







# Comportement statique et dynamique d'une suspension de haut-parleur à joint de ferrofluide

### Marcos Pinho

Laboratoire d'Acoustique de l'Université du Maine - UMR 6613

Philippe HERZOG Georges BOSSIS Gaël GUYADER Nicolas DAUCHEZ Jean-Michel GENEVAUX Bruno BROUARD Directeur de Recherches, LMA, Marseille Directeur de Recherches, LPMC, Nice Docteur, Technocentre Renault, Guyancourt Professeur, SUPMECA, Paris Professeur, LAUM, Le Mans Maître de Conférences, LAUM, Le Mans Rapporteur Rapporteur Examinateur Co-directeur Co-directeur Co-directeur

# Objectif de la thèse

Étude expérimentale des effets vibratoires d'une suspension à joint de ferrofluide sur le fonctionnement dynamique du haut-parleur

# Contextualisation de la thèse

### **Projet MAGIC** (Magnetic Ironless Concept)



# Contextualisation de la thèse



# Contextualisation de la thèse



# Contextualisation de la thèse



# Caractéristiques générales des hauts-parleurs

Haut-parleur à joints de ferrofluide

Haut-parleur classique





# Caractéristiques générales des hauts-parleurs

Haut-parleur à joints de ferrofluide

### Haut-parleur classique



- Moteur tout aimant



- Structure avec du fer

# Caractéristiques générales des hauts-parleurs

Haut-parleur à joints de ferrofluide

Haut-parleur classique



- Moteur tout aimant
- Équipage mobile



- Structure avec du fer
- Équipage mobile

# Caractéristiques générales des hauts-parleurs

Haut-parleur à joints de ferrofluide

### Haut-parleur classique



- Moteur tout aimant
- Équipage mobile
- Suspensions à joints de ferrofluide



- Structure avec du fer
- Équipage mobile
- Suspensions mécaniques

# Caractéristiques générales des hauts-parleurs

Haut-parleur à joints de ferrofluide



- Moteur tout aimant
- Équipage mobile
- Suspensions à joints de ferrofluide



- Structure avec du fer (courants de Foucault et hystérésis)
- Équipage mobile (déformation modale)
- Suspensions mécaniques (hystérésis)

### (Non-linéarités)

# Caractéristiques générales des hauts-parleurs

Haut-parleur à joints de ferrofluide



- Moteur tout aimant
- Équipage mobile
- Suspensions à joints de ferrofluide

### Comportement plus linéaire

# 

- Structure avec du fer (courants de Foucault et hystérésis)
- Équipage mobile (déformation modale)

Haut-parleur classique

- Suspensions mécaniques (hystérésis)

### (Non-linéarités)

# Haut-parleur à suspension à joints de ferrofluide

### Haut-parleur



# Haut-parleur à suspension à joints de ferrofluide

### Haut-parleur



### Positionnement des joints





joints de ferrofluide

joints de ferrofluide

# Haut-parleur à suspension à joints de ferrofluide

### Haut-parleur



# Positionnement vers le $|\nabla \vec{H}|$



### Positionnement des joints



joints de ferrofluide



joints de ferrofluide

# Haut-parleur à suspension à joints de ferrofluide

### Haut-parleur



### Positionnement des joints





joints de ferrofluide

joints de ferrofluide

### Positionnement vers le $|\nabla \vec{H}|$







Thèse R. Ravaud 2009

# Haut-parleur à suspension à joints de ferrofluide

### Haut-parleur



### Positionnement des joints





joints de ferrofluide

joints de ferrofluide

### Positionnement vers le $|\nabla \vec{H}|$



## $|\nabla \overrightarrow{H}|$ dans le haut-parleur



# Caractéristiques générales des ferrofluides



### Ferrofluides commerciaux

- saturation magnétique J
- viscosité η<sub>0</sub>



# Caractéristiques générales des ferrofluides



### Ferrofluides commerciaux

saturation magnétique J

• viscosité  $\eta_0$ 



 $\begin{array}{l} \text{Magnétisation nulle} \\ |H| = 0 \Rightarrow M = 0 \end{array}$ 











