2M +N + 2M̃

The above equations can be written as

M dYh
dt

+A(Yh) Yh + L(Yh) = R, Yh(t = 0) = Y0h, (3.11)

with

Yh = (u1h, ...,uMh, p1h, ...pNh, ψ1h, ..., ψM̃h, c1h..., cM̃h)
trans , (3.12)

where “trans“ denotes the usual transpose of a matrix and

M =


M11 0 0 0

0 0 0 0

0 0 M33 0

0 0 0 M44

 ∈ R2M+N+2M̃,2M+N+2M̃ (3.13)
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A(Yh) =


A11 A12 0 0

A21 0 0 0

0 0 A33 0

0 0 A43 A44

 ∈ R2M+N+2M̃,2M+N+2M̃ (3.14)

and

(M11)ji = ρ0

(
ϕu
ih
, ϕu

jh

)
+ ρ0

(
ϕv
ih
, ϕv

jh

)
,

(M33)ji = (zih, zjh) , (M44)ji = (zih, zjh) . (3.15)

(A11)ji = au

(
ϕu
ih
, ϕu

jh

)
+ au

(
ϕv
ih
, ϕv

jh

)
+ bu

(
uh;ϕ

u

ih
, ϕu

jh

)
+ bu

(
uh, ϕ

v

ih
, ϕv

jh

)
−
(
b(ψh)((ϕ

u

ih
×B)×B), ϕu

jh

)
−
(
b(ψh)((ϕ

v

ih
×B)×B), ϕv

jh

)
,

(A12)ji =
(
qih, div(ϕu

jh
)
)

+
(
qih, div(ϕv

jh
)
)
,

(A21)ji =
(
div(ϕu

ih
), qjh

)
+
(
div(ϕv

ih
), qjh

)
.

(A33)ji = aψ (zih, zjh) + bψ (uh, zih, zjh) ,

(A43)ji = (A3(ψh, ch)∇zih,∇zjh) ,

(A44)ji = (D(ψh)∇zih,∇zjh) + bc (uh, zih, zjh) ,

and

L(Yh) =
(
L1 0 L3 0

)trans
, (3.16)

with

(L1)j =
(
A1(ψh, ch), ϕ

u

jh

)
+
(
A1(ψh, ch), ϕ

v

jh

)
,

(L3)j = (A2(ψh, ch), zjh) ,

and

R =
(
R1 0 R3 R4

)trans
, (3.17)

with

(R1)j =
(
Fu, ϕ

u

jh

)
+
(
Fu, ϕ

v

jh

)
,

(R3)j = (Fψ, zjh) , (R4)j = (Fc, zjh) .
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Similarly we can derive, after the space discretization of the problem (1.101), the

following differential-algebraic system

M dYh
dt

+ Ã(Yh) Yh + L̃(Yh) = R̃, Yh(t = 0) = Y0h, (3.18)

where the matrices Ã, L̃ and R̃ take into account on the non-linear anisotropy differ-

ential operator.

The equations (3.11) and (3.18) can be written in general form as

F (t, Yh,
∂Yh
∂t

) = 0, Yh(t = 0) = Y0h. (3.19)

For the resolution of the above equation, we have used the solver DASSL. For the time

discretization, we have used back-ward difference Euler’s formula and the resulting

non-linear systems are solved using Newton method. Further to solve the system of

algebraic equations, we employ the usual Gaussian elimination method. For more

details about the solver DASSL, see appendix A.

Before studying the convergence and stability of the numerical scheme (3.19), we shall

give postulated error estimates used to compare with the numerical error estimates.

3.2.1 Error Estimates

Let Y be a Banach space, we define the following spaces for 0 < p ≤ +∞

`p(0, Tf ,Y) =
{

u : (t1, ..., tk)→ Y such that ‖u‖`p(0,Tf ,Y) =

(
τ

k∑
i=1

‖ui‖pY

)1/p

<∞
}

`∞(0, Tf ,Y) =
{

u : (t1, ..., tk)→ Y such that ‖u‖`∞(0,Tf ,Y) = max
1≤i≤k

‖ui‖Y <∞
}

where ui = u(ti) and tk = Tf .

We postulate that the error estimates obtained by solving the problem (3.1) using

numerical scheme (3.19) are as below

‖Ψh −Ψ‖`2(0,Tf ,L2(Ω)) ≤ C(τα + hβ1) (3.20)

‖ph − p‖`2(0,Tf ,L2(Ω)) ≤ C(τα + hβ2) (3.21)

where Ψh = (uh, ψh, ch) is the numerical approximate solution and Ψ = (u, ψ, c) is

the known exact solution of the considered problem. These formulas are of order α

in time and of order β1 and β2 in space respectively, where βi, i = 1, 2, are greater

than 1 and less than minimum of the degree of the finite elements (polynomials) and
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the Sobolev space regularity of the solutions. Same type of error estimates can be

found in [3] and [17]. To achieve a reasonable convergence rate with respect to spatial

coordinates (i.e., β1, β2) we have to take τ ≤ hβi , i = 1, 2 and for the convergence

rate with respect to time (i.e., α), we have to choose hβi ≤ τ , i = 1, 2 to attain the

optimal precision. To study the convergence of the numerical scheme (3.19), we shall

perform two type of computations. First, we shall compute the numerical convergence

error with respect to spatial step h using the finite elements as polynomials P2 and

P3 of degree 2 and 3 respectively. According to theoretical postulated errors (3.20)

and (3.21), we should obtain the error estimates βi = 3, 4, i = 1, 2 for the P2 and P3

respectively. Next, we shall calculate numerically the convergence rate with respect

to time step τ (using back-ward difference Euler formula). In this case the order of

convergence should be equal to 1 to verify that the convergence rates coincide with

the estimates speculated in (3.20) and (3.21).

3.3 Implementation details

This section elaborates the implementation of the numerical scheme (3.19) used to

solve problems (1.101) and (1.103) in Comsol Multiphysics 3.4 together with Matlab

2007a. Comsol Multiphysics is a simulations software that can be used to solve steady

and time dependent as well as linear and non-linear PDEs using finite element method

in 1 to 3 space dimensions and Lagrange elements of degree 1 to 3. The choice of

this package is motivated as it provides an interface with the MatLab to utilize its

graphical user interface with a lot of flexibility in mesh generation.

As described earlier in the section 3.2, we have used back-ward Euler’s difference

formula for the time discretization and the resulting non-linear fixed point systems

are then solved by Newton method. And for the space discretization we have used

mixed finite elements which satisfy the InfSup condition (Babuska-Brezis condition)

(3.4) for the Navier-Stokes type system and the usual finite elements for phase-field

and concentration equations. In order to solve the obtained non-linear differential-

algebraic system, we have used the solver DASSL (for more details about DASSL, see

appendix A).

Further in Comsol Multiphysics 3.4, we have used general Navier-Stokes equations

transient analysis mode together with the no-slip boundary conditions to develop

the magnetohydrodynamic systems by introducing the magnetic-field. Diffusion-

convection transient modes together with convective flux boundary conditions are used

to introduce the phase-field and concentration equations respectively of the problem
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(3.1) in two dimensions. Two kinds of finite elements (P2 and P3) are used to study

the convergence of the model alongwith the sequence of unstructured meshes which

are elaborated below.

To check the stability of the numerical scheme (3.19), we have multiplied the right-

hand-side of each equation of problems (1.101) and (1.103) by a random function

randfn = (1 − ε randf) whose value varies between 0 and 1 and ε is the parameter

used to fix the percentage of random error. This function creates perturbation in the

numerical scheme, we have verified the stability of the numerical scheme by increasing

the percentage of random error up to 40%. The 3D plot of random function randfn

is given in the Fig. 3.1. And to study the stability, P2 finite elements are used for the

velocity u, phase-field variable ψ and concentration c and P1 finite elements are used

for the pressure p.

The implementation of the numerical scheme in Comsol to study the convergence and

stability of the models (1.101) and (1.103) is not evident, especially to introduce the

anisotropy function, random function and by considering the real physical parame-

ters, we have used some of the MatLab functions. To study the convergence of the

numerical scheme for both models with respect to spatial and time coordinates, we

have written computer programs in MatLab (connected with the Comsol) to imple-

ment a Loop for the successive changes in the spatial and time steps to obtain the

convergence rates and the corresponding error curves.

In the next section, we shall present convergence and stability of the numerical scheme

(3.19) for the problems (1.101) and (1.103) by considering various examples with

known exact solutions.

3.4 Numerical Examples: Error Estimates and Sta-

bility

We present in this section, the convergence and stability of the numerical scheme

(3.19) by considering examples with known exact solutions. In order to validate our

approach for the isotropic and anisotropic cases (1.101) and (1.103) respectively, first

we shall present two examples for the isotropic case and then we shall give one example

for the anisotropic case.
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Figure 3.1: Random function randfn.

3.4.1 Isotropic Case: Example 1

For simplicity, we assume that the final time is Tf = 1, unless otherwise specified.

The domain is a square region Ω = [0, 2π] × [0, 2π] in R2. We have considered the

exact solution of the problem (1.103) as

uex(x, y, t) =
2

(2π)2
e1−tsin(x)2y(1− y

2π
)(1− y

π
),

vex(x, y, t) = − 2

(2π)2
e1−tsin(x)cos(x)y2(1− y

2π
)2,

pex(x, y, t) = e1−tcos(y), B =
1√
2

(1, 1),

ψex(x, y, t) =
e1−t

2
(cos(x)cos(y) + 1),

cex(x, y, t) =
8

(2π)2
e1−tx2(1− x

2π
)2(cos(y) + 1).

where uex = (uex, vex) and the corresponding data Fu, Fψ and Fc is calculated an-

alytically by substituting the exact solution in the problem (3.1). The expressions

for Fu, Fψ and Fc are given in appendix C. Then we have computed the numeri-

cal solution (u, p, ψ, c) of the problem (3.1) and compared it to the exact solution

(uex, pex, ψex, cex) given above.
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3.4.1.1 Test Meshes

To investigate the convergence of the numerical scheme (3.19), we build a sequence of

five meshes with a decreasing step h with respect to spatial coordinates (see Fig. 3.2).

The mesh statistics are given in the following Table 3.2. where No. of B. elements is

Domain No. step size h No. of Elements No. of B. elements

1 0.8 270 8

2 0.7 338 9

3 0.6 534 11

4 0.4 1082 16

5 0.2 4380 32

Table 3.2: Mesh Statistics

abbreviated for the number of boundary elements.

3.4.1.2 Error Analysis

We shall present now the experiments made to investigate the performance of the

method. We have performed two types of computations to check the convergence of

the numerical scheme (3.19).

The first is to check the spatial convergence rate, in which, a small time step τ is

fixed as compared to the spatial step size h and we have varied the spatial step size

h as described in the Table 3.2 of mesh statistics. To calculate the rates β1 and β2,

we have used P2 − P1 and P3 − P2 mixed finite elements for the velocity u(x, t) and

pressure p(x, t) respectively and for the phase-field ψ(x, t) and concentration c(x, t),

we have used P2 and P3, where Pl, l = 2, 3 is the polynomial of degree l. The

estimates for β1 and β2 are given in the Table 3.3 and Table 3.4 respectively. And the

corresponding error curves for the velocity u(x, t), pressure p(x, t), phase-field ψ(x, t)

and concentration c(x, t) are given in the Fig. 3.3. In Fig. 3.3, we give the plots of

− P2 − P1 P3 − P2

β1 for u 2.6201 3.8730

β2 for p 1.9207 3.0646

Table 3.3: Order of convergence β1 for u and β2 for p.
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Figure 3.2: Meshes used for Convergence study.
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Figure 3.3: Error curves of norm L2(Q) for the velocity u, pressure p, phase-field ψ

and concentration c with respect to h.
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Figure 3.4: Error curves of norm L2(Q) for the velocity u, pressure p, phase-field ψ

and concentration c with respect to t.

− P2 P3

β1 for ψ 2.7001 3.7501

β1 for c 2.9278 3.8739

Table 3.4: Order of convergence β1 for ψ and c.

the log10 of the norm L2(Q) of velocity u, pressure p, phase field ψ and concentration
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c versus log10 of the step h to obtain the approximations of the parameters β1 and

β2 given in the formulas (3.20) and (3.21). We observe that the slopes of the error

curves for the velocity u, phase-field ψ and concentration c are approximately equal

to 3 and 4 in case of P2 and P3 finite elements respectively and the slopes of the error

curves for the pressure p are approximately equal to 2 and 3 in case of P1 and P2 finite

elements respectively. This shows that our numerical error estimates agree with the

theoretical postulated error estimates given by (3.20) and (3.21).

The second computations have been made to test the temporal convergence rate, in

which, a small spatial step h is fixed and the convergence rate α is computed with

respect to t for the same pattern of the finite elements as we have used in the first

case. The estimates for α with respect to time are given in the Table 3.5. And the

corresponding error curves for the velocity u(x, t), pressure p(x, t), phase-field ψ(x, t)

and concentration c(x, t) are given in the Fig. 3.4. The Fig. 3.4 shows the plots of the

− P2 − P1 P3 − P2

for u 1.1494 1.1446

for ψ 1.0558 1.0496

for c 1.0602 1.0565

for p 1.0733 1.0634

Table 3.5: Order of convergence α.

log10 of the norm L2(Q) of velocity u, pressure p, phase field ψ and concentration c

versus log10 of the step τ to obtain an approximation of the convergence rate α with

respect to time. We note that the slopes of the error curves for the velocity u, phase-

field ψ and concentration c are nearly equal to 1 in case of P2 and P3 finite elements

respectively and the slopes of the norm L2(Q) of the pressure p are also approximately

equal to 1 in case of P1 and P2 elements respectively. From this we conclude that the

numerical error estimates are in good agreement with the theoretical postulated errors

defined by (3.20) and (3.21).

