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Abstract

This thesis is made of two parts, dealing respectively with semi-linear Klein-
Gordon equations and linear Schrödinger equations.

In recent years, a number of results have been obtained on the question of long-
time existence for solutions of semi-linear evolution equations (like Schrödinger
or Klein-Gordon) on compact manifolds, with small smooth Cauchy data. Unlike
in the case of the euclidean space, one cannot exploit dispersion to prove lower
bounds for the time of existence of solutions in function of the size ε→ 0 of the
data. Instead, one uses normal form methods. These methods are effective, in
most previous works, only when the spectrum of the Laplace-Beltrami operator
on the compact manifolds at hand satisfies a very special condition of “increasing
gap” between successive eigenvalues.

The first chapter of this thesis examines similar problems for models for which
such an “ increasing gap assumption ” is not valid. We first consider a non-
linear Klein-Gordon equation whose linear part is given in terms of the harmonic
oscillator−∆+|x|2 on Rd. The spectrum of this operator is discrete (which reflects
that, as in the case of compact manifolds, the solution of the corresponding linear
Klein-Gordon equation does not disperse when time goes to infinity). The gap
between successive eigenvalues is no longer increasing, but constant. Nevertheless,
we are able to implement a normal form method that allows us to show that, for
almost all masses, solutions of the evolution equation with small data exist for a
larger time than the one which is given by local existence theory.

We apply next the same kind of ideas to the non-linear Klein-Gordon equation
on the torus, for which we have also non increasing gaps between eigenvalues. We
obtain a lower bound for the time of existence of small solutions, for almost every
value of the mass, that provides an improvement of the results of Delort [14] in
higher dimensions.

The second chapter of the thesis deals with linear Schrödinger equations on the
torus with time dependent potential V (x, t). It had been proved by Bourgain [8]
that when V is smooth and bounded, as well as all its derivatives, the Sobolev
norm of the solutions of that operator enjoy O(|t|ε)-bounds when |t| → +∞, for
any ε > 0. Wei-Min Wang showed, in one dimension, and for analytic potential,
that one may prove logarithmic bounds O(| log t|ζs), t → +∞ for the Hs-norm.
In the last paper of thesis, we adapt the method of Delort [15] to obtain such
logarithmic estimates on tori of any dimension, under Gevrey regularity assump-
tions on the potential. We are able to express the exponent ζ in terms of the
Gevrey index.
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Chapter 0 Introduction

Let −∆ + |x|2 be the harmonic oscillator on Rd. The first section of Chapter
1 is devoted to the proof of lower bounds for the existence time of solutions of
non-linear Klein-Gordon equations of type

(∂2t −∆ + |x|2 +m2)v = vκ+1 (1)

on Rd × R with small Cauchy data in some Sobolev space.

Let us recall some known results for a similar equation

(∂2t −∆ +m2)v = F (v, ∂tv, ∂xv) (2)

on Rd×R (i.e., there is no quadratic potential in equation (1) and the nonlinear-
ity is more general) when Cauchy data are smooth, rapidly decaying and of size
ε � 1. It has been proved independently by Klainermann [31] and Shatal [41]
that the equation (in fact, an equation which contains more general nonlineari-
ties) has a global solution when the dimension d ≥ 3. Their proofs rely on the use
of dispersive properties of the linear Klein-Gordon equation. In these dimensions,
the nonlinearity can be considered as a short range perturbation, if it is at least
of order 2 at the origin, since the solution of the linear equation decays at an
integrable rate t−

d
2 when t goes to infinity. On the other hand, when d = 2 and

the nonlinearity is quadratic, the decay rate t−
d
2 is no longer integrable. So the

perturbation is long range and the situation is more delicate. However, global
existence was proved by Georgiev et al. [26] and Kosecki [33] for special nonlin-
earities and later by Ozawa et al. [40] for general nonlinearities (see also Simon et
al. [42] and Delort et al. [17]). A key point was to use, in combination with dis-
persive properties of the equation, the normal form method introduced initially
by Shatah [41] in higher dimensions. The idea is to find a quadratic perturbation
such that the action of the Klein-Gordon operator ∂2t −∆ +m2 on it cancels out
the quadratic part of the nonlinearity up to a remainder of higher order. Thus
the problem is reduced to the cubic nonlinearity case, which was already treated.
In one space dimension, it was first conjectured by Hörmander [28], [29] that the
time of existence of the solution had an exponential lower bound ec/ε2 for some
positive constant c. Later, a proof was given by Moriyama et al. [38]. The op-
timality of this result follows by an example constructed in Keel et al. [30], but
global existence was proved in Delort [13] when the nonlinearity satisfies a special
condition (a “null condition" in the terminology introduced by Klainerman in the
case of the wave equation in three space dimensions [32]). Let us also mention that
in the case of nonlinearities which are not smooth functions of their arguments,
lower bounds for the time of existence have been obtained by Lindbland et al. [37].

In most of the preceding works, a fairly rapid decay of Cauchy data at infinity
is assumed. This assumption plays an essential role in the proofs. A natural
question is to examine what we may get when the data just decay weakly as Hs
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INTRODUCTION

function. This question was first addressed in Delort [12], where periodic Cauchy
data were studied. One gets therein a lower bound of the time of existence, of
magnitude cε−2 as well as examples showing the optimality of that result. For the
equation (2) on Rd×R, when d = 1 and the initial data are only assumed to be in
Hs(R)×Hs−1(R) and of size ε� 1 with s a large integer, it has been showed in
Delort [11], that the solution exists on an interval of length cε−4| log ε|−6. Later,
the same kind results were extended to d ≥ 2 in Delort et al. [16]. The authors
showed that the solution exists on an interval of time of length exp [cε−µ] with
µ = 2/3 if d = 2, µ = 1 if d ≥ 3.

Once some results for a single equation are obtained, one may expect to see
what happens when a system is considered. For positive numbers mj, j = 1, 2,
we recall some known results for the following system:

∂2t vj −∆vj +m2
jvj = Fj(V, ∂tV, ∂xV ), j = 1, 2, (3)

on Rd × R, with given smooth, compact supported Cauchy data of size ε � 1,
where V = (v1, v2), and where nonlinearities Fj are at least of order 2 at the
origin. In high dimensions, say, d ≥ 3, the methods of Klainermann [31] and
Shatah [41] are available for the system, so one gets global existence in these
dimensions. The cases of d = 2 and d = 1 are more delicate as there is a similar
difficulty as in the case of a single equation. Nevertheless, the authors in [17] are
able to deal with the case d = 2. They obtained a global solution under the as-
sumption that either the system is non resonant (i.e., m1 6= 2m2 and m2 6= 2m1)
or it is resonant (i.e., m1 = 2m2) and nonlinearities satisfy some structure condi-
tion (see also [43] for the non resonance case). When d = 1, the global existence
was proved by Sunagawa [43] under the non resonance assumption (when d = 1,
non resonance condition reads (3m1−m2)(m1−m2)(m1−3m2) 6= 0). Some other
sufficient conditions for the global existence of the system in dimension one were
obtained in [22, 48, 47]. For the equation with weakly decaying Cauchy data, the
results in [11, 16] still hold. One may also refer to [20, 21, 34] for some results
of a system of Klein-Gordon equations with different speed.

Note that in most works we mentioned above, the dispersive property of the
linear equation was used. So the following question appears naturally: what can
one get when there is no dispersion for the linear equation? The equation (2) on
M × R with M a compact Riemannian manifold provides such a framework. In
fact, if λ2 is an eigenvalue of the Laplace-Beltrami operator −∆ on the compact
Riemannian manifold (M, g) and φ(x) is an eigenfunction associated to λ2, then
v(x, t) = ei

√
λ2+m2tφ(x) is a solution of the corresponding linear equation. We see

that v(x, t) displays no dispersion but it is periodic instead. Though the linear
equation displays no dispersion, it has been shown by Bourgain [6], Bambusi [1],
Bambusi et al. [5] that when M = S1, the solution exists almost globally: for any
natural number N , if the data are in Hs+1(S1)×Hs(S1) for some s depending on
N , if m stays outside an exceptional subset of zero measure, the solution exists at
least on an interval of length CNε−N . It has also been showed by Delort et al. [18]
that the equation (2) on the sphere Sd−1 (d ≥ 2) with smooth Cauchy data of size
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INTRODUCTION

ε � 1, has a solution defined on an interval of time of length cεκ
′ with κ′ > κ,

for almost every m > 0. This is a better lower bound of lifespan of the solution
than the one given by local existence theory. The key point in the proof is that
the spectrum of the operator

√
−∆ on the sphere is made of multiple eigenvalues

asymptotically close—up to a fixed translation—to the integers, which means
that the gap between two successive eigenvalues is bounded from below by a fixed
constant. Similar results have been obtained in the case of any Zoll manifold (i.e.
any compact Riemannian manifold all of whose geodesics are periodic with the
same period) by Delort et al. [19] and later improved by Bambusi et al. [4], where
the authors showed almost global existence.

The gap condition plays an essential role in works we mentioned in the above
paragraph. A natural question is to examine which lower bounds on the time
of existence of solutions might be obtained when the eigenvalues of the operator
do not satisfy such a gap condition. The problem has been addressed for the
equation (∂2t −∆ + m2)v = vκ+1 on the torus Td when d ≥ 2 by Delort [14]. It
has been proved that for almost every m > 0, the solution of such an equation
exists over an interval of time of length bounded from below by cε−κ(1+2/d) up to
a logarithm and has Sobolev norms of high index bounded on such an interval.
Note that two successive eigenvalues λ, λ′ of

√
−∆ on Td might be separated by

an interval of length as small as c/λ, which means that the gap shrinks to zero
as eigenvalues tend to infinity.

Now let us look at the Cauchy problem (1) on the whole space Rd. The
situation is dramatically different from the case when there is no quadratic po-
tential. Since the harmonic oscillator on Rd has pure point spectrum (see [44]),
there is no dispersion effect for the corresponding linear equation. Because of
that, the question of long-time existence for Klein-Gordon equations associated
to the harmonic oscillator is similar to the corresponding problem on compact
manifolds. Moreover, the spectrum of the harmonic oscillator on Rd has a similar
gap condition as in the case of

√
−∆ on Td, namely, two successive eigenvalues

λ, λ′ of
√
−∆ + |x|2 on Rd might be separated by an interval of length as small

as c/λ. An interesting question is what we may get for the model related to the
harmonic oscillator. In this thesis, we exploit this gap condition to get for the
corresponding equation a lower bounded of the time of existence of order cε−4κ/3
when d ≥ 2 ( and a slightly better bound if d = 1). Note that the estimate
we get for the time of existence is explicit (given by the exponent −4κ/3) and
independent of the dimension d. This is contrast with the case of the torus (see
Delort [14]), where the gain 2/d on the exponent brought by the method goes to
zero as d → +∞. The point is that when the dimension increases, the multi-
plicity of the eigenvalues of −∆ + |x|2 grows, while the spacing between different
eigenvalues remains essentially the same. We also mention that very recently,
Grébert et al. [25] have studied the non-linear Schrödinger equation associated
to the harmonic oscillator. They have obtained almost global existence of small
solutions for this equation.

We have just said that the problem related to the harmonic oscillator on the
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INTRODUCTION

whole space is similar to the one on the torus, and the gain on the exponent in the
former case is independent of the dimension d. A natural question appears: could
we get a lower bound of the lifespan of solutions of order cε−κ(1+α) with α > 0
independent of d in the latter case? The second section Chapter 1 is devoted to
study this question. Indeed, we shall prove that α can be taken to be a constant
as close to 1/2 as we want. When dimension d > 4, this result is better than that
of Delort [14].

We use the same method to study the problem of long-time existence of (1)
and that of (∂2t − ∆ + m2)v = vκ+1 on the torus. It is based on normal form
methods. Such an idea has been first introduced in the study of non-linear Klein-
Gordon equation on Rd by Shatah [41] and is at the root of the results obtained
on S1,Sd,Td in [6, 1, 5, 4, 14]. In particular, we do not need to use any KAM
results, unlike in the study of periodic or quasi-periodic solutions of semi-linear
wave or Klein-Gordon equations. For such a line of studies, we refer to the books
of Kuksin [35, 36] and Craig [10] in the case of the equation on S1, to Berti et
al. [3] for recent results on the sphere, and to Bourgain [9] and Elliasson et al. [24]
in the case of the torus.

Let us explain the idea briefly on the model (∂2t − ∆ + m2)v = vκ+1 on the
torus Td. The goal is to control the Sobolev energy computing

d

dt
[‖v(·, t)‖2Hs+1 + ‖∂tv(·, t)‖2Hs ]. (4)

Using the equation, we may write this quantity as a multilinear expression in
v, ∂tv homogeneous of degree κ + 2. We then perturb the Sobolev energy by
an expression homogeneous of degree κ + 2 so that its time derivative cancels
out the main contribution in (4), up to a remainder of higher order. Moreover,
we require that the perturbation we construct can be controlled by powers of
‖v(·, t)‖Hs+1 + ‖∂tv(·, t)‖Hs , with the same s as in (4). Using an expansion of
elements of Hs on a basis of L2 made of eigenfunctions of

√
−∆, we are reduce

to study expressions of type∑
n1,...,nκ+1∈N

Fm(λn0 , . . . , λnκ+1)
−1
∫
Td

(Πλn0
u0) . . . (Πλnκ+1

uκ+1)(λn0+· · ·+λnκ+1)
2sdx,

(5)
where {λn}n∈N is the spectrum of

√
−∆ on Td, Πλ is the spectral projector

associated to the eigenvalue λ and Fm is given by

Fm(ξ0, . . . , ξκ+1) =
κ+1∑
j=0

ej

√
m2 + ξ2j , ej ∈ {−1, 1}. (6)

The problem is to bound |Fm(λn0 , . . . , λnκ+1)| from below, for those λnj for which
(6) is non zero, in such a way that (5) can be bounded from above by C

∏
‖uj‖Hs

for s large enough. It has been proved that if for almost every m > 0, there are
c > 0, N0 ∈ N such that

|Fm(λn0 , . . . , λnκ+1)| ≥ c(1 + the third largest among {λn0 , . . . , λnκ+1})−N0 (7)
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INTRODUCTION

holds for all those λn0 , . . . , λnκ+1 for which Fm(λn0 , . . . , λnκ+1) is non zero, then
(5) can be bounded from above by C

∏
‖uj‖Hs (see for instance [18]). This is

true in the case of spheres, but it does not holds generally in the case of tori. In
fact, in the case of tori we will have the following two cases: the first case is that
the two largest elements of {ej

√
m2 + λ2nj ; 0 ≤ j ≤ κ + 1} have same sign. In

this case, one may obtain that for almost every m > 0, there are c > 0, N0 ∈ N
such that

|Fm(λn0 , . . . , λnκ+1)| ≥ c(1 + {λn0 , . . . , λnκ+1}1 + {λn0 , . . . , λnκ+1}2)
×(1 + the third largest among {λn0 , . . . , λnκ+1})−N0

(8)

holds for those λn0 , . . . , λnκ+1 for which Fm(λn0 , . . . , λnκ+1) 6= 0, where
{λn0 , . . . , λnκ+1}i stands for the i-th largest element among {λn0 , . . . , λnκ+1}, i =
1, 2. Plugging into (5), we see that the loss is given by a large power of small
frequencies (indeed we gain one power of the largest frequency), which allows us
to control (5) by C

∏
j ‖uj‖Hs for large enough s. The second case is that the

two largest elements of {ej
√
m2 + λ2nj ; 0 ≤ j ≤ κ + 1} have opposite signs. In

this case, we are only able to show, using harmonic analysis on Td, that for any
ρ > 0, for almost every m > 0, there are c > 0, N0 ∈ N such that

|Fm(λn0 , . . . , λnκ+1)| ≥ c(1 + {λn0 , . . . , λnκ+1}1 + {λn0 , . . . , λnκ+1}2)−3−ρ

×(1 + the third largest among {λn0 , . . . , λnκ+1})−N0
(9)

holds for those λn0 , . . . , λnκ+1 for which Fm(λn0 , . . . , λnκ+1) 6= 0. When plugging
(9) into (5), we see that there is a loss of 3 +ρ derivatives of high frequencies, be-
sides a loss of a power of low frequencies which is harmless. However, solving the
equation makes gain one derivative since the nonlinearity involves no derivative of
v and we may gain one more derivative through commutators. This allows us to
recover the loss and get an upper bound of (5) by an expression of type

∏
‖uj‖Hs

through partition of frequencies between zones {λnj ≤ ε−κθ, j = 1, . . . , κ + 1}
and {λnj > ε−κθ for at least one j ∈ {1, . . . , κ + 1}}, where θ is a constant. On
the other hand, by the Hamiltonian structure and commutator, we may gain two
derivatives for the remainder part of the nonlinearity which we do not use a nor-
mal form to cancel out. Thus we can show that the Sobolev energy is bounded
on some interval of time and the solution exists on this interval.

Let us give some indication about the proof of (9). For the convenience of
expression, we assume λn0 , λnκ+1 � λn0 + · · ·+ λκ. We first notice that one only
needs to show that, for any compact interval I ⊂ (0,+∞), the measure of the set

{m ∈ I; |Fm(λn0 , . . . , λnκ+1)| < r}

where r is the right hand side of (9) with c replaced by α, goes to zero as α
tends to zero. Using tools of subanalytic geometry, the interval I may be written
for any fixed n0, . . . , nκ+1 as the union of a uniform number of intervals on which
|∂Fm/∂m| can be bounded from below by a large negative power of small frequen-
cies (1+λn1 + · · ·+λnκ), and of a remaining set. On each of these intervals, since
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we have |∂Fm/∂m| ≥ C(1 +λn1 + · · ·+λnκ)−N1 , we then take Fm as a coordinate
so that we can estimate the measure of this interval by Cr(1 +λn1 + · · ·+λnκ)N1 .
Taking the expression of r into account, we get an upper bound of the sum of
these quantities in n0, . . . , nκ+1 by a constant which goes to zero as α tends to
zero. Also using tools of subanalytic geometry we can show that the measure of
the remaining set, on which we have |∂Fm/∂m| = O(1 + λn1 + · · · + λnκ)−N1 , is
small and goes to zero as α tends to zero. This shows that (9) holds true for
those (n0, . . . , np+1) ∈ Np+2 for which Fm(λn0 , . . . , λnκ+1) 6= 0 when m is outside
a subset of zero measure in I.

Here are some natural open questions that remain unsolved. There is no rea-
son to believe that our results obtained in the first chapter are optimal, so the
questions are: we get a lower bound of the time of existence for the Hamilto-
nian nonlinearities in the thesis; could they be improved? What could we get for
nonlinearities involving derivatives of the unknown function deriving or not from
a Hamiltonian structure? Note that we used the Hamiltonian structure of the
equation to gain one derivative.

In the second chapter of this thesis, we consider the time dependent linear
Schrödinger equations:

i∂tu−∆u+ V (x, t)u = 0 (10)

on Td×R. We want to find a upper bound for the Sobolev norm of the solution.
The problem of finding optimal bounds for ||u(t, ·)||Hs has been addressed by
Nenciu [39] and Barbaroux and Joye [2], in the abstract framework of an operator
P (instead of −∆) and a perturbation V (t) acting on elements of a Hilbert space,
when the spectrum of P is discrete and has increasing gaps. This condition is
satisfied by the Laplacian on the circle. It follows from the results of [39, 2], that
solutions of (10) verify

||u(t, ·)||Hs ≤ Cε|t|ε||u(0, ·)||Hs (11)

when t goes to infinity, for any ε > 0. Later, Bourgain [8] proved that a similar
bound holds for solutions of (10) on the torus Td. The increasing gap condition
of Nenciu and Barbaroux-Joye is no longer satisfied, and has to be replaced by
a convenient decomposition of Zd in well separated clusters. Delort [15] recently
published a simpler proof of the results of Bourgain (included for other examples
of compact manifolds than the torus), which is close to the one of Nenciu and
Barbaroux-Joye. If one further assumes that V is analytic, and quasi-periodic in
t, then it was showed by Bourgain [7] that (11) holds with (1 + |t|)ε replaced by
some power of log t when t > 2. When the dimension d = 1, for any real analytic
potential, whose holomorphic extension to Ωρ̃ is bounded, where, for some ρ̃ > 0,

Ωρ̃ = {(x, t) ∈ C× C : | Im x | < ρ̃, | Im t | < ρ̃},

Wang [45] showed that one may still obtain such a logarithmic bound, using the
method of [8]. In this paper, we improve the method of Delort [15] to provide a
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new proof of the result of Wang [45] and extend it to any dimension d ≥ 1 and to
Gevrey regularity. Our result is the following: if V (x, t) is a real smooth function
on Td × T and it is a Gevrey-µ function in time t and Gevrey-ν in every space
variable, then there is ζ > 0 independent of µ and ν such that for any s > 0,
there is a constant Cs,ν,d > 0 such that

||u(t)||Hs ≤ Cs,ν,d
[

log(2 + |t|)
]ζµνs||u(0)||Hs , (12)

where u(t) is the solution to (10) with the initial condition u(0) ∈ Hs(Td).

There are also some results about uniformly bounded Sobolev norms. Eliasson
and Kuksin [23] have shown that if the potential V on Td×R is analytic in space,
quasi-periodic in time, and small enough, then for most values of the parameter
of quasi-periodicity, the equation reduces to an autonomous one. Consequently,
the Sobolev norm of the solution is uniformly bounded. A similar result for the
harmonic oscillator has been obtained by Grébert and Thomann [27] recently.
For Schrödinger equations on the circle with a small time periodic potential,
Wang [46] showed that the solutions of the corresponding equation have bounded
Sobolev norms.

Now let us give a picture of the proof of our result. For any given N ∈ N∗, one
first finds for every fixed time t an operator QN(·, t), which extends as a bounded
linear operator from HN(Td) to HN(Td) such that(
I +QN(·, t)

)∗
(i∂t −∆ + V )

(
I +QN(·, t)

)
= i∂t −∆ + V ′N(·, t) +R′N(·, t) (13)

with self-adjoint operator V ′N exactly commuting to the modified Laplacian ∆̃
(see Chapter 2 for its precise definition) and R′N a remainder operator which is
essentially a bounded linear map from L2(Td) to HN(Td). Moreover, we also
require that the adjoint of QN in the usual L2 paring (denoted by QN(·, t)∗)
extends as a bounded linear operator from HN(Td) to HN(Td). In order to obtain
the estimate for the solution u of (10), one needs to ‘invert’ the operator I +QN ,
that is , to find an operator PN , which extends as a bounded linear operator not
only from HN(Td) to HN(Td), but also from L2(Td) to L2(Td) , such that(

I +QN(·, t)
)(
I + PN(·, t)

)
= I +RN(·, t) (14)

where RN is a remainder operator such that [i∂t − ∆ + V,RN ] sends L2(Td) to
HN(Td). Now by setting

v = (I + PN)u, (15)

we deduce from (13), (14) and (10)

(i∂t −∆ + V ′N)v = (I +QN)∗[i∂t −∆ + V,RN ]u−R′Nv. (16)

Remarking that the modified Laplacian has the property that

C−N‖(1−∆)
N
2 u‖L2 ≤ ‖(1− ∆̃)

N
2 u‖L2 ≤ CN‖(1−∆)

N
2 u‖L2

7



holds for any u ∈ HN(Td) and for some uniform constant C, then we let the
operator (1−∆̃)

N
2 act on both sides of (16) and deduce from the energy inequality

||v(t)||HN ≤ CN ||v(0)||HN

+ CN

∫ t

0

||(I +QN)∗[i∂t −∆ + V,RN ]u(t)||HN + ||R′Nv(t)||HNdt,

which together with (15), the conservation law of the L2-norm of (10) and the
properties of those operators we have constructed, implies

||v(t)||HN ≤ CN ||v(0)||HN + CN |t|||u(0)||L2 . (17)

We then use (14), (15) and the properties of the operators to deduce

||u(t)||HN ≤ CN

(
||u(0)||HN + (2 + |t|)||u(0)||L2

)
. (18)

Remark that the above constants CN may be different in different lines and they
depend on the norms of operators which appear in the above process. Since (18)
holds for any N ∈ N∗, if we have good estimates for CN (we shall finally see
that CN can be controlled by CN times a power of the factorial of N), then the
theorem will follow by interpolation between (18) with N = 0 and some N much
larger than s. There are two difficulties. The first one is that we have to carefully
choose those operators QN so that the above process can go on. The second is to
obtain proper estimates for CN , which means that we have to estimate the norms
of operators and remainders for every N ∈ N∗ in the above process. The proof
of such estimates is the main difficulty of the paper. We follow the construction
method above, keeping track at each step of the constants, and exploiting the
assumptions of Gevrey-regularity in space and time made on the potential.

Remark The notation systems are independent in each section.
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We prove that small smooth solutions of semi-linear Klein–Gordon equations with
quadratic potential exist over a longer interval than the one given by local existence
theory, for almost every value of mass. We use normal form for the Sobolev energy.
The difficulty in comparison with some similar results on the sphere comes from
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√−� + �x�2 may be separated by a
distance as small as 1

�
.
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Introduction

Let −� + �x�2 be the harmonic oscillator on �d. This paper is devoted to the proof
of lower bounds for the existence time of solutions of non-linear Klein–Gordon
equations of type

��2t − � + �x�2 + m2�v = v�+1

v�t=0 = �v0

�tv�t=0 = �v1

where m ∈ �∗
+ (we denote �0�+�� by R∗

+ throughout the paper), x	�

xvj ∈ L2 when

�	� + �
� ≤ s + 1− j �j = 0� 1� for a large enough integer s, and where � > 0 is small
enough.

The similar equation without the quadratic potential �x�2, and with data small,
smooth and compactly supported, has almost global solutions when d = 1 (see
Moriyama et al. [22]), and has global solutions when d ≥ 2 (see Klainerman [18]
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Long-Time Existence 631

and Shatah [24] for dimensions d ≥ 3, Ozawa et al. [23] and Delort et al. [10] when
d = 2). The situation is drastically different when we replace −� by −� + �x�2,
since the latter operator has pure point spectrum. This prevents any time decay for
solutions of the linear equation. Because of that, the question of long time existence
for Klein–Gordon equations associated to the harmonic oscillator is similar to
the corresponding problem on compact manifolds. One may refer to [12] for the
corresponding problem on Zoll manifolds.

For the equation ��2t − � + m2�v = v�+1 on the circle �1, it has been proved by
Bourgain [6] and Bambusi [1], that for almost every m > 0, the above equation has
solutions defined on intervals of length cN�−N for any N ∈ �, if the data are smooth
and small enough (see also the lectures of Grébert [14]). These results have been
extended to the sphere �d instead of �1 by Bambusi et al. [2]. A key property in the
proofs is the structure of the spectrum of

√−� on �d. It is made of the integers,
up to a small perturbation, so that the gap between two successive eigenvalues is
bounded from below by a fixed constant.

A natural question is to examine which lower bounds on the time of existence of
solutions might be obtained when the eigenvalues of the operator do not satisfy such
a gap condition. The problem has been addressed for ��2t − � + m2�v = v�+1 on the
torus �d when d ≥ 2 by Delort [9]. It has been proved that for almost every m > 0,
the solution of such an equation exists over an interval of time of length bounded
from below by c�−��1+2/d� (up to a logarithm) and has Sobolev norms of high index
bounded on such an interval. Note that two successive eigenvalues �� �′ of

√−� on
�d might be separated by an interval of length as small as c/�. One may naturally
ask what may happen in the case of the harmonic oscillator since the eigenvalues
of

√−� + �x�2 on �d share the similar gap condition as in the case of the torus.
Our goal is to exploit this fact to get for the corresponding Klein–Gordon equation
a lower bound of the time of existence of order c�−4�/3 when d ≥ 2 (and a slightly
better bound if d = 1).

Note that the estimate we get for the time of existence is explicit (given by the
exponent −4�/3) and independent of the dimension d. This is in contrast with the
case of the torus, where the gain 2/d on the exponent brought by the method goes to
zero as d → +�. The point is that when the dimension increases, the multiplicity of
the eigenvalues of −� + �x�2 grows, while the spacing between different eigenvalues
remains essentially the same.

The method we use is based, as for similar problems on the sphere and the
torus, on normal form methods. Such an idea has been introduced in the study of
non-linear Klein–Gordon equations on �d by Shatah [24], and is at the root of the
results obtained on �1��d��d in [1–3, 6, 9]. In particular, we do not need to use any
KAM results, unlike in the study of periodic or quasi-periodic solutions of semi-
linear wave or Klein–Gordon equations. For such a line of studies, we refer to the
books of Kuksin [20, 21] and Craig [8] in the case of the equation on �1, to Berti
and Bolle [4] for recent results on the sphere, and to Bourgain [7] and Elliasson and
Kuksin [13] in the case of the torus.

Finally let us mention that very recently Grébert et al. [15] have studied the
non-linear Schrödinger equation associated to the harmonic oscillator. They have
obtained almost global existence of small solutions for this equation.
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632 Zhang

1. The Semi-Linear Klein–Gordon Equation

1.1. Sobolev Spaces

We introduce in this subsection Sobolev spaces we will work with. From now on,
we denote by P = √−� + �x�2� x ∈ �d� d ≥ 1. The operator P2 = −� + �x�2 is called
the harmonic oscillator on �d. The eigenvalues of P2 are given by �2

n, where

�n =
√
2n + d� n ∈ �� (1.1.1)

Let �n be the orthogonal projector to the eigenspace associated to �2
n. There are

several ways to characterize these spaces. Of course we will show they are equivalent
after giving definitions.

Definition 1.1.1. Let s ∈ �. We define � s
1��

d� to be the set of all functions
u∈L2��d� such that ��s

n
�nu
L2�n∈� ∈ 
2, equipped with the norm defined by

u
2�s

1
= ∑

n∈� �2s
n 
�nu
2L2 .

The space � s
1��

d� is the domain of the operator g�P� on L2��d�, which is
defined using functional calculus and where

g�r� = �1+ r2�
s
2 � r ∈ �� (1.1.2)

Because of (1.1.1), we have


g�P�u
L2 ∼ 
u
�s
1
� (1.1.3)

Definition 1.1.2. Let s ∈ �. We define � s
2��

d� to be the set of all functions
u∈L2��d� such that x	�
u ∈ L2��d��∀�	� + �
� ≤ s, equipped with the norm defined
by 
u
2�s

2
= ∑

�	�+�
�≤s 
x	�
u
2
L2 .

We shall give another definition of the space in the view point of pseudo-
differential theory. Let us first list some results from [16].

Definition 1.1.3. We denote by �s��d�, where s ∈ �, the set of all functions
a∈C���d� such that: ∀	 ∈ �d, ∃ C	, s.t. ∀z ∈ �d, we have ��	

za�z�� ≤ C	�z�s−�	�,
where �z� = �1+ �z�2� 1

2 .

Definition 1.1.4. Assume aj ∈ �sj ��d� �j ∈ �∗� and that sj is a decreasing sequence
tending to −�. We say a function a ∈ C���d� satisfies:

a ∼
�∑

j=1

aj

if: ∀r ≥ 2� r ∈ �, a −∑r−1
j=1 aj ∈ �sr ��d�.

We now would like to consider operators of the form

Au�x� = �2��−d
∫∫

ei�x−y�·�a�x� ��u�y�dy d� (1.1.4)
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Long-Time Existence 633

where a�x� �� ∈ �s��2d�. We can also consider a more general formula for the action
of the operator

Au�x� = �2��−d
∫∫

ei�x−y�·�a�x� y� ��u�y�dy d� (1.1.5)

where the function a�x� y� �� is called the amplitude. We will describe the class of
amplitudes as the following:

Definition 1.1.5. Let s ∈ � and �s��3d� denote the set of functions a�x� y� �� ∈
C���3d�, which for some s′ ∈ � satisfy

��	
��



x�

�
ya�x� y� ��� ≤ C	
��z�s−��	�+�
�+�����x − y�s′+�	�+�
�+����

where z = �x� y� �� ∈ �3d.

The following proposition is a special case of Proposition 1.1.4 in [16].

Proposition 1.1.6. If b ∈ �s��2d�, then a�x� y� �� = b�x� �� and a�x� y� �� = b�y� ��
belong to �s��3d�.

Let ��x� y� �� ∈ C�
0 ��3d�� ��0� 0� 0� = 1. It is shown by Lemma 1.2.1 in [16]

that (1.1.5) makes sense in the following way:

Au�x� = lim
�→+0

�2��−d
∫∫

ei�x−y�·����x� �y� ���a�x� y� ��u�y�dy d� (1.1.6)

if a�x� y� �� ∈ �s��3d� for some s. It is also shown in the same section of it the
operator A is continuous from � ��d� to � ��d� and it can be uniquely extended to
an operator from � ′��d� to � ′��d�.

Definition 1.1.7. The class of pseudo-differential operators A of the form (1.1.5)
with amplitudes a ∈ �s��3d� will be denoted by Gs��d�.

We set G−���d� = ⋂
s∈� Gs��d�.

Example 1.1.8. For s ∈ �, the constant coefficient differential operator∑
�	�+�
�≤s c	
x

	�
 is in the class Gs��d�.

The class Gs��d� has some properties which are just Theorems 1.3.1, 1.4.7, 1.4.8
in [16].

Theorem 1.1.9. Let s1� s2 ∈ � and A ∈ Gs1��d�, A′ ∈ Gs2��d�. Then A � A′ ∈
Gs1+s2��d�.

Theorem 1.1.10. The operator A ∈ G0��d� can be extended to a bounded operator on
L2��d�.

Theorem 1.1.11. The operator A ∈ Gs��d� for s < 0 can be extended to a compact
operator on L2��d�.
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634 Zhang

We shall give a subclass of that of pseudo-differential operators.

Definition 1.1.12. We say a ∈ �s
cl��

d� if a ∈ �s��d� and a has asymptotic
expansion:

a ∼ ∑
j∈�

as−j

with as−j ∈ C���d� satisfying for � ≥ 1� �x� + ��� ≥ 1

as−j��x� ��� = �s−jas−j�x� ���

Definition 1.1.13. Let A be a pseudo-differential operator with amplitude
a∈ �s

cl��
d�. We then call as defined above the principle symbol of A.

Definition 1.1.14. We say a pseudo-differential operator A ∈ Gs
cl��

d� if its
amplitude a ∈ �s

cl��
2d�.

By Proposition 1.1.6, Definition 1.1.14 is meaningful.

Definition 1.1.15. We say that A ∈ Gs
cl��

d� is globally elliptic if we have: ∃R > 0,
∃C > 0 such that ∀�x� �� ∈ �2d satisfying �x� + ��� ≥ R, we have �as�x� ��� ≥ C��x� +
����s, where as denotes the principle symbol of A.

We can invert the operator A ∈ Gs
cl��

d� up to a regularizing operator, which is
just Theorem 1.5.7 in [16].

Theorem 1.1.16. Let A ∈ Gs
cl��

d� be a globally elliptic operator. Then there is an
operator B ∈ G−s

cl ��
d� such that

B � A = I + R1� A � B = I + R2� (1.1.7)

where R1� R2 are regularizing, i.e., R1� R2 ∈ G−���d�.

Definition 1.1.17. Let s ∈ � and A a pseudo-differential operator whose symbol is
��� x�s modulo �s−1

cl . We define � s
3��

d� to be the set of all functions u ∈ � ′��d�
such that Au ∈ L2��d�, equipped with the norm defined by 
u
2�s

3
= 
Au
2

L2 + 
u
2
L2 .

Remark 1.1.1. The pseudo-differential operator A defined above is globally elliptic.
Thus by Theorem 1.1.16 if Au ∈ L2��d�, we must have u ∈ L2��d�.

Remark 1.1.2. � s
3��

d� does not depend on the choice of A according to
Corollary 1.6.5 in [16].

Corollary 1.1.18. When s ∈ �, Definitions 1.1.1, 1.1.2 and 1.1.17 characterize the
same space. Moreover � s

3��
d� = � s

1��
d� for any s ∈ �.

Proof. First let s ∈ �. Since A in Definition 1.1.17 is globally elliptic, by Theorem
1.1.16 there is B ∈ G−s

cl ��
d� such that

B � A = I + R1� A � B = I + R2 (1.1.8)
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Long-Time Existence 635

where R1� R2 are regularizing. Thus for any 	� 
 with �	� + �
� ≤ s, by the
example after Definition 1.1.12 and Theorems 1.1.9–1.1.11, we have 
x	�
u
L2 ≤

x	�
BAu
L2 + 
x	�
R1u
L2 ≤ C�
Au
L2 + 
u
L2�, which implies 
u
�s

2
≤ C
u
�s

3
.

The inverse inequality follows from the proof of Proposition 1.6.6 in [16]. Let us
now prove that Definition 1.1.1 is equivalent to Definition 1.1.17 for any s ∈ �.

By Theorem 1.11.2 in [16] the operator g�P� defined in (1.1.2) is an essentially
self-adjoint globally elliptic operator in the class Gs��d�. We have again by
Theorem 1.1.16 that there is Q ∈ G−s

cl ��
d� such that

g�P� � Q = I + R′
1� Q � g�P� = I + R′

2 (1.1.9)

where R′
1� R

′
2 are regularizing. We compute using (1.1.3), (1.1.8), (1.1.9) together with

Theorems 1.1.9 and 1.1.10


u
�s
1
∼ 
g�P�u
L2 ≤ 
�g�P� � B � A�u
L2 + 
�g�P� � R1�u
L2

≤ C�
Au
L2 + 
u
L2� ≤ C
u
�s
3

and


u
�s
3
≤ C�
�A � Q � g�P��u
L2 + 
�A � R′

2�u
L2 + 
u
L2�

≤ C�
g�P�u
L2 + 
u
L2� ≤ C
u
�s
1
�

where the last inequality follows from the fact �n ≥ 1. �

We denote � s��d� = � s
1��

d� = � s
3��

d� when s ∈ �. When s ∈ �, this space
coincides with � s

2��
d�. Let us present some properties of the spaces we shall use.

