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Résumé en français

Les travaux présentés dans ce mémoire abordent la problématique de l’ interpré-
tation de plans cadastraux colorés anciens. Dans ce contexte, ils se trouvent à la
confluence de différentes thématiques de recherche telles que le traitement du signal
et des images, la reconnaissance de formes, l’intelligence artificielle, la communica-
tion Homme / Machine et l’ingénierie des connaissances. En effet, si ces domaines
scientifiques diffèrent dans leurs fondements, ils sont complémentaires et leurs ap-
ports respectifs sont indispensables pour la conception d’un système d’interprétation
fiable et adaptable. Dans ce contexte pluridisciplinaire, le mémoire est organisé en
5 parties et l’articulation des différents chapitres est présentée en figure 1.

Traitement de la couleur

S’il est vrai qu’un pixel couleur pris isolément n’a que peu de sens, à contrario, la
masse de million de pixels constituant une image vaut bien des milliers de mots. Le
choix d’un espace couleur pertinent est un choix crucial quand il s’agit de constru-
ire des traitements d’image tels que la segmentation couleurs ou la reconnaissance
d’objets. Partant de ce constat, nous abordons de façon générique la question suiv-
ante: Quel est le meilleur espace de représentation de la couleur dans un but de
traitement d’image pour une image donnée? Dans cette partie, un système de sélec-
tion d’espace couleur est proposé. Partir d’une image Rouge, Vert, Bleu (RVB)
chaque pixel est projeté dans un vecteur composé de 25 couleurs primaires. Ce
vecteur est alors réduit à un espace couleur hybride composé des trois couleurs pri-
maires les plus importantes. Seules trois composantes couleur sont retenues pour
être conforme avec les formats standards en image. Ainsi, le paradigme est fondé
sur deux principes, les méthodes de sélection de caractéristiques et l’évaluation d’un
modèle de représentation. La qualité d’un espace de couleur est évaluée en fonction
de sa capacité à faire des groupes de couleur homogène et par conséquent d’accroître
la séparabilité des données. Notre cadre apporte une réponse au choix d’un espace de
représentation significatif dédié aux applications de traitement d’image s’appuyant
sur des informations couleur. Les espaces couleurs standards ne sont pas conçus
pour traiter des images spécifiques (images médicales, les images de documents), de
sorte qu’il existe un besoin réel pour des modèles couleurs adaptés et spécifiques.

Interprétation de plans cadastraux

Dans cette partie, une méthode d’extraction d’objets à partir de cartes anciennes
couleurs est proposée. Cette méthodologie vise à localiser le texte, les quartiers ainsi
que les parcelles à l’intérieur de chaque carte cadastrale. Tout d’abord, un modèle



v

Figure 1: Organisation du manuscrit de thèse

de plan est introduit, cette représentation de la connaissance sur notre sujet a été
élaborée en collaboration avec des historiens et des architectes, des experts du do-
maine. Puis, les aspects couleurs sont pris en compte par l’utilisation d’algorithmes
de sélection d’espace couleur hybride présentés au chapitre 3. Ensuite, des traite-
ments d’image spécifiques ont pour but de localiser les différents objets disposés
dans les plans de cadastre. Ces détecteurs sont spécialement conçus pour récupérer
et identifier les différents composants tels que des caractères de texte, le cadre en-
tourant chaque plan, les quartiers, les rues, et les parcelles. Ces outils spécifiques
sont exécutés séquentiellement dans l’objectif d’obtenir leurs limites. Dans une
dernière phase, ces éléments sont insérés dans une représentation à base de graphe.
Cette représentation structurelle est mise en concordance avec la modélisation de
connaissance (méta-modèle) définie par les experts. Cette comparaison est effectuée
grâce à un algorithme de mise en correspondance de graphes. La "Métamodélisa-
tion" fait référence à la construction d’un ensemble de «concepts» (classes, relations,
etc) dans un domaine particulier. Un modèle est une abstraction des phénomènes du
monde réel et un méta-modèle est encore une autre abstraction mettant en évidence
les propriétés du modèle lui-même.
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Evaluation de la vectorisation des plans de cadastre

Cette partie présente la conception d’un banc d’essai pour évaluer les systèmes de
conversion Image vers Vecteur. Plus précisément, ce protocole est conçu pour évaluer
la performance des systèmes de détection et d’approximation de polygones. Notre
contribution est double, un algorithme de mise en correspondance d’objets pour lo-
caliser spatialement les erreurs dans les documents vecteurs, puis une distance entre
graphes qui rend compte de la précision de l’approximation polygonale. L’évaluation
de performance intègre de nombreux aspects et facteurs fondés sur des unités uni-
formes tout en restant générique et sans seuil. Ce protocole d’évaluation de per-
formance donne une comparaison scientifique à un niveau polygone de la cohérence
d’un document vectorisé. Cet outil utilise des méthodes concrètes d’évaluation de
performance qui peuvent être appliquées à des systèmes complets de polygonisation.
D’ailleurs, un système dédié à la vectorisation de plans cadastraux a été évalué selon
ce point de vue et les résultats en termes de qualité de détection et de précision de
l’approximation polygonale sont présentés dans le manuscrit. Ensuite, le comporte-
ment de notre série d’indices a été analysé en faisant augmenter le niveau de dégra-
dation de deux jeux de tests contenant des images de documents. Par cette mise
à l’épreuve d’un algorithme de polygonisation reconnu, nous démontrons que notre
protocole peut révéler les forces et les faiblesses d’un système. Enfin, nous espérons
que ce protocole d’évaluation permettra d’évaluer sous un autre angle, plus proche
de la sémantique et des objets manipulés par l’homme, les outils de retro-conversion
de documents de la communauté de la reconnaissance de graphiques.

Une mise en correspondance de graphes et une distance
entre graphes fondées sur l’ assignement de sous-graphes

Au cours de la dernière décennie, l’utilisation d’objet représenté à base de graphe
a considérablement augmenté. En effet, la représentation d’objet par le biais de
graphe a de nombreux avantage sur la représentation traditionnelle par des vecteurs
de caractéristiques. Par conséquence, les méthodes pour comparer les graphes sont
devenus de premier intérêt. Dans cette partie, une méthode de mise en correspon-
dance de graphes et une distance entre graphes relationnels attribués sont définies.
Les deux approches sont fondées sur la décomposition en sous-graphes. Dans ce
contexte, les sous-graphes peuvent être considérés comme des caractéristiques struc-
turelles extraites à partir d’un graphe donné, leur nature leur permet de représenter
l’information locale d’un nœud racine. Étant donné deux graphes g1, g2, la mise
en correspondance peut être exprimé comme l’adéquation minimale entre les sous-
graphes de g1 et les sous-graphes de g2 et ceci en respectant une fonction de coût.
Cette métrique entre les sous-graphes découle de distances entre graphes faisant
références dans le domaine. Par des expérimentations sur 4 jeux de données dif-
férents, la distance induite par mise en correspondance de graphes a été appliquée
pour mesurer l’exactitude de l’appariement de graphes. Enfin, nous démontrons une
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importante accélération par rapport aux méthodes conventionnelles tout en gardant
une précision pertinente.

Recherche de plans cadastraux par le contenu

Traditionnellement, lorsqu’un développeur d’applications veut interroger par
l’exemple un entrepôt d’images de scènes naturelles, les méthodes classiques se con-
tenteront de comparer, au niveau pixel, l’image requête à toutes les images du
corpus. Quand on parle des images de documents, le scénario est assez différent
car nous sommes en présence d’images créées par l’homme pour l’homme. Cela
fait une énorme différence qui permet des comparaisons et une exploration à des
niveaux supérieurs. Deux autres stades voient le jour: (a) Les images de docu-
ments peuvent être vectorisées, et la collection d’images peut être donc interrogée
au niveau vecteur. (b) Les images de documents possèdent une sémantique forte
et une navigation utilisant une représentation structurelle de la connaissance est
devenue possible.



Abstract

This thesis tackles the problem of technical document interpretation applied to
ancient and colored cadastral maps. This subject is on the crossroad of different
fields like signal or image processing, pattern recognition, artificial intelligence, man-
machine interaction and knowledge engineering. Indeed, each of these different
fields can contribute to build a reliable and efficient document interpretation device.
This thesis points out the necessities and importance of dedicated services oriented
to historical documents and a related project named ALPAGE. Subsequently, the
main focus of this work: Content-Based Map Retrieval within an ancient collection
of color cadastral maps is introduced. The organization of this thesis paper is in
five chapters. The interaction between chapters is illustrated in figure 2 and a short
description of each chapter is put forward as follows:

Introduction

Chapter 1 gives the introduction to the project and provides overall concept of this
thesis. We introduce a general aspect of document image analysis, the necessities
and importance of historical documents and the related project named ALPAGE.
Next, we focus on coloured cadastral maps and define the scope and objectives of
this study.

Color Map Understanding: State of the art

In the present chapter, we discuss how to bring an automation of the single modules
of a Raster to Vector conversion system to fullest possible extent. GIS can be
categorized in two types, analytical and register GIS. Analytical GIS do not require
an extremely high level of geometric exactness in the cartographic materials, whereas
they do require fast processing of a large number of vector layers. An example of
analytical GIS is GIS developed to solve territorial planning problems, while an
example of a register GIS is GIS developed for a cadastral system. Mainly, we focus
on the case of register GIS with the aim is to describe and highlight the global
concepts and crucial points of our problem.

Color Processing

The choice of a relevant color space is a crucial step when dealing with image
processing tasks (segmentation, graphic recognition. . . ). From this fact, we address
in a generic way the following question: What is the best representation space for a
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Figure 2: Thesis organization

computational task on a given image? In this chapter, a color space selection system
is proposed. From a RGB image, each pixel is projected into a vector composed of
25 color primaries. This vector is then reduced to a Hybrid Color Space made up of
the three most significant color primaries. Only three color components are retained
to be conformed with standard image formats. Hence, the paradigm is based on two
principles, feature selection methods and the assessment of a representation model.
The quality of a color space is evaluated according to its capability to make color
homogeneous and consequently to increase the data separability. Our framework
brings an answer about the choice of a meaningful representation space dedicated
to image processing applications which rely on color information. Standard color
spaces are not well designed to process specific images (ie. Medical images, image
of documents) so a real need has come up for a dedicated color model.

Cadastral map interpretation

In this chapter, an object extraction method from ancient color maps is proposed.
It consists of the localization of frame, text, quarters and parcels inside a given
cadastral map. Firstly, a model of cadastral map is introduced; this knowledge rep-
resentation was elaborated in collaboration with historians and architects, experts
in this domain. Secondly, the color aspect is inherited from the color restoration
algorithm and the selection of a relevant hybrid color space presented in chapter 3.
Thereafter, dedicated image processing aim at locating the various kinds of objects
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laid out in the raster. These especially designed detectors can retrieve different
components such as characters, streets, frame, quarters and parcels. These specific
tools are run successively in the objective to identify boundaries of the different
elements. In a last phase, these elements are put into a graph-based representation
to be further compared with the meta-model defined by the experts. This com-
parison is carried out thanks to a graph matching algorithm. "Metamodeling" is
the construction of a collection of "concepts" (things, terms, etc.) within a certain
domain. A model is an abstraction of phenomena in the real world; a metamodel is
yet another abstraction, highlighting properties of the model itself.

Evaluation of Cadastral Map processing

This chapter presents a benchmark for evaluating the Raster to Vector conversion
systems. The benchmark is designed for evaluating the performance of graphics
recognition systems on images that contain straight lines (segments) and polygons
(solid) within the images. Our contribution is two-fold, an object mapping algorithm
to spatially locate errors within the drawing, and then a cycle graph matching dis-
tance that indicates the accuracy of the polygonal approximation. The performance
incorporates many aspects and factors based on uniform units while the method
remains not rigid (threshold-less). This benchmark gives a scientific comparison at
two levels of coherency and uses practical performance evaluation methods that can
be applied to complete vectorization systems. It is also the opportunity to compare
our unsupervised evaluation method defined in chapter 4 with a ground-truth based
one. Our system dedicated to cadastral map vectorization was evaluated under
this benchmark and its performance results are presented in this chapter. We hope
that this benchmark will help assess the state of the art in graphics recognition
and highlight the strengths and weaknesses of current vectorization technology and
evaluation methods.

A Graph Matching method and a Graph Machting Dis-
tance based on probe assignments

During the last decade, the use of graph-based object representation has drastically
increased. As a matter of fact, object representation by means of graphs has a
number of advantages over feature vectors. As a consequence, methods to compare
graphs have become of first interest. In this chapter, a graph matching method and
a distance between attributed graphs are defined. Both approaches are based on
subgraphs. In this context, subgraphs can be seen as structural features extracted
from a given graph, their nature enables them to represent local information of
a root node. Given two graphs G1,G2, the univalent mapping can be expressed
as the minimum-weight subgraph matching between G1 and G2 with respect to a
cost function. This metric between subgraphs is directly derived from well-known
graph distances. In experiments on four different data sets, the distance induced
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by our graph matching was applied to measure the accuracy of the graph matching.
Finally, we demonstrate a substantial speed-up compared to conventional methods
while keeping a relevant precision.

Content-Based Map Retrieval

Traditionally when facing a warehouse of natural scenes to be queried by examples;
Conventional methods would jut look at the system level comparing the query im-
ages to all the images within the corpus. By system level, we mean the pixel image
in its self sufficient way, pixels or a gathering of pixels. When talking about images
of documents, the scenario is fairly different because we are dealing with images
created by humans and dedicated to humans. This makes a huge difference and
allows comparisons and an exploration at higher levels. Two more stages can be
drawn : (a) Image of documents can be meaningfully vectorized, and the collection
can be addressed thinking at the vector level. (b) Document images have a strong
semantic and a navigation using a model representation has come true.
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1.1 Forewords

This chapter provides the overall concepts of the thesis. It starts from introducing
a general aspect of document image analysis. Then, it points out the necessities
and importance of dedicated services oriented to historical documents and a related
project named ALPAGE. Subsequently, the main focus of this work: Content-Based
Map Retrieval within an ancient collection of color cadastral maps is introduced.
The scope, objectives and organization of this thesis are provided at the end of this
chapter.

1.2 Document Image Analysis

With the improvement of printing technology since the 15th century, there are a huge
amount of printed documents published and distributed. The printed book quickly
becomes a regular object in the world. By 1501 there were 1000 printing shops in
Europe, which had produced 35,000 titles and 20 million copies1. Since that time,
a vast amount of books have been falling into decay and degrading. This means not
only the books themselves are disappearing, but also the knowledge of our ancestors.
Therefore, there are a lot of attempts to keep, organize and restore ancient printed
documents. With the best digital technology, one of the preservation methods of
these old documents is the digitization. However, digitized documents will be less
beneficial without the ability to retrieve and extract the information from them,
which could be done by using techniques of document analysis and recognition.

1http://communication.ucsd.edu/bjones/Books/printech.html
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Figure 1.1: Hierarchy of document image processing; adapted from [Kasturi 2002]

Document analysis or more precisely, document image analysis (DIA), is the
process that performs the overall interpretation of document images. [Nagy 2000]
gave the short definition of DIA as follow. "DIA is the theory and practice of
recovering the symbol structure of digital images scanned from paper or produced by
computer". DIA is the subfield of digital image processing that aims at converting
document images to symbolic form for modification, storage, retrieval, reuse, and
transmission. In practice, a document analysis system performs the basic tasks
of image segmentation, layout understanding, symbol recognition and application
of contextual rules in an integrated manner. The objective of document image
analysis is to recognize the text and graphics components in images and to extract
the intended information as a human would. Two components of document image
analysis i.e. textual processing and graphical processing can be defined (see figure
1.1).

Figure 1.2 illustrates a common sequence of steps in document image analy-
sis. After data capturing, the image undergoes pixel-level processing and feature
analysis, then text and graphics are treated separately for recognition of each.

In view of an analysis of ancient documents, it requires the same concept as men-
tioned above. However, the task is more challenging, the text/graphic separation
question is more delicate to address. A strict data flow separation between the text
and graphic processing chains assumes that a "good" text/graphic segmentation
within the document is always possible. This hypothesis is not always easy hold
when documents become denser and denser. This is because ancient documents
hold more significance and more complexities than normal one. Firstly, ancient
documents have historical meanings. Some negligible details in recent document



1.2. Document Image Analysis 3

Figure 1.2: A sequence of steps for document analysis; adapted from [Kasturi 2002]

structure could be very important in historical domain. Secondly, most ancient
documents are degraded and susceptible to decay over time. Thus the digitization
process has to be handled carefully and precisely with higher resolution. In addition,
due to the large volume of ancient documents, the capturing device must support
both qualitative and quantitative problems. Thirdly, the layouts or structures of
ancient documents are organized differently. There are complex arrangements of
texts and graphics including the styles and fonts used in publishing. Finally, an-
cient documents are the targets of different users; starting from general users to
experts, consequently, document understating systems should take this fact into ac-
count. This raises the question of how to structure the information extracted from
ancient documents to be able to respond to different user requirements. Usages and
user needs are quite hard to circumscribe due to their plurality. Usage can either
individual or collective which condition the way to structure the information.

The effort to manage ancient documents so far seems to be in progress. In
France, firstly, this idea was generally fragmented. There was a lack of global
and strategic management tools and no common policies on handling of ancient
document resources and on setting priorities in management. This results in the
threat of waste in resources, efforts and investments. Digitization is also costly
and needs huge budgets, often based on public funding. Fortunately, from the
support of French government and the collaboration of many research laboratories,
the projects called MADONNE and NAVIDOMASS were set up for the purpose
of preserving and exploiting ancient documents. These pioneer projects opened
the way to more and more challenging relations between ICT-HSS communities
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(Information & Communications Technology - Humanities and Social Sciences), for
instance, the ALPAGE project came to birth into this frame of mind. French and
European initiatives such as the french digital library GALICA2, and the British
Library3 show the engagement for this cause. Especially, to get out of the recession,
a huge investment has been approved by the french government. A digitalization
program supported by a 750 M€ fund is on the way. This effervescence denotes
the matter of the digitization of our cultural heritage.

1.3 Historical Document Project: ALPAGE

ALPAGE4 stands for diachronic analysis of the Paris urban area: a geomatic ap-
proach (in french, AnaLyse diachronique de l’espace urbain PArisien: approche GE-
omatique). It is a research project funded by the French government in the French
National Research Agency (L’Agence Nationale de la Recherche)5. The aim of this
project is to design methods for going beyond plain digitization projects of historical
documents. Previously, similar projects tend to yield large databases of images with
less interest in structuring, indexing and navigating on them. This is why the AL-
PAGE project tries to investigate the use of document image analysis methodology
for providing useful indexing and browsing features in these large collections.

ALPAGE is thus focused on vectorization, indexing, organization and incremen-
tal enrichment of heritage data, in order to provide general and reliable services
to users, including researchers in human and social sciences, and to work towards
interoperability of data and browsing tools. The ALPAGE project was launched in
2006 for three years. The project collaboration gathers 4 laboratories.

• LAMOP from the Paris 1 University, carrying the project, which is composed
of historians and medievist archeologs that are specialists of Paris.

• LIENSS from La Rochelle University grouping geomaticians

• ArcScan from Paris 10 University, grouping geomaticians that are able to deal
with GIS in Archeology. Archaeologists and Art historians that are Paris
experts.

• L3i from La Rochelle University, grouping computer sciences researchers, spe-
cialized in pattern recognition and vectorization.

Concerning, document understanding, research themes in Alpage project are in
four directions as shown in Figure 1.3. They are (1) color processing, (2) document
layout analysis, (3) graphics vectorization, (4) content-based image retrieval (CBIR).

2http://gallica.bnf.fr/
3http://www.bl.uk/
4http://lamop.univ-paris1.fr/alpage/index.php
5http://www.agence-nationale-recherche.fr
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Figure 1.3: Research themes in Alpage project

1.3.1 Scientific background and objectives

This project aims at implementing mutualized working tools for both ICT-HSS
communities, allowing to develop research relating to Parisian urban space, namely,
PRAI software (Pattern Recognition and Artificial Intelligence) adapted to ancient
cadastral maps, and a GIS (Geographical Information System) including cadastral
and historical layers. It is a new approach to the urban environment, truly integrat-
ing the spatial dimension, which could be implemented thanks to the contributions
of recent disciplines such as computer vision, geomatic and historians. The choice
of Paris is explained both by the interest that the French capital city inspires in the
scientific communities and above all by the extraordinary documentary potential:
historical documents indeed exist, yet they were insufficiently utilized up to this
point due to the lack of appropriate tools. The GIS allows starting from the seman-
tic data in order to consequently consider the spatial dimension of the objects. The
GIS also allows considering the urban space as a source, from which one can gener-
ate a historical discourse, having at the same time political, pedagogic and scientific
implications. The political aspect consists of contributing to the management of
the Parisian patrimony, allowing the public services in charge of the management
operations to better integrate the patrimonial dimension of the examined projects.
From a pedagogic perspective, this tool will be used as an aid to teaching in the
concerned universities and schools. In the long run, we expect to ensure a broader
diffusion of this tool via the internet, thanks to flexible and adapted formats. Hav-
ing in its origins the will to develop the interdisciplinarity within the HSS and to
set up the scientific synergies ICT/HSS, the objectives are numerous:

• To build innovative pattern recognition tools adapted to the ancient cadastral
maps

• To produce inventories of Parisian urban space according to a variable scale

• To integrate the geographical and physical dimension in the soci-
eties/environments relations

• To use explanatory models in order to explain the geographical distribution
of objects

• To analyze the morphology of lots/parcels at the level of the city.
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Figure 1.4: Global Methodology

1.3.2 Global Methodology

The project consists in implementing georeferenced cadastral layers, from which
layers of a historical type could be created, in particular the historical topography
and the medieval and modern administrative districts. The utilized source maps
correspond to the land register according to small blocks found in the Vasserot
Atlas (1810-1836) for the oldest twelve districts, the aim being to cover the Parisian
space that is delimited by the farmer-general wall. The data processing specialists
from La Rochelle and geomaticians of LIENSS work together to set up the cadastral
layers: they georeference, assemble and vectorize the various raster images issuing
from the source maps. This process is illustrated by the figure 1.4. In parallel,
the historians primarily medievalists for now work together with the geomaticians
to set up the conceptual model of data and the historical layers. This work takes
into account the experiences that have already been led, especially at the Cultural
Ministry (CNAU : National Urban Archeological Center).

1.4 Cadastral Map

This section provides some fundamental information related to the definition of a
special image called Cadastral Map, its history and its classification. This special
image is the main focus of our study.

The extraordinary potential of the automatic analysis of color documents brings
new interests and represents a real challenge since color has always been considered
as a strong tool for information extraction [Dorin Comaniciu 1997]. As mentioned,
earlier, in the context of the project called “ALPAGE”, we are considering the digital-
ization of ancient maps. In this ALPAGE project, we consider cadastral maps from
the 19th Century (called “Atlas VASSEROT"), on which objects are drawn by using
color to distinguish parcels for instance. This project deals with the classical graphic
recognition problems, to which are added difficulties due to the presence of colors and
strong time due degradations of relevant information : color degradation, yellowing
of the paper, pigment fading. . . In the context of this multi-disciplinary project,
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Figure 1.5: Architecture of a graphic document analysis system

the idea is to provide strategic information for historians, or students, what means
that the purpose is to propose a set of processing allowing to segment/recognize all
the objects of the documents. In such a topic, the number of handled objects can be
counted by million. This volume of data leads to the rise of new services as intelligent
indexation, document browsing and content searching. If the analysis of a given doc-
ument was reduced in the digitalization of the paper document to a “bitmap” image,
the problem would be commonplace. Actually the subjacent scientific problems are
very complex because the objective is much more ambitious, the conversion of the
paper document into its semantic interpretation [BELAID A. 1992]. The concept of
retro-conversion is a semantic digitalization, from elementary data and contextual
information the analysis is carried out through a color graphic recognition process
where the aim is to build structured information dedicated to a GIS. A classical
ascending approach from pixel to object calls various low level tools such as color
segmentation or line tracking while at the top, high level methods allow the inte-
gration of a priori knowledge bringing a contribution to the interpretation process
with an aim of archiving information (figure 1.5) [Lladós J. 2003].

An example of cadastral map is shown in figure 1.6. A straightforward comment
points out the color specificity of these documents, hence, we need to consider the
color meaning to extract cadastral information (ie: a parcel) and a closer look is
given to color representation. Consequently, in this thesis, we propose a general ar-
chitecture to take into account color information embedded into graphic documents
in the objective to build a relevant Content-Based Map Retrieval (CBMR) system.
An overview of our framework is displayed in figure 1.7 and our method relies on
three major steps as follows:

1. Firstly, a preprocessing stage aims at preparing the data, so, this includes:

(a) Finding the best color model in terms of distinction between different
colors. We assume that the choice of an efficient color model will be
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Figure 1.6: A sample of cadastral map.

decisive since the performance of any color-dependent system is highly
influenced by the color model it uses.

(b) Removing undesirable data to preserve the true diamond (data mining),
the parcels within the map.

2. Secondly, a vectorization step and its performance evaluation provide, respec-
tively, vectorial objects to be inserted into the GIS and tools for comparing
maps. The three sub-steps, composing this second part, are as follows :

(a) A color segmentation approach dedicated to documents is presented; it
is inspired by graphic construction rules of cadastral maps.

(b) Digital curves approximation aims at transforming pixels to vectors.

(c) Performance evaluation of the vectorization and a vectorial dissimilarity
measure between maps.

3. Finally, a Content-Based Image Retrieval system adapted to cadastral maps
is presented. This so called Content-Based Map Retrieval (CBMR) applica-
tion lies on a vectorial distance between maps. The vectorization stage feeds
the CBMR process, thus, it provides a morphological analysis and it makes
possible, from a query image, to find similar cadastral maps.

(a) Images of maps are like no others and a CBMR approach should take
profit of the intrasectoral spatiality of such a document. In this way, a
graph-based representation is more likely to perform better, consequently,
the CBMR system should involve a graph distance when searching by
similarity a map.
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Figure 1.7: Overall methodology of our system.

1.5 Conclusion

This thesis deals with a problem of graphic detection and retrieval, specially focused
on an ancient and colored cadastral maps. This thesis also belongs to a part of a
historical document project named ALPAGE, which has as main objective to pre-
serve and derive benefits from ancient documents. The main objectives of this thesis
are to propose a vectorization and pattern recognition framework to a database of
maps and to develop a CBIR system in order to provide a reliable accessibility and
functions to that database for interested users.

The organization of this thesis paper is in five chapters. The interaction between
chapters is illustrated in figure 2 and a short description of each chapter is put
forward as follows:

Chapter 1 gives the introduction to the project and provides overall concept of
this thesis. We introduce a general aspect of document image analysis, the necessities
and importance of historical documents and the related project named ALPAGE.
Next, we focus on colored cadastral maps and define the scope and objectives of this
study.

Chapter 2 concerns the state of the art. This chapter reviews the literatures
related to historical document analysis. The literature review gives the fundamental
knowledge, global aspect and terminology, and presents recent ideas and techniques
that are useful to our work.
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Chapter 3 is dedicated to the color processing aspects. This project deals with
the classical graphic recognition problems, to which are added difficulties due to
the presence of colors and strong time due degradations of relevant information:
color degradation, yellowing of the paper, pigment fading... Especially, this chapter
introduces some principles on color restoration and provides a guide tour on color
representation and its subsequent selection.

Chapter 4 deals with the problem of the extraction of information from cadastral
maps. This part aims at presenting methods and low-level algorithms involved into
the quarters and parcels retrieval. Thereafter, parcels information is structured into
a graph-based representation. These data will be used to feed a CBIR stage.

Chapter 5 aims at assessing the vectorization process. The question of perfor-
mance evaluation is raised and a set of metrics is defined. Theses indices reveal
errors that occur in a raster to vector conversion.

Chapter 6 presents graph matching and graph classification methods. Cadastral
maps are modeled by attributed relational graphs taking into account the relation-
ships between parcels, hence, the question of finding similarities between maps turns
into a graph matching problem. This chapter gives theoretical and experimental
basements of graph mining methods considered for that purpose.

Chapter 7 addresses the Content-Based Image Retrieval (CBIR) topic in a gen-
eral point of view (in a general way). A discussion about the suitability of structural
approaches for a CBIR system is given. Finally and more specifically, a CBIR ap-
plication based on polygon features is described. From a query map, the cadastral
map collection browsing is aided by computer, in the objective to retrieve the most
similar cadastral maps from a morphological point of view. In this way, the CBIR
paradigm is derived to gives birth to what we call Content-Based Map Retrieval
(CBMR).

Chapter 8 discusses and draws a conclusion of this thesis. Finally, we give per-
spectives and introduce possible future works.
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2.1 Forewords

The problem of automatic raster to vector (R2V) conversion is taken steadfast at-
tention by researchers and software developers during last two decades. Numer-
ous attempts to solve this problem have mainly originated from emerging area of
automatic Geographical Information Systems (GIS). Unfortunately, completely au-
tomatic conversion system appears really challenging to be achieved perfectly, so,
some authors suggested putting the operator into the loop even into the center of a
conversion system. Thus, the problem of correct task division between the human
and machine can be also stated [Levachkine 2003], [Levachkine S. 2000].

In the present chapter, we discuss how to bring an automation of the single mod-
ules of a R2V conversion system to fullest possible extent. GIS can be categorized in
two types, analytical and register GIS. Analytical GIS do not require an extremely
high level of geometric exactness in the cartographic materials, whereas they do
require fast processing of a large number of vector layers [E-Cognition ] [R2V ]. An
example of analytical GIS is GIS developed to solve territorial planning problems,
while an example of a register GIS is GIS developed for a cadastral system. Mainly,
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we focus on the case of register GIS with the aim is to describe and highlight the
global concepts and crucial points of our problem. The chapter is divided into three
parts: 1) in section 2.2, we analyze the general concepts of automation of a R2V
conversion system adapted to color cartographic materials; 2) The section 2.3 gives
a closer look to technical documents and briefly reports the main approaches in
this topic; 3) in section 2.4 we present an overview of our approach, a Model Driven
Raster to Vector conversion system. In conclusion, we emphasize the role of operator
and knowledge in automation of the conversion process.

2.2 Cartographic Raster to Vector Conversion

Two main methods are currently used for map vectorization [Levachkine S. 2000]:
(V1) Paper map digitization by electronic-mechanical digitizers, and (V2) Raster
map (a map obtained after scanning of the paper original) digitization. The dig-
itizing of paper maps cannot be automated; hence the only practical approach to
design R2V conversions is the development of methods and software to automate
vectorization of raster maps. Raster map digitization approaches can be divided
into four intersecting groups [Levachkine S. 2000]: (D1) Manual; (D2) Interactive;
(D3) Semi-automated, and (D4) Automatic. In practice, (D1) = (V1). In the case
of "punctual" objects, the operator visually locates graphic symbols and fixes their
coordinates. In the case of "linear" and polygonal objects, the operator uses recti-
linear segments to approximate curvilinear contours. The manual digitization rate
is one to two objects per minute. Interactive digitization uses special programs,
which, once the operator indicates the starting point on a line segment, automati-
cally follow the contours of the line (tracing). These programs are capable of tracing
relatively simple lines. If the program cannot solve a graphical ambiguity on the
raster map, it returns a message to the operator (alarm). Recently, vector editors
capable of carrying out this digitization process have appeared, reducing the time
consumption by a factor of 1.5 to 2. These can be called semi-automated systems
[Levachkine 2004] [Levachkine 2003] [Levachkine S. 2000] [E-Cognition ] [R2V ].

In theory, automatic vector editors automatically digitize all objects of a given
class, leaving to the operator the error correction in the resulting vector layers. Some
vector editors use this approach [E-Cognition ] [R2V ] [Benz U.C. 2003]. However,
in practice, the high error level resulting from any small complication in the raster
map means that alternative methods should be sought to reduce the huge volume
of manual corrections.

Computer aided correcting system lies on two points: (1) An automatic detection
of ambiguities (low confidence zones) and (2) a pertinent graphical user interface in
order to locally correct errors without perturbation of the global data coherency.

A system approach can enhance the outcome not only of processing (map recog-
nition) but also pre-processing (preparation of paper maps and their corresponding
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Figure 2.1: Main processing steps required in raster to vector conversion.

rasters) and post-processing (final processing of the results of automatic digitiza-
tion). Thus, in the following three sections one shall consider these processing stages
in the context of system approach. Figure 2.1 depicts an overview of the complete
process.

2.2.1 Pre-processing

The main goal of pre-processing is to prepare raster cartographic images in such
a way as to simplify them and increase the reliability of their recognition in the
automatic system. The proposed sequence of operations for the preparation of
raster maps for automatic recognition is:
Pre-processing=

1. Preparation of the cartographic materials for scanning

(a) Restoration

(b) Copying

(c) Increasing the contrast of image objects

2. Scanning

(a) Test scanning

(b) Definition of the optimal scanning parameters

(c) Final scanning

(d) Joining raster facets

(e) Correction of the raster image geometry by the reference points

3. Preparation of the raster maps for recognition of the cartographic objects

(a) Edition of raster map

(b) Elimination of the map notations and map legend

(c) Elimination of the artificial objects and restoration covering by them
images
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(d) Restoration of the topology of cartographic images in pixel level

(e) Separation of basic colors of the graphical codification on a raster map

(f) Restoration of the color palette of a raster map

(g) Stratification of raster map

(h) Stratification by reduced color palette

(i) Logical stratification of the cartographic objects

The comments on all pre-processing steps can be found in
[Levachkine 2004]–[Levachkine S. 2000]. Concerning this stage, let us discuss
only the most important points that expose clearly our problem.

Increasing the contrast of image objects. To simplify the process of vectorization,
objects of the same class can be highlighted on a copy of the map using a contrasting
color. Typically such marking involves enclosing linear objects such as streets, or
inside rooms. In practice, outlines of polygonal objects, which do not have explicit
borders (such as water well, stairs, etc.), and are delineated only by dashed or
patterned lines, should be drawn in. In particular, various polygonal objects may
overlap, one represented by color, another outlined by a dashed line, and a third by
patterned lines; in such cases, the objects should all be outlined explicitly.

Stratification of the raster map. A raster map, considered as a unified hetero-
geneous graphical image, is suitable for parallel human vision. In contrast, raster
images, containing homogeneous graphical information, are suited to consecutive
machine vision. Two approaches can be used for the stratification of the original
raster map: 1) stratification by reduced color palette or 2) logical stratification of
the cartographic objects. In the first case, maps are derived from the original raster
map which preserve only those pixels that have a strongly defined set of colors
corresponding to the images of one class (for example, red and yellow, say, might
correspond to the icons of two distinct parcel owners). In the second case, the
map only preserves fragments of general raster image context corresponding to the
locations of cartographic objects of one class.

2.2.2 Processing

The main goal of this principal stage of automatic vectorization of raster maps is the
recognition of cartographic images, i.e. generation of vector layers and attributive
information in electronic maps. The fundamental idea of R2V automation is the
development of methods, algorithms and programs that focus only on locating and
identifying specific cartographic objects that constitute the map semantic structure.
Each cartographic image has its own graphical representation parameters, which can
be used for automatic object recognition on a raster map. The particular attributes
depend on the topological class of the object. Traditionally in GIS, vector map
objects are divided into three types: points, segments and polygons, representing
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respectively "punctual", "linear" and area objects. Graphical images have color,
geometric (location, shape), topological and attributive (quantitative and qualitative
parameters, e.g. the name of object) information, which can be merged into the
concept of cartographic image.

An important element of the automation of raster map vectorization is the devel-
opment of an optimal sequence of steps for cartographic image recognition, succes-
sively eliminating elements already decoded from the raster map field and restoring
images, which were hidden by the eliminated elements. The basic principle of this
optimized ordering is from simple to complex. Nevertheless, the possibility of using
information from objects already digitized (whether manually or by an automatic
system) should be provided for in the development of a recognition strategy. For
example, the punctual layer of street information can be successfully used for recog-
nition of polygonal elements of the quarters. Taking this into account, it becomes
clear that street names and numbers should be retrieved before the quarters are
digitized. Eliminating them from the raster map, one can use their locations and
attributive data to aid in recognition of elements of the quarters. This strategy can
also be considered as use of different sources of evidence to resolve ambiguities in a
R2V conversion.

In other words, maximal use of already existing information (directly or indi-
rectly related to the vectorized objects) employed as general principle of automatic
cartographic image recognition can increase efficiency and reliability. Summarizing
the processing of raster maps, we notice that the methods and algorithms used for
this process should provide complete, even redundant cartographic image recogni-
tion (no matter a number of erroneously recognized objects), since visual control
and correction of the vector layers can be carried out more quickly than manual
digitation of missed objects. To conclude the discussion in this section, the process
of automatic cartographic image recognition (processing) often follows this scheme:
Processing=

1. Development of the strategy of automatic digitization of raster maps

2. Recognition of cartographic images

(a) Digitization of objects which have vector analogues

(b) Digitization of objects which have not vector analogues

(c) Elimination of superfluously recognized objects

3. Elimination of recognized images from raster map

(a) Restoration of image covered by recognized objects

(b) Correction of restored image

2.2.3 Post-Processing

The main goal of the post-processing of raster maps (after map image recognition) is
an automatic correction of vectorization errors. For automatic correction of digitiza-
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tion, two approaches can be distinguished: 1) using the topological characteristics
of objects in vector layers and 2) using the sources of evidence (textual, spatial
distribution information).

The first approach is based on the fact that many cartographic objects in the map
have well-defined topological characteristics, which can be used for the correction of
vectorization errors. Let us give just one obvious example: Parcels. The topological
characteristics of parcel systems (e.g. contour lines) are:

(a) parcels are continuous, (b) they cannot overlap each other, and (c) each parcel
has at least one edge on the street side. However, in a raster map these character-
istics, as a rule, may be lost due to several reasons: (i) the lines are broken where a
street number for a given parcel is written, (ii) some parcels are not well drawn in
high density regions, (iii) the folding of the page may corrupt the raster image, and
(iv) degradations due to the storage condition can cause many defects of printing
the paper maps. The contrast between the parcel color and the color of the street
is not strong enough to make a clear distinction, so, the boundaries are broken and
they need special consideration. These elements of the map’s graphical design, if
not considered as the parts of the parcel system, hinder the correct assembly of
the polygons and either should be eliminated or (better) detached in a separate
vector layer. They can be restored on the vector map and used for the automatic
attribution of polygons assembled from the contour lines.

The second approach has proven its efficiency in toponym recognition of car-
tographic maps and can be also used in general R2V conversion post-processing
[Gelbukh A. 2003]. For instance, it is obvious to say that close to a street number,
there is a parcel. This information of relation between a text component and a
parcel object can be useful. The example presented shows that the characteristics
of internal structure and relationships between the vector objects can be used in
automatic correction of errors of the automatic vectorization. In practice, it means
the development of more specific software for automatic cadastral image recognition.

Summarizing the discussion of this section, the process of automatic correction of
results of automatic cadastral image recognition (postprocessing) follows the scheme:
Post-processing =

1. Correction of vector layers based on peculiarities of their internal topology

2. Correction using the sources of evidence (textual, street names or numbers)

3. Final correction of vector layers in whole electronic map system

Color cadastral map interpretation is at the edge between cartographic raster
to vector conversion and technical drawing understanding. From its color aspect,
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ALPAGE’ cadastral maps are close to cartographic images, on the other hand, sym-
bols composing city maps are similar to those encountered in the technical drawing
domain. In fact, both paradigms share common points but are slightly different.
Consequently, the next section discuses state of the art works in the field of engi-
neering drawing vectorization.

2.3 Technical drawing understanding

The choice of an effective interpretation strategy is difficult; it must include low-level
image processing, the construction of cadastral entities, and reanalysis of "con-
taminated" data (erroneous data but locally apparently consistent). The litera-
ture offers many different approaches to technical document interpretation. They
concern mechanical engineering documents [Vaxiviere 1992], electronic diagrams
[Hamada 1993], [Okazaki 1988], or utility maps [Boatto 1992], [den Hartog 1996],
[Ogier 1993] (telecom, power and water networks, cadastral, etc.). Roughly, two
strategies have been proposed: bottom-up and hybrid strategies.

2.3.1 Bottom-up approach

In bottom-up strategies, algorithms are performed in a fixed sequence, usu-
ally starting “low-level” analysis of the gray level or black and white image, in
which primitives [Kasturi 1990b] are extracted by specialized operators. Generally,
these primitives correspond to segments, associated or not to polygonization algo-
rithms [Janssen 1997], [Kasturi 1990a], to symbols and characters [Deseilligny 1995],
[Fletcher L.A. 1988], textures [Ogier 1993], circles, dashed lines, arrows, arcs, etc.
In the next phase, associations between all or a part of these primitives are de-
tected, and higher level graphical entities are constructed, guided by some a priori
knowledge. This knowledge is either directly written into in the source code, or
it can be declarative knowledge based on explicit rules for graphical entities. An
analysis of graphical entities and their relationships allows one to propose an inter-
pretation result, in the case of strictly bottom-up approaches such as [Boatto 1992],
[Deseilligny 1993], [Kasturi 1990a], [Shimotsuji 1992], [Suzuki 1990]. The main dif-
ficulty in this kind of process is in obtaining significant graphical entities from the
low-level operators and reliable association rules between each primitive in order
to have a correct interpretation. In fact, these systems extract low-level primitives
each in the same way, without taking into account the specificity of representa-
tion of each object. As a consequence, due to the variability of the representation
and the handmade support, many situations in technical documents are difficult to
solve by these algorithms. These difficulties concern the connection between differ-
ent entities (e.g., text, line, texture), OCR in handwriting under multi-orientation
constraint (city maps, utility map), low image quality, and variability in the repre-
sentation of graphical entities. For all such strictly bottom-up systems, the main
problem is related to the poor adaptation of the parameters of the extractors and
to the inadequacy of operators to the local features of certain objects.
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2.3.2 Hybrid approach

The second approach consists in interpreting technical documents by leading the low-
level processes as a function of the context. In this type of system, two approaches
constitute interesting contributions. The first is proposed by Joseph [Joseph 1992]
about mechanical engineering drawing interpretation. The ANON system is based
on the “cycle of perception” proposed by Neisser [Neisser 1976]. This system is
structured in three layers in order to separate spatial and symbolic processing. The
first is composed of a large image analysis library associated to both search-tracking
functions and management processes. The information extraction is adapted to the
context by the second level, "schema" (prototypical drawing construct), which re-
ceives the entities from the lower layer and interprets the result as a function of the
current schema. A cycle of hypothesis verification is thus proposed by the schema to
the control system (highest layer). This control system analyzes the proposition as a
function of the current state of the proposed schema and eventually modifies it. The
knowledge directed image analysis and the construction cycle according to the con-
text are two interesting concepts which are applied on 15 different schema classes.
In the same category, den Hartog [den Hartog 1996] proposed a mixed approach
based on a top-down control mechanism associated with bottom-up object recog-
nition. The system decomposes the binary image into primitives (and not vectors)
to have a good morphological representation of the information and uses template
matching to recognize each of them. Then, contextual reasoning is performed based
on a loop that includes inconsistency detection and search action generation in a
region of interest (ROI). The control system defines an ordered search action list
to search for a specific object type in the ROI. Priorities are specified by the user
to define the most important search actions and to assign priority to the relation-
ship between objects. A test of consistency is applied to each recognized object
in order to verify the hypothesis defined at the system top level as a function of
knowledge of the object to recognize. The knowledge framework of the methodol-
ogy relies essentially on spatial relationships between primitives, without integrating
and describing hierarchical relationships. In the case of particularly complex docu-
ments, this kind of system is penalized because of the drastically increasing number
of relationships and the necessity to generate new search actions for the "designed
objects". Another hybrid approach is the system described in [Ogier 1998] for map
interpretation. In this system, features are grouped together to constitute primitive
objects then these objects are assembled together to compose a larger object in the
hierarchy and the process goes until it reaches the most global object which is the
map itself. In this system, at a given level in the hierarchy a consistency checking is
performed. Recognized objects are analyzed to verify if they are internally and ex-
ternally consistent with each other. For example, a parcel is composed of segments
to set up the outline, it has a number or an arrow, and it can involve a hatched area
and symbols. Internal consistency means all the component constitutes the objects
are successfully detected or not, if not a forward heuristic rule is used to correct
this situation by re-extracting features in this region after modifying and relaxing
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the parameters of the low-level image processing tools. On the contrary, external
consistency takes into account the neighborhood of the treated object. If an object
has all the components and responds to the semantic of the considered level, it is
defined as an internal consistent; furthermore, if all the objects adjoining it are all
internally consistent, this object will equally become more reliable through the con-
struction of the superior hierarchical level (the parcel by the block, for example). It
is then called externally consistent.

After this brief review on line drawing understanding, in the next section, we
describe the adaptation of the processing stages to fit the ALPAGE’s problem. In
a context of ancient, degraded and colored cadastral maps, the bottom-up strategy
has to be adapted.

2.4 ALPAGE: Reverse engineering dedicated to ancient
color maps

It is difficult for an observer to recognize an object if he does not have a mental
representation of it a priori [Neisser 1976], [Neisser 1989]. The problem is similar
for an artificial interpretation system, and it is necessary to integrate this notion
of a model if the aim is to obtain a representation close to the one processed by
the cadastral agent. In order to carry out this "modeling", we start from the prin-
ciple that the whole of the graphic document relates to a specific organization of
all the graphical primitives (homogeneous color regions, strokes, lines, etc.) and to
the grouping rules for these graphical entities for object representation. The main
difficulty with such an interpretation methodology is the administration of seman-
tic links between objects (borders between colored zones, limits between objects,
overlapping objects, etc.). With regard to the cadastral maps, this physical-logical
link is relatively simple, since the main relations between the different entities are
neighborhood or containment relations. From the following representation of doc-
ument entities (graphical and logical points of view) and the relationships within
it, the model first proposes a hierarchical structure for the document. The four
levels for city maps are illustrated in figure 2.2. The difficulty to correctly interpret
a document comes from noise and/or perturbations (pigment fading, storage-due
degradations, ...) which corrupt the document image. Hence, images of documents
are no longer conform to their model and generating rules are not valid anymore.
This phenomenon is showed in figure 2.3. The direct consequence of the degrada-
tions is a misleading computer-generated model, however our approach provides the
opportunity to evaluate this ambiguity at a logical level and so, to find out how
different is the computer model from the original model of document. This model
comparison provides an external or global consistency to verify the compliance of
objects generated by low level algorithms. The knowledge checking is carried out
through a graph matching viewpoint to take into account spatial relationships be-
tween objects.

As discussed in section 2.3, the cadastral map is an association of graphical
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Figure 2.2: Physical and logical structures.

primitives which build a cadastral object. For the cadastral agent, these objects
are parcels, streets, frame, and quarters, which are made up of lines, characters,
homogeneous color regions (areas having a similar hue), symbols, etc. As can be
seen in the figure 2.2, we considered four kinds of objects in relation to the French
ancient city map: the parcel (of land), the street, the quarter (or district), and the
section. Our bottom-up strategy consists of three stages to interpret each cadastral
object. Thus, the architecture of our system is illustrated in figure 2.4. In addition,
the three stages for parcel extraction from a cadastral map are put forward as follows:

1. Pre-processing

(a) Color restoration

(b) Color space and color representation
Most display and color acquisition devices, such as digital cameras and
scanners, have their input or output signals in the Red Green Blue (RGB)
format. It is straightforwardly derived from sensor technology, the R (re-
spectively G, B) primary in RGB corresponds to the amount of the phys-
ical reflected light in the red band (respectively green and blue bands).
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Figure 2.3: Ideal and real documents.

Figure 2.4: An adaptation of the bottom-up strategy to the ALPAGE’s context.
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This is why RGB space is widely used in the applications of image pro-
cessing. However, it may not be always the most appropriate color space
for computer vision algorithms. Consequently, we provide guide lines to
find a suitable color model according to the kind of images we have.

(c) Color segmentation
Once the source image is transferred into a suitable hybrid color space,
an edge detection algorithm is applied. This contour image is generated
thanks to a vectorial gradient according to the following formalism. The
gradient or multi-component gradient takes into account the vectorial
nature of a given image considering its representation space (In our case
a hybrid color space). The vectorial gradient is calculated from all com-
ponents seeking direction for which variations are the highest. This is
done through maximization of a distance criterion according to the L2
metric, characterizing the vectorial difference in a given color space. The
approaches proposed by DiZenzo [Dizenzo 1986] first, and then by Lee
and Cok under a different formalism are methods that determine multi-
components contours by calculating a color gradient from the marginal
gradients.