3.4.1.3 Stability Analysis

To study the stability of our model, as mentioned earlier in the section (3.3), we have

multiplied the right hand side terms Fu, Fψ and Fc by a term (1− ε randfn) to create

perturbations in the numerical scheme (3.19), where randfn is a random function

which takes values in the interval [0, 1] and ε is a parameter which is used to fix the

percentage of the random error. The three dimensional plot of the random function
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randfn is given in the Fig. 3.1. To verify that our model is stable against pertur-

bations, we have performed three types of computations. First, for different values

of the ε, we have computed the norm L2(Q) between the exact solution, denoted by

Φex = (uex, pex, ψex, cex), and the perturbed solution, denoted by Φε = (uε, pε, ψε, cε),

that is

E (Φε − Φex) = ‖Φε − Φex‖L2(Q) (3.22)

In Fig. 3.5, the curves of the Norm L2(Q), defined by (3.22), for the velocity u,
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Figure 3.5: Error curves of E(Φε − Φex) versus ε.

pressure p, phase-field variable ψ and concentration c versus ε are shown for ε =

0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4. We found that the error curves are straight lines with

linear dependence of error with respect to ε, i.e.,

E (Φε − Φex) ≈ C ε (3.23)

where C represents the slopes of the error curves given in the Table 3.6. Second,

Slope E (Φε − Φex) E (Φε − Φapp)

mu 0.1701 0.1754

mψ 0.8638 0.8818

mc 0.4341 0.4375

mp 52.9718 52.8359

Table 3.6: Slopes of Norm E(Φε − Φex) and E(Φε − Φapp).
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we have computed the norm L2(Q) between the approximate solution, denoted by

Φapp = (uapp, papp, ψapp, capp), and the perturbed solution for different values of the ε,

that is

E(Φε − Φapp) = ‖Φε − Φapp‖L2(Q) (3.24)

Note that approximate solution Φapp is a solution of the model problem (3.1) with

out random error i.e., in this case ε = 0. The Fig. 3.6 shows the curves of the norm

E(Φε − Φapp), defined by (3.24), of the velocity u, pressure p, phase-field variable ψ

and concentration c versus ε for values of the ε taken same as in the first case. Again

we found that the error curves are straight lines with a linear dependence of error

with respect to ε as we have found in the first case. The slopes of the error curves are

given in Table 3.6. We observe also that the slopes are approximately same for the

both cases.

Third, we have solved the model repetitively by increasing the random error and
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Figure 3.6: Error curves of E(Φε − Φapp) versus ε.

present the solution curves of the velocity u(x, t), pressure p(x, t), phase-field ψ(x, t)

and concentration c(x, t) on a part of the domain for different values of the ε to verify

that our model is stable against the perturbations generated by a random function

randfn. We can see in Fig. 3.7 that the solution curves of the model remains stable

and it does not become unstable by increasing the random error.

In Fig. 3.7, we have given the solution of the velocity u(x, t) at time t = 1, y = π/2

and x varies from 0 to 2π, pressure p(x, t) at time t = 1, x = 2π and y varies from

0 to 2π, phase-field ψ(x, t) at time t = 1, x = 2π and y varies from 0 to 2π and

concentration c(x, t) at time t = 1, y = π/2 and x varies from 0 to 2π for the different
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Figure 3.7: Solution curves for the different values of ε.

values of the random error ε = 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4. Also note that the

solution corresponding the ε = 0.00 is the approximate solution Φapp of the model

with out random error.

3.4.2 Isotropic Case: Example 2

We choose another example to verify that the convergence and stability of problem

(3.1) is not specific to Example 1. In this example, same type of computations have

been made as in the Example 1. Here, the domain is a square region Ω = [0, 1]× [0, 1]

in R2 and the final time is fixed Tf = 1. The exact solution is taken as

uex(x, y, t) = 4πet−1x2(1− x)2sin(2πy)cos(2πy),

vex(x, y, t) = −2et−1x(2x2 − 3x+ 1)sin2(2πy),

pex(x, y, t) = et−1cos(2πx), B =
1√
2

(1, 1),

ψex(x, y, t) =
1

4
et−1(cos(2πx) + cos(2πy) + 2),

cex(x, y, t) = 8et−1(x2(1− x)2 + y2(1− y)2).
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The corresponding data Fu, Fψ and Fc is calculated analytically by substituting the

exact solution (uex, pex, ψex, cex) in the system (3.1). The expressions for Fu, Fψ and

Fc are given in appendix C.

3.4.2.1 Test Meshes

To study the convergence of the model problem (3.1), a sequence of five meshes with

a decreasing spatial step h is considered (see Fig. 3.8). The mesh statistics is given in

the Table 3.7, where No. of B. Elements is abbreviated for the number of boundary

Domain No. step size h No. of Elements No. of B. elements

1 0.2 106 5

2 0.15 200 7

3 0.1 434 10

4 0.05 1712 20

5 0.01 42904 100

Table 3.7: Mesh Statistics

elements.

3.4.2.2 Error Analysis

We present here the numerical experiments made to obtain the error estimates defined

in (3.20) and (3.21). Like previous Example 1, we have made two types of computa-

tions also in this example. The first one is to check the spatial convergence rate, in

which, a small time step τ is taken as compared to the spatial step size h which is var-

ied according to the Table 3.7 of mesh statistics. We have calculated the rate β1 using

the P2 and P3 for the phase-field ψ(x, t) and concentration c(x, t) and for the velocity

u(x, t) and pressure p(x, t), we have used the P2 − P1 and P3 − P2 finite elements to

calculate the convergence rates β1 and β2 respectively. Then the estimates for the β1

and β2 are calculated and given in the Table 3.8 and Table 3.9 respectively. And the

corresponding error curves of the Norm L2(Q) of the velocity u(x, t), pressure p(x, t),

phase-field ψ(x, t) and concentration c(x, t) are given in the Fig. 3.9. In Fig. 3.9,

we present the plots of the log10 of the Norm L2(Q) of the velocity u(x, t), pressure

p(x, t), phase-field ψ(x, t) and concentration c(x, t) versus log10(h). We observe that

the slopes of the error curves of velocity u(x, t), phase-field ψ(x, t) and concentration

c(x, t) are approximately equal to 3 and 4 in case of P2 and P3 finite elements and the
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Figure 3.8: Meshes used for Convergence study.
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Figure 3.9: Error curves of norm L2(Q) for the velocity u, pressure p, phase-field ψ

and concentration c with respect to h.
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Figure 3.10: Error curves of norm L2(Q) for the velocity u, pressure p, phase-field ψ

and concentration c with respect to t.

− P2 − P1 P3 − P2

β1 for u 2.7501 4.1783

β2 for p 1.8426 2.8381

Table 3.8: Order of convergence β1 for u and β2 for p.

slopes of the error curve of the pressure p are approximately equal to 2 and 3 in case
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− P2 P3

β1 for ψ 2.8001 4.1868

β1 for c 2.8449 4.2376

Table 3.9: Order of convergence β1 for ψ and c.

of P1 and P2 finite elements respectively. We notice that the numerical error estimates

are approximately equal to the postulated error estimates (3.20) and (3.21).

Second is to investigate the convergence rate with respect to time, in which, small

- P2 − P1 P3 − P2

for u 0.8501 0.9100

for ψ 0.9377 0.9259

for c 0.9554 0.9456

for p 0.9512 0.9189

Table 3.10: Order of convergence α.

spatial step size h is used as compared to the time steps τ . Same type of finite el-

ements are used as in the first case. The estimates of α are calculated and given

in the Table 3.10 and corresponding error curves of the norm L2(Q) for the velocity

u(x, t), pressure p(x, t), phase-field ψ(x, t) and concentration c(x, t) are given in the

Fig. 3.10. In Fig. 3.10, the plots of log10 of the norm L2(Q) of the velocity u(x, t),

pressure p(x, t), phase-field ψ(x, t) and concentration c(x, t) versus log10(τ) are given.

We note that the slopes of the error curves are nearly equal to 1 in both kinds of finite

elements which coincide with the theoretical postulated errors in (3.20) and (3.21).

3.4.2.3 Stability Analysis

The stability of the model problem (3.1) is studied also on the same pattern as in

Example 1. A random function randfn, which takes values between 0 and 1, is used

to create perturbations in the model problem and a parameter ε is used to fix the

percentage of the random error. The plot of the function randfn is given in the Fig.

3.1. Here also, we have made three kind of computations to check the stability of

our model problem as in Example 1. First, we have computed the Norm E (Φε − Φex)

given in equation (3.22). The plots of the curves of Norm E (Φε − Φex) for the velocity

u(x, t), pressure p(x, t), phase-field ψ(x, t) and concentration c(x, t) versus ε are given
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in the Fig. 3.11. Again we observe that the error curves are straight lines with the

linear dependence of error with respect to ε, i.e.,

E (Φε − Φex) ≈ C ε (3.25)

where C represents the slopes of the error curves and are given in the Table 3.11.

Secondly, the normE (Φε − Φapp) given in equation (3.24) is computed for the velocity

Slope E (Φε − Φex) E (Φε − Φapp)

mu 0.0628 0.0628

mψ 0.1276 0.1277

mc 0.1021 0.1028

mp 1.4738 1.4913

Table 3.11: Slopes of norm E(Φε − Φex) and E(Φε − Φapp).
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Figure 3.11: Error curves of E(Φε − Φex) versus ε.

u(x, t), pressure p(x, t), phase-field ψ(x, t) and concentration c(x, t). The error curves

are given in the Fig. 3.12 for random error same as in the first case, and the slopes

of the error curves are given in the Table 3.11. We again found that the error curves

are straight lines with the linear dependence of error with respect to ε and the slopes

in the first and second cases are approximately same.

Third, to check the stability of our model (3.1), we have generated the perturbations

in the model with help of a random function randfn and solved the model by gradually
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Figure 3.12: Error curves of E(Φε − Φapp) versus ε.

increasing the random error upto 40% and the solution curves of velocity u(x, t),

pressure p(x, t), phase-field ψ(x, t) and concentration c(x, t) for different values of the

ε are given in the Fig. 3.13. We observe that as we increase the percentage of the

random error, i.e. ε, the solution is more perturbed, but it does not become unstable.

In Fig. 3.13, we have given the solution of the velocity u(x, t) at time t = 1,

x = 1/2 and y varies from 0 to 1, pressure p(x, t) at time t = 1, y = 1/2 and x

varies from 0 to 1, phase-field ψ(x, t) at time t = 1, x = 1/2 and y varies from 0

to 1 and concentration c(x, t) at time t = 1, y = 1/2 and x varies from 0 to 1 for

the different values of the random error ε = 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4. Also note

that the solution corresponding the ε = 0.00 is the approximate solution of the model

with out random error.
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Figure 3.13: Solution curves for the different values of ε.

3.4.3 Anisotropic Case: Example 3

As described earlier, the numerical scheme to solve the problem (1.101) can be given by

revising appropriately the scheme (3.19) and introducing the operator A4

(
η, η′, η′′, ψ,

∇ψ,∇(∇ψ)
)

arising due to the anisotropy factor η in the equation (1.101c). In

this section,we shall give an example of the isothermal-anisotropic model (1.101) to

study the convergence and stability of the numerical scheme (3.19). The functions

Fu(x, t), Fψ(x, t) and Fc(x, t) added on the right hand side in this case will also

be modified and are calculated analytically by substituting (uex, pex, ψex, cex) in the

model (1.101) which are given in the appendix C. In this example, same type of

computations have been made as in the Examples 1 and 2. The domain is a square

region Ω = [0, 1] × [0, 1] in R2 and the final time is fixed Tf = 1. The exact solution
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is taken same as in the Example 2 and is given again by

uex(x, y, t) = 4πet−1x2(1− x)2sin(2πy)cos(2πy),

vex(x, y, t) = −2et−1x(2x2 − 3x+ 1)sin2(2πy),

pex(x, y, t) = et−1cos(2πx), B =
1√
2

(1, 1),

ψex(x, y, t) =
1

4
et−1(cos(2πx) + cos(2πy) + 2),

cex(x, y, t) = 8et−1(x2(1− x)2 + y2(1− y)2).

Same type of meshes, equation modes and boundary conditions have been used to

solve the system (1.101) as in the Example 2 (see Example 2 for details).

3.4.3.1 Error Analysis

We present here the numerical experiments made to obtain the error estimates in

(3.20) and (3.21). We have calculated the rate β1 and β2 which are given in the Table

3.12 and Table 3.13 respectively. And the corresponding error curves of the Norm
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Figure 3.14: Error curves of norm L2(Q) for the velocity u, pressure p, phase-field ψ

and concentration c with respect to h.

L2(Q) of the velocity u(x, t), pressure p(x, t), phase-field ψ(x, t) and concentration

c(x, t) are given in the Fig. 3.14. The error estimates in this case are also in good

accordance with the theoretical postulated error (3.20) and (3.21).

Second, the estimates of α are computed and given in the Table 3.14 and the

corresponding error curves of the Norm L2(Q) for the velocity u(x, t), pressure p(x, t),
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Figure 3.15: Error curves of norm L2(Q) for the velocity u, pressure p, phase-field ψ

and concentration c with respect to t.

