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Abstract

Many complex systems in Nature are multifractal, a feature closely

related to scale invariance. Multifractality is ubiquitous and so it

can be found in systems as diverse as marine turbulence, econometric

series, heartbeat dynamics and the solar magnetic field. In recent

years, there has been growing interest in modelling the multifractal

structure in these systems. This has improved our understanding

of certain phenomena and has opened the way for applications such

as reduction of coding redundancy, reconstruction of data gaps and

forecasting of multifractal variables.

Exhaustive multifractal characterization of experimental data is

needed for tuning parameters of the models. The design of appro-

priate algorithms to achieve this purpose remains a major challenge,

since discretization, gaps, noise and long-range correlations require ad-

vanced processing, especially since multifractal signals are not smooth:

due to scale invariance, they are intrinsically uneven and intermittent.

In the present study, we introduce a formalism for multifractal

data based on microcanonical cascades. We show that with appropri-

ate selection of the representation basis, we greatly improve inference

capabilities in a robust fashion. In addition, we show two applications

of microcanonical cascades: first, forecasting of stock market series;

and second, detection of interscale heat transfer in the ocean.
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to Albert, Àlex, Ramon, Juan, Sergio, Marian, Marian [sic], Leon,

Jordi, Sergi, Javier and Luce. Also, from ICM and collaborators, I

thank Emili, Jordi, Vero, Jose, Manel, Marta, Hussein and Veronique.

Working with them in discussions and taking their advice has helped

me a lot during these years. Many office colleagues not mentioned

above also deserve acknowledgement: Ramon, Miquel, Manel, Majo,

Raül, Hicham and Dani, for their good working environment, keeping

company and their help in practical situations.

Support from friends has also been of great importance. I thank all

of them, be they amics, coneguts o saludats, but very especially, Ar-

nau, Miquel, Mart́ı, David, Vı́ctor, Josep, Mendeli, Pau, Toni, Mercè,
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Êַו�על Mִָּאת עלÊַלוּחַ Èתבְהָּ בּוֹא עתַּהָ
Êַעד לעָדַ Nֹאחַרֲו Mֹליְו וּתהְיִ חקֻּהָּ ספֵרֶ

!;Mָעוֹל
“Now therefore go in and write

for them upon box, and note it

diligently in a book, and it shall

be in the latter days for a testi-

mony for ever”

— Book of Isaiah





1. An introduction to multiple scales

When gazing at our environment, we see complex phenomena all

around us: either natural or artificial, ranging from the tiny vacuum

fluctuations and elementary particles to the huge galactic structures.

Nonlinear interactions between elementary constituents make com-

plexity emerge. Since the Dawn of Mankind, description of complex-

ity has been a challenge and a stimulus to human creativity. Poets,

for example, have made the most of it as a source of inspiration.

The role of researchers is to observe and systematically analyze each

delimited phenomenon in order to obtain schematic representations

of them. Such representations are called models – or theories, in a

more general way – and they help us to understand how things work:

they describe their regular behaviour, anticipate changes and even,

in some cases, give us the ability to control those changes and take

advantage of them. When this final stage of research is reached, the

phenomenon is no longer matter for the researcher: it passes to the

domain of technological development.

Human knowledge has traditionally been divided into different

disciplines: chemistry, biology, geology, economy, sociology... and a

long et cætera. In the early stage, these areas were evolving as a whole

combining empirical and theoretical facts with challenges and findings

that allowed progress in them, thus making the borders between them

vague. Later on, these fields became more and more specialized and

from the middle of the nineteenth century there was a clear separation

1



2 Chapter 1. An introduction to multiple scales

(except in special cases) in contents and rate of progress. Nowadays,

we are facing a back-to-the-basics process. Some systems in these

different areas turn out to follow similar laws and equations, which is

opening the way to interdisciplinary research in the now fuzzy borders

between the various scientific disciplines.

The study of scale-invariant systems is certainly one of these cases.

A system is scale invariant if it looks similar at different scales.

More precisely, scale invariance means that distribution and correla-

tions of the system variables do not vary when the length of obser-

vation is expanded (or contracted), i.e., when we zoom in (or out).

Scale invariance has been intensively studied during the last decades

because it is present in very different systems: physics, oceanography,

chemistry, geology, biology, economy, etc. As a consequence of scale

invariance, it is possible to define an effective dynamics able to accu-

rately describe the structure and evolution of the system, improving

the classical knowledge provided by microscopic dynamics. The com-

mon fingerprint in these so varied systems is that certain variables

follow power-law distributions. In some cases, the exponents of these

power laws coincide, meaning that their effective dynamics are uni-

versal [1, 2]. This fact links the study of scale invariance and critical

phenomena, which makes this subject so interesting.

The basic idea behind scale invariance is better understood with

practical examples. In most cases, a system looks different depending

on the scale at which it is observed. One of these cases is, e.g., the

human skin: the scale of centimetres (our usual experience) is very

different from the scale of micrometers, which we can see in a micro-

scope. In the former, the skin is an even, thin tissue, while in the

latter we distinguish layers of different width and we can see pores,

wrinkles, furrows, etc. In contrast, the branches of a tree each resem-
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ble the whole tree. Particularly, in cypresses a very similar shape is

found from a scale of metres up to millimetres. This is a case of scale

invariance between the whole-tree scale and the leaf scale. Also ferns

have this property; we can see an example in Figure 1.1.

Figure 1.1.: Triangular fern (left) and computer-generated fern (right). In the computer case, the
fractal object is generated by reproducing at each stage a shrunk and symmetrized
version of the whole object. Nature mimics a very similar dynamics when plant cells
are arranged to form the real fern: blades start forming at both sides of a local
symmetry axis and then they grow (by cell division) with new cells being arranged
in the same way along new local symmetry axes, and so on in an iterative way.
Photograph and computer art both by Rodd Halstead are used with permission of the
author.

Schematically, this phenomenon has its archetype in a kind of ge-

ometrical figures called fractals. Fractals mimic the growth pattern

of the fern: the object is formed by parts that reproduce the same

shape of the whole object, but are smaller (they reproduce the struc-

ture at a smaller scale). As these parts reproduce the whole object,

they are formed by subparts that reproduce themselves; iteratively,

the same shape is reproduced at successive scales ad infinitum.

A more general variant of fractals is the case of statistical frac-

tals, in which each downscaled replica is statistically equivalent to the

whole, i.e., the structure follows random variables that have the same

distribution at any scale. In a real fern, each subpart of the frond

mostly resembles the whole. It is not an exact scaling of the same

shape, due to randomness in cell growth and formation of the blades
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(the lobes of the frond). Nevertheless, such randomness follows a fixed

distribution that makes the structures formed statistically similar at

all the scales, that is why they look alike. Statistical fractals are still

a restrictive case of scale invariance: all the subparts of a given scale

have a fixed size, which is proportionally related to that of the pre-

ceding scale. This proportionality ratio is governed by a parameter

called fractal dimension D, see Figure 1.2.

D = 1 D = 2 D = 3 D = DS

r = 1

r = 2

r = 4

Figure 1.2.: An illustration of the concept of fractal dimension. We show four geometrical objects,
namely a segment (1D), a square (2D), a cube (3D) and a fractal, at three different
scales (left). This fractal is called Sierpinski gasket (shown at infinitesimal scale in
the right side). The number of replicas that divide the original pattern N evolves
with the scale r as N = rD where D is the dimension. For the first three objects,
D is their Euclidean dimension (1, 2 and 3, respectively). We extend the concept of
dimension to include the scaling of the fractal, as it follows the same law N = rD:
in the case of the Sierpinski gasket, we can see that when the scale r doubles, there
are three triangles (N = 3), and when the scale is multiplied by four, there are nine
triangles. Therefore, its dimension is DS = ln 9/ ln 4 = ln 3/ ln 2 ≈ 1.6, i.e., it is not
an integer and its geometrical interpretation is not straightforward (it is sometimes
said these fractal dimensions are more than a curve but less than a surface, as their
support is 1D but they can only be embedded in a 2D space).

Multifractals are less restrictive than fractals and generalize

them so that they cover most cases of scale invariance in Nature.

Multifractal objects are formed by a continuum of fractal compo-

nents, each one scaling with its own fractal dimension. Let h be a

continuous variable indexing the fractal components. The set of frac-

tal dimensions, D(h), form a curve called singularity spectrum that

characterizes all the scaling properties of the multifractal. Mandelbrot
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identified the parameter h with the exponent of a local power law [3],

i.e., given a multifractal function f (x) ∼ xh(x), the exponent of the

power law, h(x), indicates the order of singularity (or regularity) of

the function at the point x.

The description of multifractals based on singularity spectra is very

abstract; we will return to this concept in Chapter 4, with all the for-

malism involved. For the time being, we will concentrate on the more

intuitive framework of multiplicative cascade processes [4], of-

ten simply called cascades, which describe the multifractal structure

of most real-world multifractals. In a cascade, the values of a scale-

adjustable variable in consecutive scales are multiplicatively related

by a random variable called cascade variable. The scale-adjustable

variable can be a direct observable of the system or a measure or

scale-tuned functional of another variable. The intuitive idea is pre-

sented in Section 3.1, and especially in Figure 3.1, while we discuss

the technical details in Chapter 3. One of the advantages of the cas-

cade representation is that it separates the multiple scales, thus all

the representation variables are equivalent since the system is scale

invariant.

The classical approach to multifractal analysis was a statistical

one, based on the characterization of global quantities. This is called

canonical multifractal formalism. Only recently, a new approach

based on the characterization of local properties has been introduced:

themicrocanonical multifractal formalism (MMF) [5, 6]. By means

of MMF, multifractal signals are realized as actual geometrical enti-

ties, different fractal components can be isolated and as a consequence

new applications emerge. In particular, using an appropriate repre-

sentation basis, cascades have a geometrical interpretation: these are

the microcanonical cascades.
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In this thesis, we attempt to enhance the capabilities of multifrac-

tal analysis applied to real data. We have achieved both theoretical

and practical extension of the formalism to functions of non-total sup-

port or with diverging measures [7], we have established a connection

with the formalism of multiplicative cascades in the microcanonical

sense [8], we have found a robust criterion to obtain optimal wavelets

[8], we have discovered evidence for universal behaviour in very differ-

ent multifractal systems [9] and we have performed applications for

the characterization and inference of multiscale data [10, 11, 12, 13].

These applications include: anomaly detection in stock trading, study

of the effect of sources in financial time-series dynamics, characteri-

zation of direct correlations in asset portfolios, study of the effects of

additive noise in multiplicative cascades, forecasting of future points

distribution in econometric series [10], forecasting of volatility and

characterization of tradewind-driven currents and frontogenesis in the

ocean [11]. In addition, an open-source program (written in C) able to

analyze local singularities and retrieve the singularity spectrum from

them has been developed and is freely available.1

1.1. Research context of multifractal analysis

The state-of-the-art of multiscaling and multifractal models to de-

scribe physical systems can be traced back to the studies by Kol-

mogorov [14, 15], Obukhov [16], Yaglom [17, 18] and Kraichnan [19],

applied to the context of fully developed turbulence. In these ar-

ticles, the authors introduce multiscale descriptions that model the

exponents of distribution moments for energy dissipation, velocity

increments or gradients of advected scalars under a turbulent flow.

Though not described in these terms, the proposed models envisaged

1http://www.icm.csic.es/oce/people/turiel/SUPP_INFO/MF-analyzer.html

http://www.icm.csic.es/oce/people/turiel/SUPP_INFO/MF-analyzer.html
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a multifractal description. The first models were derived from Navier-

Stokes equations and constructed simply with some phenomenological

assumptions, but they later incorporated additional complexity to fit

empirical facts [15]. In this context, Novikov worked in cascades that

are infinitely divisible in the scale domain [20, 21], while Mandelbrot

found that these models are explicitly describable as multifractals and

studied their multiplicative cascade properties [3].

Those first ideas were additionally developed by various researchers

and in different directions. Cascades and multifractals drifted and

were bridged continuously, depending on the focus of research. While

it is now widely accepted that in turbulence a real tangible cascade is

the cause of the multifractal structure [22], in other systems it is still

doubtful. In this context, works by Parisi and Frisch have been crucial

in bridging the gap between the structure-function formalism and the

multifractal-cascade formalism [23]. The Italian school of turbulence

brought important developments in the modelling of turbulent flows;

notably works by Benzi’s and Vulpiani’s groups [24, 25, 26, 27, 28,

29, 30]. These included one of the first microcanonical cascades [31],

which was similar to the microcanonical cascades that we introduce

in the present work. Later, further developments focused on the gen-

eralization of structure functions, and the use of wavelets allowed the

French school to improve the models and the algorithms for the anal-

ysis of empirical data. These improvements include the studies by

Arnéodo, Muzy, Bacry, Castaing, Dubrulle, Lévêque, Chainais and

their groups [32, 33, 34, 35, 36, 37, 38, 39, 30, 40, 41, 42, 43, 44],

among others.

In a different way, refinements to cascade formulations allowed

Lovejoy, Schertzer, Seuront and their groups to propose multifractal

universality classes [45, 46, 47, 48, 49, 50]. In this case, the focus of
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research moved from lab turbulence to geophysical turbulent flows,

namely the ocean and the atmosphere. In this context, wavelet anal-

ysis for characterization of multifractality is of crucial importance; a

topic extensively reviewed by Davis et al. [51].

Multifractality has also been reported in systems that have tur-

bulent-like behaviour though they have nothing to do with turbulent

flows. For instance, Amaral, Goldberger, Ivanov, Struzik and Stanley

have studied the multifractality in human gait and heartbeat dynam-

ics [52, 53, 54], and Riedi and his group have studied multifractality in

network traffic [55, 56, 57]. Buccigrossi, Simoncelli and their groups

have characterized scale invariant properties of natural images from

a statistical perspective [58, 59, 60]. Apart from this, financial time

series are possibly the non-turbulent system where multifractality has

been most intensively studied. Mandelbrot envisaged fractal models

that explain the non-gaussianity of returns [61] and later revisited

the topic with the multifractal model of asset returns with Calvet

and Fisher [62, 63, 64]. Stanley and Mantegna also observed multi-

fractality in econometric data [65, 66, 67, 68], while Arnéodo, Bacry,

Muzy and their groups have also explored financial dynamics with

multifractal models [69, 70, 71]. More recently, we could cite works

by Perello based on the same ideas [72, 73]; in these models, multi-

fractality is seen in a continuous-time dynamics and not directly in

the signal itself.

As we have said, a multifractal is an ensemble of fractal compo-

nents, discriminated by a hierarchy parameter h and each one having

its own fractal dimension,D(h) (the singularity spectrum). In a mul-

tifractal function f (x), the parameter h is not usually described as an

abstract index but as the leading order of a local expansion at each

point x, f (x) ∼ xh(x). This fact – the existence of local singularity
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exponents, h(x) – is reflected in most of the multifractal formalisms

[74, 75, 76, 77, 78, 79, 80]. However, efficient analysis of multifractal

data based on singularity exponents has remained unexplored until

recent years. A practical way to obtain these exponents from em-

pirical data was not available until the improvement of analysis al-

gorithms based on wavelet projection of gradient modulus measures,

first achieved by Turiel et al. [5, 6]. These algorithms are appro-

priate for empirical data as they filter all the common artefacts that

could arise due to discretisation, aliasing, noise, lack of stationarity,

correlations, instabilities, and other problems related to the nature

of real signals or to the numerical analysis of them. The milestone

achieved is that this kind of multifractal characterization avoids the

need to pass through the exponents of structure functions and the

Parisi-Frisch transform [23], thus giving rise not only to a new anal-

ysis technique and a more direct characterization of the D(h) curve,

but also to a new multifractal formalism called themicrocanonical

multifractal formalism (MMF) [5, 7, 81, 6].

Some of the recent applications of MMF to oceanography include

works by Turiel and coworkers, e.g., Isern-Fontanet [81], Nieves [82]

and Pottier [83]. Notably, these analyses allow them to obtain the

ocean velocity field from temperature maps [84] and reconstruct data

gaps in chlorophyll concentration maps [83]. There are also remark-

able applications to atmospheric flows [85, 86, 87, 88] and vision

[89, 90, 91, 92, 93, 94]. Turiel and Pérez-Vicente also applied MMF

to characterize econometric time series: they studied the presence of

a Markovian most singular component and sift this Markovian dy-

namics from another slowly changing one driven by information and

capital injections [95, 96, 97]. This was the starting point of my thesis.
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Before the presented study could be started, there were several

theoretical, methodological and applied questions to be answered.

In addition, the applications needed some previous theoretical and

methodological developments. One of these questions was how the

optimal wavelet – a concept developed by Turiel in [91] though al-

ready envisaged by Buccigrossi and Simoncelli in [58] – could define

a microcanonical cascade compatible with MMF and whether this

would provide a direct description of a cascade in a way that avoided

the delocalization of the Parisi-Frisch transform. Another need was

to improve the singularity analysis of MMF to overcome the problems

that it faced when applied to fractal supports and diverging measures.

Another methodological quest was to provide a measure of wavelet op-

timality that could be used to obtain optimal wavelets from empirical

data. Regarding applications, it was not known which were the opti-

mal wavelets for stock market series and geophysical variables such as

sea surface temperature, and it was unclear whether their description

as microcanonical cascades would improve knowledge of the structure

and dynamics of these systems, or even provide a forecast of them.

As we will see, this thesis has answered all these questions.

1.2. Thesis outline

This document is thematically structured and so it presents both the

theory and the results of each topic in its respective chapter. Chap-

ter 2 and Chapter 4 are mostly theoretical and they report analytical

results, while Chapter 3 is more methodological and it introduces both

analytical and numerical results. Finally, Chapter 5 and Chapter 6

develop the applications of the theory and methods to real multifrac-

tal systems: namely, stock-market series and ocean turbulence.
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The present introductory chapter has explained the context and

main motivations of the research, together with the state-of-the-art.

Chapter 2 introduces the technical notation and reviews the formal

aspects of multiresolution representation. We place the emphasis on

wavelet projections, particularly in their expression as quadrature mir-

ror filters (QMF) and a generalized version of them. New theoretical

and empirical work is presented in Chapter 3, where the formalism

of microcanonical cascades is introduced and related to the concept

of optimal wavelet. In this context, we calculate how wavelet opti-

mality affects a microcanonical cascade representation and show that

the resulting statistical association between cascade variables corre-

sponds to the association in wavelet projections observed in different

natural systems: this feature has been reported in natural images

[58] and ocean chlorophyll concentration maps [83], and we have also

found it in stock market series (Chapter 5, [10]) and sea surface tem-

perature maps (Chapter 6, [11]). Thus we provide an explanation

for these empirical statistical associations, we contextualize them in

terms of the microcanonical cascade process and we derive a param-

eter that determines the degree of optimality of a wavelet for a given

dataset. With this parameter, we can calculate the optimal wavelet

for these systems. In Chapter 4, we relate the microcanonical cascade

formalism with the canonical and the microcanonical multifractal for-

malisms. We review the main aspects of the microcanonical multi-

fractal formalism and shows characterization of singularity exponents

and the singularity spectrum in stock-market series and applications

of it. Coincidence of singularity spectra for different natural systems is

also shown. Then, in Chapter 5 we present an inference model based

on the optimal wavelet and infer different variables for daily stock-

market series. A different application of a very similar algorithm is

shown in Chapter 6, where multiscale information of ocean structures
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is derived from cascade variables of sea surface temperature. Finally,

global conclusions of the different aspects of this work are shown in

Chapter 7.



