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USED ABBREVIATIONS AND SYMBOLS  

ACP  approximated complex plane 
a*  complex formulation a* = a′+ia″ where a′ = E′///ρ and a″/a′ = tanδ// 
b*  complex formulation b* = b′+ib″ where b′ = 4G′///ρ and b″ = 4G″///ρ 
β∗  complex formulation β* = β′+i β″ where β′ = b′/a' and β″ = b″/a″ 
ata  aging time shift factor 
aT  temperature shift factor 
Cxx  elements of the stiffness matrix 
CP  complex plane 
E  Young’s modulus 
E*  complex formulation of the Young’s modulus E* = E′+iE″ 
E/ρ                  specific Young’s modulus along the grain 
E///ρ specific Young’s modulus along the microfibrils 
θ                      microfibril angle  
G* complex formulation of the shear modulus G* = G′+iG″ 
h thickness 
f  resonance frequency 
J*  complex compliance 
J’  storage compliance (real part of the complex compliance) 
J”  loss compliance (imaginary part of the complex compliance) 
J0  initial compliance 
Ji  instantaneous compliance 
J(t)  time-dependent compliance 
J-T effect assumption stating the temperature effect on the initial compliance 
k  power parameter 
λ(T)  softening parameter 
l  length of the specimen 
LRT  directions: longitudinal – radial – tangential 
m  constant depending on the vibration mode 
MFA  microfibril angle 
µ  aging rate 
P  porosity 
ρb  basic density, further denoted only ρ 
ρcw  density of the cell wall 
ρsat100%  totally saturated specific gravity 
ρsatX%  partially saturated specific gravity 
R  universal gas constant  
RH  relative humidity 
rms  root mean square 
SE  standard error 
SD  standard deviation 
SL  saturation level 
τ  characteristic/doubling time 
T  temperature  
T0  reference temperature 
ta   aging time 
tc   creep time, further denoted only t 



 

tanδ   damping coefficient (tanδ = E″/E′) 
tanδ//  damping coefficient along the microfibrils 
Tg  temperature of glass transition 
tL   loading time 
tstab  stabilisation time 
TTAE  time-aging time equivalency 
TTE  time-temperature equivalency 
W  activation energy 
W0  activation energy deduced from visually generated master curve without J-T 

effect. 



COMPORTEMENT VISCOELASTIQUE LONGITUDINAL DU BOIS VE RT: DIVERSITE ET 
PREDICTION A LONG TERME 
_________________________________________________________________________________ 
 
Le but de l’étude consistait à prédire le comportement viscoélastique longitudinal du bois vert dans la 
période correspondant à la vie d’un arbre et d’explorer la diversité de ces propriétés. Le travail s’est 
déroulé en deux temps. Une analyse exploratoire des propriétés vibratoires a été effectuée sur un 
large échantillon incluant divers types de bois, y compris des bois de réaction, issus de dix espèces 
tropicales. Dans un deuxième temps, une sélection restreinte des échantillons a été utilisée pour une 
étude approfondie du comportement en fluage à long terme. Par ailleurs, la relation avec les 
paramètres structuraux tels que densité, angle des microfibrilles et pourcentage des éléments 
anatomiques a été étudiée.  
Une procédure d’évaluation du fluage à long terme a été mise au point à partir d’essais à différentes 
températures. L’occurrence du vieillissement physique suite au refroidissement consécutif au 
chauffage au dessus de la température de transition vitreuse du bois a été mise en évidence. 
L’applicabilité du principe d’équivalence temps-température a été remise en question par l’analyse des 
résultats dans le plan complexe approché (PCA). L’hypothèse supplémentaire de la dépendance de la 
complaisance initiale à la température, similaire à l’élasticité entropique des polymères amorphes, a 
été proposée et appliquée, permettant de prédire avec succès le comportement à long terme à partir 
d’essais courts. Le fluage thermoactivé, ainsi que le phénomène de vieillissement physique, ont été 
décrits par un modèle de Maxwell parabolique identifié à partir de la représentation des résultats dans 
le PCA. Le comportement en fluage est apparu non corrélé au coefficient d’amortissement mesuré 
lors des essais vibratoires, suggérant une dissociation entre les mécanismes rhéologiques qui 
contrôlent le comportement viscoélastiques aux échelles de temps acoustiques (quelques centaines 
de Hertz) et biologiques (plusieurs années). Enfin, l’hypothèse d’un effet prépondérant de la lamelle 
mitoyenne sur le processus de fluage a été suggérée pour expliquer les faibles corrélations observées 
entre le fluage relatif et la structure des parois cellulaires. 
____________________________________________________________________________ 
VISCOELASTIC BEHAVIOUR OF GREEN WOOD ALONG FIBRES: DIVERSITY AND LONG-TERM 
PREDICTION 
_________________________________________________________________________________ 
 
The aim of the study was to predict the long-term creep behaviour of green wood in the longitudinal 
direction for a period corresponding to the life of a tree and to explore the variability of this behaviour. 
The study took place in two steps commencing with a screening of vibration properties on a large 
sample of ten tropical species including different wood types, the reaction wood included. Next, a 
small subsample was used for an in depth analysis of the long-term creep properties. Further, the 
relation of viscoelastic properties with structural parameters such as basic density, microfibril angle 
and percentage of anatomical elements was investigated. 
A testing procedure was developed to assess the long-term viscoelastic properties based on short-
term creep tests performed at different temperatures. Occurrence of physical aging subsequent to a 
quench from a temperature above the glassy transition was evidenced. Direct applicability of the time-
temperature equivalency was questioned by discrepancies observed in the approximated complex 
plane (ACP). Additional assumption of a temperature-dependent initial compliance, similar to the 
entropic elasticity in amorphous polymers, was suggested and successfully applied to obtain reliable 
long-term creep predictions. Thermo-activated creep behaviour along with physical aging was 
described by a parabolic Maxwell model identified from the representation of experimental data in the 
ACP. The creep behaviour was revealed not to be related to the damping coefficient measured by the  
vibration method, indicating that different rheological mechanisms govern the viscoelastic behaviour at 
acoustic time scales (hundreds of Hz) and biologic scales (several years). In conclusion, the 
hypothesis of the middle lamella playing a key role in the long-term creep was proposed to explain the 
weakness of the correlations observed between the amount of relative creep and the structure of the 
cell wall. 
_________________________________________________________________________________ 
 
DISCIPLINE : MECANIQUE ET GENIE CIVIL 
_________________________________________________________________________________ 
 
MOTS-CLES : VISCOELASTICITE – MODELE PARABOLIQUE - BOIS VERT – BOIS TROPICAUX 
_________________________________________________________________________________ 
 
LABORATOIRE DE MECANIQUE ET GENIE CIVIL - 860, Rout e de St Priest – 34090 - Montpellier 
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GENERAL INTRODUCTION 
 

This work is an integral part of an ANR research project called «Woodiversity» 
(ANR-05-BDIV-012-04) which focused on the variability of structures and properties of trees 
growing in the tropical rainforest. Tropical rainforests are highly competitive environments 
characterised by high density of stems, closed forest canopy and limited light availability. 
Severe growing conditions are at the origin of the diversity of structures and properties of 
tropical species. Numerous strategies have been developed by trees to optimise their 
performance and survive in the forest until their reproductive maturity. The aim of the ANR 
project was to analyse the biological significance of the diversity of wood structure and 
mechanical properties. The role of the Tree and Wood Mechanics research team in LMGC 
was to advance methodologies for characterisation of mechanical properties of green wood. 
The present work focuses in particular on viscoelastic properties of green wood in the 
longitudinal direction. 

The context of the ANR project is plant biomechanics. It means that throughout all the 
study, wood is not considered as a material to be used for man-made structures, but as a 
building material designed to ensure living functions of a tree. That’s why it was essential to 
study wood in a state that is as representative as possible of its native state in the living tree. 
For this purpose, wood samples had to be kept in water, sometimes for long durations, and the 
effect of different storage conditions on mechanical properties of wood has been investigated. 
The aim of the PhD project was to develop an experimental device and appropriate procedure 
to assess the viscoelastic behaviour of green wood and explore its variability along with their 
structural determinants.  

Data were collected in view of biomechanical applications such as models dealing 
with the tree reorientation process or bending resistance. Thus, time scales in which we were 
interested corresponded to decades of years. To predict behaviour at these time scales, we 
need to set up a precise experimental procedure. Because this procedure required a long 
experimental time, it was hindering to the second objective: to investigate the diversity of 
viscoelastic behaviour. Therefore, the first screening of viscoelastic properties was performed 
on a large sample of tropical species using a rapid vibration method. Afterwards, an in depth 
study of viscoelastic behaviour was performed on a limited selection of specimens exhibiting 
contrasted properties. The aim was to assess general features of the viscoelastic behaviour. To 
gain an insight into the origin of viscoelastic properties, some structural parameters such as 
basic density and microfibril angle were measured on the sample. These parameters are 
known to be the determinants of elastic properties. In this study, the pertinence of the latter 
parameters for viscoelastic considerations was investigated.   

The manuscript is organised in two parts according to our objectives. The first part 
deals with the diversity of viscoelastic response measured at short observation times and the 
relation between viscoelastic and structural parameters. The second part focused in greater 
detail on the validity of some assumptions generally used for predictions of the long-term 
viscoelastic behaviour from short-term experimental data. Structural complexity of natural 
materials such as wood makes it difficult for the direct application of experimental procedures 
and theoretical principles often borrowed from other fields, such as polymer science, and 
many precautions have to be taken. We have tried in this work to gain an insight into the 
current understanding of the viscoelastic properties of wood in the green condition, the 
variability of the viscoelastic response and the role of the temperature in the acceleration of 
viscoelastic processes. 
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LITERATURE OVERVIEW 
 

The following chapter introduces wood structure and properties as well as general 
concepts for investigating viscoelastic properties. The specificity of wood behaviour 
originating from its biological synthesis and present state of knowledge on the contribution of 
wood components to the viscoelastic behaviour is presented. Some specific points will be 
however introduced in the introduction of corresponding chapters. 

1) Wood structure 

Wood with its inherent strength is a product of growing trees. The primary function of 
the woody trunk of the living tree is to provide support for the photosynthetic energy factory 
i.e. leaves at the top and to provide transport of water and nutrients moving up to those leaves. 
The photosynthetic sugars produced by the leaves mostly move down the stem via the bark 
tissues. Woody tissues, interior to the bark, are organised in concentric anisotropic bands 
made up of cells with specific functions.  

1.1 Microstructure 

Three main features characterize the microstructure: 

- highly elongated cells called tracheids in softwood and fibres in hardwoods 
constituting the bulk of the wood; 

- parenchyma cells oriented in radial or in axial direction; 

- large diameter cells with large pore spaces and thin cell walls called vessels. 

While vessels ensure the transport function in hardwood, mechanical function is 
provided mainly by tracheids and fibres. Tracheids average about 3.5 mm in length and 0.035 
mm in diameter while fibres are generally shorter (1–1.5 mm) and smaller in diameter (0.015 
mm). Parenchyma cells function as a means of either longitudinal or radial nutrient 
transport/storage. However, Burgert et al. (1999) stated recently that in addition to their 
storage and transport function ray cells have also a mechanical function. Reiterer et al. (2002) 
have also reported the importance of the radial reinforcement of the wood structure by rays. 
Excepting radial parenchyma, all cells are aligned along the longitudinal axis of the stem so 
that wood can be represented as a cellular solid as illustrated in Figure  0-1a. This is 
particularly true in softwoods where tracheids represent up to ~95% of the bulk of the wood. 
In hardwoods there is wide variation in the proportion of cell types. We can encounter large 
percentage of vessels ~ 21.4% in Betula lutea or of parenchyma totals ~ 28% in Carya ovata 
(Kollmann and Côté 1968). Accordingly to its microscopic structure, wood is highly 
anisotropic. Its anisotropy can be reduced to an orthotropic behaviour with stem planes of 
symmetry defining three directions – longitudinal, radial and tangential (L – R – T). 
Mechanical properties are mainly determined by the fibre fraction and cell wall thickness. 
Accordingly to fibre orientation, mechanical performances of wood in L direction are higher 
than in transverse directions. 

1.2 Cell wall structure 

Cell wall of wood fibres can be represented as a multi-layer fibre-reinforced composite 
(Figure  0-1b). Each cell wall layer is made up of ‘fibres’ of crystalline cellulose called 
microfibrils embedded in a matrix of amorphous hemicelluloses and lignin.  
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Figure  0-1: (a) Honeycomb-like structure of wood at microscopic scale. (b) Multi-layered structure of the cell 
wall. From (Norimoto and Gril 1989). 

Between individual cells there is a thin layer called middle lamella which glues the 
cells together to form the tissue and is mainly composed by pectin and lignin. In the primary 
wall the cellulose fibrils are arranged in thin randomly oriented layers. As the primary wall is 
the first layer deposited during the development of a cell, this system allows for an expansion 
of the young cell driven by the softening of the interfibril matrix. It is difficult to distinguish 
the primary wall from the middle lamella using microscopy so that the term compound middle 
lamella is often applied to both regions. Contrary to the primary layer, the secondary layers 
are characterised by a high degree of parallelism of microfibrils. Typical secondary cell wall 
is divided into three different layers, S1, S2, and S3. The S1 layer is about 0.1-0.3 µm thick 
and exhibits gentle helical slope of the fibrils. The S2 layer, usually 1-5µm in thickness, 
accounts for 75% to 85% of the total thickness of the cell wall. The S2 layer contains from 30 
to 150 lamellae, all exhibiting microfibrils spiralling in a right-hand running a steep angle 
(10° to 30°) to the fibre axis further denoted microfibril angle (MFA). Orientation of 
microfibrils in S2 layer affects significantly many properties of wood material along with 
their anisotropic character. The innermost layer of the secondary cell wall, the S3 layer, is 
again very thin (~0.1 µm) with MFA of 60° to 90° with regard to the cell axis (Fengel and 
Wegener 1984). 

1.3 Constitutive polymers 

The main wood components are cellulose, hemicelluloses and lignin. Nearly 50% of 
the wood material is made up of cellulose. Cellulose occurs in wood in the form of slender 
filaments or chains, these having been built up within the cell wall from the glucose monomer. 
Whilst the degree of polymerisation can vary considerably from one species to another, it is 
considered to range from 8000 to 10 000 units on average. Successive units in the chain are 
rotated through 180° and covalent bonding by β-1-4 linkage gives rise to a straight chains. 
Supramolecular structure is cellulose is characterised by highly ordered arrangement with 
densely packed molecules, building up a fibrous-like rod structure called a microfibril. This 
structure is based on the alignment of the cellulose chains parallel to each other and connected 
between them by intra and intermolecular hydrogen bonds. However, microfibrils are not 
totally crystalline and regions with less ordered arrangement of the cellulose molecules occur. 
In wood it is estimated that about 70% of the cellulose is crystalline (Fengel and Wegener 
1984).  
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Hemicelluloses are in close association with cellulose in the cell wall. The molecular 
chains are much shorter than those of cellulose, they have side-groups and are branched in 
some cases. The third macromolecular wood component, lignin, is present in roughly equal 
proportions to the hemicelluloses. The molecules of lignin are built up differently from those 
of the polysaccharides, consisting of an aromatic system composed of phenylpropane units. 
From a morphological point of view, lignin is an amorphous substance located in the 
compound middle lamella as well as in the secondary walls. During the development of the 
cells lignin is incorporated as the last component into the cell walls, interpenetrating the 
fibrils and so strengthening the cell walls (Fengel and Wegener 1984). Most cellulosic plants 
do not contain lignin and it is the inclusion of this component which imparts much of the 
stiffness to wood cell walls. Recent works have reported that lignin structure is not 
completely amorphous. Akerholm and Salmén (2003) have shown that there is a preferred 
orientation of the phenyl-propane units of lignin along the fibre axis in spruce tracheids. This 
implies there is an ordered structure of lignin in the secondary wall of tracheids analogous to 
that of the cell-wall polysaccharides. The dynamic IR-spectra also indicated that lignin 
exhibits a much more viscoelastic behaviour than do the carbohydrates. 

In addition to main constitutive polymers of wood – cellulose, hemicelluloses, lignin – 
wood contains the so-called extractives. The extractives cover a wide range of chemical 
compounds though they generally represent only a small part of wood. They can be extracted 
from wood by means of polar and non-polar solvents. As a rule, extractives represent a small 
proportion of wood, fewer than 5%, but relatively high amounts of extractives are found in 
some tropical and subtropical woods (up to 30% according to CIRAD1 database). Extractives 
affect the wood density estimates (Singleton et al. 2003) and some of them are known to 
considerably affect the damping coefficient (for details see § 4.3) and some other properties 
such as shrinkage (Choong and Achmadi 1991) or durability. 

1.4 Distribution of the main polymers in the cell wall 

Cell wall layers differ not only by structural arrangement but also by the chemical 
composition as pictured in Figure  0-2. The middle lamella and primary wall are mostly 
composed by lignin (8.4% of the total weight), pectin, protein and xyloglucane (1.4%) 
included in the picture label hemicelluloses and very little cellulose (0.7%). The S1 layer 
consists of cellulose (6.1%), hemicelluloses (3.7%), and lignin (10.5%). The S2 layer is the 
thickest layer and has the highest carbohydrate content which is the mostly cellulose (32.7%) 
with lesser quantities of hemicelluloses (18.4%) and lignin (9.1%). The S3 layer, the 
innermost layer, consists of cellulose (0.8%), hemicelluloses (5.2%), and very little lignin. It 
is interesting to note that although the relative lignin ratio is low within the S2 layer, the same 
amount of lignin as in the middle lamella exists within this layer because of its large overall 
mass (Winandy and Rowell 2005). 

                                                 
1 Centre de coopération internationale en recherche agronomique pour le développement (French Agricultural 
Research Centre for International Development) 
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Figure  0-2: Distribution of main wood components in different layers of the cell wall according to Panshin and 
de Zeuw [cited by (Navi and Heger 2005)]. 

1.5 Properties of cell wall components and their interactions 

An extensive overview of current knowledge about the cell wall component properties 
was recently done by Salmén and Burgert (2009). The following statements are extracted 
from this paper. The crystalline stiffness of cellulose is around 134 GPa, regardless of some 
discussion about the absolute number. However, the variability of the crystalline regions and 
the stiffness variations along the cellulose aggregates still need an in-depth consideration. The 
effective stiffness value of the cellulose in the cell wall structure is still not clear. Mechanical 
data for hemicelluloses and lignin are scarce; with only the old data of Cousins (1978; 1976) 
being available. Cousins estimated the Young’s modulus of isolated Klason lignin to 2.3GPa 
at 12% moisture content (Cousins 1978) and that of hemicelluloses to 0.01GPa in saturated 
state (Cousins 1976). However, these values may only be taken as approximations and as 
indirect evidence, as both the molecular structure and the spatial arrangement of these 
polymers differ substantially in isolated form and within the in situ polymer matrix. At first 
glance, it seems that the overall contribution of the soft matrix polymers to the stiffness of the 
cell wall is of less importance, in particular, in the case of small cellulose MFAs. However, 
the importance of the mechanical properties of the matrix polymers cannot be neglected in 
particular for viscoelastic behaviour that is governed mainly by amorphous constituents. 
Further, sensitivity of wood to water is a good example on the necessity to consider also the 
hemicelluloses contribution to wood behaviour. 

Besides the properties of individual polymers, their interactions greatly affect the 
performance of the cell wall assembly. The specific bonding pattern at their interfaces plays 
an essential role in this regard. The bonding of hemicelluloses to the cellulose fibril surfaces 
is not based on covalent bonds but mainly on hydrogen bonds. This results in a strong but also 
flexible connection of both polymers, as hydrogen bonds can easily be opened and reformed 
(Altaner and Jarvis 2008). Lignin is not bound directly to cellulose, but it is covalently bound 
to hemicelluloses. Hence, the amphiphilic hemicelluloses play an essential role in the 
maintenance of the cell wall assembly while lignin reacts as a bulking agent preventing 
buckling of microfibrils. The interactions between the constituents of the cell wall occur on an 
extremely intermixed level. This explains to some extent the fact that properties of the cell 
wall do not generally reveal strong dependencies of one component to another. It is also still 
not clear whether and how crosslinks exist within cellulose aggregates between 
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hemicelluloses and cellulose microfibrils. In other words, a network structure within the 
secondary cell wall is not clarified and we do not know how strong such a network could be.  

2) Mechanical consequences of the biological synthe sis of wood 

2.1 Origin of pre-stresses 

During its life, a tree experiences incremental diameter growth together with an 
increase of external forces, mainly because of the self loading of the tree. In addition, newly 
formed wood cells are pre-stressed during the maturation process. Immediately after cell birth, 
the newly developed cells undergo a several day long maturation period, during which two 
mechanisms take place in the cell wall; lignification and cellulose crystallization. As lignin is 
deposited, the amorphous cellulose matrix swells transversely and when cellulose 
crystallization occurs, microfibrils shrink longitudinally (Okuyama et al. 1994). Under the 
combined effect of these two mechanisms, single cell tends to shrink longitudinally and 
expand transversally as illustrated in Figure  0-3. However, the maturing wood cells are 
attached to older, already lignified and thereby much stiffer cells which prevent the tendency 
of maturating cells to shrink.  Hence, these maturing cells are held in a state of longitudinal 
tensile stress, and it is only on cutting the wood, that these “maturation stresses” can be 
released in the form of residual strains along the longitudinal axis (Archer 1986; Kubler 1987). 
The wood cells at the surface of a tree are therefore stretched longitudinally and compressed 
tangentially and can be said to be held in tension. However, as more and more wood is added 
to the tree surface, the wood cells inside the trunk are slowly compressed, until they are 
completely held in compression, toward the centre of the trunk. This gradient of mechanical 
stress in a trunk, whereby the outside is held in tension, and the centre in compression, is 
called growth stress, and can be highly detrimental to wood quality, resulting in warping and 
twisting of boards and planks. 

 
Figure  0-3: Maturation process and origin of growth stresses as pictured by (Plomion et al. 2001). As the newly 
developed wood cell (i) begins to differentiate (ii), the deposition of lignin and cellulose in the secondary cell 
wall tends to stretch the cell laterally and cause it to shrink longitudinally (black arrows). However, as the 
differentiating wood cell is attached to older wood (iii), it cannot deform completely, thereby setting up a 
mechanical stress in the cell wall (empty arrows). In normal wood (NW), this translates into a tensile stress, 
therefore, the wood in the outer surface of a tree (iv) is usually held in tension (+ and empty arrows). However, 
accumulation of peripheral maturation tensile stresses must be balanced by internal compression of the stem (- 
and full arrows).  
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2.2 Biological consequences of pre-stresses 

2.2.a Increase of the stem bending resistance 

One of important consequences of pre-stresses for the tree is to improve the 
instantaneous bending resistance of stems. As vital functions of a tree such as cell 
differentiation or sap conduction are concentrated at the periphery of the stem, it is essential 
to prevent surface damage when a tree is submitted to bending loads. The impact of pre-
stresses on the radial distribution of internal stresses inside a tree under bending loads is 
nicely explained by Gordon (1978) in Figure  0-4a. When submitted to axial stress wood is 
more resistant in tension than in compression. Rupture in tension of a fibrous material, like 
wood, requires a considerable energy because of the complex organisation of the cell walls 
that makes them resistant to delamination. In compression, due to the porous honeycomb-like 
microstructure, the occurrence of localised buckling results in a lower resistance. The 
opposite is observed across the fibre: fragile rupture in tension and considerable plastic 
deformation in compression. Wood layers located near stem periphery are pre-strained by 
longitudinal tension and tangential compression at the expense of less vital internal layers 
subjected by compensation to longitudinal compression and transverse tension. This improves 
stem strength and flexibility and tends to prevent breaking or surface damage under bending 
loads as pictured in Figure  0-4 b. 
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Figure  0-4: Left figure: Pre-stress and bending strength of tree trunks. (a) Tree bent by the wind without 
considering the filed of pre-stresses due to the maturation process. Stress distribution across the trunk is linear 
and maximum tension and compression are equal. (b) Field of internal stresses resulting from the maturation 
process. The outside is in tension all around, the inside is in compression. (c) Pre-stressed tree in a strong wind. 
Compression stress is halved and this tree can bend twice as far as the one is (a). From Gordon (1978). Right 
figure: The positive effect of growth stresses on stem flexibility. 

2.2.b Interactive shape regulation 

Tree stems are slender structures that are never perfectly symmetric. Thus, the increase 
in tree mass due to their growth induces inevitably more or less important bending 
movements. Given the mechanical design of trees, integration of these movements over time 
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would ultimately lead to a weeping habit. However, a gravitropic correction is achieved by 
asymmetric distribution of maturation stresses that balance the bending moment due to 
asymmetric increase of weight (Alméras and Fournier 2009). Pre-stresses are used by a tree 
also to control the shape of its branches or possible non-verticality of the stem due to some 
external loading like wind. Actually, circumferential distribution of longitudinal growth 
strains is very often asymmetric (Fournier et al. 1994).  Resulting difference of tensile stresses 
induced on the upper and lower side of a tree stem or a branch induces a bending moment. 
Thus, growth stresses allow stem reorientation since the most tensile side pulls the other one. 
Although cell maturation is very short compared to the subsequent duration of wood existence 
as a supporting part of the stem, it is of the utmost importance both for the tree stem and for 
the wood, because of its mechanically active nature (Wilson and Archer 1979). Peripheral 
variations of initial growth stress provide the stems with the only mechanism of secondary 
reorientation compatible with their thickness and rigidity, because the amount of maturation 
strain can be adjusted during the formation of the secondary wall under the action of growth 
regulators. 

2.3 Reaction wood 

Investigating the maturation strains on the periphery of a leaning tree, it has been 
found that maturation strains are systematically different from the usual ones within an 
angular sector located in correspondence to the leaning direction. This clearly relates to the 
existence of a specific type of material, called reaction wood unlike normal wood produced a 
priori  by straight growing trees. According to measured maturation strains, reaction wood in 
softwoods is named compression wood and in hardwoods tension wood. Wood tissues 
produced on the opposite side of the stem are called opposite wood. Occurrence of reaction 
tissues increases considerably the intraspecific variability of wood structures and properties. 
Reaction tissues represent in fact a sort of adaptation limit to the growth conditions. 
Variations appear at three levels: variations of cell shape and cell wall thickness, of cell wall 
architecture and of chemical composition of polymers constituting the middle lamella. 

Compression wood in conifers is more lignified with higher MFA  in the cell wall, 
resulting in a specific longitudinal modulus of elasticity much lower than that of normal wood 
(Timell 1986). On the contrary, the tension wood of hardwoods is less lignified with lower 
MFA and has in consequence higher specific longitudinal modulus of elasticity. Tension 
wood is characterised in many species by the occurrence of fibres with a particular 
morphology and chemical composition due to the development of so-called G-layer (Scurfield 
1973). G-layer was for a long time described as essentially cellulosic highly crystalline layer. 
Recently, Bowling and Vaughn (2008) have reported the occurrence of arabinogalactan 
proteins and pectin molecules bound to the G-layer. Moreover, Clair et al. (2008) have 
identified a gel structure in the cell wall of the tension wood explaining its large longitudinal 
shrinkage. However, G-layer is not always present in tension wood of hardwoods. Among 
122 species of Dicotyledonous representing 45 families for the most of tropical origin, only 
56 species presented the G-layer in the tension wood (Fisher and Stevenson 1981). A similar 
observation was also made by Clair et al. (2006). The great diversity of reaction woods 
observed among the different species proves that nature owns a large set of solutions to solve 
its mechanical problems. 
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Figure  0-5: Released longitudinal growth strain against mean MFA in S2 layer from (Sassus 1998).  

 The amount of pre-stress was found to be correlated to the microfibril angle as 
illustrated in Figure  0-5 where values of released longitudinal growth strain are plotted 
against the mean MFA (Sassus 1998). The classical division between normal wood and 
reaction wood is given here a mechanical interpretation. Normal wood produces maturation 
strains ranging from −0.1% to 0%, and corresponds to a MFA of 7 to about 25°. Tension 
wood produces highly negative strains, down to −0.35%, with a MFA approaching zero. 
Compression wood produces positive strains, up to 0.3%, with a MFA exceeding 20–30°. 
Taking into account cell wall architecture and physico-mechanical properties of individual 
wood constituents, numerical models allow to estimate important properties as elastic 
compliance, maturation strains, hygrothermal expansion (Gril et al. 1999; Yamamoto et al. 
2002). Both, variations of MFA and of chemical composition have to be taken into account to 
fit with experimental observations.  

Due to differences in wood structure and chemical composition, reaction tissues 
exhibit different physical and mechanical properties. While similar characteristics (wider ring 
width, higher specific gravity, lower specific modulus) have been reported for different 
compression woods (Timell 1986; Gindl 2002), mechanical properties of tension wood seem 
to be variable. Some studies reported considerably higher elastic modulus in tension wood 
compared to opposite wood (Coutand et al. 2004) or a significant tendency between released 
growth strains and elastic modulus (Clair et al. 2003; Fang et al. 2008) while others have not 
detected any tendency between released growth strains and elastic modulus (Sassus 1998). 
Opposite trend, i.e. higher specific modulus in opposite wood compared to tension wood, was 
observed in two tropical species (Ruelle et al. 2007).  

2.4 Consequences on the measurement of viscoelastic properties 

Growth stress can be understood as the loading history applied to the material before 
tree felling. Locked-in strains are partially released by cutting specimens from the tree. 
However, some residual strains are still locked in the wood material and can be released by 
heating the piece of wood in a green state beyond the softening point of lignin (see § 3.4.b for 
details). This phenomenon is known as hygrothermal recovery of locked-in strains (Yokota 
and Tarkow 1962). Heating of green wood therefore involves a complex set of deformation 
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processes. In addition to the reversible thermal strain characterised by negative expansion 
coefficient below the softening temperature of lignin, the material recovers locked-in strains 
resulting from the maturation process. The release of locked-in strains was observed by 
Yokota and Tarkow (1962) beyond ~ 35°C. Gril et al.(1993) reported that release of strains 
becomes visible when the temperature of water exceeds 40-50°C. Such a deformation 
complicates the measurement of thermally activated viscoelastic properties because released 
strains overlap with the creep strain due to the loading.  

3) Linear viscoelasticity 

Viscoelastic response is often used as a probe in polymer science, since it is sensitive 
to the material’s chemistry and microstructure. While not all polymers are purely viscoelastic 
to any important practical extent, and even fewer are linearly viscoelastic, the theory of linear 
viscoelasticity provides a usable approximation for many applications. Even in cases 
requiring more elaborate treatments, the linear viscoelastic theory is a useful starting point. 
Following outline of some important aspects of the linear viscoelasticity is widely inspired by 
some of basic  works in this field (McCrum 1967; Nowick and Berry 1972; Ferry 1980; Bodig 
and Jayne 1982). 