Proposition 1.1.19. If s1 ≤ s2, then � s2��d� ↪→ � s1��d��

Proposition 1.1.20. If s > d/2, then � s��d� ↪→ L���d�.

Proposition 1.1.21. Let f ∈ C����� f�0� = 0� u ∈ � s��d�� s ∈ �� s > d. Then we
have f�u� ∈ � s��d�. Moreover if f vanishes at order p + 1 at 0, where p ∈ �, then

f�u�
�s ≤ C
u
p+1

�s .

Proof. Propositions 1.1.19 and 1.1.20 follow respectively from the definition and
Sobolev embedding. By the chain rule, for �	� + �
� ≤ s, x	�
f�u� may be written as
the sum of terms of following form:

x	f �k��u���
1u� · · · ��
ku��

where k ≤ s� �	� +∑k
i=1 �
i� ≤ s� �
i� > 0� i = 1� � � � � k. Let j0 be the index such that

�
j0
� is the largest among �
1�� � � � � �
k�. Thus we must have �
i� ≤ s

2 , i �= j0. By the
assumption on s and Proposition 1.1.20, ��u ∈ L���d� if ��� ≤ d

2 . We then estimate
the factor x	�
j0u of the above quantities in L2-norm and others in L�-norm. Thus
we have f�u� ∈ � s��d� by Proposition 1.1.20. When f vanishes at 0 at order p + 1,
by Taylor formula there is a smooth function h such that f�u� = up+1h�u�. Then we
argue as above to get an upper bound of 
f�u�
�s by C
u
p

�s
u
�s . This concludes
the proof. �

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
h
e
j
i
a
n
g
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
1
:
0
8
 
2
0
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0

21



636 Zhang

Remark 1.1.3. Proposition 1.1.21 actually holds true for s > d/2 if we argue as the
proof of Corollary 6.4.4 in [17]. Since we will consider only in � s��d� for large s,
the lower bound of s is not important.

1.2. Statement of Main Theorem

Let d be an integer, d ≥ 1 and F � � → � a real valued smooth function vanishing
at order � + 1 at 0, � ∈ �∗ (we denote �\�0� by �∗ throughout the paper). Let
m ∈ �∗

+. we consider the solution v of the following Cauchy problem:


��2t − � + �x�2 + m2�v = F�v� on �−T� T� ×�d

v�0� x� = �v0

�tv�0� x� = �v1�

(1.2.1)

where v0 ∈ � s+1��d�� v1 ∈ � s��d�, and � > 0 is a small parameter. By local
existence theory one knows that if s is large enough and � ∈ �0� 1�, equation (1.2.1)
admits for any �v0� v1� in the unit ball of � s+1��d� × � s��d� a unique smooth
solution defined on the interval �t� ≤ c�−�, for some uniform positive constant c.
Moreover, 
v�t� ·�
�s+1 + 
�tv�t� ·�
�s may be controlled by C�, for another uniform
constant C > 0, on the interval of existence. The goal would be to obtain existence
over an interval of longer length under convenient condition by controlling the
Sobolev energy. Our main result is the following:

Theorem 1.2.1. For any � > 0, there is a zero measure subset � of �∗
+ and for

every m ∈ �∗
+ − � , there are �0 > 0� c > 0� s0 ∈ � such that for any s ≥ s0, s ∈�,

� ∈ �0� �0�, any pair �v0� v1� of real valued functions belonging to the unit ball of
� s+1��d� × � s��d�, problem (1.2.1) has a unique solution

v ∈ C0��−T�� T����
s+1��d�� ∩ C1��−T�� T����

s��d��� (1.2.2)

where T� has a lower bound T� ≥ c�−
4
3 �1−��� if d ≥ 2 and T� ≥ c�−

25
18 �1−��� if d = 1.

Moreover, the solution is uniformly bounded in � s+1��d� on �−T�� T�� and �tv is
uniformly bounded in � s��d� on the same interval.

1.3. A Property of Spectral Projectors on �d

As we have pointed out P has eigenvalues given by �n =
√
2n + d� n ∈ �. Remark

that �n is the orthogonal projector of L2��d� onto the eigenspace associated to �2
n.

Let us first introduce some notations. For �0� �1� � � � � �p+1 p + 2 nonnegative real
numbers, let �i0

� �i1
� �i2

be respectively the largest, the second largest and the third
largest elements among them and �′ the largest element among �1� � � � � �p, that is,

�i0
= max��0� � � � � �p+1�� �i1

= max���0� � � � � �p+1� − ��i0
���

�i2
= max���1� � � � � �p+1� − ��i0

� �i1
��� �′ = max��1� � � � � �p�� (1.3.1)

Denote

���0� � � � � �p+1� =
(
1+

√
�i1

)(
1+

√
�i2

)
� (1.3.2)
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Long-Time Existence 637

Set also

S��0� � � � � �p+1� = ��i0
− �i1

� + ���0� � � � � �p+1�� (1.3.3)

The main result of this subsection is the following one:

Theorem 1.3.1. There is a � ∈ �∗
+, depending only on p �p ∈ �∗� and dimension d,

and for any N ∈ �, there is a CN > 0 such that for any n0� � � � � np+1 ∈ �, any
u0� � � � � up+1 ∈ L2��d�,

∣∣∣∣ ∫ �n0
u0 · · ·�np+1

up+1dx

∣∣∣∣ ≤ CN

(
1+√

ni2

)� ��n0� � � � � np+1�
N

S�n0� � � � � np+1�
N

p+1∏
j=0


uj
L2 � (1.3.4)

Furthermore if d = 1, we may find for any � ∈ �0� 1�

∣∣∣∣ ∫ �n0
u0 · · ·�np+1

up+1dx

∣∣∣∣ ≤ CN

�1+√
ni2

��

�1+√
ni0

�
1
6 �1−��

��n0� � � � � np+1�
N

S�n0� � � � � np+1�
N

p+1∏
j=0


uj
L2 �

(1.3.5)

Proof. By the symmetries we may assume n0 ≥ n1 ≥ · · · ≥ np+1. Then recalling
the definition of �n in (1.1.1), we only need to show under the condition of
Theorem 1.3.1∣∣∣∣ ∫ �n0

u0 · · ·�np+1
up+1dx

∣∣∣∣ ≤ CN��
n2

��n1
�n2

�N

���2
n0
− �2

n1
� + �n1

�n2
�N

p+1∏
j=0


uj
L2 (1.3.6)

and when d = 1∣∣∣∣ ∫ �n0
u0 · · ·�np+1

up+1dx

∣∣∣∣ ≤ CN

��
n2

�
1
6 �1−��
n0

��n1
�n2

�N

���2
n0
− �2

n1
� + �n1

�n2
�N

p+1∏
j=0


uj
L2 (1.3.7)

for any � ∈ �0� 1�. We follow the proof of Proposition 3.6 in [15]. Let A be a linear
operator which maps D�P2k� into itself. We define a sequence of operators

AN = �P2� AN−1� A0 = A� (1.3.8)

Then using integration by parts we have

��2
n0
− �2

n1
�N �A�n1

u1��n0
u0� = �AN�n1

u1��n0
u0�� (1.3.9)

Now we set A to be the multiplication operator generated by the function

a�x� = ��n2
u2� · · · ��np+1

up+1��

Then an induction argument shows

AN = ∑
�
�+���≤N� �	�+�
�+���≤2N

C	
���
	a�x
�� (1.3.10)
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638 Zhang

for constants C	
�. Therefore we compute for some � ′ > d
2

���2
n0
− �2

n1
�N

∫
��n0

u0� · · · ��np+1
up+1�dx�

≤ C
∑

�
�+���≤N� �	�+�
�+���≤2N


��	a�x
���n1
u1
L2
�n0

u0
L2

≤ C
∑

�
�+���≤N� �	�+�
�+���≤2N


a
��′+�	� 
�n1
u1
� �
�+��� 
�n0

u0
L2� (1.3.11)

where in the last estimate we used Definition 1.1.2 and Proposition 1.1.20. Remark
that by Definition 1.1.1, one has for any s ≥ 0


�nu
�s ≤ C�s
n
�nu
L2 � (1.3.12)

This estimate together with the proof of Proposition 1.1.21 gives for
n2 ≥ n3 ≥ · · · ≥ np+1


a
��′+�	� ≤ C��+�	�
n2

p+1∏
j=2


�nj
uj
L2 (1.3.13)

for some � > 0 depending only on p and dimension d. Thus we have

∣∣∣∣��2
n0
− �2

n1
�N

∫
��n0

u0� · · · ��np+1
up+1�dx

∣∣∣∣
≤ C

∑
�
�+���≤N� �	�+�
�+���≤2N

��+�	�
n2

��
�+���
n1

p+1∏
j=0


�nj
uj
L2

≤ C
∑
�	�≤N

��+2N−�	�
n2

��	�
n1

p+1∏
j=0


�nj
uj
L2

≤ C��+2N
n2

(
�n1

�n2

)N p+1∏
j=0


�nj
uj
L2

≤ C��
n2
��n1

�n2
�N

p+1∏
j=0


�nj
uj
L2 � (1.3.14)

Now if �n1
�n2

≤ ��2
n0
− �2

n1
�, then the last estimate implies (1.3.6), while if �n1

�n2
>

��2
n0
− �2

n1
�, then �n1

�n2
��2n0−�2n1

�+�n1
�n2

≥ 1
2 and thus (1.3.6) is trivially true.

On the other hand, we use the property of the eigenfunctions (see [19]), which
in dimension d = 1 says that if !n is the eigenfunction associated to �2

n, then one

has 
!n
L� ≤ C�
− 1

6
n . Therefore we have


�nu
L� ≤ C�
− 1

6
n 
�nu
L2 (1.3.15)
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Long-Time Existence 639

since in this case the eigenvalues are simple. This estimate gives us

∣∣∣∣ ∫ �n0
u0 · · ·�np+1

up+1dx

∣∣∣∣ ≤ C�
− 1

6
n0

p+1∏
j=0


�nj
uj
L2 � (1.3.16)

Combining (1.3.16) with (1.3.6) one gets (1.3.7) for all N ≥ 1 and some � > 0 in the
case d = 1. This concludes the proof. �

2. Long Time Existence

2.1. Definition and Properties of Multilinear Operators

Denote by � the algebraic direct sum of the ranges of the �′
ns� n ∈ �. With

notations (1.3.1)–(1.3.3) we give the following definition.

Definition 2.1.1. Let � ∈ �+� " ∈ �� p ∈ �∗. We denote by 	��"
p+1 the space of

all p + 1-linear operators �u1� � � � � up+1� → M�u1� � � � � up+1�, defined on � × · · · × �
with values in L2��d� such that

• For every �n0� � � � � np+1� ∈ �p+2� u1� � � � � up+1 ∈ �

�n0
�M��n1

u1� � � � ��np+1
up+1�� = 0� (2.1.1)

if �n0 − np+1� > 1
2 �n0 + np+1� or n′ def= max�n1� � � � � np� > np+1.• For any N ∈ �, there is a C > 0 such that for every �n0� � � � � np+1� ∈

�p+2� u1� � � � � up+1 ∈ �, one has


�n0
�M��n1

u1� � � � ��np+1
up+1��
L2

≤ C
(
1+√

n0 +
√

np+1

)"(
1+√

n′
)� ��n0� � � � � np+1�

N

S�n0� � � � � np+1�
N

p+1∏
j=1


uj
L2 � (2.1.2)

The best constant in the preceding inequality will be denoted by 
M
	��"
p+1�N

.

We may extend the operators in 	��"
p+1 to Sobolev spaces.

Proposition 2.1.2. Let � ∈ �+, " ∈ �� p ∈ �∗� s ∈ �� s > � + 3. Then any element
M ∈ 	��"

p+1 extends as a bounded operator from � s��d� × · · · × � s��d� to � s−"−1��d�.
Moreover, for any s0 ∈ �� + 3� s�, there is C > 0 such that for any M ∈ 	��"

p+1, and any
u1� � � � � up+1 ∈ � s��d�,


M�u1� � � � � up+1�
�s−"−1 ≤ C
M
	��"
p+1�N

p+1∑
j=1

[

uj
�s

∏
k �=j


uk
�s0

]
� (2.1.3)

Proof. The proof is a modification of Proposition 4.4 in [11]. There is one derivative
lost compared to that case. We give it for the convenience of the reader. Using
Definition 1.1.1 we write


M�u1� � � � � up+1�
2�s−"−1

≤ C
∑
n0

∥∥∥∥∑
n1

· · · ∑
np+1

�n0
M��n1

u1� � � � ��np+1
up+1�

∥∥∥∥
2

L2

(
1+√

n0

)2s−2"−2
(2.1.4)
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Because of (2.1.1) and using the symmetries we may assume

n0 ∼ np+1 and n1 ≤ · · · ≤ np ≤ np+1 ≤ Cn0 (2.1.5)

when estimating the above quantity. Consequently, we have

��n0� � � � � np+1� ∼ �1+√
np��1+

√
np+1��

(2.1.6)
S�n0� � � � � np+1� ∼ �n0 − np+1� + ��n0� � � � � np+1��

By (2.1.2) the square root of the general term over n0 sum in (2.1.4) is smaller than

C
∑

n1≤···≤np+1

(
1+√

n0

)s−1 �1+√
np�

���n0� � � � � np+1�
N

S�n0� � � � � np+1�
N

p+1∏
1


�nj
uj
L2 � (2.1.7)

We have by (2.1.5) and (2.1.6)

��n0� � � � � np+1�

S�n0� � � � � np+1�
∼ 1+√

np

�√n0 −√
np+1� + 1+√

np

� (2.1.8)

The following fact will be useful in this section: For q ∈ �� A ≥ 1 and N > 1, there
is a C > 0 independent of q and A such that

∑
n∈�

1

��√n −√
q� + A�N

≤ C
1+√

q

AN−2
� (2.1.9)

Let # > 2 be a constant as close to 2 as wanted. Using (2.1.8) and (2.1.9) we deduce

∑
n0

��n0� � � � � np+1�
#

S�n0� � � � � np+1�
#
≤ C�1+√

np+1��1+
√

np�
2�

(2.1.10)∑
np+1

��n0� � � � � np+1�
#

S�n0� � � � � np+1�
#
≤ C�1+√

n0��1+
√

np�
2�

We estimate the sum over n1 ≤ · · · ≤ np+1 in (2.1.7) by

C

( ∑
n1≤···≤np+1

�1+√
np�

��#

S#

p∏
j=1


�nj
uj
L2

)1/2

×
( ∑

n1≤···≤np+1

�1+√
n0�

2s−2�1+√
np�

� �
2N−#

S2N−#

p∏
j=1


�nj
uj
L2
�np+1

up+1
2L2

)1/2

� (2.1.11)

Using (2.1.10) to handle np+1 sum, we bound the first factor in (2.1.11) from

above by C�1+√
n0�

1
2 �

p
j=1
uj


1
2
�s0 if s0 > � + 3 using Definition 1.1.1. Incorporating

�1+√
n0�

1
2 into the second factor, we have to bound the quantity

( ∑
n1≤···≤np+1

�1+√
n0�

2s−1�1+√
np�

� �
2N−#

S2N−#

p∏
j=1


�nj
uj
L2
�np+1

up+1
2L2

)1/2

� (2.1.12)
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Long-Time Existence 641

By (2.1.5) and � ≤ S we have

(
1+√

n0

)2s−1
(

�

S

)2N−#

≤ C
(
1+√

np+1

)2s−1
(

�

S

)#

(2.1.13)

if N > #. Plugging in (2.1.12), (2.1.11) and then (2.1.4) we bound from above the n0

sum in (2.1.4) by

C
p∏
1


uj
�s0

∑
n1≤···≤np+1≤Cn0

(
1+√

np+1

)2s−1

× (
1+√

np

)�(�

S

)# p∏
j=1


�nj
uj
L2
�np+1

up+1
2L2 � (2.1.14)

Changing the order of sums for n0 and np+1, we then use (2.1.10) to handle n0 sum
and get a control of (2.1.14) by C

∏p
j=1 
uj
2�s0 
up+1
2�s according to Definition 1.1.1

if s > � + 3. This concludes the proof. �

Let us define convenient subspaces of the spaces of Definition 2.1.1.

Definition 2.1.3. Let � ∈ �+� " ∈ �� p ∈ �∗� $ � �0� � � � � p + 1� → �−1� 1�
be given.

• If
∑p+1

j=0 $�j� �= 0, we set 	̃��"
p+1�$� = 	��"

p+1 

• If
∑p+1

j=0 $�j� = 0, we denote by 	̃��"
p+1�$� the closed subspace of 	��"

p+1 given
by those M ∈ 	��"

p+1 such that

�n0
M��n1

u1� � � � ��np+1
up+1� ≡ 0 (2.1.15)

for any �n0� � � � � np+1� ∈ �p+2 such that there is a bijection % from �j 0 ≤ j ≤
p + 1� $�j� = −1� to �j 0 ≤ j ≤ p + 1� $�j� = 1� so that for any j in the first
set n%�j� = nj .

We shall have to use also classes of remainder operators. If n1� � � � � np+1 ∈ �
and j0 ∈ �1� � � � � p + 1� is such that nj0

= max�n1� � � � � np+1�, we denote

max
2

(√
n1� � � � �

√
np+1

) = 1+max
{√

nj 1 ≤ j ≤ p + 1� j �= j0
}
� (2.1.16)

Definition 2.1.4. Let � ∈ �+� " ∈ �� p ∈ �∗. We denote by 
��"
p+1 the

space of ��p + 1�-linear maps from � × · · · × � → L2��d�� �u1� � � � � up+1� →
R�u1� � � � � up+1� such that for any N ∈ �, there is a C > 0 such that for any
�n0� � � � � np+1� ∈ �p+2� any u1� � � � � up+1 ∈ �,


�n0
R��n1

u1� � � � ��np+1
up+1�
L2

≤ C�1+√
n0�

"
max2�

√
n1� � � � �

√
np+1�

�+N

�1+√
n0 + · · · + √

np+1�
N

p+1∏
j=1


uj
L2 � (2.1.17)

The elements in 
��"
p+1 also extend as bounded operators on Sobolev spaces.
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Proposition 2.1.5. Let � ∈ �+� " ∈ �� p ∈ �∗ be given. There is s0 ∈ � such that for
any s ≥ s0, any R ∈ 
��"

p+1, �u1� � � � � up+1� → R�u1� � � � � up+1� extends as a bounded map
from � s��d� × · · · × � s��d� → �2s−�−"−7��d�. Moreover one has


R�u1� � � � � up+1�
�2s−�−"−7 ≤ C
∑

1≤j1<j2≤p+1

[

uj1


�s
uj2

�s

∏
k �=j1�k �=j2


uk
�s0

]
� (2.1.18)

Proof. We may assume " = 0. By Definition 1.1.1 we have to bound

�n0

R�u1� � � � � up+1�
L2 from above by �1+√
n0�

−2s+�+7cn0
for a sequence �cn0

�n0
in 
2. To do that we decompose uj as

∑
nj

�nj
uj and use (2.1.17). By symmetry we

limit ourselves to summation over

n1 ≤ · · · ≤ np+1� (2.1.19)

from which we deduce

max
2

(√
n1� � � � �

√
np+1

) = 1+√
np� (2.1.20)

Therefore we are done if we can bound from above

C
∑

n1≤···≤np+1

�1+√
np�

�+N

�1+√
n0 + · · · + √

np+1�
N

p−1∏
j=1

�1+√
nj�

−s0�1+√
np�

−s�1+√
np+1�

−s

(2.1.21)

by �1+√
n0�

−2s+�+7cn0
for s0� s large enough with s ≥ s0 since 
�nj

uj
L2 ≤ C�1+√
nj�

−s
uj
�s . Using (2.1.19) we get an upper bound of (2.1.21) by

C
∑

n1≤···≤np+1

�1+√
np�

�+N−2s

�1+√
n0 +√

np+1�
N

p−1∏
j=1

�1+√
nj�

−s0 � (2.1.22)

Using the fact
∑

n∈�
1

�
√

n+A�N
≤ C

AN−2 for N > 2 and A ≥ 1 , we take the sum over np+1

to get an upper bound of (2.1.21) by

C
∑

n1≤···≤np

�1+√
np�

�+N−2s

�1+√
n0�

N−2

p−1∏
j=1

(
1+√

nj

)−s0 (2.1.23)

if N > 2. Now take N = 2s − � − 5
2 and sum over n1� � � � � np. This gives the upper

bound we want and thus concludes the proof. �

Definition 2.1.6. Let � ∈ �+� " ∈ �� p ∈ �∗� $ � �0� � � � � p + 1� → �−1� 1� be
given.

• If
∑p+1

j=0 $�j� �= 0, we set 
̃��"
p+1�$� = 
��"

p+1 

• If
∑p+1

j=0 $�j� = 0, we denote by 
̃��"
p+1�$� the closed subspace of 
��"

p+1 given
by those R ∈ 
��"

p+1 such that

�n0
R��n1

u1� � � � ��np+1
up+1� ≡ 0 (2.1.24)
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Long-Time Existence 643

for any �n0� � � � � np+1� ∈ �p+2 such that there is a bijection % from �j 0 ≤ j ≤
p + 1� $�j� = −1� to �j 0 ≤ j ≤ p + 1� $�j� = 1� so that for any j in the first
set n%�j� = nj .

2.2. Rewriting of the Equation and the Energy

In this subsection we will write the time derivative of the energy in terms of
multilinear operators defined in the previous subsection. To do that, we shall need
to analyze the nonlinearity. Decompose

−F�v� = −
2�−1∑
p=�

�p+1
v F�0�
�p + 1�! v

p+1 + G�v� (2.2.1)

where G�v� vanishes at order 2� + 1 at v = 0. (Here we decompose the nonlinearity
up to order 2� for simplicity and it should be enough to decompose it up to order
of �4�/3� + 1). One has

cvp+1 = c
∑
n1

· · · ∑
np+1

��n1
v� · · · ��np+1

v�

for a real constant c. One may also write this as Ap�v� · v where Ap�v� is an operator
of form

Ap�v� · w = ∑
n1

· · · ∑
np+1

B�n1� � � � � np+1���n1
v� · · · ��np

v���np+1
w�� (2.2.2)

where B�n1� � � � � np+1� is a real valued bounded function supported on
max�n1� � � � � np� ≤ np+1 and B is constant valued on the domain max�n1� � � � � np� <
np+1. For instance, when p = 2, one may write

��n1� n2� n3� nj ∈ �� = �max�n1� n2� ≤ n3� ∪ �n1 ≥ n2 and n1 > n3�

∪ �n1 < n2 and n2 > n3�

and

∑
n1

∑
n2

∑
n3

��n1
v���n2

v���n3
v� = ∑

1�max�n1�n2�≤n3�
��n1

v���n2
v���n3

v�

+∑
1�n3≥n2 and n3>n1�

��n1
v���n2

v���n3
v�

+∑
1�n3>n2 and n3>n1�

��n1
v���n2

v���n3
v�

using the symmetries, so that in this case

B�n1� n2� n3� = c�1�max�n1�n2�≤n3�
+ 1�n3≥n2 and n3>n1�

+ 1�n3>n2 and n3>n1�
��

So if we make a change of unknown u = �Dt + &m�v with

Dt = −i�t� &m = √−� + �x�2 + m2�
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we may write using (2.2.1)

�Dt − &m�u = −
2�−1∑
p=�

Ap

(
&−1

m

(
u + ū

2

))
&−1

m

(
u + ū

2

)
+ G

(
&−1

m

(
u + ū

2

))
� (2.2.3)

Denote C�u� ū� = − 1
2

∑2�−1
p=� Ap

(
&−1

m

(
u+ū
2

))
&−1

m so that

�Dt − &m�u = C�u� ū�u + C�u� ū�ū + G

(
&−1

m

(
u + ū

2

))
� (2.2.4)

We have to estimate for the solution u of (2.2.3)

's�u�t� ·�� =
1
2
�&s

mu�t� ·��&s
mu�t� ·��� (2.2.5)

Now comes the main result of this subsection:

Proposition 2.2.1. There are � ∈ �+ and large enough s0 such that for any natural
number s ≥ s0, there are:

• Multilinear operators M
p

 ∈ 	̃��2s−a

p+1 �$
�, � ≤ p ≤ 2� − 1, 0 ≤ 
 ≤ p with $


defined by $
�j� = −1, j = 0� � � � � 
� $
�j� = 1� j = 
 + 1� � � � � p + 1 and a= 2
if d ≥ 2 and a = 13

6 − � for any � ∈ �0� 1� if d = 1;
• Multilinear operators M̃

p

 ∈ 	̃��2s−1

p+1 �$̃
�, � ≤ p ≤ 2� − 1, 0 ≤ 
 ≤ p with $̃


defined by $̃
�j� = −1, j = 0� � � � � 
� p + 1, $̃
�j� = 1� j = 
 + 1� � � � � p;
• Multilinear operators R

p

 ∈ 
̃��2s

p+1�$
�, R̃
p

 ∈ 
̃��2s

p+1�$̃
�, � ≤ p ≤ 2� − 1, 0≤ 
≤p;
• A map u → T�u� defined on � s��d� with values in �, satisfying when 
u
�s ≤ 1,
�T�u�� ≤ C
u
2�+2

�s

such that

d

dt
's�u�t� ·�� =

2�−1∑
p=�

p∑

=0

Re i

〈
M

p



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉

+
2�−1∑
p=�

p∑

=0

Re i

〈
M̃

p



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p−


� ū

)
� u

〉

+
2�−1∑
p=�

p∑

=0

Re i

〈
R

p



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉

+
2�−1∑
p=�

p∑

=0

Re i

〈
R̃

p



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p−


� ū

)
� u

〉
+ T�u�� (2.2.6)

Proof. We compute according to (2.2.4)

d

dt
's�u�t� ·�� = Re i�&s

mDtu�&
s
mu�

= Re i�&s
mC�u� ū�u�&s

mu� + Re i�&s
mC�u� ū�ū� &s

mu�

+ Re i

〈
&s

mG

(
&−1

m

(
u + ū

2

))
� &s

mu

〉
� (2.2.7)
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Long-Time Existence 645

The last term in the right hand side of (2.2.7) contributes to the last term in (2.2.6)
by Proposition 1.1.21. Let us treat the other two terms in the right hand side
of (2.2.7). �

Lemma 2.2.2. There are M
p

 ∈ 	̃��2s−a

p+1 �$
�, R
p

 ∈ 
̃��2s

p+1�$
�, � ≤ p ≤ 2� − 1,
0≤ 
≤p with $
 defined by $
�j� = −1, j = 0� � � � � 
� $
�j� = 1� j = 
 + 1� � � � � p +
1 and a = 2 if d ≥ 2 and a = 13

6 − � for any � ∈ �0� 1� if d = 1, such that

Re i�&s
mC�u� ū�u�&s

mu� =
2�−1∑
p=�

p∑

=0

Re i

〈
M

p



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉

+
2�−1∑
p=�

p∑

=0

Re i

〈
R

p



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉
� (2.2.8)

Proof of Lemma 2.2.2. Let � be a cut-off function near 0 with small support and �n

defined in (1.1.1). We may decompose the operator Ap�v� defined in (2.2.2) as

Ap�v� = A1
p�v� + A2

p�v� + A3
p�v�� (2.2.9)

where Aj
p�v��j = 1� 2� 3� are operators of form

A1
p�v� · w = ∑

n0

· · · ∑
np+1

B1�n0� � � � � np+1��n0
���n1

v� · · · ��np
v���np+1

w��� �

A2
p�v� · w = ∑

n0

· · · ∑
np+1

B2�n0� � � � � np+1��n0
���n1

v� · · · ��np
v���np+1

w���

A3
p�v� · w = ∑

n1

· · · ∑
np+1

B3�n1� � � � � np+1��n0
���n1

v� · · · ��np
v���np+1

w��� (2.2.10)

with

B1�n0� � � � � np+1� = B�n1� � � � � np+1��

( ��2
n0
− �2

np+1
�

�2
n0
+ �2

np+1

)
1�max�n1�����np�<(np+1�

�

B2�n0� � � � � np+1� = B�n1� � � � � np+1�

(
1− �

(��2
n0
− �2

np+1
�

�2
n0
+ �2

np+1

))
1�max�n1�����np�<(np+1�

� (2.2.11)

B3�n1� � � � � np+1� = B�n1� � � � � np+1�1�max�n1�����np�≥(np+1�
�

with some small ( > 0. Therefore for the operator C�u� ū� defined above (2.2.4),
we have

C�u� ū� = −1
2

3∑
j=1

2�−1∑
p=�

Aj
p

(
&−1

m

(
u + ū

2

))
&−1

m � (2.2.12)

So the left hand side of (2.2.8) may be written as

−1
2

3∑
j=1

2�−1∑
p=�

Re i

〈
&2s

mAj
p

(
&−1

m

(
u + ū

2

))
&−1

m u� u

〉
�=

3∑
j=1

2�−1∑
p=�

Ij
p� (2.2.13)
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Let us treat these quantities term by term.

(i) The term I1p .
Note that −4I1p equals to

Re i

〈[
&2s

mA1
p

(
&−1

m

(
u + ū

2

))
&−1

m −
(
A1

p

(
&−1

m

(
u + ū

2

))
&−1

m

)∗
&2s

m

]
u� u

〉
� (2.2.14)

which may be written as

Re i

〈[
&2s

m � A1
p

(
&−1

m

(
u + ū

2

))
&−1

m

]
u� u

〉

+ Re i

〈[
A1

p

(
&−1

m

(
u + ū

2

))
&−1

m −
(
A1

p

(
&−1

m

(
u + ū

2

))
&−1

m

)∗]
&2s

m u� u

〉
�= I + II (2.2.15)

We expand the first term in (2.2.15) using (2.2.10) to get

I = Re i

〈 ∑
n∈�p+2

�1�n0

[(
�n1

&−1
m

(
u + ū

2

))
· · ·

(
�np

&−1
m

(
u + ū

2

))(
�np+1

&−1
m u

)]
� u

〉

= Re i

〈 ∑
n∈�p+2

p∑

=0

�2�n0
���n1

&−1
m ū� · · · ��n


&−1
m ū���n
+1

&−1
m u� · · · ��np+1

&−1
m u��� u

〉

= Re i
∑

n∈�p+2

p∑

=0

�2

∫
��n0

ū���n1
&−1

m ū� · · · ��n

&−1

m ū���n
+1
&−1

m u� · · · ��np+1
&−1

m u�dx�

(2.2.16)

where we have used notations

n = �n0� � � � � np+1��

�1 = B1�n0� � � � � np+1���m
2 + �2

n0
�s − �m2 + �2

np+1
�s�� (2.2.17)

�2 =
1
2p

(
p




)
B1�n0� � � � � np+1���m

2 + �2
n0
�s − �m2 + �2

np+1
�s��

Let $
 be defined in the statement of the lemma and set

S

p = {

�n0� � � � � np+1� ∈ �p+2 there exists a bijection % from

�j 0 ≤ j ≤ p + 1� $
�j� = −1� to �j 0 ≤ j ≤ p + 1� $
�j� = 1�

such that for each j in the first set nj = n%�j�

}
� (2.2.18)

Now we look at the integral in the last line of (2.2.16). If n ∈ S

p with S


p �= ∅, there
is a bijection % from �0� � � � � 
� to �
� � � � � p + 1� such that nj = n%�j�� j = 0� � � � � 
.
So we may couple �nj

ū� j = 0� � � � � 
 with �n%�j�
u� j = 0� � � � � 
. Since �2 is real,

we get zero if we take the sum over n ∈ S

p when computing the right hand side
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of (2.2.16). Therefore we may assume n � S

p when computing I . Now we define

M
p�1

 �u1� � � � � up+1� = −1

4

∑
n�S


p

�2�n0
���n1

&−1
m u1� · · · ��np+1

&−1
m up+1��� (2.2.19)

It follows from the second equality in (2.2.16) that

I = −4
p∑


=0

Re i

〈
M

p�1



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉
� (2.2.20)

Let us turn to the term II in (2.2.15). Note that A1
p�v�

∗ is an operator of form

A1
p�v�

∗ · w = ∑
n∈�p+2

B1�np+1� n1� � � � � np� n0��n0
���n1

v� · · · ��np
v���np+1

w��� (2.2.21)

Thus we may compute using (2.2.10)

II = Re i

〈 ∑
n∈�p+2

p∑

=0

�3�n0
���n1

&−1
m ū� · · · ��n


&−1
m ū���n
+1

&−1
m u� · · ·

× ��np
&−1

m u���np+1
&2s

m u��� u

〉

= Re i
∑

n∈�p+2

p∑

=0

�3

∫
��n0

ū���n1
&−1

m ū� · · · ��n

&−1

m ū���n
+1
&−1

m u� · · ·

× ��np
&−1

m u���np+1
&2s

m u�dx� (2.2.22)

where

�3 =
1
2p

(
p




) [
B1�n0� n1� � � � � np� np+1��m

2 + �2
np+1

�−
1
2

− B1�np+1� n1� � � � � np� n0��m
2 + �2

n0
�−

1
2
]
� (2.2.23)

With the same reasoning as in the paragraph above (2.2.19) we get zero if we take
the sum over n ∈ S


p when computing the right hand side of (2.2.22). So we may
assume n � S


p and define

M
p�2

 �u1� � � � � up+1� = −1

4

∑
n�S


p

�3�n0

[
��n1

&−1
m u1� · · · ��np

&−1
m up���np+1

&2s
m up+1�

]
�

(2.2.24)

It follows from (2.2.22) that

II = −4
p∑


=0

Re i

〈
M

p�2

 �ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


�� u

〉
� (2.2.25)
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Let us check that M
p�1

 �M

p�2

 ∈ 	̃��2s−a

p+1 �$
� for some � > 0, where a = 2 if d≥ 2
and a = 13

6 − � for any � ∈ �0� 1� if d = 1. Since the function B1�n0� � � � � nnp+1
� is

supported on domain n′ = max�n1� � � � � np� < (np+1 and n0 ∼ np+1 (this is because
of the cut-off function and (1.1.1)), we see that (2.1.1) holds true if supp � and ( are
small. Let us use Theorem 1.3.1 to show that (2.1.2) holds true with " = 2s − a for
M

p�1

 and M

p�2

 . Remark that we have

��2� ≤ C
(
1+ �√n0 −

√
np+1�

)(
1+√

n0 +
√

np+1

)2s−1
� (2.2.26)

��3� ≤ C
(
1+√

n′)2(1+ �√n0 −
√

np+1�
)(
1+√

n0 +
√

np+1

)−2
� (2.2.27)

Indeed, (2.2.26) follows from the fact

��m2 + �2
n0
�s − �m2 + �2

np+1
�s� ≤ C���n0

− �np+1
���1+ �n0

+ �np+1
�2s−1�

If n′ < (n0 and n′ < (np+1 for small ( > 0, then

B1�n0� n1� � � � � np� np+1� = B1�np+1� n1� � � � � np� n0�

since B�n1� � � � � np+1� is constant valued on the domain n′ < np+1. Thus (2.2.27)
follows from the fact

∣∣�m2 + �2
n0
�−

1
2 − �m2 + �2

np+1
�−

1
2
∣∣ ≤ C���n0

− �np+1
���1+ �n0

+ �np+1
�−2�

Otherwise, assume n′ ≥ (n0 or n′ ≥ (np+1. Then we must have n′ ≥ Cn0 and
n′ ≥Cnp+1 if B1 is non zero, since n0 ∼ np+1 which is because of the cut-off function.
In this case, (2.2.27) holds true trivially.

Moreover, on the support of �n0
M

p�l

 ��n1

u1� � � � ��np+1
up+1��l = 1� 2�, i.e.,

n0 ∼ np+1 and np+1 ≥ max�n1� � � � � np� = n′, we have

1+√
ni2

∼ 1+√
n′� ��n0� � � � � np+1� ∼

(
1+√

np+1

)(
1+√

n′)�
S�n0� � � � � np+1� ∼ �n0 − np+1� +

(
1+√

np+1

)(
1+√

n′)� (2.2.28)

from which we deduce

��n0� � � � � np+1�

S�n0� � � � � np+1�
∼ 1+√

n′

�√n0 −√
np+1� + 1+√

n′ � (2.2.29)

Thus

(
1+ �√n0 −

√
np+1�

)��n0� � � � � np+1�

S�n0� � � � � np+1�
≤ C

(
1+√

n′)�
Then we use Theorem 1.3.1 (with dimension d ≥ 2) to get for l = 1� 2


�n0
M

p�l

 ��n1

u1� � � � ��np+1
up+1�
L2

≤ C
(
1+√

n0 +
√

np+1

)2s−2(
1+√

n′)�+2(
1+ �√n0 −

√
np+1�

)
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× ��n0� � � � � np+1�
N

S�n0� � � � � np+1�
N

p+1∏
j=1


uj
L2

≤ C
(
1+√

n0 +
√

np+1

)2s−2
�1+√

n′��+3 ��n0� � � � � np+1�
N−1

S�n0� � � � � np+1�
N−1

p+1∏
j=1


uj
L2 � (2.2.30)

So M
p�l

 ∈ 	��2s−2


 for some other � > 0 in dimension d ≥ 2. The case of dimension
one is similar (2.1.15) with $ = $
 is satisfied by definition. Thus M

p�1

 �M

p�2

 ∈

	̃��2s−a
p+1 �$
� and we have proved

I1p =
p∑


=0

Re i

〈
M

p�1



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉

+
p∑


=0

Re i

〈
M

p�2



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉
� (2.2.31)

(ii) The term I2p .
Using (2.2.10) we get

−2I2p = Re i

〈 ∑
n∈�p+2

p∑

=0

�4&
2s
m�n0

���n1
&−1

m ū� · · · ��n

&−1

m ū���n
+1
&−1

m u� · · ·

× ��np+1
&−1

m u��� u

〉

= Re i
∑

n∈�p+2

p∑

=0

�4

∫
��n0

&2s
m ū���n1

&−1
m ū� · · · ��n


&−1
m ū���n
+1

&−1
m u� · · ·

× ��np+1
&−1

m u�dx (2.2.32)

where

�4 =
1
2p

(
p




)
B2�n0� � � � � np+1��

We may rule out the sum over n ∈ S

p in the above computation with the same

reasoning as in the paragraph above (2.2.19). Thus if we define

R
p�1

 �u1� � � � � up+1� = −1

2

∑
n�S


p

�4&
2s
m�n0

���n1
&−1

m u1� · · · ��np+1
&−1

m up+1��� (2.2.33)

we have

I2p =
p∑


=0

Re i

〈
R

p�1



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉
� (2.2.34)

From the support property of function B2�n0� � � � � np+1� we know that
�n0

R
p�1

 ��n1

u1� � � � ��np+1
up+1� is supported on max�n1� � � � � np� < (np+1 and
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�n0 − np+1� ≥ c�n0 + np+1� for some small c > 0. Therefore, on its support, if
n0 > Cnp+1 for a large C, we have

��n0� � � � � np+1� =
(
1+√

np+1

)(
1+√

n′) ≤ (
1+√

n0

)(
1+√

n′)�
S�n0� � � � � np+1� = �n0 − np+1� +

(
1+√

np+1

)(
1+√

n′) ∼ (
1+√

n0

)2
and if n0 ≤ Cnp+1, we have

��n0� � � � � np+1� ≤ �1+√
n′��1+√

np+1��

S�n0� � � � � np+1� ≥ c��n0 − np+1�� ≥ c�n0 + np+1� ∼ �1+√
np+1�

2�

In both cases we have

��n0� � � � � np+1�

S�n0� � � � � np+1�
≤ C

1+√
n′

1+√
n0 + · · · + √

np+1

= C
max2�

√
n1� � � � �

√
np+1�

1+√
n0 + · · · + √

np+1

� (2.2.35)

where max2�
√

n1� � � � �
√

np+1� is defined above Definition 2.1.4. Thus Theorem 1.3.1
allows us to get (2.1.17) with " = 2s and some � > 0. (2.1.24) with $ = $
 is satisfied
by the definition of R

p�1

 . So R

p�1

 ∈ 
̃��2s

p+1�$
�.