− P2 − P1 P3 − P2

β1 for u 2.7664 4.0303

β2 for p 2.3462 3.4302

Table 3.12: Order of convergence β1 for u and β2 for p.

− P2 P3

β1 for ψ 2.8972 4.0681

β1 for c 2.9670 4.1189

Table 3.13: Order of convergence β1 for ψ and c.

− P2 − P1 P3 − P2

for u 0.9011 0.9152

for ψ 0.9821 0.9856

for c 0.9792 0.9815

for p 1.0032 0.9944

Table 3.14: Order of convergence α.

phase-field ψ(x, t) and concentration c(x, t) are given in the Fig. 3.15. We note that
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the slopes of the error curves are nearly equal to 1 in all kinds of finite elements which

coincide with the theoretical error estimates in (3.20) and (3.21).

3.4.3.2 Stability Analysis

The stability of the numerical scheme is studied also on the same pattern as in Example

2 (see Example 2 for details). First, we have computed the norm L2(Q) given in

equation (3.22). The plots of the curves of norm L2(Q) for the velocity u(x, t),

pressure p(x, t), phase-field ψ(x, t) and concentration c(x, t) are given in the Fig. 3.16.

Again we observe that the error curves are straight lines with the linear dependence

of error with respect to ε and the slopes of these lines are given in the Table 3.15.

Second, the norm L2(Q) given in equation (3.24) is computed for the velocity u(x, t),
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Figure 3.16: Error curves of E(Φε − Φex) versus ε.

Slope E (Φε − Φex) E (Φε − Φapp)

mu 0.0628 0.0635

mψ 0.1283 0.1347

mc 0.1018 0.1065

mp 1.4877 1.4236

Table 3.15: Slopes of norm E(Φε − Φex) and E(Φε − Φapp).

pressure p(x, t), phase-field ψ(x, t) and concentration c(x, t). The error curves are

given in the Fig. 3.17 for different percentage of the random errors and the slopes of
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the error curves are given in the Table 3.15. We again found that the error curves are

straight lines with linear dependence of error with respect to ε and the slopes of the

lines in the first and second cases are approximately same.

Third, the solution curves of velocity u(x, t), pressure p(x, t), phase-field ψ(x, t) and
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Figure 3.17: Error Curves of E(Φε − Φapp) versus ε.

concentration c(x, t) for different values of the ε are given in the Fig. 3.18. We observe

that as we increase the percentage of the random error, i.e. ε, the solution is more

perturbed, but it does not become unstable.

In Fig. 3.18, we have given the solution of the velocity u(x, t) at time t = 1,

x = 1/2 and y varies from 0 to 1, pressure p(x, t) at time t = 1, y = 1/2 and x

varies from 0 to 1, phase-field ψ(x, t) at time t = 1, x = 1/2 and y varies from 0

to 1 and concentration c(x, t) at time t = 1, y = 1/2 and x varies from 0 to 1 for

the different values of the random error ε = 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4. Also note

that the solution corresponding the ε = 0.00 is the approximate solution of the model

with out random error.
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Figure 3.18: Solution curves for the different values of ε.

3.5 Conclusion

We have studied the convergence and stability of the numerical scheme (3.19) for

the two dimensional isothermal-isotropic and isothermal-anisotropic models (1.103)

and (1.101) respectively. We have noticed that in both cases, the numerical scheme

is convergent with respect to both spatial and time coordinates and the numerical

error estimates are in good accordance with the postulated theoretical error estimates

(3.20) and (3.21). Further the developed scheme is stable against the perturbations

generated by the inclusion of a random function randfn (see Fig. 3.1) in the models.

We have noticed that the solution of the models does not become unstable and the

error increases linearly as we increase the percentage of the random error in the models.

Therefore we can now study the real physical simulations with the real parameters.
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4.1 Introduction

In this chapter, we shall present physical simulations of the dendrite growth dur-

ing the solidification of a Ni-Cu (Nickel-Copper) binary mixture. To perform these

simulations, we consider the two dimensional isothermal-anisotropic model (1.97)-

(1.100). We further suppose that the interface thicknesses for both substances are

equal, i.e., δA = δB = δ, then the problem (1.97)-(1.100) reduces to

ρ0

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∆u + a1(ψ)βcc(x, t)G

+a2(ψ)σe(u×B)×B + αf(ψ) (4.1a)

div(u) = 0. (4.1b)

∂ψ

∂t
+ (u · ∇)ψ = Mψε

2
0

(
η2∆ψ − λ1(c)

δ2
g′(ψ)− λ2(c)

δ
p′(ψ)

)
−
Mψε

2
0

(
ηη′′ + (η′)2)

2

{
2ψxysin2θ −∆ψ − (ψyy − ψxx) cos2θ

}
+Mψε

2
0ηη

′
{
sin2θ (ψyy − ψxx) + 2ψxycos2θ

}
(4.1c)

∂c

∂t
+ (u · ∇)c = div (D(ψ)∇c) + div

(
α0D(ψ)c(1− c)

(λ′1(c)

δ
g′(ψ)

−λ′2(c)p′(ψ)
)
∇ψ
)

(4.1d)

with the initial and boundary conditions

(u, ψ, c) (t = 0) = (u0, ψ0, c0) , in Ω. (4.2a)

u = 0,
∂ψ

∂n
= 0,

∂c

∂n
= 0, on Σ = (0, Tf )× ∂Ω. (4.2b)

As we know that in the phase-field models the interface thickness δ between the solid-

liquid interface must be very small (upto order of 10−8 or less), this restriction require

a very dense mesh in the simulations of dendrite growth such that the the mesh size

should be sufficiently less than the interface thickness, otherwise the simulations of

dendritic growth cannot be realized. Therefore to perform the simulations of the

dendritic growth in the phase-field models, large amount of computational effort or

data storage is required. To reduce this requirement, we have constructed two type

of meshes for the simulations (for more details see section 4.3). The second kind of

mesh contains less number of triangular elements than the first kind of mesh. We have

constructed the second kind of mesh in such a way that it does not effect considerably

the simulations results but it reduces remarkably the storage requirements and time

of execution of the simulations.
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First we have nondimensionalized our model (4.1). Second, we have solved a particular

case of this model by eliminating the magnetohydrodynamic type system (4.1a)-(4.1b)

and compared the results of numerical simulations with the results of the Warren-

Boettinger model [24]. Third, to observe the effect of convection only, on dendrite

growth, we have included the magnetohydrodynamic type system in our simulations

together with the equations of phase-field (4.1c) and concentration (4.1d) by exclud-

ing the magnetic-field. Finally we have included the magnetic field and solved the

complete set of equations by fixing all other parameters except the magnetic-field. In

order to analyze the effect of the magnetic field on the growth of dendrite during the

solidification process, we have considered various magnetic fields.

In the next section, we shall provide the non-dimensionalization of the model (4.1).

4.2 Non-dimensionalization of Model Problem

We have non-dimensionalize the model (4.1) by introducing the following dimension-

less quantities

x̃ =
x

`
, t̃ =

DLt

`2
, ũ(x̃, t̃) =

`

DL

u(x, t),

B̃ =
B

B0

, ψ̃(x̃, t̃) = ψ(x, t), c̃(x̃, t̃) = c(x, t).

where x̃ and t̃ are the dimensionless spatial and time coordinates, ũ, ψ̃, and c̃ are

the dimensionless velocity-field, phase-field and concentration respectively, ` is the

characteristic length of the domain Ω, `2/DL is the liquid diffusion time, DL is the

solutal diffusivity in liquid. Note that the phase-field is a mathematical quantity and

c is the relative concentration which are already dimensionless quantities. Using these
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adimensional relations, we get finally the dimensionless form of the model as

∂ũ

∂t̃
+ (ũ · ∇)ũ = −∇̃p̃+ Pr∆̃ũ + PrRaca1(ψ̃)c̃eG

+Pr(Ha)2a2(ψ̃)(ũ× B̃)× B̃ +Krf(ψ̃) (4.3a)

d̃iv(ũ) = 0. (4.3b)

∂ψ̃

∂t̃
+ (ũ · ∇)ψ̃ = ε2

(
η2∆̃ψ̃ − λ1(c̃)

δ̃2
g′(ψ̃)− λ̃2(c̃)

δ̃
p′(ψ̃)

)

−
ε2
(
ηη′′ + (η′)2)

2

{
2ψ̃xysin2θ − ∆̃ψ̃ −

(
ψ̃yy − ψ̃xx

)
cos2θ

}
+ε2ηη

′
{
sin2θ

(
ψ̃yy − ψ̃xx

)
+ 2ψ̃xycos2θ

}
(4.3c)

∂c̃

∂t̃
+ (ũ · ∇)c̃ = d̃iv

(
D̃(ψ̃)∇̃c̃

)
+ d̃iv

(
α̃0D̃(ψ̃)c̃(1− c̃)

(λ′1(c̃)

δ̃
g′(ψ̃)

−λ̃′2(c̃)p′(ψ̃)
)
∇̃ψ̃
)

(4.3d)

together with the initial and boundary conditions(
ũ, ψ̃, c̃

)
(t̃ = 0) =

(
ũ0, ψ̃0, c̃0

)
, in Ω. (4.4a)

ũ = 0,
∂ψ̃

∂n
= 0,

∂c̃

∂n
= 0, on Σ = (0, Tf )× ∂Ω. (4.4b)

where Pr = ν/DL is the Prandtl number, Rac = gβc`
3/DLν, is the solutal Rayleigh

number, Ha = (σe/ρ0ν)1/2B0` is the Hartmann number and Kr = α`3/ρ0D
2
L, δ̃ = δ/`

is the adimensional interface thickness, λ̃2 = `λ2, α̃0 = α0/` and ε2 = Mψε
2
0/DL are

the adimensional parameters. For model parameters, we have used physical values

of the binary mixture Ni-Cu as given in the Table 3.1. The density ρ, viscosity µ,

and electrical conductivity σe are assumed to be constant in the liquid as well as

in the solid, therefore we are using average values of Ni and Cu for these constants

in the simulations. Also as it is observed experimentally that the dendrites in the

Ni-Cu alloy grow with four branches, therefore we have chosen the mode number k

in the anisotropic parameter η equal to 4. The adimensional space unit ` is chosen

as ` = 2.8284 × 10−6m which gives the domain length equal to 8 and the domain as

Ω = [−4, 4]× [−4, 4]. With this value of `, we have the adimensional δ̃ = 0.03 which

correspond to an interface thickness δ of order 10−8m. Since the value of δ is strongly

dependent on the size of mesh and as the mesh size should be sufficiently less than

the interface thickness δ and we are using a coarse mesh for our simulations due to

technical difficulties in computations, therefore we fix the value of the adimensional

interface thickness as δ̃ = 0.05 for our simulations to ensure the mesh size less than
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the interface thickness. The adimensional final time is tf = 0.13, which correspond to

the real physical final time of 1 ms, with the time step equal to 10−5. Note that big

time steps and smaller interface values can create convergence problems during the

calculation of numerical solution of the problem.

Initially at the start of solidification, the initial condition is taken to be a circular

Figure 4.1: Geometry of the problem.

seed of radius 0.2 at the center of the domain Ω. Inside the circular seed the value of

ψ is 0 and outside this seed the value of ψ is 1 (see Fig. 4.1). The concentration c in

the initial seed is equal to 0.482 and outside the seed it is taken as 0.497, i.e.,

ψ(t = 0) =

{
0, x2 + y2 < 0.2,

1, x2 + y2 ≥ 0.2.
(4.5)

and

c(t = 0) =

{
0.482, x2 + y2 < 0.2,

0.497, x2 + y2 ≥ 0.2.
(4.6)

The values of the initial concentration, inside and outside the initial seed, are given

different by different authors depending on the phase diagram of binary mixture Ni-Cu

(e.g., see [14], [24], [39]).

4.3 Implementation details

This section elaborate the implementation of the model problem (4.3) in COMSOL

Multiphysics and MatLab. As described earlier, we have used back-ward Euler’s
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difference formula for the time discretization and the resulting non-linear fixed point

systems are then solved by Newton method (see appendix A for details). For the space

discretization we have used mixed finite elements which satisfy the InfSup condition

(Babuska-Brezis condition) (3.4) for the magnetohydrodynamic type system (4.3a)-

(4.3b) and the usual finite elements for phase-field and concentration equations (4.3c)

and (4.3d) respectively. In order to solve the obtained linear system, we have used di-

rect method which is the usual Gaussian elimination method. The numerical scheme

used to solve the model problem is described in detail in section 3.2. Further in COM-

SOL Multiphysics, we have used Navier-Stokes equations mode together with no-slip

boundary conditions for the magnetohydrodynamic type system, diffusion-convection

transient mode together with convective flux boundary conditions for phase-field and

concentration equations in two dimensions. However the implementation of our model

(4.3) in the COMSOL is not evident. The major difficulty arises in the introduction

of anisotropic function and the initial conditions, therefore we have connected the

COMSOL with Matlab and used some of the Matlab functions to introduce these

functions.

As described earlier that to view the dendrite arms in the simulations of our model,

we need a dense mesh. For the coarse mesh, we cannot see the dendrite arms in the

simulations. Further, more we refine the mesh, more computer memory is required

for the resolution of the model. This makes our model computationally expensive. In

order to reduce this difficulty, we have constructed two types of structured meshes, the

first type of mesh is uniform everywhere in the domain and generated in a way that

first we have divided the domain, at first step, into eight triangles (see Fig. 4.2(a)),

at second step each of these eight triangles are further divided into four triangles (see

Fig. 4.2(c)), at third step we have divided each triangle further into four triangles and

so on. The final mesh used for the simulations is shown in the Fig. 4.2(e) in which

there are 128× 128 nodes containing 32768 triangular elements.

