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Abstract 
This research is motivated by our collaborations with a large French university teaching 
hospital in order to reduce the Length of Stay (LoS) of stroke patients treated in the 
neurovascular department. Quick diagnosis is critical for stroke patients but relies on 
expensive and heavily used imaging facilities such as MRI (Magnetic Resonance Imaging) 
scanners. Therefore, it is very important for the neurovascular department to reduce the 
patient LoS by reducing their waiting time of imaging examinations.  

From the neurovascular department perspective, this thesis proposes a new MRI 
examinations reservation process in order to reduce patient waiting times without degrading 
the utilization of MRI. The service provider, i.e., the imaging department, reserves each 
week a certain number of appropriately distributed contracted time slots (CTS) for the 
neurovascular department to ensure quick MRI examination of stroke patients. In addition to 
CTS, it is still possible for stroke patients to get MRI time slots through regular reservation 
(RTS).  

This thesis first proposes a stochastic programming model to simultaneously determine the 
contract decision, i.e., the number of CTS and its distribution, and the patient assignment 
policy to assign patients to either CTS or RTS. To solve this problem, structure properties of 
the optimal patient assignment policy for a given contract are proved by an average cost 
Markov decision process (MDP) approach. The contract is determined by a Monte Carlo 
approximation approach and then improved by local search. Computational experiments 
show that the proposed algorithms can efficiently solve the model. The new reservation 
process greatly reduces the average waiting time of stroke patients. At the same time, some 
CTS cannot be used for the lack of patients. 

To reduce the unused CTS, we further explore the possibility of the advance cancellation of 
CTS. Structure properties of optimal control policies for one-day and two-day advance 
cancellation are established separately via an average-cost MDP approach with appropriate 
modeling and advanced convexity concepts used in control of queueing systems. 
Computational experiments show that appropriate advance cancellations of CTS greatly 
reduce the unused CTS with nearly the same waiting times. 
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Chapter 1  
Planning of MRI examinations: 
Introduction 
1.1 Introduction 

This thesis is motivated by our collaborations with a large French university teaching 
hospital in order to reduce the Length of Stay (LoS) of stroke patients treated in the 
neurovascular department.  

A stroke is a sudden loss of the brain function caused by lack of blood supply to the brain 
(ischemic stroke) or rupture of blood vessels in the brain (hemorrhagic stroke). Stroke 
patients may suffer from the inability to speak or speak clearly, walk, or move a limb 
because of the lack of blood supply to the brain. The brain cannot tolerate long periods 
without blood flow and stroke patients need the appropriate treatment as soon as possible.  

Before starting the treatment, a number of examinations are needed for diagnosis purpose. 
Significant delays are observed as many key examinations rely on expensive and heavily 
used imaging facilities such as MRI (Magnetic Resonance Imaging) scanners facing demand 
from all medical units of the hospital. Therefore, it is very important to reduce the LoS of 
stroke patients by reducing their waiting time for imaging examinations.  

In this thesis, we restrict ourselves to MRI examinations for two reasons. First, delays for 
MRI examinations are observed as the longest ones, from 30 to 40 days. Second, joint 
optimization of all medical examinations is fairly complex and will be subject of our further 
research. Insights gained from this thesis will be exploited in joint optimization of all 
medical examinations. 

1.2 MRI examination reservation for stroke 

patients  

1.2.1 Stroke and MRI scan 

A stroke (sometimes called an acute cerebrovascular attack) is a sudden loss of the brain 
function due to disturbance in the blood supply to the brain. Strokes can be grouped into two 
major classes: ischemic and hemorrhagic (Kidwell and Warach (2003)), as shown in Fig. 
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1.1. Ischemic strokes are due to block of the blood supply to the brain, whereas hemorrhagic 
strokes are due to rupture of a blood vessel or an abnormal vascular structure in the brain. 
The affected area of the brain is unable to function, which leads to the inability to move one 
or more limbs in one side of the body, inability to understand or speak clearly, or inability to 
see one side of the visual field.  

 

 
FIG. 1.1 Photos for ischemic and hemorrhagic stroke 

Photos from (http://www.strokegenomics.org/index.php?page=about-stroke-genetics). 

 

A stroke is a medical emergency which can cause permanent neurological damage, 
complications, and death. It is the leading cause of adult disability in the United States and 
Europe. It is the number two cause of death worldwide and may soon become the leading 
cause of death worldwide (Donnan et al. (2008)).  

Stroke diagnosis needs rapid access to medical personnel and diagnosis facilities. So all 
tests can be done timely, and the right diagnosis can be made, and appropriate treatment can 
be provided. The diagnosis of stroke itself is clinical, with assistance from the imaging 
techniques in finding the causes of stroke. There are two major imaging techniques: 
Computed Tomography (CT) scanner and MRI scanner.  

When stroke patients are diagnosed, many other examinations have to be performed in order 
to determine the underlying etiology. Commonly used techniques include: 

 an ultrasound/doppler study of the carotid arteries (to detect carotid stenosis) or 
dissection of the precerebral arteries  

 an electrocardiogram (ECG) and echocardiogram (to identify arrhythmias and resultant 
clots in the heart which may spread to the brain vessels through the bloodstream)  
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 a Holter monitor study to identify intermittent arrhythmias  

 an angiogram of the cerebral vasculature (if a bleed is thought to have originated from 
an aneurysm or arteriovenous malformation)  

 blood tests to determine hypercholesterolemia, bleeding diathesis and some rarer causes 
such as homocysteinuria  

Among all the examinations, MRI scan is one of the most helpful tests in the diagnosis of 
stroke because it can detect strokes within minutes of their onset and is superior to CT. As 
shown in Fig. 1.2, MRI scanner, or nuclear magnetic resonance imaging (NMRI) scanner, is 
primarily a medical imaging technique most commonly used in radiology to visualize 
detailed internal structure and limited function of the body. MRI provides much greater 
contrast between different soft tissues of the body than CT does, which makes it especially 
useful in neurological, musculoskeletal, cardiovascular, and oncological imaging. Unlike 
CT, it uses no ionizing radiation, but uses a powerful magnetic field to align the nuclear 
magnetization of hydrogen atoms in water in the body.  

A new MRI scanner is very expensive, cost about $2 million, with a commensurate cost for 
building and preparing the space it needed. Therefore, hospital managers are under great 
pressure to keep high utilization ratio of such facilities, which makes patients to wait long 
time for imaging examinations.   

 

 
FIG. 1.2 The photo for MRI scanner 

Photo from http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/. 
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1.2.2 MRI examination reservation process 

The pathway of stroke patients is shown in Fig. 1.3. Nearly all stroke patients arrive at the 
hospital through the emergency department. When a potential stroke patient arrives at the 
hospital, CT scan and/or Echocardiography is scheduled to identify the type of the stroke. 
After this examination, the patient is transferred to the neurovascular department of the 
hospital. The first checkup is performed by an intern. Then a senior physician examines the 
patient. Patient LoS is initially determined by neurologists. A certain number of medical 
examinations are needed and requested by neurologists during the visits.  

 

Stroke 
Patient Emergency 

Department

CT Scan/ 
Echocardiograph Neurovascular 

Department

Checkup
Intern/ Physician

Examinations
MRI/ CT Scan

Patient Leave

Reserve by 
Phone/fax

 
 

FIG. 1.3 Pathway of stroke patients 
 

If the stroke is not so heavy, the patients may be allowed to leave the hospital before getting 
all examinations. In this case, the LoS of patients depends on the waiting time for imaging 
examinations. At the end of his/her stay, the patients go back home or is transferred to a 
special medical unit for rehabilitation. The transfer time also depends on the time of medical 
examinations. 

In the related French hospital, the same-day examinations are requested by phone for 
emergency patients. For the patients with stable status, appointments are made by the 
secretaries by fax. If patients are available, then examinations are scheduled. The delay for 
examinations depends heavily on the experiences of the secretary and the personal 
relationship with the secretary of the imaging department. Often, appointments for patients 
that no longer need the examination for various reasons are not cancelled but kept by the 
neurovascular department for other patients.  
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This examination reservation process seems simple but time-consuming as it needs the 
informal collaboration of neurovascular department, medical imaging department and 
patients. In France, the actual delay for obtaining a time slot for examination is very long, 
more than 30 days for a regular MRI request. This negatively impacts the LoS but most 
importantly threatens the life of patients.  

1.3 Problems and contributions 

Imaging examination delays can be improved either from the service provider side (the 
imaging department), i.e. better schedule of examination demands, or from the client side, 
i.e. the neurovascular department side.  
The management of a diagnostic facility from imaging department side consists of two 
interrelated tasks (Green et al. (2006)): establishing an appointment schedule for outpatients, 
and designing a system of dynamic priority rules for admitting patients into service in real 
time. Appointment scheduling refers to the determination of the duration, number, and 
timing of time slots for a particular day. Dynamic priority rules provide the real-time control 
of access to the facility by priorities of different patients.  

The improvement of the operations of the imaging department involves the whole hospital 
and concerns too many medical services. For this reason, we start from the neurovascular 
department perspective and develop solutions.  
We performed six-month field observation of the neurovascular department and collected 
data concerning patient arrival, medical examinations requested for each patient, delays of 
these examinations, and LoS of the patient. A detailed analysis of the historical data, as 
shown in Fig. 1.4, reveals that the neurovascular department has a large but rather stable 
weekly demand for medical examinations. The neurovascular department is actually the 
largest customer of the imaging department. Further, MRI examination of stroke patients 
takes nearly the same time, i.e. one time slot of about 30 minutes. 

 
FIG. 1.4 Historical data collected from the neurovascular department 

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17

Weeks

N
um

be
r o

f p
at

ie
nt

s 
ar

riv
a

Mon.
Tues.
Wed.
Thurs.
Fri.
Sat.
Sun.



6 Chapter 1 Planning of MRI examinations: Introduction 

  

Based on the observation in the neurovascular department in the hospital under study, we 
propose a contract-based MRI examination reservation process. The imaging department 
reserves each week a certain number of appropriately distributed time slots (contracted time 
slots, CTS) for the neurovascular department. When needed, patients can still get extra MRI 
time slots through regular reservation (regular time slots, RTS) which takes much longer 
time with a delay of over 30 days.  
The contract-based examination reservation process is characterized by the following 
decisions and control policies: 
Contract decisions, i.e., the number of CTS and its distribution over time; 
Patient assignment control policy, which assigns patients to either CTS or RTS. If the 
patient is assigned to CTS, then he/she will wait for CTS in the following days. Else, his/her 
examination will be reserved through regular MRI examination reservation process. 
Advance CTS cancellation policy, which cancels the CTS in advance when there are no 
enough stroke patients to fill contracted time slots. 
This thesis provides a mathematical analysis of the contract-based approach under the 
following assumptions:  
Assumption 1: Only MRI examinations are considered and each patient requires one MRI 
time slot. Each patient can be assigned to either one CTS or one RTS. 

Assumption 2: Emergency patients are not considered in this thesis. All patients have equal 
priority.  

Assumption 3: Patient arrivals vary during a week but are stationary from one week to 
another. Further, the number of arrivals in one day is independent of the arrivals of other 
days.  

Assumption 4: The same contract is used for different weeks, i.e. nt = nt+7 for all t where nt 

denotes the number of CTS of day t. As a result, the contract can be represented by a 7-entry 
integer-valued vector n= {n1,…, n7}. 

Another major assumption is the focus on the neurovascular department which is the most 
important consumer of MRI examinations. The impact of the MRI examination reservations 
from this department on other departments sharing the MRI facilities is neglected.  

The contributions are described as follows: 
The first chapter introduces the stroke, MRI scanner, and regular MRI examination 
reservation process for stroke patients. We also define the problems solved in this thesis. 

The second chapter reviews the state-of-the-art of methods and approaches used for the 
related problems.  

The third chapter proposes a stochastic programming model to simultaneously determine the 
contract decision and patient assignment policy. In order to solve this model, patient 
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assignment policy is first established via a Markov Decision Process (MDP) method. Then, 
Monte Carlo optimization and local search are used to determine the contract decisions. 
Computational experiments show that the proposed algorithms can efficiently solve the 
model. The new reservation process can greatly reduce the average waiting time of stroke 
patients at the expense of some unused CTS. 

The fourth chapter exploits the possibility of one-day advance CTS cancellation to improve 
the contract-based MRI examination reservation process. An average-cost MDP formulation 
is proposed to determine patient assignment and one-day advance CTS cancellation control 
policies at the same time. Local search is used to improve the contract decisions with the 
known policies. Computational results show that one-day advance CTS cancellation can 
greatly reduce the unused CTS ratio with a little increase in average delay. 

In the fifth chapter, we extend the one-day advance cancellation to two-day advance 
cancellation. The patient assignment, one-day advance cancellation, and two-day advance 
cancellation control policies for average-cost MDP are established via discounted-cost MDP 
and advanced convexity concepts. Contract decisions are further improved by local 
optimization. Computational results show that the criterion values can be further reduced.  

Chapter 6 concludes the thesis. 
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Chapter 2  
Literature review 
This chapter presents a literature review for existing methods and approaches related to the 
MRI examination reservation problem. There are several streams relevant for this thesis, 
including the management of diagnostic services, appointment scheduling, capacity 
allocation of hospital resources; and similar problems in other fields. 

 

2.1 Managing diagnostic services 

The management of diagnostic devices, such as computer tomography (CT) and MRI 
scanners, has received limited coverage. The two earliest contributions are Walter (1973) 
and Lev et al. (1976). Simulation studies were performed in Walter (1973) to investigate the 
effect of scheduling rules on patient waiting time for X-rays in a radiology department. Lev 
et al. (1976) pointed out that the design of the management systems and scheduling 
techniques were the emphasis for improving radiology services.  
Vasanawala and Desser (2005) used queuing theory to predict the optimal number of 
schedule slots to reserve for urgent CT and ultrasonography. Emergency studies were 
modeled as a Poisson process; and slots were reserved such that the rate of rescheduling of 
routine studies to accommodate emergencies is below a certain level.  
Effective allocation of expensive imaging diagnosis capacity among several classes of 
patients within a day was addressed in Green et al. (2006). Three classes of patients were 
considered: inpatients, outpatients, and emergency patients. They considered two 
interrelated problems: the outpatient appointment schedule and the dynamic priority rules 
for admitting patients into service. The problem was formulated as a finite-horizon dynamic 
program and properties of the optimal policies have been identified, in order to design the 
outpatient appointment schedule, and establish dynamic priority rules for admitting patients 
into services.  
A simple approach for dividing the available diagnosis capacity between emergency and 
inpatients on the one hand and outpatients on the other was proposed in Patrick and 
Puterman (2007). The authors looked at the benefit of reserving space for carrying over a 
percentage of non-emergency inpatient demand to the next day. Patrick et al. (2008) 
addressed the admission of multi-priority patients on a waiting queue to a diagnostic 
resource. They used an MDP framework to model the dynamical scheduling problem of 
multi-priority patients to a diagnosis facility in a public health care setting and proposed an 
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approximate dynamic programming approach to overcome the state space explosion 
problem.  
A dynamic capacity allocation problem for several priority classes patients was considered 
in Erdelyi and Topaloglu (2009) with protection level policies. Protection levels were used 
to “protect” a part of the capacity from the lower priority jobs so as to make it available for 
the future higher priority jobs. A simulation-based optimization approach was proposed to 
find a good set of protection levels. It combined a perturbation analysis technique to 
evaluate the gradient with respect to the protection levels and a stochastic approximation 
approach to determine the optimal protection levels. 

The allocation of two CT-scanners was considered in Kolish (2008) by providing medical 
services to three patient groups with different arrival patterns and cost-structures. The 
problem was formulated as an MDP with the aim of allocating the available resources 
dynamically to patients of the three groups such that the expected total reward was 
maximized. Sickinger and Kolisch (2008) pursued the previous work to determine the 
optimal number of outpatients to be scheduled and assign the outpatients to a variable-
block/fixed-interval appointment schedule. An MDP approach was proposed in Schutz and 
Kolisch (2009) to decide whether to accept requests for MRI examinations from patients 
with different priorities such as inpatients and outpatients. Different examination types, 
cancellations, no-shows and over-booking, and same-day demand were considered.  

2.2  Appointment scheduling 

Appointment scheduling is the problem of assigning a specific time when the patient is 
scheduled to start receiving care (Gupta and Denton (2008)). The appointment scheduling in 
general was reviewed in Mondschein and Weintraub (2003), while Magerlein and Martin 
(1978) and Blake and Carter (1997) summarized articles on surgery scheduling, and Cayirli 
and Veral (2003) provided excellent reviews on outpatient appointment systems, and Gupta 
and Denton (2008) surveyed appointment scheduling in health care system. Here we focus 
on the two latest reviews and some latest articles which are not included in the review. 
Cayirli and Veral (2003) classified the outpatient appointment scheduling literature as 
follows: 1) static vs. dynamic appointment scheduling; 2) performance measures; 3) system 
design; and 4) methodology.  
The most common appointment system in health care is the static appointment scheduling, 
where all decisions must be made before the start of a clinic session. The dynamic case can 
adjust the appointment time based on the current state of the system, which is most 
applicable in situations where patients are already admitted to a hospital or clinic. Most of 
the literature focuses on the static case, because the outpatient schedule for a session must 
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be finished before the session begins. The simplest case is when all scheduled patients arrive 
on time and a single doctor serves them with stochastic processing times. If more doctors 
and more services are considered, the problem becomes more difficult. The patient lateness, 
no-shows, walk-ins, and emergencies may make it more complex. A representative set of 
papers on static appointment scheduling includes Vanden Bosch and Dietz (2000), Denton 
and Gupta (2003), and Robinson and Chen (2003) et al. 
There is numerous performance criteria used to evaluate a given schedule. They are 
classified as time, congestion, and fairness. Time based measures include patients’ waiting 
time, physician idle time, and staff overtime. Congestion based measures mainly refer to the 
mean number of patients in the queue. Fairness based measures focus on the even 
distribution of patients’ waiting time over the day. Mondschein and Weintraub (2003) 
provide a detailed review of performance measures. 
The design of the appointment system can be decomposed into three decisions: a) the 
appointment rule, b) the use of patient classification, and c) the adjustments made to reduce 
the disruptive impact of walk-ins, no-shows, and/or emergency patients. The appointment 
rule is typically specified by three parameters, the “block-size”, i.e., the number of patients 
scheduled to this block, the “initial-block”, i.e., the number of patients given the same 
appointment time at the start of a session, and “appointment interval”, i.e., the interval 
between two appointments. Any combination of the above parameters is a possible 
appointment rule. Patient classification in outpatient scheduling can be used for two 
purposes: to sequence patients at the time of booking; and/or make the adjustment for the 
intervals based on the different service time of different patient class. The design of an 
appointment system must consider the possible adjustments for no-shows, walk-ins, urgent 
patients, and /or emergencies. This problem is addressed in Ho and Lau (1992), Cayirli 
(2006), Harper and Gamlin (2003), Wijewickrama and Takakuwa (2005) and Wijewickrama 
(2006). 
Methods can be classified as analytical and simulation-based. Analytical methods include 
queuing theory and mathematical programming methods. The simulation studies include 
Babes and Sarma (1991),Cayirli (2006), Harper and Gamlin (2003), and Rohleder and 
Klassen (2002),  etc., while the analytical include Robinson and Chen (2003), Vanden 
Bosch et al. (1999), and Vanden Bosch and Dietz (2000), etc. 
Gupta and Denton (2008) described the appointment scheduling in three different 
environment, including primary care appointment scheduling, specialty clinic appointment 
scheduling, and scheduling elective surgery appointments. Complicating factors were 
discussed, including arrival and service time variability, patient and care provider 
preferences, and available information technology, etc. The articles were characterized into 
three themes according to the complicating factors. The readers are referred to Gupta and 
Denton (2008) for details.  
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Cayirli et al. (2008) investigated two approaches to patient classification by simulation. The 
first one used patient classification only for sequencing patient appointments at the time of 
booking. The second used patient classification for both sequencing and appointment 
interval adjustment, in which appointment intervals were adjusted to match the consultation 
time characteristics of different patient classes. Simulation results showed that new 
appointment systems that used interval adjustment for patient class were efficient in 
improving doctors’ idle time, doctors’ overtime and patients’ waiting times without any 
trade-offs. Practical guidelines have been developed for managers responsible for designing 
appointment systems. 
To deal with the problem of last-minute cancellation or “no-shows”, Green and Savin (2008) 
proposed a new conception of appointment system, which was similar to a single-server 
queuing system. In this system, customers to enter service had a state-dependent probability 
of not being served and might rejoin the queue. Experimental results showed that the 
queuing models could provide efficient guidance in identifying patient panel sizes for 
medical practices that were trying to implement a policy of “advanced access”. 
Muthuraman and Lawley (2008) developed an appointment scheduling policy for outpatient 
clinics with overbooking used to compensate for the possible patient no-show. The 
objectives were to minimize patient wait times, maximize resource utilization, and minimize 
the number of patients waiting at the end of the day. Patients should be served during over 
time if there were patients waiting at the end of day. Conditions under which the objective 
evolution is unimodal have been derived and the behavior of the scheduling policy has been 
investigated under a variety of conditions.  
A Markov decision process model was proposed in Gupta and Wang (2008) to solve the 
capacity management problem of a the clinic, i.e. the determination of which appointment 
requests to accept in order to maximize revenue. In this model, the patients’ choice behavior 
was modeled explicitly. When the clinic is served by a single physician, the optimal policy 
has been identified as a threshold-type policy as long as the choice probabilities satisfy a 
weak condition. For a multiple-doctor clinic, the structure of the optimal policy has been 
partially characterized. Several heuristics and an upper bound were proposed. Numerical 
experiments demonstrated that the two heuristics based on the partial characterization of the 
optimal policy were quite accurate. 
A semiclosed migration network was used in Lee and Zenios (2009) to capture patient flow 
into a clinic and between the clinic and hospital. Temporary patient absences were 
considered. A simple class of stationary control policies for patient admissions was 
proposed and algorithms were provided for selecting the one that maximizes long-run 
average earnings.  
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2.3  Planning and allocation of hospital resources 

2.3.1 Planning and allocation of operating rooms 

Decisions pertaining to the planning and allocation of operating rooms are among the most 
critical day-to-day problems faced by hospitals. These decisions have influence not only on 
the quality of care of patients but also on the crucial relationship between the hospital and 
physicians who work there.  
Cardoen et al. (2010) provided a comprehensive review of recent operational research 
literature on operating room planning and scheduling. The related articles have been 
classified into 7 classes based on the criteria, including patient characteristics, performance 
measures, decision levels, type of analysis, solution techniques, uncertainty, and 
applicability of research. Some interesting articles are reviewed according to the above 
classifications.  
1) In the literature of operating room planning and scheduling, two major patient classes are 
considered: elective and non-elective patients. The former refers to patients whose surgery 
can be planned in advance, and the latter usually refers to emergency patients, needing 
surgery as soon as possible, and urgent patients, needing surgery within a short period. 
Elective patients can be divided into inpatients and outpatients.  
The surgery operation scheduling problem with elective patients considered was addressed 
in Perdomo et al. (2006) and Augusto et al. (2008), with two types of resources considered, 
including operating rooms and recovery beds. The problem was formulated as the 
assignment of patients to operating rooms and recovery beds with the objective of 
minimizing the sum over all patients of one defined function of their completion times. A 
Lagrangian relaxation approach was proposed to determine a near optimal schedule and a 
tight lower bound.  
The allocation of medical service capacity between distinct demand streams was analyzed in 
Gerchak et al. (1996) in the setting of an operating room where the capacity was shared 
between elective and emergency surgeries. This reference focused on the reservation-
planning policy for elective patients by determining at the start of each day how many 
additional elective surgeries to assign for that day. A stochastic dynamic programming 
model was proposed for this problem. The nature of the optimal policy was analyzed and 
characterized, which was not necessarily of a control-limit type.  
2) There are many performance measures used to evaluate the performance of the planning 
and scheduling methods. The waiting time of patients or surgeons is one common 
evaluation measures. The other criteria include throughput, utilization, leveling, makespan, 
patient deferral/refusal, finance, and preferences, etc. 
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Denton et al. (2007) examined how case sequencing influenced patient waiting time, 
operating room idling and overtime. A stochastic optimization model was formulated and 
some practical heuristics were proposed for computing operating room schedules that 
hedged against the uncertainty in surgery durations. Sequencing surgeries and scheduling 
start times were also considered by a simple sequencing rule based on surgery duration 
variance. The rule was used to generate substantial reductions in total surgeon and operating 
room team waiting, operating room idling, and overtime costs. 
3) There are many solution techniques, including mathematical programming, simulation, 
constructive heuristics, improvement heuristics, dedicated branch-and-bound, and analytical 
procedures.  
Mathematical methods are well applied in planning and scheduling of operating rooms. 
Guinet and Chaabane (2003) addressed the operating theatre planning over a medium term 
horizon (one or two weeks). The operating theatre under consideration was composed of 
several operating rooms and one recovery room where several beds were available. An 
extension of the Hungarian method has been developed to calculate the operating theatre 
planning.  
Belien and Demeulemeester (2007) proposed and evaluated a number of models for 
building surgery schedules with leveled bed occupancy. A number of mixed integer 
programming based heuristics and a metaheuristic have been developed to minimize the 
expected total bed shortage.  
A stochastic programming model for operating room planning with two types of surgery 
demands: elective and emergency was proposed in Lamiri et al. (2008a). A Monte Carlo 
optimization method was used to solve this model. Lamiri et al. (2008b) addressed the 
problem of scheduling patients in a hospital operating theatre, where three types of 
resources were considered: porters, operating rooms and recovery beds. The problem was 
formulated as the assignment of patients to the different resources in order to minimize a 
criterion function of patients’ completion times. Column generation was used as a 
decomposition approach to solve the scheduling problem. Numerical results have illustrated 
that column generation is a promising decomposition approach for the scheduling problem. 
A methodology was developed in Zhang et al. (2009) for allocating operating room capacity 
to specialties. A finite-horizon mixed integer programming (MIP) model was built to 
determine a weekly operating room allocation template that minimizes inpatients’ cost 
measured as their length of stay.  
Wang and Xu (2008) developed a fuzzy multi-objective programming model to optimize the 
operating room scheduling. A multi-objective combinatorial optimization problem was 
addressed in Cardoen et al. (2009), which determined the sequence of patients within the 
operating rooms of a freestanding ambulatory surgical center. Mixed integer linear 
programming solution approaches have been developed.  
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Discrete-event simulation is an effective tool for planning and allocation of resources to 
improve patient flow, while minimizing health care delivery costs and increasing patient 
satisfaction. 
Intensive care unit (ICU) is a limited and critical resource. Ridge et al. (1998) developed a 
simulation model for bed capacity planning in intensive care. By this model, they have 
found non-linear relationship exists between numbers of beds, average occupancy level and 
the numbers of patients that have to be transferred due to the lack of beds. The compromise 
between bed occupancy and the number of transfers was also considered. 
Kim et al. (1999) utilized queuing and simulation models to analyze the admission-and-
discharge processes of one particular ICU. The beds of an ICU are scarce resources. The 
stochastic demands and random service times make it difficult to manage that resource. The 
admission of elective-surgery patients can be delayed. In order to minimize the number of 
cancelled surgeries, Kim et al. (2000) proposed a simulation model to evaluate the bed-
reservation schemes by reserving the ICU beds for the exclusive use of the elective-surgery 
patients.  
Shmueli et al. (2003) presented a model for optimizing admissions to an ICU in order to 
maximize the expected incremental number of lives saved from operating the ICU. Queuing 
theory was used to model the probability distribution of the number of occupied ICU beds. 
Three different admissions policies have been considered: first come first served, first come 
first served for all referrals whose expected incremental survival benefits gained from ICU 
admission exceed some threshold, and first come first served for all referrals whose 
expected incremental survival benefits exceed a bed specific threshold that depends upon 
the number of occupied beds. Experimental results showed that the last two methods could 
save more lives.  

Persson and Persson (2009) analyzed the operating room planning at a department of 
orthopedic surgery in Sweden. A discrete-event model was used to solve the problem of 
handling uncertainty in patient arrival and surgery duration and at the same time 
maximizing the utilization of operating room. The experiments have demonstrated that the 
operating room department can perform much better by applying a different policy in 
reserving operating room capacity for emergency cases together with a policy to increase 
staff in stand-by.  
4) In terms of decision levels, there are different combinations between type, i.e., date, time, 
room, capacity, and level, i.e., discipline, surgeon, and patient level. For example, Blake et 
al. (2002) and Blake and donald (2002) used integer programming model for a decision 
concerning date and room, i.e., the determination of each specialty what operating room 
types were assigned to what days of the week. At the surgeon level, Belien et al. (2006) 
introduced a software tool in order to decide when and where the surgeries had to be 
performed.  
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5) The types of analysis mainly include optimization, scenario analysis, and complexity 
analysis. The combinatorial optimization methods are either exact, for instance, Belien and 
Demeulemeester (2008) and Calichman (2005), or heuristic, for example, Blake and donald 
(2002) and Marcon et al. (2003). Scenario analysis refers to those focusing on the impact of 
different operating room setting. For example, Niu et al. (2007) used a simulation model 
with different scenarios of resource capacities. The computational complexity of the 
combinatorial problem or the corresponding solution approach was also analyzed. For 
example, Lamiri et al. (2008a) used the 3-partition problem in order to prove that their 
problem is strongly NP-hard and very difficult to solve. 
6) With respect to uncertainty, there are two classes: deterministic and stochastic. 
Deterministic planning and schedule approaches ignore the uncertainties inherent to surgical 
services, for example, Adan and Vissers (2002) and Arenas et al. (2002); whereas uncertain 
approaches try to include such uncertainties. Two types of uncertainty are mainly 
considered, i.e., arrival uncertainty and duration uncertainty. The former refers to the 
uncertain arrival of emergency patients and the lateness of surgeons at the start of the 
surgery session, and the latter represents deviations between the actual and the planned 
durations of activities associated with the surgical process. For example, Harper (2002) 
included the patient arrival uncertainty in a detailed hospital capacity simulation model and 
Persson and Persson (2007) considered both patient arrival uncertainty and surgery duration 
variability to study how resource allocation policies affected the waiting time and utilization 
of emergency resources. 

2.3.2 Planning and allocation of other hospital resources 

Mathematical method is one of the most popular methods in this field.  
Hsu et al. (2003) presented a deterministic approach to schedule patients in an ambulatory 
surgical center with the objective of minimizing the number of post anesthesia care unit 
nurses at the center. The patient scheduling problem was formulated as new variants of the 
no-wait, two-stage process shop scheduling problem. A tabu search-based heuristic 
algorithm has been proposed to solve the patient scheduling problem. 
With respect to the problem of nurse scheduling, Cheng et al. (2008) modeled the daily 
nursing care scheduling problems and proposed an efficient scheduling method based on 
simulated annealing algorithm.  
Olivares et al. (2008) applied the newsvendor model to a hospital that tried to balance the 
costs of reserving too much or too little operating room capacity to cardiac surgery cases. 
Results have shown that the hospital placed more emphasis on the tangible costs of having 
idle capacity than on the costs of schedule overrun and long working hours for the staff.  
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The efficient radiotherapy patient scheduling, within oncology departments, was addressed 
in Conforti et al. (2008). Novel optimization models have been proposed with the objective 
of minimizing patients’ waiting time and maximizing the equipment utilization. 
Experimental results have shown that the proposed methods perform better than the human 
experts (i.e., the number of patients that begin the radiotherapy treatment is maximized). 

Conforti et al. (2010) proposed an approach based on a well tailored integer linear 
optimization program, modeling a non-block scheduling strategy in order to minimize the 
mean waiting time or maximize the number of new scheduled patients.  
An integer programming formulation was proposed in Gunes and Yaman (2010) for the 
hospital re-planning problem which arose after hospital network mergers. The model has 
found the best re-allocation of resources among hospitals, the assignment of patients to 
hospitals and the service portfolio to minimize the system costs subject to quality and 
capacity constraints.  

An MDP method was proposed in Thompson et al. (2009) to allocate and reallocate patients 
to different floors of a hospital during demand surges. Decisions such as patient assignment 
and reactive or proactive patient transfers have been considered.  
Min and Yih (2010) addressed a scheduling problem where patients with different priorities 
were scheduled for elective surgery in a surgical facility with a limited capacity. A 
stochastic dynamic programming model was formulated to schedule the patients. A 
structural analysis of the proposed model has been conducted to understand the properties of 
an optimal schedule policy. Based on the structural analysis, bounds on feasible actions 
have been incorporated into a value iteration algorithm, and a brief computation experiment 
has shown the improvement in computational efficiency.  

Except for mathematical method, there are some other methods used in this field. 
Ho and Lau (1999) used simulation to evaluate the impact on appointment schedules of the 
environmental factors, including probability of no-show, the coefficient of variation of 
service times, and the number of customers per service session. Jun et al. (1999)  surveyed 
the application of discrete-event simulation modeling to health care systems.  

Vissers (1994) developed an approach to allocate resources to specialties according to 
demand. The balanced utilization of the resources was considered. The proposed approach 
has utilized a set of models to support hospital managerial decision making on resource 
allocation issues. The allocation of inpatient resources was considered in Vissers (1998) 
within a hospital setting in the form of case study. An allocation procedure has been 
described that takes patient flows as its starting point and enables an evaluation of combined 
influences on the different resources concerned.  
Bharadwaj et al. (1999) proposed a knowledge-based approach for solving the scheduling 
problem in a large cardiac center. System architecture has been derived that integrates 
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principles of opportunistic planning and reason maintenance. The former allows for 
incremental schedule construction, while the latter makes sure that the system records the 
reasons for scheduling decisions and revises the schedule whenever conflicts or new 
opportunities for schedule improvement arise. 

2.4 Related problems in other fields 

Allocating service capacity among competing customer classes has been studied in diverse 
applications including airlines seat management (Belobaba (1989), Barut and Sridharan 
(2004), Haerian et al. (2006)), hotels management (Liberman and Yechiali (1977), Bitran 
and Gilbert (1996)), car rental (Carroll and Grimes (1995), Geraghty and Johnson (1997)), 
telecommunications(Ross and Tsang (1989), Altman et al. (2001), Ormeci and van der Wal 
(2006)), and call center management (Perros and Elsayed (1996),Gans et al. (2003) ). The 
capacity allocation in the last two research streams is often modeled as a dynamic priority 
queuing control problem. The service in some of the business environment, for example, 
hotel management, call center, etc., cannot be delayed. However, the service for patients can 
be delayed with some penalties. 

Capacity protection is one of the most popular methods to deal with the capacity allocation 
problem with multiple priorities of demands. A dynamic capacity allocation problem was 
considered in Erdelyi and Topaloglu (2009), where jobs of different priorities arrived 
randomly over time and a decision was required on which jobs should be scheduled on 
which days. The authors have identified a class of policies defined by a set of protection 
levels, which protects a portion of the capacity from the lower priority jobs so as to make it 
available for the future higher priority jobs. A stochastic approximation method has been 
developed to find a good set of protection levels. Shumsky and Zhang (2009) examined a 
multi-period capacity allocation model with upgrading. In this reference, multiple product 
types and multiple classes of demand were considered. The optimal allocation policy is a 
simple two-step algorithm: First, use any available capacity to satisfy same-class demand, 
and then upgrade customers until capacity reaches a protection limit, so that in the second 
step the higher-level capacity is rationed.  

2.5  Conclusion 

This thesis differs from the previous studies on diagnostic facility management by 
investigating the problem from a totally different perspective and explores solutions from 
the client side, i.e. from the neurovascular department side. The use of contract gives a long 
term view of diagnostic capacity available and the neurovascular department can better 
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manage the priority of the stroke patients and reduce waiting time for MRI examination. 
From the perspective of the imaging department, although the use of contract potentially 
leads to unused time slots, it also gives the imaging department stable and known demands 
which can be used to improve staff scheduling and MRI facility scheduling. 
From a methodological point of view, our approach seems related to capacity allocation 
such as staffing in call center management (Gans et al. (2003)). Capacity allocation in this 
context also has to take into account random demands. The major difference with our 
problem is the acceptable waiting time. In the call center case, the acceptable waiting time is 
fairly short and, as a result, customers overflowing from one capacity planning time slot to 
another one can be neglected. In our case, the waiting of several days for MRI examinations 
is common and the planning of contract decisions has to take into account patients untreated 
overflowing from one day to the next. This makes the contract decisions closely linked to 
CTS waiting queue control.  