2. Processing

(a) Text/graphic separation
A contour image is obtained by binarization of the gradient image; this
latter is issued from the color detection stage. The text/graphic segmen-
tation is run on top of it, on every contour image to remove undesir-
able objects: street names, street numbers, ... The mainstream of this
text/graphic separation is a graph classification principle where objects
to be classified are graphs extracted from the connected components of
the contour image. In a learning stage, text and graphic diversities are
taken into account by a prototype selection scheme for structural data,
thereafter in a decision step, a standard nearest prototype classification
rule is applied to categorized instances. Finally, all connected compo-
nents labeled as "graphics" are included into a so called graphic image.

(b) Object detectors
Dedicated image processing algorithms are performed on the graphic im-
age to locate domain objects. Thus, frame, streets, quarters and parcels
are delineated by black pixels.

(c) Digital curve approximation: vectorization
Black pixels are vectorized using a polygonal approximation based
on a genetic algorithm. In this method, the optimization/exploration
algorithm locates breakpoints on the digital curve by minimizing
simultaneously the number of breakpoints and the approximation
error. Using such an approach, the algorithm proposes a set of so-
lutions at its end. This set which is called the Pareto Front in the
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multi objective optimization field contains solutions that represent
trade-offs between the two classical quality criteria of polygonal ap-
proximation: the Integral Square Error (ISE) and the number of vertices.

(d) Polygonizer. From lines to polygons.
Detecting polygons defined by a set of line segments in a plane is an easy
step in the analysis of vectorial drawings. To perform polygon detection
from a set of line segments we divide this task in four major steps. First
we detect line segment intersections. Next step creates a graph induced
by the drawing. The third step finds the Minimum Cycle Basis (MCB) of
the graph induced in previous step. Last step constructs a set of polygons
based on cycles in the previously found MCB.

3. Post-processing

(a) Correcting rules.
Polygons which are too small to be a parcel of land are merged according
to their color properties.

(b) Reliability measure.
Once the vectorization is finished, we produce a graph that contains
concepts and relation between them. Concepts are objects recognized in
the prior operations (i.e. Text components, quarters, parcels, ...). This
model instance is compared to a higher representation (a meta-model)
of cadastral map thanks to a graph matching algorithm. This Model
Driven Engineering angle is a well-suited candidate for image conversion
by providing a common framework for representing graph structures as
models conforms to meta-models elaborated by expert of the domain.
The overall method provides a distance which indicates the confidence in
the raster to vector conversion quality.

2.5 Discussion

The problem of automatic raster map digitization has been discussed. We conjec-
ture that the most promising line of progress toward its solution lies in successively
integrating knowledge into the system. Raster to vector process requires a human
judgment to control the quality of the vectorization and to adjust algorithm param-
eters. This judgment can be considered as a semantic analysis. Introducing this
analysis into a vectorization process must considerably improve the results. How-
ever, this integration is not a trivial task. The representation by graph formalism is
a powerful tool since graphs can represent different points of view of a given image,
from the region layout to knowledge configuration. Estimating the quality of the
vectorization thanks to a model checking approach is one of our contribution in
this domain. Thus our approach could be combined with interactive approaches.
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Finally, the next section will focus on pre-processing, low level tools to unleash and
extract the basic constructs of our system.
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3.1 Forewords

The choice of a relevant color space is a crucial step when dealing with image
processing tasks (segmentation, graphic recognition. . . ). From this fact, we address
in a generic way the following question: What is the best representation space for a
computational task on a given image? In this chapter, a color space selection system
is proposed. From a RGB image, each pixel is projected into a vector composed of
25 color primaries. This vector is then reduced to a Hybrid Color Space made up of
the three most significant color primaries. Only three color components are retained
to be conformed with standard image formats. Hence, the paradigm is based on two
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principles, feature selection methods and the assessment of a representation model.
The quality of a color space is evaluated according to its capability to make color
homogeneous and consequently to increase the data separability. Our framework
brings an answer about the choice of a meaningful representation space dedicated
to image processing applications which rely on color information. Standard color
spaces are not well designed to process specific images (ie. Medical images, image
of documents) so a real need has come up for a dedicated color model.

3.2 Introduction

Color representation is the basement of all color image processing applications. In
fact, many color spaces were developed for graphics and digital image processing
such as Red, Green, Blue (RGB) and Hue, Saturation, Intensity (HSI). Neverthe-
less, it is obvious that the performance of any color-dependent system is highly
influenced by the color model it uses. The quality of a color model is defined by its
capacity to correctly distinct color between them while being robust to variations
inside a given chromatic cluster such as light changes. In term of data-mining, this
problem can be addressed as maximizing the distance inter-classes while minimizing
the distance intra-class. These two criteria seem to be conflicting, which represents
a real challenge to any color representation scheme. Many information retrieval ap-
plications would benefit for a better representation space. The chapter is organized
as follows: In the second section, we present an image filter for color restoration,
in the mean time, the question of finding the best color space is introduced with
a review of the related work. Thirdly, the global concept is described explaining
the methodology of our contribution. Then, the fourth section presents the feature
selection methods in use. The fifth section presents experimental results on color
classification according different color models; in addition a comparative study on
cadastral map segmentation is presented. Finally, a conclusion is given and future
works are brought in the last section.

3.3 Color Restoration

The ancient map archives represent an important part of our collective memory. In
introduction, we expressed the difficulties to analyze ancient documents which were
deprecated due to the time, usage condition or storage environment. So clearly, a
real need for image restoration has come up. A pre-process, a faded color correc-
tion [Chambah 2000] has been executed to bring colors back to original or at least
to unleash color significance. It works automatically by increasing non-uniformly
the color saturation of washed-out pigments without affected the dominant color.
Here, we present some advances in automating the color fading restoration process,
especially with regard to the automatic color correction technique. First of all, let
us illustrate the particularities of our images.
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Figure 3.1: The color is a triple that depends on the source light (illuminant), the
object and the sensor

3.3.1 Color illuminant

Color vision is the capacity of an organism or machine to distinguish objects based
on the wavelengths (or frequencies) of the light they reflect, emit, or transmit. The
nervous system derives color by comparing the responses to light from the several
types of cone photoreceptors in the eye. These cone photoreceptors are sensitive to
different portions of the visible spectrum. For humans, the visible spectrum ranges
approximately from 380 to 740 nm, and there are normally three types of cones.
What we see depends on the triple composed of the object reflecting the source
light (called illuminant) and the sensor (our eyes), figure 3.1. An object may be
viewed under various conditions. For example, it may be illuminated by sunlight,
the light of a fire, or a harsh electric light. In all of these situations, human vision
perceives that the object has not the same color: an apple does not always appear
red, whether viewed early in the morning under the sunset or during the day. In our
case, the map sheets were digitalized by a commercial scanner involving a cool-white
florescent light (Standard illuminant reference: F2).

3.3.2 Image characteristics

Cadastral maps hold some important characteristics that we want to identify. Our
interest was to analyze the color properties of our map collection. A complete
analysis on each image would have been too time consuming, our assumption was to
pick up randomly 50 images and to perform a color analysis on each of them. Among
this smaller image set, we report the basic properties of a single image which is
representative of our problem. It makes our discussion clearer while being still valid
and likely extensible to the rest of the corpus. In the rest of the chapter we focus on
the image presented in figure 3.2. Our first test was to visualize the color distribution
in the RGB space. Figure 3.3 illustrates how color pixels are spread into the RGB
cube. From this experiment, a first comment underlies the color points alignment
along the "gray" axis, the straight line of equation x = y = z. Secondly, the "gray"



28 Chapter 3. Color Processing

axis seems to give the main direction however the color cloud tends to become larger
as the RGB values get higher (r>200,g>200,b>200). This fact can denote a more
important variability when colors are under-saturated. Color saturation is used to
describe the intensity of color in the image. A saturated image has overly bright
colors. The saturation represents the "purity" of a color, with lower saturation
being less pure (more washed out, as in pastels). Our next step was to visualize
a color histogram of our test image. Figure 3.4 reveals the occurrence of colors
in the RGB space. The color space was discretized to calculate a 3D histogram.
The discretization is a simple quantification step, the RGB cube is divided into
100 smaller cubes where the amount of pixels in each cube is counted. From this
histogram, we observe that most of the information is concentrated into a sphere;
the center of the sphere is likely to be located at r ' 220, g ' 220, b ' 220 with a
radius less than 50. Our last attempt to characterize our images is a conventional
statistical framework. A Principal Component Analysis (PCA) was carried out. Let
X be the color vector for a given pixel:

X =

∣∣∣∣∣∣
R

G

B

∣∣∣∣∣∣
For an image with N pixels, the covariance matrix can be written as follows:

C =

R G B
R cov(R) cov(R,G) cov(R,B)
G cov(G,R) cov(G) cov(G,B)
B cov(B,R) cov(B,G) cov(B)

Where cov(, ) is the covariance between two variables. For example, the covariance
between R and G can expressed as follows:

θR,G = cov(R,G) =
1
N

N∑
i=1

(XR
i − µR)(XG

i − µG)

Where XR
i denotes the R component of the ith pixel. Where µ is the mean vector

and µR the R component of the mean vector.

µR =
1
N

N∑
i=1

XR
i

To find the eigenvectors and eigenvalues of the covariance matrix, we compute
the matrix V of eigenvectors which diagonalizes the covariance matrix C:

V −1CV = D

where D is the diagonal matrix of eigenvalues of C. The matrix D will take the form
of an M × M diagonal matrix, where

D[p, q] = λm for p = q = m
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V =

V0 V1 V2
0.6126 -0.5664 -0.5513
0.5895 -0.1373 0.7960
-0.5266 0.8126 -0.2498

Table 3.1: Eigenvectors for the test image.

Figure 3.2: A representative image of our problem. The map sheet was digitalized
by a commercial scanner involving a cool-white florescent light (Standard illuminant
reference: F2)

is the mth eigenvalue of the covariance matrix C, and

D[p, q] = 0 for p 6= q.

The matrix V, also of dimension M × M, contains M column vectors, each of length
M, which represent the M eigenvectors of the covariance matrix C. The eigenvalues
and eigenvectors are ordered and paired. The mth eigenvalue corresponds to the
mth eigenvector. Eigenvector are reported in table 3.1. The eigenvalues represent
the distribution of the source data’s energy among each of the eigenvectors, where
the eigenvectors form a basis for the data. The first axis (V0) explains 75.78% of
the information while the cumulative inertia of the two first components reaches
the 99%. Through this color analysis some remarkable considerations have been
stated. Firstly, in the RGB space, colors are distributed along the "gray" axis while
being spread all around this axis. Secondly, most of pixels, most of our data can be
delineated by a sphere located into the under-saturated area of the RGB cube. Next,
the PCA tends to reveal a high variability of data since two axis are required to
explain significantly the information laid into the image. From this last observation
we describe a color restoration based on PCA.
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(a) (b)

Figure 3.3: Color pixel distribution in the RGB cube.

(a) (b)

Figure 3.4: Color pixel histogram in the RGB cube.
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3.3.3 Color enhancement based on PCA

Let Y be the data in an independent system axis:

Y = V (X − µ)

Where:

• V are the eigenvectors of the covariance matrix.

• µ is the mean vector.

Let Y ′ be the data extended according the direction the main factorial axis:

Y ′ = KY

K =

∣∣∣∣∣∣
k1 0 0
0 k2 0
0 0 k3

∣∣∣∣∣∣
The restoration matrix is given as follow:

M = V −1KV

Let X′ be the vector containing the restored values:

X′ = M(X − µ) + µ

The parameters k1 ,k2, k3 are calculated automatically. We want to extend as much
as we can the dynamic of the factorial axis but if the parameters are pushed too
high, they may cause a peek phenomena (X ′R,G,B > 255) of the color primaries and
create the apparition of false-colors. To avoid this situation, we increase wisely and
iteratively the parameters until the upper bound (255) is reached. To ensure this
condition, for a given set of parameters k, we verify that no RGB values are above
255. The problem is formulated in the following equation 3.1. A piece of example
is presented in figure 3.5. The resorted image seems visually more saturated and
colors look warmer and more intense.

(3.1)

max
K

X ′ = (V −1KV (X − µ) + µ

under constraints X ′ ≤

∣∣∣∣∣∣
255
255
255

∣∣∣∣∣∣
K >

∣∣∣∣∣∣
k1 = 0 0 0

0 k2 = 0 0
0 0 k3 = 0

∣∣∣∣∣∣
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(a) Original image (b) Restored image

Figure 3.5: Image restoration by means of non-uniform increasing of the saturation

3.4 Related works on color spaces

In this section, reference to previous works on this field of science is done starting
by classical color spaces to finally present the selection of color components.

3.4.1 Standard color spaces

Most of acquisition devices, such as digital cameras or scanners, process signals in
the RGB format. This is why RGB space is widely used in the applications of im-
age processing. The R primary in RGB corresponds to the amount of the physical
reflected light in the red band, the same principle holds for G and B. For exam-
ple, in the color cube of RGB space the distance between blue=(0,0,255) and ma-
genta=(255,0,255) equals the distance between magenta and white=(255,255,255).
However, the human vision system considers the perceptual distance between blue
and magenta less than the distance between white and magenta. RGB represen-
tation has several drawbacks that decrease the performance of the systems which
depend on it. RGB space is not uniform; the relative distances between colors do not
reflect the perceptual differences. Another popular model is the HSI representation.
HSI space has been developed as a closer representation to the human perception
system, which can easily interpret the primaries of this space. In HSI space, the dom-
inant wavelength of color is represented by the hue component. The purity of color
is represented by the saturation component. Finally, the darkness or the lightness
of color is determined by the intensity component. Eq.3.2 shows the transformation
between RGB and HSI spaces [J. M. Tenenbaum T. D. Garvey 1974].

I = 1
3(R+G+B)

S = 1− 3
R+G+B [min(R,G,B)]

(3.2)



3.4. Related works on color spaces 33

H =


θ B ≤ G
360− θ B > G

Where θ = arccos 0.5[(R−G)+(R−B)]√
(R−G)2+(R−B)(G−B)

(3.3)

Although the HSI space is suitable for lots of applications based on color images
analysis, this color space presents some problems. For example, there are non-
avoidable singularities in the transformation from RGB to HSI, as shown in Eq.3.2
and this representation is not a perceptual system. The XYZ color space developed
by the International Commission on Illumination (CIE) in 1931 [Illumination ] is
based on direct measurements of the human eye, and serves as the basis from which
many other color spaces are defined. The YUV color is used in the PAL system
of color encoding in analogical video, which is part of television standards. The
YUV model defines a color space in terms of one luminance and two chrominance
components. Another alternative of YUV is the YIQ which is used in the NTSC TV
standard. On the other hand, Ohta, Kanade, and Sakai [Y. I. Ohta T. Kanade 1980]
have selected a set of "effective" color features after analyzing 100 different color
features which have been used in segmenting eight kinds of color images. Those
selected color features are usually names as I1I2I3 color model. XYZ, YUV and
I1I2I3 are non-uniform color spaces; therefore CIE has recommended L∗a∗b∗ and
L∗u∗v∗ as uniform color spaces, as they are non-linear transformation of RGB space
[Sangwine Stephen J.; Horne 1998]. A remark comes to complete this brief review,
there is no ideal color model and the possibility to combine or to mix color spaces
is discussed in the next part.

3.4.2 Hybrid color Spaces

Recently, the question of finding the best color representation has generated a rich
literature. In [L. Busin N. Vandenbroucke 2004], a standard color space is picked-
up specifically for a given image in order to classify color pixels. The main orig-
inality of the proposed unsupervised procedure is the selection of the most rele-
vant color space to categorize each class of pixels. This color space selection for
unsupervised color image segmentation does not consider the possibility to com-
bine color components from several spaces. To overcome this shortcoming, in
[J. D. Rugna P. Colantoni 2004], dominant features from different color spaces are
selected to construct a DHCS (Decorrelated Hybrid Color Space). A Principal Com-
ponent Analysis (PCA) is performed from the covariance matrix composed with the
total number of the candidate primaries. The 3 most significant axis are selected
to reduce rate of correlation between color components. An optimization-based
method [N. Vandenbroucke L. Macaire 1998] tries to compromise indices (compac-
ity and classes dispersion) in order to assess the suitability of a color model. These
indices represent two competitive constraints, in other word, two conflicting ob-
jectives, the improvement of one of them leads to the deterioration of the other.
Each image is like no other, so it deserves a dedicated color representation. We
believe, it is hardly possible to generalize the color pixel distribution for a given
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image set. So it seems unlikely feasible to apply the same color space on all the
images contained in a database. Each image must be considered independently. In
[N. Vandenbroucke L. Macaire 2003], soccer players are classified, according to their
color information, using supervised learning techniques, this training stage supposed
to dispose of the user ground truth which is not often the case, and limit the flexi-
bility of the system. Our framework is generic since it relies on a parsimonious use
of machine learning algorithms. Furthermore, we handle different feature selection
methods; we take advantages of their different ways to reach a single goal.

3.5 Methodology

The main architecture of our framework is presented in figure 3.6. It starts from an
RGB image where each pixel is projected into nine standard color spaces in order
to build a vector composed of 25 color components. Let C be a set of color com-
ponents. C = {Ci}Ni=1 = {R,G,B, I1, I2, I3, L∗, u∗, v∗, ...} with Card(C)=25. To
make data homogeneous and comparable a normalization phase is carried out. Each
component belongs to a finite space and is normalized between 0 and 1 using its
own maximum value (i.e. Rnorma = R/255). From this point, pixels represent a raw
database, an Expectation Maximization (EM) clustering algorithm is performed on
those raw data in order to label them. Each feature vector is tagged with a label
representing the color cluster it belongs to. Thereafter, a hybrid color space is com-
puted by feature selection methods. Finally, our approach aims at maximizing one
criterion which is the color recognition rate (Eq. 3.4), the color space maximizing
the recognition rate is considered as the best candidate. Thus, unlike former meth-
ods, the recognition rate is directly involved in the choice of a relevant color space.
Next, the question of feature selection methods is discussed.

Rec =
]Correctly classified color pixels

]Color pixels
(3.4)

3.6 Feature selection methods

The selection of features is a very active area in recent years, especially in the context
of data mining. Indeed, the data mining in very large databases is becoming a
critical issue for applications such as image processing, finance, etc. It is important
to summarize and intelligently retrieve the "knowledge" from raw data. The data
mining is an area based on statistics, machine learning and the theory of databases.
The variable selection plays an important role in data mining especially in the
preparation of data prior to processing. Indeed, the interests of the variable selection
are as follows:

• When the number of variables is just too great so that learning algorithm
cannot finish in a reasonable time. The selection reduces the dimension of
feature space.
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Figure 3.6: A framework for color space selection
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Figure 3.7: Feature selection architecture

• In terms of artificial intelligence, creating a classifier returns to cre-
ate a model for the data. However, a legitimate expectation for
a model is to be as simple as possible (principle of Occam’s razor
[Anselm Blumer Andrzej Ehrenfeucht 1987]).

Reducing the size of the feature space allows us to reduce the number of required
parameters for the description of this model also avoiding the phenomenon of over-
fitting and emphasizing the synthesize information.

• It improves the performance of the classification, its speed and power of gen-
eralization.

• It increases the data understanding: a better view of what are the processes
that give rise to them. This selection consists of:

– The elimination of independent variables of the class,

– The elimination of redundant variables.

3.6.1 Global concept

A general structure for selecting features can be offered in the way of figure 3.7
([Hall 1998]). Up to a certain criterion to be satisfied, subsets are generated in
browsing the feature space. The subsets generation is a searching process in the
subset space of cardinality 2N with N the number of features. All classical searching
algorithms can be applied to that problem. For instance [Koller 1996] proposes the
methods forward addition and backward elimination (deletion), [Dangauthier 2005]
and [Yang 1998] have made a good use of evolutionary algorithms.

3.6.2 Searching algorithm and evaluation

Existing feature selection methods for machine learning typically fall into two broad
categories : those which evaluate the worth of features using the learning algorithm
that is to ultimately be applied to the data, and those which evaluate the worth of
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features by using heuristics based on general characteristics of the data. The former
are referred to as wrappers and the latter filters.

1. Wrappers use classification algorithm to evaluate the pertinence of a given
subset of variables.

2. Filters are completely independent from the classification stage. They are
based on statistical concepts: entropy, coherence . . . A good feature subset
is one that contains feature highly correlated with predictive of the class and
yet uncorrelated with the others [Hall 1998].

The wrappers: Although conceptually more simple than filters, wrappers were
introduced more recently by John, and Kohavi Pfleger in 1994. Their principle
is to generate subsets candidates and to evaluate them thanks to a classification
algorithm. The score or merit will be a combination of a trade-off between the
number of variables eliminated, and the classification rate on a test file. Thus, the
“assessment” stage of the selection cycle is made by a call to the classification algo-
rithm. In fact, the classification algorithm is called several times for each evaluation
because a cross-validation is frequently used. By its very intuitive principle, this
method generates subsets well suited to the classification algorithm. Recognition
rates are high since the selection takes into account the intrinsic bias of data. An-
other advantage is its conceptual simplicity: there is no need to understand how
the induction is affected by the selection of variables, it is sufficient to generate and
test. However, there are three reasons that the wrappers are not a perfect solution.
First, they do not really have theoretical justification for the selection and they do
not allow us to understand the conditional dependencies that may exist between
the variables. On the other hand, the selection process is specific to a particular
classification algorithm and found subsets are not necessarily valid if you change
the method of induction. Finally, and this is the main defect of the method, the
calculations quickly become quite long when the number of variables grows up.

The filters: Filters don’t have the defects of wrappers. They are much faster,
they are based on more theoretical considerations, it allows a better understanding
to the dependency relationships between variables. But, as they do not take into
account the biases of the classification algorithm, the subsets of variables generated
give a lower recognition rate. To give a score to a subset, the first solution is to
give a score to each variable independently of the others and to do the sum of
those scores (OneR Selection). The alternative is to evaluate a subset as a whole
[Dangauthier 2005]. However, there is an intermediary between ranking and feature
subset ranking based on an idea of Ghiselli and used with good results in the context
of the CFS (correlation based feature selection) by M.A. Hall [Hall 1998]. The
score of a subset is constructed based on correlations variable-class and correlations
variable-variable (Eq.3.5):

rzc =
k.rzi√

k + k(k − 1)rii
(3.5)
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Where rzc is the correlation between the summed components and the outside vari-
able (a given color cluster – a class), k is the number of components, rzi is the
average of the correlations between the components and the outside variable, and
rii is the average inter-correlation between components. This equation expresses
that the merit of a given subset increases if the variables are highly correlated with
the class and it decreases if features are highly correlated between each others. The
idea is to state that a "good" subset is composed of variables highly correlated
with the class (to discard independent variables) and loosely correlated between
them/features (to avoid redundant components). It is an approximation since it
only takes into account the interactions of order 1. The correlation or dependency
between two variables can be defined in several ways. Using the statistical corre-
lation coefficient is too restrictive because it only captures the linear dependence.
However, one can use a test of independence as the statistical test of χ2. It is also
possible to combine wrapper and filter as presented in [Yang 1998].

Stopping criterion Finally, the stopping criterion may take various forms: a
computation time, a number of generations (in the case of a genetic algorithm for
instance), a number of selected variables or a heuristic evaluation of the subset
"value".

3.6.3 Summary on feature selection methods in use

After this short review on feature selection methods, we propose to categorize and
describe the approaches which are used in our color space selection framework. These
different methods are mentioned because they cover the main types of attribute
selection algorithm.

Hybrid color space built by genetic algorithm. GACS Basics:

• Attribute Evaluator: 1-Nearest Neighbor classifier (1-NN)

• Search method: Genetic search

Genetic algorithm (GA) is a search technique used in computing to find exact or
approximate solutions to optimization and search problems. Genetic algorithms are
categorized as global search heuristics and are a particular class of evolutionary
algorithms (EA) that use techniques inspired by evolutionary biology such as inher-
itance, mutation, selection, and crossover. Full details about Genetic algorithms
in search, optimization and machine learning are presented in [Goldberg 1989].
In Hybrid Color Space (HCS) context, each individual has to encode a vector,
where each component is an axis of the HCS. We consider a set C of features,
C = {Ci}Ni=1 = {R,G,B, I1, I2, I3, L∗, u∗, v∗, ...} with Card(C)=25. Practically, it
is almost impossible to test all possible combinations; the number of feasible so-
lutions evolves according a factorial function of the total number of the candidate
primaries (combinatorial explosion). Hence, GAs are well suited to get rid off absurd
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Figure 3.8: Cross over operator

combinations. Roughly, the first step is to initialize the population, each individual
is made up picking randomly three elements of C. Concerning cross over operator,
two individuals h1 and h2 share their genetic material, swapping one of their com-
ponent; figure 3.8. Finally, to perform mutation on an individual, one component is
selected and replaced at random by an element of C. Finally, the evaluation phase
computes a 1-NN classifier based on a Euclidian metric.

Correlation-based Feature Subset Selection (CFS) Basics:

• Attribute Evaluator: Statistical

• Search method: Greedy stepwise

Correlation-based Feature Subset Selection (CFS) proposed by M.A. Hall [Hall 1998]
evaluates the worth of a subset of attributes by considering the individual predictive
ability of each feature along with the degree of redundancy between them. Subsets
of features that are highly correlated with the class while having low intercorrelation
are preferred. The greedy stepwise search method performs a greedy forward search
through the space of attribute subsets. It may start with no attributes and stops
when the addition of any remaining attributes results in a decrease in evaluation.
The cardinality of the final subset can be set to three in our case.

De-correlated Hybrid Color Space (DHCS) Basics:

• Attribute Evaluator: Statistical

• Search method: Ranker

The basic idea of a De-correlated Hybrid Color Space
[J. D. Rugna P. Colantoni 2004] is to combine different color components from
different color spaces. Considering that there is a high redundancy between colors
components it is, in a general way, quite difficult to define criteria of analysis to
compute automatically the most relevant color components corresponding to a
selected set of color components. That is the reason why, in order to build a hybrid
color space, based on K’ color components, from K selected color components,
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Name Type Evaluation Searching algorithm
CFS Filter Statistical Greedy stepwise
DHCS Filter Statistical Ranker
GACS Wrapper Classification Genetic Algorithm
OneRS Wrapper Classification Ranker

Table 3.2: Selection feature methods in use

such as K’ << K, the proposed method: (1) computes the covariance matrix (of
size KxK) of K color components selected, (2) computes the eigenvectors and the
eigen values of this matrix, (3) reduces to K’ the number of color components in
computing the K’ most significant eigen values of the covariance matrix from a
principal component analysis (PCA). It can also produce a ranked list of attributes
by traversing the space from one side to the other and recording the order in which
attributes are selected.

One Rule Selection method (OneRS) Basics:

• Attribute Evaluator: One Rule Evaluation

• Search method: Ranker

The One Rule Selection method classes for building and using a One-R classifier; it
evaluates the worth of an attribute by using the OneR classifier, in other words, uses
the minimum-error attribute for prediction, discretizing numeric attributes. OneR,
short for "One Rule", is a simple classification algorithm that generates a one-level
decision tree. OneR is able to infer typically simple, yet accurate, classification rules
from a set of instances. The OneR algorithm creates one rule for each attribute in
the training data, then selects the rule with the smallest error rate as its ’one rule’.
To create a rule for an attribute, the most frequent class for each attribute value
must be determined. The most frequent class is simply the class that appears most
often for that attribute value. A rule is simply a set of attribute values bound to their
majority class; one such binding for each attribute value of the attribute the rule is
based on. The error rate of a rule is the number of training data instances in which
the class of an attribute value does not agree with the binding for that attribute
value in the rule. OneR selects the rule with the lowest error rate. Finally, it ranks
attributes according to error rate (on the training set). It treats all numerically-
valued attributes as continuous and uses a straightforward method to divide the
range of values into several disjoint intervals. A full report on this selection method
can be found in [Holte 1993]. A summary of the different methods is reported in
table 3.2.
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3.7 Image Segmentation for Hybrid Color Spaces: Vec-
tor Gradient

In [L. Busin N. Vandenbroucke 2004], a color segmentation in hybrid spaces is
proposed. The paradigm lies on multi-thresholds of 1D histograms. The
main drawback of this approach is its marginal nature. In fact, each thresh-
old is calculated individually for each color component. Others systems like
[N. Vandenbroucke L. Macaire 2003] and [J. D. Rugna P. Colantoni 2004] only per-
form a pixel classification without considering the spatial information. To tackle
these problems, a vector gradient segmentation is adopted. Once the source image
is transferred into a suitable hybrid color space, an edge detection algorithm is pro-
cessed. This contour image is generated thanks to a vectorial gradient according
to the following formalism. The gradient or multi-component gradient takes into
account the vectorial nature of a given image considering its representation space
(In our case a hybrid color space). The vectorial gradient is calculated from all com-
ponents seeking direction for which variations are the highest. This is done through
maximization of a distance criterion according to the L2 metric, characterizing the
vectorial difference in a given color space. The approaches proposed by DiZenzo
[Dizenzo 1986] first, and then by Lee and Cok under a different formalism are meth-
ods that determine multi-components contours by calculating a color gradient from
the marginal gradients. Given 2 neighbour pixels P and Q characterizing by their
color attribute A, the color variation is given by the following equation:

4A(P,Q) = A(Q)−A(P ) (3.6)

The pixels P and Q are neighbors, the variation can be calculated for the infinitesi-
mal gap: dp = (dx, dy)

dA =
∂A

∂x
dx+

∂A

∂y
dy (3.7)

This differential is a distance between pixels P and Q. The square of the distance is
given by the expression below:

dA2 =

{
= {∂A∂x }

2dx2 + 2∂A∂x
∂A
∂y dxdy + {∂A∂y }

2dy2

= adx2 + 2bdxdy + cdy2 (3.8)

=


a = (Ge1x )2 + (Ge2x )2 + (Ge3x )2

b = Ge1x G
e1
y +Ge2x G

e2
y +Ge3x G

e3
y

c = (Ge1y )2 + (Ge2y )2 + (Ge3y )2
(3.9)

Where, E = {e1, e2, e3} can be seen as a set of color components representing the
three primaries of the hybrid color model. And where Gmn can be expressed as the
marginal gradient in the direction n for the mth color components of the set E. The
calculation of gradient vector requires the computation at each site (x, y): the slope
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direction of A and the norm of the vectorial gradient. This is done by searching
the extrema of the quadratic form above that coincide with the eigen values of the
matrix M.

M =
(
a b

b c

)
(3.10)

The eigen values of M are:

λ± = 0.5(a+ b±
√

(a− c)2 + 4b2) (3.11)

Finally the contour force for each pixel (x,y) is given by the following relation:

Edge(x, y) =
√
λ+ − λ− (3.12)

This segmentation algorithm is assessed in the next section.

3.8 Experiments

In the idea to assess our system, we perform two evaluation stages. The first one is
a color classification step to test if the color representation found by our framework
is interesting in term of color distinction. The second step is a segmentation phase.
Indeed, a better representation system should give better segmentation results. Note
that this software, called Best Color Space Finder, can be found on the L3i-ALPAGE
website1.

3.8.1 Color classification

Test image descriptions: Our approach is applied on three different types of
images. An image of: natural scene, document and a synthetic image, this is de-
picted in table 3.3 and figure 3.9. The "Lenna" image is a conventional data source
widely used in image processing. The image of cadastral map represents the prob-
lem we attempt to tackle and finally, the synthetic image is a chessboard-like image
composed of 64 squares; this image is of special interest since 2 adjacent squares
can be distinguished by their saturation level. For this artificial image the number
of clusters is set 65 (64 boxes and the surrounding border).

Protocol: Considering the full set of attributes a clustering algorithm (EM) is
applied on each image. The number of color clusters per image is reported in
table 3.3. The final purpose is to find the hybrid color space which provides the
most similar color partition compared to with the one discovered using the whole
set of features. The merit of a color space is evaluated under this consideration.
For each image, each color cluster is divided in two sub-sets, one for training and
one for validation purpose. At this stage, each pixel is labeled according its cluster

1http://alpage-l3i.univ-lr.fr/ -> Best Colour Space Finder
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Id Image Type # of clusters
Im1 Lenna Natural Scene 18
Im2 SatSnake Synthetic image,

discriminated by
the saturation

65

Im3 Image of document Ancient Cadastral
Map

9

Table 3.3: Test image descriptions

|Xtraining| pixels |Xtest| pixels
IM1 130107 130107
IM2 100951 100951
IM3 110424 110424

Table 3.4: Training and Test Databases

number. Feature selection methods are performed on the training database and each
color space is evaluated thanks to the test data set. The color space performance
evaluation consists in a classification stage. Both test and training databases are
projected into the color space we want to evaluate. Each color vector from the test
database is classified using a nearest neighbor rule (One nearest neighbor classifier,
1-NN for short). The test object is labeled with the cluster number of the most
similar color instance from the training database; the underlying vector comparison
is based on a euclidean distance (L2 norm). Table 3.4 reports the number of elements
handled during the classification process.

Results: A fully detailed example is reported in table 3.5. The complete list
of selected attributes by feature selection methods is provided for the image 3.9(b).
The selected components by the color space finder methods are quite heterogeneous,
likely the reason lies on the variability of the considered approaches. In fact, they do
not rely on the same principles; they all differ either from their search method or from
their selection mechanism. Nevertheless, all feature selection methods adopted the
saturation component to describe the content of this image. This demonstrates the
pertinence of feature selection algorithms. For each real-world image, classification
errors are gathered in tables 3.6, 3.7. The color space minimizing the confusion
rate is elected to be the most discriminating feature space. Over the two images,
color spaces built by the GACS perform the best. Consequently, generally speaking
HCS outperform standard spaces. However, a closer look to the results denotes a
poor achievement of selected attributes by OneRs, DHCS and CFS, they failed to
overcome standard spaces. The "top 5" is often dominated by one HCS follows by
four standard spaces.
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(a) (b)

(c)

Figure 3.9: Images in use.
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Table 3.5: Hybrid color Spaces found on the Image IM2
Attributes CFS GACS DHCS OneRs

R 0 0 0 0
G 0 0 1 0
B 0 0 0 0
I1 0 0 0 0
I2 0 0 0 0
I3 0 0 0 0
T 0 0 0 1
S 1 1 1 1
I 0 0 0 0
L* 0 0 0 0
a* 0 0 0 0
b* 0 1 0 0
L* 0 0 0 0
u* 1 0 0 0
v* 0 0 0 0
A 0 0 0 0
C1 0 0 0 0
C2 0 0 0 0
X 0 0 0 0
Y 0 0 1 0
Z 1 0 0 0
Y 0 0 0 0
I 0 0 0 1
Q 0 0 0 0
Y 0 0 0 0
U 0 1 0 0
V 0 0 0 0

# of attributes 3 3 3 3
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Table 3.6: Confusion rate on Image 1
IM1

Color Spaces Error Color Spaces Error
GACS 0.2868 OnRS 0.3558
L*u*v* 0.29785 La*b* 0.3578
YUV 0.32764 I1I2I3 0.3683
YIQ 0.3345 XYZ 0.4650
HSI 0.3394 CFS 0.5877

AC1C2 0.3435 DHCS 0.7067
RGB 0.3529

Table 3.7: Confusion rate on Image 3
IM2

Color Spaces Error Color Spaces Error
GACS 0.14065 RGB 0.1561
YIQ 0.1445 OnRS 0.1615
I1I2I3 0.1478 La*b* 0.1650
HSI 0.1488 XYZ 0.2093

L*u*v* 0.1533 CFS 0.3043
YUV 0.15387 DHCS 0.349
AC1C2 0.1557
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3.8.2 Application to segmentation and evaluation

In this section, we evaluate the worth of HCS vs the standard RGB space in a seg-
mentation context. Firstly, we describe two datasets for these experiments: (1) the
well-known and publicly available Berkley database, this later allows an evaluation
on a large ground-truthed corpus; (2) an image of document on which a segmen-
tation algorithm was applied. Next, the question of the segmentation evaluation is
discussed and finally, the segmentation performance is evaluated to figure out which
color space offers the best image representation.

Database description

• Ancient color cadastral map

– In the context of the ALPAGE project, we are considering the digital-
ization of ancient maps on which objects are drawn by using color to
distinguish parcels for instance. We believe that such a problem would
take advantages of a dedicated color space. The color segmentation of
cadastral maps relies on the edge values defined in Eq.3.12. These edge
values are then filtered using a two class classifier based on an entropy
principle in order to get rid off low gradient values. At the end of this
clustering stage a binary image is generated. This image will be called as
contour image through the rest of this chapter. Finally, regions are ex-
tracted by finding the white areas outlined by black edges. The gradient
and the binary images are displayed in figure 3.10.

• Berkeley segmentation data set

– Research on early vision problems such as edge detection and image seg-
mentation has traditionally been critiqued on the grounds that quanti-
tative measurements of performance are rare. It is therefore difficult to
evaluate the effect of different design choices and the superiority (or in-
feriority) of various novel heuristics that have been proposed in the liter-
ature. Recently the availability of the Berkeley Segmentation DataSet
[Martin 2001], [Segmentation 2002] has allowed the quantitative mea-
surement of performance on boundary finding and the relative power
of various pairwise similarity cues. While this is, of course, not the first
example of quantitative measurement in segmentation the availability of
this large data set containing a wide variety of images and segmentations
by multiple human observers (11,0000 segmentations of 1000 images),
allows one to draw conclusions with greater "statistical confidence". A
sample of the kind of images that composes the database is shown in
figure 3.11 along with a human segmentation.
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(a) Original RGB image (b) Color Gradient Image

(c) Binary image

Figure 3.10: Map segmentation

Segmentation evaluation method

• Berkeley data set (with ground-truth)

– The human segmented images provide our ground truth boundaries. We
consider any boundary marked by a human subject to be valid. Since
we have multiple segmentations of each image by different subjects, it
is the collection of these human-marked boundaries that constitutes the
ground truth. In figure 3.11, the output of our algorithm is presented
for a given image. Let us assume that this output is a soft boundary
map with one pixel wide boundaries, valued from zero to one where high
values signify greater confidence in the existence of a boundary. The
task is to determine how well this soft boundary map approximates the
ground truth boundaries.

• Cadastral map subset (without ground-truth).

– Another way to assess a segmentation process is to compute the Levin
and Nazif (LN) criterion. Without ground-truth for our images, a un-
supervised evaluation is required. LN criterion combines intra-class and
inter-class disparities. Inter-class disparity score computes the sum of
contrasts of the regions balanced by their surfaces while the intra-class
uniformity score computes the sum of the normalized standard deviation
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Figure 3.11: Boundary detection: Machine vs Human. Precision and Recall curve.
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of each region. It takes into parameters the segmented image and the
original image and returns a score, the higher the better. This com-
parison is carried out on 50 pairs of maps. Levin and Nazif criterion
[Rosenberger 2006] is the union of two principles, the variability intra
and inter regions.

Results

• Berkeley data set (with ground-truth)

– The vector gradient, defined in section 3.7, is performed as a bound-
ary detector on the Berkeley Dataset. Segmentation evaluation in RGB
space and HCS space are illustrated in figure 3.12. In figure 3.12, Pre-
cision and Recall (PR) curves are presented. In this graph, Recall is a
measure of how well the detector performs in finding relevant contours
while Precision is a measure of how well the detector performs in not
returning nonrelevant contours. The F-measure is the harmonic mean of
precision and recall. One remarkable consideration extracted from the
Precision/Recall curves is the fact that the PR curves in HCS is always
above or equal to the RGB PR curve. Consequently, the F-measure is
slightly higher when performing in HCS space. This is an encouraging
observation, it means that at least a HCS will not degrade the segmenta-
tion results and compare to RGB, HCS will tend to improve the precision
when the recall is low.

• Cadastral map subset (without ground-truth)

– In table 3.8 LN criterion for the segmentations based on RGB and HCS
is reported. As mentioned in the prior paragraph, HCS reveal to be
slightly better than RGB, it means that regions found when processing
the color gradient in HCS are more uniform and more contrasted than
in RGB space. However, this remark must be tempered by the fact that
the improvement is not significant. Somehow the approach reminds of
the ”killing butterflies with missiles” paradigm, a complex framework to
achieve a bit better than the original image.

3.9 Conclusion

The quality of a color model is judged by two decisive factors: "Robustness" and
"Distinction". The robustness of the color representation is an indication of the
sensitivity of color values to illumination and brightness variations. The “Distinc-
tion” capacity of a color model is directly linked to its capacity to separate one color
from the others. The color space minimizing the error rate classification is the most
discriminating space for a given image (Tables 3.6, 3.7). The space generating the
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(a) On RGB space

(b) On HCS space

Figure 3.12: Overall results: Precision/Recall curves on Berkeley benchmark
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Table 3.8: Comparison HCS and RGB spaces on a segmentation process using LN
criterion.

Dizenzo segmentation color
cadastral maps

LN Criterion on 50
images
Average Std deviation

RGB 0.4770375 0.005396543
HCS 0.480325 0.007211647

least mistake will be retained to continue treatments on the image. The chosen
space is minimizing the distance intra-class, within the same unit chromatic while
maximizing the distance inter-classes. Such properties are helpful in post-processing
stages such as segmentation, or graphics recognition. The LN criterion results lead
to the same conclusion, showing that the contrast inter regions and the homogene-
ity intra-region are slightly better in HCS than in the RGB case. These results are
encouraging and they demonstrate how important it is to choose a "good" color
model. To take the stock, in this chapter, we have presented a color space selection
framework. Our contribution focuses on a "all-in-one" system to find a suitable
color space. Our tool can be seen as a pre-process to any color information re-
trieval application (Segmentation, graphic recognition . . . ). Our approach aims at
maximizing one criterion which is the color recognition rate to unleash the color
information. Each image is like no other, so a dedicated color representation is re-
quired. We believe, it is hardly possible to model a unique color space from a given
image set and then to apply this “mean model” individually, that’s why our method
computes independently a dedicated model to each image. Our framework relies on
a wise use of different feature selection methods in order to take advantages of their
diverse ways to reach a single goal. Finally, Hybrid Color Spaces are particularly
well suited while dealing with very specific images, such as medical images, images
of documents where CIE spaces are not particularly well designed. We believe that
much color image software would get profit to the use of an adapted color space.
A future work is envisaged by comparing Hybrid Color Spaces to Support Vector
Machine approaches such as Multidimensional scaling (MDS).
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4.1 Introduction

In this chapter, an object extraction method from ancient color maps is proposed.
It consists of the localization of frame, text, quarters and parcels inside a given
cadastral map. Firstly, a model of cadastral map is introduced; this knowledge rep-
resentation was elaborated in collaboration with historians and architects, experts
in this domain. Secondly, the color aspect is inherited from the color restoration
algorithm and the selection of a relevant hybrid color space presented in chapter 3.
Thereafter, dedicated image processing aim at locating the various kinds of objects
laid out in the raster. These especially designed detectors can retrieve different
components such as characters, streets, frame, quarters and parcels. These specific
tools are run successively in the objective to identify boundaries of the different
elements. In a last phase, these elements are put into a graph-based representation
to be further compared with the meta-model defined by the experts. This compar-
ison is carried out thanks to a graph matching algorithm. "Metamodeling" is the
construction of a collection of "concepts" (objects, terms, etc.) within a certain
domain. A model is an abstraction of phenomena in the real world; a metamodel is
yet another abstraction, highlighting properties of the model itself.

Technical documents have a strategic role in numerous organizations, composing
somehow a graphic representation of their heritage. In the context of the project
called “ALPAGE”, a closer look is given to ancient French cadastral maps related
to the Parisian urban space during the 19th century (figure 4.1). Hence, the map
collection is made up of 1100 images issued from the digitalization of Atlas books. On
each map a vast number of domain-objects are drawn by using color to distinguish
them, i.e. parcels, water collection points, stairs, windows/doors, . . . Within the
scope of the thesis, we focus on the following objects: text components, quarters and
parcels. However, our methodology can be easily extended to a wider range of items.
From a computer science point of view, the challenge consists in the extraction of
information from color documents in the objective of providing a vector layer to be
inserted in a GIS.

4.1.1 Image processing and knowledge representation

In the last fifty years, a lot of image processing applications have been developed
in many fields (medicine, geography, robotic, industrial vision, ...). We know that
image processing specialists design applications by trial errors cycles. They do not
enough reuse already developed solutions and design new ones nearly from scratch.
The lack of application formulation modeling and formalization is a reason of this
behavior. Indeed, image processing experts do not realize a complete and rigorous
formulation of the applications. Only the solutions are used as their definitions.
Therefore, the reusability of these applications is very poor because the limits of
the solution applicability are not explicit. Moreover they often suffer from a lack
of modularity and the parameters are also often tuned manually without giving
explanations on the way they are set.
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Knowledge based systems such as OCAPI [Clement 1993], MVP [Chien 1996] or
BORG [Clouard 1999] were developed to construct automatically image processing
applications and to make explicit the knowledge used to solve such applications.
However, a priori knowledge on the application context (sensor effects, noise type,
lighting conditions, ...) and on the goal to achieve was more or less implicitly encoded
in the knowledge base. This implicit knowledge restricts the range of application
domains for these systems and it is one of the reasons of their failure [Draper 1996].

More recent approaches bring more explicit modelling [Maillot ] [Hudelot 2003])
[BOMBARDIER ] [Town ] but they are all limited to the description of business ob-
jects for detection, segmentation, image retrieval, image annotation or recognition
purposes. Some of them use ontologies that provide the concepts needed for this
description: a visual concept ontology for object recognition in [Maillot ], a visual de-
scriptor ontology for semantic annotation of images and videos in [Bloehdorn 2005]
or image processing primitives in [Hudelot 2003]. Others capture the business knowl-
edge through meetings with the specialists: use of a conceptual modeling method
(NIAM/ORM) method in [BOMBARDIER ] to collect and map the business knowl-
edge to the vision knowledge. But they do not completely tackle the problem of the
application context description (or briefly as in [Maillot ]) and the effect of this con-
text on the images (environment, lighting, sensor, image format). Moreover they
do not define the means to describe the image content when objects are a priori
unknown or unusable (e.g. in robotic, image retrieval or restoration applications).
They also suppose that the objectives are well known (to detect, to extract or to
recognize an object with a restrictive set of constraints) and therefore they do not
address their specification.

To overcome these problems, in [Renouf 2007], Renouf et al aim at building a
methodology and a guideline for the development of such applications in order to
make it easier and more reliable. To reach this goal, they have to make explicit
the formulation of the problem to be solved, and the knowledge used by image
processing experts during the design. This solution is really promising but it is still
an ongoing work and cannot be used to build a real cadastral map understanding
system.

The literature offers many different approaches to technical document interpre-
tation. They concern geographical charts [Deseilligny 1993], mechanical engineer-
ing documents [Vaxiviere 1992], electronic diagrams [Hamada 1993], or utility maps
[Boatto 1992] (telecom, power and water networks, cadastral, ...). Roughly, two
strategies have been proposed: bottom-up and mixed strategies. In bottom-up
strategies, algorithms are performed in a fixed sequence, usually starting “low-level”
analysis of the gray level or black and white image, in which primitives [Kasturi 1992]
are extracted. Figure 4.2 illustrates the three steps of a map understanding system.

The rest of chapter is organized as follows: In section 4.3, we describe the cadas-
tral map meta-model. Section 4.4 is dealing with the problem of quarter and parcel
extraction. Then, the section 4.5 explores the ability of evaluating the quality of
the system by means of a model oriented approach. Section 4.6 shows experimental
results on quarter retrieval. Finally, section 4.7 contains the chapter’ conclusion.
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Figure 4.1: Example of cadastral map (7616 x 4895 pixels, 200 dpi, 24 BitsPerPixel)

Figure 4.2: Architecture of a graphic document analysis system
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Figure 4.3: Map interpretation strategy

4.2 Global methodology

The cadastral map interpretation strategy is described in this section. Figure 4.3
depicts the overall data flow process. On a given raster, a contour image is created
by performing an edge detection algorithm in a hybrid color space. This contour
image inherits the color meaning of the original raster. Object detectors are run
sequentially to locate frame, characters, streets, quarters and parcels within the
raster. Thereafter, this information feeds a higher level which elaborates a graph
structure. In this data structure, nodes relate the presence of objects found during
the detection step and edges represent the spatial relation between the objects.
Terms, words and appellations to qualify node and edge labels are so called concepts.
Concepts are defined into a knowledge representation formalism named ontology.
This latter contains the vocabulary and the logic of description of each element
required to model a cadastral map. An ontology offers a formal description of the
knowledge by a set of concepts within a domain and the relationships between those
concepts. It is used to gather the information on a given topic from experts in
ancient cadastral maps. Therefore, the produced graph can be seen as a model
instance of the map. On the other hand, the graph generation is not constraint by
the ontology and non-conform variations to the knowledge base can be introduced
into the graph structure. A higher level of representation is required to answer the
question: "how conform to the expert knowledge the raster to vector result is ?"
To reach this goal and without loss of information, the graph is translated into an
eXtensible Markup Language (XML) format to be further handled.