(iii) The term I3p .
The treatment of I3p is similar to that of I2p . The only difference is that we have

different support for B2 and B3. So we define

R
p�2

 �u1� � � � � up+1� = −1

2

∑
n�S


p

�5&
2s
m�n0

���n1
&−1

m u1� · · · ��np+1
&−1

m up+1�� (2.2.36)

with �5 given by

�5 =
1
2p

(
p




)
B3�n1� � � � � np+1� (2.2.37)

and we get

I3p =
p∑


=0

Re i

〈
R

p�2



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p+1−


)
� u

〉
� (2.2.38)

From the support property of B3 we know that �n0
R

p�2

 ��n1

u1� � � � ��np+1
up+1� is

supported on domain (np+1 ≤ max�n1� � � � � np� = n′ ≤ np+1. So on this domain we
have

��n0� � � � � np+1� ≤
(
1+√

np+1

)(
1+√

n′)�
S�n0� � � � � np+1� ∼

(
1+√

n0 +
√

np+1

)2
�

from which we deduce

��n0� � � � � np+1�

S�n0� � � � � np+1�
≤ C

1+√
n′

1+√
n0 + · · · + √

np+1

� (2.2.39)
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Thus we have by Theorem 1.3.1, for any N ∈ �, there exists CN > 0, such
that (2.1.17) holds true with " = 2s and some � > 0. On the other hand, (2.1.24) with
$ = $
 is satisfied by the definition. So R

p�2

 ∈ 
̃��2s

p+1�$
�.
Taking M

p

 to be the sum of M

p�1

 and M

p�2

 , and R

p

 the sum of R

p�1

 and R

p�2

 ,

we get (2.2.8) with M
p

 ∈ 	̃��2s−a

p+1 �$
� and R
p

 ∈ 
̃��2s

p+1�$
�. This concludes the proof
of the lemma. �

We have to treat the second term in the right hand side of (2.2.7).

Lemma 2.2.3. There are multilinear operators M̃
p

 ∈ 	̃��2s−1

p+1 �$̃
�� R̃
p

 ∈ 
̃��2s

p+1�$̃
�,
�≤p ≤ 2� − 1, 0 ≤ 
 ≤ p with $̃
 defined by $̃
�j� = −1, j = 0� � � � � 
� p + 1,
$̃
�j�= 1, j = 
 + 1� � � � � p, such that

Re i�&s
mC�u� ū�ū� &s

mu� =
2�−1∑
p=�

p∑

=0

Re i

〈
M̃

p



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p−


� ū

)
� u

〉

+
2�−1∑
p=�

p∑

=0

Re i

〈
R̃

p



(
ū� � � � � ū︸ ︷︷ ︸




� u� � � � � u︸ ︷︷ ︸
p−


� ū

)
� u

〉
� (2.2.40)

Proof of Lemma 2.2.3. Let $̃
 be defined in the statement of the lemma. We set

S̃

p = {

�n0� � � � � np+1� ∈ �p+2 there exists bijection % from

�j 0 ≤ j ≤ p + 1� $̃
�j� = −1� to �j 0 ≤ j ≤ p + 1� $̃
�j� = 1�

such that for each j in the first set nj = n%�j�

}
� (2.2.41)

Taking the expression of C�u� ū� defined above (2.2.4) into account, we compute
using notation (2.2.2)

Re i�&2s
mC�u� ū�ū� u� = Re i

〈
−1
2

2�−1∑
p=�

&2s
mAp

(
&−1

m

(
u + ū

2

))
&−1

m ū� u

〉

= Re i

〈 2�−1∑
p=�

∑
n∈�p+2

p∑

=0

�6&
2s
m�n0

���n1
&−1

m ū� · · · ��n

&−1

m ū�

× ��n
+1
&−1

m u� · · · ��np
&−1

m u���np+1
&−1

m ū��� u

〉

= Re i
2�−1∑
p=�

∑
n∈�p+2

p∑

=0

�6

∫
��n0

&2s
m ū���n1

&−1
m ū� · · · ��n


&−1
m ū�

× ��n
+1
&−1

m u� · · · ��np
&−1

m u���np+1
&−1

m ū�dx� (2.2.42)

where �6 is given by

�6 = − 1
2p+1

(
p




)
B�n1� � � � � np+1�� (2.2.43)
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With the same reasoning as in the paragraph above (2.2.19) we may assume n � S̃

p

in the computation of (2.2.42). Let � ∈ C�
0 ���� � ≡ 1 near zero, and supp� small

enough. According to (2.2.42), we define

M̃
p

 �u1� � � � � up+1� =

∑
n�S̃


p

�

( ��2
n0
− �2

np+1
�

�2
n0
+ �2

np+1

)
�6&

2s
m�n0

���n1
&−1

m u1� · · · ��np+1
&−1

m up+1���

R̃
p

 �u1� � � � � up+1� =

∑
n�S̃


p

(
1− �

(��2
n0
− �2

np+1
�

�2
n0
+ �2

np+1

))
�6&

2s
m�n0

���n1
&−1

m u1� · · · ��np+1
&−1

m up+1���

It follows that (2.2.40) holds true.
Now we are left to check that M̃

p

 ∈ 	̃��2s−1

p+1 �$̃
� and R̃
p

 ∈ 
̃��2s

p+1�$̃
�.
Because of cut-off function and the support property of function B in the

definition of M̃
p

 we know that (2.1.1) holds true for M̃

p

 and we may assume

n0 ∼ np+1 when estimating L2 norm of �n0
M̃

p

 ��n1

u1� � � � ��np+1
up+1�. Since there is a

&−1
m following each orthogonal projector �nj

� j = 1� � � � � p + 1, we see that (1.3.4)
implies (2.1.2) with " = 2s − 1 and some � > 0. Moreover, (2.1.15) with $ = $̃
 is
satisfied by the definition of M̃

p

 . So M̃

p

 ∈ 	̃��2s−1

p+1 �$̃
�.
Assume �n0

�R��n1
u1� � � � ��np+1

up+1�� does not vanish. Then we have
�n0 − np+1� ≥ c�n0 + np+1� for some small c > 0 because of the cut-off function
and np+1 ≥ max�n1� � � � � np� = n′ because of the support property of function B.
Therefore if n0 ≥ n′, we have

��n0� � � � � np+1� =
(
1+√

n′)(1+min�
√

n0�
√

np+1�
)
�

S�n0� � � � � np+1� = �n0 − np+1� +
(
1+√

n′)(1+min�
√

n0�
√

np+1�
)
�

and thus

��n0� � � � � np+1�

S�n0� � � � � np+1�
≤ C

1+√
n′

√
n0 +√

np+1 + 1+√
n′ ≤ C

max2�
√

n1� � � � �
√

np+1�

1+√
n0 + · · · + √

np+1

 

if n0 < n′, we have

��n0� � � � � np+1� ≤
(
1+√

n′)2� S�n0� � � � � np+1� = �n′ − np+1� + ��n0� � � � � np+1��

and thus

��n0� � � � � np+1�

S�n0� � � � � np+1�
≤ C

1+√
n′

√
n′ + √

np+1 + 1+√
n′ ≤ C

max2�
√

n1� � � � �
√

np+1�

1+√
n0 + · · · + √

np+1

�

Now using Theorem 1.3.1 we see that (2.1.17) holds true with " = 2s and some � > 0.
But (2.1.24) with $ = $̃
 is satisfied according to the definition. So R̃

p

 ∈ 
̃��2s

p+1�$̃
�.
This concludes the proof of lemma. �

Summarizing the above analysis gives an end to the proof of the
Proposition 2.2.1. �
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In order to control the energy, let us first turn to some useful estimates in the
following subsection.

2.3. Geometric Bounds

This subsection is a modification of Section 2.1 in [9]. We give it for the
convenience of the reader. Consider the function on �p+2 depending on the
parameter m∈ �0�+��, defined for 
 = 0� � � � � p + 1 by

F

m��0� � � � � �p+1� =


∑
j=0

√
m2 + �2j −

p+1∑
j=
+1

√
m2 + �2j � (2.3.1)

The main result of this subsection is the following theorem:

Theorem 2.3.1. For any � > 0, there is a zero measure subset � of �∗
+ such that for

any integers 0 ≤ 
 ≤ p + 1, any m ∈ �∗
+ − � , there are constants c > 0� N0 ∈ � such

that the lower bound

�F

m��n0

� � � � � �np+1
�� ≥ c

(
1+√

n0 +
√

np+1

)−3−�(
1+ �√n0 −

√
np+1� +

√
n′)−2N0

(2.3.2)

holds true for any �n0� � � � � np+1� ∈ �p+2 − S

p. Here �n are given by (1.1.1),

n′ = max�n1� � � � � np�, and S

p is defined in (2.2.18), in which we have set $
�j� =

−1� j = 0� � � � � 
� $
�j� = 1� j= 
 + 1� � � � � p + 1.

The proof of the theorem will rely on some geometric estimates that we shall
deduce from results of [11]. Let us show that under the condition of Theorem 2.3.1
we have

�F

m��n0

� � � � � �np+1
�� ≥ c�1+√

n0 +
√

np+1�
−3−��1+ �√n0 −

√
np+1��−N0

× �1+√
n1 + · · · +√

np�
−N0 � (2.3.3)

Let I ⊂ �0�+�� be some compact interval and define for 0 ≤ 
 ≤ p + 1 functions

f
 � �0� 1� × �0� 1�p+2 × I −→ � �z� x0� � � � � xp+1� y� → f
�z� x0� � � � � xp+1� y�

g
 � �0� 1� × �0� 1�p × I −→ � �z� x1� � � � � xp� y� → g
�z� x1� � � � � xp� y� (2.3.4)

by

f
�z� x0� � � � � xp+1� y� =

∑

j=0

√
z2 + y2x2

j −
p+1∑

j=
+1

√
z2 + y2x2

j

g
�z� x1� � � � � xp� y� = z

[ 
∑
j=1

z√
z2 + y2x2

j

−
p∑

j=
+1

z√
z2 + y2x2

j

]
when z > 0�

g
�0� x1� � � � � xp� y� ≡ 0� (2.3.5)
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Then the graphs of f
� g
 are subanalytic subsets of �0� 1�p+3 × I and �0� 1�p+1 × I
respectively, so that f
� g
 are continuous subanalytic functions (refer to Bierstone
and Milman [5] for an introduction to subanalytic sets and functions). Let us
consider the set � of points �z� x� ∈ �0� 1�p+3(resp. �z� x� ∈ �0� 1�p+1� such that
y→ f
�z� x� y� (resp. y → g
�z� x� y�) vanishes identically. If �z� x� ∈ � and z �= 0,
we have


 = p

2
and

∑
j≤


x2�
j − ∑

j≥
+1

x2�
j = 0� ∀� ∈ �∗

where the sum is taken respectively for 0 ≤ j ≤ p + 1 in the case of f
 and 1≤ j≤p
for g
� This implies that there is a bijection % � �0� � � � � 
� → �
 + 1� � � � � p + 1� (resp.
�1� � � � � 
� → �
 + 1� � � � � p�) such that x%�j� = xj for any j = 0� � � � � 
 (resp. j =
1� � � � � 
)—see for instance the proof of Lemma 5.6 in [11]. When p is even, denote
by Sp the set of all bijections respectively from �0� � � � � p

2 � to � p

2 + 1� � � � � p+ 1� and
from �1� � � � � p

2 � to � p

2 � � � � � p�� Define for 0 ≤ 
 ≤ p + 1

�
�z� x� ≡ z if 
 �= p

2
�

�
�z� x� = z
∏
%∈Sp

[ ∑
j≤p/2

�x2
%�j� − x2

j �
2

]
if 
 = p

2
� (2.3.6)

where the sum in the above formula is taken for j ≥ 0 (resp. j ≥ 1) when we study f


(resp. g
). Then the set ��
 = 0� contains those points �z� x� such that y → f
�z� x� y�
(resp. y → g
�z� x� y�) vanishes identically. The following proposition is the same as
Proposition 2.1.2 in [9].

Proposition 2.3.2.

(i) There are Ñ ∈ �� 	0 > 0� ( > 0� C > 0, such that for any 0 ≤ 
 ≤ p + 1� any
	∈ �0� 	0�� any �z� x� ∈ �0� 1�p+3 (resp. �z� x� ∈ �0� 1�p+1) with �
�z� x� �= 0� any
N ≥ Ñ the sets

I
f

 �z� x� 	� = �y ∈ I �f
�z� x� y�� < 	�
�z� x�

N �

I
g

 �z� x� 	� = �y ∈ I �g
�z� x� y�� < 	�
�z� x�

N � (2.3.7)

have Lebesgue measure bounded from above by C	(�
�z� x�
N(.

(ii) For any N ≥ Ñ , there is K ∈ � such that for any 	 ∈ �0� 	0�, any �z� x� ∈ �0� 1�p+1�
the set Ig


 �z� x� 	� may be written as the union of at most K open disjoint subintervals
of I .

We shall deduce (2.3.3) from several lemmas. Let us first introduce some
notations. When p is odd or p is even and 
 �= p

2 , we set �′p

 = ∅. When p is even

and 
 = p

2 � we define

�′p

 = �ñ = �n1� � � � � np� ∈ �p there is a bijection

% � �1� � � � � 
� → �
 + 1� � � � � p� such that n%�j� = nj� j = 1� � � � � 
�� (2.3.8)
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Long-Time Existence 655

We set also

�p+2

 = ��n0� � � � � np+1� ∈ �p+2 ñ ∈ �′p


 and n0 = np+1�� (2.3.9)

Of course, �p+2

 = ∅ if p is odd or p is even and 
 �= p

2 .
We remark first that it is enough to prove (2.3.3) for those �n1� � � � � np�

which do not belong to �′p

 : actually if p is even, 
 = p

2 and �n1� � � � � np� ∈ �′p

 ,

we have �F

m��n0

� � � � � �np+1
�� = ∣∣√m2 + �2

n0
−

√
m2 + �2

np+1

∣∣ which is bounded from

below, when m stays in some compact interval, by

2�n0 − np+1�√
m2 + �2

n0
+

√
m2 + �2

np+1

≥ c

1+ �n0
+ �np+1

since from �n0� � � � � np+1� ∈ �p+2 − S

p, we have n0 �= np+1. Consequently (2.3.3)

holds true trivially. From now on, we shall always consider p-tuple ñ which do not
belong to �′p


 .
Let us define for 
 = 1� � � � � p another function on �p given by

G

m��1� � � � � �p� =


∑
j=1

√
m2 + �2j −

p∑
j=
+1

√
m2 + �2j � (2.3.10)

Let J ⊂ �0�+�� be a given compact interval. For 	 > 0� N0 ∈ �� 0 ≤ 
 ≤ p + 1,
n= �n0� � � � � np+1� ∈ �p+2 define

E

J �n� 	� N0� =

{
m ∈ J �F


m��n0
� � � � � �np+1

�� < 	�1+ �n0
+ �np+1

�−3−�

× �1+ ��n0
− �np+1

��−N0�1+ �n1
+ · · · + �np

�−N0
}
� (2.3.11)

We set also for 
 > 0� N1 ∈ �∗� ñ = �n1� � � � � np� ∈ �p −�′p



E′

J �ñ� 
� N1� =

{
m ∈ J 

∣∣∣∣�G

m

�m
��n1

� � � � � �np
�

∣∣∣∣ < 
�1+ �n1
+ · · · + �np

�−N1

}
� (2.3.12)

We define for � > 
 a subset of �p+2 by

S�
� �� N1� =
{
�n0� � � � � np+1� ∈ �p+2 −�p+2


 � �n0
<

�

3

�1+ �n1

+ · · · + �np
�N1

or �np+1
<

�

3

�1+ �n1

+ · · · + �np
�N1

}
� (2.3.13)

Lemma 2.3.3. Let Ñ � (� 	0 be the constants defined in the statement of
Proposition 2.3.2. There are constants C1 > 0�M ∈ �∗ such that for any 
 ∈ �0� 	0�,
any N1 ∈ � with N1 > MÑ and N1 > 2pM

(
, one has

meas

[ ⋃
ñ∈�p−�′p




E′

J �ñ� 
� N1�

]
≤ C1


(� (2.3.14)
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Proof. Set y = 1
m
and

z =
(
1+

p∑
j=1

�nj

)−1

� xj = �nj
z� j = 1� � � � � p�

Denote by X the set of points �z� x� ∈ �0� 1�p+1 of the preceding form for �n1� � � � � np�
describing �p. When p is even and 
 = p/2, let X

′p

 be the imagine of �′p


 defined
by (2.3.8) under the map ñ → �z� x�. Using Definition 2.3.6, we see that there are
constants M > 0� C > 0, depending only on p, such that for 0 ≤ 
 ≤ p + 1

∀�z� x� ∈ X − X
′p

 � zM ≤ �
�z� x� ≤ Cz (2.3.15)

since, when 
 = p

2 and �n1� � � � � np� � �′p

 ,

∑ p
2
j=1��

2
n%�j�

− �2
nj
�2 ≥ 1, by the definition of

�nj
. Remark that with the above notations

�G

m

�m
��n1

� � � � � �np
� =


∑
j=1

m√
m2 + �2

nj

−
p∑

j=
+1

m√
m2 + �2

nj

= 1
z
g
�z� x1� � � � � xp� y��

Then if I = �m−1 m ∈ J�� we see that m ∈ E′

J �ñ� 
� N1� for n � �′p


 if and only if
y = 1

m
satisfies

�g
�z� x1� � � � � xp� y�� < 
zN1+1 ≤ 
�
�z� x�
1
M �N1+1� (2.3.16)

using (2.3.15). Applying Proposition 2.3.2(i), we see that for any fixed value of
�z� x� ∈ X − X

′p

 , the measure of those y such that (2.3.16) holds true is bounded

from above by

C
(�
�z� x�
N1+1

M ( ≤ C
(z
N1+1

M (

if we assume N1 ≥ MÑ and 
 ∈ �0� 	0�. Consequently, we get with a constant C ′

depending only on J ,

meas�E′

J �n′� 
� N1�� ≤ C ′
(�1+ �n1

+ · · · + �np
�−

N1+1
M (

≤ C ′
(�1+ n1 + · · · + np�
− N1+1

2M (�

Inequality (2.3.14) follows from this estimate and the assumption on N1. �

Lemma 2.3.4. Let Ñ � (� 	0 be the constants defined in the statement of
Proposition 2.3.2. There are constants M ∈ �∗� � > 1� C2 > 0 such that for any
N0� N1 ∈ �∗ satisfying N0 > ÑMN1 and N0( > 2�p + 2�MN1, any 0 < 
 < � with
�



> �, any 	 > 0 satisfying 	

(



2�

)− N0
N1 < 	0, one has

meas

[ ⋃
n∈S�
���N1�

E

J �n� 	� N0�

]
≤ C2	

(

(



2�

)− N0
N1

(

� (2.3.17)
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Proof. We first remark that if �n0
+ �np+1

> �



�1+ �n1

+ · · · + �np
�N1 and n ∈

S�
� �� N1�, then either

�n0
≥ 2�

3

�1+ �n1

+ · · · + �np
�N1 or �np+1

≥ 2�
3


�1+ �n1
+ · · · + �np

�N1�

which implies that

�F

m��n0

� � � � � �np+1
�� ≥ c

�



�1+ �n1

+ · · · + �np
�N1

for some constant c > 0 depending only on p and J , if �



> � large enough.

Consequently, if 	 < 	0 small enough relatively to c, we see that we have in this
case E


J �n� 	� N0� = ∅ when n ∈ S�
� �� N1�. We may therefore consider only indices
n such that

n ∈ S�
� �� N1� and �n0
+ �np+1

≤ �



�1+ �n1

+ · · · + �np
�N1 �

Consequently, for m ∈ E

J �n� 	� N0� and n ∈ S�
� �� N1�, we have

�F

m��n0

� � � � � �np+1
�� ≤ 	�1+ �n1

+ · · · + �np
�−N0

≤ 	

(



2�

)− N0
N1

�1+ �n0
+ · · · + �np+1

�
− N0

N1 � (2.3.18)

Define for n ∈ �p+2

z =
(
1+

p+1∑
j=0

�nj

)−1

� xj = �nj
z� j = 0� � � � � p + 1� (2.3.19)

Denote by X ⊂ �0� 1�p+3 the set of points �z� x� of the preceding form, and let
X

p

 be the imagine of the set �p+2


 defined by (2.3.9) under the map n → �z� x�.
By (2.3.6) we have again

∀�z� x� ∈ X − X
p

 � zM ≤ �
�z� x� ≤ Cz

for some large enough M , depending only on p. Moreover

F

m��n0

� � � � � �np+1
� = m

z
f
�z� x0� � � � � xp+1� y�

and (2.3.18) implies that if n ∈ S�
� �� N1� and m ∈ E

J �n� 	� N0�, then y satisfies

�f
�z� x0� � � � � xp+1� y�� ≤ C	

(



2�

)− N0
N1

z
1+ N0

N1

≤ C	

(



2�

)− N0
N1

�
�z� x�
1
M �1+ N0

N1
� (2.3.20)
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We assume that 	� N0� N1 satisfy the conditions of the statement of the lemma. Then
by (i) of Proposition 2.3.2 we get that the measure of those y ∈ J satisfying (2.3.20)
is bounded from above by

C

[
	

(



2�

)− N0
N1

](

z
(
M �1+ N0

N1
�

for some constant C, independent of N0� N1� 	� 
� �. Consequently the measure of
E


J �n� 	� N0� is bounded from above when n ∈ S�
� �� N1� by

C

[
	

(



2�

)− N0
N1

]((
1+ �n0

+ · · · + �np+1

)− (
M �1+ N0

N1
�

≤ C ′
[
	

(



2�

)− N0
N1

]((
1+ n0 + · · · + np+1

)− (
2M �1+ N0

N1
�

for another constant C ′ depending on J . The conclusion of the lemma follows by
summation, using that (

M
�1+ N0

N1
� > 2�p + 2�. �

Proof of Theorem 2.3.1. We fix N0� N1 satisfying the conditions stated in
Lemmas 2.3.3 and 2.3.4, and such that N0 > 2p + N1. We write when n � S�
� �� N1�,
0 ≤ 
 ≤ p + 1,

E

J �n� 	� N0� ⊂ �E


J �n� 	� N0� ∩ E′

J �ñ� 
� N1�� ∪ �E


J �n� 	� N0� ∩ E′

J �ñ� 
� N1�

c�

and estimate, using that we reduced ourselves to those ñ � �′p



meas

[ ⋃
n ñ��′p




E

J �n� 	� N0�

]
≤ meas

[ ⋃
n∈S�
���N1�

E

J �n� 	� N0�

]
+ meas

[ ⋃
ñ��′p




E′

J �ñ� 
� N1�

]

+ meas

[ ⋃
n∈S�
���N0�

c−�p+2



E

J �n� 	� N0� ∩ E′


J �ñ� 
� N1�
c

]
�

(2.3.21)

Let us bound the measure of E

J �n� 	� N0� ∩ E′


J �ñ� 
� N1�
c for n ∈ S�
� �� N0�

c −�p+2

 .

If m belongs to that set, the inequality in (2.3.11) holds true. Remark that we
may assume 
 ≤ p � if 
 = p + 1, �F


m��n0
� � � � � �np+1

�� ≥ c�1+ �n0
+ �np+1

� for some
c > 0, which is not compatible with (2.3.11) for 	 < 	0 small enough. Let us
write (2.3.11) as

��n0
− �np+1

+ G̃m��n0
� � � � � �np+1

��
< 	�1+ �n0

+ �np+1
�−3−��1+ ��n0

− �np+1
��−N0�1+ �n1

+ · · · + �np
�−N0 (2.3.22)

with, using notation (2.3.10)

G̃m��n0
� � � � � �np+1

� = Gm��n1
� � � � � �np

� + Rm��n0
� �np+1

�

Rm��n0
� �np+1

� =
(√

m2 + �2
n0
− �n0

)
−

(√
m2 + �2

np+1
− �np+1

)
� (2.3.23)
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Since n ∈ S�
� �� N1�
c, we have by (2.3.13)

�n0
≥ �

3

�1+ �n1

+ · · · + �np
�N1� �np+1

≥ �

3

�1+ �n1

+ · · · + �np
�N1 � (2.3.24)

Consequently there is a constant C > 0, depending only on J , such that∣∣∣∣�Rm

�m
��n0

� �np+1
�

∣∣∣∣ ≤ C



�
�1+ �n1

+ · · · + �np
�−N1 �

If � is large enough and m ∈ E′

J �ñ� 
� N1�

c, we deduce from (2.3.12) that

∣∣∣∣�G̃m

�m
��n0

� � � � � �np+1
�

∣∣∣∣ ≥ 


2
�1+ �n1

+ · · · + �np
�−N1 � (2.3.25)

By (ii) of Proposition 2.3.2, we know that there is K ∈ �, independent of 	� 
� �
such that the set J − E′


J �ñ� 
� N1� is the union of at most K disjoint intervals
Jj�ñ� 
� N1�� 1 ≤ j ≤ K. Consequently, we have

E

J �n� 	� N0� ∩ �E′


J �ñ� 
� N1��
c ⊂

K⋃
j=1

�m ∈ Jj�ñ� 
� N1� �2�3�22� holds true�� (2.3.26)

and on each interval Jj�n
′� 
� N1�, (2.3.25) holds true. We may on each such

interval perform in the characteristic function of (2.3.22) the change of variable of
integration given by m → G̃m��n0

� � � � � �np+1
�. Because of (2.3.25) this allows us to

estimate the measure of (2.3.26) by

K
2


	�1+ �n0

+ �np+1
�−3−��1+ ��n0

− �np+1
��−N0�1+ �n1

+ · · · + �np
�−N0+N1

≤ CK
2


	�1+ n0 + np+1�

− 1
2 �3+��

(
1+ �√n0 −

√
np+1�

)−N0�1+ n1 + · · · + np�
− 1

2 �N0−N1�

Summing in n0� � � � � np+1, we see that since N0 > 2p + N1, the last term in (2.3.21) is
bounded from above by C3

	


with C3 independent of 	� 
� �. By Lemmas 2.3.3 and

2.3.4, we may thus bound (2.3.21) by

C2	
(

(



2�

)− N0
N1

(

+ C1

( + C3

	




if 	� 
 are small enough, � is large enough and 	
(




�

)− N0
N1 is small enough. If we take


 = 	%� � = 	−% with % > 0 small enough, and 	 � 1, we finally get for some (′ > 0,

meas

[ ⋃
n ñ��′p




E

J �n� 	� N0�

]
≤ C	(′ → 0 if 	 → 0+�

This implies that in this case the set of those m ∈ J for which (2.3.3) does not hold
true for any c > 0 is of zero measure. This concludes the proof. �

We will need a consequence of Theorem 2.3.1:
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Proposition 2.3.5. For any � > 0, there is a zero measure subset � of �∗
+ such that

for any integers 0 ≤ 
 ≤ p + 1, any m ∈ �∗
+ − � , there are constants c > 0� N0 ∈ �

such that the lower bound

�F

m��n0

� � � � � �np+1
�� ≥ c�1+√

n0 +
√

np+1�
−3−��1+√

n′�−2N0
��n0� � � � � np+1�

2N0

S�n0� � � � � np+1�
2N0

(2.3.27)

holds true for any �n0� � � � � np+1� ∈ �p+2 − S

p with n0 ∼ np+1 and np+1 ≥ n′. Here �n,

n′, S

p are the same as those in Theorem 2.3.1.

Proof. By Theorem 2.3.1 we know (2.3.2) holds true under the conditions of the
proposition. Since we assume n0 ∼ np+1 and np+1 ≥ n′, we have by (1.3.2) and (1.3.3)

��n0� � � � � np+1� ∼
(
1+√

np+1

)(
1+√

n′)�
S�n0� � � � � np+1� ∼ �n0 − np+1� +

(
1+√

np+1

)(
1+√

n′)
∼ (

1+√
np+1

)(
1+ �√n0 −

√
np+1� +

√
n′)� (2.3.28)

Therefore we deduce from (2.3.2)

�F

m��n0

� � � � � �np+1
�� ≥ c�1+√

n0 +
√

np+1�
−3−�

�1+√
np+1�

2N0

S�n0� � � � � np+1�
2N0

≥ c�1+√
n0 +

√
np+1�

−3−��1+√
n′�−2N0

��n0� � � � � np+1�
2N0

S�n0� � � � � np+1�
2N0

�

This concludes the proof of the proposition. �

In the following subsection, we shall also use a simpler version of
Theorem 2.3.1. Let us introduce some notations. For m ∈ �∗

+, �j ∈ �, j =
0� � � � � p + 1, e = �e0� � � � � ep+1� ∈ �−1� 1�p+2, define

F̃ �e�
m ��0� � � � � �p+1� =

p+1∑
j=0

ej

√
m2 + �2j � (2.3.29)

When p is even and #�j ej = 1� = p

2 + 1, denote by N�e� the set of all
�n0� � � � � np+1� ∈ �p+2 such that there is a bijection % from �j 0 ≤ j ≤ p + 1� ej = 1�
to �j 0 ≤ j ≤ p + 1� ej = −1� so that for any j in the first set nj = n%�j�. In the other
cases, set N�e� = ∅.

Proposition 2.3.6. There is a zero measure subset � of �∗
+ and for any m ∈ �∗

+ −
� , there are constants c > 0� N0 ∈ � such that for any �n0� � � � � np+1� ∈ �p+2 − N�e�

one has

∣∣F̃ �e�
m ��n0

� � � � � �np+1
�
∣∣ ≥ c

(
1+√

n0 + · · · +√
np+1

)−N0 � (2.3.30)
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Moreover, if e0ep+1 = 1, one has the inequality

�F̃ �e�
m ��n0

� � � � � �np+1
�� ≥ c�1+√

n0 +
√

np+1��1+√
n1 + · · · +√

np�
−N0 � (2.3.31)

Proof. With the reasoning as in the proof of Proposition 2.1.5 in [9], we get just by
replacing �n0� � � � � np+1� with ��0� � � � � �p+1�

�F̃ �e�
m ��n0

� � � � � �np+1
�� ≥ c�1+ �n0

+ · · · + �np+1
�−N0

and

�F̃ �e�
m ��n0

� � � � � �np+1
�� ≥ c�1+ �n0

+ �np+1
��1+ �n1

+ · · · + �np
�−N0

when e0ep+1 = 1. This concludes the proof of the proposition by noting (1.1.1). �

2.4. Energy Control and the Proof of the Main Theorem

We shall use the results of Subsection 2.3 to control the energy. When
M�u1� � � � � up+1� is a p + 1-linear form, let us define for 0 ≤ 
 ≤ p + 1,

L−

 �M��u1� � � � � up+1� = −&mM�u1� � � � � up+1�

−

∑

j=1

M�u1� � � � � &muj� � � � � up+1�

+
p+1∑

j=
+1

M�u1� � � � � &muj� � � � � up+1� (2.4.1)

and

L+

 �M��u1� � � � � up+1�

= −&mM�u1� � � � � up+1� −

∑

j=1

M�u1� � � � � &muj� � � � � up+1�

+
p∑

j=
+1

M�u1� � � � � &muj� � � � � up+1� − M�u1� � � � � up�&mup+1�� (2.4.2)

We shall need the following lemma:

Lemma 2.4.1. For any � > 0, let � be the zero measure subset of �∗
+ defined by taking

the union of the zero measure subsets defined in Propositions 2.3.5 and 2.3.6, and fix
m ∈ �∗

+ − � . Let $
� $̃
 be defined in the statement of Proposition 2.2.1. There is a
�̄ ∈ � such that the following statements hold true for any large enough integer s, any
integer p with � ≤ p ≤ 2� − 1, any integer 
 with 0 ≤ 
 ≤ p:

• Let �� � be parameters in (1.2.1) and � ∈ �0� 1� a constant to be chosen later.
Let M

p

 ∈ 	̃��2s−a

p+1 �$
� with a = 2 if d ≥ 2 and a = 13
6 − � for any � ∈ �0� 1� if
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d = 1 and M̃
p

 ∈ 	̃��2s−1

p+1 �$̃
�. Define

M
p��

 �u1� � � � � up+1� =

∑
n0

∑
np+1

1�
√

n0+√
np+1<�−����n0

M
p

 �u1� � � � � up��np+1

up+1��

(2.4.3)

Then there are M
p��

 ∈ 	̃�+�̄�2s−1

p+1 �$
� and M
p

 ∈ 	̃��2s−2

p+1 �$̃
� satisfying

L−

 �M

p��

 ��u1� � � � � up+1� = M

p��

 �u1� � � � � up+1��

(2.4.4)
L+


 �M
p

��u1� � � � � up+1� = M̃

p

 �u1� � � � � up+1�

with the estimate for all N ≥ �̄,


Mp��

 
	�+�̄�2s−1

p+1�N
≤ C�−�4−a+����
Mp


 
	��2s−a
p+1�N

�
(2.4.5)
Mp



	�+�̄�2s−2
p+1�N

≤ C
M̃p

 
	��2s−1

p+1�N
�

where 
 · 
	��"
p+1�N

is defined in the statement of Definition 2.1.1.

• Let R
p

 ∈ R̃��2s

p+1�$
�� R̃
p

 ∈ R̃��2s

p+1�$̃
�. Then there are R
p

 ∈ 
̃�+�̄�2s

p+1 �$
� and R
′p

 ∈


̃�+�̄�2s
p+1 �$̃
� such that

L−

 �R

p

��u1� � � � � up+1� = R

p

�u1� � � � � up+1��

(2.4.6)
L+


 �R
′p

 ��u1� � � � � up+1� = R̃

p

 �u1� � � � � up+1��

Proof. (i) We substitute in (2.4.4) �nj
uj to uj� j = 1� � � � � p + 1, and compose on

the left with �n0
. According to (2.4.1), equalities in (2.4.4) may be written

−F

m��n0

� � � � � �np+1
��n0

M
p��

 ��n1

u1� � � � ��np+1
up+1� = �n0

M
p��

 ��n1

u1� � � � ��np+1
up+1��

(2.4.7)

F̃ �e�
m ��n0

� � � � � �np+1
��n0

M
p

��n1

u1� � � � ��np+1
up+1� = �n0

M̃
p

 ��n1

u1� � � � ��np+1
up+1��

(2.4.8)

where F

m is defined by (2.3.1) and F̃ �e�

m is defined by (2.3.29) with e0 = · · · = e
 =
ep+1 = −1� e
+1 = · · · = ep = 1.

When considering (2.4.7), we may assume n0 ∼ np+1, np+1 ≥ n′ and
�n0� � � � � np+1� � S


p if the right hand side of (2.4.7) is non-zero since we have (2.1.1)
and (2.1.15) for M

p��

 . Here S


p is the same as that in Proposition 2.3.5. Thus the
assumptions concerning �n0� � � � � np+1� in Proposition 2.3.5 hold true. We deduce
from (2.3.27) and the condition

√
n0 +√

np+1 < �−�� that

�F

m��n0

� � � � � �np+1
��−1

≤ C�1+√
n0 +

√
np+1�

3+��1+√
n′�2N0

S�n0� � � � � np+1�
2N0

��n0� � � � � np+1�
2N0

≤ C�−�4−a+�����1+√
n0 +

√
np+1�

a−1�1+√
n′�2N0

S�n0� � � � � np+1�
2N0

��n0� � � � � np+1�
2N0

(2.4.9)
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Long-Time Existence 663

for any � > 0. Therefore if we define

M
p��

 �u1� � � � � up+1� = − ∑

n�S

p

n0∼np+1�np+1≥n′

F

m��n0

� � � � � �np+1
�−1�n0

M
p��

 ��n1

u1� � � � ��np+1
up+1��

(2.4.10)

we obtain according to (2.4.9) and (2.1.2) that M
p��

 ∈ 	̃�+�̄�2s−1

p+1 �$
� with the first
estimate in (2.4.5) with �̄ = 2N0.