Note that this thesis is an extension of our preliminary work, Augusto and Xie (2009), 
which analyzed the contract design problem by discrete event simulation and experimental 
design. This thesis provides an in-depth mathematical analysis of the optimal control and 
proposes efficient contract optimization approaches. 
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Chapter 3  
Contract planning and patient assignment 
policy  
 
This chapter proposes a stochastic programming model in order to determine the contract 
decisions and patient assignment policy at the same time. To solve this problem, structure 
properties of the optimal control policy for a given contract are proved by using an average 
cost MDP approach. The contract optimization is solved by a two-step approach. A Monte 
Carlo approximation approach is proposed to determine an initial contract decision which 
is then improved by local search. Extensive numerical experiments are performed to show 
the efficiency of the proposed approach and to investigate the impact of different 
parameters on the contract decisions and the control policy. To avoid the “unlucky” 
patients assigned to RTS, this chapter proposes an improved method by replacing patient 
assignment policy with RTS reservation policy. Numerical experiments show that the 
distribution of patient waiting times can be improved. 

Papers relevant with this chapter: Geng et al. (2009a), Geng et al. (2009b), Geng et al. 
(2010a) 

 

3.1 Introduction 

Based on the observations in the hospital under study, we propose a new contract-based 
reservation process: the neurovascular department reserves each day some CTS to ensure 
the quick examination for stroke patients. RTS is still possible in case of arrival surges of 
stroke patients. The efficiency of the new reservation process greatly depends on two 
closely related decisions:  

1) The contract planning decisions, i.e. the number of CTS and its distribution over time, 
which is related to capacity planning and allocation. The contract is characterized by an 
integer vector of 7-entries, each corresponding to the number of CTS for a weekday or 
weekend and the same contract is applied for different weeks; 

2) The patient assignment policy for assigning incoming patients to either CTS or RTS, 
which is a decision to be made at the real time level, i.e. each day. 
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This problem is difficult as it involves simultaneously two decisions at different levels, the 
contract at the tactical level with decisions in discrete integer space and the optimal control 
policy at the real-time level. A stochastic programming model is proposed to solve this 
problem. In order to solve this model, the optimal control policy is firstly identified for any 
given contract. Then Monte Carlo approximation and local search are used to determine the 
contract decisions. Finally, an improved implementation method is proposed in order to 
avoid the “unlucky” patients who are assigned to RTS with long waiting times.  

The rest of this chapter is organized as follows. The problem formulation is described in 
Section 3.2. Section 3.3 proposes an average cost MDP model for exploring the structure 
properties of the optimal control policy for any given contract. Contract optimization is 
addressed in Section 3.4. Section 3.5 presents computational results to show the efficiency 
of the proposed approach and the impact of different problem parameters on the contract 
decisions and the control policy. Implementation issues are discussed in Section 3.6. 
Conclusions and perspectives are given in Section 3.7. 

3.2 Problem formulation 

A contract-based MRI examination reservation process is proposed to reduce the stroke 
patient waiting times. This approach is characterized with the contract decision, i.e., the 
number and the distribution of CTS, and patient assignment control policy which assigns 
patient to either CTS or RTS. The contract decisions and the control policy are related to 
each other. The optimal control policy depends on the contract decisions, while the control 
policy has an impact in the determination of CTS. An integrated decision model is proposed 
to determine these decisions based on the assumption 1- assumption 4. 

The MRI examination reservation problem is defined by the following notation: 

Indices: 

t:       the index of days, t=1,…,T; 

i: the index of days in one week, i=1,…,7, denoting Monday, …, Sunday; note that 
the day i±j is the day in one week of j days after or before day i. For example, 1+1 
is 2, i.e., Tuesday, and 1-1 is 7, i.e., Sunday. 

d(t):  the day in the week corresponding to day t with d(t)∈{1, …,7}; 

Data: 

  TR:  average number of days for a patient to have his/her MRI examination through 
regular reservation process with TR > 1; 
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 c:  penalty factor of an unused CTS. It serves as a weighting factor in order to balance 
the waiting time and unused MRI time slots; 

 at:  number of patients arrived in day t. By assumption 3, daily arrivals at for t ∈ IN are 
mutually independent random variables and weekly arrivals (a7j+1, a7j+2, …, a7j+7) 
are identically distributed for all j = 0, 1, …. As a result, the arrival process is 
characterized by probability matrix P = [Pij] for i = 1, …, 7 and for all j ≥0 with Pij 
denoting the probability of j arrivals in day i; 

Decision variables: 

nt:   number of CTS of day t; 

xt:   number of patients waiting for CTS at the end of day t, which is also called CTS 
queue, 0x  is a given constant. Note that xt does not include patients that are directed to 

RTS. 

yt=ft(xt-1+at): IN→IN: number of patients directed to RTS at the end of day t, who will 
have an average delay of TR days for the MRI examination. ft(xt-1+at) is the unknown 
function of the total number of patients after new arrival. 

The sequence of events during each day t is as follows. First, the CTS queue length xt-1 at 
the beginning of the day is known. The number at of new incoming patients during the day 
becomes known. MIN{nt, xt−1 + at} patients are served by the nt CTS of the day and MAX{0, 
nt − xt−1 − at } CTS cannot be filled. yt = ft(xt−1 + at) patients are directed to RTS and will 
have the MRI examination after an average delay of TR days.  The number xt =MAX{0, xt−1 
+ at − nt − yt }of remaining patients will wait for CTS in the subsequent days. 

Remark 3-1: The waiting time of the stroke patients served by RTS is approximated by a 
contract-independent constant TR. The use of a constant TR is reasonable because (i) MRI 
facility is shared by all medical units of the hospital and (ii) the sensitivity analysis 
performed in Section 3.5 shows that the optimal contract is quite insensitive to the change of 
TR. 

Remark 3-2: No constraint on the number of CTS is made in this thesis. The contract 
determined this way best reflects the demands of the neurovascular department. 
Nevertheless, all results of this paper still hold under constraints about the maximum 
number of CTS for each week and each day. 

Under Assumption 4, the control policy will be proved stationary over weeks, i.e. ft+7(.) = 
ft(.), in the next section.  

Under the above assumptions, the MRI examination reservation problem can be formally 
stated by the following stochastic programming model: 
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Model 3-1: 

 ( )( )1, 1

1   E lim
T

R
t t t t tTf t

MIN T y x c n x a
T

+
−→∞

=

⎡ ⎤+ + − −⎢ ⎥⎣ ⎦
∑n

 (3.1) 

Subject to: 

 ( )1 1t t t t t ty f x a x a− −= + ≤ +  (3.2) 

 ( )1t t t t tx x a y n +
−= + − −  (3.3) 

 ( ) 7
1 2 7, ,..., , : .tn n n IN f IN IN∈ →  (3.4) 

where ( )
if 0

0 else
ξ ξ

ξ + ≥⎧
= ⎨

⎩
. 

In this formulation, the criteria contain three terms: the first two terms are respectively the 
average delays of patients using RTS and CTS, and the last term corresponds to the average 
penalty cost of unused CTS. Constraint (3.2) defines the control policy for use of RTS. 
Constraint (3.3) updates the number of patients in CTS queue. This model is quite difficult 
to solve because it contains some unknown ft(xt−1 + at). To identify this function, the optimal 
control policy f must be established. In the following, we first investigate the structure 
properties of the optimal control policy and then proposed an optimization method for 
determining the contract decisions. 

3.3 Structure properties of the optimal control 

policy 

This section considers the optimal patient assignment policy for the average cost MDP 
under any given contract n. The structure properties of the average cost MDP are 
established via discounted cost MDP. Let zt = xt-1 + at denote the state variable, which is the 
CTS queue length after patient arrivals. History-dependent policies are considered in this 
chapter. Let ht = (zi, xi, …, zt−1, xt−1,  zt) be the full history by stating from initial state zi at the 
beginning of day i. For ease of notation, we equivalently choose the CTS queue length at the 
end of each day as the control variable. The patient assignment policy is denoted as 
π={π1,π2,...} where the CTS queue length at the end of day t is xt = πt(ht) with 0≤xt ≤ 

( )t tz n +− . This definition of control policy is equivalent to that of relation (3.2) as a result 

of relations (3.2)-(3.3). 
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The objective is to minimize over all history-dependent policies π={π1,π2,...} the following 
long-run average cost  

 ( ) ( )( )
1, lim ,

T i

d t t t iT t i

J i z E g z x z z
Tπ

+

→∞
=

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∑  (3.5) 

for any given initial state zi = z with i = 1, …7 where ( )( ) ,d t t tg z x  is the cost incurred in day 

t  with 

 ( ) ( ) ( )( ) ( ) ( ), R
d t t t d t t t t d t tg z x c n z x T z n x

+ +⎡ ⎤= − + + − −⎢ ⎥⎣ ⎦
 (3.6) 

In the following, when no confusion is possible, gd(t)(.) and ( )d tn are written as gt(.) and tn  for 

convenience. 

Theorem 3-1: There exists an optimal average cost policy such that tx x≤ for all t > 0 with 

( ) *Rx T c n⎡ ⎤= +⎢ ⎥  where n* = MAX {n1, …, n7} and X⎡ ⎤⎢ ⎥  is the least integer greater or 

equal to X. 

Proof: Without loss of generality, assume that the system starts from state z in day i = 1. Let 
(xt, ∀t=1, 2,…) be an optimal control policy. Construct another history-dependent policy 

( )'
tx such that ( )( )' '

1min , ,t t t t tx x a n x x
+

−= + − . By definition, '
t tx x≤ . Hence, the control 

policy ( )'
tx is feasible. 

Note that the criterion value does not depend on patient schedule as long as the number of 
patients remaining in the CTS queue is equal to xt. The following history dependent patient 
scheduling policy is used for (xt). Patients are either marked or unmarked. When (xt – x’t) 
increases by Δ which is clearly smaller than at, Δ patients arrived in day t are marked and 
added to marked patient queue. When (xt – x’t) decreases by Δ, Δ marked patients are 
assigned to RTS and will have their MRI examination in TR days if x’t > 0. Otherwise, δ 
marked patients will be assigned CTS of day t and Δ−δ marked patients assigned RTS with 

( ) ( )'
1 1min , min ,t t t t t tx a n x a nδ − −= + − + . By definition, the CTS queue length of unmarked 

patients is exactly x’t. Since ( )1t t t tx x a n +
−≤ + −  and '

t tx x≤ , marked patients arrive in day t 

such that '
tx x= . 

By optimality of (xt), ( )'
tx  is also optimal and the Theorem holds if 

 ( ) ( ) ( ) ( )( )
1

1lim , ' , ' 0
T

T t t t td t d tT t
g z x g z x

T→∞
=

Φ ≡ − ≥∑  (3.7) 
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By construction, 

 ( )( )
( )

1

1 Q T
R

T j
j

G T T
T =

Φ = −∑  (3.8) 

where Q(T) is the total number of marked patients by day T and Gj(T) is the cost incurred by 
j-th marked patient till day T including waiting time in the marked patient queue plus 
eventually a cost of TR if is served by RTS or the cost of −c if it is served by CTS. 

From (3.8), 

 ( )( )
( )

( ) ( )( )
1

1
RQ T T

R R R
T j

j
G T T Q T Q T T T

T

−

=

⎛ ⎞
⎜ ⎟Φ ≥ − − − −
⎜ ⎟
⎝ ⎠

∑  

By definition Q(T) – Q(T-TR) is upper bounded by the number of patients arrived in the last 
TR days and is hence finite. As a result, (Q(T) – Q(T-TR))/T tends to 0 as T increases. As a 
result, relation (3.7) holds and the proof is completed if Gj(T) – TR ≥ 0 for all j ≤ Q(T-TR). 

Three cases are possible. Case 1: marked patient j is not yet served till day T and hence has 
been waiting for at least TR days, which implies Gj(T) – TR ≥ 0. Case 2: marked patient j has 
been assigned to RTS and by definition, Gj(T) – TR ≥ 0. Case 3: marked patient j has been 
served by a CTS. Note that marked patient j arrives in a day t such that '

tx x=  and will be 

served by a CTS in day τ such that ' 0xτ = . As a result, marked patient j waits at least / *x n  

days. Hence, ( ) / * 0R R
jG T T x n c T− ≥ − − ≥ . 

Q.E.D 

Due to Theorem 3-1, we can make the following assumption without loss of generality. 

Assumption 3-A1: tx x≤ for all t > 0. 

3.3.1 Discounted cost problem 

According to relation (3.5), the corresponding α-discounted cost MDP is defined as follows:  

 ( ) ( ), ( ), lim ,
T

t i
d t t t iT t i

J i z E g z x z zα π α −

→∞
=

⎡ ⎤= =⎢ ⎥⎣ ⎦
∑  (3.9) 

for any given initial state zi = z with i = 1, …7 with discount factor α such that 0 < α < 1. 

Consider the following optimal cost function 

( ) ( ),, ,V i z MIN J i zα α ππ
=  
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In the remaining, for simplicity, the notation α is omitted in this subsection where only 
discounted cost problem with a given  α is considered.  

Theorem 6.10.4 in Puterman (1994) is used to establish the optimality equation. It will be 
shown in the following Remark 3-3 that all conditions needed for application of Theorem 
6.10.4 are satisfied. Since the set of states (i, z) is countable and the control constraint set is 
finite as xt ≤ zt for each zt, Theorem 6.10.4 in Puterman (1994) implies that the optimal cost 
function is the unique solution of the following optimality equation: 

 ( )
( )( )

( ) ( )
( )0 1,

, min , 1,...,71,i

R
i i

x z n x i a
a

c n z x T z n x
V i z iP V i x aα+

+ +

≤ ≤ − ∧ +

⎧ ⎫− + + − −⎪ ⎪= ∀ =⎨ ⎬+ + +⎪ ⎪⎩ ⎭
∑  (3.10) 

where min( , )x y x y∧ = . The optimal control policy is given by the argument x that reaches 
the minimum in (3.10) and the optimal cost function is the limiting function of the following 
value iteration: 

 ( )
( )( )

( ) ( ) ( )1
1,

0
min

t t t

t R t
t t t t t t t t a t

x z n x a

V z c n z x T z n x P V x aα
+

+ + +
+

≤ ≤ − ∧

⎧ ⎫= − + + − − + +⎨ ⎬
⎩ ⎭

∑  (3.11) 

 ( )0 0V z =  (3.12) 

for t = 0, −1, − 2, … where nt = nd(t) and Pt+1,a = Pd(t+1),a are shorthand notation with d(t) 
denoting the corresponding weekday or weekend with d(0) = 7, d(−1) = 6, …  As a result,  

 ( ) ( )7, lim n i

n
V i z V z− +

→∞
=  (3.13) 

Relation (3.11) can be rewritten as  

 ( ) ( ) ( )
( )( )

( ) ( ){ }1

0
min 1

t t t

t R t R
t t t t t t t

x z n x
V z c n z T z n U x T x

+

+ + +

≤ ≤ − ∧
= − + − + − −  (3.14) 

where  

 ( ) ( )1 1
1,

t t
t t a t

a
U x P V x aα+ +

+= +∑  (3.15)  

Similarly, optimality equation (3.10) can be put in similar form. 

 ( ) ( ) ( )
( )( )

( ) ( ){ }
0

, min 1, 1 , 1,...,7
i

R R
i i

x z n x
V i z c n z T z n U i x T x i

+

+ +

≤ ≤ − ∧
= − + − + + − − ∀ = (3.16) 

where 

 ( ) ( )1,1, 1,i a
a

U i x P V i x aα ++ = + +∑  (3.17) 
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Remark 3-3: From Theorem 6.10.4 of Puterman (1994), the optimality equations (3.10)
actually has a unique solution as Assumption 6.10.1 and condition (6.10.11) of Puterman 
(1994) hold with gt(zt, xt)  ≤ w(zt) ≡ cn* + TRzt and  

( ) [ ] ( )1, 1* * * *R R R R R
i a t t t t t

a
P w x a cn T x T E a cn T z T a w z T a+ ++ ≤ + + ≤ + + = +∑  

where n* = MAX{n1, …, n7}, a* = MAX{E[a1], …, E[a7]}. 

Property 3-1: In the value iteration by  (3.11) or equivalently by (3.14), the optimal xt is 
nondecreasing in zt.  

Proof: Denote 1
tx  and 2

tx  as the optimal xt for ( )1t
tV z +  and ( )t

tV z . From relation (3.14),  

( ) ( )10 ( 1 ) ( ) 1t t t t tx z n x z n x+ +≤ ≤ + − ∧ ≤ − + ∧  

( )20 ( )t t tx z n x+≤ ≤ − ∧  

Therefore, 1
tx  is equal to either 2

tx or ( ) 1t tz n +− +  and hence 1 2
t tx x≥ . This completes the 

proof. 

Property 3-2: In the value iteration by (3.11) or equivalently by (3.14), −c≤Vt (zt+1)− Vt 

(zt)≤TR, for any tz  and t. 

Proof: The proof is made by induction. First the property is clearly true for t = 0. Assume 
that the property holds for t+1 and we prove that it also holds for t. Let 1

tx  and 2
tx  as the 

optimal tx for ( )1t
tV z +  and ( )t

tV z .   

From Property 3-1, 1 2
t tx x≥ . As a result, by (3.14) for zt +1 with xt = 2

tx , 

( ) ( ) ( )( ) ( )2 2 1 21 1 1t R t
t t t t t t t tV z c n z x T z n x U x+ + ++ ≤ − − + + + − − +  

By definition,  

( ) ( ) ( )( ) ( )2 2 1 2t R t
t t t t t t t tV z c n z x T z n x U x+ + += − + + − − +  

Combining the two relations,  

( ) ( ) ( ) ( ) ( ) ( )1 1 1t t R R R
t t t t t t t t t tV z V z c n z c n z T z n T z n T+ + + ++ − ≤ − − − − + + − − − ≤  

Three cases are considered for the proof of the first inequality of this Property. 

Case: 1 0t tz n+ − ≤ . In this case, 1 2 0t tx x= = . As a result, 

( ) ( ) ( )11 1 0t t
t t tV z c n z U ++ = − − +  
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( ) ( ) ( )1 0t t
t t tV z c n z U += − +  

( ) ( )1t t
t tV z V z c+ − = −  

Case: 1 0t tz n+ − > and ( )10 1t t tx z n x< < + − ∧ . From (3.14), there is no unused CTS for 

both ( )1t
tV z +  and ( )t

tV z   and 2 1
t tx x= . Hence, 

( ) ( )( ) ( )1 1 1 11 1t R t
t t t t t tV z x T z n x U x++ = + + − − +  

( ) ( )( ) ( )1 1 1 1t R t
t t t t t tV z x T z n x U x+= + − − +  

( ) ( )1t t R
t tV z V z T c+ − = ≥ −  

Case: 1 0t tz n+ − >  and 1 1t t tx z n= + − . From (3.14), there is no unused CTS for both 

( )1t
tV z +  and ( )t

tV z . Hence,  

( ) ( )1 1 11t t
t t tV z x U x++ = +  

Take 1 1tx −  as the feasible control policy for ( )t
tV z ,  

( ) ( )1 1 11 1t t
t t tV z x U x+≤ − + −  

Combining the two relations with (3.15), 

( ) ( ) ( ) ( )( )1 1 1 1
1,1 1 1t t t t

t t t a t t
a

V z V z P V x a V x aα + +
++ − ≥ + + − + −∑  

By induction assumption, ( ) ( )1 1 1 1 1t t
t tV x a V x a c+ ++ − + − ≥ −  and hence, 

( ) ( )1 1t t
t tV z V z c cα+ − ≥ − ≥ − . 

Definition: A function φ(x) : →Z R  is said convex if φ(x+1) – φ(x) ≥ φ(x) – φ(x−1), for all 
x. 

Property 3-3: In the value iteration by  (3.11) or equivalently by (3.14),  ( )t
tV z  is convex 

in tz . As a result, ( )1t
tU x+  is convex in tx .  

Proof: First, the property holds for t = 0 as ( )t
tV z = 0. Assume that ( )1

1
t

tV z+
+  is convex 

and we prove the property for t. From (3.15), the convexity of ( )1
1

t
tV z+
+  implies the 

convexity of ( )1t
tU x+ . Hence, ( ) ( )1 1t R

t tU x T x+ − −  is also convex. Let 
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( )( )
( ) ( )( )1

0

arg min 1
t t t

t R
t t t

x z n x

L U x T x
+

+

≤ ≤ − ∧

= − −  

Equation (3.14) can be written as  

 ( )
( )

( )

1

1

1

(0)                          if               
( )                        if  

( )             if              

t
t t t t

t t
t t t t t t t t t

R t
t t t t t t t t

c n z U z n
V z z n U z n n z L n

L T z n L U L z L n

+

+

+

⎧ − + ≤
⎪⎪= − + − ≤ ≤ +⎨
⎪ + − − + ≥ +⎪⎩

 (3.18) 

where 

( ) ( )( )1

0
arg min 1

t

t R
t t t

x
L U x T x+

≥
= − −  

By convexity of ( )1t
tU x+ , ( )t

tV z  is convex in tz in the following internal [0, nt), (nt, Lt+nt), 

and (Lt+nt, +∞). We still need to prove the convexity of ( )t
tV z  for zt = nt and zt = Lt+nt.  

The convexity of ( )t
tV z  at zt = nt holds as, by Property 3-2, 

( ) ( ) ( ) ( )1 1t t t t
t t t tV z V z c V z V z+ − ≥ − = − − . 

The convexity of ( )t
tV z  at zt = Lt+nt holds as, by Property 3-2,  

( ) ( ) ( ) ( )1 1t t R t t
t t t tV z V z T V z V z− − ≤ = + − . 

By induction, this completes the proof. 

Theorem 3-2: The value functions V(i, z) and U(i, x) are convex functions respectively in z 
and x for all i = 1, …7. Further in the optimal patient assignment control policy, 1) the 
optimal number of patients assigned to CTS queue is 

 
0     if  0

*      if  0  
      if  

i

i i i

i i i

z n
x z n z n L

L z n L

− ≤⎧
⎪= − ≤ − ≤⎨
⎪ − ≥⎩

 (3.19) 

where ( ) ( )( )
0

arg min 1, 1
i

R
i i i

x
L U i x T x

≥
= + − − . 

2) The optimal number of patients assigned to RTS is ( )( )* i iy z n L
++= − − . 

Proof: The theorem is a direct consequence of relations (3.13), (3.16)-(3.17) and Property 3-
3. Q.E.D 
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3.3.2 Average cost problem 

In this subsection the optimality equation and the form of the optimal control policy will be 
established via the α-discounted problem. 

Even through xt is bounded from Assumption 3-A1, zt = xt-1 + at can be unbounded. For the 
sake of readability, we first consider the case of bounded zt and then establish properties of 
optimal control for the unbounded case. 

3.3.2.1 Bounded patient arrival 

Assumption 3-A2: The number of patients arriving in any day is bounded from above by M, 
i.e. at ≤M for some given positive integer M. 

Assumptions 3-A1 and 3-A2 imply that tz  is bounded from above by max *Rz M T n= + . 

Therefore, ( ),t t tg z x is bounded from above and 

( ) ( )max max0 , *R R
t t t t tg z x cn T z n cn T z≤ ≤ + − ≤ + .  

Property 3-4: Under Assumption 4, Assumption 3-A1, and 3-A2, there exists Γ > 0 such 

that ( ) ( ), 7,0V i z Vα α− ≤ Γ , for all i = 1, …, 7 and for all z. 

Proof: From Property 3-2, 

( ) ( )1t t Rc V z V z Tα α− ≤ + − ≤  

which, together with 0 ≤ z ≤ zmax implies, for all z and z’, 

( ) ( )max max't t Rcz V z V z T zα α− ≤ − ≤  

Combining with (3.13),  

 ( ) ( )max max, , 'Cz V i z V i z Czα α− ≤ − ≤  (3.20) 

Where max( , )RC T c= This establish the property for i = 7. Consider now the case i = 

1, …6. From the optimality equations (3.10) and let π be the optimal control policy,  

( ) ( ) ( )( )1,, ( , ) 1, , 1,...,7i i a
a

V i z g z z P V i z a iα απ α π+= + + + ∀ =∑  

where ( ) ( )( , ) R
i i ig z x c n z x T z n x+ += − + + − − . From the words following Assumption 3-

A2,, ( , )ig z x B≤  with max* RB cn T z= + . As a result, 

( ) ( )( )1,, 1, , 1,...,7i a
a

V i z B P V i z a iα α π+≤ + + + ∀ =∑  
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Repeat the above relations for t subsequent days leads to: 

 ( ) ( )( , ),( , ')
'

, , 'i z t i z
z

V i z tB Q V t i zπ
α α+≤ + +∑   (3.21) 

where ( , ),( , ')i z t i zQπ
+  is the probability of reaching state z’ at the beginning of day t+i by starting 

from state z at day i under policy π. Combining (3.20) and (3.21) with t+i= 7, 

( ) ( ) ( )( , ),(7, ') max
'

, 6 7, ' 6 7,0i z z
z

V i z B Q V z B V Czπ
α α α≤ + ≤ + +∑  

Similarly, 

( ) ( ) ( )(7,0),(7 , ') max
'

7,0 6 , ' 6 ,i z
z

V B Q V i z B V i z Czπ
α α α+≤ + ≤ + +∑  

The above two properties concludes the proof.  

Theorem 3-3. Under Assumption 4, Assumptions 3-A1, and 3-A2, there exists an optimal 
stationary control policy, the same with that in Theorem 3-2, for the average cost model 
(3.5). Further the optimal average cost is independent of the initial state (i, z). 

Proof. From Proposition 4.2.6 in Bertsekas (1996) and Property 3-4, the optimal average 
cost per day exists and has the same value λ  for all initial states, and λ  satisfies 

 ( ) ( )
1

lim 1 ,V i zαα
λ α

→
= −  (3.22) 

The differential cost functions 

 ( ) ( ) ( )( )
1

, lim , 0,0i z V i z Vα αα
ψ

→
= −  (3.23) 

satisfy the following optimality equations:  

( ) ( ) ( )
( )

( ) ( ){ }
0 ( )

, min 1, 1 , 1,...,7
i

R R
i i

x z n x
i z c n z T z n H i x T x iλ ψ

+

+ +

≤ ≤ − ∧
+ = − + − + + − − ∀ = (3.24) 

 ( ) ( ),, ,i a
a

H i x P i x aα ψ= +∑   (3.25) 

Further, the optimal control policy is defined by the argument x that reaches the minimum in 
(3.24)-(3.25). From Property 3-3, equations (3.13) and (3.23), ψ(i, z) is convex in z and H(i, 
x) is convex in x for all i = 1, …, 7. This implies that the optimal control policy for the 
average cost problem is of the form (3.19). Q.E.D. 

3.3.2.2 Unbounded patient arrival 

In this subsection, assumption 3-A2 is relaxed.  
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Theorem 3-4. Under Assumptions 4 and 3-A1, (a) there exists a constant λ satisfying (3.22) 
for all (i, z), a matrix ψ (i, z) satisfying (3.24)-(3.25), (b) the optimal control policy is 
defined by the argument x that reaches the minimum in (3.24)-(3.25), (c) there exists an 
optimal stationary control policy of the form of equation (3.19) for the average cost model 
(3.5). 

Proof: The proof is based on Theorem 8.10.7 of Puterman (1994) and the conditions that 
need to be checked are the following ones: 

C1: For each state (i, z), the stage cost is such that − ∞ < R ≤ gi(z, xi) < ∞. 

C2: For each (i, z) and α < 1, ( ),V i zα < ∞ . 

C3: There exists ϕ > −∞ such that, for each (i, z), ( ) ( ) ( ), , 7,0 , 1.i z V i z Vα α αψ ϕ α≡ − ≥ ∀ <  

C4: There exists a non-negative function W(i, z) such that 

a) W(i, z) < ∞; 

b) for each (i, z), ( ) ( ), , , 1i z W i zαψ α≤ ∀ < ; and 

c) for each (i, z) and xi,  

( )1, 1, .i a i
a

P W i x a+ + + < ∞∑  

According to Theorem 8.10.7 of Puterman (1994), as the control constraint set for each state 
(i, z) is finite as a result of Assumption 3-A1, (a) and (b) of the Theorem hold. Further ψ(i, z) 
is the limit of a sequence ( ),

m
i zαψ  such that αm converges to 1 and ( ),

m
i zαψ  converges for 

all (i, z). From Property 3-3, equations (3.13) and (3.23), ψ (i, z) is convex in z and (c) of the 
Theorem can be proved as for Theorem 3-3. 

Let us now prove conditions C1-C4.  

Condition C1 clearly holds as gi(z, xi) ≥ 0.  

Condition C2 holds as well as  

(i) by Assumption 3-A1, 1tx x− ≤  and 1t t t tz x a x a−≤ + ≤ + ;  

(ii)  ( ), * ,R
i i ig z x cn T z≤ + ( ) ( ), * * *R R

t t t tE g z x E cn T z cn T x a⎡ ⎤≤ + ≤ + +⎡ ⎤⎣ ⎦ ⎣ ⎦ ;  

(iii) ( ) ( )( ), * * * .
1

R RV i z cn T z cn T x aα
α

α
≤ + + + +

−
 

Condition C3 holds as 
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(i) by Property 3-2 and relation (3.13), ( ) ( ), 1 , Rc V i z V i z Tα α− ≤ + − ≤ ;  

(ii) by Assumption 3-A1 and Theorem 3-2, the control threshold iL x≤ . 

(iii) by relations (3.18) and (3.13), ( ),V i zα  is increasing for z ≥ Li + ni;  

(iv)  By (i)-(iii), ( ) ( ) ( )* * , , 'RC T n n V i z V i zα α− + ≤ −  with C = max(c, TR); 

(v)   ( ) [ ] ( )
1

(7,0),(7 , ')
1 1 '

7,0 * , '
i s

R
i z

s z
V icn T E a Q V i zπ

α τ α
τ

−

+
= =

≤ + +∑∑ ∑  where ( , ),( , ')i z t i zQπ
+  is the 

probability of reaching state z’ at the beginning of day t+i by starting from state z at 
day i under policy π.  

(vi)  Combining with (iv), ( ) ( ) ( )( )27,0 * * * , * *R RV icn T ia i a V i z C T n nα α≤ + + + + +  

which proves C3. 

Condition C4 holds as 

(i) By starting from state (i, z), the average stage cost of any period t is bounded from 

above by [ ] ( )
1

* * *
t

R R
icn T z E a cn T z taτ

τ
+

=

⎛ ⎞+ + ≤ + +⎜ ⎟
⎝ ⎠

∑ . 

(ii)   From (i), ( ) ( )( ) ( )
1

( , ),( , ')
0 '

, * * , ' ;
t

R
i z i t z

z
V i z cn T z a Q V i t zπ

α α
τ

τ
−

+
=

≤ + + + +∑ ∑ .  

(iii) Combing (ii) with i+t = 7 and Property 3-2,  

( ) ( ) [ ]7, 6 * 6 36 * 7,0R R RV i z cn T z T a V T E zα α≤ + + + + ; 

(iv)  Combining (iii) with [ ] [ ]
7

7 6 *
i

E z z E a z aτ
τ =

≤ + ≤ +∑  leads to ( ) ( ), ,i z W i zαψ ≤  

with ( ), 7 6 * 42 *R RW i z T z cn T a≤ + + . Condition C4.a-C4.c clearly holds. This 

proves C4. 

Q.E.D. 

In the following, we will restrict us to threshold policies and denote each policy by its 
threshold vector L. 

Assumption 3-A3: For each day i = 1, …7, the probability of no patient arrival is non null, 
i.e. Pi0 ≥ δ, for some δ > 0. 

Remark 3-4: Assumption 3-A3 is not restrictive in this chapter. If number of patient 
arrivals of a day i is at least one, i.e. ai ≥1, there will be at least one CTS for day i in the 
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optimal contract n, i.e. ni≥1. Further, the contract n’ with n’i = ni – 1 and n’j = nj, for all j ≠i 
is the optimal contract for patient arrivals a’ with a’i = ai – 1 and a’j = aj. The reverse is also 
true. 

Property 3-5: Under Assumption 4, Assumptions 3-A1, and 3-A3, for any stationary 
control policy L, i.e. L(t) = L(t+7), the underlying stochastic process (d(t), zt) and (d(t), xt) 
are Markov chains with a unique positive recurrent class including all states (i, 0) for i = 
1, …, 7. 

Proof: Under the assumptions of the Property, it is clear that (d(t), xt) is a finite state 

Markov chain and (d(t), zt) is a Markov chain. This property obviously holds for the case n 

= 0 and we assume n ≠ 0, i.e. n* > 0, in the following. Starting from any initial state (i, x), 

for any control policy L, any state (d(t), xt) = (i, 0) can be reached in at most 7 6RT + days 

with probability 7 6RTδ +  as x x≤ . As a result, (d(t), xt) is a finite state Markov chain with a 

unique positive recurrent  class including all states (i, 0). Since zt = xt-1 + at, Assumption 3-

A1 and the property of at imply that (d(t), zt) is a Markov chain with a unique positive 

recurrent  class including all states (i, 0). 

3.3.3 Computation and implementation of the optimal control 

policy 

From Theorems 3-3 and 3-4, the average-cost MDP problem has the same optimal control 
policy with the discounted-cost MDP. Further, the optimal control policy for a given 
contract n can be determined by solving optimality equations (3.24)-(3.25). This can be 
either done either by value iteration or the linear program (Puterman (1994)). The linear 
program (LP) model is as follows: 

Model 3-2: 

Fn =Maximize λ 

subject to 

( ) ( ) ( ) ( )

( )( )
,, 1, ,

, , 1,...,7

R
i i i a

a

i

i z c n z x T z n x P i x a

z x z n x i

λ ψ α ψ+ +

+

+ ≤ − + + − − + + +

∀ ∀ ≤ − ∧ ∀ =

∑
 

Fn is the optimal average cost and, for each state (i, z), the optimal control is given by x 

reaching equality in the above relations. Further, the optimal control policy is characterized 
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by a control threshold vector L with one threshold for each day. From relation 

( )( )min ,i ix L z n += − , L can be easily determined. 

The existence of optimal threshold control makes the implementation easy. According to the 
relation (3.19), the implementation of the L control policy can be divided into three cases, 
as shown in Fig. 3.1-3.3: 

Case 1: If zt, CTS queue after new patients’ arrival, is smaller than nt, the number of CTS in 
the same day, then there exists the number nt–zt of unused CTS and there are no patients 
waiting for the future examinations. 

 

FIG. 3.1 The optimal control if zt <=nt 

 
Case 2: If zt is between the values of nt and nt + Lt, then all the number zt–nt of remaining 
patients are kept in the CTS queue and no patients are assigned to RTS. 

time

CTS queue xt-1

New  
arrival at

CTS queue after 
new arrival zt

Day t

CTS Nb. nt

xt: CTS queue length

If  nt=<zt <=Lt+nt

No patients will be assigned to RTS.
 

FIG. 3.2 The optimal control if nt =<zt <= Lt +nt 
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Case 3: If zt is greater than the values of nt + Lt, then the number Lt of patients are kept in 
the CTS queue and the remaining patients are assigned to RTS. 

time

CTS queue xt-1

New  
arrival at

CTS queue after 
new arrival zt

Day t

CTS Nb. nt

yt: nb of RTS assignment
Lt: CTS queue length

If  zt >=Lt+nt

 

FIG. 3.3 The optimal control if zt >= Lt +nt 

Remark 3-5: The implementation of contract-based MRI examination reservation process 

needs both the control policy and patients scheduling methods. The control policy is used to 

reduce the average criterion value, while patients scheduling is used to reduce the variance 

of patients waiting time. This part of research does not consider patients scheduling. More 

work is needed to explore the scheduling method which can better the distribution of 

patients’ waiting times. 

3.4 Contract optimization 

In this Section, we propose a two-step approach for optimization of the contract n. First a 
Monte Carlo approximation approach is used to identify an initial contract. This contract is 
further improved with a local optimization. 

3.4.1 Monte Carlo approximation 

The contract optimization problem stated in (3.1)-(3.4) is still difficult to solve as it involves 
integer variables and random demands. The structure properties of the optimal control 
policies of Theorems 3-2 and 3-3 lead to the following equivalent reformulation of Model 3-
1, i.e., relation (3.1)-(3.4): 

Model 3-3: 
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 ( )( )*
, 1, 1

1   E lim
T

R
t t t td tT t

F MIN F T y x c n x a
T

+

−→∞
=

⎡ ⎤⎛ ⎞≡ ≡ + + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑n Ln L

  (3.26) 

subject to: 

 ( ) ( )( )1t t t d t d ty x a n L
+

−= + − −  (3.27) 

 ( )1 ( )t t t t d tx x a y n
+

−= + − −    (3.28) 

 7, .IN∈n L    (3.29) 

Theorem 3-5: Any contract n such that 
7

1
i

i
n

=

> Π∑ with [ ]
7

1

R

i
i

T c E a
c =

+
Π = ∑  cannot be 

optimal. 

Proof: First, for the contract n with ni= 0, all patients are sent to RTS and hence: 

[ ]
7

1
0,0 7

i
R i

E a
F T ==

∑
. 

For any other contract n,  

[ ]
7 7

1 1
, 7

i i
i i

n E a
F c = =

−
≥

∑ ∑
n L  

The combination of the above two relations completes the proof. Q.E.D. 