3.1 Physical sources of viscoelastic behaviour 

3.1.a Energetic and entropic elasticity 

When subjected to an applied stress, polymers may deform by either one or both of 
two fundamentally different atomistic mechanisms named respectively energetic and entropic 
or rubber elasticity. At first, the lengths and angles of the chemical bonds connecting the 
atoms may distort, moving the atoms to new positions of greater internal energy. This small 
motion occurs very quickly, requiring only ~ 10−12 seconds and is called energetic elasticity. 
Moreover, if the polymer has sufficient molecular mobility, larger-scale rearrangements of the 
atoms may also be possible. For instance, the relatively easy rotation around backbone 
carbon-carbon single bonds can produce large changes in the conformation of the molecule. 
Depending on the mobility, a polymer molecule can extend itself in the direction of the 
applied stress, which decreases its conformational entropy. In the absence of deforming forces, 
a polymer will take on a shape that maximizes its randomness and minimizes its free energy. 
With the application of the load the molecule will partially straighten to a new length ℓ + ude, 
as shown in Figure  0-6. The change of the molecular shape is accompanied by a modification 
of molecular forces throughout the network, resulting in delayed elastic behaviour. If the load 
is removed the polymer will return to a random, low-energy state. However, the return is 
delayed by newly formed secondary bonds and entanglement with other molecules. The 
longer the involved segments the slower these time-dependent phenomena. Elastomers — 
rubber — respond almost wholly by this so-called entropic mechanism, with little distortion 
of their covalent bonds or change in their internal energy. 
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Figure  0-6: Schematic representation of delayed elastic deformation of a polymer chain: (a) original shape, (b) 
early stage of deformation, (c) final stages of elongation, (d) early stages of recovery, (e) recovered shape. 
(Bodig and Jayne 1982) 

3.1.b Glass-rubber transition 

In contrast to the instantaneous nature of the energetically controlled elasticity, the 
conformational or entropic changes are processes whose rates are sensitive to the local 
molecular mobility. This mobility is influenced by a variety of physical and chemical factors, 
such as molecular architecture, temperature or the presence of absorbed fluids which may 
swell and/or plasticize the polymer. 

Often, a simple mental picture of the free volume, roughly defined as the space 
available for molecular segments to act cooperatively so as to carry out the motion or reaction 
in question, is useful in intuiting these mobility rates. These rates of conformational change 
can often be described with reasonable accuracy by Arrhenius-type expressions of the form: 

rate ~ e –W/RT                     Eq.  0-1 

where W is an apparent activation energy of the process and R is the (ideal) gas 
constant. At temperatures much above the glass transition temperature (Tg), the rates are so 
fast that they are essentially instantaneous, and the polymer acts in a rubbery manner in which 
it exhibits large, instantaneous, and fully reversible strains in response to an applied stress. 

Conversely, at temperatures much less than Tg, the rates are so slow as to be negligible. 
Here the molecules chain uncoiling process is essentially frozen out, so the polymer is able to 
respond only by bond stretching. It now responds in a glassy manner, responding 
instantaneously and reversibly but being unable to be strained beyond a few percent before a 
brittle fracture occurs. 

In the range near Tg, the material is midway between the glassy and rubbery regimes. 
Its response is a combination of viscous fluidity and elastic solidity, and this region is termed 
leathery, or, more technically, viscoelastic. The value of Tg is an important parameter of 
polymer thermomechanical response, and is a fundamental measure of the ability of the 
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material’s molecules for mobility. Factors that enhance mobility, such as absorbed diluents, 
expansive stress states, and lack of bulky molecular groups, all tend to produce lower values 
of Tg. 

 
Figure  0-7: Plot of Young’s modulus against temperature. Tg stands for the temperature of glassy transition and 
Tm for the melting pot. 

3.2 Transition regions in wood 

Most polymers exhibit more than one relaxation, or transition region. In order to 
identify and compare these regions for different polymers, they are often labelled with the 
letters α, β, γ, etc. α  corresponds to the relaxation observed at the highest temperature (at a 
given frequency) or the lowest frequency (at a given temperature). The β and γ  symbols then 
apply to the other relaxation regions in order of decreasing temperature or increasing 
frequency. Each transition is associated with corresponding activation energy. and change in 
the storage modulus and mainly in the loss angle (dissipation) as observed in spruce and 
maple at 10% moisture content in Figure  0-8 borrowed from (Kelley et al. 1987). Analysis 
was performed on the water swollen wood by DMTA measurements. A peak in the loss angle 
spectrum is observed at each transition. 

 
Figure  0-8: Storage modulus E’ and loss angle tan δ (damping or dissipation) as a function of the temperature 
measured in spruce (—) and maple (---) at 10% moisture content by  (Kelley et al. 1987). 

No substantial loss in storage modulus was evident over the temperature range of the β 
dispersion. However, a dramatic decrease in storage modulus is associated with the high 
temperature α1 transition. The behaviour of the β transition is characteristic of secondary 
dispersion involving only small-scale molecular motion while the storage modulus decrease at 
the α transitions implies large-scale segmental motion which is characteristic of a glassy 

glassy state 

transition 

rubbery state rubbery 
flow 

liquid 



 18 

transition. Transition α1 was ascribed to lignin glassy transition whose activation energy is 
around 350kJ/mol-1. Transition α2  was associated with hemicelluloses but insufficient 
resolution in the measurement prevented the calculation of the corresponding activation 
energy. The β dispersion has an activation energy of 102 kJ/mol-1. A relaxation peak with 
similarly low activation energy has been noted for a variety of hydrophilic polymers, 
including carbohydrates, under high humidity conditions. 

3.3 Experimental observations 

In the case of viscoelastic materials, mechanical characterization often consists of 
performing tests similar to those used for elastic solids, but modified to enable observation of 
the time dependency of the material response. The most commonly used tests encounter creep, 
stress relaxation and dynamic loading. In the following, investigation of thermally activated 
creep properties and underlying principles will be outlined. Vibration measurements used to 
determine the damping coefficient will be introduced in the chapter A-3.2.  

3.3.a Creep tests 

Theoretical creep curve 

The creep test consists in measuring the time dependent strain resulting from the 
application of a steady uniaxial stress. In principle, creep curves can be determined over the 
whole period of prediction. In fact, measurements can only be made between say 1s and 
approximately 105s (i.e.,~1 day; 106s ~ 12 days; 107s ~ 4 months). The shorter time is limited 
by the inertia of the creep apparatus and the longer time by the patience of the observer and 
the ability of doing such a test in good and constant condition during a long time. The creep 
curve is often represented against the logarithm of time. Note that the logarithmic form of the 
plot changes the shape of the curve drastically by stretching out the short-time portion of the 
response and compressing the long-time region.   

A theoretical creep curve based on the idea of simple rubber-glass transition is 
represented in Figure  0-9. Material is supposed to exhibit two limiting compliances. It strains 
initially to the glassy compliance, which represents its energetic elastic deformation. In time, 
the compliance rises to an equilibrium or rubbery compliance, corresponding to the entropic 
elasticity. The value along the abscissa labelled log τ marks the inflection from rising to 
falling slope, and τ is called the characteristic time of the creep process. 

 
Figure  0-9: Theoretical creep curve representing two limiting compliances: Cg standing for the glassy 
compliance and Cr standing for the rubbery one. 

Short-term and long-term creep curves in wood 
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A typical curve obtained during short-term creep tests performed on wood specimens 
is presented in Figure  0-10. Van der Put [cited by (Hunt 2004)] proposed to divide the creep 
into two processes based on the deformation kinetics. The primary part is completed within 
one or two days, while the secondary part follows a straight line on a plot of creep against the 
logarithm of time. A similar observation was done by Hunt (2004) as illustrated in Figure 
 0-10. Hunt has also examined in his paper experimental results obtained by Gressel originally 
published in 1984. Gressel has performed eight-year creep tests on beech, pine and spruce in a 
constant environment of 65% and 20°C. As we can observe from Figure  0-11, the creep curve 
plotted against the log of time follows essentially a straight line. No inflexion point or 
progressive slowdown of the creep process can be observed. Thus, it is not possible to 
confirm whether the secondary creep is likely to follow a straight line indefinitely, or whether 
the rate decreases eventually towards a viscoelastic creep limit. It is tempting to predict the 
long-term behaviour by extrapolating such creep curves. An example of a result obtained by 
Hunt based on one or two weeks tests into the eight years period is given in Figure  0-11. Hunt 
also found the estimated relative creep after 50years to be dependant on wood quality, 
quantified by specific modulus, and relative humidity. 

 
Figure  0-10: Creep data plotted as relative creep against log of time. From (Hunt 2004) 

 

Figure  0-11: Gressel’s eight-year creep data for beech, compared with various method of prediction from short-
term data: continuation of slope between 1-2 weeks is represented by the solid line and prediction based on the 
normalised logarithmic creep rate of the creep after 1 week by the dashed line. From (Hunt 2004). 
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Domain of linearity in wood 

Linearity in this context means that doubling the stress will result in doubling the 
strain of studied material at any point in its history. In linear elastic material, it is the strain 
immediately after loading that is proportional to applied stress. In viscoelastic material, the 
linearity of the behaviour means that the strain at any given time after loading is proportional 
to the applied stress. Linearity is a condition required for the use of Boltzmann’s 
superposition principle (see § 3.4.a) so that it is essential to know the extent of domain of 
linearity in wood. 

 If the strain-stress relation is linear, the strain ε  resulting from a stress nσ, where n is 
a constant, is just n times the strain resulting from single σ. Mathematically, it means that: 

ε(nσ) = nε(σ).                              Eq.  0-2 

For linear materials, the family of strain histories ε(t) obtained at various constant 
stresses may be superimposed by normalizing them by the applied stress. The linearity 
property is illustrated in Figure  0-12. 

 
Figure  0-12: Representation of linear viscoelastic behaviour. Left: applied stress, right: resulting strain. From 
(Le Govic 1988). 

A number of studies were interested in the domain of linearity in wood, mostly 
focused on the limit of linearity in bending and compression. The onset of non-linearity in 
bending was associated with the behaviour of the compression face of the test piece. The 
estimated value of the limit of linearity, in general expressed as percentage of ultimate stress, 
varies considerably from one author to another (Hunt 1988; Le Govic 1988; Navi and Heger 
2005). It appears to depend on the type of loading, temperature and moisture content. 
However it is difficult to compare estimates between them because the ultimate stress can 
vary by a factor up to three according to the moisture content and type of loading. For this 
reason, strain might be a more suitable parameter as proposed by Hunt (1989). Hunt has also 
analysed the onset of non-linearity during mechano-sorptive creep of Baltic redwood (Pinus 
Sylvestris) specimens. His experiments showed that compression test pieces departed from 
linearity at a total strain around 1400 to 1500µm/m and bending test pieces at 1600µm/m 
while the tensile pieces were linear up to 1800µm/m.  

Effect of loading mode 

Vittecoq [cited by Genevaux (1989)] has evidenced different behaviour of the 
stretched and compressed side of a synthetic composite (IM6–914) submitted to bending 
stress. Difference between Young’s modulus measured on both sides was significant as 

A1 = A2 
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shown in Figure  0-13. Decrease in the compression modulus with increase of stress can be 
explained by microscopic buckling of fibres. Elastic bending strain is a superposition of the 
behaviour in compression and tension and so is for the delayed strain. This can result in 
repeated apparition of the same relaxation mechanism during the measurement of creep in 
bending if the latter one is dependent on the stress level. Interpretation of such a signal is not 
straightforward. 

 

Figure  0-13: Compression and tension modulus of IM6-914 according to Vittecoq [cited in (Genevaux 1989)]. 

Considering the creep behaviour under different loading mode in wood, Hoffmeyer 
(1990) investigated the creep under compression, tension and bending for specimens with 
different moisture content. He reported higher relative creep under tensile and compression 
loading compared to bending one. According to Navi and Heger (2005), this may be due to 
the measurement of the strain. While bending creep is typically measured for the entire length 
(beam deflection), compressive and tensile creeps are measured more locally and are more 
sensitive to possible defect. At low moisture contents, the relative creep strain in compression 
and tension are of the same order of magnitude. Conversely, a large difference can be 
observed at higher moisture content as shown in Figure  0-14b where creep in compression is 
nearly two times higher than in tension. However, these conclusions have to be taken with 
precautions because the proportional limit might have been exceeded during these tests as 
high loads (70% of the instantaneous strength) were applied.  

 

Tension face 
Compression face 

Stress  
MPa  

Module  
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Figure  0-14: Relative creep strains in compression, tension and bending. Moisture content of specimens was of 
~11% for the figure (a) and 20% for the figure (b). Borrowed from (Hoffmeyer 1990). 

Permanent deformation 

Very few references were found about the reversibility of strains developed during the 
creep tests under constant conditions. Hayashi et al. (1993) reported that the time-dependent 
strain induced by load level up to 58% of the ultimate strength, and applied during 4 to 10 
days, is largely recoverable. On the other hand, some irrecoverable components of 
deformation appear to exist in compression wood resulting in earlier departure from linearity. 
The level of non-recovered strain seems to be higher after creep tests comparing to relaxation 
tests (Grossman and Kingston 1954).  

3.4 Phenomenological framework 

3.4.a Statement of the Boltzmann superposition principle 

According to this principle, ″if a series of stresses are applied to a material at 
different times, each contributes to the deformation as if it alone were acting″. 
Mathematically, if the stress due to a strain ε1(t) is σ(ε1) and that due to a different strain ε2(t) 
is σ(ε2), then the stress due to both strains is σ(ε1+ε2) = σ(ε1)+σ(ε2). Combining this with the 
condition for multiplicative scaling used earlier (Eq. 0-2), we have as a general statement of 
linear viscoelasticity: 

σ(n1ε1 + n2ε2) = n1 σ(ε1) + n2 σ(ε2).                  Eq.  0-3 

Validity of this hypothesis is required for the use of mechanical models described in the 
section  3.5. 

3.4.b Effect of temperature 

Under water saturated conditions, hemicelluloses are already softened at room 
temperature (Cousins 1978). Consequently, the properties of lignin exert a particularly great 
influence upon wood properties. Furuta et al. (1997) showed that the relaxation around -40 °C 
was associated with the micro-Brownian motion of hemicelluloses and that around 80 °C with 
that of lignin. This softening of lignin results in a major reduction in the elastic modulus of 
the wood, particularly in the direction across the fibres. Salmén (1984) has investigated the 

b) 
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glass transition of wet wood in both, the longitudinal and transverse directions on spruce. He 
reported a glass transition temperature of 72 °C at low frequencies. The softening along and 
across the fibre direction were of different amplitude but have shown to be due to the same 
phenomenon. Directional difference illustrated in Figure  0-15 is merely a reflection of the 
high degree of anisotropy of the microfibrils within the wood fibres. Similar results are 
reported also in his following paper (Salmén 1988). 

Figure  0-15: (a) Damping coefficient as function of temperature for water saturated wood samples at 10 Hz. 
(b) Relative damping coefficient. From (Salmén 1984). 

Temperature of glassy transition is known to differ between softwoods and hardwoods 
as well as between species. Hamdan et al. (2000) have investigated the effect of temperature 
on wood constituents of several Japanese softwoods and hardwoods subjected to heat or 
steam treatment during large radial compression between 0 °C and 200 °C. Two well-defined 
softening regions were observed. Both groups showed the glass transition Tg of lignin at ~ 
90 °C and ~ 60 °C for softwood and hardwood respectively and a second transition region at 
~ 160 °C. The softening behaviour between the first and second transition in softwood 
contrasted with the softening behaviour of hardwood. This difference was ascribed to the 
difference in chemical structure of lignin between softwood and hardwood. The effect of 
lignin composition on the Tg of several temperate hardwood and softwood species were 
investigated in greater detail by Olsson and Salmén (1997). Increased content of methoxyl 
groups in the lignin was found to correlate with decreased softening temperature of wet wood. 
This indicates that methoxyl groups in lignin, as a side group occupying a bonding site and 
hindering the creation of covalent bonds, reduces the crosslink density in the lignin structure 
thus increasing its mobility. 

•  along the fibre direction 
� across the fibre direction 

across fibres 

along fibres 
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Figure  0-16: Softening temperature of wet wood at a stress frequency of 0.1 Hz against the methoxyl group 
content of the lignin. From (Olsson and Salmén 1997). 

Bardet et al. (2003) studied the influence of temperature on transverse mechanical 
properties of 10 tropical species in the green condition, two of them being also used in the 
present study (D. guaianensis and V. surinamensis that is of same genus as V. michelii). They 
reported a transition temperature attributed to the softening of lignin between 51 and 69 °C, 
depending on the species. Detailed analysis of the apparent modulus in radial compression 
suggested that complex relaxation phenomena occur around 10 °C.  

Time-temperature equivalency 

Leaderman 1943 [cited by (McCrum 1967)] was the first to recognize the 
consequences of the similarity between creep curves measured at closely separated 
temperatures. It was found that this striking similarity between viscoelastic parameters when 
measured at closely spaced temperatures is a common occurrence and is not confined to a few 
relaxations. The procedure of superposing curves at different times and temperatures has 
come to be known as time-temperature superposition and the obtained curve as a master 
curve. The principle of the superposition is illustrated in Figure  0-17. Colder temperatures are 
expected to correspond to shorter times and warmer temperatures to longer times.  
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Figure  0-17: Principle of the time-temperature equivalency as pictured by Tschoegl (1997). T stands for 
temperature, log aT for shifts along the log time axis, τ for the characteristic time. 

The time-temperature equivalency assumption is very useful to extend the 
experimental window and predict long-term behaviour based on short-term tests. The 
assumption required for the validity of this principle is that all retardation times in the 
distribution are displaced along the lnτ axis by ln aT when the temperature is changed from T0 
to T as shown in Figure  0-18. This can be mathematically expressed as: 

φJ
T(lnτ) = φJ

T0(lnτ/aT),                             Eq.  0-4 

where φJ
T(lnτ) is the distribution of retardation times. 

 

Figure  0-18: Graphical representation of the hypothesis that the retardation spectra at T and T0 are displaced by 
ln aT but are identical in shape (Alfrey 1948). 

Polymers obeying to this law are considered as thermo-rheologically simple materials. 
It is found that for the great majority of relaxations ln aT is a simple function of temperature 
being given by the Arrhenius equation: 
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or the equation of Williams, Landel and Ferry called WLF (Ferry 1980): 



 26 

)(

)(
ln

02

01

TTC

TTC
aT −+

−
−=                  Eq.  0-6 

where W is the activation energy, R the gas constant and C1 and C2 constants. WLF is 
nearly always applicable to the glass-rubber relaxation. The Arrhenius law is usually 
applicable to secondary relaxation in amorphous and crystalline polymers. 

WLF and Arrhenius equations account for the effect of temperature on the kinetics of 
the relaxation. It is sometimes necessary to account for the temperature induced changes in 
limiting moduli as stated by McCrum and Morris (1964). The implications of this correction 
are described graphically in Figure  0-19. 

 
Figure  0-19: Idealized diagram showing effect of the temperature dependencies of limiting compliances denoted 
here as JU and JR on the creep compliance. (a) Plot of JU and JR against temperature. (b) Dependence of JT and 
JT0 on log time. AB and CD represent the measurable portions of the curve (i.e. for times between ca. 1 and 
105 s). A’B’ represents AB after reduction. 

The curves JT0 and JT for temperatures T0 and T are plotted by full lines. JT can not be 
superposed by a horizontal shift on JT0 if the limiting compliances, labelled in the Figure  0-19 
as JU and JR, are affected by temperature. To enable the superposition, a multiplicative factor 
has to account for this temperature effect on the limiting compliance. In particular in regions 
where the viscoelastic function is flat, the need of this factor is more important to obtain 
satisfactory matching of creep curves (Ferry 1980). In the case of wood, the applicability of 
such a correction is not straightforward because of its complex structure (Salmén 1984). 

Validity of the time-temperature equivalency in wood 

Salmén (1984) reported the applicability of the time-temperature equivalency in wood 
for temperatures above the glass transition of lignin. This author has also confirmed the 
validity of the Arrhenius law. Many other authors predicted the long-term behaviour of wood 
in the hygroscopic region based on this concept (Le Govic et al. 1987; Genevaux 1989). 
However, these considerations relied mostly on visual assessment of the smoothness of the 
master curve. While investigating the experimental data in the complex plane, Bardet (2001) 
reported on some discrepancy of the time-temperature equivalency as described by the 
Arrhenius law. On the other hand, the time-temperature equivalency assumption held the 
examination in the complex plane in the case the torsion behaviour of green poplar (Vincent 
2006). Finally, Placet et al. (2007) found that time-temperature equivalency could not be 
applied to the whole viscoelastic range but seems to be valid within each transition state. 
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Physical aging 

The phenomenon of physical aging is very common and is encountered in 
thermoplastic mouldings that have been cooled rapidly from an elevated temperature during 
the shaping operation. In the case of amorphous polymers, the material is still cooling rapidly 
when the temperature drops below the glass transition temperature Tg. Once below Tg the rate 
of molecular relaxation is too slow to keep pace with the changes required if the material is to 
remain at thermodynamic equilibrium. As a result, when the material reaches the thermal 
equilibrium with the surroundings it is not at thermodynamic equilibrium. Consequently, it 
will undergo volumetric relaxation, gradually increasing density during an extended aging 
period. The rate of densification will depend on the aging temperature Ta and the difference 
between Ta and Tg. Aging may be quite rapid at first if Ta is not too far below Tg but the 
approach to equilibrium will slow down and aging effects may sometimes still be apparent 
after many years. If Tg is far below Tg the thermodynamic driving force will be large because 
the property (e.g. density) will be far from the thermodynamic equilibrium value and will 
favour change but kinetics are determined by the difference between Ta and Tg, and this will 
limit the rate of change (White 2006). 

Aging of amorphous material was studied extensively by Struik and his book (Struik 
1978), published more than a quarter of century ago remains the principle reference on 
physical aging of polymers. He proposed en experimental protocol to investigate the effect of 
aging time on small-strain creep properties by performing a set of short time creep tests at 
different aging times. Short time test means that the testing time must be much shorter than 
the age of the specimen at the onset of the test. This is called the snapshot assumption because 
a test performed during such a short time (tc = ta/3 or even better tc = ta/10) will exhibit 
negligible effects of aging.  He presumes that individual creep curves can be horizontally 
shifted to form a master curve and the superimposability of the curves proves that aging does 
not influence the shape of the creep curve. Struik explained this by the fact that an increase in 
aging time changes all relaxation times by exactly the same factor and suggests the use of 
time-aging time superposition principle. Similarly to the time-temperature equivalency 
principle, this one can be written as follows: 

µ = - d (log τ)/d (log ta) = - d (log ata)/d (log ta),                                   (Eq.  0-7) 

where µ is the aging shift rate where parameter ata represents the horizontal shift used 
in Struik’s procedure to form a master curve from creep curves measured at different aging 
times. 

McCrum (1992) claims that there is a paradox between this interpretation and received 
knowledge in the fields on DMTA (dynamic mechanical thermal analysis) and DETA 
(dielectric thermal analysis). According to McCrum the existence of large shifts of retardation 
time (several decades) produced isothermally by aging is not in accord with DMTA or DETA 
spectroscopy measurements. Thus, he suggests the interpretation of physical aging in creep 
from sequential aging theory. In a sequential aging mechanism, only viscoelastic elements 
with retardation times of the order of the aging time are transforming. Elements with 
retardation time shorter than ta are already at their equilibrium positions and long retardation 
time have not yet begun their move to equilibrium. That is to say, the elements age in 
sequence and the shift factors depends on ta and also on the retardation time. 

Physical aging has been already observed in wood. A number of arguments for its 
occurrence were given for wood in the hygroscopic range (Hunt and Gril 1996). The effects 
of a quench (rapid cooling) on wet wood properties was studied by Nakano (2005) who 
reported a temporary change in viscoelastic properties with a new equilibrium state definitely 
reached at the end of 10 hours. Free volume creation has been ascribed to the freezing of 
molecular chains of wood components, most likely lignin, during the quench. On the other 
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hand, Ishimaru (2003) has investigated the effect of quenching rate on wood creep properties 
and observed that the effect of cooling had not completely disappeared after 40 days. 
However, Ishimaru did not examine the aging phenomenon in more detail. 

3.5 Mechanical models 

3.5.a Spring-dashpot models with single relaxation time 

The time dependence of viscoelastic response is analogous to the time dependence of 
reactive electrical circuits, and both can be described by mechanical models using springs and 
dashpots.  Such models are able to reproduce the instantaneous and delayed strain or stress as 
well as time-temperature equivalency. These mechanical analogies use Hookean springs, 
depicted in Figure  0-20 and described by: 

 εερ Ek ==                    Eq.  0-8 

where ρ and ε are analogous to the spring force and displacement, and the spring 
constant k is analogous to the Young’s modulus E. The spring models the instantaneous bond 
deformation of the material, and its magnitude will be related to the fraction of mechanical 
energy stored reversibly as strain energy. 

  

Figure  0-20: Hookean spring (left) and Newtonian dashpot (right). 

The entropic uncoiling process is fluid like in nature, and can be modelled by a 
Newtonian dashpot also shown in Figure  0-20, in which the stress is proportional to a strain 
rate: 

εηρ &= ,                             Eq.  0-9 

where the over dot denotes time differentiation and η is a viscosity. In many of the 
relations to follow, it will be convenient to employ the ratio of viscosity to stiffness: 

E

ητ = .                  Eq.  0-10 

The unit of τ is time, and it will be seen that this ratio is a useful measure of the 
response time of the material’s viscoelastic response. 

 

Figure  0-21: The Maxwell model. 

The viscoelastic behaviour of polymers can be often described by a combination of 
springs and a dashpot such as the Maxwell or Zener model. The Maxwell solid, shown in 
Figure  0-21, is a mechanical model in which a Hookean spring and a Newtonian dashpot are 
connected in series. The spring should be visualized as representing the elastic or energetic 
component of the response, while the dashpot represents the conformational or entropic 
component. In a series connection such as the Maxwell model, the stress on each element is 
the same and equal to the imposed stress, while the total strain is the sum of the strain in each 
element. The delayed compliance of such a model is described by:  

E η 

E η 
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where J0 is the instantaneous compliance and τ  the doubling time.  

The Maxwell model is valid for a very limited set of materials. For more typical 
polymers whose conformational change is eventually limited by the network of entanglements 
or other types of junction points, more elaborate spring-dashpot models can be used 
effectively. Placing a spring in parallel with the dashpot gives a very useful model known as 
the Zener model or standard anelastic solid shown in Figure  0-22. The body formed by a 
spring and dashpot in parallel is called Kelvin body.  

 
Figure  0-22: The Zener model. 

The spring place in parallel to the dashpot leads to a limited creep. Constitutive law of 
such a model yields: 
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−+= ,               Eq.  0-12 

where τ is the characteristic time. 

3.5.b  Models with distribution of retardation times 

Generalised Kelvin model 

A real polymer does not relax with a single relaxation time as predicted by the 
previous models. Molecular segments of various lengths contribute to the relaxation, with the 
simpler and shorter segments relaxing much more quickly than the long ones. This leads to a 
distribution of relaxation times, which in turn produces a relaxation spread over a much 
longer time than can be modelled accurately with a single relaxation time. To introduce the 
notion of the distribution of relaxation respectively retardation times, generalised models are 
used, having as many elementary models in series or parallel as are needed to approximate the 
distribution satisfactorily. 

 
Figure  0-23: Generalised Kelvin model.  
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The constitutive law of generalised Kelvin model can be written as follows: 
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This type of model consisting of four Kelvin elements in series was used by Genevaux 
and Guitard (1988) to describe the creep behaviour of air dry poplar in L,T and R directions 
observed during creep tests at continuously increasing temperature. Later, it was applied on 
the green wood behaviour of oak and spruce in T direction (Perré and Aguiar 1999). 

Parabolic models 

In parabolic models, Newtonian dashpot is replaced by a parabolic one and the kernel 
t/τ becomes (t/τ) k. Constitutive law of a Maxwell model containing a parabolic dashpot yields 
therefore a power law: 


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where k is the power parameter or also the kinetic parameter whose value can range 
from 0 to 1. For k = 1, we obtain a simple Maxwell model. Small values of k correspond to a 
broad viscoelastic spectrum. In polymers, values of k around 0.3 are commonly encountered 
(Tomlins 1996). The applicability of parabolic models to wood was suggested by Huet (1988) 
and used by his co-workers in CTBA2 (Le Govic et al. 1988). Its validity was also verified for 
air-dry wood creep in longitudinal direction (Gril et al. 2004). Further, the parabolic model 
was applied to the green wood relaxation transversally to the fibres (Bardet and Gril 2002) 
and torsion behaviour of green poplar specimens (Vincent et al. 2006). The value of k was in 
the range 0.1 ~ 0.5 in these cases. 

Equivalent creep spectrum 

However, parabolic models are more difficult to handle than conventional rheological 
models. It has been shown (Bardet and Gril 2002; Gril and Hunt 2002) that viscoelastic 
spectrum corresponding to a parabolic model can be approximated by a generalised Gaussian 
law. Actually, it is practically equivalent to having a series of Kelvin elements (1….N) with 
characteristic times τi uniformly distributed in a logarithmic scale, and corresponding 
compliance Ji following: 
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where J1 stands for the sum of Jk, d is the spectrum width relative to the ln(t), g a 
parameter that allows us to adjust the spectrum sharpness and τ1 is the central value. Values of 
d and g can be calculated for any values of the kinetic parameter k of the parabolic model. The 
correspondence between generalised Kelvin model and a parabolic Zener model when 
represented in the complex plane is illustrated in Figure  0-25. Details about the representation 
of viscoelastic results in the complex plane are given in the  3.5.d. 

                                                 
2 Centre Technique du Bois et de l’Ameublement (French Technical Centre for Wood and Furniture) 
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3.5.c Multi-transition models 

Due to its complex polymeric structure, wood does not exhibit thermo-rheologically 
simple behaviour. Different experimental results (Poliszko 1984; Salmén 1984; Genevaux and 
Guitard 1988) demonstrated that thermo-viscoelasticity of wood may involve several second 
order transitions.  