When considering (2.4.8), we may assume �n0� � � � � np+1� � N�e� defined after
(2.3.29). Actually, because of (2.1.15), we cannot find a bijection % from
�0� � � � � 
� p + 1� to �
 + 1� � � � � p� such that nj = n%�j�, j = 0� � � � � 
� p + 1 if the right
hand side of (2.4.8) is non zero. Consequently, we may use lower bound (2.3.31).
If we define M

p

 dividing in (2.4.8) by F̃ �e�

m , we thus see that we get an element of
M

p

 ∈ 	̃�+�̄�2s−2

p+1 �$̃
� for some �̄. This completes the proof of (2.4.4) and (2.4.5).

(ii) We deduce again from (2.4.6)

−F

m��n0

� � � � � �np+1
��n0

R
p

��n1

u1� � � � ��np+1
up+1� = �n0

R
p

��n1

u1� � � � ��np+1
up+1��

(2.4.11)

F̃ �e�
m ��n0

� � � � � �np+1
��n0

R
′p

 ��n1

u1� � � � ��np+1
up+1� = �n0

R̃
p

 ��n1

u1� � � � ��np+1
up+1��

(2.4.12)

where F

m and F̃ �e�

m are the same as in (2.4.7) and (2.4.8). Since R
p

 ∈ R̃��2s

p+1�$
� and
thus (2.1.24) implies the right hand side of (2.4.11) vanishes if �n0� � � � � np+1� ∈ S


p,
where S


p is defined in (2.2.18), we may assume �n0� � � � � np+1� � S

p. Consequently,

the condition of Theorem 2.3.1 is satisfied and we have by (2.3.2)

�F

m��n0

� � � � � �np+1
��−1 ≤ C�1+√

n0 +√
n1 + · · · +√

np+1�
2N0+4�

We then get an element of R
p

 ∈ 
̃�+�̄�2s

p+1 �$
� dividing in (2.4.11) by −F

m with �̄ =

2N0 + 4. Since R̃
p

 ∈ R̃��2s

p+1�$̃
�, we see that the right hand side of (2.4.12) vanishes
if �n0� � � � � np+1� ∈ S̃


p, where S̃

p is defined in (2.2.41). This implies that we may

assume �n0� � � � � np+1� � N�e� which is defined after (2.3.29) with e0 = · · · = e
 =
ep+1 = −1, e
+1 = · · · = ep = 1. Thus the condition of Proposition 2.3.6 is satisfied
and we have

�F̃ �e�
m ��n0

� � � � � �np+1
��−1 ≤ C�1+√

n0 + · · · +√
np+1�

N0 �

This allows us to get an element R
′p

 ∈ 
̃�+�̄�2s

p+1 �$̃
� for some �̄ by dividing by F̃ �e�
m

in (2.4.12). This concludes the proof. �

Proposition 2.4.2. Let � > 0 be any positive number and � the zero measure subset of
�∗

+ defined in Lemma 2.4.1, and fix m ∈ �∗
+ − � . Let 's be defined in (2.2.5). There

are for any large enough integer s, a map '1
s , sending � s��d� × (

0� 1
2

)
to �, and maps

'2
s � '

3
s � '

4
s sending � s��d� to � such that there is a constant Cs > 0 and for any u ∈
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664 Zhang

� s��d� with 
u
�s ≤ 1 and for �� �� � the same as in Lemma 2.4.1 with � ∈ �0� 1
2 �,

one has

�'1
s �u� ��� ≤ Cs�

−�4−a+����
u
�+2
�s �(

a= 2 if d≥ 2 and a= 13
6

− � for any � ∈ �0� 1� if d= 1
)
�

�'2
s �u��� �'3

s �u��� �'4
s �u�� ≤ Cs
u
�+2

�s (2.4.13)

and such that

R�u�
def= d

dt

[
's�u�t� ·�� − '1

s �u�t� ·�� �� − '2
s �u�t� ·�� − '3

s �u�t� ·�� − '4
s �u�t� ·��

]
(2.4.14)

satisfies

�R�u�� ≤ Cs�
−�4−a+����
u
2�+2

�s + Cs�
�a−1���
u
�+2

�s + Cs
u
2�+2
�s � (2.4.15)

Proof. Considering the right hand side of (2.2.6), we decompose

M
p

 �u1� � � � � up+1� = M

p��

 �u1� � � � � up+1� + V

p��

 �u1� � � � � up+1�� (2.4.16)

where the first term is given by (2.4.3) and the second one by

V
p��

 �u1� � � � � up+1� =

∑
n0

∑
np+1

1�
√

n0+√
np+1≥�−����n0

M
p

 �u1� � � � � up��np+1

up+1�� (2.4.17)

By Definition 2.1.1, we get for a = 2 if d ≥ 2 and a = 13
6 − � if d = 1


Vp��

 �u1� � � � � up+1�
�−s

≤ CN

∑
n0

· · · ∑
np+1

�1+√
n0 +

√
np+1�

2s−a
�1+√

n′����n0� � � � � np+1�
N

S�n0� � � � � np+1�
N

× 1�
√

n0+√
np+1≥�−����n0−np+1�< 1

2 �n0+np+1��n
′≤np+1�

�1+√
n0�

−s
p+1∏
j=1


�nj
uj
L2 � (2.4.18)

Following the proof of Proposition 2.1.2, we know that the gain of a powers
of

√
n0 +√

np+1 in the first term in the right hand side, coming from the fact
that M

p

 ∈ 	��2s−a

p+1 , together with the condition
√

n0 +√
np+1 ≥ �−��, allows us to

estimate, for N large enough and s0 large enough with respect to �, (2.4.18) by
C��a−1����

p
j=1
uj
�s0 
up+1
�s . Consequently, the quantity

2�−1∑
p=�

p∑

=0

Re i�Vp��

 �ū� � � � � ū� u� � � � � u�� u� (2.4.19)

is bounded form above by the second term of the right hand side of (2.4.15). In
the rest of the proof, we may therefore replace in the right hand side of (2.2.6) M

p



by M
p��

 .
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Apply Lemma 2.4.1 to M
p��

 , M̃p


 , R
p

 , R̃

p

 . This gives M

p��

 �M

p

 � R

p

 � R

′p

 . We set

'1
s �u�t� ·�� �� =

2�−1∑
p=�

p∑

=0

Re�Mp��

 �ū� � � � � ū� u� � � � � u�� u��

'2
s �u�t� ·�� =

2�−1∑
p=�

p∑

=0

Re�Mp

�ū� � � � � ū� u� � � � � u� ū�� u��

'3
s �u�t� ·�� =

2�−1∑
p=�

p∑

=0

Re�Rp

�ū� � � � � ū� u� � � � � u�� u��

'4
s �u�t� ·�� =

2�−1∑
p=�

p∑

=0

Re�R′p

 �ū� � � � � ū� u� � � � � u� ū�� u�� (2.4.20)

The general term in '1
s �u�t� ·�� �� has modulus bounded from above by


Mp��

 �ū� � � � � ū� u� � � � � u�
�−s
u
�s ≤ C�−�4−a+����
u
�

�s
u
2�s

for u in the unit ball of � s��d�, using Proposition 2.1.2 with " = 2s − 1 and
Proposition 1.1.19 and (2.4.5). This gives the first inequality of (2.4.13). To obtain
the other estimates in (2.4.13), we apply Proposition 2.1.2 to M

p

 , remarking that

if in (2.1.3) " = 2s − 1 and s is large enough, the left hand side of (2.1.3) controls
the �−s norm of M

p

�ū� � � � � ū� u� � � � � u� ū�. We also apply Proposition 2.1.5 with " =

2s in (2.1.18) to R
p

 , R

′p

 . Then if s0 is large enough, the left hand side of (2.1.18)

controls �−s norm of R
p

�ū� � � � � ū� u� � � � � u� and R

′p

 �ū� � � � � ū� u� � � � � u� ū�. These

give us the other inequalities in (2.4.13). Consequently we are left with proving
(2.4.15). Remarking that we may also write the equation as

�Dt − &m�u = −F

(
&−1

m

(
u + ū

2

))
� (2.4.21)

we compute using notation (2.4.1)

d

dt
'1

s �u� �� =
2�−1∑
p=�

p∑

=0

Re i�L−

 �M

p��

 ��ū� � � � � ū� u� � � � � u�� u�

+
2�−1∑
p=�

p∑

=0


∑
j=1

Re i�Mp��

 �ū� � � � ��F� � � � � ū� u� � � � � u�� u�

−
2�−1∑
p=�

p∑

=0

p+1∑
j=
+1

Re i�Mp��

 �ū� � � � � ū� u� � � � � F� � � � � u�� u�

+
2�−1∑
p=�

p∑

=0

Re i�Mp��

 �ū� � � � � ū� u� � � � � u�� F�� (2.4.22)

By assumption on F , we have by Propositions 1.1.19 and 1.1.21 that 
F�v�
�s ≤
C
u
�

�s
u
�s if s is large enough and 
u
�s ≤ 1. Since M
p��

 ∈ 	̃�+�̄�2s−1

p+1 �$
�, we may
apply Proposition 2.1.2 with " = 2s − 1 and (2.4.5) to see that the last three terms
in (2.4.22) have modulus bounded from above by the first term in the right hand
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side of (2.4.15). When computing d
dt
's�u�, noting that we have replaced M

p

 by M

p��

 ,

the first term in the right hand side of (2.2.6) is the first term in the right hand side
of (2.4.22) because of (2.4.4). Consequently, these contributions will cancel out each
other in the expression d

dt
�'s�u� − '1

s �u� ���. We compute

d

dt
'2

s �u� =
2�−1∑
p=�

p∑

=0

Re i�L+

 �M

p

��ū� � � � � ū� u� � � � � u� ū�� u�

+
2�−1∑
p=�

p∑

=0


∑
j=1

Re i�Mp

�ū� � � � ��F� � � � � ū� u� � � � � u� ū�� u�

−
2�−1∑
p=�

p∑

=0

p∑
j=
+1

Re i�Mp

�ū� � � � � ū� u� � � � � F� � � � � u� ū�� u�

+
2�−1∑
p=�

p∑

=0

Re i�Mp

�ū� � � � � ū� u� � � � � u��F�� u�

+
2�−1∑
p=�

p∑

=0

Re i�Mp

�ū� � � � � ū� u� � � � � u� ū�� F�� (2.4.23)

Since M
p

 ∈ 	̃�+�̄�2s−2

p+1 �$̃
�, we have by Proposition 2.1.2 with " = 2s − 1,
Proposition 1.1.19 and (2.4.5) that the last three terms are estimated by the last
term in the right hand side of (2.4.15) if s is large enough. The first one, according
to Lemma 2.4.1, cancels the contribution of M̃

p

 in (2.2.6) when computing R�u�.

We may treat '3
s �u� and '4

s �u� in the same way using Proposition 2.1.5 with " = 2s,
and this will lead to the third term in the right hand side of (2.4.15). Finally, the
last term in (2.2.6) contributes to the last term in the right hand side of (2.4.15).
This concludes the proof of the proposition. �

Proof of Theorem 2.1.1. We deduce from (2.4.13) and (2.4.15)

's�u�t� ·�� ≤ 's�u�0� ·�� − '1
s �u�0� ·�� �� − '2

s �u�0� ·�� − '3
s �u�0� ·�� − '4

s �u�0� ·��
+ '1

s �u�t� ·�� �� + '2
s �u�t� ·�� + '3

s �u�t� ·�� + '4
s �u�t� ·��

+ Cs�
−�4−a+����

∫ t

0

u�t′� ·�
2��s
u�t′� ·�
2�sdt′

+ Cs�
�a−1���

∫ t

0

u�t′� ·�
�

�s
u�t′� ·�
2�sdt′

+ Cs

∫ t

0

u�t′� ·�
2��s
u�t′� ·�
2�sdt′� (2.4.24)

where a = 2 if d ≥ 2 and a = 13
6 − � for any � ∈ �0� 1� if d = 1. Take � = 1

3+�
and

B > 1 a constant such that for any �v0� v1� in the unit ball of � s+1��d� × � s��d�,
u�0� ·� = ��−iv1 + &mv0� satisfies 
u�0� ·�
�s ≤ B�. Let K > B be another constant
to be chosen, and assume that for "′ in some interval �0� T� we have 
u�"′� ·�
�s ≤
K� ≤ 1. If d ≥ 2, using (2.4.13) with a = 2 we deduce from (2.4.24) and that there
is a constant C > 0, independent of B�K� �, such that as long as t ∈ �0� T�


u�t� ·�
2�s ≤ C�B2 + �
1

3+� �K�+2 + t�
4+�
3+� ��K2�+2 + K�+2� + t�2�K2�+2��2�
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If we assume that T ≤ c�−
4+�
3+� �, where � > 0 is arbitrary, for a small enough c > 0,

and that � is small enough, we get 
u�t� ·�
2�s ≤ C�2B2��2. If K has been chosen
initially so that 2CB2 < K2, we get by a standard continuity argument that the
priori bound 
u�t� ·�
�s ≤ K� holds true on �0� c�−

4+�
3+� ��, in other words, the solution

extends to such an interval �t� ≤ c�−
4
3 �1−��� with another arbitrary � > 0. If d = 1,

we may use (2.4.13) with a = 13
6 − � to get


u�t� ·�
2�s ≤ C�B2 + �
7−6�
18+6� �K�+2 + t�

25+6��−��
18+6� ��K2�+2 + K�+2� + t�2�K2�+2��2�

With the same reasoning we may get in this case that the solution extends to an
interval of �t� < c�−

25
18 �1−��� for some small c > 0 and any � > 0. This concludes the

proof of the theorem. �
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Our main result concerns long-time existence for solutions to semi-linear Klein–Gordon equations
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where (t, x) ∈ R+ × Td , m ∈ R∗+ , (v0, v1) ∈ Hs+1(Td) × Hs(Td) for a large enough s and where ε > 0
is small enough.

This problem has been studied in dimension 1 by Bourgain [4], Bambusi [1], Bambusi and
Grébert [3]. They showed that one has almost global existence: for any N , if the data are in Hs+1 × Hs

for some s depending on N , if m stays outside an exceptional subset of zero measure, the solution
exists at least on an interval of length CNε−N . For the problem in dimension at least 2, Delort and
Szeftel [6] proved that the solution is defined on an interval of length at least cε−2, if the nonlinear-
ities vanish at the origin at order κ + 1 = 2. Recently, it was shown in Delort [5] that, for dimension
d � 2 and for nonlinearities vanishing at the origin at order κ + 1 with any κ ∈ N∗ , the solutions ex-
tend at least over an interval of length cε−κ(1+2/d) up to a logarithm. Note that the gain of the power
α = 2/d, in comparison with the result given by local theory, depends on dimension d and becomes
smaller and smaller as dimension d goes to infinity. A natural question is: Is it possible to obtain
for such a Cauchy problem a solution defined on cε−κ(1+α) with α > 0 explicit and independent of
dimension d? This paper gives a positive answer to this question. In fact, we prove that α can be
taken to be a constant as close to 1/2 as wanted. This is better than the result of Delort [5] when
dimension d is larger than 4.

The method we use is based on normal form methods. Such an idea has been introduced in the
study of nonlinear Klein–Gordon equations on Rd by Shatah [9] and is at the root of the results
obtained on S1, Sd , Td in [4,1,3,2,5]. We also refer to Delort and Szeftel [6,7] for an application of
this idea when one studies long-time existence of the same Cauchy problem on spheres and Zoll
manifolds. And in Zhang [10], the author used such an idea to obtain a lower bound for the lifespan
of solutions to (∂2

t − � + |x|2 + m2)v = vκ+1 in Rd with small smooth Cauchy data. The proof there
implies that the multiplicity of eigenvalues of

√−� + |x|2 on Rd does not play any role and the gain
on the exponent is independent of dimension d. Enlightened by that, we solve the problem we have
just posed.

For the convenience of the reader, let us explain the idea more clearly with model (1.1) though it
is similar to that of [5]. The goal is to control the Sobolev energy computing

d

dt

[∥∥v(t, ·)∥∥2
Hs+1 + ∥∥∂t v(t, ·)∥∥2

Hs

]
. (1.2)

Using the equation, we may write this quantity as a multilinear expression in v , ∂t v homogeneous of
degree κ + 2. We then perturb the Sobolev energy by an expression homogeneous of degree κ + 2
so that its time derivative cancel out the contribution in (1.2), up to reminders of higher order.
The difficulty is to construct the perturbation in such a way that it can be controlled by powers
of ‖v(t, ·)‖Hs+1 + ‖∂t v(t, ·)‖Hs , with the same s in (1.2). Using expansion of elements of Hs on a basis
of L2 made of eigenfunctions of

√−�, we are reduced to study the expression of type

∑
n0,...,nκ+1

Fm(λn0 , . . . , λnκ+1)
−1

∫
Td

(Πλn0
u0) · · · (Πλnκ+1

uκ+1)(λn0 + · · · + λnκ+1)
2s (1.3)

where λn j are eigenvalues of
√−� on Td , Πλ is the spectral projector associated to the eigenvalue λ,

and Fm is given by

Fm(ξ0, . . . , ξκ+1) =
κ+1∑
j=0

e j

√
m2 + ξ2

j , e j ∈ {−1,1}. (1.4)

The problem is to bound |Fm(λn0 , . . . , λnκ+1 )| from below, for those λn j for which (1.3) is nonzero,
in such a way that (1.3) can be bounded from above by C

∏‖u j‖Hs for s large enough. We assume
for simplification that κ is odd and that λn0 , λnκ+1 are the largest two among λn0 , . . . , λnκ+1 . We
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divide it into two cases according to the estimate of Fm . The first case is e0eκ+1 = 1. We have (see
Proposition 7.2), in this case, for almost all m > 0, there are c > 0 and N0 ∈ N with

∣∣Fm(λn0 , . . . , λnκ+1)
∣∣ � c(1 + λn0 + λnκ+1)

× (
1 + the third largest among(λn0 , . . . , λnκ+1)

)−N0 (1.5)

for any n0, . . . ,nκ+1 ∈ N. Plugging (1.5) into (1.3), we see that the loss is given by a large power of
a small frequency, which allow us to estimate (1.3) by C

∏
j ‖u j‖Hs for s � N0. This case corresponds

to terms M̃ p

 in Section 6 when |λn0 − λnκ+1 | � 1

2 (λn0 + λnκ+1 ), and to terms R̃ p

 when |λn0 − λnκ+1 | >

1
2 (λn0 + λnκ+1 ). The second case is e0eκ+1 = −1. We shall show (see Proposition 7.1) for any ρ > 0,
for almost m > 0, there are c > 0 and N0 ∈ N such that

∣∣Fm(λn0 , . . . , λnκ+1)
∣∣ � c(1 + λn0 + λnκ+1)

−3−ρ × (|λn0 − λnκ+1 | + λn1 + · · · + λnκ

)−N0 (1.6)

for any n0, . . . ,nκ+1 ∈ N. Note that this inequality is independent of the dimension d and better than
the corresponding one of [5] when the dimension d � 4. This is the key point for us to improve the
results of [5]. Plugging (1.6) into (1.3), we then see that when dividing by Fm there is not only a
loss of a power of low frequencies which is harmless, but also a loss of 3 + ρ derivatives of high
frequencies. However, solving the linear equation makes gain one derivative since the nonlinearity
involves no derivative of v and we may gain one more derivative through commutators. This allows
us to recover the loss and get an upper bound by C

∏‖u j‖Hs of (1.3) through partition of frequencies
between zones {λn j � ε−κθ , j = 1, . . . , κ + 1} and {λn j > ε−κθ for at least one j ∈ {1, . . . , κ + 1}},
where θ is a constant to be chosen.

In comparison with the method of [5], we have to overcome several difficulties in the above pro-
cess. The first one is to find out a way so that one can get a dimension-independent estimate of small
divisors, that is (1.6). In fact, we can use the projectors on the eigenspaces associated to different
eigenvalues of

√−� on Td , instead of the projectors on the space spanned by each eigenfunction
which were exclusively used in [5]. From this point of view, the multiplicity of the eigenvalues does
not play any role while it does in [5]. This implies that the estimates we want may be independent
of the dimension. However, when one tries to extend multilinear operators to Sobolev spaces, a loss
of one derivative is inevitable in this framework (see Proposition 5.2) because of the bad behavior
of the eigenvalues of

√−� on Td . So another difficulty is to find a technique to avoid such a loss
for the high frequency part of the nonlinearity to which we shall not use normal forms. But above
all, one has to prove (1.6) which is independent of the dimension. This can be done by noting that
the eigenvalues of the harmonic oscillator

√−� + |x|2 on Rd and those of
√−� on Td share similar

properties and we have already had an estimate of that type in the case of the harmonic oscillator.
The point is that when the dimension increases, the multiplicity of the eigenvalues of

√−� on Td

grows, while the spacing between different eigenvalues remains essentially the same.
We state our main result in Section 2 and after introducing some notations we obtain some prop-

erties of eigenvalues and spectral projections in Section 4. Then we define some multilinear operator
spaces so that we may rewrite Sobolev energy in terms of elements in these spaces. This is done in
Section 5 and 6. The last two sections are devoted to prove boundedness of Sobolev energy, which
implies the main theorem.

2. Statement of the main theorem

Let d � 2 and set Td = (R/2πZ)d for the standard torus. Denote by � = ∂2
t − � the D’Alembertian

on R × Td . Let F : Td → R, v → F (v) be a real valued smooth function. We shall assume

∂
j
v F (0) = 0 for j = 0, . . . , κ (2.1)
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for some κ ∈ N∗ . Let m ∈ R∗+ . We consider the solution v of the Klein–Gordon equation

(� + m2)v = F (v),

v|t=0 = εv0,

∂t v|t=0 = εv1 (2.2)

where v0 ∈ Hs+1(Td,R), v1 ∈ Hs(Td,R), and ε > 0 is small enough. From Delort [5], we know that
if s is large enough and ε ∈ (0,1) small enough, Eq. (2.2) admits for any (v0, v1) in the unit ball of
Hs+1 × Hs a unique smooth solution defined on the interval (−Tε , Tε) with Tε � cε−κ(1+2/d)|logε|−A

for some uniform constant c > 0 and any A > 1. Moreover, ‖v(t, ·)‖Hs+1 + ‖∂t v(t, ·)‖Hs may be con-
trolled by Cε , for another uniform constant C > 0, on the interval of existence. The goal of this paper
is to show that under convenient assumptions, we may obtain a solution on an interval of length
larger than cε−κ(1+1/2−ρ) for some constant c > 0 and for any ρ > 0. Let us state the main result.

Theorem 2.1. For any ρ > 0, there is a zero measure subset N of R∗+ such that for every m ∈ R∗+ −N , there
are ε0 > 0, c > 0, s0 > 0 such that for any s � s0 , any ε ∈ (0, ε0), any pair (v0, v1) of real valued functions
belonging to the unit ball of Hs+1(Td) × Hs(Td), problem (2.2) has a unique solution

v ∈ C0((−Tε, Tε), Hs+1(Td)) ∩ C1((−Tε, Tε), Hs(Td))
with Tε � cε−κ(3/2−ρ) . Moreover, the solution v is uniformly bounded in Hs+1(Td) for |t| � cε−κ(3/2−ρ) and
∂t v is uniformly bounded in Hs(Td) on the same interval.

3. Notations

For k ∈ Zd we set

ϕk = 1

(2π)d/2
eikx (3.1)

so that (ϕk)k∈Zd is a Hilbertian basis of L2(Td,C). Let Π̃k be the orthogonal projection on the span
of ϕk . We have for u ∈ L2(Td,C)

Π̃ku = 〈u,ϕk〉ϕk. (3.2)

Denote by S the spectrum of
√−� on Td , that is,

S = {|k|; k ∈ Zd}. (3.3)

Let (λn)n∈N be the sequence consisting of distinct elements of S defined by induction as follows:

λn+1 = inf
{|k|; k ∈ Zd and |k| > λn

}; λ0 = 0. (3.4)

For n ∈ N, we also denote by Πn the orthogonal projection on the eigenspace associated to λn , that
is, for u ∈ L2(Td,C)

Πnu =
∑

k∈Zd, |k|=λn

〈u,ϕk〉ϕk. (3.5)
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For n0, . . . ,np+1 p + 2 natural numbers, we shall also use the following notions throughout the
paper

�n = (n0, . . . ,np+1) ∈ Np+2,

ñ = (n1, . . . ,np) ∈ Np,

λn′ = λn1 + · · · + λnp , (3.6)

where λn j ’s are defined in (3.4).
Finally, let E denote the space of trigonometric polynomials.

4. Properties of eigenvalues and spectral projectors on TTTd

For the sequence of eigenvalues defined in (3.4), we have the following properties.

Lemma 4.1. Let (λn)n∈N be defined by (3.4) and S by (3.3). Then:

(i) (λn)n∈N is a nonnegative strictly increasing sequence;
(ii) |λ2

n+1 − λ2
n| � 1, for any n ∈ N;

(iii) |λn+1 − λn| � 1/(2λn+1) for any n ∈ N;
(iv) Let N > 2 and A � 1. Then there exists C > 0 such that for any 
 ∈ N

∑
n∈N

(|λn − λ
| + A
)−N � C

(
A−(N−1)λ
 + A−(N−2)

)
. (4.1)

In particular, we have

∑
n∈N

(λn + A)−N � C A−(N−2). (4.2)

Proof. (i) is an immediate result of the construction of (λn)n . From the definition we know that there
are k ∈ Zd , k̃ ∈ Zd such that λn+1 = |k|, λn = |k̃|. Since λn+1 > λn , k 
= k̃. Therefore, (ii) holds true.
From (i) and (ii) we know that (iii) holds true. We are left to prove (iv). Compute

∑
n∈N

(|λn − λ
| + A
)−N = A−N +

∑
n∈N,n 
=


∑
j∈Z

(|λn − λ
| + A
)−N

1{2 j−1�|λn−λ
|<2 j}

� A−N + C
∑
j∈Z

(
2 j + A

)−N ∑
n∈N,n 
=


1{2 j−1�|λn−λ
|<2 j}. (4.3)

Let us estimate the number of λn ’s satisfying 2 j−1 � |λn − λ
| < 2 j . For such λn ’s, λn ∈ (λ
 − 2 j,

λ
 + 2 j). From (iii) we know that the distance between two successive λn ’s staying in such an interval
may be bounded from below by c/(λ
 + 2 j) for some c > 0. Consequently, the number of such λn ’s is
not bigger than C2 jλ
 if λ
 > C̃2 j , and than C22 j if λ
 � C̃2 j . Therefore by (4.3) we have

∑
n∈N

(|λn − λ
| + A
)−N � A−N + C

∑
j∈Z

(
2 jλ
 + 22 j)(2 j + A

)−N
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� A−N + C(λ
 + C1)A−N + C
∑
j∈N

(
2 jλ
 + 22 j)(2 j + A

)−N

� C
(

A−(N−1)λ
 + A−(N−2)
)
. (4.4)

This concludes the proof. �
Lemma 4.2. Let v ∈ Hs(Td), s � [d/2] + 1 and assume that F ∈ C∞(R) vanishes at the origin at order p,
p ∈ N∗ . Then we have F (v) ∈ Hs(Td). Moreover, ‖F (v)‖Hs � Cs‖v‖p

Hs for some Cs > 0.

Proof. Since Td is a compact manifold, using the finite cover theorem and partitions of unity, we may
reduce ourselves to working in local coordinate. Now the lemma follows from Corollary 6.4.5 in [8]
and Sobolev inequality. �

We shall need the following lemmas.

Lemma 4.3. For any γ > d, there is a constant C such that for any A > 1∑
k∈Zd

(|k| + A
)−γ � C A−(γ −d). (4.5)

Proof. This follows from the facts that for any N > 1,
∑

n∈Z(|n| + A)−N � C A−(N−1) and that∑
k∈Zd (|k| + A)−γ � C

∑
k1,...,kd∈Z(|k1| + · · · + |kd| + A)−γ . �

By definition, we have

Lemma 4.4. For any n ∈ N, any k ∈ Zd,

‖Πn‖L(L2,L2) � 1, ‖Π̃k‖L(L2,L2) � 1. (4.6)

It is known that the product of two eigenfunctions of
√−� on the torus is another eigenfunction.

This fact together with Lemma 4.4 and Sobolev embedding theorem gives

Lemma 4.5. Let p ∈ N∗ . For any k0,kp+1 ∈ Zd, any n0, . . . ,np+1 ∈ N, any u1, . . . , up+1 ∈ L2(Td,C),

(i) if |k0 − kp+1| > λn′ with λn′ defined by (3.6), then

Π̃k0

[
(Πn1 u1) · · · (Πnp up)(Π̃kp+1 up+1)

] ≡ 0;
(ii) if |λn0 − λnp+1 | > λn′ , then

Πn0

[
(Πn1 u1) · · · (Πnp up)(Πnp+1 up+1)

] ≡ 0;
(iii) one has for any ν > d/2,

∥∥Π̃k0

[
(Πn1 u1) · · · (Πnp up)(Π̃kp+1 up+1)

]∥∥
L2 � (1 + λn′)ν

p+1∏
j=1

‖u j‖L2 , (4.7)

∥∥Πn0

[
(Πn1 u1) · · · (Πnp up)(Πnp+1 up+1)

]∥∥
L2 � (1 + λn′)ν

p+1∏
j=1

‖u j‖L2 . (4.8)
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5. Definitions and properties of multilinear operators

In this section we give some definitions of various spaces of multilinear operators we shall use. We
also deduce some properties of operators in such spaces. Keep notations E , (λn)n∈N and λn′ defined
in Section 3 in mind.

Definition 5.1. Let ν ∈ R+ , τ ∈ R, δ ∈ (0,1), p ∈ N∗ . We denote by Mν,τ
p+1,δ the space of all p + 1-

linear operators (u1, . . . , up+1) → M(u1, . . . , up+1), defined on E × · · ·× E with values in L2(Td) such
that:

(i) For any u1, . . . , up+1 ∈ E , one has

Πn0

[
M(Πn1 u1, . . . ,Πnp+1 up+1)

] ≡ 0 (5.1)

if (n0, . . . ,np+1) ∈ Np+2 satisfies one of the following conditions:
(a) |λn0 − λnp+1 | � 1/2(λn0 + λnp+1 );
(b) |λn0 − λnp+1 | > λn′ ;
(c) λn′ � δλnp+1 .

(ii) There exists C > 0 such that for any (n0, . . . ,np+1) ∈ Np+2, any u1, . . . , up+1 ∈ E , one has

∥∥Πn0

[
M(Πn1 u1, . . . ,Πnp+1 up+1)

]∥∥
L2 � C(1 + λn0 + λnp+1)

τ (1 + λn′)ν
p+1∏
j=1

‖u j‖L2 . (5.2)

The best constant in the preceding inequality will be denoted by ‖M‖Mν,τ
p+1,δ

.

We may extend the operators in Mν,τ
p+1,δ to Sobolev spaces.

Proposition 5.2. Let ν ∈ R+ , τ ∈ R, δ ∈ (0,1), p ∈ N∗ , s > ν + 2. Then any element M ∈Mν,τ
p+1,δ extends as

a bounded operator from Hs(Td) × · · · × Hs(Td) to Hs−τ−1(Td). Moreover, for any s0 ∈ (ν + 2, s], there is
C > 0 such that for any M ∈Mν,τ

p+1,δ and any u1, . . . , up+1 ∈ Hs(Td),

∥∥M(u1, . . . , up+1)
∥∥

Hs−τ−1 � C‖M‖Mν,τ
p+1,δ

p∏
j=1

‖u j‖Hs0 ‖up+1‖Hs . (5.3)

Proof. We write∥∥M(u1, . . . , up+1)
∥∥2

Hs−τ−1

=
∑
n0

∥∥∥∥∑
n1

. . .
∑
np+1

Πn0 M(Πn1 u1, . . . ,Πnp+1 up+1)

∥∥∥∥2

L2

(
1 + λ2

n0

)s−τ−1
. (5.4)

Because of (i) of Definition 5.1, using the symmetries, we may assume (n0, . . . ,np+1) ∈ Np+2 is such
that

|λn0 − λnp+1 | < 1/2(λn0 + λnp+1),

λn1 � · · · � λnp < δλnp+1 ,

|λn0 − λnp+1 | � λn′ (5.5)
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when estimating the general term in the right-hand side of (5.4). From (5.5) we deduce

λn0 ∼ λnp+1 , λn′ ∼ λnp .

Therefore, we see from (5.2) that the square root of the general term in the n0 sum in (5.4) is smaller
than a constant times

∑
n1�···�np+1

(1 + λnp+1)
s−1(1 + λnp )

ν 1̄{n0,...,np+1}
p+1∏
j=1

‖Πn j u j‖L2 , (5.6)

where

1̄{n0,...,np+1} = 1{|λn0 −λnp+1 |�Cλnp , λn0 ∼λnp+1 , λnp �δλnp+1 }.

Now Hölder inequality allows us to bound (5.6) from above by a constant times the product of I
and II, where I and II stand respectively for

I =
( ∑

n1�···�np+1

(1 + λnp )
ν 1̄{n0,...,np+1}

p∏
j=1

‖Πn j u j‖L2

)1/2

,

II =
( ∑

n1�···�np+1

(1 + λnp+1)
2s−2(1 + λnp )

ν 1̄{n0,...,np+1}
p∏

j=1

‖Πn j u j‖L2‖Πnp+1 up+1‖2
L2

)1/2

.

By (iv) of Lemma 4.1 we have

∑
n0

1̄{n0,...,np+1} � C
∑
n0

(1 + λnp )
31{λnp �δλnp+1 }

(|λn0 − λnp+1 | + 1 + λnp )
3

� C(1 + λnp+1)(1 + λnp ),

∑
np+1

1̄{n0,...,np+1} � C
∑
np+1

(1 + λnp )
31{λnp �Cλn0 }

(|λn0 − λnp+1 | + 1 + λnp )
3

� C(1 + λn0)(1 + λnp ). (5.7)

Thus using (5.7) to deal with np+1 sum we get

I � C

[ ∑
n1�···�np

(1 + λnp )
ν+1(1 + λn0)

p∏
j=1

‖Πn j u j‖L2

]1/2

� C(1 + λn0)
1/2

p∏
j=1

‖u j‖1/2
Hs0

if we take s0 > ν +2 using (4.2). We incorporate the factor (1+λn0 )
1/2 coming from the term I into II

and then compute

63



D. Fang, Q. Zhang / J. Differential Equations 249 (2010) 151–179 159

(1 + λn0)
1/2II � C

[ ∑
n1�···�np+1

(1 + λnp )
ν 1̄{|n0,...,np+1}

× (1 + λnp+1)
2s−1

p∏
j=1

‖Πn j u j‖L2‖Πnp+1 up+1‖2
L2

]1/2

.

By the above analysis, we get

∥∥M(u1, . . . , up+1)
∥∥2

Hs−τ−1 � C
∑

(n0,...,np+1)∈Np+2

(1 + λnp )
ν 1̄{n0,...,np+1}(1 + λnp+1)

2s−1

×
p∏

j=1

‖Πn j u j‖L2‖Πnp+1 up+1‖2
L2

p∏
j=1

‖u j‖Hs0

� C
∑

(n1,...,np+1)∈Np+1

(1 + λnp )
ν+1(1 + λnp+1)(1 + λnp+1)

2s−1

×
p∏

j=1

‖Πn j u j‖L2‖Πnp+1 up+1‖2
L2

p∏
j=1

‖u j‖Hs0

� C
p∏

j=1

‖u j‖2
Hs0 ‖up+1‖2

Hs , (5.8)

where we have used (5.7) in the second inequality to handle n0 sum and we have also taken s > ν+2.
The constant ‖M‖Mν,τ

p+1,δ
is implicit in the constant C when we get the inequality (5.6). This concludes

the proof. �
Let us define convenient subspaces of the spaces of Definition 5.1.

Definition 5.3. Let ν ∈ R+ , τ ∈ R, δ ∈ (0,1), p ∈ N∗ , ω : {0, . . . , p + 1} → {−1,1} be given.

• If
∑p+1

j=0 ω( j) 
= 0, we set M̃ν,τ
p+1,δ(ω) =Mν,τ

p+1,δ ;

• If
∑p+1

j=0 ω( j) = 0, we denote by M̃ν,τ
p+1,δ(ω) the closed subspace of Mν,τ

p+1,δ given by those M ∈
Mν,τ

p+1,δ such that

Πn0 M(Πn1 u1, . . . ,Πnp+1 up+1) ≡ 0 (5.9)

for any (n0, . . . ,np+1) ∈ Sω
p , where

Sω
p = {

(n0, . . . ,np+1) ∈ Np+2; there is a bijection:

σ :
{

0 � j � p + 1, ω( j) = −1
} → {

j; 0 � j � p + 1, ω( j) = 1
}

with nσ ( j) = n j for any j in the first set
}
. (5.10)

We shall need another subspace whose elements have better properties than those in Mν,τ
p+1,δ .
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Definition 5.4. Let ν ∈ R+ , τ ∈ R, δ ∈ (0,1), p ∈ N∗ . We denote by Gν,τ
p+1,δ the space of all p + 1-linear

operators (u1, . . . , up+1) → M(u1, . . . , up+1), defined on E × · · · × E with values in L2(Td) such that:

(i) For any u1, . . . , up+1 ∈ E , one has

Π̃k0

[
M(Πn1 u1, . . . ,Πnp up, Π̃kp+1 up+1)

] ≡ 0 (5.11)

if k0,kp+1 ∈ Zd , (n1, . . . ,np) ∈ Np satisfy one of the following conditions:
(a) |k0 − kp+1| � 1/2(|k0| + |kp+1|);
(b) |k0 − kp+1| > λn′ ;
(c) λn′ � δ|kp+1|.