To simplify the problem, we convert the Model 3-3, i.e., equation (3.26)-(3.29) into a 
deterministic optimization problem by using a single given but long enough patient arrival 
sample path a = (a1, a2,…, aT).  This together with Theorem 3-1 and 3-5 leads to the 
following Monte Carlo approximation: 

 ( ) ( ) ( )( ) ( ), , ( ) 1, 1

   ; /
T

R
T T t t d t t t T

t

F MIN F T y x c n x a K x T
+

−
=

⎛ ⎞≡ ≡ + + − − +⎜ ⎟
⎝ ⎠
∑n Ln L

a a n   (3.30) 

subject to: (3.27)-(3.29), ni ≤ Π, Li ≤ (TR+c)Π where K(.) is the total waiting time of 
patients in the CTS queue remaining at the end of the horizon T.  

Theorem 3-6: With probability 1, FT (a) converges to F* when T goes to infinity. 

Proof: From Theorem 3-1 and Theorem 3-5, conditions ni ≤ Π and Li ≤ (TR+c)Π do not 
exclude any optimal contract and optimal control policy. For the contract n = 0, 

( ) ( ),0, ,0,T TF F≥L 0a a  , F0L ≥ F00 and 
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( ) ( ) [ ]
7

,0,0 0,0
1 1

  lim lim / / 7
T

R R
T t iT T t i

F T a T T E a F
→∞ →∞

= =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
∑ ∑a  

As a result, we only need to show the convergence of ( ),TF n,L a  for each (n, L) with n ≠ 0. 

From Property 3-5, (d(t), xt) forms a finite state Markov chain with unique positive recurrent 
class including (7, 0) which implies that (d(t), xt) is a regenerative process with (7, 0) as a 
regeneration point. Hence, 

( )( )( ) 1 ,
1

lim /
T

R
t t d t t tT t

T y x c n x a T F
+

−→∞
=

+ + − − =∑ n L , with probability 1. 

Since Li ≤(TR+c)Π,  xT ≤(TR+c)Π. Since n ≠ 0,  

( ) ( ) ( ) ( )( )
1

; 7 7 1 / 2 7 1 / 2
T

R R
T T T

j x

K x j x x T c T c
=

≤ = + ≤ + Π + Π +∑n  

which implies ( ),TF n,L a  converges to Fn,L as T goes to infinity. Q.E.D. 

The above Monte Carlo optimization problem is still difficult to solve due to the non linear 
constraint (3.27) related to the control policy. We further omit this constraint and consider 
the following relaxed Monte Carlo optimization problem: 

Model 3-4: 

 
1 1 1

( ) min /
T T D T

R
t t t

t t t

LB T y x c u T
+

= = =

⎛ ⎞= + +⎜ ⎟
⎝ ⎠
∑ ∑ ∑a   (3.31) 

subject to 

 ( )1( ) 1,...,t t t tu n a x t T+
−= − + ∀ =  (3.32) 

 1 ( ) 1,...,t t t t t tx x a y n u t T−= + − − − ∀ =  (3.33) 

 ( )1 1,...,t t tu n x t T T D+
−= − ∀ = + +  (3.34) 

 1 ( ) 1,...,t t t tx x n u t T T D−= − − ∀ = + +  (3.35) 

 xt, yt, ut, nt ∈IN,          ∀t = 1, …, T+D  (3.36) 

where tu denotes the number of unused CTS used in day t, D is the extra days introduced to 

determine the waiting times of patients remaining at the end of time horizon T. As xT 
≤(TR+c)Π for any optimal control policy, we can set D = 7(TR+c)Π. 

This formulation provides a lower bound of the Monte Carlo optimization problem (3.30) as 
any feasible solution of problem (3.30) corresponds to a feasible solution of the above 
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problem. Further the decision variable yt is determined with the full knowledge of the 
demand, both past demand and future demand. This contradicts the requirement of the so-
called non-anticipativeness of any feasible control policy. However, we expect that the 
contract determined by this relaxed Monte Carlo approximation is a good contract. This 
statement will be confirmed by our numerous numerical experiments. From Theorem 3-6, 
LB(a) becomes a lower bound of the optimal average cost when the sample path a is longer 
enough. 

The two nonlinear constraints (3.32) and (3.34) can be made linear. Note that reducing 
variables ut leads to the reduction of both xt and yt, which results in the reduction of the 
criterion value. Thus, constraints (3.32) and (3.34) can be replaced by the following 
equivalent constraints: 

 1( ) and 0    1,...,t t t t tu n a x u t T−≥ − + ≥ ∀ =  (3.37) 

 1  and 0  1,...,t t t tu n x u t T T D−≥ − ≥ ∀ = + +   (3.38) 

As a result, Model 3-4 can be equivalently defined as follows.  

Model 3-5: 

1 1 1

( ) min /
T T D T

R
t t t

t t t

LB T y x c u T
+

= = =

⎛ ⎞= + +⎜ ⎟
⎝ ⎠
∑ ∑ ∑a  

Subject to 

1

1

1

1

             ,   1,...,
,   1,...,

             ,          1,...,
      ,        1,...,

t t t t

t t t t t t

t t t

t t t t

x u n a t T
x x y u a n t T

x u n t T T D
x x u n t T T D

−

−

−

−

+ ≥ − ∀ =
− + − = − ∀ =

+ ≥ ∀ = + +
− − = − ∀ = + +

 

xt, yt, ut, nt ∈IN,               ∀t = 1, …, T+D 

We further show that integrity constraints of variables xt, yt, ut can be relaxed. This greatly 
reduces the computation effort for solving LB(a) which contains only seven integer 
variables for contract n. 

Property 3-6 (Ghouila-Houri (1962)). An m*n matrix A is total unimodular if and only if 
for every {1,..., }C n⊆ there exists a partition (C1, C2) of C such that  

1 2

1ij ij
j C j C

a a
∈ ∈

− ≤∑ ∑  for i=1,….m. 



 Chapter 3 Contract planning and patient assignment policy 41 

  

Theorem 3-7. The constraint matrix of the left hand side terms of the constraints of Model 
3-5 is total unimodular. As a result, the integrity constraints of variables xt, yt, ut can be 
relaxed. 

Proof: From Property 3-6, it is enough to prove that, for any subset C of variables xt, yt, ut, 
the condition of Property 3-6 holds. This is established by the following partition. All 
variables xt ∈C belong to set C1. For every t, variables yt, ut ∈C are partitioned as follows: 

• yt ∈C1, if xt-1∈C, ut ∉C 

• yt, ut ∈C2, if xt-1∈C, ut ∈C 

• yt ∈C2, if xt-1 ∉C, ut ∉C 

• yt, ut ∈ C1, if xt-1 ∉C, ut ∈C.          Q.E.D. 

3.4.2 Improvement of the contract by local search 

Starting from the contract obtained from the solution of Model 3-5, this subsection presents 
a local search approach to further improve the contract. 

The following notation is needed: 

• Fn: optimal average cost under contract n, i.e. ,  F MIN F≡n n LL
. Fn and the related 

optimal control policy L(n) can be determined by solving Model 3-2; 

• Fn,L(a): average cost of policy L under contract n and sample path a estimated by 
relation (3.30). Note that compared with relation (3.30), index T is omitted for 
simplicity; 

• ei : a seven dimension vector with i-th entry equal to 1 and all other entries equal to 0. 

By definition, LB(a) ≤ Fn,L(a). 

The local search starts from the contract n determined by the Monte Carlo approximation. It 
then iteratively improves this contract. At each iteration, it determines the best neighbor 
solution among the set of contracts: n + ek (add one time slot in day k), n – ek (remove one 
time slot in day k), n – ek + ej (move one time slot from day k to day j). This process repeats 
until no improvement can be found.  

The overall algorithm for the contract optimization is summarized as follows:  

Algorithm 1 (Contract optimization) 

1. Generate a long enough sample path a of patient arrivals; 
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2. Solve Model 3-5, the relaxed Monte Carlo approximation problem to determine LB(a) 
and an initial contract n0; 

3. Determine the optimal control policy L(n0) and the optimal average cost Fn0 under 
contract n0 by solving Model 3-2; 

4. Let n* = n0; F n* = F 
n0; 

5. Determine the neighbor solution n’ with the smallest average cost as follows: 

{ } 7; ; :1 , 7,
' arg min

k k k je e e e k j i j IN
F

∈ + − − + ≤ ≤ ≠ ∩
= n

n n n n
n  

6. Determine the optimal control policy L(n’) and the optimal average cost Fn’  as in Step 3 
if necessary; 

7.  If F n’ < F n*, set n* = n’ and go to step 5. 

8. The final contract is n* and the final control policy is L(n*).  

For high demand case with high patient arrival rate, the state space is large and solving the 
optimality relations (3.24)-(3.25) for determining Fn is time consuming. In order to reduce 
the computation burden, Fn,L(n*)(a) where a is the sample path of Step 1 can be used to 
replace Fn in step 5. This leads to Algorithm 2. Note that the contract n’ selected in each 
iteration is still evaluated exactly in Algorithm 2. 

To summarize, the solution strategies for contract optimization are summarized as follows: 

1) Generating a long enough sample path a of patient arrivals, the relaxed Monte Carlo 
approximation model (Model 3-5) is solved to determine LB(a) and an initial 
contract n0; 

2) Based on this n0, local optimization 1 or 2 is used to improve the contracts (n* is the 
final contract), determine the final control policy L(n*), and obtain the exact average 
cost F n*.  

To evaluate the performance of this solution strategy, the global optimal contract and 
control policies can also be determined by exhaustive search by comparing Fn for all n in a 
certain range containing the optimal solution. The global optimal solution is recorded as F* 
= MIN{Fn: ∀n}. This is possible when the demand is low but too time consuming to obtain 
when the demand is high.  

Remark 3-6: Although the Monte Carlo approximation and relaxations are used for 
determination of the contract decisions, all our algorithms use MDP to find the exact 
criterion value of the resulting contracts. Further, both Algorithms 1 and 2 start with the 
same contract provided by the solution of the same model, i.e., Model 3-5. 
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3.5 Computational results 

This section presents numerical experiments performed to evaluate the performance of the 
solution strategies and to investigate how the contract and control policies depend on 
problem parameters. The performance of the solution strategies is given by comparing with 
the exact optimum F* obtained by exhaustive search for small-size problems and with Fbest 
for large-size problems, where Fbest is the best solution of all independent runs of 
Algorithms 1 and 2 for the same problem instance. We then perform sensitivity analysis to 
show how the optimal contract depends on different factors such as average RTS delay TR 
and unused CTS penalty c, patient arrival patterns and patient arrival rates. All numerical 
results are performed on a Pentium® 4 PC running at 3.21 GHz with 1.0 GB RAM. LP 
models are solved by the CPLEX 11 solver.  

3.5.1 Numerical experiments 

We first describe the base case corresponding to our real case study. From the data collected 
from the neurovascular department under study, the average numbers of patient arrivals 
during the week are as follows: {1, 0.89, 0.95, 1.16, 1.53, 0.16, 0.05}. The number of 
patients arrived each day is assumed to follow a Poisson distribution. The average waiting 
time for RTS is in the range of 30~40 days with an average of TR = 35 days. The weight, c, 
is set to 15. These data define the base case shown in Table 3.1. 

 
Average number of patients arrived 

Mon. Tues. Wed. Thurs. Fri. Sat. Sun.
TR C 

1 0.89 0.95 1.16 1.53 0.16 0.05 35  15  
 

TAB 3.1 Base case data 

The above base case is then modified to investigate the impact of parameters average RTS 
delay TR and unused CTS penalty c, patient arrival pattern and patient arrival rate. More 
precisely, the following numerical experiments are considered: 

• Case 1: base case but with different weighing factor c ∈ {1, 5, 10, 15, 20} (impact of 
unused CTS penalty, c); 

• Case 2: base case but with different delay for RTS TR ∈ {25, 30, 35, 40, 45} (impact 
of average RTS delay, TR); 

• Case 3: base case but with different patient arrival patterns (impact of patient arrival 
pattern). The peak demand of the base case occurs on Friday. To see the impact of 
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the patient arrival patterns on the contract and control policy, we interchange the 
demand in Friday and the demand of another weekday. We also consider the case of 
stationary demand for all weekdays. 

• Case 4: base case but with different patient arrival rate (impact of patient arrival rate). 
The base case is considered as low demand case. Two other case termed medium 
and high demand instances are derived from the base case by multiplying the patient 
arrival rate by 5 and 10 respectively. 

The sample path a needed for the Monte Carlo optimization is generated on a time horizon 
of 1000 weeks, i.e. T=7000 days, nearly 20 years. The number of patients arrival ta  for 

t=1, …, 7000 is generated according to a Poisson distribution truncated at 20, 40, and 60 for 
respectively low, medium, and high demand instances. D = 100 extra days are used in the 
Monte Carlo approximation to determine waiting time of patients in the queue at the end of 
the planning horizon. Model 3-2 is solved by restricting the queue length xt to a given 
parameter LL set by trial-and-error. LL = 30, 40, and 40 for low, medium, and high demand 
instances. We also use very long-time simulation for the evaluation of different performance 
measures of final contracts and control policies determined by exhaustive search for low 
demand instances and by optimization algorithms for medium and high demand instances. 

For every problem instance, 10 independent patient arrival sample paths a are generated, 
Algorithms 1-2 are run using each sample path to investigate the performance of these two 
algorithms. 

3.5.2  Performances of the proposed algorithms and impact of 

average RTS delay TR and unused CTS penalty c 

This subsection considers Cases 1-2 to investigate the performances of Algorithms 1-2 and 
to show the impact of average RTS delay TR and unused CTS penalty c. The patient arrival 
rate is very low and exhaustive search of optimal contract can be done in acceptable time. 

The exhaustive search is performed for all contract n with ni ∈{0, 1, 2, 3}. The range was 
selected based on observation of different contracts provided by the proposed two-step 
approaches Algorithms 1-2. The optimal control policy and the average cost Fn of each 
contract are determined by solving the Model 3-2. The cost of the resulting optimal contract 
is denoted as F*. 

Table 3.2 summarizes optimal solutions given by exhaustive search. First note that the 
exhaustive search takes more the 2.5 hour for each instance. The total number of CTS 
decreases and the criterion value increases when the weight factor c of unused CTS 
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increases. The contracts and control policy are sensitive to the change of c. With the 
increase of TR, the objective criterion F* increases and the control threshold Li increases, but 
contracts do not change. This means that the optimal contract is insensitive to change of TR.  

TR c F* CPU Time (s) n1 n2 n3 n4 n5 n6 n7 L1 L2 L3 L4 L5 L6 L7 
35 1 0.945  9257  2 1 2 2 2 1 0 22 22 22 21 21 21 22 
35 5 2.484  9249  1 1 1 2 2 1 0 13 14 14 13 13 12 13 
35 10 3.589  9225  1 1 1 1 3 0 0 10 10 10 10 8 9 10 
35 15 4.501  9189  1 1 1 1 3 0 0 11 11 11 11 9 10 10 
35 20 5.410  9187  1 1 1 1 3 0 0 11 12 12 12 10 11 11 
25 15 4.471  9203  1 1 1 1 3 0 0 9 9 9 9 7 8 9 
30 15 4.489  9224  1 1 1 1 3 0 0 10 10 10 10 8 9 10 
35 15 4.501  9189  1 1 1 1 3 0 0 11 11 11 11 9 10 10 
40 15 4.510  9279  1 1 1 1 3 0 0 11 12 12 12 10 11 11 
45 15 4.516  9433  1 1 1 1 3 0 0 12 12 13 13 11 12 12 

 
TAB 3.2 Optimal solutions of Cases 1-2 by exhaustive search 

 

Table 3.3 shows the impact of TR and c on average delay (Delay), percentages of unused 
CTS (Unused CTS Ratio) and percentages of patients using RTS (RTS Perc.) with the 
optimal contracts and control policies. When c decreases, the corresponding waiting time 
decreases while the unused CTS ratio increases. Therefore, the choice of c allows balancing 
between the average waiting time and the unused CTS ratio. There is no obvious trend in the 
change of RTS percentage. However, as the contract is insensitive to the change of TR, these 
performance measures are also insensitive to the change of TR.  

 
TR c Delay(days) Unused CTS Ratio (%) RTS Perc.(%) 

35 1 0.41 42.60 0.00 
35 5 1.06 28.26 0.00 
35 10 2.14 18.32 0.38 
35 15 2.16 18.22 0.26 
35 20 2.17 18.16 0.18 

     

25 15 2.08 18.46 0.56 
30 15 2.13 18.32 0.38 
35 15 2.16 18.22 0.26 
40 15 2.17 18.22 0.26 
45 15 2.20 18.11 0.13 

 
TAB 3.3 Performances of contract-based reservation process for different average RTS delay and unused 

CTS penalty  
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Table 3.4 summarizes results of Algorithms 1 and 2 for the same cases. For each problem 
instance, each algorithm is applied 10 times with 10 different sample paths. Let n1 and n2 
be the contract provided by respectively Algorithms 1 and 2. Columns “Fnk“ give the 
minimum, average, and maximum of the exact criterion values of contract nk of 10 different 
runs of Algorithm k, where k=1, 2. Columns “Gapk” show the minimum, average, and 
maximum of the average deviations of Fnk from F*, i.e. (Fnk – F*)/Fnk. Columns “Movek” 
are the minimum, average, and maximum of local search moves in Algorithms k. RT1 and 
RT2 are the average CPU time. The optimal contract is always found by Algorithm 1 except 
for the instance c = 1 for which the 10 criterion values of Algorithm 1 are all within 1% of 
the optimum. Results in column “Move1” show that the contract of the Monte Carlo 
approximation is close to the optimum as the optimal contract can be obtained with less than 
2 local moves. Recall that, from Remark 3-6, Algorithms 1 and 2 actually start from the 
same Monte Carlo solution for each of the 10 sample paths. Results of Algorithm 2 are good 
with average deviation from the optimum of less than 2.2% and with a deviation of about 
11% for one run of c = 15. However the CPU time of Algorithm 2 is much smaller than that 
of Algorithm 1. From Table 3.4, Algorithm 2 is at least six times faster than Algorithm 1. 
The quality of the best solution of six independent runs of Algorithm 2 is fairly close to that 
of Algorithm 1 of one run. 

 
TR c Fn1 Fn2 Gap1(%) Gap2(%) Move1 Move2 RT1(s) RT2(s)

35 1 [0.945,0.947,0.948] [0.945,0.951,0.982] [0,0.20,0.32] [0,0.53,3.70] [0,0.1,1] [0,0,0] 126 7 

35 5 [2.484,2.484,2.484] [2.484,2.504,2.671] [0,0,0] [0,0.77,7.02] [0,0.7,2] [0,0.3,2] 190 13 

35 10 [3.589,3.589,3.589] [3.589,3.592,3.604] [0,0,0] [0,0.08,0.43] [0,0.3,1] [0,0.1,1] 140 11 

35 15 [4.501,4.501,4.501] [4.501,4.557,5.056] [0,0,0] [0,1.11,10.98] [0,0.7,1] [0,1.3,3] 191 27 

35 20 [5.410,5.410,5.410] [5.410,5.430,5.450] [0,0,0] [0,0.37,0.73] [1,1,1] [0,1,2] 230 15 

          

25 15 [4.471,4.471,4.471] [4.471,4.540,4.608] [0,0,0] [0,1.48, 2.96] [1,1,1] [0,1,2] 205 13 

30 15 [4.489,4.489,4.489] [4.489,4.594,4.840] [0,0,0] [0,2.18, 7.25] [1,1,1] [0,1.5,3] 217 25 

35 15 [4.501,4.501,4.501] [4.501,4.557,5.056] [0,0,0] [0,1.11,10.98] [0,0.7,1] [0,1.3,3] 191 27 

40 15 [4.510,4.510,4.510] [4.510,4.510,4.516] [0,0,0] [0,0.02,0.14] [0,0.6,1] [0,1.1,3] 186 31 

45 15 [4.516,4.516,4.516] [4.516,4.518,4.522] [0,0,0] [0,0.04,0.14] [0,0.5,1] [0,0.6,2] 176 28 
 

TAB 3.4 Performances of Algorithms 1 and 2 for different average RTS delay and unused CTS penalty  
 

We now analyze the quality of the sample path lower bound LB(a). Fig. 3.4 and Fig. 3.5 
shows the deviation gap between LB(a) and Fn*,L(n*)(a) where n* is the optimal contract 
obtained by exhaustive search, i.e. (Fn*,L(n*)(a) - LB(a))/Fn*,L(n*)(a). As it can be seen, the 
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quality of the lower bound becomes worse when the weighting factor c increases but it 
becomes tighter when TR increases.  

Even though the sample path lower bound LB(a) is loose, the contract of the Monte Carlo 
approximation is actually close to the optimal contract and is at most two local moves away 
from the optimal contract in all our numerical experiments. 
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FIG. 3.4 Gap of LB(a) for different c  
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FIG. 3.5 Gap of LB(a) for different TR  
 
Remark 3-7: In order to check whether Assumption 4 requiring stable weekly contract is 
strong, we apply Algorithm 1 to optimize bi-week contract and the related optimal control 
policy, i.e. for contract n and control L defined over 14 days. Numerical experiments are 
performed for Cases 1 and 2. The resulting bi-week contracts and the optimal criterion 
values remain the same as weekly contracts of Table 3.2. This implies that Assumption 4 is 
not really strong in these cases. 
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3.5.3 Impact of patient arrival pattern 

This subsection considers Case 3 to show the impact of patient arrival pattern. Table 3.5 
summarizes the optimal solutions obtained by exhaustive search for different patient arrival 
patterns. The row “Mon.” corresponds to patient arrival pattern derived from the base case 
by exchanging the patient arrival rate of Monday with that of Friday (actual peak arrival). 
The next four rows are defined similarly. The row “Ave.” corresponds to the case of 
stationary arrival with the same arrival rate for all workday with the same weekly patient 
arrival rate. From this table, the total number of CTS of the optimal contract decisions does 
not change with respect to the patient arrival patterns. However, one CTS moves from 
Friday to the day of peak arrival and there are still 2 CTS for Friday in order to serve patient 
arrival during the week. In the case of stationary weekday arrival, one CTS moves from 
Friday to Wednesday. The control policy seems to be insensitive to the patient arrival 
patterns.  

Table 3.6 summarizes average delay time, unused CTS ratios, and RTS percentages for 
different arrival patterns. These performance measures seem to be insensitive to the change 
of patient arrival pattern. Table 3.7 presents results of Algorithms 1 and 2 for the same cases. 
The same observations can be made as in Section 3.5.2.  

 
Peak arrival F* CPU Time (s) n1 n2 n3 n4 n5 n6 n7 L1 L2 L3 L4 L5 L6 L7

Mon. 4.506  9274 2 1 1 1 2 0 0 10 10 11 11 10 10 11
Tues. 4.496  9277 1 2 1 1 2 0 0 11 10 10 11 10 10 11
Wed. 4.487  9332 1 1 2 1 2 0 0 11 11 10 11 9 10 11
Thurs. 4.476  9283 1 1 1 2 2 0 0 11 11 11 10 9 10 10

Fri. 4.501  9189 1 1 1 1 3 0 0 11 11 11 11 9 10 10
Ave. 4.517  9246 1 1 2 1 2 0 0 11 11 10 11 10 10 11

 
TAB 3.5 Optimal solutions of different patient arrival patterns by exhaustive search 

 
Peak arrival Delay(days) Unused CTS Ratio (%) RTS Perc.(%) 

Mon. 2.16 18.19 0.24 
Tues. 2.16 18.20 0.26 
Wed. 2.16 18.18 0.28 
Thurs. 2.13 18.20 0.27 

Fri. 2.16 18.22 0.26 
Ave. 2.13 18.59 0.22 

 
TAB 3.6 Performances of contract-based reservation process for different patient arrival patterns 
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Peak arrival Fn1 Fn2 Gap1(%) Gap2(%) Move1 Move2 RT1(s)RT2(s)
Mon. [4.506,4.506,4.506] [4.506,4.624,5.080] [0,0,0] [0,2.33,11.30] [0,0.9,1] [0,1.3,2] 211 25 
Tues. [4.496,4.496,4.496] [4.496,4.504,4.555] [0,0,0] [0,0.17,1.30] [0,1,2] [0,1.6,2] 222 28 
Wed. [4.487,4.487,4.487] [4.487,4.491,4.522] [0,0,0] [0,0.08,0.77] [0,1.2,2] [0,1.7,3] 246 34 
Thurs. [4.476,4.476,4.476] [4.476,4.536,5.075] [0,0,0] [0,1.18,11.79] [0,0.7,1] [0,1.2,2] 192 27 

Fri. [4.501,4.501,4.501] [4.501,4.557,5.056] [0,0,0] [0,1.11,10.98] [0,0.7,1] [0,1.3,3] 191 27 
Ave. [4.517,4.517,4.517] [4.517,4.567,4.999] [0,0,0] [0,1.01,9.64] [1,1,1] [0,2.1,3] 220 28 

 
TAB 3.7 Performance of solution strategies for different patient arrival patterns 

 

3.5.4 Impact of patient arrival rate 

As the patient arrival rate increases, the optimal solution is hard to obtain by exhaustive 
search because it needs too long time to search within a large solution space. We limit 
ourselves to Algorithms 1 and 2 in this experiment. 

Tables 3.8 and 3.9 summarize best contracts and corresponding control policies and the 
performances of the two algorithms for different patient arrival rates where three scenarios 
are considered “Low” (base case), “Medium” (patient arrival rates 5 times larger), “High” 
(patient arrival rates 10 times larger).  “Gap1” and “Gap2” in this case are the deviation gap 
of Fnk from Fbest, i.e. Gapk = (Fnk – Fbest)/Fnk where Fbest is the best solution of 20 solutions 
of the ten runs of Algorithms 1 and 2.  

From these tables, Algorithm 1 is always able to find the best solutions given in Table 3.8 
whatever the sample path used while the quality of the contract decisions obtained by 
Algorithm 2 is more sensitive to the sample path used. Move1 shows that the contract 
decisions obtained by Monte Carlo approximation is very close to the best contract and is at 
most two local moves from the best contract. This highlights the quality of contract 
decisions given by the Monte Carlo Approximation as 61 CTS (resp. 31 and 7 CTS) are 
needed for high (resp. medium and low) demand instance. Finally, Algorithm 1 becomes too 
slow for high demand instance while Algorithm 2 is much faster and is able to provide a 
good solution with a reasonable CPU time. 

 

Arrival rate n1 n2 n3 n4 n5 n6 n7 L1 L2 L3 L4 L5 L6 L7 
Low 1 1 1 1 3 0 0 11 11 11 11 9 10 10

Medium 5 5 5 6 9 1 0 21 21 21 21 19 19 21
High 10 9 10 12 17 2 1 31 31 31 31 28 29 30

 
TAB 3.8 Best contracts and control policies for different patient arrival rates 
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TAB 3.9 The performance of solution strategies for different patient arrival rates 

 

Table 3.10 summarizes average delay, unused CTS ratios, RTS percentages for different 
patient arrival rates with the best contract decisions obtained. All the performance measures 
decrease when the arrival rate increases. 

 
Arrival rates  Delay(days) Unused CTS Ratio (%) RTS  Perc. (%) 

Low  2.16  18.22  0.26  
Medium 1.16  7.68  0.24  

High 0.74  6.01  0.11  
 

TAB 3.10 Performances of contract-based reservation process for different patient arrival rates 
 

3.6  Implementation issues 

As noticed in Section 3.5, patients directed to RTS will face significantly longer regular 
reservation time than patients waiting for CTS. Although the new MRI examination 
reservation process leads to shorter average waiting time, these "unlucky" patients directed 
to RTS still face long waiting time. 

In order to have better waiting time distribution, this subsection proposes an improved 
method. The new method still makes use of contracts and patient assignment control policy. 
However, the patient assignment policy is replaced by an RTS reservation policy. When 
the CTS queue length exceeds the threshold Li, additional time slots are reserved according 
to the regular reservation process. However patients are not directly assigned to RTS at the 
same day. CTS and RTS time slots are grouped according to their day of availability and 
filled by patients. All patients are scheduled to both CTS and RTS in the First in First out 
(FIFO) order. This method is expected to reduce the longest waiting time of stroke patients 
and to avoid unlucky patients. 

In the following of this subsection, we call the reservation process with patient assignment 
policy the old reservation process and the one with RTS reservation policy the new 
reservation process. 

Arrival rate Fn1 Fn2 Gap1(%) Gap2(%) Move1 Move2 RT1(s) RT2(s)
Low [4.50,4.50,4.50] [4.50,4.55,5.06] [0,0,0] [0,1.11,10.98][0,0.7,1] [0,1.3,3] 191 27 

Medium [9.83,9.83,9.83] [9.83,9.90,10.40] [0,0,0] [0,0.64,5.50] [1,1.1,2] [0,1.7,3] 2006 99 
High [13.94,13.94,13.94] [13.94,14.00,14.10] [0,0,0] [0,0.43,1.14] [1,1.9,2] [0,2.3,4] 9913 771
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3.6.1 Comparison of control policies 

For the old reservation process, the optimal patient assignment policy for any given contract 
can be determined by solving Model 3-2.  Further it was shown that, for a given contract n, 
the optimal patient assignment policy is a threshold policy and there exists a threshold Li 
for day i such that new incoming patients are directed to RTS when the ending CTS queue 
length reaches Li. The old MRI examination reservation process is as follows. During each 
day t is as follows, first, the queue length xt-1 of patients waiting for CTS at the end of day 
t−1 is known. The number of CTS for day t is nt. The number of new arrival patients in day t 
is at. The state variable zt= xt−1 + at is known. MIN{nt, xt−1 + at} patients are served by the 
CTS of the day and ut= (nt − zt)+ CTS of day t cannot be filled and are unused. yt= (zt − nt − 
Lt)+ new incoming patients with Lt = Ld(t)  are directed to RTS. xt= (zt − nt − yt)+ remaining 
patients will wait for CTS in the subsequent days. Patients in CTS queue are served in FIFO 
order. The average cost of the old reservation process is as follows: 

1

1lim
T

old R
t t tT t

J cu x T y
T→∞

=

⎡ ⎤= + +⎣ ⎦∑  

For the new reservation process, the structure of the optimal RTS reservation policy is 
unclear. Instead, we use the optimal patient assignment policy to make RTS reservation. 
Both CTS and RTS time slots are grouped together and assigned to patients in a FIFO order. 
More specifically, during each day t, we keep track of an artificial CTS queue length xt-1 
under patient assignment policy and use it to determine the number yt of RTS time slots to 
reserve in day t, i.e. yt= (xt-1 +at − nt − Lt)+ and xt= (xt-1 +at − nt − yt)+. The real patient queue 
length, the number of patients waiting for a time slot, at the end of day t-1 is denoted as 1

new
tx −  

with 0 0
newx x= . The number of time slots available in day t including both CTS and RTS is 

R
new
t t t T

n n y
−

= + . The number new incoming patients during day t is at. MIN{ new
tn , 1

new
tx − + at} 

patients are served by the CTS and RTS of the day and ( )( )1
new new new
t t t tu n x a

+

−= − +  time slots 

of day t cannot be filled. The remaining ( )1
new new new
t t t tx x a n

+

−= + −  patients will wait in the 

patient queue. Patients are served in FIFO order. The average cost of the new reservation 
process is as follows: 

1

1lim
T

new new new
t tT t

J cu x
T→∞

=

⎡ ⎤= +⎣ ⎦∑  

Both new and old reservation processes are characterized by a contract n and a set of control 
thresholds L. 
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In order to compare the two control policies, the following notation is needed: 

old
t tu u= : number of unused CTS in old reservation process 

R

t
old
t t s

s t T

x x y
= −

= + ∑ : number of patients waiting for a time slot in the old reservation 

process including both those in the CTS queue and those sending to the RTS but not yet 
served. 

old
ty : number of patients sending to RTS  

new
ty : number of RTS reserved 

Property 3-7: ,old new
t t ty y y t= = ∀ . 

Proof: Trivial and follows from the definition. Q.E.D. 

For simplicity, let us assume that there is no pending RTS reservation initially, i.e. 
0, 0old new

t ty y t= = ∀ ≤ . By patient assignment policy, , 0t tx L t≤ ∀ > and hence 

( )1 1 , 1t t t t t t ty x a n L L a t+
− −= + − − ≤ + ∀ >  is a finite random variable. As a result, 

1

1lim
T

old old old
t tT t

J cu x
T→∞

=

⎡ ⎤= +⎣ ⎦∑  

Property 3-8: , 0old new
t tx x t≥ ∀ ≥ . 

Proof: This property is proved by induction. The property clearly holds for t = 0. Assume 
that it holds for t−1. We now prove it for t. First, for the old reservation process and for day 

t, at new patients arrive. { }1,t t tMIN n x a− +  patients have their MRI exam by CTS time slots  

and R
old
t T

y
−

 patients by RTS time slots. Hence, 

{ }
{ }

1 1

1 1 1

,

,

R

R R

old old old
t t t t t t t T

old old old old
t t t t tt T t T

x x a MIN n x a y

MAX x a n y x x y

− − −

− − −− −

= + − + −

= + − − − −
 

For the new reservation process, 

{ }1 ,0R
new new new
t t t t t T

x MAX x a n y− −
= + − −  

Combining with Property 3-7, the induction assumption and the fact of 1 1 R
old old
t t t T

x x y− − −
≥ + , 

the above two relations lead to old new
t tx x≥  which completes the proof.  Q.E.D. 
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Property 3-9: 
1 1

1 1lim lim
T T

old new
t tT Tt t

u u
T T→∞ →∞

= =

=∑ ∑ . 

Proof: By definition, 

( )0
1 1 1

Rt t T t
old old old
t s s s s

s s s
x x a y n u

−

= = =

= + − − −∑ ∑ ∑  

( )0
1 1

R

t t
new new new
t s s ss T

s s

x x a n y u
−

= =

= + − + −∑ ∑  

As yt = 0 for all t ≤0, subtracting the two relations leads to: 

1 1

t t
old new old new
t t s s

s s
x x u u

= =

− = −∑ ∑  

which proves the property if both old
tx  and new

tx  are finite numbers. The finiteness of old
tx  is 

true as t tx L≤ , 1t t ty L a−≤ +  and ( )1 *
R R

t t
old R
t t s s

s t T s t T

x x y T L a
= − = −

= + ≤ + +∑ ∑ . The finiteness of 

new
tx  follows from Property 3-8. Q.E.D. 

Property 3-10: old newJ J≥ . 

Proof: Direct consequence of Properties 3-9 and 3-10. Q.E.D. 

Remark 3-8: From the proof of Property 3-8, more patients can be served by CTS time slots 
in the new reservation process and hence old new

t tx x>  when nt > xt−1 + at. In this case, in the 

old reservation process, CTS queue does not contain enough patients to fill all CTS time 
slots and patients directed to RTS cannot be redirected. In the new reservation process, as no 
patients are directed RTS, these extra CTS time slots can be filled by patients that were 
directed to RTS in the old reservation process. 

Remark 3-9: From the proof of Property 3-8 and the proof of Property 3-9, 

1 1

0
t t

old new
s s

s s

u u
= =

− ≥∑ ∑ . The new reservation process has less time slot cancellation even 

though the average cancellation rate is the same. 

Property 3-11: The maximum waiting time of the new reservation process is smaller or 

equal to TR if the thresholds Lt are such that 
1

Rt T

t s
s t

L n
+

= +

≤ ∑  and 1 1t t tL n L+ +− ≤ . 

Remark 3-10: Condition of Property 3-11 basically assumes that patients in CTS queue of 
the old reservation process wait no longer than TR and a patient in the CTS queue will not be 
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directed to RTS. The last condition holds for any optimal control policy. By relaxing the 
first condition, it is still possible to show that the maximal waiting time of the new 
reservation process does not exceed that of the old reservation process. 

Proof:  Consider the last patient arriving in day t in the new reservation process, i.e. the 
new
tx -th patient in the patient queue. Assume by contradiction that its waiting time exceeds 

TR. As patients are served in FIFO order in the new reservation process, 

1

R

R

t T
new

st T
s t

x a
+

+
= +

> ∑  

Further, for the old reservation process, as 
R

t
old
t t s

s t T

x x y
= −

= + ∑  and xt ≤ Lt, the conditions of 

the property ensure that all patients in old
tx  have been served by time t + TR. As a result, 

1

R

R

t T
old

st T
s t

x a
+

+
= +

≤ ∑  

which contradicts Property 3-8 and concludes the proof. Q.E.D. 

Property 3-12: old newD D≥  where Dold and Dnew correspond to average patient waiting 
times in old and new contract-based reservation process. 

Proof:  Since both policies face the same patient arrival rate and both old
tx  and new

tx  are 

finite, by Little's law, 

1 1

1 1lim lim
T T

old old
t tT Tt t

x D a
T T→∞ →∞

= =

= ⋅∑ ∑  

1 1

1 1lim lim
T T

new new
t tT Tt t

x D a
T T→∞ →∞

= =

= ⋅∑ ∑  

which, together with Property 3-8, concludes the proof. Q.E.D.  