The second type of mesh is generated in the similar way except that we have made a

square given by

Ωint =
{

(x, y) ∈ R2 | x, y belongs to square S
}

(4.7)

where S = L1 ∩ L2 ∩ L3 ∩ L4 such that

L1 = {(x, y) | y = −x+ 4, 0 ≤ x ≤ 4} ,
L2 = {(x, y) | y = x+ 4, 0 ≤ x ≤ −4} ,
L3 = {(x, y) | y = −x− 4, 0 ≤ x ≤ −4} ,
L4 = {(x, y) | y = x− 4, 0 ≤ x ≤ 4} .
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inside the domain Ω = [−4, 4] × [−4, 4] and the triangles inside Ωint are divided two

times greater than the triangles outside Ωint (see Fig. 4.2). The final mesh used in

simulations has 128× 128 nodes inside and 64× 64 nodes outside the square Ωint con-

taining 24576 triangular elements (see Fig. 4.2(f)). The second kind of mesh is used

to save the computational time and to reduce memory requirements without having

effect on the results.

We have used two types of mixed finite elements to solve the problem (4.3). First

is P2 − P1 for the magnetohydrodynamic type system and P2 finite elements for the

phase-field and concentration equations respectively. Second is the P3 − P2 for the

magnetohydrodynamic type system and P3 for the phase-field and concentration equa-

tions of the problem (4.3). The adimensional time step is fixed as 10−5 with the final

time equal to tf = 0.13 in each simulation unless otherwise mentioned. It is impor-

tant to mention that using (P2 − P1) for the final time 0.13 and type-I mesh, it takes

approximately 29 hours and using type-II mesh takes approximately 18 hours to com-

plete one simulation. And using (P3 − P2) with type-II mesh, it takes about 8 days

to execute one simulation using the hardware defined below.

To carry out all simulations we have used a Dell Laptop computer with 4GB of com-

puter memory and 2GHz core2 dual processor with 64− bit Vista windows.
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(a) Mesh type-I at first step. (b) Mesh type-II at first step.

(c) Mesh type-I at second
step.

(d) Mesh type-II at second
step.

(e) Mesh type-I at final step
with 128× 128 nodes.

(f) Mesh type-II at final step
with 64×64 nodes outside and
128× 128 nodes inside Ωint.

Figure 4.2: Types of mesh used in simulations.
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4.4 Physical Simulations

In this section, we shall present simulations of our model problem (4.3) for different

cases. First, we shall solve the model for a particular case in which we eliminate the

magnetohydrodynamic type system (4.3a)-(4.3b), i.e., we consider only phase-field

and concentration equations (4.3c) and(4.3d) to execute the simulation. Second, we

shall present the simulations of our model by including the magnetohydrodynamic

type system and present the results obtained by introducing different magnetic fields.

4.4.1 Reduced Model (Warren-Boettinger type Model)

In the model problem (4.3), if we assume that there is no motion in the melt during the

solidification process, then the magnetohydrodynamic type system will be eliminated

from the model (4.3). Consequently the convection terms (u · ∇)ψ and (u · ∇) c in

the phase-field and concentration equations (4.3c) and (4.3d) will also be eliminated

and these equations will become simple diffusion equations of Warren-Boettinger type

model [24]. Then we have solved these equations using P2 finite elements and the

type-I mesh for 210053 degree of freedom. The plots of phase-field and concentration

and their contour plots are presented in the Fig. 4.3 and 4.4 respectively. We can

see that the dendrites obtained in this case are completely symmetric about x and

y − axis as expected in the simulations of the Warren-Boettinger model. It is to be

noted that, we have not obtained exactly same form of the dendrites as in Warren-

Boettinger model because we have used coarse mesh as compared to the mesh used

in the Warren-Boettinger simulations.
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Figure 4.3: Plots of phase-field variable.

Figure 4.4: Plots of concentration.

4.4.2 Our Model

We incorporate here magnetohydrodynamic type system in the simulation of dendrite

growth and consider the complete set of the model equations (4.3). To investigate the

effect of convection on the dendrite growth, we have considered, first, the model (4.3)

with out magnetic field i.e., B̃ = 0 and by assuming Kr = 0. The velocity-field, phase-

field and concentration and their contour plots for the first case, are given in Fig. 4.5,

4.6 and 4.7 respectively. We observe from results in this case that the magnitude of
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velocity is very small, therefore there is no significant change in the dendrite structure

due to the convection during the solidification process and it remains symmetric as

it was in the case of Warren-Boettinger type model. Note that in Fig. 4.5 and all

subsequent figures of velocity field, we have presented the plots of velocity times phase

field (i.e., u× ψ) to show the velocity around the dendrite.

Second, to observe the effect of magnetic field on the dendrite growth, we have fixed

all other parameters and solved the problem (4.3) by varying magnetic field at angles

45◦, 90◦ and a variable magnetic field. All these simulations are performed, first by

using P2 finite elements for the velocity, phase-field and concentration and P1 for the

pressure. Type-I mesh, with 128 × 128 nodes, is used to solve the problem in all

cases except in the case where the magnetic field is applied to 90◦. In this case, the

problem is solved using mesh type-II just to show that using second kind of mesh

does not effect the results considerably. Second we have executed these simulations

for the magnetic field applied at an angle 45◦ and variable magnetic field, using P3

finite elements for the velocity, phase-field and concentration and P2 for the pressure

and type-II mesh.

Figure 4.5: Plots of velocity-field.

4.4.2.1 Magnetic-Field at an Angle 45◦

In Fig. 4.8, 4.9 and 4.10, the plots of velocity-field, phase-field and concentration and

their contour plots are presented by introducing magnetic field at an angle of 45◦,

(i.e., B̃ = 1/
√

2 (1, 1)) to solve the model problem (4.3) using type-I mesh and P2

finite elements for the velocity, phase-field and concentration and P1 for the pressure.
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Figure 4.6: Plots of phase-field variable.

Figure 4.7: Plots of concentration.

We have observed that by the introduction of magnetic field, the magnitude of velocity

has increased and the dendrite tips grow more rapidly and collide with the boundary

of the domain and it is no more symmetric about x and y−axis while in the previous

cases the dendrite tips are far from the boundary with the same number of iterations

at the final adimensional time t = 0.13. The form of the dendrite has been changed

significantly and it is now symmetric about the line y = x. This change in the form

of the dendrite is due to the introduction of magnetic field at an angle 45◦.

Further we have solved the same model using P3 finite elements for the velocity, phase-

field and concentration and P2 for the pressure using type-II mesh and presented the
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results in Fig. 4.18. We observe in this case that the dendrite is more refined and

the secondary dendrite arms have also been started growing up along the primary

dendrite arms. We can also see the effect of magnetic field more clearly as the top

and right dendrite arms are smaller than the bottom and left dendrite arms. Also in

this case the dendrite arms are far from the boundary of the domain whereas in the

case where the finite elements were P2 for the velocity, phase-field and concentration

and P1 for the pressure, the dendrite arms collide with the boundary of the domain.

Figure 4.8: Plots of velocity-field.

Figure 4.9: Plots of phase-field variable.
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Figure 4.10: Plots of concentration.

4.4.2.2 Magnetic-Field at an Angle 90◦

Next we have solved the model problem (4.3) by applying the magnetic field at an

angle of 90◦ (i.e., B̃ = (0, 1)) and presented the results in Fig. 4.11, 4.12 and 4.13. We

observe that the form of dendrite has not been changed considerably, but the dendritic

arms along x− axis are little longer than the arms along the y − axis and it is now

symmetric only about the y − axis. We have verified this behavior of the dendrite

arms by applying the magnetic field at 0◦ and found that in this case the dendrite

arms along y−axis have grown up little larger than the dendrite arms along x−axis.
In this case our results are in good accordance with the observation of, for example

[48], who examined that the constant magnetic-field does not effect significantly the

inter-dendritic flows and micro-segregation during the solidification process.

4.4.2.3 Variable Magnetic-Field

In this case, we have introduce a variable magnetic field B̃ = (cos(x), sin(y)) in the

model (4.3) and obtained the simulations using type-I mesh for P2 finite elements

for the velocity, phase-field and concentration and P1 for the pressure. The plots of

velocity-field, phase-field and concentration are given in Fig. 4.14, 4.15 and 4.16. We

found an irregular structure of dendrite in this case and notice that the magnitude

of velocity has also been increased greatly. We can see that the dendrite is no more

symmetric about any axis and it is deformed drastically by the introduction of variable

magnetic field. The left arm of the dendrite has grown up more than the right arm

and they have completely different shape from each other.
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Figure 4.11: Plots of velocity-field.

Figure 4.12: Plots of phase-field variable.

Further we have solved the same problem using P3 finite elements for the velocity,

phase-field and concentration and P2 for the pressure using type-II mesh and give the

results in Fig. 4.19. We can see that dendrite structure in this case has been changed

significantly, large secondary arms arise along the left arm of the dendrite whereas

along the other arms of the dendrite, the secondary arms have not grown up greatly.
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Figure 4.13: Plots of concentration.

Figure 4.14: Plots of velocity-field.

4.4.3 Dendrite Comparison

Now we shall present comparison between the dendrites obtained by solving the

Warren-Boettinger type model and our model (4.3) with different magnetic-fields to

show the effect of magnetic-field on the structure of dendrite. For this we consider

only the simulations results obtained using P2 finite elements for the velocity, phase-

field and concentration and P1 for the pressure. Also we consider only the contour

plots of phase-field at ψ = 0.5 and final time tf = 0.13. In each of Fig. 4.17, we

have shown the plots of phase field for the Warren-Boettinger type model (WBTM)

and our model with magnetic-field at angles 45◦, 90◦ and variable magnetic-field re-

spectively. In Fig. 4.17(a), we notice that the form of the dendrite for the WBTM is

symmetric about x and y − axis and by the application of magnetic-field at an angle
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Figure 4.15: Plots of phase-field.

Figure 4.16: Plots of concentration.

45◦, the form of the dendrite has been deformed, it is no longer symmetric along x

and y − axis, the top and right dendrite arms are smaller than the bottom and left

dendrite arms and it is symmetric about the line y = x. In Fig. 4.17(b), we can see

that by the introduction of magnetic-field at an angle 90◦, the dendrite has grown up

little longer along x − axis. And in Fig. 4.17(c), we observe that by applying vari-

able magnetic-field, the form of dendrite is completely deformed and it is no longer

symmetric as it was in the WBTM.
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(a) B̃ = 1√
2
(1, 1) (b) B̃ = (0, 1)

(c) B̃ = (cos(x), sin(y))

Figure 4.17: Comparison of dendrite obtained in WBTM and our model for different

magnetic fields.

4.5 Conclusion

We have presented the realistic numerical simulations for the anisotropic solidifica-

tion of binary alloys by considering an example of Ni-Cu mixture with real physical

parameters in this chapter. The simulations have been carried out by using two type

of structured meshes. The second type of mesh reduced the computational time and

storage requirements noticeably without having effect on the results. Also two types

of (mixed) finite elements are used in these simulations. Our main focus in these simu-

lations was the influence of magnetic-field on the structure of dendritic growth during

the solidification process. We have considered various types of magnetic-fields to show
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(a) Velocity-field (b) Contour velocity-field

(c) Phase-field (d) Contour phase-field

(e) Concentration (f) Contour concentration

Figure 4.18: Plots of velocity, phase-field and concentration obtained for variable

magnetic field B̃ = 1√
2
(1, 1) using type-II mesh and P3 for the velocity, phase-field

and concentration and P2 for the pressure.

the influence on the dendrites. We have observed that the constant magnetic-field do

not have significant impact on the dendrites whereas the variable magnetic-field have
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(a) Velocity-field (b) Contour velocity-field

(c) Phase-field (d) Contour phase-field

(e) Concentration (f) Contour concentration

Figure 4.19: Plots of velocity, phase-field and concentration obtained for variable

magnetic field B̃ = (cos(x), sin(y)) using type-II mesh and P3 for the velocity, phase-

field and concentration and P2 for the pressure.

deformed the dendrites considerably. Our results agree to the observations made by

[48].
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5.1 Introduction

The aim of this chapter is to study the optimal control of our model that governs the

solidification process of a binary alloy in the presence of motion in the liquid phase

with the magnetic field effect in an isothermal environment. As we have seen in the

realistic numerical simulations (see chapter 4) that the application of magnetic field

has a considerable effect on the evolution of dendrites and we can control the direc-

tion of motion of the melt during the solidification process. Our main focus in this

study is to control, by the action of magnetic-field, the desired dynamics of the melt.

Therefore we shall formulate the optimal control by considering the magnetic field as

a control variable. The cost function measures the distance between the calculated

and desired dynamics.

To study the optimal control, we have considered an adimensionalized problem (4.3)

given in the chapter 4. In order to take into account the influence of tempera-

ture on the magnetic-field, we decompose the operator f(ψ) in the problem (4.3)

as f(ψ) = Krf̃(ψ) + κa1(ψ)B, where the second term in this operator correspond to

the fluctuations of solidification temperature on the magnetic-field. Further we have

reduced this model for the isotropic case, that is, the anisotropy η is assumed to be

constant, then we will have the following primal problem.