2. Multiresolution analysis

Space and time are the variables in terms of which we usually de-

scribe and model the relevant features, either static or dynamic, of

any physical system. The validity of models depends crucially on the

scale that they aim to describe, because the physical processes that

govern dynamic evolution and structural properties of the system can

be completely different from one scale to another.

Linear phenomena are usually described at one relevant scale, re-

lated either to some characteristic time in a dynamic approach or to

some structural size. Even if more than one scale is involved, phenom-

ena can be described in terms of decoupled equations for each scale.

The picture is completely different for nonlinear systems. There, one

usually finds that scales are coupled, structures are complex and dy-

namics is often chaotic. Self-organized patterns emerge spontaneously

and collective effects that cannot be understood from the individual

behaviour of single isolated constituents determine the macroscopic

properties of the system. Then, it is no longer possible to look at

single scales as all of them become relevant. Fortunately, in some

cases, the system evolves towards a regime in which structure and dy-

namics become scale-invariant and where physical observables follow

power-laws. We enter in the realm of a very special type of nonlinear

systems called critical systems [2].

Physics, like other sciences, is essentially an empirical discipline.

We obtain data from experiments and from them we create a theoret-

13
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ical corpus aimed at explaining what we observe. The data provided

by experiments must be appropriately processed and manipulated in

order to create good models which can help us to understand nature.

Data processing is not just a minor element of our methodology, but

it plays a crucial role in the analysis of nonlinear systems.

The standard representation basis, which is constituted by space

and time coordinates, is highly convenient to describe static or inertial

systems, while Fourier basis, which is constituted by spatial and tem-

poral frequencies, is appropriate for oscillations and orbits. However,

in order to do appropriate analysis of scale-invariant data we need

to work on a multiscale basis that is adjustable both in space (time)

and spatial (temporal) frequency. This is done with sliding-window

measures – where the scale is tuned as the size of the window – or

related functionals, especially wavelet transforms (see Section 2.2).

2.1. Multiresolution decomposition

How to decompose a function into its scale components? We have

seen why a decomposition into the different scales is convenient to

properly analyze a complex signal. Let us see now how is it done.

Firstly, we consider approximation components: they are functions

that belong to approximation spaces of different resolution. We can

see an example of this decomposition in Figure 2.1. Approximation

spaces are characterized by the maximum scale (resolution) that they

are able to achieve. Therefore any component of a certain approxima-

tion space Aj can be also represented in the following (more resolute)

space Aj+1, in other words, Aj is a subspace of Aj+1:

Aj ⊂ Aj+1 (2.1)
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Additionally, each approximation space Aj has its projectorAj, which

is an operator that takes any function and approximates it to fit the

Aj space, i.e.,

Aj(x) ≡ (Aj f )(x) ∈ Aj (2.2)

where Aj(x) is called the approximation component of f (x) at a

scale of index j. An example of this is shown in Figure 2.2. Since

j indicates the maximum attainable scale (resolution), the infinite-

resolution approximation component of any function is the function

itself: A∞(x) = f (x), i.e., it is not approximated.

Figure 2.1.: Original signal (left) and approximation components at a fine scale (centre) and at
a coarse scale (right). Large structures are the only ones seen at the coarse-scale
approximation. As resolution increases, finer details become distinguishable. There-
fore, approximations filter signal structures by their size. Picture by Laura Pont and
elaboration by the author.

Approximating to a maximum scale accumulates all the informa-

tion up to that scale. Rather than this, sometimes we prefer to con-

centrate in the information contained in a given scale only. This is

what detail components do: they tell what has changed from a certain
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Figure 2.2.: A function and its approximation and detail components for a certain scale with
index j0. The function belongs to the subspace of index j0 + 1, i.e., f(x) ∈ Aj0+1.
Approximation component takes most of the large-scale structure of the function and
provides a harsh approximation of it. Detail component Dj0 retains the difference
from Aj0 and it emphasizes the details at the scale of index j0: detail component is
small in flat areas and large in points of high-contrast (those of steep slopes).

approximation to the following one (see Figure 2.2):

Dj(x) = Aj+1(x) − Aj(x) (2.3)

Detail components lie in detail spaces Dj. As a consequence of

Eq. (2.3), the detail space Dj is the complement of the approximation

space Aj in the following approximation space Aj+1. This is formally

expressed as:

Aj ⊕ Dj = Aj+1 (2.4)

Similarly to approximation spaces, detail spaces also have their pro-

jectors. The detail projector Dj takes a function and filters the in-

formation contained in the scale of index j, i.e., it extracts the detail

component Dj(~x):

Dj(x) ≡ (Dj f )(x) ∈ Dj (2.5)
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As intuitively expected, the sum of all the details recovers the func-

tion:
∑

jDj(x) = f (x); the same in terms of their respective spaces:

f ∈ ⊕∀j∈Z
Dj = A∞.1

For reasons of simplicity, we often desire that the approximation

and the detail components of a same scale both contain the same

amount of information (Aj has the same dimensionality as Dj). This

corresponds to the case when the scale step is dyadic, i.e., two consec-

utive scales are related by a factor two: for any function g(J)(x) ∈ AJ

then g(J)(2 x) ∈ AJ+1. In this case, the physical scale r changes with

a factor two: rj = 2 rj+1 and so it varies exponentially with the index

j: rj ∝ 2−j.

2.2. Wavelets: a basis for multiscale functions

As we have said, for a given signal there are different operators that

can be used to unveil its multiscaling properties. For instance, in stock

market series increment measures and volatilities are both known to

have cascade properties [95, 96], also in fully developed 2D turbulence,

energy and enstrophy both follow cascade processes [22]. While these

operators are nonlinear, linear operators also work in most cases: even

the simplest operator, the increment at distance r (of the logarithm of

the price in stock market series and of the velocity field in turbulence).

In other cases, correlations mask the cascade behaviour in increments

and convolution with an appropriate kernel is required.

These appropriate kernels are functions called wavelets. Wavelets

are waveforms that decay in the tails. They are capable of filtering

long-range correlations out, also provide a smooth interpolation that

1It should be noticed that in most practical situations, with real-world data, one never reaches infinite

resolutions. Beyond the resolution limit, approximations are perfect (the function f itself) and details are

null, which effectively truncate these infinite sums.
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reduces the effect of noise. In addition, wavelets can be designed

to make a decomposition into scale components (presented in Sec-

tion 2.1) that is a complete representation able to reconstruct the

signal.

The elements of a wavelet basis are dilations and translations of a

representation pattern, i.e., they are tuned in both the position and

the scale. That is why they have two kinds of coordinates: those of

translations and those of scales. The basis for the approximation space

of scale index j, Aj, is composed of functions φj, k(~x) where k is the

translation index. When the scale step is dyadic, the vectors φj, k(2 x)

for k = −∞, . . . ,+∞ form a basis of the Aj+1 space.
2 Analogously,

we notate the detail space Dj basis as ψj, k(x). This way, for all the

integer values of scale j and translation k indices, ψj, k(x) form a basis

of the whole space of functions. This is called wavelet basis.

2.2.1. Settings for a dyadic representation

In the following, we present the analysis and representation of signals

with dyadic wavelet bases. We show all the relevant equations to put

our notation in context (most of them can also be found in wavelets

textbooks [98, 99]). We introduce further details from Section A.2

and thereafter. First of all, we will restrict to L2 space of functions,3

which is needed for the wavelet approach to work. In this context,

approximation and detail spaces are subspaces of L2.

... ⊆ A−1 ⊆ A0 ⊆ A1 ⊆ ... ⊆ L2 (2.6)

Therefore, Aj is coarser than Aj+1. In addition, if |s(x)〉 ∈ AJ then

|s(x2)〉 ∈ AJ−1.

2 Remember that the scale is rj = 2−j .
3 This means that given a signal s(x) ∈ L2, it follows that

∫
|s(x)|2 dx is finite
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The bases of these spaces are called wavelets. The scaling function

φ(x) (sometimes also called father wavelet) is a basis of the A0 space,

while the mother wavelet ψ(x) is the basis of the D0 space. Then, the

projectors Aj and Dj can be expressed as:

Aj|s〉 =

+∞∑

k=−∞
〈φj,k|s〉
︸ ︷︷ ︸

βj,k

|φj,k〉 (2.7)

Dj|s〉 =

+∞∑

k=−∞
〈ψj,k|s〉
︸ ︷︷ ︸

αj,k

|ψj,k〉 (2.8)

where {|φj, k〉}k∈Z is the basis of Aj and {|ψj, k〉}k∈Z is the basis of Dj.

The aforementioned equation assumes that the wavelets are norm-2

normalized. This means that:

φj, k(t) = 2j/2 φ
(
2jt− k

)
‖φj, k‖2 = 1 (2.9)

ψj, k(t) = 2j/2 ψ
(
2jt− k

)
‖ψj, k‖2 = 1 (2.10)

and also the (bi-)orthonormality conditions:

〈φj,l|φj,k〉 = δ(k − l) (2.11)

〈ψi,l|ψj,k〉 = δ(j − i)δ(k − l) (2.12)

Finally, note that the coefficients βj,k and αj,k define a wavelet

series that can represent the original signal. Provided that |s〉 ∈ AJ
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and using Eq. (2.7) and Eq. (2.8),

|s〉 = AJ |s〉

=

J−1∑

j=0

Dj|s〉 + A0|s〉

=

J−1∑

j=0

+∞∑

k=−∞
αj,k|ψj,k〉 +

+∞∑

k=−∞
β0,k|φ0,k〉 (2.13)

=

∞∑

j=−∞

+∞∑

k=−∞
αj,k|ψj,k〉 (2.14)

2.2.2. Norm-1 wavelet transform

In signal processing, it is rather usual to calculate the detail coeffi-

cients with a wavelet basis that is norm-1 normalized (provided that

this normalization is finite). The link between the two types of nor-

malization, i.e. norm-1 and norm-2, is straightforward:

|s〉 =
∑

j,k

βj,k|ψj,k〉

=
∑

j,k

β̃j,k|ψ̃j,k〉 (2.15)

where ‖ψ‖2 = ‖ψ̃‖1 = 1 and
∫
|ψ|(t) dt = A, i.e., ψ̃ = ψ

A. Further-

more, ‖ψ̃j,k‖1 = 1 which means that:

|ψj,k(t)〉 = 2j/2 |ψ
(
2jt− k

)
〉 (2.16)

|ψ̃j,k(t)〉 = 2j |ψ̃
(
2jt− k

)
〉

=
2j/2

A
|ψj,k(t)〉 (2.17)
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so the detail coefficients are related through:

α̃j,k = A2−j/2 αj,k (2.18)

The advantage of the norm-1 normalization is that the convolution

with the wavelet does not depend on the scale:

‖ψ̃ ⊗ s‖1 ≡ ‖α̃j,k‖1 ≤ ‖s‖1 (2.19)

and so, if the signal is scale invariant and translationally invariant,

the typical amplitudes of the coefficients α̃j,k are similar for all j, k.

2.2.3. Quadrature mirror filters (QMFs)

It is well known that the decomposition of the scaling function and

the wavelet in terms of the immediately finer scaling function defines

two filters, h and g (with associated dual filters in the biorthogonal

case), called quadrature mirror filters, that can be recursively applied

to produce a fast wavelet decomposition [99]. The filters h and g

are defined by its coefficients hk and gh, according to the following

expressions:

|φ0,0〉 =
∑

k

〈φ1,k|φ0,0〉
︸ ︷︷ ︸

hk

|φ1,k〉 (2.20)

|ψ0,0〉 =
∑

k

〈φ1,k|ψ0,0〉
︸ ︷︷ ︸

gk

|φ1,k〉 (2.21)

and are also norm-2 normalized:
∑

k h
∗
k hk = 1 and

∑

k g
∗
k gk = 1,

and mutually orthogonal:
∑

k h
∗
k gk =

∑

k g
∗
k hk = 0. To analyze a
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signal means going from finer to coarser scales:

βj,k =
∑

l

h
∗
l βj+1,2k+l (2.22)

αj,k =
∑

l

g∗l βj+1,2k+l (2.23)

while synthesizing or reconstructing means going from coarser to finer

scales:

βj+1,k =
∑

l

hk−2l βj,l +
∑

l

gk−2l αj,l (2.24)

and a practical implementation of the expression above is:

βj+1,2k =
∑

l

h2l βj,k−l +
∑

l

g2l αj,k−l (2.24’a)

βj+1,2k+1 =
∑

l

h2l+1 βj,k−l +
∑

l

g2l+1 αj,k−l (2.24’b)

Proof of analysis and synthesis equations

Let us prove equations (2.22–2.24’b). Eq. (2.20) in a more general

way is:

|φj,k〉 =
∑

l

hl |φj+1,2k+l〉 (2.25)

and its dual counterpart is:

〈φj,k| =
∑

l

hl
∗〈φj+1,2k+l| (2.26)

now put |s〉 to both sides and note that these are β’s coefficients. The

result is Eq. (2.22). An equivalent deduction applies to Eq. (2.23) from

Eq. (2.21).
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The synthesis formula, Eq. (2.24), comes from Eq. (2.3):

Aj+1 = Aj +Dj (2.27)

and the definitions Eq. (2.7) and Eq. (2.8),

Aj|s〉 =
∑

l

βj,l |φj,l〉 (2.28)

Dj|s〉 =
∑

l

αj,l |ψj,l〉 (2.29)

Aj+1|s〉 =
∑

l

βj+1,l |φj+1,l〉 (2.30)

so that inserting 〈φj+1,k| in front of both sides of Eq. (2.27) it becomes:

〈φj+1,k|Aj+1|s〉 = 〈φj+1,k|Aj|s〉 + 〈φj+1,k|Dj|s〉 (2.31)

Substituting definitions of A’s and D’s:

∑

l

βj+1,l 〈φj+1,k|φj+1,l〉
︸ ︷︷ ︸

δ(k−l)

=
∑

l

βj,l〈φj+1,k|φj,l〉 +
∑

l

αj,l〈φj+1,k|ψj,l〉

(2.32)

Now we use Eq. (2.25) and its equivalent for g:

βj+1,k =
∑

l,l′
βj,l hl′〈φj+1,k|φj+1,2l+l′〉

︸ ︷︷ ︸

δ(k−2l−l′)

+
∑

l,l′
αj,l gl′〈φj+1,k|φj+1,2l+l′〉

︸ ︷︷ ︸

δ(k−2l−l′)

(2.33)

and Eq. (2.24) is directly obtained. Eq. (2.24’a) and Eq. (2.24’b) are

obtained changing k by a new k′. We have two cases, depending on

the parity of k: k = 2k′ and k = 2k′ + 1. Then, we contract the l
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instead of l′ in the equation above:

βj+1,2k′ =
∑

l′
hl′ βj,k′− l′

2
+
∑

l′
gl′ αj,k′− l′

2
(2.24”a)

βj+1,2k′+1 =
∑

l′
hl′ βj,k′− l′−1

2
+
∑

l′
gl′ αj,k′− l′−1

2
(2.24”b)

but the cases where the subindex is not integer are not allowed, so we

redefine l so that l′ = 2l in the even case and l′ = 2l + 1 in the odd

case, directly resulting in Eq. (2.24’a) and Eq. (2.24’b).

2.2.4. QMF filters from the wavelet coefficients

In the following we take the standard elements introduced so far to

a more geometrical point of view. For simplicity, we focus on or-

thonormal and linear-phase filters [98]. Orthonormality implies that

the filters equal their duals, while linear-phase implies that:

gl = (−1)l h∗1−l (2.34)

In addition, we will consider only real-valued filters. Hence, only one

real-valued, infinite-dimension vector ~h is needed.

The algorithm that we are presenting compares the wavelet coef-

ficients at two consecutive scales. These detection scales should be

coarser than the resolution scale of the signal, i.e., for a signal of

resolution4 J , the detection scales are J0 − 1 and J0 ≤ J . Addi-

tionally, we will consider the pixellation scale J1 ≥ J , i.e., the scale

at which the scaling function covers only individual pixels. Roughly,

J1 − J = log2(scale of the scaling function in pixels). The wavelet

4 With scale j we mean r = 2−j .
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coefficients at scales J0 and J0 − 1 can be expressed as:

αJ0,k =
∑

l

βJ0+1,2k+l gl

=
∑

l

(−1)1−l βJ0+1,2k−l+1
︸ ︷︷ ︸

(~βk)l

hl

= ~βk · ~h (2.35)

αJ0−1,⌊k2⌋ =
∑

l′
βJ0,2⌊k2⌋+l′ gl′

=
∑

l′
(−1)1−l

′
βJ0,2⌊k2⌋−l′+1 hl′

=
∑

l′

(
∑

l

βJ0+1,4⌊k2⌋+2l′+l hl

)

gl′

=
∑

l,l′
(−1)1−l

′
βJ0+1,4⌊k2⌋−2l′+l+2

︸ ︷︷ ︸

(Bk)l,l′

hl hl′

= ~htBk
~h (2.36)
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Figure 2.3.: Analysis algorithm to extract the αJ0,k and α
J0−1,⌊ k

2
⌋ wavelet coefficients.
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To obtain the βJ0+1,• we build them from the pixellation scale J1.

Let ∆J = J1 − J ,

βJ1,k = 〈φJ1,k|s〉

= 2J1/2
2J−1∑

n=0

∫ 2−J (n+1)

2−Jn
φ∗
(
2J1t− k

)
sn dt

≈
(

2−J1/2
∫ +∞

−∞
φ∗(t) dt

) 2J−1∑

n=0

sn δ

(⌊
k

2∆J

⌋

− n

)

≈ 2−J1/2
(∫ +∞

−∞
φ∗(t) dt

)

s⌊ k
2∆J

⌋ k = 0, · · · , 2J1 − 1

(2.37)

with
∣
∣
∫
φ(t) dt

∣
∣ = 1 (see Appendix A), and now we successively

apply the h filter until we reach the J0 + 1 scale needed in Eq. (2.35)

– Eq. (2.36). The main problem with this is that we suppose a smooth

signal, not a multifractal, so that choosing a very high ∆J will affect

the multifractal characterization. The only solution here is to work

with narrow scaling functions.

The elements introduced in this chapter will be used in all the

following chapters. The concept of QMFs is quite standard nowadays,

and we have reproduced its full development as it constitutes a central

ingredient, especially in Chapter 3. New developments in this context

include the geometrical expression of QMFs, Eq. (2.35) and Eq. (2.36);

we will take advantage of it in the next chapter. The algorithm for

a biorthogonal scheme presented in the appendix, in Section A.2, is

also a new achievement; we have put in the appendix because it is a

quite long derivation and we do not use it in the following, though it

represents a future line of research that could be used to generalize

the wavelet optimization.



3. Microcanonical multiplicative

cascades

3.1. Persistence in scale invariant signals

Multiplicative cascades are present in many different systems, but

they are not usually recognized as such. Usually, their presence is

reported by means of indirect evidence about its effects on the prop-

erties of signals. One of the most commonly reported effect of multi-

plicative cascades is the persistence of feature detection across scales.

The importance of persistence is that the detection of a feature at

a coarse scale allows inferring the presence of the same feature at

finer scales. This phenomenon is well known since the introduction of

wavelet representation of signals, and it was first described by Mallat

and co-workers twenty years ago [100, 101]. The optimal wavelet is

the one that maximizes this inference capability.