This property shows that, the new reservation process not only reduces the maximum 
waiting time by avoiding "unlucky" patients directed to longer regular reservation but also 
reduces the average waiting time. 

3.6.2 Experimental results 

The data are the same with Section 3.5. For each case, two scheduling methods are 
considered: (i) old MRI examination reservation process, denoted “Old”; (ii) new MRI 
examination reservation process, denoted “New”. The contract is provided in the following 
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and the optimal patient assignment policies of the old reservation process are determined by 
solving the LP model in Remark 3-4. The new reservation is defined with the same contract 
n and the same set of control thresholds L. Each reservation process is then evaluated by 
Monte Carlo simulation over a time horizon of 1 million weeks. 

3.6.2.1 Waiting time distribution 

We consider first the base case. The average weekly demand is 5.74 MRI time slots. The 
contract for 6 CTS is: n = (1, 1, 1, 1, 2, 0, 0). For this contract, the optimal patient 
assignment policy is as follows L = (6, 6, 6, 6, 5, 6, 6). 

Fig.3.6 compares the probability distribution of patient waiting times of two scheduling 
methods for the base case. From this figure, the waiting time in old method is distributed 
over the range of 0~7 days plus a high probability spike of 5% at 35 days corresponding to 
"unlucky" patients directed to RTS. In the new method, the distribution of patients’ waiting 
time is much more smoothed on a range from 0 to about 20 days without "unlucky" patients 
having to wait for much longer time than patients arriving around the same time. The new 
method greatly reduces the maximal waiting time. 
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FIG. 3.6 Waiting time distribution of the base case 

 
Probability distributions of waiting time in all other cases are similar. In the following 
sensitivity analysis are performed with respect to different performance criteria including 
the average criterion value, the average delays, the variance of waiting times, and the 
maximal waiting times. 
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3.6.2.2 Impact of parameters 

We now perform the sensitivity analysis with respect to cost c of unused time slots by 
varying c in {1, 5, 10, 15, 20}. The contract is n = (1, 1, 1, 1, 2, 0, 0).  The optimal patient 
assignment policies are: L = (5,5,5,5,4,5,5),  (5,5,5,5,4,5,5), (6,6,6,6,5,5,6), (6,6,6,6,5,6,6),  
(7,6,6,7,6,6,7). 

Table 3.11 compares the performance of both scheduling methods.  “OBJ” is the long run 
average criterion value, i.e. Jnew or Jold. “Ave”, “Dev” and "Max" are the average waiting 
time, standard deviation and maximum of the waiting times, respectively. “Gap” = (Jold - 
Jnew) / Jold is the relative deviation of the criterion value of new method with respect to that 
of the old method. Compared with those in the old method, the performance indices in new 
method greatly decreases, which means that the new method improves the performances of 
contract-based reservation process. With the increase of c, OBJ, Ave, Dev, and Max increase. 
This means the value of unused CTS cost greatly affects patients’ waiting time. Gap 
decreases from 12.3% to 3.74%, and the average delay increases from 4.04 to 4.54. 
Maximal waiting time keeps nearly the same, about 26~27 days.  

It seems that the new method improves more when more patients are directed to RTS. 
Indeed, for small c, the CTS queue length L is smaller and the improvement of the new 
reservation process is greater.  

 
Old New 

c 
OBJ Ave Dev Max OBJ Ave Dev Max 

Gap 
(%) 

1 3.88  4.62  8.18  35 3.40  4.04  3.65  26 12.30 
5 4.24  4.62  8.18  35 3.76  4.04  3.65  26 11.26 

10 4.65  4.69  7.53  35 4.36  4.33  3.83  27 6.23  
15 5.06  4.70  7.47  35 4.78  4.37  3.84  27 5.41  
20 5.45  4.79  7.16  35 5.25  4.54  3.95  27 3.74  

 
TAB 3.11 Performance vs unused CTS penalty costs c 

 
We now perform the sensitivity analysis with respect to the average delay of regular 
reservation by varying TR in {25, 30, 35, 40, 45}. The contract is n = (1, 1, 1, 1, 2, 0, 0). The 
optimal patient assignment policies are: L = (5,5,5,5,4,5,5),  (6,6,6,6,5,5,6), (6,6,6,6,5,6,6), 
(7,6,6,7,6,6,7),  (7,7,7,7,6,7,7). 

Table 3.12 compares the performance of both reservation processes. The impact of TR on the 
performance is nearly the same with the impact of c, except the Max and Gap.  As shown in 
Table 3.12, Max increases from 21 to 30 days, and Gap increases from 4.5% to 5.4% with 
the increase of TR. This means the new method is more important for longer TR. 
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We now perform the sensitivity analysis with respect to the patient arrival pattern. The 
arrival pattern has no obvious impact on the performances of the reservation processes. 

 
Old New 

TR 
OBJ Ave Dev Max OBJ Ave Dev Max 

Gap(%) 

25 4.61  3.98  5.83  25 4.40 3.73  3.26 21 4.50  
30 4.84  4.42  6.47  30 4.65 4.19  3.64 24 3.92  
35 5.06  4.70  7.47  35 4.78 4.37  3.84 27 5.41  
40 5.26  5.03  8.17  40 4.98 4.68  4.11 28 5.35  
45 5.45  5.31  8.86  45 5.15 4.95  4.34 30 5.40  

 
TAB 3.12 Performance vs average RTS delays TR 

 
Peak demand n L 

Mon. {2,1,1,1,1,0,0} {6,6,6,6,6,6,7} 
Tues. {1,2,1,1,1,0,0} {7,6,6,6,6,6,7} 
Wed. {1,1,2,1,1,0,0} {6,6,6,6,6,6,6} 
Thurs. {1,1,1,2,1,0,0} {6,6,6,6,5,6,6} 

Fri. {1,1,1,1,2,0,0} {6,6,6,6,5,6,6} 
Ave {1,1,2,1,1,0,0} {7,7,6,6,6,6,7} 

 
TAB 3.13 Contracts and patient assignment policies vs patient arrival patterns 

 
Old New Peak 

demand OBJ Ave Dev Max OBJ Ave Dev Max 
Gap 
(%) 

Mon. 5.13  4.84  7.28 35 4.90 4.55  3.90  26 4.59  
Tues. 5.12  4.84  7.24 35 4.90 4.57  3.96  27 4.28  
Wed. 5.13  4.83  7.34 35 4.89 4.54  3.95  26 4.67  
Thurs. 5.12  4.76  7.54 35 4.83 4.41  3.86  26 5.69  

Fri. 5.06  4.70  7.47 35 4.78 4.37  3.84  27 5.41  
Ave 5.11  4.82  7.05 35 4.91 4.57  3.94  27 3.89  

 
TAB 3.14 Performance vs patient arrival patterns 

 
We now perform the sensitivity analysis with respect to the patient arrival rate. Three 
scenarios are considered “Low” (base case), “Medium” (patient arrival rates 5 times larger), 
“High” (patient arrival rates 10 times larger). The contract is n = (1, 1, 1, 1, 2, 0, 0) for the 
base case, five times larger for medium demand case, and ten times larger for high demand 
case. The optimal patient assignment policy is as follows: L = (6, 6, 6, 6, 5, 6, 6), (17, 16, 16, 
17, 14, 15, 17), (27, 27, 26, 28, 22, 25, 27). 

From Table 3.15, compared with old method, nearly all performance criteria decrease in the 
new method. With the increase of arrival rate, OBJ greatly increases, whereas Ave, Dev, and 
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Max greatly decrease.  Further, it seems that the new reservation process improves more for 
low demand case. 

 
Old New Arrival 

Rate OBJ AVE Dev Max OBJ AVE Dev Max 
Gap 
(%) 

Low 5.06  4.70  7.47  35 4.78  4.37 3.84 27 5.41  
Medium 10.55  1.72  3.78  35 10.30 1.66 1.80 14 2.41  

High 14.55  1.04  2.37  35 14.40 1.02 1.28 12 1.03  
 

TAB 3.15 Performance vs patient arrival rates 

3.7 Conclusion 

This chapter proposes a contract-based reservation process of MRI examinations for stroke 
patients in order to reduce the average waiting time of patients without degrading the 
utilization ratio of MRI facilities. The new method requires the determination of the number 
of contracted time slots and the optimal patient assignment control policy for assigning 
patients to either CTS or RTS. This results a stochastic combinatorial problem that 
combines combinatorial planning decision variables and dynamic control policies. This 
chapter first explores the structure properties of the optimal control policies under a given 
contract and then proposed a two-step approach to obtain efficient contracts. A single 
sample-path Monte Carlo approximation is used to determine an initial contract which is 
further improved through local search. Numerical results show that the deviation gap from 
the optimal solution is rather small which means that the contract and the corresponding 
control policy are very close to the optimal ones. 

This chapter also proposes new strategy to avoid the “unlucky patients” who are assigned to 
RTS. The new strategy differs from the existing one by reserving regular time slots for the 
neurovascular department instead for particular patients. This allows us to avoid "unlucky" 
patients having to wait for much longer time than other patients arriving at the same time. 
Numerical results show that the new method can greatly reduce the criterion values and 
better the waiting time distribution. 

Future research can be pursued in several directions. To reduce the unused CTS and 
improve the utilization ratio of MRI, one immediate extension is the development of real 
time control strategies for advanced cancellation of CTS in case of short CTS queue. There 
are several other research directions, for example, the determination of the optimal contract 
with non stationary patient arrival and the combination of multiple classes of patients and 
several examinations. 



 

Chapter 4  
Contract planning and one-day advance 
cancellation of contracted time slots 
 
This chapter addresses the improvement of contract-based MRI examinations reservation 
process by allowing one-day advance cancellation of contracted time slots. The contract is 
now composed of three parts: contract decision, patient assignment policy, and one-day 
advance cancellation policies. The problem of CTS cancellation and patient assignment is 
formally formulated as an average cost Markov Decision Process in order to minimize the 
criterion values including the average patient waiting times, average unused CTS penalty 
and CTS cancellation penalty. Structure properties of the optimal control policies are 
established via the discounted cost problem. A local optimization algorithm is proposed to 
improve a given initial contract. Numerical results show that advance CTS cancellation 
significantly reduces the unused CTS with slight increase of patients’ waiting time. 

Papers relevant with this chapter: Geng et al. (2010b),  Geng (2009c) 

4.1 Introduction 

Chapter 3 has proposed a contract-based MRI examination reservation process for stroke 
patients. The reservation process reduces stroke patients’ waiting time but it also leads to 
unused time slots. To improve the utilization of MRI scanner, we explore the possibility of 
avoiding unused CTS by canceling CTS in advance when the CTS queue is short. In this 
way, the possible unused CTS can be released from the contract in advance and the imaging 
department can arrange other patients to have the examinations on these release time slots. 
Of course, the earlier a contracted time slot is released, the better the imaging department 
can make use of it. In this chapter, we limit ourselves to cancellation one day before.  More 
specifically, the contract includes three decisions: 

Contract decision, i.e., the number and distribution of CTS; 

Patient assignment control policy, i.e., the control policy which assigns patient to either 
CTS or RTS;  

One-day advance cancellation control policy. The neurovascular department can cancel 
part of CTS in the next day in order to reduce unused CTS when the CTS queue length at the 
end of some day is too short.  
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This chapter proposes an MDP approach to simultaneously identify the forms of the optimal 
patient assignment and one-day advance cancellation policies for each given contract. Then, 
local search is used to improve the contract decision.  

The rest of this chapter is organized as follows: Section 4.2 provides a formal problem 
setting. Structure properties of the optimal control policies are established via discounted 
cost MDP in Section 4.3. Section 4.4 proposes local optimization algorithm. Section 4.5 
analyzes results of computational experiments. Conclusions and perspectives are given in 
Section 4.6.  

4.2 Problem setting 

This section presents an MDP formulation to determine the optimal patient assignment 
policy and one-day advance CTS cancellation policy. Assumptions 1 to 4 presented in 
Chapter 1 are made. Further, the following assumption is made throughout the chapter: 

Assumption 4-A1: CTS of day t can be cancelled in advance of one day, i.e., at the end of 
day t−1. 

Based on the above assumptions, the problem of patient assignment and advance CTS 
cancellation can be characterized by the following notation: 

Indices: 

t:   index of days, t=1,…,T; 

i:   index of days in one week, i=1,…,7, i.e., Monday, …, Sunday; note that the day i±j 
is the weekday of j days after or before day i in one week; 

d(t): the day in the week corresponding to day t with d(t)=t(mod)7+1∈{1, …,7}; 

Data: 

TR:  average number of days for a patient to have his/her MRI examination through 
regular reservation with TR > 1; 

 c:  penalty factor of an unused CTS. It serves as a weighting factor in order to balance 
average waiting time and unused MRI time slots; 

b:  penalty factor of canceling one CTS with b < c; 

 at:  number of patients arrived in day t. By assumption 3, daily arrivals at for t ∈ IN are 
mutually independent random variables and weekly arrivals (a7j+1, a7j+2, …, a7j+7) 
are identically distributed for all j = 0, 1, …. As a result, the arrival process is 
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characterized by probability matrix P = [Pij] for i = 1, …, 7 and for all j ≥0 with Pij 
denoting the probability of j arrivals in day i; 

nt: number of CTS in day t; 

Decision variables are: 

xt: number of patients waiting for CTS at the end of day t, which is also called CTS 
queue, 0x  is a given constant. Note that xt does not include patients that are directed to 

RTS. 

wt: number of CTS for day t+1 cancelled at the end of day t; w0 is known; 

State variable: 

   zt = wt-1 + xt−1 + at: number of CTS to be consumed in day t. 

The sequence of events during each day t is as follows. First, the queue length xt-1 for CTS is 
known at the end of day t−1, and the number wt−1 of CTS canceled for day t is determined. 
During day t, the number at of new incoming patients during the day becomes known. The 
state variable zt is known. MIN{ nt − wt−1, xt−1 + at} patients are served by the remaining 
CTS of the day and MAX{0, nt − zt } CTS of day t cannot be filled. xt patients will wait for 
CTS of the subsequent days. MAX{0, zt −nt − xt } remaining patients are directed to RTS 
and will have the MRI examination after an average of TR days.  

There are two control policies in this problem: CTS cancellation and patient assignment 
policies. History-dependent policies are considered in this chapter. Let ht = (zi, xi, wi, …, zt−1, 
xt−1, wt−1, zt) be the full history stating from initial state zi at the beginning of day i. We 
denote the patient assignment policy by π={π1,π2,...}, where the CTS queue length at the 

end of day t is xt = πt(ht) with 0≤xt ≤ ( )t tz n +− , and the CTS cancellation policy by µ={µ1, 

µ2,…}, where the number of CTS cancelled for day t+1 at the end of day t is wt= µt(ht) with 
0≤wt≤(nt+1−xt)+.  

The objective is to minimize over all history-dependent policies µ={µ1, µ2,…} and 
π={π1,π2,...} the long-run average cost  

 ( ) ( ) ( )
11, lim , ,

T i

t t t id tT t i

J i z E g z x w z z
Tμπ

+ −

→∞
=

⎡ ⎤= =⎢ ⎥⎣ ⎦
∑  (4.1) 

for any given initial state zi =z with i = 1, …7 where  

 ( ) ( ) ( )( ) ( )( ), , R
t t t t t t t td t d t d tg z x w bw c n z x T z n x

+ +
= + − + + − −  
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is the stage cost, i.e., CTS cancellation cost plus unused CTS penalty plus waiting time for 
CTS and RTS. In the following, gd(t)(.) are written as gt(.) for convenience. 

Theorem 4-1: There exists an optimal average cost policy such that tx x≤ for all t > 0 with 

( ) *Rx T c n⎡ ⎤= +⎢ ⎥  where n* = MAX{n1, …, n7}. 

Proof: This proof is similar with Theorem 3-1. Q.E.D. 

Thanks to Theorem 4-1, we can make without loss of generality the following assumption: 

Assumption 4-A2: tx x≤ for all t > 0. 

4.3 Properties of optimal control policies 

4.3.1 Discounted cost problem 

According to relation (4.1), the corresponding discounted cost MDP is as follows: 

 ( ) ( ), , lim , ,
T

t i
t t t t iT t i

J i z E g z x w z zα μπ α −

→∞
=

⎡ ⎤= =⎢ ⎥⎣ ⎦
∑  (4.2) 

for any given initial state zi =z with i = 1, …7 with discount factor α such that 0 < α < 1. 
Consider the following optimal cost function 

 ( ) ( ),, ,U i z MIN J i zα α μπμπ
=  (4.3) 

In the remaining, for simplicity, the notation α is omitted in this subsection where only 
discounted cost problem with a given  α is considered.  

Theorem 6.10.4 in Puterman (1994)  is used to established the optimality equation. It will be 
shown in Remark 4-1 that all conditions needed for application of Theorem 6.10.4 are 
satisfied. Since the set of states (i, z) is countable and the control constraint set is finite as xt 
≤ zt and wt ≤ nt+1 for each zt, Theorem 6.10.4 in Puterman (1994) implies that the optimal 
cost function is the unique solution of the following optimality equation: 

 ( ) ( ) ( ) ( )1 ,,
, min , , 1, , 1,...,7

i i
i i i i i id i ax w a

U i z g z x w P U i x w a iα +

⎧ ⎫= + + + + ∀ =⎨ ⎬
⎩ ⎭

∑  (4.4) 

where the optimal control policy is stationary deterministic and is given by the argument w 

and x that reach the minimum in (4.4) and the optimal cost function is the limiting function 
of the following value iteration: 
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 ( ) ( ) ( )1
1,,

min , ,
t t

t t
t t t t t t a t tx w a

U z g z x w P U x w aα +
+

⎧ ⎫= + + +⎨ ⎬
⎩ ⎭

∑  (4.5) 

 ( )0 0U z =  (4.6) 

for t = 0, −1, − 2, … where 0≤xt ≤(zt −nt) +, 0≤wt≤(nt+1−xt)+, nt= nd(t) and Pt+1,a= Pd(t+1),a are 
shorthand notation with d(t) denoting the corresponding day with d(0) = 7, d(−1) = 6, …  As 
a result,  

 ( ) ( )7, lim n i

n
U i z U z− +

→∞
=  (4.7) 

Since  

( ) ( ) ( ) ( ) ( ), , 1 , 0R R
t t t t t t t t t t t t tg z x w c n z T z n bw T x x z n+ + += − + − + − − ∀ ≤ ≤ −

, 
relation (4.5) can be rewritten as 

 ( ) ( ) ( )
( )

( ) ( ){ }
0,
min 1

t t t

t R t R
t t t t t t t

x z n x
U z c n z T z n V x T x

+

+ +

⎡ ⎤∈ − ∧⎢ ⎥⎣ ⎦

= − + − + − −  (4.8) 

 ( )
( )

( )
1

1
1,

0,
min

t t t

t t
t t t a t t

w n x a

V x bw P U x w aα
+

+

+
+⎡ ⎤∈ −⎢ ⎥⎣ ⎦

⎧ ⎫
= + + +⎨ ⎬

⎩ ⎭
∑  (4.9) 

Ut(zt) is used to explore the optimal patient assignment policy depending on state variable zt, 
whereas Vt(xt) is used to establish the optimal one-day advance CTS cancellation control 
policy depending on state variable xt. 

Similarly, relation (4.4) can be rewritten as  

 ( ) ( ) ( )
( )

( ) ( ){ }
0,

, min , 1
i

R R
i i

x z n x
U i z c n z T z n V i x T x

+

+ +

⎡ ⎤∈ − ∧⎢ ⎥⎣ ⎦

= − + − + − −  (4.10) 

 ( )
( )

( )
1

1,
0,

, min 1,
i

i a
w n x a

V i x bw P U i x w aα
+

+

+⎡ ⎤∈ −⎢ ⎥⎣ ⎦

⎧ ⎫= + + + +⎨ ⎬
⎩ ⎭

∑  (4.11) 

By relation (4.7) and the uniqueness of the optimal value function, 

 ( ) ( )7, lim n i

n
V i x V x− +

→∞
=  (4.12) 

Remark 4-1: The optimality equation (4.4) requires Assumption 6.10.1 and condition 
(6.10.11) of Puterman (1994). Assumption 6.10.1 holds as gt(zt, xt, wt) ≤ W(zt) ≡ (b+c)n* + 
TRzt. Condition (6.10.11) holds as:  

( ) ( ) [ ]

( ) ( )

1, 1*

* *

R
i a t t t t t

a

R R
t

P W x w a b c n T E x w a

W z b c n T x T a

+ ++ + ≤ + + + +

≤ + + + +

∑
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where a* = MAX{E[a1], …, E[a7]}. The above relation holds as 1max( , )t t t tx w x n ++ ≤  and, 

by assumption 4-A2, t tx w x+ ≤ . 

Property 4-1: In the value iteration by relation (4.5) or equivalently (4.8)-(4.9), 

( ) ( )1t t R
t tc U z U z T− ≤ − − ≤ .  

Proof: The proof is done by induction on t. The property trivially holds for t=0. Assume 
that it holds for some t+1≤0 and consider day t. Let ( 1

tx , 1
tw ) and ( 2

tx , 2
tw ) be arguments 

reaching minimum in relation (4.5) or equivalently (4.8)-(4.9) for Ut(zt) and Ut(zt−1). From 

the optimality condition, ( )1 0,t t tx z n x+⎡ ⎤∈ − ∧⎣ ⎦ , ( )2 0, 1t t tx z n x+⎡ ⎤∈ − − ∧⎣ ⎦ . 

Taking ( ) ( )2 2, ,t t t tx w x w=  as the feasible control for ( )t
tU z  leads to 

( ) ( )1t t R
t tU z U z T− − ≤  and proves the right relation of the property. 

To prove the left side, the relation trivially holds if (zt−nt)+=0 as Ut(zt) − Ut(zt−1)= −c. 
Otherwise, two cases are possible.  

Case 1: ( )10 t t tx z n +≤ < − , taking ( ) ( )1 1, ,t t t tx w x w=  as the feasible control for ( )1t
tU z −  

gives 

( ) ( )1t t R
t tU z U z T− − ≥  

Case 2: ( )1 0t t tx z n += − > , taking ( ) ( )1 1, 1,t t t tx w x w= −  as the feasible control for ( )1t
tU z − , 

then 

( ) ( ) ( ) ( )( )1 1 1 1 1 1
1,1 1 1t t t t

t t t a t t t t
a

U z U z P U x w a U x w aα + +
+− − ≥ + + + − + + −∑ . 

By induction assumption, ( ) ( )1 1t t
t tU z U z c cα− − ≥ − ≥ − . 

Q.E.D. 

Property 4-2: In the value iteration by (4.8)-(4.9), ( ) ( )1t t R
t tb V x V x T− ≤ − − ≤  for any xt. 

Proof: The proof is done by induction on t. Since ( )0 0U z = , ( )1
tV x− =0 and the property 

holds for t = −1. Assume that the property holds for t+1 < 0 and consider t. Let 1
tw  and 2

tw  

be the minimizing argument in relation (4.9) for ( )t
tV x  and ( )1t

tV x − . By 

definition, ( )( )1
10,t t tw n x +

+∈ − , ( )( )2
10, 1t t tw n x +

+∈ − + . 

Two cases are considered to prove the left hand relation of the property.  
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Case 1: 10 1t t tx x n +≤ − < ≤ . Take 1 1t tw w= +  as the feasible control for ( )1t
tV x − , 

( ) ( )1t t
t tV x V x b− − ≥ − . 

Case 2: 11t t tx x n +> − ≥ . Hence, 1 2 0t tw w= =  and 

( ) ( ) ( ) ( )( )1 1
1,1 1t t t t

t t t a t t
a

V x V x P U x a U x aα + +
+− − = + − − +∑  

It is enough to prove ( ) ( )1 1 1t t
t tU x a U x a b+ ++ − − + ≥ −  for all a. Let 1

1tx +  and 2
1tx + be 

minimizing argument in relation (4.8) for ( )1t
tU x a+ +  and ( )1 1t

tU x a+ − + . If 
1

1 10 t t tx x a n+ +≤ < + − , taking 1
1 1t tx x+ +=  as the feasible control for ( )1 1t

tU x a+ − +  in relation 

(4.8) gives 

( ) ( )1 1 1t t R
t tU x a U x a T b+ ++ − − + ≥ ≥ −  

If 1
1 1t t tx x a n+ += + − ,  taking 1

1 1 1t tx x+ += −  as the feasible control for ( )1 1t
tU x a+ − +  in (4.8) 

gives  

( ) ( ) ( ) ( )( )1 1 1 1 1 1
1 11 1 1t t t t

t t t tU x a U x a V x V x b+ + + +
+ ++ − − + ≥ + − − ≥ − . 

We now prove the right hand relation. Two cases are considered:  

Case 1: 10 1t t tx x n +≤ − < ≤ and 2 0tw > , taking 2 1t tw w= −  for ( )t
tV x  leads to 

( ) ( )1t t
t tV x V x b− − ≤ − .  

Case 2: 2 0tw = . Taking 0tw =  for ( )t
tV x  and combining with Property 4-1 lead to  

( ) ( ) ( ) ( )( )1 1
1,1 1t t t t R

t t t a t t
a

V x V x P U x a U x a Tα α+ +
+− − = + − + − ≤∑  

This completes the proof. Q.E.D. 

Property 4-3: In the value iteration by (4.5) or equivalently (4.8)-(4.9), Ut(zt) is convex in zt 

and Vt(xt) is convex in xt. 

Proof: This proof is made by induction on t. First U0(z) = 0 and is hence convex in z. 
Assume that Ut+1(z) is convex in z.  

We first prove that Vt(xt) is convex in xt and show the form of the optimal CTS cancellation 
policy. Let us rewrite relation (4.9) as follows: 

( )
( )

( )
1,max ,

min
t t t t t

t t
t t t tx w x n x

V x bx R x w
+⎡ ⎤+ ∈⎣ ⎦

= − + +  
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where 

( ) ( )1
1,

t t
t a

a

R y by P U y aα +
+= + +∑  

By induction assumption, Rt(y) is convex in y. Let St+1 be the smallest argument minimizing 
Rt(y), i.e. 

 ( )1
1 1,

0
arg min t

t t a
y a

S by P U y aα +
+ +

≥
= + +∑  (4.13) 

We show by contradiction that St+1 ≤ nt+1. If St+1 > nt+1, ( ) ( )1 1 1
t t

t t tV S bS R S+ + += − +  and 

( ) ( ) ( )1 1 11 1 1t t
t t tV S b S R S+ + +− = − − + − . Hence 

( ) ( ) ( ) ( )( )1 1 1 11 1t t t t
t t t tV S V S b R S R S b+ + + +− − = − + − − < −  

which contradicts Property 4-2 and prove St+1 ≤ nt+1. 

Since St+1 ≤ nt+1,  

( )
( )
( )

1 1

1

,

,

t
t t t tt

t t
t t t t

bx R S x S
V x

bx R x x S
+ +

+

⎧− + ∀ ≤⎪= ⎨
− + ∀ >⎪⎩

 

which can be easily shown to be convex in xt. The optimal CTS cancellation is characterized 
by a single threshold St+1. If the ending CTS queue length in day t is below this threshold, 
then cancel enough CTS in order for xt+wt to reach this threshold. Otherwise, no CTS is 
cancelled. 

We then prove that Ut(zt) is convex in zt and show the form of the optimal patient 

assignment policy. First ( ) ( )1t R
t tV x T x− − is also convex. Let 

 
( )( )

( ) ( )( )
0

arg min 1
t t t

t R
t t t

x z n x

L V x T x
+≤ ≤ − ∧

= − −  (4.14) 

Equation (4.8) can be written as  

 ( )
( )

( )

(0) if               
( ) if 

( ) if         

t
t t t t

t t
t t t t t t t t t

R t
t t t t t t t t

c n z V z n
U z z n V z n n z L n

L T z n L V L z L n

⎧ − + ≤
⎪= − + − < ≤ +⎨
⎪ + − − + > +⎩

 

The optimal patient assignment policy is as follows. No patient is sent to RTS if the 
resulting CTS queue length at the end of day is below the threshold Lt. Otherwise, some 
patients are sent to RTS to keep the CTS queue length at Lt. 
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Ut(zt) is convex in zt in the following internal [0, nt), (nt, Lt+nt), and (Lt+nt, +∞) . We still 
need to prove the convexity of Ut(zt) for zt = nt and zt=Lt +nt. The convexity of Ut(zt) in zt 
holds when zt= nt, because Ut(zt) − Ut(zt−1) = −c and from Property 4-1, Ut(zt) − Ut(zt−1)≥−c. 
The convexity of Ut (zt) in zt holds when zt= Lt+nt, because Ut(zt)− Ut(zt−1)=TR and from 
Property 4-1, Ut(zt) − Ut(zt−1)≤TR. Therefore, Ut(zt) is convex in zt. Q.E.D. 

Theorem 4-2: The optimal value functions U(i, z) and V(i, x) in relation (4.10) and (4.11) 
are convex in z and x respectively. Further, the optimal control policy for problem (4.3) is of 
the following form: 

1) The optimal CTS queue length at the end of day i is: 

 *

0                    if  0
      if  0

                   if  

i i

i i i i i i

i i i i

z n
x z n z n L

L z n L

− ≤⎧
⎪= − ≤ − ≤⎨
⎪ − ≥⎩

 (4.15) 

where ( ) ( )( )
0

arg min , 1R
i

x x
L V i x T x

≤ ≤
= − − . 

The optimal number of patients assigned to RTS at the end of day i is: 

( )* *
i i i iy z n x

+
= − −  

2) The optimal number of CTS cancelled at the end of day i is:  

 1 1*

1

     if  
     0           if  

i i i i
i

i i

S x x S
w

x S
+ +

+

− ≤⎧
= ⎨ ≥⎩

  (4.16) 

 where ( )1 1,
0

arg min 1,i i a
y a

S by P U i y aα+ +
≥

= + + +∑ . 

Proof: The convexity of U(i, z) and V(i, x) is a direct consequence of relations (4.7), (4.12), 
and Property 4-3. Note that, as a result of relations (4.7) and (4.12), Properties 4-1, 4-2 also 
hold for U(i, z) and V(i, x). The form of the optimal control policy can be proved as in the 
proof of Property 4-3. Q.E.D.  

4.3.2 Average cost problem 

4.3.2.1 Bounded demand case 

The following assumption is also made for the average cost problem case. 

Assumption 4-A3. There exists a finite number A such that at≤A, for all t. 

Remark 4-2: The assumption is not restrictive in practice as A can be chosen large enough.  
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The combination of Assumptions 4-A2 and 4-A3 implies that the state variable zt is upper 
bounded and: 

 tz z x A≤ ≡ +  (4.17)  

as 1max( , )t t t tx w x n x++ ≤ ≤ . As a result, under Assumptions 4-A2 and 4-A3, the stage cost 

function is also bounded with 

 ( ) ( ), , * R
t t t tg z x w B b c n T z≤ ≡ + +  (4.18) 

Property 4-4: There exists M>0 such that ( ) ( ), 7,0U i z U Mα α− ≤ , for all i = 1, …,7 and 

for all x and z. 

Proof: From Property 4-1, 

( ) ( )1t t R
t tc U z U z Tα α− ≤ − − ≤  

which, together with the finiteness of the state space, 

( ) ( )'t t
t tCz U z U z Czα α− ≤ − ≤  

for all zt, z’t with C = Max(TR, c). Combining with relation (4.7),  

 ( ) ( ), , 'Cz U i z U i z Czα α− ≤ − ≤  (4.19) 

This establish the property for i = 7. Consider now the case i = 1, …, 6. From (4.18), 

 ( ) ( ), 1,
iaU i z B E U i zα α≤ + +⎡ ⎤⎣ ⎦  (4.20) 

Repeat the relations (4.20) for t subsequent days leads to: 

 ( ) ( )( , ),( , ')
'

, , ' , 1,...,7i z t i z
z

U i z tB p U t i z iμπ
α α+≤ + + ∀ =∑  (4.21) 

where ( , ),( , ')i z t i zpπ
+  is the probability of reaching state z’ at the beginning of day t+i by starting 

from state z at day i under policies μ and π. Combining (4.19) and (4.21) with t+i=7, 

 ( ) ( ) ( )( , ),(7, ')
'

, 6 7, ' 6 7,0i z z
z

U i z B p U z B U Czπ
α α α≤ + ≤ + +∑  (4.22) 

Similarly, 

 ( ) ( ) ( )(7,0),(7 , ')
'

7,0 6 , ' 6 ,i z
z

U B p U i z B U i z Czπ
α α α+≤ + ≤ + +∑  (4.23) 

Relations (4.22)-(4.23) conclude the proof with 6M B Cz= + . Q.E.D. 
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Theorem 4-3. There exists an optimal stationary control policy, the same with those in 
Theorem 4-2, for the average cost model (4.1). Further the optimal average cost is 
independent of the initial state (i, z). 

Proof.  From Proposition 4.2.6 in Bertsekas (1996), the optimal average cost per day exists 
and has the same value λ  for all initial states, and λ  satisfies 

 ( ) ( )
1

lim 1 ,U i zαα
λ α

→
= −  (4.24) 

The differential cost functions 

 ( ) ( ) ( )( )
1

, lim , 7,0H i z U i z Uα αα →
= −  (4.25) 

satisfy the following optimality equations: 

 ( ) ( ) ( )1,,
, min , , 1, , 1,...,7i i ax w a

H i z g z x w P H i x w a iλ +
⎧ ⎫+ = + + + + ∀ =⎨ ⎬
⎩ ⎭

∑   (4.26) 

Relation (4.26) can be rewritten as 

 ( )
( )( )

( ) ( ) ( ){ }, min , , 1,...,7
i

R
i i

x z n x
H i z c n z x T z n x F i x i

+

+ +

≤ − ∧
= − + + − − + ∀ =   (4.27) 

 ( )
( )

( )
1

1,, min 1, , 1,...,7
i

i a
w n x a

F i x bw P H i x w a iλ
+

+
+

≤ −

⎧ ⎫≡ + + + + − ∀ =⎨ ⎬
⎩ ⎭

∑  (4.28) 

Relations(4.25), (4.28) and (4.11) implies that 

 ( ) ( ) ( )( )
1

, lim , 7,0F i x V i x Uα αα →
= −  (4.29) 

Further, the optimal control policy is stationary deterministic and is defined by the argument 
that reaches the minimum in (4.26) or equivalently (4.27)-(4.28). From Theorem 4-2 and 
(4.25) and (4.29), H(i, z) is convex in z and F(i, x) is convex in x for all i = 1, …, 7. The 
optimal control policy is the same with that of Theorem 4-2. Q.E.D. 

4.3.2.2 Unbounded demand case 

This subsection relaxes assumption 4-A3. 

Property 4-5: For any z ≥ z’≥0, ( ) ( )'t t Rm U z U z m T zα α− ≤ − ≤ +  with ( )Rm c b T x= + + . 

Proof: The property trivially holds for t = 0. Consider the case t < 0. Since the “min” term 
in equation (4.8) is decreasing in zt, subtracting equation (4.8) with zt = z by equation (4.8) zt 
= z’ leads to:  
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( ) ( ) ( ) ( ) ( ) ( )' ' '

*

t t R R
t t t t

R R

U z U z c n z T z n c n z T z n

cn T z m T z
α α

+ + + +− ≤ − + − − − − −

≤ + ≤ +
 

as *n x≤ . Let x’ be the argument reaching minimum in (4.8) with zt = z’. As a result, 

 ( ) ( ) ( ) ( ) ( )' ' ' ' 1 't R t R
t tU z c n z T z n V x T xα α

+ += − + − + − −  (4.30) 

Subtracting equation (4.8) with zt = z by equation (4.30) leads to: 

 

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )( ){ }

( )
( ) ( ) ( )( ){ }

0,

0,

' ' '

min ' 1 '

* min ' 1 '

t

t

t t R R
t t t t

t t R

x z n x

t t R

x z n x

U z U z c n z T z n c n z T z n

V x V x T x x

cn V x V x T x x

α α

α α

α α

+

+

+ + + +

⎡ ⎤∈ − ∧⎢ ⎥⎣ ⎦

⎡ ⎤∈ − ∧⎢ ⎥⎣ ⎦

− = − + − − − − −

+ − − − −

≥ − + − − − −

 (4.31)  

For any x > x’, from Property 4-2, 

 ( ) ( ) ( )( )' 1 't t R RV x V x T x x bx T xα α− − − − ≥ − −  (4.32)  

For any x ≤ x’, from Property 4-2, 

 ( ) ( ) ( )( )' 1 't t RV x V x T x xα α− ≤ − −  (4.33)  

Combining relations (4.31)-(4.32) leads to: 

( ) ( )' * ( )t t R RU z U z cn bx T x c b T xα α− ≥ − − − ≥ − + + . 

Q.E.D. 