Definition 1. (XML document) An XML document is tuple < E,NE , RE >,
Where NE is the set of element names, RE is the distinguished root element of
the XML document, E is a sequence of elements. Each element e ∈ E is a triplet
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Figure 4.4: Traditional Modeling Infrastructure

< eid, name, content >, where eid is the identifier of element, we assume that every
element has a unique ID attribute. name is a function name: E −→ NE. The
content is either a character string, or a list of name : eid pairs.

The structure of such a file is analyzed with the joint use of a cadastral map
ontology to produce a meta-model corresponding to the instance data. An ontology
concentrates two paradigms: (i) Description logic to describe each concept from
the knowledge base; (ii) Metamodeling to organize and structure the relationship
between concepts.

Figure 4.4 illustrates the traditional three layer infrastructure that underpins
the metamodeling framework.

This infrastructure consists of a hierarchy of model levels, each (except the top)
being characterized as “an instance” of the level above. The bottom level, also
referred to as M0 is said to hold the “user data”, i.e., the actual data objects the
software is designed to manipulate. The next level, M1, is said to hold a “model” of
the M0 user data. This is the level at which user models reside. Level M2 is said to
hold a “model” of the information at M1. Since it is a model of a (user) model, it is
often referred to as a metamodel.

An ontology generator from XML documents is used to elaborate a computer-
generated meta-model. This translation proceeds to a generalization describing the
structure of an XML document. This automated knowledge representation is derived
from a collection of instances and a source ontology. In other words, this transfor-
mation builds a meta-model on top of a model. Afterward, the computer-generated
meta-model can be mapped with an expert meta-model using a graph matching
algorithm. This results in a measure of quality of the document interpretation.
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4.3 Meta-model of cadastral map

Here after, we present the fruit of many discussions, collaborations and meetings
with our partners from Humanities And Social Sciences. Especially, the architect
Michel Denès1 was the investigator of a dictionary which explains how the maps
were elaborated and the meaning of many symbols inside the maps. To identify the
elements described in the atlas, it is obviously the vocabulary of this historical pe-
riod that has been favored. This dedicated vocabulary is inspired from various texts
of this period contemporary of the city drawn by Philibert Vasserot. P. Vasserot
was the chief geometer in charge of the elaboration of the cadastral map (topological
record). The Cécile Souchon’s article published in 2005 lights up several points; the
author points out that the maps indicate the divisions between the ground, stairs,
courts, gardens, water wells, and ovens. Moreover, the Souchon’s article deals with
the paper layout called "Grand Aigle" (105x75cm) and the scale was changed by the
geometer if the concerned quarter was too large to fit the paper sheet. Commonly,
the documents are recorded using a range of scales from 1/200 to 1/500. Lastly, the
article expresses that parcel boundaries walls are stippled with black ink. Now, from
the raster image itself, M. Denès made some remarkable observations. Are drawn
by instruments: the property limits, walls and gardens. The thickness is set once
and for all: frontage walls and dividing walls have the same thickness. Finally, most
of painted details are hand-drawn: stairs, common ovens, latrines, etc. From this
work, a taxonomy of the cadastral map has arisen providing a natural and textual
description of objects that can be found in the rasters. To take note of this knowl-
edge, we created a meta-model of cadastral map that can be handled by computer
algorithms. The meta-model is displayed in figure 4.5 under the Unified Model Lan-
guage (UML) formalism. This latter denotes inter-relationship of different elements
inside the system. The data semantics of cardinality, categorization, N-ary relation-
ship are represented and from this complete expression, we focus our attention on
a subpart which deals with frame, street, quarter, parcel and text elements. This
restraint meta-model is shown in figure 4.6. Simply, this diagram expresses the
basic content of the map and how items are laid out: Cadastral map has a frame
which encircles the street names, they are materialized as text components. These
connected components surround each quarter and text cannot be localized inside a
quarter. Finally, a quarter contains many parcels, there is no defined cardinality for
that.

4.3.1 Concept definitions

Before explaining our methodology, we want to visualize what a parcel is for an
historian. In figure 4.7, a parcel was manually vectorized by an expert. This parcel

1The École nationale supérieure d’architecture de Versailles is a French architectural school
located at the ancient stables of the Versailles Palace. The school was founded in 1969 after the
suppression of the École des beaux-arts architecture section. Architect Jean Castex was one of the
school’s founders, while Nicolas Michelin (founder of the group Labfac) is its current managing
director.
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Figure 4.5: Expert-designed meta-model of cadastral map
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Figure 4.6: Limited cadastral map meta-model. Logic of description.

specification leads to the description of the bricks constituting a parcel.

Definition 2. Parcel properties:

• is inside a quarter

• is outlined by thick lines

• two adjacent parcels cannot have the same color

From fine to coarse, figure 4.8 brings to view examples of a map with two quar-
ters. In fact, an image can hold from one to four quarters. With the time and when
working with the maps for a quite long time, clear conclusions can be drawn about
quarters:

Definition 3. Quarter properties:

• is surrounded by streets

• is text-less.

By extension, a group of quarters has some basic properties:

Definition 4. A set of quarters:

• is surrounded by streets
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(a) Source image (b) Parcel polygonized by an historian

Figure 4.7: Parcel: a visual specification

• is centered in the middle of the map

• is apart from others items (rulers, compass rose...)

Here, the notations used to model our problem are defined.

Definition 5. (Frame, Quarter, Street, Character, Parcel) Is defined as Frame,
Quarter, Street, Character, Parcel any objects identified by the Frame, Quarter,
Street, Character, Parcel detectors, respectively.

4.3.2 Relation definitions

Definition 6. (isOutside) An object isOutside another object if they do not share
any features. obj1 and obj2 have no common points. This fact can be represented
by the following statement:

|obj1 ∩ obj2| = ∅

and,
|obj1 ∪ obj2| = |obj1|+ |obj2|

This relation is symmetric and a binary relation is symmetric if it holds for all a
and b that if a is related to b then b is related to a.

Definition 7. (contain) This relationship expresses the fact that an object is a
composition of others objects. An object overlaps another. We define that an obj1
contains obj2 if they verify the following relation:

|obj1 ∩ obj2| = |obj2|

and,
|obj1 ∪ obj2| = |obj1|

This relation is transitive, a logic relation between three elements such that if it holds
between the first and second and it also holds between the second and third it must
necessarily hold between the first and third.
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(a) Source image

(b) Quarter polygonized by an historian

Figure 4.8: Quarter: a visual specification
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Definition 8. (connected) When two white areas are only separated by a black pixel
border of one pixel width.

Definition 9. (encircle) When an object surrounds another without intersection.
obj1 encircles obj2 if they verify the following relation:

|BoundingBox(obj1 ∪ obj2)| = |obj1|

and,
obj1 ∩ obj2 = ∅

This relation is transitive ans is applied to the elements related to obj1.

Finally, the cardinality of the relations between concepts was analyzed as follows:

Many To Many:

• A case study: Courses are taught by one or many teachers. One teacher can
teach on one or many courses.

• In our case : Characters are outside one or many Quarters. One Quarter can
have one or many Characters outside.

One To Many:

• A case study: A course has one or many students.

• In our case : A Frame encircles one or many Quarters.

Many To One:

• A case study: Many students belong to one department.

• In our case : Many Parcels belong to one Quarter.

One To One:

• A case study: Office numbers are associated with a unique address.

• In our case : One cadastral map has a unique Frame.

From this model, a list of objects to be retrieved has been enumerated. In the
next section, we present the image processing tools especially designed to locate and
isolate the characters, the streets, the frame, the quarters and the parcels.

4.4 Object extraction

In this section, a description of the different object detectors run on the contour
image is presented. In a first step, we just recall the main steps of the color processing
where the goal is to unleash the graphical and textual information composing the
map.
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Figure 4.9: Colour analysis flow chart

4.4.1 Reminder on color processing

Figure 4.9 points out the color processing organization. This analysis can be seen
as a primitive extraction scheme: Color restoration, color space selection and edge
detection. These stages aim to extract homogeneous regions of our documents. From
the chapter 3, we have described in section 3.7 an image segmentation method for
hybrid color spaces. The contour force for each pixel (x,y) is given by the equation
3.12. This equation is recalled below:

Edge(x, y) =
√
λ+ − λ−

In this equation, λ± are eigen values of the vectorial gradient of 2 neighbor pixels.
These edge values are filtered using a two class classifier based on an entropy prin-
ciple in order to get rid off low gradient values. At the end of this clustering stage
a binary image is generated. This image will be called as contour image through
the rest of this chapter. Finally, regions are extracted by finding the white areas
outlined by black edges (figure 4.10). Note that this binary contour image (figure
4.10) is much more consistent than a usual image given by the binarization of the
luminance channel.

At this point, we describe our object extraction strategy from the so called con-
tour image. Image processing tools are run from a double expertises : (i) Knowledge
on the data; (ii) Knowledge on the image processing. The conjunction of both in-
formation should lead to a model driven image processing scenario. Where image
detectors are automatically adapted to extract a set of defined graphic elements.
A lack of time prevented us to achieve this investigation however a beginning of
answer is presented in [Raveaux 2010]. In cite[Raveaux 2010], a method integrat-
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(a)

(b)

(c)

Figure 4.10: From top to bottom: source image ; Binary from luminance ; Contour
image

ing efficiently a semantic approach into an image segmentation process is proposed.
A graph based representation is exploited to carry out this knowledge integration.
Firstly, a watershed segmentation is roughly performed. From this raw partition into
regions an adjacency graph is extracted. A model transformation turns this syntacti-
cal structure into a semantic model. Then the consistence of the computer-generated
model is compared to the user-defined model. A genetic algorithm optimizes the
region merging mechanism to fit the ground-truth model.

4.4.2 Methodology

A peeling the onion approach is adopted. Image processing is carried out one at the
time and sequentially, removing step by step a layer of information. The algorithm
sequence is presented in figure 4.11. Tiny elements and characters make the drawing
too dense and hard to interpreter. To reduce the complexity of the problem, the
first step has as an objective to separate characters from and graphic elements. Our
approach is a selective method operating on the graphic layer. Dedicated image
algorithms locate and filter objects surrounding the quarters. Once quarters are
isolated, they are put into different images, one binary image per quarter to be
further analyzed. Each quarter is a parcel container but algorithms has to be more
sensitive and more locally applied to precisely retrieve parcels within a given quarter.
This refine method takes into the color information contained into the contour image
but also, the background of the map representing the thick walls of the buildings.
Combining the contour image and the black layer leads to a robust parcel detection.
Finally, when detected parcel edges are vectorized. This “peeling the onion” strategy
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Figure 4.11: Object extraction process.

starts by a text/graphics segmentation presented in the next part.

4.4.3 Text/graphic separation

In our case, we assume that characters do not overlap the graphics. Considering this
assumption the segmentation is performed from the contour image where connected
components are treated as the basic construct of our approach. The four necessary
steps to achieve this task are proposed in figure 4.12.

Pre-processing: clustering Connected components are clustered into two
groups according to their number of pixels, the CLARA [Kaufman 1990] algorithm
is involved in this process. Black areas are then labeled as small or large. The rest
of the method will only focus on connected components tagged as “small”. From
this point the question can be stated as a two class problem. To categorize a given
CC as text or graphic, a complete classification chain is carried out.

Representation: Graph data set In a first step, considering each "small" CC
as a binary image, both black and white connected components are extracted. These
connected components are then automatically labeled with a partitional clustering
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Figure 4.12: Text/Graphic separation scheme: An overview.
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Figure 4.13: From image to graph

algorithm [Kaufman 1990] using Zernike moments as features [Khotanzad 1990]2.
Using these labeled items, a graph is built. Each connected component corresponds
to an attributed vertex in this graph. Then, edges are built using the following rule:
two vertices are linked with a directed and unlabeled edge if one of the vertices is
a neighbor of the other vertex in the corresponding image. This neighborhood is
decided according to the distance between the centroids of each connected compo-
nents with respect to a predefined number of neighbors (h). The two values h and
c, concerning respectively, the number of clusters found by the clustering algorithm
and the number of significant neighbors, are issued from a comparative study. An
example of the association between drop cap image and the corresponding graph is
illustrated in figure 4.13.

Discussion on parameters h, and c. We chose the couple < c, h > according to
one criteria: the minimization of the silhouette index [Rousseeuw 1987]. We have
tuned the number of clusters from one to 10 and the number of neighbors from one
to three.

Definition 10. (Silhouette) For each observation i, the silhouette width s(i) is de-
fined as follows: Put a(i) = average dissimilarity between i and all other points of
the cluster to which i belongs (if i is the only observation in its cluster, s(i) := 0
without further calculations). For all other clusters c, put d(i, c) = average dissimi-
larity of i to all observations of c. The smallest of these d(i, c) is b(i) := min

C
d(i, c),

and can be seen as the dissimilarity between i and its "neighbor" cluster, i.e., the

nearest one to which it does not belong. Finally, s(i) :=
(b(i)− a(i))
max(a(i), b(i))

.

Observations with a large s(i) (almost 1) are very well clustered, a small s(i)
2Zernike moments will be further described in chapter 7



70 Chapter 4. Cadastral map interpretation

(around 0) means that the observation lies between two clusters, and observations
with a negative s(i) are probably placed in the wrong cluster. For each configuration
the silhouette index was computed. Experimentally, we found that the pair < c, h >

that minimizes the most this index is < c = 5;h = 2 >.

Training: Prototypes selection The learning algorithm consists in the genera-
tion of K graph prototypes per class for a group of N classes. These prototypes are
produced by a graph based Genetic Algorithm [Raveaux 2007b], it aims to find the
near optimal solution of the recognition problem using the selected prototypes. In
such a context, each individual in our Genetic Algorithm (GA) is a vector contain-
ing K graphs per class, that is to say K feasible solutions (prototypes) for a given
class. Hence, an individual is composed of KxN graphs. The fitness (the suitability)
of each individual is quantified thanks to the classification rate obtained using the
corresponding prototypes and a test database. The classification is processed by
a 1-Nearest Neighbor classifier using the graph probing distance [Lopresti 2003]3.
Then, using the operators described in [Raveaux 2007b], the GA iterates, in order
to optimize the classification rate. The stopping criterion is the generation number.
At the end of the optimization task, a classification step is applied on a validation
database in order to evaluate the quality of the selected prototypes.

Classification Presenting an unknown CC as an input, the 1-NN classifier trained
with the prototypes learned during the training phase takes the decision to categorize
the given CC as Text or Graphic. An example of text/graphic segmentation is
illustrated in figure 4.14. The full system, Prototype Based Reduction Scheme for
Structural Data Classification is available online at the L3i-ALPAGE website4. In
addiction, a complete description of algorithms and data structures involve in the
graph prototype search are described in appendix B.

4.4.4 Frame detection

Each map is encircled by a frame. A frame is a thick stippled rectangle made with
black ink. To detect the coordinates of the 4 segments defining the rectangle, a
probe based approach is chosen. The continuity of the frame can be corrupted due
to the folding problem or some additive noise, so a robust approach to determine
segment coordinates and thickness is required. For each side of the image, a number
np of probes are spread along a given axis at the middle according to a centered
normal distribution. Thereafter, each probe follows a line crossing the image from
one side to the other, orthogonally to the axis of distribution. When a probe hits
a black pixel its progression is stopped and the coordinates are recorded, then the
given probe restarts from its breakpoint until it reaches a white pixel, at this point,
the coordinates are stored and the probe is destroyed. For each border, probe’s

3The graph probing distance is fully described in chapter 6.
4http://alpage-l3i.univ-lr.fr/ -> A Prototype Based Reduction Scheme for Structural Data Clas-

sification
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(a) Original image

(b) Text part

(c) Graphic image

Figure 4.14: Text/graphic decomposition.
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(a)

(b)

Figure 4.15: Frame extraction stage.

coordinates and thickness are submitted to a voting scheme to determine the values
that appear the most frequently. Figure 4.15 reflects the frame obtained after the
detection phase.

4.4.5 Street detection

The graphic image is built by subtracting the text image from the original image.
Therefore many small CCs and punctual information remain on this graphic image.
Run-Length Smoothing Algorithm (RLSA) helps grouping together homogeneous
CCs. Creating a more coherent graphic image. The basic idea of RLSA is to
take advantage of the white runs existing in the horizontal and vertical directions.
For each direction, RLSA eliminates white runs whose lengths are smaller than
threshold smoothing values (sv, sh). Next, streets are easily detected and then
removed according the criteria of density. In fact, a street is a long and thin stroke
delineating a large surface, consequently the corresponding bounding box has a low
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density of black pixels, figure 4.16.

4.4.6 Quarter extraction

This stage aims to locate where quarters are inside a given cadastral map. At first a
merging algorithm gathers closely couples CCs in a unique structure, thus, outliers
elements are left behind and isolated. In fact, one missing pixel is enough to break
into pieces a connected component. To mend that collection, a neighborhood graph
assembles closely located and concentrated CCs, but dislocated yet, in a single piece.
Map decorations, compass rose and ruler are considered as outliers since they do
not settle into our framework and they are most likely to be found on the edge of
the map. These objects are spread into the map beyond our regions of interest that
constitute quarters. Finally, only strongly coherent CCs are put into a single graph
structure preserving the main information, which is to say the quarters. The whole
principle is presented in figure 4.17. This strategy begins by the construction of a
graph. This latter is arranged by a node merging process then a pruning algorithm
removes small regions to keep only the significant information. Finally, an active
contour is applied to delineate boundaries of each remaining regions.

Neighborhood graph Each connected component represents an attributed ver-
tex in this graph. Then, edges are built using the following rule: two vertices are
linked with an undirected and unlabeled edge if one of the vertices is a neighbor of
the other vertex in the corresponding image. The h value, concerning the number
of significant neighbors, is issued from a comparative study. The value h is set to
two, this value is inherited from section 4.4.3.

Merging This step aims to merge CCs spatially close to each others. When a given
node n1 is merged with another one n2, the merged node n1 is deleted and its edges
are linked to n2. The algorithm 1 makes a reference to a distance between nodes
corresponding to a distance between CCs. This problem can be stated as follows:
A given set of CCs is composed of N pixels: P = {Pi ≡ (xi, yi)}Ni=1, therefore :

d(Node1, Node2) = d(n1, n2) = min
d

 N∑
i=1

N∑
j=1

d
(
P 1
i , P

2
j

) (4.1)

This neighborhood is decided according to the distance between the centroids of
each connected components with respect to a predefined threshold.

Significant CCs After the merging process, a given node is a set of CCs that
will be named region. From the merged neighboring graph, only the biggest nodes
in term of surface are considered and analyzed. Behind this assumption relies the
hypothesis that the quarters represent the main information into a cadastral map,
so, quarter regions have the biggest surfaces. When keeping the biggest nodes,
we preserve the main information, figure 4.18. This simple pruning algorithm is
summarized in Algo. 2.
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(a) Graphic image

(b) Streets identified by colors

(c) Bounding Boxes of remaining pieces

Figure 4.16: Street detection using density criteria.
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Figure 4.17: Overview of the quarter extraction scheme
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Algorithm 1 Merging scheme for graph data structure
Require: A spatial distance threshold: T
Require: The number of significant neighbors: h
Ensure: A simplified graph.
Start
MergingFlag = true
while MergingFlag == true do
MergingFlag=false
for i = 1 TO Number Of Nodes do
N(i): the ith node.
for j = 1 TO h do
N(j): the jth node of the neighboring.
if d(N(i),N(j)) < T then
MergeNodesInGraph(N(i),N(j))
MergingFlag = true

end if
end for

end for
end while
End
return The merged graph

Algorithm 2 Surface pruning algorithm for a neighborhood graph
Require: A surface threshold: S
Ensure: A pruned graph.
Start
for i = 1 TO Number Of Nodes do
N(i): the ith node.
s : getSurface(N(i))
if s < S then
DeleteEdgesFromTheNode(N(i))
DeleteNodeFromTheGraph(N(i))

end if
end for
End
return The pruned graph
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(a) Source image

(b) Connected components their bounding box

(c) Remaining connected components after pruning mechanism
based surface criteria

Figure 4.18: Connected Components pruning.
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(a) (b)

Figure 4.19: (a) Snake initialization; (b) Snake progression

Active contour: Snake Once the significant regions are identified from the for-
mer step, we still need to delineate the contour of the quarters. Active contours,
or snakes, are computer-generated curves that move within images to find object
boundaries, see [Kass 1988] and [Leymarie 1993] for more details. On each quarter
an active contour is performed to smoothly find the edges. An application of snake
is depicted in figure 4.19.

Contours are initialized with a distance between adjacent snake points (’snaxels’)
of approximately 3 pixels. Each snaxel moves under the influence of internal and
external constraints:

• Continuity : An internal constraint that specifies that a snaxel should locate
itself so as to make the distance between itself and its neighbors close to the
average distance between snaxels. This version of the continuity constraint
tends to cause the snake to shrink.

• Curvature: An internal constraint that specifies that a snaxel should locate
itself so as to minimize the amount of curvature it introduces; that is, it should
maximize the angle it defines between its neighbors.

• Gradient : An external constraint that specifies that a snaxel should locate
itself in areas where the gradient in the image is large. Here, on the specific
case of binary image, the gradient is extremely high (1.0) when a black pixel
is encountered and is worth zero for a white pixel.

To initialize a contour, the quarter bounding box is adopted. The contour and
the points that are used in the contour are shown in green in figure 4.19. The snake
moves 100 iterations at maximum. When the snake reaches steady state and no more
points are moved on an iteration, the program no longer refreshes the contour and
stops. The three parameters above the image (continuity, curvature, and gradient)
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can be changed from zero to ’very high’. Each of these affects the behavior of
the snake in a particular way. After changing the parameters, we have adopted
empirically the most suitable solution to best fit the quarter digital curve while
preventing noisy/disturbed contours. The best trade-off was found when continuity
and curvature are set to "Low" while gradient is set to "High". Note that it is the
values of these weights relative to each other that is important; setting all three
values to "High" will give exactly the same results as setting them all "Low".

Discussion on parameters Merging and pruning the neighborhood graph in-
volve two parameters. The first one, T is related to the distance between regions.
In the algorithm 1 two regions are merged if they are closed to each others which
is to say if the minimum distance (simple linkage) between the regions is less than
T . In the merging phase, we aim at assembling CCs that are broken because of the
time due degradation. Experimentally, a value for T equal to 15 pixels is enough to
merge closely coupled CCs without creating aggregating unwanted elements. This
can be executed thanks to the removal of small CCs during the text/graphic phase,
the graphic layer is quite clean and light in term of information. The flip side of
coin is that small pieces of graphics can be missed. The second parameter is related
to the surface of the quarters. In the algorithm 2, regions having a surface less
than S are removed. Behind this assumption lies the fact quarters are the main
objects drawn into the map and so, they have a significant surface. This pruning is
helpful to remove ruler, compass rose, decoration and noise. After a series of tests,
a value of S = 60000 pixel2 was convincing enough to remove undesirable objects
and to keep the quarters into the graph. Finally, the quarter extraction according
the explained thresholds is evaluated in section 4.6.

4.4.7 Parcel Extraction

Once the quarter information is isolated, the next stage is to locate parcel informa-
tion. In order to achieve that goal a series of processes have to be done. This data
flow process is brought to view in figure 4.20.

Methodology: The main motivation is to obtain parcel polygons to be inserted
into a Geographical Information System. Such an application has some geometric
requirements. In fact, polygons must be topologically consistent. By consistent,
we mean that two adjacent parcels must share at least a common edge. The focus
is given to each quarter area in order to refine the analysis. Images are processed
independently from other objects (Frame, Characters, Streets). To better identify
the problem, a binary image is retrieved from the automatic thresholding of the
luminance channel. The binarization of the gray scale image issued from the lu-
minance is performed thanks to the Otsu’s algorithm. Otsu’s method is used to
automatically perform histogram shape-based image thresholding [Sezgin 2004] or,
the reduction of a graylevel image to a binary image. The algorithm assumes that
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Figure 4.20: Overview : From Quarter image to vectorized parcels

the image to be thresholded contains two classes of pixels (e.g. foreground and back-
ground) then calculates the optimum threshold separating those two classes so that
their combined spread (intra-class variance) is minimal [Ostu 1979]. Contour and
binary images are merged together to improve the parcel detection. An example of
this merging operation is illustrated in figure 4.21.

The objective by merging the black layers is to better define the contour of parcels
and not to lose information. On the merged image a white component analysis
is performed. Each white connected component is a continuous and closed area
representing a parcel. Unfortunately, these objects do not respond to the topological
constraints that are required by GIS. To respect this topological constraints, the
black layer is removed iteratively. Median axis is found by a thinning algorithm
performed on black pixels. This is illustrated on figure 4.22. Thereafter, parcels
contour are processed to find junction points thanks to an image chaining analysis,
see figure 4.23.

Hence, parcel contours are vectorized which is to say transformed into a set
of segments using a digital curve approximation method, see figure 4.24. Finally,
the next paragraph will describe more precisely the different algorithms that are
involved in the parcel extraction.

Black layer remover: A quick reminder brings us to mention that parcels are
found by a white connected component analysis. Unfortunately, in this configura-
tion, parcels are not touching each others, black pixels are separated them. The
black layer is progressively removed by using an adapted median filter. This modi-
fied version of the median filter operates only on black pixels. When a black pixel is
encountered a voting scheme is set up. On the neighborhood, each non-black pixel
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(a) Isolated quarters on the source image (b) Binary image from luminance

(c) Contour image (d) Binary and contour images are merged

Figure 4.21: Refined quarter analysis

is considered and expresses its vote by giving its color value. The color that appears
the most often is elected and stored in the output image. When the entire image
is processed, the output image becomes the current image and the voting filter is
iterated until no black pixels remain. Step by step, the black pixels are substituted
by the color that is the most likely to appear in the neighborhood, conventionally,
a 5x5 mask size is adopted. A sample image before and after this image processing
stage is showed in figure 4.25.

After this operation, each parcel has unique color label. From the label image,
parcel contours are exacted to be further handled, which is to say polygonized.
Figure 4.26 denotes the binary image where contours are ready to be polygonized.

Digital curve approximation; vectorization: Black pixels are vectorized us-
ing a polygonal approximation based on a genetic algorithm. In this method, the
optimization/exploration algorithm locates breakpoints on the digital curve by min-
imizing simultaneously the number of breakpoints and the approximation error. Us-
ing such an approach, the algorithm proposes a set of solutions at its end. This set
which is called the Pareto Front in the multi objective optimization field and it
contains solutions that represent trade-offs between the two classical quality criteria
of polygonal approximation : the Integral Square Error (ISE) and the number of
vertices (nv) (i.e. in [Locteau 2006]). This method is threshold-less and postpones
the choice of a specific solution at the end of vectorization process. Figures 4.27 and
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(a) Binary and contour images are merged (b) White connected components analysis

(c) Average color region (d) Black layer removal

(e) Parcel Contour

Figure 4.22: Parcel location
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(a) Full view (b) Zoom in

(c) Intermediate point display (d) End point display only

Figure 4.23: Image Chaining

(a) Full view (b) Zoom in

(c) Raster and vector (d) Break points visualization

Figure 4.24: Polygonization
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(a) Before (b) After

Figure 4.25: Black layer removal

Figure 4.26: The parcel contours are materialized. Digital parcel curves ready to be
polygonized
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Figure 4.27: An illustration of the Pareto-front principle

4.28 illustrate the principle of Pareto front.
At the end of this stage we obtain a set of dominant solutions, they are all

valuable and pertinent according a certain point of view, however in order to retrieve
a unique solution, we have to compromise. On the Pareto curve, we compute the
average ISE (AISE) as the area under the ISE-nv curve. This average value can be
represented as a horizontal line on the solution plot. Finally, we choose the solution
which is the closest to the point created by the intersection between the AISE line
and the Pareto curve. An example of polygonization is depicted in figure 4.29.

Polygonizer. From lines to polygons: Detecting polygons defined by a set of
line segments in a plane is an important step in the analysis of vectorial drawings.
To perform polygon detection from a set of line segments we divide this task in four
major steps. First we detect line segment intersections using the Bentley-Ottmann
algorithm [J.L.Bentley 1979]. Next step creates a graph induced by the drawing,
where vertices represent endpoints or proper intersection points of line segments and
edges represent maximal relatively open subsegments that contain no vertices. The
third step finds the Minimum Cycle Basis (MCB) [Syslo 1981] of the graph induced
in previous step, using the algorithm proposed by Horton [Horton 1987]. Last step
constructs a set of polygons based on cycles in the previously found MCB. This is
straight-forward if we transform each cycle into a polygon, where each vertex in the
cycle represents a vertex in the polygon and each edge in the cycle represents an
edge in the polygon (i.e. in [Jr 2003]). Each polygon can be considered as a parcel.
The polygon reconstruction from Line cross-sections is displayed in figure 4.30.
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(a)

(b)

Figure 4.28: (a) Figure named: semi-circle; (b) Pareto front for the semi-circle image
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(a) Zoom in

(b) Intermediate point display

(c) Polygonization

Figure 4.29: Digital curve approximation
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(a) Zoom in (b) Ending and crossing points are displayed

Figure 4.30: Inferring polygons from lines. Image taken from [Jr 2003]

All the image processing algorithms, required in our approach, to extract objects
from cadastral maps have been discussed. So, in the next section, the question of the
quality of our approach is evoked through the viewpoint of knowledge integration.
Without supervision, without ground truth, we want to know if the extracted objects
are coherent with the meta-model proposed by the expert. The complete evaluation
on the vectorization is postponed in chapter 5.

4.5 Quality measure by knowledge integration

Here, we aim at measuring the quality of the object extraction scheme in a self-
sufficient way. It means that no ground-truth data are needed to assess the proposed
object retrieval method. On the contrary, a wise integration of the expert knowledge
is envisaged through the comparison of the expert meta-model and the computer-
generated meta-model.

4.5.1 Methodology

First of all, let us make a kind precision. It is an obvious remark to mention that
a direct comparison of two cadastral models would be misleading. The structure
of two cadastral maps is very versatile, for instance a given map can be composed
of only 4 parcels when another has over 40 parcels. Consequently, a real need
has arisen to compare cadastral maps at a higher level, at a meta-model point
of view. An overview of the main actions carried out at this stage is shown in
figure 4.31. Basically, from low level image processing a model of cadastral map is
built. This structured model relies on a domain-dependent ontology which defines
its node and edge labels. An ontology is a receptacle for knowledge. It unifies in
a single entity the structure and the definitions of domain-specific concepts. Thus,
an ontology contains a meta-model resuming the organization of concepts and a
logic of description to explicitly define those concepts. It is a generic framework
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Figure 4.31: Data flow process for meta-model inference from a model instance

to gather and to handle knowledge on a topic. Thereafter, the ontology based
model is generalized to reach a higher level of abstraction called meta-model. Meta-
model handling and ontology-based method are emerging technologies derived from
a paradigm named Model Driven Engineering, MDE for short. The applicability
of MDE tools to image processing constitutes a real challenge and an open way to
knowledge driven process.

4.5.2 Model Driven Engineering (MDE)

MDE [Bézivin 2005] is a new paradigm of software development that tries to fill
the semantic gap faced in the data-mining field of science by the means of a higher
representation called models. As an introduction, we present a "vanilla plain" case
study on a ’flower’ description. The logic of description is illustrated in fig 4.32.
MDE lies on a three level architecture, the first stage is a raw point of view of a
system in terms of regions and edges. This basement feeds a syntaxic echelon which
aims to structure the primitive information. Finally, the semantic level comes to
build domain specific objects (ie. Fig.4.33). A model is defined according to a
certain meta-model and it is said to be a knowledge representation.

Definition 11. A directed graph G = (NG, EG,ΓG) consists of a finite set of nodes
NG, a finite set of edges EG, and a mapping function
ΓG : EG → NG ×NG mapping edges to their source and target nodes.

Definition 12. A model M = (G,ω, µ) is a triple where:

• G = (NG, EG,ΓG) is a directed graph,
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Figure 4.32: Logic of description: flower

(a)

Figure 4.33: Basic relations in Model Driven Engineering
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• ω is itself a model (called the reference model of M) associated to a graph
Gω = (Nω, Eω,Γω),

• µ : NG t EG → Nω is the conformance function associating elements (nodes
and edges) of G to nodes of Gω.

Definition 13. A model transformation MT is conform to a metamodel of trans-
formation MMT and can be defined by a function:

MT : MMT (MA : MMA)→MB : MMB

where:

• MA is the transformation input model conforms to a metamodel MMA,

• MB is the transformation output model conforms to a metamodel MMB.

MDE is a well-suited candidate for image interpretation by providing a common
framework for representing graph structures as models conforms to meta-models.
In the "flower" example, we consider image as a system which is represented by a
model conforms to a meta-model. This meta-model called Region Adjacency Graph
defines basic constructs for image representation under generic concepts like Region
and Pixel. Models conform to the Region Adjacency Graph (RAG) meta-model
represent the exact structure of the image under study.

The segmentation mechanism ends by producing a partition into regions. The
graph built on top of it is rigorously conformed to the RAG meta-model. To fill the
gap between computer objects and semantic concepts a mapping must exist between
the two meta-models (RAG and semantic meta-models). This mapping is a function
associating each node of the RAG meta-model to one or many nodes of the semantic
meta-model. This linkage also called model transformation is made manually and it
requires both computer scientist and expert cooperation. The figures 4.33 and 4.32
depicts the overall approach for Model Driven Image Interpretation.

In the case of cadastral map, the level 0 is the pixel image whereas the injector is
the entire object extraction scheme completed by a graph construction step. Level
M1 is an instance model of cadastral map as presented in figure 4.34. Finally, the
M2 level is a meta-model level which makes possible the comparison between maps.

The fantastic increase of interest for knowledge engineering is pushed forward
thanks to a great effort or normalization and standardization. Next part puts for-
ward a chronological overview of formalisms dedicated to knowledge management.

4.5.3 Meta-model representations

A meta-model can be handled in several formats. We propose to blow away some
obscure terms and to demystify the word "ontology". We start our discussion from
XML files to finish with the Web Ontology Language (OWL) which is the most com-
mon implantation for ontology representation. All these technologies are designed
for use by applications that need to process the content of information instead of
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Figure 4.34: An instance model of cadastral map. Text and parcels are not expended
in this view in order to obtain a comprehensive image.

just presenting information to humans. XML files on their own are just raw data,
inert data without semantic, figure 4.35.

This snippet of XML code (Figure 4.35) can denote the containment notion, a
FRAME is linked to a QUARTER and a QUARTER is linked to two PARCELs ...
However, the nature of the relation between items is not clearly stated. A semantic
information is lost, we attempted to describe that a FRAME include completely a
QUARTER, spatially talking, but this aspect does not appear anymore. This way
is misleading, a richer knowledge representation paradigm must be adopted, one
where relations and concepts are clearly stated as object classes.

To bring the meaning back to this data and to fill the gap between data and
document, a data model is required. A model aims at giving a "type", a concept
name to elements encountered into the XML files. An XML Schema Definition
(XSD) file can play such a role. Clearly, an XML + XSD file is a document when
XML on its own is not.

Definition 14. (XSD) A XSD is a tuple < T,NT , RT >, where T is a sequence of
types, NT is the set of type names. Every meta-model has a unique root type RT .
Each type τ ∈ T is a triplet < tid, name, content >, where tid is the type identifier,
name is the name of type τ , it is a function name : T −→ NT .

A recommendation of the World Wide Web Consortium (W3C), specifies how
to formally describe the elements in an eXtensible Markup Language (XML) docu-
ment. This description can be used to verify that each item of content in a document
adheres to the description of the element in which the content is to be placed. In
general, a schema is an abstract representation of object’s characteristics and rela-
tionship to other objects. An XML schema represents the interrelationship between
the attributes and elements of an XML object (for example, a document or a portion
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<FRAME id="1">

<QUARTER id="2">

<PARCEL id="3">
...
</PARCEL>
<PARCEL id="4">
...
</PARCEL>

</QUARTER>

</FRAME>

Figure 4.35: Sample of an XML file.

Figure 4.36: as a triple

of a document). To create a schema for a document, an analyze of its structure is
necessary, defining each structural element as it is encountered.

From this point, the couple XML+XSD works perfectly well to represent knowl-
edge. However, it does not offer a query language and no meaning extraction meth-
ods are proposed. This is why we take a look to the Resource Description Frame-
work (RDF), an environment for constructing languages for describing resources.
The RDF structure is based on the three main concepts: a resource, a property, and
a statement (Subject - Predicate - Object).

Let us take as an example a single RDF assertion. Let’s try "The author of the
page is Ora". This is traditional. In RDF this is a triple

triple(author, page,Ora)

which you can think of as represented by the diagram displayed in figure 4.36.
The main advantage of RDF over the basic XML is its simplicity. Unlike the

order of elements in XML, the order of RDF properties does not matter. RDF
offers a very appealing and flexible solution to any semantic model designer. Con-
tinuing in the same direction and going even further about knowledge integration
into computer software, the last decade gave birth to ontology. Towards knowl-
edge representation, the Web Ontology Language (OWL) is a family of knowledge
representation languages for authoring ontologies, and is endorsed by the World
Wide Web Consortium. This family of languages uses a semantic model intended
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to provide compatibility with RDF Schema. OWL ontologies are most commonly
serialized using RDF/XML syntax. OWL is considered as one of the fundamental
technologies underpinning the Semantic Modeling. OWL is designed for use by ap-
plications that need to process the content of information instead of just presenting
information to humans. OWL facilitates greater machine interpretability of Web
content than that supported by XML, RDF, and RDF Schema (RDFS) by provid-
ing additional vocabulary along with a formal semantics. OWL adds semantics to
the schema. It allows specifying far more about the properties and classes. It is also
expressed in triples. For example, it can indicate that "If A isMarriedTo B" then
this implies "B isMarriedTo A". Or that if "C isAncestorOf D" and "D isAncesto-
rOf E" then "C isAncestorOf B". Another useful aspect, OWL adds is the ability to
say two things are the same, this is very helpful for joining up data expressed in dif-
ferent schemes. You can say that relationship "sired" in one schema is owl:sameAs
"fathered" in some other schema. You can also use it to say two things are the same,
such as the "Elvis Presley" on wikipedia is the same one on the BBC. This is very
exciting as it means you can start joining up data from multiple sites, from multiple
sources (this is "Linked Data"). You can also use the OWL to start creating new
facts, such as "C isAncestorOf E". OWL and RDF are much of the same thing,
but OWL is a stronger language with greater machine interpretability than RDF.
OWL comes with a larger vocabulary and stronger syntax than RDF. Ontology is
about the exact description of things and their relationships. For the cadastral map,
ontology is about the description of map information and relationships between map
information.

Let us review the different types of knowledge representation in the particular
case of image of cadastral map. As a starting point, we first present the description
of a cadastral map meta-model under the UML formalism, figure 4.37.

Then, this class diagram can be exported into a XML Schema (XSD) format,
figure 4.38.

Finally, this knowledge representation can be seen as an ontology. OWL (Web
Ontology Language) is a language to express an ontology in a computer science way.
OWL syntax is based on the Resource Description Framework (RDF).

Definition 15. (RDF) RDF is a syntax organized into triples. A triple consists of
a subject, a predicate, and an object. The subject is, well, the subject. It identifies
what object the triple is describing. The predicate defines the piece of data in the
object we are giving a value to. The object is the actual value.

The cadastral map ontology is expressed in OWL and serialized using RDF/XML
syntax. A graph visualization of RDF schema and an OWL syntactical viewpoint
are proposed in figure 4.39. This portion of code denotes the basics syntax of
OWL. Concepts also named entities are defined as "Class" in OWL. While a relation
between two OWL classes is materialized with an "Object Property".

• OWL Class



4.5. Quality measure by knowledge integration 95

Figure 4.37: UML representation designed thanks to the Eclipse Modeling Frame-
work (EMF)

<xsd:complexType name="Frame">

<xsd:sequence>

<xsd:element maxOccurs="unbounded" name="FQ_encircle"
type="cadastralmaplimited:Quarter"/>

</xsd:sequence>

</xsd:complexType>

Figure 4.38: XSD representation. This snippet extracted the full XSD file indicates
that a "Frame" is link to "Quarter" by a relation calls "include"
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– A Class is a group of subjects or objects with similar meanings that can
be classified as a single type.

• Object Property

– An Object Property is an object so it can include methods or attributes.
More specifically to OWL, an Object Property has two mandatory at-
tributes, a range and a domain.

– Domain

– Range

• Domain

– For a property one can define "domain" axioms. Syntactically, a "do-
main" axiom is a built-in property that links a property (some instance
of the class) to a class description. The "domain" represents the source
node of an arc in a RDF graph.

• Range

– For a property one can define "range" axioms. Syntactically, a "range"
axiom is a built-in property that links a property to a class description.
A "range" axiom asserts that the values of this property must belong to
the class extension of the class description. The "range" represents the
target node of an arc in a RDF graph.

OWL uses open-world semantics, every single OWL class belongs to a super
class where the top level class is called "Thing". In OWL, every class is derived
from "Thing". On the contrary, relational databases are based on closed-world.

Thanks to this model design, we can construct a graph which is an instance
model of cadastral map. A graph where nodes and edges make reference to the
expert-designed ontology.

4.5.4 Graph construction

In this part, the principle describing the graph construction is presented. The
algorithm 3 provides the guide lines to create a semantic graph considered as an
instance model of the cadastral map. Roughly, all objects are added as nodes into
the graph. Nodes are labeled according to the vocabulary defined in the ontology.
Thereafter, given as parameters an ontology and a set of objects, relations between
two objects are checked out sequentially until one relation is verified. In this positive
case, an edge is inserted in the graph and this new edge is labeled following the
resources described in the OWL file. This directed attributed relational graph is
created from the object detected by our low level processing methods. Consequently,
there is no guaranty that the model is conform to the meta-model, which is to say
conform to the ontology. Errors could corrupt the model. To find out how different
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(a)

<owl:Class rdf:about="]Frame"/>

<owl:Class rdf:about="] Quarter"/>

<owl:ObjectProperty rdf:about="] FQ_encircle">

<rdfs:domain rdf:resource="] Frame"/>

<rdfs:range rdf:resource="] Quarter"/>

</owl:ObjectProperty>

(b)

Figure 4.39: (a) Graph RDF representation; (b) RDF file snippet. It represents
the declaration of two classes "Frame" and "Quarter", in addition a relation named
"encircle" between Frame and Quarter is defined.
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Algorithm 3 Semantic graph construction
Require: Set of frames: F
Require: Set of quarters: Q
Require: Set of streets: S
Require: Set of characters: C
Require: Set of parcels: P
Require: Sets of objects: T < F,Q, S,C, P >

Require: Ontology: o
Ensure: A semantic graph.
Start

G=CreateGraph()
addAllObjectsAsNodes(T ,G,o)
for each t1 ∈ T do
for each t2 ∈ T do
if t1 6= t2 then
n1=GetCorrespondingNode(t1,G)
n2=GetCorrespondingNode(t2,G)
if CheckRelation_Encircle(t1,t2) == true then
addEdge(G,n1,n2,o : ] encircle)
BREAK

end if
if CheckRelation_contain(t1,t2) == true then
addEdge(G,n1,n2,o : ] contain)
BREAK

end if
if CheckRelation_isOutside(t1,t2) == true then
addEdge(G,n1,n2,o : ] isOutside)
BREAK

end if
if CheckRelation_connected(t1,t2) == true then
addEdge(G,n1,n2,o : ] connected)
BREAK

end if
end if

end for
end for
End
return The semantic graph:G
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is the model from the meta-model, we need to create a new ontology derived from
the semantic graph and the expert designed ontology.

As explained at the beginning of the section, a model graph is not directly
comparable with the expert-knowledge. A transformation has to be performed on
the model graph to measure the distance between this instance model generated
automatically and the rules and constraints expressed in the expert meta-model. In
this goal, an inference mechanism is involved to extract a meta-model from a model,
in other words, to generate a schema from an RDF document.

4.5.5 Meta-model inference from a RDF document

The semantic graph is an instance model. A translation is performed to write it
into a RDF file format. Nodes and relations between nodes are represented as RDF
triples (a resource, a property, and a statement). This RDF data are coupled with
the expert ontology to infer a new ontology driven by data. The individuals (data)
lead the process to the elaboration of a computer generated ontology. We consider
the RDF document as forming a “knowledge base” or repository with collected meta-
data about a number of resources. An ontology is derived from a collection of
instances. The RDF instance documents will produce a valid ontology structure, an
RDF Schema (RDFS).

This part of our work was realized under the guidance of Árpád Tamási, CEO
and owner of Progos Kft. and author of the ontology generator service. Progos5 is
an ontology generator from RDF documents. Progos generates a new ontology from
instances and a source ontology. The Progos’s ontology generator architecture is
proposed in appendix C. The design of our Ontology Generator is exposed in figure
4.40. This modular architecture is inspired from the Oshani Seneviratne’s work6

which aim to generate a relational database schema from a RDF store. To our
knowledge, on the topic of Ontology inference from RDF documents, this approach
is the only existing one.

Our architecture of the ontology generator is shown in figure 4.40. It is composed
of three modules:

1. RDF Store: This module is in charge of parsing RDF files and their corre-
sponding RDF schema. When the files are processed, the RDF Store gen-
erates iterators so that following modules can manipulate this data. It also
constructs a predicate table structure so that the schema generator can collect
statistics.

2. Schema Generator: This module takes the predicate table as input and exe-
cutes an algorithm in order to determine a good ontology schema for the RDF
data set.

5http://progos.hu/tools/og/
6http://code.google.com/p/r-store/
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Figure 4.40: Design

3. Ontology Populator: When the data driven schema is generated, the Ontology
Populator gets the triple iterator from the RDF Store and copies the RDF
triples into the new ontology.

RDF store: The RDF Store is in charge of parsing RDF files and RDF schemas.
It provides resources to the Schema Generator and the DB Populator to analyze
the data. OWL API Semantic Web Framework [Horridge 2008] is extensively used
for this task. It provides an Open Source API that allows manipulating triples and
schemas. The RDF Store:

• Generates triple iterators.

• Extracts Subject Classes from the RDF schema and classifies triples with the
same subject.

– Maps Subjects -> Subject Classes

– Given a Subject Class returns all the Subjects of that Class.

• Constructs the Predicate table.

– For each predicate generates the map: (qualified Predicate) -> (Subject
Class, Object Class)
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triple(Subject, Predicate,Object)

triple(Frame− 1, encircle,Quarter − 1)

Predicate table for this entry : Syntax → Predicate(key) : <Subject Class, Object
Class>(pair);Frequency(scalar) Sample →: encircle : <Frame ,Quarter>;1

Figure 4.41: Predicate table construction

Figure 4.42: RDF store

– This structure is sent to the Schema Generator. The Schema Generator
infers a data driven schema by obtaining statistics from the predicate
table and from the data itself.

– An example of the predicate table construction is presented in figure 4.41.
A triple insertion:

This tool provides resources to the Schema Generator and Ontology Populator
to analyze RDF triples (figure 4.42).

Schema Generator The Schema Generator uses a Statistics-Based algorithm in
order to produce a data-based ontology schema. This phase analyzes the RDFS
and RDF data triples to produce a good meta-model (figure 4.43), one which is
data compliant. The main idea behind this algorithm is to discover the underlying
structure inferred by the RDF data. A RDF Schema that would represent any
data that falls within this new ontology. This algorithm takes into account the
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Figure 4.43: Schema Generator

semantics expressed in the RDF Schema. Based on the sub class relationships,
and the property constraints, it will determine the classes which are likely to be
represented in the generated ontology. Potentially, all classes are accepted to be
part of the output ontology. Nevertheless, if a class never appears into the RDF
triples then it will not be introduced in the target ontology. This is called "ontology
pruning". The reversal is true, when browsing the Predicate table and encountering
a Predicate which is not in the source RDF Schema a choice has to be made. Since
OWL relies on open-world semantics, the unknown triple can be taken into account
by the following steps:

•
triple(Subject, Predicate,Object)

• Creation of missing classes in the output Ontology.

• Linkage of the missing classes with the "Thing" top level class.

• Creation of an Object Property named by the Predicate.

– The Domain = Subject Class

– The Range = Object Class

In our configuration, this latter situation should not appear. The production of all
relations and concepts are limited by our low level procedure (the injector). From the
Predicate table, Classes and Object properties are generated into the new ontology.
The only remaining problem is the cardinality question.

Cardinality: To determine the cardinality of relationships, this algorithm does
not look at the RDFS property constraints, on the contrary, the algorithm relies on
statistics derived from data. Properties have domain and range constraints, which
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Figure 4.44: Arc Reversal

typically map the corresponding predicate in a triple from a subject to an object.
The subject should be an instance of the domain, and the object should be an
instance of the range. For example, if there is an RDF property called "contain"
and it’s domain is "Quarter" and the range is "Parcel", this means that in the RDF
data there could be a triple such as <Quarter contain Parcel>. Based on these
domain-range constraints, the type of the relationship as to whether it is ONE-
TO-ONE, ONE-TO-MANY and MANY-TO-MANY is made based on the following
algorithm.