∂u

∂t
+ (u · ∇)u = −∇p+ α∆u + A1(ψ, c)

+b(ψ)(u×B)×B + κa1(ψ)B, on Q, (5.1a)

div(u) = 0, on Q, (5.1b)

∂ψ

∂t
+ (u · ∇)ψ = ε2∆ψ −A2(ψ, c), on Q, (5.1c)

∂c

∂t
+ (u · ∇)c = div (D(ψ)∇c) + div (A3(ψ, c)∇ψ) , on Q, (5.1d)

(u, ψ, c) (t = 0) = (u0, ψ0, c0) , in Ω, (5.1e)

u = 0,
∂ψ

∂n
= 0,

∂c

∂n
= 0, on Σ. (5.1f)

where in this section α = Pr, b(ψ) = Pr(Ha)2a2(ψ) and

A1(ψ, c) = PrRaca1(ψ)ceG +Krf̃(ψ), (5.2)

A2(ψ, c) =
λ1(c)

δ2
g′(ψ) +

λ2(c)

δ
p′(ψ), (5.3)

A3(ψ, c) = α0D(ψ)c(1− c)
(
λ′1(c)

δ
g′(ψ)− λ′2(c)p′(ψ)

)
. (5.4)
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We assume in the sequel that initial conditions satisfy the regularity:

(u0, ψ0, c0) ∈
(
H1

0 (Ω)
)2 ×H2

0 (Ω)×H1(Ω).

Then according to the Theorems 1 and 4, the problem (5.1) admits a unique solution

X = (u, ψ, c) ∈W =W1
1 ×W1

2 ×W1
1 , where W1

i , i=1,2, are defined in section 2.6.

The control problems related to the phase-field models have been studied by [36], in

which the authors examined the optimal control of the solidification of pure materials

due to thermal effects. Robust control and stabilization problems associated with so-

lidification of pure materials due to thermal effects and isothermal Warren-Boettinger

type model of binary mixtures in order to take into account the influence of noises in

the data have been studied by [6]-[8]. For the control problems using magnetic field as

a control variable, we can cite [38], in which the authors studied the optimal strategy

for the suppression of the turbulent motions in melt flows and [8] has discussed the

defects by stabilizing the melt flow motion during the growth process.

In the section 5.2, we shall present the formulation of the control problem and discuss

the existence of the optimal solutions. In the subsequent section (5.3), the optimality

conditions as well as the adjoint problem corresponding to the primal problem are

given.

5.2 Optimal Control Problem

In this section, we shall formulate the control problem and define the essential spaces

used in the optimal control. Further we shall define the cost functional and the give

the existences results.

5.2.1 Formulation of the problem and existence result

Let U be a space of controls which is assumed to be Hilbert space and let Ua be its

non-empty closed subset which is taken as admissibility set of controls and is defined

by

Ua =
{

B = (B1, B2) ∈
(
L2(Ω)

)2 | 0 < b1 ≤ B1 ≤ b2 <∞,

0 < b′1 ≤ B2 ≤ b′2 <∞
}
. (5.5)
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The optimal control, we consider is the following:

Find (X,B) ∈W × Ua such that the following cost functional

J(B) =
α1

2
‖u− uobs‖2

L2(Q) +
α2

2
‖ψ − ψobs‖2

L2(Q)

+
α3

2
‖c− cobs‖2

L2(Q) +
β

2
‖B‖2

L2(Q) , (5.6)

is minimized subject to the problem (5.1),

where
3∑
i=1

αi > 0 and αi ≥ 0 for i = 1, 2, 3, and Xobs = (uobs, ψobs, cobs) ∈ L2(Q) is

given and represent the target variable.

More precisely the problem is to find an optimal solution B ∈ Ua such that

J(B∗) = inf
B∈Ua

J(B). (5.7)

and X∗ is the solution of the problem (5.1), corresponding to B.

Further to study the optimal control of the problem (5.1) we need more assumptions

on the operators. Therefore in addition to the hypothesis (H1)-(H5), we suppose that

the operators A1(ψ, c), A2(ψ, c), A3(ψ, c), D(ψ), b(ψ) and a1(ψ) in the problem (5.1)

satisfy the following hypothesis

(H6) A1 is differentiable with respect to ψ and c and its derivative is Lipschitz con-

tinuous a.e. in Q.

(H7) Ai i = 2, 3 are differentiable with respect to ψ and c and their derivatives are

Lipschitz continuous a.e. in Q.

(H8) D, b and a1 are differentiable with respect to ψ and their derivatives are Lipschitz

continuous a.e. in Q.

Now we shall give the existence result of the problem (5.7).

Theorem 5 Under the assumptions of Theorems 1 and 4, the optimal control (5.7)

has at least one solution B∗ in Ua.

Proof: It is easy to verify that min J(B) is finite in Ua, and thus, there exists a

minimizing sequence Bn in Ua such that

lim
n→∞

J(Bn) = inf
B∈Ua

J(B).
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This implies the uniform boundedness of Bn in L2(Q) and therefore there is a subse-

quence, denoted also by, Bn such that

Bn ⇀ B∗ weakly in L2(Q).

Similar to the proof of Proposition 11.16 in Belmiloudi [8], we can show that the

operator F is continuous from the weak topology of L2(Q) to the strong topology of

(L2(Q))
4
. Consequently

F(Bn)→ F(B∗) strongly in
(
L2(Q)

)4
.

Since J is weakly lower semi-continuous, we have

J(B∗) ≤ lim
n→∞

inf J(Bn).

and then

J(B∗) = inf
B∈Ua

J(B).

which achieves the proof. �

In the next section we shall discuss the differentiability and present optimality condi-

tions.

5.3 Optimality Conditions

We introduce now the following mapping: F : Ua →W , which maps the source term

B ∈ Ua into the corresponding solution X of (5.1) in W .

Before proceeding to the optimality conditions of the optimal solution, we shall give

the G-differentiability of the operator F .

Theorem 6 Under the assumptions of Theorems 1 and 4 and the hypothesis (H6)-

(H8), the function F is G-differentiable with respect to B, where its G-derivative

F ′(B) : B → Y = F ′(B) ·B,

with Y = (w1, w2, w3), is the unique solution in W of the following linear problem
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∂w1

∂t
+ (w1 · ∇)u + (u · ∇)w1 = −∇π + α ∆w1

+
∂A1(ψ, c)

∂ψ
· w2 +

∂A1(ψ, c)

∂c
· w3 + b′(ψ) w2

(
(u×B)×B

)
+b(ψ)

{
(w1 ×B)×B + (u×B)×B + (u×B)×B

}
+κa′1(ψ)Bw2 + κa1(ψ)B, on Q

div(w1) = 0, on Q
∂w2

∂t
+ (w1 · ∇)ψ + (u · ∇)w2 = ε2∆w2 −

∂A2(ψ, c)

∂ψ
w2 −

∂A2(ψ, c)

∂c
w3,

∂w3

∂t
+ (w1 · ∇) c+ (u · ∇)w3 = div

(
D′(ψ)w2∇c+D(ψ)∇w3

)
+div

((
∂A3(ψ, c)

∂ψ
w2 +

∂A3(ψ, c)

∂c
w3

)
∇ψ +A3(ψ, c) ∇w2

)
, on Q

(w1, w2, w3) (t = 0) = (0, 0, 0) , in Ω

w1 = 0,
∂w2

∂n
= 0,

∂w3

∂n
= 0. on Σ.

(5.8)

Proof: The problem (5.8) is similar to the problem (5.1). By using a similar arguments

as in the proof of Theorem 1 and the regularity of X, we can obtain the existence and

uniqueness of the solution Y ∈W of (5.8).

For more detail about the proof of the differentiability results of F , the reader is

referred to [6] and Chapter 11 in [8]. �

We present here a lemma which we need to give the optimality conditions.

Lemma 5 Let f, g, h and k ∈ R2. Then we have the following relation(
(f× g)× h

)
· k =

(
g× (h× k)

)
· f.

Proof: The vector triple product defined in the above expression is given explicitly by

(2.1). To prove the above result we consider the left-hand-side of the expression(
(f× g)× h

)
· k = k ·

(
(f× g)× h

)
= (f× g) · (h× k)

= (h× k) · (f× g)

=
(
g× (h× k)

)
· f.

which is the required expression. �

Theorem 7 Under the hypothesis of Theorem 6. Let B∗ ∈ Ua be an optimal control

defined by (5.6) and X∗ ∈ W be the optimal state such that X∗ = F(B∗) is the

solution of (5.1). Then there exists a unique solution X̃ = (ũ, ψ̃, c̃) ∈ W for the

following adjoint problem corresponding to the primal problem (5.1)
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−∂ũ

∂t
− (u∗ · ∇) ũ + (∇u∗)tr ũ + ψ̃∇ψ∗ + c̃∇c∗ = −∇p̃+ α ∆ũ

+b(ψ∗)
(
B∗ × (B∗ × ũ)

)
+ α1(u∗ − uobs) on Q

div(ũ) = 0. on Q

−∂ψ̃
∂t
− (u∗ · ∇) ψ̃ = ε2∆ψ̃ − ∂A2(ψ∗, c∗)

∂ψ∗
ψ̃ + b′(ψ∗)

(
(u∗ ×B∗)×B∗

)
· ũ

+
∂A1(ψ∗, c∗)

∂ψ∗
· ũ−D′(ψ∗)∇c∗ · ∇c̃− ∂A3(ψ∗, c∗)

∂ψ∗
∇ψ∗ · ∇c̃

+div (A3(ψ∗, c∗)∇c̃) + κa′1(ψ∗)B∗ũ + α2(ψ∗ − ψobs) on Q

−∂c̃
∂t
− (u∗ · ∇) c̃ = div (D(ψ∗)∇c̃)− ∂A3(ψ∗, c∗)

∂c∗
∇ψ∗ · ∇c̃− ∂A2(ψ∗, c∗)

∂c∗
ψ̃

+
∂A1(ψ∗, c∗)

∂c∗
· ũ + α3(c∗ − cobs) on Q

with the final conditions(
ũ, ψ̃, c̃

)
(t = Tf ) = (0, 0, 0) , in Ω

and the boundary conditions

ũ = 0,
∂ψ̃

∂n
= 0,

∂c̃

∂n
= 0. on Σ

(5.9)

Furthermore, we have (∀ B ∈ Ua)

Tf∫
0

∫
Ω

(
b(ψ∗)

(
(B∗ × ũ)× u∗ + ũ× (u∗ ×B∗)

)
+ κa1(ψ∗)ũ

+β B∗
)
· (B−B∗) dxdt ≥ 0. (5.10)

Proof : The problem (5.9) admits a unique solution X̃ = (ũ, ψ̃, c̃) in W , since the

observation Xobs = (uobs, ψobs, cobs) ∈ L2(Q). To prove this result, we change the vari-

ables of this problem by reversing the time variable, i.e., t = Tf − t where Tf is the

final time, and we apply the same technique to obtain the existence and uniqueness

as in Theorems 1 and 4.

The cost functional J defined by (5.6) is composed of G-differentiable functions, con-

sequently J is G-differentiable and its G-derivative can be given by differentiating

(5.6) with respect to B in the direction B as

J ′(B) ·B = α1

Tf∫
0

∫
Ω

(u− uobs) ·w1 dxdt+ α2

Tf∫
0

∫
Ω

(ψ − ψobs)w2 dxdt

+α3

Tf∫
0

∫
Ω

(c− cobs)w3 dxdt+ β

Tf∫
0

∫
Ω

B ·B dxdt (5.11)
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where w = (w1, w2, w3) = F ′(B) ·B is the solution of (5.8).

Now multiplying the first equation of (5.8) by a sufficiently regular function ũ, such

that ũ (Tf ) = 0 on both sides and then integrating over Q, we have

Tf∫
0

∫
Ω

∂w1

∂t
· ũ dxdt+

Tf∫
0

∫
Ω

(w1 · ∇)u · ũ dxdt+

Tf∫
0

∫
Ω

(u · ∇)w1 · ũ dxdt

= −
Tf∫

0

∫
Ω

∇π · ũ dxdt+ α

Tf∫
0

∫
Ω

∆w1 · ũ dxdt

+

Tf∫
0

∫
Ω

{∂A1(ψ, c)

∂ψ
· w2 +

∂A1(ψ, c)

∂c
· w3

}
· ũ dxdt

+

Tf∫
0

∫
Ω

b′(ψ)w2

(
(u×B)×B

)
· ũ dxdt+

Tf∫
0

∫
Ω

b(ψ)
{

(w1 ×B)×B

+(u×B)×B + (u×B)×B
}
· ũ dxdt

+

Tf∫
0

∫
Ω

(
κa′1(ψ)Bw2 + κa1(ψ)B

)
ũdxdt.