Property 4-6: There exist M>0 and r > 0 such that ( ) ( ), 7,0M U i z U M rzα α− ≤ − ≤ + ,  for 

all i = 1, …,7 and for all z. 

Proof: From Property 4-5, 

( ) ( )' , 't t Rm U z U z m T z z zα α− ≤ − ≤ + ∀ ≥ .  

Combining with relation (4.7),  

 ( ) ( ), , ' , 't t Rm U i z U i z m T z z zα α− ≤ − ≤ + ∀ ≥   

This establish the property for i = 7. Further 

 ( ) ( ), , ' , , 't R tU i z m T z U i z z zα α≤ + + ∀  (4.34)  

Consider now the case i = 1, …, 6. First, 

( ) ( ) ( ) ( )0 , , *R R R
t t t t t t t t t t t t tg z x w c n z x T z n x bw b c n T z m T z+ +≤ = − + + − − + ≤ + + ≤ + . 
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From (4.4), 

 ( ) ( )1, 1,R
iU i z m T z E U i zα α +≤ + + +⎡ ⎤⎣ ⎦  (4.35)  

Repeat the relations (4.35) for t subsequent days leads to: 

 ( ) [ ]( ) ( )
1

, , , 1,...,7
t i

R
t i

i

U i z m T E z E U t i z iα τ α
τ

+ −

+
=

≤ + + + ∀ =⎡ ⎤⎣ ⎦∑  (4.36)  

Combining (4.34) and (4.36) with t+i=7, 

 ( ) [ ]( ) ( ) ( )( )
7

, 7,0 6 * , 1,...,7R R

i
U i z m T E z U m T z a iα τ α

τ =

≤ + + + + + ∀ =∑  (4.37)  

Since zt ≤z + ai+1+ wi +…+ at+ wt-1≤z + ai+1+ ni+1 +…+ at+ nt, for t > i,  

 
( ) ( ) ( )

( )
, 7 49 * 7 6 * 7,0

8 55 * 8 7,0 , 1,...,7

R R R

R R

U i z m T a T z m T z a U

m T a T z U i
α α

α

≤ + + + + + +

≤ + + + ∀ =
 (4.38)  

Similarly, 

 ( ) [ ]( ) ( )( ) ( )
7

7

7,0 7 , 6 * 8 55 * ,
i

R R RU m T E z U i z m T a m T a U i zα τ α α
τ

+

=

≤ + + + + + ≤ + +∑ (4.39) 

Relations (4.38)-(4.38) conclude the proof with 8 55 *RM m T a= +  and 8 Rr T= . Q.E.D. 

Theorem 4-4. Under Assumptions 4, and 4-A2, (a) there exists a constant λ satisfying (4.24)  
for all (i, z), a matrix H(i, z) satisfying (4.25)-(4.26), (b) the optimal control policy is 
defined by the argument that reaches the minimum in (4.26), (c) there exists an optimal 
stationary control policy of the form of equations (4.15)-(4.16)for the average cost model. 

Proof: The proof is based on Theorem 8.10.7 of Puterman (1994) and the conditions that 
need to be checked are the following ones: 

C1: For each state (i, z), the stage cost is such that − ∞ < R ≤ gi(z, xi) < ∞. 

C2: For each (i, z) and α < 1, ( ),U i zα < ∞ . 

C3: There exists K  > −∞ such that, for each (i, z),  

( ) ( ) ( ), , 7,0 , 1.H i z U i z U Kα α α α≡ − ≥ ∀ <  

C4: There exists a non-negative function W(i, z) such that 

a) W(i, z) < ∞; 

b) for each (i, z), ( ) ( ), , , 1H i z W i zα α≤ ∀ < ; and 
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c) for each (i, z) and xi,  

( )1, 1, .i a i
a

P W i x a+ + + < ∞∑  

According to Theorem 8.10.7 of Puterman (1994), as the control constraint set for each state 
(i, z) is finite, (a) and (b) of the Theorem hold. Further H(i, z) is the limit of a sequence 

( ),
m

H i zα  such that αm converges to 1 and ( ),
m

H i zα  converges for all (i, z). From Property 

4-3, equations (9), H(i, z) is convex in z and (c) of the Theorem can be proved as for 
Theorem 4-2. 

Let us now prove conditions C1-C4. Condition C1 clearly holds as gi(z, xi) ≥ 0.  Condition 
C2 holds as well as  

(iv) as in Property 4-6, ( )0 , , R
t t t t tg z x w m T z≤ ≤ +   

(v)  ( ) ( ), , *R R
t t t t tE g z x w E m T z m T x a⎡ ⎤≤ + ≤ + +⎡ ⎤⎣ ⎦ ⎣ ⎦ ;  

(vi) ( ) ( ) ( )( ), * * .
1

R RV i z c b n T z m T x aα
α

α
≤ + + + + +

−
 

Condition C3 is guaranteed by Property 4-6 with K = -M. Condition C4 is a consequence of 
Property 4-6 with W(i, z) = M + rz. Q.E.D. 

4.3.3 Computation and implementation of the optimal control 

policies 

For any given contract n, as proved in Theorem 4-3 and 4-4, there exit the same optimal 
control policies for average-cost MDP and discounted-cost MDP. The related optimal 
control policies π(n) and μ(n) can be determined by solving the following LP model:  

( ) maximize J λ≡n  

Subject to 

( ) ( ) ( ) ( ), , , 1,...,7R
i i i i i i i iH i z c n z x T z n x F i x i+ +≤ − + + − − + ∀ =  

( ) ( )1,, 1, , 1,...,7i i i a i i
a

F i x bw P H i x w a iλ ++ ≤ + + + + ∀ =∑  

( ) ( )1, , 1,...,7i i i i i ix z n x w n x i+ +
+∀ ≤ − ∧ ∀ ≤ − ∀ =  

Where J(n) is the optimal average cost for problem (4.1) under contract n. The optimal 
controls are respectively given by x and w reaching equality in the above relations. Further, 
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the optimal control is characterized by two control threshold vectors L and S for patient 
assignment and CTS cancellation. From relations xi=min(Li,(zi-ni)+), and wi=max ((Si+1-
xi)+,0), the optimal control thresholds L and S can be easily determined.   

The existence of optimal control policies makes the implementation easy. For day t, the 
implementation of the optimal patient assignment policy depends on state variable zt, while 
that of the optimal one-day advance cancellation policy depends on xt, the CTS queue length 
at the end of day t. Therefore, patient assignment is first made, then CTS is cancelled for 
next day. 

The implementation of the optimal patient assignment control policy can be divided into 
three cases: 

Case 1: As shown in Fig. 4.1, if state variable zt is smaller than nt, then there exists the 
number nt–zt of unused CTS, and no patients waiting for the incoming time slots. 

 

FIG. 4.1 The optimal patient assignment control if zt <=nt 

 

Case 2: As shown in Fig. 4.2, if state variable zt is greater than nt but smaller than Lt + nt, 
then all the remaining patients are kept in the CTS queue and no patients are assigned to 
RTS. 
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FIG. 4.2 The optimal patient assignment control if nt =<zt <= Lt +nt 

 

Case 3: As shown in Fig. 4.3, if state variable zt is greater than Lt + nt, then the CTS queue 
length is Lt, and all the other remaining patients are assigned to RTS.  

 

FIG. 4.3 The optimal patient assignment control if zt >= Lt +nt 

 
The implementation of the optimal one-day advance cancellation control policy depends on 
the ending CTS queue at the end of the same day, which can be divided into two cases: 

Case 1: As shown in Fig. 4.4, if the ending CTS queue at day t is smaller than St+1, then the 
number of CTS cancelled for day t+1  is wt= St+1- xt. 
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time
Day t

If xt<=St+1

CTS queue: xt 

St+1 

CTS cancelled for day t+1: 
wt = St+1 - xt 

CTS cancellation up to the control threshold St+1
 

FIG. 4.4 The optimal one-day advance CTS cancellation control if xt <= St+1  

Case 2: As shown in Fig. 4.5, if the ending CTS queue at day t is greater than St+1, then there 
is no cancellation.  

timeDay t

If xt>=St+1

CTS queue: xt 
St+1 

No CTS cancellation
 

FIG. 4.5 The optimal one-day advance CTS cancellation control if xt <= St+1  

Remark 3-5 can be applied to here. The implementation of this contract-based MRI 
reservation process can be directly applied to the hospital combined with some patient 
scheduling policy.  However, to improve its performance, more work should be done about 
patients scheduling in order to reduce the variance of patients waiting times. 
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4.4 Local Optimization 

Starting from a given initial contract, this section presents a local search for improving the 
contract decisions by taking into account both patient assignment and one-day advance CTS 
cancellation policies. This local search relies on the structure properties of the previous 
section especially the LP model in Section 4.3.3 for contract evaluation. 

The local search starts from an initial contract n0. It then iteratively improves this contract. 
At each iteration, it determines the best neighbor solution among the set of contracts: n + ek 
(increasing one time slot in day k), n − ek (reducing one time slot in day k), n − ek + ej (move 
one time slot from day k to day j). This process repeats until no improvement can be found.  

The overall algorithm for the contract optimization is summarized as follows: 

Algorithm (Local optimization) 

1. Select an initial contract n0, determine the optimal control policy π(n0), μ(n0) and the 
optimal average cost J(n0) under contract n0 by solving LP model; 

2. Let n* = n0; J(n*) = J(n0); 

3. Determine the neighbor solution n’ with the smallest average cost as follows: 

{ }
( )

7; ; :1 , 7,
' arg min

k k k je e e e k j k j IN
J

∈ + − − + ≤ ≤ ≠ ∩
=

n n n n
n n  

4. If J (n’) < J (n*), set n* = n’ and go to step 3; 

5. The final contract is n* and the final control policy is π(n*) and μ(n*). 

In the numerical experiments of the next section, the initial contract decisions are obtained 
by the method proposed in our previous chapter for optimizing the contract decisions 
without CTS cancellation. 

4.5 Computational Results 

This section presents numerical results to show the benefit of CTS cancellation control 
policy and local improvement. All numerical experiments are performed on a Intel(R) Core 
(TM)2 Duo CPU T7250 based PC running at 2.00 GHz with 3.0 GB of Memory. The 
optimal control policies for the MDP formulation (4.1) are obtained by solving LP model 
with CPLEX 11 solver. 
The numerical experiments are all derived from the base case corresponding to our real case 
study. From the data collected from the neurovascular department of our study, the average 
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numbers of patient arrivals during the week are as follows: {1, 0.89, 0.95, 1.16, 1.53, 0.16, 
0.05}. The number of patients arrived each day is assumed to follow a Poisson distribution 
truncated at A = 20 which is large enough such that the probability of ai > A can be 
neglected. The waiting time for RTS varies from 30 to 40 days with an average of TR = 35 
days. The weighting factor of unused CTS is set to c = 15. CTS cancellation cost is taken as 
half of c, i.e. b = 7.5. 
In the following, the impact of CTS cancellation is analyzed with respect to the cancellation 
cost b, unused CTS cost c, average delay TR of regular reservation, patient arrival pattern, 
and the patient arrival rate. 
For each case, three solutions are considered: (i) the solution with only patient assignment 
policy considered for the initial contract n0. This solution will be denoted “NoCancel”; (ii) 
the solution considering both CTS cancellation and patient assignment policies for the 
contract n0. This solution will be denoted “Cancel”; (iii) the solution after local 
optimization starting from n0, where both policies are considered. This solution will be 
denoted “LocalOpt”.  

The three solutions are further compared with respect to different performance criteria 
including the average delay, the unused CTS ratio, the percentage of patients using RTS, 
and the percentage of CTS cancelled. 

The CPU time for local optimization is less than 6 minutes except for medium and high 
demand cases considered in Section 4.5.3. 

4.5.1 Impact of CTS cancellation and CTS cancellation cost 

This subsection considers the impact of CTS cancellation by varying the cancellation cost b 
from 0.1c to 0.9c.  

Fig.4.6 compares the criterion values of the three solutions “NoCancel”, “Cancel”, 
“LocalOpt”. From this figure, the cancellation cost b greatly impacts on the benefit of CTS 
cancellation. The gain of CTS cancellation with respect to the contract “NoCancel” is 
31.76% for b=0.1c, 14.86% when b=0.4c, and 0% when b=0.9c. Similar, the local 
optimization further improves both the contract and the control policies. The gain of Local 
optimization with respect to the solution “Cancel” is 33.77% for b= 0.1c, 5.38% for b=0.4c 
and 0 for b=0.9c. The total improvement of cancellation and local optimization with respect 
to the solution “NoCancel” is 54.8% for b = 0.1c, 19.4% for b = 0.4c and 0 for b = 0.9c. 
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FIG. 4.6 Criterion values vs cancellation costs b 

 

Table 4.1 summarizes the performance measures for the three different solution strategies. 
With respect to the strategy “NoCancel”, the CTS cancellation policy greatly reduces the 
unused CTS ratio and slightly increases the average delay by CTS cancellation, and at the 
same time more patients assigned to RTS. The reduction of unused CTS is drastic from 
18.22% to about 2% when the cancellation cost b is small. As b increases, less CTS are 
cancelled and the reduction of unused CTS ratio decreases. The contract “LocalOpt” further 
takes advantage of CTS cancellation. When b is small, all CTS that cannot be used by 
patients in CTS queue are cancelled and hence there is no unused CTS. Further, enough 
CTS are planned and no RTS is used. 

 
“NoCancel” “Cancel” “LocalOpt” 

Delay Unused RTS Delay Unused RTS Cancel Delay Unused RTS Cancelb 
(days) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 

0.1c 2.16 18.22 0.26 3.15 1.59 0.67 16.96 1.63 0.00 0.00 36.23 
0.2c 2.16 18.22 0.26 3.15 1.59 0.62 16.93 2.06 0.00 0.01 28.26 
0.3c 2.16 18.22 0.26 3.15 1.59 0.58 16.89 2.06 0.00 0.01 28.26 
0.4c 2.16 18.22 0.26 3.15 1.58 0.48 16.82 2.06 0.00 0.00 28.26 
0.5c 2.16 18.22 0.26 3.16 1.58 0.45 16.80 2.97 0.98 0.44 17.38 
0.6c 2.16 18.22 0.26 2.79 6.20 0.40 12.13 2.82 2.66 0.39 15.67 
0.7c 2.16 18.22 0.26 2.28 13.92 0.29 4.32 2.40 9.58 0.30 8.67 
0.8c 2.16 18.22 0.26 2.29 13.91 0.27 4.32 2.26 12.64 0.28 5.60 
0.9c 2.16 18.22 0.26 2.16 18.22 0.26 0.00 2.16 18.22 0.26 0.00 
 

TAB. 4.1 Performance measures vs cancellation costs b 
 
Table 4.2 summarizes the contracts, the optimal patient assignment policies and the optimal 
CTS cancellation policies for different cancellation cost b. The optimal contract the optimal 
control policy for the “NoCancel” solution strategy is n = (1, 1, 1, 1, 3, 0, 0), L = (11, 11, 11, 
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11, 9, 10, 10) which are identical to the control for “Cancel” strategy with b = 0.9c. The 
optimal patient assignment policy of “Cancel” strategy is somewhat counter-intuitive. One 
would expect that, with CTS cancellation, a longer waiting queue is needed. However, the 
opposite happens. The optimal CTS queue threshold L is actually smaller than the one for 
“NoCancel” strategy. More CTS are cancelled when b is small. For example, when b is 
smaller than 0.6c, all CTS except one for Friday that cannot be used by patients in CTS 
queue are cancelled. For the optimal contract of “LocalOpt” strategy, more CTS are planned 
when b is small. Further, thanks to the possibility of CTS cancellation, CTS are now 
planned for Weekend. Further, when b is small, large CTS queue are used because of more 
CTS introduced so as to avoid assignment to RTS.   
 

b “Cancel” “LocalOpt” 
 n={1, 1, 1, 1, 3, 0, 0}; 7CTS n={0, 1, 2, 1, 2, 2, 1}; 9CTS 

0.1c S={1, 1, 1, 1, 2, 0, 0}; S={0, 1, 2, 1, 2, 2, 1}; 
 L={9, 9, 9, 10, 8, 8, 9}. L={18, 18, 18, 19, 18, 17, 17}. 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={0, 1, 1, 1, 2, 2, 1};8CTS 

0.2c S={1, 1, 1, 1, 2, 0, 0}; S={0, 1, 1, 1, 2, 2, 1}; 
 L={9, 9, 10, 10, 8, 9, 9}. L={14, 14, 14, 14, 14, 13, 12}. 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={0, 1, 1, 1, 2, 2, 1};8CTS 

0.3c S={1, 1, 1, 1, 2, 0, 0}; S={0, 1, 1, 1, 2, 2, 1}; 
 L={10, 10, 10, 10, 8, 9, 9}. L={14, 14, 15, 15, 14, 13, 13}. 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={0, 1, 1, 1, 2, 2, 1};8CTS 

0.4c S={1, 1, 1, 1, 2, 0, 0}; S={0, 1, 1, 1, 2, 2, 1}; 
 L={10, 10, 10, 10, 9, 9, 10}. L={14, 15, 15, 15, 15, 13, 13}. 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={0, 1,1, 1, 2, 2, 0};7CTS 

0.5c S={1, 1, 1, 1, 2, 0, 0}; S={0, 1, 1, 1, 1, 2, 0}; 
 L={10, 10, 10, 11, 9, 9, 10}. L={10, 10, 10, 11, 10, 8, 9}. 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={0, 1, 1, 2, 1, 2, 0};7CTS 

0.6c S={0, 1, 1, 1, 1, 0, 0}; S={0, 1, 1, 1, 0, 2, 0}; 
 L={10, 10, 10, 11, 9, 9, 10}. L={10, 11, 11, 10, 10, 9, 9}. 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 1, 2, 0};7CTS 

0.7c S={0, 0, 0, 0, 1, 0, 0}; S={0, 0, 0, 0, 0, 2, 0}; 
 L={10, 11, 11, 11, 9, 10, 10}. L={10, 10, 10, 11, 11, 9, 10}. 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 2, 1, 0};7CTS 

0.8c S={0, 0, 0, 0, 1, 0, 0}; S={0, 0, 0, 0, 0, 1, 0}; 
 L={11, 11, 11, 11, 9, 10, 10}. L={10, 10, 11, 11, 10, 10, 10}. 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 3, 0, 0};7CTS 

0.9c S={0, 0, 0, 0, 0, 0, 0}; S={0, 0, 0, 0, 0, 0, 0}; 
 L={11, 11, 11, 11, 9, 10, 10}. L={11, 11, 11, 11, 9, 10, 10}. 

 
TAB. 4.2 Contracts and control policies vs cancellation costs b 
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4.5.2 Impact of CTS cancellation and unused CTS cost 

This subsection considers the relation between the impact of CTS cancellation and the 
unused CTS cost c by varying c for the base case with b = 0.5c. 

Fig.4.7 compares the criterion values of different solution strategies for different unused 
CTS cost c. It is clear that the unused CTS cost has great impact on the contract and the 
control policies in all solution strategies. When c is very small and close to 1, CTS 
cancellation only provides marginal improvement. CTS cancellation brings larger 
improvement when c is large with 9.3% improvement of “Cancel” over “NoCancel” for c = 
15 and 15.3% improvement for c = 20. Local Optimization further improves the contract 
and the control policies. The combined improvement over the “NoCancel” strategy reaches 
19.2% for c = 20. 
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FIG. 4.7 Criterion values vs unused CTS costs c 

 

Table 4.3 summarizes the performance measures of different solution strategies. When c 
increases, CTS cancellation significantly reduces the unused CTS ratios with slightly longer 
delay. There is no obvious trend of CTS cancellation ratio when c increases. The 
“LocalOpt” strategy further improves the “Cancel” strategy by reducing the unused CTS 
ratio, the average delay with increased CTS cancellation. 

Table 4.4 summarizes the contract, patient assignment and CTS cancellation policies. For all 
solution strategies, the number of CTS decreases when c increases. “Cancel” strategy has 
slightly shorter CTS queue than “NoCancel” strategy. The major difference of the 
“LocalOpt” strategy with the two other strategies is the CTS planned for the weekend even 
for the case of large unused CTS cost. “LocalOpt” also allows more CTS cancellation than 
“Cancel” strategy. 
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“NoCancel” “Cancel” “LocalOpt” 

Delay Unused RTS Delay Unused RTS Cancel Delay Unused RTS Cancelc 

(days) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 
1 0.41 42.60 0.00 0.47 35.38 0.00 7.22 0.52 28.44 0.00 14.17 
5 1.06 28.26 0.00 1.26 15.73 0.00 12.53 1.37 11.45 0.01 16.81 

10 2.14 18.32 0.38 2.27 13.99 0.40 4.34 1.76 3.56 0.00 24.70 
15 2.16 18.22 0.26 3.16 1.58 0.45 16.80 2.97 0.98 0.44 17.38 
20 2.17 18.16 0.18 3.16 1.57 0.39 16.75 2.98 0.98 0.38 17.34 
 

TAB. 4.3 Performance measures vs unused CTS costs c 
 

c “NoCancel” “Cancel” “LocalOpt” 

 n={2, 1, 2, 2, 2, 1, 0}; 10CTS n={2, 1, 2, 2, 2, 1, 0}; 10CTS n={1, 2, 1, 2, 2, 1, 1}; 10CTS
1  S={0, 0, 0, 0, 0, 1, 0}; S={0, 0, 0, 0, 0, 1, 1}; 
 L={22, 22, 22, 21, 21, 21, 22} L={22, 22, 22, 21, 21, 21, 22} L={22, 21, 22, 22, 22, 21, 21}
 n={1, 1, 1, 2, 2, 1, 0}; 8CTS n={1, 1, 1, 2, 2, 1, 0}; 8CTS n={1, 1, 1, 1, 2, 2, 0}; 8CTS 

5  S={0, 0, 0, 1, 0, 1, 0}; S={0, 0, 0, 0, 1, 2, 0}; 
 L={13, 14, 14, 13, 13, 12, 13} L={13, 14, 14, 13, 13, 12, 13} L={13, 13, 13, 14, 13, 12, 13}
 n={1, 1, 1, 1, 3, 0, 0}; 7CTS n={1, 1, 1, 1, 3, 0, 0}; 7CTS n={0, 1, 1, 2, 2, 1, 1}; 8CTS 

10  S={0, 0, 0, 0, 1, 0, 0}; S={0, 1, 1, 1, 1, 1, 1}; 
 L={10, 10, 10, 10, 8, 9, 9} L={10, 10, 10, 10, 8, 9, 9} L={14, 15, 15, 14, 14, 13, 13}
 n={1, 1, 1, 1, 3, 0, 0}; 7CTS n={1, 1, 1, 1, 3, 0, 0}; 7CTS n={0, 1, 1, 1, 2, 2, 0}; 7CTS 

15  S={1, 1, 1, 1, 2, 0, 0}; S={0, 1, 1, 1, 1, 2, 0}; 
 L={11, 11, 11, 11, 9, 10,10} L={10, 10, 10, 11, 9, 9,10}. L={10, 10, 10, 11, 10, 8, 9} 
 n={1, 1, 1, 1, 3, 0, 0}; 7CTS n={1, 1, 1, 1, 3, 0, 0}; 7CTS n={ 0, 1, 1, 1, 2, 2, 0}; 7CTS

20  S={1, 1, 1, 1, 2, 0, 0}; S={ 0, 1, 1, 1, 1, 2, 0}; 
 L={11, 12, 12, 12, 10, 11, 11} L={11, 11, 11, 11, 9, 10, 10} L={11, 11, 11, 11, 10, 9, 9} 

 
TAB. 4.4 Contracts and control policies vs unused CTS costs c 

 

4.5.3 Impact of CTS cancellation and other data 

This subsection investigates the relationship between the impact of CTS cancellation and 
other problem parameters including (i) the average RTS delay TR, (ii) the patient arrival 
pattern, and (iii) the patient arrival rate. 
With respect to the average RTS delay TR, numerical experiments are performed for the base 
case by varying TR from 25 to 45. For all three solution strategies, the criterion values, the 
performance measures, the contract and the control strategies given in the Table 4.5 and 4.6 
are fairly insensitive to the change of TR. 
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“NoCancel” “Cancel” “LocalOpt” 

Delay Unused RTS Delay Unused RTS Cancel Delay Unused RTS CancelTR 

(days) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 
25 2.08 18.46 0.56 3.05 1.61 0.92 17.15 2.87 1.01 0.94 17.77 
30 2.13 18.32 0.38 3.11 1.59 0.65 16.95 2.93 0.99 0.65 17.55 
35 2.16 18.22 0.26 3.16 1.58 0.45 16.80 2.97 0.98 0.44 17.38 
40 2.17 18.22 0.26 3.19 1.57 0.31 16.69 2.85 2.65 0.30 15.60 
45 2.20 18.11 0.13 3.21 1.56 0.23 16.63 2.87 2.64 0.21 15.53 

 
TAB. 4.5 Performance measures vs RTS delay TR 

 
TR “NoCancel” “Cancel” “LocalOpt” 

 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 3, 0, 0};7CTS n={ 0, 1, 1, 1, 2, 2, 0};7CTS 
25  S={1, 1, 1, 1, 2, 0, 0}; S={ 0, 1, 1, 1, 1, 2, 0}; 
 L={9, 9, 9, 9, 7, 8, 9}. L={8, 8, 9, 9, 7, 8, 8}. L={8, 8, 8, 9, 8, 7, 7}. 
 J=4.47 J=4.03 J=3.83 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 3, 0, 0};7CTS n={ 0, 1, 1, 1, 2, 2, 0};7CTS 

30  S={1, 1, 1, 1, 2, 0, 0}; S={ 0, 1, 1, 1, 1, 2, 0}; 
 L={10, 10, 10, 10, 8, 8, 10} L={9, 9, 9, 10, 8, 9, 9}. L={9, 9, 9, 10, 9, 7, 8}. 
 J=4.49 J=4.06 J=3.87 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 3, 0, 0};7CTS n={0, 1, 1, 1, 2, 2, 0};7CTS 

35  S={1, 1, 1, 1, 2, 0, 0}; S={0, 1, 1, 1, 1, 2, 0}; 
 L={11, 11, 11, 11, 9, 10, 10}. L={10, 10, 10, 11, 9, 9, 10}. L={10, 10, 10, 11, 10, 8, 9}. 
 J=4.50 J=4.08 J=3.89 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 3, 0, 0};7CTS n={ 0, 1, 1, 2, 1, 2, 0};7CTS 

40  S={1, 1, 1, 1, 2, 0, 0}; S={ 0, 1, 1, 1, 0, 2, 0}; 
 L={11, 12, 12, 12, 10, 11, 11}. L={11, 11, 11, 12, 10, 10, 11}. L={11, 11, 11, 11, 11, 9, 10}. 
 J=4.51 J=4.10 J=3.90 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 3, 0, 0};7CTS n={ 0, 1, 1, 2, 1, 2, 0};7CTS 

45  S={1, 1, 1, 1, 2, 0, 0}; S={ 0, 1, 1, 1, 0, 2, 0}; 
 L={12, 12, 13, 13, 11, 12, 12}. L={12, 12, 12, 12, 11, 11, 12}. L={12, 12, 12, 12, 12, 10, 11}. 

  J=4.52 J=4.11  J=3.91 
 

TAB. 4.6 Contracts and control policies vs RTS delay TR 

 
To investigate the relation with respect to the patient arrival pattern, the peak demand of the 
base case occurred on Friday is interchanged with the demand other weekdays. We also 
consider the case of stationary demand for all weekdays. Again, the criterion values and the 
performance measures are insensitive to the change of patient arrival patterns. When the 
peak arrival changes to another weekday, one CTS time slot is move from Friday to the 
peak arrival day in the ““NoCancel”” strategy. Except for CTS of peak arrival day and 
Friday, “Cancel” strategy cancels all CTS time slots that cannot be used by patients in CTS 
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queue. For the contract of “LocalOpt”, one CTS time slot is moved from Friday to the peak 
arrival day. Again, one CTS time slot is left by the CTS cancellation policy for the peak 
arrival day. As for the other case, CTS are planned for the weekend. 
Peak 
arrival “NoCancel” “Cancel” “LocalOpt” 

 n={2, 1, 1, 1, 2, 0, 0}; 7CTS n={2, 1, 1, 1, 2, 0, 0};7CTS n={1, 1, 1, 1, 1, 2, 0};7CTS 
Mon  S={1, 1, 1, 1, 1, 0, 0}; S={0, 1, 1, 0, 1, 2, 0}; 
 L={10,10,11,11,10,10,11}. L={10,10,10,10,9,10,10}. L={10,10,10,10,10,9,9}. 
 J=4.51 J=4.08 J=3.91 
 n={1, 2, 1, 1, 2, 0, 0};7CTS n={1, 2, 1, 1, 2, 0, 0};7CTS n={0, 2, 1, 1, 1, 2, 0};7CTS 
Tues  S={1, 1, 1, 1, 1, 0, 0}; S={0, 1, 1, 0, 1, 2, 0}; 
 L={11,10,10,11,10,10,11}. L={10,10,10,10,9,10,10}. L={10,10,10,10,10,9,9}. 
 J=4.50 J=4.06 J=3.90 
 n={1, 1, 2, 1, 2, 0, 0};7CTS n={1, 1, 2, 1, 2, 0, 0};7CTS n={0, 1, 2, 1, 1, 2, 0};7CTS 
Wed  S={1, 1, 1, 1, 1, 0, 0}; S={0, 1, 1, 0, 1, 2, 0}; 
 L={11,11,10,11,9,10,11}. L={10,10,10,10,9, 10,10}. L={10,10,10,10,10,9,9}. 
 J=4.49 J=4.05 J=3.88 
 n={1, 1, 1, 2, 2, 0, 0};7CTS n={1, 1, 1, 2, 2, 0, 0};7CTS n={0, 1, 1, 2, 1, 2, 0};7CTS 
Thurs  S={1, 1, 1, 1, 1, 0, 0}; S={0, 1,1, 1, 1, 2, 0}; 
 L={11,11,11,10,9,10,10}. L={10,10,10,10,9,9,10}. L={10,10,10,10,10,8,9}. 
 J=4.48 J=4.03 J=3.88 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 1, 1, 3, 0, 0};7CTS n={0, 1, 1, 1, 2, 2, 0};7CTS 
Fri  S={1, 1, 1, 1, 2, 0, 0}; S={0, 1, 1, 1, 1, 2, 0}; 
 L={11,11,11,11,9,10,10}. L={10,10,10,11,9,9,10}. L={10,10,10,11,10,8,9}. 
  J=4.50 J=4.08 J=3.89 
 n={1, 1, 1, 1, 3, 0, 0};7CTS n={1, 1, 2, 1, 2, 0, 0};7CTS n={0, 1, 2, 1, 1, 2, 0};7CTS 
Ave  S={1, 1, 1, 1, 1, 0, 0}; S={0, 1, 1, 0, 1, 2, 0}; 
 L={11,11,10,11,10,10,11}. L={11,11,10,10,9,10,10}. L={11,11,10,10,10,9,9}. 
  J=4.52 J=4.07 J=3.92 

 
TAB. 4.7 Contracts and control policies vs patient arrival patterns 

 
“NoCancel” “Cancel” “LocalOpt” 

Delay Unused RTS Delay Unused RTS Cancel Delay Unused RTS Cancel
Peak 

arrival 
(days) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 

Mon 2.16 18.19 0.24 3.00 3.23 0.44 15.11 2.90 2.08 0.44 16.27
Tues 2.16 18.20 0.26 2.98 3.32 0.44 15.03 2.90 2.05 0.44 16.30
Wed 2.16 18.18 0.28 2.97 3.27 0.44 15.04 2.85 2.41 0.44 15.90
Thurs 2.13 18.20 0.27 2.94 3.18 0.44 15.16 2.95 1.15 0.46 17.21

Fri 2.16 18.22 0.26 3.16 1.58 0.45 16.80 2.97 0.98 0.44 17.38
AVE 2.13 18.59 0.22 2.95 3.58 0.38 15.13 2.80 3.09 0.37 15.62

 
TAB. 4.8 Performance measures vs patient arrival patterns 
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With respect to the patient arrival rate, three instances are considered: (i) the base case that 
is termed “low demand” instance; (ii) the base case but with patient arrival rate 5 times 
larger and termed “medium demand” instance; and (iii) the base case with patient arrival 
rate multiplied by 10 and termed “high demand” instance. Fig.4.8 compared the criterion 
values of different solution strategies. CTS cancellation brings 9.3% improvement over 
“NoCancel” strategy for low demand instance, 5% for medium demand and 6.8% for high 
demand instance. Local optimization further brings 4.8%, 5.8% and 3.7% improvement over 
“Cancel” strategy and leads to a combined improvement of 13.6%, 10.5% and 10.2% for the 
three instances. These results show that the CTS cancellation is useful for both low demand 
and high demand instances.  
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FIG. 4.8 Criterion values vs patient arrival rates 

 
Table 4.9 summarizes the performance measures of different solution strategies. In all 
solution strategies, increasing the patient arrival rate leads to shorter delay. For “NoCancel”, 
unused CTS ratio becomes smaller. For “Cancel” and “LocalOpt” strategies, CTS 
cancellation ratio decreases significantly, the percentage of patients assigned to RTS 
decreases while CTS unused ratio fluctuates but remains small. 

CPU time for local optimization is less than 6 minutes for all the low demand instances, 
2407s for medium demand instance and 6324s for the high demand instance. The resulting 
contract and control policies are given in the Table 4.10. 

 

“NoCancel” “Cancel” “LocalOpt” 

Delay Unused RTS Delay Unused RTS Cancel Delay Unused RTS Cancel
Arrival 

Rate 
(days) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 

Low 2.16 18.22 0.26 3.16 1.58 0.45 16.80 2.97 0.98 0.44 17.38
Medium 1.16 7.68 0.24 1.38 3.36 0.34 4.40 1.14 1.61 0.06 8.78 

High 0.74 6.01 0.11 0.90 2.53 0.16 3.52 0.77 1.85 0.04 5.61 
 

TAB. 4.9 Performance measures vs patient arrival rates 
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Arrival 
Rate “NoCancel” “Cancel” “LocalOpt” 

 n={1,1,1,1,3,0,0};7CTS n={1,1,1,1,3,0,0};7CTS n={0,1,1,1,2,2,0};7CTS 
Low  S={1,1,1,1,2,0,0}; S={0,1,1,1,1,2,0}; 
 L={11,11,11,11,9,10,10}. L={10,10,10,11,9,9,10}. L={10,10,10,11,10,8,9}. 
 J=4.50 J=4.08 J=3.89 
 n={5,5,5,6,9,1,0};31CTS n={5,5,5,6,9,1,0};31CTS n={3,5,5,6,8,4,1};32CTS 
Medium  S={1,1,1,1,2,1,0}; S={0,2,2,2,2,4,1}; 
 L={21,21,21,21,19,19,21}. L={20,20,20,20,18,19,20}. L={25,25,25,25,24,22,23}. 
 J=9.83 J=9.34 J=8.79 
 n={10,9,10,12,17,2,1};61CTS n={10,9,10,12,17,2,1};61CTS n={8,9,10,12,15,7,1};62CTS
High  S={1,2,2,2,2,1,1}; S={0,2,2,2,2,6,1}; 
 L={29,30,29,27,22,29,30}. L={30,30,30,30,27,28,29}. L={34,35,35,35,35,31,32}. 
  J=13.94 J=13.94  J=12.51 

 
TAB. 4.10 Contracts and control policies vs patient arrival rates 

  

4.6 Conclusions and perspectives 

This chapter proposed an MRI examination reservation process between the neurovascular 
department and the imaging department combining (i) contracted time slots reserved by the 
imaging department for the neurovascular department, (ii) one-day advance cancellation of 
contracted time slots, and (iii) patient assignment control policy. An average cost MDP 
model is proposed to simultaneously determine the optimal patient assignment and CTS 
cancellation control policies. Structure properties are established via discounted cost 
problem. A local optimization is used to improve a given initial contract. Numerical results 
show that the consideration of CTS cancellation can greatly reduce the unused CTS ratio 
with a little increase in average delay. Local optimization can further decrease the contract 
and the control policies.  

Future research can be pursued in several directions. One immediate extension is to allow 
CTS cancellation several days before. One research direction is the extension of this work to 
multiple classes of patients and multiple imaging examinations. Another very challenging 
issue is the optimization of the operation of the imaging department by considering the 
quality requirements of medical units. 
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Chapter 5   
Contract planning and two-day advance 
cancellation of contracted time slots  
This chapter exploits the use of two-day advance CTS cancellation to further improve 
contract for MRI examinations between a neurovascular department treating stroke patients 
and an imaging department. The contract is composed of four parts: contract decisions, one-
day advance CTS cancellation policy, two-day advance CTS cancellation policy, and patient 
assignment policy. The problem of CTS cancellations and patient assignment are formally 
formulated as an average cost Markov Decision Process in order to compromise among the 
patients’ waiting time, unused CTS penalty, and CTS cancellation penalty. Structure 
properties of the optimal control policies are established via the discounted cost problem 
and some advanced convexity concepts. Local search algorithm is proposed to improve the 
contract decisions. Numerical results show that advance CTS cancellation and local 
optimization significantly reduces the criterion value and the ratio of unused CTS. 
 