# Caractéristiques générales des ferrofluides



### Ferrofluides commerciaux

- saturation magnétique J
- viscosité η<sub>0</sub>

# Caractéristiques générales des ferrofluides



### Ferrofluides commerciaux

saturation magnétique J

• viscosité  $\eta_0$ 

### Dépendance de la viscosité



# Caractéristiques générales des ferrofluides



### Ferrofluides commerciaux

- saturation magnétique J
- viscosité η<sub>0</sub>



# Démarche scientifique



# Démarche scientifique



# Démarche scientifique





# Plan





Banc de Mesure Résultats

# Plan : partie 1







Banc de Mesure Résultats

# Banc de Mesure





Banc de Mesure Résultats

# Banc de Mesure









Banc de Mesure Résultats

# Banc de Mesure



Banc de Mesure Résultats

# Détermination de la raideur radiale $k_r$





Banc de Mesure Résultats

# Détermination du k<sub>r</sub>




Banc de Mesure Résultats

### Dépendance du volume du joint





Banc de Mesure Résultats

### Dépendance du volume du joint





Banc de Mesure Résultats

### Dépendance du volume du joint



Banc de Mesure Résultats

### Dépendance du volume du joint



Publiée en IEEE Trans. Mag. 2009



Banc de Mesure Résultats

### Dépendance de la saturation magnétique



Banc de Mesure Résultats

### Dépendance de la saturation magnétique



Banc de Mesure Résultats

~

### Dépendance de la saturation magnétique



#### Rapport de saturation magnétique

$$\frac{I_{32}}{I_{18}} = 1.80 \pm 0.30$$

Banc de Mesure Résultats

2

### Dépendance de la saturation magnétique



#### Rapport de saturation magnétique

$$\frac{J_{32}}{J_{18}} = 1.80 \pm 0.30$$



Banc de Mesure Résultats

#### Conclusion : partie 1





Comportement radial Cisaillement d'une goutte Comportement axial Comportement axial

### Plan : partie 2





Considérations générales Expérience Résultats

### Caractéristiques des analyses expérimentales

#### Joint de ferrofluide à l'intérieur du haut-parleur



#### Caractéristiques

- *H* élevé et non-homogène
- $\nabla H$  élevé et non-homogène
- cisaillement oscillatoire
- jeu étroit

Considérations générales Expérience Résultats

### Caractéristiques des analyses expérimentales

Joint de ferrofluide à l'intérieur du haut-parleur



#### Goutte de ferrofluide entre deux plans parallèles



• *H* élevé et homogène

Caractéristiques

- ∇*H* nul
- cisaillement oscillatoire
- jeu étroit

#### Caractéristiques

- *H* élevé et non-homogène
- $\nabla H$  élevé et non-homogène
- cisaillement oscillatoire
- jeu étroit

Considérations générales Expérience Résultats

#### Banc de mesure





#### Configuration de l'expérience

- Sinus glissant pas-à-pas
- Jeu b = 0.94 mm
- Amplitude de vitesse constante : V= 5, 15 et 25 mm.s<sup>-1</sup>
- Taux de cisaillement :  $\dot{\gamma} = \dot{\Gamma} \cos(\omega t)$ , où  $\dot{\Gamma} = \frac{V}{b}$

Considérations générales Expérience Résultats

#### Partie magnétique Champ magnétique *H* entre deux aimants cubiques



Considérations générales Expérience Résultats

#### Partie magnétique Champ magnétique *H* entre deux aimants cubiques



Considérations générales Expérience Résultats

#### Partie mécanique Effets ajoutés par le volume de ferrofluide

Sans fluide 
$$\begin{array}{c} k_{s} \\ \hline \\ \hline \\ c_{s} \\ \hline \\ \hline \\ \hline \\ c_{s} \\ \hline \\ \hline \\ \hline \\ F \end{array} \qquad Z_{0} = \frac{F_{0}}{v_{p}} = m_{0}j\omega + c_{0} + \frac{k_{0}}{j\omega}$$

Comportement radial Cisaillement d'une goutte Comportement axial Comportement axial