 

Figure  0-24: Graphical adjustment of the numerical results of the multi-parabolic multi-transition model on the 
experimental creep results obtained in CTBA and results of dynamic tests at low temperature (Poliszko 1984) 
and high temperature (Salmén 1984). J stands for the compliance, W for the activation energy and p for the 
kinetic parameter. From (Huet and Navi 1990). 

The existence of more than one relaxation process requires the use of a multi-parabolic 
model made of several of the generalised Kelvin models in series. Navi and Huet (1990) have 
shown that a series of four links consisting of parabolic Kelvin elements, one of them being 
reduced to a spring, represent correctly the actual behaviour of wood over a large 
experimental window. Their multi-parabolic multi-transition model accounted for 
experimental results apparently in contradiction to each others. The method proposed relies 
on the use of complex plots representing the components of complex modulus or, in the case 
of creep data, an approximation of the complex modulus derived from phase diagrams. 

3.5.d  Representation in complex plane 

Information about the compliance or modulus functions of viscoelastic materials are 
often obtained through dynamic measurements in the sinusoidal regime. These are most 
conveniently expressed by the complex compliance J*: 

),("),('),(* TiiJTiJTiJ ωωω += , 

where the real J′ and imaginary J″ parts are positive functions of the circular 
frequency ω and of the temperature T. When the frequency-temperature equivalency 
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(analogous to the time-temperature equivalency) holds, the set of two variables (ω, T) reduces 
to one variable ωτ where τ(T) is the only parameter affected by temperature. In that case, the 
complex compliance of the mono-transition power law, corresponding to a parabolic Maxwell 
model, reads: 

( )[ ]kiJTiJ −+= ωτω 1),(* 0 , 

where J0 is the initial compliance. When the imaginary part is plotted against the real 
part in the so called complex plane, the complex compliance is represented by a straight line 
making an angle kπ/2 with the real axis, which is intersected in J0. Complex compliance of the 
parabolic Kelvin model appears in form of an arc of circle. Thus, for the purpose of model 
identification, the representation of experimental data in a complex plane is very useful.  

For representing results of static tests in the complex plane, an approximation of the 
storage J’ and loss compliances J”  has to be used. Accordingly to Alfrey (1948) we can write: 

)(log' tJJ ≈ ;               (Eq.  0-16) 
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where t is the creep time. Alfrey’s approximation is valid for small J” /J’ ratios and 
broad viscoelastic spectra, which is usually the case in wood and can be verified a posteriori 
in the complex plots.  

If the time-temperature equivalency holds, individual creep curves are superposed into 
one continuous curve in the ACP, as this would ensure that not only the values of the J(log t) 
functions match, but also the slope. If other parameters than the characteristic or doubling 
time are affected by the temperature, we can observe discontinuities between individual creep 
curves. Thus, ACP does not allow only identification of the mathematical form of the 
constitutive law without any preconceived idea about the underlying physical phenomenon 
but it also allows verification of the validity of time-temperature equivalency assumption. 
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Figure  0-25: Representation of the Zener models containing Newtonian (half circle) or parabolic (arc of circle) 
dashpot in the complex plane. Approximation of the parabolic model by a series of Kelvin models is also 
displayed. Axes account for both, representation of dynamic and static data. 
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4) Structure/property relations 

4.1 Density and MFA 

MFA shows variable relationship with wood density. In some cases MFA and wood 
density are correlated, while in other cases they are not as we can observe in Figure  0-26 from 
(Yang and Evans 2003). Some studies compared MFA with cell wall thickness that is the 
main determinant of density. Observed relationships, if significant, were attributed to decrease 
of S2 layer and so larger effect of other layers on the mean MFA or were correlated to the 
amount of latewood in the ring decreasing the MFA. Thus, it seems likely that any 
relationship between these properties is entirely coincidental  (Donaldson 2008).  

 
Figure  0-26: Relation between MFA and density for plantation-grown E. globulus, E nitnens and E. regnans 
between 15 and 33years of age. From (Yang and Evans 2003). 

4.2 Density and MFA as a predictor of longitudinal wood stiffness 

Longitudinal stiffness of the cell wall is known to be strongly related to MFA. 
Numerous models predicting the cell wall stiffness from the properties of cell wall 
constituents and MFA were proposed and successfully used to describe experimental data 
(Persson 2000; Salmén 2004). An example of the prediction obtained by Salmén is shown in 
Figure  0-27. Different physical assumptions used for modelling the cell wall properties based 
on MFA were reviewed by Xu and Liu (2004).  
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Figure  0-27: The elastic modulus of the fibre wall of wood in the longitudinal direction as a function of fibril 
angle in the S2-wall as affecte by different factors; cellulose content in the S2-wall and proportion of S2-wall 
compared to measurements by Cave (1969). Reference values: cellulose content in S2-wall 50%, proportion of 
S2-wall 79%. From (Salmén 2004). 

The longitudinal stiffness of the cell wall determined by MFA is in turn related to the 
longitudinal Young’s modulus of a piece of wood by the amount of cell wall per unit volume, 
usually measured as basic density. This is a direct consequence of the arrangement of wood 
elements exhibiting honeycomb structure. Considering wood as a cellular solid, we can write 
according to  Gibson and Ashby (1997):  

cw

cwEE

ρρ
= ;                (Eq.  0-18) 

where ρ is the density and E the Young’s modulus of wood and index cw denotes the 
cell wall properties. The density of the cell wall is very similar for all species, varying from 
1.497 to 1.517 for hardwoods (Kellogg and Wangaard 1969). Based on this relation, we can 
easily predict the Young’s modulus of wood from the cell wall modulus and density. This 
approach is justified for the longitudinal direction. In transverse directions, it is not 
straightforward to apply because if a piece of wood is submitted to transverse tensile stress, 
locally the cell walls are submitted to bending and in addition to tensile stress.  

Many monospecific studies investigating the relation between MFA, basic density and 
longitudinal Young’s modulus were carried out on commercial species such as Pinus or 
Eucalyptus (Butterfield 1998; Yang and Evans 2003).While the Young’s modulus-density 
relationship can be easily verified on a large sample containing different species as shown in 
Figure  0-28, no verification was found in the literature for the interspecific validity of MFA – 
specific modulus relationship. 
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Figure  0-28: Relation between density and elastic modulus on data issued from CIRAD database. Each point 
represents a mean value by species; altogether ~1000 species are represented. 

4.3 Determinants of vibration properties 

In the previous section we have seen that the specific modulus was strongly related to 
MFA. Damping coefficient is known to be well correlated to specific modulus. This relation 
was established empirically by Ono and Norimoto (1984) on a large sample of hardwoods and 
softwoods. Regression between both parameters was described by a power law and often 
presented in double logarithmic scale as shown in Figure  0-29 a. Very strong correlation was 
also observed between damping coefficient and MFA on hinoki wood by Norimoto et al. 
(1986). They have also proposed a cell wall model that showed a very good agreement with 
experimental data as shown in Figure  0-29 b.  

However, non standard behaviour was observed for some species commonly used for 
manufacture of musical instruments and was ascribed to the extractive content. Effect of 
extractives was studied by many authors (Yano 1994; Yano et al. 1995; Matsunaga et al. 
1999; Brémaud et al. 2004; Brémaud et al. 2004) that have reported considerably lower 
damping compared to the model established by Ono and Norimoto. The opposite effect, i.e. 
increase of damping along with increase of specific modulus due to extractives was reported 
in sugar cane (Obataya et al. 1999).  
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Figure  0-29: (a) Relation between damping coefficient and specific modulus in double logarithmic scale. (b) 
Relation between damping coefficient and MFA. 

Brémaud (2006) has also studied the vibration properties of several softwoods 
including their compression wood. The relationship between specific modulus, damping and 
MFA of opposite, intermediate and compression wood is shown in Figure  0-30. The term 
intermediate was used for denote the wood coming from angular position shifted by 90° 
relative to compression wood side. We can observe a strong correlation of both mechanical 
parameters on MFA.  

 
Figure  0-30: Relation between specific modulus, damping coefficient and microfibril angle on a selection of 
three softwoods including compression wood. From (Brémaud 2006). 

A deeper analysis has shown that compression wood has a lower specific modulus and 
a higher damping coefficient than corresponding normal wood. However, compression wood 
exhibited a lower damping coefficient than predicted by the Ono and Norimoto model. 
Compression wood is known for its high lignin content and low cellulose content, so that one 

 

S
P

E
C

IF
IC

 M
O

D
U

LU
S

 (
G

P
a)

 

D
A

M
P

IN
G

 C
O

E
F

F
IC

IE
N

T
 



 37 

may expect rather high damping coefficient. Relation between damping and specific modulus 
for each wood type along with the empiric regression by Ono and Norimoto is represented in 
Figure  0-30. It was suggested that specific modulus may be underestimated because of 
different percentage of main wood components (more lignin which is lighter than cellulose). 
But this effect is not sufficient to explain the observed differences.  

 

Figure  0-31: Relation between damping coefficient and specific modulus for compression wood (BC), 
intermediate wood (between BC and BN) and normal wood (BN); E: Picea abies; PM: Pinus pinaster; PS: Pinus 
sylvestris. From (Brémaud 2006) 

4.4 Determinants of creep properties 

4.4.a MFA 

Several authors reported the dependency of creep response on MFA. El-Osta and 
Wellwood (1972) investigated the relationship between short-term creep response and MFA 
of three softwoods. They found a positive linear relationship between MFA and total creep as 
displayed in Figure  0-32. We can however notice that douglas fir compression wood exhibits 
considerably higher creep than normal wood. Significant differences were also observed 
between species. Interpretation of these results is a little bit misled by the use of mean values 
of MFA for several specimens. However even if only mean valued of total creep are 
considered, both parameters are still significantly related (Figure  0-32b). On the same sample, 
El-Osta and Wellwood have also reported a significant negative correlation between the 
relative cell-wall crystallinity and the amount of short-term creep (El-Osta and Wellwood 
1972). 
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Figure  0-32: (a) Relationship between total creep and microfibril angle as measured by (El-Osta and Wellwood 
1972) at 0.03% strain level. (b) Same data when only mean values of total creep by species are considered. 

Kojima and Yamamoto (2004) have carried out tensile creep tests on sugi specimens 
in the green state. Further, observed behaviour was described by a Zener model whose 
parameters were found to be related to the MFA. However, we consider these results difficult 
to interpret. To begin, the same load corresponding to the proportional limit of normal wood 
was applied for all specimens; however, sample contained juvenile wood and these were 
therefore probably tested beyond their proportional limit. Further, the obtained relationships 
are not so straightforward to interpret because of uneven repartition of specimens with 
different MFA. An example of the viscosity parameter of the dashpot plotted against MFA is 
given in Figure  0-33.  

 

 

Figure  0-33: Dependency between the adjusted viscosity parameter of Zener model and MFA. From (Kojima 
and Yamamoto 2004) 

Results to the contrary were reported by Gril et al. (2004). In this paper, longitudinal 
creep tests were performed on spruce specimens exhibiting various MFA. When complex 
rigidities are computed and represented in the ACP, curves exhibited a similar shape but they 
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are shifted along the coordinate axis representing the real part of Young’s modulus. If a 
reference curve is chosen and other curves shifted along the coordinate axis, all curves form 
one single curve as we can see in Figure  0-34. The amount of the shift factor was correlated 
with MFA. This suggests that in a relaxation test, only the elastic response would be affected 
by MFA but not the relaxation part.  

 
Figure  0-34: PCA plot after horizontal shift along E’ axis. Specimen 34 was taken as a reference. From (Gril et 
al. 2004).  

4.4.b Effect of constitutive polymers 

Salmén et al. (2006) investigated the creep of mechanically separated single wood and 
pulp fibres. During delignification of pulp fibres also 45% of hemicelluloses were removed. 
Final composition of pulp fibres yielded 80% of cellulose and 20% of hemicelluloses. Pulp 
fibres exhibited nearly two times lower creep than wood fibres.  

 
Figure  0-35: Creep of a single wood fibre and of a single pulp fibre, holocellulose. Fibres were tested at 30°C 
(strain adjusted at zero at one minute after loading). The first creep from 0 to 120 minutes occurred at constant 
humidity of 80%RH. The second phase from120 to 615 minutes involved periods at 30 and 80%RH. 

Fioravanti et al. (2006) investigated the effect of hemicelluloses on the time-dependent 
behaviour. Tensile creep tests were performed on non-treated spruce and spruce samples after 
hemicellulose removal. Wood specimens without hemicelluloses exhibited two times less 
creep compared to equivalent untreated wood. This shows that both components of the 
amorphous matrix, lignin and the hemicelluloses, are involved in the creep process at room 
temperature. However, these observations are also affected by the lower moisture equilibrium 
content of wood with completely or partially removed hemicelluloses. 
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5) Role of the viscoelasticity in the living tree 

Viscoelastic properties of wood as reported above have been mainly studied in view of 
the use of wood as a building material in man-made structures or to assess the wood 
behaviour during the transformation processes. Both cases are not relevant when searching for 
viscoelastic data for biomechanical uses. In the first case, wood behaviour in the hygroscopic 
region is investigated while in a living tree, cell walls are fully saturated. Transformation 
processes such as veneer cutting or some of wood shaping are performed in the green state, 
but rheological properties transversally to the fibre direction are mainly involved. For 
biomechanical uses only the viscoelastic properties along fibres measured in the green state 
are relevant.  

During the tree growth, large stresses appear inside wood, due to the increasing load of 
the crown and the process of wood maturation as we have seen in §2. It is well known that the 
distribution and magnitude of these growth stresses depends on the relative speed of loading 
and of secondary wood formation. However, the viscoelastic nature of wood introduces an 
additional time-dependence through the differential relaxation of various tissues. Some 
previous works focused on modelling of a growing structure submitted to external loads and 
maturation stresses (Fournier et al. 1991; 1991). However, only few works accounted for the 
viscoelastic nature of wood tissues (Gril and Fournier 1993), probably introducing a 
considerable bias in the biomechanical models used for tree assessment or growth description.  

The viscoelastic behaviour of wood may have a biomechanical impact at various time 
scales. The dynamic response of a branching system to short-term loads such as wind is 
modified through the damping coefficient. Stress relaxation in wood tissues affects the 
effective Young’s modulus against permanent loads and thus influences the tree stability and 
the efficiency of its reorientation process. Finally at a long time scale, the distribution of 
growth stress is modified due to the partial relaxation of residual stresses during the ageing of 
the tree, reducing the risk of internal wood failure. 

During a preliminary study, the effect of viscoelasticity on biomechanical 
performances of a tree in reorientation process was investigated numerically by calculating 
the up-righting efficiency and residual deformability (flexibility) of a titled stem (Dlouhá et al. 
2008). Due to high levels of pre-stresses accumulated during the reorientation process in the 
central part of a tree stem its flexibility drops dramatically. In addition to the distribution and 
magnitude of maturation strains, two factors affect biomechanical performances of a tree in 
reorientation process: the production of juvenile wood in earlier stages of its life and the 
viscoelastic properties of wood tissues. Juvenile wood increases the flexibility of the stem for 
both softwoods and hardwoods. In the case of softwoods, viscoelasticity was shown to have 
only a minor influence on the stem flexibility. By contrast, it had an important positive impact 
on the flexibility of hardwoods and thus allowed having an efficient reorientation process 
while keeping safe against instantaneous bending loading. The trade-off between stem 
flexibility and the efficiency of its reorientation may imply a biological limit on the 
magnitude of maturation strains. However, these conclusions have to be taken with precaution 
because simulations are based on estimated data.  

The objective of the present work was to characterize the viscoelastic behaviour of 
different types of wood having a variety of micro-structural, anatomical and functional 
features (normal wood, reaction wood and opposite wood) and try to predict the long-term 
behaviour from short-term tests in order to better understand the impact of viscoelasticity on 
the biomechanical performance of trees. 
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A) EXPLORING THE DIVERSITY OF VIBRATION PROPERTIES OF T ROPICAL 
WOODS 

1) Introduction 

Tropical rainforests represent highly competitive environments characterised by a high 
density of stems, closed forest canopy and limited understorey light availability. Numerous 
strategies have been developed by trees to survive in the forest until their reproductive 
maturity. We can distinguish different growth dynamics from the opportunist pioneer species 
to the patient shade tolerant species waiting for years in the under storey for the occasion to 
reach the light. Different growth dynamics result in different mechanical requirements during 
each stage of the tree life. Consequently, wood of tropical species represents a great variety of 
structural features and mechanical properties compared to temperate species. Studying 
tropical diversity is a good opportunity to bring some new highlights on the relation between 
wood properties and structures and investigate a possibility of trade-offs between different 
functions to be performed during a tree life as well as the relation to ecological strategies.  

In this study, we focused on the diversity and variability of structures and properties of 
wood from trees in juvenile stage (saplings) where competition for height growth is a critical 
constraint. Diversity is present at several levels; interspecific diversity comes from the choice 
of representative examples of different growth strategies while intraspecific diversity from 
differences in site conditions and growth history. Radial variability of wood properties inside 
a single tree results from likely juvenile transition (it is difficult to know the age of trees in a 
tropical canopy and decide about the juvenility of such trees) and circumferential variability 
from occurrence of reaction tissues. Leaning trees, included in the study, represent very 
interesting material to investigate the limits of tree performances as well as limits of wood 
acclimation. To describe the variability of wood properties and structures and search for a 
connection with the growth strategy or site conditions is the first step of the study. 

While collecting data for biomechanical models, one may wonder if wood 
characteristics measured on a piece of wood after machining and storage is still representative 
of properties of native wood tissues inside a living tree. We know that wood tissues inside a 
living tree are pre-stressed. To estimate the mechanical state of wood in native conditions, 
longitudinal growth strains were measured at the periphery of each tree. Second potential 
problem is the degradation or change of wood properties due to attack of biological agents or 
washing of extractives during the storage. The simplest way to prevent wood from biological 
degradation is drying; however, we know that drying induces some irreversible changes 
(Kifetew et al. 1998; Thuvander et al. 2002). Thus, the use of drying in the biomechanical 
context is questionable. Storage in water saturated condition with moisture content above the 
fibre saturation point (FSP) is therefore preferable. In the “green” or never-dried state, cell 
walls are completely saturated, so mechanical properties are not expected to differ between 
the native state and green state because water in cell cavities is generally considered without 
effect on mechanical properties.  In the present study, impact of different storage procedures 
on vibration properties of wood was investigated. Effect of some other treatments such as 
hygrothermal recovery or oven drying was also studied in order to make a relation with 
rheological models presented in the following chapter. 

In the second part of the chapter, we have investigated the validity of some structure – 
properties relations commonly used to model wood properties. Usually, structure-properties 
relations are applied either to large sample of species with reduced intraspecific variability or 
to investigate intraspecific variability of some reduced number of commercial species. Studies 
including both types of variability, interspecific as well as intraspecific are scarce. Therefore, 
it can be interesting to investigate the general validity of these relations. Further, a simple 
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model has been developed to predict mechanical properties of the cell wall material based on 
wood properties and microfibril angle. Microfibril angle is expected to control the variability 
of the properties at cell wall level. The goal was to assess its capacity to explain the variability 
of the cell wall properties of our sample exhibiting high diversity of properties. Finally, 
percentage of different wood elements was measured for a reduced selection of specimens in 
order to see how the anatomical structure affects the viscoelastic properties. 

2) Studied wood material/Sampling 

2.1 Sample selection 

Wood material was collected in Paracou Experimental Research Station (5°18′ N, 
52°55′ W) in French Guyana in September 2006 and September 2007 during the training 
period of ENGREF3 students. Ten tropical species were selected among common species of 
the tropical rainforest in French Guyana. Except for D. guyanensis, they are not of important 
commercial use. Species were chosen in function of their growth strategy according to the 
Favrichon’s ranking based on the species shade tolerance (Favrichon 1994). To maximise 
interspecific variability, selection covered a wide range of basic densities inside each growth 
strategy group as illustrated in Figure  A-1. We can however notice that heliophilic and hemi-
tolerant species are in average less dense than shade tolerant and understorey species as it is 
reported in another study (Alvarez-Clare and Kitajima 2007).   
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Figure  A-1: Distribution and variability of specific gravities between species and growth strategy groups. For 
key see Table  A-1. 

 Concerning intraspecific variability, the aim was to cover all types of wood tissues; 
normal wood as well as reaction and opposite wood. Diameter of saplings at the breast height 
ranged between 4 and 7 cm so that we are likely in the juvenile transition zone. Further, some 
tilted trees with expected occurrence of reaction wood were collected for each species. 
Checking for occurrence of tension wood by anatomical observation was impossible 
considering the number of specimens (550) and also the fact that in some species as for 
example V. michelii, anatomical features of tension wood do not exhibit any apparent 
difference relative to the normal wood (Chang et al. 2009). Therefore, we have used the 
biomechanical definition considering tension wood as tissues characterised by high level of 
stress induced during maturation process.  

Released longitudinal growth strains were measured on standing trees to assess the 
mechanical state of wood at the periphery of each tree (for details refer to  3.1). Distribution of 
                                                 
3 Ecole nationale du génie rural, des eaux et des forêts 
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average values and gradient of growth strains along estimated axis of tension-opposite wood 
were investigated. Figure  A-2 shows distribution of these parameters for tilted and straight 
growing trees. Average values were similar but the gradient of growth strains was 
significantly higher in tilted trees compared to straight growing trees, indicating active up-
righting reaction of a tree. Gradient of growth strains, expected to be related to the 
circumferential variability of wood properties, is represented for each species in Figure  A-3. 
We can observe that the level of reactivity differs between species. The most reactive are L. 
persistens and E. grandiflora whose congeneric species, E. falcata, is known for generation of 
high levels of growth stresses (Chardin and Sales 1983). 
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Figure  A-2: (a) Average value of released longitudinal growth strain for tilted and straight growing trees. (b) 
Gradient of growth strains for tilted and straight growing trees. 
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Figure  A-3:  Interspecific variability of gradients of growth strains. For the species names see Table  A-1. 

2.2 Repartition of specimens for different studies 

In September 2006 more than a hundred trees of ten tropical species were felled. 
However, wood of only six species could be finally used due to poor quality of green wood 
sample preparation. Taking advantage of a similar opportunity in September 2007, four more 
species were added to the selection. Basic information about the species are summarised in 
Table  A-1. Examples of anatomical sections performed by master students from the Wood 
Science department at MZLU in Brno (Czech Republic) are represented in Figure  A-4. 

The sample material was used for three studies: screening of mechanical properties by 
the vibration method, investigation of the storage/heating/drying effect on vibration 
properties, and creep tests across a range of temperatures. The screening of properties was 
performed on the whole sample. This material contains: 
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- Sample 1: 2 heights / 4 trees by species for the selection of six species made in 
September 2006 (300 specimens);  

- Sample 2: 4 complementary species presented in the lower part of Table  A-1 
used only for the study of interspecific diversity of mechanical properties in 
green state (250 specimens). 

Sample 1 was then broken down into two groups – the first was used for the creep 
study (G1) and the second one for the storage study (G2; see Figure  A-5). Selection for creep 
tests represented initially one half of Sample 1 containing one tilted and one straight growing 
tree per species. However as the set up of the creep device and testing procedure was very 
time consuming, only one part of the G1 could be tested and the remaining part was used to 
test the effect of air drying (G2-b). 
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Table  A-1: Summary table of some basic information about studied species 

Scientific name Common name Abr. Growth strategy Abr. Specific 
gravity

Elastic 
modulus 

(Pa)

Lignin 
%

Cell.  
%

Hemic. 
%

AB    
%

E       
%

Virola michelii Heckel Yayamadou montagne Vm Heliophilic HP 0.57 10 072 25.3 46.2 22.6 1.6 2.6

Dicorynia guyanensis Amsh. Angélique Dg Hemi tolerant HT 0.79 14 799 35.5 42.9 16.1 2.3 2.4

Eperua grandiflora  (Aubl.) Benth. Wapa-courbaril Eg Hemi tolerant HT 0.92 16 824 31.1 36.7 14.4 12.8 4.5

Lecythis persistens Sagot Maho rouge Lp Tolerant Tol 0.72 12 361 38.2 40.6 15.5 2.0 3.1

Licania alba  (Bernoulli) Cuatrec. Gaulette blanche La Tolerant Tol 1.06 32.3 46.1 17.3 1.0 1.3

Oxandra asbeckii  (Pulle) R.E. Fries Mouamba Oa Understorey U 0.9

Goupia glabra  Aubl. Goupi Gg Heliophilic HP 0.84 14 670 31.0 41.4 17.3 6.7 3.1

Tachigali melinonii (Harms) Barneby Diagidia Tm Heliophilic HP 27.8 47.3 16.8 5.8 1.9

Gustavia hexapetala (Aubl.) J.E. Smith Mantapouhoupa Gh Understorey U 0.78

Pogonophora schomburgkiana Miers ex Benth. Guelli koko Ps Understorey U 1.05  

Common name is the most commonly used name in French Guyana; Abr.: abbreviation used in all figures; HP: heliophilic; HT: hemi tolerant; Tol: tolerant; U: uderstorey; 
Elastic modulus is measured at 12% of moisture content. AB: Alcool-benzen extract. E: Water extract. Data are issued from the CIRAD data base.  

 

Figure  A-4: Anatomical structure of studied species 

Virola michelii Heckel Dicorynia guyanensis 
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R.E. Fries  
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Figure  A-5: Repartition of the sample for different tests and treatments. G1 and G2: subsets of sample 1; G2-R 
and G2-S: subsets of sample G2; N: number of specimens; D: duration of the treatment.  

 
 
 

Sample 1  

6species/4trees/2 heights 

G1: Creep tests 
6 species/2trees/1height 
N: 84 but finally measured 26 specimens 

G2: Storage/heating/drying effect study 

6 species/(2trees/1height + 2trees/2heights) 
N: 216 

G2-a: Storage in saturated conditions  

Storage in water at 4°C during 1-3-8-12months 
N: 144 (6 species/2trees/2heights) 
  

G2-a1: Soaking in 40% ethanol 

D: 40 days; N: 72 (1height) 

G2-a2: Heating in water at 80°C  

D: 30min; N: 72 (1height) 

Washing in water 

D: 80days 

Air drying 

D: 14days at20°C; 65%RH 

Sample 2  

4species/several trees/1height 

Air drying 

D: 14days at20°C; 65%RH 

Rewetted state 

D: 14days at20°C in water 

Oven dry  

D: 48h in the oven at 60°C 

Entire sample 

Structure – green properties study  
10 species/580 specimens 

Rewetted state 

D: 14days at20°C in water 

G2-b: Air drying 

D: 14days at20°C; 65%RH 

N: 72 (6 species/2trees/1height) 
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2.3 Specimens preparation 

Specimens for vibration measurements were cut along the fibre direction (150 x 12 x 
2mm, L x R x T) at three heights following the procedure outlined in Figure  A-6. Specimens 
were prepared along the estimated opposite-tension wood axis. Unfortunately, an important 
part of marking made in the forest (see § 3.1) was partly erased during the transport of wet 
logs and the estimated direction of tension wood was often lost. Consequently, it was often 
impossible to link the growth strain measurements to mechanical properties and clearly 
separate TW from NW. However, we have information about the average level of growth 
strains inside a tree as well as their gradient. During machining and storage, specimens were 
kept in the water saturated condition. 

 
Figure  A-6: Preparation of damping specimens from the log collected in the forest. 

3) Methodology 

3.1 Growth stress measurements 

Before felling the tree, we measured its geometry (diameter, stem inclination and tree 
height). Direction of the largest local inclination between 0.25 m and 0.75 m height was 
marked on the stem, indicating presumed circumferential location of the tension wood. 
Afterwards, four strain gages were placed at the periphery of the stem in order to measure the 
growth strains. Radial position 1 corresponded to opposite wood and radial position 3 to 
supposed tension wood (Figure  A-7). Growth strain measurement was performed in two steps. 
First the upper part of the stem including the crown was cut at approximately 1.75m height to 
estimate the support strains. Afterwards, residual part of maturation strains was measured by 
two grooves method (Yoshida and Okuyama 2002): two grooves were made horizontally at 5 
mm above and below each gage (Kyowa KFG-5-120-C1-11L1M2R), the depth of the groove 
were about 5 mm. Longitudinal strain released by cutting during each phase was recorded on 
a Wheatstone bridge (Kyowa PCD-300). The part of the log near the strain gage measurement 
was used for sample preparation. 

Side a Side b 
Height 3 

Height 2 
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Pith 
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Figure  A-7: In-situ growth strain measurement. (a) Instrumentation by strain gages and recording of the strain 
signal by Wheatstone bridge. (b): Two grooves method and radial position marking. 

 
Figure  A-8: Experimental device for vibration tests. 

3.2 Vibration measurements 

Dynamic Young’s modulus and damping coefficient in the longitudinal direction were 
determined by the free-free flexural vibration method at the resonance frequency 
corresponding to the first vibration mode. Resonance frequency ranged from 200 to 650Hz. 
During the measurement, the specimen was hung by silk threads and driven by a magnetic 
driver (a thin iron foil was glued on one end of the specimen). Displacement was recorded by 
a laser transducer focused on the midpoint of the specimen. A frequency sweep was 
performed to determine the resonance frequency. Based on the resonance frequency and 
geometry of the specimen, the specific Young’s modulus (E/ρ) was determined as follows: 
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                Eq.  A-1 

where l is the length of the specimen, f  the resonance frequency, h the thickness of the 
specimen and m a constant depending on the vibration mode (m = 4.73 for the first mode). 
The damping coefficient was determined by two methods:  

- half bandwidth method of the resonance frequency peak (damping 1); 

- logarithmic decrement of the signal after stopping excitation (damping 2).  

The experimental device used is shown in Figure  A-8 and extensively described in 
(Brémaud 2006). In this work, some details will be given regarding the correspondence of 
damping estimates obtained by both methods, the repeatability of the measurements and 
limits of accuracy.  

3.2.a Comparison of damping measurement methods 

Comparing both methods, we can note that there is a very good agreement between the 
damping estimates (Figure  A-9).  However, we can observe a systematic underestimation of 
the damping 2 estimates of approximately 3.8%. During the measurements it was also noted 
that method using the logarithmic decrement (Damping 2) was more sensitive to accurate 
positioning of the specimen and other parameters such as the occurrence of cross-grain.  
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Figure  A-9: Comparison of damping results obtained by two different methods: Damping 1: half-band method; 
Damping 2: logarithmic decrement. Red line represents the relation y = x. 

This is partially due to the signal treatment as it is done in the current version of the 
acquisition software. Actually, only a one-sided fit of the logarithmic curve on the acquired 
waveform is used as shown in Figure  A-10. Thus, any minor asymmetry of the output signal 
considerably affects the obtained result. It is suggested to also use the opposite peaks for the 
logarithmic fit was made to improve the accuracy of the measurement by logarithmic 
decrement but was not applied for the presented measurements. 
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Figure  A-10: Measurement of the damping coefficient by logarithmic decrement. 