(ii) There is C > 0 such that for any (n1, . . . ,np) ∈ Np+2, any k0,kp+1 ∈ Zd , any u1, . . . , up+1 ∈ E , one
has ∥∥Π̃k0

[
M(Πn1 u1, . . . ,Πnp up, Π̃kp+1 up+1)

]∥∥
L2

� C
(
1 + |k0| + |kp+1|

)τ
(1 + λn′)ν

p+1∏
j=1

‖u j‖L2 . (5.12)

The best constant in the preceding inequality will be denoted by ‖M‖Gν,τ
p+1,δ

.

Let us show that the space defined in Definition 5.4 is a subspace of that of Definition 5.1.

Proposition 5.5. Let ν ∈ R+ , τ ∈ R, δ ∈ (0,1), p ∈ N∗ . Then we have

Gν,τ
p+1,δ ⊂ Mν+d,τ

p+1,δ .

Proof. Let M ∈ Gν,τ
p+1,δ . For any (n0, . . . ,np+1) ∈ Np+2 and any u1, . . . , up+1 ∈ E ,

Πn0 M(Πn1 u1, . . . ,Πnp up,Πnp+1 up+1)

=
∑

k0,kp+1∈Zd

|k0|=λn0 , |kp+1|=λnp+1

Π̃k0 M(Πn1 u1, . . . ,Πnp up, Π̃kp+1 up+1). (5.13)

For the indices, which appear in (5.13), the conditions listed in (i) of Definition 5.1 imply the corre-
sponding ones in (i) of Definition 5.4. Thus item (i) of Definition 5.1 is satisfied for M . Now let us
establish (5.2). According to (5.13) the square of the quantity in the left-hand side of (5.2) equals

∑
k0∈Zd

|k0|=λn0

∥∥∥∥ ∑
kp+1∈Zd

|kp+1|=λnp+1

Π̃k0 M(Πn1 u1, . . . ,Πnp up, Π̃kp+1 up+1)

∥∥∥∥2

L2
. (5.14)

The square root of the general term over k0 sum in (5.14) is not larger than∑
kp+1∈Zd

|kp+1|=λnp+1

∥∥Π̃k0 M(Πn1 u1, . . . ,Πnp up, Π̃kp+1 up+1)
∥∥

L2 , (5.15)
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which, according to (5.12) and |k0| = λn0 , may be bounded from above by a constant times

∑
kp+1∈Zd

|kp+1|=λnp+1

(1 + λn0 + λnp+1)
τ (1 + λn′)ν1{|k0−kp+1|�λn′ }

p∏
j=1

‖u j‖L2‖Π̃kp+1 up+1‖L2 . (5.16)

Therefore, applying Hölder inequality to the sum over kp+1 in (5.16), we get an upper bound of (5.16)
by a constant times

(1 + λn0 + λnp+1)
τ (1 + λn′)ν

p∏
j=1

‖u j‖L2

×
( ∑

kp+1∈Zd

|kp+1|=λnp+1

1{|k0−kp+1|�λn′ }
)1/2( ∑

kp+1∈Zd

|kp+1|=λnp+1

1{|k0−kp+1|�λn′ }‖Π̃kp+1 up+1‖2
L2

)1/2

. (5.17)

By Lemma 4.3, we have

∑
kp+1∈Zd

|kp+1|=λnp+1

1{|k0−kp+1|�λn′ } � C
∑

kp+1∈Zd

|kp+1|=λnp+1

(1 + λn′)d+1

(|k0 − kp+1| + 1 + λn′)d+1
� C(1 + λn′)d. (5.18)

Thus, by the above analysis and (5.18), we finally obtain

∥∥Πn0 M(Πn1 u1, . . . ,Πnp+1 up+1)
∥∥2

L2

� C(1 + λn0 + λnp+1)
2τ (1 + λn′)2ν+d

p∏
j=1

‖u j‖2
L2

×
∑

k0,kp+1∈Zd

|k0|=λn0 , |kp+1|=λnp+1

1{|k0−kp+1|�λn′ }‖Π̃kp+1 up+1‖2
L2

� C(1 + λn0 + λnp+1)
2τ (1 + λn′)2ν+2d

p∏
j=1

‖u j‖2
L2

∑
kp+1∈Zd

|kp+1|=λnp+1

‖Π̃kp+1 up+1‖2
L2

= C(1 + λn0 + λnp+1)
2τ (1 + λn′)2ν+2d

p∏
j=1

‖u j‖2
L2‖Πnp+1 up+1‖2

L2

� C(1 + λn0 + λnp+1)
2τ (1 + λn′)2ν+2d

p+1∏
j=1

‖u j‖2
L2 . (5.19)

Thus, (5.2) holds true with ν replaced with ν + d. This concludes the proof. �
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We have seen in Proposition 5.2 that any element in Mν,τ
p+1,δ maps Hs(Td) × · · · × Hs(Td) to

Hs−τ−1(Td). But the elements in its subspace Gν ′,τ
p+1,δ have a better property. As a matter of fact, if

we mimic the proof of Proposition 5.2 but using (5.12) and Lemma 4.3 instead of using (5.2) and
Lemma 4.1, then we get

Proposition 5.6. Let ν ∈ R+ , τ ∈ R, δ ∈ (0,1), p ∈ N∗ , s > ν + d + 1. Then any element M ∈ Gν,τ
p+1,δ extends

as a bounded operator from Hs(Td) × · · · × Hs(Td) to Hs−τ (Td). Moreover, for any s0 ∈ (ν + d + 1, s], there
is C > 0 such that for any M ∈ Gν,τ

p+1,δ and any u1, . . . , up+1 ∈ Hs(Td),

∥∥M(u1, . . . , up+1)
∥∥

Hs−τ � C‖M‖Gν,τ
p+1,δ

p∏
j=1

‖u j‖Hs0 ‖up+1‖Hs . (5.20)

We shall also need classes of remainder operators. If n1, . . . ,np+1 ∈ N and if j0 ∈ {1, . . . , p + 1} is
an index such that λn j0

= max{λn1 , . . . , λnp+1 }, where λn j , j = 1, . . . , p + 1, are defined by (3.4), we
denote

max2(λn1 , . . . , λnp+1) = 1 + max{λn j ; 1 � j � p + 1, j 
= j0}. (5.21)

Definition 5.7. Let ν ∈ R+ , τ ∈ R, p ∈ N∗ . We denote by Rν,τ
p+1 the space of (p + 1)-linear maps from

E × · · · × E to L2(Td), (u1, . . . , up+1) → R(u1, . . . , up+1) such that for any N ∈ R+ , there is CN > 0
such that for any (n0, . . . ,np+1) ∈ Np+2, any u1, . . . , up+1 ∈ E ,

∥∥Πn0 R(Πn1 u1, . . . ,Πnp+1 up+1)
∥∥

L2 � CN(1 + λn0)
τ

max2(λn1 , . . . , λnp+1)
ν+N

(λn0 + · · · + λnp+1 + 1)N

p+1∏
j=1

‖u j‖L2 . (5.22)

The elements in Rν,τ
p+1 also extend as bounded operators on Sobolev spaces.

Proposition 5.8. Let ν ∈ R+ , τ ∈ R, p ∈ N∗ be given. Then for any s, s0 ∈ R with s � s0 > 2, any
R ∈ Rν,τ

p+1 , (u1, . . . , up+1) → R(u1, . . . , up+1) extends as a bounded map from Hs(Td) × · · · × Hs(Td) →
H2s−ν−τ−7(Td). Moreover we have

∥∥R(u1, . . . , up+1)
∥∥

H2s−ν−τ−7 � C
∑

1� j1< j2�p+1

[
‖u j1‖Hs‖u j2‖Hs

∏
k 
= j1,k 
= j2

‖uk‖Hs0

]
. (5.23)

Remark 5.9. In fact, any R ∈Rν,τ
p+1, (u1, . . . , up+1) → R(u1, . . . , up+1) extends as a bounded map from

Hs(Td) × · · · × Hs(Td) → H2s−ν−τ−a(Td) for any a > 6 and we also have a counterpart of (5.23). We
take a = 7 for the convenience of expression and this will be enough for the use.

Proof. We may assume τ = 0. We need to bound ‖Πn0 R(u1, . . . , up+1)‖L2 from above by (1 +
λn0 )

−2s+ν+7cn0 for an 
2-sequence cn0 . To do that we decompose u j as
∑

n j
Πn j u j and use (5.22).

By the symmetries we limit ourselves to summation over

n1 � · · · � np+1, (5.24)

which according to (i) of Lemma 4.1 is equivalent to

λn1 � · · · � λnp+1 . (5.25)
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From this we get

max2(λn1 , . . . , λnp+1) = 1 + λnp . (5.26)

Therefore we are done if we can bound from above

C
∑

n1�···�np+1

(1 + λnp )
ν+N

(1 + λn0 + · · · + λnp+1)
N

p−1∏
j=1

(1 + λn j )
−s0(1 + λnp )

−s(1 + λnp+1)
−s (5.27)

by (1 + λn0)
−2s+ν+7cn0 for s � 0, since ‖Πn j u j‖L2 � (1 + λn j )

−ρ‖u j‖Hρ holds true with any ρ > 0.
Using (5.25) we bound (5.27) from above by

C
∑

n1�···�np+1

(1 + λnp )
ν+N−2s

(1 + λn0 + λnp+1)
N

p−1∏
j=1

(1 + λn j )
−s0 . (5.28)

Applying (iv) of Lemma 4.1 to np+1 sum, we see that (5.28) is not larger than

C
∑

n1�···�np

(1 + λnp )
ν+N−2s(1 + λn0)

−(N−2)

p−1∏
j=1

(1 + λn j )
−s0 .

Also because of (iv) of Lemma 4.1, this can be bounded from above by (1 + λn0 )
−2s+ν+7cn0 with

(cn0 )n∈N an 
2-sequence if we take N = 2s − ν − 5/2, s0 > 2 and thus concludes the proof. �
Definition 5.10. Let ν ∈ R+ , τ ∈ R, p ∈ N∗ , ω : {0, . . . , p + 1} → {−1,1} be given.

• If
∑p+1

j=0 ω( j) 
= 0, we set R̃ν,τ
p+1(ω) =Rν,τ

p+1;
• If

∑p+1
j=0 ω( j) = 0, we denote by R̃ν,τ

p+1(ω) the closed subspace of Rν,τ
p+1 given by those R ∈Rν,τ

p+1
such that

Πn0 R(Πn1 u1, . . . ,Πnp+1 up+1) ≡ 0 (5.29)

for any (n0, . . . ,np+1) ∈ Sω
p , where Sω

p is defined by (5.10).

6. Rewriting of the energy

We shall finally control the energy. But in this section let us compute its time derivative. We shall
write it in terms of several types of multilinear operators introduced in the previous section according
to the estimate of the function of type (1.4). One difficulty is to make appear a commutator so that
we can gain one derivative to obtain longer lifespan than the one given by local existence theory.
There is another thing we should take care of. In order to recover the loss of derivatives coming
from dividing small divisors, we shall use normal forms only to eliminate the low frequency part of
one type of multilinear operators (in fact these are M p


 ) and we have to properly estimate the high
frequency part. Since by Proposition 5.2 there is one derivative loss when we extend the operators in
Mν,τ

p+1,δ to Sobolev spaces, we have to exploit a better property of the high frequency part in order

to not lose derivatives. This is realized by showing M p

 ∈ Gν,2s−2

p+1,δ .
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We begin by analyzing the nonlinearity. Using Taylor’s formula we have

−F (v) = −
2κ−1∑
p=κ

∂
p+1
v F (0)

(p + 1)! v p+1 + G(v) (6.1)

where G(v) vanishes at order 2κ + 1 at v = 0. (Here we only decompose the nonlinearity up to
order 2κ because it is enough for us to get a lifespan of length cε−3/2.) By making a change of
unknown

u = (Dt + Λm)v, v = 1

2
Λ−1

m (u + ū) (6.2)

with

Dt = −i∂t, Λm =
√

−� + m2, (6.3)

we write Cauchy problem (2.2) as

(Dt − Λm)u = −F

(
Λ−1

m

(
u + ū

2

))
,

u|t=0 = εu0 (6.4)

with u0 = −iv1 + Λm v0 ∈ Hs(Td,C). The energy to be estimated is

Θs
(
u(t, ·)) = 1

2

〈
Λs

mu(t, ·),Λs
mu(t, ·)〉. (6.5)

Proposition 6.1. There are ν ∈ R+ , δ ∈ (0,1) and large enough s0 such that for any s � s0 , there are:

• Multilinear operators M p

 ∈ Gν,2s−2

p+1,δ ∩ M̃ν+d,2s−2
p+1,δ (ω
), κ � p � 2κ − 1, 0 � 
 � p with ω
 defined by

ω
( j) = −1 for j = 0, . . . , 
, and ω
( j) = 1 for j = 
 + 1, . . . , p + 1;
• Multilinear operators M̃ p


 ∈ M̃ν,2s−1
p+1,δ (ω̃
), κ � p � 2κ − 1, 0 � 
 � p with ω̃
 defined by ω̃
( j) = −1

for j = 0, . . . , 
, p + 1, and ω̃
( j) = 1 for j = 
 + 1, . . . , p;
• Multilinear operators R p


 ∈ R̃ν,2s
p+1(ω
), R̃ p


 ∈ R̃ν,2s
p+1(ω̃
), κ � p � 2κ − 1, 0 � 
 � p;

• A map u → T (u) defined on Hs(Td) with values in R, satisfying when ‖u‖Hs � 1, |T (u)| � C‖u‖2κ+2
Hs

such that

d

dt
Θs

(
u(t, ·)) =

2κ−1∑
p=κ

p∑

=0

Re i
〈
M p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p+1−


), u
〉

+
2κ−1∑
p=κ

p∑

=0

Re i
〈
M̃ p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


, ū), u
〉

+
2κ−1∑
p=κ

p∑

=0

Re i
〈
R p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p+1−


), u
〉
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+
2κ−1∑
p=κ

p∑

=0

Re i
〈̃
R p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


, ū), u
〉

+ T (u). (6.6)

Remark 6.2. Let us explain the meaning of the proposition. In the right-hand side of (6.6), we have
two main contributions: the M p


 terms will be expressed in the proof below from commutators. This
will make gain one derivative, and explains why these terms are of order 2s − 2, and not just 2s − 1.
On the other hand, the M̃ p


 terms are of order 2s − 1 because their expression will not involve any
commutator.

In the rest of the paper, we shall modify Θs in the left-hand side of (6.6) in order to cancel out
the M p


 , M̃ p

 terms in the right-hand side. The fact that we gained two derivatives on M p


 will allow
us to loose one derivative when constructing the corrector used to eliminate this term. On the other
hand, we shall see that M̃ p


 is a “noncharacteristic” term, which can be eliminated without loosing
derivatives (actually we shall even gain one derivative): see Lemma 8.1. This explains why the fact
that M̃ p


 is only of order 2s − 1 is unimportant.

Proof. We compute according to (6.1) and (6.4)

d

dt
Θs

(
u(t, ·)) = Re i

〈
Λs

m Dt u,Λs
mu

〉 = Re i

〈
−Λs

m F

(
Λ−1

m

(
u + ū

2

))
,Λs

mu

〉

=
2κ−1∑
p=κ

c(p)Re i

〈
Λs

m

(
Λ−1

m

(
u + ū

2

))p

Λ−1
m ū,Λs

mu

〉

+
2κ−1∑
p=κ

c(p)Re i

〈
Λs

m

(
Λ−1

m

(
u + ū

2

))p

Λ−1
m u,Λs

mu

〉

+ Re i

〈
Λs

mG

(
Λ−1

m

(
u + ū

2

))
,Λs

mu

〉
, (6.7)

where c(p) is a real constant. The last term in the right-hand side of (6.7) contributes to the last term
T (u) in (6.6) by Lemma 4.2 if s is large. We then have to compute I and II with

I = c(p)Re i

〈
Λs

m

(
Λ−1

m

(
u + ū

2

))p

Λ−1
m ū,Λs

mu

〉
,

II = c(p)Re i

〈
Λs

m

(
Λ−1

m

(
u + ū

2

))p

Λ−1
m u,Λs

mu

〉
. (6.8)

This is the content of the next several lemmas.

Lemma 6.3. There are ν ∈ R+ and small enough δ such that there are multilinear operators M̃ p

 ∈

M̃ν,2s−1
p+1,δ (ω̃
), R̃ p


 ∈ R̃ν,2s
p+1(ω̃
) with κ � p � 2κ − 1, 0 � 
 � p and ω̃
 defined by ω̃
( j) = −1 for

j = 0, . . . , 
, ω̃
( j) = 1 for j = 
 + 1, . . . , p and ω̃
(p + 1) = −1 such that

I =
p∑


=0

Re i
〈
M̃ p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


, ū), u
〉 + p∑


=0

Re i
〈̃
R p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


, ū), u
〉
. (6.9)
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Proof. Let ω̃
 be defined as in the statement of the lemma and Sω̃

p defined by (5.10) with ω replaced

by ω̃
 . Let 0 < δ � 1. We shall use notation (3.6) in the following. We decompose

I = c(p)Re i
〈
A1

p(ū, u)ū, u
〉 + c(p)Re i

〈
A2

p(ū, u)ū, u
〉
, (6.10)

where Ai
p , i = 1,2, are operators defined as follows:

A1
p(ū, u) =

∑
n1,...,np+1∈N

1{λn′<δλnp+1 }Λ2s
m

p∏
j=1

(
Λ−1

m Πn j

(
ū + u

2

))
Λ−1

m Πnp+1 , (6.11)

A2
p(ū, u) =

∑
n1,...,np+1∈N

1{λn′�δλnp+1 }Λ2s
m

p∏
j=1

(
Λ−1

m Πn j

(
ū + u

2

))
Λ−1

m Πnp+1 . (6.12)

We denote

a
(ñ; u1, . . . , up) = c(p)

2p

(
p




)(
Λ−1

m Πn1 u1
) · · · (Λ−1

m Πnp up
)

(6.13)

and define

M̃ p

 (u1, . . . , up+1) =

∑
�n∈(Sω̃

p )c

1{λn′<δλnp+1 }Λ2s
m Πn0 a
(ñ; u1, . . . , up)Λ−1

m Πnp+1 up+1,

R̃ p

 (u1, . . . , up+1) =

∑
�n∈(Sω̃

p )c

1{λn′�δλnp+1 }Λ2s
m Πn0 a
(ñ; u1, . . . , up)Λ−1

m Πnp+1 up+1. (6.14)

Then we claim that

Re i
〈
M̃ p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


, ū), u
〉

equals the quantity obtained replacing M̃ p

 by the expression given by the first equality in (6.14) but

with a sum taken for all n0, . . . ,np+1. In fact, if (n0, . . . ,np+1) ∈ Sω̃

p with Sω̃


p 
= ∅, then by definition
there exists a bijection σ mapping {0, . . . , 
, p + 1} to {
 + 1, . . . , p} with n j = nσ( j) for j in the first
set. Therefore if we denote by M̃ p,c


 the multilinear operators obtained by the expression given by the
first equality in (6.14) but with a sum for �n ∈ Sω̃

p , by coupling Πn j ū, j = 0, . . . , 
, p + 1, respectively
with Πnσ( j) u, j = 0, . . . , 
, p + 1, we deduce that

〈
M̃ p,c


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


, ū), u
〉
,

is real and thus contributes for nothing to the computation of I. With the same reasoning, if R̃ p,c



denote the multilinear operators obtained by the expression given by the second equality in (6.14)
but with a sum for �n ∈ Sω̃

p , we see that

〈̃
R p,c


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


, ū), u
〉
,
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is real and thus also contributes for nothing to the computation of I. Therefore, (6.9) follows from the
binomial expansion and the symmetries on n1, . . . ,np .

We are left to show that M̃ p

 ∈ M̃ν,2s−1

p+1,δ (ω̃
) and R̃ p

 ∈ R̃ν,2s

p+1(ω̃
).

Assume that Πn0 M̃ p

 (Πn1 u1, . . . ,Πnp+1 up+1) is nonzero. Then by (ii) of Lemma 4.5 and the defini-

tion we have

|λn0 − λnp+1 | � λn′ , (6.15)

which, together with the cut-off function in the definition, implies

λn′ < δλnp+1 , |λn0 − λnp+1 | <
1

2
(λn0 + λnp+1) (6.16)

if δ is small enough. From (6.15) and (6.16) we see that M̃ p

 satisfies item (i) of Definition 5.1. When

we establish (5.2) for M̃ p

 , we assume that the left-hand side of (5.2) with M replaced by M̃ p


 does not
vanish. Then since we have (6.15) and (6.16), we deduce that λn0 and λnp+1 are comparable to each
other. Therefore, we obtain by (iii) of Lemma 4.5 that (5.2) holds true for any large enough ν ∈ R+
and for τ = 2s − 1, since there is Λ2s

m before Πn0 and Λ−1
m before Πnp+1 in the definition of M̃ p


 . Thus

M̃ p

 ∈Mν,2s−1

p+1,δ . On the other hand, (5.9) holds true for (n0, . . . ,np+1) ∈ Sω̃

p since in the definition we

have ruled out the sum over the indices in that set. So we have M̃ p

 ∈ M̃ν,2s−1

p+1,δ (ω̃
).

To prove R̃ p

 ∈ R̃ν,2s

p+1(ω̃
), we assume that the left-hand side of (5.22) with R replaced by R̃ p

 is

nonzero. Then we have by Lemma 4.5 and the definition of R̃ p



|λn0 − λnp+1 | � λn′ (6.17)

and also obtain

λn′ � δλnp+1 , (6.18)

which is due to the cut-off function in the definition. From (6.17) and (6.18) we deduce

λn′ � Cλn0 . (6.19)

Therefore we get

(1 + λn′) ∼ (λn0 + · · · + λnp+1 + 1). (6.20)

Thus (5.22) with R replaced by R̃ p

 and τ = 2s follows from (iii) of Lemma 4.5, (6.20) and the fact

that

(1 + λn′) � C max2(λn1 , . . . , λnp+1).

On the other hand, (5.29) holds trivially for (n0, . . . ,np+1) ∈ Sω̃

p by the definition. Thus we have

R̃ p

 ∈ R̃ν,2s

p+1(ω̃
). �
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Lemma 6.4. There are ν ∈ R+ and small enough δ such that there are multilinear operators M p

 ∈ Gν,2s−2

p+1,δ ∩
M̃ν+d,2s−2

p+1,δ (ω
), R p

 ∈ R̃ν,2s

p+1(ω
) with κ � p � 2κ − 1, 0 � 
 � p, and ω
 defined by ω
( j) = −1 for j =
0, . . . , 
 and ω
( j) = 1 for j = 
 + 1, . . . , p + 1, such that

II =
p∑


=0

Re i
〈
M p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p+1−


), u
〉 + p∑


=0

Re i
〈
R p


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p+1−


), u
〉
. (6.21)

Proof. By the adjointness of the operator Λm and (6.8)

II = c(p)

2
Re i

〈(
Λ2s

m

(
Λ−1

m

(
ū + u

2

))p

Λ−1
m − Λ−1

m

(
Λ−1

m

(
ū + u

2

))p

Λ2s
m

)
u, u

〉
. (6.22)

Let δ > 0 be small. We then define B1
p , B2

p to be the operators

B1
p(ū, u) = c(p)

2

∑
�n∈Np+2

1{λn′�δλnp+1 }Πn0

( p∏
j=1

(
Λ−1

m Πn j

(
u + ū

2

)))
Πnp+1 , (6.23)

B2
p(ū, u) = c(p)

2

∑
�n∈Np+2

1{λn′<δλnp+1 }Πn0

( p∏
j=1

(
Λ−1

m Πn j

(
u + ū

2

)))
Πnp+1 . (6.24)

Remark that by the symmetries on n1, . . . ,np and with notation (6.13), they may also be written

B1
p(ū, u) = 1

2

∑
�n∈Np+2

p∑

=0

1{λn′�δλnp+1 }Πn0 a
(ñ; ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


)Πnp+1 , (6.25)

B2
p(ū, u) = 1

2

∑
�n∈Np+2

p∑

=0

1{λn′<δλnp+1 }Πn0 a
(ñ; ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


)Πnp+1 . (6.26)

Then we have by (6.22)

II = Re i
〈(
Λ2s

m

(
B1

p(ū, u) + B2
p(ū, u)

)
Λ−1

m − Λ−1
m

(
B1

p(ū, u) + B2
p(ū, u)

)
Λ2s

m

)
u, u

〉
= Re i

〈
Λ2s

m B1
p(ū, u)Λ−1

m u, u
〉 − Re i

〈
Λ−1

m B1
p(ū, u)Λ2s

m u, u
〉

+ 〈[
Λ2s

m , B2
p(ū, u)

]
Λ−1

m u, u
〉 − Re i

〈[
Λ−1

m , B2
p(ū, u)

]
Λ2s

m u, u
〉

:= III + IV + V + VI. (6.27)

Let ω
 be defined by ω
( j) = −1 for j = 0, . . . , 
, and ω
( j) = 1 for j = 
 + 1, . . . , p + 1. Let Sω

p be

defined by (5.10) with ω replaced by ω
 .
(i) The term III.
With notations (3.6) and (6.13) we set

R p,1

 (u1, . . . , up+1) = 1

2

∑
�n∈(S

ω

p )c

1{λn′�δλnp+1 }Λ2s
m Πn0 a
(ñ; u1, . . . , up)Λ−1

m Πnp+1 up+1 (6.28)

73



D. Fang, Q. Zhang / J. Differential Equations 249 (2010) 151–179 169

so that

III =
p∑


=0

Re i
〈
R p,1


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p+1−


), u
〉
. (6.29)

Note that we have ruled out the indices (n0, . . . ,np+1) ∈ Sω

p in the definition with the same rea-

soning as in the proof of Lemma 6.3. Therefore, (5.29) with R replaced with R p,1

 holds trivially for

(n0, . . . ,np+1) ∈ Sω

p . We now assume that the left-hand side of (5.22) with R replaced by R p,1


 is
nonzero. Then by Lemma 4.5 and the definition we must have

λn′ � δλnp+1 , |λn0 − λnp+1 | � λn′ , (6.30)

which implies

λn′ � Cλn0 , (1 + λn′) ∼ (λn0 + · · · + λnp+1 + 1). (6.31)

On the other hand, we always have

1 + λn′ � C max2(λn1 , . . . , λnp+1). (6.32)

Thus, by Lemma 4.5 and the above inequalities we see that (5.22) holds with τ = 2s and R replaced
by R p,1


 . So we get R p,1

 ∈ R̃ν,2s

p+1(ω
).
(ii) The term IV.
By (6.23) and using the fact Πn j w = Πn j w̄ we easily deduce

B1
p(ū, u)∗ = c(p)

2

∑
�n∈Np+2

1{λn′�δλn0 }Πn0

( p∏
j=1

(
Λ−1

m Πn j

(
ū + u

2

)))
Πnp+1 , (6.33)

which, using the symmetries on (n1, . . . ,np), may also be written

B1
p(ū, u)∗ = 1

2

p∑

=0

∑
�n∈Np+2

1{λn′�δλn0 }Πn0 a
(ñ; ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


)Πnp+1 . (6.34)

Set

R p,2

 (u1, . . . , up+1) = 1

2

∑
�n∈(S

ω

p )c

1{λn′�δλn0 }Λ2s
m Πn0 a
(ñ; u1, . . . , up)Λ−1

m Πnp+1 up+1 (6.35)

so that

IV = Re i
〈
Λ2s

m B1
p(ū, u)∗Λ−1

m u, u
〉 = p∑


=0

Re i
〈
R p,2


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p+1−


), u
〉
, (6.36)

provided we rule out the sum over the indices (n0, . . . ,np+1) ∈ Sω

p , which may be shown with the

same reasoning as in the proof of Lemma 6.3. Now if we assume that the left-hand side of (5.22)
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with R replaced by R p,2

 is nonzero, we also have (6.30)–(6.32). Thus by Lemma 4.5 we see that

(5.22) with R replaced by R p,2

 holds. Therefore R p,2


 ∈ Rν,2s
p+1. Since (5.29) with R replaced by R p,2


 is

trivial for (n0, . . . ,np+1) ∈ Sω

p , R p,2


 ∈ R̃ν,2s
p+1(ω
).

(iii) The term V.
First we claim that if δ is small, we have

B2
p(ū, u) =

∑
k0,kp+1∈Zd

1{|k0−kp+1|< 1
2 (|k0|+|kp+1|)}Π̃k0 B2

p(ū, u)Π̃kp+1 . (6.37)

Indeed, we only need to show that B̃2
p(ū, u) defined by

B̃2
p(ū, u) =

∑
k0,kp+1∈Zd

1{|k0−kp+1|� 1
2 (|k0|+|kp+1|)}Π̃k0 B2

p(ū, u)Π̃kp+1 , (6.38)

is a zero operator. By (6.26) we decompose

B̃2
p(ū, u) = 1

2

∑
k0,kp+1∈Zd

∑
�n∈Np+2

p∑

=0

1{λn′<δλnp+1 , |k0−kp+1|� 1
2 (|k0|+|kp+1|)}

× Π̃k0Πn0 a
(ñ; ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


)Πnp+1Π̃kp+1 . (6.39)

From the facts that Π̃k j Πn j = Πn j Π̃k j , j = 0, p + 1 and that Π̃k j Πn j 
= 0 if and only if |k j | = λn j for

j = 0, p + 1 and Lemma 4.5, we see that Π̃k0Πn0 a
(ñ; ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p−


)Πnp+1Π̃kp+1 is supported on

|k0| = λn0 , |kp+1| = λnp+1 , |k0 − kp+1| � λn′ , |λn0 − λnp+1 | � λn′ , (6.40)

which is not compatible with

λn′ < δλnp+1 , |k0 − kp+1| � 1

2

(|k0| + |kp+1|
)
, (6.41)

if δ < 1/2. Thus B̃2
p(ū, u) = 0.

By (6.26) and (6.39) we set

M p,1

 (u1, . . . , up+1) = 1

2

∑
k0,kp+1∈Zd

∑
�n∈(S

ω

p )c

1{λn′<δλnp+1 , |k0−kp+1|< 1
2 (|k0|+|kp+1|)}

× ((
m2 + |k0|2

)s − (
m2 + |kp+1|2

)s)
× Π̃k0Πn0 a
(ñ;Πn1 u1, . . . ,Πnp up)Λ−1

m Πnp+1Π̃kp+1 up+1 (6.42)

so that we have

V =
p∑


=0

Re i
〈
M p,1


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p+1−


), u
〉
, (6.43)
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where as before we have ruled out the indices �n ∈ Sω

p in definition (6.42), so that (5.9) holds auto-

matically with M replace by M p,1

 and for any �n ∈ Sω


p .
It follows by Lemma 4.5 and the cut-off function in the definition that item (i) of Definition 5.4

is satisfied for M p,1

 . To establish (5.12) for M p,1


 , we may assume that the left-hand side of (5.12)

with M replaced by M p,1

 is nonzero. Thus we have for some n0,np+1 ∈ N

|k0 − kp+1| < 1

2

(
k0| + |kp+1|

)
,

|k0 − kp+1| � λn′ ,

λn′ < δλnp+1 ,

|k0| = λn0 ,

|kp+1| = λnp+1 , (6.44)

from which we also deduce |k0| ∼ |kp+1| and

∣∣(m2 + |k0|2
)s − (

m2 + |kp+1|2
)s∣∣ � C

(
1 + |k0 − kp+1|

)(
1 + |k0| + |kp+1|

)2s−1

� C(1 + λn′)
(
1 + |k0| + |kp+1|

)2s−1
. (6.45)

Then it follows by (iii) of Lemma 4.5 and Lemma 4.4 that (5.12) holds with M replaced by M p,1

 and

for τ = 2s − 2 and for some ν ∈ R+ . So we have M p,1

 ∈ Gν,2s−2

p+1,δ . Since we have already seen that (5.9)

holds, we then get by Proposition 5.5 that M p,1

 ∈ Gν,2s−2

p+1,δ ∩ M̃ν+d,2s−2
p+1,δ (ω
).

(iv) The term VI.
The analysis of the term VI is almost the same as that of V. We define

M p,2

 (u1, . . . , up+1) = 1

2

∑
k0,kp+1∈Zd

∑
�n∈(S

ω

p )c

1{λn′<δλnp+1 , |k0−kp+1|< 1
2 (|k0|+|kp+1|)}

× ((
m2 + |kp+1|2

)−1/2 − (
m2 + |k0|2

)−1/2)
× Π̃k0Πn0 a
(ñ;Πn1 u1, . . . ,Πnp up)Λ2s

m Πnp+1Π̃kp+1 up+1 (6.46)

so that we have

VI =
p∑


=0

Re i
〈
M p,2


 (ū, . . . , ū︸ ︷︷ ︸



, u, . . . , u︸ ︷︷ ︸
p+1−


), u
〉
. (6.47)

We assume that the left-hand side of (5.12) with M replaced by M p,2

 is nonzero, and we then

have (6.44) and∣∣(m2 + |kp+1|2
)−1/2 − (

m2 + |k0|2
)−1/2∣∣ � C(1 + λn′)

(
1 + |k0| + |kp+1|

)−2
. (6.48)

And again we get M p,2

 ∈ Gν,2s−2

p+1,δ ∩ M̃ν+d,2s−2
p+1,δ (ω
) for some ν ∈ R+ and small δ.

Define M p

 , R p


 to be the operators

M p

 (u1, . . . , up+1) = M p,1


 (u1, . . . , up+1) + M p,2

 (u1, . . . , up+1),
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R p

 (u1, . . . , up+1) = R p,1


 (u1, . . . , up+1) + R p,2

 (u1, . . . , up+1).

This concludes the proof. �
Summarizing the above lemmas gives an end to the proof of Proposition 6.1. �

Remark 6.5. We will gain one derivative on the terms used to eliminate M̃ p

 which is of order 2s − 1,

but no derivative on the terms used to eliminate M p

 .

7. Geometric bounds

Consider the function on Rp+2 depending on the parameter m ∈ (0,+∞), defined for 
 =
0, . . . , p + 1 by

F 

m(ξ0, . . . , ξp+1) =


∑
j=0

√
m2 + ξ2

j −
p+1∑

j=
+1

√
m2 + ξ2

j . (7.1)

The following result will play an important role in inverting the multilinear operators defined in
Section 5.

Proposition 7.1. For any ρ > 0, there is a zero measure subset N of R∗+ such that for any integers 0 � 
 �
p + 1, any m ∈ R∗+ −N , there are constants c > 0, N0 ∈ N such that the lower bound

∣∣F 

m(λn0 , . . . , λnp+1)

∣∣ � c(1 + λn0 + λnp+1)
−3−ρ

(|λn0 − λnp+1 | + 1 + λn′
)−N0 (7.2)

holds true for any (n0, . . . ,np+1) ∈ Np+2 − Sω

p , where (λn)n∈N is given by (3.4), λn′ by (3.6), and Sω


p
by (5.10) with ω
( j) = −1 for j = 0, . . . , 
, and ω
( j) = 1 for j = 
 + 1, . . . , p + 1.

This proposition is an analogue of Theorem 2.3.1 in [10]. Let us assume that λn0 , λnp+1 �
λn1 , . . . , λnp and briefly explain the way of the proof of (7.2). The reader may refer to [10] for more
details. We first notice that one only needs to show that, for any compact interval I ⊂ (0,+∞), the
measure of the set

{
m ∈ I; ∣∣F 


m(λn0 , . . . , λnp+1)
∣∣ < r

}
where r is the right-hand side of (7.2) with c replaced by α, goes to zero as α tends to zero. Using
tools of subanalytic geometry, the interval I may be written for any fixed n0, . . . ,np+1 as the union
of a uniform number of intervals on which |∂ F 


m/∂m| can be bounded from below by a large negative
power of small frequencies (1 + λn1 + · · · + λnp ), and of a remaining set. On each of these intervals,
since we have |∂ F 


m/∂m| � C(1 + λn1 + · · · + λnp )
−N1 , we then take F 


m as a coordinate so that we
can estimate the measure of this interval by Cr(1 + λn1 + · · · + λnp )

N1 . Taking the expression of r
into account, we get an upper bound of the sum of these quantities in n0, . . . ,np+1 by a constant
which goes to zero as α tends to zero. Also using tools of subanalytic geometry we can show that the
measure of the remaining set, on which we have |∂ F 


m/∂m| = O (1 + λn1 + · · · + λnp )
−N1 , is small and

goes to zero as α tends to zero. This shows that (7.2) holds true for all (n0, . . . ,np+1) ∈ Np+2 − Sω

p

when m is outside a subset of zero measure in I .
For the difference between the estimate of type (7.2) in [5] and ours, one has to take into account

the multiplicity of the eigenvalues of
√−� on Td in the framework of [5], while in our framework,

the multiplicity of the eigenvalues does not play any role. Simply speaking, with the same reasoning
as above, after getting an upper bound of the measure of the intervals on which |∂ F 


m/∂m| � C(1 +
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λn1 + · · · + λnp )
−N1 and that of the remaining set, one has to take the sum over n0, . . . ,np+1 ∈ Zd in

the framework of [5], while in our method we only need to sum over n0, . . . ,np+1 ∈ N. This makes
the estimate different.

We shall need another proposition which is nothing but Proposition 2.1.5 in [5]. Before stating it,
let us introduce some notations. For m ∈ R∗+ , ξ j ∈ R, j = 0, . . . , p + 1, e = (e0, . . . , ep+1) ∈ {−1,1}p+2,
define

F̃ (e)
m (ξ0, . . . , ξp+1) =

p+1∑
j=0

e j

√
m2 + ξ2

j . (7.3)

When p is even and #{ j; e j = 1} = p/2 + 1, denote by N(e) the set of all (n0, . . . ,np+1) ∈ Np+2 such
that there is a bijection σ from { j; 0 � j � p + 1, e j = 1} to { j; 0 � j � p + 1, e j = −1} so that for
any j in the first set n j = nσ( j) . In the other cases, set N(e) = ∅.