5.1 Introduction 

Chapter 3 and Chapter 4 propose a contract-based MRI examination reservation process in 
order to reduce the stroke patients’ waiting time for MRI examination. The contract 
decisions and patient assignment control policy are jointly solved in Chapter 3. Chapter 4 
proposes an MDP formulation to determine the patient assignment and one-day advance 
CTS cancellation control policies at the same time in order to further reduce the unused 
CTS. This new reservation process seems perfect with shorter delay and lower unused CTS 
ratio. However, for the imaging department side, it would be hard to arrange other patients 
for the time slots released from contract with short notice of only one day. Therefore, this 
chapter exploits the possibility of earlier CTS cancellation.  
The contract now includes the following four decisions: 1) contract decisions; 2) patient 
assignment control policy; 3) one-day advance CTS cancellation control policy; and 4) two-
day advance CTS cancellation control policy. 
This chapter tries to simultaneously explore the structure properties of three control policies 
and then improve the contract by using local search algorithm. The rest of this chapter is 
organized as follows: Section 5.2 provides a formal problem setting. Structure properties of 
the optimal control policies are established via discounted cost MDP in Section 5.3 and 5.4. 
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Local optimization of the contract is proposed in Section 5.5. Section 5.6 analyzes results of 
computational experiments. Conclusions and perspectives are given in Section 5.7.  

5.2 Problem setting 

This section presents an MDP formulation of the problem of patient assignment and one-day 
and two-day advance CTS cancellation. Assumptions 1 to 4 presented in Chapter 1 are 
considered. Further, the following assumption is made throughout the chapter: 

Assumption 5-A1 CTS of day t can be cancelled in advance of one and two days, i.e., at end 
of day t−2 or at the end of day t−1. 

Based on the above assumptions, the problem of patient assignment and advance CTS 
cancellation can be characterized by the following notations: 

Indices: 

t:   index of days, t=1,…,T; 

i:   index of days in one week, i=1,…,7, i.e., Monday, …, Sunday; note that the day i±j 
is the weekday of j days after or before day i in one week; 

d(t): day in the week of day t with d(t)∈{1, …,7}; 

Data: 

TR:  average number of waiting days for a patient to have his/her MRI examination 
through regular reservation with TR > 1; 

c:  penalty factor of an unused CTS. It serves as a weighting factor in order to balance 
the average waiting time and unused MRI time slots; 

b1:  penalty factor of canceling one CTS in advance of one day with b1 < c; 

b2:  penalty factor of canceling one CTS in advance of two days with b2 <  b1; 

at:  number of patients arrived in day t. By assumption 3, daily arrivals at for t ∈ IN are 
mutually independent random variables and weekly arrivals (a7j+1, a7j+2, …, a7j+7) 
are identically distributed for all j = 0, 1, …. As a result, the arrival process is 
characterized by probability matrix P = [Pij] for i = 1, …, 7 and for all j ≥0 with Pij 
denoting the probability of j arrivals in day i; 

nt: number of CTS in day t; 

Decision variables: 
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xt: number of patients waiting for CTS at the end of day t, which is also called CTS 
queue, 0x  is a given constant. Note that xt does not include patients that are directed to 

RTS. 

1
tw : number of CTS cancelled for day t in advance of one day, i.e., at the end of day t-1;  

2
tw : number of CTS cancelled for day t in advance of two day, i.e., at the end of day t-2; 

State variables: 

2
1t t tu x w += + : number of CTS to be consumed at day t+1 without the one-day advance 

CTS cancellation control and new patients’ arrival. 

1 1 2
1 1 1t t t t t ty u w x w w+ + += + = + + : number of CTS to be consumed at day t+1 without new 

patients’ arrival. 

 1 2
1 1 1t t t t t t tz y a x w w a− + += + = + + + : number of CTS to be consumed at the day t. 

The sequence of events during each day t is as follows. First, the following information is 
known: the queue length xt-1 for CTS at the end of day t−1,  the number of two-day advance 
CTS cancellations for day t 2

tw ,  the number of one-day advance CTS cancellations for day t 
1
tw ,  and the number of two-day advance CTS cancellations for day t+1 2

1tw + . Based on the 

above information, state variable 1 2
1 1t t t ty x w w− −= + +  is also known. During day t, the 

number at of new incoming patients during the day becomes known. The state variable zt is 
known as yt-1+ at. MIN{ 1 2

t t tn w w− − , xt−1 + at} patients are served by the remaining CTS of 

the day and MAX{0, nt − zt } CTS of day t cannot be filled. MAX{0, zt −nt − xt } patients 
are directed to RTS and will have the MRI examination after an average of TR days. The 
remaining xt patients will wait for CTS of the subsequent days. The number of CTS 
cancelled for day t+1 and day t+2 is determined. 

There are three control decisions in this problem: one-day advance CTS cancellation, two-
day advance cancellation, and patient assignment policies. The state is represented by the 

combination of two variables: ( )2
1,t tz w + . History-dependent policies are considered in this 

chapter. Let ( ) ( )( ){ }2 1 2
1 1 1 2, , , , ,t t t t t t th h z w x w w− + + += , ( ) ( ){ }2 1 2

0 1 1 2, , , ,i i i i ih z w x w w+ + +=  be the full 

history by stating from initial state ( )2
1,i iz w + at the beginning of day i. We denote the patient 

assignment policy by π={π1,π2,...} where the CTS queue at the end of day t is xt = πt(ht) with 

0≤ xt ≤(zt −nt) +, and one-day advance cancellation control policy by { }1 1 1
1 2, ,...μ μ=μ  where 



90 Chapter 5 Contract planning and two-day advance cancellation of contracted time slots 

  

the number of CTS cancelled for day t+1 is ( )1 1
1t t tw hμ+ =  with ( )1 2

1 1 10 t t t tw n x w
+

+ + +≤ ≤ − − ,  

and the two-day advance cancellation policy by { }2 2 2
1 2, ,...μ μ=μ  where the number of CTS 

cancelled for day t+2 is ( )2 2
2t t tw hμ+ =  with 2

2 20 t tw n+ +≤ ≤ . 

The objective is to minimize over all history-dependent policies { }1 1 1
1 2, ,...μ μ=μ , 

{ }2 2 2
1 2, ,...μ μ=μ  and π={π1,π2,...} the long-run average cost  

 ( ) ( ) ( ) ( )1 2

1
2 1 2 2

1 1 2 1
1, , lim , , , , ,

T i

t t t t t i id tT t i

J i z w E g z w x w w z z w w
Tμ μ π

+ −

+ + + +→∞
=

⎡ ⎤= = =⎢ ⎥⎣ ⎦
∑  (5.1) 

for any given initial state ( )2
1,i iz z w w+= =  with i = 1, …7 where  

 ( ) ( ) ( )( ) ( )( )2 1 2 1 2
1 1 2 1 1 2 2, , , , R

t t t t t t t t t t td t d t d tg z w x w w b w b w c n z x T z n x
+ +

+ + + + += + + − + + − −  

is the stage cost, i.e., CTS cancellation cost plus unused CTS penalty plus waiting time for 
CTS and RTS. In the following, gd(t)(.) are written as gt(.) for convenience. 

Theorem 5-1: There exists an optimal average cost policy such that tx x≤ for all t > 0 with 

( ) *Rx T c n⎡ ⎤= +⎢ ⎥  where n* = MAX{n1, …, n7}. 

Proof. The proof can use the same method with that for Theorem 3-1. Q.E.D. 

Thanks to Theorem 5-1, we can make without loss of generality the following assumption: 

Assumption 5-A2: tx x≤ for all t > 0. 

5.3 Properties of optimal control policies for 

discounted cost problem 

According to relation (5.1), the corresponding α-discounted cost MDP is as follows: 

 ( ) ( )1 2
2 1 2 2

1 1 2 1,
, , lim , , , , ,

T
t i

t t t t t t i iT t i

J i z w E g z w x w w z z w w
α μ μ π

α −
+ + + +→∞

=

⎡ ⎤= = =⎢ ⎥⎣ ⎦
∑  (5.2) 

for any given initial state 2
1,i iz z w w+= =  with i = 1, …7 with discount factor α such that 0 < 

α < 1. Consider the following optimal cost function 

 ( ) ( )1 21 2 ,
, , , ,U i z w MIN J i z wα α μ μ πμ μ π

=  (5.3) 
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In the remaining, for simplicity, the notation α is omitted in this subsection where only 
discounted cost problem with a given  α is considered.  

Theorem 6.10.4 in Puterman (1994)  is used to establish the optimality equation. It will be 
shown in Remark 5-1 that all conditions needed for application of Theorem 6.10.4 are 
satisfied. Since the set of states (i, z, w) is countable and the control constraint set is finite as 
xt ≤ zt and 1

1 1t tw n+ +≤ ，and 2
2 2t tw n+ +≤  for each zt, Theorem 6.10.4 in Puterman (1994) 

implies that the optimal cost function is the unique solution of the following optimality 
equation: 

 ( )
( )

( ) ( )1 2
1 2

2 1 2
1 1 2

2 1 2, ,
1 1 21 ,

, , , ,
, , min , 1,...,7

1, ,i i i

i i i i i i

x w w
i i i id i a

a

g z w x w w
U i z w i

P U i x w w a wα+ +

+ + +

+ + ++

⎧ ⎫
⎪ ⎪

= ∀ =⎨ ⎬
+ + + + +⎪ ⎪

⎩ ⎭
∑

 (5.4) 

The optimal control policy is stationary deterministic and is given by the argument w1, w2
 

and x that reach the minimum in (5.4) and the optimal cost function is the limiting function 
of the following value iteration: 

( ) ( ) ( )1 2
1 2

2 2 1 2 1 1 2 2
1 1 1 2 1, 1 1 2

, ,
, min , , , , ,

t t t

t t
t t t t t t t t t a t t t t

x w w a

U z w g z w x w w P U x w w a wα
+ +

+
+ + + + + + + +

⎧ ⎫= + + + +⎨ ⎬
⎩ ⎭

∑ (5.5) 

 ( )0 0U z =   (5.6) 

for t = 0, −1, − 2, … where ( )( )0 t t tx z n x+≤ ≤ − ∧ , ( )1 2
1 1 1t t t tw n x w

+

+ + +≤ − − , 2
2 2t tw n+ +≤ . nt= 

nd(t) and Pt+1,a= Pd(t+1),a are shorthand notation with d(t) denoting the corresponding day with 
d(0) = 7, d(−1) = 6, …  As a result,  

 ( ) ( )7, , lim ,n i

n
U i z w U z w− +

→∞
=  (5.7) 

Since ( ) ( ) ( )2 1 2 1 2
1 1 2 1 1 2 1, , , , R

t t t t t t t t t t t t t tg z w x w w b w b w c n z x T z n x+ +
+ + + + += + + − + + − −

, relation 
(5.5) can be rewritten as  

 ( )
( )( )

( ) ( ) ( ){ }2 2
1 1

0
, min ,

t t t

t R t
t t t t t t t t t t

x z n x
U z w c n z x T z n x V x w

+

+ +
+ +

≤ ≤ − ∧
= − + + − − +   (5.8) 

 ( )
{ }

( ) ( ){ }2 2
1 1 1

2 2
1 1 1

max ,
, min

t t t t t t

t t
t t t t t t

x w y x w n
V x w W y b y x w

+ + +
+ +

+ ≤ ≤ +
= + − −  (5.9) 

 ( ) ( )2
2 2

2 1 2
2 2 1 2

0
min ,

t t

t t
t t t t t

w n
W y E b w U y a wα

+ +

+
+ + +

≤ ≤
⎡ ⎤= + +⎣ ⎦  (5.10) 
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Ut(zt,w2
t+1), Vt(xt,w2

t+1) and Wt(yt) are separately used to identify the optimal patient 
assignment, one-day advance cancellation, and two-day advance cancellation control 
policies. 
Similarly, relation (5.4) can be rewritten as 

 ( )
( )( )

( ) ( ) ( ){ }
0

, , min , ,
i i

R
i i

x z n x
U i z w c n z x T z n x V i x w

+

+ +

≤ ≤ − ∧
= − + + − − +  (5.11) 

 ( )
{ }

( ) ( ){ }
1

1max ,
, , min ,

ix w y x w n
V i x w W i y b y x w

++ ≤ ≤ +
= + − −  (5.12) 

 ( ) ( )
2

20
, min 1, ,

iw n
W i y E b w U i y a wα

+≤ ≤
= + + +⎡ ⎤⎣ ⎦  (5.13) 

By relation (5.7) and the uniqueness of the optimal value function, 

 ( ) ( )7, , lim ,n i

n
V i x w V x w− +

→∞
=  (5.14) 

 ( ) ( )7, lim n i

n
W i y W y− +

→∞
=  (5.15) 

From relation (5.9), its right hand side is a function of ut with 2
1t t tu x w += + . For this reason, 

in the following, by abuse of notation we replace ( )2
1,t

t tV x w +  by ( )2
1

t
t tV x w ++ . Relation 

(5.9) becomes 

 ( )
{ }

( ){ }
1

1 1max ,
min

t t t t

t t
t t t tu y u n

V u W y b y b u
+≤ ≤

= + −  (5.16) 

Similar, relation (5.12) becomes 

 ( )
{ }

( ){ }
1

1 1max ,
, min ,

iu y u n
V i u W i y b y b u

+≤ ≤
= + −  (5.17) 

Remark 5-1: The optimality equation (5.4) requires Assumption 6.10.1 and condition 
(6.10.11) of Puterman (1994). Assumption 6.10.1 holds as 

( ) ( ) ( )2 1 2
1 1 2 1 2, , , , * R

t t t t t t t tg z w x w w b b c n T z z+ + + ≤ + + + = Κ . Condition (6.10.11) holds as:  

( ) ( )

( ) ( )

1 2 1 2
1, 1 1 1 2 1 1

1 2

*

* * 2 *

R
i a t t t t t t

a

R R R
t

P K x w w a b b c n T E x w w a

K z b b c n T x T a T n

+ + + + +⎡ ⎤+ + + ≤ + + + + + +⎣ ⎦

≤ + + + + + +

∑
 

Property 5-1. In the value iteration by (5.8) and (5.9) or equivalently by (5.16), 

( ) ( )1, ,t t Rc U z w U z w T− ≤ + − ≤ , ( ) ( )1 1t t Rb V u V u T− ≤ + − ≤ . 

Proof.  The proof is done by induction on t. The property trivially holds for t=0. Assume 
that it holds for some t+1≤0 for ( )1tV u+ and consider day t.  
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We first prove ( ) ( )1 11, ,t t Rc U z w U z w T+ +− ≤ + − ≤ . Let x0 and x1 be arguments reaching 

minimum in relation (5.8) for ( )1 ,tU z w+ and ( )1 1,tU z w+ + . From the optimality 

condition, ( )0
10, tx z n x+

+
⎡ ⎤∈ − ∧⎣ ⎦ , and ( )1

10, 1 tx z n x+
+

⎡ ⎤∈ + − ∧⎣ ⎦ . 

To prove ( ) ( )1 11, ,t t RU z w U z w T+ ++ − ≤ the right side, take the feasible control x0 for 

( )1 1,tU z w+ + , then ( ) ( )1 11, ,t t RU z w U z w T+ ++ − ≤ . 

To prove ( ) ( )1 11, ,t tc U z w U z w+ +− ≤ + − , two cases are considered:  

Case 1: ( )( )1
1tx z n x+

+≤ − ∧  or ( )1
11 0tx z n +

+= + − = , take the feasible control x1 for 

( )1 ,tU z w+ , then ( ) ( )1 1, ,t tU z w U z w c+ + − ≥ − . 

Case 2: 1
11 0tx z n += + − > , take the feasible control 1

11 tx z n +− = −  for ( )1 ,tU z w+ , then  

( ) ( ) ( ) ( )1 1 1 1
1 1

1

1, , 1 1
1

t t t t
t tU z w U z w V z n w V z n w

b c

+ + + +
+ ++ − ≥ + + − + − − +

≥ − ≥ −
 

 

Now we prove ( ) ( )1 1t t Rb V u V u T− ≤ + − ≤ . Let y0 and y1 be arguments reaching minimum 

in relation (5.16) for ( )tV u and ( )1tV u + . From the optimality condition, 

( )0
1,max , ty u u n +∈ ⎡ ⎤⎣ ⎦ , ( )1

11,max 1, ty u u n +∈ + +⎡ ⎤⎣ ⎦ . 

To prove ( ) ( )1t t RV u V u T+ − ≤ , two cases are considered: 

Case 1: 0y u> . Take the feasible control y0 for ( )1tV u + , then ( ) ( ) 11 0t tV u V u b+ − ≤ − ≤ ; 

Case 2: 0y u= . Take the feasible control 1u +  for ( )1tV u + , then 

( ) ( ) ( ) ( )
( ) ( )1 1

1 1

1, ,

t t t t

t t

R

V u V u W u W u

E U z w U z w

T

+ +

+ − ≤ + −

⎡ ⎤≤ + −⎣ ⎦
≤

 

The first relation is from relation (5.9). The second is from relation (5.10) by applying the 
optimal two-day advance cancellation of ( )tW u  to ( )1tW u + . The third is from the 

induction assumption.  

To prove ( ) ( )1 1t tb V u V u− ≤ + − , two cases are considered: 



94 Chapter 5 Contract planning and two-day advance cancellation of contracted time slots 

  

Case 1: 1
11 ty u n += + > .  Take the feasible control u  for ( )tV u  and then apply the optimal 

two-day advance cancellation of ( )1tW u +  to ( )tW u  , then  

( ) ( ) ( ) ( )
( ) ( )1 1

1 1

1, ,

t t t t

t t

V u V u W u W u

E U z w U z w+ +

+ − ≥ + −

⎡ ⎤≥ + −⎣ ⎦
 

In this case, there is no unused CTS for ( )1 1,tU z w+ +  and ( )1 ,tU z w+ . Let 

( ) ( )1 11, ,t tU U z w U z w+ +Δ = + − . We show 1U bΔ ≥ −  which yields ( ) ( )1 1t tb V u V u− ≤ + − . 

Let x be the optimal control for ( )1 1,tU z w+ + . If ( )( )1tx z n x+≤ − ∧ , then take the feasible 

control x for ( )1 ,tU z w+  and we have RU TΔ ≥ . If 11 tx z n x+= + − < , use  1x −  as the 

feasible control policy for ( )1 ,tU z w+ ,  then ( ) ( )1 1
11 1 1t tU V x w V x w b+ +Δ ≥ + + − + − ≥ − .  

Case 2: 1 1y u> + . Take the feasible control y1 for ( )tV u , ( ) ( ) 11t tV u V u b+ − ≥ − . 

Q.E.D. 

Property 5-2. If ( )t
tW y  is convex in yt, then Vt(ut) is convex in ut. 

Proof. Let ( ) ( )1
t tR y b y W y= + . Under the assumption of the Property, Rt(y) is convex. 

Let  

 ( )1

0
arg min t

t
y

S R y
≥

= . 

We will show 1
1t tS n +≤  by contradiction. If 1

1t tS n +> ,  

 ( ) ( ) ( ) ( )1 1 1 1
1 11 1t t t t

t t t tV S V S R S R S b b− − = − − − < −   

which contradicts Property 5-1 and proves 1
1t tS n +≤ . 

Since 1
1t tS n +≤ ,  

 ( ) ( )
( )

1

1 1

, if 
, if 

t
t t tt

t t t
t t t

R u u S
V u b u

R S u S
⎧ ≥⎪= − + ⎨ <⎪⎩

,  

which is a combination of two convex functions. Hence, Vt(ut) is convex in ut. 

 Q.E.D. 

Relation (5.8) can be rewritten as:  
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 ( ) ( ) ( )
( )( )

( ) ( ){ }
0

, min 1
t

t R t R
t t

x z n x
U z w c n z T z n V x w T x

+

+ +

≤ ≤ − ∧
= − + − + + − −  

which leads to: 

 
( ) ( ) ( ) ( )

( )
( ) ( ){ }

, 1

min 1
t

t R R
t t

t R

w u w z n

U z w c n z T z n T w

V u T u
+

+ +

≤ ≤ + −

= − + − + −

+ − −
 (5.18) 

Let  

 ( ) ( ) ( )1t t RH u V u T u= − − ,  

which is convex since Vt(u) is convex in u. Let  

 ( ) ( )( )
0

arg min 1t R
t

u
L V u T u

≥
= − − . 

As a result,  

 ( ) ( )
( )

t
t t

t
t

H u u L
H u

H L u L
⎧ ≤⎪≡ ⎨ >⎪⎩

 (5.19) 

is a convex and non-increasing function of u. 

Let 

 
( )

( ) ( ){ }( , ) min 1
t

t t R

w u w z n
F z w V u T u

+≤ ≤ + −
≡ − −  

which can also be defined as follows: 

 
( )

( )( )
if 

( , )
if 

t
t

t
t

t t

H w w L
F z w

H w z n w L+

⎧ ≥⎪= ⎨
+ − ≤⎪⎩

 (5.20) 

As a result, relation (5.18) can be rewritten as 

 ( ) ( ) ( ) ( ) ( ), 1 ,t R R t
t tU z w c n z T z n T w F z w+ += − + − + − +  (5.21) 

Definition 5-1 (Koole (1998)): A function f(x) is supermodular, denoted Super, if  

( ) ( ) ( ) ( )i j i jf x f x e e f x e f x e+ + + ≥ + + +  

or equivalently 

( ) ( ) ( ) ( )f x y f x y f x f y∨ + ∧ ≥ +  

where ( ) max( , )x y x y∨ = . 
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Definition 5-2 (Koole (1998)): A function f(x) is superconvex w.r.t. (i,j), denoted SuperC(i,j) 
if 

( ) ( ) ( ) ( )2i i j j if x e f x e e f x e f x e+ + + + ≤ + + +  

From the above definitions, it can be proved that a function f(x) that is Super and SuperC(i, j) 
is convex in i. 

Property 5-3. In the value iteration by (5.8), ( ),tU z w  is supermodular if ( )t
tW y  is convex 

in yt,. 

Proof.  

In order to prove the supermodularity of ( ),tU z w , from relation (5.21), we only need to 

show the supermodularity of ( ),tF z w , i.e. ,  

 ( ) ( ) ( ) ( )1, 1 , 1, , 1t t t tF z w F z w F z w F z w+ + + ≥ + + +  (5.22) 

In order to prove relation (5.22), three cases are considered.  

Case 1: 1 tw L+ ≥ .  

( ) ( ) ( )1, 1 , 1 1t t tF z w F z w H w+ + = + = +  

which together with the monotonicity of Ft(z,w) in z proves relation (5.22). 

Case 2: 1 & 1t tw L z n+ < + ≤ , then ( ) ( ) ( )1, ' , ' 't t tF z w F z w H w+ = =  for both ' 1w w= +  

and 'w w= . Hence (5.22) holds. 

Case 3: 1 &t tw L z n+ < ≥ , then we have 

( ) ( ),
tt

tF z w H w z n= + − , ( ) ( )1, 1
tt

tF z w H w z n+ = + + −  

( ) ( ), 1 1
tt

tF z w H w z n+ = + + − , ( ) ( )1, 1 1 1
tt

tF z w H w z n+ + = + + + −  

Relation (5.22) holds as ( )t

tH u  is convex. Q.E.D. 

Since ( ),tU z w  is super-modularity, ( ) ( )1
2 1, ,t t

tG y w E b w U y a w+
+⎡ ⎤= + +⎣ ⎦  is super-

modular. 

From Topkis (1979),  there exists a series of w which can reach the minimum of ( ),tG y w , 

i.e., ( )
20

*( ) arg min ,
t

t

w n
w y G y w

+≤ ≤
= . 
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Property 5-4. The maximum and minimal selection of w*(y), ( )w y and ( )w y , are non-

increasing functions if ( )t
tW y  is convex in yt,. 

Proof. By contradiction, assume that ( ) ( )1w y w y+ ≥ . By supermodularity and optimality, 

there exists 

( )( ) ( )( ) ( )( ) ( )( )0 , 1 , 1, 1 1, 0t t t tG y w y G y w y G y w y G y w y≤ + − ≤ + + − + ≤ . 

As a result, ( )1w y +  is also an optimum of ( ),tG y w which contradicts the definition of 

( )w y .  

The property that ( )w y  is decreasing function can be proved in the same way. Q.E.D. 

Property 5-5. In the value iteration by (5.8), ( ),tU z w  is superconvex if ( )t
tW y  is convex 

in yt,. 

Proof. In order to prove the superconvexity of ( ),tU z w , we need to prove the following 

relations:  

 ( ) ( ) ( ) ( )1, , 2 1, 1 , 1t t t tU z w U z w U z w U z w+ + + ≥ + + + +  (5.23) 

 ( ) ( ) ( ) ( ), 1 2, 1, 1 1,t t t tU z w U z w U z w U z w+ + + ≥ + + + +  (5.24) 

From relation (5.21), to prove relation (5.23), we only need to prove the following relation: 

 ( ) ( ) ( ) ( )1, , 2 1, 1 , 1t t t tF z w F z w F z w F z w+ + + ≥ + + + +  (5.25) 

Three cases are considered to prove the relation (5.25): 

Case 1: 2 tw L+ ≤  . Relation (5.25) holds if and only if the following relation exists: 

 
( )( ) ( )( )

( )( ) ( )( )
1 2

1 1 1

t t

t t

t t

t t

H w z n H w z n

H w z n H w z n

+ +

+ +

+ + − + + + −

≥ + + + − + + + −
 (5.26) 

When 1 tz n+ ≤ , relation (5.26) holds due to convexity of ( )t
H u . When 1 tz n+ > , relation 

(5.26) obviously holds. 

Case 2: 1 tw L+ = . Relation (5.25) holds if and only if the following relation exists: 

( )( ) ( ) ( )1 1 1 2
t t t

t t t tH L z n H L H L+− + + − + + ≥  which clearly holds by definition of Lt. 
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Case 3: tw L≥ . Relation (5.25) holds if and only if ( ) ( ) ( )2 2 1t t tH w H w H w+ + ≥ +  holds 

by convexity of ( )tH u . 

Four cases are considered to prove relation (5.24): 

Case 1: tw L≥ . Relation (5.24) can be proved by the following relation:  

( ) ( ) ( ) ( ), 1 2, 1, 1 1,t t t tF z w F z w F z w F z w+ + + ≥ + + + +  

or equivalently ( ) ( ) ( ) ( )1 1t t t tH w H w H w H w+ + ≥ + + , which obviously holds. 

Case 2: &t tw L z n< ≥ . Relation (5.24) holds because 

( ) ( ) ( ) ( )1 2 1 1 1
t t t t

t t t tH w z n H w z n H w z n H w z n+ + − + + + − ≥ + + + − + + + −  obvious 

holds. 

Case 3: & 2t tw L z n< ≤ − . Relation (5.24) holds because of 

( ) ( ) ( ) ( )1 1
t t t t

H w H w H w H w+ + ≥ + + . 

Case 4: & 1t tw L z n< = − . To prove relation (5.24), we need to prove the following relation: 

( ) ( ) ( ) ( )1 1 1
t t t tRc H w T H w H w H w+ + + + + ≥ + + , or equivalently, 

( ) ( ) ( )1
t t RH w H w c T+ − ≥ − + . 

From Property 5-1,  

( ) ( ) ( ) ( ) ( ) ( )11 1 1 1t t t t R R R
t t t tH u H u V u V u T b T c T+ − = + − − − ≥ − − + ≥ − + . 

In this case, ( ) ( ) ( ) ( ) ( )1 1
t t t t RH w H w H w H w c T+ − = + − ≥ − + , which concludes relation 

(5.24).   Q.E.D. 

Property 5-6. ( ),tU z w  is convex in z and convex in w  if ( )t
tW y  is convex in yt,. 

Proof. This property is a direct result from properties 5-3 and 5-5. Q.E.D. 

The superconvexity of ( ),tU z w  implies the superconvexity of ( ),tG y w . 

 ( ) ( ) ( ) ( )1, , 2 1, 1 , 1t t t tG y w G y w G y w G y w+ + + ≥ + + + +  (5.27) 

 ( ) ( ) ( ) ( ), 1 2, 1, 1 1,t t t tG y w G y w G y w G y w+ + + ≥ + + + +  (5.28) 

The supermodularity and superconvexity of ( ),tG y w implies that ( ),tG y w  is convex in y 

and convex in w. 
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( ) ( ) ( ), , 2 2 , 1t t tG y w G y w G y w+ + ≥ +  

( ) ( ) ( )2, , 2 1,t t tG y w G y w G y w+ + ≥ +  

Property 5-7. ( ) ( )1 1t tw y w y≤ + + , and ( ) ( )1 1t tw y w y≤ + +  if ( )t
tW y  is convex in yt. 

Proof. Let ( )1tw w y= + . By definition, ( ) ( )1, 1, 1t tG y w G y w+ < + + . 

From (5.27), ( ) ( ), 1 , 2t tG y w G y w+ < + . This together with the convexity concludes the 

proof.  

The second relation can be proved in the same way. Q.E.D. 

Hence,  

 ( ) ( ) ( )1 1 1w y w y w y+ ≤ ≤ + +  (5.29) 

 ( ) ( ) ( )1 1 1w y w y w y+ ≤ ≤ + + . (5.30) 

Property 5-8. Wt-1(y) is convex in y if ( )t
tW y  is convex in yt 

Proof.  

Wt-1(y) is convex if ( ) ( )1 11t tW y W y− −+ −  does not decrease. Note that 

( ) ( ) ( )
1 1

1 1
20 0

min , min ,
t t

t t t
tw n w n

W y G y w E b w U y a w
+ +

− −

≤ ≤ ≤ ≤
⎡ ⎤= = + +⎣ ⎦  

From relation (5.21), ( ),tU z w  increases in w for tw L≥ . In the following, we only need to 

consider the case of tw L≤ , i.e. 

 ( ) ( ) ( )
1 1

1 1
20 0

min , min ,
t t t t

t t t
tw n L w n L

W y G y w E b w U y a w
+ +

− −

≤ ≤ ∧ ≤ ≤ ∧
⎡ ⎤= = + +⎣ ⎦   

Combining with property 5-7,  

 ( ) ( ) ( ) ( )( )
1 1

1 1 1 1

'
1 '

1 min max 1, , '
t t t t

t t t t

w L n w L n
w w w

W y W y G y w G y w
+ +

− − − −

≤ ∧ ≤ ∧
+ ≥ ≥

+ − = + −  

To prove the convexity of Wt-1(y), we only need to prove 

 

( ) ( )( )

( ) ( )( )
1 1

1 1

1 1

'
1 '

1 1

'
1 '

min max 1, , '

min max , 1, '

t t t t

t t t t

t t

w L n w L n
w w w

t t

w L n w L n
w w w

G y w G y w

G y w G y w

+ +

+ +

− −

≤ ∧ ≤ ∧
+ ≥ ≥

− −

≤ ∧ ≤ ∧
+ ≥ ≥

+ −

≥ − −
 (5.31)  

Relation (5.31) holds if  
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( ) ( ) ( ) ( )1 1 1 1

1 1

1, , ' , 1, ' ,
, ' , 1 '

t t t t

t t t t

G y w G y w G y w G y w
w L n w L n w w w

− − − −

+ +

+ − ≥ − −

∀ ≤ ∧ ≤ ∧ + ≥ ≥
 (5.32) 

By definition of 1tG − (.), relation (5.32) holds if 

 
( ) ( ) ( ) ( )1, , ' , 1, ' ,

' 1, , '

t t t t

t

U z w U z w U z w U z w
w w w w w L

+ − ≥ − −

∀ ≤ ≤ + ≤
 (5.33) 

Three cases are considered to prove this relation. 

Case 1: 1 tz n+ ≤ . Relation (5.33) is equivalent with  

( ) ( ) ( ) ( )' '
t t t t

H w H w H w H w− ≥ −  

which obviously holds. 

Case 2: 1 tz n− ≥ . Relation (5.33) is equivalent with 

( ) ( ) ( ) ( )1 ' ' 1
t t t t

t t t tH w z n H w z n H w z n H w z n+ + − − + − ≥ + − − + − −  

which holds because of the convexity of ( )t

tH u  and ' 1w w w≤ ≤ + . 

Case 3: tz n= . Relation (5.33) is equivalent to: 

( ) ( ) ( ) ( )1 ' '
t t t tRT H w H w H w c H w+ + − ≥ − −  

which holds if ( ) ( )1
t t RH w H w T c− + ≤ +  . The last relation obviously holds for tw L=  as 

( ) ( )1 0
t t

H w H w− + = . If tw L< , then  

( ) ( ) ( ) ( ) ( ) ( ) 11 1 1 1
t t t t t t R R RH w H w H w H w V w V w T b T c T− + = − + = − + + − ≤ + ≤ +  

where Property 5-1 is applied in the above. Q.E.D. 

Remark 5-2: (Property 5-2) – (Property 5-7) hold because of Property 5-8. 

Theorem 5-2: The optimal value function U(i, z, w) in relation (5.11) is convex in z and w. 
V(i, u) in relation (5.12) is convex in u. W(i, y) in relation (5.13) is convex in y. Further, the 
optimal control policies for problem (5.4) are as follows: 

i) the optimal CTS queue length at the end of day i is of the following form: 

 * 2

2 2

0 if  0
if  0
if  

i i

i i i i i i i

i i i i i i

z n
x z n z n L w

L w z n L w

− ≤⎧
⎪= − ≤ − ≤ −⎨
⎪ − − ≥ −⎩

 (5.34) 
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And the optimal number of patients assigned to RTS at the end of day i is of the following 
form: 

( )* *
i i i iy z n x

+
= − −  

ii) the optimal one-day advance CTS cancellation policy for day i+1 is of the following form: 

 
1 2 2 1

1* 1 1 1 1
1 2 1

1 1

     if  
0           if  
i i i i i i

i
i i i

S x w x w S
w

x w S
+ + + +

+
+ +

⎧ − − + ≤
= ⎨

+ ≥⎩
  (5.35) 

iii) the optimal two-day advance CTS cancellation policy for day i+2  is of the following 
form: 

 ( ) ( )2* 2
2 2i i i iw y S y+ +=  (5.36) 

Where 

( )( )
( ) ( )( )

2 2

arg min , 1
i i

R
i

w u w z n x

L V i u T u
+≤ ≤ + − ∧

= − − , 

{ }
( ){ }

2 2
1 1 1

1
1 1

max ,
arg min

i i i i i

i i
x w y x w n

S W y b y
+ + +

+
+ ≤ ≤ +

= + , 

( ) ( ){ }
2

2
2 2 1 1

0
arg min ,

i
i i i

w n
S y E b w U y a w

+

+ + +
≤ ≤

= + +⎡ ⎤⎣ ⎦ . 

Proof: The convexity of U(i, z, w), V(i, x+w), and W(i, y) is a direct consequence of 
relations (5.7), (5.14), (5.15) and Property 5-2, 5-6, 5-8. The theorem can be directly derived 
from the convexity. Q.E.D. 

5.4 Properties of optimal control policies for 

average cost problem 

5.4.1 Bounded demand case 

The following assumption is also made for the average cost problem case. 

Assumption 5-A3. There exists a finite number A such that at≤A, for all t. 

The combination of Assumptions 5-A2 and 5-A3 implies that the state variable zt is upper 
bounded and: 

 *tz z x A n≤ ≡ + +  (5.37)  
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as 1 2 2
1 1max( , ) *t t t t t tx w w x n w x n− −+ + ≤ + ≤ + . The other state variable w is also upper 

bounded as w≤n*. As a result, under Assumptions 5-A2 and 5-A3, the stage cost function is 
also bounded with 

 ( ) ( )1 2, , * R
t t t tg z x w B b b c n T z≤ ≡ + + +  (5.38) 

Property 5-9: There exists M>0 such that ( ) ( ), , 7,0,0U i z w U Mα α− ≤ ,  for all i = 1, …,7 

and for all z and w. 