3.2.b Repeatability of the vibration measurement 

Three species covering a wide range of elastic modulii and damping coefficients were 
used for the repetition measurements as shown in Table  A-2. Ten repetitions were performed 
on each specimen. Tests were conducted in air dry conditions to avoid any variation in weight. 
Results are summarised in Table  A-2. Experimental standard deviation (SD) of the resonance 
frequency estimate was very low, yielding a maximum SD of 0.66 % for the Young’s 
modulus estimate. The repeatability of damping 1 estimate was considerably higher than the 
repeatability of the damping 2 measurement. Therefore, in the following analysis only 
damping 1 will be considered and denoted further as damping. 

Table  A-2: Experimental standard deviations of vibration measurements in air dry conditions. 

Species SD of f 
estimation

E            
(GPa)

Induced SD 
of E

Damping 1 
estimate

SD of 
Damping 1

SD of 
Damping 2

D. guyanensis 0.06% 8.33 0.12% 8.31E-03 2.95% 12.48%
V. michelii 0.33% 10.68 0.66% 7.74E-03 1.33% 10.25%
O. asbeckii 0.02% 25.63 0.04% 5.48E-03 2.96% 10.76%  

Legend: SD: experimental standard deviation; f: resonance frequency; E: Young’s modulus; Damping 1: 
damping coefficient by half bandwidth method; Damping 2: damping coefficient by logarithmic decrement. 

The estimation of Young’s modulus is actually more affected by the uncertainty of 
dimension estimates, and in particular thickness. The thickness of our specimens is of 
approximately 2 mm. It is not easy to obtain a specimen with consistent thickness of 2 mm all 
along the length (l = 150 mm), particularly when machining is done in green state. 
Occurrence of tension wood makes finishing the surface of the sample by sanding, for 
example, impossible. The imperfection of the obtained surface may induce some error of the 
thickness measurements. An error of 2.5% for the thickness measurement yields SD of the 
modulus estimate equal to 4.82%.  

When investigating the Figure  A-9, or better Figure  A-39, we can observe high 
concentration of low damping values close to 0.005. It is possible that this was due to the 
accuracy limit of the experimental device. Therefore, vibration measurements were performed 
on an aluminium specimen exhibiting a low damping coefficient. Estimated Young’s modulus 

Logarithmic fit used to 
determine the damping 
coefficient 

Signal recorded after 
stopping the excitation 
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(71.73 GPa) as well as the damping coefficient (1.33E-03) were close to the data from the 
CES Selector material database (75GPa; 1.05E-03).  

3.3 Investigation of the effect of storage conditions  

The aim of the study on storage conditions was to assess the change in properties due 
to sample storage relative to the green state. Therefore, mechanical properties of specimens in 
the green condition and in rehydrated state after storage in different conditions were compared. 
Measurements were performed on the group of specimens denoted G2 which was further 
divided in two subgroups: G2-a and G2-b (for details see § 2.2).  

Specimens of group G2-a were used to assess the effect of long-term storage in water 
at low temperatures (T = 4±0.1°C). Young’s modulus and damping coefficient were measured 
after 1, 3, 8 and 12 months of storage on the set of 144 specimens (6 species / 2 trees / 2 
heights). Then, the G2-a1 subgroup (1 height) was used to investigate the effect of soaking in 
ethanol. Specimens were measured after 40-day soaking in 40% ethanol solution; after 
washing in water; in air dry state and in re-saturated state. In parallel, the matched group G2-
a2 (second height) was heated in the water at 80°C for 30 minutes. The effect of heating 
above the temperature of glassy transition was studied for its relation with the second part of 
the present work dealing with thermally activated viscoelastic properties. G2-a2 specimens 
were also measured in air dry and oven dry states. Subgroup G2-b was tested in the air dry 
condition and after resaturation. This enabled us to see if the effect of ethanol and heating 
above the temperature of glassy transition in green state affects vibration properties in the 
long-term.  Details about the procedure are shown in Figure  A-5. 

Variations in measured properties were assessed through two parameters: bias and 
error. Bias is the mean relative change in properties calculated as follows: 
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where εb represents the bias, Xi0 the property measured in the initial state, Xi1 the 
property measured after a given storage period and n the number of tested specimens. Error 
describes the relative dispersion of values (mean quadratic error) and is given by: 
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where εr is the mean quadratic error.  

3.4 MFA measurements 

Microfibril angle has been measured by X-Ray diffraction (XRD) on all of the 
samples. As the specimens are not thick, we could measure directly the damping specimens 
and the middle part of the bone-shaped creep specimens after removing the heads as shown in 
Figure  A-11. A 4-circle diffractometer (Oxford Diffraction Gemini S) equipped with a 
1024x1024 CCD camera was used for the measurements. CuK_α radiation was generated by 
an X-ray generator operating at 50kV, 25mA. Images were integrated between 2θ = 21.5 and 
23.5 along the whole 360° azimutal interval to plot the intensity diagram of the (200) plane. 
An automatic procedure allowed the detection of the (200) peaks and their inflexion points. 
The T parameter as used by Cave (1966), was measured as the half distance between 
intersections of tangents at inflexion points with the baseline. The average MFA of each 
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specimen was estimated by the “improved Cave’s method” (Yamamoto et al. 1993). The 
results are given as the mean of values obtained for the two (200) peaks. 

Figure  A-11: Measuring the MFA on (a): damping specimen. (b): central part of the creep specimen. 

3.5 Anatomical structure 

Percentage of different wood elements (vessels, fibres, axial and radial parenchyma) 
was measured for some specimens from the G1 group used for creep tests. The aim was to see 
if a creep properties are affected by some particular anatomical structures such as for example 
high percentage of axial parenchyma in D. guyanensis for example. Analysis of anatomical 
structure was performed on 64 specimens.  

During the preparation of the creep specimen, the extremity of the damping specimen 
was removed (see Figure B- 1.22.b). This part was used for anatomical analysis. Transverse 
sections were prepared from each end of the residual part of the specimen. The sectioning was 
difficult for some species because of their hardness and occurrence of silica crystals. Hence, 
prior to cutting the specimens were kept in a softening solution (glycerol: ethanol: water; 
1:1:2) and, if necessary, boiled during 4-7days in a solution of glycerol and water (2:1) using 
the Soxhlet apparatus (Vavrčík and Gryc 2004). After softening, transverse sections (25-µm 
thick) were prepared on a Leica SM2000R microtome and stained by safranin. Five pictures 
were captured from each section. A Leica DM LS optical microscope equipped by a Leica 
DFC270 camera directly connected to the computer was used for observations and capturing 
of pictures. Percentage of wood tissues was measured on a picture using ImageJ software. 
Anatomical measurements were performed by master students (Markéta Fučíková, Jan Baar 
and Martin Greško) from MZLU in Brno (Czech Republic).  
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3.6 Simple model predicting specific modulus and damping coefficient of the cell wall 
material 

Since wood is a cellular material made of cells elongated along the grain direction, we 
can easily deduce the elastic properties of the wood cell wall from the properties of solid 
wood in the longitudinal direction as follows: 

E/ρb = Ecw/ρcw,                                  Eq.  A-4 

where E is the Young’s modulus of solid wood, ρb is the basic density, Ecw is the 
Young’s modulus of the cell wall and ρcw is the density of the cell wall substance. This 
approach, however, does not account for the internal organisation of the cell wall. At the cell 
wall level, wood substance can be represented as a two-phase composite made up of 
crystalline microfibrils embedded in an amorphous matrix. Crystalline microfibrils are 
disposed in parallel and inclined at angle θ to the grain direction of the wood called 
microfibril angle (MFA). Simplified representation of the cell wall is pictured in Figure  A-12. 

3.6.a Simplified model based on Hooke’s law of angle lamina 

To apply Hooke’s law of angle lamina (Jones 1975), a global coordinate system (L, T) 
is used for the cell wall and a local coordinate system (1, 2) for the microfibril as represented 
in Figure  A-12. (L, T) and (1, 2) stand for longitudinal and tangential direction in the cell and 
the microfibril coordinate system, respectively.  

 
Figure  A-12: Simplified representation of a cell wall. LT stand for axes of global coordinate system and 12 for 
axes of a local coordinate system of the microfibril. θ denotes the microfibril angle. 

Assuming EL ≈ CLL, the elastic modulus parallel to the cell axis can be written in 
function of the microfibril angle using the standard formulae of tensor rotation as follows: 

( ) θθθθ 4
22

22
1266

4
11 sincossin22cos CCCCEL +⋅+⋅⋅+⋅= ,               Eq.  A-5 

where C11, C12, C22 and C66 are the elements of the stiffness matrix. The direction denoted as 6 
corresponds to the 12 plane.  

The relative importance of individual terms on obtained prediction of the Young’s 
modulus was investigated for the range of MFA up to 35°. Values of the elements of the 
stiffness matrix used for this investigation are shown in Table  A-3. The values were outputs 
from a model simulating the cell wall properties based on the properties of cell wall 
constituents developed in LMGC (Almeras et al. 2005). Simplified predictions of the Young’s 
modulus along fibres neglecting progressively the terms starting from the right side of Eq. A-
5 are shown in the Figure  A-13. Neglecting of terms containing C22 and C12 elements does not 
markedly affect resulting predictions. On the other hand, neglecting the term with shear 
modulus (C66) has a stronger effect, although the approximation is still good for the 
investigated range of MFA. Thus, formulation containing two first terms of Eq. A-5 will be 
used in further development: 

L 1 
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θ 
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θθθ 22
66

4
11 cossin4cos ⋅⋅+⋅= CCEL                Eq.  A-6 

Table  A-3: Elements of the stiffness matrix used for testing of the simplified calculus of the elastic 
modulus along fibres 
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Figure  A-13: Prediction of the Young’s modulus of the cell wall based on Eq. A-5. 

3.6.b Complex formulation  

Let us now write the rotation formula in a parametric way: 

θθθ
ρ

224 cossincos ⋅+⋅= ba
EL ,                                      Eq.  A-7 

where a stand for C11/ρ, b for 4·C66/ρ and EL/ρ is the specific modulus is the L direction. For 
investigation of viscoelastic properties, it is useful to replace elastic formulation by the 
complex one: 

θθθ
ρ

22*4*
*

cossincos ⋅+⋅= ba
EL .                Eq.  A-8 

Thus, we can easily obtain the storage and loss specific modulus by separating the real and 
imaginary parts as follows: 

θθθ
ρ

22'4
'

cossincos' ⋅+⋅= ba
EL ,                Eq.  A-9 

 θθθ
ρ

22"4"
"

cossincos ⋅+⋅= ba
EL ,              Eq.  A-10 

where E’L/ρ  is the storage specific modulus and E″L/ρ  the loss specific modulus. The 
next step consists in introducing in the current formulation parameters having a physical 
meaning. Thus, we will note C11/ρ and tanδ// the properties of the cell wall substance along 
the microfibrils. Assuming a′ = C11/ρ, a″/a′ = tanδ//, b′/a′ = β′ and b″/a″ = β″, we finally 
obtain: 

( )θβθ
ρρ

2'411
'

tan1cos ⋅+⋅⋅= CEL ,              Eq.  A-11 

)tan1(cos 2"4"
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θβθ
ρ

⋅+⋅⋅= a
EL ,              Eq.  A-12 
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)tan1(

)tan1(
tantan

2'

2"

// θβ
θβδδ

⋅+
⋅+⋅= ,              Eq.  A-13 

where C11/ρ and tanδ// represent the properties of the cell wall substance along the 
microfibrils. Assuming that terms with Poisson’s ratio are negligible in the calculation of C11, 
we can directly write a = E///ρ and b = 4·G12/ρ.  E///ρ stands for the specific modulus of the 
cell wall along the microfibrils. Parameter β′ represents the ratio of the real parts of shear 
modulus and storage modulus while β″ stands for the ratio of its imaginary parts.   

3.6.c Expression of the specific modulus and damping coefficient in the local coordinate 
system 

Based on Eq. A-11 and A-13 and assumptions mentioned above, we can easily obtain 
the expression of the properties in the local coordinate system: 

)tan1(cos 2'4

'
//

θβθρ ⋅+⋅
= LEE

,              Eq.  A-14 

)tan"1(

)tan'1(
tantan

2

2

// θβ
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⋅+
⋅+⋅= .              Eq.  A-15 

Thus, using the mean values of parameters β′ and β″ an estimation of the specific 
Young’s modulus and damping coefficient of the wood substance can be obtained for each 
specimen.
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4) Effect of storage procedure 

4.1 Long-term storage in water at low temperature 

Young’s modulus and damping coefficient were measured on the G2-a sample subset 
after 1, 3, 8 and 12 months of storage in water at low temperatures. For computation of 
Young’s modulus from vibration data, dimensions were considered to be stable while 
variations of the weight were taken into account. We observed a slight increase of the weight 
(2.19 ± 2.80%) after three months of storage but during following measurements, variations 
of the weight were negligible. We considered if the increase in weight could be attributed to 
the increase of saturation level. For this purpose, the theoretical saturation level was 
computed based on following relations.  

The basic density and saturated density as a function of the porosity can be written as 
follows: 

ρb = (1-P) · ρcw,                      Eq.  A-16 

            ρsat100% = P · ρw + ρb                        Eq. 
 A-17 

where ρb is the basic density, ρsat100% the totally saturated density, P the porosity, ρw 
the density of water and ρcw the density of the cell wall material. Basic density is the ratio of 
dried cell wall mass to saturated volume often used to investigate properties of the cell wall. 
The density of the cell wall material is very similar between species and will be further 
considered equal to 1.5g/cm3. Since water has a density of 1 g/cm3, the density at a given 
saturation level is given by: 

  ρsatX% = P · SL + ρb,                                              Eq.  A-18 

where SL represents the relative saturation level. Relative saturation level of the 
specimens in initial state and after a given period of storage is shown in Figure  A-14. We can 
note the initial saturation were very low for some species. This is probably due to partial 
water evaporation during the machining of specimens. Saturation level after three months of 
storage and more is very similar between species. For some specimens, we can observe that 
the estimation of relative saturation is higher than 1. However, the calculation, explained 
above, gives only a rough estimation of the porosity. Another effect that is not considered 
here is the occurrence of extractives. Extractives may induce an increase of the density that 
results in a lower estimated porosity. However, those extractives located in the cell wall 
would not affect the porosity. 
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Figure  A-14: Saturation level of specimens in initial state and after different storage durations.  

Change in Young’s modulus after given storage period is represented in Figure  A-15. 
We can observe slight decrease of the modulus and very good agreement between both 
measurements. Long-term storage in water at low temperatures does not affect significantly 
Young’s modulus. 
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Figure  A-15: Variations of Young modulus measured by vibration method in initial state (E0) and after 3, 8 and 
12 months of storage in water at low temperature (4±0. 1°C). The red line represents the relation y = x. 

Variations of damping coefficient are shown in Figure  A-16. We can observe slight 
variations of damping coefficient, in particular after 8 months storage period. Higher damping 
measured after 8 months storage may be only an artefact of experimental conditions because 
it was done during the summer period. Higher ambient temperature could be responsible for 
the observed increase of the damping coefficient. Results obtained after 3 and 12 months 
show that storage in water induces slight variations of damping, but with very low systematic 
error. 
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Figure  A-16: Variations of damping coefficient measured by vibration method after 3, 8 and 12 months of 
storage in water at low temperature (4±0. 1°C). The red line represents the relation y = x. 

4.2 Effect of soaking in 40% ethanol 

Storage in ethanol is proposed as a way to prevent wet wood from biological 
degradation in particular during field experiments with no possibility of storage at low 
temperatures. The effect of soaking in ethanol on vibration properties is shown in following 
figures. While Young’s modulus was only slightly affected by soaking in ethanol (Figure 
 A-17), the damping coefficient has significantly increased (Figure  A-18). After washing in 
water, Young’s modulus was slightly decreased whereas damping coefficient estimates were 
higher than initial values (6.22±4.24%).  
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Figure  A-17: Effects of soaking in 40% ethanol and its residuals after washing in water on Young modulus. The 
red line represents the relation y = x. 
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Figure  A-18: Effects of soaking in 40% ethanol and its residuals after washing in water on damping coefficient. 
The red line represents the relation y = x. 

Soaking in ethanol was accompanied by variations in the weight of specimens 
(accounted for in E calculations). Slight weight decrease (-1.49±0.51%) was attributed to 
lower density of ethanol (0.78 g.cm-3) compared to water. Residual weight decrease after 
washing in water (-0.21±0.33%) may indicate only partial removal of ethanol and/or removal 
of some extractives. No correlation between weight variations and changes in mechanical 
properties has been observed. That supports the hypothesis about the residual ethanol content. 
It is also interesting to note that the exchange between water and ethanol-water solution is not 
complete – in fact only 25% of the water was replaced by the ethanol-water solution (from the 
calculations of the theoretical weight loss).  

4.3 Effect of air drying 

In the following section, properties of green wood are compared with the properties of 
air dried wood and properties of rehydrated specimens after their storage in the air dry 
condition. Drying of green specimens at room temperature has significantly increased the 
Young’s modulus as shown in Figure  A-19. Observed change (+11.6%) is lower than 
previously reported by Kollmann and Côté  (1968): +29% increase of Young modulus, 
measured by vibration method on oak or by Obataya et al. (1998) on spruce: 21.5% and 
25.5% respectively for the increase of Young’s modulus and decrease of damping coefficient 
measured by vibration method. However, these studies compared the air dry state with the 
rehydrated, saturated state and therefore the comparison is not the same as in the current study. 
After the resaturation Young’s modulus is lower than in green state. Thus, the relative 
difference with air dry state is higher. 
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Figure  A-19: Effect of air drying and resaturation on Young modulus. E0 is the never-dry value. The red line 
represents the relation y = x. 
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Figure  A-20: Effect of air drying and resaturation on damping coefficient. The red line represents the relation 
y = x. 

Air drying has induced significant decrease of the damping coefficient as shown in 
(Figure  A-20). We can note that this change is not linear. In rehydrated state, specimens 
exhibit significantly higher damping coefficient than in green state. This indicates that the 
effect of air drying affects permanently the damping properties. A likely hypothesis to explain 
the observed phenomenon is the formation of micro cracks during the drying process which 
might be a source of increase of internal friction and the more dissipative behaviour of wood. 
Moreover, high dispersion of damping estimates in rehydrated state compared to previous 
treatments in ethanol or water shows that effect of drying was variable between specimens. In 
conclusion, we cannot recommend preventing of biological degradation of green specimens 
through the drying process for vibration measurements of damping characteristics. 

4.4 Conclusion about storage 

 Storage in water at low temperatures can be advised as the most appropriate way to 
preserve vibration properties of wood specimens in the green state. The effect of ethanol on 
viscoelastic properties seems to be only transient but its use is questionable as some doubtful 
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and undesirable processes may be involved in the transient state (Chang et al. 2008). Air 
drying can be used to preserve specimens against biological attack while elastic properties 
only are required but is not appropriate for viscoelastic studies. 

5) Other investigated effects 

5.1 Effect of hygrothermal recovery 

Heating above the temperature of glassy transition was investigated for its possible 
link with part B of the manuscript which focuses on thermally activated viscoelastic 
properties. To study the effect of hygrothermal recovery, specimens were heated in water at 
80°C during 30 minutes and measured after cooling to ambient temperature on the vibration 
device few hours later. Relative changes of Young modulus and damping coefficient are 
displayed in Figure  A-21. Heating slightly decreased Young modulus (-2.9±1.8%) and 
markedly increased damping coefficient (21.2±8.2%).  
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Figure  A-21: Effect of heating on Young modulus and damping coefficient. 

The simultaneous effect on Young modulus and damping coefficient may be 
interpreted as a “rejuvenation” effect. When a polymer is heated above Tg, it is in a state of 
thermodynamic equilibrium. During the cooling to a temperature below Tg, the rate of 
molecular relaxation is too slow to keep pace with the changes required if the material is to 
remain at thermodynamic equilibrium. As a result, when the material reaches the thermal 
equilibrium with the surroundings it is still far from its thermodynamic equilibrium resulting 
in increased fluidity of the material (see B-2).  

5.2 Difference between air dried and oven dried state 

Specimens of the sample G2-a2 were further tested the in air dry and oven dry state. 
The aim was to assess the effect of oven drying. Results are represented in Figure  A-22. In 
comparison with air dry state, oven drying has only slightly increased the Young’s modulus. 
On the other hand, a more significant increase of damping coefficient has been observed upon 
oven drying.   
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Figure  A-22: Effect of oven drying on Young’s modulus and damping coefficient. The red line represents the 
relation y = x. 
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Figure  A-23: Effect of moisture content on vibration properties. The lines represent experimental data reported 
by (Obataya et al. 1998) and the squares measurements from the current study. 

Similar observations have been previously reported by Obataya et al. (1998). Obataya 
et al. studied the influence of absorbed water on vibration properties. We have reproduced 
their results in Figure  A-23 plotting our measurements in the same graph. We can see that 
measured effect of the moisture content on the elastic modulus is in agreement with Obataya 
et al.’s observations while the effect on damping coefficient was considerably higher in our 
case. Obataya et al. have observed a loss peak around 1% of moisture content. This effect was 
ascribed to the relaxation related to the motion of absorbed water. Due to the testing time 
necessary for vibration measurements, it is possible that our specimens have absorbed some 
humidity during the measurement and so the moisture content could arise to 1%. A slight 
horizontal shift of damping values could therefore partly explain the observed difference. It 
was also hypothesised that oven drying could induce micro-cracks in the cell wall layers as 
suggested by Kifetew et al. (1998) based on observations of fracture surfaces of green wood 
and wood in swollen state after drying. Such micro-cracks would dissipate more energy 
during the excitation of the specimen thus leading to higher damping coefficient. 
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5.3 Comparison of empirical relations between damping and specific modulus in air dry 
and green state 

Double logarithmic plots are often used to represent the relation between damping and 
specific modulus (Ono and Norimoto 1984). Figure  A-24 represents the comparison of the 
empirical regression from the literature with our experimental data. We can see that the 
relationship between both parameters in air dry and oven dry states is very close to the 
empirical equation represented by the red line and described by the equation in the box. Green 
wood properties exhibit completely different behaviour. Equation for the regression between 
both parameters in green condition is also displayed. We can also note a significant difference 
between the regression for green specimens and rehydrated specimens. Specific variability of 
the relation between both parameters will be discussed in § 6.5 
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Figure  A-24: Double logarithmic relation between damping coefficient and specific modulus in green, 
rehydrated and air dry state. The red line and the equation in the box represent empirical equation proposed by 
Ono and Norimoto  (1984). 

5.4 Conclusion 

This section contains some complementary results that are useful for researchers that 
will work on similar topic. We have quantified the effect of hygrothermal recovery on 
vibration properties. Significant increase of damping coefficient together with a slight 
decrease of Young’s modulus was attributed to a rejuvenation effect of heating above the 
temperature of glassy transition. This means that similar effect might be observed on the 
viscoelastic properties at different time scales, for example creep properties. The topic will be 
investigated in greater detail in chapter B- 2). Next, vibration properties in oven dry state were 
compared with the properties in air dry state. A considerable increase of damping coefficient 
in oven dry state compared to air dry state was observed while only slight increase was 
observed for Young’s modulus. We hypothesised that it could be a result of micro cracks due 
to the oven drying that is more destructive than the air drying. Finally, empirical regression 
between damping and specific modulus in green state was proposed similarly to the 
regression previously established for air dry wood. The relation between damping and 
specific modulus will be investigated in the following chapter. 
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6) Basic structure – property relations 

In this section, diversity of vibration properties measured on ten tropical species 
including reaction tissues is presented. Basic density and MFA are often considered as 
structural parameters explaining the diversity of wood vibration properties. However, the 
effect of MFA was determined mainly based on mono-specific studies. Moreover, reaction 
wood was not often considered. In the following section, we will investigate if these 
relationships hold when applied on the highly diversified sample. Commonly measured 
structural parameters are green density, basic density and MFA. We will first analyse 
relations between these parameters before examining their relations with mechanical 
properties. Mean specific values and variability of measured parameters are summarised in 
the Appendix 1.  

6.1 Green density – Basic density 

In the context of tree mechanics, first measured property is in general green or 
saturated density. First question was therefore if green density can be used as a reliable 
predictor of basic density and so mechanical properties. Based on Eq. A-16 and A-17 given in 
§ 4.1, we can obtain a theoretical relation between the saturated density and basic density: 

 ρsat100% = 1 + ρb/3,                  Eq.  A-19 

 where ρsat100% stands for the completely saturated density and ρb for the basic density. 
Relation between the green and basic density is represented in Figure  A-25. The red line 
represents a theoretical dependency (Eq. A-19). First observation is that experimental 
regression line is vertically shifted down indicating incomplete saturation of green specimens. 
This problem was already mentioned in the  4.1. We have seen that the saturation level was 
different between species. In particular T. melinonii specimens exhibit low saturation level 
(~78%, not shown). Thus, it seems difficult to use the green density as a reliable predictor of 
basic density and mechanical properties. It may be only used as a rough estimator of 
interspecific variability of the basic density as shown in Figure  A-26.  
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Figure  A-25: Relation between green and basic density. Red line represents the regression line on the entire 
sample and dashed line the theoretical relationship between both parameters. The gradient of colours represents 
the growth strategy going from the yellow heliophilic to the brown understorey species. The same key is used for 
all figures of chapter 6. 
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Figure  A-26: Relationship between green density and basic density on specific mean values. See Figure  A-25 
for the caption. 

6.2 MFA – Basic density                                                                                                                                                                   

As we have seen in the 0- 4.1, both structural parameters are considered to be 
independent. Figure  A-27 shows that both parameters are indeed not related within species. 
However, when individual measurements for all species are considered, a slight negative 
correlation can be detected.  
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Figure  A-27: Correlation between MFA estimates accounting for Yamamoto correction for density and basic 
density. Red line represents the regression line on the entire sample.  
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Figure  A-28: Correlation between MFA-Yam and basic density on average specific values. 

The analysis of the mean value of each species displayed in Figure  A-28 shows that 
specific MFA and basic density are negatively correlated. However, results of Boiffin (2008) 
support the hypothesis of coincidental nature of the observed relationship. Boiffin (2008)  has 
studied a larger sample of tropical species including seven of ten species used in the present 
study. Relationship between MFA and basic density obtained on this sample is represented in 
Figure  A-29 and confirms that both parameters are not related.  
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Figure  A-29: Correlation between MFA estimates and density on a selection of 22 tropical species (Boiffin 
2008).  

The relation observed on our sample may be due to the fact that both selected high 
density species have also low MFA and the lightest species considerably higher MFA than 
others. Another parameter explaining this result could be the accuracy of MFA estimates. The 
use of X-ray method tends indeed to underestimate MFA of denser wood (Ruelle et al. 2007). 
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6.3 Structural determinants of elastic modulus  

Young’s modulus of a cellular solid is expected to be strongly related to its density. 
We have tried to verify this assumption on our sample. First, the green density was used to 
predict the Young’s modulus. Obtained correlation is not very high as we can see from Figure 
 A-30. This can be ascribed to different levels of saturation between species as explained in 
§ 6.1. Removing T. melinonii specimens, exhibiting particularly low saturation level, improves 
the correlation coefficient (R2 = 0.54) however the use of green density to predict mechanical 
properties remains questionable. Conversely, basic density can be used as more reliable 
predictor of the Young’s modulus despite the high variability of our sample (Figure  A-31). 
We can also notice that the intercept of the regression line is close to zero as it should be the 
case for a cellular solid. 
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Figure  A-30: Relationship between elastic modulus and green density. Red line represents the regression line on 
the entire sample. Red line represents the regression line on the entire sample. 
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Figure  A-31: Basic density as a predictor of the green Young’s modulus. 

We have shown that basic density can explain 68% of the variation of the stiffness 
over a wide range of inter and intraspecific diversity in wood quality. However, an important 
part of the elastic modulus variability remains unexplained. 

6.4 Structural determinants of specific modulus 

Whereas Young modulus of the wood is proportional to the density, the stiffness of the 
cell wall itself is independent of the amount of the cell wall. Specific modulus is mainly 
governed by microfibrils orientation as these represent the stiffest component of the cell wall 
material. These two assumptions can be verified on following figures (Figure  A-32 and Figure 
 A-33). No dependency can be detected between the specific modulus and density. On the 
other hand, the specific modulus is related to the MFA but the correlation coefficient is not 
very high. Large scatter of the specific modulus values is observed in particular for low MFAs. 
The observed scatter is probably related to the occurrence of tension wood specimens that 
could exhibit, apart of lower MFA, also different chemical composition. However, no case 
with high MFA and high specific modulus was observed indicating the validity of a 
relationship between the specific modulus and MFA. If mean specific values are considered, 
correlation coefficient is higher as we can see from Figure  A-34. We can also notice different 
level of intraspecific variability between species comparing the error bars on the Figure  A-34.  
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Figure  A-32: Relation between the specific modulus and basic density. 
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Figure  A-33: Relationship between the specific modulus and microfibril angle. 
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Figure  A-34: Relationship between specific modulus and microfibril angle on mean specific values. 