To understand what is the role of wavelet processing it is conve-

nient to clarify what a multiresolution decomposition is. In a multires-

olution decomposition the signal can be represented as a combination

of wavelet coefficients that can be arranged according progressive lev-

els of resolution, from finer to coarser. This representation is just an

algebraic change of basis, so the multiresolution decomposition of a

signal contain exactly the same information as the original signal, and

we can pass from one to the other with a linear transformation and

27
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without any loss of information. In the case of 1D signals a single

wavelet can be used to fully represent the signal in a dyadic scheme;

for 2D signals, we need three different wavelets that will expand three

different pyramids of resolution levels [99]. In a dyadic scheme, when

we pass from one resolution to the next coarser one the scale changes

by a factor two, i.e., the diameter of the wavelet at the coarser scale is

exactly twice the diameter of the wavelet at the previous, finer scale.

This implies that a wavelet coefficient obtained at the coarser scale

affects an area that is twice larger in diameter than that of the finer

scale; roughly speaking, a wavelet coefficient at the coarser scale cov-

ers the area of two wavelet coefficients at the finer scale in 1D and

the area of four wavelet coefficients at the finer scale in 2D. In sec-

tion 3.1.1 the concepts of wavelet basis and dyadic decomposition will

be introduced in greater detail; see also [98, 99].

In Figure 3.1 we show a typical example of interscale persistence.

In the left panel we show a snapshot of a passive scalar dispersed

by a 2D turbulent flow. This turbulent regime can be described by

means of a direct enstrophy cascade. In the right panel we show a

multiresolution decomposition of this image, formed by all the wavelet

coefficients of the representation arranged in a compact shape.

In Figure 3.2 we present a detail of three consecutive resolutions

of vertical coefficients extracted from Figure 3.1. Notice that the

multiresolution decomposition is just a change of vectorial basis, so

the wavelet coefficients are algebraically independent. It is however

obvious from Figure 3.2 that the coefficients do not take arbitrary

values: the structures detected at coarser scales persist at the same

location but with better resolution at the finer scales. This is the

persistence of edges, and it is a consequence of the structure of the

signal, which implies that on many real systems edges are multiscale.
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Figure 3.1.: Left: Snapshot of dye distribution submitted to the action of 2D turbulence, under
direct enstrophy cascade. Brightness is proportional to dye concentration: white
corresponds to the maximum and black corresponds to the minimum. The image
was obtained in a laboratory experiment; see [102, 103, 104] for details. Right:

Multiresolution decomposition with Haar wavelet of the image on the left. A separable
2D multiresolution basis requires three wavelets and hence there are three types of
wavelet coefficients, which are labelled as horizontal (leftmost squares), vertical (those
with a side on the bottom of the panel) and diagonal. Each resolution level and
orientation has been independently normalized to enhance details. Both images have
been coloured to beautify presentation, without any change in brightness values.

Figure 3.2.: The three finer resolution levels of vertical wavelet coefficients, extracted from Fig-
ure 3.1; going from left to right we go from the coarser to the finest resolution. The
three resolution levels are represented at the same size to help comparison.
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Edge persistence is a strong, relevant feature of physical signals, as

it implies that the signal is highly redundant. It is precisely by means

of the wavelet representation that this redundancy becomes evident.

Persistence implies that we can predict to some extent what is going

to happen at the next resolution level from the wavelet coefficients of

a given level. Some authors [58, 59] have exploited this redundancy to

devise algorithms for image compression. Particularly, Simoncelli and

co-workers have noticed that the mutual dependence between consec-

utive scales can be better highlighted using conditional histograms

[105, 58, 59, 106]. The histograms of fine-scale (also called child)

coefficients conditioned by the value of the coarse-scale (also called

parent) coefficient at the same location have a clear tie-bow shape for

any wavelet [58, 106]. This shape implies that the dispersion of the

child increases with the absolute value of the parent coefficient. This

suggests that the child coefficient depends on its parent coefficient in

a multiplicative fashion. For that reason, the distribution of the loga-

rithm of the child coefficient conditioned by a value of the logarithm

of the parent coefficient exhibits a linear dependence [58, 105]. The

authors found that, depending on the wavelet, the range of validity

of this linear dependence can be larger or smaller.

More recently, Pottier et al. [83] studied satellite images of sur-

face chlorophyll concentration and found them to be persistent across

scales. Although they used very different wavelet bases, for none of

them the histogram of the logarithm of the child conditioned by the

logarithm of the parent have a full linear range. As we will see later,

a wavelet for which the conditioned histogram is fully linear is called

optimal, in the same sense that the one introduced by Turiel and

Parga in [91]. Pottier et al. proposed a particular model to describe

the child-parent dependency, valid for many different wavelets that

are not the optimal one but are not too far from it anyway. We will
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call this model the linear model, and it reads as:

αC = η∗ αP + α∗ (3.1)

where αC stands for the child wavelet coefficient and αP stands for

its parent (i.e., it is obtained at the immediately coarser scale and

at the same position). η∗ and α∗ are random variables mutually

independent, also independent from αP. The authors observed that

this model fits reasonably well the conditioned histograms for many

different wavelet bases, although depending on the particular basis the

amplitude of the variable α∗ varies; for smaller α∗ the linear range in

the conditioned histogram is larger and the converse. Now a question

reasonably raises: is there any particular choice of wavelet for which

the amplitude of α∗ vanishes? This would be the optimal wavelet, in

the same sense as in [91, 107].

The importance of finding such an optimal wavelet must be em-

phasized. First, because with the aid of this wavelet the description

of the mutual dependence between parents and children can be sim-

plified; in fact, α∗ = 0 implies that the mutual information between

αP and αC is maximized. So, a coding scheme as the one proposed

by [58] attains the highest quality and smallest coding cost with the

use of this wavelet. Besides, using this wavelet basis the inference of

the value of the coefficients is improved, what has an impact on the

quality of reconstruction algorithms to fill data gaps (as in [83]) or

on forecasting of time series. Finally, optimal wavelets can be used

to derive improved models of multifractal systems (for instance, some

variables under fully developed turbulence).
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3.1.1. Towards an optimal representation of data

The paradigm of systems in which multiplicative cascades develop are

scale-invariant systems with one or many fractal interfaces. In them,

conveniently designed intensive variables put in evidence a complex

interplay between different scales.

Let s(~x) be a physical variable representing the signal under study.

To study the scale relations of the system, we will need a properly

defined, intensive, scale-dependent functional T applied to the signal,

T[s](r, ~x). This variable depends on the point ~x and a scope or scale

parameter r that characterizes the range of influence of the functional.

Typical examples of such a functional include the derivative at radius

r, nonlinear measures based on the derivative or wavelet projections.

The canonical approach to multiplicative cascades is a statistical

approach. Hence, the object under study is the distribution of the

variable T[s](r, •) for different values of the scale parameter r only,

disregarding the localization ~x, i.e., considering all the points as sta-

tistically equivalent. That is why we will simply denote this variable

as Tr. The analysis of its distribution is achieved through its order-p

moments; studying the moments is enough to completely define the

distribution provided they do not diverge too fast with p [108].

A multifractal signal s is characterized by the power-law scaling

in the order-p moments of the related variable Tr, in the way:

〈Tp
r〉 = AT

p r
τp + o(rτp) (3.2)

Recall that the symbol o(rτp) means a contribution that is negligible

compared to rτp when r goes to zero. In fractal signals, the exponent

τp is directly proportional to the moment order p and the propor-

tionality constant is called singularity exponent or Hurst exponent.
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In multifractal signals, the dependence of τp on p is nonlinear, a fact

known as anomalous scaling [22]. This name derives from the study

of fully developed turbulence and is used to call a scaling that devi-

ates from the fractal one proposed by Kolmogorov in [14, 109] (more

precisely, the extension ∀p of this scaling). In this field, the observed

nonlinearity is attributed to intermittency of energy dissipation in

turbulent flows [22], though a recent study [110] has shown that in-

termittency alone does not imply any change in Kolmogorov’s scaling

below a certain order p larger than three and above this order the

prefactors AT
p diverge.

In Section 4.2, the connection between geometry and statistics of

multifractal signals is discussed in greater detail. In order to separate

the part of the statistics that has to do with changes in scale, two

different scales r, L with r < L can be compared, so:

〈Tp
r〉 =

( r

L

)τp
〈Tp

L〉 (3.3)

which is valid at lowest order in the limit of small r and L. For some

particular τp, this relation implies the existence of a variable ηκ such

that:

〈ηpκ〉 = κτp (3.4)

where κ = r/L < 1. Notice that one of the conditions for the

existence of this variable is the validity of the expansion above, which

in turn depends on taking a scale ratio parameter κ smaller than 1;

for this reason we have taken the ratio of the smaller scale by the

larger scale.
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With the aid of the variable ηκ we can express Eq. (3.3) in a more

elegant way, making the cascade relation explicit:

Tr
.
= ηr/LTL (3.5)

with ηr/L and TL being mutually independent. Here the symbol
.
=

means that the equality holds distributionally, i.e.,

ρ(Tr) = ρ(ηr/LTL) (3.6)

However, this relation does not necessarily hold pointwise, as we will

explain in the following subsection.

The introduction of Eq. (3.5) now allows splitting the statistics of

the scaling variable Tr in two parts: one part, given by ηr/L, accounts

for the properties of transformation under changes in scale, while the

other part, given by TL, takes into account the behaviour at a given

reference scale L. Taking L as the largest possible scale in the system,

the distribution of all the variables Tr at any arbitrary scale r can

be referred to the fixed level TL once the process of change in scale,

ηr/L, is known.

We will call the ηr/L cascade variables. Their distributions do

not depend on the particular scales r and L they connect but only on

the scale ratio κ = r/L. If we now consider three scales r < r′ < L

and we apply Eq. (3.5) to the three possible scale pairs it follows:

ηr/L
.
= ηr/r′ ηr′/L (3.7)

from which the name “cascade variable” becomes evident: the variable

relating scales r and L is equivalent to the product of the variables

relating any two intermediate scales. If any intermediate scale is al-

lowed, it follows that the cascade variables must have an infinitely
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divisible distribution [21, 35, 38]. Another important characteristic of

the distribution of the cascade variables is that it is a property of the

signal and does not depend on the particular functional T used to ob-

tain them, i.e., any functional capable to resolve the scaling exponents

τp of the signal in Eq. (3.2) leads to exactly the same distribution of

cascade variables ηr/L [37].

Microcanonical cascade

Eq. (3.5) makes sense only as a distributional equality and does not

imply that the functional of scale r at some point ~x is related to the

functional of scale L at the same point through an independent mul-

tiplicative factor. In general, T[s](r, ~x) and T[s](L, ~x) are not related

by a variable ηr/L(~x) that is statistically independent of T[s](L, ~x).

Of course, we can always define η̃r/L(~x) as the ratio of these two

variables,

η̃r/L(~x) =
T[s](r, ~x)

T[s](L, ~x)
(3.8)

but for most of the possible functionals T, the variables η̃r/L(~x) are

not independent of T[s](L, ~x) and thus they cannot be considered

cascade variables, as they do not verify Eq. (3.4). It is convenient to

deal with cascade variables, as they are independent of the starting

scale and only depend on the ratio of scales; this implies that they

serve both to characterize the global properties of the system and to

compactly codify its dynamics.

In many multifractal systems, the cascade process governs their

dynamics as a local effective mechanism, what implies that there is

a local variable ηr/L(~x) transferring energy, matter or information

(depending on the system) from coarser to finer scales. Therefore,
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there may exist a system variable s and a scale-tunable functional

T for which Eq. (3.5) makes sense not only distributionally but also

at any point ~x of the system. That is what we call microcanonical

cascade.

Among the functionals that are most commonly used to ana-

lyze the scaling properties of multifractal systems, wavelets occupy a

prominent position. Wavelets have been used to perform local Fourier

analysis and to characterize the local singularities of functions [111].

In many different multifractal systems, wavelet projections have been

used to characterize their scaling properties with success [5, 95]. Some-

thing that is very convenient about wavelet projections is that they

can be inverted to retrieve the original signal [98], as we have seen in

Section 2.2: wavelet projections do not only analyze the signal, but

also constitute a representation of it. That is why wavelet projections

are good candidates to realize the microcanonical cascade.

Roughly speaking, a wavelet is a function that oscillates in the

centre of its domain and decays in its tails; we can think about

wavelets as a pulse that decays very fast. Let s(~x) be a multifractal

signal and let ψ(~x) be a wavelet. We define the wavelet projection of

s on ψ at the position ~x and the resolution scale r as:

Tψ[s](r, ~x) ≡
∫

d~y s(~y) ψ

(
~x− ~y

r

)

(3.9)

In terms of wavelet projections, a microcanonical cascade has the

following form:

Tψ[s](r, ~x) = ηr/L(~x) Tψ[s](L, ~x) (3.10)

Notice that the key point is that ηr/L(~x) has to be both a cascade vari-

able – in the sense of Eq. (3.7) – and independent from Tψ[s](L, ~x).
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We can thus define the optimality of a wavelet as the degree of inde-

pendence of η̃r/L(~x) vs. Tψ[s](L, ~x); we will discuss this possibility

in depth in Section 3.2. There are evidences that such an optimal

wavelet exists in natural images [91] and in marine turbulence [83] for

the specific case of wavelet dyadic representations.

Dyadic representations of the cascade

Wavelet projections of a signal can be used to characterize the lo-

cal properties of the signal or to represent it in an efficient scheme

[111, 98]. Although a signal can be retrieved from its wavelet pro-

jections, such a representation is highly redundant and so a subset

of wavelet projections must be retained. A typical way to subsample

continuous wavelet projections is to select a dyadic subset, like that

that we have introduced in Section 2.2, from which the signal is fully

reconstructed. In a dyadic subset, the scale varies by a factor two and

at each resolution level the positions are taken as integer amounts of

the resolution size. This discretization leads to wavelet coefficients

instead of wavelet projection.

To keep formulae simple, hereafter we will limit our attention to

one-dimensional systems. Hence, given a 1D signal s(x) and a wavelet

ψ capable to spawn a dyadic representation basis, the signal can be

expanded as a series of wavelet terms:

s(x) =

∞∑

j=−∞

∑

k

αj,k ψj,k(x) (3.11)

where

ψj,k(x) = 2j/2 ψ(2jx− k) (3.12)
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and j, k are integer numbers. The coefficients of this representation

basis, the αj,k, are called wavelet coefficients. As ψ defines a rep-

resentation basis, there is a unique set of wavelet coefficients {αj,k}
such that Eq. (3.11) is valid. The 2j/2 normalization factor ensures

that the 2-norm is 1,
∫
dx |ψj,k(x)|2 = 1.

If the wavelet basis is orthonormal, i.e.,

〈
ψj,k‖ψj′,k′

〉
≡
∫

dxψ∗
j,k(x)ψj′,k′(x) = δj,j′ δk,k′ (3.13)

we can obtain the wavelet coefficients as projections on the wavelet

basis, namely:

αj,k = 〈ψj,k‖s〉 (3.14)

If the wavelet basis is not orthonormal, the extension is rather straight-

forward: each basis vector ‖ψj,k〉 has its dual 〈ψ̃j,k‖ so that,

〈ψ̃j,k‖ψj′,k′〉 = δj,j′ δk,k′ (3.15)

and the wavelet coefficients can be obtained as αj,k = 〈ψ̃j,k‖s〉.
In terms of a dyadic representation, the cascade takes a relatively

simple form. For any wavelet basis, the canonical cascade relation,

Eq. (3.5), takes the following form:

αj,k
.
= η1

2
αj−1,⌊k/2⌋ (3.16)

where the notation ⌊k/2⌋ means the integer part of k/2. Here we

have written the cascade relation mimicking Eq. (3.5) and Eq. (3.10).

Notice that the wavelet coefficients, αj,k, are not intensive variables as

the wavelet projections are, as defined in Eq. (3.9) (while wavelet pro-

jections are ∞-norm normalized, wavelet coefficients are 2-norm nor-

malized, which is highly convenient in the derivations to follow, espe-



3.2. Optimization from suboptimal representations 39

cially those in section 3.2). This means that the η-like variables writ-

ten hereafter will differ from those appearing in Eq. (3.4) to Eq. (3.10)

in a constant normalization factor of
√

r/L = 1√
2
.

Notice that αj,k is the wavelet projection at the scale rC = 2−j and

position xC = 2−j k, while αj−1,⌊k/2⌋ is the wavelet projection at the

coarser scale rP = 2−j+1 and position xP = 2−j+1 ⌊k/2⌋; the positions
xC and xP differ at most by rC, which is the spatial uncertainty at

the scale rP, so at the scale rP we can consider that xC and xP refer

to the same position. To alleviate the notation, for given fixed scale

index j and position index k, αP ≡ αj−1,⌊k/2⌋ is known as the Parent

coefficient, αC ≡ αj,k is the Child coefficient and the cascade variable

is η ≡ η1
2
, and we just write the canonical cascade relation above as:

αC
.
= η αP (3.17)

A dyadic wavelet basis is said to be optimal if the associated

wavelet coefficients verify the microcanonical cascade relation, namely:

αC = η αP (3.18)

where η is independent of the parent wavelet coefficient αP and is

thus a cascade variable with associated scale ratio 1
2.

3.2. Optimization from suboptimal representations

As we have already introduced in the previous chapter, the approx-

imation of a signal s(x) at a scale indexed as j0 is given by an ex-

pansion of functions φj0,k whose coefficients are called approximation

coefficients. The signal can hence be expanded as a series of infinite

levels j, as in Eq. (3.11), or approximated at level j0 and expanded
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to the details finer than j0. Namely, we can expand the signal s(x)

as follows:

s(x) =

∞∑

j=−∞

∑

k

αj,k ψj,k(x) (3.19)

=

∞∑

j=j0

∑

k

αj,k ψj,k(x) +
∑

k

βj0,k φj0,k(x)

︸ ︷︷ ︸

Aj0(x)

(3.20)

The approximationAj0(x) can be expressed either as a wavelet expan-

sion of all the levels coarser than the approximation level (j ranging

from −∞ to j0 − 1), or as an expansion on unity functions at the

single level j0. Hence, it is possible to obtain the wavelet coefficients

from the approximation, as the wavelet projections of the approxima-

tion coincide with those of the signal at any level coarser than j0. It

should be noticed that if the signal is discrete, it coincides with its

approximation at any level finer than that of the discretisation scale.

The main advantage of this new decomposition is that the approx-

imations Aj0(x) are countable sums, so we can define two countable

filters, denoted by {gn} and {hn}, that can be used to obtain the

wavelet coefficients at any level provided that we know the approx-

imation at the finest level, i.e., the signal at its discretisation level.

Then, applying the conjugate mirror filters {gn} and {hn} we can

both obtain the wavelet coefficients from the signal or retrieve the

signal from their coefficients with very fast algorithms, which are ex-

act over discretized collections of coefficients.

When we expand the scaling function itself φ (i.e., φ0,0) up to the

next coarser scale j0 = −1, the filter {gn}, which we will denote by

the vector ~g = (. . . , g−1, g0, g1, g2, . . .), is given by the wavelet co-

efficients, while the filter {hn}, which we will denote by the vector
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~h = (. . . , h−1, h0, h1, h2, . . .), is given by the approximation coeffi-

cients, namely:

φ(x) =
∑

n

gn ψ−1,n(x) +
∑

n

hn φ−1,n(x) (3.21)

where the wavelet coefficients at any level finer than j = −1 are zero

because the unity function coincides with itself at level j = 0.