The Statistics-Based algorithm is based on one statistic on each type of arc in
the RDF graph: the cardinality. This statistic is gathered in two iterations over the
RDF store.

The cardinality is determined by two iterations over the RDF store, once over
the triples as they have been parsed, and once over the triples with the Subjects
and Objects reversed. In both cases, the triples are traversed in sorted order, on the
Subject field. That means that in the reversed set, the triples are really sorted on
their Object field. It is possible to determine whether a Predicate has cardinality
one-to-one or one-to-many by checking the types of arcs (Predicate) coming out of
each Subject. Cardinality natures were defined in section 4.3.2.

Because the triples are sorted on Subject, only those arcs which refer to a given
Subject must be stored in memory at once. As soon as a different Subject is encoun-
tered, the algorithm is certain that it will never encounter that Subject again, and
can make a decision about the cardinality of each arc. The decision is recorded in
a two dimensional mask table, indexed on Subject Class and Predicate. In order to
find out about the other two cardinalities, the algorithm repeats the same procedure
on the reversed set of triples. This is valid because by reversing the Subject and
Object, we have reversed the direction of all the arcs as in figure 4.44.

Arcs that were one-to-many have become many-to-one. Arcs that were many-
to-many or one-to-one have not changed their cardinality. In light of this, if the
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algorithm determines that a reversed arc relation is one-to-many, it looks in the
mask table to check if the prior iteration also determined it to be one-to-many. If
so, the cardinality of this arc is many-to-many. Otherwise, it is many-to-one. Here
is an example, let us consider the following triple repository:

triple(Frame− 1, encircle,Quarter − 1)

triple(Frame− 1, encircle,Quarter − 2)

triple(Frame− 1, encircle,Quarter − 3)

The first iteration takes a look at the Direct parsing. According to the subject
"Frame-1" the relation is as follows :

< Frame encircle Quarter > : ???− to−many

Reverse Parsing (Second iteration): The data set becomes :

triple(Quarter − 1, encircle, Frame− 1)

triple(Quarter − 2, encircle, Frame− 1)

triple(Quarter − 3, encircle, Frame− 1)

Triples are analyzed by subject.

triple(Quarter−1, encircle, Frame−1) −→< Frame encircle Quarter > : one−to−???

, next Subject

triple(Quarter−2, encircle, Frame−1) −→< Frame encircle Quarter > : one−to−???

, next Subject

triple(Quarter−3, encircle, Frame−1) −→< Frame encircle Quarter > : one−to−???

. The final relation is :

< Frame encircle Quarter > : one− to−many

At the end of this module, all classes, relations and cardinalities are defined
regarding the RDF triples. Thus, we produce a new empty Ontology, with only
the meta-model of data (the RDF schema). This good Ontology in term of data is
given to the last stage in order to be populated.

Ontology Populator: In one iteration over the RDF store, the triples are copied
into the output OWL file. In this way, the new Ontology is filled up with data.
This new Ontology is data compliant. It means that all data are conformed to the
meta-model describing concepts and relations between concepts. An example of
Computer-Generated schema is shown in figure 4.45. To underline the differences
with the expert-designed meta-model, the figure 4.46 and 4.47 reveal the knowledge
representation with and without symmetric and transitive relations.
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Figure 4.45: Computer-Generated Meta-model

Figure 4.46: Expert Meta-model
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Figure 4.47: Expert Meta-model extended. Transitive and symmetric properties are
drawn.

4.5.6 Meta-model comparison

Meta-models need to be compared for several reasons, one of them is to represent the
differences between two similar meta-models. We propose to address this question
through the tropism of graph matching.

The transformation from meta-model to graph is quite explicit. Each concept of
the meta-model is node into the graph. Edges represent reference between concepts.
LE is a set of labels and each edge is labeled with two nominal values:

• LE = L1
E , L

2
E

• L1
E : The nature of the relation, a string value that belongs to the set encircle,

isOutside, contain, connected

• L2
E : This label denotes the cardinality of the relation, a string value among

1..*, 1..1,*..1, *..*

Our graph representation preserves the structure, the relationship and the cardi-
nality of the meta-model. An illustration of the meta-models to be compared is
displayed in figure 4.48. In this work, the problem which is considered concerns the
matching of directed labeled graphs. Such graphs can be defined as follows:

Definition 16. (Graph) Let LV and LE denote the set of node and edge labels,
respectively. A labeled graph G is a 4-tuple G = (V,E, µ, ξ) , where
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(a)

(b)

Figure 4.48: Computer Generated and Expert–Designed meta-model under a graph
formalism.



108 Chapter 4. Cadastral map interpretation

• V is the set of nodes,

• E ⊆ V × V is the set of edges

• µ : V → LV is a function assigning labels to the nodes, and

• ξ : E → LE is a function assigning labels to the edges.

The question of comparing two meta-models is turned into a graph distance
problem. A graph distance is a function X×X −→ R where X is a graph as defined
in Def. 16. The definition of such a distance is fully explained in chapter 6. This
latter describes a SubGraph Matching Distance (SGMD) for graph comparison. A
distance between two graphs is defined by solving for a max matching in a bipartite
graph spanning the nodes in two graphs. A probe is computed for each node,
which describes the neighborhood structure of a node out to a distance of 1 edge
(along all incident edges). The cost assigned to an edge in the bipartite graph
spanning two nodes is computed as the edit distance between their probes. The
resulting approximation to computing the largest isomorphic subgraph is O(n3),
the complexity of the bipartite matching problem. To use SGMD distance, we need
to define the specific case where every edge is labeled with two values. The similarity
between two edge attributes is then defined as follows :

Definition 17. (Edge distance) Let LAE and LBE be two labels from two graphs
GA, GB, respectively. Consequently, LA1

E, LA
2
E are the two values constituting LAE

and belonging to GA. In this way, we express dE as a function dE : LE ×LE −→ R.

dE(LAE , LBE) =


0 LA1

E is equal to LB1
E and LA2

E is equal to LB2
E

0.5 LA1
E is not equal to LB1

E or LA2
E is not equal to LB2

E

1 otherwise
(4.2)

In the next chapter, this Meta-Model Based Distance (MMBD) will be assessed
with a ground-truth measure of performance. In this way, we want to confront a
ground-truth based approach with our knowledge inspired method. The underlying
question is to figure out if MMBD is relevant, if it behaves like a performance
evaluation tool.

4.6 Experimental results

In this section, we evaluate the text/graphic segmentation and the quarter extrac-
tion.

4.6.1 Quarter extraction Experiments

4.6.1.1 Methodology

The assessment phase aims to compare the contour obtained with our method and
the contour described by a user. To illustrate our saying, we kindly refer the reader
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(a) (b)

(c) (d)

Figure 4.49: (a) Extracted quarter ; (b) Polygon given by the Snake; (c) Polygon
overlapped on the source image; (d) Isolated Quarter

to figure 4.49. This evaluation is carried out by image difference between the user-
defined ground truth (I2) and the computer-based contour built automatically (I1).
Image differences are depicted in figure 4.50. The error is expressed in equation 4.3.

Error =
1∑

x

∑
y I2(x, y)

[∑
x

∑
y

(|I1(x, y)− I2(x, y)|)

]
(4.3)

4.6.1.2 Evaluation

The error rate is computed on 30 ancient cadastral maps and results are reported
in table 4.1. The errors can be categorized into two groups. (1)Quarter vectoriza-
tion accuracy and (2)loss information from the retrieval system. Firstly, the active
contour does not stick strictly (pixel to pixel) the input image. An accuracy error
is introduced by the snake which proceeds to a polygonal approximation of the dig-
ital curve. This first kind of error is somehow minor since it represents only 1%
of the whole mistake, in average over the 30 maps. Secondly, the biggest source of
error is the missing information due to our selective method. Mainly, through the
text/graphics separation stage some small CCs can be removed from the graphic
layer while they represent part of the quarter structure. i.e.: edges or corners.
Nevertheless, we would like to precise that the error rate remains quite low.
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(a) (b)

(c)

Figure 4.50: (a) Rasterized polygon contour given by the snake; (b) Ground-truth;
(c) Difference image

Min Mean Max
Error (%) 1.58 4.91 12.80

Table 4.1: Error rates
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Training data set Test data set Validation data set
]elements 4118 4118 5000
]text 2791 2791 2500

]graphic 1327 1327 2500

Table 4.2: Databases in use for the text/graphics segmentation

Precision Recall CCI Rec
Class1 Class2 Class1 Class2 Class1 Class2 (%)

K=1 0.838 0.783 0.764 0.852 1910 2130 80.8
K=10 0.875 0.785 0.756 0.892 1884 2236 82.4
K=100 0.856 0.898 0.904 0.848 2122 2258 87.6

Table 4.3: Classification rate. Class1 and class2 represent graphics and text respec-
tively.

4.6.2 Test on Text/Graphic segmentation

Methodology The text graphic segmentation is assessed according to the number
of correctly classified CCs as text or graphic. In this objective, three databases were
employed and are described in table 4.2, this latter shows the data set characteristics.
The training and test sets are involved during the training phase by the genetic
algorithm while the validation database is only used once to assess the whole system.

Results

Table 4.3 takes the stock of the recognition rates (Rec) on the validation database.
Results deal with the need to generate prototypes instead of just finding them among
the graph corpus. Moreover, increasing the number of generated prototypes helps
to improve the number of correctly classified instances (CCI). Respectively, Class1
and Class2 stand for Graphics and Text. The class variabilities are better taken
into account as the number of prototypes increases. The problem is better modeled
with generalized prototypes which maximize the classification rate.

Figure 4.51 deals with a comparison between the well-known Fletcher and Kas-
turi method and our approach on a cadastral map. Of course, this is a single and
unique image, but anyway, it reflects the behavior of the two paradigms. Our ap-
proach is more complex however it gives a better representation of the text layer.
In addition, a comparative study is reported in table 4.4. It presents a quantitative
assessment.

4.7 Conclusion

This chapter discussed four important phases.

• Firstly, a text/graphics separation was proposed. It is based on a graph rep-
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#Graphics #Text #Elements CCI Rec
Class1 Class2

Fletcher-Kasturi 763 122 855 435 57 55.59

Table 4.4: Comparative Study

(a) (b)

Figure 4.51: (a) The text layer given by the Fletcher and Kasturi approach; (b) the
text layer found by our method.

resentation and a prototype selection method for structural data. A classifier
trained on these prototypes categorizes connected components into two broad
groups, text or graphic.

• Next, the quarter localization is carried out through a coarse to fine approach.
The architecture is based on a “peeling the onion” strategy in order to remove
unwanted objects from the map. This aspect was assessed on 30 maps and
results tend to illustrate a reliable behavior.

• Thirdly, the parcel extraction is performed a posteriori. A closer look is given
to parcels when quarters are individually identified. Specific image processing
are carried out to delineate parcel borders. Hereafter, the joint use of a polyg-
onal approximation method and a cycle detection transform pixels in segments
and segments in polygons, respectively. The question of parcel accuracy will
be highlighted in the next chapter, dealing on performance evaluation.

• In the fourth stage, a knowledge integration strategy is proposed for veri-
fying image processing integrity. In this objective, a data driven ontology
generator has been defined. Data are generated from object detectors to form
an instance model where relations and concepts are specified into an expert-
designed ontology. This structure stands apart from a conventional graph-
based representation (a "vanilla plain" graph) because concepts and relations
that compose the graph are explicitly written into a knowledge base called on-
tology. Thereafter, this computer-generated model comes to feed a higher level
of representation. A meta-model is automatically inferred from an instance
model making possible the comparison with an expert-designed knowledge
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representation. This comparison is led thanks to a graph matching algorithm
that provides quantitative measures about how different are two meta-models.
Furthermore, another information is retrieved by the graph matching method,
in this way, it gives out the nodes where errors occur into the graphs.

From this last remark an important issue arises. Object detectors and nodes are
closely coupled, therefore, it is possible to spot which low level process is corrupted
and does not generate the compliant information. These indications make possible a
feed back on low level processes changing and adjusting their parameters (threshold)
to obtain iteratively a "better" meta-model conforms to the expert knowledge.

Ongoing works are investigating the possibility to correct errors through the use
of perception cycle while another future work is exploring an orthogonal direction,
the use of ontology reasoners to automatically label nodes of a model graph. In this
situation, relations between nodes could be considered as constraints that must be
fulfilled to classify objects into broad categories.
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5.1 Forewords

This chapter presents a benchmark for evaluating the Raster to Vector conversion
systems. The benchmark is designed for evaluating the performance of graphics
recognition systems on images that contain polygons (solid) within the images. Our
contribution is two-fold, an object mapping algorithm to spatially locate errors
within the drawing, and then a cycle graph matching distance that indicates the ac-
curacy of the polygonal approximation. The performance incorporates many aspects
and factors based on uniform units while the method remains not rigid (threshold-
less). This benchmark gives a scientific comparison at polygon level of coherency
and uses practical performance evaluation methods that can be applied to complete
polygonization systems.
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A system dedicated to cadastral map vectorization was evaluated under this
benchmark and its performance results are presented in this chapter. By stress
testing a given system, we demonstrate that our protocol can reveal strengths and
weaknesses of a system. The behavior of our set of indices was analyzed when
increasing image degradation. We hope that this benchmark will help assessing the
state of the art in graphics recognition and current vectorization technologies.

5.2 Introduction

In this chapter the question of performance evaluation is discussed.
Driven by the need to convert a large number of hard copy engineering draw-

ings into CAD files, raster to vector conversion has been a field of intense research
for the last four decades. In addition to research prototypes in several academic
and industrial research centers, several commercial software products are currently
available to assist users in converting raster images to vector (CAD) files. However,
the process of selecting the right software for a given vectorization task is still a
difficult one. Although trade magazines have published surveys of the functionality
and ease of use of vectorization products [Byrnes 1997], a scientific, well designed,
comparison of the auto-vectorization capability of the products was still required.

Responding to this need, the International Association for Pattern Recognition’s
technical committee on graphics recognition (IAPR TC10) organized the series of
graphics recognition contests. The first contest, held at the GREC’95 workshop in
University Park, PA, focused on dashed line detection [Kasturi 1996a], [Kong 1996],
[Dori 1996]. The second contest, held at the GREC’97 workshop in Nancy, France,
attempted to evaluate complete (automatic) raster to vector conversion systems
[Chhabra 1998], [Phillips 1998], [Phillips 1999]. The third contest, held off-line asso-
ciated with the GREC’99 workshop in Jaipur, India, also aimed to evaluate complete
(automatic) raster to vector conversion systems. These contests tested the abilities
of participating algorithms / systems to detect segments and arcs from raster images.
They adopted a set of performance metrics based on the published line detection
performance evaluation protocol [Wenyin 1997] to evaluate and compare the partic-
ipating algorithms / systems on-line at the workshop site with test data of different
quality and complexity. Pre-contest training images and the performance evalua-
tion software were provided before the contests so prospective participants could try
their systems and improved them for optimal performance. Test images could be
synthesized and/or real scanned images.

5.2.1 Related Work

Performance evaluation and benchmarking have been gaining acceptance in all areas
of computer vision and so in the graphics recognition field of science.

Early work on this topic were carried out to evaluate performance of thinning
algorithms. [Haralick 1992] was the first to propose a general approach for per-
formance evaluation of image analysis, with thinning taken as a case in point.
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Evaluation and comparison of thinning algorithms have also been performed by
[Lee 1991], [Lam 1993], [Jaisimha 1993] and [Cordella 1996]. Some of these eval-
uation and comparison works were carried out from the viewpoint of OCR, while
the work of [Jaisimha 1993] is domain independent. Although thinning may also be
employed as preprocessing of line detection, the latter has different characteristics
and therefore requires different evaluation protocol.

The benchmark we present here is designed for evaluating the performance of
graphics recognition systems on images that contain polygons within the images.
Although the evaluator is limited to this entity type, it is useful, since most of
engineering drawings use this geometric element.

Accurate and efficient vectorization of line drawings is essential for any higher
level processing in document analysis and recognition systems. In spite of the preva-
lence of vectorization methods, no standard for their performance evaluation proto-
col exists at a polygon level. All prior works focused on a lower level of consistency
(arcs and segments). We propose a protocol for evaluating polygon extraction to
help compare, select, improve, and even design object detection algorithms to be
incorporated into drawing recognition and understanding systems. The protocol can
be seen as an extension to polygon level of related approaches by proposing an eval-
uation which is closer to the user requirements (i.e. at a semantic level). This new
viewpoint on the problem involves two local dissimilarity measures for estimating
polygon detection and approximation quality.

Vectorization and other line detection techniques have been developed to con-
vert images of line drawings in various domains from pixels to vector form (e.g.,
[Kasturi 1990a], [Nagasamy 1990], [Filipski 1992]) and a number of methods and
systems have been proposed and implemented (e.g., [Boatto 1992], [Vaxiviere 1992],
[Dori 1995], [Dori 1993]). Objective evaluations and quantitative comparisons
among the different shape detection algorithms are available thanks to protocols
issued from GREC contests [Kasturi 1996b], [DBL 1998], [Chhabra 2000] that pro-
vide quantitative measurements.

Performance evaluation of vectorization and line detection has been reported
by [Kong 1996], [Hori 1996], [Wenyin 1997] and [Chhabra 1998]. Kong et al.
[Kong 1996] propose a quantitative method for evaluating the recognition of dashed
lines. Hori and Doermann [Hori 1996] propose a quantitative performance mea-
surement methodology for task-specific raster to vector conversion. Wenyin and
Dori [Wenyin 1997] present a protocol for evaluating the recognition of straight and
circular lines. Phillips and Chhabra [Chhabra 1998] define a methodology for evalu-
ating graphics recognition systems operating on images that contain various objects
such as straight lines and text blocks. All of these methods are limited in their
applicability. Kong et al. [Kong 1996] have developed a protocol and a system
for systematically evaluating the performance of line detection algorithms, mainly
for dashed-line detection algorithms. They define the overlap criteria of the match
between a ground truth and a detected line based on the angle and the distance
between them, and the partial overlap is also considered. They do not allow for
fragmentation of detected lines. They use several arbitrary and rigid thresholds, for
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example, the angle should be less than 3◦ and the distance between two lines less
than 5 cells.

Hori and Doermann [Hori 1996] instantiate and extend Haralick’s framework for
performance characterization in image analysis [Haralick 1992], in an application-
dependent manner, for measuring the performance of raster to vector conversion
algorithms. They provide a set of metrics (evaluation contents) which is specifically
geared to vectorization of mechanical engineering drawings. The "applications"
addressed in the work are thinning, medial line finding, and line fitting-all low level
techniques that do not completely constitute vectorization. It is hard to extend the
work to evaluate a complete vectorization system. Hori and Doermann’s protocol
does not distinguish between detection rate and false alarm rate. It does not include
an overall evaluation metric. It does not allow for fragmentation of detected lines.
The metrics for line evaluation are given in several nonuniform units. It uses length
ratio, deviation, and count ratio to evaluate the line length detection, line location
detection, and line quantity detection, respectively. There is lack of an overall
evaluation metric which provides an overall combined performance evaluation of the
algorithm under consideration.

Wenyin and Dori [Wenyin 1997] propose performance evaluation indices for
straight and circular line detection. Detection and false alarm rates are defined
at both the pixel level and the vector level. Use of pixel level performance indices
(measures of shape preservation) is not completely appropriate for real images that
contain severe distortions such as warping and/or other defects introduced in the
hard copy drawing and/or defects generated by the scanning/imaging system. On
such images, attempts to obtain a high pixel recovery index would unnecessarily
require the detected vectors to be true to the distorted shape of the imaged lines,
thereby making the detected lines fragmented. For such images, the pixel recovery
index needs to be assigned less weight than the vector recovery index. However,
there is no way to predetermine the right relative weights for the pixel and vector
recovery indices.

Phillips and Chhabra [Chhabra 1998] present the task of evaluation from the
opposite angle. They do not look at the complexity of the entities to be recognized.
Instead, in their view, the true measure of performance has to be goal directed. The
goal of line drawing recognition is to convert a paper copy or a raster image of a
line drawing into a useful form (such as a vector CAD file). How well a graphics
recognition system works should be measured by how much manual effort is required
to correct the mistakes made by the system, not by how well it recognizes difficult
shapes. The goal of the evaluation is to measure the cost of postprocessing oper-
ations that are necessary to correct the mistakes of vectorization. EditCost is the
cost estimate for human post-editing effort to clean-up the recognition result.

An other view point, we want to present, is an auto-assessment approach where
the ground-truth is not directly required. Introduced in chapter 4 in the section 4.5;
Meta-Model Based Distance (MMBD) is an unsupervised method for map compar-
ison. It takes as two inputs: (i) an ontology representing the expert knowledge
under a structured formalism and (ii) the logical structure which is extracted from
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a document thanks to our retrieval method. Document analysis and understand-
ing systems decompose the document in information elements, characterized by the
role they play in the document (frame, streets, parcels...), and specifies the rela-
tionships (syntactic and semantic) between these elements. This logical structure
cannot be directly used for a self-evaluation purpose. The logical structure is not
invariant from a document to another, in fact, the number of elements (Quarters,
Parcels) is very document depend. To tackle this problem, a generalization is op-
erated on the logical structure to obtain a higher point of view called meta-model.
This meta-model gathers on a single node, all instances of a given concept and an
edge does exist between two concepts if the relation is always true within the model.
This meta-model, inferred from a model, confers a generic nature to the knowledge
extracted from a document and so, a more stable source of information. Hence,
the meta-model can be used to measure up the similarity with an expert-designed
knowledge representation by finding common points and share terms. The flip-side
of the coin is the approximation implied by the generic nature of the meta-modeling.
This model-based approach has to partially ignore some information in order to be
synthetic. In this way, an NMBD value of 0 doest not mean that the map is per-
fectly reconstituted. The distance will only increase if missing items from the raster
to vector conversion affects the meta-model representation. If missing-elements en-
gender "non standard" as define by the expert modeling. Another point, we want
to discuss, is that the vectorization precision is not modeled, so, this aspect is not
expressed by NMBD.

Based on this synthesis of performance evaluation systems, one can observe that
most of these methods remains at a very low level of analysis of the information
(vector level), while user requirements often concern high level analysis. From the
related work which focuses on low level primitives (segments, arcs), we extend the
global concept of performance evaluation of vectorized documents to polygon level.
Herein, we present our work, a recovery index which combines a local overlapping
metric at polygon level when data are closer to the semantic and a matching distance
for evaluating the polygonal approximation correctness in term of edit operations.

5.2.2 Our approach

[Wenyin 1997] and [Chhabra 1998] are well suited tools to tackle the performance
evaluation problem of vectorized documents. However, to be more realistic and
closer to objects handled by humans, [Wenyin 1997] and [Chhabra 1998] also un-
derlined the need to consider more complex structures or domain-specific objects into
the assessment process. For instance, in [Chhabra 1998], Dr. Chhabra reported as a
shortcoming that "The detection of polylines, polygons, objects, symbols, etc. was
not tested". A step in this direction is to address the problem under the prism of
grouping of vectors. Unfortunately, prior algorithms cannot be easily modified to
reach higher level objects since no match was attempted between solid entities. In
fact, if in the case of low-level primitives the matching can be easily resumed to an
overlapping criterion for more complex elements the questions is more ambitious.
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Due to fragmentation phenomena introduced by R2V tools, an entity of the ground-
truth can likely be related to many elements of the auto-vectorized version of the
document. Solving this ambiguity requires complex matching algorithms that are
not provided by prior works because the underlying problem does not exist at a
low level of analysis. Rather to consider polygon fragmentation and combination as
being simply wrong, and to only allow the best match with the maximum overlap,
we address the question in an optimal manner to find best polygon assignments. As
a consequence, to address the performance evaluation problem at polygon level, we
need to provide a robust object matching. In our our approach, this major phase
is carried out by a combinatorial framework to perform polygon assignments. Sec-
ondly, from the original idea of EditCost explained by Phillips and Chhabra, the
cost estimate for human post-editing effort to clean-up the recognition result, we
propose the use of a graph matching. This paradigm provides more than a value in
R, it reveals the sequence of corrections to be made to transform a set of connected
line segments into another.

Through the reading of the literature, on the topic of performance evaluation
of document image algorithms, we took into account comments and limitations of
former protocols to detect five desired points:

1. To consider object fragmentation

2. To provide indices in uniform units

3. A generic and a domain-independent protocol

4. An overall evaluation metric

5. To evaluate how much manual effort is required to correct mistakes made by
the system

Our proposal fulfills these five points: (1) A polygon assignment method and a graph
matching algorithm tackle both polygon and line fragmentation problem; (2) Our
two indices are bounded between 0 and 1; (3) No assumptions about the kind of
documents are made by our protocol, the only constraint is that the document must
hold polygons; (4) An overall metric is provided by linear combination of the two
proposed indices; (5) The EditCost representative of the manual labor to be made
to correct a document is envisaged through the graph matching question in terms
of basic edit operations (addition, deletion, substitution). Furthermore, working
at a polygon level hold many advantages. It makes the spotting of errors easier,
there are much less polygons than vectors into a drawing so the visualization of
mistakes is pretty fast. This point is very important for industrial systems, since
it permits to reduce the user correction time, by helping him to focus on errors
directly. Furthermore, this facilitates the study of large samples of documents and
new error categorizations may arise. Addressing the question from another point of
view can help developers to improve and design R2V software.

We can’t solve problems by using the same kind
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of thinking we used when we created them.

(Albert Einstein)

We propose here a novel and optimal object matching for polygon comparison
at a different point of view from prior works. We consider the coherency of the
document at a polygon level. Our polygonization evaluation is based on a polygon
mapping constrained by the topological information. While this measure appreciates
the quality of the polygon overlapping, a cycle graph matching takes a closer look
to a lower level of information : the segment layout within the polygons. In this
way, we express the consistency of the drawing at a polygon point of view.

The smallest item that can be found in a engineering drawing is the segment.

Definition 18. (Segment) In geometry, a line segment is a part of a line that is
bounded by two end points, and contains every point on the line between its end
points.

This object is considerably versatile, the number of line segments present in a
wire drawing can be very impacted by the vectorization algorithm due to the noise
that occurred in the original image of documents (Noise due to the storage condition,
digitization steps). On the opposite, we decide to investigate a more consistent and
reliable object called polygon.

Definition 19. (Polygon) In geometry, a polygon is traditionally a plane figure that
is bounded by a closed path or circuit, composed of a finite sequence of straight line
segments (i.e., by a closed polygonal chain). These segments are called its edges or
sides, and the points where two edges meet are the polygon’s vertices or corners. A
polygon is a 2-dimensional example of the more general polytope in any number of
dimensions.

The polygons are formed by running a cycle detection algorithm on the heap
of segments that composed the drawing. Invented in the late 1960s, Floyd’s cycle-
finding algorithm [Floyd 1967] is a pointer algorithm that uses only two pointers,
which move through the sequence of points at different speeds. This polygon layer is
more reliable and so it provides a better basement to build a dissimilarity measure on
top of it. A conventional way of defining measures of dissimilarity between complex
objects (maps, drawing issued from vectorization) is to base the measure on the
quantity of shared terms. Between two complex objects o1 and o2, the aim is to
find the matching coefficient mc, which is based on the number of shared terms.
The polygon organization of a document is a good viewpoint, more stable and less
subject to variations than the segment layer. In the mean time, it represents a
complimentary view of the problem.

Polygonized elements issued from a raster to vector conversion method are as-
signed and measured up to a manually vectorized Ground Truth. The assign-
ment problem is one of the fundamental combinatorial optimization problems in
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the branch of optimization or operations research in mathematics. It consists of
finding a maximum weight matching in a weighted bipartite graph.

In its proposed form, the problem is as follows:

• Let DGT , DCG be a Ground Truth document and a Computer Generated
document, respectively.

• There are |DCG| number of polygons in DCG and |DGT | number of polygons
in DGT . Any polygons (PCG) from DCG can be assigned to any polygons
(PCG) of DCG, incurring some cost that may vary depending on the PCG-PGT
assignment. It is required to map all polygons by assigning exactly one PCG
to each PGT in such a way that the total cost of the assignment is minimized.
This matching cost is directly linked to the cost function that measures the
similarity between polygons.

Our combinatorial framework cuts down the algorithmic complexity to an O(n3)
upper bound, depending on the number of polygons in the largest drawing. Hence,
the matching can be achieved in polynomial time which tackles the computational
barrier. We stand apart from the prior approaches by grouping low level primitives
into polygons and then considering their matching at this high level point of view.
Once, polygons are mapped, it is interesting to take a closer look to a lower level
by checking out to segment layouts within the mapped polygons. This presents
some advantages, elements are locally affected to define a local dissimilarity measure
which is visually interesting; it makes easier the spotting of miss detected areas.
A complete data flow process for polygonized document evaluation is proposed.
Our contribution in this domain is two-fold. Firstly, we compare a ground truth
document and a computer generated document thanks to an optimal framework
that proceeds to the object mapping. Finally, another operator provides estimates
the relation between the segments within two mapped polygons in terms of edit
operations by means of a cycle graph matching. The figure 5.1 depicts an overview
of our methodology.

5.2.3 Organization

The organization of the chapter is as follows: Sect. 5.3.1 describes theoretically and
in terms of algorithm the polygon mapping method, Sect. 5.3.2 explains the cycle
graph matching process in order to judge the quality of the polygonal approximation.
Sect. 5.3.3 put forwards the type of errors that are likely to appear in object retrieval
systems. Sect. 5.4 describes the experimental protocol, this section also explains how
to interpret our new set of indices on a application to cadastral map evaluation. A
summary is included in Sect. 5.5, followed by discussions and concluding remarks.

5.3 A set of indices for polygonization evaluation

In this section, we define the two criteria involved into our proposal for a performance
evaluation tool dedicated to polygonization. In the first part, a polygon assignment
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Figure 5.1: Overview of the global methodology. A bipartite graph weighed by the
symmetric difference, and cycle graph edit distance applied to mapped polygons
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method is described. It aims at taking into account shape distortions caused by
retrieval systems. Secondly, a matched edit distance is defined. This measure repre-
sents the variations introduced when a given system approximates digital curves. It
is a synthesis on vectorization precision. Finally, miss or over detection errors due
to raster to polygon conversion are introduced in a third part. This decomposition
leads to the definition of specific notations and error categorizations.

5.3.1 Polygon mapping using the Hungarian method

Once polygons are located into the vectorized document, it can be seen as a partition
of polygons. Comparing two documents (D1, D2) is resumed to the matching of each
polygon of D1 with each polygon of D2. This assignment is performed using the
Hungarian method which is formally described in the next part.

5.3.1.1 Algorithmic of the Hungarian method

Our approach for vectorized document comparison is based on the assignment
problem. The assignment problem considers the task of finding an optimal as-
signment of the elements of a set D1 to the elements of a set D2. Without
loss of generality, we assume that |D1| ≥ |D2|. The complete bipartite graph
Gpm = D1 ∪D2 ∪4, D1 × (D2 ∪4), where 4 represents empty dummy polygons,
is called the polygon matching of D1 and D2. A polygon matching between D1

and D2 is defined as a maximal matching in Gpm. We define the matching distance
between D1 and D2, denoted by PMD(D1, D2), as the cost of the minimum-weight
polygon matching between D1 and D2 with respect to the cost function K. The
cost function is especially dedicated to our problem and is fully explained in section
5.3.1.2. This optimal polygon assignment induces a univalent vertex mapping be-
tween D1 and D2, such as the function PMD : D1 × (D2 ∪ 4) → R+

0 minimized
the cost of polygon matching. If the numbers of polygons are not equal in both
documents, then empty "dummy" polygons are added until equality |D1| = |D2|
is reached. The cost to match an empty "dummy" polygon is equal to the cost of
inserting a whole unmapped polygon (K(∅, P )). A shortcoming of the method is
the one-to-one mapping aspect of the algorithm, however, this latter is performed at
a high level of perception where data are less likely to be fragmented. Finally, this
disadvantage should not discourage the use of the PMD distance considering the im-
portant speed-up it provides while being optimal, deterministic and quite accurate.
In addition, unmapped elements are not left behind, they are considered either as
"false alarm" or "false negative" according to the kind of mistakes they induced (see
section 5.3.3). Formally, the assignment problem can be defined as follows.

Definition 20. (The Assignment Problem) Let us assume there are two sets D1

and D2 together with an n × n cost matrix C of real numbers given. To improve
the clarity of the reading |D1| = |D2| = n . The matrix elements Cij correspond
to the costs of assigning the i-th element of D1 to the j-th element of D2. The
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assignment problem can be stated as finding a permutation p = p1, p2, ...pn of the
integers 1,2,...,n that minimizes

∑n
i=1Cipi

The assignment problem can be reformulated as finding an optimal matching in a
complete bipartite graph and is therefore also referred to as bipartite graph matching
problem. Solving the assignment problem in a brute force manner by enumerating
all permutations and selecting the one that minimizes the objective function leads to
an exponential complexity which is unreasonable, of course. However, there exists
an algorithm which is known as Munkres’ algorithm [Munkres 1957]1 that solves the
bipartite matching problem in polynomial time. In Algorithm 4 Munkres’ method
is described in detail. The assignment cost matrix C given in Definition 20 is the
algorithm’s input, and the output corresponds to the optimal permutation, i.e. the
assignment pairs resulting in the minimum cost. In the description of Munkres’
method in Algorithm 4 some lines (rows or columns) of the cost matrix C and some
zero elements are distinguished. They are termed covered or uncovered lines and
starred or primed zeros, respectively.

Munkres’ algorithm is based on the following theorem.

Theorem 5.3.1. (Equivalent Matrices) Given a cost matrix C as defined in Def-
inition 20, a column vector c, c = (c1, ..., cn), and a row vector r = (r1, ..., rn),
the square matrix C’ with the elements C ′ij = Cij − ci − rj has the same optimal
assignment solution as the matrix C. C and C ′ are said to be equivalent.

Proof. ([Bourgeois 1971]) Let p be a permutation of the integers 1, 2, .., nminimizing∑n
i=1Cipi , then

n∑
i=1

C ′ipi =
n∑
i=1

Cipi −
n∑
i=1

ci −
n∑
j=1

rj

The values of the last two terms are independent of permutation p so that if p
minimizes

∑n
i=1Cipi , it also minimizes

∑n
i=1C

′
ipi
.

Consequently, if we find a new matrix C’ equivalent to the initial cost matrix C,
and a permutation p with all C ′ipi , then p also minimizes

∑n
i=1Cipi . Intuitively,

Munkres’ algorithm transforms the original cost matrix C into an equivalent matrix
C’ having n independent zero elements. This independent set of zero elements
exactly corresponds to the optimal assignment pairs.

The operations executed in lines 1 and 2, and STEP 4 of Algorithm 4 find a
matrix equivalent to the initial cost matrix (Theorem 5.3.1). In lines 1 and 2 the
column vector c = (c1, ..., cn) is constructed by ci = min {Cij}j=1,...,n, and the row

1Munkres’ algorithm is a refinement of an earlier version by Kuhn [Kuhn 1955] and is also
referred to as Kuhn-Munkres, or Hungarian algorithm.
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Algorithm 4 Munkres’ algorithm for the assignment problem
Require: A cost matrix C with dimensionality n
Ensure: The minimum cost polygon assignment
1: For each row r in C, subtract its smallest element from every element in r
2: For each column c in C, subtract its smallest element from every element in c
3: For all zeros zi in C, mark zi with a star if there is no starred zero in its row
or column
4: STEP 1:
5: for Each column containing a starred zero do
6: cover this column
7: end for
8: if n columns are covered then
9: GOTO DONE
10: else
11: GOTO STEP 2
12: end if
13: STEP 2:
14: if C contains an uncovered zero then
15: Find an arbitrary uncovered zero Z0 and prime it
16: if There is no starred zero in the row of Z0 then
17: GOTO STEP 3
18: else
19: Cover this row, and uncover the column containing the starred zero
GOTO STEP 2
20: end if
21: else
22: Save the smallest uncovered element emin GOTO STEP 4
23: end if
24: STEP 3: Construct a series S of alternating primed and starred zeros as
follows:
21: Insert Z0 into S
22: while In the column of Z0 exists a starred zero Z1 do
23: Insert Z1 into S
24: Replace Z0 with the primed zero in the row of Z1. Insert Z0 into S
25: end while
26: Unstar each starred zero in S and replace all primes with stars. Erase all
other primes and uncover every line in C GOTO STEP 1
27: STEP 4: Add emin to every element in covered rows and subtract it from
every element in uncovered columns. GOTO STEP 2
28: DONE: Assignment pairs are indicated by the positions of starred zeros in
the cost matrix
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vector r = (r1, ..., rn)′ by rj = min {Cij}i=1,...,n. In STEP 4 the vectors c and r are
defined by the rules

ci =
{
emin if row i is covered
0 otherwise

(5.1)

rj =
{

0 if column j is covered
emin otherwise

(5.2)

where emin is the smallest uncovered element in the cost matrix C.

STEP 1, 2, and 3 of Algorithm 4 are procedures to find a maximum set of in-
dependent zeros which mark the optimal assignment. In the worst case the maxi-
mum number of operations needed by the algorithm is O(n3). Note that the O(n3)
complexity is much smaller than the O(n!) complexity required by a brute force
algorithm.

Main Steps
After a formal description which explains theoretically how the Hungarian algorithm
works, a case study is proposed providing a more practical apprehension of this
method on the specific context of polygon mapping.

• Here are the main steps for achieving the Hungarian method. It begins with
the construction of a cost matrix. Since we aim at evaluating a Computer
Generated vectorization with the Ground-Truth, we will refer to these elements
using the acronyms DCG and DGT , respectively. Each vectorized document is
a set of objects, a set of polygons,

D = {Poly1, Poly2, ..., Polyn}.

Let us state without loss of generality the following assumption : |DGT | ≥
|DCG|, where |X| stands for the number of polygons that composes the vec-
torization. Figure 5.2 represents the cost matrix, where every cell was filled
up using a cost function (K) and represent the cost to associate a polygon
of the Ground-Truth to a polygon of the Computer Generated vectorization.
The cost function is especially dedicated to our problem and is fully explained
in section 5.3.1.2.

• The Hungarian method is defined to find an optimal solution to the assignment
problem where the input is a square matrix. How to make our matrix square
? The trick lies on the addition to empty dummy polygons. In such a way,
the two sets have the same dimension:
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Figure 5.2: Original cost matrix

Figure 5.3: Square cost matrix

GT = {Poly1, Poly2, ..., Polyn}
CG = {Poly1, Poly2, ..., Polym,

Dummym+1, Dummym+2, ..., Dummyn}

Figure 5.3 is a representation of the matrix being squared.

• Step 1: Subtract the entries of each row by the row minimum. Hence, each
row has at least one zero and all entries are positive or zero (Figure 5.4).

• Step 2: Subtract the entries of each column by the column minimum. Each
row and each column has at least one zero (Figure 5.5).

• Step 3: Select rows and columns across which you draw lines, in such a way

Figure 5.4: Row reduction.
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Figure 5.5: Cost matrix after line and column reduction

Figure 5.6: Three lines for covering the zeros

that all the zeros are covered and that no more lines have been drawn than
necessary (Figure 5.6).

• Step 4: A test for optimality.

– If the number of the lines is n then choose a combination from the mod-
ified cost matrix in such a way that the sum is zero.

– If the number of the lines is less then n, go to step 5.

In our case the number of lines is 3 (<4).

• Step 5: Find the smallest element which is not covered by any of the lines
(figure 5.7). Then subtract it from each entry which is not covered by the
lines (figure 5.8) and add it to each entry which is covered by a vertical and a
horizontal line (figure 5.8). Go back to step 3 (figure 5.9).

• Optimal results: The final result is found by choosing the cells where the
costs are minimum and zeros are applied (figure 5.10). Poly 1 and Dummy
can not be picked because the affectation of zeros would not be optimal.

Finally, the cells are summed up (figure 5.11). In our case study, the minimum
cost to associate the polygons of GT with the polygons of CG is 48.
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Figure 5.7: Minimal value not covered by any lines

Figure 5.8: Matrix adjustment

Figure 5.9: Finding the smallest element which is not covered by any of the lines
(4)

Figure 5.10: Optimal result
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Figure 5.11: Final result

5.3.1.2 Cost function for polygon assignments

Munkres’ algorithm as introduced in the last section provides us an optimal solution
to the assignment problem in O(n3) time. In its generic form, the assignment
problem considers the task of finding an optimal assignment of the elements of a set
GT to the elements of a set CG assuming that numerical costs are given for each
assignment pair. In fact, a cost function does exist between each pair of polygons
to express numerically their similarity, likely a "zero" will represent two identical
polygons and "one" two polygons not sharing any common features. The polygon
overlay, inspired by the theory of sets, measures the similarity between polygons.
When polygons are compared into the same axis system, the overlay takes into
account spatial adjustment between polygons. The process of overlaying polygons
shares common points with set theory. Let’s assume that A and B are two sets, the
intersection can be reformulated through the set theory. Intersection, where the
result includes all those set parts that occur in A and B. A way to compare them
is to find out how A differs from B (see figure 5.12): In mathematics, the difference
of two sets is the set of elements which are in one of the sets, but not in both.
This operation is the set-theoretic kin of the exclusive disjunction in Boolean logic.
The symmetric difference of the sets A and B is commonly denoted by A∆B. The
symmetric difference is equivalent to the union of both relative complements, that
is:

A∆B = (A \B) ∪ (B \A)

and it can also be expressed as the union of the two sets, minus their intersection:

A∆B = (A ∪B) \ (B ∩A) (5.3)

The symmetric difference is commutative and associative:

A∆B = B∆A

The empty set is neutral, and every set is its own inverse:

A∆∅ = A

A∆A = ∅
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From the original idea of the symmetric difference between two sets stated in
equation 5.3, we derive a dissimilarity measure applicable to polygons. Let P1, P2
be two polygons and then, let us define a function K that induces a mapping of P1
and P2 into R (K : P1× P2→ R) :

K(P1, P2) = P1∆P2 = 1− |P1 ∩ P2|
|P1|+ |P2| − |P1 ∩ P2|

(5.4)

Where |P | denotes the area of the polygon P . Now, let us take a closer look to the
basic properties of this dissimilarity measure :

K(P1, P2) >= 0 ∀P1, P2 (5.5)

K(P1, P2) = 0 → P1 = P2 (5.6)

K : [0; 1] (5.7)

5.3.1.3 Theoretical discussion on our dissimilarity measure

Two questions are addressed in this part, the first one concerns the unity of PMD
when facing heterogeneous documents (different scales and orientations) and the
second point is devoted to the proof of PMD as being a metric. This point is crucial
to demonstrate the ability of providing a rank information which is representative
of the error level of a given document with respect to the entire collection.

The cost function behavior: One condition imposes by the Hungarian method
is that the cost function has to be strictly positive or zero, this assumption is re-
spected (see equation 5.5). In addition, the normalization between zero and one
(see equation 5.4, equation 5.7) confers some interesting aspects to the distance.

Without normalization, the distance is highly dependent on the polygon surfaces.
A higher importance would be given to large polygons and they could highly impact
the final score, while small polygons would be not treated with significance.

Hence, this measure considers with equity whether the concerned polygons are
small or not. It means that no bias will be introduced when facing large poly-
gons. Thereby, a highly over segmented vectorization with many small areas will
be roughly as bad as an under segmented vectorization with few large polygons.
Finally, the normalization leads to a lower and an upper bounds (equation 5.7) of
our distance which is useful to compare a document collection with different scales.
In this way, PMD is dependent to scale, translation and rotation variations. Nev-
ertheless, these are desired properties for a distance which wants to represent the
exactness between two polygonized drawings.

The Polygon Matching Distance is a metric (PMD):

Proof. To show that our measure of similarity between documents is a metric, we
have to prove four properties for this similarity measure.
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Figure 5.12: A∆B

• PMD(D1, D2) ≥ 0
The polygon matching distance between two documents is the sum of the cost
for each polygon matching. As the cost function is non-negative, any sum of
cost values is also non-negative.

• PMD(D1, D2) = PMD(D2, D1)
The minimum-weight maximal matching in a bipartite graph is symmetric,
if the edges in the bipartite graph are undirected. This is equivalent to the
cost function being symmetric. As the cost function is a metric, the cost
for matching two polygons is symmetric. Therefore, the polygon matching
distance is symmetric.

• PMD(D1, D3) ≤ PMD(D1, D2) + PMD(D2, D3)
As the cost function is a metric, the triangle inequality holds for each triple of
documents in D1, D2 and D3 and for those polygons that are mapped to an
empty polygon. The polygon matching distance is the sum of the cost of the
matching of individual polygons. Therefore, the triangle inequality also holds
for the polygon matching distance.

• PMD(D1, D2) = 0 ⇒ D1 = D2

If one of the polygon of D1 cannot be matched exactly with a polygon of D2

then PMD(D1, D2) > 0. A straightforward interpretation of this fact leads
to the uniqueness property. Where all D1’ polygons are matched with a cost
of zero to the polygons of M2, it implies D1 = D2.

5.3.2 Matched edit distance for polygon comparison

The Hungarian method provides a formal framework to perform a one to one map-
ping between polygons. Each mapped pair of polygons minimizes its symmetric
difference providing a topological information. However, this measure does not take
into account the labor work that has to be done to change a polygon from the CG
to a correct polygon from the GT. In order to compensate this weakness, we decide
to include an additional measure which reveals how many edit operations have to be
done to change a polygon into another according to some basics operations. That’s
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(a) Polygon (b) Cycle Graph

Figure 5.13: From polygon to cycle graph

why we present an edit distance for polygon comparison. From definition 19 and the
figure 5.13, a clear link exists between a polygon and its representation by a cycle
graph. The next part defines an Cycle Graph Edit Distance (CGED) for polygon
comparison, this latter starts from the string matching theory to end with the graph
matching problem applied cycle graph.

The guide lines illustrated in figure 5.14 will drive our discussion. We first define
string matching theory which is the basement of our work. Then step by step, we
explain why string matching and cyclic string matching cannot completely address
our problem. Thirdly, we define a graph-based tool for polygon comparison. Finally,
we provide a concrete interpretation of the cost functions for the Cycle Graph Edit
Distance.

5.3.2.1 String Matching Theory and Algorithms

String edit distances were first defined by Wagner and Fischer in [Wagner 1974] to
find out the minimum cost edit sequence to convert the string A into the string B
using edit operations. Although the origin of the algorithm is spelling correction, it
has been used for different purposes, and particularly as an approach to the prob-
lem of recognizing and classifying polygons. The problem is to define dissimilarity
measures between polygons, and to find algorithms that compute these measures
fast enough. The string matching-based approaches should be independent of the
scale, translation and rotation of the polygons under analysis. Let us review the
string matching theory and algorithms and subsequently provide the details about
our particular cost functions to match polygons.
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Figure 5.14: Cycle Graph Matching for Polygon Comparison
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Definitions: Let us first introduce some basic notations and definitions of
the basic string matching algorithm first proposed by Wagner and Fischer in
[Wagner 1974].

Definition 21. Let P be a polygon and let A denote the string over P constituted
of all points of P. The length |A| of a string A ∈ P is the number of points in A.
And let Λ denote the null string which has length 0.

Definition 22. For a string A = a1a2...an ∈ P , a cyclic shift is a mapping σ :
A → A defined by σ(a1a2...an) = a2a3...ana1. For all k ∈ N, let σk denote the
composition of k cyclic shifts. Two strings A and A will be called equivalent if A =
σk(A).

Definition 23. An edit operation is an ordered pair (a, b) 6= (Λ ,Λ) of strings, each
of a length less than or equal to 1, denoted by a → b. An edit operation a → b will
be called an insert if a = Λ, a delete operation if b = Λ, and a substitution operation
otherwise.

Definition 24. A string B results from a string A by the edit operation s = (a→ b),
denoted by A→ B via s, if there are strings C and D such that A = CaD and B =
CbD. An edit sequence S = s1s2...sk is a sequence of edit operations. We say that
S takes A to B if there are strings A0, A1, ..., Ak such that A0 = A,Ak = B and
Ai−1 → Ai via si for all i ∈ {1, 2, ..., k}.