Based on assumptions detailed in § 3.6.a, specific Young’s modulus is expected to be 
related to the cosine of MFA raised to the power four. Thus, we can obtain a rough estimation 
of the specific cell wall modulus along microfibrils computing E/ρ/(cosθ)4 denoted further 
E/ρ//. Relationship between the specific modulus along microfibrils and MFA is shown in 
Figure  A-35. No residual dependency of the specific cell wall modulus along microfibrils on 
the MFA can be observed supporting the validity of the simplification of the rotation formulae 
as tested in § 3.6.a. The mean value of the specific cell wall modulus along microfibrils is 
about 29 GPa. However, there is a large scatter between the E/ρ// values indicating that MFA 
is not the only parameter affecting the stiffness of the cell wall. The relationship between the 
cell wall specific modulus, its dependency on MFA and variability will be investigated in 
greater detail in § 7).  

y = -0.11x + 29.17
R2 = 0.01

15

20

25

30

35

40

0 5 10 15 20 25 30 35

MFA (°)

S
P

E
C

IF
IC

 M
O

D
U

LU
S

 //
 (

G
P

a)

Tm Vm Gg Dg Eg Lp La Gh Ps Oa

Tm Vm Gg Dg Eg Lp La Gh Ps Oa

 
Figure  A-35: Relation between the approximation of the specific cell wall modulus along microfibrils and MFA. 
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6.5 Structural determinants of damping coefficient  

From its definition (damping = E″/E′), damping coefficient is independent of density.  
Conversely, a strong relation with MFA is expected as follows from the formulation of the 
mechanical model described in § 3.6.b. Figure  A-36 shows that damping coefficient is not 
related to basic density. However, no relationship has been detected between damping 
coefficient and MFA (Figure  A-37) which was unexpected. This is mainly due to the large 
scatter of damping values. This can be affected, as already mentioned above, by the 
occurrence of tension wood specimens. Effect of the intraspecific diversity on the relationship 
between damping coefficient and MFA will be further discussed in  7.2.  
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Figure  A-36: Relationship between damping coefficient and basic density. 
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Figure  A-37: Relationship between damping coefficient and microfibril angle. 
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In the previous paragraph, we have observed large residual variability of the specific 
cell wall modulus along microfibrils unexplained by the MFA effect. In order to investigate if 
this variability is related to the variability of the damping coefficient, we have plotted both 
parameters one against another (Figure  A-38). No improvement of the correlation or decrease 
of the scatter was observed compared to the relation between damping coefficient and specific 
modulus along the fibre direction (Figure  A-39). This supports the assumption that parameters 
affecting the second order variability of the specific modulus (once the MFA effect removed) 
and the variability of damping coefficient are not the same. The possible sources of the 
variability of damping coefficient will be analysed in the following chapter. 
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Figure  A-38: Damping coefficient versus approximation of specific cell wall modulus along microfibrils. 

Some previous works reported significant empirical correlation between damping 
coefficient and specific modulus (Ono and Norimoto 1984). This empirical relation was not 
linear but in the form of power law. Relation between both parameters along with the power 
law regression is represented in Figure  A-39. We can observe a significant correlation 
between both parameters on the entire sample. Excepting L. persistens specimens, all 
intraspecific correlations are significant. This clearly indicates that there is a relation between 
the stiffness of the cell wall and damping coefficient. Thus, we face a paradox: specific 
modulus and damping coefficient are strongly related and at the same time the variability of 
the specific modulus is only partially explained by MFA and the variability of damping 
coefficient is totally independent of MFA. This result clearly indicates that other parameters 
than MFA exist and that affect at the same time the specific modulus and damping coefficient. 
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Figure  A-39: Relationship between damping coefficient and specific modulus. 

6.6 Conclusion 

In this chapter, we have assessed the validity of some structure/property relations 
commonly used to predict the wood behaviour. The use of green density to predict the wood 
stiffness was rejected because of variable saturation level exhibited by specimens in the green 
state. On the other hand, basic density was well correlated with the Young’s modulus despite 
the high variability of our sample. The specific modulus proved to be related to the MFA but 
for the specimens with low MFAs, a large scatter of specific modulus values was observed. 
This was ascribed to the occurrence of tension wood specimens exhibiting different structural 
features compared to normal wood.  Once the effect of MFA was accounted based on a 
theoretical relation, the specific modulus along the microfibril was no more related to the 
MFA. Damping coefficient was independent of density as expected but proved also to be 
independent of the microfibril angle contradicting some previous reports (Norimoto et al. 
1986; Brémaud 2006). This may indicate that the damping coefficient is affected by many 
other parameters such as chemical composition etc. and the MFA effect is of second order. 
Comparison of the residual variability of the specific cell wall modulus along microfibrils and 
the variability of the damping coefficient let think that the determinants of this variability are 
not the same in both cases. 
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7) Predicting cell wall properties from the wood pr operties and microfibril 
angle 

After having studied statistical relationships between structural and mechanical 
properties and compared them to bibliographic data, we will now investigate the applicability 
of a mechanical model presented in § 3.6. The main difference between these two sections is 
that adjusted model parameters have a physical meaning. 

7.1 Capacity of the model to describe observed behaviour 

Simple model developed to predict the properties of the cell wall from the properties 
of solid wood and microfibril angle was presented in § 3.6. In the following, the capacity of 
the model to describe observed relationships is presented. Based on Eq. A-11, parameters a′ 
and β′ are adjusted by the least-square method to obtain the best fit with the experimental 
relationship observed between specific modulus and MFA. Obtained results together with 
adjusted parameters are shown in Figure  A-40. We recall that parameter a′ represents the real 
part of the Young’s modulus, β′ and β″ the ratios between the real and imaginary parts of 
shear and Young’s moduli respectively and a″/a′ stands for the damping coefficient of the cell 
wall material. Fitting of the parameters a′ and β′ has given the parameter β′ equal to zero. This 
was attributed to the small effect of cell wall material shear modulus on the estimation of the 
wood Young’s modulus as numerically tested in § 3.6.a. In the next step, parameters a″/a′ and 
β″ were adjusted to fit the relationship between damping and MFA. Obtained estimation of 
the damping coefficient of the cell wall material is reasonable however modelled relationship 
does not fit well with experimental data. This is due to the large scatter of damping values in 
particular for low MFA values. In the following, we will try to search for the sources of this 
variability. 
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Figure  A-40: Correspondence between experimental and modelled values of specific modulus and damping 
coefficient. 

7.2 Variability of the properties between wood specimens from straight growing trees and 
wood specimens from tilted trees 

As already mentioned, the occurrence of reaction wood may be responsible for the 
high variability of damping values. Therefore, we have split the sample in two groups 
separating specimens coming from straight growing and specimens from tilted trees. 
Specimens from tilted trees are supposed to be more variable because of the occurrence of 
tension wood. The results of the specific modulus fitting for both groups are displayed in 
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Figure  A-41. We can note that dispersion of the specific modulus values is slightly higher for 
the specimens coming from tilted trees but adjusted model parameters are very close.  

The situation is different for the damping – MFA relationship. First, we can note large 
scatter of damping values of the specimens from tilted trees compared to the specimens from 
straight growing trees. For specimens from straight trees, there is a significant relation 
between the damping coefficient and MFA which is reasonably well described by the model. 
For specimens from tilted trees, there is no relationship between the damping coefficient and 
MFA. Consequently, optimisation of model parameters yields a straight line. If the parameter 
β″ is not constrained to be positive, a negative valued is obtained by fitting. This has no 
physical meaning and proves that experimental data do not obey to the proposed mechanical 
model. It is interesting to note that the value of the parameter β″ obtained for normal wood is 
high showing a significant effect of the shear modulus on the damping coefficient conversely 
to its poor contribution to the Young’s modulus estimation. 
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Figure  A-41: Prediction of the specific modulus for wood coming from (a) straight growing and (b) tilted trees. 
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Figure  A-42: Prediction of the damping coefficient for wood coming from (a) straight growing and (b) tilted 
trees. 

Separate analysis of wood specimens coming from straight growing and tilted trees 
has evidenced that the intraspecific variability of damping coefficient is higher than the 
interspecific one. Proposed model was able to describe correctly the properties of normal 
wood of all ten species while the occurrence of tension and opposite wood, responsible for the 
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high variability of studied parameters makes it difficult for the prediction based on the MFA. 
This clearly shows that besides the variation of MFA, other parameters change significantly in 
tension and also in opposite wood and that affect the viscoelastic response, at least at short 
observation times. 

7.3 Cell wall properties along microfibrils 

Based on Eq. A-14 and A-15, we have predicted the cell wall properties of each 
specimen using mean values of parameters β′and β″ for each group (straight and tilted trees). 
The aim was to see if there is a significant difference in the cell wall properties along 
microfibrils in function of wood types. Specific modulus and damping coefficient of the cell 
wall along microfibrils for both groups are shown in Figure  A-43. It confirms that the 
variability of specimens with occurrence of tension wood is significantly higher but also the 
mean values seem to be different. Surprisingly, the mix of opposite and tension wood exhibits 
in average lower specific modulus and higher damping coefficient.  
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Figure  A-43: Specific cell wall modulus and damping coefficient of the cell wall along microfibrils for wood 
coming from straight growing and tilted trees. Error bars represent the confidence interval for the mean 
estimation with 95% probability level. 

8) Interspecific and intraspecific variability of v ibration properties 

In the previous chapter, we have seen that wood coming from tilted trees exhibited 
markedly higher variability that wood coming from straight growing trees. In the following 
section, we will investigate the differences between studied parameters in function of the 
wood type i.e. normal wood, tension wood and opposite wood. As explained in § 2.3, for some 
species we are not sure about the designation of tension and opposite wood. The following 
species are concerned: Eg, La, Oa, Vm. For this reason, raised conclusions have to be taken 
with precautions.  

8.1 Screening of intraspecific variability by species 

 Wood types differ essentially by the level of pre-stresses resulting from different 
growth conditions of a tree. Pre-stresses in normal wood help a straight growing tree to 
support the weight of its crown and increase the bending resistance of the stem. Opposite and 
tension wood tissues are usually produced by tilted trees. Thus, they represent a sort of 
reaction or traumatic tissues. Tension wood is formed on the upper side of leaning trees or 
branches. High tensile stresses induced during the maturation process tend to up-right the 
stem to the vertical position. On the opposite side, the level of pre-stresses is very low, in 
general slightly lower compared to normal wood. Based on mechanical definition using the 
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level of pre-stresses to differentiate the wood types, we may expect a gradient of mechanical 
properties and structural features going from the opposite through the normal to the tension 
wood.  

Figure  A-44 shows the interspecific and intraspecific variability of basic density. Error 
bars in the following graphs correspond to the confidence interval (95% probability level). 
We can note that intraspecific variability is negligible relative to the interspecific one. 
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Figure  A-44: Variability of basic density in function of species and wood type. 

Second parameter investigated is the elastic modulus. Essentially, we can make the 
same observation as for the basic density: the interspecific variability is predominant. Further, 
no systematic effect of the wood type can be detected.  
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Figure  A-45: Variability of elastic modulus in function of species and wood type. 

Removing the effect of density results in reduced interspecific variability of 
mechanical properties as shown in Figure  A-46. Conversely, the intraspecific variability has 
not been affected.  
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Figure  A-46: Variability of specific modulus in function of species and wood type. 

Specific modulus represents the stiffness of the cell wall which is expected to be 
strongly related to the microfibril angle. Thus, the variability of MFA should exhibit inverse 
variations compared to the specific modulus. Comparing Figure  A-46 and Figure  A-47, we 
can observe that such a correlation is verified for the interspecific variations. This was already 
shown in Figure  A-33. Intraspecific variability of the specific modulus does not follow 
systematically the MFA one. Moreover, tension wood exhibits systematically lower MFA 
than opposite wood however the relation with normal wood specimens is not straightforward.  
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Figure  A-47: Variability of microfibril angle in function of species and wood type. 

Variability of the damping coefficient is shown in Figure  A-48. For the most, damping 
coefficient of opposite and tension wood is higher than that of normal wood.  
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Figure  A-48: Variability of damping coefficient in function of species and wood type. 

From mechanical point of view, damping coefficient is expected to be related to the 
microfibril angle. In the § 7.2 we have seen that for wood specimens coming from tilted trees, 
this relation was not verified. Thus, we have plotted the mean damping coefficient against the 
mean MFA in function of the wood type. As we can see from Figure  A-49a, intraspecific 
variability of the damping coefficient can not be explained by the microfibril angle variations 
because tension and opposite wood clearly exhibit the same damping coefficient regardless 
different MFA.   
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Figure  A-49: (a) Relationship between damping coefficient and MFA depending on the wood type. Error bars 
represent the confidential interval for the probability level of 95%. (b) Relationship between damping coefficient 
and specific modulus in function of the wood type. 

Figure  A-49b shows the relation between damping coefficient and specific modulus in 
function of the wood type. First observation is that the variability of both reaction tissues 
(opposite and tension wood) is considerably higher compared to normal wood. Opposite 
wood and tension wood exhibit the same damping coefficient despite different specific 
modulus and which is higher than that of normal wood. This may indicate a common origin of 
this property that may be not linked to structural features but to the loading history of these 
tissues. Reaction tissues are submitted to large bending moments because they are produced 
by tilted stems that they try to pull up to the vertical position. Thus, they work more than 
tissues of straight growing trees resisting mainly to the compression loads due to the weight 
of a tree crown. Intensive and repetitive loading of reaction wood tissues may lead to their 
fatigue and damage of the microstructure resulting in micro-cracks. Micro-cracks would 
dissipate more energy thus leading to higher damping coefficient. This phenomenon was 
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already suggested to explain higher damping of oven-dried specimens relative to air-dried 
ones. In this case, micro-cracks would not be caused by anisotropy of shrinkage of different 
cell wall layers but by a sort of fatigue of wood tissues due to the intensive loading history. 

While the high damping coefficient of opposite wood is understandable because of its 
low specific modulus and the hypothesis of micro-cracks resulting from the mechanical 
fatigue, high damping coefficient of tension wood is not fully explained by this assumption. 
Higher specific modulus of tension wood should result in lower damping coefficient relative 
to the opposite wood. Also information that we have about the structural arrangement of 
wood fibres with G-layer (steep MFA angle) and its chemical composition (higher 
crystallinity, higher cellulose content and lower lignin and hemicelluloses content according 
to (Sugiyama et al. 1993; Fang et al. 2008)) let think that the damping coefficient of such 
tissues will be lower than that of normal wood. The fact that is does not correspond to our 
observation could be explained by the fact that the effect of mechanical fatigue is prevailing 
and dominates the difference that would issue from different specific modulus. Nevertheless, 
we have also keep in mind the diversity of the reaction wood structures and properties 
because the above mentioned arguments are valid only for the tension wood exhibiting G-
fibres.  
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Figure  A-50: Relationship between specific modulus along microfibrils and MFA in function of the wood type. 

 It is also interesting to note that specific modulus of the cell wall along microfibril is 
markedly lower in opposite wood compared to other wood types (Figure  A-50). This indicates 
that some chemical changes or structural changes other than MFA have to occur in this tissue 
which definitely differs from normal wood.  

8.2 Anatomical structure as a possible determinant of vibration properties 

Percentage of different wood elements – fibres, vessels and radial and axial 
parenchyma – were measured on a part of the sample G1 (see § 2.2 for details). The possible 
link between anatomical structure and vibration properties was investigated. Table  A-4 
summarises the correlation coefficients for relations between the percentage of wood tissues 
and mechanical properties. Basically, we can see that there is no correlation between 
mechanical properties and percentage of different wood tissues. Significant correlation 
between elastic modulus and percentage of radial parenchyma is likely due to the correlation 
between MFA and radial parenchyma. Once the effect of MFA accounted based on the 
theoretical equation (specific modulus //), no correlation can be observed with the percentage 
of radial parenchyma. It is interesting to note, however, that there is a strong relation between 
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the percentage of axial parenchyma and other anatomical elements (fibres and radial 
parenchyma). 

Table  A-4: Matrix of correlation coefficient between vibration properties and anatomical parameters 

Elastic 
modulus

Specific 
modulus

Specific 
modulus//

Damping Basic 
density

MFA Fibres 
(%)

Radial 
par. (%)

Elastic modulus 1
Specific modulus 0.45 1
Specific modulus// 0.30 0.95 1
Damping -0.37 -0.61 -0.55 1
Basic density 0.87 -0.02 -0.19 -0.08 1
MFA -0.66 -0.55 -0.28 0.42 -0.45 1
Fibres (%) 0.22 0.07 0.06 0.02 0.22 -0.04 1
Radial par. (%) -0.59 -0.32 -0.13 0.29 -0.56 0.66 -0.18 1
Axial par. (%) 0.23 0.16 0.03 -0.23 0.22 -0.45 -0.61 -0.66
Vessels (%) 0.15 0.09 0.10 0.01 0.08 -0.05 -0.21 0.35  

Legend: Specific modulus //: specific modulus along microfibrils; Radial par.: percentage of radial parenchyma; 
Axial par.: percentage of axial parenchyma. 

8.3 Conclusion 

Analysis of the variability of measured parameters has confirmed that basic density 
explains the most of interspecific variability of the elastic modulus. Interspecific variability of 
the specific modulus is related to the MFA variability however this parameter is not always 
relevant when the intraspecific variability of the specific modulus is considered. Difference in 
specific modulus of tension and normal wood can be explained through the MFA variations 
while the specific modulus of the cell wall along microfibrils is significantly lower for 
opposite wood. Considering the wood type dependency on MFA, tension wood specimens 
exhibited lower MFA compared to opposite wood. Variability of the damping coefficient is 
only little explained by the variations in MFA. We have shown that if wood types are 
considered separately, tension wood and opposite wood exhibit similar damping coefficient 
regardless different MFA. Moreover, damping coefficient of both tissues reaction tissues is 
similar despite different specific modulus and higher than damping coefficient of normal 
wood. It was hypothesised that mechanical fatigue due to intensive loading of reaction tissues 
could explain the observed phenomenon. Definitely, opposite wood should not be confused 
with normal wood but considered as a sort of reaction wood along with tension wood as 
previously suggested by Clair et al. (2006). No significant relationship was found between 
mechanical properties and percentage of different wood tissues. This indicates that the origin 
of the variability of viscoelastic properties is not determined by anatomical structure. 
Consequently, we should search the parameters to explain the observed variability on 
different probably chemical level. Gain an insight into the properties and structure of opposite 
wood seems also essential to explain the observed intraspecific variability and understand its 
origin. Analysis of the structure/property relations will be continued in the part B of the 
manuscript dealing with creep properties. 
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B) LONGITUDINAL CREEP OF GREEN WOOD  

1) Development of the creep device and testing proc edure 

In creep studies, the test pieces are usually loaded in bending because of the larger 
displacement developed in bending compared to tensile or compressive strains. Therefore, it 
is easier to obtain the required accuracy for investigating the creep behaviour. However, the 
interpretation of bending results is based on the assumption of identical behaviour of wood in 
compression and tension. This assumption is not necessarily satisfied in the case of specimens 
with tension wood occurrence. Moreover, to our best knowledge, no evidence exists on the 
fact that a loading (tensile) gradient has no effect on the creep response of polymers. That’s 
all the more true for creep of wood sample. We decided then to perform tensile creep tests.  

Conducting tensile creep tests on green wood in longitudinal direction is rather 
difficult because of the severe environment (humidity, temperature, test duration) and very 
low level of creep strain developed during tensile tests along fibres: 15-20µm/m during first 
1000s and 10-20µm/m during the following 7h of the test if the sample remains in the linear 
domain. Consequently, the time necessary to solve all experimental problems such as an 
accurate conditioning, choice of transducers, choice of specimen’s geometry and fixation in 
the creep device as well as development of the experimental procedure was quite long and 
only a small selection of specimens could be finally tested. 

1.1 Tensile creep device 

Creep tests were performed on a tensile device designed by Hunt (Hunt and 
Darlington 1978). Hunt’s device was developed for conducting creep tests in the hygroscopic 
region so that many modifications had to be performed to enable testing of green wood.  

For creep tests in general, accurate control of test conditions (humidity and 
temperature) is essential. Thus, the creep device was equipped with a water bath to enable the 
tests on green wood specimens (Figure  B-1c). The temperature of the bath was controlled by a 
thermo-regulator with an accuracy of ±0.1°C. Capacitive transducers previously used by Hunt 
for strain measurement could not work in water. We have tried to design a lever-arm system 
to ensure (and amplify) the strain signal transmission out of the bath. This approach was not 
successful because of unsatisfactory precision of the system. Finally, we decided to use a pair 
of strain gages glued with cyanoacrylate on each side of the specimen. The accuracy of strain 
gages is satisfying. 3-wires gages were used to correct changes in the lead wire electrical 
resistance with fluctuations of the room and bath temperatures. The risk of gage detachment 
was reduced by silicon coating which limited the disturbances of the gage output due to water 
currents. Nevertheless, detachment did occur during some tests, decreasing the number of 
valid creep tests.  

Tensile loads were applied manually by means of weights coupled to the specimens 
through a lever-arm system.  The applied load corresponded to an instantaneous elastic axial 
strain of about 500µm/m; far below the limit of linearity generally estimated around 1500 - 
1800µm/m for wood subjected to the tensile stress along the grain (Hunt 1988). Strain signal 
of both gages was recorded by a Wheatstone bridge. The frequency of data acquisition was of 
10Hz during the first 1000s after the loading and reduced to 1Hz afterwards. Data obtained by 
both gages were averaged and smoothed to reduce the noise effects on the measurements. 
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Figure  B-1: Creep testing device. (a): Whole experimental equipment. (b): Recording of strain signals by 
Wheatstone bridge and transmission to the computer. (c): Detail of specimens in the thermo-regulated bath. 

1.2 Creep specimens 

Specimens previously measured by vibration method were used for the preparation of 
the creep specimens (100 × 6 × 2 mm3; L, R, T) so that both measurements are well matched. 
Because of the small width of the damping specimen, it was not possible to cut a whole creep 
specimen in one piece of wood. Thus, the damping specimen was shorten, bone-shaped (see 
Figure  B-2) and equipped by additional heads. The removed part was used for the analysis of 
anatomical structure. The reduced width of the central part allowed us to decrease the applied 
load: because of the high rigidity of tropical species, it was difficult to ensure efficient 
transmission of axial loads without damaging the specimen.  

Both ends of the bone-shaped specimen were provided by heads and fixed using MDI 
(methylene-diphenyl-diisocyanate) glue for green wood of the Japanese manufacture Daiichi 
Deiyako. During the gluing, specimen was hold in the fixture represented in Figure  B-3 
ensuring accurate position of the specimen and of the heads. The specimen was kept in the 
fixture for one hour to allow the glue to polymerise before moving to the drilling operation. It 
has been shown that free rotation of specimen heads enables the central part to distort and the 
resulting strain field is not affected by boundary load conditions. Hence, a 11mm hole was 
machined through the heads and a sphere-groove like joint made of brass was fixed in each 
hole. Further, additional clamps were used to improve the transmission of axial loads between 
the heads and tested specimen as shown in Figure  B-2c.  
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Figure  B-2: Preparation and shape of the damping and tensile creep specimens. (a): Damping specimen used for 
the preparation of the creep specimen. (b): Creep specimen after machining. Remaining part was used for 
anatomical analysis. (c): Final instrumented creep specimen.  

 

Figure  B-3: Fixture used for accurate positioning of the specimen during gluing and drilling operations. 

Finally, strain gages were glued on the specimen using cyanoacrylate glue 
(commercial name: Loctite) and covered by silicon. During the silicon hardening (at least 1-2 
hours), the specimen was kept in a permanent bag wrapped in a piece of wet tissue because 
immediate immersion would increase the risk of gage detachment. Some tests with 
waterproof gages were also performed giving satisfying results but we decided not to use 
them because they are quite expensive. The creep behaviour of the cyanoacrylate glue was 
tested by Olsson et al. (2007). During creep tests on glass fibres, no strain was observed at 
30°C and relative humidity varying from 30% to 80%. Furthermore, Hayashi et al. (1993) 
have performed tests of several glues used for strain gages and has found that cyanoacrylate 
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glue was stable at 20°C and 30% of RH but exhibited some variations at higher relative 
humidity (85%) or during random humidity fluctuations. Hence, precautions will be taken to 
account for the possible time-dependent drift of the gages. 

1.3 Development of the experimental procedure 

1.3.a Instantaneous deformation 

It is always tricky to decide which point is to be considered as a starting point of the 
loading for creep tests. In the present study, we have considered as the onset of the test (tc = 0) 
the point corresponding to the half of the loading time, i.e., approximately 1s after the start of 
the loading (Figure  B-4a). Points corresponding to tc < 3s (for time-temperature equivalency 
tests, we have taken 4s because the stabilisation at higher temperatures was longer) were not 
included in the further analysis because of the scattering in strain values due to oscillations 
resulting from manual loading (Figure  B-4b). Thus, strain value at tc = 3s, resp. 4s, was used 
to determine the instantaneous compliance Ji. The mean difference compared to the 
extrapolation of strain curve to 1s, typically used by Hunt to estimate the instantaneous 
compliance, is of 0.34±0.13%. 
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Figure  B-4: (a) Determination of the instantaneous compliance and of the onset of the creep test. (b): Zoom on 
the very first seconds following the loading (unsmoothed data): example of the stabilisation of the creep signal. 
Ji: instantaneous compliance; tc: testing time. 

1.3.b Particular case of curved specimens 

Some specimens exhibited more or less slight initial curvature before loading, which 
could be attributed to gradients of growth stress release. Bending resulting from initial 
straightening makes difficult the interpretation of strain values measured at very first 
moments after the loading: a relative difference up to 60% has been observed between strains 
measured on both sides of the specimen at 10s after loading. If attributed to the ‘straightening’ 
of the specimen, it represents an initial bowing of the order of 1mm that is highly possible. 
Similar problem was encountered also during the measurements of the additional time-
dependent strain. In general, slight differences were observed between the values recorded by 
both strain gages. These differences were ascribed to the gradient of wood properties along 
the specimen thickness but they could also arise from a misalignment of the specimen with 
respect to the loading axis of the creep device. A criterion used to asses the effect of these two 
‘artefacts’ on creep tests was to compute the average value of the developed strain. If the 
section was submitted on average to tensile stress and exhibited positive creep, the test was 
taken into account. In some cases, a negative creep was observed on one side while amplified 
positive creep was developed on the other side of the specimen. In that case, gage slippage 
was suspected. Except for one specimen used for investigation of the validity of the time-
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temperature equivalency, where this effect appeared during the two last tests but the average 
creep value was positive, such specimens were not considered for further analysis.  

1.3.c Duration of the procedure 

Preliminary tests aiming to predict long-term creep behaviour consisted in 
stabilisation-creep-recovery cycles performed at 30°C; 45°C and 60°C. One cycle included a 
short stabilisation period at a given temperature (1h); a creep test lasting 24h; a recovery 
period at a given temperature (24h) followed by a recovery period at room temperature for 
following 48h. The whole test lasted 12 working days.  

Two problems were encountered using this procedure: insufficient accuracy and 
problems with gage detachment. During the recovery period at room temperature the 
specimen was in general put away from the tensile device to enable another specimen to be 
tested. In that time, we had only one thermo-regulator to our disposal so that keeping the 
specimen in the testing device during the recovery period would yield the total duration of 
one complete cycle equal to 3 weeks. However removing of the specimen from the tensile 
device is arguable because the exact positioning of the specimen in the device differed 
between loadings thus increasing the experimental error (see  1.4.a).  

Long duration of the complete procedure increased considerably the risk of gage 
detachment: it was unusual to keep the same pair of gages for all tests. Replacement of gages 
had similar impacts as removing the specimen from the device because we could slightly 
modify the position of gages. 

Aiming to reduce the duration of the complete creep procedure, we decided to shorten 
the loading time. We have noticed that the shape of creep curve change around tc = 1000s (log 
tc = 3) so it was essential to go further. On the other hand, tests longer than 8h did not really 
bring more information considering the fact that we always represent creep results in respect 
of the log of the creep time. To accelerate the recovery, unloading of the specimen was 
followed by a short recovery period at a given temperature and heating to another temperature 
level. Details about the final procedure will be given in the chapter 3.  

1.3.d Stability of gage output 

We could observe a slight time-dependent drift of the gage output, likely increased by 
the use in non-standard conditions, i.e., glued on wet support. Actually, some gages are 
waterproof but there is no gage designed to be glued on a wet surface. Such an application 
reduces the time of gages efficiency by increasing considerably the risk of gage detachment. 
To correct the drift of the gage output, becoming particularly important at high temperatures, 
we have used at first a reference gage (see Figure  B-1). This method revealed to be 
inappropriate because the non-stressed specimen had a different drift compared to the loaded 
one. However, even gages submitted to the same loading conditions did not exhibit identical 
drift. This difference arose likely from the quality of the contact with the specimen and 
quality of the silicon protection.  Finally, we have decided to use a stabilisation period prior to 
the loading and long enough to obtain a reliable extrapolation of the stabilised signal into the 
creep time period. Details about used ratio of the stabilisation and loading periods for each 
procedure are given in chapters 2 and 3.  

Similar difficulties were encountered while testing the possibility to perform 
continuous creep tests at increasing temperature as was done for example by (Genevaux 
1989). Such testing procedure is interesting because well-designed to obtain a lot of 
information. However, when we wanted to apply the testing procedure at continuously 
increasing temperature, there was a problem with thermal expansion of gages affecting their 
output during such a test. Strain gages are to follow the temperature expansion of measured 
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sample but this correction depends on the material tested. There are gages accounting for the 
thermal expansion of the wood but these are designed for dry wood in a given range of 
positive coefficient of thermal expansion. Heating of green wood results in a shortening of the 
specimen along longitudinal direction (Yokota and Tarkow 1962). Inherent thermal correction 
of gages is not appropriate to take this effect into account. Similarly to time-dependent drift, 
the temperature drift of gages was too variable between gages/specimens to allow reliable 
correction of the output. Thus, a procedure consisting of individual creep tests performed at a 
given temperature, after the thermal stabilisation of the gage, has been used. Moreover, the 
gage factor is dependent on the temperature however induced changes are negligible 
(0.08%/10°C) and were not considered. 

1.4 Some verifications 

1.4.a Repeatability 

Uncertainty in the Young’s modulus estimation at tc = 4s was of 0.76% if repeated 
loading of the specimen are considered without its removal of the test device (STD of 5 
repetitions). When the specimen is put away or turned over, the incertitude increased up to 
1.76% (STD of 16 repetitions).  Repeatability of the creep strain was also tested during 
preliminary tests. Results are shown in Figure  B-5. Between both tests, specimen was 
removed from the tensile device. Hence, we can notice a slight difference in instantaneous 
compliance (1.2%) however slope of both curves seems to be very close. This is evidenced in 
the second figure where the relative compliance is drawn. At the end of 5h creep test, 
difference between the amounts of relative creep is negligible (3.5%). Furthermore, results of 
linearity tests (§ 1.4.b) along with preliminary test in the aging procedure without prior 
application of heating treatment § 2.3.a confirm this result. 
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Figure  B-5: Tests of repeatability. (a) Creep curves corresponding to the first and second creep test. (b) The 
same creep curves expressed in terms of relative creep. 

1.4.b Tests of linearity and recovery 

In this work, loading corresponding to the initial strain of 500µm/m was applied. 
Verification of linearity of the creep behaviour was tested up to 1000µm/m using successive 
loadings with increasing strain as depicted in Figure  B-6a. Each strain step was equal to 
250µm/m approximately and one creep test lasted 45 minutes. The same procedure was 
applied for the recovery tests. Obtained results are plotted Figure  B-6b, time scale for 
recovery tests is reversed to enable easy comparison with corresponding creep tests. We can 
note that the recovery is complete; the same observation was done also during physical aging 
measurements (not shown). 
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Figure  B-6: Tests of linearity. (a) Schedule used for the linearity tests. (b) Obtained results from creep and 
recovery tests. 
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Figure  B-7: Detail of creep tests performed at different stress level. (a) Raw compliance values. (b) Smoothed, 
interpolated and normalised compliance values.  