Let us now suppose that we have a discretized signal sk defined

by a collection of values, which are naturally identified as the ap-

proximation coefficients at the highest resolution β0,k = sk. We

will denote this collection of approximation coefficients by the vec-

tor ~β0 = (. . . , β0,−1, β0,0, β0,1, β0,2, . . .). Since we have previously

said that r = 2−j, having the highest resolution at level j = 0 means

that we are expressing r in units of pixels. To obtain the wavelet

coefficients at the next coarser level j = −1 we apply the filter ~g. Let

~α−1 be the vector of these wavelet coefficients, then we have:

α−1,k =
∑

n

gn−2k β0,n (3.22)

that is, the filter ~g acts by convolution on the vector ~β. For later

convenience, let us introduce the matrix G that represents the action

of ~g by convolution, i.e., Gnn′ = gn′−2n. We can now elegantly express

Eq. (3.22) in vectorial form as:

~α−1 = G · ~β0 (3.23)

Notice that the expression above can be used to relate the approx-

imation and the wavelet coefficients of any two consecutive resolution
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levels, i.e.,

~αj−1 = G · ~βj (3.24)

but in order to obtain the wavelet coefficients at any other resolution

we need an expression to obtain the coarser approximations derived

from the highest resolved one. This can be done by means of the

filter ~h. Analogously to what has been derived previously, we have

that two consecutive approximation levels can be related by the filter
~h as follows:

~βj−1 = H · ~βj (3.25)

where Hnn′ = hn′−2n. We already have the essentials to perform a

perturbative analysis on the wavelet.

Perturbative analysis

In general, a given wavelet basis that is applied to the analysis of given

data is not optimal. This means that the cascade does not hold in the

microcanonical sense and so Eq. (3.18) cannot be used. In the follow-

ing we will show that when the wavelet basis is relatively close to the

optimal basis, the linear model proposed by Pottier et al., Eq. (3.1), is

verified. Our proof is based on the QMF representation introduced in

the previous subsection and it is focused on 1D signals for simplicity.

The generalization of higher dimensions is straightforward.

First, let the optimal QMF be denoted by (~g,~h). At the dis-

cretisation level j = 0, the signal corresponds to the vector ~βopt
0 =

(. . . , s−1, s0, s1, . . .). Let us consider now the Child and the Parent

scale levels as the two next coarser dyadic levels, namely jC = −1,

rC = 2 pixels and jP = −2, rP = 4 pixels (notice that the wavelet
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coefficients at levels j ≥ 0 are all zero as discrete signals cannot vary

inside their pixels, i.e., at levels finer than the discretisation scale).

This way, Eq. (3.23) is notated as:

~αC
opt = G · ~βopt

0 (3.26)

The approximation to the next level is given by:

~βopt
−1 = H · ~βopt

0 (3.27)

from which the details at the coarser resolution (parent coefficients)

can be deduced:

~αP
opt = G · ~βopt

−1

= G ·H · ~βopt
0 (3.28)

Owing to the fact that the QMF is optimal, at each location k we

can find an independent cascade variable ηk such that:

αopt
C, k = ηk α

opt
P,⌊k/2⌋ (3.29)

If we define now the matrix N formed by these cascade variables

disposed on the diagonal, namely:

Nkk′ = ηk δ⌊k/2⌋k′ (3.30)

we have that the cascade relation between children and parent co-

efficients can be written for the child and parent detail vectors as

follows:

~αopt
C = N · ~αopt

P (3.31)
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Let us now introduce a small perturbation on the optimal QMF;

we will define a new, suboptimal QMF (~g′,~h′) = (~g + δ~g,~h+ δ~h) for

small δ~g and δ~h. The new child detail vector will be given by:

~αC = (G + δG) · ~β0
= ~αopt

C + δG · ~β0
= N · ~αopt

P + δG · ~β0 (3.32)

Notice that we have made the assumption ~β0 = ~βopt
0 as both are

identified with the signal itself at its discretisation scale. The next

coarser approximation vector is:

~β−1 = (H + δH) · ~β0
= ~βopt

−1 + δH · ~β0 (3.33)

Finally, the details at the next coarser resolution up to the first per-

turbation order are given by the following vector:

~αP = (G + δG) · ~βopt
−1 +G · δH · ~β0

= ~αopt
P + (δG ·H +G · δH) · ~β0 (3.34)

Combining Eq. (3.32) and Eq. (3.34) we obtain:

~αC = N · ~αP + [δG− N · (δG ·H +G · δH)] · ~β0 (3.35)

Defining now ~α∗ as:

~α∗ ≡ [δG− N · (δG ·H +G · δH)] · ~β0 (3.36)
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when substituted in Eq. (3.35) we obtain the vector version of the

linear model, Eq. (3.1), introduced in [83], namely:

~αC = N · ~αP + ~α∗ (3.37)

According to our derivation we can now make some remarks about

the variables η∗ and α∗ appearing in the linear model. First, the

variable η∗ is an actual cascade variable, distributed according to the

same statistics, and up to the first order it is independent from the

parent coefficient in the suboptimal basis. Second, the variable α∗

is much smaller than the term η∗ αP and is only relevant for small

values of αP. We cannot say much about the statistical distribution

of α∗, not even whether it is independent or not from the other term.

However, it is reasonable to think that this variable is governed by the

fluctuations due to the mixing of the different terms in the definition

of α∗ (see Eq. (3.36)) and the arbitrary character of the perturbations

δG and δH. This fact allows us to consider this variable independent

from η∗ αP, as the experiences in [83] confirm.

Optimization strategies

The results in the previous subsection show that the amplitude of

α∗ (the optimality degree) varies continuously under perturbations

on the wavelet. Hence, an optimization strategy based on successive

corrections of the wavelet would lead to the actual optimal wavelet,

provided that the initial guess is not too far away from the optimality.

As seen in Section 3.1.1 all cascade variables η are equally dis-

tributed, independent of the wavelet basis from which they are de-

rived, and their moments can be retrieved from τp. In addition, the

expectation value of |η| is fixed due to translational invariance [5, 91]:
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〈|η|〉 = 2−d/2 in an arbitrary dimension d; 〈|η|〉 = 1√
2
for 1D signals.

According to the linear model, Eq. (3.1), the expectation value of |η̃|
is:

〈|η̃|〉 = 〈|η∗ + α∗ α
−1
P |〉 (3.38)

Let us explore the two asymptotic limits. If the wavelet is optimal

then α∗ = 0 so:

〈|η̃|〉 = 〈|η0|〉 = 〈|η|〉 (3.39)

In the opposite case, for a highly non-optimal wavelet we will have

that α∗/αP ≫ η∗ and taking α∗ independent of αP we would obtain

that:

〈|η̃|〉 = 〈|α∗|〉〈|αP|−1〉 = q〈|η|〉 (3.40)

where q = 〈|αP|〉〈|αP|−1〉, which by Jensen’s inequality [112] is greater
than one: q > 1, for any random variable αP. For an intermediate

case, the preceding two regimes are combined. If p is the proportion

of the range of values of αP for which η∗ > α∗/αP and (1 − p) is its

complementary, we roughly have that:

〈|η̃|〉 ≈ p 〈|η|〉 + (1− p) q 〈|η|〉 (3.41)

Hence, in any instance 〈|η̃|〉 ≥ 〈|η|〉 and 〈|η̃|〉 = 〈|η|〉 for the optimal

wavelet only. We normalize this quantity to define the optimality

degree Q as:

Q =
〈|η̃|〉
〈|η|〉 (3.42)
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which is Q ≥ 1, and Q = 1 for the optimal wavelet only. Q is a

monotonic function of the amplitude of α∗ (which in fact measures

the deviation from the optimal case), so that Q not only evidences the

optimal wavelet case (when Q = 1) but it actually ranks suboptimal

wavelets by their respective deviation from optimality.

An alternative approach would consist in analyzing the degree of

independence between η̃ and αP. As stated in Section 3.1.1, indepen-

dence between these variables is an indicator of the optimality of the

wavelet. This can be expected, as having Q > 1 implies correlation

between η̃ and αP, and correlation implies statistical dependence. In

this case decorrelation (Q = 1) implies independence also, as Q = 1

implies optimality and optimality implies independence. In fact, η̃

and αP are negatively correlated in suboptimal cases (Q > 1), and

uncorrelated only for the optimal wavelet:

Q =
〈|η̃|〉
〈|η|〉 = 1− Cov(|η̃|, |αP|)

〈|αC|〉
(3.43)

A standard measure of statistical dependence is the mutual infor-

mation. Therefore, the mutual information between η̃ and αP, I =

I(η̃, αP), could also measure the degree of optimality of a wavelet.

However, the advantage of using Q instead of I comes from the fact

that Q is less numerically sensitive to sampling size than I . The

main problem with the practical calculation of the mutual informa-

tion is that it is very data demanding . Hence, when only small and

short datasets are available, Q is more convenient as indicator of the

optimality degree.
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3.3. A numerical validation

Now we want to show in practice the theoretical results given in the

previous section, namely the validity of the linear model, Eq. (3.37),

and the performance of our measures of optimality, Q and I . We have

generated synthetic signals according to a given cascade process and

with a prefixed optimal wavelet basis. The cascades are generated by

first calculating the wavelet coefficients through Eq. (3.18) for dyadic

scale steps, and then generating the signal from these wavelet coeffi-

cients, Eq. (3.11), with the chosen wavelet basis. The multiplicative

variable η is a random variable following a given cascade distribution

without horizontal correlations, i.e., it follows Benzi et al.’s model

[31]. As distribution for the cascade variable η we have chosen the

log-Poisson distribution, which has been proposed in many different

physical systems [35, 36, 5]. Hence, we have chosen a translationally

invariant log-Poisson characterized by having a most singular mani-

fold of dimension D∞ = 0 and singularity exponent h∞ = −1
2, which

is a realistic choice of parameters [90, 5]. See Section 4.2 for a de-

scription of the log-Poisson distribution and parameters.

Regarding the linear model, it has been derived by perturba-

tive analysis. In Figure 3.3 we validate this model in practice, for

a very long series of 67 108 864 points. Figure 3.3 A & C show

the probability density function of the child coefficient αC condi-

tioned by a given value of the parent coefficient αP, when the anal-

ysis wavelet is a suboptimal wavelet (subfigure A) or the optimal

wavelet (subfigure C). First, we can observe that for any value of the

parent coefficient, the child coefficient is symmetrically distributed

ρ(αC|αP) = ρ(−αC|αP), what means that 〈η∗〉 = 〈α∗〉 = 0; this also

implies ρ(αC|αP) = ρ(αC| − αP). We also observe that the standard

deviation of the child coefficient conditioned by a value of the par-
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ent coefficient depends hyperbolically on it, as predicted by the linear

model, namely:

σαC|αP =
√

〈α2
C|αP〉 =

√

Aα2
P + B (3.44)

where the constants A and B are given by the linear model: 〈η2∗〉 = A

and 〈α2
∗〉 = B. For the optimal wavelet, A = 〈η2〉 and B = 0, so

that η∗ coincides with η. Additional evidence is furnished by the con-

ditioned histograms of logarithms of the parent and child coefficients,

i.e., the conditional probability of ln |αC| for a given value of ln |αP|,
which are shown in Figure 3.3 B & D (suboptimal wavelet case in sub-

figure B and optimal one in D). The absolute values fold the top his-

tograms to the first quadrant while the logarithms balance the kurtotic

distributions of the wavelet coefficients. When the series is analyzed

with its optimal wavelet, the histogram exhibits a perfectly straight

maximum-probability line and small dispersion around this line. In

contrast, when the series is analyzed with a suboptimal wavelet the

histogram bends on the left to a horizontal line. This bending is in

agreement with the linear model, Eq. (3.37), as the term α∗ becomes

dominant when αP is too small. The two asymptotic limits can be

easily obtained from Eq. (3.37): when the value of the parent coeffi-

cient αP is large, in ln |αC| = ln |η∗ αP|+ln
∣
∣
∣1 + α∗

η∗ αP

∣
∣
∣ the second term

becomes irrelevant, so that ln |αC| ≈ ln |αP|+ln |η∗|. When the value

of the parent coefficient αP is small, in ln |αC| = ln |α∗|+ln
∣
∣
∣1 +

η∗ αP
α∗

∣
∣
∣

the second term rapidly becomes irrelevant, so that ln |αC| ≈ ln |α∗|.
Not only the asymptotes, but also the central behaviour is the one

given by the model, as the line of maximum-probability of the his-

togram fits a shape:

ln |αC|m.p. = ln (|α∗|m.p. + |η∗|m.p. exp ln |αP|) (3.45)
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where m.p. stands for maximum probable, i.e., these values are the

probability maxima of their respective distributions. In addition, the

amplitude of the fluctuations of α∗ is larger than that of η∗. That

is why the left side of the histogram shows large dispersion that is

reduced as ln |αP| grows and tends to that of the optimal case in the

right side.

In a more extensive test, we have used 24 standard wavelets of

very different families. These are: Haar, Daubechies (orders 2 to 10),

Coiflet (orders 1 to 5), Symlet (orders 4 to 8) and Battle-Lemarié

(spline wavelets) (orders 1, 2, 3 and 6).Notice that Haar and Dau-

bechies 1 coincide, while Symlet 1 to 3 also coincide with Daubechies

1 to 3 respectively, and for that reason we have not repeated them

(see [99] for a description of these wavelet bases). For each wavelet, we

have generated 64 series of 4096 points, which is a quite realistic size.

Hence, we have generated 24 ensembles of series and each wavelet is

optimal in an ensemble. For a given ensemble, we have processed

it with the same 24 wavelet bases. That is, for each ensemble we

have tried its optimal basis and 23 non-optimal bases. We have hence

performed 24 × 24 = 576 different tests to check the validity of the

theoretical results presented before.

In Figure 3.4 we present the joint histograms of ln |αC| vs. ln |αP|,
obtained from the different ensembles when they are analyzed with

the 24 bases, arranged in a tabular form. By construction, the his-

tograms on the diagonal of this table correspond to the case in which

the ensemble is analyzed with its optimal wavelet, and hence these

histograms exhibit the same optimal behaviour seen in Figure 3.3 B.

In contrast, when an ensemble is analyzed with a suboptimal wavelet

the histogram bends on the left to a horizontal line, as in Figure 3.3

D. As the optimal and analyzing wavelets become more different, the
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Figure 3.3.: Example that shows the influence of parent coefficients, αP, over child coefficients,
αC, in the non-optimal and optimal cases. We plot the joint histograms of αC vs. αP

and ln |αC| vs. ln |αP| for synthetic cascade data generated with the Coiflet-1 wavelet
and analyzed, Eq. (3.14), with the Battle-Lemarié-6 wavelet (histograms A and B, a
non-optimal case) and the Coiflet-1 wavelet (histograms C and D, the optimal case).
In each histogram, each column has been normalized so that vertical slices correspond
to the probability distribution function of the vertical-axis variable conditioned to
the value in the horizontal-axis. This way, black corresponds to zero probability and
white corresponds to maximum probability. For wavelet coefficients (histograms A and
C), their values range from −0.125 to 0.125 in both axes (nondimensional) and the
histograms are defined by a grid of 25×25 bins. For logarithms of wavelet coefficients
(histograms B and D), their values range from −32 to 1 (nondimensional) and the
histograms are defined by a grid of 50×50 bins. In all cases, the bins are smoothed with
a cubic spline to enhance presentation. The analyzed data are a single series of very
high resolution (67 108 864 points). Cascade process is a log-Poisson of parameters
D∞ = 0 and h∞ = −1

2 (see Section 4.2 for a detailed description of the process).
The series has been obtained with Benzi et al.’s model [31]: (i) random, independent
cascade variables are generated, (ii) from them we get the optimal coefficients following
Eq. (3.16), and (iii) the series is synthesized from Eq. (3.11) using a wavelet that will
be the optimal one by construction.
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amplitude of the term α∗ increases and hence the extension of the

horizontal line in the joint histogram becomes longer.

Haar Dau2 Dau3 Dau4 Dau5 Dau6 Dau7 Dau8 Dau9 DauA Coi1 Coi2 Coi3 Coi4 Coi5 Sym4 Sym5 Sym6 Sym7 Sym8 BLS1 BLS2 BLS3 BLS6

H
a
a
r 1.00 5.88 6.69 9.19 8.40 7.68 5.63 4.87 7.42 8.77 7.12 5.11 7.30 11.3 8.15 6.11 4.86 7.61 8.18 8.06 5.44 7.50 5.94 7.37

0.00 0.13 0.12 0.12 0.13 0.12 0.12 0.12 0.13 0.14 0.13 0.12 0.12 0.12 0.12 0.13 0.12 0.12 0.13 0.12 0.12 0.13 0.12 0.13

D
a
u
2 8.81 1.00 22.9 6.26 8.92 8.17 11.8 6.43 5.13 5.10 9.91 8.84 9.66 45.8 12.2 5.95 4.28 7.43 7.22 19.5 8.42 7.47 6.38 7.70

0.12 0.00 0.11 0.12 0.13 0.13 0.12 0.12 0.12 0.13 0.15 0.12 0.13 0.12 0.12 0.12 0.10 0.13 0.13 0.12 0.12 0.12 0.12 0.13

D
a
u
3 6.53 7.31 1.00 4.69 9.96 6.86 14.6 8.63 7.04 4.80 14.3 14.0 7.42 8.54 5.28 6.63 8.41 8.59 3.83 8.83 8.24 6.91 7.01 6.63

0.11 0.12 0.00 0.11 0.13 0.14 0.13 0.13 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.12 0.13 0.13 0.11 0.12 0.13 0.12 0.13 0.12

D
a
u
4 9.10 8.59 4.97 1.00 21.8 5.64 11.4 13.1 9.09 4.95 10.6 8.69 6.70 5.27 6.25 8.49 38.6 6.59 3.35 5.86 8.68 7.10 7.63 7.57

0.12 0.12 0.11 0.00 0.11 0.13 0.14 0.13 0.13 0.12 0.12 0.12 0.13 0.12 0.12 0.13 0.12 0.12 0.09 0.13 0.12 0.13 0.13 0.13

D
a
u
5 9.04 8.14 5.88 4.02 1.00 3.75 5.86 9.35 12.2 7.94 6.00 5.64 6.95 10.3 7.73 6.85 8.78 9.28 6.85 6.58 6.31 11.7 5.24 6.38

0.13 0.13 0.13 0.11 0.00 0.11 0.13 0.14 0.13 0.13 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.13 0.12 0.11 0.12 0.13 0.12 0.13

D
a
u
6 5.57 7.12 6.58 7.60 3.65 1.00 4.02 6.40 8.41 34.0 6.05 7.92 4.41 4.87 10.6 4.67 6.06 11.2 6.51 11.4 6.79 6.53 6.35 5.96

0.13 0.14 0.13 0.12 0.11 0.00 0.12 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.12 0.12 0.12 0.13

D
a
u
7 10.2 12.7 12.8 9.84 7.72 3.87 1.00 6.33 8.00 11.9 4.63 5.76 4.62 6.16 6.73 6.05 5.77 5.92 7.55 22.3 6.71 17.4 6.12 21.3

0.13 0.12 0.14 0.13 0.13 0.11 0.00 0.11 0.13 0.13 0.13 0.13 0.10 0.12 0.13 0.12 0.12 0.11 0.13 0.12 0.12 0.13 0.12 0.12

D
a
u
8 6.64 5.25 6.19 8.13 10.8 7.16 5.71 1.00 9.82 34.6 7.38 7.41 7.18 6.18 11.4 6.86 6.24 12.1 7.85 5.88 7.81 8.14 7.79 9.05

0.13 0.13 0.13 0.14 0.13 0.13 0.12 0.00 0.12 0.13 0.12 0.13 0.12 0.13 0.13 0.13 0.12 0.11 0.12 0.12 0.13 0.14 0.13 0.13