#### Partie mécanique Effets ajoutés par le volume de ferrofluide



#### Caractérisation des effets du ferrofluide

• masse ajoutée \* : 
$$\mathbf{m} = \frac{M_f}{3}$$
  
• raideur ajoutée :  $\mathbf{k}$   
• amortissement :  $\mathbf{C} \Rightarrow \eta$ 

\* R. Blevins, 2001, "Formulas for natural frequency and mode shape"

Considérations générales Expérience Résultats



Considérations générales Expérience Résultats





Considérations générales Expérience Résultats



Considérations générales Expérience Résultats





Considérations générales Expérience Résultats

#### Résultats expérimentaux APGW10 ( $J = 32 \text{ kA.m}^{-1}$ , $\eta_0 = 1.0 \text{ Pa.s}$ )



Considérations générales Expérience Résultats

#### Résultats expérimentaux APGW10 ( $J = 32 \text{ kA.m}^{-1}$ , $\eta_0 = 1.0 \text{ Pa.s}$ )



Considérations générales Expérience Résultats

#### Résultats expérimentaux Effet magnétovisqueux des ferrofluides en cisaillement oscillatoire

$$rac{ riangle \eta}{\eta_0} = rac{\eta(H,f) - \eta(0,0)}{\eta(0,0)}$$



۱

Considérations générales Expérience Résultats

#### Résultats expérimentaux Effet magnétovisqueux des ferrofluides en cisaillement oscillatoire

Variation relative :

$$rac{ riangle \eta}{\eta_0} = rac{\eta(H,f) - \eta(0,0)}{\eta(0,0)}$$



# Ferrofluide en cisaillement stationnaire et H oscillatoire



Considérations générales Expérience Résultats

### Conclusion : partie 2





Modèle

### Plan : partie 3





Modèle

### Banc de Mesure

Joint de ferrofluide en oscillation sous champ magnétique non-uniforme



#### Configuration de l'expérience

- Sinus glissant pas-à-pas : de 10 Hz à 200 Hz
- Jeu : ε = 0.25 mm
- Amplitude de vitesse constante : V= 3.5 mm.s<sup>-1</sup>
- Amplitude de déplacement maximum : D = 0.06 mm (f = 10 Hz)
- Taux de cisaillement maximum :  $\dot{\Gamma} = \frac{V}{b} \simeq 14 \text{ s}^{-1}$
- Taux de déformation maximum :

 $D/\epsilon = 0.23$ 

 $Z(H,f) = (m_0 + m)j\omega + (c_0(f) + c(H,f)) + \frac{k_0(f) + k(H,f)}{j\omega}$ 

## Expérience

Conditions évaluées :

- Quatre types de ferrofluide ( $\eta_0$ , J)
- Fréquence f : 10 Hz à 200 Hz
- Cinq volumes de joint :



### Masse ajoutée par un joint de ferrofluide

Masse ajoutée théorique \* :  $m = M_f/3$ 



#### \* R. Blevins, 2001, "Formulas for natural frequency and mode shape"

Modèle

### Résultats expérimentaux : raideur axiale k

$$k(H,f) = \left[ \left( m_0 \omega - \frac{k_0(f)}{\omega} \right) + m \omega - \Im m(Z(f)) \right] \omega$$



#### Analyse

 Variation non significative par rapport au volume du joint



Modèle

### Résultats expérimentaux : raideur axiale k

$$k(H,f) = \left[ \left( m_0 \omega - \frac{k_0(f)}{\omega} \right) + m\omega - \Im m(Z(f)) \right] \omega$$

#### Condition d'iso-volume



#### Analyse

- Variation non significative par rapport au volume du joint
- Augmente avec J

Modèle

### Résultats expérimentaux : raideur axiale k

$$k(H,f) = \left[ \left( m_0 \omega - \frac{k_0(f)}{\omega} \right) + m\omega - \Im m(Z(f)) \right] \omega$$

#### Condition d'iso-volume



#### Analyse

- Variation non significative par rapport au volume du joint
- Augmente avec J

#### Raideur classique

Haut-parleur traditionnel monté dans une enceinte de type fermée :