Proposition 7.2. There is a zero measure subset N of R∗+ and for any m ∈ R∗+ −N , there are constants c > 0,
N0 ∈ N such that for any (n0, . . . ,np+1) ∈ Np+2 − N(e) we have

∣∣̃F (e)
m (λn0 , . . . , λnp+1)

∣∣ � c(1 + λn0 + · · · + λnp+1)
−N0 . (7.4)

Moreover, if e0ep+1 = 1, we have the inequality

∣∣̃F (e)
m (λn0 , . . . , λnp+1)

∣∣ � c(1 + λn0 + λnp+1)(1 + λn1 + · · · + λnp )
−N0 . (7.5)

8. Energy control and the proof of the main theorem

We shall show in this section that the Hs energy is finite on an interval so that the solution
does not blow up on it. As we have pointed out in the introduction, we shall perturb the Sobolev
energy in such a way that the time derivative of perturbations will cancel out the main contribution
to that of the Sobolev energy, up to remainders of higher order. Moreover, the perturbations should
be controlled properly. We first introduce some notations. When M(u1, . . . , up+1) is a p + 1-linear
form, let us define for 0 � 
 � p + 1,

L−

 (M)(u1, . . . , up+1) = −Λm M(u1, . . . , up+1) −


∑
j=1

M(u1, . . . ,Λmu j, . . . , up+1)

+
p+1∑

j=
+1

M(u1, . . . ,Λmu j, . . . , up+1) (8.1)

and

L+

 (M)(u1, . . . , up+1) = −Λm M(u1, . . . , up+1) − M(u1, . . . , up,Λmup+1)

−

∑

j=1

M(u1, . . . ,Λmu j, . . . , up+1)

+
p∑

j=
+1

M(u1, . . . ,Λmu j, . . . , up+1). (8.2)
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Let χ : R → R be a cut-off function supported with small support.
We shall need the following lemma:

Lemma 8.1. For any ρ > 0, let N be the zero measure subset of R∗+ defined by taking the union of the zero
measure subsets defined in Propositions 7.1 and 7.2, and fix m ∈ R∗+ − N . Let ω
 , ω̃
 be defined as in the
statement of Proposition 6.1. Then there is a ν̄ ∈ N such that the following statements hold true for any large
enough s, for any integer p with κ � p � 2κ − 1, for any integer 
 with 0 � 
 � p:

(i) Let θ ∈ (0,1), M p

 ∈ Gν,2s−2

p+1,δ ∩ M̃ν+d,2s−2
p+1,δ (ω
) and M̃ p


 ∈ M̃ν,2s−1
p+1,δ (ω̃
). Define

M p,ε

 (u1, . . . , up+1) = M p




(
χ

(
εκθΛm

)
u1, . . . ,χ

(
εκθΛm

)
up+1

)
. (8.3)

Then there are M p,ε

 ∈ M̃ν+ν̄,2s−1

p+1,δ (ω
) and M̃
p

 ∈ M̃ν+ν̄,2s−2

p+1,δ (ω̃
) satisfying

L−



(
M p,ε




)
(u1, . . . , up+1) = M p,ε


 (u1, . . . , up+1),

L+



(
M̃

p



)
(u1, . . . , up+1) = M̃ p


 (u1, . . . , up+1) (8.4)

with the estimate,

∥∥M p,ε



∥∥
Mν+ν̄,2s−1

p+1,δ

� Cε−(2+ρ)θκ
∥∥M p




∥∥
Mν,2s−2

p+1,δ

,∥∥M̃
p



∥∥
Mν+ν̄,2s−2

p+1,δ

� C
∥∥M̃ p




∥∥
Mν,2s−1

p+1,δ

, (8.5)

where ‖ · ‖Mν,τ
p+1,δ

is defined in the statement of Definition 5.1.

(ii) Let R p

 ∈ R̃ν,2s

p+1(ω
), R̃ p

 ∈ R̃ν,2s

p+1(ω̃
). Then there are R p

 ∈ R̃ν+ν̄,2s

p+1 (ω
) and R̃
p

 ∈ R̃ν+ν̄,2s

p+1 (ω̃
) such
that

L−



(
R p




)
(u1, . . . , up+1) = R p


 (u1, . . . , up+1),

L+



(
R̃

p



)
(u1, . . . , up+1) = R̃ p


 (u1, . . . , up+1). (8.6)

Proof. (i) First we have M p,ε

 ∈ M̃ν+d,2s−2

p+1,δ (ω
) by assumption. We then substitute in (8.4) Πn j u j

for u j , j = 1, . . . , p + 1, and compose on the left with Πn0 . According to (8.1), equalities in (8.4) may
be written as

−F 

m(λn0 , . . . , λnp+1)Πn0 M p,ε


 (Πn1 u1, . . . ,Πnp+1 up+1)

= Πn0 M p,ε

 (Πn1 u1, . . . ,Πnp+1 up+1),

F̃ (e)
m (λn0 , . . . , λnp+1)Πn0 M̃

p

 (Πn1 u1, . . . ,Πnp+1 up+1)

= Πn0 M̃ p

 (Πn1 u1, . . . ,Πnp+1 up+1), (8.7)

where F 

m is defined by (7.1) and F̃ (e)

m is defined by (7.3) with

e0 = · · · = e
 = ep+1 = −1, e
+1 = · · · = ep = 1.

When considering the first equality of (8.7), we assume its right-hand side does not vanish. By the
definition this implies
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|λn0 − λnp+1 | � λn′ , (n0, . . . ,np+1) /∈ Sω

p (8.8)

with Sω

p the same as that in Proposition 7.1. Therefore the assumptions of Proposition 7.1 are satisfied.

Thus for any ρ > 0, there is a zero measure subset N of R+ such that we have by (7.2), (8.8) and the
condition λn0 + λnp+1 < ε−θκ

∣∣F 

m(λn0 , . . . , λnp+1)

∣∣−1 � C(1 + λn0 + λnp+1)
3+ρ

(|λn0 − λnp+1 | + 1 + λn′
)N0

� Cε−(2+ρ)θκ (1 + λn0 + λnp+1)(1 + λn′)N0 (8.9)

for some N0 > 0. Consequently, if we set

M p,ε

 (u1, . . . , up+1) = −

∑
�n/∈S


p

F 

m(λn0 , . . . , λnp+1)

−1Πn0 M p,ε

 (Πn1 u1, . . . ,Πnp+1 up+1), (8.10)

we obtain according to (8.9) and (5.2) that M p,ε

 ∈ M̃ν+ν̄,2s−1

p+1,δ (ω
) with the first estimate in (8.5)
with ν̄ = N0 + d.

When considering the second equality of (8.7), we also assume its right-hand side does not
vanish. Therefore, we know from (5.9) with M replaced by M̃ p


 that there is no bijection σ from
{0, . . . , 
, p + 1} to {
 + 1, . . . , p} such that n j = nσ( j) , j = 0, . . . , 
, p + 1. Consequently, the condition

of Proposition 7.2 is satisfied and we may use (7.5). We divide in both sides by F̃ (e)
m and add up all

these nonzero components as in (8.10) to get an element M̃
p

 , which is easily seen to be in the class

M̃ν+ν̄,2s−2
p+1,δ (ω̃
) for some ν̄ . This completes the proof (i) of Lemma 8.1.
(ii) We deduce again from (8.6)

−F 

m(λn0 , . . . , λnp+1)Πn0 R p


 (Πn1 u1, . . . ,Πnp+1 up+1) = Πn0 R p

 (Πn1 u1, . . . ,Πnp+1 up+1), (8.11)

F̃ (e)
m (λn0 , . . . , λnp+1)Πn0 R̃

p

 (Πn1 u1, . . . ,Πnp+1 up+1) = Πn0 R̃ p


 (Πn1 u1, . . . ,Πnp+1 up+1), (8.12)

where F 

m and F̃ (e)

m are the same as in (8.7). Since R p

 ∈ R̃ν,2s

p+1(ω
), we have (n0, . . . ,np+1) /∈ Sω

p if the

right-hand side of (8.11) does not vanish. This allows us to use Proposition 7.1 to get for some N0 > 0∣∣F 

m(λn0 , . . . , λnp+1)

∣∣−1 � C(1 + λn0 + λn1 + · · · + λnp+1)
N0+4.

Dividing (8.11) by −F 

m , we define as in (8.10) an element R p


 in R̃ν+ν̄,2s
p+1 (ω
) with ν̄ = N0 + 4. With

the same reasoning we may use the inequality (7.4) in Proposition 7.2 with e0 = · · · = e
 = ep+1 = −1,

e
+1 = · · · = ep = 1 and get from (8.12) an element R̃
p

 ∈ R̃ν+ν̄,2s

p+1 (ω̃
) for some ν̄ . This concludes the
proof. �
Proposition 8.2. For any ρ > 0, let N be the zero measure subset of R∗+ defined in Lemma 8.1, and fix m ∈
R∗+−N . Let Θs be defined in (6.5). Then there are for any large enough s, a map Θ1

s , sending Hs(Td)×(0,1/2)

to R, and maps Θ2
s , Θ3

s , Θ4
s sending Hs(Td) to R such that there is a constant Cs > 0 and for any u ∈ Hs(Td)

with ‖u‖Hs � 1 and any ε ∈ (0,1/2), we have∣∣Θ1
s (u, ε)

∣∣ � Csε
−(2+ρ)θκ‖u‖κ+2

Hs ,
∣∣Θ j

s (u)
∣∣ � Cs‖u‖κ+2

Hs , j = 2,3,4, (8.13)

and such that

R(u)
def= d

dt

[
Θs

(
u(t, ·)) − Θ1

s

(
u(t, ·), ε) − Θ2

s

(
u(t, ·)) − Θ3

s

(
u(t, ·)) − Θ4

s

(
u(t, ·))] (8.14)
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satisfies

∣∣R(u)
∣∣ � Csε

−(2+ρ)θκ‖u‖2κ+2
Hs + Csε

2θκ‖u‖κ+2
Hs + Cs‖u‖2κ+2

Hs . (8.15)

Proof. Considering the right-hand side of (6.6), we decompose

M p

 (u1, . . . , up+1) = M p,ε


 (u1, . . . , up+1) + V p,ε

 (u1, . . . , up+1), (8.16)

where the first term in the right-hand side is given by (8.3) and the second one is the sum of terms
like

M p



(
χ1

(
εκθΛm

)
u1, . . . ,χp+1

(
εκθΛm

)
up+1

)
, (8.17)

where χ j = χ or 1 − χ , j = 1, . . . , p + 1, and where there is at least one j0 ∈ {1, . . . , p + 1} such that
χ j0 = 1 − χ .

We claim that the H−s norm of V p,ε

 (u1, . . . , up+1) is controlled by Cε2κθ

∏p+1
j=0 ‖u j‖Hs for large

enough s. To see this, we first note that

(u1, . . . , up+1) → M p



(
χ1

(
εκθΛm

)
u1, . . . ,χp+1

(
εκθΛm

)
up+1

)
defines an element of Gν,2s−2

p+1,δ since M p

 ∈ Gν,2s−2

p+1,δ . Then if j0 ∈ {1, . . . , p} is such that χ j0 = 1 − χ ,
without loss of generality, we take j0 = 1, i.e., χ1 = 1 − χ . Then by Proposition 5.6 with s replaced
by s − 2 and τ = 2s − 2 we bound the H−s norm of (8.17) from above by a constant times

∥∥(1 − χ)
(
εκθΛm

)
u1

∥∥
Hs0

p∏
j=2

‖u j‖Hs0 ‖up+1‖Hs−2 . (8.18)

But

∥∥(1 − χ)
(
εκθΛm

)
u1

∥∥
Hs0 � Cε(s−s0)κθ‖u1‖Hs � Cε2κθ‖u1‖Hs

if s > s0 + 2. Then we get an upper bound of H−s norm of (8.17) by Cε2κθ
∏p+1

j=1 ‖u j‖Hs . Now if
j0 = p + 1 is such that χ j0 = 1 − χ , i.e., χp+1 = 1 − χ . Again, by Proposition 5.6 with s replaced by
s − 2 and τ = 2s − 2, the H−s norm of (8.17) is bounded from above by a constant times

p∏
j=1

‖u j‖Hs0

∥∥(1 − χ)
(
εκθΛm

)
up+1

∥∥
Hs−2 ,

which turns out to be controlled by Cε2κθ
∏p+1

j=1 ‖u j‖Hs . This proves our claim.
Consequently, the quantity

2κ−1∑
p=κ

p∑

=0

Re i
〈
V p,ε


 (ū, . . . , ū, u, . . . , u), u
〉

(8.19)

is bounded form above by the second term of the right-hand side of (8.15) if ‖u‖Hs � 1. In the rest
of the proof, we may therefore replace in the right-hand side of (6.6) M p


 by M p,ε

 .
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Applying Lemma 8.1 to M p,ε

 , M̃ p


 , R p

 , R̃ p


 gives M p,ε

 , M̃

p

 , R p


 , R̃
p

 . We set

Θ1
s

(
u(t, ·), ε) =

2κ−1∑
p=κ

p∑

=0

Re
〈
M p,ε


 (ū, . . . , ū, u, . . . , u), u
〉
,

Θ2
s

(
u(t, ·)) =

2κ−1∑
p=κ

p∑

=0

Re
〈
M̃

p

 (ū, . . . , ū, u, . . . , u, ū), u

〉
,

Θ3
s

(
u(t, ·)) =

2κ−1∑
p=κ

p∑

=0

Re
〈
R p


 (ū, . . . , ū, u, . . . , u), u
〉
,

Θ4
s

(
u(t, ·)) =

2κ−1∑
p=κ

p∑

=0

Re
〈̃
R

p

 (ū, . . . , ū, u, . . . , u, ū), u

〉
. (8.20)

The general term in Θ1
s (u(t, ·), ε) has modulus bounded from above by∥∥M p,ε


 (ū, . . . , ū, u, . . . , u)
∥∥

H−s‖u‖Hs � Cε−(2+ρ)θκ‖u‖κ+2
Hs

for u in the unit ball of Hs(Td), using Proposition 5.2 with τ = 2s − 1 and (8.5) in Lemma 8.1. This
gives the first inequality in (8.13). We apply Proposition 5.2 to M̃

p

 , remarking that if in (5.3) τ = 2s−1

and s is large enough, the left-hand side of (5.3) controls the H−s norm of M̃
p

 (ū, . . . , ū, u, . . . , u, ū).

We also apply Proposition 5.8 with τ = 2s in (5.23) to R p

 , R̃

p

 . Then if s0 is large enough, the left-

hand side of (5.23) controls H−s norm of R p

 (ū, . . . , ū, u, . . . , u) and R̃

p

 (ū, . . . , ū, u, . . . , u, ū). These

give us the other inequalities in (8.13). Consequently we are left with proving (8.15). Remarking that
we may also write the equation as

(Dt − Λm)u = −F

(
Λ−1

m

(
u + ū

2

))
, (8.21)

we compute using notation (8.1)

d

dt
Θ1

s (u, ε) =
2κ−1∑
p=κ

p∑

=0

Re i
〈
L−



(
M p,ε




)
(ū, . . . , ū, u, . . . , u), u

〉

+
2κ−1∑
p=κ

p∑

=0


∑
j=1

Re i
〈
M p,ε


 (ū, . . . , F̄ , . . . , ū, u, . . . , u), u
〉

−
2κ−1∑
p=κ

p∑

=0

p+1∑
j=
+1

Re i
〈
M p,ε


 (ū, . . . , ū, u, . . . , F , . . . , u), u
〉

+
2κ−1∑
p=κ

p∑

=0

Re i
〈
M p,ε


 (ū, . . . , ū, u, . . . , u), F
〉
. (8.22)

By assumption on F , we have by Lemma 4.2 ‖F (v)‖Hs � C‖u‖κ+1
Hs if s is large enough and

‖u‖Hs � 1. Since M p,ε

 ∈ M̃ν+ν̄,2s−1

p+1 (ω
), we may apply Proposition 5.2 with τ = 2s − 1 and (8.5)
to see that the last three terms in (8.22) have modulus bounded from above by the first term in
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the right-hand side of (8.15). When computing d
dt Θs(u), noting that we have replaced M p


 by M p,ε

 ,

the first term in the right-hand side of (6.6) is the first term in the right-hand side of (8.22)
because of (8.4). Consequently, these contributions will cancel out each other in the expression
d
dt [Θs(u) − Θ1

s (u, ε)]. We compute

d

dt
Θ2

s (u) =
2κ−1∑
p=κ

p∑

=0

Re i
〈
L+



(
M̃

p



)
(ū, . . . , ū, u, . . . , u, ū), u

〉

+
2κ−1∑
p=κ

p∑

=0


∑
j=1

Re i
〈
M̃

p

 (ū, . . . , F̄ , . . . , ū, u, . . . , u, ū), u

〉

−
2κ−1∑
p=κ

p∑

=0

p∑
j=
+1

Re i
〈
M̃

p

 (ū, . . . , ū, u, . . . , F , . . . , u, ū), u

〉

+
2κ−1∑
p=κ

p∑

=0

Re i
〈
M̃

p

 (ū, , . . . , ū, u, . . . , u, F̄ ), u

〉

+
2κ−1∑
p=κ

p∑

=0

Re i
〈
M̃

p

 (ū, . . . , ū, u, . . . , u, ū), F

〉
. (8.23)

Since M̃
p

 ∈ M̃ν+ν̄,2s−2

p+1 (ω̃
), we have by Proposition 5.2 with τ = 2s − 1 and (8.5) that the last four
terms in the right-hand side of (8.23) are estimated by the last term in the right-hand side of (8.15)
if s is large enough. The first one, according to Lemma 8.1, cancels the contribution of M̃ p


 in (6.6)
when computing R(u). We may treat Θ3

s (u) and Θ4
s (u) in the same way using Proposition 5.8 with

τ = 2s, and this will lead to the third term in the right-hand side of (8.15). Finally, the last term
in (6.6) contributes to the last term in the right-hand side of (8.15). This concludes the proof of the
proposition. �
Proof of Theorem 2.1. We deduce from (8.14) and (8.15)

Θs
(
u(t, ·)) � Θs

(
u(0, ·)) − Θ1

s

(
u(0, ·), ε) − Θ2

s

(
u(0, ·)) − Θ3

s

(
u(0, ·)) − Θ4

s

(
u(0, ·))

+ Θ1
s

(
u(t, ·), ε) + Θ2

s

(
u(t, ·)) + Θ3

s

(
u(t, ·)) + Θ4

s

(
u(t, ·))

+ Csε
−(2+ρ)θκ

t∫
0

∥∥u
(
t′, ·)∥∥2κ+2

Hs dt′ + Csε
2θκ

t∫
0

∥∥u
(
t′, ·)∥∥κ+2

Hs dt′

+ Cs

t∫
0

∥∥u
(
t′, ·)∥∥2κ+2

Hs dt′. (8.24)

Take θ = 1/(4 + ρ) and B > 1 a constant such that for any (v0, v1) in the unit ball of Hs+1(Td) ×
Hs(Td), u(0, ·) = ε(−iv1 + Λm v0) satisfies ‖u(0, ·)‖Hs � Bε . Let K > B be another constant to be
chosen, and assume that for τ ′ in some interval [0, T ] we have ‖u(τ ′, ·)‖Hs � Kε � 1. From (8.13)
and (8.24) we deduce that there is a constant C > 0, independent of B, K , ε , such that as long as
t ∈ [0, T ]

∥∥u(t, ·)∥∥2
Hs � C

[
B2 + ε

2
4+ρ κ K κ+2 + tε

6+ρ
4+ρ κ(

K 2κ+2 + K κ+2) + tε2κ K 2κ+2]ε2.
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If we assume that T � cε− 6+ρ
4+ρ κ , where ρ > 0 is arbitrary and fixed in advance, for a small enough

c > 0, and that ε is small enough, we get ‖u(t, ·)‖2
Hs � C(2B2)ε2. If K has been chosen initially so

that 2C B2 < K 2, we get by a standard continuity argument that the priori bound ‖u(t, ·)‖Hs � Kε

holds true on [−cε− 6+ρ
4+ρ κ

, cε− 6+ρ
4+ρ κ ], in other words, the solution at least extends to such an interval

|t| � cε− 6+ρ
4+ρ κ . Note that cε− 6+ρ

4+ρ κ
> cε−(3/2−ρ)κ if ε is small and ρ > 0. This concludes the proof of

the theorem. �
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On growth of Sobolev norms in linear Schrödinger
equations with time dependent Gevrey potential

Daoyuan Fang ∗†· Qidi Zhang ∗‡

Abstract

We improve Delort’s method to show that solutions of linear Schrödinger equations
with a time dependent Gevrey potential on the torus, have at most logarithmically growing
Sobolev norms. In particular, it contains the result of Wang [7], which deals with analytic
potentials in dimension 1.

Keywords: Sobolev norms ; Time dependent Schrödinger equation ; Gevrey potential

1 Introduction and statement of the theorem

The main goal of this paper is to obtain logarithmic growth of Sobolev norms of solutions of
linear Schrödinger equations with a time dependent Gevrey potential on the torus, using the
method of Delort [4]. Let N∗ = N \ {0} and let Td denote the standard torus, where d ∈ N∗. We
consider the time dependent linear Schrödinger equations:

i∂tu − ∆u + V(x, t)u = 0 (1.1)

on Td × R. We assume that the potential V is a real smooth function on Td × R. Let µ, λ ∈
[1,+∞). We further assume that V is a Gevrey-µ function in time t and Gevrey-λ in every space
variable, i.e., V(x, t) satisfies estimates

sup
t∈R

sup
x∈Td
|∂k

t ∂
α
x V(x, t)| ≤ Ck+|α|+1(k!)µ(α!)λ (1.2)

for any k ∈ N, for any α ∈ Nd and for some constant C independent of k and α.

We prove the following result:

Theorem 1. There exists ζ > 0 independent of µ and λ such that for any s > 0, there is a
constant Cs,λ,d > 0 such that

||u(t)||Hs ≤ Cs,λ,d
[
log(2 + |t|)]ζµλs||u(0)||Hs , (1.3)

where u(t) is the solution to (1.1) with the initial condition u0
de f
= u(0) ∈ Hs(Td).
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Remark 1.1. Wang [7] obtained (1.3) with the exponent ‘ζµλs’ replaced by ‘ζs’ and Cs,λ,d

replaced by Cs under the assumption that the dimension d = 1 and that the potential V(x, t) is
bounded and analytic in space and time on Ωρ̃ (ρ̃ > 0 is a constant) when V is identified with
a periodic function on Rd × R, where

Ωρ̃ = {(x, t) ∈ C × C : | Im x | < ρ̃, | Im t | < ρ̃}.
When d = 1, the assumption we made here on the potential V is weaker than the assumption
that V is analytic both in space and time on the strip Ωρ̃, since the latter implies that V is a
function of Gevrey-1 in time and Gevrey-1 in space. Moreover, our result concerns the case of
any dimension d ∈ N∗ instead of just d = 1.

Remark 1.2. One may assume that V(x, t) is a Gevrey-µ function in time and Gevrey-λi in
space variable xi for 1 ≤ i ≤ d with µ, λi ∈ [1,+∞). However, this leads to (1.2) if we take
λ = max {λi : 1 ≤ i ≤ d}, and thus we may obtain the same result.

The problem of finding optimal bounds for ||u(t, ·)||Hs has been addressed by Nenciu [6]
and Barbaroux et al. [1], in the abstract framework of an operator P (instead of −∆) and a
perturbation V(t) acting on elements of a Hilbert space, when the spectrum of P is discrete and
has increasing gaps. This condition is satisfied by the Laplacian on the circle. It follows from
the results of [6, 1], that solutions of (1.1) verify

||u(t, ·)||Hs ≤ Cε |t|ε ||u(0, ·)||Hs (1.4)

when t goes to infinity, for any ε > 0. Later, Bourgain [3] proved that a similar bound holds for
solutions of (1.1) on the torus Td. The increasing gap condition of Nenciu [6] and Barbaroux
et al. [1] is no longer satisfied, and has to be replaced by a convenient decomposition of Zd in
well separated clusters. Delort [4] recently published a simpler proof of the results of Bourgain
(included for other examples of compact manifolds than the torus), which is close to the one of
Nenciu and Barbaroux-Joye. If one further assumes that V is analytic, and quasi-periodic in t,
then it was showed by Bourgain [2] that (1.4) holds with (1 + |t|)ε replaced by some power of
log t when t > 2. When the dimension d = 1, for any real analytic potential, whose holomor-
phic extension to Ωρ̃ is bounded, Wang [7] showed that one may still obtain such a logarithmic
bound, using the method of [3]. In this paper, we improve the method of Delort [4] to provide
a new proof of the result of Wang [7] and extend it to any dimension d ≥ 1 and to Gevrey
regularity.

There are also some results about uniformly bounded Sobolev norms. Eliasson et al. [5]
have shown that if the potential V on Td × R is analytic in space, quasi-periodic in time, and
small enough, then for most values of the parameter of quasi-periodicity, the equation reduces
to an autonomous one. Consequently, the Sobolev norm of the solution is uniformly bounded.
A similar result for the harmonic oscillator has been obtained by Grébert and Thomann re-
cently. For Schrödinger equations on the circle with a small time periodic potential, Wang [8]
showed that the solutions of the corresponding equation have bounded Sobolev norms.

Now let us give a picture of the proof of Theorem 1. For any given N ∈ N∗, one first finds
for every fixed time t an operator QN(·, t), which extends as a bounded linear operator from
HN(Td) to HN(Td) such that

(
I + QN(·, t))∗(i∂t − ∆ + V)

(
I + QN(·, t)) = i∂t − ∆ + V ′N(·, t) + R′N(·, t) (1.5)

with self-adjoint operator V ′N exactly commuting to the modified Laplacian ∆̃ (see (2.4) for
its precise definition) and R′N a remainder operator which is essentially a bounded linear map
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from L2(Td) to HN(Td). Moreover, we also require that the adjoint of QN in the usual L2 paring
(denoted by QN(·, t)∗) extends as a bounded linear operator from HN(Td) to HN(Td). In order
to obtain the estimate for the solution u of (1.1), one needs to ‘invert’ the operator I + QN , that
is , to find an operator PN , which extends as a bounded linear operator not only from HN(Td)
to HN(Td), but also from L2(Td) to L2(Td) , such that

(
I + QN(·, t))(I + PN(·, t)) = I + RN(·, t) (1.6)

where RN is a remainder operator such that [i∂t − ∆ + V,RN] sends L2(Td) to HN(Td). Now by
setting

v = (I + PN)u, (1.7)

we deduce from (1.5), (1.6) and (1.1)

(i∂t − ∆ + V ′N)v = (I + QN)∗[i∂t − ∆ + V,RN]u − R′Nv. (1.8)

Remarking that the modified Laplacian has the property that

C−N‖(1 − ∆)
N
2 u‖L2 ≤ ‖(1 − ∆̃)

N
2 u‖L2 ≤ CN‖(1 − ∆)

N
2 u‖L2

holds for any u ∈ HN(Td) and for some uniform constant C, then we let the operator (1 − ∆̃)
N
2

act on both sides of (1.8) and deduce from the energy inequality

||v(t)||HN ≤ CN ||v(0)||HN + CN

∫ t

0
||(I + QN)∗[i∂t − ∆ + V,RN]u(t)||HN + ||R′Nv(t)||HN dt,

which together with (1.7), the conservation law of the L2-norm of (1.1) and the properties of
those operators we have constructed, implies

||v(t)||HN ≤ CN ||v(0)||HN + CN |t|||u(0)||L2 . (1.9)

We then use (1.6), (1.7) and the properties of the operators to deduce

||u(t)||HN ≤ CN
(
||u(0)||HN + (2 + |t|)||u(0)||L2

)
. (1.10)

Remark that the above constants CN may be different in different lines and they depend on the
norms of operators which appear in the above process. Since (1.10) holds for any N ∈ N∗, if we
have good estimates for CN (we shall finally see that CN can be controlled by CN times a power
of the factorial of N), then the theorem will follow by interpolation just as we shall do in the
last section. There are two difficulties. The first one is that we have to carefully choose those
operators QN so that the above process can go on. The second is to obtain proper estimates
for CN , which means that we have to estimate the norms of operators and remainders for every
N ∈ N∗ in the above process.

The paper is organized as follows. In Section 2, we introduce the spaces and give their
properties we shall use. Then we construct the operator in these spaces to conjugate the original
equation in Section 3. The last section is dedicated to the proof of the main theorem.

2 Definitions of operator spaces and their properties

Let us introduce some notation.
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Notation 1. We denote by Πn the spectral projector on L2(Td) defined by

Πnu =
einx

(2π)d/2

〈
u,

einx

(2π)d/2

〉
, n ∈ Zd. (2.1)

For a ∈ R and b ∈ Rd, we set

a+ = max{a, 0}, 〈b〉 = (1 + |b|2)1/2. (2.2)

By A . B we mean that there is an absolute constant C > 0 such that A ≤ CB. For s ∈ R,
denote by Hs(Td) the Sobolev space consisting of u ∈ L2(Td) with its norm

‖u‖Hs =
( ∑

n∈Zd

〈n〉2s‖Πnu‖2L2

)1/2
< +∞. (2.3)

Using the following proposition which is just Lemma 3.2 in [4], we shall give an equivalent
characterization of the Sobolev space Hs(Td) when s > 0.

Proposition 2.1 (Bourgain). Let σ ∈ (0, 1/10). Then there are τ0 ∈ (0, σ), γ > 0 and a
partition (Aα)α∈Λ of Zd such that

• ∀α ∈ Λ, ∀n ∈ Aα, ∀n′ ∈ Aα, |n − n′| + ||n|2 − |n′|2| < γ + max (|n|, |n′|)σ;

• ∀α, β ∈ Λ, α , β, ∀n ∈ Aα, ∀n′ ∈ Aβ, |n − n′| + ||n|2 − |n′|2| > max (|n|, |n′|)τ0 .

Notation 2. We denote for α ∈ Λ

Π̃α =
∑

n∈Aα

Πn.

For any α ∈ Λ, we choose n(α) ∈ Aα and define

∆̃u = −
∑

α∈Λ
|n(α)|2Π̃αu. (2.4)

By definition we know that
[∆, ∆̃] = 0, [i∂t, ∆̃] = 0. (2.5)

For s ∈ R, let H̃s(Td) be the space consisting of those elements u ∈ L2(Td) with its norm

‖u‖H̃s =
(∑

α∈Λ
〈n(α)〉2s‖Π̃αu‖2L2

)1/2 < +∞. (2.6)

By the first condition in Proposition 2.1, we deduce that there is a constant C0 > 0 such
that for any s > 0, for any u ∈ H̃s(Td)

C−s
0 ‖u‖H̃s ≤ ‖u‖Hs ≤ Cs

0‖u‖H̃s . (2.7)

We introduce some operator spaces which will be used in the next section.

Definition 2.1. Let M > 0, ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. We denote by
L− j
τ (M, ρ, λ, δ) the space of smooth families in time of linear operators Q(·, t) from C∞(Td) to

D ′(Td) such that there is a constant C > 0 independent of M and ρ, for which one has

||Πn∂
k
t Q(·, t)Πn′ ||L(L2) ≤ CMk+( j+δ−1)+

[(
k + ( j + δ − 1)+

)
!
]max (2, µ)

× e−ρ | n−n′ | 1λ 〈n − n′
〉−(d+2)

(
1 + max (|n|, |n′|)

)− j τ
1{| n−n′ |6max (|n|,|n′ |)

10 (1+ j ) }
(2.8)

for any k ∈ N, any n, n′ ∈ Zd. The best constant C will be denoted by ||Q||(M,ρ,λ,τ)
j,δ . This defines

a seminorm of L− j
τ (M, ρ, λ, δ).
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The notation ||Q||(M,ρ,λ,τ)
j, δ will be abbreviated to ||Q|| j, δ when M, ρ, λ, τ are fixed and there is

no confusion.

Remark 2.1. In comparison with the space introduced in Delort [4], we have added a cut-off
in the definition, which depends on the size of j. This ensures that the composition of two
elements in the space is essentially in the same space and the seminorm can be controlled by
an absolute constant times the product of those of the original two operators. This will be
described precisely in Proposition 2.7 and it is important to obtain the logarithmic growth of
Sobolev norms.

Remark 2.2. As we shall see in Proposition 3.2, we chose the quantity
Mk+( j+δ−1)+

[
(k + ( j + δ − 1)+!

]max (2, µ) to ensure that all the operators which will be used to
conjugate the equation (1.1) are in the same type of space, i.e., L− j

τ (M, ρ, λ, δ).

Definition 2.2. Let M > 0, ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. We
denote by L̃− j

τ (M, ρ, λ, δ) the subspace of L− j
τ (M, ρ, λ, δ) consisting of those elements Q(·, t) ∈

L− j
τ (M, ρ, λ, δ) such that (2.8) holds with the cut-off 1{|n−n′ |6max (|n|,|n′ |)

10(1+ j ) }
replaced by 1{| n−n′ |6max (|n|,|n′ |)

10(2+ j ) }
.

We also denote by L − j
τ (M, ρ, λ, δ) the set of those Q(·, t) ∈ L̃− j

τ (M, ρ, λ, δ) such that (2.8)
holds with the cut-off 1{|n−n′ |6max (|n|,|n′ |)

10(1+ j ) }
replaced by 1{| n−n′ |6max (|n|,|n′ |)

10(2+ j ) , ||n|2−|n′ |2 |> 1
4 (|n|+|n′ |)τ0 }, where τ0

is given by Proposition 2.1.

We shall also define some other convenient subspaces of L̃− j
τ (M, ρ, λ, δ) andL − j

τ (M, ρ, λ, δ).

Definition 2.3. Let M > 0, ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. We
denote by L̃− j

τ,D(M, ρ, λ, δ) (resp. L̃− j
τ,ND(M, ρ, λ, δ)) the subspace of L̃− j

τ (M, ρ, λ, δ) given by

those operators Q(·, t) ∈ L̃− j
τ (M, ρ, λ, δ) such that for any α, β ∈ Λ with α , β (resp. any

α ∈ Λ) Π̃αQΠ̃β ≡ 0 (resp. Π̃αQΠ̃α ≡ 0). We also set

L − j
τ,D(M, ρ, λ, δ) = L − j

τ (M, ρ, λ, δ) ∩ L̃− j
τ,D(M, ρ, λ, δ),

L − j
τ,ND(M, ρ, λ, δ) = L − j

τ (M, ρ, λ, δ) ∩ L̃− j
τ,ND(M, ρ, λ, δ).

Proposition 2.2. It follows by definition that if Q is an element of L̃− j
τ,D(M, ρ, λ, δ) orL − j

τ,D(M, ρ, λ, δ),
then we have [∆̃,Q] = 0.

Notation 3. Let M > 0, ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. If Q is an element
of L− j

τ (M, ρ, λ, δ) (resp. L̃− j
τ (M, ρ, λ, δ), L − j

τ (M, ρ, λ, δ)), we denote

QD =
∑

α∈Λ
Π̃αQΠ̃α, QND =

∑

α, β ∈Λ
α,β

Π̃αQΠ̃β. (2.9)

By definition we immediately have

‖QD‖ j, δ ≤ ‖Q‖ j, δ, ‖QND‖ j, δ ≤ ‖Q‖ j, δ,

QD ∈ L− j
τ,D(M, ρ, λ, δ)

(
resp. L̃− j

τ,D(M, ρ, λ, δ), L − j
τ,D(M, ρ, λ, δ)

)
,

QND ∈ L− j
τ,ND(M, ρ, λ, δ)

(
resp. L̃− j

τ,ND(M, ρ, λ, δ), L − j
τ,ND(M, ρ, λ, δ)

)
.

(2.10)

Proposition 2.3. Let M > 0, ρ > 0, λ ∈ [1,+∞), τ ∈ (0, τ0], δ ∈ {0, 1} and j ∈ N∗. Here τ0

is given by Proposition 2.1. Assume S ∈ L −( j−1)
τ,ND (M, ρ, λ, δ). Then the equation [Q,∆] = −S

defines an element Q ∈ L− j
τ (M, ρ, λ, 0) with ‖Q‖ j,0 . ‖S ‖ j−1, δ. If S is self-adjoint, then Q∗ =

−Q, where Q∗ denote the adjoint of Q (at fixed time, for the usual L2-pairing).
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Proof. The equation [Q,∆] = −S may be written

(|n′|2 − |n|2)ΠnQΠn′ = ΠnS Πn′ . (2.11)

To define Q ∈ L− j
τ (M, ρ, λ, 0), we only need to estimate ‖ΠnQΠn′‖L(L2) when it is non zero. So

we may assume both sides of (2.11) are non zero. Since S ∈ L −( j−1)
τ,ND (M, ρ, λ, δ), we then have

| n − n′| 6 max (|n|, |n′|)
10(1 + j )

, ||n|2 − |n′|2| > 1
4

(|n| + |n′|)τ0 ,

which, together with (2.11) and the fact τ ≤ τ0, allows us to deduce

‖ΠnQΠn′‖L(L2) . ‖S ‖ j−1,δMk+( j−1)+

[(
k + ( j − 1)+

)
!
]max (2, µ)

× e−ρ | n−n′ | 1λ 〈n − n′
〉−(d+2)

(
1 + max (|n|, |n′|)

)− j τ
1{| n−n′ |6max (|n|,|n′ |)

10 (1+ j ) }
.

This means Q ∈ L− j
τ (M, ρ, λ, 0) and ‖Q‖ j,0 . ‖S ‖ j−1, δ. If S is self-adjoint, then by (2.11) we

see that Q∗ = −Q. This concludes the proof. �

We shall also need the following remainder operators which raise the order of regularity as
much as we want.