Compliance curves obtained from successive loadings are displayed in Figure  B-7. 
Figure  B-7a represents raw experimental values. Slight differences observed between the 
instantaneous compliances are mainly due to small differences in the applied weights. In 
Figure  B-7b, the same values but smoothed, interpolated and normalised by the applied stress 
are represented. All curves overlap in one single curve indicating that the limit of linearity has 
not been exceeded. Obtained results are in agreement with literature data stating the strain 
limit for non-linear behaviour of a softwood in tension around 1800 µm/m (Hunt 1989). 

1.4.c Correction of the creep signal 

Increase of temperature above approximately 35°C may trigger  the release of residual 
growth strains (Yokota and Tarkow 1962). Moreover, we have noticed that gages, in 
particular at increased temperature, exhibit a slight time-dependent drift as explained in 
§ 1.3.d. Both, the release of locked-in strains along with the gage time-dependent drift overlap 
with the creep during the mechanical testing and make if difficult for the interpretation of the 
signal. To obtain clean data, we have used the stabilisation period long enough to allow a 
reliable extrapolation of the stabilisation signal to the following creep period as detailed in 
§ 3.2.b. An example of extrapolation is shown in Figure  B-8a. For the typical ratio between 
the stabilisation and creep periods used during tests at different temperature levels, the 
extrapolation from log t = 4.73 to log t = 4.93 was used. Extrapolated signal was then used to 
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correct the creep recorded during the creep test as shown in Figure  B-8b. Note the difference 
between the two time scales: at the onset of the creep test, the recovery time is equal to log t = 
4.73. Thus, the correction is close to zero for the first part of the test whereas it is quite huge 
for the last part. Depicted case corresponds to the stabilisation period at 60°C where the 
correction is the most important for a specimen exhibited large time-dependent drift. Note that 
such a correction is possible only under the assumption of viscoelastic linearity verified in the 
previous paragraph. 
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Figure  B-8: Correction of the creep signal obtained during a test at increased temperature. (a) Extrapolation of 
the signal recorded during the stabilisation period. (b) Creep strain before and after the correction. 

1.5 Data processing and analysis 

For each tested specimen, following steps of analysis were performed: 

1. First, strain values obtained by both gages were averaged and corrected by the 
extrapolation of the signal from previous recovery period (aging tests) or stabilisation 
period (time-temperature equivalency investigations) as explained in § 1.4.c. Applied 
ratios of creep/recovery period as well as details on this procedure are given in the 
chapters  2)2 and 3 respectively. Compliance values were obtained from averaged and 
corrected strain values, section geometry and applied load. 

2. Compliance values, further denoted by J, were smoothed by searching for the best-
fitting second order local polynomial approximating J versus log t. At the same time, 
values of J were interpolated to obtain a set of points equally spaced in a logarithmic 
time-scale. The interval between interpolated values log t = 0.1 was used. At the same 
time, the slope corresponding to the derivate dJ/dlog t was computed. The principle of 
interpolation is depicted in Figure  B-9a. Criteria used for smoothing was a minimum of 
20 points and a range ∆log t = ±0.3. The test duration was approximately 8h 
(log t = 4.5). Very first values of J were also often disturbed by vibrations resulting from 
the manual loading (see Figure  B-9 and also Figure  B-4b). As the interpolation is not 
very reliable when one-sided, only values from log t = 0.5 up to log t = 4.3 was used for 
further analysis. An example of interpolated values and their correspondence with 
original experimental data is shown in Figure  B-9b. 

3. The interpolated values have been used to evaluate the real and imaginary part of the 
complex compliance J* = J′ + iJ″ using Alfrey’s approximation (Alfrey 1948) as 
explained previously in 0- 3.5.d: 

 )(log' tJJ ≈ ;                (Eq.  B-1) 
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 where J′ represents the real part and J″ the imaginary part of the complex compliance. 
Components of the complex compliance were further plotted in the approximated 
complex plane (ACP). The ACP was used to check for equivalency principles: time-
aging time for the physical aging study and time-temperature for the long-term 
predictions. Further, rheological models applicable to wood are represented in the ACP 
by straight lines or circle portions so that the graphical representation of experimental 
data allows easy identification of a corresponding parametric model (Huet 1988). Thus, 
ACP is a very useful tool to decide about the mathematical form of the constitutive law 
without any preconceived idea about the physics of the studied phenomenon and the 
equations to use for the modelling. 
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Figure  B-9: (a) Principle of smoothing and interpolation by best-fitting local polynomial. (b) Examples of 
smoothed and interpolated procedure applied to specimen Oa2.  

Further steps of data analysis will be detailed for each study separately in the 
following chapters. 
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2) Evidence and modelling of physical aging 

Following results were published (Dlouhá et al. 2009) but slightly modified for their 
smooth integration to this manuscript. 

2.1 Introduction 

To produce biomechanical models valid over the whole life, the time-dependent 
behaviour of green wood needs to be predicted. The use of series of creep or relaxation tests 
at increasing temperature levels is the obvious way to identify such long-term rheological 
models, but several obstacles might produce difficulties. First, the complex polymeric 
composition produces overlapping of phenomena so that the observed mechanical response is 
not described easily by simple equivalence between time and temperature (Bardet and Gril 
2002). Second, the recovery of locked-in strain due to the pre-stressing during wood 
formation at stem periphery is likely to occur during the tests at increasing temperature levels, 
and produce non-negligible perturbation of the viscoelastic data (Gril and Thibaut 1994).  

Residual strains can be removed, or at least significantly recovered by heating above 
the glassy transition (Tg), typically 65°C for the in-situ saturated lignins of a hardwood 
(Kelley et al. 1987). However, when the wood is cooled below Tg after the heating, physical 
aging may occur: upon cooling below Tg, due to the low chain mobility the polymer cannot 
shrink fast enough to keep equilibrium volume, and the material properties undergo slow and 
gradual changes towards its new equilibrium state (Struik 1978). Consequently, the tests 
performed too shortly after the heating and subsequent cooling, may produce data poorly 
connected with the real behaviour of a never-heated green wood.  

Physical aging has been already observed in wood. A number of arguments for its 
occurrence were given for wood in the hygroscopic range (Hunt and Gril 1996). The effects 
of a quench (rapid cooling) on wet wood properties was studied by Nakano (2005) who 
reported a temporary change in viscoelastic properties with a new equilibrium state definitely 
reached at the end of 10 hours. Free volume creation has been ascribed to the freezing of 
molecular chains of wood components, most likely lignin, during the quench. On the other 
hand, Ishimaru (2003) has investigated the effect of quenching rate on wood creep properties 
and observed that the effect of cooling had not completely disappeared after 40 days; but they 
have not examined the aging phenomenon in more details. In these studies, the wood was 
usually tested transversally to the fibres, in the radial (R) or tangential (T) direction, whereas 
for biomechanical consideration the behaviour in the longitudinal direction (L) is the most 
important.  

The objective of this work is to verify the occurrence of physical aging in green wood, 
and, if possible, quantify it, based on tensile creep tests in L direction. In his pioneer study on 
physical aging of polymers, Struik proposed an experimental protocol to investigate the effect 
of aging time on small-strain creep properties after a quench, based on the “snapshot” 
assumption - testing time is very short relative to aging time. Assuming that aging changes by 
a negligible amount during each creep test, the creep response can be separated from the 
aging effect. Struik has also shown that in the case of simple polymers, creep curves for 
different aging times can be superimposed into a single master curve, and he proposed a 
simple mathematical description of the log time shift. We adopted Struik procedure, intending 
to verify the applicability of his descriptive model to green wood. 
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2.2 Material and methods 

Wood samples of three tropical species Oxandra asbeckii (Pulle) R.E. Fries, Licania 
alba (Bernoulli) Cuatrec. and Virola michelii Heckel were used to investigate the aging 
phenomenon in green wood. Properties known at the moment of selection are summarised in 
Table  B-1. Some specimens of tension wood were included in the study as well. Sample 
names are built as the initials of the species name with an index specifying the wood type (eg. 
OaN and OaT for Oxandra asbeckii normal and tension wood respectively).  

Table  B-1: Summary table of the specimen properties used for the aging study 

Species Basic 
density

Elastic modulus 
(GPa)

Specific modulus 
(GPa)

Damping

Licania alba 0.506 21.17 17.31 5.76E-03
Licania alba 0.506 20.40 16.68 5.99E-03
Oxandra asbeckii 0.850 20.54 15.84 5.31E-03
Oxandra asbeckii 0.850 16.18 12.47 6.94E-03
Virola michelii 0.450 10.75 4.27 6.93E-03 

Legend: Data for basic density comes from CIRAD database, elastic modulus and damping were measured in 
green state, specific modulus stands for the ratio of elastic modulus and basic density. 

After being heated at 80°C for 30 minutes to release all macroscopic residual strains 
and establish the thermodynamic equilibrium, the sample was quenched to 30°C and kept at 
30±0.1°C. The quench was done by replacing the sample from the bath at 80°C to the water 
chamber of the testing device regulated at 30°C, the operation taking about 60 s. After that, a 
set of short-term creep tests was performed on the same specimen at various aging times ta 
elapsed after the quench as shown in Figure  B-10. It is important to distinguish aging time ta, 
counted from the moment when the specimen was moved from the hot to the cold bath, and tc, 
the creep time counted from the moment of each loading.  
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Figure  B-10: Experimental procedure for investigating the aging time effect on small strain creep properties. a) 
Dashed line: temperature; solid line: load.  ta: aging time; tc: creep time.  

To separate the creep response from the aging effect, testing time tc has to remain 
much shorter than ta at the onset of the test. This is called the snapshot assumption because a 
test performed during such a short time (tc < 0.3�ta) will exhibit negligible effects of aging. 
Strain was measured during both creep and recovery periods. By extrapolation of the recovery 
curve in logarithmic time scale into the next creep period, the strain built up during each 
individual creep test could be singled out. The principle of this extrapolation is explained in 
§ 3.2.c. To obtain a reliable extrapolation, testing time has to be short relative to the previous 
(3�tc) recovery period. We also need to have tc short relative to the following recovery period 
(10�tc). This condition takes into account the time necessary to complete the recovery of 
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previous loading so that at the end strain signal is quite stable and easy to extrapolate. In fact, 
corrections due to the extrapolation of recovery tests revealed to be negligible (~0.002% for 
the longest creep test) so that the correction was not applied systematically. The total duration 
of the test procedure is 3.5 days.  

2.3 Results and discussion 

2.3.a Suitability of experimental procedure and evidence of aging phenomenon  

The experimental procedure was first tested omitting the step of preliminary heating 
above Tg. In this case, curves corresponding to creep tests performed at different elapsed 
times after the onset of the test are superimposed into one single curve (Figure  B-11a). This 
shows that the effect of loading history of the sample on a given creep test is negligible and 
we can use the proposed procedure to investigate the effect of aging time. Fig. 3b represents a 
set of creep tests performed on the same specimen after the quench. We can notice that higher 
creep strains were developed during the tests following the quench. The relative creep for the 
creep test performed at ta5 (Figure  B-11a) amounted to ~ 7.5% against ~ 12.2% for the creep 
test (ta5) in Figure  B-11b. The shape of the creep curve corresponding to the first aging time 
(ta1) was quite different from others. This effect was ascribed to the non achieved thermal 
equilibration of the specimen with the surroundings: in later tests, we have always applied the 
first loading at log ta1 > 2, or 100 s after the quench.  
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Figure  B-11: Evidence of physical ageing occurrence in green wood (sample VmN). (a) Set of creep tests 
performed at different elapsed times t1-t5 counting from the onset of the test without preliminary heating above 
Tg; (b) Set of creep tests performed on the same sample at different aging times ta1 - ta8 following the quench 

The gradual decrease of instantaneous compliance with increasing aging time as 
visible in Figure  B-11b clearly confirms the occurrence of physical aging in green wood. The 
drop between successive creep curves does not reduce with increasing aging time. This 
suggests that the logarithmic aging rate remains approximately constant during the test; even 
at the end of the test period, 3.3 days after the quench, the specimen is far from a new 
equilibrium state. It definitely shows that the stabilisation period of our samples is much 
longer that expected considering Nakano’s results transversally to the fibres. Figure  B-12a 
shows a master curve obtained by shifting the curve for each aging time along the log time 
axis toward a reference curve corresponding to ta8. The smoothness of the resulting master 
curve suggests that aging dependence of the creep response is rather uniform and tested 
material could be considered as rheologically simple. A commonly used method to describe 
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the aging behaviour is to display the shift factor ata versus the aging time ta on double 
logarithmic scale. The slope yields the aging rate µ (Figure  B-12b): 

µ = - d (log ata)/d (log ta).                 (Eq.  B-3) 
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Figure  B-12: Relationship between retardation and ageing time based on visual assessment (sample VmN). (a) 
Master curve obtained by visual shifting of individual creep curves from Figure  B-11b; (b) Double logarithmic 
plot of shift factors ata versus the aging time ta. 

2.3.b Identification of a rheological model 

To improve the reliability of ageing quantification, a procedure based on rheological 
modelling was tried.  
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Figure  B-13: Complex plot of a sequence of creep tests performed at different aging times ta after the quench 
where J’ is storage compliance and J”  loss compliance (sample OaN). For signification of J0 and k see in the text. 

In complex plot, the creep curves measured at various aging times are superimposed 
into one single straight line (Figure  B-13). This means that the aging phenomenon in green 
wood can be described by a “parabolic Maxwell” model (Huet 1967) with an aging-dependent 
dashpot element. Creep behaviour of such a model obeys to the power law: 

J(tc) = J0 [1+(tc /τ)k],                (Eq.  B-4) 

where J(t) is the creep compliance, J0 the instantaneous compliance, τ the doubling 
time of the creep response and k the power parameter. The use of a power law has been often 
proposed to describe the creep response of wood (Huet 1988). This behaviour can be 
considered as the beginning of a 3 elements parabolic response as described above, for 



 96 

durations considerably smaller than the characteristic time of the dashpot, so that the spring in 
parallel to the dashpot is subject to a negligible stress.  

Estimates of J0 and k can be obtained graphically as shown in Figure  B-13 and have 
the same value for all aging times. Only τ depends on ta, so that the creep compliance for any 
aging time can be written as: 

J(tc; ta) = J0 [1+(t /τ(ta))
k].                  (Eq.  B-5) 

In this equation, the relation τ(ta) is not imposed. Assuming, in addition, the validity of aging 
rate uniformity claimed by Struik (Eq. B-3), we obtain: 

µ = - d (log τ)/d (log ta) = - d (log ata)/d (log ta),                                   (Eq.  B-6) 

where µ is the aging shift rate where parameter ata represents the horizontal shift used in 
Struik’s procedure to form a master curve from creep curves measured at different aging 
times. 

Eq. B-6 yields: 

log τ(ta) = log[τ0] - µ [log(ta) – log(ta0)]             (Eq.  B-7) 

where ta0 is the reference aging time andτ0 the doubling time at ta0. The combination of 
equations B-5 and B-7 allows to predict a whole data set like that of Figure  B-14b, using 4 
parameters only: J0, k, µ,τ0. As a reminder, Eq. B-5 is only valid for tc values verifying the 
snapshot condition (tc<<ta), so that the age of the specimen did not change significantly since 
it was loaded.   

2.3.c Optimisation of model parameters 

Model parameters were adjusted by least-square optimisation method using smoothed 
experimental data with regular step in log time scale (δlog tc = 0.1). First, we have tested the 
suitability of the proposed description of aging behaviour deduced from the complex plot 
(Eq. B-5). Parameters J0, k and τi were adjusted omitting any presumption about the 
dependency of τi on aging times. This optimisation method will be called “fitting 1”. Example 
of a master curve and adequacy between experimental and modelled creep curves is displayed 
in Figure  B-14. As output of fitting 1, we have obtained a set of doubling times τi 

corresponding to different aging times tai at which were performed individual creep tests. 
Plotting the change in τi versus aging times tai in double logarithmic scale (Figure  B-15.), we 
can assess the validity of the presumed aging rate uniformity. Excepting the sample OaT, the 
assumption of linearity is well satisfied.  
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Figure  B-14: Example of model fitting based on eq. B-5 for sample OaN: (a) Master curve produced by shifts 
resulting from optimisation without any presumed dependency between doubling and aging times. (b) Example 
of agreement between experimental (dots) and modelled creep curves (lines). Creep curve corresponding to the 
aging time ta8 = 3.3 days was taken as a reference. 

Next, we have proceeded to the optimisation of model parameters J0, k, τ0 and µ taking 
into account both Eqs. B-5 and B-7, referred to as “fitting 2”. An example of master curve 
using shift factors obtained by fitting 2 is shown in Figure  B-16a. We can notice some 
discrepancies compared to the smooth master curve resulting from fitting 1 represented in Fig. 
Figure  B-14a, however agreement between experimental and modelled creep curves based on 
parameters issued from fitting 2 remains very satisfactory (Figure  B-16b). 
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Figure  B-15: Model fitting based on eq. B-5. Relationship between shift factors ata and aging times ta in double 
logarithmic scale for different samples. 
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Figure  B-16: Example of model fitting based on eq. B-5 and B-7 for sample OaN a) Master curve produced by 
shifts resulting from optimisation accounting for linear logarithmic dependency between doubling time and 
aging time. (b) Example of agreement between experimental and modelled creep curves issued from fitting 2. ta: 
aging time.  

Table  B-2 summarises parameters of the aging dependent model for all tested 
specimens adjusted by different methods and/or corresponding to different hypothesis about 
the doubling times dependency on aging times. Parameter values resulting from fitting 
methods 1 and 2 are very close. This indicates that the assumption of uniformity of aging rate 
(Eq. B-3) is valid and so we can reduce the number of model parameters without introducing 
an important error to the prediction of aging behaviour. It is also interesting to notice that the 
accuracy of visual fitting of the master curve is quite good (see values of µ by visual fitting 
and fitting 1). This study proved that complex plots are very useful to decide about the 
mathematical form of the behaviour law; however the accuracy of value of parameter k 
deduced from the graphical representation is not sufficient.  

Table  B-2: Adjusted parameters of aging time dependant model. Last line corresponds to results obtained for 
Nakano’s data presented in § 2.3.d. k: power exponent; J0: instantaneous compliance (GPa-1); log τ0: doubling 
time of the reference element and µ the aging rate.  

Vis.fitting

µ k J 0 µ∗ k J 0 logτ0 µ k J 0 logτ0

LaN 0.70 0.21 0.035 0.71 0.17 0.041 11.7 0.72 0.18 0.041 11.4

LaT 0.79 0.12 0.027 0.79 0.14 0.033 12.4 0.80 0.14 0.033 12.4

OaN 0.77 0.21 0.042 0.73 0.19 0.048 10.8 0.75 0.19 0.048 10.7

OaT 0.98 0.14 0.037 0.97 0.13 0.033 14.2 0.97 0.13 0.033 13.8
VmN 0.77 0.14 0.087 0.80 0.14 0.086 9.5 0.80 0.14 0.086 9.3

Nakano 0.73 0.27 5.2 0.61 0.27 5.2

Complex plot Fitting 1 Fitting 2

 

*value of µ for fitting 1 is deduced from the plot represented in Figure  B-15.  

Concerning the variability of instantaneous compliances between samples, it can be 
easily explained by the diversity of densities and Young’s moduli of our sampling. On the 
other hand, parameters µ, k and τ0 were very similar for all samples (excluding aging shift rate 
µ measured for the sample OaT) suggesting the common feature of aging phenomenon in 
green wood. Values of aging rate are consistent with bibliographic data. Struik has observed 
aging rate µ close to unity for amorphous polymers and µ ~ 0.75 for rigid chain CAB 
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(cellulose acetate butyrate ester). Considering the partially crystalline and partially amorphous 
nature of wood, a lower aging rate can be explained by the slowing effect of rigid chains as 
proposed by Levita and Struik (1983).   

2.3.d Application to the analysis of Nakano’s data 

Nakano studied Picea jezoensis (Carrhas), a Japanese softwood, loaded in bending in 
the R direction; although the wood was studied in the water saturated state, it had been 
previously kiln-dried so cannot be considered as green wood. The experimental procedure has 
been different from that suggested by Struik. While in our case aging times at which 
individual creep tests are performed are equidistant in logarithmic scale (step = 0.5), in 
Nakano’s procedure the aging time step is not constant and tends to decrease for longer aging 
times (log ta n+1 – log ta n: 0.78 – 0.48 – 0.3 – 0.37 – 0.22 – 0.27 – 0.19). Hence, it is difficult 
to deduce from the graphical representation of creep curves with respect of testing time if the 
material is close to its equilibrium state or not.  
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Figure  B-17: Model fitting based on Eq. B-5 applied on Nakano’s data: (a) Agreement between experimental 
and modelled creep curves for fitting 1. Solid lines represent the prediction for values of tc < ta/3; dashed lines 
correspond to modelled values not satisfying the snapshot condition tc > ta/3. (b) Relationship between shift 
factors ata and aging times ta in double logarithmic scale. 

To examine in more details Nakano’s data, we have applied the optimisation method 1 
– fitting without presumed linear logarithmic dependency of doubling times on aging times. 
As creep tests were not performed on the same sample, we have allowed J0 to vary accounting 
for possible differences in instantaneous and delayed behaviour between samples. Only data 
fulfilling the snapshot condition (tc > ta/3) were used for the fitting. ACP of Nakano’s data 
after the correction of J0 are shown in the Appendix. Agreement between experimental and 
modelled creep curves is shown in Figure  B-17a. Relation between shift factors and aging 
times is quite linear yielding aging rate equal to 0.73 (Figure  B-17b) that is very close to our 
values for tropical hardwoods, loaded in longitudinal tension. It suggests that the dynamics of 
aging phenomenon is not dependant on the wood type or the loading direction.  

 

 

2.3.e Discussion on the physical processes involved    

According to Stamm and Loughborough (1935), the fibre saturation point (FSP), 
representing the maximum content of bound water, increases by 0.1% per 1°C decrease. This 
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estimate, deduced from sorption isotherms, is representative of phenomena occurring in the 
hygroscopic domain. However even in wet conditions, with the cellular cavities (lumens) 
filled with free water and the cell walls saturated with bound water, small moisture 
movements are likely to occur through the cell wall as a result of temperature changes.   

The phenomenon stated by Stamm is qualitatively confirmed by the negative 
reversible thermal expansion observed in green wood and attributed to a moisture uptake 
during cooling (Yokota and Tarkow 1962). But the intensity of the phenomenon seems to be 
smaller. An expansion ratio of -7.10-6/°C in the tangential direction can be evaluated for green 
wood from a previous study (Gril et al. 1993). Taking +33.10-6/°C as the expansion ratio for 
dry wood (Kollmann and Côté 1968), the expansion resulting from the moisture uptake can be 
calculated as -40.10-6/°C. Assuming a typical expansion ratio of 0.3% per % moisture content, 
this would correspond to a moisture content increase of 0.7% for a 50°C temperature decrease, 
to be compared to the 5% predicted from FSP estimates.  

Even by that small amount, the moisture uptake resulting from quenching is likely to 
influence the mechanical response. In the hygroscopic range, humidity variations, both 
adsorption and desorption, considerably accelerate the viscoelastic response, an phenomenon 
known as mechanosorptive effect (Grossman 1976) and described as a transient increase of 
molecular mobility (Back et al. 1983) of the hygroscopic matrix made of lignin, 
hemicelluloses and non-crystalline cellulose. However, at high humidity levels the 
contributions of mechanosorptive and stable-state creep are difficult to separate. Our data do 
not allow to distinguish that “hygrothermomechanical” process from the progressive return to 
equilibrium of temporary frozen molecular segments. The quenching provoked, for a number 
of reasons, an unstable molecular configuration of the matrix that is progressively recovered 
according to the identified kinetics.   

The fact that Struik’s formalism seemed to be relevant to describe the physical aging 
of green wood, suggests that the pertinent level of description is that of a semi-crystalline 
polymer, where the heating above lignin glassy transition followed by a quench had induced a 
delayed return to a stable molecular configuration. The transient instability induced by the 
small moisture uptake does not necessarily contradict this interpretation as long as it only 
adds a reason for higher molecular mobility. However, if the variation in moisture content 
was the main cause for the change in behaviour with ta, the remarkable superimposition of the 
creep curves in Figure  B-13, resulting in a model where only τ varies with ta, may not have 
been observed.  

Higher levels of structural organisation should be also evoked to complement this 
molecular interpretation. In the longitudinal direction, because of the axial orientation and 
tubular shape of most cells, the cell-wall level is most appropriate. When a green wood 
specimen is isolated and heated, stress resulting from the cell growth process is easily 
recovered as soon as the temperature exceeds Tg, which was the case at 80°C. However, the 
condition of structural integrity limits the extent of recovery; a part of the locked-in strains 
and pre-stresses remain present locally, as their complete relaxation would require the 
destruction of the cell-wall structure. The local swelling anisotropy, and its incompatibility 
between layers, might interact with this initial pre-stressing resulting from cell-wall formation 
and be only partially released by the heating.  

2.4 Conclusion 

The effect of quench on creep that persists for a long time in green wood could be 
described as a physical aging process. The analysis of aging behaviour was performed in three 
steps. First, rough assessment of the validity of the aging rate uniformity was made by visual 
shifting of individual curves into a master curve. Second, complex plots were used to choose 
a rheological model and identify its parameters for each aging time ta, without any 
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presumption about the influence of ta. The model used, a parabolic Maxwell, describes the 
delayed compliance by a simple power law. Only the “doubling time” theoretically required 
to double the instantaneous response was affected by ta (fitting 1). Based on results of this 
fitting, the validity of the assumption of the uniform aging rate was verified and introduced in 
the model in a third stage (fitting 2). The same approach was successfully applied on 
experimental data provided by Nakano. Model based on the linear dependency between 
doubling and aging times was considered satisfying for all studied samples suggesting 
common feature of the aging phenomena in wood. The transient adsorption process 
consecutive to the quench was considered as one of the possible causes of the higher 
molecular mobility observed.  
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3) Applicability of the time-temperature equivalenc y  

Following results were published (Dlouhá et al. 2009) but slightly modified for their 
smooth integration to this manuscript. 

3.1 Introduction 

For long-term predictions of creep behaviour, accelerated experimental methods are in 
general used. One of them, used for static testing, is based on time-temperature equivalency 
stating that increasing the temperature is equivalent to stretching the real-time of the creep 
response. Based on a sequence of short-term creep tests performed at increasing temperature 
levels, the corresponding compliance curves are shifted along the log time axis to generate a 
creep master curve characteristic of the long-term behaviour of a given material. Previous 
works on the rheology of green wood, i.e., that was never dried under the fibre saturation 
point, focused on the behaviour of wood across the grain (Bardet 2001; Placet et al. 2007) 
which is of a little relevance for tree mechanics modelling where properties along the fibres 
are predominant. 

Viscous properties of wood are determined by the behaviour of the amorphous matrix 
made up of lignin and a variety of hemicelluloses. In the water-saturated state, such as the 
green condition, hemicelluloses are already softened at room temperature. Thus, softening of 
wood tissues, which occurs for quasi-static loading or at low frequencies in the vicinity of 
70°C, was ascribed to the lignin glass transition (Kelley et al. 1987). Thermal activation of 
secondary relaxations occurring below the glass transition temperature is usually described by 
the Arrhenius law, where the characteristic time τ of the viscoelastic process is related to the 
absolute temperature T through an apparent activation energy W.  

Salmén (1984) reported the applicability of the time-temperature equivalency in wood 
for temperatures above the lignin glass transition. He has also stated the validity of the 
Arrhenius law. This concept was also used by many authors to predict long-term behaviour of 
wood in the hygroscopic region (Le Govic et al. 1987; Genevaux 1989). However, these 
considerations relied mostly on the visual assessment of the master curve smoothness. While 
investigating the experimental data in the complex plot (McCrum 1967), Bardet (2001) 
reported some discrepancy of the time-temperature equivalency such as described by the 
Arrhenius law. Based on the same representation, Placet et al. (2007) has found that time-
temperature equivalency could not be applied to the whole viscoelastic range but seems to be 
valid within each transition state.  

In amorphous polymers like rubber, an effect of temperature on stress of pre-deformed 
specimen, usually called entropic (or rubber) elasticity, has been shown. This effect can be 
accounted for by multiplying the compliance by a correction factor dependent on the 
temperature. In particular in regions where the viscoelastic function is flat, the need of this 
factor was more important to obtain satisfactory matching of creep curves (Ferry 1980). In the 
case of wood, the applicability of such a correction is not straightforward because of its 
complex structure (Salmén 1984). 

The aim of the present work was to check for the validity of above mentioned 
principles for wood and identify a generic rheological model applicable to wood specimens of 
different species, densities, nature and anatomical feature. According to the considered tree 
mechanics applications, we were interested in viscoelastic properties of green wood along the 
fibres. In this view, tensile creep tests in longitudinal direction in the temperature range 30-
70°C were performed and obtained data discussed. 
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3.2 Material and methods 

3.2.a Characteristics of selected specimens 

Wood of four tropical species was selected for their contrasted Young’s modulus and 
damping coefficient. Positioning of the selected specimens within Sample 14 is shown in 
Figure  B-18. The basic density was not available at the moment of the selection as specimens 
were green. Vibration properties measured in green state and structural parameters measured 
a posteriori are summarised in Table  B-3. Following species were represented: Dicorynia 
guyanensis - Dc, Lecythis persistens - Lp, Licania alba - La, Virola michelii - Vm. Occurrence 
of tension wood is expected for two specimens (Dg and La). Specimen names are built as the 
initials of the species name followed by the specimen number. Altogether, ten specimens 
were tested. 

Table  B-3: Summary table of structural parameters measured a posteriori and mechanical properties measured 
by vibration method in green state. 

Specimen Basic 
density

MFA        
(°)

Young's modulus          
(GPa)

Specific modulus       
(GPa)

Damping 
coefficient

Dg 0.53 7.8 17.5 32.8 0.52%
La 0.74 10.3 24.0 32.4 0.73%
Lp1 0.68 20.0 15.7 23.0 0.77%
Lp2 0.68 11.3 15.8 23.3 0.76%
Lp3 0.68 9.7 13.8 20.3 1.00%
Lp4 0.75 13.2 17.4 23.2 0.90%
Oa1 0.86 14.6 20.5 23.8 0.73%
Oa2 0.84 13.2 19.8 23.6 0.80%
Vm1 0.43 20.8 8.6 20.0 1.18%
Vm2 0.45 21.8 9.8 21.7 1.04%  

Legend: MFA: microfibril angle; Young’s modulus was measured by vibration method in green state; specific 
modulus: ratio of Young’s modulus and basic density. 
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Figure  B-18: Positioning of a selection of wood specimens used for the tests of time-temperature equivalency. 