• rayon = 0.1 m

$$k_{cav} ~=~ rac{
ho}{V_{air}} ~(cS)^2 ~= 14~000~{
m N.m^{-1}}$$

### Résultats expérimentaux : amortissement axial c



#### Suspension à joint de ferrofluide

- Diminue avec f
- Augmente avec vol
- Augmente avec  $\eta_0$
- Augmente avec J

Modèle

## Champ à l'intérieur d'une couronne aimantée

#### Ajustement de l'aimantation

(champ magnétique radial  $H_r$ )



Couronne magnétique radialement polarisée ( $r = \epsilon$ )



Modèle

### Modèle magnétovisqueux


Modèle

# Modèle magnétovisqueux



Modèle

# Modèle magnétovisqueux



Modèle

# Modèle magnétovisqueux



$$c(f) = \frac{1}{V} \int_{-h/2}^{h/2} \eta(H(\epsilon, z), f) \frac{dv_z}{dr} 2\pi R_p dz$$



75 / 87

Modèle

# Analyse des valeurs du modèle



Modèle

# Analyse des valeurs du modèle

#### Confrontation des résultats



- Volume petit : valeurs du modèle sont en bon accord
- Cohérence des résultats :
  - 1. décroissance avec f
  - 2. croissance avec vol
- Incohérence des résultats :
  1. dépendance surestimée de l'effet du volume
  - 2. le volume maximum non prédit

Modèle

# Analyse des valeurs du modèle

#### Confrontation des résultats



- Volume petit : valeurs du modèle sont en bon accord
- Cohérence des résultats :
  - 1. décroissance avec f
  - 2. croissance avec vol
- Incohérence des résultats :
  1. dépendance surestimée de l'effet du volume
  - 2. le volume maximum non prédit



Modèle

### Conclusion : partie 3





# Conclusion générale

Modèle

# Conclusion générale : joint de ferrofluide



# Conclusion générale : haut-parleur

#### Choix du ferrofluide :

- Influence de *J* :
  - kr élevée pour minimiser les modes "de tangage"
  - k réduite pour réduire le volume derrière

# Conclusion générale : haut-parleur

#### Choix du ferrofluide :

- Influence de *J* :
  - kr élevée pour minimiser les modes "de tangage"
  - k réduite pour réduire le volume derrière

Un ferrofluide de saturation magnétique élevée est indiqué

# Conclusion générale : haut-parleur

#### Choix du ferrofluide :

- Influence de *J* :
  - kr élevée pour minimiser les modes "de tangage"
  - k réduite pour réduire le volume derrière

Un ferrofluide de saturation magnétique élevée est indiqué

#### • Influence de $\eta_0$ :

Associée au niveau d'amortissement du haut-parleur

# Conclusion générale : haut-parleur

#### Choix du ferrofluide :

- Influence de *J* :
  - kr élevée pour minimiser les modes "de tangage"
  - k réduite pour réduire le volume derrière

Un ferrofluide de saturation magnétique élevée est indiqué

#### • Influence de $\eta_0$ :

Associée au niveau d'amortissement du haut-parleur

#### Volume :

- Raideur radiale et amortissement :
  - Variation significative tant que abla |H| significatif
  - Pour  $vol > vol_M$  :  $\Delta k_r \simeq 0$  et  $\Delta c \simeq 0$

#### • Effet de masse ajoutée :

Volume excessif  $\Rightarrow$  altération du rendement du haut-parleur

# Perspectives

#### Perspectives :

- grands déplacements
- analyse du comportement radial en régime dynamique
- influence du joint à ferrofluide sur :
  - le rayonnement acoustique du haut-parleur
  - la distortion harmonique (sous-tâche du projet MAGIC)









# Comportement statique et dynamique d'une suspension de haut-parleur à joint de ferrofluide

#### Marcos Pinho

Laboratoire d'Acoustique de l'Université du Maine - UMR 6613

Philippe HERZOG Georges BOSSIS Gaël GUYADER Nicolas DAUCHEZ Jean-Michel GENEVAUX Bruno BROUARD Directeur de Recherches, LMA, Marseille Directeur de Recherches, LPMC, Nice Docteur, Technocentre Renault, Guyancourt Professeur, SUPMECA, Paris Professeur, LAUM, Le Mans Maître de Conférences, LAUM, Le Mans Rapporteur Rapporteur Examinateur Co-directeur Co-directeur Co-directeur