Definition 2.4. Let M > 0, τ ∈ (0, 1] and j ∈ N. We denote by R−∞j (M, τ) the space of smooth
families in time of linear operators R(·, t) from C∞(Td) to D ′(Td) such that there is a constant
C > 0 independent of M, for which one has

||Πn∂
k
t R(·, t)Πn′ ||L(L2) ≤ CMN+ j+k(( j + k)!

)max (2, µ)N!

× 〈
n − n′

〉−(d+2)
(
1 + max (|n|, |n′|)

)−τN (2.12)

for any k ∈ {0, 1}, any N ∈ N, any n, n′ ∈ Zd . The best constant C will be denoted by |R|(M,τ)
j .

This defines a seminorm of R−∞j (M, τ).

Similarly as before, the notation |R|(M,τ)
j will be abbreviated to |R| j when M, τ are fixed and

there is no confusion.
By definition, we immediately have the following proposition.

Proposition 2.4. Let M > 1, ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1] and j ∈ N∗. If Q ∈ L− j
τ (M, ρ, λ, 0),

then
[i∂t,Q] = i∂tQ ∈ L− j

τ (M, ρ, λ, 1) and ||[i∂t,Q]|| j,1 ≤ ||Q|| j,0. (2.13)

The elements defined in the above definitions may be extended as bounded linear operators
acting on Sobolev spaces.

Proposition 2.5. Let M > 0, ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. Let
Q ∈ L− j

τ (M, ρ, λ, δ). Then for any k ∈ N, ∂k
t Q extends as a bounded linear operator from

Hs(Td) to Hs+ j τ(Td) for any s ∈ R. Moreover, its operator norm, denoted by ||∂k
t Q||L(Hs,Hs+ j τ),

satisfies

||∂k
t Q||L(Hs,Hs+ j τ) . C |s|1 ||Q|| j, δMk+( j+δ−1)+

((
k + ( j + δ − 1)+

)
!
)max (2, µ)

, (2.14)

where C1 > 1 is an absolute constant. Recall that by A . B we mean that there is a constant C
independent of any other quantities such that A ≤ CB.
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Proof. Assume u ∈ Hs(Td). Since |n − n′| 6 max (|n|,|n′ |)
10(1+ j ) implies C−1

1 〈n′〉 ≤ 〈n〉 ≤ C1〈n′〉 for
some absolute constant C1, we compute using (2.8)

||∂k
t Qu||2Hs+ j τ =

∑

n∈Zd

〈n〉2(s+ j τ)||Πn∂
k
t Qu||2L2

≤
∑

n∈Zd

( ∑

n′∈Zd

〈n〉s+ j τ||Πn∂
k
t QΠn′u||L2

)2

≤
∑

n∈Zd

( ∑

n′∈Zd

〈n〉s+ j τ||Q|| j, δMk+( j+δ−1)+
[(

k + ( j + δ − 1)+

)
!
]max (2, µ)

× 〈n − n′〉−(d+2)(1 + max (|n|, |n′|))− j τ1{|n−n′ |6max (|n|,|n′ |)
10(1+ j) }

||Πn′u||L2

)2

≤ C2|s|
1 ||Q||2j, δM2(k+( j+δ−1)+)[(k + ( j + δ − 1)+

)
!
]2 max (2, µ)

×
∑

n∈Zd

( ∑

n′∈Zd

〈n − n′〉−(d+2)〈n′〉s||Πn′u||L2

)2

. C2|s|
1 ||Q||2j, δM2(k+( j+δ−1)+)[(k + ( j + δ − 1)+

)
!
]2 max (2, µ)||u||2Hs ,

where in the last step we used Young inequality. The conclusion follows by taking the square
root of both sides. �

Proposition 2.6. Let M > 0, τ ∈ (0, 1] and j ∈ N. Let R ∈ R−∞j (M, τ). Then operators R(·, t),
∂tR and [∆,R] may be extended as bounded linear operators from H−s(Td) to H−s′+τm(Td) for
any s, s′ ≥ 0 and any m ∈ N. Moreover, for any k ∈ {0, 1}

||∂k
t R||L(H−s,H−s′+τm) . |R| jMm+[ s+1

τ ]+ j+k(( j + k)!
)max (2, µ)(m + [

s + 1
τ

]
)
!,

||[∆,R]||L(H−s,H−s′+τm) . |R| jMm+[ s+2
τ ]+ j( j!

)max (2, µ)(m + [
s + 2
τ

]
)
!,

(2.15)

where [·] means the integer part of a real number.

Proof. Let s ≥ 0, s′ ≥ 0, m ∈ N, u ∈ H−s(Td). For k ∈ {0, 1}, we have by (2.12) with
N = m + [ s+1

τ ]

||∂k
t Ru ||2

H−s′+τm =
∑

n∈Zd

〈n〉−2s′+2τm||Πn∂
k
t Ru ||2L2

≤
∑

n∈Zd

[ ∑

n′∈Zd

〈n〉−s′+τm|R| jMm+[ s+1
τ ]+ j+k(( j + k)!

)max (2, µ)(m + [
s + 1
τ

]
)
!

× 〈n − n′〉−(d+2)(1 + max (|n|, |n′|))−τ(m+[ s+1
τ ])||Πn′u||L2

]2

≤ |R|2j M2(m+[ s+1
τ ]+ j+k)(( j + k)!

)2 max (2, µ)[(m + [
s + 1
τ

])!
]2

×
∑

n∈Zd

[ ∑

n′∈Zd

〈n − n′〉−(d+2)〈n′〉−s||Πn′u||L2

]2

. |R|2j M2(m+[ s+1
τ ]+ j+k)(( j + k)!

)2 max (2, µ)[(m + [
s + 1
τ

])!
]2||u||2H−s ,

where in the last step we used Young inequality. The first inequality of (2.15) follows by taking
the square root of both sides. The second inequality follows by a similar argument and by
noting that ||n|2 − |n′|2| . 〈n − n′〉(1 + max (|n|, |n′|)) and taking N = m + [ s+2

τ ] in (2.12). �

When one conjugates the original equation, one needs to compute the composition of two
elements in L− j

τ (M, ρ, λ, δ) and the commutator [i∂t,Q] for Q ∈ L− j
τ (M, ρ, λ, 0). First of all let

us introduce some notation before we give a precise description of that.
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Notation 4. Recall that Q∗ denote the adjoint of Q ∈ L− j
τ (M, ρ, λ, δ) (δ ∈ {0, 1}, at fixed time,

for the usual L2-pairing). If Qi ∈ L− ji
τ (M, ρ, λ, δi), ji ∈ N, δi ∈ {0, 1}, i = 1, 2, we then denote

M (Q1,Q2) =
∑

n, n′∈Zd

Πn
(
Q1 ◦ Q2

)
Πn′1{| n−n′ |6 max (|n|,|n′ |)

10(2+ j1+ j2 ) }
,

R(Q1,Q2) =
∑

n, n′∈Zd

Πn
(
Q1 ◦ Q2

)
Πn′1{| n−n′ |> max (|n|,|n′ |)

10(2+ j1+ j2 ) }
(2.16)

We shall also denote

M ′(Q1,Q2) = M (Q1,Q2) + [M (Q1,Q2)]∗,
R ′(Q1,Q2) = R(Q1,Q2) + [R(Q1,Q2)]∗.

(2.17)

The operator M (Q1,Q2) is the main part of the operator obtained by composing Q1 and
Q2. As we shall see, it essentially falls into the same operator class as the original ones.
The remainder part, i.e., R(Q1,Q2) is a regularizing operator. Moreover, M ′(Q1,Q2) and
R ′(Q1,Q2) are obviously self-adjoint. Remark that for ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1], denoting

θ0(ρ, λ, τ) = min
( 2
601/(2λ)

(
log

162
100

) 1
2 (ρτ)

1
2 ,

ρ
(
30
√

2
)1/λ

)
, (2.18)

we have that

exp
{ − ρ(

x
10(2 + t)

)
1
λ
}

(1 + x)−tτ(100
81

)tτ ≤ exp
{ − θ0(ρ, λ, τ)(x + 1)

1
2λ
}

(2.19)

holds for any x ≥ 1, any t ≥ 0. Denote

θ1(ρ, τ) = 1 + max
λ≥1

[θ0(ρ, λ, τ)]−1. (2.20)

Proposition 2.7. Let ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1] and j1, j2 ∈ N. Let M > θ1(ρ, τ) and
j = j1 + j2. Assume Q1 ∈ L− j1

τ (M, ρ, λ, 0) and Q2 ∈ L− j2
τ (M, ρ, λ, 0). Then one has

Q1 ◦ Q2 = M (Q1,Q2) + R(Q1,Q2) (2.21)

with

M (Q1,Q2) ∈ L̃− j
τ (M, ρ, λ, 0), ||M (Q1,Q2)|| j,0 . ||Q1|| j1,0||Q2|| j2,0,

R(Q1,Q2) ∈ R−∞j (M,
1

2λ
), |R(Q1,Q2)| j . ||Q1|| j1,0||Q2|| j2,0.

(2.22)

Proof. We only need to check (2.22). For k ∈ N, we have by (2.8)

||Πn∂
k
t M (Q1,Q2)Πn′ ||L(L2)

≤
∑

k1+k2=k

(
k
k1

) ∑

`∈Zd

||Πn∂
k1
t Q1Π`||L(L2)||Π`∂

k2
t Q2Πn′ ||L(L2)1{|n−n′ |6max (|n|,|n′ |)

10(2+ j) }

≤
∑

k1+k2=k

∑

`∈Zd

(
k
k1

)
||Q1|| j1,0||Q2|| j2,0Mk+( j1−1)++( j2−1)+1{|n−n′ |6max (|n|,|n′ |)

10(2+ j) }

×
[(

k1 + ( j1 − 1)+

)
!
]max (2, µ)[(

k2 + ( j2 − 1)+

)
!
]max (2, µ)

× e−ρ|n−n′ | 1λ 〈n − `〉−(d+2)〈` − n′〉−(d+2)

×
(
1 + max (|n|, |`|)

)− j1τ(
1 + max (|`|, |n′|)

)− j2τ

× 1{|n−`|6max (|n|,|`|)
10(1+ j1) }1{|n′−`|6max (|n′ |,|`|)

10(1+ j2) }
1{|n−n′ |6max (|n|,|n′ |)

10(2+ j) }
,

(2.23)

93



Growth of Sobolev Norms 9

where we have use the following inequality:

|n − `| 1λ + |` − n′| 1λ ≥ |n − n′| 1λ when λ ≥ 1.

We need to estimate the following two terms:

I de f
=

∑

k1+k2=k

(
k
k1

) [(
k1 + ( j1 − 1)+

)
!
]max (2, µ)[(

k2 + ( j2 − 1)+

)
!
]max (2, µ)

,

II de f
= the last two lines of (2.23).

To obtain an estimate for I, let us first estimate

I′ =
∑

k1+k2=k

(
k
k1

) [(
k1 + ( j1 − 1)+

)
!
]2[(

k2 + ( j2 − 1)+

)
!
]2
.

If neither of ( j1 − 1)+ and ( j2 − 1)+ is larger than 0, then

I′ =
∑

k1+k2=k

k!k1!k2! ≤ 3(k!)2.

If only one of ( j1 − 1)+ and ( j2 − 1)+ is larger than 0, for instance, ( j2 − 1)+ > 0, then

I′ =
∑

k1+k2=k

(
k
k1

) [
k1!

]2[(k2 + j2 − 1
)
!
]2

≤ 2
[(

k + j − 1
)
!
]2

+
∑

k1+k2=k
k1≥1,k2≥1

k!k1!
(
k2 + j2 − 1 + k1 − 1) . . . (2 + k1 − 1)

× (k2 + j2 − 1 + k1) . . . (k2 + 1 + k1)

≤ 3
[(

k + j − 1
)
!
]2,

while if both of ( j1 − 1)+ and ( j2 − 1)+ are larger than 0, then

I′ =
∑

k1+k2=k

(
k
k1

) [(
k1 + j1 − 1

)
!
]2[(k2 + j2 − 1

)
!
]2

=
∑

k1+k2=k

k!(k1 + j1 − 1)!(k2 + j2 − 1)!

× (k1 + j1 − 1) . . . (k1 + 1)(k2 + j2 − 1) . . . (k2 + 1)

≤
∑

k1+k2=k

k!(k1 + j1 − 1 + k2 + j2 − 1) . . . (1 + k2 + j2 − 1)(k2 + j2 − 1)!

× (k1 + j1 − 1 + k2 + j2 − 1) . . . (k1 + 1 + k2 + j2 − 1)

× (k2 + j2 − 1 + k1) . . . (k2 + 1 + k1)

≤ [(
k + j − 1

)
!
]2.

Thus we always have
I′ ≤ 3

[(
k + ( j − 1)+

)
!
]2. (2.24)

Since [(
k1 + ( j1 − 1)+

)
!
](µ−2)+

[(
k2 + ( j2 − 1)+

)
!
](µ−2)+ ≤ [

(k + ( j − 1)+)!
](µ−2)+ ,

we have by (2.24)
I ≤ 3

[(
k + ( j − 1)+

)
!
]max (2, µ). (2.25)
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We first assume |n′| ≥ |n| when estimating II. From the cut-offs we deduce |n′| ≤ 2|n| so
that

|n − n′| ≤ max (|n|, |n′|)
10(2 + j)

=
|n′|

10(2 + j)
≤ |n|

5(1 + j)
.

Therefore

II ≤ (
1 + |n|)− j1τ(1 + |n′|)− j2τ1{|n−n′ |6 |n|

5(1+ j) }

≤ (
1 + |n′|)− j τ(1 +

|n − n′|
1 + |n|

) j1τ1{|n−n′ |6 |n|
5(1+ j) }

≤ (
1 + |n′|)− j τ(1 +

1
5(1 + j)

) j τ

≤ 3
(
1 + |n′|)− j τ.

We may get an analogue when |n| ≥ |n′| and thus we obtain

II ≤ 3
(
1 + max (|n|, |n′|))− j τ. (2.26)

Plugging (2.25), (2.26) into (2.23) and using the fact that
∑

`∈Zd

〈n − `〉−(d+2)〈` − n′〉−(d+2) . 〈n − n′〉−(d+2), (2.27)

we obtain

||Πn∂
k
t M (Q1,Q2)Πn′ ||L(L2) . ||Q1|| j1,0||Q2|| j2,0Mk+( j−1)+

[(
k + ( j − 1)+

)
!
]max (2, µ)

× e−ρ|n−n′ | 1λ 〈n − n′〉−(d+2)(1 + max (|n|, |n′|))− j τ1{|n−n′ |6max (|n|,|n′ |)
10(2+ j) }

,

which implies the claims in the first line of (2.22).

We are left with estimating the remainder operator. We have for k ∈ {0, 1}
||Πn∂

k
t R(Q1,Q2)Πn′ ||L(L2)

≤
∑

k1+k2=k

∑

`∈Zd

(
k
k1

)
||Πn∂

k1
t Q1Π`||L(L2)||Π`∂

k2
t Q2Πn′ ||L(L2)1{|n−n′ |>max (|n|,|n′ |)

10(2+ j) }

≤
∑

k1+k2=k

∑

`∈Zd

(
k
k1

)
||Q1|| j1,0||Q2|| j2,0Mk+( j1−1)++( j2−1)+1{|n−n′ |>max (|n|,|n′ |)

10(2+ j) }

×
[(

k1 + ( j1 − 1)+

)
!
]max (2, µ)[(

k2 + ( j2 − 1)+

)
!
]max (2, µ)

× e−ρ|n−n′ | 1λ 〈n − `〉−(d+2)〈` − n′〉−(d+2)

×
(
1 + max (|n|, |`|)

)− j1τ(
1 + max (|`|, |n′|)

)− j2τ

× 1{|n−`|6max (|n|,|`|)
10(1+ j1) }1{|n′−`|6max (|n′ |,|`|)

10(1+ j2) }
1{|n−n′ |>max (|n|,|n′ |)

10(2+ j) }
.

(2.28)

We only deal with the case |n′| ≥ |n|. The other will be the same. Thus we assume

max (|n|, |n′|) = |n′|. (2.29)

We denote by III the last two lines of (2.28). We may assume that III is non-zero when
estimating it. Thus by the cut-offs we deduce

|n| ≥ 9
10
|`| ≥ 81

100
|n′| > 0
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so that
III ≤ (1 + |n|)− j1τ(1 + |n′|)− j2τ1{ 81

100 |n′ |≤|n|} ≤ (1 + |n′|)− j τ(100
81

) j1τ.

Thus by the assumption (2.29), (2.19), (2.20) and the assumption on M, we have

e−ρ|n−n′ | 1λ 1{|n−n′ |>max (|n|,|n′ |)
10(2+ j) }

III ≤ e−ρ|n−n′ | 1λ (1 + |n′|)− j τ(100
81

) j1τ1{|n−n′ |> |n′ |
10(2+ j) }

≤ e−ρ( |n′ |
10(2+ j) )

1
λ (1 + |n′|)− j τ(100

81
) j τ

≤ e−θ0(ρ,λ,τ)(|n′ |+1)
1

2λ

≤ ( 1
θ0(ρ, λ, τ)

)N N!
(
1 + max (|n|, |n′|))− N

2λ

≤ MN N!
(
1 + max (|n|, |n′|))− N

2λ .

(2.30)

Plugging (2.30), (2.27), (2.25) into (2.28), we obtain for k ∈ {0, 1} and for any N ∈ N

||Πn∂
k
t R(Q1,Q2)Πn′ ||L(L2) . ||Q1|| j1,0||Q2|| j2,0MN+k+ j(( j + k)!

)max (2, µ)N!

× 〈n − n′〉−(d+2)(1 + max (|n|, |n′|))− N
2λ ,

which gives the claims in the second line of (2.22) and concludes the proof. �

We also have the following proposition.

Proposition 2.8. Let ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1] and j1, j2 ∈ N∗. Let M > θ1(ρ, τ) and
j = j1 + j2. Assume Q1 ∈ L− j1

τ (M, ρ, λ, 0) and Q2 ∈ L− j2
τ (M, ρ, λ, 1). Then one has

Q1 ◦ Q2 = M (Q1,Q2) + R(Q1,Q2),

Q2 ◦ Q1 = M (Q2,Q1) + R(Q2,Q1),
(2.31)

with

M (Q1,Q2),M (Q2,Q1) ∈ L̃− j
τ (M, ρ, λ, 0),

R(Q1,Q2),R(Q2,Q1) ∈ R−∞j (M,
1

2λ
),

||M (Q1,Q2)|| j,0 + ||M (Q1,Q2)|| j,0 . ||Q1|| j1,0||Q2|| j2,1,
|R(Q1,Q2)| j + |R(Q2,Q1)| j . ||Q1|| j1,0||Q2|| j2,1.

(2.32)

Proof. The proof is the same as that of Proposition 2.7 except that instead of estimating I, we
have to estimate

I′′ de f
=

∑

k1+k2=k

(
k
k1

) (
(k1 + j1 − 1)!

)max (2, µ)((
k2 + j2)!

)max (2, µ)
,

which is less or equals 3
[(

k + ( j − 1)+

)
!
]max (2, µ) if j1, j2 ∈ N∗. Note that Mk+( j1−1)++ j2 ≤

Mk+( j−1)+ fails when j1 = 0 and j2 ∈ N∗. However, we shall only need to use the result for
j1, j2 ∈ N∗. �

The following two corollaries are immediate consequences of Proposition 2.7 and 2.8.
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Corollary 2.1. Under the hypotheses of Proposition 2.7, one has

Q1 ◦ Q2 + (Q1 ◦ Q2)∗ = M ′(Q1,Q2) + R ′(Q1,Q2). (2.33)

Moreover, M ′(Q1,Q2), R ′(Q1,Q2) are self-adjoint and we have

M ′(Q1,Q2) ∈ L̃− j
τ (M, ρ, λ, 0), R ′(Q1,Q2) ∈ R−∞j (M,

1
2λ

),

||M ′(Q1,Q2)|| j,0 .
(
||Q1|| j1,0||Q2|| j2,0 + ||Q∗1|| j1,0||Q∗2|| j2,0

)
,

|R ′(Q1,Q2)| j .
(
||Q1|| j1,0||Q2|| j2,0 + ||Q∗1|| j1,0||Q∗2|| j2,0

)
.

(2.34)

Corollary 2.2. Under the hypotheses of Proposition 2.8, one has

Q1 ◦ Q2 + (Q1 ◦ Q2)∗ = M ′(Q1,Q2) + R ′(Q1,Q2),

Q2 ◦ Q1 + (Q2 ◦ Q1)∗ = M ′(Q2,Q1) + R ′(Q2,Q1).
(2.35)

Moreover, M ′(Q1,Q2), R ′(Q1,Q2) are self-adjoint and (2.34) holds. M ′(Q2,Q1), R ′(Q2,Q1)
respectively have the same properties as that of M ′(Q1,Q2), R ′(Q1,Q2).

Proposition 2.9. Let ρ > 0, λ ∈ [1,+∞), τ ∈ (
0, 1], M > θ1(ρ, τ) and j ∈ N∗. Let Q ∈

L− j
τ (M, ρ, λ, 1). Then one may decompose

Q = Q̃ + R̃ (2.36)

with

Q̃ ∈ L̃− j
τ (M, ρ, λ, 1), ||Q̃|| j,1 ≤ ||Q|| j,1,

R̃ ∈ R−∞j (M,
1

2λ
), |R̃| j ≤ ||Q|| j,1.

(2.37)

Moreover, if we further assume that Q is a self-adjoint operator (for fixed t, Q extends as a
bounded linear operator on L2(Td) by Proposition 2.5), so are Q̃ and R̃.

Proof. Defining

Q̃ =
∑

n

∑

n′
ΠnQΠn′1{|n−n′ |6max (|n|,|n′ |)

10(2+ j) }
,

R̃ =
∑

n

∑

n′
ΠnQΠn′1{|n−n′ |>max (|n|,|n′ |)

10(2+ j) }
,

we see that (2.36) holds and that the claims in the first line of (2.37) hold true. For k ∈ {0, 1},
any N ∈ N, we have by (2.19) and (2.20)

||Πn∂
k
t R̃Πn′ ||L(L2)

≤ ||Q|| j,1Mk+ j((k + j)!
)max (2, µ)〈n − n′〉−(d+2)

× e−ρ | n−n′ | 1λ (1 + max (|n|, |n′|))− j τ1{max (|n|,|n′ |)
10(2+ j) <|n−n′ |6max (|n|,|n′ |)

10(1+ j) }

≤ ||Q|| j,1Mk+ j((k + j)!
)max (2, µ)〈n − n′〉−(d+2)e−ρ ( max (|n|,|n′ |)

10(2+ j) )
1
λ (1 + max (|n|, |n′|))− jτ

≤ ||Q|| j,1Mk+ j((k + j)!
)max (2, µ)〈n − n′〉−(d+2)e−θ0(ρ,λ,τ)(1+max (|n|,|n′ |)) 1

2λ

≤ ||Q|| j,1MN+k+ j((k + j)!
)max (2, µ)N! 〈n − n′〉−(d+2)(1 + max (|n|, |n′|))− N

2λ .

This gives the claims in the second line of (2.37). The last claim in the proposition follows by
the construction of Q̃ and R̃. This concludes the proof. �
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We shall also need to compute the composition of three elements in L− j
τ (M, ρ, λ, 0). To

do that, we first have to compute the composition of one element in L− j
τ (M, ρ, λ, 0) and one in

R−∞j (M, τ).

Proposition 2.10. Let ρ > 0, λ ∈ [1,+∞), τ, τ′ ∈ (0, 1] and j1, j2 ∈ N. Let M > 1 and
j = j1 + j2. Assume Q ∈ L− j1

τ′ (M, ρ, λ, 0) and R ∈ R−∞j2 (M, τ). Then

Q ◦ R ∈ R−∞j (2M, τ), R ◦ Q ∈ R−∞j (2M, τ),

|Q ◦ R|(2M,τ)
j + |R ◦ Q|(2M,τ)

j . ||Q|| j1,0|R| j2 .
(2.38)

Recall the notation |R|(M,τ)
j in Definition 2.4.

Proof. We need to estimate ||Πn∂
k
t (Q◦R)Πn′ ||L(L2) and ||Πn∂

k
t (R◦Q)Πn′ ||L(L2) for k ∈ {0, 1} and

for any n, n′ ∈ Zd. By definition, the estimate for I′′, (2.27), for either k = 0 or k = 1

||Πn∂
k
t (Q ◦ R)Πn′ ||L(L2)

≤
∑

k1+k2=k

∑

`∈Zd

(
k
k1

)
||Πn∂

k1
t QΠ`||L(L2)||Π`∂

k2
t RΠn′ ||L(L2)

≤
∑

k1+k2=k

∑

`∈Zd

(
k
k1

)
||Q|| j1,0|R| j2 MN+ j+k[(k1 + ( j1 − 1)+

)
!
]max (2, µ)

× [
(k2 + j2)!

]max (2, µ) N! e−ρ| `−n| 1λ 〈n − `〉−(d+2)〈` − n′〉−(d+2)

× (
1 + max (|n|, |`|))− j1τ′(1 + max (|`|, |n′|))−τN1{|`−n|6max (|n|,|`|)

10(1+ j1) }

. ||Q|| j1,0|R| j2(2M)N+ j+k((k + j)!
)max (2, µ)N!

× 〈n − n′〉−(d+2)(1 + max (|n|, |n′|))−τN

(2.39)

holds for any N ∈ N, any n, n′ ∈ Zd, where in the last step we have used

(
1 + max (|`|, |n′|))−τN1{|`−n|6max (|n|,|`|)

10(1+ j1) } ≤ 2N(
1 + max (|n|, |n′|))−τN .

With the same reasoning, we see that the quantity after the last sign of inequality in (2.39)
is also an upper bound of ||Πn∂

k
t (R ◦ Q)Πn′ ||L(L2). Thus (2.38) holds and this concludes the

proof. �

Combining Proposition 2.7 and Proposition 2.10 and remarking thatR−∞j (M, τ) ⊂ R−∞j (2M, τ),
we obtain:

Proposition 2.11. Let ρ > 0, λ ∈ [1,+∞), τ ∈ (0, 1] and M > θ1(ρ, τ) with θ1 defined by (2.20).
Let j1, j2, j3 ∈ N and j = j1 + j2 + j3. Assume Qi ∈ L− j i

τ (M, ρ, λ, 0), i = 1, 2, 3. Then one may
decompose

Q1 ◦ Q2 ◦ Q3 = Q + R (2.40)

with

Q ∈ L̃− j
τ (M, ρ, λ, 0), ||Q|| j,0 . ||Q1|| j1,0||Q2|| j2,0||Q3|| j3,0,

R ∈ R−∞j (2M,
1

2λ
), |R|(2M, 1

2λ )
j . ||Q1|| j1,0||Q2|| j2,0||Q3|| j3,0,

(2.41)

where the notation |R|(2M, 1
2λ )

j is indicated in Definition 2.4.
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By (2.40), its adjoint equation and (2.41) we have the following corollary which is an
analogue of Corollary 2.1.

Corollary 2.3. Under the hypotheses of Proposition 2.11, one may find self-adjoint operators
Q ∈ L̃− j

τ (M, ρ, λ, 0), R ∈ R−∞j (2M, 1
2λ ) such that

Q1 ◦ Q2 ◦ Q3 + (Q1 ◦ Q2 ◦ Q3)∗ = Q + R (2.42)

with

||Q|| j,0 .
( 3∏

i=1

||Qi|| ji,0 +

3∏

i=1

||Q∗i || ji,0
)
,

|R|(2M, 1
2λ )

j .
( 3∏

i=1

||Qi|| ji,0 +

3∏

i=1

||Q∗i || ji,0
)
.

(2.43)

3 Conjugating the equation

The goal of this section is to obtain the following: Roughly speaking, for any given N ∈ N∗, we
want to conjugate the operator i∂t − ∆ + V into i∂t − ∆ + V ′N + R′N with V ′N exactly commuting
with the modified Laplacian ∆̃ and R′N essentially being a bounded linear operator from L2(Td)
to HN(Td). The process is essentially an induction. Before giving the precise description of the
statement, we first present the following proposition.

Proposition 3.1. Let V(x, t) be the potential in the equation (1.1) so that it satisfies (1.2).
Let τ ∈ (0, 1] and ρ ∈ (0, 1

3C ], where the constant C is the same as in (1.2). Then one may
find M > 0 such that for any M > M, the multiplication operator generated by V(x, t) may
be written as QV + RV with self-adjoint operators QV ∈ L̃0

τ(M, ρ, λ, 0), RV ∈ R−∞0 (M, 1
λ ).

Moreover,
||QV ||0,0 ≤ h(λ, d), |RV |0 ≤ h(λ, d), (3.1)

where
h(λ, d) = C2λd+d+2

(6Cλ(d + 2)
e

)λ(d+2)
. (3.2)

Proof. By (1.2), we know that
∣∣∣∣∣
∫

Td
nα∂k

t V(x, t)e−inxdx
∣∣∣∣∣ ≤ (2π)dCk+|α|+1(k!)µ(α!)λ

holds for any n = (n1, . . . , nd) ∈ Zd, any α = (α1, . . . , αd) ∈ Nd, any k ∈ N, any t ∈ R. From
this inequality we deduce

1
α1!

. . .
1
αd!

( |n1|
C

) α1
λ . . .

( |nd |
C

) αd
λ ‖Πn∂

k
t V(x, t)‖

1
λ

L∞ ≤ C
k+1
λ
(
k!

) µ
λ . (3.3)

Multiplying 2−(α1+···+αd) in both sides and then taking a sum over α1, . . . , αd ∈ N, using the fact
|n1| 1λ + · · ·+ |nd | 1λ ≥ (|n1|+ · · ·+ |nd |) 1

λ ≥ |n| 1λ for λ ≥ 1, we obtain after some simple calculation

‖Πn∂
k
t V(x, t)‖L∞ ≤ 2λdCk+1(k!)µe−ρ0(λ)| n| 1λ , (3.4)

where
ρ0(λ) = λ (2C

1
λ )−1 .
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Since ρ0(λ) − 1
3C ≥ 1

6C if λ ≥ 1 and

sup
r≥1
〈r〉d+2 exp {− 1

6C
r

1
λ } ≤ 2d+2

(6Cλ(d + 2)
e

)λ(d+2)
,

we have
C2λd exp {−ρ0(λ)|n| 1λ } ≤ h(λ, d) exp {− 1

3C
|n| 1λ }〈n〉−(d+2),

where h(λ, d) is given by (3.2). Thus by (3.4),

‖Πn∂
k
t V(x, t)‖L∞ ≤ h(λ, d)Ck(k!)µe−

1
3C |n|

1
λ 〈n〉−(d+2).

Therefore if ρ ∈ (0, 1
3C ], then

||Πn∂
k
t VΠn′ ||L(L2) ≤ ‖Πn−n′∂

k
t V(x, t)‖L∞ ≤ h(λ, d)Ck(k!)µ e−ρ|n−n′ | 1λ 〈n − n′〉−(d+2).

We define

QV =
∑

n∈Zd

∑

n′∈Zd

ΠnVΠn′1{|n−n′ |6max (|n|,|n′ |)
20 },

RV =
∑

n∈Zd

∑

n′∈Zd

ΠnVΠn′1{|n−n′ |>max (|n|,|n′ |)
20 }.

By the above formulas, for any M ≥ C, we have QV ∈ L̃0
τ(M, ρ, λ, 0) with

||QV ||0,0 ≤ h(λ, d). For k ∈ {0, 1}, we know that

||Πn∂
k
t RVΠn′ ||L(L2) ≤ h(λ, d)Cke−

1
3C | n−n′ | 1λ 〈n − n′〉−(d+2)1{ | n−n′ |>max (|n|,|n′ |)

20 }

≤ h(λ, d)Ck(120C
)N N!〈n − n′〉−(d+2)

(
1 + max (|n|, |n′|)

)− N
λ

holds for any N ∈ N, where we have used

max (|n|, |n′|)1{|n−n′ |>max (|n|,|n′ |)
20 } ≥

1
2
(
1 + max (|n|, |n′|)).

If M > M
de f
= 120C, then RV ∈ R−∞0 (M, 1

λ ) and |RV |0 ≤ h(λ, d). This concludes the proof. �

Remark 3.1. Let σ ∈ (0, 1
10 ) and τ0 ∈ (0, σ) be given by Proposition 2.1. From now on, we

fix τ = min ( τ0
λ ,

1
2λ ) =

τ0
λ and fix ρ ∈ (0, 1

3C ]. We also fix M > max (M, 2θ1(ρ, τ)) ≥ 2
ρ so that

all the conclusions in Section 2 and Proposition 3.1 hold, where θ1(ρ, τ) is given by (2.20). We
choose those M, τ because they will be used in the argument of the following proposition. Note
that M depends on λ, but this dependence does not matter in the sequel.

The main result of this section is the following:

Proposition 3.2. Let m ∈ N∗ and denote P0 = i∂t − ∆. Let K be a large constant. There are
sequences (Q′j)1≤ j≤m, (Q′′j )1≤ j≤m satisfying

Q′j ∈ L− j
τ (M, ρ, λ, 0), Q′∗j = −Q′j , ||Q′j|| j,0 ≤

K j− 1
2

j 2 h(λ, d) j; (3.5)

[Q′j ,∆] ∈ L−( j−1)
τ (M, ρ, λ, 0), ‖[Q′j ,∆]‖ j−1,0 ≤ K j−1

j 2 h(λ, d) j; (3.6)

Q′′j ∈ L−( j+1)
τ (M, ρ, λ, 0), Q′′∗j = Q′′j , ||Q′′j || j+1,0 ≤ K j+ 1

2

( j + 1)2 h(λ, d) j+1; (3.7)

[Q′′j ,∆] ∈ L− j
τ (M, ρ, λ, 0), ‖[Q′′j ,∆]‖ j,0 ≤ K j

( j + 1)2 h(λ, d) j+1 (3.8)
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such that if we set Q j = Q′j + Q′′j , Qm =
∑m

j=1 Q j

(
I+Qm)∗(P0 + V)

(
I + Qm)

= i∂t − ∆ + Vm +
1
2

2m+1∑

j=m+1

(
S jP0 + P0S j

)
+

1
2

2m+1∑

j=1

(
R jP0 + P0R j

)

+ S̃ m+1 +

2m+3∑

j=m+1

S j +

2m+3∑

j=2

R j +

m∑

j=1

R̂ j

(3.9)

where the terms in the right hand side of (3.9) satisfy the following conditions:

• Vm, S j , R j , S̃ j , S j , R j , R̂ j are self-adjoint;

• [Vm, ∆̃] = 0;

• S j ∈ L−( j+1)
τ (M, ρ, λ, 0), ||S j|| j+1,0 . K j

( j+1)2 h(λ, d) j+1, m + 1 ≤ j ≤ 2m + 1;

• [∆, S j ] ∈ L̃− j
τ (M, ρ, λ, 0), ‖[∆, S j]‖ j ,0 . K j− 1

2

( j+1)2 h(λ, d) j+1, m + 1 ≤ j ≤ 2m + 1

• R j ∈ R−∞j+1(M, τ), |R j| j+1 . K j

( j+1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1;

• S̃ m+1 ∈ L̃−m
τ (M, ρ, λ, 1), ||S̃ m+1||m,1 . Km− 1

2

(m+1)2 h(λ, d)m;

• S j ∈ L̃−( j−1)
τ (M, ρ, λ, 0), ||S j|| j−1,0 . K j− 3

2

j 2 h(λ, d) j, m + 1 ≤ j ≤ 2m + 3;

• R j ∈ R−∞j−1(4M, τ), |R|(4M,τ)
j−1 . K j− 3

2

j 2 h(λ, d) j, 2 ≤ j ≤ 2m + 3;

• R̂ j ∈ R−∞j−1(M, τ), |R̂ j| j−1 . K j− 3
2

j 2 h(λ, d) j, 1 ≤ j ≤ m.

The notation |R|(4M,τ)
j−1 is explained in Definition 2.4 and by A . B we mean that there is an

absolute constant C such that A ≤ CB.

Let us first compute the left hand side of (3.9).

Lemma 3.1. Let Q′j, Q′′j be given operators satisfying (3.5)– (3.8) for 1 ≤ j ≤ m. Denote
Q′m =

∑m
j=1 Q′j , Q′′m =

∑m
j=1 Q′′j . Then one may find

• Elements (S j)1≤ j≤2m+1, (R j)1≤ j≤2m+1 satisfying

(1) S j ∈ L̃−( j+1)
τ (M, ρ, λ, 0), ‖S j‖ j+1,0 . K j

( j+1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1;

(2) [∆, S j ] ∈ L̃− j
τ (M, ρ, λ, 0), ‖[∆, S j]‖ j ,0 . K j− 1

2

( j+1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1;

(3) R j ∈ R−∞j+1(M, τ), |R j| j+1 . K j

( j+1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1;

(4) Sj , R j are self-adjoint and depend only on Q′`, 1 ≤ ` ≤ min ( j,m), Q′′` , 1 ≤ ` <

min ( j ,m + 1);

• Elements (S̃ j)2≤ j≤m+1, (S j)2≤ j≤2m+3, (R j)2≤ j≤2m+3 satisfying

(5) S̃ j ∈ L̃−( j−1)
τ (M, ρ, λ, 1), ||S̃ j|| j−1,1 . K j− 3

2

j 2 h(λ, d) j−1, 2 ≤ j ≤ m + 1;
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(6) S j ∈ L̃−( j−1)
τ (M, ρ, λ, 0), ||S j|| j−1,0 . K j− 3

2

j 2 h(λ, d) j, 2 ≤ j ≤ 2m + 3;

(7) R j ∈ R−∞j−1(4M, τ), |R j|(4M,τ)
j−1 . K j− 3

2

j 2 h(λ, d) j, 2 ≤ j ≤ 2m + 3;

(8) S̃ j , S j , R j are self-adjoint and depend only on Q′`,Q
′′
` , 1 ≤ ` < min ( j ,m + 1),

such that

(I + Qm)∗(P0 + V)(I + Qm)

= i∂t − ∆ + V + [Q′m,∆] + Q′′mP0 + P0Q′′m

+
1
2

2m+1∑

j=1

(
S jP0 + P0S j

)
+

1
2

2m+1∑

j=1

(
R jP0 + P0R j

)

+

m+1∑

j=2

S̃ j +

2m+3∑

j=2

S j +

2m+3∑

j=2

R j.