Using Green’s theorem and Lemma 5, the above equation takes the following form

Tf∫
0

∫
Ω

∂w1

∂t
· ũ dxdt+

Tf∫
0

∫
Ω

(w1 · ∇)u · ũ dxdt+

Tf∫
0

∫
Ω

(u · ∇)w1 · ũ dxdt

=

Tf∫
0

∫
Ω

π div(ũ) dxdt−
Tf∫

0

∫
Γ

π ũ · n dΓdt+ α

Tf∫
0

∫
Ω

∆ũ ·w1 dxdt

−α
Tf∫
0

∫
Γ

w1 · ∇ũ · n dΓdt+

Tf∫
0

∫
Ω

{∂A1(ψ, c)

∂ψ
· w2 +

∂A1(ψ, c)

∂c
· w3

}
· ũ dxdt

+

Tf∫
0

∫
Ω

(
b′(ψ)

(
(u×B)×B

)
· ũ + κa′1(ψ)Bũ

)
w2 dxdt

+

Tf∫
0

∫
Ω

b(ψ)
(
B× (B× ũ)

)
·w1 dxdt

+

Tf∫
0

∫
Ω

(
b(ψ)

{
(B× ũ)× u + ũ× (u×B)

}
+ κa1(ψ)ũ

)
·B dxdt
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Integrating the first term of the above equation with respect to t and as ũ(Tf ) = 0,

w1(0) = 0 and using Lemma 2 , the above equation yields

−
Tf∫

0

∫
Ω

∂ũ

∂t
·w1 dxdt+

Tf∫
0

∫
Ω

(∇u)trũ ·w1 dxdt−
Tf∫

0

∫
Ω

(u · ∇)ũ ·w1 dxdt

=

Tf∫
0

∫
Ω

π div(ũ) dxdt−
Tf∫

0

∫
Γ

π ũ · n dΓdt+ α

Tf∫
0

∫
Ω

∆ũ ·w1 dxdt

−α
Tf∫

0

∫
Γ

w1 · ∇ũ · n dΓdt+

Tf∫
0

∫
Ω

∂A1(ψ, c)

∂ψ
· ũ w2 dxdt

+

Tf∫
0

∫
Ω

∂A1(ψ, c)

∂c
· ũ w3 dxdt+

Tf∫
0

∫
Ω

b(ψ)
(
B× (B× ũ)

)
·w1 dxdt

+

Tf∫
0

∫
Ω

(
b′(ψ)

(
(u×B)×B

)
· ũ + κa′1(ψ)Bũ

)
w2 dxdt

+

Tf∫
0

∫
Ω

b(ψ)
{

(B× ũ)× u + ũ× (u×B)
}
·B dxdt.

(5.12)

Multiplying now the third equation of (5.8) by a sufficiently regular function ψ̃, such

that ψ̃(Tf ) = 0, on both sides and then integrating over Q, we have

Tf∫
0

∫
Ω

∂w2

∂t
ψ̃ dxdt+

Tf∫
0

∫
Ω

(w1 · ∇)ψ ψ̃ dxdt+

Tf∫
0

∫
Ω

(u · ∇)w2 ψ̃ dxdt

= ε2

Tf∫
0

∫
Ω

∆w2 ψ̃ dxdt−
Tf∫

0

∫
Ω

{∂A2(ψ, c)

∂ψ
w2 +

∂A2(ψ, c)

∂c
w3

}
ψ̃ dxdt

Integrating the first term of the above equation with respect to t and using ψ̃(Tf ) = 0,

w2(0) = 0 and Green’s formula, the above equation can finally be written as

−
Tf∫

0

∫
Ω

∂ψ̃

∂t
w2 dxdt+

Tf∫
0

∫
Ω

ψ̃∇ψ ·w1 dxdt−
Tf∫

0

∫
Ω

(u · ∇)ψ̃ w2 dxdt

= ε2

Tf∫
0

∫
Ω

∆ψ̃ w2 dxdt− ε2

Tf∫
0

∫
Γ

w2 ∇ψ̃ · n dΓdt

−
Tf∫

0

∫
Ω

∂A2(ψ, c)

∂ψ
ψ̃ w2 dxdt−

Tf∫
0

∫
Ω

∂A2(ψ, c)

∂c
ψ̃ w3 dxdt.

(5.13)
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Multiplying now fourth equation of the problem (5.8) by a sufficiently regular function

c̃, such that c̃(Tf ) = 0, on both sides and then integrating over Q, we have

Tf∫
0

∫
Ω

∂w3

∂t
· c̃ dxdt+

Tf∫
0

∫
Ω

(w1 · ∇) c · c̃ dxdt+

Tf∫
0

∫
Ω

(u · ∇)w3 · c̃ dxdt

=

Tf∫
0

∫
Ω

div
(
D′(ψ)w2∇c+D(ψ)∇w3

)
· c̃ dxdt

+

Tf∫
0

∫
Ω

div

((
∂A3(ψ, c)

∂ψ
w2 +

∂A3(ψ, c)

∂c
w3

)
∇ψ +A3(ψ, c) ∇w2

)
· c̃ dxdt.

(5.14)

Consider the following integral

Tf∫
0

∫
Ω

div (D′(ψ)∇c c̃ w2) dxdt =

Tf∫
0

∫
Ω

div (D′(ψ)∇c w2) c̃ dxdt

+

Tf∫
0

∫
Ω

D′(ψ)∇c · ∇c̃ w2 dxdt.

By employing the divergence theorem and as ∇c ·n = 0, the above equation becomes

Tf∫
0

∫
Ω

div (D′(ψ)∇c w2) c̃ dxdt = −
Tf∫

0

∫
Ω

D′(ψ)∇c · ∇c̃ w2 dxdt. (5.15)

Consider now the following integral

Tf∫
0

∫
Ω

div (D(ψ)∇w3 c̃) dxdt =

Tf∫
0

∫
Ω

div (D(ψ)∇w3) c̃ dxdt

+

Tf∫
0

∫
Ω

D(ψ)∇w3 · ∇c̃ dxdt.

Using again the divergence theorem and using ∇w3 · n = 0, we arrive at

Tf∫
0

∫
Ω

div (D(ψ)∇w3) c̃ dxdt = −
Tf∫

0

∫
Ω

D(ψ)∇w3 · ∇c̃ dxdt. (5.16)
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Again consider the following integral

Tf∫
0

∫
Ω

div (D(ψ)∇c̃ w3) dxdt =

Tf∫
0

∫
Ω

div (D(ψ)∇c̃)w3 dxdt

+

Tf∫
0

∫
Ω

D(ψ)∇w3 · ∇c̃ dxdt.

Applying the divergence theorem on the left-hand-side of the above equation, we arrive

at

Tf∫
0

∫
Γ

D(ψ) w3∇c̃ · n dΓdt =

Tf∫
0

∫
Ω

div (D(ψ)∇c̃)w3 dxdt

+

Tf∫
0

∫
Ω

D(ψ)∇w3 · ∇c̃ dxdt,

and then

Tf∫
0

∫
Ω

D(ψ)∇w3 · ∇c̃ dxdt = −
Tf∫

0

∫
Ω

div (D(ψ)∇c̃)w3 dxdt

+

Tf∫
0

∫
Γ

D(ψ) w3∇c̃ · n dΓdt. (5.17)

Making use of equation (5.17) in equation (5.16), we obtain

Tf∫
0

∫
Ω

div (D(ψ)∇w3) c̃ dxdt =

Tf∫
0

∫
Ω

div (D(ψ)∇c̃)w3 dxdt

−
Tf∫

0

∫
Γ

D(ψ) w3∇c̃ · n dΓdt. (5.18)

Similarly, we can derive the following equations

Tf∫
0

∫
Ω

div (A3(ψ, c)∇w2) c̃ dxdt =

Tf∫
0

∫
Ω

div (A3(ψ, c)∇c̃)w2 dxdt

−
Tf∫

0

∫
Γ

A3(ψ, c) w2∇c̃ · n dΓdt, (5.19)
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Tf∫
0

∫
Ω

div

(
∂A3(ψ, c)

∂ψ
∇ψ w2

)
c̃ dxdt = −

Tf∫
0

∫
Ω

∂A3(ψ, c)

∂ψ
∇c̃ · ∇ψ w2 dxdt

+

Tf∫
0

∫
Γ

∂A3(ψ, c)

∂ψ
∇ψ c̃ w2 · n dΓdt, (5.20)

and

Tf∫
0

∫
Ω

div

(
∂A3(ψ, c)

∂c
∇ψ w3

)
c̃ dxdt = −

Tf∫
0

∫
Ω

∂A3(ψ, c)

∂ψ
∇c̃ · ∇ψ w3 dxdt

+

Tf∫
0

∫
Γ

∂A3(ψ, c)

∂c
∇ψ c̃ w3 · n dΓdt. (5.21)

Using equations (5.15) and (5.18)-(5.21) in the equation (5.14) and then integrating

with respect to time t. We obtain, by using c̃(Tf ) = 0 and w3(0) = 0,

−
Tf∫

0

∫
Ω

∂c̃

∂t
w3 dxdt+

Tf∫
0

∫
Ω

c̃∇c ·w1 dxdt−
Tf∫

0

∫
Ω

(u · ∇) c̃ w3 dxdt

= −
Tf∫

0

∫
Ω

D′(ψ)∇c · ∇c̃ w2 dxdt+

Tf∫
0

∫
Ω

div (D(ψ)∇c̃)w3 dxdt

−
Tf∫

0

∫
Γ

D(ψ)w3 ∇c̃ · n dΓdt−
Tf∫

0

∫
Ω

∂A3(ψ, c)

∂ψ
∇ψ · ∇c̃ w2 dxdt

−
Tf∫

0

∫
Ω

∂A3(ψ, c)

∂c
∇ψ · ∇c̃ w3 dxdt+

Tf∫
0

∫
Ω

div (A3(ψ, c) ∇c̃)w2 dxdt

−
Tf∫

0

∫
Γ

A3(ψ, c) w2 ∇c̃ · n dΓdt

(5.22)
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In order to simplify equations (5.12), (5.13) and (5.22), we suppose that
(
ũ, ψ̃, c̃

)
satisfy the following system

−∂ũ

∂t
− (u · ∇) ũ + (∇u)tr ũ + ψ̃∇ψ + c̃∇c = −∇p̃+ α ∆ũ

+b(ψ)
(
B× (B× ũ)

)
+ α1(u− uobs), on Q

div(ũ) = 0, on Q

−∂ψ̃
∂t
− (u · ∇) ψ̃ = ε2∆ψ̃ − ∂A2(ψ, c)

∂ψ
ψ̃ + b′(ψ)

(
(u×B)×B

)
· ũ

+
∂A1(ψ, c)

∂ψ
· ũ−D′(ψ)∇c · ∇c̃− ∂A3(ψ, c)

∂ψ
∇ψ · ∇c̃

+div (A3(ψ, c)∇c̃) + κa′1(ψ)Bũ + α2(ψ − ψobs), on Q

−∂c̃
∂t
− (u · ∇) c̃ = div (D(ψ)∇c̃)− ∂A3(ψ, c)

∂c
∇ψ · ∇c̃− ∂A2(ψ, c)

∂c
ψ̃

+
∂A1(ψ, c)

∂c
· ũ + α3(c− cobs), on Q(

ũ, ψ̃, c̃
)

(t = Tf ) = (0, 0, 0) , in Ω

ũ = 0,
∂ψ̃

∂n
= 0,

∂c̃

∂n
= 0. on Σ

(5.23)

Making use of (5.23), the equations (5.12), (5.13) and (5.22) becomes

Tf∫
0

∫
Ω

(
α1(u− uobs)− ψ̃∇ψ − c̃∇c

)
·w1dxdt+

Tf∫
0

∫
Ω

(
−∂A1(ψ, c)

∂ψ
· ũ− κa′1(ψ)Bũ

−b′(ψ)
(
(u×B)×B

)
· ũ
)
w2 dxdt−

Tf∫
0

∫
Ω

∂A1(ψ, c)

∂c
· ũ w3 dxdt

=

Tf∫
0

∫
Ω

(
b(ψ)

{
(B× ũ)× u + ũ× (u×B)

}
+ κa1(ψ)ũ

)
·B dxdt,

(5.24)

Tf∫
0

∫
Ω

(
α2(ψ − ψobs) + b′(ψ)

(
(u×B)×B

)
· ũ +

∂A1(ψ, c)

∂ψ
· ũ− ∂D

∂ψ
∇c · ∇c̃

−∂A3(ψ, c)

∂ψ
∇ψ · ∇c̃+ div(A3(ψ, c)∇c̃) + κa′1(ψ)Bũ

)
w2dxdt

+

Tf∫
0

∫
Ω

ψ̃∇ψ ·w1dxdt+

Tf∫
0

∫
Ω

∂A2(ψ, c)

∂c
ψ̃ w3 dxdt = 0,

(5.25)
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and
Tf∫

0

∫
Ω

(
α3(c− cobs)−

∂A2(ψ, c)

∂c
ψ̃ +

∂A1(ψ, c)

∂c
· ũ
)
w3dxdt

+

Tf∫
0

∫
Ω

c̃∇c ·w1dxdt+

Tf∫
0

∫
Ω

(
D′(ψ)∇c · ∇c̃+

∂A3(ψ, c)

∂ψ
∇ψ · ∇c̃

−div (A3(ψ, c) ∇c̃)
)
w2 dxdt = 0.

(5.26)

Adding the respective sides of the equations (5.24), (5.25) and (5.26), we finally obtain

α1

Tf∫
0

∫
Ω

(u− uobs) ·w1 dxdt+ α2

Tf∫
0

∫
Ω

(ψ − ψobs)w2 dxdt

+α3

Tf∫
0

∫
Ω

(c− cobs)w3 dxdt =

Tf∫
0

∫
Ω

(
b(ψ)

{
(B× ũ)× u

+ũ× (u×B)
}

+ κa1(ψ)ũ
)
·B dxdt. (5.27)

According to (5.27), the equation (5.11) takes the form

J ′(B) ·B =

Tf∫
0

∫
Ω

(
b(ψ)

{
(B× ũ)× u + ũ× (u×B)

}
+ κa1(ψ)ũ + βB

)
·B dxdt.