Definition 25. Let γ be a cost function that assigns a non-negative real number
γ(s) to each edit operation. For an edit sequence S, we define the cost γ(S) as

γ(S) =
k∑
i=1

γ(si)

The edit distance δ(A,B) from string A to string B is then defined as

γ(A,B) = min {γ(S)}

And the edit distance δ([A] , [B]) of two cyclic strings [A] and [B] is given by

δ([A], [B]) = min
{
δ(σk(A), σl(B))

}
with k, l ∈ N

Linear String Matching: Let A and B be two strings over
∑

of length n and m
respectively. The Wagner and Fischer [Wagner 1974] algorithm takes O(nm) time
to find δ(A,B) by determining a minimum weighted path in a weighted directed
graph. Let D(i, j) denote the cost of a minimum weighted path from the vertex
v(0, 0) to the vertex v(i, j), so D(n,m) = δ(A,B).
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Cyclic String Matching: Linear string matching can not tackle with strings hav-
ing cyclic shifts since the computed path starts always from a given initial symbol.
A cyclic string matching procedure is needed in the case of cyclic strings. Given two
finite strings A and B, the cyclic string matching problem is the problem of determin-
ing δ([A], [B]) and an edit sequence realizing this cost. Let BB = b1b2...bmb1b2...bm
be the concatenation of B with itself. For all l ∈ {1, 2, ...,m}, we can find a mini-
mum cost edit sequence from A to σl(B) by determining a minimum weighted path
from v(0, l) to v(n,m+ l). Although the computation of only one path takes O(nm)
time, the computation of all these paths can be done in O(nm logm) time, since all
the paths can be chosen such that two different paths never cross.

5.3.2.2 A Cycle Graph Matching Distance for Polygon Comparison

Visually, two chains of segments are similar if the length attributes and angles be-
tween consecutive segments can be aligned. In the literature on polygonal shape
recognition, most approaches base the distance definition between two polygo-
nal shapes on length and angle differences. For example, Arkin et al. used in
[Arkin 1991] the turning function which gives the angle between the counterclock-
wise tangent and the x-axis as a function of the arc length. Their results are in accor-
dance with the intuitive notion of shape similarity. More recently, in [Lladós 2001],
Lladós et al. represented regions by polylines and string matching techniques are
used to measure their similarity. The algorithm follows a branch and bound ap-
proach driven by the RAG edit operations. This formulation allows matching com-
puting under distorted inputs. The algorithm has been used for recognizing symbols
in hand drawn diagrams.

Polygonal shapes require to characterize the segments (their length) but also
their relationships by the angle information.

The graph-based representation was preferred to string representation. In fact,
the protocol is designed for polygons but may also be extended to other line shapes,
for instance this could be made by completing the graph representation to connected
vectors instead of searching for cyclic polygons. In this way, the graph-based view-
point could be the container of a wider range of entities. It leaves the door open to
a more global paradigm, the object matching question.

The concept of edit distance has been extended from strings to trees and to
graphs [Bunke 1983], [Sanfeliu 1983]. Similarly to string edit distance, the key idea
of graph edit distance is to define the dissimilarity, or distance, of graphs by the
minimum amount of distortion that is needed to transform one graph into another.
Compared to other approaches to graph matching, graph edit distance is known to
be very flexible since it can handle arbitrary graphs and any type of node and
edge labels. Furthermore, by defining costs for edit operations, the concept of
edit distance can be tailored to specific applications. A standard set of distortion
operations is given by insertions, deletions, and substitutions of both nodes and
edges. We denote the substitution of two nodes u and v by (u → v), the deletion
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of node u by(u → Λ), and the insertion of node v by (Λ → v). For edges we use a
similar notation.

Given two graphs, the source graph G1 and the target graph G2, the idea of
graph edit distance is to delete some nodes and edges from G1, relabel (substitute)
some of the remaining nodes and edges, and insert some nodes and edges in G2,
such that G1 is finally transformed into G2.

A sequence of edit operations e1; ...; ek that transforms G1 completely into G2

is called an edit path between G1and G2. Obviously, for every pair of graphs
(G1;G2), there exist a number of different edit paths transforming G1 into G2.
To find the most suitable edit path, one introduces a cost for each edit operation,
measuring the strength of the corresponding operation. The idea of such a
cost function is to define whether or not an edit operation represents a strong
modification of the graph. Obviously, the cost function is defined with respect
to the underlying node or edge labels. Clearly, between two similar graphs,
there should exist an inexpensive edit path, representing low cost operations,
while for dissimilar graphs an edit path with high costs is needed. Consequently,
the edit distance of two graphs is defined by the minimum cost edit path
between two graphs. The computation of the edit distance is carried out by
means of a tree search algorithm which explores the space of all possible mappings
of the nodes and edges of the first graph to the nodes and edges of the second graph.

Definition 26. (Cycle Graph Matching)
In this work, the problem which is considered concerns the matching of cycle

directed labeled graphs. Such graphs can be defined as follows: Let LV and LE
denote the set of node and edge labels, respectively. A labeled graph G is a 4-tuple
G = (V,E, µ, ξ) , where

• V is the set of nodes,

• E ⊆ V × V is the set of edges

• µ : V → LV is a function assigning labels to the nodes, and

• ξ : E → LE is a function assigning labels to the edges.

• |V |=|E|

Now, let us define a function CGED based on the Cycle Graph Edit Distance
that induces a mapping of G1 and G2 into R (CGED : G1 ×G2 7→ R) :

CGED(G1, G2) = min
(e1,..,ek)∈γ(G1,G2)

k∑
i=1

(edit(ei))

Where γ(G1, G2) denotes the set of edit paths transforming G1 into G2, and edit
denotes the cost function measuring the strength edit(ei) of edit operation ei
.
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Table 5.1: Edit costs
Node Edge

Label
Substi-
tution

γ((lAi )→ (lBj )) =

∣∣∣∣∣ lAi
|A| −

lBj
|B|

∣∣∣∣∣ γ((ΦA
i )→ (ΦB

j )) =
|ΦA

i −ΦB
j |

360

Addition γ(λ→ (lBj )) =
lBj
|B| γ(λ→ (ΦB

j )) =
|ΦB

j |
360

Deletion γ((lAi )→ λ) =
lAi
|A| γ((ΦA

i )→ λ) =
|ΦA

i |
360

A Cycle Graph is a cycle which visits each vertex exactly once and also returns
to the starting vertex. As a consequence, the set of all edit paths is considerably
reduced and the Cycle Graph matching can be solved in O(nm logm) time.

In order to use cycle graph matching for polygon accuracy evaluation, we use
an attributed graph representation. Starting from a polygonal approximation of the
shape, a graph is built. We use the segments as primitives, encoding them with a set
of nodes. Each node is labeled with a real number li, where li denotes the length of
the segment si. Then, edges are built using the following rule: two nodes are linked
with a directed and attributed edge if two constitutive segments share a common
point. Each edge is labeled with a real number Φi that denotes the angle between
si and si−1 in the counterclockwise direction. We can appreciate an example of how
these attributes are computed for a sample shape in figure 5.13.

Let A and B be two chains of adjacent segments, represented as cycle graphs,
with total lengths |A| = n and |B| = m and with respectively attributed cycle graph
representations:

GA = (V A, EA) = (lAi ...l
A
n ), (ΦA

i ...Φ
A
n )

and,
GB = (V B, EB) = (lBi ...l

B
m), (ΦB

i ...Φ
B
m)

The cost functions for attributed cycle graph matching are reported in table 5.1

5.3.2.3 Interpretation of the edit operations

There are the proposed cost functions inspired by the ones proposed by Tsay and
Tsai in [Tsay 1989] where they use string matching for shape recognition.

The operation attributes decrease the edit costs for primitives undergoing noisy
transformations, as the inherent segment fragmentation from the raster-to-vector
process. And it aims to compare polygons with different number of segments making
the system tolerant to segment cardinality.

Furthermore, our edition functions can describe real transformations applied to
polygons. When editing a vectorization basic operations are: Remove, Add or Move
a segment; a visual illustration of theses operations is given in figure 5.15. Through
the linear combination of the cost functions, it is possible to recreate the usages of a
person modifying a vectorization, and the definitions below present the combinations
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(a) Original (b) Add

(c) Delete (d) Move

Figure 5.15: Basic edit operations applied to a polygon.

to obtain different polygon transformations. Conceptually, we are here very close to
the ideas proposed by Chhabra [Chhabra 1998].

Definition 27. Segment deletion transformation

γ(si → λ) = γ((lAi )→ λ) + γ((ΦA
i )→ λ) + γ((ΦA

i )→ (ΦB
j ))

γ(si → λ) =
lAi
|A|

+
ΦA
i

360
+
|ΦA
i − ΦB

j |
360

Definition 28. Segment addition transformation

γ(λ→ sj) = γ(λ→ (lAj )) + γ(λ→ (ΦA
j )) + γ((ΦA

i )→ (ΦB
j ))

γ(λ→ sj) =
lAj
|A|

+
ΦA
j

360
+
|ΦA
i − ΦB

j |
360

Definition 29. Segment move transformation

γ(si)→ (sj) = γ((lAi )→ (lBj )) + γ((ΦA
i )→ (ΦB

j ))

γ(si)→ (sj) =

∣∣∣∣∣ lAi|A| − lBj
|B|

∣∣∣∣∣+
|ΦA
i − ΦB

j |
360
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5.3.2.4 Matched Edit Distance

To complete the process, the Cycle Graph Matching Distance (CGED) has to be
performed on every pair of mapped polygons found by the Hungarian methods when
it is based on the symmetric difference. Note that if one polygon is associated to an
empty dummy item then the cycle graph matching distance will be only composed
of addition operations. The Matched Edit Distance(MED) is then composed of the
sum of all CGED(G1, G2) computed on every pair of graphs extracted from the
polygons.

MED(D1, D2) =

max (|(D1|,|D2|)∑
i=1

CGED(GD1
i , GD2

i )

max (|(D1|, |D2|)

5.3.3 Type of errors and notations

Here, we sum up a set of two criteria which will help us to evaluate a given raster
to vector conversion. Each measure is a viewpoint on the vectorization process.
However, every criterion can still be divided into two categories according to the
nature of the error it expresses. Hence, the next part defines the different kind of
errors than can occur when dealing with object retrieval systems.

5.3.3.1 Type of errors

• Type I error, also known as an "error of the first kind", a false alarm or a
"false positive": the error of rejecting a null hypothesis when it is actually
true. Plainly speaking, it occurs when we are detecting a polygon when in
truth there is none, thus indicating a test of poor specificity. An example of
this would be if an application retrieves a polygon when in reality there is not.
Type I error can be viewed as the error of excessive credulity.

• Type II error, also known as an "error of the second kind", a "false negative":
the error of failing to reject a null hypothesis when it is in fact not true. In
other words, this is the error of failing to detect a polygon when in truth there
is one, thus indicating a test of poor sensitivity. An example of this would be
if a test shows that there is not a polygon when in reality she is. Type II error
can be viewed as the error of excessive skepticism.

5.3.3.2 Notations

For the comprehension of theses tests, we first introduce notations that will make
the reading much simpler. A dissimilarity measure between vectorized documents
is a function :

d : X ×X → R
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Notation Method Type of error Distance

PMDtp PMD True Positive symmetric
difference

PMDfn PMD False Negative symmetric
difference

PMDfp PMD False Positive symmetric
difference

PMDmd PMD Miss Detection (fn+fp) symmetric
difference

PMDall PMD (tp+fn+fp) symmetric
difference

MEDtp MED True Positive Cycle
Graph
Matching

MEDfn MED False Negative Cycle
Graph
Matching

MEDfp MED False Positive Cycle
Graph
Matching

MEDmd MED Miss Detection (fn+fp) Cycle
Graph
Matching

MEDall MED (tp+fn+fp) Cycle
Graph
Matching

ηtp - True Positive ] of well-
detected
polygons

ηfp - False Positive ] of over-
detected
polygons

ηfn - False Negative ] of under-
detected
polygons

Table 5.2: Distance between vectorized documents.

where X is a vectorized document. We report in table 5.2, the notations derived
from this general form.

Xtp puts forward the cost that occurs when matching a pair of mapped polygons.
This is a synonym of accuracy, it denotes how well suited is the detected polygon
from the DCG. Xfp takes the stock of the over detections issued from the raster to
vector conversion step. On the other hand, Xfn represents the miss-detections, it
occurs when the software used to vectorized has a strict policy of rejection which
leads to an under detection of objects. For clarity reason, when no precision is
specified, X refers to Xall. Finally, a desirable information is the number of false
alarms, false negative and true positive polygons retrieved by the system of retro-
conversion. These values are normalized as follow to obtain a comparable rate
between documents.

ηfn =
] of miss-detected polygons

max (|(D1|, |D2|)
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ηfp =
] of over-detected polygons

max (|(D1|, |D2|)

5.4 Experiments

This section is devoted to the experimental evaluation of the proposed approach.
Firstly, we describe databases that are used to benchmark our measures. Then
the protocol of our experiments is defined by enumerating the kind of assessments
we performed. The two first tests are dedicated to graphical symbols from GREC
contests. On this basement, we aim at illustrating the ability of Polygon Match-
ing Distance (PMD) and Matched Edit Distance (MED) of being representative of
polygon deformations (shape variation and polygonal approximation modification,
respectively). The last evaluation concerns the cadastral map subject, we show re-
sults on a large collection of maps. We provide guidelines to understand the meaning
of our set of indices, in this pedagogic objective, a visualization of detection errors
is proposed. In this practical work, methods were implemented in Java 1.5 and run
on a 2.14GHz computer with 2G RAM. Both databases and performance evaluation
tools are freely available on this web site:

http://alpage-l3i.univ-lr.fr/

Both datasets and the experimental protocol are firstly described before investigat-
ing and discussing the merits of the proposed approach.

5.4.1 Databases in use

In recent years the subject of performance evaluation has gained popularity in pat-
tern recognition and machine learning. In the graphics recognition community,
a huge amount of efforts was made to elaborate standard and publicly available
data sets. Especially, E. Valveny [Valveny 2004],[Valveny 2007] and M. Delalandre
[Delalandre 2010] published on-line symbol datasets for a symbol classification pur-
pose. In this section, we describe two databases derived from [Valveny 2007] and
[Delalandre 2010] and we also present a cadastral map collection. The content of
each database is summarized in tables 5.3, 5.4.

Base A: Shape distortion. The paper presented in [Delalandre 2010] gave
birth to a publicly available database of symbols2. From this setting, we removed
all polygon-less symbols to fit our purpose which was to evaluate polygon detection
methods. Hence, we selected 70 symbols from the GREC’05 contest [Dosch 2006]
and a sample is presented in figure 5.16.

On perfect symbols, a vectorial noise is applied to generate a collection of de-
graded elements. We could not afford to use real data because of the difficulty of
collecting images with all kinds of transformations and noise. Besides, it is not easy
to quantify the degree of noise in a real image. Then, it is not possible to define a

2http : / / mathieu. delalandre.free.fr /projects /sesyd /sketches.html
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Table 5.3: Characteristics of the cadastral map collection: Base C
] of polygons ] of vectors

|GT | 2335 654017
|CG| 2626 850667

mean |GT | 23.35 64.75
mean |CG| 26.26 85.06
max |GT | 83 101
max |CG| 69 100

Table 5.4: Characteristics of the symbols data sets: Base A, B
Base A Base B

Number of classes (N) 70 53
| Base | 360 371

Noise type Vectorial Binary
Noise levels 4 6

Assessment purpose Shape distortion Digital
curve
approxima-
tion

Figure 5.16: A sample among the seventy symbols used in our ranking test. Polygon-
less symbols were removed.
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ranking of difficulty of images according to the degree of noise. In our experiments,
we have re-used methods for the generation of shape transformation (based on active
shape models [Valveny 2004]).

Vectorial Distortion: The goal of vectorial distortion is to deform the ideal
shape of a symbol in order to simulate the shape variability produced by hand-
drawing. The method for the generation of vectorial distortions of a symbol is
based on the Active Shape Models [Cootes 1995]. This model aims to build a model
of the shape, statistically capturing the variability of a set of annotated training
samples. In order to be able to apply this method, we need to generate a good set
of training samples. This is not a straightforward task due to the statistical nature
of the method. The number of samples must be high enough, and the samples
must reflect the usual kind of variations produced by hand-drawing. However, it
is difficult to have a great number of hand-drawn samples of each symbol. To be
really significant, these samples should be drawn by many different people. Thus,
the decision of generating automatically the set of samples has arisen. Based on
the generation of deformed samples through the random modification of a different
number of vertices of the symbol each time [GHOSH 1999].

Each sample is represented using the model described in [Valveny 2003], which
permits easy generation of deformed shapes. Each symbol is described as a set of
straight lines, and each line is defined by four parameters: coordinates of mid-point,
orientation and length. Thus, each deformed sample can be seen as a point xi in a
4n dimensional space, where n is the number of lines of the symbol. Then, principal
component analysis (PCA) can be used to capture the variability in the sample set.
Given a set of samples of a symbol, we can compute the mean x and the covariance
matrix S. The main modes of variation are described by the first eigenvectors pk of
the covariance matrix S. The variance explained by each eigenvector is equal to its
corresponding eigenvalue. Thus, each shape in the training set can be approximated
using the mean shape and a weighted sum of the eigenvectors:

x = x+ Pb

where P = p1, ..., pm is the matrix of the first m eigenvectors and b is a vector of
weights. This way, new images of a symbol can be generated by randomly selecting a
vector of weights b. Increasing values of bi will result in increasing levels of distortion
(see figure 5.17).

The model of vectorial distortion described in the former paragraph has been
applied with four increasing levels of distortion to generate 280 (70*4) images of sym-
bols. The variance was tuned from 0.00025 to 0.00100 by step of 0.00025. This way
of changing the variance is coherent with the protocol presented in [Delalandre 2010].
The entire database is then made up of 360 elements, 280 degraded symbols and 70
models. The shape distortion generator, 3gT system was provided by M. Delalan-
dre3. 3gT "generation of graphical ground Truth" is a system to generate random

3http://mathieu.delalandre.free.fr/projects/3gT.html
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Figure 5.17: Examples of increasing levels of vectorial distortion

graphical documents (exported into SVG) of low level primitives (vectors, circles,
...) with their corresponding ground truth. Base A is reliable source to evaluate
the shape distortion sensitivity of our polygon location measure. Numerical details
concerning this data set are presented in table 5.4.
Base B: Binary degradation. First of all, we decided to use the data set
provided by the GREC’03 contest. Mainly two application domains, architecture
and electronics were adopted as a representative sample of a wide range of shapes.
GREC’03 database is originally constituted of 59 symbols from which we removed
symbols without polygons. This pruning step led us to a database of 53 symbols.
From the 9 noise levels available, we only focused on the 6th firsts. Consequently,
database B is made of 318 (6*53) binary degraded symbols plus 53 ideal model. A
total of 371 polygonized elements according to the process explained in the next
paragraph.

Binary Degradation: Kanungo et al. have proposed a method to introduce
some noise on bitmap images [Haralickt 2009]. The purpose of this method is to
modelize noises obtained by operations like printing, photocopying, or scanning
processes. The problem is approached from a statistical point of view. The core
principle of this method is to flip black and white pixels by considering, for each
candidate pixel, the distance between it and the closest inverse region. The degrada-
tion method is validated using a statistical methodology. Its flexibility in the choice
of the parameters requires some adaptations. Indeed, a large set of degradations
can be obtained. The method itself accepts no less than 6 parameters, allowing to
tune the strength of white and black noise, the size of the influence area of these
noises, a global noise (which do not depend of the presence of white/black pixels),
and a post-processing closing based on well-known morphological operators. Of
course, these 6 parameters may generate a large number of combinations, and thus,
of models of degradation. So, if the core method used for the degradation tests is
formal and validated for its correctness, the determination of the set of parameters
used for the contest is more empirical. This framework was applied to the organi-
zation of the GREC’03 contest on symbol recognition. In [Valveny 2007], authors
attempted to reproduce a set of degradation representing some realistic artifacts (to
simulate noise produced when printing, photocopying and scanning). Six levels of
degradation (see figure 5.18) were determined by [Valveny 2007]. They took care to
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Figure 5.18: Samples of some degraded images generated using the Kanungo method
for each level of degradation used.

represent some “standard” noises: local, global troubles.

Binary degradation impacts on polygonal approximations: The higher is
the noise level the higher are the distortions on the polygonal approximation. The
noise level has a direct influence on the vectorization algorithm. On this experiment,
we used a standard data flow process to polygonize the symbols: (i) Cleaning4; (ii)
Skeletonization; (iii) Polygonal approximation and (iv) Polygonizer. Arbitrary, we
adopted the well-knowns di Baja’s skeletonizer [di Baja 1996] and the Wall and
Danielsson’s vectorization [Wall 1984]. Then a polygonizer was performed to trans-
form the set of segments into polygons. Theses steps are summed in figure 5.19. A
piece of polygon is zoomed-in to show the perturbation applied on the polygonal
approximation when the noise increases. The method only needs a single threshold
i.e., the ratio between the algebraic surface and the length of the segments which
makes this linear time algorithm fast and efficient. This parameter is set to 60 pixels

4A simple 5x5 median filter
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for all the experiments. We did not want to assess the impact of the approxima-
tion threshold but more likely, the noise impact on the polygonization when the
threshold is frozen.

More information concerning that data is detailed in table 5.4.
Base C: Cadastral map collection. In the context of a project called

“ALPAGE”, a closer look is given to ancient French cadastral maps related to the
Parisian urban space during the 19th century. Hence, the map collection is made up
of 1100 images issued from the digitalization of Atlas books. On each map a domain-
objects called Parcels are drawn by using color to distinguish them. From a computer
science point of view, the challenge consists in the extraction of information from
color documents in the objective of providing a vector layer to be inserted in a GIS
(Geographical Information System).

Automatic polygon detection: In this project, a bottom-up strategy is
adopted. In bottom-up strategies, algorithms are performed in a fixed sequence,
usually starting “low-level” analysis of the gray level or black and white image, in
which primitives are extracted. From this starting point, the four stages for extract-
ing parcels from a cadastral map are put forward. (i) At first, a color gradient is
performed to locate objects within the image. (ii) Then, a text/graphic segmenta-
tion is run on the gradient image to preserve only graphic elements [Raveaux 2008a],
[Raveaux 2008b]. (iii) Thirdly, a digital curve approximation is performed to trans-
form pixels into vectors [Locteau 2006]. (iv) finally, vectors are gathered to form
polygons using a polygonizer algorithm [Jr 2003]. This parcel extractor is fully
described in chapter 4. An evaluation of our method is proposed thanks to the
corresponding ground-truthed maps which were manually vectorized.

Ground-Truthing: With the help of experts in several fields of sciences such as
Historians, Archaeologists and Geographers, a campaign of handmade vectorization
was carried out. This work was intensively laboured consuming yet necessary. It
was the only way to give us the opportunity to fully evaluate the accuracy of our
work. The main goal was to build a reference database to investigate the merit of
our parcel retrieval scheme. Manually, 100 raster maps were carefully and precisely
vectorized to constitute a reliable collection of 2335 parcels of lands. These units
are encoded as polygons according to the definition 19. Thereby, a real link does
exist between a parcel and its polygon representation. This labor intensive pro-
cedure represents a real reference to measure up the accuracy and the validity of
our automatic vectorization [Raveaux 2008b], [Raveaux 2007a]. The content of the
database is summarized in table 5.3. In average, there are 25 parcels per map and
this represents about 75 line segments per parcel. The ground-truth was manually
made according to simple rules. Each parcel had to be described by a polygon.
The median line was favored in the line tracking. The precision question was solved
by imposing to fit at best the parcel contour and consequently, in each polygon, a
vertex corresponds to a significant direction change. For each image of document,
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Figure 5.19: Example of the polygonal approximation when increasing the noise
level.
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there exists exactly one pair of vectorized maps, one map called Ground Truth and
one map named Computer Generated, respectively < DGT ;DCG >. An example of
a pair of vectorization to be matched is displayed in figure 5.20. Further details on
this data set are presented in table 5.3. Note that this database is made up of real
data.

A synthesis about this database is reported in table 5.3 while the content is
publicly available at

http://alpage-l3i.univ-lr.fr/PE/alpagedb.zip.

5.4.2 Protocol

Three different ways of evaluating our indices are proposed.

Polygon Matching Distance evaluation: To assess the ability of the polygon
mapping distance to increase when documents get badly reconstituted, we focus on
Base A. Base A is representative of different shape distortions and consequently,
polygon shapes are affected by this noise. On Base A, we performed a ranking
test using PMD as a dissimilarity measure. A visual explanation of how ranks are
obtained is brought to view in figure 5.21. Then, ranks are compared thanks to a
statistical method called a Kendall’s test and defined as follows:

Definition 30. Kendall’s test
We assess the correlation concerning the responses to k-NN queries when us-

ing PMD as dissimilarity measures. The setting is the following: in a given Base
X, we select a number N of symbols, that are used to query by similarity the rest
of the dataset. Top k responses to each query obtained using PMD are compared
with the ground-truth. The ground-truth ranks are obtained thanks to the control
of noise level. The similarity of the PMD ranks and the ground-truth ranks are
measured using Kendall correlation coefficient. We consider a null hypothesis of
independence(H0) between the two responses and then, we compute, by means of
a two-sided statistical hypothesis test, the probability (p-value) of getting a value of
the statistic as extreme or more extreme than observed by chance alone, if H0 is
true. The Kendall’s rank correlation measures the strength of monotonic associa-
tion between the vectors x and y (x and y may represent ranks or ordered categorical
variables). Kendall’s rank correlation coefficient τ may be expressed as

τ =
S

D

Where,
S =

∑
i<j

(sign(x[j]− y[i]).sign(y[i]− x[j])) (5.8)

And,

D =
k(k − 1)

2
(5.9)
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(a) GT

(b) CG

Figure 5.20: Two vectorizations to be mapped (|DCG| = 46 |DGT | = 40).
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Figure 5.21: Ranking explanation. Ranks 3 and 1 were swapped by PMD

Polygonal approximation sensitivity: In this second experiment, we aim at
assessing the capacity of the Matched Edit Distance (MED) to increase when the
polygonal approximation gets badly reconstituted by the retrieval systems. Base B
is involved in this test. Base B is a binary degraded set of symbols and the higher is
the noise level on symbols and the more disturbed is the polygonal approximation
from the original one. In this way, we control the distortion level of the digital
curve approximation and consequently, we obtain a ground-truth order from an
ideal symbol by controlling the noise level, figure 5.19. Finally, the ranks returned by
MED and the ground-truth are compared according to the Kendall’s test described
in Def.30. using a Kendall test.

Application to the evaluation of parcel detection: Our last experiments lie
on real data that composed Base C. At first, we performed the PMD distance on a
single pair of given maps and this in order to highlight dissimilarities issued from the
raster to vector conversion. Then, an experiment is dedicated to the evaluation of
the entire collection of cadastral maps. We provide an interpretation of the results
through the viewpoints of our set of indices. A statistical framework is described
to point out correlation between the different indices. Finally, MMBD is assessed
by comparing this unsupervised method with our ground-truth based indices. The
basic idea is to determine if both behave the in same way, to reveal if a relation does
exist between them.



152 Chapter 5. Evaluation of Cadastral Map processing

Min. 1st Qu. Median Mean 3rd Qu. Max.
τ 0.0000 0.6000 0.8000 0.7029 0.8000 1.0000

Table 5.5: Summary of Kendall correlation (τ). PMD vs ground-truth

Min. 1st Qu. Median Mean 3rd Qu. Max.
τ 0.3333 0.6190 0.7143 0.7107 0.8095 1.0000

Table 5.6: Summary of Kendall correlation (τ). MED vs ground-truth

5.4.3 Polygon Matching Distance evaluation

Using N = 70, k = 4 equal to the number of noise levels available in Base A,
we present in figure 5.22 and table 5.5, the results obtained in terms of τ values.
From the 70 tests, only 9 have a p-value greater than 0.05, so we can say that
the hypothesis H0 of independence can be rejected in 87.4% cases, with a risk of
5%. The observed correlation between the responses to k-NN queries when using
the ground-truth and Polygon Matching Distance (PMD) tends to reveal a rank
relation between both (median value of τ = 0.800). By stress testing a given system,
we aim at demonstrating that our protocol can reveal strengths and weaknesses of
a system. The PMD index increases when image degradation increases.

5.4.4 Polygonal approximation sensitivity

Using N = 53, k = 6 equal to the number of noise levels in Base A, we present
in figure 5.23 and table 5.6, the results obtained in terms of τ values. From these
results, we reject the null hypothesis of mutual independence between MED and the
ground-truth rankings for the students. With a two sided test we are considering the
possibility of concordance or discordance (akin to positive or negative correlation).
A one sided test would have been restricted to either discordance or concordance,
this would be an unusual assumption. In our experiment, we can conclude that there
is a statistically significant lack of independence between MED and the ground-truth
rankings of the symbols by MED. MED tended to rank symbols with apparently
greater noise as more farther to the ideal symbol than those with apparently less
noise and vice versa.

5.4.5 Application to the evaluation of parcel detection

Xall Xtp Xfp

PMD 0.1856 0.0552 0.1304
MED 0.5068 0.3764 0.1304
η 1 0.8695 0.1304

Table 5.7: Measures of performance.
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Figure 5.22: Base A: Kendal correlation. Histogram of τ values obtained comparing
ground-truth and PMD ranks.
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Figure 5.23: Base B: Kendal correlation. Histogram of τ values obtained comparing
ground-truth and MED ranks.
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Figure 5.24: Local dissimilarities between the two maps. The lighter the better. It
means the darker is a parcel, the worst is its assignment. The overall cost=0.1856
can be decomposed into a miss-detection cost, PMDfp=0.1304 and a true positive
cost PMDtp=0.0552

A visual dissimilarity measure of local anomalies: In this part, we focus
on comparing maps two by two. This difficult task needs a good observation of
the local differences between the compared documents. On a randomly picked pair
< DGT ;DCG >, we computed the Polygon Matching Distance (PMDall). A bi-
dimensional representation of the costs to assign each element from the DCG to the
DGT is displayed in figure 5.24, whereas values of the different measures are reported
in table 5.7. Figure 5.24 provides a visual understanding of where the anomalies
are located. Firstly, it facilitates the spotting of errors and others aberrations and
especially, this framework can help domain experts understanding the limits and
advantages of a vectorization software. Figure 5.24 is worth a thousand words,
it makes easier the communication and the implementation of mutualized working
tools for both Information and Communication Technologies (ICT) - Humanities
and Social Sciences (HSS) communities.

To conclude, it can help users to spot where the mistakes are and so saving a
lot of times (time saver). It can help software designers to locate easily where the
R2V conversion failed and consequently, this local visualization at a polygon level
facilitates the categorization of detection errors.
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Evaluation of a collection of maps: From the data set of vectorized maps,
we attempted to evaluate the quality of the overall conversion process through the
viewpoints offered by the two main criteria that we have described, PMD, MED.

Over the map collection, we observed in figure 5.25 an over-detection tendency.
In average, 31% of the retrieved polygons are misleading. 71% of these wrong
polygons are implied by an over-detection behavior (ηfp = 0.22).

Now, we want to figure out the nature of the mistakes, if these over-detected
polygons are just some tiny polygons due to noise into the raster or if they represent
a major information altered during the process of conversion. In this objective, we
pay attention to the figure 5.26. The figure 5.26 shows that only 36% of the overall
cost PMDall is due to the well-detected polygons, hence, most of the information
is accurately retrieved from the rasters and the retrieved polygons do fit precisely
the Ground-Truth. At the opposite 64% of the mistakes are implied by the wrongly
detected polygons. Figure 5.26 strengthens the idea that anomalies are caused by
the over-acceptation policy of the automatic application.

In another step, we aim at assessing how much labor work has to be made to
correct the automatically vectorized polygons. A fact observed from the figure 5.27
is that 54% of the MEDall mistakes are engendered by the operations to be made
when correcting the polygonsMEDtp. A non-negligible part of the errors are caused
by the corrections to be made to fit in the ground truth. An explanation could be a
fragmentation phenomenon; many noisy strokes are broken into small pieces during
the polygonal approximation process.

The rest of the errors, what is to say the MEDmd values, is mainly due to an
intensive use of the deletion operator in order to remove the over-detected polygons.

Finally, based on a common work with the historians Helene Noizet and Laurent
Costa5, an algorithm with a combined index (PMDall + MEDall) of 0.70 or less
may be considered good with respect to human vision evaluation. However, more
work should employ this protocol on a series of algorithms and degraded drawings
to obtain an objective assessment on commonly accepted criteria.

Correlation inter-indices: A correlation matrix is built from the data series
of indices (illustrated in figure 5.28(c)), the Pearson correlation is 1 in the case of
an increasing linear relationship, -1 in the case of a decreasing linear relationship,
and some value between -1 and 1 in all other cases, indicating the degree of linear
dependence between the variables. The closer the coefficient is to either -1 or 1,
the stronger the correlation between the variables. This matrix aims to compare
the different quality measures between them. A matrix is not expressive enough,
so, a 256 shades of grey image is generated to express its substantial meaning in
a 2D representation, called image of correlations (figure 5.28(b)). In addition, the
matrix of scatterplots between the different measures of quality are given (figure
5.28(a)). From these data representations, a straightforward remark deals with the

5Members of LAboratoire de Médiévistique Occidentale de Paris (LAMOP). UMR 8589 CNRS
/ UNIVERSITÉ PARIS 1 Panthéon Sorbonne
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(a) ηmd

(b) ηfn (c) ηfp

Figure 5.25: Histogram of η. The mean value ηmd = 0.31 and it can be decomposed
in two parts, ηfp = 0.22 and ηfn = 0.09.
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(a) PMDall

(b) PMDtp (c) PMDmd

Figure 5.26: Histogram of PMD. The mean value PMDall = 0.5 and it can be
decomposed in two parts, PMDtp = 0.18 and PMDmd = 0.32.
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(a) MEDall

(b) MEDtp (c) MEDmd

Figure 5.27: Histogram of MED. The mean value MEDall = 0.66 and it can be
decomposed in two parts, MEDtp = 0.36 and MEDmd = 0.30.
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(a) Scatterplots (b) Image of the correlation matrix

PMDtp MEDtp ηtp ηmd

PMDtp 1.0000000 0.2411222 0.4311698 -0.4311698
MEDtp 0.2411222 1.0000000 0.6088518 -0.6088518
ηtp 0.4311698 0.6088518 1.0000000 -1.0000000
ηmd -0.4311698 -0.6088518 -1.0000000 1.0000000

(c) Correlation matrix

Figure 5.28: (a) Scatterplots of the proposed indices; (b) Image the correlation
matrix inter-indices, the lighter is the shade of grey, the higher is the correlation
coefficient; (c) Correlation matrix.

proportional behavior of the ηtp and ηmd, they are closely coupled and share the
same information. On the other hand, there is no evident relation between MED

and the η measures, the Pearson correlation coefficient between these two series is
not indicative enough, nevertheless, the coefficient is low enough (0.60) to indicate
no significant redundancy of information. Finally, a clear tendency appears between
PMD and MED, it reveals a low correlation (0.24) between PMD and MED. A
situation of independence between the two series can be accepted. These variables
really express two different kinds of information. They represent original viewpoints
on the underlying problem.

Correlation between knowledge and ground-truth method In this part,
meta-model based distance (MMBD) is assessed with a ground-truth measure of
performance. In this way, we want to confront a ground-truth based approach
with our knowledge inspired method. The underlying question is to figure out if
MMBD is relevant, if it behaves like a performance evaluation tool. As mentioned
in section 5.4.1, the ground-truth elaboration is time consuming and requires a huge
amount of labor work, straightforwardly, there are plenty of rooms for alternatives
which could avoid an intense use of ground-truth. This is why unsupervised quality
measures are of first interest and so NMBD comes up. What NMBD does and doest
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Figure 5.29: Scatter plot between PMDall and NMBD

not represent? It deals with object retrieval accuracy in terms of their external
consistency; objects become more reliable as they are correctly laid-out with others
through the construction of the superior hierarchical level. The flip-side of the coin
is the non-consideration of internal consistencies and consequently, the question
of vectorization is not addressed by NMBD. For this last reason, the index which
is the most likely to be related to NMBD is PMDall; NMBD is compared with
PMDall in figure 5.29. Correlation coefficient (0.3396936) is relatively low and we
cannot state any clear tendencies. However, there is still the merit of making an
attempt of comparison; our unsupervised evaluation measure behavior is studied and
preliminary conclusions are drawn about it. Furthermore, PMD aims at representing
the wellness of the parcel alignment while NMBD looks after the organization of the
overall objects in the maps (not only the parcels, but also the streets, the frame,
the quarters, ...). Obviously, there is a concrete link between both measures, parcels
are more likely to be well reconstituted if prior objects are correctly detected in the
image processing chain. That is why we expected a clearer link between NMBD and
PMD. A linear relationship cannot be validated, elements of variation unexplained
by fitted model generate departures indicating an inadequate model. Residuals
are estimates of experimental error obtained by subtracting the observed responses
from the predicted responses. Figure 5.30 illustrates the distribution of residuals
produced by the linear model for PMD vs NMBD. We have superimposed a normal
density function on the histogram. The overall pattern of the residuals is similar to
the bell-shaped pattern observed when plotting a histogram of normally distributed
data. Departures from these assumptions mean that the residuals contain structure
that is not accounted for in the model.
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(a) (b)

Figure 5.30: (a) Fitted points in function of residual errors; (b) Histogram of resid-
uals.

5.5 Conclusion and perspectives

In this chapter, we defined a protocol for performance evaluation of polygon de-
tection algorithms. A discussion between the proposed protocol and the literature
is also presented. As a consequence, our protocol is positioned as an extension of
prior works, an extension at polygon level. In this way, it is closer to the semantic
level and closer to objects handled by humans. Former benchmarks only include
synthetic images with image degradation but we completed these artificial samples
by real images with manually created ground-truth. Gathering real data to test
and compare graphics recognition systems is very time consuming that is why we
propose our data set to the community.

Our contribution is two-fold, an object mapping algorithm to roughly locate
errors within the drawing, and then a cycle graph matching distance that depicts
the accuracy of the polygonal approximation. Both were theoretically defined and
adapted to the performance evaluation of polygonized documents. Especially, cost
functions were reconsidered, using a set distance for the polygon matching distance
(PMD) and defining particular edit costs for the graph matching method.

The proposed protocol is objective and comprehensive, both detection and false
alarm rates are considered. By stress testing a given system, we demonstrated that
our protocol can reveal strengths and weaknesses of a system. The behavior of our
set of indices was analyzed when increasing image degradation.

The results presented in figure 5.26 and 5.27 indicate that the proposed protocol
reflects polygon detection and approximation performance accurately. In figure 5.28,
the statistical tests demonstrated that the two proposed measures offer different
kinds of information.

We have also confronted our measures of quality to a human-based evaluation.
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However, more work should be done in this way to obtain an objective assessment
on commonly accepted criteria.

The protocol is designed for polygons but may also be extended to other line
shapes by completing the graph representation to connected vectors instead of
searching for cyclic polygons. In this context, the PMD would not have to be mod-
ified at all. The MED which is representative of the manual effort to be made to
correct mistakes engendered by a R2V system is envisaged through the graph match-
ing question in terms of basic edit operations (addition, deletion, substitution). The
graph formalism confers to the approach a more generic nature and opens the way
to future works on more complex objects. This graph-based viewpoint could be the
container of a wider range of entities. Instead of focusing on polygon items, a given
element could be constituted of all connected segments to form a more complex
structure than a polygon while the entire principle would remain unchanged. The
graph representation is an open way to a more global paradigm, the object matching
question. This could change the scope of our performance evaluation tool to the
direction of object spotting.

Introducing the next chapter: Object extractors have been described and then
evaluated. The question of browsing and navigating into this data has arisen. Due
to the structural and geometrical aspects of the images of maps; the consideration
of graph data structure to describe map contents is intuitive and seems reason-
able. Graphs are frequently used in various fields of computer sciences since they
constitute a universal modeling tool which allows describing structured data. The
involved objects and their relations are described in a unique formalism. It is par-
ticularly the case in pattern recognition, and moreover in document indexing, since
maps can be naturally described using primitives (vectors, connected components,
loops. . . ) and geometric relations between these primitives (neighbourhood, connec-
tion, parallelism. . . ). In such a case, the map comparison problem turns into a graph
classification problem. Its objective is to assign a graph describing a query map to
its most similar elements using a reference database. The next chapter will present
the concept of graph comparison (subsequently: graph distance and matching) while
chapter 7 will discuss the questions of feature extraction and graph classification in
the context of Content-Based Map Retrieval where physical and logical structure
are compared thanks to the graph distance described in chapter 6.



Chapter 6

A Graph Matching Method and a
Graph Matching Distance based

on Subgraph Assignments

Contents
6.1 Forewords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Dissimilarity measures between graphs . . . . . . . . . . . . 168

6.4 SubGraph Matching and Subgraph Matching Distance
(SGMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.1 Definition and Notation . . . . . . . . . . . . . . . . . . . . . 175

6.4.2 Subgraph Matching . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.3 Cost matrix construction . . . . . . . . . . . . . . . . . . . . 176

6.4.4 The subgraph matching distance for attributed graphs is a
pseudo metric. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5.1 Databases in use . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.5.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.5.3 Correlation between SGMD and edit distance . . . . . . . . . 183

6.5.4 Classification context . . . . . . . . . . . . . . . . . . . . . . 189

6.5.5 Time complexity analysis . . . . . . . . . . . . . . . . . . . . 189

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.1 Forewords

During the last decade, the use of graph-based object representation has drastically
increased. As a matter of fact, object representation by means of graphs has a
number of advantages over feature vectors. As a consequence, methods to compare
graphs have become of first interest. In this chapter, a graph matching method and
a distance between attributed graphs are defined. Both approaches are based on
subgraphs. In this context, subgraphs can be seen as structural features extracted
from a given graph, their nature enables them to represent local information of
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a root node. Given two graphs G1,G2, the univalent mapping can be expressed
as the minimum-weight subgraph matching between G1 and G2 with respect to a
cost function. This metric between subgraphs is directly derived from well-known
graph distances. In experiments on four different data sets, the distance induced
by our graph matching was applied to measure the accuracy of the graph matching.
Finally, we demonstrate a substantial speed-up compared to conventional methods
while keeping a relevant precision.

6.2 Introduction

Graphs are frequently used in various fields of computer science since they consti-
tute a universal modeling tool which allows the description of structured data. The
handled objects and their relations are described in a single and human-readable
formalism. A graph G is a set of vertex (nodes) V connected by edges (links)
E. Thus G = (V,E). Tools for graphs supervised classification and graph min-
ing are more and more required in many applications such as pattern recognition
[Serrau 2005], case-based reasoning [Champin 2003], chemical components analysis
[Ralaivola 2005] and semi-structured data retrieval [Schenker 2004]. To initiate the
graph matching topic, we mention that a comprehensive survey of the technical
achievements over the last 30 years is provided in [Conte 2004].

In model-based pattern recognition problems, two graphs are given, the model
graph GM and the data graph GD. The procedure for comparing them involves
to check whether they are similar or not. Generally speaking, we can state the
graph matching problem as follows: Given two graphs GM = (VM , EM ) and
GD = (VD, ED), with | VM | = | VD |, the problem is to find a one-to-one mapping
f : VD → VM such that (u, v) ∈ ED iff (f(u), f(v)) ∈ EM . When such a mapping
f exists, this is called an isomorphism, and GD is said to be isomorphic to GM .
This type of problem is known as exact graph matching. On the other hand, the
term "inexact" applied to graph matching problems means that it is not possible to
find an isomorphism between the two graphs. This is the case when the number of
vertices or the labels are different in both the model and data graphs. Therefore,
in these cases no isomorphism can be expected between both graphs, and the graph
matching problem does not consist in searching for the exact way of matching ver-
tices of a graph with vertices of the other, but in finding the best matching between
them. This leads to a class of problems known as inexact graph matching. In that
case, the matching aims at finding a non-bijective correspondence between a data
graph and a model graph [Bunke 1998a], [Tsai 1979], [Messmer 1998]. If one of the
graphs involved in the matching is larger than the other, in terms of the number
of nodes, then the matching is performed by a subgraph isomorphism. A subgraph
isomorphism from GM to GD means finding a subgraph sg of GD such that GM
and sg are isomorphic.

Two drawbacks can be stated for the use of graph matching. Firstly, the com-
putational complexity is an inherent difficulty of the graph-matching problem. A
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brute-force approach requires a computational cost of O(n!) for a graph with n

nodes. The subgraph isomorphism is proven to be NP-complete [Mehlhorn 1984].
However, a research effort has been made to develop computationally tractable
graph-matching algorithms in particular applications [Eshera 1986], [Shapiro 1981].
Such applications use some heuristics to cut down the computational effort to a
manageable size. Graph matching can even be computed in polynomial time by
using approximate algorithms under particular conditions. The second drawback
is dealing with noise and distortion. The encoding of an object of an image by an
attributed graph may not be perfect due to noise and errors introduced in low-level
stages. In such situations, the presence of noise and distortion results in distorted
graphs with different attribute values, missing or added vertices and edges, etc. This
fact means exact graph matching is useless in many computer vision applications.
The matching must incorporate an error model able to identify the distortions which
make one graph a distorted version of the other. A matching between two graphs
involving an error model is referred to as inexact graph matching and is computed
by an error-correcting or error-tolerant (sub)graph isomorphism [Bunke 1997], [?].

Several techniques have been put forward to solve the (sub)graph isomor-
phism problem, e.g. probabilistic relaxation [Bengoetxea 2002], [Coughlan 2002],
[Christmas 1995], EM algorithm [Cross 1998], [Luo 2000], neural networks
[Lee 2002], [Lee 2000], decision trees [Messmer 1999] and a genetic algorithm
[Cross 1996], [Auwatanamongkol 2007]. Let us now give an overview of the main
approaches and report on some of the most representative references. See reference
[Lladós 1997] for further study.

Error-Tolerant Algorithms Concerning graph matching in the presence of noise
and distortion, the procedural solutions to find an optimal error-tolerant subgraph
isomorphism between two graphs are based on the construction of a state-space
which is then searched with branch and bound techniques. A different approach
to modelize the uncertainty of structural patterns was proposed by Wong and You
[A.K.C. Wong 1985]. They defined random graphs as a particular type of graphs
which convey a probabilistic description of the data. Seong et al. [Seong 1994]
developed a branch-and-bound algorithm to find the optimal isomorphism between
two random graphs in terms of an entropy minimization formulation.

Approximate Algorithms Approximate or continuous optimization algorithms
for graph matching offer the advantage that they can reach a solution in polynomial
time and, moreover, they can solve both the exact and the inexact graph-matching
problem. However, since the similarity function which they minimize can converge
in a local minimum, they may not find the optimal solution. Perhaps, the most
successful of the optimization methods for graph matching use some form of proba-
bilistic relaxation [Christmas 1995], [A.M. Finch R.C. Wilson 1997], [Gold 1996a],
[Wilson 1996]. The idea is similar to the discrete relaxation methods; however, the
compatibility constraints between vertex-to-vertex assignments do not have a binary
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formulation, but are defined in terms of a probability function that is iteratively
updated by the relaxation procedure. Another continuous optimization approach
is based on neural networks [Kuner 1988], [P.N. Suganthan E.K. Teoh 1995a],
[P.N. Suganthan E.K. Teoh 1995b]. The nodes of a neural network can represent
vertex-to-vertex mappings and the connection weights between two network nodes
represent a measure of the compatibility between the corresponding mappings. The
network is programmed in order to minimize an energy (cost) function which is
defined in terms of the compatibility between mappings. The problem of neural net-
works is that the minimization procedure is strongly dependent on the initialization
of the network. Genetic algorithms is another technique used to find the best match
between two graphs [A.D.J. Cross R.C. Wilson 1997], [Ford 1992], [Jiang 2000].
Vectors of genes are defined to represent mappings from model vertices to input
vertices. These solution vectors are combined by genetic operators to find a solution.

Our contribution Now that we have detailed the main concepts, let’s introduce
our proposal. In this chapter, an error-tolerant graph matching algorithm is de-
scribed. It is based on subgraph decomposition and wise use of the assignment
problem. The assignment problem is one of the fundamental combinatorial opti-
mization problems in the branch of optimization or operations research in mathe-
matics. It consists of finding a maximum weight matching in a weighted bipartite
graph.

In its proposed form, the problem is as follows:

• There are VM number of subgraphs from GM and VD number of subgraphs
from GD. Any subgraph (sgM ) from GM can be assigned to any subgraph
(sgD) of GD, incurring some cost that may vary depending on the sgM -sgD
assignment. It is required to map all subgraphs by assigning exactly one sgM
to each sgD in such a way that the total cost of the assignment is minimized.
This matching cost is directly linked to the cost function that measures the
similarity between subgraphs.