D
a
u
9 21.3 8.34 8.11 7.16 6.56 16.8 8.50 4.78 1.00 9.04 8.17 12.2 8.51 6.43 5.23 6.89 8.32 23.4 7.06 11.8 11.7 5.95 7.76 8.44

0.13 0.13 0.12 0.13 0.14 0.13 0.13 0.12 0.00 0.12 0.13 0.14 0.13 0.14 0.13 0.13 0.12 0.12 0.12 0.13 0.14 0.13 0.13 0.14

D
a
u
A 29.6 4.95 6.30 8.67 6.26 15.9 16.8 5.85 3.78 1.00 7.84 12.8 8.25 7.09 4.88 9.75 6.84 7.82 4.66 7.99 9.80 9.54 7.59 7.09

0.13 0.13 0.12 0.12 0.13 0.13 0.13 0.13 0.11 0.00 0.14 0.14 0.13 0.14 0.12 0.14 0.13 0.14 0.12 0.14 0.14 0.13 0.14 0.13

C
o
i
1 7.78 10.1 18.1 6.30 7.18 9.07 4.67 5.30 7.70 9.89 1.00 11.4 2.63 6.98 8.70 6.59 8.44 3.02 8.54 6.14 12.2 8.40 5.73 5.51

0.13 0.14 0.12 0.12 0.13 0.12 0.12 0.13 0.13 0.13 0.00 0.13 0.09 0.13 0.13 0.13 0.13 0.10 0.12 0.13 0.12 0.12 0.13 0.12

C
o
i
2 8.38 6.25 9.09 9.42 7.50 6.29 5.58 6.38 14.2 15.3 6.73 1.00 17.0 2.05 7.71 2.62 6.99 7.29 10.1 2.23 1.17 44.1 6.49 6.26

0.12 0.12 0.12 0.12 0.11 0.12 0.13 0.13 0.13 0.13 0.12 0.00 0.13 0.08 0.12 0.09 0.13 0.13 0.12 0.09 0.04 0.12 0.08 0.13

C
o
i
3 7.45 10.0 7.68 10.6 5.84 4.56 6.34 5.12 6.56 7.38 2.81 6.69 1.00 6.75 9.09 7.09 7.04 2.35 7.05 5.88 11.7 6.36 13.9 4.87

0.13 0.12 0.12 0.12 0.13 0.12 0.09 0.12 0.13 0.14 0.10 0.13 0.00 0.13 0.12 0.13 0.12 0.07 0.13 0.13 0.13 0.11 0.12 0.12

C
o
i
4 6.34 7.85 6.86 7.58 5.84 5.76 5.73 6.36 6.40 7.65 5.73 2.06 6.28 1.00 6.79 3.22 5.68 16.8 9.23 1.86 1.96 9.38 2.06 7.18

0.12 0.12 0.12 0.12 0.11 0.12 0.13 0.13 0.13 0.13 0.13 0.08 0.13 0.00 0.12 0.10 0.13 0.13 0.12 0.07 0.06 0.13 0.06 0.13

C
o
i
5 6.57 8.36 10.3 6.42 6.72 7.27 8.52 6.09 7.00 6.72 8.84 9.85 7.22 11.9 1.00 15.8 6.47 8.84 5.69 6.80 16.8 20.7 20.8 9.33

0.13 0.12 0.13 0.13 0.12 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.00 0.12 0.13 0.13 0.12 0.12 0.12 0.13 0.12 0.13

S
y
m
4 9.93 11.9 9.21 6.49 8.22 4.73 5.11 7.21 12.3 7.29 5.25 4.15 7.73 2.84 8.11 1.00 12.0 5.55 7.88 3.46 2.97 6.26 14.2 6.58

0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.09 0.13 0.10 0.13 0.00 0.13 0.13 0.13 0.08 0.09 0.12 0.10 0.13

S
y
m
5 7.37 4.95 9.19 14.8 7.32 6.19 7.06 6.19 5.83 6.14 7.82 5.82 7.44 6.27 7.47 9.90 1.00 6.00 9.13 6.94 7.32 8.81 6.08 11.1

0.12 0.11 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.13 0.12 0.12 0.11 0.13 0.12 0.12 0.00 0.11 0.12 0.12 0.13 0.13 0.13 0.13

S
y
m
6 6.63 7.73 7.17 10.7 6.56 7.94 5.64 4.26 6.91 5.90 3.38 8.96 2.54 39.2 7.32 5.54 5.04 1.00 8.70 6.01 8.11 6.21 8.40 5.38

0.13 0.13 0.13 0.12 0.13 0.13 0.11 0.11 0.12 0.14 0.09 0.13 0.08 0.13 0.13 0.13 0.11 0.00 0.12 0.13 0.12 0.11 0.13 0.12

S
y
m
7 6.31 6.04 3.72 2.90 6.47 6.91 10.1 6.46 5.49 8.23 7.03 11.5 7.22 21.3 14.2 6.82 8.25 8.60 1.00 8.43 23.7 6.24 7.20 7.05

0.12 0.13 0.10 0.09 0.13 0.13 0.13 0.12 0.12 0.12 0.13 0.13 0.13 0.12 0.12 0.12 0.13 0.12 0.00 0.13 0.13 0.12 0.13 0.12

S
y
m
8 6.59 7.59 9.59 7.13 6.28 4.72 4.92 18.5 8.84 6.77 6.07 2.53 5.63 3.62 6.34 2.92 6.35 4.82 10.1 1.00 2.80 8.96 2.75 6.62

0.13 0.12 0.13 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.12 0.09 0.13 0.08 0.12 0.09 0.13 0.13 0.12 0.00 0.09 0.12 0.09 0.13

B
L
S
1 6.57 6.78 20.6 6.97 21.6 4.78 7.48 6.87 8.41 6.35 5.27 2.43 9.54 1.95 7.07 4.16 12.7 8.60 7.32 2.44 1.00 6.59 2.77 5.18

0.12 0.12 0.12 0.12 0.11 0.12 0.13 0.13 0.12 0.13 0.12 0.03 0.13 0.08 0.12 0.09 0.13 0.13 0.13 0.09 0.00 0.13 0.09 0.13

B
L
S
2 10.3 11.8 5.41 9.95 7.07 6.45 12.8 8.66 7.67 7.45 13.4 14.2 5.69 6.70 5.96 6.94 8.14 9.08 14.6 6.92 8.05 1.00 8.01 2.68

0.12 0.12 0.13 0.12 0.13 0.13 0.12 0.13 0.13 0.12 0.12 0.13 0.12 0.13 0.13 0.13 0.12 0.12 0.12 0.13 0.13 0.00 0.13 0.10

B
L
S
3 8.23 6.90 7.10 7.66 6.51 4.91 24.1 7.02 6.35 8.48 34.5 3.58 9.00 2.18 8.06 3.47 5.66 6.72 15.9 3.36 2.45 6.38 1.00 12.0

0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.12 0.09 0.13 0.08 0.12 0.10 0.13 0.13 0.12 0.08 0.10 0.13 0.00 0.12

B
L
S
6 8.40 8.15 6.41 5.87 6.56 8.52 6.47 18.8 10.5 5.29 55.7 6.16 5.51 8.46 5.38 7.17 8.46 7.57 18.6 7.22 10.4 2.72 5.97 1.00

0.12 0.12 0.13 0.13 0.13 0.13 0.12 0.13 0.13 0.13 0.13 0.13 0.12 0.13 0.13 0.13 0.13 0.12 0.13 0.13 0.13 0.11 0.13 0.00

Q 1.00 - 1.50 1.50 - 3.00 3.00 - 6.00 > 6.00

I 0.00 - 0.04 0.04 - 0.08 0.08 - 0.12 > 0.12

Table 3.1.: Summary of the Q (upper side of the cell) and I (lower side of the cell) optimality
measures for synthetic cascade data. Each row corresponds to an ensemble generated
with the wavelet written sideways at left (generation wavelet), while each column corre-
sponds to the results obtained while analyzing these ensembles with the wavelet written
at top (analysis wavelet). Each generated ensemble corresponds to 64 series of 4096
points and the generating cascade process is a log-Poisson of parameters D∞ = 0 and
h∞ = −1

2 . Mutual information (I) is expressed in bits. Uncertainties of two sigmas
are 0.002 for Q and 0.02 bits for I.
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1 Q 205 15

Figure 3.4.: Joint histograms of lnαC vs. lnαP for synthetically generated cascade data. This is
the exhaustive version of Figure 3.3 here showing every possible generating wavelet –
analysis wavelet combination. In each histogram, each column has been normalized
so that vertical slices correspond to the probability distribution function of lnαC

conditioned to the value of lnαP in the horizontal axis. This way, dark corresponds to
zero probability and bright corresponds to maximum probability. Values range −20
to 1 (nondimensional) in both axes, the same for all the histograms. Each histogram
has 30× 30 bins. The histograms have been arranged as in Table 3.1, i.e., generation
wavelet (row) vs. analysis wavelet (column), so that the main diagonal corresponds
to the optimal wavelet cases. In addition, we have coloured them depending on the
optimality parameter Q, Eq. (3.42) (colour brightness indicates the probability and
chrominance channels indicate the value of Q, according to the palette shown below
the histograms). Generated ensembles consist of 64 series of 4096 points following a
log-Poisson cascade with D∞ = 0 and h∞ = −1

2 .
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In Table 3.1 we present the results of the mutual information I

between η̃ and αP, and the Q parameter as defined in Eq. (3.42)

for the different combinations of ensemble and analysis wavelet. As

shown in the table, only when the processing wavelet coincides with

the optimal wavelet the values of I andQ drop to 0 and 1, respectively,

while for other, non-optimal wavelets these values are always higher.

This proves that Q has the same performance as I to assess the

optimality of a wavelet basis, but the Q parameter is less statistically

demanding.

The Q parameter is obtained by means of the average of η̃ and so,

according to the Central Limit Theorem, it converges to its theoret-

ical value with a standard deviation that depends on the number of

samplesN asN−1
2 , σ〈|η̃|〉 = σ|η̃|N

−1
2 (recall that the average in the de-

nominator of Q, 〈|η|〉, is theoretically fixed to 1√
2
due to translational

invariance). σ|η̃| depends on the wavelet and can be analytically cal-

culated for the optimal case only, which in fact is the most interesting

case as we want to have the error bar that discriminates optimal from

non-optimal wavelets. For the distribution used here, log-Poisson with

D∞ = 1 and h∞ = −1
2, it is σ|η| =

√

2−
3
4 − 1

2 = 0.31, and so the

standard deviation of Q goes as 0.62N−1
2 .

The estimation of the mutual information I has an uncertainty

of standard deviation also proportional to N−1
2 . The proportionality

constant is
√

〈(log2 px,y)2〉 + 〈(log2 px)2〉 + 〈(log2 py)2〉 [8], which for

our log-Poisson distribution is 5.66 bits. In addition, we have not

taken into account other sources of uncertainty that do not depend

on N , namely sampling discretization and the influence of unsampled

tails.

As stated in the caption of Table 3.1, the absolute uncertainty for

I is 10 times that of Q, even when their typical values are more than
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an order of magnitude smaller. For these reasons, we have analyzed

relative large ensembles (64 series of 4096 points each) to show that Q

performs equally well as I for large ensembles, butQ has the potential

to be useful for smaller ensembles.





4. Cascades are multifractal

4.1. Singularity scaling

A sign of scale invariance is the fact that the distribution of some

quantities subrogated at a variable scale evolves with the scale, but

the distributions at different scales are related by the scale ratio only.

In particular, the moments of the distribution are related by a factor

that is a power law in terms of the scale ratio.

The main assumption behind the microcanonical multifrac-

tal formalism (MMF) is the existence of power-law scaling at

each point of the system. These local power laws are governed by

the local singularity exponents, which sometimes are simply called

singularities, even when the exponent is positive and the behaviour

is not singular but regular. In Figure 4.1 we show an example of this

scaling.

Singularity components are the sets formed by all the points that

have the same value of singularity exponent. As we can see, in this

kind of systems singularity components are dense sets. In the next

section we show that singularity components are fractal, so that the

system is multifractal under the MMF. This means that the distri-

bution of singularities evolves with the scale following another power

law, where the exponent of this power law is the fractal dimension

of the component [113].

57
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Figure 4.1.: Multifractal time series corresponding to the daily quotation of Telefónica in the Span-
ish market (top) and scalogram of its increments (bottom). The processed variable
is the logarithm of the price in Euros, so that their increments are relative and non-
dimensional (these are called returns). Increments have been normalized by the scale
(r-day returns) so that they represent the finite-scale derivative. The scalogram is a
level plot that shows the value of the increment (black corresponds to the minimum;
white corresponds to the maximum) depending on the time (horizontal) and the scale
of increment (vertical). Horizontal axis goes from 1997-11-24 to 2006-06-23, a total of
2152 (trading) days. Vertical axis goes from the scale of 1 day to that of 200 days. For
proper contrast, each scale has been normalized so that its minimum is black and its
maximum is white. Inset: for the randomly picked day #1164 (red line of the scalo-
gram) it shows that the increment at scale r follows a power law: ∆r(t) = A(t) rh(t). h
is often called Hölder exponent or Hurst exponent and it takes a value of -0.21 in this
point (as we normalize by the scale, this corresponds to a divergence in the derivative;
the logarithm of the price is s(t) ∼ rh(t)+1, i.e., it has a positive exponent and so
a regular behaviour). Regression coefficient is 0.998, meaning that the estimation is
of very high quality. Similar results are obtained in all the points. To stabilize the
numerical calculation of the derivative, we have filtered it by projecting through a
Gaussian wavelet (see Section 2.2 for details).
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4.2. Connection of the microcanonical cascade with the

singularity formalism

A variable is said to be multifractal in the MMF sense [6] if an inten-

sive functional Tr acting on this variable (see Section 3.1.1) can be

characterized by local scaling relations of the type:

Tr(~x) = α(~x) rh(~x) + o
(

rh(~x)
)

(4.1)

where the symbol o
(
rh(~x)

)
means a term that is negligible in compar-

ison with rh(~x). The function that comprises the local properties of

changes in scale, h(~x), is called the singularity exponent of the signal

at the point ~x [5, 6]. A signal verifying Eq. (4.1) is said “multifractal”

(in the MMF sense) because each value h of singularity exponent is

associated to a singularity component Fh ≡ {~x : h(~x) = h} of frac-

tal character, with Hausdorff dimension D(h). The function D(h) is

known as the (Hausdorff) singularity spectrum of the signal [113].

An interesting feature of the singularity spectrum is that although

it is a geometrical feature of the multifractal, it completely defines the

statistical properties of the cascade process. In fact, Parisi and Frisch

[23] proved that the knowledge of D(h) granted the knowledge of the

distribution of the cascade variables η through the knowledge of the

multiscaling exponents τp, as expressed by Eq. (3.2). It follows that

τp is related to the singularity spectrum of the multifractal through a

Legendre transform:

τp = inf
h
{p h + d − D(h)} (4.2)

which is known as the Parisi-Frisch formula and is the cornerstone of

the canonical multifractal formalism [33, 37]. An interesting corollary

of Eq. (4.2) is that when D(h) is convex the Legendre transform
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can be inverted and hence D(h) can be expressed as the Legendre

transform of the multiscaling exponents τp, namely:

DL(h) = inf
p
{p h + d − τp} (4.3)

The functionDL(h) is the so-called Legendre singularity spectrum [23,

114, 115], which is a convex function of h because Legendre transforms

are always convex. If D(h) is convex, D(h) = DL(h); if D(h) is not

convex, DL(h) will be its convex hull.

Having to pass through Eq. (4.3) to obtain the singularity spec-

trum is not generally an issue when we have an analytical model for

τp. However, the picture is completely different when we calculate

τp from empirical data: this requires estimation of high-order pos-

itive and negative moments of Tr, what is not available unless we

have huge amounts of data to process. When the second derivative

of τp has small variation with p, this fact limits the range of solvable

singularity exponents and so it prevents the obtaining of the tails of

D(h), meaning that often we can only access its central part [37, 99].

This limitation can be important, especially if we take into account

that the left-most point corresponds to the most informative fractal

component, the so-called most singular manifold, whose precise es-

timation is of crucial relevance since it governs the dynamics of the

system and can reconstruct the whole signal [92].

A more direct approach to obtain the D(h) that eliminates the

necessity of imposing convex spectra is that of the MMF. When the

cascade variables are accessible, the MMF method to obtain theD(h)

consists in calculating the limit as κ→ 0 of the distribution of cascade

singularity exponents. The cascade singularity exponents are defined
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as follows:

hκ = logκ ηκ =
ln ηκ
lnκ

(4.4)

where ηκ is the multiplicative cascade variable that relates Tr with

TL, κ = r/L, as in Eq. (3.5). The cascade singularity exponents

represent the singularity exponents in the same sense of Eq. (4.1)

when they are obtained at the resolution level [6], i.e., when the scale

ratio κ is the one that compares the largest (whole-domain wide) scale

L with the smallest (resolution-level) scale r, meaning that r << L

or equivalently κ → 0. As the singularity components Fhκ are of

fractal character, the distribution of singularity exponents at a given

observation scale behaves as [113]:

ρ(hκ) ∼ κd−D(hκ) (4.5)

with, as stated, κ → 0. A direct obtaining of the D(h) is hence

possible through:

lim
κ→0

ln ρ(hκ)

lnκ
= d−D(h) (4.6)

where:

h ≡ h0 = lim
κ→0

hκ (4.7)

This obtaining of the D(h), based on the scaling of the singular-

ity distribution, is inspired by other alternatives to derive singularity

spectra that avoid passing through Eq. (4.2) by calculating the scaling

of measures [75, 116, 117].

Lemma: The singularity spectrum derived according to Eq. (4.6)

coincides with the Legendre spectrum, Eq. (4.3), when the singu-

larity spectrum is convex.
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Proof: First, we define a random variable hκ such that ηκ = κhκ,

i.e.,

hκ =
ln ηκ
lnκ

(4.8)

As the cascade variable ηκ is derived from a multifractal signal, the

limit in Eq. (4.6) exists and it is d−D(h) (the Hausdorff spectrum of

the signal) [6]. Therefore, the distribution of hκ has a leading order

κd−D(hκ) as follows:

ρ(hκ) = Aκκ
d−D(hκ) + o(κd−D(hκ)) (4.9)

for small values of κ. Recalling here Eq. (3.4) we have:

τp = lim
κ→0

ln〈ηpκ〉
lnκ

(4.10)

We then expand it to find that:

τp = lim
κ→0

1

lnκ
ln

(∫

dhκ κ
hκpρ(hκ)

)

= lim
κ→0

1

lnκ
ln

(∫

dhκ κ
hκpAκκ

d−D(hκ)

)

= lim
κ→0

inf
hκ
{hκp + d−D(hκ)}

= inf
h
{hp + d−D(h)} (4.11)

where we used the saddle-point approximation. Notice that Eq. (4.11)

is analogous to Eq. (4.2). Recalling that the inverse of a Legendre

transform on convex functions is another Legendre transform, if we

obtain now the Legendre spectrum, Eq. (4.3), and assuming thatD(h)

is convex we conclude DL(h) = D(h), q.e.d.