                                                 
4 See chapter A) 2.2 for details 
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3.2.b Experimental procedure 

Each specimen was submitted to stabilisation-creep-recovery cycles performed at 
isotherms between 30°C and 60°C as shown in the Figure  B-19. Prior to the loading, each 
specimen was stabilised during 15h at a corresponding temperature. Afterwards, a constant 
load was applied during 8h, followed by a short recovery period and heating to the following 
temperature taking together approximately 1h. Thus one isotherm took 24h and the whole 
procedure holds in one week. Preliminary tests showed that a temperature step of 10°C gives 
an optimal overlapping of creep curves in the ACP plot.  
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Figure  B-19: Applied cycling schedule. tstab: stabilisation time; tc: creep time. 

Considering thermal expansion coefficient of -7.10-6/°C in the tangential direction  
evaluated for green wood from a previous study (Gril et al. 1993), the thermal dilation may 
induce the underestimation of the compliance of the order 0.04% that is negligible comparing 
with effects discussed later.  

3.2.c Correction of strain data 

During the stabilisation period prior to the loading cycle at a given temperature, the 
apparent strain is the result of different processes: recovery of preceding creep test, thermal 
stabilisation of the specimen (and of the gages themselves) and hygrothermal recovery of 
locked-in strains that can occur at elevated temperatures (Gril et al. 1993). To measure the 
creep strain developed during the following test, the stabilisation period has to be long 
“enough” to neglect the strain due to other processes. Another (faster) way is to correct strains 
arising from these other mechanisms by extrapolating them, in log time scale, using the strain 
measurements during the stabilisation period. Details about the extrapolation method are 
explained in § 1.4.c. Note that the gages drift goes often in the direction opposite to the creep 
strain so that no correction would have resulted in an apparent decrease of the creep rate and 
thus misled the data interpretation.  

3.3 Results and discussion  

3.3.a Building of the master curve using log time shifts 

Assuming the direct applicability of time-temperature equivalency, master curves were 
tentatively built from experimental data using shifts along the log time axis. Creep curves for 
each specimen were plotted as compliance versus log test time and shifted along the x-axis to 
build a master curve. Creep test performed at T0 = 30°C was taken as a reference and 
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dimensionless shift factors, aT, were numerically adjusted. The assumption that temperature 
affects only the kinetics of the creep response requires that the resulting curve is smooth.  
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Figure  B-20: Master curve obtained by shifting individual creep curves for the Oa2 specimen along log time 
axis. Curve measured at 30°C is taken as a reference. 

Figure  B-20 shows a typical example of resulting master curve corresponding to 
experimental data obtained with Oxandra asbeckii specimen (Oa2, see below). Although the 
first three creep curves (30°-50°C) are quite well matched, overlapping of curves 
corresponding to the tests performed at higher temperatures is not complete. Nevertheless, log 
time shifts can be plotted against the reciprocal of temperature (Figure  B-21a). The linear 
correlation between both parameters supports the applicability of time-temperature 
equivalency described by an Arrhenius law: 

);/)(();( 0TaTtJTtJ T= ,               (Eq.  B-8) 
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where aT  is the shift factor corresponding to the stretching of the real creep time with 
increasing temperature, W0 the activation energy (J·mo1-1), R the universal gas constant 
(8.31 J·mo1-1·K-1), T the temperature (K) and T0 the reference temperature (30°C = 303.15 K 
in this case). Activation energies derived from time shifts according to Eq. B-9 are given in 
Table  B-4. 

3.3.b Examination of experimental data in the complex plane 

 The representation in the ACP was then used for in depth analysis of the data. 
Obtained results will be illustrated on the Oa2 specimen however ACP for each tested 
specimen is in the Appendix. Time-temperature equivalency requires that once plotted in the 
ACP, creep curves will form one single curve. However, when experimental data are drawn in 
the ACP, we can clearly observe discontinuities between the individual curves ( 

Figure  B-22) that reflect the slope differences between poorly overlapping curve 
portions in Figure  B-20. Individual creep curves are made up of linear segments with nearly 
the same slope but different J’-intercept for each of them so that final overlapping is poor. 
This obviously questions the validity of the assumption that only characteristic times are 
affected by temperature.  
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Let us assume that, similarly to rubber, the amorphous matrix of wood cell walls 
exhibits an entropic elasticity (Ferry 1980) whose effect can empirically be seen as a slight 
temperature dependency of the compliance J, denoted here as J-T effect. Suppose that λ(T) is 
a multiplicative factor accounting for this effect: 

).;/()();( 0TatJTTtJ T⋅= λ               (Eq.  B-10)   

Such a temperature dependency of J will induce a homothetic transformation of creep 
curves in the ACP that could explain observed discontinuities between individual creep 
curves.  
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Figure  B-21: (a) Temperature dependency of time shift factors issued from different optimisations and adequacy 
of an Arrhenius law (regression line). J-T effect: Experimental data corrected by the softening factor λ. Power 
law: Adjusted values of time shifts and softening factor based on Eqs. B-12-B-14. (b) Temperature dependency 
of the softening factor λ(T) (Oa2  specimen). The legend is the same as for Figure 5. 
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Figure  B-22: Smoothed experimental data for the Oa2  specimen plotted in the approximated complex plane (ACP) for different creep temperatures J’ and J”: Alfrey’s 
approximations of storage and loss compliance respectively (Eqs. 1 and 2). 
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Figure  B-23: ACP of  

Figure  B-22 corrected by the softening factor λ. J0: initial compliance, k: power exponent. J’ and J”: Alfrey’s approximations of storage and loss compliance respectively (Eqs. 
1 and 2).  
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Based on the assumption of the J-T effect, a two-steps procedure was applied on the 
experimental data. First, the temperature effect on the compliance was removed by 
performing a homothetic transformation of creep curves in the ACP. Multiplicative factors 
λ(T) were adjusted in order to obtain a continuous curve, taking the test performed at 30°C as 
a reference. The resulting curve in the transformed ACP (i.e., J” /λ versus J’/λ) was 
approximated by a polynomial of the second degree to allow for variations in the slope; 
however, a linear approximation was sufficient (Figure  B-23). λ(T) factors used for the 
correction were plotted with respect to temperature increase (Figure  B-21b). An increase of 
temperature resulted in values of λ(T) bigger than 1, meaning some kind of material softening. 
The relationship between both parameters in Figure  B-21b was essentially linear, however 
polynomial of second degree was necessary for some specimens and finally used for all the 
specimens. 

Once the condition of continuity between curves in the ACP has been satisfied, we 
apply the time-temperature equivalency. Data corrected for the J-T effect (J/λ) were used to 
construct the master curve. Plot of log time-shifts versus 1/T has showed again agreement 
with Arrhenius law to model thermal activation of green wood after correction (Figure  B-21a). 
However, the slope of the regression line, proportional to the activation energy (denoted WJ-T+ 
in Table  B-4), was very different: omitting effect of the temperature on the compliance 
resulted in larger apparent time-temperature shift factors giving different kinetics of the creep 
response. Similar observation was made on polymethylmethacrylat (PMMA) by McCrum and 
Morris (1964) who stated temperature dependency of limiting modulus, analogous to our J0 

temperature dependency. Moreover, accounting for the J-T effect yields perfectly smooth 
master curve (Figure  B-24). Thus, the assumption of temperature dependent compliance has 
been included in the rheological model. 

3.3.c Identification of the rheological model 

Based on the graphical representation of experimental data in the transformed ACP, 
close to a straight line, a “parabolic Maxwell” model (Huet 1988) was used to describe green 
wood creep as it was the case for physical aging. The behaviour of such an element is 
governed by a power law that can be written as: 
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where J(t;T) is the creep compliance, λ the multiplicative factor accounting for thermal 
softening of the compliance, J0 the initial compliance, τ the doubling time and k the kinetic 
parameter (Figure  B-23).  

We used the same k for all the creep tests of a given specimen. This implies that the 
straight lines corresponding to individual tests in the ACP have the same slope. It can be seen 
from Figure  B-23 that this assumption is rather well satisfied. On the contrary, parameters λ 
and τ are dependent on the temperature. The softening factor dependency on temperature is 
empirically modelled by a polynomial of the second degree (Figure  B-21b) and evolution of τ  
is governed by the same Arrhenius law as Eq. B-9: 

2
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where T is temperature, T0 the reference temperature and τ0 the doubling time at T0 
with aT = τ/τ0. The model parameters (Eqs. B-11 - B-13) are directly identified on raw creep 
tests curves ( 

Figure  B-22) and given in Table  B-4. 
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Figure  B-24: (a) Master curves for the Oa2 specimen corresponding to different assumptions. Raw data: 
experimental data from Figure  B-20 shifted along the log time axis. J-T effect: Experimental data corrected by 
softening factor λ. Power law: Modelled values based on Eqs. B-11 - B-13 accounting for the time-temperature 
dependency and softening factor λ. (b) Agreement between experimental data for the Oa2 specimen (markers) 
and the power law model (lines): power law J-T effect and Arrhenius law (Eqs. B-11 - B-13).  

3.3.d Variation of model parameters issued from different fitting methods 

For some specimens the time-temperature shift factor for creep test performed at 70°C 
was not consistent with the Arrhenius law. This was ascribed to the vicinity of glass transition 
temperature for lignin (Salmén 1984) and corresponding creep curves were not used for 
further analysis. Also for specimens used during preliminary tests at many temperatures (see 
column “Extra T” in Table  B-4 for details), only those done at “standard” temperatures (30-
40-50-60°C) were used to enable comparison between specimens. However, note that 
including these data yields a negligible effect on the tuned parameter values for the 
rheological model. This confirmed the robustness of the proposed model.  

 

 

 

 

 

 

 

 

 

 

Table  B-4:  Summary table of rheological parameters assuming different hypothesis 
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J 0  (GPa -

1 )

k a 1 λ        

(·10-5)

a 2 λ        

(·10-3)

λ 60 logτ 0 

(s)

W  

kJ·mol-1
rms error 

(%)

La 480 311 0.044 0.12 4.94 -0.14 1.04 15.5 322 0.09 55-65-70
Oa1 763 391 0.058 0.16 1.57 1.89 1.07 14.6 288 0.11 45
Oa2 487 237 0.055 0.18 5.15 1.05 1.08 12.1 228 0.07 70
Dg 628 355 0.053 0.07 0.48 0.97 1.03 23.0 367 0.07
Lp1 561 254 0.064 0.13 3.80 0.85 1.06 14.8 275 0.07 55-70
Lp2 623 419 0.062 0.13 6.97 -0.51 1.05 16.3 385 0.14 70
Lp3 501 315 0.065 0.15 7.08 -0.18 1.06 13.7 335 0.21
Lp4 513 327 0.051 0.11 7.32 -0.70 1.04 17.1 305 0.11
Vm1 558 265 0.113 0.05 2.92 0.65 1.05 25.2 315 0.05
Vm2 486 69 0.099 0.07 4.66 1.79 1.10 17.6 62 0.06

ave 568 319 0.066 0.12 4.49 0.57 1.05 17.00 313
std 91 62 0.022 0.04 2.34 0.92 0.02 4.11 48
std% 16% 19% 33% 36% 52% 162% 2% 24% 15%

Power law model parameters 
Speci
men

W0   

kJ·mol-1
WJ-T+   

kJ·mol-1
Extra T

 

Legend: W0: activation energy deduced from horizontal shifts of raw experimental data. WJ-T+: activation energy 
deduced from horizontal shifts of experimental data corrected by softening factor λ. Parameters of the power law 
(Eq. B-11): J0: initial compliance, k: power parameter, a1λ; a2λ: parameters of the polynomial temperature 
dependency of the softening factor λ (Eq. B-12), λ60: softening factor for 60°C expressing the amplitude of the 
temperature effect on the compliance, W: activation energy, rms error: root mean square error between modelled 
and measured compliance values. Extra T: temperatures tested above the standard temperatures. 

Table  B-4 summarises the rheological parameters obtained by different methods 
developed before. W0 is the activation energy derived from time shift factors used for the 
construction of the master curve from raw experimental data (only t-T effect). The second 
value of activation energy, WJ-T+, is obtained from the data corrected by the softening factor λ. 
The third set of data represents parameters of the rheological model governed by a power law 
with polynomial temperature dependency of the softening factor λ and Arrhenius law 
accounting for the time-temperature equivalency (Eqs. B-11 - B-13). Softening factor, λ60, 
gives the magnitude of the temperature effect on the compliance at 60°C for comparison. 
Finally, the relevance of the model is assessed through the root mean square error (rms error) 
between modelled and measured compliance values.  

The activation energy describes the magnitude of time-stretching effect of the 
temperature; higher values correspond to stronger temperature effect. From the comparison 
between W0 and WJ-T+ presented in Table  B-4 we can see that including the J-T effect has 
reduced the apparent time-temperature effect. Consequently, corresponding master curves 
have different kinetics as illustrated in Figure  B-24. Except for one specimen (Vm2), values of 
activation energy are similar for all the specimens, the average being of 545kJ/mol for W0 and 
319kJ/mol for W. Comparing with bibliographic data deduced from the tanδ peak dependency 
on frequency, not affected by the presumed temperature effect on the compliance (tanδ = 
J”/J’), the assumption of thermal softening seems to give more consistent values of the 
activation energy (395kJ/mol for Salmén; 339kJ/mol for Kelley). 

For the Vm2 specimen, the raw value of the activation energy is consistent with others 
(W0 = 486kJ/mol) if we do not take into consideration the transgression of the time-
temperature equivalency, i.e., discontinuity between creep curves observed in the ACP. 
However, once the J-T effect is considered to allow us to use of the time-temperature 
equivalency, very poor thermal activation is observed (WJ-T+ = 66kJ/mol). Conversely, 
temperature effect on the compliance is larger than in other specimens (λ60 = 1.1 against the 
average of 1.05). 
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The rheological model showed a very good agreement with experimental values for all 
specimens as illustrated in Figure  B-24b (see rms in Table  B-4) in spite of contrasted values 
of J0 resulting from the structural diversity of studied sample. Activation energy values are 
very close to WJ-T+ and rather consistent between specimens (i.e., standard deviation as low as 
15%). This is quite interesting as it gives some idea on the physical meaning of this factor: it 
should not be much affected by structural parameters but rather by the chemistry. On the other 
hand, the variability of the kinetic parameter k and doubling times τ0, likely related to the 
structural diversity, was significant between specimens (around 30%).  

Investigating the relationships between model parameters and structural properties, we 
can notice strong dependency of the power coefficient k and doubling time τ0 on the wood 
basic density (Figure  B-25). This correlation is positive in the case of the power coefficient 
and negative for the doubling time. At the same time, both parameters are significantly 
correlated one to another (Figure  B-26a). This means that probably only one of mentioned 
correlations on basic density has some physical meaning. While a slight dependency of the 
softening coefficient at 60°C on the microfibril angle was observed (Figure  B-26b), no 
significant dependency of kinetic parameters on microfibril angle has been noted. This opens 
perspectives on future work relying on the understanding of the physical meaning of the 
model parameters. Relation between the creep and structural parameters will be investigated 
further in § 4.3. 
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Figure  B-25: (a) Relationship between the power coefficient and basic density. (b) Relationship between the log 
of doubling time τ0 and basic density.   
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Figure  B-26: (a) Relationship between the power coefficient and the log of doubling time τ0. (b) Relationship 
between the softening parameter λ60 and microfibril angle. 

3.3.e  Simplified predictions of the long-term creep based on reduced number of creep   
tests 

As the characterisation of long-term creep behaviour is a time-consuming procedure, 
we wanted to see if some simplification of the experimental schedule was possible. The 
master curve obtained by horizontal shifting of the experimental data previously corrected by 
the softening factor (J-T effect, denoted further only master curve) was used as a reference. 
First tested hypothesis was to use only the creep test performed at 30°C. Figure  B-27a shows 
the relationship between the creep observed after 8h and that predicted by the master curve at 
the end of 30 years. Excepting V. michelii specimens, there is a good relationship between 
both parameters. However if V. michelii specimens are considered, the correlation coefficient 
is markedly decreased (R2 = 0.32). 

Hence, we have tried to fit the parameters of the power law on the creep curve 
measured at 30°C and extrapolate the obtained curve into the desired period of preditction 
fixed to 30years.  Figure  B-27b shows an example of such an extrapolation obtained for Oa2 
specimen and compared to the master curve. For comparison, curve corresponding to the 
power law whose parameters were fitted on creep curves measured at four different 
temperatures (denoted as Power law) was also represented. Extrapolation of the creep curve 
measured at 30°C derives rapidly from the master curve yielding an average error of about 
5.6 % (STD 29.3%) at the end of 30 years. Correspondence between this simplified prediction 
of the relative creep compliance and the master curve is not so bad (Figure  B-28a). 
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Figure  B-27: (a) Relationship between the creep measured at the end of 8h and its prediction at the end of 30yrs. 
(b) Extrapolation of the creep curve measured at 30°C and compared to the master curve (MC) generated by 
horizontal shifting in the compliance – log time plots of the data previously corrected by softening factor λ  and 
power law fitted on four temperature steps (power law). Dashed line represents the end of the test at 30°C. 
Specimen: Oa2. 

A second approach was to take the creep curve measured at 50°C, using the mean 
values of activation energy and softening parameter λ at 50°C. The creep kinetics was 
expected to be better represented by the test at increased temperature. The obtained prediction 
is displayed in Figure  B-28b. No significant improvement can be noticed. If the creep kinetic 
is slightly closer to that predicted by the complete power law, we add incertitude about the 
initial compliance because of the average values of activation energy and softening parameter. 
This method is even less suitable that simple extrapolation of the creep test performed at 30°C. 
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Figure  B-28: (a) Correspondence between the creep prediction at the end of 30yrs period obtained by 
extrapolation of the power law fitted on creep data measured at 30°C and creep predicted by non parametric 
master curve. (b) Prediction of a long-term creep based on the creep test performed at 50°C. Specimen: Oa2. 

Finally, we decided to base our prediction on two creep tests: one performed at 30°C 
and a second one at 50°C. In this way, values of activation energy and softening parameter 
can be obtained for each specimen. In the first simulation, only the activation energy was 
fitted and the mean value of λ50 was used. This result did not bring much improvement 
comparing to the prediction based only on the creep curve measured at 30°C (Figure  B-29a). 
However, once the value of λ50 was adjusted, the simplified prediction became very close to 
the power law fitted on four temperature steps (Figure  B-29b).  

Correspondence between values of the relative compliance obtained from the master 
curve and that on predicted from two creep tests during a 30 years period is shown in Figure 
 B-30b. Definitely we can say that under assumption that the proposed rheological model is 
valid, two creep tests performed at 30° and 50°C are sufficient to correctly predict the creep 
behaviour in the experimental window of 30 years. From the practical point of view, it allows 
to divide the needed experimental time by two. Average error of this simplified prediction 
relative to the power law is of 10.3% (STD = 8.6 %). Comparing to the master curve, the error 
of the prediction at the end of thirty years is of 13.3% (STD = 12.9%). Both V. michelii 
specimens are included in these considerations. 

0.00

0.25

0 10LOG TIME (s)

R
E

LA
T

IV
E

 C
R

E
E

P
 

30°C 30°C+50°C; lambda =1

 

0.00

0.25

0 10LOG TIME (s)

R
E

LA
T

IV
E

 C
R

E
E

P
 

MC Power law 30°C+50°C

 



 114 

Figure  B-29: Prediction of long-term creep based on creep tests performed at 30°C and 50°C. (a) Softening 
parameter λ is not considered. (b) Softening parameter is adjusted on experimental data. Specimen: Oa2. Legend 
of series symbols is common for both figures. 
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Figure  B-30: Correspondence between the relative compliance at the end of 30 yrs given by the master curve 
and predicted using two creep tests performed at 30°C and 50°C. 

3.4 Conclusion 

Our work shows that time-temperature equivalency can be applied on green wood only 
if an additional temperature effect on the compliance, similar to entropic elasticity in rubber, 
is considered. It could be seen as some kind of material softening when the temperature 
increases. This means that temperature affects not only the kinetics but also the intensity of 
viscoelastic processes. Moreover, a rheological model governed by a power law accounting 
for this effect has shown its relevance to describe the delayed behaviour of a contrasted 
selection of tropical species. However, the meaning of this entropic elasticity and the way to 
model it in wood must be investigated deeper and questions have to be solved about the link 
between the model parameters and the structural features of wood material. First observations 
have outlined a poor relationship between the softening coefficient and microfibril angle. On 
the other hand, both kinetic parameters (k and τ0) were strongly related to basic density and 
also correlated between them. Aiming to simplify the experimental procedure, predictions of 
the creep behaviour in the experimental window of 30 years based on one or two creep tests 
were assessed. If one creep test performed at 30°C or 50°C has not given satisfying results, 
two creep tests (30° + 50°C) were sufficient to predict accurately the creep behaviour in a 
given experimental window. 



 115 

4) Relationship between structural parameters, vibr ation properties and 
creep properties 

In this section, relations between creep data, vibration properties and structural 
parameters are investigated. Creep data of all specimens tested at 30°C are used. It includes 
specimens used for preliminary tests and specimens for which some measurement problem 
appeared during creep tests at higher temperatures. Measured parameters are summarised in 
Table  B-5. There are mechanical properties from creep and vibration measurements along 
with basic density, microfibril angle and percentage of anatomical elements when these are 
available.  

Specimen names are built as the initial of specie’s name followed by a letter 
specifying the growing situation of a tree (S for straight growing tree, T for tilted tree), the 
tree number, a letter specifying the tree side and the number of the specimen. The tree side 
may indicate a possible difference between tension and opposite wood. However, as the 
occurrence of different wood tissues has been partially lost during the transport of logs 
(details in A- 2.3), we did not want to denote specimens as tension wood as this one is not 
certain. Minimal and maximal values are also represented to illustrate the range of variability 
of the studied parameters. Altogether, 24 specimens from six different species were tested. 

Table  B-5: Summary table of mechanical properties and structural parameters of all specimens tested in creep at 
30°C 

Specimen Static 
modulus 
(GPa)

Rel. 
creep 
(8h)

Dynamic 
modulus 
(GPa)

Basic 
density

Specific 
modulus

Damping 
coefficient

MFA Fibres 
(%)

Rad. par. 
(%)

Ax. par. 
(%)

Dg_S1_a1 18.7 5.2 18.7 0.51 36.5 5.85E-03 7.9 59.6 11.6 26.5
Dg_S1_a2 17.7 2.0 18.7 0.53 35.1 5.24E-03 7.4
Eg_S1_a1 23.6 8.5 22.6 0.72 31.6 6.18E-03 8.2 66.7 21.9 7.5
Eg_S1_b1 14.1 11.5 13.6 0.52 26.1 8.95E-03 63.1 21.5 11.0
La_T1_a1 28.4 1.9 27.6 0.82 33.8 8.40E-03 9.1 74.4 16.4 2.5
La_T1_a2 27.2 2.1 27.3 0.78 34.8 5.76E-03 10.2 72.7 14.9 8.0
La_T1_a3 25.7 4.3 26.2 0.77 34.1 6.46E-03 9.4 50.2 23.0 18.2
La_T1_b1 26.4 3.9 25.2 0.82 30.9 5.99E-03 8.7 75.0 19.0 0.0
La_T1_b2 23.8 3.1 23.5 0.74 31.7 7.28E-03 10.2 72.4 17.3 4.7
La_T1_b3 25.5 2.5 25.5 0.80 31.8 9.18E-03 9.8 73.7 12.9 6.7
Lp_S1_a1 15.7 2.7 15.1 0.68 22.2 7.70E-03 19.8 64.8 17.9 13.4
Lp_S1_b1 15.9 2.5 15.4 0.68 22.8 7.56E-03 12.0 66.0 17.8 12.7
Lp_S1_b2 13.6 3.7 13.3 0.68 19.6 1.00E-02 9.0 66.0 17.0 14.2
Lp_S2_a1 23.2 1.6 23.1 0.78 29.7 1.01E-02 8.7 70.5 11.5 15.0
Lp_S2_b1 19.4 2.8 19.0 0.75 25.4 8.96E-03 11.7 66.5 15.0 15.1
Oa_T1_a1 18.8 4.4 17.9 0.83 21.5 7.89E-03 13.6 62.0 18.8 14.5
Oa_T1_a2 19.0 3.4 18.5 0.84 22.1 8.01E-03 14.1 71.8 14.1 11.3
Oa_T1_a3 20.6 5.1 19.8 0.91 21.9 6.94E-03 12.9 70.2 14.7 11.8
Oa_T1_a4 19.5 1.9 18.5 0.86 21.5 7.34E-03 14.3
Oa_T1_b1 21.9 5.2 21.4 0.77 27.7 7.53E-03 12.2 76.8 11.9 8.4
Vm_S1_a1 11.1 18.9 12.3 0.38 32.2 7.25E-03 11.8 67.9 27.6 0.0
Vm_S1_a2 10.7 15.6 11.4 0.45 25.5 6.93E-03 13.0 68.5 26.6 0.0
Vm_S1_b1 14.3 22.3 16.4 0.41 40.1 6.60E-03 12.0 70.0 23.8 0.0
Vm_T1_a1 8.5 10.2 8.2 0.37 22.0 1.01E-02 17.4 58.1 37.3 0.0
Vm_T1_b1 8.6 3.1 8.4 0.43 19.4 1.18E-02 20.5 54.8 38.9 0.0
Vm_T1_b2 9.4 4.8 9.1 0.45 20.1 1.04E-02 21.4 55.4 37.6 0.0

min 8.5 1.6 8.2 0.37 19.4 5.24E-03 7.4 50.2 11.5 0.0
max 28.4 22.3 27.6 0.91 40.1 1.18E-02 21.4 76.8 38.9 26.5  

Legend: All mechanical properties are measured in green state. Rel. creep is the relative creep at the end of 8h 
lasting creep test performed at 30°C expressed in %. Specific modulus is calculated from dynamic modulus and 
basic density. MFA: microfibril angle. Rad. par.: percentage of radial parenchyma; Ax. par.: percentage of axial 
parenchyma. 
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4.1 Relation between creep and vibration data 

Let us first assess relations between creep data and vibration measurements. 
Correspondence between Young’s modulus measured by the vibration method and Young’s 
modulus estimated from creep strain at 4s after the loading is represented in Figure  B-31. We 
can observe a significant relationship between both measurements. The slope of the 
regression line is close to unity. Relation between the amount of relative creep at the end of 
8h lasting creep test and damping coefficient is displayed in Figure  B-31b. No dependency 
can be noted between both parameters. 
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Figure  B-31: Relationships between dynamic and static measurements. (a) Correspondence between Young’s 
modulus measured by vibration method and Young’s modulus estimated from the creep measurements. Red line 
represents the relation y = x. (b) Relationship between relative creep at the end of 8h and damping coefficient. 

In conclusion we can say that elastic parameters obtained by static and vibration 
methods exhibit a strong linear dependency while the viscous parameters seem not to be 
related. This could be due to different observation time scales corresponding to both tests. The 
frequency of damping measurement ranges from 300 to 600 Hz whereas during the creep 
measurement the loading is quasi static. Wood is expected to exhibit several transitions 
depending on the frequency and/or temperature of investigation (for details see 0- 3.5.c). 
Hence it is possible that the mechanism involved during the vibration measurement is 
different from the mechanism involved during the creep measurement.  

ACP including vibration data 

Let as now assume that the same mechanism is involved during dynamic and static 
measurements. Also the point obtained by vibration method should be positioned in ACP plot 
in the extrapolation of the curve representing the mechanism involved during the creep tests. 
As we have at our disposal estimates of damping coefficient measured by vibration method, 
we can easily obtain imaginary part of the complex compliance as follows: 

J′ ≈ 1/E,                 Eq.  B-14 

J" = tanδ/E,                                 Eq.  B-15 

where tanδ is the damping coefficient and E the Young’s modulus measured by vibration 
method. An example of ACP plot containing both static and dynamic measurements is shown 
in Figure  B-32. Creep data displayed correspond to data after correction by softening factor λ 
(for details see § 3.2.b). Creep curves form one single straight segment, a representation 
characteristic for a parabolic Maxwell model. If the same mechanism was involved during 
both tests, the point corresponding to vibration test should be positioned in the extrapolation 
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of the straight segment formed by creep curves. We can see that the point corresponding to 
the vibration measurement is positioned roughly in a good place but shifted to the left and its 
imaginary compliance is higher than expected if the same mechanism was involved. This 
indicates the possibility of two different mechanisms governing the viscoelastic behaviour at 
the acoustic time scale and quasi-static scale. The interpretation was not so straightforward for 
all specimens. In four cases, the point corresponding to the vibration measurement was shifted 
to the right side relative to the creep test performed at 30°C. This can be partly explained by 
the uncertainty of the compliance estimation that is represented for both measurements by the 
error bars (1.76% for the creep and 0.66% for the vibration measurements). The uncertainty of 
the imaginary compliance estimation (2.96 + 0.66%, for details see A-3.2.b) is also plotted 
but so small that it is not visible. Another parameter affecting the comparison of creep and 
vibration results is that the creep measurement is local contrary to the vibration one. However, 
the imaginary part of the compliance was higher for all tested specimens supporting the idea 
about two different mechanisms. ACPs for all specimens containing also the vibration 
measurement are in the Appendix. 
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Figure  B-32: Transformed ACP plot including the point corresponding to the vibration measurement. Dashed 
line represents presumed second rheological mechanism expressed during dynamic loading. Specimen: Oa2. 

4.2 Variability of the creep response 

Figure  B-33 shows creep curves of all 26 specimens tested at 30°C. For most of them 
the amount of relative creep at the end of 8h is lower than 5%. However some particular 
behaviour is observed for some specimens reaching an amount of relative creep higher than 
10%. Only two species exhibit this behaviour: E. grandiflora and V. michelii. Two of V. 
michelii specimens, however, have very similar behaviour comparing to other species. Note 
that it was the same species that exhibited a different thermal activation as detailed in § 3.3.d. 
The absence of thermal activation was also observed for E. grandiflora specimens (not 
presented). 
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Figure  B-33: Creep curves corresponding to all specimens tested at 30°C. 

In the following chapter we will see, if the particular behaviour observed for some of 
specimens can be explained by their structure.  