• The adopted strategy tackles non-deterministic methods (ie. Evolutionary Al-
gorithms) thanks to a combinatorial optimization algorithm which confers a
better stability, in such a way that for a given case, every time we run the pro-
gram we will obtain the same results. Moreover, this combinatorial framework
cuts down the algorithmic complexity to an O(n3) upper bound, depending
on the number of nodes in the largest graph. Hence, the matching can be
achieved in polynomial time which tackles the computational barrier. On the
other hand, the number of calls to the graph distance is highly increased. In
fact, n2 calls to the cost function are needed to complete the weighted bipar-
tite graph. This drawback is reasonably acceptable since the comparisons are
performed on rather small subgraphs. Finally, the formulation into a bipartite
graph matching offers the possibility to base the cost function on any kind
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of graph dissimilarity measures, making the system much more generic where
the choice of the graph distance can be seen as a meta parameter.

All the later methods have as a common point the use of an optimization algo-
rithm to best fit a graph into another. Note that in these cases, the fitness function
measures the quality of the similarity. This function is designed taking into account
the cost of mapping VD → VM .

We believe that a suitable matching would lead to an accurate graph distance.
According to this assumption, the performance evaluation question evolves into a
graph distance problem. Furthermore, this point of view on the graph matching
issue will allow a quantitative benchmark of our approach.

In the next section, a short survey is presented and graph distances used in this
chapter are introduced.

The rest of the chapter is organized as follows: in section 6.4, the proposed
method is theoretically defined and explained. Section 6.5 is divided into two parts:
The experimental evaluation of the algorithm is described and results are examined.
Finally, some discussions conclude the chapter.

6.3 Dissimilarity measures between graphs

All of the methods discussed here begin with a crisply labeled set of training data
T = {< xi, yi >}Li=1. Our presumption is that T contains at least one item with class
label j, 1 ≤ j ≤ c. Let x be an unlabeled object that we wish to label as belonging to
one of c classes. The standard nearest prototype 1−NN classification rule assigns x
to the class of the "most similar" element in a set of labeled references. This notion
of "the most similar one" is directly linked to the concept of graph distance. Hence,
the graph classification problem can be stated as follows: It consists in inducing a
mapping f(x) : χ → C , from given training examples, T = {< xi, yi >}Li=1, where
xi ∈ χ is a labeled graph and yi ∈ C is a class label associated with the training
data.

Different approaches have been put forward over the last decade to tackle the
problem of graph classification. A first one consists into transforming the initial
problem in a common statistical pattern recognition problem by describing the ob-
jects with vectors in a Euclidean space. In such a context, some features (vertex
degree, labels occurrence histograms,. . . ) are extracted from the graph. Hence,
the graph is projected in a Euclidean space and classical machine learning algo-
rithms can be applied [Papadopoulos 1999]. Such approaches suffer from a main
drawback: in order to have a satisfactory description of topological structure and
graph content, the number of such features has to be very large and dimensionality
issues occur.

Other approaches suggest using embeddings of the graphs in a Euclidean space
of a given dimensionality using an optimization process. The aim of which is to
best fit the distance matrix between each of the graphs. In such cases, a measure
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allowing graph comparison has to be designed. It is the case for multidimensional
scaling methods proposed in [Bonabeau 2002] and [Cox 2001].

Another family of approaches also consists in using classical machine learning
algorithms. At the opposite of the approaches mentioned above, the graphs are
not explicitly but implicitly projected in a Euclidean space, through the use of a
similarity measure adapted to the processed data in the learning algorithm.

In such a context, many kernel-based methods such as Support Vector Ma-
chine or Kernel Principal Analysis were recently put forward [Kashima 2004],
[Borgwardt 2005]. They consist in designing an appropriate graph-based kernel for
computing inner products in the graph space. Many kernels have been proposed in
the literature [Suard 2006], [Mahé 2004], [Mahé 2005]. In most cases, the graph is
embedded in a feature space composed of label sequences through a graph traversal.
According to this traversal, the kernel value is then computed by measuring the
similarity between label sequences. Even if such approaches have proven to achieve
high performance, they suffer from a computationally intensive cost if the dataset is
large [Vapnik 1982]. This problem of computational cost is not inherent to kernel-
based methods. It also occurs when using other classification algorithms like k-NN.
In conclusion, the problem of classifying graphs requires the use of a fast but yet
effective graph distance.

Our contribution in this chapter is two-fold; a sub-optimal inexact graph match-
ing and a measure allowing to compare graphs with a low computational cost.

This section offers a study of the different measures used to compare graphs
in the context of nearest neighbor search. Then, based on the accuracy and the
performance, it justifies the choice of a measure based on subgraph assignments.

A dissimilarity measure is a function :

d : X ×X → <

where X is the representation space for the object description. It has the follow-
ing properties :

• non-negativity

d(x, y) ≥ 0 (6.1)

• uniqueness

d(x, y) = 0 ⇒ x = y (6.2)

• symmetry
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d(x, y) = d(y, x) (6.3)

Measures of dissimilarity can often be transformed into measures of similarity
(e.g. s(x, y)= k-d(x,y), with k being a constant). If a dissimilarity measure also
respects the triangle inequality (4), it is said to be a metric.

d(x, y) ≤ d(x, z) + d(z, y) (6.4)

Pseudo-metrics are another kind of function which allows to compare objects.
Pseudo-metrics respect the non-negativity, symmetry and triangle inequality prop-
erties, but do not respect the uniqueness property. Pseudo metrics can be obtained
from dissimilarity measures, thanks to transformations that keep the order relation
(e.g. D(x, y) = d(x,y)

1+d(x,y) + 1 [Gordon 1999]).
The triangle inequality property is often used to optimize similarity search in

metric spaces as it is done in [Vidal 1994] or [Ciaccia 1997], with direct application
to classification (k-NN) and information retrieval tasks. When the compared ob-
jects are graphs, the uniqueness condition turns into an equivalence between a null
dissimilarity and graph isomorphism. Graph isomorphism search is known to be a
NP-Complete problem. However, if one defines a metric which is computationally
tractable, then the graph isomorphism problem is also present.

The Edit Distance (ED) is a dissimilarity measure for graphs that represents
the minimum-cost sequence of basic editing operations to transform a graph into
another graph by means of insertion, deletion and substitution of nodes or edges.
Under certain conditions imposed to the cost associated with basic operations, the
edit distance is a metric [Bunke 1998b]. In order to apply edit distance to a real
world application, we have to consider that costs for basic operations are appli-
cation dependent. This issue is tackled by automatic learning of cost functions
[Neuhaus 2007]. But, the edit distance computation also has a worst case exponen-
tial complexity which prevents its use in the context of nearest neighbor search in
large datasets.

Conditions for the edit distance being a metric The original graph to graph
correction algorithm defined elementary edit operations, (a, b) 6= (ε, ε) , where a and
b are symbols from the two graphs or the NULL symbol, ε. Thus, changing symbol
x to y is denoted (x, y), inserting y is denoted (ε, y), and deleting x is denoted (x, ε).
Formally, the edit distance can be expressed as the sum of the edit operations to
change a graph G1 into a subgraph G2.

dED(G1, G2) = min
(e1,..,ek)∈γ(G1,G2)

k∑
i=1

(edit(ei))
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Where γ(G1, G2) denotes the set of edit paths transforming G1 into G2, and edit

denotes the cost function measuring the strength edit(ei) of edit operation ei.
From the conclusion drew in [Myers 2000], an interesting property of this

quantity is that it is a metric if edit(ei) > 0 for all nonidentical pairs and 0
otherwise, and if edit(ei) is selfinverse.

In order to define measures of dissimilarity between complex objects (sets,
strings, graphs,...), another possibility is to base the measure on the quantity of
shared terms. The simplest similarity measure between two complex objects o1 and
o2 is the matching coefficient mc, which is based on the number of shared terms.

mc =
o1 ∧ o2
o1 ∨ o2

(6.5)

Where o1 ∧ o2 denotes the intersection of o1,o2 and o1 ∨ o2 stands for the union
between the two objects.
Based on this idea, dissimilarity measures which take into account the maximal
common subgraph (mcs) of two graphs were put forward :

d(G1, G2) = 1− mcs(G1, G2)
max(| G1 |, | G2 |)

(6.6)

Where | G | denotes a combination of the number of nodes and the number of edges
in G. From Eq(5), the expression o1 ∨ o2 is substituted by the size of the largest
graph and the intersection of two graphs (o1 ∧ o2) is represented by the maximum
common subgraph.

d(G1, G2) = 1− mcs(G1, G2)
| G1 | + | G2 | −mcs(G1, G2))

(6.7)

Where mcs(G1, G2) is the largest subgraph common to G1 and G2, i.e. it cannot
be extended to another common subgraph by the addition of any vertex or edge.

The edit distance (ED) and the size of mcs observe the following equation:

ED(G1, G2) =| G1 | + | G2 | −2 | mcs(G1, G2) | (6.8)

As long as the cost functions associated to the edit distance respect the condi-
tions presented in [Bunke 1998b]. The way to calculate the mcs size of two graphs
can be used to compute the edit distance and vice-versa. Then, both methods share
the same computational complexity. Due to the difficulty in applying these metrics,
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Figure 6.1: Edge Structure of a vertex in the Graph Probing context

several approaches relying on different types of approximations were proposed
in [Hidovic 2004]. Three other group of techniques can be employed to evaluate
graph similarity, Spectral graph theory [Robles-Kelly 2005], probabilistic methods
[Myers 2000] or combinatorial optimization [Gold 1996b], [Kriegel 2003].

Among them, the node/edge matching distance (NMD) proposed in
[Kriegel 2003] is a combinatorial optimization problem. It is based on the
approximation of the topological conservation of isomorphism by the search of a
minimum cost matching between two nodes set. The matrix cost for matching
different labeled nodes serves as an input for the Hungarian algorithm. The
node matching distance between two graphs G1 and G2 results in the cost of the
minimum-weight edge matching which is given with a worst case complexity of
O(n3), where n is the largest number of edges. The node cost function has to
be determined taking into account a distance label matrix. The node matching
distance for attributed graphs respects the non-negativity (1), symmetry (3),
triangle inequality (4) properties from the metric definition as it is shown in
[Kriegel 2003]. Recently, Shokoufandeh et al in [Shokoufandeh 2006] draws on
spectral graph theory to derive a new algorithm for computing node correspondence.
In computing a bipartite matching of nodes where their topological contexts are
embedded into structural signature vectors.
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A faster technique for estimating graph similarity consists in extracting a graph
description as a vector of probes. This method, called graph probing proposed by
[Lopresti 2003], can deal with graphs with hundreds or thousands of vertices and
edges in linear time and can be applied to directed attributed graphs.

Definition 31. Let G be a directed attributed graph and let L denote a finite set of
edge labels: {l1, l2, ..., la}. Based on this notation, the edge structure of a given vertex
can be described with a numerical vectors composed of a 2a-tuple of non-negative
integers {x1, x2, ..., xa, y1, y2, ..., ya} such that the vertex has exactly xi incoming
edges labeled li , and yj outgoing edges labeled lj.

The figure 6.1 illustrates the principle of construction of an edge structure for a
given vertex. In this context, two types of probes are defined:

• Probe1(G) : a vector which gathers the counts of vertices sharing the same
edge structure, for all encountered edge structures.

• Probe2(G) : a vector which gathers the number of vertices for each vertex
label.

Based on these probes and on the 1-norm L1, the graph probing distance is defined
as :

GP (G1, G2) = L1(Probe1(G1), P robe1(G2))

+L1(Probe2(G1), P robe2(G2))

The graph probing distance (GP) only respects the non-negativity, symmetry,
and triangle inequality properties from the metric definition, but not the uniqueness
property. In other words, GP is a pseudo-metric and two non-isomorphic graphs
can have the same graph probes. However, a upper bound relation within a factor
of four exists between the graph probing and the edit distance [Bunke 1998b].

GP (G1, G2) ≤ 4.ED(G1, G2) (6.9)

In this context, the graph topology can be partially ignored by counting the
number of occurrences of a set of subgraphs (named fingerprints or probes in different
contexts) from each graph and to describe the objects to be compared as vectors.
Consequently, this histogram view of a graph cannot lead to an univalent mapping
process.
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Figure 6.2: Forming the structural signature

Comparison with the related work In [Lopresti 2003], Wilfong and Lopresti
proposed a graph decomposition into an histogram where histogram bins are very
simple sub-structures coded as numerical vectors. This strong assumption implies
sub-elements to be very simple in term of structural information while cutting off
drastically the computation time. This histogram viewpoint makes the graph match-
ing computation not feasible losing relationship between items. Instead of an his-
togram organization, in our case, the information is laid out in a bipartite graph,
hence, a point to point mapping can be carried out.
In [Shokoufandeh 2006], a "topological signature vector" described the structural
context of a node. This vector was derived from the spectral properties of the di-
rected acyclic subgraph rooted at that node. Thereby, a bipartite graph was defined
between the nodes in two graphs, and edge costs were distances between two nodes’
corresponding signatures, see figure 6.2. In such a way, the structural information
is partially ignored to be embedded into a numerical vector.
On the contrary, we will see that our strong point is the combination of a graph
data structure encoding combined with a bipartite matching procedure to find the
optimal match. This formal description gives good properties to our method. The
subgraph decomposition makes different graph distances applicable, thus, a wise use
of the past-work in this field of science can be done.

By now, from the original idea stated in [Kriegel 2003] and [Shokoufandeh 2006],
the minimum cost matching between two element sets, the authors extended this
paradigm to more complex and discriminating objects called subgraphs. Where a
subgraph takes into account the vertex information and its neighborhood context.
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The rest of the chapter will present a new metric that involves an univalent subgraph
mapping that involves adjacent vertices into the matching process.

6.4 SubGraph Matching and Subgraph Matching Dis-
tance (SGMD)

6.4.1 Definition and Notation

6.4.1.1 Subgraph decomposition

From this definition of a given graph, the subparts for the matching problem can
be expressed as follows:

Let G be an attributed graph with edges labeled from the finite set {l1, l2, ..., la}.
Let SG be a set of subgraphs extracted from G. There is a subgraph sg associated
to each vertex of the graph G. A subgraph (sg) is defined as a structure gathering
the edges and their corresponding ending vertices from a root vertex. In such a way,
the neighborhood information of a given vertex is taken into account. A subgraph
represents a local information, a "star" structure from a root node. The mapping
of these subparts should lead to a meaningful graph matching approximation. The
subgraph extraction is done by parsing the graph which is achievable in linear time
through the joint use of the adjacency matrix. The subgraph decomposition is
illustrated in figure 6.3.

6.4.2 Subgraph Matching

Let G1(V1, E1) and G2(V2, E2) be two attributed graphs. Without loss of generality,
we assume that |SG1| ≥ |SG2|. The complete bipartite graph Gem(Vem = SG1 ∪
SG2 ∪ 4, SG1 × (SG2 ∪ 4)), where 4 represents an empty dummy subgraph, is
called the subgraph matching graph ofG1 andG2. A subgraph matching betweenG1

and G2 is defined as a maximal matching in Gem. We define the matching distance
between G1 and G2, denoted by SGMD(G1, G2), as the cost of the minimum-
weight subgraph matching between G1 and G2 with respect to the cost function c′

(i.e section 6.4.3). This optimal subgraph assignment induces an univalent vertex
mapping between G1 and G2, such as the function SGMD : SG1×(SG2∪4)→ <+

0

minimized the cost of subgraph matching. If the numbers of subgraphs are not
equal in both graphs, then empty "dummy" subgraphs are added until equality
| G1 |=| G2 | is reached. The cost to match an empty "dummy" subgraph is equal
to the cost of inserting a whole unmapped subgraph (c′(∅, sg)). The approximation
lies in the fact that the vertex mapping is not executed on the whole structure,
but more likely for subparts of it. The node matching is only constrained by the
assumption of "close" neighborhood imposed by the subgraph viewpoint of a vertex.
Why such a restriction? The mapping of two graphs when considering the entire
structure is closely coupled with the maximum common subgraph search which is
known to be a NP-Complete dilemma. More likely, this chapter adopts a "Divide
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Figure 6.3: Graph decomposition into subgraph world

and Conquer strategy". An example of graph matching is proposed in figure 6.4.

6.4.3 Cost matrix construction

Definition 32. The Assignment Problem. Let us assume there are two sets A and
B together with an n× n cost matrix C of real numbers given, where |A| = |B| = n

The matrix elements Cij correspond to the costs of assigning the i-th element
of A to the j-th element of B. The assignment problem can be stated as finding a
permutation p = p1, p2, ...pn of the integers 1, 2, ..., n that minimizes

∑n
i=1Cij

In our approach, the cost matrix contains the distances between every pair of
subgraphs from G1 and G2. The cost matrix C’ is a n × n matrix where n =
max(|G1|, |G2|) = min(|G1|, |G2|) + |∆|.

C ′ =

c′1,1 ... ... c′1,m
... ... ... ...

... ... ... ...

c′n,1 ... ... c′n,m

Where c′i,j denotes the cost between two subgraphs. According to our formalism,
a subgraph of depth "1" is defined from a root node. Hence, any graph distances
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Figure 6.4: Subgraph matching : A bipartite graph
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can be applied to build that cost matrix. A straightforward comment, our method
does not strictly rely on the edit distance.

With the aim of highlighting this difference of paradigm, a graph distance
called Graph Probing [Lopresti 2003] is also evaluated. Therefore SGMDED and
SGMDGP will respectively denote a graph matching based on edit distance or on
graph probing.

6.4.4 The subgraph matching distance for attributed graphs is a
pseudo metric.

Proof. To show that the Subgraph Matching Distance (SGMD) is a pseudo metric,
we have to prove three properties for this similarity measure.

• SGMD(G1, G2) ≥ 0
The subgraph matching distance between two graphs is the sum of the cost
for each subgraph matching. As the cost function is non-negative, any sum of
cost values is also non-negative.

• SGMD(G1, G2) = SGMD(G2, G1)
The minimum-weight maximal matching in a bipartite graph is symmetric,
if the edges in the bipartite graph are undirected. This is equivalent to the
cost function being symmetric. As the cost function is a metric, the cost
for matching two subgraphs is symmetric. Therefore, the subgraph matching
distance is symmetric.

• SGMD(G1, G2) ≤ SGMD(G1, G2) + SGMD(G2, G3)
As the cost function is a metric, the triangle inequality holds for each triple of
subgraphs in G1, G2 and G3 and for those subgraphs that are mapped to an
empty subgraph. The subgraph matching distance is the sum of the cost of
the matching of individual subgraphs. Therefore, the triangle inequality also
holds for the subgraph matching distance.

The subgraph matching distance respects the non-negativity, symmetry, and
triangle inequality properties from the metric definition, but not the uniqueness
property. In other words, SGMD is a pseudo-metric and two non-isomorphic graphs
can have the same subgraphs.

6.5 Experiments

This section is devoted to the experimental evaluation of the proposed approach.
All tests based on a simple idea; the more significant is the distance induced by a
graph matching, the better the matching is. This assumption turns the question
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Table 6.1: Characteristics of the four data sets used in our computational experi-
ments

Base A Base B Base C Base D
Number of classes (N) 50 10 32 15

| Training | 14128 114 9600 5062
| V alidation | 14101 56 3200 1688

Average number of nodes 12.03 5.56 8.84 4.7
Average number of edges 9.86 11.71 10.15 3.6
Average degree of nodes 1.63 4.21 1.15 1.3

into a graph distance comparison. Both data sets and the experimental protocol
are firstly described before investigating and discussing the merits of the proposed
approach. In this practical work, the exact graph Edit Distance was provided by the
SUBDUE substructure discovery system [(SUBDUE) ], while other methods were
re-implemented by us from the literature.

6.5.1 Databases in use

In recent years the use of graph based representation has gained popularity in pattern
recognition and machine learning. As a matter of fact, object representation by
means of graphs has a number of advantages over feature vectors. Therefore, various
algorithms for graph based machine learning have been proposed in the literature.
However, in contrast with the emerging interest in graph based representation, a
lack of standardized graph data sets for benchmarking can be observed. In order
to overcome this difficulty, we chose to carry out our tests on four databases. The
first one is composed of synthetic data allowing an evaluation in a general context
on a huge dataset. The other sets are domain specific, they are related to pattern
recognition subjects where graphs are meaningful. The content of each database is
summarized in table 6.1.

6.5.1.1 Synthetic dataset: Base A

This data set contains over 28,000 graphs, uniformly distributed into 50 classes. The
graphs are directed with edges and nodes labeled from two distinct alphabets. As the
generic framework used to construct random graphs proposed in [ERDOS P. 1959]
does not have the aim to depict classes, in the sense of similar graphs, we proposed
a two step process to create classes of graphs. In a first step a number N (where N
is the desired number of classes) of graphs are constructed using the Erdös-Rényi
model [ERDOS P. 1959]. The input of this model is the number of vertices of the
graph to be generated, and the probability of having an edge between two nodes.
Having a low probability for edges leads to sparse graphs, that occur frequently
in proximity-based graph representations found in pattern recognition (see 6.5.1.3).
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Figure 6.5: From symbols to graphs through connected component analysis

In a second step each of these graphs are modified by edge and vertex deletion or
relabeling. A second stage of modifications is applied, by selecting a node from a
graph and replacing it with a random subgraph. This process leads to graph classes
where intra class similarity is greater than inter class similarity. Numerical details
concerning this data set are presented in table 6.1. The large size of this data set is
a key point for scaling up our approach.

6.5.1.2 Symbol recognition related data set: Base B

Our data is made of graphs corresponding to a corpus of 170 noisy symbol im-
ages, generated from 10 ideal models proposed in a symbol recognition contest
[Valveny 2004], (GREC workshop). In a first step, considering the symbol bi-
nary image, we extract both black and white connected components. These
connected components are automatically labeled with a partitional clustering al-
gorithm [Kaufman 1990], applied on a set of features called Zernike moments
[Khotanzad 1990]. Using these labeled items, a graph is built. Each connected
component represents an attributed vertex in this graph. Edges are then built using
the following rule: two vertices are linked with an undirected and unlabeled edge if
one of the nodes is a neighbor of the other node in the corresponding image. An ex-
ample of the association between two symbol images and the corresponding graphs
is illustrated in figure 6.5. Further details on this data set are presented in table
6.1.
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Figure 6.6: Symbol samples

6.5.1.3 Ferrer data set: Base C

In [Ferrer 2006], a structural representation is extracted from a collection of graph-
ical symbols, 12,800 images are distributed among 32 classes. These images of sym-
bols, without rotation and scaling changes are derived from the GREC database
[Valveny 2004]. When examining symbol samples in figure 6.6, it is clear that their
construction is based on straight-lines. Each segment terminates either with a termi-
nal point or a junction point (the confluence point between two or more segments).
For convenience, from now to the end of this work, we will refer to these kinds of
points as TP and JP respectively.

In order to prove the robustness of the prototypes against noise, 4 different
levels of distortion were introduced. Distortion is generated by moving each TP or
JP randomly within a circle of radius r, given as a parameter for each level, centered
at original coordinates of the point. If a JP is randomly moved, all the segments
connected to it are also moved. With such distortion, gaps in line segments, missing
line segments and wrong line segments are not allowed. But the number of nodes of
each symbol is not changed. For each class and for each distortion 100 noisy images
are created. Thus for each class we have 400 elements (100 for each distortion),
straightforwardly, the amount of images is 12,800 (32x400).

In Ferrer′s case, a symbol is represented as an undirected labeled graph, where
the TPs and JPs are represented as nodes. Edges correspond to the segments
connecting those points. The information associated to nodes or edges are their
coordinates (x,y). Due to the graph spectral theory limitation, Ferrer′s graphs are
labeled using real positive or null values. Consequently, this restriction leads to the
construction of two graphs for a single symbol, a graphGx labeled with x coordinates
and Gy with y coordinates. In our case, the subgraph distances impose the use of
nominal labels. A 2-Dimensional mesh aims to achieve the JP and TP discretization
(ie. figure 6.7 ). In addition, an experimental study which is not presented in this
chapter has been used in order to choose mesh granularity.

6.5.1.4 Letter database: Base D

The last database used in the experiments consists of graphs representing distorted
letter drawings [graph database 2007]. In this experiment we consider the 15 capital
letters of the Roman alphabet that consists of straight lines only (A, E, F, ...). For
each class, a prototype line drawing is manually constructed. To obtain arbitrarily
large sample sets of drawings with arbitrarily strong distortions, distortion opera-
tors are applied to the prototype line drawings. This results in randomly shifted,
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Figure 6.7: From symbols to graphs using a 2D mesh

removed, and added lines. These drawings are then converted into graphs in a
simple manner by representing lines by edges and ending points of lines by nodes.
Each node is labeled with a two-dimensional attribute giving its position. Since our
approach only focuses on nominal attributes, a quantification is performed by the
use of a mesh, as in the case of database C and more information concerning that
data is detailed in table 6.1.

6.5.2 Protocol

Two ways for assessing our approach are proposed. Firstly, a statistical framework
was designed to score the relation between our approach and the edit distance.
Secondly, a pattern recognition stage was undertaken to measure-up the behavior
in classification.

• In the first experiment, we assess the correlation concerning the responses
to k-NN queries when using edit distance(ED) or subgraph matching dis-
tance(SGMD) as dissimilarity measures. The setting is the following: in a
graph data set(Base D), we select a number M of graphs, that are used to
query the rest of the data set by similarity. Top k responses to each query
obtained in the first place using edit distance and subgraph matching dis-
tance are compared using the Kendall correlation coefficient. We consider a
null hypothesis of independence(H0) between the two responses and then, we
compute, by means of a two-sided statistical hypothesis test, the probabil-
ity (p-value) of getting a value of the statistic as extreme or more extreme
than observed by chance alone, if H0 is true. The Kendall’s rank correlation
measures the strength of monotonic association between the vectors x and
y containing k elements.(x and y may represent ranks or ordered categorical
variables). Kendall’s rank correlation coefficient τ may be expressed as

τ =
S

D

Where,
S =

∑
i<j

(sign(x[j]− x[i]).sign(y[i]− y[j])) (6.10)
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And,

D =
k(k − 1)

2
(6.11)

In a second step, the distance matrices(M ×M) between ED and SGMD are
evaluated using the Pearson correlation. Finally, these two steps are repeated
to compare the responses to k-NN queries when using edit distance(ED) or
node matching distance(NMD) or Graph Probing(GP).

• The classification stage is the last experiment. It consists in a graph classifi-
cation stage. Let X = {x1, .., xn} a crispy labeled set of training data. Our
presumption is that X contains at least one graph with class label i, 1 < i < c.
Let x be an unlabeled object that we wish to label as belonging to one of c
classes. The standard nearest-neighbor (1−NN) classification rule assigns x
to the class of the most similar prototype in a set of labeled training data
(or reference set). Why use a nearest prototype classifier? Because the graph
classification problem is defined in a dissimilarity space, only graph kernel
based classifiers and a k-NN classifier can be used to categorize objects in
such a space. The 1-NN classifier is pertinent in our context, since it is simple
(parameterless) and often, pretty accurate. Hereafter, Enp(Xtr;Xtest) denotes
the test error committed by the 1-NN rule that uses Xtest when applied to the
training data.

6.5.3 Correlation between SGMD and edit distance

Kendall test Using M = 1200, k = 30, we present in figure 6.8, the results
obtained in terms of τ values. As the differences become larger when considering
elements farther and farther from the query, the fact of dealing with a huge number of
significant neighbors (k) may not be relevant. The notion of order could be simply
corrupted by a saturation phenomenon directly implied by very high distances.
Hence, from our point of view the examination of the 30 closest neighbors is fair
enough. From the 1200 tests, only 124 have a p-value greater than 0.05, so we can
say that the hypothesis H0 of independence can be rejected in 89.67% cases, with a
risk of 5%. The observed correlation between the responses to k-NN queries when
using edit distance(ED) and node matching distance(NMD) tends to reveal a rank
relation between ED and SGMDED(median value of τ = 0.733). Moreover, the
SubGraph Matching Distance overrides the Node Matching Distance in terms of
relation with the edit distance while keeping a reasonable time complexity (figure
6.12).

Pearson Correlation on distance matrices (1200× 1200) The histograms of
Pearson correlations in figure 6.9 lead to the following conclusion; the distance values
between ED and SGMD are highly correlated, a linear relation does exist between
ED and SGMD(median value of the Pearson correlation = 0.858). This strengthens
our decision to use a faster (and simpler) dissimilarity measure than edit distance
in order to perform a graph classification.
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PCA on correlation matrix A correlation matrix is built from the mean values
of the Kendall correlations (illustrated in table 6.2). This matrix aims to compare
the different graph distances between them. A matrix is not expressive enough,
barely readable, in fact and so, a principal component analysis is performed to ex-
press its substantial sense on a 2D plot, called the correlation circle. Each eigenvalue
corresponds to a factor, and each factor to a one dimension. A factor is a linear
combination of the initial variables, and all the factors are un-correlated (τ=0).
The eigenvalues and the corresponding factors are sorted by descending order of
how much of the initial variability they represent (converted to %). In our situation
stated in figure 6.11, the first two factors allow us to represent 71.40% of the initial
variability of the data. This is a good result, and we can be confident with the
reliability of the representation of the data. The correlation circle (on axes F1 and
F2) shows a projection of the initial variables in the factors space. When variables
are close to the circle edge, it means that the variable is well expressed by the two
factors and so an interpretation is feasible. If variables are: Close to each other,
they are significantly positively correlated (τ close to 1); If they are orthogonal, they
are not correlated (τ close to 0); If they are on the opposite side of the center, then
they are significantly negatively correlated (τ close to -1). From these explicative
guidelines, a first statement leads to conclude that the most highly correlated vari-
ables with ED are SGMDED and SGMDGP . Secondly, SGMDED and SGMDGP

are closely coupled. The simple reason being that both distances rely on the same
principles to compute the matching, they only stand apart from each other by the
cost function involved. Finally, NMD is the farthest from ED; this demonstrates
the weakness of this method that does not take into account the edge information.

Pairwise distance scatter plot These scatter plots give us a visual representa-
tion of the accuracy of the suboptimal methods on the Letter data. We plot for each
pair of graphs its exact (horizontal axis) and approximate (vertical axis) distance
value. Based on the scatter plots given in figure 6.10, we express the mean and the
standard deviation of the difference between the approximate and exact distances.
These measurements are given after a normalization by their maxima respectively,
hence the errors are comparable to each other. The residuals from the least squares
method are an estimation of the fitness of the linear model between ED and other
distances. Another indicator called ISE (Integral Square Errors) denotes the sum
of the square errors between the linear model and the data, this estimator brings
to light the amount of mistakes provoked by the linear approximation of the data.
Lowest values are obtained by SGMD distances when high values for NMD tend
to reveal the limits of a linear model for such sparse data. Note that all distances
computed by the suboptimal methods(SGMDED and SGMDGP ) are equal to, or
larger than, the exact distances.
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SGMDED SGMDGP NMD GP ED

SGMDED 1.000 0.608 0.400 0.444 0.604
SGMDGP 0.608 1.000 0.435 0.474 0.614
NMD 0.400 0.435 1.000 0.544 0.442
GP 0.444 0.474 0.544 1.000 0.494
ED 0.604 0.614 0.442 0.494 1.000

Table 6.2: Kendall Auto-Correlation Matrix (mean values)

(a) tau SGMDED (b) tau SGMDGP

(c) tau GP (d) tau NMD

Figure 6.8: Histogram of Kendall correlations, Rank correlation to the responses to
the k-NN queries
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(a) cor SGMDED (b) cor SGMDGP

(c) cor GP (d) cor NMD

Figure 6.9: Histogram of Pearson correlations, numeric correlations on distance
matrices.
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(a) SGMDED (b) SGMDGP

(c) GP (d) NMD

SGMDED SGMDGP NMD GP

µ 0.046 0.054 0.2007 0.1381
σ 0.885 0.857 1.540 1.238
ISE 989 1246 4852 3232

Figure 6.10: Scatter plots of the the suboptimal distances (y-axis) and the exact edit
distances (x-axis). The mean and the standard deviation of the difference between
the approximate and exact distances are reported in the table above.
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(a) PCA - eigen values (b) PCA - correlation circle

Figure 6.11: Correlation matrix representation

(a) All methods (b) Focus on the 4 fastest methods

Figure 6.12: Time complexity
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6.5.4 Classification context

Back on track, we keep in mind that the final purpose is to perform a classification
stage in order to measure our graph matching precision. Based on the data sets
described in section 6.5.1, a 1-NN rule is applied to obtain the number of correctly
classified instances (CCI) and the corresponding classification rate. These results
are reported in table 6.3. Note that the classification stage using the graph edit
distance could only be achieved on two datasets, the datasets B and D which are
made up of relatively small graphs (ie. table 6.1). The computational complexity
is exponential in the number of nodes of the involved graphs. Consequently, exact
graph edit distance is feasible for graphs of rather small size only.

Over the four databases, the SubGraph Matching Distance outperforms the Node
Matching Distance. This observation finds a straightforward explanation, it confirms
the interests of considering subgraphs which is to say local structured information
when NMD only focuses on simple node sets.

Another remark leads us to mention that SGMD provides better results than
GP. Two reasons can explain this behavior. Firstly, in GP, probes are incorporated
into a histogram comparison. This simplicity imposes the loss of relations between
probes of two graphs and therefore, no matching can be expected from GP. On the
contrary, SGMD aims to search the best subgraph to subgraph mapping according to
a cost function. Hence, in GP, probes are treated independently whereas in SGMD,
the mapping of two subgraphs is made considering all possibilities, meaning that
the mapping of a given subgraph will impact the rest of the assignment problem.
Secondly, we can underline the fact that in GP, the edge structures (Probe2) do not
gather any node information whereas our approach does. In GP, nodes and edges
are processed separately.

On one out of four data sets, the classification accuracy of a nearest-neighbor
classifier improves when the exact edit distances are replaced by the suboptimal
ones returned by our algorithm. This can be explained by the fact that all distances
computed by the suboptimal methods are equal to, or larger than, the exact edit
distances. A suboptimal graph distance will not necessarily lead to a deterioration
of the classification accuracy of a distance based classifier.

Finally, the edit distance gives a better result on BaseD than the two others
approaches. Objectively, this last remark denotes the loss information due to the
approximation introduced by the concept of small subgraph of depth 1. In fact,
the proposed algorithm considers only local, rather than global information. How-
ever, this little loss of accuracy (3%) should not discourage the use of the SGMD
considering the important speed-up it provides while being quite accurate.

6.5.5 Time complexity analysis

The matching distance can be calculated in O(n3) time in the worst case. To calcu-
late the matching distance between two attributed graphs G1 and G2, a minimum-
weight subgraph matching between the two graphs has to be determined. This is
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Table 6.3: Classification rate according to the graph distance in use
Method Base A Base B Base C Base D
ED(%) —– 92.86 —– 82.10

SGMDED(%) 88.54 94.64 99.54 80.86
SGMDGP (%) 88.48 94.64 99.21 78.79

GP (%) 57.01 92.86 98.33 59.89
NMD(%) 29.49 89.28 88.75 36.96

equivalent to determining a minimum-weight maximal matching in the subgraph
matching of G1 and G2. To achieve this, the method of Kuhn [Kuhn 1955] and
Munkres [Munkres 1957] can be used. This algorithm, also known as the Hungarian
method, has a worst case complexity of O(n3), where n is the number of subgraphs
in the larger one of the two graphs.

A way to compare the computational cost of the different types of distance
was to undertake an empirical study. The figure 6.12 depicts a comparison of the
runtime execution according to the kind of distances. This test was performed when
calculating the distance matrices on 1200 graphs taken from Base D. A first comment
aims at illustrating the high time consumption of the edit distance. This over-load
discourages the use of this graph measure, even in case of low dimension graphs when
its computation is feasible. On the other hand, the experiments demonstrated that
the GP is four times faster than SGMDED. Firstly, GP and SGMD do not have
the same purpose, GP is fast but do not express any mapping between vertices.
Secondly, the time gap is low enough to not reject SGMD as a suitable solution
considering the significant accuracy gain it implies. SGMD is a good trade-off
between time complexity and performance.

6.6 Conclusion

In the context of graph data classification, the complexity issues linked to graph
dissimilarities measures make the process of classification for a large data set an
important topic. After experimentally testing the correlation between subgraph
matching distance and edit distance, it came up that the subgraph matching distance
was of first interest, the best trade-off between accuracy and velocity. Furthermore,
we obtain better results in terms of classification accuracy, than conventional graph
measures on multi-class graph classification problems. Our contribution gives the
proof for the use of a rapid and simple, yet sufficient graph distance which can be
processed to scale up a k-NN classification step.

This chapter pointed out the following fact, when the edit distance is not ap-
plicable, in the case of high dimension graphs, our approach is an alternative to
process an accurate classification. Another strong advantage of our method relies
on its deterministic computation.
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In addition, graph distances often suffer from their shallow aspect. A black
box concept where a single number expresses the link between two graphs. On
the other hand, the proposed distance is induced by a graph matching algorithm,
this observation implies a precious property. Our global distance is made up of local
similarities that can be traced to find out precisely where the defects are. It provides
a real explanation of how similar two graphs are.

we can conclude that in general the classification accuracy of the 1-NN classifier
is not negatively affected by using the approximate rather than the exact edit dis-
tances. Our pseudo metric for graph-based representation will not necessarily lead
to a deterioration of the classification accuracy of a distance based classifier.

A future promising work is under investigation. It deals with the graph decom-
position into subgraphs of bigger size. In such a way, a closer look will be given to
the influence of matching subgraphs of length 1,2,...,|G|. Our method makes such
possibilities feasible.



Chapter 7

Multiple Representations in a
Content Based Image Retrieval

Context

Contents
7.1 Forewords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.3.1 Blob extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.3.2 Information Organization . . . . . . . . . . . . . . . . . . . . 197
7.3.3 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . 201

7.4 Invariant Feature From Segmentation (IFFS) . . . . . . . . 202
7.4.1 Segmentation Algorithm . . . . . . . . . . . . . . . . . . . . . 202
7.4.2 Features for visual classification . . . . . . . . . . . . . . . . . 203
7.4.3 Super Feature Vector . . . . . . . . . . . . . . . . . . . . . . . 205
7.4.4 Motivation of our choices . . . . . . . . . . . . . . . . . . . . 205

7.5 From Image to Topological Arrangement . . . . . . . . . . . 206
7.5.1 From Image to structured objects . . . . . . . . . . . . . . . . 206
7.5.2 Measuring the distance between two Containment Trees . . . 206
7.5.3 Dissimilarity measure between graphs . . . . . . . . . . . . . 208

7.6 Content-Based Map Retrieval . . . . . . . . . . . . . . . . . . 209
7.6.1 System level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.6.2 Vector level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.6.3 Semantic level . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.7.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.7.2 Data set descriptions . . . . . . . . . . . . . . . . . . . . . . . 215
7.7.3 A classification context . . . . . . . . . . . . . . . . . . . . . 216
7.7.4 In a CBIR Context . . . . . . . . . . . . . . . . . . . . . . . . 222
7.7.5 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . 225
7.7.6 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227



7.1. Forewords 193

7.1 Forewords

Here, we propose an automatic system to annotate and retrieve images. We assume
that regions in an image can be described using a small vocabulary of blobs. Blobs
are generated from image features using clustering. Images are structured into a
region adjacency graph. This representation is used to perform a similarity search
into an image set. Hence, the user can express his need by giving a query image,
and thereafter receiving as a result all similar images. Our graph based approach
is benchmarked to conventional Bag of Words methods. Results tend to reveal a
good behavior in classification of our graph based solution on two publicly available
databases. In addition, when facing a warehouse of natural scenes to be queried by
examples; Conventional methods would just look at the system level comparing the
query images to all the images within the corpus. By system level, we mean the pixel
image in its self sufficient way, pixels or a gathering of pixels. When talking about
images of documents, the scenario is fairly different because we are dealing with
images created by humans and dedicated to humans. This makes a huge difference
and allows comparisons and an exploration at higher levels. Two more stages can be
drawn : (a) Image of documents can be meaningfully vectorized, and the collection
can be addressed thinking at the vector level. (b) Document images have a strong
semantic and a navigation using a model representation has come true.

7.2 Introduction

With the development of the Internet, and the availability of image capturing
devices such as digital cameras, image scanners, the size of digital image collection
is increasing rapidly. Efficient image searching, browsing and retrieval tools are
required by users from various domains, including remote sensing, fashion, crime
prevention, publishing, medicine, architecture, etc. For this purpose, many general
purpose image retrieval systems have been developed. There are two frameworks:
text-based and content-based. The text-based approach can be tracked back to
1970s. In such systems, the images are manually annotated by text descriptors,
which are then used by a database management system (DBMS) to perform
image retrieval. There are two disadvantages with this approach. The first is
that a considerable level of human labor is required for manual annotation. The
second is the annotation inaccuracy due to the subjectivity of human percep-
tion [Eakins 2001] [I.K. Sethi 2001]. To overcome the above disadvantages in
text-based retrieval system, content-based image retrieval(CBIR) was introduced
in the early 1980s. In CBIR, images are indexed by their visual content, such
as color, texture, shapes. A pioneering work was published by Chang in 1984,
in which the author presented a picture indexing and abstraction approach for
pictorial database retrieval [S.K. Chang 1984]. The pictorial database consists of
picture objects and picture relations. To construct picture indexes, abstraction
operations are formulated to perform picture object clustering and classification.
In the past decade, a few commercial products and experimental prototype
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systems have been developed, such as QBIC [C. Faloutsos R. Barber 1994],
Photobook [A. Pentland R.W. Picard 1996], Virage [Gupta 1997], Visu-
alSEEK [J.R. Smith 1996], Netra [W.Y. Ma B. Manjunath 1997], SIMPLIcity
[J.Z. Wang J. Li 2001]. Comprehensive surveys in CBIR can be found in Refs.
[F. Long H.J. Zhang 2003] [Rui 1999].
Image retrieval has been an active research area over the last decade. There are
many researches and review articles that mention the importance, requirements and
applications of CBIRS [M. De Marsicoi L. Cinque 1997], [Y. Rui T. Huang 1997],
[Y. Rui T. Huang 1999] and [H. Muller N. Michoux 2004]. Most researchers pro-
vide an extensive description of image archives, various indexing methods and
common searching tasks, using different techniques and technologies. Currently
CBIR techniques can be classified into two categories: Global approach by using
global visual features to describe images and Local approach by considering images
as the combination of multiple objects, keypoints or regions.

Global methods

This technique deals with image globally and tries to characterize it by using vi-
sual/statistical features calculated from the entire image. Visual features are clas-
sified into primitive features such as color or shape, logical features such as iden-
tity of objects shown and abstract features such as significance of scenes depicted
[H. Muller N. Michoux 2004].

• Color: In domain of photograph retrieval, color has been the most effective
feature and almost all systems employ colors. Although most of the images
are in the red, green, blue (RGB) color space. Color histograms are used to
compare images in many applications. Their advantages are efficiency, and
insensitivity to small changes in camera viewpoint. However, color histograms
lack spatial information, so images with very different appearances can have
similar histograms.

• Texture: Some of the most common measures for capturing the texture of
images are wavelets and Gabor filters. These texture measures try to cap-
ture the characteristics of the image or image parts with respect to changes
in certain directions and the scale of the changes. This is most useful for re-
gions or images with homogeneous texture. Again, invariances with respect
to rotations of the image, shifts or scale changes can be included into the fea-
ture space. Other popular texture descriptors contain features derived from
co-occurrence matrices, features based on the factors of the Fourier transform
and the so-called Wold features [R. Sriram J. M. Francos 1996].

• Shape Features: There are many shape representation and description
techniques in the literature. Marr and Nishihara [Marr 1978] and Braddy
[Brady 1993] have thoroughly discussed representation and sets of criteria for
the evaluation of shape. Shape description or representation is an impor-
tant issue both in object recognition and classification. It has been used in
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CBIR in conjunction with color and other features for indexing and retrieval.
Many techniques, including chain code, polygonal approximations, curvature,
Fourier descriptors and moment descriptors have been proposed and used in
various applications [Pratt 2002]. The query images are represented by Fourier
descriptors which serve powerful boundary-shape representation tools because
of invariance property in affine transformation. Among the well-known shape
descriptors, the Zernike moments have been successfully used in many shape
contests [Valveny 2004].

Literature on image content indexing is very large, see for example [Datta 2006]
for a survey. A common approach to model image data is to extract a vector
of features from each image in the database (e.g. a color histogram) and then
use the Euclidean distance between those feature vectors as similarity measure for
images. But the effectiveness of this approach is highly dependent on the quality
of the feature transformation. Often it is necessary to extract many features from
the database objects in order to describe them sufficiently, which results in very
high-dimensional feature vectors. Those extremely high-dimensional feature vectors
cause many problems commonly described by the term ’curse of dimensionality’.
Especially for image data, the additional problem arises how to include the structural
information contained in an image into the feature vector. As the structure of an
image cannot be modeled by a low-dimensional feature vector, the dimensionality
problem gets even worse.

To address this topic, several solutions were proposed, involving spatial rela-
tionships between entities in images which can be symbolic objects(e.g. objects
highlighted after a phase of automatic detection or recognition, localization and
labeling) as well as low-level features(e.g. salient points).

Local approaches

The detection and description of local image features can help in object recognition.
The Scale Invariant Feature Transform (SIFT) features are local and based on the
appearance of the object at particular interest points, and are invariant to image
scale and rotation. They are also robust to changes in illumination, noise, and minor
changes in viewpoint. In addition to these properties, they are highly distinctive,
relatively easy to extract, allow for correct object identification with low probability
of mismatch and are easy to match against a (large) database of local features.
Object description by set of SIFT features is also robust to partial occlusion; as few
as 3 SIFT features from an object are enough to compute its location and pose.
Here, we use SIFT (scale invariant feature transform) [Lowe ] to lead a comparative
study. The full SIFT feature set is a 128 dimensional vector that captures the spatial
structure and the local orientation distribution of a region surrounding a keypoint.
Recently studies have shown that SIFT is one of the best descriptors for keypoints
[et al E.Nowak 2006]. On the other hand, SIFT provides subsamples of the image
leading to a high number of regions of interest. This phenomenon is illustrated
in figure 7.2. This subsampling effect is not suitable for a meaningful topological
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arrangement. A given image is convolved with Gaussian filters at different scales,
and then the difference of successive Gaussian-blurred images are taken. Keypoints
are then taken as maxima/minima of the Difference of Gaussians. This keypoints
detection is quite light to execute, however SIFT produces a high number areas
which are most of the time involved into a Bag Of Words strategy, in the literature.

Bag Of Words (BoW) The basic idea of Bag of Words is to depict each image
as an orderless collection of local features. For compact representation, a visual
vocabulary is usually constructed to describe BoW through the clustering of features.
With the visual vocabulary, we can describe the image as a feature vector according
to the presence or count of each visual word. Under the supervised learning platform,
the feature vector forms the basic visual cue for object and scene classification. In a
BoW approach, the classification stage turns into a histogram based classification,
although the paradigm is simple, it do not contain any geometry information.

Spatial relationships Similarity retrieval by spatial image content is done by
using multiple objects and their relationships in space. The main idea of this tech-
nique is to consider an image as a group of objects or Regions Of Interest (ROI).
Therefore, normally this approach requires segmentation process. Once an image
is segmented to many regions, we can use both of their local features and spatial
features for retrieval. In retrieval by spatial image content, not only the shape, color
and texture properties of individual image regions must be similar, but also they
must have the same arrangement (spatial relationships). Among the more known
categories of spatial relationships, we can mention the directional [Chang 1998],
[Huang 2004], [BERRETTI 2003], topological [Li 1998], geometrical [Guru 2001],
and orthogonal [Chang 1986] ones. Ideally, the relationships are described with a
graph as the Attributed Relational Graphs (ARGs) or Containment Trees (CT)
[Petrakis 2002], [Petrakis 2001].

Our approach

A standard CBIR data flow process relies on three phases. The first one, the ex-
traction of local information aims at finding relevant areas in the image and then to
extract features in these regions. All these features are grouped into clusters using a
partitional algorithm. Those clustered features forms a visual vocabulary that can
be used to express the content of an image. Hence, often an image is transformed
into a bag of words, and the comparison of two images turns into a distance be-
tween histograms of words. Here in this chapter, another point of view is adopted
by trying to take into account the spatial relationship between regions of interest.
Therefore, a given image is not longer reduced to a set of words but more likely, a
graph based representation is built from the image to enrich the model.

Here, the chapter explores the possibility of adding structural information for
image retrieval. The contribution of the chapter is twofold: Firstly, we propose
a combination of existing techniques (for segmentation and feature description) in
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order to obtain a new image description based on regions (what we call IFFS). On the
other hand, we propose two different ways of representing structural relationships
between these regions using trees or graphs. This new description is evaluated in
two well-known datasets and compared against a reference method, such as the
bag-of-words approach. The next section is dedicated to the methodology, then the
chapter organization is presented.

7.3 Methodology

An important question is how can one obtain an image vocabulary. In other words,
how does one represent every image in the collection using a subset of items from
a finite set of items. An intuitive answer to this question is to segment the image
into regions, cluster similar regions and then use the regions as a vocabulary. The
hope is that this will produce semantic regions and hence a good vocabulary.