We will show now two examples of the lemma above, for two

commonly used multiplicative processes, namely log-normal and log-
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Poisson processes. A log-normal process has the following distribu-

tion:

ρ(ln ηκ) =
1

√

2πσ2κ
e
−1

2

(
ln ηκ−µκ

σκ

)2

(4.12)

Hence, the τp as defined in Eq. (3.2) are given by:

τp =
µκ
lnκ

p +
σ2κ

2 lnκ
p2 (4.13)

Let hm = µκ/ lnκ and σ2h = −2σ2κ/ lnκ (remember that κ < 1), so

Eq. (4.3)) leads to the singularity spectrum D(h):

D(h) = d−
(
h− hm
σh

)2

(4.14)

Let us show now that Eq. (4.6) leads to the same expression. No-

tice that Eq. (4.4) means that ρ(hκ) = − lnκ ρ(ln ηκ). Then, we

substitute µκ = hm lnκ and σ2κ = −σ2h lnκ
2 in Eq. (4.12) to obtain:

ln ρ(hκ)

lnκ
=

(
h− hm
σh

)2

+
ln
√

− lnκ
πσ2h

lnκ
(4.15)

and the second term vanishes as κ → 0 leading to Eq. (4.14). It

follows that Eq. (4.6) holds.

The log-Poisson case is a little bit more elaborated due to the

discrete-to-continuous passage. A log-Poisson process is defined as

ηκ = κh∞βn with n being a Poisson variable of parameter λ. Then

the distribution of ln ηκ is:

ρ(ln ηκ) =
∞∑

n=0

e−λ
λn

n!
δ(ln ηκ − h∞ lnκ− n ln β) (4.16)
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which is discrete, i.e., it only takes nonzero values for some values

of ln ηκ. The parameter h∞ is the singularity exponent of the Most

Singular Component (MSC) [5, 118], while the parameter λ is related

to the dimension of the MSC: λ = (d−D∞)(− lnκ) (both parentheses

are always positive). It is also required that 0 < β < 1. After some

simple algebra, it is obtained that τp are given by:

τp = ph∞ + (d−D∞)(1− βp) (4.17)

and through Eq. (4.3) the singularity spectrum is:

D(h) = D∞ + (d−D∞)ω(h) (1− lnω(h)) (4.18)

with

ω(h) = − 1

ln β

h− h∞
d−D∞

(4.19)

Let us now apply Eq. (4.6). From Eq. (4.4) and Eq. (4.16), the hκ

deviates from the most singular exponent h∞ in an integer number n

of contributions logκ β, namely

hκ = h∞ + n
ln β

lnκ
︸ ︷︷ ︸

∆hκ

(4.20)

which give rise to a continuum of h in the limit (− lnκ) → ∞. Let

us now define a convenient auxiliary variable, ω(hκ), as

ω(hκ) =
n

λ

=
1

d−D∞

n

(− lnκ)

= − 1

ln β

hκ − h∞
d−D∞

(4.21)



4.3. Regularization of diverging measures 65

Notice that ω(hκ) is positive and proportional to ∆hκ. We now recall

Eq. (4.16) to obtain:

ln ρ(hκ)

lnκ
=

−λ + n lnλ− lnn!

lnκ
(4.22)

Hence, according to Eq. (4.6), the singularity spectrum is:

D(h) = d− (d−D∞) + lim
κ→0

n lnλ− lnn!

− lnκ
(4.23)

Where h = hκ→0 as in Eq. (4.7). For any hκ different from h∞,

i.e., ∆hκ 6= 0, when κ goes to 0, n grows accordingly, because n is

proportional to (− lnκ). So the limit κ→ 0 is equivalent to n→ ∞:

D(h) = D∞ + lim
n→∞

n lnλ− n lnn + n− ln(
√
2πn)

− lnκ
(4.24)

where we have used the Stirling approximation to expand n!. Recall-

ing (− lnκ) = n ((d−D∞)ω(hκ))
−1 we have:

D(h) = D∞ + (d−D∞) lim
n→∞

(lnλ− lnn + 1)ω(hκ) (4.25)

which, as ω(hκ) = n/λ, leads to Eq. (4.18).

4.3. Regularization of diverging measures

Another useful extension of the MMF singularity analysis comes into

scene when it is faced to diverging measures. Such behaviour should

not be expected when the analyzed signal is an observable coming

from a real physical system. However, it is not unusual to find it in

popular mathematical models as widespread as the Brownian motion

[119] among others.
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When performing singularity analysis from a scalogram (see Fig-

ure 4.1) the operator used is a key point. Increments, even if projected

through a wavelet, are sometimes not enough to filter the singularity

exponent from polynomial long-range correlations. In these cases, the

scale-tunable variable analyzed is a measure of the signal [120, 7]. A

good measure for this purpose is:

µr(t) ≡
∫

Br

dt′ |∇s|(t′) (4.26)

A standard finite-difference discretisation at resolution scale δ of

Eq. (4.26), is the following:

µ(δ)r (t) =
N∑

i=1

δ
∣
∣
∣∇(δ)s(t + iδ)

∣
∣
∣ (4.27)

where N = r/δ is the effective number of points that contribute to

the measure. The gradient, ∇s(t), is approximated at resolution δ

as:

∇(δ)s(t) =
∆δs(t)

δ
(4.28)

where ∆δs(t) = s(t + δ)− s(t).

For well-behaved gradients, all the dependency on δ is removed

when limits are taken, i.e.,

∇(δ)s(t) →
δ→0

∇s(t) (4.29)

and µ
(δ)
r will converge to the actual measure µr as δ → 0. However,

this convergence requires that the gradient∇s is well-defined, at least
in a distributional sense. That is,∇s can diverge to∞ at some points,

but it has to follow a well-defined distribution. In other words, the
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curve |∇s|(t) can diverge in a zero-measure set of points, but it has

to be integrable.

Consider two measures defined on the same interval, approximated

with two different scale quanta δ, δ′. If ∇s is well-defined, both

converge to the same quantity, namely:

µ(δ)r (t) = µ(δ
′)

r (t) δ, δ′ → 0 (4.30)

and both approximate µr(t).

However, when the gradient ∇s is not well-defined, its discrete

estimation ∇(δ)s does depend on δ. This is typically the case of

fractal functions with infinite curve length, i.e., infinite µr. If ∇s is

not defined in a distributional sense, neither is µr, and the numerical,

finite-size estimates of the measure at a given point t, µ
(δ)
r (t) and

µ
(δ′)
r (t), cannot converge to a fixed quantity:

µ(δ)r (t) 6= µ(δ
′)

r (t) δ, δ′ → 0 (4.31)

Therefore, µ
(δ→0)
r (t), will not scale as r1+h(t) as expected. On the

contrary, it usually grows proportionally to the number of points N ,

leading to an incorrect estimation of singularity exponents: hest(t) =

0.

To solve this problem, one option would be to scale the infinitesi-

mal δ according to r, i.e., δ = r/N , thus leading to the right scaling in

r, µ
(δ)
r (t) ∼ r1+h(t). However, the signals to be analyzed are sampled

at a fixed resolution scale δ and we cannot change it.

We can proceed in a different way, providing a redefinition of the

measure, well-behaved and giving access to the true scaling properties

of the signal. In order to give a physical meaning to the measure,
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we must require that µ
(δ)
r = µ

(δ′)
r as δ, δ′ → 0. So, we propose to

regularize the measure in the following way:

µr ≡ lim
δ→0

µ
(δ)
r

Nα
N =

r

δ
(4.32)

where α is an exponent to regularize the behaviour of µr. The value of

α is not known a priori, but can be easily estimated from two different

discretizations, δ and δ′, which are assumed to be very small:

µ
(δ)
r

Nα
=
µ
(δ′)
r

N ′α (4.33)

with r = Nδ = N ′δ′. The expected value of µ
(δ)
r is:

〈

µ(δ)r

〉

= N 1+hest
〈

µ
(δ)
δ

〉

(4.34)

where hest is the incorrectly estimated singularity exponent. From

Eq. (4.27), it follows that 〈µ(δ)δ 〉 = 〈|∆δs|〉 and taking expected values

on Eq. (4.33) we obtain that:

δα−hest−1 〈|∆δs|〉 = δ′α−hest−1 〈|∆δ′s|〉 (4.35)

so we can easily estimate α from:

α = 1 + hest −
log(〈|∆δ′s|〉 / 〈|∆δs|〉)

log(δ′/δ)
(4.36)
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Notice that we can always apply the generalized measure defini-

tion, Eq. (4.32), that is, we do not need to know a priori whether

the signal s has an undefined gradient or not. If the standard mea-

sure is well-behaved µ
(δ)
r and µ

(δ′)
r directly approximate µr and, from

Eq. (4.33), it follows that α = 0 and the correct singularity expo-

nent hest = h is directly estimated (notice that h is the singularity

exponent referred to the gradient, not to the signal).





5. Application to stock market series

Stock market series are a kind of self-similar signals that can be repre-

sented by microcanonical cascades in both the logarithm of the price

and the volatility. In the following we verify this and obtain their

respective closest-to-optimal wavelets. As a promising application in

forecasting, we derive the distribution of the value of next point of

the series conditioned to the knowledge of past points and the cas-

cade structure, i.e., the stochastic kernel of the cascade process. These

results have been published in [10].

Stock markets, as well as many other trading markets, are formed

by a great diversity of interacting agents, each with their own charac-

teristics, such as reacting times, budgetary constraints and so on. As

a consequence, and due to the large amount of agents taking part in

a typical market, many econometric indicators behave in a complex,

scale-invariant fashion, a feature that has been taken into account

in many different models [69, 63, 72]. However, scale invariance can

be exploited not only in the design of models, but also in analy-

sis tools capable of extracting new information from time series of

dynamical systems. One of the most promising theories for the de-

scription of scale-invariant data concerns multifractal systems [71, 95],

and more particularly multifractal systems in the microcanonical ap-

proach [95, 96, 6]. With the aid of microcanonical cascades one can

maximize the amount of information that some scales convey about

the others. Besides, it is possible to provide an analytical model de-

71
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scribing the evolution of the series, and produce high quality forecasts

for both the returns and volatility evolution of stock market data.

In Section 5.2.1 the best wavelet from a bank of standard wavelet

bases is obtained. Then, the direct cascade model furnished by the

optimal wavelet is used to derive analytically the stochastic kernel,

namely the distribution of future values conditioned by the known

past values, and the entire Section 5.3 is devoted to this goal.

5.1. Description of the data and notation

We have processed a group of data belonging to the Spanish stock

market (IBEX). The group is formed by daily series of 35 different

assets (those with the largest liquidity in the Spanish market) during

approximately ten years (from June, 1996 to June, 2006, although

some series are slightly shorter) containing a total of 76663 points.

We do not try to correct systematic deviations by any mean. In that

sense, we always identify the ending of a session as the instant just

preceding the opening of the following, no matter the actual time

interval between them (sometimes several non-working days). An

example of this series has been shown in Figure 4.1.

We are interested in relative variations of the price, i.e., the ratio

of the absolute value to the absolute variation. For that reason, we

will work on series formed by logarithms of prices. In this way the ab-

solute variation between two consecutive instants (approximately, the

derivative with respect to time) approximates the relative variation

for the original stock series.

These series have been shown to have multifractal properties in

the sense of MMF [95, 96, 6], so they are appropriate for the present

study. Throughout the paper, time series will be represented by a dis-
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crete, time-ordered collection of values x1, x2, . . ., where xn = x(tn)

and the sampling times tn are equally spaced, ti = t0 + n∆t. For

description and forecast, we will take a finite number N of known

past values, forming a vector ~x = (x1, . . . , xN). The unknown value

at the following time instant (which would correspond to xN+1) will

be denoted with a different letter, y, to emphasize that this is the

forecast.

5.2. Scale invariant properties of the stock market

cascade

As we have already commented, cascade variables η are not scale

invariant, and neither is their distribution. However, they can be

related to scale invariant quantities through the introduction of the

Microcanonical Multifractal Formalism (MMF) [6].

According to Eq. (3.7), any wavelet coefficient αj, k is distributed

as the product of j independent dyadic cascade variables, in the way:

αj, k
.
=

j−1
∏

j′=0

η
j−j′,

[

k

2j
′

] α0,0 (5.1)

If the variables ηj, k are infinitely divisible, they verify:

ηj, k =

(
1

2

)h̃j, k

(5.2)

where h̃j, k is a scale-invariant quantity, the transition singularity ex-

ponent between the scales j and j − 1 at the point k [8, 6]. We can

thus define a punctual estimate of the singularity exponent associ-
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ated to the whole cascade at the point 2−jk by taking logarithms in

Eq. (5.1) and normalizing by the scale factor j log 2, namely:

ĥj, k = −logαj, k
j log 2

.
= hj, k − logα0,0

j log 2
(5.3)

where hj, k is a dimensionless, scale invariant field known as singularity

exponent, which is the average of the transition singularity exponents,

hj, k =
1

j

j−1
∑

j′=0

h̃
j−j′,

[

k

2j
′

] (5.4)

as we have presented in Section 4.2.

The distribution of singularity exponents as obtained at a scale j

is not scale invariant. However, it can be related to the singularity

spectrum of the underlying multifractal hierarchy [22, 37]. Let r =

2−j be the scale ratio associated to hj, k, according to Eq. (5.4). The

distribution of values of hj, k, ρ(hj, k), verifies:

ρ(hj, k) = A0r
d−D(hj, k) (5.5)

where d is the dimension of the embedding space (d = 1 for time

series) and D(h) is the function relating the value of the singularity

exponent, h, with the fractal dimension of the associated singularity

component. The maximum dimension corresponds to the fractal com-

ponent associated to the maximum of the distribution ρ(hj, k). This

maximum dimension is known, because it coincides with the dimen-

sion of the support of the multifractal, i.e., it coincides with d when

the support of the multifractal is the whole space. Then the singu-

larity spectrum can be directly retrieved from Eq. (5.5) by a log-log
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transformation [113, 118, 6]:

D(hj, k) = d +
ρ(hj, k)/ρ0
j log 2

(5.6)

where ρ0 is the maximum value of the function ρ(hj, k). The singular-

ity spectrum is a global scale invariant quantity, so for any value h0

and any j, k, j′, k′ we should observe D(hj, k = h0) = D(hj′k′ = h0).

In fact, the equality of these factors at different scales is one of the

conditions for MMF to be valid [6]. In Fig. 5.1 we show that the

experimental singularity spectra obtained from the series of returns

and from the series of volatilities (derived from our IBEX 35 dataset)

are coincident within the experimental uncertainty at three different

scales (notice that the right tail is always worse determined; see discus-

sion in [118]). Remarkably enough, return and volatility singularity

spectra are very similar. This should be expected because volatility is

a measure of the amplitude of returns. As singularity exponents de-

scribe function regularity [6], those of returns approximately coincide

with those of volatilities.
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Figure 5.1.: Singularity spectra derived from returns (left) and volatilities (right). The absolute
values of returns and the squares of volatilities have been averaged at three different
time windows, i.e., they have been projected with a box wavelet. The scales (sizes of
the windows) are as follows: +: 2 days; ×: 4 days; ∗: 8 days. For simplicity, we use a
box wavelet, as we have seen that the marginal distributions of singularity exponents,
ρhj, k

, are the same with almost any wavelet (the optimal wavelet basis is relevant only
for calculation of the parent/child joint distribution).
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Let us finally remark that the knowledge of the singularity spec-

trum D(h) provides information of the distribution of the cascade

variables at any scale. By the application of Eq. (5.3) and Eq. (5.5)

we can know the distribution of αj, k at any scale j.

5.2.1. Optimal wavelet for Spanish stock market series

We have constructed a bank of 24 orthonormal dyadic wavelet bases.

The bases included in this bank are some of the most frequently

used in the wavelet literature: Haar, Daubechies of orders 2 to 10

(signatures Dau2–9 and DauA), Symlets of orders 4 to 9 (signatures

Sym4–9), Coiflets of orders 1 to 5 (signatures Coi1–5), and spline or

Battle-Lemarié of orders 1,2,3 and 6 (signatures BLS1–3 and BLS6).

We have searched which wavelet in this bank is closest to optimality

for our dataset according to the Q criterion. Results are summarized

in Table 5.1.

It is observed that the best wavelet (in terms of optimality) in the

bank is the Battle-Lemarié wavelet of order 3. A similar experience

conducted on volatility series throws that the optimal wavelet is a

different one, Symlet of order 7 (in that case, Sym7 attains aQ = 2.22

while for other wavelets of the bank the average value of Q is 2.95

and the farthest from optimality is Haar with Q = 5.71). Should

one expect to have a relation between the optimal wavelet for log-

prices and that of volatility? In fact the answer is yes. Volatility

is the amplitude of return variations, i.e., it represents some kind of

modulus of the derivative of log-prices, and the optimal wavelet of the

derivative series is the derivative of the optimal wavelet of the series,

as explained in [91]. As shown in Fig. 5.2, Symlet of order 7 is very

similar to the derivative of Battle-Lemarié of order 3. This confirms
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BLS3 Sym6 Coi3 Sym4 Coi5 BLS1

1.87 1.95 1.95 1.99 2.00 2.01
Coi4 Coi1 Dau4 Dau3 Dau7 Dau6

2.06 2.09 2.10 2.11 2.18 2.20
Sym8 Dau8 Coi2 Sym5 Dau10 Dau2

2.20 2.24 2.27 2.35 2.44 2.45
BLS2 Dau9 Sym7 Dau5 BLS6 Haar

2.46 2.46 2.56 2.57 2.60 2.77

Table 5.1.: Histograms of child wavelet coefficient αC conditioned by the value of its parent co-
efficient αP (in logarithmic scale) and values of Q for different wavelet bases. They
are sorted from closest to farthest from optimality, according to the value of Q. All
histograms range from -6 to 3.5 in both axes. The elbow shape is a direct consequence
of loss of optimality, so its position depends on the degree of optimality (for Battle-
Lemarié 3, the best wavelet, it is located the leftmost, at −3, about 1

3 of the horizontal
axis, while for Haar, the worst wavelet, it is the rightmost, at −1, about 1

2 of the
horizontal axis).

the validity of the cascade description in terms of optimal wavelets

for both series.

5.3. Conditioned distribution of quotation values

according the cascade model

5.3.1. Settings

We will try now to determine the distribution of the series value y

conditioned to the knowledge of the vector ~x of N previous events,
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Figure 5.2.: Comparison of the optimal wavelet obtained for volatility series (Symlet of order 7)
and the time derivative of optimal wavelet obtained for the logarithm of the quotation
price (Battle-Lemarié of order 3).

which we will denote by ρy(y|~x). Due to the high dimensionality of

this function, it cannot be estimated in general and it rather needs to

be modelled. We will make use of the cascade properties that we have

introduced in the previous sections to model this conditioned PDF.

First, we assume that our wavelet basis is optimal, so:

αj, k = ηj, k αj−1,[k2 ]
(5.7)

where the variables ηj, k are all identically distributed according to a

known PDF ρη and each variable ηj, k is independent of αj−1,[k2 ]
. As

αj−1,[k2 ]
can be further decomposed as ηj−1,[k2 ]

αj−2,[k4 ]
, we conclude

that ηj, k is independent of its grand-parent ηj−2,[k4 ]
and by induction,

it is independent of all its ancestors. Notice however that this does

not imply that ηj, k is independent of ηj, k′; the horizontal correlations

must be studied and implemented.

Due to the linearity in the definition of the wavelet coefficients, αj, k

can be expressed as a linear function of y, with coefficients depending

on ~x, namely:
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αj, k = aj, k y + bj, k (5.8)

Hence, the cascade variables are expressed as:

ηj, k =
aj, k y + bj, k

aj−1,[k2 ]
y + bj−1,[k2 ]

(5.9)

As there is a deterministic relation between each cascade variable and

the variable y, the conditioned distribution of the cascade variables is

expressed as a combination of delta functions, namely:

ρ({ηj, k}|y, ~x) =
∏

j,k

δ

(

ηj, k −
aj, k y + bj, k

aj−1,[k2 ]
y + bj−1,[k2 ]

)

(5.10)

If we integrate this distribution with ρy(y|~x) we will obtain the dis-

tribution of cascade variables conditioned by ~x only, namely:

ρ({ηj, k}|~x) =

∫

dy ρy(y|~x) ρ({ηj, k}|y, ~x) (5.11)

We need to propose a model for ρ({ηj, k}|~x) so we can solve for

ρy(y|~x).