4.3 Structural determinants of viscoelastic behaviour 

Structural parameters that we have at our disposal are the following: basic density, 
microfibril angle and percentage of different anatomical elements. In chapters A- 6.3 and A-
 6.5, relations between vibration measurements and structural parameters have been discussed. 
Young’s modulus was strongly related to the basic density as expected for a cellular solid and 
specific modulus was correlated with MFA. Previously reported empiric relation between 
damping coefficient and specific modulus was confirmed. On the other hand, damping 
coefficient was no related to MFA which was unexpected and no significant correlation was 
observed between vibration properties and percentage of different wood elements. 

Table  B-6 summarises correlation coefficients between the creep measurements and 
other parameters. Strong correlations are observed for elastic modulus while relative creep is 
not correlated with other parameters. The only parameter that seems to be correlated with the 
relative creep is the basic density. However, if we plot the values of relative creep in respect 
with basic density, we can note the correlation is due in particular to the presence of 
V. michelii specimens. On the other hand, no specimen with high basic density exhibits high 
relative creep. 

Table  B-6: Matrix of correlation coefficients relating mechanical properties obtained from creep tests and other 
parameters. 
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n = 26 Static 
modulus 
(GPa)

Rel. creep 
(8h)

Static modulus 1
Rel. creep (8h) -0.48 1
Dynamic modulus 0.99 -0.41
Basic density 0.80 -0.65
Specific modulus 0.50 0.27
Damping coefficient -0.45 -0.15
MFA -0.66 0.05
Fibres (%) 0.51 -0.03
Rad. par. (%) -0.71 0.39
Ax. par. (%) 0.29 -0.43  
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Figure  B-34: Relationship between the amount of relative creep (%) and basic density. 

According to some previous reports (El-Osta and Wellwood 1972; Kojima and 
Yamamoto 2004), the amount of tensile creep is expected to be positively correlated to the 
microfibril angle. On our sample, no correlation was observed (Figure  B-35). This is probably 
due to the high diversity of our sample. Previous reports are characterised by a small number 
of species (3 for El-osta et al. and 1 for Kojima et al.). Further, they focused on softwoods 
with occurrence of compression wood. Thus implies great variation in MFA while other 
parameters as density vary less comparing to our sample. However, parallel to change in 
MFA compression wood is also characterised by increased lignin content that will affect the 
creep behaviour and that is not quantified in these studies. Another important difference is the 
regularity of the anatomical structure of softwoods comparing to hardwoods, in particular the 
tropical hardwoods. All these parameters can reduce the impact of MFA on the creep 
behaviour of our sample.  
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Figure  B-35: Relation between relative creep and microfibril angle. Regression lines represent intraspecific 
correlations for Oa and Vm specimens. 

While investigating intraspecific relationships between relative creep and microfibril 
angle, significant correlations can be often observed. However, these relationships are not 
always positive as shown in Figure  B-35 and which was unexpected. This indicates that 
microfibril angle is probably linked to other parameters as for example chemical composition. 
However, we can not detail intraspecific relationships in the present study because of a 
reduced number of specimens by species that we have at our disposal. 
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4.4 Conclusion 

Considering the absence of correlation between vibration data and creep data, it seems 
to be difficult to predict the long-term behaviour based on vibration measurements. The main 
difference between both viscoelastic parameters is the scale of the observation time. Thus, we 
have suggested that mechanism involved during vibration measurement is not the same as the 
rheological mechanism that determines the creep behaviour.  

Investigating the variability of the creep response, we have seen that some of V. 
michelii and E. grandiflora specimens exhibited high amount of relative creep compared to 
other specimens. However, assessment of relationships between creep data and structural 
parameters has not brought any satisfying key to explain the observed variability. The effect 
of microfibril angle, reported in some previous studies as determinant for the creep behaviour, 
was not related to the relative creep in our sample. On the other hand, some significant 
intraspecific relationships were observed indicating that microfibril angle can be a good 
intraspecific indicator of the creep behaviour. However, because of the reduced number of 
tested specimens by species we could not progress in the intraspecific analysis. Studied 
parameters are not sufficient to explain the interspecific variability of the creep response 
indicating that creep response is dependent on many parameters. 
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5) Conclusion 

The present chapter dealt with the creep behaviour of green wood in longitudinal 
direction. The aim was to investigate the possibility of the long-term prediction of the creep 
properties and explore its variability. During the set up of the experimental procedure, 
physical aging phenomenon typical of semi-crystalline polymers was evidenced in green 
wood from three tropical species. The assumption of uniform aging rate was verified by the 
construction of master curves from series of tensile creep tests in the fibre direction, 
performed at increasing time elapsed after a quench following heating above the glassy 
transition. The rheological response during periods of creep small enough to neglect the 
progress of aging was described by a parabolic Maxwell model, where only the characteristic 
time depends on the aging time. The model was able to describe results obtained by a 
previous author on softwood loaded transversally to the fibres. The possible role of a transient 
adsorption process consecutive to the quench was discussed.  

Based on the results of aging study, continuous experimental procedure without any 
cooling period was suggested to test the validity of time-temperature equivalency principle. 
This principle is often used for long-term predictions of creep behaviour from short-term 
creep tests. The time scale considered in this study is the duration of a tree life. Aiming to 
predict the long-term behaviour of green wood, viscoelastic properties along fibres were 
investigated through a sequence of creep tests in the temperature range 30°- 70°C. The 
apparent validity of time-temperature equivalency was questioned by discrepancies evidenced 
in the approximated complex plane. This paradox was solved by assuming that the 
temperature not only accelerates the viscoelastic processes but also slightly increases their 
intensity. This softening effect of the temperature on the compliance, similar to rubber 
elasticity in amorphous polymers, was described by a 2nd degree polynomial. Time-
temperature dependency fitted very well to the Arrhenius law up to 60°C. Based on the 
approximated complex plane, the power law was proposed for modelling creep behaviour in 
green wood. The method was successfully used for all specimens investigated. It is interesting 
to note that constitutive law used for the description of both, aging process and thermally 
activated creep, was the same. Simplified experimental procedure based on two creep tests 
instead of four was revealed as sufficient to obtain accurate prediction of the long-term creep. 

On the other hand, very poor correlations were observed between vibration 
measurements and creep data. Wood is a complex polymer exhibiting multi transition 
behaviour. Thus, the mechanism governing the viscoelastic behaviour during vibrations at 
high frequencies is likely different from the mechanism prevailing during the creep tests. 
Investigating the variability of the creep response at the end of 8h lasting creep test at 30°C, 
we can clearly distinguish particular behaviour of some specimens exhibiting high amount of 
relative creep. Investigation of relationships between the creep data and structural parameters 
has not brought a satisfying answer to explain this variability. Even if some significant 
intraspecific relations were observed, we could not go further in the analysis because of the 
reduced number of specimens by species. If the rheological models used to describe creep 
behaviour seem to be valid despite the diversity of our sample, explaining the remaining 
variability based on structural parameters is not straightforward. 
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C) CONCLUSIONS AND PERSPECTIVES  

1) Methodological advances 

1.1 Storage of green specimens 

While working on plant or other biological material, it is important to protect it against 
biological and physical degradations. The safest way is to perform the tests immediately after 
collection of plant material, i.e., in the forest, but this involves the use of simple testing 
equipment able to work in such conditions, in general less precise, and it is possible only if 
the test is not too long. Thus, experimenter has often to compromise between measurements 
accuracy and storage time of the specimens that may lead to their degradation. For some tests 
as for example long-term creep it is not possible to work outside of the laboratory and so it is 
essential to know how long-term storage affects mechanical properties of the material. 

The purpose of the study on storage conditions was to investigate the effect of applied 
storage procedure on mechanical properties of wood. Viscoelastic properties in the 
longitudinal direction of green specimens were compared with those of specimens in 
rehydrated state after storage in different conditions. First, long-term storage in water at low 
temperatures (T = 4±0.1°C) was investigated. Vibration measurements were performed after 
3, 8 and 12 months of storage. A very slight decrease was observed for both elastic modulus 
(-3.4%) and damping coefficient (-0.7%) after storage period of 12 months. Furthermore, the 
effect of 40 day soaking in 40% ethanol on vibration properties of saturated wood was 
investigated. Ethanol has not affected elastic modulus but has slightly increased the damping 
coefficient (6.2%). This effect was strictly proportional and considering the slight weight 
decrease of the specimens, it was attributed to residual ethanol content. 

The effect of air drying (followed by a rewetting of the specimen) on elastic modulus 
and damping coefficient was also investigated. A slight decrease was observed for the elastic 
modulus (-5.8%) whereas the damping coefficient showed a significant increase (+15.9%). 
Agreement between values measured in green state and after rewetting is very good for the 
elastic modulus. By contrast, uncertainty of the green values estimated from the rehydrated 
ones is high for the damping coefficient (20%). Effect of air drying was linear for elastic 
modulus but non-linear for damping coefficient. Specimens with high damping coefficient 
were more affected by air drying than specimens with low damping coefficient.  

  Definitely, storage in water at low temperatures can be advised as the most 
appropriate way to preserve vibration properties of wood specimens in the green state. Effect 
of ethanol on vibration properties seems to be only transient but its use is questionable 
because of processes that may be involved in the transient state (Chang et al. 2008). Air 
drying can be used to preserve specimens against biological attacks when only elastic 
properties are required but is not appropriate for viscoelastic studies. 

1.2 Correction of the creep signal obtained during tests at elevated temperature and 
suggested experimental procedure  

During the creep tests performed at elevated temperature, the recovery of residual 
locked-in strains overlaps with the creep due to loading. Recovery of residual strains results in 
progressive shortening of the specimen in the longitudinal direction. Thus, the produced strain 
is of opposite sign compared to the creep strain. Addition of both signals may lead to an 
apparent stabilisation of the creep process, or worse a reverse process, and consequently 
mislead the choice of a rheological model. Thus, it is essential to separate the creep signal 
from the recovery signal.  
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Our first attempt to solve the overlapping problem was to release all residual strains by 
heating the specimen at 80°C during 30 minutes before the onset of creep tests. However, this 
procedure was inappropriate because the following cooling process was revealed to affect the 
creep properties in the long-term. Physical aging phenomenon was evidenced in green wood 
and results have clearly showed that the new thermodynamic equilibrium state has not been 
reached after several days. Consequently, heating of the specimen before the onset of creep 
tests was not a suitable way to obtain a clean creep signal.  

Thus, a continuous experimental procedure was proposed to study the creep properties 
avoiding any cooling between consecutive tests. Each creep test was performed at a constant 
temperature. Prior to the loading, specimen was stabilised at a given temperature for 15 hours. 
Signal recorded during this period was extrapolated to the following creep test and used for 
the correction of the creep. As the stabilisation period was long enough relatively to the creep 
one, the extrapolation as a function of logarithm of time was reliable. Furthermore, this 
method allowed us to account for the possible time-dependant drift of strain gages that was 
not negligible for some tests performed at higher temperatures. 

1.3 Simplified experimental procedure for satisfactory long-term predictions of the creep 
behaviour 

Based on the graphical representation of the experimental data in the approximated 
complex plane (ACP), we have identified a corresponding rheological model whose 
behaviour was described by a power law. Parameters of the power law were adjusted in order 
to obtain the best fit with experimental data, satisfying at the same time the TTE and J-T 
assumptions (for details see § 2.1). This power law will be further denoted as a complete 
power law because parameters were adjusted on the whole set of creep tests. The next step 
consisted in a search for the minimal number of creep tests needed to obtain a reasonable 
prediction of the long-term creep behaviour.  

The first attempt was to consider the creep test performed at 30°C, fit the model 
parameters in order to obtain a good agreement with the creep curve and extrapolate the 
obtained power law to the prediction period fixed to 30 years. The kinetics of the creep 
behaviour was not well predicted by this extrapolation resulting in a highly variable quality of 
the creep prediction. Uncertainty in the relative creep predicted at the end of a 30-year period 
was of 30% considering the estimates given by the complete power law as a reference. Even 
less satisfying results were obtained from extrapolation of the power law with parameters 
fitted on the creep test performed at 50°C. While the kinetics of the creep process was slightly 
closer to the complete model, additional imprecision arose from an inaccurate estimation of 
the initial compliance. This was a consequence of the use of average values of activation 
energy and softening parameter. 

Contrary to the predictions based on one single creep test, power law fitted on two 
creep tests (30°C and 50°C) has given satisfactory agreement with the complete power law. 
Prediction of the creep kinetics agreed well for all specimens investigated yielding an average 
error of 13.3±12.9% considering the relative creep estimation at the end of 30 years. The use 
of two creep tests for long-term predictions offers the possibility to reduce the time needed for 
experiments by a factor of two. 

2) Interpretation of creep data  

Representation of the experimental data in the approximated complex plane (ACP) is 
useful for two reasons: to assess the validity of the equivalency principle and for the choice of 
a rheological model based on the graphical representation. 
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2.1 Assessment of physical hypothesis using ACP 

Assumption of time-aging time or time-temperature equivalency (TTE) requires that 
once plotted in the ACP, all creep curves measured at different aging times/temperatures form 
one single curve. This is equivalent to say that horizontal shifts in the compliance – log time 
plot are sufficient to obtain a smooth master curve, i.e., temperature or aging time are 
supposed to affect only the characteristic time. Assumed equivalency principle was verified 
for aging whereas for time-temperature, its direct application was questionable. Horizontal 
shifts were systematically observed between individual creep curves measured at different 
temperatures while plotted in the ACP. Thus, additional assumption of the temperature effect 
on the initial compliance (J-T effect) was proposed supposing that temperature not only 
accelerates the creep processes but slightly increases their intensity (cf the so-called entropic 
or rubber elasticity in polymer science). 

2.2 Identification of a parametric rheological model 

Creep curves measured at different aging times overlapped in the ACP in one single 
straight segment. Such a representation corresponds to a Maxwell model consisting of a 
spring assembled in series with a parabolic dashpot. The same type of model was identified 
for the thermally activated creep behaviour indicating that the effect of heating and cooling on 
the viscoelastic behaviour have similar, presumably molecular, origin. Furthermore, the 
model showed to be applicable on a different species and wood types. Viscoelastic properties 
of wood are often described by parabolic Zener model. In the parabolic Zener model, second 
spring is assembled in parallel with the parabolic dashpot. Thus, the creep of such model is 
reversible and solid exhibits a creep limit which is in agreement with the intuitive picture of 
structural limit of the creep in wood. It was thus suggested that identified Maxwell model is 
only the onset of a Zener one.  

3) Structural determinants of viscoelastic properti es  

3.1 Relationships between vibration properties and structural parameters 

Vibration measurements were performed on a large sample of 550 specimens of ten 
tropical species with basic densities ranging from 0.33 to 0.94. Species were selected in 
function of their growth strategy, and exhibited contrasted anatomical structures. Further, 
intraspecific variability of the sample was increased by the use of wood from both, straight 
growing and tilted trees. The main goal for taking a large variability of the sample was to 
assess the general validity of structure/property relations that are often based on mono-
specific studies without consideration of reaction wood. Further, simple model predicting the 
cell wall properties from wood properties and microfibril angle was developed to investigate 
the role of microfibril angle (MFA) often believed to be the main determinant of cell wall 
properties. 

Investigating the structure/property relationships, we have confirmed strong relation 
between the Young’s modulus and basic density despite the high variability of the sample. 
Green density, however, was revealed to be affected by different saturation level of species so 
that its use for prediction of mechanical properties was questionable. Specific modulus was 
related to MFA but this parameter explained only 32% of the specific modulus variability. 
Large scatter of the specific modulus values was observed for low MFAs, probably due to the 
occurrence of tension wood. Damping coefficient has not exhibited a significant correlation 
with MFA which was unexpected. On the other hand, strong correlation was observed with 
the specific modulus. We have thus a sort of paradox: specific modulus is believed to be 
determined by MFA and damping coefficient by the specific modulus but damping coefficient 
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is not related to MFA. It clearly indicates that other parameters than MFA affect the specific 
modulus and damping coefficient.  

The origin of variability of vibration properties was studied by splitting the sample in 
two groups representing the normal wood and tension + opposite wood respectively. 
Properties of tension + opposite wood represented considerably higher variability of vibration 
properties compared to normal wood. Proposed cell wall model fitted reasonably well to the 
normal wood properties but was unable to predict the properties of reaction woods because of 
its variability. Further, variability of properties in function of wood types (normal wood, 
tension wood, opposite wood) was investigated by species. The only systematic effect was 
lower MFA in tension wood compared to opposite wood. Moreover, opposite and tension 
wood exhibited the same damping coefficient despite different specific modulus and which 
was significantly higher than that of normal wood. It was suggested that it might be related to 
their intensive loading history leading to mechanical fatigue and formation of micro-cracks at 
the cell wall level. Micro-cracks would dissipate more energy leading to higher damping 
coefficient. The fact that damping coefficient is the same in tension as well as opposite wood 
would mean that the effect of mechanical fatigue is prevailing. Large scatter could be 
explained by the diversity of mechanical adaptations developed by trees to solve the problem 
of non-verticality of the stem or branch posture. This diversity makes impossible to predict 
vibration properties from MFA without considering the fine structure and chemical 
composition of both, opposite wood and tension wood. It is also interesting to note that 
opposite wood exhibited significantly lower specific modulus along microfibrils compared to 
tension wood and normal wood. This clearly indicates that some other changes have to occur 
likely at the chemical level or in the cell shape and which definitely differentiate opposite 
wood from normal wood. 

3.2 Determinants of the creep behaviour 

First, relation between vibration measurements and creep measurements were 
investigated. While Young’s modulus obtained by static and vibration methods exhibit a 
strong linear relationship whose slope is close to the unity, viscous parameters (damping and 
relative creep at the end of 8h) seem not to be related. It was suggested that independency of 
both viscous parameters comes from different viscoelastic mechanisms involved during both 
measurements. Vibration measurement is performed at resonance frequencies ranging from 
300 to 600 Hz at room temperature. Thus, the mechanism involved could be more affected by 
hemicelluloses. On the other hand, creep tests conducted at room temperature should be 
connected to the lignin behaviour. Based on our observations, it seems that relation between 
both mechanisms is not straightforward.  

While plotting the twenty-six creep curves performed at 30°C in the same graph, we 
can note particular high relative creep for six of them, four V. michelii specimens and two E. 
grandiflora specimens. The others exhibited relative creep lower than 5% at the end of 8h. 
Investigating relations between the relative creep and structural parameters, significant 
relation was observed only with basic density. This observation ties up with observed basic 
density dependency of the kinetic parameter and doubling time of the power law used to 
describe the creep behaviour. However, when plotting the relative creep versus basic density 
we can see that the relation is strongly affected by occurrence of V. michelii samples 
exhibiting low basic density together with high relative creep for some of them. On the other 
hand, no contradictory case i.e. specimen with high density along with high relative creep was 
detected. This effect could be related with the relative contribution of fibres and middle 
lamella to the creep process. However, the relation between basic density and relative creep 
needs further investigations before drawing a conclusion about its relevance. 
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4) Viscoelastic properties of wood at different str uctural scales 

While investigating relationships between structural parameters and viscoelastic 
properties, many questions arose about the structural determinants and the relevant scale level 
for viscoelastic considerations. In the following, a simplified representation of the hierarchical 
structure of wood material is given and the contribution of wood constituents to viscoelastic 
behaviour at different scale levels is discussed. 

4.1 Simplified representation of the hierarchical wood structure 

Hierarchical structure of wood at different scales can be pictures as shown in Figure 
 C-1. At the tissue scale, wood can be represented as a parallel arrangement of vessels, fibres 
and axial parenchyma assembled in series with radial parenchyma. In the previous section we 
have seen that arrangement of anatomical elements has not shown significant correlation with 
vibration and creep properties. Let us so assume that mechanical properties in the longitudinal 
direction are governed mainly by the fibre fraction. Fibre fraction itself can be represented as 
a two-phase composite made up of fibres glued between them by the middle lamella. Middle 
lamella is a purely amorphous layer constituted mainly of lignin (80%), hemicelluloses and 
pectin while fibres contain the totality of crystalline cellulose. Crystalline cellulose is much 
stiffer than matrix components (lignin and hemicelluloses) and is generally assumed to be 
purely elastic.  As a result, the percentage of fibres together with their structure and cell wall 
thickness are the main determinant of elastic properties of wood at the macroscopic scale. 
However, the properties of the amorphous middle lamella and bonds between the middle 
lamella and fibres may strongly affect the viscous behaviour. This could explain why the 
main characteristic parameters for wood stiffness i.e basic density and MFA which are 
directly related to the thickness and structure of the fibre wall, are not sufficient to explain the 
creep behaviour of what can be considered as a composite at the tissue scale.  

Fibre cell walls exhibit themselves a multi-layer composite structure. Because the S2 
layer stands for approximately 80% of the cell wall thickness, it is often assumed to control 
the strength of the entire fibre. Similarly to wood structure at the tissue level, an analogy can 
be drawn between the structure of the S2 layer and that of a unidirectional fibre-reinforced 
composite material, in which the cellulose microfibrils represent the fibre reinforcement and 
amorphous hemicelluloses and lignin represent the composite matrix. At macroscopic scale, 
creep process will have two components: creep in the matrix of fibres and in the middle 
lamella gluing the fibres together. Their relative contribution will depend on many factors 
such as ratio between the fibre and middle lamella stiffness, fibre length and zone of fibres 
overlapping, chemical composition of the middle lamella etc. 
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Figure  C-1: Simplified representation of hierarchical wood structure. V: vessels; AP: axial parenchyma; F: fibres; RP: radial parenchyma; M: middle lamella; L: lumen; S1: 
S1 layer of the cell wall; S2: S2 layer of the cell wall; Mf: microfibrils; Mx: matrix; �: slippage.   
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4.2 Contribution of middle lamella and fibres at macroscopic scale 

Olsson et al. (2007) have investigated the mechanosorptive creep rate in wood fibres 
investigated at constant humidity conditions and under cyclic humidity changes. Creep tests 
were conducted on single spruce fibres. Constant conditions corresponded to 80% relative 
humidity and 30°C leading to a moisture content of about 15.5%. For mechanosorptive creep, 
relative humidity was cycled between 80% and 30%. From plots of relative creep versus 
logarithm of time, they have determined a creep rate equal to 0.17 ± 0.06 %/log t for the tests 
at constant humidity and to 0.28 ± 0.08 %/log t for fibres subjected to humidity cycles. When 
equivalent calculus is applied based on our data, the obtained creep rate would be of 0.9 ± 
0.3 %/log t so nearly five times higher. Difference in moisture content of tested specimens 
can partially explained the observed difference. However, coupling of loading and humidity 
cycles is believed to accelerate the creep phenomenon and so should be at least comparable to 
the creep rate at higher moisture content. Nevertheless the creep rate of solid wood in green 
state remains approximately three times higher than the creep rate of fibres subjected to 
humidity cycles.   A possible explanation of different creep rates observed for wood fibres 
and for solid wood could be the non negligible contribution of the middle lamella to the creep 
process. Similar conclusion have been drawn by Vincent (2006) based on results of thermally 
activated torsion tests performed on green poplar specimens. 

Hunt and Gril (1994) have studied the possible contribution of slippage between fibres 
in the middle lamella in the case of air-dry spruce loaded in tension. The conclusion was that 
there is no doubt that some slippage should occur but the question of its quantitative 
contribution remained open. However, slippage in the middle lamella would be related with 
broken hydrogen bonds and thus probably partly irreversible, whereas during our 
experimentations no permanent deformation was observed. Furthermore, middle lamella is 
designed to ensure the role of a binder between fibres so that one could expect relatively high 
shear resistance. Relative contribution of slippage and viscous flow in the middle lamella will 
depend on many parameters. One of them is the fibre spatial arrangement. Basically, two 
patterns of fibres distribution exist in wood depending on the organisation of the cambium. As 
shown in Figure  C-1, fibres can be organised in horizontal bands (storied cambium) or 
entangled (non-storied cambium). The creep process of the first pattern might be dominated 
by the viscous flow of the bands of middle lamella arranged in series with the fibres while the 
second type with tangled fibres would require important slippage between fibres to reach the 
same level of creep deformation.  

4.3 Processes involved at the tree scale 

Some creep experiments were also made at the tree scale level. Almeras et al. (2002) 
have studied the creep of 1-year old apricot tree branches. Tests were performed during the 
winter period when radial growth is stopped. Rate of decrease in the equivalent Young’s 
modulus, determined from the digitalization of the branch deformation during 32 days, has 
ranged from 3.6 – 5.1 %/log t depending on the variety. This is more than three times higher 
than tensile creep rate measured on small specimens of solid wood in green state. However, in 
the creep process of a branch other parameters are involved. While the upper side of a branch 
is submitted to tensile stress, the lower side is submitted to compressive stress. Behaviour in 
tension and compression are not necessarily identical, in particular in creep tests because the 
linear viscoelasticity limit in compression is significantly lower than in tension (Hunt 1989). 
The level of applied stresses during the tests on the branch was relatively high so that tissues 
situated on the lower side could indeed pass over the linear viscoelasticity limit. One could 
also think about the occurrence of tension wood, probably present in its branches. We have 
some information about the elastic properties of tension and opposite tissues (Coutand et al. 
2004) but not on their creep behaviour. In the present study, we have not quantified the 
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differences of the behaviour of both tissues however our sampling included all types of wood 
tissues (normal, opposite and tension) so that the difference in creep rate is contained in the 
SD of the mean estimation. This is, however, not sufficient to explain the observed difference. 
Moreover, some overestimation of the creep rate at the branch level could arise from the 
calculus of the Young’s modulus including also the bark and pith that can represent a non-
negligible part in the case of 1-year old branch. The reference for relative creep calculations 
might be higher because the creep process takes place in the wood part. 

5) Perspectives  

If some methodological progresses were made concerning the measurements of creep 
using time-temperature equivalency or storage of green specimens without damages, many 
questions remain unanswered. We have succeeded in modelling creep behaviour over several 
decades however a lot of work has to be done to understand the physical significance of the 
model parameters. Furthermore, the effect of temperature on the creep properties was not 
elucidated. Additional assumption of the temperature effect on the initial compliance similar 
to rubber elasticity in amorphous polymers (J-T effect) was suggested to allow the use of 
time-temperature equivalency. However some verifications of this assumption are needed and 
have not been done for the moment. Actually, it is necessary to check if the apparent 
acceleration of creep processes at long time scales resulting from the J-T effect corresponds to 
a reality or not. The verification is easy in principle but requires more time: to conduct a set of 
creep tests at different temperature levels with one additional test and much longer tests at 
intermediate temperature, for example at 45°C. This would allow us to check the validity of 
our prediction for the creep kinetics.  

A lot of questions are still open in the field of understanding of the mechanisms 
involved in creep and physical ageing processes as well as its structural determinants. It 
seems that middle lamella plays an important role in the creep process but we do not know a 
lot about the creep properties of its constituents. Data about the mechanical properties of 
hemicelluloses and lignin are very scarce in the literature. However, if we want to relate the 
behaviour of middle lamella to the behaviour of its constituents, it would be nice to perform 
some experiments at a finer scale such as AFM5 measurements or nanoindentation as well as 
FTIR6 measurements to follow the bonds involved during the creep process. 

Another interesting point is the independence of the creep and vibration viscoelastic 
parameters indicating the possibility of different mechanisms governing the behaviour at 
different observation time scales. To examine in greater detail this hypothesis, we could 
perform the vibration tests at different temperature in order to become closer to the 
observation times of the quasi-static measurements. Progress in the field of the rheological 
modelling is also needed to support this approach. 

 

                                                 
5 Atomic force microscopy 
6 Fourier transform infrared spectroscopy 
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APPENDIX  
Summary of the diversity of vibration properties an d structural parameters by species  

Table  0-1: Summary table of vibration properties and structural parameters by species. 

Species Basic 
density

SD SD % MFA SD SD % E      
(GPa)

SD SD % Espec 
(GPa)

SD SD % Damping SD SD %

Goupia glabra  Aubl. 0.71 0.04 5.4% 8.7 2.5 28.8% 17.9 2.8 15.7% 25.1 3.3 13.3% 1.04% 0.21% 20.2%
Tachigali melinonii  (Harms) Barneby 0.51 0.11 22.0% 11.8 4.7 40.1% 14.4 3.8 26.3% 28.8 5.5 18.9% 1.14% 0.50% 43.9%
Virola michelii  Heckel 0.42 0.09 22.4% 16.1 4.1 25.6% 9.7 2.9 30.3% 23.2 5.3 23.0% 0.98% 0.26% 27.1%
Dicorynia guyanensis  Amsh. 0.58 0.08 13.0% 10.8 3.5 32.3% 14.2 2.4 17.2% 24.2 4.2 17.3% 0.88% 0.27% 31.0%
Eperua grandiflora  (Aubl.) Benth. 0.63 0.04 6.4% 13.9 4.9 35.2% 16.2 2.6 16.0% 25.6 3.4 13.2% 0.90% 0.30% 33.5%
Lecythis persistens  Sagot 0.73 0.11 15.5% 12.2 2.8 22.7% 18.2 4.5 24.8% 25.2 3.0 11.9% 0.85% 0.19% 22.7%
Licania alba  (Bernoulli) Cuatrec. 0.86 0.04 4.1% 7.6 5.0 65.6% 25.1 4.3 17.2% 29.3 3.8 13.1% 0.74% 0.20% 26.7%
Gustavia hexapetala  (Aubl.) J.E. Smith 0.66 0.06 8.9% 13.3 6.5 48.5% 13.4 3.8 28.1% 20.3 4.1 20.2% 1.31% 0.57% 43.7%
Oxandra asbeckii (Pulle) R.E. Fries 0.86 0.05 5.9% 9.6 4.6 47.7% 23.3 4.4 19.1% 27.6 3.2 11.6% 0.63% 0.40% 62.7%
Pogonophora schomburgkiana  Miers ex Benth. 0.81 0.03 3.2% 10.3 1.8 17.2% 22.0 1.6 7.1% 27.2 1.3 4.8% 1.25% 0.20% 15.8%  
Legend: SD: standard deviation; MFA: microfibril angle; E: modulus measured by vibration in the green state; Espec.: specific modulus. 
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Creep curves for physical aging tests by specimen 
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Figure  0-1: Adequacy between experimental and creep curves predicted by fitting 2 method during investigation 
of physical aging phenomena. Individual results by specimen. 
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Figure  0-2: Nakano’s data after correction of the compliance (tests performed on different specimens).  
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Approximated complex plane for individual specimens  tested at different temperature levels including t he vibration measurement  
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Figure  0-3: Approximated complex plane for each specimen.  

 