7.3.1 Blob extraction

Barnard and Forsyth [Barnard 2001] and Duygulu et al. [Duygulu 2002] used gen-
eral purpose segmentation algorithms like Blobworld [Carson 1999] and Normalized-
cuts [Shi 2000] to extract regions. These algorithms do not always produce good
segmentations but are useful for building and testing models. For each segmented re-
gion, features such as color, texture, position and shape information are computed.
Duygulu et al [Duygulu 2002] used Normalized-cuts to segment images and then
extracted 33 features from the images. They ignored regions which were smaller
than a threshold size. Given a set of training images, a K-means clustering algo-
rithm is applied to cluster the regions on the basis of these features. These clusters
which they call "blobs" compose the vocabulary for the set of images. Each blob
is assigned a unique integer to serve as its identifier (analogous to a word’s ASCII
representation). All images in the training set can now be represented as a set of
blobs from this vocabulary. Figure 7.1 shows the segmentation and the clustering
process for some training images. The resulting blobs produced by this approach
still leave a lot to be desired. However, given the complexity of images, this is a
good first start. Given a new test image, it can be segmented into regions and region
features can be computed. The blob which is the closest to it in the cluster space
is assigned to it. In our approach, an information extraction stage called Invariant
Feature From Segmentation (IFFS) is proposed. The partition into regions is based
on a recent statistical region merging algorithm while standard Color, Shape and
Texture features are extracted from each region to characterize them.

7.3.2 Information Organization

In content-based image retrieval the use of simple features like color, shape or texture
is not sufficient. Instead, the ultimate goal is to capture the content of an image via
extracting the objects of the image. Usually images contain an inherent structure
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Figure 7.1: Image preprocessing: Step 2 shows the segmentation results from a
typical segmentation algorithm (Blobworld) The clusters in step 3 are manually
constructed to show the concept of blobs. Both the segmentation and the cluster-
ing often produce semantically inconsistent segments (breaking up the tiger) and
blobs (seals and elephants in the same blob). This figure was directly taken from
[Jeon 2003] since it illustrates well how to obtain blobs.

(a) (b)

Figure 7.2: Regions of Interest found by the SIFT algorithm. Processing SIFT took
407ms, 60 features were identified and processed
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Figure 7.3: CBIR taxonomy

which may be hierarchical. Once features are extracted, there is still the question of
how to organize them to perform a classification stage. We describe two models for
image representation and similarity measurement, which take content features like
color, texture, shape into account. A CBIR decomposition is proposed in figure 7.3.

7.3.2.1 Tree Based Representation (TBR)

One way to model images for content-based retrieval is the use of trees representing
the structural and content information of the images. To utilize the inherent struc-
ture of images for content-based retrieval, we model them as so called containment
trees. Containment trees (CTs) model the hierarchical containment of image regions
within others. To extract the containment tree of an image we first segment the
image based on the colors of the regions using a region growing algorithm. The
resulting segments are attributed with their color and size relative to the complete
image. In a second step, the containment hierarchy is extracted from the set of
segments by determining which regions are completely contained in other regions.

7.3.2.2 Graph Based Representation (GBR)

Here, an extension of the BoW and the CT methods is proposed. Blobs are struc-
tured into an attributed related graph in order to take into account spatial relation-
ships between blobs.
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An ARG is a graph where its vertices correspond to regions and edges correspond
to relationships between regions of images. Both vertices and edges are labeled by
attributes corresponding to properties (features) of objects and relationships respec-
tively.
To retrieve the similarity of images by using ARGs, it is required to perform a dis-
tance measure or a graph matching. The graph matching is a complicated process
with high complexity. In this chapter, a graph distance that compromises between
accuracy and time consumption is presented.

Comparison with some recent works on spatial re-ranking

In [Philbin 2007], the authors investigates two directions for improving visual object-
retrieval performance.

• Improving the visual vocabulary.
Firstly, they improve the clustering method by using an approximate k-means
algorithm. In typical k-means, the vast majority of computation time is
spent on calculating nearest neighbors between the points and cluster cen-
ters. Philbin et Al replace this exact computation by an approximate nearest
neighbor method, and use a forest of 8 randomized k-d trees [Amit 1996]
[Lepetit 2005] built over the cluster centers at the beginning of each iteration
to increase speed. The algorithmic complexity of a single k-means iteration is
then reduced from O(NK) to O(Nlog(K)), where N is the number of features
being clustered and K the number of clusters.

• Incorporating spatial information.
The output from performing a query is a ranked list of images for a significant
section of the corpus. In each image, features have been until now consid-
ered as a visual bag-of-words and have ignored the spatial configurations of
features. Philbin et al investigates re-ranking the top-ranked results using
spatial constraints. The spatial verification procedure estimates a transforma-
tion between the query region and each target image, based on how well its
feature locations are predicted by the estimated transformation. They then
re-rank target images based on the discriminability of the spatially verified
visual words.

• Comparison
To highlight differences between both systems, we take a closer look to the
two main divergence points: The clustering methods and the way to consider
spatial information. In [Philbin 2007], the authors make a wise use of an
approximate k-means algorithm when our approach relies on a conventional
flat k-means. A flat k-means clustering is effective but difficult to scale to
large vocabularies. Flat k-means can be scaled to similarly large vocabulary
sizes by the use of approximate nearest neighbor methods. As Philbin et al
demonstrated, this method has a low complexity but far superior performance.
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Table 7.1: Summary of the main differences between our approach and J.Philbin’s
paper

J.Philbin et al Our approach
Clustering Approximate K-means

(O(Nlog(K)))
flat K-means (O(NK))

Segmentation Affine-invariant Hessian
Regions

Statistical Region Merg-
ing

Features SIFT IFFS
Spatial Infor-
mation

Postponed to a re-
ranking stage. A spatial
verification procedure
estimates a transfor-
mation between the
query region and each
target image. Three
spatial adjustments are
allowed, scale changes,
x and y translations
and vertical shear.

Taken into account
early in the system by
the use of a Graph-
Based Representation.
This representation is
invariant to scale, rota-
tion and translation.

Concerning the spatial constraints, in [Philbin 2007] the question is postponed
to a re-ranking stage. The query region features are matched to each target
image according to the best fit of three affine transformations. These transfor-
mations cover situations such as a change in zoom or camera distance to the
scene, foreshortening and vertical shear. In our case, the topological question
is taken into account early in the system by the use of a Graph-Based Repre-
sentation. Our representation is invariant to scale, rotation and translation.
Therefore, photos can be taken from any views and no strong assumptions
are inserted (no strong restrictions on how the photo was taken is imposed).
Table 7.1 sums up the main differences between both approaches.

7.3.3 Chapter Organization

The rest of this chapter is organized as follow: In section 7.4, a description of the
IFFS descriptor is given. It describes the segmentation algorithm involved and the
visual features in use. Another section, 7.5, deals with the blobs layout into struc-
tured data, and the question of dissimilarity between topological arrangements is
investigated. Section 7.6 introduces the browsing into map collections at three differ-
ent levels, from a raw pixel level to a structured modeling. Section 7.7 is dedicated
to our experimental results, comparing BoW, Tree and Graph based approaches.
Finally, a conclusion is given and future works are brought in section 7.8.



202
Chapter 7. Multiple Representations in a Content Based Image

Retrieval Context

7.4 Invariant Feature From Segmentation (IFFS)

7.4.1 Segmentation Algorithm

Segmentation is the process of partitioning an image into disjoint and homogeneous
regions. A more formal definition can be given in the following way [Yz ] : let I
denote an image and let H define a certain homogeneity predicate; the segmentation
of I is a partition P of I into a set of N regions R1, R2, ..., RN , such that:

•
⋃N
n=1 Rn = I with Rn ∩Rm = ∅, n 6= m;

• H(Rn) = true ∀n;

• H(Rn ∪Rm) = false ∀ Rn and Rm adjacent;

Recently, thanks to the increasing speed and decreasing cost of computation,
many advanced techniques have been developed for segmentation of color images.
In particular we used the Statistical Region Merging [Nock 2004] algorithm that
belongs to the family of region growing techniques with statistical test for region
fusion. SRM is based on the follow model of image: I is an image with |I| pixels
each containing three values (R, G, B) belonging to the set 1, 2, ..., g. The model
considers image I as an observation of perfect unknown scene I∗ in which pixels are
represented by a family of distributions from which each color level is sampled. In
particular, every color level of each pixel of I∗ is described by a set of Q independent
random variables with values in [0, g/Q]. In I∗ the optimal regions satisfy the
following homogeneity properties:

• inside any statistical region and for any color channel, statistical pixels have
the same expectation value for this colour channel;

• The expectation value of adjacent regions is different for at least one color
channel.

From this model Nielsen and Nock obtain the following merging predicate:

P (R,R′) =
{
true if ∀ a ∈ R,G,B, | R′a −Ra |≤ b(R) + b(R′);
false otherwise.

(7.1)

b(R) = g

√
1

2Q | R |
(ln
| R|R| |
δ

) (7.2)

Ra denotes the observed average for color a in region R whereas R|l| is the set
of regions with l pixels

The order in which the tests of merging were done follows a simple invariant A:

• When any test between two true regions occurs, that means that all tests
inside each region have previously occurred.
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Figure 7.4: A segmentation result. Processing SRM took 1625ms and 26 features
were identified and processed

In the experiments, A is approximated by a simple algorithm based on gradient
of nearby pixels. In particular Nielsen and Nock consider a function f defined as
follow:

f(p, p′) = max
a∈R,G,B

fa(p, p′) (7.3)

A simple choice for fa is:

fa(p, p′) =| pa − p′a | (7.4)

The set of the pairs of adjacent pixel (SI) is sorted according to the value of
equation 7.3. Afterwards the algorithm takes every couple of pixels (p, p′) of SI and if
the regions to which they belong (R(p) and R(p′)) were not the same and satisfactory
equation 7.1, it merges the two regions. Some image examples segmented by SRM
algorithm are shown in figure 7.4.

7.4.2 Features for visual classification

7.4.2.1 Color features: Color Histograms < H >

Without loss of generality, we will assume that all images are scaled to contain
the same number of pixels M. We discretize the color space of the image such
that there are n distinct (discretized) colors. A color histogram H is a vector <
h1, h2, ..., hn >, in which each bucket hj contains the number of pixels of color j
in the image. Typically images are represented in the RGB color space, and a few
of the most significant bits are used from each color channel. For example, Zhang
[HongJiang Zhang Atreyi Kankanhalli 1993] uses the 2 most significant bits of each
color channel, for a total of n = 64 buckets in the histogram. For a given image I,
the color histogram HI is a compact summary of the image. A database of images
can be queried to find the most similar image to I, and can return the image I ′ with
the most similar color histogram HI′ . Typically color histograms are compared
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using the sum of squared differences (L2-distance). So the most similar image to I
would be the image I ′ minimizing :

‖HI −H ′I‖ =
n∑
i=1

(HI [j]−HI′ [j])2 (7.5)

7.4.2.2 Texture features: Co-occurrence matrices < T >

Statistical methods use second order statistics to model the relationships between
pixels within the region by constructing Spatial Gray Level Dependency (SGLD)
matrices [J.F. Haddon 1993]. A SGLD matrix is the joint probability occurrence
of gray levels i and j for two pixels with a defined spatial relationship in an image.
The spatial relationship is defined in terms of distance d and angle θ. If the tex-
ture is coarse and distance d is small compared to the size of the texture elements,
the pairs of points at distance d should have similar gray levels. Conversely, for a
fine texture, if distance d is comparable to the texture size, then the gray levels of
points separated by distance d should often be quite different, so that the values in
the SGLD matrix should be spread out relatively uniformly. Hence, a good way to
analyze texture coarseness would be, for various values of distance d, some measure
of scatter of the SGLD matrix around the main diagonal. Similarly, if the texture
has some direction, i.e. is coarser in one direction than another, then the degree of
spread of the values about the main diagonal in the SGLD matrix should vary with
the direction d. Thus texture directionality can be analyzed by comparing spread
measures of SGLD matrices constructed at various distances d. From SGLD matri-
ces, a variety of features may be extracted. The original investigation into SGLD
features was pioneered by Haralick et al. [R. M. Haralick 1973]. From each matrix,
14 statistical measures are extracted including: angular second moment, contrast,
correlation, variance, inverse different moment, sum average, sum variance, sum
entropy, difference variance, difference entropy, information measure of correlation
I, information measure of correlation II, and maximal correlation coefficient. The
measurements average the feature values in all four directions and give us a vector
< T > of 4× 14 = 56 components.

7.4.2.3 Shape features: Zernike Moments < S >

Let I(i, j) be a discrete image function with spatial dimensionM×N , their moments
of order n with repetition m are given by :

Anm =
n+ 1

Π

m−1∑
i=0

n−1∑
j=0

(I(i, j).Rnm(rij).e−i.mθij ) (7.6)

Where the discrete polar coordinates :

rij =
√
x2
j + y2

i (7.7)

θij = arctan(
yi
xj

) (7.8)
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Then the polynomial form can be expressed :

f(x, y) = lim
N→∞

N∑
n=0

∑
m

(Anm.Vnm(x, y)), (7.9)

Vmn(x, y) = Rmn(x, y)ejm tan−1(y/x) (7.10)

where the second sum is taken over all |m| ≤ n, such that n− |m| is even.
T. Taxt in [Due 1996] using equation (7.9), N = 1...., 13, indicates that mo-

ments of orders up to 8-11 are needed to achieve a reasonable shape classification.
According to this result, our shape feature vector < S > is composed the 13th first
Zernike moments.

7.4.3 Super Feature Vector

The complete feature vector < F > is made up of the three feature descriptors
defined above. This lead us to a vector of dimension 133:

| F |=| H | + | T | + | S |= 64 + 56 + 13 = 133

< F >= 〈< H >,< T >,< S >〉, | F |= 133.

For comparison needs and without loss of performance, each component is nor-
malized between [0, 1] by finding its maximum over a training set.

Now, considering two feature vectors F1 and F2, the distance between these two
super vectors can be written as the sum of the L2 distances between subvectors
contained in < F >:

d(F1, F2) =
1
| H |

‖H1 −H2‖+
1
| T |
‖T1 − T2‖+

1
| S |
‖S1 − S2‖

This distance is weighted in such a way that every subvector is considered as equal
than any others despite the feature length variation.

7.4.4 Motivation of our choices

Segmentation algorithm About the segmentation algorithm, SRM is a linear-
time fast and simple (yet effective) region growing segmentation algorithm based
on an adaptive statistical threshold merging predicate on color channels that does
not require to maintain dynamically the region adjacency graph (RAG). It runs fast
and handles nicely occlusion, noise and user-input bias.

Color features Many color features could be used, however color histograms
are frequently used to compare images. Examples of their use in multimedia ap-
plications include scene break detection [Arun Hampapur Ramesh Jain 1995],
[Farshid Arman Arding Hsu 1993] and querying a database of images
[M. G. Brown J. T. Foote 1995], [Ogle 1995]. Their popularity stems from
several factors.
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• Color histograms are computationally trivial to compute.

• Small changes in camera viewpoint tend not to effect color histograms.

• Different objects often have distinctive color histograms.

Texture features On texture classification contests, the co-occurrence matrix is
a popular texture method, which was assessed successfully on the publicly available
Meastex database [Meastex ], [Smith 1997].

Shape features The first thirteen Zernike invariant moments [Hse 2004] give us
global point of view of segmented regions. They provide sufficient information of
shapes which are not too specific to shape details. Zernike moments often describe
pretty well shapes. Undoubtedly, they remain on top of shape descriptors, they
always achieve good results in shape contests [Valveny 2004].

7.5 From Image to Topological Arrangement

This part is dedicated to image representations and complex object measurements.
Two models are described a Containment Tree (CT) and a Region Adjacency Graph
(RAG). These paradigms are illustrated figure 7.5. When dealing with structured
objects the question of dissimilarity measure between objects arise. Here a discussion
is brought about the compromise between computational complexity and accuracy.

7.5.1 From Image to structured objects

From Image to Region Adjacency Graph (RAG) Local features are auto-
matically labeled with a partitional clustering algorithm [Kaufman 1990] applied on
a set of features. Using these labeled items, a graph is built. Each region represents
a vertex in this graph. Then, edges are built using the following rule: two vertices
are linked with an undirected and unlabeled edge if one of the node is connected to
another in the corresponding image.

Transforming an Image into a Containment Tree In this context, a region
Rin is said to be contained in a region Rcont if for every point p ∈ Rin and every
straight line L 3 p there exist two points o1, o2 ∈ Rcont with o1, o2 ∈ L and o1, o2
are on opposite sides of p.

7.5.2 Measuring the distance between two Containment Trees

To measure the similarity of containment trees, special similarity measures for
attributed trees are necessary. A successful similarity measure for attributed
trees is the edit distance. Well known from string matching [Levenshtein 1966],
[Wagner R.A. 1974], the edit distance is the minimal number of edit operations
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Figure 7.5: Multiple representations
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necessary to transform one tree into the other. The basic form allows two edit op-
erations, i.e. the insertion and the deletion of a node. In the case of attributed
nodes the change of a node label is introduced as a third basic operation. A great
advantage of using the edit distance as a similarity measure is that along with the
distance value, a mapping between the nodes in the two trees is provided in terms of
the edit sequence. The mapping can be visualized and can serve as an explanation
of the similarity distance to the user. However, as the computation of the edit-
distance is NP-complete [Zhang K. 1992], constrained edit distance like the Zhang
and Shasha edit distance [Zhang 1989] has been introduced. They were successfully
applied to trees for web site analysis [Wang J.T.L. 2002], structural similarity of
XML documents [Nierman A. 2002] or shape recognition [Sebastian T.B. 2001].

Zhang introduced the constrained edit distance between two trees (T1,T2) de-
noted by δc, which is defined as an edit distance under the restriction that disjoint
subtrees should be mapped to disjoint subtrees. Formally, δc(T1, T2) is defined as
a minimum cost mapping (Mc, T1, T2) satisfying the additional constraint, that for
all (v1, w1), (v2, w2), (v3, w3) ∈Mc.

• (v1, v2) is a proper ancestor of v3 iff (w1, w2) is a proper ancestor of w3.

In [Zhang 1996], Zhang presents algorithms for the computing the minimum cost
constrained mappings. For the ordered case he gives an algorithm using O(|T1|.|T2|)
time.

7.5.3 Dissimilarity measure between graphs

The graph classification problem can be stated as follows. It consists in inducing a
mapping f(x) : χ → C , from given training examples, T = {< xi, yi >}Ni=1, where
xi ∈ χ, is a labeled graph and yi ∈ C is a class label associated with the training
data.

Different approaches have been proposed during the last decade to tackle the
problem of graph classification. A first one consists in transforming the initial
problem in a common statistical pattern recognition one by describing the objects
with vectors in a Euclidean space. In such a context, some features (vertex degree,
labels occurrence histograms,. . . ) are extracted from the graph. Hence, the
graph is projected in a Euclidean space and classical machine learning algorithms
can be applied [Papadopoulos 1999]. Such approaches suffer from a main drawback:
to have a satisfactory description of topological structure and graph content, the
number of such features has to be very large and dimensionality issues occur.

Other approaches propose to use embeddings of the graphs in a Euclidean space
of a given dimensionality using an optimization process the aim of which is to best
fit the distance matrix between each of the graphs. In such cases, a measure allowing
graph comparison has to be designed. It is the case for multidimensional scaling
methods proposed in [Bonabeau 2002] and [Cox 2001].

Another family of approaches also consists in using classical machine learning
algorithms. At the opposite of the approaches mentioned above, the graphs are
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not explicitly but implicitly projected in a Euclidean space, through the use of a
similarity measure adapted to the processed data in the learning algorithm.

In such a context, many kernel-based methods such as Support Vector
Machine or Kernel Principal Analysis were proposed recently [Kashima 2004],
[Borgwardt 2005]. They consist in designing an appropriate graph-based kernel for
computing inner products in the graph space. Many kernels have been proposed in
the literature [Suard 2006], [Mahé 2004], [Mahé 2005]. In most cases, the graph is
embedded in a feature space composed of label sequences through a graph traversal.
According to this traversal, the kernel value is then computed by measuring similar-
ity between label sequences. Even if such approaches have proven to achieve high
performance, they suffer from their computationally intensive cost if the dataset
is large [34]. This problem of computational cost is not inherent to kernel-based
methods. It also occurs when using other classification algorithms like k-NN. In
conclusion, the problem of classifying graphs requires the use of a fast but yet ef-
fective graph distance. In this objective, we used in our experiments the SubGraph
Matching Distance (SGMDGP ) defined in chapter 6.

7.6 Content-Based Map Retrieval

Traditionally when facing a warehouse of natural scenes to be queried by examples;
Conventional methods would just look at the system level comparing the query
images to all the images within the corpus. By system level, we mean the pixel
image in its self sufficient way, pixels or a gathering of pixels. When talking about
images of documents, the scenario is fairly different because we are dealing with
images created by humans and dedicated to humans. This makes a huge difference
and allows comparisons and an exploration at higher levels. Two more stages can be
drawn : (a) Image of documents can be meaningfully vectorized, and the collection
can be addressed thinking at the vector level. (b) Document images have a strong
semantic and an navigation using a model representation has come true.

7.6.1 System level

In this step, the image warehouse of lands is queried at the system level as in a
generic CBIR application. A segmentation algorithm is run on a source image.
Figure 7.6 illustrates the results of segmentation when applying the Statistical Re-
gion Merging method. On top of the region partition a Region Adjacency Graph
is built. Morphological features are extracted from the regions while color and tex-
tures features are left behind; the color and the texture are not comparable from
map to map; for instance: color is only meaningful within a given map to distinguish
parcels, it does represent a remarkable information when comparing two images. So
finally, only the Zernike moments are considered and extracted for each region. As
introduced earlier, features are gathered together into clusters using a K-means al-
gorithm. The cluster IDs are set as node labels into the RAG. A segmented image
and its RAG representation are displayed in figure 7.7. The Content-Based Map
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(a) (b)

Figure 7.6: Cadastral Map Segmented by SMR algorithm.

(a) (b)

Figure 7.7: Region Adjacency Graph: From cadastral image to RAG.

Retrieval application is depicted in figure 7.8 where the graphical user interface is
presented. The training phase proposes to the user to set some parameters such
as the number of clusters (words) or the input and output directories. When the
training is done on the whole set of images, the user can start the navigation process
by presenting a cadastral map image as an input to the system. It would respond
by comparing sequentially the query image the whole dataset using the RAG repre-
sentation. The final result is an HTML page presenting the input image and the ten
most similar images. An example of results is shown in figure 7.9. In this example,
for the map "AN033", the 10 best responses are presented in ascending order. For
each response, three information are visualized: the image, the RAG representation
and the distance between the query image and an image in the database.

7.6.2 Vector level

In chapter 4, the question of vectorization issued from images of cadastral maps was
discussed while in chapter 5, a polygon dissimilarity measure was defined. Com-
bining the Map Edit Distance and the vector representation lead to a new way of
browsing the collection. Presenting the vectorized map as an input to the system;
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Figure 7.8: A Graphical User Interface (GUI) at system level.

Figure 7.9: Similar map responses from a query image.
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(a) (b)

Figure 7.10: Automatically Vectorized Version of the Cadastral Map.

Figure 7.11: Content-Based Map Retrieval at vector level: A plug-in integration
into OpenJUMP.

the application would retrieve similar documents according to the MED which relies
on polygon matching and vector alignment. Figure 7.10 puts forward an association
between cadastral maps and its vectorized form. The whole system is integrated in
the OpenJUMP1 framework. OpenJUMP is an open source Geographic Informa-
tion System written in the Java programming language. An example of integration
of our plug-in inside OpenJUMP is displayed in figure 7.11. The responses to the
vector query of the "AN033" map are presented in figure 7.12.

1http://www.openjump.org/

Figure 7.12: Similar map responses from a query image. In the second row, the
vector representation is drawn in blue.
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(a) (b)

Figure 7.13: Model instance graph. Semantic graph.

Figure 7.14: Similar map responses from a query image.

7.6.3 Semantic level

Finally, the cadastral map understanding system lies on a model architecture. This
principle implies the generation of a model for each document. The model generation
is ensured by the joint use of image processing algorithms and a domain ontology.
The model is handled through the graph formalism. The graph construction was
described in chapter 4 and consequently, the question of comparing two images turns
into a graph comparison; this issue was addressed in chapter 6. The representation
of a given map image under the semantic graph formalism is depicted in figure
7.13. Such a graph involves map objects (Frame, Quarters, Parcels, Streets...) and
relations between objects (connected, isOutside...). The ten most similar images
from a query image are given in figure 7.14. The strong semantic nature of images of
documents is the basic brick of this approach. The geometry is voluntary neglected
to impose the semantic in the center of the searching algorithm.

7.6.4 Discussion

A navigation into image masses at three levels of description has arisen. The ways
of browsing the image collection is driven by the user. It depends on the user needs,
if he/she is interested into a geometric similarity or a semantic comparison. Finally
when dealing with image of documents the context is like no others and richer
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representations are emerging. Due to the image nature, images made by humans
to human understanding, models and semantic can be integrated into the CBIR
system through the construction of semantic graphs or vector parcels; at the same
time, the distance has to be re-thought to fit the user expectations. The query
objectives is closely coupled to the dissimilarity measure. The semantic level can
address questions like "Please find quarters from a given quarter query with the same
parcel organization?" while when working with the vector representation; a question
which is likely to appear is "Please find similar quarters from a query quarter in
terms of sharing a maximum parallel vectors." In both cases, a specially designed
distance has to be created. This phase involves a co-operation between the user and
computer scientists to elaborate meaningful object comparators; for instance, in our
last query, the dissimilarity measure integrates the counting of parallel vectors. In
other words, a richer representation leads to a larger range of queries and it implies
the design of various distances dedicated to user needs.

7.7 Experiments

In this section, our graph based approach was benchmarked and measured up to a
conventional BoW methods using both SIFT and IFFS as information extraction
systems. In a two-step mechanism, we started to analyze the vocabulary size impact
choosing the best parameters and finally we compared both Bag of Words and
graph based representation solutions. A pattern recognition stage was undertaken
to analyze the behavior in classification. The database images are ranked in the
ascending order of their distance to the query image, with the top k images returned.
Two publicly available databases,Coil-100 and Caltech-101, are used to achieve our
benchmark (ie. section 7.7.2).

In this practical work, the tree distance approximation was pro-
vided by Stephen Wan, Macquarie University in Australia (Reference
[Implementation ]) and the SIFT algorithm is an ImageJ plug-in publicly available
[lightweight SIFT-implementation for Java after the paper of David Lowe (2004) ]
while others methods where re-implemented by us from the literature. The methods
were implemented in Java 1.5 and run on a 2.14GHz computer with 2G RAM. For
the comprehension of theses tests, we first introduce notations that will make the
reading much simpler. A dissimilarity measure between images is a function :

d : X ×X → <

where X is an image. We report in table 7.2, the notations derived from this
general form.

7.7.1 Protocol

• In the first experiment, an image classification stage was carried out. Let
Xtr = {x1, .., xn} 3 RP a crispy labeled set of training data. Our presumption
is that Xtr contains at least one point with class label j, 1 < j < C. Let x be
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Notation Method Representation Distance
SIFTBoW SIFT Bag of Words Euclidean
IFFSBoW IFFS Bag of Words Euclidean
IFFSTree IFFS Containment Tree Zhang&Shasha tree distance
IFFSGBR IFFS Region Adjacency Graph SubGraph Matching Distance

Table 7.2: Distance between images.

an unlabeled object that we wish to label as belonging to one of C classes. The
standard nearest-neighbor (1-NN) classification rule assigns x to the class of
the most similar prototype in a set of labeled training data (or reference set).
Why do we use a nearest prototype classifier? Because the graph classification
problem is defined in a dissimilarity space, the 1-NN classifier can be used to
categorize objects in such a space, in addition, it is intuitive, simple, and often,
pretty accurate. Hereafter, Enp(Xtr;Xtest) denotes the test error committed
by the 1-NN rule that uses Xtest when applied to the training data. For a
better understanding of the time consumption and the classification behavior,
the number of classes influence is evaluated. Each data set is split up into 6
subsets containing from 5 to 100 classes (Number of classes: 5,10,20,40,80,100).
These 6 folds allow us to extend our benchmark. It makes feasible, for each
approach, an estimation of the generalization power over small or large data
sets.

• The last experiment consists in a Content-Based Image Retrieval process. Im-
ages are ranked in the ascending order of their distance to a given query image.
All these responses (|Xtr| responses) to the query are returned to compute two
measures of performance, named, Precision and Recall. Precision and recall
are two widely used statistical classifications. Precision can be seen as a mea-
sure of exactness or fidelity, whereas Recall is a measure of completeness.
Algorithm 5 states clearly how to obtain the values.

7.7.2 Data set descriptions

In this chapter, we consider two different labeled image databases. The well-known
caltech-101 database [L. Fei-Fei 2004]. Pictures of objects belonging to 101 cate-
gories (figure 7.16). About 40 to 800 color images per category. Most categories
have about 50 images. The training images were hand labeled to create a consistent
ground truth. Note that we consider completely general lighting conditions, camera
viewpoint, scene geometry, object pose and articulation. Our database was split
randomly into roughly 75% training, 25% validation sets, while ensuring approx-
imately proportional contributions from each class. More information about this
data set is presented in table 7.3. The COIL-100 database [S. A. Nene ] consists of
images of 100 different objects. The objects were placed on a motorized turntable
against black background. The turntable was rotated through 360◦ to vary object
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Algorithm 5 Precision and Recall computation
Require: For the ith query xij belonging to the class j from Xtest.
Ensure: There exists exactly |Xtr| pairs of precision and recall measures.
1: For k = 1 To k= |Xtr| by Step=1 Do
2: Get the k top responses and put them into a list called O
4: Within the list O compute the precision and recall values.
5:

precisionik =


|{Relevant Documents}∩{Retrieved Documents}|

|{Retrieved Documents}|

|Correctly Labelled Documents|
k

6:

recallik =


|{Relevant Documents}∩{Retrieved Documents}|

|{Relevant Documents}|

|Correctly Labelled Documents|
| Documents of class j |

7: End For

pose with respect to a fixed color camera. Images of the objects were taken at
pose intervals of 5◦. This corresponds to 72 poses per image. Figure 7.15 shows
an example image of each class. Randomly, for each class of object, 18 images are
withdrawn from the initial set to constitute a test set. This leads us to a training
set of 5400 images and a test base of 1800 items.

These two sets of data are fairly different and represent an heterogeneous envi-
ronment to prove the merit of our systems. The Coil-100 database is known to be
relatively simple since no backgrounds are considered and images within the same
class are derived from a single original object, on the contrary, the caltech-101 set
is more complex, a same concept gathers different kind of images from different
sources.

7.7.3 A classification context

Back on track, we keep in mind that the final purpose is to perform a classification
stage in order to evaluate the relevance of the image models. Based on the data sets
described in section 7.7.2, a 1-NN rule is applied to obtain the number of correctly
classified instances (CCI) and the corresponding classification rate. Firstly, the
number of words impact is investigated and the results are illustrated in figures 7.17
and 7.18 for the Coil-100 and Caltech-101 databases respectively. Then a comparison
between the four image distances is brought considering the best number of words
for each method. These results are shown in figures 7.19.

Complete results figures:
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Figure 7.15: Columbia University Image Library

Table 7.3: Characteristics of the data set used in our computational experiments

Caltech-101 Coil-100
| Training | 6821 5400
| Test | 2323 1800
IFFS: Feature Length 133 133
IFFS: Average number of nodes 31.34 14.10
IFFS: Average number of edges 72.15 25.905

SIFT: Feature Length 128 128
SIFT: Average number of interest points 121.57 40.02
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Figure 7.16: Image Samples from the Caltech-101 Data set. The 101 object cate-
gories and the background clutter category. Each category contains between 45 to
400 images. Two randomly chosen samples are shown for each category. The cate-
gories were selected prior to the experimentation, collected by operators not associ-
ated with the experiment, and no category was excluded from the experiments. The
last row shows examples from the background dataset. This dataset is obtained by
collecting images through the Google image search engine (www.google.com). The
keyword "things" is used to obtain hundreds of random images. Complete datasets
can be found at http://vision.caltech.edu



7.7. Experiments 219

• Figure 7.17 gathers four histograms, one for each method exposed to our
evaluation framework (SIFTBoW , IFFSBoW , IFFSTree, IFFSGBR). This
complete test aims at underlying the influence of the vocabulary size parameter
on the recognition rate. The scalability question is also addressed by increasing
progressively the number of classes. In this way, the behavior of each approach
is depicted as the problem becomes more and more complex. These tests were
run on the Coil-100 set.

• Figure 7.18 reflects the recognition rate evolution according to the number of
words and the number of classes for the Caltech-101 database.

Summary results figures:

• Figure 7.19 expresses the best results in classification obtained for the most
suited number of words. It is the quintessence of the results over the two
databases, hence, it makes the comparison more readable and clearer.

• Figure 7.20 presents how many words are needed for each method to provide
their best accuracy level. It shows how sensitive and greedy are the methods
about this question of the number of clusters.

Number of words impact

Tests on the number of words were carried out. Performance in classification
according the number of words (w) are presented in figure 7.20. The question of
the vocabulary size is an important issue. Here, a decision of tuning the parameter
w from 4 to 1024 was taken. In this way, we expect to cover a wide range of
possibilities. A first comment states that structural approaches reach their maxima
with a smaller number of clusters than BoW methods. Reducing the vocabulary
size put more weight on the graph data structure while a large number of words
is highlighting the information carried by each regions. A compromise between
the feature expressivity and the importance given to the spatial organization has
to be found. As an example, too many words may turn the representation very
sensitive to noises and small variations, on the other hand, if no feature is extracted
from the regions then only the structure is taken into account. Those extrema are
representative of how the vocabulary size can impact the classification process.

The histograms presented in figure 7.20 corroborates the following hypothesis,
when the number of classes increases the vocabulary size should be extended too.
Bigger is the problem more words are needed to describe it. However, our exper-
iments pointed out that IFFSGBR and IFFSTree needed a smaller set of words
than BoW for the same configuration to reach their best performances.

Recognition rate comparison
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GBR vs BoW

In the meantime, each database were divided into six subsets to analyze the number
of classes influence. The figure 7.19 denotes a straightforward fact, a high number
of classes leads to a decrease of the performances as the problem becomes more
complex. Contrarily to our first thoughts, structural based representation did not
overcome the BoW methods in terms of accuracy. Over the two databases, results of
BoW systems outperform the structured ones. This leads us to the question: does
structure really matter when indexing natural scene images? The main advantage
of a description of patterns by graphs instead of vectors is that graphs allow for a
more powerful representation of structural relations. However, in natural images,
it appears that the structure may not be stable enough and this variability might
be misleading. Nevertheless, the use of a GBR method is recent in CBIR, and we
can say that they achieve reasonable results for a "new born" solution. They can
obtain similar or slightly under performance than BoW . When at the same time,
BoW methods are mature, they have been introduced decades ago in CBIR, they
have the age benefits. Furthermore, these encouraging recognition rates reached
by GBR methods can be improved, it does exist a rich literature dealing with the
insertion of spatial information into graph edges. We can mention GBR methods
using Bi-dimensional Allen Algebra (Ref. [Aiello 2004]) or Delaunay triangulation
(Ref. [Finch 1997]). In addition, the Region Adjacency Graph could be swapped
for a neighboring graph or a visibility graph for instance, but all these variations
on the same theme are beyond the scope of this thesis. Here, the objective was to
expose that our results are encouraging enough and it leave is plenty of rooms for
progress in this direction. Finally, graphs lead to new kind of services, the graph
matching problem can be used to locate sub parts of an image from a crop image
as a query. All these points converge to state the worth of investigating the graph
tools in a CBIR context. A comprehensive comparison is provided in table 7.4. This
table sums up the information according the following metric (Eq.7.11). The mean
value of the best results over the 6 subsets.

Enp = mean

(
6∑
i=1

min
w

(Enp (Xtri ;Xtesti))

)
(7.11)

It turns out that classification accuracy can be improved by IFFSGBR compared
to the reference system, that is to say SIFTBoW , and this, on all number of classes
levels. Note that 2 out of 3 improvements are statistically significant.

Independence inter methods

In this experiment, we aim at understanding whether the methods make the same
mistakes or not; if the methods decide wrong at the same time or not. On the
Caltech-101 database, we perform a χ2 test of independence. A test of independence
assesses whether paired observations on two variables, expressed in a contingency
table, are independent of each other -for example, whether IFFSBoW differs in the
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Table 7.4: Average results over the two databases according to the accuracy criterion
and time consumption.

Criterion SIFTBoW IFFSBoW IFFSTree IFFSGBR
Coil Caltech Coil Caltech Coil Caltech Coil Caltech

Accuracy(%) 76.25 50.61 95.03• 46.86 78.86 36.68◦ 90.68• 44.28
Time(s) 17604 14457 24358 19069 645567◦ 162889◦ 898279 ◦ 250570◦

• Statistically significantly better than the reference system (SIFTBoW ) (α = 0.05)

◦ Statistically significantly worse than the reference system (SIFTBoW ) (α = 0.05)

IFFSBoW x

IFFSGBR

class1 class2 class3 ... class101
class1
class2
class3
...

class101
y |Xtest|

Table 7.5: Dependence matrix for IFFSBoW and IFFSGBR

decision with IFFSGBR. The contingency table, in a context of classification, is
also called confusion matrix. Each column of this matrix represents the number of
occurrences of an estimated class, while each line denotes the number of occurrences
of a real class. From the confusion matrix, we derive the construction of what we
call a dependence matrix. This latter reflects the dependence of two classifiers based
on different representations. In our case, each column of this matrix represents the
number of occurrences of an estimated class by the method one, while each line
denotes the number of occurrences of an estimated class by the method two. An
example of this independence matrix is presented in table 7.5.

In this case, an "observation" consists of the values of two outcomes and the
null hypothesis is that the occurrence of these outcomes is statistically independent.
Each outcome is allocated to one cell of a two-dimensional array of cells (called a
table) according to the values of the two outcomes. The "theoretical frequency" for
a cell, given the hypothesis of independence, is

χ2 =
(Oij − Eij)2

Eij

In our case, the observed value "O" corresponds to the value of the dependence
matrix whereas the theoretical occurrence is defined by the average. In each cell,
the expected value Eij is equal to the sum of each element of the line i multiplied
by the sum of the elements of the column j, divided by N.

Eij =
xi × yj
|Xtest|

The expected value (E) can be seen as the wanted value in case of independence.
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χ2 test df p− value
IFFSBoW vs IFFSGBR 9922 10000 0.209

Table 7.6: χ2 independence test between a Graph-based method and a Bag of Words
approach.

We computed the χ2 for the following setting: IFFSBoW vs IFFSGBR. We
consider a null hypothesis of independence (H0) between the two methods and then,
we compute, by means of a one-tailed statistical hypothesis test, the probability (p-
value) of getting a value of the statistic as extreme or more extreme than observed
by chance alone, if H0 is true. Results are presented in table 7.6. We compare the
χ2 score with the theoretical χ2 distribution (degree of freedom (k=10000), risk level
(α =0.05)), χ2

α=0.05,k=10000=10233.8). χ2 < χ2
α=0.05,k=10000, so we can say that the

hypothesis H0 of independence can be accepted in with a risk of 5%. The calculated
p-value exceeds 0.05, so the observation is consistent with the null hypothesis, the
deviation from expected outcome is just small enough to be reported as being "not
statistically significant at the 5% level".

In fact, we draw the reader’s attention to de-correlated methods, they are likely
to be combined to perform better. Inspired from [Philbin 2007] and stimulated by
these results of independence, an interesting work will come up. It would aim at
speeding up the system by computing at first a BoW method and later in a second
time, to process a re-ranking stage with the top k responses integrating spatial
information through the use of our graph-based approach. To avoid sequential
comparison of the query with all items stored in the archive.

IFFS vs SIFT

A comment on the good behavior of IFFS as an extraction information system.
Hence, figure 7.19 validates the join use of an efficient segmentation algorithm (SRM)
and distinctive features. On the Coil-100 database IFFSBoW overrides SIFTBoW
with a significant level. Nevertheless, the power of generalization of this statement
is limited by the superiority of the SIFT process on the Caltech-101 data sets.

7.7.4 In a CBIR Context

Precision is defined as the ratio of retrieved positive images to the total number
retrieved. Recall is defined as the ratio of the number of retrieved positive images
to the total number of positive images in the corpus. The precision and recall in
a multi-class problem is defined through multi-levels (or j is greater than 1). The
overall average precision and recall over all classes j can be evaluated by the macro-
average, which first calculates the precision and recall on each class j followed by a
calculation of the average information on the C classes.
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(a) SIFTBoW (b) IFFSBoW

(c) IFFSTree (d) IFFSGBR

Figure 7.17: On the Coil-100 database : Recognition rate in function of the number
of classes and the number of clusters.

(a) SIFTBoW (b) IFFSBoW

(c) IFFSTree (d) IFFSGBR

Figure 7.18: On the Caltech-101 database : Recognition rate in function of the
number of classes and the number of clusters.
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(a) Coil-100 (b) Caltech-101

Figure 7.19: Comparison between CBIR methods. Summary of results obtained
with the best number of words for each method.

(a) Coil-100 (b) Caltech-101

Figure 7.20: Comparison between the number of words in used by the methods.
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SIFTBoW IFFSBoW IFFSTree IFFSGBR

Coil − 100 0.0640 0.3242 0.1818 0.2288
Caltech− 101 0.0314 0.0327 0.0279 0.0335

Table 7.7: Average Precision (AP) measure. A comparison of the performance of
the four methods.

precision =

∑C
j=1 precisionj

C

recall =

∑C
j=1 recallj

C

To evaluate the performance we use the average precision (AP) measure com-
puted as the area under the precision-recall curve. An ideal precision-recall curve
has precision 1 over all recall levels and this corresponds to an average precision of
1. The AP scores is used as a single number to evaluate the overall performance.
Results are reported in table 7.7.

On both databases, precision and recall values are computed and displayed in
the figure 7.21.

7.7.5 Analysis and discussion

The results are somehow promising with respect to the IFFS approach. It clearly
outperforms the SIFTBoW approach in the Coil database. This result could be
expected as images are more easily segmented in this database. However, in the
Caltech database, where segmentation into regions is more challenging the SIFT
obtains better results. On the other hand, the figure 7.21b puts forward that IFFS
does not declare forfeit and tends to get a better precision when the recall is in-
creased. This last comment is re-enforced by measures given in table 7.7. The AP
score of IFFSBoW (APIFFSBoW ) is slightly greater than APSIFTBoW .

Concerning the structural representations results are somehow encouraging.
They are a bit lower than the other approaches, and only in the Coil database
are slightly better than BoW with SIFT, but clearly worse than BoW with IFFS,
which could be the reference method in this case, as the graph representation is
built on the top of IFFS.

These poor results of the structural approaches seem to refute the main initial
hypothesis about the use of this type of graph representation. Nevertheless, the
IFFS method is an interesting contribution since it makes possible the organization
into graph or tree whereas SIFT is too versatile to be laid out into a complex
structure (Too many key-points occur when running sift on an image). Taking
into account, the good results on COIL-100, a discussion arises on the kind of
images where IFFS method can be useful. In addition, the idea of completing
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(a) Results on Coil100 database

(b) Results on a 20 classes subset from the Caltech-101

Figure 7.21: Precision and Recall curves.
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this representation with structural information is also promising. There is not
much work in this direction so far. Structural representations stand as a kind of
alternative approach with some preliminary results, but to be further investigated.
Graph-Based Representation of an image is a rich domain, relations between
regions or points of interest can be modeled in many ways, among them, we can
cite the representations issued from Delaunay triangulation [Finch 1997], Allen
algebra [Aiello 2004] or a neighboring graph.

7.7.6 Time complexity

The graph matching distance (IFFSGBR) can be calculated in O(n3) time in the
worst case. To calculate the matching distance between two attributed graphs G1

and G2, a minimum-weight matching between the two graphs has to be determined.
This is equivalent to determining a minimum-weight maximal matching in the sub-
graph matching of G1 and G2. To achieve this, the method of Kuhn [Kuhn 1955] and
Munkres [Munkres 1957] can be used. This algorithm, also known as the Hungarian
method, has a worst case complexity of O(n3), where n is the number of probes in
the larger one of the two graphs. On the other hand, the histogram distance (used
in IFFSBoW , SIFTBoW ) is processed in linear time in function of the number of
bins that composes the histogram. A way to compare the computational cost of the
different types of distance was to undertake an empirical study on the classification
stage. The figure 7.22 depicts a comparison of the runtime execution according to
the kind of distances. This test was performed during the classification phase on
the Coil-100 database. It takes into account the computation of regions of interest
(IFFS or SIFT) and the distance calculation between image representations.

A first comment aims at illustrating the high time consumption of the graph
and tree distances. These techniques are computationally more intensive than oth-
ers. Structural approaches may fail to face the scalability dilemma in the cases
of industrial applications, although their computations remain in polynomial time.
Another point illustrated by the figure 7.22 is the effect of the vocabulary size on
the histogram length. Simply, higher is the number of words and larger are the
histograms. In average, a linear relation exists between the number of clusters and
the time complexity of histogram based methods. Finally, SIFTBoW runs slightly
faster than IFFSBoW (at worst case: 51000 seconds vs 67000 seconds). This time
gap is low enough to not reject IFFS as a suitable solution considering the signif-
icant accuracy gain it can imply. This little loss of speed does not discourage the
application of a color segmentation algorithm to extract blobs.

7.8 Conclusion

In this chapter, a graph based representation was proposed in a CBIR context.
From a partition into regions processed by an efficient segmentation algorithm, a
Region Adjacency Graph was built to consider spatial relationships between regions.
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(a) SIFTBoW (b) IFFSBoW

(c) IFFSTree (d) IFFSGBR

Figure 7.22: On the Coil-100 databases : Runtimes in function of the number of
classes.

Each region is characterized using a set of features based on the Color, Texture and
Shape. A K-means clustering algorithm is applied to cluster the regions on the basis
of these features. These clusters which we call "blobs" compose the vocabulary for
the set of images. Each blob is assigned to a unique integer to serve as its identifier.
An efficient and yet fast dissimilarity measure between structured data was pre-
sented to compare attributed relational graphs. The whole method was compared
to conventional Bag of Words strategies and to another structural approach based
on Containment Trees. The Graph Based Approach overcame the Tree Based one,
however it gave similar or slightly under results than BoW methods. BoW systems
have been introduced a decade ago into CBIR applications while GBR are quite new
in this field of science. Nevertheless, experiments showed that a structural approach
requires a fewer number of words to reach its best performance.

A closer look should be given to the relation between regions. For instance, a
future promising work concerns the enrichment of the graph representation by the
use of a bi-dimensional Allen Algebra. This description inserted on the edge labels
should provide a better representation of the region layout.

In addition, we want to express the special interest given to Graph Based Rep-
resentation in CBIR context, as a final goal, GBR could offer the possibility to spot
sub-parts of images from an image portion of the query image. The flip side of coin
is an over-load of complexity which leads to a higher time consumption.

Inspired from [Philbin 2007] and stimulated by the results of independence be-
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tween BoW and Graph methods, an interesting work will come up. It would aim at
speeding up the system by computing at first a BoW method and later in a second
time, to process a re-ranking stage with the top k responses integrating spatial in-
formation through the use of our graph-based approach. A sequential comparison
of the query with all items stored in the archive could be avoided.

The last words comment the particularity of dealing with image of documents.
This context is like no others and richer representations are available. Due to the
image nature, images made by humans to human understanding, models and seman-
tic can be integrated into the CBIR system through the construction of semantic
graphs or vector parcels. The query objectives is closely coupled to the dissimilarity
measure. For instance, a question which is likely to appear in order to search quar-
ters with a similar orientation: "Find similar quarters from a query quarter in terms
of numbers of common parallel vectors." In this case, the dissimilarity measure in-
volves the counting of parallel vectors. In other words, a richer representation leads
to a larger range of queries and implies the design of various distances dedicated to
user needs. This last phase involves a co-operation between the user and computer
scientists to elaborate meaningful object comparators.
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8.1 Foreword

In this chapter we summarize the contributions of this dissertation on the cadastral
map analysis problem and in particular to the application of graph-based methods
on the process of raster to vector conversion from collections of cadastral images.
We also present a discussion and the limitations of the presented approaches. We
finally point some possible lines of continuation on the field of technical document
understanding and some improvements of the proposed methods which should be
further studied.