5.3.2. The model

We propose the following model for ρ({ηj, k}|~x):
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ρ({ηj, k}|~x) = κ




∏

j, k

ρη(ηj, k)



 χ
~x
({ηj, k}) (5.12)

where χ
~x
({ηj, k}) is a set function (it takes only the values 0 and

1) that restricts the values of the variables ηj, k to a subset of really

accessible values. That is, we assume that the probabilities are inde-

pendent but not every possible value of ηj, k will be visited once ~x is

fixed, which explains the normalization prefactor κ. Nevertheless, we

assume that the pyramid is large enough not to modify the shape of

the marginal distributions.

The solution

Recalling Eq. (5.11) and using Eq. (5.10) we have:

ρ({ηj, k}|~x) =

∫

dy ρy(y|~x)
∏

j,k

δ

(

ηj, k −
aj, k y + bj, k

aj−1,[k2 ]
y + bj−1,[k2 ]

)

(5.13)

We will next show that the following function:

ρy(y|~x) = κ
∏

j, k

ρη

(

aj, k y + bj, k
aj−1,[k2 ]

y + bj−1,[k2 ]

)

(5.14)

verifies the proposed model, Eq. (5.12). The values of ηj, k actually

visited are those of the shape

{

ηj, k =
aj, k y + bj, k

a
j−1,[k2 ]

y + b
j−1,[k2 ]

}

j, k

where y
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can vary but must be the same for all ηj, k in the same realization of

the pyramid. Substituting Eq. (5.14) in Eq. (5.13) we have:

ρ({ηj, k}|~x) = κ

∫

dy
∏

j, k

ρη(ηj, k) δ

(

ηj, k −
aj, k y + bj, k

aj−1,[k2 ]
y + bj−1,[k2 ]

)

(5.15)

If we assume that the pyramid is large enough so that the dis-

tribution of values ηj, k across the pyramid is not dependent on the

particular value of y considered, we can take the product of PDFs

outside the integral and hence:

ρ({ηj, k}|~x) = κ
∏

j, k

ρη(ηj, k)

∫

dy
∏

j, k

δ

(

ηj, k −
aj, k y + bj, k

aj−1,[k2 ]
y + bj−1,[k2 ]

)

(5.16)

Notice that the remaining integral is a set function with support on

the values of ηj, k which are accessible only. Hence,

χ
~x
({ηj, k}) =

∫

dy
∏

j, k

δ

(

ηj, k −
aj, k y + bj, k

aj−1,[k2 ]
y + bj−1,[k2 ]

)

(5.17)

and so Eq. (5.12) follows. We conclude that Eq. (5.14) is the expres-

sion of the distribution of y conditioned by the past values ~x according

to the cascade model.
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Asymptotic limits and stability of the solution

The stochastic model given by Eq. (5.14) is very appealing, but its

application to real data requires some care. First of all, let us realize

that the model is based on the assumption that the wavelet used is

optimal. This is a bit delicate for the case in which the denominators

aj−1,[k2 ]
y + bj−1,[k2 ]

vanish, as for these, as shown by the conditioned

histograms in Table 5.1, the cascade model is no longer valid. In fact,

for those values of y making the denominator to vanish the numerator

should also vanish, what implies aj, k/aj−1,[k2 ]
= bj, k/bj−1,[k2 ]

. Hence,

such a constraint should be implemented in an appropriate numerical

scheme in order to obtain stable results.

Another interesting limit is when |y| → ∞. In that case, the

solution collapses to a fixed value,

ρy(y|~x) −→
|y|→∞

κ
∏

j, k

ρη

(

aj, k
aj−1,[k2 ]

)

(5.18)

In order to define an integrable distribution, ρy(y|~x) →|y|→∞ 0, so

this has two consequences. First, there exists a finite maximum value

η∞ for the variable η, so ρη(η > η∞) = 0. Second, for at least one

j, k, we must have aj, k/aj−1,[k2 ]
> η∞. The first condition is in fact

trivially verified, as discussed in [95, 6]: a physical signal has always

this finite maximum. The second property implies that a well-realized

cascade must have one of the ratios aj, k/aj−1,[k2 ]
large enough. This

property can be used as a control check on the validity of the cascade

model to a given case. Let us finally remark that if the two conditions

are fulfilled hence the range of valid values of |y| is bounded, so there
is a minimum and a maximum possible value of y.
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5.3.3. Conditioned distribution and maximum likelihood

forecasting

Since ρy(y|~x) takes into account the presence of the cascade, it should
be a better predictor than just considering the marginal distribution

of returns ρr(r) centred on the last point: ρŷ(ŷ) = ρr(ŷ − xN).
1

In Fig. 5.3 we show the distributions ρy(y|~x) and ρŷ(ŷ) for a ran-

domly chosen point of the TEF series. We can see that our modelled

distribution, ρy(y|~x), is visibly skewed, meaning that the cascade at

this point is making negative returns more likely than positive ones.

We also see that this distribution is narrower than the return-derived

distribution, i.e., for this point the cascade structure is implying a

reduction of volatility. Similar results are seen in other points of all

the series.

Figure 5.3.: Distribution ρy(y|~x) for the TEF series on February 1st 2002 (light/red), compared
to the marginal distribution of returns added to the last point ρŷ(ŷ) (dark/blue). The
actual logarithm of price that day was 2.71 (circle).

The presented model is not rigid in the sense that it does not fore-

cast an exact future value, but a distribution of possible future values.

This allows us to forecast not only the most likely future value but
1With the marginal distribution of returns ρr(r) we can construct a simple predictor of y from the last price

xN as follows: ŷ = ~xN + r, with a random return r chosen according to ρr(r). xN is the last element of

vector ~x and hence the element just preceding y. Obviously, the distribution of ŷ is just the distribution

ρr shifted in its argument by −xN : ρŷ(ŷ) = ρr(ŷ − xN ).
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also the instant volatility and higher-moment information conditioned

by a given past. If we concentrate on the most probable value only,

this is a maximum likelihood estimation of the future value. We have

calculated these most likely future values sequentially and compared

them to the actual observed values, all along the series and for all

the series. Since volatility changes over time and also between series,

we have calculated the difference between actual and predicted val-

ues, divided by the estimated instantaneous one-day volatility. This

quotient is around 0.85, similar for all the series (between 0.84 and

0.87). This means that the knowledge furnished by our model allows

reducing expected risk in about 15% from an estimation of volatility

at the same point.

5.4. A cascade inference for time series: discussion

In this chapter we have addressed some important problems in the

analysis of econometric time series. First, we have shown that stock

market time series can be described in terms of cascade processes.

We have shown that both log-prices and volatility are multifractal

observables following a multiplicative process across scales. This re-

sult reveals the existence of a hierarchical structure whose analysis

can be relevant not only to improve the statistical characterization

of variables but also to forecast them. To complete the analysis, we

have used the ratio Q (Section 3.2), a new criterion to measure the

optimality degree of a wavelet in an accurate, robust and little data-

demanding way, especially appropriate for real data consisting of lim-

ited datasets. With this optimality degree estimator we have found

the closest to optimal wavelet among a bank of standard wavelets for

the logarithm of quotation price (Battle-Lemarié 3) and the volatility

series (Symlet 7).



5.4. A cascade inference for time series: discussion 85

We have also faced explicitly the problem of forecasting. In this

context, we have provided a theoretical model able to compute the

probability distribution of an unknown point of the series conditioned

to the knowledge of previous events making use of the cascade proper-

ties and knowing the optimal wavelet basis. As far as we know, this is

the first theoretical approach in these terms and opens a new door to

the problem. We have shown that in practice the distribution evolves

and changes width and skewness, i.e., at some points the cascade

favours positive returns while in others it favours negative returns, or

similarly it implies a volatility increase at some points and decrease in

others. Additionally, a simple maximum likelihood estimator shows

a discrepancy smaller than the volatility at the same point.





6. Application to oceanographic data

In ocean turbulence, as it happens in many scale invariant systems,

structures persist across scales. As we have seen in Section 3.1, this

is notably seen in wavelet coefficients: they present similar shape

through different scales, even though these are orthogonal compo-

nents. This phenomenon is modelled as a multiplicative cascade,

Chapter 3, an effective mechanism that transfers energy, informa-

tion or an analogous quantity from the largest scales to the smallest

scales.

We generically call parent coefficient αP the wavelet coefficient

at a given scale and child coefficients αC the wavelet coefficients at

the subsequent scale and corresponding position. Oceanographic data

suggest a multiplicative relation between parent and children, with a

saturation regime where additive noise becomes dominant. This is

called linear model and was first proposed in [83] through chlorophyll

maps, an almost passive scalar advected by the flow, see [82]. A

characteristic feature of the linear model is the conditioned histogram

of log |αC| vs. log |αP|, Figure 3.3, which has been reported in other

completely unrelated cascade processes such as that of natural images

[58] and stock market series [10], Chapter 5.

87
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6.1. Sea Surface Temperature (SST)

Sea surface temperature is a key variable in ocean circulation and

global climate. Atmospheric heating is mostly done from Earth’s

surface (land and sea) and this is the main cause of wind that drags

ocean surface. In addition, SST at the scales of study here can be

considered as an almost passive scalar, being advected by the flow,

and so tracing the velocity field cascade [121, 51, 122].

In this chapter, we show an analysis of SST daily maps from OS-

TIA project.1 Ocean Surface Temperature and Ice Analysis (OSTIA)

is a project leaded by the British Met Office and it provides global

high resolution SST maps. These data is produced by combining

global data of many different satellites (infrared and microwave ra-

diometers) together with in situ observations. Combination is done

with optimal interpolation model [123]. Data have a nominal reso-

lution of 1/20◦, although we subsample them to 1/10◦ as they show

significant smoothing artefacts at 1/20◦. The analyzed global daily

maps range from 2006-04-01 to 2008-06-18.

6.2. Wavelets in 2D signals

Two-dimensional functions, i.e., functions that are defined in a C
2

(or R2) domain, can also have a wavelet representation. The main

difference from the one-dimensional case (Section 2.2) is that now each

dyadic scale step reduces the degrees of freedom by 1
4 (instead of 1

2).

As a consequence, for any scale, every detail space has three times the

amount of components of the approximation space at the same scale.

In the most general case, there is no simple way to represent the bases

of the detail spaces (at most we can derive the approximation bases
1http://ghrsst-pp.metoffice.com/pages/latest_analysis/ostia.html

http://ghrsst-pp.metoffice.com/pages/latest_analysis/ostia.html
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Figure 6.1.: Image shows Sea Surface Temperature (SST) satellite map projected on the sphere.
SST image was produced from MODIS (Moderate Resolution Imaging Spectrora-
diometer) aboard NASA’s Earth Observing System (EOS) Terra satellite on January
18th 2001.

from a father wavelet φ). A more restricted case is the separable

case, in which there are three different mother wavelets ψ{1,2,3} that

spawn three orthogonal detail spaces (thus separable). We have a

particular case of this when a 1D wavelet is ported to 2D: any 1D

wavelet basis has its natural extension to 2D (and ND in general).2

In this extension, the one-dimensional mother wavelet ψ is represented

in three different orientations: ψhor, ψver, ψdiag able to represent any

2D signal. An example of 2D wavelet representation has been shown

in Figure 3.1.

6.3. Optimal wavelet for SST

As seen in previous chapters, the microcanonical cascade filters redun-

dancy and allows inter-scale inference. Not all wavelets are equivalent,

2The converse is not true: separable 2D wavelets are more general and have cases where there is no 1D

equivalent.
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Figure 6.2.: Schematic representation of the microcanonical cascade in the 2D case. For each
parent coefficient αP there are four child coefficients αC.

but we need the optimal wavelet of the system to avoid noise-like sat-

uration.

Considering the linear model Eq. (3.1) the most desirable case

would that with no saturation (no α∗), as then the child coefficients

could be easily inferred from their parent with minimal dispersion

(that of the randomness of the multiplicative variable η, which in fact

is small). In previous chapters, we have analytically shown that if the

generating process is purely multiplicative, but wavelet coefficients

are obtained with a different wavelet than that of the generation, the

result is the linear model. That generating wavelet is called optimal

wavelet. As already seen, parameter Q is a stable characterizer of

optimality. It is Q ≥ 1 always, and Q = 1 for the optimal wavelet

only.

We have calculated the values of Q in OSTIA SST maps for a set

of 24 standard wavelets – the same as those listed in Page 50 and used

in Section 3.3 and Section 5.2.1. Among these wavelets, Haar wavelet

is found to be the closest to optimal one (see Figure 6.3). This is

seen both visually and in terms of Q. The same result is observed for

the different oceanic regions. As Haar is a very compact wavelet, it

represents the temperature gradient better than other wavelets. Tem-
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perature gradients are highly relevant in both ocean and atmosphere

dynamics due to the prevalence of thermal wind as the dominant

geostrophic component. [124, 125, 84]

Daubechies 2 wavelet in North Atlantic (Q=2,9) Haar wavelet in North Atlantic (Q=1,6) Haar in S Atlantic, N Pacific, S Pacific and Indic

Figure 6.3.: Joint histograms of child wavelet coefficients conditioned to a value for the parent
wavelet coefficient. For Haar wavelet, the histogram is almost linear and saturation
regime affects only the small leftmost area. It is the closest to optimal wavelet from
the standard wavelets checked (these are the same as in Chapter 5). The same results
are obtained in all the oceanic regions.

6.4. Local anomalies

Wavelet coefficients decompose the 2D signal into three components:

zonal, meridional and a cross contribution that corresponds to the

diagonal compensation [11]. As structures in the zonal direction dom-

inate the other directions (correlation length is maximum along the

zonal direction), the cross contribution component mostly follows the

zonal component (that is why it is not shown). Anomalies of the

cascade variable η at different scales are shown. Anomalies are cal-

culated as the relative difference between the observed value and the

theoretical average value for an ideal cascade process, which is 1
2. See

Figure 6.4.

We observe that at roughly the mesoscale, heat transfer between

scales as measured by η is rather homogeneously distributed for the

zonal components, with slightly positive anomalies all over the ocean

and slight negative anomalies along tropical and equatorial wind-
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Figure 6.4.: Global maps of the local anomalies of cascade values of ocean turbulence, derived
from SST monthly averages. Depending on the coefficients compared, we have zonal
and meridional components.

driven currents. On the contrary, meridional components have strong

positive anomalies distributed on the limits of tropical and subtrop-

ical gyres, and very weak negative anomalies over the rest. We con-

clude that heat transfer between scales is rather inhomogeneously dis-

tributed on the ocean, with a preference for the mesoscale and some

greater scales, and centred around significant boundary currents.

In temperature cascades, the multiplicative variable can be re-

garded as heat transfer between scales. In conclusion, analysis of

Sea Surface Temperature maps shows that local anomalies of the cas-

cade give information about energy exchange across scales in oceanic

gyres, upwelling zones, tradewind driven currents and other currents,

something that could be used in their characterization.
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“I’m astounded by people who want to

know the universe when it’s hard enough

to find your way around Chinatown”

— Woody Allen

Complex systems are abundant in our natural environment. In

linear systems, the equations of their dynamics can be very difficult

to solve, but if they cannot be described with a single characteristic

scale, at least they can be described by a set of few characteristic

scales that are totally decoupled from each other. However, this takes

on a completely different flavour in non-linear systems, where scales

are coupled and appropriate multiscale analysis is in order. This is

the case of complex systems and, more particularly, scale invariant

systems. In these, the approach to their solution is different, and it

usually involves a multiscale basis. In this context, wavelets are one

of the most used representation paradigms.

The research context of complex systems and, particularly, scale

invariant systems and multifractals has been in constant evolution

over the last few years. Theoretical advances, either statistical (stochas-

tic processes and probability distributions) or geometrical (function

analysis and measure theory), along with fancy signal-processing al-

gorithms suited to scale invariant data (and additionally handling

aliasing, discretization and other artefacts of experimental data), have

93
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originated new tools for multifractal characterization of systems. While

ten years ago the only methods available were statistical (ranging from

rough numerical calculation of structure functions to more elaborate

methods like WTMM [37]), by the start of this thesis project, devel-

opment of geometrical methods had begun (most notably, the micro-

canonical multifractal formalism (MMF) [5]). Geometrical methods

have a clear advantage over statistical methods: they characterize

each point of the system and thus they permit new applications such

as reconstruction and prediction of signals [92, 95, 6], i.e., not only sta-

tistical characterization. Additionally, geometrical methods provide

statistical characterization with much less need of data than statistical

methods [118].

In the present thesis, we have given solutions to several problems

related to signal analysis of experimental data, under the framework

of MMF. In this way, we have worked on the generalization and im-

provement of MMF, as well as its applications to the inference and

forecasting of systems that follow a cascade process. In particular,

we have described applications to two very different systems: stock-

market series and ocean turbulence. The representation of the signal

as a microcanonical cascade plays a crucial role in these applications.

This representation can be achieved with one particular wavelet called

optimal wavelet. The most relevant theoretical achievements are the

regularization of diverging multifractal measures [7], the establish-

ment of the bridge between multiplicative variables in microcanonical

cascade processes and local singularity exponents [8], and the design of

accurate and robust measure of wavelet optimality for a given dataset

[8].

Regarding the developed applications, on stock-market time series,

we have inferred the distribution of future returns conditioned by the
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cascade and we have shown that a prediction based on this inference

improves that of an ARIMA model.1 From the distribution of future

returns, future volatility and value-at-risk can be reliably forecasted

[10, 12]. On ocean data we have characterized dynamical aspects from

optimal wavelet cascade analysis. In particular, we have observed that

anomalies in the cascade of sea surface temperature show particular

points of heat transfer between structures at different scales in the

zones of wind-driven currents, also in the gyres [10].

To achieve this, we have introduced a new formalism, that of mi-

crocanonical cascades, that marries the cascade formalisms with the

microcanonical multifractal formalism. The theoretical and compu-

tational results can be summarised as this cascade–singularity con-

nection (Section 4.2), extension of multifractal measures to functions

of non-total support or with diverging measures (Section 4.3) and a

robust criterion to obtain optimal wavelets (Section 3.2). Application

to stock-market series consisted in forecasting of future points distri-

bution, while application to ocean turbulence consisted in characteri-

zation of ocean surface dynamics from SST maps and characterisation

of inter-scale energy exchanges. We have seen that this analysis iden-

tifies tradewind-driven currents and frontogenesis points.

Both understanding – combined with appropriate modelling – of

dynamics and design of inference/forecasting algorithms have crucial

importance for the anticipation of changes in natural phenomena. In

this context, the chain formed by the three steps followed during the

thesis, namely multifractal characterization first, then obtaining of the

optimal wavelet and finally design of inference algorithms, summarizes

the direction we have followed to tackle the study of econometric time

series and ocean maps.