(3.10)

Proof of Lemma 3.1: Using that (Q′m)∗ = −Q′m, (Q′′m)∗ = Q′′m, we write

(I + Qm)∗(P0 + V)(I+Qm) = i∂t − ∆ + V

+ [Q′m,∆] − [Q′m, i∂t] + Q′′mP0 + P0Q′′m (3.11)

+
1
2

(
(Qm)∗QmP0 + P0(Qm)∗Qm

)
(3.12)

+
1
2

(
(Qm)∗[i∂t,Qm] + [(Qm)∗, i∂t]Qm

)
(3.13)

+
1
2

(
(Qm)∗[−∆,Qm] + [(Qm)∗,−∆]Qm

)
(3.14)

+ (Qm)∗V + VQm + (Qm)∗VQm. (3.15)

Let us show how the right hand side contributes to that of (3.10). We deal with it term by
term.

We write by Corollary 2.1 and Notation 4

(Qm)∗Qm =
1
2

2m−1∑

j=1

∑

j1+ j2= j+1
1≤ j1, j2≤m

M ′(Q′∗j1 ,Q
′
j2) + R ′(Q′∗j1 ,Q

′
j2)

+

2m∑

j=2

∑

j1+ j2= j
1≤ j1, j2≤m

M ′(Q′′∗j1 ,Q
′
j2) + R ′(Q′′∗j1 ,Q

′
j2)

+
1
2

2m+1∑

j=3

∑

j1+ j2= j−1
1≤ j1, j2≤m

M ′(Q′′∗j1 ,Q
′′
j2) + R ′(Q′′∗j1 ,Q

′′
j2)

=

2m−1∑

j=1

(S (1)
j + R(1)

j ) +

2m∑

j=2

(S (2)
j + R(2)

j ) +

2m+1∑

j=3

(S (3)
j + R(3)

j )

(3.16)

for self-adjoint operators S (i)
j ∈ L̃−( j+1)

τ (M, ρ, λ, 0), R(i)
j ∈ R∞j+1(M, 1

2λ ) ⊂ R∞j+1(M, τ), i = 1, 2, 3,
j = 1, . . . , 2m + 1. We make the following convention: we set the terms that do not appear
to be zero. For instance, here we set

S (1)
j = R(1)

j = 0, j = 2m, 2m + 1,

S (2)
j = R(2)

j = 0, j = 1, 2m + 1

S (3)
j = R(3)

j = 0, j = 1, 2.
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We shall use such a convention throughout the proof of Lemma 3.1. Using (2.34), (3.5), (3.7)
and the fact that

∑

j1+ j2= j+1
1≤ j1, j2≤m

1
j 2

1

· 1
j 2

2

+ 2
∑

j1+ j2= j
1≤ j1, j2≤m

1
j 2

1

· 1
j 2

2

+
∑

j1+ j2= j−1
1≤ j1, j2≤m

1
j 2

1

· 1
j 2

2

.
1

( j + 1) 2 , (3.17)

we obtain

3∑

i=1

(
||S (i)

j || j+1,0 + |R(i)
j | j+1

)
.

K j

( j + 1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1.

Defining

S j =

3∑

i=1

S (i)
j , 1 ≤ j ≤ 2m + 1; R j =

3∑

i=1

R(i)
j , 1 ≤ j ≤ 2m + 1,

we know by the construction that S j , R j satisfy (1), (3) and (4). Moreover, by expressions
(2.16) and (2.17), we get

[∆, S j ] =

3∑

i=1

[∆, S (i)
j ]

=
∑

j1+ j2= j+1
1≤ j1, j2≤m

[
M ([∆,Q′∗j1],Q′j2) + M (Q′∗j1 , [∆,Q

′
j2])

]

+
∑

j1+ j2= j
1≤ j1, j2≤m

[
M

(
[∆,Q′∗j1],Q′′j2

)
+ M

(
Q′∗j1 , [∆,Q

′′
j2]

)

+ M
(
[∆,Q′′∗j1 ],Q′j2

)
+ M

(
Q′′∗j1 , [∆,Q

′
j2]

)]

+
∑

j1+ j2= j−1
1≤ j1, j2≤m

[
M ([∆,Q′′∗j1 ],Q′′j2) + M (Q′′∗j1 , [∆,Q

′′
j2])

]
,

so we know from (3.5)–(3.8), Proposition 2.7 and (3.17) that [∆, S j] ∈ L̃− j
τ (M, ρ, λ, 0) and

‖[∆, S j]‖ j,0 . K j− 1
2

( j+1)2 h(λ, d) j+1. Therefore, (3.12) contributes to the third line of (3.10).

By Proposition 2.4, Proposition 2.9, one may decompose

−[Q′j−1, i∂t] = S̃ j + R̃ j, 2 ≤ j ≤ m + 1 (3.18)

with

S̃ j ∈ L̃−( j−1)
τ (M, ρ, λ, 1), ||S̃ j|| j−1,1 ≤ K j− 3

2

( j − 1)2 h(λ, d) j−1, 2 ≤ j ≤ m + 1;

R̃ j ∈ R∞j−1(M,
1

2λ
) ⊂ R−∞j−1(M, τ), |R̃ j| j−1 ≤ K j− 3

2

( j − 1)2 h(λ, d) j−1, 2 ≤ j ≤ m + 1.

(3.19)

Since −[Q′j−1, i∂t] is self-adjoint, so are S̃ j and R̃ j. Thus this determines the first term in the

fourth line of (3.10) and R̃ j contributes to R j.
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According to Proposition 2.4, Corollary 2.2 and Notation 4, we may write

(3.13) =
1
2

2m+1∑

j=3

∑

j1+ j2= j−1
1≤ j1, j2≤m

M ′(Q′∗j1 , [i∂t,Q′j2]
)

+ R ′(Q′∗j1 , [i∂t,Q′j2]
)
,

+
1
2

2m+2∑

j=4

∑

j1+ j2= j−2
1≤ j1, j2≤m

M ′(Q′′∗j1 , [i∂t,Q′j2]
)

+ R ′(Q′′∗j1 , [i∂t,Q′j2]
)

+
1
2

2m+2∑

j=4

∑

j1+ j2= j−2
1≤ j1, j2≤m

M ′(Q′∗j1 , [i∂t,Q′′j2]
)

+ R ′(Q′∗j1 , [i∂t,Q′′j2]
)

+
1
2

2m+3∑

j=5

∑

j1+ j2= j−3
1≤ j1, j2≤m

M ′(Q′′∗j1 , [i∂t,Q′′j2]
)

+ R ′(Q′′∗j1 , [i∂t,Q′′j2]
)

=

2m+1∑

j=3

(
S

(1)
j + R

(1)
j

)
+

2m+2∑

j=4

(
S

(2)
j + R

(2)
j

)
+

2m+3∑

j=5

(
S

(3)
j + R

(3)
j

)

(3.20)

for self-adjoint operators S
(i)
j ∈ L̃−( j−1)

τ (M, ρ, λ, 0), R
(i)
j ∈ R∞j−1(M, 1

2λ ) ⊂ R−∞j−1(M, τ), 1 ≤ i ≤ 3,
3 ≤ j ≤ 2m + 3. Here we have used the convention made on page 17. By the inequalities which
are contained in the statement of Corollary 2.2, (2.13), (3.5), (3.7) and (3.17), we obtain

3∑

i=1

(
||S (i)

j || j−1,0 + |R(i)
j | j−1

)
.

K j−2

j 2 h(λ, d) j−1, 3 ≤ j ≤ 2m + 3. (3.21)

Now we turn to the term (3.14). Using Notation 4, Corollary 2.1, (3.5)–(3.8), we write

(3.14) =
1
2

2m∑

j=2

∑

j1+ j2= j
1≤ j1, j2≤m

M ′(Q′∗j1 , [−∆,Q′j2]
)

+ R ′(Q′∗j1 , [−∆,Q′j2]
)

+
1
2

2m+1∑

j=3

∑

j1+ j2= j−1
1≤ j1, j2≤m

M ′(Q′′∗j1 , [−∆,Q′j2]
)

+ R ′(Q′′∗j1 , [−∆,Q′j2]
)

+
1
2

2m+1∑

j=3

∑

j1+ j2= j−1
1≤ j1, j2≤m

M ′(Q′∗j1 , [−∆,Q′′j2]
)

+ R ′(Q′∗j1 , [−∆,Q′′j2]
)

+
1
2

2m+2∑

j=4

∑

j1+ j2= j−2
1≤ j1, j2≤m

M ′(Q′′∗j1 , [−∆,Q′′j2]
)

+ R ′(Q′′∗j1 , [−∆,Q′′j2]
)

=

2m∑

j=2

(
S

(4)
j + R

(4)
j

)
+

2m+1∑

j=3

(
S

(5)
j + R

(5)
j

)
+

2m+2∑

j=4

(
S

(6)
j + R

(6)
j

)

for self-adjoint operators S
(i)
j ∈ L̃−( j−1)

τ (M, ρ, λ, 0), R
(i)
j ∈ R∞j−1(M, 1

2λ ) ⊂ R−∞j−1(M, τ), 4 ≤ i ≤ 6,
2 ≤ j ≤ 2m + 2, using the convention made on page 17. By (2.34), (3.5)– (3.8) and (3.17) we
have

6∑

i=4

(
||S (i)

j || j−1,0 + |R(i)
j | j−1

)
.

K j− 3
2

j 2 h(λ, d) j, 2 ≤ j ≤ 2m + 2.
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Let us now analyze (3.15). By Proposition 3.1, Corollary 2.1 and Proposition 2.10, we
write

(
Qm)∗V + VQm =

m+1∑

j=2

[
Q′∗j−1(QV + RV ) + (QV + RV )Q′j−1

]

+

m+2∑

j=3

[(
Q′′j−2

)∗(QV + RV ) + (QV + RV )Q′′j−2
]

=

m+1∑

j=2

(
S

(7)
j + R

(7)
j

)
+

m+2∑

j=3

(
S

(8)
j + R

(8)
j

)

for self-adjoint operators S
(i)
j ∈ L̃−( j−1)

τ (M, ρ, λ, 0), R
(i)
j ∈ R∞j−1(2M, 1

2λ ) ⊂ R−∞j−1(2M, τ), 7 ≤ i ≤
8, 2 ≤ j ≤ m + 2. In this case the convention reads that

S
(7)
m+2 = R

(7)
m+2 = S

(8)
2 = R

(8)
2 = 0.

Moreover, by (2.34), (3.1), (3.5), (3.7) and (3.17)

8∑

i=7

(
||S (i)

j || j−1,0 + |R(i)
j |(2M,τ)

j−1

)
.

K j− 3
2

j 2 h(λ, d) j, 2 ≤ j ≤ m + 2. (3.22)

Similarly, by Proposition 3.1, Proposition 2.10, Corollary 2.3, we also have

(Qm)∗VQm =
1
2

2m+1∑

j=3

∑

j1+ j2= j−1
1≤ j1, j2≤m

Q′∗j1(QV + RV )Q′j2 + Q′∗j2(QV + RV )Q′j1

+

2m+2∑

j=4

∑

j1+ j2= j−2
1≤ j1, j2≤m

Q′′∗j1 (QV + RV )Q′j2 + Q′∗j2(QV + RV )Q′′j1

+
1
2

2m+3∑

j=5

∑

j1+ j2= j−3
1≤ j1, j2≤m

Q′′∗j1 (QV + RV )Q′′j2 + Q′′∗j2 (QV + RV )Q′′j1

=

2m+1∑

j=3

(
S

(9)
j + R

(9)
j

)
+

2m+2∑

j=4

(
S

(10)
j + R

(10)
j

)
+

2m+3∑

j=5

(
S

(11)
j + R

(11)
j

)

for self-adjoint operators S
(i)
j ∈ L̃−( j−1)

τ (M, ρ, λ, 0), R
(i)
j ∈ R∞j−1(4M, 1

2λ ) ⊂ R−∞j−1(4M, τ), 9 ≤ i ≤
11, 3 ≤ j ≤ 2m + 3 and by (2.43), (2.38), (3.5), (3.7) and (3.17)

11∑

i=9

(
||S (i)

j || j−1,0 + |R(i)
j |(4M,τ)

j−1

)
.

K j−2

j 2 h(λ, d) j, 3 ≤ j ≤ 2m + 3. (3.23)

Using the convention made on page 17, we set

S j =

11∑

i=1

S
(i)
j , R j = R̃ j +

11∑

i=1

R
(i)
j , 2 ≤ j ≤ 2m + 3.

Since R−∞j−1(M, τ) ⊂ R−∞j−1(4M, τ), we see from (3.19) to (3.23) that (S j)2≤ j≤2m+3, (R j)2≤ j≤2m+3
satisfy the conditions listed in the lemma and contribute respectively to the second and last
terms in the last line of (3.10). This concludes the proof. �
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Proof of Proposition 3.2: We shall recursively construct Q′1,Q
′′
1 , . . . ,Q

′
m,Q

′′
m with the required

estimates so that the left hand side of (3.9) may be written for r = 1, . . . ,m + 1

i∂t − ∆ + Vr−1 +

m∑

j=r

[Q′j,∆] +

m∑

j=r

(
Q′′j P0 + P0Q′′j

)

+
1
2

2m+1∑

j=r

(
S jP0 + P0S j

)
+

1
2

2m+1∑

j=1

(
R jP0 + P0R j

)

+

m+1∑

j=r

S̃ j +

2m+3∑

j=r

S j +

2m+3∑

j=1

R j +

r−1∑

j=1

R̂ j,

(3.24)

where V0 = 0,
(
V j)∗ = V j and [∆̃,V j] = 0 for j ≥ 1, S̃ 1 = 0, S 1 = QV , R1 = RV . Here

QV , RV are defined in Proposition 3.1. Remark that without regard to all the estimates, (3.24)
with r = 1 is the conclusion of Lemma 3.1 and (3.24) with r = m + 1 is the conclusion we
want to reach. Assume that (3.24) has been obtained at rank r and we have already had the
estimates (3.5)–(3.8) for Q′1, . . . ,Q

′
r−1, Q′′1 , . . . ,Q

′′
r−1. By Lemma 3.1, we have determined

S `,R`, 1 ≤ ` ≤ r − 1, S̃`, S `, R`, 1 ≤ ` ≤ r and they also satisfy the estimates listed in Lemma
3.1. Using Notation 3, we set Vr = Vr−1 + (S̃ r)D + (S r)D and denote

(S̃ r)M
ND =

∑

n, n′∈Zd

Πn(S̃ r)NDΠn′1{||n|2−|n′ |2 |> 1
4 (|n|+|n′ |)τ0 },

(S r)M
ND =

∑

n, n′∈Zd

Πn(S r)NDΠn′1{||n|2−|n′ |2 |> 1
4 (|n|+|n′ |)τ0 },

(3.25)

with τ0 given by Proposition 2.1. We now deduce from (2.10) and Proposition 2.2 that [∆̃,Vr] =

0, (S̃ r)M
ND ∈ L

−(r−1)
τ,ND (M, ρ, λ, 1) and (S r)M

ND ∈ L
−(r−1)
τ,ND (M, ρ, λ, 0). We let Q′r satisfy

[Q′r,∆] = −(S̃ r)M
ND − (S r)M

ND. (3.26)

Since τ0 ≥ τ by Remark 3.1, according to Proposition 2.3 this equation defines an element
Q′r ∈ L−r

τ (M, ρ, λ, 0) with

‖Q′r‖r,0 . ‖(S̃ r)M
ND‖r−1,1 + ‖(S r)M

ND‖r−1, 0 .
Kr− 3

2

r 2 h(λ, d)r ≤ Kr− 1
2

r 2 h(λ, d)r, (3.27)

if K is larger than the implicit constant and since (S̃ r)M
ND, (S r)M

ND are self-adjoint, Q′∗r = −Q′r.
(3.6) with j = r follows from (3.26), (5) and (6) with j = r if K is larger than the square of the
implicit constant. Thus Q′r satisfies (3.5) and (3.6). We then claim that (S̃ r)ND − (S̃ r)M

ND and
(S r)ND − (S r)M

ND contribute to R̂r. But

Πn
(
(S̃ r)ND − (S̃ r)M

ND
)
Πn′ = Πn(S̃ r)NDΠn′1{||n|2−|n′ |2 |≤ 1

4 (|n|+|n′ |)τ0 } (3.28)

and since (S̃ r)ND ∈ L̃−(r−1)
τ,ND (M, ρ, λ, 1), this expression is non zero only when n and n′ belong

to Aα and Aβ with α , β, where Aα and Aβ are defined in Proposition 2.1. So the second
condition in Proposition 2.1, together with the cut-off in (3.28), implies that |n − n′| ≥ 1

2 (1 +

max (|n|, |n′|))τ0 . Then it follows by (2.8) and the assumption M > 2
ρ stated in Remark 3.1 that

‖Πn∂
k
t
(
(S̃ r)ND − (S̃ r)M

ND
)
Πn′‖L(L2)

. ‖(S̃ r)ND‖r−1,1MN+k+r−1[(k + r − 1)!]max (2, µ)N!

× 〈n − n′〉−(d+2)(1 + max (|n|, |n′|))−
τ0N
λ

(3.29)
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for any k ∈ {0, 1}, any N ∈ N, any n, n′ ∈ Zd. With the same reasoning we can get a similar
estimate for ‖Πn

(
(S r)ND − (S r)M

ND
)
Πn′‖L(L2). We then set

R̂r = (S̃ r)ND − (S̃ r)M
ND + (S r)ND − (S r)M

ND

and deduce from (3.29), a similar estimate to (3.29) for ‖Πn
(
(S r)ND − (S r)M

ND
)
Πn′‖L(L2), (2.10),

(5) and (6) with j = r and the fact τ =
τ0
λ that R̂r satisfies the required properties in Proposition

3.2.

We also have to find Q′′r satisfying (3.7) and (3.8) such that

Q′′r P0 + P0Q′′r = −1
2

[S rP0 + P0S r].

Since by Lemma 3.1, S r depends only on Q′1, . . . ,Q
′
r, Q′′1 , . . . ,Q

′′
r−1 which have been already

determined, we may define Q′′r = − 1
2 S r. We see by Lemma 3.1 that Q′′r obeys (3.7) and (3.8)

if K is chosen to be much larger than the square of the implicit constant. Therefore we obtain
(3.24) at rank r + 1 with terms satisfying the corresponding estimates. This concludes the
proof. �

4 Proof of the main theorem

For any given N ∈ N∗, once one has conjugated the operator i∂t −∆ + V into i∂t −∆ + V ′N + R′N
with V ′N exactly commuting with the modified Laplacian ∆̃ and R′N essentially being a bounded
linear operator from L2(Td) to HN(Td), which has already been done in the previous section
when m is taken to be so large that mτ � N, we need to invert the transformation in order to
get an estimate for the solution of the original Cauchy problem. Moreover, we have to compute
the norms of the operators in order to obtain logarithmic growth of Sobolev norms from the
energy inequality. To realize this, we begin with the following lemma.

Lemma 4.1. Let m ∈ N∗ and assume Q j ∈ L− j
τ (M, ρ, λ, 0), j = 1, 2, . . . ,m. Then there

are sequences P j ∈ L− j
τ (M, ρ, λ, 0), 1 ≤ j ≤ m, T j ∈ L− j

τ (M, ρ, λ, 0), m + 1 ≤ j ≤ 2m,
R′j ∈ R−∞j (M, 1

2λ ), 2 ≤ j ≤ 2m such that

(I + Q1 + · · · + Qm)(I + P1 + · · · + Pm) = I +

2m∑

j=m+1

T j +

2m∑

j=2

R′j (4.1)

with

||P j|| j,0 ≤
j∑

`=1

∑

j1+···+ j`= j
1≤ j1,..., j`≤m

C`−1
2 ||Q j1 || j1,0 . . . ||Q j` || j`,0, 1 ≤ j ≤ m,

||T j|| j,0 ≤
j∑

`=2

∑

j1+···+ j`= j
1≤ j1,..., j`≤m

C`−1
2 ||Q j1 || j1,0 . . . ||Q j` || j`,0, m + 1 ≤ j ≤ 2m,

|R′j| j ≤
j∑

`=2

∑

j1+···+ j`= j
1≤ j1,..., j`≤m

C`−1
2 ||Q j1 || j1,0 . . . ||Q j` || j`,0, 2 ≤ j ≤ 2m,

(4.2)

where C2 is an absolute constant.
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Proof. Let Q1, . . . ,Qm be given. We set P1 = −Q1 and by Proposition 2.7 we may recursively
determine P j ∈ L− j

τ (M, ρ, λ, 0) and R′j ∈ R−∞j (M, 1
2λ ) for j = 2, . . . ,m such that

−Q j −
∑

i+k= j
1≤ i, k≤m

QiPk = P j + R′j (4.3)

with

||P j|| j,0 . ||Q j|| j,0 +
∑

i+k= j
1≤ i, k≤m

||Qi||i,0||Pk||k,0, 2 ≤ j ≤ m,

|R′j| j . ||Q j|| j,0 +
∑

i+k= j
1≤ i, k≤m

||Qi||i,0||Pk||k,0, 2 ≤ j ≤ m.
(4.4)

Consequently, we have

(I+Q1 + · · · + Qm)(I + P1 + · · · + Pm)

= I + P1 + Q1 +

m∑

j=2

(
P j + Q j +

∑

i+k= j
1≤ i, k≤m

QiPk
)

+

2m∑

j=m+1

∑

i+k= j
1≤ i, k≤m

QiPk

= I +

2m∑

j=m+1

∑

i+k= j
1≤ i, k≤m

QiPk +

m∑

j=2

R′j .

(4.5)

Moreover by induction we obtain from (4.4) the required inequalities for Pj , 1 ≤ j ≤ m and
the third inequality in (4.2) holds when 2 ≤ j ≤ m, if C2 is chosen to be larger than the implicit
constant. Since P1, . . . , Pm have already been determined, by Proposition 2.7, we may also find
T j ∈ L− j

τ (M, ρ, λ, 0), R′j ∈ R−∞j (M, 1
2λ ), m + 1 ≤ j ≤ 2m, such that

∑

i+k= j
1≤ i, k≤m

QiPk = T j + R′j , m + 1 ≤ j ≤ 2m, (4.6)

with

||T j|| j,0 .
∑

i+k= j
1≤ i, k≤m

||Qi||i,0||Pk||k,0, m + 1 ≤ j ≤ 2m,

|R′j| j .
∑

i+k= j
1≤ i, k≤m

||Qi||i,0||Pk||k,0, m + 1 ≤ j ≤ 2m.
(4.7)

Thus (4.1) follows by (4.5) and (4.6). The required estimates for Tj , R′j , m + 1 ≤ j ≤ 2m,
follow by (4.7) and the estimates of Pj , 1 ≤ j ≤ m, which we have already obtained. This
concludes the proof. �

Proof of the main theorem: Recall that τ =
τ0
λ < 1

2λ , where τ0 is given by Proposition 2.1 and
λ given by (1.2). For any N ∈ N∗, let m be an integer such that

N + 3 ≤ (m + 2)τ < N + 4, (4.8)
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which implies

m >
3
τ
, mτ > N. (4.9)

Let the operators Q′j ,Q
′′
j , 1 ≤ j ≤ m be given by Proposition 3.2. Applying Lemma 4.1 to

Q1 = Q′1, Q j = Q′j + Q′′j−1, 2 ≤ j ≤ m, Qm+1 = Q′′m, we may find

P j ∈ L− j
τ (M, ρ, λ, 0), 1 ≤ j ≤ m + 1,

T j ∈ L− j
τ (M, ρ, λ, 0), m + 2 ≤ j ≤ 2m + 2,

R′j ∈ R−∞j (M,
1

2λ
), 2 ≤ j ≤ 2m + 2

such that if we set Pm+1 =
∑m+1

j=1 P j , Qm =
∑m+1

j=1 Q j

(I + Qm)(I + Pm+1) = I +

2m+2∑

j=m+2

T j +

2m+2∑

j=2

R′j . (4.10)

Moreover, (4.2) with m replaced by m + 1 are satisfied by those operators. Since by (3.5), (3.7)

||Q j|| j,0 ≤
2K j− 1

2

j 2 h(λ, d) j, 1 ≤ j ≤ m + 1, (4.11)

we get by (4.2)

||P j|| j,0 ≤
j∑

`=1

∑

j1+···+ j`= j

C`−1
2

2K j1− 1
2

j1 2 . . .
2K j`− 1

2

j 2
`

h(λ, d) j

≤ (2K) jh(λ, d) j, 1 ≤ j ≤ m + 1,

||T j|| j,0 ≤ (2K) jh(λ, d) j, m + 2 ≤ j ≤ 2m + 2,

|R′j| j ≤ (2K) jh(λ, d) j, 2 ≤ j ≤ 2m + 2

(4.12)

if K > (2C2)2 and it is large enough so that Proposition 3.2 holds. For the solution u of (1.1),
we set

v = (I + Pm+1)u. (4.13)

Then by Proposition 2.5, (4.12), for any σ ∈ R,

||v(t)||Hσ .
(
1 + C |σ|1

m+1∑

j=1

‖Pj ‖ j,0M j−1[( j − 1)!
]max (2, µ)

)
||u(t)||Hσ

. C |σ|1
(
2KMh(λ, d)

)m+2(m!)max (2, µ) ||u(t)||Hσ .

(4.14)

Similarly, by Proposition 2.5, (4.12), for any σ ∈ R,

||∂tv(t)||Hσ

≤ ||∂tu(t)||Hσ +

m+1∑

j=1

||[∂t, P j]u(t)||Hσ +

m+1∑

j=1

||Pj∂tu(t)||Hσ (4.15)

. C |σ|1
(
2KMh(λ, d)

)m+2((m + 1)!
)max (2, µ)||u(t)||Hσ

+ C |σ|1
(
2KMh(λ, d)

)m+2(m!)max (2, µ)||∂tu(t)||Hσ ,
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and by (4.10), (4.13), (4.9), Proposition 2.5, Proposition 2.6, (4.11), (4.12)

||u(t)||HN

≤ ||(I + Qm)v(t)||HN +

2m+2∑

j=m+2

||Tj u(t)||H(m+2)τ +

2m+2∑

j=2

||R′j u(t)||Hmτ (4.16)

. (C1KM)m+ 1
2 h(λ, d)m+1(m!)max (2, µ) ||v(t)||HN

+
(
2KMh(λ, d)

)4m+3[(2m + 2)!
]max (2, µ)+1 ||u(t)||L2 .

By (3.9), (4.10) and (1.1)
(i∂t − ∆ + Vm)v = f + g, (4.17)

where

f = −
[1
2

2m+1∑

j=m+1

(
S jP0 + P0S j

)
v +

1
2

2m+1∑

j=1

(
R jP0 + P0R j

)
v

+
(
S̃ m+1 +

2m+3∑

j=m+1

S j +

2m+3∑

j=2

R j +

m∑

j=1

R̂ j
)

v
]
, (4.18)

g =(I + Qm)∗
[
i∂t − ∆ + V,

2m+2∑

j=m+2

T j +

2m+2∑

j=2

R′j
]

u. (4.19)

Therefore by (2.5) and the property of Vm, we have

(
i∂t − ∆ + Vm)(

1 − ∆̃
) N

2 v = w,

where by Lemma 4.2 below

||w||L2 ≤ (
4C0C1KMh(λ, d)

)5m+6[(2m + 3)!
]2 max (2, µ)||u0||L2 ,

if K is in addition larger than the implicit constants of (4.24) and (4.25). Since Vm is self-
adjoint, this implies the energy inequality

||v(t)||H̃N ≤ ||v(0)||H̃N +

∫ t

0
(4C0C1KMh(λ, d))5m+6[(2m + 3)!

]2 max (2, µ)||u0||L2dt

≤ ||v(0)||H̃N + |t|(4C0C1KMh(λ, d))5m+6[(2m + 3)!
]2 max (2, µ)||u0||L2 .

(4.20)

Now using (4.16), (2.7), (4.20), (4.14), the conservation law of the L2-norm of (1.1) and (4.9),
we deduce for some constant Cλ,d independent of m and N

||u(t)||HN ≤ CN
λ,d

[
(2m + 3)!

] 5
2 max (2, µ)(2 + |t|)||u0||HN , (4.21)

if we use
(m!)max (2, µ) ≤ [(2m)!]

1
2 max (2, µ).

Since by (4.8), 2m + 3 ≤ ([ 10
τ ] + 1)N, we deduce from (4.21)

||u(t)||HN ≤ CN
λ,d

[(
([

10
τ

] + 1)N
)
!
] 5

2 max (2, µ)(2 + |t|)||u0||HN . (4.22)

By Stirling’s approximation N! ∼ √2πN( N
e )N for any N ∈ N, there is a constant pλ depend on

τ and thus λ such that
(
([ 10

τ ] + 1)N
)
! ≤ pN

λ (N!)[ 10
τ ]+1, which, together with the fact that τ =

τ0
λ ,
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allows us to rewrite (4.22) for some constant C̃λ,d independent of m, N, µ and for some constant
ζ independent of m, N, µ and λ as

||u(t)||HN ≤ C̃N
λ,d(N!)ζµλ(2 + |t|)||u0||HN . (4.23)

Since (4.23) holds for any N ∈ N∗, we deduce, for any s > 0, from the conservation law of the
L2-norm and interpolation

||u(t)||Hs ≤ C̃θN
λ,d(N!)ζµλ θ(2 + |t|)θ||u0||Hs

where θ satisfies s = θN, θ ∈ [0, 1]. Assuming ||u0||Hs , 0, we obtain for any N ∈ N and for
some other constant Cs,λ,d independent of N

( 1
Cs,λ,d

(‖u(t)‖Hs

‖u0‖Hs

) 1
ζµλ s

)N ≤ N! (2 + |t|) 1
ζµλ .

This gives immediately for some other constant Cs,λ,d

||u(t)||Hs ≤ Cs,λ,d
[
log(2 + |t|)]ζµλs||u0||Hs ,

thus concludes the proof of the main theorem. �

Lemma 4.2. Let f , g be the quantities defined respectively by (4.18) and (4.19). Then

|| f ||H̃N .
(
4C0KMh(λ, d)

)5m+5[(2m + 3)!
]2 max (2, µ)||u0||L2 , (4.24)

||g||H̃N .
(
2C0C1KMh(λ, d)

)5m+5[(2m + 3)!
]2 max (2, µ)||u0||L2 , (4.25)

where C0 and C1 are constants respectively defined by (2.7) and (2.14).

Proof. We have by (2.7), (4.8), the properties of S j listed in Proposition 3.2, Proposition 2.4,
Proposition 2.5, (4.15), (4.14), (1.1) and the conservation law of the L2-norm of (1.1)

||
2m+1∑

j=m+1

(
Sj P0 + P0 Sj

)
v(t)||H̃N

. CN
0

2m+1∑

j=m+1

(
||Sj ∂tv(t)||H−2+(m+2)τ + ||Sj ∆v(t)||H−2+(m+2)τ

+ ||[i∂t, Sj]v(t)||H(m+2)τ + ||[∆, Sj]v(t)||H(m+1)τ

)

. CN
0

2m+1∑

j=m+1

K j

( j + 1)2 h(λ, d) j+1M j( j!
)max (2, µ)

(
||∂tv(t)||H−2 + ||∆v(t)||H−2

)

+ CN
0

2m+1∑

j=m+1

K j

( j + 1)2 h(λ, d) j+1M j+1[( j + 1)!
]max (2, µ)||v(t)||L2

. CN
0 (KM)2m+1[(2m + 1)!]max (2, µ)h(λ, d)2m+2

×
(
(2KMh(λ, d))m+2((m + 1)!

)max (2, µ)||u(t)||L2

+ (2KMh(λ, d))m+2(m!)max (2, µ)||∂tu(t)||H−2

)

+ CN
0 (KMh(λ, d))2m+2[(2m + 2)!

]max (2, µ)(2KMh(λ, d))m+2(m!)max (2, µ) ||u(t)||L2

. (2C0KMh(λ, d))3m+4[(2m + 2)!
]2 max (2, µ)||u0||L2 .
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Using, in addition, (4.9) and Proposition 2.6, we similarly have

||
2m+1∑

j=1

(
R jP0 + P0R j

)
v(t)||H̃N . (2C0KMh(λ, d))5m+5[(2m + 3)!

]2 max (2, µ)||u0||L2 .

By Proposition 2.5, Proposition 2.6 and Proposition 3.2, we easily deduce that the other terms
in the the expression of f can be controlled by the right hand side of (4.24). We only need to
point out that since R ∈ R−∞j−1(4M, τ), when we use (2.15), M should be replaced by 4M and that
is why in the right hand side of (4.24) the quantity ‘4C0KMh(λ, d)’ instead of ‘2C0KMh(λ, d)’
appears.

Next we want to show (4.25). First notice that by Proposition 2.5, (4.11), (4.9)

||(I + Qm)∗||L(HN ,HN ) . CN
1

m+1∑

j=1

2K j− 1
2

j 2 h(λ, d) jM j−1[( j − 1)!
]max (2, µ)

. (C1KM)m+ 1
2 h(λ, d)m+1(m!)max (2, µ).

(4.26)

On the other hand, by (2.7), (4.9), Proposition 2.5, Proposition 2.6, (4.12), the conservation
law of the L2-norm of (1.1),

‖[i∂t,

2m+2∑

j=m+2

T j +

2m+2∑

j=2

R′j]u(t)‖H̃N

≤ CN
0

2m+2∑

j=m+2

‖[i∂t,Tj ]u(t)‖Hmτ + CN
0

2m+2∑

j=2

‖[i∂t,R′j]u(t)‖Hmτ

. CN
0

2m+2∑

j=m+2

(2Kh(λ, d)) jM j( j!)max (2, µ)||u(t)||L2

+ CN
0

2m+2∑

j=2

(2Kh(λ, d)) jM2m+ j+1(( j + 1)!
)max (2, µ)(2m)!||u(t)||L2

. (2C0KMh(λ, d))4m+4[(2m + 3)!
]max (2, µ)+1||u0||L2 ,

(4.27)

and

‖[−∆,

2m+2∑

j=m+2

T j +

2m+2∑

j=2

R′j]u(t)‖H̃N .
(
2C0KMh(λ, d)

)4m+3[(2m + 2)!
]max (2, µ)+1||u0||L2 . (4.28)

Since the quantity ‖[V,∑2m+2
j=m+2 T j +

∑2m+2
j=2 R′j]u(t)‖H̃N is also less than a constant times the last

line of (4.27), by (4.26)-(4.28) we see that (4.25) holds true. �
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Résumé. Au cours des années récentes, plusieurs auteurs ont prouvé des résultats
d’existence en temps grand pour des solutions d’équations de Klein-Gordon non-linéaires
sur certaines variétés compactes, telles les sphères, lorsque les données initiales sont assez
régulières et assez petites, et qu’un certain paramètre de masse évite un sous-ensemble
de mesure nulle de la droite réelle. L’une des hypothèses fondamentales dans ces travaux
est une propriété de séparation des valeurs propres du laplacien sur les variétés consid-
érées. L’objet des deux premiers articles constituant cette thèse est d’examiner quels
résultats peuvent être obtenus lorsqu’une telle hypothèse de séparation n’est plus vérifiée.
Nous étudions le cas d’un opérateur de Klein-Gordon associé à l’oscillateur harmonique
sur l’espace euclidien, et celui de l’opérateur de Klein-Gordon usuel sur le tore. Nous
obtenons, par des méthodes de formes normales, des solutions existant sur des intervalles
plus longs que ceux fournis par la théorie locale.
Le dernier article de cette thèse s’intéresse au problème de l’estimation en temps grand des
normes Sobolev de solutions d’une équation de Schrödinger linéaire sur le tore, à potentiel
dépendant du temps. Nous prouvons des bornes logarithmiques, lorsque le potentiel est
Gevrey, généralisant des résultats antérieurs de Bourgain et Wang.

Mots clefs : Équation de Klein-Gordon non-linéaire ; Oscillateur harmonique ; Existence
en temps grand ; Formes normales ; Équation de Schrödinger dépendant du temps ;
Potentiel Gevrey ; Croissance des normes Sobolev.

Long-time existence and growth of Sobolev norms for solutions of semi-linear
Klein-Gordon equations and linear Schrödinger equations on some manifolds

Abstract. In recent years, several authors proved long time existence results for solu-
tions of non-linear Klein-Gordon equation on some compact manifolds, like spheres, when
the initial data are smooth and small enough, and when some mass parameter avoids a
subset of zero measure of the real line. One of the fundamental assumptions in these
works is a separation property of the eigenvalues of the laplacian on the manifolds under
consideration. The goal of the first two papers of this thesis is to examine which results
may be obtained when such a separation assumption does not hold. We study two cases:
a Klein-Gordon operator associated to the harmonic oscillator on the Euclidean space,
and the usual Klein-Gordon operator on the torus. We get, using normal forms methods,
solutions existing over longer time intervals than the ones given by the local theory.
The last paper of the thesis concerns long time estimates for Sobolev norms of solutions of
a linear Schrödinger equation on the torus, with time dependent potential. We prove log-
arithmic bounds, when the potential is in the Gevrey class, extending results of Bourgain
and Wang.

Keywords: Non-linear Klein-Gordon equation; Harmonic oscillator; Longtime existence;
Normal form; Time dependent Schrödinger equation; Gevrey potential; Growth of Sobolev
norms.
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