8.2 Summary of the Contributions

In this thesis we have introduced a complete framework for ancient and color cadas-
tral map, and in particular for a focused Geographical Information System. As
explained in chapter 1, our work has been motivated by the specific problem of
proposing a raster to vector conversion methodology able to locate and vectorize
graphical content within a complete document image. A lot of interest is made
worldwide for mass digitization of document collections and their storage in digital
libraries. It results in digital repositories rich in information if they are semantically
accessible.

We have identified four different levels when conceiving a raster to vector archi-
tecture for color documents.

The first level aims to take advantage of the color properties in order to better
locate graphical elements that constitute a document. In the second level, these
bricks describing graphical symbols are organized in a particular data structure.
This data structure is carefully chosen to conserve a relevant meaning, with respect
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to symbols and their relationships. After the extraction process, this semantic rep-
resentation is transformed to elaborate by an inferring method a model of higher
level. This meta-model represents a pivot platform which allows the comparison
with a priori knowledge, an expert-designed model. This unsupervised checking
consists in a validation stage to measure the quality of the object detection system.

The third level consists in a validation stage to determine in regard with the
ground-truth whether the raster to vector conversion is efficient or not.

The last level is a querying process where different views are adopted, from pixel
to semantic passing by vector elements. All the data structures are traversed and
compared to find similar primitives than the queried ones.

Along this thesis, we have made some contributions in each of the four stages.
Let us briefly summarize these contributions:

• Color Segmentation in Hybrid Color Space: The chapter 3 of the thesis
has been focused on the joint use of hybrid color space and a vectorial gradient
aiming to segment the graphical symbols. We have presented a hybrid color
space selection framework. We brought an quantitative answer to the question
of finding a color space for segmentation purpose. In addition, we have proven
its superiority in regard to the standard RGB color space.

• Unsupervised Quality Measure by Model Checking: In chapter 4, a
cadastral map modeling was introduced. This modeling gave birth to ded-
icated image processing. In order to auto-evaluate the quality of these op-
erators, a meta-model comparison was presented. Object found during the
detection phase were organized into a graph where the vocabulary was picked
up among the expert-designed ontology. Hence, the generated model is de-
rived from the ontology but not comparable yet with the meta-model. A
higher degree has to be reached, a meta-model inference from an RDF docu-
ment has been developed to achieve this task. Finally, the comparison of two
meta-models is turned into a graph distance problem.

• Graph Matching: A distance between graphs derived from a graph match-
ing is fully explained in chapter 6.This latter describes a SubGraph Matching
Distance (SGMD) for graph comparison. A distance between two graphs is
defined by solving for a max matching in a bipartite graph spanning the nodes
in two graphs. A probe is computed for each node, which describes the neigh-
borhood structure of a node out to a distance of 1 edge (along all incident
edges). The cost assigned to an edge in the bipartite graph spanning two
nodes is computed as the edit distance between their probes. The resulting
approximation to computing the largest isomorphic subgraph is O(n3), the
complexity of the bipartite matching problem.

• Performance Evaluation Protocol: In chapter 5, we have presented a set
of measures to evaluate the performance of vectorization systems in terms of
location accuracy and polygonal approximation precision. We have shown that
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the proposed measures allowed to determine the weaknesses and strengths of
our method. Although within the Graphics Recognition community there is
an important interest in the research of the performance evaluation topic, to
the best of our knowledge, no framework for evaluating the performance of
polygon generator applications has been proposed in the past.

• Content-Based Map Retrieval: In chapter 7, a navigation into image
masses at three levels of description was described. Hence, the user can express
his need by giving a query image, and thereafter receiving as a result all similar
images. Here, the word "similar" is voluntary not accurate enough. The user
may want to give a special care to geometrical aspects between maps or on
the contrary, the focus could be set on semantic, the type of objects laid into
the maps. It depends on the type of model which is incorporated into the
search engine, from pixel to semantic modeling. This crucial choice is left to
user when throwing his query.

8.3 Discussion

In this thesis we have made some contributions about raster to vector conversion
methods and the particular application of such methods for a focused retrieval sys-
tem from a collection of map drawings. Herein, we want to launch an open discussion
about parameters, limits and deadlocks of the proposed approaches.

• Color processing:

– This chapter 3 proposes a generic framework by which the best represen-
tation color space for a computational task on a given image is selected.
That impact significantly to the results of segmentation task, and some-
how alleviate the embarrassing situation of giving the decision to choose
color space in this task. Recognition rate is used for selecting color com-
ponents in a set of basic color spaces. This is tied with a basic nearest-
neighbor classification algorithm. Edge detection algorithm based on the
discontinuities of the distance in the hybrid color space is then applied.

– Why are there 25 color primaries, rather than 3 because no new infor-
mation is introduced. The increase in dimension of the color space is not
explicitly justified in the manuscript. However, the justification comes
along with the justification for the kernel trick in classification problems.
In machine learning, the kernel trick is a method for using a linear clas-
sifier algorithm to solve a non-linear problem by mapping the original
non-linear observations into a higher-dimensional space, where the linear
classifier is subsequently used; this makes a linear classification in the
new space equivalent to non-linear classification in the original space.
The underlying idea is that the new space with higher dimension better
describes the problem and so makes it simple to solve.
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– The features of the hybrid color space and its adequacy to a specific
class of images are not discussed. Nevertheless, we believe that standard
color spaces were specifically designed for natural scenes and since the
color distribution of our color documents is fairly different and holds
specificities; a different color space is needed.

– The time consumption was not a hard specification expressed by the
historians. It is a commonplace in machine learning to state the case
that training algorithms require much time and many computations to
assimilate the data variability.

– A low gain in performance was noticed in chapter 3. The color segmen-
tation is closer to the user-defined ground-truth in a hybrid color space
than in RGB however the improvement remains quite low. A tentative
of explanation may lie on the fact that color on its own fails to describe
certain objects. In our framework, the separability of the clusters found
in the color space is maximized. However, clusters may not be directly
linked to objects within the image. There is a gap between an object
and its color representation. A given object can be represented by sparse
data in the feature space, it is the case for textured objects for example,
hence the colors defining a single object can be found in different clus-
ters. This way is misleading and results in an over or under segmentation
phenomena. In such a case of textured objects, a manual definition of the
clusters by the user could be really a plus, it would help defining what
are color classes to be discriminated.

• Knowledge engineering: It is quite hard to express a real and concrete
problem with a computer model. A model is by definition a truncation of the
real world, however this phase is essential to design image processing and to
extract meaningful information from a document set. It is important to note
that our segmentation methods are directly designed to respond the nature
of images like ancient cadastral. The knowledge modeling provides keys to
build-up dedicated image processing. Thanks to knowledge modeling step,
we developed dedicated image algorithms addressing the particularity of our
image set. The analysis steps consist among others, of the elaboration of two
complementary information types for a given document :

– its physical structure: it describes the document organization, in terms of
objects (typographically homogeneous regions) and relationships between
these objects (hierarchical decomposition, absolute and relative positions
in the paper sheet) ;

– its logical structure: it decomposes the document in information ele-
ments, characterized by the role they play in the document (frame,
streets, parcels...), and specifies the relationships (syntactic and seman-
tic) between these elements;
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The formalism to describe the expert knowledge can take various form, from
logic or grammars to meta-models or ontology. Our choice was guided by
the huge development of the Ontology domain. Nowadays ontologies offer
a common framework and standardize methods to express and to manage
knowledge in computer science. Our tools allow extracting the logical structure
from a RDF document and representing this logical structure as an attributed
relational graph.

• Structured object comparison: The model comparison question can be
stated as classification problem. The problem of classifying graphs requires
the use of a fast but yet effective distance. We propose a novel framework
called SGMD for graph matching based on subgraph (probe) assignment via
bipartite matchings.

– According to our formalism, a graph is decomposed into a set of sub-
graphs. Each subgraph is defined from a root node and any graph dis-
tances can be applied to elaborate the bipartite graph. The two param-
eters of this approach are the local descriptor size and the type of sub
distance. Preliminary results not developed into this manuscript tend to
show that if the user of the final application is interested in retrieving
the most relevant graphs from the collection, no matter the number of
false alarms, a simpler description should be used. If the user is more
interested in a better precision without caring the fact the system misses
objects, then we should start using more and more complex and refine
description techniques. However, we strongly believe that for most ap-
plications, the use of low-dimensional descriptors (a subgraph depth of 1
or 2) is enough while making the system faster. The question of the kind
of the subgraph distance is more delicate, our feeling is that it depends
on the velocity required by the user. In a case of large subgraphs, the
use of the graph edit distance may serious slow down the SGMD while
using the graph probing measure the system may still react on time. A
theoretical relationship would be a real plus.

– Our contribution in chapter 6 gives the proof for the use of a rapid and
simple, yet sufficient graph distance which can be processed to scale up
a k-NN classification step. In this direction of taking fast decision at
the classification stage, we are currently working on learning graph pro-
totypes for shape recognition. A new approach for computing graph
prototypes in the context of the design of a structural nearest prototype
classifier. Four kinds of prototypes are investigated and compared : set
median graphs, generalized median graphs, set discriminative graphs and
generalized discriminative graphs. They differ according to (i) the graph
space where they are searched for and (ii) the objective function which is
used for their computation. The first criterion allows distinguishing set
prototypes which are selected in the initial graph training set from gen-
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eralized prototypes which are generated in an infinite set of graphs. The
second criterion allows distinguishing median graphs which minimize the
sum of distances to all input graphs of a given class from discriminative
graphs, which are computed using classification performance as criterion,
taking into account the inter-class distribution.

– Finally, a statistical relationship was found between SGMDED and the
graph edit distance, but a starting work, let us think that SGMDED

is an upper bound for the graph edit distance with factor which is still
undetermined.

• Performance evaluation: The chapter 5 addresses the evaluation of the
polygonization process (i.e. raster to polygon conversion). The main drawback
is related to the definition of a benchmark protocol of the vectorization, based
on the fact that this process is supposed to delivery straight lines and clustering
of these lines in terms of polygons.

The first one is related to the definition of a benchmark protocol of the vec-
torization, based on the fact that this process is supposed to delivery straight
lines and clustering of these lines in terms of polygons. The second issue is the
use of this benchmark protocol for the evaluation of a cadastral map vectoriza-
tion system designed by the authors. Several other constraints were imposed
either due to lack of time and resources or in order to keep the evaluation
protocol simple. The primary constraints were as follows: (i) Text regions
were not considered, OCR is outside the scope of this benchmark; (ii)Dashed
lines and isolated segment that do not constitute polygons were ignored.

– The method presented in the paper permits only to evaluate polygon
detection and approximation.

– We confronted our measures of quality to a human-based evaluation.
However, more work should be done in this way to obtain an objective
assessment on commonly accepted criteria.

– The protocol is designed for polygons but may be easily extended to other
line shapes. This is possible thanks to the graph formalism which confers
to the approach a generic nature.

– Finally, we would like to mention the importance that has the use of a
performance evaluation protocol. Times where algorithms were tested
with a small set of data are over. Nowadays, it is necessary the use of
standard reference ground-truth and performance evaluation protocols.
The Graphics Recognition community is one of the most healthy com-
munities within the Pattern Recognition field regarding this aspect. A
lot of works and efforts are centered in proposing evaluation methods
which aim to track the progress in a certain specific problem. As far as
we know, the works focused on polygon vectorization always have been
evaluated by an ad-hoc set of measures or have been simply ignored. We
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hope that the proposal of the performance evaluation protocol presented
in chapter 5 can be used to evaluate other polygon vectorization meth-
ods and helps to track the progress on this topic as well as to identify
the strengths and weaknesses of the proposed methods. However, one
of the main problems is that we do not have any public dataset of real
documents to test the proposed methods. Nowadays, the only available
ground-truthed dataset which can be used to test polygons generated by
raster to vector systems is our dataset. The main problem of this dataset
is that it is composed only by one kind of documents which cannot reflect
the entire reality, however it is the only one available and the community
related to polygonization applications should start using it.

8.4 Open Challenges

Since document analysis and understanding is still an unsolved problem, we are
convinced that there is still a lot of room for improvements and some open challenges.

• User Interaction

– It is increasingly necessary to design analysis and recognition methods
which do not work in stand-alone mode, but take into account the user’s
interaction, so as to be able to perform incremental learning, relevance
feedback in recognition and retrieval applications, etc. But little work
has been done on modeling the user, who is mostly considered as some
kind of ill-defined, external entity. The fact is that there is nothing
in common between a “vanilla plain” user who may be your uncle or
grandma, browsing a collection of images and giving relevance feedback
without really knowing anything about the application, and a highly
specialized user able to input syntactical rules to represent the knowledge
in a specific document analysis application. If the purpose is indeed to
build a highly specialized system, this may not be a problem, but when
the application is potentially very general whereas the user interaction
paradigm requires the user to have a PhD in pattern recognition or to
have trained for months, there is a contradiction in the whole setup which
limits the applicability of the method.

• Knowledge Driven Image Processing

– In our future lines of work, we think of a platform dedicated to the knowl-
edge extraction and management for image processing applications. The
aim of this platform is a knowledge-based system that adapts automat-
ically its parameters from problem formulations given by inexperienced
users. Such an platform must involve a model for the formulation of such
applications. In the last fifty years, a lot of image processing applica-
tions have been developed in many fields (medicine, geography, robotic,



8.4. Open Challenges 237

industrial vision, ...). We know that image processing specialists design
applications by trial errors cycles. They do not enough reuse already
developed solutions and design new ones nearly from scratch. The lack
of application formulation modeling and formalization is a reason of this
behavior. Indeed, image processing experts do not realize a complete
and rigorous formulation of the applications. Only the solutions are used
as their definitions. Therefore, the reusability of these applications is
very poor because the limits of the solution applicability are not explicit.
Moreover they often suffer from a lack of modularity and the parameters
are also often tuned manually without giving explanations on the way
they are set. On the contrary, in a not so far future, the user would
define the problem with the terms of his/her domain by interaction with
the user layer of the formulation system. This part of the system would
be a human-machine interface which uses a domain ontology to handle
the information dedicated to the user. It would group concepts that
allow the users to formulate their processing intentions and define the
image class. Then the formulation system would translates this user for-
mulation into image processing terms taken from an image processing
ontology. This translation would achieve the mapping between the phe-
nomenological domain knowledge of the user and the image processing
knowledge. The result of this translation could be an image process-
ing request which would be sent to the managing system to modify the
program that responds to this request. This cooperation would require
the two sub-systems to share the image processing ontology. Then the
formulation system would run the modified program on test images and
would present the results to the user for evaluation purposes.

– The dream of building completely automated systems for converting
drawings, maps into high-level representations seems to have vanished,
as the methods we design reach their limits at a level where there is still
a lot of user editing to be done. But there is still a very interesting
opportunity to build combined retrieval/recognition systems, making it
possible to navigate in a large document base by simple examples of what
is being searched for.
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Abstract

This paper presents some new approaches for computing graph prototypes in the context of the design of a structural
nearest prototype classifier. Four kinds of prototypes are investigated and compared : set median graphs, generalized
median graphs, set discriminative graphs and generalized discriminative graphs. They differ according to (i) the
graph space where they are searched for and (ii) the objective function which is used for their computation. The
first criterion allows to distinguish set prototypes which are selected in the initial graph training set from generalized
prototypes which are generated in an infinite set of graphs. The second criterion allows to distinguish median graphs
which minimize the sum of distances to all input graphs of a given class from discriminative graphs, which are
computed using classification performance as criterion, taking into account the inter-class distribution. For each kind
of prototype, the proposed approach allows to identify one or many prototypes per class, in order to manage the
trade-off between the classification accuracy and the classification time.

Each graph prototype generation/selection is performed through a genetic algorithm which can be specialized to
each case by setting the appropriate encoding scheme, fitness and genetic operators.

An experimental study performed on several graph databases shows the superiority of the generation approach
over the selection one. On the other hand, discriminative prototypes outperform the generative ones. Moreover,
we show that the classification rates are improved while the number of prototypes increases. Finally, we show that
discriminative prototypes give better results than the median graph based classifier.

Keywords: Graph classification, graph prototypes, median graphs, discriminative graphs, genetic algorithm, symbol
recognition

1. Introduction

Labeled graphs are powerful data structures for the
representation of complex entities. In a graph-based
representation, vertices and their labels describe objects
(or part of objects) while labeled edges represent inter-
relationships between the objects. Due to the inherent
genericity of graph-based representations, and thanks
to the improvement of computer capacities, structural
representations have become more and more popular in
many application domains such as computer vision, im-
age understanding, biology, chemistry, text processing
or pattern recognition. As a consequence of the emer-
gence of graph-based representations, new computing
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issues such as graph mining (1; 2), graph clustering
(3; 4) or supervised graph classification (5; 6; 7) pro-
voked a growing interest.

This paper deals with the supervised graph classifi-
cation problem. In the literature, this problem is gen-
eraly tackled using two kinds of approaches. The first
one consists in using kernel based algorithms such as
Support Vector Machines (SVM) or Kernel Principal
Component Analysis (KPCA) (8; 9; 10; 11; 12; 13).
Using such methods, the graph is embedded in a fea-
ture space composed of label sequences which are ob-
tained through a graph traversal. The kernel values are
then computed by measuring the similarity between la-
bel sequences. Such approaches have proven to achieve
high performance but they are computationally expen-
sive when the dataset is large. The second family con-
sists in using a K-Nearest Neighbors (K-NN) rule in a
dissimilarity space, using a given dissimilarity measure.
This kind of approach is the most frequently chosen for
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its simplicity to implement and its good asymptotic be-
havior. However, it suffers from three major drawbacks:
its combinatorial complexity, its large storage require-
ments and its sensitivity to noisy examples. A classi-
cal solution to overcome these problems consists in re-
ducing the learning dataset through an object prototype
learning procedure and to use a Nearest Prototype Clas-
sifier (NPC). Such a prototype-based strategy is not in-
herent to the graph classification problem. It has already
been tackled for comparing shapes in computer vision
application, e.g. in the approach described in (14) that
learns some contour prototypes. It has also been stud-
ied for a long time in the context of statistical pattern
recognition, using either prototype selection methods
(see e.g (15; 16)) or prototype generation methods (see
e.g. (17; 18)).

In the field of structural pattern recognition, there also
has been some recent efforts dedicated to the learning
of prototypes. Among them, one can cite the pioneer-
ing approach proposed in (19) which builds prototypes
by detecting subgraphs that occur in most graphs. An-
other approach concerning trees is proposed in (20).
It consists in learning some kinds of tree prototypes
through the definition of a superstructure called tree-
union that captures the information about the tree train-
ing set. In the domain of graphs, the approaches pro-
posed in (21) and (22) aim at creating super-graph rep-
resentations from the available samples. One can also
cite the interesting work of Marini proposed in (23) that
generates some creative prototype by applying to a seed
model a well selected set of editing operation. A last
approach which is probably the most frequently used
concerns median graphs (24; 25; 26; 27; 28). In a
classification context, median graphs are computed in-
dependently in each class through a minimization pro-
cess of the sum of distances to all input graphs. Two
kinds of median graphs are proposed in the literature:
the set median graphs (smg) and the generalized me-
dian graphs (gmg). The only difference between them
lies in the space where the medians are searched for. In
the first case, the search space is limited to the initial set
of graphs (the problem is thus a graph prototype selec-
tion problem) whereas in the second case, medians are
searched among an infinite set of graphs built using the
labels of the initial set (the problem is thus a graph pro-
totype generation problem). Generalized median graphs
approaches have proven to keep the most important in-
formation in the classes and reject noisy examples (25).
However, a drawback of median graphs when they are
used as learning samples of a classification process, as
for the all the approaches mentionned before, is that
they do not take into account the inter-classes data dis-

tribution. In other words, median graphs are rather gen-
erative prototypes than discriminative ones.

In this paper, we overcome this drawback by using a
discriminative approach while searching an optimal set
of prototypes. Thus, it is the classification performance
obtained on a validation dataset which is used as crite-
rion in the prototype optimization process. Hence, we
propose to use a graph based Genetic Algorithm in order
to learn a set of graph prototypes, called discriminative
graphs (dg), which minimize the error rate of a classifi-
cation system. Two configurations are successively con-
sidered for extracting the discriminative graphs. In the
first one, a single prototype is generated for each class
of the classification problem, as in the case of median
graphs. Then, this concept is extended to the extraction
of multiple prototypes for each class in order to obtain a
better description of the data. This extension is also con-
sidered in the case of median graphs in order to provide
a suitable comparison. In both configurations, we show
that discriminative graphs, and particularly multiple dis-
criminative graphs, enable to obtain very good classifi-
cation results while considerably reducing the number
of dissimilarity computations in the decision stage.

Four datasets are used in the experimental protocol.
The first is a huge synthetic dataset. The others are real-
world datasets consisting of graphs built from a graph-
ical symbol recognition benchmark (29) for the second
and the third and from character recognition for the
fourth. The classification performance obtained using
discriminative graphs and median graphs are compared
on these four datasets.

The paper is organized as follows. In section 2, the
most important concepts and notations concerning me-
dian graphs and discriminative graphs are defined. In
section 3, the proposed approach for graph prototypes
extraction is detailed. Section 4 describes the experi-
mental evaluation of the algorithm and discusses results.
Finally, section 5 offers some conclusions and suggests
directions for future works.

2. Definitions and notations

In this work, the problem which is considered con-
cerns the supervised classification of directed labeled
graphs. Such graphs can be defined as follows:

Definition 1. A directed labeled graph G is a 4-tuple
G = (V, E, µ, ξ) where:

• V is the set of vertices,

• E ⊆ V × V is the set of edges,

2
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• µ : V → LV is a function assigning a label to a
vertex,

• ξ : E → LE is a function assigning a label to an
edge.

A graph classification algorithm aims at assigning a
class to an unknown graph using a mapping function f .
This function is usually induced from a learning stage
which can be defined as follows:

Definition 2. Let χ be the set of the labeled graphs.
Given a graph learning dataset L = {〈gi, ci〉}Mi=1 , where
gi ∈ χ is a labeled graph and ci ∈ C is the class of the
graph among the N classes. The learning of a graph
classifier consists in inducing from L a mapping func-
tion f (g) : χ → C which assigns a class to an unknown
graph.

In this paper, graph classification is tackled with a
Nearest Prototype Classifier (NPC), i.e. with a NN rule
applied on a reduced set of representative graph proto-
types. Hence, the learning stage of the classifier consists
in generating these prototypes. The objectives are (i)
to overcome the well-known disadvantages of a K-NN
procedure, i.e. the large storage requirements, the large
computational effort and the sensitivity to noisy exam-
ples and (ii) to keep classification performance as high
as possible.

As mentioned before, median graphs are frequently
used as representative in a graph classification context.
Two kinds of median graphs may be distinguished: the
set median graph smg and the generalized median graph
gmg. Both are based on the minimization of the sum of
distances (SOD) to all input graphs. Formally, they are
defined as follows:

Definition 3. Let d(., .) be a distance or a dissimilar-
ity function that measures the dissimilarity between two
graphs. Let S = {g1, g2, . . . , gn} be a set of graphs. The
set median graph (smg) of S is defined by:

smg = arg min
g∈S

n∑

i=1

d(g, gi) (1)

According to this definition, smg necessarily belongs
to the set S . This definition has been extended in (25)
to the generalized median graph (gmg) which does not
necessarily belong to S :

Definition 4. Let d(., .) be a distance or a dissimilar-
ity function that measures the dissimilarity between two
graphs. Let S = {g1, g2, . . . , gn} be a set of graphs. Let
U be the infinite set of graphs that can be built using the
labels of S . The generalized median graph (gmg) of the

subset S is defined by:

gmg = arg min
g∈U

n∑

i=1

d(g, gi) (2)

Median graphs, generalized or not, have already been
used as class representatives in a classification process,
e.g. in (25; 26; 27). In this case, if N is the number of
classes in the learning dataset L, N smg (resp. gmg)
are computed independently (one for each class) and
the resulting graph set constitutes the learning dataset
S MG = {smgi}Ni=1 (resp. GMG = {gmgi}Ni=1) of the
nearest prototype classifier. It has been shown in (25)
that generalized median graphs capture the essential in-
formation of a given class. However, such prototypes
do not take into account the inter-class distribution of
learning samples.

In order to overcome this problem, we propose to use
discriminative graphs (dg) as prototypes for graph clas-
sification. The main difference between median graphs
and discriminative graphs lies in the criterion which is
used to generate the prototypes. In the case of dg, rather
than optimizing a sum of intra-class distances, proto-
types are generated in order to minimize the classifica-
tion error rate obtained on a validation dataset. Obvi-
ously, as in the case of median graphs, these prototypes
can be computed in the initial set of graphs, leading
to set discriminative graphs (sdg), or in the whole set
of graphs, leading to generalized discriminative graphs
(gdg). As a consequence, the dg for each class are re-
lated to each other and can not be expressed indepen-
dently. The set S DG of sdgi can be defined as follows:

Definition 5. Let N be the number of classes in the
learning dataset L. Let T be a validation dataset and
let ∆

(
T, {gi}Ni=1

)
be a function computing the error rate

obtained by a 1-NN classifier on T using the graph pro-
totypes {gi}Ni=1 ∈ L as learning samples. Then the set
S DG composed of the sdgi of each class is given by:

S DG = {sdg1, sdg2, . . . , sdgN}
= arg min

{gi}Ni=1⊂L
∆(T, {gi}Ni=1) (3)

In the same way, the set GDG of gdg is defined as
follows:

Definition 6. Let N be the number of classes in the
learning dataset L. Let U be the infinite set of graphs
that can be built using labels from L. Let T be a vali-
dation dataset and let ∆

(
T, {gi}Ni=1

)
be the error rate ob-

tained by a 1-NN classifier on T using the graph pro-
totypes {gi}Ni=1 ∈ U as learning samples. Then the set
GDG composed of the gdg of each class is given by:

3
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GDG = {gdg1, gdg2, . . . , gdgN}
= arg min

{gi}Ni=1⊂U
∆(T, {gi}Ni=1) (4)

The concepts presented above involve the generation
of a single prototype for each class. In some particular
applications, it may be interesting to generate m proto-
types for each class in order to obtain a better descrip-
tion of the data. In the following, we give the definition
of such prototypes called m-gdg1.

Definition 7. Let N be the number of classes in the
learning dataset L. Let U be the infinite set of graphs
that can be built using labels from L. Let m be the num-
ber of prototypes to be computed in each class. Let T be
a validation dataset and let ∆

(
T, {gik}N,mi=1,k=1

)
be the error

rate obtained by a 1-NN classifier2 on T using the graph
prototypes {gik}N,mi=1,k=1 ∈ U as learning samples. Then
the set mGDG composed of the m-gdg of each class is
given by:

mGDG = {gdg11, ..., gdg1m, ..., gdgN1, ..., gdgNm}
= arg min

{gik}N,mi=1,k=1⊂U
∆

(
T, {gik}N,mi=1,k=1

)
(5)

In order to provide some fair comparisons in the ex-
perimental protocol, we also extend the median graph
concept to multiple prototypes. In this case, the m-gmg
(as well the m-smg) are defined independently for each
class :

Definition 8. Let d(., .) be a distance or a dissimi-
larity function that measures the dissimilarity between
two graphs. Let n be the number of samples in the con-
sidered class. Let m be the number of prototypes, gpk

be the prototypes and gi be the graphs of the considered
class. Then, the set mGMG composed of the m-gmg for
the considered class is given by :

mGMG = {gmg1, . . . , gmgm}

= arg min
{gpk}mk=1⊂U

n∑

i=1

min
k∈{1,m}

d(gpk, gi) (6)

The algorithms involved in the computation of the
different kinds of representative prototypes are pre-
sented in the following section.

1the definition of m-sdg is easily obtained through the change of
the search space from U to S .

2In this case, a k-NN procedure with k > 1 will be considered in
future works, for example to allow the system to reject some patterns

3. Genetic algorithms for Graph Prototypes Gener-
ation

In section 2, the graph prototype search problem has
been defined as an optimization process. Two kinds of
prototypes have been distinguished: (i) set prototypes
and (ii) generalized prototypes.

(i) The set prototype search problem consists in se-
lecting the m prototypes per class which optimize an
objective function. A combinatorial exploration of the
solution space would result in evaluating the criterion
for each of the potential solutions. If we consider that
each of the N classes contains ni elements, there are

(
m
n1

)
×

(
m
n2

)
× · · · ×

(
m
nN

)
(7)

combinations for selecting m prototypes to represent
each class. For a quite simple problem with 2 classes
and 100 graphs in each class, the search for 5 proto-
types per class would result in more than 75 × 106 eval-
uations of the criterion. Hence, a complete exploration
of the solution space rapidly becomes intractable. Many
heuristic methods such as multistart, genetic algorithms
or tabu search (18) have been used to tackle the prob-
lem of set prototype search when dealing with vectorial
data. Among them, genetic based methods have shown
good performance (31; 18).

(ii) The generalized prototype search problem can
also be stated as an optimization problem. However,
it cannot be solved with a combinatorial approach since
the set U in which the solutions are searched for is un-
bounded (only a subset S of U is known). In (24), the
authors use genetic algorithms to approximate the gen-
eralized median graph of a set of graphs. In the con-
text of computing a single generative prototype, they
report that the solution reached by a genetic approach
is often the optimal solution. In this paper, we also
propose to use genetic algorithms but to solve both the
set/generalized median/discriminative prototype extrac-
tion problem. The next subsections precisely describe
our approach.

3.1. Genetic Algorithm

Genetic Algorithms (GA) are evolutionary optimiza-
tion techniques with a wide scope of applications (32).
They have been used to solve many combinatorial prob-
lems (33). An individual of a GA corresponds to a pos-
sible solution of an optimization problem. The relation-
ship between this individual and the corresponding so-
lution is given by an appropriate encoding. The quality
of each individual is evaluated thanks to a score function

4
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g1,1 g2,1 g1,2 g2,2 g1,3 g2,3

Figure 1: General encoding scheme for the m prototypes problem.
Each individual contains m × N genes. Each one corresponds to a
graph prototype.

which enables to quantify the quality of the correspond-
ing solution. In order to converge to the optimal solu-
tion, individuals from a size-limited population are ran-
domly selected at each generation according to a fitness
value which is computed using the scores of all the indi-
viduals of the population. New individuals are then gen-
erated from those selected individuals thanks to genetic
operators such as crossover or mutation. From a general
point of view, the crossover operator aims at promoting
the exchange of good genetic material between individ-
uals of the previous generation. The mutation operator
is used to promote genetic diversity and to explore the
solution space. Given these general principles, solving
a specific optimization problem using GA requires the
definition of :

• an appropriate encoding of the solutions;

• a function which evaluates the score of the individ-
ual;

• a selection strategy ;

• some dedicated genetic operators (mutation and
crossover operators)

The following paragraphs tackle each of these points
for both graph prototype selection and generation, and
describe the proposed genetic algorithm.

3.2. Individual encoding

The encoding aims at giving a one-to-one relationship
between the individuals manipulated by the GA and the
solutions of the optimization problem. As defined be-
fore, the prototype selection/generation problem aims
at providing m prototypes for each of the N classes. So,
we adopt a general scheme where an individual contains
m × N genes, and each gene encode a graph prototype.
An example is given in Fig. 1. In this example, the indi-
vidual encodes 2 prototypes for each class in a 3 classes
problem and gi, j is the ith graph prototype describing
class j. Obviously, this encoding is specialized for each
problem.

3.2.1. Set prototype problem encoding
As stated in section 2, the possible solutions of a set

prototype problem are the combinations of m elements

1 3 5 2 7 3

Figure 2: Set prototype encoding scheme for the m prototypes prob-
lem. Each individual contains m × N genes. Each gene is the index of
the graph in the learning dataset.MODIFS A FAIRE

selected from each class in the initial graph set. For this
kind of problem, an individual can be defined by a list
of N × m integers which is structured as a sequence of
N m-sets. Each m-set describes one of the N classes
and contains the m indices of the elements from the ini-
tial set which are selected as prototype. The exemple
in Fig. 2 presents the encoding of an individual for a
3-class problem where 2 prototypes are selected to de-
scribe each class. This individual indicates that class 1
is described with elements 1 and 3 of a learning subset
composed of the graphs of the first class, that class 2 is
described with elements 5 and 2 of the class, and that
class 3 is described with graphs the indices of which are
7 and 3 in the third class subset.

3.2.2. Generalized prototype problem encoding
The index model used in the set prototype problem

can not be used for the solution encoding of the gener-
alized prototype problem since the definition of gener-
alized (median and discriminative) graphs implies that
prototypes may be outside of the initial set of graphs.
As a consequence, each gene of an individual can not
be a simple index and has to encode all the information
contained in the corresponding graph. We have cho-
sen to represent each graph with its adjacency matrix.
Hence, an individual can be defined by a list of N × m
adjacency matrices, structured as a sequence of N m-
sets. Fig. 3 illustrates such an encoding where only one
of the 6 genes is represented.

3.3. Fitness function

A fitness function aims at evaluating how the solu-
tion encoded by an individual is good for the optimiza-
tion problem with respect to the entire population. The
computation of a fitness value relies on two steps. First,
the score of the individual has to be evaluated. It corre-
sponds to the value of the objective function to be opti-
mized. Then, this value is normalized with respect to the
scores of all the individuals of the population. As men-
tioned in section 2, objectives are different for the me-
dian prototype problem and for the discriminative proto-
type problem. As a consequence, score functions differ
for each problem.

5
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Figure 3: Generalized prototype encoding scheme for the m proto-
types problem. Each individual contains m × N genes. Each gene is
an adjacency matrix describing the corresponding graph. Only g1,2
is represented here. In the adjacency matrix, the digits state for ver-
tex identifiers. a, b, and c are vertices labels, they appear in the last
column of the matrix. W, X and Y are edge labels, they appear in
the adjacency matrix at the line (resp. column) corresponding to the
source (resp. target) vertex.

3.3.1. Score function for median prototypes
As defined in section 2, the score function in the me-

dian prototype problem is given by :

S α =

N∑

i=1


ni∑

j=1

min
k∈[1,m]

d
(
Li j, smgik

)
 (8)

where N is the number of classes, ni is the number
of elements of class i in the learning dataset, m is the
number of prototypes per class, Li j is the jth sample of
class i, and smgik is the kth prototype of class i in the
individual α.

3.3.2. Score function for discriminative prototypes
The score value of an individual in the discriminative

prototype problem is a function which is directly linked
to the error rate of the Nearest Prototype Classifier eval-
uated on a validation dataset T using the prototypes en-
coded in the individual. It is given by :

S α = ∆
(
T, {gik}N,mi=1,k=1

)
(9)

where T is the validation dataset, N is the number
of classes, m is the number of prototypes per class,
gik is the kth prototype of class i in the individual and
∆

(
T, {gik}N,mi=1,k=1

)
is the error rate obtained by a 1-NN

classifier on T using the graph prototypes {gik}N,mi=1,k=1 as
learning samples.

The computation of both the ∆ value of eq. 9 and the
S α value of eq. 8 make use of graph distance computa-
tion. The following paragraph discusses our choice for
this distance definition.

3.3.3. Distance computation
Any kind of distance can be used in the proposed

framework (graph edit distance (34; 35) or its approxi-
mations (36), distance based on the maximum common
subgraph (37), distance based on graph union (38). . . ).
In the experiments proposed in section 4, the graph
comparison computation is performed using a dissim-
ilarity measure proposed by Lopresti and Wilfong (39).
This measure is based on graph probing which has been
proved to be a lower bound for the reference graph edit
distance within a factor of 4.

Let g be a directed attributed graph with edges labeled
from a finite set LE = {l1, . . . , la}. A given vertex of g
can be represented with its edge structure as a 2a-tuple
of non-negative integers {x1, . . . , xa, y1, . . . , ya} such that
the vertex has exactly xi incoming edges labeled li and
y j outgoing edges labeled l j.

In this context, two types of probes are defined in
(39):

• P1(g) : a vector which gathers the counts of ver-
tices sharing the same edge structure for all en-
countered edge structures ;

• P2(g) : a vector which gathers the number of ver-
tices for each vertex label.

Based on these probes and on the L1-norm, the graph
probing distance between two graphs g1 and g2 is given
by :

gpd (g1, g2) = L1 (P1 (g1) , P1 (g2))
+L1 (P2 (g1) , P2 (g2)) (10)

The graph probing distance respects the non-
negativity, symmetry, and triangle inequality properties
of a metric, but it does not respect the uniqueness prop-
erty. In other words, gpd is a pseudo-metric and two
non-isomorphic graphs can have the same probes.

However, the main advantage of graph probing in this
study is its low computational cost (linear function of
the vertex number). Due to the intensive use of distance
computations during the genetic algorithm, this prop-
erty makes the graph probing distance a good candidate.
Nevertheless, it is important to note that any kind of dis-
similarity measure may be used in the proposed frame-
work.

3.3.4. Fitness computation
Once the score value of an individual has been com-

puted, a second step of individual evaluation consists
in computing its fitness, through a normalization of the

6
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g1,1 g2,1 g1,2 g2,2 g1,3 g2,3

g′1,1 g′2,1 g′1,2 g′2,2 g′1,3 g′2,3
(a) Pair of individuals selected for the crossover operation
: the parents

g′1,1 g2,1 g′1,2 g′2,2 g1,3 g2,3

g1,1 g′2,1 g1,2 g2,2 g′1,3 g′2,3
(b) Pair of children generated by the crossover operation.

Figure 4: Illustration of the crossover operator : two selected parents
(a) generate two offsprings (b). Genes 1,3 and 4 have been swapped
during the operation

score value with respect to all the individuals of the pop-
ulation. We use the following classical fitness assign-
ment procedure in this scope:

Fα =
S α∑ρ
i=1 S i

(11)

3.4. Selection strategy

The selection operator aims at selecting a proportion
of the existing population to breed a new generation.
Individual solutions are selected through a fitness-based
process, where fitter solutions (as measured by the fit-
ness function defined in eq. 11) are typically more likely
to be selected. We use the well known roulette wheel
strategy (32) in which the probability of an individual
to be selected is proportional to its fitness value. In the
whole reproduction process, an elitism mechanism is
coupled with this selection strategy such that the µ best
individuals from the previous generation are ensured to
be in the next generation.

3.5. Crossover

As mentioned before, the crossover operator is de-
signed to generate offsprings from selected individuals.
The exchange of genetic material aims at generating off-
springs sharing good genes from their parents.

In our case, the crossover is performed by a ran-
dom exchange of prototypes between the parent for each
class. Fig. 4 illustrates the crossover operation. The op-
eration is the same for all the kinds of prototypes. In
the case of set prototypes, where the graphs prototypes
are designated by indices, only indices are permuted
whereas the complete graph descriptions are exchanged
when dealing with the generalized prototype problem.

3.6. Mutation

Mutations are used to promote genetic diversity and
allow the exploration of regions of the solution space
which can not be reached only with crossover. As the

1 3 5 2 7 3
(a) individual selected for mutation

1 4 6 2 7 5
(b) individual resulting from the mu-
tation operation

Figure 5: Illustration of the mutation operator for set prototypes :
genes 2,3 and 6 have mutated

solution space is different for set prototype and gener-
alized prototype problems, the mutation operator has to
be specialized for each case.

3.6.1. Mutation for set prototype problem
In the set prototype problem, the solution space is de-

fined by the combinations allowing the selection of m
prototypes for each class. An elementary modification
of an individual would consist in replacing a prototype
by an element from the same class that is not already
selected in the individual. Hence, considering the index
model used to represent graphs, a simple way to perform
a mutation is to arbitrarily substitute an index values by
a random integer. Fig. 5 illustrates the mutation pro-
cess. In this example, we can observe that element 3
has been replaced by element 4 in the mutated version
of the description of class 1. In the same way, instance
5 has been replaced by instance 6 in the description of
class 2. Finally, the mutated version describes class 3
using the element 5 instead of element 3.

3.6.2. Mutation for the generalized prototype problem
In the generalized prototype problem, the solution

space is not restricted to the combinations of elements
selected in L. Graphs that are not element of L can be
generated as prototypes. As a consequence, the muta-
tion operation can not be restricted to an index modi-
fication. It must be able to produce new graphs. To
do this, a random edit operation is applied to the graph
prototypes that are included in the individual. For each
graph of a given individual, a first random choice ac-
cording to a mutation probability enables to decide if a
mutation is applied or not. Then, one of the six follow-
ing possible operations illustrated on Fig. 6 is chosen
randomly :

• Vertex deletion : delete a randomly chosen vertex
and all its connected edges. This operation corre-
sponds to the deletion of a row and a column in the
adjacency matrix (see Fig. 6(b)).

• Edge deletion : delete a randomly chosen edge.
This operation corresponds to the deletion of an

7
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edge value in the adjacency matrix (see Fig. 6(c)).

• Vertex insertion : insert a new vertex in the graph
with a randomly chosen label among the vertex la-
bel dictionary. This operation corresponds to the
addition of a new row and a new column in the ad-
jacency matrix. The label column is also updated
using the randomly chosen label (see Fig. 6(d)).

• Edge insertion : insert a new edge between two
random vertices with a randomly chosen label
among the edge label dictionary. This operation
corresponds to the addition of a randomly labeled
edge in the adjacency matrix (see Fig. 6(e)).

• Vertex substitution : substitue the label of a ran-
domly chosen vertex using the vertex label dictio-
nary. This operation corresponds to the modifica-
tion of the label column for the randomly chosen
vertex(see Fig. 6(f)).

• Edge substitution : substitue the label of a ran-
domly chosen edge using the edge label dictionary.
This operation corresponds to the modification of
the label for the randomly chosen edge (see Fig.
6(g)).

3.7. Proposed algorithm
Alg. 1 gives the generic structure of the GA used

for the graph prototype generation/selection problems.
This algorithm complies with the principles defined in
section 3.1 and is specialized by setting the adapted en-
coding, fitness function and genetic operators presented
previously.

First, an initialization procedure aims at building the
initial population where each individual corresponds to
a possible solution of the optimization problem. In the
case of set prototypes, distinct indices are randomly
chosen for each individual in order to represent the N
classes with N × m graphs. For generalized prototypes,
we have chosen to initialize the individuals with ran-
domly chosen graphs from the learning dataset, since it
has been shown in (24) that it is a better solution than a
complete random procedure.

Then, the GA iterates over the generations, building
new size-limited populations from the previous ones.
Each new generation is composed of:

• the µ best individuals from the previous one. Such
an elitist strategy ensures the convergence of the
algorithm.

• mutated or crossed version of individuals that have
been selected from the previous generation.

Finally, the algorithm provides the best individual
from the last generation as the best solution of the opti-
mization procedure.

Algorithm 1 Genetic algorithm
Require: L: the training set
Require: T : the validation set
Require: m: number of prototypes per class
Require: populationSize
Require: generationNumber
Require: mutationRate
Require: µ: elitism value
Ensure: A set of N × m prototypes

Pop[0][]← popInit(L,T ,m,populationSize) 1

popEval(Pop[0],L,T )
fitnessEval(Pop[0])
for i = 1 to generationNumber do

Pop[i][1 : µ]← µ best individuals in Pop[i − 1]
j← µ + 1
while j ≤ populationS ize do

op← choice between mutation and crossover 2

if op = mutation then
ind ← select an individual in Pop[i − 1] 3

Pop[i][ j]← mutation(ind)
j← j + 1

else
ind1 ← select an individual in Pop[i − 1] 3

ind2 ← select an individual in Pop[i − 1] 3

(newInd1, newInd2)← crossover(ind1, ind2)
Pop[i][ j]← ind1
Pop[i][ j + 1]← ind2
j← j + 2

end if
popEval(Pop[i],L,T )
fitnessEval(Pop[i])

end while
end for
return the best individual from the last generation

1 T is not used for the initialization in the case of dis-
criminative graphs
2 This choice is made according to mutationRate
3 Selection is done using a roulette wheel according to
fitness values

4. Experimental results and analysis

This section is devoted to the experimental evalua-
tion of the proposed approach. First, both the datasets
and the experimental protocol are described before in-
vestigating and discussing the merits of the proposed
approach.

8
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Progos Ontology Generator

Overview
The  Ontology  Generator  generates  ontology  statements  we  can  infer  from  an  RDF 

document. It generates RDFS, OWL and DAML ontologies.

The anatomy of a statement
The following picture illustrates a statement, the optional type information of its subject and 

object and the ontology facts we can infer from it. The document space is drawn in black, 

the ontology space is in orange.

Suppose the document contains the following statement:

S p O (s1)

where  S  is  the  subject,  p  is  the  predicate  and  O  is  the  object  of  the  statement. The 
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Progos Ontology Generator

document can contain optional information about the types of the resources we talk about:

S rdf : type CS (s2)

O rdf : type CO (s3)

Let's see what can we infer from these statements. From (s1) we infer that p  is a Property:

p rdf : type rdf:Property (o1)

If the document contains (s2), we also know the domain of p :

p rdfs :domain CS (o2)

If does not, we still know that

p rdfs :domain rdfs :Resource (o3)

If the document contains (s3), we can infer:

p rdfs :range CO (o4)

If does not, we still know that

p rdfs :range rdfs :Resource (o5)

Or if O  is a literal with a given  dt  datatype:

p rdfs :range dt (o6)

In case of an untyped object:

p rdfs :range rdfs :Literal (o7)

Finally we know that CO  and CS  are classes:

CS rdfs : type rdfs :Class (o8)

CO rdfs : type rdfs :Class (o9)

©2010, progos.hu 2/3
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Progos Ontology Generator

OWL generation

If we generate OWL ontology, we generate some additional statements.  Instead of (o1) we 

generate

p rdf : type owl:ObjectProperty (o10)

or in case of typed literal object

p rdf : type owl:DatatypeProperty (o11)

depending the type. In case of untyped literal object we generate (o9) but it may be incorrect.

In place of (o3), we say

p rdfs :domain owl :Thing (o12)

We know that CO  and CS  are owl classes or datatypes:

CS rdfs : type owl:Class (o13)

CO rdfs : type owl:Class (o14)

or

CO rdfs : type owl:Datatype (o15)

DAML ontology

Since  DAML  ontology  has  the  same  structure  as  OWL  and  they  differ  only  in  the 

namespace, we do not discuss DAML generation here. 

©2010, progos.hu 3/3
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Fouille de graphes et classification de graphes : Application à
l’analyse de plans cadastraux.
Résumé: Les travaux présentés dans ce mémoire de thèse abordent sous différents
angles très intéressants, un sujet vaste et ambitieux : l’interprétation de plans
cadastraux couleurs. Dans ce contexte, notre approche se trouve à la confluence
de différentes thématiques de recherche telles que le traitement du signal et
des images, la reconnaissance de formes, l’intelligence artificielle et l’ingénierie
des connaissances. En effet, si ces domaines scientifiques diffèrent dans leurs
fondements, ils sont complémentaires et leurs apports respectifs sont indispensables
pour la conception d’un système d’interprétation. Le centre du travail est le
traitement automatique de documents cadastraux du 19e siècle. La problématique
est traitée dans le cadre d’un projet réunissant des historiens, des géomaticiens
et des informaticiens. D’une part nous avons considéré le problème sous un angle
systémique, s’intéressant à toutes les étapes de la chaîne de traitements mais
aussi avec un souci évident de développer des méthodologies applicables dans
d’autres contextes. Les documents cadastraux ont été l’objet de nombreuses études
mais nous avons su faire preuve d’une originalité certaine, mettant l’accent sur
l’interprétation des documents et basant notre étude sur des modèles à base de
graphes. Des propositions de traitements appropriés et de méthodologies ont été
formulées. Le souci de comblé le gap sémantique entre l’image et l’interprétation a
reçu dans le cas des plans cadastraux étudiés une réponse.
Mots clés: Théorie et modèles pour la reconnaissance de formes en document,
Analyse de plans et reconnaissance de graphiques, Extraction et structuration
d’informations graphiques, Recherche/fouille d’information dans les images de
documents, Classification de graphes, Évaluation de performances.
Domaine de recherche: code 22 : Graphes, combinatoire, complexité, code 92
: Vision par ordinateur, reconnaissance de formes, code 91 : Traitement et analyse
d’images, de son, de signaux (codes fournis par la nomenclature thématique section
27 du CNU).

Graph Mining and Graph Classification: Application to cadas-
tral map analysis.
Abstract: This thesis tackles the problem of technical document interpretation
applied to ancient and colored cadastral maps. This subject is on the crossroad of
different fields like signal or image processing, pattern recognition, artificial intelli-
gence, man-machine interaction and knowledge engineering. Indeed, each of these
different fields can contribute to build a reliable and efficient document interpre-
tation device. This thesis points out the necessities and importance of dedicated
services oriented to historical documents and a related project named ALPAGE.
Subsequently, the main focus of this work: Content-Based Map Retrieval within an
ancient collection of color cadastral maps is introduced.
Keywords: Graph classification, graph-based representation, graph-mining,
graphics recognition, color map, cadastral map, map interpretation, contextual in-
formation modeling.
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