Since B∗ is an optimal solution of J , we have

J ′(B∗) · (B∗ −B) ≥ 0,

and then
Tf∫

0

∫
Ω

(
b(ψ∗)

(
(B∗ × ũ∗)× u∗ + ũ∗ × (u∗ ×B∗)

)
+ κa1(ψ)ũ

+β B∗
)
· (B−B∗) dxdt ≥ 0.

where X̃
∗

is the solution of (5.23) corresponding to the primal solution X∗ = F(B∗).

This completes the proof. �

5.4 Remarks on the numerical implementation

In this section, we shall give remarks on the numerical resolution of the optimization

problem (5.7) by sequentially solving the primal problem (5.1) and the correspond-

ing adjoint problem (5.9) and updating the control by a Gradient based iterative
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algorithm. The individual primal and adjoint systems can be solved using same dis-

cretization and technique as given in Chapter 3. The main difficulty in the application

of this algorithm is to realize the reversed time directions of the primal problem in

the corresponding adjoint problem. Gradient algorithm for the resolution of the opti-

mization problem (5.7) can be described as follows.

We denote by k, the iteration index and Bk the numerical approximation of the

magnetic-field (control variable) at the kth iteration of the algorithm. The different

steps involved in this algorithm are described below

I Initialization: k = 1 and B0.

II Resolution of the direct problem (5.1) with the source term Bk, gives Xk =

F(Bk).

III Resolution of the adjoint problem (5.9), by giving Xk, gives X̃k.

IV Calculation of the Gradient expression of J at point Bk

J ′(Bk) = b(ψk)
{

(Bk × ũk)× uk + ũk × (uk ×Bk)
}

+ κa1(ψk)ũk + βBk.

V Calculation of Bk+1

Bk+1 = Bk − λkJ ′(Bk).

VI If the gradient is sufficiently small (we have the convergence) then stop. Else by

setting k = k+ 1, repeat from the second step until the required convergence is

achieved. The approximation of the optimal solution (B∗,X∗) is then given by

(Bk,Xk).

5.5 Conclusion

We have successfully formulated the optimal control of the problem (5.1) and estab-

lished the existence results and optimality conditions along with the adjoint problem.

Next we have introduced a Gradient algorithm for the numerical resolution of the

optimization problem (5.7). We are trying to implement this algorithm in Comsol to-

gether with MatLab. We have already succeeded to solve the coupled direct and the

corresponding adjoint problems. The major difficulty in the implementation of this

technique is that we have to substitute reversed time solution of the direct problem

for the resolution of the adjoint problem.





Conclusion

In this work, we have developed a new phase-field model that incorporate convection

together with the influence of magnetic-field. For the theoretical and numerical study,

we have considered the case of 2D isothermal solidification model. Then we have es-

tablished the existence, regularity, stability and uniqueness results for the isotropic

model. For the numerical simulations, we have worked with the isotropic case and the

general anisotropic model. We have developed a numerical scheme and demonstrated

the convergence and stability of the scheme for both isotropic and anisotropic models

with the help of various examples. The realistic numerical simulations has been car-

ried out by choosing the real physical parameters of the binary mixture Ni-Cu in order

to fit a realistic physical alloy. We have focused mainly the effect of magnetic-field

on the growth of dendrites during the solidification process by considering various

magnetic-fields (all other parameters remain fixed). We have found that the constant

magnetic-field does not effect considerably but the variable magnetic-field has a sig-

nificant effect on the structure of dendrites and on the dynamics of the melt flow.

These observations are in good agreement with the study made by [48].

Further we have formulated the optimal control for the isotropic model using the con-

trol in magnetic field. We have established the existence results of the optimal solution

and presented the optimality conditions together with adjoint problem corresponding

to the primal problem. Currently, we are working to implement the Gradient algo-

rithm, given in the chapter 5, in Comsol together with the MatLab.

Several questions remain open for the future investigations. The realistic physical sim-

ulations can be reviewed for the adaptive meshes. It also remains to investigate the

effect of different physical parameters, like interface thickness, anisotropy amplitude,

on the dendrite growth during the solidification process. Further, we can introduce

a stochastic noise at the interface to stimulate fluctuations at the interface in the

model which give rise to the realistic structure of dendrites observed in practical sit-

uations. The simulations can be broaden for the non-isothermal anisotropic case by

the inclusion of temperature equation. For the better understanding of magnetic-field
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influence on the microstructure of dendrites, the simulations can be extended to the

three dimensions.
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Appendix A: Description of DASSL

In this appendix, we shall describe the method used by time-dependent solver in

COMSOL Multiphysics 3.4 to solve the model problem. Time dependent solver in

COMSOL uses the program DASPK (and DASSL) written in computer language

Fortran by P. N. Brown et. al. [50], where DASPK is an extension of the program

DASSL written in Fortran by Linda R. Petzold [37]. We have used DASSL for the

resolution of our model, therefore we shall describe the program DASSL.

The program DASSL is developed for the numerical solution of the implicit systems

of differential/algebraic equations written in the form

F (t, y, y′) = 0, y(t0) = y0. (.1)

where F , y and y′ are N dimensional vectors and y′ represents the derivative with

respect to time. DASSL can solve two types of problems. The first type problems for

which it is not possible to solve for y′ explicitly to rewrite equation (.1) in the form

of a standard ODE system y′ = f(t, y). The second class of problems for which it

is possible in theory to solve for y′, but is impractical to do so. The technique used

in DASSL to solve differential/algebraic equations is based on the idea of Gear [12]

in which the derivative in equation (.1) is replaced by the back-ward difference Euler

formula to obtain

F (tn, yn,
yn − yn−1

∆tn

)
= 0. (.2)

The resulting equation is then solved using Newton’s method as

ym+1
n = ymn −G−1F (tn, y

m
n ,
ymn − yn−1

∆tn

)
= 0. (.3)

where

G =
(∂F
∂y′

+
1

∆tn

∂F

∂y

)
and m is the iteration index.

The techniques used in DASSL are the extension of this method. DASSL program
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uses a kth order variable back-ward Euler formula where k varies between 1 to 5.

Here variable order back-ward formula means that on each step DASSL chooses an

appropriate order k and the step size ∆tn depending upon the behavior of the solution.

Further details about the choice of step size and order will be given later. To explain

the algorithm used in DASSL, it is convenient to write the equation (.2) in simplified

form as

F (t, y, α̂1y + β̂) = 0. (.4)

where α̂1 is a constant which changes whenever the step size or order changes, β̂ is

a vector which depends on the solution at the previous times and t, y, α̂1, β̂ are

evaluated at tn. The code DASSL solves the equation (.4) by using the modified

version of Newton method given by

ym+1 = ym − γ̂G−1F (t, ym, α̂1y
m + β̂) = 0. (.5)

where the iteration matrix G takes now the form

G =
(∂F
∂y′

+ α̂2
1

∆tn

∂F

∂y

)
which is computed and factored and then it is used for as many steps as possible.

In the iteration matrix the value of the constant α̂2 when G was last calculated is

generally different from the current value of the constant α̂1 in equation (.5). If

the values of these constants differ significantly then the convergence of (.5) is not

guaranteed. And the constant γ̂ in (.5) is chosen to speed up the convergence when

α̂1 6= α̂2 as

γ̂ =
2

1 + α̂1/α̂2

(.6)

The convergence rate of equation (.5) is estimated by

ρ̂ =
(‖ym+1 − ym‖
‖y1 − y0‖

)1/m
(.7)

where the norms used in above error estimates are scaled norms which depend on

the error tolerances specified by the user. The iteration of the Newton method has

converged when

ρ̂

1− ρ̂
∥∥ym+1 − ym

∥∥ < 0.3 (.8)

If ρ̂ > 0.9 or m > 4 and the iteration is still not converged, then the step size is

lowered and/or the iteration matrix based on the current calculations of y, y′ and α̂2
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is computed and then step size again attempted. To chose the order of the back-ward

Euler formula the algorithm of DASSL estimates what the error would have been if

the last few steps had been taken at constant step size, at the current oder k, and

at k − 2, k − 1 and k + 1. If the estimates at these steps increase as k increases

then the order k of the backward Euler formula is decreased otherwise the order is

increased. The new time step ∆tn+1 is chosen such that the error estimate based on

taking constant step size ∆tn at order kn+1 satisfies the error test.

As Newton method converges more rapidly if the initial guess y0
n is accurate. DASSL

estimates an initial guess for yn by solving the polynomial which is interpolated by

the computed solution at the last k + 1, times i.e., tn−1, tn−2,· · · , tn−(k+1) at the cur-

rent time tn. And the initial guess for y′n is calculated by computing the derivative

of this polynomial at tn. After getting the initial guess y0
n, Newton method is used

to solve for yn as in (.5) except that now the derivative is computed by the kth order

back-ward Euler formula.

To solve the linear systems of equations Ax = b arising at each successive time step

of Newton iteration, DASSL uses a subroutine package LINPACK [28]. LINPACK is

a package that uses direct methods such as Gaussian elimination, Cholesky decompo-

sition, QR and singular value decomposition methods to solve the linear systems of

equations.





Appendix B: The expressions for

artificial right-hands-sides of

Example 1,2 and 3

The expressions for Fu, Fv, Fψ and Fc on the right-hand-side of example 1 are given

in this appendix.

Fu
(
x, t) = ρ

( 1

2π2
e(t−1)sin2(x)y

(
1− y

2π

)(
1− y

π

)
+

1

2π4
e2(t−1)sin3(x)

×y2
(
1− y

2π

)2(
1− y

π

)2
cos(x)− 1

2π2
e(t−1)sin(x)cos(x)y2

(
1

− y

2π

)2( 1

2π2
e(t−1)sin2(x)

(
1− y

2π

)(
1− y

π

)
− 1

4π3
e(t−1)

×sin2(x)y
(
1− y

π

)
− 1

2π3
e

(
t−1)sin2(x)y

(
1− y

2π

)))
−µ
(e(t−1)

π2
cos2(x)y

(
1− y

2π

)(
1− y

π

)
− e

(
t−1)

π2
sin2(x)y

(
1− y

2π

)
×
(
1− y

π

)
− e

(
t−1)

2π3
sin2(x)(1− y

π

)
− e(t−1)

π3
sin2(x)(1− y

2π

)
+

1

2π4
e(t−1)sin2(x)y

)
−K1

(
−e

(t−1)

2π2
sin(x)cos(x)y2(1− y

2π

)2

− 1

2π2
e(t−1)sin2(x)y(1− y

2π

)(
1− y

π

))
−1

2
K2e

(t−1)(cos(x)cos(y) + 1),

177
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Fv
(
x, t) = ρ

(
− 1

2π2
e(t−1)sin(x)cos(x)y2

(
1− y

2π

)2
+

1

2π2
e(t−1)sin2(x)y

(
1− y

2π

)(
1

−y
π

)(
− 1

2π2
e(t−1)cos2(x)y2

(
1− y

2π

)2
+

1

2π2
e(t−1)sin2(x)y2

(
1− y

2π

)2)
− 1

2π2
e(t−1)sin(x)cos(x)y2

(
1− y

2π

)2(−e(t−1)/π2sin(x)cos(x)y
(
1− y

2π

)2

+
1

2π3
e(t−1)sin(x)cos(x)y2

(
1− y

2π

)))
− e(t−1)sin(y)−

µ
(
2e(t−1)/π2sin(x)cos(x)y2

(
1− y

2π

)2 − e(t−1)

π2
sin(x)cos(x)

(
1− y

2π

)2

+
2e(t−1)

π3
sin(x)cos(x)y

(
1− y

2π

)
− 1

4π4
e(t−1)sin(x)cos(x)y2

)
−2K3

π2
e(t−1)x2

(
1− x

2π

)2(
cos(y) + 1)−K4

( 1

2π2
e(t−1)sin2(x)y

(
1− y

2π

)(
1

−y
π

)
+

1

2π2
e(t−1)sin(x)cos(x)y2

(
1− y

2π

)2)− K5

2
e(t−1)

(
cos(x)cos(y) + 1),

Fψ
(
x, t) =

1

2
e(t−1)(cos(x)cos(y) + 1) + εe(t−1)cos(x)cos(y)

+γ
((

1− 2

π2
e(t−1)x2(1− x

2π

)2(
cos(y) + 1)

)(
Wa

(
e(t−1)(cos(x)cos(y) + 1)

+
1

2
e3(t−1)(cos(x)cos(y) + 1)3 − 3

2
e2(t−1)(cos(x)cos(y) + 1)2

+
15

2
LaTae

2(t−1)(cos(x)cos(y) + 1)2
(
1− 1

2
e(t−1)

(
cos(x)cos(y) + 1)

)2)
+

2

π2
e(t−1)x2

(
1− x

2π

)2(
cos(y) + 1)

(
Wb

(
e(t−1)(cos(x)cos(y) + 1)

+
1

2
e3(t−1)(cos(x)cos(y) + 1)3 − 3

2
e2(t−1)

(
cos(x)cos(y) + 1)2

)
+

15

2
LbTbe

2(t−1)
(
cos(x)cos(y) + 1)2

(
1− 1

2
e(t−1)(cos(x)cos(y) + 1)

)2)))
,

Fc
(
x, t) = F1c

(
x, t) + F2c

(
x, t).
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where

F1c

(
x, t) =

2

π2
e(t−1)x2

(
1− x

2π

)2
(cos(y) + 1) +

1

2π2
e(t−1)sin2(x)y

(
1− y

2π

)(
1

−y
π

)( 4

π2
e(t−1)x

(
1− x

2π

)2(
cos(y) + 1)− 2

π3
e(t−1)x2

(
1− x

2π

)(
cos(y) + 1

)
)