Proof: From Property 5-1 and relation (5.8),  

( ) ( ), 1,t t Rc U z w U z w Tα α− ≤ − − ≤  

( ) ( )1 , , 1t t Rb U z w U z w Tα α− ≤ − − ≤  

which, together with the finiteness of the state space, 

( ) ( ), ',t t Rcz U z w U z w T zα α− ≤ − ≤  

( ) ( )1 * ', ', ' *t t Rb n U z w U z w T nα α− ≤ − ≤  

for all z, z’, w, and w’. Therefore, 

( ) ( ) ( ) ( )* , ', ' *t tC z n U z w U z w C z nα α− + ≤ − ≤ +  

with C = Max(2TR, b1+c). Combining with relation (5.7),  

 ( ) ( ) ( ) ( )* , , , ', ' *C z n U i z w U i z w C z nα α− + ≤ − ≤ +  (5.39) 

This establish the property for i = 7. Consider now the case i = 1, …, 6. From (5.5) and (5.7), 

 ( ) ( ), , 1, ,aU i z w B E U i z wα α≤ + +⎡ ⎤⎣ ⎦  (5.40) 

Repeat the relations (5.40) for t subsequent days leads to: 

 ( ) ( )1 2

( , , ),( , ', ')
'

, , , ', ' , 1,...,7i z w t i z w
z

U i z w tB p U t i z w iμ μ π
α α+≤ + + ∀ =∑  (5.41) 

where 
1 2

( , , ),( , ', ')i z w t i z wpμ μ π
+  is the probability of reaching state (z’,w’) at the beginning of day t+i by 

starting from state (z, w) at day i under policies μ1, μ2 and π. Combining (5.39) and (5.41) 
with t+i=7, 

 ( ) ( ) ( ) ( )( , , ),(7, ', ')
', '

, , 6 7, ', ' 6 7,0,0 *i z w z w
z w

U i z w B p U z w B U C z nπ
α α α≤ + ≤ + + +∑  (5.42) 

Similarly, 
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 ( ) ( ) ( ) ( )(7,0,0),(7 , ', ')
', '

7,0,0 6 , ', ' 6 , , *i z w
z w

U B p U i z w B U i z w C z nπ
α α α+≤ + ≤ + + +∑  (5.43) 

Relations (5.42)-(5.43) conclude the proof with ( )6 *M B C z n= + + . Q.E.D. 

Theorem 5-3. There exists an optimal stationary control policy for the average cost model 
(5.1). Further the optimal average cost is independent of the initial state (i, z, w). 

Proof.  From Proposition 4.2.6 in Bertsekas (1996), the optimal average cost per day exists 
and has the same value λ  for all initial states, and λ  satisfies 
 ( ) ( )

1
lim 1 , ,U i z wαα

λ α
→

= −  (5.44) 

The differential cost functions 

 ( ) ( ) ( ), , , , 7,0,0i z w U i z w Uα αψ = −  (5.45) 

satisfy the following optimality equations: 

 ( )
( ) ( ) ( )

( )
1

, , ' 2 1,
, , min ' 1, , '

R
i i

x y w i a
a

c n z x T z n x b y x w
i z w b w P i y a wλ ψ

ψ

+ +

+

⎛ ⎞− + + − − + − −
⎜ ⎟+ =
⎜ ⎟+ + + +⎜ ⎟
⎝ ⎠

∑   (5.46) 

Relation (5.46) can be rewritten as 

 ( )
( )( )

( ) ( ) ( ){ }1

0 ,
, , min ,

i

R
i i

x z n x
i z w c n z x T z n x i x wψ ψ

+

+ +

≤ ≤ −
= − + + − − + +   (5.47) 

 ( )
{ }

( ) ( ){ }
1

1 2
1max ,

, min ,
iu y u n

i u i y b y uψ ψ
+≤ ≤

= + −  (5.48) 

 ( ) ( )
2

2
20

, min 1, ,
iw n

i y E b w i y a wψ ψ λ
+≤ ≤

= + + + −⎡ ⎤⎣ ⎦  (5.49) 

Relations (5.45), (5.48)-(5.49) and (5.12)-(5.13) implies that 

 ( ) ( ) ( )( )1

1
, lim , 7,0,0i u V i u Uα αα

ψ
→

= −  (5.50) 

 ( ) ( ) ( )( )2

1
, lim , 7,0,0i y W i y Uα αα

ψ
→

= −  (5.51) 

Further, the optimal control policy is stationary deterministic and is defined by the argument 
that reaches the minimum in (5.46) or equivalently (5.47)-(5.49). From Theorem 5-2, 
relation (5.45), (5.50), and (5.51), ψ(i, z, w) is convex in z and convex in w, ψ1 (i, u) is 
convex in u, ψ2(i, y) is convex in y, for all i = 1, …, 7. The optimal control policy can be 
shown to be of the same form as that of Theorem 5-2. Q.E.D. 
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5.4.2 Unbounded demand case 

Property 5-10: For any z1 ≥ z2≥0, w1≥w2≥0, ( ) ( )1 1 2 2 1, ,t t Rm U z w U z w m T zα α− ≤ − ≤ +  with 

( )1
Rm b T c x= + + . 

Proof: The property trivially holds for t = 0. Consider the case t < 0. Since the “min” term 
in equation (5.18) is decreasing in z, subtracting equation (5.18) with z = z1 by equation 
(5.18) zt = z2 leads to:  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 1 1 2 2

1

, ,

*

t t R R
t t t t

R

U z w U z w c n z T z n c n z T z n

cn T z
α α

+ + + +
− ≤ − + − − − − −

≤ +
 

Since the “min” term in equation (5.18) is decreasing in w, subtracting equation (5.18) with 
w= w1 by equation (5.18)  w= w2 leads to: 

( ) ( ) ( ) ( ) ( )2 1 2 2 1 2, , 1 1 1 *R R R
t tU z w U z w T w T w T n− ≤ − − − ≤ −  

Therefore, as *n x≤ , 

( ) ( ) ( ) ( ) ( ) ( )
( )

1 1 2 2 1 1 2 1 2 1 2 2

1 1

, , , , , ,

1 *

t t t t t t

R R R

U z w U z w U z w U z w U z w U z w

T c n T z m T z

α α α α α α− = − + −

≤ − + + ≤ +
 

Let u’ be the argument reaching minimum in (5.18) with z = z2, w= w1. As a result, 

 ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 1, 1 ' 1 't R R t R
t tU z w c n z T z n T w V u T uα α

+ +
= − + − + − + − −  (5.52) 

Subtracting equation (5.18) with z = z1, w= w1 by equation (5.52) leads to: 

 

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )( ){ }

( )
( ) ( ) ( )( ){ }

1 1 1

1 1 1

1 1 2 1 1 1 2 2

,

,

, ,

min ' 1 '

* min ' 1 '

t

t

t t R R
t t t t

t t R

u w w z n x

t t R

u w w z n x

U z w U z w c n z T z n c n z T z n

V u V u T u u

cn V u V u T u u

α α

α α

α α

+

+

+ + + +

⎡ ⎤∈ + − ∧⎢ ⎥⎣ ⎦

⎡ ⎤∈ + − ∧⎢ ⎥⎣ ⎦

− = − + − − − − −

+ − − − −

≥ + − − − −

 (5.53)  

Since u≥ u’, from Property 5-1, 

 ( ) ( ) ( )( ) 1' 1 't t R RV u V u T u u b u T uα α− − − − ≥ − −    

Therefore,  

 ( ) ( ) ( )1 1 2 1
1 1, , * *t t R RU z w U z w cn b u T u cn b T xα α− ≥ − − ≥ − +  (5.54) 
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Subtracting equation (5.52) by equation (5.18) with z = z2, w= w2 leads to: 

( ) ( ) ( )( )

( )
( ) ( ) ( )( ){ }

2 2 2

2 1 2 2 1 2

,

, , 1

min ' 1 '
t

t t R

t t R

u w w z n x

U z w U z w T w w

V u V u T u u

α α

α α+⎡ ⎤∈ + − ∧⎢ ⎥⎣ ⎦

− = − −

− − − − −  

Since u’≥ u, from Property 5-1, 

 ( ) ( ) ( )( )2 1 2 2 1 2
1 1, , 1t t RU z w U z w T w w b x b xα α− ≥ − − − ≥ −  (5.55) 

 Combining relations (5.54)-(5.55) leads to: 

( ) ( ) ( )1 1 2 2
1, , 2t t RU z w U z w b T x mα α− ≥ − + ≥  

Q.E.D. 

Property 5-11: There exist M>0 and r > 0 such that ( ) ( ), , 7,0,0M U i z w U M rzα α− ≤ − ≤ + ,  

for all i = 1, …,7 and for all z. 

Proof: From Property 5-10, 

( ) ( ), ', ' , 't t Rm U z w U z w m T z z zα α− ≤ − ≤ + ∀ ≥ .  

Combining with relation (5.7),  

 ( ) ( ), , , ', ' , ', 'Rm U i z w U i z w m T z z z w wα α− ≤ − ≤ + ∀ ≥ ≥   

This establish the property for i = 7. Further 

 ( ) ( ), , , ', ' , , ', , 'RU i z w m T z U i z w z z w wα α≤ + + ∀  (5.56)  

Consider now the case i = 1, …, 6. First, 

( ) ( )2 1 2
1 1 2 20 , , , , * R R

t t t t t t t tg z w x w w b c n T z m T z+ + +≤ ≤ + + ≤ + . 

From (5.7), 

 ( ) ( )2
1 2, , 1, ,R

i iU i z w m T z E U i z wα α + +
⎡ ⎤≤ + + +⎣ ⎦  (5.57)  

Repeat the relations (5.57) for t subsequent days leads to: 

 ( ) [ ]( ) ( )
1

2
1, , , , , 1,...,7

t i
R

t i t i
i

U i z w m T E z E U t i z w iα τ α
τ

+ −

+ + +
=

⎡ ⎤≤ + + + ∀ =⎣ ⎦∑  (5.58)  

Combining (5.56) and (5.58) with t+i=7, 
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 ( ) [ ]( ) ( ) ( )( )
7

, , 7,0,0 6 * , 1,...,7R R

i
U i z w m T E z U m T z a iα τ α

τ =

≤ + + + + + ∀ =∑  (5.59)  

Since 1 2 1 2
1 1 1 1... 2 * ... 2 *t i i i t t t i tz z a w w a w w z a n a n+ + + +≤ + + + + + + + ≤ + + + + + , for t > i,  

 
( ) ( ) ( ) ( )

( ) ( )

*, , 7 49 * 7 7,0,0 6 *

8 55 * 49 * 8 7,0,0 , 1,...,7

R R R

R R

U i z w m T a n T z U m T z a

m T a n T z U i
α α

α

≤ + + + + + + +

≤ + + + + ∀ =
 (5.60)  

Similarly, 

 

( ) [ ]( ) ( )( )

( ) ( )
( )

7

7

*

7,0,0 , , 6 *

7 49 * 6 * , ,

8 55 * 49 *

i
R R

R R

R

U m T E z U i z w m T a

m T a n m T a U i z w

m T a n

α τ α
τ

α

+

=

≤ + + + +

≤ + + + +

≤ + +

∑
 (5.61)  

Relations (5.60)-(5.61) conclude the proof with ( )8 55 * 49 *RM m T a n= + +  and 8 Rr T= . 

Q.E.D. 

Theorem 5-4. Under Assumptions 4, and 5-A2, (a) there exists a constant λ satisfying (5.44)  
for all (i, z, w), a matrix ψ(i, z, w) satisfying (5.45)-(5.46) (b) the optimal control policy is 
defined by the argument that reaches the minimum in (5.46), (c) there exists an optimal 
stationary control policy of the form of equations (5.34)-(5.36) for the average cost model. 

Proof: The proof is based on Theorem 8.10.7 of Puterman (1994) and the conditions that 
need to be checked are the following ones: 

C1: For each state (i, z, w), the stage cost is such that − ∞ < R ≤ ( )1 2
1 2, , , ,i i i ig z w x w w+ + < ∞. 

C2: For each (i, z, w) and α < 1, ( ), ,U i z wα < ∞ . 

C3: There exists K  > −∞ such that, for each (i, z, w2),  

( ) ( ) ( ), , , , 7,0,0 , 1.i z w U i z w U Kα α αψ α≡ − ≥ ∀ <  

C4: There exists a non-negative function W(i, z, w) such that 

a) W(i, z, w) < ∞; 

b) for each (i, z, w), ( ) ( ), , , , , 1i z w W i z wαψ α≤ ∀ < ; and 

c) for each (i, z, w) and 1 2
1 1,i iw w+ + and xi,  

( )1 2
1, 1 11, .i a i i i

a

P W i x w w a+ + ++ + + + < ∞∑  
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According to Theorem 8.10.7 of Puterman (1994), as the control constraint set for each state 
(i, z, w) is finite, (a) and (b) of the Theorem hold. Further ψ(i, z, w) is the limit of a sequence 

( ), ,
m

i z wαψ  such that αm converges to 1 and ( ), ,
m

i z wαψ  converges for all (i, z, w). From 

Property 5-2, 5-6, 5-8, and equations(5.7), (5.14), and (5.15), (c) of the Theorem can be 
proved as for Theorem 5-2. 

Let us now prove conditions C1-C4. Condition C1 clearly holds as ( )1 2
1 2, , , , 0i i i ig z w x w w+ + ≥ .  

Condition C2 holds as well as  

1) as in Property 5-11, ( ) ( )1 2
1 2 20 , , , , * R R

t t t t t tg z w x w w b c n T z m T z+ +≤ ≤ + + ≤ +   

2)  ( ) ( )1 2
1 2, , , , * *R R

t t t t tE g z w x w w E m T z m T x n a+ +
⎡ ⎤ ⎡ ⎤≤ + ≤ + + +⎣ ⎦⎣ ⎦ ;  

3) ( ) ( ) ( )( )2, , * * * .
1

R RU i z w c b n T z m T x n aα
α

α
≤ + + + + + +

−
 

Condition C3 is guaranteed by Property 5-11 with K = -M. Condition C4 is a consequence 
of Property 5-11 with W(i, z, w) = M + rz. Q.E.D. 

5.4.3 Computation and implementation of the optimal control 

policies 

As proved in Theorem 5-3 and 5-4, there exit the same optimal control policies for average-
cost MDP and discounted-cost MDP. The related optimal control policiesπ(n), μ1(n), and 
μ2(n) can be determined by solving the following LP model:  

( ) maximize J λ≡n  

Subject to 

( ) ( ) ( ) ( )2 1 2
1 1, , , , , 1,...,7R

i i i ii z w c n z x T z n x i x w iψ ψ+ +
+ +≤ − + + − − + ∀ =  

 ( ) ( ) ( )1 2 2 2
1 1 1, , , 1,...,7i ii x w i y b y x w iψ ψ+ ++ ≤ + − − ∀ =   

 ( ) ( )2 2 2
2 2 1, 2, 1, , , 1,...,7i i a i

a

i y b w P i y a w iλ ψ ψ+ + ++ ≤ + + + ∀ =∑   

( ) { }2 2 2
1 1 1 2 2, max , ,0 , 1,...,7i i i i i i i ix z n x x w y x w n w n i+

+ + + + +∀ ≤ − ∧ + ≤ ≤ + ≤ ≤ ∀ =  

Where J(n) is optimal average cost for problem (5.1) under contract n. The optimal controls 
are given respectively by x y and w2 reaching equality in the above relations. Further, 
optimal RTS assignment and one-day advance cancellation are characterized by two control 
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threshold vectors L and S1. However, optimal two-day advance cancellation S2(y) is not 
always a simple threshold policy. From relations xi=min (Li,-w2

i, (zi-ni)+), and w1
i+1=max 

((S1
i+1 - xi - w2

i+1)+,0), w2
i+2= S2

i+2(y), the optimal controls L, S1 and S2(y) can be easily 
determined.  

The existence of optimal control policies makes the implementation easy. At the end of day 
t, the implementation of the optimal patient assignment policy first determines the CTS 
queue length xt which depends on state variable zt and w2

t. The next step is to determine the 
number of CTS cancelled for day t+1, i.e., w1

t+1, which depend on w2
t+1 and xt. The final 

step is to make the two-day advance cancellation decision. The number of CTS cancelled 
for day t+2 depends on state variable yt = xt + w1

t+1 + w2
t+1. 

Step 1: The implementation of the optimal patient assignment control policy can be divided 
into three cases: 

Case 1: As shown in Fig. 5.1, if state variable zt is smaller than nt, then there exists the 
number nt–zt of unused CTS, and no patients waiting for the incoming time slots. 

 

FIG. 5.1 The optimal patient assignment control if zt <=nt 

 

Case 2: As shown in Fig. 5.2, if state variable zt is greater than nt but smaller than Lt + nt -
w2

t, then all the remaining patients are kept in the CTS queue and no patients are assigned to 
RTS. 
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FIG. 5.2 The optimal patient assignment control if nt =< zt <= Lt + nt -w2
t 

 

Case 3: As shown in Fig. 5.3, if state variable zt is greater than Lt + nt -w2
t, then the number 

of patients assigned to CTS is kept at Lt -w2
t, and the other remaining patients are assigned 

to RTS. 

 

 

FIG. 5.3 The optimal patient assignment control if zt >= Lt + nt -w2
t 
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Step 2: The implementation of one-day advance cancellation control can be divided into two 
cases: 

Case 1: As shown in Fig. 5.4, if the ending CTS queue at day t plus two day advance 
cancellation for day t+1, w2

t+1,is smaller than S1
t+1, then the number of CTS cancelled for 

day t+1  is w1
t+1= S1

t+1- xt - w2
t+1. 

CTS cancelled for day t+1: w1
t+1

CTS cancelled for day t: w2
t+1

If xt +w2
t+1<= S1

t+1

time

CTS queue: xt

Day t

CTS cancellation up to the control threshold S1
t+1

S1
t+1

 

FIG. 5.4 The optimal one-day advance CTS cancellation control if xt + w2
t+1 <= S1

t+1 

Case 2: If xt + w2
t+1 >= S1

t+1, no CTS is cancelled for day t+1. 

Step 3: The implementation of two-day advance cancellation depends on state variable yt = 
xt + w1

t+1 + w2
t+1 which becomes known now. So the number of CTS cancelled for day t+2 is 

S2(y). 

As stated in Section 3.3.3 and 4.3.3, the implementation of the contract-based MRI 
examination reservation process needs the aids of patients scheduling policy. To reduce the 
variance of patients’ waiting times, more work is needed about patients scheduling. 

5.5 Local Optimization of Contract 

Starting from a given initial contract, this section presents a local search for improving the 
contract by considering patient assignment, one day advance CTS cancellation, and two-day 
advance CTS cancellation policies. This local search relies on the structure properties of the 
previous section especially the optimality equations (5.47)-(5.49) for contract evaluation. 
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The local search starts from an initial contract n0. It then iteratively improves this contract. 
At each iteration, it determines the best neighbor solution among the set of contracts: n + ek 
(increasing one time slot in day k), n − ek (reducing one time slot in day k), n − ek + ej (move 
one time slot from day k to day j). This process repeats until no improvement can be found.  

The overall algorithm for the contract optimization is summarized as follows: 

Algorithm (Contract optimization) 

1. Select an initial contract n0, determine the optimal control policies π(n0), μ1(n0), 
μ2(n0)and the optimal average cost J(n0) under contract n0 by solving LP model; 

2. Let n* = n0; J(n*) = J(n0); 

3. Determine the neighbor solution n’ with the smallest average cost as follows: 

{ }
( )

7; ; :1 , 7,
' arg min

k k k je e e e k j k j IN
J

∈ + − − + ≤ ≤ ≠ ∩
=

n n n n
n n  

4. If J (n’) < J (n*), set n* = n’ and go to step 3; 

5. The final contract is n* and the final control policy is π(n*) and μ(n*). 

5.6 Computational Results 

This section presents numerical results to show the benefit of two-day advance CTS 
cancellation. All numerical experiments are performed on a Intel(R) Core (TM)2 Duo CPU 
T7250 based PC running at 2.00 GHz with 3.0 GB of Memory. The optimal control policies 
for the MDP formulation (5.1) are obtained by solving LP model with CPLEX 11 solver. 
The numerical experiments are all derived from the base case corresponding to our real case 
study. From the data collected from the neurovascular department of our study, the average 
numbers of patient arrivals during the week are as follows: {1, 0.89, 0.95, 1.16, 1.53, 0.16, 
0.05}. The number of patients arrived each day is assumed to follow a Poisson distribution 
truncated at A = 20 which is large enough such that the probability of ai > A can be 
neglected. The waiting time for RTS varies from 30 to 40 days with an average of TR = 35 
days. The weighting factor of unused CTS, c, is set to 15. CTS one-day advance 
cancellation cost, b1, is taken as half of c, i.e. 7.5. Two-day advance cancellation cost, b2, is 
assumed as half of b1, i.e. 3.75. 

In the following, the impact of CTS cancellation is analyzed with respect to the cancellation 
cost b1, b2, unused CTS cost c, delay TR of regular reservation, patient arrival pattern, and 
the patient arrival rate. The initial contract n0 is obtained by the method proposed in chapter 
4 for optimizing the contract without two-day advance CTS cancellation. 
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For each case, three solutions are considered: (i) the case with only patient assignment and 
one-day advance cancellation considered for the given contract n0. This solution will be 
denoted “One-day-cancel”; (ii) the case by considering one-day, two-day advance 
cancellation and patient assignment control policies for the given contract n0. This solution 
will be denoted “Two-day-cancel”; (iii) the contract obtained with local search starting 
from n0. This solution will be denoted “LocalOpt”. 

The three solutions are further compared with respect to different performance criteria 
including the average delay, the unused CTS ratio, the percentage of patients using RTS, the 
percentage of CTS cancelled. 

Note that two-day advance cancellation control policy can be written in the following form 
for all the instances except for the high demand instance, shown in Fig. 5.5: 

 ( )
2 2

2
2 2 2 2 2 2

  if        
 if , 1,...,7

0 else

i i i

i i i i i i i i i

X y Y
S y X Y y Y y X Y i

+ +

+ + + + + +

≤⎧
⎪= + − ≤ ≤ + ∀ =⎨
⎪
⎩

 (5.62) 

 

 

FIG. 5.5 Approximated two-day advance CTS cancellation control policy 
 

5.6.1 Impact of two-day advance cancellation cost 

This subsection considers the impacts of the two-day advance CTS cancellation cost b2 by 
varying b2 from 0 to 0.9 b1.  

Fig. 5.6 compares the average cost of the three solutions “One-day-cancel’, “Two-day-
cancel”, and “LocalOpt”. From this figure, we note that the two-day advance cancellation 
cost b2 has a great impact on the benefit of two-day advance CTS cancellation. Compared 
with “One-day-cancel”, the gain of two-day advance cancellation decreases with the 
increase of b2, for example, the gain is 11.95% when b2=0.1b1, 3.65% when b2=0.5b1, and 0 
when b2=0.8b1 and b2=0.9b1. Similarly, the local optimization further improves both the 
contract and control policies. The gain of local optimization with respect to the solution of 
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“Two-day-cancel” also decreases with the increase of b2 with a gain of 30.97% when 
b2=0.1b1, 7.28% when b2=0.5b1, and 0 when b2=0.8b1 and b2=0.9b1. The total improvement 
of the two-day advance CTS cancellation and local optimization with respect to the solution 
“One-day-cancel” decreases from 39.22% when b2=0.1b1 to 0% when b2=0.9 b1. 
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3.00
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FIG. 5.6 Average costs vs two-day advance cancellation costs b2 

 
 

One-day-cancel Two-day-cancel LocalOpt 
Delay Unused RTS Cancel Delay Unused RTS Cancel Delay Unused RTS Cancelb2 
(days) (%) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%)

0.1b1 2.97 0.98 0.44 17.38 3.19 2.47  0.63 16.05 2.21 0.45 0.00 42.15
0.2b1 2.97 0.98 0.44 17.38 3.05 3.48  0.50 14.94 2.34 0.49 0.00 35.74
0.3b1 2.97 0.98 0.44 17.38 3.05 3.48  0.50 14.94 2.25 3.00 0.01 25.26
0.4b1 2.97 0.98 0.44 17.38 3.05 3.48  0.50 14.94 2.25 3.00 0.01 25.26
0.5b1 2.97 0.98 0.44 17.38 3.05 3.48  0.50 14.94 2.25 3.00 0.00 25.26
0.6b1 2.97 0.98 0.44 17.38 3.06 2.85  0.47 15.54 2.25 3.00 0.00 25.26
0.7b1 2.97 0.98 0.44 17.38 2.95 1.67  0.44 16.70 3.06 1.67 0.47 16.72
0.8b1 2.97 0.98 0.44 17.38 2.97 0.98  0.44 17.38 2.97 0.98 0.44 17.38
0.9b1 2.97 0.98 0.44 17.38 2.97 0.98  0.44 17.38 2.97 0.98 0.44 17.38

 
TAB. 5.1 Performance comparison for different two-day advance cancellation cost b2 

 
Table 5.1 summarizes the performance measures for the three different solution strategies. 
In the table, “Delay”, “Unused”, “RTS”, and “Cancel” separately denote the average delay, 
unused CTS ratio, the percentage of patients assigned to RTS, and the percentage of CTS 
cancelled. With respect to the strategy “One-day-cancel”, the two-day advance cancellation 
policy slightly increases RTS percentage and decreases CTS Cancellation ratio with more 
unused CTS and longer delay for most instances. It is interesting that the CTS cancellation 
ratio does not increase under the contract obtained from Chapter 4. The contract “LocalOpt” 
further takes advantage of two-day advance cancellation. With respect to the solution of 
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“Two-day-cancel”, “LocalOpt” benefits from the two-day advance cancellation by 
increasing the CTS cancellation ratio. The solution of “LocalOpt” also reduces RTS 
percentage, with a little decrease in average delay and unused CTS ratio.  

Table 5.2 summarizes the contracts, patient assignment, one-day cancellation, and two-day 
cancellation control policies for the solution strategies of “Two-day-cancel” and “LocalOpt”. 
The optimal contract and the optimal control policies for “One-day-cancel” solution are 
n={0, 1,1, 1, 2, 2, 0}, L={10,10,10,11,10,8,9} S={0,1,1,1,1,2,0}, which are to the same 
with the control for “Two-day-cancel” and “LocalOpt” strategies with b2=0.8b1 and 
b2=0.9b1. For the solution of “Two-day-cancel”, the patient assignment control policy is 
nearly the same for different b2. With the increase of b2, the control policy for one-day 
advance cancellation increases leading to more one-day cancellation, whereas the control 
policy for two-day advance cancellation decreases leading to less two-day cancellation. For 
the optimal contract of “LocalOpt” strategy, more CTS are planned when b2 is small. Due to 
the possibility of the two-day advance CTS cancellation, CTS are now planned for Sunday. 
When b2 is small, larger patient assignment threshold is used because of more CTS 
introduced in order to avoid assigning patients to RTS. 

 

b2 Two-day-cancel LocalOpt 
 n={0, 1,1, 1, 2, 2, 0}7CTS n={1,0,1,2,2,1,3}10CTS 

0.1b1 S1={0,0,0,0,0,2,0} S1={0,0,0,1,1,1,3} 

 X={0,0,1,1,1,2,0 } X={1,0,1,2,2,1,3 } 
 Y={0,0,0,0,1,0,0 } Y={3,0,0,1,1,2,1 } 
 L={10,10,10,10,9,8,8} L={22,23,24,24,24,23,21} 
 n={0, 1,1, 1, 2, 2, 0}7CTS n={1,0,1,2,2,1,2}9CTS 

0.2 b1 S1={0,0,0,0,0,2,0} S1={0,0,0,1,1,1,2 } 
 X={0,0,1,1,1,2,0} X={1,0,1,2,1,1,2 } 
 Y={0,0,0,0,0,0,0} Y={2,0,0,1,2,1,1} 
 L={10,10,10,10,9,8,9} L={18,19,20,19,19,18,17} 
 n={0, 1,1, 1, 2, 2, 0}7CTS n={0,1,1,1,2,1,2}8CTS 

0.3 b1 S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 

 X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
 Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10,10,10,10,10,8,9} L={14,14,14,15,14,14,12} 
 n={0,1,1,1,2,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 

0.4 b1 S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 

 X={0,0,1,1,1,2,0} X={0,01,1,1,1,2} 
 Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10,10,10,10,10,8,9} L={14,14,15,15,14,14,13} 
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b2 Two-day-cancel LocalOpt 
 n={0,1,1,1,2,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 

0.5 b1 S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 

 X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
 Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10,10,10,10,10,8,9} L={14,14,15,15,15,14,13} 
 n={0,1,1,1,2,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 
0.6 b1 S1={0,0,0,0,1,2,0} S1={0,0,0,0,1,1,2} 
 X={0,0,1,1,1,1,0} X={0,01,1,1,1,2} 
 Y={0,0,0,0,0,1,0} Y={0,0,0,0,1,1,1} 
 L={10,10,10,11,10,8,9} L={14,15,15,15,15,14,13} 
 n={0,1,1,1,2,2,0}7CTS n={0,1,1,1,2,1,1}7CTS 
0.7 b1 S1={0,1,1,0,1,2,0} S1={0,1,1,0,1,1,1} 
 X={0,0,0,0,1,0,0} X={0,0,0,0,1,0,1} 
 Y={0,0,0,0,0,0,0} Y={0,0,0,0,0,0,1} 
 L={10,10,10,11,10,8,9} L={10,10,10,10,10,9,9} 
 n={0,1,1,1,2,2,0}7CTS n={0,1,1,1,2,2,0}7CTS  
 S1={0,1,1,1,1,2,0} S1={0,1,1,1,1,2,0} 
0.8 b1 X={0,0,0,0,0,0,0} X={0,0,0,0,0,0,0} 
 Y={0,0,0,0,0,0,0} Y={0,0,0,0,0,0,0} 
 L={10,10,10,11,10,8,9} L={10,10,10,11,10,8,9} 
 n={0,1,1,1,2,2,0}7CTS n={0,1,1,1,2,2,0}7CTS  
 S1={0,1,1,1,1,2,0} S1={0,1,1,1,1,2,0} 
0.9 b1 X={0,0,0,0,0,0,0} X={0,0,0,0,0,0,0} 
 Y={0,0,0,0,0,0,0} Y={0,0,0,0,0,0,0} 
 L={10,10,10,11,10,8,9} L={10,10,10,11,10,8,9} 

 
TAB. 5.2 Contracts and control policies vs two-day advance cancellation costs b2 

5.6.2 Impact of one-day advance cancellation cost 

This subsection considers the impact of the one-day advance cancellation cost b1 by varying 
b1 from 0.1c to 0.9c by taking b2 equal 0.5b1. 

Fig. 5.7 compares the average costs of the three solution strategies for different b1. It is clear 
that one-day cancellation cost leads to the reduction of average costs, although there is no 
obvious trends. When b1 is smaller, two-day advance cancellation only provides little 
improvement. The greatest improvement of “Two-day-cancel” over “One-day-cancel” is 
9.45 when b1=0.4c. Local optimization further improves the contract and control policies. 
The combined improvement over “One-day-cancel” reaches 10.67% when b1=0.5c.  
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FIG. 5.7 Average costs vs different two-day advance cancellation costs b1 
 

Table 5.3 summarizes the performance measures of the three different solution strategies for 
different b1. With respect to the solution of “One-day-cancel”, the “Two-day-cancel” 
slightly decreases the cancellation ratio when b1≤0.6c, but greatly increases it when b1>0.6c. 
Correspondingly, the unused CTS ratio increases when b1≤0.6c, and decreases when 
b1>0.6c. This means that the two-day advance cancellation plays more important role when 
b1>0.6c. The contract “LocalOpt” further improves the benefits of the two-day advance. 
With respect to the solution of “Two-day-cancel”, “LocalOpt” increases the cancellation 
ratio, at the same time reduces the unused CTS ratio. With the increase of b1, cancellation 
ratio decreases, whereas unused CTS ratio and average delay increase. 

 
One-day-cancel Two-day-cancel LocalOpt 

Delay Unused RTS Cancel Delay Unused RTS Cancel Delay Unused RTS Cancelb1 
(days) (%) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 

0.1c 1.63 0.00 0.00 36.23 1.70 0.00 0.00 36.23 1.59 0.00 0.00 42.60
0.2c 2.06 0.00 0.01 28.26 2.15 0.00 0.01 28.26 1.87 0.00 0.00 36.23
0.3c 2.06 0.00 0.01 28.26 2.23 0.58 0.01 27.69 2.35 0.40 0.01 27.86
0.4c 2.06 0.00 0.00 28.26 2.36 1.82 0.01 26.45 2.27 1.52 0.01 26.75
0.5c 2.97 0.98 0.44 17.38 3.05 3.48 0.50 14.94 2.25 3.00 0.00 25.26
0.6c 2.82 2.66 0.39 15.67 3.11 3.18 0.47 15.21 2.25 3.00 0.00 25.26
0.7c 2.40 9.58 0.30 8.67 3.30 3.00 0.47 15.39 3.11 3.94 0.46 14.45
0.8c 2.26 12.64 0.28 5.60 3.17 3.91 0.45 14.46 3.11 3.94 0.46 14.45
0.9c 2.16 18.22 0.26 0.00 2.87 7.63 0.39 10.69 3.00 5.03 0.41 13.32

 
TAB. 5.3 Performance comparison for different one-day advance cancellation costs b1 

 
Table 5.4 summarizes the contracts and the control policies for different b1. With respect to 
the control policies in “One-day-cancel”, the patient assignment policy in “Two-day-cancel” 
keeps nearly the same. The one day cancellation control policy S1 in “Two-day-cancel” is 
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the same when b1≤0.3c and b1≥0.7c, and smaller in the rest instances. For most cases the 
same number of CTS is planned in “LocalOpt” except for b1=0.1c, 0.5c, and 0.6c. Higher 
patient assignment thresholds are used when more CTS is planned. “LocalOpt” usually 
moves one CTS from weekday to Sunday in order to benefit from the two-day advance CTS 
cancellation. When b1≥0.7c, it moves all CTS in Saturday to Sunday. This is because one-
day advance cancellation policy does not work at this time.  

 

 

 

b1 One-day-cancel Two-day-cancel LocalOpt 
 n={0, 1, 2, 1, 2, 2, 1}; 9CTS n={0,1,2,1,2,2,1}; 9CTS n={1,1,1,2,2,2,1}10CTS 

 S={0, 1, 2, 1, 2, 2, 1}; S1={0,1,2,1,2,2,1} S1={1,1,1,2,2,2,1} 
0.1c  X={0,0,0,0,0,0,1} X={1,0,0,1,0,0,1} 
  Y={0,0,0,0,0,0,2} Y={1,0,0,1,0,0,2} 
 L={18, 18, 18, 19, 18, 17, 17}. L={18,18,18,19,18,17,17} L={22,23,24,23,23,22,22}
 n={0, 1, 1, 1, 2, 2, 1};8CTS n={0,1,1,1,2,2,1};8CTS n={1,1,1,1,2,2,1}9CTS 

 S={0, 1, 1, 1, 2, 2, 1}; S1={0,1,1,1,2,2,1} S1={1,1,1,1,2,2,1} 
0.2c  X={0,0,0,0,0,0,1} X={1,0,0,0,1,0,1} 
  Y={0,0,0,0,0,0,2} Y={1,0,0,0,1,0,2} 
 L={14, 14, 14, 14, 14, 13, 12}. L={13,14,14,14,14,12,12} L={18,18,19,19,19,18,17}
 n={0, 1, 1, 1, 2, 2, 1};8CTS n={0,1,1,1,2,2,1};8CTS n={0,1,1,1,1,2,2}8CTS 

 S={0, 1, 1, 1, 2, 2, 1}; S1={0,1,1,1,1,2,1} S1={0,1,1,1,0,2,2} 
0.3c  X={0,0,0,0,1,1,1} X={0,0,0,0,0,2,2} 
  Y={0,0,0,0,1,1,2} Y={0,0,0,0,0,0,2} 
 L={14, 14, 15, 15, 14, 13, 13}. L={14,14,14,15,14,13,13} L={14,14,14,14,15,14,12}
 n={0, 1, 1, 1, 2, 2, 1};8CTS n={0,1,1,1,2,2,1};8CTS n={0,1,1,1,2,1,2}8CTS 

 S={0, 1, 1, 1, 2, 2, 1}; S1={0,1,0,0,1,2,1} S1={0,1,1,0,1,1,2} 
0.4c  X={0,0,0,1,2,2,1} X={0,0,0,0,1,1,2} 
  Y={0,0,0,0,0,1,2} Y={0,0,0,0,1,1,1} 
 L={14, 15, 15, 15, 15, 13, 13}. L={14,14,15,15,15,13,13} L={14,14,14,15,14,14,13}
 n={0, 1,1, 1, 2, 2, 0};7CTS n={0,1,1,1,2,2,0};7CTS n={0,1,1,1,2,1,2}8CTS 

 S={0, 1, 1, 1, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 
0.5c  X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10, 10, 10, 11, 10, 8, 9}. L={10,10,10,10,10,8,9} L={14,14,15,15,15,14,13}
 n={0, 1, 1, 2, 1, 2, 0};7CTS n={0,1,1,2,1,2,0};7CTS n={0,1,1,1,2,1,2}8CTS 

 S={0, 1, 1, 1, 0, 2, 0}; S1={0,0,0,1,0,2,0} S1={0,0,0,0,0,1,2} 
0.6c  X={0,0,1,1,0,1,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,1,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10, 11, 11, 10, 10, 9, 9}. L={10,10,11,10,10,9,9} L={14,15,15,15,15,14,13}
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b1 One-day-cancel Two-day-cancel LocalOpt 
 n={1, 1, 1, 1, 1, 2, 0};7CTS n={1,1,1,1,1,2,0};7CTS n={0,1,1,1,2,0,2}7CTS 

 S={0, 0, 0, 0, 0, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,0,0,0,0,2} 
0.7c  X={1,1,1,0,0,2,0} X={0,0,1,0,1,0,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,0,0,0} 
 L={10, 10, 10, 11, 11, 9, 10}. L={10,10,10,10,11,9,10} L={10,10,10,10,10,10,9} 
 n={1,1,1,1,2,1,0};7CTS n={1,1,1,1,2,1,0};7CTS n={0,1,1,1,2,0,2}7CTS 

 S={0, 0, 0, 0, 0, 1, 0}; S1={0,0,0,0,0,1,0} S1={0,0,0,0,0,0,2} 
0.8c  X={1,1,1,0,1,1,0} X={0,0,1,0,1,0,2} 
  Y={0,0,0,0,0,1,0 } Y={0,0,0,0,0,0,0} 
 L={10, 10, 11, 11, 10, 10, 10}. L={10,10,10,11,10,9,10} L={10,10,10,10,10,10,9} 
 n={1,1,1,1,3,0,0};7CTS n={1,1,1,1,3,0,0};7CTS n={0,1,1,1,2,0,2}7CTS 

 S={0, 0, 0, 0, 0, 0, 0}; S1={0,0,0,0,0,0,0} S1={0,0,0,0,0,0,2} 
0.9c   X={1,1,1,0,1,0,0} X={0,0,0,0,1,0,2} 

  Y={0,0,0,0,0,0,0} Y={0,0,0,0,0,0,0} 
 L={11, 11, 11, 11, 9, 10, 10}. L={10,10,11,11,9,10,10} L={10,10,10,11,10,10,9} 

 
TAB. 5.4 Contracts and control policies vs one-day advance cancellation costs b1 

5.6.3 Impact of unused CTS cost 

This subsection explores the impact of unused CTS cost, c, by varying c from 1 to 20 with 
b1 = 0.5c and b2 = 0.5b1. 