1ARIMA: autoregressive integrated moving average. More precisely, in that approach it was a neural-

network-weighted, seasonal ARIMA, which is an enhanced version of the simplest ARIMA.
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7.1. Future work

In research studies, answering questions often raises new ones. All

the milestones achieved in this study point to a line for forthcoming

research. This line encompasses both theoretical and empirical ap-

proaches. In the most theoretical area there is the need to determine

whether all multifractals (sensuMMF) are describable as microcanon-

ical cascades or, more precisely, whether they always have an optimal

wavelet. While some artificial multifractal models cannot have a com-

plete cascade representation, it seems that natural systems, which are

compliant with Parisi-Frisch’s statistical-geometrical duality [23], do

have this property. Another theoretical proof that is lacking is one

that would explain the formation of the same singularity spectrum

attractor in so many different signals (an observation reported in [9]),

which makes them reconstructible from a small, most singular fractal

component.

In the future lines of work there is significantly more than new

theorems to prove. There are also many promising methodological

developments that we have already improved and that we expect to

further improve in future research. The most important development

is continuous wavelet optimization. We have defined a discriminating,

robust measure of optimality (the ratio Q defined in Eq. (3.42)) and

we know the degrees of freedom that define a wavelet (in the form

of QMF or biorthogonal QMF). Implementation of these degrees of

freedom in a continuous optimization algorithm for Q leads to non-

trivial, nonlinear constraints that hinder the optimization. We have

already attempted this optimization with advanced algorithms and

we are seeking solutions to these issues.
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Finally, the most promising developments that we foresee are new

applications. The signal processing techniques presented are aimed

towards advanced characterization of signal properties. While they

also provide nice descriptive and modelling frameworks, the applica-

tion of these techniques to actual problems in empirical data is what

makes them so powerful. In this sense, we have shown that the mi-

crocanonical cascade formalism allows forecasting time series. If we

introduce the effects of horizontal correlations then the forecasting

horizon could be increased. Furthermore, by introducing the pres-

ence of multifractal sources discussed in [96], long-term dynamical

changes could also be included.

Applications to geophysical turbulence are even more promising.

We have seen that a microcanonical analysis of the temperature cas-

cade gives information about heat transfers at the ocean surface, but

this characterization goes further, since temperature is a scalar mostly

advected by the flow in such a way that its multiscale analysis gives

direct information of the velocity cascade. To demonstrate this, we

are now studying chlorophyll maps to find a coincidence with tem-

perature similar to that found in [82]. We are also analyzing the

oceanic flow from the 2+1 dimensional perspective (time evolution of

temperature maps) to improve its dynamic characterization. Indeed,

multifractal analysis of sea surface temperature has been used to pro-

vide information about the ocean velocity field [84] and analysis of the

chlorophyll concentration cascade has been used to reconstruct its ac-

quisition gaps [83]. These characterizations are likely to be improved

by the use of optimal wavelets.

There are dozens of other applications to study. The reconstructibil-

ity of multifractal structure and the minimal redundancy represen-

tation that the optimal wavelet achieves lead naturally to the field
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of signal compression. The design of recent compression algorithms

for multifractal signals such as speech and natural images is already

exploiting their multiscaling properties. A microcanonical cascade

representation is expected to improve these algorithms.
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Appendix A.

QMF construction, constraints and

biorthogonal generalization

The value of
∫
φ∗(t) dt is fixed due to orthonormality conditions,

since we require that φ ∈ R. In the following, we will see that or-

thonormality, Eq. (2.12), imposes
∣
∣
∫
φ(t) dt

∣
∣ = 1. Let us prove it in

the following lines: first of all, let us define the Fourier transforms:

φ̂(ν) =

∫ ∞

−∞
φ(t) e−i2πνt dt (A.1)

and1

ĥν =
∑

l

hl e
−i2πνl (A.2)

Also note that the Fourier transform has the well-known properties:

F [s(at)] =
1

|a| ŝ
(ν

a

)

(A.3)

F [s(t− k)] = ŝ(ν) e−i2πνk (A.4)

1 Sometimes, the discrete Fourier transform is defined also discrete, with ν = m
N

where m is the discrete

frequency and N is the size of the series. However, in this case N can be arbitrarily large, ideally ∞,

something that converts ν to a continuous variable ranging [0, 1).

101



102 Appendix A. QMF and biorthogonal constraints

Therefore, Eq. (2.20), φ(t) =
∑

l hl
√
2φ(2t− l), becomes in Fourier

space:

φ̂(ν) =
∑

l

hl
√
2 F [φ(2t− l)] (A.5)

i.e.,

φ̂(ν) =
∑

l

hl
√
2
1

2
φ̂
(ν

2

)

e−iπνl

=
1√
2
φ̂
(ν

2

)

ĥν
2

(A.6)

An iteration of this formula allows building the scaling function from

the h filter: φ̂(ν) = φ̂(0)
∏∞

j=1

(

2−
1
2 ĥ ν

2j

)

and an equivalent expression

with ĝν
2
as the first factor builds the wavelet.

The next step consists in calculating the autocorrelation of the

scaling function. Directly from its definition, a(τ ) =
∫
φ∗(t)φ(t +

τ ) dt, it follows that its Fourier transform is:

â(ν) = φ̂∗(ν) φ̂(ν)

=
∣
∣
∣φ̂(ν)

∣
∣
∣

2

(A.7)

The autocorrelation a(τ ) coincides with 〈φ0,0|φ0,τ〉 when τ ∈ Z. That

is why we define a discrete autocorrelation b(τ ) that equals a(τ ) when

τ is integer and zeros otherwise:

b(τ ) =







a(τ ) τ ∈ Z

0 τ /∈ Z

(A.8)
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or, in a more formal way2,

b(τ ) =
∑

n

a(τ ) δ(τ − n) (A.9)

and now we use a well-known property of the Fourier transform of a

Dirac’s Comb:

F
[
∑

n

δ(t− nT )

]

=
1

T

∑

n

δ
(

ν − n

T

)

(A.10)

to obtain the Fourier transform of b(τ ), i.e.,

b̂(ν) = â(ν) ∗
∑

n

δ(ν − n)

=
∑

n

∫ ∞

−∞
â(ν ′) δ(ν − n− ν ′) dν ′

=
∑

n

â(ν − n) (A.11)

But, on the other hand, a(τ ∈ Z) = 〈φ0,0|φ0,τ〉 = δKron.(τ ), which

implies that b(τ ) = δ(τ ), and so b̂(ν) = 1. Therefore, combining

Eq. (A.7) and Eq. (A.11),

1 =

∞∑

n=−∞

∣
∣
∣φ̂(ν − n)

∣
∣
∣

2

∀ν (A.12)

This relation is very general. In fact, it also applies to complex scal-

ing functions and has a direct equivalent in the biorthogonal case

(where a(τ ) is then defined as a cross-correlation a(τ ) =
(
φ ⋆ φ

)
(τ ) =

∫
φ
∗
(t)φ(t+τ ) dt and all the preceding equations hold) with φ̂

∗
(ν) φ̂(ν)

instead of
∣
∣
∣φ̂(ν)

∣
∣
∣

2

. In addition to the scaling function, the same ex-

2 Strictly speaking, both definitions do not coincide. All the deltas appeared until this point are properly

Kronecker tensors more than Dirac’s Deltas. However, the properties of the continuous Fourier transform

to be used in the following lines require Dirac’s Deltas.
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pression is valid for the wavelet and, in the derivation to follow, for

the g filter.

Eq. (A.12) is valid for any ν, in particular for ν = 0. Combining

Eq. (A.6) with Eq. (A.12),

1 =
∑

n

∣
∣
∣φ̂(n)

∣
∣
∣

2

=
∑

n

1

2

∣
∣
∣φ̂
(n

2

)∣
∣
∣

2 ∣∣
∣ĥn

2

∣
∣
∣

2

(A.13)

Notice that ĥν, as defined in Eq. (A.2), is the continuous Fourier trans-

form of a discrete series, something meaning that it is 2π periodic,

i.e., ĥν+1 = ĥν. Therefore, in the expression above only two values of

ĥn
2
are possible, depending on the parity of n: ĥ0 for even n or ĥ1

2
for

odd n. We split the sum in even (n = 2n′) and odd (n = 2n′ + 1)

terms. As n, n′ ranges all Z from −∞ to ∞ in both sums.

1 =
1

2

∣
∣
∣ĥ0

∣
∣
∣

2 ∑

even n
n′=n

2

∣
∣
∣φ̂(n′)

∣
∣
∣

2

︸ ︷︷ ︸
1

+
1

2

∣
∣
∣ĥ1

2

∣
∣
∣

2 ∑

odd n

n′=n−1
2

∣
∣
∣
∣
φ̂

(

n′ +
1

2

)∣
∣
∣
∣

2

︸ ︷︷ ︸
1

(A.14)

where we use Eq. (A.12) to simplify the sums to 1. Now, if we invert

Eq. (A.6) at ν = 0 also requiring φ̂(0) 6= 0, we obtain that:

φ̂(0) =
1√
2
φ̂(0) ĥ0 ⇒ ĥ0 =

√
2 (A.15)

i.e., the value of ĥ0 is fixed, and so they are the other integer and

half-integer values: due to Eq. (A.14), ĥ1
2
= 0. Therefore, we can go
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back to Eq. (A.6) knowing now that:

φ̂(1) =
1√
2
φ̂

(
1

2

)

ĥ1
2

︸︷︷︸
0

= 0 (A.16)

φ̂(2) =
1√
2
φ̂(1)
︸︷︷︸

0

ĥ1 = 0 (A.17)

φ̂(3) =
1√
2
φ̂

(
3

2

)

ĥ3
2

︸︷︷︸
0

= 0 (A.18)

φ̂(4) =
1√
2
φ̂(2)
︸︷︷︸

0

ĥ2 = 0 (A.19)

· · ·

Only φ̂(0) remains. Therefore, Eq. (A.12) leads to:

1 =
∣
∣
∣φ̂(0)

∣
∣
∣ (A.20)

Since the wavelet coefficients have a physical meaning in a multifrac-

tal signal, it seems reasonable to require that
∫
φ(t) dt ∈ R. If not,

we could still have signals with only real wavelet coefficients, but that

would not be the case for every signal. Possibly this assumption is

even more restrictive and requires that the wavelet and the scaling

function are entirely real-valued. However, this is what we have al-

ready assumed in the beginning of the section.

In the biorthogonal case, 1 = φ̂
∗
(0) φ̂(0). A totally equivalent

derivation can be done for the wavelet. The only difference is that,

due to
∫
ψ(t) dt = 03, ĝeven = 0 and |ĝodd| =

√
2, and further

derivations lead to a general relation between h and g for cases that

are not linear in phase.

3 In fact, this is a requirement for the wavelet to be admissible (so that the wavelet

series converges), but can also be obtained from the fact that, as φ̂(0) 6= 0,

(φ ⋆ ψ) (τ ∈ Z) = 0 ⇒∑

n φ̂
∗(ν + n) ψ̂(ν + n) = 0⇒

ν=0
ψ̂(0) = 0.
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A.1. Biorthogonal generalization

A relaxation of the phase linearity or the orthonormality implies a

double optimization with non-trivial constraints. Let us regard a

generalization to a biorthogonal case. First, we recall Eq. (A.14) but

in its biorthogonal shape and for any ν:

1 =
1

2
ĥ
∗
ν ĥν +

1

2
ĥ
∗
ν+1

2
ĥν+1

2
(A.21)

Its obtaining comes from Eq. (A.6) and its dual φ̂
∗
(ν) = 1√

2
φ̂
∗(
ν
2

)
ĥ
∗
ν
2
,

following the same expansion shown before, and the simplification

ν = 0 in Eq. (A.13) is not done, being instead:

1 =
Eq. (A.12)

∑

n

φ̂
∗
(ν ′ − n) φ̂(ν ′ − n) ∀ν ′ (A.22)

=
ν′
2 =ν

∑

n

1

2
φ̂
∗(
ν − n

2

)

φ̂
(

ν − n

2

)

ĥ
∗
ν−n

2
ĥν−n

2
(A.23)

For ν = 0, Eq. (A.6) and its dual lead to ĥ
∗
0 = ĥ0 =

√
2 and, due

to Eq. (A.21), ĥ
∗
1
2
= ĥ1

2
= 0. There is another constraint for ν = 1

4,

provided that h and h are real, i.e., ĥν+1
2
= ĥ∗1

2−ν
and so Eq. (A.21)

becomes:

1 = ℜ
[

ĥ
∗
1
4
ĥ1

4

]

= ℜ
[

ĥ1
4

]

ℜ
[

ĥ1
4

]

+ ℑ
[

ĥ1
4

]

ℑ
[

ĥ1
4

]

(A.24)

or 1 = ĥ1
4
ĥ1

4
if h is symmetrical (and so ĥ is real). In analogy,

1 = ℜ
[

ĥ3
4
ĥ∗3

4

]

= ℜ
[

ĥ3
4

]

ℜ
[

ĥ3
4

]

+ ℑ
[

ĥ3
4

]

ℑ
[

ĥ3
4

]

(A.25)
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or 1 = ĥ3
4
ĥ3

4
if h is symmetrical.

Phase linearity

The phase linearity condition is then obtained from the fact that:

1 =
1

2
ĝ
∗
ν ĝν +

1

2
ĝ
∗
ν+1

2
ĝν+1

2
(A.26)

which gives ĝ
∗
0 = ĝ0 = 0 and ĝ

∗
1
2
ĝ1
2
= 2, and the dual orthogonalities:

0 =
∑

n

ψ̂
∗
(ν − n) φ̂(ν − n) (A.27)

0 =
∑

n

φ̂
∗
(ν − n) ψ̂(ν − n) (A.28)

i.e.,

0 =
1

2
ĝ
∗
ν ĥν +

1

2
ĝ
∗
ν+1

2
ĥν+1

2
(A.29)

0 =
1

2
ĥ
∗
ν ĝν +

1

2
ĥ
∗
ν+1

2
ĝν+1

2
(A.30)

or multiplying Eq. (A.29) by Eq. (A.30):

ĝ
∗
ν ĝν ĥ

∗
ν ĥν = ĝ

∗
ν+1

2
ĝν+1

2
ĥ
∗
ν+1

2
ĥν+1

2
(A.31)

now combining this with Eq. (A.21) and Eq. (A.26) results in

1 =
1

2
ĝ
∗
ν ĝν +

1

2
ĥ
∗
ν ĥν (A.32)
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and here we can impose the biorthogonal phase linearity4:

gl = (−1)l h∗1−l (A.33)

gl = (−1)l h
∗
1−l (A.34)

A.2. A possible wavelet dual

As seen, a QMF filter does not univocally define its dual orthogonal

filter5. However, given a filter, there is a usual strategy to build one

of their possible dual filters [126]. To do this, notice that Eq. (A.12)

requires orthonormality, but in a biorthogonal case we will have:

q(ν) =
∑

n

∣
∣
∣φ̂(ν − n)

∣
∣
∣

2

(A.35)

which is the same as:

1 =
∑

n

∣
∣
∣φ̂(ν − n)

∣
∣
∣

2

q(ν − n)
(A.36)

4In the general case, Eq. (A.29) and Eq. (A.30) respectively imply that we can express:

ĝ
∗

ν+ 1

2

= − ĝ
∗

ν

ĥν+ 1

2

︸ ︷︷ ︸

λ
∗

(ν)

ĥν ĝν+ 1

2

= − ĝν

ĥ
∗

ν+ 1

2

︸ ︷︷ ︸

λ(ν)

ĥ
∗

ν

where λ and λ are 2π periodic, π antiperiodic, i.e., λ
(
ν + 1

2

)
= −λ(ν) (due to Eq. (A.29) and Eq. (A.30))

and of unitary modulus (due to Eq. (A.32), except for φ̂(0) = 0 ⇒ ĥ0 = 0 ⇒ λ = 0): λ(ν) = e−i2πΦ(ν).

Then, the restriction to Φ (nothing to do with our scaling function φ) is: Φ
(
ν + 1

2

)
= Φ(ν) + 1

2 . Phase

linearity is obtained imposing Φ(ν) = Φ(ν) = ν.
5 However, due to Eq. (2.25),

∑

l hl hl+2n = δ(n). Then let H(l) = hl
∑

p δ(l − p) and let a(n) =
∫
H

∗

(l +

n)H(l) dl
∑

p δ(n− 2p) = δ(0), in Fourier space we have that:

1 = â(ν) = Ĥ
∗

(ν) Ĥ(ν)
︸ ︷︷ ︸

c(ν)

∗
(

1

2

∑

p

δ
(

ν − p

2

)
)

i.e.,

2 =
∑

p

∫

c(ν − ν′) δ
(

ν′ − p

2

)

dν′ =
∑

p

c
(

ν − p

2

)

=
∑

p

Ĥ
∗
(

ν − p

2

)

Ĥ
(

ν − p

2

)
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where we used that, by definition in Eq. (A.35), q(ν) is 2π periodic.

Then a scaling function that satisfies Eq. (A.22) is:

φ̂(ν) =
φ̂(ν)

q∗(ν)
(A.37)

and since q∗ = q,

ĥν = ĥν
q(ν)

q(2ν)

= ĥν

∑

n

∏

j
1
2

∣
∣
∣ĥν+n

2j

∣
∣
∣

2

∑

n

∏

j
1
2

∣
∣
∣ĥ2ν+n

2j

∣
∣
∣

2 (A.38)

Numerical implementation Numerical difficulties can easily arise in a

numerical calculation of Eq. (A.38). In fact, the dummy index n

ranges from −∞ to ∞, while j goes from 1 to ∞. Despite so many

terms contributing, high |n| terms vanish quickly due to the influence

of factors near ĥ1
2
= 0. A rough analysis of

∑

n

∏

j

1

2

∣
∣
∣ĥν−n

2j

∣
∣
∣

2

shows that the n = 0 term is mainly influenced by the first (j = 1)

factor, the others quickly approaching 1 (as ν ′ =: ν−n
2j

→ 0). The

other terms are also highly influenced by their first factors (roughly,

until |ν ′| < 1
2). In particular, terms where |ν − n| is very high have

many factors far from this regime and so many chances that some ν ′

(modulo 1) is close to 1
2.

An interesting strategy (to be tested) may consist in imposing a

maximum value for |n|. This limit and the discretisation limit of ĥν
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(limit of the hk series, K) naturally impose a limit to j:

Jmax = [log2 (K(nmax + 1)− 1)] + 1 (A.39)

with the square brackets meaning ‘integer part of’. When |n| is high,
the actual value of ν has little relevance: we can numerically compute

a known q(ν) and subtract the excess from its theoretical value to

all the other terms. If ĥ1
2
= 0 is required, no numerical result other

than q(0) = 1 is possible, and the same happens for the ν = 1
2 case.

However, the ν = 1
4 and ν = 3

4 cases may be useful: for the most

general, non-symmetric case, Eq. (A.24) and Eq. (A.25) lead to:

1 = ℜ
[

ĥ
∗
1
4
ĥ1

4

]

= ℜ
[

q
(
1
4

)

q
(
1
2

)ĥ∗1
4
ĥ1

4

]

=
q
(
1
4

)

q
(
1
2

)

∣
∣
∣ĥ1

4

∣
∣
∣

2

(A.40)

and analogously,

1 =
q
(
3
4

)

q
(
1
2

)

∣
∣
∣ĥ3

4

∣
∣
∣

2

(A.41)

where we have simplified the denominator, as q(ν) is 2π periodic. All

the terms that contribute to q(ν) are real and positive, also ĥ3
4
= ĥ∗1

4
.
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multifractal formalism: a geometrical approach to multifractal

systems. Part I: Singularity analysis. Journal of Physics A,

41:015501, 2008. doi: 10.1088/1751-8113/41/1/015501.

[7] O. Pont, A. Turiel, and C. J. Pérez-Vicente. Application of the
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