+
e2(t−1)

π4
sin(x)cos(x)y2

(
1− y

2π

)2
x2
(
1− x

2π

)2
sin(y)

−
(15

2
(DL −DS)e2(t−1)

(
cos(x)cos(y) + 1

)2
(1− 1

2
e(t−1)(cos(x)cos(y) + 1)

)2

+α
(
DS +

1

8
e3(t−1)(cos(x)cos(y) + 1)3

(
10− 15

2
e(t−1)(cos(x)cos(y) + 1)

+
3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
(DL −DS

))
(
1− 4

π2
e(t−1)x2(1− x

2π

)2(
cos(y)

+1
))(

Wb

(
e(t−1)(cos(x)cos(y) + 1) +

1

2
e3(t−1)(cos(x)cos(y) + 1)3

−3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
+

15

2
LbTbe

2(t−1)(cos(x)cos(y) + 1)2
(
1

−1

2
e(t−1)(cos(x)cos(y) + 1)

)2 −Wa

(
e(t−1)(cos(x)cos(y) + 1)

+
1

2
e3(t−1)(cos(x)cos(y) + 1)3 − 3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
−15

2
LaTae

2(t−1)(cos(x)cos(y) + 1)2
(
1− 1

2
exp(t−1)

(
cos(x)cos(y)

+1
))2))(−1

2
e(t−1)sin(x)cos(y)

( 4

π2
e(t−1)x(1− x

2π

)2
(cos(y) + 1)

− 2

π3
e(t−1)x2(1− x

2π

)
(cos(y) + 1)

)
+
e2(t−1)

π2
cos(x)sin2(y)x2

(
1

− x

2π

)2)− (DS +
1

8
e3(t−1)(cos(x)cos(y) + 1)3

(
10− 15

2
e(t−1)

(
cos(x)cos(y)

+1
)

+
3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
(DL −DS

))( 4

π2
e(t−1)(1− x

2π

)2(
cos(y)

+1
)
− 8

π3
e(t−1)x(1− x

2π

)
(cos(y) + 1) +

1

π4
e(t−1)x2(cos(y) + 1)

− 2

π2
e(t−1)x2(1− x

2π

)2
cos(y)

)
.
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F2c

(
x, t) =−α

(15

2
(DL −DS

)( 2

π2
e(t−1)x2(1− x

2π

)2
(cos(y) + 1)

− 4

π4
e2(t−1)x4(1− x

2π

)4
(cos(y) + 1)2

)
e2(t−1)

(
cos(x)cos(y)

+1
)2

(1− 1

2
e(t−1)(cos(x)cos(y) + 1)

)2(
Wb

(
e(t−1)(cos(x)cos(y) + 1)

+
1

2
e3(t−1)(cos(x)cos(y) + 1)3 − 3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
+

15

2
LbTbe

2(t−1)(cos(x)cos(y) + 1)2(1− 1

2
e(t−1)(cos(x)cos(y) + 1)

)2

−Wa

(
e(t−1)(cos(x)cos(y) + 1) +

1

2
e3(t−1)(cos(x)cos(y) + 1)3

−3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
− 15

2
LaTae

2(t−1)(cos(x)cos(y) + 1)2
(
1

−1

2
e(t−1)(cos(x)cos(y) + 1)

)2)
+
(
DS +

1

8
e3(t−1)(cos(x)cos(y) + 1)3

(
10−

15

2
e(t−1)(cos(x)cos(y) + 1) +

3

2
e2(t−1)

(
cos(x)cos(y)

+1
)2)

(DL −DS

))( 2

π2
e(t−1)x2(1− x

2π

)2
(cos(y) + 1)

− 4

π4
e2(t−1)x4(1− x

2π

)4
(cos(y) + 1)2

)(
2(Wb −Wa

)(
1 +

3

2
e2(t−1)

(
cos(x)cos(y)

+1
)2 − 3e(t−1)(cos(x)cos(y) + 1)

)
+ 60(LbTb − LaTa

)(1

2
e(t−1)

(
cos(x)cos(y)

+1
)

+
1

4
e3(t−1)(cos(x)cos(y) + 1)3 − 3

4
e2(t−1)

(
cos(x)cos(y)

+1
)2)))(1

4
e2(t−1)sin2(x)cos2(y) +

1

4
e2(t−1)cos2(x)sin2(y)

)
+α ∗

(
DS +

1

8
e3(t−1)(cos(x)cos(y) + 1)3

(
10− 15

2
e(t−1)(cos(x)cos(y) + 1)

+
3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
(DL −DS

))( 2

π2
e(t−1)x2(1− x

2π

)2
(cos(y) + 1)

− 4

π4
e2(t−1)x4(1− x

2π

)4
(cos(y) + 1)2

)(
Wb

(
e(t−1)(cos(x)cos(y) + 1)

+
1

2
e3(t−1)(cos(x)cos(y) + 1)3 − 3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
+

15

2
LbTbe

2(t−1)(cos(x)cos(y) + 1)2(1− 1

2
e(t−1)(cos(x)cos(y) + 1)

)2

−Wa

(
e(t−1)(cos(x)cos(y) + 1) +

1

2
e3(t−1)(cos(x)cos(y) + 1)3

−3

2
e2(t−1)(cos(x)cos(y) + 1)2

)
− 15

2
LaTae

2(t−1)
(
cos(x)cos(y)

+1
)2

(1− 1

2
e(t−1)(cos(x)cos(y) + 1)

)2)
e(t−1)cos(x)cos(y).
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Right-hand-side expressions for the Example 2 are given below:

Fu
(
x, t) = ρ

(
4πe(t−1)x2(1− x)2sin(2πy)cos(2πy)

+4πe(t−1)x2(1− x)2sin(2πy)cos(2πy)
(
8πe(t−1)x(1− x)2sin(2πy)cos(2πy)

−8πe(t−1)x2(1− x)sin(2πy)cos(2πy)
)
− 2e(t−1)x

(
2x2 − 3x

+1
)
sin(2πy)2

(
8π2e(t−1)x2(1− x)2cos(2πy)2 − 8π2e(t−1)x2

(
1

−x
)2
sin(2πy)2

))
− 2e(t−1)sin(2πx)π − µ

(
8πe(t−1)(1− x)2sin(2πy)cos(2πy)

−32πe(t−1)x
(
1− x

)
sin(2πy)cos(2πy) + 8πe(t−1)x2sin(2πy)cos(2πy)

−64π3e(t−1)x2
(
1− x

)2
cos(2πy)sin(2πy)

)
− K1

4
e(t−1)

(
cos(2πx) +

cos(2πy) + 2
)(
−2e(t−1)x(2x2 − 3x+ 1)sin(2πy)2

−4πe(t−1)x2(1− x)2sin(2πy)cos(2πy)
)

−K2

4
e(t−1)(cos(2πx) + cos(2πy) + 2),

Fv
(
x, t) = ρ

(
−2e(t−1)x(2x2 − 3x+ 1)sin(2πy)2 + 4πe(t−1)x2

(
1

−x
)2
sin(2πy)cos(2πy)

(
−2e(t−1)(2x2 − 3x+ 1)sin(2πy)2

−2e(t−1)x(4x− 3)sin(2πy)2
)

+ 16e2(t−1)x2
(
2x2 − 3x

+1
)2
sin(2πy)3cos(2πy)π

)
− µ

(
−4e(t−1)(4x− 3)sin(2πy)2

−8e(t−1)xsin(2πy)2 − 16e(t−1)x
(
2x2 − 3x+ 1

)
cos(2πy)2π2

+16e(t−1)x(2x2 − 3x+ 1)sin(2πy)2pi2
)
− 2K3e

2(t−1)
(
cos(2πx)

+cos(2πy) + 2
)
(x2(1− x)2 + y2(1− y)2

)
− K4

4
e(t−1)

(
cos(2πx)

+cos(2πy) + 2
)(

4πe(t−1)x2(1− x)2sin(2πy)cos(2πy) + 2e(t−1)x
(
2x2

−3x+ 1
)
sin(2πy)2

)
− K5

4
e(t−1)(cos(2πx) + cos(2πy) + 2),
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Fψ
(
x, t) =

1

4
e(t−1)(cos(2πx) + cos(2πy) + 2)− ε

(
−e(t−1)cos(2πx)π2

−e(t−1)cos(2πy)π2
)

+ γ
(
(1− 8e(t−1)(x2(1− x)2 + y2

(
1

−y
)2))(

Wa

(1

2
e(t−1)(cos(2πx) + cos(2πy) + 2) +

1

16
e3(t−1)

(
cos(2πx)

+cos(2πy) + 2
)3 − 3

8
e2(t−1)(cos(2πx) + cos(2πy) + 2)2

)
+

15

8
LaTae

2(t−1)(cos(2πx) + cos(2πy) + 2)2(1− 1

4
e(t−1)

(
cos(2πx)

+cos(2πy) + 2
))2)

+ 8e(t−1)(x2(1− x)2 + y2(1− y)2
)(
Wb

(1

2
e(t−1)

(
cos(2πx)

+cos(2πy) + 2
)

+
1

16
e3(t−1)(cos(2πx) + cos(2πy) + 2)3 − 3

8
e2(t−1)

(
cos(2πx)

+cos(2πy) + 2
)2)

+
15

8
LbTbe

2(t−1)(cos(2πx) + cos(2πy) + 2)2
(
1

−1

4
e(t−1)(cos(2πx) + cos(2πy) + 2)

)2))
,

Fc
(
x, t) = F1c

(
x, t) + F2c

(
x, t).
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where

F1c

(
x, t) =8e(t−1)(x2(1− x)2 + y2(1− y)2

)
+ 32πe2(t−1)x2

(
1

−x
)2
sin(2πy)cos(2πy)(2x(1− x)2 − 2x2(1− x)

)
− 16e2(t−1)x

(
2x2

−3x+ 1
)
sin(2πy)2(2y(1− y)2 − 2y2(1− y)

)
−
(15

8

(
DL

−DS

)
e2(t−1)

(
cos(2πx) + cos(2πy) + 2

)2
(1− 1

4
e(t−1)

(
cos(2πx)

+cos(2πy) + 2
))2

+ α
(
DS +

1

64
e3(t−1)

(
cos(2πx) + cos(2πy) + 2

)3(
10

−15

4
e(t−1)(cos(2πx) + cos(2πy) + 2) +

3

8
e2(t−1)

(
cos(2πx) + cos(2πy)

+2
)2)

(DL −DS

))(
1− 16e(t−1)

(
x2(1− x)2 + y2

(
1

−y
)2))(

Wb

(1

2
e(t−1)(cos(2πx) + cos(2πy) + 2) +

1

16
e3(t−1)

(
cos(2πx)

+cos(2πy) + 2
)3 − 3

8
e2(t−1)

(
cos(2πx) + cos(2πy) + 2

)2)
+

15

8
LbTbe

2(t−1)(cos(2πx) + cos(2πy) + 2)2(1− 1

4
e(t−1)(cos(2πx)

+cos(2πy) + 2)
)2 −Wa

(1

2
e(t−1)(cos(2πx) + cos(2πy) + 2)

+
1

16
e3(t−1)(cos(2πx) + cos(2πy) + 2)3 − 3

8
e2(t−1)

(
cos(2πx) + cos(2πy)

+2
)2)− 15

8
LaTae

2(t−1)(cos(2πx) + cos(2πy) + 2)2
(
1− 1

4
e(t−1)

(
cos(2πx)

+cos(2πy) + 2
))2))(−4e2(t−1)sin(2πx)π(2x(1− x)2 − 2x2(1− x)

)
−4e2(t−1)sin(2πy)π(2y(1− y)2 − 2y2(1− y)

))
−
(
DS

+
1

64
e3(t−1)(cos(2πx) + cos(2πy) + 2)3

(
10− 15

4
e(t−1)

(
cos(2πx)

+cos(2πy) + 2
)

+
3

8
e2(t−1)(cos(2πx) + cos(2πy) + 2)2

)(
DL

−DS

))(
8e(t−1)

(
2(1− x)2 − 8x(1− x) + 2x2

)
+ 8e(t−1)

(
2(1− y)2

−8y(1− y) + 2y2
))
− α

(15

8
(DL −DS

)(
8e(t−1)(x2(1− x)2 + y2(1− y)2

)
−64e2(t−1)(x2(1− x)2 + y2(1− y)2

)2
)e2(t−1)

(
cos(2πx) + cos(2πy) + 2

)2(
1

−1

4
e(t−1)

(
cos(2πx) + cos(2πy) + 2

))2(
Wb

(1

2
e(t−1)

(
cos(2πx) + cos(2πy)

+2
)

+
1

16
e3(t−1)

(
cos(2πx) + cos(2πy) + 2

)3 − 3

8
e2(t−1)(cos(2πx)

+cos(2πy) + 2)2
)

+
15

8
LbTbe(t− 1)2

(
cos(2πx) + cos(2πy)

+2
)2

(1− 1

4
e(t−1)(cos(2πx) + cos(2πy) + 2)

)2
.
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F2c

(
x, t
)

=−Wa

(1

2
e(t−1)(cos(2πx) + cos(2πy) + 2) +

1

16
e3(t−1)

(
cos(2πx)

+cos(2πy) + 2
)3 − 3

8
e2(t−1)(cos(2πx) + cos(2πy) + 2)2

)
−15

8
LaTae
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Now we shall give the expressions for the right-hand-side of the anisotropic problem

below:
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