Fig. 5.8 compares the average costs for different unused CTS cost c. When c is smaller than 
5, two-day advance cancellation only provides marginal improvement. Larger improvement 
is gained when c is larger, for example, 9.48% of improvement of “Two-day-cancel” over 
“One-day-cancel” when c=10; 3.65% when c=15; and 5.21% when c=20. Local 
optimization further improves the contracts and control policies, with 7.28% of the greatest 
improvement over “Two-day-cancel” when c=15. 

Table 5.5 summarizes the performance measures for different solution strategies. Two-day 
advance cancellation causes slightly longer delay and more RTS assignment. For 
“LocalOpt”, the average delay and the CTS cancellation ratio increase, while the unused 
CTS ratio decreases.  
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FIG. 5.8 Average costs vs different unused CTS costs c 
 

One-day-cancel Two-day-cancel LocalOpt 
Delay Unused RTS Cancel Delay Unused RTS Cancel Delay Unused RTS Cancelc 
(days) (%) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 

1 0.52 28.44 0.00 14.17 0.52 28.44 0.00 14.17 0.52 28.44 0.00 14.17
5 1.37 11.45 0.01 16.81 1.58 10.60 0.01 17.66 1.40 7.44 0.00 28.79

10 1.76 3.56 0.00 24.70 2.01 4.77 0.01 23.49 2.15 3.38 0.01 24.88
15 2.97 0.98 0.44 17.38 3.05 3.48 0.50 14.94 2.25 3.00 0.00 25.26
20 2.98 0.98 0.38 17.34 3.20 2.45 0.46 15.93 2.59 1.03 0.00 27.23

 
TAB. 5.5 Performance comparison for different CTS costs c 

 
Table 5.6 compares the contracts and control policies for different c. For all solution 
strategies, the number of CTS decreases with the increase of c. “Two-day-cancel” solution 
has slightly lower RTS thresholds than “One-day-cancel” solution. “LocalOpt” differs with 
the other strategies in the CTS planned for the Sunday even when c is great. “LocalOpt” 
also allows more CTS cancellation than “Two-day-cancel” solution. Higher RTS 
assignment thresholds are used when more CTS is planned. 

 
c One-day-cancel Two-day-cancel LocalOpt 
 n={1, 2, 1, 2, 2, 1, 1}; 10CTS n={1,2,1,2,2,1,1};10CTS n={1,2,1,2,2,1,1}10CTS 
 S={0, 0, 0, 0, 0, 1, 1}; S1={0,0,0,0,0,1,1} S1={0,0,0,0,0,1,1} 
1  X={0,0,0,0,0,0,0} X={0,0,0,0,0,0,0} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,0,0,0} 
 L={22, 21, 22, 22, 22, 21, 21} L={22,21,22,22,22,21,21} L={22,21,22,22,22,21,21}
 n={1, 1, 1, 1, 2, 2, 0}; 8CTS n={1,1,1,1,2,2,0}8CTS n={1,1,2,1,2,1,1}9CTS 
 S={0, 0, 0, 0, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,1,0,0,1,1} 
5  X={0,0,0,0,1,2,0} X={1,0,1,0,1,1,1} 
  Y={0,0,0,0,0,0,0} Y={1,0,0,0,0,0,1} 
 L={13, 13, 13, 14, 13, 12, 13} L={13,13,13,14,13,12,13} L={18,18,18,18,18,18,18}
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c One-day-cancel Two-day-cancel LocalOpt 
 n={0, 1, 1, 2, 2, 1, 1}; 8CTS n={0,1,1,2,2,1,1}8CTS n={0,1,1,1,2,1,2}8CTS 
 S={0, 1, 1, 1, 1, 1, 1}; S1={0,0,0,1,0,1,1} S1={0,0,0,0,1,1,2} 
10  X={0,0,1,1,1,1,1} X={0,0,1,1,1,1,2} 
  Y={0,0,0,1,1,0,1} Y={0,0,0,0,0,1,1} 
 L={14, 15, 15, 14, 14, 13, 13} L={14,14,15,14,13,13,13} L={14,14,14,15,14,14,12}
 n={0, 1,1, 1, 2, 2, 0};7CTS n={0,1,1,1,2,2,0};7CTS n={0,1,1,1,2,1,2}8CTS 
 S={0, 1, 1, 1, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 
15  X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10, 10, 10, 11, 10, 8, 9}. L={10,10,10,10,10,8,9} L={14,14,15,15,15,14,13}
 n={ 0, 1, 1, 1, 2, 2, 0}; 7CTS n={0,1,1,1,2,2,0}7CTS n={1,0,1,2,1,2,1}8CTS 
 S={ 0, 1, 1, 1, 1, 2, 0}; S1={0,0,0,0,1,2,0} S1={0,0,0,1,0,2,1} 
20  X={0,0,1,1,1,1,0} X={1,0,1,2,1,2,1} 
  Y={0,0,0,0,1,1,0} Y={1,0,0,0,1,0,2} 
 L={11, 11, 11, 11, 10, 9, 9} L={10,10,11,11,10,9,9} L={14,15,16,15,16,14,14}

 
TAB. 5.6  Contracts and control policies vs unused CTS costs c 

5.6.4 Impact of other parameters 

This subsection considers the relationship between the influence of two-day advance 
cancellation control and other parameters including (i) the average RTS delay, TR; (ii) the 
patient arrival pattern, and (iii) the patient arrival rate. 

To investigate the impact of the average RTS delay TR, numerical experiments are 
performed for the base case by varying TR from 25 to 45. For all the strategies, the average 
cost (see Fig. 5.9), the performance measures (see Table 5.7), and the contracts and the 
control policies (see Table 5.8) are fairly insensitive to the change of TR, except that RTS 
threshold increases with the increase of TR for all the solutions. 
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FIG. 5.9 Average costs vs different RTS delays TR 
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One-day-cancel Two-day-cancel LocalOpt 

Delay Unused RTS Cancel Delay Unused RTS Cancel Delay Unused RTS CancelTR 
(days) (%) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 

25 2.87 1.01 0.94 17.77 2.94 3.56 1.03 15.29 2.25 3.00 0.05 25.28
30 2.93 0.99 0.65 17.55 3.01 3.51 0.69 15.07 2.25 3.00 0.01 25.26
35 2.97 0.98 0.44 17.38 3.05 3.48 0.50 14.94 2.25 3.00 0.00 25.26
40 2.85 2.65 0.30 15.60 3.14 3.17 0.35 15.13 2.25 3.00 0.00 25.25
45 2.87 2.64 0.21 15.53 3.16 3.15 0.25 15.06 2.25 3.00 0.00 25.25

 
TAB. 5.7  Performance comparison for different RTS delays TR 

 
TR One-day-cancel Two-day-cancel LocalOpt 
 n={ 0, 1, 1, 1, 2, 2, 0};7CTS n={0,1,1,1,2,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 
 S={ 0, 1, 1, 1, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 
25  X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={8, 8, 8, 9, 8, 7, 7}. L={8,8,8,9,8,6,7} L={11,11,11,12,11,11,10}
 n={ 0, 1, 1, 1, 2, 2, 0};7CTS n={0,1,1,1,2,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 
 S={ 0, 1, 1, 1, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 
30  X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={9, 9, 9, 10, 9, 7, 8}. L={9,9,9,10,9,7,8} L={13,13,13,14,13,13,11}
 n={0, 1,1, 1, 2, 2, 0};7CTS n={0,1,1,1,2,2,0};7CTS n={0,1,1,1,2,1,2}8CTS 
 S={0, 1, 1, 1, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 
35  X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10, 10, 10, 11, 10, 8, 9}. L={10,10,10,10,10,8,9} L={14,14,15,15,15,14,13}
 n={ 0, 1, 1, 2, 1, 2, 0};7CTS n={0,1,1,2,1,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 
 S={ 0, 1, 1, 1, 0, 2, 0}; S1={0,0,0,1,0,2,0} S1={0,0,0,0,1,1,2} 
40  X={0,0,1,1,0,1,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,1,0,0,0} Y={0,0,0,0,1,1,1} 
 L={11, 11, 11, 11, 11, 9, 10}. L={11,11,11,11,11,9,10} L={16,16,16,17,16,16,15}
 n={ 0, 1, 1, 2, 1, 2, 0};7CTS n={0,1,1,2,1,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 
 S={ 0, 1, 1, 1, 0, 2, 0}; S1={0,0,0,1,0,2,0} S1={0,0,0,0,1,1,2} 
45  X={0,0,1,1,0,1,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,1,0,0,0} Y={0,0,0,0,1,1,1} 
 L={12, 12, 12, 12, 12, 10, 11}. L={12,12,12,11,12,10,11} L={17,18,18,18,18,17,16}

 
TAB. 5.8 Contracts and control policies vs RTS delays TR 
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We now perform the sensitivity analysis with respect to the patient arrival patterns by 
exchanging the current peak arrival rate of Friday with the arrival rates of any other 
weekday.  Another arrival pattern (Ave) with equal weekday arrival is also considered. The 
average cost (see Fig. 5.10) and the performance measures (See Table 5.9) are also 
insensitive to the change of patient arrival patterns. “LocalOpt” usually moves one CTS 
from peak arrival date to one or two days later and one CTS from Saturday to Sunday, at the 
same time, one CTS is added in Sunday. Therefore, more CTS cancellation and more patient 
assignment threshold are expected. 
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FIG. 5.10 Average costs vs different patient arrival patterns 
 

One-day-cancel Two-day-cancel LocalOpt 
Delay Unused RTS Cancel Delay Unused RTS Cancel Delay Unused RTS CancelPeak arrival 
(days) (%) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%) 

Mon 2.90 2.08 0.44 16.27 3.07 3.94 0.48 14.43 2.40 2.66 0.01 25.58
Tues 2.90 2.05 0.44 16.30 3.06 3.38 0.50 15.02 2.39 2.19 0.01 26.06
Wed 2.85 2.41 0.44 15.90 3.08 3.33 0.51 15.04 2.54 1.57 0.01 26.64
Thurs 2.95 1.15 0.46 17.21 2.89 3.73 0.46 14.62 2.29 2.90 0.01 25.33

Fri 2.97 0.98 0.44 17.38 3.05 3.48 0.50 14.94 2.25 3.00 0.00 25.26
AVE 2.80 3.09 0.37 15.62 3.33 2.35 0.49 16.46 2.32 2.44 0.01 26.17

 

TAB. 5.9  Performance comparison for different patient arrival patterns 
 

Peak arrival One-day-cancel Two-day-cancel LocalOpt 
 n={1, 1, 1, 1, 1, 2, 0};7CTS n={1,1,1,1,1,2,0}7CTS n={0,1,2,1,1,1,2}8CTS 
 S={0, 1, 1, 0, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,1,0,0,1,2} 
Mon  X={0,0,1,1,1,2,0} X={0,0,2,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,1,0,1,1} 
 L={10,10,10,10,10,9,9}. L={10,10,10,10,10,9,9} L={15,15,14,15,15,14,13}



Chapter 5 Contract planning and two-day advance cancellation of contracted time slots 123 

  

Peak arrival One-day-cancel Two-day-cancel LocalOpt 
 n={0, 2, 1, 1, 1, 2, 0};7CTS n={0,2,1,1,1,2,0}7CTS n={0,1,1,2,1,1,2}8CTS 
 S={0, 1, 1, 0, 1, 2, 0}; S1={0,1,0,0,0,2,0} S1={0,0,0,1,0,1,2} 
Tues  X={0,0,0,1,1,2,0} X={0,0,1,2,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10,10,10,10,10,9,9}. L={10,10,10,10,10,8,9} L={14,15,15,14,14,14,13}
 n={0, 1, 2, 1, 1, 2, 0};7CTS n={0,1,2,1,1,2,0}7CTS n={0,0,2,1,2,1,2}8CTS 
 S={0, 1, 1, 0, 1, 2, 0}; S1={0,0,1,0,0,2,0} S1={0,0,1,0,1,1,2} 
Wed  X={0,0,1,0,1,2,0} X={0,0,1,1,2,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,1,0,2,1} 
 L={10,10,10,10,10,9,9}. L={10,10,10,10,10,8,9} L={14,15,15,15,14,14,13}
 n={0, 1, 1, 2, 1, 2, 0};7CTS n={0,1,1,2,1,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 
 S={0, 1,1, 1, 1, 2, 0}; S1={0,0,0,1,0,2,0} S1={0,0,0,0,1,1,2} 
Thurs  X={0,0,1,1,0,1,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10,10,10,10,10,8,9}. L={10,10,10,10,10,8,9} L={14,14,15,15,15,14,13}

 n={0, 1,1, 1, 2, 2, 0};7CTS n={0,1,1,1,2,2,0};7CTS n={0,1,1,1,2,1,2}8CTS 

 S={0, 1, 1, 1, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 
Fri  X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10, 10, 10, 11, 10, 8, 9}. L={10,10,10,10,10,8,9} L={14,14,15,15,15,14,13}
 n={0, 1, 2, 1, 1, 2, 0};7CTS n={0,1,2,1,1,2,0}7CTS n={0,1,1,1,2,1,2}8CTS 
 S={0, 1, 1, 0, 1, 2, 0}; S1={0,0,1,0,0,2,0} S1={0,0,0,0,1,1,2} 
AVE  X={0,0,1,1,1,2,0} X={0,0,1,1,2,1,2} 
  Y={0,0,1,1,0,0,0} Y={0,0,0,0,0,1,1} 
 L={11,11,10,10,10,9,9}. L={10,11,10,10,10,9,9} L={14,15,15,15,15,14,13}

 

TAB. 5.10 Contracts and Control policies vs patient arrival patterns 
 

We now perform the sensitivity analysis with respect to the patient arrival rate. Three 
scenarios are considered “Low” (base case), “Medium” (patient arrival rates 5 times larger), 
“High” (patient arrival rates 10 times larger). Fig. 5.11 compares the average costs of the 
three solution strategies. Two-day advance cancellation brings 3.65% improvement over 
“One-day-cancel” strategy for low demand instance, 5.18% for medium demand, and 5.33% 
for high demand instance. Local optimization further brings 7.28%, 3.53%, and 3.22% 
improvement over “Two-day-cancel” strategy, and leads to a combined improvement of 
10.67%, 8.53%, and 8.38% respectively for low, medium, high demand instances. We can 
see that the two-day advance cancellation work well for both high and low demand 
instances.  
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FIG. 5.11 Average costs vs different patient arrival rates 
 
Table 5.11 summarizes the performance measures for different arrival rates. For all the 
solutions, the increase of demand rate results in shorter delay, less RTS assignment and less 
CTS cancellation ratio. Unused CTS ratio increases for “One-day-cancel” policy but 
decreases for the other solution strategies.  

 

One-day-cancel Two-day-cancel LocalOpt 
Delay Unused RTS Cancel Delay Unused RTS Cancel Delay Unused RTS CancelArrival 

rates 
(days) (%) (%) (%) (days) (%) (%) (%) (days) (%) (%) (%)

Low 2.97 0.98 0.44 17.38 3.05 3.48 0.50 14.94 2.25 3.00 0.00 25.26
Medium 1.14 1.61 0.06 8.78 1.30 2.06 0.08 8.35 1.11 2.07 0.01 10.99

High 0.77 1.85 0.04 5.61 0.90 1.51 0.05 5.95 0.81 1.59 0.01 7.30
 

TAB. 5.11 Performance comparison for different patient arrival rates 
 
Table 5.12 summarizes the contracts and control policies for different rates. One additional 
CTS is planned for “LocalOpt” and more CTS are planned in Sunday. Therefore, more CTS 
cancellation and higher RTS assignment are expected.  

Fig. 5.12 and 5.13 show the two-day advance cancellation control policy for “Two-day-
cancel” and “LocalOpt” solutions. These figures show the reason why these policies cannot 
write in the form of relation (5.62), i.e., the control policies for Wednesday and Friday in 
“Two-day-cancel” solution and for Thursday and Friday in “LocalOpt” solution. However, 
it can be approximated as the policy in the form of (5.62), as shown in Table 5.13. In this 
table, “obj_appr” and “obj” are separately the criterion value with the approximated policy 
and the real optimal policy. “Gap” is (1-obj/obj_appr)*100%. From this table, we can see 
that the Gap is very small, no greater than 0.25%, which means that the approximated 
control policies perform well. 
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Arrival rates One-day-cancel Two-day-cancel LocalOpt 

 n={0, 1,1, 1, 2, 2, 0};7CTS n={0,1,1,1,2,2,0};7CTS n={0,1,1,1,2,1,2}8CTS 

 S={0, 1, 1, 1, 1, 2, 0}; S1={0,0,0,0,0,2,0} S1={0,0,0,0,1,1,2} 
Low  X={0,0,1,1,1,2,0} X={0,0,1,1,1,1,2} 
  Y={0,0,0,0,0,0,0} Y={0,0,0,0,1,1,1} 
 L={10, 10, 10, 11, 10, 8, 9}. L={10,10,10,10,10,8,9} L={14,14,15,15,15,14,13}
 n={3,5,5,6,8,4,1};32CTS n={3,5,5,6,8,4,1}32CTS n={4,4,5,6,8,3,3}33CTS 
 S={0,2,2,2,2,4,1}; S1={0,1,1,1,0,3,1} S1={0,0,1,1,1,2,3} 
Medium  X={0,1,2,2,2,4,1} X={1,1,2,2,2,3,3} 
  Y={0,0,1,1,1,0,4} Y={3,0,0,1,1,1,3} 
 L={25,25,25,25,24,22,23}. L={24,24,25,25,24,22,22} L={28,29,29,30,29,28,26}

 n={8,9,10,12,15,7,1};62CTS n={8,9,10,12,15,7,1}62CTS n={8,8,10,12,16,4,5}63CTS

 L={34,35,35,35,35,31,32}. L={34,34,35,35,34,30,31} L={37,39,39,40,38,37,35}
High S={0,2,2,2,2,6,1}; S1={0,1,1,1,0,6,1} S1={0,0,1,1,1,3,5} 

  S2(0)={1,1,2,2,2,5,1} S2(0)={0,0,2,3,3,3,5} 
  S2(1)={1,0,2,2,2,4,1} S2(1)={0,0,2,3,3,3,5} 
  S2(2)={0,0,1,2,1,3,1} S2(2)={0,0,1,2,2,3,5} 
  S2(3)={0,0,1,1,1,2,1} S2(3)={0,0,0,1,2,2,5} 
  S2(4)={0,0,0,0,0,1,1} S2(4)={0,0,0,1,1,1,4} 
  S2(5)={0,0,0,0,0,0,1} S2(5)={0,0,0,0,0,0,3} 
  S2(6)={0,0,0,0,0,0,1} S2(6)={0,0,0,0,0,0,2} 
  S2(7)={0,0,0,0,0,0,0} S2(7)={0,0,0,0,0,0,1} 
  S2(8)={0,0,0,0,0,0,0} S2(8)={0,0,0,0,0,0,0} 

 

TAB. 5.12 Contracts and control policies vs patient arrival rates 
 

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

y

N
um

be
r o

f C
TS

 c
an

ce
lle

d Mon.
Tues.
Wen.
Thurs.
Fri. 
Sat.
Sun.

 

 

FIG. 5.12 Two-day advance CTS cancellation policy for “Two-day-cancel” solution 
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FIG. 5.13 Two-day advance CTS cancellation policy for “LocalOpt” solution 

 

Two-day-cancel LocalOpt 
Approximated policy obj_appr. obj Gap(%) Approximated policy obj_appr. obj Gap(%)

X={1,1,2,2,2,5,1} 
Y={1,0,1,2,1,0,6} 11.84 11.84 0.02 X={0,0,2,3,3,3,5} 

Y={0,0,1,1,1,2,3} 11.48 11.46 0.13 

X={1,1,2,2,2,5,1} 
Y={1,0,2,2,1,0,6} 11.84 11.84 0.02 X={0,0,2,3,3,3,5} 

Y={0,0,1,2,1,2,3} ; 11.48 11.46 0.21 

X={1,1,2,2,2,5,1} 
Y={1,0,2,2,2,0,6} 11.84 11.84 0.02 X={0,0,2,3,3,3,5} 

Y={0,0,1,1,2,2,3} 11.47 11.46 0.10 

X={1,1,2,2,2,5,1} 
Y={1,0,1,2,2,0,6} 11.84 11.84 0.03 X={0,0,2,3,3,3,5} 

Y={0,0,1,2,2,2,3} 11.48 11.46 0.16 

 

TAB. 5.13 The approximated policies and the performance measures 
 

CPU time for local search is less than 11 minutes for all the low demand instances, 5227s 
for medium demand instance, and 25057s for high demand instance. 

5.7 Conclusion 

This chapter proposes an average cost MDP formulation to establish the structure properties 
of patient assignment, one-day advance cancellation, and two-day advance cancellation 
control policies. Local optimization is used to improve a given initial contract. Numerical 
results show that the two-day advance cancellation and local optimization can greatly 
reduce the criterion values and the unused CTS ratio. 
Future research can be pursued in several directions. An extension research is needed by 
assuming that CTS can be cancelled in advance of arbitrary days. Multiple priorities patients 
and several imaging examinations are the other possible directions.  



 

Chapter 6  
Conclusion 
 
Stroke patients need quick diagnosis. However, significant delays are observed as many key 
examinations depend on expensive and heavily used imaging facilities such as MRI 
scanners. The objective of this thesis aims to reduce the waiting time of stroke patients for 
MRI examination without degrading the utilization of MRI scanner.  
Based on the field observation of stable weekly patient arrivals, we have proposed a new 
contract-based MRI examination reservation process for stroke patients, i.e., neurovascular 
department reserves a certain number of contracted time slots for stroke patients every week. 
Except for these contracted ones, the time slots by regular request are still possible for 
stroke patients. To implement this new reservation process, three decisions need to be 
determined: 
Contract decisions, i.e. the number of CTS and its distribution over time. 
Patient assignment control policy, i.e., the real time control for assigning the incoming 
patients to CTS or RTS. 
Advance CTS cancellation control policy, i.e., the real time control for cancelling the CTS 
in advance. 
To determine the above decisions, we make the following contributions: 
Chapter 3 proposes an integrated stochastic programming model to simultaneously 
determine the optimal contract and the optimal patient assignment control policy. This 
problem is difficult as it involves simultaneously two decisions at different levels, the 
contract at the tactical level and the optimal control policy at the real-time level. In order to 
solve this model, we first consider the optimal control problem for a given contract. An 
average cost MDP approach is used to establish structure properties of the optimal control 
policy. In particular, we show that there exists a threshold Li for each day i of the week, 1) if 
the ending CTS queue is shorter than Li, the optimal control consists in keeping all the 
remaining patients waiting for CTS; 2) if the ending CTS queue is longer than Li, the 
optimal control consists in sending patients to RTS by keeping the number Li of patients in 
the CTS queue. The contract optimization problem is solved by a two-step approach. First, 
the long term average cost is approximated by the average cost over a finite horizon and 
according to a given sample path of patient arrivals. This Monte Carlo approximation of the 
contract optimization problem is further simplified by relaxing the non-anticipativeness of 
the feasible control policy. The relaxed Monte Carlo approximation problem is equivalently 
transformed into a linear program with seven integer-valued variables corresponding to the 
contract, which can be efficiently solved by any LP solver. The resulting contract is further 
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improved by some local search procedures. Numerical results show that the proposed 
approach is very efficient and provides solutions very close to real optimum. Sensitivity 
analysis is performed to show the impact of different problem data on the contract and 
control policy. Numerical results also show that the relaxed Monte Carlo approximation 
always leads to a contract which is at most two local moves away from the best contract 
identified by exhaustive search for small size problems and by multiple runs of our 
approach for large size problems. Further, except for one instance, the best contract is 
reached if the exact criterion values of local solutions are used in local search. Experimental 
results also show that this contract-based MRI examination reservation process can greatly 
reduce the average delay of stroke patients, but it also leads to some unused CTS and there 
still exists some “unlucky” patients, who are assigned to RTS and have to wait much longer 
time than the other stroke patients.  

To avoid “unlucky” patients, this chapter also proposes a new reservation process which 
still makes use of the contract and L-policy. Here, L-policy is used to reserve some RTS for 
the neurovascular department, rather than some particular patients. Experiments show that 
this new method can better the distribution of stroke patients’ waiting times. 

Chapter 4 considers the possibility of one-day advance CTS cancellation in order to reduce 
the unused CTS ratio. For each given contract, an average-cost MDP approach is proposed 
to simultaneously optimize patient assignment and CTS cancellation policies. The structure 
properties of the optimal control policies are established via discounted cost problem. The 
implementation of the control policies are as follows: 
First, we show that there exists a threshold Li for each day i of the week, and 1) if the ending 
CTS queue is shorter than Li, the optimal control consists in keeping all the remaining 
patients waiting for CTS; 2) if the ending CTS queue is longer than Li, the optimal control 
consists in sending patients to RTS by keeping the number Li of patients in the CTS queue.  
Second, there exists another threshold Si+1 for each day i of the week, and 1) when CTS 
queue is below Si+1, the optimal CTS cancellation control consists in making the number of 
CTS cancelled for day i+1 plus CTS queue length of day i at the threshold Si+1; 2) otherwise, 
no CTS is cancelled.  
Based on the optimal control policies, a local search algorithm is proposed to improve the 
contract. Numerical results show that the proposed approach is very efficient and advance 
CTS cancellation allows significant reduction of unused CTS ratio with slight increase of 
waiting time. Sensitivity analysis is performed to show the impact of different problem data 
on the contract and control policies. 
Chapter 5 explores the possibility of two-day advance CTS cancellation to help the imaging 
department better the arrangement of other patients to the time slots released from contract. 
An average cost MDP is formulated to simultaneously explore the nature of patient 
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assignment, one-day advance cancellation, and the two-day advance CTS cancellation 
control policies. In particular, we show that the implementation of control policies for day i 
are as follows:  
1) Patient assignment control policy: there exists a threshold Li for each day i of the week 
and the optimal patient assignment control consists in sending patients to RTS by keeping 
the CTS queue length plus the two-day advance CTS cancellation for day i the same with Li; 
otherwise no patients are assigned to RTS. 
2) One-day advance CTS cancellation control policy: there exists a threshold Si+1 and the 
optimal one-day advance CTS cancellation control consists in making the number of one-
day advance CTS cancellation for day i+1 plus the number of two-day advance CTS 
cancellation for day i+1 plus CTS queue length for day i the same with the threshold Si+1 if 
the number of two-day advance CTS cancellation for day i+1 plus CTS queue for day i is 
below Si+1. Otherwise no CTS is cancelled. 
3) There exists a pair of parameters (Xi+2, Yi+2) for an approximated two-day advance control. 
When y, i.e., the number of CTS queue length for day i plus one-day advance CTS 
cancellation for day i+1 plus two-day advance CTS cancellation for day i+1, is smaller than 
a certain value Yi+2, the two-day advance cancellation control for day i+2 is the same, i.e., 
Xi+2; When y is greater than Yi+2, and less than Xi+2+ Yi+2, the two-day advance cancellation 
control for day i+2 consisting in making y plus the number of two-day advance cancellation 
for day i+2 the same with Xi+2+ Yi+2; when y is greater, the two-day advance cancellation is 
zero.   
Local search is proposed to improve the contract decision. Numerical experiments are 
performed to compare the performance of one-day advance CTS cancellation, two-day 
advance CTS cancellation, and local optimization. Results show that two-day advance CTS 
cancellation and Local optimization can reduce the objective criteria and improve the 
performance.  
Starting from the perspectives of neurovascular department, this thesis proposes a contract-
based MRI examination reservation process for stroke patients. Contracts and control 
policies are determined in this thesis. The use of contract gives a long term view of 
diagnostic capacity available and the neurovascular department can better manage the 
priority of its stroke patients and reduce the waiting times for examinations. From the 
perspective of the imaging department, although the use of contract potentially leads to 
unused time slots, it also gives the imaging department stable demands which can be used to 
improve staff scheduling and diagnostic facility scheduling. Another advantage of contract-
based approach is the possibility for the neurovascular department to better match different 
diagnosis examinations of the same patient and available contracted CTS for different 
facilities. The control policies can help in reducing patients’ average delay without 
degrading the utilization of MRI scanners.  
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This method can be directly applied to the hospital with the existing patient scheduling 
method, such as FIFO. However, there are still a lot of works to do if we want to better the 
distribution of patients’ waiting times and reduce the variances. In addition, we do not 
recommend the contract-based approach for all departments but only for critical diagnostic 
facilities and for some major consumers with stable demands. Results of this paper can be 
directly used to design separately the contract for each department for each critical facility. 
If this leads to the over-usage of diagnosis facility, the contract of each department can be 
refined by limiting the number of time slots to contract each day and all results of this thesis 
still hold. The relation between different medical departments is not addressed in this thesis 
but is crucial for implementing the contract-based approach in a hospital. The joint design of 
contract-based solutions of several departments raises some fundamental questions such as 
(i) how many time slots of a diagnostic facility to contract and (ii) how to share these time 
slots among different departments. Results about the optimal control policies of this paper 
can be extended to evaluate a contract solution. However new approaches are needed to 
coordinate the contracts for different departments. 

In addition, the form of the optimal contract is still an open issue even for purely stationary 
demand. It is unclear how to determine the optimal contract if Assumption 4 is relaxed. 
Extension to non stationary patient arrival case is one interesting research avenue. Another 
immediate extension is the development of real time control strategies for advance 
cancellation of CTS in case of short CTS queue. Management of multiple classes of patients 
and multiple imaging examinations is a natural but challenging research direction.  

From the service provider perspective, how to optimize the operational efficiency of the 
imaging department by taking into account different quality requirements of medical units is 
a rich research area. 
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摘要：  
 

本研究是在与一家法国医院合作中受到启发，目的是减少在神经内科进行治疗的

中风病人的住院时间。中风病人需要得到及时的检查、诊断与治疗，这些检查又依赖

于昂贵且使用量极高的图像仪器，如核磁共振仪（MRI）。因此，对神经内科来说，

通过减少病人等待检查的时间来减少病人的住院时间是非常重要的。 

为了在不降低MRI利用率的前提下，减少中风病人等待MRI检查的时间，本文从

神经内科着手，提出了一个新的MRI检查预约过程。为保证中风病人尽快进行检查，

图像科每周预留一部分合同时间槽（CTS）给中风病人；除了这部分CTS外，中风病

人也可以通过预约常规的时间槽（RTS）进行检查。 

本文首先提出了一个随机规划模型来同时确定合同决策（即CTS的数量及其在时

间轴上的分布）和病人分派策略（即指定病人等待CTS或RTS），目的是在病人等待

时间与闲置的CTS数量之间达到最好的权衡。为了求解该模型，首先，在给定合同策

略的前提下，用平均成本马尔科夫决策支持（MDP）的方法对最优控制策略的结构

性质进行了研究和证明。然后通过蒙特卡罗模拟和局部优化确定合同决策。试验结果

发现所提的算法能很有效地求解模型。新的预约过程能大大减少病人等待时间，但也

会存在一定数量的闲置CTS。 

为了减少闲置的CTS，本文进一步研究了CTS提前一天取消和提前两天取消的控制策

略。用MDP方法对最优提前取消策略进行了研究。数值试验发现，考虑CTS的提前取

消策略能大大减少目标值和CTS的闲置率。 
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Abstract:  
 
This research is motivated by our collaborations with a large French university teaching hospital in order 
to reduce the Length of Stay (LoS) of stroke patients treated in the neurovascular department. Quick 
diagnosis is critical for stroke patients but relies on expensive and heavily used imaging facilities such as 
MRI (Magnetic Resonance Imaging) scanners. Therefore, it is very important for the neurovascular 
department to reduce the patient LoS by reducing their waiting time of imaging examinations.  

From the neurovascular department perspective, this thesis proposes a new MRI examinations reservation 
process in order to reduce patient waiting times without degrading the utilization of MRI. The service 
provider, i.e., the imaging department, reserves each week a certain number of appropriately distributed 
contracted time slots (CTS) for the neurovascular department to ensure quick MRI examination of stroke 
patients. In addition to CTS, it is still possible for stroke patients to get MRI time slots through regular 
reservation (RTS).  

This thesis first proposes a stochastic programming model to simultaneously determine the contract 
decision, i.e., the number of CTS and its distribution, and the patient assignment policy to assign patients 
to either CTS or RTS. To solve this problem, structure properties of the optimal patient assignment policy 
for a given contract are proved by an average cost Markov decision process (MDP) approach. The 
contract is determined by a Monte Carlo approximation approach and then improved by local search. 
Computational experiments show that the proposed algorithms can efficiently solve the model. The new 
reservation process greatly reduces the average waiting time of stroke patients. At the same time, some 
CTS cannot be used for the lack of patients. 

To reduce the unused CTS, we further explore the possibility of the advance cancellation of CTS. 
Structure properties of optimal control policies for one-day and two-day advance cancellation are 
established separately via an average-cost MDP approach with appropriate modeling and advanced 
convexity concepts used in control of queueing systems. Computational experiments show that 
appropriate advance cancellations of CTS greatly reduce the unused CTS with nearly the same waiting 
times. 
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Résumé : 
 

Cette thèse propose un nouveau processus de réservation d'examens IRM (Imagerie par 
Résonance Magnétique) afin de réduire les temps d’attente d’examens d'imagerie des 
patients atteint d'un AVC (Accident Vasculaire Cérébral) soignés dans une unité 
neurovasculaire. Le service d’imagerie réserve chaque semaine pour l'unité neurovasculaire 
un nombre donné de créneaux d'examens IRM appelés CTS afin d’assurer un diagnostic 
rapide aux patients. L'unité neurovasculaire garde la possibilité de réservations régulières 
appelées RTS pour pallier les variations des flux de patients. 

Nous donnons d'abord une formulation mathématique du problème d'optimisation pour 
déterminer le nombre et la répartition des créneaux CTS appelée contrat et une politique 
d'affectation des patients entre les créneaux CTS ou les réservations RTS. L'objectif est de 
trouver le meilleur compromis entre le délai d'examens et le nombre de créneaux CTS non 
utilisés. Pour un contrat donné, nous avons mis en évidence les propriétés et la forme des 
politiques d'affectation optimales à l'aide d'une approche de processus de décision 
markovien à coût moyen et coût actualisé. Le contrat est ensuite déterminé par une approche 
d'approximation Monté Carlo et amélioré par des recherches locales. Les expérimentations 
numériques montrent que la nouvelle méthode de réservation permet de réduire de manière 
importante les délais d'examens au prix des créneaux inutilisés. 

Afin de réduire le nombre de CTS inutilisé, nous explorons ensuite la possibilité 
d’annuler des créneaux CTS un ou deux jours en avance. Une approche de processus de 
décision markovien est de nouveau utilisée pour prouver les propriétés et la forme de la 
politique optimale d’annulation. Les expérimentations numériques montrent que 
l'annulation avancée des créneaux CTS permet de réduire de manière importante les 
créneaux CTS inutilisés avec une augmentation légère des délais d'attente. 


